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Abstract

The ferroelectric potassium titanyl phosphate (KTiOPO,, KTP) along with its isomorphs
rubidium titanyl phosphate (RbTiOPO,, RTP) and potassium titanyl arsenate (KTiOAsO,,
KTA) are used extensively within linear and nonlinear optics, in particular for frequency-
conversion devices and waveguide structures. Despite this frequent use, many bulk and
surface-related properties of the KTP crystal family are still either poorly understood or
have not yet been investigated at all.

On the footing of the density-functional theory (DFT), this study aims at addressing a
number of open questions regarding the (i) spectroscopic signatures of KTB RTP and KTA
and (ii) surface terminations of the [001] and [010] surfaces of KTP. In the first step, the
influence of quasiparticle and excitonic effects on the dielectric response function of all
three materials is investigated stepwise by performing DFT calculations utilizing the GW
approximation and solving the Bethe-Salpeter equation. A comparison between the spectra
subsequently allows to estimate the influence of alkali and group-V elements on the optical
response of the KTP crystal family. In the next step, phononic densities of states and Ra-
man susceptibilities of all three materials are evaluated on the basis of density-functional
perturbation theory, allowing for a nonphenomenological mapping between experimental
Raman bands and individual vibrational modes. Modes involving the displacement of O(9)
and O(10)-type ions are highlighted as particularly important in the interpretation of the
highest-intensity Raman bands. In addition, computational limitations of the present ap-
proach are identified. Lastly, thermodynamically stable reconstructions of the KTP [001]
and [010] surfaces for typical chemical environments are determined using total-energy
DFT calculations. Rebonding processes and changes in the surface stoichiometries, includ-
ing a depletion of Ti and accumulation of O, are shown to induce the formation of occupied
surface states and thus a pronounced shrinkage of the KTP band gap.






Zusammenfassung

Das Ferroelektrikum Kaliumtitanylphosphat (KTiOPO,, KTP) und seine beiden Isomor-
phen Rubidiumtitanylphosphat (RbTiOPO,, RTP) und Kaliumtitanylarsenat (KTiOAsO,, KTA)
werden in groBem Umfang in der linearen und nichtlinearen Optik, insbesondere in Bauele-
menten zur Frequenzumwandlung und Wellenleiterstrukturen eingesetzt. Trotz dieser ver-
breiteten Anwendungen sind eine Vielzahl von Volumen- und Oberfldcheneigenschaften
der KTP Kristallfamilie noch immer entweder unzureichend oder noch iiberhaupt nicht er-
forscht.

Auf der Grundlage der Dichtefunktionaltheorie (DFT) zielt diese Studie darauf ab, eine
Reihe offener Fragen in Bezug auf (i) die spektroskopischen Signaturen von KTB RTP und
KTA und (ii) die Oberflaichenterminierungen der [001]- und [010]-Oberflichen von KTP
zu beantworten. Im ersten Schritt wird der Einfluss von Quasiteilchen- und exzitonischen
Effekten auf die dielektrische Antwortfunktion aller drei Materialien schrittweise unter-
sucht, indem DFT-Berechnungen unter Verwendung der GW-Ndherung durchgefiihrt wer-
den und die Bethe-Salpeter-Gleichung geldst wird. Ein Vergleich zwischen den drei Spek-
tren ermoglicht es anschlielfend, den Einfluss von Alkali- und Gruppe-V-Elementen auf die
optische Antwort der KTP-Kristallfamilie zu evaluieren. Im néchsten Schritt werden die
phononischen Zustandsdichten und Raman-Suszeptibilitdten aller drei Materialien auf der
Grundlage der Dichtefunktionalstorungstheorie untersucht, was eine nichtphdnomenologis-
che Zuordnung zwischen experimentellen Raman-Banden und einzelnen Schwingungsmo-
den ermoglicht. Die besondere Rolle von Moden, welche die Auslenkung von Atomen des
Typs O(9) und O(10) beinhalten, zur Interpretation von Raman-Banden hoher Intensitét
wird dabei hervorgehoben. Dariiber hinaus werden die rechnerischen Grenzen des vor-
liegenden Ansatzes aufgezeigt. Schlief3lich werden thermodynamisch stabile Rekonstruk-
tionen der [001]- und [010]-Oberflachen von KTP fiir typische chemische Umgebungen mit
Hilfe von Berechnungen der DFT Gesamtenergien ermittelt. Es wird gezeigt, dass die Ausbil-
dung neuer Bindungen und Anderungen der Oberflichenstdchiometrie, einschlieRlich einer
Verarmung von Ti und einer Anreicherung von O, die Bildung besetzter Oberflaichenzustiande
und damit eine deutliche Verkleinerung der KTP-Bandliicke bewirken.
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Introduction _

Modern digital communication relies strongly on the availability of high-quality optical de-
vices to generate, manipulate and detect light. In these devices, crystals with ferroelec-
tric properties have ever since played an important role as the active materials. Below a
material-specific transition temperature, a ferroelectric is thereby characterized by the ex-
istence of a stable, internal (spontaneous) polarization P;. Many interesting optical and
structural properties of ferroelectrics can be traced back to the existence of this internal po-
larization, including the photovoltaic response [1] and electronic transport in ferroelectric
field-effect transistors [2]. By applying an external electric field, the magnitude of P¢ may be
altered, effectively making the optical and structural properties of ferroelectrics externally
tunable as well.

Among those tunable parameters, the second-order nonlinear optical coefficient is the
most important quantity in the context of second-harmonic generation (SHG). Within a typ-
ical SHG setup, light of a fundamental frequency w is impinged onto a crystal. Nonlinear
light-matter interaction leads to a partial conversion of the fundamental frequency to its
second harmonic 2w. This effect therefore allows to generate light with optical frequencies
formally unaccessible through methods of conventional light generation. Within the last
decades, SHG setups on the basis of periodically poled KTiOPO, (KTP) [3-8], along with its
isomorphs KTiOAsO, (KTA) [3,9] and RbTiOKO, (RTP) [10,11] emerged as alternatives to
the conventionally used lithium niobate (LiNbO5;, LN) and lithium tantalate (LiTaO, LT).
Due to their large transparency range along with high resistance to optical and mechanical
damage, crystals of the KTP family are well suited for SHG applications in the visible wave-
length regime [12]. Efficient conversion is thereby achieved by letting the impinged light
propagate within a periodically grated crystal of alternating internal polarization state, pre-
venting destructive interference between impinged and generated light (quasi-phase match-
ing). The first periodic polarization reversal in KTP via the application of an electric field
was realized by Chen et al. in 1994 [13]. In their experiment, the authors were able to
fabricate periodic domains of widths as low as 4 um by applying repeated pulses of 2kV of
voltage along the ferroelectric c-axis. With a value of ~2 eV/mm, the electric field required
to achieve domain inversion (coercitive field) was thereby one magnitude lower compared
to LN (~24eV/mm). This advantage of low coercitive field strength, however, is partially
offset by a high and spatially inhomogeneous value of K* ionic conductivity along the fer-
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2 CHAPTER 1. INTRODUCTION

roelectric c-axis [14]. This ionic conductivity quickly neutralizes surface charges induced
by the poling process, counteracting the polarization reversal and giving rise to a higher
susceptibility to optical damage. Transport of K* ions is mainly governed by a vacancy
mechanism [7], rendering the value of ionic conductivity highly dependent on the growth
technique, sample quality, doping, as well as homogenization treatment [12, 14,15]. In
general, a low K* deficiency, introduction of alkali metal defects (Rb, Cs) or a lowering of
the temperature thereby results in a lower conductivity and higher domain quality.

Assessing the quality of SHG gratings and their physical properties requires techniques
to thoroughly visualize ferroelectric domain structures in a noninvasive way. In this con-
text, Raman spectroscopy provides a powerful tool to map structural changes within the
domains, induced by the polarization reversal, onto frequency and intensity shifts of indi-
vidual phonon modes, as has been shown successfully for periodically poled waveguides on
the basis of KTB LN and LT [16,17]. Especially in the case of Rb-exchanged KTEB Raman
analysis showed distinct modulations of modes close to the surface and domain walls, in-
dicating the existence of stress fields caused by the larger Rb atomic radius compared to
K.

For all discussed applications and characterization techniques, a precise knowledge about
the materials electronic and optical properties is of fundamental interest. Especially the
electronic band structure and dielectric response to external electric fields via the dielec-
tric function £(w) are key ingredients for the design of optical devices, because they give
insights into the materials ability to absorb and refract light at optical frequencies w. Ad-
ditionally, knowledge about the atomic arrangement of specific material surfaces (recon-
structions) helps to determine structural effects of external perturbations, e.g., adsorption
of molecules and electric poling. To asses these quantities, ab initio calculations on the basis
of density-functional theory (DFT) are particularly suited. The main principle behind DFT,
as initially formulated in 1964 by Hohenberg and Kohn [18], is a unique functional depen-
dency of the ground-state energy E[ p ] on the electron density p of a many-electron system.
Using the scheme proposed by Kohn and Sham [19], the ground-state energy as well as
one-particle energies (band structures) may be evaluated via the self-consistent solution of
the Kohn-Sham equations. Since its initial formulation, DFT has emerged as a standard
method to determine ground-state properties of molecular and crystalline systems. Among
others, these properties include total-energy differences, electronic band dispersions and
the principle shape of the dielectric function, which are predicted with reasonable accuracy
at feasible computational cost, even for systems containing several hundred atoms.

The Kohn-Sham scheme, however, suffers from an undesired effect: If the Kohn-Sham
energy eigenvalues are interpreted as true excitation energies, the fundamental band gap,
as the difference between ionization energy and electron affinity, is systematically underes-
timated [20-22]. This underestimation, in turn, gives rise to unreasonably low predictions
regarding the onset of ¢(w). Additionally, the classification of certain materials into cate-
gories insulator, semiconductor and metalloid is rendered challenging. Corrections to the
size of the fundamental band gap and dielectric function may be achieved by additionally
including quasiparticle and excitonic effects, respectively. Their inclusion, however, comes
at the prize of extraordinary computational cost.

In the case of the KTP crystal family, a number of the aforementioned quantities are yet
theoretically unexplored. The general aim of this thesis is therefore to address the following
open questions:



1. What is the true dielectric response function of KTB RTP and KTA?

The dielectric function of all materials belonging to the KTP crystal family has yet
been only determined using the independent-particle approximation (IPA), suffering
from the systematic redshift in DFT and leaving the localization and characterization
of electron-hole pairs during optical excitations (excitons) as an open question. Ex-
citonic effects have been shown to noticeably affect the shape as well as position of
the dielectric function, e.g., in LN [23] and KNbO; [24]. The first aim of this the-
sis is therefore to shed light onto the linear dielectric response of KTEB RTP and KTA
by systematically calculating (w) on three levels of theory: (i) IPA, (ii) including
self-energy corrections via the GW approximation (IQPA) and (iii) including excitonic
effects by solving the Bethe-Salpeter equation. The shapes of &(w) as well as differ-
ences between the response functions of the respective materials are discussed on the
basis of transition characteristics.

2. What is the correct assignment between phonon modes and observed Raman
bands in bulk KTEB RTP and KTA?

Although modulations in specific Raman bands of KTP type materials have been used
to visualize domain walls for a long time, the macroscopic origin of those bands has
never been quantitively investigated. For KTP a qualitative analysis was published
by Kugel et al. in 1988 [25]. Using symmetry arguments, the most intense Raman
peaks were mapped onto the fundamental vibrational modes of the KTP substructures,
namely PO, tetrahedra and TiOg octahedra. Although widely accepted as the standard
publication for mode assignments in KTB this study stands on a phenomenological
footing for the most part, limiting further analyses of the real KTP crystal structure.
The aim is therefore to calculate the phonon density of states and Raman spectra of
bulk KTB RTP and KTA crystals, based on the polarizability theory of Raman scattering
by Placzek [26,27] in addition to density-functional perturbation theory. Similarities
and pronounced differences between theoretical and experimental Raman spectra are
discussed based on the displacement patterns of the involved atoms.

3. What are the thermodynamically most stable reconstructions of [010] and [001]
surfaces of KTP?

Surfaces of polar materials are utilized in a number of technological applications, e.g.,
nitrate removal [28], water splitting [29] or the growth of high-quality Ill-nitrides
[30,31]. In the context of domain inversion, surface reconstructions of ferroelectric
materials play a particularly important role. Due to the internal polarization, the two
ferroelectric end facets of the crystal are not equivalent. A redistribution of charge
during poling is therefore screened by a charge transport mechanism, either via mo-
bile charges or a change in the surface stoichiometry. In the case of LN, the formation
of two nonequivalent ferroelectric surfaces (Z* and Z~) was found to be accompanied
by an accumulation of O and Li on the positive Z* surface [32,33]. For KTBE only a
small number of experimental studies have been performed to characterize the surface
reconstructions. In particular, two studies by Atuchin et al. indicate the existence of
an amorphous layer on top of the as-grown [001] surface, depleted of elements P and
K [34,35]. Treating the surface by mechanical polishing, the formation of nanosized
islands was observed. These decompose into TiO, nanocrystals upon heating above
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550 °C. However, the microscopic reconstruction mechanisms of the two technologi-
cally most important KTP surfaces, [001] (Z cut, polar) and [010] (Y cut, nonpolar),
are still unknown. The third aim of this thesis is therefore the determination of the
thermodynamically most stable surface reconstructions of Z and Y-cut KTP by means
of DFT total-energy calculations. In the case of the polar Z cut, surfaces of opposing
polarity (Z~ and Z") are thereby treated separately, allowing different reconstructions
to take place on either surface. Similarities and differences between stable termina-
tions of all surfaces are identified, regarding structural motifs of the reconstructed
layers as well as the influence of the reconstruction on the formation of electronic
surface states.

This thesis is structured in the following way: First, the methodological background of this
thesis is elaborated, starting with an introduction into DFT, the quasiparticle picture and the
GW approximation in Chapter 2. The three theoretical methods to determine the linear di-
electric function (IPA, IQPA, Bethe-Salpeter equation), used in this work, are systematically
elaborated in Chapter 3. Additionally, a method to evaluate the Raman intensity within
density-functional perturbation theory is introduced.

Chapter 4 serves as a review regarding the definition and technological importance of
ferroelectric materials in general, along with the physical background of ferroelectric—para-
electric phase transitions. In particular, materials of the KTP family are introduced and
discussed regarding their crystallographic and optical properties. An introduction into the
methodology behind the modeling of polar surfaces concludes the chapter.

The results of this thesis are presented in the subsequent two chapters, starting with a
comparison between optical responses as well as Raman spectra of KTB RTP and KTA in
Chapter 5. The determination of stable Y and Z-cut surfaces of KTP follows in Chapter 6. A
summary and discussion of all results in Chapter 7 concludes this thesis.



Fundamental Concepts I

Within this thesis, total energies, band structures and optical properties of KTP (KTA, RTP)
and its surfaces are determined numerically by solving the many-body Schrodinger equa-
tion. This chapter therefore aims at elaborating the fundamental aspects of the used method-
ology to treat the complex electron-electron interaction on an approximative footing. First,
the density-functional theory as a general method to reformulate and solve the many-body
Schrédinger equation is introduced, before the influence of quasiparticle (QP) effects on
the electronic states is discussed. As a method to incorporate those quasiparticle effects
into DFT, the self-energy concept within the GW approximation is thereby introduced.

In order to keep the notation simple and because electron spins are considered collinear
within the body of this thesis, an explicit inclusion of a spin variable is neglected in the
following. For a more in depth discussion of all topics covered in this chapter, the reader is
referred to a variety of literature, in particular [36-39].

2.1 Density-Functional Theory

Every attempt to solve the quantum mechanical equations of motion of a many-electon sys-
tem (e.g., a solid) inevitably runs into the ,curse of dimensionality“: The shear number of in-
volved electrons, in addition to the mutual Coulomb interaction between each electron pair,
renders the many-body wave function ¥ as the quantity of interest far too complex to handle,
both analytically and numerically. Within DFT, a different way to tackle the many-electron
problem is introduced by realizing that ground-state properties of the many-electron sys-
tem (the total energy in particular) are actually unique functionals of the electron density p
(Hohenberg-Kohn theorems) [18]. The futile direct search for ¥ can therefore be replaced
by an algorithm to self-consistently determine p, which in turn determines the total energy
of the system (Kohn-Sham equations) [19].

2.1.1 Hohenberg-Kohn Theorems

Consider a system of N interacting electrons (mass m and charge e) within an external,
local and time-independent potential V., (e.g., an ionic background). The position and

5



6 CHAPTER 2. FUNDAMENTAL CONCEPTS

momentum of the i-th electron shall be indicated by r; and p,’, respectively. This system is
fully described by the following hamiltonian®

H=T+V_+V., (2.1)

where
2
i

p e?
Tr= Z ? Vee = Z . and Vext = Z vext(ri) (22)
i 2m |r1 r]l

ij<i i

denote the total kinetic energy, the nonlocal electronic Coulomb potential and the external
potential, respectively. For later use, we note that T and V. are general quantities for any
N-electron system, regardless of the particular ionic environment. In theory, the total energy
of the electronic system may be determined by evaluating the expectation value of H over
the normalized many-body wave function ¥ as

E=(¥|H W) =(T)+ (Vee) + (Vexe) - (2.3)

In practice, however, this idea is not practical, since the interaction term V. prevents the
factorization of W into one-electron wave functions. Taking the fermionic character of elec-
trons into account, ¥ is then, in general, given by a sum over Slater determinants of the
form [40]

¢1(r1)  Pi(ry) ... ¢i(ry)

Pa(r1)  Pa(ry) ... ¢u(ry)

1/’("1:"2;---"1\1): > (24)

2 -

dn(ry) on(ry) ... ¢n(ry)

where each entry ¢,(r ;) corresponds to the single-particle wave function of the i-th electron
located at r;. The number of determinants thereby scales exponentially in N, rendering the
storage of just a single many-body wave function nearly impossible, even for small atoms
[40,41]. Luckily, knowledge of the full wave function is neither desired nor needed. In
many cases, the quantity of interest is not the entire spectrum of H, but rather only the
electronic ground-state energy E, given by

Eo = min (9| H 1) = (| H %), (2.5)

with |¥,) as the ground-state wave function. In 1964, Hohenberg and Kohn introduced two
theorems [18], which give rise to a huge simplification in evaluating E, via Eq. 2.5. At its
core, the Hohenberg-Kohn theorems circumvent the problem of determining ¥(r,,r,,...7ry)
by proving that:

1. For a given external potential V., the total energy is in fact a unique functional of
the electron density

p(r)=(¥] > 6(r—r)I¥). (2.6)

'For the remainder of this thesis, operators as well as vectors are denoted in bold.
2The Born-Oppenheimer approximation is implicitly assumed here, i.e., the motion of the ionic and elec-
tronic system is considered to be decoupled.
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The proof is indirect and establishes a bijective map between the set of all external
potentials V., and the set of all electron densities p that (i) are normalized to N
electrons and (ii) can be expressed as the ground-state density of a many-electron
system under the influence of a given external potential (the set of ,,v-representable”
densities).> Due to condition (i), the terms (T,) and (V,.) are unique functionals of
p. The bijective map p <« V,,, then ensures that (V,,,), as the last term in E, is a
unique functional of p as well

ext

2. The energy functional E[ p ] is subject to a variational principle in p and minimized by
the ground-state density p, = (¥,| >, 6(r —r;) [¥,). This statement follows directly
from the first theorem, using the Releigh-Ritz variational principle.

It is thus possible to reformulate the searching scheme for the ground-state energy in Eq. 2.5
into

E, = min E[p] = min {F[p] +f vext(r)p(r)dr}
3 : 2.7)
= F[Po] + f Vext(r)po(r) dr.

The sum of (T) and (V,.) is thereby abbreviated as F[p], i.e., the universal functional of an
N-electron system. This new formulation is still, in principle, exact. However, apart from
the trivial dependency of (V) on the electron density, the full shape of the functional E[p ]
is yet unknown.

2.1.2 Kohn-Sham Formalism

Without explicit knowledge of F[p], the relation in Eq. 2.7 remains of no practical use.
However, in 1965, Kohn and Sham proposed not only a theory to reformulate F[p] but
also a scheme to determine the charge density p and total energy E in a self-consistent
manner [19]. The key idea is the following: In the spirit of the Hartree-Fock theory, Kohn
and Sham introduced a reference system of N noninteracting electrons under the influence
of an effective mean-field potential. This reference system is then assumed to yield the exact
charge density of the interacting system, which in turn yields the ground-state energy E,,.

In a noninteractive picture, the many-body wave function ¥ is given by a Slater deter-
minant of the form 2.4, with one-particle (op) orbitals ¢;(r). The electron density in this
case is given by

Pop(T) = Z . (r)I%. (2.8)

The kinetic energy contribution T, to the functional F[p ] can then be written as
2
« P
Top= 2, {911 T190) = ZJ Gi(r)' o —bi(r)dr

2
- —Zh—mZJ $:(r) V2, (r)dr.

3The necessity of p to be v-representable can actually be dropped, as was shown, e.g., in an argument by
Levy in 1982 [42].

(2.9)
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Note that, at least implicitly, T,, is a functional of the density p,. In a similar manner, an-
other contribution to the universal functional F[p ] is known explicitly, i.e., the electrostatic
interaction energy E,; between two charge densities (Hartree energy) given by

62 f pop(r)pop(r/)

5 drdr’. (2.10)

Evidently, the sum of T,, and Ey alone is only a rough estimate of the total functional F[p ].
For one, the fermionic character of the electrons would be neglected, as it gives rise to
an additional contribution, the exchange interaction. Additionally, all interactions that go
beyond the Hartree picture and electronic exchange, commonly labeled as electronic corre-
lation, are still missing. The existence of countless phenomena can thereby be attributed to
electronic correlation, including van-der-Waals interaction and screening effects accompa-
nying the creation of electron-hole pairs in a solid [40]. All exchange and correlation (XC)
effects contributing to F[p ] are now summarized in a (still unknown) functional E, [p].

Assuming the electron density p of the interacting system to be equal to the density p,
of the noninteracting one, the ansatz for the energy functional 2.7 reads

E[pop] = Flpop] + J Vext (1) op (1) dr
(2.11)

= ToplPopl + Eulpop] + Exc[Pop] + f Vexe(T)pop(1) dr.

Apart from the assumption regarding the density, no approximation has yet been introduced,
rendering the theory still exact up to this point.

For the ground-state density p,, the variation of the functional E[p,, ], under the condi-
tion that p,, is normalized to N electrons, yields

5 . )
5Pop {E[Pop]_;ﬁ'i (J |p;(r)|=dr _1)}

The constraint is enforced via the Lagrange mulitpliers €;. Due to the explicit dependence
of p,, on the one-particle orbitals ¢;, the variation in 2.12 may be performed with respect
to the orbitals ¢, considering

=0. (2.12)

Po

5 5
5(})1%{...}:5'o

(...} .. (2.13)

op

Combining Egs. 2.9 — 2.13, the condition 2.12 reads

N
5; {E[m—;ei U |¢i(r)|2dr—1)} =0
2 /
= _ﬁ_vz—l_vext(r)_i_e2 pop—(r)dr/—l_vxc[pop] ¢i(r) = €i¢i(r) (214)
2m |r —r’|

~ J/
-~

=Veff
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The term v,. = 55%’(: thereby denotes the XC potential. This system of equations is known as
the Kohn-Sham equations and describes an ensemble of N noninteracting electrons under
the influence of an effective mean-field potential v, Evidently, v, itself depends on the
electron density p,,, making the Kohn-Sham equations (in principle) solvable via a self-
consistency loop: The solutions {¢;} of 2.14 determine an electron density p,, via 2.8,
which, in turn, fixes the effective potential v, giving rise to another set of solutions {¢;}.
By definition, self consistency is reached for the set of solutions yielding the true ground-
state electron density p,. By substituting T,, in Eq. 2.11 with its corresponding term within
the Kohn-Sham equations 2.14, the total ground-state energy E, may be expressed as

N

Eozzei_EH[Po]"‘Exc[Po]_fch[Po]'Podr- (215)

i=1

An interpretation of the Kohn-Sham eigenvalues €; to be true one-particle energies would
thus underestimate the total energy by the Hartree energy and XC contributions. A fur-
ther reason for the eigenvalues to not be misinterpreted as true excitation energies is the
underestimation of the fundamental band gap, as later discussed in Sec. 2.1.6.

The Kohn-Sham equations thus provide an exact, systematic scheme to determine the
ground-state energy. However, one essential problem remains, as v, and its dependence on
the electron density remain unknown and have to be approximated.

2.1.3 Local-Density Approximation

Already in their original work, Kohn and Sham noted that if the spatial variation of p(r)
was sufficiently small, the XC energy could be approximated as [19]

EPA[p] = J p(r)- e [p(r)ldr with ePp]=e[pl+eP[pl.  (216)

The term ¢-"*[ p] in the integrand refers to the XC energy density of the homogenous elec-
tron gas. The magnitude of E->*[p] is thus determined by the local value of the density
p at position r within this approximation, hence the naming ,local-density approximation“
(LDA).

Within Hartree-Fock theory, the exchange part e-"* is known exactly [36], namely
3e? 3e? 1 1
e;"LDA[;)]:—i-kf:—i(BTCZ)§ p3. (2.17)
* 4n 4m

Neglecting correlation effects, a rescaled version of 2.17 is the basis of the XC energy within
the X ,-method by Slater and Johnson [43].

The shape of the correlation part £->* to ¢->* is only accessible indirectly, e.g., via stochas-
tic models [44]. On this basis, a number of parametrization have been published, including
one by Vosko et al. [45], by Perdew and Wang [46] and by Perdew and Zunger [47]. The
latter parametrization is thereby of the form

LDAT 17 — Y ith _ i%
e [p] 1+ 5. /ro]+ Porlp] with rfp] (47_“0). (2.18)
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The constants y, 3; and f3, read
y =—0.1423, f3; =1.0529 and 3, = 0.333. (2.19)

Despite the fact that LDA is, per construction, only exact for sufficiently homogeneous sys-
tems, computed total energies and related quantities turned out to be surprisingly accurate
also for strongly inhomogeneous crystals. Additionally, LDA is known to naturally fulfill the
well-known sum rule

f Pxc(r,r)dr' =-1 (2.20)

for the XC hole density, defined as the depletion of electrons at r’ due to the presence of
another electron at r. For this reason, LDA and its extension to spin polarized cases (LSDA)
have sometimes been labeled ,,mother of all approximations“ [48].

However, LDA is also known to come with a number of drawbacks. For one, LDA tends
to systematically overbind molecules and solids, resulting in an underestimation of lattice
constants along with an overestimation of phonon frequencies and cohesive energies [49].
Additionally, LDA was shown to predict wrong energetic orderings of solid bulk phases as
well as molecular confirmations, e.g., for molecular carbon [50].

2.1.4 Generalized-Gradient Approximation

As an extension to the LDA, the generalized-gradient approximation (GGA) yields an XC
energy according to the semilocal form [51]

E;p]= Jf[p,Vp]dr, (2.21)

with the kernel f as a function of the electron density and its gradient Vp. The best pos-
sible parametrization of f has been the subject of debate [40,52]. One difficulty in finding
adequate parametrizations lies in the fact that the XC-hole sum rule (see Eq. 2.20) is eas-
ily violated. Among the parametrizations that stood the test of time, the PBE formulation
(named after their inventors Perdew, Burke and Ernzerhof) emerged as one of the most
widely used to date [51]. PBE is thereby an extension and simplification of the formulation
by Perdew and Wang (PW91) [46]. The full parametrization of f, including spin polariza-
tion*, reads

p - ([P, Vol+ e [p, Vpl),
eP p]-Flp,Vp] (2.22)
eP[p]+H[p,Vp].

flp,Vpl
with £ **[p,Vp]

PBE
and e [p,Vp]

The two functions F, and H are given by

Flp,Vp]=14+xk—

ps?

