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Abstract

A novel method to compute capillary forces between directly resolved rough interfaces
is presented. In particular, the free energy of the considered system is numerically
minimized constrained to a predefined volume and given solid boundary. A good
agreement between the novel algorithm and well known solutions for smooth interfaces
is demonstrated. The investigation of rough interfaces requires a statistical approach
since the integral root mean square roughness (RMS) exhibits an infinite number of
realizations. It turns out that the accuracy of the mean capillary force is sufficiently
good, whereas the statistical uncertainty of the standard deviation is dissatisfying.
The application of the novel method to capillary bridges between a rough sphere and
a smooth plate reveals complex and highly non-linear dependencies between the force
distribution and the classical parameters, i.e., volume, gap distance and contact angle.
In contrast, the relation between the standard deviation and the RMS is observed
to be linear which is also pointed out for sphere-sphere systems, provided that one
interface is smooth or both interfaces exhibit the same roughness. Finally, the results

are discussed with respect to their application within a multi-scale DEM.

Zusammenfassung

Es wird eine neue Methode zur Berechnung von Kapillarkriaften zwischen direkt
aufgelosten rauen Oberflichen entwickelt. Hierfiir wird die freie Energie des Sys-
tems unter den Nebenbedingungen eines konstanten Volumens und der vorgegebenen
Festkorperoberflichen numerisch minimiert. Die grundsatzliche Eignung der Metho-
de wird durch einen Vergleich mit Losungen aus der Literatur gezeigt. Die Analyse
von Kapillarbriicken zwischen rauen Oberflachen erfordert einen statistischen Ansatz,
da die mittlere Rauheit durch eine unendliche Anzahl von Oberflachen realisiert wer-
den kann. Es zeigt sich, dass der Mittelwert der Kapillarkraft mit guter Genauigkeit
berechnet wird, wohingegen die statistische Unsicherheit der Standardabweichung
nicht zufriedenstellend ist. Simulationen von Kapillarbriicken zwischen einer rauen
Kugel und einer glatten Wand zeigen komplexe, nichtlineare Zusammenhénge zwi-
schen der Kraftverteilung und den klassischen Parametern Volumen, Spaltabstand
und Kontaktwinkel. Im Gegensatz dazu wird sowohl fir das Kugel-Wand-System als
auch fiir Kugel-Kugel-Systeme ein linearer Zusammenhang zwischen der Standardab-
weichung und der mittleren Rauheit beobachtet, sofern eine der beiden Oberflachen
glatt ist oder beide die gleiche Rauheit aufweisen. AbschlieSend werden die Ergebnisse

in Hinblick auf ihre Anwendbarkeit innerhalb einer mehrskaligen DEM bewertet.
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1. Introduction

Surface tension is a significant physical effect in nature, although it is frequently not
consciously perceived. In fact, surface tension enables insects to walk on water and
droplets to be ideally spherical under zero gravity. Moreover, the famous Lotus effect,
i.e., the very low wetting of an interface, that is observed at the Nelumbo plant, is
caused by surface tension. With respect to solid interfaces, the formation of a liquid
meniscus, i.e., a capillary bridge, between these interfaces is observed, which causes
an interaction force, i.e., the capillary force. In large systems usually forces such
as gravity and inertia are dominant and the capillary forces are negligible. However,
when downsizing a system, capillary forces as well as other interparticle forces become
relevant for the characteristics of the system. A frequently considered example is the
build of a sand castle: Dry sand simply tickles down and no sand castle can be build.
In contrast, wet sand is malleable since the sand grains stick together, which is traced
back to the occurrence of capillary forces between the grains.

Besides this ordinary and illustrative example, capillary forces are important in many
industrial applications. The handling of wet powder and granular material is signif-
icantly determined by capillary forces. In particular, the appearance of capillary
bridges reduces the flowability of bulk materials which can be either desired or un-
desired depending on the specific application [Gro03; Koh04; Lu07; Sch13; Sou06].
Furthermore, capillary bridges can be used for micro assembling. It is demonstrated,
that the capillary force depends on the tilting angle of the tip, which, consequently,
can be used to adjust the capillary force and to release and pick up very small ob-
jects [Cha07; Chal0O]. Another interesting application is the development of capillary
force actuators. Here, the contact angle is decreased by an electrical potential which
leads to an increasing capillary force [Knol2]. By this technology, adhesive forces
that are up to 100 times larger compared to conventional electrostatic actuators can
be obtained [Knol2].

Due to this highly technical relevance, a detailed understanding and modeling of
capillary forces is necessary. From experimental investigations it is concluded, that
the menisci of the capillary bridges are very sensitive towards the geometry of the

solid interface. In particular, roughness is assumed to significantly influence the
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capillary forces. However, the complex governing equations have only been solved
under strongly simplifying assumptions with respect to the particle geometry. In
fact, most of the models consider an axisymmetric meniscus which implies a smooth
solid interface. Theses simplified approaches are used to develop more complex models
that involve roughness, for example by considering multiple menisci between several
asperities. However, to the best of the authors knowledge, a method to compute
menisci between directly resolved rough interfaces does not exist yet.

Thus, the main goal of this work is the development of a method that allows the
simulation between arbitrarily shaped interfaces. In particular, the method should
be capable of resolving high frequent rough solid interfaces. Therefore, the physical
background of capillarity is described first (chapter2). Subsequently, the state of
the art and research of capillary bridges is presented (chapter 3). In particular, the
existing simulation methods and rough force models are discussed. Based on this
intensive review, the requirements of the novel method are specified more precisely
(chapter4). The capillary bridge model comprises the physical model as well as
the mathematical formulation of the problem (chapter5). Moreover, the complex
numerical implementation is discussed, which is tailor-made for the capillary bridge
problem. Since the developed method is completely novel, a intensive evaluation
including a verification and an estimation of the numerical and statistical error is
pointed out (chapter 6). Subsequently, capillary forces in rough sample systems, i.e.,
sphere-plate and sphere-sphere systems, are investigated and characteristic diagrams
for the mean capillary force and the standard deviation are obtained (chapter 7).
Finally, the existence, uniqueness and stability of the presented capillary bridges is
discussed (chapter 8). Moreover, the results are particularly interesting with respect
to an application in a discrete element method (DEM). Thus, the suitability for such
a multi-scale approach is analyzed. Moreover, the hands-on experiences with the
novel algorithm reveal optimization potential for the implemented algorithm which

is described and should be considered for future work.



2. Physical background of capillarity

There is no uniform definition of capillarity in the literature. Traditionally, capillarity
describes ,the tendency of wetting liquids to be drawn into the confined space of a
narrow tube or between at least two surfaces“ [vanl0]. A more general definition
implies the existence of a meniscus, which is a curved liquid-gas interface [van10].
Similarly, Schubert [Sch82| states, that capillarity describes the surface tension de-
pendent behavior of liquids and requires a phase interface. Moreover, capillarity is
defined as ,the study of the interfaces between two immiscible liquids, or between a
liquid and air“ [Gen10]. In this work liquid capillary bridges between solid particles
in a gaseous surrounding are analyzed, which is a capillary phenomenon according to
all given definitions. Thus, in order to describe capillary bridges, the basic principle
and fundamental equations of capillarity are outlined in this chapter.

First, the Gibbs interface model for plain and curved interfaces is presented. The
concepts of surface tension and the contact angle are explained and the fundamental
equations, i.e., the Young-Laplace equation, the Young-Equation and the Kelvin-
Equation, are described including their limits. For the case of solid-gas-liquid systems
the contact angle is defined at the three-phase contact line and the basic models for
complex wetting on rough interfaces are introduced. Finally, the Kelvin equation,

that describes systems in thermodynamic equilibrium, is covered.

2.1. Interfaces and surface tension

An interface is defined as the transition between different phases or immiscible liquids.
The particular case of a liquid-vacuum-interface or a solid-vacuum-interface is called
surface. However, since the vacuum is a theoretical concept, one may stick to the
more practical definition of surfaces describing the interface between a liquid and its
own vapor [Sch82].

Interfaces are not sharp transitions from one phase to another, but regions whose
extent can only be determined by definition. Outside the transition region the phases
are homogeneous while inside a heterogeneous mixture with undefined state variables
exists. Thus, describing processes with different phases requires an interface model.

The most relevant model is presented by Gibbs [Gib93]. The volume extension of
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the transition region normal to the phase change is several orders smaller compared
to the parallel extension. Therefore, the volume is frequently modeled by a sharp
interface area. According to Gibbs’ idea, the phases are assumed to be completely

homogeneous with a jump at a dividing interface located within the transition region.

2.1.1. Plain interfaces

A stationary system of the homogeneous phases a and b that are separated by plain
interfaces and consists of 7 components can be described by Gibbs’ fundamental
equation [Gib93]

dfy = —SdT + odA — pdV + i e idni, (2.1)

i=1
where Fy is the Helmholtz free energy, S the system entropy, 1" the absolute tem-
perature, o the surface tension, A the interface area, pi.; the chemical potential of
component ¢ and n; the amount of substance of component 7. The Gibbs equation
is universal whereas specific values of the parameters depend on the definition of the
dividing interface area within the transition region. For isothermal processes eq. (2.1)

reduces to

dFyg — zn: e idni = dQgp = 0dA — pdV (2.2)
i=1

with the grand potential Qg,. Note, that stationary interfaces are not static [Lan02].
There is always an exchange of molecules from one phase to the other. In the sta-
tionary equilibrium case, the number of evaporating molecules equals the number of
condensing molecules.
The concept of surface tension is described for the first time in 1751 by Segner [Seg51|
and is explained by considering a molecule at the inner part of the liquid. This
molecule is attracted by cohesive forces of other molecules in any direction. However,
a molecule directly on the interface is only attracted on its liquid side while on the
vapor side the number of interaction partners is drastically reduced. Thus, interface
molecules have a higher potential energy compared to inner molecules. The second
law of thermodynamics states, that a closed system in equilibrium maximizes the
entropy at constant inner energy which is equivalent to minimize its free energy for
constant volume and temperature [Dem14|. According to this principle, the number of
interface molecules is minimized as well which is equivalent to minimize the interface

area. Increasing the interface area means transporting molecules from inside the
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liquid to the interface which requires energy. The total amount of work OW needed

is proportional to the increase of the interface area 0A and the proportionality factor

oW
= | — 2.
g <8A>T,V,n (2:3)

is the surface tension with n being the number of molecules [Genl0]. Note, that this
definition implies W to be reversible and isothermal [Sch82].
For surfaces the influence of the vapor on surface tension oy, is insignificant if the

o defined as

vapor pressure is not too high. Analogously, at liquid-gas-interfaces that do not react
physically or chemically and exhibit a gas pressure around 1 bar, the influence of the
gas phase can be neglected [Sch82]. Thus, if not stated otherwise, in this work the
surface tensions at the liquid-vapor o1, and the liquid-gas interface o0, always refer

to the surface tension of the liquid o] neglecting the influence of vapor or gas:
Oy =0lg=01=0 (2.4)

The surface tension of liquids can be accurately determined by experimental methods
which are described in detail by Rusanov and Prokhorov [Rus96]. Moreover, a review
on measurement methods for fluid-fluid-interfaces is given by Drelich et al. [Dre02].
The surface tensions of different liquids at a temperature of 293 K are listed in ta-
ble2.1. Due to its hydrogen bonds, the surface tension of water is high compared to
other liquids. As already mentioned above, the influence of vapor or gas pressure is
negligible for moderate pressures [Sch82] and will therefor not be discussed in detail.
In contrast, the influence of temperature might be significant.

The surface tension of pure fluids decreases with increasing temperature which is ex-
plained by Padday [Pad69]. Intermolecular forces are lower at high temperatures due
to higher molecule distances. Thus, less energy is needed to transport molecules from
the inner part of the fluid to the interface. The temperature dependency of the surface
tension of water oy, 0 is presented in figure2.1 (a) at temperatures from 274 — 310 K.
The experimental values of the database REFPROP [Lem18| are measured along the

Table 2.1.: Surface tension of different liquids at 293 K [Lem18]

water ammonia ethanol methanol R123

o [mN-m] 72.759 26.423 22.433 22.686 15.788
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saturation curve. However, due to the negligible influence of the vapor and gas pres-
sure, they are sufficiently accurate for any gas pressure below 10 bar. It is shown that

the van der Waals approximation

T \F
o(T) = o9 (1 — > (2.5)
Tcrit

agrees well with the database values. The constants of eq. (2.5) must be determined
experimentally for each liquid. A critical temperature Terit,Ho0 Of 647.10K [Lem18|
and 09,0 = 117.9 mN-m™! as well as k1,0 = 0.8 [Sch82] are used for water.

Huge temperature gradients cause surface tension gradients that lead to convective
flow. This so called Marangoni convection [Mar71] is especially relevant for melting
and solidification processes, but will not be covered in here. Besides state variables,
such as pressure and temperature, the geometry of the interface also influences the

surface tension. Therefore, modeling of curved interfaces is discussed subsequently.

2.1.2. Curved interfaces

When analyzing curved interfaces two additional effects have to be considered. First,
the pressure jumps across curved interfaces and is therefore different in each phase.
The relation between the pressure difference and the curvature of the interface is
described by the Young-Laplace equation which is deduced in section2.2. Second,

the interface area in curved regions changes with the radial position [Sch82]. In

(a) (b)

76*‘ T T T T T T T T T T T T T T T T T T T
e I ] g o[ T
Z l Z T = 293K
~ T4+ - ~ 0 = 0.099 nm
L ] 2 50| |
T B h ==
S L i s} [

o i il o -
Z 72| | 2 |
7 [ |
° - —— van der Waals . ° - —— tolman approximation
E | approximation (eq.2.5) | L,% A (eq.2.11)
= 70| » REFPROP [Lemls] I
e oL oy 1 o T T T T T N I T BN MR B
275 285 295 305 2 4 6 8 10
temperature T / K droplet radius rq / nm

Figure 2.1.: Influence of temperature (a) and curvature (b) on the surface tension of water
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contrast, at plain interfaces the size of the sharp interface area as introduced by
Gibbs is independent of the location within the transition volume. This phenomenon
becomes significant if the characteristic length scale of the system approaches the size
of molecules. Considering these two effects, the grand potential for a curved interface

with curvature radius r between two phases a and b is given by

o (r)
or

dQgp, = o(r)dA + Adr — p,dV, — pr,d V4. (2.6)
In order to specify curved interfaces properly, the mean curvature H and the Gauss
curvature K are introduced. An arbitrarily curved interface is defined locally by the

principal radii vy and ro and their corresponding curvatures

Ry = 1 and ko = l (2.7)
1 T2

The principal radii are determined at any point on the interface by identifying the
interface normal at this point. Subsequently, a curve is constructed by intersecting
the interface and an arbitrary plane containing the normal vector and the point.
The first principal radius is defined by the circle of curvature of this curve at the
considered point. The second radius is determined analogously by another section
plane perpendicular to the first plane and also containing the normal vector and the

point. The mean curvature is defined as the average of the principal curvatures

1 1
H = - (k1 + ky) = —. 2.8
2( 1 + Ka2) - (2.8)
According to a law of differential geometry, the mean curvature is independent of the
orientation of r; and ro provided that the section planes are perpendicular [But10b].

Here, 7 is the mean radius of curvature that is defined by

1 1/1 N 1 (2.9)
e 2\r1 1)’ ‘
rather than by the arithmetic mean of the principal radii [Sch82]. In addition to the

mean curvature, the Gauss curvature K is determined by the product of the principal

curvatures

K = R1R9. (210)
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For interfaces I' that are described by a level-set function ¢ the mean curvature is

given by
(2.11)

where n is the vector normal of the interface. The nabla operator Vi describes the
divergence and gradient along the interface I' rather than in any direction in space.
The relation between the surface tension and the radius of curvature is described for

spherical droplets by Tolman [Tol49a]

o(rn) = 0o <1 + 25) 1 : (2.12)
™

Here, 04 is the surface tension for plain interfaces (rp — oo) and ¢ the Tolman
length that describes the size dependent proportional contribution to the surface ten-
sion. An analogous expression to eq. (2.12) is derived for cylindrical menisci [Vog80].
According to Tolman [Tol49b], the Tolman length for water at 293 K is 0.099 nm. Us-
ing this value the curvature dependent surface tension of a water droplet is illustrated
in figure 2.1 (b). Note, that for spherical droplets the droplet radius equals the radius
of curvature (rq = ry). It is shown that the surface tension decreases with rising cur-
vature. For rq > 10nm the influence of curvature is below 2 % and, therefore, might
be neglected, which is consistent with Vogelsberger et al. [Vog80]. Schubert [Sch82]
even gives a minimal value for using macroscopic surface tension of rq > 3nm, which
corresponds to a surface tension decrease of 6.19 % in figure 2.1 (b).

Still, an accurate determination of surface tension at high curvatures is a significant
matter of research and inconsistent results are published [Blo10; Hor12]. On the
one hand, quasithermodynamic [Hil52] and statistical approaches [Kir49] predict a
positive Tolman length in good agreement with Tolman’s classical work. On the other
hand, numerical calculations lead to negative values and show a very small region of
application of eq. (2.12) [Kog98; van09]. Using a higher-order approximation for the
curvature dependent surface tension, Baidakov and Boltachev [Bai99] demonstrate
a change of sign for the Tolman length. The surface tension of droplets exhibits
a slight maximum of approximately +0.2 % at rq = 10nm. With decreasing droplet
radius a monotonously decreasing surface tension is observed. However, the maximum
deviation to the plain surface tension o4, is below 10 % implying a negligible effect
of curvature. Using a Monte Carlo simulation Block et al. [Blo10] obtained a nearly

linear correlation of Tolman length and droplet radius.
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The different results clearly show that the curvature dependency of surface tension
and the sign of the Tolman length are still disputed. The problem gets even more
complex regarding capillary bridges, that usually have principal radii v and ro with
different signs. The influence of these complex curvatures has not been investigated.
Although surface tension has not been fully explained yet, it is generally agreed that
the Tolman length must be extremely small and depends on the droplet size and
temperature [Fac14; Hor12; Mal12].

2.2. Young-Laplace equation

In this section, the Young-Laplace equation is introduced in order to calculate the
pressure difference across curved interfaces, which is fundamental for analyzing cap-
illary systems. At curved interfaces a pressure jump proportional to curvature is
observed. This relation is captured by the Young-Laplace equation, which can be de-
duced by a balance of forces as it is described by Young [You05] and Laplace [Lap05].
In figure 2.2 the forces acting on an infinitesimal interface element dA without ex-
ternal fields are illustrated. The pressure difference Ap between the two sides of the
interface leads to the pressure force ApdA acting normal to the interface, while the
other force component results from the surface tension and is calculated by odl; and

odls, respectively. Thus, the balance of forces normal to the interface leads to
ApdA = odly + odis. (2.13)
Expressing dA, dly and dly in terms of 71, 79, dyy and dys gives

Apride rodys = o (ridpidps + radprdes) (2.14)

Figure 2.2.: Forces at an infinitesimal interface element
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which is summarized as

Ap=o (1 + 1) =20H. (2.15)

reeo
It is worth emphasizing that this equation is fundamental for understanding capillary
phenomena. It states that the pressure jump and the mean curvature are proportional
by the factor 20. Expressing the mean curvature H in terms of spatial coordinates,
this relation can also be written as an ordinary differential equation. For the two-

dimensional case of rotational symmetry around the z-axis

y// y/

Ap:a( 5 + 1) (2.16)
1+y?)?  y(l+y?)

is obtained. A detailed derivation of this equation as well as the general differential

equations for three-dimensional coordinates is presented in [Lan02].

The Young-Laplace equation can equivalently be derived by an energy based ap-

proach [Gau30]. The total free energy of an interface is given by
E=0cA (2.17)

assuming that potential and kinetic energy can be neglected. In order to minimize this
equation for a predefined constant liquid volume the method of Lagrange multipliers
is used. The idea of this method is illustrated in figure2.3. In an unconstrained
problem the minimum of F'(u) is located in the mid of the contour lines. Thus, the
necessary optimality condition is given by VF(u) := 0. However, when setting a

constraint f(u) any possible solution must be directly on the contour line of f(u).

contour line of
constraint f(u)

global constrained

local constrained o
minimum

minimum

contour lines of unconstrained minimun

target function F'(u)

Figure 2.3.: Optimization problem with constraints



2.2. Young-Laplace equation 11

The constrained minimum is therefore given by the smallest value of F'(u) that is
also part of f(u). Thus, in the constrained minimum the contour lines tangentially
touch each other which means that the gradients must be parallel. This condition is

formulated as
VF(u) || Vf(u) - VF(u) = AV f(u) & VF(u) — AV f(u) =0 (2.18)

where A\ is a length adjustment factor between the vectors that is called Lagrange-
Multiplier. This expression is the first derivative of the Lagrangian L, i.e., VL =
0 is the necessary condition for the constrained minimum. From figure 2.3 it can
already be seen that this condition applies for all local minima. Thus, from a physical
perspective it cannot be concluded that the solution is physically stable.

The Lagrange method is formulated more generally for n constraints, i.e., the problem
is to find local maxima or minima of a function F'(uy, ..., uy) subject to the constraints

fu(ug, ...;um) = 0. In this general case the Lagrangian is given by
LU, ey Uy A1y ooy An) = F(u, oy um) — > Nifi(u, ooy ) (2.19)
i=1

with n Lagrange-Multipliers A{, ...,Ay. Applying this method to the minimization
of the free energy subject to a fixed volume and using the capillary pressure Ap as
Lagrange-Multiplier the Lagrange-Equation

L=0cA—Ap(V —Vp) (2.20)

is derived, where V[ is the the target volume of the capillary bridge. Note, that
minimizing eq. (2.20) is equivalent to minimizing the grand potential €y, (eq. (2.6))
for a curvature independent surface tension. Expressing A and V in terms of coor-
dinates and minimizing £ leads to eq.(2.16) for the two-dimensional case as shown
by Langbein [Lan02]. Minimization of energy and balance of force approaches are
equivalent for reversible systems. Hence, the considered forces must be conservative
and no irreversible energy changes may occur [Lan02] which also corresponds to the
isothermal implication of the grand potential. Note that eq. (2.15) is a constraint for
the mechanical equilibrium and valid even if the physical-chemical equilibrium is not
yet achieved [Sch82].

The Young-Laplace equation has an important implication. Neglecting gravity, the
pressure inside a static liquid must be constant because otherwise a flow field from

high to low pressure would result. Following eq. (2.15), a constant pressure implies a
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constant mean curvature (CMC). In 1841, Delaunay [Del41] described CMC interfaces
of revolution from a mathematical perspective. His results are assigned to axisym-
metric capillary bridges by Plateau [Pla64] whose work is also known as Plateaus
sequence of capillary shapes. A detailed description of CMC interfaces and their
application to axisymmetric capillary bridges is given in section 3.2.

2.3. Contact angle and wetting

In a system of three immiscible components with at least two fluids, three interfaces
exist which meet in an intersection region. On a molecular level, the situation is very
complex and not yet described properly [Linl5; Sch82; vanl0]. From a macroscopic
perspective, the dividing interfaces can be extrapolated to meet in an intersection
line [Buf57]. In this work, specifically static solid-gas-liquid systems are covered,

since this special case corresponds to the capillary bridges.

2.3.1. Young equation

Three fluid phases are illustrated in figure 2.4 with the three-phase contact line being
perpendicular to the plain of projection and indicated by the gray dot. The solid is
assumed to be rigid and ideally smooth. In a static equilibrium, the forces at the
contact line must balance each other. The shear stress normal to the solid interface
is counterbalanced by the rigid solid [Lan02]. The tangential balance of forces leads
to

cos(0) = 78— 73 (2.21)

o

(a): wetting (6 < 90°) (b): non-wetting (6 > 90°)

® three-phase
contactline

liquid

solid solid

liquid

Figure 2.4.: Surface tension at the three-phase contact line for wetting and non-wetting according
to the classical definition
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provided o4 and og are homogeneous and isotropic. Eq.(2.21) is known as Young
equation [You05], which can also be derived by minimizing the free energy of the
system [Neu74]. A satisfying experimental determination of the solid surface tensions
osg and oy is not possible, yet [Sch82]. An overview to directly measure the contact
angle 0 is given in [Yual3] and the three most common approaches, namely the
sessile drop, the Wilhelmy balance and the Washburn capillary rise, are discussed
in [Brul8]. Combining these experimental methods with eq. (2.21) the difference of
the solid surface tensions (ogs — 0g) can be determined indirectly [Lan02; vanl10].
As presented in figure 2.4, liquids are usually distinguished by means of the contact
angle between wetting (0 < 90°) and non-wetting (6 > 90°) types [Sch82]. Regarding
water hydrophilic and hydrophobic materials are defined analogously. Nevertheless,
other definitions are found in the literature [Sam11]. Law [Law14] argues that no
interface property changes at 8 = 90°. However, in this work the classical definition
of hydrophilic and hydrophobic is used.

This theory of contact angles only applies for a static contact line and ideally smooth
solid surfaces. A moving contact line leads to dynamic effects, such as contact an-
gle hysteresis. Focusing on static capillary bridges, dynamic contact angles are not
discussed in here, however, further information is given in [Ada97; Isr11; Lin15]. Con-
sidering real surfaces involving roughness also leads to a much more complex situation

that is described subsequently.

2.3.2. Wetting of rough interfaces

Today, complex wetting phenomena are not yet completely understood. Real sur-
faces are usually neither chemically nor physically homogeneous and even simple and
periodic patterns lead to complex and varied effects on the wetting behavior [Isr11].
Thus, the microscopic contact might be different from the macroscopic contact angle
that is measured. Bhushan and Jung [Bhull]| point out four mechanisms for the
difference between the apparent (macro) and real (micro) contact angle: (1) Due to
long distance van der Waals forces and the resulting disjointing pressure stable thin
films of water might occur. These thin films lead to a transformation from a spheri-
cal shape into a precursor layer near the three-phase contact line. (2) Real interfaces
always exhibit roughness and chemical heterogeneity that influence the apparent con-
tact angel. (3) Dynamic effects cannot be eliminated completely and therefore the
static contact angle is not well defined. (4) Contact line tension might have to be

considered for very small droplets and triple lines with high curvature.
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In order to consider roughness effects for the estimation of the apparent contact angle
several models are proposed. One of the first models for wetting on rough interfaces is
presented by Wenzel [Wen36]. As shown in the illustration in figure 2.5 (a) the liquid is
assumed to completely fill the depressions created by roughness. The Wenzel contact

angle of the rough interface 6y, is given by
cos Oy, = Ry cos 0, (2.22)

using the roughness ratio Ry, that is defined by the ratio of the real interface area to
the projected smooth interface area. The area factor Sy, relates the additional area
resulting from roughness to the projected smooth area an can therefore be used to

calculate the roughness ratio:
Ry = Sqr + 1. (2.23)

The mathematical definition and discussion of the area factor Sy, is given in sec-
tion 3.7.1 in the context of parameters describing rough topology. In figure2.5 (a)
the relation between the smooth contact angle # and the Wenzel contact angle 6,
is illustrated for different roughness ratios where Ry = 1 corresponds to the smooth
interface. According to this model, for # < 90° the Wenzel contact angle is lower
compared to the smooth contact angle whereas a higher Wenzel contact angle is ob-
served for # > 90°. Thus, the physical behavior of the interface, i.e., hydrophilic or
hydrophobic, is enhanced by roughness. For 8 = 90°the effect of roughness vanishes
which is physically not correct [Isrl1l1].

Another model suggested by Cassie and Baxter [Cas44] is originally developed to cal-
culate the effective apparent contact angle f.¢ for chemically heterogeneous, smooth
interfaces. It is given by

cos Oer = f1cosBy + focosby (2.24)

where f; and fy are the fractional areas of each material and f; + fo = 1. This
heterogeneous model is transferred to homogeneous rough interfaces by taking the
gas as the second component. As illustrated in figure2.5 (b) the rough depressions

are assumed not to be filled with liquid. Inserting the solid as component 1 with
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Figure 2.5.: Rough apparent contact angle according to the Wenzel model [Wen36] for different
roughness ratios Ry (a) and according to the Cassie and Baxter model [Cas44] for dif-
ferent solid fractional areas fs (b)
(Roughness increases with increasing Ry or decreasing fs.)

the smooth contact angle # and the contact angle of liquid and gas 63 = 180° into
eq. (2.24) leads to

cosbq, = fscosh — 1+ f; (2.25)

which is usually known as the Cassi-Baxter equation. The resulting Cassie-Baxter
contact angles 6y, are shown in figure 2.5 (b). In contrast to the Wenzel model, rough-
ness leads to a more hydrophobic behavior for all contact angles. This is traced back
to the assumption of non-wetted rough depressions. Note, that it is also possible to
apply eq. (2.24) for liquid filled depressions by inserting #5 = 0°. In this case, more
hydrophilic contact angle results are predicted for rough interfaces.

The applicability of the Wenzel and Cassie-Baxter models are discussed intensively
in the literature [Bar07; Bhull]. An analysis by Marmur [Mar06] showed, that Wen-
zel’s model is valid for drops that are two to three orders of magnitude larger than
the roughness scale. Moreover, both models are good approximations of the most
stable contact angle [Mar09]. However, experimental investigations of Gao and Mc-
Carthy [Gao07] reveal that roughness under the bulk of the droplet does not influence
the apparent contact angel and therefore fractional area approaches are physically not
correct. Thus, in order to account for non-uniform roughness, using three-dimensional

roughness factors (R¢(z,y) and fi(x,y) respectively) is by Nosonovsky [Nos07].
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2.4. Kelvin equation

The Kelvin equation relates the mean radius of curvature ry to the fraction of the

vapor pressure at plain interfaces pJ° and at curved interfaces py:

A T I (N A (2.26)
2 RT Dy -k Dy ’ '

where V4 is the molar Volume, T the temperature and R the universal gas constant.
This equation supposes an ideal gaseous behavior of the vapor and an incompressible
liquid [Sch82].

Applying eq. (2.26) to water and humid air, the pressure ratio equals the relative hu-
midity ¢ [Sch82]. Even if the moisture content is below saturation, condensation of
water may occur, however, exhibiting negative Kelvin radius and negative curvature.
Condensation at ¢ < 1 is usually refereed to as capillary condensation with the char-
acteristic length scale given by the Kelvin length Ay [But08]. With rising humidity
from zero to one, the absolute values of the mean radius of curvature increases or in
other words the absolute value of mean curvature and capillary pressure decrease. At
the saturation point (¢ = 1) curvature and the capillary pressure equal zero. This is
well defined for catenoidal capillary bridges with r; = —ry. For humidity above satu-
ration, convex geometries, that could be either capillary bridges or droplets, may arise
from condensation. However, for convex geometries the thermodynamic equilibrium
is unstable as explained subsequently.

If the mean radius of curvature ry is assumed to be larger than the equilibrium radius
according to the Kelvin equation this leads to additional condensation of water. Thus,
a droplet or a convex capillary bridge grows due to condensation since both positively
defined radii r; and ry increase, which consequently leads to an ever larger mean radius
of curvature. In the other case, i.e., the mean radius of curvature is assumed to be
smaller than the equilibrium radius, the liquid completely evaporates since both radii
decrease. Thus, in either case, a slight perturbation of the equilibrium state leads to
a move away from this state and, hence, the thermodynamic equilibrium is unstable
for convex interfaces, i.e., ¢ > 1. In contrast, for the concave geometries r; and 79
have reversed signs. If now liquid condenses since ryg larger than the equilibrium
radius, the two radii r; and ro approach each other and, consequently, the mean
radius of curvature ry decreases. Thus, a perpetuated system moves back in the
direction of the thermodynamic equilibrium. The same consideration is can be made

for a smaller ri; and the evaporation of liquid. Overall, a thermodynamic equilibrium
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can be obtained for any humidity, however, for ¢ < 1 this is stable and for ¢ > 1
unstable.

It shoulde be noted, that capillary bridges only emerge directly from a capillary
condensation, if the adsorption layers on the solid interface touch each other which
implies a relatively small gap distance. However, if the interfaces of such a bridge
are very slow separated, i.e., there is always enough time for the liquid to condense
or evaporate in order to keep thermodynamic equilibrium, also thermodynamically
stable bridges between larger gap distances can occur.

Finally, the Kelvin equation uses macroscopic parameters to describe capillary con-
densation. Thus, the applicability with respect to the system size has to be con-
sidered. For water a minimal mean radius of curvature of rg = 3.0nm is given by
Schubert [Sch82] and the applicability of the Kelvin equation down to rg = 10nm
is demonstrated [Koh00]. However, as it is previously shown for the surface tension
concept (section 2.1.2), condensation at the nano level and below is still an extensive
field of research that cannot be presented in detail at this point. The reader should
rather be aware of the applicability limits when considering systems at the nano scale

and below.






3. State of the art and research of capillary bridges

Capillary bridges are an important field of research as the appearance of a liquid
meniscus between two or more particles leads to an attractive or even repulsive force
between the solids that is called capillary force. Capillary forces significantly influ-
ence interparticle behavior on the micro- and nano-scale. In this chapter an overview
of the capillary bridge problem and the current state of the art is given. First, a brief
introduction of interparticle forces and their characteristics is given in order to point
out the fundamental relevance of capillary forces compared to other interparticle force
types. Subsequently, system parameters and coordinate systems are defined and the
general equations for determining the dimensionless capillary force and the capillary
torque are deduced by the balance of forces. Thus, it becomes clear that capillary
bridge problems are more complicated than it might seem first, since many physical
aspects have to be considered. Theoretical analysis is, however, determined by the
modeling possibilities and therefore an overview of the simulation approaches is given.
The theoretical discussion is complemented by a brief description of the commonly
used experimental methods. Especially at the nano scale measuring interparticle
forces is not straight forward. Based on the theoretical and experimental investi-
gation methods, the main issues of static capillary bridges are introduced. Finally,
with respect to the topic of this work, the influence of roughness is comprehensively

discussed.

3.1. Interparticle forces

The characteristics of powder and granular materials strongly depend on the ratio
between interparticle forces F; and weight mg, which drastically changes with the sys-
tem size. Valsamis et al. [Vall3] distinguish between micro- and macro-engineering as
illustrated in figure 3.1 (a). Capillary force, which is a dominant part of interparticle
forces, and weight are plotted over the characteristic length L of an arbitrary system.
The more the geometry is scaled down the more capillary force dominates weight.
Thus, in micro-engineering capillary force exceeds weight which is approximately at
characteristic length scales below 1073 m. Schubert [Sch82] points out a reasonable ne-

glect of gravitation already at R < 1073 m for particle interactions, whereas Lambert
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and Delchambre [Lam05] state a characteristic lenght of L = 2.7-1073m at which
the surface tension and gravitational force are of the same order of magnitude. These
values demonstrated, that the transition region from micro- to macro-engineering is
not sharply defined, however, it is consistend to be around a characteristic lenght
of 1073 m. Thus, a comprehensive understanding of powders and other applications
involving small particles requires a reliable determination of capillary forces.

Generally, the interparticle force is the net force acting on two or more particles. In
many applications the adhesive regime of the interparticle force is studied and, there-
fore, it is also often referred to as adhesive force. However, in this work, the more
general term of interparticle force is used. It consists of several force types arising
from different physical phenomena. Van der Waals force, capillary force and electro-
static forces are the most relevant ones and are briefly discussed here, however, solid
bridges and positive connections might also exist. Depending on the system param-
eters such as size, humidity and particle roughness the magnitude and the relative
contribution of each force changes fundamentally. In figure 3.1 (b) different interpar-
ticle force types are shown for a sphere located in front of a plate with a distance
of a =4-10"m [Rum74]. Note, that this distance is interpreted as direct particle
contact. The surfaces of the sphere and the plate are assumed to be ideally flat. The
capillary force is approximately three to five times larger than the van der Waals

typical force F' / N
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maximum force F' / N
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Figure 3.1.: (a) Weight mg and capillary forces F, calculated according to the scaling law [Vall3|
(b) Capillary F. (HyO; 6 = 20°), van der Waals Fiq,, (A = 8-10712J), electric conductor
F.. (U = 0.5V) and electric isolator Fy (¢pmax = 1.6027° As-m™) forces for a sphere-
plate system with a =4 - 1071 m (contact distance) [Rum74]
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force. This observation is independent of the particle diameter. Moreover, electro-
static forces are very small compared to both, capillary and van der Waals forces,
and may be neglected. However, under specific circumstances such as large particle
distances, their influence is significant and dominates the other forces. By analyz-
ing the effects of roughness and the sphere-plate distance four general tendencies are
formulated [Rum?74]:

1. In the case of adhesion capillary forces exceed other interparticle forces and due

to condensation they also exist in dry systems.

2. Van der Waals forces are extremely sensitive to roughness which is confirmed by
Rabinovich et al. [Rab00a; Rab00b], however, for adhering particles they exceed

electrostatic forces almost always.
3. Electrostatic forces may be dominant for dry systems with very large particles.

4. For a > 10"%m or a- R~ > 0.1 neither capillary nor van der Waals forces exist.
Thus electrostatic forces are dominant and influence agglomeration processes

before adherence.

The influence of humidity on the interparticle force is remarkable. With increasing hu-
midity, a jump in the interparticle force is observed. The value of the critical humidity
varies from around 20 % [Sed00], below 20 % [Thu93; Xu98] and 30 — 60 % [Rab02],
however, the effect is consistently traced back to the existence of a liquid meniscus.
Moreover, the electrostatic potential decreases under humid conditions, leading to
even lower electrostatic forces [Bun07]. The Hamaker constant A, that is propor-
tional to the van der Waals force, is also significantly reduced by water as transfer
medium [But10b]. For example, the calculated Hamaker constant for silicon dioxide
particles surrounded by vacuum is 68 £ 3 - 10721 J and reduces to 4.6 = 1.6 - 10721 J if
water occurs between the particles [Ack96; Ber97]. Both effects lead to a decreasing
van der Waals force implying an increasing impact of the capillary force. Experi-
mental investigations at different ambient conditions, i.e., in air and fully immersed
in water, allow conclusions about the composition of the interparticle force. Ouyang
et al. [Ouy01] demonstrate for a humidity of 50 %, that both, van der Waals and
capillary forces, are relevant, however, their proportion strongly varies with the ma-
terials. Thus, under ambient conditions good models for both, capillary and van
der Waals forces, are required in order to evaluate the flow characteristics of small

particles [Youl3]. This work focuses exclusively on capillary forces being dominant
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for many applications in mico-engineering. Therefore, the physical background of
capillarity and the calculation of capillary forces are described next.

3.2. Definitions

Depending on the type of capillary bridge problem, the parameters of interest are the
capillary force Fy, the liquid Volume V and the pressure difference at the interface

Ap which is also known as the capillary pressure

Ap = pi — po. (3.1)

Note, that this definition is not consistent in the literature and reversed signs are also
used. In many cases it is reasonable to describe the capillary bridge in a dimensionless
form which is subsequently indicated by the tilde symbol. Using a characteristic
length L and the surface tension o, the dimensionless physical variables are defined

as

I U 7 U pL
= = — A=— = — H=HL p = —. 2

In this work, the particle radius R is used as the characteristic length if not mentioned
otherwise.

Figure 3.2 shows the defined coordinate system for a two-dimensional sample system
of a capillary bridge between spherical particles. The coordinate system originates in
the center of mass of the first solid body, that could be an arbitrarily formed particle
while the second body could be either a particle or a plate. The x- and y-axis are

illustrated in figure 3.2, while the z-axis is perpendicular to the figure plane. The
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Figure 3.2.: Coordinate system and definitions for a sample system between spherical particles
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parameter a corresponds to the shortest distance between the solid bodies and can
analogously be expressed in the dimensionless form a. Contact angles 6; and 6, as
well as filling angles 17 and 1y are defined for both solid bodies. However, usually
only one of the filling angles is predefined and the other one is calculated by the
geometrical constraints.

