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Timing Verifikation von AUTOSAR
Softwarearchitekturen

ZUSAMMENFASSUNG

Automobilhersteller weltweit befinden sich zur Zeit in einem Wettlauf um
die Einfiihrung autonomer Fahrzeuge. Die Innovationen in diesem Bereich
werden dabei fast ausschliefSlich durch die Entwicklung neuer Software rea-
lisiert. Dies fiihrt dazu, dass die Software im Automobil immer komplexer
wird, diese jedoch in immer kiirzeren Abstanden auf die Strafle gebracht
werden soll. Dabei muss die Software stets hohen Qualitatsanforderungen
geniigen, da sie in vielen Fallen sicherheitskritische Funktionen umsetzt.
Dies macht die Validierung dieser Fahrfunktionen zu einer grofsen Heraus-
forderung.

Des Weiteren gilt fiir viele Funktionen im Automobil, dass diese harte
Echtzeitanforderungen erfiillen miissen, was zusatzlich im gesamten Ent-
wicklungsprozess berticksichtigt werden muss. Die Validierung dieser An-
forderungen ist besonders aufwindig, da die Durchfiithrung von Simulatio-
nen, wie sie hdufig zur Validierung von Steuergeratesoftware angewendet
werden, nicht zielfiihrend ist, da diese nicht alle moglichen Randfélle mit-
betrachten und somit die Korrektheit der Anforderungen nicht nachweisen
konnen.

Der Einsatz formaler Verifikation fiir Softwarearchitekturmodelle im Au-
tomobil ermdglicht es die Korrektheit und Robustheit von Steuergeratesoft-
ware signifikant zu erhéhen. Dies gilt insbesondere fiir die Verifikation von
Echtzeitanforderungen mittels Timing Verifikation. Existierende Methoden
benotigen jedoch fiir die Durchfiihrung der Timing Verifikation Steuerge-
ratecode, der haufig erst spat im Prozess verfiigbar ist oder berticksichtigen
den in der Automobilindustrie verbreiteten AUTOSAR-Standard nicht. Des
Weiteren ignorieren existierende Ansitze die Komplexitat und Fehleranfal-
ligkeit der Herleitung von formalen Echtzeitanforderungen fiir AUTOSAR



aus Anforderungsdokumenten. Dies fiihrt insgesamt dazu, dass existieren-
de Ansatze erst spat im Entwicklungsprozess angewendet werden kénnen
und eine geringe praktische Relevanz aufweisen.

In dieser Arbeit schlagen wir einen neuen Ansatz zur Timing Verifikation
von AUTOSAR Softwarearchitekturen vor. Es wird zundchst eine For-
malisierung fiir AUTOSAR Softwarearchitekturen, sowie fiir AUTOSAR
Timing Anforderungen bereitgestellt. Daraufhin stellen wir einen Prozess
vor, in dem AUTOSAR Timing Anforderungen zunachst auf Konsistenz
gepriift werden und anschliefSend formal verifiziert werden. Im Gegensatz
zu anderen Ansatzen wird kein Quellcode benétigt, sondern ausschliefSlich
das AUTOSAR Architekturmodell verwendet. Die Methode zur Kon-
sistenzpriifung beinhaltet die Transformation der AUTOSAR Timing
Anforderungen in logische Constraints, die mithilfe von SMT-Solvern
gepriift werden. Des Weiteren werden auf der Basis der logischen Cons-
traints Mechanismen zur Aufldsung inkonsistenter Anforderungsmengen
zur Verfiigung gestellt. Fiir die Verifikation der Timing Anforderungen
wird eine Transformation des formalen AUTOSAR-Modells nach Timed
Automata vorgestellt. Anschlieflend wird die Effizienz unseres Ansatzes
mithilfe einer Fallstudie, sowie weiteren synthetischen Modellen bewertet.



Timing verification of AUTOSAR software
architectures

ABSTRACT

Automobile manufacturers worldwide are currently in a race to introduce
autonomous vehicles. Innovations in this area are being realized almost ex-
clusively through the development of new software. As a result, automotive
software is becoming increasingly complex, while release-cycles are shor-
tened. Still it is required to always meet high quality requirements, since in
many cases it implements safety-critical functions. This makes validation of
these functions a major challenge.

Furthermore, many functions in automobiles must fulfill hard real-time
requirements, which must also be taken into account throughout the entire
development process. The validation of these requirements is particularly
time-consuming because simulations, which are often used to validate elec-
tronic control unit (ECU) software, are not effective because they do not
consider all possible corner cases and thus cannot prove the correctness of
the requirements.

The use of formal verification for automotive software architecture mo-
dels significantly increases the correctness and robustness of ECU software.
This is especially true for the verification of real-time requirements using
timing verification. Existing methods require ECU source-code to perform
timing verification, which is often not available until late in the process, or
do not take into account the AUTOSAR standard that is widely used in the
automotive industry. Furthermore, existing approaches ignore the comple-
xity and error-proneness of deriving formal real-time requirements for AU-
TOSAR from requirements documents. Overall, this means that the existing
approaches can only be applied late in the development process and have

little practical relevance.



In this thesis, a new approach for timing verification of AUTOSAR soft-
ware architectures is proposed. First, a formalization for AUTOSAR soft-
ware architectures as well as for AUTOSAR timing requirements is provi-
ded. A process is then presented in which AUTOSAR timing requirements
are first checked for consistency and then formally verified. In contrast to
other approaches, no source code is required, but only the AUTOSAR soft-
ware architecture model is used. The consistency checking method involves
transforming the AUTOSAR timing requirements into logical constraints
that are checked using SMT solvers. Furthermore, mechanisms for resolving
inconsistent sets of requirements are provided based on the logical cons-
traints. For the verification of timing requirements, a transformation of the
formal AUTOSAR model to Timed Automata is presented. Subsequently,
the efficiency of our approach is evaluated with the help of a case study, as
well as further synthetic models.
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Einleitung

Die KOMPLEXITAT VON STEUERGERATESOFTWARE UND REGELALGORITHMEN IM
AUTOMOBIL NIMMT STETIG ZU, beispielsweise aufgrund der Integration von
mehr Komfortfunktionen oder durch komplexere Steuerungen bei Elektro-
fahrzeugen. Dies hat zur Folge, dass die Entwicklung und der Test dieser
Systeme zeitaufwandig ist. Erschwerend kommt hinzu, dass gerade Steuer-
geratesoftware sicherheitskritisch ist und zudem Echtzeitbedingungen ein-
halten muss, weshalb es notwendig ist zusatzlich zu den funktionalen An-
forderungen auch Echtzeitanforderungen (Timing Anforderungen) zu ve-
rifizieren. In diesem Kapitel wird zundchst in Abschnitt 1.1 der Kontext der
Arbeit vorgestellt und die Vorteile einer frithzeitigen Timing Verifikation
von Steuergeratesoftware genannt. Die spezifischen Problemstellungen, die
aus der Entwicklung und Absicherung komplexer Steuergeratearchitektu-
ren entstehen, werden in Abschnitt 1.2 vorgestellt. Abschnitt 1.3 stellt die
Losungsansatze zur frithzeitigen Timing Verifikation vor, die im Rahmen
der Arbeit umgesetzt wurden. Abschnitt 1.4 gibt schliellich eine Ubersicht
iiber die folgenden Kapitel.



KOMPLEXER

REGELALGORITHMEN

SICHERHEITSKRITISCH

1.1 MOTIVATION

In Zeiten neuer gesellschaftlicher Herausforderungen wie dem Klimawan-
del, Ressourcenknappheit und dem demografischen Wandel sind es gerade
neue Innovationen im Bereich des Automobils, die versprechen einen Bei-
trag zur Losung dieser Herausforderungen leisten zu kénnen. Durch die
Einfithrung von elektrischen, autonom fahrenden Fahrzeugen ist es bei-
spielsweise moglich Emissionen zu reduzieren und Ressourcen einzuspa-
ren (Tomas et al., 2020, Hannon, 2016). Dartiiber hinaus erhalten Fahrzeu-
ge weitere Funktionen wie beispielsweise einen Automatischen Bremsas-
sistenten, Automatische Geschwindigkeitsregelung (Adaptive Cruise Con-
trol (ACC)), Fahrspurerkennung (Lane-Detection) oder Elektronische Sta-
bilitatskontrolle (Electronic Stability Control (ESP)), welche die Sicherheit
beim Fahren erh6hen und die gesellschaftliche Teilnahme &lterer Verkehrs-
teilnehmer ermdglichen (Yurtsever et al., 2020).

Diese neuen Innovationen basieren jedoch nicht mehr auf der Weiterent-
wicklung einzelner mechanischer Bauteile, sondern erfordern die Ausfiih-
rung komplexer Regelalgorithmen verteilt auf eine Vielzahl von Steuergera-
ten und sind somit abhdngig von Software (Broy, 2006). Dies fiihrt dazu,
dass die Menge an Software in modernen Autos seit Jahren exponentiell
steigt (Broy et al., 2007). Ein modernes Auto wie beispielsweise ein 7er-BMW
mit erweiterten Fahrerassistenzfunktionen enthalt mehr als 150 Steuergera-
te und mehr als 150 Millionen Zeilen Quellcode (Charette, 2021).

Diese Software gilt es nicht nur zu entwickeln, sondern in besonderem
Mafie auch abzusichern und zu testen. Denn gerade Software im Automobil
ist haufig sicherheitskritisch und schwer nach der Auslieferung zu aktualisie-
ren. Werden AbsicherungsmafSnahmen nicht konsequent eingesetzt, kann
fehlerhafter Steuergerdtecode ins Serienfahrzeug gelangen und so Perso-
nenschaden durch Verkehrsunfille verursachen, was letztendlich selbst fiir
grofie Automobilkonzerne schwere wirtschaftliche Folgen haben kann (Ka-
ne et al., 2011, Douglas und Fletcher, 2019).

Dartiber hinaus realisiert automotive Software sehr unterschiedliche
Funktionen. Fiir einige Softwarefunktionen, die einen unmittelbaren
Einfluss auf das Fahrverhalten des Fahrzeugs und die Sicherheit des Au-
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tofahrenden haben, wie beispielsweise die Sicherheitselektronik oder die
Software zur Steuerung des Antriebsstrangs und des Fahrwerks, gilt, dass
sie nicht nur sicherheitskritisch ist, sondern die korrekte Funktionalitat
abhangig von der korrekten zeitlichen Ausfiihrung ist und somit zusatzlich
harten Echizeitbedingungen geniigen muss (Broy et al., 2007). Der Aufwand
zur Validierung dieser Funktionen ist besonders hoch, da im gesamten
Entwicklungsprozess diese Echtzeitanforderungen mit betrachtet werden
miissen und die Verifikation besonders aufwandig ist (AUTOSAR, 2019h).

Dies fiihrt dazu, dass die Entwicklung und der Test automotiver Software
immer teurer wird. Wahrend am Anfang der 1980er Jahre der Kostenanteil
fiir elektronische Komponenten und die Software eines Autos noch bei 10%
lag, so waren es 2010 bereits 35%, und fiir 2030 wird geschatzt, dass dieser
Anteil auf 50% weiter steigt (Charette, 2021). Gleichzeitig konkurrieren so-
wohl Automobilhersteller als auch Zulieferer untereinander und stehen so
unter einem starken Kostendruck (Broy et al., 2007).

Im Zuge dieser Entwicklungen ist es zunehmend wichtiger die
Entwicklung und den Test von Steuergerdten mithilfe moderner
Softwareentwicklungs- und Qualitdtssicherungsmethoden zu verbes-
sern und zu beschleunigen. Fiir diese Methoden miissen integrierte
(modellbasierte) Werkzeugumgebungen entwickelt werden, die diese
Methoden umsetzen und die in der Automobilindustrie verwendeten
Entwicklungsartefakte verarbeiten konnen (Broy et al., 2010).

Diese Dissertation wurde in Zusammenarbeit mit dem Unternehmen
dSPACE * durchgefithrt. dSPACE ist ein Anbieter von Simulations-
und Validierungslosungen fiir die Entwicklung vernetzter, autonomer und
elektrisch angetriebener Fahrzeuge. Das dSPACE Geschiftsfeld Software-In-
The-Loop-Testing (SIL-Testing) beinhaltet Werkzeuge zum Simulieren und
Testen virtueller (software-basierter) Steuergerdte (Kempkes und Walther,
2018). Dies ermdglicht es den Absicherungsprozess fiir die vollstandige
Steuergeritesoftware ohne die Verfiigbarkeit eines Prototypensteuerge-
rats durchzufiihren, indem diese auf handelstiblicher PC-Hardware, in
der Cloud oder zusammen mit bereits existierenden Steuergerdten am
HIL-Simulator in Verbindung mit einem Umgebungsmodell simuliert

“http://www.dspace.de

EcurzEIT

pSPACE *

SorTwARE-IN-THE-Loor-
TESTING

STEUERGERATESOFTWARE



V-ECU

AUTOSAR

TIMING ANFORDERUNGEN

TimiNG EVENTS

V-MobELL

werden (Kempkes und Walther, 2018). Dadurch koénnen Integrations-
und Systemtests frither im Entwicklungsprozess vorgenommen werden.
Fehler konnen so friihzeitig erkannt und behoben werden und somit kann
der gesamte Entwicklungsprozess beschleunigt werden. Ein virtuelles
Steuergerdt (V-ECU) kann dabei aus unterschiedlichen Modellen assem-
bliert werden und somit auch auf verschiedenen Abstraktionsebenen
vorliegen (Kempkes und Walther, 2018). Neben der Simulation einzelner
Funktionsmodelle auf der Basis von MATLAB®/Simulink (MathWorks,
2022) kénnen V-ECUs insbesondere Steuergerdte simulieren, die auf der
Basis des AUTOSAR Standards (AUTOSAR, 2019b) generiert wurden.

Der AUTOSAR Standard spielt eine Schliisselrolle bei der effizienten
Entwicklung von Steuergerdten. Der Standard spezifiziert ein Metamo-
dell, das die Modellierung von Steuergerdtearchitekturen erlaubt. Des
Weiteren wird dort ein einheitliches Austauschformat, sowie eine eigene
Entwicklungsmethodik vorgegeben (Kindel und Friedrich, 2009). Das
Metamodell von AUTOSAR unterstiitzt die Wiederverwendung von
Softwarekomponenten und ermdglicht es in Zusammenspiel mit der
Entwicklungsmethodik, verteilte Softwarearchitekturen zunachst hard-
wareunabhangig, d.h. beispielsweise ohne die konkrete Zuweisung von
Steuergeratekomponenten auf Steuergeratehardware, zu modellieren und
erst spater um hardware-abhangige Eigenschaften zu erweitern (Kindel
und Friedrich, 2009). So kdnnen bereits komplexe verteilte Steuergeratear-
chitekturen modelliert und simuliert werden ohne das finale Wissen tiber
die Hardware zu haben.

Neben der Modellierung der Systemarchitektur unterstiitzt AUTOSAR
ebenfalls die Modellierung von Timing Anforderungen. Diese ermdglichen
es Anforderungen an das Zeitverhalten eines AUTOSAR Modells festzu-
halten, indem Teile des Systemmodells mit sogennanten Timing Events ver-
kntipft werden, deren zeitliches Auftreten in einem laufenden System mit
Constraints belegt werden konnen. So konnen Echtzeitanforderungen eines
Steuergerats in der Architektur mit aufgenommen werden und fiir Analy-
sen herangezogen werden (AUTOSAR, 2019g).

Software im Automobil wird tiblicherweise nach dem V-Modell entwi-
ckelt, welches einen Prozess mit fest definierten Phasen beinhaltet und ein



Vorgehen beginnend bei der Definition der Benutzeranforderungen bis zum
Test des Systems beschreibt (Boehm, 1979). Werden fiir das zu entwickeln-
de System Anforderungen identifiziert, die das zeitliche Verhalten beschrei-
ben oder einschranken, so miissen diese ebenfalls in allen folgenden Phasen
nachgehalten und schliefilich auch verifiziert werden. Standards wie die
ISO 26262 (ISO International Organisation for Standardisation, 2018) ver-
langen dabei explizit die Festlegung des Echtzeitverhaltens der Software
(Schéauffele und Zurawka, 2010). Alle im Prozess verwenden Methoden,
Sprachen und Werkzeuge miissen das Echtzeitverhalten mit abbilden und
die Nachverfolgbarkeit bis zur Echtzeitanforderung sicherstellen kénnen.
Dabei gilt, je spater im Prozess Fehler in Modellen gefunden werden, des-
to aufwandiger ist die Korrektur, da moglicherweise alle Modelle der vor-
herigen Phasen korrigiert werden miissen. Fiir eine effiziente Systement-
wicklung ist es daher vorteilhaft, wenn in allen Phasen der Systementwick-
lung bereits von Anfang an eine hohe Qualitit der dort erstellten Modelle
sichergestellt ist. So werden Fehler friiher erkannt und die folgenden Pha-
sen arbeiten mit korrekten Modellen, sodass unnétige Iterationen vermie-
den werden. Dadurch wird der gesamte Entwicklungsprozess beschleunigt,
wodurch die Kosten und das Risiko fiir die Entwicklung gesenkt werden
(Schauffele und Zurawka, 2010). Auf der Basis dieses Leitparadigmas las-
sen sich in Verbindung mit den existierenden Technologien konkrete Pro-
blemstellungen identifizieren.

1.2 PROBLEMSTELLUNG

Die Technologie der Software-In-The-Loop (SIL)-Tests (Kempkes und Walt-
her, 2018) ermoglicht es Steuergerdte auf der Grundlage der AUTOSAR-
Architektur und der kompilierten Verhaltensmodelle zu simulieren. Fiir die
Durchfiihrung einer Simulation miissen jedoch eine Reihe von Modellen er-
stellt werden. Abbildung 1.1 zeigt eine Ubersicht iiber diese Modelle: Neben
der Erstellung der Softwarearchitektur (oben Mitte) muss die vollstandi-
ge Steuergeratesoftware in das AUTOSAR Modell integriert werden (unten
links). Dafiir miissen zunédchst Verhaltensmodelle - haufig auf der Basis von
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MATLAB/Simulink - erzeugt werden (oben rechts). Diese Modelle spiegeln
das Verhalten beispielsweise eines Reglers wider, enthalten aber noch keine
Modellinformationen iiber die Implementierung auf einem spateren Steuer-
gerat wie beispielsweise die verwendeten Datentypen der Modellvariablen.
Diese Informationen werden im néachsten Schritt annotiert. Erst dann kann
aus den Modellen Steuergeratecode generiert werden, der dann in die AU-
TOSAR Architektur integriert wird. Schliefslich muss aus einer vorhande-
nen AUTOSAR-Architektur heraus ein virtuelles Steuergerat (V-ECU) kon-
figuriert, generiert und kompiliert werden.

Sowohl die Schritte der Funktionsentwicklung als auch die anschliefsen-
de Konfiguration und Generierung der V-ECU sind zeitaufwandig . Zudem
sind in frithen Entwicklungsphasen die Modelle aus der Funktionsentwick-
lung noch nicht verfiigbar. Aus diesem Grund ist es fiir eine frithzeitige
Validierung von AUTOSAR Softwarearchitekturen hilfreich Methoden zu
betrachten, die ausschliefSlich auf den Artefakten der Softwarearchitektur
arbeiten und nicht auf das Vorhandensein von Steuergeratecode angewie-

sen sind.

Des Weiteren lassen sich mit dem bisherigen Vorgehen funktionale An-
forderungen durch die Simulation des Steuergerits gut testen. Allerdings
ist dieses Vorgehen fiir Timing Anforderungen ungeeignet, da diese unter
allen moglichen Umstdnden eingehalten werden miissen. Die Validierung
von Timing Anforderungen erfordert daher den Einsatz von Verifikationsme-
thoden, die alle moglichen Randfille mitbetrachten.

Eine weitere Herausforderung bei der Validierung von AUTOSAR Ti-
ming Anforderungen betrifft bereits die Spezifikation der Anforderungen:
Diese werden auf der Basis der Echtzeitanforderungen auf Benutzerebene
hergeleitet (siehe orange Artefakte in Abbildung 1.1). Gerade bei grofien
Anforderungsmengen kann es fiir Anforderungsentwickler jedoch schwie-
rig sein, den Uberblick iiber die Anforderungen zu behalten, was zu ei-
ner schlechten Anforderungsqualitit fithrt und beispielsweise Inkonsistenzen
nach sich ziehen kann. Inkonsistente Anforderungsmengen sind ein Indi-
kator fiir Missverstandnisse bei der erwarteten Systemfunktionalitat. Des
Weiteren fiihrt die Verifikation von inkonsistenten Anforderungsmengen
zu unnotigen Verifikationslaufen, da die Verifikation einiger Anforderun-
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Benutzer- Software- Funktions-
anforderungen Architektur entwicklung

AUTOSAR Modell Verhaltensmodell

1 .
Echtzeit- AUTOSAR Timing yyverfeinem
Anforderungen verfeinern Anforderungen Implementierungs-
modell
weitere System- I AUTOSAR Software I ode gen
anforderungen verfeinern Architektur \ 4 gen
Quellcode
Software-Integration & Test
AUTOSAR Modell mit Simulierbares Test-
virtuelles AUTOSAR e
Runnable Code Code generieren ergebnisse

Steuergerat (V-ECU) | simulieren
& kompilieren

Abbildung 1.1: Herausforderungen bei der Entwicklung von Steuergerite-
software: die Herleitung formaler AUTOSAR Timing Anforderungen ist
aufgrund der groflen Liicke hinsichtlich Abstraktion und Formalisierung
fehleranfillig (orange); der existierende Prozess benotigt alle Artefakte aus
der Funktionsentwicklung (oben rechts), sodass Testergebnisse erst spit
vorliegen (griin).

gen unweigerlich fehlschlagen wiirden, was einen grofien Einfluss auf die
Effizienz der Entwicklung hat. Daher ist es vorteilhaft, wenn Inkonsisten-
zen in den Timing Anforderungen friihzeitig erkannt und behoben werden,
sodass keine unnétigen Timing Verifikationen durchgefiihrt werden.

Insgesamt werden die folgenden Anforderungen an die Timing Verifika-
tion von AUTOSAR Softwarearchitekturen gestellt:

1. Anwendung von Verifikationstechniken fiir Timing Anforderun-
gen. Timing Anforderungen lassen sich nicht mithilfe von Simulati-
on verifizieren, da diese in allen moglichen Situationen eingehalten
werden miissen. Die Verifikation von Timing Anforderungen erfor-
dert daher den Einsatz von Verifikationsmethoden, die alle moglichen
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Randfalle mitbetrachten.

2. Verifikation von AUTOSAR Timing Anforderungen ohne Steuer-
geritecode. Um friihzeitig im Entwicklungsprozess Aussagen tiber
die Korrektheit von AUTOSAR Timing Anforderungen zu erhalten,
ist es notwendig eine Verifikationsmethode zu entwickeln, die aus-
schliefSlich auf der Grundlage der definierten AUTOSAR Steuerge-
ratearchitektur arbeitet und somit auch ohne Quellcode oder Verhal-

tensmodelle anwendbar ist.

3. Friihzeitige Riickmeldung iiber die Qualitit der Timing Anforde-
rungen. Das Herleiten von Timing Anforderungen auf AUTOSAR-
Architekturebene aus Benutzeranforderungen ist fehleranfallig. Da-
her ist es vorteilhaft, wenn Inkonsistenzen in den Timing Anforde-
rungen frithzeitig erkannt werden.

1.3 BEITRAG DER ARBEIT

Die Arbeit verfolgt das Ziel, den Prozess der Softwareentwicklung in der
Automobilindustrie durch Methoden zu verbessern, mit denen Timing
Anforderungen einfacher und schneller erstellt und bereits frithzeitig auf
Konsistenz- und Korrektheitseigenschaften hin iiberpriift werden kénnen.
Dabei beriicksichtigen die Methoden den existierenden AUTOSAR-
Standard und lassen sich nahtlos in den Gesamtprozess der automotiven
Systementwicklung nach dem V-Modell integrieren (Bundesstelle fiir
Informationstechnik, 2012). Insgesamt werden die folgenden Kernaspekte
behandelt:

1. Erarbeitung einer Methode zur Verifikation von AUTOSAR Ti-
ming Anforderungen: Fiir die Verifikation von AUTOSAR Timing
Anforderungen wird eine Transformation des AUTOSAR Modells
nach Timed Automata spezifiziert. Diese iiberfithrt das Timing
Verhalten eines AUTOSAR-Modells in Timed Automata, sodass
sich Timing Anforderungen mithilfe existierender Werkzeuge veri-
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fizieren lassen. Da es fiir das AUTOSAR-Metamodell keine formale
Verhaltensbeschreibung gibt, muss diese vorab erstellt werden.

2. Erarbeitung einer Methode zur Konsistenzanalyse von AUTOSAR
Timing Anforderungen: Die Methode stellt sicher, dass die zu veri-
fizierenden Timing Anforderungen untereinander keine temporalen
Konflikte beinhalten. Hierfiir wird eine Transformation der AUTO-
SAR Timing Constraints nach SMT spezifiziert, sowie Mechanismen
zur Identifikation von Ursachen fiir Inkonsistenzen bereitgestellt.

3. Erarbeitung von Mafinahmen zur Auflésung von Inkonsistenzen
fiir AUTOSAR Timing Constraints: Fiir inkonsistente Anforde-
rungsmengen werden relevante Teilmengen berechnet und mithilfe
von Graphen visualisiert, um die Ursachen fiir inkonsistente An-
forderungsmengen identifizieren zu konnen und Moglichkeiten zur
Auflésung dieser anbieten zu kénnen.

4. Evaluierung der Methoden anhand eines praxisnahen Fallbeispiels:
Fiir die Evaluierung der entwickelten Methoden wird neben der Mes-
sung von Laufzeiten fiir synthetische AUTOSAR-Modelle ebenfalls
ein realitdtsnahes Beispiel herangezogen, mit dem sich die Anwend-
barkeit und der Nutzen bei realen Modellen bewerten lasst.

Abbildung 1.2 zeigt einen Uberblick iiber den Losungsansatz dieser Arbeit.

1.4 STRUKTUR DER ARBEIT

Die Arbeit ist wie folgt gegliedert: Zunachst werden in Kapitel 2 die Grund-
lagen eingefiihrt. Es wird der Entwicklungsprozess in der Automobilindus-
trie, sowie der AUTOSAR Standard vorgestellt. Weiterhin werden Grund-
lagen von Timing Analysen, sowie Timing Anforderungen vorgestellt. Des
Weiteren werden die Formalen Methoden vorgestellt, die im weiteren Ver-
lauf der Arbeit angewandt werden.

In Kapitel 3 beschreiben wir den integrierte Losungsansatz. Des Weiteren
werden die erarbeiteten Methoden in den Entwicklungsprozess eingeord-
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KAPITEL 4

KAPITEL 5

KAPITEL 6

KaprTEL 7

Benutzer- Software-Architektur
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AUTOSAR Timing
AUTOSAR Modell Anforderungen als .
&  Entscheidungs- ====% Konsistenz
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System- L ____L. AUTOSAR Software ||mm ==y, Verhaltensmodell ' _ _ sy o0 inois
anforderungen verfeinern Architektur transform.| (Timed Automata | iqien

Netzwerk)

Abbildung 1.2: Lésungsansatz: Die entwickelten Methoden erméglichen es
Anforderungen auf Konsistenz und Korrektheit zu tiberpriifen. Auf die
Artefakte aus der Funktionsentwicklung kann dabei verzichtet werden.

net und alternative Moglichkeiten zur Integration des Ansatzes in den Ent-
wicklungsprozess aufgezeigt. Weiterhin wird in diesem Kapitel das formale
Modell des AUTOSAR Metamodells vorgestellt, welches in den darauf fol-
genden Kapiteln Anwendung findet.

In Kapitel 4 stellen wir das Konzept zur Konsistenzanalyse von AUTO-
SAR Timing Anforderungen vor. Es wird zundchst die fiir die Konsistenz-
analyse notwendige Transformation der AUTOSAR Timing Anforderun-
gennach SMT vorgestellt. Anschlieffend werden Methoden zur Darstellung
und Korrektur inkonsistenter Anforderungsmengen vorgestellt.

Kapitel 5 betrachtet die entwickelte Methode zur Timing Analyse von AU-
TOSAR Timing Anforderungen. Es werden die fiir die Timing Analyse rele-
vanten Transformationen der AUTOSAR Konstrukte nach Timed Automata
vorgestellt. Dies beinhaltet zum einen den timing-relevanten Teil der AU-
TOSAR Softwarearchitektur als auch die Timing Anforderungen.

In Kapitel 6 werden die zuvor vorgestellten Methoden an einem detail-
lierten Anwendungsfall angewandt. Das Fallbeispiel wird erlautert und die
Ergebnisse werden vorgestellt. Anhand dieser Ergebnisse wird dann dis-
kutiert, in wie weit sich die Methoden fiir die Anwendung in der Praxis

eignen.

Kapitel 7 gibt einen Einblick in die Realisierung der Methoden durch eine
prototypischen Werkzeugunterstiitzung. Es wird die allgemeine Struktur
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des entwickelten Analyseframeworks vorgestellt, sowie auf einige spezifi-
sche Realisierungsaspekte eingegangen. Weiterhin werden detaillierte Eva-
luierungsergebnisse vorgestellt, um die praktische Anwendbarkeit der Me-
thode einschétzen zu konnen.

Kapitel 8 fasst die Ergebnisse zusammen und diskutiert die erzielten Er-
kenntnisse. Es gibt aufierdem einen Ausblick auf offene und zukiinftige Pro-

blemstellungen und mogliche Losungsansatze.
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Grundlagen

Die Komplexitdt von eingebetteten Systemen im Automobil steigt bestan-
dig aufgrund der Integration neuer und komplexerer Fahrfunktionen. Ins-
besondere die Vernetzung der einzelnen Assistenzsysteme und die Verwen-
dung einer Vielzahl von Sensoren und die daraus resultierenden zu verar-
beitenden Daten in autonomen Fahrzeugen erhoht die Komplexitat weiter.
Gleichzeitig werden die Entwicklungszyklen neuer Modellreihen jedoch im-
mer weiter verkiirzt, um Kosten zu senken und Produkte schneller auf den
Markt zu bringen. Dabei bleiben die grundlegenden Anforderungen an die
Sicherheit der Systeme unter Beriicksichtigung des Echtzeitverhaltens be-
stehen.

Nur durch die umfassende Anwendung von Mafisnahmen zur Software-
Qualititssicherung ist es moglich, schneller und frithzeitiger Fehler wahrend
der Entwicklung aufzudecken und somit die Softwarequalitdt auch bei
kurzen Entwicklungszyklen zu steigern. Diese Maffnahmen bestehen aus
einer einheitlichen Entwicklung anhand eines Prozesses, der auch {iiber
Unternehmensgrenzen hinweg etabliert ist, der Anwendung konstruktiver
Methoden wie Domiinenspezifischen Sprachen und Architekturpattern, sowie
systematischer statischer und dynamischer Analyseverfahren wahrend
aller Entwicklungsphasen.
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SOFTWAREKRISE

Dieses Kapitel beschreibt die Grundlagen dieser Arbeit. Zunachst wer-
den die spezifischen Prozesse und Methoden der Softwareentwicklung und
-qualitatssicherung in der Automobilindustrie beschrieben. Dies ist zum ei-
nen das verwendete V-Modell und zum anderen der AUTOSAR Standard,
sowie die in dieser Arbeit verwendete AUTOSAR Entwicklungsumgebung.
Weiterhin wird in diesem Kapitel ein Beispiel eingefiihrt, dass im weiteren
Verlauf der Arbeit zur Verdeutlichung der entwickelten Methoden herange-
zogen wird. Des Weiteren werden die verschiedenen Auspragungen von Ti-
ming Analysen vorgestellt und eingeordnet. Ebenfalls werden Sprachen zur
Spezifikation von Timing Anforderungen vorgestellt und Kriterien zur Be-
schreibung der Qualitat aufgezeigt. Schliefslich werden die grundlegenden
Definitionen der verwendeten formalen Analysemethoden erldautert und in
den Gesamtkontext der Arbeit eingeordnet.

2.1 AUTOMOTIVE SOFTWAREENTWICKLUNG

Dieser Abschnitt gibt einen Uberblick iiber die Entwicklung von Steuer-
geratesoftware. Es wird dabei zunachst das Vorgehensmodell vorgestellt,
das den Kernprozess zur Entwicklung von elektronischen Systemen und
Software bereitstellt. Darauf aufbauend wird der AUTOSAR Standard ein-
gefiihrt, der den Prozess durch eine eigene Methodik und ein Metamodell
unterstiitzt. An dieser Stelle wird besonders auf die fiir diese Arbeit wich-
tigen Modellelemente zur Spezifikation von Timing Anforderungen einge-
gangen. Anschlieffend werden existierende Methoden zur Timing Analy-
se vorgestellt, sowie Werkzeuge fiir die Modellierung von AUTOSAR im
Allgemeinen und Werkzeuge zur Analyse von Timing Anforderungen im
Speziellen.

2.1.1 VORGEHENSMODELL UND ARTEFAKTE

Komplexe technische Systeme erfordern ein planvolles Vorgehen bei der
Entwicklung angefangen bei der Definition von Anforderungen bis zum ab-
schlieffenden Systemtest. In der sogenannten Softwarekrise in den 6oer Jah-
ren erkannte man, dass die bisher genutzten Methoden zur Entwicklung
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von Software nicht mit der Rechenleistung und Komplexitat der verfiigba-
ren Hardware mithalten konnten (Dijkstra, 1972). So waren beispielsweise
die Kosten fiir die Entwicklung des Betriebssystems OS/360 von IBM um
ein vielfaches hoher als zunachst geplant (Brooks, 1975).

Seitdem wurden vermehrt Methoden und Technologien entwickelt, die
die Entwicklung von Software einfacher und vorhersagbarer machen und
somit das Risiko von Fehlentwicklungen und Fehleinschatzungen von Kos-
ten verringern sollten. Neben der Entwicklung neuer Programmierparadig-
men entstanden seitdem Vorgehensmodelle, die die Entwicklung komplexer
Software einfacher und planbarer gestalten sollten, indem fiir die Entwick-
lung einzelne fest definierte Schritte oder Phasen festgelegt wurden und in
einem Prozess angeordnet wurden. Eine konkrete Definition findet sich in
IEEE (1990):

Definition 1 (Vorgehensmodell (IEEE, 1990)). Der Prozess, in dem Nutzer-
bediirfnisse in ein Softwareprodukt umgesetzt werden. Der Prozess umfasst das
Ubersetzen der Benutzeranforderungen in Softwareanforderungen, die Umwand-
lung der Softwareanforderungen in ein Design, die Implementierung des Designs
in Code, das Testen des Codes und manchmal die Installation und das Uberpriifen
der Software fiir den betrieblichen Einsatz. Diese Aktivititen kinnen sich iiber-
schneiden oder iterativ durchgefiihrt werden.

Beispiele fiir Vorgehensmodelle sind das Wasserfallmodell (Royce, 1970),
das V-Modell (Boehm, 1979), das Spiralmodell (Boehm, 1988), der Rational
Unified Process (Rational Software, 1998), Extreme Programming (Beck und
Andres, 2005) oder Scrum (Beck et al., 2001, Cohn, 2010).

Elektronische Systeme und Software in der Automobilindustrie werden
heutzutage iiblicherweise nach dem V-Modell entwickelt. Das V-Modell
wurde urspriinglich von Boehm (1979) als sequenzielles Vorgehensmodell
entworfen und im Laufe der Zeit weiterentwickelt. Die heute aktuelle
Auspragung ist das V-Modell® XT der Bundesstelle fiir Informationstechnik
(2012). Das Gesamtmodell ist in Abbildung 2.1 zu sehen. Es beinhaltet
mehrere Schritte und beginnt bei der Analyse von Nutzeranforderungen
und endet beim finalen Systemtest und Akzeptanztest. Das Modell kann
dabei in einen oberen Teil und einen unteren Teil aufgeteilt werden.
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Abbildung 2.1: V-Modell Entwicklungsprozess nach Schiuffele und Zuraw-
ka (2010)

Der obere Teil beschiftigt sich mit dem Design und der Analyse der
gesamten Systemarchitektur. Dies bedeutet insbesondere, dass diese
Schritte unabhéngig von jeglichen technischen Realisierungsaspekten
betrachtet werden. Danach wird der Prozess im unteren Teil aufgeteilt
in die Teilbereiche Softwareentwicklung, Hardwareentwicklung, Aktuatorent-
wicklung und Sensorentwicklung (Schauffele und Zurawka, 2010). Da sich
der entwickelte Ansatz auf die Phasen der Softwareentwicklung bezieht,
werden ausschliefilich die relevanten Phasen der Softwareentwicklung
vorgestellt.

Des Weiteren ldsst sich das Modell in einen linken Zweig, welcher die
Designphasen beinhaltet, in denen das System schrittweise aufgeteilt und
verfeinert wird, und einen rechten Zweig, welcher die Validierungsphasen
beinhaltet, die die jeweilige Phase auf der rechten Seite absichert, aufteilen.

Wenn ein Test in einer Phase auf der rechten Seite fehlschlédgt, so wird das
Design entsprechend der Phase der linken Seite verbessert. Da jede Design-

16



phase auf den Ergebnissen der vorherigen Phase beruht, 16sen Anderun-
gen in einer Phase normalerweise auch Anderungen in den darauffolgen-
den Phasen aus. Daher sind Fehler, die erst in spaten Testphasen gefunden
werden sehr teuer, da sie zu fritheren Designphasen gehoren und dadurch
mehr Anderungen hervorrufen.

Eine Losung, um das spate Erkennen von Fehlern zu vermeiden ist
es, Tests spdterer Phasen in frithere Phasen vorzuverlagern. Dies kann
beispielsweise durch die Simulation von Hardware, die noch nicht zur Ver-
fiigung steht, erreicht werden. Diese Methode wird auch Test Frontloading
genannt (Stark et al., 2011, Klein et al., 2017). Ein weiterer Schritt das spate
Erkennen von Fehlern zu vermeiden ist es, bereits in frithen Designphasen
Methoden zur Fehlererkennung anzuwenden. In diesen Phasen sind
jedoch nur Softwaremodelle, d.h. Architekturmodelle und Reglermodelle,
vorhanden. Daher konnen nur Validierungstechniken angewendet werden,
die ausschliefilich auf diesen Modellen beruhen.

