LUKAS KEUCK

DISSERTATION

Fakultät für Elektrotechnik, Informatik und Mathematik

Entwurf eines einstufigen Ladewandlers auf Basis eines LLC-Resonanzwandlers

Von der Fakultät für Elektrotechnik, Informatik und Mathematik der Universität Paderborn

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation von

Lukas Keuck, M.Sc. geboren am 11.01.1987 in Kaiserslautern

Erster Gutachter: Zweiter Gutachter: Prof. Dr.-Ing. Joachim Böcker Prof. Dr.-Ing. Andreas Steimel

Tag der mündlichen Prüfung: 20.03.2023

Paderborn 2023

Diss. EIM-E/372

Lukas Keuck, Dissertation, *Entwurf eines einstufigen Ladewandlers auf Basis eines LLC-Resonanzwandlers*, 2023

Eine neue Idee wird in der ersten Phase belächelt, in der zweiten Phase bekämpft, in der dritten Phase waren alle immer schon begeistert von ihr. — Arthur Schopenhauer (*1788 - †1860)

VORWORT

Die vorliegende Arbeit entstand während meiner langjährigen Tätigkeit als wissenschaftlicher Mitarbeiter am Fachgebiet LEA an der Universität Paderborn. Rückblickend haben zahllose Menschen zum Gelingen dieser Dissertation beigetragen. Den wichtigsten möchte ich an dieser Stelle explizit danken:

Mein besonderer Dank gilt Prof. Dr.-Ing. Joachim Böcker für die freie und offene Arbeitsatmosphäre, die auch Widersprüche und offenen Diskurs zuließ. Der stets respektvolle Umgang trotz intensiver fachlicher Auseinandersetzungen werden mich für mein Leben prägen. Ebenso gebührt mein Dank Dr.-Ing. Norbert Fröhleke und Dr.-Ing. Frank Schafmeister für die wertvollen fachlichen Anregungen. Weiterhin danke ich Prof. Dr.-Ing. Andreas Steimel für die Übernahme des Korreferats.

Für zahllose mitreißende Diskussionen danke ich meinen Kollegen am Fachgebiet LEA, insbesondere meinem treuen Weggefährten Thorsten Vogt, der nicht müde wurde mir für unbedachte Aspekte die Augen zu öffnen. Bedanken möchte ich mich zudem bei den Studenten P. Hosemann, B. Strothmann, R. Unruh und F. Agethen, deren wissenschaftliches Interesse und Abschlussarbeiten nachwirken, sowie meinen studentischen Mitarbeitern M. Schacht und A. Barber für ihre tatkräftige Mitarbeit bei der Erstellung der Labor-Prototypen und Fräsarbeiten.

Die vorliegende Arbeit wäre undenkbar ohne die Liebe und Loyalität meiner Familie. Danken möchte ich besonders dir, Maria, für deinen Rückhalt und die Kraft, die es erst möglich machte, den steinigen Weg zur Promotion durchzuhalten.

> *Lukas Keuck* Paderborn, im August 2022

Heutige On-Board-Ladewandler sind typischerweise aus zwei Stufen aufgebaut, die über einen Spannungszwischenkreis verbunden sind. Als erste Stufe kommt ein PFC-Gleichrichter zum Einsatz, der die Anforderungen an den Netzstrom bezüglich Oberschwingungsgehalt und Leistungsfaktor sicherstellt. Für die zweite Wandler-Stufe hat sich in den vergangenen Jahren ein LLC-Resonanzwandler qualifiziert, der die Ladeleistung an die Traktionsbatterie galvanisch getrennt überträgt. Der Zwischenkreis besteht aus einer Bank von Elektrolytkondensatoren, in denen die pulsierende Eingangsleistung zwischengespeichert wird. Die Kondensatoren machen einen erheblichen Teil des Lader-Volumens aus und altern schnell, was insbesondere für Ladewandler an Bord von Elektrofahrzeugen unerwünscht ist. In der vorliegenden Arbeit wird untersucht, ob diese zweistufige Struktur verworfen werden kann, indem der LLC-Resonanzwandler direkt an die gleichgerichtete Netzspannung angeschlossen wird.

Zum Einsatz des LLC-Resonanzwandlers als einstufiger Ladewandler ist die Schaltung für einen großen Strom- und Spannungsbereich auszulegen. Hierfür wird in der vorliegenden Arbeit eine erweiterte Zeitbereichsanalyse erarbeitet, deren hohe Modellierungsgenauigkeit im Anschluss experimentell nachgewiesen wird. Mit Hilfe dieser Zeitbereichsanalyse werden die Belastungsgrößen des Resonanzwandlers berechnet, um hiermit eine Vorauswahl der Schaltungsparameter treffen zu können. Darauf aufbauend erfolgt die Optimierung des integrierten Transformators als Schlüsselkomponente des Ladewandlers sowie dessen prototypische Realisierung. Um den entworfenen einstufigen Ladewandler am öffentlichen Versorgungsnetz zu betreiben, bedarf es einer PFC-Regelung mit hoher Dynamik und Robustheit, wofür sich konventionelle Regelungsansätze nicht eignen. Daher wurde eine Kaskaden-Hystereseregelung für den LLC-Resonanzwandler entworfen, die sowohl die erforderliche Dynamik als auch Robustheit gegenüber Exemplarstreuungen aufweist. Abschließend wird mittels Prototypen die erzielbare Leistungsdichte ermittelt. Ergebnis: Verglichen mit etablierten Ladewandlern der heutigen Elektrofahrzeuge konnte durch den einstufigen Ansatz die Leistungsdichte um ca. 53% gesteigert werden.

Today's on-board chargers of electric vehicles typically consist of two stages which are connected via a voltage DC link. A PFC rectifier is used as the first stage which ensures that the requirements for the mains current are met with respect to harmonic content and power factor. For the second converter stage, an LLC resonant converter has qualified in recent years which transmits the charging power to the traction battery in a galvanically isolated manner. The DC link consists of a bank of electrolytic capacitors in which the pulsating input power is buffered. The capacitors occupy a large portion of the charger volume and age rapidly, which is particularly undesirable for on-board chargers in electric vehicles. In the presented work, it is investigated whether this two-stage structure can be discarded by connecting the LLC resonant converter directly to the rectified line voltage.

To use the LLC resonant converter as a single-stage charging converter, the circuit must be designed for a wide current and voltage range. For this purpose, an extended time-domain analysis is developed in this thesis, whose high modeling accuracy is subsequently demonstrated experimentally. With the help of this time domain analysis, the stress variables of the resonant converter are calculated in order to be able to make a preselection of the circuit parameters. Based on this, the optimization of the integrated transformer as a key component of the charger is carried out as well as its prototypical realization. In order to operate the designed single-stage charger on the public supply grid, a PFC control with high dynamics and robustness is required, for which conventional control approaches are not suitable. Therefore, a cascade hysteresis control was designed for the LLC resonant converter which has both the required dynamics and robustness against exemplar scattering. Finally, the achievable power density is determined by means of prototypes. Result: Compared to established on-board chargers of today's electric vehicles, the singlestage approach increased the power density by about 53%.

INHALTSVERZEICHNIS

I MOTIVATION & ZIELE DER ARBEIT 1 1 EINLEITUNG 3 1.1 Zweistufige Ladewandler 4 1.2 Einstufige Ladewandler 8 1.3 Ziele & Gliederung der Arbeit 10 II SCHALTUNGSAUSLEGUNG 11 2 ARBEITSBEREICH 13 2.1 Eingangsspannungsbereich 14 2.3 Beschränkung des Stromflusswinkels 14 2.4 Grundlage der Schaltungsauslegung 16 3 AUSLEGUNG DES RESONANZKREISES 19 3.1 Modellierung des Resonanzwandlers im Zeitbereich 19 3.1.1 Normierung 21 3.1.2 Schaltzustände 22 3.1.3 Ausgangsfilter 24 3.1.4 Betriebsarten 25 3.1.5 Numerische Lösung 30 3.2.4 Analyse der Belastungsgrößen 38 3.2.1 Effektivwert des Diodenstroms $I_{0xtcycle}$ 41 3.2.2 Spitzenspannung des Resonanzkondensators 44 3.2.4 Schaltfrequenzüberhöhung f_{5max}/f_{0C} <t< th=""><th>Ζı</th><th>ısamı</th><th>menfassung & Abstract</th><th>vii</th></t<>	Ζı	ısamı	menfassung & Abstract	vii			
1 EINLEITUNG 3 1.1 Zweistufige Ladewandler 4 1.2 Einstufige Ladewandler 8 1.3 Ziele & Gliederung der Arbeit 10 II SCHALTUNGSAUSLEGUNG 11 2 ARBEITSBEREICH 13 2.1 Eingangsspannungsbereich 13 2.2 Ausgangsspannungsbereich 14 2.3 Beschränkung des Stromflusswinkels 14 2.4 Grundlage der Schaltungsauslegung 16 3 AUSLEGUNG DES RESONANZKREISES 19 3.1.1 Normierung 21 3.1.2 Schaltzustände 22 3.1.3 Ausgangsfilter 24 3.1.4 Betriebsarten 25 3.1.5 Numerische Lösung 30 3.1.6 Rechenaufwand 32 3.1.7 Experimentelle Verifikation 33 3.2 Analyse der Belastungsgrößen 33 3.2.1 Effektivwert des Resonanzkromes I _{LScycle} 41 3.2.3 Abschaltfrequenzüberhöhung f_{Smax} / f_0C 43 3.2.4	I MOTIVATION & ZIELE DER ARBEIT 1						
1.1Zweistufige Ladewandler41.2Einstufige Ladewandler81.3Ziele & Gliederung der Arbeit10IISCHALTUNGSAUSLEGUNG112ARBEITSBEREICH132.1Eingangsspannungsbereich132.2Ausgangsspannungsbereich142.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen403.2.2Effektivwert des Diodenstroms $I_{LScycle}$ 413.2.3Abschaltstrom der Transistoren $ I_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/foc 433.2.5Spitzenspannung des Resonanzkondensators443.2.8Fazit der Belastungsgrößenanalyse543.3Kondensatorverluste553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64	1	EIN	ILEITUNG				
1.2 Einstufige Ladewandler 8 1.3 Ziele & Gliederung der Arbeit 10 II SCHALTUNGSAUSLEGUNG 11 2 ARBEITSBEREICH 13 2.1 Eingangsspannungsbereich 13 2.2 Ausgangsspannungsbereich 14 2.3 Beschränkung des Stromflusswinkels 14 2.4 Grundlage der Schaltungsauslegung 16 3 AUSLEGUNG DES RESONANZKREISES 19 3.1 Modellierung des Resonanzwandlers im Zeitbereich 19 3.1.1 Normierung 22 3.1.2 Schaltzustände 22 3.1.3 Ausgangsfilter 24 3.1.4 Betriebsarten 25 3.1.5 Numerische Lösung 30 3.1.6 Rechenaufwand 32 3.1.7 Experimentelle Verifikation 33 3.2 Analyse der Belastungsgrößen 36 3.2.1 Effektivwert des Resonanzstromes $I_{LScycle}$ 40 3.2.2 Effektivwert des Diodenstroms $I_{outcycle}$ 41 3.2.3 Abschaltstrom der Transistoren $ i_{LS0$		1.1	Zweistufige Ladewandler				
1.3Ziele & Gliederung der Arbeit10IISCHALTUNGSAUSLEGUNG112ARBEITSBEREICH132.1Eingangsspannungsbereich132.2Ausgangsspannungsbereich142.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Diodenstroms $I_{LScycle}$ 403.2.2Spitzenspannung des Resonanzkondensators443.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.3Kondensatorverluste553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64		1.2	Einstufige Ladewandler	8			
IISCHALTUNGSAUSLEGUNG112ARBEITSBEREICH132.1Eingangsspannungsbereich132.2Ausgangsspannungsbereich142.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Diodenstroms $I_{LSCycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.2.4Verlustmodellierung553.3Kondensatorverluste543.4Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste54 <td></td> <td>1.3</td> <td>Ziele & Gliederung der Arbeit</td> <td>10</td>		1.3	Ziele & Gliederung der Arbeit	10			
2ARBEITSBEREICH132.1Eingangsspannungsbereich132.2Ausgangsspannungsbereich142.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64	II	SC	HALTUNGSAUSLEGUNG	11			
2.1Eingangsspannungsbereich132.2Ausgangsspannungsbereich142.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Spitzenspannung des Resonanzkondensators443.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64	2	ARE	BEITSBEREICH	13			
2.2Ausgangsspannungsbereich142.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64		2.1	Eingangsspannungsbereich	13			
2.3Beschränkung des Stromflusswinkels142.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten243.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64		2.2	Ausgangsspannungsbereich	14			
2.4Grundlage der Schaltungsauslegung163AUSLEGUNG DES RESONANZKREISES193.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64		2.3	Beschränkung des Stromflusswinkels	14			
3 AUSLEGUNG DES RESONANZKREISES 19 3.1 Modellierung des Resonanzwandlers im Zeitbereich 19 3.1.1 Normierung 21 3.1.2 Schaltzustände 22 3.1.3 Ausgangsfilter 24 3.1.4 Betriebsarten 24 3.1.5 Numerische Lösung 30 3.1.6 Rechenaufwand 32 3.1.7 Experimentelle Verifikation 33 3.2 Analyse der Belastungsgrößen 38 3.2.1 Effektivwert des Resonanzstromes $I_{LScycle}$ 40 3.2.2 Effektivwert des Diodenstroms $I_{outcycle}$ 41 3.2.3 Abschaltstrom der Transistoren $ i_{LS0} $ 42 3.2.4 Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 43 3.2.5 Spitzenspannung des Resonanzkondensators 44 3.2.6 Kommutierungsladung Q_C 45 3.2.7 Magnetische Hysterese-Kernbelastung 52 3.2.8 Fazit der Belastungsgrößenanalyse 54 3.3 Verlustmodellierung 55 3.3.1 Netz- und Ausgangs-Gleichrichter 56		2.4	Grundlage der Schaltungsauslegung	16			
3.1Modellierung des Resonanzwandlers im Zeitbereich193.1.1Normierung213.1.2Schaltzustände223.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64	3	AUS	LEGUNG DES RESONANZKREISES	19			
3.1.1 Normierung 21 3.1.2 Schaltzustände 22 3.1.3 Ausgangsfilter 24 3.1.4 Betriebsarten 25 3.1.5 Numerische Lösung 30 3.1.6 Rechenaufwand 32 3.1.7 Experimentelle Verifikation 33 3.2 Analyse der Belastungsgrößen 38 3.2.1 Effektivwert des Resonanzstromes $I_{LScycle}$ 40 3.2.2 Effektivwert des Diodenstroms $I_{outcycle}$ 41 3.2.3 Abschaltstrom der Transistoren $ i_{LS0} $ 42 3.2.4 Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 43 3.2.5 Spitzenspannung des Resonanzkondensators 44 3.2.6 Kommutierungsladung Q_C 45 3.2.7 Magnetische Hysterese-Kernbelastung 52 3.2.8 Fazit der Belastungsgrößenanalyse 54 3.3 Verlustmodellierung 55 3.3.1 Netz- und Ausgangs-Gleichrichter 56 3.2.2 Wechselrichter 57 3.3 Kondensatorverluste 64		3.1	Modellierung des Resonanzwandlers im Zeitbereich .	19			
3.1.2 Schaltzustände 22 3.1.3 Ausgangsfilter 24 3.1.4 Betriebsarten 25 3.1.5 Numerische Lösung 30 3.1.6 Rechenaufwand 32 3.1.7 Experimentelle Verifikation 33 3.2 Analyse der Belastungsgrößen 38 3.2.1 Effektivwert des Resonanzstromes $I_{LScycle}$ 40 3.2.2 Effektivwert des Diodenstroms $I_{outcycle}$ 41 3.2.3 Abschaltstrom der Transistoren $ i_{LS0} $ 42 3.2.4 Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 43 3.2.5 Spitzenspannung des Resonanzkondensators 44 3.2.6 Kommutierungsladung Q_C 45 3.2.7 Magnetische Hysterese-Kernbelastung 52 3.2.8 Fazit der Belastungsgrößenanalyse 54 3.3 Verlustmodellierung 55 3.3.1 Netz- und Ausgangs-Gleichrichter 56 3.2.9 Wechselrichter 57 3.3 Kondensatorverluste 64			3.1.1 Normierung	21			
3.1.3Ausgangsfilter243.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64			3.1.2 Schaltzustände	22			
3.1.4Betriebsarten253.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64			3.1.3 Ausgangsfilter	24			
3.1.5Numerische Lösung303.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64			3.1.4 Betriebsarten	25			
3.1.6Rechenaufwand323.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64			3.1.5 Numerische Lösung	30			
3.1.7Experimentelle Verifikation333.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64			3.1.6 Rechenaufwand	32			
3.2Analyse der Belastungsgrößen383.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3Kondensatorverluste64			3.1.7 Experimentelle Verifikation	33			
3.2.1Effektivwert des Resonanzstromes $I_{LScycle}$ 403.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64		3.2	Analyse der Belastungsgrößen	38			
3.2.2Effektivwert des Diodenstroms $I_{outcycle}$ 413.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64			3.2.1 Effektivwert des Resonanzstromes I_{LScycle}	40			
3.2.3Abschaltstrom der Transistoren $ i_{LS0} $ 423.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64			3.2.2 Effektivwert des Diodenstroms <i>I</i> _{outcycle}	41			
3.2.4Schaltfrequenzüberhöhung f_{Smax}/f_{0C} 433.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64			3.2.3 Abschaltstrom der Transistoren $ i_{LS0} $	42			
3.2.5Spitzenspannung des Resonanzkondensators443.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64			3.2.4 Schaltfrequenzüberhöhung $f_{\text{Smax}}/f_{0\text{C}}$	43			
3.2.6Kommutierungsladung Q_C 453.2.7Magnetische Hysterese-Kernbelastung523.2.8Fazit der Belastungsgrößenanalyse543.3Verlustmodellierung553.3.1Netz- und Ausgangs-Gleichrichter563.3.2Wechselrichter573.3.3Kondensatorverluste64			3.2.5 Spitzenspannung des Resonanzkondensators .	44			
3.2.7 Magnetische Hysterese-Kernbelastung 52 3.2.8 Fazit der Belastungsgrößenanalyse 54 3.3 Verlustmodellierung 55 3.3.1 Netz- und Ausgangs-Gleichrichter 56 3.3.2 Wechselrichter 57 3.3.3 Kondensatorverluste 64			3.2.6 Kommutierungsladung $Q_{\rm C}$	45			
3.2.8 Fazit der Belastungsgrößenanalyse 54 3.3 Verlustmodellierung 55 3.3.1 Netz- und Ausgangs-Gleichrichter 56 3.3.2 Wechselrichter 57 3.3.3 Kondensatorverluste 64			3.2.7 Magnetische Hysterese-Kernbelastung	52			
3.3 Verlustmodellierung 55 3.3.1 Netz- und Ausgangs-Gleichrichter 56 3.3.2 Wechselrichter 57 3.3.3 Kondensatorverluste 64 4 INTEGRIERTER TRANSFORMATOR 67			3.2.8 Fazit der Belastungsgrößenanalyse	54			
3.3.1 Netz- und Ausgangs-Gleichrichter 56 3.3.2 Wechselrichter 57 3.3.3 Kondensatorverluste 57 4 INTEGRIERTER TRANSFORMATOR 57		3.3	Verlustmodellierung	55			
3.3.2 Wechselrichter 57 3.3.3 Kondensatorverluste 64 4 INTEGRIERTER TRANSFORMATOR 67			3.3.1 Netz- und Ausgangs-Gleichrichter	56			
3.3.3 Kondensatorverluste			3.3.2 Wechselrichter	57			
A INTEGRIERTER TRANSFORMATOR 67			3.3.3 Kondensatorverluste	64			
4 INTEGRIERIER IRANOFORMATOR 0/	4	INT	EGRIERTER TRANSFORMATOR	67			
4.1 Fundamentale Eigenschaften	•	4.1	Fundamentale Eigenschaften				
4.2 Realisierung des Luftspalts		4.2	Realisierung des Luftspalts				
4.3 Wicklungsschema		4.3	Wicklungsschema				
4.4 Einsatz eines Streupfads		4.4	Einsatz eines Streupfads	71			
4.5 Reluktanzmatrix		4.5	Reluktanzmatrix	73			

X INHALTSVERZEICHNIS

	4.6	Luftspaltlängen des Streupfad-Transformators	73		
	4.7	7 Transformatorverluste			
		4.7.1 Kernverlustmechanismen	76		
		4.7.2 Charakterisierung der Ferrit-Permeabilität	78		
		4.7.3 Charakterisierung der Ferrit-Permittivität	86		
		4.7.4 Wicklungsverluste	92		
	4.8	Optimierung des Streupfad-Transformators	93		
	•	4.8.1 Nebenbedingungen des Optimierungsproblems	94		
		4.8.2 FEM-gestützte Optimierung des Transformators	96		
		4.8.3 Dreidimensionale FEM-Simulation	99		
		4.8.4 Prototyp des Streupfad-Transformators	101		
III	RE	GELUNGSENTWURF	103		
5	SYST	TEMIDENTIFIKATION	105		
	5.1	Stationäre Übertragungskennlinie	106		
	5.2	Dynamisches Verhalten	107		
6	PFC	REGELUNG	109		
	6.1	Einschleifige PI-Regelung	109		
	6.2	Hysterese-Regelung	111		
	6.3	Kaskaden-Regelung und simulative Erprobung	113		
	6.4	Erweiterung der Hysterese-Regelung	114		
	6.5	Experimentelle Verifikation	117		
	9	6.5.1 Messergebnisse	, 118		
IV	LA	BORMUSTER	121		
7	FUN	KTIONSMUSTER	123		
	7.1	Bauteilauswahl	123		
	7.2	Verlustleistung und Effizienz	124		
8	PRO	ТОТҮР	129		
	8.1	Isolationskoordination	129		
	8.2	Gehäusekonzept	131		
	8.3	Vergleich mit kommerziellen Ladegeräten	135		
E.	-: 0	A			
га	ZIT &	AUSDIICK	137		
LI	ΓERA	TUR	141		
	11				
Ia	bellei	nverzeichnis	161		
AŁ	kürz	ungen	162		
Fo	rmel	zeichen	164		
V	AP	PENDIX	175		
Α	ANA	LLYTISCHE LOSUNGEN DER RESONANZKREISGRÖSSEN	177		
	A.1 Normierung und Definitionen				
	A.2	Schaltzustände	178		

		A.2.1	Schaltzustand C^{\pm} für leitende Dioden	178
		A.2.2	Schaltzustand <i>B</i> für blockierende Dioden	181
	A.3	Lösun	g der Betriebsart Cutoff	183
	A.4	Analy	tische Berechnung der Stressgrößen	184
		A.4.1	Spitzenwerte von j_{LS} , m_{CS} und m_{LP}	184
		A.4.2	Effektivwerte von j_{LS} , m_{CS} und m_{LP}	185
В	MES	SMITT	EL & LABORMUSTER	187
	B.1	Einges	setzte Messmittel	187
	B.2	Luft- ı	und Kriechstrecken des Laborprototyps	188
	в.3	Weiter	e Fotos der Labormuster	189
С	EIGI	ENE PU	BLIKATIONEN	193

Teil I

MOTIVATION & ZIELE DER ARBEIT

Heutige On-Board-Ladegeräte sind üblicherweise mit zwei Schaltungsstufen aufgebaut, die über einen Spannungszwischenkreis verbunden sind. Zwar werden mit dieser Schaltung die Anforderungen der Automobilhersteller erfüllt, jedoch ist der Schaltungsaufwand groß und die Lebensdauer wird durch die Elektrolytkondensatoren im Zwischenkreis begrenzt. Ausgehend hiervon soll in der vorliegenden Arbeit ein Ladegerät mit nur einer Stufe auf Basis eines LLC-Resonanzwandlers entworfen werden, um somit den PFC-Gleichrichter und Zwischenkreiskondensator einzusparen. Die vorliegende Arbeit befasst sich mit der Schaltungsauslegung, dem Regelungsentwurf und dem prototypischen Aufbau eines solchen einstufigen LLC-Ladewandlers.

EINLEITUNG

Wir sind es gewohnt, unsere Verbrennungsmotorfahrzeuge binnen Minuten mit dem Treibstoff für Hunderte Kilometer Reichweite zu betanken. Die umgerechnete Leistung eines solchen Tankvorgangs beträgt ca. 19 MW und entspricht damit der mittleren eingespeisten Leistung aller 60 Windkraftanlagen der Stadt Paderborn in 2015 [115]. Verglichen mit dieser typischen Tankleistung scheint die elektrische Anschlussleistung eines Einfamilienhauses mit ca. 43 kW und somit 0,2% der Tankleistung winzig. Die Nennleistung der Haushalts-Steckdose ist gar auf 2,3 kW Dauerleistung beschränkt, weniger als 0,02% der typischen Tankleistung. An der Haushalts-Steckdose dauert ein Ladevorgang gängiger Elektrofahrzeuge daher bis zu 20 Stunden (Abbildung 1), was im Ausnahmefall akzeptabel ist; für den Alltagsgebrauch ist allerdings eine höhere Ladeleistung erforderlich, um zumindest den Ladevorgang über Nacht zu ermöglichen. Für gängige Elektrofahrzeuge ist hierfür eine Ladeleistung von ca. 11-22 kW notwendig (Abbildung 1). In einer Nacht (ca. 8 Stunden) lassen sich mit 11 kW über 400 km Reichweite nachladen, was ausreichend ist für das typische Nutzerverhalten [86, 108]. Grundsätzlich wird die Ladeleistung entweder mittels Wechselstrom an das Fahrzeug übertragen oder per Gleichstrom, was insbesondere bei zeitkritischen Ladevorgängen (>50kW) verwendet wird, da hiermit ein voluminöser Hochleistungs-Lader an Bord des Fahrzeugs entfallen kann. Zusätzlich zu diesen konduktiven Ladesystemen werden aus Gründen des Nutzerkomforts berührungslose induktive Ladesysteme angeboten.

Die berechnete Tankleistung ergibt sich aus der Energiedichte des Kraftstoffs und dem typischen Volumenstrom der Zapfsäule

Der typische Energiebedarf heutiger Elektrofahrzeuge liegt bei etwa 15 kWh pro 100 km, abhängig von Fahrzeug, Fahrweise und Klimatisierung.

Abbildung 1 zeigt eine Abschätzung der Ladezeit; für reale Ladevorgänge kann die Ladezeit höher ausfallen, da die Ladeleistung zum Ende des Ladevorgangs reduziert werden muss und der Ladewirkungsgrad u.a. vom Ladestrom abhängt.

Abbildung 1: Ladezeiten bekannter Elektrofahrzeuge [96] in Abhängigkeit der Ladeleistung (Annahmen: 80% Entladen, 90% Ladewirkungsgrad, konstante Ladeleistung)

EINLEITUNG

Wird direkt an einer Wallbox oder ICCB am öffentlichen Versorgungsnetz mit Wechselspannung geladen, ist ein Ladewandler an Bord des Fahrzeugs erforderlich, um dessen Verbesserung es in der vorliegenden Arbeit gehen soll. An diesen Lader werden die hohen Anforderungen der Automobilbranche gestellt: Kosten, Volumen, Gewicht und Verlustleistung sollen gering ausfallen und ein zuverlässiger Betrieb soll im typischen Temperaturbereich über Jahre gewährleistet sein.

ZWEISTUFIGE LADEWANDLER 1.1

Heutige On-Board-Ladewandler sind typischerweise aus zwei Stufen aufgebaut, die über einen Spannungszwischenkreis verbunden sind. Als erste Stufe kommt ein PFC-Gleichrichter zum Einsatz, der die Anforderungen an den Netzstrom bezüglich Oberschwingungsgehalt und Leistungsfaktor sicherstellt. Der Spannungszwischenkreis besteht aus einer Bank von Elektrolytkondensatoren, mit denen die pulsierende Netzleistung der Einzelphase zwischengespeichert wird. Die zweite Stufe bildet ein Gleichspannungswandler, mit dem die Ladeleistung an die Traktionsbatterie übertragen wird und der einen Transformator zur galvanischen Trennung enthält [114]. Zur Ladung hat sich das UI-Ladeverfahren etabliert, bei dem zunächst mit konstantem Gleichstrom geladen wird, bis die Ladeschlussspannung der Batterie erreicht ist. Danach wird sukzessive der Ladestrom reduziert, damit sich die Spannung sich nicht weiter erhöht [26, 28].

Abbildung 2: Typische Schaltungsstruktur eines zweistufigen Ladewandlers bestehend aus PFC-Gleichrichter und LLC-Resonanzwandler

Für den einphasigen PFC-Gleichrichter konkurriert die gezeigte konventionelle PFC-Schaltung mit Diodenbrücke (siehe Abbildung 2) mit Varianten ohne Diodenbrücke (s.gn. brückenlose PFC-Gleichrichter), die einen Leistungshalbleiter im Leistungspfad einsparen und somit geringere Durchlassverluste ermöglichen. In Abbildung 3(b)-(f) sind verschiedene brückenlose Topologien gezeigt, die als netzfreundliche Eingangsgleichrichter potentiell einsetzbar sind. Alle gezeigten PFC-Topologien arbeiten nach dem Prinzip des Hochsetzstellers und haben daher zwar ähnliche Strom- und Spannungsverläufe, unterscheiden sich jedoch durch Bauteilaufwand, zulässige Betriebsart, Treiberaufwand, Verlustleistung und EMV-Verhalten.

4

(b) Brückenloser PFC "Basis"

(a) Konventioneller PFC-Gleichrichter mit Diodenbrücke

 s_{etz} s_{1} s_{2} $s_$

(c) Brückenloser PFC "H-Bridge" (d) Brückenloser PFC "Totem-Pole"

(e) Brückenloser PFC "Two-Boost" (f) Brückenloser PFC "Two-Boost" mit gekoppelten Spulen

Abbildung 3: PFC-Topologien, die als erste Stufe im zweistufigen Ladegleichrichter einsetzbar sind [58, 62]

Das EMV-Verhalten der PFC-Topologien lässt sich vergleichen indem die Spannung u_{CM} , die zwischen dem PFC-Ausgang u_1 und dem Konverter-Gehäuse bzw. dem Schutzleiter anliegt, genauer betrachtet wird. Hochfrequente Spannungsanteile vom Spannungszwischenkreis u_1 zum Erd- bzw. Neutralleiterpotential rufen über parasitäre Koppel-Kapazitäten zum Konverter-Gehäuse problematische Ableitströme über den Schutzleiter hervor, deren Unterdrückung (konform zur Norm EN 55022 bzw. IEC 60950) sperrige EMV-Filter erfordern würde [79, 116]. Mit Blick auf die angestrebte Bauvolumenreduktion ist dies zu vermeiden. Abbildung 4 zeigt Simulationen der Spannung u_{CM} für die verschiedenen PFC-Varianten: Bei der brückenlosen PFC-Topologie "Basis" springt die Spannung u_{Netz} mit der Schaltfrequenz der Transistoren. Die Unterdrückung der daraus resultierenden Gleichtaktstörung würde voluminöse EMV-Filter erfordern,

Gleichtaktstörung = common-mode noise (engl.), Index: CM

EINLEITUNG

so dass diese Topologie für den Einsatz in Ladegeräten als weniger geeignet eingeschätzt wird. Beim brückenlosen PFC-Gleichrichter "H-Bridge" ergibt sich eine ähnlich problematische Gleichtaktstörung, wenn Dioden gleichem Typs für D_1 - D_4 angenommen werden (Abbildung 4 (c)). In der Praxis wird diese Gleichtaktstörung vermieden, indem für D_2/D_4 Netzdioden und für D_1/D_3 schnelle Schaltdioden eingesetzt werden, die im Einschaltaugenblick praktisch die gesamte Spannung u_1 aufnehmen und somit die Gleichtaktstörung unterdrücken [97]. Auch der konventionelle PFC-Gleichrichter mit Diodenbrücke, der "Two-Boost"-PFC-Gleichrichter sowie der "Totem-Pole"-PFC-Gleichrichter (zu deutsch: Totempfahl) weisen keine hochfrequente Komponente in der Spannung u_{CM} auf, sodass in EMV-Hinsicht diese Topologien für akzeptabel gehalten werden [19, 111].

Die Simulation der Gleichtaktstörung wurde bei kontinuierlichem Spulenstrom und vernachlässigtem EMV-Filter durchgeführt.

Abbildung 4: Spannung u_{CM} der PFC-Topologien aus Abbildung 3 [72]

Der "Two-Boost"-PFC-Gleichrichter hat zwar ein vorteilhaftes EMV-Verhalten, erfordert aber eine zweite Spule, was hinsichtlich Kosten und Bauvolumen unerwünscht ist. Eine verbesserte Variante mit gekoppelter magnetischer Komponente verspricht zwar reduziertes Bauvolumen, diesen Vorteil erkauft man sich aber durch die aufwändige bzw. teure magnetische Komponente [62].

PFC- Topologie	Halbleiter im Leistungspfad	Schalt- Dioden	Netz- Dioden	EMV- Verhalten	Anzahl Spulen
konv. PFC-Gleichrichter mit Diodenbrücke	3	1	4	++	1
brückenlos "Basis"	2	2	0		1
brückenlos "H-Bridge"	2	2	2	+	1
brückenlos "Totem-Pole"	2	0	2	+	1
brückenlos "Two-Boost"	2	2	2	++	2
brückenlos,,Two-Boost" mit integrierten Spulen	2	2	2	+	1

Tabelle 1: Gegenüberstellung des Bauteilaufwands und des EMV-Verhaltens für die konkurrierenden PFC-Varianten aus Abbildung 3

Der "Totem-Pole"-PFC-Gleichrichter hat seinen Namen aus der Anordnung der zwei Transistoren in einer Halbbrücke und kommt im Gegensatz zum "Two-Boost" mit einer Spule aus. Werden als Transistoren gängige Si-SJ-MOSFETs eingesetzt, sollte diese Schaltung nicht mit harter Kommutierung betrieben werden, weil die große Rückstromspitze der internen Body-Diode enorme Verluste und EMV-Probleme hervorrufen würde [41, 58]. Werden die Dioden D_1 und D_2 durch Transistoren ersetzt (Synchrongleichrichtung), ist ebenfalls der Betrieb bei spannungslosem Einschalten (ZVS/TCM) mit Silizium-Transistoren möglich [75]. Transistoren mit schneller Body-Diode lassen auch den kontinuierlichen Betrieb mit harter Kommutierung zu, beispielsweise haben sich hierfür IGBTs mit schneller Freilaufdiode oder verlustärmere GaN-oder SiC-Transistoren qualifiziert [17].

Als zweite Wandlerstufe kommt typischerweise ein Gleichspannungswandler zum Einsatz, der einen Transformator zur galvanische Trennung enthält. Die hiermit erzielte Trennung zwischen Traktionsbatterie und Versorgungsnetz ist erforderlich, um Sicherheits- und Isolationsanforderungen zu vereinfachen und Ableitströme wirksam zu minimieren. Der Transformator kann besonders kompakt bei hohen Schaltfrequenzen ausgelegt werden, daher kommen besonders Schaltungen in Betracht, die Nullspannungsschalten (ZVS) für die Transistoren ermöglichen, um hiermit hohe Schaltverluste zu vermeiden. Für unidirektionale Ladegeräte haben sich die Phasengesteuerte Vollbrücke (PSFB) [25, 53] und in den letzten Jahren vermehrt der Resonanzwandler vom Typ LLC (Abbildung 2) qualifiziert [80].

Bezeichnung TCM steht für Triangular Current Mode (TCM)

Phasengesteuerte Vollbrücke = Phase-Shifted Full Bridge, PSFB (engl.)

1.2 EINSTUFIGE LADEWANDLER

Nachteile dieses zweistufigen Laders sind der insgesamt hohe Schaltungsaufwand und das große Bauvolumen mit entsprechend beträchtlichen Kosten. Die Elektrolytkondensatoren, die die pulsierende Eingangsleistung glätten, sind voluminös und erreichen die geforderten 50.000 bis 80.000 Stunden kalendarische Lebensdauer bei automobiltypischen Temperaturen nicht [94]. Folienkondensatoren als direkte Alternative sind nicht geeignet aufgrund des ca. sechsfachen Bauvolumens [117]. Zur Reduktion des Bauvolumens werden in einigen Publikationen aktive Zwischenspeicher vorgeschlagen, die jedoch den Schaltungsaufwand sowie die Verluste deutlich erhöhen [83]. Heutige Ladewandler der 3,7 kW-Klasse erreichen aus den genannten Gründen schwerlich Leistungsdichten über 1,5 kW/dm³.

Wie lassen sich nun die beschriebenen Schwächen mindern? Um sich der Antwort auf diese Frage zu nähern, sollte zunächst eingeschätzt werden, ob als Ladestrom zwingend ein idealer Gleichstrom erforderlich ist. Wenn stattdessen die Batterie direkt mit der Netzleistung geladen wird, die mit doppelter Netzfrequenz pulsiert, kann auf die Elektrolytkondensatoren gänzlich verzichtet werden [36, 70]. Nach Studien, die in den letzten Jahre durchgeführt wurden [10, 27, 112, 113], ist ein solcher pulsierender Ladestrom tatsächlich unschädlich für die Traktionsbatterie. Auch die Ladeeffizienz sei gemäß der Studien mit pulsierendem Ladestrom höher. Diese Angaben werden gestützt durch die Tatsache, dass die Firma Brusa bereits seit Jahren einen Ladegleichrichter mit pulsierendem Ladestrom anbietet und bis dato von keiner Schädigung berichtet wurde. Zudem stellt der Ladevorgang aus dem europäischen Einphasennetz eine Ausnahme dar, denn es ergeben sich mit den verfügbaren 3,7kW Ladezeiten von bis zu 20 Stunden – je nach Größe der Traktionsbatterie des Elektrofahrzeugs (Abbildung 1). In Ausnahmefällen muss es zwar möglich sein, aus dem einphasigen Netz zu laden, im Regelfall wird der Nutzer aber deutlich kürzere Ladezeiten fordern [46]. Im europäischen Verbundnetz wird typischweise für $> 11 \, \text{kW}$ das dreiphasige Versorgungsnetz verwendet wird, bei dem bekanntlich die Summen-Momentanleistung nicht pulsiert. Daher darf bei der Mehrzahl von Ladevorgängen von einem nahezu konstanten Ladestrom ausgegangen werden, auch wenn einstufige Ladegeräte für die Einzelphasen verwendet werden. Zudem ist die Leistungspulsation beim Einphasen-Laden mit 3,7 kW bezogen auf die typische Antriebsleistung, die der Fahrzeugbatterie entnommen wird, ohnehin gering.

Typische Elektrofahrzeuge haben eine Antriebsleistung > 107 kW (VW iD3) oder > 125 kW Hyundai Ioniq 5

Durch die Vermeidung von Elektrolytkondensatoren löst sich das Problem der zu geringen Lebensdauer zwanglos auf und auch der Bauteilaufwand wird reduziert. Zusätzlich kann die Struktur mit zwei Wandlerstufen aufgegeben und eine Topologie mit einer einzigen Wandlerstufe mit dem Ziel nochmaliger Leistungsdichte- bzw. Wirkungsgraderhöhung entworfen werden. Diese Stufe muss dann allerdings alle bisherigen Funktionen übernehmen, nämlich den Betrieb innerhalb sehr großer Eingangs- und Ausgangs-Spannungsbereiche, die Sicherstellung eines der Norm EN 61000-3-2 konformen Netzstroms, die Regelung der Ladeleistung und die galvanische Trennung.

Für eine solche direkte Leistungsübertragung zwischen Netz und Batterie steht eine Reihe von Schaltungen bereit, von denen einige bereits in der Praxis eingesetzt werden: Eine Topologie, die mit sehr wenigen Bauelementen auskommt, ist der Sperrwandler-PFC [24, 89]. Hier stehen den Vorteilen einfacher Regelbarkeit und einfachen Entwurfs entscheidende Nachteile entgegen: Die hohe Schaltbelastung führt insbesondere bei Leistungen über 500 W zu verlustreichen Snubbern, erheblichem Kühlaufwand und hiermit zu inakzeptablem Bauvolumen. Die EMV-Eigenschaften der Schaltung sind wegen der schnellen Stromänderungen problematisch. Trotz langjährigen Bemühens verschiedener Forschergruppen konnte noch keine befriedigende Lösung gefunden werden, die ermöglicht, den PFC-Sperrwandler in der Leistungsklasse typischer On-Board-Lader einzusetzen. Eine weitere Schaltung der gefragten Art wurde von S. Ćuk [122] vorgeschlagen. Eine detaillierte Untersuchung hinsichtlich Bauvolumen und Effizienz wurde in [20] veröffentlicht. Als problematisch erweist sich bei dieser Schaltung, dass eine schnelle Stromänderung im Transformator erzwungen wird, was wegen dessen Streuinduktivität hohe Verluste im Entlastungsnetzwerk (z.B. Z-Diode) zur Folge hat. Die Streuinduktivität des Transformators ist zudem zur Funktion der Schaltung erforderlich, sodass sie nur im geringen Maße reduziert werden kann. Zur Verringerung der Verluste wurde ein aktive regenerative Schaltentlastung vorgestellt [98]. Ähnlich dem Sperrwandler steigen auch bei dieser Schaltung die Verluste im Entlastungsnetzwerk mit steigendem Eingangsstrom drastisch an, weshalb die Einsatzgebiete dieser Schaltung bei geringer Nennleistung (kleiner 500 W) zu finden ist. In [74] wurde ferner ein einstufiger Ladewandler auf Basis der DAB-Topologie vorgeschlagen, dessen Schaltungsaufwand mit 48 GaN-Transistoren pro Phase jedoch enorm ist.

Ein weiterer einstufiger Lader hat bereits den Sprung in ein industrielles Produkt erzielt: Durch den Einsatz von 22 Leistungshalbleitern und einem 4-Wicklungs-Transformator erreicht die Firma Brusa mit dem Lader NLG513 akzeptable Wirkungsgrade von 92–94 %. Leider führt der enorme Bauteilaufwand zusammen mit Pulsladeströmen aber dazu, dass die Leistungsdichte mit 0,55 kW/dm³ gering ausfällt [73]. Diskussion des Sperrwandler-PFC als einstufiger Ladewandler

Einstufiger Ladewandler NLG513 der Firma Brusa

1.3 ZIELE & GLIEDERUNG DER ARBEIT

Gegenstand der vorliegenden Arbeit ist der Entwurf eines einstufigen Ladewandlers auf Basis eines Resonanzwandlers. Hiermit soll ermittelt werden, ob eine solche Topologie geringeres Bauvolumen und höhere Lebensdauer erreicht als gängige Topologien. Ziel ist, den Resonanzwandler direkt an den Eingangs-Diodengleichrichter anzuschließen, so dass der PFC-Gleichrichter sowie die Elektrolytkondensator-Bank des zweistufigen Ladewandlers entfallen können (Abbildung 5). Der Resonanzkreis, der sich bei Vorarbeiten als geeignet herausgestellt hat, ist vom Typ LLC und hat sich bereits in anderen Stromversorgungs-Geräten qualifiziert [37, 38]. Ein LCC- oder LLCC-Resonanzkreis wäre zwar ebenso möglich, führt aber zu den bekannten Schwächen wie z.B. höheren Durchlassverlusten [23, 90].

Abbildung 5: Vereinfachte Schaltungsstruktur des behandelten einstufigen Ladewandlers, bei dem PFC-Gleichrichter und Elektrolytkondensator entfallen (hellgrau)

Der Einsatz einer einstufigen LLC-Topologie als Ladewandler ist herausfordernd: Anders als beim zweistufigen Konzept muss der Eingangsstrom des LLC-Wandlers unmittelbar den Anforderung der Oberschwingungsnorm EN 61000-3-2 gerecht werden. Zudem ist der resultierende Ein- und Ausgangsspannungsbereich sehr weit, was sich naturgemäß aus der Netz- und Batteriespannung ergibt und einen sorgfältig abgestimmten Entwurf erfordert, dem sich diese Arbeit ausführlich annimmt.

Gliederung der
ArbeitDie vorliegende Arbeit gliedert sich in vier Teile: Der erste Teil han-
delt vom heutigen Stand der Technik sowie der Zielsetzung der Ar-
beit. Im zweiten Teil wird zunächst der Arbeitsbereich des Ladewand-
lers definiert, der sich aus der Netz- und Batteriespannung ergibt und
hiermit die Grundlage für die folgende Schaltungsauslegung bildet.
Hierbei wird besonderer Fokus auf die numerische Zeitbereichsana-
lyse des Resonanzwandlers, die Belastungsgrößenanalyse sowie die
Optimierung des integrierten Transformators gelegt. Der dritte Teil
der Arbeit befasst sich mit dem Entwurf der PFC-Regelung sowie
deren experimenteller Erprobung. Der vierte Teil demonstriert den
heute erzielbaren Wirkungsgrad und die erreichbare Leistungsdichte
auf Basis von prototypischen Labormustern.

Teil II

SCHALTUNGSAUSLEGUNG

Im folgenden Teil II wird die Schaltungsauslegung und deren Methodik behandelt. Hierfür wird im ersten Kapitel der elektrische Arbeitsbereich des einstufigen Ladewandlers für die typischen Netzformen und Batteriespannungen definiert. Als Berechnungsgrundlage für die folgende Auslegung dient die Analyse des Resonanzwandlers im Zeitbereich, dessen Methodik im folgenden Kapitel beschrieben und dessen Genauigkeit experimentell nachgewiesen wird. Im Anschluss werden die Belastungsgrößen des Resonanzkreises mit Hilfe der Zeitbereichsanalyse untersucht, um hiermit für die eingeprägten Parameter des Resonanzkreises eine Vorauswahl zu treffen. Das letzte Kapitel handelt von der Optimierung des integrierten Streupfad-Transformators als die Schlüsselkomponente des Ladewandlers und dessen experimentelle Erprobung.

2.1 EINGANGSSPANNUNGSBEREICH

Der AC-Netzanschluss heutiger Elektrofahrzeuge ist weltweit standardisiert in den Normen IEC 62196 bzw. GB/T 20234.2. In den USA kommt der Ladestecker IEC 62196-Typ 1 zum Einsatz. Im dort gängigen Split-Phase-Netz wird für höhere Ladeleistungen bis 19,2 kW eine einphasige Wechselspannung von 240 V verwendet (L1-L2). Die halbe Spannung von 120 V (L1-N) kommt bei kleiner Ladeleistung (<1,9 kW) zum Einsatz; angesichts der kaum tolerierbaren Ladedauer wird diese jedoch selten verwendet (z.B. Notladung) (vgl. Abbildung 1). In Europa wird das Fahrzeug bekanntermaßen mittels Ladestecker nach IEC 62196-Typ 2 mit der Infrastruktur verbunden, die eine Nennspannung von 230 V (L1-N) aufweist. Für kleine Ladeleistung bis 7,2 kW kann einphasig geladen werden, für Ladeleistung bis 22 kW dreiphasig. Im chinesischen Netz, dessen elektrische Eckdaten sich weitestgehend mit denen des EU-Netzes decken, wird ein Stecker nach GB/T–20234.2 verwendet.

Umgangssprachlich wird der Ladestecker IEC 62196-Typ2 auch als Mennekes-Stecker bezeichnet.

Wie der Tabelle 2 zu entnehmen ist, erfolgen die allermeisten Ladevorgänge an einer Netzspannung von 230/240V, die daher für die folgende Auslegung zugrunde gelegt wird.

Tabelle 2: Eckdaten der weltweit dominierenden Ladestecker gemäß IEC 62196 und GB/T 20234.2. Die Pilot-Kontakte *CP* & *CC* dienen der Kommunikation der Ladefreigabe bzw. des max. Ladestroms

2.2 AUSGANGSSPANNUNGSBEREICH

Die Ausgangsspannung des Ladewandlers wird bestimmt durch die Traktionsbatterie des Fahrzeugs. Im Verlauf des Ladevorgangs steigt die Spannung mit dem Ladegrad (λ_{SOC}) der Traktionsbatterie an. Gängige Lithium-Ionen-Zellen auf Basis von NMC-Kathodenmaterial ($LiNiMnCoO_2$) haben eine Leerlaufspannung von 3 – 4, 2 V, je nach Ladegrad, Temperatur und Alterung [34]. Elektrofahrzeuge wie z.B. der *Tesla Model* 3 oder *VW ID*.3 verwenden typischerweise eine Serienschaltung von ca. 96 dieser Zellen, sodass sich insgesamt ein Spannungsbereich von ca. 288 – 400 V ergibt. In modernen Oberklasse-Fahrzeugen wie dem *Porsche Taycan, Audi e-tron GT* oder *Hyundai Ioniq* 5 wird hingegen eine Reihenschaltung von ca. 198 Zellen verwendet, um eine Traktionsspannung von etwa 800 V zu erhalten. Hiermit kann höhere DC-Ladeleistung (bis 350 kW) beim Maximalstrom des gängigen CCS-Ladesteckers für zeitkritische Ladevorgänge erzielt werden.

420 400 $U_{\rm Batt}/V$ 380 360 340 320 300 0 10 20 30 40 50 60 70 80 90 100 Ladegrad - λ_{SOC} / %

Abbildung 6: Ladeprofil bei angenommener Serienschaltung von 96 typischen Li-Ion-Zellen der Bauform 18650 bei einem Ladestrom von 0,5 C und 25°C [88]

2.3 BESCHRÄNKUNG DES STROMFLUSSWINKELS

Um den Eingangsspannungsbereich des Laders zu reduzieren, soll im Folgenden untersucht werden, ob die Leistungsübertragung innerhalb einer Netzperiode in Zeitintervallen mit kleiner Eingangsspannung unterbrochen werden darf. Es stellt sich die Frage, ob unterhalb eines noch zu ermittelnden Schwellwertes der Netzspannung die Leistungsübertragung völlig unterbrochen werden darf, um so den Eingangsspannungsbereich des Ladewandlers zu reduzieren und die damit verbundenen Verluste abschnittsweise zu senken. Diese Maßnahme darf nur bei Konformität mit den Grenzwerten der Oberschwingungsnorm IEC 61000-3-2 angewendet werden und die Grundschwingung des Netzstroms muss für den geforderten Leistungsfaktor λ den Grenzwert λ I_{Netz} überschreiten.

Flüssigkeitsgekühlte Kabel ermöglichen mit CCS-Stecker bis zu 500 A

Abbildung 7: Netzstromaufnahme i_{Netz} bei reduziertem Stromflusswinkel ϕ_{Con} mit dem berechneten Oberschwingungsgehalt bei m = 1, 18, der die Grenzwerte aus der IEC 61000-3-2 (Klasse A) einhält und den geforderten Leistungsfaktor λ_{Netz} übersteigt

Grundsätzlich streben PFC-Gleichrichter einen Leistungsfaktor $\lambda_{\text{Netz}} =$ 1 an, indem der Netz-Stromverlauf auf den qualitativ gleichen Verlauf wie die Netzspannung geregelt wird. Jedoch sind auch andere Netzstromverläufe denkbar, wie z.B. blockförmiger oder gestauchter Stromverlauf (siehe Abbildung 7 (Mitte)). Es stellt sich die Frage, welcher Stromverlauf den minimalen Stromflusswinkel ϕ_{Con} (siehe Abbildung 7) zulässt und dabei trotzdem konform zur Oberschwingungsnorm IEC 61000-3-2 ist. Um sich dieser Fragestellung zu nähern, wird der Netzstromverlauf durch Gleichung 1 beschrieben. Je nach Wert des Parameters *m* kann hiermit ein blockförmiger (*m* = 0), sinusförmiger (*m* = 1) und (zeitlich) gestaucht sinusförmiger Stromverlauf (*m* > 1) beschrieben werden.

$$i_{\text{Netz}}(\phi) = \begin{cases} 0 & \phi \leq \frac{\pi}{2} - \phi_{\text{Con}} \\ \hat{i} \cos \left[m \left(\phi - \frac{\pi}{2} \right) \right] & \frac{\pi}{2} - \phi_{\text{Con}} < \phi \leq \frac{\pi}{2} + \phi_{\text{Con}} \\ 0 & \frac{\pi}{2} + \phi_{\text{Con}} < \phi \leq \frac{3\pi}{2} - \phi_{\text{Con}} \\ -\hat{i} \cos \left[m \left(\phi - \frac{3\pi}{2} \right) \right] & \frac{3\pi}{2} - \phi_{\text{Con}} < \phi \leq \frac{3\pi}{2} + \phi_{\text{Con}} \\ 0 & \phi > \frac{3\pi}{2} + \phi_{\text{Con}} \\ 0 & \phi > \frac{3\pi}{2} + \phi_{\text{Con}} \end{cases}$$

mit $\hat{i} = I_{\text{Netz}} \sqrt{\frac{\pi}{\phi_{\text{Con}} + \sin(2m\phi_{\text{Con}})/(2m)}}$ (1)

ARBEITSBEREICH

Wird der Stromflusswinkel ϕ_{Con} reduziert, ergibt sich ein Oberschwingungsgehalt, der nur bis zu einem gewissen minimalen Stromflusswinkel $\phi_{\text{Con,Min}}$ die Oberschwingungsnorm sowie den gewünschten Leistungsfaktor von $\lambda_{\text{Netz}} = 0,98$ erfüllt. Um den minimalen Stromflusswinkel zu berechnen, der diese Randbedingungen noch einhält, werden die Harmonischen des Netzstroms mittels Fourieranalyse in Abhängigkeit des Stromflusswinkels ϕ_{Con} und des Stauchungsfaktors *m* berechnet. Anschließend wird verifiziert, ob die so berechneten Harmonischen die Grenzwerte einhalten.

Abbildung 8 zeigt den berechneten minimalen Stromflusswinkel $\phi_{\text{Con,Min}}$ in Abhängigkeit vom Effektiv-Netzstrom I_{Netz} und dem Stauchungsfaktor *m*, der alle o.gn. Grenzwerte einhält. Bei der angestrebten Stromaufnahme von $I_{\text{Netz}} = 16 \text{ A}$ darf hiermit der Stromflusswinkel auf $\phi_{\text{Con}} = 81\% \frac{\pi}{2}$ reduziert werden, wenn der Stauchungsfaktor zu m = 1, 18 gewählt wird. Somit kann die Stromaufnahme im europäischen Niederspannungsnetz für $|u_{\text{Netz}}| < 95 \text{ V}$ unterbrochen werden, was den Eingangsspannungsbereich erheblich einschränkt (Stromverlauf siehe m = 1, 18 in Abbildung 7 (oben)).

Abbildung 8: Berechneter minimaler Stromflusswinkel $\phi_{\text{Con,Min}}$ mit dem Stauchungsfaktor *m*, der für die Konformität mit der Oberschwingungsnorm EN 61000-3-2 zu verwenden ist und hiermit den gewünschten Leistungsfaktor von $\lambda = 0,98$ erreicht

2.4 GRUNDLAGE DER SCHALTUNGSAUSLEGUNG

Die im Folgenden behandelte Auslegung des einstufigen LLC-Ladewandlers stützt sich auf insgesamt 45 Arbeitspunkte, die sich ergeben aus dem beschriebenen Eingangsspannungsbereich (Abschnitt 2.1), dem Spannungsbereich der Traktionsbatterie (Abschnitt 2.2) sowie dem Eingangsstrombereich (Abschnitt 2.3). Fünf Abtastpunkte der Ausgangsspannung werden jeweils mit neun Abtastwerten der Eingangswerte kombiniert, die aus Symmetriegründen über eine Viertel-

16

Netzperiode $(0...\pi/2)$ verteilt sind (Abbildung 9(a)). Gemäß Abschnitt 2.3 wird der Stromflusswinkel beschränkt auf $\phi_{\text{Con}} = 81\% \frac{\pi}{2}$ mit dem Stauchungsfaktor m = 1, 18.