The curvature is described by the principal radii of curvature r; and r9, which are
in the literature often referred to as the meridional meniscus r (=r1) and the azimu-
tal radius | (=r9). In this work, the sign convention is positive for radii inside the
meniscus and negative for radii outside the meniscus, respectively. Thus, for a menis-
cus transition from concave to convex, r; changes its sign from negative to positive,
whereas ro is always positively defined.

Assuming the absence of external fields and a constant wetting, the capillary bridge
forming between two bodies of revolution is axisymmetric [Sch82] and exhibits a
constant mean curvature which directly results from the Young-Laplace equation. In
1841 Delaunay [Del41] already studied interfaces of revolution with constant mean
curvature (CMC) and classified them into nodoid (nod), catenoid (cat), unduloid
(und), cylinder (cyl) and sphere (sph). In 1864 these geometries are applied to the
capillary bridge problem by Plateau in 1864 [Pla64]|. He found the constant sequence
of CMC interfaces with rising volume:

nod~ — cat — und, — und]; — undj — sph — nodT

Here, ~ indicate concave and = convex menisci and the index (0 or 1) gives the
number of unduloid inflection points. This sequence has been studied intensively. It
is validated by an elliptic integral approach for @ = 0 and ¢; + 6 < 180° [Orr75].

The nod™ — bridges are characterized by a negative curvature. These bridges emerge
from condensation below saturation. A minimal interface area is not equivalent to a
mathematically defined minimal interface that exhibits zero mean curvature H = 0.
The only minimal interface of the Plateau sequence is the special case of a catenoid
that occures at the saturation point. Moreover, a vanishing capillary force is ob-
served for spherical bridges. Assuming a # 0 the sequence of Plateau significantly
changes [Rub14]. With rising particle distance unduloids appear even for very small
filling angles and the pressure changes sign more than once. Additionally, multiple
solutions of the Young-Laplace equation are demonstrated, which results in the open

question of stability.
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3.3. Capillary forces and capillary torque

The capillary force can be determined using two different physical principles which
are equivalent [LamO08|. The first option is calculating the energy change during an
infinitesimal reversible change of the equilibrium configuration [Her19]. The force
is then given by the derivative of the total free energy with respect to the particle
distance a

_OE

F=2=
Oa

(3.3)
The second option is based on the integration of local forces according to the free-body
principle of mechanics. The capillary force generally consists of the two components,
i.e., the capillary pressure force Fy,, resulting from the pressure difference Ap, and the
surface tension force Fy, that arises from the surface tension o [Fis26]. In figure 3.3 (a)
a free-body diagram of a meniscus is shown. First, the inner pressure p; acts at the
intersection area I'r, whereas the outer pressure p, acts on the solid-gas interface I'sg
and the liquid-gas interface I'ys, respectively. Second, the surface tension acts along
the intersection line Lj that encloses the intersection area I't. The direction of the
resulting force component is tangential to the liquid-gas interface and normal to the
intersection plane which is mathematically defined as the co-normal given by the co-

normal unit vector p. Integration along the intersection line leads to the net force

Do \ \
\
\‘&”"Y 77777777 \ Fp Fq

Figure 3.3.: Surface tension and pressure in a free body diagram (a) and the resulting components
of the capillary force (b)
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vector Fg. Thus, in the general case of an arbitrary intersection plane the capillary
force is given by

F.=|F.|=|Fp+Fs| = ‘—po (/Ag nd7+/Ag ndv) _pi/A ndv—kaél ,udl‘ (3.4)

where dv and dl are incremental interface and intersection line elements, respectively.

Since the overall interfaces are closed, the effective area of the outside pressure can

/Ag ndy + /Ag ndy = — /A nd~. (3.5)

Therefore, eq. (3.4) reduces to

be written as

F. = ‘—Ap/A ndy + Jjgl udl‘ (3.6)

which can also be expressed in the dimensionless form
F, = ‘—Ap/%l ndy + ffl udl‘ (3.7)

by using the definitions given in eq. (3.2). Note, that the capillary force is independent
of the chosen intersection plane. As illustrated in figure 3.3 (b), for an inclined inter-
section both, the pressure and the surface tension force, have a non-axial component
which directly cancel out leading to the axial direction of the overall capillary force.
However, a pure axial force exists only for symmetric bridges, whereas the force di-
rection of non-symmetric bridges is unknown and must be taken from the force vector
F.. As already indicated by figure 3.3 (b) in this work an attractive capillary force is
defined positive whereas the repulsive case is indicated by negative sign. Commonly,
the capillary force is calculated at the three phase interface or at the minimal menis-
cus diameter. In the case of axisymmetric bridges I'y is circular and eq. (3.6) reduces
to

F. = —Aprri + o027 cos a (3.8)

where 71 is the radius of I't and « the angle between the meniscus interface I'y, and
the direction of the capillary force.
The surface tension force is always attractive, whereas the capillary pressure force

can be either attractive or repulsive. Capillary bridges emerging from condensation
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always exhibit an attractive capillary pressure force which directly results from com-
bining the Kelvin equation (eq. (2.26)) and the Young-Laplace equation (eq. (2.15)).
The relevance of each force component has been investigated for many configurations.
However, it is essential to note, that any relation between the two force components
is only valid for one specific intersection plane of a capillary bridge system. In fig-
ure 3.4 (a) the dimensionless meniscus shape of a capillary bridge between two equally
sized spheres with different contact angles is shown. An analysis of the capillary force
components along this meniscus reveals the influence of the chosen intersection area.
On the left particle the ratio Fj / F, is 0.46 whereas on the right particle the ratio
is 0.18. For a conservative estimation of the force component impact, the minimal
intersection area should be evaluated in case of the surface tension force and the max-
imum intersection area in case of the capillary pressure force, respectively. At these
intersection areas the respective force component reaches its maximum which allows
conclusions about simplified force models neglecting this particular component.

In some force models the surface tension force is neglected because it is assumed to
be insignificant compared to the capillary pressure force [Isr11; Mar93]. Especially
for a vanishing gap between a sphere and a plane, the surface tension component can
be one order of magnitude smaller than the pressure force [Lam05]. However, this
relation completely switches with a rising gap. Additionally, for small particles with

high curvature and states close to saturation, the surface tension force dominates the
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Figure 3.4.: Meniscus shape between two equally sized spheres with different wetting angles 6; =
60°(a) and 6 = 0°and the resulting pressure force F}, and surface tension force Fy along
the meniscus (b)



3.3. Capillary forces and capillary torque 27

capillary pressure force and must be taken into account [Laz99]. This is supported
by Dérmann [Dérl8], who showed for equally sized spheres that the capillary pres-
sure force dominates if R > 1 pum. This is explained by the fact that the pressure
force scales quadratically with the meniscus radius, whereas the surface tension force
scales linear. Thus, with rising particle and meniscus size the surface tension force
might be neglected. However, it is also demonstrated that the ratio of the pres-
sure force decreases with rising relative humidity because of the decreasing capillary
pressure [Dorl8]. From the different investigations reported in the literature it is
deduced, that neglecting a particular force component is only acceptable for highly
specific system configurations. Therefore, a general force model should include both,
the capillary pressure force and the surface tension force.

The influence of different parameters on the overall capillary force is studied inten-
sively. However, general conclusions are almost impossible due to high interdepen-
dencies of the system parameters. For example, assuming a simple sphere-plane
configuration in contact, the capillary force is almost independent of the liquid vol-
ume and humidity, respectively, if the particles are relatively large [Isr11]. Pakari-
nen et al. [Pak05] use a numerical scheme to calculate the exact meniscus geometry
and demonstrate a humidity independent capillary force for R > 1 um as well as a
strong humidity dependence for R < 1 um. From everyday life experiences, for ex-
ample sand castles, an increasing cohesion of granular and powder materials with
increasing humidity is known [But05]. For conical particles a significantly increasing
capillary force with rising liquid volume is demonstrated theoretically and experi-
mentally [Lam05]. However, numerical analysis by Lian and Seville [Lial6| reveals,
a decreasing capillary force with increasing humidity between equally and unequally
sized spheres at zero distance which is confirmed by the theoretical investigations of
Mehrotra and Sastray [Meh80], who demonstrate the decreasing capillary force with
respect to increasing liquid volume. In figure 3.5 the dimensionless capillary force
is shown depending on the relative humidity (a) and the meniscus volume (b) for
a sphere-plane and sphere-cone geometry. The curves are obtained by the toroidal
approach [Tse03] that is described in section3.4.1. For zero distance, the capillary
force of the sphere-plane configuration decreases, whereas a maximum is observed at
a dimensionless distance of 0.01. This is traced back to two opposing effects [Dorl8|:
On the one hand, the capillary force increases with humidity due to an increasing
meniscus diameter. On the other hand, according to eq.(2.26), the capillary pres-
sure decreases leading to a lower force. However, for the cone-plane geometry the

capillary force significantly increases at high humidity. Thus, in order to analyze the
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Figure 3.5.: Capillary force depending on relative humidity (a) and meniscus volume (b) for sphere-
plane (black) and cone-plane (gray) geometries at different distances a. Calculations
are performed using toroidal equations (see appendix A) for # = 40° and a cone opening
angle of 70°

effect of humidity, both, the particle geometry and the separation distance must be
considered.

As stated above, the humidity dependence is strongly correlated with other parame-
ters. The high sensitivity of the force-humidity and force-volume curve, respectively,
already indicates a significant influence of roughness that corresponds to small geom-
etry variations. The detailed effects of roughness are discussed in section3.7. The
remarkable interdependence of the parameters as well as the high geometry sensitiv-
ity make general correlations hard to predict. However, some important tendencies

are summarized as follows:

e On hydrophilic interfaces the capillary force is affected by humidity, while an
independence is observed for hydrophobic interfaces [Far06; Xia00].

o The capillary force decreases with increasing contact angel due to an inferior
wetting of the solid particles [Chell; Fuj99; Lam05; Qial7].

 Rising particle distance leads to a decreasing capillary force [Ard14; Chell,;
Lam05; Lial6; Mar93; Rab05; Wil00] even when taking gravity into account
[Ada02]. This decrease is nearly linear for a sphere-plane geometry employing a
constant humidity boundary condition, whereas a non-linear decrease is observed

using a constant liquid volume constraint [But09].
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e The capillary force increases with increasing particle size [Dorl5]. According
to scaling laws, this relation is proportional for microscopic particles [Sch82].
At the nano-scaled level a non-linear relation with a stronger increase of the
capillary force is found [Che08; Dorl15].

o The capillary force is proportional to the surface tension if the non-linear in-
fluence on the contact angles is neglected. For example, a high surface tension

causes a high contact angle that again leads to a lower capillary force [LamO05].

e The surface tension force Fy scales linear with the particle size whereas the
pressure force F}, scales quadratically. Thus, with decreasing particle size the

surface tension becomes dominant.

For non-symmetric capillary bridges a capillary torque occurs that is given by

T = —ag;l. (3.9)

By a balance of momentum the expression

%:’—Aﬁ/jél(rxn)dﬁ—kj%(rxu)di

(3.10)

is deduced analogously to eq.(3.7) for the dimensionless capillary force F.. The
additional parameter r is the rotation axis for the momentum.

Capillary torque is investigated only by a few studies. Virozub et al. [Vir09] and
Bedakar and Wu [Bed09] independently analyze capillary bridges between the shell
surfaces of two non-parallel cylinders. With either increasing distance or contact
angle a decreasing torque is observed. These tendencies have also been determined
for the capillary force. For contact angles above 70° the torque is negligible small.
A vanishing torque is calculated for parallel cylinders and interestingly also for the
perpendicular configuration. However, it is shown that only in the first case a sta-
ble equilibrium exists. In this case small perturbations lead to a torque that forces
the cylinders back to parallelism. Additionally, the torque increases with the liquid
volume. The inverse relation is, however, determined by Takei et al. [Tak10]. They
investigated capillary torque between non-circular plates theoretically and experi-
mentally using a magnetic field technique. In accordance with Virozub et al. [Vir09]
and Bedakar and Wu [Bed09] they found an increasing torque with an increasing

distortion angle of the plates.
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3.4. Simulation methods

Theoretical methods for evaluating capillary bridges can be classified based on differ-
ent categorization parameters such as simplification, methodology or even application.
An overview of the different methods is presented in figure 3.6. On the highest level
there is a division into two groups: axisymmetric and non-symmetric problems. This
categorization is chosen, since assuming a two-dimensional system significantly re-
duces the problem, which allows simplified calculations. Using assumptions beyond
symmetry, such as an approximated meniscus shape, relatively simple closed-form
equations for the capillary force are obtained. However, using only the symmetry as-
sumption, the two-dimensional Young-Laplace equation must be solved numerically,
which is done by an elliptic integral approach or a shooting method. A general three-
dimensional formulation of the capillary bridge problem is much more complex and
requires sophisticated non-symmetric methods. Energy minimization methods (sec-
tion 3.4.2), computational fluid dynamics (CFD) [Dar10; Sunl6; Was17] and in par-
ticular Lattice Boltzmann methods [Shi07; Wik12] and molecular dynamics [Giol6;
Laul7; Tan18; Zhal7] are described in the literature.

All of these methods are classified into pressure and volume methods. The pressure
methods start from either a predefined capillary pressure, humidity or mean curva-
ture. In thermodynamic equilibrium, these three parameters are directly linked by
the Kelvin equation (eq.(2.26)) and the Young-Laplace equation (eq.(2.15)). The
pressure methods are usually favorable for practical purposes and experimental in-
vestigations of volatile liquids, e.g. water and humid air, since the capillary force
is constrained by humidity and particle geometry. In contrast, the volume methods

start from a predefined constant volume and the capillary pressure must be obtained

simulation methods

axisymmetric methods non-symmetric methods
closed-form approximations energy minimization methods
numerical methods computational fluid dynamics

elliptic integral approach ‘
numerical methods for ODEs molecular dynamics

energy minimization

Figure 3.6.: Simulations methods for investigating capillary bridges
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during calculation. All energy minimization methods are of this type because they
minimize the interface energy subject to a given volume. If thermodynamic equilib-
rium is assumed, an iteration method must be used to find the volume corresponding
to a given humidity. With respect to particle separation, the two methods are associ-
ated with the limiting cases of an infinitely slow (constant pressure) or fast (constant
volume) particle movement (section 3.6).

Axisymmetric methods, energy minimization and CFD approaches implicitly assume
the meniscus to be treated as continuum. Depending on the system size, this might
be a strong assumption which is already indicated by the limits of the surface tension
concept (section 2.1.2) and the Kelvin equation (section 2.4). Besides these limitations
also adsorption layers [Asal0], line tension [Ami04; Mar(09] and disjoint pressure might
have to be considered in very small systems. However, in this work the continuum

theory is applied and therefore intermolecular effects are neglected.

3.4.1. Axisymmetric methods

The different calculation methods for axisymmetric systems, as illustrated in fig-
ure 3.6, are discussed. First, closed-form equations, i.e., toroidal and parabolic ap-
proximations, are presented. Subsequently, numerical methods for solving eq. (2.16)
in terms of elliptic integrals or using numerical methods for ordinary differential
equation (ODE) are described. A chronological overview of the theoretical models
developed until 1980 is given by Mehrotra and Sastry [Meh80].

Closed-form approximations for axisymmetric liquid bridges

The development of closed-form approximations requires an a priori chosen meniscus
shape. The idea of approximating the meniscus by a circular arc is already introduced
by Haines [Hai25] and Fischer [Fis26] early in the twentieth century. Note, that many
different capillary force models are based on a toroidal meniscus, rather than “the*
unique toroidal approximation. Generally, a toroidal shape is applied with acceptable

deviations if |r1| < |r2|. The toroidal meniscus profile is given by [Pep00]

y(z) =re £ 1 Ffri — 22, (3.11)

where the origin of the coordinate system is at the narrowest meniscus point. The
upper arithmetic operators refer to concave menisci and the lower ones to convex
menisci, respectively. According to the assumption of a toroidal meniscus shape,

the radius of curvature ry is constant. Since ry varies along the meniscus, the mean
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curvature is not rigorously constant. This implies a spatial dependency of the capillary
force. Evaluation at the three-phase contact line overestimates the capillary force and
therefore, it is usually determined at the minimal meniscus diameter. This method is
referred to as “gorge method“ [Hot74; Lia93]. However, also averaging methods for
ro are presented in order to approximate the capillary force [Meh80].

An explicit toroidal approximation for the capillary force between a sphere and a
plane is given by Israelachvili [Isr11]

1

F. =4nRo (cos@ - a) : (3.12)
which reduces to
F. =471 Ro cosf (3.13)

for zero distance. This model is widely applied in the analysis of capillary forces
[Boc98; But09; Isrll; Lial6] and can be used if R > ry > ry,a and 67 > 0° and
Y ~ 60° [But09]. The last two assumptions ensure a minor influence of the surface
tension force which is neglected in this particular toroidal approximation. Eq. (3.12)
estimates the capillary force depending on the curvature. A constrained volume
formulation [Isr11]

B 47 Ro cos 6
¢ 1+4ad?

d = —a-l—\/aQ-i—; (3.15)

for a sphere-plane configuration [Rab05]. Eq.(3.12) and eq.(3.14) are transferred

(3.14)

is derived equivalently, with

to a sphere-sphere system by using the Derjaguin approximation [Der34]. Following
Derjaguin, the interparticle force between two spheres is estimated by the interaction

energy between two planes. Therefore, an effective radius

RiRy

R = 12
ff Ri+ Ry

(3.16)
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is introduced and replaces R. Moreover, an effective contact angle

08 Ot = cos 04 —;— cos 0y (3.17)

is used to apply different wetting properties of the solids [But09]. A comparison
of eq. (3.12) and a numerical method is performed for a sphere-plane geometry with
perfectly wetted surfaces [Wil00]. The deviation is below 10 % for small distances and
increases with the gap distance up to 20 %. Interestingly, for a large liquid volume
the error decreases with increasing gap distance from = 25 % to a minimum of ~ 7%
at a medium distance. Moreover, Lambert et al. [Lam08] show very good agreement
between eq. (3.12) and experimentally obtained capillary forces, that are measured
for a low liquid volume between millimeter scaled unequal spheres. However, for
large liquid volumes unacceptable deviations occur that clearly show the limits of
the proposed model. Since the surface tension force is neglected in eq.(3.12), the
model cannot be applied to large gap distances and thermodynamic states close to
saturation (section 3.3). Rabinovic et al. [Rab05] demonstrate good agreement with
experimental values by adding an extra surface tension term to eq. (3.14). In contrast,
the analysis of Lambert et al. [Lam08] shows, that for large liquid volumes adding a
surface tension term does not lead to acceptable deviations between theoretical and
experimental values and might therefore be unnecessary.

For zero gap distance (eq. (3.13)), the estimated capillary force is independent of hu-
midity and volume, respectively, which is explained by two opposing effects [But09]:
With increasing humidity 7o increases, leading to a larger cross section of the menis-
cus. However, since ry also increases, the capillary pressure decreases. These two
effects directly cancel out and thus, the capillary force remains constant. This is
confirmed by experimental investigations between cylindrical mica surface and using
cyclohexane (o¢gm,, = 26.6 mN-m™) as liquid, whereas the investigations with water
show a rising capillary force with humidity [Fis81]. This humidity independence is,
however, inconsistent with many other theoretical and experimental investigations
and can only be applied for relatively large particles. For example, Pakarinen et
al. [Pak05] demonstrate a reasonable application of the model for R > 1 um).

A more complex toroidal force model estimates the capillary force of a sphere-plane
system by [Tse03]

F. =moRsin [2sin(¢ + 01) — R2H sin 1] (3.18)
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with the radii of curvature

R(1 —cosv) +a ' '
T = 1- : 1
& COS(@D + 91> T cos Oy and 7 RSIH@ZJ + 1 [ Sln(w + 01)] (3 9)

Moreover, equations for all possible combinations of different spheres, cones and
planes are derived by various authors. An overview of these equations is given by
Tselishchev and Val’tsifer [Tse03] and pointed out in appendix A. A drawback of
these equations is, that they can only be formulated as a constant volume method.
Thus, they must be solved iteratively with respect to humidity, i.e., the wetting angle
Y must be varied in order to find the solution for a constrained humidity [But10b].
Moreover, many variations and enhanced toroidal models are reported in the litera-
ture, for example [Ard14; Chell; Harl5; Payl1l; Sun18b]. Acceptable deviations be-
tween a toroidal force model and numerical solutions are shown by Lian et al. [Lia93|
(< 10%) and de Lazzer et al. [Laz99] (< 5%) for a wide range of parameters. Also
Orr et al. [Orr75] investigate a sphere-plane system with zero distance and demon-
strate deviations of toroidal and numerical mean curvatures below 6.5 % if 0; < 60°
and 1 < 10°. These conditions imply a small bridge volume and humidity, respec-
tively. Farshchi-Tabrizi et al. [Far06] model AFM tips by superposing two spheres
with different radii into each other leading to a good qualitative agreement with ex-
perimental investigations. However, especially in the context of AFM measurements,
the toroidal approximation might not be sufficient enough to estimate forces in very
small systems. This is also pointed out by Dérmann and Schmid [Dér14] who demon-
strate a good agreement between the toroidal approximation and numerical solutions
for micrometer scaled particles, however, unacceptable large deviations a the nano
scale. This is due to the fact that the assumption |ri| < |r2| is not fulfilled for very
small menisci.

One problem associated with the toroidal approximation is the changing sign of r;
if the meniscus develops from concave to convex. In the concave situation as shown
in figure 3.2, r is outside the meniscus and according to the convention negatively
defined. However, in convex situations r; is inside the meniscus and thus, exhibits
a positive sign. This jumpy change of sign causes numerical difficulties in the tran-
sition region [Pep00]. However, in many applications the humidity is varied from
0 < p < 1, leading to only concave menisci and avoiding the problem of sign change.
In order to estimate the error induced by the toroidal approximation of concave
and convex menisci, Megias-Alguacil and Gauckler [Megl1] introduce the toroidal

profile functional (eq. (3.11)) between equally sized spheres into the two-dimensional
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Young-Laplace equation (eq.(2.16)) and calculate the resulting root mean squared
error along the profile. These errors turn out to be below 10 % for concave menisci
and around 30 % for convex menisci. Generally, an increasing error with increasing
contact angle and decreasing gap distance is observed.

Analogous to the toridal approximation the meniscus can assumed to be parabolic
with the profile [Pep00)]

y(x) = cox® + 1 + co. (3.20)

The coefficients ¢y, ¢; and ¢y are to be determined, whereas the toroidal profile is
determined by rq, 7o and a. One advantage of the parabolic approximation is the
smoothly changing sign of r; that avoids numerical problem when menisci change
from concave to convex. Moreover, Pepin et al. [Pep00] show that the parabolic
approximation is slightly more accurate compared to the toroidal approximation in
estimating rupture distance and contact angles.

However, in both, the toroidal and parabolic approximation, the choice of an a pri-
ori chosen geometry of the meniscus is based on an apparent shape rather than a
physical law. Thus, deviations in the capillary force might result. Lambert and
Delchambre [Lam05] investigate systems with a characteristic length of 1 mm and
show a confidence interval of 5% when comparing the approximated capillary force
to numerical solutions. Especially for very small gaps, the toroidal and parabolic
approximation are not consistent while they converge to each other with increasing
gap distance.

These approximation methods are very powerful as they provide closed-form equa-
tions for the capillary force that are easy to use. Thus, they can serve as a basis when
considering more complicated effects such as roughness or dynamics. Moreover, they
can be implemented directly in discrete element simulations (DEM) in order to study
the behavior of granular material. Nevertheless, the limits of application must always
be considered. Thus, if systems are analyzed that do not fulfill the assumptions or if
more accurate solutions are needed, the two-dimensional Young-Laplace equation is

solved by numerical methods in order to obtain the exact meniscus geometry.

Numerical solutions of the two-dimensional Young-Laplace equation

The two-dimensional Young-Laplace equation (eq. (2.16)) is an ODE of second order
that cannot be solved analytically. The numerical methods are based on three differ-

ent principles: First, a solution in terms of constant mean curvature (CMC) interfaces
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are obtained. These interface types are expressed by elliptic integrals which are nu-
merically evaluated. The second option is discretizing the meniscus geometry and
incrementally evaluating the shape in order to fit the boundary conditions. Third,
an equation for the free energy is derived that is minimized under the constraint of a
constant volume for an axisymmetric system.

Based on the classical work of Delaunay [Del41] and Plateau [Pla64], the problem of
axisymmetric capillary bridges has been formulated as a CMC problem in different
ways [Benl4; Ken80]. From a mathematical perspective it is possible to describe
CMC interfaces as solution to an isoperimetric problem of variational calculus, where
a fixed volume is enclosed by a minimal interface area [Eel87]. This formulation is
used in energy minimization methods that are discussed in their general formulation
in section 3.4.2. Transforming eq. (2.16) to the dimensionless form and applying suit-
able substitutions, lead to an ODE of first order, that can be solved in terms of elliptic
integrals. Evaluating these integral types requires their transformation to the first
and second kind of Legendre’s canonical form of elliptic integrals. The transforma-
tion equations must be defined separately for each type of CMC interface leading to
an extensive set of equations [Sch82]. The solution for concave nodoids is evaluated
precisely by Melrose [Mel66] to analyze menisci arsing from capillary condensation.
Orr et al. [Orr75] derive approximately 60 equations for the different CMC inter-
face types. Their investigations are limited to zero gap distance and are, therefore,
extended by Rubinstein and Fel [Rub14] who demonstrate, that multiple solutions
might occur which results in the open question of local stability (section3.4.3). The
elliptic integral equations are expressed in terms of the filling angle ¢/ and therefore,
the pressure and the volume must be obtained during calculation.

Besides solving the Young-Laplace equation in terms of elliptic integrals, numerical
procedures for the solution of ODEs can be used. Using theses approaches, the
meniscus geometry is described by a finite number of line elements or points. Lian et
al. [Lia93] describe the solution of the Young-Laplace equation by a truncated Taylor
series and used the modified Euler method to obtain the solution of the ODE. They
investigate capillary bridges between equally sized spheres and apply the symmetry
about the y-axis to derive suitable boundary conditions.

Another numerical approach is using a shooting method which converts a boundary
value problem to an initial value problem. First, a meniscus trajectory is developed
from a given starting point and according to the predefined mean curvature. This
initial value problem is solved by a Runge-Kutta-Method. In particular, explicit
Euler methods are usually applied. In order to fit a certain boundary condition, e.g.
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a contact angle at the second particle, the starting point is varied until the condition
is fulfilled with a certain accuracy. The variation of the starting point is usually done
by a bisection or Newton scheme. Thus, the overall problem is to find a solution to
the initial value problem (i.e., the meniscus trajectory for a given filling angle and
mean curvature) that also solves the boundary value problem (i.e., contact angle at
the second particle). This method is described early by Hotta et al. [Hot74] and often
applied with slight differences [Dorl8; Lam05; Pak05; Qial7; Sae90].

Shooting methods are constant pressure methods and an additional outer iteration
has to be applied if the volume should be predefined. A shooting method with such a
doubled iteration scheme for the liquid volume is presented by Lambert and Delcham-
bre [Lam05]. Their model is validated by the analytic case of a catenoid between two
parallel planes showing a relative error of approximately 1.5 %. Moreover, theoretical
and experimental capillary forces of a sphere plane system show good agreements with
the developed model. Another version of a shooting method is prescribing the cap-
illary pressure as it is presented by Dérmann [Dorl8] to analyze capillary bridges in
thermodynamic equilibrium. Starting from humidity, the capillary pressure is given
by the Kelvin equation (eq.(2.26)) and the mean curvature is subsequently deter-
mined by the Young-Laplace equation (eq.(2.15)). The filling angle is iteratively
varied untill the meniscus fits the contact angle condition at the second particle.
Thus, using this method the liquid volume results from the prescribed humidity.
The third principle, i.e., the energy minimization principle, is used by De Bisschop
and Rigole [Bis82] who derived a second order differential equation for the meniscus
geometry by minimizing the system’s total free energy constrained to fixed volume.
The capillary pressure and the meniscus profile are obtained by numerical integra-
tion. The calculated values show good agreements with experimental results and also
comparison to numerical solutions of Surface Evolver match [Kusl0]. Another en-
ergy minimization method is proposed by Sun and Sakai [Sun18b] who formulate the
energy functional in terms of a discretized meniscus. For the optimization procedure
three constraints are applied: (1) constant volume, (2) meniscus endpoints must be
placed on the solid interfaces and (3) the meniscus nods are positioned equidistantly,
which is not necessary, however, it improves convergence. Thus, the meniscus profile
is developed from an initial guess which is chosen to be a straight cylinder. The
results agree very well with experimental data obtained by Rabinovich et al. [Rab05]
and Lambert et al. [LamO08].

Generally, the numerical solutions of the Young-Laplace equation are more accurate

compared to the closed-form equations, since they calculate the exact meniscus ge-
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ometry. However, their computational effort is a lot higher and must be taken into
account. Nevertheless, they require axisymmetry and therefore, more general energy

minimization methods are described subsequently.

3.4.2. Energy minimization

The problem of capillary bridges can also be formulated via variational calculus which
is minimizing the energy constrained to a fixed volume and geometric boundaries.

This can mathematically be written as [Hor90]
F*=min{E:QCILV =V}  with V= /QdQ (3.21)

where F is the energy functional that is to be minimized for the prescribed volume
Vo. Q is the domain that is filled with liquid and must be within the solid boundary
domain IT in space R3. Here, energy minimization methods that are based on a Finite
Element Method are considered. Using these methods, the geometry of the capillary
bridge is derived by an optimization procedure.

The most commonly used software tool is Surface Evolver that is developed by
Brakke [Bra92b]. The algorithm is designed to minimize interface energy taking
surface tension, gravity or other energy forms into account. The general idea behind
Surface Evolver is to represent an interface by the sum of finite triangles. The op-
timization is subsequently done on the vertex level where the interface is developed
by the conjugate gradient method. This method is classified as discretized-optimized
procedure and, therefore, requires an approximation for the curvature of the inter-
face, since on a triangular mesh the curvature would actually be zero on each triangle
and infinity on all edges. Surface Fvolver allows to specify either geometrical con-
straints on vertex positions or integral constraints. For the capillary bridge problem
the integral liquid volume is usually predefined. To ensure fast convergence and to
analyze eigenvalues, the Hessian is implemented [Bra97]. The major advantage of
Surface Fvolver is its general implementation that enables its application to various
problems. One of the first applications of Surface Evolver is presented by Mittel-
man [Mit93] who calculated symmetric capillary interfaces in a cube. With respect
to capillary bridges, non-symmetric systems [Cha07; Vir09; Bed09; Brol3], stabil-
ity [Farl5; Atal7], the influence of gravity [Sunl8a], lateral capillary forces [Mas10],
the stability of liquid bridges between three spherical particle [Sem16; Wan17] and the
liquid redistribution in consequence of rupture [Wul9| are investigated using Surface

FEvolver.



3.4. Simulation methods 39

Similar discretized optimized-methods for the optimization with constraints on a ver-
tex level are presented in the literature [Che08; Dzi06; Pol02]. A significant drawback
of these methods is their requirement for high mesh quality during all iterations. This
includes a regular distribution of vertices as well as properly shaped triangles. One
option to overcome this issue is minimizing a least square energy functional instead of
the commonly used interface area functional [Pan12]. This method allows to optimize
the interface area and the mesh quality at the same time by using an extended cen-
troidal Voronoi tessellation. The idea is modified by Renka [Ren15] who implements
a different energy functional. He derives a non-linear least square system by using
the prescribed volume constraint as shape control parameter and by adding a den-
sity function to the squared area functional presented earlier in [Ren95; Ren14]. The
optimization is done via a trust region method. A major advantage of this method is
that neither a reasonable initial guess, nor a high quality start mesh are mandatory.
A Newton-like energy minimization approach is developed by Iliev [I1i95] who solved
the variational problem of eq. (3.21) by an iterative algorithm based on a direct eval-
uation of virtual displacements. Although generally possible, the algorithm has not
yet been applied to the capillary bridge problem. Instead, the method is extended
[11i06] for studying contact angle hysteresis on periodically shaped interfaces [I1i16;
11i18].

Another method is presented by Ardito et al [Ard14]. The calculation of an ideal
stiff thin membrane is classically known as mechanical problem. Starting from the
formulation of the total potential energy the problem is formulated analogous to the
classical principle of virtual power. This implies a weak constrained formulation for
the constant mean curvature and the contact angle. For axisymmetric configurations
the results match with the CMC interface theory according to Kenmotsu [Ken80].
However, comparisons with molecular dynamic simulations by Ko et al. [Ko10] show
significant deviations of the calculated capillary force and the predicted maximum
separation distance. Moreover, it is stressed that the method is capable of analyzing
capillary bridges between arbitrarily shaped particles, however, this is not demon-
strated.

A general problem of the described methods is the possible existence of multiple
solutions which must be evaluated with regard to their physical correctness. Thus,

the stability of the obtained solutions is briefly discussed in the next section.
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3.4.3. Stability of the solution of the Young-Laplace equation

In the context of capillary bridges, different types of stability are considered. On the
one hand, there are physical stability problems. For example, finding the maximum
distance for which a static meniscus exists is often described as stability problem, i.e.,
the mechanical stability. Moreover, in dynamic systems oscillation and dynamic forces
lead to dynamic stability issues. On the other hand, for a given system configuration
multiple solutions to the Young-Laplace equation might exist, where only one is
assumed to be physically correct and stable. Thus, mathematically correct solutions
must be analyzed with respect to their physical correctness. This type of stability is
briefly discussed here, whereas the static rupture distance is covered in section 3.6.
Dynamic stability issues are not considered in this work.

The existence of multiple solutions of the Young-Laplace equation between parallel
plates is discussed by Fortes [For82]. He evaluated the Helmholtz energy to identify
stable solutions. Lian et al. [Lia93] plot several parameters over the separation dis-
tance under the constraint of a constant volume. As an example, the filling angle is
shown in figure 3.7 (a). For each distance, two corresponding solutions are obtained
that converge to one solution with rising distance. This behavior is qualitatively con-
firmed by other investigations [Erl71; Wan16; Wil00]. The convergence point is often
assumed to be the physical rupture distance as discussed in section 3.6. A formula-
tion of the Gibbs free energy leads to an explicit criterion for stable and unstable
solutions as shown in figure 3.7 (b). The different energy levels of two corresponding
solutions are demonstrated and thus, the solution with the lower free surface energy
is the physically stable solution.

Moreover, the stability of different CMC interfaces is investigated. Fel and Rubin-
stein [Fell5] develop a non-spectral stability approach for isoperimetric problems in-
volving two-dimensional functionals that are minimized. Thus, application to cap-
illary bridges enables the identification of stable existence regions for catenoid and
cylindrical menisci between differently shaped particles. Moreover, stability of the
other CMC surface types is investigated between two planes. Another stability anal-
ysis is presented by Vogel [Vog06], who investigated liquid bridges between two spheres
and a relatively large liquid volume. He demonstrates that convex unduloid menisci
correspond to stable local energy minima, whereas convex nodoid menisci are un-
stable. This is supported by theoretical and experimental force stability analysis of
Niven [Niv06], who showed, that menisci exerting a repulsive capillary force on the
particles are mechanically unstable. Hence, convex nodoids are unstable and the

maximum liquid volume to from a stable capillary bridge is defined by a spherical
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meniscus exhibiting zero capillary force (section3.2). The occurring instability at
large liquid volumes is also investigated taking gravity into account [S4e90]. By a
perturbation analysis the maximum volume of stable liquid menisci is investigated
depending on the Bond number and the contact angles. A comprehensive overview
of static and dynamic stability analysis of capillary interfaces is given by Bostwick
and Steen [Bosl15].

3.5. Experimental methods

Experimental methods for the analysis of capillary bridges are divided into two groups:
visualization of the meniscus shape and direct measurement of the capillary forces.
Visualization approaches are rather simple as the meniscus is directly imaged. Farmer
and Bird [Farl5] analyze menisci between glass beds (R = 2mm) attached to needles
that are brought into contact. The water volume is positioned on the bed rather than
emerging from condensation. Thus, instabilities at large liquid volumes, i.e., convex
menisci, are observed. Similarly, Gagneux et al. [Gagl6] (R = 8 mm) and Nguyen
et al. [Ngul9] (R = 7mm) image the meniscus between two beds and a bed and a
plane, respectively. Their meniscus shapes agree well with theoretical values derived
by the CMC surface theory, which is then used to calculate the unknown capillary
pressure. Further visualizations of the meniscus are reported [Atal7; Brol2; Sun18a].

A significant drawback of visualization methods is their restriction to relatively large
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Figure 3.7.: Stable ( ) and unstable (----) solutions of the Young-Laplace equation for different
dimensionless liquid volumes V' taken from Lian et al. [Lia93]
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geometries as indicated by the given bed radii. An application at the micro scale and
below is not possible. Moreover, the capillary force is not directly measured and must
be calculated from the apparent geometry. However, the direct measurement of cap-
illary forces is not straightforward. One issue is, that only the overall adhesive force
can be measured rather than the single capillary force. Thus, at least van der Waals
forces and probably electrostatic forces are included in the measured values. Since
interparticle forces are short ranged, both, a very sensitive force detection system and
a precise distance control are required. Moreover, roughness and contamination of the
solid interface significantly influence the measurements [But10b]. A comprehensive
overview of experimental methods for intermolecular, interparticle and surface forces
is given by Israelachvili [Isr11] and additionally a historical perspective on surface
force measurement methods is pointed out by Craig [Cra97]. The most commonly
used methods, i.e., the surface force apparatus (SFA) and the atomic force microscope
(AFM), are subsequently described.

The SFA is developed by Tabor and Winterton [Tab69] and Israelachvili and Ta-
bor [Isr72]. It is originally designed to measure van der Waals forces between crossed
cylindrical mica interfaces (R ~ 1cm). The idea of choosing crossed cylindrical ge-
ometries is introduced by Tomlinson [Tom28], since it avoids orientation issues that
might occur when using plane interfaces. Locally, the cylindrical configuration cor-
responds to a sphere-plane system. Using an SFA, the force is directly obtained
by measurement springs with a sensitivity of ~ 1078 N [Isr11]. Thus, reliable mea-
surements depend on the precise information about the spring constant [ButlOb].
The distance control is realized by a three stage system that consists of screws and
springs on the larger scales and a piezoactuator with a precision of ~ 1 nm on the
finest stage. During measurements, the distance is precisely detected by multi beam
interferometry [Tol48] that uses ,fringes of equal chromatic order (FECO) [Isrl1].
Even the absolute zero distance, i.e., molecular contact of the interfaces, can be deter-
mined [But10b]. Besides separation distance, also the thickness of adsorption layers
and thermal drift of the interfaces are tracked. In fact, the direct visual monitoring
is a great advantage of the SFA, since damages are directly observed [Isr11]. The res-
olutions in the normal (=~ 0.1nm) and lateral (= 1pm) direction vary significantly.
The low lateral resolution is a significant disadvantage of the SFA. Moreover, due to
the large scale of the cylinders, a relative large area has to be kept free from contam-
ination which is a serious issue. Another disadvantage is, that the interface structure
can only by determined indirectly by the FECO fringes. Thus, the SFA is often com-
bined with another direct surface morphology measuring method, e.g. microscopy
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and spectroscopy analysis [Isr11]. The solid interfaces usually consist of silica cylin-
ders which are covered with thin sheets of mica, since mica exhibits a molecularly
smooth interface. Moreover, it is flexible, chemically stable, inert with respect to
most liquids and exhibits a high shear stress and tensile strength [But10b]. Using
other materials is generally possible, however, they have to be transparent in order
to use the multi beam interferometry [Isr11]. The SFA is used intensively to study
capillarity and capillary forces [Fis81; Koh00; Mae06; Res02].