Da das Ziel dieser Arbeit die Entwicklung von Methoden zur friihzeiti-
gen Absicherung von automotiver Steuergeratesoftware ist, basieren die ge-
nutzten Artefakte ausschliefslich auf Modellen, die bereits in frithen Phasen
der Softwareentwicklung zur Verfiigung stehen. Dies sind im Wesentlichen
die in der automotiven Softwareentwicklung gebrauchlichen Architekturmo-
delle, welche auf dem AUTOSAR Standard basieren.

2.1.2 AUTOSAR

AUTOSAR” steht fiir AUTomotive Open System ARchitecture und ist der
etablierte Standard fiir die Entwicklung von Software in der Automobil-
industrie. AUTOSAR definiert eine Softwarearchitektur und Interfaces in
Form eines Metamodells (siehe dafiir Abschnitt Metamodellhierarchie) , sowie
ein eigenes Dateiformat fiir den Datenaustausch. Weiterhin definiert der
Standard eine eigene Entwicklungsmethodik. Seit 2017 veroffentlicht die
AUTOSAR Entwicklungspartnerschaft ebenfalls einen Standard zur Spezi-
fikation dynamisch adaptierbarer Services innerhalb einer Softwarearchi-
tektur im Automobil. Dieser Standard wird Adaptive Platform genannt und

*http://www.autosar.org
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existiert parallel neben dem bereits existierenden AUTOSAR Standard, der
seitdem ebenfalls als Classic Platform bezeichnet wird. Im Folgenden werden
ausschliefSlich Konzepte der Classic Platform genauer betrachtet.

AUTOSAR SCHICHTENARCHITEKTUR

AUTOSAR definiert eine Schichtenarchitektur fiir Steuergerate (siehe Ab-
bildung 2.2), die drei verschiedene Softwareschichten beinhaltet (AUTO-
SAR, 2019d):

¢ Die Applikationsschicht (Application Layer) ist die oberste Schicht
(grau). Sie beinhaltet die auszufiihrende Steuergerdtesoftware,
was in der Automobilindustrie zumeist die Implementierung der
Regleralgorithmen ist. Innerhalb dieser Schicht wird die Software
durch eine komponentenbasierte Architektur weiter strukturiert.

¢ Die RTE-Schicht (Runtime Environment Layer (RTE)) administriert
die Kommunikation zwischen Softwarekomponenten der Applikati-
onsschicht untereinander und zwischen Softwarekomponenten der
Applikationsschicht und Basissoftwaremodulen der Basissoftware-
schicht (orange). Sie stellt somit standardisierte Interfaces fiir die
Software auf Applikationsebene zur Verfiigung.

* Die Basissoftwareschicht (Basic Software Layer) beinhaltet Module
fiir die Basisfunktionalititen eines Steuergerdtes. Die Basissoft-
wareschicht ist weiterhin unterteilt in eine Serviceschicht (Service
Layer) (blau), eine ECU-Abstraktionsschicht (ECU Abstraction Layer)
(griin) und eine Mikrocontroller-Abstraktionsschicht (Microcon-
troller Abstraction Layer, MCAL) (rot). Der Service Layer beinhaltet
die wesentlichen Steuergeriteservices wie beispielsweise das
Betriebssystem, das Zustandsmanagement, Diagnoseservices, Spei-
cherservices und Kommunikationsservices. Der ECU Abstraction
Layer realisiert eine Abstraktion der Steuergerdtehardware fiir
die oberen Schichten und stellt Module fiir den Zugriff auf die
Hardwareperipherie bereit. Der MCAL stellt Treibermodule fiir
das Steuergerat zur Verfiigung und greift direkt auf die Hardware
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Abbildung 2.2: AUTOSAR Schichtenarchitektur aus AUTOSAR (2019d)

zu. Zusatzlich zu der horizontalen Strukturierung werden die
Basissoftwaremodule auf vertikaler Ebene nach Funktionsbereichen
eingeteilt. Diese Bereiche teilen sich auf in Systemdienste (System
Services), Speicherdienste (Memory Services), Kryptographiedienste
(Crypto Services) Kommunikationsdienste (Communication Services),
I/O-Stack (I/O Hardware Abstraction) und komplexe Gerétetreiber
(Complex Device Drivers). Eine detaillierte Beschreibung aller Module
kann in AUTOSAR (2019g) gefunden werden.

AUTOSAR ENTWICKLUNGSMETHODIK

Die AUTOSAR Entwicklungsmethodik beschreibt die wesentlichen Schrit-
te flir AUTOSAR Entwicklungsprojekte angefangen bei der Definition ei-
ner abstrakten Softwarearchitektur bis zur Generierung der ausfiithrbaren
Steuergeratesoftware (Kindel und Friedrich, 2009, AUTOSAR, 2019e). Die
Methodik ist dabei in formaler Form als SPEM-Modell der Object Manage-
ment Group (2008) festgehalten. Sie beschreibt Aufgaben, Rollendefinitio-
nen, Werkzeuge und Arbeitsprodukte und setzt sie in Form von Workflows
zueinander in Beziehung. Sie ist daher nicht mit einem Entwicklungspro-
zess zu vergleichen, da beispielsweise keine Restriktionen hinsichtlich der
Reihenfolge von Workflows beschrieben werden oder ob und wann Itera-
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tionen durchgefiihrt werden. Das Ziel der Methodik ist es, die Entwicklung
zu parallelisieren und somit zu verkiirzen. Die Entwicklungsmethodik ist

Entwickiunassicnten N flinf Entwicklungssichten aufgeteilt, die sich jeweils mit einer Teilmenge

SOFTWAREKOMPONENTEN

Ports

ECU ExTrRACT

RuUNNABLE ENTITIES

der spezifizierten Workflows beschéftigen: (AUTOSAR, 2019e):

. Virtual Functional Bus (VFB): In der VFB-Sicht wird die Softwarear-

chitektur eines Systems modelliert. Die Softwarearchitektur besteht
aus den Softwarekomponenten der Applikationsschicht, die iiber Ports
miteinander verbunden sind. Fiir Ports konnen dann wiederum
Interfaces definiert werden, beispielsweise Client-Server- oder
Sender-Receiver-Interfaces. Bei der Modellierung in dieser Sicht ist
es unerheblich auf welchen Steuergeriten die Komponenten spater
ausgefiihrt werden. Die Kommunikation der Komponenten unter-
einander wird durch Verbindungen tiber den Virtual Functional Bus
abstrahiert. Die Spezifikation der Hardwaretopologie und die Ver-
teilung von Softwarekomponenten auf einzelne Steuergeriate kann
zu einem spateren Zeitpunkt erfolgen. Eine detaillierte Beschreibung
findet sich in AUTOSAR (2019h).

. System: In der System-Sicht wird das Gesamtsystem modelliert. Ein

zentraler Teil ist hierbei die Beschreibung welche Softwarekompo-
nenten auf welche Steuergerate verteilt sind und wie diese wiederum
miteinander verbunden sind. Das Ergebnis ist ein ECU Extract, das
wiederum als Eingabe fiir die Integration der ECU Software in der
ECU-Sicht benétigt wird. Die vollstandige Spezifikation ist in AUTO-
SAR (2019h) beschrieben.

. Software Component: Auf Softwarekomponenten-Ebene wird die

Struktur und das Verhalten der einzelnen Softwarekomponenten
der VFB-Ebene definiert. Es werden sogenannte Rumnnable Enti-
ties definiert, in denen der ausfiihrbare Reglercode gekapselt ist.
Eingabe- und Ausgabedaten werden {iber Ports und innerhalb einer
Softwarekomponente iiber Inter-Runnable-Variablen festgelegt. Des
Weiteren wird festgelegt, wann und in welchen Zyklen Runnables
ausgefiihrt werden sollen (AUTOSAR, 2019f).
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4. Basic Software: In der Basissoftwaresicht werden fiir einzelne Steuer-
gerdte die Basissoftwaremodule konfiguriert und Quellcode der Modu-
le im Modell integriert. Zusammen mit dem ECU Extract kann dann
in der ECU-Sicht die Integration der ECU Software erfolgen (AUTO-
SAR, 2019g).

5. ECU: Die ECU-Sicht beschreibt die Sicht auf ein einzelnes Steuerge-
rat. Wenn auf Systemebene die definierten Softwarekomponenten auf
Steuergerate verteilt wurden, alle Basissoftwarekomponenten in der
Basissoftware-Sicht konfiguriert wurden und Applikationssoftware-
komponenten der Softwarekomponentensicht fertig spezifiziert wur-
den, dann kann in dieser Sicht aus den abstrakten Verbindungen der
Softwarekomponenten auf dem VFB-Bus eine RTE generiert werden,
die je nach Position der Softwarekomponenten interne Speicheraufru-
fe oder das Verschicken von Nachrichten iiber einen externen Kom-
munikationsbus durchfiihrt. Das Ergebnis ist dann die ausfiihrbare
Steuergeratesoftware (AUTOSAR, 2019b).

AUTOSAR MeTaMODELL HIERARCHIE

Neben der Entwicklungsmethodik enthdlt AUTOSAR eine formale Be-
schreibung zur Definition von AUTOSAR-konformen Modellen. Diese
Modelle sind , eine Abstraktion eines realen Systems, das Vorhersagen oder
Schlussfolgerungen ermoglicht”(Kiihne, 2006). Modelle verfiigen nach
Stachowiak (1973) liber die folgenden Eigenschaften:

¢ Abbildungseigenschaft: Ein Modell ist ein Abbild der Wirklichkeit.
Eigenschaften, die fiir das Modell gelten, gelten auch fiir die Entitat
in der realen Welt.

¢ Abstraktions- oder Reduktionseigenschaft: Ein Modell erfasst nur ei-
ne Teilmenge von Attributen des Originals. Details, die fiir das Modell
nicht benotigt werden, werden weggelassen.

¢ Pragmatismus-Eigenschaft: Ein Modell dient einem bestimmten
Zweck. Die Erstellung des Modells erfolgt zielorientiert.
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METAMODELL

Meta OsBjecT FAcCiLITY
MOF)

UML-PRrOFILE

UML

Im Kontext der Modellgetriebenen Softwareentwicklung wird die Spe-
zifikation der Modellelemente und Regeln, die benétigt werden um vali-
de Modelle zu erzeugen, auch Metamodell genannt. Dieses beinhaltet iib-
licherweise die Definition einer abstrakten Sytax, (mindestens einer) kon-
kreten Syntax, sowie statischer und dynamischer Semantik (Stahl und Vol-
ter, 2006). Die abstrakte Syntax beschreibt dabei die abstrakten Modellie-
rungselemente und ihre Beziehungen zueinander, wahrend die konkrete
Syntax die Reprasentation von Modellinstanzen beschreibt, so dass diese
von einem Parser akzeptiert werden. Die statische Semantik enthélt Regeln,
die die Wohlgeformtheit eines Modells zusatzlich beschreiben. Die dyna-
mische Semantik beschreibt das Verhalten des Modells bei der Ausfiihrung
(Stahl und Vdlter, 2006). Eine konkrete Technologie zur Spezifikation von
Metamodellen wird von der Object Management Group (2011b) vorgeschla-
gen. Diese definiert eine Metamodell Hierarchie mit vier Ebenen (14, - 44),
wobei jede Ebene die Sprachkonstrukte der darunterliegenden Ebene be-
schreibt bzw. umgekehrt jede Ebene eine konkrete Instanz des Typmodells
auf der dariiberliegenden Ebene darstellt. Die Ebene A4, stellt dann das rea-
le System dar, auf der Ebene /4, befinden sich die von einem Entwickler
erzeugten Modelle, die Ebene A4, beschreibt die zur Erzeugung von Mo-
dellen notwendigen Sprachkonstrukte bzw. das Metamodell und schliefs-
lich befindet sich auf Ebene A4, das Meta-Meta-Modell, dass zur Spezifi-
kation von Metamodellen herangezogen werden kann. Dieses wird auch
Meta Object Facility (MOF) genannt. Neben der Definition eigener Metamo-
delle durch die Instanziierung eines MOF-Modells lasst sich auch das UML-
Metamodell durch sogenannte UML-Profile um Stereotypen, Tagged Values
und Constraints erweitern (Stahl und Voélter, 2006). Dieser Mechanismus
ist einfacher zu handhaben, weil auf das existierende UML-Metamodell zu-
riickgegriffen werden kann. Die Anpassbarkeit ist jedoch nicht so stark ge-
geben, da beispielsweise keine Entititen des UML-Metamodells entfernt

werden konnen.

Die Syntax von AUTOSAR bedient sich ebenfalls der Spezifikationen
der OMG. Die vollstandige Metamodell Hierarchie besteht jedoch aus
insgesamt fiinf Metaebenen (siehe Abbildung 2.3) (AUTOSAR, 2019c).
Die Ebenen A4, und A4 sind analog zu den Definitionen der UML (Ob-
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Abbildung 2.3: Metamodellebenen von AUTOSAR (AUTOSAR, 2019¢)

ject Management Group, 2015) definiert als Realisation des laufenden
AUTOSAR-Systems und als Modelle, die von AUTOSAR-Entwicklern
erstellt werden wie beispielsweise Softwarekomponenten, Ports und deren
Verbindungen (AUTOSAR, 2019c). Diese Modelle sind Instanzen des
AUTOSAR-Metamodells auf A4,. Hier sind die Metamodellelemente wie
Ports und Softwarekomponenten spezifiziert. Das AUTOSAR Metamodell
wird auch als Menge sogenannter AUTOSAR Templates bezeichnet, da das
Metamodell nicht ausschliefSlich eine Instanz des UML Metamodells ist,
sondern ebenfalls ein UML Profil, das sogenannte AUTOSAR TemplateProfile
anwendet. Dieses wurde entworfen, um besser Templating Mechanismen
umsetzen zu konnen. Es beinhaltet beispielsweise die Definitionen von
Types, Prototypes und der Assoziation vom Typ isTypeOf. Formal ist ein
Template auf 44, daher eine Instanz vom UML 2 Metamodell bei gleich-
zeitiger Anwendung des AUTOSAR Template Profils (AUTOSAR, 2019e).
Das UML Metamodell, sowie das AUTOSAR Template Profil sind daher
auf der Ebene A4, verortet. Das MOF-Metamodell ist dann tibergeordnet
auf Ebene /44, zu finden. Im Gegensatz zu anderen domanenspezifischen
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TimiNG DescripTioN EVENTS

TimMING CONSTRAINTS

TiminG DescripTioN EVENT
CHAINS

Sprachen definiert AUTOSAR fiir das Metamodell keine konkrete Syntax
fiir alle Modellelemente. Es werden nur fiir Modellelemente der Appli-
kationssoftware wie beispielsweise Softwarekomponenten, Ports und
Interfaces grafische Elemente in AUTOSAR (2019f) spezifiziert. Ein Beispiel
fiir so eine Softwarearchitektur findet man in Abbildung 2.7. Ebenso
existiert flir AUTOSAR keine formale statische und dynamische Semantik.
Modellierungsrestriktionen, sowie das Verhalten von Modellelementen
innerhalb der Softwarearchitektur werden im Standard nur textuell in den
Template Dokumenten erfasst.

AUTOSAR TiMmING EXTENSIONS

Eine Teilmenge des AUTOSAR Metamodells beschaftigt sich mit der An-
notation von Modellelementen mit Zeiteigenschaften und Zeitanforderun-
gen (AUTOSAR, 2019a). Fiir jede Entwicklungssicht gibt es eine Menge von
AUTOSAR-Elementen, die mit Ereignissen (sogenannten Timing Descripti-
on Events) annotiert werden konnen. Diese Events sind eine abstrakte Re-
prasentation eines spezifischen Systemverhaltens, das zur Systemlaufzeit
iiberwacht werden kann, wie beispielsweise das Starten eines Runnable En-
tity oder die Ankunft eines neuen Datenpakets an einem bestimmten Port.
Die Bedeutung von Anforderungen im allgemeinen und der Zusammen-
hang von Anforderungsartefakten in unterschiedlichen Entwicklungspha-
sen mit AUTOSAR Timing Constraints werden in Abschnitt 2.2 erldutert.
AUTOSAR Timing Extensions ermdglichen nun die Spezifikation von Ti-
ming Constraints, mit denen zeitliche Abhédngigkeiten zwischen zwei oder
mehreren Events spezifiziert werden konnen. Dartiber hinaus konnen kom-
plexere Zeitabhangigkeiten definiert werden, indem Ereignisse durch Er-
eignisketten (Timing Description Event Chains) verkettet werden. Dadurch
lasst sich eine Folge von Ereignissen spezifizieren, fiir die ein Timing Cons-
traint gelten muss. Abbildung 2.5 zeigt das Metamodell fiir Zeiteigenschaf-
ten und Ereignisketten. Eine Ubersicht der relevanten Metamodellelemente
zeigt Abbildung 2.4: Fiir die einzelnen AUTOSAR-Sichten gibt es die spe-
zialisierten TimingExtensions VfbTiming, SwcTiming, SystemTiming, BswMo-
duleTiming und EcuTiming, die jeweils ein fiir die entsprechende Sicht re-
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class DOC_TimingExtensions
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Abbildung 2.4: Metamodell fiir Timing Extensions aus AUTOSAR (20192)

levantes Modellelement referenzieren, beispielsweise eine Softwarekompo-
nente (SwComponentType) fiir das VfbTiming. Dariiber hinaus hat jede Ti-
mingExtension eine Menge an TimingDescriptions, sowie TimingConstraints,
die je nach Kontext die Rolle als TimingGuarantee oder TimingRequirement
wahrnehmen.

Fiir die Definition von Timing Constraints gibt es eine Menge spezialisier-
ter Unterklassen, die es ermdglichen bestimmte Klassen von zeitlichen Ab-
hangigkeiten zu beschreiben. Abbildung 2.6 zeigt die verfiigbaren Timing
Constraints in AUTOSAR. Im Folgenden werden diese Constraints genau-
er vorgestellt. Eine vollstandige Beschreibung befindet sich in AUTOSAR
(2019a):

* Offset Timing Constraint: Der Offset Timing Constraint spezifi-
ziert eine minimale und maximale Zeitdifferenz zwischen einem
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class DOC_TimingDescription /

Identifiable
TimingDescription

TimingDescriptionEventChain 1 TimingDescriptionEvent

+stimulus

+response

1
+segment 1..%

Abbildung 2.5: Metamodell fiir Timing Descriptions aus AUTOSAR
(20192): Eine Timing Description ist entweder ein einzelnes Timing Event
oder eine Verkettung von Timing Events tiber Trigger- und Response-
Assoziationen.

Source-Event und einem Target-Event.

* Latency Timing Constraint: Ein Latency Timing Constraint spezifiziert
eine minimale und maximale Latenzzeit auf der Basis einer Timing
Description Event Chain. Der Constraint wird verwendet, um An-
forderungen an die zeitliche Verzdgerung zwischen einem Stimulus-
Event und allen weiteren Timing Events innerhalb der Ereigniskette
bis zu einem Response-Event zu spezifizieren.

* Synchronization Timing Constraint: Der Synchronization Timing Cons-
traint spezifiziert eine Menge von Timing Events, die gleichzeitig aus-
gefiihrt werden miissen. Zusétzlich kann durch die Spezifikation ei-
nes Toleranzwertes der Constraint abgeschwacht werden.

* Execution Order Constraint: Der Execution Order Constraint spezifi-
ExecuTaBLE ENTITIES ziert eine Sequenz von ausfiihrbaren Einheiten (Executable Entities).
Die Ausfiihrung jedes Executable Entity darf dabei erst dann gestar-

tet werden, wenn das vorherige Executable Entity beendet wurde.
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class TimingConstraint .~
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TimingConstraint
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LatencyTimingConstraint:
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AgeConstraint:: ExecutionOrderConstraint::
AgeConstraint ExecutionOrderConstraint

Abbildung 2.6: Verftigbare Timing Constraints in AUTOSAR (AUTOSAR,

20192)

* Execution Time Constraint: Der Execution Time Constraint spezifiziert
Restriktionen an die Ausfiihrungszeit eines einzelnen Executable
Entity. Im Gegensatz zu den anderen Timing Constraints, wird der
Constraint nicht {iber Restriktionen der Timing Events modelliert.

* Age Constraint: Der Age Constraint spezifiziert das maximale Alter
(Age) von Daten fiir einen Port. Als Spezialfall des Latency Timing
Constraint kann er verwendet werden ohne dass der Absender der

Daten bekannt sein muss.

SysTEMDESK®ALS ENTWICKLUNGSWERKZEUG FUR AUTOSAR

SystemDesk®* ist das Entwicklungswerkzeug fiir AUTOSAR-Architekturen
von dSPACE. Es unterstiitzt dabei sowohl bei der Modellierung von
AUTOSAR-Modellen durch eine {iibersichtliche Darstellung, als auch bei

thttps://www.dspace.com/de/gmb/home/products/sw/system_ architecture

software/systemdesk.cfm
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VALIDIERUNGSREGELN

der Erstellung von AUTOSAR-Software durch Codegeneratoren. Des Wei-
teren konnen sogenannte Validierungsregeln Modelle auf Wohlgeformtheit
iberpriifen. Auf diese Weise lassen sich bereits einfache Syntaxfehler,
die beispielsweise durch unvollstindige Modelle entstehen, erkennen,
da das Werkzeug zur einfachen und intuitiven Modellierung auch das
Anlegen von zunachst unvollstindigen Modellen erlaubt. Weiterhin gibt
es Regeln, die die Kompatibilitdit zu anderen Werkzeugen tiberpriifen
oder die Generierbarkeit der RTE sicherstellen. Die Validierung von
AUTOSAR-Modellen iiber die syntaktische Korrektheit hinaus ist dagegen
mit Validierungsregeln nicht méglich. Eine Validierung des Modellverhal-
tens kann nur durch die Generierung, Kompilierung und anschlieffende
Simulation eines virtuellen Steuergerats erfolgen. Die Abbildung 2.7 zeigt
die Oberflache der Entwicklungsumgebung. Grafische Reprasentatio-
nen, im Kontext der Entwicklungsumgebung auch einfach Diagramme
genannt, gibt es fiir die wichtigsten Elemente des Metamodells. So werden
Softwarekomponenten, Ports und Verbindungen, die innerhalb einer
Softwarekomposition vorhanden sind, in einem Composition Diagram zu-
sammen dargestellt. Des Weiteren konnen einzelne Softwarekomponenten
zusammen mit ihren Ports, Interfaces und Datentypen in einem Component
Diagram visualisiert werden. Andere Modellelemente werden in einer
hierarchischen Baumstruktur, dem Project Manager dargestellt und deren
Eigenschaften in einem Eigenschafts-Dialog.

Das AUTOSAR BLINKER-BEISPIEL

Im Folgenden betrachten wir eine einfache AUTOSAR Softwarearchitektur.
Die Architektur verwaltet die rechte und linke Blinkerleuchte eines Fahr-
zeugs. Diese werden entsprechend den Blinker- und Warnlichtsensoren
geschaltet. Die Applikationsschicht beinhaltet mehrere Softwarekompo-
nenten, die wiederum mehrere Runnables mit ausfithrbarer Software
umfassen. Die Beispielarchitektur ist in Abbildung 2.8 zu sehen. Die zwei
Softwarekomponenten auf der linken Seite lesen Sensordaten ein und prii-
fen diese auf Fehler, bevor die Signale an die niachste Softwarekomponente
weitergeleitet wird. Die Software-Komponente Indicator Composition
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empfangt diese Sensordaten. Die Komponente beinhaltet mehrere Runn-
able Entities fiir die Vorverarbeitung der Signale, sowie die Logik des
Systems. Die Aktuator-Softwarekomponenten auf der rechten Seite sind
tir die Aktivierung der Blinkerlampen zustandig. Dariiber hinaus enthalt
das Beispiel eine Konfiguration der RTE und auf der Ebene der Basis-
softwareschicht existiert die Konfiguration des Betriebssystems. Weitere
Basissoftwaremodule werden in diesem Beispiel nicht beriicksichtigt.
Dartiber hinaus wird das Beispiel um die folgenden Timing Events und
Timing Constraints erweitert. Das Runnable TssPreprocessing beinhaltet ein

Event fiir den Start ¢ und fiir das Runnable Logic wurde ein

sPreprocessing
Event fiir die Terminierung ¢f.,;. hinzugeftigt. Diese Timing Events wer-
den im Beispiel als weifie Boxen dargestellt, die mit Runnables verbunden
sind. Weiterhin beinhaltet die Softwarearchitektur drei Timing Constraints:
Ein Execution Order Constraint, welcher die Ausfiihrungsreihenfolge der
Runnables beschrankt. Dieser Constraint ist als gestrichelte Linie zwischen
den Runnables zu sehen; ein Offset Timing Constraint, welcher die Aus-
fiihrungszeit zwischen den neu hinzugefiigten Timing Events beschrankt.
Dieser wird durch die eckigen Klammern unter den Timing Events ange-
zeigt. Und schliefllich beinhaltet die Softwarearchitektur einen Execution
Time Constraint, der die Ausfithrungszeit des Logic Runnables beschrankt.

Tabelle 2.1 zeigt eine Ubersicht {iber die Timing Constraints.

TiMING ANALYSE

Ein wesentliches Merkmal von Steuergeratesoftware ist, dass sie Teil eines
groeren Systems mit physikalischen Schnittstellen ist. Uber diese Schnitt-
stellen beeinflusst das System seine Umgebung. Viele Funktionen wie bei-
spielsweise das Auslosen eines Airbags miissen zeitlich zusammen mit Ex-
eignissen der Umgebung ausgefiihrt werden. Das korrekte Verhalten des
Systems ist daher nicht nur abhangig von korrekten Funktionsergebnissen,
sondern auch vom Zeitpunkt an denen diese Ergebnisse zur Verfiigung ste-
hen. Daher wird das System auch als Echtzeitsystem bezeichnet (Buttazzo,
2011, Stankovic und Ramamritham, 1988). Fiir die ingenieurmafiige Ent-
wicklung solcher Systeme ist es daher wichtig Zeitanforderungen und Zeit-
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Tabelle 2.1: Beispiel Timing Constraints

Beschreibung Timing Constraint

Die Runnables 7ee = (TssPreprocessing, Logic, Toggle)
TssPreprocessing, Logic

und Toggle miissen
nacheinander ausgefiihrt
werden.

Die Berechnung des
Blinker-Logik muss
frithestens nach 3ms und
spatestens nach 4 beendet
sein, nachdem die
Vorverarbeitung des des
Blinkersensors gestartet
wurde.

— t
Vore = (esTssPreprocessing7 eLogic’ 3, 4)

Die Berechnung des Logic  ,, = — (Logic, 10, 30)
Runnables muss zwischen

1oms und 30ms beendet

sein.

Die Berechnung des Toggle .~ — (Toggle, 1, 5)
Runnables muss zwischen
1ms und 5ms beendet sein.

eigenschaften in Anforderungsartefakten und Architekturmodellen zu er-
fassen.

Wie in Abschnitt 2.1.2 bereits beschrieben ermdglicht es AUTOSAR eben-
falls Zeitanforderungen und Zeitgarantien des Echtzeitsystems im Archi-
tekturmodell festzuhalten. AUTOSAR liefert aber keine Methoden, um die
Korrektheit der Zeitanforderungen zu tiberpriifen. Fiir die Analyse des Mo-
dells und allen weiteren beteiligten Artefakten wie beispielsweise Regler-
code, Bindrcode und Hardwarespezifikationen werden daher Timing Ana-
lyseverfahren benétigt. Diese Verfahren konnen auf verschiedenen Ebenen
und mit unterschiedlichen Methoden erfolgen (Traub, 2010).
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MobgL-IN-THE-Loor-

SIMULATION

SorTwARE-IN-THE-LooP-
SIMULATION

HArDWARE-IN-THE-LooP-
SIMULATION

WorsT-Case Execution
Tmmes, WCET)

Zum einen konnen Laufzeiten durch experimentelle Verfahren gemessen
werden. Dazu werden in fritheren Entwicklungsphasen Simulationsmo-
delle der Regler, Hardware und der Umgebung verwendet und innerhalb
einer Model-In-The-Loop-Simulation (MIL-Simulation) simuliert. In spateren
Phasen lassen sich dann Reglermodelle zundchst gegen Software austau-
schen, um diese in einer Software-In-The-Loop-Simulation (SIL-Simulation)
zu testen und dann schlieSlich durch reale Hardware auszutauschen, um
dann Laufzeittests durchzufiihren (Traub, 2010). Die Simulation zusam-
men mit realer Hardware wird auch als Hardware-In-The-Loop-Simulation,
(HIL-Simulation) bezeichnet (Schauffele und Zurawka, 2010). Diese Ver-
fahren konnen jedoch nicht das gesamte Systemverhalten verifizieren und
somit keine kritische Randfélle wie obere Laufzeitschranken (Worst-Case
Execution Times, (WCET)) finden. Werkzeuge fiir die Timing Simulation
sind beispielsweise ChronSim (Anssi et al., 2012) und die Real-Time Testing
Observer Library (dASPACE GmbH, 2020).

Zum anderen konnen Laufzeiten mithilfe analytischer Verfahren berech-
net werden. Der Vorteil dieser Verfahren ist, dass sie den gesamten Zu-
standsraum des Modells untersuchen und somit auch Worst-Case Execu-
tion Times berechnen konnen. Dies ist notwendig, um Zeitanforderungen
wie AUTOSAR Timing Constraints verifizieren zu konnen.

Diese Methoden unterscheiden sich weiterhin hinsichtlich ihrer Genauig-
keit und der verwendeten Modelle. Zhang et al. (2014) unterscheiden zwei
verschiedene Ebenen, auf denen Timing Analysen erfolgen:

1. Analyse auf Taskebene: Diese Methoden berechnen die Worst-Case
Execution Time (WCET) fiir einen einzelnen Task oder Codeblock
und bendtigen dafiir den auszufiihrenden Quellcode oder die fiir
die Zielplattform kompilierte und ausfithrbare Bindrdatei, sowie
ein Modell der Hardwareplattform, auf denen der Code ausgefiihrt
wird.

2. Analyse auf Systemebene: Diese Methoden untersuchen die Laufzeit
eines gesamten Echtzeitsystems bestehend aus mehreren in einem
Netzwerk verteilten Steuergerdten, auf denen wiederum mehrere
Tasks ausgefiihrt werden. Diese Methoden werden haufig auch
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als System-Level Performance Analysis bezeichnet. Einige Methoden
bendtigen jedoch als Grundlage die auf Taskebene berechneten
WCETs.

Der in dieser Arbeit entwickelte Ansatz verifiziert das Zeitverhalten eines
vollstandigen AUTOSAR-Systems und fallt daher in die Kategorie Analy-
se auf Systemebene. Er setzt jedoch voraus, dass die WCETs einzelner Tasks
bekannt sind. Dafiir lassen sich existierende Werkzeuge wie beispielsweise
aiT (Ferdinand und Heckmann, 2004) verwenden oder Schéatzungen auf der
Grundlage von Expertenwissen durchfiihren.

2.2 ANFORDERUNGSMODELLE UND ANFORDERUNGSQUA-

LITAT

Ein Teilbereich des Systementwicklungsprozesses beschiftigt sich mit
der Gewinnung von Anforderungen und der Dokumentation von An-
forderungsartefakten. Der Begriff Anforderung wird in IEEE (1990)
folgendermafien definiert:

Definition 2 (Anforderung IEEE (1990), Ubersetzung aus Pohl (2008)). Eine
Anforderung ist :

1. Eine Bedingung oder Eigenschaft, die ein System oder eine Person benotigt,
um ein Problem zu ldsen oder ein Ziel zu erreichen.

2. Eine Bedingung oder Eigenschaft, die ein System oder eine Systemkompo-
nente aufweisen muss, um einen Vertrag zu erfiillen oder einem Standard,
einer Spezifikation oder oder einem anderen formell auferlegten Dokument
zu gentigen.

3. Eine dokumentierte Reprisentation einer Bedingung oder Eigenschaft wie
in 1 oder 2 definiert

In diesem Abschnitt wird ein Uberblick iiber Modellierungssprachen fiir
Anforderungen in der Systementwicklung gegeben. Der Fokus liegt dabei
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auf Sprachen, die das Modellieren von Echtzeiteigenschaften erlauben. Wei-
terhin wird Konsistenz als ein relevantes Qualitatskriterium fiir Anforde-
rungsartefakte genauer vorgestellt, da dies im Rahmen der Arbeit Anwen-
dung findet.

221 ANFORDERUNGSMODELLIERUNG IN DER SYSTEMENTWICKLUNG

Ein wesentlicher Aspekt bei der Entwicklung von elektronischen Systemen
und Software ist das Erheben und Verwalten von Anforderungen. Ubli-
cherweise erfolgt die Spezifikation am Anfang des Entwicklungsprozesses,
sie kann aber auch wahrend der Projektdurchfiihrung weiterhin angepasst
werden (Pohl, 2008). Schauffele und Zurawka (2010) beschreiben das An-
forderungsmanagement als Unterstiitzungsprozess fiir die Systementwick-
lung mit den Teilaufgaben des Erfassens von Anforderungen und Verfol-
gens von Anforderungen, wahrend die Erstellung der logischen und techni-
schen Systemarchitektur durch die Analyse der Anforderungen dem Kern-
prozess des V-Modells zugerechnet wird (siehe Abbildung 2.1).

Die akzeptierten Benutzeranforderungen sind die Basis fiir alle weiteren
Entwicklungsphasen (Schauffele und Zurawka, 2010). Sie werden zunachst
informell als natiirlichsprachlicher Text festgehalten, um auch fiir den Kun-
den verstandlich zu sein. Im weiteren Verlauf werden dann die textuellen
Anforderungen weiter verfeinert und formalisiert, beispielsweise mithilfe
der Unified Modeling Language (UML). Die UML ermoglicht das beispielhaf-
te Modellieren von Anforderungen in Form von Anwendungsfillen (Use
Cases) mithilfe einer grafischen Syntax Object Management Group (2015).
Diese beschreiben formal die Interaktion eines Anwenders mit dem System
und ermdglichen es Beziehungen zwischen Anwendungsféllen, sowie wei-
tere Bedingungen festzuhalten. Diese Bedingungen kénnen dann formal als
OCL-Constraints spezifiziert werden (Object Management Group, 2014).

In den Phasen der Systementwicklung wird haufig das UML-Profil
SysML eingesetzt. Es erweitert die UML iiber den UML-Profile Mecha-
nismus um Sprachkonstrukte und Diagramme zur Spezifikation von
Anforderungen. Diese konnen dann hierarchisch strukturiert werden.
Des Weiteren konnen Beziehungen der Anforderungen untereinander
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definiert werden, sowie zwischen Anforderungen und weiteren Mo-
dellelementen aus der Systemarchitektur (Object Management Group,
2017). Die eigentliche Anforderung ist jedoch weiterhin in textueller Form
festgehalten. Fiir die Modellierung von Anforderungen mit Zeitbezug
ist das nicht ausreichend. Daher existieren verschiedene Ansatze, die die
Modellierung von Anforderungen mit Zeitbezug in den unterschiedlichen
Entwicklungsphasen unterstiitzen.

2.22 MODELLIERUNG VON TIMING ANFORDERUNGEN

Timing Anforderungen (auch Echtzeitanforderungen genannt) werden
ebenso wie andere Anforderungsartefakte auch zundchst natiirlich-
sprachlich beschrieben. Es ist jedoch sehr schwierig natiirlichsprachliche
Anforderungsartefakte direkt in AUTOSAR Timing Constraints zu tiber-
fithren, da der Unterschied im Detaillierungsgrad sehr hoch ist. Daher
werden die natiirlichsprachlich festgehaltenen Timing Anforderungen
zundachst in zeitbehaftete Modelle auf funktionaler Systemebene tiberfiihrt
und dort weiter zerlegt. Bei der Spezifikation der technischen Systemar-
chitektur werden dann die zuvor spezifizierten Timing Anforderungen
auf Timing Anforderungen fiir einzelne Steuergerite abgebildet, um so
die Liicke zwischen textuellen Anforderungen und AUTOSAR Software-
architektur zu schliefen (AUTOSAR, 2019d). Abbildung 2.9 zeigt die
Dekomposition von Funktionen und die Abbildung dieser Teilfunktionen
auf Steuergerate. Die den Funktionen zugehorigen Timing Anforderungen
miissen ebenfalls zerlegt werden und auf Timing Anforderungen fiir
Steuergeratefunktionen abgebildet werden.

Fiir die Modellierung von Timing Anforderungen auf Systemebene wer-
den existierende Modellierungssprachen verwendet, die um Methoden zur
Spezifikation von Timing Anforderungen erweitert wurden. So kann bei-
spielsweise das UML-Profil MARTE genutzt werden (Object Management
Group, 2011a). MARTE erweitert die UML um Sprachkonstrukte zur Mo-
dellierung und Analyse von Echtzeitsystemen. Es besteht im Wesentlichen
aus drei Hauptpaketen. Das MARTE Analysis Model beinhaltet Konzepte zur
Validierung und Verifikation, das MARTE Design Model beinhaltet Elemen-
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Abbildung 2.9: Dekomposition von Funktionen (AUTOSAR, 2019d)

te zur Modellierung von Echtzeitsystemen und das Paket MARTE Founda-
tions beinhaltet generelle Elemente, die innerhalb der anderen Pakete beno-
tigt werden (Ribeiro et al., 2018). Unter anderem ermoglicht das Unterpaket
Time sehr detailliert die Modellierung von Zeiteigenschaften. Konkrete Zeit-
instanzen werden durch Uhren (Clocks) festgehalten und Timing Anforde-
rungen iiber Uhren kénnen dann durch Clock Constraints festgelegt werden.
Eine Ubersicht {iber die Pakete des Profils findet sich in Abbildung 2.10.

