
Timing Verifikation von
AUTOSAR

Softwarearchitekturen

DISSERTATION
ZUR ERLANGUNG DES AKADEMISCHEN GRADES EINES
DOKTORS DER NATURWISSENSCHAFTEN ₍DR. RER. NAT.₎

AN DER
FAKULTÄT FÜR ELEKTROTECHNIK, INFORMATIK UND MATHEMATIK

DER UNIVERSITÄT PADERBORN

VORGELEGT VON
M. SC. STEFFEN BERINGER

PADERBORN,
JUNI ₂₀₂₂

©₂₀₂₂ – M. SC. STEFFEN BERINGER
ALL RIGHTS RESERVED.

Timing Verifikation von AUTOSAR
Softwarearchitekturen

ZUSAMMENFASSUNG

Automobilhersteller weltweit befinden sich zur Zeit in einem Wettlauf um
die Einführung autonomer Fahrzeuge. Die Innovationen in diesem Bereich
werden dabei fast ausschließlich durch die Entwicklung neuer Software rea‑
lisiert. Dies führt dazu, dass die Software im Automobil immer komplexer
wird, diese jedoch in immer kürzeren Abständen auf die Straße gebracht
werden soll. Dabei muss die Software stets hohen Qualitätsanforderungen
genügen, da sie in vielen Fällen sicherheitskritische Funktionen umsetzt.
Dies macht die Validierung dieser Fahrfunktionen zu einer großen Heraus‑
forderung.
Des Weiteren gilt für viele Funktionen im Automobil, dass diese harte

Echtzeitanforderungen erfüllen müssen, was zusätzlich im gesamten Ent‑
wicklungsprozess berücksichtigt werden muss. Die Validierung dieser An‑
forderungen ist besonders aufwändig, da die Durchführung von Simulatio‑
nen, wie sie häufig zur Validierung von Steuergerätesoftware angewendet
werden, nicht zielführend ist, da diese nicht alle möglichen Randfälle mit‑
betrachten und somit die Korrektheit der Anforderungen nicht nachweisen
können.
Der Einsatz formaler Verifikation für Softwarearchitekturmodelle im Au‑

tomobil ermöglicht es die Korrektheit und Robustheit von Steuergerätesoft‑
ware signifikant zu erhöhen. Dies gilt insbesondere für die Verifikation von
Echtzeitanforderungen mittels Timing Verifikation. Existierende Methoden
benötigen jedoch für die Durchführung der Timing Verifikation Steuerge‑
rätecode, der häufig erst spät im Prozess verfügbar ist oder berücksichtigen
den in der Automobilindustrie verbreiteten AUTOSAR‑Standard nicht. Des
Weiteren ignorieren existierende Ansätze die Komplexität und Fehleranfäl‑
ligkeit der Herleitung von formalen Echtzeitanforderungen für AUTOSAR

aus Anforderungsdokumenten. Dies führt insgesamt dazu, dass existieren‑
de Ansätze erst spät im Entwicklungsprozess angewendet werden können
und eine geringe praktische Relevanz aufweisen.
In dieser Arbeit schlagenwir einen neuenAnsatz zur Timing Verifikation

von AUTOSAR Softwarearchitekturen vor. Es wird zunächst eine For‑
malisierung für AUTOSAR Softwarearchitekturen, sowie für AUTOSAR
Timing Anforderungen bereitgestellt. Daraufhin stellen wir einen Prozess
vor, in dem AUTOSAR Timing Anforderungen zunächst auf Konsistenz
geprüft werden und anschließend formal verifiziert werden. Im Gegensatz
zu anderen Ansätzen wird kein Quellcode benötigt, sondern ausschließlich
das AUTOSAR Architekturmodell verwendet. Die Methode zur Kon‑
sistenzprüfung beinhaltet die Transformation der AUTOSAR Timing
Anforderungen in logische Constraints, die mithilfe von SMT‑Solvern
geprüft werden. Des Weiteren werden auf der Basis der logischen Cons‑
traints Mechanismen zur Auflösung inkonsistenter Anforderungsmengen
zur Verfügung gestellt. Für die Verifikation der Timing Anforderungen
wird eine Transformation des formalen AUTOSAR‑Modells nach Timed
Automata vorgestellt. Anschließend wird die Effizienz unseres Ansatzes
mithilfe einer Fallstudie, sowie weiteren synthetischen Modellen bewertet.

Timing verification of AUTOSAR software
architectures

ABSTRACT

Automobile manufacturers worldwide are currently in a race to introduce
autonomous vehicles. Innovations in this area are being realized almost ex‑
clusively through the development of new software. As a result, automotive
software is becoming increasingly complex, while release‑cycles are shor‑
tened. Still it is required to always meet high quality requirements, since in
many cases it implements safety‑critical functions. This makes validation of
these functions a major challenge.
Furthermore, many functions in automobiles must fulfill hard real‑time

requirements, which must also be taken into account throughout the entire
development process. The validation of these requirements is particularly
time‑consuming because simulations, which are often used to validate elec‑
tronic control unit (ECU) software, are not effective because they do not
consider all possible corner cases and thus cannot prove the correctness of
the requirements.
The use of formal verification for automotive software architecture mo‑

dels significantly increases the correctness and robustness of ECU software.
This is especially true for the verification of real‑time requirements using
timing verification. Existing methods require ECU source‑code to perform
timing verification, which is often not available until late in the process, or
do not take into account the AUTOSAR standard that is widely used in the
automotive industry. Furthermore, existing approaches ignore the comple‑
xity and error‑proneness of deriving formal real‑time requirements for AU‑
TOSAR from requirements documents. Overall, this means that the existing
approaches can only be applied late in the development process and have
little practical relevance.

v

In this thesis, a new approach for timing verification of AUTOSAR soft‑
ware architectures is proposed. First, a formalization for AUTOSAR soft‑
ware architectures as well as for AUTOSAR timing requirements is provi‑
ded. A process is then presented in which AUTOSAR timing requirements
are first checked for consistency and then formally verified. In contrast to
other approaches, no source code is required, but only the AUTOSAR soft‑
ware architecturemodel is used. The consistency checkingmethod involves
transforming the AUTOSAR timing requirements into logical constraints
that are checked using SMT solvers. Furthermore,mechanisms for resolving
inconsistent sets of requirements are provided based on the logical cons‑
traints. For the verification of timing requirements, a transformation of the
formal AUTOSAR model to Timed Automata is presented. Subsequently,
the efficiency of our approach is evaluated with the help of a case study, as
well as further synthetic models.

vi

Inhaltsverzeichnis

₁ EINLEITUNG 1
1.1 Motivation . 2
1.2 Problemstellung . 5
1.3 Beitrag der Arbeit . 8
1.4 Struktur der Arbeit . 9

₂ GRUNDLAGEN 13
2.1 Automotive Softwareentwicklung 14
2.2 Anforderungsmodelle und Anforderungsqualität 33
2.3 Formale Analyse . 39
2.4 Zusammenfassung . 51

₃ FRÜHZEITIGE VERIFIKATION VON AUTOSAR TIMING ANFORDE‑
RUNGEN 53
3.1 Konsistenzprüfung und Timing Verifikation 55
3.2 Zeitaspekte innerhalb einer AUTOSAR Softwarearchitektur 57
3.3 Integration der Methode in bestehende Entwicklungsprozesse 62
3.4 Zusammenfassung . 64

₄ KONSISTENZANALYSE VON AUTOSAR TIMING ANFORDERUNGEN 65
4.1 Transformation der AUTOSAR Timing Anforderungen

nach SMT . 67
4.2 Verfahren zur Korrektur inkonsistenter Anforderungsmengen 71
4.3 Stand der Technik . 77
4.4 Zusammenfassung . 79

₅ TIMING VERIFIKATION VON AUTOSAR SOFTWAREARCHITEKTU‑
REN 81
5.1 Transformation des AUTOSAR Architekturmodells nach

Timed Automata . 82
5.2 Transformation der TimingAnforderungen nach TimedAu‑

tomata . 89
5.3 Stand der Technik . 98
5.4 Zusammenfassung . 104

vii

₆ FALLSTUDIE: FAULT‑TOLERANT FUEL‑RATE CONTROLLER 105
6.1 Aufbau des Modells . 106
6.2 Ergebnisse . 113
6.3 Diskussion . 118
6.4 Zusammenfassung . 121

₇ WERKZEUGUNTERSTÜTZUNG UND EVALUIERUNG 123
7.1 Prototypische Werkzeugunterstützung 123
7.2 Realisierung der Modelltransformationen 124
7.3 Evaluierung . 127
7.4 Zusammenfassung . 135

₈ ZUSAMMENFASSUNG UND AUSBLICK 137
8.1 Zusammenfassung . 137
8.2 Diskussion . 139
8.3 Ausblick . 147
8.4 Schlussbemerkung . 150

REFERENCES 170

viii

Abbildungsverzeichnis

1.1 Herausforderungen bei der Entwicklung von Steuergeräte‑
software . 7

1.2 Lösungsansatz . 10

2.1 V‑Modell Entwicklungsprozess nach Schäuffele und
Zurawka (2010) . 16

2.2 AUTOSAR Schichtenarchitektur aus AUTOSAR (2019d) . . 19
2.3 Metamodellebenen von AUTOSAR (AUTOSAR, 2019c) . . 23
2.4 Metamodell für Timing Extensions 25
2.5 Metamodell für Timing Descriptions 26
2.6 Verfügbare Timing Constraints in AUTOSAR (AUTOSAR,

2019a) . 27
2.7 AUTOSAR Entwicklungsumgebung SystemDesk® 29
2.8 Beispiel einer AUTOSAR Softwarearchitektur 29
2.9 Dekomposition von Funktionen (AUTOSAR, 2019d) 36
2.10 Architektur des MARTE Profils 37
2.11 EAST‑ADL Architekturebenen(EAST‑ADL Association, 2013) 38
2.12 Beispiel Timed Automaton visualisiert mit UPPAAL 42
2.13 Screenshot von UPPAAL . 45

3.1 Analyseprozess . 57
3.2 Integration der Methode in den Entwicklungsprozess . . . 64

4.1 Transformation von AUTOSAR‑Modellen nach SMT‑Formeln 67
4.2 Generierter Ergebnisgraph für MaxSMT 76
4.3 Generierter Ergebnisgraph für Unsat Core 77

5.1 Transformation desAUTOSARModells in einNetzwerk aus
Zeitautomaten und TCTL‑Abfragen 83

5.2 Beispiel für die Repräsentation des RunnableEntities
Tss_Preprocessing als Timed Automaton 85

5.3 Beispiel für das Task RunnableMapping als TimedAutomaton 88
5.4 Beispiel für die Repräsentation eines OSTask als Timed Au‑

tomaton . 90
5.5 Timed automaton eines Latency Timing Constraints 91

ix

5.6 Timed Automaton für eoc1 . 93
5.7 Beispiel eines Synchronization Timing Constraints für die

Synchronizität der Blinkerlampen 96
5.8 Timed Automaton für rotc . 96
5.9 Der von der Softwarearchitektur nicht erfüllte Offset Timing

Constraint rotc in der UPPAAL GUI 98

6.1 AUTOSAR Softwarearchitektur des Steuergeräts (Applika‑
tionsebene) . 107

6.2 Teilgraph G′
1 ⊂ G des Ergebnisgraphen für die Timing An‑

forderungen etc1, etc2, etc7, etc8, etc9, etc10 und eoc1 114
6.3 Teilgraph G′

2 ⊂ G des Ergebnisgraphen für die Timing An‑
forderungen etc3, etc4, etc5, etc6, eoc2, eoc3, eoc4, eoc5, otc1 und otc2 . 115

6.4 Teilgraph G′
3 ⊂ G des Ergebnisgraphen für die Timing An‑

forderungen stc1, stc2, stc4, stc5, stc6, ltc1, ltc2, ltc3 116
6.5 Teilgraph G′

4 ⊂ G des Ergebnisgraphen für die Timing An‑
forderung stc3 . 116

6.6 Timed Automaton für ltc3 . 118
6.7 Timed Automaton für eoc1 . 119
6.8 Laufzeit der Verifikation der Timing Anforderungen 121
6.9 Laufzeitverhältnis der Timing Anforderungs Typen und

Laufzeitmittelwerte . 122

7.1 Komponentenansicht des Analyseframeworks 128
7.2 Laufzeiten der Testszenarien mitM1 (Szenarien 1‑5) 133
7.3 Laufzeiten der Testszenarien mitM2 (Szenarien 6‑10) 133
7.4 Laufzeiten der Testszenarien 11 ‑ 14 133
7.5 Laufzeiten der Testszenarien 15 ‑ 18 133

8.1 3Semantiken . 145

x

Tabellenverzeichnis

2.1 Beispiel Timing Constraints 31

4.1 Beispieltransformationen . 72

5.1 Execution Times der RunnableEntities 99

6.1 Komplexität der Softwarearchitektur 107
6.2 Timing Constraints . 108
6.2 Fortsetzung Timing Constraints 109
6.2 Fortsetzung Timing Constraints 110
6.2 Fortsetzung Timing Constraints 111
6.2 Fortsetzung Timing Constraints 112
6.3 Beschreibung der Symbole 114
6.4 Laufzeiten für die Transformation Konsistenzanalyse

bestehend aus der Transformation des AUTOSAR Modells
nach SMT T(t), sowie das Lösen der SMT‑Formel T(smt)
und die Berechnung von Unsat Core und MaxSMT T(msat) 115

6.5 Ergebnisse und Laufzeiten der Timing Verifikation 120

7.1 Verwendete Modelle zur Laufzeitmessung 130
7.2 Testszenarien für die Laufzeitverifikation 131
7.3 Laufzeiten für die Transformation der Anforderungen nach

SMT, SMT‑Solving, MaxSMT Berechnung, Transformation
nach Timed Automata und Verifikation mit UPPAAL 132

xi

xii

Danksagung

DIESE DISSERTATION UND ALLE IN DIESER ARBEIT ERZIELTEN ERKENNTNISSE SIND
DAS ERGEBNIS EINER KONSTANTEN UNTERSTÜTZUNG EINER VIELZAHL VON PER‑
SONEN ÜBER EINEN LANGEN ZEITRAUM GEWESEN. Daher möchte ich mich zu
Beginn der Arbeit bei allen bedanken, die in irgendeiner Form hierzu bei‑
getragen haben.
Mein ganz besonderer Dank gilt meiner Betreuerin Prof. Dr. HeikeWehr‑

heim, die mir die Gelegenheit gegeben hat, mich als externer Promotions‑
student in ihrer Fachgruppe zu beteiligen. VielenDank für diewissenschaft‑
liche Betreuung meines Themas, für die stets hilfreichen Diskussionen, für
die Geduld bei der Betreuung und schließlich für die Begutachtung dieser
Arbeit. Ich möchte mich ebenfalls bei der Prüfungskommission bestehend
aus Prof. Dr. Gregor Engels, Jun‑Prof. Dr. HenningWachsmuth, Dr. Christi‑
an Soltenborn undDr.MatthiasMeyer für die aufgewendete Zeit bedanken.
Ebenfalls möchte ich mich bei allen (ehemaligen) Kollegen der Arbeits‑

gruppe bedanken, die mich während meiner Zeit an der Universität unter‑
stützt haben: Nils Timm, Dominik Steenken, Galina Besova, Steffen Ziegert,
Tobias Isenberg, Marie‑Christine Jakobs, Oleg Travkin, Manuel Töws, Felix
Pauck, Arnab Sharma, Sven Flake, Jürgen König, Jan Haltermann, Cedric
Richter und Elisabeth Schlatt.
Diese Dissertation ist in Zusammenarbeit mit dem Unternehmen dS‑

PACE entstanden. In diesem Zusammenhang möchte ich mich für die
uneingeschränkte Unterstützung bei meinen Betreuern Elmar Schmitz
und Dr. Matthias Gehrke bedanken. Des Weiteren möchte ich mich bei
allen Kollegen meiner Gruppe bei dSPACE für die vielen fruchtbaren
Diskussionen bedanken.
Zuletzt möchte ich mich ganz besonders bei meiner Frau Kristin bedan‑

ken, die mich in allen Phasen meiner Dissertation unterstützt hat und stets
an mich und das Gelingen dieser Arbeit geglaubt hat.

xiii

xiv

1
Einleitung

DIE KOMPLEXITÄT VON STEUERGERÄTESOFTWARE UND REGELALGORITHMEN IM
AUTOMOBIL NIMMT STETIG ZU, beispielsweise aufgrund der Integration von
mehr Komfortfunktionen oder durch komplexere Steuerungen bei Elektro‑
fahrzeugen. Dies hat zur Folge, dass die Entwicklung und der Test dieser
Systeme zeitaufwändig ist. Erschwerend kommt hinzu, dass gerade Steuer‑
gerätesoftware sicherheitskritisch ist und zudem Echtzeitbedingungen ein‑
halten muss, weshalb es notwendig ist zusätzlich zu den funktionalen An‑
forderungen auch Echtzeitanforderungen (Timing Anforderungen) zu ve‑
rifizieren. In diesem Kapitel wird zunächst in Abschnitt 1.1 der Kontext der
Arbeit vorgestellt und die Vorteile einer frühzeitigen Timing Verifikation
von Steuergerätesoftware genannt. Die spezifischen Problemstellungen, die
aus der Entwicklung und Absicherung komplexer Steuergerätearchitektu‑
ren entstehen, werden in Abschnitt 1.2 vorgestellt. Abschnitt 1.3 stellt die
Lösungsansätze zur frühzeitigen Timing Verifikation vor, die im Rahmen
der Arbeit umgesetzt wurden. Abschnitt 1.4 gibt schließlich eine Übersicht
über die folgenden Kapitel.

1

₁.₁ MOTIVATION

In Zeiten neuer gesellschaftlicher Herausforderungen wie dem Klimawan‑
del, Ressourcenknappheit und dem demografischenWandel sind es gerade
neue Innovationen im Bereich des Automobils, die versprechen einen Bei‑
trag zur Lösung dieser Herausforderungen leisten zu können. Durch die
Einführung von elektrischen, autonom fahrenden Fahrzeugen ist es bei‑
spielsweise möglich Emissionen zu reduzieren und Ressourcen einzuspa‑
ren (Tomás et al., 2020, Hannon, 2016). Darüber hinaus erhalten Fahrzeu‑
ge weitere Funktionen wie beispielsweise einen Automatischen Bremsas‑
sistenten, Automatische Geschwindigkeitsregelung (Adaptive Cruise Con‑
trol (ACC)), Fahrspurerkennung (Lane‑Detection) oder Elektronische Sta‑
bilitätskontrolle (Electronic Stability Control (ESP)), welche die Sicherheit
beim Fahren erhöhen und die gesellschaftliche Teilnahme älterer Verkehrs‑
teilnehmer ermöglichen (Yurtsever et al., 2020).
Diese neuen Innovationen basieren jedoch nicht mehr auf der Weiterent‑

wicklung einzelner mechanischer Bauteile, sondern erfordern die Ausfüh‑
rung komplexer RegelalgorithmenKOMPLEXER

REGELALGORITHMEN
verteilt auf eine Vielzahl von Steuergerä‑

ten und sind somit abhängig von Software (Broy, 2006). Dies führt dazu,
dass die Menge an Software in modernen Autos seit Jahren exponentiell
steigt (Broy et al., 2007). EinmodernesAutowie beispielsweise ein 7er‑BMW
mit erweiterten Fahrerassistenzfunktionen enthält mehr als 150 Steuergerä‑
te und mehr als 150 Millionen Zeilen Quellcode (Charette, 2021).
Diese Software gilt es nicht nur zu entwickeln, sondern in besonderem

Maße auch abzusichern und zu testen. Denn gerade Software imAutomobil
ist häufig sicherheitskritischSICHERHEITSKRITISCH und schwer nach der Auslieferung zu aktualisie‑
ren. Werden Absicherungsmaßnahmen nicht konsequent eingesetzt, kann
fehlerhafter Steuergerätecode ins Serienfahrzeug gelangen und so Perso‑
nenschäden durch Verkehrsunfälle verursachen, was letztendlich selbst für
große Automobilkonzerne schwere wirtschaftliche Folgen haben kann (Ka‑
ne et al., 2011, Douglas und Fletcher, 2019).
Darüber hinaus realisiert automotive Software sehr unterschiedliche

Funktionen. Für einige Softwarefunktionen, die einen unmittelbaren
Einfluss auf das Fahrverhalten des Fahrzeugs und die Sicherheit des Au‑

2

tofahrenden haben, wie beispielsweise die Sicherheitselektronik oder die
Software zur Steuerung des Antriebsstrangs und des Fahrwerks, gilt, dass
sie nicht nur sicherheitskritisch ist, sondern die korrekte Funktionalität
abhängig von der korrekten zeitlichen Ausführung ist und somit zusätzlich
harten Echtzeit ECHTZEITbedingungen genügen muss (Broy et al., 2007). Der Aufwand
zur Validierung dieser Funktionen ist besonders hoch, da im gesamten
Entwicklungsprozess diese Echtzeitanforderungen mit betrachtet werden
müssen und die Verifikation besonders aufwändig ist (AUTOSAR, 2019h).
Dies führt dazu, dass die Entwicklung und der Test automotiver Software

immer teurer wird. Während am Anfang der 1980er Jahre der Kostenanteil
für elektronische Komponenten und die Software eines Autos noch bei 10%
lag, so waren es 2010 bereits 35%, und für 2030 wird geschätzt, dass dieser
Anteil auf 50% weiter steigt (Charette, 2021). Gleichzeitig konkurrieren so‑
wohl Automobilhersteller als auch Zulieferer untereinander und stehen so
unter einem starken Kostendruck (Broy et al., 2007).
Im Zuge dieser Entwicklungen ist es zunehmend wichtiger die

Entwicklung und den Test von Steuergeräten mithilfe moderner
Softwareentwicklungs‑ und Qualitätssicherungsmethoden zu verbes‑
sern und zu beschleunigen. Für diese Methoden müssen integrierte
(modellbasierte) Werkzeugumgebungen entwickelt werden, die diese
Methoden umsetzen und die in der Automobilindustrie verwendeten
Entwicklungsartefakte verarbeiten können (Broy et al., 2010).
Diese Dissertation wurde in Zusammenarbeit mit dem Unternehmen

dSPACE * DSPACE *durchgeführt. dSPACE ist ein Anbieter von Simulations‑
und Validierungslösungen für die Entwicklung vernetzter, autonomer und
elektrisch angetriebener Fahrzeuge. Das dSPACEGeschäftsfeld Software‑In‑
The‑Loop‑Testing SOFTWARE‑IN‑THE‑LOOP‑

TESTING
(SIL‑Testing) beinhaltet Werkzeuge zum Simulieren und

Testen virtueller (software‑basierter) Steuergeräte (Kempkes und Walther,
2018). Dies ermöglicht es den Absicherungsprozess für die vollständige
Steuergerätesoftware STEUERGERÄTESOFTWAREohne die Verfügbarkeit eines Prototypensteuerge‑
räts durchzuführen, indem diese auf handelsüblicher PC‑Hardware, in
der Cloud oder zusammen mit bereits existierenden Steuergeräten am
HIL‑Simulator in Verbindung mit einem Umgebungsmodell simuliert

*http://www.dspace.de

3

werden (Kempkes und Walther, 2018). Dadurch können Integrations‑
und Systemtests früher im Entwicklungsprozess vorgenommen werden.
Fehler können so frühzeitig erkannt und behoben werden und somit kann
der gesamte Entwicklungsprozess beschleunigt werden. Ein virtuelles
Steuergerät (V‑ECUV‑ECU) kann dabei aus unterschiedlichen Modellen assem‑
bliert werden und somit auch auf verschiedenen Abstraktionsebenen
vorliegen (Kempkes und Walther, 2018). Neben der Simulation einzelner
Funktionsmodelle auf der Basis von MATLAB®/Simulink (MathWorks,
2022) können V‑ECUs insbesondere Steuergeräte simulieren, die auf der
Basis des AUTOSAR Standards (AUTOSAR, 2019b) generiert wurden.
Der AUTOSARAUTOSAR Standard spielt eine Schlüsselrolle bei der effizienten

Entwicklung von Steuergeräten. Der Standard spezifiziert ein Metamo‑
dell, das die Modellierung von Steuergerätearchitekturen erlaubt. Des
Weiteren wird dort ein einheitliches Austauschformat, sowie eine eigene
Entwicklungsmethodik vorgegeben (Kindel und Friedrich, 2009). Das
Metamodell von AUTOSAR unterstützt die Wiederverwendung von
Softwarekomponenten und ermöglicht es in Zusammenspiel mit der
Entwicklungsmethodik, verteilte Softwarearchitekturen zunächst hard‑
wareunabhängig, d.h. beispielsweise ohne die konkrete Zuweisung von
Steuergerätekomponenten auf Steuergerätehardware, zu modellieren und
erst später um hardware‑abhängige Eigenschaften zu erweitern (Kindel
und Friedrich, 2009). So können bereits komplexe verteilte Steuergerätear‑
chitekturen modelliert und simuliert werden ohne das finale Wissen über
die Hardware zu haben.
Neben der Modellierung der Systemarchitektur unterstützt AUTOSAR

ebenfalls die Modellierung von Timing AnforderungenTIMING ANFORDERUNGEN . Diese ermöglichen
es Anforderungen an das Zeitverhalten eines AUTOSAR Modells festzu‑
halten, indem Teile des Systemmodells mit sogennanten Timing EventsTIMING EVENTS ver‑
knüpft werden, deren zeitliches Auftreten in einem laufenden System mit
Constraints belegt werden können. So können Echtzeitanforderungen eines
Steuergeräts in der Architektur mit aufgenommen werden und für Analy‑
sen herangezogen werden (AUTOSAR, 2019g).
Software im Automobil wird üblicherweise nach dem V‑ModellV‑MODELL entwi‑

ckelt, welches einen Prozess mit fest definierten Phasen beinhaltet und ein

4

Vorgehen beginnend bei der Definition der Benutzeranforderungen BENUTZERANFORDERUNGENbis zum
Test des Systems beschreibt (Boehm, 1979). Werden für das zu entwickeln‑
de SystemAnforderungen identifiziert, die das zeitliche Verhalten beschrei‑
ben oder einschränken, somüssen diese ebenfalls in allen folgenden Phasen
nachgehalten und schließlich auch verifiziert werden. Standards wie die
ISO 26262 ISO ₂₆₂₆₂(ISO International Organisation for Standardisation, 2018) ver‑
langen dabei explizit die Festlegung des Echtzeitverhaltens der Software
(Schäuffele und Zurawka, 2010). Alle im Prozess verwenden Methoden,
Sprachen und Werkzeuge müssen das Echtzeitverhalten mit abbilden und
die Nachverfolgbarkeit bis zur Echtzeitanforderung sicherstellen können.
Dabei gilt, je später im Prozess Fehler in Modellen gefunden werden, des‑
to aufwändiger ist die Korrektur, da möglicherweise alle Modelle der vor‑
herigen Phasen korrigiert werden müssen. Für eine effiziente Systement‑
wicklung ist es daher vorteilhaft, wenn in allen Phasen der Systementwick‑
lung bereits von Anfang an eine hohe Qualität der dort erstellten Modelle MODELLQUALITÄT

sichergestellt ist. So werden Fehler früher erkannt und die folgenden Pha‑
sen arbeiten mit korrekten Modellen, sodass unnötige Iterationen vermie‑
denwerden.Dadurchwird der gesamte Entwicklungsprozess beschleunigt,
wodurch die Kosten und das Risiko für die Entwicklung gesenkt werden
(Schäuffele und Zurawka, 2010). Auf der Basis dieses Leitparadigmas las‑
sen sich in Verbindung mit den existierenden Technologien konkrete Pro‑
blemstellungen identifizieren.

₁.₂ PROBLEMSTELLUNG

Die Technologie der Software‑In‑The‑Loop (SIL)‑Tests (Kempkes undWalt‑
her, 2018) ermöglicht es Steuergeräte auf der Grundlage der AUTOSAR‑
Architektur und der kompilierten Verhaltensmodelle zu simulieren. Für die
Durchführung einer Simulationmüssen jedoch eine Reihe vonModellen er‑
stellt werden. Abbildung 1.1 zeigt eineÜbersicht über dieseModelle: Neben
der Erstellung der Softwarearchitektur (oben Mitte) muss die vollständi‑
ge Steuergerätesoftware in das AUTOSARModell integriert werden (unten
links). Dafürmüssen zunächst Verhaltensmodelle ‑ häufig auf der Basis von

5

MATLAB/Simulink ‑ erzeugt werden (oben rechts). Diese Modelle spiegeln
das Verhalten beispielsweise eines Reglers wider, enthalten aber noch keine
Modellinformationen über die Implementierung auf einem späteren Steuer‑
gerät wie beispielsweise die verwendeten Datentypen derModellvariablen.
Diese Informationen werden im nächsten Schritt annotiert. Erst dann kann
aus den Modellen Steuergerätecode generiert werden, der dann in die AU‑
TOSAR Architektur integriert wird. Schließlich muss aus einer vorhande‑
nen AUTOSAR‑Architektur heraus ein virtuelles Steuergerät (V‑ECU) kon‑
figuriert, generiert und kompiliert werden.
Sowohl die Schritte der Funktionsentwicklung als auch die anschließen‑

de Konfiguration undGenerierung der V‑ECU sind zeitaufwändigHOHER ZEITAUFWAND . Zudem
sind in frühen Entwicklungsphasen dieModelle aus der Funktionsentwick‑
lung noch nicht verfügbarSPÄTE VERFÜGBARKEIT . Aus diesem Grund ist es für eine frühzeitige
Validierung von AUTOSAR Softwarearchitekturen hilfreich Methoden zu
betrachten, die ausschließlich auf den Artefakten der Softwarearchitektur
arbeiten und nicht auf das Vorhandensein von Steuergerätecode angewie‑
sen sind.
Des Weiteren lassen sich mit dem bisherigen Vorgehen funktionale An‑

forderungen durch die Simulation des Steuergeräts gut testen. Allerdings
ist dieses Vorgehen für Timing Anforderungen ungeeignet, da diese unter
allen möglichen Umständen eingehalten werden müssen. Die Validierung
von TimingAnforderungen erfordert daher den Einsatz vonVerifikationsme‑
thodenVERIFIKATIONSMETHODEN , die alle möglichen Randfälle mitbetrachten.
Eine weitere Herausforderung bei der Validierung von AUTOSAR Ti‑

ming Anforderungen betrifft bereits die Spezifikation der Anforderungen:
Diese werden auf der Basis der Echtzeitanforderungen auf Benutzerebene
hergeleitet (siehe orange Artefakte in Abbildung 1.1). Gerade bei großen
Anforderungsmengen kann es für Anforderungsentwickler jedoch schwie‑
rig sein, den Überblick über die Anforderungen zu behalten, was zu ei‑
ner schlechtenAnforderungsqualitätANFORDERUNGSQUALITÄT führt und beispielsweise Inkonsistenzen
nach sich ziehen kann. Inkonsistente Anforderungsmengen sind ein Indi‑
kator für Missverständnisse bei der erwarteten Systemfunktionalität. Des
Weiteren führt die Verifikation von inkonsistenten Anforderungsmengen
zu unnötigen Verifikationsläufen, da die Verifikation einiger Anforderun‑

6

AUTOSAR Modell mit

Runnable Code

Echtzeit-

Anforderungen

AUTOSAR Modell

weitere System-

anforderungen

AUTOSAR Timing

Anforderungen

AUTOSAR Software

Architektur

Simulierbares

virtuelles AUTOSAR

Steuergerät (V-ECU)

Software-Integration & Test

Verhaltensmodell

Implementierungs-

modell

Quellcode

Code generieren

& kompilieren

Funktions-

entwicklung

Code gen.

Benutzer-

anforderungen

Software-

Architektur

verfeinern

verfeinern

verfeinern

Test-

ergebnissesimulieren

Abbildung 1.1:Herausforderungen bei der Entwicklung von Steuergeräte-
software: die Herleitung formaler AUTOSARTiming Anforderungen ist
aufgrund der großen Lücke hinsichtlich Abstraktion und Formalisierung
fehleranfällig (orange); der existierende Prozess benötigt alle Artefakte aus
der Funktionsentwicklung (oben rechts), sodass Testergebnisse erst spät
vorliegen (grün).

gen unweigerlich fehlschlagen würden, was einen großen Einfluss auf die
Effizienz der Entwicklung hat. Daher ist es vorteilhaft, wenn Inkonsisten‑
zen in den Timing Anforderungen frühzeitig erkannt und behobenwerden,
sodass keine unnötigen Timing Verifikationen durchgeführt werden.
Insgesamt werden die folgenden Anforderungen an die Timing Verifika‑

tion von AUTOSAR Softwarearchitekturen gestellt:

1. Anwendung von Verifikationstechniken für Timing Anforderun‑
gen. Timing Anforderungen lassen sich nicht mithilfe von Simulati‑
on verifizieren, da diese in allen möglichen Situationen eingehalten
werden müssen. Die Verifikation von Timing Anforderungen erfor‑
dert daher denEinsatzvonVerifikationsmethoden, die allemöglichen

7

Randfälle mitbetrachten.

2. Verifikation von AUTOSAR Timing Anforderungen ohne Steuer‑
gerätecode. Um frühzeitig im Entwicklungsprozess Aussagen über
die Korrektheit von AUTOSAR Timing Anforderungen zu erhalten,
ist es notwendig eine Verifikationsmethode zu entwickeln, die aus‑
schließlich auf der Grundlage der definierten AUTOSAR Steuerge‑
rätearchitektur arbeitet und somit auch ohne Quellcode oder Verhal‑
tensmodelle anwendbar ist.

3. Frühzeitige Rückmeldung über die Qualität der Timing Anforde‑
rungen. Das Herleiten von Timing Anforderungen auf AUTOSAR‑
Architekturebene aus Benutzeranforderungen ist fehleranfällig. Da‑
her ist es vorteilhaft, wenn Inkonsistenzen in den Timing Anforde‑
rungen frühzeitig erkannt werden.

₁.₃ BEITRAG DER ARBEIT

Die Arbeit verfolgt das Ziel, den Prozess der Softwareentwicklung in der
Automobilindustrie durch Methoden zu verbessern, mit denen Timing
Anforderungen einfacher und schneller erstellt und bereits frühzeitig auf
Konsistenz‑ und Korrektheitseigenschaften hin überprüft werden können.
Dabei berücksichtigen die Methoden den existierenden AUTOSAR‑
Standard und lassen sich nahtlos in den Gesamtprozess der automotiven
Systementwicklung nach dem V‑Modell integrieren (Bundesstelle für
Informationstechnik, 2012). Insgesamt werden die folgenden Kernaspekte
behandelt:

1. Erarbeitung einer Methode zur VerifikationVERIFIKATION von AUTOSAR Ti‑
ming Anforderungen: Für die Verifikation von AUTOSAR Timing
Anforderungen wird eine Transformation des AUTOSAR Modells
nach Timed Automata spezifiziert. Diese überführt das Timing
Verhalten eines AUTOSAR‑Modells in Timed Automata, sodass
sich Timing Anforderungen mithilfe existierender Werkzeuge veri‑

8

fizieren lassen. Da es für das AUTOSAR‑Metamodell keine formale
Verhaltensbeschreibung gibt, muss diese vorab erstellt werden.

2. Erarbeitung einer Methode zur Konsistenzanalyse KONSISTENZANALYSEvon AUTOSAR
Timing Anforderungen: Die Methode stellt sicher, dass die zu veri‑
fizierenden Timing Anforderungen untereinander keine temporalen
Konflikte beinhalten. Hierfür wird eine Transformation der AUTO‑
SAR Timing Constraints nach SMT spezifiziert, sowie Mechanismen
zur Identifikation von Ursachen für Inkonsistenzen bereitgestellt.

3. Erarbeitung von Maßnahmen zur Auflösung von Inkonsistenzen AUFLÖSUNG VON
INKONSISTENZENfür AUTOSAR Timing Constraints: Für inkonsistente Anforde‑

rungsmengen werden relevante Teilmengen berechnet und mithilfe
von Graphen visualisiert, um die Ursachen für inkonsistente An‑
forderungsmengen identifizieren zu können und Möglichkeiten zur
Auflösung dieser anbieten zu können.

4. Evaluierung EVALUIERUNGder Methoden anhand eines praxisnahen Fallbeispiels:
Für die Evaluierung der entwickeltenMethodenwird neben derMes‑
sung von Laufzeiten für synthetische AUTOSAR‑Modelle ebenfalls
ein realitätsnahes Beispiel herangezogen, mit dem sich die Anwend‑
barkeit und der Nutzen bei realen Modellen bewerten lässt.

Abbildung 1.2 zeigt einen Überblick über den Lösungsansatz dieser Arbeit.

₁.₄ STRUKTUR DER ARBEIT

Die Arbeit ist wie folgt gegliedert: Zunächst werden in Kapitel 2 KAPITEL ₂die Grund‑
lagen eingeführt. Es wird der Entwicklungsprozess in der Automobilindus‑
trie, sowie der AUTOSAR Standard vorgestellt. Weiterhin werden Grund‑
lagen von Timing Analysen, sowie Timing Anforderungen vorgestellt. Des
Weiteren werden die Formalen Methoden vorgestellt, die im weiteren Ver‑
lauf der Arbeit angewandt werden.
In Kapitel 3 KAPITEL ₃beschreiben wir den integrierte Lösungsansatz. Des Weiteren

werden die erarbeiteten Methoden in den Entwicklungsprozess eingeord‑

9

AUTOSAR Modell

Echtzeit-

Anforderungen

AUTOSAR Timing

Anforderungen

AUTOSAR Software

Architektur

System-

anforderungen

Software-ArchitekturBenutzer-

anforderungen
AUTOSAR Timing

Anforderungen als

Entscheidungs-

problem (SMT)

AUTOSAR

Verhaltensmodell

(Timed Automata

Netzwerk)

Korrektheit

Konsistenz

verfeinern

verfeinern

transform.

prüfen

verifizieren

Abbildung 1.2:Lösungsansatz: Die entwickeltenMethoden ermöglichen es
Anforderungen auf Konsistenz und Korrektheit zu überprüfen. Auf die
Artefakte aus der Funktionsentwicklung kann dabei verzichtet werden.

net und alternative Möglichkeiten zur Integration des Ansatzes in den Ent‑
wicklungsprozess aufgezeigt.Weiterhinwird in diesemKapitel das formale
Modell des AUTOSARMetamodells vorgestellt, welches in den darauf fol‑
genden Kapiteln Anwendung findet.

In Kapitel 4KAPITEL ₄ stellen wir das Konzept zur Konsistenzanalyse von AUTO‑
SAR Timing Anforderungen vor. Es wird zunächst die für die Konsistenz‑
analyse notwendige Transformation der AUTOSAR Timing Anforderun‑
gen nach SMT vorgestellt. AnschließendwerdenMethoden zur Darstellung
und Korrektur inkonsistenter Anforderungsmengen vorgestellt.

Kapitel 5KAPITEL ₅ betrachtet die entwickelteMethode zur TimingAnalyse vonAU‑
TOSAR TimingAnforderungen. Es werden die für die TimingAnalyse rele‑
vanten Transformationen derAUTOSARKonstrukte nach TimedAutomata
vorgestellt. Dies beinhaltet zum einen den timing‑relevanten Teil der AU‑
TOSAR Softwarearchitektur als auch die Timing Anforderungen.

In Kapitel 6KAPITEL ₆ werden die zuvor vorgestellten Methoden an einem detail‑
lierten Anwendungsfall angewandt. Das Fallbeispiel wird erläutert und die
Ergebnisse werden vorgestellt. Anhand dieser Ergebnisse wird dann dis‑
kutiert, in wie weit sich die Methoden für die Anwendung in der Praxis
eignen.

Kapitel 7KAPITEL ₇ gibt einen Einblick in die Realisierung der Methoden durch eine
prototypischen Werkzeugunterstützung. Es wird die allgemeine Struktur

10

des entwickelten Analyseframeworks vorgestellt, sowie auf einige spezifi‑
sche Realisierungsaspekte eingegangen. Weiterhin werden detaillierte Eva‑
luierungsergebnisse vorgestellt, um die praktische Anwendbarkeit der Me‑
thode einschätzen zu können.

Kapitel 8 KAPITEL ₈fasst die Ergebnisse zusammen und diskutiert die erzielten Er‑
kenntnisse. Es gibt außerdem einenAusblick auf offene und zukünftige Pro‑
blemstellungen und mögliche Lösungsansätze.

11

12

2
Grundlagen

Die Komplexität von eingebetteten Systemen im Automobil steigt bestän‑
dig aufgrund der Integration neuer und komplexerer Fahrfunktionen. Ins‑
besondere die Vernetzung VERNETZUNGder einzelnen Assistenzsysteme und die Verwen‑
dung einer Vielzahl von Sensoren und die daraus resultierenden zu verar‑
beitenden Daten in autonomen Fahrzeugen erhöht die Komplexität weiter.
Gleichzeitig werden die Entwicklungszyklen ENTWICKLUNGSZYKLENneuer Modellreihen jedoch im‑
mer weiter verkürzt, um Kosten KOSTENzu senken und Produkte schneller auf den
Markt zu bringen. Dabei bleiben die grundlegenden Anforderungen an die
Sicherheit der Systeme unter Berücksichtigung des Echtzeitverhaltens be‑
stehen.
Nur durch die umfassende Anwendung von Maßnahmen zur Software‑

Qualitätssicherung SOFTWARE‑
QUALITÄTSSICHERUNG

ist es möglich, schneller und frühzeitiger Fehler während
der Entwicklung aufzudecken und somit die Softwarequalität auch bei
kurzen Entwicklungszyklen zu steigern. Diese Maßnahmen bestehen aus
einer einheitlichen Entwicklung anhand eines Prozesses, der auch über
Unternehmensgrenzen hinweg etabliert ist, der Anwendung konstruktiver
Methoden wie Domänenspezifischen Sprachen DOMÄNENSPEZIFISCHEN

SPRACHEN
und Architekturpattern, sowie

systematischer statischer und dynamischer Analyseverfahren während
aller Entwicklungsphasen.

13

Dieses Kapitel beschreibt die Grundlagen dieser Arbeit. Zunächst wer‑
den die spezifischen Prozesse undMethoden der Softwareentwicklung und
‑qualitätssicherung in der Automobilindustrie beschrieben. Dies ist zum ei‑
nen das verwendete V‑Modell und zum anderen der AUTOSAR Standard,
sowie die in dieser Arbeit verwendete AUTOSAR Entwicklungsumgebung.
Weiterhin wird in diesem Kapitel ein Beispiel eingeführt, dass im weiteren
Verlauf derArbeit zur Verdeutlichung der entwickeltenMethoden herange‑
zogenwird. DesWeiterenwerden die verschiedenenAusprägungen von Ti‑
mingAnalysen vorgestellt und eingeordnet. Ebenfallswerden Sprachen zur
Spezifikation von Timing Anforderungen vorgestellt und Kriterien zur Be‑
schreibung der Qualität aufgezeigt. Schließlich werden die grundlegenden
Definitionen der verwendeten formalen Analysemethoden erläutert und in
den Gesamtkontext der Arbeit eingeordnet.

₂.₁ AUTOMOTIVE SOFTWAREENTWICKLUNG

Dieser Abschnitt gibt einen Überblick über die Entwicklung von Steuer‑
gerätesoftware. Es wird dabei zunächst das Vorgehensmodell vorgestellt,
das den Kernprozess zur Entwicklung von elektronischen Systemen und
Software bereitstellt. Darauf aufbauend wird der AUTOSAR Standard ein‑
geführt, der den Prozess durch eine eigene Methodik und ein Metamodell
unterstützt. An dieser Stelle wird besonders auf die für diese Arbeit wich‑
tigen Modellelemente zur Spezifikation von Timing Anforderungen einge‑
gangen. Anschließend werden existierende Methoden zur Timing Analy‑
se vorgestellt, sowie Werkzeuge für die Modellierung von AUTOSAR im
Allgemeinen und Werkzeuge zur Analyse von Timing Anforderungen im
Speziellen.

₂.₁.₁ VORGEHENSMODELL UND ARTEFAKTE

Komplexe technische Systeme erfordern ein planvolles Vorgehen bei der
Entwicklung angefangen bei derDefinition vonAnforderungen bis zum ab‑
schließenden Systemtest. In der sogenannten SoftwarekriseSOFTWAREKRISE in den 60er Jah‑
ren erkannte man, dass die bisher genutzten Methoden zur Entwicklung

14

von Software nicht mit der Rechenleistung und Komplexität der verfügba‑
ren Hardware mithalten konnten (Dijkstra, 1972). So waren beispielsweise
die Kosten für die Entwicklung des Betriebssystems OS/360 von IBM um
ein vielfaches höher als zunächst geplant (Brooks, 1975).
Seitdem wurden vermehrt Methoden und Technologien entwickelt, die

die Entwicklung von Software einfacher und vorhersagbarer machen und
somit das Risiko von Fehlentwicklungen und Fehleinschätzungen von Kos‑
ten verringern sollten. Neben der Entwicklung neuer Programmierparadig‑
men entstanden seitdem Vorgehensmodelle VORGEHENSMODELLE, die die Entwicklung komplexer
Software einfacher und planbarer gestalten sollten, indem für die Entwick‑
lung einzelne fest definierte Schritte oder Phasen festgelegt wurden und in
einem Prozess angeordnet wurden. Eine konkrete Definition findet sich in
IEEE (1990):

Definition 1 (Vorgehensmodell (IEEE, 1990)). Der Prozess, in dem Nutzer‑
bedürfnisse in ein Softwareprodukt umgesetzt werden. Der Prozess umfasst das
Übersetzen der Benutzeranforderungen in Softwareanforderungen, die Umwand‑
lung der Softwareanforderungen in ein Design, die Implementierung des Designs
in Code, das Testen des Codes und manchmal die Installation und das Überprüfen
der Software für den betrieblichen Einsatz. Diese Aktivitäten können sich über‑
schneiden oder iterativ durchgeführt werden.