Mit dieser Auslegung ist der einstufige LLC-Ladewandler für den weltweiten Einsatz vorbereitet: Im europäischen und chinesischen Versorgungsnetz werden jeweils drei dieser Lademodule in Stern an 230 V geschaltet; im US-Netz werden mehrere dieser Module parallel geschaltet und am Split-Phase-Netz zwischen den Außenleitern an 240 V betrieben.

Abbildung 9: Arbeitspunkte, die für die folgende Auslegung des einstufigen LLC-Ladewandlers zugrunde gelegt werden

AUSLEGUNG DES RESONANZKREISES

3.1 MODELLIERUNG DES RESONANZWANDLERS IM ZEITBEREICH

Für die Auslegung des LLC-Resonanzwandlers ist eine möglichst genaue Abschätzung der Strom- und Spannungsverläufe im Resonanzkreis erforderlich. In der Literatur finden sich hierfür bereits vielfältige Ansätze. In frühen Arbeiten zu Resonanzwandlern wurde die Annahme rein sinusförmiger Verläufe getroffen, d.h. eine Beschränkung auf die Grundschwingung wurde vorgenommen [106]. Beispielsweise wird die Eingangsspannung des Resonanzkreises u_{AB} bei der Grundschwingungsanalyse (GSA) als rein sinusförmig mit der Amplitude und Phasenlage der Grundschwingung angenommen – wohlwissend, dass durch die Schaltvorgänge ein rechteckförmiger Verlauf mit ausgeprägtem Oberschwingungsgehalt anliegt. Die schaltende Eigenschaft der Transistoren und Dioden wird bei der Anwendung der GSA gänzlich vernachlässigt, damit der Konverter durch ein geschlossenes Ersatzschaltbild angenähert und mit Hilfe der komplexen Wechselspannungsrechnung einfach modelliert werden kann.

Abbildung 10: Prinzipschaltbild des LLC-Resonanzwandlers zur Modellierung im Zeitbereich

Mit der Grundschwingungs-Annahme lassen sich zwar die elektrischen Größen des Resonanzkreises analytisch leicht berechnen, die Genauigkeit der Ausdrücke ist allerdings gering, insbesondere wenn die Schaltfrequenz deutlich von der Resonanzfrequenz des Konverters abweicht, wie z.B. in [23, 39, 87] ausführlich dokumentiert. Verbesserte Varianten der GSA (z.B. [43]) konnten zwar den Modellierungsfehler etwas reduzieren, zur genauen Auslegung ist aber eine präzisere Abschätzung der elektrischen Größen wünschenswert. Diese hohe Modellierungsgenauigkeit lässt sich erzielen, wenn der Konverter in jedem Schaltzustand mit der Differentialgleichung beschrieben wird, die abschnittsweise in dem jeweiligen SchaltzuSchwächen der Grundschwingungsanalyse (GSA) stand gültig ist. Wechselt der Schaltzustand von Transistoren oder Dioden wird zu der Differentialgleichung des neuen Schaltzustands übergegangen. Dieses Vorgehen wird in der Literatur als Zeitbereichsanalyse (ZBA) bezeichnet [71, 100, 118]. In typischen Varianten der ZBA wurde der LLC-Resonanzwandler verlustfrei mit ohmscher Ausgangsbelastung angenommen. In der vorliegenden Arbeit soll die Zeitbereichsanalyse für eine Batterie mit Innenwiderstand am Ausgang des Konverters erweitert und die Genauigkeit durch die Berücksichtigung dominanter Verlustanteile weiter gesteigert werden, wie in [68] vorab publiziert.

Für die Modellierung der elektrischen Größen werden folgende Annahmen getroffen:

Annahmen der Zeitbereichsanalyse (ZBA)

- Die Kommutierungsvorgänge der Transistoren und Dioden seien ausreichend schnell, so dass die Transitionen zwischen verschiedenen Schaltzuständen als instantan angenommen werden dürfen. Diese Annahme ist bei Silizium-Bauelementen für moderate Schaltfrequenzen gerechtfertigt, bei Halbleiter mit breitem Bandabstand, wide-bandgap (engl.) (WBG)-Bauelementen auch für höchste Schaltfrequenzen, dank deren kleineren Ausgangskapazität (siehe Abschnitt 3.2.6).
- 2. Der Resonanzkondensator darf mit einem konstanten, spannungsunabhängigen Kapazitätswert C_S mit Äquivalenter Serienwiderstand, equivalent series resistance (engl.) (ESR) modelliert werden. Typischerweise kommen für den Resonanzkondensator Polypropylen-Folienkondensatoren (MKP) oder Keramikkondensatoren (MLCC) mit NPO/COG-Dielektrikum zum Einsatz, für die diese Annahme gerechtfertigt ist.
- 3. Der Transformator darf mit einem idealen Übertrager n, Serieninduktivität L_S mit Serienwiderstand und Parallelinduktivität L_P modelliert werden (Abbildung 10). In Abschnitt 4.1 wird gezeigt, dass diese Annahme für Transformatoren mit etwaiger Resonanzspule gerechtfertigt ist.
- 4. Die Schwankungsbreiten der Eingangsspannung des Wechselrichters U_1 und der Ausgangsspannung U_2 des Diodengleichrichters seien über eine Periodendauer des Resonanzwandlers ausreichend klein, sodass sie während einer Schaltperiodendauer als konstant angenommen werden dürfen. Typischerweise kann dies über die Dimensionierung der Kondensatoren C_1 und C_2 angenommen werden.
- 5. Die Transistoren S_1 – S_4 werden eingeschaltet, sobald deren Body-Dioden leiten, sodass die Transistoren im eingeschalteten Zustand in beide Stromrichtungen als rein ohmsch angenommen werden dürfen (Synchrongleichrichtung).

6. Für die erste Halbperiode des Resonanzwandlers werden die Transistoren S_1 und S_4 , für die zweite S_2 und S_3 komplementär eingeschaltet (Frequenzregelung). Aus Symmetriegründen darf man sich daher auf die erste Halbperiode beschränken, für die zweite Halbperiode wiederholen sich die Verläufe mit umgekehrten Vorzeichen.

Wie in vorherigen Arbeiten [71, 100, 118] werden die Strom- und Spannungsverläufe mit elektrischen Ersatzschaltbildern bzw. deren zugrundeliegenden linearen, zeitinvarianten Differentialgleichungen beschrieben, die abschnittsweise für den jeweiligen Schaltzustand gültig sind. Für die Transition von einem zum nächsten Schaltzustand gelten naturgemäß die Stetigkeitsbedingungen der Zustandsvariablen, d.h. die Ströme in den Induktivitäten und die Spannungen an den Kapazitäten können sich nicht sprungförmig ändern. Im stationären Zustand sind die Zustandsvariablen jeweils zu Beginn und zum Ende der Periodendauer gleich. Zur Berechnung der Strom- und Spannungsverläufe lassen sich diese Bedingungen in einigen Fällen analytisch einarbeiten [71]. In dieser Arbeit werden die Verlustanteile im Resonanzkreis und in der Batterie in Form von Dämpfungstermen berücksichtigt, hierbei gelingt die Herleitung einer geschlossenen, analytischen Lösung des Gleichungssystems im Allgemeinen nicht, sodass numerische Lösungsverfahren herangezogen werden müssen.

3.1.1 Normierung

Zur Vereinfachung des Gleichungssystems und zur Verallgemeinerung der Lösung, werden in Anlehnung an bisherige Arbeiten [39, 71, 118] Strom, Spannung und Zeit normiert. Die Zeit t_v wird mit der gedämpften Kreisfrequenz $\omega_{\rm C}$ normiert gemäß

$$\theta_{\nu} = \omega_{\rm C} t_{\nu},\tag{2}$$

Spannungen u_{ν} werden im Folgenden auf die LLC-Eingangsspannung U_1 normiert gemäß

$$m_{\nu} = \frac{u_{\nu}}{U_1},\tag{3}$$

Ströme i_{ν} werden mit der Kennimpedanz Z_{C} für den gedämpften Schwingkreis normiert gemäß

$$j_{\nu} = \frac{i_{\nu}}{U_1/Z_{\rm C}} \tag{4}$$

und Widerstände gemäß

$$r_{\nu} = \frac{R_{\nu}}{Z_{\rm C}}.$$
(5)

3.1.2 Schaltzustände

Je nach Schaltzustand der Transistoren und der Dioden treten verschiedene Schaltzustände auf, die mit Hilfe von elektrischen Ersatzschaltbildern modelliert werden. In der gesamten ersten Halbperiode wird die Spannung U_1 über die Transistoren S_1 – S_4 an den Eingang des Resonanzkreises angelegt. Wird anstatt des hier betrachteten Vollbrücken-Wechselrichters ein Halbbrücken-Wechselrichter eingesetzt, ist als Eingangsspannung die halbe Eingangsspannung $U_1/2$ anzunehmen. Eine solche Halbbrückenanordnung findet sich besonders bei Konvertern mit kleineren Nennleistungen, denn aus der halbierten Eingangsspannung resultiert ein etwa doppelter Strom verglichen mit dem des hier betrachteten Vollbrücken-Wechselrichter.

3.1.2.1 Schaltzustand C^{\pm} für leitende Ausgangsdioden

Leiten die Dioden D_1 - D_4 , wird die Ausgangsspannung U_2 über die Dioden an der Sekundärseite des Transformators angelegt. Transformiert auf die Primärseite des idealen Übertragers wird diese Spannung mit der Spannungsquelle $\pm n U_2$ parallel zur Induktivität L_P berücksichtigt. Dieses Vorgehen ist gültig sowohl für einen Vollbrücken-Gleichrichter als auch für einen Mittelpunkt-Gleichrichter, der typischerweise bei kleineren Ausgangsspannungen eingesetzt wird [71]. Für leitende Dioden D_1 und D_4 wird die Ausgangsspannung positiv (C^+), für leitende Dioden D_2 und D_3 wird die Ausgangsspannung negativ (C^-) berücksichtigt. Für dieses Zeitintervall wird das Ersatzschaltbild aus Abbildung 11 zu Grunde gelegt.

Abbildung 11: Ersatzschaltbild für den Schaltzustand C^{\pm} für leitende Dioden

Nach Maschensatz und zeitlicher Ableitung ergibt sich aus diesem Ersatzschaltbild die homogene Differentialgleichung zweiter Ordnung

$$0 = \frac{d^2 i_{\rm LS}(t)}{dt^2} + \frac{R_{\rm S}}{L_{\rm S}} \frac{d i_{\rm LS}(t)}{dt} + \frac{i_{\rm LS}(t)}{C_{\rm S}L_{\rm S}}.$$
 (6)

Die Abkürzung C[±] steht für Conducting diodes (engl.). Die Standardlösung dieser Differentialgleichung ist im Anhang A auf Seite 178 detailliert beschrieben. In normierter Darstellung ergeben sich für leitende Dioden (C^{\pm}) die Strom- bzw. Spannungsverläufe

$$j_{\rm LS}(\theta) = \left\{ \left[1 \mp n \, M - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) \, d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right] \sin(\theta - \theta_0) + j_{\rm LS}(\theta_0) \cos(\theta - \theta_0) \right\} e^{-(\theta - \theta_0) \frac{d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}}},$$

$$(7)$$

$$m_{\rm CS}(\theta) = 1 \mp n M + \left\langle \left\{ j_{\rm LS}(\theta_0) - \frac{d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \left[1 \mp n M - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right] \right\} \sin(\theta - \theta_0) \quad (8)$$
$$+ \left(-1 \pm n M + m_{\rm CS}(\theta_0) \right) \cos(\theta - \theta_0) \left\rangle e^{-(\theta - \theta_0) \frac{d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}}} \right\}$$

mit den Initialwerten $j_{LS}(\theta_0)$, $m_{CS}(\theta_0)$, der normierten Ausgangsspannung $M = U_2/U_1$ und dem Dämpfungsgrad d_C . Der Strom $j_{LP}(t)$ baut sich während leitender Dioden linear auf. Daher gilt

$$j_{\rm LP}(\theta) = j_{\rm LP}(\theta_0) \pm \lambda \, n \, M(\theta - \theta_0) \tag{9}$$

mit den Initialwert $j_{LP}(\theta_0)$ und dem Induktivitätsverhältnis $\lambda = L_S/L_P$. Sobald Ströme gleich sind $(j_{LP}(\theta) = j_{LS}(\theta))$, blockieren die Dioden und der Wechsel zum nächsten Schaltzustand erfolgt.

3.1.2.2 Schaltzustand B für blockierende Ausgangsdioden

Sobald die Dioden des Gleichrichters blockieren, ist L_P am Schwingkreis beteiligt. Hierdurch reduziert sich die Frequenz und die Kennimpedanz der Oszillation, der qualitative Verlauf bleibt aber erhalten. Die Abkürzung B steht für Blocking diodes (engl).

Abbildung 12: Ersatzschaltbild für den Schaltzustand *B* für blockierende Dioden

Nach Maschensatz und zeitlicher Ableitung ergibt sich aus diesem Ersatzschaltbild die homogene Differentialgleichung zweiter Ordnung

$$0 = \frac{d^2 i_{\rm LS}(t)}{dt^2} + \frac{R_{\rm S}}{L_{\rm S} + L_{\rm P}} \frac{d i_{\rm LS}(t)}{dt} + \frac{i_{\rm LS}(t)}{C_{\rm S}(L_{\rm S} + L_{\rm P})},\tag{10}$$

Details zur Lösung siehe Anhang A auf Seite 181 die analog zum Schaltzustand für leitende Dioden (C^{\pm}) analytisch gelöst wird zu

$$\begin{split} j_{\rm LS}(\theta) &= \left\{ \left[\frac{1 - m_{\rm CS}(\theta_0)}{r_Z} - \frac{j_{\rm LS}(\theta_0) \, d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}} \right] \sin(r_\omega(\theta - \theta_0)) \\ &+ j_{\rm LS}(\theta_0) \cos(r_\omega(\theta - \theta_0)) \right\} {\rm e}^{-r_\omega(\theta - \theta_0) \frac{d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}}}, \end{split} \tag{11} \\ m_{\rm CS}(\theta) &= 1 + \left\langle \left\{ r_Z \, j_{\rm LS}(\theta_0) \\ &- \frac{d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}} \left[1 - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) \, d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right] \right\} \sin(r_\omega(\theta - \theta_0)) \qquad (12) \\ &+ \left(-1 + m_{\rm CS}(\theta_0) \right) \cos(r_\omega(\theta - \theta_0)) \left\rangle {\rm e}^{-r_\omega(\theta - \theta_0) \frac{d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}}} \end{split}$$

mit dem Dämpfungsgrad d_B und den Koeffizienten r_{ω} und r_Z (für Details siehe Seite 177). Zur Bestätigung, ob der Schaltzustand *B* tatsächlich für gewisse Zeitpunkte vorliegt, wird die Spannung m_{LP} ausgewertet, die sich wie folgt berechnen lässt

$$m_{\rm LP}(\theta) = \frac{1}{\lambda} \frac{dj_{\rm LP}(t)}{d\theta} = \frac{1}{\lambda} \frac{dj_{\rm LS}(t)}{d\theta}$$
(13)
$$= \frac{1}{1+\lambda} \left\{ \left[r_{\rm Z} j_{\rm LS}(\theta_0) \left(\frac{d_{\rm B}^2}{1-d_{\rm B}^2} - 1 \right) - \frac{d_{\rm B}}{\sqrt{1-d_{\rm B}^2}} \left(1 - m_{\rm CS}(\theta_0) \right) \right] \sin(r_{\omega}(\theta - \theta_0)) + \left(1 - m_{\rm CS}(\theta_0) - \frac{2j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1-d_{\rm C}^2}} \right) \cos(r_{\omega}(\theta - \theta_0)) \right\} e^{-r_{\omega}(\theta - \theta_0) \frac{d_{\rm B}}{\sqrt{1-d_{\rm B}^2}}}$$
(14)

Erreicht die Spannung m_{LP} den Betrag der transformierten Ausgangsspannung n M, beginnen die Dioden wiederum zu leiten und der Schaltzustand C^{\pm} ist erneut gültig.

3.1.3 Ausgangsfilter

Zur Berücksichtigung der Batterie mit Innenwiderstand wird der Ausgangskreis für die Bedingungen des stationären Zustands beschrieben. Die Anwendung des Maschensatzes ergibt

$$u_2(t) = L_2 \frac{\mathrm{d}i_{\mathrm{Batt}}}{\mathrm{d}t} + R_{\mathrm{i}} \, i_{\mathrm{Batt}} + U_{\mathrm{Batt}}.\tag{15}$$

Die Induktivität L₂ ist in dieser Arbeit die Gegentaktinduktivität des EMV-Filters

Abbildung 13: Ausgang des LLC-Resonanzwandlers inkl. Batterie mit Innenwiderstand und Leitungsinduktivität

Im stationären Zustand verschwindet der zeitliche Mittelwert der Spannung an L_2 sowie der des Stroms in C_2 . Dies gilt allgemein im stationären Zustand – unabhängig von der Betriebsart. Gleichung 15 kann daher vereinfacht werden zu

$$M = r_{\rm i} n |j_{\rm LS} - j_{\rm LP}| + m_{\rm Batt} \tag{16}$$

mit der eingeführten Normierung aus Abschnitt A.1. Der Gleichricht-Mittelwert $\overline{|j_{LS} - j_{LP}|}$ kann mit Hilfe der Stromverläufe für Schaltzustand C^{\pm} bestimmt werden gemäß

$$\overline{|j_{\rm LS} - j_{\rm LP}|} = \frac{1}{\gamma} \int_{\theta_0}^{\theta_1} |j_{\rm LS}(\theta) - j_{\rm LP}(\theta)| \,\mathrm{d}\theta,\tag{17}$$

mit γ als der normierten halben Periodendauer $T_{\rm S}/2$

$$\gamma = \omega_{\rm C} \, \frac{T_{\rm S}}{2}.\tag{18}$$

Analytisch gelöst wird Gleichung 17 in Anhang A.

3.1.4 Betriebsarten

Die Strom- und Spannungsverläufe der Schaltzustände C^{\pm} und *B* können zwar mit den Initialwerten $m_{CS}(\theta_0)$, $j_{LS}(\theta_0)$ und $j_{LP}(\theta_0)$ analytisch berechnet werden, welche dieser Schaltzustände während der Periodendauer auftreten und in welcher Reihenfolge – d.h. welche Betriebsart zutrifft – ist a priori ungewiss. Der LLC-Resonanzwandler kann für mehr als acht verschiedene Betriebsarten mit unterschiedlichen Eigenschaften ausgelegt werden. Wie bei den Basisschaltungen der Leistungselektronik wird hierbei in Betriebsarten mit diskontinuierlichem und kontinuierlichem Strom (DCM/CCM) unterschieden, je nach Stromverlauf im Gleichrichter D_{1-4} . Zudem werden die Betriebsarten klassifiziert in solche, die oberhalb bzw. unterhalb der Resonanzfrequenz auftreten, gekennzeichnet mit A für above resonance bzw. B für below resonance [71]. Weitere Betriebsarten als die hier beschriebenen können auftreten, wenn mit der dritten bzw. fünften Harmonischen der Resonanzkreis-Spannung u_{AB} Leistung übertragen werden soll. Die Spannungsamplitude dieser Oberschwingungen ist aber so gering, dass sie nur in Sonderfällen zur Leistungsübertragung taugen. Daher wird sich in dieser Arbeit auf acht verschiedene Betriebsarten beschränkt, die in der Umgebung der LLC-Resonanzfrequenzen auftreten und im folgenden Abschnitt beschrieben werden.

Betriebs-Abfolge Anzahl Schaltbedingin $0 < \theta < \gamma$ Unbekannte art ung S_{1-4} C^-, C^+ ZVS CCMA 5 (z.B. $X_{\text{CCMA}} = [M, j_{\text{LS}}(0), m_{\text{CS}}(0), j_{\text{LP}}(0), \theta_1])$ CCMB C^+, C^- 5 (z.B. $X_{\text{CCMB}}=[M, j_{\text{LS}}(0), m_{\text{CS}}(0), j_{\text{LP}}(0), \theta_1])$ ZVS/ZCS DCMA C^-, B, C^+ 6 (z.B. $X_{\text{DCMA}} = [M, j_{\text{LS}}(0), m_{\text{CS}}(0), j_{\text{LP}}(0), \theta_1, \theta_2])$ ZVS C^{+}, B, C^{-} DCMB1 6 (z.B. $X_{\text{DCMB1}}=[M, j_{\text{LS}}(0), m_{\text{CS}}(0), j_{\text{LP}}(0), \theta_1, \theta_2])$ ZVS/ZCS DCMB₂ C^+, B 4 (z.B. $X_{\text{DCMB2}}=[M, j_{\text{LS}}(0), m_{\text{CS}}(0), \theta_1])$ ZVS B, C^-, B 5 (z.B. $X_{\text{DCMB3}}=[M, j_{\text{LS}}(0), m_{\text{CS}}(0), \theta_1, \theta_2])$ ZCS DCMB3 DCMAB B, C^+, B 5 (z.B. $X_{\text{DCMAB}}=[M, j_{\text{LS}}(0), m_{\text{CS}}(0), \theta_1, \theta_2])$ ZVS CUTOFF В 2 (z.B. $X_{CUTOFF}=[j_{LS}(0), m_{CS}(0)])$ ZVS

 Tabelle 3: Betriebsarten des LLC-Resonanzwandlers (vgl. [71, 118])

3.1.4.1 Betriebsart DCMB2

Bei Schaltfrequenzen unterhalb der Resonanzfrequenz tritt unter gewissen Bedingungen die Betriebsart DCMB2 auf, in der die Dioden D_1/D_4 im Intervall $t \in [0, \theta_1)$ leiten und im nächsten Intervall $t \in$ $[\theta_1, \gamma)$ blockieren, d.h. es gilt die Schaltsequenz C^+ , B in der ersten Halbperiode (siehe Abbildung 14 (c)). Diese Betriebsart wird für viele Einsatzgebiete des LLC-Resonanzwandlers verwendet, denn die Eingangstransistoren S_{1-4} können spannungslos eingeschaltet werden (ZVS), die Dioden werden stromlos ausgeschaltet (ZCS) und zudem ist die Blindleistung im Resonanzkreis vergleichsweise klein. Zur Bestimmung der vier Unbekannten, die zur Beschreibung des Strom- und Spannungsverlaufs erforderlich sind, werden ebenso viele Gleichungen aufgestellt (Gleichung 19): Zwei Gleichungen ergeben sich durch die Stationäritätsbedingung der Zustandsvariablen, eine Gleichung durch die Sperrbedingung der Dioden und eine Gleichung wiederum durch die Stationäritätsbedingung des Ausgangsfilters. Mit diesen vier Gleichungen werden vier beliebige Unbekannte numerisch gelöst, z.B. M, $j_{LS}(0)$, $m_{CS}(0)$, θ_1 , wenn die Schaltfrequenz als gegeben angenommen wird. Als Lösungsverfahren stehen verschiedene Algorithmen bereit z.B. Trust-Region-Verfahren oder der Levenberg-Marquardt-Algorithmus, die hinterlegt sind in der Matlab-Funktion lsqnonlin().

$$\boldsymbol{F}_{\text{DCMB2}} = \begin{bmatrix} m_{\text{CS}}(0) + m_{\text{CS}}(\gamma) \\ j_{\text{LS}}(0) + j_{\text{LS}}(\gamma) \\ j_{\text{LP}}(\theta_1) - j_{\text{LS}}(\theta_1) \\ r_i n \overline{|j_{\text{LS}} - j_{\text{LP}}|} + m_{\text{Batt}} - M \end{bmatrix} \stackrel{!}{=} \boldsymbol{0}$$
(19)

Für die Betriebsart DCMB2 findet sich in einigen Quellen auch die Bezeichnung C⁺B oder PO gemäß der der Schaltsequenz [33]

Mehr zur numerischen Lösung und dem Rechenaufwand in Abschnitt 3.1.5

Abbildung 14: DCM-Betriebsarten des LLC-Resonanzwandlers, in denen stets der Schaltzustand *B* enthalten ist

Die Lösung der Gleichungen aus (19) ist eine notwendige, jedoch keine hinreichende Bedingung für die Betriebsart *DCMB2*. Ein gelöstes Gleichungssystem (19) bedeutet daher nicht zwingend, dass die Betriebsart DCMB2 auch tatsächlich auftritt. Daher ist nach einem gelösten Gleichungssystem (19) mit weiteren Randbedingungen (20) zu überprüfen, ob die Betriebsart auch tatsächlich vorliegt. Beispielweise wird mit der Spannung an L_P überprüft, ob die Dioden auch wirklich zu Beginn und am Ende des Zeitintervalls *B* blockieren ($|m_{LP}^B| \leq M$).

 $m_{LP}(\theta_1)^B$ bezeichnet die normierte Spannung m_{LP} im Schaltzustand B

$$\begin{aligned} \theta_1 &< \theta_2 \\ \theta_1 + \theta_2 &< \gamma \\ &|m_{\text{LP}}(\theta_1)^B| \leq M \\ &|m_{\text{LP}}(\gamma)^B| \leq M \end{aligned}$$
 (20)

3.1.4.2 *Gleichungssysteme für die Betriebsarten DCMA, DCMB1, DCMB3, DCMAB, CCMA, CCMB*

Zusätzlich zu der Betriebsart DCMB2 werden zur Auslegung des Resonanzwandlers weitere 7 Betriebsarten unterschieden. Als Lösungsverfahren werden auch hier die Schaltzustände C^{\pm} und *B* verwendet. Je nach Betriebsart treten bis zu 6 Unbekannte auf, die jedoch stets nach dem gleichen Schema gelöst werden: Wie bei der Betriebsart DCMB2 werden Gleichungen aus Stationaritätsbedingungen, Leitund Sperrbedingung für den Gleichrichter formuliert. Nach numerischer Lösung der Gleichungssysteme werden weitere notwendige Bedingungen verwendet, um zu bestätigen, dass tatsächlich die gelöste Betriebsart zutrifft, siehe Tabelle 4.

Abbildung 15: CCM-Betriebsarten des LLC-Resonanzwandlers, bei denen unmittelbar zwischen den Schaltzuständen C^{\pm} für leitende Dioden gewechselt wird

28

Betriebsart	Gleichungssystem F _{Mode}	Notwendige Bedingungen	
DCMA	$\begin{bmatrix} m_{\rm CS}(0) + m_{\rm CS}(\gamma) \\ j_{\rm LS}(0) + j_{\rm LS}(\gamma) \\ j_{\rm LP}(0) + j_{\rm LP}(\gamma) \\ j_{\rm LS}(\theta_1) - j_{\rm LP}(\theta_1) \\ m_{\rm LP}(\theta_2) - M \\ r_{\rm i}n\overline{ j_{\rm LS} - j_{\rm LP} } + m_{\rm Batt} - M \end{bmatrix}$	$\stackrel{!}{=} 0$	$egin{aligned} & heta_1 < heta_2 \ & heta_1 + heta_2 < \gamma \ & m_{ ext{LP}}(heta_1)^B < M \end{aligned}$
DCMB1	$\begin{bmatrix} m_{\rm CS}(0) + m_{\rm CS}(\gamma) \\ j_{\rm LS}(0) + j_{\rm LS}(\gamma) \\ j_{\rm LP}(0) + j_{\rm LP}(\gamma) \\ j_{\rm LS}(\theta_1) - j_{\rm LP}(\theta_1) \\ m_{\rm LP}(\theta_2) + M \\ r_{\rm i}n\overline{ j_{\rm LS} - j_{\rm LP} } + m_{\rm Batt} - M \end{bmatrix}$	[!] = 0	$egin{aligned} & heta_1 < heta_2 \ & heta_1 + heta_2 < \gamma \ & m_{ ext{LP}}(heta_1)^B < M \end{aligned}$
DCMB3	$\begin{bmatrix} m_{\rm CS}(0) + m_{\rm CS}(\gamma) \\ j_{\rm LS}(0) + j_{\rm LS}(\gamma) \\ j_{\rm LS}(\theta_2) - j_{\rm LP}(\theta_2) \\ m_{\rm LP}(\theta_1) + M \\ r_{\rm i}n\overline{ j_{\rm LS} - j_{\rm LP} } + m_{\rm Batt} - M \end{bmatrix}$		$egin{aligned} & heta_1 < heta_2 \ & heta_1 + heta_2 < \gamma \ & m_{ ext{LP}}(heta_2)^B < M \end{aligned}$
DCMAB	$\begin{bmatrix} m_{\rm CS}(0) + m_{\rm CS}(\gamma) \\ j_{\rm LS}(0) + j_{\rm LS}(\gamma) \\ j_{\rm LS}(\theta_2) - j_{\rm LP}(\theta_2) \\ m_{\rm LP}(\theta_1) - M \\ r_{\rm i}n\overline{ j_{\rm LS} - j_{\rm LP} } + m_{\rm Batt} - M \end{bmatrix}$. [!] 0	$egin{aligned} & heta_1 < heta_2 \ & heta_1 + heta_2 < \gamma \ & m_{ ext{LP}}(heta_2)^B < M \end{aligned}$
ССМВ	$\begin{bmatrix} m_{\rm CS}(0) + m_{\rm CS}(\gamma) \\ j_{\rm LS}(0) + j_{\rm LS}(\gamma) \\ j_{\rm LP}(0) + j_{\rm LP}(\gamma) \\ j_{\rm LS}(\theta_1) - j_{\rm LP}(\theta_1) \\ r_{\rm i}n\overline{ j_{\rm LS} - j_{\rm LP} } + m_{\rm Batt} - M \end{bmatrix}$	≝ 0	$egin{aligned} heta_1 < \gamma \ & m_{ ext{LP}}(heta_1)^B > M \end{aligned}$
ССМА	$\begin{bmatrix} m_{\rm CS}(0) + m_{\rm CS}(\gamma) \\ j_{\rm LS}(0) + j_{\rm LS}(\gamma) \\ j_{\rm LP}(0) + j_{\rm LP}(\gamma) \\ j_{\rm LS}(\theta_1) - j_{\rm LP}(\theta_1) \\ r_{\rm i}n \overline{j_{\rm LS}} - \overline{j_{\rm LP}} + m_{\rm Batt} - M \end{bmatrix}$	[!] = 0	$egin{aligned} & heta_1 < \gamma \ & m_{ ext{LP}}(heta_1)^B > M \end{aligned}$

Tabelle 4: Gleichungssysteme und Verifikations-Bedingungen für die weiteren unterschiedenen Betriebsarten des LLC-Resonanzwandlers (vgl. [71, 118]) mit $Mode \in \{DCMA, DCMB1, DCMB2, DCMB3, DCMAB, CCMB, CCMA\}$

3.1.4.3 Betriebsart CUTOFF

Bleibt die Spannung m_{LP} stets unter der transformierten Ausgangsspannung n M, sperren die Dioden D_{1-4} während der gesamten Periodendauer 2 γ (siehe Abbildung 14 (f)). In dieser Betriebsart wird keine Leistung an den Ausgang übertragen, daher hat sich die Bezeichnung "Absperrung" bzw. *CUTOFF* (engl.) etabliert. Im stationären Zustand gelten die Gleichungen

$$0 \stackrel{!}{=} m_{\rm CS}(0)^{B} + m_{\rm CS}(\gamma)^{B}
0 \stackrel{!}{=} j_{\rm LS}(0)^{B} + j_{\rm LS}(\gamma)^{B},$$
(21)

(22)

die in geschlossener Form gelöst werden können zu

$$m_{\rm CS}(0) = \frac{r_Z - r_Z e^{2\gamma B r_w} - B^2 r_Z \sin(\gamma r_w)^2}{r_Z + r_Z e^{2\gamma B r_w} - B^2 r_Z + B F + B^2 r_Z \cos(\gamma r_w)^2}$$
$$\cdots \frac{+B F \sin(\gamma r_w)^2 + 2 B r_Z e^{\gamma B r_w} \sin(\gamma r_w)}{-B F \cos(\gamma r_w)^2 + 2 r_Z \cos(\gamma r_w) e^{\gamma B r_w}}$$

und

$$j_{\rm LS}(0) = -\frac{2\,\mathrm{e}^{\gamma\,B\,r_{\omega}}\,\sin(\gamma\,r_{\omega})}{r_Z + r_Z\,\mathrm{e}^{2\,\gamma\,B\,r_{\omega}} - B^2\,r_Z + B\,F + B^2\,r_Z\cos(\gamma\,r_{\omega})^2} \qquad (23)$$
$$\cdots \frac{-B\,F\cos(\gamma\,r_{\omega})^2 + 2\,r_Z\,\cos(\gamma\,r_{\omega})\,\mathrm{e}^{\gamma\,B\,r_{\omega}}}{-B\,F\cos(\gamma\,r_{\omega})^2 + 2\,r_Z\,\cos(\gamma\,r_{\omega})\,\mathrm{e}^{\gamma\,B\,r_{\omega}}}.$$

Ist der Spitzenwert der Spannung m_{LP} stets kleiner als die transformierte Ausgangsspannung n M, blockieren die Dioden D_{1-4} während der gesamten Schalt-Periodendauer 2 γ , damit gilt die Betriebsart CU-TOFF als bestätigt. Der Winkel θ_{max} , an dem die Extrema der Spannung m_{LP} auftreten, kann mit den o.g. Initialwerten $m_{CS}(0)$ und $j_{LS}(0)$ und Gleichung 161 aus Abschnitt A.4.1 gelöst werden. Diese geschlossene Lösung ist besonders hilfreich, da die Betriebsart CUTOFF über weite Schaltfrequenzbereiche auftritt und mit der oben genannten Lösung sehr schnell vorab berechnet und validiert werden kann, bevor weitere Betriebsarten numerisch berechnet werden.

3.1.5 Numerische Lösung

Nach Überprüfung, ob die Betriebsart CUTOFF vorliegt, werden die Gleichungssysteme der weiteren Betriebsarten numerisch gelöst. Die Aufgabe besteht also darin, die unbekannten Elemente des Lösungsvektors X_{Mode} zu finden, so dass die gegebenen Gleichungssysteme F_{Mode} aus Tabelle 4 bzw. Gleichung 19 erfüllt sind, d.h.

finde
$$X_{Mode} \in \mathbb{R}^n$$
, so dass $F_{Mode}(X_{Mode}, P) = 0$, (24)

wobei *P* der vorgegebene Parametervektor und *Mode* die untersuchte Betriebsart ist. Als Lösungsalgorithmus können iterative Verfahren

Weitere Details zur analytischen Lösung in Abschnitt A.3 wie z.B. Trust-Region oder Levenberg-Marquardt verwendet werden, die in der Matlab-Funktion lsqnonlin() hinterlegt sind. Ein Vergleich hat ergeben, dass das Trust-Region-Verfahren i.d.R schneller konvergiert es wird deshalb bevorzugt.

Ob und wie schnell der Lösungsalgorithmus konvergiert, hängt zudem entscheidend von der Wahl der Startwerte des Lösungsvektors $X_{Mode}^{(0)}$ ab. Im ersten Schritt werden Startwerte verwendet, die erfahrungsgemäß mit hoher Wahrscheinlichkeit zum Erfolg führen. Scheitert die numerische Lösung, z.B. wegen lokalen Minima, werden die Startwerte $X_{Mode}^{(0)}$ in einem physikalisch sinnvollen Intervall zufällig neu initialisiert und der Lösungsalgorithmus wird neu gestartet. Ist bereits aus vorherigen Berechnungen in der Nähe der Parametervektors P eine Lösung bekannt, wird diese Lösung als Startwert $X_{Mode}^{(0)}$ verwendet. Wird keine Lösung gefunden bzw. keine eindeutige Betriebsart erkannt, wird das Lösungsverfahren iterativ neugestartet mit verschärften Abbruchbedingungen bzw. neuen Startwerten (Abbildung 16). Zur Beschleunigung der Berechnung werden die untersuchten Betriebsarten parallel auf mehreren Prozessoren berechnet und verifiziert.

Die hellgrau markierten Blöcke in Abbildung 16 werden nur äußerst selten ausgeführt, z.B. bei numerischen Problemen

Abbildung 16: Flussdiagramm für die numerische Lösung der Zeitbereichsanalyse

3.1.6 Rechenaufwand

Zur Schaltungsauslegung müssen die Gleichungssysteme $F_{Mode}(X)$ hunderte bis tausende Male ausgeführt werden, daher ist die hierfür benötigte Berechnungszeit von zentraler Bedeutung für die Berechnungszeit der Schaltungsauslegung insgesamt. Alternativ zur hier verwendeten expliziten Lösung wird in [23, 39] vorgeschlagen, die Ersatzschaltbilder im Zustandsraum darzustellen und direkt mit dem Matrix-Exponential-Ansatz zu lösen. Die Spannungs- und Stromverläufe lassen sich so mathematisch elegant mit der Bewegungsgleichung bestimmen. Zum Vergleich sei dieses Vorgehen auf den Schaltzustand C^{\pm} mit dem Ersatzschaltbild aus Abbildung 11 angewendet. Durch Anwendung der Kirchhoffschen Gesetze und nach einigen algebraischen Umformungen ergibt sich die Zustandsraumdarstellung

$$\underbrace{\begin{pmatrix} \frac{\mathrm{d}i_{\mathrm{LS}}}{\mathrm{d}t} \\ \frac{\mathrm{d}u_{\mathrm{CS}}}{\mathrm{d}t} \end{pmatrix}}_{\frac{\mathrm{d}x}{\mathrm{d}t}} = \underbrace{\begin{pmatrix} -\frac{R_{\mathrm{S}}}{L_{\mathrm{S}}} & -\frac{1}{L_{\mathrm{S}}} \\ \frac{1}{C_{\mathrm{S}}} & 0 \end{pmatrix}}_{\boldsymbol{A}_{\mathrm{C}}} \underbrace{\begin{pmatrix} i_{\mathrm{LS}}(t) \\ u_{\mathrm{CS}}(t) \end{pmatrix}}_{\boldsymbol{x}(t)} + \underbrace{\begin{pmatrix} 1 \\ 0 \end{pmatrix}}_{\boldsymbol{B}_{c}} \underbrace{(\boldsymbol{U}_{1} + n\,\boldsymbol{U}_{2})}_{\boldsymbol{u}}.$$
 (25)

Wird diese Gleichung mit der Transitionsmatrix e^{*A*c^{*t*}} von links multipliziert, gelangt man nach einigen Umformungen [42, S.425 f.] zur Bewegungsgleichung

$$\boldsymbol{x}(t) = e^{\boldsymbol{A}_{\mathbf{C}}(t-t_0)}\boldsymbol{x}(t_0) + \int_{t_0}^t e^{\boldsymbol{A}_{\mathbf{C}}(t-\tau)}\boldsymbol{B}_{\mathbf{C}}\boldsymbol{u}(\tau)\mathrm{d}\tau.$$
 (26)

Zur Lösung von Gleichung 26 stehen in der Literatur eine Vielzahl von Verfahren zur Verfügung [42, 49, 78]. Higham [49] hält zur Näherung des Matrix-Exponentials $e^{A_{C}(t-\tau)}$ die *scaling and squaring*-Methode für geeignet; dieser Algorithmus ist letztlich auch in der Matlab-Funktion expm() implementiert. Ein experimenteller Vergleich hat ergeben, dass die Berechnung der Bewegungsgleichung (26) mit Hilfe der Matlab-Funktion expm() etwa die 200-fache¹ Rechenzeit in Anspruch nimmt im Vergleich zu der expliziten Lösung aus Anhang A. Alternativ können die Differentialgleichungen auch schrittweise mit einem Näherungsalgorithmus gelöst werden, der z.B. in gängigen Simulationstools z.B. Matlab / SimPowerSystems / PLECS hinterlegt ist. Solche Ansätze sind notwendig, wenn keine explizite Lösung der Differentialgleichung vorliegt; zur Berechnung der Gleichungssysteme $F_{Mode}(X)$ konnte in dieser Arbeit vorteilhaft darauf verzichtet werden.

Neben der Bezeichnung Transitionsmatrix haben sich für e^Ac^t auch die Bezeichnungen Übergangsmatrix, Matrix-Exponential-Funktion oder Fundamentalmatrix etabliert.

¹ Der Vergleich der Rechenzeiten ergab durchschnittlich 0,59 μs für die explizite Lösung und 127 μs für die Bewegungsgleichung, berechnet auf einem PC mit Intel Core i7-6700HQ Prozessor und 32 GB Arbeitsspeicher, jeweils ohne Parallelisierung.

3.1.7 Experimentelle Verifikation der Zeitbereichsanalyse

Die Modellierung der elektrischen Größen stützt sich auf sechs Annahmen (Seite 20), die getroffen wurden, um die Komplexität zu reduzieren und somit den Rechenaufwand der Auslegung akzeptabel zu halten. Nun soll experimentell überprüft werden, ob die getroffenen Annahmen zulässig sind und mit welcher Genauigkeit sich hiermit die Strom- und Spannungsverläufe des Resonanzkreises sowie die daraus abgeleiteten Belastungsgrößen in der Praxis berechnen lassen. Die Verifikation erfolgt anhand eines Labor-Prototyps, der aufgebaut wurde mit GaN-Transistoren für S_{1-4} , SiC-Dioden für D_{1-4} , Keramikkondensatoren (MLCC) mit NPo-Dielektrikum für C_S sowie einem integrierten Transformator für L_S , L_P und n. Auf detaillierte Angaben zum Aufbau des Labormusters soll an dieser Stelle verzichtet werden, da zur Verifikation der Zeitbereichsanalyse nur die Kennwerte des Resonanzkreises sowie die parasitären Eigenschaften der verwendeten Bauteile relevant sind (Tabelle 5).

Details zu den verwendeten Bauteilen sowie den verwendeten Messmitteln sind im Anhang B angeführt

Tabelle 5: Eckdaten des Labormusters, das zur Verifikation der Zeitbereichsanalyse verwendet wurde bzw. die daraus abgeleiteten Parameter.

$C_{\rm S}=61,8{\rm nF}$	$\lambda = 0,275$
$L_{\rm S} = 4,6\mu{\rm H}$	$Z_{0\mathrm{C}} = 8,75\Omega$
$L_{\mathrm{P}} = 16,7\mathrm{\mu H}$	$f_{0\rm C} = 298, 6\rm kHz$
n = 1,003	

Abbildung 17 zeigt einen Vergleich zwischen dem Ergebnis der Zeitbereichsanalyse und dem Messergebnis am Labormuster in der Betriebsart DCMB2, die häufig bei höheren Ausgangsströmen unterhalb der Resonanzfrequenz verwendet wird (in Abbildung 17 $f_{\rm S} = 0.9 f_{\rm 0C}$). Folgende Unterschiede zwischen Berechnung und Messung lassen sich feststellen: Die Resonanzkreis-Eingangsspannung u_{AB} wurde zwar zur Modellierung mit ideal steilen Schaltflanken angenommen, real wird die Steilheit aber bestimmt durch die Größe der parasitären Ausgangskapazitäten der Transistoren S_{1-4} sowie durch den abgeschalteten Strom $|i_{LS}(0)|$. Es ist anzumerken, dass die parasitäre Ausgangskapazität der hier eingesetzten GaN-Transistoren bereits vergleichsweise klein ist, die Spannungssteilheit jedoch trotzdem moderat ausfällt. Dies ist zurückzuführen auf den geringen geschalteten Strom $|i_{LS}(0)|$, der mit ca. 5A weniger als die Hälfte des Spitzenstroms in diesem Arbeitspunkt beträgt. Weiterhin wurde zur Modellierung angenommen, dass während der gesamten Halbperiode $T_S/2$ die Eingangsspannung U_1 am Resonanzkreis-Eingang u_{AB} anliegt. Bei genauerer Betrachtung ist auch dies nicht der Fall: Nach Abschluss der Kommentierung ist für einige Nanosekunden eine Spannungserhöhung um ca. 4V zu beobachten. Die Spannungser-

Im Detail wird die Ausgangskapazität verschiedener Transistor-Technologien im Abschnitt 3.2.6 behandelt. Gan-HEMTs besitzen keine interne Body-Diode, das Rückwärtsverhalten wird bestimmt durch gewählte Gate-Source-Spannung [59]. höhung ist begründet im Rückwärtsverhalten der verwendeten GaN-Transistoren, die im ausgeschalteten Zustand (bei $u_{GS} = 0$ V) etwa 2 V Flussspannung aufweisen. Diese Spannungsüberhöhung verschwindet nach einer gewählten Wechselsperrzeit von 50 ns, nachdem die Transistoren unter ZVS-Bedingung weich eingeschaltet wurden. Die Sequenz der Schaltzustände verläuft in der ersten Halbperiode, wie von der ZBA berechnet: Zunächst gilt der Schaltzustand C^+ , in der die Dioden $D_{1/4}$ leiten, danach blockieren die Dioden im Schaltzustand *B*. Im blockierten Zustand ist jedoch der Sekundärstrom i_{out} nicht exakt Null – wie von der ZBA angenommen –, sondern es tritt eine höherfrequente Oszillation zwischen der Ausgangskapazität der Dioden D_{1-4} und der Serieninduktivität L_S auf.

Abbildung 17: Vergleich des Ergebnisses der Zeitbereichsanalyse mit der Messung in der Betriebsart DCMB2 (Schaltsequenz C^+ , B)

Trotz dieser Abweichungen können mit den getroffenen Annahmen die Belastungsgrößen in der Betriebart *DCMB2* mit hoher Genauigkeit berechnet werden: Die Spitzenspannung des Kondensators u_{CSpeak} beispielsweise wird von der ZBA ermittelt zu 115,7 V, gemessen wurden 116,4 V – ein Fehler von 0,6 %. Der Spitzenstrom i_{LSpeak} wird von der ZBA ermittelt zu 12,3 A, gemessen wurden 13,3 A – ein Fehler von 8 %. Die Schaltfrequenz f_S , die zu diesem Arbeitspunkt führt, wird von der ZBA ermittelt zu 265,7 kHz, gemessen wurden 267 kHz – ein Fehler von 0,5 %. Diese Abweichungen sind begründet in den o.g. Abweichungen, in Ungenauigkeiten der Strom- und Spannungsmessung und letztlich auch in der Messungenauigkeit der Impedanzmessung, die zur Bestimmung der Resonanzkreisparameter verwendet wurde.

Zur Messung der Resonanzkreisparameter wurde der Impedanz-Analyser Agilent 4294 A verwendet.

34

Abbildung 18 zeigt den Vergleich zwischen dem Ergebnis der Zeitbereichsanalyse und der Messung in der Betriebsart CCMA, die oberhalb der Resonanzfrequenz auftritt (in Abbildung 18 $f_{\rm S} = 1.2 f_{\rm 0C}$). Verglichen mit der Betriebsart DCMB2 (Abbildung 17) wird in dieser Betriebsart ein deutlich höherer Strom $|i_{LS}(0)|$ von den Transistoren S_{1-4} abgeschaltet: 11,8 A – das entspricht 82 % des Spitzenwerts $i_{LSpeak} = 14,7 A.$ Dieser erhöhte Strom führt dazu, dass die Ausgangskapazitäten C_{OSS} der Transistoren nach dem Abschalten deut- $\frac{\mathrm{d}u_{\mathrm{AB}}}{\mathrm{d}t}$ lich schneller umgeladen werden; die Spannungssteilheit ist daher signifikant höher verglichen mit der Betriebsart DCMB2 (Abbildung 17). Wie bereits in Abbildung 17 dargestellt, ist in der Spannung uAB nach der Kommutierung eine Spannungserhöhung von ca. 4 V zu erkennen, die verschwindet, sobald die Transistoren weich eingeschaltet werden. Auch in diesem Arbeitspunkt stimmen die Verläufe qualitativ überein und die Belastungsgrößen werden mit einer Abweichung von wenigen Prozent berechnet.

Gemessen im Arbeitspunkt $U_1=100 V,$ $i_{in}=7, 5 A,$ $U_{Batt}=80 V,$ $f_S=368 \text{ kHz}$

Abbildung 18: Vergleich des Ergebnisses der Zeitbereichsanalyse mit der Messung in der Betriebsart CCMA (Schaltsequenz C^-, C^+)

In Abbildung 19 ist das Ergebnis der Zeitbereichsanalyse in der Betriebsart DCMAB der Messung im gleichen Arbeitspunkt gegenübergestellt. Diese Betriebsart tritt sowohl oberhalb als auch unterhalb der Resonanzfrequenz bei geringem Ausgangsstrom i_{Batt} auf. Neben den parasitären Effekten der vorherigen Betriebsarten, stimmt hier die Sequenz der Schaltzustände nicht mit den angenommenen B, C^+, B wie von der ZBA überein, sondern es leiten für ein kurzes Zeitintervall die Dioden unmittelbar nach dem Schaltvorgang der Transistoren S_{1-4} . Dies ist begründet in der parasitären Ausgangskapazität der Dioden D_{1-4} , die verhindert, dass u_{LP} sich sprungförmig zum Schaltaugenblick ändert. Dies führt zu einem Stromanstieg in i_{LS} , der über die Dioden an den Ausgang abgeführt wird. Um dies zu verdeutlichen, wurde in einer separaten Messung die Spannung u_{LP} am DiodenBei der Phasengesteuerten Vollbrücke führt dieser parasitärer Stromaufbau zu Überspannungen an D₁₋₄ [93]. gleichrichter gemessen (Abbildung 19(b)). Die Oszillation in $u_{\rm L}$ während des Schaltzustands *B* (bei blockierenden Dioden) ist nicht exakt sinusförmig, da die parasitäre Sperrschichtkapazität der Dioden D_{1-4} stark spannungsabhängig ist [4]. Im Schaltaugenblick der Transistoren ändert sich die Spannung $u_{\rm LP}$ nicht instantan, was zum beschriebenen Stromanstieg bzw. zum kurzzeitigen Flussintervall der Dioden führt. Trotz dieser Unterschiede stimmt der qualitative Verlauf gut überein, die Spitzenwerte $u_{\rm CSpeak}$ & $i_{\rm LSpeak}$ und die Schaltfrequenz $f_{\rm S}$ lassen sich mit hoher Genauigkeit berechnen.

Abbildung 19: Vergleich des Ergebnisses der Zeitbereichsanalyse mit der Messung in der Betriebsart DCMAB (Schaltsequenz B, C^+, B)

In Abbildung 20 ist die analytische Lösung der Betriebsart CUTOFF mit einer Messung im gleichen Arbeitspunkt gegenübergestellt. Wie bereits in den Betriebsarten *DCMAB* und *DCMB2* wird durch die schnelle Änderung der Spannung u_{AB} eine Schwingung zwischen Streuinduktivität und Dioden-Ausgangskapazität angeregt, die aber in diesem Fall zu keiner Leistungsübertragung beiträgt. Die weiteren parasitären Effekte im Spannungsverlauf von u_{AB} , die bereits aus den vorherigen Betriebsarten bekannt sind, zeigen sich auch in dieser Betriebsart, die Spitzenwerte u_{CSpeak} und i_{LSpeak} lassen sich jedoch sehr genau berechnen.

In Abbildung 21 und Abbildung 22 sind die berechneten Belastungsgrößen über den Eingangsstrom aufgetragen. In diesen Diagrammen wird deutlich, welchen Nutzen die Berücksichtigung einer Dämpfung in Form des Serienwiderstandes R_S hat: Werden die Verluste mit einem Serienwiderstand von $R_S = 0, 2\Omega$ berücksichtigt, kann die Genauigkeit der berechneten Schaltfrequenz f_S signifikant gesteigert werden. Zudem steigt auch die Genauigkeit der berechneten Spitzenspannung u_{CSpeak} deutlich.

36

Abbildung 20: Vergleich des Ergebnisses der Zeitbereichsanalyse mit der Messung in der Betriebsart CUTOFF (Schaltsequenz *B*)

Abbildung 21: Verifikation der berechneten Belastungsgrößen im Hochsetzbetrieb bei $U_1 = 150$ V und $U_{Batt} = 170$ V mit emuliertem Batterie-Innenwiderstand von $R_i = 1$ Ω

Abbildung 22: Verifikation der berechneten Belastungsgrößen im Tiefsetzbetrieb bei $U_1 = 150$ V und $U_{Batt} = 130$ V mit emulierten Batterie-Innenwiderstand von $R_i = 1$ Ω

Um die Genauigkeit der Modellierung weiter zu steigern, sind die erwähnten parasitären Effekte zu berücksichtigen, was sich im Detail aber als sehr aufwändig und rechenintensiv erweist, denn die Ausgangskapazitäten heutiger GaN- und Si-Transistoren sowie die Sperrschichtkapazitäten der SiC-Dioden sind stark spannungsabhängig: Beispielsweise ist die Ausgangskapazität eines typischen Si-SJ-MOSFETs bei kleiner Drain-Source-Spannung etwa um den Faktor 300 größer als bei der typischen Sperrspannung [6]. Die Berücksichtigung der parasitären Bauteileigenschaften führt daher zu Differentialgleichungen höherer Ordnung, die keine lineare Struktur mehr aufweisen und sich somit nur in Ausnahmefällen geschlossen lösen lassen. Da sich die Strom- und Spannungsverläufe sowie die daraus abgeleiteten Belastungsgrößen mit den getroffenen Annahmen mit guter Genauigkeit berechnen lassen, wird in der vorliegenden Arbeit auf weitere Betrachtungen verzichtet.

3.2 ANALYSE DER BELASTUNGSGRÖSSEN

Das grundsätzliche Ziel der Schaltungsentwicklung, nämlich die Kosten, das Bauvolumen und die Verluste des behandelten LLC-Ladewandlers zu minimieren, kann als komplexes Optimierungsproblem verstanden werden, dessen Optimierungsparameter grundsätzlich alle physikalischen Größen der Bauteile, sowie deren räumliche Platzierung umfassen. Dieses Mehrziel-Optimierungsproblem lässt sich in der Praxis jedoch nicht so formulieren, dass es Allgemeingültigkeit besitzt. Sogar eine Teil-Optimierung kann im konkreten Fall äußerst schwierig sein, was an zwei Beispielen verdeutlicht werden soll: Zwar können die Durchlassverluste der Transistoren durch Vergrößerung der Chipfläche gesenkt werden, doch steigen hierdurch allerdings auch die Kosten, die wiederum von Faktoren wie Skaleneffekte, Bauteilstrategie des Unternehmens etc. abhängen und somit weit über die technischen Zusammenhänge hinaus gehen. Ein weiteres Beispiel betrifft das Bauvolumen, welches durch den Einsatz von NPo-Kondensatoren anstatt MKP-Folienkondensatoren verkleinert werden kann - die Beschaffungskosten können aber deutlich höher sein. Eine allgemeingültige und dennoch detaillierte Formulierung all dieser Aspekte ist praktisch ausgeschlossen, insbesondere wenn die Lösung des Optimierungsproblems gültig für beliebige Anwendungszeitpunkte sein soll. Um zunächst unabhängig von konkreten Realisierungs-Fragen zu sein, sollen daher im ersten Schritt nicht direkt die Kosten, die Verlustleistung oder das Bauvolumen analysiert werden, sondern es soll zunächst berechnet werden, mit welchen Strom- und Spannungswerten die Bauelemente grundsätzlich belastet werden. Die Betrachtung dieser so genannten Belastungsgrößen hat den Vorteil, dass sie nur von den konzentrierten Parametern (z.B. $L_{\rm S}$, $L_{\rm P}$, $C_{\rm S}$ und *n*) abhängen, und somit eine solche Analyse unabhängig von Bauteilkosten, Bauteilwerkstoff und Baugröße ist, wodurch sie auch in Zukunft Gültigkeit besitzt.