Weiterhin existieren verschiedene Ansdtze wie beispielsweise Ribeiro
et al. (2018), die SysML und MARTE in einem Metamodell kombinieren.
Dieses Metamodell spezifiziert beispielsweise fiir die Requirements aus
SysML spezialisierte Elemente fiir nichtfunktionale Anforderungen und
Timing Anforderungen, die es erlauben fiir eine Anforderung zusatzlich
Zeiteigenschaften wie minimale und maximale Antwortzeiten festzulegen.
Ebenfalls gibt es weitere Typen von Beziehungen zwischen Anforderun-
gen. So kann mit der «Synchronized» Beziehung explizit die synchrone
Ausfiihrung von Anforderungen modelliert werden.

Eine weitere, in der Automobilindustrie verbreitete, doméanenspezifische
Sprache ist EAST-ADL (EAST-ADL Association, 2013). Die Sprache defi-
niert vier verschiedene Abstraktionsebenen fiir die Modellierung von elek-
trisch / elektronischen Systemen. Angefangen mit der Fahrzeugebene (Vehicle
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Abbildung 2.10: Architektur des MARTE Profils

Level) werden auf dieser Ebene Featuremodelle erstellt und daraus dann
Architekturmodelle, erst auf Analyseebene (Analysis Level) als sogenannte
Functional Analysis Architecture und dann auf Entwurfsebene (Design Level)
als Functional Design Architecture weiter verfeinert. Die Implementierungs-
ebene als unterste Ebene nutzt dann den AUTOSAR-Standard fiir die Spe-
zifikation der Softwarearchitektur. Auf jeder Ebene konnen zu den entpre-
chenden Modellen Anforderungen und Timing Constraints definiert und
referenziert werden. Timing Constraints lassen sich dabei schon auf einem
ahnlichen Abstraktionsnievau wie bei AUTOSAR modellieren, konnen aber
bereits auf Fahrzeugebene angewendet werden. Eine Ubersicht iiber die Ar-
chitektur von EAST-ADL zeigt die Abbildung 2.11.

2.2.3 KONSISTENZ VON ANFORDERUNGSDOKUMENTEN

Anforderungsdokumente beinhalten die dokumentierten Anforderungsar-
tefakte fiir das zu entwickelnde System. Gerade die anfangs in Form des
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Abbildung 2.11: EAST-ADL Architekturebenen(EAST-ADL Association,
2013)

Pflichtenhefts dokumentierten Anforderungsartefakte sind von zentraler
Bedeutung, da sie die Grundlage fiir alle weiteren Aktivititen in der
Systementwicklung bilden (Pohl, 2008). Ein fehlerhaftes Anforderungsdo-
kument ist daher eine der Hauptursachen fiir Softwarefehler (Galin, 2004).
Eine hohe Qualitit der Anforderungsdokumentation und der einzelnen
darin enthaltenen Anforderungsartefakte ist daher wichtig, um eine hohe
Softwarequalitdt zu erreichen.

In der Literatur werden verschiedene Qualitédtskriterien fiir Anforde-
rungsdokumente vorgeschlagen, die die Qualitdt eines Anforderungsdo-
kumentes bewerten. So definiert die IEEE in IEEE (1998) Charakteristiken
fiir ,gute “Anforderungen. Dort wird beschrieben, dass Anforderun-
gen korrekt, eindeutig, vollstindig, konsistent, {iberpriifbar, gewichtet,
anderbar und riickverfolgbar sein sollen.

Im Kontext der analytischen Qualitédtssicherung mithilfe formaler Metho-
den ist insbesondere das Qualitatskriterium Konsistenz von entscheidender
Bedeutung, da die Durchfiihrung laufzeitintensiver Verifikationsmethoden
nur auf der Basis einer konsistenten Anforderungsmenge verwertbare Er-

gebnisse liefern kann.

Konsistenz von Anforderungen wird in IEEE (1998) als , interne Konsis-
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tenz “konkretisiert, denn ist eine Anforderungsmenge inkonsistent zu ei-

nem externen Spezifikationsdokument, so ist sie nicht korrekt.

Definition 3 (Interne Konsistenz (IEEE, 1998)). Eine Anforderungsmenge ist
,intern konsistent “, wenn keine Teilmenge im Konflikt zueinander steht. Ein Kon-
flikt ist dann vorhanden, wenn

1. die Eigenschaften der realen Objekte im Konflikt zueinander stehen,

2. logische oder temporale Konflikte zwischen zwei oder mehr Aktionen be-
stehen,

3. zwei oder mehr Anforderungen unterschiedliche Bezeichnungen fiir dasselbe
reale Objekt haben.

Der Fokus dieser Arbeit liegt auf der Konsistenzpriifung von AUTOSAR
Timing Constraints. Wir gehen daher davon aus, dass Anforderungen be-
reits als Timing Constraints formalisiert wurden, sodass Konflikte, die aus
1 und 3 resultieren, bereits aufgelost wurden. Da die Timing Anforderun-
gen ausschliefslich Aussagen tiber das Zeitverhalten des Systems machen,
bezieht sich der Konsistenzbegriff im Verlauf der Arbeit explizit auf tempo-
rale Konflikte innerhalb einer Anforderungsmenge.

2.3 FORMALE ANALYSE

Formale Methoden sind Modellierungssprachen, die durch eine formale,
mathematisch definierte Semantik charakterisiert sind (Clarke und Wing,
1996). Fiir diese Methoden lassen sich Analyseverfahren entwickeln, mit
denen sich konkrete Eigenschaften eines Modells formal beweisen lassen.
Diese Analyseverfahren sind beispielsweise das sogenannte Model Checking
(Clarke und Emerson, 1981, Queille und Sifakis, 1982), bei dem der gesamte
Zustandsraum eines Modells exploriert wird und auf dessen Erfiillbarkeit
hinsichtlich einer Temporallogischen Formel gepriift wird, Abstrakte Inter-
pretation (Cousot und Cousot, 1977), bei der die Programmanalyse tiblicher-
weise iiber eine Datenflussanalyse erfolgt, diese jedoch tiber die Definition
eines Verbandes tiber-approximiert wird oder Deduktive Verifikation (Hoare,
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TiMED AUTOMATA

1969), bei der die Analyse eines Programms iiber Axiome und Beweisregeln
erfolgt. In diesem Abschnitt werden formale Methoden vorgestellt, die im
Rahmen der Arbeit zur Anwendung kommen.

2.3.1 FORMALE MODELLIERUNG VON ECHTZEITSYSTEMEN

Durch die Verfiigbarkeit von Modellierungstechniken zur Spezifikation
von Echtzeitsystemen konnen komplexe technische Systeme in verschiede-
nen Entwicklungsphasen und aus unterschiedlichen Sichten beschrieben
werden. Fiir die bisher beschriebenen Sprachen existiert jedoch keine for-
male Semantik, sodass die automatische Verifikation auf diesen Modellen
nicht moglich ist. Erst durch die Anwendung von formalen Sprachen
ist es moglich fiir dynamische Modelle Eigenschaften wie Erreichbar-
keit von Systemzustinden oder Deadlockfreiheit, sowie Safety- und
Liveness-Eigenschaften zu priifen. Formale Sprachen zur Spezifikation
von Echtzeitsystemen sind beispielsweise Timed CSP (Reed und Roscoe,
1986), eine Erweiterung der Sprache CSP von Hoare (1978) um Zeit,
Timed Petri-Nets (Ramchandani, 1973), eine zeitbehaftete Erweiterung von
Petrinetzen, PLC-Automata (Dierks, 1997), Zeitautomaten (Timed Automata)
(Alur und Dill, 1994), Duration Calculus (Chaochen et al., 1991) oder Timed
CCS (Yi, 1991). Wir verwenden in unserem Ansatz Timed Automata zur for-
malen Spezifikation. Fiir Timed Automata existieren mehrere Werkzeuge
zur Modellierung und Verifikation, auf die wir fiir die Generierung der
Modelle in dieser Arbeit zuriickgreifen kénnen. Im Folgenden gehen wir
naher auf die Spezifikation und Analyse von Timed Automata ein.

2.3.2 TIMED AUTOMATA

Timed Automata wurden 1994 von Alur und Dill (1994) eingefiihrt, um das
Verhalten von Echtzeitsystemen zu modellieren. Sie erweitern das Konzept
von Biichi Automaten um Uhren mit reellen Zeitwerten. Dadurch lassen
sich zeitliche Bedingungen an Zustanden und Kanten annotieren.

Definition 4 (Uhrenconstraints (Clock constraints)). Sei X eine Menge von
Uhren und sei ®(X) die Menge der Uhrenconstraints mit Constraints ¢ wie folgt
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definiert:

pu=x~clx—y~c|lpAe,

mit x,y € X, ¢ € Q=° und ~€ {<,>,<, >}

Im Folgenden wird die Spezifikation von Timed Automata auf der

Basis von Alur und Dill (1994) vorgestellt. Die Notation ist aus Olderog

und Dierks (2008) entnommen und erweitert um die Spezifikation von

Broadcast-Kandlen aus Behrmann et al. (2004).

Definition 5 (Timed Automata). Ein Timed Automaton ist ein Tupel
A= (L,B,B*, X, I, U, L, L) mit:

einer endlichen Menge an Locations L,

einer Menge von Signalen B, die mittels Handshake miteinander kommuni-

zieren,

einer Menge von Signalen B*, die iiber Broadcast-Kandle miteinander kom-

munizieren,
einer Menge von Uhren X,
einer Zuweisung von Invarianten zu Locations I : L — ®(X),

einer Abbildung fiir die Locations, ob diese unmittelbar (urgent) ausgefiihrt
werden miissen (sodass in diesen Locations die Zeit nicht weiterlaufen kann)
U: L — {true, false},

einer Menge von Kanten gelabelt mit Signalen, einem Guard und einer Men-
ge von Uhren, die zuriickgesetzt werden: E C Lx BUB* x ®(X) x P(X) x L,

und einer initialen Location I,; € L.

®(X) spezifiziert eine Menge von Uhrenconstraints (beispielsweise x < 3,

siehe dazu auch Olderog und Dierks (2008)). Eine Konfiguration eines Timed

Automaton ist dann ein Paar einer Location und einer Wertzuweisung
(clock valuation) » : X — Time, wobei Time € R(=°) reelle Zahlen sind. Wir
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verwenden v |= ¢ fiir einen Uhrenconstraint ¢ € ®(X), falls der Constraint
tiir die jeweilige Wertzuweisung gilt, was folgendermafien definiert ist:

vEx~c  gdw. (x) ~c,
vEx—y~c  gdw. v(x) —¥(y) ~ ¢,
vEQo N,  gdw. vEo undy =@,

Die Abbildung 2.12 zeigt einen Beispielautomaten wie er in UPPAAL spe-
zifiziert wird. Der Automat zeigt eine vereinfachte Variante eines in einen
Timed Automaton transformierten Runnable Entity mit vier Locations und
vier Transitionen. Die Locations reading und writing sind spezielle Urgent lo-

Urcent Locations  cations, erkennbar am Symbol U, in denen die Zeit nicht weiterlaufen kann.
Sie sind semantisch dquivalent zu einer Location mit einer Uhr und einer In-
variante x < o auf dieser Location. Erhalt der Automat das start-Signal, wird
die Transition zur Location reading ausgefiihrt und die Uhr x zuriickgesetzt.
Uber das Signal bulb_signal erfolgt die Transition in die running-Location.
Aufgrund der Invariante und dem Guard der folgenden Transition bleibt
der Automat maximal 2 und mindestens 1 Zeiteinheit in dieser Location.
Danach erfolgt die Transition in die Location writing und finished tiber die

jeweiligen Signale.

reading

value!

Abbildung 2.12: Beispiel Timed Automaton visualisiert mit UPPAAL

Die operationelle Semantik von Timed Automata wird als gelabel-
tes Transitionssystem definiert. Transitionssysteme wurden von Keller
(1976) eingefiihrt und zuerst von (Plotkin, 1981) zur Spezifikation von
Programmier- und Spezifikationssprachen verwendet. Die Semantikdefini-
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tion basiert auf Behrmann et al. (2004) und der Notation aus Olderog und
Dierks (2008).

Definition 6 (Semantik fiir Timed Automata). Die operationelle Seman-
tik von Timed Automata A ist definiert als gelabeltes Transitionssystem

T('A) = (C’O}’ZﬂA), 7 Cim') mit:
o ConflA) ={(Ly) | L€ L,v: X — Time,v = I(})},
e ciner initialen Konfiguration Cy; = {(lini vini) }

* und einer Transitionsrelation — C Conf(A) x (Time U B) x Conf(.A) mit
zwei verschiedenen Arten von Transitionen:

— Delay-Transition: (I,v) < (Lv+1) falls v+ ¢ = I())V/ € o, ] AV €
L U(l) = false

— Aktions-Transition: (I,v) — ([,V/) falls (e, , Y,l') € Emit v |= @
undy =Y :=oland v E I(I).

Einzelne Timed Automata konnen zu einem Netzwerk zusammengefasst Nerzwerk
werden. Dabei konnen die Automaten {iber zwei verschiedene Wege mit-
einander kommunizieren: synchron mittels Handshake-Kommunikation
(wie beispielsweise auch in der Prozessalgebra CCS (Milner, 1980)) oder
iiber Broadcast-Kandle. Der Sender in einer Broadcast-Kommunikation
kann dann mit allen Timed Automata kommunizieren, die gerade fiir den
Empfang iiber den Broadcast-Kanal aktiviert sind. Im Folgenden wird
die Semantikdefinition aus Behrmann et al. (2004) mit der Notation aus
Olderog und Dierks (2008) vorgestellt:

Definition 7 (Semantik von Timed Automata Netzwerken). Fiir ein Timed
Automata Netzwerk N = A; = (L;, By, BY, Xi, Iy Ei, Lini i) mit i = 1,..., n ist die
Semantik definiert als Transitionssystem T (N') = (ConfIN'), =, Cini) mit:

o ConfiIN)={(Lv) | i€ LiNv: X — Time Avi= NI, Tu(k)}

e ciner initialen Konfiguration Ci = {Uini, vim)} 0 ConfIN') mit

—

lini = (Zim',i, ceey Zini,n) und Uini<x) =o0
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* und einer Transitionsrelation —= ConfIN') x ConfIN') mit drei verschiede-
nen Arten:

— Eine lokale Transition (I, o) 2 (I, ) fiir einen Timed Automaton i €
{1...n} findet statt, wenn es eine Kante (I, a., @, Y, I}) € E gibt, sodass

—vFe
_ ﬁ: l[l, = l;],
— v =uY:=o0|lund v = (L)

— Synchronisationstransition: (L o) 5 (I, ) fiir zwei Timed Automata
i,j € {1,...,n} mit i ¢ jund einem Kanal binB; N B; und Kanten
(b, 9, Y3, [) € Eyund (I, b?, s Y;, Z]’) €L

- Delay-Transition: (L) 5 (1 v+1) fallsv+7 = N\, Te(le)V? € o, 1.

FORMALE BESCHREIBUNG VON ANFORDERUNGEN MITTELS TEMPORALLO-
GIKEN Die Moglichkeit zur formalen Beschreibung von Systemeigen-
schaften reaktiver Systeme iiber Temporallogiken wurde zuerst von Pnueli
(1977) mit der Linear Temporal Logic (LTL) eingefiihrt. Diese lésst sich jedoch
nur auf Modellen mit diskreter Zeit anwenden. Erweiterte Logiken zur
Beschreibung von Echtzeiteigenschaften auf Modellen mit kontinuierli-
cher Zeit wie bei Timed Automata wurden dann durch die Erweiterung
existierender Temporallogiken ermdglicht. Diese sind beispielsweise Timed
Computation Tree Logic (TCTL) von Alur et al. (1993), die eine Erweiterung
der Computation Tree Logic (CTL) von (Clarke und Emerson, 1981) ist,
sowie Metric Temporal Logic (MTL) (Koymans, 1990) und Timed Propositional
Logic (TPTL) (Alur und Henzinger, 1989) als Erweiterung von LTL. In
dieser Arbeit wird eine Teilmenge von TCTL verwendet, die sich mittels
UPPAAL tiberpriifen lasst. Die Syntax und Semantik dieser Logik wird in
den Definitionen 8 und 9 beschrieben.

UPPAAL Zur Verifikation von Timed Automata existieren verschiedene
Werkzeuge wie beispielsweise UPPAAL ¥ (Larsen et al., 1997), Kronos$ (Yo-

thttp://www.uppaal.org
Shttp://www-verimag.imag.fr/DIST-TOOLS/TEMPO /kronos/
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vine, 1997) oder HyTech (Henzinger et al., 1997). In dieser Arbeit wird zur
Verifikation der AUTOSAR Timing Anforderungen UPPAAL eingesetzt, da
das Werkzeug die Spezifikation von Timed Automata, wie in Definition 5
beschrieben, vollstandig unterstiitzt. Abbildung 2.13 zeigt einen Screenshot
der grafischen Oberfliche von UPPAAL mit dem Bridge-Crossing Problem
aus Levmore und Cook (1981). Die Oberflache ermoglicht die einfache De-
finition von Timed Automata und TCTL-Queries und ermdoglicht dariiber
hinaus den Verifikationsprozess zu starten und fehlerhafte Traces in einer

Simulation zu inspizieren.

m C:/Diss/Tools/uppaal-4.0.13-aca/uppaal-4.0.13/demo/bridgexml - UPPAAL - a x
Eile Edit View Tools Options Help
i
DalaaagR@-e
Edltﬂf Simulator  Verifier

Drag out : Mame: |Soldier Parameters: |constint delay

Project
i Dedarations
- |
F- 5} Torch
‘.. ® System decarations

safe

Abbildung 2.13: Screenshot von UPPAAL

UPPAAL verwendet zur Spezifikation von Modellanforderungen eine
Teilmenge von TCTL (Behrmann et al., 2004). Die Logik beinhaltet Basisfor-
meln BF, Konfigurationsformeln CF und Pfadformeln, PF, die sich wiederum
in existenzielle und universelle Pfadformeln (EPF und APF) aufteilen
(Olderog und Dierks, 2008). Im folgenden wird die Syntax beschrieben:
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Definition 8 (UPPAAL-TCTL Formeln Olderog und Dierks (2008)).

BF == A;.l| ¢,
CF ::= BF| ~CF| CF, A CF,,

EPF ::= 30CF | 30CF,

APF = YOCF | YOCF | CF, — CF,,
PF ::= EPF | APF.

Definition 9 (UPPAAL-TCTL Semantik Olderog und Dierks (2008)). Sei &
ein Pfad einer Konfiguration mit Start (o, v,), t, und fiir einen Wert t € Time
sei () ={([v) | I eN:( <t<tiuNl=1LNv=rv+t—1)} die Menge
der Konfigurationen zum Zeitpunkt r. Sei |= eine bindre Erfiillbarkeitsrelation zwi-
schen Konfigurationen (lz , Vo), Lo eines Timed Automata Netzwerks und Formeln F
geschrieben als (Z:vo>, to = Fwird induktiv definiert:

(loyvo)sto = Al gdw. [ =1
(lo,70), 10 = ¢ gdw. Vo = @
(loyvo), to = ~CF  gduw. (loyv0), 1o = CF,
(lo,vo), 1 = CE,ACF,  gdw. (g, %), to = CF, und {Iy, %), t = CF,
(lo,vo), 1o = 3OCF  gdw. 3¢ mit Start bei (Ig, %), to

3t € Time, <Zv> € Conf:t, <t

A3 € 86 A (L), ¢ = CF,

<Z:, ¥o), to = VOCF  gdw. VE mit Start bei (Z:, Vo), Lo
V't € Time, (I,v) € Conf:to <t

A3 € EON = (T}, 1= CF,

(I, %), to = 3OCF  gduw. 3¢ mit Start bei (Ig, %), to
Vt € Time, (Lv) € Conf:t, <t

ALy € &A= (L)t = CF,

(lo,vo), o EYOCF  gdw. VE mit Start bei (I, ), to
3t € Time, (Lv) € Conf:t, <t

AT3) € £ A (L)1 = CF,
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(lo,v), 10 = CF, — CF,  gdw. VE mit Start bei (I, v5), to
YVt € Time, <Zv> € Conf:t, <t

ML) € o)A = (Lv),t|= CF

impliziert (Lv),t = YOCF,.

2.3.3 SATISFIABILITY MODULO THEORIES

Das Satisfiability Modulo Theories (SMT) Problem ist eine Erweiterung des all-
gemeinen Erfiillbarkeitsproblems fiir boolsche Formeln (Boolean Satisfiabili-
ty Problem (SAT))) um eine Hindergrundtheorie (Barrett, Clark und Tinellj,
Cesare, 2018). Eine Hintergrundtheorie 1asst sich informell als endliche oder
unendliche Menge an Formeln, die durch gemeinsame grammatikalische
Regeln charakterisiert sind, beschreiben (Kroening und Strichman, 2008).
Beispiele hierfiir sind lineare Arithmetik, Bitvektoren, Arrays oder Zeiger-
logik. Die in dieser Arbeit verwendete Theorie ist die der linearen Arithmetik.
Diese ist wie folgt definiert:

Definition 10 (Syntax fiir SMT Formeln mit linearer Arithmetik). Die Syntax
einer pridikatenlogischen Formel mit linearer Arithmetik ist durch die folgende
Grammatik gegeben (Kroening und Strichman, 2008):

Jformula : formula N formula | (formula) | atom
atom : sum op sum
op : :‘§‘<
sum : term | sum + term

term : identifier | constant | constant identifier.

Formeln bestehen also aus Konjunktionen linearer Constraints. Ein linearer
Constraint ist dabei eine (Un-)Gleichung iiber Terme, die wiederum Kon-
stanten oder Variablen sein kénnen. Die Syntax lasst sich einfach um die
Operatoren > und > sowie — erweitern, indem die jeweiligen Symbole ne-
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OPTIMIERUNGSAUFGABEN

MAXIMUM SATISFIABILITY

Unsat CORES

MaxSMT

giert werden. Als Domane fiir die Terme kénnen sowohl rationale Zah-
len als auch natiirliche Zahlen (Integer) gewahlt werden. Formeln mit ra-
tionalen Zahlen lassen sich mit dem generellen Simplexalgorithmus und
damit in polynomieller Zeit 10sen. Fiir natiirliche Zahlen ist das Problem
NP-vollstandig (Kroening und Strichman, 2008). Ein Beispiel fiir eine sol-
che Formelist F =4 +1<a,Na, +5 < 4,

Im weiteren Verlauf der Arbeit verwenden wir ein Werkzeug zur Losung
der Erfiillbarkeit von logischen Formeln mit linearer Arithmetik, um die

Konsistenz von Timing Anforderungen zu tiberpriifen.

2.3.4 MAXIMUM SATISFIABILITY & UNSATISFIABLE CORES

Die zuvor beschriebenen Methoden erméglichen es logische Formeln auf ih-
re Erfiillbarkeit hin zu tiberpriifen. Das blofie Wissen iiber die Erfiillbarkeit
ist jedoch nicht immer ausreichend. Insbesondere, wenn eine Formel nicht
erfiillbar ist, ist es wichtig zu wissen warum diese nicht erfiillbar ist. Daher
gibt es neben dem Erfiillbarkeitsproblem weitere Fragestellungen, die sich
mit Optimierungsaufgaben fiir logische Formeln beschéftigen (Bjorner und
Phan, 2014). Im Folgenden werden die Probleme der Maximum Satisfiability
zum Finden einer maximal grofsen Menge erfiillbarer Formeln und des Un-
sat Cores zum Finden einer minimal grofsen Menge unerfiillbarer Formeln

vorgestellt.

MAXIMUM SATISFIABILITY

Die Aufgabe des Findens einer maximal groflen Menge an erfiillbaren For-
meln wird auch als MaxSMT bezeichnet und wird in Bjorner und Phan
(2014) folgendermafien definiert:

Definition 11 (Weighted MaxSMT). Gegeben sei eine Menge an Formeln F und
numerischen Gewichten w € W zusammen mit einer Funktion fiir jede Formel
¢+ F — W. Dann ist es die Aufgabe fiir Weighted Maximum Satisfiability
Solving Modulo Theories (MaxSMT) eine Teilmenge I C F zu finden, sodass:

1. Npe,ferfiillbar ist und
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2. > per o(f) maximal fiir alle Teilmengen von F ist.

Ist also eine logische Formel nicht erfiillbar, so beschreibt das Problem
MaxSMT das Finden einer Teilmenge von Formeln, die eine zuvor festge-
legte Kostenfunktion maximiert. Falls es keine Prioritdten bei den Formeln
gibt, so wird ¢(f) = 1 fiir alle Formeln gesetzt. Das Finden eines Maxi-
mum Satisfiable Sets ist ebenfalls wie das einfache Erfiillbarkeitsproblem
NP-vollstandig (Garey et al., 1976). Das folgende Beispiel verdeutlicht die
Definition von MaxSMT:

Beispiel 1 (Beispiel fiir MaxSMT). Sei F := {f, f./;} eine Menge von Formeln
mit fi:=a < b, f, == b < cund f; := ¢ < a, wobei a, b und c jeweils Konstanten
sind. Die Formelmenge F ist nicht erfiillbar, da es fiir die Konjunktion der Formeln
keine erfiillbare Belegung der Konstanten gibt. Die Teilmengen I, := {f;,f,}, I, :=
{2, 5} und I := {f;, i} sind hingegen erfiillbar und maximal grofs. Eine erfiillbare
Belegung fiir I, wire beispielsweise a = 1, b = 2, ¢ = 3. Daher sind diese Teilmengen
Beispiele fiir eine Losung von MaxSMT.

In dieser Arbeit verwenden wir einen Algorithmus zum Ldsen von
MaxSMT, um eine maximal grofle Menge an konsistenten Anforderungen
zu berechnen.

MiniMmuM UNSATISFIABLE CORES

Ein Unsatisfiable Core (oder in Kurzform: Unsat Core) einer unerfiillbaren
logischen Formel in konjunktiver Normalform ist jede unerfiillbare Teil-
menge der urspriinglichen Menge an Klauseln (Kroening und Strichman,
2008).

Definition 12 (Unsatisfiable Core). (Lynce und Silva, 2004) Gegeben sei eine
Formel ¢, UCist ein Unsatisfiable Core fiir ¢ genau dann wenn UC eine Formel ¢,
ist, sodass @, unerfiillbar ist und ¢, C ¢.

Unsat Cores konnen dabei helfen, die Ursache fiir die Unerfiillbarkeit ei-
ner Formel zu finden, indem sie den Fokus auf eine unerfiillbare Teilmenge
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des Gesamtproblems legen (Kroening und Strichman, 2008). Fiir jede For-
mel existieren jedoch typischerweise mehrere Unsat Cores mit einer un-
terschiedlichen Anzahl an Klauseln, wobei einige Unsat Cores wiederum
Teilmengen anderer sind (Lynce und Silva, 2004). Um moglichst genau den
Grund der Unerfiillbarkeit einer Formel zu finden, ist es wichtig, dass ein
Unsat Core minimal ist. Dieser Unsat Core wird dann als Minimal Unsatis-
fiable Core bezeichnet:

Definition 13 (Minimal Unsatisfiable Core). (Lynce und Silva, 2004) Ein Un-
satisfiable Core UC fiir ¢ ist ein Minimal Unsatisfiable Core genau dann wenn aus
dem Entfernen jedes beliebigen Ausdrucks w € UC folgt, dass UC — w kein Unsa-
tisfiable Core mehr ist.

Ein Minimal Unsatisfiable Core einer unerfiillbaren logischen Formel
ist also eine Teilmenge von Aussagen, die nicht weiter verkleinert werden
kann, ohne dass sie dann erfiillbar wird (Liffiton und Sakallah, 2008). Im
Rahmen dieser Arbeit verwenden wir den Minimal Unsatisfiable Core
zur Berechnung kleinstmoglicher inkonsistenter Anforderungsmengen
und nennen ihn im folgenden einfach Unsat Core. Das folgende Beispiel
verdeutlicht die Definition:

Beispiel 2 (Beispiel fiir einen Minimal Unsatisfiable Core). Sei ¢ = 2 <
bAb<cNc<dNc<ald< b DieGesamtformel ist unerfiillbar. Jede beliebige
Teilmenge an Ausdriicken, die ebenfalls unerfiillbar ist, ist dann ein Unsatisfiable
Core, beispielsweise p, = a < bAb < cAc < dNd < b. ¢_ist jedoch nicht minimal,
da durch das Entfernen des Ausdrucks a < b die Formel ebenfalls unerfiillbar ist.
Erst aus der Formel ¢, = b < ¢ A ¢ < d N d < b kann kein weiterer Ausdruck ent-
fernt werden, ohne dass die Formel dann erfiillbar wird. Somit ist ¢, ein Minimal
Unsatisfiable Core.

Sowohl fiir das Losen von SMT-Formeln, als auch fiir die Berechnung von
MaxSMT und Unsat Core wird in dieser Arbeit der SMT Solver Z31 verwen-
det (de Moura und Bjerner, 2008). Z3 wird von Microsoft entwickelt und
wird dort bereit seit 2007 verwendet. Fiir das Erstellen von SMT-Formeln

existieren Anbindungen an die verschiedensten Programmiersprachen wie

Thttps://github.com/Z3Prover/z3
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C, OCaml, Java oder .NET. Ebenfalls ist es moglich Formeln in der standar-
disierten Beschreibungssprache SMT-LIB einzulesen (Barrett, Clark et al.,
2017, de Moura und Bjerner, 2008).

2.4 ZUSAMMENFASSUNG

In diesem Kapitel wurden die fiir diese Arbeit wichtigen Grundlagen vor-
gestellt. Zunachst wurde der Entwicklungsprozess der Automobilindustrie
vorgestellt (sieche Abschnitt 2.1). Anhand dieses Prozesses wird im néchs-
ten Kapitel (Kapitel 3) der entwickelte Ansatz einsortiert und daran dessen
Vor- und Nachteile erldautert.

Weiterhin wurde der AUTOSAR-Standard in Abschnitt 2.1 vorgestellt,
der eine Entwicklungsmethodik und Metamodell umfasst. Dieses Metamo-
dell ist Gegenstand der im weiteren Verlauf vorgestellten Analysemethoden
in Kapitel 4 und 5.

Ebenfalls wurden Anforderungsmodelle, sowie Konsistenz als relevantes
Qualitatskriterium fiir Anforderungen in Abschnitt 2.2 vorgestellt, fiir das
spater eine Methode zur Verifikation vorgestellt wird (Kapitel 5).

Es wurden formale Methoden zur Verifikation zeitbehafter Systeme, so-
wie SMT Grundlagen in Abschnitt 2.3 vorgestellt. Die in den nachfolgen-
den Kapiteln vorgestellten Ansatze nutzen diese, indem relevante Teile des
AUTOSAR-Modells in die jeweiligen Analysemodelle transformiert wer-
den, sodass existierende Werkzeuge fiir die Verifikation eingesetzt werden
konnen.
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Fruhzeitige Verifikation von
AUTOSAR Timing
Anforderungen

EINE DER WICHTIGSTEN KRITERIEN IN DER ENTWICKLUNG AKTUELLER ELEKTRISCH-
ELEKTRONISCHER ARCHITEKTUREN IST TIMING (AUTOSAR, 2019d). Der Grund
dafiir ist nicht nur, dass die zu entwickelnden Teilfunktionen Echtzeitan-
forderungen haben, sondern dartiiber hinaus auch sicherheitskritisch sind,
sodass die Absicherung besonders sorgfaltig im Sinne von Sicherheitsstan-
dards wie der ISO 26262 (ISO International Organisation for Standardisati-
on, 2018) durchgefiihrt werden muss. Des Weiteren ist die Verifikation von
Timing Anforderungen sehr aufwandig. Etablierte Validierungsmethoden
wie die Simulation des Steuergeréts unterstiitzen entweder die Simulation
des Zeitverhaltens gar nicht oder nur eingeschrankt. Ebenfalls haben diese
Verfahren nur eine eingeschrankte Aussagekraft, da sie kritische Randfille
wie obere Laufzeitschranken nur abschatzen konnen (Richter, 2005), sodass
sie fiir die Timing Verifikation ungeeignet sind (Wilhelm et al., 2008, Ha-
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mann et al.,, 2006). Werkzeuge oder Methoden zur statischen Analyse hin-
gegen konnen aufgrund der Verwendung abstrakter Modelle nur eine kon-
servative Abschitzung von Laufzeitschranken berechnen, wie beispielsweise
Real-Time Calculus von Thiele et al. (2000), Albers et al. (2008) oder Sym-
TA/S von Feiertag et al. (2008) (Zhang et al., 2014) oder haben hohe Laufzeiten,
wenn sie beispielsweise auf Model Checking Techniken wie Timed Automa-
ta basieren (Perathoner et al., 2009). Des Weiteren erfordern diese Metho-
den zudem, dass existierende Modelle wie AUTOSAR- oder Bus-Modelle
und Quellcode zunichst in fiir die Analysewerkzeuge notwendigen abs-
trakten Analysemodelle transformiert werden miissen. Daher werden diese
Methoden haufig erst spat im Entwicklungsprozess eingesetzt (Anssi et al.,
2012). Werden Fehler beim Validieren der Timing Anforderungen erkannt,
so miissen jedoch alle in den vorherigen Entwicklungsphasen erstellten Ar-
tefakte iiberarbeitet werden. Je spater Fehler identifiziert werden, desto auf-
windiger und teurer wird die Korrektur und somit die gesamte Entwick-
lung (Schauffele und Zurawka, 2010). Das Ziel ist es somit Timing Anforde-
rungen so frith wie moglich durch automatisierte Verfahren zu tiberpriifen
und gegen alle verfiigbaren Artefakte zu validieren. Somit lassen sich Fehler
frithzeitig identifizieren und Entwicklungszyklen konnen weiter verkiirzt
werden ohne dabei Defizite bei der Qualitatssicherung einzugehen.

Der im Folgenden vorgestellte Losungsansatz unterstiitzt dieses Vor-
gehen, indem Anforderungen schon vor der eigentlichen Verifikation
auf Konsistenz iiberpriift werden, sodass eine laufzeitintensive Verifika-
tion nur auf konsistenten Daten durchgefiihrt wird und somit unnétige
Wiederholungen der Verifikation aufgrund von inkonsistenten Anforde-
rungsmengen vermieden werden. Des Weiteren ldsst sich die Verifikation
ohne die Verwendung von Quellcode durchfiihren, was dazu fiihrt, dass
auch die Timing Verifikation bereits in Entwicklungsphasen durchgefiihrt
werden kann, in denen noch kein Quellcode vorhanden ist.

Dieses Kapitel stellt eine Ubersicht iiber die entwickelte Methode zur
frithzeitigen Timing Verifikation von AUTOSAR Timing Anforderungen
vor. Es wird zundchst das Konzept der integrierten Konsistenzpriifung und
Timing Verifikation vorgestellt. Danach werden die fiir die Methode be-
notigten AUTOSAR Modellelemente formal definiert. Im Anschluss wird
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diskutiert, an welchen Stellen des AUTOSAR-basierten Softwareentwick-
lungsprozesses die Methode zum Einsatz kommen kann und welche Vor-
und Nachteile daraus resultieren. Dieses Kapitel basiert teilweise aus den
bereits veroffentlichten Arbeiten Beringer und Wehrheim (2016) und Berin-
ger und Wehrheim (2020).

3.1 KONSISTENZPRUFUNG UND TIMING VERIFIKATION

Verschiedene Klassen von Timing Anforderungen ermdoglichen eine
einfache Verwendung fiir verschiedene Teile der Softwarearchitektur
in unterschiedlichen Entwicklungsphasen. Nichtsdestotrotz kann es
schwierig werden den Uberblick {iber alle Anforderungsartefakte zu
behalten, gerade wenn diese im Laufe der Zeit in Menge und Komplexitat
zunehmen, sodass Inkonsistenzen auftreten konnen. Eine inkonsistente
Anforderungsmenge kann ein Anzeichen fiir ein Missverstandnis der
erwarteten Systemfunktionalitat durch den Softwareentwickler, den Sys-
temarchitekten oder weitere Stakeholder sein. Sie kann aber auch durch
eine fehlerhafte Modellierung oder eine fehlerhafte Interpretation der
nattirlichsprachlich beschriebenen Anforderungen sein. Dariiber hinaus
fiihren inkonsistente Anforderungen immer zu fehlerhaften Verifikations-
laufen, wenn Anforderungen formal gegen die Systemarchitektur gepriift
werden, da die Verifikation unvermeidlich fiir einige Anforderungen
fehlschlagt.

Dabher ist es vorteilhaft, Inkonsistenzen in Anforderungsmengen bereits
vorab zu erkennen. Dazu schlagen wir eine Methode zur Unterstiitzung
der frithzeitigen Validierung der AUTOSAR Softwarearchitektur vor, in-
dem zunidchst der Prozess der Spezifikation von AUTOSAR Timing An-
forderungen durch eine Konsistenzanalyse vereinfacht wird und im An-
schluss daran mittels Timing Verifikation auf Korrektheit hinsichtlich der
spezifizierten Anforderungen iiberpriift wird. Dies umfasst insgesamt die
folgenden vier Schritte: Im ersten Schritt wird eine vorgegebene Menge an
AUTOSAR Timing Anforderungen auf Konsistenz iiberpriift, indem diese in
logische Formeln transformiert werden. Dies ermdglicht es die Timing An-
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forderungen zu {iberpriifen bevor weitere Verifikationsaufgaben angesto-
len werden und unterstiitzt einen Requirements Engineer bei der Fehlerbe-
hebung. Ist die Menge der Anforderungen inkonsistent, werden in einem
zweiten Schritt mogliche Ursachen fiir Inkonsistenzen identifiziert. Dazu wer-
den Teilmengen ermittelt, die zur Auflosung der Inkonsistenz in Betracht
gezogen werden sollten, und dem Anwender vorgeschlagen. Dies beinhal-
tet Teilmengen, die fiir sich gesehen bereits inkonsistent sind. Des Weiteren
werden grofitmogliche konsistente Anforderungsmengen ermittelt, sodass
ein Requirements Engineer durch die Betrachtung der Teilmenge im Zu-
sammenhang mit den restlichen Anforderungen Inkonsistenzen ausfindig
machen und auflosen kann. Unterstiitzt wird er ebenfalls durch eine ge-
eignete grafische Visualisierung dieser Teilmengen. Ein Requirements En-
gineer hat dann im dritten Schritt die Mdglichkeit auf Basis der erzeugten
Hinweise durch Modifikation der Teilmengen eine neue Anforderungsmen-
ge zu erzeugen. Diese kann dann erneut auf Konsistenz gepriift werden.
Ist die Menge der Anforderungen schliefSlich konsistent, kann sie in einem
vierten Schritt verifiziert werden. Fiir die Verifikation werden dann sowohl
die Anforderungen als auch die Softwarearchitektur nach Timed Automata
transformiert und anschlieflend mittels UPPAAL verifiziert.

