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Abstract
Program analyses allow us to assess whether a program fulfills certain properties. For
instance, they can be used to check whether private data on our smartphones is secure
– not visible to the public or manipulable by potential adversaries. To rely on analyses,
they must be as effective and efficient as possible. However, the construction of a per-
fect analysis has partially been proven to be undecidable. Therefore, the construction of
effective and efficient program analyses has actively been researched for decades.

In this thesis we present an approach to combine existing analyses such that their
complementary effects can be brought together beneficially. To realize this approach we
developed the AQL, an interface language that can be used to interact with arbitrary
analyses in the same generic way. The language follows the principles of component-based
software engineering; every analysis is treated as a component available for composition.
Hence, it allows us to build analysis compositions called cooperative analyses.

By tracking an analysis’s resource usage (e.g., analysis time), we usually evaluate the
efficiency of an analysis. Analogously, by comparing actual analysis results with expected
results, we typically evaluate an analysis’s effectiveness. In the past, such evaluations
were often error-prone and irreproducible since they were performed manually and often by
multiple people with different knowledge and resources leading to different and differently-
interpreted results.

To cope with these issues, we further present an approach that allows us to evaluate
analyses (cooperative or not) automatically. This approach makes use of the AQL to
interact with arbitrary analyses, and to guarantee that actual and expected analysis results
are described in an unambiguous way. Thereby, arbitrary analyses can be evaluated under
the same circumstances and errors due to misinterpretation can be avoided. We call
experiments conducted via this approach automatic and reproducible benchmarks.

To evaluate the effectiveness of the cooperative analysis approach, we widely applied
it in the area of Android taint analysis. Overall, we instantiated six cooperative analyses
following 18 different strategies while incorporating 32 tools and compared them against 13
standalone taint analysis tools. To perform this comparison, various micro and real-world
benchmark suites have been employed as automatic and reproducible benchmarks. In the
end, we found that cooperative analyses most of the time outperform their standalone
counterparts.

Finally, the thesis reveals that bringing together various solution approaches for dif-
ferent analysis challenges in cooperative analyses may lead to improvements over state-of-
the-art standalone approaches. Furthermore, it is shown that these improvements can be
measured automatically and in a reproducible fashion.
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Zusammenfassung
Programmanalysen ermöglichen es uns festzustellen, ob ein Programm bestimmte Eigen-
schaften erfüllt. Zum Beispiel können sie genutzt werden, um zu prüfen, ob private Daten
auf unseren Smartphones sicher bzw. nicht öffentlich einsehbar oder manipulierbar durch
potenzielle Angreifer sind. Um sich auf Analysen verlassen zu können, müssen diese so
effektiv und effizient wie möglich sein. Jedoch wurde teilweise schon bewiesen, dass die
Konstruktion einer perfekten Analyse unentscheidbar ist. Daher wird die Konstruktion
von effektiven und effizienten Programmanalysen seit Jahrzehnten stetig weiter erforscht.

In dieser Arbeit präsentieren wir einen Ansatz, mittels dessen existierende Analysen
kombiniert werden können, um ihre komplementären Eigenschaften vorteilhaft zusammen-
zubringen. Zur Realisierung dieses Ansatzes wurde die AQL entwickelt, eine Schnittstel-
lensprache, die es uns erlaubt mit beliebigen Analysen auf dieselbe Art zu interagieren.
Die Sprache wurde im Einklang mit Konzepten des komponentenbasierten Softwareent-
wurfs entwickelt. Dementsprechend wird jede Analyse als eine Komponente betrachtet,
die zur Komposition bereitsteht. Folglich ermöglicht uns die Sprache die Erstellung von
Analysekombinationen, die wir kooperative Analysen nennen.

Durch das Messen der Ressourcennutzung einer Analyse (z.B. benötigte Zeit), kön-
nen wir die Effizienz dieser Analyse bestimmen. Ebenso können wir die Effektivität durch
den Vergleich tatsächlicher und erwarteter Ergebnisse ermitteln. In der Vergangenheit wa-
ren derartige Auswertungen oft fehleranfällig und nicht reproduzierbar, da sie händisch
und oftmals von mehreren Personen mit unterschiedlichen Vorkenntnissen und Ressour-
cen durchgeführt wurden. Häufig kamen dadurch unterschiedliche bzw. unterschiedlich
interpretierte Ergebnisse zustande.

Um diese Probleme zu lösen, präsentieren wir einen weiteren Ansatz, der es uns erlaubt
(kooperative) Analysen automatisch zu evaluieren. Der Ansatz nutzt die AQL, um mit
unterschiedlichen Analysen zu interagieren und um zu garantieren, dass tatsächliche und
erwartete Ergebnisse eindeutig beschrieben sind. Somit können beliebige Analysen unter
denselben Gegebenheiten durchgeführt und Fehler aufgrund von Fehlinterpretationen ver-
mieden werden. Wir nennen Experimente automatische und reproduzierbare Benchmarks,
wenn sie mittels dieses Ansatzes durchgeführt werden.

Zur Feststellung der Effektivität des kooperativen Analyseansatzes setzen wir ihn viel-
fältig im Bereich der Android Taint-Analyse ein. Insgesamt haben wir sechs koopera-
tive Analysen konstruiert, die 18 unterschiedliche Strategien verfolgen und 32 Analy-
sewerkzeuge nutzen. Diese kooperativen Analysen haben wir mit 13 nicht-kooperativen
Taint-Analysewerkzeugen anhand von unterschiedlichen Mikro-Benchmarks und Realen-
Benchmarks verglichen. Zur Durchführung dieser Vergleiche kamen die von uns entwickel-
ten, automatischen und reproduzierbaren Benchmarks zum Einsatz. Abschließend konnten
wir feststellen, dass kooperative Analysen in den meisten Fällen besser als ihre nicht-
kooperativen Gegenstücke funktionieren.

Letztendlich konnte aufgezeigt werden, dass das Zusammenbringen unterschiedlicher
Lösungsansätze für diverse Analyseherausforderungen in kooperativen Analysen zu Verbes-
serungen gegenüber modernsten Programmanalyseansätzen führen kann. Zudem konnten
diese Verbesserungen automatisch und reproduzierbar gemessen werden.
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1 Introduction
Android is the most-used – not only mobile – operating system [169]. It is employed on
a broad range of devices, ranging from smartphones and tablets over watches, TVs and
desktop computers to cars. Unquestionably, the most iconic device is the smartphone.
The smartphone in particular deals with huge amounts of sensitive data recorded by
sensors (e.g., GPS location), provided willingly by the user (e.g., contact data), or required
technically and legally (e.g., IMEI number, a unique device identifier).

Because of Android’s huge user base and the amount of sensitive data dealt with,
Android has become a compelling attack surface [104] – not only, but especially for data
thefts [164, 166, 173]. Consequently, there is an arms race taking place between attackers,
trying to steal data, and defenders, attempting to prevent such attacks. Attackers always
try to find new methods to access data in unauthorized and/or undetectable ways. Defend-
ers steadily develop new instruments to detect (and avoid) attacks. One such instrument
is program analysis or, in the context of Android, app analysis.

Many competitive defenders take part in this race by contributing novel concepts for
analyses which frequently get implemented in new, improved or updated tools. However,
most defenders work independently – everyone is working on the same task (detecting and
preventing attacks) but focuses on different subtasks. For example, subtasks may concen-
trate on certain analysis challenges caused by the Android framework (e.g., communication
between apps) or an app’s programming language (e.g., reflection). Thus, the Android
app analysis tasks are already divided. To divide and conquer, the different defenders and
their techniques must be brought together. In this thesis we propose cooperative analysis
as an approach to combine different program analyses so that defenders can work together
without the need to become experts at all tasks.

1.1 Approach
Program analysis is applied in various research areas, traditionally in compiler construc-
tion and more recently in security and software engineering [1, 4, 10]. It serves different
purposes ranging from simple (code-)style checks over code optimization [5, 11] to bug
finding [16] and vulnerability detection [18, 19]. For the latter, program analysis can have
different objectives, for example, detecting privacy leaks [33], data races [24] or API mis-
uses [71]. Generally, a program analysis can be of two types: a static analysis inspects
the code of a program without executing it, a dynamic analysis executes a program and
monitors its behavior [10]. Consequently, static analyses may analyze whole programs
while approximating unknown runtime information, whereas dynamic analyses can only
argue about code that was executed and monitored without the need to approximate in-
formation. Both types of analysis are frequently applied in research and industry. For
example, Google’s annual security report for 2021 states:

“Google has developed an automated application risk analyzer that performs
static and dynamic analysis [...] to detect potentially harmful app behav-
ior.” [143, 144]

Different program analysis implementations may be required in order to deal with
different programming languages, execution environments or operating systems. In this
thesis we propose cooperative analysis, an approach to combine program analyses that
serve different purposes, focus on different objectives or come with different requirements
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1 INTRODUCTION

to build a more comprehensive analysis that unifies the capabilities and benefits of the
analyses it combines.

Especially in the area of Android app analysis, in which we face manifold analysis tasks,
for instance in regard to an app’s programming language or the Android framework, we
want to apply cooperative analysis so that one analysis can deal with a single task at
a time while multiple analyses together chase a bigger objective. In the context of this
thesis, this bigger objective is embodied in the detection of privacy leaks. One particular
analysis type allowing us to do so is taint analysis.

Taint analysis may be implemented statically [33, 37] or dynamically [26, 56] to track
the flow of sensitive information through a program. It starts tracking at so-called sources,
i.e., statements extracting sensitive information. Whenever tainted or tracked information
reaches a sink, a statement that reveals information to the outside, a privacy leak in form
of a taint flow is reported. Taint flows describe connections of sources and sinks.

Benign taint flows may intentionally be programmed into an app, for example, a smart-
phone user may want the ability to knowingly share contact data via a messaging app.
However, taint flows may also be programmed into an app by accident such that they
can be exploited to unknowingly exfiltrate sensitive information. In case of malware apps,
taint flows are added to an app on malicious purpose. Additionally, malware developers
typically make extensive use of Android framework or programming language features
to hide malicious taint flows from analyses. Ultimately, we often find a whole jungle of
features that must be analyzed to uncover taint flows. For example, app components
may communicate with each other such that an analysis is required to surveil this com-
munication. Often we find dynamically-loaded or native code in an app, both of which
particularly challenge static approaches that need to consider any possibly loaded code
or other programming languages used to implement the native code portion. Dynamic
analyses are often challenged by taint flows which can only be triggered under very special
circumstances, e.g., only at a certain time of day. To cooperatively analyze this jungle
of features we employ and develop specialized analysis tools for different tasks and bring
together their results.

Fortunately, there are already many static, dynamic and hybrid Android app analysis
tools that focus on different features. For example, there are tools that resolve dynamically
loaded code [54], reveal taint flow parts in native code [75, 93], or deal with communication
between app components [32, 46, 97]. Although these tools rarely work together, there
exist a few examples for Android app analysis tools that cooperate. For instance, there are
taint analysis tools [35, 45] that attempt to find taint flows across component boundaries,
i.e., taint flows that start in one component and end in another. These tools typically
combine two implementations: one that detects flows inside components and another
finding connections between components. Up to now, these combinations have not followed
principles like low coupling, high cohesion [2], hence, if one implementation is outdated
because it was updated by their authors, the whole combination possibly needs to be
updated too. Consequently, we experience that many of these tools, which originally
delivered promising results, are not effective, maintained or up-to-date anymore.

To solve this issue, cooperative analysis follows the fundamentals of component-based
software engineering [9, 12]. In this context Lagaisse and Joosen define a component as
follows:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third-parties.” [17]

With respect to this definition, program analyses represent the independent components

14
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that we, as a third-party, want to combine. To realize our approach, we attach “contrac-
tually specified interfaces” by defining a query language that allows us to interact with
arbitrary program analyses. Thereby, cooperative analyses can easily be composed by
formulating a query, and components (program analyses) can be swapped out by simply
adapting a query. The design, specification and implementation of this query language
represents the first of three major contributions of this thesis. All three contributions are
described in more detail in the following section.

1.2 Contributions and Structure
In this thesis we elaborate three major contributions. The first describes the concept and
realization of the cooperative analysis approach. The second focuses on benchmarking
standalone and cooperative taint analyses. The third and last contribution deals with six
different instances of cooperative analyses and their evaluation.

To realize the cooperative analysis approach, we derive requirements from related work,
i.e., we examine analysis tools, query languages, result formats and existing cooperative
concepts to identify best practices and to avoid the opposite. On this basis, we will design
and specify a new query language, namely the Android App Analysis Query Language
(AQL). In addition, strategies are proposed to simplify and automate the interaction with
cooperative analyses composed via the AQL. As last part of this first contribution, the
AQL-System, a framework implemented for the AQL, is introduced. All details related
to this first contribution can be found in Chapter 3.

Program analyses and especially taint analyses are usually evaluated on the basis of
benchmarks [21, 52]. With respect to Android a benchmark consists of a set of apps and a
description of the expected analysis results – mostly referred to as ground truth [67, 91]. We
designed and developed BREW, a framework based on the AQL-System, that allows to
create and refine benchmark suites and their ground truths and to automatically execute
and evaluate tools on benchmarks. Benchmarks executed via BREW are reproducible
with respect to the ground truth specified for a benchmark – no manual interpretation
needed. With BREW at hand, we first evaluate 13 standalone Android taint analysis
tools. While doing so, we evaluate whether these 13 tools keep their promises as denoted
in the respective proposing papers. In particular, we check which features are actually
supported, if promised accuracy scores can be reached and if the tools are ready to be
used in practice facing real-world scenarios. The results, which show that most promises
are kept, embody the baseline against which we compare cooperative analyses as a part
of the third and last contribution. The Chapter entitled “Automatic and Reproducible
Benchmarks” (see Chapter 4) is dedicated to this second contribution.

The last contribution uses the first contribution (the AQL) to compose cooperative
analyses and strategies, and the second contribution (automatic and reproducible bench-
marks) to evaluate these. Therefore, six cooperative analyses tailored to different analysis
challenges are proposed and evaluated. For each cooperative analysis the involved tools,
strategies and results are documented. In the end, a comparison against the baseline
shows that cooperative analyses outperform standalone analyses most of the time. This
comparison and all results in regard to these six cooperative analyses can be found in the
evaluation chapter (see Chapter 5).

Before these three contributions are tackled, all the required background knowledge is
introduced (see Chapter 2). This includes important details about Android as an operating
system and framework, information about Android app analyses, their benchmarks and
existing frameworks and tools. The conclusion given at the end wraps up the cooperative
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analysis topic and presents a vision for its future (Cooperative Analysis for Everyone).
Furthermore, all artifacts related to this thesis can be found in the (digital) Ap-

pendix A.6. It includes the raw result data of all experiments and all frameworks, tools
and benchmark suites that were developed as a part of this thesis.

1.3 Publication Details
The AQL was first presented in a master thesis [63] six years ago and has steadily been ex-
tended and improved since then. It also represents the basis for multiple studies published
in accordance with this thesis.

In the ReproDroid study [67], which was awarded with an ACM Distinguished Paper
Award at ESEC/FSE 2018, we checked whether standalone Android taint analyses keep
their promises. An updated and extended answer to this question can be found in the
baseline section (see Section 4.2). One of the extensions originates from the TaintBench
study [91], which we published in the EMSE Journal (2022). As a part of this study we
developed the TaintBench benchmark, a benchmark suite that consists of real-world
malware apps for which a ground truth was manually determined. Updated and extended
results with respect to this study can also be found in the baseline section.

The CoDiDroid study [75], published 2019 also at ESEC/FSE, presents cooperative
analyses composed via the AQL. The cooperative analyses proposed are part of those
presented in Chapter 5. Our studies on merging [76], slicing [87] and simplifying [92]
Android apps propose three additional building blocks for cooperative analyses presented
in the same chapter.

Another related publication dealing with the novel concept of benchmark fuzzing [94]
for Android taint analyses was recently awarded with an IEEE Best Research Paper Award
at SCAM (2022). However, using this concept in the context of cooperative analysis is
currently considered future work.
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2 Background
The required background information and terminologies used throughout this thesis are
introduced and explained in this chapter. First, some features and specialties of the
Android framework and its apps as well as the Java programming language are explained.
This is required to understand the challenges that arise from these for program analyses
targeting Android apps. Details about these challenges and general information about
program analysis, and in particular Android app analysis with a focus on taint analysis,
are given next. Third, it is explained how to benchmark Android app analyses. The
important but often mixed up terminologies in this context are clearly defined for the
remainder of this thesis. Lastly, information about the tools that implement Android app
analyses, the frameworks they are based on and the benchmark suites used to evaluate
them are provided. All sections are accompanied by one running example which is split
into four parts (plus a fifth part in another chapter). It can be found at the end of each
section (see 2.1.5, 2.2.4, 2.3.4 and 2.4.4 as well as 3.2.1).

2.1 Android
Android is an open source, linux based operating system originally (since 2007) designed for
the deployment on smartphones. Nowadays, it is deployed on various other devices such as
tablets, TVs or even desktop computers and cars. Primarily, Android allows the execution
of various programs, called applications (apps). Apps can be downloaded from app markets
(e.g., Google’s Play Store [142]) or open source repositories (e.g., F-Droid [132]). There is
a plethora of apps that are marketed this way. The apps fulfill a wide variety of purposes
from simple text editing or messaging apps to banking or even 3D-gaming apps. The
programming language used to develop these apps originally was Java; today Kotlin1 is
primarily used. Furthermore, the inclusion of native libraries allows to integrate C/C++
code fragments. However, once compiled into an Android application package (.apk file) it
makes no difference if the app was written in Java or Kotlin since these packages only hold
compiled bytecode in form of one or more .dex2 files which in turn contain the compiled
Java bytecode. If there are native C/C++ libraries attached, these will be part of the
.apk file in form of compiled shared object files. Additionally, each Android application
package holds one Android manifest file that provides general information about the app
(see Subsection 2.1.3) and many resource files (e.g., user interface layout files, style sheets
or images).

In comparison to ordinary Java programs, Android apps are slightly different. For
example, the Android library is always available – accordingly it is often colloquially said
that an app is written in Android meaning that Java/Kotlin plus Android libraries were
used. The Android software development kit (SDK) includes API-specific development
versions of this library as well as the build tools required to build an Android app. Android
apps also do not have a main method like the one which is called at the start of a Java
program. Instead, the Android system manages when and which parts of an app are
executed. Especially the latter difference makes it particularly challenging to develop
program analyses targeting Android apps.

1“Android mobile development has been Kotlin-first since Google I/O in 2019.” [162]
2Although the Dalvik virtual machine has been replaced by ART (Android Runtime – first appearance

2013 with Android 4.4 “KitKat” and released 2014 with Android 5.0 “Lollipop” [163]) the Dalvik executable
file format (.dex) is still in use.
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2 BACKGROUND

In the following, we will take a closer look at the structure of apps and features of the
Android framework.

2.1.1 Components

Every Android app consists of at least one component. Any component is implemented
by extending component classes provided by the Android framework (library). Each com-
ponent class comes with a set of methods, the so-called life-cycle methods.

Life-cycle methods are called when certain events are triggered that change the
state of a component (e.g., app started).

In general, they belong to the bigger set of callback methods.
Callback methods are specified to be triggered once a certain event happens (e.g.,
button clicked or device’s battery running low).

The four main component types are introduced in the following list:

• Activities: Probably the most commonly used component type is the one respon-
sible for user interfaces, the so-called activities [103]. An activity is implemented
by extending the class android.app.Activity and by defining its layout. For the
latter, a layout (.xml) file is usually used. Anything visible to the user is principally
defined in layouts. For example, a button and which callback method is invoked
once it is clicked, can be defined in an activity’s layout file. A simplified version
of an activity’s life-cycle is visible in Figure 1. Once an activity is launched, the

onCreate()
Activity

launched
onStop()onStart() onDestroy()

Activity
running

Activity
shut down

App
removed from 

memory

[Other app
needs

memory][User navigates to app]

[User navigates to app]

States

Life-cycle functions

Legend

States

Life-cycle functions

Legend

Figure 1: An Activity Components Life-Cycle

methods onCreate and onStart are executed in sequence. Once a running activity
is stopped, onStop is executed. Thereafter the activity might be shut down or be
restarted depending on what caused the activity to be stopped.

• Services: To execute tasks in the background, service [103] components are em-
ployed by extending android.app.Service. The tasks typically executed by a ser-
vice may take longer to finish (e.g., synchronizing information). Services come with
their own life-cycle and may continue running even though the app has been closed.

• Broadcast Receivers: Whenever an app should react to (system-wide) events, it
needs to implement a broadcast receiver [103] (android.content.BroadcastRecei-
ver). The event that triggers the broadcast receiver’s implementation is defined
at the moment it is registered. For example, a weather forecast app may request
updates every 5 minutes, however, when the device’s battery runs low a broadcast
receiver could be triggered that lowers the update frequency to reduce the app’s
energy consumption. The events to which broadcast receivers can react are defined
in the Android framework, however, developers can also trigger or receive custom
events.
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• Content Providers: The fourth component type, namely content providers [103],
are intuitively comparable to databases. They hold structured information that can
be accessed by different apps. For instance, all information about a user’s contacts
are typically stored in a database that is accessible via a content provider. Content
providers are implemented by extending the android.content.ContentProvider
class and accessed via queries similar to REST API requests.

2.1.2 Inter-Component/-App Communication (ICC/IAC)

Components of any type may interact with each other, for example, one activity may
call another one to switch from one user interface to the next. To realize such interac-
tions the components must communicate with each other. The communication between
components that belong to the same app is called inter-component communication (ICC).
Whenever the components belong to different apps, it is called inter-app communication
(IAC). The ICC/IAC interface given by the Android framework works via so-called in-
tents [153].

Intents are sent from one component to another – implicitly triggering the receiving
target component. An intent can also be broadcasted to various (broadcast) receivers
and may transport data.

Intents are divided into two types: explicit and implicit. Explicit intents directly name the
component that should receive the intent by naming the respective Java class. Therefore,
the intent sender must know the receiver which is why explicit intents are designed to
be used in ICC context only. Implicit intents are only describing a potential receiver
without knowing if there is a component that suits the description. To receive an implicit
intent a component must specify an intent filter [153] – the counterpart of an (implicit)
intent.

Intent filters specify which intents are eligible to be received by a component. An
arbitrary number of intent filters can be specified for a single component.
Intent and intent filters follow the lock and key principle: both define an intent triple

consisting of the three elements action, category and data. The action element describes
the action the receiving component should perform. The category describes to which kind
the receiving component must belong. Optionally, the data element can be specified to
e.g., influence which type of data a component may send or receive. Only if the triple
of an intent matches the triple of an intent filter the associated component may receive
the intent. The Android system decides if two triples match and delegates the intent
accordingly.

An intent matches an intent filter if the associated intent triples match.

2.1.3 Manifest

Each Android app comes with one Android manifest: an .xml file that summarizes the
app’s properties and contents. First of all, it contains general information, for example, the
name of the app, a unique app identifier3 (package name) or the targeted and minimally-
supported Android version.

The package name often also refers to the main package, a package that potentially
contains most or all of an app’s code.

3On each Android device only one app can be installed per package name. Furthermore, the package
name is also a unique identifier in markets such as Google’s Play Store.
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However, this is only a convention, i.e., there are also cases where only little or no classes
can be found in the main package or any of its sub-packages [92].

Second, it lists the hardware features used and the permissions required by the app.

Permissions must be granted by the user before certain Android framework methods
can be accessed. Any permission possibly required by an app must be declared in its
manifest.

For instance, to use a device’s camera the associated hardware feature (android.hard-
ware.camera) and permission (android.permission.CAMERA) must be declared in the
manifest [121].

Lastly, the manifest contains a list of all components comprised in the app. The intent
filters of the respective components are also denoted in this list. Typically, the launcher
activity and its associated intent filter is included in this list.

The launcher activity is started once the app is launched by the user. Hence, there
should be only one activity for which an intent filter with action android.intent.ac-
tion.MAIN and category android.intent.category.LAUNCHER is specified.

Note, intent filters can be declared at runtime, thus, the intent filters included in the
manifest must not form a final set.

2.1.4 Features and Specialties

Java and especially Android come with more features and specialties. For brevity, we will
only briefly introduce five more. The first two are basic concepts:

• Fields and static fields are Java variables that can be used across method and
class boundaries, respectively. Intuitively, static fields can be interpreted as global
variables.

• Threads can be used in Java to execute various program parts concurrently. An-
droid extends the concept of threads by introducing AsyncTasks (until Android API
30 [119]). However, from a programming/analysis perspective an AsyncTask is just
a wrapper for a Thread.

Fields in the context of concurrently executed threads may lead to data races – the same
variables may be written or read in an unforeseeable order. Consequently, variables may
hold different values depending on the order of execution. Hence, these basic and com-
monly used concepts often complicate analysis approaches.

Two different concepts, that are usually used less frequently but often extensively to
hide malicious behavior, are reflection and native code:

• Reflection [188] is a concept provided by Java to load classes and methods which
can be used as objects in the program. For example, instead of directly calling a
method it can be loaded as an object and then be invoked via that object.

• Native code [155] can be loaded via the Java Native Interface (JNI). Native code
in this context typically is C or C++ code that can be executed as a part of a Java
program or Android app in form of a so-called native method.

Both concepts allow to load code parts dynamically which again makes it more difficult
to decide which parts are executed when.

In order to enable older Android devices to execute up-to-date apps, support libraries
are attached to apps to guarantee backward compatibility.
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Compatibility or support libraries can usually be found in the package andro-
id.support (or com.android.support) and in the package androidx since the in-
troduction of Android Jetpack [158].

Due to the frequent release of new Android versions, these libraries have grown steadily.
With respect to code size (e.g., lines of code), such libraries are often bigger than the app
itself. In consequence, analyses must scale with respect to such libraries in order to be
applicable.

2.1.5 Running Example 1: Introduction (Part 1/5)
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15: startActivity(...)
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Figure 2: Overview (Example 1 – Part 1)

A running example is introduced in this subsection. It is used for explanation purposes
throughout the whole background chapter. It exemplifies most of the concepts explained
above. An overview of the example can be found in Figure 2. The example consists of one
app with two activity components (MainActivity and TargetActivity) that commu-
nicate with each other (ICC). Both activities override the life-cycle method onCreate.
If the user launches the app, the onCreate method of MainActivity is called first,
since this activity is declared as the launcher activity in the app’s manifest (see Lines
10–13 in Listing 1). Line 5 and 6 of the manifest show two permission declarations.
The READ_PHONE_STATE permission is required to retrieve information such as the sim
card’s serial number or the device’s identification number (IMEI4). The second permission
SEND_SMS is required to – as the name suggests – send short messages.

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="de.foellix.aql.thesis.examples.example1">
4
5 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
6 <uses-permission android:name="android.permission.SEND_SMS" />
7
8 <application android:label="Example1" >
9 <activity android:name=".MainActivity">

10 <intent-filter>
11 <action android:name="android.intent.action.MAIN" />
12 <category android:name="android.intent.category.LAUNCHER" />
13 </intent-filter>
14 </activity>
15 <activity android:name=".TargetActivity">
16 <intent-filter>

4IMEI: International Mobile Equipment Identity
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17 <action android:name="de.foellix.aql.thesis.examples.TARGET" />
18 <category android:name="android.intent.category.DEFAULT" />
19 </intent-filter>
20 </activity>
21 </application>
22 </manifest>

Listing 1: Manifest of the App (Example 1)

Listing 2 shows the source code of the MainActivity. In Line 7 the layout of the activ-
ity’s user interface is loaded. Line 9 and 10 are used to extract the IMEI and store it inside
the variable imei. This variable is attached to an intent in Line 14. Via startActivity
(Line 16) this intent is launched. If there is no other app that declares the action de-
fined in Line 13, the Android system directly delegates the intent to the TargetActivity
component – otherwise it will ask the user which component should be used.

1 public class MainActivity extends Activity {
2 public static final String DATA = "data";
3
4 @Override
5 protected void onCreate(Bundle savedInstanceState) {
6 super.onCreate(savedInstanceState);
7 setContentView(R.layout.activity_main);
8
9 TelephonyManager tm = ((TelephonyManager)

→ getSystemService(Context.TELEPHONY_SERVICE));
10 String imei = tm.getDeviceId(); // Source
11
12 Intent intent = new Intent();
13 intent.setAction("de.foellix.aql.thesis.examples.TARGET");
14 intent.putExtra(DATA, imei);
15
16 startActivity(intent); // (Intent-)Sink
17 }
18 }

Listing 2: Source Code of the MainActivity (Example 1)

The source code of TargetActivity can be found in Listing 3. The IMEI is extracted
from the received intent in Line 7. In Line 12 the IMEI is finally sent to an arbitrary
receiver via a short message. By calling finish (Line 14) the second activity is directly
shut down after the execution of its onCreate method.

1 public class TargetActivity extends Activity {
2 @Override
3 protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.activity_target);
6
7 String imei = getIntent().getStringExtra(MainActivity.DATA); //

→ (Intent-)Source
8
9 Log.d("DEBUG INFO","Sending SMS"); // No Sink

10
11 SmsManager sms = SmsManager.getDefault();
12 sms.sendTextMessage("+49 1337", null, "Leak: " + imei, null, null); //

→ Sink
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13
14 finish();
15 }
16 }

Listing 3: Source Code of the TargetActivity (Example 1)

The presented example targets Android API 19 (Android 4.4 "KitKat", 2013). An up-to-
date version of the same example would require permission requests at runtime (API ≥
23), the usage of getImei instead of the deprecated method getDeviceId (API ≥ 26) and
the additional permission READ_PRIVILEGED_PHONE_STATE which can only be requested
by and granted to system apps (API ≥ 29). These changes already prohibit some of the
security flaws that will be highlighted when the example is continued (see Subsection 2.2.4).
However, all these changes hinder readability which is why we use its simplest version for
explanatory purposes.

In Subsection 2.2.4 the example will be continued by introducing the properties an
analysis should consider. The example is described in Subsection 2.3.4 as a benchmark
case. In Subsection 2.4.4 the example is concluded by showing how it could successfully
be analyzed, if existing analysis tools cooperate. Lastly, in Subsection 3.2.1 it is used to
intuitively introduce the AQL.

2.2 Android App Analysis
Software or program analyses that target Android apps are called (Android) app analyses.
Most of the analysis properties and characteristics described in the following are valid for or
applicable to Android app analysis as well as program analysis in general. For readability
and brevity, we will only refer to apps under analysis even though most statements are
valid for other (Java) programs as well. As any other program analysis, Android app
analysis can roughly be separated into two different kinds: static and dynamic.

A dynamic analysis [26, 56, 83] executes the app under analysis and monitors certain
properties. To do so, the app’s code is usually adapted. Typically, instructions are added
that output, for example, when and in which order certain program locations are reached.
When such instructions are added into the compiled version of an app, we call this process
instrumentation.

In contrast, a static analysis [25, 33, 34, 35, 37, 40, 42, 45, 58] only deals with an app’s
(source) code without actually executing it. An adaptation of an app’s code is (normally)
not required, however, usually the code is transformed into an intermediate representation
(IR) that better suites analyzability, e.g., unique names for unique variables.

Hence, a static analysis is usually able to analyze an entire app whereas a dynamic
analysis can only analyze those parts of an app that are executed. In that respect the
given inputs define which parts of an app are executed.

Dynamic analyses naturally under-approximate – if a property cannot be shown
for certain inputs, it is not guaranteed that the property cannot possibly be shown
for other inputs.
Static analyses often over-approximate – information required for an accurate anal-
ysis of an app are summarized (or approximated) since they are hardly (or not at all)
computable, e.g., user inputs.

For example, considering a loop index i, a dynamic analysis may know its concrete value
under certain inputs. However, other inputs may lead to a different valuation for i. A
static analysis could for example use predicates to approximate the value of i, e.g., no

23



2 BACKGROUND

matter how often the loop is executed, i is and will always be greater than 0 (i ≥ 0). In
the end, it is a tradeoff: both types have their own advantages and disadvantages which
is why hybrid analyses and combinations of different analyses have recently become more
and more popular [57, 75, 84].

The subsequent subsections provide more information about properties and character-
istics of static and dynamic analyses.

2.2.1 Analysis Representations

Commonly, intermediate representations (IRs) of the app under analysis are used as a basis
to carry out a static analysis or to perform an instrumentation for a dynamic analysis. In
short, IRs are designed to simplify the implementation of analyses. Intuitively, IRs are less
complex than source code but better readable than bytecode.5 Different optimizations are
possible with and without loss of information. Often the number of different operations is
reduced or the identification of methods and variables is simplified.

Java bytecode supports more than 200 different operations [22, 152] and an analysis
would probably have to react differently to all of these, hence, when it comes to IRs,
operations of the same type are usually aggregated. Consequently, it is easier to build an
analysis that reacts in the same way when facing the same type of operation. For example,
in Java bytecode a method call and a static method call are two different operations, but
in an IR there typically exists just one method call operation and most analyses react
equally whether a static or non-static method is called. To avoid loss of information (and
to be able to go back to the original representation), the IR must make sure that the
information about static method calls is preserved (e.g., by a flag attached to any method
call).

Furthermore, IRs often are three-address-code [4, 10] languages, i.e., any operation
uses at most three operands. Thus, operations such as a = x + y + z are split into two
operations (t = x + y and a = t + z) which again can be handled the same way by an
analysis.

In Java variables with the same name can refer to different variables in different scopes.
Hence, many IRs enforce to use unique variable names so that an analysis can unambigu-
ously identify variables by name. IRs enforcing a single static assignment (SSA) [4, 10]
form go one step further, each variable may only be assigned once.

Usually, not only IRs are used as analysis basis. Most analyses use graph representa-
tions in addition. Three different graph representations are frequently employed. A brief
description of these three can be found in the list below:

• Control flow graphs (CFGs) [1, 10]: The control flow of an app describes which
statements may be executed after another. Hence, the nodes of a CFG represent
basic blocks.

Basic blocks [1] are statements (e.g., assignments or method calls) or struc-
tural elements (e.g., conditions of branches or loops).

The directed edges of a CFG denote which blocks may be executed after another.

• Dependence Graphs (DGs) [4]: As in a CFG, the nodes of a DG represent basic
blocks. The directed edges of a DG may describe various dependencies between
certain basic blocks. For example, an edge may describe a data dependency, i.e., the
data used in a block is dependent on the block(s) where the data is defined.

5In Appendix A.1 we compare three code formats: Java source code, Jimple code (IR) and bytecode.
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• Call graphs (CGs) [4, 10]: Which method is called by a certain invoke statement
can be looked up in a CG. Each node in a CG represents one method. An edge
describes that the method (node) where the edge ends can be called from the method
where the edge starts.

Which type of IR or graph comes into play depends on the analysis to be executed.
While static analyses mostly use these representations to carry out their analysis,

dynamic analyses are often used to enrich these representations. In consequence, hybrid
analyses are composed that use dynamic analysis to enrich representation which are then
used to run a more precise static analysis. For example, call graphs could be enriched by
dynamic analysis: instead of approximating which method(s) may be called by a certain
method call, it is monitored which methods are actually called during execution.6

2.2.2 Analysis Types

Static analyses can further be divided into forward and backward analyses. Dynamic
analyses are naturally forward ones, since they follow the program flow during execution.
Static forward analyses try to determine properties about the past. For example, the
reaching definition (RD) [10] analysis attempts to determine which variable definitions
reach which variable uses. Thus, information about the past – which definitions have
been seen – is gathered. One example for a backward analysis, would be the live variables
(LV) [10] analysis commonly used to eliminate dead code. It provides information about
the future by detecting if a variable is used before it is assigned again.

The analysis this thesis focuses on is a security analysis, namely taint analysis. It
can be implemented as a forward or backward analysis. Taint analyses attempt to find
data flows between statements of two types: sources and sinks. Source statements extract
sensitive information, for instance, when login credentials are provided by the user or
sensor data (e.g., GPS location) is accessed. Statements that extract device identifiers
(e.g., phone number or IMEI) are also considered to be sources since they can be misused to
track individuals. Sinks are statements that forward information, for example, by sending
short messages or uploading data to the Internet. In Android, sources and sinks are often
protected by permissions, thus, there are techniques exploiting this fact to identify sources
and sinks on the basis of the Android API [30]. Other techniques use machine learning to
do so [36]. A taint analysis either tracks tainted data from sources to sinks or the other
way around from sinks to sources. Let us consider the first case. Once the analysis reaches
a source, it taints (marks) the variable that carries the sensitive data. If the tainted data
reaches a sink, the possible data leak is reported in form of a taint flow. A taint flow is
usually described by naming the source and sink it connects. Seldom intermediate steps
are also reported. To describe sources and sinks in general (non-specific to a certain taint
flow) it is sufficient to name the respective methods.

Taint flows are security-critical or malicious whenever the information is leaked to
unknown receivers or extracted without informing the user. On the one hand, security-
critical taint flows are not always maliciously integrated into an app, often implementation
mistakes or unknown vulnerabilities are responsible and get exploited to access and leak
data. On the other hand, malicious software like malware, in particular spyware, explicitly
attempts to hide its behavior by hiding taint flows through obfuscation, for example, by
unnecessarily but extensively nesting objects in one another. Benign taint flows may also
be detected by taint analysis, for example, the possibility to willingly and knowingly share
contact data via a short message with a friend may be detected as a taint flow. Due to the

6For example, Azim et al. [72] run an instrumented app to get so-called trace files.
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various possibilities to constitute taint flows it becomes challenging to build an effective
and efficient taint analysis. In the following, we will define what makes an analysis effective
or efficient and how to evaluate an analysis’s performance.

2.2.3 Analysis Effectiveness and Efficiency

The efficiency of an analysis is typically evaluated by measuring the runtime of a tool
implementing an analysis and comparing it with other tools implementing the same type
of analysis. Runtime is also called execution or analysis time in this context. Furthermore,
resource usage is taken into account, e.g., how much memory is required to execute the
analysis. Sometimes crashes are counted and also taken into account, since they are not
necessarily a bug in the analysis tool but occur, for example, if a tool requires more
memory than available while analyzing certain apps.

The effectiveness of any Android app analysis depends on (1) its scope, (2) its awareness
of features and (3) its sensitivity.

1) In general an analysis can be an intra- or inter-procedural analysis. While intra-
procedural analyses only consider one method at a time, inter-procedural analyses also
analyze the interplay of multiple methods. Analogously, we differentiate Android app
analyses as being intra- or inter-component/app analyses.

An intra-component/app analysis considers one component/app at a time;
an inter-component/app analysis more than one at a time.
2) Analyses targeting Android apps can moreover be aware of callbacks, life-cycles,

ICC/IAC, native code, reflection and many other features provided by the programming
language Java or the Android execution environment, however, we focus on these five
features:

• Callback: Which methods are callback methods as well as when and where they
can be called is known by the analysis.

• Life-Cycle: The analysis takes any possible sequence of life-cycle method invokes
into account.

• ICC/IAC: Intents and intent filters as well as the inter-component connections they
represent are recognized by the analysis.

• JNI: Native methods called from within the app’s code are no black boxes to the
analysis. It is able to uncover properties of the native parts that are accessed.

• Reflection: Whenever a class or method is accessed via reflection the analysis is
able to determine which class or method is accessed. Thereby reflection is resolved.

3) When quantifying an analysis’s effectiveness (in terms of accuracy) the following
sensitivities are frequently named [29].

• The control flow of a program specifies the execution order of statements. Loops,
branches, exceptions and method calls influence or alter this order. An analysis
taking an app’s control flow into account is flow-sensitive.

• The same method can be called from different program locations and with different
parameter values. A context describes from where and with which values a method is
called. Tracking from which context a method is called makes an analysis context-
sensitive.
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• Analyses may differentiate elements in e.g., arrays, lists or maps. A field-sensitive
analysis must be able to differentiate fields which belong to the same object.

• In Java, a class can be instantiated arbitrarily often and different variables may
refer to the same object. In the tiny example below (see Listing 4), a and b refer
to different objects whereas b and c represent the same. Thereby, b.f is increased
in Line 4 although only c.f++ is denoted. Analyses that differentiate objects of the
same type and take aliasing into account are called object-sensitive.

1 A a = new A();
2 A b = new A();
3 A c = b;
4 c.f++;

Listing 4: Aliasing

• Concurrent programs may write and read values to and from the same variables.
An analysis taking the inference of writes in one thread and reads in another thread
into account is thread-sensitive.

• Flows are often split up depending on the fulfillment of conditions. For example,
if-statements typically split up a flow into two branches (if and else). An analysis
needs to be able to evaluate arbitrary conditions to become path-sensitive.

In general, it holds that a more sensitive analysis is more effective. The actual effective-
ness in terms of accuracy is most commonly evaluated via benchmarks and measured by
computing precision, recall and F-measure – details are provided in the next section about
benchmarks (see Section 2.3).

The major goal of analysis developers is to design and build analyses that are efficient
and effective. However, in most cases a tradeoff between these two properties exists, hence,
not seldom the most effective analysis is also the most inefficient.

2.2.4 Running Example 1: Analyzable Properties (Part 2/5)

In this part of the example we want to answer the question: what type of taint analysis is
required to successfully analyze the running example?

MainActivity

onCreate(...)

15: startActivity(...)

TargetActivity

onCreate(...)

 7: getStringExtra(...)

Source

Sink

10: getDeviceId()

12: sendTextMessage(...)IntentIntentIntent

Intent filterIntent filterIntent filter

1. 2. 3.

Figure 3: Overview (Example 1 – Part 2)

The taint flow, that should be found, starts in MainActivity at the source getDeviceId()
and ends in TargetActivity at the sink sendTextMessage(...) as depicted in Figure 3,
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i.e., it starts and ends in two different components. Hence, the analysis must be able to
analyze ICC. Since source and sink can be found in the onCreate(...) life-cycle method
of the respective components, the analysis must further be life-cycle aware. Lastly, the
analysis must be flow-sensitive since it is important in which order the statements are
executed - in fact, this holds for any taint analysis scenario.

The flow-sensitive, inter-component, life-cycle aware analysis must then identify (1)
sources and sinks, (2) statements that realize the ICC and (3) intents and intent filters.
Lastly, all this information must be brought together to find the three flows that realize
the taint flow:

1. Intra-component flow from the source to startActivity(...)

2. Inter-component flow from startActivity(...) to getStringExtra(...)

3. Intra-component flow from getStringExtra(...) to the sink.

To determine the inter-component flow part (2), an intent must be compared to an intent
filter to find out whether their associated intent triples match. In this example, only the
matching action strings must be compared (see Line 17 in Listing 1 on Page 21 and Line 13
Listing 2 on Page 22). In real-world scenarios, such tasks are usually more complex because
the intent triples are harder to compare, e.g., multiple action strings and categories are
involved. Similarly, detecting flow part 1 and 3 may become more difficult, once features
like reflection, callbacks or threads come into play. Even a simple if branch with a condition
that involves unpredictable user inputs may force a dynamic analysis to under- or a static
analysis to over-approximate.

2.3 Benchmarks
Benchmark is a manifold term that is defined and interpreted differently in distinct focus
areas. To clarify which definition and interpretation is accurate throughout this thesis,
the term benchmark as well as various related terms are introduced in the following. Note
that all terms are defined with respect to Android taint analysis only. Figure 4 provides
an overview of all terms.