Die Zeitbasis aller elektrischen Größen wurde in der Zeitbereichsanalyse auf die Frequenz $\omega_{\rm C}$ normiert. Die mit der Zeitbereichsanalyse berechneten Strom- und Spannungsbelastungen sind daher unabhängig von der gewählten Resonanzfrequenz $\omega_{\rm C0}$, da die Rück-Normierung auf beliebige Frequenzen erfolgen kann. Um diese Tatsache auszunutzen, werden die Belastungsgrößen nicht direkt in Abhängigkeit von den Resonanzkreisparametern untersucht, sondern in Abhängigkeit vier abgeleiteten Parameter

$$\lambda = \frac{L_{\rm S}}{L_{\rm P}} \tag{27}$$

$$Z_{0C} = \sqrt{L_{\rm S}/C_{\rm S}} \tag{28}$$

$$f_{0C} = \frac{\omega_{0C}}{2\pi} = \frac{1}{2\pi\sqrt{L_{\rm S}C_{\rm S}}}.$$
(30)

Auf Basis der Zeitbereichsanalyse aus Abschnitt 3.1 wird im Folgenden nun ermittelt, mit welchen Belastungsgrößen die Bauteile des Ladewandlers beaufschlagt werden. Da die Belastungsgrößen unabhängig von der Frequenz f_{0C} sind, genügt es für die meisten Belastungsgrößen, die Analyse in Abhängigkeit von λ , Z_{0C} und n durchzuführen. Die konkrete Auslegung der Resonanzfrequenz erfolgt im Rahmen der Transformatoroptimierung in Kapitel 4

Motivation für die Analyse der Belastungsgrößen

3.2.1 Effektivwert des Resonanzstromes I_{LScycle}

Der Resonanzstrom I_{LS} verursacht Durchlassverluste in den Transistoren S_1 - S_4 und dem Resonanzkondensator C_S sowie Wicklungsverluste im Transformator mit etwaiger Resonanzspule L_S . Diese Verluste machen einen erheblichen Anteil der Gesamtverluste aus, daher ist die Reduktion des Effektiv-Resonanzstromes I_{LS} von entscheidender Bedeutung. Der Effektivwert des Resonanzstromes $I_{LScycle}$ wird berechnet in Abhängigkeit von n, Z_{0C} , λ über einen Ladezyklus nach

$$I_{\rm LScycle} = \sqrt{\frac{1}{T_{\rm cycle}} \int_0^{T_{\rm cycle}} i_{\rm LS}^2(t) \, \mathrm{d}t} \approx \sqrt{\frac{1}{N_{\rm AP}} \sum_{i=1}^{N_{\rm AP}} I_{\rm LS,i}^2}$$
(31)

mit den Arbeitspunkten *i* und der Arbeitspunktanzahl $N_{\rm AP}$ aus Abschnitt 2.4. Abbildung 23 zeigt den Effektivwert des Resonanzstromes in Abhängigkeit von *n*, Z_{0C} und λ normiert auf den Effektivwert des Netzstromes $I_{\rm Netz}$. Im Parameterbereich, der weiß gekennzeichnet ist, kann der definierte Arbeitsbereich mit den gewählten Parametern *n*, Z_{0C} und λ nicht angesteuert werden.

Abbildung 23: Resonanzstrom-Effektivwert $I_{LScycle}$, bezogen auf den Netzstrom I_{Netz} , gebildet über den Arbeitsbereich von Abb. 9

3.2.2 Effektivwert des Diodenstroms I_{outcycle}

Wird die Batterie mit der Leistung PBatt geladen, führt dies grundsätzlich zu einem Strommittelwert $\bar{i}_{Batt} = P_{Batt}/U_{Batt}$, der mittels Ausgangsgleichrichter übertragen wird. Durch die Flussspannung der Dioden werden hierdurch Durchlassverluste verursacht, die nicht durch die Auslegung des Resonanzkreises beeinflusst werden können. Neben der Flussspannung weist jedoch jede Diode einen differentiellen Widerstand $r_{\rm D}$ auf, der zusätzliche Verluste hervorruft infolge des vom arithmetischen Mittelwerts abweichenden Stromeffektivwertes Iout. Zudem werden durch diesen Effektivwert Wicklungsverluste in der Sekundärwicklung des Transformators verursacht. Daher wird als weitere Belastungsgröße Ioutcycle untersucht, die wiederum gebildet wird als Effektivwert über einen gesamten Ladevorgang gemäß

Sekundärstromes Belastungsgröße z.B. für die Dioden D_{1-4}

Abbildung 24: Diodenstrom-Effektivwert ILScycle, bezogen auf den Effektivwert des Netzstromes INetz, gebildet über den Arbeitsbereich aus Abb. 9

Wie in Abbildung 24 gezeigt, ist der Dioden-Effektivstrom I_{outcycle} praktisch ausschließlich abhängig von dem Übersetzungsverhältnis n. Die Abhängigkeit von der Kennimpedanz Z_{0C} und den Induktivitätsverhältnis λ kann vernachlässigt werden.

3.2.3 Abschaltstrom der Transistoren $|i_{LS0}|$

Detailliert wird diese Thematik in Abschnitt 3.3.2 behandelt. Die Transistoren S_1 – S_4 können beim LLC-Resonanzwandler über den gesamten Arbeitsbereich bei Nullspannung eingeschaltet werden, daher sind die Einschaltverluste vernachlässigbar klein (ZVS). Abgeschaltet werden die Transistoren aber je nach Arbeitspunkt und Betriebsart bei nennenswertem Strom z.B. in der Betriebsart CCMA (siehe z.B. Abbildung 18).

Ein hoher Abschaltstrom ist aus zweierlei Gründen unerwünscht: Erstens können durch hohe Abschaltströme Schaltverluste verursacht werden – mehr dazu in Abschnitt 3.3.2. Zum anderen führen hohe Abschaltströme zu schnellen Spannungssteilheiten, was die Gleichtaktstörung bzw. signifikante EMV-Störungen zur Folge hat. Abbildung 25 zeigt daher den maximalen Abschaltstrom $|i_{LS0}|$, der sich während des Ladezyklus ergibt, normiert auf den Effektivwert des Netzstromes I_{Netz} in Abhängigkeit von n, Z_{0C} und λ .

3.2.4 Schaltfrequenzüberhöhung $f_{\text{Smax}}/f_{0\text{C}}$

Durch Wahl der Resonanzkreisparameter kann bestimmt werden, in welcher Betriebsart der Ladewandler betrieben wird. Wird das Übersetzungsverhältnis n zu 1 oder größer gewählt, tritt in allen Arbeitspunkten diskontinuierlicher Betrieb DCM auf. Die Schaltfrequenz f_S ist hierbei stets kleiner als die Resonanzfrequenz (Abbildung 26). Bei n < 1 tritt hingegen bei kleiner Batteriespannung abschnittsweise die Betriebsart *CCMA* auf, woraus maximale Schaltfrequenzen deutlich über der Resonanzfrequenz resultieren (Abbildung 26(a)). Dies ist insbesondere unglücklich, weil in dieser Betriebsart der abgeschaltete Strom besonders hoch ist (siehe Abbildung 25(a)). Andererseits ist der Effektivwert des Diodenstroms $I_{outcycle}$ bei CCMA kleiner als bei DCM, daher werden bei kleinerem n geringere Verluste in D_{1-4} erreicht (Abbildung 24).

Abbildung 26: Schaltfrequenz f_{Smax} , bezogen auf die jeweilige Resonanzfrequenz f_{0C} , gebildet über einen Ladezyklus

3.2.5 Spitzenspannung des Resonanzkondensators u_{CSpeak}

Abbildung 27 zeigt die Kondensator-Spitzenspannung u_{CSpeak} in Abhängigkeit von n, Z_{0C} und λ . Generell gilt: Je *kleiner* die Kennimpedanz Z_{0C} , desto *kleiner* ist die Spitzenspannung u_{CSpeak} , genau gegenläufig zum Effektivstrom I_{LS} und Abschaltstrom $|i_{LS0}|$. Zudem sinkt die Kondensator-Spannung u_{CSpeak} mit dem Übersetzungsverhältnis n. Eine kleine Kondensator-Spitzenspannung u_{CSpeak} ist aus zweierlei Gründen wünschenswert: Erstens können Kondensatoren kleinerer Spannungsklasse eingesetzt werden, die eine kompaktere Bauform bzw. eine höhere Kapazitätsdichte aufweisen. Bei höheren Frequenzen ist zudem ein Derating der Spannung erforderlich, um den Kondensator vor Überhitzung zu schützen. Zweitens ist eine kleine Spannung u_{CSpeak} willkommen, da hiermit die Luft- und Kriechstrecken im späteren Prototyp kleiner ausfallen können.

Derating des Kondensators in Abschnitt 3.3.3

Details zum

Details zur Bestimmung der Luft- und Kriechstrecken nach IEC 60664 in Abschnitt 8.1

Analyse der Spitzenspannung u_{CSpeak} als Belastungsgröße des Kondensators C_S

Abbildung 27: Kondensatorspitzenspannung u_{CSpeak} in einem Ladezyklus, bezogen auf den Effektivwert der Netzspannung U_{Netz}

3.2.6 Kommutierungsladung Q_C

Wird der Resonanzkreis mit den Parametern n, Z_{0C} und λ auf Basis der bis hier genannten Belastungsgrößen ausgelegt, kann es vorkommen, dass für die Transistoren S_1 - S_4 kein vollständiges Nullspannungsschalten erreicht wird. Der Grund hierfür liegt in den Transistor-Ausgangskapazitäten C_{OSS} , die nicht vollständig entladen wurden wenn der jeweilige Transistor einschaltet. Je nach gewählter Schaltfrequenz führt dieses harte Einschalten der Transistoren zu hohen Verlusten bzw. zu einer Überhitzung und ist daher unerwünscht. In diesem Abschnitt wird näher untersucht, wie der Resonanzkreis ausgelegt werden muss, damit ZVS in jedem Arbeitspunkt gewährleistet werden kann.

Zur näheren Erläuterung soll ein Beispiel dienen: In einer Abschlussarbeit [109], die in Rahmen der Arbeit betreut wurde, ist ein LLC-Resonanzwandler als Laborexperiment mit Silizium-Superjunction-Transistoren aufgebaut worden. Der Resonanzkreis hatte in diesem Experiment die Parameter n = 1, $Z_{0C} = 8,75 \Omega$, $\lambda = 0,27$ und $f_{0C} = 313$ kHz. Der Belastungsgrößenanalyse ist zu entnehmen, dass hiermit geringer Effektiv- und Abschaltstrom erreicht wird (Abbildung 23 (c) und 25 (c)). Für die Transistoren S_{1-4} wurden in diesem Experiment Infineons Silizium-Superjunction-Transistoren *CoolMOS* $C7^{TM}$ mit einem Durchlasswiderstand von $R_{ds,on}=17 \text{ m}\Omega$ eingesetzt.

Durchlasswiderstand von $17 \text{ m}\Omega$ des Transistors IPZ65R019C7XKSA1 gilt bei 25°C und steigt bis 40 m Ω bei 150°C

Abbildung 28: Vergleich der Kommutierungsvorgänge für Silizium-Superjunction-MOSFETs mit $R_{DS,on}=17 \text{ m}\Omega$ bei zwei verschiedenen Kommutierungsladungen Q_C im gleichem Arbeitspunkt. In (a) ist Q_C zu klein, um vollständiges ZVS zu gewährleisten, in (b) ist Q_C durch gestiegenen Strom I_{LS} und kleinere Resonanzfrequenz f_{0C} gerade ausreichend, um vollständiges ZVS zu erreichen. ($n = 1, \lambda = 0, 27$, Arbeitspunkt: $U_1 = 100 \text{ V}, I_1 = 8, 8 \text{ A}$)

Zwar ist die Effektivstrombelastung in der Auslegung von Abbildung 28(a) gering, jedoch werden die Transistoren mit diesen Resonanzkreis-Parametern nicht bei Nullspannung eingeschaltet (kein vollständiges ZVS), da unmittelbar vor dem Einschalten der Transistoren die entsprechende Drain-Source-Spannung etwa 25 V beträgt. Der Grund hierfür liegt in einem Zusammenspiel aus Resonanzkreis-Auslegung und Transistor-Auswahl. Nach Abschalten der Transistoren steht nur eine gewisse Ladung Q_C zum Entladen der parasitären Ausgangskapazitäten zur Verfügung, nämlich die Ladung, die sich bis zum Nulldurchgang des Stromes $i_{\rm LS}$ ergibt. Da $Q_{\rm C}$ für den Kommutierungvorgang zur Verfügung steht, wird im Folgenden die Bezeichnung Kommutierungsladung verwendet. In Abbildung 28 (a) reicht diese Ladung nicht aus, um die parasitären Ausgangskapazitäten der Transistoren S_{1-4} vollständig zu entladen. Späteres Einschalten, nachdem der Nulldurchgang des Stroms i_{LS} aufgetreten ist (größere Wechselsperrzeit), verschlimmert das Problem weiter, denn die Ausgangskapazitäten der Transistoren würden durch den Strom umgekehrter Polarität erneut aufgeladen, was die Einschaltverluste weiter steigern würde.

Dreierlei Maßnahmen sind denkbar, um ZVS vollständig zu gewährleisten: Die erste Option zielt auf eine Senkung der Resonanzfrequenz f_{0C} bzw. der Schaltfrequenz f_{S} , damit sich die Zeitskala vergrößert und hiermit bei gleichem Strom die Kommutierungsladung Q_C ansteigt. Zweitens könnte bei gleicher Frequenz f_{0C} der Strom i_{LS} vergrößert werden, z.B. durch ein kleineres Z_{0C} oder ein höheres λ . Drittens könnten Transistoren S_{1-4} mit kleinerer Ausgangskapazität eingesetzt werden, um die auszuräumende Ladung Q_{OSS} zu reduzieren. Keine dieser Maßnahmen ist ohne Nachteil. In der Abschlussarbeit wurden die ersten beiden Maßnahmen verwendet, indem die Resonanzfrequenz f_{0C} von 313 kHz auf 240 kHz reduziert wurde und der Strom $i_{\rm LS}$ durch Senkung der Kennimpedanz $Z_{0\rm C}$ von 8,75 Ω auf $6,75\Omega$ erhöht wurde. Hierdurch wurde die Kommutierungsladung $Q_{\rm C}$ so weit gesteigert, dass die Transistoren S_{1-4} spannungslos und somit verlustlos eingeschaltet werden können (vollständiges ZVS in Abbildung 28 (b)). Dieses Vorgehen hat aber entscheidende Nachteile: Durch die geringere Resonanzfrequenz vergrößert sich das Bauvolumen des Resonanzkondensators C_S in diesem Beispiel um 60%. Ferner steigt durch die beschriebene Änderung der Stromeffektivwert I_{LScvcle} um etwa 15% an, was naturgemäß zu höheren Stromwärmeverlusten führt.

Alternativ zur Modifikation des Resonanzkreises, wie zuvor in Abbildung 28 gezeigt, können als dritte Maßnahme Transistoren S_{1-4} mit kleinerer Ausgangskapazität ausgewählt werden, damit ZVS bei geringer Kommutierungsladung erreichbar ist. Der damit verbundene größere Durchlasswiderstand $R_{ds,on}$ bei sonst gleichem Transistortyp, führt jedoch wiederum prinzipiell zu höheren Durchlassverlusten. Alternativ können Transistoren entweder auf Silizium-Basis oder als moderne WBG-Bauteile verwendet werden. Abbildung 29 (a) zeigt die Ausgangskapazitäten, die den Datenblättern einiger konkurrierender Transistortypen entnommen sind. Grundsätzlich ist die Ausgangskapazität eines Transistors umgekehrt proportional zum Durchlasswiderstand. Daher wurden die Kennlinien von C_{OSS} und Q_{OSS} mit dem Kehrwert des jeweiligen $R_{ds,on}$ bei Raumtemperatur normiert, damit eine Vergleichbarkeit zwischen den Transistoren ermöglicht wird. In blau sind gängige Silizium-Superjunction-MOSFETs und in rot moderne Galliumnitrid (GaN)-HEMTs dargestellt. Die gespeicherte Ladung $Q_{OSS}(u_{ds})$ wird bestimmt durch Integration dieser Kennlinien mit

$$Q_{\rm OSS}(u_{\rm ds}) = \int_0^{u_{\rm ds}} C_{\rm OSS}(u) \,\mathrm{d}u. \tag{33}$$

Abbildung 29 (b) ist zu entnehmen, dass die Ladung der Ausgangskapazitäten Q_{OSS} deutlich von der Wahl des Transistortyps abhängt. Infineons *CoolMOS C*₇, der im Experiment in Abbildung 28 eingesetzt wurde, hat bei gleichem Durchlasswiderstand eine ca. zehnfach höhere Ladung Q_{OSS} als GaNSystems HEMT *GS665*.

Abbildung 29: Vergleich der parasitären Ausgangskapazität C_{OSS} und der gespeicherten Ladung Q_{OSS} zwischen kommerziell erhältlichen Silizium-Superjunction-MOSFETs (blau) und GaN-HEMTs (rot). Für einen direkten Vergleich wurde mit dem Kehrwert des jeweiligen Durchlasswiderstands normiert.

In einer weiteren Abschlussarbeit [50], die im Rahmen der Arbeit betreut wurde, ist daher ein Wechselrichter mit den GaN-HEMTs GS66516T von GaNSystems aufgebaut worden. Durch Parallelschalten je zwei dieser Transistoren wurde der Durchlasswiderstand auf 13 m Ω gesenkt. Trotz der Reduzierung des Durchlasswiderstands um etwa 25% (17 m Ω bei Si-SJ-MOSFET vs. 13 m Ω bei GaN-HEMTs), ist dennoch die Ausgangsladung Q_{OSS} deutlich kleiner (um etwa 85%). Mit der Betriebstemperatur steigt der Durchlasswiderstand dieser Transistoren deutlich an. Typischerweise ist für GaN-HEMTs der Temperaturkoeffizient deutlich höher als bei Silizium-Transistoren. Hiermit lässt sich im beispielhaften Arbeitspunkt, bei dem zuvor mit Infineons *C7-MOSFET*s kein vollständiges ZVS erreicht wurde, auch ohne Modifikation des Resonanzkreises vollständiges Weichschalten erreichen. In Abbildung 30 (b) sind die Messungen der jeweiligen Kommutierungsvorgänge für Si-SJ-MOSFETs und GaN-HEMTs in einem beispielhaften Arbeitspunkt gegenübergestellt. Mit den verwendeten GaN-HEMTs ließe sich sogar die Schaltfrequenz noch weiter steigern.

(a) *CoolMOS* C_7^{TM} IPZ65R019C7 mit (b) GaNSystems GS66516T (je zwei paral $f_{0C} = 240$ kHz, $Z_{0C} = 6,75 \Omega$ lel) mit $f_{0C} = 313$ kHz, $Z_{0C} = 8,75 \Omega$

3.2.6.1 Notwendigkeit von ZVS auch für WBG-Transistoren

Angesichts der sehr viel kleineren Ausgangskapazität heutiger GaN-HEMTs stellt sich die Frage, ob ZVS zur Erzielung höchster Wirkungsgrade überhaupt noch erforderlich ist. Um dieser Frage nachzugehen, soll in diesem Abschnitt ermittelt werden, mit welchen zusätzlichen Einschaltverlusten zu rechnen ist, wenn auf ZVS gänzlich verzichtet würde. Hierzu sei im folgenden angenommen, dass keine Kommutierungsladung zur Entladung der Transistor-Ausgangskapazität zur Verfügung steht (Q_C =0), sodass die Transistoren hart eingeschaltet würden.

Beispielhaft sei folgendes Gedankenexperiment angenommen: Die Ausgangskapazität des Transistors S_2 ist auf die Eingangsspannung U_1 aufgeladen und anschließend wird S_2 hart eingeschaltet (siehe

Abbildung 31: Schaltzustand vor (t_1) und nach (t_2) hartem Einschalten von S₂ bei angenommener Kommutierungsladung von Null

Abbildung 31). Beim Einschalten des Transistors S_2 wird somit die gespeicherte Energie der Ausschaltkapazität $E_{OSS}(U_1)$ in dessen Kanal dissipiert. Zeitgleich wird die Ausgangskapazität des Transistors S_1 auf U_1 aufgeladen, wofür die Ladung Q_{OSS} aus der Spannungsquelle U1 geliefert werden muss. Die hierbei geleistete Arbeit vereinfacht sich dank der Gleichspannung U_1 zu $\int_{t_1}^{t_2} U_1 i_1 dt = U_1 \cdot Q_{OSS}$. Ein Teil dieser Arbeit wird jedoch nicht dissipiert, sondern ist nach dem Einschaltvorgang als Energie in der Ausgangskapazität von S_1 gespeichert. Um die gesamten Verluste des Einschaltvorgangs zu berechnen, muss daher noch $E_{OSS}(U_1)$ von $U_1 \cdot Q_{OSS}$ abgezogen werden. Die gesamten Einschaltverluste für den harten Einschaltvorgang von S_2 berechnen sich daher zu

$$E_{\text{on}}(U_1) = E_{\text{OSS}}(U_1) + \underbrace{\left[U_1 \, Q_{\text{OSS}}(U_1) - E_{\text{OSS}}(U_1)\right]}_{\text{Verluste zur Ladung von } S_1}$$
(34)
$$= Q_{\text{OSS}}(U_1) \, U_1.$$
(35)

In (35) kompensieren sich die Energien E_{OSS} der Transistoren vollständig, was plausibel ist, denn die innere Energie der gesamten Halbbrücke ist jeweils vor und nach dem Einschaltvorgang gleich, da im LLC-Resonanzwandler Halbbrücken mit gleichen Transistoren für S_1 und S_2 verwendet werden.

Für einen quantitativen Vergleich der Einschaltverluste kommerziell erhältlicher Si/GaN-Transistoren wurde zunächst mittels der Kennlinien $C_{OSS}(u_{ds})$ (siehe Abbildung 29) die Energie E_{OSS} numerisch bestimmt, die sich mittels partieller Integration schreiben lässt zu

$$E_{\rm OSS}(u_{\rm ds}) = \int_0^{u_{\rm ds}} C_{\rm OSS}(u) \, u \, {\rm d}u \tag{36}$$

$$= Q_{OSS}(u_{\rm ds}) \, u_{\rm ds} - \int_0^{u_{\rm ds}} Q_{\rm OSS}(u) \, {\rm d}u.$$
(37)

Bei Schaltungen, die verschiedene Bauteile für S₁ und S₂ verwenden, würde sich in (35) E_{OSS} nicht aufheben!

Angesichts der hohen Rückstromspitze ist von dem hart-schaltenden Betrieb der C7-Transistoren ohnehin abzuraten. In Abbildung 32 (b) sind die gesamt dissipierten Einschaltverluste für die untersuchten Transistoren nach Gleichung 35 gezeigt. Hiermit lassen sich die Einschaltverluste für konkrete Transistoren mit den Durchlassverlusten gegenüberstellen: Würde der hier betrachtete Resonanzwandler mit Infineons *CoolMOS C7*-Transistoren hartschaltend, d.h. ohne Kommutierungsladung Q_C betrieben, so würden Einschaltverluste entstehen, die etwa das 25-fache der Durchlassverluste betrügen. Für die GaN-Bauelemente sind die Einschaltverluste zwar deutlich geringer (siehe Abbildung 32), jedoch würden für Hartschalten ebenso Einschaltverluste dissipiert, die etwa das sechsfache der Durchlassverluste betrügen, was auch für GaN-Bauelementen einen klaren Anreiz für ZVS darstellt. Daher soll im folgenden der Resonanzkreis konsequent für vollständiges ZVS ausgelegt werden, trotz Einsatzes von WBG-Transistoren neuester Art.

(a) Innere Energie der Ausgangskapazität (b) Einschaltverluste $E_{on}(0, U_1)$ bei $Q_C=0$ $E_{OSS}(u_{ds})$

Abbildung 32: Innere Energie E_{OSS} , die beim harten Einschalten dissipiert wird, sowie die Einschaltverluste die sich insgesamt ohne Kommutierungsladung Q_C ergeben

In Abbildung 32 (a) ist die innere Energie $E_{OSS}(u_{ds})$ für heute verfügbare Leistungstransistoren gezeigt. Zur besseren Vergleichbarkeit wurde wiederum auf den jeweiligen Durchlasswiderstand $R_{ds,on}$ normiert. Es ist beachtlich, dass die innere Energie E_{OSS} der GaN-Transistoren bei typischer Betriebsspannung nur unwesentlich geringer ist als die der Si-Konkurrenten, trotz der wesentlich geringeren Ladung Q_{OSS} in den GaN-Transistoren gespeichert ist (Abbildung 29 (b)). Der Grund hierfür liegt darin, dass die hohe Ausgangskapazität der Si-Transistoren bei kleiner Spannung zu finden ist, die daher nur moderat zu E_{OSS} beiträgt.

3.2.6.2 Abschätzung der Kommutierungsladung QC

Die Kommtuierungsladung Q_C , die naturgemäß vom LLC-Resonanzwandler in Abhängigkeit von den Kennparametern bereitgestellt wird, kann wiederum mit der Zeitbereichsanalyse abgeschätzt wer-

50

den. In erster Näherung gilt, dass die Ladung vom Nulldurchgang der Spannung u_{AB} bis zum Nulldurchgang des Stromes i_{LS} der halben Kommutierungsladung $Q_C/2$ entspricht (siehe Skizze in Abbildung 33). Obwohl der Abschaltstrom in der Betriebsart *CCMA* höher als bei *DCMB2* ist, darf nicht davon ausgegangen werden, dass auch die Ladung Q_C größer ist, denn die Periodendauer ist in dieser Betriebsart ebenso signifikant geringer.

Abbildung 33: Die Kommutierungsladung $Q_C/2$ wird wiederum mit der Zeitbereichsanalyse abgeschätzt. Analog zu den gezeigten Betriebsarten *DCMB2* und *CCMA* wird auch in den weiteren Betriebsarten vorgegangen.

Der Stromnulldurchgang $i_{LS} = 0$ tritt zum gleichen Zeitpunkt wie die Spitzenspannung u_{CSpeak} auf, die bereits bestimmt wurde in Abschnitt A.4.1. Daher kann die Berechnung der Ladung Q_C mit der Spannungsänderung am Resonanzkreiskondensators u_{CS} erfolgen mit

$$Q_{\rm C} = 2 \int_{t=T_{\rm S}/2}^{i_{\rm LS}=0} i_{\rm LS}(t) \,\mathrm{d}t \tag{38}$$

$$= 2 C_{\rm S} \left[u_{\rm CSpeak} - u_{\rm CS}(T_{\rm S}/2) \right].$$
(39)

Abbildung 34 zeigt die minimale Kommutierungsladung $Q_{\rm C}$ über den gesamten Ladezyklus normiert auf die Resonanzfrequenz $f_{0\rm C}$. Mit der Ausgangsladung $Q_{\rm OSS}$ des verwendeten Transistors kann hiermit die maximale Resonanzfrequenz berechnet werden, bei der sicher ZVS über den gesamten Arbeitsbereich sichergestellt wird. Um die Einschaltverluste zu vermeiden, muss also gelten

$$Q_{\rm Cmin} > Q_{\rm OSS}.$$
 (40)

Abbildung 34: Minimale Kommutierungsladung Q_{Cmin} normiert mit dem Kehrwert der Resonanzfrequenz $f_{0\text{C}}$

3.2.7 Magnetische Hysterese-Kernbelastung $\psi^2 f_S$

Details zum integrierten Transformator in Kapitel 4 Der Transformator des LLC-Ladewandlers ist auszulegen für den Verkettungsfluss ψ , der sich erneut mit der Zeitbereichsanalyse berechnen lässt. Bei bekanntem Verkettungsfluss lässt sich mit der Windungszahl N der magnetische Fluss ϕ berechnen, der sich nach idealer Vorstellung über den Kernquerschnitt als homogene Flussdichte b verteilt. Wie in Abschnitt 4.5 beschrieben, berechnet sich der Verkettungsfluss mit den abgeleiteten Parametern λ , n, Z_{0C} und f_{0C} zu

$$\psi = L i$$

$$= \begin{bmatrix} L_{\rm S} + L_{\rm P} & \frac{L_{\rm P}}{n} \\ \frac{L_{\rm P}}{n} & \frac{L_{\rm P}}{n^2} \end{bmatrix} \begin{bmatrix} i_{\rm LS} \\ i_{\rm out} \end{bmatrix} = \frac{Z_{0\rm C}}{2\pi f_{0\rm C}} \begin{bmatrix} (1+\lambda^{-1}) & \frac{\lambda^{-1}}{n} \\ \frac{\lambda^{-1}}{n} & \frac{\lambda^{-1}}{n^2} \end{bmatrix} \begin{bmatrix} i_{\rm LS} \\ i_{\rm out} \end{bmatrix}.$$

$$(42)$$

Reduktion der Flussdichte gilt bei ansonsten gleichen Verhältnissen In Gleichung 42 ist die umgekehrte Proportionalität zur Resonanzfrequenz f_{0C} zu erkennen: Eine größere Resonanzfrequenz führt somit zu einem kleineren Verkettungsfluss bzw. einer kleineren Flussdichte bei ansonsten gleichen Parametern. Dies ist besonders erfreulich,

denn eine höhere Resonanzfrequenz führt hiermit in erster Näherung zu geringeren Kernverlusten, die sich nach Steinmetz [107] näherungsweise proportional zu $\hat{b}^{\beta} f_{S}^{\alpha}$ verhalten, mit $\alpha \approx 1...1.5$ und $\beta \approx 2...2.5$. In erster Näherung soll daher die magnetische Belastungsgröße $\psi^2 f_S$ als Maß für die Kernverluste dienen, die sich im vergleichbaren Maße antiproportional zur Resonanzfrequenz f_{0C} verhält. In Abbildung 35 ist die mittlere magnetische Belastung über den gesamten Arbeitsbereich dargestellt in Abhängigkeit von n, Z_{0C} , λ und normiert auf die Resonanzfrequenz f_{0C} .

Der Index A bezieht sich hierbei auf den oberen Kernteil des Transformators, B auf den unteren (siehe Abschnitt 4.5)

3.2.8 Fazit der Belastungsgrößenanalyse

Durch die Belastungsgrößenanalyse wurden entscheidende Erkenntnisse offenbart, die direkte Schlussforgerungen für die Schaltungsauslegung zulassen. Folgendes Fazit kann hiermit für die Auslegungsparameter λ , Z_{0C} , n und f_{0C} gezogen werden:

Induktivitätsverhältnis λ

Je *kleiner* das Induktivitätsverhältnis λ , desto *kleiner* ist der Effektivstrom I_{LScycle} . Die Durchlassverluste der Transistoren S_{1-4} und des Resonanzkondensators C_{S} sowie Wicklungsverluste des Transformators können daher durch Reduktion von λ bis zu einem definierten Grenzwert minimiert werden. Unter diesem Grenzwert kann die gewünschte Ladeleistung nicht mehr übertragen werden. Der Effektivwert I_{LScycle} ist *stets größer* als das 1,35-fache des Netzstromes I_{Netz} und ist damit stets größer als 21 A. Zusammenfassend führt ein Induktivitätsverhältnis von $\lambda \approx 0.27$ zu geringen Belastungsgrößen, erlaubt die Leistungsübertragung im gesamten Arbeitsbereich und soll somit vorausgewählt werden.

Kennimpedanz Z_{0C}

Je höher die Kennimpedanz Z_{0C} , desto kleiner ist die Effektivstrombelastung I_{LS} , aber desto größer ist die Kondensator-Spitzenspannung u_{CSpeak} . Durch Steigerung der Kennimpedanz Z_{0C} können daher die Durchlassverluste reduziert werden, bis die maximale Spannungsbelastbarkeit des Resonanzkondensators C_S erreicht ist. Zusammenfassend wird mit einer Kennimpedanz von $Z_{0C} \approx 9 \Omega$ geringer Resonanz- und Abschaltstrom $(I_{LScycle}$ und $|i_{LS0}|)$ bei akzeptabler Spitzenspannung u_{CSpeak} und Kommutierungsladung Q_{Cmin} erreicht und soll somit vorausgewählt werden.

Übersetzungsverhältnis n

Je *größer* das Übersetzungsverhältnis *n*, desto *größer* ist das Zeitintervall, in dem der Diodenstrom i_{out} lückt. Somit muss bei steigendem *n* die Ladeleistung in immer kürzeren Zeitintervallen von den Dioden übertragen werden. Daher steigen mit *n* die Effektivstrombelastung der Gleichrichterdioden $I_{outcycle}$ und hiermit die Verluste an (Abbildung 24). Ebenso wirkt sich ein steigendes *n* negativ auf die Belastung des Transformatorkerns aus (Abbildung 35). Diesen Gründen für ein möglichst kleines Übersetzungsverhältnis *n* steht der hohe Abschaltstrom $|i_{LS0}|$ entgegen, der bei hoher Schaltfrequenz f_{Smax} auftritt. Dieser hohe Abschaltstrom ist unerwünscht wegen der Abschaltverluste der Transistoren und insbesondere wegen des ungünstigen EMV-Verhaltens, das aus der hohen Spannungssteilheit in der Betriebsart *CCMA* resultiert. Ein Übersetzungsverhältnis von

Weitere Infos bzgl. der Spannungssteilheiten in CCMA vs. DCMB2 siehe Seite 34 und Seite 35 $n \approx 0.9$ scheint ein guter Kompromiss dieser divergierenden Argumente zu sein und soll somit vorausgewählt werden.

Resonanzfrequenz f_{0C}

Die Strom- und Spannungsbelastungen im Resonanzkreis sind zwar unabhängig von der Wahl der Resonanzfrequenz f_{0C} , jedoch ergibt sich eine natürliche obere Grenze für die Wahl der Resonanzfrequenz, wenn die Einschaltverluste der Transistoren S_{1-4} vermieden werden sollen (ZVS): Die Kommutierungsladung $Q_{\rm C}$ sinkt mit steigender Resonanzfrequenz und reicht daher ab einer gewissen Obergrenze nicht mehr aus, um die Ausgangskapazitäten der Transistoren vollständig zu entladen. GaN-Transistoren speichern im abgeschalteten Zustand deutlich kleinere Ladung als Si-Transistoren und können daher Nullspannungsschalten (ZVS) bei deutlich höherer Frequenz f_{0C} gewährleisten. Trotz schnellschaltender WBG-Transistoren sollte nicht auf Nullspannungsschalten verzichtet werden, denn angesichts der hohen Schaltfrequenzen wären ohne ZVS die Einschaltverluste enorm (Abschnitt 3.2.6.1). Die konkrete Auswahl der Resonanzfrequenz f_{0C} , die unterhalb der ZVS-Obergrenze liegen sollte, kann somit weitgehend unabhängig im Kapitel der Transformatorauslegung erfolgen, denn die verlustoptimale Schaltfrequenz hängt signifikant von dem angestrebten Bauvolumen des Transformators ab (Kapitel 4).

3.3 VERLUSTMODELLIERUNG

Es ist gängige Praxis, die Gesamtverluste einer Schaltung in Anteile gemäß dem zeitlichen und räumlichen Auftreten zu separieren. Diese Unterscheidung in verschiedene Mechanismen ermöglicht eine vergleichsweise einfache Modellierung der Verluste. Im Detail sind die Verluste jedoch nicht mit letzter Genauigkeit separierbar, denn eine theoretische Basis für diese scharfe Trennung ist in vielen Fällen nicht gegeben. Beispielsweise ist die Unterscheidung in Schalt- und Durchlassverluste eines Transistors nur durch zeitliche Abgrenzung des Schaltvorgangs möglich. Hierfür bedient man sich einer etablierten Definition (eine Auswahl findet sich in Tabelle 7). Ein weiteres Beispiel für diese Unschärfe sind Verlustanteile, die zwar während der Einschaltdauer des Transistors dissipiert werden, deren kausale Ursache aber im Schaltvorgang liegt (z.B. dynamischer Durchlasswiderstand). Ob dieser Verlustanteil nun zu den Durchlass- oder den Schaltverlusten zählt, ist wiederum reine Definitionsfrage. Im folgenden Abschnitt wird diese Unschärfe akzeptiert, indem ein gängiges Verlustmodell verwendet wird, das die Verluste der einzelnen Schaltungsgruppen mit Hilfe der zuvor berechneten Belastungsgrößen abschätzt. Die gezeigte Schaltung aus Abbildung 36 soll hierfür als Basis dienen.

Abbildung 36: Schaltungsstruktur des einstufigen Ladegleichrichters mit Synchrongleichrichter.

3.3.1 Netz- und Ausgangs-Gleichrichter

Im Eingangs-Netzgleichrichter ($S_{N1}-S_{N4}$) sowie im Ausgangsgleichrichter (D_1-D_4) fallen Durchlassverluste in Folge des Spannungsabfalls $u_D(i_{out})$ bzw. $u_{SN}(i_{Netz})$ an. Bekanntlich kann die Dioden-Spannung im leitenden Zustand mittels Schleusenspannung und differentiellen Widerstands mit guter Näherung approximiert werden [99], gemäß

$$u_{\rm SN}(i_{\rm Netz}) \approx r_{\rm SN} \, i_{\rm Netz} + U_{\rm SN0} \, {\rm bzw.}$$
 (43)

$$u_{\rm D}(i_{\rm out}) \approx r_{\rm D} i_{\rm out} + U_{\rm D0}. \tag{44}$$

Mit dieser Näherung können die Durchlassverluste des Netzgleichrichters mit dem Gleichrichtmittelwert $\overline{|i_{\text{Netz}}|}$ und dem Effektivwert I_{Netz} berechnet werden, denn

$$P_{\rm SN,Con} = \frac{2}{T_{\rm Netz}} \int_{T_{\rm Netz}} i_{\rm Netz}(t) \, u_{\rm SN}(t) \, \mathrm{d}t \tag{45}$$

$$= 2 \frac{4}{T_{\text{Netz}}} \int_{T_{\text{Netz}}/4} i_{\text{Netz}} \left(r_{\text{SN}} \, i_{\text{Netz}} + U_{\text{SN0}} \right) \mathrm{d}t \tag{46}$$

und somit

$$P_{\rm SN,Con} = 2 \left(I_{\rm Netz}^2 r_{\rm SN} + \overline{|i_{\rm Netz}|} U_{\rm SN0} \right)$$
(47)

mit $\overline{|i_{\text{Netz}}|} = \frac{4}{T_{\text{Netz}}} \int_{T_{\text{Netz}}/4} i_{\text{Netz}} dt$. Analog hierzu können zudem die Durchlassverluste des Ausgangsgleichrichters berechnet werden zu

$$P_{\rm D} = 2 \left(I_{\rm outcycle}^2 r_{\rm Di} + \bar{i}_{\rm out} V_{\rm D0} \right) = 2 \left(I_{\rm outcycle}^2 r_{\rm Di} + \bar{i}_{\rm Batt} V_{\rm D0} \right).$$
(48)

Die typische Schleusenspannung von Si-Dioden der 650-V-Klasse liegt zwischen 0,9 V bei 25°C und 0,7 V bei 175°C Sperrschichttemperatur (Tabelle 6). Die typische Schleusenspannung von SiC-Dioden ist mit 0,98 V bei 25°C bzw. 0,84 V bei 175°C größer, damit führen SiC-Dioden zu höheren Durchlassverlusten und kommen daher nicht für den Netzgleichrichter (S_{N1} - S_{N4}) in Betracht. Für die Ausgangsgleichrichter (D_1 - D_4) sollen hingegen SiC-Dioden zum Einsatz

kommen, um die Abschaltverluste der Si-Dioden zu vermeiden, die durch deren Rückstromspitze hervorgerufen werden [99, S. 153]. Der differentielle Widerstand $r_{\rm SN}$ kann durch die Vergrößerung der Chip-fläche reduziert werden, was die Verluste senkt (Tabelle 6).

Hersteller	Artikelnr.	Temp.	U_0	r
Infineon	IDP30E65D1	175°C	0,7V	$22,6\mathrm{m}\Omega$
		25°C	0,9V	$15,6\mathrm{m}\Omega$
Infineon	AIDW30S65C5	175°C	$0,84\mathrm{V}$	$31,5\mathrm{m}\Omega$
		25°C	0,98 V	$14,9\mathrm{m}\Omega$
Infineon	IPW60R031CFD7	150°C	0 V	$59\mathrm{m}\Omega$
		25°C	0 V	$26m\Omega$
	Hersteller Infineon Infineon Infineon	HerstellerArtikelnr.InfineonIDP30E65D1InfineonAIDW30S65C5InfineonIPW60R031CFD7	HerstellerArtikelnr.Temp.Infineon $IDP_3oE65D1$ $175^{\circ}C$ Infineon $AIDW_3oS65C5$ $175^{\circ}C$ Infineon $IPW6oRo_31CFD0$ $25^{\circ}C$ Infineon $IPW6oRo_31CFD0$ $25^{\circ}C$	Hersteller Artikelnr. Temp. U0 Infineon IDP30E65D1 175°C 0,7 V Dafter 25°C 0,9 V Infineon AIDW30565C5 175°C 0,84 V Dafter 25°C 0,98 V Infineon IPW60R031CFD7 150°C 0 V 25°C 0 V 0 0

Tabelle 6: Gegenüberstellung der Kennwerte für Schleusenspannung und differentiellem Widerstand für Si-/SiC-Dioden und Si-SJ-MOSFET.

Die Durchlassverluste des Netz-Diodengleichrichters werden dominiert durch die Verluste, die in Folge der Flussspannung U_{SN0} entstehen. Dieser Verlustanteil kann eliminiert werden, indem die Netzdioden durch MOSFETs ersetzt werden, die synchron mit der Leitphase der Body-Diode eingeschaltet werden (Synchrongleichrichter gemäß Abbildung 36). Diese synchrone Einschaltung der MOSFETs gelingt in der Praxis leicht, denn die Netzfrequenz ist vergleichsweise gering. Je nach Wahl des Durchlasswiderstand können hiermit die Gleichrichterverluste deutlich gesenkt werden; der Bauteilaufwand und die Gesamtkosten eines solchen Synchrongleichrichters sind jedoch deutlich höher als die des konventionellen Si-Diodengleichrichters.

3.3.2 Wechselrichter

Im Wechselrichter treten Verluste in Folge von dreierlei Verlustmechanismen auf: Erstens Durchlassverluste, die während der Einschaltphase in zwei Transistoren der Vollbrücke anfallen und mittels des Durchlasswiderstands $R_{\text{DSon},S}$ berechnet werden können zu

$$P_{\rm S,Con} = 2 R_{\rm DSon,S} I_{\rm LScycle}^2.$$
⁽⁴⁹⁾

Zweitens gibt es Verlustanteile, die in kurzen Zeiträumen dissipiert werden in denen beide Transistoren einer Halbbrücke abgeschaltet sind. Nach Kommutierung des Abschaltstroms i_{LS0} fällt so zusätzlich die Rückwärts-Schleusenspannung $U_{Rev,S}$ der Transistoren an, die zusätzliche Verluste hervorrufen. Eine konservative Schätzung dieses Verlustanteils berechnet sich zu

$$P_{\rm S,Dead} = 4 U_{\rm Rev,S} i_{\rm LS0} t_{\rm Dead} f_{\rm S}.$$
(50)

Drittens entstehen Verluste während der Schaltvorgänge der Transistoren, die im nächsten Abschnitt genauer behandelt werden.

3.3.2.1 Schaltverluste

Die Verluste der Transistoren, die während des Schaltaugenblicks anfallen, werden gemäß etabliertem Standard mittels Kennfeldern für die Ein- und Ausschaltverluste modelliert. Die Stützstellen dieser Kennfelder werden vorab mittels einer Hilfsschaltung (Abbildung 37 (a)) in Abhängigkeit von Strom, Spannung und ggf. Temperatur gemessen. Typischerweise wird der s.g. Doppelpuls-Versuch verwendet, bei dem die Schaltarbeit (E_{on}/E_{off}) des Transistors S₂ mit Hilfe von Strom i_{s2} und Spannung U_{ds2} gemessen wird.

Das typische Mess-Prozedere des Doppelpuls-Versuchs sei kurz zusammengefasst: Bei anliegender Versorgungsspannung U1 wird zunächst der Spulenstrom i_L per Einschaltdauer eines ersten Einschaltpulses auf den gewünschten Wert erhöht. Anschließend wird S2 abgeschaltet und während dieses Abschaltvorgangs der Strom iS2 und die Spannung u_{ds2} messtechnisch erfasst, um hiermit die Schaltleistung $p_{\text{off,S2}} = i_{\text{S2}} \cdot u_{\text{ds2}}$ und deren Integral – die Schaltarbeit $E_{\text{off,S2}}$ – zu berechnen. Ist der Strom i_{52} vollständig auf S_1 kommutiert, wird S_2 erneut eingeschaltet und damit während des Einschaltvorgangs die Einschaltarbeit $E_{on,S2}$ mittels i_{S2} und u_{ds2} gemessen wird. Je nach Hersteller werden verschiedene Integrationsgrenzen für die Schaltarbeit definiert, die zu einer gewissen Ungenauigkeit führen (siehe Tabelle 7). In der Norm IEC 60747 sind herstellerübergreifend Integrationsgrenzen standardisiert; im Teil 8 für MOSFETs und im Teil 9 für IGBTs. Die Induktivität L wird ausreichend groß gewählt, sodass die Stromänderung $\Delta i_{\rm L}$ während des Kommutierungsvorgangs vernachlässigbar ist. Die an der Spule L anliegende Spannung weist eine hohe Steilheit auf (bei WBG-Transistoren bis 150 $\frac{kV}{\mu s}$), daher ist es essentiell, eine möglichst geringe Wicklungskapazität zu erzielen, z.B. indem die Wicklung einlagig als Luftspule ausgeführt wird [8]. Die Temperaturvorgabe kann angesichts der geringen Temperaturänderung innerhalb des kurzen Zeitintervalls über eine externe Vorheizung des Kühlkörpers erfolgen.

 $E_{\rm on,S2}/E_{\rm off,S2}$

Tabelle 7: Gängige Integrationsgrenzen zur Bestimmung der Schaltarbeit

Standard	Abschaltvorgang		Einschaltvorgang		
	Beginn	Ende	Beginn	Ende	
IEC 60747-9 (1998)	$v_{\rm ds2} @ 10\% V_1$	$i_{\rm s2}$ @ 2% $i_{\rm L}$	$i_{\rm s2} @ 10\% i_L$	$v_{\rm ds2} @ 2\% V_1$	
IEC 60747-8 (2010)	$v_{\rm ds2} @ 10\% V_1$	$i_{\rm s2} @ 10\% i_{\rm L}$	$i_{\rm s2} @ 10\% i_L$	$v_{\rm ds2} @ 10\% V_1$	
Mitsubishi (F-S.) [11]	$v_{\rm ds2} @ 10\% V_1$	$i_{\rm s2} @ 10\% i_{\rm L}$	$i_{\rm s2} @~10\% i_{\rm L}$	$v_{\rm ds2} @ 10\% V_1$	
Infineon [5]	$v_{\rm ds2} @ 10\% V_1$	$i_{\rm s2}$ @ 2% $i_{\rm L}$	$i_{\rm s2} @~10\% i_{\rm L}$	$v_{\rm ds2} @ 2\% V_1$	
ABB [12]	$90\% v_{\rm gs,on}$	1020 µs-Intervall	$10\% v_{\rm gs,on}$	1020 μs-Intervall	
Wolfspeed [91]	$v_{\rm ds2} @ 0\% V_1$	$i_{s2} @ -10\% i_{L}$	$i_{s2} @ 0 \% i_{L}$	$v_{ds2} @ -10\% V_1$	

Qualitative Verläufe des Doppelpuls-Versuchs zeigt Abbildung 37 (b)

Der beschriebene Doppelpuls-Versuch ist das etablierte Verfahren zur Messung der Schaltverluste. Seit Jahrzehnten wird diese Methode zur Abschätzung der Schaltverluste von GTOs, IGBTs sowie Si-MOSFETs eingesetzt, wie in zahllosen Quellen dokumentiert [5, 18, 45]. Die Schwächen dieser Methode zeigen sich, wenn die gemessenen Verlust-Kennfelder auf weichschaltende Topologien angewendet werden: Denn hierbei wird deutlich, dass es sich bei der gemessenen Abschaltleistung poff.S2 nicht um die dissipierte Verlustleistung handelt, sondern dass ein signifikanter Anteil in der parasitären Ausgangskapazität C_{OSS} gespeichert wird und somit zunächst nicht in Wärme umgesetzt wird (siehe Gleichung 36). Erst bei einem etwaigen (harten) Einschaltvorgang wird diese Energie E_{OSS} im Kanal des Transistors dissipiert. Ein solcher Einschaltvorgang tritt jedoch bei weichschaltenden Topologien nicht auf, daher gelten die gemessenen Verlustkennfelder zunächst nur für hartschaltende Topologien. Diese zeitliche Fehlzuordnung kann korrigiert werden, indem von der gemessenen Abschaltarbeit Eoff.S2 die jeweilige Energie der Ausgangskapazität E_{OSS} abgezogen und der gemessenen Einschaltarbeit E_{on,S2} zugeordnet wird [51, 52, 69].

Abbildung 37: Schaltung und Prinzipverläufe des Doppelpuls-Versuchs

Werden schnellschaltende WBG-Bauteile mittels Doppelpuls-Versuch charakterisiert, haben die parasitären Effekte der Messung großen Einfluss auf die Messgenauigkeit. Vor allem aus zwei Gründen:

Erstens muss für den Doppelpuls-Versuch ein Stromsensor hoher Bandbreite und Genauigkeit in die Kommutierungsmasche installiert werden. Hierdurch wird die Kommutierungsinduktivität erhöht, was signifikanten Einfluss auf die zu messende Schaltarbeit hat: Der Koaxialshunt (siehe Tabelle 8), der wegen seiner hohen Bandbreite häufig zur Charakterisierung von WBG-Bauteilen eingesetzt wird, hat eine parasitäre Induktivität von 10...15 nH. Allein dieser Einfluss kann bei typischen WBG-Bauteilen zu einem relativen Fehler von über 20 % führen [104].

Abbildung 38: Schaltvorgänge von zwei parallel geschalteten GaN-HEMTS *GS66516T* bei $U_1 = 250$ V, $i_L = 20$ A und $\vartheta = 25$ °C

• Zweitens sind Signallaufzeiten der Strom- und Spannungsmessung nicht exakt gleich, sondern weisen einen kurzen zeitlichen Versatz auf (engl. skew), der zwingend vor der Messung abgeglichen werden muss. Zur Korrektur dieses Laufzeitunterschieds (engl. deskew) können diverse Methoden der Literatur entnommen werden [18, 120]. Durch die kurzen Schaltzeiten der WBG-Bauteile fallen jedoch verbleibende Laufzeitfehler von ca. 1 ns stärker ins Gewicht als bei Si-SJ-Transistoren und führen so zu Messfehlern von 10% [14] bis 30% [15, 18], was unbefriedigend ist für eine genaue Schaltungsauslegung.

Tabelle 8: Kommerziell erhältliche Sensoren für die Spannungs- und Strommessung des Doppelpuls-Tests (u_{ds}/i_{s2})

	Hersteller	ArtNr.	Bandbreite	Anstiegszeit	Vorteile	Nachteile
gun	LeCroy	PPo26	500 MHz	0,7ns	günstig	nicht isoliert
	Tektronix	TPPo850	800 MHz	0,4ns	hohe Bandbreite	nicht isoliert
anr	Tektronix	TIVH08L	800 MHz	0,4ns	isoliert, exzellente CMRR	Kosten
Sp	PMK	BumbleBee	400 MHz	0,9 ns	differntielle Messung	Anschlussleitungen
	PMK	PHV1000	400 MHz	0,9 ns	günstig	nicht isoliert
Strom	Pearson	Model 2877	200 MHz	1,8 ns	hohe Bandbreite	parasitäre Induktivität, voluminös
	PEM	CWT	30 MHz	12 ns	niederinduktiv	ungenau, geringe Bandbreite
	Tektronix	ТСР0030А	200 MHz	1,8ns	hohe Bandbreite	parasitäre Induktivität, voluminös
	T&M	SDN-414	2 GHz	0,2ns	höchste Bandbreite	parasitäre Induktivität
	Custom [15, 104]	Shunt	700 MHz [15]	N.A.	hohe Bandbreite	keine gal. Trennung

Im konkreten Fall der vorliegenden Arbeit soll der in Abschnitt 3.2.6 favorisierte GaN-Transistor GS66516T [59] verwendet werden, der mittels Doppelpuls-Versuch und Einsatz eines niederinduktiven Shunt-Stromsensors (vgl. [15]) vermessen wurde (siehe beispielhaft Abbildung 38). Nach Korrektur der gemessenen Abschaltarbeit $E_{off,S2}$ um die Energie der Ausgangskapazität E_{OSS} (z.B. $E_{OSS} = 22 \,\mu$ J bei 250 V [59]) verbleiben im relevanten Spannungs- und Strombereich nur etwa 2 μ J dissipierte Abschaltverluste. Die Abschaltverluste sind somit beim ausgewählten GaN-Transistor so klein, dass sie für die folgende Schaltungsauslegung vernachlässigt werden können. Dieses Fazit
deckt sich ebenso mit den Datenblattangaben *GS66516T* [59]. Einschaltverluste können im weiteren ebenso vermieden werden, indem vollständiges ZVS konsequent eingesetzt wird. Sollte im künftigen Anwendungsfall die Auswahl auf andere Transistoren fallen, ist diese Annahme erneut zu überprüfen und es sind ggf. die Schaltverluste zu berücksichtigen.

3.3.2.2 Indirekte Identifikation der Schaltverluste

Um die genannten Nachteile des Doppelpuls-Versuches zu beheben, wurde im Rahmen der vorliegenden Arbeit eine alternative Methode zur Ermittlung der Schaltverluste entwickelt, die ohne die Messung der geschalteten Größen i_{S2} & u_{ds2} auskommt. Zur Charakterisierung wurde hierfür ein Zweiquadrantensteller (2QS) mit den zu messenden WBG-Transistoren aufgebaut (Abbildung 39(a)). Die Ein- und Ausgangsleistungen dieser Schaltung sind DC-Leistungen, die sehr präzise messbar sind (z.B. mit Yokogawa WT3000E oder ZES Zimmer LMG640) und hiermit eine genaue Messung der Gesamtverluste als Differenz von Ein- und Ausgangsleistung zulassen. Abbildung 39(b) zeigt die gemessenen Gesamtverluste der Schaltung in Abhängigkeit von der Schaltfrequenz $f_{\rm S}$ und dem Ausgangsstrom I_2 beispielhaft für einen SiC-Transistor. Grundidee der vorgestellten Methode ist aus diesen Verlustkennfeldern die Schaltverluste zu ermitteln, indem weitere Verlustanteile wie Durchlassverluste und Spulenverluste von den Gesamtverlusten separiert werden. Um die Identifikation der Schaltverluste zu vereinfachen wurden alle Bauteile der Schaltung wie Spule L, Kondensatoren C_1 und C_2 , etc. möglichst verlustarm realisiert, z.B. indem ein großer Ferritkern und sehr feine HF-Litze verwendet wurde. Insbesondere bei hoher Schaltfrequenz dominieren hiermit die Schaltverluste der Transistoren.

gemessen für SiC-MOSFET C3M0065090J mit $U_1 = 450 V,$ $U_1 = 250 V und$ $L = 91 \mu$ H.