Eine Ubersicht iiber die vier Schritte und ihre Ausfithrungsreihenfolge,
sowie ein Verweis auf den entsprechenden Abschnitt der Arbeit, ist in Abbil-
dung 3.1 dargestellt. Fiir eine gegebene Menge an Anforderungsartefakten
R und eine gegebenes Softwarearchitekturmodell A7 ist die Ausfiithrungs-
reihenfolge wie folgt:

1. Priifen der Konsistenz der Anforderungsmenge R. Dieser Schritt
wird in Abschnitt 4.1 vorgestellt.

2. Wenn die Gesamtmenge der Anforderungsartefakte nicht konsistent
ist, werden die Ursachen fiir Inkonsistenz identifiziert, ansonsten
weiter nach Schritt 4. Dieser Schritt wird in Abschnitt 4.2.1 vorgestellt.

3. Uberarbeiten der Anforderungsartefakte auf der Grundlage der Hin-
weise aus dem vorherigen Schritt. Danach kann erneut bei Schritt 1
begonnen werden und die Schritte 1-3 werden so lange wiederholt
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bis die Anforderungsmenge konsistent ist. Dieser Schritt wird in Ab-
schnitt 4.2.2 vorgestellt.

4. Durchfiihren der Verifikation auf der Anforderungsmenge und dem
Architekturmodell (44, R). Dies wird in Kapitel 5 gezeigt.

Timing Timing

Anforderungen auf Anforderungen
Konsistenz prifen ve riﬁ.zieren
AUTOSAR (Abschnitt4.1) | apforderungen (Kapitel 5) Timing Timings
Timing konsistent? Anforderungen  verifiziert
Anforderungen erfullt?
modelliert

Timing Ursachen fir
Anforderungen Inkonsistenzen
Uberarbeiten identifizieren
(Abschnitt 4.2.2) (Abschnitt 4.2.1)

Nein f

Abbildung 3.1: Analyseprozess als BPMN-Prozess

3.2 ZEITASPEKTE INNERHALB EINER AUTOSAR Sorrt-

WAREARCHITEKTUR

Die Spezifikation von AUTOSAR gibt zwar tiber das Metamodell eine for-
male Syntax vor, die formale Semantik des Modells wird allerdings nur in
textuellen Spezifikationen festgehalten, sodass semantische Analysen des
Timing Verhaltens auf AUTOSAR-Modellen nicht durchgefiihrt werden
konnen. Ublicherweise wird fiir die Validierung von AUTOSAR ein simula-
tionsbasierter Ansatz gewahlt, bei dem sowohl fiir das AUTOSAR-Modell
als auch fiir die Verhaltensmodelle aus Simulink Code generiert, kompi-
liert und im Anschluss als virtuelles Steuergerdt im Verbund mit einem
Umgebungsmodell simuliert wird. Diese Moglichkeit der Generierung
virtueller Steuergerdte auf der Basis von AUTOSAR-Modellen mithilfe
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von Codegenerierungs- und Simulationswerkzeugen wie Targetlink®und
SystemDesk®ist zur Verwendung als Grundlage fiir eine formale Semantik
zur Verifikation von Timing Anforderungen jedoch nicht zielfithrend, da
der Code und somit das Verhalten dieser Steuergeréte in der Simulation zur
Absicherung funktionaler Eigenschaften vorgesehen ist und Zeitaspekte
wie beispielsweise spezifizierte Worst- und Best-Case Execution Times
nicht beriicksichtigt. Daher ist es notwendig eine eigene formale Semantik
auf Basis der textuellen Spezifikationen herzuleiten, die alle fiir eine Timing
Analyse notwendigen Metamodell-Elemente abbildet.

Eine vollstindige Formalisierung des AUTOSAR Metamodells ist jedoch
aufgrund der Grofie des Metamodells und der Spezifikation nicht so einfach
moglich. Allerdings haben viele Modellelemente keinen Einfluss auf das
zeitliche Verhalten des Systems oder es existieren viele spezialisierte Klas-
sen, die jedoch alle ein dhnliches zeitliches Verhalten haben.Wir beschran-
ken uns daher im Folgenden auf Elemente, die einen grofsen Einfluss auf das
Laufzeitverhalten des Systems haben und geben anschliefsend eine verein-
fachte Formalisierung des Metamodells vor. Die formale Beschreibung von
AUTOSAR teilt sich im Folgenden in die formale Spezifikation des AUTO-
SAR Architekturmodells und der AUTOSAR Timing Anforderungen auf.

3.21 FORMALE SPEZIFIKATION DER AUTOSAR SOFTWAREARCHITEK-

TUR

In diesem Abschnitt wird eine formale Verhaltensspezifikation erar-
beitet, die das Zeitverhalten eines AUTOSAR Steuergerdts nachbildet,
sodass sich auf dieser Basis Analyseverfahren entwickeln lassen. Fiir
die formale Spezifikation der AUTOSAR Softwarearchitektur werden
auf allen Ebenen der AUTOSAR-Schichtenarchitektur timing-relevante
Elemente identifiziert und im formalen Modell festgehalten. Auf dieser
Grundlage lassen sich dann Timing Analysen fiir fast allen Sichten der
AUTOSAR-Entwicklungsmethodik erstellen.
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FORMALE EIGENSCHAFTEN DER SOFTWAREARCHITEKTUR

Wir definieren fiir jede AUTOSAR Softwareschicht eine Teilmenge der ver-
fiigbaren Modellelemente, die fiir das Laufzeitverhalten relevant ist und fiir

die wir dann ein formales Modell angeben.

TIMING AUF APPLIKATIONSEBENE

Fiir die Modellierung des Timing Verhaltens auf Applikationsebene ist es
notwendig das Verhalten von Runnables, Variablenzugriffen (Variable Acces-
ses) und deren Verbindungen (Assembly Connections) abzubilden. Wir abs-
trahieren vom Konzept der Softwarekomponenten und Ports, da es fiir das
Timing nicht relevant ist, ob zwei Runnables in verschiedenen Software-
komponenten iiber Ports miteinander kommunizieren oder direkt in einer
einzigen Softwarekomponente iiber sogenannte Inter-Runnable-Variablen,
solange beide Runnables auf demselben Steuergerat laufen. Weiterhin gibt
es Modellelemente, mit denen der Resourcenverbrauch von Runnables mo-
delliert werden kann. Mithilfe dieser Elemente werden dann Worst-Case

Execution Times und Best-Case Execution Times festgelegt.

TimiNnG AUF RTE EBENE

Die RTE-Ebene ist eine standardisierte Schnittstelle fiir die Software der An-
wendungsschicht und ist verantwortlich fiir das Triggern der Runnables,
so wie sie im Betriebssystem spezifiziert sind. Das Betriebssystem verfiigt
iiber einen Scheduler und iiberwacht die Ausfithrung von Resourcen durch
OSTasks. Aus diesem Grund miissen Runnables auf OSTasks abgebildet
werden, um die Ausfithrungsreihenfolge der Runnables festzulegen. Dies
geschieht in der RTE-Konfiguration mithilfe des sogenannten RTEEventTo-
TaskMapping. Dieses Mapping bildet Events, die das Triggern eines Runn-
ables darstellen, auf OSTasks ab.
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TiMING AUF BASISSOFTWAREEBENE

Auf Basissoftwareebene spezifiziert AUTOSAR Module, die fiir jedes Steu-
ergerdt einzeln spezifiziert werden. Am wichtigsten fiir das Timing Verhal-
ten sind Module, die Einfluss auf die Ausfiihrungsreihenfolge der Runnab-
les haben. Dies ist im Wesentlichen das AUTOSAR Betriebssystem, das auf
dem OSEK-Standard* basiert.

Fiir diese Modellelemente geben wir ein vereinfachtes formales AUTO-
SAR Architekturmodell wie folgt an:

Definition 14 (AUTOSAR architecture). Die vereinfachte formale AUTOSAR
Softwarearchitektur 4R = (R, C, VA, T, TRM, p) besteht aus

1. einer Menge an Variablenzugriffen (Variable Acess Elemente) VA,

2. einer Menge von RunnableEntities

R C {(VA ead, VA write, weet, beet) | VAyeaa C VA, VAyrire C VA, beet < weet}

mit VAyeaq einer Menge an Lesezugriffen (Variable Read Accesses),
VArire einer Menge an Schreibzugriffen (Variable Write Accesses) mit
VAresd O VArize = 0, weet € N der Worst-Case- und beer € N der
Best-Case-Execution Time,

3. einer Menge an AssemblyConnections C C {(left, right) | left € VA, right € VA},
die zwei Variablemzugrifsselemente miteinander verbinden,

4. einer Menge periodisch getriggerter Tasks T mit Periode p und

5. einem Task-Runnable-Mapping TRM : R — T, welches Runnables auf
Betriebssystemtasks abbildet.

Dieses formale Modell einer AUTOSAR Softwarearchitektur wird im
weiteren Verlauf in Abschnitt 5.1 in ein Netzwerk aus Timed Automata
transformiert, um das Timing Verhalten formal abzubilden, auf dessen
Basis spezifizierte Timing Anforderungen verifiziert werden kénnen.

*http://osek-vdx.org
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ForMALES MODELL DER AUTOSAR TiMING EXTENSIONS

Sei E = {e&...e,y die Menge der Timing Description Events und
R = {re,...,re,} die Menge der Runnable Entities. Sei weiterhin die
Menge aller Timing Constraints definiert als R = {n,...,7}. Die in

Abschnitt 2.1.2 vorgestellten AUTOSAR Timing Extensions werden dann

folgendermafien formalisiert:

Offset Timing Constraint Der Offset Timing Constraint 7, = (e;, ¢, min, max)
beschriankt die Zeit zwischen einem Source Event ¢, € F und einem
Target Event ¢, € E durch die Definition eines minimalen und
maximalen Offsets min, max € R zwischen diesen beiden Events. Die
Summe aller Offset Timing Constraints der Anforderungsmenge R

bezeichnen wir als R, C R.

Latency Timing Constraint Der Latency Timing Constraint 7, =
(C, min, max) beschreibt eine minimale und maximale Latenz im Be-
reich einer Timing Chain C. Die Timing Chain wird dabei abgebildet
auf eine geordnete Sequenz von Timing Events, C = (e,...,¢n),
¢ € Efiur aller < i < n, die in der spezifizierten Zeitspanne
auftreten miissen. Die Summe aller Latency Timing Constraints der
Anforderungsmenge R bezeichnen wir als R, C R.

Synchronization Timing Constraint Der Synchronization Timing Cons-
traint ;. = (S, 7),S C E spezifiziert eine Menge von Timing Events,
die simultan innerhalb eines festgelegt Toleranzwertes r auftreten
miissen. Die Summe aller Synchronization Timing Constraints der
Anforderungsmenge R bezeichnen wir als R, C R.

Execution Order Constraint Der Execution Order Constraint 7, =
(rei, ..., re;) beschrankt die Ausfiihrungsreihenfolge von Runnable
Entities. Fiir jeden Execution Order Constraint 7, € R mit einer
geordneten Menge von Runnable Entities (7, . ..7re,) darf ein nach-
folgendes Runnable Entity r¢;, nur dann ausgefiihrt werden, wenn
das Runnable Entitie r¢; ausgefiihrt ist. Die Summe aller Execution
Order Constraints der Anforderungsmenge R bezeichnen wir als
Reoe € R.

61



Execution Time Constraint Der Execution Time Constraint 7y,

(re, min, max) beschrankt nicht das Auftreten von Timing Events,
sondern die Ausfiihrungszeit eines Runnable Entities e auf eine mi-
nimale Dauer min und eine maximale Dauer max. Runnables konnen
dabei sowohl Runnable Enitites auf der Applikationssebene oder
Basissoftwaremodule auf Basissoftwareebene sein. Die Summe aller
Execution Time Constraints der Anforderungsmenge R bezeichnen
wir als R, C R.

Die formale Beschreibung der AUTOSAR Timing Extensions wird als Ba-
sis fiir die in den folgenden Kapiteln beschriebenen Transformationen nach
SMT (Abschnitt 4.1) und Timed Automata (Abschnitt 5.2) verwendet.

3.3 INTEGRATION DER METHODE IN BESTEHENDE ENT-

WICKLUNGSPROZESSE

Im Grundlagenkapitel wurde das V-Modell als aktueller Entwicklungs-
prozess der Automobilindustrie sowie die Anwendung der AUTOSAR-
Methodik innerhalb dieses Prozesses beschrieben. Des Weiteren wurde
nun eine Methode zur Verifikation von AUTOSAR Timing Constraints vor-
gestellt. Diese Methode arbeitet auf der Basis von AUTOSAR-Artefakten
und beinhaltet eine Konsistenzpriifung und Verifikation von AUTOSAR
Timing Constraints.

Es gibt nun unterschiedliche Moglichkeiten, zu welchem Zeitpunkt oder
in welcher Prozessphase Konsistenz- und Timing Analyse durchgefiihrt
werden konnen. Eine Moglichkeit ist es die Analysen durchzufiihren,
nachdem die Softwarekomponenten entwickelt und integriert wurden.
Zu diesem Zeitpunkt lassen sich dann auch bereits Simulationsmodelle
der integrierten Software erstellen und funktionale Anforderungen testen.
Ebenfalls lassen sich dann Worst-Case Execution Times aus einer Tas-
kanalyse innerhalb der Timing Analyse verwenden, sodass die Analyse
hierdurch die Laufzeiten der Zielhardware widerspiegelt. Der Nachteil
an diesem Vorgehen ist, dass zunédchst erste Implementierungen fiir alle
Softwarekomponenten existieren miissen und zusatzlich WCET-Analysen
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durchgefiihrt werden miissen (siehe Abschnitt 5.2). Dies ist jedoch erst
sehr spat im Entwicklungsprozess der Fall. Fiir diese WCET-Analysen ist
es ebenfalls neben dem zusatzlichen Zeit- und Kostenaufwand notwendig,
die Zielhardware der Software bereits zu kennen. Daher ist dieses Vorge-
hen zumindest aus der Sicht einer friihzeitigen Absicherung der Timing
Anforderungen eher unvorteilhaft.

Eine weitere Moglichkeit ist es, die Timing Analyse bereits durchzufiih-
ren, sobald die ersten formalisierten Timing Anforderungen und das Archi-
tekturmodell vorliegen. Eine Analyse ldsst sich so bereits durchfiithren ohne
dass Implementierungen fiir Softwarekomponenten vorliegen. So kann die
erste Timing Analyse bereits sehr frith durchgefiihrt werden. Eine erste Ein-
schatzung der Laufzeit einzelner Runnable Entities muss dann allerdings
von Experten vorgenommen werden. Noch friiher ldsst sich beispielswei-
se eine erste Konsistenzanalyse durchfiihren. Hierfiir werden weder Quell-
code, noch Details des AUTOSAR-Modells benétigt, sondern lediglich die
AUTOSAR Timing Constraints. Daher wird auch im Sinne einer frithzeiti-
gen Absicherung der Timings vorgeschlagen, bei der Entwicklung bereits
frithzeitig die Modellierung von Timing Constraints durchzufiihren, um die
anschlieffende Konsistenzanalyse einsetzen zu konnen.

Abbildung 3.2 zeigt die Integration an zwei verschiedenen Stellen im
Entwicklungsprozess. Auf der linken Seite wird die Konsistenzanalyse und
Verifikation auf der Basis von Laufzeitschatzungen fiir einzelne Runnables
vorgenommen. Ist die Anforderungsmenge konsistent und werden die
festgelegten Timing Constraints eingehalten, kann das Ergebnis als Timing
Budget fiir die Implementierung der Softwarekomponenten herangezogen
werden. Auf der rechten Seite wird die Konsistenzanalyse und Verifikation
erst nach der Implementierung gemacht. In diesem Fall kann auf zuvor
durchgefiihrte Taskanalysen zuriickgegriffen und somit die Laufzeiten
von Runnable Entities festgelegt werden. Fiihrt die Verifikation zu dem
Ergebnis, dass nicht alle Timing Constraints eingehalten werden kénnen,
muss die Implementierung der Runnable Entities angepasst werden.

Im Kontext der AUTOSAR-Entwicklungsmethodik ist es fiir die Verifi-
kation notwendig mindestens eine Softwarearchitektur auf VFB-Ebene zu
modellieren, alle Softwarekomponenten mit den enthaltenen Runnables zu
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Abbildung 3.2: Integration der Methode in den Entwicklungsprozess

modellieren, sowie eine Konfiguration der RTE zu erstellen und die Basis-
softwaremodule des Betriebssystems zu konfigurieren.

3.4 ZUSAMMENFASSUNG

In diesem Abschnitt wurde ein Konzept zur Verifikation von Timing An-
forderungen vorgestellt. Dazu wurde zundchst in Abschnitt 3.1 ein Prozess
definiert, der die einzelnen Schritte beschreibt. Weiterhin wurden die Zeit-
aspekte einer AUTOSAR Softwarearchitektur und der Timing Anforderun-
gen betrachtet und relevante Teile in Abschnitt 3.2 formalisiert. Des Weite-
ren wurde in Abschnitt 3.3 vorgestellt wie sich das Konzept im Rahmen des
etablierten Softwareentwicklungsprozesses verhalt und welche Vor- und
Nachteile dieser Ansatz hat. Das Konzept besteht im Kern aus zwei Teilen:
einer Methode zur Konsistenzpriifung der Timing Anforderungen mittels
SMT-Formeln und einer Methode zur Verifikation mittels Timed Automata.
Diese beiden Methoden werden in den folgenden beiden Kapiteln detaillier-
ter betrachtet.
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Konsistenzanalyse von
AUTOSAR Timing
Anforderungen

Wiahrend der Entwicklung eingebetteter automotiver Softwaresysteme
werden Timing Anforderungen auf Benutzerebene nach und nach weiter
verfeinert bis sie schliefSlich als AUTOSAR Timing Anforderungen die
zeitlichen Constraints im Kontext der AUTOSAR Softwarearchitektur
beschreiben. Bevor diese Anforderungen nun verifiziert werden, werden
sie hinsichtlich ihrer Konsistenz {iiberpriift, da eine konsistente Anfor-
derungsmenge Grundvoraussetzung dafiir ist, dass alle Anforderungen
erftillbar sind.

In diesem Kapitel wird die Methode zur Konsistenzanalyse von AU-
TOSAR Timing Anforderungen vorgestellt. Diese reprasentiert den ersten
Schritt im Gesamprozess aus Abschnitt 3.1. Die Analyse wird dabei aus-
schliefilich auf den Timing Anforderungen durchgefiihrt und nicht auf dem
dazugehorigen Architekturmodell. Dadurch ist es moglich, bereits vor der
Verfiigbarkeit eines vollstandigen Architekturmodells, die Konsistenz der
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SMT-FORMELN

Anforderungen zu iiberpriifen. Die Konsistenzanalyse wird durchgefiihrt,
indem alle Timing Anforderungen in SMT-Formeln mit linearer Arithmetik
transformiert werden und auf Erfiillbarkeit hin untersucht werden. Dieser
logische Ansatz wurde gewahlt, da er die zeitlichen Beschrankungen, die
durch die Timing Anforderungen entstehen, intuitiv beschreibt. Ebenfalls
ist durch die breite Verfiigbarkeit effizienter Werkzeuge zum Losen von
SMT-Formeln zu erwarten, dass auch grofie Anforderungsmengen mit
diesem Ansatz gepriift werden konnen.

Zunichst wird die Transformation der in Abschnitt 3.2.1 vorgestellten
formal beschriebenen AUTOSAR Timing Anforderungen in eine SMT-
Formel vorgestellt und am Blinkerbeispiel aus Abschnitt 2.1.2 erldutert.
Danach werden Verfahren zur Visualisierung inkonsistenter Anforde-
rungsmengen beschrieben, um eine einfache Korrektur zu ermdglichen.
Dieses Kapitel basiert zum Grofiteil aus den bereits veroffentlichten
Arbeiten in Beringer und Wehrheim (2020).

Wie in Definition 3 beschrieben, ist eine Anforderungsmenge genau dann
konsistent, wenn keine Teilmenge daraus in Konflikt zueinander steht. Das
bedeutet auch, dass die Anforderungsmenge konsistent ist, solange ein Mo-
dell oder System existiert, dass alle Anforderungen erfiillen kann.

Definition 15 (Konsistenz). Sei R = {n, ..., r,} die Menge der Timing Anfor-
derungen in einem AUTOSAR Modell und sei M die Menge aller Modelle. Dann
ist R konsistent gdw. 3M € M :Nr, € R : M |= r;.

In unserem Fall besteht die Menge aus allen Modellen, die mithilfe des
AUTOSAR Metamodells definiert werden konnen und die Anforderungen
sind definiert als AUTOSAR Timing Constraints. Daher ist die Menge an
AUTOSAR Timing Constraints genau dann konsistent, wenn es ein AU-
TOSAR Modell gibt, dass alle durch die Timing Anforderungen erzeugten
Restriktionen erfiillt. Da die Timing Constraints jedoch ausschliefllich das
zeitliche Verhalten des Modells beschranken, ist es ausreichend, wenn aus-
schlieSlich die Timing Events fiir eine Analyse betrachtet werden. Das Fin-
den einer konsistenten Anforderungsmenge wird daher algorithmisch re-
duziert auf das Finden einer validen Ausfiihrungsreihenfolge von Timing
Events.
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Abbildung 4.1: Transformation von AUTOSAR Modellen nach SMT-

Formeln

4.1 TRANSFORMATION DER AUTOSAR TIMING ANFOR-

DERUNGEN NACH SMT

In diesem Abschnitt beschreiben wir die Transformation von AUTOSAR-
Timing Anforderungen in logische Formeln fiir einen SMT Solver. Die SMT-
Formeln spiegeln die durch die Timing Anforderungen zuvor spezifizierten
zeitlichen Beschrankungen wider, sodass die Erfiillbarkeit der Formeln mit
der Existenz einer giiltigen Ordnung von Timing Events, die alle Timing
Requirements erfiillt, dquivalent ist.

Das abstrakte Konzept ist in Abbildung 4.1 beschrieben. Das AUTOSAR-
Modell enthilt das Systemmodell, die Timing Events, die {iber Assoziatio-
nen mit dem Systemmodell verkniipft sind, und die Timing Constraints.
Die Timing Events werden in SMT-Variablen transformiert und die Timing
Constraints in lineare Constraints iiber die generierten Variablen. Das Sys-
temmodell fiir die Konsistenzanalyse wird nicht bend6tigt. Die Transforma-
tionen wurden automatisiert und werden direkt auf das AUTOSAR-Modell
in SystemDesk angewendet.

Einige Timing Constraints basieren nicht ausschliefilich auf Timing
Events, sondern auch auf Runnable Entities, zum Beispiel der Execution
Order Constraint. Um Inkonsistenzen zwischen diesen Timing Constraints
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und Timing Constraints auf Basis von Timing Events zu erkennen, werden
Timing Constraints auf der Grundlage von Runnable Entities so transfor-
miert, dass sie ebenfalls auf Timing Events basieren. Dies ist mdglich, da
AUTOSAR Timing Events zur Verfligung stellt, die im Zusammenhang mit
Runnable Entities stehen, wie beispielsweise das Starten oder die Terminie-
rung eines Runnable Entities. Daher gehen wir im Folgenden davon aus,
dass fiir jedes Runnable Entity re € RunnableEntities entsprechende Timing
Events ¢;

s. und e, existieren, die Ereignisse fiir den Ausfiihrungsbeginn

und die Terminierung des Runnable Entities darstellen. Einige Timing
Constraints schranken auch das Auftreten zwischen Timing Events ein,
sodass eine untere und obere Schranken selbst durch das Auftreten eines
anderen Timing Events definiert werden kann. Dennoch konnen alle Be-
schrankungen fiir Timing Events als lineare Constraints definiert werden.
Deswegen kann die Existenz eines giiltigen Modells iiberpriift werden,
indem nach einer giiltigen Belegung ¢ : £ — R>, von Timing Events mittels
eines SMT-Solvers mit linearer Arithmetik gesucht wird.

Fiir ein gegebenes AUTOSAR Modell mit Timing Events £ = {e¢,...¢,} und
Timing Constraints R = (n, ..., 7,») wird eine SMT-Formel F = A’ f;, suk-
zessive konstruiert. Jeder Term in F ist entweder ein konstanter Wert, wie
beispielsweise ein Toleranzwert oder Minimum-/Maximum, oder eine Va-
riable, die einem Timing Event ¢ entspricht und eine erfiillbare Zuweisung
in den Zeitbereich r : £ — R>, benétigt. Im Folgenden werden die Trans-
formationen fiir jeden Typ von Timing Constraint genauer dargestellt.

Orrser TimING ConsTRAINT Ein Offset Timing Constraint 7, =
(e, €r, min, max) beschrankt die Zeit zwischen dem Auftreten eines Source
Timing Events ¢, und einem Target Timing Event ¢, Daher werden fiir
jeden Offset Timing Constraint 7, € Ry zwei Ausdriicke zur SMT-Formel

wie folgt hinzugefiigt:
ﬁarc = e+ max 2 e N\ e; + min < e, (41)
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LaTeENcy TiMING CoNsTRAINT Um zu verifizieren, dass ein Latency Ti-
ming Constraint nicht mit anderen Timing Constraints im Konflikt steht,
beispielsweise mit einem Offset Timing Constraint, muss ein giiltiges Auf-
treten von Timing Events vorliegen, wobei eine Sequenz von Timing Events
vorliegen muss, die nicht den Maximalwert des Latency Timing Constraints
iiberschreitet. Daher wird fiir jeden ;. € Ry mit einer Event Chain C =
(er,...,e,) die SMT-Formel wie folgt erweitert:

fre = Vi1 <i<n—1:¢ < ety Amin < e, — &g < max. (4.2)

SYNCHRONIZATION TIMING CONSTRAINT Ein Synchronization Timing
Constraint 7y, = (S, rolerance),S C E spezifiziert eine Menge von Timing
Events, die gleichzeitig mit einem Toleranzwert auftreten miissen. Fiir
jeden Synchronization Timing Constraint »,, € Ry wird daher der
Toleranzwert fiir jede Kombination von Timing Events gepriift. Die
SMT-Formel wird daher folgendermafsen erweitert:

frw =Ve,é €8:e— ¢ < tolerance. (4.3)

ExecutioN ORDER CoONsTRAINT Fiir jeden Execution Order Constraint
Teoe € Reoe Mit einer Sequenz von Runnable Entities (re, . .., re,) gilt, dass
ein nachfolgendes Runnable Entity re;, nur dann ausgefithrt werden
darf, wenn das vorherige Runnable Entity r¢; terminiert ist. Daher gilt
Vi;t < i < n : reg < regyy. Da unser Ansatz daruf beruht eine giiltige
Zuweisung basierend auf den Timing Events zu finden, miissen wir
zundchst eine Modellierungsalternative finden, die dquivalent ist, aber
stattdessen auf Timing Events anstelle von Runnable Entities basiert. Daher
modellieren wir die beschrankte Ausfiihrung der Runnable Entities durch
Timing Events, die das Starten und die Terminierung eines entsprechenden
Runnable Entities reprasentieren und beschranken diese Timing Events so,
dass das Startevent eines nachfolgenden Runnable Entities spater erfolgen
muss als das Terminierungsevent des vorherigen Runnable Entites. Sei ¢,
und ¢}, das Startevent und das Terminierungsevent eines Runnable Entities
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re;. Dann erhalten wir die folgende SMT-Formel:

Vit <i<n—1:6, < e Ney < €, (4-4)
AUTOSAR ermoglicht auch die Anwendung von Execution Order Cons-
traints auf Basissoftwaremodule. Die Benennung von Timing Events ist
dann anders, die vorgestellte allgemeine Transformation kann aber analog
angewendet werden.

ExecutioN TiMe ConsTrRAINT Ein Execution Time Constraint be-
schreibt eine Beschrankung der Ausfithrungszeit auf der Basis lediglich
eines AUTOSAR-Elements. Nichtsdestotrotz entspricht eine Beschran-
kung der Ausfiithrungszeit eines Runnable Entities einem Offset Timing
Constraint zwischen dem Ausfithrungsstart und der Terminierung des
assoziierten Runnable Entities. Daher entspricht ein Execution Time
Constraint einem Offset Timing Constraint 7, = (7, min, max) = ry, mit
Vote = (€y,, €r,, min, max), wobei ¢, und ¢,, die Timing Events sind, die fiir den
Start bzw. die Terminierung des Runnable Entities stehen.

Die Transformation von AUTOSAR Timing Requirements nach SMT
wurde beispielhaft fiir das Blinkerbeispiel aus Abschnitt 2.1.2 durchgefiihrt.
Fiir den Execution Order Constraint 7, gilt, dass die Start-Events jedes
Runnables vor dem jeweiligen Terminierungs-Event stattfinden miissen
und das Start-Event fiir das Runnable Logic vor dem Terminierungs-
Event des Runnables TssPreprocessing stattfinden muss. Analog dazu
muss das Terminierungs-Event des Runnables Logic vor dem Start-Event
des Runnables Toggle auftreten. In diesem Zusammenhang erzeugt un-
ser Ansatz fiinf Ungleichungen, die die Zeitvorgaben wie beschrieben
einschranken. Fiir den Offset Timing Constraint 7, werden zwei Un-
gleichungen generiert, die den minimalen und maximalen Offset fiir die
entsprechenden Timing Events einschranken. SchliefSlich werden fiir die
Execution Time Constraints 7., und 7., jeweils zwei Klauseln generiert,
die das Timing fiir den Start und die Terminierung des Logic Runnables
und Toggle Runnables einschranken. Die generierten Ungleichungen fiir
die einzelnen Timing Constraints sind in Tabelle 4.1 zusammengefasst.
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In diesem Beispiel ist die Anforderungsmenge nicht konsistent, da die
generierte Menge an Klauseln unerfiillbar ist. So kann beispielsweise
fir die Menge {f.f£../s.f;./s} keine erfiillbare Belegung gefunden wer-
den. So gilt fiir f,£,,f, dass diese in einer zeitlichen Abfolge auftreten
MUSSeN: Crepreprocessing < CTssPreprocessing <
fr = CrsPreprocessing T 4 = €Logic Peschrdnkt den zeitlichen Abstand

. .
@Ogic < CLogic: Die Klausel

zwischen dem ersten Event e,

t
ssPreprocessing und dem letzten Event €Logic

auf maximal 4 Zeiteinheiten. Eine mogliche Belegung fiir diese Klauseln
5 — t . —  — t ——

ware e;TssPreprocessing = 5 eTssPreprocessing =2 EJLogic =3 eLogic = 4

fi = €logic T 10 < € g beschrankt jedoch den Zeitabstand zwischen

den beiden Events ¢}, und eiogic auf mindestens 10 Zeiteinheiten, sodass

ogic
dadurch die Vorgeschlgagene Belegung ungiiltig ist, da durch die Belegung
Logic = 3 e, ogic ‘= 4 der minimale Zeitabstand nicht eingehalten wird. Eine
alternative Belegung mit beispielsweise € ;. = 3, €] i := 13 macht zwar f;
erfiillbar, jedoch wird dadurch in jedem Fall die Klausel £, verletzt, da nun
der minimale Zeitabstand zwischen dem ersten Event el p . ocossing = !
und dem letzten Event ¢] ;. = 13 grofer als 4 ist. Die Klauseln sind somit
unerfiillbar und die Menge der Timing Constraints ist inkonsistent.

Die vorgestellte Methode ermdglicht es, zeitliche Inkonsistenzen in An-
forderungsmengen zu erkennen. Das zuvor gezeigte Beispiel zeigt jedoch,
dass es schon bei wenigen Anforderungen schwierig ist, die Griinde fiir die
Inkonsistenz nachzuvollziehen. Dies erschwert eine Interpretation der Er-
gebnisse und eine effiziente Korrektur der Anforderungen ist somit nicht
moglich. Daher werden im Folgenden Verfahren vorgestellt, die die Iden-
tifikation von Ursachen fiir Inkonsistenzen unterstiitzen, um die Korrektur

der Anforderungen zu beschleunigen.

1.2 VERFAHREN ZUR KORREKTUR INKONSISTENTER AN-

FORDERUNGSMENGEN

In diesem Abschnitt werden Methoden zur Korrektur inkonsistenter Anfor-
derungsmengen vorgestellt. Dazu betrachten wir zuerst formale Methoden,
die sich mit der Berechnung von fiir die Aufl6sung von Inkonsistenzen re-
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Tabelle 4.1: Beispieltransformationen

Anforderung Generierte Formeln

Veoc = ﬁ = ethsPreprocessing <
(TssPreprocessing, Logic, Toggle) efrsspreprocessmg

f; = esLogic S eiogic

f; = éToggle S etToggle

ﬁ— = erTssPreprocessing S evLogic

— it
f; - 6’Logic S éToggle

— t — t
Vore = (egTssPrepmcessinga €L0gjca 3, 4) .}% - esTssPreprocessing +3 S eLogic

_ t
f; - esTssPreprocessing + 4 2 eLogic

Vete = (LOgiC, 10, 30) ﬁ = ESLOgiC +10 < €£0gic
f;’ = eSLogic + 30 2 eiogic

Vete, — (Toggle, I, 5) ﬁo = 6,SToggle +1 S ez[‘oggle
ﬁl = éToggle + 5 2 efl‘oggle

levanten Teilmengen der zuvor generierten SMT-Formel befassen. Dies ist
die Berechnung der maximal grofien Menge an konsistenten Anforderun-
gen mit Hilfe eines Algorithmus zum Losen von MaxSMT und der Berech-
nung einer minimal grofien Menge inkonsistenter Anforderungen mit Hilfe
eines Algorithmus zur Berechnung des Unsat Core. Danach stellen wir ei-
ne Visualisierungsmethode vor, die die zuvor berechneten Teilmengen in
den Gesamtkontext der SMT-Formel einbezieht und somit zusatzlich eine
intuitive Moglichkeit zur Auflésung von Inkonsistenzen darstellt.

4.2.1 IDENTIFIKATION VON URSACHEN FUR INKONSISTENZEN

Fiir die Korrektur einer inkonsistenten Anforderungsmenge ist es notwen-
dig, dass einige der enthaltenen Anforderungen gedndert oder aus der Men-
ge entfernt werden miissen. Die Identifikation dieser Anforderungen ist je-
doch bei grofieren Mengen schwierig. Daher ist es notwendig einem Requi-
rements Engineer Hinweise zu geben, welche Anforderungen moglicher-
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weise die Inkonsistenz auslosen oder zumindest die Menge der ursachli-
chen Anforderungen einschranken. Dies konnen zum einen Anforderungen
sein, die aufserhalb einer maximal grofSen konsistenten Teilmenge liegen.
Ist die konsistente Teilmenge hinreichend grofs und damit die Differenz-
menge klein, so kann durch das Andern oder Entfernen dieser Teilmenge
die Konsistenz sichergestellt werden. Zum anderen kann durch die Identi-
fikation minimaler unerfiillbarer Teilmengen eine kleine inkonsistente Teil-
menge identifiziert werden, bei der ein Requirements Engineer durch das
Loschen oder Andern einer der in dieser Teilmenge enthaltenen Anforde-
rungen ebenfalls die Konsistenz sicherstellen kann.

Die im Folgenden vorgestellten Methoden verwenden die Losungen von
MaxSMT zur Identifikation maximal grofler Teilmengen und Unsat Core
zur Identifikation minimaler inkonsistenter Teilmengen, die auf der Grund-
lage der generierten SMT-Formel F berechnet wurden. Um eine Riickver-
folgbarkeit von SMT-Klauseln zu den Timing Anforderungen zu haben,
speichern wir zusétzlich eine Abbildung w : 7 — R, die jede SMT-Formel f
auf die entsprechende Timing Anforderung aus R abbildet.

MaxSMT

Die Losung von MaxSMT fiir die generierte SMT-Formel ermdglicht es, die
maximal grofle Menge an Klauseln Z zu finden, die erfiillbar sind. Diese
lassen sich dann in einem néchsten Schritt auf die zugehorigen Timing An-
forderungen abbilden und somit als konsistent identifizieren. Mithilfe die-
ser Informationen kann ein Requirements Engineer Fehler in der Anforde-
rungsmenge korrigieren. Dies geschieht dadurch, dass er Timing Anforde-
rungen, deren zugehorige SMT-Klauseln nicht in der MaxSMT Menge ent-
halten sind, entweder aus der Anforderungsmenge entfernt oder bearbei-
tet bzw. abschwacht, indem er grofiere Bereiche fiir die Timing Constraints
wahlt.

Eine MaxSMT Teilmenge fiir die aus der Beispieltransformation in Tabel-
le 4.1 erstellten SMT-Formeln ist Z = R \ {f;}. Der zu f, gehorige Timing
Constraint ist 7. Ein Requirements Engineer bekommt somit die Infor-
mation, dass alle Anforderungen ohne w(f;) = 7, konsistent sind. Die zu
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betrachtenden Anforderungen wurden somit von vier auf eine reduziert.
Er kann jetzt priifen inwieweit der Execution Time Constraint korrekt mo-
delliert wurde und entscheiden, ob die darin festgelegte minimale Ausfiih-
rungszeit fehlerhaft ist und diese aus dem Constraint entfernen.

UnsAat CORE

Die Anwendung des Minimal Unsat Core ermoglicht es fiir eine SMT-
Formel eine Teilmenge UC C F zu finden, die unerfiillbar ist. Durch die
Abbildung auf die Timing Constraints lasst sich somit die Menge an Timing
Constraints bestimmen, die inkonsistent sind. Im Idealfall besteht diese
Menge nicht aus allen Timing Anforderungen, sodass ein Requirements
Engineer wiahrend der Identifikation und Korrektur nicht alle Timing
Anforderungen betrachten muss.

Beide Methoden kénnen unabhingig voneinander oder auch in Kombi-
nation angewendet werden, indem beispielsweise die Ergebnismenge 7\ T
als Eingabe fiir die Berechnung des Unsat Cores genommen wird.