To run a benchmark we need the tool(s) to be benchmarked and a benchmark suite.
The benchmark suite represents the corpus of a benchmark and consists of multiple bench-
mark cases. Each benchmark case comprises one app, the benchmark app, and a description
of one taint flow, the expected (analysis) result. This taint flow can either be an expected
or a not-expected taint flow.

While an expected taint flow should be found by an analysis, a not-expected taint
flow should explicitly not be found by an analysis.

The same benchmark app may be used for multiple benchmark cases. In case of an inter-
app taint flow multiple benchmark apps may belong to a single benchmark case. Only a
collection of apps – without a description of expected analysis results – does not form a
benchmark suite.

To benchmark an analysis tool, each of the following steps has to be performed per
benchmark case: The actual (analysis) result must be computed by executing the analysis
tool for the associated benchmark app. Then the expected result must be compared
against the actual one, i.e., it must be checked whether the expected or not-expected taint
flow is contained in the list of actually detected taint flows.

Note, a benchmark suite always holds benchmark cases without actual results. A
benchmark is only complete if it holds both, the suite and the actual results, so that
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Benchmark

Benchmark Suite

Benchmark Case

Benchmark App(s)
(the same app might be part of many

benchmark cases)

Actual Analysis Result

Detected Taint Flow   1

Detected Taint Flow   n
…

Expected Analysis Result

XOR
Expected Taint Flow

Not-expected Taint Flow

available
after 

benchmark 
execution

Figure 4: Overview of Benchmark Terminologies

the benchmark’s outcome can be determined. Nonetheless, the term benchmark is also
used as an abbreviation for specific benchmark suites, for example, we will use micro
benchmark and DroidBench benchmark as an abbreviation for micro benchmark suite
and DroidBench benchmark suite, respectively. How to quantify a benchmark’s outcome
is explained in the next subsection. Subsection 2.3.2 defines what a benchmark’s ground
truth is.

2.3.1 Evaluation Metrics

The metrics that are typically used to describe the outcome of a benchmark are the
empirical experimentation metrics: precision, recall and F-measure. To compute these,
we first have to categorize the results per benchmark case as True Positive (TP), False
Positive (FP), False Negative (FN) or True Negative (TN). For example, if the actual
result – computed for a benchmark case with an expected taint flow – holds a detected
taint flow that matches the expected one, this benchmark case is counted as a true positive.
Table 1 generalizes what has been explained for the example. The columns show what

Table 1: Comparing an Expected Analysis Result (Columns) with an Actual
One (Rows)

Expected Analysis Result

expected not-expected
taint flow... taint flow...

Actual
Analysis
Result

...does match a True Positive False Positive
detected taint flow (TP) (FP)

...does not match any False Negative True Negative
detected taint flow (FN) (TN)
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kind of taint flow the expected result holds (expected or not-expected). The rows define
if a matching detected taint flow is available in the actual result or not. The cells then
show the categorization (TP/FP/FN/TN). Once the categorization of all benchmark cases
is completed, the accuracy metrics can be computed to summarize the outcome of the
respective benchmark. Therefore, we count how many benchmark cases belong to each
of these four categories (|TP |, |FP |, |FN |, |TN |) and calculate precision, recall and F-
measure as follows:

Precision (P ):

P = |TP |
|TP | + |FP |

Recall (R):

R = |TP |
|FN | + |TP |

F-measure (F ):

F = 2 · P · R

P + R

Precision reflects how often a detected flow matched an expected one in relation to how
often it matched a not-expected one. Recall relates to how often expected results were
matched or not. Intuitively, precision describes how many of the detected flows were
expected and recall describes how many expected flows were detected. The F-measure
represents the harmonic mean of precision and recall, hence, can be interpreted as the
summarizing accuracy metric. The perfect desirable value for all three metrics is 1.0
(100%): All expected flows but no not-expected flow were detected.

There are many other metrics to describe the outcome of a benchmark, for example,
the success rate (often referred to as accuracy itself):

Success Rate (S):

S = |TP | + |TN |
|TP | + |TN | + |FP | + |FN |

= |Successful cases|
|All benchmark cases|

In the context of this thesis, accuracy will always be measured with precision, recall and
F-measure. This is the de facto standard which offers the best comparability to values
reported in previous works [33, 35, 37, 42, 45, 58]. The success rate will only be used
if precision, recall and F-measure are incomputable. This may be the case if the ground
truth (see next subsection) of a benchmark suite is not available.

2.3.2 Ground Truths

The most crucial part of a benchmark suite is normally its ground truth.
A complete list of all expected taint flows forms the ground truth of a benchmark
suite.

If a ground truth is available, not-expected taint flows must not be defined explicitly in
benchmark cases. The implicit definition then is: any taint flow that is not part of the
ground truth is a not-expected taint flow.

Unfortunately, a ground truth is often missing. It is sometimes claimed that a bench-
mark comes with a ground truth but actually, the provided ground truth is incom-
plete.

A list of expected (and not-expected) taint flows is called an incomplete ground
truth unless it is proven that one part of it (expected or not-expected taint flows) is
complete – then it would be a (complete) ground truth.

The expected taint flows contained in an incomplete ground truth are often manually or
experimentally determined, thus, there are no guarantees that no taint flows, which should
be expected, were missed (under-approximation). It may also be the case that taint flows
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are falsely declared as expected ones (over-approximation). When using an incomplete
ground truth, taint flows that are not categorizable may be detected. By explicitly defining
not-expected taint flows in benchmark cases, we can categorize true negatives and false
positives although our list of expected taint flows might not be complete. Figure 5 depicts
how to compute precision and recall when using an (in-)complete ground truth. Whenever
an undefined (see “?” in Figure 5) taint flow is detected, it should be added to the
incomplete ground truth, if it can clearly be identified as expected or not-expected taint
flow. Ultimately and most importantly:

Benchmark results are and will remain comparable as long as they are computed
for the same (incomplete) ground truth.
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Figure 5: Precision and Recall for Complete and Incomplete Ground Truths

Table 2: Overview of Ground Truth Formats

Machine Tool in-
Format Granularity readable dependent Description

Numeric coarse ✔ ✔

The ground truth only denotes how many
taint flows are expected (and not-expected)
to be found.

Textual intermediate ✘ ✔
The taint flows expected (and not-expected)
are described in natural language.

Categorical intermediate ✔ ✔
The taint flows are only described by cate-
gories, for example, IMEI to SMS.

Intermediate
Representation precise ✔ ✘

The IR is used to describe the taint flow –
the connected source and sink statements can
unambiguously be identified through this de-
scription.
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To guarantee that a benchmark is reproducible the ground truth must furthermore be
unambiguous. Hence, its format and granularity is as decisive as its availability. Table 2
shows frequently used formats. When a ground truth is too coarse, the categorization of
results may be hindered, for example, the information that one taint flow is expected (nu-
meric format) does not allow to decide if the intended taint flow was detected or another
one. If a ground truth is not machine-readable, the automatic evaluation of the associated
benchmark often renders impractical. For instance, converting natural language into a
machine-readable format usually requires additional inputs to avoid discrepancies. In ad-
dition, natural language descriptions can be interpreted differently by different individuals
which is another source of uncertainty. If a ground truth is only compatible with a certain
set of tools – using the same IR for instance – it is hardly applicable for tool comparison.
In the end:

Reproducible benchmarks, that can be executed and evaluated automatically, re-
quire a precise, machine-readable and tool independent ground truth.

Hence, to achieve reproducibility, combinations of different ground truth formats are reg-
ularly used.

2.3.3 Benchmark Types

There are different kinds of benchmarks for Android taint analysis. In this subsection,
three types are briefly introduced (micro, generated/injected and real-world benchmarks).
The way they are created is what makes them different.

Most commonly used for the evaluation of novel approaches are micro benchmarks.
Small and manually created apps, that have only been created for evaluation purposes,
form their corpus. Usually, a single micro benchmark app comprises only one property
(a taint flow that exploits one specific feature). Because of this, it is easy to create the
ground truth for such benchmark suites.

Generated benchmarks or injected benchmarks partially share this advantage. The
property that is generated/injected into the benchmark app, is known and can easily be
included in the benchmark’s ground truth. In order to create such a benchmark suite, the
benchmark apps are either automatically generated from scratch, whereby known taint
flows are incorporated, or they are created by injecting a property (a taint flow with
known features) into an existing app. Especially in the latter case, it is likely that the
ground truth of the benchmark suite is incomplete, since apart from the injected taint
flows, no information is given about other taint flows.

Real-world benchmarks represent the most-valuable type of benchmark suites. They
consist of labeled real-world apps. The benchmark apps are taken from e.g., app markets
such as Google’s Play Store and the ground truth describes taint flows inside these apps.
However, creating the ground truth for a complex real-world app is a challenging task.
Finding all taint flows inside one app and proving that there are no others is often impos-
sible. Summarizing, a tradeoff between representativeness and ground truth completeness
exists. Intuitively, the more a benchmark suite reflects the real world, the harder it gets
to create its ground truth.

2.3.4 Running Example 1: The Benchmark Case (Part 3/5)

Let us consider the running example again. It holds one taint flow from getDeviceId() to
sendTextMessage(...) that should be found by an analysis. The statement calling the
logging function d (see Line 9 in Listing 3 on Page 22) can also be interpreted as a sink.
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Hence, a taint flow that could wrongly be detected could also start at getDeviceId() but
end in Log.d(...).

Table 3: Complete Ground Truth of a Benchmark Suite only Consisting of
the Running Example

Expected Analysis Results (Taint Flows) Categorization
Benchmark App Source Sink (expected or not-expected)

example1.apk

Statement: getDeviceId() Statement: sendTextMessage()

expected ✔
Method: onCreate(...) Method: onCreate(...)
Class: MainActivity Class: TargetActivity
App: Example1 App: Example1

To form a benchmark suite with a complete ground truth we only need to specify one
benchmark case – see Table 3. The not-expected taint flow from getDeviceId() to
Log.d(...) is implicitly defined since it is a complete ground truth and any taint flow that
is detected but not declared in the expected analysis result is categorized as not-expected.
Issues that may arise, manifest in partial flows. For example, the intra-component flow
from getDeviceId() to startActivity(...) may be detected and reported in addi-
tion to the complete flow. Consequently, it would get classified as false positive since it
is not declared in the expected analysis result. The correctness of this interpretation is
questionable.

Table 4: Incomplete Ground Truth of a Benchmark Suite only Consisting of
the Running Example

Expected Analysis Results (Taint Flows) Categorization
Benchmark App Source Sink (expected or not-expected)

example1.apk
Statement: getDeviceId() Statement: sendTextMessage() expected ✔
... ...

example1.apk

Statement: getDeviceId() Statement: Log.d()

not-expected ✘
Method: onCreate(...) Method: onCreate(...)
Class: MainActivity Class: TargetActivity
App: Example1 App: Example1

An incomplete ground truth would require to explicitly define the not-expected taint flow,
too – see Table 4. Now the partial flow is neither implicitly nor explicitly declared and
would possibly be ignored during evaluation.

In either case (complete or incomplete ground truth), the partial flow must be handled
separately and with respect to the terms of the individual benchmark.

2.4 Analysis Frameworks, Tools and Benchmark Suites
In the last part of the background chapter, existing frameworks, tools and benchmark
suites which regularly appear in the context of Android taint analysis are presented. The
frameworks, tools and benchmark suites that have been developed for a part of this thesis
are summarized and listed in Appendix A.2.

2.4.1 Frameworks

The optimization and analysis framework Soot [11, 179] as well as the T. J. Watson
libraries for analysis (WALA) [189] are frequently used to build Java or Android analyses.
While WALA is not specifically tailored to Android, Soot comes with built-in Android
support. Consequently, most Android taint analysis tools are based on Soot. Soot uses
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its own intermediate representation called Jimple – “like Java but simple”. It is a three-
address-code language and as the name suggests it is an equivalent to Java. Thus, all
program constructs that can be implemented in Java can be reproduced in Jimple. To
do so it only needs 15 different types of statements [22]. For comparison: Java bytecode
uses more than 200 distinct instructions [152].7 Accordingly, in order to implement an
analysis at most these 15 statement types must be taken into account. Furthermore,
method calls are never nested in Jimple and Jimple always references variables explicitly
by using local variables only. When a (static) field is accessed, for example, it is assigned
to a local variable first. These are some of the reasons why Soot and Jimple are used
as basis for most Android taint analysis tools, which are presented next. Of course,
frameworks targeting other programming languages and objectives while implementing
different techniques exist as well [28, 77].

2.4.2 Tools

When it comes to taint analysis tools for Android, two tools can be identified as state-
of-the-art [67, 68]: Amandroid [37, 98] and FlowDroid [33, 133]. Both tools are
steadily improved and new versions have been released recently. Another frequently men-
tioned taint analysis tool is DroidSafe [42, 131], but in contrast its development has
come to an end in 2016. While FlowDroid and DroidSafe are based on Soot, Aman-
droid is based on its own analysis framework. Depended on their basis, the tools use
different IRs but all three employ similar graph representations for their analysis. Nowa-
days, all three claim to support the analysis of ICC.8 Furthermore, it is claimed that
Amandroid and FlowDroid are context-, flow-, field- and object-sensitive and that
they support callbacks, especially life-cycles. Another similarity of these two is the usage
of a configurable list of sources and sinks. Such a list is used to identify instances of
sources and sinks inside an app. Various tools have been proposed to create such lists,
since a perfect static list does not seem to exist. One often named tool is the machine
learning tool SuSi [36]. When referring to the SuSi list, the sources and sinks list created
by SuSi is meant.

While FlowDroid is a standalone analysis tool, it is also known as soot-infoflow-
android library, which is the extension of Soot that makes Soot usable in Android
context. As a result, any Soot-based Android analysis tool is also an extension of Flow-
Droid. One prominent extension is the inter-component analysis tool IccTA [45] which
has recently been integrated into FlowDroid. Although it is integrated, we will continue
using the name IccTA whenever this extension is meant. IccTA takes an ICC model as
additional input and forwards it to FlowDroid so that FlowDroid is able to analyze
ICC. For the computation of the ICC model Epicc [32] was used originally. However,
Epicc was quickly replaced after the release of IccTA by its successor IC3 [46, 147].
Effectively, both tools (Epicc and IC3) gather information about intents and intent fil-
ters. Recently, another tool (ICCBot [97]) tackling the same task has been proposed.
ICCBot seems to be a promising candidate as it allows to gather more accurate and more
comprehensive information about ICC. It partially employs dynamic analysis to determine
intent triple elements more accurately. It provides information about intent sinks (and
intents), intent sources (and intent filters) and also inter-component flows between those.
However, since a different ICC model (output format) is used, ICCBot cannot be used
directly together with IccTA. DidFail [35, 127] is another taint analysis tool with ICC

7In Appendix A.1 we compare three code formats: Java source code, Jimple code (IR) and bytecode.
8Since version 2.8 (2020) FlowDroid supports ICC, however, for that it requires one additional input.
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capabilities. It also combines Epicc with FlowDroid, however, it does so internally and
therefore does not require an ICC model as additional input.

The Precise Intent Matcher (PIM [75, 171]) is a dynamic tool which can also be used
to find inter-component flows. On an Android (virtual) device, e.g., an emulator, it runs
an app that functions as a server. The analysis tool PIM functions as the client. Once
this client faces the task to decide if an intent matches an intent filter, it asks the server
to compare the associated intent triples. The server instantiates both intent triples and
asks the Android system it is deployed in, whether the given intent triples match. If so, it
outputs a positive answer that states that a match has been found. When exact statements
(intent sink and intent source) are provided as input, it replies an inter-component flow
by connecting the respective statements. For example, if an intent sink is embodied by
a startActivity statement and an intent source by a getStringExtra statement, these
two are connected if the associated intent triples match.

For instance, IccTA’s analysis can further be lifted up, from inter-component to inter-
app level, by employing ApkCombiner [44, 109]. ApkCombiner, as the name sug-
gests, combines various Android apps into a single one, thus, any tool able to analyze
inter-component scenarios can analyze inter-app scenarios by analyzing such combined
apps. The Android Merge Tool (AMT [76, 102]) was also developed to combine or merge
apps. Since it has been published more recently (2019), it may be seen as the succes-
sor of ApkCombiner which has not been updated since 2014. DIALDroid [58, 126]
represents another extension of FlowDroid that can be employed to analyze inter-app
scenarios without requiring ApkCombiner or AMT.

Almost all tools mentioned above, especially all the taint analysis tools, will be em-
ployed in the experiments conducted for this thesis (see Section 4.2 and Chapter 5). These
taint analysis tools are considered to be close contenders as they all implement a flow-
or context-sensitive static taint analysis. Nonetheless, there are many other related taint
analysis tools that have not been discussed yet. A general overview of analysis tools
for Android apps can be found in three surveys [55, 60, 64]. These surveys collect and
summarize tools and their functionality as outlined in research papers.

In the following, a few static taint analysis tools are mentioned along with an argu-
mentation that explains why they were not considered to be used in experiments. Ap-
poscopy [34], WeChecker [40], Separ [49] and the recently proposed tool Sparse-
Droid [74] should fit perfectly, however, they are not publicly available. SCanDroid [25]
is publicly available and fits into our scope as well, nonetheless, it is largely outdated and
cannot produce results for any (micro) benchmark suite that we use for our experiments.
DroidInfer [43] employs an interesting type-based approach. However, the tool seemed
not ready for competitive comparison since its execution fails for most (micro) benchmark
cases. HornDroid [51, 146], as the name suggests, uses Horn clauses to decide which
sinks are able to leak sensitive data. Due to the use of logic, it is able to distinguish
definite from only potential leaks. Unfortunately, it does not provide information about
sources that are connected to truly leaking sinks, hence, it cannot be used to detect taint
flows directly.

In addition to these static tools, dynamic tools have also been developed for years. Enck
et al. became the most successful pioneers in this area by developing TaintDroid [26]
in 2010. However, due to the introduction of ART (Android Runtime – replacement of the
Dalvik VM released in 2014 [163]) many dynamic tools, including TaintDroid, cannot
be used anymore. A more recent approach that allows the deployment of a dynamic
taint analysis for ART is called TaintMan [83]. As in the field of static tools, there
are dynamic tools tailored to certain challenges, for example, IacDroid [56] embodies a
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dynamic tool that focuses on IAC scenarios. Other dynamic tools implement atypical taint
analysis techniques. MutaFlow [62], for instance, is a mutation-based taint analysis
tool. It mutates the sensitive information extracted at sources and checks whether the
mutated value reaches out to any sinks. Since any dynamic approach requires guidance
(e.g., execution traces or test cases) to run its analysis, we do not consider them as being
contenders in the same league as static tools. Hence, dynamic taint analysis tools are not
included in our experiments.

StubDroid [47], another extension of Soot (also known as soot-infoflow-summa-
ries), can be used to create summaries of methods. Such summaries can be used in
an analysis to avoid unnecessary analysis repetitions for the same method. StubDroid
gathers information about methods such as which input parameters actually influence e.g.,
the method’s output. Using StubDroid can therefore potentially improve the efficiency
and scalability of an analysis, in particular, if used to summarize methods of the Android
library.

Another tool dealing with libraries, especially compatibility or support libraries, is
APK-Simplifier [92, 108]. It takes an app as input and outputs a list of trusted support
libraries. These are trusted, since they are equal to libraries that can be downloaded from
an official Android repository. To decide whether libraries are equal, APK-Simplifier
employs a clone detection tool [14]: For each class of an app, for which a counterpart (a
class of an official library) exists, it is checked whether they are clones. If classes are clones
with a certainty of a configurable threshold they are added to the output list. Thereby,
APK-Simplifier will never trust a manipulated library class. Please note that there
are many alternatives to APK-Simplifier that also deal with the well-explored field of
library detection in Android context [48, 59, 61, 69, 88]. While most of these allow to detect
support libraries, a few can be used to detect third-party libraries as well. Nonetheless,
APK-Simplifier is the first designed to be used in cooperative analysis context.

The name of the next Soot-based tool, PermissionFinder [170], directly describes
what it can be used for. By iterating over all Jimple statements that appear in an app’s IR,
it identifies those statements that require a permission in order to be executed successfully.
To do so, it checks whether a statement is denoted as a key in a mapping between generic
Jimple statements and permissions [106]. This mapping has been created by mining the
official Android framework documentation [95].

One kind of tools that heavily rely on analyses are slicers [3, 6]. Slicers slice an
app from or to a certain slicing criterion. Whenever they slice from one criterion to
another, the process is called chopping [7]. Various approaches [8, 13, 20] exist and
most are tailored to a specific programming language and individual features. In the
context of Android apps, only a few approaches exist that function nowadays: the dynamic
slicers AndroidSlicer [72] and Mandoline [84] and the static slicer Jicer [87, 159].
Similar to analysis tools, dynamic slicers execute the app to find the slice, whereas static
slicers analyze its source code (mostly in form of dependence graphs) to slice the app. All
three tools partially use Jimple, e.g., as an output format, but differ in terms of precision
and feature support.

In the evaluation section (see Section 5.1) we will only use Jicer, thus, we describe
it slightly more detailed here. Jicer is a static, inter-procedural slicer for Jimple that is
flow-, context-, field-, object- and thread-sensitive and also takes callbacks and life-cycles
into account. Static slicers typically operate on program or system dependence graphs
(PDGs/SDGs) depending on whether the slicer is an intra- or inter-procedural slicer.
Jicer operates on so-called app dependence graphs (ADGs) [87], i.e., on an extended
version of an SDG. For example, an ADG holds nodes and edges that model the life-cycle
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of Android activity components. A unique feature of Jicer is that it allows the slice
to be output as an .apk file. The slice is then either cut out of the app or the only
part remaining in it. Consequently, any analysis tool able to analyze .apk files is able to
analyze slices created by Jicer. From an conceptual perspective Jicer can be seen as a
reducer that removes program parts which are irrelevant for an analysis [66]. To properly
scale, Jicer uses StubDroid, i.e., instead of slicing through library methods it attempts
to use summaries created before by StubDroid.

The tool called DroidRA [54, 130] also uses .apk files as input and output, however it
fulfills a completely different purpose, i.e., it can be used to resolve reflection by instrumen-
tation. More precisely, it searches for statements that use reflection and attempts to resolve
the reflection by replacing these statements with equivalent, non-reflective statements.
For example, if a method foo is invoked reflectively (getClass().getMethod(“foo”,
...).invoke(...)), this invoke is replaced by a direct method call (this.foo()).

A tool that deals with native code, another analysis challenge given by the Java pro-
gramming language, is NOAH [75, 168]. NOAH allows detecting sources and sinks in
native code. To do so, it checks whether source or sink statements declared in the SuSi
list appear in an app’s native code portion. If so, it identifies the native call as source
or sink respectively and reports a connection between the native call and this particular
source or sink.9 DroidRA and NOAH are also based on Soot.

Next, we will have a look at benchmark suites, but beforehand note that there also
are benchmark generators like LAVA [53] or GenBenchDroid [94]. LAVA produces
benchmark cases by bug-injection and hence knows exactly when to expect which bug
to occur. Accordingly, the ground truth LAVA creates for its benchmark apps is poten-
tially incomplete. GenBenchDroid implements the concept of benchmark fuzzing and
generates benchmark cases for Android taint analysis from scratch, hence, it may create
complete ground truths (see Section 2.3.2).

2.4.3 Benchmark Suites

There exist various benchmark strategies and suites available for many kinds of software
and hardware. In the following, benchmark suites designed for taint analysis (mostly
Android taint analysis) are presented.

DroidBench [33, 128] is the most used benchmark suite for the evaluation of An-
droid taint analysis tools. It is a micro benchmark that comprises overall 190 benchmark
apps associated with 18 different categories and comes with a ground truth which is com-
plete for most of the benchmark cases comprised. The ground truth is documented in form
of textual source code comments which are only human-readable apart from the number
documenting how many flows are detectable in the respective benchmark app. Along with
the introduction of reproducible and automatic benchmarks (see Chapter 4), we defined its
complete ground truth in a machine-readable format. Additionally, we added two new cat-
egories to DroidBench: Feature-Checking and Intent-Matching. The first aims
at checking the support of certain features. For example, it holds an iconic benchmark
case to test if an analysis is capable of dealing with ICC. More details are presented in
Section 4.2. The second consists of three apps only. Still, these apps exploit most of
the possible ways to define implicit intents and intent filters. Thus, it can be used to
evaluate how accurately an analysis detects which intents match which intent filters (see
Section 5.1).

9For a similar purpose, two alternative tools (JuCify [93] and NativeDroid [70]) have been
proposed recently. A comparison of all three approaches has not been conducted yet.
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ICC-Bench [37, 148] is another well-known Android taint analysis micro benchmark.
It uses the same style as DroidBench with respect to its ground truth and consists of 24
benchmark apps that focus on inter-component communication.

Securibench [178] is another often-cited micro benchmark, however, it is not tai-
lored to Android – it holds Java classes instead of Android apps. Still, it is very similar to
DroidBench – many benchmark cases show commonalities, i.e., exploit the same features
in the same way.

DIALDroid-Bench [58, 125] is a real-world app set that comes without any ground
truth. However, the set of 30 benchmark apps is fixed. This allows us to evaluate different
tools on DIALDroid-Bench and to compare the results. Without further information
this is not the case for e.g., the 50 best rated apps on the Google Play Store, as this set
can be different (different apps or versions of the same) depending on when and where it
is downloaded.

TaintBench [91, 186] is another real-world (malware) benchmark that comes with
an incomplete ground truth which finally allows to more accurately evaluate Android
taint analysis tools on 39 real-world apps. TaintBench is one of the benchmark suites
employed in our experiments (see Section 4.2 and Chapter 5).

Another real-world benchmark similar to TaintBench was recently proposed. It
consists of 18 benchmark apps that have been taken from the FossDroid collection [141],
hence, we refer to this suite as FossDroid benchmark [86]. Its incomplete ground truth
holds 756 manually classified taint flows (693 expected and 63 not-expected benchmark
cases).

The SV-Comp [185] benchmark represents a large collection of C and Java programs
for which a ground truth is available. Taint flows are not encoded in its ground truth, in-
stead mostly safety-realted properties are encoded (e.g., whether a certain (error-)location
is reachable). The benchmark is annually extended and used to run the Software Verifica-
tion Competition (SV-Comp) [31]. In this competition various software verifiers compete
against each other in order to find out which verifier is the most effective and efficient one.
More precisely, who is able to successfully verify how many programs of the SV-Comp
benchmark, and how much resources (e.g., time and memory) does it require to do so. We
want to emphasize that competitions like SV-Comp often boost the progress in a partic-
ular area and allow that progress to be measured. However, such competitions do neither
exist in the area of Android app analysis nor in the area of taint analysis.

2.4.4 Running Example 1: Tool Results (Part 4/5)

As described in the second and third part of the running example, one taint flow should be
found when analyzing it. In this last part we exemplify how it can be found by employing
two of the tools described above.

First, we are running FlowDroid. The result determined by it is shown in Listing 510

(see Page 40). It comes in XML format and each taint flow is encoded in one <Result> tag.
To represent a taint flow, the <source> and <sink> it connects is identified by naming the
statement, its line number and the method where the statement was found. Statement
and method are named in Jimple format. When using Jimple, the class to which a method
belongs is implicitly named as well – the method’s description starts with the respective
fully-qualified class name. To summarize, the result holds two taint flows, although we
are just expecting one:

• from getDeviceId() (Line 23) to startActivity(...) (Line 15), and
10The results have been shortened to foster readability.
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• from getStringExtra(...) (Line 9) to sendTextMessage(...) (Line 5).

These two taint flows exactly match the two intra-component partial flows as described
in Part 2 (see Subsection 2.2.4). To complete the finding, the inter-component flow that
connects the two intra-component flows must be detected.

Hence, as a second tool we run IC3. Its result can be found in Listing 610 (see
Page 41). In this case, the Protocol Buffer [174] format is used. The two components
of the running example are described separately (see components tags in Line 1 and
Line 25). The description of MainActivity contains one exit point (see exit_points tag
in Line 30). This exit point refers to a statement that probably provides information to
another component. Again, Jimple is used to name the statement, method and class that
embody the exit point. For the TargetActivity component one extra is described inside
the extras tag (see Line 5). An extra represents data attached to an intent. The extra is
also linked to a Jimple statement (see Lines 8–10). Both, the description of the exit point
and the extra, additionally hold information about the intent or intent filter associated
with them. To sum up, IC3 does not output taint flows, it only identifies statements
that realize ICC and provides information about the intent triples involved. With respect
to the current example, comparing the action described for the exit point and for the
extra (see Lines 40–41 and Lines 16–17) is sufficient to conclude that the information
leaving one component at the exit point may reach the second component. Note that
the category android.intent.category.DEFAULT (Lines 20–21) is not given for the exit
point, nonetheless, the described intent and intent filter match due to Android’s matching
algorithm. We can also see that the extra uses the information attached to the intent of
the exit point by comparing the name of the extra (data) that is sent and received (see
Lines 44–45 and Line 6). Finally, we can conclude that IC3’s result implicitly represents
the missing inter-component flow:

• from startActivity(...) to getStringExtra(...).

We have two options to get the complete inter-component taint flow: the result of IC3
can be given to FlowDroid as an ICC model to trigger its IccTA extension, or the two
results can be combined by concatenating the partial flows. Option two would require a
third tool that can interpret and combine both results. Either way the taint flow from
getDeviceId() to sendTextMessage(...) can be found.
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <DataFlowResults FileFormatVersion="102" TerminationState="Success">
3 <Results>
4 <Result>
5 <Sink Statement="virtualinvoke

→ $r4.&lt;android.telephony.SmsManager: void
→ sendTextMessage(...)&gt;(...)" LineNumber="21"
→ Method="&lt;de.foellix.aql.thesis.examples.example1.
→ TargetActivity: void onCreate(...)&gt;">

6 <AccessPath Value="$r3" Type="java.lang.String"
→ TaintSubFields="true"/>

7 </Sink>
8 <Sources>
9 <Source Statement="$r3 = virtualinvoke

→ $r2.&lt;android.content.Intent: java.lang.String
→ getStringExtra(...)&gt;(...)" LineNumber="16"
→ Method="&lt;de.foellix.aql.thesis.examples.example1.
→ TargetActivity: void onCreate(...)&gt;">

10 <AccessPath Value="$r3" Type="java.lang.String"
→ TaintSubFields="true"/>

11 </Source>
12 </Sources>
13 </Result>
14 <Result>
15 <Sink Statement="virtualinvoke

→ r0.&lt;de.foellix.aql.thesis.examples.example1.MainActivity:
→ void startActivity(...)&gt;(...)" LineNumber="25"
→ Method="&lt;de.foellix.aql.thesis.examples.example1.
→ MainActivity: void onCreate(...)&gt;">

16 <AccessPath Value="r2" Type="android.content.Intent"
→ TaintSubFields="true">

17 <Fields>
18 <Field Value="&lt;android.content.Intent:

→ java.lang.Object[] extraValues&gt;"
→ Type="java.lang.Object[]"/>

19 </Fields>
20 </AccessPath>
21 </Sink>
22 <Sources>
23 <Source Statement="$r5 = virtualinvoke

→ r4.&lt;android.telephony.TelephonyManager:
→ java.lang.String getDeviceId()&gt;()" LineNumber="20"
→ Method="&lt;de.foellix.aql.thesis.examples.example1.
→ MainActivity: void onCreate(...)&gt;">

24 <AccessPath Value="$r5" Type="java.lang.String"
→ TaintSubFields="true"/>

25 </Source>
26 </Sources>
27 </Result>
28 </Results>
29 <PerformanceData>...</PerformanceData>
30 </DataFlowResults>

Listing 5: Result of FlowDroid (Example 1)
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1 components {
2 name: "de.foellix.aql.thesis.examples.example1.TargetActivity"
3 kind: ACTIVITY
4 exported: true
5 extras {
6 extra: "data"
7 instruction {
8 statement: "$r3 = virtualinvoke $r2.<android.content.Intent:

→ java.lang.String getStringExtra(java.lang.String)>(\"data\")"
9 class_name: "de.foellix.aql.thesis.examples.example1.TargetActivity"

10 method: "<de.foellix.aql.thesis.examples.example1.TargetActivity: void
→ onCreate(android.os.Bundle)>"

11 id: 5
12 }
13 }
14 intent_filters {
15 attributes {
16 kind: ACTION
17 value: "de.foellix.aql.thesis.examples.TARGET"
18 }
19 attributes {
20 kind: CATEGORY
21 value: "android.intent.category.DEFAULT"
22 }
23 }
24 }
25 components {
26 name: "de.foellix.aql.thesis.examples.example1.MainActivity"
27 kind: ACTIVITY
28 exported: true
29 intent_filters {... }
30 exit_points {
31 instruction {
32 statement: "virtualinvoke

→ $r0.<de.foellix.aql.thesis.examples.example1.MainActivity: void
→ startActivity(android.content.Intent)>($r2)"

33 class_name: "de.foellix.aql.thesis.examples.example1.MainActivity"
34 method: "<de.foellix.aql.thesis.examples.example1.MainActivity: void

→ onCreate(android.os.Bundle)>"
35 id: 10
36 }
37 kind: ACTIVITY
38 intents {
39 attributes {
40 kind: ACTION
41 value: "de.foellix.aql.thesis.examples.TARGET"
42 }
43 attributes {
44 kind: EXTRA
45 value: "data"
46 }
47 }
48 }
49 }

Listing 6: Result of IC3 (Example 1)
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3 Cooperative Analysis
A cooperative analysis makes use of different analyses that have different objectives and
different strengths or weaknesses. The principle is always the same: final (or intermediate)
results of various analyses are combined or used to enhance another analysis. To design
a cooperative analysis approach that follows the principles of component-based software
engineering, we must find an interface that allows the user to interact with arbitrary
analysis tools and to combine analysis tool results. So to say, users and tools have to
speak the same language. Hence, as a first step we must find this one language that every
participant understands.

In the area of databases and information systems query languages are used in a similar
context. By asking a query, information is retrieved from a database. Databases typically
hold information in table-like data structures. Thus, to retrieve information we have to
determine which table cells we want to retrieve. Usually, the columns represent categories
of data and the rows stand for entries. After identifying the columns and rows of interest,
the data can be retrieved or, for example, be sorted, filtered, or combined with other data.
In case of the language we are looking for, we are not issuing queries to a database but
to a set of analysis tools. Different analysis tools support to retrieve different information
– similar to the different columns of a table in a database. Every result of an analysis
tool represents an entry (a row in the table). As the analogies suggest the data retrieved
should also be, for instance, filterable and combinable. Consequently, we are looking for
a query language to embody our approach.

The requirements this language must and should fulfill are described in Section 3.1. To
derive these requirements, we are taking a closer look at related work in terms of analysis
tools, query languages, result formats and existing cooperative approaches. In particular,
the inspection of query languages will show that there is no language available that suits
our purpose. In consequence, we present a novel query language that forms the centerpiece
of our cooperative analysis approach. This language is called Android App Analysis Query
Language (AQL) and consists of two parts – AQL-Queries and AQL-Answers:

➊ users compose queries,
➋ analysis tools accept queries and
➌ produce answers
➍ that are returned to the users.

AQL-Query

AQL-Answer

1 2

34

In this context, we first present the syntax and semantics of AQL-Queries and the struc-
ture of AQL-Answers (see Section 3.2). In Section 3.3 we present (cooperative analysis)
strategies and show that they can be realized by means of the AQL. The semantics and
strategies are implemented in the corresponding AQL-System (see Section 3.4) which is
accessible from anywhere via AQL-WebServices (see Subsection 3.4.5).

3.1 Hard & Soft Requirements (Related Work)
The requirements presented in this section must be fulfilled or implemented by the AQL
and its implementation. All requirements will be derived from related work (analysis
tools, query languages, result formats and existing cooperative approaches). On the one
hand, hard requirements (▶) must be fulfilled, because they are technically required and
the approach’s functionality is bound to them. On the other hand, the soft requirements
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(▷) must not necessarily be fulfilled, but related approaches and own experiences indicate
their usefulness. We start by deriving hard and soft requirements from the analysis tools
described as a part of the previous chapter (see Section 2.4). At the end of this section,
all derived requirements are summarized (see Subsection 3.1.4).

3.1.1 Analysis Tools

Every analysis tool is accessible via command line. Only a few tools have an optional
GUI in addition. The commands to execute different tools are as different as the tools
themselves. Every tool comes with various command line parameters and other configu-
ration options that allow an expert to fine-tune the tool for its designated purpose. To
foster readability we are not examining the commands and options themselves; instead, a
summary of these can be found in Table 5 on Page 45. Each row in the table represents
one tool. The first two columns identify each tool by its name and version.

The column entitled with “Java” refers to the Java version the respective tool requires
– typically older tools require Java 8 while more recently released tools are ready to be
used with Java 17.11 Not all tools require only Java to be executed. For example, DidFail
partially uses Python scripts to carry out its analysis. DroidSafe and IccTA (old version
from 2016) use bash scripts and make files which are designed to be executable only on
Unix operating systems. Dynamic tools such as PIM require running Android emulators
and consequently come with certain hardware requirements. Accordingly, we infer our
first requirement:

▶ Req. 1: Tools must be accessible in different execution environments.

In the “Inputs” column all inputs are listed that are necessary to run the respective tool.
For example, almost every tool in this set requires the app to be provided as an .apk file
(see “APK” in the table). Column “Extra” lists information that is additionally required
to e.g., automatically identify the result of an analysis. For instance, IC3 computes an ICC
model and the file representing it is named by the package name provided in the manifest
of the given app (.apk file). The “Output Format” column describes the structure of the
results produced by each tool. The following “Jimple” column contains a check mark, if the
results use the Jimple IR to reference statements, methods or classes. Which information
are given in a tool’s output is coarsely described by keywords in the column entitled with
“Outputs”. Finally, the last column indicates the availability of each tool and provides a
commit id whenever an available and publicly accessible repository is given as reference.

Not summarized in the table are configuration options given by the execution environ-
ment. For each tool, we can control how much memory it shall use at maximum by using
built-in tool mechanics or by setting up the Java virtual machine that is executing them.
Thus, for each tool we get an additional input, in the following described as “Memory”.
Some tools furthermore delete or overwrite previous results when they are executed again,
i.e., concurrently executing multiple instances of such tools will lead to data races. The
related additional input is named “Instances”.

11In the context of this thesis Java≤8 and Java>8 are used as synonyms for Java 8 and 17.
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Table 5: Tool Properties

Name Version Java Inputs Extra Output Format Uses Output Availability
/ Date Jimple (Commit)

Amandroid∗ 3.1.2 >8 APK APK-Filename Textual (Custom) ✘

Taint Flows,
Intent Filters,
Intents4

✔ (65aec77) [99]

Amandroid 3.2.0 >8 APK APK-Filename Textual (Custom) ✘ Taint Flows ✔ (415ad9f) [100]
Amandroid 3.2.1 >8 APK APK-Filename Textual (Custom) ✘ Taint Flows ✔ (06596c6) [101]

FlowDroid∗ April 2017
(Nightly) ≤8 APK, APD1 - Textual (Custom) ✔ Taint Flows ✘ [137]

FlowDroid 2.7.1 >8 APK, Sources&Sinks, APD1 - Structured (XML) ✔ Taint Flows ✔ (72734bd) [135]
FlowDroid 2.9.0 >8 APK, Sources&Sinks, APD1 - Structured (XML) ✔ Taint Flows ✔ (e17e615) [136]
FlowDroid 2.10.0 >8 APK, Sources&Sinks, APD1 - Structured (XML) ✔ Taint Flows ✔ (0174ec4) [134]

DIALDroid September
2017 ≤8 APKs, APD1, Database

Information - Database Entries (SQL) ✔ Taint Flows ✔ (5df5734) [126]

DidFail March 2015 ≤8 APK(s) - Textual (Custom) ✔ Taint Flows ✔ [127]

DroidSafe June 2016
(Final) ≤8 APK APK-Filename Textual (Custom) ✔ Taint Flows ✔ (1eab2fc) [131]

IccTA∗ February
2016 ≤8 APK, APD1 APK-Packagename Textual (Custom) ✔ Taint Flows ✔ (831afaa) [151]

IccTA 2.9.0 >8 APK, Sources&Sinks, APD1 APK-Packagename Structured (XML) ✔ Taint Flows ✔ (e17e615) [150]
IccTA 2.10.0 >8 APK, Sources&Sinks, APD1 APK-Packagename Structured (XML) ✔ Taint Flows ✔ (0174ec4) [149]

NOAH 2.0.1 >8 APK APK-Filename Structured (AQL) ✔
Taint Flows,
Sources, Sinks ✔ (8726d19) [168]

PIM d 2.0.1 >8 AQL-Answer(s) - Structured (AQL) ✔ Taint Flows3 ✔ (e583317) [171]
HornDroid 0.0.1 >8 APK APK-Filename Structured (JSON) ✔ Sinks ✔ (cd52ba4) [146]

IC3 0.2.1 ≤8 APK, APD1 APK-Packagename Structured (ProtoBuf) ✔
Intents, Intent
Filters4, Intents4 ✔ (2c4de4b) [147]

APK-Simplifier 2.0.1 >8 APK - Textual (Custom) ✘ Class List ✔ (e409c4b) [108]

Jicer 2.0.0 >8 APK, ABT2, Slicing
Criterion/Criteria - Binary (APK) / Jimple ✔ Slice ✔ (a596528) [159]

Jicer-ICC 2.0.0 >8
APK, ABT2, Slicing
Criterion/Criteria, ICC
Dependence Graph Edges

- Binary (APK) / Jimple ✔ Slice ✔ (a596528) [159]

AMT 2.0.1 >8 APKs APK-Filename Binary (APK) ✔ Preprocessed App ✔ (9a7d6bd) [102]
ApkCombiner 1.0.1 >8 APK, APD1 - Binary (APK) ✘ Preprocessed App ✔ (05c9568) [109]
DroidRA April 2017 ≤8 APK, APD1 APK-Filename Binary (APK) ✔* Preprocessed App ✔ (b766a32) [130]

∗: oldest tool variant, d: dynamic analysis tool, 1: APD = Android Platforms Directory, 2: ABT = Android Build Tools directory, 3: Taint flows that involve ICC/IAC only,
4: Intent filters or intents with additional information about related statements – as described below (cf. “Intent Sources” and “Intent Sinks”).
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With all this information given, we start inferring requirements by taking a closer look
at the inputs given. First, we divide the inputs (and extras) given into the following three
categories:

Universal: APD, ABT
Tool-specific: Database Information, Instances, Memory, Sources&Sinks

Execution-specific: APK (APK-Filename, APK-Packagename), AQL-Answer(s),
ICC Dependence Graph Edges, Slicing Criterion/Criteria,
Sources&Sinks

Universal inputs are required by various tools and always hold the same value. Tool-
specific inputs hold different values depending on the tool they are supplied to. However,
universal and tool-specific inputs are the same whenever a certain tool is executed. In
contrast, the execution-specific inputs may be different dependent on the given analysis
task and target. Note, “Sources&Sinks” can be given on tool- or execution-specific level,
i.e., we can identify sources and sinks occurring in a certain scope such as a single app
or just use a predefined list which is commonly provided along with the respective tool.
Finally, we can infer our first soft and another hard requirement:
▷ Req. 1: Universal and tool-specific inputs should be configurable in the
AQL-System.
▶ Req. 2: AQL-Queries must allow to model all execution-specific inputs.
Universal and tool-specific inputs could also be hard coded. In contrast, hard coding
execution-specific inputs would obviously limit us, for example, we could only specify a
single analysis target (APK).