Gesamt-Verluste

(b) Gemessene Verlustkennfelder

Abbildung 39: Hilfsschaltung zur indirekten Identifikation der Schaltverluste und gemessene Verlustkennfelder in Abhängigkeit von der Schaltfrequenz f_S und dem Ausgangsstrom I_2 Im Übergangsbereich der Betriebsarten $I_2 \approx \Delta I/2$ werden die Ausgangskapazitäten nur teilweise entladen (s.g. iZVS [110]) Im 2QS treten verschiedene Betriebsarten in Abhängigkeit vom Ausgangsstrom I_2 und von der Schaltfrequenz f_S auf: Bei kleinem Ausgangsstrom I₂ arbeitet die Schaltung im weichschaltenden Betrieb $(I_2 < \Delta I/2)$. Hier fallen Abschaltverluste in S1 und S2 an, jedoch keine Einschaltverluste (ZVS), da die Body-Dioden der jeweiligen Transistoren vor dem Einschaltaugenblick leiten (siehe Abbildung 40(a) & (b)). Bei höherem Ausgangsstrom ($I_2 > \Delta I/2$) wird jedoch der Transistor S1 hart eingeschaltet, sodass hierbei Einschaltverluste dissipiert werden (siehe Abbildung 40(c)). In den gemessenen Gesamtverlusten ist dieser Übergang von weichschaltendem zu hartschaltendem Betrieb als deutliche Steigerung der Gesamtverluste erkennbar. Beispielsweise verdoppeln sich die Gesamtverluste bei $I_2 = 2,5$ A durch die Steigerung der Schaltfrequenz von 200 kHz zu 250 kHz. Über 250 kHz steigen die Gesamtverluste mit guter Näherung linear mit der Frequenz an, was in erster Linie auf die Einschaltverluste zurückzuführen ist.

Abbildung 40: Visualisierung der verschiedenen Betriebsarten. Im Leerlauf $I_2 = 0$ sowie ZVS-Betrieb ($I_2 < \Delta I_L/2$) treten nur Abschaltverluste E_{off} auf, im hartschaltenden Betrieb ($I_2 > \Delta I_L/2$) Ein- und Abschaltverluste (E_{on} & E_{off})

Zur Modellierung der Schaltverluste werden erneut Kennfelder für E_{on} und E_{off} verwendet, die a priori unbekannt sind und daher initial mit (geschätzten) Stützstellen definiert werden. Die Schaltverluste P_{SW} können hiermit berechnet werden gemäß Gleichung 51. Zur Modellierung der weiteren Verlustanteile des 2QS wie Durchlassverluste, Spulenverluste etc. dient ein gängiges Verlustmodell, das in der zugehörigen Veröffentlichung [69] zu finden ist.

$$P_{SW} = f_{S} \Big[E_{on,S1} (I_{min}, V_{1}) + E_{off,S1} (I_{max}, V_{1}) \dots + E_{on,S2} (-I_{max}, V_{1}) + E_{off,S2} (-I_{min}, V_{1}) \Big]$$
(51)

mit
$$I_{\text{max}} = \overline{i}_{\text{L}} + \frac{\Delta I}{2}$$
 und $I_{\text{min}} = \overline{i}_{\text{L}} - \frac{\Delta I}{2}$ (52)

Um hiermit die Verlustkennfelder E_{on} und E_{off} zu ermitteln, wird der quadratische Fehler zwischen den modellierten und den gemessenen

Gesamtverlusten gebildet. Durch Anwendung eines geeigneten Optimierungsalgorithmus werden die Modellparameter gesucht, die diesen quadratischen Gesamtfehler minimieren. Die Modellparameter beinhalten die Stützstellen der Schaltverlust-Kennfelder und weitere Parameter, die nicht präzise bekannt sind (weitere Infos siehe [69]). Um die Wahrscheinlichkeit lokaler Minima zu senken, wurde als Optimierungsalgorithmus in [69] ein Partikelschwarmoptimierung nach [66] angewendet.

Abbildung 41: Modellierte Verlustaufteilung im Vergleich mit den gemessenen Gesamtverlusten nach erfolgter Identifikation der Verlustkennfelder

In Abbildung 41 sind die gemessenen und die modellierten Gesamtverluste des 2QS in Abhängigkeit vom Ausgangsstrom I_2 und von der Schaltfrequenz f_S gegenübergestellt. Die Gesamtverluste können mit den identifizierten Parametern somit genau modelliert werden. In Abbildung 41(c) und (d) ist der Übergang von der weichschaltenden zur hartschaltenden Betriebsart an den modellierten Schaltverlusten P_{SW} erkennbar.

Durch die Einführung der vorgestellten Messmethode verlagert sich die Problemstellung von der unzureichenden Messgenauigkeit des Doppelpuls-Versuchs hin zur Notwendigkeit der genauen Separierung der Gesamtverluste. Wie genau diese Separierung gelungen ist, wurde im Rahmen der vorliegenden Arbeit nicht weiter untersucht, könnte aber in künftigen Arbeiten z.B. durch kalorimetrische Messungen angegangen werden. Anhand dieser Untersuchung ist allerdings erneut bestätigt worden, dass die Abschaltverluste E_{off} der WBG-Transistoren drastisch kleiner sind als die Einschaltverluste E_{on} .

3.3.3 Kondensatorverluste

Als Resonanzkondensator kommt eine Parallelschaltung aus diskreten Kondensatoren zum Einsatz, deren Verluste gering sind und deren Kapazität möglichst unabhängig von Spannung, Temperatur und Frequenz ist. Für diese Anforderungen bieten sich Folienkondensatoren mit Polypropylen-Dielektrikum (MKP) oder Klasse1-Keramikkondensatoren mit NPo-Dielektrikum an. Der Vergleich des Bauvolumens zwischen MKP-Kondensatoren und NPo-Kondensatoren fällt eindeutig aus: Die Kapazitätsdichte von NPo-Kondensatoren liegt bei ca. 375 pF/mm³ und ist damit massiv höher als die von MKP-Kondensatoren mit nur ca. 10 pF/mm³. MKP-Folienkondensatoren sind damit etwa um den Faktor 40 größer als vergleichbare Keramikkondensatoren in der angestrebten Spannungs- und Kapazitätsklasse.

Bauvolumen-Vergleich für Kondensatoren aus Abbildung 42 (a)

Abbildung 42: Gegenüberstellung des Spannungslimits U_{CS,max} verschiedener Kondensatoren, die sich potentiell als Resonanzkondensatoren einsetzen lassen (*TDK B32672L1123* vs. *KEMET C2220C153KDGAC* [3, 29])

Die Spannung der Kondensatoren ist beschränkt durch die Spannungsfestigkeit des Werkstoffes, der ab einer maximalen Feldstärke ionisiert und hiermit elektrisch leitfähig wird. Bei höherer Frequenz kann dieser Spannungsbereich jedoch nicht vollständig genutzt werden, um den Kondensator vor zu hohen Verlusten und somit vor Überhitzung zu schützen (engl. Derating). In Abbildung 42 (a) ist die maximale Spannung eines MKP-Kondensators mit der eines NPo-Kondensators verglichen. Beide Kondensatoren weisen bei kleiner Frequenz eine Spannungsfestigkeit von $U_{CS,peak} = 600$ V auf. Bei höherer Frequenz muss die Spannung des MKP-Kondensators deutlich mehr reduziert werden als beim NPo-Kondensator, um die Temperaturerhöhung auf $\Delta T = 10$ K zu beschränken. Dies hat zwei Ursachen: Einerseits sind die dielektrischen und ohmschen Verluste des MKP-Kondensators höher als die des NPo-Kondensators. Andererseits ist der MKP-Kondensator thermisch schlechter an die Kupferfläche angebunden und erfährt daher eine geringere Kühlung als der NPo-Kondensator, der als SMD-Bauteil über größere Anschlusspads verfügt. Verglichen mit den Folienkondensatoren sind NPo-Keramikkondensatoren somit kleiner und verlustärmer und werden daher im Prototyp (Kapitel 8) eingesetzt.

Die Verlustleistung des NPo-Resonanzkondensators wird mit Hilfe des Ersatz-Serienwiderstandes $R_{C,ESR}$ berechnet mit

 $P_{\rm CS} = \sum_{k=1}^{\infty} \frac{R'_{\rm C,ESR}(k\,f_{\rm S})}{C_{\rm S}} \, I_{\rm P,H}(k\,f_{\rm S})^2 \approx \frac{R'_{\rm C,ESR}(k\,f_{\rm S})}{C_{\rm S}} \, I_{\rm LScycle}^2 \tag{53}$

Abbildung 43: Vergleich des Serienwiderstands und des Verlustfaktors zweier NPo-Keramikkondensatoren unterschiedlicher Spannungsklasse (*KEMET C2220C562KFGAC* vs. *C2220C153KDGAC* [29, 63])

mit dem normierten Serienwiderstand $R'_{C,ESR} = R_{C,ESR} C_{S,0}$ und der Kapazität eines Einzel-Kondensators $C_{S,0}$. Der Ersatz-Serienwiderstand $R_{C,ESR}$ ist stark von der Frequenz abhängig (siehe Abbildung 43 (a)), daher soll zur weiteren Beschreibung der Verlustfaktor tan(δ) verwendet werden, der mit guter Genauigkeit als linear abhängig von der Frequenz beschrieben werden kann (siehe Abbildung 43 (b) [63]) zu

$$\tan(\delta) = R_{\rm C,ESR} \, 2\pi f \, C_{\rm S} = D_{\rm F} + k_{\rm DF} f, \tag{54}$$

$$P_{\rm CS} = \frac{D_{\rm F} + k_{\rm DF} f}{2\pi f C_{\rm S}} I_{\rm LS}^2.$$
 (55)

Verlustfaktor für MKP 0,2% und für NP0 < 0,1% bei 100 kHz

Auf die separate Behandlung der Harmonischen soll wegen des geringen Einflusses verzichtet werden. Um die Temperaturerhöhung des Kondensators auf ΔT_{CS} zu limitieren, ist somit der Kondensatorstrom zu beschränken, sodass

$$\frac{P_{\rm CS} R'_{\rm th,CS}}{C_{\rm S}} \le \Delta T_{\rm CS} \tag{56}$$

$$I_{\rm LS} \le \sqrt{\frac{2 \pi f C_{\rm S} \Delta T_{\rm CS}}{(D_{\rm F} + k_{\rm DF} f) R'_{\rm th,CS}}}$$
(57)

mit dem normierten thermischen Widerstand $R'_{\text{th,CS}} = R_{\text{th,CS}} C_{\text{S},0}$, der zur Modellierung der konduktiven Entwärmung verwendet wird und dem lokalen Effektivwert I_{LS} bei der Batteriespannung U_{Batt} . Die in Abbildung 43 verglichenen Kondensatoren in der C2220-Bauform sind laut Herstellerangaben [63] mit einem thermischen Widerstand von $R_{\text{th,CS}} = 42 \text{ K/W}$ für den Kondensator mit $C_{\text{S}} = 5,6 \text{ nF}$ bzw. $R_{\text{th,CS}} = 45 \text{ K/W}$ für $C_{\text{S}} = 15 \text{ nF}$ an die Kupferfläche angebunden. Mit Gleichung 57 wird die Strombegrenzung des verwendeten Resonanzkondensators berechnet.

Tabelle 9: Bauteileigenschaften verschiedener NPo-Kondensatoren unterschiedlicher Spannungsklasse

Bauteilbezeichnung	Spannungsklasse	$C_{\rm S}/{\rm nF}$	$D_{\rm F}/10^{-3}$	$k_{\mathrm{DF}}\cdot\mathrm{MHz}$	$R_{\rm th,CS}/\frac{K}{W}$
C2220C562KFGAC	1,5 kV	5,6	0,24	0,1	45
C2220C153KDGAC	1 kV	15	0,042	0,38	42

4

INTEGRIERTER TRANSFORMATOR

Im Folgenden soll nun ein besonderes Augenmerk auf die Realisierung des Transformators gelegt werden, denn dessen Aufbau entscheidet ganz maßgeblich darüber, ob das Bauvolumen des Ladewandlers klein und die Verlustleistung gering ausfällt. In der Vergangenheit hat sich bereits eine Vielzahl von Studien mit der Optimierung des Transformators für LLC-Resonanzwandler befasst (z. B. [44]). Durch geeignete Wahl der Kerngeometrie und des Wickelschemas ist es gelungen, alle magnetischen Komponenten des Resonanzkreises in ein Bauteil zu integrieren: Die Serieninduktivität L_{S} , die Parallelinduktivität $L_{\rm P}$ und der ideale Übertrager n : 1 werden in einem Transformator vereint. Der Einsatz eines solchen integrierten Transformators ermöglicht geringeres Bauvolumen als ein Aufbau mit separaten Bauteilen [77]. Zudem können hiermit Leiterkartenfläche und elektrische Anschlusspunkte eingespart werden. In kommerziell erhältlichen LLC-Stromversorgungen sind integrierte Transformatoren bis dato aber selten zu finden, meist behilft man sich einer zweiten s.g. Resonanzspule, um die gewünschten Parameter der Serieninduktivität L_S zu erreichen. Im folgenden Abschnitt sollen technische Hürden heutiger integrierter Transformatoren ermittelt werden, die die zögerliche Markteinführung erklären. Durch eine weiterentwickelte Kern- und Wicklungsstruktur wird im Anschluss versucht, die identifizierten Schwächen zu mindern.

4.1 FUNDAMENTALE EIGENSCHAFTEN

Transformatoren mit zwei Wicklungen folgen bekanntermaßen dem Zusammenhang

$$u_{\rm P} = L_{11} \frac{di_{\rm P}}{dt} + M_{12} \frac{di_{\rm S}}{dt},\tag{58}$$

$$u_{\rm S} = L_{22} \frac{\mathrm{d}i_{\rm S}}{\mathrm{d}t} + M_{12} \frac{\mathrm{d}i_{\rm P}}{\mathrm{d}t} \tag{59}$$

mit dem Index *P* für die Primärseite, dem Index *S* für die Sekundärseite, den Selbstinduktivitäten L_{11} , L_{22} und der Gegeninduktivität M_{12} [54]. Durch Einführen der transformierten Größen $u'_{S} = n u_{S}$ und $i'_{S} = i_{S}/n$ kann das elektrische Verhalten des Transformators mit dem T-Ersatzschaltbild aus Abbildung 44 (a) modelliert werden. Die eingeführte Variable *n* ist zunächst nicht näher bestimmt und kann daher völlig beliebig gewählt werden [8, 54]. In der Praxis wird *n* häufig als Quotient aus Primär- und Sekundärwindungszahl gewählt. Zur Nachbildung der magnetischen Struktur des LLC-Resonanzwandlers ist das Übersetzungsverhältnis *n* jedoch so zu wählen, dass die Streuinduktivität sich vollständig auf die Primärseite konzentriert: Dies ist genau dann der Fall, wenn $M_{12} = n L_{22}$ gewählt wird und somit die sekundärseitige Streuinduktivität zu Null wird (Abbildung 44). Mit $n = \frac{M_{12}}{L_{22}}$ und dem Koppelfaktor $k = \frac{M_{12}}{\sqrt{L_{11}L_{22}}}$ kann das elektrische Verhalten mit dem Ersatzschaltbild aus Abbildung 44 (b) modelliert werden, das die gleiche Struktur besitzt wie die magnetischen Komponenten des LLC-Resonanzkreises.

Abbildung 44: Ersatzschaltbilder eines Zweiwicklungs-Transformators

Um alle magnetischen Elemente des Resonanzkreises im Transformator unterzubringen, ist der Transformator demnach so zu realisieren, dass die gewünschte Serieninduktivität L_S mit der Streuinduktivität $(1 - k^2)L_{11}$ übereinstimmt und die Parallelinduktivität L_P mit der Hauptinduktivität k^2L_{11} . Das Induktivitätsverhältnis $\lambda = L_S/L_P$ liegt bei üblichen LLC-Auslegungen zwischen 0, 1 – 0, 4. Daher ist ein Koppelfaktor *k* zwischen 0, 85 – 0, 95 erforderlich, um alle magnetischen Elemente des Resonanzkreises im Transformator zu vereinen. Zudem ist die Gegeninduktivität zu wählen als $M_{12} = n L_{22}$ mit dem angestrebten Übersetzungsverhältnis *n*.

4.2 REALISIERUNG DES LUFTSPALTS

Luftspalte sind bei üblichen Kernmaterialien nötig, um die Flussdichte im Kern zu reduzieren und somit eine etwaige Kernsättigung zu vermeiden bzw. die Kernverluste zu reduzieren. Solche Luftspalte können prinzipiell im Mittel- oder im Außenschenkel des Transformators platziert werden. Von der Platzierung im Außenschenkel soll in dieser Arbeit abgesehen werden, um Störfeldern in der Umgebung des Transformators und Verluste in Gehäuseteilen sowie EMV-Probleme zu vermeiden. Bei Standardkernen, die kommerziell erhältlich sind, wird die erforderliche Luftspaltlänge mit einem einzelnen, zentrierten Luftspalt im Mittelschenkel realisiert (siehe Abbildung 45 (a)). Windungen, die sich in der Umgebung des Luftspalts befinden, sind in Folge der Feldaufweitung im Luftspaltbereich hoher magnetischen Feldstärke |H| ausgesetzt, wodurch hohe Wicklungsverluste infolge des s.g. Proximity-Effekts verursacht werden. Diese Problematik ist gravierend, denn die Verluste sind vergleichsweise groß und fallen in Windungen an, die sich in Bereichen schlechter thermischer Anbindung befinden [8]. Beim Einsatz von WBG-Bauelementen wirkt sich diese Problematik zudem besonders stark aus, da mit hohen Frequenzen auch die Proximityverluste steigen. Zudem ist zur Erzielung einer hohen Resonanzfrequenz ein großer Luftspalt erforderlich, um die Flussdichte auf ein Bruchteil der Sättigungsgrenze zu reduzieren und hiermit die Kernverluste heutiger Ferritmaterialien akzeptabel zu halten.

Durch die Verteilung der Luftspaltlänge auf mehrere Einzelluftspalte, verteilt sich die magnetische Feldstärke |H| homogener über die Breite des Wickelfensters b_{W} , was zu deutlich reduzierten Proximityverlusten führt (Abbildung 45 (b)). Der Grund hierfür liegt darin, dass die Proximityverluste sich in erster Näherung proportional zum Quadrat der externen magnetischen Feldstärke |H| verhalten und daher stetig geringer werden, je gleichmäßiger der Feldverlauf ist. Dieses Prinzip kann naturgemäß fortgeführt werden, indem der Luftspalt über den gesamten Mittelschenkel mit vielen Einzelluftspalten verteilt wird. Hiermit stellen sich nochmals geringere Proximityverluste ein (siehe für 8-fach verteilten Luftspalt Abbildung 46 (a)). Im Idealfall würde der Mittelschenkel durch ein homogenes Kernmaterial mit geringerer Permeabilität ersetzt werden, was aber in der Praxis nicht sinnvoll umsetzbar ist. Denn verfügbare Ferritmaterialien mit geringen Kernverlusten weisen im angestrebten Frequenzbereich hierfür eine zu hohe Permeabilität $|\mu|$ auf. Daher wird in dieser Arbeit konsequent angenommen, dass der Luftspalt über den Mittelschenkel verteilt wird. Hierbei wird bewusst in Kauf genommen, dass dies erhöhten Fertigungsaufwand bedeutet.

Abbildung 45: Gegenüberstellung des magnetischen Feldes im Wickelfenster eines Transformators mit Einzelluftspalt vs. drei Einzelluftspalte. Im Vordergrund der konstruktive Aufbau, im Hintergrund das magnetische Feld |*H*| (2D-FEM-Simulation).

4.3 WICKLUNGSSCHEMA

Abbildung 46 zeigt die Kontur des Durchflutungssatzes

Für die typische ETD-Kerngeometrie für Transformatoren gilt $b_W \approx 4h_W$.

Die Wahl des Wicklungsschemas hat ganz wesentlichen Einfluss auf die Wicklungsverluste sowie auf die Streuinduktivität des Transformators. Abbildung 46 zeigt die Tonnen- und die Kammerwicklung als die beiden meistgenutzten Wicklungsschemata für LLC-Transformatoren. Jedes Schema kann jeweils in sich zwischen Primärund Sekundärwicklung verschachtelt (engl. interleaved) werden. Für die Tonnenwicklung werden die Primär- und Sekundärwindungen über die gesamte Wickelfensterbreite b_W verteilt. Aus Symmetriegründen lässt sich hierbei mit wenigen Annahmen die maximale Feldstärke zwischen den Lagen mit Hilfe des Durchflutungssatzes bestimmen zu $|H| = \frac{i_S N_2}{b_W}$. Aus $|H| \sim \frac{1}{b_W}$ folgt, dass bei hoher Wicklefensterbreite b_W die Wicklung geringer magnetischer Feldstärke ausgesetzt ist, was wiederum vergleichsweise kleine Proximityverluste verursacht (siehe Abbildung 46 (a)). Geringe Verluste sind zwar äußerst begrüßenswert, jedoch führt die kleine magnetische Feldstärke |H| auch dazu, dass die Flussdichte |B| zwischen den Wicklungen und somit der Streufluss gering ausfällt, wenn Primär- und Sekundärwicklung nur über eine Isolationsfolie separiert werden. Für den angestrebten Koppelfaktor von k = 0, 85...0, 95 ist der hiermit erreichte Streufluss zu gering. Daher wird mit der Tonnenwicklung i.d.R. nicht die gesamte Induktivität L_S durch die Streuinduktivität des Transformators erreicht. Hierfür wird meist eine externe Spule in Reihe zur Primärwicklung als Ergänzung zur Streuinduktivität installiert. Die Vergrößerung der Streuinduktivität auf L_S durch Einfügen einer größeren Distanz zwischen Primär- und Sekundärwicklung kommt meist nicht in Betracht angesichts der signifikanten Volumenund Verluststeigerung.

Abbildung 46: Gegenüberstellung des magnetischen Feldes im Wickelfenster eines Transformators bei Tonnen- vs. Kammerwicklung. Im Vordergrund der konstruktive Aufbau, im Hintergrund das magnetische Feld |*H*| (2D-FEM-Simulation).

Höherer Streufluss im Vergleich zur Tonnenwicklung wird mit der Kammerwicklung erreicht (Abbildung 46 (b)), denn bei diesem Wickelschema werden die Primär- und Sekundärwicklungen in Kammern im oberen und unteren Bereich des Wicklungsfensters getrennt platziert [95]. Durch den Einsatz dieser Kammerwicklung kann problemlos die gewünschte Streuinduktivität L_S erzielt werden, denn wegen $b_W > h_W$ ergibt sich zwischen den Wicklungen eine deutlich höherer Streufluss. Entscheidender Nachteil ist hierbei jedoch das hohe magnetische Feld |H|, das sich im Wickelfenster ergibt und neben dem gewünschten Streufluss auch massive Proximityverluste zur Folge hat [92]. Dieses Phänomen ist unabhängig von der Realisierung des Luftspalts und ergibt sich somit trotz des mehrfach verteilten Luftspalts (siehe Abbildung 46 (b)).

4.4 EINSATZ EINES STREUPFADS

Um die beschriebenen Schwächen zu mindern, soll im Folgenden der strukturelle Aufbau des Transformators erneut überdacht werden: Die Kammerwicklung nach Abbildung 46 (b) ermöglicht zwar die Integration aller magnetischen Komponenten, jedoch wird bei diesem Wickelschema der Streufluss durch das Wickelfenster geleitet und verursacht hierdurch massive Proximityverluste. Daher soll in dieser Arbeit ein dedizierter Streupfad eingebaut werden, der den überwiegenden Streufluss leitet und somit an der Wicklung vorbeiführt. Der Streupfad soll gebildet werden, indem eine der Ferritplatten, die ohnehin für den verteilten Luftspalt eingesetzt wird, in das Wickelfenster ragt und so als Streupfad fungiert. Damit sich im Wickelfenster eine geringe magnetische Feldstärke ergibt, dürfen Primär- und Sekundärwicklung aber nicht voneinander getrennt werden, sondern müssen in räumlicher Nähe zueinander angeordnet werden, sodass sich ihre Durchflutungen kompensieren (siehe Abbildung 47 (a)).

An dem Frequenzspektrum typischer LLC-Stromverläufe ist zu erkennen, dass sich die Durchflutungen von den Primär- und den Sekundärwindungen nicht nur für die Grundschwingung kompensieren, sondern auch alle anderen dominierenden Harmonischen ähnliche Effektivwerte aufweisen und etwa 180° phasenverschoben sind (Abbildung 48). Die Durchflutung kompensiert sich daher im Wickelfenster umso besser, desto häufiger verschachtelt Primär- und Sekundärwicklung angeordnet sind. Im Idealfall wechseln sich Primär- und Sekundärwicklung sowohl innerhalb einer Lage als auch zwischen den Lagen ab, wie es beim so genannten bifilaren Wickelschema der Fall ist (Abbildung 47 (b)). In der Praxis wird ein solches bifilares Wickelschema selten verwendet, denn die Isolation zwischen Primärund Sekundärseite des Transformators ist aufwendiger und somit teurer als bei der Tonnen- bzw. Kammerwicklung (Abbildung 47 (b)).

Abbildung 47: Konstruktiver Aufbau des verwendeten Streupfad-Transformators mit Primär- und Sekundärwicklung, jeweils verteilt über- und unterhalb des Streupfads.

Zudem ist die Koppelkapazität zwischen Primär- und Sekundärseite größer als bei verschachtelten Wicklungen. In dieser Arbeit findet das bifilare Wickelschema Anwendung, obgleich die folgende Auslegung auch bei alternativem Wickelschema einsetzbar ist.

Abbildung 48: Spektrum des Primär- und Sekundärstromes i_P und i_S in typischen Arbeitspunkten in Betriebsart *DCMB2* und *CCMA*

4.5 RELUKTANZMATRIX

Damit der Streupfad-Transformator die gewünschten Parameter des Resonanzkreises L_S , L_P und *n* aufweist, sind gewisse Reluktanzen $R_{\rm mA}$, $R_{\rm mB}$ und $R_{\rm mC}$ erforderlich, die im folgenden berechnet werden sollen. Zur Modellierung wird das Reluktanzmodell aus Abbildung 47 (a) verwendet. Die Induktivitätsmatrix kann übersichtlich bestimmt werden, indem die Flüsse ϕ_A und ϕ_B als Maschenströme des Maschenstromverfahrens aufgefasst werden. Die Anwendung des Maschensatzes auf das Reluktanzmodell ergibt in Matrixschreibweise den Ausdruck (60). Wird Gleichung 60 von links mit der inversen Reluktanzmatrix ${R_m}^{-1}$ multipliziert, ergibt sich direkt der Flussvektor ϕ . Wird nun wiederum von links mit der transponierten Windungsmatrix N^T multipliziert, erhält man den Verkettungsfluss-Vektor ψ . Es sei darauf hingewiesen, dass die Windungsmatrix N voll besetzt ist und somit die Transponierte der Matrix N gebildet werden muss, damit sich die symmetrische Induktivitätsmatrix L ergibt.

$$\underbrace{\begin{bmatrix} R_{mA} + R_{mC} & -R_{mC} \\ -R_{mC} & R_{mB} + R_{mC} \end{bmatrix}}_{R_{m}} \underbrace{\begin{bmatrix} \phi_{A} \\ \phi_{B} \end{bmatrix}}_{\phi} = \underbrace{\begin{bmatrix} N_{1A} & N_{2A} \\ N_{1B} & N_{2B} \end{bmatrix}}_{N} \underbrace{\begin{bmatrix} i_{P} \\ i_{S} \end{bmatrix}}_{i}$$
(60)
$$\phi = \mathbf{R}^{-1} \mathbf{N} i$$
(61)

$$\psi = \mathbf{N}_{\mathbf{m}}^{\mathrm{T}} \mathbf{V} \mathbf{i}$$
(61)
$$\psi = \mathbf{N}^{\mathrm{T}} \phi = \underbrace{\mathbf{N}_{\mathbf{m}}^{\mathrm{T}} \mathbf{R}_{\mathbf{m}}^{-1} \mathbf{N}}_{L} \mathbf{i}$$
(62)

Damit der Streupfad-Transformator die Zielparameter L_S , L_P und n einnimmt, ist die Induktivitätsmatrix L zu wählen, wie in Abschnitt 4.1 beschrieben, sodass

$$\boldsymbol{L} = \begin{bmatrix} L_{11} & M_{12} \\ M_{12} & L_{22} \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} L_{\rm S} + L_{\rm P} & \frac{L_{\rm P}}{n} \\ \frac{L_{\rm P}}{n} & \frac{L_{\rm P}}{n^2} \end{bmatrix}.$$
(63)

Durch Auflösung der Gleichung 62 nach R_m erhält man die gewünschte Reluktanzmatrix

$$\boldsymbol{R}_{\mathrm{m}} = \boldsymbol{N} \boldsymbol{L}^{-1} \boldsymbol{N}^{\mathrm{T}}.$$
 (64)

4.6 LUFTSPALTLÄNGEN DES STREUPFAD-TRANSFORMATORS

Im Folgenden sollen Näherungsformeln für die Reluktanzen R_{mA} , R_{mB} und R_{mC} auf Basis der Transformatorgeometrie ermittelt werden, mit denen die erforderlichen Luftspaltlängen in guter Näherung berechnet werden können. Typische Ferritmaterialien besitzen eine hohe relative Permeabilität von $\mu_r = 500...3000$ [1], die zu einem kleinen (jedoch nicht vernachlässigbaren) magnetischen Widerstand In (60) sind N_{1A} und N_{1B} die Primärwindungszahlen oberhalb (Index A für engl. above) bzw. unterhalb (B für engl. below) des Streupfads und N_{2A} und N_{2B} sind die Sekundärwindungszahlen.

Eine singuläre Matrix L kann wegen $M_{12} \neq \sqrt{L_{11} L_{22}}$ ausgeschlossen werden führt. Typischerweise sind Luftspalte erforderlich, um die Reluktanzen ober- bzw. unterhalb des Streupfades (R_{mA} und R_{mB}) sowie innerhalb des Streupfades (R_{mC}) auf die gewünschten Werte aus Gleichung 64 anzuheben. Die Reluktanzen ergeben sich somit jeweils aus den zwei Anteilen des Ferritabschnitts und des (verteilten) Luftspalts.

Für die Reluktanzen über- bzw. unterhalb des Streupfads R_{mA} und R_{mB} soll in erster Näherung von abschnittweise homogenen Feldern ausgegangen werden. Mit dieser Näherung ergeben sich die Reluktanzen

$$R_{\rm mA} = \frac{2\,b_{\rm A} + h_{\rm W}}{\mu_r \mu_0 \pi \, r_{\rm C}^2} + \frac{N_{\rm gA} \, l_{\rm gA}}{\mu_0 \, A_{\rm gA}} \, \text{und}$$
(65)

$$R_{\rm mB} = \underbrace{\frac{2 \, b_{\rm B} + h_{\rm W}}{\mu_r \mu_0 \pi \, r_{\rm C}^2}}_{\rm Reluktanz \, Ferrit} + \underbrace{\frac{N_{\rm gB} \, l_{\rm gB}}{\mu_0 \, A_{\rm gB}}}_{\rm Reluktanz \, Luftspalt}$$
(66)

mit der Anzahl von Einzelluftspalten N_{gA} bzw. N_{gB} und den Luftspalt-Querschnitten A_{gA} und A_{gB} . Wird die Feldaufweitung in der Luftspalt-Umgebung (siehe z. B. Abbildung 45 (a)) gänzlich vernachlässigt, gilt in erster Näherung

$$A_{\rm gA} = A_{\rm gB} = \pi r_{\rm C}^2. \tag{67}$$

Zur Bestimmung der Reluktanz des Streupfads R_{mC} kann nicht von stückweise homogenen Feldern ausgegangen werden, da der magnetische Fluss ϕ_C radial in Richtung des Außenschenkels fließt und hiermit die Flussdichte naturgemäß mit steigendem Radius abnimmt. Bei einem rotationssymmetrischen Kern (Abb. 49 (a)) gilt jedoch in erster Näherung, dass die Feldstärke auf einer konzentrischen Zylindermantelfläche homogen verteilt ist. In einer pot-Geometrie (engl. pot für Topf) kann daher die magnetische Feldstärke im Streupfad mit

$$h_{\rm C,POT}(r) = \begin{cases} \frac{\phi_{\rm C}}{\mu_r \,\mu_0 \, 2 \, \pi \, r \, b_{\rm leak}}, & \text{wenn } r_{\rm leak,POT} > r \ge r_{\rm C} \\ \frac{\phi_{\rm C}}{\mu_0 \, 2 \, \pi \, r \, b_{\rm g}}, & \text{sonst } r_{\rm C} + h_{\rm W} \ge r \ge r_{\rm leak,POT} \end{cases}$$

$$\tag{68}$$

angenähert werden. Wird wiederum die Feldaufweitung im Luftspaltbereich des Streupfads vernachlässigt, gilt $b_g = b_{\text{leak}}$. Mit ausreichender Näherung kann die Reluktanz des Streupfads bestimmt werden zu

$$R_{\rm mC} = \frac{1}{\phi_{\rm C}} \int_{r_{\rm C}}^{r_{\rm C}+h_{\rm W}} H_{\rm C,POT}(r) \,\mathrm{d}r, \tag{69}$$

$$= \underbrace{\frac{\ln\left(\frac{r_{\text{leak},\text{POT}}}{r_{\text{C}}}\right)}{\mu_{\text{r}}\,\mu_{0}\,2\,\pi\,b_{\text{leak}}}} + \underbrace{\frac{\ln\left(\frac{r_{\text{C}}+h_{\text{W}}}{r_{\text{leak},\text{POT}}}\right)}{\mu_{0}\,2\,\pi\,b_{\text{leak}}}.$$
(70)

Reluktanz Ferrit Reluktanz Luftspalt

Ferritkerne mit runden Außenkantenmaßen wie der pot-Kern aus Abbildung 49 (a) werden in der Praxis selten verwendet, da hiermit der verfügbare Platz oft nicht vollständig ausgenutzt werden kann. Zudem ist die Wicklung vollständig vom Ferritkern umschlossen, was die Kühlung durch natürliche Konvektion erschwert. Aus diesen Gründen haben sich für Transformatoren s.g. ETD-Kerne etabliert, die zwar einen runden Mittelschenkel zur Minimierung der Wicklungslänge aufweisen, jedoch eckige Außenkantenmaße besitzen.

Abbildung 49: Horizontaler Schnitt durch die Kernstruktur des Streupfad-Transformators, realisiert als pot-Kern und ETD-Kern

Wird ein ETD-Kern nach Abbildung 49 (b) für den Streupfad-Transformator verwendet, ist zur Abschätzung der Reluktanz des Streupfads Gleichung 70 zu erweitern, da sich bei der ETD-Geometrie der Fluss $\phi_{\rm C}$ nicht mehr radial über den Zylinderumfang $2 \pi r$ verteilt, sondern in erster Näherung auf

$$[2\pi - 4\alpha] r \operatorname{mit} \alpha = \arccos\left(\frac{d_{\mathrm{T}}}{2(r_{\mathrm{C}} + h_{\mathrm{W}})}\right). \tag{71}$$

Damit der Kernquerschnitt $A_{\rm C}$ im Innenschenkel gleich der Summe der Querschnitte in den Außenschenkeln ist, muss die Breite des Kerns $h_{\rm T}$ gemäß Gleichung 73 gewählt werden.

$$R_{\rm mC} = \frac{\ln\left(\frac{r_{\rm leak,ETD}}{r_{\rm C}}\right)}{\mu_{\rm r}\,\mu_0 \left[2\pi - 4\arccos\left(\frac{d_{\rm T}}{2(r_{\rm C} + h_{\rm W})}\right)\right] b_{\rm leak}} \cdots + \frac{\ln\left(\frac{r_{\rm C} + h_{\rm W}}{r_{\rm leak,ETD}}\right)}{\mu_0 \left[2\pi - 4\arccos\left(\frac{d_{\rm T}}{2(r_{\rm C} + h_{\rm W})}\right)\right] b_{\rm leak}}$$
(72)
Reluktanz Luftspalt

ETD-Kerne (engl. Economical Transformer Design) sind genormt in der IEC 62317-6

$$h_{\rm T} = \frac{r_{\rm C}^2 \pi}{d_{\rm T}} + \left[\sqrt{(r_{\rm C} + h_{\rm W})^2 - (d_{\rm T}/2)^2} + \dots \right]$$

$$\frac{2(r_{\rm C} + h_{\rm W})^2}{d_{\rm T}} \arctan\left(\frac{d_{\rm T}}{2\sqrt{(r_{\rm C} + h_{\rm W})^2 - (d_{\rm T}/2)^2}}\right)$$
(73)

Zur Herleitung der Gleichung 73 sind einige geometrische Problemstellungen zu lösen, auf deren Beschreibung hier verzichtet werden soll.

4.7 TRANSFORMATORVERLUSTE

Den Transformatorverlusten soll im Folgenden besondere Aufmerksamkeit geschenkt werden, denn dieser Verlustanteil gehört einerseits zu den dominierenden Verlusten des Ladewandlers und ist andererseits aufwendig abzuschätzen. Prinzipiell lassen sich die Transformatorverluste separieren entsprechend dem örtlichen Ursprung in Kern- und Wicklungsverluste, auf deren Modellierung im Folgenden genauer eingegangen werden soll.

4.7.1 Kernverlustmechanismen

Für den Kern kommen angesichts der Schaltfrequenz von über 100 kHz nur Werkstoffe in Betracht, die eine kleine Leitfähigkeit κ aufweisen, sodass die Wirbelstromverluste im Kern auf ein erträgliches Maß begrenzt werden. Typischerweise werden hierfür Keramikmaterialien aus gesintertem Eisenoxid-Pulver - sogenannte Ferrite eingesetzt. Durch Hinzufügen von Additiven wie Mangan, Nickel, Zink oder Kobalt lassen sich die Materialeigenschaften hinsichtlich der Parameter Permeabilität, Leitfähigkeit, Permittivität, Hystereseverluste, Sättigungsverhalten sowie deren Temperaturabhängigkeit gezielt verändern. Im Frequenzbereich bis 1,5 MHz haben sich in den vergangenen Jahrzehnten Mangan-Zink-Ferrite (MnZnFe₂O₄) qualifiziert; bei höheren Frequenzen kommen Nickel-Zink-Ferrite (NiZnFe₂O₄) zum Einsatz. Alternative Werkstoffe, z. B. Metallpulverkerne oder nanokristalline Ringbandkerne, eignen sich für den vorliegenden Transformator nicht, denn deren Leitfähigkeit führt bei der erwarteten Frequenz zu inakzeptablen Kernverlusten. Zwar böten diese alternativen Werkstoffe eine deutlich höhere Sättigungsflussdichte als Ferrite (bis ca. 1...1,8T). Wie noch zu sehen sein wird, würde dieser Vorteil aber ohnehin nicht ausgeschöpft, da die Flussdichte durch Einfügen von Luftspalten auf einen Bruchteil der Sättigungsflussdichte beschränkt werden muss.

Zur Modellierung der Verlustmechanismen im Kern seien zunächst die Maxwell-Gleichungen in der allgemeinsten Form zugrunde gelegt, nach

$$\nabla \times \boldsymbol{e} = -\frac{\partial \boldsymbol{b}}{\partial t'},\tag{74}$$

$$\nabla \times \boldsymbol{h} = \boldsymbol{j} + \frac{\partial \boldsymbol{d}}{\partial t},\tag{75}$$

$$\nabla \cdot \boldsymbol{b} = \boldsymbol{0},\tag{76}$$

$$\nabla \cdot \boldsymbol{d} = \rho. \tag{77}$$

Angesichts des vergleichsweise geringen Oberschwingungsgehalts der Flussdichte im LLC-Resonanzwandler sei von einer rein sinusförmigen Anregung ausgegangen. Überführt in die komplexe Zeigerdarstellung lassen sich hiermit die zeitlichen Ableitungen als Produkt mit j ω schreiben. Alle folgenden Feldbezeichnungen (\underline{E} und \underline{H}) verstehen sich als Effektivwertzeiger, der mit dem Momentanwert des Feldes in folgender Beziehung steht:

$$e(t) = \Re\left(\sqrt{2}\underline{E}\,\mathrm{e}^{\mathrm{j}\omega t}\right) \tag{78}$$

$$h(t) = \Re\left(\sqrt{2}\underline{H}\,\mathrm{e}^{\mathrm{j}\omega t}\right).\tag{79}$$

Freie Ladungsträger im Ferritmaterial dürfen in erster Näherung vernachlässigt werden, sodass im gesamten Kernvolumen die Divergenz der Verschiebungsflussdichte verschwindet ($\nabla \cdot d = 0$). Zudem soll vorerst von einem linearen, isotropen, zeitinvarianten sowie homogenen Kernmaterial ausgegangen werden, mit der Permeabilität $\underline{\mu}$, der elektrischen Leitfähigkeit κ und der Permittivität $\underline{\varepsilon}$. Die maxwellschen Gleichungen gehen mit diesen Annahmen über in

$$\nabla \times \underline{E} = -j\omega\mu\underline{H},\tag{80}$$

$$\nabla \times \underline{H} = (\kappa + j\omega\underline{\varepsilon})\underline{E},\tag{81}$$

$$\nabla \cdot \underline{H} = \mathbf{0},\tag{82}$$

$$\nabla \cdot \underline{E} = \mathbf{0},\tag{83}$$

mit den Materialgleichungen

$$\underline{B} = \mu \underline{H}, \ \underline{D} = \underline{\varepsilon} \underline{E} \text{ und } \underline{J} = \kappa \underline{E}.$$
 (84)

Die im Ferritkern auftretenden Verlustmechanismen sollen mit Hilfe des Satzes von Poynting, der Energiebilanz der Elektrodynamik, verdeutlicht werden:

$$-\oint_{\partial V} (\boldsymbol{e} \times \boldsymbol{h}) \cdot \mathrm{d}\boldsymbol{S} = \int_{\boldsymbol{V}} \left(\boldsymbol{e} \cdot \boldsymbol{j} + \boldsymbol{e} \cdot \frac{\partial \boldsymbol{d}}{\partial t} + \boldsymbol{h} \cdot \frac{\partial \boldsymbol{b}}{\partial t} \right) \mathrm{d}V. \tag{85}$$

Inwiefern sich die Annahme linearer Zusammenhänge bestätigt, wird mit Messungen auf Seite 82 untersucht Wird Gleichung 85 mit komplexen Effektivwertzeigern für ein lineares, isotropes, zeitinvariantes und homogenes Material mit κ , μ , und $\underline{\varepsilon}$ formuliert, ergibt sich nach einigen Umformungen

$$-\oint_{\partial V} (\underline{\boldsymbol{E}} \times \underline{\boldsymbol{H}}^{*}) \cdot d\boldsymbol{S} = \int_{\boldsymbol{V}} \left(\kappa |\underline{\boldsymbol{E}}|^{2} \right) dV + j \omega \int_{\boldsymbol{V}} \left(\underline{\mu} |\underline{\boldsymbol{H}}|^{2} - \underline{\varepsilon}^{*} |\underline{\boldsymbol{E}}|^{2} \right) dV.$$
(86)

Mit der komplexen Permeabilität $\underline{\mu} = \mu' - j\mu'' = \mu e^{-j\zeta_{\mu}}$ und der ebenfalls komplexen Permittivität $\underline{\varepsilon} = \varepsilon' - j\varepsilon'' = \varepsilon e^{-j\zeta_{\varepsilon}}$ ergibt sich

Satz von Poynting für komplexe Effektivwertzeiger

$$-\oint_{\partial V} (\underline{\boldsymbol{E}} \times \underline{\boldsymbol{H}}^{*}) \cdot d\boldsymbol{S} = \int_{\boldsymbol{V}} \left[\underbrace{(\kappa + \omega \varepsilon'') |\underline{\boldsymbol{E}}|^{2}}_{\text{el. Verluste}} + \underbrace{\omega \mu'' |\underline{\boldsymbol{H}}|^{2}}_{\text{mag. Verluste}} \right] dV + j2 \,\omega \int_{\boldsymbol{V}} \left(\underbrace{\frac{1}{2} \mu' |\underline{\boldsymbol{H}}|^{2}}_{\text{mag. Energie}} - \underbrace{\frac{1}{2} \varepsilon' |\underline{\boldsymbol{E}}|^{2}}_{\text{el. Energie}} \right) dV.$$
(87)

Gleichung 87 offenbart, dass unter den getroffenen Annahmen Kernverluste durch zweierlei Ursachen hervorgerufen werden: Erstens Verlustanteile durch das magnetische Feld, die im Folgenden *Hystereseverluste* genannt werden (Verlustleistungdichte $\omega \mu'' |\underline{H}|^2$). Zweitens Verlustanteile, die durch elektrische Felder auftreten und im Folgenden *Wirbelstromverluste* genannt werden (Verlustleistungdichte $(\kappa + \omega \varepsilon'') |\underline{E}|^2$). Da die Wirbelstromverluste proportional sind zur Summe $\kappa + \omega \varepsilon''$, soll im Folgenden ohne Einschränkung der Allgemeinheit die komplexe Ersatz-Permittivität

$$\underline{\tilde{\varepsilon}} = \varepsilon' - j\left(\varepsilon'' + \frac{\kappa}{\omega}\right) = \tilde{\varepsilon} e^{-j\zeta_{\tilde{\varepsilon}}}$$
(88)

eingeführt werden. Hieraus resultiert die Materialgleichung

$$\underline{\widetilde{D}} = \underline{\widetilde{\varepsilon}} \, \underline{E}. \tag{89}$$

Hiermit können nun in sehr kompakter Weise die Kernverluste berechnet werden: Die Hystereseverluste mit $p_{\text{Hysterese}} = -\omega \Im(\underline{\mu}) |\underline{H}|^2$ und die Wirbelstromverluste mit $p_{\text{Wirbelstrom}} = -\omega \Im(\underline{\tilde{\epsilon}}) |\underline{E}|^2$ [13]. Auf die Modellierung weiterer Verlustmechanismen, die durch die nichtlineare Kernmagnetisierung (engl. *excess losses*) oder durch den Oberschwingungsgehalt der Flussdichte verursacht werden [16], soll im Weiteren verzichtet werden.

4.7.2 Charakterisierung der Ferrit-Permeabilität

Ferrithersteller geben in den Datenblättern ihrer Ferritmaterialien die Verlustleistung in Abhängigkeit von Frequenz, Flussdichte und Temperatur an. Beispielsweise sind die Verlustdaten in [1] mit Hilfe kleiner R34-Ringkerne nach IEC 60404-6 gemessen worden. Der Einsatz

solcher R34-Ringkerne für die Materialcharakterisierung soll im Folgenden neu überdacht werden: Grundsätzlich kann aus Symmetriegründen in einer konzentrischen Anordnung wie einem Ringkern (z. B. Abbildung 50) angenommen werden, dass die magnetische Feldstärke h winkelunabhängig ist. Werden die Wirbelstromverluste vorübergehend vernachlässigt, lässt sich die magnetische Feldstärke aus Symmetriegründen gemäß dem Durchflutungssatz zu $h(r) = \frac{i(t)}{2\pi r}$ berechnen. Aus diesem Zusammenhang leitet sich direkt die inhomogene Flussdichte im R34-Ringkern ab: Am Innenradius ist die Flussdichte um 70% höher als am Außenradius und weicht somit massiv von der Angabe der mittleren Flussdichte aus dem Datenblatt ab (siehe FEM-Simulation in Abbildung 50). Die Abhängigkeit der Permeabilität von der Flussdichte lässt sich hiermit nur sehr ungenau ermitteln. In dieser Arbeit soll daher ein Ringkern mit dünnerer Wandstärke verwendet werden, der eine homogenere Flussdichte über den Kernquerschnitt ermöglicht. Die hiermit ermittelten Verlustdaten und die Permeabilität μ gelten somit genauer für die mittlere Flussdichte.

Abbildung 50: 3D-FEM-Simulation der Flussdichte *B* zweier Ringkerne: Verglichen mit dem R29x25-Kern ist die Flussdichte im R34x20-Kern stark inhomogen

Eine weiterer Vorteil des dünnwandigen Ringkerns ist die Reduktion der Wirbelstromverluste. Die induzierte elektrische Feldstärke Everursacht Wirbelstromverluste (gemäß Gleichung 87), die für typische MgZn-Ferritmaterialien ab ca. 100 kHz einen signifikanten Anteil der Kernverluste ausmachen und im Rahmen der Charakterisierung fälschlicherweise den Hystereseverlusten bzw. der komplexen Permeabilität zugeordnet werden. Bei einer dünneren Wandstärke ist das elektrische Feld E deutlich geringer und führt somit zu signifikant reduzierten Wirbelstromverlusten (siehe FEM-Simulation in Abbildung 51).

Und noch ein weiterer Vorteil ergibt sich durch den Einsatz des dünnwandigen Ringkerns aus einem Effekt, der in der gängigen Literatur häufig vernachlässigt wird: Beträgt die elektromagnetische Wellen-

3D FEM-Simulation Infos der Feldstärke E i(t)FEM-Simulation: 150 2 <u>m</u>m Ansys-HFSS 125 3D-Solver, 7 mm i(t)100 E $= 300 \text{ kHz } \mathcal{E}$ S 75 typische 19 mm 50 Ferritkennwerte ы 12,5 mm $\underline{\mu}_{\rm r} = 1750 \, {\rm e}^{-{\rm j}10^\circ}$ 25 $\underline{\tilde{\epsilon}}_r = 6 \cdot 10^4 e^{-j20^\circ}$ 0 -34 mm 29 mm Ringkern Ringkern R34 x 20 x 12 mm R29 x 25 x 19 mm

> Abbildung 51: 3D-FEM-Simulation der elektrischen Feldstärke *E* zweier Ringkerne: Verglichen mit dem dünnwandigen R29x25-Kern ist die Feldstärke im R34x20-Kern massiv geringer und führt somit zu reduzierten Wirbelstromverlusten.

> länge in Vakuum bei 2 MHz noch $\lambda_{\text{Vakuum}} = \frac{1}{f\sqrt{\mu_0 \varepsilon_0}} \approx 150 \text{ m}$, so schrumpft sie in typischen Ferriten auf nur noch

$$\lambda_{\text{Ferrit}} = \frac{1}{f\sqrt{\mu\,\tilde{\epsilon}}\cos\left(\frac{\zeta_{\mu}+\zeta_{\tilde{\epsilon}}}{2}\right)} \approx 1,7\,\text{cm bei } f = 2\,\text{MHz}$$
(90)

bei der erwarteten hohen Permeabilität ($\mu_r \approx 2000$) und Permittivität ($\varepsilon_r \approx 5 \cdot 10^4$) [13, 101]. Die radiale Ausdehnung des R34-Ringkerns hat bei 2 MHz etwa die Größe einer halben Wellenlänge, somit stellt sich eine räumliche Resonanzerscheinung ein, die sich als massive Felderhöhung im Kern-Zentrum zeigt [47, 48, 65] (siehe Abbildung 52).

Infos FEM-Simulation: Ansys-HFSS 3D-Solver, f = 2 MHz & typische Ferritkennwerte $\mu_{r} = 1750 e^{-j10^{\circ}}$ $\tilde{\xi}_{r} = 6 \cdot 10^{4} e^{-j20^{\circ}}$

Abbildung 52: 3D-FEM-Simulation der magnetischen Feldstärke *H* zweier Ringkerne bei erhöhter Frequenz von 2MHz: Im R34x20-Kern tritt eine deutliche Wellenerscheinung im Kernquerschnitt auf, die im dünnwandigen R29x25-Kern vernachlässigbar ist.

Dieser Effekt führt zu einer signifikanten Erhöhung der Verluste, wenn die Kernausmaße in der Größenordnung der Wellenlänge liegen. Bei kleineren Kernen ist dies erst bei hoher Frequenz der Fall,

80

bei größeren Kerngeometrien kommt dies bereits bei moderater Frequenz vor. Wird ein dünnwandiger Ringkern zur Charakterisierung verwendet, ist auch bei hoher Frequenz die Wandstärke deutlich kleiner als die Wellenlänge und mindert somit die Wellenausbreitung deutlich, wie die FEM-Simulation in Abbildung 52 für 2 MHz zeigt.

4.7.2.1 Messung der komplexen Permeabilität

Da die gewünschten dünnwandigen Ringkerne nicht kommerziell erhältlich sind, wurde ein solcher mit einer Ferritfräse *Compact* 350 von *imes-icore* aus größeren Ferritkernen selbst hergestellt. Ein Foto des gefertigten Ringkerns zeigt Abbildung 53(a). Die Magnetisierung des Ringkerns erfolgt mittels eines sinusförmigen Stroms i(t), der mit Hilfe eines abgestimmten LC-Serienschwingkreises generiert wird. In diesem dünnwandigen Ringkern berechnet sich die mittlere Feldstärke *h* nach dem Durchflutungssatz (Gleichung 75) zu

$$\boldsymbol{h} = \frac{i}{l_{\text{mag}}} \, \boldsymbol{e}_{\varphi} = \frac{i}{2 \,\pi \, r} \, \boldsymbol{e}_{\varphi} \approx \frac{i}{\pi (d_{\text{a}} + d_{\text{i}})/2} \, \boldsymbol{e}_{\varphi}, \tag{91}$$

mit dem Kern-Außendurchmesser d_a und dem Innendurchmesser d_i . Zur Bestimmung des magnetischen Flusses wird die Spannung an einer offenen Sekundärwicklung mittels eines Tastkopfes gemessen. Der Einfluss des Messstroms auf die Kernmagnetisierung darf angesichts der hohen Eingangsimpedanz der Tastköpfe (Eingangskapazität < 10 pF) vernachlässigt werden [105]. Gemäß Induktionsgesetz lässt sich somit der magnetische Fluss durch Integration der induzierten Spannung berechnen. Bei Ringkernen dünner Wandstärke dürfen auch bei höheren Frequenzen räumliche Resonanzeffekte vernachlässigt werden. Folglich darf eine homogene Flussdichte *b* angenommen werden, die sich somit berechnet zu

$$\boldsymbol{b}(t) = \left[\frac{2}{\left(d_{\rm a} - d_{\rm i}\right)h_{\rm R}} \int_0^t \frac{u_{\rm Sek}(\tau)}{N_{\rm Sek}}\,\mathrm{d}\tau + C\right]\,\mathbf{e}_{\varphi} \tag{92}$$

mit der Höhe des Ringkerns $h_{\rm R}$, der Sekundär-Windungszahl $N_{\rm Sek}$ und der Integrationskonstante *C*, die so gewählt wird, dass b(t) mittelwertfrei ist.