The other option to measure capillary forces is the AFM that is developed by Binnig
et al. [Bin86]. It is used either to obtain forces between a tip and a sample at a
certain point or to image interface topology by interpreting spatial variations of force-
distance curves. A very comprehensive overview of AFM measurements, including
a detailed description of the method and a discussion of various surfaces forces, is
given by Butt et al. [But05]. In an AFM a sharp tip is attached to the end of a
micro-structured cantilever. Note, that in the special case of attaching a particle
to the end of the cantilever, the method is reffered to as colloidal probe technique.
When the tip is brought into contact with the sample the cantilever deflects due
to the surface forces. The backside of the cantilever reflects a laser beam, which is
captured by a split photodiode. Thus, the measured deflection-position curve must
be transformed into a force-distance curve [ButlOb]. The sensitivity of an AFM
is about 1072 — 10~ N and determined by the spring stiffness and accuracy of the
displacement measuring [Isr11]. Thus, the spring constant should always be calibrated
in order to be as accurate as possible [But10b].

As already mentioned, a general issue of measuring capillary forces is the existence
of other interparticle forces that cannot be removed. At the same time, the exis-
tence of a liquid meniscus might interfere with other experimental investigations, e.g.
imaging interface topology, since under ambient conditions menisci might undesirably
emerge from condensation. An option to gain more insight into the contribution of
each force is changing the ambient conditions, which is possible with an AFM. For
example, capillary forces are avoided by performing measurements fully immersed in
water [Ouy01; Wei89]. This investigation of pure van der Waals forces allows conclu-
sions about the ratio of van der Waals and capillary forces in air conditions. Another
option to reduce capillary forces is the use of hydrophobic interfaces, since the force
decreases significantly with increasing contact angle and menisci cannot emerge from
condensation on strongly hydrophobic interfaces (section 3.3).

A great advantage of the AFM technique is that contamination is a minor issue, since

the investigated areas are very small. Additionally, no limitations with respect to the
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materials exist. An important drawback is, however, the determination of the zero
distance which cannot be done by an independent methods such as the FECO fringes
in the SFA [But10b]. Moreover, the data interpretation is complex, e.g. heterogeneity
on a smooth interface and roughness on a homogeneous interface might provide very
similar data [Isr11]. Another, critical issue is the high sensitivity of the method
which leads to large fluctuations of the results and a considerable influence of tip
wear. Chung et al. [Chu05] demonstrate considerable structural changes of the AFM
tip, even under extremely low normal load. This is supported by Farshichi-Tabrizi
et al. [Far06], who used the AFM to analyze capillary forces. Their results exhibit
two kinds of fluctuations: a random noise and a larger time scale variation. The
random noise cannot be traced back to a statistical process of the system, however,
its magnitude corresponds well with the theoretically estimated overall measurement
error. The large time scale fluctuations are explained by the structural changes of
the AFM tip resulting from high stresses during the measurement. Thus, due to the
continuously changing tip geometry the results are not satisfactorily reproducible.
Besides these measurements, many others investigations of capillary forces with AFM
are reported [Ata02; Chal0; Jon02; Sed00; Sir06; van08; Xia00; Xu98|.

3.6. Overview of static capillary bridge issues

The general system of a capillary bridge is described in detail in the previous sections.
However, usually simplified systems are analyzed in order to reduce the complexity.
For static capillary bridges different issues, that can be taken into account, are iden-
tified:
o influence of external fields
— gravity!
— electrostatic fields? [K1i04; Pel01]

« rupture distance!

e solid interface constraints
— particle shape1
— roughness (section 3.7)

— multi particle systems? [Liel7; Ryn03; Sem16; Urs99; Wan17]

!General issue, briefly discussed in this section
2Specific issue, not discussed in this work. For more information see references.
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The influence of roughness is discussed comprehensively in section 3.7, since it is
extended by the theory of topological rough interface. All issues are considered for
static or quasi-static problems and there are strong interdependencies between them.
For example, the rupture distance might be significantly influenced by a gravitational
field. When taking dynamics into account, further stability issues such as oscillation
might occur and dynamic forces have to be considered. Thus, a significant influence
of dynamics on all of the listed issues exists. As an example, Mazzone et al. [Maz87]
showed that the static maximum separation distance is much lower than the dynamic
one which is explained by the fact that viscous forces rather than surface forces
dominate the dynamic behavior. Nevertheless, this work focuses on static capillary

bridges and therefore, dynamic effects are not taken into account.

Influence of gravity in static capillary bridge systems

For most capillary applications neglect of gravity is reasonable. Assuming a grav-
itational acceleration g that acts in the direction z, the Young-Laplace equation
(eq. (2.15)) is extended to

Apo +g(z — 20) (1 — pg) = 02H (3:22)

with the liquid and gas density py and p,. This formulation implies the definition
of a reference point zy directly on the interface where the pressure difference is Apy,
however, this is usually not mentioned explicitly in the literature. Instead, the origin
of the coordinate system is set at zg = 0. Thus, a short derivation including a more
general formulation with a gravitational vector g is given in appendix B. Eq. (3.22)
states that the mean curvature H linearly changes in the direction of gravitation
with the slope gAp/(20). This equation can be obtained by either adding gravita-
tional force to eq.(2.13) or by adding a potential energy term to eq.(2.17). For the

estimation of the gravitational effect the Bond number

_ L*Apg
o g

Bo

(3.23)

is usually considered. Again, the particle radius R is used as characteristic length L.

The Bond number relates volume forces i.e., gravitation to the surface tension force
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and should be < 1 for neglecting gravity. A more conservative criterion taking the
mean curvature into account is developed by Orr et al. [Orr75]

Bo
|HR]|

< 0.01. (3.24)

They demonstrated for axisymmetric capillary bridges between a sphere and a plane
deviations in the solutions of calculations neglecting gravity and taking gravity into
account below 0.4 % if eq. 3.24 is satisfied. Using the definition of the Bond number

and the Young-Laplace equation, eq. 3.24 is formulated as

Brgls o1, (3.25)
|Ap

where the particle radius R is replaced by the maximum length of the capillary bridge
in the direction of the gravitational field [,. This equation reveals, that the pressure
difference induced by gravity must be less than 1 % of the capillary pressure [Sch82]. It
also becomes clear that even for small capillary bridges gravity might be significant if
the capillary pressure tends to zero i.e., close to saturation. An enhanced classification
of gravitational regimes from gravity free to complete draining is presented by Adams
et al. [Ada02| for perfectly wetting spheres and shown in table3.1. Following these
investigations, the dimensionless parameter V Bo is used to estimate the influence of
gravity rather than the pure Bond number. Further investigations considering gravity
theoretically [Bou82; S4e90; Sun18a| and experimentally [Bay87] are presented in the

literature.

Table 3.1.: Gravitational regimes of capillary bridges according to Adams et al. [Ada02]

V Bo regime description
< 0.01 gravity free insignificant effect of gravity
0.01—0.15 transitional significant decrease in rupture distance and change

in the force by half the bridge weight
0.15—2.0 gravity controlled bridge rupture by draining mechanism
2.0< complete draining stable bridges do not exist
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Quasi-static rupture distance of capillary bridges

Rupture distance is defined as the maximum separation distance at which a stable
meniscus can form. Thus, it can also be interpreted as existence problem of a cap-
illary bridge or as a criterion for condensation. Especially in the context of DEM
simulations, the maximum separation distance is of great interest, as it directly gives
the maximum interacting radius of the capillary force. The term “rupture® is com-
monly used in the literature although it associates dynamically separating particles.
However, the problem is usually considered in a static way, i.e., the static capillary
bridge is calculated for different separation distances. In this context, two limiting
cases are considered: On the one hand, calculations under the constraint of a con-
stant humidity are interpreted as an infinitely slow separation of the particles so that
thermodynamic equilibrium is reached for each state. Thus, liquid is condensing to
or evaporating from the meniscus and the mean curvature is kept constant. However,
the kinetics of condensation, as for example described by Kohonen et al.[Koh99], are
completely neglected. On the other hand, an infinitely fast separation leads to a con-
stant liquid volume and the mean curvature is changing during this process. In this
case, dynamic effects of stretching or compressing the meniscus, such as oscillation,
are neglected [Dar10; Mol93; Zha96].

A relatively simple approach for the maximum separation distance is derived in the
framework of the toroidal model [But08]

Amax < T1(cos by + cos ), (3.26)

since the right side of this equation is the maximum distance an arc can span. Thus,
only for smaller gap distances a meniscus can form. This rather simple condition is
very useful for modeling capillary bridges between rough interfaces, since the areas
in which liquid condenses are easily identified. Another criterion is proposed by de
Bisschop and Rigole [Bis82]. Analogous to the results illustrated in figure 3.7 (a), they
observe a minimum of the filling angle v with respect to the distance. This minimum
is assumed to be the maximum distance. However, experimental investigations predict
larger distances [Mas65]. Thus, the distance at which the numerically obtained two
solutions converge to a single solution is proposed as rupture distance [Erl71; Lia93].

Using this criterion,

G = (14 0.50)/ V. (3.27)
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is derived by a fitting to quasi-static numerical results [Lia93]. This equation is
valid for contact angles below 40°. However, for a sphere and a plane, eq.(3.27)
overestimates the rupture distance as shown by measurements of Willett et al. [Wil00].

Using a curve fit for their experimental data

5 0 Ry 3/~ Ry 2\ 3/=2
max = |1+ = (—=—+1 VvV — ——|VV 3.28

oo = (141 (3 +1)) (7 + (3. 5) (329
is proposed as a more accurate prediction of the maximum separations distance.

Moreover, the maximum separation distance of capillary bridges is influenced by

gravitation. Adams [Ada02] proposes a modification of eq. 3.27
Gmax ~ (1 — 0.48V Bo)\V (3.29)

to estimate the separation distance in a gravitational field for 8 = 0°. Obviously, the
maximum distance ., decreases with increasing influence of gravity and for very
large Bond numbers stable menisci might not exist even if the particles are in contact.
For 0.15 < VBo < 2 rupture is completely controlled by draining mechanisms and
for VBo > 2 a stable bridge does not exist (table3.1). Mazzone et al. [Maz86] also
demonstrate a decreasing rupture distance with increasing Bond number, however,
this gravity influence is related to the liquid volume and may be neglected at low
volumes.

Moreover, approaches based on other physical considerations are described in the
literature. Pepin et al. [Pep00] predict rupture at the distance where the liquid-gas
interface of the meniscus equals the liquid-gas interface of the remaining droplets on
the particles in a volume conservative system. Comparison of the estimated rupture
distance with experimental results shows an error below 4 %. The interface criterion
is later applied by Darabi et al. [Darl0] to calculate capillary bridge evolution and
rupture by a numerical CFD study. They confirm a reasonable application of the
quasi-static Pepin approach for Ca < 1073, We < 1072, Bo < 1 and equal contact
angles. Dai an Lu [Dai98] apply the theory of the stability of a liquid cylinder im-
mersed in a immiscible liquid, that is originally proposed by Walstra [Wal83], to the
capillary bridge problem. Thus, the Young-Laplace equation does not need to be
solved. Their model underestimates the maximum separation distance and is there-
fore extended by a correction factor obtained from a fitting with experimental results.
Although the physical criterion is very different, the results agree well with eq. (3.27).
Another approach is presented by Yang et al. [Yan10]. They use a toroidal approxima-

tion for the meniscus and estimate the rupture distance based on the Griffith energy
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balance criterion which states very general that at the mechanical stability limit the
overall change of the interfacial energy of the capillary bridge equals the change in
the surface energy of the two remaining droplets [Boe07]. Applying this model to a
sphere plane system, an increasing maximum separation distance with increasing con-
tact angle, particle radius and humidity, respectively, is demonstrated. Moreover, for
R > 600 nm agreement with the models of Lian et al. [Lia93] and Willett et al. [Wil00]

is shown.

Non-symmetric particle shapes

The prevailing majority of capillary bridge investigations is focused on symmetric
bridges between spheres, cones and planes. However, due to the development of more
general simulation methods, analyzing arbitrary particle geometries becomes possible.
The investigations of Virozub et al. [Vir09] and Bedakar et al. [Bed09] for capillary
bridges between the shell surface of non-parallel cylinders are already summarized in
section 3.3 in the context of capillary torque.

Chau et al. present a theoretical [Cha07] and experimental [Chal0] study of cap-
illary forces between a plane and a cone of pyramid corresponding to an AFM tip.
The simulations are carried out using Surface Fvolver and match well with the ex-
perimental results. An important observation is that the capillary force significantly
depends on the tilt of the AFM tip, which is used to control the capillary force in
micro assembling applications.

Moreover, non-symmetric bridges in a slit pore geometry are presented [Brol2]. Two
hydrophobic plane interfaces are patterned with a hydrophilic stripe and the three-
dimensional capillary bridge is simulated using Surface Evolver. With increasing
separation distance and a constant volume approach the aspect ratio, i.e., length per
width, decreases. However, the pinning angle increases and thus, the menisci develop
from concave to convex. The calculated overall capillary force is found to be always
attractive although the pressure component is repulsive for convex menisci.

A very interesting investigation is presented by Farmer and Bird [Farl5]. Although
they consider spherical symmetric particle shapes, they experimentally observe non-
symmetric menisci. In accordance with the presented theory, images of borosilicate
glass beds (a = 2mm) show axisymmetric bridges for relatively low liquid volumes.
However, as the liquid volume increases up to convex menisci the capillary bridge
spontaneously shifts out of the symmetry axis. This phenomenon is simulated by
inducing an asymmetric perturbation to a previously calculated symmetric capillary

bridge. The system will either evolve back to axisymmetry in case this configura-
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tion is a stable equilibrium or a new asymmetric steady state is calculated. These
asymmetric steady states exist for bridge volumes that are above the volume of the
spherical bridge exhibiting the same contact angles. Moreover, theoretical consid-
erations illustrate, that for a given constant volume and contact angel the interface

energy of the asymmetric state is lower compared to the symmetric state.

3.7. Capillary bridges between rough solids

Manufacturing ideally smooth and homogeneous solid interfaces on a molecular level
is impossible. Approximately smooth interfaces exhibit roughness at the nanometer
scale and above. The characteristic length scale of the capillary force is given by the
Kelvin length which is for water under ambient conditions about 0.537 nm. Relating
the Kelvin length to roughness scales, a significant influence on the capillary force is
already indicated [But08]. Moreover, several experimental results cannot be explained
by a smooth theory. In fact, different and inconsistent results for the humidity depen-
dency are reported in the literature that are often traced back to roughness. However,
when modeling capillary bridges on rough interfaces, a theoretical description of such

a topology is required first.

3.7.1. Theory of topological rough interfaces

Interface topology is studied intensively in order to find interdependencies between
the topology and physical characteristics of various systems. Therefore, parameters
describing several aspects of roughness are introduced and subsequently the most

common topology models are discussed.

Parameters to describe rough topology

Describing rough interfaces is complicated and cannot be done by a single parameter.
Various parameters for three-dimensional interfaces are defined in [ISO12]. The three-
dimensional quantities are indicated by .S, whereas the corresponding two-dimensional
quantities are indicated by R. Height parameters such as the maximum peak S,
valley S, and surface height S, are defined in [ISO12] and their two-dimensional
versions R, R, and R, are illustrated in figure 3.8 (a) for a given interface length .

In this schematic diagram the z-axis corresponds to the centerline of the interface,
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i.e., the integral deviations from this line are zero. Roughness is often characterized
by the mean averaged height

1 1
R, = 7 /l\z(x)\dx and Sa = 1 /A]z(:c,y)\da: dy (3.30)

or by the root mean square roughness (RMS)

Ry = \/:ll/lz?(x)da; and Sq = \/i1 /A 22(z,y)dx dy (3.31)

that describes the standard deviation from the mean line in a Cartesian coordinate

system. [ and A are the length and area of the investigated two and three-dimensional
interface. Height parameters reduce the complex rough interface structure to single
quantities making conclusions about the profile impossible. Thus, also spatial param-
eters are defined that use auto correlation functions to analyze preferred directions.
Height and spatial parameters are combined to obtain hybrid quantities, e.g. the area
fraction Sg,. The additional area resulting from roughness is related to the projected
smooth area A and the area fraction is given by

Sur = A‘;A=/11//}\41+<82g‘;y’)>2+<azg;’y)>2dxdy—1 (3.32)

where A, is the rough interface area. Thus, this quantity is interpreted as magnitude

of roughness and is zero for ideal smooth interfaces. However, for practical purposes it

is not straightforward to determine the area fraction [Sto00], but it is very useful when
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Figure 3.8.: Two dimensional roughness parameters (a) and height distribution function of a rough
gap (b)
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considering roughness in wetting models such as the Wenzel model (section 2.3.2). In
addition to the above described parameters, also parameters of defined functions and
mixed parameters to describe texture directions are defined in [ISO12].

When describing gaps between rough interfaces, a gap height distribution function
h(z) is defined as illustrated in figure 3.8 (b). This function can also be obtained for
smooth geometries, however, is predominantly used in the context of roughness. As
described subsequently, many topology models use a probability distribution for the
asperity heights h, to model roughness which is often referred to as height distribution
function. The difference between the gap height distribution h(x) and the asperity
height distribution should be noted carefully.

Mathematical models for rough topology

Most research of rough surface topology is found in the context of contact mechanics
in order to evaluate solid contact forces. The results for modeling rough interface
topology are qualitatively presented in this section, however, details of the math-
ematical equations as well as contact models are not considered in here. For the
characterization of randomly rough interfaces statistical, fractal and hierarchical ap-
proaches exist [Bhul3].

Statistical models describe the dimensions of asperities, i.e., height h, and radius, by
a probability density function. It is usually assumed to approximate the shape of a
single asperity by a hemisphere [Gre66; Maj90; Nay71; Rob01], however, other models
such as conical shapes [His75| are also proposed. A normal distribution of asperity
radii is presented by Nayak [Nay71]. However, the benefit of a size distribution is ques-
tioned [Gre01] and most statistical models focus on the asperity height distribution
assuming a constant asperity size. The most applied height distribution is the normal
distribution but also non-normal approaches exist [Luol3; Man10]. Greenwood and
Williamson [Gre66] proposed one of the first models of a normal height distribution
in order to calculate the real area of contact of two solids. An important advantage
of the Gaussian roughness is that the density function is mathematically relatively
easy and efficient to handle. Many technical surfaces are described accurately enough
by this model.

A major drawback of statistical models is that they cannot explain the scan length
dependency of measured rough parameters [Bigl2; Bor05]. Thus, they are not suit-
able for the development of general models [Rob01; Wan20]. Although, the statistical
approaches and especially the Gaussian distribution are widely applied, other stud-

ies suggest a fractal character of roughness that is accordant with the scan length
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dependency. An extraordinary apology is published by Greenwood and Wu [Gre01].
Reviewing the classical theory of Greenwood and Williamson [Gre66]|, they still agree
with the assumptions that the height distribution of asperities is approximately Gaus-
sian for a certain range and that the geometry of an asperity may be represented by a
constant hemisphere. However, the 3-point peak theory is doubted. According to this
theory a peak is defined by a sample point higher than its immediate neighbor and
these peaks correspond to the asperities of the interface. Instead, modeling roughness
by a multi scale model as it is already proposed by Archard [Arc57] in 1957 is sug-
gested. Remarkably, Archard described fractal interfaces about 20 years before the
term fractal has been formed by Mandelbrot [Man77]. A fractal structure exhibits a
fractal dimension and is characterized by self-similarity (figure3.9 (a)) and scale in-
variance so that neither dilatation nor contraction change the object’s shape [Dim11].
There are different ways to define the fractal dimension mathematically that depend
on the fractal object itself. A special characteristic of the fractal dimension in con-
trast to the usual understanding of a dimension is, that it must not necessarily be
integer. A famous example of a fractal object is the Koch curve [Koc04] that has a
fractal dimension of & 1.26. Starting from a straight line at stage (0) the first three
steps of constructing the fractal curve are presented in figure 3.9 (b).

The fractal concept describes interfaces as superimposition of roughness of different
length scales [Avo08]. Some of the first fractal approaches for surface topology are
proposed by Majumdar and Bhushan [Maj90] and Yan and Komvopoulos [Yan98| and
an overview of the advancements in contact mechanics is given by Wang et al. [Wan20).
An interesting fractal approach for interfaces is presented by Robbe-Valloire [Rob01].
He distinguishes two levels of topology, i.e., roughness and waviness, where a wave
element consist of several rough elements. A Gaussian distribution for the asperity

height is applied on the waviness level, whereas the Gaussian distribution of the radii
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Figure 3.9.: Self affinity of rough interfaces [Bhul3] (a) and Koch curve [Koc04] (b)
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is applied on the roughness level. An important advantage of this model is that
post-processing is not required to obtain an interface profile.

The variety of models and approaches to describe rough interfaces demonstrates the
challenges of topological problems. Moreover, as already mentioned in the description
of the AFM (section 3.5), measuring roughness at the nano scale is not straightfor-
ward. These issues already indicate the complexity of modelling capillary bridges

between rough solids is.

3.7.2. Modeling capillary forces between rough interfaces

As mentioned previously, experimental investigations of interparticle forces lead to
inconsistent results that cannot be explained by a smooth capillary bridge theory.
In figure 3.10 the force humidity curves obtained by AFM measurements of Xiao and
Qian [Xia00] (a) and Rabinovic et al. [Rab02] (b) are exemplary shown to demonstrate
the different curves, however, many more results are reported, e.g. [Del07; Jon02;
Far06; Fis81; Sed00]. The interparticle force of OTE/SiOs is independent from hu-
midity, which is traced back to the hydrophobic behavior of the material. Thus, no
liquid menisci arise from condensation and the measured force is traced back to van
der Waals forces. The interparticle force of the hydrophilic SiO, increases for ¢ > 0.3
with a maximum around 0.7. With further increasing humidity the interparticle force

decreases. In contrast, the force humidity curves presented in figure 3.10 (b) do not
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Figure 3.10.: Interparticle forces obtained from AFM measurements for SiOy and OTE/SiOy by
Xiao and Qian [Xia00] (a) and for different RMS S, by Rabinovic et al. [Rab02] (b)
(materials: oxidized silicon Sy = 0.2nm and PE-CVD substrate S; = 0.3 and 0.7 nm)
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show a maximum. All curves are constant until a certain humidity is reached. This
jump is already described in section3.1 and usually explained by the appearance
of the condensed water menisci. In figure3.10 (b) the critical humidity is lower the
smoother the surface is. Moreover, it is shown that the interparticle force decreases
with increasing roughness. While the S; = 0.3 and 0.7nm curves show a continu-
ous increase after reaching the critical humidity, the Sq = 0.2nm curve increases up
to a maximum value and remains nearly constant afterwards. Farshchi-Tabrizi et
al. [Far06] classified three different force humidity curves: (1) low maximum, (2) high
maximum and (3) continuous increase without maximum. This classification should
be extended by a constant force regime below a critical humidity as exemplary shown
in figure3.10 (b). It is generally assumed, that the qualitative differences between
the curves are caused by interface roughness, which, therefore, must be considered in
adequate models that explain the experimental results and predict interparticle forces
with satisfying accuracy. Several models for calculating capillary adhesion between
rough solid interfaces have been proposed. Some of them include capillary and van
der Waals forces and most neglect the other force types. Since this work focuses on
capillary forces, the van der Waals models are not described in detail, however, these
forces are included in all experimental data inherently and thus are considered in
several theoretical approaches.

Three different liquid volume regimes are defined by Halsey and Levine [Hal98] and
illustrated in figure 3.11. The asperity regime is characterized by low liquid volume
and humidity, respectively, and the capillary force arises from very few or even a
single meniscus at the closest contact points. Thus, this region is around the crit-
ical humidity, where the capillary forces arise, however, they are very small. With
rising volume, menisci emerge over a statistically rough region and the interparti-

cle force increases linearly with the liquid volume. This model is supported by the
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Figure 3.11.: Volume dependent wetting regimes of rough interfaces according to Halsey and
Levine [Hal98]
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AFM measurements of Ando [And00]. He investigated the adhesion force between a
flat, squared AFM tip and a multiple asperity array as well as between the tip an
a single asperity. An increasing adhesion force with humidity is measured for the
array, whereas a constant force is observed at the single asperity. Moreover, a force
histogram shows an increasing number of peaks that have constant maximum. Thus,
it is concluded that the force on a single asperity is constant with respect to humidity,
however, the number of contributing asperities increases on an asperity array. In the
second regime the macroscopic shape of the solid does not yet influence the capillary
bridge. This is the case in the third regime, i.e., the spherical region, where roughness
can be neglected and the liquid bridge formation is dominated by the particle shape.
This can be interpreted as a capillary force on a large single asperity and, thus, the
interparticle force is assumed to be independent of humidity.

In order to consider roughness in the calculation of the capillary force, an extension to
the toroidal model of two identical smooth spheres according to eq. (3.13) is suggested
by Bocquet et al. [Boc98]. Their observation, that the interparticle force of granular
beds increases drastically over time with the increasing humidity, is not consistent
with the used toroidal force equation. The increase is traced back to the fact, that
roughness significantly reduces the wetted area compared to smooth interfaces. Thus,
an effective area is introduced to the model. This area is calculated by a factor that
takes the typical width of the roughness distribution into account. Moreover, a time
factor is proposed to include the time dependency of condensation in the model.

A very simple rough capillary force model is the calculation of an effective particle
distance as proposed by Pietsch [Pie68]. It is assumed, that instead of direct con-
tact a gap arises due to the asperities. This idea is applied to unequal sized spheres
using a toroidal meniscus approximation [Naz12] and also to a smooth plane and an
AFM tip geometry [Far06]. Another approach is calculating interparticle forces by

smooth sphere

meniscus

B "SR, pl/ate asperity ——
v /

Figure 3.12.: Different cases for liquid menisci at a single asperity according the roughness model of
Ata et al. [Ata02]
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taking the asperity radius R, into account [Rum74]. Using this model a significant
roughness effect on the van der Waals forces is demonstrated, which is later con-
firmed by a more sophisticated van der Waals force approach [Rab00a; Rab00b]. Tt
is demonstrated, that capillary forces are less sensitive towards roughness and exceed
van der Waals forces in both, smooth and rough, models. A combination of these two
approaches is proposed by Ata [Ata02]. His AFM measurements show that the exper-
imentally obtained capillary force significantly exceeds the theoretical value predicted
by eq. (3.13). Thus, roughness is considered in the calculations by distinguishing the
two different cases presented in figure 3.12. In the first case, the meniscus diameter is
below the asperity radius and thus, eq. (3.13) can be applied using the asperity radius
R, instead of the particle radius. In the second case, where the meniscus completely
covers the asperity, a correction factor based on the effective area of the condensed
vapor phase is introduced to eq.(3.13), that can also be interpreted as an effective
distance. Thus, a better agreement between the theoretical and experimental values
is achieved. This approach is also used by Rabinovic et al. [Rab02] who considered
the jump in the interparticle force at the critical humidity. Below this critical hu-
midity a dry adhesion force model taking roughness into account is applied, whereas
above the second case illustrated in figure3.12 is used. A Similar two case model of
low and high humidity on a single asperity is proposed by Li et al. [Li20].

A hierarchical roughness model of two superposed sinus waves is suggested by Wang
et al. [Wan09]. Again, different wetting regimes depending on the relative humidity
are defined. For the roughness controlled regime it is shown, that the meniscus
smoothly increases with humidity if a one-level roughness, i.e., a smooth sinus wave,
is considered. However, by superposing a second sinus wave with a much smaller
wavelength the meniscus increase gets discrete with large jumps. The jumps are
explained by a pinning effect of the meniscus at the sub roughness. Therefore, an
energy barrier has to be overcome by the rising meniscus to jump to the next bigger
sub asperity. The pinning effect is assumed to be negligible in the high humidity
regime.

Instead of describing roughness by a single asperity, a patterned interface composed
of multiple asperities is developed to model roughness. Especially in the second
regime either a multi asperity approach or an asperity distribution must be consid-
ered [But09]. Farshchi-Tabrizi et al. [Far06] proposed a smooth sphere in contact with
a plane that is covered by hexagonally arranged conical or hemispherical asperities.
Thus, wetting regimes similarly to figure 3.11 are described: At very low humidity,

a meniscus arises only between the central asperity and the sphere. With rising hu-
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midity, the asperities of one ring after another will form menisci which corresponds
to the second regime. Finally, in the third regime, after reaching a critical humidity,
a single meniscus covers all asperities and the influence of roughness is minor.

In order to calculate the tangential stiction force, Li and Talke [Li92] also considered
the appearance of liquid menisci. The capillary force is given by the sum of hemispher-
ical asperities for which the two cases of contact and non-contact are distinguished.
Following the Greenwood and Williamson model, a Gaussian distribution of asperity
height is implemented. Another model involving an arbitrary asperity height distri-
bution is proposed by Butt [But08]. Assuming r; < 7y the surface tension force is
neglected and a toroidal approximation is applied. Moreover, thermodynamic equi-
librium is assumed. The condensation criterion (eq. (3.26)) is combined with the gap
height distribution (figure 3.8) of the rough interfaces in order to calculate the force of
the existing menisci. This overall gap height distribution is superposed by two parts,
i.e., the gap height function of the smooth geometry that describes the apparent in-
terface and the distribution arising from the asperities. Convolution and integration
lead to the integrated gap height distribution function that is used to calculate the
capillary force. This method could also be used to handle heterogeneous interfaces.
Similarly, Ardito et al. [Ard13] applied a Gaussian asperity height distribution to the
condensation criterion for plane interfaces and combined their capillary force model
with an also Gaussian distributed van der Waals force model. The approach pre-
sented by Butt [But08] is extended by You and Wan [Youl3; Youl4] by introducing a
fractal roughness model of Gaussian asperity height distributions at different scales.
Their interparticle force model also considers the van der Waals force and elastic
deformation of the solid interface.

It is generally agreed, that the capillary force decreases with increasing roughness.
Moreover, a complicated and not yet completely understood influence of roughness
on the humidity dependency of the interparticle force is noticed. The theoretical
approaches usually distinguish different humidity regimes and model the capillary
force either on a single asperity or take a height distribution into account. The major
problem is that even nanometer scaled roughness significantly influences capillary

forces, However, measuring interface topology at this scale is impossible [But09].
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Capillary bridges significantly influence the behavior of wet granular materials. Al-
though the Young-Laplace equation has been researched for more than a century, a
general solution for complex interfaces is not yet obtained. In fact, one of the most
common assumptions for the computation of capillary forces is a smooth and axisym-
metric solid interface. However, a significant influence of the particle geometry on
the capillary force is demonstrated in the literature (section3.3) and, consequently,
it is very reasonable to conclude, that the assumption of a smooth interface is severe.
This is supported by experimental investigations that indicate, that even slight wear
of the AFM tip strongly influences the capillary force (section3.5). Moreover, mea-
sured relations between the relative humidity and the interparticle force reveal an
important impact of roughness (figure 3.10) which should consequently be considered
in appropriate models. Nevertheless, the existing roughness capillary force models
require substantial simplifications with respect to the solid geometry (section3.7)
rather than directly resolve the rough interface.

The main goal of this work is to develop and evaluate a method for the simulation
of capillary bridges between arbitrary interfaces, i.e., no a priori assumptions with
respect to the interfaces are made. The mathematical formulation of the problem is
very general, providing a good basis for future research of capillary bridges. Although
no simplifications with respect to the geometry are made, it is already clear that limits
are determined by the numerical resolution and stability. To the best of the authors
knowledge, such a method does not exist at present.

The model and the novel method are presented in chapter5. The model is based
on an energy minimization approach and the governing equations are formulated as
a constrained optimization problem, i.e., minimizing the total free energy subject
to a volume and a contact constraint. In contrast to previous energy minimization
formulations (eq.2.19 and eq. 3.21) the formulation presented in this work explicitly
requires contact between the liquid and the solid. Moreover, in previous approaches
the approximation of the curvature usually causes large numerical instabilities and
inaccuracies when resolving a high frequent rough solid interface. Thus, in our novel
method the approximation of the curvature is avoided. Moreover, the numerical
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implementation is designed specifically for the capillary bridge problem. In contrast,
the main advantage of the frequently used open source tool Surface Fvolver is its
applicability to various problems, which, however, limits its performance for a specific
application. Hence, in this work, the classical optimization schemes are complemented
by specific algorithms which, for example, ensure a stable development of the three-
phase contact line.

Since the presented method is completely novel, an intensive evaluation of the ap-
plicability and the accuracy is presented in chapter6. First, the method is verified
by a comparison with previous approaches from the literature. In order to ensure
accurate results, mesh convergence is discussed and the magnitude of numerical error
is estimated. Moreover, the direct resolution of a rough interface requires a statistical
approach for the analysis of the capillary force, since the root mean square rough-
ness (RMS) can be realized by an infinite number of interfaces. Hence, the capillary
force is obtained by computing the forces between a huge number of samples that
have the same RMS but a different realization on an interface level. Consequently,
statistical uncertainties of the mean capillary force as well as the standard deviation
are estimated.

Based on this comprehensive evaluation, the capability of the novel method is demon-
strated by applying it to rough sphere-plate and sphere-sphere systems. The corre-
sponding results are presented in chapter7. In particular, the distribution of the
capillary force is investigated by considering the mean capillary force and the stan-
dard deviation. First, the dependencies between the distribution and the classical
parameters, i.e., contact angle, volume, gap distance are revealed and, second, also
the impact of a varying roughness is pointed out.

Conclusively, in chapter 8, the applicability of the presented results for future work
is discussed. In particular, the existence, uniqueness and stability are critically ques-
tioned. Moreover, a possible future application within a discrete element method is
considered. Finally, the hands-on experiences with the algorithm and the intensive
evaluation of the data reveal comprehensive optimization potentials for the numerical
implementation of the method. These potentials are described and their impact on

the numerical performance is demonstrated.
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Simulating capillary bridges between rough interfaces is challenging, since a general
three-dimensional method is required. According to figure 3.6, energy minimization
methods, computational fluid dynamics (CFD) or molecular dynamics (MD) can be
considered. MD methods simulate the interaction of the molecules and are therefore
restricted to very small systems that are not considered in here. CFD approaches are
generally optimized for flow simulations rather than finding a static steady state like
the capillary bridge. Moreover, the two most common multi-phase approaches, i.e.,
volume-of-fluid [Hir81; Ubb97] and level-set [Osh88; Sus94], represent interfaces im-
plicitly. Thus, additional models such as the continuum surface force model [Bra92a]
are required to include the surface tension force into the conservation equations. Due
to numerical inaccuracies this introduces artificial velocities (parasitic currents) to
the system [Har06]. Hence, the implicit multi-phase approaches work well, if these
artificial velocities are minor compared to the physical flow velocity of the system.
However, the flow velocity of the capillary bridge problem is zero and consequently,
parasitic currents are a crucial issue. Besides the described implicit multi-phase
approaches also explicit interface representation methods such as the moving-mesh-
method [Tuk12] or a front-tracking algorithm [Unv92] exist. The main drawback of
explicit methods is, that they cannot handle large deformations at the interface. Thus,
they do not seem to be suitable to compute a capillary bridge between complex rough
interfaces. Nevertheless, capillary bridges have been simulated using CFD [Dar10;
Sunl6; Wasl17]. However, these approaches only consider relatively simple smooth
particles rather than complex arbitrary geometries. Since numerically stable com-
putations on a CFD mesh that resolves small roughness asperities is not straight
forward, this approach is not considered in here.

Finally, an energy minimization method seems to be most suitable for the three di-
mensional capillary bridge problem. As described in section 3.4.2, several approaches
are already presented, in particular, the open source available tool Surface Evolver
[Bra92b]. Although it is stated that arbitrarily geometries can be simulated, no pub-

lications with geometries as complex as a rough interface are found in the literature.
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Especially the approximation of the curvature in this discretized-optimized method
leads to numerical issues with non-smooth geometries.

Thus, a novel optimized-discretized energy minimization approach is developed, that
does not require an explicit approximation of the curvature. Moreover, the developed
algorithm is optimized for the capillary bridge problem and contains specialized sta-
bilization methods such as a triangle correction at the three-phase contact line. The
model is described first in this chapter (section 5.1) and includes the physical assump-
tions and the mathematical formulation of the problem. The physical assumptions
(section 5.1.1) determine the applicability of the model on the one hand and, however,
the limitations on the other hand. Based on the physical model, the mathematical
formulation of the energy minimizing optimization problem and the governing equa-
tions are derived (section5.1.2). Subsequently, the methods to solve the optimization
equations are described (section5.2). The Finite Element Method based algorithm
for the solution of partial differential equations is implemented in python using the
open source computing platform FEniCS [Logl2]. The discrete rough interface rep-
resentation of the solids (section 5.2.1) and the optimization schemes (section 5.2.2)
are discussed in detail. Moreover, mesh quality is significant in order to achieve
convergence and, thus, methods to ensure a sufficiently high mesh quality during
computation are implemented (section5.2.3).

5.1. Model

Applying an energy minimization approach to analyze capillary bridges between rough
interfaces requires several physical assumption. These simplifications of the real sys-

tem are required to obtain mathematical equations that are numerically solved.

5.1.1. Physical assumptions of the capillary bridge model

The objective of the simulation is to find a static steady state of the capillary bridge
constrained to the liquid volume and the solid geometry (volume method, section 3.4).
Thermodynamic equilibrium is not explicitly postulated. Instead, the equilibrium
humidity can be calculated according to the Kelvin equation (eq.(2.26)) after the
simulation. The system is considered to be static and, hence, dynamic forces and
specific dynamic effects such as oscillation are excluded. The fluids are assumed to
be continua and molecular effects are not explicitly resolved in the model. As already
described in section 3.4 this excludes effects such as adsorption layers, line tension

and disjoint pressure. Moreover, the surface tension is considered to be constant and
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the curvature dependency, that is only relevant for very high curvatures arising in
very small systems (section 2.1.2), is neglected.

The solids are chemically homogeneous and perfectly clean. A constant contact angle
boundary condition for each solid is implemented. Note, that molecular and dynamic
mechanisms, that cause the difference between the micro and macro contact angle
(section 2.3.2), are explicitly excluded from the model. The existing rough wetting
models of Wenzel and Cassie-Baxter calculate an integral macro contact angle for
the rough solid (section2.3.2). However, in the presented model the contact angle
boundary condition is met at any point of the rough interface. Thus, this contact
angle is interpreted as the micro contact angle.

A normal asperity height distribution is applied to describe roughness. Thus, a sta-
tistical model is used rather than a fractal model although it is generally agreed that
roughness exhibits a fractal character (section3.7.1). However, a fractal model re-
quires a very high mesh resolution that implies huge computational resources and
most probably even a parallelized algorithm that is not implemented straightforward.
Thus, only the first fractal dimension of roughness is considered which might be ex-
tended in the future. The numerical representation of the rough interfaces is described
in detail in section 5.2.1. Moreover, only capillary bridges with a relatively large vol-
ume compared to the dimension of the asperities are considered, which corresponds
to the sphere regime in figure3.11. In the asperity and roughness regime a complex
analysis of the geometry is required in order to identify the areas at which capillary
bridges exist. Additionally, if thermodynamic equilibrium is assumed, the multiple
bridges in the roughness regime have the same capillary pressure rather than the
same volume. Thus, the whole problem as well as the boundary conditions need to
be formulated differently in these regimes.