K 2.23
and H[p,V ]—f ¢31n(1+ﬁt2[1+—At2D R
PYPI= T v l1rac+az])

*If spin polarization is included, the entire charge density p is given as the sum of both spin channel
contributions p' and p*.
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with the generalized, dimensionless density gradients

Vol Vol

s=—— and t= s (2.24)
2kpp 2¢ksp
a spin scaling factor
14+£8)5+(1—£)5 T—p!
¢:( )3 +( @’ g_P =P (2.25)
2 pT =+ pl
and a factor
1
a=P , (2.26)
gLDA.q,
T exp (_ y3e? ) —1
Further factors are a, = n}iz’ = (372)3 - p3 and kg = 4/ jﬁf. The four remaining pa-

rameters k, 4, v and 3 are obtalned by considering a number of fundamental constraints
regarding the slowly/rapidly varying limit and the high-density limit of p and are given by

Kk =0.804, ©=0.220, y=0.031, and f =0.067. (2.27)

While the PBE functional was shown to yield, on average, ground-state properties closer to
experimental values (compared to the LSDA) [53], it also suffers from a shortcoming related
to the systematic ambiguity of GGA functionals: It has been pointed out that, depending on
how much weight is put on the gradient dependence of a given GGA XC functional, either
the ground-state energy or bond lengths are described to a better degree, but never both at
the same time [54,55]. For this reason, PBE is known to overestimate lattice constants in
solids while also drastically underestimating surface energies.

In this work, the PBEsol functional, an extension to PBE, is used [55]. In the spirit of
the previously mentioned ambiguity regarding XC functionals, PBEsol has been specifically
designed to yield accurate lattice constants in solids. The actual parametrization of the XC
functional is identical to PBE (Egs. 2.22-2.27), only the parameters u = g and 8 = 0.046
are adjusted. Lattice constants obtained with PBEsol typically reproduce the respective ex-
perimental values with an accuracy of better than 0.5 % [56-58].

2.1.5 Calculation of Forces

In the absence of external fields, the external potential V., ({r}) entering into the general
N-electron hamiltonian and the Kohn-Sham equations can be considered to arise from the
bare Coulomb interaction between electrons and ions

Ve({rid) = Zext(rk) Zzlrfle (2.28)

k=1 [=1

where N, denotes the number of electrons and N; the number of ions with charge Z; at po-
sition R;. The ionic geometry {R;} thus fixes the external potential, which, in turn, governs
the electronic charge density and ground-state energy E,, according to the Hohenberg-Kohn
theorems. In most cases, it is therefore of crucial importance to determine the electronic
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ground state at the ionic ground-state geometry, given by the arrangement {R;} which min-
imizes E, or, alternatively, the total force

Ni
F= aEtot
~ 4i5R,’
=1 L
. (2.29)
. ZZZmez
where Etot = EO + Z m
I ™'m

I,m<lI

The total energy E,,, is given by the sum of electronic ground-state energy 2.15 and ion-ion
Coulomb interaction. The force acting on an individual ion [, given by the energy derivative
in Eq. 2.29, may be deduced from a self-consistent DFT calculation using the Hellmann-
Feynman theorem, stating that the derivative of the total energy E,,, = (¥|H|¥) with respect
to an arbitrary parameter A is given by °

OE,, JH
— = (¥|=—¥). 2.30
= (B ) (2:30)
For A = R,, all terms in H besides v, (r) and the ion-ion interaction term in Eq. 2.29 vanish,
yielding
3Etot R, —R
—_— = dr’ + Z,Z 2.31
R Jp( )| ng mZ# TRTRE (2.31)

From the individual forces, the ground-state geometry can be determined using a number
of common optimization algorithms, including the residual minimization method/direct
inversion in the iterative subspace (RMM-DIIS) [63, 64] and the conjugate gradient algo-
rithm [65].

2.1.6 The Band-Gap Problem in DFT

In practical applications, the eigenvalues {€;} obtained via the Kohn-Sham scheme 2.14 are
often interpreted as true single-particle excitation energies of electrons in a solid, i.e., the
energy gained (lost) by adding (removing) an electron. This is mostly mandated by a good
agreement with experimental photoemission data as well as band dispersions for a number
of systems [38,41]. However, the values €; do not bear a direct physical meaning® and
an interpretation as excitation energies falls short in describing the fundamental band gap
of semiconductors and insulators. In that context, the band gap is given by the difference
between lowest unoccupied and highest occupied electronic state. For a large number of
systems, their band gaps are underestimated by a large fraction of their value within Kohn-
Sham theory [41,67]. In the extreme case of the high-temperature superconductor La,CuO,
(a Mott insulator), DFT-LDA calculations falsely predict metalicity (i.e., a vanishing band
gap) [68]. Similarly, Ge is falsely predicted to be a metal within DFT-LDA [40, 69].

>Technically, the Hellmann-Feynman theorem only holds, if |¥) is a true eigenstate of H. However, in
practice, the electronic wave functions are expanded in a finite basis set, giving rise to additional terms to
Eq. 2.29, depending on the derivative of the wave function with respect to A (Pulay forces) [59, 60]. These
extra terms vanish, if the basis set is independent of the parameter A (Hurley’s condition) [61]. In the case of
a plane-wave basis set, as used in this thesis, that condition is naturally fulfilled for A =R [62].

6Apart from the eigenvalue of the highest occupied state, which corresponds to the negative ionization
energy for the true XC potential (DFT Koopmans’ theorem) [66].



2.1 DENSITY-FUNCTIONAL THEORY 13

One reason for this underestimation can be traced to the sum of Hartree and XC contri-
butions to the total energy in Eq. 2.11. The form of E;; implies a spurious interaction of an
electron with itself that has to be compensated by E,.. However, all local and semilocal ap-
proximations to v,. (and thus to E,.) are known to compensate for this effect only partially,
leaving a fraction of self-interaction in the Kohn-Sham scheme. Especially for one-electron
systems, this error leads to a significant increase in both, total energy as well as Kohn-Sham
eigenvalues. Within LDA, the total energy of the 1s electron in a hydrogen atom was shown
to be overestimated by up to 5% [47,70,71]. With almost 50 %, the overestimation of the
1s Kohn-Sham state is even higher [70]. Unoccupied states, however, are not affected by
the lack of self-interaction compensation, since they do not contribute to the total charge
density. The energy gap between highest occupied and lowest unoccupied state is therefore
underestimated, regardless of the used approximation to v,.

Another fundamental reason why DFT eigenvalues fall short to accurately describe fun-
damental band gaps is related to the derivative discontinuity of the total energy E(’)V as a
function of the electron number N and would persist even if the true XC functional was
utilized. In a charge-neutral system, the band gap E, equals the difference of the first ion-
ization energy Iy and the first electron affinity Ay and is therefore related to E}' via

2.32
where Iy=EY"'—EN and Ay=EN—EN'. (2.32)

Extending DFT to account for fractional electron numbers enables the evaluation of E(’)V
as a continuous function in N. It was thereby shown that Eg’ is composed of straight-line
segments changing slope at integer values of N [66,72,73]. At these points, the total energy
therefore features a derivative discontinuity. For N — o0, a change of N by £1 results in an
infinitesimal variation 6 p of the charge density. Using the energy functional E,[p] of the
charge density, the band gap in Eq. 2.32 may thus be rewritten as

E E
Eg:hm{5 olp]|  _ 8Elp]
50 0P |ns op

The derivative discontinuity (and thus the gap) is positive, since E' is a convex function in N
[66]. Both functional derivatives are evaluated at the (N + 6)-electron ground-state charge
densities. According to Eq. 2.11, two of the four contributions to E,[ p ] are continuous in the
density (external potential and Hartree contribution), leaving the derivative discontinuities

} > 0. (2.33)
N+

Aq = lim {5T—[m _oTlp] } (2.34)
520 0P |ns 0P nss
OE OE
and A,.:=lim {M - M } (2.35)
520 0p |ys oP  |n+s

in the kinetic and XC energy as the only two terms building up the band gap. The former
is thereby related to the N-electron Kohn-Sham eigenvalues ef’ by the following argument:
For noninteracting electrons’, E, exactly equals Ay. Using the theorem of Janak [74]

oEN
= ¢! 2.36
afi 61 > ( )

70r electrons within a local mean-field potential, e.g., the XC potential within LDA.
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where f; € [0,1] denotes the occupation number of the i-th Kohn-Sham state, I, and Ay in
Eq. 2.32 take the form

(2.37)

The right hand expressions thereby follow from the mean value theorem for N — oo, with
6 as a positive infinitesimal. The band gap E, = Ay, as the difference between Iy and Ay
in the limit of 5 — 0, is then exactly given by the Kohn-Sham gap e}, —ey. It is therefore
reasonable to assume that A; also denotes the Kohn-Sham gap if the true XC potential is
used. In that case, the band gap reads

E, =€y, —€ey+A (2.38)

N+1

and evidently differs from the Kohn-Sham gap by the XC derivative discontinuity. For an
arbitrary approximation to the XC potential, the band-gap discrepancy therefore originates
from (i) a poor description of the Kohn-Sham gap due to shortcomings in the used XC
potential and (ii) neglect of A,.. Studies for the materials Si, GaAs, AlAs and diamond
thereby indicate that origin (ii) consistently accounts for about 80 % of the total band gap
discrepancy with respect to LDA calculations [75].

2.2 The Self-Energy Concept

Since the band-gap underestimation in DFT is evidently related to the XC potential in gen-
eral and would persist even for the true XC potential, the problem cannot be solved by
introducing better approximations to v,.. Instead, the aforementioned self-interaction of
electrons within Kohn-Sham theory should be be revisited.

2.2.1 Quasiparticle Picture and Green’s Function

Within DFT, an electron is treated to be under the influence of an effective potential, given
by the mean field created by the remaining electrons. A more fundamental way to directly
describe the many-body problem can be introduced using second quantization. Within it,
an electron is treated to be an excitation of the vacuum state |0), induced by the creation
operator ' (r). Both 4 (r) and the adjoint annihilation operator 4 (r) thereby fulfill the
anticommutator algebra

[$(r), ()], =[¢' (), (r)], =0
and [y (r),9'(r")], =8(r — 1),

with [A, B], = AB+BA. An arbitrary base state of the N-electron Fock space may be created
by successively applying 4 '(r) on the vacuum state:

(2.39)

ry,1p, .. y) = ‘/%TPT(N)"PT(rz)---lpi‘(rN) |0} . (2.40)
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An application of 4 '(r) on a N-electron state thus creates an electron at the position r. The
annihilation operator ¢ (r), on the other hand, removes an electron at the position r from
the system. Additionally, ¢ (r) defines the vacuum state via the condition ¢ (r)|0) = 0.

An explicit time-dependence of 4 and " is introduced within the Heisenberg picture
via

U(r,t)=eiTap(r)e i and ¥i(r,t)=eifap(r)e i, (2.41)

with the (time-independent) many-body hamiltonian H given by 2.1. Using this field-
operator formulation, all three fundamental operators in H can be rewritten as

_ hz 2 . T hz 2 d
Te_z_ﬂvi = | W, 0|~ -V ¥, 0)dr,

Ve = Zvext(ri) = f W (r, Ve (r)®(r, t)dr, (2.42)
1 0 / i / / /
and V.= Z Vee(T i, ;) 1= 5 J U (r', t)¥'(r, t)We(r,r)o(r,t)¥(r’, t)drdr’,
i,j<i
where v (r,r’) = ﬁ
the Heisenberg equation

In the Heisenberg picture, the time evolution of ¥ is described by

de 1 ow
—=—-[Y,H]+— 2.43
dt ih [ ] at (2:43)
Inserting all three terms in 2.42 into H, the equation of motion reads
. a T / / / /
lha—\ll(r, t)=hy(r)¥(r,t)+ | ' (r, t)ve(r,r)¥(r, t)¥(r,t)dr
‘ (2.44)

h
where hy(r)=——V2+v,(r).
2m

An electron created in this manner interacts with its surrounding via the naked Coulomb
interaction v,,, repelling electrons in its vicinity. The resulting Coulomb hole effectively
leads to a decreased interaction of the electron with its surrounding (screening). Both the
electron and its Coulomb hole thereby behave like a single entity with renormalized mass
and charge: a quasiparticle. At temperature T = 0, the propagation of this quasiparticle
is conveniently described using the corresponding time-ordered Green’s function operating
on the N-electron ground state |¥)®

i X
G(r,t,r',t))= — (N7 ((r, ) (r',t)) ). (2.45)
Here, the operator 7 ensures an ascending ordering of the field operators according to their
time variable, i.e.,

A(t)B(t') ift'>t

—B(tHA(t) ift' <t (2.46)

7 (A()B(t)) = {

8For finite temperatures, the statistical operator within the grand canonical ensemble should be included
in the expectation value in 2.45. By staying in the T — O limit, however, this statistical mean is identical to
the expectation value over the N-electron ground state. A derivation of the Green’s function and its Fourier
transform at finite temperatures can be found, e.g., in [37].
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Depending on the time ordering, the Green’s function describes the propagation of (i) an
electron created at the space-time position (r’,t’) and removed at (r,t) (if t > t’) or (ii) a
hole created at (r, t) and removed at (r/, t’) (if t < t’). The connection between the Green’s
function and true excitation energies of the electronic system becomes evident by explicitly
considering the transformation law between Heisenberg and Schrodinger picture for the
field operators (see 2.41) and inserting the closure relation 1 = Y. [UN*!) (V=] of the
(N % 1)-electron eigenstates between ¥ and ¥'. Fourier transformation of G(r,r’, 7), with
T := t—t’, then yields the compact Lehmann representation of the Green’s function [37,76]

1 A / /
G(r,r',w)=—Ilim (T‘,r ) do'. (2.47)
2T =0 | w— ' +iy-sgn(hiew’ —u)

The spectral function

Alr, 1, w) =Y " () (N 8w — V)
i 2.48
+ N (V1) (e — €M) 49

is used here as a generalized density of states of the excited system, with the projections
SYTr) = (BN P(r)[EY) and pNHI(r) = (Y |p(r) 1) (2.49)

between the N-electron ground state and the (N £ 1)-electron excited states and their re-
spective excitation energies

e} '=E)—E'" and €' =E'"—E). (2.50)

Without electron-electron interaction, ¢ *' correspond to the respective i-th single-particle
orbitals with energies ef’ *1, Note that the sign of the infinitesimal complex shift y, required

to ensure the causality of G(r,r’, 7), depends on the chemical potential u = %. As dis-
cussed in Sec. 2.1.6, the ground-state energy as a function of the electron number is convex
and composed of line segments, changing slope at integer values of N. For this reason, the
inequalities

e l1—u<0 and €*'—p>0 (2.51)

A
hold, subsequently implying e}~' < e¥*'. A many-electron system therefore loses more
energy from removing one electron than it gains from adding one [76].

According to Eq. 2.47, the poles in the Green’s function of an interacting many-electron
system correspond to the true excitation energies e¥*', and thus encode the solution to
the many-body problem in 2.3. Nevertheless, it is not immediately clear how G(r,r’, w)
can be determined without explicit knowledge about the far too complex many-body wave
function. As we will see, however, the many-body wave function is actually not required to
determine the Green’s function of the interacting system (similar to the ground-state energy
in DFT).

N+1
i
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Taking the partial time derivative of Eq. 2.45 and considering the time evolution of the
field operators in Eq. 2.44, the time evolution of the Green’s function G(1,2) reads °

(iha%—ho(rl)) G(1,2) +if J veo(1,3)G(1,3%,2,3")d(3) = 5(1—2),

where  V..(1,3) = Vee(rq,73) - 0(t] — t3).

(2.52)

Infinitesimal time shifts 3* := (r,, t; + 1) and 3" := (r,, t; + 27), with n — 0%, thereby
ensure correct time ordering of the involved field operators. Determining the one-particle

Green’s function therefore requires to determine the two-particle Green’s function G(1, 2, 3,4),
defined by

G(1,2,3,4) = L (V7 ($(1)E(2)¥ (4)¥'(3)) [w)), (2.53)

e
which reflects the correlated propagation of two particles from coordinates 3 and 4 to 1
and 2. The time evolution of G(1,2,3,4) subsequently involves the three-particle Green’s
function, giving rise to an infinite coupling between G(1,2) and higher-order correlations.

However, Eq. 2.52 can formally be recast into a one-particle equation by introducing the
nonhermitian and nonlocal self-energy operator 3:(1,2) according to

$(1,2) = —th vee(1,3)G(1,37,4,377)G71(4,2)d(3,4), (2.54)

encapsulating all interactions between an electron and its surrounding. Taking into account
the inverse of the Green’s function, defined by

J G(1,3)G71(3,2)d(2) =686(1—-2), (2.55)

and explicitly splitting off the Hartree term from ¥ via

$(1,2) =24(1,2) + 2(1,2)

=6(1 —Z)J Vee(1,3)p(r3)d(3) +%(1,2), (2.56)
) =V;(rr1) }
Eq. 2.52 thus reads
ih% —hy(r,) —vy(r,) 1G(1,2) —J %(1,3)G(3,2)d(3)=6(1—2). (2.57)
1 ~~

=—hgou(ry)

The self-energy operator, just like the Green’s function, depends only on the time difference
of its arguments. It is therefore possible to Fourier transform Eq. 2.57 into frequency space
(see Appendix A), yielding

(770) - hO,H(rl)) G(rq, 1, w) _f (ry, 13, w)G(rs, ry,w)dry =6(r;—r,). (2.58)

9To simplify the notation, the abbreviation 1 := (r, t;) for individual events in space time is used. Addition-
ally, differentials and delta distributions are abbreviated as d(1) := dr;dt; and 6(1—2) := &(r;—r,)d(t;—t5).
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Inserting the Lehmann representation 2.47 of the Green’s function, multiplying both sides
by an individual pole ficw — €, and taking the limit fico — €, one finally arrives at the set of
quasiparticle equations

hou(r)é(r) + f S(r,r' e /NP (r)dr’ = e (r), (2.59)

bearing a striking resemblance to the Kohn-Sham equations 2.14 and justifying the notion
of X as a self-energy operator: Unlike the XC potential within the Kohn-Sham equation, X
would exactly cancel the spurious self-interaction introduced by the Hartree potential for the
true, interacting system. The energy-dependent self-energy operator thus fully determines
the true quasiparticle energies €, and wave functions ¢,(r). Due to ¥ being nonhermitian
and energy-dependent, the {¢,(r)} do not form a set of eigenfunctions of a single opera-
tor and are neither normalized nor orthonormal. They do, however, form a bi-orthogonal
system

(Pl Pr) =S s (2.60)

with {ql;i} as the solution of the adjoint equation to 2.59 [77]. Additionally, the eigenvalues
€; are complex, with the imaginary part corresponding to the quasiparticle’s lifetime. This
lifetime thereby reflects the average time between scattering events of the quasiparticle
between individual one-particle states.

2.2.2 Hedin’s Equations and GW Approximation

In order to determine the self-energy operator and its connection to the Green’s function,
Eq. 2.58 is recast slightly to explicitly include the Green’s function G, of particles interacting
solely via the mean-field Hartree term vy. G, is given by 2.47, with ¢! and e}'*! fulfilling

hoy o= = el [N, (2.61)

Using G, the Green’s function fulfills the Dyson equation

G(1,2) = G,(1,2) + f G,(1,3)%(3,4)G(4,2)d(3,4) (2.62)

in the time domain. Evidently, it is not possible to deduce the self energy via Eq. 2.62 alone.

One mechanism still missing in this description is a reduction of the effective Coulomb
interaction between a quasiparticle and its surrounding due to screening effects. In 1965,
Hedin proposed a scheme to incorporate screening into the self-energy concept by deter-
mining the response of the system to a time-dependent external potential, which is later set
to 0 [78]. In this manner, it is possible to expand the self-energy operator in terms of the
screened Coulomb potential

w(l1,2)= f Vvee(1,3)e7(3,2)d(3), (2.63)

where the screening is encoded in the inverse dielectric function £71(1,2). It is connected
to the irreducible polarizability P via

£(1,2) = 6(1—2)— J v.(1,3)P(3,2)d(3). (2.64)
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Figure 2.1: Schematic flowchart of the five operators G, X, W, P and T in the Hedin’s
equations in its full form (black and gray arrows) and within the G,W,, approx-
imation (black arrows only). The scheme is initialized with the Green’s function
of independent particles G,,.

Hedin showed that the four operators G, 3, W and P together with the three-point vertex
function I'(1,2,3) may be expressed in a closed set of equations.'® Apart from the Dyson
equation for G in 2.62, these equations read

%(1,2) = —ih J G(1,3)(3,2,49)W(17,4)d(3,4), (2.65)
W(1,2) = v..(1,2) + f Vee(1,3)P(3,4)W(4,2)d(3,4), (2.66)
P(1,2) =ik J G(1,3)G(4,17)T(3,4,2)d(3,4) (2.67)

and T(1,2,3)=—5(1—2)5(1—3)
+J %Gm, 6)G(7,5)I'(6,7,3)d(4,5,6,7). (268

These Hedin’s equations are, in principle, an exact reformulation of the many-body prob-
lem and their self-consistent solution allows to determine the total energy as well as all
one-particle and excitation properties of an interacting electronic system. In Fig. 2.1, the
flowchart of the Hedin’s equations is schematically depicted (gray and black arrows). In
practice, one would take a single iteration of Hedin’s equations, starting from a reasonable
initial estimation of G. The most common choice is thereby G = G,, immediately imply-
ing ¥ = 0 via Eq. 2.62 for the zeroth iteration. Inserting these conditions into the Hedin’s

OFor a thorough derivation of the Hedin’s equations, the Reader is referred to various publications, including
[37,40,76,78,79].
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equations then yields

1(1,2,3)=—56(1—2)5(1—3), (2.69)
P(1,2) = —ifiG,y(1,2)Gy(2, 1), (2.70)
and 3(1,2) = ifiG,(1,2)W(1%,2). 2.71)

The last expression for the self-energy operator in the time domain as the product between G
and the screened Coulomb potential W thereby coins the GW approximation. Its flowchart
is depicted in Fig. 2.1 (black arrows). For later use, we note that the principle shape of P in
the original Hedin’s equations 2.67 implies a correlated electron-hole propagation, coupled
by the vertex function I'. However, within the GW approximation, the two propagations are
independent.'!

The self-energy operator within GW enables a post-processing scheme to correct the
one-particle energies €' obtained from a subsequent DFT calculation to account for quasi-
particle effects. Since (i) the one-particle wave functions on the DFT level d)PFT are known
to match the quasiparticle ones very closely [67] and (ii) the XC potential v,, can be as-
sumed to already partly account for quasiparticle effects, the true quasiparticle energies e?P
may be expanded into a perturbation series

e ~ P + (¢PT| B(e /) — vy |9 (2.72)

In order to circumvent the evaluation the self-energy operator at the true quasiparticle en-
ergies, ¥ is expanded around ePF!

i 5

0%(w
B~ ST + (P - I 2.73)
w e]i)FT/h
yielding
el = e+ Z, (¢ B} /) = v |97), (2.74)
with the renormalization constant Z; = 1 — (¢ PFT| ZZ) o |pPFT)

The energy-dependent self-energy operator can be determined by taking the Fourier
transformation of Eq. 2.71 into the frequency domain,

ih -
N(ry,ry,w)= Zl_nJ Go(r,ry, 0+ )W(ry,ry,w)e“"de’ with n—0*. (2.75)

The Green’s function within this convolution may be constructed directly using Eq. 2.47 and
the DFT solutions " and ¢"". The screened Coulomb potential W on the other hand is
determined via Eq. 2.63. Thereby, the dielectric function in Eq. 2.64 (whose frequency de-
pendence entirely stems from the Fourier transform of P) has to be numerically inverted for
every individual frequency value, posing a large computational bottleneck. For this reason,
this inversion step is sometimes skipped by assuming a model dielectric function (plasmon-
pole model) [67,80]. Finally, X is determined by performing the frequency integration in
Eq. 2.75 as a contour integral in the complex plane [75,76].

HFor this reason, the relation in Eq. 2.70 is sometimes also referred to as the random-phase approxima-
tion [67]. In contrast, the origin of the random-phase approximation will later be discussed in terms of the
polarizability x (Chapter 3).
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A single iteration of the Hedin’s equations within the GW approximation (single-shot
GW or G,W,) was shown to capture the biggest part of the quasiparticle correction to the
fundamental band gap for a number of compounds [81]. Due to the perturbative nature of
the correction scheme, the accuracy of the G,W, correction thereby depends on the accu-
racy of the preceding DFT calculation. In principle, the obtained quasiparticle energies can
be used for further iterations of the Hedin’s equations. Depending on the updating scheme,
a number of (partially) self-consistent flavors are possible [82,83], including the GW, ap-
proximation, in which the screened Coulomb potential W is kept constant, while only G
and X are updated. This way, the most time-consuming step within GW (determining the
screening) has to be performed only once, while self-consistency is achieved on the level of
G.

However, neither within GW,, nor within the fully self-consistent GW scheme, in which
W is also updated, convergence of G towards the exact Green’s function can be expected,
since the vertex function I is not updated accordingly, see Fig. 2.1. For this reason, iteration
schemes beyond G,W, were found to even worsen the agreement with experimental data
in a number of cases [81,84].






Theoretical spectroscopy _

Optical spectroscopy provides a number of powerful methods to determine electronic and
structural properties of solids as well as molecules. To this end, the interaction between
light and matter is exploited by impinging electromagnetic radiation of a specific frequency,
polarization and propagation direction onto a probe and measuring its material-specific
response. Typical spectroscopic methods may be subdivided into several categories based
on the respective fundamental processes acting on the involved light field, including:

o Light absorption: The intensity of radiation passing through a probe decreases based
on the Beer—Lambert law, which relates the relative intensity drop to the frequency-
dependent absorption coefficient a(w) and the sample thickness. In the case of semi-
conductors and insulators, the absorption onset of a(w) is a direct indicator for the
optical band gap [85].

Light scattering: This is the fundamental process behind Raman spectroscopy. Due
to inelastic scattering between impinged photons and ionic vibrations (phonons) the
photon may undergo a Stokes shift (shift towards higher frequency) or an anti-Stokes
shift (towards lower frequency). The location and intensities of the Raman bands
thereby give direct insights into the vibrational properties of matter (phonon disper-
sion, acoustics) and indirect insights into its structural character (atomic composition,
defect concentrations).

In both cases, the material’s fundamental response functions, i.e., the dielectric function
(light absorption) and the differential Raman cross section (light scattering) are fundamen-
tally governed by the electronic structure. This chapter therefore aims at elaborating how
these two responses may be determined on the basis of DFT and quasiparticle calculations.

23
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3.1 Dielectric Response Function

An external, time-dependent perturbation Av,,, to a many-body electron system induces a
variation in the electron density Ap according to!

Ap(1) = fx(l,Z) * Ave(2)d(2). (3.1

The density response is thereby encoded in the nonlocal polarizability x. Within the DFT
framework, x can be computed explicitly by considering the energy difference

AE =E[po+ Ap]—E[p,] (3.2)

between the ground state and the perturbed system, with the DFT total energy functional
E[p]given byEq. 2.11. Expanding AE around p, to second order and applying the extremal

condition g&i% = 0 then yields [86]

5°F
_Avex (1) = 2RSS -A (2) d(2), (3.3)
t f sp(M5p2)|,, "
implying the formal identity
5°F
-1
(1,2) =~
X 5p(5p(2),,
2 2
E .
:_5—T _Vee(lﬁz)_# , (3.4)
5p(D5p (2], 5p(D5p(2)],,
—K,o(1.2)

with F as the universal functional (see Eq. 2.7), K,. as the XC kernel and v, as the instan-
taneous Coulomb interaction according to Eq. 2.52. On the other hand, the response to a
change in the total effective potential (i.e., external perturbation and screening potential)
is mediated by the polarizability of independent particles x° via

Ap(1)= f X"(1,2) - Ave(2)d(2),

(3.5)
where  Ave(1) = Ave, (1) + f {vee(1,2) + K,o(1,2)} - Ap(2) d(2).
Solving for x° and formal inversion yields
0! 6 Verr(2)
x5 (L2)=—"—-—
{ } 6p(1) (3.6)

=x"1(1,2) +v..(1,2) + K.(1,2).