Beispiele für Vorgehensmodelle sind dasWasserfallmodell (Royce, 1970),
das V‑Modell (Boehm, 1979), das Spiralmodell (Boehm, 1988), der Rational
Unified Process (Rational Software, 1998), Extreme Programming (Beck und
Andres, 2005) oder Scrum (Beck et al., 2001, Cohn, 2010).
Elektronische Systeme und Software in der Automobilindustrie werden

heutzutage üblicherweise nach dem V‑Modell V‑MODELLentwickelt. Das V‑Modell
wurde ursprünglich von Boehm (1979) als sequenzielles Vorgehensmodell
entworfen und im Laufe der Zeit weiterentwickelt. Die heute aktuelle
Ausprägung ist das V‑Modell® XT der Bundesstelle für Informationstechnik
(2012). Das Gesamtmodell ist in Abbildung 2.1 zu sehen. Es beinhaltet
mehrere Schritte und beginnt bei der Analyse von Nutzeranforderungen
und endet beim finalen Systemtest und Akzeptanztest. Das Modell kann
dabei in einen oberen Teil und einen unteren Teil aufgeteilt werden.

15

Testergebnisse

Analyse der
Benutzeranforderungen

& Spezifikation der

logischen Systemarchitektur

& Systemtest

Akzeptanztest

Anwendungsfälle

Testergebnisse

Analyse
der Software-Anforderungen

& Spezifikation der
Software-Architektur

Testfälle
Integrationstest

der Software

Integration

der Software-Komponenten

Testergebnisse

Analyse der
logischen Systemarchitektur

Anwendungsfälle
Integrationstest

des Systems

Kalibrierung

Integration der
Systemkomponenten

Spezifikation
der Software-Komponenten

Design & Implementierung
der Software-Komponenten

Test der Software-
Komponenten

Software-
Entwicklung

System-
Entwicklung

& Spezifikation der
technischen Systemarchitektur

Abbildung 2.1:V-Modell Entwicklungsprozess nach Schäuffele und Zuraw-
ka (2010)

Der obere Teil beschäftigt sich mit dem Design und der Analyse der
gesamten Systemarchitektur. Dies bedeutet insbesondere, dass diese
Schritte unabhängig von jeglichen technischen Realisierungsaspekten
betrachtet werden. Danach wird der Prozess im unteren Teil aufgeteilt
in die Teilbereiche Softwareentwicklung, Hardwareentwicklung, Aktuatorent‑
wicklung und Sensorentwicklung (Schäuffele und Zurawka, 2010). Da sich
der entwickelte Ansatz auf die Phasen der Softwareentwicklung bezieht,
werden ausschließlich die relevanten Phasen der Softwareentwicklung
vorgestellt.

Des Weiteren lässt sich das Modell in einen linken Zweig, welcher die
DesignphasenDESIGNPHASEN beinhaltet, in denen das System schrittweise aufgeteilt und
verfeinert wird, und einen rechten Zweig, welcher die ValidierungsphasenVALIDIERUNGSPHASEN

beinhaltet, die die jeweilige Phase auf der rechten Seite absichert, aufteilen.

Wenn ein Test in einer Phase auf der rechten Seite fehlschlägt, sowird das
Design entsprechend der Phase der linken Seite verbessert. Da jede Design‑

16

phase auf den Ergebnissen der vorherigen Phase beruht, lösen Änderun‑
gen in einer Phase normalerweise auch Änderungen in den darauffolgen‑
den Phasen aus. Daher sind Fehler, die erst in späten Testphasen gefunden
werden sehr teuer, da sie zu früheren Designphasen gehören und dadurch
mehr Änderungen hervorrufen.
Eine Lösung, um das späte Erkennen von Fehlern zu vermeiden ist

es, Tests späterer Phasen in frühere Phasen vorzuverlagern. Dies kann
beispielsweise durch die Simulation von Hardware, die noch nicht zur Ver‑
fügung steht, erreicht werden. Diese Methode wird auch Test Frontloading TEST FRONTLOADING

genannt (Stark et al., 2011, Klein et al., 2017). Ein weiterer Schritt das späte
Erkennen von Fehlern zu vermeiden ist es, bereits in frühen Designphasen
Methoden zur Fehlererkennung anzuwenden. In diesen Phasen sind
jedoch nur Softwaremodelle, d.h. Architekturmodelle und Reglermodelle,
vorhanden. Daher können nur Validierungstechniken angewendet werden,
die ausschließlich auf diesen Modellen beruhen.
Da das Ziel dieser Arbeit die Entwicklung von Methoden zur frühzeiti‑

genAbsicherung von automotiver Steuergerätesoftware ist, basieren die ge‑
nutzten Artefakte ausschließlich auf Modellen, die bereits in frühen Phasen
der Softwareentwicklung zur Verfügung stehen. Dies sind imWesentlichen
die in der automotiven Softwareentwicklung gebräuchlichenArchitekturmo‑
delle ARCHITEKTURMODELLE, welche auf dem AUTOSAR Standard basieren.

₂.₁.₂ AUTOSAR

AUTOSAR* steht für AUTomotive Open System ARchitecture und ist der
etablierte Standard für die Entwicklung von Software in der Automobil‑
industrie. AUTOSAR definiert eine Softwarearchitektur und Interfaces in
Form einesMetamodells (siehe dafürAbschnittMetamodellhierarchie) , sowie
ein eigenes Dateiformat für den Datenaustausch. Weiterhin definiert der
Standard eine eigene Entwicklungsmethodik. Seit 2017 veröffentlicht die
AUTOSAR Entwicklungspartnerschaft ebenfalls einen Standard zur Spezi‑
fikation dynamisch adaptierbarer Services innerhalb einer Softwarearchi‑
tektur im Automobil. Dieser Standard wird Adaptive Platform ADAPTIVE PLATFORMgenannt und

*http://www.autosar.org

17

http://www.autosar.org

existiert parallel neben dem bereits existierenden AUTOSAR Standard, der
seitdem ebenfalls alsClassic PlatformCLASSIC PLATFORM bezeichnetwird. Im Folgendenwerden
ausschließlich Konzepte der Classic Platform genauer betrachtet.

AUTOSAR SCHICHTENARCHITEKTUR

AUTOSAR definiert eine Schichtenarchitektur für Steuergeräte (siehe Ab‑
bildung 2.2), die drei verschiedene Softwareschichten beinhaltet (AUTO‑
SAR, 2019d):

• Die Applikationsschicht (Application LayerAPPLICATION LAYER) ist die oberste Schicht
(grau). Sie beinhaltet die auszuführende Steuergerätesoftware,
was in der Automobilindustrie zumeist die Implementierung der
Regleralgorithmen ist. Innerhalb dieser Schicht wird die Software
durch eine komponentenbasierte Architektur weiter strukturiert.

• Die RTE‑Schicht (Runtime Environment Layer (RTE)RUNTIME ENVIRONMENT
LAYER ₍RTE₎

) administriert
die Kommunikation zwischen Softwarekomponenten der Applikati‑
onsschicht untereinander und zwischen Softwarekomponenten der
Applikationsschicht und Basissoftwaremodulen der Basissoftware‑
schicht (orange). Sie stellt somit standardisierte Interfaces für die
Software auf Applikationsebene zur Verfügung.

• Die Basissoftwareschicht (Basic Software LayerBASIC SOFTWARE LAYER) beinhaltet Module
für die Basisfunktionalitäten eines Steuergerätes. Die Basissoft‑
wareschicht ist weiterhin unterteilt in eine Serviceschicht (Service
Layer) (blau), eine ECU‑Abstraktionsschicht (ECU Abstraction Layer)
(grün) und eine Mikrocontroller‑Abstraktionsschicht (Microcon‑
troller Abstraction Layer, MCAL) (rot). Der Service LayerSERVICE LAYER beinhaltet
die wesentlichen Steuergeräteservices wie beispielsweise das
Betriebssystem, das Zustandsmanagement, Diagnoseservices, Spei‑
cherservices und Kommunikationsservices. Der ECU Abstraction
LayerECU ABSTRACTION LAYER realisiert eine Abstraktion der Steuergerätehardware für
die oberen Schichten und stellt Module für den Zugriff auf die
Hardwareperipherie bereit. Der MCALMCAL stellt Treibermodule für
das Steuergerät zur Verfügung und greift direkt auf die Hardware

18

Abbildung 2.2:AUTOSAR Schichtenarchitektur aus AUTOSAR (2019d)

zu. Zusätzlich zu der horizontalen Strukturierung werden die
Basissoftwaremodule auf vertikaler Ebene nach Funktionsbereichen
eingeteilt. Diese Bereiche teilen sich auf in Systemdienste (System
Services), Speicherdienste (Memory Services), Kryptographiedienste
(Crypto Services) Kommunikationsdienste (Communication Services),
I/O‑Stack (I/O Hardware Abstraction) und komplexe Gerätetreiber
(Complex Device Drivers). Eine detaillierte Beschreibung aller Module
kann in AUTOSAR (2019g) gefunden werden.

AUTOSAR ENTWICKLUNGSMETHODIK

Die AUTOSAR Entwicklungsmethodik beschreibt die wesentlichen Schrit‑
te für AUTOSAR Entwicklungsprojekte angefangen bei der Definition ei‑
ner abstrakten Softwarearchitektur bis zur Generierung der ausführbaren
Steuergerätesoftware (Kindel und Friedrich, 2009, AUTOSAR, 2019e). Die
Methodik ist dabei in formaler Form als SPEM SPEM‑Modell der Object Manage‑
ment Group (2008) festgehalten. Sie beschreibt Aufgaben, Rollendefinitio‑
nen, Werkzeuge und Arbeitsprodukte und setzt sie in Form vonWorkflows
zueinander in Beziehung. Sie ist daher nicht mit einem Entwicklungspro‑
zess zu vergleichen, da beispielsweise keine Restriktionen hinsichtlich der
Reihenfolge von Workflows beschrieben werden oder ob und wann Itera‑

19

tionen durchgeführt werden. Das Ziel der Methodik ist es, die Entwicklung
zu parallelisieren und somit zu verkürzen. Die Entwicklungsmethodik ist
in fünf EntwicklungssichtenENTWICKLUNGSSICHTEN aufgeteilt, die sich jeweils mit einer Teilmenge
der spezifizierten Workflows beschäftigen: (AUTOSAR, 2019e):

1. Virtual Functional Bus (VFB): In der VFB‑Sicht wird die Softwarear‑
chitektur eines Systems modelliert. Die Softwarearchitektur besteht
aus den SoftwarekomponentenSOFTWAREKOMPONENTEN der Applikationsschicht, die über Ports
miteinander verbunden sind. Für PortsPORTS können dann wiederum
Interfaces definiert werden, beispielsweise Client‑Server‑ oder
Sender‑Receiver‑Interfaces. Bei der Modellierung in dieser Sicht ist
es unerheblich auf welchen Steuergeräten die Komponenten später
ausgeführt werden. Die Kommunikation der Komponenten unter‑
einander wird durch Verbindungen über den Virtual Functional Bus
abstrahiert. Die Spezifikation der Hardwaretopologie und die Ver‑
teilung von Softwarekomponenten auf einzelne Steuergeräte kann
zu einem späteren Zeitpunkt erfolgen. Eine detaillierte Beschreibung
findet sich in AUTOSAR (2019h).

2. System: In der System‑Sicht wird das Gesamtsystem modelliert. Ein
zentraler Teil ist hierbei die Beschreibung welche Softwarekompo‑
nenten auf welche Steuergeräte verteilt sind undwie diese wiederum
miteinander verbunden sind. Das Ergebnis ist ein ECU ExtractECU EXTRACT , das
wiederum als Eingabe für die Integration der ECU Software in der
ECU‑Sicht benötigt wird. Die vollständige Spezifikation ist in AUTO‑
SAR (2019h) beschrieben.

3. Software Component: Auf Softwarekomponenten‑Ebene wird die
Struktur und das Verhalten der einzelnen Softwarekomponenten
der VFB‑Ebene definiert. Es werden sogenannte Runnable Enti‑
tiesRUNNABLE ENTITIES definiert, in denen der ausführbare Reglercode gekapselt ist.
Eingabe‑ und Ausgabedaten werden über Ports und innerhalb einer
Softwarekomponente über Inter‑Runnable‑Variablen festgelegt. Des
Weiteren wird festgelegt, wann und in welchen Zyklen Runnables
ausgeführt werden sollen (AUTOSAR, 2019f).

20

4. Basic Software: In der Basissoftwaresicht werden für einzelne Steuer‑
geräte die Basissoftwaremodule BASISSOFTWAREMODULEkonfiguriert und Quellcode der Modu‑
le im Modell integriert. Zusammen mit dem ECU Extract kann dann
in der ECU‑Sicht die Integration der ECU Software erfolgen (AUTO‑
SAR, 2019g).

5. ECU: Die ECU‑Sicht beschreibt die Sicht auf ein einzelnes Steuerge‑
rät.Wenn auf Systemebene die definierten Softwarekomponenten auf
Steuergeräte verteilt wurden, alle Basissoftwarekomponenten in der
Basissoftware‑Sicht konfiguriert wurden und Applikationssoftware‑
komponenten der Softwarekomponentensicht fertig spezifiziert wur‑
den, dann kann in dieser Sicht aus den abstrakten Verbindungen der
Softwarekomponenten auf dem VFB‑Bus eine RTE generiert werden,
die je nach Position der Softwarekomponenten interne Speicheraufru‑
fe oder das Verschicken von Nachrichten über einen externen Kom‑
munikationsbus durchführt. Das Ergebnis ist dann die ausführbare
Steuergerätesoftware (AUTOSAR, 2019b).

AUTOSAR METAMODELL HIERARCHIE

Neben der Entwicklungsmethodik enthält AUTOSAR eine formale Be‑
schreibung zur Definition von AUTOSAR‑konformen Modellen. Diese
Modelle MODELLEsind „eine Abstraktion eines realen Systems, das Vorhersagen oder
Schlussfolgerungen ermöglicht“(Kühne, 2006). Modelle verfügen nach
Stachowiak (1973) über die folgenden Eigenschaften:

• Abbildungseigenschaft: Ein Modell ist ein Abbild der Wirklichkeit.
Eigenschaften, die für das Modell gelten, gelten auch für die Entität
in der realen Welt.

• Abstraktions‑ oder Reduktionseigenschaft: Ein Modell erfasst nur ei‑
ne Teilmenge vonAttributendesOriginals. Details, die für dasModell
nicht benötigt werden, werden weggelassen.

• Pragmatismus‑Eigenschaft: Ein Modell dient einem bestimmten
Zweck. Die Erstellung des Modells erfolgt zielorientiert.

21

Im Kontext der Modellgetriebenen Softwareentwicklung wird die Spe‑
zifikation der Modellelemente und Regeln, die benötigt werden um vali‑
de Modelle zu erzeugen, auch MetamodellMETAMODELL genannt. Dieses beinhaltet üb‑
licherweise die Definition einer abstrakten Sytax, (mindestens einer) kon‑
kreten Syntax, sowie statischer und dynamischer Semantik (Stahl und Völ‑
ter, 2006). Die abstrakte Syntax beschreibt dabei die abstrakten Modellie‑
rungselemente und ihre Beziehungen zueinander, während die konkrete
Syntax die Repräsentation von Modellinstanzen beschreibt, so dass diese
von einem Parser akzeptiert werden. Die statische Semantik enthält Regeln,
die die Wohlgeformtheit eines Modells zusätzlich beschreiben. Die dyna‑
mische Semantik beschreibt das Verhalten des Modells bei der Ausführung
(Stahl und Völter, 2006). Eine konkrete Technologie zur Spezifikation von
Metamodellenwird vonderObjectManagementGroup (2011b) vorgeschla‑
gen. Diese definiert eine Metamodell Hierarchie mit vier Ebenen (M0 ‑M3),
wobei jede Ebene die Sprachkonstrukte der darunterliegenden Ebene be‑
schreibt bzw. umgekehrt jede Ebene eine konkrete Instanz des Typmodells
auf der darüberliegenden Ebene darstellt. Die EbeneM0 stellt dann das rea‑
le System dar, auf der Ebene M1 befinden sich die von einem Entwickler
erzeugten Modelle, die Ebene M2 beschreibt die zur Erzeugung von Mo‑
dellen notwendigen Sprachkonstrukte bzw. das Metamodell und schließ‑
lich befindet sich auf Ebene M3 das Meta‑Meta‑Modell, dass zur Spezifi‑
kation von Metamodellen herangezogen werden kann. Dieses wird auch
Meta Object Facility (MOF)META OBJECT FACILITY

₍MOF₎
genannt. Neben der Definition eigener Metamo‑

delle durch die Instanziierung einesMOF‑Modells lässt sich auch das UML‑
Metamodell durch sogenannteUML‑ProfileUML‑PROFILE um Stereotypen, Tagged Values
und Constraints erweitern (Stahl und Völter, 2006). Dieser Mechanismus
ist einfacher zu handhaben, weil auf das existierende UML‑Metamodell zu‑
rückgegriffen werden kann. Die Anpassbarkeit ist jedoch nicht so stark ge‑
geben, da beispielsweise keine Entitäten des UML‑Metamodells entfernt
werden können.

Die Syntax von AUTOSAR bedient sich ebenfalls der Spezifikationen
der OMG. Die vollständige Metamodell Hierarchie besteht jedoch aus
insgesamt fünf Metaebenen (siehe Abbildung 2.3) (AUTOSAR, 2019c).
Die Ebenen M0 und M1 sind analog zu den Definitionen der UMLUML (Ob‑

22

Abbildung 2.3:Metamodellebenen von AUTOSAR (AUTOSAR, 2019c)

ject Management Group, 2015) definiert als Realisation des laufenden
AUTOSAR‑Systems und als Modelle, die von AUTOSAR‑Entwicklern
erstellt werden wie beispielsweise Softwarekomponenten, Ports und deren
Verbindungen (AUTOSAR, 2019c). Diese Modelle sind Instanzen des
AUTOSAR‑Metamodells auf M2. Hier sind die Metamodellelemente wie
Ports und Softwarekomponenten spezifiziert. Das AUTOSAR Metamodell
wird auch als Menge sogenannter AUTOSAR Templates AUTOSAR TEMPLATESbezeichnet, da das
Metamodell nicht ausschließlich eine Instanz des UML Metamodells ist,
sondern ebenfalls ein UMLProfil, das sogenannteAUTOSARTemplateProfile AUTOSARTEMPLATEPROFI‑

LEanwendet. Dieses wurde entworfen, um besser Templating Mechanismen
umsetzen zu können. Es beinhaltet beispielsweise die Definitionen von
Types, Prototypes und der Assoziation vom Typ isTypeOf. Formal ist ein
Template auf M2 daher eine Instanz vom UML 2 Metamodell bei gleich‑
zeitiger Anwendung des AUTOSAR Template Profils (AUTOSAR, 2019e).
Das UML Metamodell, sowie das AUTOSAR Template Profil sind daher
auf der Ebene M3 verortet. Das MOF‑Metamodell ist dann übergeordnet
auf Ebene M4 zu finden. Im Gegensatz zu anderen domänenspezifischen

23

Sprachen definiert AUTOSAR für das Metamodell keine konkrete Syntax
für alle Modellelemente. Es werden nur für Modellelemente der Appli‑
kationssoftware wie beispielsweise Softwarekomponenten, Ports und
Interfaces grafische Elemente in AUTOSAR (2019f) spezifiziert. Ein Beispiel
für so eine Softwarearchitektur findet man in Abbildung 2.7. Ebenso
existiert für AUTOSAR keine formale statische und dynamische Semantik.
Modellierungsrestriktionen, sowie das Verhalten von Modellelementen
innerhalb der Softwarearchitektur werden im Standard nur textuell in den
Template Dokumenten erfasst.

AUTOSAR TIMING EXTENSIONS

Eine Teilmenge des AUTOSAR Metamodells beschäftigt sich mit der An‑
notation von Modellelementen mit Zeiteigenschaften und Zeitanforderun‑
gen (AUTOSAR, 2019a). Für jede Entwicklungssicht gibt es eineMenge von
AUTOSAR‑Elementen, die mit Ereignissen (sogenannten Timing Descripti‑
on EventsTIMING DESCRIPTION EVENTS) annotiert werden können. Diese Events sind eine abstrakte Re‑
präsentation eines spezifischen Systemverhaltens, das zur Systemlaufzeit
überwacht werden kann, wie beispielsweise das Starten eines Runnable En‑
tity oder die Ankunft eines neuen Datenpakets an einem bestimmten Port.
Die Bedeutung von Anforderungen im allgemeinen und der Zusammen‑
hang von Anforderungsartefakten in unterschiedlichen Entwicklungspha‑
sen mit AUTOSAR Timing Constraints werden in Abschnitt 2.2 erläutert.
AUTOSAR Timing Extensions ermöglichen nun die Spezifikation von Ti‑
ming ConstraintsTIMING CONSTRAINTS , mit denen zeitliche Abhängigkeiten zwischen zwei oder
mehreren Events spezifiziert werden können. Darüber hinaus können kom‑
plexere Zeitabhängigkeiten definiert werden, indem Ereignisse durch Er‑
eignisketten (Timing Description Event ChainsTIMING DESCRIPTION EVENT

CHAINS
) verkettet werden. Dadurch

lässt sich eine Folge von Ereignissen spezifizieren, für die ein Timing Cons‑
traint gelten muss. Abbildung 2.5 zeigt das Metamodell für Zeiteigenschaf‑
ten und Ereignisketten. Eine Übersicht der relevantenMetamodellelemente
zeigt Abbildung 2.4: Für die einzelnen AUTOSAR‑Sichten gibt es die spe‑
zialisierten TimingExtensions VfbTiming, SwcTiming, SystemTiming, BswMo‑
duleTiming und EcuTiming, die jeweils ein für die entsprechende Sicht re‑

24

Abbildung 2.4:Metamodell für Timing Extensions aus AUTOSAR (2019a)

levantes Modellelement referenzieren, beispielsweise eine Softwarekompo‑
nente (SwComponentType) für das VfbTiming. Darüber hinaus hat jede Ti‑
mingExtension eine Menge an TimingDescriptions, sowie TimingConstraints,
die je nach Kontext die Rolle als TimingGuarantee oder TimingRequirement
wahrnehmen.
Für dieDefinition vonTimingConstraints gibt es eineMenge spezialisier‑

ter Unterklassen, die es ermöglichen bestimmte Klassen von zeitlichen Ab‑
hängigkeiten zu beschreiben. Abbildung 2.6 zeigt die verfügbaren Timing
Constraints in AUTOSAR. Im Folgenden werden diese Constraints genau‑
er vorgestellt. Eine vollständige Beschreibung befindet sich in AUTOSAR
(2019a):

• Offset Timing Constraint: Der Offset Timing Constraint spezifi‑
ziert eine minimale und maximale Zeitdifferenz zwischen einem

25

Abbildung 2.5:Metamodell für Timing Descriptions aus AUTOSAR
(2019a): Eine Timing Description ist entweder ein einzelnes Timing Event
oder eine Verkettung von Timing Events über Trigger- und Response-
Assoziationen.

Source‑Event und einem Target‑Event.

• Latency Timing Constraint: Ein Latency Timing Constraint spezifiziert
eine minimale und maximale Latenzzeit auf der Basis einer Timing
Description Event Chain. Der Constraint wird verwendet, um An‑
forderungen an die zeitliche Verzögerung zwischen einem Stimulus‑
Event und allen weiteren Timing Events innerhalb der Ereigniskette
bis zu einem Response‑Event zu spezifizieren.

• Synchronization Timing Constraint: Der Synchronization Timing Cons‑
traint spezifiziert eineMenge von Timing Events, die gleichzeitig aus‑
geführt werden müssen. Zusätzlich kann durch die Spezifikation ei‑
nes Toleranzwertes der Constraint abgeschwächt werden.

• Execution Order Constraint: Der Execution Order Constraint spezifi‑
ziert eine Sequenz von ausführbaren Einheiten (Executable EntitiesEXECUTABLE ENTITIES).
Die Ausführung jedes Executable Entity darf dabei erst dann gestar‑
tet werden, wenn das vorherige Executable Entity beendet wurde.

26

Abbildung 2.6:Verfügbare Timing Constraints in AUTOSAR (AUTOSAR,
2019a)

• Execution Time Constraint: Der Execution Time Constraint spezifiziert
Restriktionen an die Ausführungszeit eines einzelnen Executable
Entity. Im Gegensatz zu den anderen Timing Constraints, wird der
Constraint nicht über Restriktionen der Timing Events modelliert.

• Age Constraint: Der Age Constraint spezifiziert das maximale Alter
(Age) von Daten für einen Port. Als Spezialfall des Latency Timing
Constraint kann er verwendet werden ohne dass der Absender der
Daten bekannt sein muss.

SYSTEMDESK®ALS ENTWICKLUNGSWERKZEUG FÜR AUTOSAR

SystemDesk®† ist das Entwicklungswerkzeug fürAUTOSAR‑Architekturen
von dSPACE. Es unterstützt dabei sowohl bei der Modellierung von
AUTOSAR‑Modellen durch eine übersichtliche Darstellung, als auch bei

†https://www.dspace.com/de/gmb/home/products/sw/system_architecture_
software/systemdesk.cfm

27

https://www.dspace.com/de/gmb/home/products/sw/system_architecture_software/systemdesk.cfm
https://www.dspace.com/de/gmb/home/products/sw/system_architecture_software/systemdesk.cfm

der Erstellung von AUTOSAR‑Software durch Codegeneratoren. Des Wei‑
teren können sogenannte ValidierungsregelnVALIDIERUNGSREGELN Modelle auf Wohlgeformtheit
überprüfen. Auf diese Weise lassen sich bereits einfache Syntaxfehler,
die beispielsweise durch unvollständige Modelle entstehen, erkennen,
da das Werkzeug zur einfachen und intuitiven Modellierung auch das
Anlegen von zunächst unvollständigen Modellen erlaubt. Weiterhin gibt
es Regeln, die die Kompatibilität zu anderen Werkzeugen überprüfen
oder die Generierbarkeit der RTE sicherstellen. Die Validierung von
AUTOSAR‑Modellen über die syntaktische Korrektheit hinaus ist dagegen
mit Validierungsregeln nicht möglich. Eine Validierung des Modellverhal‑
tens kann nur durch die Generierung, Kompilierung und anschließende
Simulation eines virtuellen Steuergeräts erfolgen. Die Abbildung 2.7 zeigt
die Oberfläche der Entwicklungsumgebung. Grafische Repräsentatio‑
nen, im Kontext der Entwicklungsumgebung auch einfach Diagramme
genannt, gibt es für die wichtigsten Elemente des Metamodells. So werden
Softwarekomponenten, Ports und Verbindungen, die innerhalb einer
Softwarekomposition vorhanden sind, in einem Composition Diagram zu‑
sammen dargestellt. Des Weiteren können einzelne Softwarekomponenten
zusammen mit ihren Ports, Interfaces und Datentypen in einem Component
Diagram visualisiert werden. Andere Modellelemente werden in einer
hierarchischen Baumstruktur, dem Project Manager dargestellt und deren
Eigenschaften in einem Eigenschafts‑Dialog.

DAS AUTOSAR BLINKER‑BEISPIEL

Im Folgenden betrachtenwir eine einfache AUTOSAR Softwarearchitektur.
Die Architektur verwaltet die rechte und linke Blinkerleuchte eines Fahr‑
zeugs. Diese werden entsprechend den Blinker‑ und Warnlichtsensoren
geschaltet. Die Applikationsschicht beinhaltet mehrere Softwarekompo‑
nenten, die wiederum mehrere Runnables mit ausführbarer Software
umfassen. Die Beispielarchitektur ist in Abbildung 2.8 zu sehen. Die zwei
Softwarekomponenten auf der linken Seite lesen Sensordaten ein und prü‑
fen diese auf Fehler, bevor die Signale an die nächste Softwarekomponente
weitergeleitet wird. Die Software‑Komponente Indicator Composition

28

Abbildung 2.7:AUTOSAR Entwicklungsumgebung SystemDesk®

Application layer

Runtime environment

Microcontroller

TssRunnable

WlsRunnable

TurnSwitchSensor

WarnLightsSensor

FrontLeftActuator

FrontRightActuator

TssPre-
processing

WlsPre-
processing

Logic

Toggle

IndicatorComposition BulbRunnable

BulbRunnable

Complex Drivers

Microcontroller Abstraction Layer

ECU Abstraction Layer

Services Layer

e_s_TssPre-
processing

e_t_Logic

10|30

3|4

1|5

Abbildung 2.8:Beispiel einer AUTOSAR Softwarearchitektur

29

empfängt diese Sensordaten. Die Komponente beinhaltet mehrere Runn‑
able Entities für die Vorverarbeitung der Signale, sowie die Logik des
Systems. Die Aktuator‑Softwarekomponenten auf der rechten Seite sind
für die Aktivierung der Blinkerlampen zuständig. Darüber hinaus enthält
das Beispiel eine Konfiguration der RTE und auf der Ebene der Basis‑
softwareschicht existiert die Konfiguration des Betriebssystems. Weitere
Basissoftwaremodule werden in diesem Beispiel nicht berücksichtigt.
Darüber hinaus wird das Beispiel um die folgenden Timing Events und

TimingConstraints erweitert. Das RunnableTssPreprocessing beinhaltet ein
Event für den Start esTssPreprocessing und für das Runnable Logic wurde ein
Event für die Terminierung etLogic hinzugefügt. Diese Timing Events wer‑
den im Beispiel als weiße Boxen dargestellt, die mit Runnables verbunden
sind. Weiterhin beinhaltet die Softwarearchitektur drei Timing Constraints:
Ein Execution Order Constraint, welcher die Ausführungsreihenfolge der
Runnables beschränkt. Dieser Constraint ist als gestrichelte Linie zwischen
den Runnables zu sehen; ein Offset Timing Constraint, welcher die Aus‑
führungszeit zwischen den neu hinzugefügten Timing Events beschränkt.
Dieser wird durch die eckigen Klammern unter den Timing Events ange‑
zeigt. Und schließlich beinhaltet die Softwarearchitektur einen Execution
Time Constraint, der die Ausführungszeit des Logic Runnables beschränkt.
Tabelle 2.1 zeigt eine Übersicht über die Timing Constraints.

TIMING ANALYSE

Ein wesentliches Merkmal von Steuergerätesoftware ist, dass sie Teil eines
größeren Systems mit physikalischen Schnittstellen ist. Über diese Schnitt‑
stellen beeinflusst das System seine Umgebung. Viele Funktionen wie bei‑
spielsweise das Auslösen eines Airbags müssen zeitlich zusammen mit Er‑
eignissen der Umgebung ausgeführt werden. Das korrekte Verhalten des
Systems ist daher nicht nur abhängig von korrekten Funktionsergebnissen,
sondern auch vom Zeitpunkt an denen diese Ergebnisse zur Verfügung ste‑
hen. Daher wird das System auch als EchtzeitsystemECHTZEITSYSTEM bezeichnet (Buttazzo,
2011, Stankovic und Ramamritham, 1988). Für die ingenieurmäßige Ent‑
wicklung solcher Systeme ist es daher wichtig Zeitanforderungen und Zeit‑

30

Tabelle 2.1:Beispiel Timing Constraints

Beschreibung Timing Constraint

Die Runnables
TssPreprocessing, Logic
und Togglemüssen
nacheinander ausgeführt
werden.

reoc = ⟨TssPreprocessing, Logic, Toggle⟩

Die Berechnung des
Blinker‑Logik muss
frühestens nach 3ms und
spätestens nach 4 beendet
sein, nachdem die
Vorverarbeitung des des
Blinkersensors gestartet
wurde.

rotc = (esTssPreprocessing, etLogic, 3, 4)

Die Berechnung des Logic
Runnables muss zwischen
10ms und 30ms beendet
sein.

retc1 = (Logic, 10, 30)

Die Berechnung des Toggle
Runnables muss zwischen
1ms und 5ms beendet sein.

retc2 = (Toggle, 1, 5)

eigenschaften in Anforderungsartefakten und Architekturmodellen zu er‑
fassen.
Wie in Abschnitt 2.1.2 bereits beschrieben ermöglicht es AUTOSAR eben‑

falls Zeitanforderungen und Zeitgarantien des Echtzeitsystems im Archi‑
tekturmodell festzuhalten. AUTOSAR liefert aber keine Methoden, um die
Korrektheit der Zeitanforderungen zu überprüfen. Für die Analyse desMo‑
dells und allen weiteren beteiligten Artefakten wie beispielsweise Regler‑
code, Binärcode und Hardwarespezifikationen werden daher Timing Ana‑
lyseverfahren benötigt. Diese Verfahren können auf verschiedenen Ebenen
und mit unterschiedlichen Methoden erfolgen (Traub, 2010).

31

Zum einen können Laufzeiten durch experimentelle Verfahren gemessen
werden. Dazu werden in früheren Entwicklungsphasen Simulationsmo‑
delle der Regler, Hardware und der Umgebung verwendet und innerhalb
einerModel‑In‑The‑Loop‑SimulationMODEL‑IN‑THE‑LOOP‑

SIMULATION
(MIL‑Simulation) simuliert. In späteren

Phasen lassen sich dann Reglermodelle zunächst gegen Software austau‑
schen, um diese in einer Software‑In‑The‑Loop‑SimulationSOFTWARE‑IN‑THE‑LOOP‑

SIMULATION
(SIL‑Simulation)

zu testen und dann schließlich durch reale Hardware auszutauschen, um
dann Laufzeittests durchzuführen (Traub, 2010). Die Simulation zusam‑
men mit realer Hardware wird auch als Hardware‑In‑The‑Loop‑SimulationHARDWARE‑IN‑THE‑LOOP‑

SIMULATION
,

(HIL‑Simulation) bezeichnet (Schäuffele und Zurawka, 2010). Diese Ver‑
fahren können jedoch nicht das gesamte Systemverhalten verifizieren und
somit keine kritische Randfälle wie obere Laufzeitschranken (Worst‑Case
Execution Times, (WCET)WORST‑CASE EXECUTION

TIMES, ₍WCET₎
) finden. Werkzeuge für die Timing Simulation

sind beispielsweise ChronSim (Anssi et al., 2012) und die Real‑Time Testing
Observer Library (dSPACE GmbH, 2020).
Zum anderen können Laufzeiten mithilfe analytischer Verfahren berech‑

net werden. Der Vorteil dieser Verfahren ist, dass sie den gesamten Zu‑
standsraum des Modells untersuchen und somit auch Worst‑Case Execu‑
tion Times berechnen können. Dies ist notwendig, um Zeitanforderungen
wie AUTOSAR Timing Constraints verifizieren zu können.
DieseMethoden unterscheiden sichweiterhin hinsichtlich ihrer Genauig‑

keit und der verwendeten Modelle. Zhang et al. (2014) unterscheiden zwei
verschiedene Ebenen, auf denen Timing Analysen erfolgen:

1. Analyse auf Taskebene: Diese Methoden berechnen die Worst‑Case
Execution Time (WCET) für einen einzelnen Task oder Codeblock
und benötigen dafür den auszuführenden Quellcode oder die für
die Zielplattform kompilierte und ausführbare Binärdatei, sowie
ein Modell der Hardwareplattform, auf denen der Code ausgeführt
wird.

2. Analyse auf Systemebene: Diese Methoden untersuchen die Laufzeit
eines gesamten Echtzeitsystems bestehend aus mehreren in einem
Netzwerk verteilten Steuergeräten, auf denen wiederum mehrere
Tasks ausgeführt werden. Diese Methoden werden häufig auch

32

als System‑Level Performance Analysis bezeichnet. Einige Methoden
benötigen jedoch als Grundlage die auf Taskebene berechneten
WCETs.

Der in dieser Arbeit entwickelte Ansatz verifiziert das Zeitverhalten eines
vollständigen AUTOSAR‑Systems und fällt daher in die Kategorie Analy‑
se auf Systemebene. Er setzt jedoch voraus, dass die WCETs einzelner Tasks
bekannt sind. Dafür lassen sich existierende Werkzeuge wie beispielsweise
aiT (Ferdinand undHeckmann, 2004) verwenden oder Schätzungen auf der
Grundlage von Expertenwissen durchführen.

₂.₂ ANFORDERUNGSMODELLE UND ANFORDERUNGSQUA‑
LITÄT

Ein Teilbereich des Systementwicklungsprozesses beschäftigt sich mit
der Gewinnung von Anforderungen und der Dokumentation von An‑
forderungsartefakten. Der Begriff Anforderung wird in IEEE (1990)
folgendermaßen definiert:

Definition 2 (Anforderung IEEE (1990), Übersetzung aus Pohl (2008)). Eine
Anforderung ist :

1. Eine Bedingung oder Eigenschaft, die ein System oder eine Person benötigt,
um ein Problem zu lösen oder ein Ziel zu erreichen.

2. Eine Bedingung oder Eigenschaft, die ein System oder eine Systemkompo‑
nente aufweisen muss, um einen Vertrag zu erfüllen oder einem Standard,
einer Spezifikation oder oder einem anderen formell auferlegten Dokument
zu genügen.

3. Eine dokumentierte Repräsentation einer Bedingung oder Eigenschaft wie
in 1 oder 2 definiert

In diesem Abschnitt wird ein Überblick über Modellierungssprachen für
Anforderungen in der Systementwicklung gegeben. Der Fokus liegt dabei

33

auf Sprachen, die dasModellieren von Echtzeiteigenschaften erlauben.Wei‑
terhin wird KonsistenzKONSISTENZ als ein relevantes Qualitätskriterium für Anforde‑
rungsartefakte genauer vorgestellt, da dies im Rahmen der Arbeit Anwen‑
dung findet.

₂.₂.₁ ANFORDERUNGSMODELLIERUNG IN DER SYSTEMENTWICKLUNG

Ein wesentlicher Aspekt bei der Entwicklung von elektronischen Systemen
und Software ist das Erheben und Verwalten von Anforderungen. Übli‑
cherweise erfolgt die Spezifikation am Anfang des Entwicklungsprozesses,
sie kann aber auch während der Projektdurchführung weiterhin angepasst
werden (Pohl, 2008). Schäuffele und Zurawka (2010) beschreiben das An‑
forderungsmanagement als Unterstützungsprozess für die Systementwick‑
lung mit den Teilaufgaben des Erfassens von Anforderungen und Verfol‑
gens vonAnforderungen,während die Erstellung der logischen und techni‑
schen Systemarchitektur durch die Analyse der Anforderungen dem Kern‑
prozess des V‑Modells zugerechnet wird (siehe Abbildung 2.1).
Die akzeptierten Benutzeranforderungen sind die Basis für alle weiteren

Entwicklungsphasen (Schäuffele und Zurawka, 2010). Sie werden zunächst
informell als natürlichsprachlicher Text festgehalten, um auch für den Kun‑
den verständlich zu sein. Im weiteren Verlauf werden dann die textuellen
Anforderungen weiter verfeinert und formalisiert, beispielsweise mithilfe
der Unified Modeling Language (UML)UNIFIED MODELING

LANGUAGE ₍UML₎
. Die UML ermöglicht das beispielhaf‑

te Modellieren von Anforderungen in Form von Anwendungsfällen (Use
Cases) mithilfe einer grafischen Syntax Object Management Group (2015).
Diese beschreiben formal die Interaktion eines Anwenders mit dem System
und ermöglichen es Beziehungen zwischen Anwendungsfällen, sowie wei‑
tere Bedingungen festzuhalten. Diese Bedingungen können dann formal als
OCL‑Constraints spezifiziert werden (Object Management Group, 2014).
In den Phasen der Systementwicklung wird häufig das UML‑Profil

SysMLSYSML eingesetzt. Es erweitert die UML über den UML‑Profile Mecha‑
nismus um Sprachkonstrukte und Diagramme zur Spezifikation von
Anforderungen. Diese können dann hierarchisch strukturiert werden.
Des Weiteren können Beziehungen der Anforderungen untereinander

34

definiert werden, sowie zwischen Anforderungen und weiteren Mo‑
dellelementen aus der Systemarchitektur (Object Management Group,
2017). Die eigentliche Anforderung ist jedoch weiterhin in textueller Form
festgehalten. Für die Modellierung von Anforderungen mit Zeitbezug
ist das nicht ausreichend. Daher existieren verschiedene Ansätze, die die
Modellierung von Anforderungen mit Zeitbezug in den unterschiedlichen
Entwicklungsphasen unterstützen.

₂.₂.₂ MODELLIERUNG VON TIMING ANFORDERUNGEN

Timing Anforderungen (auch Echtzeitanforderungen genannt) werden
ebenso wie andere Anforderungsartefakte auch zunächst natürlich‑
sprachlich beschrieben. Es ist jedoch sehr schwierig natürlichsprachliche
Anforderungsartefakte direkt in AUTOSAR Timing Constraints zu über‑
führen, da der Unterschied im Detaillierungsgrad sehr hoch ist. Daher
werden die natürlichsprachlich festgehaltenen Timing Anforderungen
zunächst in zeitbehaftete Modelle auf funktionaler Systemebene überführt
und dort weiter zerlegt. Bei der Spezifikation der technischen Systemar‑
chitektur werden dann die zuvor spezifizierten Timing Anforderungen
auf Timing Anforderungen für einzelne Steuergeräte abgebildet, um so
die Lücke zwischen textuellen Anforderungen und AUTOSAR Software‑
architektur zu schließen (AUTOSAR, 2019d). Abbildung 2.9 zeigt die
Dekomposition von Funktionen und die Abbildung dieser Teilfunktionen
auf Steuergeräte. Die den Funktionen zugehörigen Timing Anforderungen
müssen ebenfalls zerlegt werden und auf Timing Anforderungen für
Steuergerätefunktionen abgebildet werden.
Für die Modellierung von Timing Anforderungen auf Systemebene wer‑

den existierende Modellierungssprachen verwendet, die umMethoden zur
Spezifikation von Timing Anforderungen erweitert wurden. So kann bei‑
spielsweise das UML‑Profil MARTE MARTEgenutzt werden (Object Management
Group, 2011a). MARTE erweitert die UML um Sprachkonstrukte zur Mo‑
dellierung und Analyse von Echtzeitsystemen. Es besteht im Wesentlichen
aus dreiHauptpaketen.DasMARTEAnalysisModel beinhaltet Konzepte zur
Validierung und Verifikation, dasMARTE Design Model beinhaltet Elemen‑

35

Abbildung 2.9:Dekomposition von Funktionen (AUTOSAR, 2019d)

te zur Modellierung von Echtzeitsystemen und das Paket MARTE Founda‑
tions beinhaltet generelle Elemente, die innerhalb der anderen Pakete benö‑
tigt werden (Ribeiro et al., 2018). Unter anderem ermöglicht das Unterpaket
Time sehr detailliert dieModellierung vonZeiteigenschaften. Konkrete Zeit‑
instanzen werden durch Uhren (Clocks) festgehalten und Timing Anforde‑
rungen über Uhren können dann durch Clock Constraints festgelegt werden.
Eine Übersicht über die Pakete des Profils findet sich in Abbildung 2.10.

Weiterhin existieren verschiedene Ansätze wie beispielsweise Ribeiro
et al. (2018), die SysML und MARTE in einem Metamodell kombinieren.
Dieses Metamodell spezifiziert beispielsweise für die Requirements aus
SysML spezialisierte Elemente für nichtfunktionale Anforderungen und
Timing Anforderungen, die es erlauben für eine Anforderung zusätzlich
Zeiteigenschaften wie minimale und maximale Antwortzeiten festzulegen.
Ebenfalls gibt es weitere Typen von Beziehungen zwischen Anforderun‑
gen. So kann mit der «Synchronized» Beziehung explizit die synchrone
Ausführung von Anforderungen modelliert werden.

Eine weitere, in der Automobilindustrie verbreitete, domänenspezifische
Sprache ist EAST‑ADL (EAST‑ADL Association, 2013). Die Sprache defi‑
niert vier verschiedene Abstraktionsebenen für die Modellierung von elek‑
trisch / elektronischen Systemen. Angefangen mit der Fahrzeugebene (Vehicle

36

Abbildung 2.10:Architektur des MARTE Profils

Level) werden auf dieser Ebene Featuremodelle erstellt und daraus dann
Architekturmodelle, erst auf Analyseebene (Analysis Level) als sogenannte
Functional Analysis Architecture und dann auf Entwurfsebene (Design Level)
als Functional Design Architecture weiter verfeinert. Die Implementierungs‑
ebene als unterste Ebene nutzt dann den AUTOSAR‑Standard für die Spe‑
zifikation der Softwarearchitektur. Auf jeder Ebene können zu den entpre‑
chenden Modellen Anforderungen und Timing Constraints definiert und
referenziert werden. Timing Constraints lassen sich dabei schon auf einem
ähnlichenAbstraktionsnievauwie bei AUTOSARmodellieren, können aber
bereits auf Fahrzeugebene angewendetwerden. EineÜbersicht über die Ar‑
chitektur von EAST‑ADL zeigt die Abbildung 2.11.