In unserem Beispiel aus Tabelle 4.1 ist ein Unsat Core UC = {f,f;,/5./3 }-
Fiir diese Teilmenge existiert keine erfiillbare Ordnung der Timing Events
e €

t ¢ :
ssPreprocessing’ eTssPreprocessing7 Logic und eLogic' Da das Entfernen einer Klau-

sel aus UC die Formel erfiillbar machen wiirde, ist der gefundene Unsat
Core ebenfalls ein Minimal Unsat Core. Da keine Klausel aus UC zur Ti-
ming Anforderung r.., gehort, kann diese Timing Anforderung nicht fiir
die Inkonsistenz verantwortlich sein. Auf diese Weise konnen wir hier den
Unsat Core verwenden, um die Anforderungsartefakte einzuschranken, die
wir wahrend der Korrektur betrachten miissen.

4.2.2 VISUALISIERUNG VON (IN-)KONSISTENZ

Ein entscheidender Punkt fiir die Identifikation von Ursachen fiir Inkonsis-
tenzen ist eine addquate Ergebnisvisualisierung der generierten MaxSMT
und Unsat Core Klauseln. In diesem Zusammenhang stellen wir eine graph-
basierte Visualisierung von MaxSMT und Unsat Core vor, wobei die Knoten

74



im Graphen die zeitlichen Beziehungen (d.h. die SMT-Klauseln) zwischen
den Events darstellen.

Definition 16 (Ergebnisgraph). Gegeben sei eine Menge an Timing Events E
und eine Menge an transformierten Anforderungsformeln F, dann ist der Ergeb-
nisgraph G = (Gy, G, tmin, tmax) folgendermaflen konstruiert:

* Gy = E ist die Menge an Knoten, wobei jeder Knoten jeweils ein Timing
Event darstellt,

* G C Gy x Gy ist die Menge der gerichteten Kanten, wobei gilt: (e,¢') € G
wenn die Menge F die Formel beinhaltet: ¢ < ¢ or e+min < ¢ or e+ max >
¢ fiir beliebige min, max € R,

® Cmin : Ge — 2X ist die Beschriftungsfunktion fiir die minimale Zeitdistanz,
wobei min € cpin(e, ¢') wenn die Menge F eine Formel e+min < ¢ beinhaltet
und

® Cnax : Ge — 2R ist die Beschriftungsfunktion fiir die maximale Zeitdistanz,
wobei max € cpax(e, ') wenn die Menge F die Formel e+ max > ¢ beinhal-
tet.

Fiir MaxSMT und Unsat Core werden zwei Ergebnisgraphen separat vi-
sualisiert. Im MaxSMT Ergebnisgraphen G,,,, werden die Knoten griin dar-
gestellt, wenn die korrespondierenden Klauseln, die die entsprechenden Ti-
ming Beziehungen zwischen den Timing Events darstellen, in der MaxSMT-
Teilmenge enthalten sind, ansonsten werden sie rot dargestellt. Im Unsat
Core Ergebnisgraphen G, werden Knoten griin dargestellt, wenn sie nicht
zum Unsat Core UC gehodren, ansonsten werden sie rot dargestellt.

Abbildung 4.2 zeigt die grafische Darstellung der (generierten) Ereignis-
se und zeitlichen Beziehungen zwischen ihnen unter Verwendung der Bei-
spieltransformationen aus Tabelle 4.1. Timing Events, die zu erfiillbaren Ti-
ming Anforderungen gehoren, sind in griin dargestellt, wahrend Timing
Events, die zu nicht erfiillbaren Timing Anforderungen gehdren, in rot dar-
gestellt werden. Anhand dieses Beispiels lassen sich sehr deutlich die Vor-
teile des grafischen Ansatzes zeigen: Im Gegensatz zur textuellen Darstel-
lung kann ein Anwender sofort erkennen, dass
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[ TssPreprocessing_S ] [ TssPreprocessing_T ]

) max: 30
min: 3 —
max:\4 min: 10
max: 5

Abbildung 4.2: Generierter Ergebnisgraph fiir MaxSMT

* das Timing Event e p . ocessing das einzige Timing Event ist, dass
innerhalb der MaxSMT Menge nicht vorhanden ist,

¢ eine Timing Relation zwischen e,

+ . .
ssPreprocessing und 6‘Logic nicht in

MaxSMT vorhanden ist und somit vermutlich die Inkonsistenz
erzeugt und

¢ mehrere Pfade von &

. . .
TssPreprocessing nach €Logic €Xistieren, die vermut-

lich im Konflikt zueinander stehen.

Weiterhin kann ein Anwender aus diesen Erkenntnissen bereits folgende
Schlussfolgerungen ziehen bzw. Handlungsalternativen ableiten:

e . . : .

* Da die Timing Relation zwischen €y p, o ocessing UNd €] g1 durch ei-
nen einzelnen Offset Timing Constraint erzeugt wurde, wiirde durch
das Entfernen dieses Constraints die Menge konsistent werden.

e Da mehrere Pfade von e’TSSPreproceSSing nach Eiogic existieren, kann
es auch eine Losung sein, den anderen (langeren) Pfad genauer zu
betrachten. Das Entfernen oder Unterbrechen des Pfades wiirde die
Menge ebenfalls konsistent machen.

* Schliefilich lasst sich anhand der Beschriftung beider Pfade der erfor-
derliche Zeitabstand zwischen den Timing Events ablesen. Dies lasst
vermuten, dass durch das Abschwiachen der Timing Relation bzw.
das Vergroflern der Zeitbeschrankungen auf einem oder beiden Pfa-
den eine konsistente Anforderungsmenge gebildet werden kann.

Abbildung 4.3 zeigt den Unsat Core Ergebnisgraph G,.. Im Gegensatz zu
Gax zeigt dieser Graph, dass die Timing Constraints mit den Timing Events
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[ TssPreprocessing_S ]——>[ TssPreprocessing_T

Abbildung 4.3: Generierter Ergebnisgraph fiir Unsat Core

e

Logic und €7 ;. aufgrund ihrer Abhéngigkei-

t
eszsPreprocessing’ 6)FI‘ssPreprocessing’
ten in Konflikt zueinander stehen. An dieser Darstellung lasst sich erken-
nen, dass die Inkonsistenz durch das Entfernen eines beliebigen Constraints

innerhalb des rot markierten Pfades aufzulOsen ist.

4.3 STAND DER TECHNIK

Fir die automatisierte Konsistenzpriifung von AUTOSAR-basierten
Timing Anforderungen existieren nach aktuellem Stand keine direkten
verwandten Arbeiten. Es gibt jedoch Arbeiten, die Timing Anforderun-
gen mithilfe anderer Sprachen beschreiben. Weiterhin gibt es Arbeiten,
die sich mit dem Begriff der Modellkonsistenz im Allgemeinen und im
Besonderen fiir UML-basierte Sprachen beschaftigen. Da Anforderungen
zundchst nur in natiirlichsprachlicher Form vorliegen, gibt es dariiber
hinaus Arbeiten, die sich auf sprachlicher Ebene mit dem Begriff der
Konsistenz auseinandersetzen. Im Folgenden werden die wichtigsten
Arbeiten vorgestellt:

SPRACHEN ZUR SPEZIFIKATION VON ZEITBESCHRANKUNGEN Es existieren
mehrere Methoden und Sprachen zur formalen Spezifikation von Zeit-
beschrankungen, z.B. die Clock Constraint Specification Language (CCSL)
(André, 2009, Mallet und Simone, 2015), das von der EAST-ADL Associati-
on (2013) fiir Anwendungsfille im Automobilbereich iibernommen wurde,
Timed Story Scenario Diagrams (TSSD) (Klein und Giese, 2007), Universal
Pattern Language (UPL) (Teige et al., 2016), Structured Assertion Language
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for Temporal Logic (SALT) (Bauer et al., 2006) oder Echtzeit-Mustersprachen
(Gruhn und Laue, 2006). Fiir die Verifikation definieren die Ansédtze in
der Regel Transformationen nach Logiken auf niedrigen Ebenen wie
TLTL, MTL oder TCTL oder in Observer, die auf ausfithrbarem C-Code
basieren. In unserem Ansatz haben wir uns auf den weit verbreiteten
Standard AUTOSAR und die integrierten AUTOSAR Timing Constraints
konzentriert.

MoDELLKONSISTENZ Methoden, die die Konsistenz von Modellierungs-
artefakten iiberpriifen, z.B. UML-Modelle, werden in Rasch und Wehrheim
(2003), Seifert et al. (2005), Kotb und Katayama (2005), Simmonds und
Bastarrica (2005), Kalibatiene et al. (2013), Derrick et al. (2002), Abdelhalim
et al. (2011) oder fiir SysML State Machines in Jacobs und Simpson (2017)
vorgestellt. Ublicherweise wird Konsistenz als eine Eigenschaft zwischen
verschiedenen Modelldiagrammsichten, verschiedenen Modellversionen
(Engels et al., 2002) oder Modellen auf verschiedenen Abstraktionsebenen
behandelt (Mens et al., 2005, Engels et al., 2001). Dariiber hinaus wird
Konsistenz auch zwischen verschiedenen Modelltypen betrachtet, wenn
diese semantische Abhangigkeiten haben. So wird beispielsweise in Engels
et al. (2008) die Konsistenz zwischen Business Process Models und Web
Services betrachtet, da die Business Processes auf Web Services abgebilet
werden, beide aber unterschiedliche Reihenfolgeabhidngigkeiten haben
konnen. Diese Ansiatze unterscheiden sich von unserem Ansatz, da wir nur
an der Konsistenz einer Menge von Anforderungen interessiert sind, wobei
diese insgesamt in einem einzigen Modell erfasst wird, welches immer dem
AUTOSAR-Metamodell entspricht. Viele Arten von Inkonsistenzen, zum
Beispiel syntaktische Inkonsistenzen, treten daher nicht auf, da die syntak-
tische Konsistenz durch das Modellierungswerkzeug sichergestellt wird.
Weitere Regeln, die die statische Semantik von AUTOSAR beschreiben,
sind jedoch textuell definiert und werden nur teilweise tiberpriift.

In Post et al. (2011b) und Post et al. (2011a) werden Systemanforderungen
in der Echtzeitlogik Duration Calculus (Chaochen et al., 1991) formuliert.
Die Verifikation der Konsistenzeigenschaft erfolgt durch die Transformati-
on jeder Anforderung in einen sogenannten Phase Event Automaton (PEA)
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und anschlieflend in einen UPPAAL-verifizierbaren zeitgesteuerten Auto-
maten.

Die Verifikation von zeitgesteuerten Automaten-basierten Echtzeitsyste-
men wird z.B. in Kim et al. (2015) vorgestellt, wo ein neuartiges Analyse-
framework gezeigt wird, das symbolische und statistische Modelliiberprii-
fung in UPPAAL kombiniert, um so die Verifikationslaufzeit zu beschleuni-
gen. Ein dhnlicher Ansatz fiir die Konsistenzpriifung von Zeitanforderun-
gen wird in Toennemann et al. (2018) vorgestellt. Im Gegensatz zu unse-
rem Ansatz verwenden die Autoren Timing Anforderungen und ein Sys-
tementwurfsmodell zur Konsistenzpriifung. Dahingegen schlagen wir ei-
nen mehrstufigen Ansatz vor, bei dem wir zunachst nur die Anforderungs-
menge selbst fiir die Konsistenzpriifung verwenden und erst dann die Sys-
temarchitektur zu Verifikationszwecken verwenden.

KONSISTENZ NATURLICHSPRACHLICHER ANFORDERUNGSARTEFAKTE Dar-
iiber hinaus existieren Methoden, die Inkonsistenzen in natiirlichsprach-
lichen oder semi-formalen Anforderungsartefakten identifizieren: In
Mahmud et al. (2016) werden strukturierte Anforderungsspezifikatio-
nen in SAT-Formeln transformiert, um durch die Identifizierung von
Antonymen logische Inkonsistenzen zu finden. Im Rahmen des Product
Line Engineering {iiberpriifen Mendonga et al. (2009) Featuremodelle
durch Transformation in Aussagenlogik. Pittke et al. (2014) definieren
linguistische Konsistenzbedingungen fiir strategische Anforderungsarte-
fakte (sogenannte Goal-Modelle). Diese Konsistenzbedingungen beinhalten
sowohl syntaktische als auch semantische Bedingungen, die beispielsweise
Konsistenz unter der Beriicksichtigung von Homonymen und Synonymen
sicherstellen.

1.4 ZUSAMMENFASSUNG
In diesem Kapitel wurde eine Methode zur Konsistenzpriifung von AUTO-
SAR Timing Anforderungen vorgestellt. Diese Methode ermdglicht es be-

reits vor der eigentlichen Timing Verifikation die Qualitiat der Timing An-
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forderungen zu tiberpriifen und somit zu verbessern. Besonders die Berech-
nung der maximal groflen Menge an erfiillbaren Anforderungen (MaxSMT)
vereinfacht die Identifikation fehlerhafter Modellelemente. Weiterhin wur-
de eine Methode zur graphbasierten Visualisierung von MaxSMT und Un-
sat Core vorgestellt, die das Finden von Fehlern weiter vereinfacht.

Wenn eine Anforderungsmenge keine Inkonsistenzen mehr beinhaltet,
so kann sie danach auf Korrektheit tiberpriift werden. Diese Timing Veri-
fikation fiir AUTOSAR Timing Anforderungen wird im ndchsten Kapitel
vorgestellt.
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Timing Verifikation von
AUTOSAR
Softwarearchitekturen

Wurde eine Anforderungsmenge als konsistent identifiziert, konnen poten-
ziell alle darin enthaltenen Timing Anforderungen fiir eine Softwarearchi-
tektur erfiillt sein. Dies muss nun in einem nachsten Schritt in einer Timing
Analyse verifiziert werden. Da mit diesem Ansatz auch sicherheitskritische
Echtzeitsysteme gepriift werden sollen, ist es wichtig auch worst-case La-
tenzen zwischen Timing Events zu finden, sodass hierfiir ein analytischer
Ansatz gewdhlt werden muss.

Dieses Kapitel stellt die Methode zur Timing Verifikation von AU-
TOSAR Softwarearchitekturen vor. Dazu werden sowohl die AUTOSAR
Softwarearchitektur als auch die im Modell enthaltenen AUTOSAR Timing
Constraints nach Timed Automata transformiert. Dadurch, dass der Ansatz
ausschliefSlich das AUTOSAR Architekturmodell betrachtet und die
einzelnen Reglerfunktionen nicht berticksichtigt, kann die Timing Analyse
bereits in frithen Entwicklungsphasen erfolgen. Sobald Reglermodelle und
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deren Laufzeiten auf der zu verwendenden Hardwareplattform zur Verfii-
gung stehen, konnen diese in das Analysemodell eingefiigt werden. Somit
kann die Analyse iterativ erweitert werden und die Analyseergebnisse
werden exakter.

Zunichst wird die Transformation des formalen Architekturmodells be-
schrieben, das zuvor in Abschnitt 3.2.1 eingefiihrt wurde. Danach wird die
Transformation der Timing Requirements aus Abschnitt 3.2.1 vorgestellt
und im Anschluss in Abschnitt 5.3 mit existierenden Verfahren verglichen.
Der Inhalt basiert zum Grofsteil aus den bereits verdffentlichten Arbeiten in
Beringer und Wehrheim (2016).

5.1 ITRANSFORMATION DES AUTOSAR ARCHITEKTURMO-

DELLS NACH TIMED AUTOMATA

Wahrend AUTOSAR eine formale Syntax als OMG Metamodell vorgibt, ist
die Semantik der Modelle nur in Form von natiirlichsprachlicher Spezifi-
kationen beschrieben. Um Timing Anforderungen formal verifizieren zu
konnen, ist es jedoch notwendig eine formale Semantik fiir relevante Me-
tamodellelemente abzuleiten. Wir verwenden fiir unsere Methode Timed
Automata, da diese das zeitliche Verhalten der Modellelemente formal be-
schreiben konnen.

Fiir die Verifikation von Timing Anforderungen in AUTOSAR wurde
eine Abbildung von AUTOSAR-Modellen auf Timed Automata modelliert,
wobei das AUTOSAR-Modell sowohl die Softwarearchitektur also auch
die Timing Anforderungen enthilt. Die AUTOSAR Architektur wird in ein
Netzwerk von Timed Automata transformiert, wobei jede Timing Anfor-
derung in einen Testautomaten und eine TCTL-Query transformiert wird
(siehe Abbildung 5.1). Im resultierenden Gesamtnetzwerk kommunizieren
die Testautomaten mit den Architekturautomaten iiber Broadcast-Kanale.
So konnen die Testautomaten die Architekturautomaten nicht blockieren
und das Verhalten der Softwarearchitektur kann nicht durch das Erstellen
von Testautomaten beeinflusst werden.

Fiir ein gegebenes AUTOSAR-Modell AR = (R, AC, VA, T, TRM) wird ein
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Abbildung 5.1: Transformation des AUTOSAR Modells in ein Netzwerk
aus Zeitautomaten und TCTL-Abfragen

Ivvddn

dSPACE SystemDesk

Netzwerk aus Timed Automata N = (4, || .. || 4,) erstellt. Im Folgenden
werden die Transformationen der einzelnen Modellelemente genauer vor-

gestellt:

RunnaBLEENTITIES RunnableEntities (Runnables) reprasentieren Code-
fragmente, die in die Softwarearchitektur integriert werden. Das Triggern
wird durch die RTE-Ebene gesteuert. Des Weiteren haben Runnables Zu-
griff auf einen vordefinierten Satz von Variablen. Variablen mit Lesezugriff
werden direkt beim Start des Runnables gelesen, wahrend Schreibzugriffe
vor der Terminierung ausgefiihrt werden*. Die Ausfithrung des Runnable
Codes benétigt Zeit. Diese wird durch die Best-Case Execution Time und
Worst-Case Execution Time angegeben.

Fiir jedes RunnableEntity im Spezifikationsmodell wird ein Timed Au-
tomaton generiert, der sowohl die Datenzugriffe als auch das Laufzeitver-
halten berticksichtigt. Die Datenzugriffe werden dabei entweder {iber so-
genannte Inter-Runnable-Variablen bei der Kommunikation innerhalb ei-
ner Softwarekomponente dargestellt oder {iber Ports bei der Kommunika-
tion zwischen Softwarekomponenten. Fiir jede Kommunikationsbeziehung

“In AUTOSAR wird dies auch als impliziter Lese-/Schreibzugriff beschrieben
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werden Variablenzugriffe in Form von Locations und Transitionen erzeugt,
die das Senden und Empfangen von Daten reprasentieren.

Fiir jedes RunnableEntity » € R einer Softwarekomponente
mit re = (VAyead, VAwrite, weet, beet) wird ein Timed Automaton A =
(L,B,B*, X, I, U, E, Iy;) generiert. Sei Vdyesa = {re_VAread,, - - -, re_VAyead, } die
Menge der Schreibzugriffe (.4, analog). Im Folgenden nutzen wir eine
beliebige Ordnung von 1 bis » dieser Mengen.

* Locations: L = {re_ready_loc, re_running_loc} U {re_Vayeaq_loc | Vayeaqs €
VAread}
U {VE_derite_loc | szrite S VAwrite}l

e Handshake Kommunikation: B = {re_start, r_finished},

® Broadcast Kommunikation: B* = {re_tt,004 | Vayeaa € VAyead}
U {VE_Uﬂwrite | Varite € VAwrite}/

e Uhren: X = {x},
e Invarianten: I(re_running) = {x <= wcet},

o Urgency: VVa € VAdyeaa U VAyrire - U(r_Va) = true,
U(r_ready) = false, U(re_running) = false,

o Kanten: £ = {(re_ready, re_start?, 0, {x}, 7_Vayesa,),
(re_Vayead,, 76_varead,', 0, 0, re_running) } U
{(re_Vayeaa;, re_vayeaa!, 0,0, re_Vayead,,, )|t < j < |VAyead| — 1} U
{(re_Vawrire;; re_vawrie;!, 0,0, re_Vawrite, )|t < j < |VAwrire| — 1} U
{(re_running, re_vayyir,", {x > beet}, re_Vayyite,) } U
{(re_Vawrite,, re_finished!, ), 0, re_ready)} und

¢ Initiale Location: J;,; = re_ready_loc.

Der generierte Timed Automaton besteht mindestens aus den Locations
re_ready_loc und re_running_loc (mit dem Namen des Runnables vorange-
stellt). Der Automat befindet sich in der Location re_ready_loc, wenn das
Runnable gerade nicht ausgefiihrt wird und ansonsten in der Location
re_running_loc. Initial befindet sich der Automat im Zustand re_ready_loc.
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Jeder implizite Variablenzugriff des RunnableEntity wird ebenfalls als Lo-
cation reprasentiert. Die Identifikation des Zugriffs erfolgt {iber Signale an
den Transitionen. Diese Signale werden nicht nur fiir die Synchronisierung
verwendet, sondern auch, falls vorhanden, fiir vorhandene Testautomaten,
die aus den AUTOSAR Timing Anforderungen generiert werden (siehe
Abschnitt 5.2) und die den Datenfluss in der Softwarearchitektur erkennen
miissen. Daher werden die Channels als Broadcast Channels definiert. Die
in Abschnitt 5.2 vorgestellten Testautomaten miissen dieses Verhalten
berticksichtigen.

Abbildung 5.2 veranschaulicht ein transformiertes RunnableEntity mit
einem eingehenden Variablenzugriff (Lesezugriff) und einem ausgehenden
Zugriff (Schreibzugriff). Es zeigt das RunnableEntity TssPreprocessing, wel-
ches sich innerhalb der Softwarekomponente IndicatorLogic befindet (siehe
auch Abbildung 2.8) und die Rohdaten des Blinkersensorwertes tss_value
einliest, vorverarbeitet und die Resultate nach tss_status schreibt. Weiterhin
werden wcet und bcet als 5ms bzw. 2ms angenommen. Der Automat simu-
liert das Verhalten eines RunnableEntities in der AUTOSAR Architektur,
indem es durch das Signal Tss_Preprocessing_start gestartet werden kann,
und das Laufzeitverhalten durch die Zeitbeschrankungen mittels einer In-
variante im Zustand TssPreprocessing_running_loc und einem Guard an
der darauf folgenden Transition.

tss_value!

TssPreprocessing_ready_loc ssPreprocessing_running_loc

x<=5

tss_status!

TssPreprocessing_finished!

tss_status_loc

Abbildung 5.2: Beispiel fiir die Reprisentation des RunnableEntities
Tss_Preprocessing als Timed Automaton
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AsseMBLYCONNECTIONS  AssemblyConnections C = (leff, right) verbinden
in AUTOSAR Ports verschiedener Softwarekomponenten. In unserem
Modell abstrahieren wir jedoch von Softwarekomponenten und Ports,
da dies die Timing Analyse nicht beeinflusst. Die Connections stellen
daher Schreib- und Lesezugriffe von Variablenzugriffselementen dar.
Fiir jede AssemblyConnection wird ein Timed Automaton generiert, der
den Datenfluss zwischen den Runnables iiber die Ports beschreibt. Der
Automat enthélt eine Location, sowie fiir die Variablenzugriffe leff und
right jeweils eine Transition, welche die Verbindung der Runnables in der
Softwarearchitektur darstellen. Somit erhalten wir fiir jede AssemblyCon-
nection C = (left, right) einen Timed Automaton A = (L, B, B*, X, I, U, E, I»;)
mit:

* Locations: L = {ac_start},

* Signale: B = {left, right}, B* = {},
e Uhren: X = (),

¢ Invarianten 7 : (),

e Urgency: Ulac_start) = false,

e Kanten: E = {(ac_start, lefi?, 0,0, ac_start), (ac_start, right?, 0, 0, ac_start) }
und

e Initialer Location: /;,; = ac_start.

Task RUNNABLE MaprPING  Fiir die korrekte Ausfiithrungsreihenfolge der
Runnables im Analysemodell wird fiir jeden OSTask ein Timed Automaton
A generiert. Dieser Automat triggert die enthaltenen Runnables des OST-
asks in der spezifizierten Reihenfolge. Der Automat sendet das Start-Signal
an die einzelnen Runnables. Danach wird das Runnable in die running-
Location gesetzt und es verlasst die running-Location, wenn der Runnable-
Automat das finish-Signal zuriick an den Runnable-Mapping-Automaten
zurlicksendet. Da zwischen Start und Stopp keine Zeit vergeht, werden die
entsprechenden Locations als urgent markiert.

86



Sei T'die Menge aller OSTasks und fiir jede OSTask r € T, sei R, = {r € R |
TRM(r) = t} die Menge aller RunnableEntities, die vom OSTask r getriggert
werden. Wiederum nehmen wir eine beliebige Reihenfolge der Menge R,
an, wobei wir die Indizes 1 to » verwenden. Dann existiert fiir jeden OSTask
t € T, ein Timed Automaton .4 im Analysemodell mit:

e Locations: L = {¢_ready, t_running} U {t_r_start, t_r_stopped | r € R;}

e Signale: B = {t_run,t_processed} U {t_r_start,t_r_finished | r € R}, B* =

{3
e Uhren: X = {x}
e Invarianten: /(z_running) = {x == o},
* Urgency: Vr € R, : U(t_r_finished) = true, U(t_running) = true,

e Kanten: £ = {(z_ready, t_run?,0,0,t_running),
(t_running, t_r,_start), 0,0, t_r_running),
(¢t_ry_stopped, t_processed!, D, 0, r_processed),
U {(z_r_stopped, t_r_start!, 0,0, t_r_running),
(t_r_running, t_r_finished?, 0,0, t_r_stopped) | r € R;} und

¢ Initialer Location: /;,; = ¢_ready.

Abbildung 5.3 zeigt beispielhaft ein Task Runnable Mapping als Timed
Automaton.

Tasks Jedes AUTOSAR-basierte Steuergerdt enthdlt ein AUTOSAR-
konformes OSEK Betriebssystem, das die Ausfithrung von OsTasks auf
dem Steuergeréat koordiniert. OsTasks haben die Zustande suspended, ready
und running. Zusatzlich sind sie durch eine Zykluszeit p definiert, mit der
sie periodisch aufgerufen werden. Ein Task ist im Zustand ready, wenn er
durch den Betriebssystemscheduler zur Ausfithrung ausgewdahlt werden
kann. Wenn der Scheduler den Task zur Ausfithrung auswahlt, wird der
Task in den Zustand running gesetzt. Nach der Terminierung, aber vor
Ablauf der Zykluszeit, wird der Task in den Zustand suspended gesetzt.
Fiir jeden OsTask r € T'wird ein Timed Automaton wie folgt 4 generiert:
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Task _10ms_ready

CentralBodyEcuConfig_Task 10ms_run?

)
Task_10ms_running

TurnSwitchSensor_TssRunnable_start!

TurnSwitchSensor_TssRunnable_running

TurnSwitchSensor_TssRunnable_finished?
©
TurnSwitchSensor_TssRunnable_stopped
IndicatorLogic_TssPreprocessing_start!

IndicatorLogic_TssPreprocessing_running
IndicatorLogic_TssPreprocessing_finished?

IndicatorLogic_TssPreprocessing_stopped

IndicatorLogic_Logic_start!
IndicatorLogic_Logic_running
IndicatorLogic_Logic_finished?

IndicatorLogic_Logic_ stopped

IndicatorLogic_Toggle_start!

IndicatorLogic_Toggle_running

IndicatorLogic_Toggle finished?

IndicatorLogic_Toggle_stopped

CentralBodyEcuConfig_Task_10ms_processed!

Abbildung 5.3: Beispiel fiir das Task Runnable Mapping als Timed Auto-
maton

* Locations: L = {ready, starting, running, terminating, suspended},

e Handshake Kommunikation: B = {r_startTask, t_run, t_processed,
t_terminateTask, t_isNotReady},

* Broadcast Kommunikation: B* = {}, X = {x},

e Invarianten: [(running) = {x <= p}, I(suspended) = {x <= p},

o Urgency: U(ready) = false, U(starting) = true, U(running) = false,
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Ulterminating) = true, U(suspended) = false,

o Kanten: £ = {(ready, t_startTask?, 0,0, starting),
(starting, t_run!, 0,0, running),

running, t_processed?, (), 0, terminating),

suspended, @, {x == p}, {x}, ready),

(
(terminating, t_terminateTask!, (), ), suspended),
(
(suspended, t_isNotReady!, (), suspended) } und

¢ Initialer Location: /;,; = ready.

Das Verhalten eines OsTasks wird modelliert durch die Generie-
rung von Locations fiir ready, running und suspended und zusatzlich
(urgent)-Locations fiir das Senden und Empfangen mehrerer Signale zur
Synchronisation mit dem RunnableToTask-Mapping-Automaten. Der OsT-
ask startet in der Ready-Location und kann dann durch den Task Scheduler
getriggert werden. Durch den Empfang des Signals startTask bekommt
das EventToTaskMapping das Signal den OsTask auszufiihren und setzt
diesen in den Zustand running. Danach wird das EventToTaskMapping
ausgefiihrt, d.h. es werden alle RunnableEntities ausgefiihrt und danach
das Signal processed empfangen und das Signal terminateTask wird an
den Scheduler gesendet. Der OsTask verbleibt dann solange im Zustand
suspended bis die Periode des OsTasks abgelaufen ist. In der Zwischenzeit
synchronisiert sich der Automat nur iiber das Signal isNotReady mit dem
Scheduler. Danach wird der OsTask zuriick in den Zustand ready gesetzt
und kann erneut durch den Scheduler ausgewahlt werden. Abbildung 5.4
zeigt beispielhaft die Reprasentation eines AUTOSAR OSTasks als Timed

Automaton.

5.2 TRANSFORMATION DER TIMING ANFORDERUNGEN

NACH TIMED AUTOMATA

Neben der Transformation des Architekturmodells miissen ebenfalls die Ti-
ming Anforderungen von AUTOSAR nach Timed Automata transformiert
werden. Fiir die Transformation der einzelnen Timing Anforderungen wird
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terminating running

t1_processed?
X<=p
t1_terminateTask!

t1_run!

t1_isNotReady!
_isNotReady ) @ —
X<=p X==p _startTask? .
suspended  x:=p )r(‘ia:(% starting

Abbildung 5.4: Beispiel fiir die Reprisentation eines OSTask als Timed Au-
tomaton

jeweils ein Testautomat generiert, sowie eine TCTL-Abfrage, die die Timing
Anforderung auf dem Testautomaten priift.

LaTency TiMING CoNSTRAINT Bei der Transformation des Latency
Timing Constraints wird die Event Chain C = (e, ...,e,) in einen Test-
automaten transformiert, der die Event Chain als Kette von Locations
modelliert. Zwischen jeder Location wird eine Transition generiert, die das
entsprechende Signal des in der Event Chain modellierten Events emp-
tangt. Die Verifikation der definierten Latenz wird durch eine Uhr erreicht,
die die Zeit wahrend des Durchlaufens der Event Chain misst und am
Ende der Event Chain zuriickgesetzt wird. Die maximale Latenz wird dann
durch eine TCTL-Abfrage iiberpriift, die den maximalen Uhrenwert des
Testautomaten tiberpriift. Daher wird fiir jeden Latency Timing Constraint
le € Ry ein Timed Automaton 4 wie folgt generiert:

* Locations: L = {ic_ele € C},

Signale: B* = {e|e € C}, Uhren: X = {x},

e Invarianten I(lc_e;) = {x <1},

Kanten: E = {(lc_ej, ¢?,0,0, lc_ejy )1 < j < n—1}
U{lc_en,en, 0, {x}, lc_e; U {(lc_er, &7, 0,{x},lc_er)},

Initiale Location: [;,; = Ic_e,.
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In der ersten Location /_e, (also bevor das erste Event empfangen wurde)
setzt der Automat in regelmafigen Schritten die Uhr zuriick (implementiert
durch die Selbsttransition und Invariante auf /), sodass der Wert der Uhr
nur dann 1 {iberschreitet, wenn das erste Ereignis empfangen wird. Es ist
zu beachten, dass nach der Definition von B* die generierten Signale eine
Broadcast-Kommunikation verwenden. Zusatzlich wird die TCTL-Abfrage
¢ = AG(x < maximum) generiert. AG bedeutet, dass die Eigenschaft auf
allen Pfaden immer giiltig sein muss.

Abbildung 5.5 zeigt einen Latency Timing Constraint Automaton, der die
Zeit vom Start-Event, wenn der Blinkersensor die Rohdaten erhalt, bis zum
Ende-Event, wenn der Aktuator, der die Blinkerleuchten ansteuert, das Si-

gnal erhalt, misst.

io_bulb_value?
x:=0

x:=0 'oﬁtssfvalue?/\outftssfvalue;&\ tss_value? o Ieftfsignal?/-\bulbfsignal?
<=1 Q) O O O O

Ic_io _tss_value Ic_out tss Ic_tss value Ic_left_signal  Ic_bulb_signal Ic_io_bulb

Abbildung 5.5: Timed automaton eines Latency Timing Constraints

ExecutioN ORDER CONSTRAINT Anforderungen an die geordnete Aus-
fithrung von RunnableEntities werden durch den Execution Order Cons-
traint erfasst. Ein Execution Order Constraint 7, = (re;,...,7¢),7e; € Re
wird durch eine geordnete Abfolge einer Teilmenge der verfiigbaren Runn-
ableEntities definiert, fiir die die Ausfithrungsreihenfolge angegeben ist.
Fiir jeden ExecutionOrderConstraint 7, wird ein Timed Automaton wie

folgt generiert:

* Locations: L = {re; EOC _started, re;_EOC finished |1 < i < n}

U {init, error},

* Broadcast Kommunikation: B* = {re;_EOC start, re;_EOC finished | i =

L...,n},

e Handshake Kommunikation: B = {},
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Uhren: X = {},

Invarianten 7 ist true fiir alle Locations,

Urgency: U(re,_EOC_finished) = true,

E = {init, re,_EOC start?, ), (0, re,_ EOC_started} U

{re;_EOC started, re;_EOC finished?,0,0, re,_EOC finished | i =
L...,n}U
{re,_EOC finished, reir,_EOC start?,0,0, re;r, _EOC started | i =
L...,n}U

{re,_EOC finished, +, 0,0, init}
® [ = init.

Man beachte, dass gemafs der Definition von B* die generierten Signale
Broadcast Kommunikation verwenden. Dartiber hinaus wird fiir jede Loca-
tion / € L eine TCTL-Abfrage ¢, = 4F(/) und eine weitere TCTL-Abfrage
¢, = AG nor error generiert. Diese Eigenschaft setzt voraus, dass auf al-
len Pfaden des Systemverhaltens jede Location irgendwann besucht wird
(d.h. die Events werden in der angegebenen Reihenfolge empfangen). Eine
falsche Reihenfolge wiirde zudem den Automaten in den error-Zustand set-
zen, was mit ¢, gepriift wird. Abbildung 5.6 zeigt beispielhaft den Automa-
ten ., aus Tabelle 4.1, der die Reihenfolge der Runnables TssPreprocessing,
Logic und Toggle beschrankt.

SYNCHRONIZATION TiMING CoNSTRAINT Der Synchronization Timing
Constraint wird verwendet, um Anforderungen an die Synchronizitit
von Timing Events zu stellen. Er wird definiert durch eine Menge an
Events ¢; und einem Toleranzwert, der die maximale zeitliche Abweichung
zwischen dem ersten Auftreten und dem letzten Auftreten eines Events
der Menge angibt. Ein Synchronization Timing Constraint ist erfiillt, wenn
Ve, e € St |ty — tej| < tolerance, wobei t; der Zeitpunkt ist, zudem e auftritt.

Daher wird fiir jeden Synchronization Timing Constraint 7y, ein Timed
Automaton wie folgt generiert:

e Locations: L = {sc_init},
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TurnSwitchSensor_TssPreprocessing_start?

IndicatorLogic_Toggle_finished?

TurnSwitchSensor_TssPreprocessing_finished?

IndicatorLogic_Logic_start?

O ~
CJI;OCJJM
TurnSwitchSensor_TssPreprocessing_start?

IndicatorLogic_Logic_finished?

2

IndicatorLogic_Logic_finished?

TurnSwitchSensor_TssPreprocessing_start?

TurnSwitchSensor_TssPreprocessing_finished?

?umSwwtchSensorﬁTssPreprocess\nngOCfslarted
[TurnSwitchSensor_TssPreprocessing_finished?

IndicatorLogic_Toggle_finished?

N

IndicatorLogic_Toggle_start?

TurnSwitchSensor_TssPreprocessing_finished?

TurnSwitchSensor_TssPreprocessing_start?

L

D

[TurnSwitchSensor_TssPreprocessing_EOC_finished|
IndicatorLogic_Logic_start?

IndicatorLogic_Toggle_finished?

Rd\catorLog\c_Log ic_EOC_started

erron

IndicatorLogic_Toggle_start? IndicatorLogic_Logic_finished?
IndicatorLogic_Logic_start?
TurnSwitchSensor_TssPreprocessing_finished? \)5

?
Indicatorl ogic_Logic_start? indicatorLogic_Logic_EOC.finished
IndicatorLogic_Logic_finished? IndicatorLogic_Toggle_start?
IndicatorLogic_Toggle_finished?
TurnSwitchSensor_TssPreprocessing_start? -

?
IndicatorLogic_Logic_start? RdicatorLogicﬁToggIefEOCfsta rted
TurnSwitchSensor_TssPreprocessing_finished?, IndicatorLogic_Toggle_finished?
IndicatorLogic_Logic_finished?

?
L IndicatorLogic_Toggle_start? @ )

TurnSwitchSensor_TssPreprocessing_start?

Abbildung 5.6: Timed Automaton fiir eoc,

Signale: B* = {e|le € S}B = {},

Uhren: X = {x},

e Invarianten: 7 = {0},

IndicatorLogic_Toggle_EOC_finished

Urgency: Uist false fiir alle Locations,

Kanten: E = {sc_init,e?,0, 0, sc_init}, Ini = {sc_init}.