'Individual events in space time are again abbreviated by the single numerical values 1 and 2.
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Exploiting the definition 2.55 for the inverse of a two-point function, the connection between
the two response functions takes the form of a Dyson equation

x(1,2)=x"(1,2) + f X°(1,3) {Vee(3,4) + Ky (3,9} x(4,2) d(3,4). (3.7)

Finally, the microscopic dielectric function ¢ relates Av., and Av,,, via

OVer(2)
OVere(1)

=6(1-2)+ f {Vee(1,3) + K(1,3)} - x(3,2) d(3).

e 1(1,2) =
(3.8)

If the origin of the perturbation is assumed to be a test particle, the random-phase approxi-
mation (RPA) can be applied at this point by neglecting the XC kernel [87]. Within the RPA,
Egs. 3.7 and 3.8 allow to rewrite ¢ to be solely dependent on x°, yielding >

8(1,2)=5(1—2)—Jvee(1,3)x0(3,2)d(3). (3.9)

3.1.1 The Independent-(Quasi-)Particle Approximation

The advantage of ¢ being entirely determined via the polarizability of independent particles
is the fact that an explicit expression for x° is known. Using first-order perturbation theory
on the one-particle Kohn-Sham equations 2.14, x° is given in frequency space by the Adler-
Weis expression [88-90]

¢;(r)¢;(r)p;(r)e,(r")

s ith 0, 3.10
€;,—€;—h(w+1in) Wi n= ( )

Xo(r1,r5,0) =2 (fi—f)
i,j

or, via Fourier transformation into reciprocal space (see Appendix A),

(B/(q +G)) Bl(qg +G)
e;—e;—h(w+in) ~ (3.11)

$;)-

Note that {¢,} and {|¢;) } refer to the quasiparticle one-electron energies and wave functions,

respectively, as introduced in Sec. 2.2. In the following, i and j correspond to quantum

numbers of a solid, i.e., band index ¢ and v of the conduction and valence band and their

respective wave vectors k and k’. For a semiconductor, this implies f,; =0 and f, ,» = 1.

Fourier transforming Eq. 3.9 into frequency and reciprocal space and inserting the Adler-
Weis expression then yields

Xo (@ @) =2 (fi—f)
L,j

where Bf(q +G)= <¢i eia+G)r

EG,G’(q: C()) = 6G,G’ - VG(q) : XOG’G/(CL C()),
47e? (3.12)

where VG(q) = |q+—G|2

2Within the quasiparticle formulation, the irreducible polarization P and the polarizability x are sometimes
used synonymously. However, in general, only the irreducible polarization for independent particles, as given
by Eq. 2.70 within the GW approximation, and x° are equal [38], making Eqgs. 2.64 and 3.9 equivalent for
the microscopic dielectric function.
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If a given atomic system was spatially isotropic, € would only depend on the difference
between atomic coordinates r, —r, in real space, rendering its Fourier transform diagonal
in G. Anisotropies in a system due to its atomic structure give rise to nonvanishing off-
diagonal elements G # G’ in € ¢/(q, ). These microscopic fluctuations in charge density
and electric field are consequently called local-field effects.

Finally, the macroscopic dielectric function €y (w) as the system’s response to a macro-
scopic perturbation in the optical limit ¢ — 0 is given by [88,89]

em(w) = m 1 (3.13)

- GGl(q C())

G=G'=

Neglecting local-field effects, &y(w) is then equivalent to the head (G = G’ = 0 matrix
element) of the microscopic dielectric function

em(w) = ‘llig(l) Eo,o(fb )

, 2
Bk (q)‘ (3.14)

41e? 2 ,
=14+1lim—— Y
M g v 2422 e R )

with V denoting the Volume of the system’s unit cell. The wave vectors k and k’ within
the Bloch integrals B” ek (q) are thereby not independent, since k and k' must differ by g
in order to fulfill momentum conservation. For q = 0 this corresponds to the limitation of
pure vertical transitions of an electron between a valence and conduction state. A straight
forward evaluation of the ¢ — 0 limit in Eq. 3.14 via the IHopital’s rule would introduce the
dipole operator, which is linear in r and therefore not well-defined for periodic boundary
conditions [91]. Instead, the following identity is used

Vk q(q) .1 <¢c,k|[H:eiqr]|¢V,k—q>
m— lim —

q—)O q q—>0 ‘;i ec,k - ev,k_q (3.15)
= ————(Perleg V[dui),
€k —€vk
introducing the velocity operator v = h[H r ] and the unit vector e, | i, along which the

q — 0 limit is taken. The evaluation of the velocity operator in the qua51particle case is
thereby rather delicate, since the hamiltonian H includes nonlocal contributions from the
self-energy operator ¥ (see Eq. 2.59), yielding [92]

_P ax(r,p)

m op

2

| (3.16)
where X(r,p)= J »(r,r')er TP qr’

It is, however, possible to reformulate the problem of evaluating the matrix elements over
v in Eq. 3.15 to feature only the matrix elements over the much less problematic momen-
tum operator p. Taking advantage of the fact that the quasiparticle states {|¢;)} are nearly
identical to those obtained from Kohn-Sham theory {|¢*®)}, the limit in Eq. 3.15 may be ex-
pressed via the Kohn-Sham hamiltonian (see 2.14) and the Kohn-Sham energy eigenvalues
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{e‘i(S}. In that case, the commutator equals v = 2.3 The matrix elements over v are thus

=
obtained as rescaled matrix elements over p

v,k
<¢c,k eq : v|¢v,k> = Cc,k : <¢c,k|eq 'p|¢v,k>’
€.x—€ 3.17)
vk _ “ck v,k (
where Cc)k = —eKS R
c,k v,k

Following Eq. 3.15, the macroscopic dielectric response can be understood as a dielec-
tric matrix, with its anisotropy being encoded in the vector e,. In a cartesian base, with
i,j € {x,y,%}, the matrix elements ¢, ;(w) are given by

_ 8he? Ccvzf : <¢c,k|Pi|¢v,k>‘ <¢v,k Pj|¢c,k>
g;j(w)=0;;+ Vm2 ;Zk: (ec’k — ev,k) €cx— € —MN(w+in) (3.18)

The elements of the momentum operator p are thereby labeled {p;}. If the energy eigenval-
ues {¢;} are assumed to be the Kohn-Sham (quasiparticle) ones, the expression in Eq. 3.18
corresponds to the dielectric matrix within the independent-(quasi)particle approximation
(I(Q)PA).

For a given orientation i, j, spectroscopic signatures of a system, in particular the com-
plex refractive index n(w), absorption coefficient a(w) and reflectivity R(w), can be ob-
tained from the real and imaginary parts of £(w) via

n(w) :==ny(w) +in,(w)

:\l le(w)| + Re {e(w)} +i\J le()|—Re {()} (3.19)
2 2 ’

a(w) = 2Tw -1, (w), (3.20)

(n1(w) —1)% + nj(w)

and R(e) = T D+ ()

(3.21)

3.1.2 Local-Field Effects

If local-field effects are to be included in &y;(w), the microscopic dielectric function £ ¢/(q, w)
has to be inverted for every frequency w (see Eq. 3.13), posing a large numerical bottle-

neck. It was, however, shown that this inversion step can be skipped (at least in principle)

by reformulating &,,(w) as [38,94]

em(w)=1— ‘llig(l) vo(q) - Py o(q, w), (3.22)
with the modified irreducible polarizability P ¢/(q, w) fulfilling the Dyson-like equation

Pge(q, @) ="Pge(q, w)+ ZPG,K(‘I, w)Vx(q)Pg (g, w). (3.23)
K

3Care has to be taken if the pseudopotential formalism is utilized, introducing nonlocal contributions to
the hamiltonian also on the Kohn-Sham level. For a number of strongly bounded compounds (e.g., group-IV
materials or diamond), these nonlocal contributions have been shown to lower the amplitude of &y;(w) by 10
-25%[38,93].
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The static kernel is thereby given by the amputated Coulomb interaction, having the diver-
gent G = 0 term explicitly removed

_ vg(q) if G#0
1Y = . 3.24
c(q) { 0 F G=0 ( )
For later use, we note that Eq. 3.23 corresponds formally to the matrix equation
P =P +PvP. (3.25)

3.2 Two-Particle Effects and the Bethe-Salpeter Equation

Despite the fact that quasiparticle effects within the GW approximation are known to ac-
curately correct the band gap from Kohn-Sham theory, spectroscopic signatures within the
IQPA have been shown to still feature large deviations compared to experimental data. In
particular, a pronounced blueshift of the IQPA spectra with respect to the experimental ones
is observed [92,95,96]. In addition, the IQPA tends to underestimate the overall absorption
strength for low energies and overestimate it for higher energy regime [96].

As previously discussed, optical excitations induce vertical transitions of electrons from
a valence into a conduction state, subsequently creating a hole with positive charge. Within
the I(Q)PA, the propagation of electron and hole, as denoted by the irreducible polarizability
P, is thereby treated as uncorrelated (see Eq. 2.67). In reality, however, the formation of
bound electron-hole pairs (excitons) and their respective excitonic states is accompanied by
the existence of sharp, isolated absorption peaks below the absorption onset and thus by an
overall redshift of the entire spectrum with respect to the I(Q)PA [37].

3.2.1 Generalization to Four-Point Operators

The incorporation of excitonic effects into the general dielectric response function 2.64
can be achieved by generalizing the two-point irreducible polarizability P(1,2) into the
four-point form P(1,2,3,4). To this end, an additional iteration of the vertex function
I' within the Hedin equations 2.68 beyond the GW approximation is carried out. With
%(1,2) = ihG(1,2)W(1%,2) it follows that
0%(1,2) .
—— =iAW(1%,2)6(1 —4)6(2—75), 3.26
Soa s =MW 250 -952-5) (3.26)
implying
1(1,2,3) :—5(1—2)5(1—3)+th(1+,2)-JG(1,6)G(7,2)F(6, 7,3)d(6,7). (3.27)

The integral in 3.27 can be identified as a generalization of the two-point irreducible polar-
izability P(1,2) in Eq. 2.67 into the three-point polarizability P(1,2,3). Indeed, the former
is contained in the latter as a contraction according to P(1,2) = P(1, 2, 2). After multiplying
both sides of 3.27 with ihG(4,1)G(2,5), integrating over 1 and 2 and renaming coordinates,
P(1,2,3) is given by the Dyson equation

P(1,2,3) = —ifG(1,3)G(3,2) + ik J G(1,4)G(5,2)W(4*,5)P(4,5,3)d(4,5). (3.28)
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With this definition, the four-point propagator P(1,2,3,4) can be constructed, which again
contains the two-point one via P(1,2) = P(1,1,2,2), yielding [38]

P(]'J 2’ 3: 4) = PO(1: 2) 3) 4) - J P(]-: 2: 5) 6)W(5) 65 7, 8)P0(7) 8) 3: 4) d(5)65758))

3.29
with P°(1,2,3,4) =—ihG(1,3)G(4,2), (3.29)
and W(1,2,3,4) =W(1,2)6(1—3)6(2—4).
This is equivalent to a matrix representation
P=P°—PWP°
(3.30)

& P=P°(1+wpy

Finally, by inserting 3.30 into 3.25, we arrive at the Bethe-Salpeter equation (BSE) in real
space

P(1,2,3,4)=P°1,2,3,4) + J P°(1,2,5,6)2(5,6,7,8)P(7,8,3,4)d(5,6,7,8), | (3.31)

with the kernel
2(1,2,3,4) = 5(1—2)5(3—4)v..(1,3)—5(1 —3)5(2—4)W(1+,2), (3.32)

describing local-field effects (first part) and the electron-hole interaction (second part). Sim-
ilar to the naked Coulomb interaction v,., W is assumed to be static, with time dependence

W(1,2)=W(r,,r,)o(t; —t,). (3.33)

3.2.2 The BSE Hamiltonian

In the next step, the BSE is transformed into a matrix representation by taking the transition
matrix element of both sides in 3.31 between the Kohn-Sham states (¢, ¢,,| and [¢, ¢,,),
assumed to be orthonormal and complete

(bnlbn) = npn, and > 1¢,) (bnl = 1. (3.34)

Generalizing P in Eq. 2.70 into a four-point operator, an individual matrix element over
P°(1,2,3,4) is given by *

P&1n2n3n3) = (¢n1 ¢n2 | Po(rl’ Ty, T3, r4) |¢n3 ¢n4)

B ¢§1(r1)¢n2(rz)¢n3(r3)¢§4("4)d e
—J Z (o, = fu) €. — €. —Hew— il r,drodradry (3.35)

ny,ny,n3,M4

fn2 _fn1 . )
= € — enl - ha) —_ lh’r) 5”1’n36n2,n4 Wlth ’r) N 0 .

ny

“Implicitly, the BSE 3.31 is assumed to be Fourier transformed into frequency space. The explicit frequency-
dependence of the operators is omitted to simplify the notation.
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Again, {€, } correspond to the quasiparticle energy eigenvalues and {f,, } to the occupa-
tion number of the respective states {n;}. In the following, matrix elements over arbitrary
operators will be abbreviated in a similar manner to P° in 3.35.

Inserting two complete sets of Kohn-Sham states into the right hand side of the BSE and
regrouping of terms, we arrive at [37,38]

P(n1n2n3n4) = [Hexc - 1hw]6111n2n3n4) ) (ffl4 _fns)’ (3.36)

with 1 as the identity operator. It is thus possible to obtain P(n1n2n3n4) via an inversion of the
excitonic hamiltonian H®*¢ for each individual frequency w. The matrix elements of H®¢
are thereby

HF:fn2n3n4) = (enl - €n2)6n1,n36n2,n4 + (fn2 _fn1)5n1n2n3n4' (3.37)

A straight forward inversion is highly challenging due to the large dimension and non-
hermiticity of H®. In more common approaches, the operator [H®¢ — 1hw] " is instead
expressed according to its spectral representation

|\Ij )S_ll (\IJ ’|
[Hexc _ lhw]_l — Z ﬁ’
& Biho (3.38)

Where HeXC |\IJ)L) = E?L |\IJA) and Sl,l’ = (‘p)L'\I‘;J ,

with the eigenvalues {E,} and eigenstates {¥, } corresponding to the optical transition en-
ergies and excitonic amplitudes, respectively. The latter can be expressed in a base of Kohn-
Sham electron-hole product states

U (ry,r,) = > ARl (1), (rs). (3.39)

ny,ny

The eigenvalue problem in Eq. 3.38 for the excitonic hamilton operator H®* with Eigenstates
|¥,) is thus reformulated as an eigenvalue problem for the excitonic (or BSE) matrix H,
given by Eq. 3.37, with eigenvectors {A}""}.

In practice, the diagonalization of H®* causes the biggest computational load due to the
unfavorable @(N?) scaling of traditional diagonalization schemes. In order to utilize the
BSE scheme for nontrivial systems, some assumptions regarding the shape of H** have to be
made. Fortunately, the complexity can be reduced considerably by a number of conditions.
First, if the quantum numbers {n;} are again interpreted as a combined index (n, k) of band
number n and wave vector k of a solid, only momentum-conserving, vertical transitions
are considered. Additionally, only transition between empty conduction states (c) and filled
valence states (v) contribute to P due to the occupation factors in Eq. 3.36, reducing the
rank of H* further by a factor of 2. Lastly, the resulting hamiltonian can be shown to
separate into four blocks according to [37,38]

Fese Hres g coup (3 40)
_ (Hcoup)* _ (Hres)* 2 :

with the resonant part

res

H(vck),(v’c’k’) = (ec,k - ev,k)5v,v’5c,c’5k,k' + E(vck),(v’c’k’)> (3.41)
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corresponding to the transitions at positive frequencies, and the coupling terms

coup

(vek),(verk) — Sk, (i) (3.42)

For many bulk semiconductors, including elemental Si and C [97,98] and the transistion
metal oxides MnO and NiO [37] the influence of the coupling terms on the dielectric re-
sponse was shown to be small, justifying the Tamm-Dancoff approximation (TDA), stating
H®" = 0.> Applying the TDA, the rank of H®* reduces by an additional factor of two and
translates the diagonalization of the full BSE matrix into a diagonalization of the submatrix
HI‘eS'

Employing these approximations, the resonant part of the BSE matrix is given by the
sum of three contributions corresponding to a diagonal part (diag), unscreened exchange
(ux) and screened Coulomb interaction (sc). In the limit ¢ — 0, these contributions read

Hs = Hdiag + HY 4 ¢
. diag —
with H = (ec,k - ev,k)év,v’éc,c’5k,k”

(vek),(v/c'k”)
,k /,kl *
B (6) (B E(6))

4me®
ux _
I_I(vck),(v’c’k’)_2 \% ;) |G|2 ’ (3.43)

41e?
sc _
and  H 4 oy = V(2n)s

DB kK +6) (B (k—k +6))
G,G’'

) WG,G’(k —k').

It is thus possible to set up the BSE matrix using the quasiparticle energies {¢,,} and
screened Coulomb interaction W ;/(q) obtained by a preceding GW calculation.

The principle workflow to determine the macroscopic dielectric function including local-
field effects and excitonic contributions can thus be formulated in the following way: Solving
the eigenvalue equation for the BSE matrix H®, the right hand side of Eq. 3.36 can be
constructed according to the spectral representation 3.38. The irreducible polarizability in
real space is subsequently reconstructed via

p(r1’r2s rs, 1"4) = Z ¢n1(r1)¢:2(r2)¢:3(r3)¢n4(r4)ﬁn1n2n3n4' (344)

nq,M,13,14

Using Eq. 3.22 the macroscopic dielectric function then finally reads

en(w) =1— lin?) Vo(‘])J e P(ry, 1,7y, Ty)e 9 dr dr,
q—)

2
hzez Z <¢vk|eqv|¢ck> ck,vk
1%

— 14 A (3.45)

2 | evie €ck — Evk

1 1
: +
(El—hw—iﬁn Ek+ﬁw+ihn)

>It should be pointed out that the validity of the TDA breaks down for strongly confined systems, e.g.,
molecules [99], and for describing plasmonic excitations [100].
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3.3 Raman Cross Section

The Raman effect, corresponding to the inelastic scattering of monochromatic light in solids
and molecular systems, was first observed experimentally by Raman in 1928 [101]. Besides
the frequency w, of the impinged radiation, the scattered light thereby contains additional
side bands (w, % w,;,) as a result of the coupling between light field and vibrational eigen-
modes of the solid or molecule with frequency w,;,.

The probability for a scattering event to occur between the light field and a specific
phonon mode with index v may be deduced using Fermi’s Golden Rule by considering the
external light field as a perturbation inducing a transition of an electron either (i) from
the ground into an excited, virtual electronic state with a subsequent relaxation into a vir-
tual phonon state (Stokes scattering) or (ii) from a virtual phonon into a virtual, excited
electronic state with a subsequent relaxation into the electronic ground state (Anti-Stokes
scattering). Using the scattering probability, the differential Raman cross section %, de-
fined as the cross section at a scattering (solid) angle Q, can be constructed within the
polarization theory of Placzek [26,27], yielding, for Stokes scattering [102]

do’  (wo—w,)* , h
a0 = (amper 1Rl A D)

Ix;j(we) e
where R‘i’j = Z Lt 07 _kh .
’ kB auk,ﬁ '\/mk

(3.46)

Here, w, and n, denote the vibrational frequency of the phonon with index v and its re-

hwy

spective bosonic occupation factor n, = (ekB_T — 1) . The polarization directions of the

incident and scattered light field are denoted as e; and e, respectively. The electronic and
ionic degrees of freedom and their coupling are encoded in the Raman susceptibility tensor
R™. Essentially, it contains informations about (i) the change in polarizability x under the
displacement u; 4 of an atom k along the direction § and (ii) the displacement e; P of the
same atom along the same direction within the v-th phonon mode, normalized by its mass
m;. Only the case of nonresonant Raman scattering is considered, assuming the light fre-
quency w, and transitional frequencies between true electronic states to be well separated.

In the following, the ionic and electronic contribution to the differential Raman cross
section and Raman susceptibility tensor 3.46 are discussed separately.

3.3.1 Ionic Contribution

The ionic contribution to 3.46 is given by the phonon eigendisplacements {e"} and vibra-
tional frequencies {«w”} in the optical limit ¢ — 0. Within the harmonic approximation,
they are obtained as solutions of the generalized eigenvalue equation

k/, /
Z (q)k,ﬁﬁ o wimk6/5,[5’5k,k’) ezxﬁl =0, (3.47)
k/’ﬂ/

with the entries of the force-constant matrix ®
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describing the force F; 4 acting on an atom k along 3, if an atom k' is displaced along 3. The
eigendisplacements are assumed to be normalized via the ionic mass m,, according to [103]

Z mk,ez,’ﬁ,e,”:,’ﬁ, =08, (3.49)
k/’ﬁ/
Conceptually, the simplest approach to set up the matrix ® is the frozen-phonon (FP) method,

. . o oF, . e
in which the derivatives auk’f’g are evaluated directly by means of finite differences: The

ground-state energy and forces are determined for a number of distorted ionic geometries,

in which each ion k’ is displaced by a small amount u along the positive and negative carte-

sian directions " and —f’, fixing the row (k, ) of & according to
Cbk/’/j/ ~ %(Fk,[j (ﬁ/) - Fk,ﬁ (_ﬂ/))

~

KB u

(3.50)

While the FP method is easily implemented, its disadvantage lies in the number of total-
energy calculations required to set up the force-constant matrix, scaling linearly with the
number of atoms within the cell under consideration. Additionally, the FP method is in-
trinsically limited to the I' point only, i.e., to phonon wave vectors ¢ = 0. Calculations of
phonons at nonzero wave vectors (in particular phonons in the limit ¢ — 0) therefore re-
quire setting up and evaluating large repetitions of a unit cell (supercells), increasing the
computational cost even further.

Alternatively, density-functional perturbation theory (DFPT) can be used to evaluate the
second-order derivative of the ground-state energy in Eq. 3.48. In general, if the external
potential v,,, is assumed to depend on a set A = {A;} of external parameters (e.g., the ionic
displacements {u 4}), A also uniquely defines the charge density p and ground-state energy
E,, according to the Hohenberg-Kohn theorems. The derivative of E, with respect to two
arbitrary parameters is then given by [104]

82E, 02 () 8p(r) 3ven(r)
= | Sl (rydr + = dr. 3.51
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Evidently, the second derivative of the energy requires knowledge of only the first derivative
of the charge density. This is a direct consequence of the (2n + 1) theorem, stating that the
n-th derivative of a wave function (and therefore also the density) enables the evaluation
of the energy derivative up to the order 2n + 1. According to Eq. 2.8, the linear variation
Np =D, j g—fjAlj with respect to the perturbation A can be expressed as

Dp(r) =D 9,(r) 8,91(r) +cc, (3.52)

with c.c. denoting the complex conjugate and v running over all occupied states. The vari-
ation A, ¢, of the Kohn-Sham states is given by standard first-order perturbation theory,
according to [104]

|A)L¢V) _ Z <¢m|Alveff|¢v) |¢m>,
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The density variation in Eq. 3.52 may thus be expressed as

Bip(r)= 3 ¢ () () LBl (354)

v m#v €y —€n

Note that all terms, for which both v and m denote occupied states, cancel. The variation
of the density therefore only responds to perturbations A, V., which couple occupied and
empty states [104], leaving the index m to run only over unoccupied conduction states
c. Similar to the Kohn-Sham equations, A;p can be solved self-consistently according to
3.52 and 3.53. It, however, requires the summation over an infinite number of unperturbed
Kohn-Sham states in Eq. 3.52. This can be circumvented by applying the operator (Hys—€,,)
to |A,¢,) in 3.53, yielding the linear equation

(HKS - ev) |¢c>

(HKS - ev) |Al¢v> = Z <¢C|Alveff|¢v>
== 1) (el Avegr ) (3.55)

= _(1 - p)A)\veff |¢v> P

where H g corresponds to the Kohn-Sham hamiltonian and p = Y, |$,) (¢,| to the density
operator, given by the projector on the subspace of occupied Kohn-Sham states. Since €, is
an eigenvalue of Hg, the operator on the left side of Eq. 3.55 has an eigenvalue of 0 and
is hence not invertible. In practice, a small portion of p is therefore added to the operator.
According to the previous discussion, the solution |A; ¢,) is thereby not effected, since it is
composed purely of unoccupied states.

Special care has to be taken regarding the aforementioned ¢ — O limit in 3.47 in the
case of polar crystals. Due to the long-range nature of the Coulomb interaction, longitudinal
optical phonons may thereby generate macroscopic electric fields, giving rise to additional
forces on the ions and, thus, to an additional component in the force constant matrix 3.48.
In this case, a nonanalytical and direction-dependent term & has to be added to ® with [105]
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Here, ¢°° denotes the low-frequency limit of the macroscopic dielectric function 3.18 and
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the Born effective charge tensor, defined as the rate of change in the macroscopic polar-
ization P induced by an ionic displacement u, g at vanishing electric fields &. Similar to
® and the electronic contribution to the Raman susceptibility tensor (see next section), Z*
can be evaluated via DFPT [105]. It serves as a fundamental quantity in lattice dynamics,
governing the magnitude of splitting between longitudinal and transverse optical modes in
the limit ¢ — 0 (LO-TO splitting).
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3.3.2 Electronic contribution

In a similar manner to the ionic contribution, the electronic one, given by the derivative of
the polarizability x with respect to the ionic displacements u, can be evaluated using either
a direct finite differences method or DFPT. Within the direct method, an electronic ground-
state calculation is again performed for all distorted ionic geometries, in which each ion k’
is displaced along the directions 3’ and —f’ by an amount u. The ground-state energies and
eigenstates for each geometry then fix the polarizability x o< €, within the IPA via Eq. 3.18
and the derivative can be constructed in a similar manner to the force-constant matrix in
Eq. 3.50. In principle, ionic and electronic contribution can be determined simultaneously
within this method by evaluating forces as well as the dielectric function with the same
electronic ground-state properties for every ionic step. For small systems, this approach has
been successfully used to determine Raman spectra in good agreement with experimental
data both in terms of peak position as well as relative peak heights [106,107].

This method, however, is not followed in this thesis. Instead, a DFPT based approach
by Lazzeri and Mauri [108, 109] is used to evaluate the electronic contribution. Thereby,
the polarizability x is interpreted as the second derivative of the ground-state energy E,
with respect to an external electric field &. Using the density operator p, the electronic
contribution may be written as

0 i 3E 2
X 5] — a 0 — 2 TI_ 8 p avext , (3.58)
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with Tr{...} = >, (¢,l...l¢,) denoting the trace of an operator. The difficulty now lies in
calculating the second derivative of the density operator with respect to the components
of &. A formalism to evaluate general (mixed) derivatives of p up to arbitrary order was
introduced by Lazzeri and Mauri in 2003, stating, up to second order:

Z‘ 8¢V ¢>|+c.c.
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where P=1—p.

and

(3.59)

Derivatives are taken with respect to arbitrary perturbations A and u. The second deriva-
tives of occupied Kohn-Sham states within the parallel-transport gauge are denoted with
|n9’“)). Using the terminology of Gonze, the parallel-transport gauge is thereby given by
the condition [110]

(¢, [nDY—(nD]¢,)=0. (3.60)

In principle, the derivatives of the wave functions in 3.59 can be determined in a similar
manner to 3.53. However, for electric-field perturbations, i.e., v, ©< —&-r, the expectation
value over the position operator would have to be evaluated, which is not well defined for
periodic boundary conditions. To circumvent this issue, the derivatives of the wave functions
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are rewritten in a way to explicitly depend on commutators between the derivatives of the
effective potential and the density operator, yielding

‘P%>=Gv[aveff oo,

= TR (3.61)
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projected on the empty states |¢.). Since p and its derivatives are localized, the expecta-
tion values in 3.61 are well defined for periodic boundary conditions, even in the case of
% o< r. Itis thus possible to evaluate the second derivative in Eq. 3.58 by self-consistently

solving equations 3.59 and 3.61.



Ferroelectrics _

All systems investigated within this thesis are members of the particular class of ferroelectric
solids. In general, ferroelectrics can thereby be considered a subgroup of dielectrics which
are characterized by the fact that an internal dipole moment within the material can be
induced by applying an external electric field &. In particular, ferroelectrics are a subgroup
of polar dielectrics, i.e., materials whose net dipole moment (internal polarization) P is
nonzero even in the absence of an electric field because the centers of positive and negative
sublattice do not coincide [111]. In ferroelectrics, external electric fields cannot only change
the magnitude of the internal polarization, but can also flip its orientation into two or more
stable configurations. These new orientations thereby remain stable even after the electric
field is removed, according to the ferroelectric hysteresis loop, see Fig. 4.1. Initially, the

Figure 4.1: Schematic representation of the ferroelectric hysteresis loop in a plot of the
polarization P versus the applied electric field &. Values of the coercitive field
8., remanent polarization P, and saturation polarization P, are indicated.