Table 5 lists the tools “Jicer” and “Jicer-ICC”, both entries in fact refer to the same
tool, however, to trigger the ICC capabilities of Jicer an additional execution-specific
input is required (“ICC Dependence Graph Edges”). Hence, whether a certain input
is given or not, different tool configurations must be considered. Another example is
embodied by the sources and sinks input. As stated above, sources and sinks can be
provided on different levels. In consequence, different tool configurations are needed. This
gives us another requirement:
▶ Req. 3: Tools and tool variants must be chosen with respect to the
execution-specific inputs given in an AQL-Query.

Next, we take a look at the outputs produced by the different tools. Many tools output
analysis information related to specific statements or program locations. As reference
the respective class, method and statement is denoted. Additionally, bytecode location
identifiers or source code line numbers are often provided.

A reference or to reference (a statement) is defined by denoting the statement,
method, class and app it belongs to. Optionally, further identifiers (e.g., line numbers)
may be provided.

Table 5 contains in summary the following output elements (cf. column “Outputs”):

• Taint Flows (ICC/IAC): Most tools that output taint flows only reference the sources
and sinks each taint flow connects. Only a few tools provide additional information
about the path(s) between these pairs of sources and sinks.

• Intents (Intent Sinks): Any analysis tool, that outputs information about an intent,
denotes the corresponding intent triple (action, category, data). If a related refer-
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ence is given, for instance a statement that starts another component, we call this
combination of intent triple and reference an intent sink.12

• Intent Filters (Intent Sources): In case of an intent filter the corresponding intent
triple is also denoted. Analogously, if a related reference is given, for instance, a
statement that extracts information from an intent, we call this combination an
intent source.12

• Sources and Sinks: One reference for each source or sink is sufficient to fully describe
it.

• Permissions: At least the name of a permission is denoted whenever a tool outputs a
permission. If a reference is attached to such a permission, it references a statement
that requires this permission.

• Slices: The only slicer in the given set of tools is Jicer (and its ICC variant). It
has multiple output options. The output variant, which is considered here, is the
following: slices in form of .apk files wherein all the code that does not belong to
the slice has been removed. In short, slice outputs are provided in form of .apk files.

• Preprocessed Apps: Just as slices, preprocessed apps are always given as .apk files.

The AQL-System which is detailed in Section 3.4 comes with a couple of built-in
auxiliary tools (see Subsection 3.4.3). The additional outputs produced by them are
described below:

• Arguments: Any kind of textual data may be denoted to represent arguments. For
example, the features an app comprises can be denoted in form of a comma-separated
list of strings – keywords that unambiguously identify certain features.

• Converted Files: Some auxiliary tools fulfill the purpose of converters. Files of a
certain type are converted into files of another type. Two short examples: (1.) a
tool’s result is converted into a generic result format (e.g., an AQL-Answer); or the
other way around (2.) a generic result is converted into a tool specific input format.
In the latter case, the output may be a file of any type.

The different outputs can be grouped as follows:

Raw: Arguments
Files: Slices, Preprocessed Apps, Converted Files

Analysis Information: Taint Flows (ICC/IAC), Intents, Intent Filters,
Intent Sinks, Intent Sources, Sources, Sinks

In a cooperative analysis one tool uses the analysis information of another or combines the
information of multiple, hence, the analysis information that is output must be structured
clearly.
▶ Req. 4: Any kind of analysis information must be encodable in an AQL-Answer.
Without knowing what can possibly be found in an AQL-Answer we would never be able
to e.g., define how to combine certain information.

Files may be used whenever the given information cannot reasonably be encoded in a
more generic way. For example, there is no generic format that is better to represent an
entire app than an .apk file.

12An explanatory example in regard to intent sinks and intent sources can be found in Appendix A.3.
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▶ Req. 5: Manually and automatically determined files must be referable in
AQL-Queries.
Otherwise the output of one tool cannot be the input of another once more than structured
analysis information (e.g., a preprocessed .apk file) is output.

Raw outputs may be used to influence the analysis task given in form of an AQL-
Query. For example, the features to consider or the tool to be used may be influenced
by a raw output such that we can pick the best tool with respect to a certain feature or
simply by a tool’s name. Since we want to be able to manually provide or automatically
determine arguments such as features or tool names, we must be able to include any
information in raw format directly in AQL-Queries. Hence, we get the following soft
requirement:
▷ Req. 2: Raw outputs should directly be usable in AQL-Queries.
As an alternative we could mandatorily require a tool name, so this is only a soft require-
ment.

Lastly, with respect to analysis tools, we derive two more requirements from the tools’
output formats. The output formats used by the individual tools are as different as their
outputs themselves. As the column entitled with “Output Format” in Table 5 shows,
some tools use custom textual formats and others well-known, structured formats like
XML, JSON or ProtoBuf. Even though the textual outputs might be easier to read out,
the structured ones clearly have other advantages. First, because of the available support
(editors, viewers, parsers, ...) for these structured formats, the data contained can be
managed comfortably. Second, meta-modeling instruments allow us to further specify
the structure and possible contents of such files. Based on that we infer the next hard
requirement:
▶ Req. 6: The AQL-Answer output format must be specified clearly.
This is a hard requirement since insufficiently specified formats would only allow simple
operations to combine answers, for example, appending one answer to another. In the
context of cooperative analysis we want to be able to more comprehensively combine
answers with respect to their potential content.

Furthermore, most tools in our scope use the Jimple IR inside their own custom formats
to reference statements, methods and classes. Consequently, it appears to be a best
practice that we want to adopt.
▷ Req. 3: The AQL should use a mutual IR (Jimple) to reference statements, methods
and classes.
This is only a soft requirement because there are alternatives available, for example, such
references could be given on source or bytecode level.

In the next subsection we will infer more requirements from existing query languages
and result formats.

3.1.2 Query Languages and Result Formats

There already exist many query languages, so the question arises whether we can use one
of them instead of developing the AQL from scratch. A large portion of these existing
query languages are used to interact with databases but there also exist a few that have
been developed to be used in the context of querying programs and also analyses. In
the following we are taking a closer look at especially the latter type in order to find out
whether we can reuse one of them. Even though there are some promising candidates,
all these existing languages have some issues that disqualify them from being used in
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our cooperative analysis context. Nonetheless, we will make use of these languages by
deriving more requirements for the AQL based on the properties and best practices that
these languages reveal.

After this inspection of query languages which are templates for AQL-Queries, we will
briefly check some structured formats that may be usable to embody their counterparts:
AQL-Answers. Lastly, a few more requirements will be inferred from related cooperative
approaches.

PQL The Program Query Language (PQL) [19] can be used to instruct a static or a
dynamic analyzer in order to check whether it is possible to identify specific properties
in a program. The composable queries represent these specific program properties. For
example, via the PQL it is possible to ask, if a program contains two specific statements
(source and sink) and if there is a connection between them (a taint flow). However, it
is not possible to generalize such a query. To ask for any taint flow we would need to
formulate one query per pair of predefined source and sink or sources and sinks occurring
in the app under analysis. This suits the idea behind the PQL: find one specific issue
pattern, and write a query to find all instances of this particular pattern; but does not fit
into our context. As a requirement we can infer that it must, for instance, be possible to
ask for taint flows from any source to any sink.
▶ Req. 7: AQL-Queries must be generalizable. It must be possible to ask for specific
program properties (e.g., a taint flow between a certain source and sink) as well as any
property of a certain type (e.g., any taint flow).
In particular the latter makes this requirement become a hard one as we may not know if
a certain app contains a taint flow at all, thus, we must be able to ask for any.

The PQL further defines its syntax via a grammar. We will do the same for the AQL
with respect to AQL-Queries (see Subsection 3.2.2).
▷ Req. 4: The syntax of AQL-Queries should be clearly specified (e.g., via a grammar).
Alternatively, the syntax could be described in e.g., natural language.

To reference program locations the PQL makes use of source code descriptions that
involve fully qualified package/class names.
▷ Req. 5: Fully qualified package/class names should always be used in references.
Shortened forms may introduce ambiguity. For instance, there could be two different
classes (package1.ClassA and package2.ClassA) in two different packages that share
the same name (ClassA). To solve this issue, we could also attach a unique identifier (an
id) to each class, hence, this is only a soft requirement.

Blast Query Language As the name suggests, this query language, in the following
abbreviated with BQL [15], can be used to interact with the model checker BLAST
(Berkeley Lazy Abstraction Software Verification Tool). It simplifies the interaction with
BLAST but only with BLAST.
▷ Req. 6: The AQL should be able to interact with arbitrary tools.
Alternatively we could also define a set of tools the AQL is compatible with.

The BQL was not designed to be used to interact with different tools, although it can
be used to specify program verification tasks which can be split into subtasks that would
possibly be answerable by different tools.
▷ Req. 7: A single AQL-Query may consist of multiple smaller queries.
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This allows to formulate simple queries per task instead of being forced to formulate a
complex one for all tasks at once. As the PQL, the BQL allows to formulate specific taint
flow queries, but a general one cannot be formulated.

FQL The FQL (FShell Query Language) [23, 27] can be used to compose test cases with
specific coverage goals in form of queries. Required paths can be specified which again
would allow to model taint flows, however, the FQL focuses on tests and test coverage.
For the latter a coverage criterion, given as a reference (statement, method, class), can be
specified in the query.
▷ Req. 8: Criteria such as references should be specifiable in AQL-Queries.
We keep this as a soft requirement since e.g., bytecode identifiers or source code line
numbers could fulfill the same purpose. As the above, the FQL does not allow to formulate
a generalized taint flow query.

CodeQL Another example for a query language that allows us to query programs or
“code as though it were data” [122] is CodeQL. It certainly allows to encode taint flows in
queries and allows to configure sources and sinks to be considered when executing these.
Because of these features CodeQL is a promising candidate. However, it does not allow
to deal with different tools nor does it come with any instruments to combine results of
different queries – a required feature in the context of cooperative analysis.
▶ Req. 8: AQL-Queries must describe how to combine or merge tool results.
Union and intersection could, for example, represent two merge operations, thus, we must
be able to specify which operation to use in a query.

SQL The most commonly known query language is the Structured Query Language
(SQL). It is used to interact with databases, hence, it can hardly be treated as a candidate
usable in cooperative analysis context. Nonetheless, the history of the SQL shows us that
a language cannot be fixed once and for all. Its first definition was officially released back
in 1987 [182] and it is still regularly updated [183, 184]. Accordingly, we must ensure that
the AQL can be updated and extended easily.
▷ Req. 9: The definition and implementation of the AQL should be extensible.

All the languages above are tailored to their field of application: PQL and CodeQL to
program properties, BQL to instructing BLAST, FQL to test cases and coverage criteria,
and SQL to databases of course. In summary, we infer:
▶ Req. 9: A query language must be specific to its field of application.
For example, with respect to the AQL we must be able to model intent related information
(e.g., intent triples) – analysis information that is only required in Android context. From
an abstract perspective all these query languages (except SQL) were designed to ask for
properties of a program. The tool that should be used to find these properties is never
described in more detail, because there always is just one or a fixed set. In our case,
we want to be able to interact with different tools depending on parameters given in
queries.
▷ Req. 10: AQL-Queries should be able to hint at the tool(s) to be used.
Otherwise it might not be possible to explicitly employ a different tool for a certain purpose
or task.
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After this brief view at query languages, we are taking a look at structured formats
that could be considered as candidates to encode AQL-Answers. Some have already been
mentioned while discussing analysis tool output formats in the previous subsection. We
will not go into more detail with respect to unspecified textual formats, instead we will
only evaluate structured formats.

XML One of the most used structured formats is XML. XML stands for Extensible
Markup Language. Any data kept in an .xml file is stored in a hierarchical, tree-like
structure. Apart from this structure, plain XML does not provide any information about
what contents we may find in each element. This can be changed via meta-modeling.
For example, XML schema definitions (XSDs) [191] can be used to specify more precisely
what is expected to be found in a document that adheres to such a schema.
▷ Req. 11: The possible contents of AQL-Answers should be specified via
meta-modeling.

JSON JSON (JavaScript Object Notation) is another tree-like structured document type
that is very similar to XML. Actually it is so similar that almost any XML document can
be converted into a JSON document and vice versa. In the end, it seems to be only a
matter of taste when choosing between XML and JSON. However, one clear advantage
of JSON is its compactness – way less symbols are required to express the same content
and structure as in equivalent XML documents. Meta-modeling is also supported by
implementing a JSON schema [161]. Such schemas are JSON documents as well. As it is
very similar to XML, we cannot infer any new requirements from the JSON standard.

ProtoBuf Google developed (since 2001) and publicly released (open source) another
document type called Protocol Buffers (ProtoBuf) [174] in 2008. It has been adopted, for
example, by the analysis tool IC3. Although it is very similar, it has unique features that
separate it from the above. Most notably it can be stored, parsed and edited in binary
format which speeds up processing data stored in ProtoBuf documents. However, this
advantage comes at a cost: binary documents cannot be read directly by humans. In the
end, it again occurs to be a matter of taste when choosing to adopt ProtoBuf or not,
hence, we do not infer any new requirements.

SARIF By its name SARIF (Static Analysis Results Interchange Format) [177] seems
to be a promising candidate to encode AQL-Answers. On the one hand, it allows to
specify a lot of information about the analysis tool, the analyzed artifacts and other
environmental information, but on the other hand, it is not designed to present details
about the properties detected by an analysis. It rather represents the circumstances that
led to warnings given by a certain analysis tool in a concrete situation. SARIF is, so
to say, focused on capturing a complete analysis picture instead of archiving the detected
properties in detail. Consequently, SARIF is not the perfect candidate since we require this
functionality as stated before by ▶ Req. 4. Nonetheless, SARIF offers two interesting
insights: (1.) the SARIF format is an instance of JSON, more precisely, it is meta-
modeled via a JSON schema, and (2.) to reference certain program locations source code
line numbers are used in SARIF. In terms of soft requirements this again provides us
▷ Req. 11 and an additional one:
▷ Req. 12: Unique identifiers, such as source code line numbers, should be used to
more precisely reference statements in the AQL.
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Without fulfilling this soft requirement we may face ambiguity. For example, there might
be two statements in the same method that look exactly the same considering their textual
representation only. Jimple most of the time implicitly prohibits this due to the textual
format used to represent statements, hence, this is only a soft requirement.

Witnesses In the field of software verification an often used format to exchange infor-
mation between different verifiers are witnesses [50, 79]. Witnesses come in XML format,
more specifically, GraphML [145] which is perfectly suited to hold the content of a witness,
an automaton. These automata encode, for example error paths – a program execution
that follows such a path eventually reaches an error location. While taint flows could be
modeled as error paths, it becomes difficult to model other analysis information such as
permissions or intent related information (e.g., intent triples). Thereby ▶ Req. 4 is not
strictly violated but in order to fulfill it, non-standardized custom key-value-pairs must be
added. Also references to code elements should be provided on token level, hence, more
custom key-value-pairs would be required to fulfill ▷ Req. 3 and ▷ Req. 5. Further-
more, ▶ Req. 9 cannot be met since the format is neither tailored to Android nor to
taint analysis. Lastly, the format is not clearly specified via a meta-model (cf. ▷ Req. 11,
▶ Req. 6), instead natural language is used [190]. Nonetheless, witnesses are flexible
enough such that we could use them in AQL context if we attach a meta-model that is
tailored to Android, however, this means that we would have to bend this format such that
it fits our needs. Due to the argumentation above witnesses will not be used to encode
AQL-Answers, although they have successfully been employed in cooperative software
verification [79, 89].

Others There are many other similar languages, for example HTML, the standard lan-
guage to model websites, or YAML, a more “human-friendly” [192] version of XML. And
even more variants of XML and JSON that have been further specified through schemas.
For the latter we already saw one example, namely SARIF. For brevity, we refrain from
listing and describing more formats and conclude that the available formats are either to
coarsely (e.g., plain XML or JSON) or to narrowly (e.g., SARIF) specified. However, the
requirements determined will be used as a guideline while specifying the AQL-Answer
format.

3.1.3 Cooperation Types

In many areas cooperative approaches already exist and Android app analysis is no ex-
clusion in this context. Basically, there are two different types: black- and white-box
cooperations [79].

• Black-box cooperations use various analyses implemented in different tools without
adapting these tools. The inputs are given into the black box and the outputs are
taken out of the black box once it finishes its computation. What happens inside
the black box is irrelevant for the cooperation.

• White-box approaches may change the behavior of analyses by adapting the associ-
ated tools before using them. To do so, the developer of the cooperative approach
must be able to look inside the white box as if it was made of glass, i.e., the devel-
oper must have access to the source code of the respective analysis tool(s) and the
expertise to make the intended adaptations.
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One example for a white-box approach is implemented in the analysis tool DidFail.
As described in the proposing paper [35] DidFail internally uses Epicc and FlowDroid.
It adapts (or instruments) the (byte-)code of the app under analysis before it is provided
to Epicc and an adapted version of FlowDroid. The code changes made assign unique
identifiers to each intent sink and intent source such that they can be identified in the re-
sults of Epicc and FlowDroid. DidFail analyzes the intent and intent filter information
given by Epicc in order to find matching pairs. These pairs and their respective intent
sink and intent source stand for inter-component flows. Finally, DidFail interweaves
these inter-component flows with the intra-component taint flows found by FlowDroid
to detect inter-component taint flows. To do so, FlowDroid had to be adapted such that
intent sinks and intent sources mentioned in results of Epicc can be identified in results
of FlowDroid. Because of this adaptation of FlowDroid, DidFail must be treated as
a white-box cooperation.

A black-box cooperation example that is very similar to DidFail, is embodied in
IccTA [45]. To cooperate IccTA takes the output of IC3 (or its predecessor Epicc) as
input. On the basis of this input IccTA identifies intent sinks and intent sources. Then
it replaces intent sinks (e.g., a startActivity statements) by method calls to methods
holding matching intent sources (e.g., getStringExtra statements).

An intent sink matches an intent source whenever the respective intent matches the
respective intent filter.

Because of these replacements an intra-component taint analysis (as implemented in
FlowDroid) is sufficient to implicitly but finally find inter-component taint flows. Nowa-
days IccTA is integrated into FlowDroid and its functionality is triggered by providing
the additional input produced by IC3 (or Epicc). Thus, no tool must be adapted and
IccTA can be counted as a black-box cooperation.13

The advantage of black-box approaches is that the different analyses can be exchanged
without requiring further adaptations, i.e., when IC3 replaced Epicc, IccTA must not
have been touched. To this end, black-box cooperations follow the low coupling, high
cohesion [2] principle more strictly. We want to acknowledge this advantage by inferring
the following soft requirement:
▷ Req. 13: Analysis tools used in a cooperative analysis should be treated as black
boxes.
Alternatively, we could require that tools must be adapted to become usable in AQL
context.

In the area of software verification, there exist various approaches to cooperate in terms
of “sequential and parallel combinations” [65] of different verifiers. Most of the time the
different verifiers are represented by different strategies implemented in the same tool –
seldom different tools are involved. The goal of such combinations is to get the correct
result as fast as possible by arranging a certain verification task order or by dividing ver-
ification tasks into subtasks that can be dealt with in parallel. However, to find the best
strategy is a crucial problem. “A Simple but Effective Approach” to solve this problem
is described in the paper “Strategy Selection for Software Verification Based on Boolean
Features” [65]. Simple properties of the program to be verified are encoded in boolean
features which are used to select the supposedly best strategy. For example, it is deter-
mined if the program contains a loop or if it uses arrays before a strategy is selected. To

13In the past, IccTA was an extension of FlowDroid, hence, FlowDroid was adapted and conse-
quently IccTA would have been considered to be a white-box cooperation.
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adopt this practice we formulate two more soft requirements:
▷ Req. 14: Features of the app under analysis should be enumerable in AQL-Queries.
▷ Req. 15: It should be possible to use different cooperative strategies depending on
the features given in an AQL-Query.
Without fulfilling these two requirement only basic strategies that are always applied could
be integrated. In the context of the AQL, cooperative strategies are query transformations
as detailed in one of the following subsections (see Section 3.3).

In another recently proposed study [90], verifiers work together by being executed
sequentially, in parallel, or with respect to a certain algorithm selection technique. When
executed sequentially they work together by sharing computation time. Any verifier gets
all the other resources (e.g., memory and cpu cores available). As soon as a result is
successfully determined no more verifiers are executed. When executed in parallel the
verifiers share all resources except time. Any verifier is assigned a fair amount of e.g.,
memory. All verifiers can be stopped at the moment one of them finishes successfully.
These first two strategies divide the available computing resources (power and time). We
want to adopt this technique by inferring the soft requirement:
▷ Req. 16: Cooperative analyses should share computing resources.
The third and last strategy (algorithm selection) first determines features with respect to
the potential difficulty to analyze the target program. A machine learning based algorithm
selector then picks the most promising candidate (verifier) in accordance to the extracted
features. This last strategy again provides us ▷ Req. 14 and ▷ Req. 15. Other co-
operative verification approaches focus on combining soft- and hardware verification [85],
or combine static with dynamic techniques [41], however, no further requirements can be
inferred.

Tao Xie et al. list examples for existing “Cooperative [...] Analysis” approaches and
discuss advantages and disadvantages in a survey [38]. Not only tool-tool or analysis-
analysis cooperations are considered but also human-tool approaches. One important
finding when dealing with tool-tool cooperations is: while combining tools, complementary
effects must be taken into account. In an Android taint analysis scenario for example, one
tool may find less taint flows than another, but it finds some taint flows no other tool is
able to find. Thus, it is a better idea to probably use both tools instead of choosing e.g.,
the one that finds more taint flows.
▷ Req. 17: The AQL should allow to combine different analysis results with respect to
their complementary properties.

There exist many more cooperative approaches [73, 80] of different types partially
summarized in a survey [79], however, no additional requirements can be inferred. Hence,
for the sake of brevity, we end the inspection of related work at this point.
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3.1.4 Summary

All hard and soft requirements inferred above are listed in Table 6. For each item listed,
it is denoted whether it should be applied to AQL-Queries, -Answers or the AQL’s im-
plementation. Accordingly, the items are sorted with respect to their area of application,
type (hard or soft) and identifier. It becomes clearly visible, that most requirements are
AQL-Query specific. The last column of the table refers to the (sub-)section(s) that deal
with the respective requirement.

Table 6: Summary of Hard and Soft Requirements

Description AQL- Implemen- Sec-
(▶ Hard / ▷ Soft Requirement, Explanation) Query Answer tation tion

▶ 2 AQL-Queries must allow to model all execution-specific inputs. ✔
3.2.2,
3.4.1

▶ 5 Manually and automatically determined files must be referable in AQL-
Queries. ✔ 3.2.2

▶ 7
AQL-Queries must be generalizable. It must be possible to ask for
specific program properties (e.g., a taint flow between a certain source
and sink) as well as any property of a certain type (e.g., any taint flow).

✔ 3.2.2

▶ 8 AQL-Queries must describe how to combine or merge tool results. ✔ 3.2.2

▷ 2 Raw outputs should directly be usable in AQL-Queries. ✔
3.3,
3.4.4

▷ 4 The syntax of AQL-Queries should be clearly specified (e.g., via a gram-
mar). ✔ 3.2.2

▷ 7 A single AQL-Query may consist of multiple smaller queries. ✔ 3.2.2
▷ 8 Criteria such as references should be specifiable in AQL-Queries. ✔ 3.2.2

▷ 10 AQL-Queries should be able to hint at the tool(s) to be used. ✔
3.2.2,
3.4.2

▷ 13 Analysis tools used in a cooperative analysis should be treated as black
boxes. ✔ 3.4.1

▷ 14 Features of the app under analysis should be enumerable in AQL-
Queries. ✔ 3.2.2

▷ 15 It should be possible to use different cooperative strategies depending
on the features given in an AQL-Query. ✔

3.3,
3.4.4

▷ 17 The AQL should allow to combine different analysis results with respect
to their complementary properties. ✔ 3.2.2

▶ 9 A query language must be specific to its field of application. ✔ (✔) 3.2.2,
3.2.5

▷ 3 The AQL should use a mutual IR (Jimple) to reference statements,
methods and classes. ✔ ✔

3.2.2,
3.2.5

▷ 5 Fully qualified package/class names should always be used in references. ✔ ✔ 3.2.5

▷ 12 Unique identifiers, such as source code line numbers, should be used to
more precisely reference statements in the AQL. ✔ ✔

3.2.2,
3.2.5

▶ 4 Any kind of analysis information must be encodable in an AQL-Answer. ✔ 3.2.5
▶ 6 The AQL-Answer output format must be specified clearly. ✔ 3.2.5

▷ 11 The possible contents of AQL-Answers should be specified via meta-
modeling. ✔ 3.2.5

▶ 1 Tools must be accessible in different execution environments. ✔ 3.4.5

▶ 3 Tools and tool variants must be chosen with respect to the execution-
specific inputs given in an AQL-Query. ✔ 3.4.2

▷ 1 Universal and tool-specific inputs should be configurable in the AQL-
System. ✔ 3.4.1

▷ 16 Cooperative analyses should share computing resources. ✔
3.4.2,
3.4.3

▷ 6 The AQL should be able to interact with arbitrary tools. ✔ ✔ 3.4.1
▷ 9 The definition and implementation of the AQL should be extensible. ✔ ✔ ✔ 3.4.3

Next, we introduce the AQL, starting with the syntax and semantics of AQL-Queries
and continuing with a description of the AQL-Answer result format. While doing so, we
refer to the derived requirements whenever they are tackled.
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3.2 The Android App Analysis Query Language (AQL)
A centerpiece of the cooperative analysis approach presented in this thesis is the AQL.
Two examples will be presented as an intuitive introduction to the language (see Subsec-
tion 3.2.1). After that both parts of the AQL, i.e., AQL-Queries and AQL-Answers, are
defined. First, the syntax of AQL-Queries is defined by a grammar (see Subsection 3.2.2).
Second, the semantics of the AQL are specified by means of derivation rules (see Subsec-
tion 3.2.3). Lastly, after an illustrative example showing the progression of a query (see
Subsection 3.2.4), the structure of AQL-Answers is specified by a meta-model given in
form of an XML schema definition (see Subsection 3.2.5).

3.2.1 Running Example 1: Intuitive Introduction to the AQL (Part 5/5)

Before we formally introduce the AQL, we continue our first running example. This intu-
itive continuation of the example does not require recapitulating the first four parts. Two
AQL-Queries and the associated AQL-Answers will be presented. To support explain-
ability, the answers will be given in an illustrative format.14

Query/Answer-Example 1 The AQL is primarily designed to be used in the context
of Android and taint analysis, hence, the first example AQL-Query asks for taint flows
and (Android) permissions. This will allow us to see, if the targeted app contains any
taint flows and which statements (e.g., source or sink of a taint flow) are protected by
which permissions. Let us assume the example app is represented by the Android package
example1.apk, then the AQL-Query to ask for permissions reads as follows:

1 Permissions IN App(’example1.apk’) ?

Once an analysis tool has answered this query, an AQL-Answer will become available that
presents the result. Let us assume that two permission-protected statements are found.
In that case the respective AQL-Answer can be depicted as follows (see Figure 6):

MainActivity

onCreate(...)

TargetActivity

onCreate(...)
Source

Sink

10: getDeviceId()

12: sendTextMessage(...)

Permission:
READ_PHONE_STATE

Permission:
SEND_SMS

Figure 6: Illustration of AQL-Answer (Permissions-Query)

As we can see, the statement getDeviceId() requires the permission READ_PHONE_STATE
and the statement sendTextMessage() the permission SEND_SMS. These two permissions
indicate that sensitive data is read and that arbitrary data is sent.

The AQL-Query to ask for taint flows looks very similar. Only the subject for which
we are asking is changed from Permissions to Flows:

1 Flows IN App(’example1.apk’) ?

The result of this query is shown below in form of an illustrated AQL-Answer in Figure 7.
The answer shows a single taint flow that connects the getDeviceId() statement with

14Appendix A.6.2 partially contains an AQL-Answer in its non-illustrative form (see Listing 24).
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MainActivity

onCreate(...)

TargetActivity

onCreate(...)
Source

Sink

10: getDeviceId()

12: sendTextMessage(...)

Figure 7: Illustration of AQL-Answer (Flows-Query)

the sendTextMessage() statement.
Most likely the answer created for both queries would be determined by different tools.

To bring together the answers of both tools, or to build a simple cooperative analysis, we
can ask the following AQL-Query:

1 UNIFY [
2 Permissions IN App(’example1.apk’) ?,
3 Flows IN App(’example1.apk’) ?
4 ] ?

To construct the answer for this query, a third tool builds the union of the two AQL-
Answers illustrated above. The final answer then contains both information:

MainActivity

onCreate(...)

TargetActivity

onCreate(...)
Source

Sink

10: getDeviceId()

12: sendTextMessage(...)

Permission:
READ_PHONE_STATE

Permission:
SEND_SMS

Figure 8: Illustration of AQL-Answer (UNIFY-Query)

It becomes visible that the taint flow connects a permission-protected statement with
another statement which is protected by a second permission. Consequently, this simple
cooperative analysis allows to conclude, that this taint flow might be security-critical since
source and sink are protected by permissions.

To simplify the example we attached source and sink markers to all illustra-
tions. However, this information is not explicitly provided in AQL-Answers unless we ask
for it:

1 UNIFY [
2 Permissions IN App(’example1.apk’) ?,
3 Flows IN App(’example1.apk’) ?,
4 Sources IN App(’example1.apk’) ?,
5 Sinks IN App(’example1.apk’) ?
6 ] ?

For better readability we could also encapsulate the Sources-and-Sinks-Query by apply-
ing the UNIFY operator twice:
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1 UNIFY [
2 Permissions IN App(’example1.apk’) ?,
3 Flows IN App(’example1.apk’) ?,
4 UNIFY [
5 Sources IN App(’example1.apk’) ?,
6 Sinks IN App(’example1.apk’) ?
7 ] ?
8 ] ?

Query/Answer-Example 2 During the example above we assumed that we have access
to a tool that is capable of analyzing ICC directly. Often such a tool is not given. Thus,
if we ask the Flows-Query (Flows IN App(’example1.apk’) ?) the answer is usually a
different one (see Figure 9):

MainActivity

onCreate(...)

15: startActivity(...)

TargetActivity

onCreate(...)

 7: getStringExtra(...)

Source

Sink

10: getDeviceId()

12: sendTextMessage(...)

3.

Figure 9: Illustration of AQL-Answer (Flows-Query – no ICC capabilities)

Only the intra-component taint flows are found. The connection between both components
remains undetected. Consequently, the complete taint flow stretching from source to sink
cannot be detected.

To change this we can insist on caring about ICC. To do so, we adapt the query by
attaching the feature ICC15:

1 Flows IN App(’example1.apk’) FEATURING ’ICC’ ?

Still, we may have no tool that is able to find taint flows that start and end in different
components, however, we may have a tool that detects any kind of ICC. Such a tool could
provide the following answer:

MainActivity

onCreate(...)

15: startActivity(...)

TargetActivity

onCreate(...)

 7: getStringExtra(...)

Figure 10: Illustration of AQL-Answer (Flows-Query – with ICC Capabilities)

15Later on it will be explained how to determine such features automatically (see Section 3.3).
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To bring together both answers we use the CONNECT operator:
1 CONNECT [
2 Flows IN App(’example1.apk’) ?,
3 Flows IN App(’example1.apk’) FEATURING ’ICC’ ?
4 ] ?

As the UNIFY operator, the CONNECT operator gathers all detected flows in a single answer.
Additionally, it computes the transitive closure for all detected flows such that we get the
following answer:

MainActivity

onCreate(...)

15: startActivity(...)

TargetActivity

onCreate(...)

 7: getStringExtra(...)

Source

Sink

10: getDeviceId()

12: sendTextMessage(...)

Figure 11: Illustration of AQL-Answer (CONNECT-Query)

The intra-component taint flows and the inter-component flow are stitched together. Fi-
nally, the taint flow starting at the source in the MainActivity and ending at the

sink in the TargetActivity is successfully detected (see highlighted black edge in
Figure 11).

These two examples provide a glimpse at the possibilities the AQL offers. The formal
introduction will introduce all possibilities in the following.

3.2.2 AQL-Queries: Syntax

The syntax of AQL-Queries is described via grammar G which is introduced through-
out this whole subsection, thereby ▷ Req. 4 is met. Illustrations are partially used to
intuitively but implicitly describe its terminals, non-terminals and production rules. Al-
ternatively, the complete grammar can be found in the appendix (see Appendix A.5.1).
The most general structure of a query that can be derived from the starting symbol of G

( Query ) is quickly described: it consists of an arbitrary long sequence of Query-Part s –
as depicted in Figure 1216 (p0.1), i.e., a query may consist of multiple smaller queries (cf.
▷ Req. 7). In the context of the AQL, variables just fulfill the purpose of shortcuts to
increase the readability of queries. Hence, the usage of variables and their definitions (see
Figure 12 – p0.2) is explained later on.
When describing the structure of a query part ( Query-Part ), it becomes more difficult.
Figure 1316 illustrates the derivation process for query parts. As illustrated, a query part
can be derived to (1) an Analysis-Question , (2) an Operator-Question , (3) a Result
or (4) a Variable-Usage . The latter two can be used to structure and shorten complex
queries. The first two represent two of three centerpieces of the AQL, namely questions.

16 Rectangles represent terminal symbols whereas rectangles with rounded corners stand for non-
terminal symbols.
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Query

Query-Part

Variable-Definition

Variable = Query-Part

p0.1

p0.2

Figure 12: Visualization of a Query (Production Rule p0)

On the one hand, an Analysis-Question is mainly used for the interaction with arbitrary
analysis tools (cf. ▷ Req. 6). On the other hand, an Operator-Question was initially
and primarily designed to combine results of analysis tools (cf. ▶ Req. 8).

Analysis-Questions must transfer all the information required to run an analysis tool
in order to get a result that answers the question. According to ▶ Req. 2 this includes
all execution-specific inputs. To identify which tool is required, the subject of interest is
always specified first in an analysis question.

Subjects of interest (SOIs) in the context of the AQL are: flows, sources, sinks,
permissions, intents, intent filters, intent sinks, intent sources, a slice or arguments.

Through this set of SOIs, AQL-Queries are already tailored to their application area (cf.
▶ Req. 9). However, additional SOIs could be added by adapting only one production
rule of the grammar. The production rule (p2) to derive a SOI is visualized in and defined
by Figure 14. For example, if Flows is specified as SOI, a tool is required that outputs
control, information or data flows such as taint flows. FlowDroid or Amandroid would
be two exemplary tools that can be used to answer analysis questions that ask for flows.

The next part that has to be specified for an analysis question is the analysis target. An
app must always be specified as a part of the analysis target. Furthermore, by specifying
a precise statement, method or class a more precise scope may optionally be defined. A
reference is used to specify both, the app and the scope if provided. Production rule p3
(depicted in Figure 15) defines how to derive a reference (cf. ▷ Req. 8). With respect to
analysis questions we can look for properties in a certain app and scope or from one to
another. This allows us, for instance, to ask for any taint flows in an entire app or for a
specific taint flow, from a certain source to a certain sink. Thus, it is possible to ask for
general as well as specific properties as demanded by ▶ Req. 7. For example,

App(’A.apk’)
and

Statement(’virtualinvoke r2.<android.content.Intent: java.lang.String
getStringExtra(java.lang.String)>("Secret")’)->App(’A.apk’)

both represent valid derivations of a reference. Note, the AQL does not confine the con-
tent (’virtualinvoke [...]’) that is provided to describe a statement by any means,
however, to acknowledge ▷ Req. 3 we will use the Jimple IR for statements, methods
and classes in the context of this thesis. A source code line number or any integer number
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Query-Part

Analysis-
Question

SOI Reference

Reference

TO

IN

FROM

FUW !

?

.

Operator-Question

Operator [ !

?

.

]

,

Query-Part

Variable-Usage

Variable$

Result

QString !

?

.

p1.1

p1.2

p1.4

p1.5

Filter-Question

[ !

?

.

]Query-Part | FilterFILTER
p1.3

Figure 13: Visualization of a Query Part (Production Rule p1)

SOI ::=
( Flows | Sources | Sinks | Permissions | Intents | )

IntentFilters | IntentSinks | IntentSources |
Slice | Arguments

Figure 14: Production Rule p2

associated with a statement can additionally be assigned to a statement (see p3 in Fig-
ure 15). As observed in other languages, this often simplifies the identification process of
individual statements (cf. ▷ Req. 12).

Production rule p3 holds two more non-terminals, namely QString and Preprocessor-
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Reference ::=
(

Statement( QString
(

, ( 0 - 9 )+ )? ) ->
)

?(
Method( QString ) ->

)
?(

Class( QString ) ->
)

?

App( ( QString | Preprocessor-Question ) )

Figure 15: Production Rule p3

Question . The first is used to derive almost arbitrary strings – the only symbol that is
not allowed is ’ since any string must be surrounded by this symbol to mark its beginning
and ending. A QString can also be replaced by a Query-Part , this allows us to provide
queries that represent a dynamic value which is determined once the respective query part
is answered instead of static values represented through strings. For example, we could
write a query that targets a tool that produces an .apk file as output and use this file
as app in our designated analysis target (cf. ▶ Req. 5). The production rule to further
derive a QString is p4 (see Figure 16).

QString ::=
(

’
(

¬( ’ )
)+ ’

∣∣∣∣ Query-Part
)

Figure 16: Production Rule p4

A preprocessor question, the third and last question type to be introduced, can be
further derived via production rule p5 which is illustrated and defined by Figure 17. Once

Preprocessor-Question ::= QString | QString

Figure 17: Production Rule p5

p5 is applied, two QString s, separated by a | symbol, are derived. The first QString
represents the app, i.e., it could stand for the path to an .apk file in the local file system or
a query that asks for such an .apk file. The second QString comes into play to identify
the preprocessor to be used. It embodies the so-called preprocessor keyword.

A preprocessor keyword unambiguously identifies one preprocessor.
For example, the keyword COMBINE may be associated with a tool like ApkCombiner
which is used to merge multiple .apk files into one. Which preprocessors and prepro-
cessor keywords are available depends on the implementation realizing the AQL and its
configuration as described in detail in Section 3.4.

To further specify an analysis question, (1.) features, (2.) tools to be used or (3.)
arguments to be considered with the analysis question, can be assigned after naming the
analysis target. This is done by deriving the non-terminal FUW (see p6 in Figure 18).
Lists of QString s may be used after FEATURING (or FEATURES ) and USING (or USES )
to assign features and tools that shall be regarded and preferred while answering this query
(cf. ▷ Req. 10, ▷ Req. 14). Accordingly, a different tool may be chosen to answer an
analysis question if a certain feature is assigned or the use of specific tools is enforced.
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FUW ::=
(

( FEATURING | FEATURES ) QString ( , QString )∗
)

?(
( USING | USES ) QString ( , QString )∗

)
?(

WITH QString = QString ( , QString = QString )∗
)

?

Figure 18: Production Rule p6

Pairs of QString s, separated by = , can be provided after WITH to assign key-value-pairs
that may influence, for example, the configuration of a tool. Note that in any case the
QString s may also refer to query parts again and all values assigned may be determined

dynamically by answering the associated query parts.
Finally, an analysis question is finished with an ending symbol which may either be ? ,

! or . . The different ending symbols indicate what type of answer is expected.
The ending symbol of an AQL-Query indicates the expected answer type for this
query: ? is associated with an AQL-Answer, ! with an arbitrary file and . with
raw data.

Operator-Questions are employed to specify operations on the results of one or more
query parts, for instance, merge or combine operations as demanded by ▶ Req. 8.
Therefore, operator questions can only be executed if all related results are available – all
underlying questions have been answered. An operator question is derived via production
rule p1.2 of grammar G (see Figure 13). First the operator must be determined by deriving
the Operator non-terminal also called operator name. This can only be done via p7 (see
Figure 19). It allows to derive the name of a default operator that must be implemented by

Operator ::=
(

UNIFY | INTERSECT | MINUS | CONNECT
) ∣∣∣∣(

( A - Z )+ ∼ ?
)

Figure 19: Production Rule p7

any implementation of the AQL or a custom operator’s name, which must consist of capital
letters only. Optionally and only by convention the name of a custom operator should end
with ∼ if the associated operator is performing an over- or under-approximation.

Any system implementing the AQL must support the default operators: unify,
intersect, minus and connect.

Most of these default operators must perform the set operations their names suggest.
Unify, for instance, collects all the contents of various AQL-Answers in a single one –
it builds the union. Respectively, intersect and minus build the intersection and the
difference. Note that the complement is not a default operator, since the complement of
an AQL-Answer is not computable unless the full set of e.g., all existing permissions or
possible flows is defined – which is not done in AQL context. The unify operator is already
sufficient to fulfill ▷ Req. 17. The requirement states that complementary effects must
be taken into account and this can be done by e.g., unifying results that hold different
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taint flows probably computed by different tools. Even more can be done via the default
connect operator. It must perform three actions:

1. build the union of the given answers,

2. connect intent sinks and intent sources whenever their associated intent triples match
(by adding flows from and to the respective references), and

3. compute the transitive closure of all flows given in the provided answers also by
adding additional flows.

Custom operators may perform arbitrary operations and may overwrite default operators.
After denoting the name of the operator at least one query part enclosed by square

brackets must be derived. If more than one query part is derived, they are separated by
commas ( , ). These query parts represent the results to operate on. As analysis questions
any operator question ends with an ending symbol.

Filter-Questions or Filter-Operator-Questions are operator questions tailored to a spe-
cific purpose: filtering a given answer. The operator name is fixed ( FILTER ) and inside
the square brackets two parts (split by a | symbol) can be found. In contrast to ordinary
operator questions, the first part only allows to derive a single query part. The second
part inside the square brackets consists of the non-terminal Filter . It can further be
derived via production rule p8 which is presented and defined in Figure 20. As indicated
by p8 there are three options to filter a result:

1. By reference: Any element in the given AQL-Answer, that is not related to the
given reference, is filtered out (removed).

2. By subject of interest: Any element that is related to the given subject of interest is
removed.

3. By key-value-pair: Only elements that hold a certain value for a specific attribute
(key) are kept.

Filter-questions like any other question (except preprocessor questions) end with one
of the three existing ending symbols ( ? , ! , . ). Usually the ending symbol will be a
? since most of the time AQL-Answers are meant to be filtered. However, there are
examples (see Subsections 3.3.1, 3.4.4 or Chapter 5) where operator questions end with
another symbol, hence, we do not want to constrain the language here.

Systems employing the AQL must implement the default filter operator with all
its options.