Auch hier verwenden die Signale wieder Broadcast-Kommunikation. Wei-

terhin werden fiir die generierten Transitionen Funktionen spezifiziert, die

jedes Mal ausgefiihrt werden, wenn die Transition schaltet. Fiir jede Transi-

tion ¢; € E wird die entsprechende Funktion e_i_receiving ausgefiihrt. Zu-

satzlich werden fiir jeden Automaten lokale Deklarationen definiert, wie

sie in Listing 5.1 beschrieben sind. Die lokalen Deklarationen von UPPAAL
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werden verwendet, um zu speichern, welche Signale bereits vom Automa-
ten empfangen wurden. Die fiir jedes Event generierte Funktion speichert
in einer Variable ¢_i_received, ob das Event empfangen wurde. Die Funktio-
nen isRunning und isCompleted werden in jeder Funktion e_i_receiving auf-
gerufen, um das erste Auftreten eines Events und das Auftreten des letzten
Events festzuhalten. Sowohl beim ersten Auftreten eines Events als auch
beim Auftritt des letzten Events wird die Uhr des Automaten zuriickge-
setzt. Wird das erste Event empfangen, wird zudem der Automat in den
Zustand running gesetzt, indem die boolsche Variable running gesetzt wird.
Nach dem Auftreten des letzten Events wird die Variable dann wieder zu-
riickgesetzt. Sobald also die running-Variable gesetzt wurde und die Uhr
zuriickgesetzt wurde, lduft die Zeit solange weiter bis alle Events empfan-
gen wurden und wird erst dann wieder zuriickgesetzt. Wird nun, solan-
ge der Automat im Zustand running ist, die Uhrzeit durch den maximalen
Toleranzwert begrenzt, so spiegelt dies die Semantik des Synchronization
Timing Constraints wieder.
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Listing 5.1: Lokale Deklarationen in UPPAAL

clock x;
bool e i received = false;
bool running = false;

void e _i_receiving () {
isRunning ();
e_i_received = true;
isCompleted ();

void isRunning (){
if (!running){
x=0;

running=true;

}
}
void isCompleted (){
if (e_1_ received && .. e_n_received){
e_i received = false;
x=0;

running=false ;

Daher wird fiir den Synchronization Timing Constraint eine TCTL-
Abfrage wie folgt generiert: 4G(running == x < tolerance). Abbildung
5.7 zeigt beispielhaft die Transformation eines Synchronization Timing
Constraints, das die synchrone Ausfithrung der Runnables des linken
und rechten Blinkeraktuators erfordert. Analog zum Automaten wer-
den die erforderlichen lokalen Deklarationen generiert, d.h. zwei Flags
Bulb1_received und Bulbz_received, sowie die Funktionen Bulbi_receiving
und Bulbz_receiving.
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Bulb1_Start? Bulb2_Start?
Bulb1_receiving() Bulb2_receiving()

O

Abbildung 5.7: Beispiel eines Synchronization Timing Constraints fiir die
Synchronizitit der Blinkerlampen

x<=1
x:=0

x<1

OTC 1 start
TumnSwitchSensor_TssPreprocessing_RunnableEntityStarted?
x:=0

OTC 1 running
IndicatorLogic_Logic_RunnableEntityTerminated?

x:=0
% OTC_1_target

Abbildung 5.8: Timed Automaton fiir 7,

Orrser TiMING ConsTRAINT Der Offset Timing Constraint wird
fiir die Transformation als ein Spezialfall des Latency Timing Cons-
traints behandelt, bei dem lediglich zwei Timing Events beteiligt
sind, ein Source-Event und ein Target-Event. Dementsprechend
wird flir jeden Offset Timing Constraint r,, = (e, e, min, max) ein
Timed Automaton analog zu einem Latency Timing Constraint mit =
e = ({¢s, &), min, max) generiert mit den TCTL-Queries ¢' = AG(x < max)
und ¢* = AG(nor OTC start implies x > min). Ein Beispiel fiir einen Offset
Timing Constraint ist 7, aus dem Blinkerbeispiel in Abschnitt 2.1.2.
Dieser wird in Abbildung 5.8 gezeigt. Die generierten TCTL-Queries sind
¢, . =AG(x < 4)und ¢, = AG(not OTC_1_start implies x > 3).

ExecuTioN TiME CONSTRAINT  Der Execution Time Constraint gibt die mi-
nimale und maximale Laufzeit fiir ein RunnableEntity an. Fiir diese Analyse
auf Taskebene existieren bereits Methoden wie in Abschnitt beschrieben. Im
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Folgenden wird daher fiir die Verifikation der Execution Time Constraint
nicht weiter betrachtet und auf die existierenden Methoden zur Analyse auf
Taskebene hingewiesen.

Fiir die Verifikation der AUTOSAR-Architektur werden alle generierten
Automaten A4; = (L;, B;, X;, I, E;, I;,,,) zu einem Netzwerk von Timed Auto-
mata N = (4, || .. || 4,) verbunden. Dann ist ein TimingConstraint T mit
TCTL-Formel ¢ fiir das Modell giiltig, genau dann wenn (N || T) = ¢,
d.h. der Automat fiir ein einzelnes Timing Constraint wird mit dem Netz-
werk der Timed Automata verbunden, das die Softwarearchitektur repra-
sentiert. Es wird dabei immer nur ein Testautomat angebunden, um Seiten-
effekte, die durch das Hinzufligen weiterer Testautomaten entstehen kon-
nen, zu vermeiden. Dieses Netzwerk wird dann anhand der fiir den jeweili-
gen Testautomaten spezifizierten TCTL-Formel tiberpriift. Wird kein expli-
ziter Testautomat fiir einen Timing Constraint erzeugt, wie beim Execution
Time Constraint, so wird das erzeugte Netzwerk A auf Deadlockfreiheit
uberpriift.

Die Transformation der AUTOSAR Softwarearchitektur und der Timing
Requirements nach Timed Automata wurde beispielhaft fiir das Blinker-
beispiel aus Abschnitt 2.1.2 durchgefiihrt. Aus Kapitel 4 wissen wir bereits,
dass die Anforderungsmenge inkonsistent ist. Somit ist zu erwarten, dass
ohne Anderung der Anforderungen mindestens eine Anforderung nicht er-
fillbar ist.

Der generierte Execution Order Constraint fiir 7., wurde bereits in Ab-
bildung 5.6 vorgestellt. Die generierte TCTL-Query ist ¢, = AG nor error.
Der Offset Timing Constraint 7, ist in Abbildung 5.8. Die génerierten TCTL-
Queries sind ¢, = AG(x < 4) und ¢, | = AG(not OTC_1_start implies x > 3).

Fiir das Blinkerbeispiel verwenden wir beispielhaft Worst-Case und Best-
Case Execution Times aus Tabelle 5.1 fiir die Runnables. Aus diesen Werten
lasst sich erkennen, dass die Execution Time Constraints 7, und 7., er-
fuillt werden. Der Execution Order Constraint wird durch die korrekte Aus-
fiihrungsreihenfolge der Runnables ebenfalls abgebildet. Der Offset Timing
Constraint ist jedoch nicht erfiillt, da zwischen dem Auftreten des Start-
Events und des Target-Events mehr als 4ms vergehen.

Die generierten Timed Automata Netzwerke werden in UPPAAL verifi-
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Abbildung 5.9: Der von der Softwarearchitektur nicht erfiillte Offset Timing
Constraint r,, in der UPPAAL GUI

ziert. Werden Timing Constraints nicht von der Softwarearchitektur erfiillt,
konnen diese in der grafischen Oberfliche von UPPAAL genauer betrachtet
werden. Abbildung 5.9 zeig beispielhaft das Werkzeug mit den generier-
ten TCTL-Anfragen fiir ¢, . Es zeigt in diesem Fall, dass die erste TCTL-
Anfrage des Offset Timing Constraints ¢, nicht erfiillt ist. UPPAAL bietet
dariiber hinaus verschiedene Moglichkeiten an fehlerhafte Pfade zu gene-
rieren, anzuzeigen und zu analysieren.

5.3 STAND DER TECHNIK

Der hier vorgestellte Ansatz verfolgt die Timing Verifikation von AUTO-
SAR Timing Constraints durch die Transformation nach Timed Automata.
Dartiber hinaus gibt es weitere Ansatze, die Timing Verifikation auf System-
ebene mit anderen Methoden und Frameworks vorschlagen, sowie Ansat-
ze, die ebenfalls auf Timed Automata als Analysemethode basieren, jedoch
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Tabelle 5.1: Execution Times der RunnableEntities

| Runnable | BCET | WCET |

TssRunnable 1 1
WlsRunnable 1 1
T’ssPreprocessing 1 3
W lsPreprocessing 1 3
Logic 10 10
Togygle 1 5
BulbRunnable 1 1

nicht das Konzept der AUTOSAR Timing Constraints im Fokus haben. Die
relevantesten Arbeiten werden im folgenden vorgestellt.

TiMING VERIFIKATION MIT TiMED Automata Die Anwendung von
Timed Automata zur Verifikation verteilter eingebetteter Systemarchitek-
turen wird in der Literatur haufig vorgeschlagen. So werden beispielsweise
in Hendriks und Verhoef (2006) UML-Sequenzdiagramme mit zusatzlichen
Zeitannotationen nach Timed Automata transformiert, um Worst-Case
Response Times zu berechnen. Neuere Arbeiten verwenden Timed Auto-
mata zur Verifikation von ROS'-basierten Roboteranwendungen (Halder
et al,, 2017), zur Verifikation von BPEL-Anforderungen (Gao et al., 2021),
SystemC Designmodellen (Herber et al., 2015) oder zur Verifikation des
RabbitMQ Protokolls (Li et al., 2022).

Ein dhnlicher Ansatz, der in Neumann et al. (2012) beschrieben wird,
verwendet ebenfalls Timed Automata fiir die Analyse von AUTOSAR-
Architekturen. Hier werden fiir die Analyse ebenfalls Automaten fiir das
AUTOSAR-Systemmodell, insbesondere auch fiir Runnables, Tasks und
das Task-Runnable-Mapping mithilfe eines Template-basierten Mechanis-
mus erstellt. Die generierten Automaten unterscheiden sich von unserem
Ansatz aufgrund der unterschiedlichen Herangehensweise, da wir bei
der Definition der Transformationen auf das zuvor spezifizierte formale
Modell zuriickgreifen und wir zur Interpretation der Semantik von AUTO-

fRobot Operating System
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SAR ebenfalls auf den zur Verfiigung stehenden Quellcode zuriickgreifen
konnten. Zudem lag der Fokus unserer Arbeit auf der Verifikation der
Timing Anforderungen, wiahrend Neumann modellinhdrente Timing
Fehler erkennt. Im Gegensatz zu unserem Ansatz unterscheiden sich die
generierten Automaten fiir RunnableEntities insofern, dass Variablenzu-
griffe immer durchgefiihrt werden konnen, wenn ein RunnableEntity im
Zustand running ist und somit dhnlich zu expliziter Kommunikation in
AUTOSAR sind, wahrend wir bei uns das Lesen und Schreiben der Varia-
blen bei impliziter Kommunikation vor- bzw. nachgelagert ist und somit
ebenfalls die Semantik der impliziten Datenkommunikation, die durch die
RTE orchestriert wird, unterstiitzt, wodurch unser Ansatz etwas exakter
die Zeitpunkte der Ausfithrung dieser Kommunikation beschreibt. Bei der
Generierung von OSTasks werden in unserem Ansatz keine Committed
Locations erzeugt, sodass in unserem Fall die Automaten nicht in einen
Fehlerzustand laufen konnen, was wiederum ndher an der Semantik der
AUTOSAR-Spezifikation ist. Zudem verzichten wir bei der Generierung
des Task-Runnable Mappings im Gegensatz zum dort gezeigten Automa-
tentemplate auf die Implementierung verschiedener Trigger-Zeiten, um
die Komplexitat der Automaten klein zu halten. Dariiber hinaus verzichten
wir vollstindig auf die Generierung von Softwarekomponenten und
Ports, da diese keinen Einfluss auf die Laufzeit des Systemmodells haben.
Hier verzichten wir auf existierende Sturkturelemente des AUTOSAR-
Standards, sodass unser Ansatz ndher an der Semantik des generierten
Quellcodes ist. Das so erstellte Automatennetzwerk wird dann in UPPAAL
auf Deadlockfreiheit gepriift. Im Gegensatz zu dem hier vorgestellten
Ansatz ermdglichen die Transformationen die Erkennung allgemeiner
Timing Fehler, die sich aufgrund einer fehlerhaften Konfiguration des
Systemmodells ergeben und mithilfe der Verifikation auf Deadlockfreiheit
erkannt werden. Es werden aber keine Transformationen der AUTOSAR
Timing Constraints durchgefiihrt, was fiir die Analyse von Timing An-
forderungen jedoch notwendig ist. Des Weiteren wird fiir die Automaten
keine Broadcast-Kommunikation verwendet, die fiir eine Verkniipfung mit
den hier vorgestellten Test-Automaten der Timing Anforderungen benétigt
wird. Weiterhin beinhalten die Automaten zusitzliche Fehlerzustinde
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mit denen die Deadlockfreiheit des Systemmodells gepriift wird, die
wiederum in unserem Ansatz nicht benotigt werden. Schliefslich wird kein
formales Modell definiert, welches als Grundlage fiir die Generierung der
Automaten aus den gezeigten Templates herangezogen wird.

In Neumann und Giese (2013) wird eine erweiterte Definition von Timed
Automata vorgestellt, die eine kompositionelle Timing Verifikation ermog-
licht, und auf ein AUTOSAR-Beispielmodell angewendet. Im Gegensatz zu
unserer Arbeit werden die AUTOSAR-Transformationen hier auf Software-
komponentenebene durchgefiihrt, wohingegen wir in unserem Ansatz von
Softwarekomponenten weitgehend abstrahieren. Des Weiteren wurden die
Automaten, welche die Implementierungen der Softwarekomponenten und
das Zusammenspiel der Runnables darstellen, nicht vollstandig automati-
siert erzeugt. Stattdessen werden Automaten lediglich teilweise aus den be-
stehenden AUTOSAR Interfaces generiert.

Weitere Ansitze, die ebenfalls Timed Automata verwenden, schlagen die
Konstruktion von Testautomaten (oder Szenario-Automaten) fiir die Spezi-
fikation von Anforderungen vor Gehrke et al. (2006), beriicksichtigen aber
ebenfalls nicht die AUTOSAR Timing Extensions. In der in Scheickl und
Ainhauser (2012) vorgestellten Arbeit wird eine Werkzeugunterstiitzung
fiir die Verifikation von AUTOSAR Timing Anforderungen vorgestellt. Die
Anforderungen werden verifiziert, indem sie mit spezifizierten Timing Ga-
rantien verglichen werden. Fiir diesen Ansatz miissen jedoch Timing Ga-
rantien spezifiziert werden, was in unserem Ansatz nicht notwendig ist.

TiMiNG VERIFIKATION FUR EcaTzEITSYSTEME Es gibt verschiedene Me-
thoden fiir die Analyse von Timing Anforderungen. Neben der Modellie-
rung und Verifikation von zeitbehafteten Systemen mittels Timed Automa-
ta, existieren Methoden basierend auf der allgemeinen Scheduling-Analyse
(Liu und Layland, 1973). In den Arbeiten von Richter (2005) und Feiertag
et al. (2008) wird ein kompositioneller Scheduling Ansatz vorgestellt, der
auf traditioneller Scheduling-Theorie fiir Echtzeitsysteme basiert und auch
prototypisch fiir AUTOSAR implementiert wurde (Rhandor, 2012). Der An-
satz geht davon aus, dass Signale nur eingeschrankt an Komponenten an-
kommen konnen, beispielsweise mit einer fixen Frequenz und maximalen
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MecHaTroNIcUML

MobpAL SEQUENCE DIAGRAMS

Jitter. Diese Ankiinfte werden in sogenannten Ereignisfunktionen spezifi-
ziert. Wenn die ankommenden Signale nicht mit den vorgegebenen Mo-
dellen iibereinstimmen, wird die Zeitanalyse unprazise (Perathoner et al.,
2009).

Real-Time Calculus (Thiele et al., 2000, Albers et al., 2008) ist ein Frame-
work fiir die Performanceanalyse von Echtzeitsystemen, das auf dem
Netzwerk-Kalkiil basiert (Perathoner et al., 2009). Durch die Spezifikation
eines Event Stream Modells kann ein Signalfluss durch ein System analy-
siert werden. Dies ist ein generischerer Rahmen als der von Richter (2005).
Beide Methoden abstrahieren von den konkreten Metamodellelementen
der AUTOSAR Softwarearchitektur. Dariiber hinaus wenden wir unsere
Methode direkt auf die AUTOSAR-Timing-Extensions an, wahrend andere
Methoden die Anwendung diesen Aspekt nur ansatzweise betrachten.

Eine weitere Methode zur Timing Verifikation von Echtzeitsystemen auf
Basis von Architekturmodellen ist beispielsweise Petriu und Woodside
(2004). Dort wird das UML-Profile for Schedulability, Performance and
Time als Basis genommen und zur Timing Verifikation nach Timed Petri
Nets transformiert.

TiMING VERIFIKATION IM KONTEXT VON MECHATRONICUML Neben AU-
TOSAR existieren andere Entwicklungsmethoden fiir vernetzte elektrische /
elektronische Architekturen im Automobil wie beispielsweise AutoFOCUS
(Aravantinos et al., 2015), Amalthea (Becker, 2021) oder MechatronicUML
(Becker et al., 2014). Diese ermoglichen ebenfalls die Verifikation von Anfor-
derungen auf Architekturebene. Alle Methoden haben jedoch unterschied-
liche doméanenspezifische Sprachen und betrachten verschiedene Aspekte
des Systems auf unterschiedlichen Abstraktionsebenen.

MechatronicUML ist eine Erweiterung der UML und unterstiitzt den mo-
dellbasierten Entwurf mechatronischer Syteme bereits auf Systemebene, in-
dem es eine formale Sprache sowohl zur Spezifikation von Anforderun-
gen als auch zur Spezifikation einer plattformunabhangigen Softwarearchi-
tektur zur Verfiigung stellt (Dziwok et al.,, 2016). Anforderungen werden
zundchst in Form von Modal Sequence Diagrams (MSDs) spezifiziert (Holt-
mann et al., 2016). Diese konnen dann auf ihre Konsistenz gepriift werden
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(Holtmann et al., 2016). Auf der Basis der MSD-Spezifikation wird dann
eine plattform-unabhdngige komponentenbasierte Softwarearchitektur er-
stellt (Dziwok et al., 2016). Komponenten der Softwarearchitektur konnen
dann tiber Ports miteinander kommunizieren. Die Interaktion der Software-
komponenten wird in MechatronicUML dann formal in Real-Time Coordina-
tion Protocols festgehalten. Das Verhalten der an den Interaktionen beteilig-
ten Rollen, die den Ports zugewiesen sind, wird dann mittels erweiterter
UML Zustandsdiagramme, sog. Real-Time State Charts (RTSC) beschrieben
(Dziwok et al., 2016). Aus diesen Modellen ladsst sich daraufhin ebenfalls
das Verhalten der Softwarekomponenten ableiten, welches dann durch den
Anwender verfeinert werden kann (Dziwok et al., 2016). Sowohl die Real-
Time Coordination Protocols als auch das Verhalten der Softwarekompo-
nenten konnen einzeln verifiziert werden, sodass auch grofse Systeme mit
diesem kompositionallen Ansatz verifiziert werden konnen (Becker et al.,
2014). Fiir die Verifikation definiert MechatronicUML eine Abbildung der
Real-Time State Charts auf Timed Automata (Becker et al., 2014). Sowohl
der hier vorgestellte Ansatz als auch MechatronicUML ermoglichen eine
frithe Timing Verifikation von Anforderungen auf Modellebene, verwen-
den fiir die Timing Verifikation Zeitautomaten und nutzen UPPAAL als
Werkzeug zur Verifikation. Wahrend in MechatronicUML sowohl das Ver-
halten der Softwarekomponenten als auch der Interaktionen mittels RTSCs
beschrieben werden, abstrahieren wir in unserem Ansatz vom konkreten
Verhalten der Komponenten und betrachten lediglich die Worst-Case und
Best-Case Laufzeiten von Runnables, sowie deren Datenaustausch, betrach-
ten aber dafiir in unserer Verhaltensbeschreibung Steuergerate-spezifische
Konfigurationen wie das Task-Runnable-Mapping, welches in Mechatro-
nicUML nicht vorhanden ist, da sich die Spezifikation ausschliefdlich auf
plattform-unabhéngige Eigenschaften bezieht. Hierdurch lasst sich bereits
eine Timing Verifikation mit plattfom-spezifischen Modellelementen durch-
tiirhen bevor Verhaltensmodelle fiir Komponenten vorhanden sind. Weiter-
hin kénnen in MechatronicUML zur Beschreibung von Timing Anforderun-
gen auf Architekturebene die existierenden Real-Time Coordination Proto-
cols mit TCTL-Formeln annotiert werden (Eckardt et al., 2013). In unserem
Ansatz hingegen verwenden wir die AUTOSAR Timing Extensions, die es
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erlauben auf abstrakterer Ebene das Zeitverhalten des Systems zu beschrei-
ben und transformieren diese dann in Zeitautomaten sowie TCTL-Formeln.

5.4 ZUSAMMENFASSUNG

In diesem Kapitel wurde eine Methode zur Timing Verifikation von AUTO-
SAR Timing Anforderungen vorgestellt. Mittels dieser Methode ist es mog-
lich, Timing Anforderungen friihzeitig und ohne Zugriff auf Quellcode zu
iiberpriifen. Es werden nur Timing-Annotationen in Form von WCETs und
BCETs fiir Runnables benétigt. Diese miissen mithilfe von Expertenwissen
zundchst konservativ abgeschitzt werden, oder es miissen obere Schran-
ken fiir die Ausfiithrungszeiten beispielsweise mittels statischer Codeanaly-
severfahren berechnet werden. Fiir die Verifikation der AUTOSAR Archi-
tektur konnen dann existierende Werkzeuge fiir die Verifikation von Timed
Automata wie beispielsweise UPPAAL oder Kronos genutzt werden. In den
folgenden Kapiteln wird die praktische Anwendbarkeit der Methode eva-
luiert. Dafiir wird zunéchst die Methode an einem Fallbeispiel ausgefiihrt
und sowohl die Effizienz und Effektivitdt evaluiert. Anschliefiend werden
Laufzeitanalysen anhand verschiedener weiterer Beispielmodelle und ge-
nerierter Modelle durchgefiihrt.
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Fallstudie: Fault-Tolerant
Fuel-Rate Controller

Die zuvor vorgestellten Methoden wurden mit dem Ziel entworfen, den
Entwicklungsprozess zu beschleunigen, indem friihzeitig Timing Fehler in-
nerhalb der AUTOSAR Timing Anforderungen und der Softwarearchitek-
tur gefunden werden. Zur Bewertung der praktischen Anwendbarkeit wird
in diesem Kapitel die Methode anhand einer konkreten Fallstudie evaluiert.
Das Ziel der Evaluierung ist es zum einen festzustellen, inwieweit und an
welcher Stelle Fehler identifiziert werden konnen, und zum anderen, um ei-
ne erste Abschatzung iiber die Laufzeiten an einem realitdtsnahen System
zu erhalten.

Zunéchst wird der Aufbau des Modells genauer erldautert und auf Limi-
tierungen eingegangen. Des Weiteren wird ein Uberblick {iber die im Mo-
dell enthaltenen Timing Anforderungen gegeben. Danach werden die Eva-
luierungsergebnisse gezeigt und anhand der Ergebnisse die praktische An-
wendbarkeit des Ansatzes diskutiert.
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SIGNALVORVERARBEITUNG

KOMBIINSTRUMENTS

KRAFTSTOFFMENGE

6.1 AUFBAU DES MODELLS

Das Modell beinhaltet einen fehlertoleranten Regler zur Steuerung der
Kraftstoffeinspritzung eines Verbrennungsmotors. Der Regler beinhal-
tet eine Signalvorverarbeitung, die fehlerhafte Sensordaten erkennt und
korrigieren kann, Funktionen zur Steuerung eines Kombiinstruments zur
Anzeige relevanter Fahrparameter, sowie den eigentlichen Regler zur
Berechnung der Kraftstoffmenge. Alle Funktionen sind zusammen als
AUTOSAR-Steuergerit realisiert. Dieses beinhaltet auf Applikationsebe-
ne vier verschiedene Softwarekomponenten. Des Weiteren beinhaltet
das Modell die Spezifikation von RTE, Betriebssystem und weiteren
Basissoftwarekomponenten wie das Zustandsmanagement (EcuM) und
Speicherdienste (NVRAM). Zur Absicherung von Zeitanforderungen
enthdlt die Architektur eine Reihe von AUTOSAR Timing Constraints,
wovon sich die meisten auf Zeiteigenschaften innerhalb der VFB-Sicht
beziehen.

6.1.1 SOFTWAREARCHITEKTUR

Die AUTOSAR-Softwarearchitektur des Steuergerdts besteht auf Ap-
plikationsebene aus insgesamt vier Softwarekomponenten. Die Soft-
warekomponente FuelsysSensors erhidlt die Rohdaten der Sensoren aus
dem Motormodell (RpRawSensors). Dies sind beispielsweise die aktuelle
Geschwindigkeit und die Gaspedalstellung. Die Softwarekomponente
erkennt fehlerhafte oder fehlende Sensordaten, korrigiert diese bei Bedarf
und gibt als Ergebnis die korrigierten Sensorwerte am Port PpCorrec-
tedSensors, sowie einen berechneten Kraftstoffmodus - berechnet aus
dem Motorzustand und dem Vorhandensein von Sensorfehlern - am Port
PpFuelMode aus. Die Softwarekomponente FuelsysController erhalt die
korrigierten Sensordaten (RPCorrectedSensors), sowie den Kraftstoffmo-
dus (RPCorrectedSensors) und berechnet die bendtigte Kraftstoffmenge
(PpFuelRate). Die Komponente FuelsysCombi erhalt ebenfalls die korrigier-
ten Sensorwerte (RpCombiSensors), sowie die berechnete Kraftstoffmenge
aus dem FuelsysController und zeigt diese Werte, sowie weitere berechnete
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Abbildung 6.1: AUTOSAR Softwarearchitektur des Steuergerits (Applikati-

onsebene)

Tabelle 6.1: Komplexitit der Softwarearchitektur

Anzahl der Softwarekomponenten 10
Anzahl der Applikationssoftwarekomponenten | 6
Anzahl der Runnables 16

Anzahl der Tasks 6

Werte wie akkumulierte Fahrzeit, den geschatzten Kraftstoffverbrauch und
die geschatzte Restfahrzeit an. Die Softwarekomponente FuelsysCalParams
stellt Kalibrierungsparameterwerte fiir die Komponenten FuelsysSen-
sors und FuelsysController zur Verfligung, mit denen der Regler weiter
kalibriert werden kann. Die Softwarekomponenten enthalten insgesamt
16 Runnables, wovon 10 auf die Applikationssoftwarekomponenten
des Steuergerdts und 6 auf Basissoftwaremodule entfallen. Diese sind
auf insgesamt 6 Tasks mit unterschiedlichen Zykluszeiten verteilt. Alle
Softwarekomponenten werden auf Applikationsebene zusammen mit den
darin enthaltenen Runnables im Composition Diagramm in Abbildung
6.1 gezeigt. Die Tabelle 6.1 enthilt eine Ubersicht iiber die Anzahl der
fiir die Analysemethoden relevanten Modellelemente und somit iiber die
Modellkomplexitat.
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6.1.2 TIMING CONSTRAINTS

Das Modell enthélt neben der Softwarearchitektur eine Reihe von Timing
Constraints. Diese sollen sicherstellen, dass das AUTOSAR System die
speziellen Akzeptanzkriterien an die Latenz und Synchronizitat einhalt.
So darf beispielsweise zwischen dem Eingang der Sensordaten und dem
Senden der neuen Kraftstoffeinspritzrate nur eine bestimmte Zeitspanne
liegen, um rechtzeitig eine optimale Rate an den Motor senden zu kon-
nen, sodass das Reaktionsverhalten den Erwartungen des Fahrers bei
minimalem Kraftstoffverbrauch entspricht. Auch soll die Darstellung der
Fahrparameter im Kombiinstrument in etwa synchron mit den realen
Fahrzeugparametern sein. Insgesamt enthalt das Modell 29 verschiedene
Timing Constraints. Diese werden in Tabelle 6.2 gezeigt. Dabei wird fiir jede
Anforderung eine textuelle Beschreibung und die dazugehorige formale
Darstellung gezeigt. Entsprechend der Namensgebung in der AUTO-
SAR Architektur ist die natiirlichsprachliche Anforderungsbeschreibung
ebenfalls auf Englisch spezifiziert.

Tabelle 6.2: Timing Constraints

Beschreibung Timing Constraint

The execution time of runnable RunFuelsys- 7., = (rfc,s, 1)
Combi (rfc) in component FuelsysCombi must
be between 5ms and 15ms.

The execution time of runnable FuelsysCombi- 7, = (fci, 1, 10)
Init (fci) in component FuelsysCombi must be

between 1ms and 1oms.

The execution time of runnable AirflowCalcula- 7, = (acl,1,5)
tion (acl) in component FuelsysController must

be between 1ms and 5ms.

The execution time of runnable AirflowCorrec- 7y, = (aco,1,5)
tion (aco) in component FuelsysController must

be between 1ms and 5ms.

108



Tabelle 6.2: Fortsetzung Timing Constraints

Beschreibung

Timing Constraint

The execution time of runnable FuelRateCalc-
Normal (frcn) in component FuelsysController

must be between 1ms and 3ms.

Tere, = (fren, 1, 3)

The execution time of runnable FuelRate-
CalcRich (frer) in component FuelsysController
must be between 1ms and 3ms.

Ve, = (frer, 1,3)

The execution time of runnable FuelRateCon-
trollerInit (frci) in component FuelsysController

must be between 1ms and 6ms.

Tere, = (frci, 1,6)

The execution time of runnable FuelsysSensor-
sInit (fsi) in component FuelsysSensors must be
between 1ms and 6ms.

Tere, = (181, 1,6)

The execution time of runnable DetectSensor-
Failures (dsf) in component FuelsysSensors must
be between 1ms and 3ms.

Vetcy — (de7 I, 3)

The execution time of runnable SensorCorrec-
tion (sco) in component FuelsysSensors must be

between 1ms and 3ms.

Vetc,o - (SCO, 17 3)

The execution time of BSW executable
EcuM_ MainFunction (EcuM) of ECU Con-

troller must be between oms and 2ms.

Ter, = (EcuM, o, 2)

The execution time of BSW executable NvBlock-
Descriptor_StoreCyclic (NvM) in ECU Control-

ler must be between oms and 3m:s.

retc,z = (NVM7 07 3)

The runnables DetectSensorFailures (dsf) and
SensorCorrection (sco) in component Fuelsys-

Sensors must be executed in order.

Yeor, = (dsf, sco)
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Tabelle 6.2: Fortsetzung Timing Constraints

Beschreibung

Timing Constraint

The runnables AirflowCalculation (acl) and Fu-
elRateCalcNormal (frcn) in component Fuelsys-

Controller must be executed in order.

7eoe, = (acl, fren)

The runnables AirflowCalculation (acl) and Fu-
elRateCalcRich (frcr) in component FuelsysCon-
troller must be executed in order.

Teoe, = (acl, frer)

The runnables AirflowCorrection (aco) and Fu-
elRateCalcRich (frcr) in component FuelsysCon-
troller must be executed in order.

Teoc, = (aco, frer)

The runnables AirflowCorrection (aco) and Fu-
elRateCalcNormal (frcn) in component Fuelsys-
Controller must be executed in order.

Teoe, = (aco, fren)

The runnable FuelRateCalcNormal (fren) in
component FuelsysController must be comple-
ted between 3ms and 10ms after the runnable
AirflowCalculation (acl) in component Fuelsys-

Controller has been started.

_ t
Vore, = (e;d’ €fren 3) IO)

The runnable FuelRateCalcRich (frcr) in compo-
nent FuelsysController must be completed bet-
ween 2ms and 6ms after the runnable Airflow-
Calculation (acl) in component FuelsysControl-
ler has been started.

_ t
Totc, = (e;ch €frcr’ 2, 6>

The runnable RunFuelsysCombi (rfc) in com-
ponent FuelsysCombi must be completed in at
most 10oms and at leat 1ms after the data ele-
ment Sensors of port PpCorrectedSensors (ppcs)
in component FuelsysSensors has been updated.

Votc, =

t
(eppcs_semors; Gfer L IOO)
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Tabelle 6.2: Fortsetzung Timing Constraints

Beschreibung

Timing Constraint

The data element Sensors (se) must be up-
dated synchronously at port RpCorrectedSen-
sors (rpcs) in component FuelsysController and
RpCombiSensors (rpcombis) in component Fu-
elsysCombi with a tolerance value of 10oms.

Vste, =

( {(,’ rpes_sey Erpcombis_se } y IOO)

The data element Sensors (se) of port RpCom-
biSensors (rpcombis) and FuelRate (fr) of port
RpFuelRate (rpfr) in component FuelsysCombi
shall be updated synchronously with a maxi-

mum tolerance value of 1ooms.

Vste, =

({erpcombis_sey erpfr_ﬁ'}y IOO)

The termination of runnables RunFuelSysCom-
bi (rfc) in component FuelsysCombi and Fu-
elRateCalcNormal (frecn) and FuelRateCalcRich
(frer) in component FuelsysController must hap-
pen synchronously with a tolerance value of

3ms.

Vstc, =

(€ Erom b 3)

The start of the runnables RunFuelSysCombi
(rfc) in component FuelSysCombi and Airflow-
Calculation (acl) in component FuelsysControl-
ler must happen synchronously with a toleran-
ce value of 3ms.

Vste, — ({eiﬁv e;lc}? 3)

The data element Sensors (se) of port PpCorrec-
tedSensors (ppcs) and fuelMode (fm) of port Pp-
FuelMode (ppfm) in FuelsysSensors must be up-
dated synchronously with a tolerance value of
2ms.

Vstcg =

({eppcs_:ea 6'szm_fm}v Z)
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Tabelle 6.2: Fortsetzung Timing Constraints

Beschreibung

Timing Constraint

The data element Sensors (se) of port RpCor-
rectedSensors (rpcs) and fuelMode (fm) of port
RpFuelMode (rpfm) in FuelsysController must
be updated synchronously with a tolerance va-
lue of 1ms.

Vstce =

({erpc:_sev €rpfm_fm}7 I)

When values at port RpCorrectedSensors (rpcs)
in component FuelsysController are received
then the new fuel rate value at port PpFuelRate
(ppfr) in component FuelSysController shall be
updated within 25ms.

7lte, —

((@‘pc&_&ev eppcs_se>7 o, 25)

When data element throttle (t) at port RpRaw-
Sensors in component FuelSysSensors is recei-
ved then the new corrected sensor values (se) at
port PpCorrectedSensors (ppcs) in component
FuelsysSensors shall be updated within at most

10ms.

Vitc, =

(<5rprs_h Eppcs_se>7 O, IO)

When data element speed (sp) at port RpRaw-
Sensors (rprs) in component FuelSysSensors are
received then the new fuel rate value at port Pp-
FuelRate (ppfr) in component FuelSysController
shall be available within 1 and 5om:s.

7ltc, -
(<5rprs_sp7 Cppes_ses Crpes_ses
eppfr_fr>a 1, 50)

6.1.3 LIMITIERUNGEN DES MODELLS

Das Ziel dieser Modellevaluierung ist es, die praktische Anwendbarkeit der

Analysemethoden bewerten zu konnen. Dafiir ist es notwendig, dass das

Modell hinsichtlich Aufbau und Komplexitat Modellen entspricht, wie sie
bei dSPACE Kunden bzw. AUTOSAR-Endnutzern vorhanden sind. Diesen
Kriterien kommt das Modell sehr nahe, da es auf der Grundlage von Erfah-

rungen mit Kundenmodellen im Support und in Entwicklungsabteilungen
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bei dSPACE entstanden ist. Nichtsdestotrotz ist es kein reales, von dSPACE
Kunden erstelltes Modell, sodass die Modell- und Strukturkomplexitat von
Kundenmodellen abweichen kann.

6.2 ERGEBNISSE

In diesem Abschnitt werden die Ergebnisse der Konsistenzanalyse und Ti-
ming Verifikation des Anwendungsfalls prasentiert, sowie die Laufzeiteffi-
zienz der Methoden vorgestellt und begriindet. Dafiir werden sowohl die
Laufzeiten fiir alle benotigten Schritte vorgestellt, als auch beispielhaft Teile
der generierten Modelle.

6.2.1 TESTAUFBAU

Der verwendete SMT-Solver ist Z3 in Version 4.6.0-x64. Fiir die Timing Ve-
rifikation wurde UPPAAL Version 4.0.13 verwendet. Die Ausfithrung und
Laufzeitmessung der Testszenarien wurde auf einem Windows 10 Profes-
sional System mit Intel Core iy 4800MQ mit 32GB Arbeitsspeicher durchge-
fiihrt. UPPAAL wurde mit BFS, konservativer Zustandsraumreduktion und
DBM Zustandsreprasentation ausgefiihrt. Die Laufzeit wurde in Sekunden
gemessen. Aufgrund des aktuelleren Testaufbaus sind die Laufzeiten nicht
mit denen aus Beringer und Wehrheim (2016) und Beringer und Wehrheim
(2020) vergleichbar. Die in den Ergebnissen verwendeten Symbole werden
in Tabelle 6.3 erklart.