37
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existing dipole moments within the material are alined due to the applied field, raising the
internal polarization from O to a saturation value P, (gray line). Decreasing the electric field
& back to zero, a remanent polarization P, remains in the material. Applying an electric field
in the opposite direction, the polarization first reaches zero at the coercitive field —&, before
again reaching its saturation value —P,. A reversal of the applied field causes P to drop back
to the remanent polarization —P, for zero field, vanish for & = &, and finally saturate at P,.

4.1 Ferroelectric-Paraelectric Phase Transition

Apart from the naming, a number of properties in ferroelectrics bear resemblances to those
within ferromagnetic solids. In particular, the existence of a material-specific critical tem-
perature T (Curie temperature), above which the internal magnetization of a ferromagnetic
material vanishes, is similarly found regarding the internal polarization within ferroelectrics.
In analogy to the high and low temperature para and ferromagnetic phases, the P = 0 phase
is thereby called paraelectric.

Historically, phase transitions between para- and ferroelectric phase have been divided
into two classes: order-disorder and displacive ones. Within an order-disorder phase transi-
tion, electric dipoles are present within the material even in its paralectric phase. However,
they are randomly oriented, therefore effectively averaging each other out. The amount
of orientations thereby varies based on the given material and space group. A particular
example for a ferroelectric possessing an order-disorder type transitions is KH,PO,, with
its Curie temperature at 123 K. The transition occurs between the paraelectric 42m and the
ferroelectric mm2 phases. Above T, hydrogen ions linking PO, tetrahedra are delocalized
between two equivalent positions. Below T, H localizes at one position randomly, giving
rise to the distortion of PO,, creating a spontaneous polarization. Since T is intrinsically
tied to the probability of H hopping between the two positions, its value can be increased
up to 20 K by substituting heavier Deuterium atoms for H [112-114].

In contrast, a displacive phase transition is characterized by the existence of electric
dipoles only within the ferroelectric phase. Ferroelectric and paraelectric phase are linked
by small, continuous atomic lattice displacements. The transition from ferroelectric to para-
electric phase is heralded by the existence of a soft mode. Close to T, the lattice deformation
of this soft mode results in a lack of restoring force due to the deformation pointing away
from a local energy maximum. The contribution of the soft mode to the total vibrational
energy of a system within the harmonic approximation is thereby given by [115]

1
Hyp =5 D0} Q 4.1)
k

with w, as the vibrational frequency and Q, as the normal mode displacement for wave vec-
tor k. Evidently, for H;, to possess a local maximum at Q; = 0, the frequency must amount
to 0 or a complex value, implying a softening (shift to lower frequency) of the mode close
to the transition temperature. Examples for displacive phase transitions include many per-
ovskite oxides, i.e., materials with the general constitution formula ABO,, with cations A and
B. As the first experimental evidence for soft-mode behavior, SrTiO; was found to undergo a
displacive phase transition at 110 K from a tetragonal to a cubic phase [116-119]. Using Ra-
man spectroscopy at different temperatures, the two lowest-frequency optical modes within
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Figure 4.2: Temperature dependence of the two lowest-frequency modes A and D in tetrag-
onal SrTiO;. Figure adapted from Ref. [118].

the tetragonal phase were found to dramatically decrease in frequency when the temper-
ature approaches the transition temperature from below, see Fig. 4.2. Microscopically, the
reason for this softening was traced back to the condensation of a triply degenerate oxygen
mode labeled T,; within the cubic phase. At wave vectors parallel to (111), I},5 involves a
clock- and anticlockwise rotation of individual oxygen cages around the z direction. This
displacement condensates into a tetragonal structure below 110K, in which T splits up
into two individual modes (A and D in Fig. 4.2) located at the I" point, being observable via
Raman spectroscopy.

Apart from phase transitions of pure order-disorder and displacive type, paraelectric-
ferroelectric phase transitions of mixed type are observed as well. One such case is LiNbO;,
whose crystal structure along the ferroelectric z axis is given by planes containing O and Li,
with the Nb atoms being located in the center of the so formed NbOg cages. For a long time,
the nature of the paraelectric-ferroelectric phase transition, taking place at around 1480K,
has been the subject of debate. One reason for this unclarity is the fact that experimental
studies have either confirmed [120,121] or disproven [122] the existence of a soft mode in
bulk LiNbO,. In contrast, a clear picture could be obtained using molecular dynamics calcu-
lations [123-125]. The Li and Nb sublattices were thereby found to contribute differently
to the full phase transition mechanism. Below the Curie temperature, the distribution of Li
and Nb along the z direction is unimodal. Close to the Curie temperature, the distribution of
Nb shifts continuously towards being localized exactly in the middle between two O planes,
corresponding to a displacive-type phase transition. The Li sublattice, on the other hand,
was found to shift towards a binodal distribution, located exactly within the O planes only
on average, adding an additional order-disorder contribution to the full phase transition
mechanism.
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Another material exhibiting a mixed displacive and order-disorder type phase transition
is Lithium heptagermanate Li,Ge,O;s (LGO), which is an example of a weak ferroelec-
tric [126] due to its relatively small spontaneous polarization in the ferroelectric phase, in
the order of 0.02-0.03 uC/cm? [127]. The crystal structure of LGO consists of GeO, tetrahe-
dra and GeOg4 octahedra, linked by a mutual O atom. The resulting cavities are occupied by
Li* ions distributed among two nonequivalent sites, Li(1) and Li(2), differently coordinated
with respect to neighboring O atoms [128]. At a temperature of 283.5 K, LGO undergoes a
transition from its high temperature paraelectric phase (space group Pbcn) to its low tem-
perature ferroelectric phase (space group Pbc2;). During the phase transition, a soft mode,
related to a rotation of the GeO, tetrahedra, is observed experimentally [128,129], indi-
cating a displacive type of phase transition. However, due to its small oscillator strength,
the contribution of the mode to the total dielectric constant is relatively low, hinting to-
wards an additional phase transition mechanism [130]. This additional mechanism thereby
involves the Li* sublattice. The thermal displacement parameters of Li(1) and Li(2) (deter-
mined experimentally by neutron diffraction) are found to be equal in the low temperature
ferroelectric phase. In the high energy paraelectric phase, however, the displacement pa-
rameters of Li(2) turn highly anisotropic, with its highest value along the x direction being
almost one order of magnitude larger compared to Li(1) [128]. Therefore, the position of
the Li(2) atom can be considered statistically distributed along the x channel, resulting to
an order-disorder-type contribution to the phase transition.

4.2 Technological Applications of Ferroelectrics

Ferroelectrics are a material class evoking particular interest in numerous technological
fields. In particular, their tunable internal polarization gives rise to many unique optical
and electrical properties. These are exploited, for instance, in

e Acoustics: Acoustic resonators can be fabricated in the shape of multilayer thin film
FBARSs (ferroelectric bulk acoustic resonators) utilizing BaTiO;—SrTiO; mixed crystals
(BSTO) as the key material. Here, the large electromechanical coupling of BSTO is
exploited to make the resonance frequency of each individual layer tunable by the
induced piezoelectric effect. Piezoelectrically inactive BSTO in its paraelectric phase
is rendered piezoelectrically active by an electric field displacing the Ti/Sr ions along
the polar axis, reminiscent to a paraelectric-ferroelectric phase transition. [131]

e Nonvolatile memory: Arrays of ferroelectric material can be used to store logical in-
formation encoded into their polarization state, akin to standard magnetic drives en-
coding information into their internal magnetization. Ferroelectric memory cells may
be fabricated using doped hafnium oxide (FE-HfO,) either in a one-transistor (1T) or
one-transistor-one-capacitor (1T-1C) architecture. [132]

Another technological sector exploiting ferroelectric properties in matter is linear and
nonlinear optics, which shall be discussed in more detail in the following.

In the context of linear optics, electro-optic (EO) modulators belong to the most wide-
spread applications. In an EO modulator, the EO effect alters the refractive index of a crystal
under the influence of an external electric field, giving rise to a modulation of the phase, po-
larization or amplitude of impinged light. For this purpose, ferroelectric crystals are partic-
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ularly suited, because the linear EO coefficient, governing the magnitude of the EO effect, is
proportional to the dielectric constant and the spontaneous internal polarization [ 133-135].
For the perovskite-type ferroelectrics MNbO, (with M=K, Li), the strength of their respec-
tive EO coefficient is thereby related to their geometry: A displacement of the Nb atom in
the center of the O octahedron, caused by a low frequency electric field, has been shown
to induce a change in the crystals optical response [136].

Within nanophotonics, the miniaturization of EO modulators and their integration into
single chips with a variety of different optical devices has been a key objective for the last
decades. Thin films of LiNbO, [137-139] emerged as standard material for this purpose
due to their high modulation bandwidth in addition to low power consumption. Other
ferroelectric oxides used for the fabrication of integrated thin film EO modulators include
LiTaO, [140], BiFeO, [135] or BaTiO4 [141,142], grown on top of Si-based substrates. As a
key quantity for EO modulation, the EO coefficients of all four materials vary in a range be-
tween 12 pm/V (BiFeO;) and 730 pm/V (BaTiO5) [141]. In the case of BaTiO3, even values
in the order of 1300 pm/V for unclamped (stress-free) crystals have been observed [141].
Modulators based on these ferroelectrics, however, come with the drawback of possible
deterioration due to the photorefractive effect [143] or a complete depoling of the crys-
tal [144] if driven by too high electric fields. Higher robustness against large electric fields
can be achieved by using thin films of lead-based ferroelectrics like lanthanum-modified
lead zirconate titanate (Pb,_,La,[Zr,Ti;_, ];_, /403, PLZT). Large EO coefficients (120 pm/V
- 340 pm/V) in addition to low propagation loss have been observed in photonic-integrated
circuits based on PLZT [143,145].

Apart from EO modulators, the portfolio of devices utilizing the linear-optical proper-
ties of ferroelectric materials additionally includes optical deflectors, shutter arrays or light
valves [144]. Another technological task, well covered by the peculiar properties of ferro-
electrics, is the generation of monochromatic light at wavelengths, previously out of scope
with conventional radiation sources, via second-harmonic generation (SHG). This is partly
due to a specific crystallographic requirement for SHG to take place in a material in the first
place: the lack of an inversion center within the crystal. Due to the internal polarization,
ferroelectric materials posses by definition, this requirement is naturally fulfilled.

During SHG in a nonlinear material, impinged light of frequency w (source) is partially
converted to a frequency 2w (signal) due to nonlinear interaction between light and mat-
ter. Ideally, the signal intensity should continuously increase along the propagation path.
However, since both beams are subject to dispersion, their respective phase velocities v, = +
generally differ. Here c is the speed of light and n = n(w) the frequency-dependent refrac-
tive index. This velocity mismatch gives rise to a mismatch in phase, causing the signal
intensity to drop to zero after propagating a distance [, o< (An)~! (coherence length) due
to destructive interference [146]. In order to maximize [, the difference in refractive in-
dices An between source and signal should therefore me minimized, ideally fulfilling the
phase-matching condition n(w) = n(2w). Perfect phase matching thereby yields a quadratic
increase in signal intensity along the propagation path [147]. Several phase-matching tech-
niques can be employed, including birefringence phase matching [ 146,148-150]. Here, the
birefringence in a nonlinear material (i.e., anisotropy of its refractive index) is exploited to
account for the phase mismatch by having source and signal beam differently polarized,
either along the ordinary or the extraordinary axis of the nonlinear crystal. Depending on
the specific technique, either critical or noncritical phase matching can be achieved. In
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the case of critical phase matching, the beam’s propagation direction is chosen specifically
for the ordinary and extraordinary refractive index to fulfill the phase-matching condition.
Because the direction has to be carefully adjusted, this technique is sensitive to variations
of the propagation angle. On the other hand, noncritical phase matching can be achieved
via the temperature dependence of both refractive indices [151]. Thereby, ordinary and
extraordinary refractive indices are matched by adjusting the crystal’s temperature, effec-
tively dropping the need of highly accurate angular adjustment in the case of critical phase
matching, but introducing the need of high temperature stabilization. Both techniques come
with a number of drawbacks. First, the nonlinear crystal has to be birefringent by defini-
tion, effectively making birefringent phase matching inaccessible to isotropic materials with
promisingly high SHG coefficients, including GaAs [152]. Secondly, the angular/thermal
stability required for critical and noncritical phase matching limits the accessible wavelength
interval [153]. Additionally, due to the fixed polarization configuration of source and signal
the individual components of the nonlinear susceptibility may not be chosen independently.

A different way to partially overcome the problem of phase mismatch is to employ quasi-
phasematching (QPM), a technique first proposed theoretically by Armstrong et al. in 1962
[154] and later realized experimentally in 1964 by Miller for ferroelectric BaTiO; [155].
The principle idea behind QPM is that a sign change in the SHG coefficient introduces a
phase shift of 7 in the signal beam. Therefore, by periodically flipping the sign of the
SHG coefficient along the propagation path with a period length [, the power flow from
signal to source can be partially reverted, giving rise to a sub-quadratic increase in signal
intensity [146, 147]. Because coherence lengths for typical SHG setups amount to a few
um [156], fabrication of such periodic structures for general nonlinear materials turned
out to be highly technologically challenging. For ferroelectric crystals, however, the sign of
the SHG coefficient is intrinsically tied to its polarization state [157]. QPM in ferroelectrics
can therefore be realized by periodically switching the polarization state, creating a grating
of differently polarized ferroelectric domains. Historically, several techniques have been
utilized to pattern ferroelectric crystals in this way, including ion exchange [ 158] and dopant
in-diffusion [157]. Notably, the only technique that has stood the test of time is periodic
poling: By applying an electric field exceeding the coercitive field strength E_ antiparallel
to the direction of ferroelectric polarization, a polarization inversion can be achieved.

Material systems used to create periodically poled SHG gratings include the previously
mentioned crystals LINbO, and LiTaO5 [147,157,159-163]. Both materials show large non-
linear coefficients in addition to a broad transparency region, covering the entire range of
visible wavelengths up to mid-infrared [ 162,164 ]. However, their relatively large coercitive
field strength, reaching 1.7-4 kV/mm in the case of stoichiometric and 21 kV/mm in the case
of a (more common) congruent composition [165], renders the fabrication of periodically
poled structures highly demanding [14]. Additionally, in the case of LN, a relatively low
index contrast between the waveguide core region and cladding layers makes large device
dimensions and large bending radii inevitable [ 159].

4.3 The Potassium Titanyl Phosphate Crystal Family

The ferroelectric potassium titanyl phosphate (KTiOPO,, KTP) is a member of the crystal
family with general constitutional formula MTiOXO,, where M = {K,Rb, T1, Cs, NH,} and
X = {B As}. Members of this family are isomorphic (i.e., posses the same crystal symmetry)
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Figure 4.3: Orthorhombic unit cell of a general MTiOX O, crystal family member. Long and
short Ti—O bonds are indicated. Figure adapted from Ref. [171].

and are known to exhibit favorable optical properties, including high nonlinear coefficients
and large transparency windows, rendering them particularly suited for applications in lin-
ear and nonlinear optics and photonics.

The technological potential of KTP remained unknown for a long time. The first prepa-
ration of KTP dates back to 1890, when Ouvrard synthesized it out of a flux containing TiO,,
K,P,0, and KP;0, [166]. KTP was rediscovered many decades later, in the 1970, during an
era of high demand on materials with extraordinary nonlinear properties. In 1971, Masse
and Grenier released a short report on the synthesis of three members of the KTP family,
with X = P and M = {K, Rb, T1} and the subsequent first experimental study regarding their
crystallographic properties [167]. The crystal structure was found to be orthorhombic, with
space group Pna2,, which was later confirmed by other studies [7,168,169]. In 1976, the
optical properties of mixed crystals between KTP and RTP have been reported for the first
time by Zumsteg et al. [170]. It was found that phase-matching was possible for the entire
transparency region of the material (350 — 4500 nm) and efficient frequency doubling could
be achieved for radiation at 1060 nm wavelength. The origin for these properties as well
as for the general ferroelectricity in KTP-type crystals can be traced back to the particular
crystal structure, see Fig. 4.3. Since KTP-type crystals are isomorphic, this discussion will,
for the sake of simplicity, be restrict to KTP only.

4.3.1 Crystal structure

The unit cell of KTP is orthorhombic, with lattice constants a = 12.819 A, b =6.399 A and
¢ = 10.584 A, and contains 64 atoms in total [172]. Due to its Pna2, space group, a total
of four symmetry operations exist, mapping symmetry-equivalent atoms within the unit cell
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onto each other. For reduced coordinates x, y and z, these operations are !

(X,y,Z)—)(X,y,Z) (IdentltY)

(x z)—>(1—x1+ 1+z)

Y 2 27y

) (4.2)

1 1
(x,y,2) = (— +xX,=—y,2
2 2

1
(x,y,2) > (1—x,1—y,§+z).

It is therefore possible to characterize the crystal structure of KTP using only 16 irreducible
atoms (two formula units of KTiOPO,), with the rest being given by the application of 4.2.
Ti, P and O within a KTP unit cell are arranged into TiO4 octahedra and PO, tetrahedra,
linked by a mutual O atom. These polyhedra form alternating TiOc—PO, chains along the
[100] and [010] direction, with the orientation of the polyhedra chains alternating along
[001]. Along [011] and [011], KTP consists of helical TiO4 octahedra chains. Within TiO,
the bond lengths between Ti and O are not identical. In particular, the formation of a
very short Ti=0 double bond (1.7161&) and a very long Ti-O single bond (1.733 A) are
observed [172], slightly distorting the TiO4 octahedra, see Fig. 4.2. The cavities between
the polyhedra strands are occupied by K ions at two nonequivalent positions, being 8- and
9-fold coordinated with respect to O. The K ions are thereby positively charged and only
weakly bound to its surrounding TiO4 and PO, polyhedra, giving rise to its overall large ionic
mobility. Along the polar [001] direction, this mobility is thereby four orders of magnitude
larger compared to [100] and [010] [168].

The 10 oxygen and each two K, Ti and P atoms within an irreducible KTP unit are usually
subdivided into categories according to their respective coordination. In the case of K, the
notation K(1) and K(2) type refer to ions of 8- and 9-fold coordination, respectively. For O,
two possible coordinations exist, either bridging Ti and P or bridging two Ti atoms. The 8
O atoms of the former group are typically labeled O(1)-0O(8), while the latter two O atoms
are labeled O(9) and O(10). P and Ti can be classified according to the orientation of the
respective polyhedra strand they build up: P(1) and Ti(1) refer to an orientation along
[010], while P(2) and Ti(2) refer to [100]. In the case of Ti, another way of classification
is thereby possible: If O atoms of type O(9) and O(10) within a TiO4 octahedron enclose
a 90° angle with the central Ti atom, it is considered of Ti(1) type, otherwise, for a 180°
angle, of Ti(2) type.

The relatively large nonlinear optical coefficients of KTB ranging from d;5 = 2.04 pm/V
to d;3 =18.5pm/V [173], were initially believed to arise mainly from the short Ti-O bond
within the TiOg4 octahedra [170]. However, the discovery of KTA possessing an overall even
better nonlinear response put this assumption into question, since the bond distortion in
TiOg is present in both isomorphs [174,175]. Consequently, P(As)-O and K-O bonds were
found to be the main contribution to the optical nonlinearity in KTP (KTA) [175].

'Reduced coordinates (x4, y4,24) thereby refer to coordinates as multiples of the three lattice vectors {a;}.
Cartesian coordinates (x,, Y., 2.) are obtained from the reduced ones via (x., y,%.) = x4, +Y4-a, +24 - a;.
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4.3.2 Curie temperature and crystal growth

The internal polarization of KTP amounts to 20.1 uC/cm? [5,176] and is oriented along the
[001] direction. The microscopic origin of the internal polarization is thereby the displace-
ment of Ti, P and K with respect to the O sublattice, which was determined by Bierlein and
Arweiler using a simple point-charge model [177]. KTP was shown to undergo a phase tran-
sition into a higher-symmetry paraelectric phase with space group Pnna [178,179]. The
nature of this transition was originally believed to be purely displacive [180]. However,
newer studies hinted towards a mixture between order-disorder and displacive type [181].
The displacive component involves a continuous displacement of the Ti atoms within TiOg4
along the [001] direction, giving rise to the previously discussed short and long Ti—O bonds
within the ferroelectric phase. The order-disorder component, on the other hand, involves
the site splitting of the K sublattice [182]. Within the ferroelectric Pna2, phase, each site
K(1) and K(2) features a respective split site K(1)s and K(2)s, shifted along the polar [001]
direction. At room temperature, the statistical occupation of these split sites amounts to
around 10%. However, within the paraelectric Pnna phase, K(1)s and K(2) (as well as
K(2)s and K(1)) become crystallographically equivalent, giving rise to an equal distribution
of K among all sites, effectively averaging out a statistical variation of displacements along
[001]. While the Curie temperature was known to be relatively high (>800°C), the pre-
cise value of T has been reported with a considerable amount of scattering, ranging from
892°C to 959°C, depending on the utilized experimental technique [183]. It was shown by
Angert et al. that T strongly depends on the KTP growth conditions [ 183,184 ] and therefore
reflects the challenging means to grow KTP in the first place.

At 1172°C, KTP melts incongruently, decomposing into liquid KPO4 and solid TiO, [185].
Since the solid and melt thus contain different compositions, it is not possible to grow KTP
using standard melt techniques, e.g., the Czochralski method. Instead, two different meth-
ods for growing KTP out of solutions are employed:

e Flux method: KTP crystalizes out of a KTP/flux solution at elevated temperatures and
under atmospheric pressure. As fluxes, numerous compositions can be used, includ-
ing phosphatic systems (K,P,0,, KsPcO,q, etc.), tungstates or halides [168]. Since
congruent crystallization takes place only for very slow cooling rates of the solution,
the overall growth process can take up to several months, depending on the desired
size and quality of the crystal.

e Hydrothermal growth: An aqueous mixture containing titania and potassium phos-
phate is placed in a tube at high pressure with a temperature gradient between its
ends and a seed crystal at the cooler side, enabling a slow crystallization.

Coming back to the dependence of the Curie temperature on the growth conditions, it was
shown that T, for flux grown KTP is proportional not only to the KTP concentration within
the solution, but also to the K/P ration within the solvent [183,184].

4.4 Polar Surfaces

Splitting a ferroelectric crystal perpendicular to the direction of internal polarization, two
surfaces are created. Due to the presence of microscopic dipole moments between two
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subsequent layers of the ferroelectric, these two surfaces are, in general, structurally as well
as electronically not equivalent, i.e., both surfaces differ with respect to their polarity. In
order to stabilize both surfaces, a depolarization field opposite to the internal polarization
is built up, accompanied by a number of reconstruction mechanisms of the surface layers.
The surface morphology as well as stoichiometry are thereby subject to change due to ad-
and desorption processes [ 186]. Theoretical modeling of a polar surface can, in principle, be
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Figure 4.4: Schematic illustration of the plane averaged local potential V,..(z) along the
surface normal of a polar surface within a supercell of height z,, (a) before
and (d) after the inclusion of a linear dipole correction Vy;,(z). The shape of
V4ip(2) before and after self-consistent determination of the slab’s charge density
is depicted in (b) and (c), respectively. Within the vacuum region, inclusion
of Vy,(2) leads to a perfect cancelation of the external electric field &,,,. The
position of the slab’s outermost layers are indicated by s,.

Xt

performed in a similar fashion to nonpolar surfaces using periodic boundary conditions. The
surface is thereby built up in a slab geometry, consisting of several layers of the respective
bulk material along the surface normal. In the following, this surface normal is assumed
to be parallel to the z direction. Perpendicular to z, the material is left periodic according
to the point group within the bulk, with a surface area of A. Along z, interaction between
periodic images of the slab is prevented by including a vacuum region above the surface
layer. If the end facets of the slab are not equivalent, the electrostatic interaction between
them results in a spurious electric field &,,,(z) within the vacuum region, given by a constant



4.4 POLAR SURFACES 47

slope in the plane averaged local electrostatic potential

1
Vioe(2) = ;‘J Vioe(r) dxdy (4.3)
A

along the z direction, see Fig. 4.4, (a). The total local potential Vj,.(r) is thereby composed
of )

Vodr) = Vi) + | B dr v, (4.4)
with the three contributions corresponding to the ionic potential, the Hartree potential and
the local part of the XC potential, respectively. The external field originates from both end
facets being differently terminated and, in the worst case, may result in a drift of electrons
from one end facet to the other. Correction schemes to account for this effect have first
been proposed by Neugebauer and Scheffler in 1992 [187]. The principle idea was later
adopted and refined in a number of different publications [ 188-191]. Essentially, this dipole
correction scheme entails including a constant electric field to the local potential along the
z direction within the entire unit cell, see Fig. 4.4 (b). This electric field is modeled by a
dipole potential Vj;,(x) with constant slope, which, in order to satisfy periodic boundary
conditions, features a jump within the vacuum region. This jump has practically no effect
on the electronic states of the slab, because the wave functions decay exponentially outside
the slab and should therefore ideally drop to zero in the vacuum region between the two
end facets. If the supercell is considered to have a height of z,,, V4;,(x) is given by [191]

1
Vaip(z) = —4mem (3 - 5), where  z €[0,2,], (4.5)

m

with the electron charge e and the surface dipole density

m= f " p(z) 7' dz'. (4.6)
0

Because m depends on the charge density of the system p(z), Vy;,(2) is intrinsically a func-
tional of p(z). In the context of DFT calculations, Vy;,(z) along with all other contributions
to the total potential have therefore be determined self-consistently on the basis of p(2).
Iterating the dipole potential results in a separation of charge within the slab, leading to a
screening of Vj;,(2), akin to the screening of an electric field within a metal (see Fig. 4.4
(c)). Within the vacuum region, the electric field induced by Vy;,(2) prevails, cancelling &,
see Fig. 4.4 (d).

Correcting the local potential this way has a number of implications. First, the total
energy of the system is altered and now reads [191]

Xt

2mA
E,=E +22Cm2, 4.7)
y4

tot
m

where E? denotes the total energy without dipole corrections and A the surface area. Ionic
forces are modified as well and take the form

0o_ 4meZ,
Z

F,=F

1

m-e,. (4.8)

m
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Figure 4.5: Planar averaged local potential V .(z) of a polar crystal along the polar axis
within bulk (red) as well as within a dipole-corrected slab geometry (blue).
The position of the valence band within the bulk material E,, as well as the
vacuum levels of the positive and negative surface E\ﬂ; determine the respective
(nonequivalent) work functions W* and W~.

Again, F ? corresponds the force acting on the ion with label i without dipole corrections,
with Z; denoting its charge and e, the unit vector along the z direction.

Another consequence of introducing dipole corrections originates from the fact that vac-
uum levels E‘ﬂ; of both end facets (i.e., a constant level of V,.(z) within the vacuum region)
become well defined, allowing the assessment of surface related electronic quantities of
each end facet individually. One of these quantities is the change in the surface dipole mo-
ment Adp,;, as a consequence of the reconstruction of the surface. This relative change
with respect to a reference surface is given by the difference between their vacuum levels.
Dipole corrections additionally enable the evaluation of the work function W, defined as
the minimal energy required to move an electron from a surface into the vacuum, infinitely
far away from the surface. For an undoped insulator, W may be expressed as the energy
difference between the highest valence state E,,; within the bulk structure and the vacuum
level [192]. Taking the center region of the slab as a reference, the local potentials of bulk
and slab may be aligned (see Fig. 4.5) to determine the position of E,, with respect to the
vacuum levels. The work functions of of both surfaces thus read

W*=El—Ey and W~ =E, —Ey. (4.9)

Given the previous definition of the induced surface dipole moment, W and Ay, are not
independent, but rather show a linear dependence W ~ Adnpy,.



Spectroscopic Signatures of KTP
and Related Materials

In order to investigate the atomic origins of spectroscopic signatures of KTEB RTP and KTA,
the methodologies introduced in Chapters 2 and 3 will be applied to all three materials on
various levels of theory. The influence of quasiparticle and excitonic effects on their respec-
tive dielectric function &(w) shall be systematically investigated and discussed. Likewise,
the respective phonon spectra and Raman cross sections shall, for the first time, be deter-
mined in a non-phenomenological way, giving insights into the atomic and vibrational origin
to the most prominent Raman peaks.