₂.₂.₃ KONSISTENZ VON ANFORDERUNGSDOKUMENTEN

Anforderungsdokumente beinhalten die dokumentierten Anforderungsar‑
tefakte für das zu entwickelnde System. Gerade die anfangs in Form des

37

Abbildung 2.11:EAST-ADL Architekturebenen(EAST-ADL Association,
2013)

Pflichtenhefts dokumentierten Anforderungsartefakte sind von zentraler
Bedeutung, da sie die Grundlage für alle weiteren Aktivitäten in der
Systementwicklung bilden (Pohl, 2008). Ein fehlerhaftes Anforderungsdo‑
kument ist daher eine der Hauptursachen für Softwarefehler (Galin, 2004).
Eine hohe Qualität der Anforderungsdokumentation und der einzelnen
darin enthaltenen Anforderungsartefakte ist daher wichtig, um eine hohe
Softwarequalität zu erreichen.
In der Literatur werden verschiedene Qualitätskriterien für Anforde‑

rungsdokumente vorgeschlagen, die die Qualität eines Anforderungsdo‑
kumentes bewerten. So definiert die IEEE in IEEE (1998) Charakteristiken
für „gute “Anforderungen. Dort wird beschrieben, dass Anforderun‑
gen korrekt, eindeutig, vollständig, konsistent, überprüfbar, gewichtet,
änderbar und rückverfolgbar sein sollen.
ImKontext der analytischenQualitätssicherungmithilfe formalerMetho‑

den ist insbesondere das Qualitätskriterium KonsistenzKONSISTENZ von entscheidender
Bedeutung, da die Durchführung laufzeitintensiver Verifikationsmethoden
nur auf der Basis einer konsistenten Anforderungsmenge verwertbare Er‑
gebnisse liefern kann.
Konsistenz von Anforderungen wird in IEEE (1998) als „interne Konsis‑

38

tenz “konkretisiert, denn ist eine Anforderungsmenge inkonsistent zu ei‑
nem externen Spezifikationsdokument, so ist sie nicht korrekt.

Definition 3 (Interne Konsistenz (IEEE, 1998)). Eine Anforderungsmenge ist
„intern konsistent “, wenn keine Teilmenge im Konflikt zueinander steht. Ein Kon‑
flikt ist dann vorhanden, wenn

1. die Eigenschaften der realen Objekte im Konflikt zueinander stehen,

2. logische oder temporale Konflikte zwischen zwei oder mehr Aktionen be‑
stehen,

3. zwei oder mehr Anforderungen unterschiedliche Bezeichnungen für dasselbe
reale Objekt haben.

Der Fokus dieser Arbeit liegt auf der Konsistenzprüfung von AUTOSAR
Timing Constraints. Wir gehen daher davon aus, dass Anforderungen be‑
reits als Timing Constraints formalisiert wurden, sodass Konflikte, die aus
1 und 3 resultieren, bereits aufgelöst wurden. Da die Timing Anforderun‑
gen ausschließlich Aussagen über das Zeitverhalten des Systems machen,
bezieht sich der Konsistenzbegriff im Verlauf der Arbeit explizit auf tempo‑
rale Konflikte innerhalb einer Anforderungsmenge.

₂.₃ FORMALE ANALYSE

Formale Methoden sind Modellierungssprachen, die durch eine formale,
mathematisch definierte Semantik SEMANTIKcharakterisiert sind (Clarke und Wing,
1996). Für diese Methoden lassen sich Analyseverfahren entwickeln, mit
denen sich konkrete Eigenschaften eines Modells formal beweisen lassen.
Diese Analyseverfahren sind beispielsweise das sogenannteModel Checking MODEL CHECKING

(Clarke und Emerson, 1981, Queille und Sifakis, 1982), bei dem der gesamte
Zustandsraum eines Modells exploriert wird und auf dessen Erfüllbarkeit
hinsichtlich einer Temporallogischen Formel geprüft wird, Abstrakte Inter‑
pretation ABSTRAKTE INTERPRETATION(Cousot und Cousot, 1977), bei der die Programmanalyse üblicher‑
weise über eine Datenflussanalyse erfolgt, diese jedoch über die Definition
eines Verbandes über‑approximiert wird oderDeduktive Verifikation DEDUKTIVE VERIFIKATION(Hoare,

39

1969), bei der die Analyse eines Programms über Axiome und Beweisregeln
erfolgt. In diesem Abschnitt werden formale Methoden vorgestellt, die im
Rahmen der Arbeit zur Anwendung kommen.

₂.₃.₁ FORMALE MODELLIERUNG VON ECHTZEITSYSTEMEN

Durch die Verfügbarkeit von Modellierungstechniken zur Spezifikation
von Echtzeitsystemen können komplexe technische Systeme in verschiede‑
nen Entwicklungsphasen und aus unterschiedlichen Sichten beschrieben
werden. Für die bisher beschriebenen Sprachen existiert jedoch keine for‑
male Semantik, sodass die automatische Verifikation auf diesen Modellen
nicht möglich ist. Erst durch die Anwendung von formalen Sprachen
ist es möglich für dynamische Modelle Eigenschaften wie Erreichbar‑
keit von Systemzuständen oder Deadlockfreiheit, sowie Safety‑ und
Liveness‑Eigenschaften zu prüfen. Formale Sprachen zur Spezifikation
von Echtzeitsystemen sind beispielsweise Timed CSP (Reed und Roscoe,
1986), eine Erweiterung der Sprache CSP von Hoare (1978) um Zeit,
Timed Petri‑Nets (Ramchandani, 1973), eine zeitbehaftete Erweiterung von
Petrinetzen, PLC‑Automata (Dierks, 1997), Zeitautomaten (Timed Automata)
(Alur und Dill, 1994), Duration Calculus (Chaochen et al., 1991) oder Timed
CCS (Yi, 1991). Wir verwenden in unserem Ansatz Timed AutomataTIMED AUTOMATA zur for‑
malen Spezifikation. Für Timed Automata existieren mehrere Werkzeuge
zur Modellierung und Verifikation, auf die wir für die Generierung der
Modelle in dieser Arbeit zurückgreifen können. Im Folgenden gehen wir
näher auf die Spezifikation und Analyse von Timed Automata ein.

₂.₃.₂ TIMED AUTOMATA

Timed Automata wurden 1994 von Alur und Dill (1994) eingeführt, um das
Verhalten von Echtzeitsystemen zu modellieren. Sie erweitern das Konzept
von Büchi Automaten um Uhren mit reellen Zeitwerten. Dadurch lassen
sich zeitliche Bedingungen an Zuständen und Kanten annotieren.

Definition 4 (Uhrenconstraints (Clock constraints)). Sei X eine Menge von
Uhren und sei Φ(X) die Menge der Uhrenconstraints mit Constraints φ wie folgt

40

definiert:

φ ::= x ∼ c | x− y ∼ c | φ1 ∧ φ2

mit x, y ∈ X, c ∈ Q≥0 und ∼∈ {<,>,≤,≥}

Im Folgenden wird die Spezifikation von Timed Automata auf der
Basis von Alur und Dill (1994) vorgestellt. Die Notation ist aus Olderog
und Dierks (2008) entnommen und erweitert um die Spezifikation von
Broadcast‑Kanälen aus Behrmann et al. (2004).

Definition 5 (Timed Automata). Ein Timed Automaton ist ein Tupel
A = (L,B,B∗,X, I,U,E, Iini) mit:

• einer endlichen Menge an Locations L,

• einer Menge von Signalen B, die mittels Handshake miteinander kommuni‑
zieren,

• einer Menge von Signalen B∗, die über Broadcast‑Kanäle miteinander kom‑
munizieren,

• einer Menge von Uhren X,

• einer Zuweisung von Invarianten zu Locations I : L → Φ(X),

• einer Abbildung für die Locations, ob diese unmittelbar (urgent) ausgeführt
werden müssen (sodass in diesen Locations die Zeit nicht weiterlaufen kann)
U : L → {true, false},

• einerMenge vonKanten gelabelt mit Signalen, einemGuard und einerMen‑
ge von Uhren, die zurückgesetzt werden: E ⊆ L×B∪B∗×Φ(X)×P(X)×L,

• und einer initialen Location Iini ∈ L.

Φ(X) spezifiziert eine Menge von Uhrenconstraints (beispielsweise x < 3,
siehe dazu auchOlderog undDierks (2008)). EineKonfiguration KONFIGURATIONeines Timed
Automaton ist dann ein Paar einer Location und einer Wertzuweisung
(clock valuation) ν : X → Time, wobei Time ∈ R(≥0) reelle Zahlen sind. Wir

41

verwenden ν |= φ für einen Uhrenconstraint φ ∈ Φ(X), falls der Constraint
für die jeweilige Wertzuweisung gilt, was folgendermaßen definiert ist:

ν |= x ∼ c gdw. ν(x) ∼ c,
ν |= x− y ∼ c gdw. ν(x)− ν(y) ∼ c,
ν |= φ1 ∧ φ2 gdw. ν |= φ1 und ν |= φ2

DieAbbildung 2.12 zeigt einen Beispielautomatenwie er inUPPAAL spe‑
zifiziert wird. Der Automat zeigt eine vereinfachte Variante eines in einen
Timed Automaton transformierten Runnable Entity mit vier Locations und
vier Transitionen. Die Locations reading undwriting sind spezielleUrgent lo‑
cationsURGENT LOCATIONS , erkennbar am Symbol ∪, in denen die Zeit nicht weiterlaufen kann.
Sie sind semantisch äquivalent zu einer Locationmit einer Uhr und einer In‑
variante x ≤ 0 auf dieser Location. Erhält der Automat das start‑Signal, wird
die Transition zur Location reading ausgeführt und die Uhr x zurückgesetzt.
Über das Signal bulb_signal erfolgt die Transition in die running‑Location.
Aufgrund der Invariante und dem Guard der folgenden Transition bleibt
der Automat maximal 2 und mindestens 1 Zeiteinheit in dieser Location.
Danach erfolgt die Transition in die Location writing und finished über die
jeweiligen Signale.

Abbildung 2.12:Beispiel Timed Automaton visualisiert mit UPPAAL

Die operationelle Semantik von Timed Automata wird als gelabel‑
tes Transitionssystem definiert. Transitionssysteme wurden von Keller
(1976) eingeführt und zuerst von (Plotkin, 1981) zur Spezifikation von
Programmier‑ und Spezifikationssprachen verwendet. Die Semantikdefini‑

42

tion basiert auf Behrmann et al. (2004) und der Notation aus Olderog und
Dierks (2008).

Definition 6 (Semantik für Timed Automata). Die operationelle Seman‑
tik von Timed Automata A ist definiert als gelabeltes Transitionssystem
T (A) = (Conf(A),→,Cini) mit:

• Conf(A) = {⟨l, ν⟩ | l ∈ L, ν : X → Time, ν |= I(l)},

• einer initialen Konfiguration Cini = {⟨lini, νini⟩}

• und einer Transitionsrelation → ⊆ Conf(A)× (Time ∪ B)× Conf(A) mit
zwei verschiedenen Arten von Transitionen:

– Delay‑Transition: ⟨l, ν⟩ t−→ ⟨l, v+ t⟩ falls ν+ t′ |= I(l)∀t′ ∈ [0, t]∧∀l ∈
L : U(l) = false

– Aktions‑Transition: ⟨l, v⟩ α−→ ⟨l′, v′⟩ falls (l,α,φ,Y, l′) ∈ E mit v |= φ
und ν′ = ν[Y := 0] and ν′ |= I(l′).

Einzelne Timed Automata können zu einem Netzwerk NETZWERKzusammengefasst
werden. Dabei können die Automaten über zwei verschiedene Wege mit‑
einander kommunizieren: synchron mittels Handshake‑Kommunikation
(wie beispielsweise auch in der Prozessalgebra CCS (Milner, 1980)) oder
über Broadcast‑Kanäle. Der Sender in einer Broadcast‑Kommunikation
kann dann mit allen Timed Automata kommunizieren, die gerade für den
Empfang über den Broadcast‑Kanal aktiviert sind. Im Folgenden wird
die Semantikdefinition aus Behrmann et al. (2004) mit der Notation aus
Olderog und Dierks (2008) vorgestellt:

Definition 7 (Semantik von Timed Automata Netzwerken). Für ein Timed
Automata Netzwerk N = Ai = (Li,Bi,B∗

i ,Xi, Ii,Ei, lini,i) mit i = 1, . . . , n ist die
Semantik definiert als Transitionssystem T (N) = (Conf(N),→,Cini) mit:

• Conf(N) = {⟨⃗l, v⟩ | li ∈ Li ∧ v : X → Time ∧ ν |=
∧n

k=1 Ik(lk)}

• einer initialen Konfiguration Cini = {⟨l⃗ini, νini⟩} ∩ Conf(N) mit
l⃗ini = (lini,i, . . . , lini,n) und vini(x) = 0

43

• und einer Transitionsrelation→= Conf(N)×Conf(N)mit drei verschiede‑
nen Arten:

– Eine lokale Transition ⟨⃗l, v⟩ a−→ ⟨⃗l′, v⟩ für einen Timed Automaton i ∈
{1 . . . n} findet statt, wenn es eine Kante (li,α,φ,Y, l′i) ∈ E gibt, sodass

– ν |= φ
– l⃗′ = l[li := l′i],
– v′ = v[Y := 0] und v′ |= Ii(l′i)

– Synchronisationstransition: ⟨⃗l, v⟩ t−→ ⟨⃗l′, v′⟩ für zwei Timed Automata
i, j ∈ {1, . . . , n} mit i /∈ j und einem Kanal binBi ∩ Bj und Kanten
(li, b!,φi,Yi, l′i) ∈ Ei und (lj, b?,φj,Yj, l′j) ∈ Ej

– Delay‑Transition: ⟨⃗l, ν⟩ t−→ ⟨⃗l, v+t⟩ falls ν+t′ |=
∧n

k=1 Ik(lk)∀t′ ∈ [0, t].

FORMALE BESCHREIBUNG VON ANFORDERUNGEN MITTELS TEMPORALLO‑
GIKEN Die Möglichkeit zur formalen Beschreibung von Systemeigen‑
schaften reaktiver Systeme über Temporallogiken wurde zuerst von Pnueli
(1977) mit der Linear Temporal Logic (LTL) eingeführt. Diese lässt sich jedoch
nur auf Modellen mit diskreter Zeit anwenden. Erweiterte Logiken zur
Beschreibung von Echtzeiteigenschaften auf Modellen mit kontinuierli‑
cher Zeit wie bei Timed Automata wurden dann durch die Erweiterung
existierender Temporallogiken ermöglicht. Diese sind beispielsweise Timed
Computation Tree Logic (TCTL) von Alur et al. (1993), die eine Erweiterung
der Computation Tree Logic (CTL) von (Clarke und Emerson, 1981) ist,
sowieMetric Temporal Logic (MTL) (Koymans, 1990) und Timed Propositional
Logic (TPTL) (Alur und Henzinger, 1989) als Erweiterung von LTL. In
dieser Arbeit wird eine Teilmenge von TCTL verwendet, die sich mittels
UPPAAL überprüfen lässt. Die Syntax und Semantik dieser Logik wird in
den Definitionen 8 und 9 beschrieben.

UPPAAL Zur Verifikation von Timed Automata existieren verschiedene
Werkzeuge wie beispielsweiseUPPAAL ‡ (Larsen et al., 1997), Kronos§ (Yo‑

‡http://www.uppaal.org
§http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

44

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

vine, 1997) oder HyTech (Henzinger et al., 1997). In dieser Arbeit wird zur
Verifikation der AUTOSAR Timing Anforderungen UPPAAL eingesetzt, da
das Werkzeug die Spezifikation von Timed Automata, wie in Definition 5
beschrieben, vollständig unterstützt. Abbildung 2.13 zeigt einen Screenshot
der grafischen Oberfläche von UPPAAL mit dem Bridge‑Crossing Problem
aus Levmore und Cook (1981). Die Oberfläche ermöglicht die einfache De‑
finition von Timed Automata und TCTL‑Queries und ermöglicht darüber
hinaus den Verifikationsprozess zu starten und fehlerhafte Traces in einer
Simulation zu inspizieren.

Abbildung 2.13: Screenshot von UPPAAL

UPPAAL verwendet zur Spezifikation von Modellanforderungen eine
Teilmenge von TCTL (Behrmann et al., 2004). Die Logik beinhaltet Basisfor‑
meln BF, Konfigurationsformeln CF und Pfadformeln, PF, die sich wiederum
in existenzielle und universelle Pfadformeln (EPF und APF) aufteilen
(Olderog und Dierks, 2008). Im folgenden wird die Syntax beschrieben:

45

Definition 8 (UPPAAL‑TCTL Formeln Olderog und Dierks (2008)).

BF ::= Ai.l | φ,
CF ::= BF | ¬CF | CF1 ∧ CF2,

EPF ::= ∃♦CF | ∃�CF,
APF ::= ∀�CF | ∀♦CF | CF1 → CF2,

PF ::= EPF | APF.

Definition 9 (UPPAAL‑TCTL Semantik Olderog und Dierks (2008)). Sei ξ
ein Pfad einer Konfiguration mit Start ⟨l⃗0, ν0⟩, t0 und für einen Wert t ∈ Time
sei ξ(t) = {⟨⃗l, ν⟩ | ∃i ∈ N : (ti ≤ t ≤ ti+1 ∧ l⃗ = l⃗i ∧ ν = νi + t − ti)} die Menge
der Konfigurationen zum Zeitpunkt t. Sei |= eine binäre Erfüllbarkeitsrelation zwi‑
schen Konfigurationen ⟨l⃗0, ν0⟩, t0 eines Timed Automata Netzwerks und Formeln F
geschrieben als ⟨l⃗0ν0⟩, t0 |= F wird induktiv definiert:

⟨l⃗0, ν0⟩, t0 |= Ai.l gdw. l0,i = l
⟨l⃗0, ν0⟩, t0 |= φ gdw. ν0 |= φ

⟨l⃗0, ν0⟩, t0 |= ¬CF gdw. ⟨l⃗0, ν0⟩, t0 ̸|= CF,
⟨l⃗0, ν0⟩, t0 |= CF1 ∧ CF2 gdw. ⟨l⃗0, ν0⟩, t0 |= CF1 und ⟨l⃗0, ν0⟩, t0 |= CF2

⟨l⃗0, ν0⟩, t0 |= ∃♦CF gdw. ∃ξ mit Start bei ⟨l⃗0, ν0⟩, t0
∃t ∈ Time, ⟨⃗l, ν⟩ ∈ Conf : t0 ≤ t
∧⟨⃗l, ν⟩ ∈ ξ(t) ∧ ⟨⃗l, ν⟩, t |= CF,

⟨l⃗0, ν0⟩, t0 |= ∀�CF gdw. ∀ξ mit Start bei ⟨l⃗0, ν0⟩, t0
∀t ∈ Time, ⟨⃗l, ν⟩ ∈ Conf : t0 ≤ t
∧⟨⃗l, ν⟩ ∈ ξ(t)∧ ⇒ ⟨⃗l, ν⟩, t |= CF,

⟨l⃗0, ν0⟩, t0 |= ∃�CF gdw. ∃ξ mit Start bei ⟨l⃗0, ν0⟩, t0
∀t ∈ Time, ⟨⃗l, ν⟩ ∈ Conf : t0 ≤ t
∧⟨⃗l, ν⟩ ∈ ξ(t)∧ ⇒ ⟨⃗l, ν⟩, t |= CF,

⟨l⃗0, ν0⟩, t0 |= ∀♦CF gdw. ∀ξ mit Start bei ⟨l⃗0, ν0⟩, t0
∃t ∈ Time, ⟨⃗l, ν⟩ ∈ Conf : t0 ≤ t
∧⟨⃗l, ν⟩ ∈ ξ(t) ∧ ⟨⃗l, ν⟩, t |= CF,

46

⟨l⃗0, ν0⟩, t0 |= CF1 → CF2 gdw. ∀ξ mit Start bei ⟨l⃗0, ν0⟩, t0
∀t ∈ Time, ⟨⃗l, ν⟩ ∈ Conf : t0 ≤ t
∧⟨⃗l, ν⟩ ∈ ξ(t)∧ ⇒ ⟨⃗l, ν⟩, t |= CF1

impliziert ⟨⃗l, ν⟩, t |= ∀♦CF2.

₂.₃.₃ SATISFIABILITY MODULO THEORIES

Das Satisfiability Modulo Theories (SMT) Problem ist eine Erweiterung des all‑
gemeinen Erfüllbarkeitsproblems für boolsche Formeln (Boolean Satisfiabili‑
ty Problem (SAT))) um eine Hindergrundtheorie (Barrett, Clark und Tinelli,
Cesare, 2018). Eine Hintergrundtheorie HINTERGRUNDTHEORIElässt sich informell als endliche oder
unendliche Menge an Formeln, die durch gemeinsame grammatikalische
Regeln charakterisiert sind, beschreiben (Kroening und Strichman, 2008).
Beispiele hierfür sind lineare Arithmetik, Bitvektoren, Arrays oder Zeiger‑
logik. Die in dieser Arbeit verwendete Theorie ist die der linearen Arithmetik LINEAREN ARITHMETIK.
Diese ist wie folgt definiert:

Definition 10 (Syntax für SMT Formelnmit linearer Arithmetik). Die Syntax
einer prädikatenlogischen Formel mit linearer Arithmetik ist durch die folgende
Grammatik gegeben (Kroening und Strichman, 2008):

formula : formula ∧ formula | (formula) | atom
atom : sum op sum

op : =|≤|<

sum : term | sum+ term
term : identifier | constant | constant identifier.

Formeln bestehen also aus Konjunktionen linearer Constraints. Ein linearer
Constraint ist dabei eine (Un‑)Gleichung über Terme, die wiederum Kon‑
stanten oder Variablen sein können. Die Syntax lässt sich einfach um die
Operatoren > und ≥ sowie − erweitern, indem die jeweiligen Symbole ne‑

47

giert werden. Als Domäne für die Terme können sowohl rationale Zah‑
len als auch natürliche Zahlen (Integer) gewählt werden. Formeln mit ra‑
tionalen Zahlen lassen sich mit dem generellen Simplexalgorithmus und
damit in polynomieller Zeit lösen. Für natürliche Zahlen ist das Problem
NP‑vollständig (Kroening und Strichman, 2008). Ein Beispiel für eine sol‑
che Formel ist F = a1 + 1 ≤ a2 ∧ a2 + 5 ≤ a3.
Im weiteren Verlauf der Arbeit verwenden wir ein Werkzeug zur Lösung
der Erfüllbarkeit von logischen Formeln mit linearer Arithmetik, um die
Konsistenz von Timing Anforderungen zu überprüfen.

₂.₃.₄ MAXIMUM SATISFIABILITY & UNSATISFIABLE CORES

Die zuvor beschriebenenMethoden ermöglichen es logische Formeln auf ih‑
re Erfüllbarkeit hin zu überprüfen. Das bloße Wissen über die Erfüllbarkeit
ist jedoch nicht immer ausreichend. Insbesondere, wenn eine Formel nicht
erfüllbar ist, ist es wichtig zu wissen warum diese nicht erfüllbar ist. Daher
gibt es neben dem Erfüllbarkeitsproblem weitere Fragestellungen, die sich
mit OptimierungsaufgabenOPTIMIERUNGSAUFGABEN für logische Formeln beschäftigen (Bjorner und
Phan, 2014). Im Folgenden werden die Probleme derMaximum SatisfiabilityMAXIMUM SATISFIABILITY

zum Finden einer maximal großen Menge erfüllbarer Formeln und desUn‑
sat CoresUNSAT CORES zum Finden einer minimal großen Menge unerfüllbarer Formeln
vorgestellt.

MAXIMUM SATISFIABILITY

Die Aufgabe des Findens einer maximal großen Menge an erfüllbaren For‑
meln wird auch als MaxSMTMAXSMT bezeichnet und wird in Bjorner und Phan
(2014) folgendermaßen definiert:

Definition 11 (WeightedMaxSMT). Gegeben sei eineMenge an FormelnF und
numerischen Gewichten w ∈ W zusammen mit einer Funktion für jede Formel
c : F → W. Dann ist es die Aufgabe für Weighted Maximum Satisfiability
Solving Modulo Theories (MaxSMT) eine Teilmenge I ⊆ F zu finden, sodass:

1.
∧

f∈I f erfüllbar ist und

48

2.
∑

f∈I c(f) maximal für alle Teilmengen von F ist.

Ist also eine logische Formel nicht erfüllbar, so beschreibt das Problem
MaxSMT das Finden einer Teilmenge von Formeln, die eine zuvor festge‑
legte Kostenfunktion KOSTENFUNKTIONmaximiert. Falls es keine Prioritäten bei den Formeln
gibt, so wird c(f) = 1 für alle Formeln gesetzt. Das Finden eines Maxi‑
mum Satisfiable Sets ist ebenfalls wie das einfache Erfüllbarkeitsproblem
NP‑vollständig (Garey et al., 1976). Das folgende Beispiel verdeutlicht die
Definition von MaxSMT:

Beispiel 1 (Beispiel für MaxSMT). Sei F := {f1, f2, f3} eine Menge von Formeln
mit f1 := a < b, f2 := b < c und f3 := c < a, wobei a, b und c jeweils Konstanten
sind. Die FormelmengeF ist nicht erfüllbar, da es für die Konjunktion der Formeln
keine erfüllbare Belegung der Konstanten gibt. Die Teilmengen I1 := {f1, f2}, I2 :=
{f2, f3} und I3 := {f3, f1} sind hingegen erfüllbar und maximal groß. Eine erfüllbare
Belegung für I1 wäre beispielsweise a = 1, b = 2, c = 3. Daher sind diese Teilmengen
Beispiele für eine Lösung von MaxSMT.

In dieser Arbeit verwenden wir einen Algorithmus zum Lösen von
MaxSMT, um eine maximal große Menge an konsistenten Anforderungen
zu berechnen.

MINIMUM UNSATISFIABLE CORES

Ein Unsatisfiable Core (oder in Kurzform: Unsat Core) einer unerfüllbaren
logischen Formel in konjunktiver Normalform ist jede unerfüllbare Teil‑
menge der ursprünglichen Menge an Klauseln (Kroening und Strichman,
2008).

Definition 12 (Unsatisfiable Core). (Lynce und Silva, 2004) Gegeben sei eine
Formel φ, UC ist ein Unsatisfiable Core für φ genau dann wenn UC eine Formel φc
ist, sodass φc unerfüllbar ist und φc ⊆ φ.

Unsat Cores können dabei helfen, die Ursache für die Unerfüllbarkeit ei‑
ner Formel zu finden, indem sie den Fokus auf eine unerfüllbare Teilmenge

49

des Gesamtproblems legen (Kroening und Strichman, 2008). Für jede For‑
mel existieren jedoch typischerweise mehrere Unsat Cores mit einer un‑
terschiedlichen Anzahl an Klauseln, wobei einige Unsat Cores wiederum
Teilmengen anderer sind (Lynce und Silva, 2004). Ummöglichst genau den
Grund der Unerfüllbarkeit einer Formel zu finden, ist es wichtig, dass ein
Unsat Core minimal ist. Dieser Unsat Core wird dann alsMinimal Unsatis‑
fiable Core bezeichnet:

Definition 13 (Minimal Unsatisfiable Core). (Lynce und Silva, 2004) Ein Un‑
satisfiable Core UC für φ ist ein Minimal Unsatisfiable Core genau dann wenn aus
dem Entfernen jedes beliebigen Ausdrucks ω ∈ UC folgt, dass UC − ω kein Unsa‑
tisfiable Core mehr ist.

Ein Minimal Unsatisfiable Core einer unerfüllbaren logischen Formel
ist also eine Teilmenge von Aussagen, die nicht weiter verkleinert werden
kann, ohne dass sie dann erfüllbar wird (Liffiton und Sakallah, 2008). Im
Rahmen dieser Arbeit verwenden wir den Minimal Unsatisfiable Core
zur Berechnung kleinstmöglicher inkonsistenter Anforderungsmengen
und nennen ihn im folgenden einfach Unsat Core. Das folgende Beispiel
verdeutlicht die Definition:

Beispiel 2 (Beispiel für einen Minimal Unsatisfiable Core). Sei φ = a <

b∧ b < c∧ c < d∧ c < a∧ d < b. Die Gesamtformel ist unerfüllbar. Jede beliebige
Teilmenge an Ausdrücken, die ebenfalls unerfüllbar ist, ist dann ein Unsatisfiable
Core, beispielsweise φc = a < b∧b < c∧c < d∧d < b. φc ist jedoch nicht minimal,
da durch das Entfernen des Ausdrucks a < b die Formel ebenfalls unerfüllbar ist.
Erst aus der Formel φc′ = b < c ∧ c < d ∧ d < b kann kein weiterer Ausdruck ent‑
fernt werden, ohne dass die Formel dann erfüllbar wird. Somit ist φc′ ein Minimal
Unsatisfiable Core.

Sowohl für das Lösen von SMT‑Formeln, als auch für die Berechnung von
MaxSMTundUnsat Corewird in dieser Arbeit der SMT SolverZ3Z₃ ¶ verwen‑
det (de Moura und Bjørner, 2008). Z3 wird von Microsoft entwickelt und
wird dort bereit seit 2007 verwendet. Für das Erstellen von SMT‑Formeln
existieren Anbindungen an die verschiedensten Programmiersprachen wie

¶https://github.com/Z3Prover/z3

50

C, OCaml, Java oder .NET. Ebenfalls ist es möglich Formeln in der standar‑
disierten Beschreibungssprache SMT‑LIB einzulesen (Barrett, Clark et al.,
2017, de Moura und Bjørner, 2008).

₂.₄ ZUSAMMENFASSUNG

In diesem Kapitel wurden die für diese Arbeit wichtigen Grundlagen vor‑
gestellt. Zunächst wurde der Entwicklungsprozess der Automobilindustrie
vorgestellt (siehe Abschnitt 2.1). Anhand dieses Prozesses wird im nächs‑
ten Kapitel (Kapitel 3) der entwickelte Ansatz einsortiert und daran dessen
Vor‑ und Nachteile erläutert.
Weiterhin wurde der AUTOSAR‑Standard in Abschnitt 2.1 vorgestellt,

der eine Entwicklungsmethodik undMetamodell umfasst. Dieses Metamo‑
dell ist Gegenstandder imweiterenVerlauf vorgestelltenAnalysemethoden
in Kapitel 4 und 5.
EbenfallswurdenAnforderungsmodelle, sowieKonsistenz als relevantes

Qualitätskriterium für Anforderungen in Abschnitt 2.2 vorgestellt, für das
später eine Methode zur Verifikation vorgestellt wird (Kapitel 5).
Es wurden formale Methoden zur Verifikation zeitbehafter Systeme, so‑

wie SMT Grundlagen in Abschnitt 2.3 vorgestellt. Die in den nachfolgen‑
den Kapiteln vorgestellten Ansätze nutzen diese, indem relevante Teile des
AUTOSAR‑Modells in die jeweiligen Analysemodelle transformiert wer‑
den, sodass existierende Werkzeuge für die Verifikation eingesetzt werden
können.

51

52

3
Frühzeitige Verifikation von

AUTOSAR Timing
Anforderungen

EINE DERWICHTIGSTENKRITERIEN IN DERENTWICKLUNG AKTUELLER ELEKTRISCH‑
ELEKTRONISCHER ARCHITEKTUREN IST TIMING (AUTOSAR, 2019d). Der Grund
dafür ist nicht nur, dass die zu entwickelnden Teilfunktionen Echtzeitan‑
forderungen haben, sondern darüber hinaus auch sicherheitskritisch sind,
sodass die Absicherung besonders sorgfältig im Sinne von Sicherheitsstan‑
dards wie der ISO 26262 ISO ₂₆₂₆₂(ISO International Organisation for Standardisati‑
on, 2018) durchgeführt werden muss. Des Weiteren ist die Verifikation von
Timing Anforderungen sehr aufwändig. Etablierte Validierungsmethoden
wie die Simulation des Steuergeräts unterstützen entweder die Simulation
des Zeitverhaltens gar nicht oder nur eingeschränkt. Ebenfalls haben diese
Verfahren nur eine eingeschränkte Aussagekraft, da sie kritische Randfälle
wie obere Laufzeitschranken nur abschätzen können (Richter, 2005), sodass
sie für die Timing Verifikation ungeeignet sind (Wilhelm et al., 2008, Ha‑

53

mann et al., 2006). Werkzeuge oder Methoden zur statischen Analyse hin‑
gegen können aufgrund der Verwendung abstrakter Modelle nur eine kon‑
servative AbschätzungKONSERVATIVE

ABSCHÄTZUNG
von Laufzeitschranken berechnen, wie beispielsweise

Real‑Time Calculus von Thiele et al. (2000), Albers et al. (2008) oder Sym‑
TA/S von Feiertag et al. (2008) (Zhang et al., 2014) oder haben hohe LaufzeitenHOHE LAUFZEITEN ,
wenn sie beispielsweise aufModel Checking Technikenwie TimedAutoma‑
ta basieren (Perathoner et al., 2009). Des Weiteren erfordern diese Metho‑
den zudem, dass existierende Modelle wie AUTOSAR‑ oder Bus‑Modelle
und Quellcode zunächst in für die Analysewerkzeuge notwendigen abs‑
trakten Analysemodelle transformiert werdenmüssen. Daher werden diese
Methoden häufig erst spät im Entwicklungsprozess eingesetzt (Anssi et al.,
2012). Werden Fehler beim Validieren der Timing Anforderungen erkannt,
so müssen jedoch alle in den vorherigen Entwicklungsphasen erstellten Ar‑
tefakte überarbeitet werden. Je später Fehler identifiziert werden, desto auf‑
wändiger und teurer wird die Korrektur und somit die gesamte Entwick‑
lung (Schäuffele und Zurawka, 2010). Das Ziel ist es somit Timing Anforde‑
rungen so früh wie möglich durch automatisierte Verfahren zu überprüfen
und gegen alle verfügbarenArtefakte zu validieren. Somit lassen sich Fehler
frühzeitig identifizieren und Entwicklungszyklen können weiter verkürzt
werden ohne dabei Defizite bei der Qualitätssicherung einzugehen.

Der im Folgenden vorgestellte Lösungsansatz unterstützt dieses Vor‑
gehen, indem Anforderungen schon vor der eigentlichen Verifikation
auf Konsistenz überprüft werden, sodass eine laufzeitintensive Verifika‑
tion nur auf konsistenten Daten durchgeführt wird und somit unnötige
Wiederholungen der Verifikation aufgrund von inkonsistenten Anforde‑
rungsmengen vermieden werden. Des Weiteren lässt sich die Verifikation
ohne die Verwendung von Quellcode durchführen, was dazu führt, dass
auch die Timing Verifikation bereits in Entwicklungsphasen durchgeführt
werden kann, in denen noch kein Quellcode vorhanden ist.

Dieses Kapitel stellt eine Übersicht über die entwickelte Methode zur
frühzeitigen Timing Verifikation von AUTOSAR Timing Anforderungen
vor. Es wird zunächst das Konzept der integrierten Konsistenzprüfung und
Timing Verifikation vorgestellt. Danach werden die für die Methode be‑
nötigten AUTOSAR Modellelemente formal definiert. Im Anschluss wird

54

diskutiert, an welchen Stellen des AUTOSAR‑basierten Softwareentwick‑
lungsprozesses die Methode zum Einsatz kommen kann und welche Vor‑
und Nachteile daraus resultieren. Dieses Kapitel basiert teilweise aus den
bereits veröffentlichten Arbeiten Beringer undWehrheim (2016) und Berin‑
ger und Wehrheim (2020).

₃.₁ KONSISTENZPRÜFUNG UND TIMING VERIFIKATION

Verschiedene Klassen von Timing Anforderungen ermöglichen eine
einfache Verwendung für verschiedene Teile der Softwarearchitektur
in unterschiedlichen Entwicklungsphasen. Nichtsdestotrotz kann es
schwierig werden den Überblick über alle Anforderungsartefakte zu
behalten, gerade wenn diese im Laufe der Zeit in Menge und Komplexität
zunehmen, sodass Inkonsistenzen auftreten können. Eine inkonsistente
Anforderungsmenge kann ein Anzeichen für ein Missverständnis der
erwarteten Systemfunktionalität durch den Softwareentwickler, den Sys‑
temarchitekten oder weitere Stakeholder sein. Sie kann aber auch durch
eine fehlerhafte Modellierung oder eine fehlerhafte Interpretation der
natürlichsprachlich beschriebenen Anforderungen sein. Darüber hinaus
führen inkonsistente Anforderungen immer zu fehlerhaften Verifikations‑
läufen, wenn Anforderungen formal gegen die Systemarchitektur geprüft
werden, da die Verifikation unvermeidlich für einige Anforderungen
fehlschlägt.
Daher ist es vorteilhaft, Inkonsistenzen in Anforderungsmengen bereits

vorab zu erkennen. Dazu schlagen wir eine Methode zur Unterstützung
der frühzeitigen Validierung der AUTOSAR Softwarearchitektur vor, in‑
dem zunächst der Prozess der Spezifikation von AUTOSAR Timing An‑
forderungen durch eine Konsistenzanalyse vereinfacht wird und im An‑
schluss daran mittels Timing Verifikation auf Korrektheit hinsichtlich der
spezifizierten Anforderungen überprüft wird. Dies umfasst insgesamt die
folgenden vier Schritte: Im ersten Schritt wird eine vorgegebene Menge an
AUTOSAR Timing Anforderungen auf Konsistenz überprüft KONSISTENZ ÜBERPRÜFT, indem diese in
logische Formeln transformiert werden. Dies ermöglicht es die Timing An‑

55

forderungen zu überprüfen bevor weitere Verifikationsaufgaben angesto‑
ßen werden und unterstützt einen Requirements Engineer bei der Fehlerbe‑
hebung. Ist die Menge der Anforderungen inkonsistent, werden in einem
zweiten SchrittmöglicheUrsachen für InkonsistenzenURSACHEN FÜR

INKONSISTENZEN
identifiziert. Dazuwer‑

den Teilmengen ermittelt, die zur Auflösung der Inkonsistenz in Betracht
gezogen werden sollten, und dem Anwender vorgeschlagen. Dies beinhal‑
tet Teilmengen, die für sich gesehen bereits inkonsistent sind. Des Weiteren
werden größtmögliche konsistente Anforderungsmengen ermittelt, sodass
ein Requirements Engineer durch die Betrachtung der Teilmenge im Zu‑
sammenhang mit den restlichen Anforderungen Inkonsistenzen ausfindig
machen und auflösen kann. Unterstützt wird er ebenfalls durch eine ge‑
eignete grafische Visualisierung dieser Teilmengen. Ein Requirements En‑
gineer hat dann im dritten Schritt die Möglichkeit auf Basis der erzeugten
Hinweise durchModifikationMODIFIKATION der Teilmengen eine neue Anforderungsmen‑
ge zu erzeugen. Diese kann dann erneut auf Konsistenz geprüft werden.
Ist die Menge der Anforderungen schließlich konsistent, kann sie in einem
vierten Schritt verifiziert werden. Für die VerifikationVERIFIKATION werden dann sowohl
die Anforderungen als auch die Softwarearchitektur nach Timed Automata
transformiert und anschließend mittels UPPAAL verifiziert.
Eine Übersicht über die vier Schritte und ihre Ausführungsreihenfolge,

sowie einVerweis auf den entsprechendenAbschnittderArbeit, ist inAbbil‑
dung 3.1 dargestellt. Für eine gegebene Menge an Anforderungsartefakten
R und eine gegebenes Softwarearchitekturmodell M ist die Ausführungs‑
reihenfolge wie folgt:

1. Prüfen der Konsistenz der Anforderungsmenge R. Dieser Schritt
wird in Abschnitt 4.1 vorgestellt.

2. Wenn die Gesamtmenge der Anforderungsartefakte nicht konsistent
ist, werden die Ursachen für Inkonsistenz identifiziert, ansonsten
weiter nach Schritt 4. Dieser Schrittwird inAbschnitt 4.2.1 vorgestellt.

3. Überarbeiten der Anforderungsartefakte auf der Grundlage der Hin‑
weise aus dem vorherigen Schritt. Danach kann erneut bei Schritt 1
begonnen werden und die Schritte 1‑3 werden so lange wiederholt

56

bis die Anforderungsmenge konsistent ist. Dieser Schritt wird in Ab‑
schnitt 4.2.2 vorgestellt.

4. Durchführen der Verifikation auf der Anforderungsmenge und dem
Architekturmodell (M,R). Dies wird in Kapitel 5 gezeigt.

AUTOSAR
Timing

Anforderungen
model liert

Timing
Anforderungen

ve rifizi eren
(Ka pite l 5)Timing

Anforderungen
konsis tent?

Timings
ve rifizi ert

Timing
Anforderungen auf
Konsis tenz prüfen

(Abschnitt 4.1)

Ursachen für
Inkons istenzen
ide ntifi zieren

(Abschnitt 4.2.1)

Timing
Anforderungen
überarbeite n

(Abschnitt 4.2.2)

Timing
Anforderungen

erfüllt?

Nein

JaJa

Nein

Abbildung 3.1:Analyseprozess als BPMN-Prozess

₃.₂ ZEITASPEKTE INNERHALB EINER AUTOSAR SOFT‑
WAREARCHITEKTUR

Die Spezifikation von AUTOSAR gibt zwar über das Metamodell eine for‑
male Syntax vor, die formale Semantik des Modells wird allerdings nur in
textuellen Spezifikationen festgehalten, sodass semantische Analysen des
Timing Verhaltens auf AUTOSAR‑Modellen nicht durchgeführt werden
können. Üblicherweise wird für die Validierung vonAUTOSAR ein simula‑
tionsbasierter Ansatz gewählt, bei dem sowohl für das AUTOSAR‑Modell
als auch für die Verhaltensmodelle aus Simulink Code generiert, kompi‑
liert und im Anschluss als virtuelles Steuergerät im Verbund mit einem
Umgebungsmodell simuliert wird. Diese Möglichkeit der Generierung
virtueller Steuergeräte auf der Basis von AUTOSAR‑Modellen mithilfe

57

von Codegenerierungs‑ und Simulationswerkzeugen wie Targetlink®und
SystemDesk®ist zur Verwendung als Grundlage für eine formale Semantik
zur Verifikation von Timing Anforderungen jedoch nicht zielführend, da
der Code und somit das Verhalten dieser Steuergeräte in der Simulation zur
Absicherung funktionaler Eigenschaften vorgesehen ist und Zeitaspekte
wie beispielsweise spezifizierte Worst‑ und Best‑Case Execution Times
nicht berücksichtigt. Daher ist es notwendig eine eigene formale Semantik
auf Basis der textuellen Spezifikationen herzuleiten, die alle für eine Timing
Analyse notwendigen Metamodell‑Elemente abbildet.

Eine vollständige Formalisierung des AUTOSARMetamodells ist jedoch
aufgrund derGröße desMetamodells und der Spezifikation nicht so einfach
möglich. Allerdings haben viele Modellelemente keinen Einfluss auf das
zeitliche Verhalten des Systems oder es existieren viele spezialisierte Klas‑
sen, die jedoch alle ein ähnliches zeitliches Verhalten haben.Wir beschrän‑
ken uns daher imFolgenden auf Elemente, die einen großen Einfluss auf das
Laufzeitverhalten des Systems haben und geben anschließend eine verein‑
fachte Formalisierung des Metamodells vor. Die formale Beschreibung von
AUTOSAR teilt sich im Folgenden in die formale Spezifikation des AUTO‑
SAR Architekturmodells und der AUTOSAR Timing Anforderungen auf.

₃.₂.₁ FORMALE SPEZIFIKATION DER AUTOSAR SOFTWAREARCHITEK‑
TUR

In diesem Abschnitt wird eine formale Verhaltensspezifikation erar‑
beitet, die das Zeitverhalten eines AUTOSAR Steuergeräts nachbildet,
sodass sich auf dieser Basis Analyseverfahren entwickeln lassen. Für
die formale Spezifikation der AUTOSAR Softwarearchitektur werden
auf allen Ebenen der AUTOSAR‑Schichtenarchitektur timing‑relevante
Elemente identifiziert und im formalen Modell festgehalten. Auf dieser
Grundlage lassen sich dann Timing Analysen für fast allen Sichten der
AUTOSAR‑Entwicklungsmethodik erstellen.

58

FORMALE EIGENSCHAFTEN DER SOFTWAREARCHITEKTUR

Wir definieren für jede AUTOSAR Softwareschicht eine Teilmenge der ver‑
fügbarenModellelemente, die für das Laufzeitverhalten relevant ist und für
die wir dann ein formales Modell angeben.

TIMING AUF APPLIKATIONSEBENE

Für die Modellierung des Timing Verhaltens auf Applikationsebene ist es
notwendig das Verhalten von Runnables, Variablenzugriffen (Variable Acces‑
ses) und deren Verbindungen (Assembly Connections) abzubilden. Wir abs‑
trahieren vom Konzept der Softwarekomponenten und Ports, da es für das
Timing nicht relevant ist, ob zwei Runnables in verschiedenen Software‑
komponenten über Ports miteinander kommunizieren oder direkt in einer
einzigen Softwarekomponente über sogenannte Inter‑Runnable‑Variablen,
solange beide Runnables auf demselben Steuergerät laufen. Weiterhin gibt
es Modellelemente, mit denen der Resourcenverbrauch von Runnables mo‑
delliert werden kann. Mithilfe dieser Elemente werden dann Worst‑Case
Execution Times und Best‑Case Execution Times festgelegt.

TIMING AUF RTE EBENE

Die RTE‑Ebene ist eine standardisierte Schnittstelle für die Software der An‑
wendungsschicht und ist verantwortlich für das Triggern der Runnables,
so wie sie im Betriebssystem spezifiziert sind. Das Betriebssystem verfügt
über einen Scheduler und überwacht die Ausführung von Resourcen durch
OSTasks. Aus diesem Grund müssen Runnables auf OSTasks abgebildet
werden, um die Ausführungsreihenfolge der Runnables festzulegen. Dies
geschieht in der RTE‑Konfiguration mithilfe des sogenannten RTEEventTo‑
TaskMapping RTEEVENTTOTASKMAPPING. Dieses Mapping bildet Events, die das Triggern eines Runn‑
ables darstellen, auf OSTasks ab.