6.2.2 ERGEBNISSE DER KONSISTENZANALYSE

Mithilfe der Konsistenzanalyse konnte fiir das vorliegende Fallbeispiel ge-
zeigt werden, dass die Anforderungsmenge konsistent ist. Dafiir wurden
aus den Timing Constraints insgesamt 120 Formeln erzeugt, die von Z3 ge-
priift wurden und erfiillbar sind. Das Ergebnis und die Abhangigkeiten der
einzelnen Timing Constraints untereinander lasst sich am einfachsten durch
die Visualisierung des Ergebnisgraphen erkennen. Dieser besteht aus meh-
reren unverbundene Teilgraphen. Diese werden in den Abbildungen 6.2,
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Tabelle 6.3: Beschreibung der Symbole

Symbol | Beschreibung

1(z) Laufzeit fiir die Transformation nach SMT in Sekunden
T(smt) | Laufzeit zum Losen der SMT-Formel in Sekunden
T(msat) | Laufzeit flir MaxSMT und Unsat Core in Sekunden

T(r) Laufzeit fiir die Modelltransformation nach Timed Auto-
mata
I(tvy) Laufzeit fiir die Transformation der Timing Anforderung

nach Timed Automata
T(ry,) | Laufzeit fiir die Transformation des AUTOSAR Systemmo-
dells nach Timed Automata

T(v) Laufzeit fiir die Timing Verifikation in Sekunden
ratio Laufzeitverhéltnis in Prozent T(tHTT(E:)”jF);(:)('”W) * 100

min: 1
max: 6

in: 1
FuelsysCombilnit_S | " | FuelsysCombilnit_T
max: 10

min: 1

max: 6
min: 1
[ DetectSensorFailures_S ] max: 2 [DetectSensorFaiIures_T]

min: 1
SensorCorrection_S max: 3 SensorCorrection_T

Abbildung 6.2: Teilgraph G, c G des Ergebnisgraphen fiir die Timing Anfor-
derungen elcyy eCyy €1C,, €lCsy ElCy, €Lt und €oc,

[ FuelsysSensorsinit_S ] [ FuelsysSensorsinit_T ]

[ FuelsysControllerlnit_S ] [ FuelsysControIIerInit_T]

6.3, 6.4 und 6.5 dargestellt. Da die Anforderungsmenge konsistent ist, sind
die Ergebnisgraphen G, und G, identisch. Der Teilgraph G, enthilt tiber-
wiegend Execution Time Constraints, die fiir die Gesamtanalyse zu Off-
set Timing Constraints auf der Basis von Start- und Terminierungs-Events
transformiert wurden. Die einzelnen Constraints haben keine weiteren Ab-
héangigkeiten zu anderen Constraints und sind somit fiir die Konsistenz der
Gesamtmenge unkritisch.

Der Teilgraph G, visualisiert die Reihenfolgebeziehungen zwischen den
Runnables der Komponente FuelsysController, die sich sowohl aus den Exe-
cution Order Constraints als auch aus den Offset Timing Constraints erge-
ben. Der Graph zeigt, dass die einzelnen Anforderungen sehr stark mitein-
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AirrowCaIculation_T] [ FuelRateCalcNormal_S ]

min: 1 min: 1
max: 5 \
max: 3
. . min: 3
LGS T e — [ FuelRateCalcNormal_T ]
min: 2
max: 6
[AirflowCorrection_S ]
i FuelRateCalcRich_T
ma@lg: ! min: 1

max: 3

[ AirflowCorrection_T ] [ FuelRateCalcRich_S ]

Abbildung 6.3: Teilgraph G, ¢ G des Ergebnisgraphen fiir die Timing Anfor-

derungen €lCsy €IC, 5 €ICsy €lC6y €0C,5 €0C3y €0Cyy €0Csy OLG und otc,

Tabelle 6.4: Laufzeiten fiir die Transformation Konsistenzanalyse bestehend

aus der Transformation des AUTOSAR Modells nach SMT 7(z), sowie das
Losen der SMT-Formel 7(smr) und die Berechnung von Unsat Core und

MaxSMT 1T(msaz)

0 | 7.3
T(smt) | 0,04
T(msat) | 0,04

ander verwoben sind. Es lésst sich aber auch im Graph sehr schnell erken-
nen, dass es moglich ist die einzelnen Events in eine zeitliche Reihenfol-
ge zu bringen. Der Teilgraph G enthélt iiberwiegend Synchronization Ti-
ming Constraints und Latency Timing Constraints. Durch die Grofse des
Graphs und die Anzahl der Kanten lasst sich erkennen, dass die zeitlichen
Abhéangigkeiten zwischen den einzelnen Timing Anforderungen hoch ist.
Dies zeigt, dass eine manuelle Konsistenzpriifung fiir dieses Modell ver-
mutlich fehleranfallig ware oder sehr lange dauern wiirde. Die automati-
sierte Uberpriifung hingegen ist mit insgesamt 7,3 Sekunden sehr schnell
durchgefiihrt. Dabei entféllt die grofite Zeit auf die Transformation der Ti-
ming Anforderungen nach SMT. Die Zeit zum Losen der Ungleichungen in
Z3 hingegen ist sehr gering. Dies liegt auch daran, dass die Anzahl der For-
meln mit 120 sehr iiberschaubar ist. Ein Uberblick iiber die Laufzeiten der
Konsistenzanalyse findet sich in Tabelle 6.4.
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{ TDEventVariableDataPrototype FuelsysCombi_RpFuelRate FuelRate J

max: 100
max: 100

[TDEvenN i JataPrototype F ysCombi_RpCombi T _Sensors]

[ TDEventModeDeclaration_FuelsysController_RpFuelMode_FuelMode ]

max: 200
max: 1 max: 200
RunFuelsysCombi_S max 1
max: 15

min- 5 [ TDEvem.VariableDabuPrototypejuelsvscantrolleriRpCorrectedsEnsorsfsensors]

RunFuelsysCombi_T rax: 25
[ TDEventVariableDataPrototype FuelsysC r_PpF . Sent ]

max: 100 min: 0

min: 1

[TDEven'NariableDataPrototypeﬁFuelsysSensorﬁPpCorrectedsansorsisensursisenl] min- 0
max: 50

max: i

min- 1
max: 3
max-3[ TDEventVariableDataPrototype Fuelsy s _RPFR _Throttle_Rece "}

[ TDEventModeDeclaration_FuelsysSensors_PpFuelMode_FuelMode ]

Abbildung 6.4: Teilgraph G, c G des Ergebnisgraphen fiir die Timing Anfor-
derungen StCry SECyy SIC, 5 STCy StCsy lteyy ltC,, l1e;

[ TDEventSwcinternalBehavior_FuelRateCalcRich_Terminated ]

max: 3
max: 3
max 3.2% 3 [ TDEventSwclinternalBehavior_RunFuelsysCombi_Terminated ]
max: 3
max: 3

[ TDEventSwcinternalBehavior_FuelRateCalcNormal_Terminated ]

Abbildung 6.5: Teilgraph G, c G des Ergebnisgraphen fiir die Timing Anfor-
derung stc,

6.2.3 ERGEBNISSE DER TIMING VERIFIKATION

Ein Ergebnis der Timing Verifikation ist zundchst, dass mithilfe des
generierten Automatennetzwerks nicht nur die spezifizierten Timing
Anforderungen gepriift werden konnen, sondern auch grundsatzliche
Modellierungsfehler im AUTOSAR-Modell erkannt werden konnen,
die durch eine inkorrekte Verwendung zeitbehafteter Modellelemente
entstehen. Dies kann beispielsweise eine fehlerhafte Zuweisung von
Runnables zu Tasks sein. In diesem Fall konnen Runnables identifiziert
werden, deren Worst-Case Execution Time grofer ist als die spezifizierte
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Zykluszeit des zugewiesenen OSTasks. Des Weiteren konnen Tasks auf
dem Steuergerit identifiziert werden, die nicht innerhalb der angegebenen
Zykluszeit ausgefiihrt werden kénnen, da die Worst-Case Execution Times
von Runnables auf anderen Tasks zu hoch sind. Diese Fehler konnen
im Rahmen der Verifikation dadurch erkannt werden, dass das Modell
nicht deadlockfrei ist. Fiir das vorliegende Modell konnten keine Fehler

identifiziert werden.

Das generierte Timed Automata Netzwerk des Systemmodells besteht
aus insgesamt 65 Timed Automata, fiir jede Timing Anforderung wurde
zudem ein Test-Automat erzeugt, der zusammen mit dem Systemmodell

verifiziert wird.

Alle Timing Anforderungen wurden sequenziell verifiziert und sind er-
tiillbar. Die Abbildung 6.6 zeigt beispielhaft den generierten Test-Timed Au-
tomaton fiir den Latency Timing Constraint /zc,. Dieser Test-Automat priift,
ob das Timing von der Ankunft neuer Sensordaten bis zur Bereitstellung
neuer Werte fiir die Kraftstoffmenge eingehalten wird, indem die maximale
Zeit fiir das durchlaufen der spezifizierten Ereigniskette gepriift wird. Ab-
bildung 6.7 zeigt den Test-Automaton fiir den Execution Order Constraint
eoc;. Dieser stellt sicher, dass vor der Ausfiihrung des Runnables zur Kor-
rektur der Sensorwerte zunachst das Runnable zur Erkennung der Fehler
ausgefiithrt wird. Dies wird sichergestellt, indem bei einer fehlerhaften Aus-
fiihrungsreihenfolge ein unerwartetes Event empfangen wird und im Auto-
mat eine Transition zu einem Fehlerzustand getriggert wird. Eine Ubersicht
iiber die Laufzeiten fiir alle Timing Anforderungen findet sich in Tabelle 6.5.

Die Ergebnisse der Tabelle zeigen ebenfalls die Laufzeiten der einzelnen
Schritte. Diese sind je nach verwendeter AUTOSAR Timing Extension sehr
unterschiedlich. So konnen Offset Timing Constraints mit durchschnittlich
6 Sekunden am schnellsten verifiziert werden. Fiir die Verifikation eines
Execution Order Constraints werden bereits durchschnittlich 150 Sekun-
den benoétigt und fiir Synchronization Timing Constraints 102 Sekunden.
Fiir die Latency Timing Constraints werden sogar 502 Sekunden benétigt.
Diese Laufzeitunterschiede lassen sich ebenfalls in der Abbildung 6.9 gut
erkennen, die die Mittelwerte fiir die Laufzeiten der einzelnen Timing An-

forderungs Typen in Beziehung zueinander setzt. Die Transformationen der
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; TDEventVariableDataPrototype_FuelsysSensors_RPRawSensors_Throttle_Received_stimulus

LTC_3_start
FuelsysSensors_RpRawSensors_Speed?

C) TDEventVariableDataPrototype_FuelsysSensor_PpCorrectedSensors_Sensors_Sent_response

FuelsysSensors_PpCorrectedSensors_Sensors?

)

) TDEventVariableDataPrototype_FuelsysController_RpCorrectedSensors_Sensors_response

FuelsysController_RpCorrectedSensors_Sensors?

TDEventVariableDataPrototype_FuelsysController_PpFuelRate_FuelRate_Sent_response
x:=0
FuelsysController_PpFuelRate_FuelRate?

Abbildung 6.6: Timed Automaton fiir iz

AUTOSAR Timing Anforderungen (7(tv,)) und des Systemmodells nach
Timed Automata (7(zv,,)) dauern fiir jede Timing Anforderung mit unge-
fahr 1 Sekunde und 22 Sekunden in etwa gleich lange. Werden mehrere An-
forderungen gleichzeitig verifiziert, ist es zudem nur notwendig die Archi-
tekturtransformation einmalig durchzufiihren, was die Gesamtlaufzeit ver-
kiirzt. Der gesamte Verifikationsdurchlauf dauert zusammen mit der Zeit
zur Transformation insgesamt 3273,8 Sekunden. Eine grafische Darstellung
der Ergebnisse findet sich in Abbildung 6.8.

6.3 DISKUSSION

Der gezeigte Anwendungsfall gibt einen Einblick in die praktische An-
wendbarkeit der Methode und deren Nutzen. Es konnte gezeigt werden,
dass sowohl die Konsistenzanalyse als auch die Timing Verifikation
anwendbar waren und das System alle Anforderungen erfiillt. Die
durchgefiihrte Konsistenzanalyse konnte die Konsistenz der Anforde-
rungsmenge bereits vor der Verifikation sicherstellen, sodass sich eine
Korrektur der Timing Anforderungen ertibrigte. Dies lasst allerdings auch
die Fragestellung offen, inwieweit erkannte Inkonsistenzen dazu beitragen
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EOC_1_init
FuelsysSensors_DetectSensorFailures_start?

( FuelsysSensors_DetectSensorFailures_finished? FuelsysSensors_DetectSensorFailures_EOC_started

FuelsysSensors_SensorCorection_finished? FuelsysSensors_DetectSensorFailures_finished?

FuelsysSensors_DetectSensorFailures_start?

error
uelsysSensors_DetectSensorFailures_finished?2

FuelsysSensors_DetectSensorFailures_EOC_finished
FuelsysSensors_SensorCorrection_start?

FuelsysSensors_DetectSensorFailures_start?

FuelsysSensors_SensorCorrection_finished?

FuelsysSensors_SensorCorrection_EOC_started

FuelsysSensors_DetectSensorFailures_start?
Y - ° =7 FuelsysSensors_SensorCorrection_finished?

FuelsysSensors_DetectSensorFailures_finished?

FuelsysSensors_SensorCorrection_start?

FuelsysSensors_SensorCorrection_EOC_finished

Abbildung 6.7: Timed Automaton fiir eoc,

wiirden, die Gesamtlaufzeit der Methode zu verkiirzen, indem beispiels-
weise inkonsistente Teilmengen aus der Gesamtmenge herausgenommen
werden und somit nicht mehr verifiziert werden miissen oder indem davon
ausgegangen wird, dass ohne die Anwendung der Konsistenzanalyse uner-
tiillbare Timing Anforderungen innerhalb der inkonsistenten Teilmengen
mehrfach verifiziert werden miissen, da diese ohne eine Konsistenzanalyse
vorab nicht erkannt worden waren. Nichtsdestotrotz kann argumentiert
werden, dass in diesem Fall die Durchfithrung der Konsistenzanalyse
einen Mehrwert fiir das Verstandnis der Anforderungsmenge geschaffen
hat. Denn ein Requirements Engineer kann so die Abhangigkeiten der
Anforderungen im Ergebnisgraph einsehen und ist so dazu befahigt bei
der Anderung oder Erweiterung der Anforderungen die Konsistenz im
Blick zu behalten. Gleichzeitig ist der Zeitaufwand fiir die Durchfithrung
der Analyse vernachlassigbar.

Die Timing Verifikation konnte ebenfalls fiir die beschriebenen Anforde-
rungen und das Systemmodell durchgefiihrt werden. Das Ergebnis zeigt,
dass das Systemmodell alle spezifizierten Timing Constraints erfiillt.

Ein Ergebnis der gemessenen Laufzeiten ist, dass die Timing Verifikation
wesentlich mehr Zeit in Anspruch nimmt als die Konsistenzanalyse. Nur
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Tabelle 6.5: Ergebnisse und Laufzeiten der Timing Verifikation

Timing Anforderung I(tv,) | T(tv,) | T(tv) | T(v) | Ergebnis
Ve, = (dsf, sco) 093 | 21,1 | 22,1 | 98,4 SAT
Teor, = {acl, fren) 0,94 | 20,9 | 22,0 | 163,9 SAT
Teor, = (acl, frer) 0,95 21,1 22,2 | 164,1 SAT
Teoe, = (aco, frer) 0,93 21,0 | 22,0 | 164,6 SAT
Teor, = (aco, fren) 0,95 20,9 | 22,0 | 159,7 SAT
Vote, — (efacl? €§rcn, 3 IO) 0,94 20,8 21,8 5/5 SAT
Pore, = (€pats €fyrs 2, 6) 091 | 20,9 | 21,9 5,4 SAT
Pote, = (Eppes_sensors eﬁfw 1,100) 1,01 21,0 | 22,1 7,1 SAT
Vste, = ({€rpes_ser Erpeombis_se },100) | 1,14 23,2 | 24,5 | 107,4 SAT
Vste, = ({ Erpeombis_ses npfr f},100) | 0,97 | 20,7 | 21,9 | 146,6 SAT
7, = (el €ons €pr )1 3) 1,03 | 208 | 21,9 | 96,5 SAT
7w, = (g €ucts3) 098 | 20,7 | 21,8 | 92,9 SAT
Ve, = ({€ppes_ses Eppfin_fin }»2) 1,0 20,7 | 21,8 86,0 SAT
Vstee = ({rpes_ses €rpfin fin }+ 1) 1,06 22,3 | 23,6 | 87,2 SAT
Pire, = ({€rpes_ser Eppes se)» 0, 25) 1,12 23,3 | 24,6 | 601,2 SAT
Pire, = ({€rprs_t- €ppes_se) > 05 10) 1,13 20,9 | 22,1 35,3 SAT
Pite, 1,51 21,2 22,9 | 870,8 SAT

| 3 | 17,5 | 361,5 | 381,2 ] 2892,6 | -

0,22% der Gesamtlaufzeit wird fiir die Konsistenzanalyse benétigt. Dies
liegt daran, dass die Anzahl der generierten SMT-Formeln iiberschaubar
ist. Der grofite Anteil wird fiir die Verifikation des generierten Timed
Automata Netzwerks in UPPAAL benétigt. Da die Anzahl der Clocks einen
sehr grofien Einfluss auf die Laufzeit hat, wird davon ausgegangen, dass
die Laufzeiten bei grofieren Modellen weiter steigt.

Durch die Beschrankung auf den Anwendungsfall sind die Ergebnisse
nicht auf beliebige andere Systeme iibertragbar. Zum einen kénnen System-
modelle hinsichtlich der Modellkomplexitiat voneinander abweichen, was
die Laufzeiten der einzelnen Schritte stark beeinflussen kann. Des Weiteren
kann auch die Menge und Komplexitdt der Timing Anforderungen variie-

ren.

Die Vermutung liegt nahe, dass gerade bei einer grofien Anforderungs-

120



Verifikationslaufzeiten nach Timing Anforderung in
Sekunden

1000

Sekunden

100 I I I I I

0 I o I I 111 =
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PO O M I N O NGEEE E

Timing Anforderung

Abbildung 6.8: Laufzeit der Verifikation der Timing Anforderungen

menge die Wahrscheinlichkeit fiir enthaltene Inkonsistenzen besonders
hoch ist und somit haufiger Fehler gefunden werden.

6.4 ZUSAMMENFASSUNG

In diesem Kapitel wurde anhand eines konkreten Anwendungsfalls ge-
zeigt, wie sich Konsistenzanalyse und Timing Verifikation zusammen zur
frithzeitigen Timing Analyse von AUTOSAR Softwarearchitekturen ein-
setzen lassen. Zundchst wurde in Abschnitt 6.1 der Aufbau der AUTOSAR
Softwarearchitektur, sowie die Timing Anforderungen vorgestellt. An-
schliefend wurden in Abschnitt 6.2 die Evaluierungsergebnisse vorgestellt.
Da die Menge der Timing Anforderungen keine Inkonsistenzen enthielt,
konnte die Konsistenzanalyse nicht zur Verkiirzung der Verifikationszeiten
beitragen. Nichtsdestotrotz war der Aufwand fiir die Konsistenzanalyse
im Vergleich zur Timing Verifikation vernachldssigbar. Alle Ergebnisse
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Laufzeitmittelwerte und Anteil an der
Gesamtlaufzeit nach Timing Anforderungs Typ
in Sekunden

Execution Order

Constraints:
150 Sekunden; 20%

Offset Timing
Constraints:

Latency Timing
Constraints:

Synchronization

5 Timing Constraints:
502 Sekunden; 66% 102 Sekunden; 13%

= EOCs OTCs = STCs LTCs

Abbildung 6.9: Laufzeitverhiltnis der einzelnen Schritte

und Laufzeiten geben jedoch nur die konkrete Sicht auf diesen einen
Anwendungsfall wieder. Dabei konnen in anderen Modellen sowohl die
Komplexitdt des AUTOSAR-Systemmodells als auch die Menge und Art
der Timing Constraints wesentlich voneinander abweichen, was auch
die Laufzeiten beeinflussen kann. Um herauszufinden inwieweit die
einzelnen Methoden skalierbar sind und sich somit eine Kombination aus
Laufzeitgriinden als sinnvoll ergibt, wird im nachsten Kapitel genauer
betrachtet.
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Werkzeugunterstiitzung und
Evaluierung

Dieses Kapitel beinhaltet die wesentlichen Ergebnisse der praktischen An-
wendung der entwickelten Methode. Zunachst werden einige spezifische
Details des prototypisch entwickelten Werkzeugs vorgestellt wie beispiels-
weise die Softwarearchitektur und die Integration in die existierende Werk-
zeuglandschaft. Danach werden die mit diesem Werkzeug ermittelten Lauf-
zeitergebnisse fiir eine Reihe von Beispielszenarien vorgestellt.

71 PROTOTYPISCHE WERKZEUGUNTERSTUTZUNG

Zur Durchfiihrung der Analysen und zur Generierung von Evaluierungs-
ergebnissen wurde in dieser Arbeit eine prototypische Werkzeugunterstiit-
zung durchgefiihrt. Das Werkzeug verwendet die bereits erwahnten Werk-
zeuge Z3 und UPPAAL zur Analyse der jeweiligen generierten Analysemo-
delle, die aus den AUTOSAR Modellen erstellt wurden. Der Zugriff auf die
AUTOSAR Modelle erfolgt tiber das Werkzeug SystemDesk.
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BX

7.2 REALISIERUNG DER MODELLTRANSFORMATIONEN

Fiir die Realisierung der Transformationen existieren verschiedene Ansat-
ze. So gibt es zur Spezifikation von Modell-zu-Modell-Transformationen
(M2M) etablierte Sprachen und Frameworks wie EMorLoN:IBEX (Weid-
mann et al, 2019) oder VIAaTrA 3 (Bergmann et al., 2015), die auf den
Grundlagen von Triple-Graph-Grammatiken (TGGs) von Schiirr (1994) ba-
sieren, relationale Ansatze wie QVT der Object Management Group (2016)
oder hybride Ansétze wie die ATL TRANSFORMATION LANGUAGE (Martinez
et al., 2017), die eine Spezifikation der Transformationsregeln sowohl
imperativ als auch deklarativ erlauben. Neuere Methoden beispielsweise
von Anjorin et al. (2022) und Weidmann und Anjorin (2021) betrachten
die Beschreibung bidirektionaler Transformationen mittels TGGs. Mithilfe
Bidirektionaler Transformation (BX) lasst sich die Konsistenz (Inter-Modell
Konsistenz) zwischen zwei oder mehreren verschiedenen Artefakten iiber-
priifen und wiederherstellen, indem die Beziehungen zwischen Modellen
verschiedener Metamodelle so festgehalten und mithilfe eines Werkzeugs
ausgefiihrt werden, dass Transformationen sowohl vorwarts (von einem
Ursprungsmodell in ein Zielmodell) als auch riickwarts (vom Zielmodell
zuriick in das Ursprungsmodell) transformiert und synchronisiert werden
konnen (Anjorin et al., 2020a). Die Beschreibung der Beziehungen werden
in Form einer Konsistenzrelation, die durch eine TGG realisiert wird
und deren Sprache alle konsistenten Modellpaare beinhaltet, festgehalten
(Anjorin et al., 2020a). So kann beispielsweise die Nachverfolgbarkeit von
Anforderungen in Architekturmodellen gewartet werden, auch wenn sich
Modelle sowohl im Anforderungswerkzeug als auch im Architekturwerk-
zeug dndern (Anjorin et al.,, 2022). Durch die Verkniipfung von TGGs mit
Optimierungsmethoden konnen auch komplexere Konsistenzrelationen,
die weitere Domdnenbedingungen beinhalten wie beispielsweise die
Berticksichtigung von Multiplizitdaten, realisiert (Weidmann und Anjorin,
2021) oder sogar Optimierungsprobleme beschrieben und Initialldsungen
bestimmt werden (Anjorin et al., 2020b).

Fiir die Transformationen von AUTOSAR nach SMT, sowie AUTOSAR
nach Timed Automata wurde ein imperativer Ansatz gewahlt. Die Trans-
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formationsregeln sind direkt im Framework festgehalten, das auf dem
Objektmodell von SystemDesk arbeitet, und generieren als Zielartefakte
ein Z3 und ein Timed Automata Objektmodell. Der wesentliche Grund fiir
diese Entscheidung ist, dass die entwickelte Methode moglichst nahtlos
in SystemDesk integriert werden sollte, sodass ein Anwender keine zu-
satzlichen Schritte durchfiihren muss oder zusatzliche Werkzeuge nutzen
muss. So entfdllt die Einbindung eines passenden BX-Werkzeugs, was
zusatzliche Komplexitit in die Werkzeugkette gebracht hatte, da viele
existierende Werkzeuge wie EMoroLoN zum einen nur fiir das Eclipse-
Framework zur Verfiigung stehen, das jedoch nicht direkt in SystemDesk
integriert werden kann und somit weitere Transformationsschritte fiir
das AUTOSAR-Modell in Form von In- und Exports angefallen waren,
und zum anderen das vollstindige AUTOSAR Metamodell nicht fiir das
Eclipse-Modeling-Framework als EMF Ecore-Modell zur Verfiigung stand,
was fiir diese Frameworks eine Voraussetzung ist. Ebenfalls existieren
keine Metamodelle fiir SMT und Timed Automata.

Der Nachteil der direkten Implementierung der Transformationsregeln
ist jedoch, dass die Transformationen im Gegensatz zu einer Realisierung
mittels BX-Werkzeug nur unidirektional erfolgen. Dies fithrt dazu, dass
nach Anderungen des AUTOSAR-Modells das jeweilige Analysemodell
immer neu erstellt werden muss. Dies kann vernachldssigt werden, da
die Generierung der Analysemodelle keine hohen Laufzeiten aufweisen.
Ebenfalls ist die Riickverfolgbarkeit der Elemente der Analysemodelle
nach AUTOSAR nicht gegeben. Dies fiihrt zu zusatzlichem Aufwand bei
der Interpretation der Analyseergebnisse, da sowohl die Ergebnisse aus
UPPAAL als auch die Ausgaben des SMT-Solvers und der Visualisierung
manuell auf die entsprechenden AUTOSAR Timing Constraints und die
restlichen AUTOSAR Modellelemente iibertragen werden miissen. Diesem
Problem hatte durch die Verwendung von BX-Methoden Rechnung getra-
gen werden konnen, wenn diese ebenfalls die Ergebnisse der Analysen in
den jeweiligen Metamodellen berticksichtigt wiirden.
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MODELLVERIFIKATION

KONSISTENZANALYSE

EvaLuiERUNG

sYNTHETISCHEN AUTOSAR

MODELLEN

7.21 SOFTWAREARCHITEKTUR

Die Implementierung erfolgte unter der Verwendung der von SystemDesk
zur Verfligung gestellten Automatisierungsschnittstelle zur Erstellung und
Modifikation von AUTOSAR Modellen und den bereits vorgestellten Werk-
zeugen bzw. Frameworks UPPAAL und Z3. Das entwickelte Framework
besteht aus insgesamt sechs Komponenten:

1. ARVerifier: Die Komponente liefert die Schnittstelle zur AUTOSAR
Modellverifikation und beinhaltet alle Funktionen zur Transformati-
on von AUTOSAR Modellen zu Timed Automata. Zur Verifikation
der Timed Automata verwendet die Komponente UPPAAL. Da UP-
PAAL keine offenen Schnittstellen zur Generierung und Verifikati-
on zur Verfiigung stellt, wurde ein Mechanismus implementiert, der
aus dem Timed Automata Modell ein fiir UPPAAL lesbares XML-
Dokument erzeugt. Die Steuerung des Model Checkers erfolgt iiber

Kommandozeilenaufrufe.

2. ARConsistencyChecker: Die Komponente liefert die Schnittstelle
zur Konsistenzanalyse von AUTOSAR Timing Anforderungen und
beinhaltet alle Funktionen zur Transformation von AUTOSAR
Timing Anforderungen nach SMT. Zur Generierung der SMT-
Formel verwendet die Komponente die Schnittstelle von Z3, um ein
Z3-kompatibles Objektmodell in C# zu erzeugen und dieses anschlie-
flend mit Z3 zu 16sen. Im Gegensatz zur ARVerifier Komponente ist
es somit nicht notwendig, das Objektmodell vorab zu exportieren.

3. ARVerifierTests: Die Komponente beinhaltet Funktionen zur Eva-
luierung des Analyseframeworks. Die Komponente verwendet die
Analysekomponenten ARVerifier und ARConsistencyChecker und
die Komponente ARGenerate zur Generierung von AUTOSAR
Modellen.

4. ARGenerate: Die Komponente bietet eine Schnittstelle zur Generie-
rung von synthetischen AUTOSAR Modellen und AUTOSAR Timing
Anforderungen.
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5. ARGraph: Die Komponente beinhaltet Funktionalitdten zur Visuali-
sierung der Abhingigkeitsgraphen in Form einer eigenstandigen Web-
applikation. Die Komponente verwendet dafiir die API der ARCon-
sistencyChecker Komponente.

6. ARVerifierExtra: Die Komponente beinhaltet eine Visualisierungs-
komponente, die es ermdgicht die Analysekomponenten iiber die
grafische Oberfliche von SystemDesk zu starten. Dies wird iiber
die Implementierung eines Plugins fiir SystemDesk realisiert. Die
Komponente verwendet dafiir die Schnittstellen der Analysekompo-
nenten ARVerifier und ARConsistencyChecker.

Abbildung 7.1 gibt eine Ubersicht iiber die entwickelten und eingebunde-
nen Komponenten. Die Komponenten in gelb sind die beiden AUTOSAR
Analysekomponenten. Komponenten in lila beinhalten Funktionalitat zur
Darstellung von Ergebnissen und zur Einbindung des Frameworks in Sys-
temDesk. Komponenten in rot beinhalten Funktionalitdat zum Test und zur
Evaluierung des Frameworks.

7.3 EVALUIERUNG

In diesem Abschnitt wird die Laufzeit des Ansatzes anhand weiterer Bei-
spielmodelle und generierter Testszenarien evaluiert. Es werden dabei zu-
ndchst die Rahmenbedingungen fiir die Testszenarien beschrieben. Dazu
gehort die Beschreibung des Generierungsprozesses fiir die Testszenarien,
sowie spezifische Eigenschaften der Beispielmodelle. Danach werden die
Laufzeitergebnisse fiir die Konsistenzanalyse und Timing Analyse vorge-
stellt. Anhand dieser Ergebnisse wird dann argumentiert, ob und wie die
Methoden kombiniert werden konnen und ob dies in der Praxis sinnvoll
ist. Die hier vorgestellten Evaluierungsergebnisse wurden teilweise bereits
in Beringer und Wehrheim (2016) und Beringer und Wehrheim (2020) ver-
oOffentlicht.

Die Laufzeitanalyse der Fallstudie wurde mit demselben Testaufbau rea-
lisiert, der auch im vorherigen Kapitel fiir die Evaluierung der Methode
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anhand einer Fallstudie verwendet wurde. Dieser Testaufbau wird in Ab-
schnitt 6.2.1 vorgestellt. Die ebenfalls in diesem Kapitel verwendeten Metri-
ken sind in Tabelle 6.3 zu finden.

7.3.1 TESTSZENARIEN

Zunichst wird die Laufzeit fiir die Transformation der Timing Anforde-
rungen nach SMT, das Losen der SMT-Formel mittels Z3 und das Finden
einer MaxSMT Losung fiir jeden Timing Constraint Typ separat und
anschlieflend fiir eine Kombination aller Timing Constraint Typen gemes-
sen. Auf diese Weise soll fiir eine vorgegebene Menge an Anforderungen
sichergestellt werden, dass die Laufzeiten fiir alle Timing Constraint Typen
in praktischen Anwendungsféllen angemessen sind. Fiir die Messungen
wurden Timing Constraints generiert. Offset Timing Constraints wurden so
generiert, dass diese einen minimalen und maximalen Offset zwischen 1ms
und 10ms beinhalten. Fiir die Execution Order Constraints wurden jeweils
5 Runnables aus der Softwarearchitektur ausgewahlt und eine beliebige
Execution Order gewdhlt und fiir jeden Synchronization Timing Constraint
wurden 3 Timing Events mit einem zufalligen Toleranzwert gewahlt. Die
Latency Timing Constraints bestehen aus einer zufillig generierten Timing
Event Chain bestehend aus 5 Timing Events, sowie zufélligen Minimal-
und Maximalwerten. Eine Ubersicht iiber alle generierten Testszenarien
findet sich in Tabelle 7.2. Die Testszenarien 1-10 verwenden nur eine kleine
Menge von jeweils 10 Timing Constraints, weil ansonsten die Laufzeit
fiir die Timing Verifikation zu grof’ ist. Da die Laufzeit ebenfalls fiir das
Berechnen einer MaxSMT Losung mit betrachtet werden soll, sind die
generierten Anforderungsmengen so gewahlt, dass diese unerfiillbar sind.

Um die Laufzeiten der Konsistenzanalyse mit Laufzeiten der Timing Ve-
rifikation zu vergleichen, wurden mehrere Softwarearchitekturen erstellt,
auf deren Basis die Verifikationslaufzeiten gemessen werden. Das Modell
M, ist sehr klein und beinhaltet nur eine begrenzte Anzahl an Software-
komponenten, Runnables und Tasks. Das Modell 44, dagegen ist komple-
xer. Tabelle 7.1 zeigt eine Ubersicht iiber die Komplexitit der Modelle. Da
die Anforderungsmenge so gewahlt ist, dass sie inkonsistent ist, schldgt die
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Timing Verifikation fiir mindestens eine Timing Anforderung fehl.
Zusatzlich zum vollstandigen Vergleich der Laufzeiten beider Methoden
mit einer geringen Anzahl an Timing Anforderungen, wird in den Testsze-
narien 11-18 die Konsistenzanalyse mit einer grofieren Menge an Anforde-
rungen durchgefiihrt, wobei fiir Szenarien 11-14 eine grofie inkonsistente
Anforderungsmenge generiert wird und fiir die Szenarien 15-18 eine kon-
sistente Menge. Auf diese Weise lasst sich herausfinden inwieweit die Kon-
sistenz der Anforderungsmenge Einfluss auf die Laufzeit hat. In diesen Sze-
narien konnen jedoch keine Messungen fiir die Timing Verifikation durch-
gefiihrt werden, da diese fiir alle Anforderungen zu grofs ware. Zusatzlich
werden in den Testszenarien 12-14 erfiillbare Anforderungsmengen gene-

riert.

7.3.2 ERGEBNISSE

Tabelle 7.3 zeigt die Laufzeitmessungen fiir die einzelnen Berechnungs-
schritte fiir die Timing Anforderungen und fiir die Modelle 44 und A4,.
Die Tabelle zeigt, dass die Transformation der AUTOSAR Elemente nach
Z3-SMT lange dauert (7(r)), und damit einen grofSen Anteil der Laufzeit der
Konsistenzanalyse hat. Dies liegt teilweise daran, dass auf die AUTOSAR
Elemente iiber das Automatisierungsinterface von SystemDesk zugegriffen
wird, welches aus Technologiegriinden weniger effizient ist als ein direkter
Zugriff. Des Weiteren wurden noch keine Optimierungen des Transfor-
mationsalgorithmus vorgenommen. Nichtsdestotrotz ist die Laufzeit im
Vergleich zur Timing Verifikation akzeptabel. Die Messungen fiir 7(z),
T(smt) und T(msar) sind dhnlich fiir alle Testszenarien mit den gleichen
Timing Anforderungen, auch auf verschiedenen Architekturmodellen

Tabelle 7.1: Verwendete Modelle zur Laufzeitmessung

M, | M,
Software Components | 5 | 8
Runnable Entities 10 | 80
Tasks 5| 8
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Tabelle 7.2: Testszenarien fiir die Laufzeitverifikation

Id M |Rotc| |R€06| |thc| |thc| SAT
1 | M, 10 0 0 0 unsat
2 | M 0 10 0 0 unsat
3 | M, 0 0 10 0 unsat
4 | M, 0 0 0 10 | unsat
5 | M, | 10 10 10 10 | unsat
6 | M, 10 0 o] 0 unsat
7 | M, 0 10 0 0 unsat
8 | M, 0 0 10 0 unsat
9 | M, 0 0 0 10 | unsat
10 | M, 10 10 10 10 | unsat
11 | M, | 100 0 0 0 unsat
12 | M, 0 100 0] 0 unsat
13 | M, 0 0 100 0 | unsat
14 | M, 0 0 0 100 | unsat
15 | M, | 100 0 0 0 sat
16 | M, 0 100 o] 0 sat
17 | M, 0 0 100 0 sat
18 | M, 0 0 o] 100 sat

(beispielsweise Testszenario 1 und 6). Dies ist offensichtlich, da die Konsis-
tenzanalyse unabhangig von der verwendeten Softwarearchitektur ist. Die
Modelltransformation nach Timed Automata und die Verifikationslaufzeit
ist offensichtlich sehr stark abhadngig von der Grofie und Komplexitit der
gesamten AUTOSAR Softwarearchitektur. So benétigen die Transformati-
on und Verifikation der Offset Timing Constraints (Szenario 1), Execution
Order Constraints (Szenario 2) und Synchronization Timing Constraints
(Szenario 3) auf A4, mit maximal 17,2 bzw. 8 Sekunden sehr wenig Zeit.
Dem gegentiber wird fiir die Transformation und Verifikation einer dqui-
valenten Anforderungsmenge auf A4, wesentlich mehr Zeit benétigt. So
benotigen die Testszenarien 6-8 ungefdhr bereits mindestens eine Minute
fir die Transformation, wahrend die Verifikation der Execution Order
Constraints (Szenario 7) bereits mehr als 10 Minuten und die Verifikaiton
der Synchronization Timing Constraints (Szenario 8) mehr als 20 Minuten
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Tabelle 7.3: Laufzeiten fiir die Transformation der Anforderungen nach
SMT, SMT-Solving, MaxSMT Berechnung, Transformation nach Timed
Automata und Verifikation mit UPPAAL

Id | T(¢) | T(smt) | T(msat) | T(tv) | T(v) || ratio
1| 54 | 0.06 0.04 13 3.0 || 344
2 | 10.9 | 0.02 0.07 17.2 | 5.0 || 49.5
3 | 81 | 0.04 0.04 15.6 | 8.0 || 34.6
4 | 6.5 | 0.02 0.04 18.1 | 208.1 || 2.9
5 |271| o1 0.13 28.2 | 219.0 || 11.1
6 | 54 | 0.06 0.04 67.5 | 88.9 || 3.5
7 | 10.9 | 0.02 0.07 65.7 | 864.4 || 1.2
8 | 8.1 0.04 0.04 72.9 | 1229 || 0.6
9 |22.7| 0.04 0.04 73,3 | 862.7 || 2.6

10 | 27.1 | 0.02 0.9 82 | 3031 | 0.9

11 | 31.9 | 0.1 1.3 80 - -

12

252 | 0.42 209 571 - -
13 | 527 | 0.56 339 | 328 - -
14 | 77,2 | 0.4 2.4 108,8 - -
15 | 33.3 | 0.1 0.4 81 - -
16 | 219 | 0.39 154 567 - -
17 1 57.1 | 0.54 335 331 - -
18 | 80,0 | 0.1 0.4 109.8 - -

bendtigt. Lediglich die Verifikation der Latency Timing Constraints ist
bereits auf dem kleineren Modell A4, (Szenario 4) mit 208 Sekunden sehr
zeitaufwandig. Die Analyse kann allerdings auch auf dem grofien Modell
M, (Szenario 9) mit 862 Sekunden noch in akzeptabler Zeit durchgefiihrt
werden. Die Laufzeitunterschiede der Timing Anforderungen auf den
beiden Modellen 44, und A4, lassen sich ebenfalls in den Diagrammen 7.2
und 7.3 erkennen.