This chapter is structured as following: In the first section, the focus lies on the in-
vestigation of electronic and optical properties of bulk KTP. The general methodology and
computational parameters are introduced, followed by the results and discussion of struc-
tural parameters, the band structure and the dielectric function on various levels of theory.
The basic characteristics of electronic states are discussed on the basis of the fundamental
band gap and the orbital character of the valence band maximum (VBM) and conduction
band minimum (CBM). In the second section, these results are compared to those of the
related materials RTP and KTA. In particular, the difference in the onset of optical absorp-
tion is discussed with respect to the involved constituents and compared to experimental
results. In the third section, the results regarding Raman cross sections of KTEB RTP and KTA
are presented and discussed with respect to experimental spectra.

Parts of the results within this chapter have already been published, see Ref. [171] and
[193].

5.1 Band Structure and Dielectric Function of KTP

5.1.1 Methodology

In order to determine the ground-state properties of KTE DFT calculations are performed
using version 5.4.4 of the commercially available VIENNA AB INITIO SIMULATION PACKAGE
(VASP) [194]. Being a plane-wave code, all electronic wave functions ¢, ;(r) are thereby
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expanded into a plane-wave basis set according to

1 .
c k(G)el(k+G)~r,
72

where ¢, (G) = J b (r)e DT qp

¢n,k(r) =
(5.1)

The number of plane waves is truncated using a single parameter, the energy cutoff E_,,,
according to the condition that only plane waves with kinetic energy lower than E_, are
included in the basis set, i.e.,

H’|k + G|?

2m

An energy cutoff of 500 eV is used. This value was tested with respect to the convergence
of the fundamental band gap of KTP at the I' point and leads to an error below 10 meV.
The same criterion is utilized to test the k-point mesh used to sample the Brillouin zone. A
regular, I'-centered 2x4x2 mesh is thereby found to be sufficiently large.

Electronic exchange and correlation effects are taken into account using the GGA, as
parametrized within the PBEsol functional, see Sec. 2.1.4. Additionally, the projector-aug-
mented-wave (PAW) method is used to account for electron-ion interaction [195]. Regard-
ing the individual constituents of KTE only a subset of electrons of each atomic species
are treated as valence electrons, with the rest being frozen and accounted for within the
pseudopotential formalism. In addition to all open shells, Ky, Tiys, P35 and Oy orbitals are
thereby considered valence states.

In the first step, the ground-state geometry, band structure and dielectric function of KTP
are determined on the level of standard DFT. To this end, ions as well as lattice constants are
structurally relaxed until the maximum force acting on each atom falls below a threshold of
0.01 eV/A. Using the ground-state geometry, electronic eigenvalues are extracted along the
pathT - Y— T — Z — T, see Fig. 5.1. On the basis of the band structure, the dielectric
function is determined using the IPA (see Sec. 3.1.1).

In the second step, QP effects on the band structure as well as the dielectric function
are investigated. To this end, the self-energy operator X(r,r’; w), as introduced in Sec. 2.2,
is determined using the G,W, approximation from the convolution of the single-particle
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Figure 5.1: Outline of the first Brillouin zone of KTB along with high-symmetry points. The
k-point path used for the band-structure calculations is indicated by red arrows.
Figure adapted from Ref. [171].
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Green’s function G and the screened Coulomb interaction W, as implemented by Shishkin
and Kresse [196]. The QP shift for each single-particle energy eigenvalue obtained from
the prior DFT calculation is subsequently calculated from X in a perturbative manner ac-
cording to Eq. 2.74. The response function x°, which directly enters the dielectric function
¢ in Eq. 3.12 and indirectly the screened Coulomb interaction W via Eq. 2.63, is set up
using an energy cutoff of 300 eV and a total of 1800 states. Again, this ensures numerical
convergence of the quasiparticle energies better than 10 meV. The same 2 x 4 x 2 k-point
mesh, which was used to determine the electronic ground state within the previous DFT
step, is used to evaluate the QP shifts within the GW calculation. Due to the large size
of the KTP unit cell, this relatively low density thereby suffices for the direct band gap to
converge within 10 meV. Finally, the dielectric function within the IQPA is obtained from the
QP energies using Eq. 3.18.

The electron-hole interaction and local-field effects are taken into account in the third
step by solving the BSE (see Sec. 3.2), using the QP energies and screened Coulomb inter-
action obtained from the previous GW calculation. In order to set up the BSE hamiltonian
in Eq. 3.43, a total of 184 bands are used, subdivided into 64 valence and 120 conduction
bands.

5.1.2 Structural Properties

Within DFT-PBEsol, the lattice constants of KTP amount to a = 12.860 A, b = 6.432 A,
and ¢ = 10.599 A, which deviate by less than 0.4 % from the respective experimental X-ray
diffraction data [167,178,197-200]. Regarding the lengths of the longest Ti—O single and
shortest Ti=O double bond, values of 2.12A and 1.78 A are obtained, respectively, with a
mean Ti—O bond length of 1.97 A. These values are in good agreement with respective mea-
sured bond lengths of 2.15 A,1.72A and 1.97A[178]. In Tab. 5.1, the reduced coordinates
of the 16 non-symmetry-equivalent atoms within a KTP unit are compiled along with their
deviations from experimental values [172]. PBEsol is found to yield atomic coordinates
very close to those found by the experiment, with an average deviation of 1.6- 107 and a
maximum deviation of 1072, For comparison, KTP lattice constants within PBE are found to
overestimate the experimental ones by as much as 1.5 %, with the average and maximum
deviation in atomic coordinates amounting to 2 - 10~ and 1072, respectively. Within LDA,
the situation additionally worsens, with an underestimation in lattice constants up to 1.9 %
and deviations in atomic coordinates similar to PBE.

5.1.3 Electronic Properties

The electronic band structure of KTP is calculated along the path shown in Fig. 5.1 using
the relaxed ground-state structure. In Fig. 5.2 (lhs), the band structure on the DFT level is
depicted.

The obtained band gap of KTP amounts to 2.97 eV, which is in close agreement with
earlier theoretical studies by Lowther et al. [201]. While the CBM is located at the I" point,
the highest occupied state at I' lies marginally below the VBM at the T point, separated
by 28 meV, rendering the band gap slightly indirect. A minor increase of the band gap to
3.1eV is is found upon treating the Tiy, orbitals as valence states (mandating an increase
of the energy cutoff to 800 eV). This effect, however, is neglected in the following, as an in-
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Table 5.1: Reduced coordinates of non-symmetry-equivalent atoms of KTP as obtained
within DFT-PBEsol. The deviation with respect to single-crystal X-ray diffrac-
tion (XRD) data [172] is given in brackets. Coordinates x, y, and z are assumed
to be aligned along the [100], [010], and [001] directions, respectively (see

Fig. 4.3).
Direction
X y Z
K(1) 0.375 [—0.003] 0.779 [—0.002] 0.690 [+0.002]
K(2) 0.108 [+0.003] 0.699 [£0] 0.936 [+0.003]
Ti(1) 0.373 [£0] 0.500 [+0] 0.991 [—0.009]
Ti(2) 0.245 [—0.002] 0.260 [—0.01] 0.742 [—0.006]
P(1) 0.498 [£0] 0.339 [+0.003] 0.738 [—0.002]
P(2) 0.180 [—0.001] 0.504 [+0.002] 0.487 [+0]
o(1) 0.486 [£0] 0.489 [+0.002] 0.849 [—0.001]
0(2) 0.510 [+0] 0.467 [+0.001] 0.615 [—0.002]
0(3) 0.401 [+0.001] 0.199 [£0] 0.720 [—0.001]
o4) 0.594 [+0.001] 0.196 [+0.003] 0.760 [+0.001]
0o(5) 0.111 [—0.002] 0.314 [+0.003] 0.459 [+0]
0(6) 0.112 [+0.001] 0.696 [+0.004] 0.513 [+0.001]
o(7) 0.253 [£0] 0.538 [+0.002] 0.372 [£0]
0(8) 0.252 [—0.001] 0.465 [+0.003] 0.602 [+0.001]
0() 0.223 [—0.002] 0.966 [+0.001] 0.358 [+0.002]
0(10) 0.224 [+0.001] 0.051 [+0.01] 0.612 [+0.002]

crease of the cutoff energy by such an amount would render all subsequent GW calculations
computationally unfeasible.

A number of experimental and theoretical studies have estimated the value of the fun-
damental band gap of KTP Regarding the reported experimental values concluded from
optical absorption, a considerable spread can be made out, ranging from 3.2eV to 3.8eV
[200,202-205]. An even larger spread is found for values predicted from DFT calculations.
Depending on the choice of the XC functional, band gaps between 3.0eV and 4.0eV are
reported [200,201,206,207]. The largest reported value of 4.9 eV stems from an early em-
pirical tight-binding calculation [208]. In this context, a band gap of 2.97 €V, as obtained in
the present study, evidently underestimates the reported experimental estimations. How-
ever, the measured values must be taken with caution, as they are concluded from optical
absorption spectra and therefore substantially affected by excitonic effects. The seemingly
good overlap between the measured and calculated band gaps in literature may thus result
from an error cancellation between excitonic binding energy (experiment) and neglected
electronic self energy (DFT).

The orbital characters of all bands can be analyzed using the orbital-decomposed (or
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partial) density of states (PDOS), as shown in Fig. 5.2. The single-particle wave functions
of each state are thereby projected onto atomic orbitals of the involved atoms, with the
value of this projection governing the contribution of each state to the PDOS. For the largest
part, valence and conduction bands are formed by O,, and Tizq orbitals, respectively, which
is also evident from the charge density of the VBM and CBM depicted in Fig. 5.3. Low
energy optical absorption in KTP can therefore be considered to arise mainly from transitions
between O,, and Tiy4, not involving P and K. In the past, spin-orbit coupling (SOC) has been
shown to induce a momentum-dependent splitting of spin bands (Rashba effect) not only for
surfaces and interfaces, but also for non-centrosymmetric bulk semiconductors, e.g., BiTel
[209]. It is therefore possible for the combined effect of SOC and the Coulomb-potential
asymmetry related to the ferroelectricity in KTP to induce a similar splitting, reducing the
band gap and creating a Rashba-like spin texture of the electronic structure. For this reason,
the influence of SOC on the band gap is explored using the VASP implementation [210].
Within the valence and conduction bands, a SOC induced splitting is observed only for
states close to the T point, amounting to 7 and 8 meV. Additionally, the size as well as the
character of the band gap are unaffected, with the VBM and the CBM remaining at the T
and I point, respectively. For KTB the influence of SOC can thus be considered negligible.

Figure 5.2: KTP band structures and PDOS as calculated within DFT-PBEsol (lhs) and GW
(rhs). Energies of all states refer to the respective VBM. Relative contributions
of transitions between valence and conduction bands to the first bright exciton
at 4eV are marked by circles in the GW band structure. The radii of the circles
thereby indicate the contribution Aclk"’k of the electron-hole pair at that k point
to the excitonic wave function, see Eq. 3.39. Figure adapted from Ref. [171].
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Figure 5.3: Calculated orbital character of (a) the VBM and (b) the CBM in KTP Color

coding follows Fig. 4.3. Figure adapted from Ref. [171].
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As stated in Sec. 2.1.6, the fundamental band gap is usually underestimated within stan-
dard DFT Kohn-Sham theory. In order to correct this underestimation, GW quasiparticle
calculations are performed. The QP shifts E?P — e?FT for each Kohn-Sham state i as a func-
tion of eDFT are depicted in Fig. 5.4. As expected, valence and conduction states experience
a negat1ve and positive shift, respectively. This leads to an increased separation between
VBM and CBM and thus to a widening of the band gap. Additionally, the magnitude of the
QP shift tends to be larger for more localized orbitals (Tizq and K;,). Qualitatively, this can
be understood from the self-energy operator X correcting the previously discussed spurious
self-interaction of an electron with itself: An electron within an orbital of limited spatial
spread experiences larger confinement and self-interaction, resulting in a larger QP shift
within GW. A comparison between QP shifts of individual k points (gray dots in 5.4) and
their average value (red dots) additionally indicates that the QP shift depends much more
on the orbital character of a state than the respective k point. For O,, and Tiyq states around
the fundamental gap, the spread in shifts amounts to around 0.2 eV and 0.05 €V, respectively
(see inset in Fig. 5.4). For this reason, the QP shifts for each k point along the path in Fig. 5.1
are determined using linear interpolation between k points of the used 2 x 4 x 2 grid and
subsequently added to the Kohn-Sham states to acquire the band structure within the GW
approximation in Fig. 5.2 (rhs).

Unsurprisingly, valence and conduction states are shifted essentially dispersionless to
lower and higher energies, respectively. For all states close to the band gap, the respective
shifts amount to —0.6eV and 1.7 eV, resulting in a widening of the electronic band gap to
5.23 eV, In addition, the VBM is observed to switch from T to I', being 8 meV above the
highest occupied state at T. Since all states are assumed to have equal orbital character in
DFT and GW, no significant change in the shape of the PDOS is found. The obtained band
gap value of 5.23 eV is expected to represent a lower bound to the transport gap of the
real system, as (i) self-consistent GW calculations have frequently reported to yield larger
QP gaps compared to those from G,W, [211,212] and (ii) the inclusion of Ti;, orbitals as
valence states is expected to further increase the gap.
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Figure 5.4: QP shifts of Kohn-Sham states in KTP. Gray dots refer to states located at indi-
vidual k points of the 2 x 4 x 2 grid, while red rots indicate the average over
all k points. Text refers to the orbital character of each group of states.

5.1.4 Linear Optical Properties

The frequency-dependent dielectric function on the IPA and IQPA levels of theory is calcu-
lated from the electronic structure obtained from the previous DFT-PBEsol and GW calcu-
lations. In Fig. 5.5 (lhs), the imaginary parts of the diagonal components (x,x), (y,y) and
(z,2) are depicted. A polarization-dependent modulation in lineshape of the optical absorp-
tion onset is observed. In the low energy regime (below 4 eV on the IPA level), two distinct
peaks can be identified in the imaginary parts of ¢, and ¢,, (labeled p; and p,), while a
weak shoulder and only one pronounced peak characterize ¢,,. In addition, a peak of rel-
atively low intensity at 6 eV (labeled p;) can be observed within all three polarizations. In
order to determine the origin of the three peaks p,;—p,, oscillator strengths of each transition
between valence and conduction states (i.e., momentum matrix elements in Eq. 3.18) are
analyzed. In Fig. 5.5 (rhs), oscillator strengths of transitions below 7 eV are color coded
within the DFT band structure. Thereby, the strength in red coloring of a valence state is
proportional to the accumulated oscillator strengths of transitions into every conduction
band (color coding of conduction bands is defined in a similar manner). Evidently, optical
absorption is governed by transitions from O,, states up to 1eV below the VBM into Tizy
states up to 6 eV above the CBM. In particular, the absorption onset leading to p; originates
from transitions between states close to the VBM and CBM. Transitions from states within
about 1 eV below the VBM to the CBM, and states about 2 eV above the CBM give rise to the
P, and p; peak, respectively. The strong optical anisotropy of KTP can thus be related to the
particular geometry of the TiOg octahedra, which lifts the degeneracy of the O,, states.

To test this assumption, the octahedra are symmetrized by enforcing an additional trans-
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lational symmetry along the [ 100] direction, allowing for a bisection of the KTP lattice con-
stant a, see Fig. 5.6. The artificial, partially symmetrized KTP cell obtained in this manner
is tetragonal, with identical lattice constants a and b. This more symmetric configuration
indeed results in (i) a vanishing splitting between the p; and p, peaks within all three di-
agonal components and (ii) the dielectric function of the (x,x) and (y, y) polarization to
become identical (see dashed lines in Fig. 5.5). However, the anisotropy between between
(x,x)/(y,y) and (z,2) polarization remains, as the density of TiO4 octahedra along the
respective directions differs. Similar observations were made earlier for bismuth titanate
(Bi,Ti;0,,) [213].

The calculated IPA spectra can be directly compared to previous results on the same
level of theory [200,207]. Both studies report DFT calculations within the GGA using the
relativistic full-potential linearized augmented-plane-wave method (FP-LAPW), but arrive
at somewhat different results: Reshak et al. [200], utilizing the Engel-Vosko GGA functional
[214], find a sharply peaked absorption onset, which is followed by a weak shoulder and
a minor peak for ¢, /¢, and ¢,,, respectively. In contrast, the more recent calculations by
Ghoohestani et al., utilizing PBEsol and a modified Becke-Johnson functional [215], predict
an absorption onset characterized by a minor shoulder followed by a major peak for ¢,., and
€,;- In the case of ¢,,, a single peak is predicted. The findings of Ghoohestani et al. are
essentially reproduced by the present IPA calculations regarding the line shapes and peak
positions as well as the relative peak heights.
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Figure 5.5: Left: Imaginary part of the diagonal components of the KTP dielectric func-
tion calculated on the level of IPA, IQPA and BSE. Dashed curves refer to the
IPA spectra of an artificially symmetrized structure (see text). Right: Transi-
tion characteristics for optical absorption below 7 eV on IPA level. Transitions
between red valence and conduction bands show largest oscillator strengths.
Arrows additionally highlight single transitions with the highest contribution
to the individual peaks p;—p;. Figure adapted from Ref. [171].



5.1 BAND STRUCTURE AND DIELECTRIC FUNCTION OF KTP 57

el
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Figure 5.6: Atomic geometry of TiO,—PO, polyhedra strands (a) within an artificial, par-
tially symmetrized structure of KTP with a tetragonal unit cell and (b) within
orthorhombic bulk KTP Color coding of the atoms follows Fig. 4.3. Unit cell
boundaries are depicted in black. Figure adapted from Ref. [171].

The inclusion of quasiparticle effects within the IQPA leads to a spectral blueshift of all
spectra by more than 2 eV, as shown by the blue lines in Fig. 5.5. Apart from the peak p,
losing intensity within (y,y) and (z,2) polarization, no overall modification of the lineshapes
takes place.

A redshift by about 1.5 eV results from the inclusion of excitonic and local-field effects
in the optical response upon solving the BSE, see the red lines in Fig. 5.5. Additionally, the
p. peakin (y,y) and (z,z) polarization sharpens again if excitonic effects are included. Ev-
idently, electron-hole interaction partially compensates the quasiparticle effects in the KTP
optical response. Using the definition of the two-particle excitonic wave function in Eq. 3.39,
the localization in k space of the energetically lowest absorption peak with significant oscil-
lator strength (bright exciton) can be analyzed. The first bright exciton is thereby located at
around 4 eV. In the GW band structure in Fig. 5.2, the coefficients A;k’Vk are plotted as circles
for each pair of valence and conduction state, with the respective radii being proportional
to the absolute value |A;k"’k|. Apparently, the exciton is delocalized in k space, with most
of the excitonic weight centered at I'. This, in turn, hints towards a strong localization of
the exciton in real space, which is in good agreement with Ghoohestani et al. [216]: If the
position of the hole is fixed at a O, orbital, the electron is located at the Tiz, orbitals of the
adjacent Ti atoms.

Experimental studies regarding the linear optical spectrum of KTP are very scarce. In
Fig. 5.7 the measured average reflectivity reported by Reshak et al. [200] is compared with
the average reflectivity obtained from the dielectric function (according to Eq. 3.21) calcu-
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Figure 5.7: Average reflectivity (see Eq. 3.21) of KTP calculated on the IPA, IQPA and BSE
levels of theory in comparison to experimental data (black line) [200]. Figure
adapted from Ref. [171].

lated on the IPA, IQPA, and BSE levels of theory. Clearly, the reflectivity onset calculated
within IPA drastically underestimates the experimental findings. This is evidence for the oc-
currence of large self-energy effects neglected in previous electronic-structure calculations
for KTP. On the other hand, the reflectivity obtained from the quasiparticle band structure
in the GW approximation overestimates the optical transition energies by more than 1eV.
Only the inclusion of electron-hole attraction effects within the BSE leads to a roughly cor-
rect alignment with the measured data on the energy axis. The comparison between exper-
iment and theory in Fig. 5.7 thus clearly demonstrates the importance of many-body effects
for the KTP excited-state properties.

It has to be said that the quantitative agreement between the measured reflectivity and
the BSE calculations is clearly not perfect. The onset of the measured reflectivity is under-
estimated in magnitude and overestimated in energy. The second pronounced reflectivity
peak measured at about 5.3 €V is visible only as a weak shoulder in the BSE spectrum.
These deviations may be attributed to a number of reasons. For one, the present calcu-
lations neglect zero-point motion and thermal lattice vibrations that are known to lower
optical transition energies and may partially explain the blueshift of the BSE spectrum in
comparison to the measured data [211]. Moreover, KTP crystals grown by the traditional
flux method, such as used in Ref. [200], solidify in a broad homogeneity range, which may
not reflect the stoichiometric composition. In particular, the potassium and titanium con-
tent is known to deviate from bulk stoichiometry within a few atomic percent [7,217]. The
remaining discrepancies between experiment and theory may at least partially be related
to point defects and stoichiometry deviations which were neglected in the present calcula-
tions. In fact, defect states are expected to redistribute oscillator strengths and are hence a
plausible explanation for some deviations between the BSE results and experiments.
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5.2 Comparison to KTA and RTP

In the next step, the effects of anion substitution on the electronic and linear optical prop-
erties of KTP are investigated. To this end, P and K are replaced by As and Rb, yielding bulk
KTA and RTPB respectively. Band structures and dielectric functions of KTA and RTP are de-
termined subsequently using the same general methodology and computational parameters
as for KTPB, described in Sec. 5.1.1. In particular, the PBEsol functional is utilized, along with
identical cutoff energies (500 eV) and k-point densities (2x4x2). In KTA and RTB As,, and
Rb,, orbitals are treated as valence states, respectively (in addition to all open shells).

Using these settings, the equilibrium lattice constants of RTP and KTA were found to be
a=12.986A, b=6.5214, c =10.568A and a = 13.1814, b = 6.607 A, c = 10.791 A, re-
spectively. Similar to KTE a maximum deviation of around 0.5 % compared to experimental
values is found [7]. The mean Ti-O bond lengths in RTP and KTA amount to 1.977A and
1.973 A, respectively, and compare favorably with respective measured values, amounting
to 1.979 A and 1.966 A [178]. The mean bond length in KTP is almost identical (1.970 A).
This indicates that an indirect influence of the different covalent radii of K/Rb and P/As
on the TiOg4 substructure via a change in lattice constants is almost negligible. A similar
effect was found experimentally for pressure induced structural changes in KTP by Allan et
al. [197]: Up to pressure values of 5 GPa, the biggest portion of cell volume reduction was
compensated by a shrinkage of the K cages, while the remaining structural motifs (PO, and
TiO¢ polyhedra) remain nearly unchanged in size and shape.

5.2.1 Band Structure

The electronic band structures of RTP and KTA on DFT and GW levels of theory are depicted
in Fig. 5.8 (Ihs) and (rhs), respectively. On the DFT level, the direct band gaps at I' amount
to 2.96eV for RTP and 2.98 eV for KTA. The respective KTP band gap of 2.97 eV is very
similar and falls in between these two values. This is a direct consequence of the nearly
identical Ti—-O bond lengths of all three materials, as the orbital character of valence- and
conduction-band edges is dominated by O,, and Tizq states in KTA, RTP and KTP (see the
PDOS in Figs. 5.8 and 5.2). In the case of KTA, however, an additional small contribution of
As,,, orbitals to the valence and conduction states can be made out in the PDOS. In a previous
study on KTA, using full potential linearized augmented plane wave (FP-LAPW) calculations,
Khyzhun et al. observed a similar contribution [218]. Its influence on the dielectric function
is discussed in Sec. 5.2.2.

Self-energy effects are found to widen the band gap of RTP and KTA by more than 2 eV,
yielding a respective quasiparticle band gap of 5.30eV and 5.24 eV. These values, again,
are very close to the quasiparticle gap in KTP (5.23 e€V). On the DFT as well as GW level,
the fundamental band gap in KTA is found to be direct at I'. In RTE however, the VBM
experiences a shift from T to T if self-energy effects are included, while the CBM remains
at I'. The fundamental gap in RTP is thus rendered indirect within GW. Interestingly, this
corresponds to the opposite ordering within KTB where the VBM shifts from T to I'. This
suggests that close to the band edges, the band structure details of the KTP family materials
depend more sensitively on the alkali-metal species than on the group-V atom.

The effect, however, is small, since the relative positions of the highest valence-band
states at I' and T differ by less than 20 meV. Additionally, the data should be interpreted
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Figure 5.8: Comparison of the band structures and PDOS of RTP (lhs) and KTA (rhs) calcu-
lated on the DFT and GW levels of theory. Relative contributions of transitions
between valence and conduction bands to the first optical absorption peak are
indicated by circles within the GW band structure. The radii of the circles are
proportional to the contribution of the electron-hole pair at the respective k
point to the first excitonic wave function. Figure adapted from Ref. [193].

with caution, as the energy differences are below the numerical accuracy of the present
calculations. While the quasiparticle corrections considerably widen the band gaps, the
dispersion of the electron bands of all three KTP family materials is affected only slightly.

5.2.2 Dielectric Function

The differences in the orbital character of valence and conduction states as well as the
fundamental band gap are expected to alter the dielectric functions of RTP and KTA with
respect to KTP. Their respective imaginary parts for the diagonal polarization configurations
(x,x), (v,y), and (2,2) on the IPA, IQPA, and BSE levels of theory are depicted in Fig. 5.9.
For comparison, the IPA and BSE spectra of KTP are included as well. In general, the ob-
servations within KTP regarding the overall shift of absorption onsets after the inclusion
of quasiparticle and excitonic effects also hold for RTP and KTA: Large quasiparticle shifts,
equal to the GW quasiparticle shifts, cause a spectral blueshift of all spectra and are partially
compensated by large excitonic binding energies, redshifting the spectra by about 1 eV.

In particular, the lineshapes of RTP and KTP are nearly identical in the low energy region,
with a slightly higher absorption onset in the case of RTP. As expected from the quasiparticle
gaps if all three materials, the occupation of the alkali sites effects the dielectric function
onset only weakly. To estimate the total shift in the onset induced by K (Rb) vacancies, the
dielectric function is calculated for an artificial structure of KTA (RTP), in which all K (Rb)
atoms are removed. On the IPA level, all polarization configurations experience a blueshift
of 0.12eV - 0.19 eV with respect to the bulk spectra. This blueshift additionally reduces to
0.07eV - 0.1 eV on the BSE level. For defect densities of up to 10 % [220], the influence of
K and Rb defects on the low energy regime of the dielectric function can thus be considered
negligible.



5.2 COMPARISON TO KTA AND RTP 61

—IPA
—IQPA
— BSE

- 1PA (KTP)

Im g(w)

Energy (eV) Energy (eV)

Figure 5.9: Dielectric functions of RTP (lhs) and KTA (rhs) calculated on the IPA, IQPA,
and BSE levels of theory. For comparison, the results for KTP (see Fig. 5.5) are
additionally included. The first bright exciton of both systems corresponds to a
very weak shoulder in the respective BSE spectrum and is marked by an arrow.
Vertical dashed lines indicate the positions of experimental absorption onsets
measured by Hansson et al. [219]. Figure adapted from Ref. [193].

For photon energies about 2 eV above the absorption onset, the dielectric function of
KTA differs substantially compared to those of KTP and RTP. Especially within the (x,x) and
(y,y) polarization configurations, the optical absorption of KTA in that particular region
is much stronger. This increase in optical absorption can be explained by analyzing the
transition characteristics of prominent absorption peaks within the (x,x) configuration at
around 6.3 eV on the IPA level of theory. The additional absorption in KTA is found to
stem from transitions between valence states of pure O,, character and conduction states
involving both Tiy4 and hybrid O,,/As,y orbitals, as illustrated by the respective charge
densities depicted in Fig. 5.10. As previously discussed, this particular hybrid character of
the conduction states is only observed in KTA, whereas the corresponding states in KTP and
RTP are of pure Tisy character. The absorption characteristics for high-energy photons are
thus significantly affected by the choice of group-V atom.