External force fields, e.g. gravitation, are neglected in this investigation although
they can easily be included in the model [Sch22]. However, in order to reduce pa-
rameters and to analyze the influence of roughness independent from possible other
effects, external forces are neglected. In particular, neglecting gravity is reasonable
for sufficiently small Bond numbers (section 3.6).

This work focuses on classical capillary bridges between two solids, i.e., two particles
or a particle an a plate, with at least one of them being rough. However, the problem
formulation is very general and provides an application to multiple solid interfaces as
well. Thus, analyzing multi-particle systems is principally possible with the proposed

model.
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The solids are fixed in space and absorb the capillary forces. Moreover, the solids
are assumed to be perfectly rigid. As shown in [ButlOa; Youl3], elastic particle
deformation due to the van der Waals and capillary forces might be a considerable
effect, since these forces are highly geometry dependent.

Generally, the model is set up in a dimensionless form using the parameters defined
in eq. (3.2). Note, that all geometrical parameters such as coordinates, lengths or
areas are related to a particle radius R that is choosen as characteristic length of the
system. Thus, the results of the developed algorithm are independent of the system
size and the surface tension. Assuming a constant surface tension the shape of the
capillary bridge is independent of the liquid characteristics. The major advantage of
the dimensionless form is its applicability to many system configurations. For exam-
ple, the temperature dependency of the surface tension (section2.1.1) can be easily
considered by computing the dimensional capillary force at different surface tensions
based on the same non-dimensional capillary force. However, all assumptions with
respect to the system size, e.g. a curvature independent surface tension, neglect of
molecular effects and gravitational free regimes, have to be checked, when transferring
the non-dimensional results to specific dimensional applications. The main physical

assumptions are summarized as follows:

volume approach without postulation of thermodynamic equilibrium
 static system implying neglect of all dynamic effects

« neglect of all molecular effects (continuum approach)

« constant surface tension

 constant (micro) contact angle

« statistical (normal) asperity height model for rough solid interfaces
 neglect of external force fields (e.g. gravity)

» perfectly rigid solids that are fixed in space

5.1.2. Mathematical formulation of the optimization problem

Subsequently, the physical model has to be formulated by a mathematical formalism
that is transferred into a computational algorithm. The problem is formulated in
general for ¢ = 1...n solid interfaces and the definitions are illustrated in figure 5.1

for a two sphere system (n = 2). The liquid body domain  C R3, i.e., the capillary
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bridge, has a capillary interface I'c = 0€) that is composed by the liquid-gas interface
Il and n solid-liquid interfaces Iy ;, i.e.,

I'. = Flg U U Fsl,i- (51)
i=1

The outer normal of I'; is denoted by n and the three-phase contact lines are given
by 0l'y; for all solids i. The co-normal p; is defined perpendicular to the three-phase
contact line dl'y; and tangent to the liquid-gas interface I'i,;. The dimensionless

interface area A and the dimensionless volume V of the capillary bridge are given by

A(T,) = | 148 and V(D) ::/C;@,n(é))dé (5.2)

where § is the dimensionless position vector of a vertex and (.,.) the canonical scalar
product in R3.
Using these definitions, the capillary bridge problem is formulated as a constrained

optimization problem by

min A(Ty) — (Z 5121(@,1)) (5.3)
s.t.
V(FC) = VO
FSl,i C Fs,i Vi = 1,...,n.

/

Fs.,l

Figure 5.1.: Definitions for the mathematical formulation of the capillary bridge problem in a two
particle system (i = 1, 2)



66 5. Model and methods

The non-dimensional relative adhesion coefficient ; describes the relation of the
liquid-gas and liquid-solid interface i. This is interpreted as contact angle bound-
ary condition and f; = cos(6;) > 0 results from Young’s equation (eq.(2.21)). The
optimization objective of eq. (5.3) is to minimize the energy of the overall interface I,
subject to a dimensionless volume Vj and the geometrical boundaries of the i solids
I'si. The second constraint is formulated as a contact condition, i.e., the liquid solid
interface of the capillary bridge I'y; matches with the solid interface I'y;. In contrast
to a former formulation of the energy minimization problem (eq.(3.21)), this new
formulation explicitly requires contact between the liquid and the solid, whereas one
possible solution of eq. (3.21) would be an ideal droplet free in space. Note, that a
gravitational term could easily be added to the problem formulation, however, in this
work gravitation is neglected in general. A complete derivation including this extra
term is demonstrated in [Sch22].

For solving a constrained optimization problem the method of Lagrange multipliers
is used (section 2.2) and, hence, the Lagrangian according to eq. (2.19) needs to be
set up. Therefore, the contact condition between the solid-liquid interface I'y; and

the corresponding solid interface I'y; is formulated on a discretized mesh by
¢(8ij,1si) =0, V verticies §;; of I'q; (5.4)

where ¢ is a dimensionless level-set, i.e., the distance between the vertex §;; and the

solid interface I'y;. Using eq. (5.4), the Lagrangian

£<Fc>/\Va/\1J) Flg (Z ﬁz sll )
(5.5)

~ - n m
= Av(V(Te) = Vo) + 3. > AijélSiy, Tsi)
i=1j=1
is derived, where Ay and A are the Lagrange multipliers. The upper terms are the
objective function and the lower terms are the two zero formulated constraints. This
Lagrangian formulation corresponds to eq. (2.20) including the additional constraint

of contact between the liquid and the solid. In order to minimize eq. (5.5)
dL(Te, A\v, Aiy)[V] =0 ¥V Ve CHR? R (5.6)

has to be solved, where V is a vector field that assigns a displacement vector to each

vertex. The major issue in formulating eq. (5.6) is, that the terms of eq. (5.5) have to
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be derived with respect to the integrands. This leads to two possible formulations of
the derivatives dA(T')[V] and dV (I')[V], i.e.,

dA(D)[V] = /F Vr - Vds = /F (V,n)2Hds + /6 (Von)dI (5.7)
and
AV (D)[V] = /Q V - Vds = /F (V,n)ds, (5.8)

where H is the curvature defined in eq.(2.11) and dI an incremental three-phase
contact line element. It is important to note, that only the second formulation of
d[l(F)[V] contains the mean curvature H. Thus, a complex and inaccurate approx-
imation of the curvature is avoided by applying the first formulation of eq. (5.7) to

eq. (5.6). The derivative of the level-set function ¢(8;;, I's;) is given by
dé(8,Tg)[V] = (Ve Tay), V(8)). (5.9)

Introducing all three derivatives (eq. (5.7), eq. (5.8) and eq. (5.9)) into eq. (5.6) finally
leads to

dL(Te, Ay, \ij)[V] = /F Vi Vds§ — (Z /F @vp-vcﬁ)
lg =1

1s,i

—Av /Q V. Vds + Xn: fﬁ Aij(VE(Big, Ta), V(3)) (5.10)

i=1j=1

=0 VVeC(RR?

which is the necessary optimality condition.

However, the relation between eq. (5.10) and the classical Young-Laplace equation is
not directly clear. Thus, as a theoretical consideration and in order to obtain a more
physically interpretable equation, the second formulations of the derivatives dA(T")[V]
and dV(I')[V] are inserted into eq.(5.5). Moreover, the explicit claim of contact

(Dqi C I's;) is neglected for this consideration, since the Young-Laplace equation is
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valid for any curved free interface regardless of whether there is solid contact or not.

By applying these considerations
dL(Te, \)[V] = / (V,n)2Hds — 3 /F (V,n)32Hd3
i=1 sl,i

+ Z/ I V7 g — 61"l’sll> )‘V/ <V7 n>d§ (511)
=0 VVeC(RR?

is derived. Since there is no explicit claim of contact, this equation describes both
cases, i.e., a three phase contact problem (capillary bridge) with the contact angle
boundary condition f; = cos(f;) or a two phase non-contact problem (a bubble or
a droplet free in space). In the non-contact case the second and third summand
on the right side vanish since there is no liquid-solid interface I'y and consequently
no three-phase contact line 0I'y;. In the contact case, the second summand forces a
displacement of the liquid-solid interface vertices that is normal to their interface.
However, after contact between the liquid-solid interface I'y; and the solid interface
I's is reached, a displacement normal to these interfaces would directly violate the
touch constraint. Thus, in order to find an equilibrium that complies with the touch
constraint, all vertices 5;; of the solid-liquid interface can only be displaced tangen-
tially to I'q;. Thus, by deleting the normal displacement of I'y; (second addend) one
finally obtains

dL(Te, \)[V] = /F (V,n)2/ds

lg

+ Z/anh V. g = Bitng ;)dl )\v/lg<V,n>d§ (5.12)
=0 VVedlr,

which is transformed to

dL(Te, \)[V] = / (2H — \v)(V,n)ds

lg

+Z/

a]-111

V; Hyg — ﬁiﬂsl,i>d1 (5'13)

=0 VVECpsl.
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Since this expression must vanish for all possible V € Cr_, the two integrals cannot

sl)

cancel each other out and must both vanish independently of each other. Thus, the

conditions
2H—-Xv=0 A (V,u,—Bipg;) =0 VVeC, (5.14)

are derived. The first condition states that the mean curvature H must be spatially
constant, since Ay € R is constant. In particular, it follows that Ay = Ap leading to
2H = Ap which is the dimensionless form of the Young-Laplace equation as formu-
lated in eq. (2.15). Moreover, (V, py, — Biptq ;) must vanish on the three-phase contact
line ¢, which is only possible for tangential displacement of the vertices. Thus, the

vector field V must be restricted by
V = a(8)fi;(8) on g (5.15)

on the three-phase contact line. The two conditions of the theoretical analysis, i.e.,
Av = Ap and the restricted displacement on the three-phase contact line, must
also hold for eq. (5.10), since the different formulations of the derivatives are equal
(eq. (5.8) and 5.7) and 5.11 is less constrained. The restricted displacement condition
gives the displacement of the three-phase contact line vertices in the direction of op-
timality, i.e., to reach the energy minimum, and is used later for the Newton scheme

(section 5.2.2). By applying the pressure condition to eq. (5.10),

dL(Te, AP, Aiy)[V] = /F Vr Vs - (Z /F 6¢Vp-Vd§>
g =1

1s,i

— AP /Q V- Vds+ Xn: i Aii(VE(Sig, Tai), V(8)) (5.16)

i=1j=1

=0 VVeC(RR?

is derived. This final formulation of the necessary minimum condition is solved using
a Finite Element Method that is implemented within the FEniCS framework. In
particular, the capillary bridge problem is solved by finding an interface I'. so that

eq. (5.16) becomes zero.

5.2. Methods

The optimization problem (eq. (5.3)) is solved by finding the zero of the Lagrangian
derivative (eq.(5.16)) with a Finite Element Method. The required triangulated
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meshes are generated by the finite element mesh generator gmsh [Geu09] and the
partial differential equations are solved by applying functions from the open source
computing platform FEniCS [Logl2]. The flow chart of the computation algorithm
is illustrated in figure5.2. The input parameters are classified into physical and
numerical parameters. The physical parameters are the target volume of the capillary
bridge Vy as well as the contact angles 6; and roughness parameters (S'q,i, €ty &i
(section 5.2.1)) for each solid boundary i. The numerical parameters (table6.1), such
as the level-set order, the iteration step size and the remesh intervals, control the
computation as well as the accuracy of the solution.

For the computation of the level-set fields a background mesh for the whole compu-
tational domain is required. The background mesh is composed by sub-meshes for
each solid 7 and a sub-mesh for the gaseous phase between the solids. According to
figure 5.2, a tetrahedron mesh of the solid smooth geometry is computed first by gmsh
and subsequently roughness is added to this mesh. A smooth and a rough mesh of
a sphere-plate sample case are illustrated in figure 5.3. Note, that the gaseous phase
mesh also consist of tetrahedrons that are not illustrated in figure5.3. The parti-
cles are generally represented as hemispheres in order to reduce computational effort.
The algorithm of the rough interface computation, i.e., how the roughness is added,
is described in detail in section 5.2.1. Note, that this step is generally optional since
the capillary bridge can also be obtained for a smooth interface.

The discrete level-set fields ¢;(§) = ¢ are calculated on the background mesh for each
solid interface 7. The level-set field assigns the dimensionless distance ¢ from the
interface ¢ to the position vector §. Thus, these fields are zero directly on the solid
interface and non-zero anywhere else. The discrete level-set field is represented by a
three-dimensional polynomial per tetrahedron. The order of the polynomial is called
the level-set order and must be at least two, since the second order derivative of the
level-set field is required later for the Newton scheme. Generally, a relatively smooth
level-set field is advantageous for numerical stability and can be obtained either by
increasing the number of tetrahedrons or by increasing the level-set order. In case of
analytically defined particle shapes, such as a smooth sphere or a plane, analytical
level-set functions ¢;(8) are used rather than discretized numerical fields. This is very
accurate and enables efficient calculations. The applicability of level-set functions
is demonstrated in [Sch22]. However, it is restricted to analytically defined smooth
interfaces.

After computing the level-set fields, an initial mesh for the capillary bridge interface I'.

is required which is also generated using gmsh. However, in contrast to the background
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mesh (tetrahedron volume mesh) the capillary bridge is represented by a closed shell
mesh that consists of finite two-dimensional elements. Here, triangles are used, since
their great advantage is that they are always planar. A cylindrical initial mesh and the
final mesh are illustrated in figure 5.4. Following eq. (5.1) the overall capillary bridge
mesh (I'c) consists of n + 1 interfaces, i.e., the liquid-gas interface I'j; and n solid-
liquid interfaces I'g;. It is important to note, that a particular triangle is assigned
to one interface for the whole computation and cannot switch from one interface

to another. Thus, the three-phase contact line is a priori known, since it is always

/ input parameters /

}

rough interface computation ‘ﬁ/ smooth geometry mesh (gmsh) /

I

compute level-set field

l

orientate capillary bridge mesh ‘ﬁ/ initial capillary bridge mesh (gmsh)/

correct triangles
at contact line
l no T
project tangential
displacement onto I'y

gradient decent solver Newton solver

remesh (gmsh)

no /

€S
remesh? Y

convergence?

compute capillary forces

/ output parameters /

Figure 5.2.: Flow chart of the computation of the capillary bridge between rough interfaces
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smooth particle rough particle
(gmsh) (rough interface computation)

sub-mesh solid 1

gaseous phase mesh — |

sub-mesh solid 2

Figure 5.3.: Background mesh (tetrahedron volume mesh) of the solid geometry and the gaseous
phase before and after adding roughness to the particle

located between the same triangles. Also the remeshing is performed seperately for
each interface.

In figure 5.4 it is shown, that the initial guess and the final mesh do neither have the
same volume nor the same number of triangles. During the computation the volume
is adapted to fulfill the constraint V{;, however, since the algorithm is not volume con-
servative the initial volume can be arbitrary. Moreover, the number of mesh triangles
is controlled by the remesh (figure5.2) which ensures a sufficiently high mesh qual-
ity. The mesh quality control is described in more detail in section 5.2.3. Generally,
the algorithm does not require a high quality initial guess and thus, all computations
start from the same cylindrical shape. Before the optimization loop starts, all triangle
normals are oriented to point outside the capillary bridge (figure5.2).

For the optimization two different solvers are implemented. First, a slow but robust
first order gradient decent solver is used to get close to the final solution. Generally,
it is also possible to compute an accurate solution with this solver, however, this is

very slow and consequently expensive with respect to the computational time. Thus,

initial mesh final mesh

solid-liquid interface I'q ;

optimization _

»

liquid-gas interface I'g

Figure 5.4.: Capillary bridge mesh (triangular shell mesh)
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after reaching a relatively good solution, the second order Newton solver is used to
efficiently converge the simulations. The control of the gradient decent and Newton
solver is simply done by switching at a fixed iteration number.

One problem of the optimization is, that the solution is invariant with respect to
a vertex displacement that is tangential to the interface. Thus, the first derivative
becomes zero in the tangential direction, i.e., VL(I'c, Ap, Aij)[Vian] = 0. This is no
issue for the gradient decent solver, since it is of first order. However, the second order
derivatives, that are required in the Newton scheme, cannot be obtained. Therefore,
the displacement of the vertices must be restricted in the Newton scheme which,
however, causes an insufficient mesh quality at the three-phase contact line. This
problem is solved by projecting the tangential displacement of the three-phase con-
tact line onto I'y. This procedure as well as the two optimization schemes and the
convergence criterion are discussed more detailed in section 5.2.2.

After the optimization has finished, the capillary forces Fc,i are computed (eq. (3.7)) at
the three-phase contact line of each solid 7. Theoretically, theses forces must be equal.
However, due to numerical inaccuracies they are not exactly equal. The deviations
are mesh dependent and thus, they are discussed in more detail in the mesh study in
section 6.2. Since there is no reasonable argument for evaluating the capillary force
at only a certain particle, the finale force is computed by the mean of Fc,i, ie.,

zn; E.;. (5.17)

Subsequent to this general overview the major steps of the algorithm are described in
more detail. In particular, the rough interface algorithm, the optimization schemes
and the mesh quality are discussed.

5.2.1. Rough interface algorithm

In order to compute a normally distributed rough interface, the triangulated smooth
base geometry is modified (figure 5.3). In particular, the edge points of each triangle,
i.e., the vertices with the position vector Sy, are displaced normal to the interface.
Generally, it is also possible to displace the points in an arbitrary direction, however,
from a mathematical point of view, only the normal displacement components lead to
a statistically different interface shape, since the tangential components cancel each
other statistically out. Moreover, a combined normal and tangential displacement

might lead to undesirably large distortions which significantly reduces the mesh qual-
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ity. Thus, in this work the normal displacement option is implemented. The position
vector of each vertex j of the rough interface 8, j is computed by

S
Sq,0

Srj = Sem,j T W (Ssm,j) (5.18)
where w is a vector field for the displacements. It consists of three polynomials
Jp1(Ssmx)s fr2(Ssmy) and fp3(ssm,z) and assigns a displacement vector to each vertex
Samj- The factor S,/ Sq 0 is required to adjust the root mean square roughness (RMS)
of the interface. The computation of the single components of eq. (5.18) is explained
subsequently:.

First, a sequence v of standard normal distributed random numbers is generated
and one number is assigned to each vertex. Therefore, the pre-defined python func-
tion random seed(£) = v € RY is used, where £ is an integer specifying the sequence.
Thus, by varying ¢ different interface shapes with the same integral roughness param-
eters are generated. Note, that the sequences are the same on each computer which
makes the calculations perfectly reproducible for a given &.

Since there are no dependencies between the numbers of the random sequence v, the
resulting displacements might lead to large gradients between neighboring points on
the interface. Thus, before displacing the points, the sequence is smoothed by using

the Laplace equation

/ [(Vrw (&), Viv) + (v, w(3))] d§ = / (vn,v)ds Wv € CG. (5.19)

S S

Here, v is the test function that must be an element of C'G;. This means, that
v is a two-dimensional function that is represented by discrete values at vertices
and a linear interpolation between these vertices. The smoothing corresponds to a
physical diffusion process. The diffusion coefficient € characterizes the magnitude of
the smoothing and for ¢ — oo it follows that w(8) — 0. Thus, for an infinite diffusion
the displacement vector field approaches zero, i.e., the rough sphere approaches the
smooth sphere. The solution of eq. (5.19) is the displacement vector field w(S) that
can now be applied to eq. (5.18).

However, if the vertices are displaced according to w(S) the resulting rough interface
exhibits a random RMS 5’%0. In order to create defined and comparable interfaces the
RMS should be adjustable. Hence, the RMS S’qp, that would result from displacing
the vertices by w(§), is computed and the displacements are scaled by the factor

Sq/Sq0, where S is the desired RMS.
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Note, that the shortest distance between the solid interfaces a can only specified for
the smooth geometry. After the roughness is added the shortest distance is changed
as indicated in figure 5.3. Since it is complex and computationally expensive to ad-
just the shortest distance between two arbitrarily shaped interfaces, the parameter a
generally refers to the smooth base geometry.

Examples of rough particles are presented in figure5.5 for different relative RMS
S'q and diffusion coefficients €. Note, that the created particles are not fully mesh
independent. In previous works the number of vertices is used to adjust the frequency
of the asperities [Do6rl8]. However, the Laplace smoothing (eq.(5.19)) leads to a
partial decoupling of the number of mesh points and the frequency of asperities.
This effect is pointed out in figure 5.5 where all particles have the same number of
tetrahedrons, however, the particles become smoother with increasing €. Nevertheless,
the maximum frequency of asperities that can be represented is restricted by the
number of vertices. Moreover, on a finer mesh a larger diffusion coefficient ¢ is required
to achieve the same smoothing compared to a coarser mesh. Consequently, both, the
number of vertices and the diffusion coefficient are required in order to completely

specify the interface topology. Nevertheless, gmsh does not provide a function to set
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Figure 5.5.: Images of rough particles with the random seed number £ = 0
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the number of tetrahedrons. Instead, the mesh element size at each mesh point is
specified. In this work, the mesh element size parameter is set to 1 for all mesh points.
This ensures a uniform mesh resolution for the whole computational space. Thus, only
the diffusion coefficient ¢ and the relative RMS S*q are used to adjust the roughness,
whereas the mesh resolution, i.e., the size of the mesh elements, is kept constant. Note,
that this implies a different number of elements for different geometries, whereas the
element size is kept constant. In particular, computations for sphere-plate or sphere-
sphere systems or even for different gap distances are performend on meshes with a
varying number of background mesh cells but a constant mesh resolution.

It is stated previously, that for € — oo the particles approach the smooth sphere.
Already for € = 0.1 a relatively smooth interface is expected, however, combined with
S’q = 0.01 a relatively rough particle is illustrated in figure5.5 (left column, lowest
row). This is traced back to the fact that the relative RMS value is adjusted after
the Laplace smoothing. From w(§) — 0 it follows that S’q’o — 0 and consequently
Sq/Sqo — 00. Thus, even for very large diffusion coefficients ¢ the interfaces do not
approach the smooth sphere, since they are forced to have the RMS S’q. However,
for Sq = 0 the rough interface corresponds to the smooth interface independently of
e, which directly follows from eq. (5.18).

For € > 0.1 the differences between the interfaces at a constant RMS are marginal,
since w(8§) already approaches zero. Therefore, the maximum diffusion coefficient
considered in this work is € = 0.1. Generally, a high diffusion coefficient is advanta-
geous for numerical stability of the computation and allows simulations with a higher
RMS. As an example, for ¢ = 0 (right column in figure 5.5) the simulations are only
stable for S'q = 0.001 whereas for ¢ = 0.1 (left column in figure 5.5) all three particle
can be simulated. If low diffusion coefficients should be combined with a high RMS,
the resolution of the capillary bridge mesh must be increased significantly compared
to the meshes that are used in this work. Nevertheless, this is generally possible with

enough computational resources.

5.2.2. Optimization schemes

The optimization consists of two different solvers, i.e., a first order gradient decent
and a second order Newton solver. In figure 5.6 (a) the schemes are illustrated for an
unconstrained optimization. The gradient decent scheme uses information from the

first order derivative to converge towards the minimum, i.e., the solution is optimized
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in some direction of a descending gradient. The value of the parameter u, that is
described by the function F'(u), in the iteration step k + 1 is calculated by

U1 = Uk — oziVF(uk) (5.20)

where 1 is the identity and « the step width. One option to reduce the number
of iterations is using the direction of the steepest decent. This corresponds to a
right angle between the contour lines of F'(uy) and the gradient VF(uy). From
figure 5.6 (a) it can already be seen that the steepest gradient decent scheme converges
faster compared to an arbitrary gradient decent scheme. However, both schemes are
relatively slow, since they both converge on a zigzag path. In contrast, the Newton

scheme finds a faster path to the minimum by considering the second derivative, i.e.,
Uk+1 = Uk — fl(wk)_1VF(uk) (521)

where H is the Hessian that is defined by

0*F 9°F
aQF 6U16U1( ) o m( )
H(u) = ( (U)> —~ : : . (5.22)
Ou;O0u; ij=1,...,m sy S
aumaul (u) U aumé‘um (u)

In figure5.6 (a) the general idea of the different schemes is illustrated for an un-
constrained optimization. However, the capillary bridge problem is to minimize

the total free energy subject to a volume V{ and the geometry I's. Thus, F'(uy)

(a) (b)

_—

_contour lines F'(u) —— contour lines f(u)

_—contour lines F'(u)

V[,[V] (uk, >\k)

—\— iteration
path

min g

]

Figure 5.6.: llustration of unconstrained (a) and constrained (b) optimization schemes

gradient decent
—» gradient decent (steepest decent)
—» Newton
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in eq. (5.20) and eq. (5.21) corresponds to the Langrangian (eq. (5.5)) L£(uy)[V] where
ux = ek, APk, Aijx. The constrained optimization is illustrated in figure 5.6 (b). The
direction of the optimization, i.e., V.L(uy) is composed by the the gradient of the tar-
get function VF'(ux) and the gradient of the constraint V f(uyx). However, both, the
direction and the magnitude of VL (uy) strongly depend on the Lagrange-Multipliers
Ap and Ajj k.

Generally, the gradient decent scheme is robust with respect to numerical stability
but due to its slow convergence it is computationally expensive. The drawback of the
faster Newton scheme is, however, that it requires a relatively good initial guess for
numerical stability. In order to develop a robust but also relatively fast algorithm,
the two schemes are combined, i.e., the gradient decent scheme is used to compute a
good starting point for the Newton scheme.

As previously mentioned, the solution of the optimization problem is invariant with
respect to an inner vertex (§ ¢ 0I'y;) displacement that is tangential to the interface.
From a physical perspective this means, that a tangential displacement of an inner ver-
tex does not influence the energy of the capillary bridge resulting in V.L(ux)[Vian] = 0
for § ¢ 0T'q;. Eq. (5.20) shows that this simply leads to ux41 tan = Uk tan, i-€., DO tan-
gential displacement occurs in the gradient decent scheme. However, in the Newton
scheme this leads to undesired zero entries in the Hessian, since the second derivative
of zero is still zero. As a consequence, the Hessian is not invertible which causes a
very fast destruction of the mesh. Therefore, in the Newton scheme the displacement
of the vertices is restricted to the normal direction n of the interface as illustrated in
figure 5.7. However, this causes a problem for all vertices of the three-phase contact
line § € Iy N I'g, since they have two normal directions. Note, that in section 5.2
it is stated, that the normal displacement of the three-phase contact line vertices is
restricted, once contact is reached. This is not explicitly necessary for a discretized
problem formulation since contact is never exactly reached, i.e., there is always a
slight difference between I'y and T’y (figure 5.7).

On option to overcome displacement issue at the three-phase contact line is to fix
these vertices § € I'l, N I'g. However, this requires the solution of the gradient solver
to already be very good, since the three-phase contact line would remain constant in
the Newton scheme. Practically, this means a relatively slow convergence resulting
in long simulation times. Moreover, if the solution of the gradient solver is not good
enough, i.e., the three-phase contact line needs to be adapted, the Newton solver
might not converge. In fact, this option has been tested and the convergence is slow
and also quite unstable if the Newton solver is activated too early.
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Another option is, to restrict the displacement of the three-phase contact line vertices
in a certain direction. In particular, eq. (5.15) states, that on 0l'y; a displacement in
the direction of fiy leads towards optimality, which, however, invalidates the touch
constraint. In fact, eq. (5.15) is derived without the explicit claim of contact. Thus,
in addition to the displacement towards optimality, a displacement to account for the
touch constraint is required. Here, the second co-normal fi, is used and, consequently,
a displacement within a corridor spanned by fi,, and fiy is implemented (figure5.7).
Thus,

a1 (8)) g (85) + 02(8) a5(55),  § € NgNTy

V(é) =
: a1(§;)n(§;), otherwise

(5.23)

is obtained for the vertex displacement in the Newton scheme, where aq and as
are CG1(I'c) functions. Note, that instead of the second co-normal fy, also any
other vector, that is linear independent of fiy and perpendicular to the three-phase
contact line, could have been used to ensure the touch constraint. A different choice
is discussed in detail in section 8.3.2.

Eq. (5.23) implies, that the triangles of I'y cannot move after the contact constraint
with I'y is met (eq. (5.4)), i.e., all inner vertices of I'y are fixed. As already mentioned,
there is of course a negligible numerical displacement since the contact condition can-
not be exactly fulfilled in a discretized problem. Nevertheless, the three-phase contact
line vertices might still be displaced with a considerably larger order of magnitude.
Thus, the outer triangles of I'y can be significantly distorted, since they are com-
posed by fixed and moving vertices. In fact, the algorithm has been tested using this
method and a low mesh quality at the three-phase contact line turned out to be the

main reason for numerical instability and crashed simulations.

corridor of V(8)

Figure 5.7.: Projection of the tangential displacement Aug tan of I'ig on I'y for two different vertices
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A solution to this problem is projecting the tangential displacement of the three-phase
contact line vertices (8cr, € I'ig N I'y) onto Iy after each Newton step. In particular,
the tangential component Vi, (8cr,) is projected onto §; € I'y with a linear gradient
from the three-phase contact line to the center. Note, that the set up of the mesh
in quarters (figure5.4) ensures a well defined center point. The displacement pro-
jection corresponds to a stretching of the triangles if the three-phase contact line
increases and a compressing in the decreasing case. Thus, the displacement of the
inner vertices of Iy is composed of the normal component «;(§;)i(§;) resulting from
the Newton iteration and the tangential component that is calculated from the pro-
jection of Vi (Scr). Finally, the vertex displacement in the Newton algorithm is

given by

[

a1 (8)) g (85) + aa(8y) fig 5(55), 8y € Mg Nl
V(§) = { o () (5y), 5 €Ty A§; ¢ I (5.24)
aq (~j)ﬁls(~j> + C(gj)vtan<§CL)7 gj el A gj Q_f Flg7

where ((§;) € R accounts for the linear decrease from the three-phase contact line
to the center. Note, that a projection of the tangential displacement at three-phase
contact line could also be implemented for the vertices of the liquid-gas interface I'jg.
Nevertheless, the test simulations showed that this is not necessary for numerical
stability. This is traced back to the fact that theses vertices are free to move in the
normal direction during the whole iteration whereas the vertices of the solid-liquid
interface I'y are rapidly fixed by the contact condition.

Using this procedure a stable Newton scheme is implemented. However, the addi-
tional displacement of the inner vertices of I'y; after the classical iteration affects
the optimization behavior. As shown in eq.(5.21) Newton schemes do usually not
have a step width or in other words, the Newton step width is implicitly set to 1.
The first test simulations showed oscillating solutions that did not converge. These
oscillations vanish with a reduced Newton step. Although a Newton step below 1 is
very untypical it works well for the presented method.

Moreover, the convergence criterion is influenced by the manual projection of the
tangential displacement. Ideally, the displacement projection is only used to ensure
well defined triangles on I'y, however, there is of course a slight change of the over-
all interface. This influences the the right hand side of the optimization equation
(eq. (5.6)) which is classically used as residuum. It turned out that usually values

between 1072 — 1073 are obtained although the capillary interface and the capillary
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force do not change with further iteration steps. Thus, the actual displacement of

the Newton iteration Awy is chosen as convergence criterion which is formulated as
A —1 - ! _
| Au | ds =] B VL(Tes, A, Aga) [V] [|< 107 (5.25)

This criterion states that the optimization is considered to be converged if the sum of
all displacements of the capillary interface I, is below 10~°. Note, that this criterion
uses an integral value and therefore 107° is a very small residuum.

Finally, it should be noted that a convergence criterion only describes how good
the solution in terms of the chosen number of triangles is. However, it cannot be
concluded how accurate the solution is with respect to the smooth physical model.
For example, on a very coarse mesh the optimization might reach a very high level of
convergence, whereas the capillary forces are not accurate due to the bad resolution
of the geometry. Therefore, the accuracy of the solution must also be evaluated with

respect to the mesh resolution as discussed in section 6.2.

5.2.3. Mesh quality

A high mesh quality is mandatory for a robust numerical calculation. During the
optimization procedure the nodes are displaced which might lead to poorly shaped
triangles. In figure5.4 it is already illustrated, that displacements from the initial
mesh to the final mesh might be relatively large. Thus, a remesh is used to ensure
properly shaped triangles. Here, the remesh function of gmsh is used and embedded
to the calculation algorithm via an interface [Marll; Rem10]. In this procedure
the mesh is triangulated completely new on the interface of the current iteration
and the resolution of the new mesh is easily controlled by a resolution parameter
(table 6.1, remesh resolution factor). Thus, the resolution of the initial mesh is not
very important, since a finer mesh is obtained by the remesh. Since the Newton
scheme is very sensitive with respect to the triangle shapes, a remesh immediately
before the Newton solver is activated turned out to be advantageous. Nevertheless,
the recalculation of the mesh leads to a slightly different capillary interface which
implies an increase of the residuum. Thus, the remesh slows down convergence and
cannot be used too often.

Although the remesh is needed for a sufficiently high mesh quality, it causes interpo-
lation problems at the three-phase contact line. In figure 5.8 a capillary bridge mesh
is shown before and after the remesh as well as several iterations later. Before the

remesh a relatively sharp edge is obtained at the three-phase contact line (1). Subse-
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quently, this edge is smoothed by the interpolation algorithm of the remesh (2a). The
triangles seem to be properly shaped, however, a view from a different angle shows
a tilted triangle (2b) which is colored in white. After several iterations this triangle
leads to a destroyed mesh (3).

The mechanism is explained by the two-dimensional schematic illustration of the
three-phase contact line in figure5.9. The interfaces of the capillary bridge, I';y and
[y, are represented by finite triangles. On the left and right side of figure5.9 two
possible positions for a three-phase contact line triangle of I'y are illustrated (1).
Here, 6,,, is the contact angle directly after the remesh. Due the contact condition
between I'y and Iy (eq. (5.4)) all triangles of T'y converge as fast as possible in the
direction of the solid interface I's. Thus, the triangle illustrated on the left side turns
right and after several iterations it reaches the second position (2). However, on the
right side the triangle directly after remesh (1) is tilted more to the left side. In this
case, the shortest way to the solid interface is to turn left (2). Consequently, the

sharp edge smooth edge

1. before remesh 2a. after remesh

tilted triangle
destroyed mesh

2b. after remesh (different angle) 3. several iterations later

Figure 5.8.: Tilted triangles at the three-phase contact line resulting from the remesh
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Figure 5.9.: Two-dimensional schematic illustration of the three-phase contact line triangles after
the remesh

triangle is positioned on the wrong side of I'j; and the normal points in the wrong
direction. Finally, this leads to a self-intersected destroyed mesh as illustrated in
figure 5.8 (3).

In order to avoid this mesh instability at the three-phase contact line a correction
step is implemented directly after the remesh (figure 5.2, correct triangles at contact
line). However, since the moving direction of the triangles complexly depends on
their position and the local topology of I'y, it is impossible to exactly predict which
triangles will converge in an undesired direction. Thus, as a relatively rough criterion,
the triangle is corrected in the wetting case (6 < 90°) if 6,,,, > 90° and vise versa in the
non-wetting case. Using this conservative criterion, critical triangles along the three-
phase contact line are identified. Subsequently they are tilted in the direction of the
solid interface so that 6., = 6. Hence, the contact angle boundary condition between
the liquid-gas and solid-liquid interface triangles is met and wrongly oriented normals
during the following iterations are avoided. Note, that the surrounding triangles are
slightly distorted by this correction. However, the error introduced by deforming the
mesh is insignificant for the final solution, since it is corrected by the subsequent
iteration steps.

In conclusion, a complex method to solve the constrained minimizing problem of
eq. (5.3) is developed and presented in this chapter. This continuum approach simu-
lates a static capillary bridge for a given volume and an arbitrary particle geometry.
In this work, rough interfaces are considered which are derived by adding a normally
distributed roughness to a smooth base geometry. The mathematical formulation of
the constrained optimization problem leads to the Lagrangian equation that is solved
by a combined gradient decent and Newton scheme with additional features that are
tailor made for the capillary bridge problem. The numerical stability is improved by

the remesh that increases the mesh quality. Since this method is new and has not
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been applied yet, a verification against well known methods from the literature as
well as a detailed discussion of its accuracy is presented subsequently.



6. Evaluation of the simulation method

The general applicability of the presented method is verified by comparison with
results from the literature (section6.1). This can, however, only be done for smooth
particle geometries, since a model that directly resolves a rough solid interface does, to
the best of the authors knowledge, not yet exist. In order to evaluate the accuracy of
the presented method, the numerical error is estimated by an extensive mesh analysis
(section 6.2). Moreover, simulating capillary bridges between rough interfaces involves
a random sequence of normally distributed numbers to create different interfaces with
the same integral roughness. In order to analyze the roughness dependent distribution
of the capillary force the number of simulation samples must be large enough to
provide results within a certain confidence interval (section6.3). However, both,
a fine mesh resolution and a large sample number, are computationally expensive
and, therefore, a compromise between accuracy and simulation time needs to be
found. Moreover, the two error types, i.e., the numerical and statistical error, should
have a comparable order of magnitude to obtain a small overall error. For example,
simulating only a few capillary bridges at a very high mesh resolution leads to a
negligible numerical error on the one hand, and a huge statistical uncertainty on the
other hand. Thus, a balance of both error types must be found (section 6.4).

The simulations are performed on the high performance cluster OCuLUS of the Pader-
born Center for Parallel Computing (PC?). Thus, all n simulations of a sample can
be simulated in parallel. The numerical settings are presented in table6.1. Only the
remesh resolution factor must be analyzed with respect to the numerical error, since

it determines the resolution of the capillary mesh (section6.2). The other parame-

Table 6.1.: Numerical parameters for the simulation of capillary bridges

iteration settings remesh settings

level-set order 3 remesh intervals 20 50 200
linear step width 0.25 remesh frequency ) 10 50
Newton step width 0.1 remesh resolution factor 0.02 for V < 0.2 and

start Newton iteration 51 0.03 for V > 0.2
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ters do not influence the numerical accuracy, however, they determine the numerical
stability. The level-set order is set to 3, i.e., the level-set field is represented by a
polynomial of third order which is smooth enough for the simulations presented in
this work. The iteration steps of the linear scheme and the Newton scheme are 0.25
and 0.1, respectively. As explained in section5.2.2, a Newton step below 1 is very
unusual. However, convergence turned out to be much better using a smaller Newton
step which is traced back to the fact, that the Newton scheme consists of two parts:
the classical iteration and the manual projection of the tangential displacement at T'y).
The Newton scheme is activated after 51 iterations which is directly after a remesh.
Generally, the remesh is performed in three intervals where a frequency and a reso-
lution must be specified for each interval. Thus, according to table6.1, the remesh
completely stops after 200 iterations. The frequency of the remesh decreases with
increasing convergence, since large distortions of the capillary bridge mesh mainly
occur at the initial steps. As already described in section 5.2.3, the residual increases
after each remesh, which slows down convergence. Moreover, the remesh itself re-
quires a significant simulation time. Thus, the remesh should be performed just often
enough to ensure a sufficient mesh quality for numerical stability. Note, that the
numerical parameters are chosen according to hands-on experiences with the novel
method, except for the remesh resolution factor.