Abbildung 53(b) zeigt exemplarisch die Hystereseschleife für das Ferritmaterial *N49* bei f = 300 kHz und einer Spitzenflussdichte von $\hat{b} \in [75, 150, 200, 300]$ mT. Bis zu einer Flussdichte von 200 mT lässt sich die gemessene Hysterese mit guter Näherung als Ellipse approximieren, wie in Abbildung 53(b) in Rot verdeutlicht. Die Flussdichte b(t) hat daher die gleiche Form wie die sinusförmige Feldstärke h(t)und eilt um den Verlustwinkel ζ_{μ} nach, was einer Modellierung mit der komplexen Permeabilität entspricht ($\underline{B} = \mu \underline{H}$). Der Modellierungsfehler bei größerer Flussdichte ist verkraftbar, denn der Transformator wird ohnehin für geringe Flussdichte ausgelegt, um akzeptable Hystereseverluste zu erzielen. Bei genauerer Betrachtung von Abbildung 53(b) ist zu erkennen, dass sich die Ellipse mit steigender Flussdichte gegen den Uhrzeigersinn dreht und hiermit die Permeabilität $|\mu|$ mit der Flussdichte ansteigt.

Abbildung 53: Charakterisierung der komplexen Permeabilität μ anhand eines dünnwandigen Ringkerns

4.7.2.2 Messergebnisse

Abbildung 54 zeigt die relative Permeabilität $\mu_r = |\mu|/\mu_0$ der konkurrierenden Ferritmaterialien, die gemessen wurden in Abhängigkeit von der Spitzenflussdichte \hat{b} , der Temperatur und der Frequenz. Für die Messung wurde das Präzisions-Leistungsmessgerät LMG640 eingesetzt. Wie in der Hystereseschleife aus Abbildung 53(b) bereits erkennbar, steigt die Permeabilität μ_r des Ferrits N49 mit der Flussdichte um mehrere 10 %. Für N87 und N95 ist die Permeabilität mehr als doppelt so hoch wie für N49 und fällt mit steigender Flussdichte merklich ab. Mit steigender Temperatur verringert sich die Permeabilität μ_r der Ferritmaterialien N87 und N95 um ca. 5 %; für PC200 und N49 wurde hingegen nur eine minimale Temperaturabhängigkeit festgestellt (bis 225 mT). Bei gleichzeitig hoher Flussdichte und Frequenz heizen sich die Ringkerne durch ihre Eigenerwärmung in wenigen Sekunden stark auf, sodass eine Temperatur-Abweichung von einigen Kelvin zu den angegebenen Werten trotz schneller automatisierter Messwerterfassung und forcierter Kühlung nicht vermieden werden kann.

Abbildung 55 ist zu entnehmen, dass der Verlustwinkel ζ_{μ} massiv mit der Spitzenflussdichte \hat{b} ansteigt und zwar unabhängig vom Kern-Material – je nach Frequenz und Temperatur bis auf über 50°. Die Annahme linearer Verhältnisse mit konstanter komplexer Permeabilität μ ist daher nur haltbar, wenn die räumliche Variation der Flussdichte-Ämplitude klein ist.

Für weitere Angaben zu den eingesetzten Messmitteln siehe Anhang B

Gemessen mit

LeCroy HDO4104.

Für weitere Details

zu den verwendeten

Messmitteln siehe

Anhang B

Gemessen mit ZES-Zimmer LMG640. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

Abbildung 54: Messergebnis der relativen Permeabilität $\mu_r = |\mu|/\mu_0$ für die Ferritwerkstoffe *N87*, *N95*, *PC200* und *N49* in Abhängigkeit von Flussdichte \hat{b} , Frequenz und Temperatur.

Gemessen mit ZES-Zimmer LMG640. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

Abbildung 55: Messergebnisse des Verlustwinkels ζ_{μ} für die Ferritwerkstoffe *N87*, *N95*, *PC200* und *N49* in Abhängigkeit von der Flussdichte \hat{b} , der Frequenz und der Temperatur

Zur direkten Vergleichbarkeit der Ferritverluste sind die spezifischen Hystereseverluste über der Spitzenflussdichte \hat{b} in Abbildung 56 dargestellt. Welches Ferritmaterial verlustoptimal ist, hängt primär von der Frequenz und der Betriebstemperatur ab. Bis 200 kHz eignen sich *N87* und *N95* besser; ab 300 kHz kommt *N49* und *PC200* in Betracht. Die Hystereverluste von *N95* hängen kaum von der Temperatur ab, was sich mit den Angaben des Hersteller-Datenblatts deckt.

Gemessen mit ZES-Zimmer LMG640. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

Abbildung 56: Messergebnisse der Hystereseverluste $p_{\text{Hysterese}}$ für die Ferritwerkstoffe N87, N95, PC200 und N49 in Abhängigkeit von Flussdichte \hat{b} , Frequenz und Temperatur

4.7.2.3 Kalorimetrische Verifikation

Je höher die Frequenz ist, desto ungenauer ist die elektrische Verlustmessung, denn minimale Laufzeitunterschiede zwischen Strom- und Spannungsmessung fallen stärker ins Gewicht und die Amplitudendämpfung führt zu einer zusätzlichen Abweichung. Zur Verifikation der Messung bei 500 kHz soll daher im folgenden Abschnitt der Wärmestrom des Ringkerns kalorimetrisch erfasst und der elektrischen Messung gegenübergestellt werden. Hierfür wird der Ringkern thermisch sehr gut isoliert, sodass die Verluste innerhalb kurzer Zeit eine Temperaturerhöhung $\Delta \vartheta_{DUT}$ hervorrufen. Am Temperaturverlauf des Abkühlvorgangs kann die thermische Zeitkontakte $\tau_{Th} = R_{Th} C_{Fe}$ erfasst werden. Ist die Messdauer $t_{p,on}$ sehr viel geringer als die thermischen Zeitkonstante des Abkühlvorgangs ($t_{p,on} \ll \tau_{Th}$), kann die mittlere Verlustleistung $\bar{p}_{Hysterese}$ unter Vernachlässigung des thermischen Widerstands R_{Th} berechnet werden nach

$$\bar{p}_{\text{Hysterese}} = \frac{\Delta \vartheta_{\text{DUT}} C_{\text{Fe}}}{t_{\text{p,on}}}$$
(93)

mit der Wärmekapazität des Prüflings C_{Fe} . Abbildung 57(a) zeigt den Ringkern, der in eine Dämmschicht aus ca. 10 cm *Neopor* eingebettet ist. Zur Temperaturmessung wurde ein Thermoelement (Typ T) seitlich an den Ringkern geklebt. Die Sekundärwindung wurde hierfür mit einer dünnen Leitung mit möglichst geringem Querschnitt realisiert, um deren Beitrag zur Wärmekapazität zu minimieren und zudem die dadurch hervorgerufene Wärmeableitung zu reduzieren.

Gemessen mit Thermoelement Typ-T an HP 34970A und mit Wärmebildkamera Flir T540

Neopor ist ein Polystyrol-

Dämmstoff von

BASF mit einem

Wärmeleitwert von 0,032 W/(mK)

spezifischen

Abbildung 57: Kalorimetrische Verifikation der Verlust-Leistungsmessung mittels thermisch isoliertem Ringkern aus N49-Kernmaterial

Im ersten Schritt wurde die spezifische Wärmekapazität des Ferritmaterials *N49* mittels eines Ferritblocks charakterisiert. Hierfür wurde der Temperaturhub gemessen, während der Ferritblock mit einer DC-Leistung erwärmt wurde, die präzise mittels des Leistungsmessgeräts *LMG640* gemessen wurde (siehe Abbildung 58(a)). Die hierbei ermittelte spezifische Wärmekapazität des Ferritblocks der Größe 77, 5x55x24 mm beträgt $c_{\text{Fe}} = 868 \frac{J}{\text{kg K}}$ bei der Dichte von 4750 $\frac{\text{kg}}{\text{m}^3}$ [2].

Die Messung der spezifischen Wärmekapazität erfolgte unter Berücksichtigung der DC-Heizwiderstände Die Größe des Ringkerns betrug R25,5x20,3x19,4 Im zweiten Schritt wurde der Ringkern mit einer Flussdichte von 120 mT bei 500 kHz angeregt und hierbei parallel zur elektrischen Verlustmessung die Oberflächentemperatur des Kerns gemessen (Abbildung 58(b)). Während der Messung erwärmte sich der Kern von 29,6 °C auf 47,0 °C. Die elektrisch gemessene Leistung fällt hierbei von 6W auf 5,7W ab, was plausibel ist, angesichts des negativen Temperaturkoeffizienten der Hystereseverluste des Ferrits im genannten Temperaturbereich. Nach Erreichen der Endtemperatur verharrt die Kerntemperatur für längere Zeit bei gleicher Temperatur, was ein Zeichen für eine ausreichend gute Wärmeisolation ist. Kalorimetrisch ergibt sich aus dem Temperaturhub $\Delta \vartheta_{DUT} = 17,4$ K, der Wärmekapazität $C_{\text{Fe}} = 14,9$ J/K und der Messdauer $t_{\text{p,on}} = 43$ s eine mittlere Verlustleistung von $\bar{p}_{\text{Hysterese}} = 6,1$ W. Die Abweichung zwischen kalorimetrischer und elektrischer Messung beträgt somit 4%.

Abbildung 58: Beispielhafte kalorimetrische Vermessung der Kernverluste

Für die betrachtete Frequenz von 500 kHz ist die Genauigkeit der elektrischen Messung somit noch akzeptabel. Perspektivisch dürfte bei massiv höherer Frequenz die vorgestellte kalorimetrische Messmethode jedoch das präzisere Verfahren zur Verlustmessung sein, denn sie ist unabhängig von der elektrischen Frequenz und dem Zeitversatz zwischen Strom- und Spannungsmessung.

4.7.3 Charakterisierung der Ferrit-Permittivität

Mikroskopisch betrachtet bestehen Ferritwerkstoffe aus leitfähigen Partikeln mit einem Durchmesser im Bereich 2...20 µm, die mit einer isolierenden Fe₂O₄-Grenzschicht von einigen nm Dicke überzogen sind [40]. In Abbildung 59 ist die Partikelstruktur zweier Ferrite mittels Mikroskopie gezeigt. Die DC-Leitfähigkeit κ über viele dieser Partikel hinweg (engl. *bulk DC-conductivity*) ist durch die isolierenden Grenzschichten äußerst gering und liegt bei gängigen MnZn-Ferriten im Bereich eines typischen Halbleiters bei ca. $\kappa = 0,001...10$ S/m [1].

86

Die dünne Grenzschicht führt jedoch zu einer hohen kapazitiven Kopplung zwischen den leitfähigen Partikeln, die als hohe Permittivität des Ferritmaterials deutlich wird [101, 102, 105]. Mit steigender Frequenz sinkt naturgemäß der Wechselstromwiderstand (Reaktanz) dieser kapazitiven Kopplung, sodass auch der Stromfluss im Ferritmaterial ansteigt, was wiederum zu steigenden Verlusten führt. Diese Verlustanteile werden unter den Wirbelstromverlusten subsumiert und mittels der komplexen Ersatz-Permittivität $\tilde{\underline{\varepsilon}}$ modelliert (siehe Gleichung 87).

(a) TDK SIFERRIT N87

(b) TDK SIFERRIT N95

Abbildung 59: Mikroskopie der Kornstruktur typischer MnZn-Ferritwerkstoffe (aufgenommen mit *Olympus DP22*)

Die Datenblätter der einschlägigen Ferrithersteller (z.B. *TDK*, *Kaschke*, *Sumida*, *Ferroxcube* u.a.m.) lassen Angaben zur komplexen Permittivität gänzlich vermissen. Nur die DC-Leitfähigkeit κ wird angegeben, die jedoch die wirklichen Wirbelstromverluste völlig unterschätzen würden. Daher soll die Ersatz-Permittivität $\tilde{\underline{\varepsilon}}$ im Folgenden anhand geeigneter Ferritproben messtechnisch ermittelt werden.

Zur Charakterisierung der Ersatz-Permittivität wird ein Plattenkondensator mit dem Ferritwerkstoff als Dielektrikum aufgebaut. Hierzu werden die Stirnflächen der Ferritproben metallisiert, um eine hochleitfähige elektrische Kontaktierung zur anregenden Spannungsquelle sicherzustellen. Als eine einfache und zuverlässige technische Lösung hat sich hierfür die Lackierung mit einem leitfähigem Silberlack erwiesen, der für einige Minuten bei 140°C eingebacken wird (siehe Silberkontaktfläche in Abbildung 61(a)).

Als Proben-Geometrie sind verschiedene Bauformen und Größen denkbar: Zylinderkerne, Ringkerne [30, 105] oder Quaderkerne [21], deren Stirnflächen zur elektrischen Kontaktierung jeweils metallisiert sind. In Abbildung 60 sind die genannten verschiedenen Bauformen in einer 3D-FEM-Simulation bei einer Frequenz von f = 2 MHz und angenommenen typischen Ferritkennwerten gegenübergestellt. In Folge der kurzen Wellenlänge im Ferritmaterial ist die Feldstärke Zur Metallisierung wurde letztlich der Silberlack von RS PRO verwendet (Artnr. 123-9911). im Zylinderkern von 40 mm Durchmesser (links) massiv inhomogen. Bei geringerer Frequenz ist dieser Effekt zwar reduziert, aber längst nicht vernachlässigbar. So tritt bei 500 kHz im Zylinderkern mit 20 mm Durchmesser weiterhin eine Feldstärke-Erhöhung von 30% auf. In der Literatur (z.B. [30, 105]) finden sich Vorschläge, wie dieser Effekt mittels linearer Korrekturrechnungen kompensiert werden kann. Wünschenswert ist jedoch eine Probengeometrie, in der sich unmittelbar eine geringe Wellenausbreitung und somit eine homogenere Feldstärke einstellt. Die Reduktion des Zylinderkern-Durchmessers auf 20 mm reicht nicht aus, um die Situation substantiell zu bessern (siehe Abbildung 60 - mitte). Hingegen stellt sich in einem Quaderkern geringer Dicke selbst bei hoher Frequenz von f = 2 MHz keine signifikante Resonanzerscheinung ein (siehe Abbildung 60 - rechts). Somit soll zur Charakterisierung im Folgenden ein solcher Quaderkern verwendet werden. Da auch dieser Quaderkern nicht kommerziell erhältlich ist, wird er mittels der erwähnten Ferritfräse aus größeren Ferritkernen geschliffen. Hierbei wurde nach Möglichkeit dasselbe Grundmaterial für Ringkern und Quaderkern verwendet, um die Materialstreuung des Ferritmaterials zwischen Permeabilitäts- und Permittivitäts-Messung zu minimieren [57].

Abbildung 60: 3D-FEM-Simulation der elektrischen Feldstärke *E* zweier Zylinderkerne und einem dünnwandigen Quaderkern. Die elektrische Feldstärke ist im Quaderkern nahezu homogen, in den Zylinderkernen stellt sich eine massive Wellenausbreitung ein.

Darf die Feldstärke e(t) über den Kernquerschnitt als konstant angenommen werden (wie es bei einem dünnwandigen Quaderkern der Fall ist), vereinfacht sich das Induktionsgesetz (74) zu

$$\boldsymbol{e}(t) = \frac{u(t)}{h_{\mathrm{Q}}} \, \boldsymbol{e}_{\mathrm{Z}},\tag{94}$$

mit der Höhe des Quaderkerns h_Q . Die gespeicherte Ladung q(t) in den Kontaktflächen des Ferrites berechnet sich zu

$$q(t) = \int_0^t \left[i(\tau) - i_\kappa(\tau) \right] \, \mathrm{d}\tau,\tag{95}$$

mit dem Aufnahmestrom i(t) (siehe Abbildung 60) und dem Strom $i_{\kappa}(t)$, der über den leitfähigen Ferrit als Dielektrikum abfließt. Nach Gaußschem Gesetz (Gleichung 77) ist der Verschiebungsfluss proportional zur Ladung q(t), daher lässt sich die Verschiebungsflussdichte d(t) im Ferrit berechnen zu

$$\boldsymbol{d}(t) = \frac{1}{b_Q d_Q} \int_0^t \left[i(\tau) - i_\kappa(\tau) \right] \, \mathrm{d}\tau \, \boldsymbol{\mathbf{e}}_Z,\tag{96}$$

mit der Breite b_Q und der Tiefe d_Q des Quaderkerns und der Annahme, dass die Verschiebungsflussdichte im Ferrit homogenen ist. In komplexer Zeigerdarstellung ergibt sich hiermit die Ersatz-Verschiebungsflussdichte

$$\underline{\widetilde{\boldsymbol{D}}} = \frac{\underline{I}}{b_{\mathrm{Q}} d_{\mathrm{Q}} \mathrm{j}\omega} \mathbf{e}_{\mathrm{Z}} = \underbrace{\left(\underline{\varepsilon} - \mathrm{j}\frac{\kappa}{\omega}\right)}_{\tilde{\varepsilon}} \underline{\boldsymbol{E}},\tag{97}$$

die sich zurück im Zeitbereich schreiben lässt als

$$\widetilde{d}(t) = \left[\frac{1}{b_{\rm Q} d_{\rm Q}} \int_0^t i(\tau) \,\mathrm{d}\tau + C\right] \mathbf{e}_Z \tag{98}$$

mit der Integrationskonstante *C*, die so gewählt wird, dass d(t) mittelwertfrei ist.

Gemessen mit LeCroy HDO4104. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

(a) Vorrichtung zur Kontaktierung (b) Hystereseschleife gemessen bei 300 kHz, der Quaderkerne $\hat{e} \in |1; 1, 2; 1, 4; 1, 7|$ kV/m und $\vartheta = 30^{\circ}$ C

Abbildung 61: Charakterisierung der Permittivität anhand eines dünnwandigen Quaderkerns mit der gemessenen (di-)elektrischen Hystereseschleife (blau) mit Ellipsennäherung (rot)

Abbildung 61(b) zeigt exemplarisch die gemessene (di-)elektrische Hystereseschleife für das Ferritmaterial *N95* bei harmonischer Anregung mit 300 kHz und der Feldstärke $\hat{e} \in |1; 1, 2; 1, 4; 1, 7|$ kV/m bei Raumtemperatur $\vartheta = 30^{\circ}$ C. Analog zur magnetischen Hystereseschleife versteht sich die Steigung der Hauptachse der Hystereseschleife als Maß für den Betrag der Ersatz-Permittivität \tilde{e} und die jeweils aufgespannte Fläche als Maß für die Verluste. Abbildung 61(b) lässt sich entnehmen, dass sich die (di-)elektrische Hystereseschleife mit hoher Genauigkeit als Ellipse (in rot) mittels der komplexen Permittivität $\underline{\tilde{e}}$ approximieren lässt. Eine Abhängigkeit von der elektrischen Feldstärke ist weder in Betrag noch Phase erkennbar.

Abbildung 62 zeigt die gemessene relative Permittivität $\tilde{\epsilon}_r$. Wie aus der Literatur bekannt, liegt die Permittivität im Bereich $\tilde{\epsilon}_r = 3 \cdot 10^4 \dots 180 \cdot 10^4$. Je höher die Kerntemperatur ist, desto höher ist die Permittivität. Mit steigender Frequenz sinkt hingegen die Permittivität um mehrere 10 %.

Gemessen mit LeCroy HDO4101. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

Abbildung 62: Messergebnis der relativen Permittivität $\tilde{\varepsilon}_r = \tilde{\varepsilon}/\varepsilon_0$ für die Ferritwerkstoffe N97, N95, PC200 und N49

Interessanterweise ist die Permittivität insbesondere dann vergleichsweise klein, wenn das Ferritmaterial für den Einsatz bei höherer Frequenz beworben wird (*N*49 und *PC200*). Für diese Ferrite sind ebenso die spezifischen Wirbelstromverluste deutlich geringer – und zwar unabhängig von der Frequenz (siehe Abbildung 64). Mutmaßlich ist der mittlere Partikel-Abstand bei den Ferriten *N*49 und *PC200* größer als bei *N*95, was diesen Zusammenhang erklären würde.

90

Gemessen mit LeCroy HDO4101. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

Abbildung 63: Messergebnisse der Verlustwinkel der komplexen Ersatz-Permittivität $\zeta_{\tilde{\epsilon}}$ für die Ferritwerkstoffe N97, N95, PC200 und N49 in Abhängigkeit von Spitzenfeldstärke \hat{e} , Frequenz und Temperatur des Kerns

Gemessen mit ZES-Zimmer LMG640. Für weitere Details zu den verwendeten Messmitteln siehe Anhang B

4.7.4 Wicklungsverluste

Angesichts des angestrebten Frequenzbereichs und der erwarteten Windungszahl sollen für Primär- und Sekundärwindung HF-Litze eingesetzt werden, um die Verluste durch Skin- und Proximity-Effekt zu senken. Eine solche Litze besteht aus hunderten bis tausenden dünner Kupferleiter (engl. *strands*), die jeweils lackiert und somit voneinander elektrisch isoliert sind. Durch Verdrillen und Verseilen dieser Feinleiter wird sichergestellt, dass entlang einer Windung jeder Feinleiter eine räumlich gleichverteilte Aufenthaltswahrscheinlichkeit innerhalb des Litze-Querschnittes hat, sodass sich der Gesamtstrom gleichmäßig auf die Feinleiter aufteilt [9]. Die Schlaglänge der Verseilung sollte zur optimalen Reduktion des Proximity-Effekts gleich der mittleren Windungslänge gewählt werden [119].

Abbildung 65: Approximation des HF-Litzebündels mittels komplexer Ersatzpermeabilität μ_{Litz} nach [22, 82]

Bei symmetrischen Kerngeometrien gelingt in manchen Fällen die Berechnung des Proximity-Effekts analytisch. Für das hier behandelte unregelmäßige Wickelschema scheint ein solcher Ansatz nur mit Abstrichen anwendbar, daher sollen die Wicklungsverluste mittels FEM-Simulationen ermittelt werden. Die detailgenaue FEM-Modellierung der Litzewicklung zur präzisen Ermittlung der Stromdichte-Verteilung in allen Feinleitern wäre angesichts der großen Knotenanzahl schwerlich umsetzbar. Denn die Anzahl der Feinleiter kann schnell in die Tausende gehen und jeder von ihnen müsste mit einem feinen FEM-Netz versehen werden. Innerhalb einer Optimierungsroutine wäre ein solcher Ansatz gänzlich untauglich. Zur Reduktion des Rechenaufwands wird sich daher der bekannten Methode bedient, die HF-Litze mittels einer komplexen Permeabilität $\underline{\mu}_{\mathrm{Litz}}$ nachzubilden (vgl. [22, 82]) (siehe Abbildung 65). Analog zum vorherigen Kapitel lassen sich mit Gleichung 87 ebenso die Wicklungsverluste ermitteln. Für weitere Informationen sei an dieser Stelle auf [22, 82, 84, 85] verwiesen.

Die Wicklungsverluste für einen gegebenen Transformator lassen sich formal mit der Widerstandsmatrix $\mathbf{R}(kf_S)$ modellieren, indem die

Transformatorgleichungen (siehe Gleichung 58 und 59) erweitert werden zu

$$\underbrace{\begin{bmatrix} \underline{U}_{P,k} \\ \underline{U}_{S,k} \end{bmatrix}}_{\underline{U}_{k}} = \left(jk \, \omega_{S} \underbrace{\begin{bmatrix} L_{11} & M_{12} \\ M_{12} & L_{22} \end{bmatrix}}_{L} + \underbrace{\begin{bmatrix} R_{11}(kf_{S}) & R_{M}(kf_{S}) \\ R_{M}(kf_{S}) & R_{22}(kf_{S}) \end{bmatrix}}_{\mathbf{R}(kf_{S})} \underbrace{\begin{bmatrix} \underline{I}_{P,k} \\ \underline{I}_{S,k} \end{bmatrix}}_{\underline{I}_{k}},$$
(99)

mit den bekannten Wicklungswiderständen R_{11} und R_{22} , die jeweils abhängig sind von der Frequenz f_S und der harmonischen Ordnungszahl k. Jedoch reichen diese Widerstände zur Modellierung des Proximity-Effekts nicht aus, denn dieser lässt sich nicht alleine mit den Effektivströmen $I_{P,k}$ und $I_{S,k}$ berechnen, sondern die Verluste hängen ganz entscheidend von der Phasenlage zwischen Primärund Sekundärstrom ab. Zur Modellierung dieses Umstands dient der s.g. Gegenwiderstand R_M , der zwar für kleine Frequenzen gegen Null konvergiert, für höhere Frequenzen jedoch berücksichtigt werden muss [103, 121]. Zur Modellierung der Wicklungsverluste bei einer gegebenen Frequenz reicht es daher aus, die drei eingeprägten Elemente der Widerstandsmatrix $\mathbf{R}(kf_S)$ zu ermitteln. Ist die Widerstandsmatrix $\mathbf{R}(kf_S)$ bekannt, lassen sich die Wicklungsverluste für die Strom-Harmonischen der Wicklungsströme (siehe Abbildung 48) berechnen mittels

$$P_{\text{wind},k} = \bar{p}_{\text{P}} + \bar{p}_{\text{S}} = \Re\{\underline{I}_{k}^{*} \cdot \underline{U}_{k}\} = \underline{I}_{k}^{*} \cdot R \cdot \underline{I}_{k}$$
(100)

$$= R_{11} I_{P,k}^{2} + R_{22} I_{S,k}^{2} + R_{M} (\underline{I}_{P,k}^{*} \cdot \underline{I}_{S,k} + \underline{I}_{S,k}^{*} \cdot \underline{I}_{P,k}),$$
(101)

mit * als transponierter, konjugiert-komplexer Vektor. Für die Berechnung der Wicklungsverluste in der folgenden Optimierung wird eine Beschränkung auf die dominierenden Harmonischen $k \in [1,3,5,7]$ gewählt (siehe Abbildung 48).

4.8 OPTIMIERUNG DES STREUPFAD-TRANSFORMATORS

Die Ermittlung der Konstruktionsparameter des integrierten Transformators erfolgt mit Hilfe einer automatisierten, mehrstufigen Optimierungsroutine (siehe Abbildung 66). Die verbleibenden neun Optimierungsparameter sind im einzelnen:

- Vier Elemente der Windungsmatrix N,
- Radius des Mittelschenkels *r*_C,
- Höhe des Streupfads *b*_{leak},
- Anzahl und Durchmesser der Litze-Feinleiter N_{strand} und D_{strand},
- Resonanzfrequenz f_{0C} .

Auf eine separate Optimierung der HF-Litze für Primärund Sekundärseite wurde angesichts des ähnlichen Effektivstromes verzichtet Alle weiteren Maße des Transformators (siehe Abbildung 66) verstehen sich als abgeleitete Parameter, die sich aus den Optimierungsparametern und Vorgabeparametern ergeben. Die Außenkanten-Maße des Transformators (d_T , h_T und b_T) ergeben sich durch den maximal verfügbaren Platz, der innerhalb des Gehäuses zur Verfügung steht (siehe Abschnitt 8.2). Für kleinere Bauformen muss naturgemäß von höheren Verlusten ausgegangen werden.

Abbildung 66: Visualisierung der Optimierungsparameter des integrierten Streupfad-Transformators mittels zwei Schnittdarstellungen

4.8.1 Nebenbedingungen des Optimierungsproblems

Die verbleibenden neun Optimierungsparameter spannen einen Suchraum auf, der bei weitem zu groß ist, um das Optimierungsproblem durch Berechnung der Verlustleistung mittels einer FEM-Simulation lösen zu können. So würde die Berechnung einer 3D-FEM-Simulation für nur drei Abtastpunkte pro Optimierungsparameter einen Simulationsserver wochenlang auslasten. Daher soll vor den eigentlichen FEM-Simulationen eine wenig präzise aber äußerst schnelle Abschätzung der Verlustleistung analytisch berechnet werden, um vorab zu entscheiden, ob ein Parametersatz realisierbar ist bzw. sich in der Nähe des globalen Verlustoptimums befindet. Folgende Schritte werden demnach vor der eigentlichen FEM-Simulation ausgeführt:

- 1. Im ersten Schritt wird mit Gleichung 64 ($\mathbf{R}_{m} = \mathbf{N} \mathbf{L}^{-1} \mathbf{N}^{T}$) und der gegebenen Windungsmatrix \mathbf{N} die Reluktanzmatrix \mathbf{R}_{m} berechnet. In vielen Fällen lassen sich die so bestimmten Reluktanzen (R_{mA} , R_{mB} , R_{mC}) nicht mit sinnvollen Luftspaltlängen realisieren, z. B. weil der berechnete Reluktanzwert negativ ist oder der Luftspalt länger sein müsste, als es das Wickelfenster zulässt (siehe Abschnitt 4.6). In diesen Fällen kann der Parametersatz verworfen werden.
- 2. Im zweiten Schritt der Vorbewertung wird der Flussdichteverlauf mit Gleichung 61 ($\phi = \mathbf{R}_{\mathbf{m}}^{-1} \mathbf{N} \mathbf{i}$) berechnet, um eine etwai-

ge Kernsättigung vorab zu erkennen. Hierfür soll zunächst eine homogene Flussdichte angenommen werden, sodass gilt

$$\phi = \mathbf{R}_{\mathbf{m}}^{-1} \mathbf{N} \, \mathbf{i} = \begin{bmatrix} \phi_{\mathrm{A}} \\ \phi_{\mathrm{B}} \end{bmatrix}, \qquad (102)$$

$$\phi_{\rm C} = \phi_{\rm B} - \phi_{\rm A},\tag{103}$$

$$b_{\rm A}(t) = \frac{\phi_{\rm A}}{A_{\rm A}}, \quad b_{\rm B}(t) = \frac{\phi_{\rm B}}{A_{\rm B}}, \quad b_{\rm C}(t) = \frac{\phi_{\rm C}}{A_{\rm Leak}},$$
 (104)

mit den mittleren Kernquerschnitten $A_A = A_B = A_C = \pi r_C^2$ und $A_{\text{Leak}} = 2 b_{\text{leak}} d_{\text{T}}$. Auf Basis der bekannten Lösung aus der Zeitbereichsanalyse wird hiermit der mittlere Flussdichteverlauf vorab berechnet. Beispielhaft ist in Abbildung 68(a) der berechnete Flussdichteverlauf in der Betriebsart *DCMB2* gezeigt. Falls die so berechnete Flussdichte die Sättigungsflussdichte typischer Ferrite übersteigt (ca. 300...400 mT wie in Abbildung 68(a)), kann der Parametersatz wiederum verworfen werden.

3. Im dritten Schritt der Vorbewertung wird mit einer konservativen Verlustabschätzung und einem empirischen thermischen Modell abgeschätzt, ob der Transformator mit dem gegebenen Parametersatz voraussichtlich überhitzen würde. Hierfür wird die berechnete Flussdichte (Abbildung 68(a)) im Kernvolumen als homogen angenommen, womit die Kernverluste mit Hilfe der Verlustkennfelder aus Abbildung 56 berechnet werden. Zudem sollen für die Voruntersuchungen Skin- und Proximity-Effekt vernachlässigt werden, indem die reinen DC-Widerstände angenommen werden, mit den Wicklungswiderständen

$$R_{11/22}(0\,\text{Hz}) = \frac{4\,l_W}{\kappa_{\text{Cu}}\,N_{\text{strand}}\,D_{\text{strand}}^2\,\pi},\ R_{\text{M}}(0\,\text{Hz}) = 0 \quad (105)$$

und der Leitfähigkeit von Kupfer ($\kappa_{Cu} = 50 \cdot 10^6 \frac{\text{S}}{\text{m}}$ bei 60°C) sowie der Windungslänge l_W , die sich aus dem Wickelschema (Abbildung 47) ergibt. Mit Gleichung 101 können die Wicklungsverluste konservativ abgeschätzt werden. Die Wirbelstromverluste im Ferritkern können zur Berechnung der Best-Case-Temperaturüberhöhung vernachlässigt werden, denn deren Berücksichtigung führt zweifelsfrei zu höheren Verlusten.

Die Temperaturerhöhung des Transformators kann mittels der empirischen Näherungsformel für den thermischen Widerstand abgeschätzt werden. Gemäß [2] kann bei natürlicher Konvektion die Eigenerwärmung mittels des Kernvolumens $\sqrt{V_C}$ berechnet werden zu

$$R_{\rm th}(V_{\rm C}) = R_{\rm th0} / \sqrt{V_{\rm C}} \text{ mit } R_{\rm th0} = 50 \,{\rm K} \,{\rm cm}^{3/2} / {\rm W}$$
 (106)

Parametersätze, die zu einer Best-Case-Temperaturerhöhung von über 60 K führen, werden erneut verworfen.

Durch Anwendung der Nebenbedingungen bzw. durch Voruntersuchung der Parametersets wird der Suchraum deutlich verkleinert. In der vorliegenden Arbeit konnten so 95% der Parametersätze aussortiert werden; nur wenige hundert verbleiben und wurden einer automatisierten 2D-FEM-Simulation übergeben, die im Folgenden beschrieben wird (Abbildung 67).

Abbildung 67: Flussdiagramm der Optimierungsroutine zur verlustoptimalen Auslegung des Streupfad-Transformators.

4.8.2 FEM-gestützte Optimierung des Transformators

Auf Implementierungsdetails zum FEM-Skript wird hier verzichtet. Bei Interesse wird gerne der Source-Code zur Verfügung gestellt. Nach Verkleinerung des Suchraums durch die Vorbewertung aus Abschnitt 4.8.1 ist der Rechenaufwand überschaubar, sodass die Verluste des Streupfad-Transformators mittels einer skriptbasierten FEM-Simulationsroutine berechnet werden können. Eine eigens hierfür implementierte Routine erstellt automatisch ein 2D-FEM-Modell in Abhängigkeit von den gewählten Eingangsparametern (z. B. Kern-Geometrie, Windungszahl, usw.).
Im ersten Schritt wird für diese FEM-Simulation Rotationssymmetrie angenommen, indem für den Transformator eine pot-Geometrie angenommen wird (Abbildung 49 (a)). Im Regelfall wird für die Wicklung das hexagonale Wicklungsschema anstatt des rechteckigen verwendet, da hiermit eine kürzere Windungslänge und somit geringere Verluste erzielt werden (siehe Abbildung 68(b)). Füllen die Windungen jedoch die Lagen vollständig aus, wird das rechteckige Wickelschema verwendet, da hiermit eine zusätzliche Wicklungslage eingespart und somit das Wickelfenster besser ausgenutzt wird (siehe Abbildung 47 (b)). Primär- und Sekundärseite werden für die vorliegende Auslegung bifilar gewickelt, damit sich die Durchflutung im Wickelfenster möglichst gut kompensiert (siehe Abbildung 47 (b)). Die erforderliche Luftspaltlänge wird mehrfach verteilt, damit die Feldaufweitung in der Umgebung des Luftspalts reduziert wird (siehe Abschnitt 4.2). Die Luftspalte werden ausschließlich im Mittelschenkel platziert, um Störfelder in der räumlichen Umgebung des Transformators zu vermeiden. Nach automatischer Erstellung des 2D-FEM-Modells und Annahme einer rotationssymmetrischen Anordnung (siehe Abbildung 49) werden hiermit die Kern- und Wicklungsverluste bestimmt. Um die Rechenzeit weiter zu beschleunigen, werden die Wicklungsverluste sowie die Wirbelstromverluste für die vier dominierenden Harmonischen parallel auf vier CPU-Kernen berechnet. Für die Optimierungsparameter ergeben sich Grenzwerte durch technische Rahmenbedingungen, die als weitere Randbedingungen gesetzt wurden und in Tabelle 10 aufgelistet sind.

Wegen der dreifachen Isolation der Litzeleitung wird angenommen, dass die erforderliche Basisisolation bei bifilaren Wickelschemata gewährleistet ist.

	0	0 1) 0
Ziel-Parameter				
λ=0,27μΗ	Z _{0C} =9Ω	<i>n</i> =1		
Optimierungsergebnis				
Parameter	Unterer Grenzwert	Oberer Grenzwert	Optimum	Grenzwert erreicht?
N _{1A}	1	10	7	Nein
N_{2A}	1	10	4	Nein
N_{1B}	0	10	1	Nein
N_{2B}	0	10	3	Nein
r _C	16 mm	18 mm	17 mm	Nein
N _{strand1,2}	1000	2100	2100	Ja
D _{strand1,2}	50 µm	100 μm	50 µm	Ja
b_{leak}	10 mm	10 mm	10 mm	Ja
<i>f</i> _{0,C}	250 kHz	300 kHz	275 kHz	Nein

Tabelle 10: Tabellarische Auflistung der Optimierungsparameter mit den gewählten Begrenzungen inkl. des Optimierungs-Ergebnisses Abbildung 68 und Abbildung 69 zeigen die FEM-Simulationen des Transformators, der sich nach mehrtägiger iterativer Optimierung und Auswertung von etwa 900000 Parametersets als verlustoptimal ergeben hat. Das Verlustoptimum wurde für das gegebene Bauvolumen bei einer Resonanzfrequenz von $f_{0,C} = 275 \,\text{kHz}$ gefunden. Die maximale Flussdichte des Ferritmaterials beträgt etwa 100 mT und nutzt daher die maximale Hystereseschleife nur etwa zu einem Drittel aus. Die volle Aussteuerung der Hysterese bis zur Sättigungsflussdichte würde bei dieser Frequenz zu inakzeptablen Kernverlusten führen. Der Streufluss $\varphi_{\rm C}$ wird durch den Streupfad geführt und ruft so in der Wicklung keine zusätzlichen Proximityverluste hervor (Abbildung 68(b)). Durch Verschachtelung von Primär- und Sekundärwicklung jeweils oberhalb und unterhalb des Streupfads kompensiert sich die Durchflutung im Wickelfenster, was zu reduzierter Feldstärke H und somit zu verringerten Proximityverlusten führt (Abbildung 69(b)). Durch den mehrfach verteilten Luftspalt ist die Aufweitung der Feldlinien im Luftspaltbereich moderat, was wiederum die Proximityverluste reduziert. Eine noch weitere Verteilung des Luftspalts senkt die Wicklungsverluste jedoch kaum, da die Feldaufweitung bereits äußerst gering ist.

Quantitative Aussagen zur Verlustaufteilung in Abschnitt 7.2

(a) Beispielhafter Flussdichteverlauf b_A , (b) FEM-Simulation der magnetischen b_A und b_C in der Betriebsart *DCMB2* Flussdichte **B**

Abbildung 68: FEM-Simulation der magnetischen Flussdichte |B| des Streupfad-Transformators, der sich als verlustoptimal ergeben hat

Ein großer Teil der Kernverluste fällt als Wirbelstromverluste an, die proportional zu $|\underline{E}|^2$ sind (Gleichung 87). Räumlich sind diese Verluste im optimierten Transformator besonders am Außenradius des Innenschenkels lokalisiert (siehe Abbildung 69(a)). Im folgenden Abschnitt wird daher untersucht, inwieweit eine Laminierung des Ferritkerns hilft, um die Wirbelstromverluste weiter zu senken.

Für die 2D-FEM-Optimierung wurden vereinfachend magnetostatische Bedingungen durch Vernachlässigung des Realteils der Permit-

Abbildung 69: FEM-Simulation der magnetischen und elektrischen Feldstärke B/E des Streupfad-Transformators, der sich als verlustoptimal ergeben hat

fensters

tivität angenommen ($\Re(\tilde{\underline{\varepsilon}}) = 0 \Rightarrow \nabla \times \underline{H} = (\kappa + \omega \varepsilon'') \underline{E}$). Hiermit werden zwar die Wirbelstromverluste des Kerns mit dem Imaginärteil der Ersatz-Permittivität ($\Im(\tilde{\underline{\varepsilon}}) = -(\varepsilon'' + \frac{\kappa}{\omega})$) berücksichtigt, etwaige Wellenerscheinungen inkl. der hiermit verbundenen höheren Verluste werden jedoch vernachlässigt. Nichtsdestotrotz sind im realen Aufbau Wellenphänomene nicht auszuschließen, angesichts der Wellenlänge von etwa 3 cm bei 300 kHz. Im folgenden Abschnitt soll daher der Transformator in einer 3D-FEM-Simulation auf Wellenphänomene untersucht werden, indem der Realteil der Permittivität berücksichtigt wird (s.g. *Full-Wave-Simulation*).

4.8.3 Dreidimensionale FEM-Simulation

Der Großteil der Wirbelstromverluste im Ferritkern des optimierten Transformators fällt im Mittelschenkel des Kerns an. Wie in der 2D-FEM-Simulation in Abbildung 69(a) zu erkennen, ist am Rand des Mittelschenkels das *E*-Feld hoch, daher fällt dort auch der Großteil der Wirbelstromverluste an. In Abbildung 70(a) ist das *E*-Feld aus der 3D-FEM-Simulation im horizontalen Schnitt gezeigt. Das Ergebnis der 2D-FEM-Simulation des rotationssymmetrischen pot-Kerns wird mit guter Näherung durch die 3D-FEM-Simulation des nach Gleichung 73 überführten ETD-Kerns bestätigt.

Nun soll mit Hilfe einer 3D-FEM-Simulation untersucht werden ob sich die Wirbelstromverluste reduzieren lassen, indem die Ferritkerne jeweils in tangentialer Flussrichtung geteilt werden. Durch diese vertikale Trennung der Ferritkerne und Verklebung mittels einer 150µm dicken Klebeschicht wird eine Isolationsbarriere geringer elektrischer Leitfähigkeit und Permittivität (ca. $\varepsilon_r \approx 1$) eingebracht (Abbildung 70(b)). Bildlich gesprochen werden die Wirbelströme infolge dieser Isolationsbarriere nur durch den halben magnetischen Fluss in den jeweiligen Kern-Halbkreisen induziert, was eine massive Reduktion des *E*-Feldes zur Folge hat (siehe Abbildung 70(b)). Je nach Arbeitspunkt werden durch diese Laminierung die Wirbelstromverluste um über 35% gesenkt, z.B. von 7, 3 W auf 4, 5 W im Arbeitspunkt, der in Abbildung 70 gezeigt ist. Zweifelsohne geht diese Maßnahme mit einer deutlich erhöhten Komplexität bzw. höherem Fertigungsaufwand einher, da jeder Ferritkern in zwei Teile getrennt werden muss, die vor der Endmontage zu verkleben sind. Für die vorliegende Arbeit soll dieser erhöhte Fertigungsaufwand jedoch toleriert werden.

Abbildung 70: 3D-FEM-Simulation des *E*-Felds des unlaminierten vs. laminierten Transformator-Kerns mittels 150-µm-Klebeschicht

Die FEM-gestützte Auslegung des Transformators erfolgte unter Vernachlässigung von etwaigen Wellenphänomenen. Daher soll nun abschließend eine 3D-FEM-Simulation des optimierten Transformators inkl. Laminierung unter Berücksichtigung der Kern-Permittivität durchgeführt werden. Hierfür wurde das 3D-FEM-Model unter Berücksichtigung der Verschiebungsflussdichte D durch Annahme des Realteils der vermessenen Permittivität simuliert (Abbildung 71). Im Simulationsergebnis wird qualitativ deutlich, dass trotz der großen Kernmaße nur minimale räumliche Resonanzerscheinungen befürchtet werden müssen. Offenbar wirkt sich der verteilte Luftspalt auch vorteilhaft auf die Wellenausbreitung im Mittelschenkel aus.

Abbildung 71: 3D-Simulation des finalen Streupfad-Transformators inkl. Laminierung und Berücksichtigung der Verschiebungsflussdichte zur Detektion etwaiger Wellen-Phänomene

4.8.4 *Prototyp des Streupfad-Transformators*

In Abbildung 72(a)–(c) ist sukzessiv der Aufbau des Transformator-Prototyps zu sehen. Auf die einzelnen Fertigungsschritte soll im Folgenden kurz eingegangen werden. Zur Fertigung des Streupfad-Transformators wurden die nötigen Ferritkerne aus größeren N49-Ferritblöcken geschliffen. Erste Kerne wurden bei der Firma Sumida bearbeitet, spätere Trafo-Versionen im Fachgebiet LEA mittels der Fräse Compact 350 von imes-icore, die ursprünglich für Dentalanwendungen entwickelt wurde (siehe Abbildung 108). Die geteilten Kernelemente wurden mittels des Zwei-Komponenten-Keramikklebers 8265-S von J-B Weld verklebt, der nach Datenblatt eine Temperaturbeständigkeit bis 150°C aufweist. Zur Realisierung des verteilten Luftspalts wurden als Distanzmaterial Scheiben aus Aluminiumnitrid(AIN)-Keramik verwendet, die durch die hohe thermische Leitfähigkeit eine gute Entwärmung der Ferrit-Tabletten im Mittelschenkel und des Streupfads ermöglichen. Als Spulenkörper wurden zwei dünnwandige Kunstoffrohre aus hitzebeständigem PTFE (Teflon) gedreht, um hiermit den nötigen Abstand zwischen Luftspalten und Wicklung sicherzustellen. Zur besseren Erkennbarkeit des bifilaren Wickelschemas wurden die Wicklungen mit Isolationslack versehen: die Primärseite in rot und die Sekundärseite in blau. Dank dreifacher Isolation der Litzeleitung mittels Mylar-Polyesterfolie kann auf eine weitere Isolation verzichtet werden.

Abbildung 72(d) zeigt ein Wärmebild des Transformators im Worst-Case-Arbeitspunkt bei $U_{\text{Netz}} = 325 \text{ V}$, $I_{\text{Netz}} = 24 \text{ A}$. Nach etwa 10 Minuten erhitzt sich die Wicklung bei freier Konvektion auf eine Temperatur von 87°C. Der Streupfad, als der wärmste Teil des Kerns, erwärmt sich auf 62°C. Im PFC-Betrieb des Ladewandlers kommt diese Als Rohmaterial wurden TDK-Ferritblöcke Mat.-Nr. B67410A0107X049 verwendet

Für eine gute thermische Anbindung wurden die AIN-Scheiben mit einer hauchdünnen Schicht Wärmeleitpaste mit den Ferritkernen verbunden Spitzenleistung nur äußerst kurzzeitig vor, daher darf für den PFC-Betrieb von einer geringeren Erwärmung ausgegangen werden.

(a) Laminierter ETD-Kern

(c) Finaler Transformator-Prototyp inkl. Primär- (rot) und Sekundärwicklung (blau)

(b) ETD-Kern mit Streupfad und AlN-Luftspaltmaterial

(d) Thermographie bei $U_{\text{Netz}} = 325 \text{ V}$, $I_{\text{Netz}} = 24 \text{ A}$ nach ca. 10 Minuten

Abbildung 72: Fertigungsschritte des Transformator-Prototyps und Thermographie im Worst-Case-Arbeitspunkt bei Kühlung durch natürliche Konvektion bei Umgebungstemperatur von 25°C

Teil III

REGELUNGSENTWURF

Die Regelung des einstufigen LLC-Ladewandlers muss deutlich höhere Anforderungen erfüllen, als üblicherweise an LLC-Resonanzwandler gestellt werden. Während für DC/DC-Wandler eine moderate Anregelzeit im Millisekunden-Bereich meist ausreichend ist, muss für den hier behandelten einstufigen LLC-Ladewandler der Netzstrom präzise dem Referenzverlauf folgen, damit die Oberschwingungsgrenzwerte der EN 61000-3-2 einhaltbar sind. Um dieses Ziel zu erreichen, wird im folgenden Teil eine Regelung für die genannten hohen Anforderungen entworfen und hierbei besonderes Augenmerk auf die Berücksichtigung einer realitätsnahen Exemplarstreuung der Resonanzkreisparameter gelegt. Für den Regelungsentwurf werden im ersten Schritt das stationäre sowie das dynamische Systemverhalten des LLC-Resonanzwandlers identifiziert. Auf Basis der Identifikation wird eine PFC-Regelung entworfen, die robust gegenüber dieser Exemplarstreuung ist. Abschließend werden die entworfene Regelung mit Hilfe des Funktionsmusters (siehe Teil IV) implementiert und die Ergebnisse der experimentellen Erprobung vorgestellt.

Die Anforderungen an die PFC-Regelung des einstufigen LLC-Ladewandlers unterscheiden sich gravierend von denen der Regelung eines üblichen DC/DC-Wandlers, dem typischen Anwendungsgebiet heutiger LLC-Resonanzwandler. So wird für DC/DC-Wandler meist eine moderate Anregelzeit im Millisekunden-Bereich gefordert, die ohne größere Hürden mittels einer konventionellen PI-Regelung erzielbar ist (siehe z. B. [39]). Der genaue Stromverlauf, der bei Lastsprüngen eintritt, ist zudem gewöhnlich nicht im letzten Detail spezifiziert. Im Gegensatz hierzu muss beim vorliegenden einstufigen LLC-Ladewandler der Eingangsstrom präzise dem Verlauf des Referenzstroms nachfolgen, um Konformität mit der Oberschwingungsnorm EN 61000-3-2 sicherzustellen. Von dieser besonders herausfordernden Regelungsaufgabe sollen die folgenden Kapitel handeln. Grundlage jedes Regelungsentwurfes ist die Systemidentifikation hinsichtlich des stationären und dynamischen Streckenverhaltens, was im Folgenden näher beleuchtet wird.

Die folgende Systemidentifikation basiert auf der bereits erarbeiteten Schaltungsauslegung des Prototypen aus Kapitel 7, die sich vereinfacht mit dem Blockdiagramm in Abbildung 73(a) darstellen lässt. Der eigentliche LLC-Resonanzwandler wurde hierbei um die LC-Filter an Ein- und Ausgang erweitert, deren Bauteilparameter sich durch die Gegentaktfilterung der jeweiligen EMI-Filter ergeben. Diese Filter haben zwar keinen Einfluss auf die stationäre Übertragungskennlinien, jedoch beeinflussen sie ausgeprägt das dynamische Verhalten und müssen somit berücksichtigt werden.

 (a) Vereinfachtes Blockschaltbild des LLC-Re- (b) Modellierung des Kleinsisonanzwandlers erweitert um den DM-Anteil der EMI-Filter
gnalverhalten mittels Übertragungsfunktion G_{LLC}

Abbildung 73: Vereinfachte Schaltungs- und Regelungsstruktur zur Charakterisierung des stationären und dynamischen Verhaltens

5.1 STATIONÄRE ÜBERTRAGUNGSKENNLINIE

Sind die Parameter des Resonanzkreises (f_{0C} , Z_{0C} , λ und n) bekannt, kann das stationäre Übertragungsverhalten mittels der Zeitbereichsanalyse aus Abschnitt 3.1 sehr genau berechnet werden (siehe Abbildung 74). Die Resonanzkreis-Parameter mehrerer Ladewandler sind jedoch im Detail nicht exakt gleich, sondern es ergibt sich eine Exemplarstreuung von mehreren Prozent – beispielsweise weicht der reale Kapazitätswert des ausgewählten Resonanzkondensators bis zu 10 % vom Nennwert ab (siehe Bauteilauswahl in Abbildung 90). Werden realistische Parameterschwankungen des Resonanzkreises angenommen, ergibt sich somit eine Resonanzfrequenz f_{0C} , die eine Exemplarstreuung von bis zu ± 10 % aufweist.

Abbildung 74: Übertragungskennlinie $i_{Netz0}(f_{S0})$ im stationären Betrieb des LLC-Resonanzwandlers in Abhängigkeit von f_{S0}/f_{0C} , mit dem Spannungsverhältnis $M = U_2/U_1$ und einer realistischen Exemplarstreuung von $\pm 10 \% f_{S0}$ als Parameter

Weitere Details zur Rücknormierung finden sich in Abschnitt 3.1.1 Die Berechnung der Übertragungskennlinie unter Berücksichtigung einer Exemplarstreuung der Resonanzfrequenz von $\pm 10\%$ kann dank der normierten Zeitbasis der Zeitbereichsanalyse direkt durch erneute Rücknormierung erfolgen und ist in Abbildung 74 gezeigt. Der Fehler, der durch eine solche Parameterabweichung verursacht wird, ist im gesteuerten Betrieb gravierend: Der gewünschte Netzstrom i_{Netz0} wird durch fehlerhafte Vorgabe der Schaltfrequenz für eine realistische Parameterabweichung völlig verfehlt. Insbesondere beim Spannungsverhältnis M = 1,6 reagiert der Resonanzwandler sehr sensitiv auf eine kleine Änderung der Schaltfrequenz, sodass ein kleine Schaltfrequenzabweichung zu einem massiven Steuerungsfehler führt (siehe Abbildung 74). Somit ist für einen bekannten Resonanzkreis zwar das stationäre Übertragungskennfeld mit hoher Genauigkeit gültig, jedoch ist diese Schaltfrequenz für unbekannte Muster nicht hinreichend genau.

Einen experimentellen Nachweis über die erreichbare Modellierungsgenauigkeit findet sich in Abschnitt 3.1.7

5.2 DYNAMISCHES VERHALTEN

Der plötzliche, sprungförmige Wechsel der Schaltfrequenz von einem stationärem Zustand (**0**) zu einem anderen Arbeitspunkt (**2**) (siehe Abbildung 74) erfolgt angesichts aller beteiligter Schwingkreise mit einer ausgeprägten Oszillation des Netzstromes i_{Netz} , welche in ihrer Amplitude und Frequenz vom Spannungsverhältnis $M = U_2/U_1$ abhängt. Die Simulationen für drei charakteristische Spannungsverhältnisse M zeigt Abbildung 75. Die Schwingungsgleichungen lassen sich mit einer linearer Übertragungsfunktion $G_{\text{LLC}}(s)$ mit drei Polstellen und einer Nullstelle der Struktur

$$G_{\text{LLC}}(s) = \frac{K_{\text{LLC}}(s+z_1)}{(s+p_0)\left(s+\underline{p}_1\right)\left(s+\underline{p}_1^*\right)}$$
(107)

approximieren, mit \underline{p}_1^* als konjugiert-komplexe Polstelle. Übertragungsfunktionen mit einer geringeren Ordnung führen zu einer unzureichenden Modellierungs-Genauigkeit. Der Ein- bzw. Ausgang der Übertragungsfunktion versteht sich hierbei als Abweichung von dem jeweiligen Arbeitspunkt (**0**), wie Abbildung 73(b) zeigt.

Abbildung 75: Simulation des Netzstroms bei sprungförmigem Wechsel zwischen zwei Arbeitspunkten ($\mathbf{0} \rightarrow \mathbf{0}$) inkl. Approximation mittels der linearen Übertragungsfunktion 3. Ordnung

Durch geeignete Wahl der Nullstelle (z_1), der drei Polstellen (p_0 , \underline{p}_1 und \underline{p}_1^*) sowie der Verstärkung (K_{LLC}) können die Sprungantworten aus Abbildung 75 mit hoher Genauigkeit angenähert werden. Zur Bestimmung der Parameter stehen z.B. das Trust-Region-Verfahren oder der Levenberg-Marquardt-Algorithmus zur Verfügung, die in der Matlab-Funktion tfest() hinterlegt sind und hier zur Systemidentifikation verwendet wurden. Zur Verdeutlichung der Modellierungsgenauigkeit sind in Abbildung 75 in schwarz die Sprungantworten der approximierten Übertragungsfunktionen überlagert. Abbildung 76 zeigt die Bode-Diagramme der identifizierten Übertragungsfunktionen zusammen mit deren Pol-Nullstellen-Diagramm.