As previously mentioned, the inclusion of excitonic effects causes a redshift in all spectra.
The magnitude of this shift thereby equals to the binding energy of the first bright exciton.
For both materials, the first bright exciton thereby corresponds to a very weak shoulder at
about 4.1eV in the BSE spectrum (see arrows in Fig. 5.9). The contribution of electron-
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Figure 5.10: Transitions between the valence and conduction-band state related to (a) O,,
and (b) Tizq — O,,/As,, orbitals, respectively, give rise to the absorption peak
at 6.3 eV within the IPA level of theory for (x, x) polarization in KTA. Figure
adapted from Ref. [193].

hole pairs (ck,vk) to the wave function of the first bright exciton can be analyzed via the
magnitude of the coefficients A;k’Vk, see circles in Fig. 5.8. Similar to KTB the exciton is
found to be essentially delocalized in k space, with the largest share stemming from states

close to T.

By evaluating the shift along the energy axis between the onsets of the optical absorption
calculated on the BSE and IQPA levels of theory, average binding energies of 1.38 eV and
1.51 eV for the first bright excitons in RTP and KTA are determined, respectively. The binding
energy of 1.47 eV in KTP is thereby very close to the value in KTA. Compared to the respective
binding energies of RTP and KTP obtained by Ghoohestani et al., amounting to 0.82eV
and 0.84 eV, a large overestimation is found. This apparent discrepancy, however, stems
from the fact that Ghoohestani et al. interpret the difference between the first main peak
in the BSE spectrum and the minimum band gap of the quasiparticle band structure as the
exciton binding energy. This leads to an underestimation, because the resonances in the
BSE spectrum are not compared with their actual counterparts in the IQPA, but rather to
the energy of a direct transition between the VBM and the CBM, disregarding the oscillator
strengths.

The onset of the optical absorption is found to depend on the particular material com-
position as well as the polarization configuration. The onsets are thereby determined by a
linear extrapolation of the first absorption peaks onto the energy axis and are listed in Tab.
5.2 for RTP and KTA (with the respective values of KTP additionally listed for reference).
On the BSE level of theory, the onset is found to be the lowest for (z,z) and highest for (x,x)
polarization, irrespective of the material. Additionally, with the exception of (z,2), the onset
position is found to decrease when going from KTA via RTP to KTP. This differs from the ex-
perimentally observed ordering KTP > RTP > KTA [219]. In addition, the reported position
of the absorption onsets (see dashed lines in Fig. 5.9) differ by up to 26 % compared to the
present results. However, these observations should be taken with caution, since (i) the en-
ergy differences within the present calculations are below the numerical accuracy and (ii)
the experimental results are affected by a number of uncertainties. First of all poor sample
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quality may influence the shape and onset position for all KTP related materials [219]. In-
deed, for flux-grown KTB Mangin et al. found a sharp increase of optical absorption for all
polarizations already at 2.95eV [221], whereas no such increase is found for any sample
(flux-grown and hydrothermally grown) reported by Hansson et al.. Lastly, the methods
to determine the position of the onset differ, with the experimental values being assigned
to the energy, at which the optical absorption reaches an arbitrary cutoff value of 2 cm™.
A different method to determine the fundamental absorption edge of flux-grown KTP was
used by Dudelzak et al. [202]. By fitting the low energy regime of the absorption spectrum
to the Urbach tail vt

a(E, T) = aye * *sT (5.3)
for various temperatures T, the positions E, of absorption onsets were concluded to be
4.3eV, 4.1eV and 3.98¢V for (x,x), (y,y) and (z,2) polarization, respectively. Evidently,

these values are considerably larger than the data reported in Refs. [219,221].

5.3 Raman Cross Sections

The focus of this last section lies on the investigation of vibrational fingerprints of KTP and
related materials. For this purpose, Raman spectra of KTB RTP and KTA are calculated using
DFPT routines (see Sec. 3.3), as implemented in the QUANTUM ESPRESSO software package
[222]. A comparison to experimental spectra is carried out using data from Riising [223]
obtained by a confocal u-Raman setup in backscattering geometry .

As previously discussed in the introduction (Chapter 1), a detailed analysis of Raman
spectra may provide in-depth insight into the local material properties in the vicinity of
structural perturbations, e.g., in the form of ferroelectric domain walls. However, any in-
depth interpretation of spectral changes is challenging. This is especially true for the KTP
family, as their Raman spectra are very complex and only partly understood due to the 64
atoms per unit cell giving rise to a total of 189 vibrational degrees of freedom. Additionally,
due to the low symmetry in the system, all 189 vibrational modes are nondegenerate and
Raman active. Using group theory, the phonons can be further differentiated into 4 different
symmetry groups of 48 phonons of A;, 47 of A,, 47 of B, and 47 of B, types, respectively.
The symmetry species of a given phonon mode is thereby encoded using Mulliken sym-
bols [225]. Consequently, A; (A,) denotes modes, which are symmetric with respect to the
principle axis of symmetry and symmetric (antisymmetric) with respect to a rotational axis
or mirror plane perpendicular to the principle axis. Similarly, B; and B, modes are anti-
symmetric with respect to the principle axis. Within backscattering geometry, no mixing
between phonon branches (symmetry species and LO/TO character) occurs, see Tab. 5.3.
For this reason, a particular phonon branch can be accessed individually by the scattering
geometry.

So far, no full theoretical prediction of the Raman spectra or I'-point phonon frequencies
for any member of the KTP-family exists. The main spectral features have been explained in

In order to denote a particular Raman-scattering geometry, the porto notation k;(e;, e,)k; is used in the
following [224]. For the incident beam, the direction of propagation and polarization is thereby indicated
by k; and e;, respectively. Similarly, the scattered light beam is characterized by k; and e,. A backscattering
geometry therefore implies k; || k,. Directions of propagation and polarization are always chosen along the
three cartesian axes x, y and z. In the case of theoretical Raman spectra, the directions of propagation are
not explicitly considered and therefore omitted in the notation.



5.3 RAMAN CROSS SECTIONS 65

terms of the vibrational eigenmodes of idealized substructures of the crystal, most promi-
nently the TiO4 octahedron and the PO, or AsO, tetrahedron, respectively. Here, the eigen-
frequencies and selection rules of these substructures have been calculated. This approach
allows, for example, to understand that the high-frequency phonons in the > 800 cm™
range are mostly governed by eigenmodes of the PO, or AsO, tetrahedra, while many dom-
inating peaks in the lower frequency range are associated with eigenmodes of the TiOg
octahedron. However, any further predictions based on this approach are limited, as the ac-
tual structures of the octahedra and tetrahedra within the real crystal structure differ from
their ideal counterparts, which leads to lifted degeneracy of modes or altered selection rules
compared to the idealized structure.

For this reason, ab initio DFPT calculations of the complete Raman spectrum are per-
formed for KTB RTP and KTA and systematically compared to experimental results. In the
past, this approach was already successfully applied to lithium niobate and lithium tantalate,
allowing for an unambiguous phonon assignment [106].

5.3.1 Computational Method

Similar to the methodology elaborated in Sec. 5.1.1, ground-state properties of KTE RTP and
KTA are determined using DFT routines, as implemented in the QUANTUM ESPRESSO soft-
ware package (version 6.3) [222]. The Perdew-Zunger (PZ) parametrization of the LDA (see
Sec. 2.1.3) is thereby used to account for electronic exchange and correlation [47]. Norm-
conserving pseudopotentials within the PZ formulation are used to model the electron-ion
interaction. In addition to all open shells, atomic orbitals P, O, and As, have been treated
as valence states. In case of Ti, a modified electron configuration was assumed, with the
3d and 4s shell being occupied by 3 and 1 electron, respectively. Electronic wave functions
were expanded into plane waves up to a cutoff energy of 100 Ry, ensuring convergence of
Raman spectra regarding peak positions and heights. Integration over the Brillouin zone
has been carried out using a regular 2x4x2 k-point mesh.

Since Raman spectra are known to be very sensitive to lattice distortions, lattice con-
stants of all three materials are kept constant at their respective experimental values [7]
instead of the LDA ones (overestimations of up to 2% are observed).

For all three materials, structural relaxation via a quasi-newtonian algorithm was per-
formed until residual forces and total energy changes fell below threshold values of
10~*Ry/bohr and 1078 Ry, respectively. Subsequent calculation of the phonon modes and
Raman cross sections are carried out using DFPT routines, as described in Sec. 3.3. We
restrict this study on the investigation of TO phonons by evaluating the third-order Raman
tensor at the I' point only, neglecting the influence of long-range electric fields via the non-
analytical term 3.56 when setting up the force constant matrix. As previously discussed, the
assignment of individual modes in the Raman spectra remains unaffected by this approach,
because no mixing between LO and TO phonon branches occurs within the space group
Pna2,, see Tab. 5.3.

5.3.2 Phonon Modes

In the first step, the distribution of phonon frequencies and displacement patterns of all
three materials are analyzed by evaluating the atomically resolved phononic DOS. To this
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Figure 5.11: Atomically resolved phononic DOS for all A, (lhs) and A,, B; and B, (rhs) type
phonons of KTB RTP and KTA. O(1)-0(8) and O(9)-0(10) thereby refer to O
atoms in a P-O-Ti and Ti—O-Ti coordination, respectively. The position of the
most prominent O(9) and O(10) type phonons with A; symmetry, labeled v;,
and v,,, are indicated by dashed lines. Note the redshift in the position of v,,
for KTA with respect to KTP/RTP.

end, the displacement patterns of all respective 189 phonon modes are first projected onto
each of the 64 atoms within the unit cell. For a given mode, the contributions of individual
Ti, P (As) and K (Rb) atoms are summed up to acquire the entire contribution of the atomic
species to the phonon mode. In the case of O, contributions of P-Ti coordinated O(1)-0O(8)
and Ti-Ti coordinated O(9)-0(10) ions are analyzed individually. The phononic DOS is
then modeled by lorentzian functions with an arbitrary line width of 10 cm™, which are
centered at the individual phonon frequencies w and whose heights correspond to each
respective atomic species contribution.

In Fig. 5.11, the atomically resolved phononic DOS of KTB RTP and KTA are depicted.
Since the main diagonal components (x,x), (¥,y) and (2,2) only feature phonons of A; sym-
metry (see Tab. 5.3), A; phonons are displayed separately. A number of common features
in the phononic DOS of all three materials can be made out. For one, each spectrum can be
roughly subdivided into the following intervals of different atomic contributions:
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e Vibrations featuring displacements of the heavy alkali atoms K (Rb) with respect to
the surrounding PO, (AsO,) and TiO¢ polyhedra are found predominantly in the low
frequency regime (< 300 cm™1)

e Owing to their relatively large force constants due to higher bond strength and overall
lower masses, P-O type vibrations are localized essentially at frequencies upwards
of 950 cm™

e Since As has a much higher mass compared to B As-O type vibrations posses much
lower force constants and are thus localized at frequencies close to the K and Rb
regime

e Vibrations involving Ti are found in a broad frequency range below around 650 cm™*

Additionally, in the case of KTP and RTR a broad gap between 650 cm™' and 950 cm™! can

be made out in the phononic DOS, occupied exclusively by phonons of O(9) and O(10)

type character. The sublattice of O(9) and O(10) type atoms takes a special role in the

phononic DOS, since its chemical environment is identical in KTB RTP and KTA. Vibrations
of predominantly O(9) and O(10) character should therefore be found at virtually equal
frequencies for all three materials. This observation especially holds for phonons in the
middle of the gap region, at around 800 cm™'. Even in the phononic DOS of KTA, in which
the gap region is superimposed by high frequency vibrations of O(1)-0(8) type, phonons of

0(9) and O(10) type experience only a relatively small frequency shift compared to KTP and

RTP. Out of those phonons, only a single one (in the following labeled v,;) is of A; symmetry,

located at 806 cm™! (KTP and RTP) and 782 cm™! (KTA). Its displacement pattern in the case

of KTP is displayed in Fig. 5.12, with the respective displacement patterns in RTP and KTA
being nearly identical. The induced distortion of the TiO4 octahedra is found to depend on
their orientation, i.e., if neighboring octahedra are linked in a cis or trans manner. In the

[001]

Figure 5.12: Displacement pattern of the modes v, and v,, in KT located at 622 cm ™! and
806 cm ™, respectively. For visualization sake, only Ti octahedra as well as O
atoms of type O(9) and O(10) are displayed.
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case of octahedra oriented along the x direction (trans type linking), v,, induces an anti-
phase stretch/compression along the [011] and [011] directions, while octahedra oriented
along y (cis type linking) experience predominantly an anti-phase stretch/compression of
a single octahedron edge along [001]. In addition to Vaps the 0(9)-0(10) type mode Vip
located at 622 cm ™! is expected to play an important role in the interpretation of the Raman
spectra of all three materials, since both modes are easily separated from the remaining
phonon bands. Unlike v,,, the displacement pattern of v;, thereby features an in-phase
distortion of the TiO4 octahedra, see Fig. 5.12.

In their pioneering work, Kugel et al. mapped the entire phonon spectrum of KTB ob-
tained by infrared and Raman spectroscopy, onto the vibrational eigenmodes of the PO,
and TiO4 substructures [25]. A comparison between the spectra of KTP and RTP thereby
indicated the existence of external lattice modes (involving the displacement of K and Rb)
below 200 cm™!. Additionally, based on calculated frequencies of the internal vibrations in
PO,, Raman bands in the high-frequency regime could be mapped to two triply degener-
ate PO, vibrational modes in the range between 950 cm™ and 1100cm ™. In the present
study, these two mappings are essentially confirmed. In order to complete the internal mode
analysis in KTB the remaining Raman bands have been assigned to (i) internal TiOg modes
and (ii) collective modes involving displacements of the entire TiO4 substructure with re-
spect to the rest of the crystal as well as individual components of a breathing mode within
TiO¢. This assignment thereby stands on a phenological footing and is based on similarities
regarding mode distributions in KTB RTP and BaTiO,. It ultimately leads to the conclusion
that Raman bands of highest intensity are related to anti-phase vibrations involving the long
and short Ti-O bonds in TiOg. For KTB vibrations of this character can be identified in the
present phonon spectrum as an amalgamation of modes with various symmetries around
v,p and v;,. For this reason, the hypothesis by Kugel et al. may be extended: Phonon modes
of O(9) and O(10) character in general should be responsible for the most prominent Ra-
man peaks. Regarding A,-type phonons, observable within the main diagonal components
(x,x), (¥,y) and (2, 2), this further underlines the important role of the modes v,, and v;,.

5.3.3 Raman Spectra

In the next step, this presumed prominent role of O(9) and O(10) modes is further analyzed
by calculating the Raman cross sections of all modes for all three materials. The experimen-
tal spectra were captured at room temperature, hence the temperature in the occupation
factor in Eq. 3.46 is set to 300 K. Calculated spectra are obtained by introducing an artificial
lorentzian broadening of 10 cm™! around the respective phonon frequency.

As a first benchmark test, the tensor elements |e; - R” - e,|* of phonons v with the high-
est calculated Raman cross section per polarization configuration (s,i) are compared with
experimental data. Since all three materials are members of the same space group and
relative intensities of tensor elements should therefore be similar, we restrict this analysis
to KTP only. According to Tab. 5.3, A,-TO phonons in (x,y) and A;-TO phonons in (z,2)
polarization show the lowest and highest intensities, respectively, separated by a factor of
about 26. With respect to (z,z), A;-TO phonons within the other two main diagonal com-
ponents (x,x) and (y,y) show weaker intensities, at around 16 and 43 %, respectively.
Similar observations have been made by Kugel et al. [25]. This is expectable, as the largest
change in polarizability occurs along z as the direction of internal polarization [223]. The
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Table 5.3: Raman selection rules for crystals of space group Pna2,; in backscattering ge-
ometry. In addition, experimental and calculated intensities of the respective
phonon branches in KTB normalized to A,-TO, are displayed [223].

Scattering Observable Relative intensity Relative intensity
geometry phonon branch (Experimental) (Calculated)
y(x,x)y A,-TO 4.2 8.1
2(x,x)Z A;-LO 1.8 -
x(y,y)x A;-TO 11.2 12.7
2(y,y)z A;-LO 9.0 -
x(z,2)x A;-TO 26.3 31.9
y(z,2)y A;-TO 26.3 31.9
z(x, y)2 A,-TO 1.0 1.0
y(x,2)y B,-TO 1.9 2.2
x(y,z)x B,-TO 10.2 9.3

experimental trends regarding relative intensities within different scattering geometries are
generally well reproduced by the present calculations. As the only exception, the Raman
scattering within (x,x) polarization is predicted at about twice the intensity with respect to
the experimental data. This might be a consequence of the Raman spectrum of KTP in (x,x)
polarization being essentially governed by a single high intensity peak at 530 cm™!, related
to a PO,-type vibration, see Fig. 5.11 and 5.13. An uncertainty in peak height of this mode
would therefore predominantly affect the relative intensity in (x,x). In fact, if the mode of
the second-highest intensity was chosen as a reference, the relative intensity would drop to
4.57, which is much closer to the experimental value.

Next, experimental and calculated Raman spectra of all three materials are directly com-
pared. To this end, the spectra of all polarization configurations and materials are nor-
malized to the highest intensity. The comparison of main- and off-diagonal components is
depicted in Fig. 5.13 and 5.14, respectively.

While the frequency range, in which Raman-active modes are detected in the experi-
ment, is qualitatively reproduced by the present theoretical spectra, the overall agreement
regarding mode position and peak height is rather unsatisfying for a number of reasons.
For one, unlike within the experimental spectra, most high intensity peaks are found in the
low-frequency regime around and below 200 cm ™, involving K- and Rb-type vibrations. In
particular, the modes of highest intensity for nearly all off-diagonal and the (z,2) component
fall into this frequency range. A noticeable difference between the spectra of KTP/KTA and
RTP is thereby observed, related to the admixture of K and Rb into the modes in the low-
frequency regime. For this reason, in the case of RTB the influence of the utilized pseudopo-
tential on the overall shape of the spectra is analyzed by testing a modified pseudopotential
including the Rb,, orbitals as valence states. However, apart from a very tiny blueshift of
modes related to O, no significant difference in Raman intensity of the low frequency part

of the RTP spectrum is observed.

1

In comparison, the high frequency regime around and above 1000 cm™, involving vi-
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Figure 5.13: Experimental (gray) and theoretical (red) Raman spectra of KTB RTP and KTA
in the polarization configurations (x, x), (v, y) and (z,2). The peak heights
in all spectra are normalized to the mode of highest intensity. Positions of
O(9)-0(10) related modes v, and v,;,, as well as the mode v; of highest
experimental Raman intensity, are indicated by dashed lines. Experimental
spectra from Ref. [223].

brations of PO, and AsO,, shows an overall much better agreement with the experimental
spectra. Especially for the main diagonal components, peak positions and relative intensities
are reproduced favorably. This discrepancy in agreement with the experiment is a conse-
quence of the fact that modes involving PO,/AsO, are nearly decoupled from the remaining
lattice, as stated by Kugel et al. [25].

The biggest discrepancy between calculated and experimental spectra is observed in the
mid-frequency regime, in particular regarding the experimentally detected mode of high-
est Raman intensity. Using the notation of Kugel et al., this mode shall be labeled v, and is
found at 692 cm™! (KTP), 690 cm™* (RTP) and 670 cm ™! (KTA) for the A;-TO phonon branch
within all three possible polarization configurations. All three frequencies fall into the be-
fore mentioned gap region within the phononic DOS, so no direct assignment to calculated
phonon modes based on the frequency and peak height can be made. In the vicinity of the
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Figure 5.14: Experimental (gray) and theoretical (red) Raman spectra of KTB RTP and KTA
in the polarization configurations (x, y), (x,2) and (y, ). The peak heights
in all spectra are normalized to the mode of highest intensity. Experimental
spectra from Ref. [223].

gap region, however, only a few modes with nonzero Raman intensity within any polariza-
tion configuration are observed, in particular the previously discussed modes v;, and v,,.
Since LDA is known to overestimate vibrational frequencies, an assignment to v,, appears
to be more likely, albeit a difference in frequency of around 100 cm™. This difference is
partially explainable by the utilized pseudopotential and lattice constants, as the frequency
of v,, in KTP is found to decrease by around 20 cm ™! if the phonon spectrum is calculated
using PBEsol and relaxed lattice constants. Further evidence for v; being associated with
v, is the frequency difference between its value in KTP/RTP and KTA, as the experimentally
detected difference of 20 cm™ is identical to the one seen for v,,.

This mode assignment, however, is not supported by the Raman intensity of v,,. Unlike
the highest-intensity peak in the experimental spectra, the peak height of v, is found to
be highly anisotropic: For all three materials, it is largest for (y,y) polarization and almost
zero for (x,x), see Fig. 5.13. A similar observation can be made for v,, having highest and
lowest intensity for (z,z) and (x,x) polarization, respectively. The origin of this dissimilarity
between experimental and calculated spectra is not fully clear. In order to rule out a strong
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Figure 5.15: Experimental room-temperature Raman spectra of KTP for x(y, y)x polariza-
tion, as obtained by (a) Voronko et al., (b) Kugel et al. and (c) Riising [223].
Graphs in (a) and (b) adapted from Refs. [231] and [25], respectively.

link between the observed dissimilarity and the utilized DFPT methodology, Raman spectra
of all three materials are calculated again within the VASP program package, using finite-
difference routines (see Sec. 3.3) and the same computational settings/atomic geometries
as described in Sec. 5.1 and 5.2. As expected, all spectra experience a blueshift of up to
40cm™! due to the changes in lattice constants and pseudopotential. The general trend
regarding the mid-frequency regime, however, does not change. For one, the modes v,
and v,, are found below and above v, respectively. In addition, the Raman intensity of
both modes is nearly zero for (x,x) polarization, with the intensity of modes »;, and v,
being highest for (z,z) and (y,y), respectively. The discrepancy between experimental and
calculated spectra is therefore not mainly related to the used methodology.

It should be noted that the dissimilarities in peak heights within the low- and mid-
frequency regime are not independent, as a reduction in relative intensity for the low-
frequency part would naturally lead to an increase in the mid-frequency part and vice versa.
As previously discussed, all three materials are prone to K and Rb deficiencies, which are
expected to influence the low-frequency regime of the respective spectra, as observed by a
number of experimental Raman studies [25,223,226-231]. Exemplarily, this is illustrated
for the x(y,y)x polarization of KTP in Fig. 5.15. The three experimental spectra from
Voronko et al. [231], Kugel et al. [25] and Riising [223] were thereby obtained under room
temperature conditions. Above 350 cm™!, the amount of detected peaks as well as relative
intensities does not change between the three spectra. In the low-frequency part, however,
the spectra differ noticeably. In particular, the intensity of a prominent peak at 265 cm™*
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shows a considerable spread, being either much stronger or weaker compared to v,. For this
reason, the nonstoichiometry of the utilized crystals in general and alkali-atom deficiency
in particular are expected to at least partially explain the observed discrepancies between
experimental and calculated spectra.

5.4 Conclusions

For the three materials KTB RTP and KTA, spectroscopic signatures in the form of optical re-
sponse functions and differential Raman cross sections have been determined on the footing
of DFT ground and excited-state calculations.

Calculations of band structures and dielectric functions were carried out on various levels
of theory, stepwise including the influence of quasiparticle and excitonic effects. In the
present work, the electronic transport gap of KTP is shown to be much larger than concluded
from previous experimental and theoretical studies. Its lower bound, as determined on the
GW level of theory, can be expected to be about 5.23 eV. Additionally, the optical band
gap is shown to be affected by a large exciton binding energy, amounting to about 1.5eV.
Overall, the calculated reflectivity spectrum on the BSE level of theory is found to be in
good agreement with experimental data [200]. This demonstrates the crucial importance
of many-body effects on the excited-state properties of KTP. In addition, the present study
demonstrates the sensitivity of the optical response of KTP with respect to its structural
details. In particular, the optical anisotropy and peak splitting of the absorption onset is
shown to be caused by the orientation and arrangement of the TiO4 octahedra within the
unit cell.

A similar trend regarding band structures and optical response functions is observed for
the isomorphic ferroelectrics RTP and KTA, with their respective transport band gaps pre-
dicted at 5.30eV and 5.24eV. The shape and position of the band edges are found to be
more sensitive to an exchange of the alkali-metal ion than of the group-V atom. The optical
absorption is affected by strong exciton binding energies of 1.38 eV for RTP and 1.51 eV for
KTA. The first bright exciton in all three materials is found to arise from transitions involving
essentially the entire Brillouin zone, with the largest share coming from the I' point. The
stronger optical absorption of KTA compared to RTP and KTP for high-energy photons is
related to transitions involving empty As,, orbitals. The optical absorption onset depends
on both, the material and the polarization. It is predicted her to occur first for the (z,2)
polarization in RTP and last for the (x,x) polarization in KTA.

Calculations of phonon spectra and Raman cross sections of all three materials were
performed using DFPT routines. The phonon spectra were thereby found to be subdivided
into a number of regions with varying vibrational character, confirming the prior mapping
by Kugel et al. [25]. Owing to their high mass, the low frequency part of all spectra is dom-
inated by vibrations of the respective alkali atom K and Rb, with additional contributions of
As in the case of KTA. Phonons of P-type character, on the other hand, are found predomi-
nantly in the high frequency part. A broad gap region in the mid-frequency regime, popu-
lated nearly exclusively by phonons of O(9) and O(10) character, could be made out around
800 cm™! (KTP/RTP) and 650 cm™! (KTA). Two of these O(9)-O(10)-type phonons exhibit
A, symmetry and show only a slight frequency shift among the three materials, namely
mode v, at around 620 cm™!, involving an in-phase distortion of the TiO, octahedra along
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[001] and mode v,, at around 800 cm™, distorting the TiO4 substructure in an anti-phase
manner. Taking into the account the conclusion of Kugel et al., after which phonons of
largest Raman cross section should involve a distortion of the long and short bonds within
TiO4, modes v, and v,, are expected to feature the highest intensities in the Raman spectra
of all three materials within the main diagonal components. To assert these assumptions,
Raman spectra for all three materials were calculated and compared to experimental data
by Riising [223]. This comparison, however, revealed a number of dissimilarities regard-
ing position and height of individual Raman signals. While the relative intensities of the
highest peaks within different polarization configurations are well reproduced, no conclu-
sive matching between experimental and calculated high-intensity peaks could be made. In
particular, the experimental A, -type mode v; of highest intensity for all three materials is lo-
cated directly within the calculated gap region, preventing a direct, frequency-based mode
assignment. Additionally, all calculated modes in the vicinity of the gap region (modes v;,
and v,, in particular) are found to feature a pronounced modulation of peak height with re-
spect to the polarization configuration, which is not seen in the experiment. Nonetheless, a
number of arguments can be made for an assignment between v, and v,,. (i) The blueshift
of v,, with respect to v, is partially explainable by the use of the PZ-LDA functional, (ii)
both modes feature the same redshift of about 20 cm™! between materials KTP/RTP and
KTA and (iii) the relative peak heights between v; and low-frequency modes are known to
be affected significantly by the density of K vacancies, partially explaining the dissimilari-
ties regarding experimental and calculated peak heights. In order to verify this mapping,
however, argument (iii) should be further quantified by analyzing the Raman signatures of
nonstoichiometric KTE RTP and KTA.



Surface Reconstructions _

In the previous chapter, the focus was laid specifically on the determination of spectroscopic
signatures of KTB RTP and KTA in their respective bulk phases. While most spectroscopic
methods are used to asses the bulk quantities of the three materials, the particular recon-
struction of a given surfaces may have an influence on the optical spectra due to the for-
mation of surface states. Understanding the reconstruction mechanisms for a given surface
therefore plays an important role in estimating its influence on electronic and optical prop-
erties of the respective bulk material.

In this chapter, findings regarding the modeling of KTP Z and Y-cut surfaces as well as
the determination of the thermodynamically most stable reconstructions and their role in
the formation of surface states are summarized. While a qualitative difference between
equivalent surfaces of KTP and RTP/KTA due to the inclusion different atomic species is
possible, the general conclusions of this study is expected to remain valid for all members
of the KTP crystal family.

The outline of this chapter is the following: First, the general methodology to determine
KTP surface phase diagrams is introduced. Next, KTP Z cut and Y cut are discussed sepa-
rately, beginning with an outline of the general modeling of both surfaces, followed by the
results regarding phase diagrams and surface states.