59

TIMING AUF BASISSOFTWAREEBENE

Auf Basissoftwareebene spezifiziert AUTOSAR Module, die für jedes Steu‑
ergerät einzeln spezifiziert werden. Amwichtigsten für das Timing Verhal‑
ten sind Module, die Einfluss auf die Ausführungsreihenfolge der Runnab‑
les haben. Dies ist im Wesentlichen das AUTOSAR Betriebssystem, das auf
dem OSEK‑Standard* basiert.
Für diese Modellelemente geben wir ein vereinfachtes formales AUTO‑

SAR Architekturmodell wie folgt an:

Definition 14 (AUTOSAR architecture). Die vereinfachte formale AUTOSAR
Softwarearchitektur AR = (R,C,VA,T,TRM, p) besteht aus

1. einer Menge an Variablenzugriffen (Variable Acess Elemente) VA,

2. einer Menge von RunnableEntities

R ⊆ {(VAread,VAwrite,wcet, bcet) | VAread ⊆ VA,VAwrite ⊆ VA, bcet ≤ wcet}

mit VAread einer Menge an Lesezugriffen (Variable Read Accesses),
VAwrite einer Menge an Schreibzugriffen (Variable Write Accesses) mit
VAread ∩ VAwrite = ∅, wcet ∈ N der Worst‑Case‑ und bcet ∈ N der
Best‑Case‑Execution Time,

3. einerMenge anAssemblyConnectionsC ⊆ {(left, right) | left ∈ VA, right ∈ VA},
die zwei Variablemzugrifsselemente miteinander verbinden,

4. einer Menge periodisch getriggerter Tasks T mit Periode p und

5. einem Task‑Runnable‑Mapping TRM : R → T, welches Runnables auf
Betriebssystemtasks abbildet.

Dieses formale Modell einer AUTOSAR Softwarearchitektur wird im
weiteren Verlauf in Abschnitt 5.1 in ein Netzwerk aus Timed Automata
transformiert, um das Timing Verhalten formal abzubilden, auf dessen
Basis spezifizierte Timing Anforderungen verifiziert werden können.

*http://osek-vdx.org

60

http://osek-vdx.org

FORMALES MODELL DER AUTOSAR TIMING EXTENSIONS

Sei E = {e1 . . . en} die Menge der Timing Description Events und
R = {re1, . . . , rem} die Menge der Runnable Entities. Sei weiterhin die
Menge aller Timing Constraints definiert als R = {r1, . . . , rk}. Die in
Abschnitt 2.1.2 vorgestellten AUTOSAR Timing Extensions werden dann
folgendermaßen formalisiert:

Offset Timing Constraint DerOffset TimingConstraint rotc = (es, et,min,max)
beschränkt die Zeit zwischen einem Source Event es ∈ E und einem
Target Event et ∈ E durch die Definition eines minimalen und
maximalen Offsets min,max ∈ R zwischen diesen beiden Events. Die
Summe aller Offset Timing Constraints der Anforderungsmenge R
bezeichnen wir alsRotc ⊆ R.

Latency Timing Constraint Der Latency Timing Constraint rltc =

(C,min,max) beschreibt eine minimale und maximale Latenz im Be‑
reich einer Timing Chain C. Die Timing Chain wird dabei abgebildet
auf eine geordnete Sequenz von Timing Events, C = ⟨e1, . . . , en⟩,
ei ∈ E für alle 1 ≤ i ≤ n, die in der spezifizierten Zeitspanne
auftreten müssen. Die Summe aller Latency Timing Constraints der
AnforderungsmengeR bezeichnen wir alsRltc ⊆ R.

Synchronization Timing Constraint Der Synchronization Timing Cons‑
traint rstc = (S, t), S ⊆ E spezifiziert eine Menge von Timing Events,
die simultan innerhalb eines festgelegt Toleranzwertes t auftreten
müssen. Die Summe aller Synchronization Timing Constraints der
AnforderungsmengeR bezeichnen wir alsRstc ⊆ R.

Execution Order Constraint Der Execution Order Constraint reoc =

⟨rei, . . . , rej⟩ beschränkt die Ausführungsreihenfolge von Runnable
Entities. Für jeden Execution Order Constraint reoc ∈ Reoc mit einer
geordneten Menge von Runnable Entities ⟨re1 . . . ren⟩ darf ein nach‑
folgendes Runnable Entity rei+1 nur dann ausgeführt werden, wenn
das Runnable Entitie rei ausgeführt ist. Die Summe aller Execution
Order Constraints der Anforderungsmenge R bezeichnen wir als
Reoc ⊆ R.

61

Execution Time Constraint Der Execution Time Constraint retc =

(re,min,max) beschränkt nicht das Auftreten von Timing Events,
sondern die Ausführungszeit eines Runnable Entities re auf eine mi‑
nimale Dauer min und eine maximale Dauer max. Runnables können
dabei sowohl Runnable Enitites auf der Applikationssebene oder
Basissoftwaremodule auf Basissoftwareebene sein. Die Summe aller
Execution Time Constraints der Anforderungsmenge R bezeichnen
wir alsRetc ⊆ R.

Die formale Beschreibung der AUTOSAR Timing Extensions wird als Ba‑
sis für die in den folgenden Kapiteln beschriebenen Transformationen nach
SMT (Abschnitt 4.1) und Timed Automata (Abschnitt 5.2) verwendet.

₃.₃ INTEGRATION DER METHODE IN BESTEHENDE ENT‑
WICKLUNGSPROZESSE

Im Grundlagenkapitel wurde das V‑Modell als aktueller Entwicklungs‑
prozess der Automobilindustrie sowie die Anwendung der AUTOSAR‑
Methodik innerhalb dieses Prozesses beschrieben. Des Weiteren wurde
nun eineMethode zur Verifikation von AUTOSAR Timing Constraints vor‑
gestellt. Diese Methode arbeitet auf der Basis von AUTOSAR‑Artefakten
und beinhaltet eine Konsistenzprüfung und Verifikation von AUTOSAR
Timing Constraints.
Es gibt nun unterschiedliche Möglichkeiten, zu welchem Zeitpunkt oder

in welcher Prozessphase Konsistenz‑ und Timing Analyse durchgeführt
werden können. Eine Möglichkeit ist es die Analysen durchzuführen,
nachdem die Softwarekomponenten entwickelt und integriert wurden.
Zu diesem Zeitpunkt lassen sich dann auch bereits Simulationsmodelle
der integrierten Software erstellen und funktionale Anforderungen testen.
Ebenfalls lassen sich dann Worst‑Case Execution Times aus einer Tas‑
kanalyse innerhalb der Timing Analyse verwenden, sodass die Analyse
hierdurch die Laufzeiten der Zielhardware widerspiegelt. Der Nachteil
an diesem Vorgehen ist, dass zunächst erste Implementierungen für alle
Softwarekomponenten existieren müssen und zusätzlich WCET‑Analysen

62

durchgeführt werden müssen (siehe Abschnitt 5.2). Dies ist jedoch erst
sehr spät im Entwicklungsprozess der Fall. Für diese WCET‑Analysen ist
es ebenfalls neben dem zusätzlichen Zeit‑ und Kostenaufwand notwendig,
die Zielhardware der Software bereits zu kennen. Daher ist dieses Vorge‑
hen zumindest aus der Sicht einer frühzeitigen Absicherung der Timing
Anforderungen eher unvorteilhaft.
Eine weitere Möglichkeit ist es, die Timing Analyse bereits durchzufüh‑

ren, sobald die ersten formalisierten Timing Anforderungen und das Archi‑
tekturmodell vorliegen. Eine Analyse lässt sich so bereits durchführen ohne
dass Implementierungen für Softwarekomponenten vorliegen. So kann die
erste TimingAnalyse bereits sehr früh durchgeführt werden. Eine erste Ein‑
schätzung der Laufzeit einzelner Runnable Entities muss dann allerdings
von Experten vorgenommen werden. Noch früher lässt sich beispielswei‑
se eine erste Konsistenzanalyse durchführen. Hierfür werden weder Quell‑
code, noch Details des AUTOSAR‑Modells benötigt, sondern lediglich die
AUTOSAR Timing Constraints. Daher wird auch im Sinne einer frühzeiti‑
gen Absicherung der Timings vorgeschlagen, bei der Entwicklung bereits
frühzeitig dieModellierung vonTimingConstraints durchzuführen, umdie
anschließende Konsistenzanalyse einsetzen zu können.
Abbildung 3.2 zeigt die Integration an zwei verschiedenen Stellen im

Entwicklungsprozess. Auf der linken Seite wird die Konsistenzanalyse und
Verifikation auf der Basis von Laufzeitschätzungen für einzelne Runnables
vorgenommen. Ist die Anforderungsmenge konsistent und werden die
festgelegten Timing Constraints eingehalten, kann das Ergebnis als Timing
Budget für die Implementierung der Softwarekomponenten herangezogen
werden. Auf der rechten Seite wird die Konsistenzanalyse und Verifikation
erst nach der Implementierung gemacht. In diesem Fall kann auf zuvor
durchgeführte Taskanalysen zurückgegriffen und somit die Laufzeiten
von Runnable Entities festgelegt werden. Führt die Verifikation zu dem
Ergebnis, dass nicht alle Timing Constraints eingehalten werden können,
muss die Implementierung der Runnable Entities angepasst werden.
Im Kontext der AUTOSAR‑Entwicklungsmethodik ist es für die Verifi‑

kation notwendig mindestens eine Softwarearchitektur auf VFB‑Ebene zu
modellieren, alle Softwarekomponenten mit den enthaltenen Runnables zu

63

act IntegrationView

AUTOSAR

Softwarearchitektur

AUTOSAR Timing

Extensions

Timing

Anforderungen auf

Konsistenz prüfen

und verifizieren

Timing Budgets

Softwarekomponenten

spezifizieren und

implementieren

Timings der

Softwarekomponenten

messen oder WCET

berechnen

AUTOSAR Timing

Extensions mit WCET

Timing

Anforderungen auf

Konsistenz prüfen

und verifizieren

Abbildung 3.2: Integration der Methode in den Entwicklungsprozess

modellieren, sowie eine Konfiguration der RTE zu erstellen und die Basis‑
softwaremodule des Betriebssystems zu konfigurieren.

₃.₄ ZUSAMMENFASSUNG

In diesem Abschnitt wurde ein Konzept zur Verifikation von Timing An‑
forderungen vorgestellt. Dazu wurde zunächst in Abschnitt 3.1 ein Prozess
definiert, der die einzelnen Schritte beschreibt. Weiterhin wurden die Zeit‑
aspekte einer AUTOSAR Softwarearchitektur und der Timing Anforderun‑
gen betrachtet und relevante Teile in Abschnitt 3.2 formalisiert. Des Weite‑
ren wurde in Abschnitt 3.3 vorgestellt wie sich das Konzept im Rahmen des
etablierten Softwareentwicklungsprozesses verhält und welche Vor‑ und
Nachteile dieser Ansatz hat. Das Konzept besteht im Kern aus zwei Teilen:
einer Methode zur Konsistenzprüfung der Timing Anforderungen mittels
SMT‑Formeln und einerMethode zur Verifikationmittels TimedAutomata.
Diese beidenMethodenwerden in den folgenden beidenKapiteln detaillier‑
ter betrachtet.

64

4
Konsistenzanalyse von

AUTOSAR Timing
Anforderungen

Während der Entwicklung eingebetteter automotiver Softwaresysteme
werden Timing Anforderungen auf Benutzerebene nach und nach weiter
verfeinert bis sie schließlich als AUTOSAR Timing Anforderungen die
zeitlichen Constraints im Kontext der AUTOSAR Softwarearchitektur
beschreiben. Bevor diese Anforderungen nun verifiziert werden, werden
sie hinsichtlich ihrer Konsistenz überprüft, da eine konsistente Anfor‑
derungsmenge Grundvoraussetzung dafür ist, dass alle Anforderungen
erfüllbar sind.

In diesem Kapitel wird die Methode zur Konsistenzanalyse von AU‑
TOSAR Timing Anforderungen vorgestellt. Diese repräsentiert den ersten
Schritt im Gesamprozess aus Abschnitt 3.1. Die Analyse wird dabei aus‑
schließlich auf den TimingAnforderungen durchgeführt und nicht auf dem
dazugehörigen Architekturmodell. Dadurch ist es möglich, bereits vor der
Verfügbarkeit eines vollständigen Architekturmodells, die Konsistenz der

65

Anforderungen zu überprüfen. Die Konsistenzanalyse wird durchgeführt,
indem alle Timing Anforderungen in SMT‑FormelnSMT‑FORMELN mit linearer Arithmetik
transformiert werden und auf Erfüllbarkeit hin untersucht werden. Dieser
logische Ansatz wurde gewählt, da er die zeitlichen Beschränkungen, die
durch die Timing Anforderungen entstehen, intuitiv beschreibt. Ebenfalls
ist durch die breite Verfügbarkeit effizienter Werkzeuge zum Lösen von
SMT‑Formeln zu erwarten, dass auch große Anforderungsmengen mit
diesem Ansatz geprüft werden können.
Zunächst wird die Transformation der in Abschnitt 3.2.1 vorgestellten

formal beschriebenen AUTOSAR Timing Anforderungen in eine SMT‑
Formel vorgestellt und am Blinkerbeispiel aus Abschnitt 2.1.2 erläutert.
Danach werden Verfahren zur Visualisierung inkonsistenter Anforde‑
rungsmengen beschrieben, um eine einfache Korrektur zu ermöglichen.
Dieses Kapitel basiert zum Großteil aus den bereits veröffentlichten
Arbeiten in Beringer und Wehrheim (2020).
Wie inDefinition 3 beschrieben, ist eineAnforderungsmenge genau dann

konsistent, wenn keine Teilmenge daraus in Konflikt zueinander steht. Das
bedeutet auch, dass die Anforderungsmenge konsistent ist, solange einMo‑
dell oder System existiert, dass alle Anforderungen erfüllen kann.

Definition 15 (Konsistenz). SeiR = {r1, . . . , rn} die Menge der Timing Anfor‑
derungen in einem AUTOSARModell und seiM die Menge aller Modelle. Dann
istR konsistent gdw. ∃M ∈ M : ∀ri ∈ R : M |= ri.

In unserem Fall besteht die Menge aus allen Modellen, die mithilfe des
AUTOSAR Metamodells definiert werden können und die Anforderungen
sind definiert als AUTOSAR Timing Constraints. Daher ist die Menge an
AUTOSAR Timing Constraints genau dann konsistent, wenn es ein AU‑
TOSAR Modell gibt, dass alle durch die Timing Anforderungen erzeugten
Restriktionen erfüllt. Da die Timing Constraints jedoch ausschließlich das
zeitliche Verhalten des Modells beschränken, ist es ausreichend, wenn aus‑
schließlich die Timing Events für eine Analyse betrachtet werden. Das Fin‑
den einer konsistenten Anforderungsmenge wird daher algorithmisch re‑
duziert auf das Finden einer validen Ausführungsreihenfolge von Timing
Events.

66

Z3

dS
PA

CE
 S

ys
te

m
D

es
k

AnalysemodellSpezifikationsmodell

<wird transformiert zu>

SMT Formeln

Lineare
Constraints

Variablen
<wird transformiert zu>

AUTOSAR
Modell

Software-
architektur

Timing Events

Timing
Anforderungen

Abbildung 4.1:Transformation von AUTOSARModellen nach SMT-
Formeln

₄.₁ TRANSFORMATION DER AUTOSAR TIMING ANFOR‑
DERUNGEN NACH SMT

In diesem Abschnitt beschreiben wir die Transformation von AUTOSAR‑
TimingAnforderungen in logische Formeln für einen SMT Solver. Die SMT‑
Formeln spiegeln die durch die TimingAnforderungen zuvor spezifizierten
zeitlichen Beschränkungen wider, sodass die Erfüllbarkeit der Formeln mit
der Existenz einer gültigen Ordnung von Timing Events, die alle Timing
Requirements erfüllt, äquivalent ist.
Das abstrakte Konzept ist in Abbildung 4.1 beschrieben. Das AUTOSAR‑

Modell enthält das Systemmodell, die Timing Events, die über Assoziatio‑
nen mit dem Systemmodell verknüpft sind, und die Timing Constraints.
Die Timing Events werden in SMT‑Variablen transformiert und die Timing
Constraints in lineare Constraints über die generierten Variablen. Das Sys‑
temmodell für die Konsistenzanalyse wird nicht benötigt. Die Transforma‑
tionenwurden automatisiert undwerden direkt auf das AUTOSAR‑Modell
in SystemDesk angewendet.
Einige Timing Constraints basieren nicht ausschließlich auf Timing

Events, sondern auch auf Runnable Entities, zum Beispiel der Execution
Order Constraint. Um Inkonsistenzen zwischen diesen Timing Constraints

67

und Timing Constraints auf Basis von Timing Events zu erkennen, werden
Timing Constraints auf der Grundlage von Runnable Entities so transfor‑
miert, dass sie ebenfalls auf Timing Events basieren. Dies ist möglich, da
AUTOSAR Timing Events zur Verfügung stellt, die im Zusammenhangmit
Runnable Entities stehen, wie beispielsweise das Starten oder die Terminie‑
rung eines Runnable Entities. Daher gehen wir im Folgenden davon aus,
dass für jedes Runnable Entity re ∈ RunnableEntities entsprechende Timing
Events esre und etre existieren, die Ereignisse für den Ausführungsbeginn
und die Terminierung des Runnable Entities darstellen. Einige Timing
Constraints schränken auch das Auftreten zwischen Timing Events ein,
sodass eine untere und obere Schranken selbst durch das Auftreten eines
anderen Timing Events definiert werden kann. Dennoch können alle Be‑
schränkungen für Timing Events als lineare Constraints definiert werden.
Deswegen kann die Existenz eines gültigen Modells überprüft werden,
indem nach einer gültigen Belegung t : E → R≥0 von Timing Events mittels
eines SMT‑Solvers mit linearer Arithmetik gesucht wird.

Für ein gegebenes AUTOSARModell mit Timing Events E = {e1 . . . en} und
Timing ConstraintsR = (r1, . . . , rm)wird eine SMT‑FormelF =

∧n
i=1 fri suk‑

zessive konstruiert. Jeder Term in F ist entweder ein konstanter Wert, wie
beispielsweise ein Toleranzwert oder Minimum‑/Maximum, oder eine Va‑
riable, die einem Timing Event e entspricht und eine erfüllbare Zuweisung
in den Zeitbereich t : E → R≥0 benötigt. Im Folgenden werden die Trans‑
formationen für jeden Typ von Timing Constraint genauer dargestellt.

OFFSET TIMING CONSTRAINT Ein Offset Timing Constraint rotc =

(es, et,min,max) beschränkt die Zeit zwischen dem Auftreten eines Source
Timing Events es und einem Target Timing Event et. Daher werden für
jeden Offset Timing Constraint rotc ∈ Rotc zwei Ausdrücke zur SMT‑Formel
wie folgt hinzugefügt:

frotc = es +max ≥ et ∧ es +min ≤ et. (4.1)

68

LATENCY TIMING CONSTRAINT Um zu verifizieren, dass ein Latency Ti‑
ming Constraint nicht mit anderen Timing Constraints im Konflikt steht,
beispielsweise mit einem Offset Timing Constraint, muss ein gültiges Auf‑
treten von Timing Events vorliegen, wobei eine Sequenz von Timing Events
vorliegenmuss, die nicht denMaximalwert des Latency TimingConstraints
überschreitet. Daher wird für jeden rltc ∈ Rltc mit einer Event Chain C =

⟨e1, . . . , en⟩ die SMT‑Formel wie folgt erweitert:

frltc = ∀i, 1 ≤ i ≤ n− 1 : ei ≤ ei+1 ∧min ≤ en − e1 ≤ max. (4.2)

SYNCHRONIZATION TIMING CONSTRAINT Ein Synchronization Timing
Constraint rstc = (S, tolerance), S ⊆ E spezifiziert eine Menge von Timing
Events, die gleichzeitig mit einem Toleranzwert auftreten müssen. Für
jeden Synchronization Timing Constraint rstc ∈ Rstc wird daher der
Toleranzwert für jede Kombination von Timing Events geprüft. Die
SMT‑Formel wird daher folgendermaßen erweitert:

frstc = ∀e, e′ ∈ S : e− e′ ≤ tolerance. (4.3)

EXECUTION ORDER CONSTRAINT Für jeden Execution Order Constraint
reoc ∈ Reoc mit einer Sequenz von Runnable Entities ⟨re1, . . . , ren⟩ gilt, dass
ein nachfolgendes Runnable Entity rei+1 nur dann ausgeführt werden
darf, wenn das vorherige Runnable Entity rei terminiert ist. Daher gilt
∀i, 1 ≤ i < n : rei ≤ rei+1. Da unser Ansatz daruf beruht eine gültige
Zuweisung basierend auf den Timing Events zu finden, müssen wir
zunächst eine Modellierungsalternative finden, die äquivalent ist, aber
stattdessen auf Timing Events anstelle von Runnable Entities basiert. Daher
modellieren wir die beschränkte Ausführung der Runnable Entities durch
Timing Events, die das Starten und die Terminierung eines entsprechenden
Runnable Entities repräsentieren und beschränken diese Timing Events so,
dass das Startevent eines nachfolgenden Runnable Entities später erfolgen
muss als das Terminierungsevent des vorherigen Runnable Entites. Sei esrei
und etrei das Startevent und das Terminierungsevent eines Runnable Entities

69

rei. Dann erhalten wir die folgende SMT‑Formel:

∀i, 1 ≤ i ≤ n− 1 : esrei ≤ etrei ∧ etrei ≤ esrei+1 . (4.4)

AUTOSAR ermöglicht auch die Anwendung von Execution Order Cons‑
traints auf Basissoftwaremodule. Die Benennung von Timing Events ist
dann anders, die vorgestellte allgemeine Transformation kann aber analog
angewendet werden.

EXECUTION TIME CONSTRAINT Ein Execution Time Constraint be‑
schreibt eine Beschränkung der Ausführungszeit auf der Basis lediglich
eines AUTOSAR‑Elements. Nichtsdestotrotz entspricht eine Beschrän‑
kung der Ausführungszeit eines Runnable Entities einem Offset Timing
Constraint zwischen dem Ausführungsstart und der Terminierung des
assoziierten Runnable Entities. Daher entspricht ein Execution Time
Constraint einem Offset Timing Constraint retc = (r,min,max) = rotc mit
rotc = (ers , ert ,min,max), wobei ers und ert die Timing Events sind, die für den
Start bzw. die Terminierung des Runnable Entities stehen.
Die Transformation von AUTOSAR Timing Requirements nach SMT

wurde beispielhaft für das Blinkerbeispiel ausAbschnitt 2.1.2 durchgeführt.
Für den Execution Order Constraint reoc gilt, dass die Start‑Events jedes
Runnables vor dem jeweiligen Terminierungs‑Event stattfinden müssen
und das Start‑Event für das Runnable Logic vor dem Terminierungs‑
Event des Runnables TssPreprocessing stattfinden muss. Analog dazu
muss das Terminierungs‑Event des Runnables Logic vor dem Start‑Event
des Runnables Toggle auftreten. In diesem Zusammenhang erzeugt un‑
ser Ansatz fünf Ungleichungen, die die Zeitvorgaben wie beschrieben
einschränken. Für den Offset Timing Constraint rotc werden zwei Un‑
gleichungen generiert, die den minimalen und maximalen Offset für die
entsprechenden Timing Events einschränken. Schließlich werden für die
Execution Time Constraints retc und retc2 jeweils zwei Klauseln generiert,
die das Timing für den Start und die Terminierung des Logic Runnables
und Toggle Runnables einschränken. Die generierten Ungleichungen für
die einzelnen Timing Constraints sind in Tabelle 4.1 zusammengefasst.

70

In diesem Beispiel ist die Anforderungsmenge nicht konsistent, da die
generierte Menge an Klauseln unerfüllbar ist. So kann beispielsweise
für die Menge {f1, f2, f4, f7, f8} keine erfüllbare Belegung gefunden wer‑
den. So gilt für f1, f2, f4 dass diese in einer zeitlichen Abfolge auftreten
müssen: esTssPreprocessing ≤ etTssPreprocessing ≤ esLogic ≤ etLogic. Die Klausel
f7 = esTssPreprocessing + 4 ≥ etLogic beschränkt den zeitlichen Abstand
zwischen dem ersten Event esTssPreprocessing und dem letzten Event etLogic
auf maximal 4 Zeiteinheiten. Eine mögliche Belegung für diese Klauseln
wäre esTssPreprocessing := 1, etTssPreprocessing := 2, esLogic := 3, etLogic := 4.
f8 = esLogic + 10 ≤ etLogic, beschränkt jedoch den Zeitabstand zwischen
den beiden Events esLogic und etLogic auf mindestens 10 Zeiteinheiten, sodass
dadurch die vorgeschlagene Belegung ungültig ist, da durch die Belegung
esLogic := 3, etLogic := 4 derminimale Zeitabstand nicht eingehaltenwird. Eine
alternative Belegung mit beispielsweise esLogic := 3, etLogic := 13macht zwar f8
erfüllbar, jedoch wird dadurch in jedem Fall die Klausel f7 verletzt, da nun
der minimale Zeitabstand zwischen dem ersten Event esTssPreprocessing = 1
und dem letzten Event etLogic = 13 größer als 4 ist. Die Klauseln sind somit
unerfüllbar und die Menge der Timing Constraints ist inkonsistent.
Die vorgestellte Methode ermöglicht es, zeitliche Inkonsistenzen in An‑

forderungsmengen zu erkennen. Das zuvor gezeigte Beispiel zeigt jedoch,
dass es schon bei wenigen Anforderungen schwierig ist, die Gründe für die
Inkonsistenz nachzuvollziehen. Dies erschwert eine Interpretation der Er‑
gebnisse und eine effiziente Korrektur der Anforderungen ist somit nicht
möglich. Daher werden im Folgenden Verfahren vorgestellt, die die Iden‑
tifikation von Ursachen für Inkonsistenzen unterstützen, um die Korrektur
der Anforderungen zu beschleunigen.

₄.₂ VERFAHREN ZUR KORREKTUR INKONSISTENTER AN‑
FORDERUNGSMENGEN

In diesemAbschnittwerdenMethoden zur Korrektur inkonsistenter Anfor‑
derungsmengen vorgestellt. Dazu betrachtenwir zuerst formaleMethoden,
die sich mit der Berechnung von für die Auflösung von Inkonsistenzen re‑

71

Tabelle 4.1:Beispieltransformationen

Anforderung Generierte Formeln

reoc =
⟨TssPreprocessing, Logic, Toggle⟩

f1 = esTssPreprocessing ≤
etTssPreprocessing
f2 = esLogic ≤ etLogic
f3 = esToggle ≤ etToggle
f4 = etTssPreprocessing ≤ esLogic
f5 = etLogic ≤ esToggle

rotc = (esTssPreprocessing, etLogic, 3, 4) f6 = esTssPreprocessing + 3 ≤ etLogic
f7 = esTssPreprocessing + 4 ≥ etLogic

retc = (Logic, 10, 30) f8 = esLogic + 10 ≤ etLogic
f9 = esLogic + 30 ≥ etLogic

retc2 = (Toggle, 1, 5) f10 = esToggle + 1 ≤ etToggle
f11 = esToggle + 5 ≥ etToggle

levanten Teilmengen der zuvor generierten SMT‑Formel befassen. Dies ist
die Berechnung der maximal großen Menge an konsistenten Anforderun‑
gen mit Hilfe eines Algorithmus zum Lösen von MaxSMT und der Berech‑
nung einer minimal großenMenge inkonsistenter Anforderungenmit Hilfe
eines Algorithmus zur Berechnung des Unsat Core. Danach stellen wir ei‑
ne Visualisierungsmethode vor, die die zuvor berechneten Teilmengen in
den Gesamtkontext der SMT‑Formel einbezieht und somit zusätzlich eine
intuitive Möglichkeit zur Auflösung von Inkonsistenzen darstellt.

₄.₂.₁ IDENTIFIKATION VON URSACHEN FÜR INKONSISTENZEN

Für die Korrektur einer inkonsistenten Anforderungsmenge ist es notwen‑
dig, dass einige der enthaltenenAnforderungen geändert oder aus derMen‑
ge entfernt werden müssen. Die Identifikation dieser Anforderungen ist je‑
doch bei größeren Mengen schwierig. Daher ist es notwendig einem Requi‑
rements Engineer Hinweise zu geben, welche Anforderungen möglicher‑

72

weise die Inkonsistenz auslösen oder zumindest die Menge der ursächli‑
chenAnforderungen einschränken. Dies können zumeinenAnforderungen
sein, die außerhalb einer maximal großen konsistenten Teilmenge liegen.
Ist die konsistente Teilmenge hinreichend groß und damit die Differenz‑
menge klein, so kann durch das Ändern oder Entfernen dieser Teilmenge
die Konsistenz sichergestellt werden. Zum anderen kann durch die Identi‑
fikation minimaler unerfüllbarer Teilmengen eine kleine inkonsistente Teil‑
menge identifiziert werden, bei der ein Requirements Engineer durch das
Löschen oder Ändern einer der in dieser Teilmenge enthaltenen Anforde‑
rungen ebenfalls die Konsistenz sicherstellen kann.
Die im Folgenden vorgestellten Methoden verwenden die Lösungen von

MaxSMT zur Identifikation maximal großer Teilmengen und Unsat Core
zur Identifikationminimaler inkonsistenter Teilmengen, die auf der Grund‑
lage der generierten SMT‑Formel F berechnet wurden. Um eine Rückver‑
folgbarkeit von SMT‑Klauseln zu den Timing Anforderungen zu haben,
speichern wir zusätzlich eine Abbildung w : F → R, die jede SMT‑Formel f
auf die entsprechende Timing Anforderung ausR abbildet.

MAXSMT

Die Lösung von MaxSMT für die generierte SMT‑Formel ermöglicht es, die
maximal große Menge an Klauseln I zu finden, die erfüllbar sind. Diese
lassen sich dann in einem nächsten Schritt auf die zugehörigen Timing An‑
forderungen abbilden und somit als konsistent identifizieren. Mithilfe die‑
ser Informationen kann ein Requirements Engineer Fehler in der Anforde‑
rungsmenge korrigieren. Dies geschieht dadurch, dass er Timing Anforde‑
rungen, deren zugehörige SMT‑Klauseln nicht in der MaxSMT Menge ent‑
halten sind, entweder aus der Anforderungsmenge entfernt oder bearbei‑
tet bzw. abschwächt, indem er größere Bereiche für die Timing Constraints
wählt.
Eine MaxSMT Teilmenge für die aus der Beispieltransformation in Tabel‑

le 4.1 erstellten SMT‑Formeln ist I = R \ {f7}. Der zu f7 gehörige Timing
Constraint ist retc. Ein Requirements Engineer bekommt somit die Infor‑
mation, dass alle Anforderungen ohne w(f7) = retc konsistent sind. Die zu

73

betrachtenden Anforderungen wurden somit von vier auf eine reduziert.
Er kann jetzt prüfen inwieweit der Execution Time Constraint korrekt mo‑
delliert wurde und entscheiden, ob die darin festgelegte minimale Ausfüh‑
rungszeit fehlerhaft ist und diese aus dem Constraint entfernen.

UNSAT CORE

Die Anwendung des Minimal Unsat Core ermöglicht es für eine SMT‑
Formel eine Teilmenge UC ⊆ F zu finden, die unerfüllbar ist. Durch die
Abbildung auf die Timing Constraints lässt sich somit dieMenge an Timing
Constraints bestimmen, die inkonsistent sind. Im Idealfall besteht diese
Menge nicht aus allen Timing Anforderungen, sodass ein Requirements
Engineer während der Identifikation und Korrektur nicht alle Timing
Anforderungen betrachten muss.
Beide Methoden können unabhängig voneinander oder auch in Kombi‑

nation angewendet werden, indem beispielsweise die Ergebnismenge F \I
als Eingabe für die Berechnung des Unsat Cores genommen wird.
In unserem Beispiel aus Tabelle 4.1 ist ein Unsat Core UC = {f1, f4, f7, f8}.

Für diese Teilmenge existiert keine erfüllbare Ordnung der Timing Events
esTssPreprocessing, etTssPreprocessing, esLogic und etLogic. Da das Entfernen einer Klau‑
sel aus UC die Formel erfüllbar machen würde, ist der gefundene Unsat
Core ebenfalls ein Minimal Unsat Core. Da keine Klausel aus UC zur Ti‑
ming Anforderung retc2 gehört, kann diese Timing Anforderung nicht für
die Inkonsistenz verantwortlich sein. Auf diese Weise können wir hier den
Unsat Core verwenden, umdie Anforderungsartefakte einzuschränken, die
wir während der Korrektur betrachten müssen.

₄.₂.₂ VISUALISIERUNG VON ₍IN‑₎KONSISTENZ

Ein entscheidender Punkt für die Identifikation von Ursachen für Inkonsis‑
tenzen ist eine adäquate Ergebnisvisualisierung der generierten MaxSMT
undUnsat CoreKlauseln. In diesemZusammenhang stellenwir eine graph‑
basierte Visualisierung vonMaxSMTundUnsat Core vor,wobei die Knoten

74

im Graphen die zeitlichen Beziehungen (d.h. die SMT‑Klauseln) zwischen
den Events darstellen.

Definition 16 (Ergebnisgraph). Gegeben sei eine Menge an Timing Events E
und eine Menge an transformierten Anforderungsformeln F , dann ist der Ergeb‑
nisgraph G = (GV,GE, cmin, cmax) folgendermaßen konstruiert:

• GV = E ist die Menge an Knoten, wobei jeder Knoten jeweils ein Timing
Event darstellt,

• GE ⊆ GV×GV ist die Menge der gerichteten Kanten, wobei gilt: (e, e′) ∈ GE

wenn die MengeF die Formel beinhaltet: e ≤ e′ or e+min ≤ e′ or e+max ≥
e′ für beliebige min,max ∈ R,

• cmin : GE → 2R ist die Beschriftungsfunktion für die minimale Zeitdistanz,
wobeimin ∈ cmin(e, e′)wenn dieMengeF eine Formel e+min ≤ e′ beinhaltet
und

• cmax : GE → 2R ist die Beschriftungsfunktion für die maximale Zeitdistanz,
wobeimax ∈ cmax(e, e′) wenn die Menge F die Formel e+max ≥ e′ beinhal‑
tet.

Für MaxSMT und Unsat Core werden zwei Ergebnisgraphen separat vi‑
sualisiert. ImMaxSMT Ergebnisgraphen Gmax werden die Knoten grün dar‑
gestellt, wenn die korrespondierendenKlauseln, die die entsprechenden Ti‑
ming Beziehungen zwischen den Timing Events darstellen, in derMaxSMT‑
Teilmenge enthalten sind, ansonsten werden sie rot dargestellt. Im Unsat
Core Ergebnisgraphen Guc werden Knoten grün dargestellt, wenn sie nicht
zum Unsat Core UC gehören, ansonsten werden sie rot dargestellt.
Abbildung 4.2 zeigt die grafische Darstellung der (generierten) Ereignis‑

se und zeitlichen Beziehungen zwischen ihnen unter Verwendung der Bei‑
spieltransformationen aus Tabelle 4.1. Timing Events, die zu erfüllbaren Ti‑
ming Anforderungen gehören, sind in grün dargestellt, während Timing
Events, die zu nicht erfüllbaren Timing Anforderungen gehören, in rot dar‑
gestellt werden. Anhand dieses Beispiels lassen sich sehr deutlich die Vor‑
teile des grafischen Ansatzes zeigen: Im Gegensatz zur textuellen Darstel‑
lung kann ein Anwender sofort erkennen, dass

75

Abbildung 4.2:Generierter Ergebnisgraph für MaxSMT

• das Timing Event esTssPreprocessing das einzige Timing Event ist, dass
innerhalb der MaxSMT Menge nicht vorhanden ist,

• eine Timing Relation zwischen esTssPreprocessing und etLogic nicht in
MaxSMT vorhanden ist und somit vermutlich die Inkonsistenz
erzeugt und

• mehrere Pfade von esTssPreprocessing nach etLogic existieren, die vermut‑
lich im Konflikt zueinander stehen.

Weiterhin kann ein Anwender aus diesen Erkenntnissen bereits folgende
Schlussfolgerungen ziehen bzw. Handlungsalternativen ableiten:

• Da die Timing Relation zwischen esTssPreprocessing und etLogic durch ei‑
nen einzelnen Offset Timing Constraint erzeugt wurde, würde durch
das Entfernen dieses Constraints die Menge konsistent werden.

• Da mehrere Pfade von esTssPreprocessing nach etLogic existieren, kann
es auch eine Lösung sein, den anderen (längeren) Pfad genauer zu
betrachten. Das Entfernen oder Unterbrechen des Pfades würde die
Menge ebenfalls konsistent machen.

• Schließlich lässt sich anhand der Beschriftung beider Pfade der erfor‑
derliche Zeitabstand zwischen den Timing Events ablesen. Dies lässt
vermuten, dass durch das Abschwächen der Timing Relation bzw.
das Vergrößern der Zeitbeschränkungen auf einem oder beiden Pfa‑
den eine konsistente Anforderungsmenge gebildet werden kann.

Abbildung 4.3 zeigt den Unsat Core Ergebnisgraph Guc. Im Gegensatz zu
Gmax zeigt dieser Graph, dass die TimingConstraintsmit den Timing Events

76

TssPreprocessing_T

Toggle_S

Logic_S

Logic_T

TssPreprocessing_S

Toggle_T

min: 3
max: 4

min: 10
max: 30

min: 1
max: 5

Abbildung 4.3:Generierter Ergebnisgraph für Unsat Core

esTssPreprocessing, etTssPreprocessing, esLogic und etLogic aufgrund ihrer Abhängigkei‑
ten in Konflikt zueinander stehen. An dieser Darstellung lässt sich erken‑
nen, dass die Inkonsistenz durch das Entfernen eines beliebigen Constraints
innerhalb des rot markierten Pfades aufzulösen ist.

₄.₃ STAND DER TECHNIK

Für die automatisierte Konsistenzprüfung von AUTOSAR‑basierten
Timing Anforderungen existieren nach aktuellem Stand keine direkten
verwandten Arbeiten. Es gibt jedoch Arbeiten, die Timing Anforderun‑
gen mithilfe anderer Sprachen beschreiben. Weiterhin gibt es Arbeiten,
die sich mit dem Begriff der Modellkonsistenz im Allgemeinen und im
Besonderen für UML‑basierte Sprachen beschäftigen. Da Anforderungen
zunächst nur in natürlichsprachlicher Form vorliegen, gibt es darüber
hinaus Arbeiten, die sich auf sprachlicher Ebene mit dem Begriff der
Konsistenz auseinandersetzen. Im Folgenden werden die wichtigsten
Arbeiten vorgestellt:

SPRACHEN ZUR SPEZIFIKATION VON ZEITBESCHRÄNKUNGEN Es existieren
mehrere Methoden und Sprachen zur formalen Spezifikation von Zeit‑
beschränkungen, z.B. die Clock Constraint Specification Language (CCSL)
(André, 2009, Mallet und Simone, 2015), das von der EAST‑ADL Associati‑
on (2013) für Anwendungsfälle im Automobilbereich übernommen wurde,
Timed Story Scenario Diagrams (TSSD) (Klein und Giese, 2007), Universal
Pattern Language (UPL) (Teige et al., 2016), Structured Assertion Language

77

for Temporal Logic (SALT) (Bauer et al., 2006) oder Echtzeit‑Mustersprachen
(Gruhn und Laue, 2006). Für die Verifikation definieren die Ansätze in
der Regel Transformationen nach Logiken auf niedrigen Ebenen wie
TLTL, MTL oder TCTL oder in Observer, die auf ausführbarem C‑Code
basieren. In unserem Ansatz haben wir uns auf den weit verbreiteten
Standard AUTOSAR und die integrierten AUTOSAR Timing Constraints
konzentriert.

MODELLKONSISTENZ Methoden, die die Konsistenz von Modellierungs‑
artefakten überprüfen, z.B. UML‑Modelle, werden in Rasch undWehrheim
(2003), Seifert et al. (2005), Kotb und Katayama (2005), Simmonds und
Bastarrica (2005), Kalibatiene et al. (2013), Derrick et al. (2002), Abdelhalim
et al. (2011) oder für SysML State Machines in Jacobs und Simpson (2017)
vorgestellt. Üblicherweise wird Konsistenz als eine Eigenschaft zwischen
verschiedenen Modelldiagrammsichten, verschiedenen Modellversionen
(Engels et al., 2002) oder Modellen auf verschiedenen Abstraktionsebenen
behandelt (Mens et al., 2005, Engels et al., 2001). Darüber hinaus wird
Konsistenz auch zwischen verschiedenen Modelltypen betrachtet, wenn
diese semantische Abhängigkeiten haben. So wird beispielsweise in Engels
et al. (2008) die Konsistenz zwischen Business Process Models und Web
Services betrachtet, da die Business Processes auf Web Services abgebilet
werden, beide aber unterschiedliche Reihenfolgeabhängigkeiten haben
können. Diese Ansätze unterscheiden sich von unserem Ansatz, da wir nur
an der Konsistenz einer Menge von Anforderungen interessiert sind, wobei
diese insgesamt in einem einzigenModell erfasst wird, welches immer dem
AUTOSAR‑Metamodell entspricht. Viele Arten von Inkonsistenzen, zum
Beispiel syntaktische Inkonsistenzen, treten daher nicht auf, da die syntak‑
tische Konsistenz durch das Modellierungswerkzeug sichergestellt wird.
Weitere Regeln, die die statische Semantik von AUTOSAR beschreiben,
sind jedoch textuell definiert und werden nur teilweise überprüft.
In Post et al. (2011b) und Post et al. (2011a) werden Systemanforderungen

in der Echtzeitlogik Duration Calculus (Chaochen et al., 1991) formuliert.
Die Verifikation der Konsistenzeigenschaft erfolgt durch die Transformati‑
on jeder Anforderung in einen sogenannten Phase Event Automaton (PEA)

78

und anschließend in einen UPPAAL‑verifizierbaren zeitgesteuerten Auto‑
maten.
Die Verifikation von zeitgesteuerten Automaten‑basierten Echtzeitsyste‑

men wird z.B. in Kim et al. (2015) vorgestellt, wo ein neuartiges Analyse‑
framework gezeigt wird, das symbolische und statistische Modellüberprü‑
fung in UPPAAL kombiniert, um so die Verifikationslaufzeit zu beschleuni‑
gen. Ein ähnlicher Ansatz für die Konsistenzprüfung von Zeitanforderun‑
gen wird in Toennemann et al. (2018) vorgestellt. Im Gegensatz zu unse‑
rem Ansatz verwenden die Autoren Timing Anforderungen und ein Sys‑
tementwurfsmodell zur Konsistenzprüfung. Dahingegen schlagen wir ei‑
nen mehrstufigen Ansatz vor, bei dem wir zunächst nur die Anforderungs‑
menge selbst für die Konsistenzprüfung verwenden und erst dann die Sys‑
temarchitektur zu Verifikationszwecken verwenden.

KONSISTENZ NATÜRLICHSPRACHLICHER ANFORDERUNGSARTEFAKTE Dar‑
über hinaus existieren Methoden, die Inkonsistenzen in natürlichsprach‑
lichen oder semi‑formalen Anforderungsartefakten identifizieren: In
Mahmud et al. (2016) werden strukturierte Anforderungsspezifikatio‑
nen in SAT‑Formeln transformiert, um durch die Identifizierung von
Antonymen logische Inkonsistenzen zu finden. Im Rahmen des Product
Line Engineering überprüfen Mendonça et al. (2009) Featuremodelle
durch Transformation in Aussagenlogik. Pittke et al. (2014) definieren
linguistische Konsistenzbedingungen für strategische Anforderungsarte‑
fakte (sogenannte Goal‑Modelle). Diese Konsistenzbedingungen beinhalten
sowohl syntaktische als auch semantische Bedingungen, die beispielsweise
Konsistenz unter der Berücksichtigung von Homonymen und Synonymen
sicherstellen.

₄.₄ ZUSAMMENFASSUNG

In diesem Kapitel wurde eine Methode zur Konsistenzprüfung von AUTO‑
SAR Timing Anforderungen vorgestellt. Diese Methode ermöglicht es be‑
reits vor der eigentlichen Timing Verifikation die Qualität der Timing An‑

79

forderungen zu überprüfen und somit zu verbessern. Besonders die Berech‑
nung dermaximal großenMenge an erfüllbarenAnforderungen (MaxSMT)
vereinfacht die Identifikation fehlerhafter Modellelemente. Weiterhin wur‑
de eine Methode zur graphbasierten Visualisierung von MaxSMT und Un‑
sat Core vorgestellt, die das Finden von Fehlern weiter vereinfacht.
Wenn eine Anforderungsmenge keine Inkonsistenzen mehr beinhaltet,

so kann sie danach auf Korrektheit überprüft werden. Diese Timing Veri‑
fikation für AUTOSAR Timing Anforderungen wird im nächsten Kapitel
vorgestellt.