Abbildung 76: Frequenzkennlinie sowie Pol-Nullstellen-Diagramm der identifizierten Übertragungsfunktion in normierter Darstellung $G'_{LLC}(s) = G_{LLC}(s)/|G_{LLC}(0)|$

Um Vergleichbarkeit zwischen den Bodediagrammen zu erreichen, wurde auf die DC-Verstärkung |G_{LLC}(0)| normiert. Wie im Pol-Nullstellen-Diagramm aus Abbildung 76(b) erkennbar, liegen die konjugiert-komplexen Polstellen $\underline{p}_1, \underline{p}_1^*$ im Bereich sehr geringer Dämpfung. Der Dämpfungsgrad berechnet sich zu 0, 03 . . . 0, 1 und ist damit nah an der Stabilitätsgrenze. Im Bode-Diagramm zeigt sich diese Eigenschaft durch eine ausgeprägte Resonanzstelle im Amplitudengang. Diese Resonanzstelle ist entscheidend für die Auslegung einer PI-Regelung, da hierdurch die erreichbare Dynamik der PI-Regelung limitiert wird, insbesondere durch die maximale Amplitudenüberhöhung bei M = 1, 6 (siehe Abbildung 76(a) in rot). Näheres wird in der folgenden Reglerauslegung diskutiert. Damit der einstufige LLC-Ladewandler am öffentlichen Versorgungsnetz betrieben werden darf, ist der Netzstrom netzfreundlich zu regeln, d.h. die Oberschwingungen des Netzstroms müssen die Grenzwerte nach EN 61000-3-2 einhalten. Eine Regelung, die dies ermöglicht, erfordert hohe Dynamik, Genauigkeit und Robustheit gegenüber der Exemplarstreuung von Bauteilparametern. Die naheliegende Regelungsstruktur für diese Aufgabe ist eine konventionelle einschleifige PI-Regelung, die im nächsten Abschnitt behandelt wird.

6.1 EINSCHLEIFIGE PI-REGELUNG

Im einfachsten Fall wird für die PFC-Regelung eine PI-Regelung mit Vorsteuerung verwendet, deren Struktur in Abbildung 77 gezeigt ist. Hierbei wird der Regelfehler zwischen Führungsgröße i_{Netz}^* und Netzstrom i_{Netz} auf den Eingang eines PI-Reglers geführt. Am Ausgang des PI-Reglers wird mittels einer Vorsteuerung die geschätzte Schaltfrequenz \tilde{f}_{50} vorgesteuert, die nach Übertragungskennlinie, sichtbar in Abbildung 74, den gewünschten Netzstrom im stationären Zustand überträgt.

Abbildung 77: Regelungsstruktur einer einschleifigen PI-Regelung mit Vorsteuerung

Zur Auslegung des PI-Reglers soll zunächst das Bode-Diagramm des LLC-Streckenverhaltens aus Abbildung 76(a) betrachtet werden. Durch die Übertragungsfunktion dritter Ordnung G_{LLC} ergibt sich an den jeweiligen Resonanzstellen eine Phase nahe –180°, die für die Dynamik des PI-Reglers limitierend ist. Denn ein stabiler Regelkreis erfordert eine Durchtrittsfrequenz mit ausreichender Phasenreserve, die mit einem PI-Regler nur deutlich unterhalb der Resonanzstellen realisiert werden kann. Hierfür ist der Amplitudengang im Bereich der Frequenzen unterhalb der Resonanzstelle anzuheben und in der Umgebung der Resonanzstelle abzusenken. Mit angenommener idealer Vorsteuerung ($\tilde{f}_{S0} = f_{S0}$) ergibt sich das Führungsverhalten aus der Regler- und Strecken-Übertragungsfunktion $G_{OL} = G_{PI} \cdot G_{LLC}$, wie in Abbildung 77 gezeigt. Abbildung 78(a) zeigt das Bode-Diagramm des offenen Kreises, bei dem der PI-Regler so ausgelegt wurde, dass die Spitze der Resonanzstelle sicher unterhalb der 0 dB-Linie liegt. Hierdurch ergibt sich eine Durchtrittsfrequenz mit einer Phasenreserve von > 55°. Zwar ist die Regelung hiermit stabil und stationär genau, die Position der Polstelle geringer Dämpfung wird jedoch durch die Regelung nur marginal beeinflusst (siehe Abbildung 78(b)). Die Dynamik dieser Polstelle wird durch die PI-Regelung daher nicht verbessert, was insbesondere für das Störverhalten ungünstig ist.

Die Übertragungsfunktion des PI-Reglers $G_{PI} = K_P + \frac{K_I}{s}$ wurde hier gewählt zu $K_I =$ $5, 5 \cdot 10^7 (A s^2)^{-1}$ und $K_P = 0$

(a) Bode-Diagramm des offenen Regelkreises (b) Pol-Nullstellen-Diagramm geschlossener Regelkreises

Abbildung 78: Bode-Diagramm des offenen Regelkreises mit dem Pol-Nullstellen-Diagramm des geschlossenen Regelkreises

Zudem ist dieser konventionelle PI-Regelungsansatz problematisch, weil in der Praxis eine genaue Vorsteuerung der Schaltfrequenz unter Berücksichtigung der Examplarsteuung nicht erreichbar ist (siehe Abschnitt 5.1). Um einen Überstrom in Folge einer fehlerhaften Vorsteuerung zu vermeiden, könnte zwar die vorgesteuerte Schaltfrequenz \tilde{f}_{50} deutlich höher gewählt werden als jene, die im Worst-Case erwartet wird (siehe Abbildung 74). Im Resultat führt dies jedoch dazu, dass sich die Anregelzeit des PI-Reglers deutlich erhöht und hiermit für die PFC-Regelungsanforderung unzureichend ist.

Diesem Problem kann auf zweierlei Weise begegnet werden: Ersten kann eine Identifikation der Übertragungskennlinie verfolgt werden, die z. B. während des Prüfvorgangs im Rahmen der Serienproduktion (engl. *End-of-Line*) durchgeführt wird. Zweitens kann ein alternatives Regelungsverfahren verwendet werden, das im Rahmen der vorliegenden Arbeit entwickelt wurde und inhärent robust gegenüber Parameterschwankungen ist.

6.2 HYSTERESE-REGELUNG

Im folgenden Abschnitt wird eine Hysterese-Regelung mit dem Ziel entworfen, die Robustheit des konventionellen PI-Regelungsansatz gegenüber Bauteiltoleranzen sowie weiteren Störeinflüssen zu verbessern. Um das Grundprinzip dieser Hysterese-Regelung zu erläutern, sollen vorab die grundsätzlichen Zusammenhänge erneut rekapituliert werden: Der Momentanwert der Eingangsleistung eines LLC-Resonanzwandlers ergibt sich als Produkt aus Eingangsspannung u_{AB} und Eingangsstrom i_{LS} . Die Wirkleistung p_1 über eine LLC-Periodendauer T_S berechnet sich hiermit zu

$$p_{1} = \frac{1}{T_{\rm S}} \int_{T_{\rm S}} u_{\rm AB} \, i_{\rm LS} \, \mathrm{d}t \approx u_{1} \underbrace{\frac{2}{T_{\rm S}} \int_{0}^{T_{\rm S}/2} i_{\rm LS} \, \mathrm{d}t}_{\tilde{i}_{\rm LS}}.$$
 (108)

Während einer Halbperiode wird die Eingangsspannung u_1 über

Annahme: Frequenzregelung im komplementären Betrieb

jeweils zwei Transistoren an den Eingang des Resonanzkreises angelegt (siehe Abbildung 80). Da diese Eingangsspannung über die Halbperiode als konstant angenommen werden darf, kann in Gleichung 108 die Spannung u_1 als Faktor vorgezogen werden. Somit ergibt sich die Eingangsleistung p_1 als Produkt aus der Spannung u_1 und dem Strommittelwert \overline{i}_{LS} . In der hier entworfenen Hystereseregelung wird der Strommittelwert \overline{i}_{LS} durch einen Stromwandler mit Abschlusskondensator gebildet (siehe Abbildung 79). Auf der Sekundärseite des Stromwandlers fließt der transformierte Resonanzstrom i_{LS}/N , der durch die Abschlusskapazität C_i aufgenommen wird. Der Kondensator fungiert als natürlicher analoger Integrator (108). Durch Auswertung der Spannung u_{Ci} zu den Schaltzeitpunkten ergibt sich eine Größe, die direkt proportional zum Integral (108) ist und hiermit der übertragenen Ladung während einer Halbperiode entspricht.

Abbildung 79: Prinzipschaltbild der Hysterese-Regelung

Hier sei zunächst die Magnetisierungsinduktivität des Stromwandlers vernachlässigt Umgekehrt kann die übertragene Ladung durch direkte Vorgabe der Schaltzeitpunkte vorgegeben werden: Hierfür wird die Spannung u_{Ci} mit Hilfe eines Komparators mit einem Schwellwert verglichen, damit bei Erreichen dieser Schwelle direkt die Transistoren $S_1 - S_4$ umgeschaltet werden können. Wie das Prinzipschaltbild der Hysterese-Regelung (Abbildung 79) zeigt, wird durch den Komparator ein RS-Flipflop gesetzt, sobald die Spannung u_{Ci} den Schwellwert u_{LSComp} erreicht. Der Schaltbefehl wird durch das Flipflop gespeichert, bis die Spannung u_{Ci} den zweiten Schwellwert u_{HSComp} auslöst. Durch die Vorgabe der Schwellwerte u_{LSComp} und u_{HSComp} kann somit der Resonanzregler geregelt werden, denn es gilt

$$\Delta u_{\rm Ci} = u_{\rm HSComp} - u_{\rm LSComp} = \frac{1}{N C_{\rm i}} \int_{T_{\rm S}/2} i_{\rm LS} \, {\rm d}t. \tag{109}$$

Abbildung 80 zeigt ein Simulationsergebnis der Hysterese-Regelung in den gängigen Betriebsarten CCMA und DCMB2. Sobald die Spannung u_{Ci} die Schwellwerte erreicht, löst der jeweilige Komparator aus und setzt das RS-Flipflop bzw. setzt es zurück.

Abbildung 80: Anwendung der Hysterese-Regelung nach Abbildung 79 auf die gängigen Betriebsarten CCMA und DCMB2

Vergleichbare Hysterese-Regelungsansätze, die in den vergangenen Jahren publiziert wurden (z. B. [55, 56, 64, 76]), verwenden den Resonanzkondensator $C_{\rm S}$ zur Integration des Resonanzstroms $i_{\rm LS}$. Bei Halbbrückentopologien kann diese Spannung u_{CS} vergleichsweise einfach gemessen werden, da die Spannung des Resonanzkondensators $u_{\rm CS}$ auf dem Potential der Eingangsspannung u_1 liegt und somit keine Gleichtaktkomponente aufweist. Bei Vollbrückentopologien ist die Messung der Spannung des Resonanzkondensators $u_{\rm CS}$ wegen der hohen Gleichtaktkomponente aufwändig [81]. Dies ist besonders kritisch, wenn die Gleichtaktstörung durch schnellschaltende WBG-Transistoren besonders hoch ist, wie in der vorliegenden Arbeit.

6.3 KASKADEN-REGELUNG UND SIMULATIVE ERPROBUNG

Zwar ermöglicht die vorgestellte Hysterese-Regelung ein robustes und dynamisches Regelungsverhalten, jedoch führen die getroffenen Annahmen dazu, dass die erreichbare Regelungsgenauigkeit gering und insbesondere bei höheren Schaltfrequenzen unzureichend ist. Beispielsweise wurde in (108) angenommen, dass die Spannung u_{ab} während einer Halbperiodendauer konstant sei, was jedoch angesichts der Schaltvorgänge endlicher Steilheit nur eine Näherung darstellt. Weiterhin wurde angenommen, dass die Schalthandlung unmittelbar nach Erreichen der Schwellwerte erfolgt. Durch die unvermeidbare Latenz z. B. der Gate-Treiber und Verriegelungsschaltungen wird jedoch eine weitere Abweichung verursacht.

Um eine präzisere Regelung zu erreichen, die weiterhin die nötige Robustheit und Dynamik aufweist, wird die Hysterese-Regelung um eine äußere Regelungsschleife erweitert. Diese äußere Regelungsschleife erfasst ihre Regelgröße über einen zusätzlichen Stromsensor, der den Netzstrom i_{Netz} misst. Mit einem konventionellen PI-Regler kann die Stellgröße der äußeren Regelungsschleife Δu_{Ci} gemäß der Regelungsstruktur, wie in Abbildung 81 gezeigt, bestimmt werden. Hierdurch wird eine bleibende Regelungsabweichung für konstante Netzströme vermieden.

Abbildung 81: Prinzipbild der Kaskaden-Regelung aus äußerem Netzstromregler und innerem Hysterese-Regler

Die äußere Regelungsschleife hat verglichen mit der inneren Hysterese-Regelung nur geringe Anforderungen hinsichtlich des erforderlichen Ausführtaktes, da sich deren Ein- und Ausgangsgrößen vergleichsweise langsam ändern. Daher ist es ausreichend, diesen Regelungsteil auf üblichen Mikrocontrollern zu berechnen (Abbildung 81 (blau)). Abbildung 82 zeigt das Simulationsergebnis einer Sprungantwort der Kaskaden-Regelung, bei einer beispielhaften Auslegung des PI-Reglers. Trotz um $\pm 10\%$ variierter Resonanzfrequenz bleiben das transiente Verhalten und die Anregelzeit von ca. 200 µs praktisch konstant. Die Anregelzeit könnte zwar durch Änderung der PI-Regelungsparameter weiter verkürzt werden, jedoch muss hierbei zwingend das Schwingungsverhalten der EMV-Filter an Ein- und Ausgang berücksichtigt werden (siehe Abbildung 73(a)).

Abbildung 82: Simulierte Sprungantwort der Kaskaden-Regelung für drei verschiedene Resonanzkreisparameter

Angesichts der hohen Dynamik dieses Kaskaden-Regelungsansatzes sowie seiner Robustheit gegenüber Parameterschwankungen soll eine solche Kaskaden-Regelung für den einstufigen Ladewandler eingesetzt werden. Vor der experimentellen Erprobung ergeben sich noch mehrere praktische Probleme, von deren Lösung der folgende Abschnitt handelt.

6.4 ERWEITERUNG DER HYSTERESE-REGELUNG

Um die Hysterese-Regelung in einem Laboraufbau zu erproben, muss sie zunächst um zwei Erweiterungen ergänzt werden, um Probleme zu beheben, die im Zuge der realen Umsetzung auftreten. Auf diese Erweiterungen soll im Folgenden kurz eingegangen werden:

Erstens kann es vorkommen, dass der gewünschte Strom im aktuellen Arbeitspunkt nicht übertragen werden kann, weil die Leistungsgrenze des Resonanzwandlers erreicht ist. In einem solchen Fall wurden die Schwellwerte so hoch gewählt, dass die Spannung u_{Ci} diese Schwellwerte nicht mehr erreicht und bildlich gesprochen freiläuft. Da ohne Erreichen eines Schwellwerts kein weiterer Schaltbefehl generiert wird, führt dies zum Stopp der Leistungsübertragung. Beispielhaft wurden in einer Simulation, die in Abbildung 83(a) gezeigt wird, die Schwellwerte u_{HSComp} und u_{LSComp} sprungförmig erhöht, sodass die Spannung u_{Ci} stets innerhalb dieser Schwellwerte verbleibt. Hiermit wird keine weitere Leistung übertragen und der Netzstrom reduziert sich auf Null.

Abbildung 83: Simulation des Freilauf-Fehlers vs. Simulation mit begrenzter Periodendauer zur Behebung des Fehlers

Um diesen Freilauffehler zu beheben, wird die Halbperiodendauer auf einen Maximalwert begrenzt, um hiermit einen Schaltbefehl zu erzwingen, auch wenn ein solcher von der Hysterese-Regelung nicht generiert wird. Dies wird ermöglicht durch die hellblaue markierte Erweiterung der Hysterese-Regelung (siehe Abbildung 84). Durch zwei Zähler wird die jeweilige Halb-Periodendauer gemessen. Erreicht ein Zählerwert (*Ramp A* bzw. *Ramp B*) den gesetzten Maximalwert T_{Max}/2, wird die Umschaltung des RS-Flipflops erzwungen. Das Simulationsergebnis aus Abbildung 83(b) zeigt, wie dieses Vorgehen einen Abbruch der Leistungsübertragung vermeidet.

Abbildung 84: Hysterese-Regelung inkl. der Erweiterungen zur Lösung des Freilauf-Fehlers (hellblau) sowie zur Tastverhältnis-Korrektur (grün)

Zweitens ruft die bisher vernachlässigte Magnetisierungsinduktivität des Stromwandlers eine Anomalie hervor, die an dieser Stelle kurz diskutiert werden soll: Dank des Resonanzkondensators kann zwar ein bleibender Gleichanteil im Resonanzstrom vermieden und damit eine Sättigung des Stromwandlers ausgeschlossen werden. Jedoch führt ein zeitlich begrenzter Strom in der Magnetisierunginduktivität dazu, dass sich zyklisch ein Tastverhältnis ungleich 50% einstellt (siehe Simulationsergebnis Abbildung 85(a)). Eine solches Tastverhältnis ist unerwünscht, da hiermit die Spannung unvollständig ausgenutzt wird, wodurch sich eine Einschränkung des Arbeitsbereichs sowie tendenziell höhere Verluste ergeben. Auf weitere theoretische Betrachtungen wird an dieser Stelle verzichtet und unmittelbar eine praktische Lösungsoption vorgestellt.

Abbildung 85: Simulation der Hysterese-Regelung inkl. der Magnetisierungs-Induktivität des Stromwandlers, die zu einem unerwünschten Tastverhältnisses (a) führt. Durch die zweite Erweiterung der Hysterese-Regelung (in Abb. 84 grün markiert) wird diese Problematik behoben (b)

Um ein Tastverhältnis zu vermeiden, das signifikant von 50% abweicht, wird die Hysterese-Regelung um einen weiteren Teil (Abbildung 84 (grün)) erweitert. Hierbei wird mit den bereits eingeführten Zählern *Ramp A* und *Ramp B* berechnet, ob und in welchem Umfang das Tastverhältnis von 50% abweicht, indem die Differenz der jeweiligen Spitzenwerte berechnet wird. Um den so berechneten Wert wird im Anschluss die Schaltflanke verzögert. Je nach Vorzeichen der Differenzbildung wird entweder die steigende oder fallende Flanke verzögert. Mit dieser Methode wird das Tastverhältnis im vorliegenden Fall stets im Bereich 48...52% gehalten.

6.5 EXPERIMENTELLE VERIFIKATION

Für die reale Erprobung der entworfenen Kaskaden-Regelung wurde das Funktionsmuster aus Kapitel 7 um eine hybride Regelungshardware erweitert. Hierfür wurde zunächst die Kaskaden-Regelung in drei Teile gruppiert, die jeweils entsprechend der spezifischen Anforderungen auf dedizierter Regelungshardware realisiert wurden. In Abbildung 86 sind die jeweiligen Regelungsteile farblich hinterlegt, die im Folgenden kurz erläutert werden sollen.

Abbildung 86: Vereinfachtes Schaubild der hybriden Regelungsstruktur mit farbiger Separierung in Regelungsteile nach Taktrate

ANALOG-SCHALTUNG (GELB)

Der Vergleich der Spannung u_{Ci} mit den jeweiligen Schwellwerten ist der zeitkritischste Teil der Hysterese-Regelung, da hierfür nur eine minimale Latenz von wenigen Nanosekunden tolerierbar ist. Daher wurde dieser Regelungsteil mit einer Analogschaltung umgesetzt, die in Abbildung 86 in gelb hinterlegt ist. Als Bauteil wurde hierfür der 4-ns-Komparator *AD8612* ausgewählt und mit weiteren Bauteilen wie Stromwandler und Kondensator C_i auf einer Sensor-Leiterkarte platziert.

FPGA-TEIL (GRÜN)

Der verbleibende Teil der Hysterese-Regelung inkl. RS-Flipflop und deren Erweiterungen (siehe Abbildung 84) wurden auf einem *Xilinx Artix7*-FPGA implementiert, der bei einer Taktfrequenz von 200 MHz bzw. im 5-ns-Takt betrieben wird. Weiterhin wurde die Wechselsperrzeit (engl. deadtime) mittels zwei Verzögerungsgliedern realisiert. Insgesamt konnte der gesamte FPGA-Teil mit einer Latenz von nur 9 Taktzyklen, d.h. etwa 45 ns Verzögerung, synthetisiert werden. Ein Foto der Leiterkarte findet sich in Abbildung 104 im Anhang

Zu Entwicklungszwecken wurde das FPGA-Modul CmodA7-35T von Digilent verwendet

MICROLABBOX-TEIL (BLAU)

Ein konventioneller PLL-Algorithmus wird zur Netzwinkelerkennung verwendet

Die äußere Regelungsschleife sowie weitere nötige Berechnungen (z. B. PLL, OCP, OVP) wurden auf einer dSpace MicroLabBox implementiert und im 10-µs-Takt ausgeführt, da für diesen Regelungsteil eine vergleichsweise langsame Takt-Periode ausreichend ist. Alle Messgrößen werden mit den ADCs der MicroLab-Box erfasst. Zur schnellen Kommunikation zwischen FPGA und MicroLabBox wurde ein 8-Bit-Parallelbus in Anlehnung an den Universal Parallel Port uPP von TI [61] implementiert, für die Vorgabe der Wechselsperrzeit sowie eine schnelle Kommunikation weiterer Vorgaben. Für diesen Parallel-Bus werden im 33-MHz-Takt zyklisch 7 Byte übertragen, das jeweils 8. Byte wurde als Paritäts-Byte realisiert, um etwaige Kommunikationsfehler detektieren zu können. Eine direkte Implementierung der Hysterese-Regelung auf dem Xilinx Kintex FPGAs, das in der MicroLabBox integriert ist, ist wegen der zu langsamen Peripheriebeschaltung nicht möglich, denn allein hierdurch würde schon eine Latenz von etwa 100 ns verursacht. Perspektivisch kann dieser äußere Regelungsteil alternativ auf gängigen DSPs programmiert werden.

6.5.1 *Messergebnisse*

Abbildung 87 zeigt exemplarisch ein Messergebnis in der Betriebsart DCMB2 des Funktionsmusters, das mit der entworfenen Kaskaden-Regelung geregelt wurde. Wie erwartet detektiert der Komparator mit einer minimalen zeitlichen Verzögerung, dass die Spannung u_{Ci} die Schwellwerte u_{HSComp} bzw. u_{LSComp} erreicht und die FPGA-Logik triggert.

Zwischen der Schaltflanke des Komparators und der tatsächlich messbaren Änderung von u_{AB} vergeht jedoch eine unerwünschte Verzögerungszeit von $T_D \approx 120 \text{ ns}$, die sich zusammensetzt aus der erwarteten Latenz der FPGA-Logik (ca. 45 ns) und des Gate-Treibers (ca. 55 ns) [31] sowie der optischen Datenübertragung des Gate-Signals (ca. 20 ns) [32].

Abschließend soll nun die Kaskaden-Regelung als Folgeregelung mit der Führungsgröße $i_{Netz}^*(t)$ betrieben werden, die Abschnitt 2.4 entnommen und skaliert in einer eindimensionalen LUT abgelegt wurde. Mittels einer konventionellen einphasigen Phasenregelschleife (PLL) wird der Netzwinkel ϕ_{Netz} anhand der Netzspannung u_{Netz} gemessen, um hiermit den zugehörige Referenzwert $i_{Netz}^*(t)$ vorzugeben. In den Zeitintervallen, in denen der Referenzwert i_{Netz}^* Null ist, werden die Regelung deaktiviert und alle Transistoren abgeschaltet, sodass in diesen Zeitintervallen die Verlustleistung minimiert wird.

Abbildung 87: Messung der charakteristischen Kennwerte der Hysterese-Regelung im stationären Zustand in der Betriebsart DCMB2

Abbildung 88: Zeitverläufe wichtiger Größen des einstufigen Ladewandlers im PFC-geregelten Betrieb

Abbildung 88 zeigt das Messergebnis im PFC-geregelten Betrieb des Ladewandlers. Wie erwartet pulsiert der Ladestrom i_{Batt} mit doppelter Netzfrequenz. Der gemessene Netzstrom $i_{Netz}(t)$ folgt über weite Zeitintervalle mit geringer Abweichung dem Referenzwert $i_{Netz}^*(t)$. Auffällig sind insbesondere die Oszillationen, die sich jeweils unmittelbar zu Beginn der Halbperiode im Netzstrom zeigen. Diese werden durch eine sprunghaften Änderung der Stromaufnahme hervorgerufen, die sich aus der verbleibenden Latenz von $T_D \approx 120$ ns ergibt. Es wird erwartet, dass eine Reduktion der Latenz durch schnellere Treiber bzw. Entfall der optischen Datenübertragung diese Oszillationen signifikant reduziert.

Maßgebend für den Einsatz am öffentlichen Versorgungsnetz ist die Konformität der Oberschwingungen des Netzstrom mit der Norm EN 61000-3-2. Abbildung 89 zeigt das Frequenzspektrum des Netzstroms aus Abbildung 88 bis zur 14. Harmonischen im Vergleich mit den normierten Grenzwerten. Hierbei wird deutlich, dass alle Grenzwerte ausgenommen der der 13. Harmonischen eingehalten werden. Es wird erwartet, dass diese Abweichung durch eine weitere Verbesserung der Regelungsgenauigkeit korrigierbar ist, indem die Latenz wie beschrieben weiter reduziert wird.

Abbildung 89: Gemessene Oberschwingungen $I_{\rm H}(k)$ normiert auf die Grundschwingung $I_{\rm H}(1)$ mit den entsprechenden Grenzwerten aus der Norm EN 61000-3-2

Teil IV

LABORMUSTER

Der einstufige Ladewandler hat durch den Entfall des PFC-Gleichrichters und des Zwischenkreiskondensators weniger Bauelemente als zweistufige Varianten. Zu welcher Verbesserung diese Reduktion hinsichtlich des erzielbaren Bauvolumens und des Wirkungsgrads führen kann, soll im folgenden Teil mittels realer Labormuster untersucht werden. In einem ersten Schritt wird ein modulares Funktionsmuster (noch ohne Gehäuse) aufgebaut, um hiermit den erzielten Wirkungsgrad zu messen und die beschriebene Netzstromregelung zu entwerfen. In einem zweiten Schritt wird mit einem realen Prototyp mit flüssigkeitsgekühltem Gehäuse demonstriert, welche Leistungsdichte mit dem einstufigen LLC-Ansatz erreichbar ist. Um einen aussagekräftigen Vergleich zu heute kommerziell erhältlichen On-Board-Ladegeräten zu erhalten, wird bei der Konstruktion strikt auf die normgerechte Dimensionierung der Luft- und Kriechstrecken geachtet und es werden typische EMV-Filter ins Gehäuse integriert.

Als erstes Labormuster wird ein modulares Funktionsmuster aus mehreren Baugruppen aufgebaut, um hiermit hohe Flexibilität bzgl. der Kühlung der Bauteile zu erzielen und zudem einfachen Zugriff auf alle nötigen Messgrößen zu haben. Das Funktionsmuster wurde ferner für die Entwicklung der PFC-Regelung verwendet, mit der sich Kapitel 6 befasste. Die folgende Bauteilauswahl versteht sich beispielhaft aus heutiger Sicht und ist daher im individuellen Anwendungsfall an die jeweilige Kostenlage und den künftigen Technologiefortschritt anzupassen.

7.1 BAUTEILAUSWAHL

Basierend auf der bis hierhin erfolgten Schaltungsauslegung können nun konkrete Bauelemente für den einstufigen Ladewandler ausgewählt werden, um hiermit ein Funktionsmuster aufzubauen sowie dessen Verlustaufteilung näher zu untersuchen. Die Bauteilauswahl stützt sich auf die jeweiligen Strom- und Spannungsbelastungen der Bauteile, die bereits aus der Belastungsgrößenanalyse (Abschnitt 3.2) bekannt sind.

Abbildung 90: Bauteilauswahl für die Schlüsselkomponenten des Ladewandlers (Fotos aus Datenblätter entnommen [3, 4, 6, 7, 29, 59, 60])

Der Netz-Gleichrichter schaltet im langsamen 10-ms-Takt, daher werden hierfür die niederohmigen Si-SJ-MOSFETs *CFD*7 aus der 650-V-

Spannungsklasse eingesetzt [60]. Für den LLC-Wechsel- und Gleichrichter kommen hingegen WBG-Bauteile angesichts der hohen Schaltfrequenz zum Einsatz: Für den Wechselrichter werden jeweils zwei 650 V-GaN-HEMTs GS66516T parallel geschaltet, die bereits in Abschnitt Abschnitt 3.2.6 favorisiert wurden. Für den Ausgangs-Gleichrichter werden Infineons SiC-Dioden AIDW30 ausgewählt. Für die induktiven Bauteile des Resonanzkreises kommt der Streupfad-Transformator aus Kapitel 4 zum Einsatz, für den Resonanzkondensator werden 11 Stück der MLCC-NPo-Kondensatoren C2220C562 parallel geschaltet (siehe Abschnitt 3.3.3). Als X-Kondensatoren werden Keramik-Kondensatoren TDK CeraLinkTM verwendet: Am Ausgang des SiC-Gleichrichters werden 2 Stück des Typs FA3 parallel verwendet, am Eingang des GaN-Wechselrichters sind 4 Stück des Typs FA2 platziert. Die X-Kondensatoren sind jeweils möglichst nah an die Halbbrücken angeordnet. Am Eingang und am Ausgang werden typische nanokristalline CM-Spulen des Typs T60405-R6128 zur EMI-Filterung verwendet, deren Streuinduktivität von 3,6 µH ebenso als Gegentakt-Spule (DM) wirkt. Weiterhin kommen als Y-Kondensator typische 4,7 nF-Kondensatoren zum Einsatz, die kaum weiter vergrößert werden können, ohne den Grenzwert des Ableitstroms von 3,5 mA zu sehr einzuschränken. Eine Übersicht der ausgewählten Komponenten ist in Abbildung 90 gezeigt. Zur Ansteuerung wird eine typische PWM-Einheit auf einem Xilinx Artix-FPGA XC7A15T in VHDL implementiert, die durch Einsatz einer 200-MHz-Clock eine zeitliche Auflösung von 5 ns aufweist und hiermit die Vorgabe der Wechselsperrzeit ermöglicht. Auf weitere Erläuterungen soll wegen des geringen Neuheitsgrads an dieser Stelle verzichtet werden.

7.2 VERLUSTLEISTUNG UND EFFIZIENZ

Mit der so getroffenen Bauteilauswahl kann im Folgenden die Verlustleistung des Funktionsmusters näher analysiert werden. Abbildung 91 zeigt das Messergebnis des Zeitverlaufs der Gesamtverlustleistung über den Netzwinkel, die mittels des Präzisions-Leistungsmessgeräts *LMG640* erfasst wurde. Wie sich die Verlustleistung unter den genannten Mechanismen aufteilt, wird mit Hilfe des Verlustmodells aus Abschnitt 3.3 berechnet und ist ebenso in Abbildung 91 farblich visualisiert.

Bei kleinem Netzspannungs-Augenblickswert wird entsprechend dem Ansatz aus Abschnitt 2.3 der LLC-Wechselrichter deaktiviert, sodass jegliche Verlustleistung im Bereich des Spannungsnulldurchgangs vermieden wird. Bei einem Netzspannungs-Augenblickswert von $|u_{\text{Netz}}| = 95$ V wird zunächst nur geringer Netzstrom aufgenommen, was somit zu geringem Ladestrom bzw. zu geringen Verlusten im Ausgangsgleichrichter führt. Schon bei dieser kleinen Ladeleis-

Gemäß IEC 60950 sind Ableitströme von Schutzklasse 1-Geräte auf max. 3,5 mA begrenzt tung zirkuliert eine signifikante Blindleistung im Resonanzkreis, die jedoch erforderlich ist, um überhaupt eine Leistungsübertragung zu ermöglichen. Wenn die Leistungsübertragung beginnt, beträgt der Resonanzstrom bereits $I_{\rm LS} \approx 15 \,\text{A}$, was dank der verlustarmen Ausführung im Wechselrichter und Transformator jedoch nur zu Verlusten von etwa 35 W führt. Mit steigender Ladeleistung vergrößert sich die Verlustleistung auf Grund aller Verlustmechanismen bis zum Spitzenwert auf 189 W bei der maximalen Netzspannung $|u_{\rm Netz}| = 325 \,\text{V}$. Beispielhaft sind in Abbildung 92 zwei detaillierte Resonanzkreis-Messungen gezeigt.

Gemessen mit dem Leistungsmessgerät LMG640 in den Arbeitspunkten aus Abbildung 9.

Abbildung 91: Gemessene Verlustleistung über eine Netzperiodendauer bei $U_{\text{Batt}} = 320 \text{ V}$ inkl. der berechneten Zuordnung zu den jeweiligen Verlustmechanismen

Abbildung 91 zeigt die berechnete Verlustaufteilung räumlich zugeordnet nach Farbe: Wechselrichter in rot, LLC-Gleichrichter in blau, Netzgleichrichter in orange, Transformator in grün. Der Residual-Verlustanteil in grau ist die Differenz aus Messung und Berechnung und beinhaltet alle Verlustanteile, die nicht modelliert wurden (z.B. Verluste in der Leiterkarte oder in den Anschlussleitungen) sowie verbleibende Modellierungsfehler (z.B. durch den dynamischen Durchlasswiderstand der Transistoren). Die Verluste im Resonanzkondensator in violett fallen im gesamten Leistungsbereich vernachlässigbar klein aus. Auch die Verluste im Transformator (als verschiedene Grüntöne dargestellt) konnten durch die mehrstufige Optimierung aus Kapitel 4 bis auf einen Maximalwert von ca. 20 W reduziert wer-

Abbildung 92: Messung der elektrischen Größen im Resonanzkreis in zwei exemplarischen Arbeitspunkten aus Abbildung 91

den. Der dominierende Verlustanteil (> 120 W) wird nunmehr vom Wechselrichter und LLC-Diodengleichrichter dissipiert.

Aus der so bekannten Verlustleistung über eine Netzperiodendauer lässt sich mittels numerischer Integration der PFC-Wirkungsgrad ermitteln, der sich berechnen lässt mit

$$\eta_{\rm PFC} = \frac{P_{\rm Netz} - P_{\rm Loss, PFC}}{P_{\rm Netz}} \tag{110}$$

mit der mittleren Verlustleistung über eine Netzperiode $P_{\text{Loss,PFC}}$. Hiermit ergibt sich ein PFC-Wirkungsgrad von

$$|\eta_{\rm PFC} = 97\%|$$
, (111)

gemessen bei der Nennleistung von $P_{\text{Netz}} = 3,6 \text{ kW}$ und einer Batteriespannung von $U_{\text{Batt}} = 320 \text{ V}.$

Zwar ließen sich diese Verlustanteile z.B. durch eine größere Chipfläche weiter reduzieren, das würde jedoch zu entsprechenden Mehrkosten führen. Eine weitere Reduktion der Verluste durch Verkleinerung der Strombelastung ist mit der hier behandelten Topologie durch Änderung der Bauteilparameter nicht möglich, wie die Belastungsgrößenanalyse aus Abschnitt 3.2 gezeigt hat.

Abbildung 93: Versuchsaufbau zur Regelungsentwicklung und Wirkungsgradmessung

Um zu demonstrieren, welche Leistungsdichte mit dem einstufigen LLC-Ladewandler erzielbar ist, wurde ein Prototyp realisiert, dessen Aufbau im Folgenden beschrieben werden soll. Für einen aussagekräftigen Vergleich mit etablierten Ladewandlern heutiger Elektrofahrzeuge ist es essentiell, auf die präzise Einhaltung einer automotive-gerechten Isolationskoordination zu achten. Wie zahlreiche wissenschaftliche Publikationen zeigen, können ohne die Einhaltung der nötigen Luft- und Kriechstrecken beeindruckende Leistungsdichten erreicht werden, die jedoch nur eine geringe Relevanz für die Praxisanwendung besitzen. Im Folgenden soll das Vorgehen erläutert werden, denn die Luft- und Kriechstrecken unterscheiden sich in wesentlichen Punkten von denen zweistufiger Ladewandler.

8.1 ISOLATIONSKOORDINATION

Zur Spezifikation der geforderten Luft- und Kriechstrecken ist die Isolationskoordination nach IEC 60664 mit Berücksichtigung des spezifizierten Luftdrucks und Verschmutzungsgrads auf alle Isolationsbarrieren anzuwenden. Hierfür werden im ersten Schritt alle Schaltungsknoten mit ähnlichem Potential in Netzklassen zusammengefasst. Im konkreten Fall des einstufigen LLC-Ladewandlers wurden hierfür die Schaltungsknoten in die Netzklassen eingeteilt, die in Abbildung 94 schematisch gezeigt sind. Für die Konstruktion des Gehäuses sowie das Layout der Leiterkarten sind die Luft- bzw. Kriechstrecken zwischen allen Kombinationen dieser Netzklassen zu definieren, denn hiermit können die nötigen Abstände und letztlich Außenkantenmaße des Gehäuses festgelegt werden.

Abbildung 94: Netzklassen des einstufigen LLC-Ladewandlers mit der Definition der erforderlichen Isolationsklassen

PROTOTYP

Definition der Isolationsklassen, Überspannungskategorie und Netzklassen Als Gehäuse wird für das Labormuster ein Aluminiumgehäuse verwendet, das mit dem Schutzleiter verbunden ist. Somit ist der gesamte Ladewandler ein Betriebsmittel der Schutzklasse I (nach DIN EN 61140). Ladewandler dieser Art erreichen doppelte Fehlersicherheit, indem einerseits Basisisolation zum Gehäuse vorgesehen ist und andererseits ein Fehlerstrom-Schutzschalter (RCD) installiert ist, der die Eingangsspannung abschaltet, sollte die Isolation zum Gehäuse versagen. In der heute gängigen Hausinstallation sind Fehlerstromschutzschalter des Typs A installiert, die zwar AC-Fehlerströme detektieren und abschalten, jedoch weder DC-Fehlerströme noch hochfrequente Fehlerströme erkennen. Noch nachteiliger: Solche Fehlerströme können zur Erblindung des RCD-Typ A führen, sodass weitere Isolationsfehler nicht detektiert werden können. Daher sind Netzklassen, die zu hochfrequenten oder DC-Fehlerströmen führen, doppelt bzw. verstärkt (engl. reinforced) gegen das Gehäuse zu isolieren. In heute üblichen zweistufigen Ladewandlern betrifft dies den PFC-Gleichrichter und, je nach verwendeter PFC-Variante, auch den gesamten Zwischenkreis (Abbildung 3). Beim einstufigen LLC-Ladewandler ist hingegen nur der Resonanzkreis des LLC-Wechselrichters verstärkt zu isolieren (Abbildung 94). Allstromsensitive Fehlerstromschalter (Typ B/B+), die auch DC-Fehlerströme detektieren würden, sind zwar in gängigen Wallboxen und einigen Hausinstallation zu finden, bis heute besteht jedoch keine Pflicht. Auf der Sekundärseite des Ladewandlers ist meist ein Isolationswächter im Elektrofahrzeug installiert, der etwaige Isolationsfehler des Bordnetzes detektiert. Somit ist auf der Ausgangsseite des Ladewandlers eine Basisisolation in Richtung Fahrzeugkarosserie ausreichend.

Bestimmung der Luftstrecken nach kurzzeitiger Spitzenspannung Die Dimensionierung der Luftstrecken erfolgt nach dem Paschengesetz gemäß kurzzeitiger Spitzenspannungen [35]. Durch Blitzeinschläge, Schaltvorgänge im Netz o.ä. entstehen kurzzeitige Überspannungen, die nach IEC 60664 in die Überspannungskategorien (OVC) I bis IV eingruppiert werden. On-Board-Ladewandler werden in die OVC II mit einer maximalen Überspannung von 2,5 kV eingeordnet. Durch den verwendeten Überspannungsschutz am Eingang des Ladewandlers kann differentiell von OVC II auf OVC I mit max. 1,5 kV reduziert werden. Bei der Bestimmung der Luftstrecke ist zudem die Einsatzhöhe typischer Elektrofahrzeuge zu beachten. Nach LV123 ist diese auf 4000 m ü.NN definiert. Bei dieser Einsatzhöhe herrscht ein geringerer Luftdruck von ca. 62 kPa, der eine deutlich geringere Durchbruchfeldstärke aufweist als Luft bei Normaldruck (80 kPa). Nach IEC 60664 sind daher alle Luftstrecken für die Einsatzhöhe von 4000 m ü. NN mit einem Korrekturfaktor von 1,29 zu versehen. Die konkreten Luftstrecken, die für den Prototyp verwendet wurden, sind im Anhang in Abbildung 101 zu finden.

130

Im Gegensatz zu den Luftstrecken werden die Kriechstrecken nach dem jeweiligen Spannungs-Effektivwert ausgelegt, der dauerhaft im Betrieb zwischen den Netzklassen anliegt. Entscheidenden Einfluss auf die Dimensionierung der Kriechstrecken hat zweierlei: Erstens die Kriechstromfestigkeit des Isolationsmaterials, die mit dem s.g. CTI-Wert (engl. Comparative Tracking Index) angegeben wird. Gängige FR4-Basismaterialien der Leiterkarten haben einen CTI-Wert von 175 V und fallen damit in die Materialgruppe IIIa (gemäß IEC 60664-1). Zweitens hat der Verschmutzungsgrad der Leiterkarte großen Einfluss auf die erforderliche Kriechstrecke. Die Außenlagen der Leiterkarte sind dank des geschlossenen Gehäuses nur mäßiger Verschmutzung sowie gelegentlicher Betauung – z. B. durch schnellen Temperatursturz - ausgesetzt, daher wird hierfür der Verschmutzungsgrad II definiert. Die Innenlagen der Leiterkarte sind vor Verunreinigungen geschützt, daher wird hierfür Verschmutzungsgrad I angenommen. Durch lineare Interpolation wurden so die Grenzwerte für die Kriechstrecken des Ladewandlers bestimmt, die im Anhang in Abbildung 102 und 103 aufgelistet sind und die Grundlage für das folgende Gehäusekonzept bilden.

8.2 GEHÄUSEKONZEPT

Abbildung 95 zeigt das Gehäusekonzept des Prototyps, das auf Basis der Isolationskoordination (Abschnitt 8.1) sowie der Bauteilauswahl des Funktionsmusters (Abschnitt 7.1) realisiert wurde. Im Folgenden sollen die Funktionsmodule sowie deren Integration in das Gehäuse genauer beschrieben werden.

Abbildung 95: Schnittbild des Prototyps des einstufigen LLC-Ladewandlers

Bestimmung der Kriechstrecken nach Effektiv-Spannungsbelastung

(a) Sicht auf die Unterseite des Ladewandlers.

(b) Seitenansicht mit Schnitt durch den Kühlkanal.

Abbildung 96: CAD-Zeichnung des Demonstrators inkl. Beschriftung der Funktionsmodule mit transparentem Gehäuse

In Abbildung 96 ist die Platzierung der einzelnen Funktionsmodule im Gehäuse dargestellt. Auf der ersten (unteren) von insgesamt zwei Leiterkarten sind alle primärseitigen Bauteile wie das Netz-EMV-Filter, der Netzgleichrichter, der LLC-Wechselrichter und der Resonanzkondensator platziert. Angesichts des hohen Kühlbedarfs ist diese Leiterkarte an die Wasserkühlung platziert. Um die notwendige Luftstrecke zum Gehäuse sicherzustellen, werden alle
Leistungshalbleiter über Kühldome des Aluminiumgehäuses thermisch angebunden. Die Leiterkarte wird mittels Kunststoffhülsen an ein elektrisch isoliertes Wärmeleitpad des Typs HC5.0 gepresst, um hiermit die Bauteile zu entwärmen. Die FPGA-Karte zur Ansteuerung des Ladewandlers ist über einen Board-to-Board-Verbinder auf die erste Leiterkarte gesteckt. Die zweite Leiterkarte ist mit den sekundärseitigen Bauteilen wie z.B. dem LLC-Gleichrichter und dem Ausgangs-EMV-Filter bestückt. Der integrierte Transformator wurde platzsparend neben der Sekundärkarte positioniert und mittels einer Metallklammer an dem Deckel befestigt. Die stehenden CM-Spulen von Primär- und Sekundärseite wurden mit Versatz positioniert, um den Bauraum zwischen den Leiterkarten auszunutzen. Ob noch weitere Abschirmbleche zur Unterdrückung einer etwaigen EMV-Einkopplung vorgesehen werden müssen, ist in künftigen EMV-Messungen zu klären.

Die Flüssigkeitskühlung des Ladewandlers erfolgt über einen Uförmigen Kühlkanal, der mittels drei Bohrungen in den Gehäuseboden eingebracht wurde (siehe Abbildung 96(b)). Das verbleibende dritte Bohrloch wurde verschweißt (zu sehen in Abbildung 97). Der Deckel des Ladewandlers liegt bei diesem Prototyp flächig auf der Gehäusewanne auf. Die thermische Verbindung zwischen Deckel und Gehäusewanne wurde mittels des Wärmeleitpads des Typs *HC5.0* realisiert. Bei einer größeren Stückzahl sollte die Dichtigkeit des Gehäuses z.B. über einen O-Ring o.ä. sichergestellt werden.

Abbildung 97: Foto des finalen Prototyps des einstufigen LLC-Ladewandlers

Das Leiterkarten-Layout wurde mit einer 4-lagigen Leiterkarte realisiert, die eine Kupferdicke von 70 µm in allen Lagen und eine zweilagige Prepreg-Isolationsschicht zwischen den Lagen aufweist. Das Gehäuse des Ladewandlers wurde für den prototypischen Aufbau in der Zentralwerkstatt der Universität Paderborn aus einem großen Aluminium-Block gefräst. Detaillierte Informationen zu dem Dem Leser können auf Anfrage die vollständigen Fertigungsdateien zu Verfügung gestellt werden.

Als Gap pad wird BERGQUIST HC 5.0 mit hoher thermischer Leitfähigkeit (5W/Km) und Isolationsspannung bis 5 kV zur verstärkten Isolation eingesetzt

134 РКОТОТУР

Leiterkarten-Layout können im DFG-Abschlussbericht [67] eingesehen werden. Der finale Aufbau ist in Abbildung 97 bzw. im geöffnetem Zustand in Abbildung 98 gezeigt.

Abbildung 98: Foto des aufgebauten Prototyps im geöffneten Zustand ohne Transformator

8.3 VERGLEICH MIT KOMMERZIELLEN LADEGERÄTEN

Tabelle 11 zeigt die Abmaße gängiger On-Board-Ladewandler, die in Elektrofahrzeugen der letzten Jahre eingesetzt werden. Alle Ladewandler sind zweistufig ausgeführt und erreichen hiermit eine maximale Leistungsdichte bis 1,5 kW/dm³ bei den Fahrzeugen *Audi e-tron* sowie *Mercedes EQC 400* (Baujahr jeweils 2019). Der hier behandelte einstufige LLC-Ladewandler erzielt mit dem vorgestellten Gehäusekonzept eine Leistungsdichte von 2,3 kW/dm³ und ist somit um 53 % kompakter als die kommerziell erhältlichen On-Board-Ladewandler, die in Tabelle 11 angeführt sind. Die Anschlüsse für die Wasserkühlung sowie zur elektrischen Kontaktierung zählen in diesem Vergleich nicht zum Bauvolumen des Ladewandlers.

Tabelle 11: Vergleich der Leistungsdichte kommerzieller zweistufiger Ladewandler mit dem hier entworfenen einstufigen LLC-Ladewandler

Fahrzeug	Baujahr	Leistung	Breite	Tiefe	Höhe	Leistungsdichte
Renault ZOE R135	2019	22 kW	245 mm	180 mm	355 mm	1,4 kW/dm ³
Audi e-tron Quattro	2019	11 kW	375 mm	100 mm	200 mm	1,5 kW/dm ³
Mercedes EQC 400	2019	11 kW	264 mm	106 mm	255 mm	$1,5 \mathrm{kW/dm^3}$
Polestar 2	2020	11 kW	420 mm	99 mm	254 mm	1,0 kW/dm ³
VW ID.3	2020	11 kW	480 mm	312 mm	100 mm	$0,7 kW/dm^3$
Einstufiger LLC	2021	3,68 kW	174 mm	95 mm	95 mm	2,3 kW/dm ³

Fazit

Der entwickelte einstufige LLC-Ladewandler erfordert geringeren Schaltungsaufwand als etablierte Topologien, da der LLC-Resonanzwandler beim einstufigen Ansatz direkt mit dem Netzgleichrichter verbunden wird, wodurch eine Vielzahl der Bauteile entfällt. In der vorliegenden Arbeit wurde gezeigt, dass mit einer solchen Topologie ein Ladewandler mit einer Leistungsdichte von 2,3 kW/dm³ realisiert werden kann. Hiermit ist der einstufige LLC-Ladewandler etwa 53 % kompakter als gängige zweistufige Lösungen und dies trotz des großen Strom- und Spannungsbereichs, für den der LLC-Resonanzwandler infolge des Verzichts auf einen Zwischenkreis auszulegen ist. Für einen aussagekräftigen Vergleich wurde bei der Realisierung des einstufigen Prototyps besonderes Augenmerk darauf gerichtet, die automotive-gerechte Isolationskoordination präzise einzuhalten und typische EMV-Filter in das Gerät zu integrieren.

Für die Schaltungsauslegung des einstufigen LLC-Ladewandlers hat sich die entworfene Zeitbereichsanalyse qualifiziert, deren hohe Genauigkeit in dieser Arbeit experimentell nachgewiesen wurde. Die hiermit berechneten Belastungsgrößen lassen sich mit den drei charakteristischen Parametern des Resonanzkreises gezielt vorgeben (Verhältnis von Streu- zu Hauptinduktivität λ , Kennimpedanz Z_{0C} und Übersetzungsverhältnis *n*). Eine Vorauswahl der Resonanzkreisparameter des einstufigen LLC-Ladewandlers wurde hiermit auf Basis seines typischen Arbeitsbereichs getroffen. Einschaltverluste werden vermieden, weil durch die Auslegung spannungsloses Einschalten der Transistoren im gesamten Arbeitsbereich gewährleistet ist. Die maximale Resonanzfrequenz (f_{0C}), bei der Nullspannungsschalten vollständig eingehalten wird, liegt bei GaN-Transistoren bis zu 10-mal höher als bei Si-Transistoren. Zur Erzielung höherer Resonanzfrequenzen ist daher die Auswahl auf GaN-HEMTs gefallen, die weiterhin vernachlässigbar kleine Abschaltverluste aufweisen, wie die messtechnische Charakterisierung gezeigt hat.

Gängige LLC-Resonanzwandler verwenden meist einen Transformator, dem eine separate Resonanzspule in Reihe geschaltet ist. Der Grund hierfür liegt im Wickelschema des Transformators, das zwar einerseits geringe Wicklungsverluste dank reduziertem Proximity-Effekt sicherstellt, jedoch andererseits einen zu hohen Koppelfaktor aufweist, um alle magnetischen Elemente des Resonanzkreises im Transformator zu integrieren, besonders die Serieninduktivität. In dieser Arbeit wurde ein Transformator mit magnetischem Streupfad entwickelt, der die gezielte Vorgabe des Koppelfaktors bei gleichzeitig verlustarmen Wickelschema kombiniert und so eine explizite Resonanzspule vermeidet. In einer automatisierten FEM-Routine wurde ein solcher Streupfad-Transformator in mehreren Iterationen hinsichtlich der Verluste optimiert. Zur realistischen Berücksichtigung der Wirbelstromverluste des Ferritkerns wurden vorab die komplexe Permeabilität und Permittivität konkurrierender Ferritmaterialien charakterisiert, indem applikationsspezifische Ferritproben vermessen wurden. Zur messtechnischen Verifikation des Transformators wurde die optimierte Kernstruktur aus Ferritblöcken durch Schleifen hergestellt, mit denen der integrierte Transformator prototypisch aufgebaut wurde.

Für die PFC-Regelung des LLC-Ladewandlers taugen konventionelle einschleifige LLC-Regelungen nicht, weil deren Robustheit gegenüber Exemplarstreuungen des Resonanzkreises unzureichend ist, um den Netzstrom konform zu EN 61000-3-2 regeln zu können. Zur Steigerung der Robustheit wurde eine Hysterese-Regelung entworfen, die mittels isoliertem Stromsensor im Resonanzkreis hohe Regelungsdynamik ermöglicht und weitgehend unabhängig von Bauteilparameterschwankungen ist. Zur experimentellen Verifikation wurde die entworfene Kaskaden-Hysterese-Regelung auf Basis eines Funktionsmusters implementiert. Dies geschah mittels hybrider Regelungshardware, bestehend aus Analog-, FPGA- und DSP-Teil, die eine kritische Latenz von etwa 120 ns aufweist und hiermit die gewünschte Regelungsgüte erreicht.

Ausblick

Zweifellos verbleiben große Hürden, um dem einstufigen LLC-Ladewandler den Markteintritt zu ermöglichen. Erstens ist die Akzeptanz eines pulsierenden Ladestroms bei den heutigen Fahrzeugherstellern noch nicht gegeben und auch kurzfristig nicht zu erwarten. Zu groß sind die Bedenken bzgl. der Alterung der Batterie sowie einer Störung weiterer Verbraucher an der Traktionsbatterie. Zweitens ist der Prototyp des einstufigen LLC-Ladewandlers ersten Abschätzungen zufolge nicht kommerziell wettbewerbsfähig, denn das Gehäuse ist nicht hinsichtlich einer automatisierten Fertigung konstruiert, die Industrialisierung des aufwändigen Streupfad-Transformators steht aus und die Kosten vieler Bauteile (z.B. GaN-HEMTs oder PLZT-Kondensatoren) sind noch zu hoch, was sich perspektivisch in den kommenden Jahren aber ändern dürfte.

Anknüpfungspunkte an die vorliegende Arbeit finden sich besonders in dreierlei Hinsicht: Erstens wäre zu untersuchen, ob zur Steigerung der Genauigkeit der Zeitbereichsanalyse die Kommutierungsintervalle berücksichtigt werden können und ob die hiermit verbundene Zunahme der Komplexität zu rechtfertigen ist. Weiterhin besteht Verbesserungspotential hinsichtlich der Kernverlust-Modellierung bei deutlichem Oberschwingungsgehalt der Schwingkreisspannung und bei höherer Frequenz – trotz der vielfältigen wissenschaftlichen Bemühungen der letzten Jahrzehnte. Drittens sollte zur Steigerung der Regelungsdynamik der Fokus auf die weitere Reduktion der Latenz gelegt werden, was beispielsweise durch eine integrierte Realisierung der Logik und des Gate-Treibers auf einem *ASIC* realisierbar scheint.