The resolution factor determines the size of the mesh triangles, where a lower factor
corresponds to smaller triangles, i.e., a higher mesh resolution, and vise versa. The
volume dependent values of 0.02 and 0.03 result from the mesh study (section6.2). It
should be mentioned, that it is generally possible to use different mesh resolutions in
each remesh interval. For example, the remesh in the first and second interval could
be relatively coarse, since it is only required to ensure a high mesh quality rather
than an accurate result. Only in the third interval a very high resolution could be
used. However, a higher numerical stability is obtained for most simulations if the
remesh resolution factor is the same for all three intervals. The step size and the
mesh resolution are related, i.e., a finer mesh resolution requires a smaller step for
numerical stability. This effect is also known from other numerical simulations such
as computational fluid dynamics (CFD) where it is usually expressed by the so called
CFL condition [Hir07; LeV02]. Generally, it is possible to simulate a coarse mesh using
a fine step which is, however, not reasonable since, it is computationally expensive
without gaining more accuracy. Nevertheless, in this work the iteration steps are kept
constant. Thus, step optimization is not part of this work and provides a good option

for reducing the simulation time in the future.
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When simulating a whole sample of n capillary bridges, a result can often not be
obtained for all simulations. There are very different reasons for terminated compu-
tations such as a broken triangle, an unfavorable relation of the mesh and step size or
even an exceed of the requested simulation time. However, if too many simulations
do not converge, a systematic cause cannot be excluded. In this case, the distribution
of the capillary force might be distorted by a systematic error, since, for example,
simulations with particularly high or low capillary forces do not converge. The anal-
ysis of unconverged simulations is very elaborate because the origin of a broken mesh
must be analyzed manually for each single simulation. Thus, as a practical approach,
a tolerance interval of 2 % unconverged simulations is defined. If at least 98 % of the
simulations converge, the influence of a possible systematic error is ensured to be

minor.

6.1. Verification

The main motivation to develop a new energy based method for the simulation of
capillary force is its application to rough particles. However, to the best of the authors
knowledge, the existing rough models require relatively large simplifications with re-
spect to the geometry (section 3.7). Therefore, they are not suitable for a comparison
with this method. The presented model is formulated for an arbitrary geometry and
thus, it must also be able to adequately simulate capillary bridges between smooth
particles. Thus, the results are compared to the elliptic integral approach of Orr et
al. [Orr75] and the shooting method presented by Dormann [Dorl8]. According to
figure 3.6, both methods are restricted to axisymmetric capillary bridges.

In table 6.2 a comparison of the dimensionless capillary force and the pressure between
elliptic integral approach (FC,OH, Aperr) and this model (F,, Ap) is presented. The
setup is a smooth sphere-plate system with zero distance (@ = 0) and contact angles of
0, = 05 = 40°. The values of ¢, V, ﬁ’cmr and Ap,,, are explicitly tabulated in [Orr75].
However, the capillary force FC,OH must be multiplied by 7 in order to agree with the
definition of the dimensionless force in this work (eq.(3.2)). Moreover, instead of
the dimensionless pressure the values of 2HR = 2H are given in [Orr75] which are,
however, equal to Apgr according to the dimensionless Young-Laplace equation.
Table 6.2 shows, that the relative deviation between the capillary forces is always
below 1%. Moreover, the deviation between the pressure differences and the mean
curvature, respectively, is maximally around 1% for V = 0.0107 and below 0.2 % for
all other points. This is remarkable, since the approximation of the curvature is

usually a challenging issue on discretized interfaces. Thus, although the curvature of
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the capillary interface is not required during the computation, the algorithm predicts
the final mean curvature with a very good accuracy.

Since the two methods are fundamentally different, a deviation of less then 1% in the
capillary force and less than 1.1 % in the capillary pressure and the curvature, respec-
tively, is an excellent result. Orr et al. [Orr75] also provide values for 6; = 6, = 0°.
However, a contact angle of exactly zero cannot be handled by the presented method.
In order to verify the model for a broader range of parameters a comparison with the
Dormann [Dorl8] model is discussed subsequently.

The shooting method of Dérmann [Dérl8] is fundamentally different from both, the
Orr et al. [Orr75] model and the model of this work, since it presumes thermodynamic
equilibrium between the liquid and the gas phase. At the beginning of the compu-
tation the humidity ¢ is predefined (pressure method, section3.4) rather than the
volume or the wetting angle (volume method, section 3.4). Thus, a direct comparison
of the same capillary volumes requires an iteration of the humidity. In order to avoid
this procedure the results of both models are plotted in a V-F,-diagram instead of
directly comparing all single points. Thus, the exact deviations at a certain point
are unknown, however, the agreement of the general tendencies is pointed out. Note,
that the values of the Dormann model are computed by the author of this work using
the original algorithm implemented by Dérmann.

In figure6.1 the comparison of the two models is shown for a sphere-plate system.
In the left diagram the contact angles are #; = 65 = 10° and in the right diagram
01 = 05 = 40°. Moreover, the gap distances a are 0.004, 0.05, 0.1 and 0.2. These
distances are chosen, since they are used later in this work to analyze rough sphere-
plate systems. The black lines are the values of the Dérmann [Dér18] algorithm and
the gray areas mark an interval of +2 % of these values. Thus, the magnitude of the

difference between the two models can be better estimated.

Table 6.2.: Comparison of the elliptic integral approach presented by Orr et al. [Orr75] and the
method developed in this work (sphere-plate, a = 0, 6; = 0 = 40°)

Y 1% Feorr F. deviation / % APorr Ap deviation /%
20°  0.0107 8.5841 8.5835 0.01 -18.2938 -18.1115 1.01
30°  0.0527 8.0139 8.0766 0.78 -6.4447 -6.4397 0.08
40°  0.1650 7.4088 7.4727 0.44 -2.6435 -2.6391 0.17
50°  0.4063 6.7654 6.8027 0.55 -1.0589 -1.0595 0.05

60°  0.8668 6.0799 6.0272 0.27 -0.3061  -0.3054 0.23
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The general tendency of both models agrees very well for all simulated values. Even
the slight maximum at a = 0.004 and very low volumes is reproduced by this method.
For contact angles of §; = = 10° most of the values are approximately 2 % larger
compared to the Dormann [Dérl8] model. At the largest gap distance of @ = 0.2 the
deviations are even above this 2 % interval. For 8, = 05 = 40° the deviations between
the models are significantly smaller. In fact, all values are within the 2 % interval and
most of the deviations are even below 1%.

Interestingly, all values calculated by this method are larger compared to the Dor-
mann model [Do6rl8]. In order to get a deeper understanding of the correlations, a
direct comparison of four capillary bridges is presented in table6.3. Therefore, the
Dérmann algorithm is iterated to obtain the desired volume V' = 0.1. Since this iter-
ation is performed manually, a relative deviation of 0.05 % between Vbérmann and 0.1

is accepted. The values given in table 6.3 are all calculated by

Uthis model — UDérmann 100%. (61)

Uthis model

Only the relative ratio of F{ refers to this model and does not represent a deviation
to the Dérmann model. In particular, F,, gives the ratio of the surface tension force
to the capillary force.

The results presented in table6.3 agree well with figure6.1. The deviations of the

capillary force F, are around 2 % for 6; = 65 = 10° and below 1% for 6; = 6, = 40°,

(a) (b)
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Figure 6.1.: Comparison between the shooting method of Dérmann [Dérl8] and this model for a
sphere-plate system with different gap distances @ = 0.004,0.05,0.1 and 0.2
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respectively, and they slightly increase with an increasing gap distance a. Thus, the
iteration error, i.e., a maximum relative deviation of 0.05 % of the volumes, is assumed
to be minor compared to the deviations that result from the methods. Also for the
capillary pressure a good accordance between the two models is observed, since the
deviations are below 1% for all contact angles.

An evaluation of the capillary force F,; at the sphere (i = 1) and plate (i = 2), respec-
tively, shows that the deviations of the capillary forces are larger at the plate. Note,
that the capillary force must analytically be the same at any point of the capillary
bridge (F.; = const.), however, due to numerical inaccuracies there are differences.
For a more detailed analysis the capillary force is split into the capillary pressure
force F,; and the surface tension force Fy;.

The capillary pressure force Fj; is estimated with nearly the same accuracy at the
sphere and at the plate. With an increasing contact angle the deviation of Fj;
slightly reduces by an order of magnitude of 0.5%. Overall, the capillary pressure
forces of this model and the Dérmann model [Dér18] differ below 2 % which is very
good. In contrast, the surface tension forces show substantial deviations between the
models. These deviations are significantly larger at the plate and increase with a
decreasing contact angle. In particular, this causes deviations around 2 % in the best
case (01 = 6 = 40° at the sphere) and around 37 % in the worse case (¢; = 0y = 10°

at the plate).

One reason for these large deviations might be the numerical representation of the
three-phase contact line. In this model the three-phase contact line is a completely dis-
cretized three-dimensional polygonal curve, whereas it is a perfectly two-dimensional
circle in the Dérmann model. Thus, the length of the three-phase contact line [y, ;

is evaluated for both models and the deviations are given in table6.3. The negative

Table 6.3.: Deviation in % between this method and the Dérmann method [Dér18] for V = 0.1 and
1: 6; =6, = 10°; 2: 7 = 05 = 40°;
a: a=0.004; b: a =0.1;
*: ratio in % of FS/FC computed with this model

total sphere (i=1) plate (i=2)
F.  Ap Fo. F,1 Fai lcug Ff Feoo F,o Fo lcLa F}

s,rel,1 s,rel,2

la 1.74 -0.50 1.13 -1.67 8.29 -0.42 28.09 234 -1.83 36.68 -0.60 10.75
1b 231 -0.64 172 -1.82 9.10 -0.39 3241 2.89 -1.86 32.76 -0.55 13.57
2a 0.64 -0.42 -0.06 -1.12 1.16 -0.31 46.17 1.34 -1.09 5.84 -0.33 35.14
2b 0.96 -0.86 042 -149 2.01 -0.28 54.35 149 -1.41 530 -0.26 4341




6.1. Verification 91

sign of all values of Icy,; indicates that the three-phase contact line is usually esti-
mated smaller by this model. Consequently, a smaller surface tension force would be
expected which is clearly not the case. Moreover, the maximum absolute deviation
of the three-phase contact lines is 0.60 % which cannot cause a deviation of nearly
37% in the surface tension force, since their relation is linear. Thus, according to
eq. (3.7), a relatively inaccurate calculation of the co-normal vector fi,, seems to be
responsible for the large deviations. In fact, the deviation between the models can be
reduced by using a significantly higher mesh resolution. Since this is a convergence
issue, it is explained more detailed in section 6.2.

Overall, the different accuracies of 6; = 0 = 10° (figure6.1 (a)) and 6, = 0 = 40°
(figure 6.1 (b)) are mainly caused by the surface tension force. However, although
the surface tension force is computed with poor precision at the low contact angles,
the influence on the capillary force is minor which is traced back to a dominant
capillary pressure force. In particular, the largest deviations of the surface tension
force (36.68 % and 32.76 %) come along with a minor proportion on the capillary force
(10.75 % and 13.57 %). Nevertheless, this finding must be considered when simulating
capillary bridges with low contact angles or a dominant surface tension force.

Note, that for this particular case of a smooth sphere and plate it might be reasonable
to evaluate the capillary force at the sphere rather than averaging over all 7 interfaces
(eq. (5.17)). However, when considering arbitrary shapes and even rough particles it
cannot be predicted at which solid-liquid interface the most accurate capillary force
is obtained. Only in case of different contact angles an evaluation at the interface
with the largest contact angle might be considered. However, in this work the contact
angles are kept equal and thus, averaging over all interfaces is used further on.

In figure 6.1 it is also illustrated that for the large gap distance and the small volumes
no capillary bridges are obtained with the Dérmann model [Dorl8]. One reason
could be, that no thermodynamic equilibrium exists which is presumed by Doérmann
and, however, not considered in this model. Nevertheless, the results obtained by this
model show a well defined concave capillary bridge with a negative capillary pressure.
Thus, there is no reason to assume that these bridges could not potentially exits in
a thermodynamic equilibrium. A combination of the Kelvin equation (2.26) and the

Young-Laplace equation (eq. (2.15)) leads to

Ap/\k Aﬁ)\k
— — . 2
@ eXP( - ) eXp< 7 ) (6.2)
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This equation relates the relative humidity ¢ to the corresponding capillary pressure
in a thermodynamic equilibrium. By considering the dimensionless capillary pressure
Ap it is obvious that the existence of the thermodynamic equilibrium is size depen-
dent, since eq. (6.2) contains the characteristic length scale, i.e., the particle radius
R. For the very small bridges the capillary pressure rapidly decreases. From limit
value considerations it follows, that Ap — —oo leads to ¢ — 0. Of course, Ap cannot
become infinite low, since at some point the liquid volume is too small to fill the gap.
However, for the small bridges presented in figure 6.1 the capillary pressure rapidly
decreases with slight changes of the humidity ¢. In fact, the values of Dérmann are
derived by adjusting the humidity at the 10™ decimal for V < 0.5. A finer adjustment
is not possible with the current implementation of the algorithm. Thus, it is assumed
that the values for very small volumes cannot be obtained by the Dérmann model
due to the limited accuracy of the humidity:.

In addition to the described sphere-plate system, a sphere-sphere system with equally
sized spheres (R; = Ry = R) is investigated. The results for the different contact
angles 01 = 0, = 10° and 6 = 0, = 40° are presented in figure6.2. Again, a very
good agreement between the two models is observed. The tendencies are the same as
described for the sphere-plate system. In particular, this model always overestimates
the capillary force compared to the Dérmann [Dorl18] model which is again traced

back to the overestimation of the surface tension force. This inaccuracy also leads to

(b)
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Figure 6.2.: Comparison between the shooting method of Dérmann [D6rl8] and this model for a
sphere-sphere system with different gap distances a = 0.004,0.05 and 0.1
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the higher deviations for the smaller contact angles (61 = 6, = 10°) whereas for the
large contact angles (61 = 02 = 40° ) an almost exact agreement is observed.

Again, some values cannot be obtained using the Dérmann [Do6r18] model. However,
for the sphere-sphere system this occurs for large volumes rather than the small vol-
umes in the sphere-plate system. In fact, the capillary bridges that are calculated
with this model at at V = 0.15 and 6; = f = 40° are convex and exhibit a posi-
tive capillary pressure Ap > 0. Thus, an unstable thermodynamic equilibrium exists
above saturation (¢ > 1), which is not implemented in the Dérmann model.

In conclusion, the high agreement of the methods is a good indication that the pre-
sented method works well and is suitable for theoretical investigations of capillary
bridges. The deviations between the elliptic integral method of Orr et al. [Orr75]
is around 1% whereas a comparison to the shooting method of Dérmann [Dorl8]
reveals a deviation below 2 % for most points. Generally, the agreement is relatively
good for small contact angles and excellent for larger contact angles. However, the
computation of the surface tension force is not satisfactory and will be analyzed more
in detail by the subsequent mesh study.

6.2. Numerical error

The objective of the mesh analysis is to find a remesh resolution factor that ensures
sufficiently accurate results at an acceptable simulation time. Thus, the magnitude
of the numerical error must be estimated. However, the remesh resolution factor
does not provide direct information about the mesh resolution and therefore, it is not
reasonable to use it for the discussion. Instead, the number of mesh triangles n is
used.

The objective parameters of the simulations are the expected value of the capillary
force pp_and the corresponding standard deviation op . However, due to an infinite
number of rough particles, both values cannot be obtained exactly. Thus, the mean
capillary force ]?C and the standard deviation of the sample sp, = s are used as an
estimation for up and op , respectively. Consequently, these two parameters are
chosen for the mesh analysis and later also for the statistical analysis (section6.3).

The mean of n values of the parameter u is denoted by u and given by

Uj. (6.3)

1=1

S|

U=
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Since all parameters presented in the following chapters are dimensionless, the con-
vention @ = @ is used for a better legibility, i.e., F, = F,. Moreover, the empirical

standard deviation of the sample of u is given by

n—1:=

Sy = J ! f (ui — @), (6.4)

For the numerical investigations it is useful to show the results in terms of the most

accurate solutions. Thus,

U_vrv

Av =

-100% (6.5)
Ury
is defined, where v could be any parameter of interest such as the mean capillary force
F, or the standard deviation of the capillary force s. Thus, Av directly expresses the
relative percentage deviation from the reference values v,,. For the mesh analysis v,
is given by the solution of the finest mesh and for the statistical analysis it is defined
by the simulation with the largest sample size.
The mesh study is performed for the sphere-plate and the sphere-sphere system. Since
it is very expensive with respect to the computational resources, not all parameter
combinations can be investigated. In particular, the influence of the gap distance
a on the accuracy is assumed to be minor compared to the influence of the volume
V, contact angle 6 and the root mean square roughness (RMS) S'q. This seems to
be reasonable according to figure6.1 and 6.2 as well as table6.3. Thus, the gap
distance is kept constant for the mesh study at a = 0.1 (sphere-plate) and a = 0.05
(sphere-sphere), respectively. For the sphere-plate system the influence of volume
and the contact angle is analyzed and the RMS is fixed at S’q = 0.005. The influence
of roughness is investigated for the sphere-sphere system at the constant volume of
V =0.05. Since this work focuses on the evaluation of the new method and the
simulation of rough interfaces, the contact angles at the solids are kept equal, i.e.,
0 =0, =0,
Finally, it is important to note that convergence of the mean capillary force F, and
the empirical standard deviation s, does not necessarily imply convergence of all
other parameters. In particular, the convergence of the surface tension force at low
contact angles needs to be analyzed in detail as indicated by the comparison with the
Doérmann model.
The sphere-plate system consists of a smooth plate (S’q =0) and a rough sphere
(Sq = 0.005 and € = 0.1). The volume is varied by V =0.01, 0.1, 0.2 and 0.5. A
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visualization of the mesh resolution is given in figure 6.3 for three different meshes
of the capillary bridge with V = 0.1. In figure6.4 the mesh study is shown for a
single capillary bridge where the random seed number is £ = 100. The relative de-
viation of the capillary force AF, is plotted as a function of the number of triangles
n (figure6.4 (a)). Note, that all curves end at a zero deviation, which is consistent
with the definition of the relative deviation (eq.(6.5)). The numerical error leads
to a clear overestimation of the capillary force. For all four volumes the deviation
asymptotically decreases with an increasing mesh resolution, i.e., an increasing num-
ber of triangles. Thus, the meshes generally show a good convergence behavior. At
very low resolutions the capillary force might slightly increase, however, these meshes
are so coarse that the liquid-gas interface might be represented by only three to four
triangles along the axis (figure 6.3, left capillary bridge). Thus, the non-monotone
behavior at very low mesh resolutions is traced back to an insufficient resolution of
the liquid-gas interface.

The differences between V = 0.1, 0.2 and 0.5 are minor. Only for V = 0.01 the
maximum number of triangles is relatively low and the mesh is not fully converged.
Capillary bridges with V = 0.01 are, however, 10 to 50 times smaller compared to
the other volumes. In figure 7.2 images of capillary bridges for different volumes are
illustrated and it becomes clear, that using the same number of mesh triangles means
a very high triangle density and very small triangles for the small bridges. In fact,
the most accurate solution of V = 0.01 (ny = 6330) exhibits a higher triangle density
than all other most accurate solutions although their number of triangles is at least
six times higher. The main problem in simulating V = 0.01 with more triangles is
the very small triangle size. With the selected step sizes it is not possible to simulate
these small triangles, since the vertex displacement per step exceeds the triangles
size. Reducing the step size would be one option to overcome this issue, however, this
rapidly increases the simulation time and has not been done in this work. Instead, a
higher numerical error at the small volume is accepted as it is explained subsequently.
The finest mesh, i.e., the last point of each curve, represents the most accurate nu-
merical solution rather than the exact solution. Thus, the numerical error is larger
than indicated in figure 6.4 (a). For example, if the maximum number of triangles n
would be 10%, the zero level of V = 0.1 and 0.2 would be approximately 1% higher
or, in other words, the curves would shift down by 1%. Consequently, the numerical
error would seem to be a lot smaller. In order to avoid this problem it must be en-
sured, that the most accurate simulation is very close to the exact solution, i.e., the

remaining numerical error of the most accurate solution is negligible. This could be
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pri = 0.034 pui = 0.712 pui = 1.253
ne = 716 ne = 15222 ny = 26816

Figure 6.3.: Capillary bridges between a rough sphere and a smooth plate with different mesh reso-
lutions (V' = 0.1, § = 40°, a = 0.1, Sq = 0.005, ¢ = 0.1 and £ = 100)

demonstrated by simulations with even finer meshes. Unfortunately this is not pos-
sible, since more than 4 - 10* triangles cause memory problems on the computational
nods.

Another option of estimating the quality of the most accurate solution is considering
the gradient of the deviation AF, as illustrated in figure 6.4 (b). The gradients are all
negative, since the numerical capillary force overestimates the most accurate solution.
Note, that the large and sometimes positive gradients at the very low mesh resolution
are not plotted, since they are of minor interest and would require a very different
scaling of the y-axis. For the three large volumes the gradients approache zero with
increasing triangle density. Thus, a further increase of the number of triangles does

(a) (b)

T T T T T T T T T T

- . 0 .o |

~ | A |

5o 4j —o—{~/:0.01 1 < | — - i

~ | —— 1 =0.1 | S 1 B / 1

gl V=02 s |/ ]

g 20 . < I ]

g | ] T 3 —— TV =001

< | 8 AL

g = g -

g | E Vo1

= | T V=02 |
[} - B ~

= S | | V=05 |

0 | | \.\\." L] -5 L | | | L

0 1 2 3 4 0 1 2 3 4

number of triangles n; / 10 number of triangles n / 10

Figure 6.4.: Relative deviation of the capillary force (a) and the corresponding gradient for different
mesh resolutions of a single capillary bridge (£ = 100) between a rough sphere and a
smooth plate with S; = 0.005, ¢ = 0.1, § = 40° and a = 0.1
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most probably not lead to significant changes of the capillary force. The absolute
value of the gradient between the most accurate solution and the next coarser mesh
is below 0.2% per 10* triangles for all three volumes. This means, that increasing
the number of triangles by 3 - 10%, which is nearly a doubling of the triangle number,
leads to a deviation in the capillary force of less than 0.6 % for V = 0.1, 0.2 and
0.5. However, this is a very conservative estimation, since the gradient itself is not
constant and approximates zero as shown in figure6.3 (b). Finally, the numerical
error of a particular mesh is estimated by the sum of the relative deviation of the
mesh AF,(n;) and 0.6 %.

However, for V = 0.01 the difference between the most accurate solution and the
exact solution cannot be estimated by 0.6 %. Since the relative deviation of V = 0.01
shows a continuous decrease that is very similar to the larger volumes, it seems to be
reasonable to assume an analogous convergence. In particular, this is done by shifting
the V = 0.01 curve by approximately +1%. Consequently, the numerical error for
V = 0.01 is predicted by the relative deviation AF,(n;) plus 1.6 %.

Besides the capillary force of a particular capillary bridge it is also important to ana-
lyze the convergence of the distribution of capillary forces for n samples. The sample
size is set to n = 1000. In figure 6.5 (a) the deviation of the mean capillary force AF,
is plotted as a function of the mean number of triangles n;. The mean capillary force

of the highest mesh resolution F, ,, is used as most accurate solution in eq. (6.5). The
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Figure 6.5.: Relative deviation of the mean capillary force (a) and the corresponding gradient (b) for
different mesh resolutions of the distribution (n = 1000) of a capillary bridge between
a rough sphere and a smooth plate with S, = 0.005, ¢ = 0.1, = 40° and @ = 0.1
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deviation of the mean capillary force AF, asymptotically decreases with an increasing
number of triangles ny. The convergence of the whole distribution is very similar to
the results of a single capillary force (figure6.4). Again, more than approximately
0.8 - 10* triangles cannot be applied to the small volume of V = 0.01. For the three
highest resolutions of V = 0.01 the distribution is not completely converged. This
means, that less than 98 % of the simulations converged. Nevertheless, the results are
presented, since convergence is achieved for 96 % which is still relatively high.

The numerical error is estimated analogously to the numerical error of a single capil-
lary bridge. Thus, the gradients of the relative deviation AF, are considered to evalu-
ate the quality of the most accurate solution. For the large volumes, i.e., V = 0.1, 0.2
and 0.5, the absolute values of the gradients are between 0.08 % and 0.14 % per 10*
triangles. Thus, a rather conservative estimation leads to an additional deviation for
3 - 10* more triangles of 0.6 %. Again, it is assumed that this error is approximately
1% higher for V = 0.01.

In figure6.5 (a) the finally selected meshes are indicated by a square. This means,
that the results presented in chapter7 are obtained using these particular meshes.
They correspond to remesh resolution factors of 0.02 for V = 0.01 and 0.1 as well
as 0.03 for V' =0.2 and 0.5. The meshes are selected with respect to a manage-
able computational time. Note, that each simulation point includes 1000 simulations.
Thus, an increased simulation time of several hours for a single capillary bridge is
very significant for the total simulation time. The average simulation time ¢ and the
maximum simulation time ?; ax 0of the selected meshes are given in table6.4. The
average simulation times are relatively low. However, the requested time must be
above the maximum simulation time for all n = 1000 samples, since it is not a priori
known how long the computation of a certain capillary bridge takes. Moreover, the
maximum time is not known and, therefore, the requested time must be estimated
conservatively. Unfortunately, the allocation time, i.e., the waiting time until the
simulation is assigned to a certain computational nod, significantly increases with the

requested time. Thus, 1000 simulations with V' = 0.5 usually take a real simulation

Table 6.4.: Average and maximum pure simulation time for a single simulation of the selected meshes
in hh:mm

V =0.01 V=01 V =0.2 V=05

average simulation time ¢ 00:07 01:07 00:43 01:24
maximum simulation time #; max 00:19 03:16 04:36 10:30
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time of one to two days although the average time per simulation is only approxi-
mately 01 : 24 hours. The real time significantly depends on the work load of the
cluster. Finally, it also has to be considered, that the simulation time increases with
a decreasing contact angle and gap distance and with an increasing roughness. Tak-
ing all these factors into account, the selected meshes are considered to be a good
compromise between the real simulation time and numerical accuracy.

In conclusion, the total numerical error of the mean capillary force is evaluated by
the sum of AFC(ﬁmS@) of the selected meshs and the estimated deviation between the
most accurate solution and the exact solution, i.e., 0.6 % for V= 0.1, 0.2 and 0.5
and 1.6% for V = 0.01. This leads to a numerical error of 2.6 % for V = 0.01. With
an increasing volume this error is reduced and approximated by 1.2% for V = 0.1.
For V = 0.2 the accuracy of the mesh slightly increases because of the higher remesh
factor. Thus, the numerical error is 1.3% for V = 0.2 and decreases down to 0.8 %
for V = 0.5.

Another important parameter to characterize a distribution is the standard deviation
of the capillary force s. Thus, the mesh convergence is also analyzed with respect
to the standard deviation of the capillary force sp, = s. The relative deviation
As between the standard deviation s and the most accurate standard deviation is
presented in figure 6.6 (a). Since the values represent the same simulations as shown in

figure 6.5, the unconverged values of V = 0.01 occur at the same number of triangles.
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Figure 6.6.: Relative deviation of the standard deviation (a) and the corresponding gradient (b) for
different mesh resolutions of the distribution (n = 1000) of a capillary bridge between
a rough sphere and a smooth plate with Sq = 0.005, e = 0.1, § = 40° and a = 0.1
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Overall, a decreasing relative deviation As with an increasing number of triangles
ng is observed. However, in contrast to the relative deviation of the capillary force
(figure 6.5) this decrease is neither monotone nor asymptotic.

The standard deviation is generally more sensible then a mean value. In particular,
the influence of one value on the mean value is always n~!, whereas the standard
deviation can significantly be changed by only a few values. From the previous results
it is reasonable to assume, that the capillary force always decreases with increasing
mesh resolution. This corresponds to a left shift of the distribution in a frequency
distribution plot. Since the absolute gradient of the decreasing capillary force is
not exactly equal for all n samples, the distribution is also deformed. A decreasing
standard deviation corresponds to a compressing of the distribution and an increasing
standard deviation to a stretching. Finally, with an increasing mesh resolution and
a convergence of all n capillary forces, both, the shifting of the distribution (mean
value F..) and the distortion (s) decline and the results become mesh independent.
Although the relative deviation As deceases with an increasing mesh resolution, con-
vergence is only observed for V = 0.1. Generally, a further convergence of As is
expected, since the deviations of the capillary forces converge. Again, the gradi-
ents of As are considered in order to estimate the numerical error. In figure 6.6 (b)
the gradients of the three large volumes are presented. Note, that the gradients of
V =0.01 are not illustrated, since they are too large for the scaling of the y-axis.
The gradients of the other three volumes generally approach zero. However, in con-
trast to the gradients of AF, (figure6.5 (b)), there are still considerable fluctuations.
Thus, by evaluating only the last gradient the estimation might not be conservative
enough, since a slight increase of the gradient at a higher mesh resolution is still
possible. It seems to be more reasonable to use the average of the absolute values of
the last three gradients. This leads to 0.40 % per 10* triangles for V = 0.1, 0.67%
per 10 triangles for V = 0.2 and 0.70 % per 10* triangles for V = 0.5. In order to
conservatively estimate the deviation between the most accurate solution and the
exact solution, a nearly doubled mesh resolution, i.e., an increase of 3 - 10* triangles,
is considered. Again, for V = 0.01 this deviation is assumed to be 1% higher than
the values obtained for V = 0.1, i.e., 2.2%.

Finally, the total numerical error of the standard deviation is obtained analogously
to the numerical error of the mean capillary force. By considering the values of the
selected meshes in figure 6.6 (a), i.e., As(ngse), a numerical error of 3.8 % is estimated
for V = 0.01. Since this is a relatively large error, it is worth mentioning that it must
be interpreted as an upper limit for the smallest volume considered in this work.
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With increasing volume this error significantly decreases down to 2.1% for V = 0.01,
3.0% for V = 0.2 and 2.6% for V = 0.5.

Generally, the influence of the volume is minor, provided that the capillary bridges
are represented by the same number of triangles. This, however, requires a volume
dependent remesh resolution factor. Thus, the slightly different numerical errors be-
tween the volumes result from practical approach of only distinguishing two different
remesh resolution factors.

The comparison with the Dérmann model already reveals an influence of the contact
angle on the accuracy of the presented method (section6.1). In particular, it is
demonstrated that the computation of the surface tension force is not very exact.
Thus, a mesh analysis at two different contact angles is performed in order get a
deeper understanding of the presented method.

In figure 6.7 the relative deviation of the mean capillary force AF, (a) and the relative
deviation of the standard deviation s (b) are presented for two different contact angles.
The curves of § = 40° correspond to the curves of V' = 0.1 in figure 6.5 (a) and 6.6 (a).
Note, that a mesh study for an even smaller contact angle (6 = 10°) is not possible,
since for more than 2 - 10* triangles not enough simulations converge. Nevertheless,
all tendencies are demonstrated for § = 20° and it is assumed, that they are stronger
for smaller contact angles.

In figure 6.7 (a) it is shown, that the capillary force converges slower for the smaller
contact angle (6 = 20°). However, for 7y > 1.5 - 10* the accuracy is nearly equal and,
hence, for the selected meshes the numerical error has the same order of magnitude.
The convergence of the standard deviation of the sample s (figure 6.7 (b)) is similar for
both contact angles. Although there are still significant fluctuations, that are already
explained for the different volumes (figure 6.6 (a)), the relative deviation As is around
1% for the selected meshes and clearly below 1% for higher mesh resolutions.

For a deeper analysis of the differences between the contact angles, the convergence of
the capillary pressure force and the surface tension force are presented in figure6.8.
Since these force components are different at the sphere and the plate, they are
evaluated at both solids. In figure6.8 (a) it is shown, that the capillary pressure
force is estimated too small compared to the most accurate solution. In fact, this
is unexpected because the overall capillary force is overestimated for all previously
shown simulations. Nevertheless, the convergence of the different contact angles is
similar although the smaller contact angle converges slightly slower. It is important to
note, that for both contact angles the differences between the accuracy at the sphere

and the plate are negligible for 7y > 1-10*. Thus, the accuracy is not influenced by
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the roughness of an interface. Overall, the convergence of the capillary pressure force
is excellent and even better than the convergence of the overall capillary force.

The convergence of the surface tension force is illustrated in figure 6.8 (b) and shows
a very different behavior. First, the large scaling of the y-axis should be noted which
clearly demonstrates the slow convergence. Moreover, the surface tension force devi-
ates significantly upwards from the most accurate solution. This effect superimposes
the underestimation of the capillary pressure force and causes the overestimation of
the overall capillary force. Again, the smaller contact angle converges slower, how-
ever, the differences between the contact angles are significantly larger compared to
the capillary pressure force. In fact, the deviations between the contact angles are
only negligible for 7y > 3 - 10%.

The probably most important aspect of figure 6.8 (b) is, however, the difference be-
tween the sphere and the plate. Although this difference is larger for 6 = 20°, it is
also significant for § = 40°. Note, that the convergence is better at the rough sphere
rather than on the smooth plate and, consequently, the inaccuracies cannot be caused
by roughness. The surface tension force is calculated according to eq. (3.7). Thus, an
inaccurate result might be traced back to either the three-phase contact line or the
co-normal fi),. However, the very good convergence of the capillary pressure force
as well as the better convergence of the rough interface (sphere), imply a good esti-

mation of the capillary bridge geometry. Moreover, the results presented in table 6.3
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Figure 6.7.: Relative deviation of the mean capillary force (a) and the standard deviation (b) for
different mesh resolutions of the distribution (n = 1000) of a capillary bridge between
a rough sphere and a smooth plate with Sq = 0.005, e = 0.1, V = 0.1 and @ = 0.1
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show a good accordance of the three-phase contact line. Thus, it is reasonable to
analyze the computation of the co-normal more in detail.

In figure 6.9 the situation at the three-phase contact line of a sphere and a plate is
schematically illustrated for small and large contact angles 6. The overall geome-
try of the capillary force and in particular the liquid-gas interface is approximated
well (Dig continuous = I'lg discretized). This is consistent with the good convergence of all
pressure related parameters. However, there is a significant deviation between the
co-normal of the continuous and the discretized geometry. On the discretized level
the co-normal is computed first order which means, that only the triangle directly at
the three-phase contact line is considered. However, a small contact angle implies a
strong bending of the capillary bridge at the contact line. Thus, the mesh resolution
must be very high in order to capture this geometry. Otherwise, a deviation between
the co-normals fiy, continuons @A Mg discretized TeSUls as illustrated in figure 6.9. More-
over, it is shown, that the bending is generally higher at the plate compared to the
sphere. Thus, for both, the small and the large contact angle, the convergence is
slower at the plate (figure6.8 (b)).

The deviation of the continuous and the first order discretized co-normal can also
be interpreted as an overestimation of the effective contact angle Ogiscretized- In fact,
the contact angle is not explicitly claimed as a boundary condition by the algorithm.

Instead, the dimensionless adhesion coefficient 3 (eq. (5.3)) is implemented which is,
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Figure 6.8.: Relative deviation of the capillary pressure force (a) and the surface tension force (b) for
different mesh resolutions of the distribution (n = 1000) of a capillary bridge between
a rough sphere and a smooth plate with Sq = 0.005, e = 0.1, V = 0.1 and @ = 0.1
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strictly speaking, a relation between the liquid-gas and the liquid solid interface, i.e.,
I'j; is rated as one and I's; is rated as — ;. In a continuous setting this relation can be
interpreted as a contact angle. Consequently, 8; = cos(6};) is only valid for ny — oc.

From a physical perspective an increasing contact angle is usually associated with
a decreasing capillary force. This is, however, a comparison of two completely dif-
ferent capillary bridges, i.e., the whole bridge geometry changes. Here, it is only an
overestimation of the contact angle while keeping all other parameters, such as the
contact line or the capillary pressure, constant. In an axisymmetric case the surface
tension force is given by the second addend of eq. (3.8) with cos(a) = sin(¢ + #) and
cos(a) = sin(#) directly on the three-phase contact line of a sphere and plate, respec-
tively. Thus, it becomes clear, that in the wetting case a larger contact angle leads
to an overestimation of the surface tension force if all other parameters are constant.
Overall, there is a relatively good convergence of the capillary bridge geometry during
the iteration, whereas an accurate first order evaluation of the co-normal u requires
a much higher convergence. This problem significantly increases with a decreasing
contact angle. However, from figure 6.7 it follows, that for # = 20° the numerical
error is only slightly increase. Nevertheless, from the comparison with the Dormann
model (section 6.1) it is concluded that the numerical error significantly increases for
0 < 20°. Thus, the very few simulations that are performed with § = 10° have to be
considered with a 2% higher numerical error of the capillary force. In section&.3.1

possible solutions for a more accurate calculation of the co-normal are discussed.
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Figure 6.9.: Deviation between the continuous co-normal fij, conginuous and the first order discretized
co-normal y’lg,discretized



6.2. Numerical error 105

In addition to the sphere-plate system the mesh convergence is analyzed for a sphere-
sphere system. For this investigation the volume is kept constant at V = 0.05 and the
roughness of the solid interfaces is varied. In particular, the RMS values are chosen
to be Spo = 0\0, Spo = 0.002\0, Sj\o = 0.007\0 and Sj\2 = 0.005\0.005. Thus, the
first system is the completely smooth system, i.e., a single capillary bridge. The
second and third systems are composed by a smooth and a rough sphere and the
fourth system consists of two equally rough spheres. The sample size of all rough
systems is again n = 1000. In order to avoid any kind of symmetry the random seed
number ¢ is always different on the two rough spheres. The diffusion coefficient is
e = 0.1 for all rough spheres and the contact angles and gap distances are § = 40°
and a = 0.05, respectively.

In figure 6.10 (a) the relative deviation of the mean capillary force F, and the most
accurate solution qua is presented. All three curves show a monotone and asymp-
totic decrease with an increasing number of triangles ni. Note, that again not all
simulations converged with a rate of 98 %. In particular, the highest mesh resolu-
tions of 31\2 = 0.007\0 has a convergence rate of 97 % and for 5'1\2 = 0.005\0.005 the
two highest mesh resolutions have convergence rates of 97 % and 96 %, respectively.
The increasing number of unconverged simulation with an increased mesh resolution
is traced back to the required positive definition of the Hessian (eq.(5.22)). With
both, an increasing number of triangles and an increasing number of mesh cells, the
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Figure 6.10.: Relative deviation of the mean capillary force (a) and the corresponding gradient (b)
for different mesh resolutions of the distribution (1000 samples) of a capillary bridge
between two equally sized spheres with V; = 0.05, e = 0.1, § = 40° and a = 0.05
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positive definition slowly deteriorates which might finally lead to an abortion of the
simulation.