Filter ::= Reference | SOI |
(

QString = QString
)

Figure 20: Production Rule p8

Variables As mentioned before, variables are used as shortcuts in the AQL to increase
the readability of queries. A variable definition can only be placed before, after or in
between two complete queries. To do so production rule p0.2 has to be applied (see
Figure 12 – Page 60). It expects a variable name to be derived for Variable and a
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Query-Part as content of the variable. The = terminal symbol between the variable
name and the query part signals that the usage of this variable is equal to denoting the
respective query part. The variable name is derived by applying production rule p9 (see
Figure 21). Any lower case letter and any number may be contained in a variable’s name,
however, it must not start with a number.

Variable ::= a - z
(

( a - z | 0 - 9 )
)

+

Figure 21: Production Rule p9

Once a variable has been defined, it can be used whenever a query part is derived. To
use a variable a $ sign must be derived followed by the variable’s name as defined by
production rule p1.5 (see Figure 13 – Page 61).

We are not providing further example queries here as there are several throughout the
thesis. For example, the two intuitive ones presented at the beginning of this section (see
Subsection 3.2.1). The semantics of AQL-Queries are defined in the next subsection.

3.2.3 AQL-Queries: Semantics

The semantics of a language describe the meaning of each word (or sentence) in a language.
Accordingly, the semantics of the AQL must describe the meaning of each query. Since we
use queries to interact with tools, the results given by those tools stand for the meanings
of such queries.

Definitions & Assumptions To specify the AQL’s semantics, let us start by defining
two sets: First, Q = L(G) is the set of all queries that can be derived from grammar
G which has been presented in the previous subsection. Second, the set R represents
the set of all possible tool results an analysis tool, an operator or a preprocessor might
output. Possible tool results are AQL-Answers ( ? ), arbitrary files ( ! ) or raw answers
( . ). The ending symbol ( ? , ! , . ) of an AQL-Query already indicates which result type
is expected. AQL-Answers are represented through .xml files that follow the meta-model
presented in Subsection 3.2.5. Raw answers can also be represented through text files in
the sense that their only content is the raw answer. In conclusion, we assume:

Any element r ∈ R can be described by a file which is uniquely identified by its
filename fr.
An AQL query q can be in two different states: answered and unanswered. Unanswered

queries still contain one or more questions that require tool execution(s) in order to be
answered – answered queries do not.

If the derivation of q ∈ Q requires the application of at least one of the crucial
production rules (p1.1, p1.2, p1.3 or p5 – derivation of an Analysis-, Operator-,
Filter- or Preprocessor-Question as specified in the previous Subsection 3.2.2), it is
categorized as unanswered – otherwise q counts as answered.

Consequently, the function ready indicates if a query is ready to be answered. The function
is declared as follows:

ready : Q → {true, false}
q 7→ ready(q)
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with

ready(q) =


true the derivation of q starts with an application of

a crucial production rule but requires no further
application(s) of any crucial production rule.

false otherwise

In order to answer a query that is ready we have to run an analysis tool (p1.1), an
operator (p1.2 or p1.3) or a preprocessors (p5) depending on the question(s) contained in
the respective query. Later on we present how to select a tool with respect to a certain
question (see Section 3.4). For now, we assume:

There exists a configuration C that defines which tools are available, and that there
always is a tool t ∈ C such that rq ∈ R is the result of t for the query q.

Due to this assumption a configuration must not be provided as input to the function
described next – a simplification to foster explainability. To model the outcome of any
tool the function ask maps queries to results.

ask : Q → R

q 7→ rq

(Assuming that rq ∈ R is the result of a tool answering q.)
Please note that there is no further input required to specify analysis targets (apps), since
we assume that:

Analysis targets (apps) are uniquely identified in queries.
For example, if a query uses App(’A.apk’) as reference, we assume that this reference
unambiguously identifies a certain app.

Lastly, to foster readability, we introduce the following notation:
Any question or sub-query s of a query q ∈ Q (q = ...s...) whose derivation starts
with a crucial production rule may be substituted by:

’ fr ’ ( ? | ! | . )
where

(1.) r ∈ R refers to the result of a tool answering s represented by the filename fr,
and (2.) the ending symbol is equal to the one at the end of s ( ! if there is none).

We denote such a substitution by: q[s←r]

Derivation Rules Under these assumptions and with these definitions at hand, the
semantics of the AQL can be described by the following two derivation rules that state
how a query should be processed to find its final result (meaning):

q ̸= s ∧ ready(s) = true

q = ...s... → q[s←ask(s)]
(Query)

ready(q) = true

q → ask(q) (Termination)

The first rule (Query) will be applied until the query only holds a single question. Then,
when the whole query is ready, the Termination rule can be applied. By applying this last
rule the final result (the answer to the initial query) is determined. The next subsection
explains the semantics of the AQL on an example query.
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3.2.4 Example 2: Query Progression

To better understand the semantics of the AQL, let us have a look at the following example
AQL-Query (q):

1 UNIFY [
2 Permissions IN App(’A.apk’ | ’PP’) ?,
3 Flows IN App(’A.apk’ | ’PP’) ?
4 ] ?

It contains overall five questions (in terms of non-terminals): Two Preprocessor-Question s,
two Analysis-Question s and one Operator-Question . The derivation sequence of q with
respect to grammar G is shown in Figure 22 (Page 68). Clearly, the derivation sequence re-
quires multiple applications of crucial production rules (p5 and p1.1 twice; p1.2 once), hence,
the Termination derivation rule cannot be applied in the first place, since ready(q) = false
holds. To apply the Query derivation rule we must first determine a sub-query s of the
query such that ready(s) = true holds. The easiest way to do this is to search the deriva-
tion sequence from end to start. Stop the search as soon as the first application of one of
the crucial production rules has been found. This gives us derivation 17 , which applies
the production rule p5 (see Figure 22). The corresponding partial derivation result is:

’ A.apk ’ | ’PP’ (s)

Since production rule p5 was applied to derive a Preprocessor-Question , we know that we
must execute a preprocessor. Furthermore, the preprocessor must be associated with the
keyword ’PP’ and the target to be preprocessed is the app represented through the .apk

file ’ A.apk ’ . Let r1 ∈ R be the result given by the preprocessor which is represented
by the filename fr1 = B.apk. Finally, to apply the Query rule the substitution q[s←r1] is
employed. Thereby every occurrence of s is replaced by:

’ fr1 ’ ! = ’ B.apk ’ !

This gives us the following query (q′):
1 UNIFY [
2 Permissions IN App(’B.apk’ !) ?,
3 Flows IN App(’B.apk’ !) ?
4 ] ?

To apply the Query derivation rule another time we must find a new sub-query s′

(q′ = ...s′...) that is ready to be answered. The derivation sequence of q′ is shown in
Figure 23 (Page 70). From bottom to top the first crucial production rule applied is p1.1

during derivation 15’ . An Analysis-Question is derived at this point. The respective
partial derivation result is:

Flows IN App( ’ B.apk ’ ! ) ? (s′)

Since it is an Analysis-Question we are looking for an analysis tool that allows us to detect
intra-app (taint) flows ( Flows ) inside ( IN ) one application ( B.apk ). Let us assume we
got such a tool in our quiver and it gives us the result r2 ∈ R with fr2 = flows.xml.
Thus, we have to substitute s′ by:

’ flows.xml ’ ?
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p0−→ Query
1 p0.1−−→ Query-Part
2 p1−→ Operator-Question
3 p1.2−−→ Operator [ Query-Part , Query-Part ] ?

4 p7−→ UNIFY [ Query-Part , Query-Part ] ?

5 p1−→ UNIFY [ Analysis-Question , Query-Part ] ?

6 p1.1−−→ UNIFY [ SOI IN Reference FUW ? , Query-Part ] ?

7 p2−→ UNIFY [ Permissions IN Reference FUW ? , Query-Part ] ?

8 p3−→ UNIFY [ Permissions IN App( Preprocessor-Question ) FUW ? ,

Query-Part ] ?

9 p5−→ UNIFY [ Permissions IN App( QString | QString ) FUW ? ,

Query-Part ] ?

10 p4−→ UNIFY [ Permissions IN App( ’ A.apk ’ | QString ) FUW ? ,

Query-Part ] ?

11 p4−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) FUW ? ,

Query-Part ] ?

12 p6−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Query-Part ] ?

13 p1−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? ,

Analysis-Question ] ?

14 p1.1−−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , SOI IN

Reference FUW ? ] ?

15 p2−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Flows IN

Reference FUW ? ] ?

16 p3−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Flows IN App(

Preprocessor-Question ) FUW ? ] ?

17 p5−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Flows IN App(

QString | QString ) FUW ? ] ?

18 p4−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Flows IN App(

’ A.apk ’ | QString ) FUW ? ] ?

19 p4−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Flows IN App(

’ A.apk ’ | ’PP’ ) FUW ? ] ?

20 p6−→ UNIFY [ Permissions IN App( ’ A.apk ’ | ’PP’ ) ? , Flows IN App(

’ A.apk ’ | ’PP’ ) ? ] ?

Figure 22: Derivation Sequence of the Initial Example Query q
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By this substitution we get (q′′):
1 UNIFY [
2 Permissions IN App(’B.apk’ !) ?,
3 ’flows.xml’ ?
4 ] ?

For brevity, we skip the consequent derivation rule applications. In the end, the whole
process gives us the sequence of derivation rule applications summarized on Page 71. After
the application of the Termination derivation rule the final answer (fr′′′ = answer.xml)
becomes available.
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Query
1–7 p2−→ UNIFY [ Permissions IN Reference FUW ? , Query-Part ] ?

8’ p3−→ UNIFY [ Permissions IN App( QString ) FUW ? , Query-Part ] ?

9’ p4−→ UNIFY [ Permissions IN App( Query-Part ) FUW ? , Query-Part ] ?

10’ p1−→ UNIFY [ Permissions IN App( Result ) FUW ? , Query-Part ] ?

11’ p1.4−−→ UNIFY [ Permissions IN App( QString ! ) FUW ? , Query-Part ] ?

12’ p4−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) FUW ? , Query-Part ]

?

13’ p6−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Query-Part ] ?

14’ p1−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Analysis-Question ] ?

15’ p1.1−−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , SOI IN Reference
FUW ? ] ?

16’ p2−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN Reference
FUW ? ] ?

17’ p3−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN App(

QString ) FUW ? ] ?

18’ p4−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN App(

Query-Part ) FUW ? ] ?

19’ p1−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN App(

Result ) FUW ? ] ?

20’ p1.4−−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN App(

QString ! ) FUW ? ] ?

21’ p4−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN App(

’ B.apk ’ ! ) FUW ? ] ?

22’ p6−→ UNIFY [ Permissions IN App( ’ B.apk ’ ! ) ? , Flows IN App(

’ B.apk ’ ! ) ? ] ?

Figure 23: Derivation Sequence of q′ (Shortened)
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Example Summary (sequence of derivation rule applications)

q
Query−−−→ q[s←r] = q′

Query−−−→ q′[s′←r′] = q′′
Query−−−→ q′′[s′′←r′′] = q′′′

Termination−−−−−−−→ r′′′

with

q =
1 UNIFY [
2 Permissions IN App(’A.apk’ | ’PP’) ?,
3 Flows IN App(’A.apk’ | ’PP’) ?
4 ] ?

s = ’ A.apk ’ | ’PP’ ,
r = run(s),
fr = B.apk,

q′ =
1 UNIFY [
2 Permissions IN App(’B.apk’ !) ?,
3 Flows IN App(’B.apk’ !) ?
4 ] ?

s′ = Flows IN App( ’ B.apk ’ ) ? ,
r′ = run(s′),

fr′ = flows.xml,
q′′ =

1 UNIFY [
2 Permissions IN App(’B.apk’ !) ?,
3 ’flows.xml’ ?
4 ] ?

s′′ = Permissions IN App( ’ B.apk ’ ) ? ,
r′′ = run(s′′),

fr′′ = permissions.xml,
q′′′ =

1 UNIFY [
2 ’permissions.xml’ ?,
3 ’flows.xml’ ?
4 ] ?

and
r′′′ = run(q′′′),

fr′′′ = answer.xml.
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3.2.5 AQL-Answers: Structure

In most cases an AQL-Answer is the expected result when an analysis or operator question
is derived as a query part. Therefore, most subjects of interest can be modeled in AQL-
Answers. The two subjects of interest that cannot be modeled are slices and arguments.
While slices are expected to be delivered in .apk format, arguments should lead to a
textual, raw result. In both cases, conversion into an AQL-Answer is neither reasonable
nor possible, because raw answers probably cannot be structured and .apk files must be
retained to ensure the respective app’s analyzability and functionality. The subjects of
interest that can be represented by AQL-Answers are the remaining eight: flows, intents,
intent filters, intent sinks, intent sources, permissions, sources and sinks.

The whole structure of AQL-Answers is summarized in Figure 24. We present the
structure of AQL-Answers only on the basis of this figure and the description below. This
allows us to focus on the structure without impeding readability due to lengthy technical
definitions. Nonetheless, the precise structure of AQL-Answers is defined by an XML
schema definition (.xsd file) that can be found in Appendix A.5.2. Thereby it is clearly
specified (cf. ▶ Req. 6) through a meta-model (cf. ▷ Req. 11). Since this precise
structure is given in form of an .xsd file, AQL-Answers are stored in form of .xml files
that follow this definition.

Lists

Flow SourceSink
Intent
Filter

Intent
Sink

Intent
Source

Intent
Permis-

sion

Target

Attribute

Key
(String)

Value
(String)

Reference

File
(String)
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(String)

Category
(String)

Data
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(AQL-)
Answer

Method
(String)

Classname
(String)

AppStatement

Type

Hash
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Type
Statement-

Generic
(String)

Line 
Number

(Integer)

Statement-
Full

(String)

…

Para-
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Name
(String)

Figure 24: Visualization of the Structure of AQL-Answers

In the center of the figure above the eight subjects of interest (green) can be found. For
each subject of interest an AQL-Answer holds one list in which all elements of the respec-
tive subject type can be found. For any element it is depicted what kind of sub-elements it
may hold. In summary, there are four different kinds of sub-elements: References (blue),
Targets (yellow), Names (gray) and Attributes (red):

• References: Each reference denotes a statement, method, class (classname) and an
app. A statement is mainly described by two textual elements. The first refers to the
full statement and the second to a generic version of this statement. For example,
the full statement that refers to an intent source (e.g., getStringExtra) might be
the complete Jimple string representation of such a statement:
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r1 = virtualinvoke r2.<android.content.Intent: java.lang.String
getStringExtra(java.lang.String)>("Secret")

and the generic one a cutout of it so that only generic information is contained (no
variable identifiers or values, i.e., no notation of r1, r2 or "Secret"):

android.content.Intent: java.lang.String
getStringExtra(java.lang.String)

A specification of the full statement is optional. By using the Jimple representation
we adhere to ▷ Req. 3. Furthermore, the parameters of an included function call
can be described to define a statement. Each parameter can be specified by a pair
of strings: its type and variable identifier or value. With respect to the example
above one parameter (type: java.lang.String; value: "Secret") could be speci-
fied. Lastly, a line number may be attached as intended by ▷ Req. 12.

Method and class name are simply represented by a string, for instance, if a refer-
ence refers to a statement in method a() of class A in package pkg, we denote <pkg.A:
void a()> as method and pkg.A as class name. In accordance to ▷ Req. 5 we only
use fully qualified package/class names.

An app is described by its path to the respective .apk file and hashes of this file.
On the one hand, the path allows a quick identification of the app on the local file
system. On the other hand, the hashes allow the identification of the same app on
different file systems. Implicitly, the hashes also allow to detect if an .apk file has
been manipulated. Thus, an analysis result in form of an AQL-Answer is only valid
for certain .apk files if the respective hashes match.

Finally, an optional attribute, that describes the type of reference, can be at-
tached. A flow can consequently be denoted via two references which use this type
attribute to declare where the flow starts and ends, i.e., one reference specifies the
type from whereas the other specifies the type to.

• Targets: To specify their designated receivers implicit intents must describe an
intent triple – explicit intents a component. Both can be done via a target element.
For an intent triple, actions and categories are denoted as lists of strings. The data
part is further structured with respect to the structure of intent triples in the context
of Android. The technical details are omitted in this brief description but included
in the schema (see Appendix A.5.2). To specify the component that is targeted by
an explicit intent, a reference can be specified partially, i.e., app and component
only.

• Names: A simple string argument that will only be used to specify unique identifiers
such as the name of a permission.

• Attributes: To ensure a certain level of flexibility, any additional information may
be attached to any element of an AQL-Answer. To do so, attributes come into play.
Each attribute represents one key-value-pair. Key and value may hold the textual
representation of any property.

With the description of these four sub-elements, the elements that represent the different
subjects of interests can be described:

• Flows: In the context of this thesis, flow elements are most of the time used to
encode taint flows. Nonetheless, any kind of information, data or control flow may
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be modeled by flow elements. To do so, arbitrarily many (but usually only two)
references must be specified. The type attributes of these reference elements specify
where a flow starts and ends, for example, the type could be binary (from, to) or
specify a sequence of references (1, 2, ...).

• Sources & Sinks: A single reference is sufficient to fully describe a source or a sink,
since the type of element (source or sink) implicitly defines all additional information
needed.

• Permissions: Only the name of a permission must be declared in order to unam-
biguously specify it. In addition, a reference can be provided that identifies the app,
component, method or the exact statement that requires this permission.

• Intents (& Intent Sinks): A target and a reference must be specified for each
intent sink. The reference must clearly define the statement that launches the intent,
for instance, a call of the function startActivity that uses the respective intent as
parameter. In case of an intent, the reference is optional – it may also be incomplete,
i.e., it may only define a component, or refer to any statement that deals with the
intent (e.g., its constructor call).

In contrast, it is the other way around when it comes to the target element. It is
optional in case of intent sink elements but required with respect to intent elements.
In both cases the target element should describe which component(s) can be reached
by the associated intent. This is either done via an intent triple (implicit intent) or
a component (explicit intent) – both can be modeled via a target element.

• Intent Filters (& Intent Sources): Most intent filter definitions can be found
in the Android manifest of an app, however, they can also be instantiated program-
matically. Typically, the definitions only provide a component (app and class name)
as reference, since they are defined per component. However, in case of an intent
source it is mandatory that a precise statement is referenced, i.e., the statement that
extracts information from an intent (e.g., getStringExtra).

The target element, that describes which intent may match an intent filter or an
intent source, is required in case of any intent filter specification but optional while
specifying intent source elements.

These conventions, that certain elements must and must not be described, embody the
difference between intents and intent sinks as well as intent filters and intent sources. The
differentiation is required to clearly distinguish what a tool may and may not output. For
example, Amandroid’s results include flows, intents, intent sinks and intent filters but
no intent sources. The example in Appendix A.3 details the differences between intents
and intent sinks, and intent filters and intent sources.

The structure of AQL-Answers as described above only allows to model analysis infor-
mation (as specified in Subsection 3.1.1) in a structured way. Any other information can
and should only be attached in form of attributes (cf.▶ Req. 4). Thereby AQL-Answers
are tailored to their application area as requested by ▶ Req. 9 but still provide a certain
amount of flexibility.

A concrete example of an AQL-Answer can be found in Appendix A.6.2.
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3.3 Strategies
AQL-Queries show a wide range in terms of their complexity. While simple queries can
easily be written and read by humans, more complex cooperative analysis queries are
sometimes harder to handle. Furthermore, queries should be automatically adaptable
with respect to features available in the app(s) under analysis (see ▷ Req. 15). In
consequence, we propose (cooperative) strategies in this section. They allow us to au-
tomatically transform simple initial queries into complex cooperative analysis queries as
follows.

Strategies are realized through transformation rules that take one AQL-Query as
input and output another.

We differentiate between two kinds of transformation rules: input/output and conditional
transformation rules. An input/output transformation rule is specified by two queries, the
input and the output query. Such a rule may be applied, if the actual input query matches
the input query specified along with the rule. A conditional transformation rule is specified
by only one output query. Conditional rules may only be applied for single analysis
questions if a certain feature is present in this question as demanded by ▷ Req. 15.
In both cases, the output query represents the outcome after applying the respective
transformation rule. An example is explained in the following to further illustrate the
functionality of transformation rules.

3.3.1 Running Example 3: Strategy Application (Part 1/2)

DidFail and IccTA embody two existing cooperative analyses in our focus area An-
droid taint analysis. Both use a combination of FlowDroid and IC3 (or its predecessor
Epicc) to enhance the intra-component taint analysis performed by FlowDroid so that
it is possible to analyze inter-component scenarios. The strategy behind DidFail: use the
information about intent sinks and intent sources as provided by IC3 to determine match-
ing pairs which stand for ICC flows, then connect these flows with the intra-component
taint flows determined by FlowDroid.

With the AQL at hand, we can adopt this strategy and formulate a query qcoop that
targets the same cooperation (let A.apk stand for an arbitrary app that involves ICC):

1 CONNECT [
2 Flows IN App(’A.apk’) ?,
3 CONNECT [
4 IntentSinks IN App(’A.apk’) ?,
5 IntentSources IN App(’A.apk’) ?
6 ] ?
7 ] ?

In Line 2 we ask for flows. Once this analysis question is answered by FlowDroid, it will
give us an AQL-Answer, as indicated by the ending symbol ( ? ), that holds the detected
intra-component taint flows. Similarly, we ask for intent sinks and intent sources in Line 4
and 5. These two analysis questions may be answered by IC3. The connect operator
that surrounds these two lines is meant to call another tool that (1.) takes the provided
information about intent sinks and intent sources, (2.) determines matching pairs and
finally (3.) provides an AQL-Answer that holds the concluded ICC flows. The second
connect operator that surrounds the whole query then combines these ICC flows with the
intra-component flows found by FlowDroid. Since the connect operator is required to
be implemented by any system using the AQL, it must be available (see Subsection 3.2.2).
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Finally, we expect an AQL-Answer that holds inter-component taint flows (if there are
any) as response to the whole query.

Anyway, one question arises: why do we have to formulate such a complex query if we
just want to ask for inter-component taint flows in one app? The answer: we do not have
to! With the help of two transformation rules17, we can instead just ask the following
query qsimple:

1 Flows IN App(’A.apk’) ?

The first transformation rule is used to get information about the features used by the app
under analysis. Thus, it automatically inserts an analysis question that asks for features

1 Arguments IN App(’A.apk’) .

into the input query only if it has the structure of qsimple. The result is qfeatures:
1 Flows IN App(’A.apk’) FEATURING
2 Arguments IN App(’A.apk’) .
3 ?

The associated input/output transformation rule is specified via two AQL-Queries. The
first query specifies the structure the actual input query must have. It is defined as follows
by making use of a variable placeholder (%FILE_1%):

1 Flows IN App(%FILE_1%) ?

The second query defines the outcome and uses the same variable placeholder twice:
1 Flows IN App(%FILE_1%) FEATURING
2 Arguments IN App(%FILE_1%) .
3 ?

By matching the input query of the transformation rule with the actual input query qsimple,
we infer that %FILE_1% is equal to ’A.apk’, which then can be used to determine the actual
output query qfeatures by replacing the variable placeholder.

Once the inner question of qfeatures, which is asking for arguments, is answered by a tool
that determines the features of an app, we will receive a raw answer as response (see ending
symbol . ). This allows us to directly integrate the answer into the query (cf. ▷ Req. 2).
Let us assume that only the feature ICC is determined for A.apk. Consequently, we get
the query qicc by replacing the Arguments-query with the raw content of the given answer:

1 Flows IN App(’A.apk’) FEATURING ’ICC’ ?

Now the second transformation rule comes into play. It is a conditional transformation
rule that is only applied if the feature ICC is present (cf. ▷ Req. 15). The output query is
specified including predefined variable placeholders, for example, the variable placeholder
%APP_APK_IN% may match the app that is given as part of a reference after the keyword IN .
Which predefined placeholders are available is dependent on the individual implementation
– more details, in regard to the AQL-System, are provided later on (see Subsection 3.4.1).
Accordingly, the second rule is defined by the following output query:

1 CONNECT [
2 Flows IN App(%APP_APK_IN%) ?,
3 CONNECT [
4 IntentSinks IN App(%APP_APK_IN%) ?,
5 IntentSources IN App(%APP_APK_IN%) ?
6 ] ?
7 ] ?

17Both transformation rules are denoted in Appendix A.5.5 in the format used by the AQL-System.
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In this example %APP_APK_IN% assumingly also matches ’A.apk’. Once the rule is applied
on qicc we get the final query qcoop.

For brevity, we neither formally define transformation rules nor do we provide more
examples. However, several examples are implicitly mentioned while introducing novel
cooperative strategies in the evaluation chapter (see Chapter 5).
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3.4 AQL-System
The original system that implements the AQL is the system that shares the language’s
name: the AQL-System. From an abstract perspective it can be viewed as a black box
(depicted in Figure 25). This black box takes an AQL-Query as input from the user

AQL-System
Configuration

Rules

User

AQL-Answer

Legend

configurable specifies Input / output

Figure 25: AQL-System Overview

and outputs an AQL-Answer as response.18 The system on its own comes with a couple
of built-in tools, the so-called default tools (see Subsection 3.4.3). Without configuring
the system, only queries that can be answered by these default tools can be answered
at all. Hence, before diving deeper into the functionality of the black box or the AQL-
System, we take a closer look at the two options to configure it. On the one hand, the
system can be configured to use arbitrary analysis tools, operators and preprocessors via
its configuration. The configuration also holds information about converters that may
be required to translate a tool’s result into an AQL-Answer and information about the
environment of the system, i.e., hardware information (e.g., maximal usable memory)
or the availability of resources such as the Android SDK. On the other hand, rules can
be provided to an AQL-System. They specify which (cooperative) strategies in form
of transformation rules (input/output or conditional) are available. After describing the
configuration options, the workflow of the AQL-System is described as it is implemented
without going into detail about the implementation itself. The implementation is fully
accessible as an open source project on Github [114]. Several tutorials and a user manual
can also be found in this project. Lastly, the running example started before is continued
to illustrate the system’s workflow.

3.4.1 Configuration & Rules

In this subsection the options to configure an AQL-System are briefly described, espe-
cially technical details, that are not important to understand the concepts behind the
AQL-System, are omitted.

The configuration of an AQL-System must be provided in form of an .xml file that
follows the schema definition (.xsd) given in Appendix A.5.3. Figure 26 shows the struc-
ture demanded by the schema file. Each configuration comes with three environment
describing elements (gray). The first element must be provided in form of an integer num-
ber which describes how much memory at maximum (in gigabytes) may be used by the
tools when run via the associated AQL-System. The other two elements should denote
paths to two directories (build tools and platforms) of the Android SDK.

18Depending on the type of query it might also be a raw ( . ) or a file ( ! ) answer. For simplicity this
is not mentioned in the following anymore.
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Figure 26: AQL-System Configuration

The build tools represent a collection of command line tools that are required to
compile, sign and finally build an Android app in form of an .apk file.

Among others, the tools zipalign and apksigner are included. They have to be executed
in sequence in order to sign an app. Signing an app describes the process of attaching a
digital signature to an .apk file. A signature uniquely identifies a developer. Only signed
apps can be executed on Android devices.

The Android platforms (also called platform directory or platform files) provide
API-specific materials and development instruments. Most importantly, API-specific
versions of the Android library (android.jar) are contained.

Each of these .jar files holds Java classes and interfaces that implement how to compose
or build apps, how to access hardware or software components typically available in and
on Android devices and various other information. However, in the end it is a Java library,
hence, it can be used as any other library. From here on we will refer to this library as
Android library. For example, to construct an intent the class android.content.Intent,
which belongs to the Android library, must be instantiated. In consequence, most analysis
tools require access to the Android platforms in order to analyze an app, since the Android
library may hold a (often large) portion of an app’s code that is not available directly in
the respective .apk file.

The available analysis tools, operators, preprocessors and converters can be configured
by specifying four lists (green elements in Figure 26). Thereby, arbitrary tools can be
configured as demanded by ▷ Req. 6. The tools are treated as black boxes, hence,
their inputs and outputs must be declared in the configuration (cf. ▷ Req. 13). Each
list holds arbitrarily many tool elements (blue). Each “Tool” element clearly identifies
the associated tool by denoting its name and version. The value specified through the
“Timeout” sub-element specifies the maximal execution time a tool may use before it is
canceled – this value is optional as a timeout can also be specified on a global level. The
sub-element entitled with “Questions”, describes what the tool may be used for. For each
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type of tool, different information must be provided as detailed in the list below:

• Analysis tools: the subjects of interests a tool supports are listed here.

• Operators: the associated operator’s name is denoted.

• Preprocessors: the preprocessor’s keyword is provided.

• Converter: an identifier (name and version – the latter is optional) of the analysis
tool, for which the respective converter shall be used, is named.

The “Path” sub-element describes where (in which directory) a specific tool or event
is executed. How to execute a tool is described by the “Execute” sub-element (yellow). A
tool can be executed locally or remotely. A boolean flag (external) determines how to
execute a specific tool.

Internal tools (external = false) are executed locally, external tools (external
= true) are executed remotely.

For internal tools four elements have to be specified as sub-elements of the tool’s execute
element:

• Run: Determines the command to execute the respective tool. It is executed in the
directory at which “Path” points. In the following, we refer to this command as a
tool’s run command.

• Result: Denotes where (on which path) the result of the tool will become available.

• Instances: The respective integer number specifies how many instances of the tool
can be executed concurrently (0 stand for arbitrarily many).19

• Memory: Each instance of the respective tool should not use more memory than
specified by this integer number (in gigabytes).

External tools are not executed on the local system, hence, we do not need to know how
to run them, instead we need to know where to find them and how to access them. For
that purpose three different sub-elements must be specified:

• URL: The URL of an AQL-WebService (see Subsection 3.4.5).

• Username & Password: Valid credentials to access this webservice.

Up to five “Events” can be attached to each tool. These five events are triggered before
and after a tool is run (onEntry, onExit), when a tool finishes its execution (onSuccess,
onFail) or when it is aborted (onAbort). The respective strings denote the commands to
execute. They are also executed in the directory specified in the “Path” sub-element.

Lastly, each tool comes with at least one “Priority” sub-element (red). These elements
assign a certain priority to a tool that may decide which tool is used to answer a question
if multiple tools are able to do so. Whenever a feature is assigned to a priority element, the
respective priority’s value is only considered if this feature is present in the current analysis
question. How exactly the priority is computed, is explained when the tool selection
process is detailed (see Subsection 3.4.2).

19A few tools produce (intermediate) results that are always stored in the same file. Because of that
they cannot be run in parallel as each instance would overwrite the result of another which often leads to
data races and invalid results.
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The configuration of tools together with the elements describing the environment allow
us to configure all universal and tool-specific inputs as requested by ▷ Req. 1.

The (cooperative) strategies or (transformation) rules available in an AQL-System are
specified in another .xml file that follows another schema definition (see Appendix A.5.4).
Figure 27 illustrates the structure of such a file. It mainly consists of a list of rule elements

Rule

Rules

Priority

Value
(Integer)

Feature
(String)

Query
(String)

Input
Query
(String)

Output
Query
(String)

OR

Figure 27: AQL-System Strategies / Transformation Rules

(gray). Each rule in this list might be an input/output or a conditional transformation
rule. The required input and output queries are specified as strings (blue). Similar to
each tool in the configuration of an AQL-System, priorities can be attached to each rule.
Thus, if two or more rules are applicable the rule with the highest priority is chosen.

Variables & Placeholders Various variables may be used inside the different elements
of a configuration or a rules file. A complete list of all predefined variables (and placehold-
ers) and their meaning can be obtained from the AQL-System’s documentation [117,
118]. In addition, custom variables refer to values set in a query via key-value-pairs after
the keyword WITH. The query below, for example, assigns the value SourcesAndSinks.txt
to the custom variable %SourcesAndSinks% that is implicitly declared.

Flows IN App(’A.apk’) WITH ’SourcesAndSinks’ = ’SourcesAndSinks.txt’ ?

Not least because of custom variables ▶ Req. 2 is met – all execution-specific inputs can
be modeled via the AQL. To foster brevity, no further details are provided here, however,
for explanation purposes let us have a look at one example.

The “Run” element of an internal tool may hold the following command to run Flow-
Droid (2.9.0):

java -Xmx%MEMORY%g -jar soot-infoflow-cmd-2.9.0-jar-with-dependencies.jar
-a %APP_APK% -p %ANDROID_PLATFORMS% -s %SourcesAndSinks% -o

results/%APP_APK_FILENAME%_result.xml -ol

Five variables appear in this command. Once the command is executed, variable %MEMORY%
is replaced by the memory value given for FlowDroid (2.9.0) in the same configuration.
%APP_APK% refers to the .apk file of the app under analysis and is replaced accordingly.
The variable %ANDROID_PLATFORMS% refers to the Android platforms specified as envi-
ronmental information in the AQL-System’s configuration. %SourcesAndSinks% stands
for the value of the associated custom variable (e.g., SourcesAndSinks.txt). Lastly,
%APP_APK_FILENAME% refers to the filename of the .apk which is often required to identify
a tool’s result file.
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3.4.2 Workflow

In this subsection we open up the black box that represents the AQL-System. The six
steps that embody the workflow inside this black box are explained in detail. Figure 28
shows all six steps ( 1. – 6. ) and provides an overview of the whole workflow.
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Figure 28: AQL-System Workflow

Close to the center of this figure an element can be found labeled with “Storage”.
As the name suggests, this element stores data, more precisely, arbitrary tool results. It
allows us to track if a query or a (query-)part has been answered before, and if a tool has
been run before for the same analysis target and under the exact same configuration, i.e.,
the same tool with the same launch parameters – the same run command after replacing
all variables.20 In case of an external tool an artificial run command is used to achieve
the same effect. In the end, a tool which has been executed before is not executed again,
instead the previously computed result is remembered. Even if the same run command is
scheduled upon two distinct queries, the AQL-System will simply remember the result
but probably take different elements of it into account.

Initially the user must input an AQL-Query to trigger the AQL-System’s workflow:

1. Apply Strategies
(Input: AQL-Query q, Output: AQL-Query q′, Uses: Rules R)
In order to find out if a cooperative strategy can be applied, more precisely, if the
current query or a (query-)part of it can be transformed, the system checks whether
there is at least one rule that has a priority greater than 0 and is applicable. The
priority of a rule is equal to the sum of all priorities specified for it that have either
no feature assigned or a feature that appears in the respective query or a part of it.21

An input/output transformation rule is applicable if the rule’s input query matches
the whole query or a part of it. A conditional transformation rule is applicable if its

20Technically, the comparison of run commands happens on a level such that, for example, moving a
file provided as launch parameter does not impair the comparison.

21An example can be found in Appendix A.5.5.
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priority is greater than 0 for the whole query or a part of it. In both cases the part
for which the rule becomes applicable is called matching part – even if it stands for
the whole query. The applicable rule with the highest priority is determined and
applied first. Thereby the matching part is replaced by the output query specified
for the applied rule. While doing so, the included variables are resolved. On basis
of the transformed query this process is repeated until no more rules can be applied.
If there are no applicable rules available, the given query is simply forwarded to the
next step without transformation.

2. Parse
(Input: AQL-Query q, Output: Tasktree t, Uses: −)
The query given as input is mapped to a tasktree while parsing it. A tasktree is a data
structure that models the different questions contained in a query. Considering the
grammar behind AQL-Queries, it is similar to a derivation tree for the input query
that only includes the nodes that represent the application of a crucial production
rule (a question). Technical details are skipped for brevity, but an example is given:

The query
CONNECT [

IntentSinks IN App(’A.apk’) ?,
IntentSources IN App(’A.apk’) ?

] ?

would be mapped to the following tasktree
r

1

2 3

where r represents an artificial root node, 1

stands for the operator question (CONNECT [
... ] ?) and 2 , 3 for the two analysis
questions dealing with intent sinks and intent
sources.

If the query cannot be parsed, since it is not valid with respect to the AQL-Query
grammar, the AQL-System outputs an error that points at the erroneous part of
the query and aborts its computation.

3. Task Determination
(Input: Tasktree t, Output: Tasktree t′, Uses: Storage S)
During this step it is determined which parts of the query are answered and which
parts are ready with respect to the definitions given in Subsection 3.2.3 (Page 65).
Analogously, a node in a tasktree is answered, if the respective question has been
answered before according to the AQL-System’s storage; a node is ready, if it is a
leaf or if all its children are answered. The artificial root node counts as answered
once all its children are marked as answered. In the latter case the computation
stops successfully and the final answer is output.

4. Tool Selection
(Input: Tasktree t, Output: Tasktree t′, Uses: Configuration C)
During this step a tool is assigned to each node of the tasktree if possible. To
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do so, all tools given in the system’s configuration are filtered until only a set of
tools, which are able to answer the respective question, is left. First, the type of
question is used to filter: obviously an analysis question must be answered by an
analysis tool specified in the configuration, an operator question by an operator and
a preprocessor question by a preprocessor. Then the content of the question is used
to filter further: the subject of interest must match a subject of interest listed in
the configuration (“Question” element) of an analysis tool. Similarly, the operator
name or preprocessor keyword must match respectively in case of an operator or a
preprocessor. Thereafter, each tool in the set of filtered tools is able to answer the
associated question.

To decide which tool is ultimately selected from this set and assigned to the task-
tree node, each tool’s priority to answer the current question must be taken into
account. The priority is determined just as it is done in case of transformation rules
(cf. Step 1. ): the sum of all given priorities specified for the respective tool in the
system’s configuration is calculated. However, a priority is only summed up, if no
feature or a feature, which is also present in the respective question, is attached.22

Thus, the actual priority can only be determined if the respective question is com-
plete, i.e., there are no information missing, for example, the features mentioned in
an analysis question are known and must not be determined via a yet unanswered
question.

If there are two tools with the same priority, the following tiebreakers are used
one after another:

• Internal tools are favored over external ones.
• Tools for which more variables, mentioned in their respective run commands,

can be resolved are preferred.
• If less custom variables, that have to be specified in a query, are involved in

tools’ run commands, they are selected.
• On another tie, tools that use more default variables in their run commands

are favored.
• Ultimately, tools mentioned first in the configuration are preferred.

If the current question names a specific analysis tool after the keyword USES (or
USING), this particular tool is preferred independent of its actual priority (cf. ▷ Req.
10). This selection process shows that tools are chosen with respect to execution-
specific inputs (SOI, features, variables, ...) present in the respective questions, thus,
▶ Req. 3 is met.

If the tasktree contains a node that is ready but has no tool assigned to it, the
computation is aborted and an error is output that states that there is no tool
configured to answer the respective part of the query.

5. Run Tool(s)
(Input: Tasktree t, Output: Tasktree t′, Uses: Configuration C, Storage S)
In contrast to what has been explained in the semantics subsection (3.2.3), tools
are not executed one after another by the AQL-System. Instead all tools that are
assigned to nodes which are marked as ready are executed concurrently unless the
maximal usable memory is exceeded or a tool which is needed to be run in parallel
cannot be run in parallel (cf. ▷ Req. 16). In case of external tools, it is up to the

22An example can be found in Appendix A.5.5.
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remote system when a tool can be executed. Locally it is assumed that external tools
do not require any memory and can always be run in parallel. The memory an AQL-
System should maximally use is specified as one of the environmental values in a
system’s configuration. To detect if a certain tool execution would possibly exceed
this limit, the AQL-System keeps track of the memory that may be occupied by
tools that are currently running. To do so, it takes the memory value specified
for any internal tool (in the configuration) into account. The AQL-System also
records how many instances of a certain tool are currently running and prohibits
that this number exceeds the number specified in the respective tool’s configuration
(“Instances” element).

Whenever the execution of a tool finishes, the produced result is attached to the
tasktree’s node and stored in the system’s storage. Then the next step is triggered.
Note that Step 6. consequently may be triggered multiple times, if multiple tasktree
nodes were ready and multiple tools were executed. It is also possible that Step 6.
is not triggered since no tool was executed, however, this can only be the case if
another tool is still running that will trigger this step once it finishes.

6. Adapt Query
(Input: Tasktree t, Output: AQL-Query q, Uses: −)
By a lookup in the map, that maps tasktrees to queries and vice versa, the original
query is recovered. Then the query is adapted according to the derivation rules
defined in the semantics subsection (see Subsection 3.2.3) and with respect to the
answers available in the tasktree.

Note that a new tasktree will only be computed during Step 2. if a strategy is
applied on the start of the next iteration (Step 1. ). More precisely, if a transforma-
tion rule has become applicable by the query adaptation made with respect to the
new results. Otherwise, the current tasktree is still valid to represent the current
query and parsing the query can be skipped.

These six steps are repeated until an error occurs or the final answer has been computed.
Before we explain this whole workflow on a concrete example, a few details about the
implementation of the AQL-System are presented (see Subsection 3.4.3), since these are
partially required to fully understand the example (see Subsection 3.4.4).

3.4.3 Implementation Details

For brevity, we only explain implementation details that represent important concepts used
in the following. A comprehensive documentation of the AQL-System’s implementation
along with tutorials and further information is publicly available online [114].

Parser and Data Structure JavaCC [156] is used to generate the parser, that is
employed in Step 2. (Parse) of the AQL-System’s workflow, directly on the basis of
the AQL-Query grammar. The Java classes representing the exact structure of AQL-
Answers are generated from the schema that defines them with the help of JAXB [157].
Thereby, the AQL-System strictly follows the language’s definition and any adaptation
of the language can easily be integrated into the implementation (cf. ▷ Req. 9).

Default Tools The AQL-System comes with several built-in tools (the so-called default
tools), including the five necessary operators (unify, intersect, minus, connect, filter). A
list of all default tools can be found in Table 7. The table is sorted by the different types
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of tools (analysis tools, operators, preprocessors, converters). Note that converters for the
most prominent analysis tools are shipped with the AQL-System.

Table 7: Default Tools of the AQL-System

Analysis Tools

Name
Supported
Subjects of
Interest

Description

Feature-
Finder Arguments

Provides a raw answer that lists features found in a refer-
ence. To do so, it is checked whether Jimple statements,
that indicate the usage of certain features, can be found in
the reference. The statements and features to look for are
defined in a configurable list.

IntentInfor-
mationFinder

Intents, In-
tentFilters,
IntentSinks,
IntentSources

Finds information about intent filters by parsing the tar-
get’s Android manifest and gains information about refer-
ences involved with intents, intent filters, intent sinks and
intent sources by comparison of all Jimple statements with
a predefined, extensible list of such.

Permission-
Finder Permissions The manifest is parsed to get to know which permissions

are used by the referenced app.

SourceSink-
Finder Sources, Sinks

A predefined and adaptable list of Jimple statements that
categorize certain method calls as sources and sinks is used
in order to detect instances of such in the targeted reference.

Operators
Name Description
UNIFY Collects all information from different AQL-Answers and puts it into one.
INTERSECT Extracts the information that appears in all provided AQL-Answers.

MINUS Removes all information given in the first AQL-Answer if they appear in any
other.

CONNECT

Works as UNIFY, however, it additionally computes transitive flows and
flows that can be determined by connecting intent sinks with intent sources.
Additionally, incomplete intent sources (only naming a component) are com-
pleted by matching them with intent filters (naming the same component).
Lastly, it adds backward flows whenever there is an intent sink connected to
an intent source, e.g., from setResult(...) in the intent source’s compo-
nent to another intent source in the onActivityResult(...) method of the
intent sink’s component.