Parts of the results within this chapter have already been published, see Ref. [232].

6.1 General Methodology

At its core, the general methodology used in this chapter follows closely the approach to
calculate optical and electronical properties of KTP type crystals in Chapter 5. Thereby, the
total energy of a given surface is determined using DFT routines implemented in the VASP
program package [194]. Again, the electronic XC energy is calculated within the GGA using
PAW potentials [195] and the PBEsol functional [55].

In the following, each KTP surface is considered to be in contact with a reservoir of all
four atomic species building up the bulk material, i.e., K, B Ti and O. This reservoir allows
for the exchange of atoms onto and away from the surface, making the particular number N;
of atoms of species i a variable quantity. Because the DFT total energy Eper({N;}) depends

75



76 CHAPTER 6. SURFACE RECONSTRUCTIONS

on the number of atoms in a given unit cell, Epz; is not a good choice to directly asses the
stability of a surface being subject to changes in its stoichiometry. In order to account for
varying surface stoichiometries, the surface energy y(p, T, {u;}), defined as

is used instead. Here, A denotes the surface area of the given unit cell and G(p, T, {N;})
the Gibbs free energy. The surface- and Gibbs free energy are functions of the chemical
potentials {u;} of each atomic species i, reflecting different chemical environments in the
form of a higher or lower energetic cost to remove an atom from a reservoir and adding it
to the system or vice versa. At a given temperature and pressure, a high or low value of y;,
corresponds to an environment enriched or depleted of atoms of species i, respectively. For
a specific chemical environment, given by the values of the set {u;}, a surface is considered
stable, if it minimizes y(p, T, {u;}) at a fixed temperature T and pressure p [233]. The
Gibbs free energy is related to the Helmholtz free energy F(V,T,{N;}) via the Legendre
transformation

G(p, T, {N}) = F(V, T,{N;}) + pV. 6.2)

For most solids, the influence of pressure variations to the surface energy (i.e., the term
pV) can thereby be neglected. In fact, a change in surface stoichiometry AN introduces
an energy variation of the form AN - pV,,, with V,, being a characteristic atomic volume
[233]. For normal pressures p = 10° Pa and typical volumes in the order of V,, ~ (2A)? this
contribution amounts to less than 0.005 meV per atom, which is very close to the numerical
precision used in this work and is thus considered negligibly small.

The Gibbs free energy in Eq. 6.1 may therefore be replaced by F(V, T, {N;}). Apply-
ing a Legendre transformation, the relation between F(V, T, {N;}) and the internal energy
U(V,S,{N;}) reads

F(V,T,{N;}) =U(V,S,{N;})—TS. (6.3)

The entropy term TS includes all contributions from lattice vibrations and is generally too
large to be neglected [233]. However, a large compensation to this term can be assumed by
considering the equipartition theorem, stating that each ionic degree of freedom contributes
equally to the internal energy by a factor of kg T

UY,S, {N}) = E(N.}) + 3k T D N,. (6.4)

Here, E({N;}) denotes the total energy of the system at T = OK and kg the Boltzmann
constant. In the classical limit, the last terms in Egs. 6.3 and 6.4 nearly cancel [233]. The
Helmholtz free energy can therefore be approximated by the zero-temperature total energy
as the leading term in the internal energy. Thus, the surface energy is in the following
evaluated as

y({u}) = }\ (E({Ni})—ZNi u) (6.5)

This expression enables the estimation of the stability of a given surface directly via the
total energy E obtained by DFT calculations on a surface slab containing {N;} atoms of the
element i.
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Until now, the accessible phase space, given by the respective ranges of the chemical
potentials {u;}, has been considered arbitrary. However, in order to ensure the stability of
bulk KTBE a number of constraints for {u;} have to be met. For the sake of readability, we
change the variables from bare chemical potentials to the respective variations with respect
to their bulk phase:

AU, 1= U —,u,'l.’“lk. (6.6)
For potassium, a number of experimental bulk phases have been reported, showing only
small differences in formation energy [234]. As the reference bulk phase for K in this
study, the bec structure with space group Im3m is chosen [235]. The chemical potential
is determined by the total DFT energy per atom after structural relaxation and amounts
to ,u%“lk = —1.11eV (see Tab. B.1 in Appendix B). Similarly, the bulk phases of Ti and P
are chosen as hcp titanium [236] and black phosphorus [237], respectively, and amount to
plk = —8.31eV and pp"™ = —5.78 V. In the case of O, solid phases are reported only for
low temperatures and high pressure environments [238], making molecular O, the most
reasonable choice as a reference system. O, is modeled by two O atoms within a cubic su-
percell of side length 15 A and yields a chemical potential (i.e., total energy per O atom) of
p = —4.57 V',

As a first constraint to {Au;}, the potentials may not be varied independently. In order
for all elements added to the surface via the respective reservoir to form the bulk phase of
KTPB the condition

A + Ay + App + 5Au0 = AHL, (6.7)
must hold, with the heat of formation of KTP

AHﬁTP — ubKli‘ll:l’( _ ‘U/Eulk _ ‘Ulgillk _ ugulk _ SMEUH(- (6.8)

Similar to the chemical potential of each element’s bulk phase, u?‘;ll]j is determined as the
DFT total energy per formula unit of KTiOPO,. Assuming Eq. 6.7, the dimensionality of
the phase space {Au;} is reduced to 3, allowing it to be visualized as a tetrahedral phase
diagram, see Fig. 6.1, upper part. Each point within the tetrahedron fulfills Eq. 6.7, i.e.,
the sum of its coordinates, stoichiometrically weighted by the molecular formula of KTP
(KTiOPO,), sums up to the constant value AHI’:TP.

As a second constraint, the accessible ranges of all chemical potentials may be further
narrowed down. If u; was larger than ,u'l?“lk, desorption of the element i away from the
surface and formation of its respective bulk phase would occur, giving rise to the condition
Au; < 0. Inserting this upper bound for three out of the four elements into Eq. 6.7 addition-
ally provides a lower bound, given by AHﬁTP. In total, the chemical potentials are bound by

Hl, <Au; <0, with ie{K,TiP)}, ©9)
and Hl, <5Au, <0.

The final constraint is derived from the assertion that no segregation of the involved ele-
ments into different bi- or triatomic phases should occur. If A,BgC, labels such a phase with

'In order to keep the notation consistent, ,u'c’)ulk will, in the following, refer to the chemical potential of

oxygen in its molecular O, phase.
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respective elements {A, B, C} and stoichiometric coefficients {a, 3, v}, the final condition
reads

a-Apy+ B Aug+7 - Apg < AHf\aBﬁCy, (6.10)

with the formation enthalpy given by
AH oo, = Hathe, — @ M = B g™ =y - pg™ 6.11)

For a specific phase A,B;zC,, Eq. 6.10 partitions the available phase space into a region, in
which bulk KTP is stable and another one, in which the phase A,BzC, is formed instead
(see binodal curves in Fig. 6.1). In case of the elements K, Ti, P and O, a vast number of
stable bi and triatomic phases exists. In order to take into account as many of these phases
as possible, structural data from the Materials Project database is used [234]. All bi- and
triatomic phases containing the constituents of KTP that are reported stable against decom-
position have thereby been considered, amounting to 33 compounds in total (see Tab. B.1

O L 1
o -3 6 -9 -12 -15 -18 -21 0O 3 6 -9 12 15 -18 -21
AHK AUK

Figure 6.1: The full phase space {Auy, Ay, Aup,5 - Aug} for KTP formation under the
restrictions imposed by Eqgs. 6.7 and 6.9 is given by a tetrahedron (upper part).
Fixing the value of Au, reduces the phase space to three variables, making it
possible to visualize it within a ternary phase diagram. (a) Phase diagram under
UHV conditions, i.e., Aug = —0.71¢eV, (b) phase diagram under atmospheric
pressure, i.e., Auo = —0.27 eV, Binodal curves between KTP and a different
phase, directly enclosing the red KTP stability region, are visualized by dashed
lines. TiO, (A) thereby abbreviates the Anatase phase of TiO,. All chemical
potential variations are given in eV,
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in Appendix B). The intersection of all binodal planes partitioning the phase diagram ac-
cording to Eq. 6.10 encloses the bulk KTP stability region. In order to identify the stable
surface terminations of KTP within this stability region, a two-dimensional visualization of
the full phase space is required. To this end, the chemical potential of O will, in the follow-
ing, be considered fixed. This restriction may be represented as a slice through the entire
tetrahedral phase space (see Fig. 6.1 (a) and (b)), yielding a ternary phase diagram with
the chemical potentials of the three remaining elements i={K, Ti, P} as variables, bound by

0< Ap; < AHL,—5- Ao, (6.12)

A specific value for Ay, at typical experimental conditions may be deduced by approximat-
ing the oxygen reservoir O, as an ideal gas. In this case, the relation between the chemical
potential, partial pressure p and temperature T is given by [239]

kyT pA3
A'U’O = BT (ln (](B_T) —In (Zrot) —In (Zvib)) , (613)
with A = igi as the de-Broglie wavelength of an O, molecule with mass m and Z,,,

and Z,, as the respective rotational and vibrational partition functions. In the case of a
homonuclear diatomic molecule, the latter two expressions read

kgT1
ot = 1;1—2 (6.14)
1
and Z,, = —. (6.15)
1—eksT

The moment of inertia and the frequency of the stretching mode of O, are denoted by I and
w, respectively.

At ultra-high vacuum (UHV) conditions (p = 107'°Pa and T = 300K), the chemical
potential of O amounts to Auy = —0.71 eV. Taking this value as constant, the lower bound
to the chemical potentials of the three remaining elements increases to AHI’;TP —5:-Aug ~
—21eV. The ternary phase diagram under this condition is depicted in Fig. 6.1 (a). Com-
pared to the size of the entire phase space, the stability region for bulk KTP is given by a
small subspace, bound by the binodal curves of four different phases. These phases are:

e Tripotassium phosphate (K;PO,) for very K-rich conditions. Similar to KTB K;PO,
undergoes a phase transition at a temperature of 550°C, with its lower temperature
phase belonging to the orthorhombic Pnma space group [240].

e Potassium phosphate (KPO;) for environments with Aup; = 9.7eV. As a side product
from the dehydration of KH,PO,, this compound has been shown to be polymorphic,
with three phases being stable for different temperature ranges [241]. At room tem-
perature, the monoclinic (C) phase with space group P2,/c is most stable, as it has
been determined via X-ray diffraction [242].

e Titanium dioxide in its anatase phase (TiO, (A)) for environments of Aup; = 9.18eV.
Several polymorphs of TiO, are known, with the naturally occuring anatase (space
group I4,/amd), rutile (P4,/mmm) and brookite (P bca) phases being the most promi-
nent. Anatase and brookite are thereby shown to undergo a phase transition into the
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rutile phase at elevated temperatures [243]. All three phases are energetically nearly
degenerate in this work, with the formation energy of anatase being only 50 meV
below that of rutile, see Tab. B.1.

e Titanium pyrophosphate (TiP,0,) for environments of high to moderate P enrich-
ment. This compound crystallizes in a cubic unit cell with space group Pa3 [244]. A
different phase (space group P2,/c) is listed in the Material Project database as ener-
getically slightly more favorable [234]. However, in our calculations, both phases are
energetically nearly degenerate. The existence of a 3x3x3 superstructure has been
reported [245,246]. In this work, however, this phase is not considered, because (i)
no large difference in formation enthalpy with respect to the P2, /c phase is expected
and (ii) the large size of the unit cell (108 formula units, 1080 atoms) prevents a
straight forward determination of the ground-state geometry.

By increasing the pressure from UHV to atmospheric (ATM) conditions (p = 10°Pa) ,
the chemical potential of oxygen decreases to a value of Ay, = —0.27 eV. The overall po-
sition and size of the KTP stability region is effected only slightly, as depicted in Fig. 6.1
(b). Additionally, the concurring phases enclosing the stability region do not change, with
the exception of an additional small border between KTP and the phase KO, emerging.
This compound has been shown to undergo multiple crystallographic and magnetic phase
transitions in a temperature region between 4.2 and 400 K [247-249]. Close to room tem-
perature, a structure of space group I,/mmm as well as an incommensurable superstructure
have shown to be most stable [249].

6.2 Z Cut

Z-cut surfaces are modeled using periodic repetitions of the KTP bulk unit cell along the
z direction. Along z, KTP may be thought of as assembled of alternating K,Ti,P,0, and
Og layers, see Fig. 6.2. These layers can be further differentiated by the orientation of the
constituent TiOg and PO, polyhedra. They are connected by a common O atom and form
chain structures parallel to either the x direction (Fig. 6.2 d) or the y direction (Fig. 6.2 c).
Accordingly, we discriminate between K, Ti,P,0, (x) and (y) layers. Og4 layers following an
x- or y-type layer will also be distinguished separately as O (x,) and (yy), respectively. Re-
garding the stacking order, both the positive and negative z direction are indistinguishable,
since the character of (x,) and (yg) type layers switch when going from one orientation to
another.

However, the polar character of the Z-cut surface is reflected structurally by a strong shift
of the K* ions along the surface normal as well as by a pronounced buckling of the TiOg
octahedra. Taking the position of P as a reference, Ti atoms show only a small displacement
along the positive z direction, amounting to 0.05 A for both, x- and y-type layers. The four
O atoms within each individual layer can be split into two non-symmetry-equivalent groups
occupying different positions along z. In the case of x-type layers, two O atoms show a
displacement of —0.19 A, while the remaining two are displaced by +0.24 A with respect
to P For y-type layers, the displacement is larger, with —0.3 A and +0.27 A. Evidently, the
displacements of O in x- and y-type layers nearly cancel out. The existence of a microscopic
dipole moment along z may therefore solely be attributed to a nearly rigid displacement of
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Figure 6.2: Left: Stacking sequence of K,Ti,P,0, and Og4 layers in Z-cut KTP. Bulk layers
remain fixed during relaxation and all four surface layers as well as the termi-
nation atoms are free to relax. The direction of the internal polarization P is
indicated by a black arrow. Right: Atomic geometries of the four bulk cuts (a)
O (o), (b) Og(x0), () K,TiyP,0,(y) and (d) K,Ti,P,0,(x). In yellow, surface
atoms are highlighted. Figure adapted from Ref. [232].

the K* sublattice. This displacement amounts to —0.5A (x-type) and —0.55A (y-type). In
total, all microscopic dipole moments sum up to a macroscopic polarization oriented along
the negative z direction (see Fig. 6.2). On average, the variation in z position within x, and
Vo layers is smaller, amounting to £0.07 A and £0.12 A, respectively.

6.2.1 Structural Modelling

In order to model Z-cut surfaces in a slab geometry, four regions have to be taken into
account (see Fig. 6.2): (i) A number of KTP layers with atoms frozen onto their respective
bulk positions (bulk region), emulating a semi-infinite substrate, (ii) several KTP layers
with atoms being free to relax (surface region) on top of the bulk region, (iii) a termination
layer, reflecting various (not necessarily stoichiometric) surface reconstructions, and (iv) a
vacuum layer, preventing spurious interactions between the positive and negative surface
due to periodic boundary conditions.

The number of considered bulk layers is chosen under the condition of the bulk layer
yielding an averaged local electrostatic potential of the same shape as in bulk KTP (see
Fig. 6.3). This condition is found to be met for 11 layers. Half a KTP unit cell (i.e., four
total layers) is chosen to build up the surface region. Due to the electrostatic interaction
between both end facets, an external electric field would, in principle, be present within
the vacuum region regardless of its thickness, see Fig. 6.3 (a). In order to compensate for
this effect, dipole corrections along the z direction are utilized, as discussed in Sec. 4.4.
Accordingly, the height of the vacuum layer is chosen to be large enough to feature a region
of constant local potential if dipole corrections are switched on, see 6.3 (b). A height of
15 A is thereby found to be sufficient to fulfill this criterion for arbitrary terminations. The
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Figure 6.3: Planar averaged local potential V(z) along the z direction of an unreconstructed
Z-cut surface with y,- (right) and x-type (left) termination. Local minima
within V(z) correspond to individual x, y, X, and y, layers, as depicted in the
inset. Electrostatic interactions between the positive and negative termination
give rise to an artificial external electric field within the vacuum region (a),
compensated by the inclusion of dipole corrections (b). In both cases, an in-
ternal electric field &; within the material prevails. Color coding of the atoms
within the inset follows Fig. 6.2.

k-point density in the x-y plane is chosen to be identical to bulk KTP as 2 x 4 points. The
large height of the slab allows for the use of a single k point along the z direction. Ionic
relaxation of surface and termination layers is performed until the force acting on each atom
is smaller than 0.01 eV/A.

The facet opposite to the investigated surface is always chosen to be of y,-type. This y,-
type termination consists of two O atoms bound covalently to P and four O atoms with highly
ionic bonds to Ti. The remaining dangling bonds introduce spurious metallic states within
the band gap of the slab. In the spirit of conventional surface modeling, these dangling
bonds would be saturated using one (pseudo) H atom per bond [250]. Unfortunately, the
ionic nature of the Ti—O bonds renders this saturation method not practical. However, since
the surface energy of this y,-type facet is the same for all slabs modeling a specific cut,
energetic differences between different terminations remain unaffected by the existence of
these unpassivated dangling bonds, yielding reasonable predictions regarding the relative
stability of a given termination.

The entire phase space, which has to be investigated, is given by all possible surface
stoichiometries, ionically relaxed for all possible starting geometries. Naturally, to cover
as much of the phase space as possible, an infinite amount of surface relaxations would
have to be performed, posing an insurmountable computational task. The complexity of
the problem must therefore be reduced by a number of assumptions. First, the number of
surface atoms per unit cell of a specific species is assumed to be limited by its respective
number within a given termination layer. For X, and y,-type layers, this condition limits the
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number of terminations to be considered to the set {O,} with a € {1,...,6}. Consequently,
terminations investigated for x and y-type layers correspond to stoichiometries of the form
{K,TigP,Os} with a, B,y € {0,1,2} and 6 € {0,...,4}. Under this assumption, 564 termi-
nations remain to be modeled. As a second consideration, surface atoms are assumed to
prefer relaxation sites close to the minima within their respective potential energy surface
(PES) for adsorption onto an unreconstructed surface of a given termination layer. For all
KTP constituents and termination layers, these PES are depicted in Figs. C.1 — C.3.> A num-
ber of conclusions can be drawn from the PES of each constituent regarding its energetically
preferred starting position. In the case of K, the PES of all four investigated terminations
shows a very flat energetical landscape bearing no significant difference between x, and
yo-type layers. In general, adsorption onto the Z* surface turns out to be more favorable,
with two distinct local maxima appearing on Z~, located at the respective bulk positions of
K within the underlying x and y-type layers. This preference is due to the K sublattice be-
ing shifted towards the negative z direction, as previously discussed, rendering the nominal
charge of Z* slightly more positive compared to Z~. The starting position of K is therefore
chosen close to the bulk position of the respective layer. A small, random shift is introduced
in order to prevent the ion to be stuck in a local minimum. For P and Ti, adsorption sites
maximizing the number of saturated O dangling bonds are preferred. This is achieved for
sites in the vicinity of an underlying Ti atom, see Fig. C.2 and C.4. Adsorption onto diffusion
channels of K along z, on the other hand, are highly unfavored. In general, adsorption sites
corresponding to the bulk positions within the respective layer are found to be relatively
favorable as well. A similar preference is found for O on x, and y, layers, see Fig. C.3.
In order to determine each constituent’s starting position for a given stoichiometry, the fol-
lowing method is used: All termination atoms are initially placed at their respective bulk
positions, randomly displaced by a small shift. Next, the positions of two atoms are switched
to be on top of the underlying Ti atom. Which atoms are switched is thereby determined
by the adsorption energy of the global minimum within the respective PES. While Ti and
P show a similar adsorption energy minimum of —9 eV and —8 eV, respectively, adsorption
of O onto the same site only amounts to —5 eV. The hierarchy of switched atoms therefore
reads Ti — P — O. In the exemplary case of a TiP,0, termination on a x,-type layer, the Ti
atom as well as one of the P atoms would be placed onto a site of an underlying Ti atom,
while all other atoms would remain at their respective bulk position. Regarding the starting
position of O within a termination layer of x, or y, type the situation is more straight for-
ward. According to the PES in Fig. C.3, adsorption onto sites apart from the bulk positions
is highly unfavored, with potential barriers being as high as 10 eV. These bulk positions ei-
ther passivate underlying Ti or B with adsorption onto P sites being energetically favored
by about 0.5eV. For x,- and y, layers, O is therefore placed at randomly displaced bulk
positions, with adsorption sites on top of P being occupied first.

Since the opposite face of a given termination is not passivated, surface states of Z*
and Z~ are expected to appear simultaneously within the KTP band gap. Additionally, due
to the internal electric field within the bulk region, surface states of Z* and Z~ experience
a nonequivalent shift, further convoluting the overall band structure. In order to identify
surface states belonging to only one of the two facets, the wave functions of each state are
projected onto the atomic orbitals of every atom within the cell. A surface state can then be
identified by a larger projection value for atoms within the first surface layers.

2Details about the computational method utilized to obtained each PES are summarized in Appendix C.
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6.2.2 Results

Phase diagrams of Z* and Z~ surfaces for two different chemical potentials of O under
ATM and UHV conditions are shown in Fig. 6.4. Both cuts show a large variety of stable
terminations regardless of Au, within the entire phase space. Bulk terminated K,Ti,P,0,
and Og surfaces are thereby found to be stable at no point.

Figure 6.4: Phase diagrams of KTP Z-cut surfaces. Stoichiometries of the most stable termi-
nations along with their respective layer type are indicated. (a) and (b) refer
to Z*, (¢) and (d) to Z~ surfaces. Two different environments governing the
value of Ay, are assumed: ATM conditions, yielding Ay, = —0.27 eV in case
of (a) and (c), UHV conditions, yielding Auy, = —0.71¢€V in case of (b) and
(d). The stability region for KTP formation is indicated in white. Chemical
potential variations are given in eV. Coloring of each region serves only as a
visual separation of regions with different terminations. Figure adapted from
Ref. [232]

As a general trend, x,- and y,-type terminations are found to be stable only for interme-
diate values of Aug, Ay and Aup. This may be explained by the large number of O, P and
Ti dangling bonds introduced via x and y-type layers not being adequately passivated solely
by O. Furthermore, the differences in surface energy between equal terminations of x and
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y type as well as x, and y, type are very small, on average amounting to a few 100 meV.
Additionally, the differences between the energetically most favored terminations at each
point are found to be very small, with energetic differences amounting to the same typical
order of a few 100 meV. For this reason, stoichiometries of experimentally observed surfaces
can be expected to be prone to temperature variations as well as kinetic effects.

By changing the chemical environment from ATM to UHV conditions, terminations with
lower O content are expected to become more stable for both surfaces. Taking the entire
phase space into account, this behavior is indeed observed, with K, (y), the only termination
not involving O, being solely stable for UHV conditions. Furthermore, this effect is found
within the respective stability regions for high O coverage. On Z*, a small region of stable
O, (y) for ATM conditions becomes unstable for UHV, giving rise to a region of stable O,
(Vo), which, considering the underlying y-type layer, features a much smaller O content on
the surface. A similar effect is found for Z~, with O; (x) being exchanged for O; (y,).-

In total, five stable phases are found to exist on both cuts within the stability region. The
relaxed structures of each phase are depicted in Fig. 6.5 and 6.6 for Z* and Z~, respectively.
With the exception of K, (y), all stable reconstructions consist of at least one O atom per unit
cell, while no stable termination featuring Ti is found. This indicates a high O coverage, as
well as a depletion of Ti on Z-cut surfaces for common chemical environments. A number
of common structural motifs for stable reconstructions on either surface may be identified.
First, structural relaxation is mainly limited to the outermost 2-3 layers, reflecting a weaker
coupling between layers along the z direction, compared to x and y. Additionally, for
O (yo) as the only stable y,-type termination, the fourfold coordination of the underlying
P is highly preserved by the terminating O, while out of the four total dangling bonds of the
underlying two Ti atoms, only one is saturated. The preservation of the PO, structure is also
observed within the termination layer for all reconstructions featuring terminating P as well
as O, see PO (y), P,0O, (y) and K,PO, (y) on Z™. For high O coverages, the formation of O,
dimers is observed, see O, (y) on Z* and O; (x) on Z~. This formation is accompanied by
a strong distortion of TiO4 octahedra and PO, tetrahedra of the underlying layer, forming
additional O-O bonds. Additionally, an increase in unsaturated O bonds due to a higher
O coverage causes a stronger outward relaxation of K atoms, both within the terminating
layer as well as within the bulk, due to the Coulomb attraction between O and K*.

Apart from those common structural motifs, stable terminations on Z* and Z~ show pro-
nounced differences, as expected for nonequivalent faces of a polar surface. Reconstructions
on Z* and Z~ featuring the same stoichiometry are found for no point within the stability
region. Stoichiometrically, Z* is more likely to reconstruct incorporating K, while the only
stable terminations featuring P are found on Z~. This may again be attributed to the polar-
ity of either face, preferring adsorption of atoms either in a nominally positive or negative
charge state. On average, O coverage is slightly higher for the Z~ surface.

While no experimental study directed towards resolving specific differences in the re-
constructions of Z* and Z~ has yet been published, Atuchin et al. [34,35] have addressed
the overall structure and morphology of the (011) and (001) crystal faces. Using X-ray
photoelectron spectroscopy (XPS), reflection high-energy electron diffraction (RHEED) and
atomic force microscopy (AFM), the as-grown (001) face was determined to be covered by
an amorphous layer depleted of the most volatile elements P and K for temperatures above
650°C. This layer was shown to be composed of the anatase phase of TiO,. Considering the
full phase diagram for KTP formation in Fig. 6.1, this amorphous layer would thus trans-
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Figure 6.5: Atomic structure of the five stable terminations on the KTP Z* surface, see
Fig. 6.4. Surface atoms of the outermost layer are highlighted in yellow and
unreconstructed KTP is depicted with blurry polyhedra. Arrows indicate pro-
nounced rearrangements of O atoms (compared to the bulk cut) due to struc-
tural relaxation. Expected positions of O within bulk cut forming TiO4 octa-
hedra are highlighted with white circles and indicate unsaturated Ti dangling
bonds. Color coding of the atoms follows Fig. 6.2.

late to a chemical environment with Auy < —9 eV, which favors decomposition of KTP into
TiO, (A), P,0Os and K,O. Mechanical polishing and subsequent Ar" bombardment led to a
removal of the amorphous layer. XPS data of the polished surface revealed a relative ele-
ment content very close to bulk KTP. Thus, the polished (001) face of KTP is suggested to
be terminated essentially bulk-like, at variance to our calculated stable terminations, which
clearly differ stoichiometrically from bulk cut for both end facet. However, a comparison
between these findings is not directly possible. The previously mentioned high sensibility
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Figure 6.6: Atomic structure of the five stable terminations on the KTP Z~ surface. Symbol
and color coding follows Fig. 6.5.

of the Z-cut terminations to external perturbations would result in the mechanical polishing
driving the system away from the thermodynamical equilibrium and thus to highly different
stable terminations.

The changes in surface stoichiometry, re-bonding processes and structural modifications
accompanying the KTP surface formation naturally have an effect on the surface band struc-
ture. Due to the general enrichment of O on Z" and Z~, dangling bond states related to O,,
orbitals are expected to appear within the KTP bulk band gap region. Indeed, the band gap
of all stable terminations is found to be much smaller than in bulk KTP due to occupied O
states being pushed above the VBM and, in case of some terminations, due to unoccupied
Ti states being pushed below the CBM. This shift is exemplarily illustrated with the surface
band structures of KO (y) on Z* and O; (y,) on Z~ in Fig. 6.7. Out of every state within
the band structure, the depicted surface states thereby feature the largest projection of their
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Figure 6.7: Top: Localized surface states of the KO(y) termination on Z* and of O5 (yg)
on Z~. Blue Tiy4 states are empty and red O,, states are occupied (with the
exception of two fractionally filled 0,, states labeled (b)). Shaded areas corre-
spond to the KTP bulk band structure. Bottom: Charge densities of Tiz4 and O,
related surface states are depicted in (a) — (d). Figure adapted from Ref. [232].
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Figure 6.8: Work functions W and the relative change of the surface dipole A®y,, (see text)
of all investigated terminations on (a) Z*, (b) Z~ and (c) Y-cut surfaces. In red,
stable surfaces are highlighted. Figure adapted from Ref. [232].

wave function onto atomic orbitals of atoms within the outermost four layers. As expected,
surface states within the band gap show almost no dispersion and are related entirely to
0,, and Ti,, states. At least one occupied O state is found for all stable terminations on Z*
and Z~, with some terminations additionally forming partially filled O states (see KO (y) on
Z" in Fig. 6.7). However, no general rule between the given surface stoichiometry and the
number or character of surface states can be identified. While an increase in O content in-
creases the number of states in most cases, several exceptions to this rule can be identified.
In the case of O, (y) on Z*, as the termination with the highest amount of O, this trend is
even reversed, with only three surface states existing within the bulk band gap.