The differences between the curves illustrated in figure 6.10 (a) are minor which means,
that the RMS Sq does not have a significant influence on the mesh convergence of
the mean capillary force. In fact, even the completely smooth system convergences
analogous to all three rough systems. The two curves with the higher roughness, i.e,
S’l\g = 0.005\0.005 and 51\2 = 0.007\0, are slightly below the low roughness curve
(Sl\g = 0\0 and gl\Q = (0.002\0). This is traced back to the lower mesh resolution of
the most accurate solution which leads to a downshifting of the curves. It is very rea-
sonable to assume, that the high roughness curves are shifted up and agree with the
low roughness curves if values for higher resolved meshes are added. This is supported
by the high agreement of the gradients of AF, (figure6.10 (b)), that are independent
of the most accurate solution. Thus, the numerical error of the mean capillary force is
independent of roughness and evaluated for an arbitrary configuration in figure 6.10.
Thus, the best converged simulations, that are 5’1\2 = 0\0 and Sl\g = 0.002\0, are
used. In particular, the absolute values of the gradient between the two highest mesh
resolutions are 0.04 % and 0.12 % per 10* triangles. For a conservative estimation the
higher gradient is used to evaluate the deviation between the most accurate and the
exact solution. Moreover, a doubled mesh resolution, i.e., roughly 3 - 10* triangles,

are considered. The relative deviation of the mean capillary force AF’C(ﬁmse) is taken
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Figure 6.11.: Relative deviation of the standard deviation (a) and the corresponding gradient (b)
for different mesh resolutions of the distribution (1000 samples) of a capillary bridge
between two equally sized spheres with V' = 0.05, ¢ = 0.1, 8 = 40° and a = 0.05
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from figure 6.10 (a), i.e., 0.6 %. Finally, this leads to a total numerical error of 0.96 %
for 5’1\2 = 0.002\0. In order to ensure a conservative limit for all three curves, the
numerical error of the mean capillary force is roughly estimated to be below 1 %.
The selected meshes correspond to a remesh resolution factor of 0.02 for all rough
simulations.

The relative deviation of the standard deviation As is plotted in figure 6.11 (a). Note,
that only rough systems are considered, since there is no distribution of the capillary
force in a smooth system. All curves decrease with an increasing mesh resolution.
The results indicate a faster convergence of 5’1\2 = 0.005\0.005 and 5’1\2 = 0.007\0
compared to 5’1\2 = 0.002\0. However, this is again traced back to the lower resolution
of the most accurate solution that leads to a downshifting of the curves. Although the
curves are not as similar as the curves of the relative deviation AF, (figure6.10 (a)), it
is reasonable to assume that the convergence curves of As are closer to each other if a
more accurate solution could be obtained for 51\2 = 0.005\0.005 and 91\2 = 0.007\0.
Therefore the numerical error is again estimated conservatively for 5'1\2 = 0.002\0
and it is assumed that the order of magnitude is also valid for the higher roughness,
i.e., the influence of roughness on the numerical accuracy of the standard deviation
s is assumed to be minor.

The gradients of As are illustrated in figure6.11 (b). All gradients approach zero
with an increased number of triangles. Nevertheless, the curves do not monotoni-
cally increase and, therefore, analogously to the sphere-plate system, the last three
gradients are considered for the estimation of the exact solution. For 5'1\2 = 0.002\0
and average of 0.46 % per -10* triangles is obtained. The threefold of this value is
again added to the relative deviation As(n) of the selected mesh, i.e., 1.1 %. Finally,
a total estimated numerical error of 2.48% or roughly 2.5%, is obtained. In this
section, a sample size of n = 1000 is a priori set. Subsequently, this sample number

is discussed with respect to the statistical error.

6.3. Statistical error

The simulation of capillary forces between rough interfaces requires a statistical anal-
ysis, since the same roughness can be realized by an infinite number of interfaces.
Thus, the result of a rough simulation is a distribution of the capillary force that is
described by parameters such as the mean capillary force F, and the standard devia-
tion s of the sample. However, these values depend on the specific sample and differ
from the expected value pp and the standard deviation of_of the whole population.

The deviation is strongly influenced by the number of simulations n, i.e., for n — oo
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it follows that F, — pp, and s — op . Therefore, a statistical analysis is performed
in order to define the size of a sample, i.e., the number of simulations n, that is
sufficiently large to obtain a small statistical error.

Again, the analysis is performed for both, a sphere-plate and a sphere-sphere system.
However, a detailed statistical investigation requires a huge number of simulations and
is consequently expensive with respect to computational time. Thus, the variation
of parameters is very limited. Generally, it is assumed that the parameters of the
capillary bridge, i.e., volume V, contact angle § and gap distance &, have a minor
effect on the statistical error. In contrast, the influence of roughness is unclear, i.e., it
is possible that the statistical error increases with the roughness. Thus, the detailed
analysis that is used to finde a sample number n is performed for a single sphere-
plate and sphere-sphere configuration and the influence of the other parameters is
investigated subsequently for the defined sample number. In particular, the RMS
values of the sphere-plate system is set to S'q = 0.005 at the sphere and zero at the
plate. This is the main configuration of a sphere-plate system that is investigated
in section 7.1. For the sphere-sphere system the roughness is varied more intensively
as described in section 7.2. Thus, in order to find an upper limit for the statistical
error, a very high roughness, i.e., 5’1\2 = 0.005\0.005, is used for the analysis of the
sphere-sphere system.

In figure 6.12 the box plots of the capillary force of a sphere-plate system with V = 0.1,
S'q = 0.005,e = 0.1, # = 40° and a = 0.1 are shown. The size of the samples is set to
n = 100, 500 and 1000. The box plots within one diagram only differ by the random
seeds &, i.e., the concrete realization of the rough interface with the desired roughness
of Sq = 0.005. Analogous to the mesh analysis, the results are presented relative to
the most accurate solution (eq. (6.5)) which is in this case the mean capillary force
F, of a simulation with n = 10000 samples. Again, this is only the most accurate
solution that could be obtained, rather than the exact solution which corresponds to
the mean of the whole population y. The box plots are generated using the following

conventions:

o box ends: 25" and 75" percentile (1% and 3™ quartile)
o whiskers: 1% and 99" percentile
o mid line: 50" percentile (median)

e cross marker: mean
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Figure 6.12.: Distributions of the relative capillary force of capillary bridges between a rough sphere
and a smooth plate with V' = 0.1, S; = 0.005, ¢ = 0.1, § = 40° and a = 0.1
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It is worth mentioning, that, strictly speaking, only the relative deviation of the
mean value (cross marker) is a deviation in terms of AF, — 0 for n — co. Of course,
the distribution (e.g. the whiskers) will not approach zero for an infinite number of
samples. Nevertheless, they are plotted relative to the most accurate solution in this
section, since their absolute value is irrelevant for the statistical analysis. Instead, for
a sufficiently large sample size they should approach each other. Figure6.12 shows
that with an increasing sample size n the variations between the box plots decrease.
For n = 100 samples the whiskers show a significant fluctuation. Generally, they are
very sensitive and strongly influenced by just a few simulations, since they represent
98 % of the distribution. In fact, for n = 100 only the lowest and the largest value
are not considered in the box plot. However, also the boxes, i.e., the middle 50 % of
the distribution significantly deviate from each other. Moreover, the mean capillary
force F, and the median of F, are not equal. Of course, this cannot be assumed
a priori, however, the distributions are expected to approach a normal distribution
as discussed in section7.1. Moreover, in figure6.12 it is shown, that the the mean
and median approach each other with an increasing sample number. In particular,
the mean differences between the two values are 0.0098 (n = 100), 0.0037 (n = 500),
0.0026 (n = 1000) and 0.0007 (n = 10000). Thus, increasing the sample size by a
factor of 10 leads to a one order of magnitude smaller difference between F, and the
median of F.

For n = 500 there is still a significant fluctuation in both, the whiskers and the boxes.
For example, the 75" percentile of the 3" and 4™ sample index differ by approxi-
mately 1%. For n = 1000 the distributions seem to be relatively stable. There are
still fluctuations, especially between the sensitive whiskers, however, the upper and
lower quartile seem to be sufficiently accurate. Subsequently, a confidence analysis is
presented in order to quantify the statistical uncertainty for the mean capillary force
F, and the standard deviation s or the sample.

For a normally distibuted parameter u, the mean values u are also normally dis-
tributed. Thus, the symmetric confidence interval is given by

Ou

P(Clan(7) < pta < Clau(7)) = P (u — )T < <t m)j%) —y (66)

where £ is the standrad normal distributed value for the confidence level v or rather
for the significance level a with v = 1—a. Note, that the index u refers to the random
parameter, whereas the index u indicates the left side of the confidence interval and

the index v the right side, respectively. In section7.1.1 and 7.2.1 it is demonstrated
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that the capillary force F, can considered to be normally distributed. However,
since o, in eq. 6.6 is the standard deviations of the whole population, this value is
unknown and must be estimated by the standard deviation of the sample (eq. (6.4)).
Consequently, the mean capillary force follows Student’s t-distribution rather than
the normal distribution. However, for n — oo Student’s t-distribution approaches the
normal distribution and usually for n > 30 the normal distribution is a reasonable
approximation for the distibution of the mean values [Stol17]. Thus, for sufficently
large samples, the relative width of the confidence interval of F, is defined by

~ Clg_,(v) = Clg_,(7)

B Feu . - 55(’7) .
CIg,(7) 7 100%_2Fc N 100%. (6.7)

Note that CIp_can directly be interpreted as the statistical uncertainty. In particular,
the mean of the overall population pup, is within the interval of £0.5CI; with a
probability of ~.

The results of eq. (6.7) are illustrated in figure 6.13 (a). It is shown, that the confidence
interval decreases with a decreasing confidence level +. For this work, a confidence
level of v =98% is chosen and discussed subsequently. From figure6.13 (a) it fol-
lows, that with a probability of 98 % the mean capillary force is within an interval
significantly below 1% or 40.5% for all sample sizes. Even for n = 100, which is
not plotted, Clg (98%) = 1.31%. Since this is already the order of magnitude of
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Figure 6.13.: Relative CI of the mean capillary force CI_ (a) of a rough sphere and a smooth plate
with V = 0.1, Sq = 0.005, e = 0.1, 8 = 40° and @ = 0.1 and the general relative CI of
the standard deviation Cl; (b)
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the numerical error, a sample size between n = 100 and n = 500 might already be
sufficient with respect to the statistical uncertainty of the mean capillary force. With
an increasing sample number the confidence interval reduces to Clg (98 %) = 0.40 %
for n = 1000 and Cl (98 %) = 0.13 % for n = 10000. Both intervals are already very
small. However, it must be considered that reducing the statistical uncertainty by a
factor of approximately 3, i.e., from 0.40 % to 0.13 %, implies ten times more samples
and consequently a tenfold computational time. Overall, a statistically uncertainty
of 1% of the mean capillary force seems to be sufficient and therefore, a sample size
between n = 100 and n = 500 is chosen. However, this sample size must also be large
enough for an acceptable uncertainty of the standard deviation which is analyzed

subsequently.

2

-1
2 ((n — 1)03) of a random parameter u is chi-squared distributed

The expression s
with n — 1 degrees of freedom and therefore, the confidence interval for the standard
deviation is given by

: 2
s <oy <(n-—1)
xa(y) " X2 (7)

P(Cly, u(7) < 02 < Cls, (7)) =P ((n —1) ) =7. (6.8)
Since the chi-squared distribution is not symmetric the lower and upper lower quan-
tiles, x2(7) and x2(7), are not equal. Using eq. (6.8) the relative width of the confi-
dence interval for the standard deviation of the capillary force

ar, = el = CLuld) 000 -y (J G J ! ) -100%  (6.9)

S Xz (7) Xa(7)

is derived. Remarkably, this equation is independent of the standard deviation s,
which means that the relative statistical uncertainty of the standard deviation is inde-
pendent of the physical system. In particular, roughness does not influence statistical
uncertainty of the standard deviation although the absolute value of the standard
deviation significantly increases with roughness (chapter 7). This is different for the
mean capillary force as indicated by eq. (6.7) and discussed later.

In figure 6.13 (b) the relative confidence interval of the standard deviation is presented.
Note, that the distribution of the sample standard deviation is asymmetric and there-
fore, the upper and lower limits of the confidence interval are not simply given by
0.5 - CI;. However, with an increasing sample number or a decreasing confidence level
~ the intervals approach each other. From the different scaling of the y-axis it directly
becomes clear that the uncertainty of the sample standard deviation s is much higher

compared to the mean capillary force F,. The suggested sample sizes in the range of
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n = 100 to n = 500 lead to confidence intervals of CI5(98 %) = 29.64 % (not illustrated
in figure6.13 (b)) and CI3(98 %) = 13.03 %, respectively. Thus, even for n = 500 the
uncertainty is above 10 %, which is considered to be too high. To obtain a confidence
interval below 5% with a confidence level of v = 98 % approximately 3000 samples
are required. However, this exceeds the available computational resources and, hence,
a sample number of n = 1000 is the maximum number that can be considered in this
work. Thus, the statistical uncertainty of the standard deviation of the sample is
CIs(98 %) = 9.20 % with a lower confidence interval of Cl,,,(98 %) = —4.44 % and an
upper confidence interval of Clg, (98 %) = +4.76 %, respectively.

Overall, a sample number of n = 1000 is obtained from the analysis of the mean
capillary force and the standard deviation. Using this sample number, the influence
of the volume V and the contact angle 6 on the statistical uncertainty of the mean
capillary force F, is investigated. In figure6.14 the relative confidence intervals Clg,
for different volumes (a) and contact angles (b) are illustrated. It is shown, that
the confidence interval increases with a decreasing volume. For the lowest volume of
V =0.01 a confidence interval of CIg (98 %) = 1.06 % is obtained. However, this is
still around 1 % and significantly below 0.5 % for all other volumes, which is excellent.
The differences are traced back to the factor s - F7! (eq. (6.7)). In particular, from
V =0.01 up to V = 0.1 the capillary force increases by a factor of 3 and the standard
deviation of the sample by a factor of 1.11. With a further increase of the volume
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Figure 6.14.: Relative CI of the mean capillary force Cl;_of a rough sphere and a smooth plate with

S, = 0.005, ¢ = 0.1 and @ = 0.1 for different volumes (a) and contact angles (b) and
n = 1000 samples
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the standard deviation of the sample even decreases whereas the capillary force still
increases. Thus, the different uncertainties of the volumes are dominated by the mean
capillary force, which increases with the volume.

In figure 6.14 (b) it is illustrated that the contact angle 6 does not influence the confi-
dence interval of the mean capillary force. Interestingly, the mean capillary force and
the standard deviation of the sample decrease with the same factor with an increasing
contact angle. Thus, the factor s - F. ! (eq.(6.7)) is approximately constant which
leads to a contact angle independent confidence interval for the mean capillary force.
Note, that the behavior of the absolute values of the capillary force and the standard
deviation of the sample is discussed more in detail in chapter 7. Subsequently, the in-
fluence of the geometry and roughness are investigated by considering different RMS
values Sq for a sphere-sphere system.

The analysis of the sphere-plate system already revealed that the relative statistical
uncertainty of the standard deviation of the sample, i.e., the confidence intervals Clg
are independent of the physical system. Thus, the results are also valid for the sphere-
sphere system and different RMS values and must not be investigated again. Thus,
only the confidence intervals of the mean capillary force Cly_ are considers in this sec-
tion. In particular, equally sized spheres with §q71\2 = 0.005\0.005, S’q’l\g = 0.002\0
and 5’%1\2 = 0.007\0 are analyzed. The volume, the contact angle and the gap dis-
tance are kept constant at V= 0.05, # = 40° and a = 0.05. Moreover, the diffusion
coefficient ¢ is set to 0.1.

In figure 6.15 the box plots of the sphere-sphere system with §q71\2 = 0.005\0.005 are
shown. Compared to figure6.12 the boxes and the whiskers are a lot larger which
is traced back to the higher roughness. This, however, does not necessarily imply
a higher statistical inaccuracy. Again, the box plots significantly differ for n = 100
and even for n = 500. For n = 1000 the boxes approach each other although slight
differences can still be identified. This is consistent with the confidence analysis of the
standard deviation of the sample (figure 6.13 (b)) that shows, that n = 1000 is a lower
limit if CIg should be below 10 %. Again, it is shown that the mean and the median
of the capillary force distribution approach each other, i.e., the mean differences are
0.0090 (n = 100), 0.0068 (n = 500), 0.0064 (n = 1000) and 0.0054 (n = 10000). For
n > 100 the values are higher compared to the sphere-plate system which is, however,
traced back to the higher roughness of the sphere-sphere system.

The corresponding confidence analysis is illustrated in figure6.16 (a). Again it ob-
served, that for n = 500 a confidence interval of CI _(98%) = 0.88 is obtained, which
would already be sufficiently accurate. However, the sample size is mainly determined
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Figure 6.15.: Distributions of the relative capillary force of capillary bridges between two equally
rough spheres with V' = 0.05, Sg 112 = 0.005\0.005, ¢ = 0.1, = 40° and @ = 0.05
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Figure 6.16.: Relative CI of the mean capillary force Clp_ (a) between two equally rough spheres
with V' = 0.05, Sy1\2 = 0.005\0.005, ¢ = 0.1, = 40° and @ = 0.05 and differently
rough spheres for n = 1000 (b)

by the confidence interval of the standard deviation and consequently n = 1000 is cho-
sen.

The confidence intervals of the sphere-sphere system are very similar compared to
the sphere-plate system (figure6.13 (a)) which is most probably based on the higher
roughness. This is supported by figure6.16 (b), where the influence of roughness is
presented for the sphere-sphere system. It is illustrated, that the difference between
S’q’l\g = 0.005\0.005 and gq’l\Q = 0.007\0 is minor, whereas the confidence interval
of gq’l\g = 0.002\0 is significantly lower. This can again be justified by the factor
s- F1 (eq.(6.7)). On the one hand, the mean capillary force is nearly independent
of the roughness. In fact, it slightly increases with roughness, which is discussed
in section7.1.3. On the other hand, an increasing roughness leads to a significantly
higher standard deviation s. Thus, according to eq. (6.7), the confidence interval of
the mean capillary force Cly_ increases with the RMS values S'q. However, even for
the highest roughness considered in this work, the confidence interval of the mean
capillary force is excellent, i.e., Clj (98 %) = 0.62% for §q71\2 = 0.005\0.005. Sub-
sequently, the results of this chapter are summarized. In particular, the numerical
and the statistical error are related to each other which is essential for identifying

optimization potential with respect to the accuracy.
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6.4. Overall error

The overall error of the simulation of capillary forces between rough particles consists
of the numerical error (section6.2) and the statistical error (section6.3). In order
to minimize the overall error of a certain parameter, it is important, to choose the
simulation parameters with respect to both error types. Reducing the overall error
can be done either by a higher mesh resolution (numerical error) or a higher number
of samples (statistical error). Nevertheless, both options imply a non-linear increase
in the computational time. Thus, it is reasonable, that the two error types have the
same order of magnitude. For example, a simulation of a sphere-plate system with
nt = 3-10% mesh cells might reduce the numerical error of the standard deviation
of the sample by approximately 1% compared to iz = 1.5 - 10* cells (figure6.6 (a)).
This, however, implies at least a quadruplication of the simulation time if a linear
increase is approximately assumed. Thus, with the same computational resources,
only n = 250 samples can be considered which leads to an increase of the statistical
uncertainty from CIs(98%) = 9.20 % (n = 1000) up to CI5(98%) = 18.47 % (n = 250)
(figure6.13 (b)). Note, that n = 250 is not explicitly plotted in figure6.13 (b), how-
ever, the value is directly obtained by eq. (6.9). This sample calculation illustrates
that the numerical error can be reduced by a higher mesh resolution which, however,
might be canceled out and even exceeded by the increase of the statistical error if
the sample size must be reduced. Thus, for a given simulation time, minimizing the
overall error of a certain parameter is considered as an optimization problem between
mesh resolution and sample size.

Moreover, it must be considered, that the mean capillary force and the standard
deviation of the sample are dominated by different errors. Subsequently, a short
summary of the numerical and statistical analysis is given in order to evaluate both
errors in relation to each other.

A good convergence of the mean capillary force F, is demonstrated by the mesh
analysis of both, a sphere-plate and sphere-sphere system. For the sphere-plate system
the influence of the volume and the contact angle is investigated. The differences
between the volumes mainly result from the varying number of mesh triangles. In
particular, the largest numerical error is obtained for V' = 0.01. This very small
capillary bridge is not simulated with more triangles, since this requires a significantly
lower iteration step. For all systems and parameter configurations the numerical error
leads to an overestimation of the mean capillary force which is caused by a significant
overestimation of the surface tension force. The relatively inaccurate computation

of the surface tension force also leads to an increase of the numerical error with
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Table 6.5.: Estimated numerical errors in % for 8 > 20° and the selected meshes marked in section 6.2

parameter system V =0.01 V =0.05 V =0.1 V=02 V=05
7 sphere-plate 2.6 1.2 1.3 0.8
¢ sphere-sphere 1.0
sphere-plate 3.8 2.1 3.0 2.6
S
sphere-sphere 2.5

a decreasing contact angle. Figure6.7 shows, that the numerical error of 6 = 20°

and # = 40° has the same order of magnitude for the selected meshes. Thus, for
6 > 20° the differences between the numerical errors is neglected. However, based
on the comparison with the other models (section6.1), it is expected, that the error
significantly increases for 8 < 20°. Moreover, it is demonstrated, that roughness does
not influence the numerical error of the simulation (figure 6.10). Finally, the estimated
numerical errors are summarized in table6.5 for the different volumes and 6 > 20°.
In particular, the numerical error of the mean capillary force F, is below 1.5% for
V > 0.5 and increases up to 2.6 % for V =0.01.

The mesh convergence of the standard deviation of the sample s is less sharp compared
to the mean capillary force. In case of the sphere-plate system the general tendency of
convergence is revealed, however, there are still significant fluctuations even between
the finest meshes. A better convergence of standard deviation is demonstrated for the
sphere-sphere system. The estimated numerical error of the standard deviation of the
sample s is below 3% for V > 0.05. Again, a higher error is obtained for V = 0.01,
ie., 3.8%.

The statistical analysis demonstrates excellent confidence intervals for the mean cap-

illary force Cly,. The influence of the volume and the RMS value is again investigated

Table 6.6.: Estimated relative confidence intervals in % for n = 1000 and a confidence level of
~v=98%
parameter system
V =0.01 V=01 V =02 V=05

sphere-plate

_ 1.06 0.40 0.29 0.21

F.

S, 12 = 0.002\0 S, 12 = 0.007\0 S, 1\2 = 0.005\0.005
sphere-sphere a1\2 \ a.1\2 \ q,1\2 \
0.17 0.58 0.62

s 9.20 for all configurations
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for the sphere-plate and the sphere-sphere system, respectively. The results are sum-
marized in table 6.6. It is shown, that the relative confidence interval increases with a
decreasing volume (sphere-plate) and an increasing roughness (sphere-sphere). Nev-
ertheless, a confidence interval significantly below 1% is obtained for all parameters
except for V = 0.01, where a slightly higher interval of Clp, (98%) = 1.06 % is com-
puted. In addition to the mean capillary force F, the standard deviation of the sam-
ple s is analyzed. From eq. (6.9) it is directly concluded, that the relative confidence
interval of the standard deviation only depends on the sample number n and the sig-
nificance level . For n = 1000 a relative confidence interval of CI5(98%) = 9.20 % is
derived, which is nearly symmetric. Thus, the simulated values of the standard devi-
ation are within an interval of approximately —4.44 % and +4.76 % with a confidence
level of v = 98 %.

Finally, the characteristics of the numerical and statistical error are considered. The
numerical error is systematic, i.e., it does not lead to a bias when considering general
tendencies. Instead, the overall curves are shifted up or down. In contrast, the
statistical error is random. Thus, when analyzing very slight tendencies, they must
be critically discussed with respect to the statistical error.

From table6.5 and table6.6 it becomes clear, that the mean capillary force is sim-
ulated with an excellent low overall error. The statistical error, i.e., the relative
confidence interval, is approximately half of the numerical error. Since both errors
are below 1.3% for V' > 0.05, this is a comparable order of magnitude. However, if,
for some application, the mean capillary force has to be computed with a higher ac-
curacy, increasing the mesh resolution is more reasonable than increasing the sample
size.

The overall error of the standard deviation of the sample is clearly dominated by the
statistical error. For V' > 0.05 the numerical error is below 3% which is still good.
However, the confidence interval is five times as high. Thus, it is very reasonable
to increase the sample size. Doubling the sample number n would lead to a confi-
dence interval of CI5(98%) = 6.50 %, i.e., a reduction of approximately 30 %. For the
given computational resources, a coarser mesh and a higher sample number might be
reasonable. However, the mesh convergence of the standard deviation shows fluctu-
ations (figure6.6 and 6.11) rather than a monotone asymptotic convergence. Thus,
with significantly coarser meshes, mesh convergence of the standard deviation can-
not be ensured for all parameters. Moreover, the selected mesh should also ensure a
minor influence of the contact angle (figure6.7), i.e., for § > 20° the numerical error

should be independent of the contact angle. For coarser meshes, a more detailed
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mesh analysis with respect to the contact angle is required. Moreover, the estimation
of the surface tension force deteriorates with a decreasing mesh resolution. For these
reasons, a relatively high and conservative mesh resolution is chosen, that, however,
limits the sample size to n = 1000. In section 8.3.1 an improved computation of the
surface tension force is presented, that allows simulations at a lower mesh resolu-
tion with, however, the same numerical error. This provides a significant potential
to increase the sample number in order to reduce the statistical uncertainty of the

standard deviation.



7. Capillary forces between rough interfaces

In this chapter capillary forces between rough interfaces are analyzed. A sphere-plate
system and differently sized sphere-sphere systems are investigated. The numerical
parameters of the simulations are discussed in the previous chapter and given in
table 6.1. The remesh resolution factor is obtained by the mesh analysis (section 6.2).
The sample size is set to n = 1000, which results from the analysis of the statistical
uncertainty (section 6.3). Again, tolerance interval of 2 % unconverged simulations is
accepted.

The distribution of the capillary force is described by the mean capillary force F,
and the standard deviation s. Moreover, an important parameter of interest in this

chapter it the relative standard deviation of the capillary force

5= ; - 100%, (7.1)
i.e., the relative spread width around the mean value. The capillary force is in-
vestigated for two different geometries, i.e., between a rough sphere and a smooth
plate (section 7.1) and two spheres (section 7.2). Several distributions are exemplarily
tested for a normal distribution by qualitative (graphical) methods and a quantitative
Kolmogorov-Smirnov test (section7.1.1 and 7.2.1). For the sphere-plate system, the
complex relations between the relative standard deviation and the volume, contact
angle and gap distance are investigated (section7.1.2) and, subsequently, the influ-
ence of the root mean square roughness (RMS) is considered (section7.1.3). This is
completed by a deeper analysis of the influence of the RMS in a sphere-sphere system
with both spheres being rough. In particular, different RMS values are combined on
equally and unequally sized spheres in order to find general relations (section 7.2.2).

Finally, also the impact of the diffusion coefficient ¢ is presented (section 7.2.3).

7.1. Capillary forces between a rough sphere and a smooth plate

In this work, the plane is generally considered to be smooth since a rough plane shows
a poor convergence. Exceptionally, in section 7.1.3 some results are presented for a
rough plate combined with a smooth sphere.
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7.1.1. Analysis of the capillary force distribution

In this section the distribution of the capillary force is analyzed in more detail. Gen-
erally, a normal distribution of the capillary force is expected, however, this cannot be
presumed without any test. Note, that the accordance with a theoretical distribution
does not influence further investigations in this work. However, it has several impor-
tant implications for the development of a generalized rough capillary force model,
which is discussed in section 8.2. Therefore, the system of a smooth plate and a rough
sphere with Sq = 0.005 and ¢ = 0.1 is investigated. The volume, contact angle and
the gap distance are set to V = 0.1, § = 40° and a = 0.1, respectively.

In figure 7.1 (a) the cumulative distribution function (CDF) of the capillary force Fy
is presented. The CDF of a random parameter u is defined by

CDF(v) = P(u < v), (7.2)

where v is the function parameter. Thus, the CDF returns the probability, that «
is less or equal than v, which can also be interpreted as the standardized amount
of the sample that is below v. For example, from figure 7.1 (a) CDF(4.81)=17.5%
is obtained, i.e., 17.5% of the sample forces are below 4.81. The light gray cross
marks represent the n = 1000 simulated values and the black line corresponds to

the theoretical standard distribution. Since the difference between the two curves is
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Figure 7.1.: Cumulative distribution function (left) and quantile-quantile plot (right) of the capillary
force F, between a rough sphere (S; = 0.005 and € = 0.1) and a smooth plate with
V =0.1, 0 =40° and a = 0.1
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marginal, a normal distribution of the simulated values of F, is most probable. In
normal distributions 68.72 % of the values are within the interval of [u — o, u + o].
For the simulated force distribution [F, — s, F. + s] leads to an amount of 66.20 %
which is relatively close to the standard distribution.

Another option for a graphical analysis of a distribution is a quantile-quantile-plot
(q-g-plot). The idea is, to plot the quantiles of two distributions against each other
in order to find the deviations. For a normally distributed random parameter u the

standardized parameter

u _
z = Hu (7.3)

Uu
is introduced, which is standard normal distributed, i.e., its expected value is pu, = 0
and its standard deviation is o, = 1. Thus, the transformation from u to z corresponds
to a shifting and a distortion of the CDF. For the simulated ¢ = 1...n values of the

capillary force F,

fp, = " (7.4)

is obtained. Note, that for a g-g-plot the ¢ = 1...n values must be sorted by size,
ie., F~’670 < FCJ <. < an. The theoretical standard normal distributed parameter

is given by

=" <Z — 05) . (7.5)

n

Finally, the g-g-plot is obtained by plotting z ; against the standard normal dis-
tributed z;. The closer the simulated z;  curve approximates the trend line through
the origin with a gradient of 1, the more a normal distribution of F, can be assumed.
In figure 7.1 (b) the g-g-plot of the capillary force is illustrated. Again, a marginal de-
viation between the capillary force distribution and a normal distribution is shown. In
particular, the normal distribution is approximated very well around the mean value,
whereas larger deviations are observed at both sides. Nevertheless, the hypotheses of
normally distributed forces is supported.

Finally, a quantitative analysis is performed since this enables an efficient check of
further samples. Thus, the Kolmogorov—Smirnov test is applied, which is generally
used to compare two arbitrary distributions. Consequently, this test can be utilized to
test for a known distribution. The null hypothesis is, that the empirical distribution

function Fuyp(u) equals the theoretical distribution function Fipeo(u), which is written
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as Hy : Femp(u) = Fineo(u). The idea of the test is, to find the maximum deviation
between the these two distributions, which is given by [Sac02]

D = max | Femp () — Fineo(u)] . (7.6)

The test statistic D is then compared to a critical value D («r), where « is the
significance level. Finally, the null hypothesis is rejected for D > Dy («). For
n > 35 the critical values are given by [Sac02]

Das(0) = \/—0.511&(0.504). (77)

n

By applying the Kolmogorov—Smirnov test to the capillary force distribution, the
null hypothesis, that the capillary force distribution is a normal distribution, i.e.,
Hy : F(F.) = ®(F.|F,,s?), is formulated. The critical value for a commonly used
significance level of a = 5% is Deit(5 %) = 0.0429. Note, that in the context of
a hypothesis test the significance level desribes the probability for a first order er-
ror, i.e., the null hypothesis is rejected although it is actually true. A test statistic
of D = 0.0230 is obtained for the capillary force distribution that is illustrated in
figure 7.1. Since the test statistic is below the critical value, the null hypothesis is
not rejected. Thus, also the quantitative test predicts a normal distribution of the
capillary force.

The accordance with a normal distribution is also tested for other capillary force
distributions. Thus, one parameter, i.e., the RMS gq, the gap distance a, the contact
angel 6 or the volume V, of the described base case is varied. The resulting test
statistics of the Kolmogorov—Smirnov test are given in table 7.1. All values are below
the critical value which suggests a normal distribution for all parameters set. For
the gap distance the test statistic slightly decreases with a decreasing gap distance.
The reversed relation is obtained for the RMS, the contact angle and the volume.

Nevertheless, these tendencies are very small and only for the volume a clear tendency,

Table 7.1.: Test statistics of the Kolmogorov—Smirnov test for capillary force distributions with dif-
ferent physical parameters.
Critical value: D (5 %) = 0.0429

base a D Sy D 0 D 1% D

0.004 0.0165 0.002 0.0265 20°  0.0225 0.01 0.0415
0.2 0.0237 0.008 0.0203 70°  0.0194 0.5 0.0219

0.0230
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i.e., an increasing test statistic with a decreasing volume, is shown. Thus, the capillary
force distribution can still be considered normal for small capillary bridges. A strong
volume dependency of the capillary force distribution is generally observed, which is

discussed in the next section.

7.1.2. Influence of volume, gap distance and contact angle

In this section the correlation between the distribution of the capillary force and the
volume V, the gap distance @ and the contact angle  is investigated. First, the
influence of the volume is investigated for four different gap distances, i.e., a = 0.004,
0.05, 0.1 and 0.2. Capillary bridges with the different volumes are illustrated in
figure 7.2 for a gap distance of @ = 0.1. With an increasing volume all geometrical
parameters, i.e., the interface areas and the three-phase contact line, increase whereas
the roughness is kept constant. Thus, the proportions between the capillary bridge
and the roughness change, which is important for the detailed analysis of the standard
deviations.

In figure 7.3 the distributions of the capillary force are plotted as a function of the
volume V. The distributions are illustrated by box plots using the conventions that
are described in section 6.3. Moreover, the capillary force of the basic smooth system
FC’Sm, i.e., the system before roughness is added, is presented. The contact angle is
0 = 40° and the roughness parameters are S'q = 0.005 and € = 0.1. Samples with a
convergence rate below 98 % are indicated by * and are only obtained for @ = 0.2 and
V = 0.01 and 0.02, respectively. The capillary force distributions approximate the
curves of the smooth system very well. In particular, the mean capillary force F, (cross
marker) nearly agrees with the smooth capillary force FC,Sm. Even the small maximum

at @ = 0.004 and V ~ 0.02 is reproduced. Nevertheless, the mean capillary force

V =0.01 V =0.1 V=05

Figure 7.2.: Capillary bridges between a rough sphere and a smooth plate for different volumes

(6 = 40°, @ = 0.1, Sq = 0.005, ¢ = 0.1 and & = 100)
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slightly exceeds the smooth value. This effect increases with a decreasing gap distance.
Since the deviation is very small, it might be traced back to a numerical inaccuracy.
However, a deeper analysis in section 7.1.3 shows, that the overestimation is caused
by the modeling of the rough interfaces. In particular, the applied algorithm reduces
the gap distance which leads to an increase of the capillary force. In appendix C
the capillary force distributions are also presented for Sq = 0.002 and gq = 0.008,
however, they are not discussed in detail. Note, that for Sq = (0.008 capillary bridges
with @ = 0.004 cannot be obtained due to self intersections of the solids. The smallest
gap distance considered in this work, i.e., a = 0.004, cannot be combined with an RMS
of S'q > (.005 since the roughness is added to the particle interface without changing
the relative position of either the particle or the plate. Thus, for a very narrow gap,
this might lead to self-intersection of the solid interfaces. The resulting topological
changes of the capillary bridge are extremely complex and cannot be handled by the
implemented algorithm. For the very large distance of a = 0.02 the simulations with
Sq > 0.005 are far to unstable and consequently, only distributions for @ = 0.05 and
a = 0.1 are presented in the appendix.

In figure7.3 it is also demonstrated, that the absolute spread of the distribution
decreases with an increasing volume and with a decreasing gap distance. However,
with a decreasing gap distance also the mean capillary force F. increases. Thus, it is
reasonable to consider the relative spread of the distribution, i.e., the relative standard
deviation § defined by eq. (7.1). In figure 7.4 the absolute standard deviation s and
the relative standard deviation § are plotted. Note, that the values corresponding
to the unconverged box plots in figure 7.3 are not illustrated in these diagrams. As
already derived from figure 7.3, the standard deviation s decreases with an increasing
volume. However, for the large gap distances, i.e., @ = 0.1 and 0.2, an increasing
standard deviation with a maximum is observed for low volumes. In contrast, for the
small gap distances a monotonously decreasing standard deviation is observed.

The relative standard deviation § decreases with an increasing volume for all gap
distances. The gradient of the decrease declines with the volume and for V > 0.2
the curves are approximately constant. Thus, for V < 0.2 a strong degressive volume
dependency of § is observed, whereas for V > 0.2 a nearly independent behavior
is pointed out. All four curves match with each other, i.e., the degressive relation
between the relative standard deviation and the volume is independent of the gap
distance for V > 0.1.

The relative standard deviation § is given by the ratio of the standard deviation s and

the mean capillary force F. (figure 7.3, cross marker). For a = 0.004 both, the mean
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capillary force and the standard deviation, decrease. Since the quotient of these two
parameters, i.e., the relative standard deviation, decreases, the decrease of the mean
capillary force dominates over the decrease of the standard deviation. For the larger
gap distances (@ > 0.05) the capillary force increases with the volume and, at the same
time, the standard deviation decreases. This results in an overall decreasing relative
standard deviation. It is a very interesting result, that the relative standard deviation
seems to be independent of the gap distance, although the curves of the mean capillary
force and the standard deviation are qualitatively different. Nevertheless, for low
volumes there is a considerable deviation between the gap distances (figure 7.6), which
can hardly be estimated from figure7.4 (b) due to the high slope. Thus, this gap
distances dependency is subsequently illustrated more clearly.

In figure 7.5 capillary bridges between three gap distance are presented in order to
illustrate the geometrical proportions. With a decreasing gap distance the liquid-
solid interface and, consequently, also the three-phase contact line increases. Most
probably capillary bridges between the large gap distances cannot emerge from a
natural condensation process, which, however, does not imply that such a bridge
cannot exist (section2.4). For example, they might arise by slowly stretching an
already existing capillary bridge or by artificially adding fluid to the gap. Thus, the

tendencies of the correlations are also pointed out for the large gap distances in this

work.
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Figure 7.4.: Volume dependent standard deviation s (a) and relative standard deviation § (b) of
capillary bridges between a rough sphere and a smooth plate for different gap distances
(0 =40°, 54 =0.005and € =0.1)
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Figure 7.5.: Capillary bridges between a rough sphere and a smooth plate for different gap distances
(V =0.1, § = 40°, Sq = 0.005, ¢ = 0.1 and & = 100)

The standard deviation s and the relative standard deviation §, are explicitly plotted
over the gap distance in figure7.6. Note, that the unconverged simulation points
at V = 0.01 have a convergence rate of 97%, i.e., these points might be slightly
over- or underestimated, however, a systematic error that is large enough to influence
the overall tendency is excluded. The relative standard deviation § of V = 0.1
(figure 7.6 (b)) is nearly horizontal, i.e., it is independent of the gap distance for this
volume. Since figure 7.4 already reveals, that this also holds for V' > 0.1, larger

volumes are not illustrated in figure 7.6.
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Figure 7.6.: Gap distance dependent standard deviation s (a) and relative standard deviation § (b)
of capillary bridges between a rough sphere and a smooth plate for different volumes
(0 =40°, Sq = 0.005 and € = 0.1)
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The standard deviation of the capillary force s decreases for an increasing gap dis-
tance (figure7.4 (a)). Interestingly, for V > 0.01 the curves exhibit a slight kink at
a = 0.075. The gradients decrease with both, the gap distance and the volume of the
capillary bridge. The mean capillary force is not explicitly plotted as a function of the
gap distance, however, from figure 7.3 a generally decreasing capillary force with an
increasing gap distance is obtained. Thus, the observed maximum in figure 7.6 (b) is
traced back to the decreasing rates of the standard deviation and the capillary force.
In particular, for the low gap distances the capillary force rapidly decreases which
dominates the relative standard deviation, i.e., the fluctuation increase in relation
to the mean capillary force. At larger gap distances the mean capillary force still
decreases, however, with a significantly lower gradient. Thus, the relative standard
deviation § is dominated by the decreasing standard deviation s.