80

5
Timing Verifikation von

AUTOSAR
Softwarearchitekturen

Wurde eine Anforderungsmenge als konsistent identifiziert, können poten‑
ziell alle darin enthaltenen Timing Anforderungen für eine Softwarearchi‑
tektur erfüllt sein. Dies muss nun in einem nächsten Schritt in einer Timing
Analyse verifiziert werden. Da mit diesem Ansatz auch sicherheitskritische
Echtzeitsysteme geprüft werden sollen, ist es wichtig auch worst‑case La‑
tenzen zwischen Timing Events zu finden, sodass hierfür ein analytischer
Ansatz gewählt werden muss.

Dieses Kapitel stellt die Methode zur Timing Verifikation von AU‑
TOSAR Softwarearchitekturen vor. Dazu werden sowohl die AUTOSAR
Softwarearchitektur als auch die imModell enthaltenen AUTOSAR Timing
Constraints nach Timed Automata transformiert. Dadurch, dass der Ansatz
ausschließlich das AUTOSAR Architekturmodell betrachtet und die
einzelnen Reglerfunktionen nicht berücksichtigt, kann die Timing Analyse
bereits in frühen Entwicklungsphasen erfolgen. Sobald Reglermodelle und

81

deren Laufzeiten auf der zu verwendenden Hardwareplattform zur Verfü‑
gung stehen, können diese in das Analysemodell eingefügt werden. Somit
kann die Analyse iterativ erweitert werden und die Analyseergebnisse
werden exakter.
Zunächst wird die Transformation des formalen Architekturmodells be‑

schrieben, das zuvor in Abschnitt 3.2.1 eingeführt wurde. Danach wird die
Transformation der Timing Requirements aus Abschnitt 3.2.1 vorgestellt
und im Anschluss in Abschnitt 5.3 mit existierenden Verfahren verglichen.
Der Inhalt basiert zum Großteil aus den bereits veröffentlichten Arbeiten in
Beringer und Wehrheim (2016).

₅.₁ TRANSFORMATION DES AUTOSAR ARCHITEKTURMO‑
DELLS NACH TIMED AUTOMATA

Während AUTOSAR eine formale Syntax als OMGMetamodell vorgibt, ist
die Semantik der Modelle nur in Form von natürlichsprachlicher Spezifi‑
kationen beschrieben. Um Timing Anforderungen formal verifizieren zu
können, ist es jedoch notwendig eine formale Semantik für relevante Me‑
tamodellelemente abzuleiten. Wir verwenden für unsere Methode Timed
Automata, da diese das zeitliche Verhalten der Modellelemente formal be‑
schreiben können.
Für die Verifikation von Timing Anforderungen in AUTOSAR wurde

eine Abbildung von AUTOSAR‑Modellen auf Timed Automata modelliert,
wobei das AUTOSAR‑Modell sowohl die Softwarearchitektur also auch
die Timing Anforderungen enthält. Die AUTOSAR Architektur wird in ein
Netzwerk von Timed Automata transformiert, wobei jede Timing Anfor‑
derung in einen Testautomaten und eine TCTL‑Query transformiert wird
(siehe Abbildung 5.1). Im resultierenden Gesamtnetzwerk kommunizieren
die Testautomaten mit den Architekturautomaten über Broadcast‑Kanäle.
So können die Testautomaten die Architekturautomaten nicht blockieren
und das Verhalten der Softwarearchitektur kann nicht durch das Erstellen
von Testautomaten beeinflusst werden.
Für ein gegebenesAUTOSAR‑ModellAR = (R,AC,VA,T,TRM)wird ein

82

U
PPAAL

dS
PA

CE
 S

ys
te

m
D

es
k

AnalysemodellSpezifikationsmodel

AUTOSAR
Modell

Timing
Extensions <wird transformiert zu>

Timed
Automata
Netzwerk

Test Automat
+ TCTL-
Abfrage

Timed
Automata
Netzwerk

Software-
architektur <wird transformiert zu>

Abbildung 5.1:Transformation des AUTOSARModells in ein Netzwerk
aus Zeitautomaten und TCTL-Abfragen

Netzwerk aus Timed Automata N = (A1 || .. || An) erstellt. Im Folgenden
werden die Transformationen der einzelnen Modellelemente genauer vor‑
gestellt:

RUNNABLEENTITIES RunnableEntities (Runnables) repräsentieren Code‑
fragmente, die in die Softwarearchitektur integriert werden. Das Triggern
wird durch die RTE‑Ebene gesteuert. Des Weiteren haben Runnables Zu‑
griff auf einen vordefinierten Satz von Variablen. Variablen mit Lesezugriff
werden direkt beim Start des Runnables gelesen, während Schreibzugriffe
vor der Terminierung ausgeführt werden*. Die Ausführung des Runnable
Codes benötigt Zeit. Diese wird durch die Best‑Case Execution Time und
Worst‑Case Execution Time angegeben.
Für jedes RunnableEntity im Spezifikationsmodell wird ein Timed Au‑

tomaton generiert, der sowohl die Datenzugriffe als auch das Laufzeitver‑
halten berücksichtigt. Die Datenzugriffe werden dabei entweder über so‑
genannte Inter‑Runnable‑Variablen bei der Kommunikation innerhalb ei‑
ner Softwarekomponente dargestellt oder über Ports bei der Kommunika‑
tion zwischen Softwarekomponenten. Für jede Kommunikationsbeziehung

*In AUTOSAR wird dies auch als impliziter Lese‑/Schreibzugriff beschrieben

83

werden Variablenzugriffe in Form von Locations und Transitionen erzeugt,
die das Senden und Empfangen von Daten repräsentieren.
Für jedes RunnableEntity re ∈ R einer Softwarekomponente

mit re = (VAread,VAwrite,wcet, bcet) wird ein Timed Automaton A =

(L,B,B∗,X, I,U,E, Iini) generiert. Sei VAread = {re_VAread1 , . . . , re_VAreadn} die
Menge der Schreibzugriffe (VAwrite analog). Im Folgenden nutzen wir eine
beliebige Ordnung von 1 bis n dieser Mengen.

• Locations: L = {re_ready_loc, re_running_loc} ∪ {re_Varead_loc | Varead ∈
VAread}
∪ {re_Vawrite_loc | Vawrite ∈ VAwrite},

• Handshake Kommunikation: B = {re_start, r_finished},

• Broadcast Kommunikation: B∗ = {re_varead | Varead ∈ VAread}
∪ {re_vawrite | Vawrite ∈ VAwrite},

• Uhren: X = {x},

• Invarianten: I(re_running) = {x <= wcet},

• Urgency: ∀Va ∈ VAread ∪ VAwrite : U(r_Va) = true,
U(r_ready) = false,U(re_running) = false,

• Kanten: E = {(re_ready, re_start?, ∅, {x}, r_Varead1),
(re_Vareadn , re_vareadn !, ∅, ∅, re_running)} ∪
{(re_Vareadj , re_vareadj !, ∅, ∅, re_Vareadj+1)|1 ≤ j ≤ |VAread| − 1} ∪
{(re_Vawritej , re_vawritej !, ∅, ∅, re_Vawritej+1)|1 ≤ j ≤ |VAwrite| − 1} ∪
{(re_running, re_vawrite1 !, {x ≥ bcet}, re_Vawrite1)} ∪
{(re_Vawriten , re_finished!, ∅, ∅, re_ready)} und

• Initiale Location: Iini = re_ready_loc.

Der generierte Timed Automaton besteht mindestens aus den Locations
re_ready_loc und re_running_loc (mit dem Namen des Runnables vorange‑
stellt). Der Automat befindet sich in der Location re_ready_loc, wenn das
Runnable gerade nicht ausgeführt wird und ansonsten in der Location
re_running_loc. Initial befindet sich der Automat im Zustand re_ready_loc.

84

Jeder implizite Variablenzugriff des RunnableEntity wird ebenfalls als Lo‑
cation repräsentiert. Die Identifikation des Zugriffs erfolgt über Signale an
den Transitionen. Diese Signale werden nicht nur für die Synchronisierung
verwendet, sondern auch, falls vorhanden, für vorhandene Testautomaten,
die aus den AUTOSAR Timing Anforderungen generiert werden (siehe
Abschnitt 5.2) und die den Datenfluss in der Softwarearchitektur erkennen
müssen. Daher werden die Channels als Broadcast Channels definiert. Die
in Abschnitt 5.2 vorgestellten Testautomaten müssen dieses Verhalten
berücksichtigen.
Abbildung 5.2 veranschaulicht ein transformiertes RunnableEntity mit

einem eingehenden Variablenzugriff (Lesezugriff) und einem ausgehenden
Zugriff (Schreibzugriff). Es zeigt das RunnableEntity TssPreprocessing, wel‑
ches sich innerhalb der Softwarekomponente IndicatorLogic befindet (siehe
auch Abbildung 2.8) und die Rohdaten des Blinkersensorwertes tss_value
einliest, vorverarbeitet und die Resultate nach tss_status schreibt. Weiterhin
werden wcet und bcet als 5ms bzw. 2ms angenommen. Der Automat simu‑
liert das Verhalten eines RunnableEntities in der AUTOSAR Architektur,
indem es durch das Signal Tss_Preprocessing_start gestartet werden kann,
und das Laufzeitverhalten durch die Zeitbeschränkungen mittels einer In‑
variante im Zustand TssPreprocessing_running_loc und einem Guard an
der darauf folgenden Transition.

Abbildung 5.2:Beispiel für die Repräsentation des RunnableEntities
Tss_Preprocessing als Timed Automaton

85

ASSEMBLYCONNECTIONS AssemblyConnections C = (left, right) verbinden
in AUTOSAR Ports verschiedener Softwarekomponenten. In unserem
Modell abstrahieren wir jedoch von Softwarekomponenten und Ports,
da dies die Timing Analyse nicht beeinflusst. Die Connections stellen
daher Schreib‑ und Lesezugriffe von Variablenzugriffselementen dar.
Für jede AssemblyConnection wird ein Timed Automaton generiert, der
den Datenfluss zwischen den Runnables über die Ports beschreibt. Der
Automat enthält eine Location, sowie für die Variablenzugriffe left und
right jeweils eine Transition, welche die Verbindung der Runnables in der
Softwarearchitektur darstellen. Somit erhalten wir für jede AssemblyCon‑
nection C = (left, right) einen Timed Automaton A = (L,B,B∗,X, I,U,E, Iini)
mit:

• Locations: L = {ac_start},

• Signale: B = {left, right},B∗ = {},

• Uhren: X = ∅,

• Invarianten I : ∅,

• Urgency: U(ac_start) = false,

• Kanten: E = {(ac_start, left?, ∅, ∅, ac_start), (ac_start, right?, ∅, ∅, ac_start)}
und

• Initialer Location: Iini = ac_start.

TASK RUNNABLE MAPPING Für die korrekte Ausführungsreihenfolge der
Runnables im Analysemodell wird für jeden OSTask ein Timed Automaton
A generiert. Dieser Automat triggert die enthaltenen Runnables des OST‑
asks in der spezifizierten Reihenfolge. Der Automat sendet das Start‑Signal
an die einzelnen Runnables. Danach wird das Runnable in die running‑
Location gesetzt und es verlässt die running‑Location, wenn der Runnable‑
Automat das finish‑Signal zurück an den Runnable‑Mapping‑Automaten
zurücksendet. Da zwischen Start und Stopp keine Zeit vergeht, werden die
entsprechenden Locations als urgentmarkiert.

86

Sei T dieMenge aller OSTasks und für jede OSTask t ∈ T, sei Rt = {r ∈ R |
TRM(r) = t} die Menge aller RunnableEntities, die vom OSTask t getriggert
werden. Wiederum nehmen wir eine beliebige Reihenfolge der Menge Rt

an, wobei wir die Indizes 1 to n verwenden. Dann existiert für jeden OSTask
t ∈ T, ein Timed Automaton A im Analysemodell mit:

• Locations: L = {t_ready, t_running} ∪ {t_r_start, t_r_stopped | r ∈ Rt}

• Signale: B = {t_run, t_processed} ∪ {t_r_start, t_r_finished | r ∈ Rt},B∗ =

{},

• Uhren: X = {x}

• Invarianten: I(t_running) = {x == 0},

• Urgency: ∀r ∈ Rt : U(t_r_finished) = true,U(t_running) = true,

• Kanten: E = {(t_ready, t_run?, ∅, ∅, t_running),
(t_running, t_r1_start!, ∅, ∅, t_r1_running),
(t_rn_stopped, t_processed!, ∅, ∅, t_processed),
∪ {(t_r_stopped, t_r_start!, ∅, ∅, t_r_running),
(t_r_running, t_r_finished?, ∅, ∅, t_r_stopped) | r ∈ Rt} und

• Initialer Location: Iini = t_ready.

Abbildung 5.3 zeigt beispielhaft ein Task Runnable Mapping als Timed
Automaton.

TASKS Jedes AUTOSAR‑basierte Steuergerät enthält ein AUTOSAR‑
konformes OSEK Betriebssystem, das die Ausführung von OsTasks auf
dem Steuergerät koordiniert. OsTasks haben die Zustände suspended, ready
und running. Zusätzlich sind sie durch eine Zykluszeit p definiert, mit der
sie periodisch aufgerufen werden. Ein Task ist im Zustand ready, wenn er
durch den Betriebssystemscheduler zur Ausführung ausgewählt werden
kann. Wenn der Scheduler den Task zur Ausführung auswählt, wird der
Task in den Zustand running gesetzt. Nach der Terminierung, aber vor
Ablauf der Zykluszeit, wird der Task in den Zustand suspended gesetzt.
Für jeden OsTask t ∈ Twird ein Timed Automaton wie folgt A generiert:

87

Abbildung 5.3:Beispiel für das Task Runnable Mapping als Timed Auto-
maton

• Locations: L = {ready, starting, running, terminating, suspended},

• Handshake Kommunikation: B = {t_startTask, t_run, t_processed,
t_terminateTask, t_isNotReady},

• Broadcast Kommunikation: B∗ = {}, X = {x},

• Invarianten: I(running) = {x <= p}, I(suspended) = {x <= p},

• Urgency: U(ready) = false,U(starting) = true,U(running) = false,

88

U(terminating) = true,U(suspended) = false,

• Kanten: E = {(ready, t_startTask?, ∅, ∅, starting),
(starting, t_run!, ∅, ∅, running),
(running, t_processed?, ∅, ∅, terminating),
(terminating, t_terminateTask!, ∅, ∅, suspended),
(suspended,φ, {x == p}, {x}, ready),
(suspended, t_isNotReady!, ∅, suspended)} und

• Initialer Location: Iini = ready.

Das Verhalten eines OsTasks wird modelliert durch die Generie‑
rung von Locations für ready, running und suspended und zusätzlich
(urgent)‑Locations für das Senden und Empfangen mehrerer Signale zur
Synchronisation mit dem RunnableToTask‑Mapping‑Automaten. Der OsT‑
ask startet in der Ready‑Location und kann dann durch den Task Scheduler
getriggert werden. Durch den Empfang des Signals startTask bekommt
das EventToTaskMapping das Signal den OsTask auszuführen und setzt
diesen in den Zustand running. Danach wird das EventToTaskMapping
ausgeführt, d.h. es werden alle RunnableEntities ausgeführt und danach
das Signal processed empfangen und das Signal terminateTask wird an
den Scheduler gesendet. Der OsTask verbleibt dann solange im Zustand
suspended bis die Periode des OsTasks abgelaufen ist. In der Zwischenzeit
synchronisiert sich der Automat nur über das Signal isNotReady mit dem
Scheduler. Danach wird der OsTask zurück in den Zustand ready gesetzt
und kann erneut durch den Scheduler ausgewählt werden. Abbildung 5.4
zeigt beispielhaft die Repräsentation eines AUTOSAR OSTasks als Timed
Automaton.

₅.₂ TRANSFORMATION DER TIMING ANFORDERUNGEN
NACH TIMED AUTOMATA

Neben der Transformation des Architekturmodellsmüssen ebenfalls die Ti‑
ming Anforderungen von AUTOSAR nach Timed Automata transformiert
werden. Für die Transformation der einzelnen TimingAnforderungenwird

89

Abbildung 5.4:Beispiel für die Repräsentation eines OSTask als Timed Au-
tomaton

jeweils ein Testautomat generiert, sowie eine TCTL‑Abfrage, die die Timing
Anforderung auf dem Testautomaten prüft.

LATENCY TIMING CONSTRAINT Bei der Transformation des Latency
Timing Constraints wird die Event Chain C = ⟨e1, . . . , en⟩ in einen Test‑
automaten transformiert, der die Event Chain als Kette von Locations
modelliert. Zwischen jeder Location wird eine Transition generiert, die das
entsprechende Signal des in der Event Chain modellierten Events emp‑
fängt. Die Verifikation der definierten Latenz wird durch eine Uhr erreicht,
die die Zeit während des Durchlaufens der Event Chain misst und am
Ende der Event Chain zurückgesetzt wird. Die maximale Latenz wird dann
durch eine TCTL‑Abfrage überprüft, die den maximalen Uhrenwert des
Testautomaten überprüft. Daher wird für jeden Latency Timing Constraint
le ∈ Rltc ein Timed Automaton Awie folgt generiert:

• Locations: L = {lc_e|e ∈ C},

• Signale: B∗ = {e|e ∈ C}, Uhren: X = {x},

• Invarianten I(lc_e1) = {x ≤ 1},

• Kanten: E = {(lc_ej, ej?, ∅, ∅, lc_ej+1)|1 ≤ j < n− 1}
∪ {lc_en, en, ∅, {x}, lc_e1 ∪ {(lc_e1, e1?, ∅, {x}, lc_e1)},

• Initiale Location: Iini = lc_e1.

90

In der ersten Location lc_e1 (also bevor das erste Event empfangen wurde)
setzt der Automat in regelmäßigen Schritten die Uhr zurück (implementiert
durch die Selbsttransition und Invariante auf lc1), sodass der Wert der Uhr
nur dann 1 überschreitet, wenn das erste Ereignis empfangen wird. Es ist
zu beachten, dass nach der Definition von B∗ die generierten Signale eine
Broadcast‑Kommunikation verwenden. Zusätzlich wird die TCTL‑Abfrage
ϕ = AG(x < maximum) generiert. AG bedeutet, dass die Eigenschaft auf
allen Pfaden immer gültig sein muss.
Abbildung 5.5 zeigt einen Latency Timing Constraint Automaton, der die

Zeit vom Start‑Event, wenn der Blinkersensor die Rohdaten erhält, bis zum
Ende‑Event, wenn der Aktuator, der die Blinkerleuchten ansteuert, das Si‑
gnal erhält, misst.

Abbildung 5.5:Timed automaton eines Latency Timing Constraints

EXECUTION ORDER CONSTRAINT Anforderungen an die geordnete Aus‑
führung von RunnableEntities werden durch den Execution Order Cons‑
traint erfasst. Ein Execution Order Constraint reoc = ⟨rei, . . . , rej⟩, rei ∈ Re
wird durch eine geordnete Abfolge einer Teilmenge der verfügbaren Runn‑
ableEntities definiert, für die die Ausführungsreihenfolge angegeben ist.
Für jeden ExecutionOrderConstraint reoc wird ein Timed Automaton wie

folgt generiert:

• Locations: L = {rei_EOC_started, rei_EOC_finished | 1 ≤ i ≤ n}
∪ {init, error},

• Broadcast Kommunikation:B∗ = {rei_EOC_start, rei_EOC_finished | i =
1, . . . , n},

• Handshake Kommunikation: B = {},

91

• Uhren: X = {},

• Invarianten I ist true für alle Locations,

• Urgency: U(ren_EOC_finished) = true,

• E = {init, re1_EOC_start?, ∅, ∅, re1_EOC_started} ∪
{rei_EOC_started, rei_EOC_finished?, ∅, ∅, rei_EOC_finished | i =

1, . . . , n} ∪
{rei_EOC_finished, rei+1_EOC_start?, ∅, ∅, rei+1_EOC_started | i =

1, . . . , n} ∪
{ren_EOC_finished,τ, ∅, ∅, init}

• Iini = init.

Man beachte, dass gemäß der Definition von B∗ die generierten Signale
Broadcast Kommunikation verwenden. Darüber hinaus wird für jede Loca‑
tion l ∈ L eine TCTL‑Abfrage ϕl = AF(l) und eine weitere TCTL‑Abfrage
ϕe = AG not error generiert. Diese Eigenschaft setzt voraus, dass auf al‑
len Pfaden des Systemverhaltens jede Location irgendwann besucht wird
(d.h. die Events werden in der angegebenen Reihenfolge empfangen). Eine
falsche Reihenfolge würde zudem den Automaten in den error‑Zustand set‑
zen, was mit ϕe geprüft wird. Abbildung 5.6 zeigt beispielhaft den Automa‑
ten reoc aus Tabelle 4.1, der die Reihenfolge der Runnables TssPreprocessing,
Logic und Toggle beschränkt.

SYNCHRONIZATION TIMING CONSTRAINT Der Synchronization Timing
Constraint wird verwendet, um Anforderungen an die Synchronizität
von Timing Events zu stellen. Er wird definiert durch eine Menge an
Events ei und einem Toleranzwert, der die maximale zeitliche Abweichung
zwischen dem ersten Auftreten und dem letzten Auftreten eines Events
der Menge angibt. Ein Synchronization Timing Constraint ist erfüllt, wenn
∀ei, ej ∈ S : |tei − tej | ≤ tolerance, wobei ti der Zeitpunkt ist, zudem e auftritt.
Daher wird für jeden Synchronization Timing Constraint rstc ein Timed

Automaton wie folgt generiert:

• Locations: L = {sc_init},

92

Abbildung 5.6:Timed Automaton für eoc1

• Signale: B∗ = {e|e ∈ S}B = {},

• Uhren: X = {x},

• Invarianten: I = {∅},

• Urgency: U ist false für alle Locations,

• Kanten: E = {sc_init, e?, ∅, ∅, sc_init}, Iini = {sc_init}.

Auch hier verwenden die Signale wieder Broadcast‑Kommunikation. Wei‑
terhin werden für die generierten Transitionen Funktionen spezifiziert, die
jedes Mal ausgeführt werden, wenn die Transition schaltet. Für jede Transi‑
tion ei ∈ E wird die entsprechende Funktion e_i_receiving ausgeführt. Zu‑
sätzlich werden für jeden Automaten lokale Deklarationen definiert, wie
sie in Listing 5.1 beschrieben sind. Die lokalen Deklarationen von UPPAAL

93

werden verwendet, um zu speichern, welche Signale bereits vom Automa‑
ten empfangen wurden. Die für jedes Event generierte Funktion speichert
in einer Variable e_i_received, ob das Event empfangen wurde. Die Funktio‑
nen isRunning und isCompleted werden in jeder Funktion e_i_receiving auf‑
gerufen, um das erste Auftreten eines Events und das Auftreten des letzten
Events festzuhalten. Sowohl beim ersten Auftreten eines Events als auch
beim Auftritt des letzten Events wird die Uhr des Automaten zurückge‑
setzt. Wird das erste Event empfangen, wird zudem der Automat in den
Zustand running gesetzt, indem die boolsche Variable running gesetzt wird.
Nach dem Auftreten des letzten Events wird die Variable dann wieder zu‑
rückgesetzt. Sobald also die running‑Variable gesetzt wurde und die Uhr
zurückgesetzt wurde, läuft die Zeit solange weiter bis alle Events empfan‑
gen wurden und wird erst dann wieder zurückgesetzt. Wird nun, solan‑
ge der Automat im Zustand running ist, die Uhrzeit durch den maximalen
Toleranzwert begrenzt, so spiegelt dies die Semantik des Synchronization
Timing Constraints wieder.

94

Listing 5.1:Lokale Deklarationen in UPPAAL� �
c l o ck x ;
bool e_i_rece ived = f a l s e ;
bool running = f a l s e ;

void e_i_rece iv ing () {
isRunning () ;
e_i_rece ived = true ;
isCompleted () ;

}

void isRunning (){
i f (! running){

x=0;
running=true ;

}
}

void isCompleted (){
i f (e_1_received && . . e_n_received){

e_i_rece ived = f a l s e ;
x=0;
running=f a l s e ;

}
}� �

Daher wird für den Synchronization Timing Constraint eine TCTL‑
Abfrage wie folgt generiert:AG(running =⇒ x ≤ tolerance). Abbildung
5.7 zeigt beispielhaft die Transformation eines Synchronization Timing
Constraints, das die synchrone Ausführung der Runnables des linken
und rechten Blinkeraktuators erfordert. Analog zum Automaten wer‑
den die erforderlichen lokalen Deklarationen generiert, d.h. zwei Flags
Bulb1_received und Bulb2_received, sowie die Funktionen Bulb1_receiving
und Bulb2_receiving.

95

Abbildung 5.7:Beispiel eines Synchronization Timing Constraints für die
Synchronizität der Blinkerlampen

Abbildung 5.8:Timed Automaton für rotc

OFFSET TIMING CONSTRAINT Der Offset Timing Constraint wird
für die Transformation als ein Spezialfall des Latency Timing Cons‑
traints behandelt, bei dem lediglich zwei Timing Events beteiligt
sind, ein Source‑Event und ein Target‑Event. Dementsprechend
wird für jeden Offset Timing Constraint rotc = (es, et,min,max) ein
Timed Automaton analog zu einem Latency Timing Constraint mit =
rltc = (⟨es, et⟩,min,max) generiert mit den TCTL‑Queries ϕ1 = AG(x ≤ max)
und ϕ2 = AG(not OTC_start implies x ≥ min). Ein Beispiel für einen Offset
Timing Constraint ist rotc aus dem Blinkerbeispiel in Abschnitt 2.1.2.
Dieser wird in Abbildung 5.8 gezeigt. Die generierten TCTL‑Queries sind
ϕrotc1 = AG(x ≤ 4) und ϕrotc2 = AG(not OTC_1_start implies x ≥ 3).

EXECUTION TIME CONSTRAINT Der Execution Time Constraint gibt diemi‑
nimale undmaximale Laufzeit für ein RunnableEntity an. Für dieseAnalyse
auf Taskebene existieren bereitsMethodenwie in Abschnitt beschrieben. Im

96

Folgenden wird daher für die Verifikation der Execution Time Constraint
nicht weiter betrachtet und auf die existierendenMethoden zur Analyse auf
Taskebene hingewiesen.
Für die Verifikation der AUTOSAR‑Architektur werden alle generierten

Automaten Ai = (Li,Bi,Xi, Ii,Ei, Iiini) zu einem Netzwerk von Timed Auto‑
mata N = (A1 || .. || An) verbunden. Dann ist ein TimingConstraint T mit
TCTL‑Formel ϕT für das Modell gültig, genau dann wenn (N || T) |= ϕT,
d.h. der Automat für ein einzelnes Timing Constraint wird mit dem Netz‑
werk der Timed Automata verbunden, das die Softwarearchitektur reprä‑
sentiert. Es wird dabei immer nur ein Testautomat angebunden, um Seiten‑
effekte, die durch das Hinzufügen weiterer Testautomaten entstehen kön‑
nen, zu vermeiden. Dieses Netzwerk wird dann anhand der für den jeweili‑
gen Testautomaten spezifizierten TCTL‑Formel überprüft. Wird kein expli‑
ziter Testautomat für einen Timing Constraint erzeugt, wie beim Execution
Time Constraint, so wird das erzeugte Netzwerk N auf Deadlockfreiheit
überprüft.
Die Transformation der AUTOSAR Softwarearchitektur und der Timing

Requirements nach Timed Automata wurde beispielhaft für das Blinker‑
beispiel aus Abschnitt 2.1.2 durchgeführt. Aus Kapitel 4 wissen wir bereits,
dass die Anforderungsmenge inkonsistent ist. Somit ist zu erwarten, dass
ohne Änderung der Anforderungenmindestens eine Anforderung nicht er‑
füllbar ist.
Der generierte Execution Order Constraint für reoc1 wurde bereits in Ab‑

bildung 5.6 vorgestellt. Die generierte TCTL‑Query ist ϕreoc1 = AG not error.
DerOffset TimingConstraint rotc ist inAbbildung 5.8. Die generierten TCTL‑
Queries sind ϕrotc1 = AG(x ≤ 4) und ϕrotc2 = AG(not OTC_1_start implies x ≥ 3).
Für das Blinkerbeispiel verwendenwir beispielhaftWorst‑Case und Best‑

Case Execution Times aus Tabelle 5.1 für die Runnables. Aus diesenWerten
lässt sich erkennen, dass die Execution Time Constraints retc1 und retc2 er‑
füllt werden. Der Execution Order Constraint wird durch die korrekte Aus‑
führungsreihenfolge der Runnables ebenfalls abgebildet. Der Offset Timing
Constraint ist jedoch nicht erfüllt, da zwischen dem Auftreten des Start‑
Events und des Target‑Events mehr als 4ms vergehen.
Die generierten Timed Automata Netzwerke werden in UPPAAL verifi‑

97

Abbildung 5.9:Der von der Softwarearchitektur nicht erfüllte Offset Timing
Constraint rotc in der UPPAALGUI

ziert. Werden Timing Constraints nicht von der Softwarearchitektur erfüllt,
können diese in der grafischen Oberfläche von UPPAAL genauer betrachtet
werden. Abbildung 5.9 zeig beispielhaft das Werkzeug mit den generier‑
ten TCTL‑Anfragen für ϕrotc1 . Es zeigt in diesem Fall, dass die erste TCTL‑
Anfrage des Offset Timing Constraints ϕrotc1 nicht erfüllt ist. UPPAAL bietet
darüber hinaus verschiedene Möglichkeiten an fehlerhafte Pfade zu gene‑
rieren, anzuzeigen und zu analysieren.

₅.₃ STAND DER TECHNIK

Der hier vorgestellte Ansatz verfolgt die Timing Verifikation von AUTO‑
SAR Timing Constraints durch die Transformation nach Timed Automata.
Darüber hinaus gibt esweitere Ansätze, die TimingVerifikation auf System‑
ebene mit anderen Methoden und Frameworks vorschlagen, sowie Ansät‑
ze, die ebenfalls auf Timed Automata als Analysemethode basieren, jedoch

98

Tabelle 5.1:Execution Times der RunnableEntities

Runnable BCET WCET
TssRunnable 1 1
WlsRunnable 1 1
TssPreprocessing 1 3
WlsPreprocessing 1 3

Logic 10 10
Toggle 1 5

BulbRunnable 1 1

nicht das Konzept der AUTOSAR Timing Constraints im Fokus haben. Die
relevantesten Arbeiten werden im folgenden vorgestellt.

TIMING VERIFIKATION MIT TIMED AUTOMATA Die Anwendung von
Timed Automata zur Verifikation verteilter eingebetteter Systemarchitek‑
turen wird in der Literatur häufig vorgeschlagen. So werden beispielsweise
in Hendriks und Verhoef (2006) UML‑Sequenzdiagrammemit zusätzlichen
Zeitannotationen nach Timed Automata transformiert, um Worst‑Case
Response Times zu berechnen. Neuere Arbeiten verwenden Timed Auto‑
mata zur Verifikation von ROS†‑basierten Roboteranwendungen (Halder
et al., 2017), zur Verifikation von BPEL‑Anforderungen (Gao et al., 2021),
SystemC Designmodellen (Herber et al., 2015) oder zur Verifikation des
RabbitMQ Protokolls (Li et al., 2022).
Ein ähnlicher Ansatz, der in Neumann et al. (2012) beschrieben wird,

verwendet ebenfalls Timed Automata für die Analyse von AUTOSAR‑
Architekturen. Hier werden für die Analyse ebenfalls Automaten für das
AUTOSAR‑Systemmodell, insbesondere auch für Runnables, Tasks und
das Task‑Runnable‑Mapping mithilfe eines Template‑basierten Mechanis‑
mus erstellt. Die generierten Automaten unterscheiden sich von unserem
Ansatz aufgrund der unterschiedlichen Herangehensweise, da wir bei
der Definition der Transformationen auf das zuvor spezifizierte formale
Modell zurückgreifen und wir zur Interpretation der Semantik von AUTO‑

†Robot Operating System

99

SAR ebenfalls auf den zur Verfügung stehenden Quellcode zurückgreifen
konnten. Zudem lag der Fokus unserer Arbeit auf der Verifikation der
Timing Anforderungen, während Neumann modellinhärente Timing
Fehler erkennt. Im Gegensatz zu unserem Ansatz unterscheiden sich die
generierten Automaten für RunnableEntities insofern, dass Variablenzu‑
griffe immer durchgeführt werden können, wenn ein RunnableEntity im
Zustand running ist und somit ähnlich zu expliziter Kommunikation in
AUTOSAR sind, während wir bei uns das Lesen und Schreiben der Varia‑
blen bei impliziter Kommunikation vor‑ bzw. nachgelagert ist und somit
ebenfalls die Semantik der impliziten Datenkommunikation, die durch die
RTE orchestriert wird, unterstützt, wodurch unser Ansatz etwas exakter
die Zeitpunkte der Ausführung dieser Kommunikation beschreibt. Bei der
Generierung von OSTasks werden in unserem Ansatz keine Committed
Locations erzeugt, sodass in unserem Fall die Automaten nicht in einen
Fehlerzustand laufen können, was wiederum näher an der Semantik der
AUTOSAR‑Spezifikation ist. Zudem verzichten wir bei der Generierung
des Task‑Runnable Mappings im Gegensatz zum dort gezeigten Automa‑
tentemplate auf die Implementierung verschiedener Trigger‑Zeiten, um
die Komplexität der Automaten klein zu halten. Darüber hinaus verzichten
wir vollständig auf die Generierung von Softwarekomponenten und
Ports, da diese keinen Einfluss auf die Laufzeit des Systemmodells haben.
Hier verzichten wir auf existierende Sturkturelemente des AUTOSAR‑
Standards, sodass unser Ansatz näher an der Semantik des generierten
Quellcodes ist. Das so erstellte Automatennetzwerk wird dann in UPPAAL
auf Deadlockfreiheit geprüft. Im Gegensatz zu dem hier vorgestellten
Ansatz ermöglichen die Transformationen die Erkennung allgemeiner
Timing Fehler, die sich aufgrund einer fehlerhaften Konfiguration des
Systemmodells ergeben und mithilfe der Verifikation auf Deadlockfreiheit
erkannt werden. Es werden aber keine Transformationen der AUTOSAR
Timing Constraints durchgeführt, was für die Analyse von Timing An‑
forderungen jedoch notwendig ist. Des Weiteren wird für die Automaten
keine Broadcast‑Kommunikation verwendet, die für eine Verknüpfung mit
den hier vorgestellten Test‑Automaten der Timing Anforderungen benötigt
wird. Weiterhin beinhalten die Automaten zusätzliche Fehlerzustände

100

mit denen die Deadlockfreiheit des Systemmodells geprüft wird, die
wiederum in unserem Ansatz nicht benötigt werden. Schließlich wird kein
formales Modell definiert, welches als Grundlage für die Generierung der
Automaten aus den gezeigten Templates herangezogen wird.
In Neumann und Giese (2013) wird eine erweiterte Definition von Timed

Automata vorgestellt, die eine kompositionelle Timing Verifikation ermög‑
licht, und auf ein AUTOSAR‑Beispielmodell angewendet. Im Gegensatz zu
unserer Arbeit werden die AUTOSAR‑Transformationen hier auf Software‑
komponentenebene durchgeführt, wohingegen wir in unserem Ansatz von
Softwarekomponenten weitgehend abstrahieren. Des Weiteren wurden die
Automaten, welche die Implementierungen der Softwarekomponenten und
das Zusammenspiel der Runnables darstellen, nicht vollständig automati‑
siert erzeugt. Stattdessen werden Automaten lediglich teilweise aus den be‑
stehenden AUTOSAR Interfaces generiert.
Weitere Ansätze, die ebenfalls Timed Automata verwenden, schlagen die

Konstruktion von Testautomaten (oder Szenario‑Automaten) für die Spezi‑
fikation von Anforderungen vor Gehrke et al. (2006), berücksichtigen aber
ebenfalls nicht die AUTOSAR Timing Extensions. In der in Scheickl und
Ainhauser (2012) vorgestellten Arbeit wird eine Werkzeugunterstützung
für die Verifikation von AUTOSAR Timing Anforderungen vorgestellt. Die
Anforderungen werden verifiziert, indem sie mit spezifizierten Timing Ga‑
rantien verglichen werden. Für diesen Ansatz müssen jedoch Timing Ga‑
rantien spezifiziert werden, was in unserem Ansatz nicht notwendig ist.

TIMING VERIFIKATION FÜR ECHTZEITSYSTEME Es gibt verschiedene Me‑
thoden für die Analyse von Timing Anforderungen. Neben der Modellie‑
rung und Verifikation von zeitbehafteten Systemen mittels Timed Automa‑
ta, existieren Methoden basierend auf der allgemeinen Scheduling‑Analyse
(Liu und Layland, 1973). In den Arbeiten von Richter (2005) und Feiertag
et al. (2008) wird ein kompositioneller Scheduling Ansatz vorgestellt, der
auf traditioneller Scheduling‑Theorie für Echtzeitsysteme basiert und auch
prototypisch für AUTOSAR implementiert wurde (Rhandor, 2012). Der An‑
satz geht davon aus, dass Signale nur eingeschränkt an Komponenten an‑
kommen können, beispielsweise mit einer fixen Frequenz und maximalen

101

Jitter. Diese Ankünfte werden in sogenannten Ereignisfunktionen spezifi‑
ziert. Wenn die ankommenden Signale nicht mit den vorgegebenen Mo‑
dellen übereinstimmen, wird die Zeitanalyse unpräzise (Perathoner et al.,
2009).
Real‑Time Calculus (Thiele et al., 2000, Albers et al., 2008) ist ein Frame‑

work für die Performanceanalyse von Echtzeitsystemen, das auf dem
Netzwerk‑Kalkül basiert (Perathoner et al., 2009). Durch die Spezifikation
eines Event Stream Modells kann ein Signalfluss durch ein System analy‑
siert werden. Dies ist ein generischerer Rahmen als der von Richter (2005).
Beide Methoden abstrahieren von den konkreten Metamodellelementen
der AUTOSAR Softwarearchitektur. Darüber hinaus wenden wir unsere
Methode direkt auf die AUTOSAR‑Timing‑Extensions an, während andere
Methoden die Anwendung diesen Aspekt nur ansatzweise betrachten.
Eine weitere Methode zur Timing Verifikation von Echtzeitsystemen auf

Basis von Architekturmodellen ist beispielsweise Petriu und Woodside
(2004). Dort wird das UML‑Profile for Schedulability, Performance and
Time als Basis genommen und zur Timing Verifikation nach Timed Petri
Nets transformiert.

TIMING VERIFIKATION IM KONTEXT VON MECHATRONICUML Neben AU‑
TOSAR existieren andere Entwicklungsmethoden für vernetzte elektrische /
elektronische Architekturen im Automobil wie beispielsweise AutoFOCUS
(Aravantinos et al., 2015), Amalthea (Becker, 2021) oder MechatronicUML
(Becker et al., 2014). Diese ermöglichen ebenfalls die Verifikation vonAnfor‑
derungen auf Architekturebene. Alle Methoden haben jedoch unterschied‑
liche domänenspezifische Sprachen und betrachten verschiedene Aspekte
des Systems auf unterschiedlichen Abstraktionsebenen.

MechatronicUMLMECHATRONICUML ist eine Erweiterung der UML und unterstützt den mo‑
dellbasierten Entwurf mechatronischer Syteme bereits auf Systemebene, in‑
dem es eine formale Sprache sowohl zur Spezifikation von Anforderun‑
gen als auch zur Spezifikation einer plattformunabhängigen Softwarearchi‑
tektur zur Verfügung stellt (Dziwok et al., 2016). Anforderungen werden
zunächst in Form von Modal Sequence DiagramsMODAL SEQUENCE DIAGRAMS (MSDs) spezifiziert (Holt‑
mann et al., 2016). Diese können dann auf ihre Konsistenz geprüft werden

102

(Holtmann et al., 2016). Auf der Basis der MSD‑Spezifikation wird dann
eine plattform‑unabhängige komponentenbasierte Softwarearchitektur er‑
stellt (Dziwok et al., 2016). Komponenten der Softwarearchitektur können
dann über Portsmiteinander kommunizieren. Die Interaktion der Software‑
komponenten wird inMechatronicUML dann formal in Real‑Time Coordina‑
tion Protocols festgehalten. Das Verhalten der an den Interaktionen beteilig‑
ten Rollen, die den Ports zugewiesen sind, wird dann mittels erweiterter
UML Zustandsdiagramme, sog. Real‑Time State Charts REAL‑TIME STATE CHARTS(RTSC) beschrieben
(Dziwok et al., 2016). Aus diesen Modellen lässt sich daraufhin ebenfalls
das Verhalten der Softwarekomponenten ableiten, welches dann durch den
Anwender verfeinert werden kann (Dziwok et al., 2016). Sowohl die Real‑
Time Coordination Protocols als auch das Verhalten der Softwarekompo‑
nenten können einzeln verifiziert werden, sodass auch große Systeme mit
diesem kompositionallen Ansatz verifiziert werden können (Becker et al.,
2014). Für die Verifikation definiert MechatronicUML eine Abbildung der
Real‑Time State Charts auf Timed Automata (Becker et al., 2014). Sowohl
der hier vorgestellte Ansatz als auch MechatronicUML ermöglichen eine
frühe Timing Verifikation von Anforderungen auf Modellebene, verwen‑
den für die Timing Verifikation Zeitautomaten und nutzen UPPAAL als
Werkzeug zur Verifikation. Während in MechatronicUML sowohl das Ver‑
halten der Softwarekomponenten als auch der Interaktionen mittels RTSCs
beschrieben werden, abstrahieren wir in unserem Ansatz vom konkreten
Verhalten der Komponenten und betrachten lediglich die Worst‑Case und
Best‑Case Laufzeiten von Runnables, sowie derenDatenaustausch, betrach‑
ten aber dafür in unserer Verhaltensbeschreibung Steuergeräte‑spezifische
Konfigurationen wie das Task‑Runnable‑Mapping, welches in Mechatro‑
nicUML nicht vorhanden ist, da sich die Spezifikation ausschließlich auf
plattform‑unabhängige Eigenschaften bezieht. Hierdurch lässt sich bereits
eine TimingVerifikationmit plattfom‑spezifischenModellelementendurch‑
fürhen bevor Verhaltensmodelle für Komponenten vorhanden sind.Weiter‑
hin können inMechatronicUML zur Beschreibung von TimingAnforderun‑
gen auf Architekturebene die existierenden Real‑Time Coordination Proto‑
cols mit TCTL‑Formeln annotiert werden (Eckardt et al., 2013). In unserem
Ansatz hingegen verwenden wir die AUTOSAR Timing Extensions, die es

103

erlauben auf abstrakterer Ebene das Zeitverhalten des Systems zu beschrei‑
ben und transformieren diese dann in Zeitautomaten sowie TCTL‑Formeln.

₅.₄ ZUSAMMENFASSUNG

In diesemKapitel wurde eineMethode zur Timing Verifikation von AUTO‑
SAR Timing Anforderungen vorgestellt. Mittels dieser Methode ist es mög‑
lich, Timing Anforderungen frühzeitig und ohne Zugriff auf Quellcode zu
überprüfen. Es werden nur Timing‑Annotationen in Form vonWCETs und
BCETs für Runnables benötigt. Diese müssen mithilfe von Expertenwissen
zunächst konservativ abgeschätzt werden, oder es müssen obere Schran‑
ken für die Ausführungszeiten beispielsweise mittels statischer Codeanaly‑
severfahren berechnet werden. Für die Verifikation der AUTOSAR Archi‑
tektur können dann existierendeWerkzeuge für die Verifikation von Timed
Automata wie beispielsweise UPPAAL oder Kronos genutzt werden. In den
folgenden Kapiteln wird die praktische Anwendbarkeit der Methode eva‑
luiert. Dafür wird zunächst die Methode an einem Fallbeispiel ausgeführt
und sowohl die Effizienz und Effektivität evaluiert. Anschließend werden
Laufzeitanalysen anhand verschiedener weiterer Beispielmodelle und ge‑
nerierter Modelle durchgeführt.

104

6
Fallstudie: Fault‑Tolerant

Fuel‑Rate Controller

Die zuvor vorgestellten Methoden wurden mit dem Ziel entworfen, den
Entwicklungsprozess zu beschleunigen, indem frühzeitig Timing Fehler in‑
nerhalb der AUTOSAR Timing Anforderungen und der Softwarearchitek‑
tur gefundenwerden. Zur Bewertung der praktischen Anwendbarkeit wird
in diesemKapitel dieMethode anhand einer konkreten Fallstudie evaluiert.
Das Ziel der Evaluierung ist es zum einen festzustellen, inwieweit und an
welcher Stelle Fehler identifiziert werden können, und zum anderen, um ei‑
ne erste Abschätzung über die Laufzeiten an einem realitätsnahen System
zu erhalten.

Zunächst wird der Aufbau des Modells genauer erläutert und auf Limi‑
tierungen eingegangen. Des Weiteren wird ein Überblick über die im Mo‑
dell enthaltenen Timing Anforderungen gegeben. Danach werden die Eva‑
luierungsergebnisse gezeigt und anhand der Ergebnisse die praktische An‑
wendbarkeit des Ansatzes diskutiert.