CONNECT∼
Same as CONNECT but while connecting intent sinks with intent sources
only the intent’s and intent filter’s action is taken into account (category and
data are ignored).
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FILTER

This operator can be used in various ways:

• When used without specifying a specific filter, it outputs the input
set, but beforehand it removes all elements (permissions, intent sinks
and intent sources, ...) whose reference does not appear in any flow
contained in the answer. Elements without a reference are kept.

• When an subject of interest is given as filter, the operator filters out
all elements of the selected subject.

• When using a name-value-pair as filter, only the elements that have
this name-value-pair attached as attribute are kept.

• A reference can also be used as filter. Only elements that refer to this
reference are kept in this case.

(Takes only one AQL-Answer as input.)

SIGN Automatically signs the referenced app. (Uses a configurable signature/key
and takes only one AQL-Answer as input.)

SIMPLIFY

Removes classes that represent common compatibility libraries from the ref-
erenced app. As second argument a file, that holds a list of package or class
names, can be provided. Otherwise, a configurable default list is used. (Takes
up to two arguments as input.)

SIMPLIFY∼ Removes all classes that do not belong to the referenced app’s main package.

TOAD Converts the sources and sinks given in an AQL-Answer into a source and
sink list as it is used by Amandroid. (takes only one AQL-Answer as input)

TOFD Same as TOAD but compatible with FlowDroid instead of Amandroid.

Preprocessors
Keyword Description

SIMPLIFY
Removes classes that represent common compatibility libraries from the ref-
erenced app. A configurable list of package or class names is used to identify
the classes to remove.

SIMPLIFY∼ Removes all classes that do not belong to the referenced app’s main package.

Converters

Converter for Supported
Versions Remarks

Amandroid 3.1.2, 3.2.0,
3.2.1 Different converters are used for older and never versions.

DIALDroid September
2017

A database configuration must be available such that the
converter gains access to DIALDroid’s database.

DidFail March 2015 —

DroidSafe June 2016 (Fi-
nal) —

FlowDroid

April 2017
(Nightly),
2.7.1, 2.9.0,
2.10.0

Different converters are used for older and never versions.
From 2.7.1 on the .xml output format of FlowDroid is
required.

HornDroid 0.0.1 —
IC3 0.2.1 —

IccTA February 2016,
2.9.0, 2.10.0

Analogous to FlowDroid different converters are used and
the .xml output format is required for version 2.9.0 and
2.10.0.
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The default tool PermissionFinder shares its name with a non-default tool presented
before (see Subsection 2.4.2). Please note that the default version is less precise as it only
identifies permissions listed in the manifest without referencing statements requiring this
permission. If we refer to the tool PermissionFinder in the following, we always refer
to the non-default one.

Retry Mechanism While describing the semantics of the AQL we assumed that tools
do not fail, however, in reality tools may fail for various reasons, for example, a tool may
crash due to a bug in its implementation or because it attempts to use more memory or
time than given. To cope with (unexpected) fails, a retry mechanism is implemented in
the AQL-System. If the tool with the highest priority fails, the tool with the next highest
priority takes over (cf. ▷ Req. 16). If a tool fails and there is no other tool, which is able
to answer the respective question, an error is output.

Expandability Thereby other projects may use the AQL-System to interact with ar-
bitrary tools, especially analysis tools. To encourage and simplify the usage and extension
of the AQL-System, interfaces to extend and use the implementation have been inte-
grated. For instance, tools and especially converters can also and easily be added as
default tools, and events as well as hooks allow the integration of custom code (tutorial
available online [115]). In conclusion, the AQL-System can be interpreted as extensible,
thus, ▷ Req. 9 is met.

Along with the implementation details explained above, everything necessary to under-
stand the following example has been introduced.

3.4.4 Running Example 3: Workflow Run-Through (Part 2/2)

The example presented in this subsection exemplifies the workflow of an cooperative anal-
ysis realized via the AQL-System. The cooperative strategies introduced in Section 3.3
are reused and we assume that the AQL-System is configured to use FlowDroid and
IC3 in addition to the default tools implemented in the AQL-System.

The example is mainly visible in the long table below (see Table 8). Its four columns
show a step id, the current workflow position (with respect to Figure 28 – Page 82), and
the current query and tasktree. For better visibility only changes are shown in the table.

The initial query is asking for flows in a single app and initially no tasktree is available
(see Step 1). Again we assume that the app (A.apk) only implements one feature which
is ICC. To get to know this feature a first transformation rule is applied (see Step 2).
An analysis question that asks for arguments, in this case features, is inserted into the
initial query. Since there is no other rule that can be applied, this query is given to the
next step. By parsing the query a first tasktree is created. It consists of three nodes.
The artificial root node ( r ), one node for the flows question and a third node for the
arguments question – the latter two are depicted as unlabeled nodes ( n ). During the task
determination workflow step ( 3. ) the questions (or tasks of the tasktree) that are ready,
are determined. In this case (Step 4) only the last task ( n : the only leaf of the tasktree),
that represents the arguments question, is ready. Step 5 in the table shows the outcome
after two workflow steps ( 4. , 5. ), since 5. does not change the query or the tasktree.
However, during tool selection ( 4. ) the default tool for argument questions is assigned
to the only tasktree node that was marked as being ready ( 1 : FeatureFinder). No
tool could be assigned to the node representing the flows question since it is not complete
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yet ( ? ). More precisely, the answer to the arguments question may influence which tool
is picked to answer the flows question. After executing the FeatureFinder the result,
given in form of a raw answer (’ICC’), is directly integrated into the query (see Step 6;
cf. ▷ Req. 2). Thereafter another workflow iteration starts as marked in the table by the
repetition symbol (⟳).

Table 8: Workflow Run-Through Overview (Changes only)

Step Workflow Query Task-
(id) Position tree
1 Initial Flows IN App(’A.apk’) ? −

2 1.
Flows IN App(’A.apk’) FEATURING

Arguments IN App(’A.apk’) .
?

−

3 2. (see above)

r

4 3. (see above)

r

5 4. , 5. (see above)

r

?

1

6 6. Flows IN App(’A.apk’) FEATURING ’ICC’ ? (see above)

7 ⟳
1

CONNECT [
Flows IN App(’A.apk’) ?,
CONNECT [

IntentSinks IN App(’A.apk’) ?,
IntentSources IN App(’A.apk’) ?

] ?
] ?

(see above)

8 2. (see above)

r

9 3. (see above)

r
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Step Workflow Query Task-
(id) Position tree

10

4. , 5. , 6.

⟳
1. , 2.

(see above)

r

5

2 5

1 4 4

3 3

11 3. , 4. , 5. (see above)

r

5

2 5

1 4 4

3 3

12

6.

⟳
1. , 2.

CONNECT [
’flows.xml’ ?,
CONNECT [

’intentSinks.xml’ ?,
’intentSources.xml’ ?

] ?
] ?

(see above)

13 3. , 4. , 5. (see above)

r

5

2 5

1 4 4

3 3

14

6.

⟳
1. , 2.

CONNECT [
’flows.xml’ ?,
’iccFlows.xml’ ?

] ?

(see above)

15 3. , 4. , 5. (see above)

r

5

2 5

1 4 4

3 3

16

6.

⟳
1. , 2.

’final.xml’ ? (see above)

17 3. , Final (see above)

r

5

2 5

1 4 4

3 3
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Because of the attached feature (cf. ▷ Req. 15), another transformation has become
applicable, consequently, the query is transformed again (see Step 7). By parsing this
new query a much bigger tasktree is constructed (see Step 8). Since it does not hold any
incomplete questions/nodes, a tool can be assigned to each of the nodes (see Step 10). All
remaining steps, depict four more iterations of the workflow. Progressively all the tools
of the tasks that become ready are executed and more and more tasktree nodes become
answered. In the first batch (Step 10), FlowDroid ( 1 ) and IC3 ( 3 ) are executed. Note,
IC3 is only executed once even though there are two nodes labeled with 3, as the AQL-
System recognizes that the run command is the same in both cases. After the execution
of this batch the query cannot be adapted yet. The tools’ results are only available in
tool specific formats. The results have been stored in the AQL-System’s storage such
that the respective tasktree nodes will be marked as answered ( 1 , 3 ) by the next task
determination ( 3. ).

During the next iteration the converters for FlowDroid ( 2 ) and IC3 ( 4 ) are exe-
cuted. With respect to the two answers expected from IC3, the AQL-System will only
gather intent sinks in one answer in intent sources in the other. Finally, at the end of this
iteration the query can be adapted further (see Step 12). To do so, the derivation rules
specified in the semantics subsection are applied (see Subsection 3.2.3) as visible in the
table whenever a question is replaced by a filename in the query. Two more iterations are
required to answer the remaining two operator questions ( 5 : CONNECT). Finally, since
the artificial root node is marked as answered ( r ) in Step 17, the computation ends and
the final answer, in this case an AQL-Answer (final.xml), is output.

3.4.5 AQL-WebService

The AQL-System interacts with so-called internal tools, installed on the local system, and
external tools, accessed remotely. Up to this point we have not specified how an external
tool can be accessed or how it is run. In an AQL-System’s configuration each tool comes
with an execute element that holds information about how to run it (see Subsection 3.4.1).
In case of an external tool a URL, a username and a password have to be specified. This
information tells the system where to find the external tool (URL) and how to access it
(username, password). Thus, whenever an AQL-System reaches out to an external tool
it puts together a package consisting of the given credentials and the analysis task. The
analysis task, in this context, is modeled by another AQL-Query and the files used in it.
This query is constructed with respect to the type of tool to execute:

• Analysis tools: The query consists of the respective analysis question. Local files
used in this question (e.g., the app – A.apk) are replaced by placeholders (e.g.,
%FILE_1%).

• Operators: The associated operator question is employed as query. At this point all
arguments the operator takes must be available. For instance, any analysis question
used as an argument must be answered. The local files that represent the respective
answers are again replaced in the query and sent along with it.

• Preprocessors, Converters: An artificial query is constructed. Its only purpose
is to tell the receiver that the provided file should be preprocessed or converted with
respect to the parameters (e.g., features) present in this query.

This package is then sent to the external tool, more precisely, an AQL-WebService
that checks the attached credentials and runs the respective tool. The placeholders in the
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query are resolved again once the files have been transmitted to this webservice and have
become available on its local file system. To send the package a HTTP(S) POST request
is formulated and sent to the specified URL. Figure 29 illustrates the AQL-System as

User
AQL-System

• AQL-Answer

• AQL-Query
• Files (.apk, …)

• AQL-Answer

• AQL-Query

Figure 29: The AQL-System’s REST API

a black box again. This black box takes an AQL-Query as input from the user and
responds with an AQL-Answer. To do so, it may execute external tools. The blue dashed
arrows on the right hand side of the figure depict the associated communication with a
webservice over an REST API interface. The other ends of these arrows are depicted in
Figure 30. The figure also depicts the AQL-System as a black box, however, this time

AQL-WebService

AQL-System

• AQL-Query
• Files (.apk, …)

• AQL-Answer

Figure 30: AQL-WebService Wrapper

it is encapsulated in an AQL-WebService. Accordingly, an AQL-WebService can be
interpreted as a wrapper for an AQL-System. This wrapper allows to reach out to the
wrapped system via REST API requests. The outgoing edges on the right hand side of the
figure illustrate that the wrapped system may reach out to another webservice. This way
webservices can be stacked and networks of connected AQL-System can be constructed.

User
AQL-System

AQL-WebService
I

AQL-System

AQL-WebService
II

AQL-System

Figure 31: The CoDiDroid Instance

One example instance of such a network is known as CoDiDroid [75, 123]. This
instance is depicted in Figure 31. It consists of an AQL-System (front end) that is used
as interface by the user and two AQL-WebServices (back ends). The first webservice
(AQL-WebService I) executes several analysis tools. The second webservice (II) only
hosts a single analysis tool, due to very specific environmental requirements, this tool must
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be executed on another system. In the CoDiDroid study all tools were deployed on a
Linux virtual machine. However, one dynamic tool, namely PIM, could not be deployed in
a virtual space, since it requires to efficiently run an Android emulator which is only doable
with hardware support that is not fully available in virtual environments. Accordingly,
AQL-WebServices allow us to fulfill ▶ Req. 1 since different tools can be executed in
different execution environments.

We refrain from describing further features or details of AQL-WebServices, as these
are of a purely technical nature and do not contain any conceptual novelties. For example,
credentials used to access a webservice are checked by comparing them with accounts
managed by a configurable account manager that tracks stats for each account. Thereby
certain users may, for instance, only ask a specific number of queries per day. While such
a feature is vital from the perspective of a webservice’s host, it is negligible with respect
to its conceptual importance.
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4 Automatic and Reproducible
Benchmarks

Before taking a look at various instances of cooperative analyses, we need to specify how
to compare and assess different (cooperative) approaches so that we can argue which are
more or less beneficial than others. Our instrument of choice to do so are automatic and
reproducible benchmarks. To construct and use such benchmarks we developed an ap-
proach on the basis of the AQL that allows us to refine and execute novel and existing
benchmark suites.23 Refining in this context means that we semi-automatically specify
a precise, unambiguous and machine-readable ground truth for a set of benchmark apps.
Executing stands for the following three-step procedure that our approach performs auto-
matically: (1.) run the analysis under evaluation for each benchmark case, (2.) compare
its results against the given ground truth, and (3.) measure the benchmark’s outcome in
terms of precision, recall and F-measure.

Before we describe our approach in detail, we motivate why ground truth refinements
are required to achieve automated reproducible benchmarks. For our experiments, the
benchmark suites DroidBench and (in some cases) ICC-Bench as well as TaintBench
are used. The ground truth of the two micro benchmarks, DroidBench and ICC-Bench,
is only available in an imprecise format. Source code comments are used to describe
it. These comments include natural language descriptions and a single machine-readable
information that states how many taint flows should be found for a certain benchmark
app.

1 ...
2 /**
3 * @testcase_name StrongUpdate1
4 * @version 0.1
5 * ...
6 * @description Sensitive data is assigned to a heap object, but

→ then overwritten before it is leaked
7 * @dataflow source -> heap object -> alias -> nothing
8 * @number_of_leaks 1
9 * @challenges The alias analysis must support strong updates for

→ not causing a false positive.
10 */
11 public class MainActivity extends ActionBarActivity {
12 ...

Listing 14: Source Code Comment in a Benchmark App of DroidBench
(Category: Aliasing; Name: StrongUpdate1)

Listing 14 shows such a comment – extracted from the source code of the DroidBench
app StrongUpdate1 [129]. The only machine-readable information it contains is visible on
Line 8: number_of_leaks specifies how many taint flows (in this case: 1) are comprised
in this app. This is, for example, the only information which is checked in the associated
test case of FlowDroid [140]. The natural language description (see Line 6) indicates
that the respective taint flow should be documented as a not-expected case. Only together
with this description, the ground truth can be understood completely and correctly. Since
a machine cannot flawlessly do so, a more precise and machine-readable description, that

23All benchmark terms and concepts have been introduced in the background chapter (see Section 2.3).
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categorizes the associated taint flow as not-expected, is required. In conclusion, an im-
precise ground truth must be refined in order to use the respective benchmark suite in an
automatic, unambiguous and reproducible fashion.

In case of the real-world benchmark TaintBench a (most-likely incomplete) ground
truth is already given. The taint flows contained are originally defined on the basis of
decompiled (via JADX [154]) source code statements that have manually been identified
as connected pairs of sources and sinks. Since most analysis tools operate on bytecode or
intermediate representations of it (e.g., Jimple), the definitions may have to be adapted
or extended in order to be usable to benchmark arbitrary tools. Luckily, each taint flow
documentation of the TaintBench suite states whether the respective taint flow is an
expected ("isNegative": false) or a not-expected ("isNegative": true) one [186].

Along with the ReproDroid study [67] we proposed the Benchmark Refinement and
Execution Wizard (BREW). With the help of BREW we refined DroidBench and ICC-
Bench to overcome their limitations described above. For the TaintBench study [91] we
extended BREW such that it is capable of semi-automatically refining benchmark suites
that are available in TaintBench’s format, namely TAF (Taint Analysis Benchmark
Format). With these three benchmark suites becoming available in refined form, we are
ready to automatically evaluate Android taint analysis tools. In doing so, we focus on
measuring effectiveness instead of efficiency. BREW primarily records precision, recall
and F-measure (effectiveness) but also execution times (efficiency). For the latter it only
tracks per benchmark case how long it takes until an AQL-Answer becomes available after
issuing an AQL-Query. Related approaches such as BenchExec [39] focus on efficiency
by gathering detailed information about e.g., the cpu and memory workload.

In the following, we present BREW in detail (see Section 4.1). Thereafter, first eval-
uation results achieved with BREW for experiments dealing with DroidBench, ICC-
Bench and TaintBench are presented (see Section 4.2). Note that the results are more
comprehensive and precise as in the original studies since a newer version of BREW
has been used and more tools (and different versions) are included.24 The results are
nonetheless comparable to those of the original studies – reproducibility is not impaired.
Any changes applied on the benchmarks themselves have been documented online [176]
and the original benchmark results are compatible with the newest version of BREW. In
Chapter 5, BREW is used again to automatically evaluate various cooperative approaches.

4.1 BREW
To benchmark an analysis tool or cooperative approach, we must execute the tool or
approach for each of the benchmark suite’s apps or cases. To guarantee reproducibility,
we want to execute and evaluate the benchmarks automatically and always with respect
to the exact same ground truth. Therefore, the ground truth must be precisely defined.

The Benchmark Refinement and Execution Wizard (BREW) helps us to refine a
benchmark suite such that an imprecise ground truth becomes a precise one, and to
execute and evaluate benchmarks automatically. The term wizard stands for the specific
type of GUI that is typically used to guide a user step by step through a process, e.g.,
the refinement of a benchmark’s ground truth. For benchmark execution and evaluation
BREW’s GUI is not needed, although it helps interpreting and inspecting results – a
often disregarded task. Not least, artifact evaluations, which are meanwhile established in
the field of software engineering, show the importance of this task [96]. Interpreting and

24In comparison to the ReproDroid study, up-to-date tools have been added. With respect to the
TaintBench study, tools apart from FlowDroid and Amandroid were used.
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inspecting results can become a time-consuming task, so means to accelerate and simplify
this process can decide over the successful evaluation of an artifact [81].

BREW
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Figure 32: BREW Workflow

An overview of BREW’s workflow is given in Figure 32. As illustrated in the figure,
BREW is based on the AQL-System, more precisely, BREW uses the AQL-System
as a library (Maven dependency). The depicted steps, in particular Step 1. – 3. , show
the three steps that embody the refinement process. Steps 4. – 6. also belong to this
process, but they only serve to load, save and view the refined benchmark (suite). Step 7.
and 8. together with the AQL-System represent the workflow steps dealing with the
execution of a refined benchmark.

Once the user launches BREW, two options are given to proceed: Option A create
a new benchmark suite and Option B load an existing benchmark – probably including
results of a previous evaluation. If Option B is chosen, the main refinement steps ( 1. –
3. ) may be skipped. Below all eight steps of BREW’s workflow are described in detail:

1. Specify Apps
During this first step, the benchmark apps must be specified. To do so, the respective
.apk files must be selected. They form the corpus of the benchmark suite being
created or refined. BREW additionally allows to assign features to each app such
that these can be taken into account when analyzing the respective apps. With the
help of the FeatureFinder, a default tool implemented in the AQL-System, this
process of assigning features can also be performed automatically. Furthermore, if
certain benchmark apps are related to each other, for example because they comprise
an inter-app taint flow that starts in one app and ends in another, they can be marked
as belonging together.

While switching from Step 1. to 2. the statements that appear in the code of
each specified benchmark app are extracted. To do so, Soot is employed to iterate
through all the classes, methods and finally statements of each app. The extracted
(Jimple-)statements are the candidates that can be specified as sources and sinks
during the next step. BREW allows to ignore certain classes and the associated
statements by excluding them due to efficiency. For example, most of the time we
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are not interested in statements that belong to the Android library but in statements
that call methods of this library, hence, the library classes themselves can typically
be excluded.

2. Specify Sources & Sinks
Next, the statements representing sources and sinks must be selected from the set of
statements extracted during transition into this step. This process can be done man-
ually by the user or automatically by comparing each statement against a predefined
but configurable list of generic sources and sinks. Whenever a statement matches
the generic representation of a listed source or sink it is marked respectively. For ex-
ample, we know that the generic statement sendTextMessage(..., String, ...)
is on our list and should be considered as a sink. Thus, we can automatically select a
concrete statement like sendTextMessage(..., "Hello world!", ...) as a sink.

BREW allows to specify multiple statements as a single source or sink. For exam-
ple, to get the last known location of a device, the method getLastKnownLocation
may be called. This method can therefore be considered as a source. However, this
method returns a Location object that holds various information, i.e., sensitive in-
formation like latitude and longitude or less sensitive information such as the GPS
sensor’s current accuracy. Accordingly, instead of getLastKnownLocation meth-
ods like getLongitude or getLatitude are frequently declared as sources. With
respect to a taint flow, the same sensitive information is accessed, hence, the dif-
ferent statements can be treated as a single source. Another example: a sink may
be accompanied by a logging statement directly occurring before or after the sink
statement. In this case both statements, the sink and the logging statement, would
leak the same information, thus, it is valid to interpret both statements as the same
sink.

Note, a generic list of sources and sinks, that represent the specified ones, may be
exported at the end of this step. Such a list may then be used by a taint analysis
tool in order to identify benchmark suite specific sources and sinks.

3. Declare expected & not-expected Cases
While switching to this step, the benchmark’s cases are generated if they have not
been generated before. Initially, every source-sink combination that belongs to the
same benchmark app (or app combination specified during Step 1. ) is added as an
expected benchmark case. The benchmark’s creator or the person who is refining
it, has to decide whether a certain benchmark case actually is an expected or a
not-expected one. For example, if one source and two sinks were specified during
the previous step, two cases are generated. Let us assume that the first sink is em-
bodied by the concrete statement sendTextMessage(..., "Hello world!", ...)
and the second sink by sendTextMessage(..., imei, ...). Then the source-sink
combination including the first sink should be marked as a not-expected benchmark
case, since it only sends a static string ("Hello world!"). In contrast, the second
case which is involving the second sink may leak sensitive data, namely the imei.
Note that the first sink can also be able to leak information if data is attached else-
where, or if just sending a message reveals information (implicit information flow).

By constructing one benchmark case per source and sink combination, every taint
flow possibly detected by an analysis tool can be associated with one case. Any
detected taint flow for which no counterpart in form of a benchmark case exists is
ignored and not taken into account during benchmark evaluation (see Step 8. ) as
it must deal with an irrelevant source or sink that has not been specified during

98



4.1 BREW

Step 2. . This might be the case if a tool outputs partial flows. For example, if
a taint flow involves ICC, the partial flow between source and intent sink may be
output although we are only interested in the bigger flow that stretches from source
to sink. Since the partial flow represents a correct but irrelevant finding, it should be
counted neither as true positive nor as false positive. Therefore, ignoring this flow
is in line with our expectations. Note, without specifying any not-expected cases
the precision metric is not meaningful (always 100%) since false positives (and true
negatives) cannot be determined.

After specifying the expected and not-expected cases the refinement process is
finished.

4. , 6. Load & Save Benchmark
Refined benchmark suites can be loaded from and saved to a compressed file in form
of a serialized object. Thereby, all the information gathered during Step 1. – 3. are
stored in a single file. If the benchmark has already been run, the actual results
determined are also stored in this file. Hence, since hundreds or thousands of results
may be attached to one file, it is compressed to save space. The user decides whether
a benchmark is saved during Step 6. as it is optional to do so.

The benchmark can also be saved by exporting it as JUnit tests. These tests may,
for example, be deployed in the continuous integration pipeline of a taint analysis
tool to detect and avoid regressions. The results of a benchmark can also be saved
or exported in form of AQL-Answers.

5. View Benchmark
Viewing a benchmark presents another optional step in BREW’s workflow. How-
ever, it might also be the only step performed via BREW after loading a benchmark
to simply take a look at the outcome of a benchmark run. BREW presents statistics
in terms of countings (TP, FP, TN, FN) and accuracy metrics (Precision, Recall,
F-measure) as well as information about (overall) found flows, occurred timeouts or
crashes and run-/analysis-times.

Furthermore, any benchmark case can be inspected in comparison to its expected
(or not-expected) counter part, to get an idea why it failed, for example. Options are
given that allow to filter the viewable results such that, for example, each category
of DroidBench can be inspected separately. The currently viewed benchmark and
its results may also be compared to another benchmark run, i.e., two benchmarks
executed for two different sets of tools (and cooperative strategies) can be compared.
The outcome will inform the user about the differences with respect to the involved
benchmark cases, countings and accuracy metrics.

7. Run Benchmark
Once a benchmark is run via BREW, one query is given to the underlying AQL-
System per benchmark case. Basically this query asks for flows in the respective
benchmark case’s app (e.g., A.apk):

1 Flows IN App(’A.apk’) ?

Dependent on BREW’s setup the reference may also be given as a combination of
statement, method, class and app or the query may be formulated as a from-to query
similar to the following example:
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1 Flows FROM
2 Statement(’source()’)->...->App(’A.apk’)
3 TO
4 Statement(’sink()’)->...->App(’A.apk’)
5 ?

Furthermore, features assigned during Step 1. may also be attached to the issued
query, for instance, FEATURING ’ICC’ may be attached if the inter-component com-
munication feature (ICC) is present:

1 Flows IN App(’A.apk’) FEATURING ’ICC’ ?

Every query that arrives at the AQL-System is processed as defined in Subsec-
tion 3.4.2. In particular, transformation rules may be applied that further adapt the
query. Not seldom two queries issued for two distinct benchmark cases, that deal
with the same benchmark app, are the same. In such cases the AQL-System will
run the query only once. For the second case, it will simply load the result as also
described in Subsection 3.4.2.

8. Collect & Evaluate
During this last step the actual answers replied by the AQL-System are collected
and compared to the expected answers. In case of an expected benchmark case it is
checked whether the actual result holds the expected taint flow. If so, the associated
case is marked and counted as a TP. If the expected taint flow is not present in the
actual result, it is marked as FN. Respectively, in case of a not-expected benchmark
case, it is marked as FP if the taint flow is included and as a TN if it is not. Finally,
the accuracy metrics (Recall, Precision and F-measure) are computed.

In the next section, BREW is utilized to conduct a first set of experiments.
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4.2 The Baseline
Before taking a look at cooperative analyses, we must determine the performance of indi-
vidual tools – the baseline to compare against. By using BREW to do so, we determine
the performance of existing standalone tools for various benchmark suites measured in
terms of accuracy by automatically calculating precision, recall and F-measure, however,
we also take a look at e.g., analysis execution times.

Table 9: Baseline Tool Overview

Name Version Availability
/ Date (Commit)

Amandroid∗ 3.1.2 ✔ (65aec77) [99]
Amandroid 3.2.0 ✔ (415ad9f) [100]
Amandroid 3.2.1 ✔ (06596c6) [101]

DIALDroid September
2017 ✔ (5df5734) [126]

DidFail March 2015 ✔ [127]

DroidSafe June 2016
(Final) ✔ (1eab2fc) [131]

FlowDroid∗ April 2017
(Nightly) ✘ [137]

FlowDroid 2.7.1 ✔ (72734bd) [135]
FlowDroid 2.9.0 ✔ (e17e615) [136]
FlowDroid 2.10.0 ✔ (0174ec4) [134]

IccTA∗ February
2016 ✔ (831afaa) [151]

IccTA 2.9.0 ✔ (e17e615) [150]
IccTA 2.10.0 ✔ (0174ec4) [149]

∗: oldest tool variant

The tools for which the baseline is computed are listed in Table 9. In the following,
we refer to any tool’s oldest version (marked with ∗ in the table) by using “old” as version
identifier.25 We only consider static analysis tools that claim to be at least flow- or context-
sensitive, to assure that all tools are competitors within the same league. The selected
tools have been introduced in the background chapter (see Section 2.4) as well as other
tools that have not been selected even though they would fit into our scope. The reasons
for their exclusion are also discussed in the background chapter.

As determined by the ReproDroid study [67] and another independent study [68],
Amandroid and FlowDroid are considered to be the state-of-the-art. Both studies
thoroughly evaluated the accuracy that static taint analysis tools can actually achieve.
Since both tools (Amandroid and FlowDroid) were updated after the publication of
these studies, we add all versions published since then to our set of tools. Please note that
all tools are used in their default configuration. Furthermore, to permit a fair comparison
of all tools, BREW’s option to consider line numbers is turned off, since not all tools
output line numbers. It is mentioned explicitly, if we deviate from this default by adapting
a tool’s or BREW’s configuration.26

By computing this baseline, we also want to compare the selected tools against each
other in order to find out under which circumstances which tool should be included into
a cooperative approach. To do so, we replicate the results of the ReproDroid study and

25The old versions match those used for the ReproDroid study [67].
26We refer to the work conducted by Mordahl and Wei [86] for more detailed information about how to

configure specific tools with respect to certain analysis challenges.
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check whether these tools keep their promises. In this context, we consider two kinds of
promises: feature and accuracy promises. Accuracy promises refer to the precision, recall
and F-measure values reported in the respective papers proposing these tools. Feature
promises reflect the claims that a certain tool is, for example, object-sensitive or ready
to analyze real-world apps. Alongside (mostly technical) limitations such as Android API
level restrictions are identified.

The specifications of the execution environment that has been used to carry out the
following experiments can be found in Appendix A.4.1.

4.2.1 Experiment 1: Feature Promises

To check which feature promises are kept by the tools we use the Feature-Checking
benchmark suite first introduced in Section 2.4. It consists of 18 apps that comprise 21
expected and 6 not-expected benchmark cases. All these benchmark cases exploit only
one specific feature at a time in an iconic way. Thus, each comprised case can be used to
explicitly check the handling of a dedicated feature.

We originally developed the Feature-Checking benchmark suite for the Repro-
Droid study. At that time the current Android API version was 26, however, some
analysis tools have been developed targeting even older API versions. Hence, we had
developed two versions of the benchmark suite via Android Studio [105]. The first is tar-
geting Android API 19, the second 26. The nowadays up-to-date Android API version
is 30. Accordingly, we developed a new version targeting API 30. Additionally, we also
recreated the suite targeting API 19 by employing an up-to-date version of Android Studio
and its integrated build tools.

Since the analysis tools in our scope were designed for different API versions, we get
different results with respect to the benchmark suite version used. In summary, not only
the API version targeted by an app, but also the build tools used to construct it, influence
the outcome of some analysis tools. To be fair we only report the optimal results achieved
by a tool in Table 10.27

Table 10: Experiment 1: Results for the FeatureChecking Benchmark Suite

Amandroid DIAL- Did- Droid- FlowDroid IccTA
Feature 3.1.2 3.2.0 3.2.1 Droid Fail Safe old 2.7.1 2.9.0 2.10.0 old 2.9.0 2.10.0

Aliasing ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝
Static ✔⃝ ✘⃝ ✘⃝ ✘⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
Callbacks ✔⃝ ✘⃝ ✘⃝ ✘⃝ ✘⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
Life-Cycle ✔⃝ ✘⃝ ✘⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
Inter-Procedural ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
Inter-Class ✔⃝ ✔⃝ ✔⃝ ✘⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
IAC ✘⃝∗ ✘⃝∗ ✘⃝∗ ✘⃝ ✘⃝∗ ✘⃝∗ ✘ ✘ ✘ ✘ ✘⃝∗ ✘⃝∗ ✘⃝∗

ICC (Explicit) ✓⃝ ✘⃝ ✘⃝ ✔⃝ ✘⃝ ✓⃝ ✘ ✘ ✘ ✘ ✔⃝ ✘⃝ ✘⃝
ICC (Implicit) ✓⃝ ✘⃝ ✘⃝ ✓⃝ ✘⃝ ✓⃝ ✘ ✘ ✘ ✘ ✓⃝ ✓⃝ ✓⃝
Flow-Sensitivity ✘⃝ ✔⃝ ✔⃝ ✔⃝ ✘ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
Context-Sensitivity ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝ ✔⃝
Field-Sensitivity ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝
Object-Sensitivity ✓⃝ ✘⃝ ✘⃝ ✘⃝ ✓⃝ ✓⃝ ✓⃝ ✘⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝
Path-Sensitivity ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Thread-Awareness ✔⃝ ✔⃝ ✔⃝ ✘ ✔⃝ ✔ ✔ ✔ ✘ ✔⃝ ✔ ✘

Reflection ✓ ✓ ✓ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘

⃝ supported, ✔ confirmed, ✓ partially confirmed, ✘ not confirmed, ∗ not promised without cooperation

27All individual results for each version of the Feature-Checking benchmark suite can be found in
Appendix A.4.2.
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If a promise is displayed as confirmed (✔) all the respective benchmark cases were
correctly handled – expected taint flows were detected while not-expected taint flows were
not. In case of a partially confirmed (✔) promise at least one expected case was handled
correctly. In all other cases the feature promise was counted as not confirmed (✘).

As the result shows, most feature promises are kept. Nonetheless, it is striking that the
more recent versions of Amandroid do not keep six feature promises. The old version of
Amandroid did keep most of its promises but still appears to be flow-insensitive. DidFail
also does not hold six promises. DIALDroid could not detect taint flows in the iconic
inter-app communication case. The empty cells in the DIALDroid column reflect that
DIALDroid is only usable in the context of ICC and IAC scenarios.28 DroidSafe does
not keep its promise with respect to callbacks. While most versions of FlowDroid do not
violate any promise, version 2.9.0 appears to be object-insensitive – version 2.10.0 again
fulfills this promise. Similarly, the more recent versions of IccTA are not able to detect
the taint flows involving ICC via explicit intents. FlowDroid (except the old version)
and IccTA are the only tools outputting line numbers, and if BREW is configured to
consider those, these tools not only partially but fully fulfill their promises with respect
to Aliasing, Field- and Object-Sensitivity.

Most feature promises are kept. Different tool versions violate different promises.

4.2.2 Experiment 2: Framework Adoption Capabilities

We observed unequal tool behavior when confronted with different app versions during
Experiment 1. Hence, we take a closer look at tool stability with respect to API and
build tool versions in Experiment 2. To do so we developed a special purpose micro
benchmark suite, the DirectLeak suite. It consists of eight apps that are semantically
equivalent to the DirektLeak1 app of DroidBench. Accordingly, each app comprises
the same expected taint flow. The differences between these eight apps are caused by the
instruments and settings used to built them. To understand the differences in detail, we
take a brief look at some Android milestones that may influence an analysis:

• In 2014, Android 5.0 (API 21) was released. Android 5.0 brought two major
changes that may influence the outcome of an analysis. First, the Dalvik VM was
replaced by ART (Android Runtime) [163]. Second, multiple .dex files packaged
in the same .apk were allowed [167]. The latter has also immediately become the
default. While the first may only influence dynamic analysis tools, the second might
particularly influence static tools which now have to analyze all .dex file instead of
just one – a simple but important technical requirement.

• Along with Android 6.0 (2015, API 23) runtime permissions were introduced [165,
172]. Instead of asking for permissions to certain resources at install time, permis-
sions should be requested once the associated resources are accessed. To handle
runtime permissions correctly, newly introduced callback functions have to be im-
plemented and, from the perspective of an analysis, these callback functions must
be treated explicitly.

• Along with Android 8.0 (2017, API 26) the AAPT (Android Asset Packaging
Tool) was upgraded to its successor AAPT2 [120]. Thereby, the encoding of e.g.,

28DIALDroid relies on FlowDroid when dealing with intra-component cases.
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layout files was slightly changed which may influence the capabilities of analysis tools
to read such files.

Considering this history, we developed seven versions of the DirectLeak1 app targeting
Android API <21 (19), 21, 23, ≥26 (30). The apps targeting version 21, 23 and 30 have
been added twice – with and without multiple .dex files.29 As eighth app the original
version of DroidBench (DB) has been included. The latter also targets an API < 21
(1730). Furthermore, all apps were developed and built in Android Studio (build tools
version: 31), only the original DirectLeak1 app was built with Eclipse.

We again use BREW to execute the experiment. Whenever a tool successfully detects
the taint flow in a certain app, we mark the app as analyzable by this tool. All results
can be found in Table 11.

Table 11: Experiment 2: Results for the DirectLeak Benchmark Suite

DirectLeak Amandroid DIAL- Did- Droid- FlowDroid IccTA
Version 3.1.2 3.2.0 3.2.1 Droid Fail Safe old 2.7.1 2.9.0 2.10.0 old 2.9.0 2.10.0

DB ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

19 ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔

21 ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔

23 ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔

30 ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✔ ✔

21 ∗ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✘ ✓ ✓

23 ∗ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✘ ✓ ✓

30 ∗ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✘ ✓ ✓

DB: The original version of the DirectLeak1 app taken from DroidBench.
✔: analyzable, ✓: analyzable (special configuration needed), ✘: not analyzable

∗: Comprising multiple .dex files

Since we use DIALDroid only for ICC and IAC cases, it is – as expected – not
successful in any case. Amandroid seems to be unable to handle API 30. DidFail can
neither handle API 30 nor multiple .dex files. DroidSafe seems to be incompatible
with recent build tools. The old versions of FlowDroid and IccTA show issues when
dealing with multiple .dex files and API 30. The latter only holds for the old version of
IccTA. More recent versions of FlowDroid and IccTA successfully handle any app in
our DirectLeak suite, the non-default configuration option to handle multiple .dex files
must therefore be activated via a command line parameter (-d). Due to this result, we
always use this option from now on, when using FlowDroid or IccTA (≥2.7.1).

Amandroid and especially FlowDroid are the most successful tools with re-
spect to handling different Android API versions and build tools.

29A build tool option allows to disable the default (multile .dex files).
30For all newly developed apps the targeted API version is equal to the one allowed as minimum. The

original DirectLeak1 app targets API 17 while allowing API 8 as minimum.
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4.2.3 Experiment 3: Accuracy Promises

The previous experiment indicates that all tools are able to handle the original Droid-
Bench apps, thus, we focus on this benchmark suite in order to check whether the tools
hold their promises with respect to accuracy. More precisely, we are using DroidBench
3.0.31 To determine what has been promised we trawled through the proposing papers for
denoted values of precision, recall and F-measure – the harmonic mean of the first two.
For the sake of clarity, and because it best represents the overall accuracy, we only report
on the F-measure values here. Precision and recall can additionally be found in the digital
Appendix (A.6). Figures 33a–33e (Page 107) show our results by depicting the promised
(dark bars) and actually achieved values (light bars). Whenever there was no promise a
promised value of 0.00 is reported.

DroidBench 3.0 This is always the case for DroidBench 3.0 (see Figure 33a). All the
tools were proposed prior to the release of DroidBench 3.0 or have been evaluated on a
subset only to foster comparability to earlier reported values. Most tools have an accuracy
of more than 60% apart from DIALDroid, DidFail and newer versions of Amandroid
which have less. 60% does not sound confidence inspiring, but a lot of distinct features
are exploited in DroidBench 3.0, specifically such features designed to challenge existing
tools. Thus, it was to be expected that each tool makes mistakes at some point. We
use DIALDroid only for its designed purpose (ICC and IAC), hence, its value for the
complete set is low (14%) as expected. DidFail is the least updated tool in our scope but
still scores an F-measure of 52%. The more recent versions of Amandroid appear to be –
by far – less accurate. This regression, however, is no surprise once we recall the results of
Experiment 1, where we already saw that the more recent versions support less features.

DroidBench 2.0 Most promises can be found in form of values reported for Droid-
Bench 2.0 or a subset of it. Figure 33b shows the promised and actual values achieved for
the complete set (DroidBench 2.0). Still, none of the tools actually fulfill their promises.

DroidBench (FlowDroid/Amandroid Subset) Amandroid and FlowDroid pre-
cisely report the apps they took into account. We call the respective subset the Flow-
Droid/Amandroid subset. The results are presented in Figure 33c. The bars colored
in green highlight kept promises while bars highlighted with yellow color refer to almost
kept promises. As it becomes visible, for this subset, any version of FlowDroid is able
to keep its promises. The old version of Amandroid is almost able to do so, however, the
newer versions are not.

ICC-Bench 2.0 Some tools have also given accuracy promises for ICC-Bench (2.0).
However, no tool could keep its promises with respect to this suite (see Figure 33d). Clos-
est to keeping it is the old version of Amandroid with an F-measure of 94% instead of
promised 100%. FlowDroid does only achieve 0 values since it has no ICC capabili-
ties. DidFail does, however, it renders ineffective as no expected taint flow is detected.
Similarly, DroidSafe does not achieve an F-measure greater than 0. Finally, in case of
IccTA we can observe a positive trend – more recent versions of the tool score better
F-measure values, however, the promised value of 94% is never reached.

31Whenever claims are made for DroidBench 2.0 or another subset of 3.0, this has been achieved by
filtering the results respectively.
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Intent-Matching We also evaluated the benchmark suite Intent-Matching although
no promises are available for it. The associated results can be inspected in Figure 33e.
Similar to ICC-Bench, the old version of Amandroid scores best (94%).

The accuracy values promised can often not be reached or reproduced. Only
FlowDroid keeps its accuracy promises.
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(b) DroidBench 2.0
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(c) DroidBench (FlowDroid/Amandroid Subset)
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(d) ICC-Bench 2.0
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(e) Intent-Matching
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Figure 33: Experiment 3: Accuracy Promises
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4.2.4 Experiment 4: Accuracy Comparison

Next, we want to compare the tools with each other to determine whether certain tools
are more accurate than others with respect to certain features. To do so, we determine
the tools’ accuracy for each category of DroidBench (3.0).

Table 12: Experiment 4: Results for DroidBench
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FieldAndObjectSensitivity 0.000 1.000 1.000 0.667 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.882
EmulatorDetection 0.000 0.929 0.929 0.846 0.889 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.871
AndroidSpecific 0.000 0.533 0.533 0.900 0.429 0.842 0.900 0.952 0.952 0.706 0.952 0.952 0.842 0.730
Callbacks 0.000 0.235 0.235 0.667 0.769 0.897 0.897 0.897 0.897 0.692 0.857 0.857 0.897 0.677
Lifecycle 0.000 0.452 0.452 0.933 0.400 0.737 0.737 0.769 0.769 0.737 0.769 0.769 0.800 0.640
GeneralJava 0.000 0.286 0.286 0.821 0.595 0.762 0.810 0.810 0.810 0.703 0.810 0.810 0.684 0.630
Threading 0.000 0.286 0.286 0.000 0.667 0.667 1.000 0.909 0.909 0.800 0.667 0.667 0.909 0.597
Aliasing 0.000 0.667 0.667 0.000 0.667 0.667 0.667 0.667 0.667 0.500 0.667 0.667 0.667 0.552
ArraysAndLists 0.000 0.222 0.222 0.667 0.444 0.500 0.615 0.727 0.727 0.545 0.615 0.615 0.615 0.501
ICC 0.538 0.100 0.100 0.364 0.500 0.706 0.273 0.348 0.690 0.750 0.348 0.690 0.348 0.443
ImplicitFlows 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.231
Reflection 0.000 0.200 0.200 0.615 0.200 0.200 0.200 0.200 0.200 0.364 0.200 0.200 0.200 0.229
DynamicLoading 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.115
IAC 0.625 0.000 0.000 0.000 0.533 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089
Reflection_ICC 0.000 0.000 0.000 0.533 0.167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054
Native 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.000 0.000 0.333 0.051
SelfModification 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
UnreachableCode 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Average (∅) 0.065 0.301 0.301 0.390 0.392 0.441 0.448 0.458 0.477 0.478 0.492 0.511 0.515 −
Overall 0.140 0.360 0.360 0.646 0.522 0.654 0.649 0.664 0.694 0.633 0.649 0.679 0.643 −

13. 11. 11. 7. 10. 4. 6. 3. � 1. � 9. 5. 2. � 8.