The behavior of the standard deviation s is very complex and the presented tenden-
cies are not straightforward. For example, in figure 7.4 (a) it is not obvious, why the
standard deviation would exhibit a maximum for a moderate gap distance (@ = 0.1)
and, at the same time, strongly decrease for a lower gap distances (¢ = 0.004 and
0.05). Similarly, the kink in figure 7.6 (a) cannot be explained without any further in-
formation. According to the capillary force equation (eq. (3.7)) the capillary pressure
and the three-phase contact line mainly determine the capillary force. In a rough
system, both parameters fluctuate and, thus, their standard deviation can be con-
sidered for a better understanding of s. However, the relation between the capillary
pressure and the three-phase contact line and the volume, gap distance and contact
angle, respectively, is highly non-linear and, additionally, the ratio of the capillary
pressure force and surface tension force must be taken into account. Due to these
complex dependencies and superimposed effects, the behavior of standard deviation
of the capillary force cannot directly be traced back to either the standard deviation
of the capillary pressure or the three-phase contact line. Nevertheless, the standard
deviation of the three-phase contact line on the rough sphere is analyzed in detail in
order to exemplarily reveal the complexity of the system.

If an arbitrary system with a random parameter is scaled, the standard deviation of
this random parameter is expected to scale with the mean value of this parameter.
However, in the case of an increasing or decreasing capillary bridge the size of random
parameter, i.e., the asperity size, is not scaled. Instead, only the number of asperities,
that influence the capillary bridge, changes with an increasing solid-liquid interface.
If now the length of the three-phase contact line increases, the standard deviation is

expected to increase for very small three-phase contact lines. This is traced back to
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the additional asperities that influence the system. However, if the length of the three-
phase contact line is further increased, a maximum is expected at some point, i.e., the
standard deviation decreases for large three-phase contact lines. This is traced back to
the fact, that the changes more probably cancel each other out, i.e., locally shortening
and lengthening might balance each other. This can also be interpreted in terms of
the law or large numbers. This theorem of the probability theory states, that for a
large sample number the average of the random parameter approximates the expected
value. If now each asperity that affects the three-phase contact line is interpreted as
random parameter, the sample number increases for an increasing three-phase contact
line. Consequently, for a large three-phase contact line the average of these asperities
converges towards an expected value and, consequently, also the length of the three-
phase contact line converges. Note, that this would theoretically imply a standard
deviation of zero in the limiting case which is not the case since there are always
outliers that are not balanced out.

In figure 7.7 the relation between the mean length of the three-phase contact line
lcr, and their standard deviation Si.,, 1s presented. In the left diagram the volume
is varied at a constant gap distance, whereas in the right diagram the gap distances
is varied at a constant volume. Thus, in the right diagram the increasing mean
length Iy, implies a decreasing gap distance. The above described relation, i.e., a

standard deviation sy, that increases first and, with an increasing mean value Icr,

(a) (b)

T T T T T T T T T T T T T T T T T T T T T T T T
T A4f ] 5 47 ]
5 - ] 5 ]
— [ B — B
= 2 =
a 3.5 . a 3.0 a
z.—Q [ B x.—Q B
@« - - V) - a
g i | g i ]
2 3 . 2 3 .
B IS R
5} <5}
o : il o i |
T 25 | T 25| |
E i ——a=0.004 | E i —~—V =003 |
S f i=01 | = i . ]
0 2+ | |7} 2 - V =0.1 |
L O T O | L O O S Y T I | |
1 2 3 4 ) 1 2 3 4 )
mean length of CL Icy,/ - mean length of CL Icy,/ -
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starts to decrease at some point, is principally pointed out in figure 7.7. However, if
the standard deviation of the three-phase contact line would be only influenced by
the solid geometry, i.e., the asperities, the curves are expected to match with each
other. In each diagram two capillary bridges of a sample with the same mean length
of the three-phase contact line are exemplarily illustrated. Note, that these bridges
do not have exactly the same length of the three-phase contact line, since they are a
particular realization of a sample with the same mean value. Although these samples
have the same mean length of the three-phase contact line the standard deviation
is different. It is qualitatively observed, that the standard deviation decreases with
an increasing liquid-gas interface I'y; or with a decreasing mean curvature. However,
the exact mechanism behind the different standard deviations remains unclear at
this point. Moreover, the increase for V = 0.1 and lor, = 3.4 cannot be explained.
Nevertheless, the differences between the curves for the variation of the volume and
gap distance are traced back to the different evolution of the capillary bridge geometry
with either an increasing volume or a decreasing gap distance.

The standard deviation of the capillary pressure is even more complex since it does
not depend on the size of the capillary bridge. Thus, a plot analogous to figure 7.7
does not seem to be reasonable. The pressure is determined by the curvature of the
liquid-gas interface, which is independent of the area or length of any interface or the
three-phase contact line. However, changes at the three-phase contact line, that are
caused by different realizations of the roughness, indirectly affect the curvature of the
liquid-gas interface, i.e., the mean curvature and the capillary pressure. Note, that in
this context differences between three-phase contact lines are not equal to a different
length of the three-phase contact lines as plotted in figure 7.7. In fact, two different
realizations of the three-phase contact line might have the same length but lead to
different capillary pressure since their local path is different.

The presented findings exemplarily demonstrate the highly non-linear relations. Even
for a given length of the three-phase contact line | i.e., a given solid-liquid interface, the
corresponding standard deviation cannot be estimated due to further dependencies. It
is worth mentioning, that the differences cannot be caused by a statistical uncertainty
of the sample since the same particle sample is used for all computations. Moreover,
the differences are larger than +4.6 %, which is the relative confidence interval of all
standard deviation with n = 1000 (section6.3).

The previous results are all presented for a contact angle of § = 40°. In figure 7.8
capillary bridges with a contact angle variation are illustrated. At first, the bridges

might not seem to differ very much. A closer look at the liquid-gas interface reveals,
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however, a very different bending. In section6.2 it is already explained, that the
strong bending at the three-phase contact line causes a relatively inaccurate numerical
computation of the co-normal vector fi. Moreover, the different shapes of the capillary
bridges lead to different curvatures and capillary pressures, respectively. In particular,
the illustrated mean curvatures are H(20°) = —3.10, H(40°) = —2.01 and H(70°) =
—0.44.

In figure 7.9 the distributions of the capillary force are plotted as a function of the
contact angle #. Note, that for # = 10° none of the samples converged. For a = 0.1
and 0.2 the distributions consist of 85 % and 89 % of the sample, whereas for a = 0.004
and 0.05 less than 50% converged. Thus, these distributions are not illustrated
in figure7.9. It is demonstrated that the mean capillary force F. (cross marker)
approximates the capillary force of the smooth system ﬁc,sm very well. Analogous
to figure 7.3, a slight overestimation that increases with a decreasing gap distance is
observed. This is discussed more in detail in section 7.1.3. The absolute spread width
of the distribution decreases with an increasing contact angle.

Again, the standard deviation of the capillary force s and the relative standard de-
viation § are discussed in detail. In figure7.10 (a) the standard deviation s of the
capillary force is plotted depending on the contact angle. Generally, the contact an-
gle dependency seems to be relatively independent of the gap distance. For all gap
distances a decrease is observed, that flattens with an increasing contact angle. The
relative standard deviation § (figure 7.10 (b)) strongly increases for large contact an-
gles. Generally, the contact angle dependency of the relative standard deviation is
divided into two regions, i.e., # < 50° and 6 > 50°. In the first region, a relatively
constant behavior is pointed out. For low gap distances (@ = 0.004 and 0.05) only

a slight increase is observed, whereas a moderate decrease is demonstrated for the

0 =10° 6 = 40° 0 = 70°

Figure 7.8.: Capillary bridges between a rough sphere and a smooth plate for different contact angles
(V=0.1,a=0.1, S, =0.005, ¢ = 0.1 and £ = 100)
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Figure 7.10.: Contact angle dependent standard deviation s (a) and relative standard deviation §
(b) of capillary bridges between a rough sphere and a smooth plate for different gap
distances (V' = 0.1, Sq = 0.005 and € = 0.1)

large gap distance (@ = 0.2). The increase for § > 50° is mainly caused by the
strong decrease of the mean capillary force (figure7.9). In particular, the mean cap-
illary force approaches zero and for F, = 0 a non-zero standard deviation is expected
which, however, implies an infinite relative standard deviation. Thus, at very low
capillary forces, considering the relative standard deviation might not be useful since
all physical effects are superimposed by the decreasing denominator in eq. (7.1).

In this section, the influence of the volume, gap distance and contact angle on the
distribution of the capillary force and, particularly, the standard deviation s is in-
vestigated in detail. It is observed, that for small volumes the standard deviation
s strongly depends the volume and the gap distance. However, with an increasing
volume the influence of both parameters significantly decreases and might even be
neglected for large capillary bridges. Moreover, the impact of the contact angle on

the standard deviation is much lower compared to the other two parameters.

7.1.3. Influence of the RMS

In the previous section, the relation between the distribution of the capillary force
F, and the volume V', gap distance @ and contact angle € is analyzed. Therefore, the
RMS is set to a constant, medium value of gq = 0.005. Subsequently, the influence of
the roughness itself is investigated by varying the RMS at a constant volume, contact
angle and the gap distance, i.e., V = 0.1, § = 40° and @ = 0.1. Moreover, the diffusion
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S,=0.001 S4=0.005 S,=0.01

Figure 7.11.: Capillary bridges between a rough sphere and a smooth plate for different RMS
(V=0.1,0 =40°, a=0.1, e = 0.1 and £ = 100)

coefficient is kept constant at € = 0.1. Note, that it is generally observed, that a high
particle smoothing, i.e., a large ¢, is favorable for numerical stability. Thus, a high
diffusion coefficient of the rough interface is chosen for the sphere-plate system and
its influence on the distribution of the capillary force is analyzed later for the sphere-
sphere systems (section 7.2.3) since these generally show a higher numerical stability.
In figure 7.11 capillary bridges with a RMS of S'q = 0.001, 5q = (0.005 and Sq = 0.01
are illustrated. The increasing asperities, or more precisely the negative of the solid
asperities, is apparent on the solid-liquid interface. Moreover, with an increasing
roughness the three-phase contact line deviates stronger from an ideal circle.

The distributions of the capillary force for different RMS are presented in figure 7.12.
As expected, the spread of the distribution increases with the RMS. The capillary

force of the corresponding smooth sphere-plate system (Fc) is plotted as a reference
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Figure 7.12.: RMS dependent distributions of the capillary force F, between a rough sphere and a

smooth plate (V = 0.1, § =40°, @ =0.1 and ¢ = 0.1)
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value. For the low RMS, the mean capillary force of the rough system agrees well with
the smooth value. Since the rough interface is derived by adding a normal distribution
to the smooth interface, it is reasonable to assume, that the mean value corresponds
to the capillary force of the smooth system. However, with increasing roughness the
mean value increases and exceeds the smooth capillary force. This is traced back to
the fact, that the gap distance is changed by the asperities, i.e., the smooth and the
rough sphere-plate system do not have the same minimal gap distance.

A more quantitative analysis of the increasing mean capillary force is presented in
figure 7.13. The relative deviation of the simulated mean capillary force of the rough

sample F, and the capillary force of the smooth sphere-plate system FC’Sm is given by

~ Fc - Fc sm
AFeom = ——=—=-100%. (7.8)

In the left diagram, the deviation Aﬁ’qsm is plotted as a function of the RMS Sq for
different gap distances. For a = 0.05 and @ = 0.2 a convergence rate of 98 % could
not be obtained for the highly rough samples. Although the plotted values seem to
extrapolate the curves quite well, a slight systematic error cannot be excluded with
certainty. Thus, these values are again indicated by the transparent marks and the
dashed lines. As already shown by figure 7.12 the difference between the mean values
of the rough simulation and the capillary force of the smooth system increases with
the RMS and with a decreasing effective gap distance.

Generally, a deviation below 2 % is observed which corresponds to the order of mag-
nitude of the numerical error (table6.5). However, the numerical error is systematic
and mainly depends on the volume and the contact angle rather than on the gap
distance and root mean square roughness. The statistical uncertainty is significantly
lower (0.40% for V' = 0.1, table6.6) and also not expected to cause a systematic
increasing mean capillary force with the RMS. Instead, the deviation between F.,
and F’Qsm is traced back to the decreasing gap distance. In figure7.13 (b) the ratio
of a, and agy is plotted, where a, is the mean of the minimal gap distance of the
rough geometry and agy,, the distance of the smooth base geometry, i.e., agy, = a. It
is demonstrated, that with an increasing RMS the mean gap distance of the rough
system significantly decreases. This is not directly obvious since the rough interface
algorithm displaces the points of the smooth base geometry in both directions, i.e.,
in- and outwards of the sphere (section 5.2.1). Thus, the mean gap distance might be

expected to be constant which is, according to figure 7.12 (b), clearly not the case.
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This is traced back to the fact, that the gap distance is a minimum rather than
an average value and this minimum is influenced by several mesh points of the solid
interface. The principle is illustratively explained for a system of two parallel plates. If
only one mesh point on a plate would be displaced outwards the plate, the minimal gap
distance between the plates reduces. However, if the same point would be displaced
inwards the plate, the minimal gap distance remains constant since it is defined
by all other points. Consequently, for an average over a huge number of interface
realizations, the average minimal gap distance is below the minimal gap distance of
the two smooth plates. If now all points on one plate are randomly displaced, the gap
distance increases if all points are displaced inwards the plate which is statistically
possible, however, not frequently expected. The same principle holds for the sphere-
plate system. However, due to the curved interface of the sphere only the mesh
points around the closet distance in the smooth system are relevant for the minimal
gap distance. With an increasing RMS this area of influence increases since the mesh
points are stronger displaced. Consequently, more mesh points must be displaced
inwards the sphere in order to obtain a larger gap distance compared to the smooth
gap distance. This reduces the probability of larger gap distances and the mean
value decreases even stronger. Overall, the decreasing gap distance is traced back
to two effects. First, an increasing RMS leads to larger displacements of the solid
mesh points and, thus, the gap distance is stronger reduced. Second, the number of

solid mesh points that are relevant for the gap distance increases with the RMS and,
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Figure 7.13.: RMS dependency of the relative deviation Aﬁ’cysm for distances (a) and of the relation
between the mean rough and the smooth gap distance a,/asm (b)
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hence, the probability for larger gap distances decreases. Since both effects lead to a
decreasing gap distance, the gradients in figure 7.12 (b) increase with the RMS.

It is worth mentioning, that the mean gap distance reduces stronger if the roughness
is applied to the plate rather than to the sphere. This is traced back to the vertex
displacement by the rough interface algorithm, i.e., a displacement normal to the
solid interface (section5.2.1). Thus, the displacement direction of the vertices at the
plate always corresponds to the direction normal to the gap distance. In contrast,
on the sphere the displacement, in relation to the gap distance, is composed by a
normal and a tangential component. Since only the normal component effects the
gap distance, the reduction is less pronounced compared to the rough plate.

Note, that the absolute decrease of the mean gap distance is similar for all three gap
distances. Thus, the relative deviation is largest for the smallest gap distance which
leads to the highest relative deviation Aﬁqsm for a = 0.05. For an RMS of 0.01
the mean gap distance of the rough system is reduced by approximately 40 % and,
consequently, a deviation between F. and chsm larger than 2 % might be expected.
However, the capillary force generally increases with a decreasing gap distance. Thus,
the relative deviation of the capillary force, that is caused by different gap distances,
decreases. This is expected to cause a comparable order of magnitude of AFC,Sm for
all investigated gap distances (figure7.12(a)) although the relative reduction of the
mean gap distance is significantly larger for the small gap distances (figure 7.12 (b)).
Overall, the accordance of the smooth capillary force and the mean rough capillary
force is minor for the investigated systems in this work. Nevertheless, this cannot
be assumed in general. For example, when applying the presented method to other
geometries or even when considering a different rough interface algorithm, i.e., a
vertex displacement other than normal to the solid interface, the order of magnitude
of the deviation needs to be estimated again.

In figure 7.12 it is obvious, that the width of the capillary force distribution increases
with an increasing roughness. In figure 7.14 the relative standard deviation 5 is plotted
for various system configurations. The dark gray square mark lines correspond to a
system with V = 0.1, 8 = 40°, @ = 0.1 and ¢ = 0.1. Based on this configuration
one parameter is varied in each diagram. It is immediately obvious that the relation
between the RMS and the relative standard deviation is linear for all parameter
combinations. This is remarkable and offers a great potential for the development
of a rough capillary force model that can be applied to a discrete element method

(DEM). The general idea of such a model is discussed in section 8.2.
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In figure 7.14 (a) the influence of the RMS is plotted for different volumes. As already
mentioned, the relative standard deviation proportionally depends on the RMS. The
gradient considerably increases with a decreasing volume. Overall, the higher gradient
at low volumes is well consistent with the previous observation, that capillary bridges
with low volumes are more sensitive towards the variation of another parameter, e.g.,
the gap distance dependency exhibits a more pronounced maximum at lower volumes
(figure 7.6 (b)). The influence of the volume on the gradient of Sq seems to be an order

of magnitude larger compared to the other parameters. This is, however, also traced
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back to the fact, that the volume in figure7.14 (b), (c) and (d) is set to V = 0.1,
which is relatively large. From the analysis in section 7.1.2 it is concluded, that the
gradients of the other parameters differ more from each other for lower volumes.

In figure7.14 (b) the roughness dependency is shown for different gap distances a.
Generally, the influence of the gap distance is minor which is already explained by the
relatively large volume. It is worth mentioning, that the relative standard deviation
of the median gap distance a = 0.1 is slightly above the other two curves, which
corresponds to the very weak maximum in figure 7.6 (b) and V = 0.1. From the
increasing difference between the gap distances in figure 7.14 (a) it is concluded, that
the maxima in figure 7.6 (b) are more pronounced for an increased RMS.

A contact angle 6 variation is presented in figure7.14 (¢). For 6 < 50° the relative
standard deviation is independent of the contact angle. This is already demonstrated
for 5’q = 0.005 in figure 7.10 (b). For § = 60°the relative standard deviation is slightly
above the other curves. The higher relative standard deviation is, however, mainly
traced back to the rapid decrease of the capillary force that is caused by the decreasing
capillary pressure. At this point it remains unclear, if the observed contact angle
dependency also holds for low volumes.

In figure 7.14 (d) the relative standard deviation § is presented for the two differently
rough systems, i.e., a rough sphere and a rough plate system. First, as a very general
result, the convergence of the simulation significantly deteriorates for the rough plate.
In the particular case of the system illustrated in figure 7.14 (d), all samples with Sq >
0.005 did not converge with a rate of at least 98 %. The number of converged capillary
bridges decreases nearly linear and for Sq = 0.01 only 55 % of the sample converged.
Thus, these values cannot be used for any physical interpretation. Nevertheless, for
gq < 0.005 the values are computed within the requirements, i.e., a convergence rate
of 98 %.

For S'q < 0.005 the relative standard deviation of the rough plate system is slightly
above the rough sphere system. From the considerations of the minimal gap distance
it is concluded, that the mean capillary force is larger for the rough plate system.
This is confirmed by the simulations, however, it is not explicitly plotted. Due to the
increasing mean capillary force a lower relative standard deviation compared to the
rough sphere would be expected. However, since the relative standard deviation of
the rough plate system is larger (figure 7.14 (d)) also the absolute standard deviation
s must be above the absolute standard deviation of the rough sphere system. This
might be traced back to the convex geometry of the sphere. Since roughness is applied

normal to the interface, on a convex geometry the displacement of a vertex is com-
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posed of a component normal and tangential to the capillary bridge. The tangential
components are assumed to have a minor influence on the capillary bridge whereas
the normal components are dominant. On a plate, however, a vertex displacement
normal to the plate corresponds to a displacement normal to the capillary bridge.
Thus, the fluctuations that are cause by a rough plate might be larger compared to
the rough sphere. This, however, cannot be certainly concluded without a deeper in-
vestigation. However, this is not straightforward due to the unsatisfying convergence
behavior of the rough plate.

Nevertheless, the deviation between the two configurations increases with the RMS.
However, it cannot be concluded for sure, how large the deviation might be for high
roughness. Nevertheless, if the linear increase of Sq < 0.005 is extrapolated, the
deviation between the two systems seems to be minor for low RMS values. This
is particularly interesting with respect to the unsatisfying convergence of the rough
plate. If the difference of the capillary force distribution is nearly independent of
whether the sphere or the plate interface is considered to be rough, systems with a
highly rough plate can be approximately computed by adding the roughness to the
spherical interface.

In conclusion, the relative standard deviation § linearly depends on the RMS S*q_ This
is particularly remarkable with respect to the complex dependencies and interdepen-
dencies of the volume, contact angle and gap distance. The overall results suggest,
that the relations revealed in section7.1.2 are enhanced by an increasing RMS and
reduced by a decreasing RMS, respectively. It is worth mentioning, that the linear
increase of the relative standard deviation offers a great potential to develop a rela-
tively simple but sufficiently exact rough capillary force model for DEM simulations

as discussed in section 8.2.

7.2. Capillary forces between two rough spheres

In this section an analysis of the capillary force distribution between equally and un-
equally rough spheres is presented. The volume, contact angle and gap distance are
fixed at V = 0.05, § = 40°and @ = 0.05. First, the distribution is tested and, subse-
quently, the influence of the RMS Sq,l\g and the diffusion coefficient ¢ is investigated.

7.2.1. Analysis of the capillary force distribution

In section 7.1.1 the distribution of the capillary force between a rough sphere and a

smooth plate is tested to be normal by qualitative and quantitative methods. Gener-
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ally, a normal distribution is also expected for the sphere-sphere system, however, this
must be verified. Thus, a Kolmogorov—Smirnov test is performed for three different
combinations of rough spheres.

For Sy = 0.002\0, Sq12 = 0.007\0 and Sy = 0.005\0.005 test statistics of
D =0.0276, D = 0.0306 and D = 0.0169 are obtained. Thus, the order of magnitude
is consistent with the values obtained for the sphere-plate system (table7.1). For the
critical value Dt (5 %) = 0.0429 of the significance level a = 5% the null hypotheses
is not rejected and consequently the distribution is estimated to be normal.
Moreover, the tendency of a decreasing test statistic, i.e., a more normal distribution,
with an increasing volume is obtained. In particular, for §q71\2 = 0.005\0.005 also the
capillary force distributions for V = 0.1 and V = 0.2 are tested, which leads to test
statistics of D = 0.0212 and D = 0.0155. Overall, the distribution of the capillary
force is tested to be normal for all considered parameter combinations. However, it
should be explicitly noted, that the normal distribution of the capillary force is only
demonstrated for a normal distribution of the asperities. Hence, it is possible, that
another distribution of roughness might lead to different results for the capillary force

distribution.

7.2.2. Influence of the RMS

Subsequently, the influence of the RMS on the relative standard deviation between
two spheres is investigated. Since the spheres show a good convergence behavior, the
combination of different RMS values on the spheres are analyzed. First, a system
of two equally sized spheres is analyzed and, subsequently, spheres with R; = 1 and
Ry = 0.5 are considered.

In figure 7.15 (a) the relative standard deviation of the equally sized sphere system is
presented for different RMS values. On the x-axis the RMS §q71 is presented, whereas
Sq2 is set to 0 and to Sq; = S,2. These two plots are emphasized since they are
later compared to the system of unequally sized spheres. Additionally, the plots for
a constant Sq o of 0.001, 0.004 and 0.007 are illustrated. The mean capillary force is
nearly constant. Only a small increase due to the smaller effective gap distance has
to be considered. However, for the sphere-sphere system this increase is below 2.6 %
even for the highly rough particles with S'q,l = Sq’g = 0.007. Therefore, the plots
of the relative and the absolute standard deviation are nearly equal since the mean
value is approximately constant. The characteristic diagram is symmetric about the
Sq1 = Sqo-axis since the spheres are completely equal, i.e., §(Sq1\2) = §(Sq211)- The

relative standard deviation increases linearly with the RMS S, if the other particle
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interface is smooth, i.e., Sq,g = (0. This is also observed for the sphere-plate system
where a linear increase is demonstrated for all parameter configurations and a smooth
plate interface. Interestingly, the relative standard deviation also increases linear if
Sq 1= Sq 9. For Sq 9 # 0 and Sq 1 # Sq 2, a non-linear increase is obtained. However,
with an increasing Sql and, particularly, for Sq1 > ng for the plots of a constant
5’%2 are approaching a linear increase.

Moreover, it is demonstrated, that the influence of the RMS values cannot be linearly
combined which, in fact, has not be expected. In particular, the standard deviation
is largest if a high RMS is observed on a single sphere rather than a moderate value
on both spheres. This is traced back to fact, that, if a roughness is applied to both
interfaces, the effects of the asperities on both interfaces can cancel each other out.
Of course, the influence might also be enhanced in some cases, however, not above
the case, where a high roughness is applied to only one interface. Thus, the relative
standard deviations §(Sy 1, Sq2) are always below 3(Sy1 4 Sq.2,0).

In section 8.2 the development of a rough force model for the implementation in a
multi-scale simulation is discussed. With respect to such a model, the interpolation
of the target parameters, i.e., the relative standard deviation §, is very important.
The linear increase offers the option of deriving the whole characteristic diagram of
the two RMS values (figure7.15 (a)) by just a few simulations. In particular, the

following procedure is suggested:

e Simulate §(§q7max, gq’g) with the desired resolution of the RMS, where Sq’max is
the maximum RMS that should be considered, i.e., 0.007 in figure 7.15 (a)

o Linearly interpolate §(Sq1 = Sq2) between (0,0) and §(Sq.max, Sqmax)
e For Sy1 > S,z linearly interpolate §(Sy1, Sq2) between 3(Sy2, Sq2) and
§(Sq,max> Sq,?)

e For S>> S,; the RMS values can be switched since §(§q71\2) = §(5'q,2\1)

This procedure is applied to figure 7.15 (a). For an RMS resolution of qu = 0.001
36 simulations of the sample size n must be performed. With the suggested interpo-
lation only 8 simulations are required, i.e., $(0.007,0) to §(0.007,0.007). The relative
deviations between the simulated and the interpolated relative standard deviation are
presented in figure 7.15 (b). For 5%1 = 5’%2 the deviation is below 0.2 % since a linear
relation is pointed out in figure7.15 (a). Moreover, for S’q,l = 0.007 the deviations
vanish since these parameters are exactly simulated (step 1.). The largest deviations

are obtained very close to the S'q,l = 5’%2 axis, which is traced back to the bending
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of the constant S’qg curves in figure 7.15 (a). Note, that with the suggested procedure
all values between the two straights are interpolated, whereas the values above the
5’%1 = S’q72 are given by the symmetry. Thus, the strongest deviation from a lin-
ear curve is obtained for S’q,z = 0.001 and small 5’%1. The largest relative deviation
(5.89%) is obtained for S, = 0.002 and Sy ; = 0.001, which is mainly traced back
to the small absolute value of §. Nevertheless, the deviations are relatively small
when considering the computational costs of the simulation. In this sample case,
only one quarter of the original simulation time would be required. Moreover, they
must be related to the statistical uncertainty of the standard deviation, i.e., a confi-
dence interval of 9.20 % (section6.3). A reduced number of simulations points offers
the potential to increase the sample size and, hence, the accuracy of the standard
deviation. Thus, the overall accuracy of a characteristic diagram is increased. Nev-
ertheless, the deviations of the interpolation might slightly change with a different
S’q,max. However, their order of magnitude is expected to be general since the plots
of a constant 5%2 approach a linear increase with an increasing S‘q,l. Subsequently,
the relative standard deviation is investigated for unequally sized spheres.

In figure 7.16 the relative standard deviation § is presented in a three-dimensional
diagram. The x and y-axis represent the RMS of the large sphere 5’%1 and the
smaller sphere ng, respectively, where Ry = 1 and Ry = 0.5. Again, a linear increase

is obtained if one the spheres is smooth, i.e., 5’%1 = 0 or 5'%2 = 0, and also for
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Figure 7.15.: RMS dependency of the relative standard deviation § for two equally sized spheres (a)

and the deviation from a linear interpolation (b) (V' = 0.05, a = 0.05, § = 40° and
e=0.1)
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Sq1 = Sq2. However, the characteristic diagram is not symmetric anymore. This
becomes clearer when considering a two-dimensional plot as presented in figure 7.17.
Note, that the marks for the plots of Sq.; = 0, Sq1 = 0.005 and S, ; = Sy correspond
in figure 7.16 and figure 7.17.

A comparison of the Sq’l = 0 plots shows, that the relative standard deviation in-
creases stronger with the RMS of the smaller sphere. This holds for any combination
of RMS values, i.e., in figure 7.17 (a) the increase is always stronger between the lines
of a constant S, o, whereas in figure 7.17 (b) the increase is much stronger on a line
of a constant SqJ. The higher fluctuation of the rough small sphere is traced back to
the shorter three-phase contact line. For the sphere-plate system it is demonstrated,
that the magnitude of the standard deviation cannot directly be estimated from the
mean value (figure 7.7). However, the mean length of the three-phase contact line has
an order of magnitude of 2 for the small sphere and 2.3 for the large sphere. When
considering figure 7.7 a generally decreasing standard deviation with an increasing
three-phase contact line seems to be reasonable in this range. Nevertheless, it can-
not be concluded with certainty that the smaller three-phase contact line causes the

higher fluctuation when roughness is applied to the smaller sphere.

relative standard deviation § / %
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4 %0 RMS S,/ 108
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Figure 7.16.: RMS dependency of the relative standard deviation § for two unequally sized spheres
(R2 =0.5-R;y) and V = 0.05, a = 0.05, § = 40° and € = 0.1
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Figure 7.17.: RMS dependency of Sy (a) and Sy (b) of the relative standard deviation § for two
unequally sized spheres (Re = 0.5 R;) and V = 0.05, @ = 0.05, § = 40° and € = 0.1

7.2.3. Influence of the diffusion coefficient

All previously presented results are computed for a constant diffusion coefficient of
e =0.1. As described in section5.2.1, an even higher diffusion coefficient does not
influence the rough interface since the desired RMS is fixed (eq. (5.18)). However, a
lower diffusion coefficient significantly affects the interface topology as illustrated in
figure 5.5. In particular, the frequency of the asperities increases with a decreasing
diffusion coefficient, which results in sharper edges and higher gradients on the in-
terface. Generally, a high diffusion coefficient is advantageous for numerical stability,
which can already be supposed from figure 5.5. In fact, interfaces that combine a high
RMS with a low diffusion coefficient cannot be computed with sufficient stability, i.e.,
particular bridges might still converge, however, the convergence rate of the sample
significantly decreases. Thus, the influence of the diffusion coefficient is investigated
for a system of a rough and a smooth sphere (S'q’g = 0) with RMS of SqJ < 0.004.
In figure 7.18 capillary bridges between the two equally sized spheres with V' = 0.05,
0 = 40°, @ = 0.05, Sq1 = 0.005 and S, = 0 are illustrated. Since the liquid-solid
interfaces considerably differ from each other, it is explicitly emphasized that the
same RMS is realized on each interface. However, for ¢ = 0.001 the liquid-solid
interface shows significant fluctuations and interface gradients. In contrast, applying
a diffusion coefficient of € = 0.01 leads to a much smoother interface.
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€=0.001 =0.005 e=0.01

Figure 7.18.: Capillary bridges between two equally sized spheres for different diffusion coefficients €
(V =0.05, 0 = 40°, a = 0.05, S, 1,2 = 0.005\0 and & = 100)

The relative standard deviation § is plotted in figure7.19 (a) as a function of the
diffusion coefficient €. The RMS on the rough sphere S*q’l varies from 0.001 to 0.004,
whereas the other sphere is considered to be smooth, i.e., Sq» = 0. For Sy; = 0.003
and 0.004 a convergence rate of at least 98 % cannot be obtained for ¢ < 0.001 and,
hence, the curves in figure7.19 (a) end at ¢ = 0.005. Generally, a slight increase of
the standard deviation is observed for a decreasing diffusion coefficient. Nevertheless,
the overall influence seems to be almost negligible.

In figure 7.19 (b) the relative deviation AS§ is presented. The deviation is calculated
according to eq. (6.5) with 8., = 8.-01. Thus, the curves in figure 7.19 (b) show the
percentage increase that is obtained in figure7.19 (a). Due to this normalization,
the influence of the diffusion coefficient can be better estimated. In particular, it

is demonstrated, that the relative standard deviation increases up to 15 % for a de-
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Figure 7.19.: Diffusion coefficient dependent relative standard deviation of the capillary force (V =
0.05, @ = 0.05, 8 = 40° and Sq2 = 0)
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creasing diffusion coefficient from ¢ = 0.1 to € = 0.001. Moreover, the gradient is
slightly RMS dependent. For ¢ = 0.005 the difference between the four RMS curves
is approximately 0.5 %. This difference increases with a lower diffusion coefficient and
for ¢ = 0.001 the difference between S’q,l = 0.001 and 0.002 is already 1.6 %. Thus,
from the presented curves it is concluded, that the increase of the standard deviation
is stronger for higher RMS values, which, however, cannot be simulated with the
current numerical setup due to the numerical instability.

Overall, the description of a rough interface only by the RMS seems to be insufficient
as already discussed in section 3.7.1. The RMS considers the standard deviation from
the centerline of the interface, i.e., the asperity height variation. However, it does not
consider the asperity fluctuation and gradients, respectively. Nevertheless, particles
with very sharp and edgy interfaces (for example figure 5.5, S'Q = 0.01 and € = 0.001
or 0.01) do not seem to be highly relevant for practical applications. Generally, three

different regimes for the smoothin coefficient can be obtained:

e £>0.1
the interface of the rough particle is approximately constant due to the rough
interface algorithm (section 5.2.1) and, consequently, diffusion coefficients larger

than 0.1 do not have to be considered

e 0.1 >¢>0.01
the influence of the diffusion coefficient on the relative standard deviation cap-

illary force is below 5% and might therefore be neglected

e £<0.01
the influence of the diffusion coefficient rapidly increases and should conse-

quently be considered in the computation of the capillary force distribution

In this chapter the novel method is applied to analyze the capillary forces between
rough interfaces. The distribution of the capillary force is tested to be normal for all
investigated systems and parameter combinations. For the sphere-plate system an
intensive analysis of the influence of the volume, the gap distance and the contact
angle on the capillary force distribution is presented and highly non-linear relations
are pointed out. It is shown, that the standard deviation is nearly constant and in-
dependent of the gap distance for large bridge volumes. For low volumes, however,
the influence of the gap distance and the contact angle might become significant. In
addition to these parameters also the influence of the RMS is analyzed. It is shown,

that the relative standard deviation increases linearly with the RMS in the system
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with a smooth plane. Moreover, combinations of different RMS values on the inter-
faces are investigated for equally and unequally sized spheres. Again a linear relation
between the relative standard deviation and the RMS is observed if either one inter-
face is smooth or if both interfaces exhibit the same roughness. For the equally sized
spheres it is demonstrated, that the characteristic diagram of the RMS can be ap-
proximated with an interpolation scheme that significantly reduces the computational
effort. The characteristic diagram of the unequally sized spheres is apparently not
symmetric. In fact, the relative standard deviation increases stronger if the rough-
ness is applied to the smaller sphere. The diffusion coefficient is interpreted as the
frequency of the asperities, i.e., a high diffusion coefficient implies a low frequency
and less sharp gradients on the interface. It is demonstrated, that the influence of
the diffusion coefficient is negligible for relatively high values and increases for very
small coefficients. In this context it must be considered, that very low diffusion coef-
ficients cannot be simulated when combined with a high RMS. However, with respect
to real physical particles, the low diffusion coefficients seem to be of minor interest.
In the next chapter, the results are discussed with respect to their application to

further research and, moreover, evolution potential of the numerical implementation

is deduced.



8. Discussion and outlook

In this chapter the results and the implementation of the method are discussed with
respect to three different aspects. First, the questions of existence, uniqueness and
stability on highly rough interfaces are discussed (section8.1). Second, the appli-
cation of the presented model for future investigations is discussed (section8.2). In
particular, the development of the rough force and torque model, that is suitable for
the simulation of a particle cluster via a discrete element method (DEM) is analyzed.
Third, hands-on experiences with the algorithm as well as the detailed analysis of the
data reveal significant potential to improve the numerical implementation which is

finally presented (section 8.3).

8.1. Existence, uniqueness and stability of static solutions

The presented method allows the computation of capillary bridges between complex
rough interfaces. This, however, rises the questions of existence, stability and unique-
ness of these solutions. In the literature it is frequently not distinguished between
existence and stability. For example, the maximum separation distance for which a
capillary bridge can exist is discussed as a stability problem, however, strictly speak-
ing this is a question of existence (section 3.6). In this work, existence is associated
with the question, if a solution of the Young-Laplace equation is found. Thereupon,
this solution can be either stable or unstable (section3.4.3), i.e., from a mathemat-
ical perspective, the energy state can be a minimum or a saddle point. Moreover,
with respect to volatile liquids, also a thermodynamic stability of these solutions can
be considered, which, however, is discussed in section 2.4 and is not covered in this
discussion.

The existence of capillary bridges is usually investigated with respect to a certain
particle distance. However, on highly rough interfaces also other aspects must be
considered. In figure8.1 a capillary bridge is illustrated for a given contact angle 6.
Case (a) represents a possible capillary bridge. For a slightly shifted liquid-gas inter-
face, i.e., case (b), a self-intersection between the liquid-gas interface I'l, and the solid
interface I'y results. In the current implementation of the code the level-set between

the solid interface I's and the liquid-solid interface I'ls is minimized, which inherently
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requires slight numerical intersections between these two interfaces directly at the
three-phase contact line. Thus, an unwanted and unphysical intersection between
the liquid-gas interface I'i, and a large asperity as presented in case (b) cannot be
detected straight forward by the code. In particular, a criterion for the typ of inter-
section would have to be developed. For the results presented in chapter 7 such an
intersection does most probably not occur since the particles are less rough than illus-
trated in figure8.1. Nevertheless, for highly rough interfaces this local phenomenon
might significantly influence the capillary bridge. Wang et al. [Wan(9] investigate
capillary bridges arising from condensation. The rough interfaces are modeled by two
superimposed sinus curves which is a two dimensional fractal. They argue, that with
an increasing humidity the meniscus is pinned at the edge of an asperity until the
energy level is high enough to directly jump to the next asperity. Thus, according
to their model, the same capillary bridge exists at different energy levels and the
development of the meniscus is discrete. However, at this point it remains unclear
how the physical capillary bridge looks like in case (b).

Another aspect is demonstrated in case (c). If the three-phase contact line starts at
the right side of an asperity, the contact angle boundary condition might lead to a
locally convex curvature. However, also other physical aspects, such as an additional
condensation between two asperities are conceivable. Thus, the physical solution is
unclear and, in particular, it remains open, whether molecular effects beyond the
described model must be considered for these cases.

With respect to the stability, it is generally not impossible that the capillary bridge
might locally change between convex and concave as long as the mean curvature
remains constant. The Plateau sequence already includes unduloids with one inflec-
tion point, i.e., a changing sign of the principal radius r; from negative to positive
(section 3.2). However, Orr et al.[Orr75] argue, that a capillary bridge with more

solid rough interface

~(a) capillary bridge

(b) self-intersection of
I'g and Iy

() locally convex curvature
(’1“1 > 0)

Figure 8.1.: Existence of capillary bridges at highly rough interfaces
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than one inflection point is most probably unstable and Fel and Rubinstein [Fell5]
proofed this in the case of capillary bridges between parallel plates. Nevertheless,
they also demonstrate stable capillary bridges with two inflection points between
two spheres [Rub14]. Thus, even in these simple, axissymmetric cases a closed form
solution of stability cannot be obtained.