105

₆.₁ AUFBAU DES MODELLS

Das Modell beinhaltet einen fehlertoleranten Regler zur Steuerung der
Kraftstoffeinspritzung eines Verbrennungsmotors. Der Regler beinhal‑
tet eine SignalvorverarbeitungSIGNALVORVERARBEITUNG , die fehlerhafte Sensordaten erkennt und
korrigieren kann, Funktionen zur Steuerung eines KombiinstrumentsKOMBIINSTRUMENTS zur
Anzeige relevanter Fahrparameter, sowie den eigentlichen Regler zur
Berechnung der KraftstoffmengeKRAFTSTOFFMENGE . Alle Funktionen sind zusammen als
AUTOSAR‑Steuergerät realisiert. Dieses beinhaltet auf Applikationsebe‑
ne vier verschiedene Softwarekomponenten. Des Weiteren beinhaltet
das Modell die Spezifikation von RTE, Betriebssystem und weiteren
Basissoftwarekomponenten wie das Zustandsmanagement (EcuM) und
Speicherdienste (NvRAM). Zur Absicherung von Zeitanforderungen
enthält die Architektur eine Reihe von AUTOSAR Timing Constraints,
wovon sich die meisten auf Zeiteigenschaften innerhalb der VFB‑Sicht
beziehen.

₆.₁.₁ SOFTWAREARCHITEKTUR

Die AUTOSAR‑Softwarearchitektur des Steuergeräts besteht auf Ap‑
plikationsebene aus insgesamt vier Softwarekomponenten. Die Soft‑
warekomponente FuelsysSensors erhält die Rohdaten der Sensoren aus
dem Motormodell (RpRawSensors). Dies sind beispielsweise die aktuelle
Geschwindigkeit und die Gaspedalstellung. Die Softwarekomponente
erkennt fehlerhafte oder fehlende Sensordaten, korrigiert diese bei Bedarf
und gibt als Ergebnis die korrigierten Sensorwerte am Port PpCorrec-
tedSensors, sowie einen berechneten Kraftstoffmodus ‑ berechnet aus
dem Motorzustand und dem Vorhandensein von Sensorfehlern ‑ am Port
PpFuelMode aus. Die Softwarekomponente FuelsysController erhält die
korrigierten Sensordaten (RPCorrectedSensors), sowie den Kraftstoffmo‑
dus (RPCorrectedSensors) und berechnet die benötigte Kraftstoffmenge
(PpFuelRate). Die Komponente FuelsysCombi erhält ebenfalls die korrigier‑
ten Sensorwerte (RpCombiSensors), sowie die berechnete Kraftstoffmenge
aus dem FuelsysController und zeigt diese Werte, sowie weitere berechnete

106

RunFuelsys-

Combi

FuelSys-

CombiInit

Fuelsys-

ControllerInit

Fuelsys-

SensorsInit

DetectSensor-

Failures

Sensor-

Correction

Airflow-

Calculation

Airflow-

Correction

FuelRate-

CalcNormal

FuelRate-

CalcRich

Abbildung 6.1:AUTOSAR Softwarearchitektur des Steuergeräts (Applikati-
onsebene)

Tabelle 6.1:Komplexität der Softwarearchitektur

Anzahl der Softwarekomponenten 10
Anzahl der Applikationssoftwarekomponenten 6

Anzahl der Runnables 16
Anzahl der Tasks 6

Werte wie akkumulierte Fahrzeit, den geschätzten Kraftstoffverbrauch und
die geschätzte Restfahrzeit an. Die Softwarekomponente FuelsysCalParams
stellt Kalibrierungsparameterwerte für die Komponenten FuelsysSen-
sors und FuelsysController zur Verfügung, mit denen der Regler weiter
kalibriert werden kann. Die Softwarekomponenten enthalten insgesamt
16 Runnables, wovon 10 auf die Applikationssoftwarekomponenten
des Steuergeräts und 6 auf Basissoftwaremodule entfallen. Diese sind
auf insgesamt 6 Tasks mit unterschiedlichen Zykluszeiten verteilt. Alle
Softwarekomponenten werden auf Applikationsebene zusammen mit den
darin enthaltenen Runnables im Composition Diagramm in Abbildung
6.1 gezeigt. Die Tabelle 6.1 enthält eine Übersicht über die Anzahl der
für die Analysemethoden relevanten Modellelemente und somit über die
Modellkomplexität.

107

₆.₁.₂ TIMING CONSTRAINTS

Das Modell enthält neben der Softwarearchitektur eine Reihe von Timing
Constraints. Diese sollen sicherstellen, dass das AUTOSAR System die
speziellen Akzeptanzkriterien an die Latenz und Synchronizität einhält.
So darf beispielsweise zwischen dem Eingang der Sensordaten und dem
Senden der neuen Kraftstoffeinspritzrate nur eine bestimmte Zeitspanne
liegen, um rechtzeitig eine optimale Rate an den Motor senden zu kön‑
nen, sodass das Reaktionsverhalten den Erwartungen des Fahrers bei
minimalem Kraftstoffverbrauch entspricht. Auch soll die Darstellung der
Fahrparameter im Kombiinstrument in etwa synchron mit den realen
Fahrzeugparametern sein. Insgesamt enthält das Modell 29 verschiedene
Timing Constraints. Diesewerden in Tabelle 6.2 gezeigt. Dabei wird für jede
Anforderung eine textuelle Beschreibung und die dazugehörige formale
Darstellung gezeigt. Entsprechend der Namensgebung in der AUTO‑
SAR Architektur ist die natürlichsprachliche Anforderungsbeschreibung
ebenfalls auf Englisch spezifiziert.

Tabelle 6.2:Timing Constraints

Beschreibung Timing Constraint
The execution time of runnable RunFuelsys-
Combi (rfc) in component FuelsysCombi must
be between 5ms and 15ms.

retc1 = (rfc, 5, 15)

The execution time of runnable FuelsysCombi-
Init (fci) in component FuelsysCombi must be
between 1ms and 10ms.

retc2 = (fci, 1, 10)

The execution time of runnable AirflowCalcula-
tion (acl) in component FuelsysController must
be between 1ms and 5ms.

retc3 = (acl, 1, 5)

The execution time of runnable AirflowCorrec-
tion (aco) in component FuelsysControllermust
be between 1ms and 5ms.

retc4 = (aco, 1, 5)

108

Tabelle 6.2:Fortsetzung Timing Constraints

Beschreibung Timing Constraint

The execution time of runnable FuelRateCalc-
Normal (frcn) in component FuelsysController
must be between 1ms and 3ms.

retc5 = (frcn, 1, 3)

The execution time of runnable FuelRate-
CalcRich (frcr) in component FuelsysController
must be between 1ms and 3ms.

retc6 = (frcr, 1, 3)

The execution time of runnable FuelRateCon-
trollerInit (frci) in component FuelsysController
must be between 1ms and 6ms.

retc7 = (frci, 1, 6)

The execution time of runnable FuelsysSensor-
sInit (fsi) in component FuelsysSensors must be
between 1ms and 6ms.

retc8 = (fsi, 1, 6)

The execution time of runnable DetectSensor-
Failures (dsf) in componentFuelsysSensorsmust
be between 1ms and 3ms.

retc9 = (dsf, 1, 3)

The execution time of runnable SensorCorrec-
tion (sco) in component FuelsysSensorsmust be
between 1ms and 3ms.

retc10 = (sco, 1, 3)

The execution time of BSW executable
EcuM_MainFunction (EcuM) of ECU Con-
trollermust be between 0ms and 2ms.

retc11 = (EcuM, 0, 2)

The execution time of BSWexecutableNvBlock-
Descriptor_StoreCyclic (NvM) in ECU Control-
lermust be between 0ms and 3ms.

retc12 = (NvM, 0, 3)

The runnables DetectSensorFailures (dsf) and
SensorCorrection (sco) in component Fuelsys-
Sensorsmust be executed in order.

reoc1 = ⟨dsf, sco⟩

109

Tabelle 6.2:Fortsetzung Timing Constraints

Beschreibung Timing Constraint

The runnables AirflowCalculation (acl) and Fu-
elRateCalcNormal (frcn) in component Fuelsys-
Controllermust be executed in order.

reoc2 = ⟨acl, frcn⟩

The runnables AirflowCalculation (acl) and Fu-
elRateCalcRich (frcr) in componentFuelsysCon-
trollermust be executed in order.

reoc3 = ⟨acl, frcr⟩

The runnables AirflowCorrection (aco) and Fu-
elRateCalcRich (frcr) in componentFuelsysCon-
trollermust be executed in order.

reoc4 = ⟨aco, frcr⟩

The runnables AirflowCorrection (aco) and Fu-
elRateCalcNormal (frcn) in component Fuelsys-
Controllermust be executed in order.

reoc5 = ⟨aco, frcn⟩

The runnable FuelRateCalcNormal (frcn) in
component FuelsysController must be comple‑
ted between 3ms and 10ms after the runnable
AirflowCalculation (acl) in component Fuelsys-
Controller has been started.

rotc1 = (esacl, etfrcn, 3, 10)

The runnableFuelRateCalcRich (frcr) in compo‑
nent FuelsysController must be completed bet‑
ween 2ms and 6ms after the runnable Airflow-
Calculation (acl) in component FuelsysControl-
ler has been started.

rotc2 = (esacl, etfrcr, 2, 6)

The runnable RunFuelsysCombi (rfc) in com‑
ponent FuelsysCombi must be completed in at
most 100ms and at leat 1ms after the data ele‑
ment Sensors of port PpCorrectedSensors (ppcs)
in component FuelsysSensors has been updated.

rotc3 =

(eppcs_sensors, etrfc, 1, 100)

110

Tabelle 6.2:Fortsetzung Timing Constraints

Beschreibung Timing Constraint

The data element Sensors (se) must be up‑
dated synchronously at port RpCorrectedSen-
sors (rpcs) in component FuelsysController and
RpCombiSensors (rpcombis) in component Fu-
elsysCombiwith a tolerance value of 100ms.

rstc1 =

({erpcs_se, erpcombis_se}, 100)

The data element Sensors (se) of port RpCom-
biSensors (rpcombis) and FuelRate (fr) of port
RpFuelRate (rpfr) in component FuelsysCombi
shall be updated synchronously with a maxi‑
mum tolerance value of 100ms.

rstc2 =

({erpcombis_se, erpfr_fr}, 100)

The termination of runnables RunFuelSysCom-
bi (rfc) in component FuelsysCombi and Fu-
elRateCalcNormal (frcn) and FuelRateCalcRich
(frcr) in componentFuelsysControllermust hap‑
pen synchronously with a tolerance value of
3ms.

rstc3 =

({etrfc, etfrcn, etfrcr}, 3)

The start of the runnables RunFuelSysCombi
(rfc) in component FuelSysCombi and Airflow-
Calculation (acl) in component FuelsysControl-
lermust happen synchronously with a toleran‑
ce value of 3ms.

rstc4 = ({esrfc, esalc}, 3)

The data element Sensors (se) of port PpCorrec-
tedSensors (ppcs) and fuelMode (fm) of port Pp-
FuelMode (ppfm) in FuelsysSensorsmust be up‑
dated synchronously with a tolerance value of
2ms.

rstc5 =

({eppcs_se, eppfm_fm}, 2)

111

Tabelle 6.2:Fortsetzung Timing Constraints

Beschreibung Timing Constraint

The data element Sensors (se) of port RpCor-
rectedSensors (rpcs) and fuelMode (fm) of port
RpFuelMode (rpfm) in FuelsysController must
be updated synchronously with a tolerance va‑
lue of 1ms.

rstc6 =

({erpcs_se, erpfm_fm}, 1)

When values at port RpCorrectedSensors (rpcs)
in component FuelsysController are received
then the new fuel rate value at port PpFuelRate
(ppfr) in component FuelSysController shall be
updated within 25ms.

rltc1 =

(⟨erpcs_se, eppcs_se⟩, 0, 25)

When data element throttle (t) at port RpRaw-
Sensors in component FuelSysSensors is recei‑
ved then the new corrected sensor values (se) at
port PpCorrectedSensors (ppcs) in component
FuelsysSensors shall be updated within at most
10ms.

rltc2 =

(⟨erprs_t, eppcs_se⟩, 0, 10)

When data element speed (sp) at port RpRaw-
Sensors (rprs) in component FuelSysSensors are
received then the new fuel rate value at portPp-
FuelRate (ppfr) in component FuelSysController
shall be available within 1 and 50ms.

rltc3 =

(⟨erprs_sp, eppcs_se, erpcs_se,
eppfr_fr⟩, 1, 50)

₆.₁.₃ LIMITIERUNGEN DES MODELLS

Das Ziel dieserModellevaluierung ist es, die praktische Anwendbarkeit der
Analysemethoden bewerten zu können. Dafür ist es notwendig, dass das
Modell hinsichtlich Aufbau und Komplexität Modellen entspricht, wie sie
bei dSPACE Kunden bzw. AUTOSAR‑Endnutzern vorhanden sind. Diesen
Kriterien kommt das Modell sehr nahe, da es auf der Grundlage von Erfah‑
rungen mit Kundenmodellen im Support und in Entwicklungsabteilungen

112

bei dSPACE entstanden ist. Nichtsdestotrotz ist es kein reales, von dSPACE
Kunden erstelltes Modell, sodass die Modell‑ und Strukturkomplexität von
Kundenmodellen abweichen kann.

₆.₂ ERGEBNISSE

In diesem Abschnitt werden die Ergebnisse der Konsistenzanalyse und Ti‑
ming Verifikation des Anwendungsfalls präsentiert, sowie die Laufzeiteffi‑
zienz der Methoden vorgestellt und begründet. Dafür werden sowohl die
Laufzeiten für alle benötigten Schritte vorgestellt, als auch beispielhaft Teile
der generierten Modelle.

₆.₂.₁ TESTAUFBAU

Der verwendete SMT‑Solver ist Z3 in Version 4.6.0‑x64. Für die Timing Ve‑
rifikation wurde UPPAAL Version 4.0.13 verwendet. Die Ausführung und
Laufzeitmessung der Testszenarien wurde auf einem Windows 10 Profes‑
sional Systemmit Intel Core i7 4800MQmit 32GB Arbeitsspeicher durchge‑
führt. UPPAALwurdemit BFS, konservativer Zustandsraumreduktion und
DBM Zustandsrepräsentation ausgeführt. Die Laufzeit wurde in Sekunden
gemessen. Aufgrund des aktuelleren Testaufbaus sind die Laufzeiten nicht
mit denen aus Beringer undWehrheim (2016) und Beringer undWehrheim
(2020) vergleichbar. Die in den Ergebnissen verwendeten Symbole werden
in Tabelle 6.3 erklärt.

₆.₂.₂ ERGEBNISSE DER KONSISTENZANALYSE

Mithilfe der Konsistenzanalyse konnte für das vorliegende Fallbeispiel ge‑
zeigt werden, dass die Anforderungsmenge konsistent ist. Dafür wurden
aus den Timing Constraints insgesamt 120 Formeln erzeugt, die von Z3 ge‑
prüft wurden und erfüllbar sind. Das Ergebnis und die Abhängigkeiten der
einzelnenTimingConstraints untereinander lässt sich ameinfachsten durch
die Visualisierung des Ergebnisgraphen erkennen. Dieser besteht aus meh‑
reren unverbundene Teilgraphen. Diese werden in den Abbildungen 6.2,

113

Tabelle 6.3:Beschreibung der Symbole

Symbol Beschreibung
T(t) Laufzeit für die Transformation nach SMT in Sekunden
T(smt) Laufzeit zum Lösen der SMT‑Formel in Sekunden
T(msat) Laufzeit für MaxSMT und Unsat Core in Sekunden
T(tv) Laufzeit für die Modelltransformation nach Timed Auto‑

mata
T(tvr) Laufzeit für die Transformation der Timing Anforderung

nach Timed Automata
T(tvm) Laufzeit für die Transformation des AUTOSAR Systemmo‑

dells nach Timed Automata
T(v) Laufzeit für die Timing Verifikation in Sekunden
ratio Laufzeitverhältnis in Prozent T(t)+T(smt)+T(msat)

T(tv)+T(v) ∗ 100

Abbildung 6.2:Teilgraph G′
1 ⊂ G des Ergebnisgraphen für die Timing Anfor-

derungen etc1, etc2, etc7, etc8, etc9, etc10 und eoc1

6.3, 6.4 und 6.5 dargestellt. Da die Anforderungsmenge konsistent ist, sind
die Ergebnisgraphen Gmax und Guc identisch. Der Teilgraph G′

1 enthält über‑
wiegend Execution Time Constraints, die für die Gesamtanalyse zu Off‑
set Timing Constraints auf der Basis von Start‑ und Terminierungs‑Events
transformiert wurden. Die einzelnen Constraints haben keine weiteren Ab‑
hängigkeiten zu anderen Constraints und sind somit für die Konsistenz der
Gesamtmenge unkritisch.
Der Teilgraph G′

2 visualisiert die Reihenfolgebeziehungen zwischen den
Runnables der Komponente FuelsysController, die sich sowohl aus den Exe‑
cution Order Constraints als auch aus den Offset Timing Constraints erge‑
ben. Der Graph zeigt, dass die einzelnen Anforderungen sehr stark mitein‑

114

Abbildung 6.3:Teilgraph G′
2 ⊂ G des Ergebnisgraphen für die Timing Anfor-

derungen etc3, etc4, etc5, etc6, eoc2, eoc3, eoc4, eoc5, otc1 und otc2

Tabelle 6.4:Laufzeiten für die Transformation Konsistenzanalyse bestehend
aus der Transformation des AUTOSARModells nach SMT T(t), sowie das
Lösen der SMT-Formel T(smt) und die Berechnung von Unsat Core und
MaxSMT T(msat)

T(t) 7,3
T(smt) 0,04
T(msat) 0,04

ander verwoben sind. Es lässt sich aber auch im Graph sehr schnell erken‑
nen, dass es möglich ist die einzelnen Events in eine zeitliche Reihenfol‑
ge zu bringen. Der Teilgraph G′

3 enthält überwiegend Synchronization Ti‑
ming Constraints und Latency Timing Constraints. Durch die Größe des
Graphs und die Anzahl der Kanten lässt sich erkennen, dass die zeitlichen
Abhängigkeiten zwischen den einzelnen Timing Anforderungen hoch ist.
Dies zeigt, dass eine manuelle Konsistenzprüfung für dieses Modell ver‑
mutlich fehleranfällig wäre oder sehr lange dauern würde. Die automati‑
sierte Überprüfung hingegen ist mit insgesamt 7,3 Sekunden sehr schnell
durchgeführt. Dabei entfällt die größte Zeit auf die Transformation der Ti‑
ming Anforderungen nach SMT. Die Zeit zum Lösen der Ungleichungen in
Z3 hingegen ist sehr gering. Dies liegt auch daran, dass die Anzahl der For‑
meln mit 120 sehr überschaubar ist. Ein Überblick über die Laufzeiten der
Konsistenzanalyse findet sich in Tabelle 6.4.

115

Abbildung 6.4:Teilgraph G′
3 ⊂ G des Ergebnisgraphen für die Timing Anfor-

derungen stc1, stc2, stc4, stc5, stc6, ltc1, ltc2, ltc3

Abbildung 6.5:Teilgraph G′
4 ⊂ G des Ergebnisgraphen für die Timing Anfor-

derung stc3

₆.₂.₃ ERGEBNISSE DER TIMING VERIFIKATION

Ein Ergebnis der Timing Verifikation ist zunächst, dass mithilfe des
generierten Automatennetzwerks nicht nur die spezifizierten Timing
Anforderungen geprüft werden können, sondern auch grundsätzliche
Modellierungsfehler im AUTOSAR‑Modell erkannt werden können,
die durch eine inkorrekte Verwendung zeitbehafteter Modellelemente
entstehen. Dies kann beispielsweise eine fehlerhafte Zuweisung von
Runnables zu Tasks sein. In diesem Fall können Runnables identifiziert
werden, deren Worst‑Case Execution Time größer ist als die spezifizierte

116

Zykluszeit des zugewiesenen OSTasks. Des Weiteren können Tasks auf
dem Steuergerät identifiziert werden, die nicht innerhalb der angegebenen
Zykluszeit ausgeführt werden können, da die Worst‑Case Execution Times
von Runnables auf anderen Tasks zu hoch sind. Diese Fehler können
im Rahmen der Verifikation dadurch erkannt werden, dass das Modell
nicht deadlockfrei ist. Für das vorliegende Modell konnten keine Fehler
identifiziert werden.
Das generierte Timed Automata Netzwerk des Systemmodells besteht

aus insgesamt 65 Timed Automata, für jede Timing Anforderung wurde
zudem ein Test‑Automat erzeugt, der zusammen mit dem Systemmodell
verifiziert wird.
Alle Timing Anforderungen wurden sequenziell verifiziert und sind er‑

füllbar. DieAbbildung 6.6 zeigt beispielhaft den generierten Test‑TimedAu‑
tomaton für den Latency Timing Constraint ltc3. Dieser Test‑Automat prüft,
ob das Timing von der Ankunft neuer Sensordaten bis zur Bereitstellung
neuerWerte für die Kraftstoffmenge eingehalten wird, indem die maximale
Zeit für das durchlaufen der spezifizierten Ereigniskette geprüft wird. Ab‑
bildung 6.7 zeigt den Test‑Automaton für den Execution Order Constraint
eoc3. Dieser stellt sicher, dass vor der Ausführung des Runnables zur Kor‑
rektur der Sensorwerte zunächst das Runnable zur Erkennung der Fehler
ausgeführt wird. Dies wird sichergestellt, indem bei einer fehlerhaften Aus‑
führungsreihenfolge ein unerwartetes Event empfangenwird und imAuto‑
mat eine Transition zu einem Fehlerzustand getriggert wird. Eine Übersicht
über die Laufzeiten für alle TimingAnforderungen findet sich in Tabelle 6.5.
Die Ergebnisse der Tabelle zeigen ebenfalls die Laufzeiten der einzelnen

Schritte. Diese sind je nach verwendeter AUTOSAR Timing Extension sehr
unterschiedlich. So können Offset Timing Constraints mit durchschnittlich
6 Sekunden am schnellsten verifiziert werden. Für die Verifikation eines
Execution Order Constraints werden bereits durchschnittlich 150 Sekun‑
den benötigt und für Synchronization Timing Constraints 102 Sekunden.
Für die Latency Timing Constraints werden sogar 502 Sekunden benötigt.
Diese Laufzeitunterschiede lassen sich ebenfalls in der Abbildung 6.9 gut
erkennen, die die Mittelwerte für die Laufzeiten der einzelnen Timing An‑
forderungs Typen in Beziehung zueinander setzt. Die Transformationen der

117

Abbildung 6.6:Timed Automaton für ltc3

AUTOSAR Timing Anforderungen (T(tvr)) und des Systemmodells nach
Timed Automata (T(tvm)) dauern für jede Timing Anforderung mit unge‑
fähr 1 Sekunde und 22 Sekunden in etwa gleich lange. Werdenmehrere An‑
forderungen gleichzeitig verifiziert, ist es zudem nur notwendig die Archi‑
tekturtransformation einmalig durchzuführen, was die Gesamtlaufzeit ver‑
kürzt. Der gesamte Verifikationsdurchlauf dauert zusammen mit der Zeit
zur Transformation insgesamt 3273,8 Sekunden. Eine grafische Darstellung
der Ergebnisse findet sich in Abbildung 6.8.

₆.₃ DISKUSSION

Der gezeigte Anwendungsfall gibt einen Einblick in die praktische An‑
wendbarkeit der Methode und deren Nutzen. Es konnte gezeigt werden,
dass sowohl die Konsistenzanalyse als auch die Timing Verifikation
anwendbar waren und das System alle Anforderungen erfüllt. Die
durchgeführte Konsistenzanalyse konnte die Konsistenz der Anforde‑
rungsmenge bereits vor der Verifikation sicherstellen, sodass sich eine
Korrektur der Timing Anforderungen erübrigte. Dies lässt allerdings auch
die Fragestellung offen, inwieweit erkannte Inkonsistenzen dazu beitragen

118

Abbildung 6.7:Timed Automaton für eoc1

würden, die Gesamtlaufzeit der Methode zu verkürzen, indem beispiels‑
weise inkonsistente Teilmengen aus der Gesamtmenge herausgenommen
werden und somit nicht mehr verifiziert werdenmüssen oder indem davon
ausgegangenwird, dass ohne die Anwendung der Konsistenzanalyse uner‑
füllbare Timing Anforderungen innerhalb der inkonsistenten Teilmengen
mehrfach verifiziert werden müssen, da diese ohne eine Konsistenzanalyse
vorab nicht erkannt worden wären. Nichtsdestotrotz kann argumentiert
werden, dass in diesem Fall die Durchführung der Konsistenzanalyse
einen Mehrwert für das Verständnis der Anforderungsmenge geschaffen
hat. Denn ein Requirements Engineer kann so die Abhängigkeiten der
Anforderungen im Ergebnisgraph einsehen und ist so dazu befähigt bei
der Änderung oder Erweiterung der Anforderungen die Konsistenz im
Blick zu behalten. Gleichzeitig ist der Zeitaufwand für die Durchführung
der Analyse vernachlässigbar.

Die Timing Verifikation konnte ebenfalls für die beschriebenen Anforde‑
rungen und das Systemmodell durchgeführt werden. Das Ergebnis zeigt,
dass das Systemmodell alle spezifizierten Timing Constraints erfüllt.

Ein Ergebnis der gemessenen Laufzeiten ist, dass die Timing Verifikation
wesentlich mehr Zeit in Anspruch nimmt als die Konsistenzanalyse. Nur

119

Tabelle 6.5:Ergebnisse und Laufzeiten der Timing Verifikation

Timing Anforderung T(tvr) T(tvm) T(tv) T(v) Ergebnis
reoc1 = ⟨dsf, sco⟩ 0,93 21,1 22,1 98,4 SAT
reoc2 = ⟨acl, frcn⟩ 0,94 20,9 22,0 163,9 SAT
reoc3 = ⟨acl, frcr⟩ 0,95 21,1 22,2 164,1 SAT
reoc4 = ⟨aco, frcr⟩ 0,93 21,0 22,0 164,6 SAT
reoc5 = ⟨aco, frcn⟩ 0,95 20,9 22,0 159,7 SAT

rotc1 = (esacl, etfrcn, 3, 10) 0,94 20,8 21,8 5,5 SAT
rotc2 = (esacl, etfrcr, 2, 6) 0,91 20,9 21,9 5,4 SAT

rotc3 = (eppcs_sensors, etrfc, 1, 100) 1,01 21,0 22,1 7,1 SAT
rstc1 = ({erpcs_se, erpcombis_se}, 100) 1,14 23,2 24,5 107,4 SAT
rstc2 = ({erpcombis_se, erpfr_fr}, 100) 0,97 20,7 21,9 146,6 SAT

rstc3 = ({etrfc, etfrcn, etfrcr}, 3) 1,03 20,8 21,9 96,5 SAT
rstc4 = ({esrfc, esalc}, 3) 0,98 20,7 21,8 92,9 SAT

rstc5 = ({eppcs_se, eppfm_fm}, 2) 1,0 20,7 21,8 86,0 SAT
rstc6 = ({erpcs_se, erpfm_fm}, 1) 1,06 22,3 23,6 87,2 SAT
rltc1 = (⟨erpcs_se, eppcs_se⟩, 0, 25) 1,12 23,3 24,6 601,2 SAT
rltc2 = (⟨erprs_t, eppcs_se⟩, 0, 10) 1,13 20,9 22,1 35,3 SAT

rltc3 1,51 21,2 22,9 870,8 SAT∑
17,5 361,5 381,2 2892,6 ‑

0,22% der Gesamtlaufzeit wird für die Konsistenzanalyse benötigt. Dies
liegt daran, dass die Anzahl der generierten SMT‑Formeln überschaubar
ist. Der größte Anteil wird für die Verifikation des generierten Timed
Automata Netzwerks in UPPAAL benötigt. Da die Anzahl der Clocks einen
sehr großen Einfluss auf die Laufzeit hat, wird davon ausgegangen, dass
die Laufzeiten bei größeren Modellen weiter steigt.

Durch die Beschränkung auf den Anwendungsfall sind die Ergebnisse
nicht auf beliebige andere Systeme übertragbar. Zum einen können System‑
modelle hinsichtlich der Modellkomplexität voneinander abweichen, was
die Laufzeiten der einzelnen Schritte stark beeinflussen kann. Des Weiteren
kann auch die Menge und Komplexität der Timing Anforderungen variie‑
ren.

Die Vermutung liegt nahe, dass gerade bei einer großen Anforderungs‑

120

0

100

200

300

400

500

600

700

800

900

1000

Se
ku

n
d

en

Timing Anforderung

Verifikationslaufzeiten nach Timing Anforderung in
Sekunden

Abbildung 6.8:Laufzeit der Verifikation der Timing Anforderungen

menge die Wahrscheinlichkeit für enthaltene Inkonsistenzen besonders
hoch ist und somit häufiger Fehler gefunden werden.

₆.₄ ZUSAMMENFASSUNG

In diesem Kapitel wurde anhand eines konkreten Anwendungsfalls ge‑
zeigt, wie sich Konsistenzanalyse und Timing Verifikation zusammen zur
frühzeitigen Timing Analyse von AUTOSAR Softwarearchitekturen ein‑
setzen lassen. Zunächst wurde in Abschnitt 6.1 der Aufbau der AUTOSAR
Softwarearchitektur, sowie die Timing Anforderungen vorgestellt. An‑
schließend wurden in Abschnitt 6.2 die Evaluierungsergebnisse vorgestellt.
Da die Menge der Timing Anforderungen keine Inkonsistenzen enthielt,
konnte die Konsistenzanalyse nicht zur Verkürzung der Verifikationszeiten
beitragen. Nichtsdestotrotz war der Aufwand für die Konsistenzanalyse
im Vergleich zur Timing Verifikation vernachlässigbar. Alle Ergebnisse

121

Execution Order
Constraints:

150 Sekunden; 20%

Offset Timing
Constraints:

Synchronization
Timing Constraints:
102 Sekunden; 13%

Latency Timing
Constraints:

502 Sekunden; 66%

Laufzeitmittelwerte und Anteil an der
Gesamtlaufzeit nach Timing Anforderungs Typ

in Sekunden

EOCs OTCs STCs LTCs

Abbildung 6.9:Laufzeitverhältnis der einzelnen Schritte

und Laufzeiten geben jedoch nur die konkrete Sicht auf diesen einen
Anwendungsfall wieder. Dabei können in anderen Modellen sowohl die
Komplexität des AUTOSAR‑Systemmodells als auch die Menge und Art
der Timing Constraints wesentlich voneinander abweichen, was auch
die Laufzeiten beeinflussen kann. Um herauszufinden inwieweit die
einzelnen Methoden skalierbar sind und sich somit eine Kombination aus
Laufzeitgründen als sinnvoll ergibt, wird im nächsten Kapitel genauer
betrachtet.

122

7
Werkzeugunterstützung und

Evaluierung

Dieses Kapitel beinhaltet die wesentlichen Ergebnisse der praktischen An‑
wendung der entwickelten Methode. Zunächst werden einige spezifische
Details des prototypisch entwickelten Werkzeugs vorgestellt wie beispiels‑
weise die Softwarearchitektur und die Integration in die existierendeWerk‑
zeuglandschaft. Danachwerden diemit diesemWerkzeug ermittelten Lauf‑
zeitergebnisse für eine Reihe von Beispielszenarien vorgestellt.

₇.₁ PROTOTYPISCHE WERKZEUGUNTERSTÜTZUNG

Zur Durchführung der Analysen und zur Generierung von Evaluierungs‑
ergebnissen wurde in dieser Arbeit eine prototypische Werkzeugunterstüt‑
zung durchgeführt. Das Werkzeug verwendet die bereits erwähnten Werk‑
zeuge Z3 undUPPAAL zur Analyse der jeweiligen generierten Analysemo‑
delle, die aus den AUTOSARModellen erstellt wurden. Der Zugriff auf die
AUTOSAR Modelle erfolgt über das Werkzeug SystemDesk.

123

₇.₂ REALISIERUNG DER MODELLTRANSFORMATIONEN

Für die Realisierung der Transformationen existieren verschiedene Ansät‑
ze. So gibt es zur Spezifikation von Modell‑zu‑Modell‑Transformationen
(M2M) etablierte Sprachen und Frameworks wie EMOFLON::IBEX (Weid‑
mann et al., 2019) oder VIATRA ₃ (Bergmann et al., 2015), die auf den
Grundlagen von Triple‑Graph‑Grammatiken (TGGs) von Schürr (1994) ba‑
sieren, relationale Ansätze wie QVT der Object Management Group (2016)
oder hybride Ansätze wie die ATL TRANSFORMATION LANGUAGE (Martínez
et al., 2017), die eine Spezifikation der Transformationsregeln sowohl
imperativ als auch deklarativ erlauben. Neuere Methoden beispielsweise
von Anjorin et al. (2022) und Weidmann und Anjorin (2021) betrachten
die Beschreibung bidirektionaler Transformationen mittels TGGs. Mithilfe
Bidirektionaler Transformation (BXBX) lässt sich die Konsistenz (Inter‑Modell
Konsistenz) zwischen zwei oder mehreren verschiedenen Artefakten über‑
prüfen und wiederherstellen, indem die Beziehungen zwischen Modellen
verschiedener Metamodelle so festgehalten und mithilfe eines Werkzeugs
ausgeführt werden, dass Transformationen sowohl vorwärts (von einem
Ursprungsmodell in ein Zielmodell) als auch rückwärts (vom Zielmodell
zurück in das Ursprungsmodell) transformiert und synchronisiert werden
können (Anjorin et al., 2020a). Die Beschreibung der Beziehungen werden
in Form einer Konsistenzrelation, die durch eine TGG realisiert wird
und deren Sprache alle konsistenten Modellpaare beinhaltet, festgehalten
(Anjorin et al., 2020a). So kann beispielsweise die Nachverfolgbarkeit von
Anforderungen in Architekturmodellen gewartet werden, auch wenn sich
Modelle sowohl im Anforderungswerkzeug als auch im Architekturwerk‑
zeug ändern (Anjorin et al., 2022). Durch die Verknüpfung von TGGs mit
Optimierungsmethoden können auch komplexere Konsistenzrelationen,
die weitere Domänenbedingungen beinhalten wie beispielsweise die
Berücksichtigung von Multiplizitäten, realisiert (Weidmann und Anjorin,
2021) oder sogar Optimierungsprobleme beschrieben und Initiallösungen
bestimmt werden (Anjorin et al., 2020b).
Für die Transformationen von AUTOSAR nach SMT, sowie AUTOSAR

nach Timed Automata wurde ein imperativer Ansatz gewählt. Die Trans‑

124

formationsregeln sind direkt im Framework festgehalten, das auf dem
Objektmodell von SystemDesk arbeitet, und generieren als Zielartefakte
ein Z3 und ein Timed Automata Objektmodell. Der wesentliche Grund für
diese Entscheidung ist, dass die entwickelte Methode möglichst nahtlos
in SystemDesk integriert werden sollte, sodass ein Anwender keine zu‑
sätzlichen Schritte durchführen muss oder zusätzliche Werkzeuge nutzen
muss. So entfällt die Einbindung eines passenden BX‑Werkzeugs, was
zusätzliche Komplexität in die Werkzeugkette gebracht hätte, da viele
existierende Werkzeuge wie EMOFOLON zum einen nur für das Eclipse‑
Framework zur Verfügung stehen, das jedoch nicht direkt in SystemDesk
integriert werden kann und somit weitere Transformationsschritte für
das AUTOSAR‑Modell in Form von In‑ und Exports angefallen wären,
und zum anderen das vollständige AUTOSAR Metamodell nicht für das
Eclipse‑Modeling‑Framework als EMF Ecore‑Modell zur Verfügung stand,
was für diese Frameworks eine Voraussetzung ist. Ebenfalls existieren
keine Metamodelle für SMT und Timed Automata.

Der Nachteil der direkten Implementierung der Transformationsregeln
ist jedoch, dass die Transformationen im Gegensatz zu einer Realisierung
mittels BX‑Werkzeug nur unidirektional erfolgen. Dies führt dazu, dass
nach Änderungen des AUTOSAR‑Modells das jeweilige Analysemodell
immer neu erstellt werden muss. Dies kann vernachlässigt werden, da
die Generierung der Analysemodelle keine hohen Laufzeiten aufweisen.
Ebenfalls ist die Rückverfolgbarkeit der Elemente der Analysemodelle
nach AUTOSAR nicht gegeben. Dies führt zu zusätzlichem Aufwand bei
der Interpretation der Analyseergebnisse, da sowohl die Ergebnisse aus
UPPAAL als auch die Ausgaben des SMT‑Solvers und der Visualisierung
manuell auf die entsprechenden AUTOSAR Timing Constraints und die
restlichen AUTOSARModellelemente übertragen werden müssen. Diesem
Problem hätte durch die Verwendung von BX‑Methoden Rechnung getra‑
gen werden können, wenn diese ebenfalls die Ergebnisse der Analysen in
den jeweiligen Metamodellen berücksichtigt würden.

125

₇.₂.₁ SOFTWAREARCHITEKTUR

Die Implementierung erfolgte unter der Verwendung der von SystemDesk
zur Verfügung gestellten Automatisierungsschnittstelle zur Erstellung und
Modifikation vonAUTOSARModellen und den bereits vorgestelltenWerk‑
zeugen bzw. Frameworks UPPAAL und Z3. Das entwickelte Framework
besteht aus insgesamt sechs Komponenten:

1. ARVerifier: Die Komponente liefert die Schnittstelle zur AUTOSAR
ModellverifikationMODELLVERIFIKATION und beinhaltet alle Funktionen zur Transformati‑
on von AUTOSAR Modellen zu Timed Automata. Zur Verifikation
der Timed Automata verwendet die Komponente UPPAAL. Da UP‑
PAAL keine offenen Schnittstellen zur Generierung und Verifikati‑
on zur Verfügung stellt, wurde ein Mechanismus implementiert, der
aus dem Timed Automata Modell ein für UPPAAL lesbares XML‑
Dokument erzeugt. Die Steuerung des Model Checkers erfolgt über
Kommandozeilenaufrufe.

2. ARConsistencyChecker: Die Komponente liefert die Schnittstelle
zur KonsistenzanalyseKONSISTENZANALYSE von AUTOSAR Timing Anforderungen und
beinhaltet alle Funktionen zur Transformation von AUTOSAR
Timing Anforderungen nach SMT. Zur Generierung der SMT‑
Formel verwendet die Komponente die Schnittstelle von Z3, um ein
Z3‑kompatibles Objektmodell in C# zu erzeugen und dieses anschlie‑
ßend mit Z3 zu lösen. Im Gegensatz zur ARVerifier Komponente ist
es somit nicht notwendig, das Objektmodell vorab zu exportieren.

3. ARVerifierTests: Die Komponente beinhaltet Funktionen zur Eva‑
luierungEVALUIERUNG des Analyseframeworks. Die Komponente verwendet die
Analysekomponenten ARVerifier und ARConsistencyChecker und
die Komponente ARGenerate zur Generierung von AUTOSAR
Modellen.

4. ARGenerate: Die Komponente bietet eine Schnittstelle zur Generie‑
rung von synthetischen AUTOSAR ModellenSYNTHETISCHEN AUTOSAR

MODELLEN
und AUTOSAR Timing

Anforderungen.

126

5. ARGraph: Die Komponente beinhaltet Funktionalitäten zur Visuali‑
sierung der Abhängigkeitsgraphen ABHÄNGIGKEITSGRAPHENin Form einer eigenständigen Web‑
applikation. Die Komponente verwendet dafür die API der ARCon‑
sistencyChecker Komponente.

6. ARVerifierExtra: Die Komponente beinhaltet eine Visualisierungs‑
komponente, die es ermögicht die Analysekomponenten über die
grafische Oberfläche GRAFISCHE OBERFLÄCHEvon SystemDesk zu starten. Dies wird über
die Implementierung eines Plugins für SystemDesk realisiert. Die
Komponente verwendet dafür die Schnittstellen der Analysekompo‑
nenten ARVerifier und ARConsistencyChecker.

Abbildung 7.1 gibt eine Übersicht über die entwickelten und eingebunde‑
nen Komponenten. Die Komponenten in gelb sind die beiden AUTOSAR
Analysekomponenten. Komponenten in lila beinhalten Funktionalität zur
Darstellung von Ergebnissen und zur Einbindung des Frameworks in Sys‑
temDesk. Komponenten in rot beinhalten Funktionalität zum Test und zur
Evaluierung des Frameworks.

₇.₃ EVALUIERUNG

In diesem Abschnitt wird die Laufzeit des Ansatzes anhand weiterer Bei‑
spielmodelle und generierter Testszenarien evaluiert. Es werden dabei zu‑
nächst die Rahmenbedingungen für die Testszenarien beschrieben. Dazu
gehört die Beschreibung des Generierungsprozesses für die Testszenarien,
sowie spezifische Eigenschaften der Beispielmodelle. Danach werden die
Laufzeitergebnisse für die Konsistenzanalyse und Timing Analyse vorge‑
stellt. Anhand dieser Ergebnisse wird dann argumentiert, ob und wie die
Methoden kombiniert werden können und ob dies in der Praxis sinnvoll
ist. Die hier vorgestellten Evaluierungsergebnisse wurden teilweise bereits
in Beringer und Wehrheim (2016) und Beringer und Wehrheim (2020) ver‑
öffentlicht.
Die Laufzeitanalyse der Fallstudie wurde mit demselben Testaufbau rea‑

lisiert, der auch im vorherigen Kapitel für die Evaluierung der Methode

127

SystemDesk

AUTOSAR Werkzeug

ARVerifier

Verifikation von Timing
Anforderungen

ARConsistencyChecker

Konsistenzanalyse

ARVerifierExtra

Plug-In zur Einbindung
des Frameworks in
SystemDesk

ARGraph

Web-Applikation zur
Darstellung der
Abhängigkeitsgraphen

Microsoft Z3

SMT-Solver

UPPAAL Model
Checker

Timed Automata Model
Checker

ARGenerate

Generierung
synthetischer AUTOSAR
Modelle.

ARVerifierTests

Test und Evaluierung

3rd Party Komponenten

Analysekomponenten

Oberflächenkomponenten

Evaluierungskomponenten

Legende

SystemDesk Automation API

Abbildung 7.1:Komponentenansicht des Analyseframeworks

128

anhand einer Fallstudie verwendet wurde. Dieser Testaufbau wird in Ab‑
schnitt 6.2.1 vorgestellt. Die ebenfalls in diesemKapitel verwendetenMetri‑
ken sind in Tabelle 6.3 zu finden.

₇.₃.₁ TESTSZENARIEN

Zunächst wird die Laufzeit für die Transformation der Timing Anforde‑
rungen nach SMT, das Lösen der SMT‑Formel mittels Z3 und das Finden
einer MaxSMT Lösung für jeden Timing Constraint Typ separat und
anschließend für eine Kombination aller Timing Constraint Typen gemes‑
sen. Auf diese Weise soll für eine vorgegebene Menge an Anforderungen
sichergestellt werden, dass die Laufzeiten für alle Timing Constraint Typen
in praktischen Anwendungsfällen angemessen sind. Für die Messungen
wurden TimingConstraints generiert. Offset TimingConstraintswurden so
generiert, dass diese einen minimalen und maximalen Offset zwischen 1ms
und 10ms beinhalten. Für die Execution Order Constraints wurden jeweils
5 Runnables aus der Softwarearchitektur ausgewählt und eine beliebige
Execution Order gewählt und für jeden Synchronization Timing Constraint
wurden 3 Timing Events mit einem zufälligen Toleranzwert gewählt. Die
Latency Timing Constraints bestehen aus einer zufällig generierten Timing
Event Chain bestehend aus 5 Timing Events, sowie zufälligen Minimal‑
und Maximalwerten. Eine Übersicht über alle generierten Testszenarien
findet sich in Tabelle 7.2. Die Testszenarien 1‑10 verwenden nur eine kleine
Menge von jeweils 10 Timing Constraints, weil ansonsten die Laufzeit
für die Timing Verifikation zu groß ist. Da die Laufzeit ebenfalls für das
Berechnen einer MaxSMT Lösung mit betrachtet werden soll, sind die
generierten Anforderungsmengen so gewählt, dass diese unerfüllbar sind.
Um die Laufzeiten der Konsistenzanalyse mit Laufzeiten der Timing Ve‑

rifikation zu vergleichen, wurden mehrere Softwarearchitekturen erstellt,
auf deren Basis die Verifikationslaufzeiten gemessen werden. Das Modell
M1 ist sehr klein und beinhaltet nur eine begrenzte Anzahl an Software‑
komponenten, Runnables und Tasks. Das Modell M2 dagegen ist komple‑
xer. Tabelle 7.1 zeigt eine Übersicht über die Komplexität der Modelle. Da
die Anforderungsmenge so gewählt ist, dass sie inkonsistent ist, schlägt die

129

Timing Verifikation für mindestens eine Timing Anforderung fehl.
Zusätzlich zum vollständigen Vergleich der Laufzeiten beider Methoden

mit einer geringen Anzahl an Timing Anforderungen, wird in den Testsze‑
narien 11‑18 die Konsistenzanalyse mit einer größeren Menge an Anforde‑
rungen durchgeführt, wobei für Szenarien 11‑14 eine große inkonsistente
Anforderungsmenge generiert wird und für die Szenarien 15‑18 eine kon‑
sistente Menge. Auf diese Weise lässt sich herausfinden inwieweit die Kon‑
sistenz der Anforderungsmenge Einfluss auf die Laufzeit hat. In diesen Sze‑
narien können jedoch keine Messungen für die Timing Verifikation durch‑
geführt werden, da diese für alle Anforderungen zu groß wäre. Zusätzlich
werden in den Testszenarien 12‑14 erfüllbare Anforderungsmengen gene‑
riert.