Schliefslich wurden zusatzlich die Laufzeiten fiir das Blinkerbeispiel aus
Kapitel 2 gemessen. Fiir die Konsistenzanalyse, Transformation und SMT-
Solving werden 4,5 bzw. 0.1 Sekunden benétigt, wahrend die Verifikation
nur 1,4 Sekunden benétigt.

Die Ergebnisse der Testszenarien 11 bis 18 zeigen, wie unser Ansatz mit
mehr Timing Anforderungen skaliert. In jedem Test wurden die Timing An-
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forderungen von 10 auf 100 erh6ht und dabei sowohl inkonsistente (Szena-
rien 11-14, Abbildung 7.4) als auch konsistente Anforderungsmengen (Sze-
narien 15-18, Abbildung 7.5) erzeugt. Die Ergebnisse zeigen, dass das Losen
der SMT-Formeln mit Z3 noch immer akzeptabel ist, wahrend jedoch das
Finden einer MaxSMT-Losung wesentlich langsamer fiir Execution Order
Constraints mit 209 und 154 Sekunden (Szenarien 12 und 14) und Synchro-
nization Timing Constraints mit 339 und 335 Sekunden (Szenarien 13 und
17) wird. Aufgrund der hohen Laufzeiten fiir die Timing Verifikation, haben
wir an dieser Stelle auf die Laufzeitmessung fiir die Timing Verifikation ver-
zichtet. Aufgrund der Tatsache, dass wir jeden Timing Constraint als Test-
automaten separat in die Softwarearchitektur integrieren und verifizieren,
gehen wir davon aus, dass die Laufzeit linear mit der Anzahl der Timing
Constraints steigt. Deswegen wiirde sich geschatzt hieraus beispielsweise
fiir die Verifikation von 100 Synchronization Timing Constrains (Szenario
13) eine Laufzeit von ca. 8,5 Stunden ergeben.

Ein wesentliches Ergebnis der Laufzeitanalyse ist das Laufzeitverhaltnis
von Konsistenzanalyse und Timing Verifikation. Wahrend in den Testsze-
narien 1,2 und 3, in denen ein kleineres Modell verwendet wurde, ungefahr
30% bis 50% der Laufzeit fiir die Konsistenzanalyse benétigt wurde, sind es
in den Testszenarien 6 bis 10 lediglich 0,6% bis 3,5%. Dies zeigt, dass es bei
komplexeren Softwarearchitekturen sinnvoll ist, Anforderungen vorab auf
Konsistenz zu priifen. Hingegen kann bei kleineren Softwarearchitekturen
auf die Konsistenzanalyse verzichtet werden, da sie auch bei fehlerhaften
Anforderungsmengen nur wenig Laufzeit einspart. Nichtsdestotrotz halten
wir die Durchfiihrung einer Konsistenzanalyse vor der eigentlichen Timing
Verifikation fiir sinnvoll, da wir davon ausgehen, dass die meisten Modelle
in der Praxis sehr grof3 sind und dass auch die Menge der Anforderungen
wesentlich grofer ist. Dieses Ergebnis stiitzt daher den im Konzept in Ka-
pitel 3 vorgestellten Prozess.

Schliefidlich ist die Effizienz des Gesamtprozesses auch abhingig davon
wie schwierig es ist die Timing Anforderungen zu modellieren und wie
gut die Kompetenzen des Requirements Engineers sind, da dies wesentli-
che Einflussfaktoren fiir die Erzeugung fehlerhafter Anforderungsmengen
sind. Wenn die Wahrscheinlichkeit gering ist, dass die erzeugten Anforde-
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rungen inkonsistent sind, dann kann es giinstiger sein auf die Konsistenz-
priifung zu verzichten, da es in jedem Fall die Laufzeit des Gesamtprozesses
verlangert.

7.4 ZUSAMMENFASSUNG

In diesem Kapitel wurden zum einen in Abschnitt 7.1 relevante technische
Merkmale des Realisierungsansatzes vorgestellt. Insbesondere wurde die
Softwarearchitektur vorgestellt, sowie Eigenschaften der Transformation
fir die AUTOSAR Modelle. Zum Anderen wurde in Abschnitt 7.3 eine
detaillierte Evaluierung des Ansatzes hinsichtlich der Laufzeiten der
einzelnen Bestandteile durchgefiihrt. Es konnte gezeigt werden, dass der
Ansatz fiir die evaluierten Beispielmodelle praktisch anwendbar ist und die
Konsistenzanalyse einen signifikanten Mehrwert fiir den Gesamtprozess
darstellt.
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Zusammenfassung und
Ausblick

In der vorliegenden Arbeit wurde eine Methode zur Timing Verifikation
von AUTOSAR Softwarearchitekturen vorgestellt. In diesem Kapitel wird
das Konzept zundchst in Abschnitt 8.1 zusammengefasst. Abschnitt 8.2 dis-
kutiert die wesentlichen Erkenntnisse und Entwurfsentscheidungen, indem
diese hinsichtlich den erzielten Ergebnissen, Aufwand und Erweiterbarkeit
mit alternativen Losungsansdtzen verglichen werden. Schliefdlich werden
weiterfithrende Fragestellungen und Losungsanséatze vorgestellt, die in Ab-
schnitt 8.3 einen Ausblick tiber zukiinftige Entwicklungen in diesem The-
mengebiet geben.

8.1 ZUSAMMENFASSUNG

In dieser Arbeit wurde eine Methode zur Timing Verifikation von AU-
TOSAR Softwarearchitekturen vorgestellt und evaluiert. Das Ziel der
Methode ist es durch das Erkennen von Fehlern in AUTOSAR Timing

Anforderungen und in der AUTOSAR Softwarearchitektur friihzeitig

137



ANFORDERUNG 3

eine hohe Qualitdat der genannten Artefakte zu erzielen und damit den
Entwicklungsprozess von Steuergerdaten zu beschleunigen (siehe Kapitel
1). Dafiir wurden zunichst in Kapitel 2 die Grundlagen der automotiven
Steuergerdateentwicklung, die Bedeutung von Timing Anforderungen
und deren Manifestation auf verschiedenen Abstraktionsebenen in unter-
schiedlichen Modellierungssprachen, sowie die zur Analyse angewendeten
Techniken besprochen. Ebenfalls wurde ein Beispielmodell vorgestellt,
das im weiteren Verlauf zur Demonstration des vorgestellten Ansatzes
herangezogen wurde.

In Kapitel 3 wurde dann der Ansatz der kombinierten Konsistenzprii-
fung und Timing Verifikation vorgestellt (siehe Abschnitt 3.1) und es wur-
den Mdoglichkeiten diskutiert, wie sich der Ansatz in den bestehenden Ent-
wicklungsprozess eingliedern ladsst (siehe Abschnitt 3.3). Ebenfalls wurde
an dieser Stelle das formale Modell von AUTOSAR vorgestellt, das sowohl
tiir die Konsistenzanalyse als auch fiir die Timing Verifikation verwendet
wird (siehe Abschnitt 3.2).

Der erste Schritt des Ansatzes (siehe auch Abbildung 3.1) besteht aus der
Konsistenzpriifung der AUTOSAR Timing Anforderungen. Dieser wurde
in Kapitel 4 vorgestellt. Dafiir werden die AUTOSAR Timing Anforderun-
gen in SMT-Formeln transformiert und mit dem SMT-Solver Z3 gepriift (sie-
he Abschnitt 4.1). Werden Anforderungsmengen als inkonsistent identifi-
ziert konnen in einem zweiten Schritt Verfahren angewendet werden, mit
denen die Inkonsistenzen aufgelost werden konnen, indem fiir die Timing
Anforderungen der Unsatisfiable Core und Maximum Satisfiability berech-
net und visualisiert werden. Dieser Schritt wurde in Abschnitt 4.2 vorge-
stellt. Die Methode ermdglicht es schon eine friihzeitige Riickmeldung tiber
die Qualitdt der Timing Anforderungen zu erhalten und diese zu verbes-
sern. Somit erfiillt der Ansatz die in Kapitel 1 festgelegte Anforderung 3.

In einem dritten Schritt kann dann die Anforderungsmenge auf der Basis
der Hinweise aus dem vorherigen Schritt {iberarbeitet werden. Schliefdlich
kann die konsistente Anforderungsmenge dann im vierten Schritt verifiziert
werden (siehe Kapitel 5). Dafiir wird das AUTOSAR Softwarearchitektur-
modell (siehe Abschnitt 5.1) , sowie die darin enthaltenen AUTOSAR Ti-
ming Anforderungen (siehe Abschnitt 5.2) nach Timed Automata transfor-
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miert und im Anschluss mit UPPAAL verifiziert. Die Verifikation mit UP-
PAAL exploriert vollstindig den Zustandsraum des Modells. Somit werden
auch alle Randfalle bei der Timing Verifikation betrachtet, womit der Ansatz
die anfangs festgelegte Anforderung 1 erfiillt. Ebenfalls wird fiir die Verifi-
kation ausschliefSlich das AUTOSAR-Modell benétigt, sodass Anforderung 2
ebenfalls erfiillt ist.

Der Ansatz wurde dann anhand eines praktischen Anwendungsfalls
in Kapitel 6 evaluiert. Dieser Anwendungsfall besteht aus einem reali-
tatsnahen Modell mit einer grofieren Menge an Timing Anforderungen.
Das Modell, sowie die Anforderungen wurden zunachst vorgestellt (siehe
Abschnitt 6.1) und im Anschluss die Evaluierungsergebnisse prasentiert
(siehe Abschnitt 6.2). Die Ergebnisse des Anwendungsfalls zeigen, dass
bei hinreichend groflen Anforderungsmengen eine Kombination aus
Konsistenzanalyse und Timing Verifikation die Effizienz der Verifikation
gesteigert werden kann. Diese Erkenntnis wurde durch weitere Evalu-
ierungen anhand verschiedener synthetischer Testszenarien in Kapitel 7
bestatigt (siehe Abschnitt 7.3). Dariiber hinaus wurde in diesem Kapitel
eine Ubersicht iiber die realisierte prototypische Werkzeugunterstiitzung
gegeben (siehe Abschnitt 7.1).

8.2 DISKUSSION

Dieser Abschnitt diskutiert und bewertet die wesentlichen Entwurfsent-
scheidungen, die aufgrund der gesteckten Rahmenbedingungen und der
im Laufe der Arbeit gewonnenen Erkenntnisse gemacht worden sind.

8.2.1 EINFLUSS DER AUTOMOBILINDUSTRIE

Diese Dissertation ist das Ergebnis eines industriell gepriagten Promotions-
vorhabens. Alle erarbeiteten Methoden lehnen sich daher an den konkre-
ten Vorgaben der Automobilindustrie und Werkzeughersteller an. Dies ma-
nifestiert sich beispielsweise in der Anforderung den bereits existierenden
AUTOSAR-Standard zu verwenden, sowie die Methoden fiir existierende
Werkzeuge zu realisieren. Im Folgenden werden die Aspekte vorgestellt,
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die wesentlich von den existierenden Vorgaben getrieben waren, sowie die

daraus resultierenden Konsequenzen:

¢ Die in dieser Arbeit vorgestellte Methode zur Timing Analyse ist in

erster Linie fiir die Analyse von AUTOSAR Softwarearchitekturen
entworfen, da dies der vorherrschende Standard in der Automobil-
industrie ist. Neben dem Metamodell zur Beschreibung der Timing
Anforderungen, ist es insbesondere das Metamodell zur hardware-
unabhangigen komponentenbasierten Architekturmodellierung, was
in dieser Arbeit verwendet wird. Diese Modellstrukturen lassen sich
in dhnlicher Form auch in anderen Domanenspezifischen Sprachen
wiederfinden. Dies betrifft beispielsweise die Architekturmodellie-
rungssprache Architecture Analysis & Design Language (AS-2C Archi-
tecture Analysis and Design Language, 2017), die tiberwiegend in der
Entwicklung von Systemen der Luftfahrt eingesetzt wird oder EAST-
ADL (EAST-ADL Association, 2013), die in der Systementwicklung
eingesetzten Sprache. Daher gehen wir davon aus, dass insbesondere
fiir das Konzept zur Timing Verifikation von AUTOSAR eine Uber-
tragbarkeit auch auf andere Doméanenspezifische Sprachen gegeben
ist, solange sie die Konzepte von komponentenbasierten Softwarear-
chitekturen, die Verteilung verschiedener Softwaremodule auf aus-
fithrbare Tasks und deren Verteilung auf Hardware, sowie die Spezi-
fikation von Timing Anforderungen unterstiitzen.

Aufgrund der Verwendung des AUTOSAR Standards kénnen eine
Vielzahl der Automobilhersteller und Zulieferer ihre existierende
Modelle ohne die Notwendigkeit zusitzlicher Transformationen
fiir den vorgestellten Ansatz nutzen. Dies steigert die praktische
Relevanz des Ansatzes erheblich. Dariiber hinaus ist zusatzlich durch
die Realisierung der Methoden innerhalb der bereits existierenden
Werkzeuglandschaft sichergestellt, dass sich Modellierungs- und
Qualitatssicherungsaktivititen, die im V-Modell vor- bzw. nach-
gelagert sind, nahtlos integrieren lassen. So kann beispielsweise
ein AUTOSAR-Modell nach der Timing Analyse direkt aus dem
Werkzeug heraus fiir die Simulation kompiliert und fiir simulative
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Testfahrten verwendet werden.

Fiir die Beschreibung der fiir die Transformation nach Timed Auto-
mata und SMT relevanten Modellelemente wurde in Kapitel 3 ein for-
males Modell in Definition 14 spezifiziert. Dies vereinfachte die De-
finition der Transformationen, da es ausschliefSlich die fiir das Zeit-
verhalten von AUTOSAR relevanten Metamodellelemente beinhal-
tet. Das formale Modell, sowie die darauf spezifizierten Transforma-
tionen nach SMT und Timed Automata realisieren Syntax- und Se-
mantikdefinitionen fiir AUTOSAR, die zusatzlich neben der textuel-
len Semantik der AUTOSAR Spezifikation und der durch den gene-
rierten Quellcode eines AUTOSAR-Codegenerators realisierten Se-
mantik stehen. Dabei bilden alle Semantiken unterschiedliche Teil-
aspekte von AUTOSAR ab:

- Die textuelle Semantik beschreibt das Verhalten von AUTOSAR
in einem fiir Anwender des AUTOSAR-Standards verstandli-
chen, aber mehrdeutigen und vor allem grofstenteils informellen
Format. So wird ebenfalls das zeitliche Verhalten des Steuerge-

rates, sowie die Timing Anforderungen textuell spezifiziert.

— AUTOSAR Codegeneratoren erzeugen zusammen mit dem in
den einzelnen Runnables definierten Code ausfithrbaren Quell-
code fiir eine konkrete Hardwareplattform. Je nach Zielplatt-
form (Simulation als virtuelles Steuergerat oder Implementie-
rung in Hardware) bildet diese Semantik das vollstandige Ver-
halten des Steuergerats ab und beschreibt auch die exakten Aus-
fiihrungszeiten.

- Die in dieser Arbeit spezifizierte Semantik mittels Timed Auto-
mata basiert auf dem formalen Modell aus Definition 14 und de-
finiert ein hardwareunabhangiges und zeitbehaftetes Verhalten
von AUTOSAR mittels Timed Automata, indem das Verhalten
der im Standard spezifizierten Timing Anforderungen im Kon-
text der AUTOSAR-Steuergeratearchitektur definiert wird ohne
dabei zu detailliert hardwarespezifische Aspekte zu betrachten.
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— Die SMT-Semantik basiert wiederum ausschliefflich auf den
AUTOSAR Timing Extensions und formalisiert die zeitli-
chen Abhéangigkeiten von Timing Events im Kontext der
Anforderungen mithilfe von logischen Formeln.

Abbildung 8.1 zeigt die Modelle, sowie deren Beziehungen unterein-
ander. Insgesamt ergeben sich aufgrund der Einfithrung eines wei-
teren formalen Modells, sowie der Semantik tiber Timed Automata
und SMT fiir AUTOSAR folgende Problemstellungen:

1. Korrektheit der Semantiken. Da fiir AUTOSAR keine formale
Semantik definiert ist, konnen wir die Korrektheit der Transfor-
mationen in Kapitel 5 nicht beweisen und somit ebenfalls die
semantische Aquivalenz des Timed Automata Netzwerks und
der SMT-Formel zur AUTOSAR Semantik nicht sicherstellen
(siehe auch Abbildung 8.1 (1)). Dieses Problem trifft ebenfalls
auf den generierten Quellcode (siehe auch Abbildung 8.1 (2))
zu und kann beispielsweise dadurch geldst werden, indem
neben der Syntax ebenfalls das Verhalten im AUTOSAR
Standard formal festgehalten wird, sodass hierauf aufbauend
die Verhaltensdquivalenz von Standard und Timed Automata
Netzwerk bewiesen werden kann. Ein anderer Losungsansatz
ware bei der Beschreibung der Semantik unseres Ansatzes
die Semantik des generierten Quellcodes als Grundlage zu
nehmen. So liefSen sich beispielsweise die funktionalen Aspekte
des Quellcodes auf die Generierung des Timed Automata Netz-
werks abbilden und es wiirden ausschliefilich die spezifizierten
Timings der Runnables aus der Spezifikation genommen
werden. Durch diesen Ansatz liefle sich das Problem der
mangelnden Formalisierung des Standards abschwachen.
Umgekehrt liefSe sich auch ein Grundgeriist des Quellcodes
auf Basis des Timed Automata Modells erzeugen, welches
dann um fehlende Teile aus dem AUTOSAR Metamodell
erganzt wiirde (siehe auch Abbildung 8.1 (3)). Durch die
Spezifikation zweier unterschiedlicher Semantiken fiir die
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jeweils unterschiedlichen Teilaufgaben der Konsistenzpriifung
und Timing Verifikation entsteht weiterhin das Problem, dass
Aussagen die auf der Basis einer Semantik gemacht wurden,
nicht auch gleichzeitig fiir die andere Semantik bewiesen sind.
Letztendlich bilden jedoch die Anforderungs-Timed-Automata
durch die verwendeten Signale in den Transitionen genau
die gleiche Restriktionen wie die SMT-Formeln mithilfe der
Variablen hinsichtlich des moglichen zeitlichen Auftretens der
Timing Events ab, sodass wenn eine SMT-Formel unerfiillbar
ist, ebenfalls mindestens zwei Anforderungs-Timed-Automata
untereinander inkompatible Restriktionen beschreiben, so-
dass mindestens ein Anforderungs-Timed-Automaton nicht
den Anforderungen des Systemmodells geniigt, wobei das

verwendete Systemmodell irrelevant ist.

. Konsistenz zwischen Modellen. Ein weiteres Problem bei
der Verwendung verschiedener Modelle mit sich {iberschnei-
denden Elementen ist es, dass Anderungen in einem Modell
nicht automatisiert in die anderen Modelle tibertragen werden.
Hierdurch kann es passieren, dass Inkonsistenzen zwischen
den verschiedenen Modellen auftreten, sodass Aussagen, die
auf der Basis eines Modells gemacht werden, nicht mehr fiir
andere Modelle gelten, da beispielsweise Teilmodelle nicht
aktualisiert wurden. Dieses Problem existierte bereits vorher,
wird aber durch das Einfiihren einer weiteren Syntax und Se-
mantik weiter verscharft, denn sobald das AUTOSAR Modell
geandert wird, miissen sowohl die Codegenerierung als auch
die Generierung des formalen Modells erneut erfolgen. Ein
moglicher Losungsansatz hierfiir ist es zwischen den Modellen
anstelle imperativer Transformationsregeln bidirektionale
Transformationen (BX) zu spezifizieren, die diese Konsistenz
sicherstellen konnen (siehe auch Abschnitt 7.2). Dafiir ist es
notwendig, sowohl fiir das formale Modell in Definition 14
als auch fiir den ausfiihrbaren Code zundchst Metamodelle zu
spezifizieren, um diese dann mittels BX zu verkniipfen.
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ENTWURFSENTSCHEIDUNGEN

3. Aussagekraft der Ergebnisse. Aufgrund der fehlenden for-
malen Spezifikation des AUTOSAR Standards und der nicht
vorhandenen semantischen Relation der Analysemodelle
sowohl zur Codesemantik als auch zum AUTOSAR-Standard
lassen sich Aussagen hinsichtlich der Korrektheit von Zeitei-
genschaften nicht formal auf die anderen Modelle iibertragen,
was insbesondere bei der Ubertragbarkeit der Analyseergeb-
nisse auf die Semantik des finalen Steuergerates problematisch
ist. Diese Problematik betrifft jedoch alle Ansédtze, die AUTO-
SAR als Grundlage fiir Analysen verwenden. Zusatzlich ist
es aufgrund des fehlenden Hardwarebezugs unseres Modells
nur auf der Basis von Laufzeitschdtzungen fiir die Runnables
moglich die finale Semantik des Steuergerdts anzunihern.
Durch die Evaluierung der Transformationen im Werkzeug
und Anwendung innerhalb eines grofieren Anwendungsfalls
konnten wir jedoch sicherstellen, dass die Ergebnisse der
Analysemodelle mit erwarteten Ergebnissen iibereinstimmten.
Zukiinftig konnen jedoch weitere Arbeiten aus Punkt 1 und
2 dazu beitragen, die Semantik der Modelle niher zusam-
menzubringen und somit die Aussagekraft der Ergebnisse zu

verbessern.

* Die notwendige Bindung der Methoden an die existierenden Werk-

zeuge hat jedoch zu Herausforderungen gefiihrt, die wesentliche Ent-
wurfsentscheidungen beeinflusst haben. Die in Kapitel 4 und 5 vor-
gestellten Methoden haben beide als wesentlichen Kern die Trans-
formation eines als Spezifikationsmodell verwendeten AUTOSAR-
Modells in ein Analysemodell. Hier hétte es sich angeboten nach den
Grundlagen aus Stahl und Volter (2006) existierende Technologien
zur Modelltransformation anzuwenden. Allerdings war es technisch
schwierig etablierte Technologien und Sprachen zur Metamodellie-
rung oder zur Spezifikation und Ausfithrung von Modelltransforma-
tionen wie beispielsweise QVT, QVT Operational (Object Manage-
ment Group, 2016) oder EMorLoN::IBEX (Weidmann et al., 2019) ein-
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Abbildung 8.1: Darstellung der verschiedenen Modelle, deren Bezichungen
untereinander und daraus resultierende Problemstellungen: Generierung
von ausfihrbarem Steuergeritecode (1) aus AUTOSAR, dem formalen
Modell aus AUTOSAR (2), sowie die Schwierigkeit die Semantiken zusam-
menzubringen, insbesondere die Semantik des formalen Modells und des
ausfithrbaren Codes (3), um Verhaltensiquivalenz sicherzustellen.

zubinden, da diese ausschliefSlich in Form von Eclipse-Plugins* vor-
liegen und eng an die Datenstrukturen von Eclipse gekoppelt sind,
wahrend die vorhandenen Werkzeuge auf anderen Frameworks ba-
sieren. Eine Integration hitte die Implementierung aufwéndiger ge-
macht und eventuell fiir einen Anwender dazu gefiihrt, dass dieser
mehrere Werkzeuge hétte nutzen miissen und zusatzliche manuel-
le Schritte zur Durchfiihrung notwendig gewesen waren. Aus diesen
Griinden wurden alle Modelltransformationen wie in Abschnitt 7.2

beschrieben imperativ implementiert.

8.2.2 WEITERE ENTWURFSENTSCHEIDUNGEN

Eine grofse Herausforderung wéahrend der Erarbeitung dieser Disserta-
tion war es, dass die gestellten Anforderungen an die wissenschaftliche
Problemstellung und den Ldsungsansatz zundchst sehr abstrakt waren,
dafiir aber bereits konkrete Restriktionen aufgrund der industriellen
Anwendbarkeit bestanden. Der Startpunkt fiir die Arbeit war die Vision
den aufwiandigen und fehleranfilligen Modellierungsprozess von der
technischen Systemarchitektur bis zu einer vollstindig simulierbaren

“https://www.eclipse.org/
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AUTOSAR-Softwarearchitektur in SystemDesk mithilfe statischer Ana-
lysen so zu unterstiitzen, dass Modellierungsfehler frithzeitig erkannt
werden und somit das laufzeitintensive Kompilieren des Simulations-
modells moglichst selten durchgefithrt werden muss. Dabei wurde
identifiziert, dass die Timing-Eigenschaften von AUTOSAR nicht im
Prozess beriicksichtigt wurden und auch nicht in der Simulation Bertick-
sichtigung fanden, was jedoch Voraussetzung fiir ein korrektes System
ist. Daher entschieden wir uns diesen Aspekt weiter zu betrachten. Fiir
die Analyse der Timing-Eigenschaften wurde inkrementell ein formales
Modell von AUTOSAR entwickelt und es wurde daraufhin evaluiert, in wie
weit sich das Zeitverhalten mit existierenden formalen Sprachen mit Zeit-
bezug nachbilden lasst. Wir entschieden uns fiir die Transformation nach
Timed Automata, da wir hier auf eine gute Werkzeugunterstiitzung setzen
konnten. Daraufhin wurde eine allgemeine Transformation spezifiziert
und implementiert. Nachdem sich herausgestellt hatte, dass die Verifika-
tion einiger Timing Anforderungen hohe Laufzeiten hatte und ebenfalls
die Modellierung der Timing Anforderungen im Werkzeug aufgrund
fehlender Modellierungshilfen fehleranfillig war, entschieden wir uns
dazu die Timing Anforderungen genauer und unabhingig von der Soft-
warearchitektur zu betrachten und die Modellierung zu unterstiitzen. Die
Ideen waren hier Qualitatskriterien fiir Timing Anforderungen bereits vor
der Verifikation tiberpriifen zu kénnen und doménenspezifische Sprachen
fiir die Modellierung einzusetzen. Fiir Timing Anforderungen existierten
aber schon eine Vielzahl von Ansatzen fiir domanenspezifische Sprachen,
wie beispielsweise musterbasierte Sprachen fiir temporallogische Formeln
(Dwyer et al., 1999, Konrad und Betty, 2005), grafische Modellierungs-
sprachen fiir verschiedene spezifische Doménen wie beispielsweise PPSL
fiir Business Prozesse (Forster et al., 2007) oder zeitbasierte Story Szenario
Diagramme fiir Graphtransformationssysteme (Klein und Giese, 2006). Mit
der ARText Timing Language existierte ebenfalls bereits eine XText basierte
domanenspezifische Sprache fiir AUTOSAR Timing Anforderungen
(Scheickl und Ainhauser, 2012). Daher richteten wir den Fokus auf Quali-
tatskriterien, die bei der Modellierung von Timing Anforderungen beachtet
werden miissen. Als Basis dafiir wurden die allgemein giiltigen Kriterien
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fiir Anforderungen der IEEE (IEEE, 1998) herangezogen und es wurden
Kriterien identifiziert, die sich bezogen auf die Timing Anforderungen
automatisiert bewerten lassen. Einige Eigenschaften wie Eindeutigkeit sind
bereits durch das formale Metamodell von AUTOSAR gegeben. Ebenfalls
wird die syntaktische Korrektheit durch das Metamodell von AUTOSAR
bestimmt, was zusatzlich mithilfe der SystemDesk Validierungsregeln
iiberpriift werden kann. Wir entschieden daher die Konsistenz der Anfor-
derungen naher zu betrachten und modellierten zeitliche Abhangigkeiten
von AUTOSAR Timing Anforderungen zundchst beispielhaft als SMTLIB
Modell, um dann daraus eine vollstindige Transformation herzuleiten. Die
Entscheidung beruhte darauf, dass sich die temporalen Abhéangigkeiten
einfach als lineare Ungleichungen darstellen liefSen, sodass diese Art der
formalen Modellierung nahe lag. Prinzipiell ware es ebenfalls moglich
gewesen diese Eigenschaften tiber Timed Automata darzustellen.

8.3 AUSBLICK

Im Folgenden wird ein Ausblick auf zukiinftige Themen, die sich dem hier
vorgestellten Ansatz anschlieflen konnen, gegeben. Dabei wird ein Blick so-
wohl auf zukiinftige vertiefende Arbeiten der einzelnen Beitrdge als auch
auf mogliche Forschungsfragen geworfen, die sich mit der Erweiterung des
Gesamtprozesses beschaftigen.

VERFEINERUNG UND ERWEITERUNG DES FORMALEN MoDELLs FUR AUTO-
SAR DasinKapitel 3 vorgestellte formale Modell der Softwarearchitektur
ist das Resultat eines anwendungsbezogenen Ansatzes zur Definition ei-
ner formalen Semantik fiir AUTOSAR. Der Ansatz bildet dabei das Timing-
Verhalten der Softwarearchitektur sowohl auf Applikationsebene als auch
auf RTE-Ebene und Basissoftwareebene ab. Der Fokus der Arbeit lag dabei
auf der korrekten Nachbildung der Timings fiir die wesentlichen Basissoft-
waremodule wie das Betriebssystem, da dies den grofiten Einfluss auf das
Laufzeitverhalten hat. Dariiber hinaus existieren weitere Basisssoftwaremo-
dule verteilt auf mehreren horizontalen und vertikalen Ebenen (siehe auch
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ADAPTIVE PLATFORM

Abschnitt 2.1.2 und Abbildung 2.2). Fiir diese Module konnte es sich fiir
eine detaillierte Analyse anbieten, diese ebenfalls als spezialisierte Timed
Automata zu modellieren, um das Zeitverhalten weiter zu verfeinern. Des
Weiteren ist AUTOSAR ein Standard, der tiber Jahre hinweg von einer gro-
Ben Mitgliederanzahl sukzessive erweitert wurde und immer noch erwei-
tert wird, was dazu fithrt, dass das existierende Meta-Modell mittlerwei-
le sehr grof} ist und sich standig verdndert. Die letzte grofse Erweiterung
ist dabei die Einfiihrung der sogenannten Adaptive Platform®. Diese ermog-
licht als Kernkonzept die Definition von Services, die nur noch lose gekop-
pelt sind und dynamisch zur Laufzeit des Systems gestartet werden kon-
nen. Dies macht die Software flexibler und einfacher adaptierbar, allerdings
wird das Laufzeitverhalten durch die komplexere Architektur schwieriger
vorhersehbar, wodurch Timing Analysen wesentlich komplexer werden.
Wenn zukiinftig auch mit Adaptive AUTOSAR sicherheitskritische Echt-
zeitanwendungen realisiert werden sollen, muss dieser Aspekt in zukiinfti-
gen Arbeiten betrachtet werden.

GENERIERUNG LAUFZEITOPTIMIERTER AUTOSAR ARCHITEKTUREN Die
Erweiterung der Konsistenzanalyse um Unterstiitzungsverfahren zur
Identifikation von Fehlerursachen fiir inkonsistente Anforderungsmengen
ist aus unserer Sicht ein vielversprechendes Instrument, um temporale
Fehler in Timing Anforderungen schneller zu beheben und die praktische
Anwendbarkeit der Methode zu steigern. Ein dhnlicher Ansatz fiir die
anschlieffende Timing-Analyse ware ebenfalls eine sinnvolle Ergdnzung
und ein Ansatz fiir zukiinftige Arbeiten. Denn ist eine Timing Anforderung
durch das System nicht erfiillbar, so stellt sich die Frage, welche moglichen
Ursachen dies hat und welche Moglichkeiten zur Auflosung existieren. Ein
einfaches Beispiel hierfiir ist ein Latency Timing Constraint, der Events
aus mehreren Runnables referenziert, die aufgrund eines falsch konfigu-
rierten Task-Runnable-Mappings jedoch groflere Latenzen verursachen als
notwendig. Durch die Anderung der Reihenfolge der Runnables im Task
kann das Modell dann der Anforderung gentigen. Liegen die Timing An-

thttps://www.autosar.org/standards/adaptive-platform/
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forderungen und die AUTOSAR-Architektur auf Applikationsebene vor,
so liefSe sich das Task-Runnable-Mapping auch automatisiert erzeugen. Ein
moglicher Losungsansatz hierfiir ist, dass sowohl Timing Anforderungen
als auch die Architektur in ein SMT-Analysemodell integriert werden.
Die Laufzeiten von Runnables und deren Datenverbindungen mdiissten
dann als zusétzliche Constraints in das Modell aufgenommen werden.
Auf der Basis einer erfiillbaren Variablenbelegung lieffe sich dann ein
Task-Runnable-Mapping, sowie die OSTasks synthetisieren. Ahnliche
Ansitze, die laufzeitoptimierte Systeme erzeugen sind beispielsweise Zhu
et al. (2012), Long et al. (2009) oder Wozniak (2013). Diese modellieren
das Problem als lineares Programm oder nutzen genetische Algorithmen.
Keine der Arbeiten beriicksichtigt allerdings die Abhangigkeiten von
Timing Anforderungen.

AUTOMATISIERTE EXTRAKTION UND VERFEINERUNG VON TIMING ANFORDE-
RUNGEN AUS SIMULATIONEN Die ersten Timing Anforderungen werden
iiblicherweise bereits auf Benutzerebene spezifiziert (siehe auch Abbildung
2.1). Diese werden beispielsweise aus Interviews, Workshops oder aus
Anderungswiinschen, sowie sonstigen Riickmeldungen der Benutzer aus
dem Anwendungsfeld gewonnen und miissen ebenfalls technische und
gesetzliche Vorgaben beriicksichtigen (Schauffele und Zurawka, 2010).
Doch gerade fiir die Entwicklung autonomer Fahrzeugfunktionen ist
es hdufig schwierig konkrete Anforderungen an das Timing Verhalten
festzuhalten. Neue Regularien wie beispielsweise zur Absicherung auto-
matischer Spurhalteassistenzsysteme (United Nations, 2020) fordern, dass
das System in allen Situationen Unfille vermeidet, in denen dies auch
ein getlibter menschlicher Fahrer konnte. Fiir diese Anforderung ist es
zundchst schwierig konkrete End-To-End Timings zu extrahieren, die dann
im Rahmen des Entwicklungsprozesses verfeinert werden konnen. Eine
Moglichkeit zur Erhebung konkreter Zeitschranken ist es eine Gesamtfahr-
zeugsimulation mit der prototypischen Fahrfunktion in unterschiedlichen
Szenarien mit verschiedenen Worst-Case Timings durchzufiihren und
mit einem idealisierten Fahrermodell zu vergleichen. Sobald fiir eine
bestimmte Laufzeit und mindestens einem Szenario fiir die Fahrfunktion
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eine Unfallsituation vorliegt, beim idealisierten Fahrermodell aber nicht,
kann diese Laufzeit als Grundlage fiir ein maximales End-To-End Timing
genommen werden. Ahnliche Konzepte werden beispielsweise auch zur
Erhebung von Anforderungen an die Genauigkeit von Sensorkomponenten
autonomer Fahrzeuge verwendet (Philipp et al., 2021).

AUTOMATISIERTE FORMALISIERUNG NATURLICHSPRACHLICHER TIMING
ANFORDERUNGEN Die entwickelte Methode zur Konsistenzanalyse der
Timing Anforderungen realisiert eine analytische Herangehensweise
um die Qualitit von Anforderungsartefakten zu erhohen. Ein weiterer
Ansatz, um bereits friihzeitig die Qualitat von Anforderungsartefakten zu
gewahrleisten ware es ebenfalls konstruktive Ansatze zu betrachten. Diese
unterstiitzen einen Requirements Engineer bereits bei der Transformation
von Anforderungsdokumenten nach AUTOSAR. beispielsweise durch
die automatische Extraktion von AUTOSAR Timing Anforderungen aus
textuellen Anforderungsdokumenten mittels linguistischer Verfahren
oder aus existierenden SysML Anforderungsmodellen. Hier existieren
Ansdtze fiir allgemeine Anforderungsartefakte, die auf formalisierten
textuellen Dokumenten arbeiten wie Holtmann et al. (2011). Diese konnen

als Grundlage verwendet werden.

8.4 SCHLUSSBEMERKUNG

Durch die Anwendung formaler Methoden zur Verifikation von Timing An-
forderungen bereits auf AUTOSAR-Architekturebene konnen Timing Feh-
ler in Anforderungsartefakten frithzeitig erkannt werden und so zu einer
effizienteren und kostengtinstigeren Entwicklung komplexer Steuergerate-
software beitragen. Eine grofSe Hiirde in der industriellen Praxis ist dabei
die einfache - d.h. auch ohne Expertenwissen mogliche - Anwendbarkeit,
sowie die einfache Integration in bestehende Entwicklungsprozesse und
Werkzeuge, die bisher noch nicht in allen Facetten verfiigbar war. Der vor-
gestellte Ansatz tiberwindet diese Herausforderungen durch die Anwen-
dung des etablierten AUTOSAR-Standards und durch die Bereitstellung
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von Mechanismen zur effizienten Identifikation und Korrektur von inkon-
sistenten Anforderungsmengen. Im spateren Verlauf des Entwicklungspro-
zesses lasst sich der Ansatz sowohl mit code-basierten formalen Methoden
zur Identifikation von Task-Laufzeiten als auch mit zeitabhangigen Simula-
tionen kombinieren, was den praktischen Nutzen des Ansatzes weiter stei-
gert.
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