In the rough and complex three-dimensional case, an analysis of the stability is gen-
erally possible. Therefore, the eigenvalues of the Hessian (eq. (5.22)) must be deter-
mined, which is very expensive with respect to computational time. Nevertheless, the
implemented Newton scheme is of second order and, thus, it is robust towards unsta-
ble solutions. In particular, it does involve information of the second order derivative
which must be non-zero. Thus, the solution does not converge towards an unstable
saddle point of the energy. This is demonstrated in [Sch22] for capillary bridges that
are obtained by Rubinstein and Fel [Rubl4]. In particular, the algorithm does not
converge towards an unstable unduloid meniscus even if this meniscus is chosen as
initial guess. Instead, the Newton scheme convergences towards the solution that is
predicted to be stable.

Another stability analysis is presented by Farmer and Bird [Farl5]. They exper-
imentally observed non-axisymmetric capillary bridges for very large volumes and
convex menisci. However, a simulation with Surface Evolver usually leads to the
well known symmetric solution. Only by an artificial perturbation of this solution,
the non-axisymmetric solution, that is consistent with the experimental observation,
is obtained. In contrast, the presented method directly leads to the axially shifted
capillary bridge which is traced back to the second order Newton scheme.

However, although a stable solution is obtained by the algorithm, it cannot be ensured
that this is the only existing and stable capillary bridge for the given system configu-
ration. The three-dimensional situation at the rough interface is much more complex
than illustrated in figure 8.1. Thus, slightly different stable capillary bridges with the
same predefined parameters might exist. In this context, also random parameters of
the emerging process of the capillary bridge might determine which capillary bridge
is realized. However, the emerging process if far beyond the presented model. Never-
theless, even if the question of uniquness cannot be answered in this work, it seems to
be reasonable that the differences between possible solutions are minor with respect
to the mean capillary force and the standard deviation of an overall rough interface
sample. Thus, these parameters might be robust towards the existence of further

capillary bridges.



154 8. Discussion and outlook

8.2. Development of a rough force model for DEM simulations

The general idea of a multi-scale simulation is presented in figure 8.2. The behavior of
a particle cluster is frequently investigated by a DEM that is first presented by Cundall
and Strack [Cun79]. The principle of this method is to solve Newton’s law of motion
for each particle, i.e., ma = F, where m is the mass of a particle, a its acceleration
vector and F the net force vector acting on the mass. Moreover, the particle rotation is
included via Ia = 7, with I being the moment of inertia of the particle, & the angular
acceleration vector and 7 the torque vector. Due to the particle interaction, a system
of coupled differential equations results. The force is composed by various components
such as gravitation, contact forces, viscous forces and interparticle forces, which are
further subdivided into van der Waals, electrostatic and capillary forces (section 3.1).
Thus, deriving the net force acting on each particle is very complex and can apparently
not be done simultaneously within a DEM simulation. Instead, simple analytical force
models, such as eq.3.12, or databases are required, which can then be implemented
in a larger scale simulation in order to consider the lower scale effects. Similarly,
the results of a DEM simulation, such as the viscosity of a powder material, can
subsequently be implemented in a continuum model corresponding to a computational
fluid dynamic (CFD) simulation since on this scale the direct consideration of each
particle is impossible.

At present, the DEM models for capillary forces are based on a single value, i.e.,
the capillary force, that depends on several parameters such as volume V', particle
distance a and particle radius R. Examples are presented in [Chal8; Lia98; Liull;
Mik98; Mug00; Tsul6]. Using the results presented in here, this single value can be
replaced by a force distribution that accounts for the particle roughness. However,

powder behavior

continuum model
particle cluster

~ o
" |pEM
C1 interparticle forces

FvadWaFe

material parameters (7,...)

force model Fi(V,a, R, ...)

Figure 8.2.: Multiscale simulation of wet granular materials and powders
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the expected influence on the behavior of the particle cluster should be discussed
before descrbing a possible implementation.

A very important result of this work is, that the capillary force is normally distributed,
which could not be asssumed a priori. In addition it is shown, that the mean capillary
force F, can be approximated very good by the capillary force of the smooth reference
system. As explained in section 7.1.3 the slightly larger values of the rough systems
are traced back to the reduced effective mean gap distance. Thus, the effect of a
normally distributed capillary force on the behavior of a homogenous and spherical
particle cluster might be minor since higher and lower force most probably cancel
each other statistically out. However, the presented method can be applied to an
arbitrary particle shape. Thus, for particles other than rough spheres, considering
the actual particle shape might influence the powder behavior. Moreover, for non-
symmetric bridges between rough particles also capillary torque is expected and at
this point the mean value and the distribution of the capillary torque are unknown.
Thus, eq. 3.10 can be implemented into the presented method in order to analyse the
torque distribution and to estimate its possible impact on a non-symmetric or even
rough DEM model. Note, that a complete capillary force model also includes the
rupture distance to estimate the radius of action. Generally, it is possible to compute
these distances with the presented model, however, this is not part of this work and,
hence, not discussed further on.

Although the impact of a normally distributed capillary force as presented in this work
is assumed to be minor from the current point of view, the application to an extended
DEM model is theoretically discussed since other types of particle shapes might be
considered in the future. The general idea for the implementation of capillary force
and torque distributions is, to develop a database that returns the mean values and

their standard deviations.

Capillary force distribution

In section7.1.1 and 7.2.1 the distribution of the capillary force is tested to be nor-
mally distributed which is an important result of this work. The accordance with a
theoretical distribution is an important aspect with respect to the setup of a database
since the probability of a certain value can be derived from two parameters, i.e., the
standard deviation o and the expected value u. For the distribution of the capillary

force these two values are estimated by s and F..
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Interpolation of the mean capillary force and the standard deviation

The two parameters of interest, i.e., s and F,, depend on the input parameters vol-
ume V, gap distance of the smooth base system @, contact angle 6;, RMS S; and ¢
which must be evaluated for a defined geometry. In section 7.1.2 it is demonstrated,
that the volume, gap distance and contact angle significantly depend on each other.
For low volumes the influence of the gap distance and contact angle on the relative
standard deviation § might be significant whereas for large volumes a gap distance
independent relative standard deviation is observed. The mean capillary force agrees
well with the capillary force of the smooth system. Thus, for an independent relative
standard deviation 5 the absolute standard deviation of many parameter configura-
tions might be obtained by the smooth capillary force Fc,sm and the relative standard
deviation. This might reduce the number of required rough simulations. However,
the characteristic diagrams of the volume, gap distance and contact angle must be
investigated in detail for each interface geometry. Consequently, it does not seem to
be possible to develop simple analytical expressions for these dependencies and, thus,
the application of a database seems to be reasonable.

The relative standard deviation turned out to increase linear with S; if Sy = 0 and
also for S; = S5 = 0. For S, = 0 the deviation from a linear dependency increases
with Sy. However, for low S, an approximately linear increase can be assumed which
offers the possibility to reduce the required simulations for database. Only for very
high values additional simulations might be reasonable. The influence of ¢ is negligible
for rough interfaces that are not too edgy. Only for very high gradients, i.e., ¢ < 0.01
the diffusion coefficient must be taken into account. However, these particles might
not be of highly practical interest.

Overall, the dependencies of the RMS and the diffusion coefficient are very suitable for
developing a DEM database. This is in particular important with respect to the com-
plicated interdependencies of the volume, gap distance and contact angle that most
frequently cannot be interpolated from just a few simulations. Thus, a characteris-
tic diagram of these parameters must be obtained with a relatively high resolution.
However, for each point in this diagram differently rough particles can be obtained by
interpolation. This is exemplarily demonstrated in section 7.2.2 for two equally sized
spheres. In particular, the whole characteristic diagram can be obtained by only 8
simulations within an accuracy of 6 % or, with an accuracy below than 3% by con-
sidering 13 simulations, respectively. It is worth mentioning, that this approximation
neglects the increasing mean capillary force that is caused by the slightly decreased
gap distance (section7.1.3). However, in figure7.13 it is demonstrated, that this
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influence is below 2.6 % for the highly rough spheres and might, consequently, be ne-
glected. Moreover, these interpolation inaccuracies must be related to the statistical
uncertainty of 9.20 %. In particular, it seems to be reasonable to reduce the number
of simulation points and accept a deviation of 3 %, which allows a larger sample size.
This would significantly reduce the dominating the statistical uncertainty and, con-
sequently, improve the overall accuracy. Nevertheless, these considerations are only
reasonable with respect to predefined computational resources.

Overall, the development of a database seems to be possible with a moderate sim-
ulation time. Of course, the computational resources define the accuracy of such a
database. In particular, the accuracy depends on the numerical and statistical error

(section 6.2 and 6.3) as well as on the resolution of the characteristic diagrams.

Volume vs. pressure method

The probably most important aspect for the development of a database is its appli-
cation to a real physical problem. In particular, the difference between a constant
volume and a constant pressure method must be considered. In this context it is
important to know, that computation of the standard deviation already depends on
using either the volume or pressure approach, i.e., Syolumemethod 7 Spressuremethod- L Nis
is very different from the calculation of the capillary force between smooth interfaces,
since there, the output is independent of the used method.

The effect is explained by considering a theoretical case that is illustrated figure 8.3.
The capillary bridge is obtained between the solid interface of a given random seed
&. Now, it is assumed, that an additional asperity occurs in the inner interface I'y
due to a different realization of the same roughness, i.e., a different random seed
&41. In a constant pressure method this would not change the three-phase contact
line or the liquid-gas interface I'yy. Only the area of the liquid-solid interface Al
and the volume V change. However, both parameters are not directly used for the
computation of the capillary force (eq. (3.7)) and, consequently, a constant capillary
force results for & and &.4q. If, however, a constant volume method is applied, the
liquid volume is displaced outwards by the additional asperity since it must be kept
constant. Thus, the liquid-gas interface I'j; and, consequently, its area /Nhg and mean
curvature H, change. In addition, also the liquid-solid interface Ty and the three-
phase contact line vary from the other realization of the interface roughness. Thus, in
this theoretical case a standard deviations of spressure method = 0 and Syolume method > 0
would be obtained. Note, that this effect is the same for a vanishing asperity that

causes a inwards displacment of the volume.



158 8. Discussion and outlook

Of course, a different random seed does, in the very most cases, not purely change
asperities inside the liquid-solid interface. Thus, when applying a pressure method,
different asperities on the three-phase contact line lead to a different liquid-solid
interface I'y) and also to a different liquid-gas interface area Alg. However, the mean
curvature H and the capillary pressure Ap, respectively, are a priori kept constant
(eq.(2.15)), which significantly influences the expected standard deviation. From
the capillary force equation (eq. (3.7)) it is concluded, that the surface tension force
depends on the length and orientation of the three-phase contact line, which fluctuates
in either the pressure or volume approach. However, if the pressure is assumed to
be constant, the fluctuation of the pressure force depends only on the normal area of
the solid-liquid interface. In contrast, in a constant volume approach, the capillary
pressure itself fluctuates additionally to all other parameters in eq. (3.7).

From these considerations, a smaller standard deviation is expected in a constant
pressure method since changes of the inner asperities do not influence the liquid-gas
interface. The difference between the two approaches most probably increases with a
dominant pressure force. However, the order of magnitude can hardly be estimated
since neither the geometrical changes of the capillary bridge, i.e., the solid-liquid
and the liquid-gas interface, nor the effect of these influences can be predicted. In
contrast to the standard deviation, the mean capillary force is assumed to be relatively
independent of the choice of either a volume or pressure method. The expected higher
spread width of the capillary force in a volume approach is estimated to occur in both
directions, i.e., lower and higher capillary forces are expected. Since there is no reason
to assume a shift in one of the directions a constant mean value of the capillary force is
probable. This would also be consistent with the smooth system, where the capillary
force is independent of either the volume or pressure approach.

The difference between the volume and the pressure method must be considered
in the development of a rough capillary force model for a DEM simulation. In a

particle cluster the constant parameter is either the humidity or the volume. In

pressure method volume method

ziéﬁérity due to different & varying I'ig

constant I'is

Figure 8.3.: Influence of inner asperities in a constant pressure and a constant volume method
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the case of non-volatile liquids the application of the volume method seems to be
reasonable since stable and independen capillary bridges with a different capillary
pressure exist. In contrast, for volatile liquids such as water, the humidity would
be constant in a practical approach. Thus, in a thermodynamic equilibrium the
system consists of capillary bridges with the same capillary pressure. However, the
convergence towards a thermodynamic equilibrium is a time-dependent process. In
particular, the condensation or evaporation of liquid takes time which must be related
to the characteristic time scale of the system. A pressure constraint seems to be
reasonable for infinitely slow systems, whereas a volume constraint is associated with
infinitely fast particle movements. Since a real system is neither infinitely slow nor
infinitely fast, the dominant effects must be estimated for the model and even a
combined pressure and volume approach is conceivable. In any case, the development
of an explicitly pressure constraint method for rough capillary bridges is desirable for
the modeling of volatile liquids in a particle cluster.

One option would be to iterate the volume for each simulation i of the sample n
for the given pressure Ap. However, the relative standard deviation of the capillary
pressure in the constant volume method turns out to be roughly below 6 % for a
pressure that is not close to zero. Thus, in order to cancel out this fluctuation, an
iteration of the volume for a given capillary pressure must be significantly below 1 %,
which requires a huge number of iterations. In fact, the simulation time linearly
increases with these iterations. Moreover, when considering the mesh resolution and
the number of samples, an accurate iteration for a constant capillary pressure does
not seem to be possible without extraordinary computational resources. Thus, an
algorithm that directly solves eq. (5.16) for the capillary pressure Ap is desirable.
From a mathematical point of view this seems to be straight forward since only the
unknown in the system of equations change.

Overall, the result presented in this work seem to be applicable to a multi-scale
DEM. However, the use of either a pressure or volume approach must be considered
carefully with respect to the physics of the simulated particle cluster. Moreover, a
suitable database that is, on the one hand sufficiently accurate and, on the other
hand, efficient enough with respect to the computational time of a DEM, needs to be

developed.

8.3. Evolution of the numerical implementation

The numerical implementation of the optimization problem is very sophisticated and

requires several adaptions of the classical Newton scheme. By the intensive use of
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the simulation code and the data analysis, several tendencies are observed such as
the significant overestimation of the surface tension force (section6.2) or the rather
slow and dissatisfying convergence of the contact angles. A deep and rather complex
analysis of the source of these tendencies reveals optimization potentials. Reducing
the simulation time is particularly interesting with respect to the relatively large nu-
merical uncertainty of the standard deviation (section 6.3) since a confidence interval
below 5 % requires approximately n = 5000 samples, i.e., 5 times as much simulation

time. Subsequently, several optimization options are proposed.

8.3.1. Computation of the surface tension force

The convergence of the capillary pressure force and the surface tension force is very
different as demonstrated and discussed in section 6.2 (figure6.8). The overall con-
vergence of the capillary bridge geometry is very good. However, the subsequent
computation of the surface tension force requires a huge number of mesh triangles to
sufficiently resolve the bending of the liquid-gas interface at the three-phase contact
line. Otherwise, the liquid-gas co-normal vector fi), cannot be computed with suffi-
cient accuracy which results in an severe overestimation of the surface tension force.
As illustrated in figure 6.9 the bending increases with a decreasing contact angle 6
and a less convex solid geometry, i.e., the bending of the capillary bridge is stronger
at the plate.

The computation of the surface tension force is improved by changing the computation
of the liquid-gas co-normal vector fij,. The good convergence of the capillary bridge
geometry is concluded from the convergence of the pressure force and the agreement of
the three-phase contact line with the Dérmann model (table 6.3). Thus, optimization
procedure does not need to be changed and only the computation of the co-normal
vector, subsequent to the optimization, is adapted. One option would be, to estimate
the co-normal by a higher order scheme, i.e., considering more triangles rather than
only the triangle at the three-phase contact line (first order scheme). However, this is
complex and not straightforward on an unstructured triangular mesh. Note, that fig-
ure 6.9 is only a schematic, two-dimensional illustration and in the three-dimensional
situation the midpoints of the triangles are not in one line.

Another option is, to calculate a new co-normal vector fiy, from the liquid-solid in-
terface. It is reasonable to assume, that the three-phase contact line triangles of the
liquid-solid interface are more accurate compared to the three-phase contact line tri-
angles of the liquid-gas interface, since the bending of the liquid-solid interface is a

lot smaller. Thus, from the co-normal fi);; a new co-normal fi], ; ; is obtained for all
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j triangles of the three-phase contact line 4 with (fig; ;, fijy;;) = cos(6;). This implies
the exact realization of contact angle 6. Subsequently, the surface tension force is
computed according to eq. (3.7) using the new co-normal fij,; ;.

This procedure is implemented and the results are compared to the Dormann [Dérl8|
method. In table8.1 deviations, that are defined by eq. (6.1), of the capillary force
and the surface tension force are pointed out. Note, that the values of the old method
correspond to table 6.3, however, they are again presented here for a direct compar-
ison. The pressure force and the length of the three-phase contact line are omitted
since they are not affected by the new computation method.

In table8.1 it is demonstrated that the capillary force F¢ yew is now underestimated
compared to the Dérmann method. The order of magnitude of the deviation does not
significantly change. For § = 40° the absolute deviations are even slightly higher when
using the new method. This is traced back to the new estimation of the surface tension
force. Using the old method, the surface tension force is strongly overestimated
since the effective contact angles are overestimated. In particular, deviations up
to 36.68% are obtained. When now using the new method, the surface tension
force is underestimated. For 6§ = 10° an overestimation of more than 30 % at the
plate reduces to an underestimation below 2% and, at the sphere, a decrease from
approximately 10 % down to 2 % is obtained. For # = 40° the surface tension force is
also underestimated with round about 1.5%. Generally, an underestimation seems to
be reasonable due to the polygon representation of the three-phase contact line since
the length of a polygon is shorter compared to the smooth curve. This is consistent
with table 6.3, where it is demonstrated that the three-phase contact line of this model

is always underestimated compared to the Dormann model.

Table 8.1.: Deviation in % between the old and the new computation of the surface tension force
and the Dérmann [Do6r18] for V = 0.1 and
1: 61 = 05 = 10°; 2: 01 = 05 = 40°;
a: a=0.004; b: a=0.1

total sphere (i=1) plate (i=2)
Fc Fc7ncw Fc7l Fc,l,now Fs,l Fs7l7ncw FC,2 FC,Q,HCW Fs,Z Fs,2,ncw
1a 1.74 -1.61 1.13 -1.54 829 -1.26 2.34  -1.68 36.68 -1.83
1b 231 -1.69 1.72 -1.75 9.10 -1.62 2.89 -1.62 32.76  -1.87
2a 0.64 -0.84 -0.06 -0.87 1.16 -0.60 1.34 -0.81 5.84 -1.09

2b 0.96 -0.97 0.42 -1.08  2.01 -0.75 149  -0.86 5.30 -1.41
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The overestimation of the capillary force F, with the old computation method is
caused by the significant overestimation of the surface tension force. However, since
the pressure force is underestimated (table6.3), the two inaccuracies partially can-
celed each other out. With the new method both, the capillary pressure and the
surface tension force, are underestimated and, thus, the inaccuracies add up. Over-
all, the absolute order of magnitude of the capillary force deviation does not change
significantly. However, this is only the case for the presented capillary bridges, that
are dominated by the capillary pressure force. With the improved method the capil-
lary force with a high surface tension force ratio is accurately computed. Moreover,
a great potential is offered by a significantly improved convergence as discussed sub-
sequently.

The mesh study for § = 20° and # = 40°, that is discussed in section 6.2, is performed
using the new computation of the surface tension force. The results are illustrated in
figure 8.4. The results of the old method correspond to the results that are presented
in figure 6.7 and 6.8. In figure8.4 (a) and (b) the convergence of the surface tension
force Fy is demonstrated. Note, that with the new method the surface tension force
is underestimated compared to the exact solution. Thus, the relative deviation AF,
actually approach zero from below. However, in order to compare the convergence of
the two methods, the absolut value ’AF’S

For both contact angles a significantly improved convergence is demonstrated. Even

is presented in figure 8.4 (a) and (b).

for the coarsest mesh the maximum deviation from the most accurate solution is
below 5%. Moreover, the differences between the sphere and the plate are already
below 1% for approximately 0.7-10% (6 = 20°) and 0.2-10* (6 = 40°) mesh triangles.
For both contact angles a maximal numerical error below 1% is obtained for 1 - 10*
triangles although this mesh resolution is significantly below the resolutions that are
used in this work.

In figure 8.4 (c) and (d) the convergence of the mean capillary force F, is presented.

Analogous to the mean surface tension force, the mean capillary force of the new

method is underestimated compared to the exact solution, i.e., ’AFC is plotted for
a better comparison. The convergence towards a larger exact solution results from
the fact, that both, the capillary pressure force and the surface tension force are
underestimated and, consequently, this also holds for the capillary force. The curves
of the new method are better converged since they are approximately horizontal for
high mesh resolutions. Thus, the most accurate solution is considered to be very
close to the exact solution. The gradients are below 0.07 % per 10* triangles. The

numerical error of the old method is obtained by the relative deviation AF, and the
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estimated deviation between the most accurate and the exact solution. Thus, an
estimated error of 2.1% is obtained for V = 0.1 (table6.5). Using the new method,
this error is obtained with a significantly lower mesh resolution, which is indicated by
the dashed lines. In fact, with half as much triangles the numerical error is reduced by
approximately 50 % and an overall numerical error significantly below 1 % is obtained.
Note, that the curves of the old and new method both converge towards zero since
the deviation from their most accurate solution is plotted. However, the absolute
values differ from each other. In particular, the capillary force of the new method is
2.14% (0 = 20°) and 1.34% (6 = 40°) below the capillary force of the old method.
In section 6.2 the deviation between the most accurate and the exact solution, i.e.,
the extrapolation of the convergence curve, is approximated by 0.6 %. Thus, this
deviation might be higher than estimated, i.e., the numerical errors of the mean
capillary force might be roughly 0.7% (6 = 40°) to 1.5% (6 = 20°) higher.

The improved computation of the surface tension force also influences the conver-
gence of the standard deviation s that is pointed out in figure8.4 (e) and (f). Just
as the forces, the standard deviation of the new method convergences from an un-
derestimated value, i.e., —As is plotted in figure 8.4 for a better comparison with the
previous results. Apparently, the standard deviation obtained by the new method
shows less fluctuations. This might be traced back to the fact, the both force compo-
nents converge from smaller to larger values. In contrast, when using the old method,
the capillary pressure force and the surface tension force show opposed convergence
direction (figure6.8). For § = 40° the standard deviation of the new method is better
converged compared to the lower contact angle. However, in contrast to the capillary
force, no full convergence is achieved and, consequently, the deviation between the
most accurate solution and the exact solution must be considered. The averages of
the last three gradients are 0.36 % (8 = 20° ) and 0.17% (8 = 40° ) per 10* triangles.
If, again, a nearly doubled number of triangles is used to approximate the exact so-
lution, i.e., 3 - 10* triangles, roughly 1.1% and 0.6 % are obtained. The overall error
of the old method is estimated to be 2.1% (table6.5). Thus, if this error should
be achieved by the new method, the relative deviation As is 1% for # = 20° and
1.5% for # = 40°, which is indicated by the dashed lines. Note, that for # = 40° the
standard deviation is just about in the convergence region and, therefore, a higher
mesh resolution is recommended.

Again, the reference values, i.e., the most accurate solutions, differ from each other.
The most accurate standard deviation of the new method is 1.89 % (6 = 20°) and
1.79% (6 = 40°), respectively, below the standard deviation of the old method.
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Figure 8.4.: Comparison of the mesh study for the old and the new computation of the surface
tension force for a sphere-plate system with V' =0.1, a = 0.1, S; = 0.005 and € = 0.1
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In section 6.2 the deviation between the most accurate solution and the exact so-
lution is estimated to be roughly 1.2%. However, since the standard deviation of
the new method is not fully converged the exact solution can hardly be estimated.
Moreover, the standard deviation of the old method decreases whereas an increase is
observed when using the new method. Consequently, both solutions approach each
other and the deviation between the methods is reduced. Thus, when considering
the old method, the estimated difference between the most accurate and the exact
solution of 1.2 % seems to have a reasonable order of magnitude.

The improved convergence of the surface tension force implies a huge potential to in-
crease the overall accuracy of the simulations. In section 6.4 the relation between the
numerical and the statistical error is discussed. The accuracy of the mean capillary
force is mainly determined by the numerical error, however, on a very good level. In
contrast, the confidence interval of the standard deviation is 9.20 % which is relatively
inaccurate and an order of magnitude larger than the numerical error. Thus, per-
forming simulations with the selected meshes in this work and, hence, decreasing the
numerical error, is not optimal. Instead, when considering both, the mean capillary
force and the standard deviation, a mesh resolution of 0.75-10% triangles is sufficiently
accurate. This will even reduce the numerical error of the mean capillary force by
approximately 0.7 % (6 = 20°) and 1% (6 = 40°), i.e., a numerical error significantly
below 1% is obtained. The numerical improvement of the standard deviation is,
however, contact angle dependent and less pronounced for the low contact angle. In
fact, for # = 20° the numerical error of the standard deviation slightly increases by
0.1 % for the suggested mesh resolution, whereas a decrease by approximately 1% is
obtained for # = 40°. Simulations with the reduced mesh resolutions require an av-
eraged simulation time of only one third of the previously selected mesh resolutions.
Thus, with the same computational resources, the sample number can be increased
to n = 3000 which leads to a confidence interval of CI;(98 %) = 5.31% (eq. (6.9)),
i.e., an improvement by 3.89%. This is remarkable and demonstrates the necessity
to balance the numerical and the statistical error.

In conclusion, both, the mean capillary force and the standard deviation are simulated
with a higher accuracy. On the one hand, the numerical error of the mean capillary
force is reduced by 0.7—1 % whereas the reduction of the confidence interval is roughly
estimated to be 0.2 % (figure6.13 (a)). On the other hand, the numerical error of the
standard deviation is nearly constant (f# = 20°) and improved by 1% (0 = 40°),

however, the reduction of the confidence interval by 3.89 % is remarkable. Thus, the
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improved computation of the surface tension force has a great potential for the future
applications of the presented work and is implement as default method.

8.3.2. Restricted displacement in the Newton scheme

A general observation from the hands-on experiences is an increasing simulation time
and a more unstable convergence for 6 < 40° at all volumes and gap distances. The
large computation times are caused by the number of iteration steps. In particular,
the number of iteration steps increases by approximately 50 % if the contact angle
is reduced from # = 40° to § = 10°. For 6 > 40° also an increase of iterations
is observed, however, on a very moderate level, which is not as significant for the
simulation time and convergence.

The contact angle dependency of the iteration steps is traced back to the vertex dis-
placement in the Newton scheme (eq. (5.24)). As described in section 5.2.2 optimality
requires a displacement of the three-phase contact line vertices that is tangential to
the liquid-solid interface, i.e., in the direction of fiy (eq. (5.15)). However, this is de-
rived for a problem formulation without a touch constraint. In fact, a displacement
in the direction of fiy invalidates the touch constraint on a curved solid interface
(figure 5.7). Thus, an additional displacement to account for the touch constraint is
required. In the original implementation of the algorithm, the co-normal direction
[ is chosen to span the R?, since this is advantageous in the code set up. However,
any other vector could have been selected as long as it is linear independent of fi.
With a decreasing contact angle 6 also the linear independence of fiy and fi), decreases
and finally, for § = 0° they even become linearly dependent. This is the main reason,
why 6 = 0° cannot be simulated with sufficient accuracy. Note, that it is possible
to simulate contact angles below 10° on a very coarse mesh, since the numerical
deviation between fiy and fi), is large enough on these meshes. However, the results
are not accurate at all. For § = 20° — 30° the simulations mainly converge, however,
the computational time is considerably large and might be 5 times as high compared
to larger contact angles. This disadvantageous dependency between the number of
iterations and the contact angle is solved by using a vector other than fi), to account

for the contact condition. In fact, the best choice is the vector normal to the solid
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interface, since this is the shortest direction to contact. Thus, instead of fi), the

vector N ; is used and eq. (5.24) is changed to

1

=

a1 (8;)
V(§)) = qai(§)
a1 (8j)

s1i(8y) + a2(8)) g ;(85), 8§ €lgnly
lg(gj)a §j € Flg N §j ¢ I (81)

— — l —.
= B 1

Note, that only the first case, i.e., the displacement of the three-phase contact line
vertices is changed. By implementing eq. (8.1) a significant improvement of the con-
vergence behavior at low contact angles is expected, which, however, has not been

tested yet.

8.3.3. lteration step

The necessity to reduce the computational time in order to increase the sample size
and, consequently, the accuracy, is discussed previously. A further potential is the
iteration step size. In this work, the step of both, the gradient decent and the Newton
scheme, is fixed and based on hands-on experiences. Thus, the step size is a worst
case estimation, i.e., it must be small enough to account for a stable simulation of
the smallest triangles. However, larger triangles could be combined with a larger
step size, which significantly reduces the number of iterations and, consequently, the
simulation time.

The size of the triangles decreases with either a decreasing volume of the capillary
bridge at a constant number of triangles, or a higher mesh resolution at a constant
volume. In this work, the constant step size is a compromise between simulation time
and accuracy at low volumes. In section 6.2 it is demonstrated, that the selected step
is still too large for a finer mesh resolution at V = 0.01. However, with respect to a
manageable computational time, it is too small for V' = 0.5, i.e., these simulations re-
quire significantly more computational time (table 6.4), however, without any benefit
with respect to the accuracy.

A solution to this issue is an adaptive step size in the Newton scheme that converges
each capillary bridge with an optimal step size in each step. Note, that the step could
also be adapted in the gradient decent scheme. However, since this scheme is only
used to compute a good initial guess for the Newton scheme, this does not seem to
be necessary.

The self adapting step size is very useful for an optimal convergence speed. However,

in section 8.3.1 it is demonstrated, that the improved computation of the surface ten-
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sion force allows a high accuracy at significantly lower mesh resolutions than presented
in this work. Thus, the potential for a further decrease of the computational time
is lower. Nevertheless, when considering capillary bridges at very different volumes
(figure 7.2) it seems to be reasonable to use different step sizes in order to ensure a

stable convergence for all parameters.

In this chapter the existence, uniqueness and stability of the results is discussed. For
highly rough particles two different situations are identified, i.e., a self-intersection of
the liquid-gas and the solid interface and a locally convex curvature. In both cases, the
physics of the capillary bridge system remains unclear. With respect to the algorithm
it is pointed out, that solutions that are stable since they are obtained by the second
order Newton scheme, however, the existence of further stable solutions cannot be
excluded. Moreover, the development of a rough force model for a DEM simulation
is discussed. The complex characteristic diagrams of the volume, gap distance and
contact angle seem to require the development of a database rather than analytical
expressions. Moreover, the application of either the volume or pressure method must
be considered carefully since the standard deviation depends on the choice of method.
Finally, comprehensive potential do improve the numerical implementation of the
algorithm is pointed out. In particular, the different computation of the co-normal
vector accelerates the convergence of the surface tension force which significantly
reduces the required mesh resolution. Thus, for future work, the overall error can be

reduced by considering larger sample sizes at moderate computational times.



9. Summary

In this work a novel method to compute capillary forces between arbitrary and, more
specifically, rough interfaces is presented. The considered capillary bridge model is
based on an energy minimization approach. In particular, the total free energy is min-
imized constrained by a predefined volume and given solid interfaces. The Lagrangian
is derived and formulated without an explicit expression for the mean curvature. In
fact, this is one of the major advantages of the novel method, since the approxima-
tion of the curvature usually causes significant numerical issues. A combined gradient
decent and Newton scheme, that is tailor made for the capillary bridge problem, are
applied to solve the Lagrangian. In the Newton scheme the displacement direction
of the vertices is defined individually for each interface (I'ly and I'y;) and also for
the three-phase contact lines (I'lg U I ;). Moreover, numerical stability is increased
by a remeshing procedure with an additional correction of critical triangles at the
three-phase contact line. Since the method is applied to investigate the influence
of roughness, a rough interface model is implemented as well. Here, a normal as-
perity height distribution is added to a smooth base geometry. However, since this
leads to very sharp edges and large gradients, which are numerically fragile and fre-
quently nonphysical, a diffusion step according to the Laplace equation is added. By
the means of this, the rough interface is smoothed at a constant root mean square
roughness (RMS).

The novel method is verified by comparing it with results of the literature for smooth
interfaces. A verification with a rough interface model is not possible, since, to the
best of the authors knowledge, capillary bridges between directly resolved rough inter-
faces have not yet been simulated. A comparison with the elliptic integral approach
of Orr et al. [Orr75] and the shooting method of Dérmann [Dér18] shows a very good
agreement of the capillary forces and the geometrical parameters such as the mean
curvature of the three-phase contact line. The maximum deviation of the capillary
force is significantly below 3 %. However, it is also revealed that the surface tension
force is considerably overestimated by the novel method, in particular, for low con-
tact angles. Due to this finding, the surface tension component is considered in detail

in the mesh study. In this analysis, a poor convergence of this force component is
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demonstrated which is traced back to an inaccurate computation of the co-normal
vector . Therefore, a relatively high mesh resolution is required in order to obtain
accurate results.

The investigation of rough interfaces requires a statistical approach. In particular,
the same RMS can be realized by an infinite number of asperity realizations. For a
given RMS and diffusion coefficient €, a distribution of the capillary force is derived.
Hence, the mean value and the standard deviation are the parameters of interest and
the numerical error as well as the statistical uncertainty are conservatively estimated
for both of them. The numerical error for medium and larger volumes (V > 0.5) is
evaluated to be below 1.5 %, while the numerical error of the standard deviation is
approximated to be below 3 %. For very low volumes both errors increase up to 2.6 %
and 3.8 % for V > 0.01. Overall, the numerical accuracy is good and the meshes are
selected as a compromise between accuracy and computational time. The statistical
uncertainty is described by confidence intervals. For a sample size of n = 1000 and
a significance level of 98 % the confidence interval of the capillary force is 1.06 % for
V > 0.01 and considerably below 1% for all other volumes. In contrast, for the
standard deviation a confidence interval of 9.20 % is obtained, which is independent
of the simulation parameters. For a confidence interval below 5% a sample size
of approximately n = 5000 is required which, unfortunately exceeded the available
computational resources in this work. In conclusion, the numerical error of the mean
capillary force is slightly higher compared to the statistical error and the order of
magnitude of the overall error is satisfying. In contrast, the overall error of the
standard deviation is clearly dominated by the statistical uncertainty. In fact, a
confidence interval of 9.20 % is dissatisfying and, consequently, a larger sample size is
favorable for future research.

Subsequent to the evaluation of the method an application to rough interfaces is pre-
sented. First, the distribution of the capillary force is determined to be normal for
all investigated systems and parameter configurations which is an important result
of this work. For the system of a rough sphere and a smooth plane the influence of
the classical capillary parameters, i.e., the volume, gap distance and contact angle, is
analyzed and highly non-linear dependencies are observed. The investigation of the
RMS shows, that the mean value of the capillary force is slightly above the capillary
force of the smooth system. This finding is traced back to the gap distance being
reduced by the addition of the asperities. A very interesting relation is obtained for
the RMS and the standard deviation. It turned out that, if one of the interfaces
is considered to be smooth, the standard deviation linearly increases with the RMS.
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This is also demonstrated for systems of equally and unequally sized spheres. Further-
more, a linear dependency is observed, if the same RMS is applied to both interfaces.
Combinations of differently rough interfaces reveal a non-linear dependency, which,
however, can still be approximated sufficiently accurate by linear interpolation in or-
der to reduce the computational effort. For unequally sized spheres the fluctuation
of the capillary force is dominated by the RMS of the smaller sphere which is traced
back to increasing asperity size in relation to the three-phase contact line. Finally,
the influence of the diffusion coefficient is investigated. It is pointed out that the
impact on the standard deviation becomes significant if the coefficient approaches
zero. Although very edgy particles appear to be of minor physical interest it shows,
that the classical characterization of rough interfaces only by the RMS might not be
sufficient enough.

Finally, the existence, uniqueness and stability of the results is critically discussed.
All solutions of the presented method can potentially exist in real physical systems,
however, it cannot be excluded that more solutions exist. Due to the usage of the
second order Newton scheme, real minima, rather than saddle points or maxima, are
obtained and, consequently, the presented solutions are all stable.

Moreover, the results are analyzed with respect to their application in a discrete el-
ement method. The normal distribution and the linear dependencies with the RMS
offer a great potential to develop a suitable database. However, the complex depen-
dencies with the volume, gap distance and contact angle require a lot of computational
resources to provide a sufficient number of data points. Additionally, the difference
between the volume and the pressure approach must be considered. In particular, the
distribution of the capillary force depends on the selected method. Thus, with respect
to a DEM implementation, it must be considered which method is more suitable to
describe the real physical process.

The hands-on experience with the method and the large amount of data also revealed
evolution potential of the numerical implementation. A different computation of the
co-normal vector p is already realized and a fundamental improvement of the mesh
convergence and the accuracy is demonstrated. In particular, the numerical error can
be reduced while simultaneously reducing the simulation time. The main benefit of
this implementation is, however, the large potential to increase the sample size due
to the faster convergence and to reduce the dominant statistical uncertainty of the
standard deviation for future work.

Generally, the presented method offers a huge potential to investigate capillary briges

with an abritray shape. Besides roughness, this could also be any non-spherical par-
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ticle. Thus, in the future, it will be very useful for the understanding of experimental
results such the large fluctuations that are observed in AFM methods since the the

actual particle or tip shape can be considered.
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A. Toroidal approximation for different geometries

The toroidal approximations are presented in the literature by various authors. Here,

the equations are taken from Tselishchev and Val’tsifer [Tse03].

sphere—plate: R(1 - cosv) + a
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198 A. Toroidal approximation for different geometries
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B. Young-Laplace equation with gravity

In figure B.1 a capillary bridge is illustrated in an arbitrary coordinate system, how-
ever, the gravitational accelerating g acts in the z-direction. According to the Young-
Laplace equation the pressure jump at the interface, i.e., the capillary pressure, is

given by
Ap =p; — p, = 02H and Apo = pio — Poo = 02Hy (B.1)

for an arbitrary level at the interface and a reference level 0. Further more, the

pressure differences in- and outside the interface are given by

Pio — Di = P19z — P9z and Po,0 — Po = Pgd%0 — Ped? (B.2)

where p; and p, are the densities of liquid and air, i.e., the densities in- and outside

the interface. The difference between the mean curvatures is given by

02(Hy — H) = (pio — poo) — (pi — po)| insert B.2
& 02(Ho) — H = (p1 — pg) (20— 2) (B.4)
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Figure B.1.: Illustration of a capillary bridge in a gravitational field



200 B. Young-Laplace equation with gravity

From this equation it directly follows that the curvature between the two levels must
increase or decrease, respectively, according to the gravitational term. By inserting

the pressure difference Apy = pig — poo at the reference level one obtains
Apo+ g(z — 20) (p1 — pg) = 02H (B.5)
and only, if 2y == 0 this leads to often formulated equation
Apo + (p1 — pa)gz = 02H. (B.6)

From this derivation is becomes clear, that z is distance in gravitational direction
from a reference level, that must be on the interface, rather than a coordinate in
an absolute reference frame, which is often not clearly pointed out. Thus, if the
gravitational field is given by the three-dimensional vector g, eq. B.5 is formulated in

a more general way by

Apo + (g, —s0) (0 — pg) = 02H (B.7)

where s and sy are the position vectors of the interface level and (.,.) the scalar

product, i.e., the proportion of s — sy in the direction of g.



C. Boxplots sphere-plate
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