- EPCOS AG. Datasheet SIFERRIT material N87/N97/N95/N49. Techn. Ber. TDK Group Company, 2017.
- [2] EPCOS AG. *Ferrites and accessories Application notes*. Techn. Ber. TDK Group Company, 2017.
- [3] EPCOS AG. Datasheet Film Capacitors Metallized Polypropylene Film Capacitors (MKP) Series/Type: B32671L, B32672L Date: June 2018. Techn. Ber. TDK Group Company, 2018.
- [4] Infineon Technologies AG. *Datasheet 5th Generation IDW30G65C5*, *Rev. 2.2*. Techn. Ber. Infineon Technologies AG, 2013.
- [5] Infineon Technologies AG. AN2011-05 Industrial IGBT Modules Explanation of Technical Information, V1.2. Techn. Ber. Infineon Technologies AG, V1.2.
- [6] InfineonTechnologies AG. *Datasheet IPZ65R019C7 Rev. 2.0.* Techn. Ber. Infineon Technologies AG, 2013.
- [7] TDK Electronics AG. Datenblatt, CeraLink, Flex Assembly (FA) series, B58035U*. Techn. Ber. 2022.
- [8] M. Albach. Induktivitäten in der Leistungselektronik: Spulen, Trafos und ihre parasitären Eigenschaften. Springer Fachmedien Wiesbaden, 2017. ISBN: 9783658150815. URL: https://books. google.de/books?id=23UpDwAAQBAJ.
- [9] M. Albach, J. Patz, H. Roßmanith, D. Exner und A. Stadler. "Optimale Wicklung = optimaler Wirkungsgrad, Vergleich der Verluste in Litzen und Runddrähten". In: *Elektronikpower 2010,* www.elektroniknet.de (2010).
- Sid-Ali Amamra, Yashraj Tripathy, Anup Barai, Andrew D. Moore und James Marco. "Electric Vehicle Battery Performance Investigation Based on Real World Current Harmonics". In: *Energies* 13.2 (2020). ISSN: 1996-1073. DOI: 10.3390/en13020489. URL: https://www.mdpi.com/1996-1073/13/2/489.
- [11] Application Note The 5th Generation IGBT Chip use. Techn. Ber. Mitsubishi IGBT Modules, p. 7., 2014.
- [12] B. Backlund, R. Schnell, U. Schlapbach, R. Fischer und E. Tsyplakov. *Application Note 5SYA 2053-04, Applying IGBTs, Version 04, p. 5.* Techn. Ber. ABB Switzerland Ltd Semiconductors, 2013.
- J. Böcker. "Analysis of the Magnetic Skin Effekt in Motors and Inductors". In: 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 2020, S. 103–107. DOI: 10.1109/SPEEDAM48782.2020.9161895.

- [14] J. Böcker, S. Schoos und S. Dieckerhoff. "Experimental Comparison and 3D FEM Based Optimization of Current Measurement Methods for GaN Switching Characterization". In: 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe). 2018, P.1–P.9.
- [15] Jan Böcker. "Analyse und Optimierung von AlGaN/GaN-HEMTs in der leistungselektronischen Anwendung". Doctoral Thesis. Berlin: Technische Universität Berlin, 2020. DOI: 10.14279/depositonce-9678. URL: http://dx.doi.org/10. 14279/depositonce-9678.
- [16] Giorgio Bertotti. Hysteresis in Magnetism for Physicists, Materials Scientists, and Engineers. Academic Press; Illustrated Edition, 1998. ISBN: 978-0120932702.
- [17] S. Bolte, N. Fröhleke und J. Böcker. "Comparison of the performance of gallium nitride (GaN) transistors in a totem-pole power factor controlled (PFC) rectifier". In: 2016 IEEE International Telecommunications Energy Conference (INTELEC). 2016, S. 1–5. DOI: 10.1109/INTLEC.2016.7749113.
- [18] Sven Bolte. "Modellierung und Optimierung leistungselektronischer Konverter mit Halbleitern großer Bandlücke unter Verwendung kalorimetrischer Messverfahren". Diss. Universität Paderborn, 2019.
- [19] Sven Bolte, Jan Baurichter, Carsten Henkenius, Norbert Fröhleke und Joachim Böcker. "Verlustmodellierung und Effzienzoptimierung einer hart schaltenden, netzfreundlichen Pulsgleichrichterstufe (PFC)". In: *Internationaler ETG Kongress, Berlin.* 2013.
- [20] D. Bortis, L. Fässler und J. W. Kolar. "Comprehensive analysis and comparative evaluation of the isolated true bridgeless Cuk single-phase PFC rectifier system". In: 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL). 2013, S. 1–9. DOI: 10.1109/COMPEL.2013.6626438.
- [21] Frank G. Brockman, P. H. Dowling und Walter G. Steneck. "Dimensional Effects Resulting from a High Dielectric Constant Found in a Ferromagnetic Ferrite". In: *Phys. Rev.* 77 (1 1950), S. 85–93. DOI: 10.1103/PhysRev.77.85. URL: https://link.aps.org/doi/10.1103/PhysRev.77.85.
- [22] David C.Meeker. "An improved continuum skin and proximity effect model for hexagonally packed wires". In: *Journal of Computational and Applied Mathematics* (2012).
- [23] Zhiyu Cao. "Model-Based Development of DC-DC Converters with Wide Operation Range and High Dynamics". Diss. Paderborn University, 2014.

- [24] J. Casico und M Nalbant, Hrsg. Active Power Factor Correction Using a Flyback Topology. Proceedings of the PCIM Conference. 1990.
- [25] H. Cha, L. Chen, R. Ding, Q. Tang und F. Z. Peng. "An Alternative Energy Recovery Clamp Circuit for Full-Bridge PWM Converters With Wide Ranges of Input Voltage". In: *IEEE Transactions on Power Electronics* 23.6 (2008), S. 2828–2837. ISSN: 0885-8993. DOI: 10.1109/TPEL.2008.2003131.
- [26] L. R. Chen. "Design of Duty-Varied Voltage Pulse Charger for Improving Li-Ion Battery-Charging Response". In: IEEE Transactions on Industrial Electronics 56.2 (2009), S. 480–487. ISSN: 0278-0046. DOI: 10.1109/TIE.2008.2002725.
- [27] L. R. Chen, S. L. Wu, D. T. Shieh und T. R. Chen. "Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries". In: *IEEE Transactions on Industrial Electronics* 60.1 (2013), S. 88–97. ISSN: 0278-0046. DOI: 10.1109/TIE.2012.2186106.
- [28] R. C. Cope und Y. Podrazhansky. "The art of battery charging". In: Fourteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.99TH8371). 1999, S. 233–235. DOI: 10.1109/BCAA.1999.795996.
- [29] KEMET Electronics Corporation. Datasheet High Voltage CoG Dielectric, 500 – 10,000 VDC (Commercial Grade) (Version 5/23/2019). Techn. Ber. KEMET Electronics Corporation, 2019.
- [30] Daming Zhang und Chek Fok Foo. "A practical method to determine intrinsic complex permeabilities and permittivities for Mn-Zn ferrites". In: *IEEE Transactions on Magnetics* 41.4 (2005), S. 1226–1232. DOI: 10.1109/TMAG.2005.845916.
- [31] Datasheet AV02-4079EN. Techn. Ber. Broadcom Inc, 2018.
- [32] Datasheet, AFBR-2529SIZ, DC-50MBd Versatile Link Fiber-Optic Receiver with Monitoring Output for 1 mm POF and 200 µm PCS. Techn. Ber. Broadcom Inc, 2018.
- [33] J. Deng, C. C. Mi, R. Ma und S. Li. "Design of LLC Resonant Converters Based on Operation-Mode Analysis for Level Two PHEV Battery Chargers". In: *IEEE/ASME Transactions* on Mechatronics 20.4 (2015), S. 1595–1606. ISSN: 1083-4435. DOI: 10.1109/TMECH.2014.2349791.
- [34] R. Ehsan, K. Sann und M. Vogel. Kompendium: Li-Ionen-Batterien im BMWi Förderprogramm IKT für Elektromobilität II: Smart Car
 Smart Grid – Smart Traffic Grundlagen, Bewertungskriterien, Gesetze und Normen. VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V. Stresemannallee 15 60596 Frankfurt am Main, Juli 2015.

- [35] "Electrical Breakdown in Gases". In: Foundations of Pulsed Power Technology. John Wiley & Sons, Ltd, 2017, S. 369–438. ISBN: 9781118886502. DOI: https://doi.org/10.1002/ 9781118886502.ch8.eprint: https://onlinelibrary.wiley. com/doi/pdf/10.1002/9781118886502.ch8.URL: https:// onlinelibrary.wiley.com/doi/abs/10.1002/9781118886502. ch8.
- [36] Stefan Endres, Christoph Seßler, Stefan Zeltner, Bernd Eckardt und Tatsuo Morita. "6 kW Bidirectional, Insulated On-board Charger With Normally-Off GaN Gate Injection Transistors". In: PCIM Europe 2017 (2017).
- [37] H. Figge, T. Grote, N. Froehleke, J. Boecker und P. Ide. "Paralleling of LLC resonant converters using frequency controlled current balancing". In: 2008 IEEE Power Electronics Specialists Conference. 2008, S. 1080–1085. DOI: 10.1109/PESC.2008. 4592073.
- [38] H. Figge, T. Grote, N. Froehleke, J. Boecker und F. Schafmeister. "Overcurrent protection for the LLC resonant converter with improved hold-up time". In: *Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE.* 2011, S. 13–20. DOI: 10.1109/APEC.2011.5744569.
- [39] Heiko Figge. "High power LLC resonant converter optimized for high efficiency and industrial use". Diss. Universität Paderborn, 2016.
- [40] F. Fiorillo, C. Beatrice, O. Bottauscio und E. Carmi. "Eddy-Current Losses in Mn-Zn Ferrites". In: *IEEE Transactions on Magnetics* 50.1 (2014), S. 1–9. DOI: 10.1109/TMAG.2013.2279878.
- [41] E. Firmansyah, S. Tomioka, S. Abe, M. Shoyama und T. Ninomiya. "A critical-conduction-mode bridgeless interleaved boost power factor correction". In: *IEICE Transactions on Communications* (2010).
- [42] Otto Föllinger. Regelungstechnik: Einführung in die Methoden und ihre Anwendung. Bd. 10. Auflage. Hüthig Verlag, 2008. ISBN: 978-3778529706.
- [43] A. J. Forsyth, G. A. Ward und S. V. Mollov. "Extended fundamental frequency analysis of the LCC resonant converter". In: *IEEE Transactions on Power Electronics* 18.6 (2003), S. 1286–1292. ISSN: 0885-8993. DOI: 10.1109/TPEL.2003.818826.
- [44] G. E. Gamache und C. R. Sullivan. "Resonant converter transformer design and optimization". In: 2011 IEEE Energy Conversion Congress and Exposition. 2011, S. 590–597. DOI: 10.1109/ ECCE.2011.6063823.

- [45] D. Graovac, M. Pürschel und A. Kiep. MOSFET Power Losses Calculation Using the DataSheet Parameters, Application Note, V 1.1. Techn. Ber. Infineon Technologies AG, 2006.
- [46] K. Götz, G. Sunderer, B. Birzle-Harder und J. Deffner. "Attraktivität und Akzeptanz von Elektroautos", Ergebnisse aus dem Projekt OPTUM – Optimierung der Umweltentlastungspotenziale von Elektrofahrzeugen". In: ISOE-Studientexte, Nr. 18 (2012). ISSN: 0947-6083.
- [47] W. Hauser. "Modellbildung für strukturabhängige Effekte in Ferritkernen". Diss. Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg, 2017.
- [48] W. Hauser und M. Albach. "Analytic model of structural effects in toroid cores with rectangular cross section". In: 2016 6th International Electric Drives Production Conference (EDPC). 2016, S. 60–66. DOI: 10.1109/EDPC.2016.7851315.
- [49] N. Higham. "The Scaling and Squaring Method for the Matrix Exponential Revisited". In: SIAM Review 51.4 (2009), S. 747– 764. DOI: 10.1137/090768539. eprint: https://doi.org/10. 1137/090768539. URL: https://doi.org/10.1137/090768539.
- [50] P. Hosemann. Aufbau eines LLC-Resonanzwandlers auf Basis von GaN-Bauelementen. Bachelorarbeit, Universität Paderborn, Fachgebiet Leistungselektronik und elektrische Antriebstechnik, 2017.
- [51] R. Hou, J. Lu und D. Chen. "Parasitic capacitance Eqoss loss mechanism, calculation, and measurement in hard-switching for GaN HEMTs". In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). 2018, S. 919–924. DOI: 10.1109/ APEC.2018.8341124.
- [52] R. Hou, J. Xu und D. Chen. "A multivariable turn-on/turn-off switching loss scaling approach for high-voltage GaN HEMTs in a hard-switching half-bridge configuration". In: 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). 2017, S. 171–176. DOI: 10.1109/WiPDA.2017.8170542.
- Y. C. Hsieh und C. S. Huang. "Li-ion battery charger based on digitally controlled phase-shifted full-bridge converter". In: *IET Power Electronics* 4.2 (2011), S. 242–247. ISSN: 1755-4535. DOI: 10.1049/iet-pel.2009.0206.
- [54] S. Hsu, R.D. Middelbrook und S. Cuk. "Transformer Modelling and Design for Leakage Control". In: Advances in Switched-Mode Power Conversion, TESLAco (1981).
- [55] Z. Hu, Y. Liu und P. C. Sen. "Cycle-by-cycle average input current sensing method for LLC resonant topologies". In: 2013 IEEE Energy Conversion Congress and Exposition. 2013, S. 167– 174. DOI: 10.1109/ECCE.2013.6646696.

- [56] Zhiyuan Hu, Laili Wang, Yan-Fei Liu und P. C. Sen. "Bang-Bang charge control for LLC resonant converters". In: 2013 IEEE Energy Conversion Congress and Exposition. 2013, S. 140– 146. DOI: 10.1109/ECCE.2013.6646692.
- [57] Ruifeng Huang und Daming Zhang. "Theoretical and Experimental Comparison of Different Lumped Circuit Methods for Determination of Mn–Zn Ferrites' Intrinsic Complex Permeability and Permittivity". In: *IEEE Transactions on Magnetics* 44.6 (2008), S. 846–849. DOI: 10.1109/TMAG.2008.916543.
- [58] L. Huber, Y. Jang und M. M. Jovanovic. "Performance Evaluation of Bridgeless PFC Boost Rectifiers". In: *IEEE Transactions on Power Electronics* 23.3 (2008), S. 1381–1390. ISSN: 0885-8993. DOI: 10.1109/TPEL.2008.921107.
- [59] GaN Systems Inc. Preliminary Datasheet, Top-side cooled 650 V E-mode GaN transistor, GS66516T, Rev 200227. Techn. Ber. 2020.
- [60] InfineonTechnologiesAG. Datenblatt 600VCoolMOS^a, CFD7 Power Transistor, IPW60R018CFD7. Techn. Ber. Infineon Technologies AG, 2018.
- [61] Texas Instruments. *TMS*320C674x/OMAP-L1x Processor, Universal Parallel Port (uPP), User's Guide. Techn. Ber. 2010.
- [62] Y. Jang und M. M. Jovanovic. "A Bridgeless PFC Boost Rectifier With Optimized Magnetic Utilization". In: *IEEE Transacti*ons on Power Electronics 24.1 (2009), S. 85–93. ISSN: 0885-8993. DOI: 10.1109/TPEL.2008.2006054.
- [63] KEMET. K-SIM capacitor simulation tool. Techn. Ber. Browser Tool, 2019. URL: http://ksim.kemet.com/.
- [64] Sang-Woo Kang und Bo-Hyung Cho. "Digitally Implemented Charge Control for LLC Resonant Converters". In: *IEEE Transactions on Industrial Electronics* 64.8 (2017), S. 6159–6168. DOI: 10.1109/TIE.2017.2682801.
- [65] M. Kącki, M. S. Ryłko, J. G. Hayes und C. R. Sullivan. "A Study of Flux Distribution and Impedance in Solid and Laminar Ferrite Cores". In: 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). 2019, S. 2681–2687. DOI: 10.1109/APEC. 2019.8722252.
- [66] J. Kennedy und R. Eberhart. "Particle swarm optimization". In: Proceedings of ICNN'95 - International Conference on Neural Networks. Bd. 4. 1995, 1942–1948 vol.4. DOI: 10.1109/ICNN. 1995.488968.
- [67] L. Keuck, F. Schafmeister und J. Böcker. Abschlussbericht des DFG-geförderten Forschungsvorhabens Einstufiger Ladegleichrichter auf Basis eines LLC-Resonanzwandlers". Techn. Ber. Paderborn University, 2023.

- [68] L. Keuck, B. Strothmann, R. Hermelingmeier, N. Fröhleke und J. Böcker. "Single-stage battery charger based on a LLC resonant converter - a concept study". In: 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016). 2016, S. 1–6. DOI: 10.1049/cp.2016.0139.
- [69] L. Keuck, N. Jabbar, F. Schafmeister und J. Böker. "Switching Loss Characterization of Wide Band-Gap Devices by an Indirect Identification Methodology". In: 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe). 2018, P.1–P.10.
- [70] M. Kwon und S. Choi. "An Electrolytic Capacitorless Bidirectional EV Charger for V2G and V2H Applications". In: *IEEE Transactions on Power Electronics* 32.9 (2017), S. 6792–6799. ISSN: 0885-8993. DOI: 10.1109/TPEL.2016.2630711.
- [71] J. F. Lazar und R. Martinelli. "Steady-state analysis of the LLC series resonant converter". In: *Applied Power Electronics Conference and Exposition*, 2001. APEC 2001. Sixteenth Annual IEEE. Bd. 2. 2001, 728–735 vol.2. DOI: 10.1109/APEC.2001.912451.
- [72] Q. Li, M. A. E. Andersen und O. C. Thomsen. "Conduction losses and common mode EMI analysis on bridgeless power factor correction". In: 2009 International Conference on Power Electronics and Drive Systems (PEDS). 2009, S. 1255–1260. DOI: 10.1109/PEDS.2009.5385856.
- S. Li, J. Deng und C. C. Mi. "Single-Stage Resonant Battery Charger With Inherent Power Factor Correction for Electric Vehicles". In: *IEEE Transactions on Vehicular Technology* 62.9 (2013), S. 4336–4344. ISSN: 0018-9545. DOI: 10.1109/TVT.2013. 2265704.
- J. Lu, A. R. Taylor, K. Bai, G. Liu, A. Brown, M. Johnson und M. McAmmond. "A Modular Designed Three-phase Highefficiency High-power-density EV Battery Charger Using Dual/Triple-Phase-Shift Control". In: *IEEE Transactions on Power Electronics* PP.99 (2017), S. 1–1. ISSN: 0885-8993. DOI: 10.1109/TPEL.2017.2769661.
- [75] C. Marxgut, F. Krismer, D. Bortis und J. W. Kolar. "Ultraflat Interleaved Triangular Current Mode (TCM) Single-Phase PFC Rectifier". In: *IEEE Transactions on Power Electronics* 29.2 (2014), S. 873–882. ISSN: 0885-8993. DOI: 10.1109/TPEL.2013.2258941.
- [76] B. McDonald und Y. Li. "A novel LLC resonant controller with best-in-class transient performance and low standby power consumption". In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). 2018, S. 489–493. DOI: 10.1109/ APEC.2018.8341056.

- [77] M. Meinhardt, M. Duffy, T. O'Donnell, S. O'Reilly, J. Flannery und C. O Mathuna. "New method for integration of resonant inductor and transformer-design, realisation, measurements". In: APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285). Bd. 2. 1999, 1168–1174 vol.2. DOI: 10.1109/APEC.1999.750516.
- [78] C. Moler und C.V. Loan. "Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later". In: SIAM Review 45.1 (2003), S. 3–49. DOI: 10.1137 / S00361445024180. eprint: https://doi.org/10.1137/S00361445024180. URL: https://doi.org/10.1137/S00361445024180.
- [79] F. Musavi, M. Edington, W. Eberle und W. G. Dunford. "Evaluation and Efficiency Comparison of Front End AC-DC Plugin Hybrid Charger Topologies". In: *IEEE Transactions on Smart Grid* 3.1 (2012), S. 413–421. ISSN: 1949-3053. DOI: 10.1109/TSG. 2011.2166413.
- [80] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle und W. G. Dunford. "An LLC Resonant DC-DC Converter for Wide Output Voltage Range Battery Charging Applications". In: *IEEE Transactions on Power Electronics* 28.12 (2013), S. 5437–5445. ISSN: 0885-8993. DOI: 10.1109/TPEL.2013.2241792.
- [81] A. Nabih, M. Ahmed, Q. Li und F.C. Lee. "Simplified Optimal Trajectory Control for 1 MHz LLC Converter with Wide Input Voltage Range". In: 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). 2019, S. 212–219. DOI: 10.1109/ APEC.2019.8722275.
- [82] X. Nan und C. R. Sullivan. "An Equivalent Complex Permeability Model for Litz-Wire Windings". In: *IEEE Transactions on Industry Applications* 45.2 (2009), S. 854–860. ISSN: 0093-9994. DOI: 10.1109/TIA.2009.2013594.
- [83] D. Neumayr, D. Bortis und J. W. Kolar. "Ultra-compact Power Pulsation Buffer for single-phase DC/AC converter systems". In: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). 2016, S. 2732–2741. DOI: 10. 1109/IPEMC.2016.7512730.
- [84] K. Niyomsatian, J. Gyselinck und R.V. Sabariego. "New closed-form proximity-effect complex permeability expression for characterizing litz-wire windings". In: *Tenth International Conference on Computational Electromagnetics (CEM 2019)*. 2019, S. 1–2. DOI: 10.1049/cp.2019.0117.
- [85] K Niyomsatian, J. Van den Keybus, R. V. Sabariego und J. Gyselinck. "Frequency-domain homogenization for litz-wire bundles in finite element calculations". In: 2016 18th European

Conference on Power Electronics and Applications (EPE'16 ECCE Europe). 2016, S. 1–10. DOI: 10.1109/EPE.2016.7695378.

- [86] C. Nobis und T. Kuhnimhof. "Mobilität in Deutschland MiD Ergebnisbericht". In: Studie von infas, DLR, IVT und infas 360 im Auftrag des Bundesministeriums für Verkehr und digitale Infrastruktur (2012).
- [87] C. Oeder, A. Bucher, J. Stahl und T. Duerbaum. "A comparison of different design methods for the multiresonant LLC converter with capacitive output filter". In: 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL). 2010, S. 1–7. DOI: 10.1109/COMPEL.2010.5562440.
- [88] Panasonic. Datasheet Lithium Ion NCR18650B. Techn. Ber. 2012.
- [89] N. P. Papanikolaou und E. C. Tatakis. "Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode". In: *IEE Proceedings - Electric Power Applications* 149.4 (2002), S. 283–291. ISSN: 1350-2352. DOI: 10.1049/ipepa:20020370.
- [90] A. Pawellek, C. Oeder, J. Stahl und T. Duerbaum. "The resonant LLC vs. LCC converter - comparing two optimized prototypes". In: 2011 IEEE Energy Conversion Congress and Exposition. 2011, S. 2229–2235. DOI: 10.1109/ECCE.2011.6064064.
- [91] C. Pham. SiC MOSFET Switching: turn-on, turn off, Training Material, p. 4. Techn. Ber. Cree Inc., 2016.
- [92] J. D. Pollock und C. R. Sullivan. "Design considerations for high-efficiency leakage transformers". In: 2015 IEEE Applied Power Electronics Conference and Exposition (APEC). 2015, S. 162– 169. DOI: 10.1109/APEC.2015.7104347.
- [93] R. Redl, N. O. Sokal und L. Balogh. "A novel soft-switching full-bridge DC/DC converter: Analysis, design considerations, and experimental results at 1.5 kW, 100 kHz". In: 21st Annual IEEE Conference on Power Electronics Specialists. 1990, S. 162–172. DOI: 10.1109/PESC.1990.131185.
- [94] M. Rosekeit und R. W. De Doncker. "Smoothing power ripple in single phase chargers at minimized dc-link capacitance". In: *Power Electronics and ECCE Asia (ICPE ECCE), 2011 IEEE 8th International Conference on.* 2011, S. 2699–2703. DOI: 10.1109/ ICPE.2011.5944759.
- [95] H. Rossmanith, E. Stenglein und M. Albach. "Prediction of the leakage inductance in high frequency transformers". In: 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). 2016, S. 1–10. DOI: 10.1109/EPE.2016. 7695281.

- [96] W. Rudschies und M. Vogt. "Elektroauto: Die ideale Batteriegröße". In: ADAC Technik Zentrum (2021). URL: https://www. adac.de/rund-ums-fahrzeug/elektromobilitaet/kaufen/ elektroauto-batterie-groesse/.
- [97] F. Schafmeister. *Switched-mode Power Supplies Lecture Notes*. Universität Paderborn, 2021.
- [98] M. Scherbaum, M. Reddig, R. Kennel und M. Schlenk. "An Isolated, bridgeless, quasi-resonant ZVS-switching, buck-boost single-stage AC-DC converter with power factor correction (PFC)". In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). 2017, S. 74–81. DOI: 10.1109/APEC.2017. 7930675.
- [99] D. Schröder. *Leistungselektronische Bauelemente*. Springer, 2006. ISBN: 3-540-28728-0.
- [100] D. Schröder. Leistungselektronische Schaltungen: Funktion, Auslegung und Anwendung. Auflage: 3. Springer, 2012. ISBN: 978-3642301032.
- [101] G. Skutt. "High-Frequency Dimensional Effects in Ferrite-Core Magnetic Devices". Diss. Virginia Polytechnic Institute und State University, Blacksburg, Virginia, 1996.
- [102] E.C. Snelling. Soft ferrites: properties and applications. Soft Ferrites: Properties and Applications Bd. 1969, Teil 2. Iliffe, 1969. URL: https://books.google.de/books?id=mxksAQAAIAAJ.
- [103] J. H. Spreen. "Electrical terminal representation of conductor loss in transformers". In: *IEEE Transactions on Power Electronics* 5.4 (1990), S. 424–429. ISSN: 0885-8993. DOI: 10.1109/63.60685.
- [104] S. Sprunck. Charakterisierung der Schaltverluste diskreter Wide Band Gap Leistungshalbleiter und Entwärmung kompakter Bauteile. Elektrische Energiesysteme. Kassel University Press, 2021.
 ISBN: 9783737609432. URL: https://books.google.de/books? id=UM1ezgEACAAJ.
- [105] A. Stadler. "Messtechnische Bestimmung und Simulation der Kernverluste in weichmagnetischen Materialien". Diss. Universität Erlangen–Nürnberg, 2009.
- [106] R. L. Steigerwald. "A comparison of half-bridge resonant converter topologies". In: *Applied Power Electronics Conference and Exposition*, 1987 IEEE. 1987, S. 135–144. DOI: 10.1109/APEC. 1987.7067142.
- [107] C. P. Steinmetz. "On the law of hysteresis". In: *Proceedings of the IEEE* 72.2 (1984), S. 197–221. DOI: 10.1109/PROC.1984.
 12842.

- [108] K. Stella u.a. "Über 300.000 Kilometer unter Strom, Physikalisch-technische, ökonomische, ökologische und sozialwissenschaftliche Begleitforschung des Schaufensterprojektes Rhein-Mobil: Grenzüberschreitende, perspektivisch wirtschaftliche elektrische Pendlerund Dienstwagenverkehre im deutschfranzö-sischen Kontext." In: Karlsruher Institut für Technologie (KIT) (2015).
- [109] B. Strothmann. Aufbau eines LLC-Resonanzwandlers zur Verifikation eines Verlust- und Volumenmodells. Masterarbeit, Universität Paderborn, Fachgebiet Leistungselektronik und elektrische Antriebstechnik, 2016.
- B. Strothmann, F. Schafmeister und J. Böcker. "Pareto Design and Switching Frequencies for SiC MOSFETs Applied in an 11 kW Buck Converter for EV-Charging". In: 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). 2019, S. 2234–2240. DOI: 10.1109/APEC.2019.8721850.
- [111] B. Su und Z. Lu. "An Interleaved Totem-Pole Boost Bridgeless Rectifier With Reduced Reverse-Recovery Problems For Power Factor Correction". In: *IEEE Transactions on Power Electronics* 25.6 (2010), S. 1406–1415. ISSN: 0885-8993. DOI: 10.1109/TPEL. 2010.2040633.
- [112] K. Uddin, A. Moore, A. Barai und J. Marco. "The effects of high frequency current ripple on electric vehicle battery performance". In: *Applied Energy* 178 (2016), S. 142–154. ISSN: 0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2016.06.033. URL: https://www.sciencedirect.com/science/article/pii/S030626191630808X.
- [113] M. Uno und K. Tanaka. "Influence of High-Frequency Charge-Discharge Cycling Induced by Cell Voltage Equalizers on the Life Performance of Lithium-Ion Cells". In: *IEEE Transactions* on Vehicular Technology 60.4 (2011), S. 1505–1515. ISSN: 0018-9545. DOI: 10.1109/TVT.2011.2127500.
- [114] H. Wang, S. Dusmez und A. Khaligh. "Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range". In: *IEEE Transactions on Vehicular Technology* 63.4 (2014), S. 1603–1613. ISSN: 0018-9545. DOI: 10.1109/ TVT.2013.2288772.
- [115] M. Wippermann, L. Riekschnietz, P. Grote, F. Ludolph, C. Strätling, M. Süggeler und F. Wohlgemuth. "Energiebericht 2016 für die Stadt Paderborn - Weser Netz GmbH". In: (2016).
- [116] H. Ye, Z. Yang, J. Dai, C. Yan, X. Xin und J. Ying. "Common mode noise modeling and analysis of dual boost PFC circuit". In: *INTELEC 2004. 26th Annual International Telecommunications*

Energy Conference. 2004, S. 575–582. DOI: 10.1109/INTLEC.2004. 1401526.

- [117] K. M. Yoo, K. D. Kim und J. Y. Lee. "Single- and Three-Phase PHEV Onboard Battery Charger Using Small Link Capacitor". In: *IEEE Transactions on Industrial Electronics* 60.8 (2013), S. 3136–3144. ISSN: 0278-0046. DOI: 10.1109/TIE.2012. 2202361.
- [118] R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W. K. Ling und J. Lam. "Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter". In: *IEEE Transactions on Power Electronics* 27.7 (2012), S. 3243–3256. ISSN: 0885-8993. DOI: 10.1109/TPEL.2011.2179562.
- [119] R. Y. Zhang, J. K. White, J. G. Kassakian und C. R. Sullivan. "Realistic litz wire characterization using fast numerical simulations". In: 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014. 2014, S. 738–745. DOI: 10.1109/APEC. 2014.6803390.
- Z. Zhang, B. Guo, F. Wang, L. M. Tolbert, B. J. Blalock, Z. Liang und P. Ning. "Methodology for switching characterization evaluation of wide band-gap devices in a phase-leg configuration". In: 2014 IEEE Applied Power Electronics Conference and Exposition APEC 2014. 2014, S. 2534–2541. DOI: 10.1109/APEC. 2014.6803660.
- [121] D. R. Zimmanck und C. R. Sullivan. "Efficient calculation of winding-loss resistance matrices for magnetic components". In: 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL). 2010, S. 1–5. DOI: 10.1109/COMPEL.2010. 5562359.
- [122] S. Ćuk. "Single-Stage AC-DC Converter Topologies of 98Singlephase and Three-phase rectifiers". In: *PCIM Europe*. 2011.

ABBILDUNGSVERZEICHNIS

Abbildung 1	Ladezeiten bekannter Elektrofahrzeuge [96] in Abhängigkeit der Ladeleistung (Annahmen: 80% Entladen 00% Ladewirkungsgrad kon-	
	stante Ladeleistung)	2
Abbildung 2	Typische Schaltungsstruktur eines zweistufi-	5
- incentating -	gen Ladewandlers bestehend aus PFC-Gleich-	
	richter und LLC-Resonanzwandler	4
Abbildung 3	PFC-Topologien, die als erste Stufe im zwei-	+
fillendaning j	stufigen Ladegleichrichter einsetzbar sind [58	
	62]	5
Abbildung 4	Spanning u_{CM} der PEC-Topologien aus Abbil-)
ribbildulig 4	dung a [72]	6
Abbildung =	Vereinfachte Schaltungsstruktur des behandel-	0
ribbildulig y	ten einstufigen Ladewandlers bei dem PFC-	
	Cleichrichter und Elektrolytkondensator ent-	
	fallen (hellgrau)	10
Abbildung 6	Ladeprofil bei angenommener Serienschaltung	10
Abbildulig 0	von of typischen LiJon-Zellen der Bauform	
	18650 bei einem Ladestrom von 0.50 und	
	25° C [88]	тл
Abbildung 7	Netzstromaufnahme in hei reduziertem Strom-	14
Abbildung /	flusswinkel ϕ_{c} mit dem berechneten Ober-	
	schwingungsgehalt bei $m = 1.18$ der die	
	Cranzwarte aus der IEC 61000-2-2 (Klasse A)	
	einhält und den geforderten Leistungsfaktor	
	har übersteigt	15
Abbildung 8	Rerechnotor minimalor Stromflusswinkol da	15
Abbildulig 0	mit dem Stauchungsfaktor m der für die	
	Konformität mit der Oberschwingungsnorm	
	EN 61000-2-2 zu verwenden ist und hier-	
	mit den gewünschten Leistungsfaktor von	
	$\lambda = 0.98$ arreight	16
Abbildung	$\Lambda = 0,90$ effective $1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2$	10
Abbildulig 9	des einstufigen LLC-Ladewandlers zugrunde	
	gologt worden	10
Abbildung 10	Prinzipschalthild dos LLC-Rosonanzwandlers	17
Abbildulig 10	zur Modellierung im Zeithereich	10
Abbildung 11	Ersatzschalthild für den Schaltzustand C^{\pm} für	19
	leitende Dioden	22
Abbildung 12	Ersatzschalthild für den Schaltzustand P für	22
100 liuling 12	blockierende Dioden	22
		23

Abbildung 13	Ausgang des LLC-Resonanzwandlers inkl. Batterie mit Innenwiderstand und Leitungs-	
	induktivität	25
Abbildung 14	DCM-Betriebsarten des LLC-Resonanzwandlers,	
	in denen stets der Schaltzustand <i>B</i> enthalten ist	27
Abbildung 15	CCM-Betriebsarten des LLC-Resonanzwandlers,	
	bei denen unmittelbar zwischen den Schaltzu-	
	ständen C^{\perp} für leitende Dioden gewechselt	0
		28
Abbildung 16	Flussdiagramm für die numerische Lösung	
	der Zeitbereichsanalyse	31
Abbildung 17	Vergleich des Ergebnisses der Zeitbereichs-	
	analyse mit der Messung in der Betriebsart	
	DCMB2 (Schaltsequenz C^+ , B)	34
Abbildung 18	Vergleich des Ergebnisses der Zeitbereichsana-	
	lyse mit der Messung in der Betriebsart CCMA	
	$(Schaltsequenz C^-, C^+) \dots \dots \dots \dots$	35
Abbildung 19	Vergleich des Ergebnisses der Zeitbereichsana-	
	lyse mit der Messung in der Betriebsart DC-	
	MAB (Schaltsequenz B, C^+, B)	36
Abbildung 20	Vergleich des Ergebnisses der Zeitbereichsana-	
	lyse mit der Messung in der Betriebsart CU-	
	TOFF (Schaltsequenz B)	37
Abbildung 21	Verifikation der berechneten Belastungsgrö-	
	ßen im Hochsetzbetrieb bei $U_1 = 150 \mathrm{V}$ und	
	$U_{\text{Batt}} = 170 \text{ V}$ mit emuliertem Batterie-Innen-	
	widerstand von $R_i = 1 \Omega \dots \dots \dots \dots$	37
Abbildung 22	Verifikation der berechneten Belastungsgrö-	
	ßen im Tiefsetzbetrieb bei $U_1 = 150 \mathrm{V}$ und	
	$U_{\text{Batt}} = 130 \text{V}$ mit emulierten Batterie-Innen-	
	widerstand von $R_i = 1 \Omega \dots \dots \dots \dots$	38
Abbildung 23	Resonanzstrom-Effektivwert $I_{LScycle}$, bezogen	
	auf den Netzstrom I _{Netz} , gebildet über den	
	Arbeitsbereich von Abb. 9	40
Abbildung 24	Diodenstrom-Effektivwert $I_{LScycle}$, bezogen auf	
	den Effektivwert des Netzstromes I_{Netz} , gebil-	
	det über den Arbeitsbereich aus Abb. 9	41
Abbildung 25	Maximaler Abschaltstrom $ i_{LS0} $, bezogen auf	
	den Effektivwert des Netzstroms I _{Netz} , gebil-	
	det über einen Ladezyklus	42
Abbildung 26	Schaltfrequenz f_{Smax} , bezogen auf die jeweili-	
	ge Kesonanztrequenz f_{0C} , gebildet über einen	
. 1 1 • 1 1		43
Abbildung 27	Kondensatorspitzenspannung u_{CSpeak} in einem	
	Ladezyklus, bezogen auf den Effektivwert der	
	Netzspannung U_{Netz}	44

Abbildung 28	Vergleich der Kommutierungsvorgänge für Silizium-Superjunction-MOSFETs mit R _{DS.on} =17 m	ıΩ
	bei zwei verschiedenen Kommutierungsladun-	
	gen O _C im gleichem Arbeitspunkt.	45
Abbildung 29	Vergleich der parasitären Ausgangskapazität	15
	Coss und der gespeicherten Ladung Oos	
	zwischen kommerziell erhältlichen Silizium-	
	Superium Continent Superium Content Superium Superium Content Content Superium Content Supe	
	(rot) Eür einen direkten Versleich wurde mit	
	(101). Fui einen direkten vergieich wurde nin	
	dem Kenrwert des jeweiligen Durchlasswider-	
. 1 1 .1 1		47
Abbildung 30	Vergleich der Kommutierungsvorgänge zwi-	
	schen Silizium-Superjunction-MOSFETs und	
	GaN-HEMTs	48
Abbildung 31	Schaltzustand vor (t_1) und nach (t_2) hartem	
	Einschalten von S_2 bei angenommener Kom-	
	mutierungsladung von Null	49
Abbildung 32	Innere Energie E_{OSS} , die beim harten Einschal-	
	ten dissipiert wird, sowie die Einschaltverlus-	
	te die sich insgesamt ohne Kommutierungsla-	
	dung $Q_{\rm C}$ ergeben	50
Abbildung 33	Die Kommutierungsladung $Q_{\rm C}/2$ wird wie-	
0.00	derum mit der Zeitbereichsanalyse abgeschätzt.	
	Analog zu den gezeigten Betriebsarten DCMB2	
	und CCMA wird auch in den weiteren Be-	
	triebsarten vorgegangen.	51
Abbildung 34	Minimale Kommutierungsladung Ocmin nor-	<u> </u>
	miert mit dem Kehrwert der Resonanzfre-	
	quenz foc	E 2
Abbildung 25	Mittlere magnetische Kernhelastung t^2 fog fo	92
The find and 35	und tb^2 for for permiert mit der Resonanzfro-	
	guong f_{i-1} in Abhängigkeit von 7_{i-1}) und u	50
Abbildung of	quenz f_{0C} in Abhangigken von Z_{0C} , λ und \hbar .	53
Abbildulig 30	schaltungsstruktur des einstungen Ladegieich-	-6
Abbildung a=	Scholtung und Dringingentheute des Dennelmule	50
Abbildung 37	Versuche	-
A 1-1-11 1	Calculation in a second s	59
Abbildung 38	Schaltvorgange von zwei parallel geschalteten	
	Gan-HEMTS GS665161 bei $U_1 = 250 \text{ V}, t_L =$	
	$20 \text{ A und } \vartheta = 25 \text{ °C}$	60
Abbildung 39	Hiltsschaltung zur indirekten Identifikation	
	der Schaltverluste und gemessene Verlust-	
	kenntelder in Abhängigkeit von der Schalt-	
	frequenz $f_{\rm S}$ und dem Ausgangsstrom I_2	61

Abbildung 40	Visualisierung der verschiedenen Betriebsar- ten. Im Leerlauf $I_2 = 0$ sowie ZVS-Betrieb	
	$(I_2 < \Delta I_L/2)$ treten nur Abschaltverluste E_{off} auf, im hartschaltenden Betrieb $(I_2 > \Delta I_L/2)$	
	Ein- und Abschaltverluste $(E_{on} \& E_{off}) \ldots$	62
Abbildung 41	Modellierte Verlustaufteilung im Vergleich mit den gemessenen Gesamtverlusten nach erfolg-	
	ter Identifikation der Verlustkennfelder	63
Abbildung 42	Gegenüberstellung des Spannungslimits U _{CS,max}	
	verschiedener Kondensatoren, die sich po-	
	tentiell als Resonanzkondensatoren einset-	
	$\begin{array}{c} \text{Zen} \text{ lassen} & (IDK \ B32072L1123 \ \text{VS.} \ KEWL1 \\ \text{Capace(152KDCAC[2,20])} \end{array}$	64
Abbildung 43	Vergleich des Serienwiderstands und des Ver-	04
11001144119 49	lustfaktors zweier NPo-Keramikkondensatoren	
	unterschiedlicher Spannungsklasse (KEMET	
	C2220C562KFGAC vs. C2220C153KDGAC [29,	
	63])	65
Abbildung 44	Ersatzschaltbilder eines Zweiwicklungs-Trans-	
	formators	68
Abbildung 45	Gegenüberstellung des magnetischen Feldes	
	im Wickelfenster eines Transformators mit	
	Einzelluftspalt vs. drei Einzelluftspalte. Im	
	Vordergrund der konstruktive Aufbau, im Hintergrund des magnetische Fold $ U $ (aD	
	FEM-Simulation) $(2D-$	60
Abbildung 16	Gegenüberstellung des magnetischen Feldes	09
The finding 40	im Wickelfenster eines Transformators bei	
	Tonnen- vs. Kammerwicklung. Im Vorder-	
	grund der konstruktive Aufbau, im Hinter-	
	grund das magnetische Feld $ H $ (2D-FEM-	
	Simulation)	70
Abbildung 47	Konstruktiver Aufbau des verwendeten Streu-	
	pfad-Transformators mit Primär- und Sekun-	
	darwicklung, jeweils verteilt über- und unter-	
Abbildung (8	halb des Streupfads.	72
Abblidulig 40	und <i>ic</i> in typischen Arbeitspunkten in Be-	
	triebsart DCMB2 und CCMA	72
Abbildung 49	Horizontaler Schnitt durch die Kernstruktur	/-
	des Streupfad-Transformators, realisiert als	
	pot-Kern und ETD-Kern	75
Abbildung 50	$_{3}$ D-FEM-Simulation der Flussdichte B zweier	
	Ringkerne: Verglichen mit dem R29x25-Kern	
	ist die Flussdichte im R34x20-Kern stark inho-	
	mogen	79

Abbildung 51	3D-FEM-Simulation der elektrischen Feldstär-	
	ke E zweier Ringkerne: Verglichen mit dem	
	dünnwandigen R29x25-Kern ist die Feldstärke	
	im R34x20-Kern massiv geringer und führt so-	
	mit zu reduzierten Wirbelstromverlusten	80
Abbildung 52	3D-FEM-Simulation der magnetischen Feld-	
85	stärke <i>H</i> zweier Ringkerne bei erhöhter Fre-	
	auenz von 2 MHz: Im R34x20-Kern tritt eine	
	deutliche Wellenerscheinung im Kernquer-	
	schnitt auf die im dünnwandigen R20x25-	
	Kern vernachlässighar ist	80
Abbildung 52	Charakterisierung der komplexen Permeabili-	00
The formation of the second se	tät <i>u</i> anhand eines dünnwandigen Ringkerns	82
Abbildung = 4	$M_{\text{assargabnis}}$ der relativen Permeabilität μ —	02
Abbildung 54	$ \mu /\mu_{c}$ für die Ferritwerkstoffe N87 Nor	
	μ/μ_0 fut the refinitiversione $N07$, $N95$,	
	dichte \hat{h} Erequenz und Temperatur	80
Abbildung ==	Mossorgabnicsa das Varlustwinkals 7 für die	03
Abblidung 55	For ritwork toff N_{2} Not P_{2} and N_{4} in	
	Abbängigkeit von der Elugedichte \hat{h} der Ere	
	august and der Temperatur	80
Abbildung =6	Massargabrissa dar Hustargasvarlusta n	03
Abbildung 50	fin die Fernitwerketeffe Mg- Nes DCase und	
	Iur die Ferniwerkstolle $No/$, $N95$, $PC200$ und	
	N49 in Abhangigkeit von Flussdichte <i>v</i> , Fre-	0.
A la la : 1 de con a	Quenz und Temperatur	04
Abbildung 57	Kalorimetrische verifikation der verlust-Lei-	
	Bingloom and New Kommercenial	0-
A 1-1-11 June0	Ringkern aus N49-Kernmaterial	85
Abbildung 58	Beispielnafte kalorimetrische Vermessung der	0(
A 1 1 ·1 1	Kernverluste	86
Abbildung 59	Mikroskopie der Kornstruktur typischer MnZn-	
	Ferritwerkstoffe (aufgenommen mit <i>Olympus</i>	0
A11.11 (DP22)	87
Abbildung 60	3D-FEM-Simulation der elektrischen Feldstar-	
	ke E zweier Zylinderkerne und einem dunn-	
	wandigen Quaderkern. Die elektrische Feld-	
	stärke ist im Quaderkern nahezu homogen,	
	in den Zylinderkernen stellt sich eine massive	
	Wellenausbreitung ein.	88
Abbildung 61	Charakterisierung der Permittivität anhand	
	eines dünnwandigen Quaderkerns mit der ge-	
	messenen (di-)elektrischen Hystereseschleife	_
	(blau) mit Ellipsennäherung (rot)	89
Abbildung 62	Messergebnis der relativen Permittivität $\tilde{\varepsilon}_{r}$ =	
	$\bar{\epsilon}/\epsilon_0$ für die Ferritwerkstoffe N97, N95, PC200	
	und N_{49}	90

Literatur

Abbildung 63	Messergebnisse der Verlustwinkel der kom-	
	plexen Ersatz-Permittivität $\zeta_{\tilde{\epsilon}}$ für die Ferrit-	
	werkstoffe N97, N95, PC200 und N49 in Ab-	
	hängigkeit von Spitzenfeldstärke ê, Frequenz	
	und Temperatur des Kerns	91
Abbildung 64	Messergebnisse der Wirbelstromverluste $p_{Wirbelstrom}$	nm
0 1	für die Ferritwerkstoffe Noz. Noz. PC200 und	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	N_{40} in Abhängigkeit von Spitzenfeldstärke $\hat{\ell}$	
	Frequenz und Temperatur des Kerns	01
Abbildung 65	Approximation des HE-Litzehündels mittels	91
noondang 05	komplever Ersatzpermeabilität $u_{\rm ex}$ nach [22,82]	02
Abbildung 66	Visualiziorung der Ontimiorungenarameter	92
Abbildulig 00	des integrierten Streunfed Transformators mit	
	tele muegnerien Streuplad-Transformators mit-	~ .
A11.11 (94
Abbildung 67	Flussdiagramm der Optimierungsroutine zur	
	verlustoptimalen Auslegung des Streupfad-	
	Transformators	96
Abbildung 68	FEM-Simulation der magnetischen Flussdich-	
	te $ B $ des Streupfad-Transformators, der sich	
	als verlustoptimal ergeben hat	98
Abbildung 69	FEM-Simulation der magnetischen und elek-	
	trischen Feldstärke B/E des Streupfad-Trans-	
	formators, der sich als verlust-optimal ergeben	
	hat	99
Abbildung 70	3D-FEM-Simulation des <i>E</i> -Felds des unlami-	
0,	nierten vs. laminierten Transformator-Kerns	
	mittels 150-µm-Klebeschicht	100
Abbildung 71	3D-Simulation des finalen Streupfad-Transfor-	
07	mators inkl. Laminierung und Berücksichti-	
	gung der Verschiebungsflussdichte zur Detek-	
	tion etwaiger Wellen-Phänomene	101
Abbildung 72	Fortigungeschritte des Transformator-Prototype	101
Abbildung /2	und Thormographia im Worst Case Arbeitenunkt	
	hai Vühlung durch natürliche Verweltige hei	
	Les solues asternes ansternes and 25%	
A 1-1-11 J	Versie feielte Calattur von 25°C	102
Abbildung 73	vereinfachte Schaltungs- und Regelungsstruk-	
	tur zur Charakterisierung des stationaren und	
	dynamischen Verhaltens	105
Abbildung 74	Ubertragungskennlinie $i_{\text{Netz0}}(f_{\text{S0}})$ im statio-	
	nären Betrieb des LLC-Resonanzwandlers in	
	Abhängigkeit von f_{S0}/f_{0C} , mit dem Span-	
	nungsverhältnis $M = U_2/U_1$ und einer rea-	
	listischen Exemplarstreuung von $\pm 10\% f_{ m S0}$ als	
	Parameter	106

Abbildung 75	Simulation des Netzstroms bei sprungförmi- gem Wechsel zwischen zwei Arbeitspunkten	
	$(0 \rightarrow 0)$ inkl. Approximation mittels der li-	
	nearen Übertragungsfunktion 3. Ordnung	107
Abbildung 76	Frequenzkennlinie sowie Pol-Nullstellen-Dia-	
07	gramm der identifizierten Übertragungsfunk-	
	tion in normierter Darstellung $G'_{IIC}(s) =$	
	$G_{\text{ILC}}(s)/ G_{\text{ILC}}(0) $	108
Abbildung 77	Regelungsstruktur einer einschleifigen PI-Re-	
	gelung mit Vorsteuerung	109
Abbildung 78	Bode-Diagramm des offenen Regelkreises mit)
	dem Pol-Nullstellen-Diagramm des geschlos-	
	senen Regelkreises	110
Abbildung 79	Prinzipschaltbild der Hysterese-Regelung	111
Abbildung 80	Anwendung der Hysterese-Regelung nach Ab-	
	bildung 79 auf die gängigen Betriebsarten	
	CCMA und DCMB2	112
Abbildung 81	Prinziphild der Kaskaden-Regelung aus äuße-	
incontaining of	rem Netzstromregler und innerem Hysterese-	
	Regler	112
Abbildung 82	Simulierte Sprungantwort der Kaskaden-Rege-	115
ribbildung 02	lung für drei verschiedene Resonanzkreisnara-	
	meter	111
Abbildung 82	Simulation des Freilauf-Fehlers vs. Simulation	114
The bild uning of	mit begrenzter Periodendauer zur Bebehung	
	des Fehlers	115
Abbildung 84	Hysterese-Recelung inkl. der Frweiterungen	119
1001101016 04	zur Lösung des Freilauf-Fehlers (hellblau) so-	
	wie zur Tastverhältnis-Korrektur (grün)	115
Abbildung 85	Simulation der Hysterese-Regelung inkl. der	119
ribbildung og	Magnetisierungs-Induktivität des Stromwand-	
	lers die zu einem unerwünschten Tastverhält-	
	nisses (a) führt Durch die zweite Frweiterung	
	der Hysterese-Regelung (in Abh 84 grün mar-	
	kiert) wird diese Problematik behoben (b)	116
Abbildung 86	Varainfachtes Schaubild der hybriden Rege-	110
Abblidding 00	lungsstruktur mit farhiger Separierung in Re-	
	adungstaila nach Taktrata	117
Abbildung 87	Mossung dor charakteristischen Konnwerte	11/
Abblidding 0/	dor Hystoroso-Rogolung im stationäron 711-	
	stand in der Betriebsart DCMBa	110
Abbildung 88	Zeitverläufe wichtiger Größen des einstufigen	119
	Ladewandlers im PEC-garageltan Batrieh	110
	Laac wandlers ini i i C-gelegenen Denieb	119

Literatur

Abbildung 89	Gemessene Oberschwingungen $I_{\rm H}(k)$ nor- miert auf die Grundschwingung $I_{\rm H}(1)$ mit den entsprechenden Grenzwerten aus der Norm	120
Abbildung 90	Bauteilauswahl für die Schlüsselkomponenten des Ladewandlers (Fotos aus Datenblätter ent-	120
Abbildung 91	nommen [3, 4, 6, 7, 29, 59, 60]) Gemessene Verlustleistung über eine Netzpe- riodendauer bei $U_{Batt} = 320 \text{ V}$ inkl. der be- rechneten Zuordnung zu den jeweiligen Ver-	123
Abbildung 92	lustmechanismen Messung der elektrischen Größen im Reso- nanzkreis in zwei exemplarischen Arbeits-	125
Abbildung 93	punkten aus Abbildung 91	126
Abbildung 94	Netzklassen des einstufigen LLC-Ladewandlers mit der Definition der erforderlichen Isolati-	127
Abbildung 95	onsklassen	129
Abbildung 96	CAD-Zeichnung des Demonstrators inkl. Be- schriftung der Funktionsmodule mit transpa-	131
Abbildung 97	rentem Gehäuse	132
Abbildung 98	LLC-Ladewandlers	133
Abbildung 99	Zustand ohne Transformator $\dots \dots \dots$ Ersatzschaltbild für den Schaltzustand C^{\pm} für	134
Abbildung 100 Abbildung 101	Ersatzschaltbild für blockierende Dioden Luftstrecken in mm nach IEC60664-1/LV123	179 182
Abbildung 102	des Prototyps	188
Abbildung 103	IIIb Kriechstrecken in mm nach IEC 60664-1/LV123	188
Abbildung 104	Iur verschmutzungsgrad 2 für Materialgruppe IIIb Foto der Sensor-Leiterkarte, die zur Verifikati-	189
Abbildung to-	on der Hysterese-Regelung verwendet wurde (FPGA ist auf der Rückseite bestückt)	189
Abbildulig 105	hörigen Leiterkarte	190

Abbildung 106	Gehäuseunterteil des Prototyps inkl. der zuge-	
	hörigen Leiterkarte	190
Abbildung 107	Prototyp inkl. Transformator während der In-	
	betriebnahme	191
Abbildung 108	Fertigung des Mittelschenkels mittels der Fer-	
	ritfräse Compact 350 von imes-icore	191

TABELLENVERZEICHNIS

Tabelle 1	Gegenüberstellung des Bauteilaufwands und des EMV-Verhaltens für die konkurrierenden	
	PFC-Varianten aus Abbildung 3	7
Tabelle 2	Eckdaten der weltweit dominierenden Lade-	
	stecker gemäß IEC 62196 und GB/T 20234.2.	
	Die Pilot-Kontakte CP & CC dienen der Kom-	
	munikation der Ladefreigabe bzw. des max.	
	Ladestroms	13
Tabelle 3	Betriebsarten des LLC-Resonanzwandlers (vgl.	
	[71, 118])	26
Tabelle 4	Gleichungssysteme und Verifikations-Beding-	
	ungen für die weiteren unterschiedenen Be-	
	triebsarten des LLC-Resonanzwandlers	29
Tabelle 5	Eckdaten des Labormusters, das zur Verifika-	
	tion der Zeitbereichsanalyse verwendet wurde	
	bzw. die daraus abgeleiteten Parameter	33
Tabelle 6	Gegenüberstellung der Kennwerte für Schleu-	
	senspannung und differentiellem Widerstand	
	für Si-/SiC-Dioden und Si-SJ-MOSFET	57
Tabelle 7	Gängige Integrationsgrenzen zur Bestimmung	
	der Schaltarbeit $E_{on,S2}/E_{off,S2}$	58
Tabelle 8	Kommerziell erhältliche Sensoren für die Spann-	
	ungs- und Strommessung des Doppelpuls-	
	Tests $(u_{\rm ds}/i_{\rm s2})$	60
Tabelle 9	Bauteileigenschaften verschiedener NPo-Kon-	
	densatoren unterschiedlicher Spannungsklasse	66
Tabelle 10	Tabellarische Auflistung der Optimierungspa-	
	rameter mit den gewählten Begrenzungen inkl.	
	des Optimierungs-Ergebnisses	97
Tabelle 11	Vergleich der Leistungsdichte kommerzieller	
	zweistufiger Ladewandler mit dem hier ent-	
	worfenen einstufigen LLC-Ladewandler	135

Tabelle 12	Zur Ermittlung der Extrema sowie der Effek-	
	tivwerte von j_{LS} , m_{CS} und m_{LP} werden die Sub-	
	stitutionen A , B , C , D und r eingeführt	184
Tabelle 13	Messmittel zur experimentellen Verifikation	
	der Zeitbereichsanalyse	187
Tabelle 14	Bauteilliste des Labor-Prototyps	187
Tabelle 15	Messmittel zur Messung der Hysterese-Schleife,	
	der Hystereseverluste, der Wirbelstromverlus-	
	te und Verlustleistung	187

ABKÜRZUNGEN

- 2QS Zweiquadrantensteller
- ADC Analog-Digital-Umsetzer, Analog Digital Converter (engl.)
- AIN Aluminiumnitrid
- CCM Betriebsart mit nicht lückendem/kontinuierlichem Stromverlauf, Continuous Conduction Mode (engl.)
- CM Gleichtaktanteil, Common Mode (engl.)
- CTI Kriechstromfestigkeit, comparative tracking index (engl.)
- DAB DC-DC-Wandler mit zwei aktiven Vollbrücken (engl. dual active bridge)
- DCM Betriebsart mit lückendem/diskontinuierlichem Stromverlauf, Discontinuous Conduction Mode (engl.)
- DM Gegentaktkomponente, Differential Mode (engl.)
- DSP Digitaler Signalprozessor engl. Digital Signal Processor
- ESR Äquivalenter Serienwiderstand, equivalent series resistance (engl.)
- ETD Economical Transformer Design Typische Kerngeometrie für Transformatoren mit rundem Mittelschenkel normiert in IEC 1185
- ETD Kernbauform nach IEC 62317-6, Economical Transformer Design (engl.)
- FPGA Field Programmable Gate Array (engl.)
- GaN Galliumnitrid
- GSA Grundschwingungsanalyse
- GTO Gate turn-off thyristor

- HEMT Transistor mit hoher Elektronenbeweglichkeit, High-Electron-Mobility Transistor (engl.)
- ICCB In-Kabel-Kontrollbox engl. In-Cable Control Box
- IGBT Bipolartransistor mit isolierter Gate-Elektrode, engl. insulated-gate bipolar transistor, kurz IGBT
- iZVS Incomplete Zero Voltage Switching
- LUT Lookup-Tabellen, look-up tabel (engl.)
- MKP Metallisierte Folienkondensatoren mit imprägniertem Papier oder Polypropylen als Dielektrikum
- MLCC Keramikvielschicht-Chipkondensator, multi layer ceramic capacitor (engl.)
- MLCC Keramikvielschicht-Chipkondensators, multi layer ceramic capacitor (engl.)
- MOSFET Metall-Oxid-Halbleiter-Feldeffekttransistor
- NPo Negativ-Positive-Zero (NPo) oder auch CoG ist ein von der Electronics Industry Association (EIA) definiertes keramisches Dielektrikum für Keramikkondensatoren
- OCP Überstromabschaltung, Over current Protection (engl.)
- OVC Überspannungskategorie (engl. over voltage category) gemäß IEC 60664-1
- OVP Überspannungsabschaltung, Over Voltage Protection (engl.)
- PFC Leistungsfaktorkorrekturfilter, power factor correction (engl.)
- PLL Phasenregelschleife, Phase-Locked Loop (PLL,engl.)
- PLZT Lead Lanthanum Zirconate Titanate, Dielektrikum von Ceralink-Kondensatoren
- PP Polypropylen (PP) aus der Familie der Polyolefine als Dielektrikum von Folienkondensatoren.
- PSFB Phasengesteuerte Vollbrücke, Phase-shifted full bridge (engl.)
- PTFE Polytetrafluorethylen
- Si Silizium
- SiC Siliziumkarbid, Siliciumcarbid (engl.)
- SJ Super-junction deep-trench technology (engl.)