The results can be found in Table 12. Each row in the table stands for one category in
DroidBench, each column refers to one tool. Rows and columns are sorted with respect
to the average per category and tool. Additionally, a color scheme has been added to
emphasize each tool’s performance: the darker the background of a cell is, the higher the
F-measure. The last two rows of the table show the overall F-measure computed for the
whole benchmark and a ranking with respect to that value. Please note that the overall
F-measure differs from the average F-measure value used for sorting.

For the first ten categories of DroidBench most tools provide decent results. On
average an F-measure of more than 0.4 is reached. For the remaining 8 categories some
tools outperform others. In case of category “SelfModification” and “UnreachableCode”
no tool finds any taint flow, therefore the F-measure in these categories is 0. Finally
DIALDroid shows promising results in its designated categories (ICC, IAC). In particular,
in the IAC category it outperforms all other tools and reaches an F-measure of 0.625. In the
“Reflection” category most tools score an F-measure value of around 0.2, only DroidSafe
manages to reach an F-measure of 0.615. With respect to the “ImplicitFlows” category
the newest versions of FlowDroid (and version 2.7.1) and consequently IccTA manage
to achieve an F-measure of 1.

On the micro benchmark DroidBench (3.0) high F-measure values are scored
frequently by various tools. IccTA (0.694) and FlowDroid (0.664) perform
best.

Lastly, a comment on the analysis times. Any version of FlowDroid requires less
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than 10 seconds per app on average. The old version of FlowDroid, in comparison to the
more recent ones, needs about a second longer per app. All other tools except DroidSafe
do not exceed a minute on average. DroidSafe needs about 4–5 minutes per app and
timeouts (after 20 minutes) for 12 apps. None of the other tools ever reaches the timeout.

The analysis of a benchmark app as comprised in DroidBench takes less than
a minute on average. Fastest is FlowDroid which does not even require 10
seconds per app.

4.2.5 Experiment 5: Real-World Readiness

To determine the real-world readiness of the different tools we use two different app sets
and one benchmark suite:

• Top15 (see Appendix A.4.3): The 15 most downloaded apps in Google’s Play-
Store [142].

• DIALDroid-Bench [125]: 30 apps that have been collected for and published with
the DIALDroid study [58].

• TaintBench [186]: A benchmark suite that comprises 39 real-world benchmark
apps for which 249 benchmark cases (203 expected and 46 not-expected) have been
manually specified [91].

Only the latter one (TaintBench) actually is a benchmark suite since it comes with a
ground truth. Hence, we will use the first two only in order to see if the analysis tools can
finish an analysis of the respective apps. In case of TaintBench we will evaluate their
accuracy precisely.

As a first result we document the success rate of the different tools for the different
app sets. Thus, we want to know for how many apps of each app set the analysis finished
successfully. However, it is unclear what defines a successful finish. Some tools always
output that they finished successfully (process exit code 0) even though the respective
analysis has failed – e.g., encountered an exception or a timeout. Other tools indicate a
successful execution but simply do not output a result.

To approximate we define that an analysis tool was executed successfully if it
outputs a non-empty AQL-Answer.

This definition only allows an approximation since we exclude that a successful execution
may correctly lead to an empty answer. We accept this limitation since most apps should
include must-have taint flows. For example, a messenger app most of the time comes with
the ability to share one of your contacts, hence, it must have at least a taint flow from a
source accessing the contacts to a sink used for sharing it.

The chart displayed in Figure 34 shows the success rate of all 13 tools with respect
to the definition above for the three different app sets. The timeout threshold was set
to 60 minutes in case of the Top15 and DIALDroid-Bench set. For TaintBench it
was only 20 minutes since it is the largest set. The best relative success rate (79%) is
reached by the old version of FlowDroid for TaintBench. Next is the newest version
of FlowDroid which reached 77% in case of DIALDroid-Bench. For the Top15 set
almost all answers were empty. Only the oldest version of Amandroid (3.1.2) has output
two non-empty answers for this set.
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Figure 34: Experiment 5: Successful Analyses (Real-World Apps)

All 13 tools are able to successfully analyze some real-world apps.

For TaintBench we got a ground truth, hence, we want to take a closer look and
evaluate the tools’ accuracies. In Table 13 the F-measure values all tools achieved for
the 39 benchmark apps (rows) are shown. Similar to the DroidBench experiment result
presentation, the rows and columns are sorted with respect to the average F-measure per
row and column. Additionally, the two last rows report the overall F-measure value for
the whole set and a ranking according to this value.

Again the old version of FlowDroid, followed by the more recent versions of Flow-
Droid, performs best. IccTA falls behind because it relies on IC3 to extract intent and
intent filter information, but IC3 is unable to complete its analysis in many cases. For a
large portion of apps (23 of 39) the F-measure value is always 0 (see red area in Table 13).
The main reason is that the tools failed to successfully analyze the apps. In addition, the
analysis tools often did not detect a single expected taint flow, which again results in an
F-measure value of 0. Surprisingly, for some apps only a single tool is able to reach an
F-measure of more than 0:

• only DidFail reaches an F-measure of 80% in case of fakeappstore,

• the old version of FlowDroid achieves 75% for slocker_android_samp,

• the most recent version of FlowDroid 74% for the backflash app,

• DroidSafe 67% for the sms_send_locker_qqmagic app, and

• Amandroid (3.1.2) 40% in case of the smssilience_fake_vertu.

This clearly shows, that there is no standalone tool that is suitable for an arbitrary real-
world case. In general, FlowDroid seems to be most accurate with respect to Taint-
Bench, however, even FlowDroid does not reach an F-measure above 0 in most cases
(30 of 39 cases show an F-measure of 0).

Please note again that the results above are part of the baseline. No cooperative
strategies were used and all tools have been executed in their default configuration. In the
next chapter we will see that cooperative strategies can improve the presented results.
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Table 13: Experiment 5: Results for TaintBench
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IA

L
D

r
o
id

A
m

a
n
d
r
o
id

3.
2.

0

A
m

a
n
d
r
o
id

3.
2.

1

D
r
o
id

S
a
fe

A
m

a
n
d
r
o
id

3.
1.

2

D
id

F
a
il

Ic
c
T
A

ol
d

Ic
c
T
A

2.
10

.0

Ic
c
T
A

2.
9.

0

F
lo

w
D

r
o
id

2.
7.

1

F
lo

w
D

r
o
id

2.
9.

0

F
lo

w
D

r
o
id

2.
10

.0

F
lo

w
D

r
o
id

ol
d

∅
chat_hook 0.000 0.429 0.429 0.000 0.000 0.462 0.333 0.462 0.462 0.778 0.778 0.778 0.778 0.438
exprespam 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.667 0.667 0.667 0.667 0.667 0.308
smssend_packageInstaller 0.000 0.000 0.000 0.000 0.333 0.000 0.571 0.333 0.333 0.571 0.571 0.333 0.571 0.278
proxy_samp 0.000 0.000 0.000 0.000 0.000 0.476 0.476 0.400 0.476 0.476 0.476 0.400 0.400 0.275
overlay_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.400 0.400 0.667 0.667 0.667 0.000 0.215
cajino_baidu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.500 0.500 0.500 0.000 0.192
stels_flashplayer_android... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.500 0.500 0.500 0.000 0.192
roidsec 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500 0.115
fakedaum 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.000 0.000 0.000 0.000 0.000 0.667 0.103
save_me 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167 0.167 0.167 0.667 0.090
fakeappstore 0.000 0.000 0.000 0.000 0.000 0.800 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062
samsapo 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.400 0.062
slocker_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.058
backflash 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.737 0.000 0.057
sms_send_locker_qqmagic 0.000 0.000 0.000 0.667 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.051
smssilience_fake_vertu 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031
beita_com_beita_contact 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chulia 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
death_ring_materialflow 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
dsencrypt_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fakebank_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fakemart 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fakeplay 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
faketaobao 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
godwon_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
hummingbad_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jollyserv 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
overlaylocker2_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
phospy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
remote_control_smack 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
repane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
scipiex 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
smsstealer_kysn_assassin... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
sms_google 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
tetus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
the_interview_movieshow 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
threatjapan_uracto 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
vibleaker_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
xbot_android_samp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Average (∅) 0.000 0.011 0.011 0.017 0.019 0.055 0.078 0.084 0.086 0.111 0.111 0.122 0.138 −
Overall 0.000 0.032 0.032 0.021 0.021 0.112 0.158 0.149 0.158 0.233 0.233 0.269 0.292 −

13. 9. 9. 11. 11. 8. 5. 7. 5. 3. � 3. � 2. � 1. �
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5 Evaluation
Finally, we are ready to evaluate whether and which cooperative analyses pay off. There-
fore, different cooperative analyses bringing together various tools are proposed, explained
and evaluated. For each cooperative analysis (1.) the tools that are involved are listed,
(2.) the employed cooperative strategies are explained to describe how these tools are
combined or how they cooperate with each other, and (3.) the respective evaluation re-
sults are presented in comparison to the baseline (see Section 4.2). Thereby, we repeatedly
deal with our main research question:

RQmain: To which extent can cooperative analyses
outperform standalone taint analyses?

To answer this question we focus on performance in terms of accuracy (precision, recall,
F-measure); comments about execution or analysis times and other aspects can be found
in Section 5.7. In the following six sections, we take a look at six cooperative analyses:

1. Inter-Component Communication (ICC) & Slicing . . . . . . Section 5.1 (Page 115 ff.)
2. Inter-App Communication (IAC) & App Merging . . . . . . . Section 5.2 (Page 121 ff.)
3. Reflection & Native Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.3 (Page 125 ff.)
4. False Positive Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.4 (Page 128 ff.)
5. Sources & Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.5 (Page 131 ff.)
6. Backward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.6 (Page 137 ff.)

Remarks
For brevity, the three remarks below are only discussed once to avoid repetitions in the
sections associated with the individual cooperative analyses.

Remark 1 (Initial AQL-Queries) Please note that most cooperative strategies are
initially triggered by raising the following AQL-Query:

Flows IN App(%APP_APK_IN%) ?

Placeholders like %APP_APK_IN% are replaced by the AQL-System or BREW, for ex-
ample, with the path to the .apk file representing the respective benchmark case’s app.
Whenever another initial query is required, it is mentioned in the associated section. When
different taint analysis tools are involved, Flows-questions are usually transformed into:

Flows IN App(%APP_APK_IN%) USING ’%TOOL%’ ?

The placeholder %TOOL% is then replaced by the respective tool’s identifier (e.g., Flow-
Droid-2.10.0).

Remark 2 (Reported Results) For the evaluation of several cooperative analyses,
benchmarks are only used in parts. For example, often only a single category of Droid-
Bench is used. Some of these categories only contain positive benchmark cases. Hence,
since there are no negative cases, false positives and true negatives cannot be evaluated.
Whenever this is the case, only true positives (and implicitly false negatives) are reported.

All reported results and the associated raw data of all experiments is collected in an
artifact as described in Appendix A.6.
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5 EVALUATION

Remark 3 (Tool Introductions & Execution Environment) All tools involved
in the cooperative analyses presented in the following, are briefly described again in the
respective sections. An initial description of all tools can be found in the background
chapter (see Section 2.4). Default tools that belong to the AQL-System are introduced
in Subsection 3.4.3.

The specifications of the execution environments used to carry out all experiments
are attached in Appendix A.4.1. However, since we focus on accuracy and largely dis-
regard analysis time, the specifications of these execution environments are of secondary
importance.
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5.1 Cooperative Analysis 1: Inter-Component Communication (ICC) & Slicing

5.1 Cooperative Analysis 1: Inter-Component Communica-
tion (ICC) & Slicing

Many challenges for Android app analyses are introduced by the Android system, in
particular the communication between different components (ICC) or apps (IAC) is often
hard to handle. This first cooperative analysis deals with ICC only. Different strategies
are used to analyze diverse ICC cases. These strategies involve static and dynamic analysis
tools and even a slicer in order to get the most accurate results.

5.1.1 Cooperative Analysis 1: Tools

Table 14 lists all the tools and benchmark suites that are employed for the evaluation
of Cooperative Analysis 1. Amandroid and FlowDroid, which are identified as state-

Table 14: Cooperative Analysis 1: Tools and Benchmark Suites

Tools (cooperative) Benchmark Suites
• FlowDroid (2.10.0) • DroidBench (ICC only)
• Amandroid (3.1.2) • ICC-Bench
• IC3 • Intent-Matching
• IntentInformationFinderd

• CONNECTd

• PIM
• Jicer

Tools (standalone for comparison)
• FlowDroid (2.10.0) • IccTA (2.10.0)
• Amandroid (3.1.2)

d: Default tool (see Section 3.4.3, Page 85)

of-the-art by two recent and independent studies [67, 68], are used as intra-component
taint analysis tools. Their results are connected by gathering information about inter-
component flows. To do so, IC3 or a combination of Amandroid and the IntentIn-
formationFinder provide information about intent sinks and intent sources. This infor-
mation is combined either by the AQL-System’s CONNECT operator or PIM. Jicer
comes into play to slice across component boundaries in order to eliminate false positives
that were initially introduced by the cooperative analysis.

As benchmark suites we partially use DroidBench, more precisely, only its ICC cat-
egory, ICC-Bench and the Intent-Matching benchmark. While the cases of Droid-
Bench and ICC-Bench allow us to get a general impression of an approach’s ability to
handle ICC, the Intent-Matching benchmark allows us to assess its ability to match
intent sinks and intent sources.

For comparison we considered all tools that claim to support ICC as evaluated in
the baseline (see Section 4.2). However, for brevity only the three listed in Table 14 are
actually used for comparison. Amandroid (3.1.2) scored the best results with respect to
the ICC category of DroidBench in the baseline. FlowDroid (2.10.0) embodies the
basis for the cooperative strategies introduced in the following. Lastly, IccTA (2.10.0) is
used for comparison since it is an ICC-enabled extension of this basis.
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5.1.2 Cooperative Analysis 1: Strategies

Overall four different cooperative strategies with respect to ICC are evaluated. Each
strategy is described briefly in the following.

Strategy 1: Default The default cooperative ICC strategy transforms the initial AQL-
Query (Flows IN App(%APP_APK_IN%) ?) into the following one:

1 CONNECT [
2 Flows IN App(%APP_APK_IN%) ?,
3 CONNECT [
4 IntentSinks IN App(%APP_APK_IN%) ?,
5 IntentSources IN App(%APP_APK_IN%) ?
6 ] ?
7 ] ?

In the context of this strategy, flows are determined by the up-to-date version of Flow-
Droid (2.10.0 – see Line 2 in the listing above). Whenever intent sinks or intent sources
are to be determined, IC3 is used (see Lines 4, 5). As suggested by its name, the CON-
NECT operator connects or combines the findings of FlowDroid and IC3 (see Lines 1,
3). To do so, it is called twice. The inner call makes use of its ability to match intent sinks
and intent sources in order to determine inter-component flows. The outer call then merges
the intra-component results given by FlowDroid with these inter-component flows.

Strategy 2: +PIM By replacing the inner CONNECT with MATCH, we trigger PIM to
perform the intent sink/source matching task (see Line 3 in the listing below).

1 CONNECT [
2 Flows IN App(%APP_APK_IN%) ?,
3 MATCH [
4 IntentSinks IN App(%APP_APK_IN%) ?,
5 IntentSources IN App(%APP_APK_IN%) ?
6 ] ?
7 ] ?

Strategy 3: Amandroid Amandroid is also capable of providing information about
intent sinks and intent sources. Hence, the following strategy employs Amandroid instead
of IC3 to answer the inner questions (see Lines 4–8 in the listing below).

1 CONNECT [
2 Flows IN App(%APP_APK_IN%) ?,
3 MATCH [
4 IntentSinks IN App(%APP_APK_IN%) USING ’Amandroid-312’ ?,
5 CONNECT [
6 IntentFilters IN App(%APP_APK_IN%) USING ’Amandroid-312’ ?
7 IntentSources IN App(%APP_APK_IN%) USING ’Default’ ?
8 ] ?
9 ] ?

10 ] ?

Please note that Amandroid only provides information about intent filters (Line 6 in
the listing above) but not about intent sources, i.e., the intent triples provided are exact
but the references given for intent filters are components only – no exact statements (e.g.,
getStringExtra(...) instances) are provided. To overcome this limitation, we also ask
the AQL-System’s default tool IntentInformationFinder for intent sources (Line 7).
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The latter are precise with respect to the statements identified but imprecise when it comes
to intent triples – the opposite of the intent filters given by Amandroid. To get the most
out of both tools, we connect or merge their results (Lines 5–8). Thereby the referenced
components are compared, i.e., if the component of the intent filter (given by Amandroid)
matches the component of an intent source (given by the IntentInformationFinder),
the exact intent triple information (Amandroid) is merged with the exactly determined
statements (IntentInformationFinder). In the end, this allows us to get precise and
complete intent sources.

Strategy 4: +Jicer The last cooperative ICC strategy makes use of Jicer to slice from
source to sink. First, inter-component flows are determined (see Lines 10–13 in Listing 15).
Second, these flows are forwarded to Jicer as input edges (see variable ’InputEdges’ in
Line 9). The static, inter-procedural slicer operates on an app dependence graph (ADG),
which is an extended version of an SDG (see Subsection 2.4.2). Whenever Jicer receives
an AQL-Answer as input edges, it takes all flows that are contained in this answer and
adds them as edges to its ADG before its slicing procedure starts. Consequently, Jicer
gains the ability to slice across component boundaries, whenever ICC edges are provided.
The latter is extensively described in the proposing paper [87].

1 app = Slice FROM
2 Statement(%STATEMENT_FROM%, %LINENUMBER_FROM%)->
3 Method(%METHOD_FROM%)->Class(%CLASS_FROM%)->
4 App(%APP_APK_FROM%)
5 TO
6 Statement(%STATEMENT_TO%, %LINENUMBER_TO%)->
7 Method(%METHOD_TO%)->Class(%CLASS_TO%)->
8 App(%APP_APK_TO%)
9 WITH ’InputEdges’ = {

10 MATCH [
11 IntentSinks IN App(%APP_APK_FROM%) ?,
12 IntentSources IN App(%APP_APK_TO%) ?
13 ] ?
14 } !
15
16 CONNECT [
17 Flows IN App($app) ?,
18 MATCH [
19 IntentSinks IN App($app) ?,
20 IntentSources IN App($app) ?
21 ] ?
22 ] ?

Listing 15: Strategy 4: +Jicer (AQL-Query)

The slice is computed from source (Lines 2–4) to sink (Lines 6–8), i.e., source and
sink are used as slicing criteria. For this purpose, source and sink must be described
unambiguously. To get the required information about the respective statements, an AQL-
Query that asks for sources and sinks inside the targeted app could be issued. Luckily,
this is not needed since the benchmark cases of all considered benchmark suites already
provide this information. Hence, when using BREW to carry out the evaluation, it can
be configured to ask a more comprehensive initial AQL-Query that provides all required
information:
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Flows FROM
Statement(%STATEMENT_FROM%, %LINENUMBER_FROM%)->
Method(%METHOD_FROM%)->Class(%CLASS_FROM%)->
App(%APP_APK_FROM%)

TO
Statement(%STATEMENT_TO%, %LINENUMBER_TO%)->
Method(%METHOD_TO%)->Class(%CLASS_TO%)->
App(%APP_APK_TO%)

?

The involved placeholders (e.g., %STATEMENT_FROM%) are then resolved by BREW with
respect to each benchmark case. Finally the file answer given for the slice query (see Lines
1–14 in Listing 15) is associated with the variable app (Line 1).

The main query (Lines 16–22) uses this variable to reference the sliced app ($app).
Apart from this change the main query is equal to the query of Strategy 2, thus, the final
AQL-Answer is computed as described for Strategy 2.

5.1.3 Cooperative Analysis 1: Results

All results determined for the four cooperative ICC strategies are summarized in Table 15.
The first column denotes the benchmark suite. The next three columns partially repeat
the baseline results given for the respective benchmark. The individual columns under
the “Strategies” headline provide the results for the different ICC strategies. The last
three columns compare the results reported for the baseline against those reported for
the cooperative strategies by displaying their differences. In each result cell the achieved
F-measure value is reported along with the true and false positives counted.

Table 15: F-measure, True Positives / False Positives for Cooperative Analysis 1

Strategies Difference
Benchmark Suite Baseline 1. 2./3. 4. = Best strategy − Baseline

(Cases) FD IccTA Best1 Default +PIM +Jicer Best FD IccTA Best
DroidBench (ICC only) 0.348 0.690 0.750 0.727 0.690 —∗ 0.727 ▲ 0.379 ▲ 0.037 ▼ -0.023
(19 expected, 9 not-expected) 4 / 0 10 / 0 12 / 1 12 / 2 10 / 0 —/—∗

ICC-Bench 0.000 0.690 0.940 0.417 0.480 —∗ 0.480 ▲ 0.480 ▼ -0.210 ▼ -0.460
(19 expected, 0 not-expected) 0 / 0 10 / 0 17 / 0 5 / 0 6 / 0 —/—∗

Intent-Matching 0.000 0.413 0.940 0.152 0.542 0.706 0.706 ▲ 0.706 ▲ 0.293 ▼ -0.234
(79 expected, 146 not-expected) 0 / 0 32 / 44 79 / 10 7 / 6 48 / 50 48 / 9

Version 2.10.0 of FD (FlowDroid) and IccTA, 1: Amandroid 3.1.2, ∗: No false positives before

Baseline Recap FlowDroid without any sort of cooperation is not able to detect any
ICC related flows that are based on intents. Hence, FlowDroid alone does not detect
any flows in case of ICC-Bench and the Intent-Matching benchmark. In case of
DroidBench’s ICC category some benchmark cases are not based on intent communica-
tion so that FlowDroid is actually able to analyze the associated cases and to achieve
an F-measure greater than zero (0.348).

IccTA and DidFail are two extensions of FlowDroid that use IC3 (or its prede-
cessor Epicc) internally. Since our cooperative ICC strategies also involve FlowDroid
and IC3 it appears to be natural to compare them against these two tools. However, with
respect to the baseline IccTA outperforms DidFail, thus, we do not repeat the results
for DidFail here – DidFail’s results can be found in the baseline (see Section 4.2).

The tool that performs best without cooperation was the old version of Amandroid
(3.1.2). The associated results are repeated in the “Best” column below the “Baseline”
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headline (see Table 15).

Cooperative Results Since FlowDroid alone is not able to handle ICC based on in-
tents, Strategy 1 achieves better results than FlowDroid for all three benchmark suites.
In comparison to IccTA, this strategy falls behind in case of ICC-Bench and the Intent-
Matching benchmark. For these two suites the CONNECT operator’s intent sink and
intent source matching capabilities are not sufficient. The CONNECT operator only
detects a connection between an intent sink and an intent source if the respective intent
triples are equal with respect to their string representation. For example, if image/jpeg is
set as an intent sink’s data element (MIME-Type) and image/* as the intent source’s ele-
ment, the CONNECT operator does not correctly interpret the wildcard (*) and falsely
assumes that there is no ICC possible, since image/jpeg is not equal to image/*. Fur-
thermore, if IC3 outputs only a wildcard (*) as action, category or data element for an
intent triple, the CONNECT operator assumes that it matches any string. For instance,
IC3 over-approximates and reports a wildcard as action attribute if the action of an intent
is set as follows:

1 Intent intent = new Intent();
2 intent.setAction("prefix.action.string".substring(7));

In case of Strategy 2 the CONNECT operator is replaced by PIM. PIM compares
intent sinks to intent sources by instantiating the associated intent triples on an An-
droid (virtual) device, and by comparing these instances via the installed Android system.
Whenever this system reports a match, PIM adds the respective inter-component flow
from intent sink to intent source to its AQL-Answer output. This allows PIM to oper-
ate more precisely than the CONNECT operator, however, it cannot handle wildcards
in action or category elements because those are not allowed by the Android framework.
Consequently, Strategy 2 performs worse than Strategy 1 with respect to the DroidBench
benchmark. Whenever IC3 reports a wildcard as action or category element, PIM does
not detect a connection – this also leads to the elimination of the two false positives de-
tected before. Due to this issue, we attempted to employ Amandroid to extract intent
sinks and intent sources (Strategy 3), however, the results are identical, hence, the infor-
mation about intent sinks and intent sources determined by IC3 and Amandroid seem
to be equally (im-)precise.

As visible in Table 15, for ICC-Bench and the Intent-Matching benchmark better
results are achieved. Most recognizable, the number of true positives detected in case of
the Intent-Matching benchmark has been increased by 41. Sadly, the number of false
positives has also been increased by 44. Still, Strategy 2 scores a better F-measure value
than IccTA for this benchmark suite.

Strategy 4 is only applied in case of the Intent-Matching benchmark since the
strategy aims at eliminating false positives but there are none with respect to Strategy 2
and the other two benchmark suites. The strategy succeeds as 41 false positives are
eliminated by slicing prior to the analysis.

Figure 35 shows an example that illustrates how these false positives were intro-
duced and avoided. Let us assume that the sensitive information extracted at the source
(getImei()) is only attached to intent i1. This source is connected to the intent sink
(startActivity(...)). This intent sink again is connected to the intent source (get-
StringExtra(...)) since intent i2 matches intent filter if2. Lastly, the intent source
is connected to a sink (Log.i(...)). Anyway, intent i1, the only intent that carries the
sensitive data, never reaches the intent source. Accordingly, a taint flow that stretches
from source to sink is a false positive.
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Figure 35: False Positive Elimination by Slicing (Cooperative Analysis 1)

Strategy 2 wrongly detects these false positives although all cooperating parties func-
tion as intended. FlowDroid detects both intra-component taint flows and IC3 together
with PIM correctly determines the inter-component flow. Additionally, these flows can
be stitched together since the inter-component flow starts at the end of the first intra-
component flow and ends at the start of the second one.

To avoid such false positives, Jicer is added (Strategy 4). Considering the example
again, it takes the given inter-component flow into account as input edge in order to slice
from source to sink. In the end, intent i2 and consequently the inter-component flow is
sliced off (as illustrated in Figure 35). Thus, the false positive is avoided since the intra-
component taint flows cannot be stitched together anymore. This effectively improves the
cooperative analysis’s performance as it achieves an F-measure value of 0.706.

Conclusion The columns entitled with “Difference” (see Table 15) give an answer to our
main research question with respect to Cooperative Analysis 1. The differences denoted
show that the cooperative strategies outperform FlowDroid and IccTA in most scenar-
ios, however, the best tool in the baseline (Amandroid 3.1.2) still scores better F-measure
values for all three benchmark suites. Since Strategy 2 and 3 deliver identical results the
reason cannot be that Amandroid has more accurate information with respect to intent
sinks and intent sources, however, it may handle wildcards in intent triples more explicitly
and thereby over-approximate the given information in order to recognize more matches.
Once IC3 (or another tool) provides more accurate information, PIM will also be able
to correctly identify such matches without any approximation. We already got promising
results by employing ICCBot instead on IC3 in first experiments. The wildcard issues
seem to be solved – a thorough evaluation will be conducted in the future.

Furthermore, AQL-Answers currently do not include information about extras (the
data, that is attached to and transported by intent sinks and intent sources) even though
this information is provided by tools like IC3. Adding this information to the AQL-Answer
data structure would allow tools like PIM to determine whether an inter-component flow
actually carries sensitive data [78]. Thereby, further false positives could be avoided in
the future.
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5.2 Cooperative Analysis 2: Inter-App Communication (IAC)
& App Merging

In the previous section, various approaches to handle ICC were presented. There are
several methods to extend these approaches so that IAC scenarios can be analyzed. In the
following two of these methods are evaluated. On the one hand, we extend two cooperative
ICC strategies (1 & 2). On the other hand, we employ a method that relies on merging
(or combining) Android apps (.apk files).

5.2.1 Cooperative Analysis 2: Tools

The tools used while evaluating Cooperative Analysis 2 are listed in Table 16. All 13 taint
analysis tools that have been used in the baseline are used by at least one cooperative
strategy. IC3, the CONNECT operator and PIM fulfill the same purpose as before,
which is finding flows between components or, in this case, apps. ApkCombiner and
AMT are two candidates that can be used to merge two (or more) .apk files into a single
one.

As benchmark suites we employ the IAC category of DroidBench and the Feature-
Checking benchmark. For the latter, only the IAC related part is re-evaluated.

Table 16: Cooperative Analysis 2: Tools and Benchmark Suites

Tools Benchmark Suites
• All 13 baseline tools∗ • DroidBench (IAC only)
• ApkCombiner • Feature-Checking
• AMT
• IC3
• CONNECTd

• PIM
∗: Also as standalone tools for comparison (see Table 9, Page 101),

d: Default tool (see Section 3.4.3, Page 85)

5.2.2 Cooperative Analysis 2: Strategies

Before introducing the strategies considering IAC, we must mention that BREW asks
different questions whenever the expected or not-expected taint flow of a benchmark case
starts in one app and ends in another. In fact, instead of asking for flows IN one app, it
asks a FROM-TO-question:

Flows FROM App(%APP_APK_FROM%) TO App(%APP_APK_TO%) ?

BREW then replaces %APP_APK_FROM% and %APP_APK_TO% with the respective apps. Also,
when the expected or not-expected taint flow starts and ends in the same app but another
app, the so-called bridge app, is assigned to the same benchmark case, BREW asks the
following initial query to find flows to and back from the bridge app:

1 CONNECT [
2 Flows FROM App(%APP_APK_FROM%) TO App(%APP_APK_TO%) ?,
3 Flows FROM App(%APP_APK_TO%) TO App(%APP_APK_FROM%) ?
4 ] ?
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The individual strategies are then applied twice – to both inner questions (see Line 2 and
3 in the listing above).

Strategy 1: Default The first and default strategy in the context of IAC is very similar
to the default strategy for ICC. Instead of asking for flows, intent sinks and intent sources
of the same app, we ask for the same subjects of interest of all involved apps:

1 CONNECT [
2 Flows IN App(%APP_APK_FROM%) ?,
3 Flows IN App(%APP_APK_TO%) ?,
4 CONNECT [
5 IntentSinks IN App(%APP_APK_FROM%) ?,
6 IntentSinks IN App(%APP_APK_TO%) ?,
7 IntentSources IN App(%APP_APK_FROM%) ?,
8 IntentSources IN App(%APP_APK_TO%) ?
9 ] ?

10 ] ?

Because it is possible for a taint flow to go back and forth between apps, we do not only
ask for intent sinks in one app and intent sources in the other, but for both subjects of
interest in both apps. This always gives us all possible inter-app flows, no matter what
direction they are oriented.

Strategy 2: +PIM Analogously to the second ICC strategy, we are only replacing
the inner operator for Strategy 2. Thereby, PIM is employed to connect intent sinks and
intent sources instead of the AQL-System’s CONNECT operator.

1 CONNECT [
2 Flows IN App(%APP_APK_FROM%) ?,
3 Flows IN App(%APP_APK_TO%) ?,
4 MATCH [
5 IntentSinks IN App(%APP_APK_FROM%) ?,
6 IntentSinks IN App(%APP_APK_TO%) ?,
7 IntentSources IN App(%APP_APK_FROM%) ?,
8 IntentSources IN App(%APP_APK_TO%) ?
9 ] ?

10 ] ?

Strategy 3: Combining with ApkCombiner Strategy 3 is the first of two strategies
that rely on app merging. With respect to this strategy ApkCombiner is triggered as a
preprocessor by the keyword COMBINE:

Flows IN App(%APP_APK_FROM%, %APP_APK_TO% | ’COMBINE’) ?

Thereby the apps referenced by %APP_APK_FROM% and %APP_APK_TO% are merged into a
single one such that we are able to ask an IN-question again as we now only have ICC.

Strategy 4: Combining with AMT The last IAC strategy is equal to Strategy 3
with one exception: the keyword that triggers ApkCombiner as preprocessor is replaced
by MERGE, the keyword that triggers AMT instead.

Flows IN App(%APP_APK_FROM%, %APP_APK_TO% | ’ MERGE ’) ?
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5.2.3 Cooperative Analysis 2: Results

Before having a look at the taint analysis results produced by all strategies, we compare
ApkCombiner and AMT with respect to their ability to combine apps that belong to
individual benchmark cases. Table 17 lists all IAC benchmark cases of DroidBench –
one per row. For each of these benchmark cases, the app that holds the respective source
is denoted as well as the app that contains the respective sink. Whenever a benchmark
case includes a bridge app, this app is denoted as well. The last two columns show whether
ApkCombiner and AMT are able to merge the respective apps.

Table 17: DroidBench Cases (IAC only) Merge-able by ApkCombiner
and AMT (Cooperative Analysis 2)

DroidBench Apps Apk-
ID Source Bridge Sink Combiner AMT
101 DeviceId_Broadcast1 — Collector ✘ ✔

102 DeviceId_contentProvider1 — Collector ✘ ✔

103 DeviceId_OrderedIntent1 — Collector ✘ ✔

104 DeviceId_Service1 — Collector ✔ ✔

105 Location1 — Collector ✘ ✔

106 Location_Broadcast1 — Collector ✘ ✔

107 Location_Service1 — Collector ✘ ✔

108 SendSMS Echoer SendSMS ✔ ✔

109 SendSMS — Echoer ✔ ✔

110 StartActivityForResult1 Echoer StartActivityForResult1 ✔ ✔

111 StartActivityForResult1 — Echoer ✔ ✔

✘: failed merge, ✔: successful merge Number of successful merges (✔): 5 11

While ApkCombiner is only able to merge apps that belong to 5 different benchmark
cases, AMT successfully merges apps in all 11 cases. ApkCombiner fails for 6 benchmark
cases since it cannot handle apps that were built for more recent Android versions – similar
to some taint analysis tools that are not updated anymore (see Subsection 4.2.2). In
addition, the paper that proposes AMT [76] shows that it is as accurate as ApkCombiner
while merging apps, i.e., the taint analysis results produced for apps merged by both
tools are identical. For these reasons, we abandon Strategy 3 (ApkCombiner) and only
continue with the remaining strategies.

Table 18 summarizes the results for all strategies in relation to both benchmarks.
The first column of each row refers to one strategy and the taint analysis tool that has
been employed as basis to compose the cooperative analysis. For Strategy 1 and 2 this
basis is FlowDroid as before and discussed in the context of ICC (see Section 5.1).
However, for this cooperative analysis the up-to-date version of FlowDroid could not be
employed since the newer versions (≥ 2.7.1) do not report decisive flows regarding IAC. For
example, in case of the DeviceId_Broadcast1 app (DroidBench benchmark case 101 –
see Table 17) the newer versions of FlowDroid do not report an intra-component taint
flow from a source (getDeviceId()) to an intent sink (startActivityForResult(...))
– no matter what list of sources and sinks is given. Presumably, FlowDroid recognizes
no intent source in the same app and, hence, discards flows to this intent sink. The
old version of FlowDroid does report such flows and is consequently chosen as basis for
Strategy 1 and 2. In case of Strategy 4 all 13 taint analysis tools are individually employed
as basis. The column entitled “Tool(s) added” refers to the tools added to this basis to
form the cooperative analysis.

As the title “Baseline” suggests, the associated column repeats the respective baseline
results. The column entitled with “Coop. Analysis” shows the results of the cooperative
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Table 18: Feature Promises (F.-P.) Regarding the Feature-Checking
Benchmark Suite, and F-measure (F-m.), True Positives (TPs)
with Respect to DroidBench (IAC only; 11 Positive Cases – Co-
operative Analysis 2)

Strategy: Baseline Tool(s) added Coop. Analysis
Taint Analysis Tool (Version) F.-P. F-m. TPs (for the coop. analysis) F.-P. F-m. TPs
1: FlowDroid (old) ✘ 0.000 0 + IC3 + CONNECTd

✘ ▲ 0.308 2
2: FlowDroid (old) ✘ 0.000 0 + IC3 + PIM ✔ ▲ 0.625 5
4: Amandroid (3.1.2) ✘⃝∗ 0.000 0 + AMT ✔⃝ ▲ 0.429 3
4: Amandroid (3.2.0) ✘⃝∗ 0.000 0 + AMT ✘⃝ 0.000 0
4: Amandroid (3.2.1) ✘⃝∗ 0.000 0 + AMT ✘⃝ 0.000 0
4: DIALDroid ✘⃝ 0.625 5 + AMT ✓⃝ 0.625 5
4: DidFail ✘⃝∗ 0.533 4 + AMT ✔⃝ 0.533 4
4: DroidSafe ✘⃝∗ 0.000 0 + AMT ✔⃝ ▲ 0.167 1
4: FlowDroid (old) ✘ 0.000 0 + AMT ✘ 0.000 0
4: FlowDroid (2.7.1) ✘ 0.000 0 + AMT ✘ 0.000 0
4: FlowDroid (2.9.0) ✘ 0.000 0 + AMT ✘ 0.000 0
4: FlowDroid (2.10.0) ✘ 0.000 0 + AMT ✘ 0.000 0
4: IccTA (old) ✘⃝∗ 0.000 0 + AMT ✔⃝ 0.000 0
4: IccTA (2.9.0) ✘⃝∗ 0.000 0 + AMT ✓⃝ 0.000 0
4: IccTA (2.10.0) ✘⃝∗ 0.000 0 + AMT ✓⃝ 0.000 0

d: Default tool (see Section 3.4.3, Page 85)
⃝ supported, ✔ confirmed, ✓ partially confirmed, ✘ not confirmed, ∗ not promised without cooperative analysis

analysis. Both columns contain three elements: the IAC feature promise (as in Subsec-
tion 4.2.1) and the F-measure value as well as the true positive count.

Regarding the IAC feature promise, we can observe that many tools (partially) fulfill
their promise once the apps to be analyzed are merged. Only FlowDroid and two
versions of Amandroid (3.2.0, 3.2.1) fail to do so, however, FlowDroid in contrast
to Amandroid never promised to support IAC. With respect to the reported F-measure
values, the baseline suggests that DIALDroid, a white-box cooperative analysis that uses
adapted versions of FlowDroid and IC3, is the best standalone tool for IAC scenarios
(F-measure: 0.625). Since Strategy 2 performs as well as DIALDroid, we may conclude
that the black-box cooperative analysis (Strategy 2) is as performant as the white-box
cooperative analysis (DIALDroid). DidFail reaches an F-measure of 0.533 and thereby
functions best as a basis for Strategy 4. DidFail is also implemented through a white-box
cooperative analysis between Epicc and FlowDroid, so the best truly standalone tool
again is Amandroid (3.1.2 – F-measure: 0.429).

Conclusion In summary, both cooperative methods – combining results (Strategy 1
& 2) and merging apps (Strategy 3 & 4) – enable taint analysis tools to be able to
analyze IAC scenarios. To further answer the main research question: one cooperative
IAC strategy (Strategy 2) outperforms any truly standalone taint analysis tool. In terms
of F-measure, the standalone white-box cooperative analysis DIALDroid keeps up and
appears to be equally precise. If we also take the Feature-Checking benchmark into
account, the cooperative analysis (Strategy 2) performs slightly better than DIALDroid
as it successfully analyzes all related benchmark cases.
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5.3 Cooperative Analysis 3: Reflection & Native Code
Apart from challenges such as ICC and IAC, which are introduced by the Android system,
other challenges have their origin in the programming language used to implement apps,
namely Java (or Kotlin – see Section 2.1). Two examples are reflection and native code.
Both are often extensively used by malicious developers for a single purpose: hiding frauds
(see Subsection 2.1.4). Analyses are also negatively impacted by such concepts. In the
following two cooperative strategies are presented that allow to build a cooperative analysis
which is able to deal with reflection and native code.

5.3.1 Cooperative Analysis 3: Tools

The tools employed in Cooperative Analysis 3 are listed in Table 19. NOAH comes into
play to detect sources and sinks in native code. To do so NOAH takes an app and
optionally a list of sources and sinks as input and outputs:

• flows to native method calls from sources in the native code (native sources),
• flows from native method calls to sinks in the native code (native sinks), and
• an adapted list of sources and sinks that contains the respective native method calls.

The flows are output in form of an AQL-Answer, however, the output list of sources and
sinks follows FlowDroid’s format. The sources and sinks list is created by extending the
given input list, if present. Otherwise, a configurable default list is used and extended.
Due to the output format of this list, NOAH is limited to be used together with Flow-
Droid. The CONNECT operator is used to stitch together flows found by NOAH and
FlowDroid.

DroidRA is added to resolve reflection. It can be employed as a preprocessor as it
takes an .apk file as input and also produces an .apk file as output. Because of that it is
also compatible with any taint analysis tool.

Two categories of DroidBench tailored to reflection and native code are used as
benchmark suites.

Table 19: Cooperative Analysis 3: Tools and Benchmark Suites

Tools Benchmark Suites
• All 13 baseline tools∗ • DroidBench (Native only)
• NOAH • DroidBench (Reflection only)
• DroidRA
• CONNECTd

∗: Also as standalone tools for comparison (see Table 9, Page 101),
d: Default tool (see Section 3.4.3, Page 85)

5.3.2 Cooperative Analysis 3: Strategies

The names of the two strategies presented in the following refer to the language features
they deal with.

Strategy 1: Native Code The strategy denoted in the listing below uses NOAH twice
(Lines 3, 5) and FlowDroid once (Line 2):
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1 CONNECT [
2 Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = {
3 Arguments IN App(%APP_APK_IN%) FEATURING ’Native’ !
4 } ?,
5 Flows IN App(%APP_APK_IN%) FEATURING ’Native’ ?
6 ] ?

By answering the question asking for Arguments, NOAH computes the extended list of
sources and sinks and forwards it to FlowDroid (Line 2–4). Thereby, the detected native
sources and native sinks can be taken into account by FlowDroid during its analysis.
By answering the question in Line 5, NOAH reports the respective flows between native
method calls and native sources or native sinks. In the end, the flows determined by
FlowDroid and NOAH are connected via the surrounding CONNECT operator.

Strategy 2: Reflection The strategy to handle reflection produces a simple query
which is similar to the default one:

Flows IN App(%APP_APK_IN% | ’RESOLVE’) ?

Only the keyword RESOLVE has been added. This keyword triggers DroidRA in order to
resolve reflective calls in the given app before it is analyzed.

5.3.3 Cooperative Analysis 3: Results

The results with respect to Strategy 1 (Native Code) can be found in Table 20 whereas
the results in regard to Strategy 2 (Reflection) are visible in Table 21. Both tables adhere
to the same three-column structure. The first column names a tool, the second repeats
the baseline results and the last column presents the results achieved by the cooperative
analysis. For both, the repeated baseline results and the cooperative analysis results, the
F-measure (F-m.) as well as the number of true positives (TPs) is denoted.