₇.₃.₂ ERGEBNISSE

Tabelle 7.3 zeigt die Laufzeitmessungen für die einzelnen Berechnungs‑
schritte für die Timing Anforderungen und für die Modelle M1 und M2.
Die Tabelle zeigt, dass die Transformation der AUTOSAR Elemente nach
Z3‑SMT lange dauert (T(t)), und damit einen großenAnteil der Laufzeit der
Konsistenzanalyse hat. Dies liegt teilweise daran, dass auf die AUTOSAR
Elemente über das Automatisierungsinterface von SystemDesk zugegriffen
wird, welches aus Technologiegründen weniger effizient ist als ein direkter
Zugriff. Des Weiteren wurden noch keine Optimierungen des Transfor‑
mationsalgorithmus vorgenommen. Nichtsdestotrotz ist die Laufzeit im
Vergleich zur Timing Verifikation akzeptabel. Die Messungen für T(t),
T(smt) und T(msat) sind ähnlich für alle Testszenarien mit den gleichen
Timing Anforderungen, auch auf verschiedenen Architekturmodellen

Tabelle 7.1:Verwendete Modelle zur Laufzeitmessung

M1 M2

Software Components 5 8
Runnable Entities 10 80

Tasks 5 8

130

Tabelle 7.2:Testszenarien für die Laufzeitverifikation

Id M |Rotc| |Reoc| |Rstc| |Rltc| SAT
1 M1 10 0 0 0 unsat
2 M1 0 10 0 0 unsat
3 M1 0 0 10 0 unsat
4 M1 0 0 0 10 unsat
5 M1 10 10 10 10 unsat
6 M2 10 0 0 0 unsat
7 M2 0 10 0 0 unsat
8 M2 0 0 10 0 unsat
9 M2 0 0 0 10 unsat
10 M2 10 10 10 10 unsat
11 M2 100 0 0 0 unsat
12 M2 0 100 0 0 unsat
13 M2 0 0 100 0 unsat
14 M2 0 0 0 100 unsat
15 M2 100 0 0 0 sat
16 M2 0 100 0 0 sat
17 M2 0 0 100 0 sat
18 M2 0 0 0 100 sat

(beispielsweise Testszenario 1 und 6). Dies ist offensichtlich, da die Konsis‑
tenzanalyse unabhängig von der verwendeten Softwarearchitektur ist. Die
Modelltransformation nach Timed Automata und die Verifikationslaufzeit
ist offensichtlich sehr stark abhängig von der Größe und Komplexität der
gesamten AUTOSAR Softwarearchitektur. So benötigen die Transformati‑
on und Verifikation der Offset Timing Constraints (Szenario 1), Execution
Order Constraints (Szenario 2) und Synchronization Timing Constraints
(Szenario 3) auf M1 mit maximal 17,2 bzw. 8 Sekunden sehr wenig Zeit.
Dem gegenüber wird für die Transformation und Verifikation einer äqui‑
valenten Anforderungsmenge auf M2 wesentlich mehr Zeit benötigt. So
benötigen die Testszenarien 6‑8 ungefähr bereits mindestens eine Minute
für die Transformation, während die Verifikation der Execution Order
Constraints (Szenario 7) bereits mehr als 10 Minuten und die Verifikaiton
der Synchronization Timing Constraints (Szenario 8) mehr als 20 Minuten

131

Tabelle 7.3:Laufzeiten für die Transformation der Anforderungen nach
SMT, SMT-Solving, MaxSMT Berechnung, Transformation nach Timed
Automata und Verifikation mit UPPAAL

Id T(t) T(smt) T(msat) T(tv) T(v) ratio
1 5,4 0.06 0.04 13 3.0 34.4
2 10.9 0.02 0.07 17.2 5.0 49.5
3 8.1 0.04 0.04 15.6 8.0 34.6
4 6.5 0.02 0.04 18.1 208.1 2.9
5 27.1 0.1 0.13 28.2 219.0 11.1
6 5.4 0.06 0.04 67.5 88.9 3.5
7 10.9 0.02 0.07 65.7 864.4 1.2
8 8.1 0.04 0.04 72.9 1229 0.6
9 22.7 0.04 0.04 73,3 862.7 2.6
10 27.1 0.02 0.9 82 3031 0.9
11 31.9 0.1 1.3 80 ‑ ‑
12 252 0.42 209 571 ‑ ‑
13 52.7 0.56 339 328 ‑ ‑
14 77,2 0.4 2.4 108,8 ‑ ‑
15 33.3 0.1 0.4 81 ‑ ‑
16 219 0.39 154 567 ‑ ‑
17 57.1 0.54 335 331 ‑ ‑
18 80,0 0.1 0.4 109.8 ‑ ‑

benötigt. Lediglich die Verifikation der Latency Timing Constraints ist
bereits auf dem kleineren Modell M1 (Szenario 4) mit 208 Sekunden sehr
zeitaufwändig. Die Analyse kann allerdings auch auf dem großen Modell
M2 (Szenario 9) mit 862 Sekunden noch in akzeptabler Zeit durchgeführt
werden. Die Laufzeitunterschiede der Timing Anforderungen auf den
beiden Modellen M1 und M2 lassen sich ebenfalls in den Diagrammen 7.2
und 7.3 erkennen.
Schließlich wurden zusätzlich die Laufzeiten für das Blinkerbeispiel aus

Kapitel 2 gemessen. Für die Konsistenzanalyse, Transformation und SMT‑
Solving werden 4,5 bzw. 0.1 Sekunden benötigt, während die Verifikation
nur 1,4 Sekunden benötigt.
Die Ergebnisse der Testszenarien 11 bis 18 zeigen, wie unser Ansatz mit

mehr TimingAnforderungen skaliert. In jedemTestwurden die TimingAn‑

132

Abbildung 7.2:Laufzeiten der
Testszenarien mitM1 (Szenarien
1-5)

Abbildung 7.3:Laufzeiten der
Testszenarien mitM2 (Szenarien
6-10)

Abbildung 7.4:Laufzeiten der
Testszenarien 11 - 14

Abbildung 7.5:Laufzeiten der
Testszenarien 15 - 18

133

forderungen von 10 auf 100 erhöht und dabei sowohl inkonsistente (Szena‑
rien 11‑14, Abbildung 7.4) als auch konsistente Anforderungsmengen (Sze‑
narien 15‑18, Abbildung 7.5) erzeugt. Die Ergebnisse zeigen, dass das Lösen
der SMT‑Formeln mit Z3 noch immer akzeptabel ist, während jedoch das
Finden einer MaxSMT‑Lösung wesentlich langsamer für Execution Order
Constraints mit 209 und 154 Sekunden (Szenarien 12 und 14) und Synchro‑
nization Timing Constraints mit 339 und 335 Sekunden (Szenarien 13 und
17)wird. Aufgrund der hohen Laufzeiten für die TimingVerifikation, haben
wir an dieser Stelle auf die Laufzeitmessung für die TimingVerifikation ver‑
zichtet. Aufgrund der Tatsache, dass wir jeden Timing Constraint als Test‑
automaten separat in die Softwarearchitektur integrieren und verifizieren,
gehen wir davon aus, dass die Laufzeit linear mit der Anzahl der Timing
Constraints steigt. Deswegen würde sich geschätzt hieraus beispielsweise
für die Verifikation von 100 Synchronization Timing Constrains (Szenario
13) eine Laufzeit von ca. 8,5 Stunden ergeben.

Ein wesentliches Ergebnis der Laufzeitanalyse ist das Laufzeitverhältnis
von Konsistenzanalyse und Timing Verifikation. Während in den Testsze‑
narien 1,2 und 3, in denen ein kleineres Modell verwendet wurde, ungefähr
30% bis 50% der Laufzeit für die Konsistenzanalyse benötigt wurde, sind es
in den Testszenarien 6 bis 10 lediglich 0,6% bis 3,5%. Dies zeigt, dass es bei
komplexeren Softwarearchitekturen sinnvoll ist, Anforderungen vorab auf
Konsistenz zu prüfen. Hingegen kann bei kleineren Softwarearchitekturen
auf die Konsistenzanalyse verzichtet werden, da sie auch bei fehlerhaften
Anforderungsmengen nur wenig Laufzeit einspart. Nichtsdestotrotz halten
wir die Durchführung einer Konsistenzanalyse vor der eigentlichen Timing
Verifikation für sinnvoll, da wir davon ausgehen, dass die meisten Modelle
in der Praxis sehr groß sind und dass auch die Menge der Anforderungen
wesentlich größer ist. Dieses Ergebnis stützt daher den im Konzept in Ka‑
pitel 3 vorgestellten Prozess.

Schließlich ist die Effizienz des Gesamtprozesses auch abhängig davon
wie schwierig es ist die Timing Anforderungen zu modellieren und wie
gut die Kompetenzen des Requirements Engineers sind, da dies wesentli‑
che Einflussfaktoren für die Erzeugung fehlerhafter Anforderungsmengen
sind. Wenn die Wahrscheinlichkeit gering ist, dass die erzeugten Anforde‑

134

rungen inkonsistent sind, dann kann es günstiger sein auf die Konsistenz‑
prüfung zu verzichten, da es in jedemFall die Laufzeit desGesamtprozesses
verlängert.

₇.₄ ZUSAMMENFASSUNG

In diesem Kapitel wurden zum einen in Abschnitt 7.1 relevante technische
Merkmale des Realisierungsansatzes vorgestellt. Insbesondere wurde die
Softwarearchitektur vorgestellt, sowie Eigenschaften der Transformation
für die AUTOSAR Modelle. Zum Anderen wurde in Abschnitt 7.3 eine
detaillierte Evaluierung des Ansatzes hinsichtlich der Laufzeiten der
einzelnen Bestandteile durchgeführt. Es konnte gezeigt werden, dass der
Ansatz für die evaluierten Beispielmodelle praktisch anwendbar ist und die
Konsistenzanalyse einen signifikanten Mehrwert für den Gesamtprozess
darstellt.

135

136

8
Zusammenfassung und

Ausblick

In der vorliegenden Arbeit wurde eine Methode zur Timing Verifikation
von AUTOSAR Softwarearchitekturen vorgestellt. In diesem Kapitel wird
das Konzept zunächst in Abschnitt 8.1 zusammengefasst. Abschnitt 8.2 dis‑
kutiert diewesentlichen Erkenntnisse und Entwurfsentscheidungen, indem
diese hinsichtlich den erzielten Ergebnissen, Aufwand und Erweiterbarkeit
mit alternativen Lösungsansätzen verglichen werden. Schließlich werden
weiterführende Fragestellungen und Lösungsansätze vorgestellt, die in Ab‑
schnitt 8.3 einen Ausblick über zukünftige Entwicklungen in diesem The‑
mengebiet geben.

₈.₁ ZUSAMMENFASSUNG

In dieser Arbeit wurde eine Methode zur Timing Verifikation von AU‑
TOSAR Softwarearchitekturen vorgestellt und evaluiert. Das Ziel der
Methode ist es durch das Erkennen von Fehlern in AUTOSAR Timing
Anforderungen und in der AUTOSAR Softwarearchitektur frühzeitig

137

eine hohe Qualität der genannten Artefakte zu erzielen und damit den
Entwicklungsprozess von Steuergeräten zu beschleunigen (siehe Kapitel
1). Dafür wurden zunächst in Kapitel 2 die Grundlagen der automotiven
Steuergeräteentwicklung, die Bedeutung von Timing Anforderungen
und deren Manifestation auf verschiedenen Abstraktionsebenen in unter‑
schiedlichenModellierungssprachen, sowie die zur Analyse angewendeten
Techniken besprochen. Ebenfalls wurde ein Beispielmodell vorgestellt,
das im weiteren Verlauf zur Demonstration des vorgestellten Ansatzes
herangezogen wurde.
In Kapitel 3 wurde dann der Ansatz der kombinierten Konsistenzprü‑

fung und Timing Verifikation vorgestellt (siehe Abschnitt 3.1) und es wur‑
den Möglichkeiten diskutiert, wie sich der Ansatz in den bestehenden Ent‑
wicklungsprozess eingliedern lässt (siehe Abschnitt 3.3). Ebenfalls wurde
an dieser Stelle das formale Modell von AUTOSAR vorgestellt, das sowohl
für die Konsistenzanalyse als auch für die Timing Verifikation verwendet
wird (siehe Abschnitt 3.2).
Der erste Schritt des Ansatzes (siehe auch Abbildung 3.1) besteht aus der

Konsistenzprüfung der AUTOSAR Timing Anforderungen. Dieser wurde
in Kapitel 4 vorgestellt. Dafür werden die AUTOSAR Timing Anforderun‑
gen in SMT‑Formeln transformiert undmit demSMT‑Solver Z3 geprüft (sie‑
he Abschnitt 4.1). Werden Anforderungsmengen als inkonsistent identifi‑
ziert können in einem zweiten Schritt Verfahren angewendet werden, mit
denen die Inkonsistenzen aufgelöst werden können, indem für die Timing
Anforderungen der Unsatisfiable Core undMaximum Satisfiability berech‑
net und visualisiert werden. Dieser Schritt wurde in Abschnitt 4.2 vorge‑
stellt. DieMethode ermöglicht es schon eine frühzeitige Rückmeldung über
die Qualität der Timing Anforderungen zu erhalten und diese zu verbes‑
sern. Somit erfüllt der Ansatz die in Kapitel 1 festgelegte Anforderung 3ANFORDERUNG ₃ .
In einem dritten Schritt kann dann die Anforderungsmenge auf der Basis

der Hinweise aus dem vorherigen Schritt überarbeitet werden. Schließlich
kanndie konsistenteAnforderungsmenge dann imvierten Schritt verifiziert
werden (siehe Kapitel 5). Dafür wird das AUTOSAR Softwarearchitektur‑
modell (siehe Abschnitt 5.1) , sowie die darin enthaltenen AUTOSAR Ti‑
ming Anforderungen (siehe Abschnitt 5.2) nach Timed Automata transfor‑

138

miert und im Anschluss mit UPPAAL verifiziert. Die Verifikation mit UP‑
PAAL exploriert vollständig den ZustandsraumdesModells. Somit werden
auch alle Randfälle bei der TimingVerifikation betrachtet, womit derAnsatz
die anfangs festgelegte Anforderung 1 ANFORDERUNG ₁erfüllt. Ebenfalls wird für die Verifi‑
kation ausschließlich das AUTOSAR‑Modell benötigt, sodassAnforderung 2 ANFORDERUNG ₂

ebenfalls erfüllt ist.
Der Ansatz wurde dann anhand eines praktischen Anwendungsfalls

in Kapitel 6 evaluiert. Dieser Anwendungsfall besteht aus einem reali‑
tätsnahen Modell mit einer größeren Menge an Timing Anforderungen.
Das Modell, sowie die Anforderungen wurden zunächst vorgestellt (siehe
Abschnitt 6.1) und im Anschluss die Evaluierungsergebnisse präsentiert
(siehe Abschnitt 6.2). Die Ergebnisse des Anwendungsfalls zeigen, dass
bei hinreichend großen Anforderungsmengen eine Kombination aus
Konsistenzanalyse und Timing Verifikation die Effizienz der Verifikation
gesteigert werden kann. Diese Erkenntnis wurde durch weitere Evalu‑
ierungen anhand verschiedener synthetischer Testszenarien in Kapitel 7
bestätigt (siehe Abschnitt 7.3). Darüber hinaus wurde in diesem Kapitel
eine Übersicht über die realisierte prototypische Werkzeugunterstützung
gegeben (siehe Abschnitt 7.1).

₈.₂ DISKUSSION

Dieser Abschnitt diskutiert und bewertet die wesentlichen Entwurfsent‑
scheidungen, die aufgrund der gesteckten Rahmenbedingungen und der
im Laufe der Arbeit gewonnenen Erkenntnisse gemacht worden sind.

₈.₂.₁ EINFLUSS DER AUTOMOBILINDUSTRIE

Diese Dissertation ist das Ergebnis eines industriell geprägten Promotions‑
vorhabens. Alle erarbeiteten Methoden lehnen sich daher an den konkre‑
ten Vorgaben der Automobilindustrie undWerkzeughersteller an. Dies ma‑
nifestiert sich beispielsweise in der Anforderung den bereits existierenden
AUTOSAR‑Standard zu verwenden, sowie die Methoden für existierende
Werkzeuge zu realisieren. Im Folgenden werden die Aspekte vorgestellt,

139

die wesentlich von den existierenden Vorgaben getrieben waren, sowie die
daraus resultierenden Konsequenzen:

• Die in dieser Arbeit vorgestellte Methode zur Timing Analyse ist in
erster Linie für die Analyse von AUTOSAR Softwarearchitekturen
entworfen, da dies der vorherrschende Standard in der Automobil‑
industrie ist. Neben dem Metamodell zur Beschreibung der Timing
Anforderungen, ist es insbesondere das Metamodell zur hardware‑
unabhängigen komponentenbasiertenArchitekturmodellierung,was
in dieser Arbeit verwendet wird. Diese Modellstrukturen lassen sich
in ähnlicher Form auch in anderen Domänenspezifischen Sprachen
wiederfinden. Dies betrifft beispielsweise die Architekturmodellie‑
rungssprache Architecture Analysis & Design LanguageARCHITECTURE ANALYSIS &

DESIGN LANGUAGE
(AS‑2C Archi‑

tecture Analysis andDesign Language, 2017), die überwiegend in der
Entwicklung von Systemen der Luftfahrt eingesetzt wird oder EAST‑
ADL (EAST‑ADL Association, 2013), die in der Systementwicklung
eingesetzten Sprache. Daher gehen wir davon aus, dass insbesondere
für das Konzept zur Timing Verifikation von AUTOSAR eine Über‑
tragbarkeitÜBERTRAGBARKEIT auch auf andere Domänenspezifische Sprachen gegeben
ist, solange sie die Konzepte von komponentenbasierten Softwarear‑
chitekturen, die Verteilung verschiedener Softwaremodule auf aus‑
führbare Tasks und deren Verteilung auf Hardware, sowie die Spezi‑
fikation von Timing Anforderungen unterstützen.

• Aufgrund der Verwendung des AUTOSAR Standards können eine
Vielzahl der Automobilhersteller und Zulieferer ihre existierende
Modelle ohne die Notwendigkeit zusätzlicher Transformationen
für den vorgestellten Ansatz nutzen. Dies steigert die praktische
RelevanzPRAKTISCHE RELEVANZ des Ansatzes erheblich. Darüber hinaus ist zusätzlich durch
die Realisierung der Methoden innerhalb der bereits existierenden
Werkzeuglandschaft sichergestellt, dass sich Modellierungs‑ und
Qualitätssicherungsaktivitäten, die im V‑Modell vor‑ bzw. nach‑
gelagert sind, nahtlos integrieren lassen. So kann beispielsweise
ein AUTOSAR‑Modell nach der Timing Analyse direkt aus dem
Werkzeug heraus für die Simulation kompiliert und für simulative

140

Testfahrten verwendet werden.

• Für die Beschreibung der für die Transformation nach Timed Auto‑
mata und SMT relevantenModellelementewurde in Kapitel 3 ein for‑
males Modell in Definition 14 spezifiziert. Dies vereinfachte die De‑
finition der Transformationen, da es ausschließlich die für das Zeit‑
verhalten von AUTOSAR relevanten Metamodellelemente beinhal‑
tet. Das formale Modell, sowie die darauf spezifizierten Transforma‑
tionen nach SMT und Timed Automata realisieren Syntax‑ und Se‑
mantikdefinitionen für AUTOSAR, die zusätzlich neben der textuel‑
len Semantik der AUTOSAR Spezifikation und der durch den gene‑
rierten Quellcode eines AUTOSAR‑Codegenerators realisierten Se‑
mantik stehen. Dabei bilden alle Semantiken unterschiedliche Teil‑
aspekte von AUTOSAR ab:

– Die textuelle Semantik beschreibt das Verhalten von AUTOSAR
in einem für Anwender des AUTOSAR‑Standards verständli‑
chen, abermehrdeutigenundvor allemgrößtenteils informellen
Format. So wird ebenfalls das zeitliche Verhalten des Steuerge‑
rätes, sowie die Timing Anforderungen textuell spezifiziert.

– AUTOSAR Codegeneratoren erzeugen zusammen mit dem in
den einzelnen Runnables definierten Code ausführbaren Quell‑
code für eine konkrete Hardwareplattform. Je nach Zielplatt‑
form (Simulation als virtuelles Steuergerät oder Implementie‑
rung in Hardware) bildet diese Semantik das vollständige Ver‑
halten des Steuergeräts ab und beschreibt auch die exaktenAus‑
führungszeiten.

– Die in dieser Arbeit spezifizierte Semantik mittels Timed Auto‑
mata basiert auf dem formalenModell aus Definition 14 und de‑
finiert ein hardwareunabhängiges und zeitbehaftetes Verhalten
von AUTOSAR mittels Timed Automata, indem das Verhalten
der im Standard spezifizierten Timing Anforderungen im Kon‑
text der AUTOSAR‑Steuergerätearchitektur definiert wird ohne
dabei zu detailliert hardwarespezifische Aspekte zu betrachten.

141

– Die SMT‑Semantik basiert wiederum ausschließlich auf den
AUTOSAR Timing Extensions und formalisiert die zeitli‑
chen Abhängigkeiten von Timing Events im Kontext der
Anforderungen mithilfe von logischen Formeln.

Abbildung 8.1 zeigt die Modelle, sowie deren Beziehungen unterein‑
ander. Insgesamt ergeben sich aufgrund der Einführung eines wei‑
teren formalen Modells, sowie der Semantik über Timed Automata
und SMT für AUTOSAR folgende Problemstellungen:

1. Korrektheit der Semantiken. Da für AUTOSAR keine formale
Semantik definiert ist, können wir die Korrektheit der Transfor‑
mationen in Kapitel 5 nicht beweisen und somit ebenfalls die
semantische Äquivalenz des Timed Automata Netzwerks und
der SMT‑Formel zur AUTOSAR Semantik nicht sicherstellen
(siehe auch Abbildung 8.1 (1)). Dieses Problem trifft ebenfalls
auf den generierten Quellcode (siehe auch Abbildung 8.1 (2))
zu und kann beispielsweise dadurch gelöst werden, indem
neben der Syntax ebenfalls das Verhalten im AUTOSAR
Standard formal festgehalten wird, sodass hierauf aufbauend
die Verhaltensäquivalenz von Standard und Timed Automata
Netzwerk bewiesen werden kann. Ein anderer Lösungsansatz
wäre bei der Beschreibung der Semantik unseres Ansatzes
die Semantik des generierten Quellcodes als Grundlage zu
nehmen. So ließen sich beispielsweise die funktionalen Aspekte
des Quellcodes auf die Generierung des Timed Automata Netz‑
werks abbilden und es würden ausschließlich die spezifizierten
Timings der Runnables aus der Spezifikation genommen
werden. Durch diesen Ansatz ließe sich das Problem der
mangelnden Formalisierung des Standards abschwächen.
Umgekehrt ließe sich auch ein Grundgerüst des Quellcodes
auf Basis des Timed Automata Modells erzeugen, welches
dann um fehlende Teile aus dem AUTOSAR Metamodell
ergänzt würde (siehe auch Abbildung 8.1 (3)). Durch die
Spezifikation zweier unterschiedlicher Semantiken für die

142

jeweils unterschiedlichen Teilaufgaben der Konsistenzprüfung
und Timing Verifikation entsteht weiterhin das Problem, dass
Aussagen die auf der Basis einer Semantik gemacht wurden,
nicht auch gleichzeitig für die andere Semantik bewiesen sind.
Letztendlich bilden jedoch die Anforderungs‑Timed‑Automata
durch die verwendeten Signale in den Transitionen genau
die gleiche Restriktionen wie die SMT‑Formeln mithilfe der
Variablen hinsichtlich des möglichen zeitlichen Auftretens der
Timing Events ab, sodass wenn eine SMT‑Formel unerfüllbar
ist, ebenfalls mindestens zwei Anforderungs‑Timed‑Automata
untereinander inkompatible Restriktionen beschreiben, so‑
dass mindestens ein Anforderungs‑Timed‑Automaton nicht
den Anforderungen des Systemmodells genügt, wobei das
verwendete Systemmodell irrelevant ist.

2. Konsistenz zwischen Modellen. Ein weiteres Problem bei
der Verwendung verschiedener Modelle mit sich überschnei‑
denden Elementen ist es, dass Änderungen in einem Modell
nicht automatisiert in die anderen Modelle übertragen werden.
Hierdurch kann es passieren, dass Inkonsistenzen zwischen
den verschiedenen Modellen auftreten, sodass Aussagen, die
auf der Basis eines Modells gemacht werden, nicht mehr für
andere Modelle gelten, da beispielsweise Teilmodelle nicht
aktualisiert wurden. Dieses Problem existierte bereits vorher,
wird aber durch das Einführen einer weiteren Syntax und Se‑
mantik weiter verschärft, denn sobald das AUTOSAR Modell
geändert wird, müssen sowohl die Codegenerierung als auch
die Generierung des formalen Modells erneut erfolgen. Ein
möglicher Lösungsansatz hierfür ist es zwischen den Modellen
anstelle imperativer Transformationsregeln bidirektionale
Transformationen (BX) zu spezifizieren, die diese Konsistenz
sicherstellen können (siehe auch Abschnitt 7.2). Dafür ist es
notwendig, sowohl für das formale Modell in Definition 14
als auch für den ausführbaren Code zunächst Metamodelle zu
spezifizieren, um diese dann mittels BX zu verknüpfen.

143

3. Aussagekraft der Ergebnisse. Aufgrund der fehlenden for‑
malen Spezifikation des AUTOSAR Standards und der nicht
vorhandenen semantischen Relation der Analysemodelle
sowohl zur Codesemantik als auch zum AUTOSAR‑Standard
lassen sich Aussagen hinsichtlich der Korrektheit von Zeitei‑
genschaften nicht formal auf die anderen Modelle übertragen,
was insbesondere bei der Übertragbarkeit der Analyseergeb‑
nisse auf die Semantik des finalen Steuergerätes problematisch
ist. Diese Problematik betrifft jedoch alle Ansätze, die AUTO‑
SAR als Grundlage für Analysen verwenden. Zusätzlich ist
es aufgrund des fehlenden Hardwarebezugs unseres Modells
nur auf der Basis von Laufzeitschätzungen für die Runnables
möglich die finale Semantik des Steuergeräts anzunähern.
Durch die Evaluierung der Transformationen im Werkzeug
und Anwendung innerhalb eines größeren Anwendungsfalls
konnten wir jedoch sicherstellen, dass die Ergebnisse der
Analysemodelle mit erwarteten Ergebnissen übereinstimmten.
Zukünftig können jedoch weitere Arbeiten aus Punkt 1 und
2 dazu beitragen, die Semantik der Modelle näher zusam‑
menzubringen und somit die Aussagekraft der Ergebnisse zu
verbessern.

• Die notwendige Bindung der Methoden an die existierenden Werk‑
zeuge hat jedoch zuHerausforderungen geführt, diewesentliche Ent‑
wurfsentscheidungenENTWURFSENTSCHEIDUNGEN beeinflusst haben. Die in Kapitel 4 und 5 vor‑
gestellten Methoden haben beide als wesentlichen Kern die Trans‑
formation eines als Spezifikationsmodell verwendeten AUTOSAR‑
Modells in ein Analysemodell. Hier hätte es sich angeboten nach den
Grundlagen aus Stahl und Völter (2006) existierende Technologien
zur Modelltransformation anzuwenden. Allerdings war es technisch
schwierig etablierte Technologien und Sprachen zur Metamodellie‑
rung oder zur Spezifikation und Ausführung vonModelltransforma‑
tionen wie beispielsweise QVT, QVT Operational (Object Manage‑
ment Group, 2016) oder EMOFLON::IBEX (Weidmann et al., 2019) ein‑

144

Abbildung 8.1:Darstellung der verschiedenenModelle, deren Beziehungen
untereinander und daraus resultierende Problemstellungen: Generierung
von ausführbarem Steuergerätecode (1) aus AUTOSAR, dem formalen
Modell aus AUTOSAR (2), sowie die Schwierigkeit die Semantiken zusam-
menzubringen, insbesondere die Semantik des formalenModells und des
ausführbaren Codes (3), um Verhaltensäquivalenz sicherzustellen.

zubinden, da diese ausschließlich in Form von Eclipse‑Plugins* vor‑
liegen und eng an die Datenstrukturen von Eclipse gekoppelt sind,
während die vorhandenen Werkzeuge auf anderen Frameworks ba‑
sieren. Eine Integration hätte die Implementierung aufwändiger ge‑
macht und eventuell für einen Anwender dazu geführt, dass dieser
mehrere Werkzeuge hätte nutzen müssen und zusätzliche manuel‑
le Schritte zur Durchführung notwendig gewesen wären. Aus diesen
Gründen wurden alle Modelltransformationen wie in Abschnitt 7.2
beschrieben imperativ implementiert.

₈.₂.₂ WEITERE ENTWURFSENTSCHEIDUNGEN

Eine große Herausforderung während der Erarbeitung dieser Disserta‑
tion war es, dass die gestellten Anforderungen an die wissenschaftliche
Problemstellung und den Lösungsansatz zunächst sehr abstrakt waren,
dafür aber bereits konkrete Restriktionen aufgrund der industriellen
Anwendbarkeit bestanden. Der Startpunkt für die Arbeit war die Vision
den aufwändigen und fehleranfälligen Modellierungsprozess von der
technischen Systemarchitektur bis zu einer vollständig simulierbaren

*https://www.eclipse.org/

145

AUTOSAR‑Softwarearchitektur in SystemDesk mithilfe statischer Ana‑
lysen so zu unterstützen, dass Modellierungsfehler frühzeitig erkannt
werden und somit das laufzeitintensive Kompilieren des Simulations‑
modells möglichst selten durchgeführt werden muss. Dabei wurde
identifiziert, dass die Timing‑Eigenschaften von AUTOSAR nicht im
Prozess berücksichtigt wurden und auch nicht in der Simulation Berück‑
sichtigung fanden, was jedoch Voraussetzung für ein korrektes System
ist. Daher entschieden wir uns diesen Aspekt weiter zu betrachten. Für
die Analyse der Timing‑Eigenschaften wurde inkrementell ein formales
Modell vonAUTOSAR entwickelt und eswurde daraufhin evaluiert, in wie
weit sich das Zeitverhalten mit existierenden formalen Sprachen mit Zeit‑
bezug nachbilden lässt. Wir entschieden uns für die Transformation nach
Timed Automata, da wir hier auf eine gute Werkzeugunterstützung setzen
konnten. Daraufhin wurde eine allgemeine Transformation spezifiziert
und implementiert. Nachdem sich herausgestellt hatte, dass die Verifika‑
tion einiger Timing Anforderungen hohe Laufzeiten hatte und ebenfalls
die Modellierung der Timing Anforderungen im Werkzeug aufgrund
fehlender Modellierungshilfen fehleranfällig war, entschieden wir uns
dazu die Timing Anforderungen genauer und unabhängig von der Soft‑
warearchitektur zu betrachten und die Modellierung zu unterstützen. Die
Ideen waren hier Qualitätskriterien für Timing Anforderungen bereits vor
der Verifikation überprüfen zu können und domänenspezifische Sprachen
für die Modellierung einzusetzen. Für Timing Anforderungen existierten
aber schon eine Vielzahl von Ansätzen für domänenspezifische Sprachen,
wie beispielsweise musterbasierte Sprachen für temporallogische Formeln
(Dwyer et al., 1999, Konrad und Betty, 2005), grafische Modellierungs‑
sprachen für verschiedene spezifische Domänen wie beispielsweise PPSL
für Business Prozesse (Förster et al., 2007) oder zeitbasierte Story Szenario
Diagramme für Graphtransformationssysteme (Klein und Giese, 2006). Mit
der ARText Timing Language existierte ebenfalls bereits eine XText basierte
domänenspezifische Sprache für AUTOSAR Timing Anforderungen
(Scheickl und Ainhauser, 2012). Daher richteten wir den Fokus auf Quali‑
tätskriterien, die bei derModellierung von Timing Anforderungen beachtet
werden müssen. Als Basis dafür wurden die allgemein gültigen Kriterien

146

für Anforderungen der IEEE (IEEE, 1998) herangezogen und es wurden
Kriterien identifiziert, die sich bezogen auf die Timing Anforderungen
automatisiert bewerten lassen. Einige Eigenschaften wie Eindeutigkeit sind
bereits durch das formale Metamodell von AUTOSAR gegeben. Ebenfalls
wird die syntaktische Korrektheit durch das Metamodell von AUTOSAR
bestimmt, was zusätzlich mithilfe der SystemDesk Validierungsregeln
überprüft werden kann. Wir entschieden daher die Konsistenz der Anfor‑
derungen näher zu betrachten und modellierten zeitliche Abhängigkeiten
von AUTOSAR Timing Anforderungen zunächst beispielhaft als SMTLIB
Modell, um dann daraus eine vollständige Transformation herzuleiten. Die
Entscheidung beruhte darauf, dass sich die temporalen Abhängigkeiten
einfach als lineare Ungleichungen darstellen ließen, sodass diese Art der
formalen Modellierung nahe lag. Prinzipiell wäre es ebenfalls möglich
gewesen diese Eigenschaften über Timed Automata darzustellen.

₈.₃ AUSBLICK

Im Folgenden wird ein Ausblick auf zukünftige Themen, die sich dem hier
vorgestellten Ansatz anschließen können, gegeben. Dabei wird ein Blick so‑
wohl auf zukünftige vertiefende Arbeiten der einzelnen Beiträge als auch
auf mögliche Forschungsfragen geworfen, die sich mit der Erweiterung des
Gesamtprozesses beschäftigen.

VERFEINERUNG UND ERWEITERUNG DES FORMALEN MODELLS FÜR AUTO‑
SAR Das in Kapitel 3 vorgestellte formaleModell der Softwarearchitektur
ist das Resultat eines anwendungsbezogenen Ansatzes zur Definition ei‑
ner formalen Semantik für AUTOSAR. Der Ansatz bildet dabei das Timing‑
Verhalten der Softwarearchitektur sowohl auf Applikationsebene als auch
auf RTE‑Ebene und Basissoftwareebene ab. Der Fokus der Arbeit lag dabei
auf der korrekten Nachbildung der Timings für die wesentlichen Basissoft‑
waremodule wie das Betriebssystem, da dies den größten Einfluss auf das
Laufzeitverhalten hat. Darüber hinaus existierenweitere Basisssoftwaremo‑
dule verteilt auf mehreren horizontalen und vertikalen Ebenen (siehe auch

147

Abschnitt 2.1.2 und Abbildung 2.2). Für diese Module könnte es sich für
eine detaillierte Analyse anbieten, diese ebenfalls als spezialisierte Timed
Automata zu modellieren, um das Zeitverhalten weiter zu verfeinern. Des
Weiteren ist AUTOSAR ein Standard, der über Jahre hinweg von einer gro‑
ßen Mitgliederanzahl sukzessive erweitert wurde und immer noch erwei‑
tert wird, was dazu führt, dass das existierende Meta‑Modell mittlerwei‑
le sehr groß ist und sich ständig verändert. Die letzte große Erweiterung
ist dabei die Einführung der sogenannten Adaptive PlatformADAPTIVE PLATFORM †. Diese ermög‑
licht als Kernkonzept die Definition von Services, die nur noch lose gekop‑
pelt sind und dynamisch zur Laufzeit des Systems gestartet werden kön‑
nen. Dies macht die Software flexibler und einfacher adaptierbar, allerdings
wird das Laufzeitverhalten durch die komplexere Architektur schwieriger
vorhersehbar, wodurch Timing Analysen wesentlich komplexer werden.
Wenn zukünftig auch mit Adaptive AUTOSAR sicherheitskritische Echt‑
zeitanwendungen realisiert werden sollen, muss dieser Aspekt in zukünfti‑
gen Arbeiten betrachtet werden.

GENERIERUNG LAUFZEITOPTIMIERTER AUTOSAR ARCHITEKTUREN Die
Erweiterung der Konsistenzanalyse um Unterstützungsverfahren zur
Identifikation von Fehlerursachen für inkonsistente Anforderungsmengen
ist aus unserer Sicht ein vielversprechendes Instrument, um temporale
Fehler in Timing Anforderungen schneller zu beheben und die praktische
Anwendbarkeit der Methode zu steigern. Ein ähnlicher Ansatz für die
anschließende Timing‑Analyse wäre ebenfalls eine sinnvolle Ergänzung
und ein Ansatz für zukünftige Arbeiten. Denn ist eine Timing Anforderung
durch das System nicht erfüllbar, so stellt sich die Frage, welche möglichen
Ursachen dies hat und welche Möglichkeiten zur Auflösung existieren. Ein
einfaches Beispiel hierfür ist ein Latency Timing Constraint, der Events
aus mehreren Runnables referenziert, die aufgrund eines falsch konfigu‑
rierten Task‑Runnable‑Mappings jedoch größere Latenzen verursachen als
notwendig. Durch die Änderung der Reihenfolge der Runnables im Task
kann das Modell dann der Anforderung genügen. Liegen die Timing An‑

†https://www.autosar.org/standards/adaptive-platform/

148

https://www.autosar.org/standards/adaptive-platform/

forderungen und die AUTOSAR‑Architektur auf Applikationsebene vor,
so ließe sich das Task‑Runnable‑Mapping auch automatisiert erzeugen. Ein
möglicher Lösungsansatz hierfür ist, dass sowohl Timing Anforderungen
als auch die Architektur in ein SMT‑Analysemodell integriert werden.
Die Laufzeiten von Runnables und deren Datenverbindungen müssten
dann als zusätzliche Constraints in das Modell aufgenommen werden.
Auf der Basis einer erfüllbaren Variablenbelegung ließe sich dann ein
Task‑Runnable‑Mapping, sowie die OSTasks synthetisieren. Ähnliche
Ansätze, die laufzeitoptimierte Systeme erzeugen sind beispielsweise Zhu
et al. (2012), Long et al. (2009) oder Wozniak (2013). Diese modellieren
das Problem als lineares Programm oder nutzen genetische Algorithmen.
Keine der Arbeiten berücksichtigt allerdings die Abhängigkeiten von
Timing Anforderungen.

AUTOMATISIERTE EXTRAKTION UND VERFEINERUNG VON TIMING ANFORDE‑
RUNGEN AUS SIMULATIONEN Die ersten Timing Anforderungen werden
üblicherweise bereits auf Benutzerebene spezifiziert (siehe auch Abbildung
2.1). Diese werden beispielsweise aus Interviews, Workshops oder aus
Änderungswünschen, sowie sonstigen Rückmeldungen der Benutzer aus
dem Anwendungsfeld gewonnen und müssen ebenfalls technische und
gesetzliche Vorgaben berücksichtigen (Schäuffele und Zurawka, 2010).
Doch gerade für die Entwicklung autonomer Fahrzeugfunktionen ist
es häufig schwierig konkrete Anforderungen an das Timing Verhalten
festzuhalten. Neue Regularien wie beispielsweise zur Absicherung auto‑
matischer Spurhalteassistenzsysteme (United Nations, 2020) fordern, dass
das System in allen Situationen Unfälle vermeidet, in denen dies auch
ein geübter menschlicher Fahrer könnte. Für diese Anforderung ist es
zunächst schwierig konkrete End‑To‑End Timings zu extrahieren, die dann
im Rahmen des Entwicklungsprozesses verfeinert werden können. Eine
Möglichkeit zur Erhebung konkreter Zeitschranken ist es eine Gesamtfahr‑
zeugsimulation mit der prototypischen Fahrfunktion in unterschiedlichen
Szenarien mit verschiedenen Worst‑Case Timings durchzuführen und
mit einem idealisierten Fahrermodell zu vergleichen. Sobald für eine
bestimmte Laufzeit und mindestens einem Szenario für die Fahrfunktion

149

eine Unfallsituation vorliegt, beim idealisierten Fahrermodell aber nicht,
kann diese Laufzeit als Grundlage für ein maximales End‑To‑End Timing
genommen werden. Ähnliche Konzepte werden beispielsweise auch zur
Erhebung vonAnforderungen an die Genauigkeit von Sensorkomponenten
autonomer Fahrzeuge verwendet (Philipp et al., 2021).

AUTOMATISIERTE FORMALISIERUNG NATÜRLICHSPRACHLICHER TIMING
ANFORDERUNGEN Die entwickelte Methode zur Konsistenzanalyse der
Timing Anforderungen realisiert eine analytische Herangehensweise
um die Qualität von Anforderungsartefakten zu erhöhen. Ein weiterer
Ansatz, um bereits frühzeitig die Qualität von Anforderungsartefakten zu
gewährleisten wäre es ebenfalls konstruktive Ansätze zu betrachten. Diese
unterstützen einen Requirements Engineer bereits bei der Transformation
von Anforderungsdokumenten nach AUTOSAR. beispielsweise durch
die automatische Extraktion von AUTOSAR Timing Anforderungen aus
textuellen Anforderungsdokumenten mittels linguistischer Verfahren
oder aus existierenden SysML Anforderungsmodellen. Hier existieren
Ansätze für allgemeine Anforderungsartefakte, die auf formalisierten
textuellen Dokumenten arbeiten wie Holtmann et al. (2011). Diese können
als Grundlage verwendet werden.

₈.₄ SCHLUSSBEMERKUNG

DurchdieAnwendung formalerMethoden zurVerifikation vonTimingAn‑
forderungen bereits auf AUTOSAR‑Architekturebene können Timing Feh‑
ler in Anforderungsartefakten frühzeitig erkannt werden und so zu einer
effizienteren und kostengünstigeren Entwicklung komplexer Steuergeräte‑
software beitragen. Eine große Hürde in der industriellen Praxis ist dabei
die einfache ‑ d.h. auch ohne Expertenwissen mögliche ‑ Anwendbarkeit,
sowie die einfache Integration in bestehende Entwicklungsprozesse und
Werkzeuge, die bisher noch nicht in allen Facetten verfügbar war. Der vor‑
gestellte Ansatz überwindet diese Herausforderungen durch die Anwen‑
dung des etablierten AUTOSAR‑Standards und durch die Bereitstellung

150

von Mechanismen zur effizienten Identifikation und Korrektur von inkon‑
sistenten Anforderungsmengen. Im späteren Verlauf des Entwicklungspro‑
zesses lässt sich der Ansatz sowohl mit code‑basierten formalen Methoden
zur Identifikation von Task‑Laufzeiten als auchmit zeitabhängigen Simula‑
tionen kombinieren, was den praktischen Nutzen des Ansatzes weiter stei‑
gert.

151

152

Literaturverzeichnis

Islam Abdelhalim, Steven Schneider, und Helen Treharne. Towards a
Practical Approach to Check UML/fUMLModels Consistency Using CSP.
In Shengchao Qin und Zongyan Qiu, Hrsg., Proceedings of the 13th Interna‑
tional Conference on Formal Engineering Methods, ICFEM 2011, Lecture No‑
tes in Computer Science, Seiten 33–48, Berlin, Heidelberg, 2011. Springer.
ISBN 978‑3‑642‑24558‑9.

Karsten Albers, Frank Bodmann, und Frank Slomka. Advanced Hierar‑
chical Event‑Stream Model. In Zdenek Hanzalek, Hrsg., Proceedings of the
20th Euromicro Conference on Real‑Time Systems, ECRTS 2008, Prag, 2008.
IEEE Computer Society. ISBN 978‑0‑7695‑3298‑1.

R. Alur und T. A. Henzinger. A really temporal logic. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science, Seiten 164–169.
IEEE Computer Society, 1989. ISBN 0‑8186‑1982‑1.

R. Alur, C. Courcoubetis, und D. Dill. Model‑Checking in Dense Real‑
Time. Information and Computation, 104(1):2–34, 1993. ISSN 08905401.

Rajeev Alur und David Dill. A theory of timed automata. Theoretical Com‑
puter Science, 126(2):183–235, 1994.

Charles André. Syntax and Semantics of the Clock Constraint Specifcation Lan‑
guage (CCSL). Dissertation, Inria Institute, Sophia Antipolis, 2009.

Anthony Anjorin, Thomas Buchmann, Bernhard Westfechtel, Zinovy Dis‑
kin, Hsiang‑Shang Ko, Romina Eramo, Georg Hinkel, Leila Samimi‑
Dehkordi, und Albert Zündorf. Benchmarking bidirectional transformati‑
ons: theory, implementation, application, and assessment. Software & Sys‑
tems Modeling, 19(3):647–691, 2020a. ISSN 1619‑1366.

Anthony Anjorin, Nils Weidmann, Robin Oppermann, Lars Fritsche, und
Andy Schürr. Automating test schedule generation with domain‑specific
languages. In Eugene Syriani und Houari Sahraoui, Hrsg., Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, Seiten 320–331, New York, NY, USA, 2020b. ACM.
ISBN 9781450370196.

153

Anthony Anjorin, Nils Weidmann, und Katharina Artic. Bidirectional
Transformations in Practice: An Automotive Perspective on Traceability
Maintenance (Short Paper). In Catherine Dubois und Julien Cohen, Hrsg.,
STAF 2022 Workshop Proceedings: 10th International Workshop on Bidirectio‑
nal Transformations (BX 2022), 2nd International Workshop on Foundations
and Practice of Visual Modeling (FPVM 2022) and 2nd International Workshop
on MDE for Smart IoT Systems (MeSS 2022) (co‑located with Software Tech‑
nologies: Applications and Foundations federation of conferences (STAF 2022)),
Nantes, France, July 5‑8, 2022, volume 3250 of CEUR Workshop Proceedings.
CEUR‑WS.org, 2022. URL http://ceur-ws.org/Vol-3250/bxpaper3.pdf.