As a possible indicator for the stability of a given surface, the work function W and
induced surface dipole moment Adry, is investigated using the methodology described in
Sec. 4.4. The induced surface dipole moment is thereby determined with respect to the
unreconstructed K,Ti,P,0, (y) termination. In Fig. 6.8 (a) and (b), W is depicted over
Adp,, for each investigated termination on both cuts. For both Z* and Z~, the previously
discussed linear relationship between W and Ay, evidently holds, with a slope of one.
The apparent shift between x/x, and y/y, type terminations stems from using a single
reference value for the surface dipole moment of all four types. In general, terminations
on the Z* cut show a larger value of the work function compared to Z~, reflecting the fact
that the nominal surface charge is positive on Z* and negative on Z~. A similar difference
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in the work function of opposite facets was found for the (0001) surface of LiNbO;: Values
of 6.2V and 4.6 eV were reported for the positive and negative facet, respectively [251].
A proposed trend for stable polar surfaces to minimize both the work function as well as
the induced surface dipole [186], as qualitatively observed on the LN (1100) surface, is not
observed for KTP Z-cut surfaces. On both facets, the values of W and Adyy, for every stable
termination scatter in a range of about 2 eV,

6.3 Y Cut

The Y-cut surface of KTP is modeled in a similar fashion to Z cut via a slab geometry con-
sisting of periodic repetitions of bulk KTP along the y direction. Along y, bulk KTP is
composed of alternating layers with stoichiometries Ti,P,0,, and K,Ti,P,O¢. Apart from
the stoichiometry, both layers differ with respect to the orientation of the Ti-O-P chain
structure, see Fig. 6.9 (a) and (b). According to the orientation, K,Ti,P,04 and Ti,P,0;,
will, in the following, be referred to as x and y-type layer, respectively. Unlike for KTP Z
cut, the displacement of K atoms along the surface normal with respect to the height of the
x-type layer is symmetric. Considering an additional symmetric displacement of Ti, P and
O for each layer, the Y-cut surface is therefore not polar, making the top and bottom facet
structurally equivalent.

Termination

Surface

Termination

Figure 6.9: Left: Stacking sequence of Ti,P,0,, and K,Ti,P,0O¢ layers in Y-cut KTP Bulk
layers remain fixed during relaxation and all four surface layers as well as the
termination atoms are free to relax. The color coding follows Fig. 6.2. Right:
Atomic geometries of the two bulk cuts (a) Ti,P,0,, (z) and (b) K,Ti,P,O¢ (x).
In yellow, surface atoms are highlighted. Figure adapted from Ref. [232].
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6.3.1 Structural Modelling

Due to the nonpolar nature of Y cut, the slab used to model different surface terminations
may be constructed symmetrically along the y direction, see Fig. 6.9 (lhs). The bulk and
surface regions thereby contain 7 and 4 layers, respectively. Compared to Z cut, the k-point
density in the x-z plane is reduced to 2x2 due to the larger lattice constant along z. Apart
from that, all numerical parameters are identical to those for the investigation of Z cut.

In order to consider every possible stoichiometry for the termination layer up to the bulk-
cut stoichiometry, a total of 522 layers with structural formulae K,TizP, O and TigP, O,
would have to be modeled (a € {0,...,4}, B € {0,1,2}, y € {0,1,2}, 6 € {0,...,8} and
e € {0,...,12}). However, taking into account the results obtained for the Z-cut surface,
stable terminations are expected to be enriched in O. Therefore, only a smaller subset of the
entire phase space is taken into account. In particular, we will focus on terminations likely
to saturate the dangling bonds of x and z-type bulk cut, i.e., rich in O and P In total, 56
terminations for x and z-type layers are investigated, see Tab. 6.1. Only a small number of
Ti-rich terminations will be taken into account, since the large amount of dangling bonds
introduced by each Ti atom in the termination layer can not be adequately saturated, as
seen for the most stable surfaces on Z cut. Additionally, enrichment of K is only taken into
account for a few number of x-type terminations. However, the general chemical trend for
stable Y-cut surfaces is expected to be well captured by the given choice of stoichiometries.

The starting positions of each atom within the termination layer is chosen by similar
arguments as for Z cut. In particular, B Ti and K atoms are placed close to their respective,
randomly displaced bulk positions. Starting positions of O are chosen based on the amount
of P and Ti within the termination layer. Taking an O atom within a x-type layer as an
exemplary case, four starting positions for this atom are considered, in which it saturates
a dangling bond related to (i) an underlying P atom (threefold coordinated), (ii) an un-
derlying Ti atom (fivefold coordinated), (iii) a P atom within the termination layer already
twofold coordinated to the underlying layer or (iv) a P atom within the termination layer

Table 6.1: Investigated terminations on the KTP Y-cut surface for x and z-type layers.

x-type z-type
K O, P,Oq o) Oy, TiO4
K, 0, Ti 0, P Ti,
K, Ti,P, Oy Ti, O, PO, Ti, O
K, Ti,P,04 P Ti,P, o, PO, Ti, O
K, Ti,P,Og PO Ti,P,04q Os PO, Ti,O10
K, PO, Os P, Ti,P,
K, Ti,P, PO, 0, P,0, TiyP,04,
K,Ti,P,0q PO, Os P,0,
KTi,P,0q P, O, Ti
o) P,0, O1o TiO,
0, P,0, Oy, TiO,
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not coordinated at all. Tests with a P,O, (x) termination show that the total energy is min-
imized, if the two O atoms within the termination layer are placed in a way to fulfill cases
(iii) and (iv). On the other hand, case (ii) is found to be energetically highly unfavorable.
For this reason, O atoms are, in the following, positioned according to the following priority
ranking. First, dangling bonds of P atoms within the termination layer are saturated. Next,
the saturation of underlying P atoms is ensured. If more O atoms are left, they are placed in
a way to saturate underlying Ti. Lastly, all remaining O atoms are placed at their respective
bulk positions.

6.3.2 Results

The surface phase diagrams of KTP Y cut for ATM and UHV conditions are depicted in
Fig. 6.10 (a) and (b), respectively. By considering only a small subset of all possible surface
stoichiometries, both phase diagrams are much less clustered compared to Z cut. One gen-
eral chemical trend is evidently fulfilled: An increase in chemical potential variation Ay
leads to stable terminations being richer of element i. In particular, the abundance of O
on all stable terminations within the stability regions increases noticeably upon going from
UHV to ATM conditions. In total, three terminations fall within the KTP bulk stability region:
O (z) and Oy (x) for ATM and PO, (z) for UHV conditions. Due to the particular choice
of atomic starting positions and structural reconstruction, all three terminations share the
preservation of the fourfold coordination of P within the surface layers, see Fig. 6.11.
Additionally, under ATM conditions, the stable O;, (z) and Og (x) terminations arrange
in a way to form O, dimers on the surface. A strong relaxation of O within the underlying

" Ti,P,0, (X)

Ti, (X)

-9 -12 -15 -18 -21 - - -9
Ap

Ap

K K

Figure 6.10: Phase diagrams of KTP Y cut for different values of Auy: ATM conditions
(Aug =—0.27eV) in (a) and UHV conditions (Aug = —0.71eV) in (b). Sto-
ichiometries of most stable terminations are indicated along their respective
layer type. The stability region for KTP formation is indicated in white. Chem-
ical potential variations are given in eV. Coloring of each region serves only
as a visual separation of regions with different terminations. Figure adapted
from Ref. [232].
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Figure 6.11: Atomic structure of the three stable terminations on the KTP Y-cut surface.
Symbol coding follows Fig. 6.5.

layer is also observed, with two O atoms adjacent to fivefold terminated Ti forming a dimer
bond, as seen for Og (x). This tendency goes in line with the findings for Z cut, where the
formation of O, dimers was observed for O-rich conditions, see O, (y) in Fig. 6.5.

The abundance of O on the surface is reflected in occupied O,, states appearing above
the VBM within the band gap of bulk KTB as shown for PO, (z) in Fig. 6.12. Their presence
leads to a noticeable shrinkage of the band gap. In the case of PO, (z), this shrinkage leaves
a band gap of 2.3 €V, i.e., only about 75 % of its value in bulk KTP. Due to the higher number
of O dangling bonds for O;, (z) and Og (x) terminations, more surface states are present
within their respective band structure, shrinking the band gap even further, down to values
as low as 0.2eV.

Similar to Z cut, a clear correlation between the stability of a given termination, its
work function and its induced surface dipole (with respect to an unreconstructed surface
with z-type termination layer) cannot be found, see Fig. 6.8 (c). Although all three stable
terminations share a high value of A®p,, and W, this is most likely related to the relatively
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Figure 6.12: Left: Localized occupied surface states of the PO, (z) termination on KTPY cut.
Shaded areas correspond to the KTP bulk band structure. Right: Charge den-
sities of two prominent surface states related to O,, are depicted in (a) and
(b). Figure adapted from Ref. [232].

small sample size of investigated stoichiometries. On average, stable terminations on Y cut
show a slightly higher work function compared to those on Z cut.

6.4 Conclusions

For KTP Z and Y-cut surfaces, phase diagrams have been determined on the basis of ab initio
total-energy calculations under the assumption of an O rich environment under UHV and
ATM conditions. A number of stable terminations with different stoichiometries could be
identified for both cuts, depending on the chemical potentials of all constituents. Energeti-
cally stable terminations for an individual cut vary only slightly in formation energy, hinting
towards a strong influence of thermal and kinetic effects on the surface reconstructions. A
number of common structural and electronic features are identified to characterize stable
terminations on both cuts. For one, a depletion of Ti and abundance of O is found in the
case of virtually all stable terminations within the stability region for KTP formation. This
indicates that dangling bonds arising from O, P and Ti on the surface are more likely to be
saturated by O rather than Ti. Additionally, all stable terminations have a tendency to pre-
serve a fourfold coordination of P within the surface layers. The enrichment in O leads to
occupied O,, states being lifted above the VBM of bulk KTB resulting in a noticeable shrink-
ing of the fundamental band gap. A correlation between the stability of a termination, its
work function and its induced surface dipole could not be found for either cut.

While Z and Y cut share similar surface motifs, a number of differences between the Z*
and Z~ facet could be made out. For one, both facets share no identical stable termination
for any point within the phase diagram. Additionally, due to the polar nature of KTP Z cut,
stable terminations on Z* are found, on average, to feature a higher content of K. For the
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same reason, terminations on Z~ are found to be more O rich compared to Z™.

Two words of caution, however, have to be added regarding the interpretation of these
results. First, the assumption of molecular O, being the O reservoir renders only a tiny re-
gion of the entire four-dimensional phase space accessible. It would therefore be reasonable
to assume the abundance of O within stable terminations to be a result of Au being close
to 0. However, increasing its value for Z* and Z~ results in an overall stabilization of the O,
(y) termination within the KTP stability region. This suggests the O enrichment to be a uni-
versal feature for stable terminations in arbitrary chemical environments within the entire
stability region. Second, the presence of four constituents on the surface renders the avail-
able phase space for surface formation insurmountably large, both in terms of stoichiometry
and actual surface geometry. Having made the previously mentioned assumptions regarding
the starting geometry for structural relaxation it is unclear, if the true energetic minimum
for a given stoichiometry is truly captured. To our knowledge, no general rule exists to char-
acterize stable polar surfaces involving covalent as well as ionic bonds, akin to the electron
counting rule for low-index surfaces of semiconductors [252,253]. The overall stability of a
given surface reconstruction is therefore particularly difficult to assess based on the geom-
etry alone. The present study therefore primarily serves as a first estimation regarding the
stoichiometry of stable KTP Z and Y-cut surfaces and is expected to give an insight into the
influence of reconstruction geometries on the formation of electronic surface states.






Summary _

On the footing of ground and excited-state DFT calculations, the ferroelectric material KTP
and its isomorphs RTP and KTA have been characterized and systematically compared based
on their spectroscopic signatures, in particular their linear optical response and Raman cross
section. In addition, the influence of the chemical environment on the morphology and
electronic structure for the technologically most important [010] and [001] faces of KTP
was investigated.

In conclusion, the three main questions driving this thesis, as introduced in Chapter 1,
may be addressed in the following way:

1. What is the true dielectric response function of KTB RTP and KTA?

The dielectric function of all three materials was determined on the IPA, IQPA and
BSE levels of theory, stepwise including quasiparticle and excitonic effects. On the IPA
level, the dielectric function’s low-energy regime was found to be essentially composed
of a small number of peaks at around 3 eV] originating from transition between O,
valence and Tisy conduction states. Apart from a small rigid redshift, the dielectric
functions of KTP and RTP on the IPA level are nearly identical, reflecting the fact that
optical absorption is governed by the Ti and O sublattice, with the alcali atom having
only an indirect influence via a change in lattice constant. In KTA, on the other hand,
optical absorption in the mid-energy region at around 6 eV is higher compared to KTP
and RTP due to an admixture of As,,, orbitals to the conduction states. The anisotropy
of the dielectric functions could be traced back to (i) a pronounced distortion of PO,
and TiOg4 polyhedra along the x direction compared to y and (ii) a difference in TiOg
density along 2 compared to x and y.

The transport gaps, as indicators for the onset of the dielectric function, were shown
to be affected significantly by quasiparticle effects, introducing a dispersionless widen-
ing of around 2.3 eV compared to the gap within DFT-PBEsol. For KTBE RTP and KTA,
the lower bound of the transport gap was predicted at 5.23 eV, 5.30 eV and 5.24 eV, re-
spectively. Consequently, quasiparticle effect were found to introduce a rigid blueshift
of all spectra by around 2.3 eV.
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Including excitonic effects by solving the BSE, all spectra were redshifted again by an
amount corresponding to the binding energy of the respective first bright exciton. For
KTB RTP and KTA, this binding energy was evaluated as 1.47 eV, 1.38 eV and 1.51 ¢V,
respectively. A comparison of the theoretical data for KTP with experimental data
[200] revealed an overall satisfying reproduction of the reflectivity onset and line
shape on the BSE level of theory.

For the first time, the importance of quasiparticle and excitonic effects on the dielectric
response of members of the KTP family was demonstrated. The overall good repro-
duction of the absorption onset on the independent-particle level, as frequently seen
in literature, could thus be explained by a partial error cancellation between the large
exciton binding energy and the electronic self energy.

. What is the correct assignment between phonon modes and observed Raman

bands in bulk KTB RTP and KTA?

Phonon spectra and Raman cross sections of KTB RTP and KTA were calculated using
DFPT routines. A subdivision of the phononic DOS into regions of modes with predom-
inantly K/Rb, P and As-type displacement patterns could be made out, in accordance
to the prior phenomenological mapping by Kugel et al. [25]. In addition, all three
materials were found to possess a gap region around 800 cm™! (KTP and RTP) and
650 cm™! (KTA), populated predominantly by phonons involving the displacement of
the O(9) and O(10) sublattice. In particular, two of these modes exhibit A; symmetry
and are thus detectable within the main diagonal polarization configurations (x, x),
(¥,¥) and (z,2): Modes ;, and v,, at around 620 cm™" and 800 cm™", respectively,
involving an in-phase and anti-phase distortion of the TiO4 cage along [001]. In ac-
cordance with the results of Kugel et al., both modes are expected to feature high
Raman intensities and thus enable a mapping between experimental Raman bands
and calculated phonon modes.

This assumption, however, is only partially supported by a comparison between cal-
culated and experimental [223] Raman spectra of all three materials. In particular,
the highest experimental A,-type peak v;, located at around 690 cm™! (KTP and RTP)
and 670 cm™! (KTA), can not be directly mapped to any calculated phonon mode. A
frequency-based mapping between v, and v,, is supported by the fact that an ob-
served discrepancy in frequency is partially explainable by the utilized PZ-LDA func-
tional. The calculated Raman intensity of the mode v,,, however, is observed to
be highly anisotropic, being highest within (y, y) polarization and nearly vanishing
within (x, x). This is in stark contrast to the experimentally observed Raman intensity
of mode v,, which dominates the spectra for all materials and polarization configura-
tion.

As the origin of this discrepancy remains unknown, additional mappings between
experimental Raman peaks and calculated phonon modes are not expected to give
further meaningful insights. It is argued, however, that the existence of K and Rb
vacancies is partially responsible for a relative intensity shift between low and mid-
frequency Raman peaks. For this reason, future theoretical evaluation of Raman spec-
tra of nonstoichiometric KTE RTP and KTA is expected to at least partially close the
observed discrepancy and provide means for further analyses.
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3. What are the thermodynamically most stable reconstructions of [010] and [001]
surfaces of KTP?

Using slab geometries, more than 600 surface terminations of varying stoichiometries
have been modeled for the KTP Z cut and Y cut surface. The phase diagrams in depen-
dence of the chemical potential of all constituents revealed a number of similarities
between thermodynamically most stable terminations on both cuts: (i) Stable termi-
nations for nearly all chemical environments within the KTP stability region feature an
abundance of O and depletion of Ti, (ii) the fourfold coordination of underlying P is
highly preserved for virtually all stable terminations and (iii) no correlation between
the stability of a given surface and its respective work function and induced surface
dipole is observed. The abundance of O is thereby found to introduce occupied surface
states above the bulk VBM, leading to a noticable shrinkage of the bulk band gap.

For KTP Z cut, the two facets of opposite polarity, Z* and Z~, are structurally not
equivalent, rendering their respective stable terminations to be of higher K and O
content. Overall, the energetical landscape within the phase diagram of Z-cut KTP
is found to be relatively flat, making stable terminations on Z-cut surfaces prone to
thermal and kinetic effects.

Due to the high complexity of the KTP termination layers on Z cut and Y cut, only a
very small region of the full phase space could be accessed by the present study. In
particular, by far not all possible surface stoichiometries and starting positions could
be captured, owing to the high number of constituents and relatively large surface unit
cell. The present findings may thus be regarded as a first estimate of stoichiometric
trends on the technologically most important facets of KTP as well as their role in the
modulation of the surface band gaps.
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Lattice Vectors and Fourier
Transformations

All investigated systems in this thesis are assumed to be perfect crystalline solids. Such
a solid is thereby characterized by a discrete translational invariance, and therefore fully
described by two sets: (i) The set of all atomic coordinates within a single unit cell (atomic
base) and (ii) the set of all lattice vectors

R,=n,a, +n,a,+nsa; ; ny,n, n3€Z, (A.1)

with n = (n,, n,, n;) as a macro index and {a;} as the three unit cell vectors. The periodic
repetition of a unit cell along the vectors {a;} is again a unit cell (with rescaled unit cell
vectors) and therefore not unique. A unit cell containing exactly a single lattice point R,
thereby called a primitive cell. In that context, the Wigner-Seitz cell can be defined as the
set of all points in real space closer to a given lattice point than to any other one. Closely
related to the set of lattice vectors is the reciprocal lattice, which is characterized by all
reciprocal lattice vectors G,, fulfilling

G,-R,=2nk ; kez. (A.2)

Again, m = (m,, m,, m;) denotes a macro index. Similar to the unit cell vectors {a;} span-
ning the lattice in real space, the reciprocal space is spanned by the reciprocal unit cell
vectors {b;}, with

G, =m;b, + myb,+ msb; ; my;, my,, my;€Z. (A.3)

The equivalent to a Wigner-Seitz cell in reciprocal space is called the (first) Brillouin zone,
defined by all reciprocal vectors q closer to the origin G, = 0 than to any other reciprocal
lattice vector. This is equivalent to the condition

3 G, |*
VmeZ’ : G, -q< 5 (A.4)

Functions defined in reciprocal space (e.g., the energy eigenvalues €,(q)) are normally eval-
uated and displayed solely within the first Brillouin zone. Within it, high-symmetry points
are typically labeled with special indices. For all lattices, the central point k = O thereby
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resembles the I" point. In the case of an orthorhombic unit cell, the Brillouin zone is again
orthorhombic (see Fig. 5.1), with special points Z= (0, 0, %), Y= (0, %, 0) and T= (%, %, 0) in
units of the reciprocal lattice constants.

Any local function f(r) can be written via its Fourier transform f (q + G) as

1
(2m)3

flr)= ZJ @7 f(g +G)dg. (A.5)
G BZ

The sum over G covers all reciprocal lattice vectors while the integral over q is limited to
the first Brillouin zone. Consequently, the inverse Fourier transform is then

flg+6)= J e 1@teT £ (p)dr. (A.6)

In the case of lattice periodic functions f (r) = f (r + R), Eq. A.6 simplifies to

fl@+6)=5(q) f(G) = fg, (A7)

transforming f(r) in Eq. A.5 into a simple Fourier decomposition in the reciprocal lattice
vectors {G}. Similarly, an arbitrary nonlocal function f(r,r”) of two variables transforms
according to [37]

/ 1 i rg / N —i(qg’+G')-r’ /
f(r,r)=(2n_)62fje(q+‘” f@+G,q'+6)e 1) dq’ dq
G.6* (A.8)

and f(q+G,q'+G)= f J e @O (r, 1) @O dr dr.
Again, if the function is periodic in both arguments, the simplification

fl@+6,9'+6)=56(q—q") f(q,6,G) = fee(q) (A.9)

holds. The rightmost expressions in A.7 and A.9 are sometimes used as abbreviations akin
to matrix notations in G.
In time and frequency space, similar relations hold, with the convention

flw)= %f e f(t)dt and f(t)= J e @ f(w)dew. (A.10)

At several points within this thesis, a Fourier transformation is carried out over the product
of two functions h(t) = f(t) - g(t) by applying the convolution theorem

h(w) = f flw)- g(w—w)de, (A.11)

stating that the Fourier transform of a product function is given by the respective convolution
and vice versa.



Investigated K-Ti-P-O Phases I

In order to consider the maximum possible number of bi- and triatomic phases containing
the constituents of KTP to determine the stability region for bulk KTP formation, the Ma-
terials Project database is used [234]. Focussing on all compounds listed as stable against
decomposition, the 33 phases listed in Tab. B.1 are investigated, in addition to the bulk phase
of KTiOPO, and the bulk phases of elemental K, Ti and P The oxygen reservoir is assumed to
be O,, modeled by two oxygen atoms within a cubic unit cell with a lattice constant of 15 A
Using the same methodology as for bulk KTBE each phase is relaxed using the VASP program
package [194], PAW potentials [195], the PBEsol functional [55], 500 eV plane-wave cut-
off energy and a force threshold of 0.01€V/A for structural relaxation. The k-point grid
is adjusted based on the size of each individual unit cell to ensure numerical convergence
of the total ground-state energy. The chemical potential u*" of each bulk compound then
amounts to the total energy per formula unit. Using the bulk chemical potentials of the four
constituents of KTE the heat of formation AH/ of every compound A,BgC, is determined
via

f _ ,,buk bulk __ bulk __ bulk
AH} p,c, =Hpp,c, ~F My —Brpg =y pe

with a, B and y as the stoichiometric coefficients of the elements A, B and C, respectively.
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Table B.1: Calculated bulk chemical potentials and formation enthalpies of all investigated phases within PBEsol, along with their
respective space groups, according to [234]. Phases enclosing the KTP stability region under UHV as well as ATM conditions
for oxygen (see Fig. 6.1) are highlighted in red; KTP is highlighted in bold.

System Space group ubik / ev AH / eV System Space group ubk /v AH / eV
K Im3m -1.11 0 P Cmce -5.78 0
KO, 14/mmm -13.94 -3.68 P,0. Fdd2 -51.65 -17.20
KP P2,2,2, -7.70 -0.81 Ti P6,/mmc -8.31 0
KP,; P1 -89.12 -1.31 TiO P62m -18.39 -5.51
KPO, P2,/c -34.06 -13.44 TiO, (Anatase) 14,/amd -28.01 -10.55
KTiOPO, Pnma -62.68 -24.50 TiO, (Brookite) Pbca -27.99 -10.53
K,0 Fm3m -10.52 -3.72 TiO, (Rutile) P4,/mmm -27.95 -10.50
K,0, Cmce -16.88 -5.51 TiP P6;/mmc -16.61 -2.51
K,P, Fmmm -21.59 -2.02 TiP, Pnma -22.70 -2.83
K,TiO, Cmcm -40.84 -16.59 TiP,0, P2,/c -81.34 -29.43
K,TicO;; C2/m -180.06 -68.52 Ti,O P3ml -27.54 -6.35
K;Py, Pbhcn -70.83 -3.92 Ti, 0, R3c -47.16 -16.82
K,PO, Pnma -47.73 -20.32 Ti,P P62m -25.83 -3.43
K;Tig0;, P1 -240.63 -93.07 Ti;O P31c -36.05 -6.55
K,P,0, P6,/mmc -81.91 -33.88 Ti;Os C2/m -61.13 -6.71
K,P, Cmcm -24.32 -2.53 Ti,P P4,/n -34.39 -3.68
K,TiO, P1 -52.33 -21.28 Tis (PO5), P2,2,2; -237.67 -81.60
K¢ Ti, O, P2,/c -93.19 -37.89 TigP,O C2/m -79.28 -13.29
0] - -4.57 0 Ti, P, C2/m -94.65 -13.35




Potential Energy Surfaces on
KTP Z Cut

A potential energy surface (PES) maps the energy gain/loss from introducing an atom or
molecule to a surface onto individual adsorption sites. For KTP Z-cut surfaces, a number
of potentially different PES for elemental adsorption can be distinguished by the atomic
species adsorbed, the type of termination layer as well as the polarity of the surface (Z* and
Z7). To obtain the PES for each case, the adsorbant is placed at individual points in the x-y-
plane, 2 A above the termination layer of the unreconstructed surface. The positions of all
atoms are fixed except of the adsorbant, which is free to relax along the z direction. Similar
to the methodology behind surface relaxation covered in Sec. 6.2.1, dipole corrections are
used to account for the spurious electric field between both end facets within the vacuum
region and the adsorbant is relaxed until the total force acting on it falls below a threshold of
0.01eV/A. The adsorption energy E,4(x, y) of an atom i at the site (x, y) is then determined
by evaluating

Ead(xa y) = Etot(x3 y) _EO _Mli)ulk ’

with E; and p™* denoting the energy of the clean slab and the chemical potential of the
element in its bulk phase, respectively.
For a constant z coordinate, two space group operations of KTP prevail:

(x,y,2) — Identity

1 1 . .
(5 + x, 57 y,z) —  Glide plane perpendicular to y.
The second operation thereby halves the necessary number of sites to be investigated to
cover the entire surface unit, since a site with x > % is equivalent to a different site with x <
%. In total, the PES were constructed using an equidistant mesh of 16 sites, see white dots in
Fig. C.1. A continuous mapping of the adsorption energy is finally realized by interpolating
between adsorption sites.
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Figure C.1: PES for the adsorption of a single K atom on all layers of the positive (Z%)
and negative (Z7) KTP Z-cut surface. Sharp and blurry atoms depict atoms
within the outermost layer (x, and y,) and the layer beneath it (x and y),
respectively. Color coding of all atoms follows Fig. 6.2. White dots indicate the
16 investigated adsorption sites. The remaining data of the PES are obtained
by interpolation and application of symmetry operations.
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Figure C.2: PES for the adsorption of a single Ti atom on all layers of the positive (Z*) and
negative (Z7) KTP Z-cut surface. Color coding of all atoms follows Fig. 6.2.
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Figure C.3: PES for the adsorption of a single O atom on all layers of the positive (Z*) and
negative (Z7) KTP Z-cut surface. Color coding of all atoms follows Fig. 6.2.
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Figure C.4: PES for the adsorption of a single P atom on all layers of the positive (Z*) and
negative (Z7) KTP Z-cut surface. Color coding of all atoms follows Fig. 6.2.
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