Table 20: F-measure (F-m.), True Positives (TPs) for DroidBench (Native
only; 5 Positive Cases – Cooperative Analysis 3)

Tool Baseline Strategy 1
(Version) F-m. TPs F-m. TPs

FlowDroid (old) 0.000 0 ▲ 0.889 4
FlowDroid (2.7.1) 0.333 1 ▲ 0.750 3
FlowDroid (2.9.0) 0.000 0 ▲ 0.571 2
FlowDroid (2.10.0) 0.000 0 ▲ 0.571 2
Amandroid (3.1.2) 0.333 1 — —

The baseline results show that only FlowDroid (2.7.1) and Amandroid (3.1.2) were
able to detect one out of five taint flows with respect to native code (see Table 20). The
best cooperative approach clearly performs better by only missing one taint flow. In terms
of F-measure this is equivalent to an improvement of ∼56% (0.889−0.333 = 0.556 ≈ 56%).

Further investigation shows that the only missed taint flow is actually found as well,
however, BREW does not count it as detected since it defines taint flows purely on the
level of statements in the non-native code. Thereby, BREW expects a flow from the native
method call to the exact same native method call – a tautology. Obviously, no analysis
reports a connection from and to the same statement, instead the cooperative analyses
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report a flow from source to sink in the native code via the native method call.

Table 21: F-measure (F-m.), True Positives (TPs) for DroidBench (Reflec-
tion only; 9 Positive Cases – Cooperative Analysis 3)

Tool Baseline Strategy 2
(Version) F-m. TPs F-m. TPs

Amandroid (3.1.2) 0.364 2 ▲ 0.800 6
Amandroid (3.2.0) 0.200 1 ▲ 0.800 6
Amandroid (3.2.1) 0.200 1 ▲ 0.800 6
DIALDroid 0.000 0 0.000 0
DidFail 0.200 1 ▼ 0.000∗ 0
DroidSafe 0.615 4 ▲ 0.615 4
FlowDroid (old) 0.200 1 ▲ 0.800 6
FlowDroid (2.7.1) 0.200 1 ▲ 0.800 6
FlowDroid (2.9.0) 0.200 1 ▲ 0.800 6
FlowDroid (2.10.0) 0.200 1 ▲ 0.800 6
IccTA (old) 0.200 1 ▲ 0.615 4
IccTA (2.9.0) 0.200 1 ▲ 0.800 6
IccTA (2.10.0) 0.200 1 ▲ 0.800 6

∗: 6 crashes

Similarly, a cooperative analysis using Strategy 2 outperforms standalone analysis
tools. The best standalone tool (DroidSafe) detects four out of nine taint flows that
involve reflection. With cooperation in place DroidSafe is unable to detect more taint
flows, however, all versions of Amandroid, FlowDroid and IccTA (except the old ver-
sion of IccTA) are enabled to detect six taint flows. No matter which taint analysis tools
is used, some taint flows always remain undetected because DroidRA is not able to fully
resolve the included reflection.32 DidFail is not able to analyze any of the preprocessed
apps. It has shown difficulties before while dealing with different versions during the
baseline experiments, thus, we assume a similar reason here. Comparing the F-measure
scored by DroidSafe (0.615) with one of the best cooperative approaches (0.8), we get
an improvement of 0.185. The individual improvement of certain tools is much higher, for
example, FlowDroid detects five more taint flow which is equal to an improvement of
0.6.

Conclusion The two cooperative analyses using Strategy 1 and 2 clearly outperform all
standalone tools. In case of Strategy 2, ten analysis tools scored better results with the co-
operative strategy in place. Strategy 1, which is currently only applicable to FlowDroid,
enhances the results for all four versions of it. In the future, NOAH will be adapted to
not only output flows but also sources and sinks in AQL format. Then, with a little help
of the AQL, the strategy can also be applied to Amandroid. The latter will be possi-
ble, since both tools (FlowDroid and Amandroid) use configurable lists of sources and
sinks. This feature will also be discussed and brought to use by the cooperative analysis
presented in the Section 5.5.

32Detailed results, including in which cases the reflection could not be resolved, can be found in Ap-
pendix A.6.2.
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5.4 Cooperative Analysis 4: False Positive Elimination
Taint analyses, in particular static ones, often (over-)approximate in order to detect as
many taint flows as possible, however, this comes at a cost: most of the time not only the
number of true positives but also the number of false positives grows. With Cooperative
Analysis 4 we tackle this issue and try to eliminate false positives by comparing the results
of a typical taint analysis tool with the results of a specialized tool.

5.4.1 Cooperative Analysis 4: Tools

As taint analysis tools we employ all 13 tools in our scope (see Table 22). The AQL-
CheckOperator is used to check the taint flows found by each of these tools, i.e., each
taint flow that is confirmed by another tool is not removed from the first tool’s result.
Optimally, the second tool would be able to soundly analyze which of the detected taint
flows are actually feasible. For example, a dynamic taint analysis tool that takes taint
flows as input to guide its app exploration would be a perfect match, however, such a
tool does currently not exist. An overview of the existing dynamic taint analysis tools is
provided in the background chapter (see Subsection 2.4.2). Hence, instead of a dynamic
analysis tool we employ HornDroid, an atypical taint analysis tool. Atypical since it is
based on logical reasoning and since it does not output complete taint flows but sinks that
truly leak sensitive data.

Table 22: Cooperative Analysis 4: Tools and Benchmark Suites

Tools Benchmark Suites
• All 13 baseline tools∗ • DroidBench
• HornDroid
• AQL-CheckOperator

∗: Also as standalone tools for comparison (see Table 9, Page 101)

The AQL-CheckOperator in combination with HornDroid treats a taint flow as
confirmed or checked, if HornDroid declares the respective sink as (potentially) leaking.
Thus, whenever HornDroid declares that a sink cannot leak sensitive data, all associated
taint flows are removed from the AQL-Answer given by the initial taint analysis tool.

5.4.2 Cooperative Analysis 4: Strategy

In regard to Cooperative Analysis 4 only one cooperative strategy is composed:
1 CHECK [
2 Flows IN App(%APP_APK_IN%) ?,
3 Flows IN App(%APP_APK_IN%) USING ’HornDroid’ ?
4 ] ?

The AQL-CheckOperator is triggered by the operator keyword CHECK (see Line 1 in
the listing above). While the first inner question (Line 2) is answered by one of our 13
taint analysis tools, the second is always answered by HornDroid (Line 3).

5.4.3 Cooperative Analysis 4: Results

All result of Cooperative Analysis 4 for the DroidBench benchmark are presented in
Table 23. The first column refers to the taint analysis tool that has been employed. The

128



5.4 Cooperative Analysis 4: False Positive Elimination

second, third and fourth column are structured the same way. Each subcolumn entitled
with “Baseline” refers to the baseline results of the respective tool. Each subcolumn
entitled with “Coop.” refers to the results of Cooperative Analysis 4. The subcolumns
entitled with “∆” show the relative difference between both results, for example, DidFail
found 21 false positive taint flows of which 17 could be eliminated due to the cooperative
analysis, hence, almost ∆FP ≈ 80.95% of these 21 false positives were eliminated. In the
last column we compare the relative number of removed false positives with the relative
number of removed true positives.

Table 23: False Positives, True Positives and F-measure for DroidBench
(Cooperative Analysis 4)

Taint Analysis False Positives True Positives F-measure ∆FP −
Tool (Version) Baseline Coop. ∆FP Baseline Coop. ∆TP Baseline Coop. ∆ ∆TP

Amandroid (3.1.2) 17 6 64.71% 82 33 59.76% 0.633 0.332 47.55% 4.95%
Amandroid (3.2.0) 13 5 61.54% 38 25 34.21% 0.360 0.263 26.94% 27.33%
Amandroid (3.2.1) 13 5 61.54% 38 25 34.21% 0.360 0.263 26.94% 27.33%
DIALDroid 0 0 0.00% 12 0 100.00% 0.140 0.000 100.00% -100.00%
DidFail 21 4 80.95% 64 30 53.13% 0.522 0.309 40.80% 27.83%
DroidSafe 18 7 61.11% 85 47 44.71% 0.646 0.439 32.04% 16.41%
FlowDroid (old 15 5 66.67% 84 42 50.00% 0.649 0.406 37.44% 16.67%
FlowDroid (2.7.1) 15 5 66.67% 83 43 48.19% 0.643 0.413 35.77% 18.47%
FlowDroid (2.9.0) 13 4 69.23% 86 43 50.00% 0.664 0.415 37.50% 19.23%
FlowDroid (2.10.0) 15 5 66.67% 84 42 50.00% 0.649 0.406 37.44% 16.67%
IccTA (old) 19 6 68.42% 87 41 52.87% 0.654 0.396 39.45% 15.55%
IccTA (2.9.0) 13 4 69.23% 92 43 53.26% 0.694 0.415 40.20% 15.97%
IccTA (2.10.0) 15 5 66.67% 90 42 53.33% 0.679 0.406 40.21% 13.33%

The strategy shows great success with respect to the number of eliminated false posi-
tives. For any tool at least 61% of false positives are eliminated. However, the cooperative
strategy unexpectedly also decreased the number of true positives such that up to almost
60% (in case of Amandroid 3.1.2) of all true positives were not found anymore. DI-
ALDroid was ignored in this evaluation since HornDroid is not able to detect ICC
or IAC related flows, thus, no flow found by DIALDroid could ever be confirmed by
HornDroid. The same argument holds for any other tool that found ICC or IAC related
flows with respect to the baseline. Furthermore, HornDroid timed out for six benchmark
apps after 20 minutes, thus, in these cases no flows were confirmed.33 Another reason for
the large number of unconfirmed true positives may be caused by the absence of sinks
in HornDroid’s results, i.e., HornDroid categorizes sinks as (potentially) leaking or
definitely not leaking, however, it may also not categorize some sinks at all. The AQL-
System converts HornDroid’s results into AQL-Answers by collecting all sinks that
were categorized as leaking or potentially leaking. In consequence, a sink that has not
been mentioned in HornDroid’s result was treated the same way as a sink for which
HornDroid found that it cannot be leaking. As a result, too many taint flows may have
been removed. In the future, we will attempt to only eliminate flows that are declared as
not leaking. To do so, the AQL-System’s converter for HornDroid must be replaced
with a customized one and the AQL-CheckOperator must be adapted. For those rea-
sons, the F-measure values determined for the cooperative analysis are lower than those
determined in the baseline.

33Details, including in which cases HornDroid timed out, can be found in the artifact (see Ap-
pendix A.6).
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Conclusion In the end, the last column of Table 23 gives an answer to our main research
question. With respect to any tool and relative numbers, the cooperative analysis removed
more false than true positives (in absolute numbers more true positives were removed).
Nonetheless, Cooperative Analysis 4 already indicates the potential of cooperative analyses
with respect to the elimination of false positives.
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5.5 Cooperative Analysis 5: Sources & Sinks
The goal of this cooperative analysis is to increase the accuracy of standalone taint analysis
tools by adapting the source and sink lists they use. Often analysis tools are less accurate,
since they consider too many or too few sources and sinks. Taint analysis tools should
only take sources and sinks into account that are actually relevant with respect to feasible
taint flows. We set up different cooperative strategies triggering multiple tools to respect
only relevant sources and sinks.

5.5.1 Cooperative Analysis 5: Tools

This cooperative analysis employs the taint analysis tools Amandroid and FlowDroid.
These two allow us to adapt the sources and sinks considered during analysis by changing
a single text file, the source and sink list. The sources and sinks considered by other tools,
such as DroidSafe, are hard coded in the tool’s source code. Furthermore, we only
consider these two mature tools and ignore variants of it, since this cooperative analysis
does not focus on a feature that is particularly supported by a variant. For example,
DIALDroid uses FlowDroid internally and IccTA is an extension of FlowDroid,
however, both tools are tailored to ICC or IAC scenarios.

Overall three versions of Amandroid and FlowDroid are considered, the version
that showed the best performance in the baseline (Amandroid 3.1.2, FlowDroid old),
the most recent version (Amandroid 3.2.1, FlowDroid 2.10.0) and, for reproducibility,
another version that has been used in the TaintBench study [91] (Amandroid 3.2.0,
FlowDroid 2.7.1). In addition to these two tools, overall four default tools and one
additional tool come into play. A list of all tools involved in this cooperative analysis can
be found in Table 24. The two default operators TOAD (to Amandroid) and TOFD

Table 24: Cooperative Analysis 5: Tools and Benchmark Suites

Tools Benchmark Suites
• FlowDroid (old, 2.7.1, 2.10.0) • DroidBench
• Amandroid (3.1.2, 3.2.0, 3.2.1) • TaintBench
• TBSaSMapper
• SourceSinkFinderd

• TOFDd

• TOADd

• UNIFYd

d: Default tool (see Section 3.4.3, Page 85)

(to FlowDroid) are used as input converters, i.e., both take an AQL-Answer as input
and convert all sources and sinks contained in it into a tool-specific sources and sink list.
TBSaSMapper and the SourceSinkFinder are employed to gather information about
sources and sinks that can be found in a single benchmark app or a specific benchmark
case. To do so, the default tool SourceSinkFinder compares all statements inside an
app with a configurable list of sources and sinks. Whenever a statement included in the
code of an app matches a statement in this list, the statement is added respectively as
source or sink to the output AQL-Answer. TBSaSMapper also outputs an AQL-Answer
that holds a list of source and sinks, however, it constructs that list on the basis of the
information given in TaintBench’s ground truth definition, more precisely, for a given
benchmark app or case it collects all the documented sources and sinks.
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5.5.2 Cooperative Analysis 5: Strategies

With these tools at hand the following eight experiments (see Table 25) for the two bench-
marks DroidBench and TaintBench can be conducted by employing different cooper-
ative strategies.

Table 25: Cooperative Analysis 5: Experiments

Identifier Benchmark Suite Strategy Sources and Sinks
DB1 DroidBench 1 Default List
DB2 “ 2 Benchmark suite specific
DB3 “ 3 Benchmark app specific
DB4 “ 4 Benchmark case specific
TB1 TaintBench 1 Default List
TB2 “ 2 Benchmark suite specific
TB3 “ 3 Benchmark app specific
TB4 “ 4 Benchmark case specific

Strategy 1: Default For Experiment 1 the default list of sources and sinks, each tool
is shipped with, is used. The associated strategy simply transforms the query given by
BREW into the following:

Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = ’DefaultList.txt’ ?

DefaultList.txt is a placeholder here. At the time of analysis, a tool-specific list is
used. The results determined for experiments related to this strategy match the results
determined in the baseline.34

Strategy 2: Suite-Level BREW allows us to export sources and sinks that belong
to a whole benchmark suite. Thus, we used BREW to export one list that is specific to
DroidBench and another one that is specific to TaintBench. For Experiment 2 these
specific lists are used:

Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = ’SpecificList.txt’ ?

Again SpecificList.txt is a placeholder which will be replaced by the benchmark suite-
specific list – in Amandroid’s or FlowDroid’s format respectively.

Strategy 3: App-Level In context of Strategy 3 we want to use lists of sources and
sinks that are specific with respect to the benchmark app analyzed. To get this list the
query is transformed into the following when dealing with DroidBench:

1 Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = {
2 TOAD [
3 UNIFY [
4 Sources IN App(%APP_APK_IN%) ?,
5 Sinks IN App(%APP_APK_IN%) ?
6 ] ?
7 ] !
8 } ?

34In case of FlowDroid an older version of the default list of sources and sinks has been used for
Cooperative Analysis 5, therefore, the results are slightly different (Appendix A.6 contains the exact lists
used in both cases).
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The two inner queries (Line 4, 5 in the listing above) asking for sources and sinks trigger
the default tool SourceSinkFinder. The UNIFY operator (Line 3) merges the answers
this tool replies into a single one and the TOAD operator (Line 2) transforms this answer
into a tool-specific source and sink list. In case of FlowDroid, TOFD is used instead of
TOAD.

When dealing with TaintBench only the inner queries must be adapted by appending
USING ’TBSaSMapper’ (see Lines 4, 5 in the listing below):

1 Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = {
2 TOAD [
3 UNIFY [
4 Sources IN App(%APP_APK_IN%) USING ’TBSaSMapper’ ?,
5 Sinks IN App(%APP_APK_IN%) USING ’TBSaSMapper’ ?
6 ] ?
7 ] !
8 } ?

Thereby, the TBSaSMapper is used instead of the default tool SourceSinkFinder.

Strategy 4: Case-Level Lastly, for Strategy 4 we want to use a similar strategy but
provide more information to the tools determining sources and sinks such that we get case-
specific source and sink lists instead of app-specific ones. In the context of DroidBench
this is realized by asking for sources and sinks with respect to a certain statement (see
Line 4 and 5 in the listing below):

1 Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = {
2 TOAD [
3 UNIFY [
4 Sources IN Statement(%STATEMENT_FROM%,

→ %LINENUMBER_FROM%)->App(%APP_APK_IN%) ?,
5 Sinks IN Statement(%STATEMENT_TO%, %LINENUMBER_TO%

→ )->App(%APP_APK_IN%) ?
6 ] ?
7 ] !
8 } ?

The content for the statement placeholders (%STATEMENT_...%) as well as for the linenum-
ber placeholders (%LINENUMBER_...%) is provided by BREW. For this purpose BREW
must be configured to initially ask a from-to query with up to statement-level references:

1 Flows FROM
2 Statement(%STATEMENT_FROM%, %LINENUMBER_FROM%)->
3 Method(%METHOD_FROM%)->Class(%CLASS_FROM%)->
4 App(%APP_APK_FROM%)
5 TO
6 Statement(%STATEMENT_TO%, %LINENUMBER_TO%)->
7 Method(%METHOD_TO%)->Class(%CLASS_TO%)->
8 App(%APP_APK_TO%)
9 ?

For TaintBench we must forward TaintBench’s case ID to TBSaSMapper. This
can be done via a strategy that produces the following query:
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1 Flows IN App(%APP_APK_IN%) WITH ’SourcesAndSinks’ = {
2 TOAD [
3 UNIFY [
4 Sources IN App(%APP_APK_IN%) USING ’TBSaSMapper’

→ WITH ’TaintBenchID’ = ’%ID%’ ?,
5 Sinks IN App(%APP_APK_IN%) USING ’TBSaSMapper’

→ WITH ’TaintBenchID’ = ’%ID%’ ?
6 ] ?
7 ] !
8 } ?

While loading TaintBench into BREW, BREW tracks the ids of all imported bench-
mark cases such that the replacement for the %ID% placeholder can also be provided by
BREW.

5.5.3 Cooperative Analysis 5: Results

Next we will have a look at the results achieved under these cooperative strategies.

Table 26: Intersection (∩) and Difference (\) of Source and Sink Sets Used
by Analysis Tools (Amandroid, FlowDroid) and Involved in
Benchmark Cases of DroidBench and TaintBench.

PPPPPPPPPA =
B = Amandroid FlowDroid DroidBench TaintBench

Sources Sinks Sources Sinks Sources Sinks Sources Sinks
Intersection (|A ∩ B|)
Amandroid 30 42 24 38 4 8 6 4
FlowDroid 24 38 89 133 7 9 12 8
DroidBench 4 8 7 9 15 23 7 4
TaintBench 6 4 12 8 7 4 44 44
Difference (|A \ B|)
Amandroid 0 0 6 4 26 34 24 38
FlowDroid 65 95 0 0 82 124 77 125
DroidBench 11 15 8 14 0 0 8 19
TaintBench 38 40 32 36 37 40 0 0

Baseline Recap The results of DB1 & TB1 are visualized in three bar charts (see
Figure 36). These results are a replication of the respective baseline findings (see Subsec-
tion 4.2.4, 4.2.5). Due to the visualization, differences between the results for DB1 and
TB1 can easily be identified. In particular, the recall values determined for DroidBench
and TaintBench deviate from each other.

The main reason for this deviation may be embodied in the sources and sinks list
used. Table 26 shows the intersection and difference of the involved source and sink lists.
For example, the cursive number (in the intersection area) show how many sources and
sinks are considered by FlowDroid and Amandroid as well as how many appear in
DroidBench and TaintBench. The bold numbers (in this area) reveal that the sources
and sinks considered by tools have only minor commonalities with the sources and sinks
that appear in benchmark suites. Most importantly, the bold numbers (in the difference
area) show how many sources and sinks appear in the individual benchmark suites that
are not recognized by the analysis tools. From a relative perspective more sources and
sinks occurring in TaintBench are ignored than occurring in DroidBench. Hence, we
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Figure 36: Precision / Recall / F-measure for Cooperative Analysis 5 (DB1
& TB1)

expect a slight improvement in the results determined for DB2, DB3 and DB4 if compared
to DB1, but a large improvement for TB2, TB3 and TB4 in comparison to TB1. If the
tools are not over-adapted in any other way to micro benchmarks like DroidBench, the
tools should be comparably accurate on DroidBench and TaintBench.

Cooperative Results The bar charts in Figure 37 visualize the results for all exper-
iments. The striped bars refer to DroidBench results and solid bars to TaintBench
results. By comparing striped and solid bars, it becomes visible that most tools score bet-
ter values with respect to DroidBench. Only the old version of FlowDroid manages
to achieve an F-measure value for TaintBench (∼68%) which is almost as high as the
best measured F-measure for DroidBench (∼69%). All other tools score significantly
worse values for TaintBench no matter which cooperative strategy is in place. In par-
ticular, the recall of all other tools deviates from the recall measurable in DroidBench
context. Furthermore, a trend becomes visible in case of FlowDroid: the more accurate
the source and sink lists are, the higher the accuracy scores are.

The overall best F-measure score is also reached by FlowDroid (old) in case of
experiment DB2 (∼69%). As a visual baseline we added a gray, dotted line in each bar
chart in regard to this best result (see Figure 37). It becomes visible, that Amandroid
(3.1.2) and FlowDroid (all versions) achieve comparable results for DB2. The newer
versions of Amandroid (3.2.0, 3.2.1) fall behind. In fact, all newer tool versions score
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Figure 37: Precision / Recall / F-measure for Cooperative Analysis 5 (DB1–4 & TB1–4)

worse than their predecessors (Amandroid 3.1.2 and FlowDroid old). This regression
is striking in the results obtained for TaintBench. The DroidBench results also allow
identifying this regression in case of Amandroid, however, FlowDroid’s regression in
DroidBench context appears negligible. Perhaps FlowDroid was over-adapted to the
mirco benchmark DroidBench since it seems to be tested regularly only by employing
DroidBench as a benchmark [138].

Please note that some of these results can only be achieved by including knowledge
about the benchmark suites. We knew the sources and sinks to be considered in ad-
vance – before executing the analysis. In a real-world scenario we cannot always get this
information, especially if yet unknown sources or sinks come into play.

Conclusion Considering our main research question, the cooperative analysis (Strate-
gies 2–4) clearly outperforms standalone analysis tools with default source and sink lists
(Strategy 1). Furthermore, Cooperative Analysis 5 allows drawing two conclusions: (1.)
Source and sink lists are crucial: the more accurate the list are, the more accurate the
results are, however, a perfect static list does not seem to exist – the lists often are either
too coarse or too narrow. (2.) Regressions that may remain unnoticed with respect to
DroidBench are clearly visible once TaintBench is employed as a benchmark.
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5.6 Cooperative Analysis 6: Backward Compatibility
Analyses often run into scalability issues while dealing with huge amounts of support
library code. The cooperative analysis presented in this section allows taint analysis tools
to scale with respect to support libraries.

5.6.1 Cooperative Analysis 6: Tools

A typical approach to deal with support libraries is excluding them during analysis. To
do so we must be able to differentiate app code from library code. This differentiation can
be made by name – a simple but frequently applied approach [139, 160]. For example, all
classes in the package android.support are considered to be support libraries that can
be trusted and safely excluded from analysis. However, in case of analyses dealing with
security aspects, e.g., a taint analysis, we may not be allowed to ignore libraries this way.
For instance, a malicious developer could have hidden his malicious behavior in a class
deliberately placed in a support package. Thus, we employ APK-Simplifier to identify
trusted library classes (see Section 2.4.2). The AQL-System’s default SIMPLIFY pre-
processor and operator is applied to remove library classes from apps. Its simpler relative
(SIMPLIFY∼) is also used for this purpose, but instead of removing classes it only keeps
classes that belong to an app’s main package.

Table 27: Cooperative Analysis 6: Tools and Benchmark Sets

Tools Benchmark Sets
• All 13 baseline tools∗ • Top15 (partially)
• APK-Simplifier
• SIMPLIFYd

• SIMPLIFY∼d

∗: Also as standalone tools for comparison (see Table 9,
Page 101), d: Default tool (see Section 3.4.3, Page 85)

Whenever the cooperative analysis uses APK-Simplifier, it can only be applied to
up-to-date apps since APK-Simplifier relies on the availability of .version files. Such
files can nowadays be found inside .apk files. Their names refer to library classes and
their contents identify the version of the library used. Most benchmark apps either do not
use support libraries (e.g., DroidBench – at least not extensively) or are to old (e.g.,
TaintBench – all apps published before 2017), thus, APK-Simplifier cannot be applied
effectively. Only the Top15 app set (see Subsection 4.2.5 and Appendix A.4.3) contains
11 apps that are recent enough to hold the required .version files. Hence, the evaluation
of this cooperative analysis will only deal with this subset.

5.6.2 Cooperative Analysis 6: Strategies

Three strategies are introduced below. All three fulfill the same task: remove support
libraries prior to the analysis of an app.

Strategy 1: Maximal The first strategy removes all classes from an app that are not
located in the app’s main package or any of its sub-packages. To do so, the SIMPLIFY∼
preprocessor is applied. It is expected that this strategy will remove more classes than the
other two, thus, it is called the maximal strategy.
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Flows IN App(%APP_APK_IN% | ’SIMPLIFY~’) ?

Strategy 2: Coarse The coarse strategy produces queries that are almost equal to
the queries created by the maximal strategy. Only the missing “∼” symbol distinguishes
them. Thereby the SIMPLIFY preprocessor is employed instead of SIMPLIFY∼.

Flows IN App(%APP_APK_IN% | ’SIMPLIFY’) ?

Strategy 3: Precise The first two strategies could also be realized without prepro-
cessors by using their operator counterparts. For example, the coarse strategy could be
implemented as follows:

Flows IN App(SIMPLIFY [ %APP_APK_IN% ! ] !) ?

The precise strategy also uses the SIMPLIFY operator, however, in this case it takes two
input arguments, namely the app and a list of classes. This list of classes is determined by
APK-Simplifier, the tool that answers the most inner question (see Line 4 in the listing
below). Since this strategy only removes classes which are denoted on this list, it is called
precise strategy.35

1 Flows IN App( {
2 SIMPLIFY [
3 %APP_APK_IN% !,
4 Arguments IN App(%APP_APK_IN%) USING ’APK-Simplifier’ !
5 ] !
6 } ) ?

In summary, all strategies are supposed to remove at least all trusted support library
classes. The maximal strategy is expected to remove most classes including third-party
libraries since those are typically not located in the main package. The precise strategy
removes least classes as it only considers classes that are definitively removed under the
coarse strategy. In contrast to Strategy 1 and 2, Strategy 3 will only remove trusted
support library classes, that have, for instance, not been manipulated as determined by
APK-Simplifier.

5.6.3 Cooperative Analysis 6: Results

Before we answer our main research question with respect to Strategy 1, 2 and 3, we take
a look at the classes removed by each strategy. Table 28 shows the outcome. The first
two columns identify the app analyzed. The column entitled with “Original” denotes how
many classes the not-simplified app holds. The remaining columns show how many classes
are left after simplification with respect to the strategy denoted at the top of each column.
Additionally, the relative difference is denoted in % (always in comparison to the original
app).

While applying the precise strategy (Strategy 3) up to 15% of all classes are re-
moved. At least 133 classes are removed, which is exactly the case for the TikTok
app (com.zhiliaoapp.musically). As expected, under Strategy 2 more classes (up to
19%) are removed. By applying the maximal strategy (Strategy 1) two apps could not be
output since no classes were located in the main package of these apps and in case of the

35Strategy 3 could also be realized using a preprocessor, however, the list or classes must then be
provided via a specific variable which appears less natural.
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Table 28: Classes Removed by Cooperative Analysis 6

App Number of classes; Reduction (in %) wrt. original
(main package) Original 3: Precise 2: Coarse 1: Maximal

1 com.gamma.scan 12 701 10 974 14 % 10 320 19 % 0 100 %
2 com.lidl.eci.lidlplus 19 693 19 034 3 % 18 554 6 % 0 100 %
3 com.paypal.android.p2pmobile 73 948 73 443 1 % 72 768 2 % 3 368 95 %
4 com.sec.android.easyMover 13 631 11 959 12 % 11 511 16 % 4 240 69 %
5 com.starfinanz.mobile.android.pushtan 6 365 6 076 5 % 6 109 4 % 475 93 %
6 com.zhiliaoapp.musically 121 162 121 029 0 % 120 882 0 % 1 100 %
7 de.cellular.ottohybrid 11 445 10 024 12 % 9 994 13 % 2 210 81 %
8 de.hafas.android.db 20 495 17 355 15 % 16 940 17 % 13 100 %
9 de.komoot.android 26 562 25 633 3 % 24 362 8 % 9 302 65 %

10 de.rki.coronawarnapp 11 228 11 029 2 % 9 644 14 % 5 512 51 %
11 org.telegram.messenger 14 596 14 243 2 % 13 984 4 % 1 931 87 %

TikTok app only one class remained. Naturally, if the maximal strategy is applied, way
more classes are removed in comparison to both other strategies.

With the coarse strategy (Strategy 2) in place all support libraries are rigorously
removed. The precise strategy (Strategy 3) will at best also remove all support libraries.
By comparing the amount of classes removed under these two strategies, we can conclude
that most support libraries were also removed with respect to the precise strategy. Still,
the numbers differ slightly. This difference is caused by the employment of different build
tools or configurations while building the app and the library, for example, different source
code optimizations might have been applied. APK-Simplifier then detects that certain
support library classes extracted from the app are not equal to its counterpart extracted
from a trusted library and concludes that these classes cannot be trusted. This also shows
that APK-Simplifier is able to detect manipulated classes so that these are not removed
and will be analyzed.

In summary, all three strategies allow us to identify and remove library classes from
up-to-date, real-world apps prior to analysis. To remove significantly more classes trusted
third-party library classes must also be taken into account by APK-Simplifier or a
related tool (see Section 2.4.2) and eventually be removed as well.

Cooperative Results The results discussed in the following represent an answer to our
main research question. Table 29 lists the number of timeouts reached by all tools after 60
minutes and how many timeouts could be prevented by applying a cooperative strategy.
The full Top15 set could be used for this evaluation, as APK-Simplifier does not reach
a timeout, even though there are no .version files in four apps. Overall 14 timeouts could
be prevented under Strategy 2 and 3 and 24 in case of Strategy 1. Only in five scenarios,
while the maximal strategy was applied, one version of FlowDroid and all versions of
IccTA timed out in cases they did not timeout prior to simplification. However, without
simplification the respective analyses ran into errors with respect to these five scenarios,
thereby the analyses were unsuccessfully stopped before a timeout was reached. Hence,
these timeouts could also be interpreted as an improvement since these errors appear to
be circumvented.

Table 30 shows how many apps were successfully analyzed (✔) before and after sim-
plification. Please note that an app is counted as successfully analyzed only if the analysis
result holds at least one taint flow. One could argue that some apps simply do not hold
any taint flows, however, since all apps allow to knowingly share information, at least
benign taint flows with respect to that purpose should be found. The empty cells (—) in
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Table 29: Number of Timeouts Prevented and Introduced (Cooperative Analysis 6)

Tool Original 3: Precise 2: Coarse 1: Maximal
Amandroid (3.1.2) 5 0 0 ▼ 1
Amandroid (3.2.0) 10 ▼ 1 ▼ 1 ▼ 4
Amandroid (3.2.1) 10 ▼ 1 ▼ 1 ▼ 4
DIALDroid 0 0 0 0
DidFail 0 0 0 0
DroidSafe 1 0 0 0
FlowDroid (old) 1 0 0 0
FlowDroid (2.7.1) 12 ▼ 3 ▼ 3 ▲ 1, ▼ 4
FlowDroid (2.9.0) 4 ▼ 2 ▼ 2 ▼ 3
FlowDroid (2.10.0) 13 ▼ 4 ▼ 4 ▼ 6
IccTA (old) 0 0 0 ▲ 1
IccTA (2.9.0) 2 ▼ 2 ▼ 2 ▲ 1, ▼ 1
IccTA (2.10.0) 1 ▼ 1 ▼ 1 ▲ 2, ▼ 1
Sum (Σ) 59 ▼ 14 ▼ 14 ▲ 5, ▼ 24

▼: Number of timeouts prevented, ▲: Number of timeouts introduced

Table 30 refer to scenarios in which a simplified version of the original app could not be
created. In case of the precise and coarse strategy, this was the case when Soot could
not write its output .apk file since it ran out of memory while trying to do so. In regard
to the maximal strategy, for two apps (com.gamma.scan, com.lidl.eci.lidlplus) all
classes are removed, thus, no output is generated.

As visible in Table 30 only one of the 11 original apps is analyzable by a standalone
analysis tool, namely Amandroid 3.1.2. After applying a cooperative strategy four to five
apps could be analyzed depending on the strategy chosen. In summary, more apps could
successfully be analyzed after simplification. DIALDroid, DidFail and DroidSafe
never delivered a non-empty analysis result, which was expected since these tools are not
maintained anymore – no updates for years but officially announced final versions can be
found.

Table 30: Successful Analyses (Cooperative Analysis 6)

App Cooperative analysis (Strategy)
(main package) Baseline 3: Precise 2: Coarse 1: Maximal

1 com.gamma.scan ✔✘✘✘... ✘✘✘✘✘✘✘✔✔✔✘✘✘ ✘✘✘✘✘✘✘✔✔✔✘✘✘ —1

2 com.lidl.eci.lidlplus ✘✘✘✘... —2 —2 —1

3 com.paypal.android.p2pmobile ✘✘✘✘... —2 —2 ✘✘✘✘✘✘✘✔✔✔✘✘✘

4 com.sec.android.easyMover ✘✘✘✘... —2 —2 ✘✘✘✘✘✘✘✘✘✘✘✘✘

5 com.starfinanz.mobile.android.pushtan ✘✘✘✘... ✘✘✘✘✘✘✘✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘

6 com.zhiliaoapp.musically ✘✘✘✘... —2 —2 ✘✘✘✘✘✘✘✘✘✘✘✘✘

7 de.cellular.ottohybrid ✘✘✘✘... ✘✔✔✘✘✘✘✔✔✔✘✘✘ ✘✔✔✘✘✘✘✔✔✔✘✘✘ ✔✔✔✘✘✘✘✘✘✘✘✘✘

8 de.hafas.android.db ✘✘✘✘... ✘✘✘✘✘✘✔✘✘✘✘✘✘ ✘✘✘✘✘✘✔✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘

9 de.komoot.android ✘✘✘✘... —2 —2 ✘✘✘✘✘✘✔✘✘✘✘✘✔

10 de.rki.coronawarnapp ✘✘✘✘... ✘✘✘✘✘✘✘✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘

11 org.telegram.messenger ✘✘✘✘... ✘✘✘✘✘✘✘✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘ ✘✘✘✘✘✘✘✘✘✘✘✘✘

Σ 1 9 9 8
Tool order: Amandroid (3.1.2), Amandroid (3.2.0), Amandroid (3.2.1), DIALDroid, DidFail, DroidSafe, FlowDroid (old),

FlowDroid (2.7.1), FlowDroid (2.9.0), FlowDroid (2.10.0), IccTA (old), IccTA (2.9.0), IccTA (2.10.0)
1: All classes removed, 2: APK-Simplifier (Soot) throws OutOfMemoryException while writing output

✔: Successful analysis, ✘: Unsuccessful analysis

Please note that the taint flows found upon a successful analysis have not been checked
for completeness or if they are actually critical from a security viewpoint. If anything, a
closer look at some samples revealed that most detected taint flows were simple ones (e.g.,
source and sink can be found in the same method).
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Conclusion Referring to the main research question, we can conclude that all three
cooperative strategies outperform standalone tools with respect to prevented timeouts
and the increased number of successful analyses. However, the results also point out that
alarmingly many up-to-date, real-world apps cannot be analyzed by any of the 13 tools
considered – no matter if cooperative strategies are applied or not.
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5.7 Supplementary Discussion
Lastly, to complete the evaluation chapter we discuss (1.) to which extent cooperative
strategies can be applied automatically, and (2.) secondary performance aspects not re-
lated to accuracy.

5.7.1 Automatic Applicability of Cooperative Strategies

All cooperative strategies presented can be applied automatically. In the strategies sec-
tion (Section 3.3) we exemplified how to automatically select and apply (cooperative)
strategies by always appending an Arguments-query asking for features (... FEATURING
Arguments IN App(’A.apk’) .). Depending on the features found and the number of
considered apps, different strategies can be applied.

Cooperative Analysis 1, 2 and 3 deal with different categories of DroidBench, namely
ICC, IAC, reflection and native code. With respect to the DroidBench apps of these
categories the AQL-System’s default tool FeatureFinder can, for instance, detect the
following features in order to answer the respective Arguments-query:

• ICC, IAC: If an intent sending or receiving method is called (e.g., startActivi-
ty(...) or getStringExtra(...)).

• Reflection: If a class or a method is accessed reflectively (e.g., Class.forName(...)
or invoke(...)).

• Native Code: If a native library is loaded via loadLibrary(...).

Whenever the “ICC, IAC” features are recognized, a strategy from Cooperative Analysis 1
or 2 can be applied depending on the number of apps involved, i.e., if a FROM-TO-query is
issued initially, an IAC strategy can be applied – otherwise, if an IN-query is issued, an
ICC strategy can be applied instead. Upon the detection of feature “Reflection” or “Native
Code” the respective strategy of Cooperative Analysis 3 can be applied. In doing so, the
baseline results for DroidBench could be improved with respect to these categories.

In Table 31 the baseline results for DroidBench are compared to the cooperative
analysis results that can be reached by applying this mixed strategy. The columns en-
titled with “Best” refer to the best results that were achieved by at least one of our 13
taint analysis tools. “FD” stands for FlowDroid (2.9.0) in this case. This version of
FlowDroid was selected since it represents the overall best, truly standalone tool with
respect to the DroidBench benchmark.

On average (see last row of Table 31) the mixed cooperative strategies outperform
FlowDroid (2.9.0). In regard to the “Best” tool per category the mixed cooperative
strategies fall slightly behind, however, selecting the best tool per category (e.g., via
algorithm selection [90]) is only possible if we know which tool performs best in advance,
hence, this comparison lacks fairness. To further improve the cooperatively achieved
results we could always apply a cooperative strategy that optimizes the sources and sinks
considered as introduced in Cooperative Analysis 5.

Since these cooperative strategies can be selected and applied automatically, they are
not limited to be used for benchmark apps with known features. Instead, they can be ap-
plied to arbitrary apps whenever they are needed. To do so, the user initiating the analysis
must only ask a very simple AQL-Query (e.g., Flows IN App(’A.apk’) ?), i.e., the user
only needs basic knowledge about the AQL to employ a complex cooperative analysis.
This way the burden of setting up analysis tools and creating cooperative strategies is
shifted to domain experts.
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Table 31: F-measure for DroidBench (Mixed Cooperative Strategies)

DroidBench Baseline Coop. Difference to
Category Best FD Ana. Best FD

Aliasing 0.667 0.667 0.667 0.000 0.000
AndroidSpecific 0.952 0.952 0.952 0.000 0.000
ArraysAndLists 0.727 0.727 0.727 0.000 0.000
Callbacks 0.897 0.897 0.897 0.000 0.000
DynamicLoading 0.500 0.000 0.000 ▼ 0.500 0.000
EmulatorDetection 0.966 0.966 0.966 0.000 0.000
FieldAndObjectSensitivity 1.000 1.000 1.000 0.000 0.000
GeneralJava 0.821 0.810 0.810 ▼ 0.011 0.000
ImplicitFlows 1.000 0.000 0.000 ▼ 1.000 0.000
IAC 0.625 0.000 0.625 0.000 ▲ -0.625
ICC 0.750 0.348 0.727 ▼ 0.023 ▲ -0.379
Lifecycle 0.933 0.769 0.769 ▼ 0.164 0.000
Native 0.333 0.000 0.889 ▲ -0.556 ▲ -0.889
Reflection 0.615 0.200 0.800 ▲ -0.185 ▲ -0.600
Reflection_ICC 0.533 0.000 0.000 ▼ 0.533 0.000
SelfModification 0.000 0.000 0.000 0.000 0.000
Threading 1.000 0.909 0.909 ▼ 0.091 0.000
UnreachableCode 0.000 0.000 0.000 0.000 0.000
Average 0.684 0.458 0.597 ▼ 0.088 ▲ -0.139

FD: FlowDroid (2.9.0)

5.7.2 Secondary Performance Aspects

With the evaluation of all six cooperative analyses, we attempted to answer our main
research question. In doing so, we focused on performance in terms of accuracy only.
Since there are many other relevant performance aspects, we briefly discuss the most
important ones in the following.

Cooperative Analysis 1 Cooperative Analysis 1 deals with ICC and the strategy,
that partially performed best, involved slicing. Please note that slicing also reduces the
amount of time an analysis requires to finish, however, the slicing process itself takes a
similar amount of time as most analyses require in order to finish their analysis of the
unsliced app. A detailed runtime evaluation can be found in the paper proposing the
employed slicer [87].

Cooperative Analysis 2 Different cooperative methods have been presented along with
Cooperative Analysis 2. For brevity, neither analysis time nor scalability was evaluated.
A proper evaluation of such aspects can be found in prior work [75]. Still, an important
finding we want to document becomes visible when IAC scenarios are extended. Let us
assume that we want to detect inter-app taint flows in a set of apps that consists of x apps.
Not seldom merging these x apps and analyzing the merged app is faster than computing
and combining the individual results per app. However, at the moment we add app x + 1,
an analysis based on app merging has to be restarted from scratch. In case of a strategy
based on combining results, only the additional app must be analyzed. The additional
analysis result can then be combined with the previous result computed for x apps.
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Cooperative Analysis 3 The two strategies presented along with Cooperative Anal-
ysis 3 are primarily based on two tools: DroidRA and NOAH. While NOAH does not
create a larger overhead with respect to analysis time, since it is a flow-insensitive and
consequently a fast analysis tool, DroidRA may cause a non-negligible overhead. How-
ever, both tools were similarly fast as the employed taint analysis tools (Amandroid and
FlowDroid) in case of all experiments conducted which only dealt with micro bench-
marks.

Cooperative Analysis 4 HornDroid is employed together with all 13 taint analysis
tools in our scope for Cooperative Analysis 4. In comparison HornDroid often requires
way more resources, especially with respect to analysis time, to finish its analysis, since
HornDroid implements a sound approach which is based on logical reasoning. As men-
tioned before, HornDroid timed out six times even though 20 minutes were provided in
order to analyze each micro benchmark case – real-world scenarios were not evaluated in
this context.