Saoussen Anssi, Karsten Albers, Matthias Dörfel, und Sebastien Gerard.
chronVAL/chronSIM: A Tool Suite for Timing Verification of Automotive
Applications. In Joseph Sifakis, Hrsg., Proceedings of the 6th European Con‑
gress on Embedded Real Time Software And Systems, ERTS 2012, 2012.

Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, und
Bernhard Schätz. AutoFOCUS 3: Tooling Concepts for Seamless, Model‑
based Development of Embedded Systems Architecting of Cyber‑physical
and Embedded Systems and 1st International Workshop on UML Consis‑
tency Rules (ACES‑MB 2015 & WUCOR 2015) co‑located with ACM/IEEE
18th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 2015), Ottawa, Canada, September 28, 2015. In Pro‑
ceedings of the 8th InternationalWorkshop onModel‑based Architecting of Cyber‑
Physical and Embedded Systems, Seiten 19–26, 2015. URL http://ceur-ws.org/
Vol-1508/paper4.pdf.

AS‑2CArchitecture Analysis andDesign Language. Architecture Analysis
& Design Language (AADL), 2017. URL https://www.sae.org/standards/
content/as5506c/.

AUTOSAR. Specification of Timing Extensions, 2019a. URL
https://www.autosar.org/fileadmin/user_upload/standards/classic/
19-11/AUTOSAR_TPS_TimingExtensions.pdf.

AUTOSAR. System Template, 2019b. URL https://www.autosar.
org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_
SystemTemplate.pdf.

AUTOSAR. Software Component Template, 2019c. URL https:
//www.autosar.org/fileadmin/user_upload/standards/classic/19-11/
AUTOSAR_TPS_SoftwareComponentTemplate.pdf.

154

http://ceur-ws.org/Vol-3250/bxpaper3.pdf
http://ceur-ws.org/Vol-1508/paper4.pdf
http://ceur-ws.org/Vol-1508/paper4.pdf
https://www.sae.org/standards/content/as5506c/
https://www.sae.org/standards/content/as5506c/
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_SystemTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_SystemTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_SystemTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_SoftwareComponentTemplate.pdf

AUTOSAR. Recommended Methods and Practices for Timing Ana‑
lysis and Design within the AUTOSAR Development Process, 2019d.
URL https://www.autosar.org/fileadmin/user_upload/standards/classic/
19-11/AUTOSAR_TR_TimingAnalysis.pdf.

AUTOSAR. Methodology, 2019e. URL https://www.autosar.org/
fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_
Methodology.pdf.

AUTOSAR. AUTOSAR Virtual Functional Bus, 2019f. URL
https://www.autosar.org/fileadmin/user_upload/standards/classic/
19-11/AUTOSAR_EXP_VFB.pdf.

AUTOSAR. ECU Configuration, 2019g. URL https://www.autosar.
org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_
ECUConfiguration.pdf.

AUTOSAR. Generic Structure Template, 2019h. URL https:
//www.autosar.org/fileadmin/user_upload/standards/classic/19-11/
AUTOSAR_TPS_GenericStructureTemplate.pdf.

Barrett, Clark und Tinelli, Cesare. Satisfiability Modulo Theories. In Ed‑
mundM. Clarke, Thomas A. Henzinger, Helmut Veith, und Roderick Blo‑
em, Hrsg., Handbook of Model Checking, Seiten 305–343. Springer, Cham,
2018. ISBN 978‑3‑319‑10575‑8.

Barrett, Clark, Fontaine, Pascal, Stump, Aaron, und Tinelli, Cesare. The
SMT‑LIB Standard, 2017.

Andreas Bauer, Martin Leucker, und Jonathan Streit. SALT ‑ Structured
Assertion Language for Temporal Logic. In Zhiming Liu und Jifeng He,
Hrsg., FormalMethods and Software Engineering, ICFEM 2006, Lecture Notes
in Computer Science, Berlin, Heidelberg, 2006. Springer.

Kent Beck und Cynthia Andres. Extreme Programming Explained: Em‑
brace Change. Addison‑Wesley, Boston, MA, 2nd ed. Aufl., 2005. ISBN
9780321278654.

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, Dave Thomas, und Jeff Sutherland. Manifesto for agile
software development, 2001.

155

https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_TimingAnalysis.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_TimingAnalysis.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_Methodology.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_Methodology.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_Methodology.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_GenericStructureTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_GenericStructureTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_GenericStructureTemplate.pdf

Jan Steffen Becker. Model Checking Amalthea with Spin. In Sebastian
Götz, Lukas Linsbauer, Ina Schaefer, und Andreas Wortmann, Hrsg., Pro‑
ceedings of the Software Engineering 2021 Satellite Events, Braunschweig/Virtu‑
al, Germany, February 22 ‑ 26, 2021, volume 2814 of CEUR Workshop Procee‑
dings. CEUR‑WS.org, 2021. URL http://ceur-ws.org/Vol-2814/paper-A3-1.
pdf.

Steffen Becker, Stefan Dziwok, Christopher Gerking, Christian Heinze‑
mann,Wilhelm Schäfer,MatthiasMeyer, undUwe Pohlmann. TheMecha‑
tronicUML method: model‑driven software engineering of self‑adaptive
mechatronic systems. In Pankaj Jalote, Lionel Briand, und André van der
Hoek, Hrsg., Companion Proceedings of the 36th International Conference on
Software Engineering, ICSECompanion 2014, Seiten 614–615,NewYork,New
York, USA, 2014. ACM. ISBN 978‑1‑4503‑2768‑8.

Gerd Behrmann, Re David, und KimG. Larsen. A Tutorial on UPPAAL. In
Marco Bernardo und Flavio Corradini, Hrsg., Formal Methods for the Design
of Real‑Time Systems, Seiten 200–236. Springer, 2004.

Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István
Ráth, Zoltán Ujhelyi, und Dániel Varró. Viatra 3: A Reactive Model Trans‑
formation Platform. In Dimitris Kolovos und Manuel Wimmer, Hrsg.,
Theory and Practice of Model Transformations, volume 9152 of Lecture Notes in
Computer Science, Seiten 101–110. Springer International Publishing, Cham,
2015. ISBN 978‑3‑319‑21154‑1.

Steffen Beringer undHeikeWehrheim. Verification ofAUTOSARSoftware
Architectures with TimedAutomata. InMaurice H. ter Beek, Stefania Gne‑
si, und Alexander Knapp, Hrsg., Proceedings of the Joint 21th International
Workshop on Formal Methods for Industrial Critical Systems and 16th Interna‑
tional Workshop on Automated Verification of Critical Systems, FMICS‑AVoCS
2016, Lecture Notes in Computer Science, Seiten 189–204, Berlin, Heidel‑
berg, 2016. Springer. ISBN 978‑3‑319‑45942‑4.

Steffen Beringer und Heike Wehrheim. Consistency Analysis of AUTO‑
SAR Timing Requirements. In Marten van Sinderen, Hans‑Georg Fill, und
Leszek A. Maciaszek, Hrsg., Proceedings of the 15th International Conference
on Software Technologies, ICSOFT 2020, Seiten 15–26. SciTePress, 2020. ISBN
978‑989‑758‑443‑5.

Nikolaj Bjorner und Anh‑Dung Phan. vZ ‑ Maximal Satisfaction with Z3.
In Temur Kutsia und Andrei Voronkov, Hrsg., 6th International Symposium

156

http://ceur-ws.org/Vol-2814/paper-A3-1.pdf
http://ceur-ws.org/Vol-2814/paper-A3-1.pdf

on Symbolic Computation in Software Science 2014, EPiC Series in Computing,
Seiten 1–9. EasyChair, 2014.

BarryW. Boehm. Guidelines for Verifying and Validating Software Requi‑
rements and Design Specifications. In P. A. Samet, Hrsg., Proceedings of
the European Conference on Applied Information Technology of the International
Federation for Information Processing, Euro IFIP 1979, Seiten 711–719. North
Holland, 1979.

Barry W. Boehm. A Spiral Model of Software Development and En‑
hancement. Computer, 21(5):61–72, 1988. ISSN 0018‑9162. URL https:
//doi.org/10.1109/2.59.

Frederick P. Brooks. The mythical man‑month: Essays on software engineering.
Addison‑Wesley, Reading, Mass., 1975. ISBN 978‑0‑201‑00650‑6.

Manfred Broy. Challenges in automotive software engineering. In Leon J.
Osterweil, Dieter Rombach, und Mary Lou Soffa, Hrsg., Proceedings of the
28th international conference on Software engineering, Seiten 33–42, NewYork,
NY, USA, 2006. ACM. ISBN 1595933751.

Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, und Christian
Salzmann. Engineering Automotive Software. Proceedings of the IEEE, 95
(2):356–373, 2007.

Manfred Broy,Martin Feilkas, MarkusHerrmannsdoerfer, StefanoMeren‑
da, und Daniel Ratiu. Seamless Model‑Based Development: From Isolated
Tools to Integrated Model Engineering Environments. Proceedings of the
IEEE, 98(4):526–545, 2010.

Bundesstelle für Informationstechnik. V‑Modell XT, 2012. URL
http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/
Releases/1.4/V-Modell-XT-Gesamt.pdf.

Giorgio C. Buttazzo. Hard Real‑Time Computing Systems, volume 24. Sprin‑
ger, Boston, MA, 2011. ISBN 978‑1‑4614‑0675‑4.

Zhou Chaochen, C.A.R. Hoare, und Anders P. Ravn. A Calculus of Dura‑
tions. Information Processing Letters, 40(5):269–276, 1991. ISSN 00200190.

Robert N. Charette. How Software Is Eating the Car. IEEE Spectrum, 2021,
2021. URL https://spectrum.ieee.org/software-eating-car.

157

https://doi.org/10.1109/2.59
https://doi.org/10.1109/2.59
http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/Releases/1.4/V-Modell-XT-Gesamt.pdf
http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/Releases/1.4/V-Modell-XT-Gesamt.pdf
https://spectrum.ieee.org/software-eating-car

Edmund M. Clarke und E. Allen Emerson. Design and synthesis of syn‑
chronization skeletons using branching time temporal logic. In Dexter Ko‑
zen, Hrsg., Logics of Programs, volume 131 of Lecture Notes in Computer Sci‑
ence, Seiten 52–71, Berlin, Heidelberg, 1981. Springer. ISBN 3‑540‑11212‑X.

Edmund M. Clarke und Jeannette M. Wing. Formal methods. ACM Com‑
puting Surveys, 28(4):626–643, 1996. ISSN 0360‑0300.

Mike Cohn. Agile Softwareentwicklung: Mit Scrum zum Erfolg! Addison‑
Wesley, München and Boston, Mass. [u.a.], 2010. ISBN 978‑3827329875.

Patrick Cousot und Radhia Cousot. Abstract interpretation: a unified latti‑
ce model for static analysis of programs by construction or approximation
of fixpoints. In Robert M. Graham, Michael A. Harrison, und Ravi Sethi,
Hrsg., Proceedings of the 4th ACM SIGACT‑SIGPLAN symposium on Princi‑
ples of programming languages ‑ POPL ’77, Seiten 238–252, New York, New
York, USA, 1977. ACM.

Leonardo de Moura und Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Frie‑
demann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pan‑
du Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, C. R. Ramakrishnan, und Ja‑
kob Rehof, Hrsg., Tools and Algorithms for the Construction and Analysis of
Systems, volume 4963 of Lecture Notes in Computer Science, Seiten 337–340.
Springer, Berlin, Heidelberg, 2008. ISBN 978‑3‑540‑78799‑0.

John Derrick, David Akehurst, und Eerke Boiten. A framework for UML
consistency. In Ludwik Kuzniarz, Gianna Reggio, Jean‑Louis Sourrouille,
und Zbigniew Huzar, Hrsg., UML 2002 Workshop on Consistency Problems
in UML‑based Software Development, Lecture Notes in Computer Science,
Seiten 182–196, Berlin, Heidelberg, 2002. Springer. ISBN 3‑540‑44254‑5.

Henning Dierks. PLC‑automata: A new class of implementable real‑time
automata. In Miquel Bertran und Teodor Rus, Hrsg., Transformation‑Based
Reactive Systems Development, volume 1231 of Lecture Notes in Computer Sci‑
ence, Seiten 111–125, Berlin, Heidelberg, 1997. Springer. ISBN 978‑3‑540‑
63010‑4.

EdsgerW. Dijkstra. The humble programmer. Communications of the ACM,
15(10):859–866, 1972. ISSN 0001‑0782.

Danielle Douglas und Michael A. Fletcher. Toyota reaches $1.2 billi‑
on settlement to end probe of accelerator problems. Washington Post,

158

2019, 2019. URL https://www.washingtonpost.com/business/economy/
toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/
5738a3c4-af69-11e3-9627-c65021d6d572_story.html.

dSPACE GmbH. Real‑Time Testing Observer Library, 2020. URL
https://www.dspace.com/de/gmb/home/products/sw/test_automation_
software/rtt_observer_lib.cfm.

Matthew B. Dwyer, George S. Avrunin, und James C. Corbett. Patterns in
property specifications for finite‑state verification. In Barry Boehm, David
Garlan, und Jeff Kramer, Hrsg., Proceedings of the 21st ICSE 1999 Internatio‑
nal Conference on Software Engineering. ACM, 1999.

Stefan Dziwok, Uwe Pohlmann, Goran Piskachev, David Schubert, Sebas‑
tian Thiele, und Christopher Gerking. The MechatronicUML Design Me‑
thod: Process and Language for Platform‑Independent Modeling, 2016.

EAST‑ADL Association. EAST‑ADL Domain Model Specifica‑
tion, 2013. URL http://www.east-adl.info/Specification/V2.1.12/
EAST-ADL-Specification_V2.1.12.pdf.

Tobias Eckardt, Christian Heinzemann, Stefan Henkler, Martin Hirsch,
Claudia Priesterjahn, undWilhelm Schäfer. Modeling and verifying dyna‑
mic communication structures based on graph transformations. Computer
Science ‑ Research and Development, 28(1):3–22, 2013. ISSN 1865‑2034.

Gregor Engels, Reiko Heckel, und Jochen Malte Küster. Rule‑Based Spe‑
cification of Behavioral Consistency Based on the UML Meta‑model. In
Martin Gogolla und Cris Kobryn, Hrsg., Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages, Concepts
and Tools, UML 2001, volume 2185 of Lecture Notes in Computer Science, Sei‑
ten 272–286, Berlin, Heidelberg, 2001. Springer. ISBN 978‑3‑540‑42667‑7.

Gregor Engels, Jochen M. Küster, Reiko Heckel, und Luuk Groenewe‑
gen. Towards consistency‑preserving model evolution. In Mikio Aoya‑
ma, Katsuro Inoue, und Vaclav Rajlich, Hrsg., Proceedings of the internatio‑
nal workshop on Principles of software evolution ‑ IWPSE ’02, Seite 129, New
York, New York, USA, 2002. ACM. ISBN 1581135459.

Gregor Engels, Baris Güldali, Christian Soltenborn, und Heike Wehrheim.
Assuring Consistency of Business ProcessModels andWeb Services Using
Visual Contracts. In Andy Schürr, Manfred Nagl, und Albert Zündorf,

159

https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html
https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html
https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html
https://www.dspace.com/de/gmb/home/products/sw/test_automation_software/rtt_observer_lib.cfm
https://www.dspace.com/de/gmb/home/products/sw/test_automation_software/rtt_observer_lib.cfm
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf

Hrsg., Applications of Graph Transformations with Industrial Relevance, volu‑
me 5088 of Lecture Notes in Computer Science, Seiten 17–31. Springer, Berlin,
Heidelberg, 2008. ISBN 978‑3‑540‑89019‑5.

Nico Feiertag, Kai Richter, Johan Nordlander, und Jan Jonsson. A Compo‑
sitional Framework for End‑to‑End Path Delay Calculation of Automotive
Systems under Different Path Semantics. In IEEE Real‑Time Systems Sym‑
posium 2008, volume 29, 2008. URL https://symtavision.com/downloads/
Paper/Fei08_A_Compositional_Framework_for_End-to-End_Path_
Delay_Calculation_RTSS08_Paper.pdf.

Christian Ferdinand und Reinhold Heckmann. aiT: Worst‑Case Execution
Time Prediction by Static Program Analysis. In Renè Jacquart, Hrsg., Buil‑
ding the Information Society, volume 156 of IFIP International Federation for
Information Processing, Seiten 377–383. Springer, Boston, MA, 2004. ISBN
978‑1‑4020‑8156‑9.

Alexander Förster, Gregor Engels, Tim Schattkowsky, und Ragnhild Van
der Straeten. Verification of Business Process Quality Constraints Based on
Visual Process Patterns. In 1st IEEE Int. Symposium on Theoretical Aspects of
Software Engineering, 2007.

Daniel Galin. Software quality assurance: From theory to implementation / Da‑
niel Galin. Pearson, Harlow, 2004. ISBN 978‑0201709452.

Honghao Gao, Yida Zhang, Huaikou Miao, Ramón J. Durán Barroso, und
XiaoxianYang. SDTIOA:Modeling the TimedPrivacyRequirements of IoT
Service Composition: A User Interaction Perspective for Automatic Trans‑
formation from BPEL to Timed Automata. Mobile Networks and Applicati‑
ons, 26(6):2272–2297, 2021. ISSN 1383‑469X.

M. R. Garey, D. S. Johnson, und L. Stockmeyer. Some simplified NP‑
complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

Matthias Gehrke, Petra Nawratil, Oliver Niggemann, Wilhelm Schäfer,
und Martin Hirsch. Scenario‑Based Verification of Automotive Software
Systems. In Holger Giese, Bernhard Rumpe, und Bernhard Schätz, Hrsg.,
Dagstuhl‑Workshop MBEES, Daghstuhl‑Workshop MBEES, Seiten 35–42.
TU Braunschweig, Institut für Software Systems Engineering, 2006.

Volker Gruhn und Ralf Laue. Patterns for Timed Property Specifications.
In Electronic Notes in Theoretical Computer Science, volume 153, Seiten 117–
133, 2006.

160

https://symtavision.com/downloads/Paper/Fei08_A_Compositional_Framework_for_End-to-End_Path_Delay_Calculation_RTSS08_Paper.pdf
https://symtavision.com/downloads/Paper/Fei08_A_Compositional_Framework_for_End-to-End_Path_Delay_Calculation_RTSS08_Paper.pdf
https://symtavision.com/downloads/Paper/Fei08_A_Compositional_Framework_for_End-to-End_Path_Delay_Calculation_RTSS08_Paper.pdf

Raju Halder, Jose Proenca, Nuno Macedo, und Andre Santos. Formal Ve‑
rification of ROS‑Based Robotic Applications Using Timed‑Automata. In
2017 IEEE/ACM 5th International FME Workshop on Formal Methods in Soft‑
ware Engineering (FormaliSE), Seiten 44–50. IEEE, 2017. ISBN 978‑1‑5386‑
0422‑9.

Arne Hamann, Razvan Racu, und Rolf Ernst. Formal Methods for Auto‑
motive PlatformAnalysis andOptimization. In Proc. Future Trends in Auto‑
motive Electronics and Tool IntegrationWorkshop (DATE Conference), Munich,
Germany, 2006.

Eric Hannon. An integrated perspective on the future of mobility,
2016. URL https://www.mckinsey.com/business-functions/sustainability/
our-insights/an-integrated-perspective-on-the-future-of-mobility.

Martijn Hendriks undMarcel Verhoef. TimedAutomata BasedAnalysis of
Embedded SystemArchitectures. In 20th IEEE International Parallel andDis‑
tributed Processing Symposium, 2006.

Thomas A. Henzinger, Pei‑Hsin Ho, und Howard Wong‑Toi. HYTECH:
a model checker for hybrid systems. International Journal on Software Tools
for Technology Transfer, 1(1‑2):110–122, 1997. ISSN 1433‑2779.

Paula Herber, Marcel Pockrandt, und Sabine Glesner. STATE ‑ A SystemC
to TimedAutomata Transformation Engine. In 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, Seiten 1074–
1077. IEEE, 2015. ISBN 978‑1‑4799‑8937‑9.

C. A. R. Hoare. An axiomatic basis for computer programming. Commu‑
nications of the ACM, 12(10):576–580, 1969.

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, 1978. ISSN 0001‑0782.

Jörg Holtmann, Jan Meyer, und Jan von Detten. Automatic Validation
and Correction of Formalized, Textual Requirements. In Proceedings of the
IEEE 4th International Conference on Software Testing, Verification and Valida‑
tion Workshops, ICSTW 2011, volume 4. IEEE Computer Society, 2011.

Jörg Holtmann, Ruslan Bernijazov, MatthiasMeyer, David Schmelter, und
Christian Tschirner. Integrated and iterative systems engineering and soft‑
ware requirements engineering for technical systems. Journal of Software:
Evolution and Process, 28(9):722–743, 2016. ISSN 20477473.

161

https://www.mckinsey.com/business-functions/sustainability/our-insights/an-integrated-perspective-on-the-future-of-mobility
https://www.mckinsey.com/business-functions/sustainability/our-insights/an-integrated-perspective-on-the-future-of-mobility

IEEE. IEEE StandardGlossary of Software Engineering Terminology, 1990.

IEEE. IEEE 830‑1998 Recommended Practice for Software Requirements
Specifications, 1998.

ISO International Organisation for Standardisation. ISO 26262: Road Ve‑
hicles ‑ Functional Safety, 2018. URL https://www.iso.org/standard/68383.
html.

Jaco Jacobs und Andrew Simpson. On the formal interpretation and beha‑
vioural consistency checking of SysML blocks. Software & Systems Mode‑
ling, 16(4):1145–1178, 2017. ISSN 1619‑1366.

Diana Kalibatiene, Olegas Vasilecas, und Ruta Dubauskaite. Rule Based
Approach for Ensuring Consistency in Different UML Models. In Stanis‑
lawWrycza, Hrsg., Information Systems 2013, LNBIP, Seiten 1–16. Springer,
2013. ISBN 978‑3‑642‑40854‑0.

Sean Kane, Ellen Liberman, Tony DiViesti, und Melanie MacDonald. An
Examination of the National Highway Traffic Safety Administration and
the National Aeronautics and Space Administration Engineering Safety
Center Assessment and Technical Evaluation of Toyota Electronic Throttle
Control (ETC) Systems and Unintended Acceleration, 2011.

RobertM.Keller. Formal verification of parallel programs. Communications
of the ACM, 19(7):371–384, 1976. ISSN 0001‑0782.

Barbara Kempkes und Sven Walther. Testen ohne reale ECUs: Bau‑
satz für virtuelle Steuergeräte: Absicherung per Software‑in‑the‑
Loop (SiL). Automobil Elektronik, 2018(03‑04/2018):50–53, 2018. URL
https://www.automobil-elektronik.de/wp-content/uploads/sites/7/2018/
04/AEL_03_04_2018_Internet.pdf.

Jin Hyun Kim, Kim G. Larsen, Brian Nielsen, Marius Mikucionis, und Pe‑
ter Olsen. Formal Analysis and Testing of Real‑Time Automotive Sys‑
tems Using UPPAAL Tools. In FormalMethods for Industrial Critical Systems
(FMICS) 2015, volume 9128 of Lecture Notes in Computer Science, Seiten 47–
61. Springer, 2015.

Olaf Kindel undMario Friedrich. Softwareentwicklung mit Autosar: Grundla‑
gen, Engineering, Management in der Praxis. dpunkt, Heidelberg, 2009. ISBN
978‑3898645638.

Florian Klein und Holger Giese. Integrated Visual Specification of Structural
and Temporal Properties. Dissertation, Paderborn, Paderborn, 2006.

162

https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.automobil-elektronik.de/wp-content/uploads/sites/7/2018/04/AEL_03_04_2018_Internet.pdf
https://www.automobil-elektronik.de/wp-content/uploads/sites/7/2018/04/AEL_03_04_2018_Internet.pdf

Florian Klein und Holger Giese. Joint Structural and Temporal Property
SpecificationUsing Timed Story ScenarioDiagrams. In FASE 2007, volume
4422 of Lecture Notes in Computer Science, Seiten 185–199. Springer, 2007.

Serge Klein, Rene Savelsberg, Feihong Xia, Daniel Guse, Jakob Andert,
Torsten Blochwitz, Claudia Bellanger, Stefan Walter, Steffen Beringer, Ja‑
nek Jochheim, und Nicolas Amringer. Engine in the Loop: Closed Loop
Test Bench Control with Real‑Time Simulation. SAE International Journal of
Commercial Vehicles, 10(1), 2017. ISSN 1946‑3928.

Sascha Konrad und Cheng H.C. Betty. Real‑time Specification Patterns.
In Proceedings of the International Conference on Software Engineering, 2005,
2005.

Yasser Kotb und Takuya Katayama. Consistency Checking of UMLModel
Diagrams Using the XML Semantics Approach. In Allan Ellis und Tatsuya
Hagino, Hrsg., Proceedings of the 14th international conference on World Wide
Web, WWW 2005, Seiten 982–983. ACM, 2005. ISBN 1‑59593‑051‑5.

Ron Koymans. Specifying real‑time properties with metric temporal logic.
In Real‑Time Systems, volume 2, Seiten 255–299, 1990.

Daniel Kroening und Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, Berlin, Heidelberg, 2008. ISBN 978‑3‑662‑50496‑3.

Thomas Kühne. Matters of (Meta‑)Modeling. Software & SystemsModeling,
5(4):369–385, 2006. ISSN 1619‑1366.

Kim G. Larsen, Paul Pettersson, und Wang Yi. Uppaal in a nutshell. In‑
ternational Journal on Software Tools for Technology Transfer, 1(1‑2):134–152,
1997. ISSN 1433‑2779.

Saul X. Levmore und Elizabeth Early Cook. Super strategies for puzzles and
games. Doubleday, Garden City N.Y., 1st ed. Aufl., 1981. ISBN 038517165X.

Ran Li, Jiaqi Yin, Huibiao Zhu, und Phan Cong Vinh. Verification of Rab‑
bitMQ with Kerberos Using Timed Automata. Mobile Networks and Appli‑
cations, 27(5):2049–2067, 2022. ISSN 1383‑469X.

Mark H. Liffiton und Karem A. Sakallah. Algorithms for Computing Mi‑
nimal Unsatisfiable Subsets of Constraints. Journal of Automated Reasoning,
40(1):1–33, 2008. ISSN 0168‑7433.

C. L. Liu und James W. Layland. Scheduling Algorithms for Multipro‑
gramming in a Hard‑Real‑Time Environment. Journal of the ACM, 20(1):
46–61, 1973. ISSN 0004‑5411.

163

Rongshen Long, Hong Li, Wei Peng, Yi Zhang, und Minde Zhao. An Ap‑
proach to Optimize Intra‑ECU Communication Based onMapping of AU‑
TOSAR Runnable Entities. In Tianzhou Chen und Dimitrios N. Serpanos,
Hrsg., International Conference on Embedded Software and Systems, Seiten 138–
143. IEEE Computer Society, 2009. ISBN 978‑0‑7695‑3678‑1.

Inês Lynce und João P. Marques Silva. On Computing Minimum Unsatis‑
fiable Cores of Satisfiability Testing. In SAT 2004 ‑ The Seventh International
Conference on Theory and Applications of Satisfiability Testing, 10‑13May 2004,
Vancouver, BC, Canada, Online Proceedings, 2004.

Nesredin Mahmud, Cristina Seceleanu, und Oscar Ljungkrantz. ReSA
Tool: Structured Requirements Specification and SAT‑based Consistency‑
checking. In Maria Ganzha, Leszek A. Maciaszek, und Marcin Paprzycki,
Hrsg., FedCSIS 2016, Seiten 1737–1746. IEEE Computer Society, 2016.

Frédéric Mallet und Robert de Simone. Correctness issues on MAR‑
TE/CCSL constraints. Science of Computer Programming, 106:78–92, 2015.

Salvador Martínez, Massimo Tisi, und Rémi Douence. Reactive model
transformation with ATL. Science of Computer Programming, 136(4):1–16,
2017.

MathWorks. MATLAB/Simulink, 2022. URL https://www.mathworks.
com/products/simulink.html.

Marcilio Mendonça, Andrzej Wasowski, und Krzysztof Czarnecki. SAT‑
based Analysis of Feature Models is Easy. In Dirk Muthig und John D.
McGregor, Hrsg., SPLC 2009, Seiten 231–240. ACM, 2009.

Tom Mens, Ragnhild Van der Straeten, und Jocelyn Simmonds. A Frame‑
work forManagingConsistency of EvolvingUMLModels. InHongji Yang,
Hrsg., Software Evolution with UML and XML, Seiten 1–30. IGI Global, 2005.
ISBN 9781591404620.

Robin Milner. A calculus of communicating systems. Lecture Notes in Com‑
puter Science. Springer, 1980. ISBN 3‑540‑10235‑3.

Stefan Neumann und Holger Giese. Scalable Real‑Time Compatibility for
EmbeddedComponents using Language‑Progressive TIOA. InProceedings
of the 16th IEEE Computer Society Symposium on Object/Component/Service‑
Oriented real‑Time Distributed Computing (ISORC). IEEE Computer Society,
2013. ISBN 978‑1‑4799‑2111‑9.

164

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

Stefan Neumann, Norman Kluge, und Sebastian Wätzoldt. Automatic
transformation of abstract AUTOSAR architectures to timed automata. In
Iulian Ober, Hrsg., Proceedings of the 5th International Workshop onModel Ba‑
sed Architecting and Construction of Embedded Systems ‑ ACES‑MB ’12, Seiten
55–60, New York, New York, USA, 2012. ACMPress. ISBN 9781450318006.

Object Management Group. Software & Systems Process Engineering
Meta‑Model Specification, 2008. URL https://www.omg.org/spec/SPEM/
2.0/PDF.

Object Management Group. UML Profile for MARTE: Modeling and Ana‑
lysis of Real‑Time Embedded Systems, 2011a. URL https://www.omg.org/
omgmarte/Documents/Specifications/08-06-09.pdf.

Object Management Group. UnifiedModeling Language (OMGUML) Su‑
perstructure, 2011b. URL https://www.omg.org/spec/UML/2.4.1/
Superstructure/PDF.

Object Management Group. Object Constraint Language, 2014. URL http:
//www.omg.org/spec/OCL/2.4/.

Object Management Group. Unified Modeling Language (OMG UML),
2015. URL https://www.omg.org/spec/UML/2.5/PDF.

Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/‑
Transformation Specification, 2016.

Object Management Group. OMG Systems Modeling Language, 2017.

Ernst‑Rüdiger Olderog und Henning Dierks. Real‑Time Systems: Formal
Specification and Automatic Verification. Cambridge University Press, Cam‑
bridge, 2008. ISBN 9780511619953.

Simon Perathoner, ErnestoWandeler, Lothar Thiele, ArneHamann, Simon
Schliecker, Rafik Henia, Razvan Racu, Rolf Ernst, und Michael González
Harbour. Influence of different abstractions on the performance analysis
of distributed hard real‑time systems. Design Automation for Embedded Sys‑
tems, 13(1‑2):27–49, 2009. ISSN 0929‑5585.

Dorin B. Petriu und Murray Woodside. A Metamodel for Generating Per‑
formance Models from UML Designs. In David Hutchison, Takeo Kana‑
de, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Mad‑
hu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard

165

https://www.omg.org/spec/SPEM/2.0/PDF
https://www.omg.org/spec/SPEM/2.0/PDF
https://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf
https://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf
https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://www.omg.org/spec/UML/2.5/PDF

Weikum, Thomas Baar, Alfred Strohmeier, Ana Moreira, und Stephen J.
Mellor, Hrsg., < <UML> > 2004 ‑ The Unified Modeling Language. Modelling
Languages and Applications, volume 3273 of Lecture Notes in Computer Sci‑
ence, Seiten 41–53. Springer, Berlin, Heidelberg, 2004. ISBN 978‑3‑540‑
23307‑7.

Robin Philipp, Hedan Qian, Lukas Hartjen, Fabian Schuldt, und Falk
Howar. Simulation‑Based Elicitation of Accuracy Requirements for the
Environmental Perception of Autonomous Vehicles. In Tiziana Margaria
und Bernhard Steffen, Hrsg., Leveraging Applications of Formal Methods, Ve‑
rification and Validation, volume 13036 of Lecture Notes in Computer Science,
Seiten 129–145. Springer, Cham, 2021. ISBN 978‑3‑030‑89158‑9.

Fabian Pittke, Benjamin Nagel, Gregor Engels, und Jan Mendling. Lingu‑
istic Consistency of Goal Models. In Wil van der Aalst, John Mylopoulos,
Michael Rosemann, Michael J. Shaw, Clemens Szyperski, Ilia Bider, Kha‑
led Gaaloul, John Krogstie, Selmin Nurcan, Henderik A. Proper, Rainer
Schmidt, und Pnina Soffer, Hrsg., Enterprise, Business‑Process and Informa‑
tion Systems Modeling, volume 175 of Lecture Notes in Business Information
Processing, Seiten 393–407. Springer, Berlin, Heidelberg, 2014. ISBN 978‑3‑
662‑43744‑5.

Gordon D. Plotkin. A structural approach to operational semantics. In
DAIMI‑FN 19, volume 60‑61, Seiten 17–139, Aarhus University, 1981.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Seiten 46–57. IEEE Computer Society,
1977.

Klaus Pohl. Requirements Engineering: Grundlagen, Prinzipien, Techniken.
Dpunkt‑Verl., Heidelberg, 2., korrigierte aufl. Aufl., 2008. ISBN 978‑3‑
89864‑550‑8.

Amalinda Post, Jochen Hoenicke, und Andreas Podelski. rt‑inconsistency:
a new property for real‑time requirements. In Dimitra Giannakopoulou
und Fernando Orejas, Hrsg., 14th International Conference on Fundamental
Approaches to Software Engineering, FASE 2011, Lecture Notes in Computer
Science, Berlin, Heidelberg, 2011a. Springer.

Amalinda Post, Andreas Podelski, und Jochen Hoenicke. Vacuous real‑
time requirements. In 19th IEEE International Requirements Engineering Con‑
ference, RE 2011, Seiten 153–162. IEEE Computer Society, 2011b.

166

Jean Pierre Queille und Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Mariangiola Dezani‑Ciancaglini und
UgoMontanari, Hrsg., Proceedings of the 5th International Symposium on Pro‑
gramming, volume 137 of Lecture Notes in Computer Science, Seiten 337–351,
Berlin, Heidelberg, 1982. Springer. ISBN 978‑3‑540‑11494‑9.

Chander Ramchandani. Analysis of Asynchronous Concurrent Systems by
Timed Petri Nets. Dissertation,Massachusetts Institute of Technology,Mas‑
sachusetts, 1973.

Holger Rasch und Heike Wehrheim. Checking Consistency in UML Dia‑
gramms. In Elie Najm, UweNestmann, und Perdita Stevens, Hrsg., Formal
Methods for Open Object‑Based Distributed Systems, 6th IFIP WG 6.1 Inter‑
national Conference, FMOODS 2003, Lecture Notes in Computer Science,
Seiten 229–243, Berlin, Heidelberg, 2003. Springer. ISBN 3‑540‑20491‑1.

Rational Software. Rational Unified Process: Best Practices for Software
Development Teams. White Paper, IEEE Annals of the History of Computing,
TP026B, Rev 11/01, 1998.

G. M. Reed und A. W. Roscoe. A timed model for communicating sequen‑
tial processes. In G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch
Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Sto‑
er, N. Wirth, und Laurent Kott, Hrsg., Proceedings of the 13th International
Colloquium on Automata, Languages and Programming, ICALP 1986, volume
226 of Lecture Notes in Computer Science, Seiten 314–323, Berlin, Heidelberg,
1986. Springer. ISBN 978‑3‑540‑16761‑7.

Othmane Rhandor. Ein Framework zur Zeitanalyse von AUTOSAR Steuerge‑
räten. Masterarbeit, Universität Paderborn, Paderborn, 2012.

Fabíola Gonçalves C. Ribeiro, Carlos E. Pereira, Achim Rettberg, und Mi‑
chel S. Soares. Model‑based requirements specification of real‑time sys‑
tems with UML, SysML and MARTE. Software & Systems Modeling, 17(1):
343–361, 2018. ISSN 1619‑1366.

Kai Richter. Compositional Scheduling Analysis Using Standard Event Models:
The SymTA/S Approach. Dissertation, Braunschweig, 2005.

WinstonW. Royce. Managing the development of large software systems:
concepts and techniques. IEEE WESTCON, Los Angeles, Seiten 1–9, 1970.

Jörg Schäuffele und Thomas Zurawka. Automotive Software Engineering:
Grundlagen, Prozesse, Methoden und Werkzeuge effizient einsetzen. View‑
eg+Teubner, 4 Aufl., 2010.

167

Oliver Scheickl und Christoph Ainhauser. Tool Support for Seamless Sys‑
tem Development based on AUTOSAR Timing Extensions. In Embedded
Real‑Time Software and Systems 2012, 2012.

Andy Schürr. Specification of graph translators with triple graph
grammars. In Ernst W. Mayr, Gunther Schmidt, Gottfried Tinhofer, (No‑
ne), (None), und (None), Hrsg., Proceedings of the 20th International Work‑
shop on Graph‑Theoretic Concepts in Computer Science, WG 1994, volume 903
of Lecture Notes in Computer Science, Seiten 151–163, Berlin, Heidelberg,
1994. Springer. ISBN 978‑3‑540‑59071‑2.

Tilman Seifert, Florian Jug, und Günther Rackl. Automated Quality As‑
surance for UML Models. In Armin B. Cremers, Rainer Manthey, Peter
Martini, und Volker Steinhage, Hrsg., Informatik 2005 ‑ Informatik LIVE!/2,
LNI, Seiten 496–500. GI, 2005. ISBN 3‑88579‑397‑0.

Jocelyn Simmonds und M. Cecilia Bastarrica. A tool for automatic UML
model consistency checking. InDavid Redmiles, TomEllman, undAndrea
Zisman, Hrsg., ASE 2005, Seite 431. ACM, 2005. ISBN 1‑58113‑993‑4.

Herbert Stachowiak. Allgemeine Modelltheorie. Springer, Wien, New York,
1973. ISBN 978‑3211811061.

Thomas Stahl und Markus Völter. Model‑driven software development: Tech‑
nology, engineering, management / Thomas Stahl and Markus Völter, with Jorn
Bettin, Arno Haase and Simon Helsen ; foreword by Krzysztof Czarnecki ; trans‑
lated by Bettina von Stockfleth. John Wiley, Chichester, 2006. ISBN 978‑0‑
470‑02570‑3.

John A. Stankovic und Krithi Ramamritham. Hard real‑time systems. IEEE
Computer Society, Washington, DC, USA, 1988. ISBN 978‑0‑8186‑0819‑3.

R. Stark, H. Hayka, J. H. Israel, M. Kim, P. Müller, und U. Völlinger. Vir‑
tuelle Produktentstehung in der Automobilindustrie. Informatik‑Spektrum,
34(1):20–28, 2011. ISSN 0170‑6012.

Tino Teige, Bienmüller Tom, und Hans Jürgen Holberg. Universal Pat‑
tern: Formalization, Testing, Coverage, Verification and Test Case Ge‑
neration for Safety‑Critical Requirements. In Ralf Wimmer, Hrsg., 19.
GI/ITG/GMM‑Workshop Methoden und Beschreibungssprachen zur Modellie‑
rung und Verifikation von Schaltungen und Systemen, MBMV 2016. Albert‑
Ludwigs‑Universität Freiburg, 2016. ISBN 978‑3‑00‑052380‑9.

168

Lothar Thiele, Samarjit Chakraborty, undMartin Naedele. Real‑Time Cal‑
culus for Scheduling Hard Real‑Time Systems. In Int. Symposium on Cir‑
cuits and Systems ISCAS 2000, 2000.

Jan Toennemann, Andreas Rausch, Falk Howar, und Benjamin Cool. Che‑
cking Consistency of Real‑Time Requirements on Distributed Automotive
Control Software Early in the Development Process Using UPPAAL. In
FMICS 2018, volume 11119 of Lecture Notes in Computer Science, Seiten 67–
82. Springer, 2018.

Ricardo F. Tomás, Paulo Fernandes, Eloisa Macedo, Jorge M. Bandeira,
undMargarida C. Coelho. Assessing the emission impacts of autonomous
vehicles on metropolitan freeways. Transportation Research Procedia, 47(4):
617–624, 2020. ISSN 23521465.

Matthias Traub. Durchgängige Timing‑Bewertung von Vernetzungsarchitek‑
turen und Gateway‑Systemen in Kraftfahrzeugen. Dissertation, Karlsruher
Institut für Technologie, Karlsruhe, 2010. URL https://publikationen.
bibliothek.kit.edu/1000020379.

United Nations. Proposal for a newUNRegulation on uniform provisions
concerning the approval of vehicles with regards to Automated Lane Kee‑
ping System, 2020. URL https://undocs.org/ECE/TRANS/WP.29/2020/
81.

Nils Weidmann und Anthony Anjorin. Schema Compliant Consisten‑
cy Management via Triple Graph Grammars and Integer Linear Pro‑
gramming. Formal Aspects of Computing, 33(6):1115–1145, 2021. ISSN 0934‑
5043.

Nils Weidmann, Anthony Anjorin, Lars Fritsche, Gergely Varró, Andy
Schürr, und Erhan Leblebici. Incremental Bidirectional Model Transfor‑
mation with eMoflon::IBeX. In James Cheney und Hsiang‑ShangEditors
Ko,Hrsg.,Proceedings of the 8th InternationalWorkshop on Bidirectional Trans‑
formations co‑located with the Philadelphia Logic Week, Bx@PLW 2019, Seiten
45–55. CEUR‑WS.org, 2019.

ReinhardWilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Ste‑
phan Thesing, DavidWhalley, Guillem Bernat, Christian Ferdinand, Rein‑
hold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Pu‑
schner, Jan Staschulat, und Per Stenström. The worst‑case execution‑time
problem—overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems, 7(3):1–53, 2008. ISSN 1539‑9087.

169

https://publikationen.bibliothek.kit.edu/1000020379
https://publikationen.bibliothek.kit.edu/1000020379
https://undocs.org/ECE/TRANS/WP.29/2020/81
https://undocs.org/ECE/TRANS/WP.29/2020/81

Ernest Wozniak. An Optimization Approach for the Synthesis of AUTO‑
SARArchitectures: 10 ‑ 13 Sept. 2013, Cagliari, Italy. In Carla Seatzu,Hrsg.,
2013 IEEE 18th Conference on Emerging Technologies & Factory Automation
(ETFA). IEEE Computer Society, 2013. ISBN 978‑1‑4799‑0864‑6.

Wang Yi. CCS + time = an interleaving model for real time systems.
In Javier Leach Albert, Burkhard Monien, und Mario Rodríguez Artale‑
jo, Hrsg., Proceedings of the 18th International Colloquium on Automata, Lan‑
guages and Programming, ICALP 1991, volume 510 of Lecture Notes in Com‑
puter Science, Seiten 217–228, Berlin, Heidelberg, 1991. Springer. ISBN 978‑
3‑540‑54233‑9.

Sergio Yovine. KRONOS: a verification tool for real‑time systems. Interna‑
tional Journal on Software Tools for Technology Transfer, 1(1‑2):123–133, 1997.
ISSN 1433‑2779.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, und Kazuya Takeda.
A Survey of AutonomousDriving: Common Practices and Emerging Tech‑
nologies. IEEE Access, 8:58443–58469, 2020.

Licong Zhang, Reinhard Schneider, Alejandro Masrur, Martin Becker,
Martin Geier, und Samarjit Chakraborty. Timing challenges in automo‑
tive software architectures. In Pankaj Jalote, Lionel Briand, und André van
der Hoek, Hrsg., Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, Seiten 606–607, New York,
New York, USA, 2014. ACM. ISBN 978‑1‑4503‑2768‑8.

Qi Zhu, Haibo Zeng, Wei Zheng, Marco Di Natale, und Alberto
Sangiovanni‑Vincentelli. Optimization of task allocation and priority as‑
signment in hard real‑time distributed systems. ACM Transactions on Em‑
bedded Computing Systems, 11(4):1–30, 2012. ISSN 1539‑9087.

170

	Zusammenfassung
	Abstract
	Inhaltsverzeichnis
	Einleitung
	Motivation
	Problemstellung
	Beitrag der Arbeit
	Struktur der Arbeit

	Grundlagen
	Automotive Softwareentwicklung
	Anforderungsmodelle und Anforderungsqualität
	Formale Analyse
	Zusammenfassung

	Frühzeitige Verifikation von AUTOSAR Timing Anforderungen
	Konsistenzprüfung und Timing Verifikation
	Zeitaspekte innerhalb einer AUTOSAR Softwarearchitektur
	Integration der Methode in bestehende Entwicklungsprozesse
	Zusammenfassung

	Konsistenzanalyse von AUTOSAR Timing Anforderungen
	Transformation der AUTOSAR Timing Anforderungen nach SMT
	Verfahren zur Korrektur inkonsistenter Anforderungsmengen
	Stand der Technik
	Zusammenfassung

	Timing Verifikation von AUTOSAR Softwarearchitekturen
	Transformation des AUTOSAR Architekturmodells nach Timed Automata
	Transformation der Timing Anforderungen nach Timed Automata
	Stand der Technik
	Zusammenfassung

	Fallstudie: Fault-Tolerant Fuel-Rate Controller
	Aufbau des Modells
	Ergebnisse
	Diskussion
	Zusammenfassung

	Werkzeugunterstützung und Evaluierung
	Prototypische Werkzeugunterstützung
	Realisierung der Modelltransformationen
	Evaluierung
	Zusammenfassung

	Zusammenfassung und Ausblick
	Zusammenfassung
	Diskussion
	Ausblick
	Schlussbemerkung

	References