Cooperative Analysis 5 The experiments conducted for Cooperative Analysis 5 in-
volve two benchmark suites, namely DroidBench and TaintBench. Since Droid-
Bench is a micro benchmark whereas TaintBench is a real-world benchmark that in-
cludes larger benchmark apps with respect to size (e.g., lines of code), all analysis tools
in general required more time to finish their analyses when dealing with TaintBench’s
apps. A more detailed evaluation of these differences (app size and analysis time) can be
found in our prior work proposing TaintBench [91].

Cooperative Analysis 6 APK-Simplifier is the primary tool that drives one of the
strategies behind Cooperative Analysis 6. With respect to runtime APK-Simplifier may
create a recognizable overhead, since it will compare support library classes extracted
from the app under analysis against library classes that must be downloaded from an
online repository, extracted and decompiled. However, APK-Simplifier keeps track of all
comparisons performed in the past such that it is not required to e.g., download the same
library multiple times. With respect to our experiments we executed APK-Simplifier for
each app that was analyzed before we conducted the experiments such that the overhead
created by APK-Simplifier actually was negligible.
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6 Conclusion
The cooperative analysis approach presented embodies the first contribution and the cen-
terpiece of this thesis (see Chapter 3). It has been realized by designing and implementing
the AQL. While AQL-Queries have been introduced to interact with arbitrary analyses
and to compose cooperative analyses, AQL-Answers came into play to unify and gen-
eralize analysis results so that they can be combined or used to enhance other analyses.
Strategies have been proposed as a means to automatically transform simple initial queries
into complex queries representing cooperative analyses, whenever certain conditions are
fulfilled, for example, if a query has a certain form or if it denotes certain features. Finally,
we implemented a system using the AQL (the AQL-System) and a wrapper for this sys-
tem (AQL-WebService) that allows us to access analyses in distinct environments. To
design the AQL and to develop the associated implementations, we first derived appro-
priate requirements from related work. After an exploration of available analysis tools,
query languages and result formats as well as existing cooperative approaches, we ended
up with 26 requirements. Thereafter, we explained how to fulfill these requirements while
describing the AQL in detail. For this purpose, we presented two meta-models (a gram-
mar and a schema) that respectively define the syntax of AQL-Queries and the structure
of AQL-Answers. A formal description of the AQL’s semantics defines how to process
AQL-Queries in order to get the associated AQL-Answers. By describing the workflow
of the AQL-System we detailed this process and explained how it is implemented.

As the second contribution of this thesis we presented automatic and reproducible
benchmarks (see Chapter 4). To realize such benchmarks we proposed BREW. Based on
its workflow, we showed that it can be used to create and refine new and existing bench-
mark suites, to execute benchmarks, and to evaluate their outcome. To create and refine
benchmark suites, BREW allows us to semi-automatically define their ground truth. For
this purpose the expected results of each benchmark case are described in the form of an
AQL-Answer. To execute benchmarks, BREW automatically constructs one AQL-Query
per benchmark case and forwards it to an AQL-System. Therefore, it can be used to eval-
uate arbitrary analyses. To evaluate a benchmark’s outcome, BREW compares the actual
answers received for each query against the expected answers defined in a suite’s ground
truth. The result of each comparison decides whether the respective benchmark case is
counted as a true or false positive or negative. Because of the machine-readable format
used to describe expected and actual results (AQL-Answers), these two can automatically
be compared against each other without providing space for (mis-)interpretation. Conse-
quently, benchmarks executed via BREW finally become reproducible. The final result
of a benchmark is summarized with the computation of precision, recall and F-measure
scores. To complete this second contribution, we employed BREW to thoroughly evalu-
ate 13 standalone Android taint analysis tools. We showed that these tools mostly keep
their feature-support and accuracy promises, and that all tools are able to analyze (some)
real-world apps.

The evaluation of six cooperative analyses represents our third and last contribution
(see Chapter 5). We described each cooperative analysis by explaining its purpose, i.e.,
which Android framework or programming language feature it deals with. The tools used
in each cooperative analysis were listed along with an explanation of their purpose in this
context. The different strategies employed per cooperative analysis were also explained in
detail. Along with these strategies, BREW could be used to evaluate all six cooperative
analyses. By comparing the results achieved for cooperative and standalone (see above)
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analyses, we could answer our main research question:
RQmain: To which extent can cooperative analyses

outperform standalone taint analyses?

Cooperative analyses outperform their standalone counterparts with respect to accuracy
most of the time – to which extent depends on the individual strategies and tools form-
ing the cooperative analysis. To complete the third contribution, we briefly discussed
the automatic applicability of the presented cooperative strategies as well as secondary
performance aspects (e.g., efficiency in terms of analysis time).

6.1 Future Work
In the future, we will maintain and extend the AQL and the frameworks implementing it
to be able (1.) to pick low-hanging fruits, (2.) to run a competition, and (3.) to realize
the vision that motivated this research from its beginning.

Low-hanging fruits To pick low-hanging fruits, more tools, better configured tool vari-
ants and further benchmark suites and approaches could be integrated in AQL context.
With each new or improved tool being released, cooperative analyses can potentially be
upgraded by replacing the tool currently used with the new one. For example, early ex-
periments indicate that the employment of ICCBot [97] instead of IC3 would improve
cooperative analyses tailored to ICC and IAC. Many analysis tools can be configured dif-
ferently to handle certain features more accurately. Hence, configuring an AQL-System
to select tool variants with respect to the features denoted in a query could increase the
accuracy of analyses executed via this AQL-System. It has already been shown that case-
specific configurations can achieve better results if certain features are present in the app
under analysis [86]. Recently more (real-world) benchmark suites (e.g., FossDroid [86])
and benchmark approaches (e.g., benchmark fuzzing [94]) tailored to Android taint anal-
ysis have been released. With their integration in BREW, we can potentially gain new,
yet unknown insights.

Competitions We want to encourage the community to start a first competition in
the field of Android taint analysis as it is known to often push research to the next level
and to promote open science. From a technical perspective, automatic and reproducible
benchmarks as implemented in BREW can be used to run such competitions. Once partic-
ipants submit configurations for BREW (or AQL-Systems) that allow us to access their
(standalone or cooperative) analyses, these can be evaluated automatically and compared
competitively against previously evaluated analyses. Due to the reproducibility of bench-
marks executed via BREW we would not even be forced to rerun previous evaluations.
A competition would allow us to detect and also measure improvements and regressions
perhaps on an annual basis.

Although we might be ready from a technical perspective, open organizational ques-
tions must first be answered in order to successfully bring a competition to life. For
example: When, where and how often should the competition take place? How to mo-
tivate potential participants to take part in the competition and how to reimburse them
for their effort? The histories of successful competitions provide potential answers to such
questions. For example, the SV-Comp [31, 185] takes place annually as a satellite event
of the TACAS conference. The SV-Comp participants are motivated by offering them a
trophy and reimbursed with a citation in the competition’s annual report.
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The Vision With the AQL and the frameworks implementing it, the foundations are
laid to create an entire cooperative analysis infrastructure that follows the principles of
on-the-fly computing [82]. Analysis experts and developers could offer their tools (along
with configurations for AQL-Systems) as services on software markets. Compute cen-
ters, providing extensive resources in regard to computation power and time, could host
AQL-WebServices in order to execute these services. Cooperative analysis providers
could implement and share strategies that on-the-fly combine different services hosted
in distinct compute centers. Automated and reproducible benchmarks could be used to
assess and consequently rate the quality of single services (standalone tools) or composi-
tions (cooperative analyses). Finally, the user could access everything by formulating a
single AQL-Query. The user in this context may be a security expert, an analysis or app
developer as well as an everyday smartphone user.

Let us recapitulate the arms race between attackers and defenders mentioned in our in-
troduction. In this race, attackers attempt to e.g., steal data and defenders try to prohibit
such malicious behavior. Having an infrastructure (as described above) in place would
empower the defenders as they could focus on their subtasks while silently contribut-
ing to cooperative analyses composed by third parties. Additionally, resource constraints
could become less restrictive since the execution of analyses can be outsourced to compute
centers. Most importantly, the third participant who is unwillingly taking part in this
race, the non-expert user, could eventually catch up by gaining access to the defenders’
instruments. In conclusion this infrastructure would realize the vision of:

Cooperative Analysis for Everyone

6.2 Discussion
When presenting the cooperative analysis approach (or automatic and reproducible bench-
marks) in the context of Android taint analysis, we frequently get a question afterwards
that asks whether the approach can also be applied to other types of analyses, other pro-
grams than Android apps or in the context of other programming languages than Java.
In short, the generalizability of the approach is questioned.

The answer to this question is twofold. On the one hand, an approach must be tai-
lored to a specific field of application as demanded by ▶ Req. 9. On the other hand,
the approach should be extensible (cf. ▷ Req. 9). Accordingly, what we are dealing with
is a tradeoff – a tradeoff between generalizability and specificity. A strictly generalizable
approach would only offer little benefit as we would have to broaden the meta-models
defining AQL-Queries and AQL-Answers such that we might end up with AQL-Queries
being similar to plain command line instructions and AQL-Answers being indistinguish-
able from arbitrary XML documents. A strictly specific approach would not be applicable
to other types of analyses, programs or programming languages.

To deal with this tradeoff, we designed the AQL and the AQL-System so that both
can be adapted easily to be employable in different contexts. We only have to adapt
the meta-models defining AQL-Queries and AQL-Answers to adapt the language. This
is also sufficient to adapt the implementation since parsers and data structures are gen-
erated on the basis of these meta-models. Still, the implementation of default analysis
tools, operators and preprocessors must be adapted once the data structures are changed.
Additionally, new converters must be created when dealing with yet unsupported tools.36

36The difficulty to create a converter always depends on the input given. A structured format can
easily be parsed and converted. Unstructured formats or formats relying on natural language are harder
to convert. As a rule of thumb: 219 lines of code were required on average to construct the 11 converters
currently shipped with the AQL-System.
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To summarize, the AQL and its implementations can be used in the context of other
types of analyses, programs and programming languages, however, few manual adapta-
tions are required.

The AQL in its current shape has very little in common with its first version proposed
back in 2017 [63]. The language has grown with the objectives we chased. If we had known
all objectives from the beginning, the language would probably be defined differently. New
objectives and ideas required new language elements and adaptations of the associated
implementations. In case of the AQL, denoting features in queries, for example, was not
possible from the beginning, hence, selecting tools or strategies depending on the features
given was not possible either. In regard to the AQL-System, all tools, for example, were
executed locally, thus, we did not think about executing tools in distinct environments. In
particular the latter led to a non-negligible engineering overhead because we had to largely
refactor the AQL-System’s implementation and had to implement AQL-WebServices.
However, we initially did all this to solely use a single dynamic tool (PIM), that required
an Android emulator and consequently a distinct environment, in a cooperative analysis.

Regardless of all this engineering effort spent, some features and functionalities are
still missing. For instance, it is not possible to issue a query per taint flow contained in an
answer. This would be required to dynamically check statically found taint flows. More-
over, for the integration of dynamic taint analysis tools there are no specific instruments
available to e.g., describe execution traces in queries or answers.

In contrast, dozens of features exist which might be considered as nice-to-have without
any scientific value. For example, the AQL-System comes with a GUI that provides a lot
of usability (e.g., a graphical viewer for AQL-Answers and an editor for AQL-Queries with
auto-completion) but does not improve or influence the cooperative analysis approach at
all. The same holds for BREW. We implemented, for instance, the capability to export
benchmarks as JUnit tests such that benchmarks can easily be integrated in continuous
integration pipelines. Even though this is certainly a useful feature for analysis developers,
it is absolutely irrelevant for our research on automatic and reproducible benchmarks.

In conclusion, we can infer another tradeoff between engineering effort and scientific
relevance. Only the future can tell if the effort spent has additional value in form of
impact in research or industry. Anyhow, we think the implementations developed in AQL
context cannot be treated as research prototypes anymore – we handle them as mature
tools ready to be employed in production.

6.3 Summary
In this thesis, we presented a cooperative analysis approach realized by means of the AQL.
We syntactically and semantically specified the AQL and described the entire approach
including its implementation in detail (see Chapter 3). With the introduction of automatic
and reproducible benchmarks, we showed how to use the AQL for benchmarking taint
analyses (see Chapter 4). In a thorough evaluation, we presented six cooperative analyses
(see Chapter 5) and found out that cooperative analyses most of the time outperform their
standalone counterparts.
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Appendix
A.1 Code Comparison (Source Code, Jimple, Bytecode)
The three code snippets below contain the same class, namely A, in three different formats:
source code, Jimple (IR) and bytecode. Listing 16 shows the source code of class A.

1 class A {
2 public int increment(int value) {
3 return value + 1;
4 }
5 }

Listing 16: Class A (Source Code)

1 class A extends java.lang.Object {
2 void <init>() {
3 A r0;
4 r0 := @this: A;
5 specialinvoke

→ r0.<java.lang.Object:
→ void <init>()>();

6 return;
7 }
8
9 public int increment(int) {

10 A r0;
11 int i0, $i1;
12 r0 := @this: A;
13 i0 := @parameter0: int;
14 $i1 = i0 + 1;
15 return $i1;
16 }
17 }

Listing 17: Class A (Jimple)

The class only holds one method (increment).
It takes a single integer input (value) and re-
turns the same value increased by one. The
increment happens in Line 3: value + 1;

In Jimple we can suddenly see two meth-
ods (see Listing 17). The first (<init>)
is the default constructor. In source code
the default constructor is always implicitly
given if no other constructor is specified. In
Jimple any constructor is explicitly denoted.
Furthermore, additional variables are intro-
duced. For example, the return value is ex-
plicitly stored in $i1 in Line 14. The incre-
ment happens in the same line.

The bytecode version (see Listing 18)
also holds the default constructor (Lines 2–
6). Variables do not appear. Instead, we
have one instruction loading a certain value
(Line 10) and one instruction representing
a constant (Line 11). The addition is per-
formed by another instruction (Line 12).

As the comparison shows, all versions
contain the same information in different for-
mats. Source code appears to be optimized
for humans as it is the shortest and proba-
bly the easiest to read. The opposite holds
for bytecode. It appears lengthy and hard

to read, however, this will not bother a machine. Finally, Jimple can be considered as a
mixture of source code and bytecode as it shows commonalities with both.

1 class A {
2 A();
3 Code:
4 0: aload_0
5 1: invokespecial #1 // Method java/lang/Object."<init>":()V
6 4: return
7
8 public int increment(int);
9 Code:

10 0: iload_1
11 1: iconst_1
12 2: iadd
13 3: ireturn
14 }

Listing 18: Class A (Bytecode)
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APPENDIX

A.2 Framework, Tool and Benchmark Suite Contribution
Summary

Table 32 lists all frameworks, tools and benchmark suites that have (partially) been de-
veloped as a part of this thesis. Note that the AQL-System includes all the default tools
mentioned throughout the thesis.

Table 32: Framework, Tool and Benchmark Suite List

Framework Version References∗

AQL-System 2.0.1t [63] [114]

CoDiDroid — [75] [123]

BREW (ReproDroid) 2.0.1t [67] [175]

Tool Version References∗

AMT 2.0.1t [76] [102]

Jicer 2.0.0 [87] [159]

APK-Simplifier 2.0.1t [92] [108]
AQL-CheckOperator 2.0.0 [75] [112]

NOAH 2.0.1t [75] [168]
PermissionFinder 2.0.1t — [170]

PIM 2.0.1t [75] [171]

Benchmark Suites Version References∗

TaintBench 1.0 [91] [186]

Feature-Checking 2.0.1t [67] [175]
Intent-Matching 2.0.1t [67] [175]

t: to be released. Currently, only included in Appendix A.6.
∗: Publication, Link.
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A.3 Additional Example (Intents, Intent Filters, Intent Sinks,
Intent Sources)

Figure 38 shows an example that includes one intent sink and two intent sources. For all
three an intent triple (action, category, data) and a statement (e.g., startActivity(...))
is depicted. Once the Android system attempts to deliver the intent to the correct intent
source, the system needs to find out which intents and intent filters match. In this example
the intent sent by the intent sink of MainActivity can only be matched by the intent
filter of TargetActivityA. The intent filter of TargetActivityB denotes a different intent
triple. For example, the action string (STORE) does not match the intent’s one (SEND).

Intent Sink
(Activity: MainActivity)

startActivity(…)

Intent
Action: SEND
Category: DEFAULT
Data: -

Intent Source
(Activity: TargetActivityA)

getStringExtra(…)

Intent Filter
Action: SEND
Category: DEFAULT
Data: -

Intent Source
(Activity: TargetActivityB)

getExtras(…)

Intent Filter
Action: STORE
Category: STORAGE
Data: (type: jpeg/image)

no match

match

Figure 38: Example Showing One Intent Sink and Two Intent Sources

An analysis, that attempts to find inter-component flows, therefore requires both:
First, the intent triple to find out which intents and intent filters match. Second, the
statement to identify and document inter-component flows.

As visible in Figure 38 intents and intent filters are complete without a reference that
identifies the statement they are associated with. For intent sinks and intent sources the
intent triples are optional but the statement (reference) is required. Hence, if no intent
triples would be given in the example above, we could still compute all possible inter-
component flows by connecting all intent sinks with all intent sources, however, this would
give us an infeasible flow from startActivity(...) to getExtras(...).
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A.4 Experimental Details
A.4.1 Execution Environment: Specifications

The execution environments described in the following have been used to carry out all
experiments with respect to the baseline (see Section 4.2) and the evaluation (see Chap-
ter 5).

Execution Environment 1: All tools except PIM have been executed on a Debian 9
(Stretch) virtual machine (VM). Java 17 (Oracle; 17+35-LTS-2724) and Java 8 (Oracle;
1.8.0_331-b09) have been installed since some analysis tools require a Java version < 9.
The VM was granted access to two cores of an Intel© Xeon® CPU (E5-2695 v3 @ 2.30GHz)
and 128 GB memory. 96 out of 128 GB were assigned to all memory-intensive analysis
tools.

Execution Environment 2: PIM, the only dynamic tool in our scope, requires an
Android (virtual) device to be executed. To run a virtual device (e.g., the Android em-
ulator) efficiently, hardware support is required. Thus, running a virtual device inside a
virtual machine is barely possible. Consequently, we used another execution environment
for the execution of PIM. With the help of AQL-WebServices the two environments
(or the AQL-Systems employed) were interacting with each other (see Subsection 3.4.5).
The system executing PIM was a Windows 10 laptop (Dell XPS 13 9310) supplied with
an Intel© Core® i7 CPU (i7-1185G7 @ 3.00GHz), 32 GB memory and Java 17 (Oracle;
17+35-LTS-2724) installed.

A.4.2 Experiment 1: Details

Table 33 (see Page 155) shows a more detailed version of Table 10 (see Page 102). Each cell
of this table shows the results for all four versions of the Feature-Checking benchmark
suite. It becomes visible that some tools cannot handle certain versions at all. No version of
Amandroid is able to successfully analyze any app that targets API 26 or 30. Same holds
for the old version of IccTA. DidFail fails to analyze any app except those that target
API 19 and have been built with up-to-date build tools. DroidSafe is also only able to
analyze apps that target API 19 but fails if up-to-date build tools are used to construct
the apps. In general, we observe deviating behavior across the board. Experiment 2 is
conducted to determine what causes this behavior (see Subsection 4.2.2).
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Table 33: Experiment 1: Results for the Feature-Checking Benchmark Suite

Amandroid DIAL- Did- Droid- FlowDroid IccTA
Feature 3.1.2 3.2.0 3.2.1 Droid Fail Safe old 2.7.1 2.9.0 2.10.0 old 2.9.0 2.10.0

Aliasing ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✓⃝ ✓⃝, ✘⃝†, ✘⃝†, ✘⃝† ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝
Static ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✘⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝† ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝
Callbacks ✔⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝† ✔⃝, ✔⃝, ✘⃝, ✘⃝ ✔⃝, ✔⃝, ✘⃝, ✘⃝ ✔⃝, ✔⃝, ✘⃝, ✘⃝ ✔⃝, ✔⃝, ✘⃝, ✘⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝ ✔⃝, ✔⃝, ✘⃝, ✘⃝ ✔⃝, ✔⃝, ✘⃝, ✘⃝
Life-Cycle ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝† ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝
Inter-Procedural ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝† ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝
Inter-Class ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✘⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝† ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝
IAC ✘⃝∗, ✘⃝†∗, ✘⃝†∗, ✘⃝∗ ✘⃝∗, ✘⃝†∗, ✘⃝†∗, ✘⃝∗ ✘⃝∗, ✘⃝†∗, ✘⃝†∗, ✘⃝∗ ✘⃝, ✘⃝, ✘⃝, ✘⃝ ✘⃝†∗, ✘⃝†∗, ✘⃝†∗, ✘⃝∗ ✘⃝∗, ✘⃝†∗, ✘⃝†∗, ✘⃝†∗ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘⃝∗, ✘⃝†∗, ✘⃝†∗, ✘⃝∗ ✘⃝∗, ✘⃝∗, ✘⃝∗, ✘⃝∗ ✘⃝∗, ✘⃝∗, ✘⃝∗, ✘⃝∗
ICC (Explicit) ✓⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✔⃝, ✔⃝, ✘⃝, ✘⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✘⃝ ✓⃝, ✘⃝†, ✘⃝†, ✘⃝† ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝, ✘⃝, ✘⃝ ✘⃝, ✘⃝, ✘⃝, ✘⃝
ICC (Implicit) ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝, ✓⃝, ✓⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✘⃝ ✓⃝, ✘⃝†, ✘⃝†, ✘⃝† ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✓⃝, ✘⃝, ✘⃝, ✘⃝ ✓⃝, ✘⃝, ✘⃝, ✘⃝
Flow-Sensitivity ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✔⃝ ✘,✘†,✘†,✘† ✔⃝, ✔⃝, ✘⃝, ✔⃝ ✔⃝, ✘⃝, ✘⃝, ✔⃝ ✔⃝, ✘⃝, ✘⃝, ✔⃝ ✔⃝, ✘⃝, ✘⃝, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝, ✘⃝, ✔⃝ ✔⃝, ✘⃝, ✘⃝, ✔⃝
Context-Sensitivity ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✘⃝† ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✘⃝†, ✘⃝†, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝ ✔⃝, ✔⃝, ✔⃝, ✔⃝
Field-Sensitivity ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✓⃝ ✓⃝, ✘⃝†, ✘⃝†, ✘⃝† ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝
Object-Sensitivity ✓⃝, ✘⃝†, ✘⃝†, ✓⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝, ✘⃝†, ✘⃝†, ✘⃝ ✘⃝†, ✘⃝†, ✘⃝†, ✘⃝ ✓⃝, ✘⃝†, ✘⃝†, ✘⃝† ✓⃝, ✓⃝, ✘⃝, ✘⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✘⃝, ✘⃝, ✘⃝, ✘⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝ ✓⃝, ✘⃝†, ✘⃝†, ✘⃝ ✓⃝, ✘⃝, ✘⃝, ✘⃝ ✓⃝, ✓⃝, ✓⃝, ✓⃝
Path-Sensitivity ✘,✘†,✘†,✘ ✘,✘†,✘†,✘ ✘,✘†,✘†,✘ ✘

†,✘†,✘†,✘ ✘,✘†,✘†,✘† ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘†,✘†,✘ ✘,✘,✘,✘ ✘,✘,✘,✘
Thread-Awareness ✔,✘†,✘†,✔ ✔,✘†,✘†,✔ ✔,✘†,✘†,✔ ✘

†,✘†,✘†,✘ ✔,✘†,✘†,✘† ✔,✔,✔,✔ ✔,✔,✔,✔ ✔,✔,✔,✔ ✘,✘,✘,✘ ✔,✘†,✘†,✘ ✔,✔,✔,✔ ✘,✘,✘,✘
Reflection ✓,✘†,✘†,✓ ✓,✘†,✘†,✓ ✓,✘†,✘†,✓ ✘

†,✘†,✘†,✘ ✓,✘†,✘†,✘† ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘,✘,✘ ✘,✘†,✘†,✘ ✘,✘,✘,✘ ✘,✘,✘,✘
⃝ supported, ✔ confirmed, ✓ partially confirmed, ✘ not confirmed, ∗ not promised without cooperation, † aborted

App version (API) order: 19, 26, 30, 19’ (19’ was created with up-to-date build tools - API 31.)
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A.4.3 Benchmark Set: Play Store Top15 Free

This section identifies the apps that belong to the Play Store Top 15 Free (Top15) bench-
mark corpus. Since it is only a collection of apps without any form of ground truth, it
does not constitute a benchmark suite. All the recorded statistics are listed in Table 34.

Table 34: Play Store Top-15 Free Benchmark Set Statistics

Source Code Android API
Logo Name Classes Methods Statements Minimal Target

1. TikTok 121 162 559 665 6 987 257 19 30
Package: com.zhiliaoapp.musically, Hash (SHA-1): 351af2d407e4ae7be434ce3d0152e09bc41b4936, Date: 22.04.2022 06:38:24

2. Corona-Warn-App 11 227∗ 48 762 742 030 23 29
Package: de.rki.coronawarnapp, Hash (SHA-1): bfc67f00896241dec51a1a964a005290e1f04a07, Date: 25.04.2022 16:35:02

3. QR&Barcode-Scanner 12 701∗ 63 529 1 037 444 16 29
Package: com.gamma.scan, Hash (SHA-1): 921f31b9e90deec06752503e5a8f20dbbdb80c94, Date: 22.04.2022 21:09:14

4. PayPal 73 948 356 409 4 761 000 23 30
Package: com.paypal.android.p2pmobile, Hash (SHA-1): 2d879bd79eb2ec9d72fe8af0c2325a838f19cc8c, Date: 19.03.2022 14:35:27

5. eBay-Kleinanzeigen 39 217 225 259 2 846 580 23 31
Package: com.ebay.kleinanzeigen, Hash (SHA-1): 3367e05701c8655457b7f5310168f98bed72f3cb, Date: 25.04.2022 16:39:43

6. DB-Navigator 20 494 111 514 1 478 644 21 29
Package: de.hafas.android.db, Hash (SHA-1): 7575dc6e35eeb12b5454bf8b1c16f25a37c738ad, Date: 22.04.2022 18:26:28

7. Samsung-Smart-Switch-Mobile 13 630 86 333 1 443 881 14 29
Package: com.sec.android.easyMover, Hash (SHA-1): b79f856ec5c1ce8bd1fda882600117dc758d94d2, Date: 24.04.2022 04:12:02

8. VR-SecureGo-plus Error†

Package: de.fiduciagad.securego.vr, Hash (SHA-1): −, Date: −

9. WhatsApp 16 667 56 403 1 405 338 16 29
Package: com.whatsapp, Hash (SHA-1): e8315435487e16d1cb549567a66dee6e482b5758, Date: 23.04.2022 23:04:57

10. OTTO 11 444 59 728 778 473 21 30
Package: de.cellular.ottohybrid, Hash (SHA-1): 52a0d96680abe7f11da0566a9fa53f538e1fc9eb, Date: 25.04.2022 01:41:09

11. Telegram 14 595 79 500 1 530 637 23 29
Package: org.telegram.messenger, Hash (SHA-1): bb8385e6850a169e5e519fd87119ce56c1c18a91, Date: 24.04.2022 00:15:07

12. Instagram 72 911 228 920 3 868 328 23 30
Package: com.instagram.android, Hash (SHA-1): 7b94886774199bcbd836339e5bada1fc5c653fed, Date: 23.04.2022 23:19:59

13. S-pushTAN 6 365∗ 25 251 502 947 23 30
Package: com.starfinanz.mobile.android.pushtan, Hash (SHA-1, shortened): d11358...1bd9a7, Date: 25.04.2022 17:32:23

14. Komoot 26 367 138 176 1 832 701 21 30
Package: de.komoot.android, Hash (SHA-1): 357dd4a2ec2f3b0b2fdc4bc3b4a0369b96d117fc, Date: 19.04.2022 00:22:46

15. Disney+ 34 470 176 077 2 125 684 21 30
Package: com.disney.disneyplus, Hash (SHA-1): 8ca88b8b9306e63d2ffe0397bebb96fb40ec7c73, Date: 24.04.2022 02:08:54

16. Lidl 19 692‡ 100 020‡ 1 287 780‡ 21 30
Package: com.lidl.eci.lidlplus, Hash (SHA-1): e075cdb5f077ec2e4fe8b2ab215dfeded480bd95, Date: 22.04.2022 21:58:18

Sum 494 890 2 315 546 32 628 724 − −
Average 32 993 154 370 2 175 248 20 29
Median 19 692 100 020 1 478 644 21 30

∗: A single .dex file holds all classes.
†: Could not be downloaded due to the following error: “invalid package/non-free/not compatible”

‡: The class com.salesforce.marketingcloud.w.a.e was skipped while counting.

The apps were chosen by selecting the top 15 apps in the “Top-Charts” (free) category of
Google’s Play Store [142].37,38 To avoid legal issues the apps (.apk files) are not part of the
digital appendix. However, given the information (package, hash and date) in the table

37The Play Store was accessed from within Germany on the 25th of April 2022 (10:30 am).
38Since one app (VR-SecureGo-plus) could not be downloaded, the top 16 apps were actually selected.
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above, all .apk files can be downloaded again via APK-Downloader [107].39 The logos
were freely available and have been taken from Google’s Play Store.40 While Soot [179]
has been used to count the number of classes, methods and statements, ApkParser [110]
was employed to extract manifest information (minimal and targeted Android API ver-
sion).

The VR-SecureGo-plus app could not be downloaded due to access restrictions of
APK-Downloader [107]. Statistics could initially not be recorded for (at least) the
eBay-Kleinanzeigen app while employing Soot in version 3.3.0 [180]. After switching
to a more recent version of Soot (4.3.0 [181]) the statistics for all apps could be recorded.
Consequently, we expect that some tools, which also rely on older Soot versions, will
struggle to analyze the respective apps – at least the eBay-Kleinanzeigen app.

The class com.salesforce.marketingcloud.w.a.e of the Lidl app was skipped while
counting classes, methods and statements since its method b caused an OutOfMemoryEx-
ception by exceeding 8 GB of memory. Accordingly, we foresee that some tools, also
employing Soot, will fail to analyze the Lidl app for the same reason.

39To download all 15 apps about 600 MB disk space is required.
40The copyright belongs to the respective vendors.
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A.5 Grammar & Schemas
A.5.1 AQL-Query Grammar

The grammar in JavaCC format comprises more than 700 lines of code. The respective
.jj file is available online [113]. An excerpt that represents production rule p0 can be
found in Listing 19.

1 void queries() :
2 {
3 Token variable;
4 }
5 {
6 {
7 questionHandler.startQueries();
8 }
9 (

10 {
11 questionHandler.startQuery();
12 }
13 (
14 query()
15 |
16 (
17 variable = < VARIABLE > "="
18 {
19 questionHandler.setVariable(variable.toString());
20 }
21 query()
22 )
23 )
24 {
25 questionHandler.endQuery();
26 }
27 )+
28 {
29 questionHandler.endQueries();
30 }
31 < EOF >
32 }

Listing 19: Excerpt of QuestionGrammar.jj

A.5.2 AQL-Answer XSD

The XSD that further specifies the content of AQL-Answers is available online [111]. For
brevity only an excerpt is presented in this appendix (see Listing 20). The excerpt shows
the schema definition’s content with respect to “Flow” elements.
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1 <xs:element name="flow">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element ref="reference" maxOccurs="unbounded"

→ minOccurs="0"/>
5 <xs:element ref="attributes" minOccurs="0"/>
6 </xs:sequence>
7 </xs:complexType>
8 </xs:element>

Listing 20: Excerpt of answer.xsd

A.5.3 Configuration XSD

The configuration of an AQL-System must adhere to the schema specified in an XSD [124].
Here we only show an excerpt that provides a glimpse at the definition of “Execute” ele-
ments (see Listing 21).

1 <xs:element name="execute">
2 <xs:complexType>
3 <xs:choice>
4 <xs:sequence>
5 <xs:element ref="run"/>
6 <xs:element ref="result"/>
7 <xs:element ref="instances"/>
8 <xs:element ref="memoryPerInstance"/>
9 </xs:sequence>

10 <xs:sequence>
11 <xs:element ref="url"/>
12 <xs:element ref="username"/>
13 <xs:element ref="password"/>
14 </xs:sequence>
15 </xs:choice>
16 </xs:complexType>
17 </xs:element>

Listing 21: Excerpt of config.xsd

A.5.4 Rules XSD

Cooperative strategies in form of transformation rules can be provided to an AQL-System
in form of .xml files that follow the schema defined via an XSD [187]. Listing 22 shows
a excerpt of the respective .xsd file. The excerpt shows how input/output (inputQuery,
outputQuery) and conditional (query) transformation rules are specified.
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1 <xs:element name="rule">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element ref="priority" maxOccurs="unbounded"/>
5 <xs:choice minOccurs="1">
6 <xs:sequence>
7 <xs:element ref="inputQuery"/>
8 <xs:element ref="outputQuery"/>
9 </xs:sequence>

10 <xs:element ref="query"/>
11 </xs:choice>
12 </xs:sequence>
13 <xs:attribute type="xs:string" name="name" use="optional"/>
14 </xs:complexType>
15 </xs:element>

Listing 22: Excerpt of rules.xsd

A.5.5 Exemplary Schema Instance

Listing 23 shows an instance of this latter schema. It denotes the two strategies employed
in Example 3 (see Subsection 3.3.1). The first rule (Lines 2–12) appends the Arguments-
Query. The second (Lines 13–25) embodies the respective ICC strategy. The feature NoICC
(see Line 18) comes into play so that the first rule is not applied again after applying the
second one.

1 <rules>
2 <rule name="AskForFeaturesRule">
3 <priority>1</priority>
4 <inputQuery>
5 Flows IN App(’%FILE_1%’) ?
6 </inputQuery>
7 <outputQuery>
8 Flows IN App(’%FILE_1%’) FEATURING
9 Arguments IN App(’%FILE_1%’) .

10 ?
11 </outputQuery>
12 </rule>
13 <rule name="IccRule">
14 <priority>0</priority>
15 <priority feature="ICC">1</priority>
16 <query>
17 CONNECT [
18 Flows IN App(’%APP_APK_IN%’) FEATURING ’NoICC’ ?,
19 CONNECT [
20 IntentSinks IN App(’%APP_APK_IN%’) ?,
21 IntentSources IN App(’%APP_APK_IN%’) ?
22 ] ?
23 ] ?
24 </query>
25 </rule>
26 </rules>

Listing 23: Example Rules File
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The first rule is an input/output transformation rule. It always has a priority of 1 but
can only be applied if a query matches the input query as denoted in Line 5. The second
rule is a conditional transformation rule which has a default priority of 0 and a priority of
1 for the feature ICC (see Lines 14, 15). Thus, it is not applied unless the feature ICC is
present in the given query. For example, for the two queries below it has a priority of 0:

Flows IN App(’A.apk’) ?
Flows IN App(’A.apk’) FEATURING ’Reflection’ ?

However, for the next two queries it has a summed-up priority of 1 (0 + 1) since the
feature ICC is enumerated:

Flows IN App(’A.apk’) FEATURING ’ICC’ ?
Flows IN App(’A.apk’) FEATURING ’ICC’, ’Reflection’ ?

The priority of tools is computed analogously.
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A.6 Artifact (Digital Appendix)
The artifact (or digital appendix) of this thesis can be found at Zenodo (https://doi.
org/10.5281/zenodo.7404900). All released and future versions of all frameworks, tools
and benchmark suites developed partially for this thesis can be found under the links
denoted in Appendix A.2.41 Additional information about the contributions and artifacts
of this thesis can be found at https://FelixPauck.de.

A.6.1 Table of Contents

The artifact’s table of contents can be derived from its directory structure as depicted in
Figure 39. On the first level the directories private and public can be found. Only the

i artifact

i private

g DIALDroid-Bench

g Top15

i public

i Baseline

g Experiment1-Feature_Checking

g Experiment2-Tool_Capabilities

g Experiment3-Accuracy_Promises

g Experiment4-Accuracy_Comparison

g Experiment5-Real-World_Readiness

i Evaluation

g Cooperation1-ICC-Slicing

g Cooperation2-IAC-AppMerging

g Cooperation3-Reflection-NativeCode

g Cooperation4-FalsePositiveElimination

g Cooperation5-SourcesAndSinks

g Cooperation6-BackwardCompatibility

g Implementation

Figure 39: Artifact Directory Structure

public directory is actually available at
Zenodo. The private part is not publicly
available for legal reasons as we refrain
from redistributing commercial software.
Its only content are the app sets that
belong to DIALDroid-Bench and the
Top15 set.

The public directory holds three
sub-directories, namely Baseline, Eva-
luation and Implementation. The first
two in turn hold one directory per ex-
periment or cooperative analysis. Each
of these Experiment or Cooperation
directories holds the benchmark suites
used and raw results achieved. Any
other material, required to replicate the
results, are also attached. For ex-
ample, the source and sink lists used
by Cooperative Analysis 5 are attached
to the Cooperation5 directory. The
Implementation sub-directory holds all
frameworks, tools and benchmarks suites
as listed in Appendix A.2 – including ver-
sions that are not publicly released yet.

A.6.2 Raw Results

Raw results mostly come in two formats: result_*.zip files (result files) represent bench-
mark runs stored in BREW’s format, whereas log_*.txt are BREW’s log files. Once
we load a result file with BREW we can inspect the benchmark including the expected
answers belonging to the suite’s (incomplete) ground truth and the actual answers the re-
spective (cooperative) analysis determined. Both types of answers come in AQL-Answer
format. These can be viewed as plain .xml files or as a graph. Furthermore, all answers
belonging to a benchmark can be exported via BREW. Listing 24 shows a shortened
(see Line 23) AQL-Answer determined for one app of the DirectLeak suite (API 19).
The listing shows half of the definition of a flow by denoting the reference where the
flow starts (see Lines 5 ff.). The content of this example follows the schema presented

41Some frameworks, tools and benchmark suites are not yet released but included in the artifact.
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in Appendix A.5.2. The graphical representation of the complete flow can be viewed in
Figure 40.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <answer>
3 <flows>
4 <flow>
5 <reference type="from">
6 <statement>
7 <statementfull>$r4 = virtualinvoke r2.&lt;android.telephony.

→ TelephonyManager: java.lang.String getLine1Number()&gt;()</
→ statementfull>

8 <statementgeneric>android.telephony.TelephonyManager: java.lang.String
→ getLine1Number()</statementgeneric>

9 <linenumber>21</linenumber>
10 </statement>
11 <method>&lt;de.foellix.aql.aqlbench.directleak.MainActivity: void taint

→ ()&gt;</method>
12 <classname>de.foellix.aql.aqlbench.directleak.MainActivity</classname>
13 <app>
14 <file>/home/fpauck/benchmarks/DirectLeakSet/DirectLeak_19.apk</file>
15 <hashes>
16 <hash type="MD5">87fba7d4e21a614471a7ff79bd413355</hash>
17 <hash type="SHA-1">651bcc08b7920cb161ae8679fc31255b6d83f405</hash>
18 <hash type="SHA-256">2163

→ bb0a930f8712aa09e75c3815b30c5cddfe2e976e1b4bfef19b09779f83ad</
→ hash>

19 </hashes>
20 </app>
21 </reference>
22 <reference type="to">
23 ...
24 </reference>
25 </flow>
26 </flows>
27 </answer>

Listing 24: Excerpt of an AQL-Answer

Figure 40: AQL-Answer Example Graph

A shortened excerpt of an example log file is shown in Listing 25. It first shows when
and which benchmark case is started (see Line 1), the associated initial query (Line 2)
and the transformed query (Line 5). Here the query has been transformed such that
FlowDroid (old) and a certain source and sink list is used explicitly. Second, the tools
that start and finish are denoted (Line 7, 10, 12, 14). How exactly a tool is launched is
shortened here but normally shown inside the square brackets. Finally, in Line 15 the
analysis is finished. Its result is output in form of an AQL-Answer (Line 17 ff.). The last
line, shows the current status of the benchmark. After finishing the first benchmark case,
the first true positive is found (Line 21).
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6 CONCLUSION

1 BREW 05/09/2022 - 13:42:34 *** Starting Benchmark Case 1/8 *** (ID: 1)
2 BREW 05/09/2022 - 13:42:34 Starting: Flows IN App(’/home/fpauck/benchmarks/

→ DirectLeakSet/DirectLeak_19.apk’) ?
3 ...
4 BREW 05/09/2022 - 13:42:34 Transformation-rule applied: ToolSelection
5 BREW 05/09/2022 - 13:42:34 Transformed: Flows IN App(’/home/fpauck/benchmarks/

→ DirectLeakSet/DirectLeak_19.apk’) USES ’FlowDroid-1’ WITH ’
→ SourcesAndSinks’ = ’/home/fpauck/tools/FlowDroid/env/SourcesAndSinks.txt’
→ ?

6 ...
7 BREW 05/09/2022 - 13:42:34 Starting execution of internal FlowDroid (1). [...]
8 ...
9 BREW 05/09/2022 - 13:42:38 Result available: /home/fpauck/tools/FlowDroid/old/

→ results/DirectLeak_19_result.txt
10 BREW 05/09/2022 - 13:42:38 Finished execution of internal FlowDroid (1) after 4

→ .01 seconds.
11 ...
12 BREW 05/09/2022 - 13:42:39 Starting execution of default DefaultConverter for

→ FlowDroid (2.0.1-SNAPSHOT). [...]
13 BREW 05/09/2022 - 13:42:39 Storing answered task: /home/fpauck/BREW/data/

→ storage/00002.xml [...]
14 BREW 05/09/2022 - 13:42:39 Finished execution of default DefaultConverter for

→ FlowDroid (2.0.1-SNAPSHOT) after 0.27 seconds.
15 BREW 05/09/2022 - 13:42:39 Finished (after 5.523s): Flows IN App(’/home/fpauck/

→ benchmarks/DirectLeakSet/DirectLeak_19.apk’) ?
16 BREW 05/09/2022 - 13:42:39
17 ***** Answer (/home/fpauck/BREW/answers/answer_09_05_2022-13_42_39-001.xml)

→ *****
18 ...
19 AQL-Answer:
20 ...
21 BREW 05/09/2022 - 13:42:39 *** Finished Benchmark Case 1/8 *** (ID: 1) "

→ getLine1Number() -> sendTextMessage(java.lang.String,java.lang.String,
→ java.lang.String,android.app.PendingIntent,android.app.PendingIntent)":
→ Successful! (Testcases: 8 -> Sources: 8, Sinks: 8 -> Positive cases: 8
→ (8), Negative cases: 0 (0) -> Flows found (per Query): 0 (0), Analysis
→ time without Timeouts/Crashes: 5s (0m), Analysis time with Timeouts/
→ Crashes: 5s (0m), Timeouts/Crashes (per App): 0 (0) -> True Positive: 1,
→ False Positive: 0, True Negative: 0, False Negative: 7 -> Precision: 1.0,
→ Recall: 0.125, F-Measure: 0.222)

Listing 25: Excerpt of log_DirectLeak_flowdroid-1.txt
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