- SMD Oberflächenmontiertes Bauelement, surface-mounted device (engl.)
- TCM Betriebsart, bei der die Transistoren weich eingeschaltet werden, engl. Triangular Current Mode
- UPP Universal Parallel Port, Parallel-Bus Protokoll von Texas Instruments
- VHDL Very High Speed Integrated Circuit Hardware Description Language
- WBG Halbleiter mit breitem Bandabstand, wide-bandgap (engl.)
- ZBA Zeitbereichsanalyse
- ZCS Weiche Schalttechnik, bei der das Bauteil unter Nullstrom abgeschaltet wird, Zero Current Switching (engl.)
- ZVS Weiche Schalttechnik, bei der das Bauteil unter Nullspannung eingeschaltet wird, Zero Voltage Switching (engl.)

FORMELZEICHEN

Allgemeine Hinweise zur Notation

- *x* Kleine Buchstaben werden für zeitlich veränderliche Größen verwendet
- X Große Buchstaben werden für Effektivwerte verwendet
- *x* Kursive Buchstaben werden für veränderliche Größen/Momentanwerte verwendet
- x Aufrechte Buchstaben werden für feste Größen/Parameter verwendet
- *X* Großen Buchstaben in Fettdruck werden für vektorielle Effektivwerte verwendet
- x Formelzeichen mit kleinen Buchstaben in Fettdruck werden für veränderliche vektorielle Größen verwendet
- m_{ν} Der Buchstabe m_{ν} dient zur Kennzeichnung einer normierten Spannung u_{ν}
- j_{ν} Der Buchstabe j_{ν} dient zur Kennzeichnung eines normierten Stromes i_{ν}
- ☐ Spitzenwert einer Größe
- □ Größe in komplexer Zeigerdarstellung

- □ Zeitlicher Mittelwert einer Größe
- জ(□) Imaginärteil einer komplexen Größe
- $\Re(\Box)$ Realteil einer komplexen Größe
- |□| Betrag einer komplexen Größe
- $\Box \times \Box$ Kreuzprodukt
- $\Box \cdot \Box$ Skalarprodukt
- \square^{B} Berechnung im Schaltzustand blockierender Dioden
- \Box^{C} Berechnung im Schaltzustand leitender Dioden
- [!] Forderung nach Erfüllung einer Gleichung

Formelzeichen

- A_C Querschnitt des Mittelschenkels
- *A*_{gA} Effektiver Querschnitt der Luftspaltreluktanz oberhalb des Streupfads (above)
- *A*_{gB} Effektiver Querschnitt der Luftspaltreluktanz unterhalb des Streupfads (below)
- b_{leak} Breite des Streupfads
- *b*_T Breite des Transformators
- $b_{\rm W}$ Breite des Wickelfensters
- *b*_Q Breite des Quaderkerns
- *B* Effektivwert der Flussdichte
- *b* Momentanwert der Flussdichte
- b Momentanwert des Vektors der magnetischen Flussdichte
- *B*_C Eingangsmatrix bei leitenden Dioden
- *C*₁ Eingangskapazität des LLC-Wechselrichters
- C₂ Ausgangskapazität des LLC-Gleichrichters
- *c*_{Fe} Spezifische Wärmekapazität des Ferrit-Werkstoffs
- C_{Fe} Wärmekapazität des Ferrit-Ringkerns
- C_{GS,ext} Externe Kapazität, die mit Gate-Source eines Transistors verbunden ist

Literatur

Ci	Kapazität des Integrations-Kondensators der
	Hysterese-Regelung

C_{OSS} Differentielle Ausgangskapazität eines Transistors

- C_S Serienkondensator des LLC-Resonanzkreises
- D_F Verlustfaktor des Resonanzkondensators bei der Frequenz Null
- $d_{\rm T}$ Tiefe des Transformators
- *d*_a Außendurchmesser des Ringkerns
- *d*_B Dämpfunggrad des Resonanzkreises bei blockierenden Dioden
- *d*_C Dämpfunggrad des Resonanzkreises bei leitenden Dioden
- *d*_{cl} Luftstrecke, Clearance distance (engl.)
- *d*_{cr} Kriechstrecke, Creepage distance (engl.)
- *d*_i Innendurchmesser des Ringkerns
- *d*_Q Tiefe des Quaderkerns
- d Momentanwert des Vektors der Verschiebungsflussdichte

D_{strand1,2} Durchmesser eines Feinleiters der HF-Litze des Windung

- D Effektivwert der Verschiebungsflussdichte
- d Momentanwert der Verschiebungsflussdichte
- *E*_{off} Dissipierten Einschaltverluste eines Transistors
- *E*_{on,S2} Gemessene Ausschaltarbeit eines Transistors
- Eon,S2 Gemessene Einschaltarbeit eines Transistors
- Eon Dissipierten Einschaltverluste eines Transistors
- *E*_{OSS} Gespeicherte Energie in der Ausgangskapazität eines Transistors
- E Effektivwert der elektrischen Feldstärke
- e Momentanwert des Vektors der elektrischen Feldstärke
- *f*_S Schaltfrequenz
- f_{Smax} Maximale Schaltfrequenz während eines Ladezyklus
- *F* Normierte Schaltfrequenz
- F_{Mode} Zu lösendes Gleichungssystem der Zeitbereichsanalyse der Betriebsart Mode

- *G*_{LLC} Übertragungsfunktion zur Modellierung des Kleinsignalverhaltens
- G_{OL} Übertragungsfunktion des offenen Regelkreieses
- *h*_T Höhe des Transformators
- *h*_W Höhe des Wickelfensters
- *h*_{C,POT} Momentanwert der Feldstärke im Streupfad beim angenommener Rotationssymmetrie (pot-Kern)
- *h*_Q Höhe des Quaderkerns
- $h_{\rm R}$ Höhe des Ringkerns
- *H* Effektivwert der magnetischen Feldstärke
- *h* Momentanwert des Vektors der magnetischen Feldstärke
- i_{κ} Strom durch das Dielektrikum des Quaderkerns
- *i*Batt Ladestrom der Traktionsbatterie
- *I*_{C,1} Sinus-Koeffizient des DGL-Lösungsansatzes
- IC,2 Kosinus-Koeffizient des DGL-Lösungsansatzes
- *I*_{C,2} Kosinus-Koeffizient des DGL-Lösungsansatzes
- $I_{\rm H}(k)$ Harmonische des Netzstroms mit der Ordnungszahl k
- *I*_k Harmonische des Transformatorstroms mit der Ordnungszahl *k*
- $I_{P,k}$ Harmonische des Primär-Transformatorstroms mit der Ordnungszahl k
- $I_{S,k}$ Harmonische des Sekundär-Transformatorstroms mit der Ordnungszahl k
- *i*LS Primärseitiger Strom des LLC-Resonanzkreises
- ILScycle Effektivwert des Resonanzstroms über einen Ladezyklus
- iNetz Aufnahmestrom des Ladewandlers netzseitig
- *i*_{Netz0} Aufnahmestrom des Ladewandlers netzseitig im stationäres Zustand
- iout Sekundärseitiger Strom des LLC-Resonanzkreises
- *I*_{outcycle} Effektivwert des LLC-Gleichrichterstroms über einen Ladezyklus
- *i*_P Primärseitiger Strom des Transformators

- *i*_S Sekundärseitiger Strom des Transformators
- *i*_{s2} Source-Strom eines Low-Side-Transistors
- i_{ν} Variable für die Strom im Abschnitt der Zeitbereichsanalyse
- *i* Stromvektor des Streupfad-Transformators aus den Elementen Primär- und Sekundärstrom
- *j*_{LP} Normierter Strom der Parallel-Induktivität des LLC-Resonanzkreises
- *j*_{LS} Normierter Strom auf der Primärseite des LLC-Resonanzkreises
- j_{ν} Normierte Variable für Strom
- J Effektivwert der Stromdichte
- *k*_{DF} Steigung der Verlustfaktor-Kennlinie des Resonanzkondensators
- *K*_{LLC} Verstärkung der Übertragungsfunktion zur Modellierung des Kleinsignalverhaltens
- *k* Koppelfaktor des Transformators
- L2 Äquivalente Serieninduktivität der Traktionsbatterie inkl.DM-Induktivität des EMI-Filters
- *l*_{gA} Länge der Luftspalte oberhalb des Streupfads (above)
- *l*_{gB} Länge der Luftspalte unterhalb des Streupfads (below)
- *l*_{mag} Mittlere Feldlinienlänge im Ringkern
- *L*_P Parallelinduktivität des LLC-Resonanzkreises
- L_S Serieninduktivität des LLC-Resonanzkreises
- *l*_W Windungslänge des Streupfad-Transformators
- *L*₁₁ Primärseitige Selbstinduktivität des Transformators
- L22 Sekundärseitige Selbstinduktivität des Transformators
- L Hilfs-Spule zur Charakterisierung der Schaltverluste (Doppelpuls-Versuchs bzw. indirekte Methode)
- *L* Induktivitätsmatrix des Streupfad-Transformators
- *m*_{Batt} Normierte Leerlaufspannung der Traktionsbatterie
- *m*_{CS} Normierte Spannung des Kondensators im LLC-Resonanzkreis
- *m_v* Normierte Variable für Spannung
- M₁₂ Gegeninduktivität des Transformators
- *m* Stauchungsfaktor der Lader-Stromaufnahme (netzseitig)
- M Verhältnis zwischen LLC-Ausgangs- und Eingangsspannung
- N_{1A} Windungszahl der Primärwicklung oberhalb des Streupfads (above)
- *N*_{1B} Windungszahl der Primärwicklung unterhalb des Streupfads (below)
- N_{2A} Windungszahl der Sekundärwicklung oberhalb des Streupfads (above)
- N_{2B} Windungszahl der Sekundärwicklung unterhalb des Streupfads (below)
- *N*_{gA} Anzahl der Luftspalte oberhalb des Streupfads (above)
- *N*_{gB} Anzahl der Luftspalte unterhalb des Streupfads (below)
- N_{Sek} Windungszahl der Sekundärwindung des Ringkerns
- Nstrand1,2 Anzahl der Feinleiter der HF-Litze des Windung
- N Windungsmatrix des Streupfad-Transformators
- *n* Übersetzungsverhältnis eines idealen Übertragers
- p_0, p_1 Polstellen der Übertragungsfunktion
- *p*₁ Momentanwert der Eingangsleistung des LLC-Resonanzwandlers
- P_{C1} Kondensatorverluste
- P_{Core} Kernverluste
- P_{CS} Kondensatorverluste im Resonanzkondensator
- PD Durchlassverluste des LLC-Ausgangsgleichrichter
- *p*_{Hysterese} Leistungsdichte der Hystereseverluste
- P_{Loss,calc} Berechnete Gesamtverluste des Zweiquadrantensteller
- PLoss,meas Gemessene Gesamtverluste des Zweiquadrantensteller
- P_{S,Con} Durchlassverluste des LLC-Wechselrichters
- P_{S,Dead} Durchlassverluste der Body-Dioden des LLC-Wechselrichters
- *p*_{s2} Momentanleistung eines Low-Side-Transistors
- *P*_{SN,Con} Durchlassverluste des Netzgleichrichters

170 Literatur

P_{SW} Schaltverluste

*p*_{Wirbelstrom} Leistungsdichte der Wirbelstromverluste

Q_C Kommutierungsladung die zur Entladung des Resonanzkondensators zu Verfügung steht

Q_{Cmin} Minimale Kommutierungsladung während eines Ladezyklus

QOSS Ladung der Ausgangskapazität eines Transistors

r_{leak,ETD} Radius des Streupfads in ETD-Bauform

rleak,POT Radius des Streupfads in Rotationssymmetrie

*r*_{leak} Radius des Streupfads

*r*_C Radius des Innenschenkels des Ferritkerns

- *R*₁₁ Primärseitiger Wicklungswiderstand des Streupfad-Transformators
- *R*₂₂ Sekundärseitiger Wicklungswiderstand des Streupfad-Transformators
- R_{C,ESR} Äquivalente Serienwiderstand des Resonanzkondensators
- *r*_D Differentieller Widerstand einer Diode
- *R*_{G,off} Gatewiderstand für den Abschaltvorgang eines Transistors
- R_{G,on} Gatewiderstand für den Einschaltvorgang eines Transistors
- *R*_i Äquivalenter Serienwiderstand der Traktionsbatterie
- *r*_i Normierter äquivalenter Serienwiderstand der Traktionsbatterie
- *R*_M Gegenwiderstand des Streupfad-Transformators zu Modellierung des Proximity-Effekts
- *R*_{mA} Reluktanz des Streupfad-Transformators oberhalb des Streupfads (above)
- *R*_{mB} Reluktanz des Streupfad-Transformators unterhalb des Streupfads (below)
- *R*_{mC} Reluktanz des Streupfad-Transformators des Streupfads
- R_S Äquivalenter, primärseitiger Serienwiderstand des LLC-Resonanzkreises

R_{shunt} Widerstand des Shunt-Stromsensors

*r*_{SN} Differentieller Widerstand der Body-Diode eines MOSFETs

- *R*_{th,CS} Thermischer Entwärmungs-Widerstand des Resonanzkondensators
- *R*_{th} Thermischer Widerstand zur Modellierung der Trafo-Entwärmung
- *R*_m Reluktanzmatrix des Streupfad-Transformators
- *R* Widerstandsmatrix des Streupfad-Transformators
- *r_v* Normierter Widerstand des LLC-Resonanzkreises zur numerischen Lösung der Zeitbereichsanalyse
- r_{ω} Quotient zwischen der Kreisfrequenz bei blockierenden zu leitenden Dioden
- *r*_Z Quotient zwischen der Kennimpedanz bei blockierenden zu leitenden Dioden
- T_{cvcle} Zeitdauer eines vollständigen Ladezyklus
- t_{ν} Variable für die Zeit im Abschnitt der Zeitbereichsanalyse
- T Periodendauer der Netzspannung
- t Zeitvariable
- *u*₁ Zwischenkreisspannung bzw. Eingangsspannung des LLC-Resonanzwandlers
- *u*₂ Ausgangsspannung des LLC-Gleichrichters
- *u*_{AB} Ausgangsspannung des LLC-Wechselrichters
- U_{Batt} Leerlaufspannung der Traktionsbatterie
- *u*_{Ci} Spannung am Integrations-Kondensator der Hysterese-Regelung
- *u*_{CM} Gleichtaktspannung zum Gehäuse bzw. Schutzleiterpotential
- $u_{\rm CM}$ Gleichtaktspannung zwischen PFC-Ausgangsspannung und Schutzleiterpotential
- *u*_{CS} Spannung des Kondensators im LLC-Resonanzkreis
- u_{CSpeak} Spitzenspannung des Resonanzkondensators während eines Ladezyklus
- *u*_D Flussspannung einer Dioden
- *U*_{D0} Schleusenspannung einer Dioden
- *u*_{ds2} Drain-Source-Spannung eines Low-Side-Transistors

Literatur

$u_{\rm GS}$ GS-Spannung bei ein- bzw. Ausgeschaltetem Transi	stor
---	------

*u*_{HSComp}/*u*_{LSComp} Schwellwerte der Hysterese-Regelung

- Harmonischer Spannungsvektor der Ordnungszahl k U_k
- Harmonische Transformator-Primärspannung der $U_{\rm P.k}$ Ordnungszahl k
- U_{S.k} Harmonische Transformator-Sekundärspannung der Ordnungszahl k
- *u*_{Netz} Spannung einphasiges Versorgungsnetz
- U_{Rev,S} Transistor Rückwärts-Schleusenspannung
- Induzierte Spannung an der Sekundärwindung des Ringkerns u_{Sek}
- Rückwährtsspannung eines MOSFETs $u_{\rm SN}$
- Schleusen-Rückwärksspannung eines MOSFETs $U_{\rm SN0}$
- Variable für die Spannung im Abschnitt der u_{ν} Zeitbereichsanalyse
- Eingangsvariablenvektor bei leitenden Dioden \boldsymbol{u}
- Volumen des Streupfad-Transformators $V_{\rm C}$

X_{Mode} Lösungsvektor der Zeitbereichsanalyse der Betriebsart Mode

- Zustandsvektor bei leitenden Dioden \boldsymbol{x}
- Kennimpedanz des gedämpften Resonanzkreises bei leitenden $Z_{\rm B}$ Dioden
- Kennimpedanz des gedämpften Resonanzkreises bei leitenden Z_C Dioden
- Kennimpedanz des ungedämpften Resonanzkreises bei Z_{0B} blockierenden Dioden
- Kennimpedanz des ungedämpften Resonanzkreises bei Z_{0C} leitenden Dioden
- Nullstelle der Übertragungsfunktion z_1
- Steinmetzparameter der Frequenz α
- Steinmetzparameter der Flussdichte β
- δ Verlustwinkel des Resonanzkondensators
- Normierte LLC-Halbperiodendauer γ
- Elektrische Leitfähigkeit von Kupfer bei 60C κ_{Cu}

- κ_{Litz} Ersatz-Leitfähigkeit zur FEM-Modellierung HF-Litze
- *κ* Elektrische Leitfähigkeit
- λ_{Ferrit} Wellenlänge im Ferrit-Werkstroff
- λ_{Netz} Leistungsfaktor der Netz-Aufnahmeleistung
- λ_{Vakuum} Wellenlänge im Vakuum
- λ_{SOC} Ladegrad der Batterie, state of charge (engl.)
- *µ*_r Relative Permeabilität
- -µ" Imaginärteil der komplexen Permeabilität
- μ Permeabilität
- μ' Realteil der komplexen Permeabilität
- ω_{0B} Kreisfrequenz des ungedämpften Resonanzkreises bei blockierenden Dioden
- ω_{0C} Kreisfrequenz des ungedämpften Resonanzkreises bei leitenden Dioden
- $\omega_{\rm B}$ Kreisfrequenz des gedämpften Resonanzkreises bei blockierenden Dioden
- $\omega_{\rm C}$ Kreisfrequenz des gedämpften Resonanzkreises bei leitenden Dioden
- ϕ_A Magnetischer Fluss im Mittelschenkel im Ferritkern oberhalb des Streupfads (above engl.)
- $\phi_{\rm B}$ Magnetischer Fluss im Mittelschenkel im Ferritkern unterhalb des Streupfads (below engl.)
- $\phi_{\rm C}$ Magnetischer Fluss im Streupfad des Transformators
- $\phi_{\text{Con,Min}}$ Minimaler Stromflusswinkel konform zur EN61000-3-2
- ϕ_{Con} Stromflusswinkel (netzseitig)
- ϕ_{Netz} Netzwinkel des öffentlichen Versorgungsnetzes
- *ρ* Ladungsträgerdichte
- θ_{ν} Winkel der LLC-Periode als normierte Zeitbasis zur numerischen Lösung der Zeitbereichsanalyse
- $\tilde{\epsilon}_r$ Relative Ersatz-Permittivität
- ε̃ Ersatz-Permittivität
- μ_{Litz} Ersatz-Permeabilität zur FEM-Modellierung HF-Litze

174 Literatur

- μ₀ Magnetische Feldkonstante, Permeabilität von Vakuum
- ε_r Relative Permittivität
- ε₀ Elektrische Feldkonstante, Permittivität von Vakuum
- $-\epsilon''$ Imaginärteil der komplexen Permittivität
- ε Permittivität
- ε' Realteil der komplexen Permittivität
- *θ*_{DUT} Temperatur des Ferrit-Ringkerns
- ζ_{μ} Verlustwinkel der komplexen Permeabilität
- ζ_{ε} Verlustwinkel der komplexen Permittivität
- ϕ Flussvektor des Streupfad-Transformators
- ψ Verkettungsflussvektor des Streupfad-Transformators

Teil V

APPENDIX

A

ANALYTISCHE LÖSUNGEN DER RESONANZKREISGRÖSSEN

A.1 NORMIERUNG UND DEFINITIONEN

Zur Vereinfachung des Gleichungssystems und zur Verallgemeinerung der Lösung werden in Anlehnung an bisherige Arbeiten [39, 71, 118] alle Strom-, Spannungs- und Zeit-Größen normiert. Die Zeit t_{ν} wird mit der gedämpften Kreisfrequenz auf den Winkel θ_{ν} normiert gemäß

$$\theta_{\nu} = \omega_{\rm C} t_{\nu},\tag{112}$$

Spannungen u_{ν} werden im Folgenden auf die LLC-Eingangsspannung U_1 normiert gemäß

$$m_{\nu} = \frac{u_{\nu}}{U_1},\tag{113}$$

Ströme i_{ν} werden mit den normierten Kennimpedanz Z_{0C} für den gedämpften Schwingkreis normiert gemäß

$$j_{\nu} = \frac{i_{\nu}}{U_1/Z_{\rm C}}$$
 (114)

und Widerstände gemäß

$$r_{\nu} = \frac{R_{\nu}}{Z_{\rm C}} \tag{115}$$

mit

$$\omega_{\rm C} = \omega_{0\rm C} \sqrt{1 - d_{\rm C}^2} \tag{116}$$

$$\omega_{0C} = \frac{1}{\sqrt{L_S C_S}} \tag{117}$$

$$d_{\rm C} = \frac{\kappa_{\rm S}}{2\,Z_{\rm 0C}} \tag{118}$$

$$Z_{0C} = \sqrt{\frac{L_{\rm S}}{C_{\rm S}}} \tag{119}$$

$$Z_{\rm C} = Z_{\rm 0C} \sqrt{1 - d_{\rm C}^2} \tag{120}$$

$$\omega_{\rm B} = \omega_{0\rm B} \sqrt{1 - d_{\rm B}^2} = r_\omega \,\omega_{\rm C} \tag{122}$$

$$\omega_{0B} = \frac{1}{\sqrt{(L_{\rm S} + L_{\rm p}) C_{\rm S}}} = \sqrt{\frac{\lambda}{1 + \lambda}} \,\omega_{0\rm C} \tag{123}$$

$$Z_{0B} = \sqrt{\frac{L_{\rm S} + L_{\rm p}}{C_{\rm S}}} = \sqrt{\frac{1 + \lambda}{\lambda}} Z_{0\rm C} = r_Z Z_{0\rm C}$$
(124)

$$d_{\rm B} = \frac{R_{\rm S}}{2Z_{0\rm B}} = \sqrt{\frac{\lambda}{1+\lambda}} \, d_{\rm C} = r_{\rm Z}^{-1} \, d_{\rm C} \tag{125}$$

$$\lambda = \frac{L_{\rm S}}{L_{\rm P}} \tag{126}$$

$$M = \frac{U_2}{U_1} \tag{127}$$

$$F = \frac{\omega_{\rm S}}{\omega_{\rm C}}.$$
(128)

A.2 SCHALTZUSTÄNDE

Je nach Schaltzustand der Transistoren und Dioden treten verschiedene Schaltzustände auf, die mit Hilfe von elektrischen Ersatzschaltbildern modelliert werden. In der ersten Halbperiode wird die Spannung U_1 über die Transistoren S_1 - S_4 an den Eingang des Resonanzkreises angelegt. Wird ein Halbbrückenwechselrichter eingesetzt, ist hier als Eingangsspannung die halbe Eingangsspannung $U_1/2$ anzunehmen. Eine solche Halbbrückenanordnung findet sich besonders bei Konvertern mit kleineren Nennleistungen, denn aus der halbierten Eingangsspannung resultiert ein etwa verdoppelter Strom, was sich nachteilig bei höheren Leistungen auswirkt.

A.2.1 Schaltzustand C^{\pm} für leitende Dioden

Im Zeitintervall, in dem die Dioden D_1 - D_4 leiten, liegt die Ausgangsspannung U_2 über die Dioden an der Sekundärseite des Transformators an. Transformiert auf die Primärseite des idealen Übertragers wird diese Spannung mit der Spannungsquelle $\pm n U_2$ parallel zur Induktivität L_P angelegt. Dies ist gültig sowohl für einen Vollbrücken-Gleichrichter als auch für einen Mittelpunkt-Gleichrichter, der typischerweise bei kleineren Ausgangsspannungen bzw. Leistungen eingesetzt wird [71]. Die Flussspannung der Dioden kann insbesondere bei hohen Ausgangsspannungen vernachlässigt werden, bei kleineren Ausgangsspannungen kommt ohnehin häufig ein MOSFET-Synchrongleichrichter zum Einsatz, der naturgemäß keine Flussspannung aufweist. Bei leitenden Dioden wird daher das Ersatzschaltbild aus Abbildung 99 zu Grunde gelegt.

Abbildung 99: Ersatzschaltbild für den Schaltzustand C^{\pm} für leitende Dioden

Nach Maschensatz und Ableiten ergibt sich aus diesem Ersatzschaltbild die homogene Differentialgleichung zweiter Ordnung

$$0 = \frac{d^2 i_{\rm LS}(t)}{dt^2} + \frac{R_{\rm S}}{L_{\rm S}} \frac{d i_{\rm LS}(t)}{dt} + \frac{i_{\rm LS}(t)}{C_{\rm S}L_{\rm S}},$$
(129)

die durch Einsetzen des Exponentialansatzes $i_{\rm LS}(t) = \underline{I}_{\rm LS} e^{s t}$ in die Gleichung

$$0 = \left(s^2 + \frac{R_{\rm S}}{L_{\rm S}}s + \frac{1}{C_{\rm S}L_{\rm S}}\right) \underline{I}_{\rm LS} \,\mathrm{e}^{\mathrm{s}\,t} \tag{130}$$

überführt wird. Diese Gleichung ist erfüllt für die Nullstellen der charakteristischen Gleichung

$$0 = \left(s^2 + \frac{R_{\rm S}}{L_{\rm S}}s + \frac{1}{C_{\rm S}L_{\rm S}}\right),\tag{131}$$

die sich berechnen zu

$$s_{1/2} = -\frac{R_{\rm S}}{2\,L_{\rm S}} \pm j \sqrt{\frac{1}{C_{\rm S}L_{\rm S}} - \frac{R_{\rm S}^2}{4\,L_{\rm S}^2}} \tag{132}$$

$$= -d_{\rm C}\,\omega_{0\rm C}\pm j\,\omega_{0\rm C}\,\sqrt{1-d_{\rm C}^2} \tag{133}$$

$$= -\frac{1}{\tau_C} \pm j \omega_C. \tag{134}$$

In dieser Form lässt sich die Differentialgleichung im periodischen Fall ($d_{\rm C} < 1$) lösen mit dem Ansatz

$$i_{\rm LS}(t) = [I_{\rm C,1}\sin(\omega_{\rm C}(t-t_0)) + I_{\rm C,2}\cos(\omega_{\rm C}(t-t_0))] \,\mathrm{e}^{-\frac{t-t_0}{\tau_{\rm C}}}.$$
(135)

Periodischer Fall $(d_{\rm C} < 1)$ kann stets angenommen werden, da R_S zur Berücksichtigung der geringen Verluste im Resonanzkreis verwendet wird und daher klein im Vergleich zur Kennimpedanz ist. Die Spannung am Kondensator $C_{\rm S}$ berechnet sich nach Maschensatz zu

$$\begin{split} u_{\rm CS}(t) &= U_1 \mp n \, U_2 - R_{\rm S} \, i_{\rm LS}(t) - L_{\rm S} \frac{\mathrm{d} i_{\rm LS}(t)}{\mathrm{d} t} \\ &= U_1 \mp n \, U_2 \\ &- R_{\rm S} \left\{ \left[I_{\rm C,1} \sin(\omega_{\rm C} \, (t-t_0)) + I_{\rm C,2} \cos(\omega_{\rm C} \, (t-t_0)) \right] \mathrm{e}^{-\frac{t-t_0}{\tau_{\rm C}}} \right\} \\ &- L_{\rm S} \left\{ \left[I_{\rm C,1} \, \omega_{\rm C} \sin(\omega_{\rm C} \, (t-t_0)) - I_{\rm C,2} \, \omega_{\rm C} \cos(\omega_{\rm C} \, (t-t_0)) \right] \mathrm{e}^{-\frac{t-t_0}{\tau_{\rm C}}} \right\} \\ &+ \frac{\left[I_{\rm C,1} \sin(\omega_{\rm C} \, (t-t_0)) + I_{\rm C,2} \cos(\omega_{\rm C} \, (t-t_0)) \right] \mathrm{e}^{-\frac{t-t_0}{\tau_{\rm C}}} }{-\tau_{\rm C}} \mathrm{e}^{-\frac{t-t_0}{\tau_{\rm C}}} \right\}. \end{split}$$
(136)

Gleichung 136 kann weiter vereinfacht werden zu

$$u_{\rm CS}(t) = U_1 \mp n U_2 + \left\{ \left[L_{\rm S} I_{\rm C,2} \,\omega_{\rm C} + \frac{L_{\rm S} I_{\rm C,1}}{\tau_{\rm C}} - R_{\rm S} I_{\rm C,2} \right] \sin(\omega_{\rm C} \,(t-t_0)) + \left[-L_{\rm S} I_{\rm C,1} \,\omega_{\rm C} + \frac{L_{\rm S} I_{\rm C,2}}{\tau_{\rm C}} - R_{\rm S} I_{\rm C,2} \right] \cos(\omega_{\rm C} \,(t-t_0)) \right\} e^{-\frac{t-t_0}{\tau_{\rm C}}}.$$
(137)

Mit $\tau_{\rm C} = \frac{1}{d_{\rm C}\omega_{0\rm C}} = \frac{2L_{\rm S}}{R_{\rm S}}$ und $L_{\rm S}\omega_{\rm C} = Z_{0\rm C}\sqrt{1-d_{\rm C}^2} = Z_{\rm C}$ ergibt sich

$$u_{\rm CS}(t) = U_1 \mp n U_2 + \left\{ \left[Z_{\rm C} I_{\rm C,2} - \frac{R_{\rm S} I_{\rm C,1}}{2} \right] \sin(\omega_{\rm C} (t - t_0)) + \left[- Z_{\rm C} I_{\rm C,1} - \frac{R_{\rm S} I_{\rm C,2}}{2} \right] \cos(\omega_{\rm C} (t - t_0)) \right\} e^{-\frac{t - t_0}{\tau_{\rm C}}}.$$
(138)

Zur Bestimmung der Konstanten $I_{C,1}$ und $I_{C,2}$ werden die Anfangswerte $i_{LS}(t_0)$ und $u_{LS}(t_0)$ herangezogen.

$$i_{\rm LS}(t_0) = I_{\rm C,2}$$
 (139)

$$u_{\rm CS}(t_0) = -Z_{\rm C} I_{\rm C,1} - \frac{R_{\rm S} I_{\rm C,2}}{2} + U_1 \mp n U_2$$
(140)

$$I_{\rm C,1} = \frac{U_1 \mp n \, U_2 - u_{\rm CS}(t_0)}{Z_{\rm C}} - \frac{R_{\rm S} \, i_{\rm LS}(t_0)}{2 \, Z_{\rm C}} \tag{141}$$

Mit der Normierung aus Abschnitt 3.1.1 können die Strom- und Spannungsverläufe für leitende Dioden wie folgt formuliert werden

$$j_{\rm LS}(\theta) = \left\{ \left[1 \mp n \, M - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) \, d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right] \sin(\theta - \theta_0) + j_{\rm LS}(\theta_0) \cos(\theta - \theta_0) \right\} e^{-(\theta - \theta_0) \frac{d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}}}$$
(142)

180

$$m_{\rm CS}(\theta) = 1 \mp n M + \left\langle \left\{ j_{\rm LS}(\theta_0) - \frac{d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \left[1 \mp n M - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right] \right\} \sin(\theta - \theta_0) + (-1 \pm n M + m_{\rm CS}(\theta_0)) \cos(\theta - \theta_0) \left\rangle e^{-(\theta - \theta_0) \frac{d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}}}.$$
(143)

Der Strom $i_{\rm LP}(t)$ baut sich während leitender Dioden linear auf. Daher gilt

$$i_{\rm LP}(t) = i_{\rm LP}(t_0) + \frac{U_2}{L_P}(t - t_0)$$
(144)

$$j_{\rm LP}(\theta) = j_{\rm LP}(\theta_0) \pm \lambda \, n \, M(\theta - \theta_0). \tag{145}$$

Zur Berechnung der Ausgangsspannung U_2 wird ferner der Mittelwert des Ausgangsstroms des Gleichrichters $\overline{|i_{LS} - i_{LP}|}$ bestimmt zu

$$\begin{aligned} \overline{|j_{\text{LS}} - j_{\text{LP}}|} &= \frac{1}{\gamma} \int_{\theta_0}^{\theta_1} |j_{\text{LS}}(\theta) - j_{\text{LP}}(\theta)| \, d\theta \end{aligned} \tag{146} \\ &= \pm \frac{1 - d_{\text{C}}^2}{\gamma} \Biggl\{ \Biggl[1 \mp n \, M - m_{\text{CS}}(\theta_0) - \frac{j_{\text{LS}}(\theta_0) \, d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}} \Biggr] \\ &\Biggl[1 - \Biggl(\frac{d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}} \sin(\theta_1 - \theta_0) + \cos(\theta_1 - \theta_0) \Biggr) e^{-(\theta_1 - \theta_0) \frac{d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}}} \Biggr] \\ &+ j_{\text{LS}}(\theta_0) \Biggl[\Biggl(\sin(\theta_1 - \theta_0) + \frac{d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}} \cos(\theta_1 - \theta_0) \Biggr) \\ e^{-(\theta_1 - \theta_0) \frac{d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}}} + \frac{d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}} \Biggr] - \Biggl(\frac{d_{\text{C}}^2}{1 - d_{\text{C}}^2} + 1 \Biggr) \\ &\Biggl(j_{\text{LP}}(\theta_0)(\theta_1 - \theta_0) \pm \frac{\lambda \, n \, M \, (\theta_1 - \theta_0)^2}{2} \Biggr) \Biggr\} \tag{147}$$

mit γ als der normierten halben Periodendauer $T_{\rm S}/2 = 1/(2f_{\rm S})$

$$\gamma = \omega_{\rm C} \, \frac{T_{\rm S}}{2}.\tag{148}$$

A.2.2 Schaltzustand B für blockierende Dioden

Sobald die Dioden des Gleichrichters blockieren, ist auch L_P am Schwingkreis beteiligt. Hierdurch ändert sich zwar die Frequenz der

Abbildung 100: Ersatzschaltbild für blockierende Dioden

Oszillation, der qualitative Verlauf bleibt aber erhalten. Nach Maschensatz und Ableiten ergibt sich aus diesem Ersatzschaltbild die homogene Differentialgleichung zweiter Ordnung

$$0 = \frac{d^2 i_{\rm LS}(t)}{dt^2} + \frac{R_{\rm S}}{L_{\rm S} + L_{\rm P}} \frac{d i_{\rm LS}(t)}{dt} + \frac{i_{\rm LS}(t)}{C_{\rm S}(L_{\rm S} + L_{\rm P})},\tag{149}$$

die analog zum Schaltzustand für leitende Dioden analytisch gelöst werden kann. Zur Verallgemeinerung der Lösung werden erneut die normierten Größen verwendet, analog zu Abschnitt A.2.1.

$$j_{\rm LS}(\theta) = \left\{ \left[\frac{1 - m_{\rm CS}(\theta_0)}{r_Z} - \frac{j_{\rm LS}(\theta_0) d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}} \right] \sin(r_\omega(\theta - \theta_0)) + j_{\rm LS}(\theta_0) \cos(r_\omega(\theta - \theta_0)) \right\} e^{-r_\omega(\theta - \theta_0) \frac{d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}}}$$
(150)

$$\begin{split} m_{\rm CS}(\theta) &= 1 + \left\langle \left\{ r_Z \, j_{\rm LS}(\theta_0) \right. \\ &\left. - \frac{d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}} \left[1 - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) \, d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right] \right\} \sin(r_\omega(\theta - \theta_0)) \right. \\ &\left. + \left(-1 + m_{\rm CS}(\theta_0) \right) \cos(r_\omega(\theta - \theta_0)) \right\rangle {\rm e}^{-r_\omega(\theta - \theta_0) \frac{d_{\rm B}}{\sqrt{1 - d_{\rm B}^2}}} \end{split}$$
(151)

Zur Bestätigung, ob der Schaltzustand tatsächlich für einen bestimmten Zeitpunkt vorliegt, wird die Spannung u_{LP} ausgewertet, die hier berechnet werden soll.

$$u_{\rm LP}(t) = L_{\rm P} \, \frac{{\rm d}i_{\rm LP}(t)}{{\rm d}t} \tag{152}$$

$$m_{\rm LP}(\theta) = \frac{1}{\lambda} \frac{dj_{\rm LP}(t)}{d\theta} = \frac{1}{\lambda} \frac{dj_{\rm LS}(t)}{d\theta}$$
(153)
$$= \frac{1}{1+\lambda} \left\{ \left[r_Z j_{\rm LS}(\theta_0) \left(\frac{d_B^2}{1-d_B^2} - 1 \right) - \frac{d_B}{\sqrt{1-d_B^2}} \left(1 - m_{\rm CS}(\theta_0) \right) \right] \sin(r_\omega(\theta - \theta_0)) + \left(1 - m_{\rm CS}(\theta_0) - \frac{2j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1-d_{\rm C}^2}} \right) \cos(r_\omega(\theta - \theta_0)) \right\} e^{-r_\omega(\theta - \theta_0) \frac{d_B}{\sqrt{1-d_{\rm B}^2}}}$$
(154)

A.3 LÖSUNG DER BETRIEBSART CUTOFF

In der Betriebsart CUTOFF wird keine Leistung an den Ausgang übertragen. Für die gesamte Periodendauer bleiben die Ausgangsdioden gesperrt, es gilt also stets der Schaltzustand *B*. Für diese Betriebsart kann eine geschlossene Lösung für die Anfangswerte $j_{LS}(0)$ und $m_{CS}(0)$ angegeben werden. Hierfür müssen die Bedingungen für den stationären Zustand

$$-j_{\rm LS}(\gamma) = j_{\rm LS}(0) \tag{155}$$

$$-m_{\rm CS}(\gamma) = m_{\rm CS}(0) \tag{156}$$

nach $m_{CS}(0)$ und $j_{LS}(0)$ aufgelöst werden. Nach einigen algebraischen Umformungen erhält man

$$m_{\rm CS}(0) = \frac{r_Z - r_Z \, {\rm e}^{2\,\gamma\,B\,r_w} - B^2 \, r_Z \sin(\gamma\,r_w)^2}{r_Z + r_Z \, {\rm e}^{2\,\gamma\,B\,r_w} - B^2 \, r_Z + B\,F + B^2 \, r_Z \cos(\gamma\,r_w)^2} \dots \frac{+B\,F \sin(\gamma\,r_w)^2 + 2\,B\,r_Z \, {\rm e}^{\gamma\,B\,r_w} \sin(\gamma\,r_w)}{-B\,F \cos(\gamma\,r_w)^2 + 2\,r_Z \,\cos(\gamma\,r_w) \, {\rm e}^{\gamma\,B\,r_w}}$$
(157)

und

$$j_{\rm LS}(0) = -\frac{2\,\mathrm{e}^{\gamma\,B\,r_{\omega}}\,\sin(\gamma\,r_{\omega})}{r_Z + r_Z\,\mathrm{e}^{2\,\gamma\,B\,r_{\omega}} - B^2\,r_Z + B\,F + B^2\,r_Z\cos(\gamma\,r_{\omega})^2}$$
$$\cdots \frac{-B\,F\cos(\gamma\,r_{\omega})^2 + 2\,r_Z\,\cos(\gamma\,r_{\omega})\,\,\mathrm{e}^{\gamma\,B\,r_{\omega}}}{(158)}$$

mit $B = \frac{d_{\rm B}}{\sqrt{1-d_{\rm B}^2}}$ und $F = \frac{d_{\rm C}}{\sqrt{1-d_{\rm C}^2}}$. Werden die Dämpfungselemente infolge der Durchlassverluste vernachlässigt, geht diese Lösung über zu $m_{\rm CS}(0) = 0$ und $j_{\rm LS}(0) = -r_w \tan\left(\frac{\gamma r_w}{2}\right)$ (wie in [71] mit $d_{\rm B} = d_{\rm C} = 0$).

A.4 ANALYTISCHE BERECHNUNG DER STRESSGRÖSSEN

A.4.1 Spitzenwerte von j_{LS} , m_{CS} und m_{LP}

Zur Ermittlung der Spitzenströme und -spannungen bzw. zur Verifikation der Betriebsart CUTOFF wird im Folgenden analytisch berechnet, zu welchen Zeitpunkten bzw. zu welchen Winkeln θ die Extrema der Strom- und Spannungsverläufe auftreten. Bekanntermaßen gilt zu den Extrema die Bedingung

$$\frac{\mathrm{d}x(\theta)}{\mathrm{d}\theta} \stackrel{!}{=} 0,\tag{159}$$

mit der die Winkel θ berechnet werden können, an denen die Extrema auftreten. Zur Verallgemeinerung wird eine Funktion $x(\theta)$ verwendet, die durch geeignete Substitution der Parameter *A*, *B*, *C* und *r* in die Funktionen m_{CS} , j_{LS} und m_{LP} überführt werden kann (Tabelle 12).

$$x(\theta) = [A \sin(r(\theta - \theta_0)) + B \cos(r(\theta - \theta_0))] e^{-Cr(\theta - \theta_0)} + D$$
(160)

Nach Differentiation und einigen algebraischen Umformungen ergeben sich die Winkel θ_{max} , an denen die Extrema der Funktion $x(\theta)$ auftreten zu

$$\theta_{\max} = \frac{1}{r} \left\{ \arctan\left(\frac{A - BC}{AC + B}\right) + n_i \pi \right\} + \theta_0 \quad \text{mit} \, n_i \in \mathbb{Z}.$$
 (161)

Substitutionen A, B, C, D und r zur Ermittlung der Extrema sowie der Effektivwerte

Tabelle 12: Zur Ermittlung der Extrema sowie der Effektivwerte von j_{LS} , m_{CS} und m_{LP} werden die Substitutionen *A*, *B*, *C*, *D* und *r* eingeführt

Größe	Α	В	С	D	r
$j_{\rm LS}(\theta)^B$	$\frac{1-m_{\rm CS}(\theta_0)}{r_{\rm Z}} - \frac{j_{\rm LS}(\theta_0)d_{\rm B}}{\sqrt{1-d_{\rm B}^2}}$	$j_{\rm LS}(heta_0)$	$rac{d_{\mathrm{B}}}{\sqrt{1-d_{\mathrm{B}}^2}}$	0	r _w
$m_{\rm CS}(\theta)^B$	$\frac{r_{\rm Z} j_{\rm LS}(\theta_0) -}{\sqrt{1 - d_{\rm B}^2}} \left[1 - m_{\rm CS}(\theta_0) - \frac{j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right]$	$-1+m_{\rm CS}(\theta_0)$	$rac{d_{ m B}}{\sqrt{1-d_{ m B}^2}}$	1	r _w
$m_{ m LP}(heta)^B$	$\frac{1}{1+\lambda} \left[r_{\rm Z} j_{\rm LS}(\theta_0) \left(\frac{d_{\rm B}^2}{1-d_{\rm B}^2} - 1 \right) - \frac{d_{\rm B}}{\sqrt{1-d_{\rm B}^2}} \left(1 - m_{\rm CS}(\theta_0) \right) \right]$	$\frac{\frac{1}{1+\lambda} \left(1 - m_{\rm CS}(\theta_0) - \frac{2j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}} \right)$	$\frac{d_{\rm B}}{\sqrt{1-d_{\rm B}^2}}$	0	r _w
$j_{\rm LS}(\theta)^{C\pm}$	$1 \pm n M - m_{\rm CS}(\theta_0) - rac{j_{\rm LS}(\theta_0) d_{\rm C}}{\sqrt{1 - d_{\rm C}^2}}$	$j_{\rm LS}(heta_0)$	$\frac{d_{\rm C}}{\sqrt{1-d_{\rm C}^2}}$	0	1
$m_{\rm CS}(\theta)^{C\pm}$	$j_{\text{LS}}(\theta_0) - \frac{d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}} \\ \left[1 \mp n M - m_{\text{CS}}(\theta_0) - \frac{j_{\text{LS}}(\theta_0) d_{\text{C}}}{\sqrt{1 - d_{\text{C}}^2}} \right]$	$-1 \pm n M$ $+m_{CS}(heta_0)$	$\frac{d_{\rm C}}{\sqrt{1-d_{\rm C}^2}}$	$1\mp$ n M	1

Mit [!] wird an dieser Stelle vereinfacht die Forderung nach dieser Gleichung formuliert.

A.4.2 Effektivwerte von j_{LS} , m_{CS} und m_{LP}

Zur Bestimmung des Effektivwerts gilt bekanntermaßen Gleichung 162, die abschnittsweise für die Intervalle der Schaltzustände gelöst werden kann (Gleichung 163).

$$X = \sqrt{\frac{1}{2\gamma} \int_0^{2\gamma} x(\theta)^2 \,\mathrm{d}\theta} \tag{162}$$

$$= \sqrt{\frac{1}{\gamma} \left[\int_0^{\theta_1} x(\theta)^2 \, \mathrm{d}\theta + \dots + \int_{\theta_n}^{\gamma} x(\theta)^2 \, \mathrm{d}\theta \right]}$$
(163)

Zur Verallgemeinerung wird wiederum die Funktion $x(\theta)$ verwendet, die durch geeignete Substitution der Parameter *A*, *B*, *C*, *D* und *r* zu den Funktionen m_{CS} , j_{LS} und m_{LP} überführt werden kann (siehe Tabelle 12).

$$x(\theta) = [A \sin(r(\theta - \theta_0)) + B \cos(r(\theta - \theta_0))] e^{-Cr(\theta - \theta_0)} + D$$
(164)

Die Stammfunktion der Funktion aus Gleichung 162 lässt sich geschlossen lösen zu

$$\int x(\theta)^{2} d\theta = \theta D^{2} - \frac{e^{-2Cr(\theta-\theta_{0})}}{4Cr(C^{2}+1)} \left\{ A^{2} + B^{2} + A^{2}C^{2} + B^{2}C^{2} + \left[A^{2} + 2ABC - B^{2} \right]C \sin(2r(\theta-\theta_{0})) - \left[A^{2}C - 2AB - B^{2}C \right]C \cos(2r(\theta-\theta_{0})) + BCDe^{Cr(\theta-\theta_{0})} \left[\left(AC - B \right) \sin(r(\theta-\theta_{0})) + \left(BC + A \right) \cos(r(\theta-\theta_{0})) \right] \right\},$$
(165)

womit sich die Effektivwerte abschnittsweise berechnen lassen.

B

B.1 EINGESETZTE MESSMITTEL

Größe	Hersteller	Artikelnr.	Bandbreite
u_{AB}	LeCroy	ADP305	100 MHz
$i_{\rm LS}$	PEM	Ultra-mini CWT06	30 MHz
<i>i</i> _{out}	PEM	Ultra-mini CWT03	30 MHz
$u_{\rm CS}$	PMK	BumbleBee	300 MHz
$u_{\rm LP}$	PMK	BumbleBee	300 MHz
L _S , L _P & n	Agilent	4294 A	40Hz-110MHz
$C_{\rm S}$	Agilent	4294 A	40Hz-110MHz

Tabelle 13: Messmittel zur experimentellen Verifikation der Zeitbereichsanalyse

Tabelle 14: Bauteilliste des Labor-Prototyps

Bez.	Technologie	Artikelnr.	Anzahl
S_{1-4}	GaN-HEMT	GS66516T	8 Stück
$C_{\rm S}$	MLCC – NPo-Dielektrikum	C2220C562JFG	11 Stück
$L_{\rm S}$, $L_{\rm P}$ & n	Integrierter Transformator	Eigenbau	1 Stück
D_{1-4}	SiC-Dioden	IDW30G65C5XKSA1	4 Stück
C_1/C_2	MLCC – X7R-Dielektrikum	C2220C105MCR2L	20 Stück

 Tabelle 15: Messmittel zur Messung der Hysterese-Schleife, der Hysterese

 verluste, der Wirbelstromverluste und Verlustleistung

Größe	Hersteller	Artikelnr.	Bandbreite
<i>u</i> _{Sek}	LeCroy	PPo26	500 MHz
$u_{\rm Sek}/i(t)$	ZES-Zimmer	LMG640, A-Kanal	
i(t)	LeCroy	CP031A	100 MHz
i(t)	ZES-Zimmer	WCT100	
$i(t)/u_{\rm Sek}$	LeCroy	HDO4104	1 GHz

d _{cl} /mm	Ll	N	PE	L1 _{Var}	N _{Var}	L1 _{EMI}	N _{EMI}	Inv _{Out1}	Inv _{Out2}	Cs _{Out}	Rec _{In1}	Rec _{In2}	Rec _{Out+}	Rec _{Out-}	Bat+	Bat-
L1	0,0	1,9	2,3	0,0	0,6	0,6	0,6	0,8	0,8	0,8	2,9	2,9	2,9	2,3	2,3	2,3
N	1,9	0,0	2,3	0,6	0,0	0,6	0,6	0,8	0,8	0,8	2,9	2,9	2,3	2,3	2,3	2,3
PE	2,3	2,3	0,0	2,3	2,3	2,3	2,3	6,1	6,1	6,1	2,3	2,3	2,3	2,3	2,3	2,3
L1 _{Var}	0,0	0,6	2,3	0,0	0,6	0,6	0,6	0,8	0,8	0,8	2,9	2,9	2,3	2,3	2,3	2,3
N _{Var}	0,6	0,0	2,3	0,6	0,0	0,6	0,6	0,8	0,8	0,8	2,9	2,9	2,3	2,3	2,3	2,3
L1 _{EMI}	0,6	0,6	2,3	0,6	0,6	0,0	0,6	0,8	0,8	0,8	2,9	2,9	2,3	2,3	2,3	2,3
N _{EMI}	0,6	0,6	2,3	0,6	0,6	0,6	0,0	0,8	0,8	0,8	2,9	2,9	2,3	2,3	2,3	2,3
Inv _{Out1}	0,8	0,8	6,1	0,8	0,8	0,8	0,8	0,0	0,8	0,8	2,9	2,9	2,9	2,9	2,9	2,9
Inv _{Out2}	0,8	0,8	6,1	0,8	0,8	0,8	0,8	0,8	0,0	0,8	2,9	2,9	2,9	2,9	2,9	2,9
Cs _{Out}	0,8	0,8	6,1	0,8	0,8	0,8	0,8	0,8	0,8	0,0	2,9	2,9	2,9	2,9	2,9	2,9
Rec _{In1}	2,9	2,9	2,3	2,9	2,9	2,9	2,9	2,9	2,9	2,9	0,0	0,8	0,8	0,8	0,8	0,8
Rec _{In2}	2,9	2,9	2,3	2,9	2,9	2,9	2,9	2,9	2,9	2,9	0,8	0,0	0,8	0,8	0,8	0,8
Rec _{Out+}	2,9	2,3	2,3	2,3	2,3	2,3	2,3	2,9	2,9	2,9	0,8	0,8	0,0	0,6	0,6	0,6
Rec _{Out-}	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,9	2,9	2,9	0,8	0,8	0,6	0,0	0,6	0,6
Bat+	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,9	2,9	2,9	0,8	0,8	0,6	0,6	0,0	0,6
Bat-	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,9	2,9	2,9	0,8	0,8	0,6	0,6	0,6	0,0

B.2 LUFT- UND KRIECHSTRECKEN DES LABORPROTOTYPS

Abbildung 101: Luftstrecken in mm nach IEC60664-1/LV123 für 4000 m Betriebshöhe für die Netzklassen des Prototyps

d _{cr} /mm	L1	N	PE	$L1_{Var}$	N _{Var}	L1 _{EMI}	N _{EMI}	Inv _{Out1}	Inv _{Out2}	Cs _{Out}	Rec _{In1}	Rec _{In2}	Rec _{Out+}	Rec _{Out-}	Bat+	Bat-
L1	0	0,6	2,5	0,0	0,6	0,0	0,6	0,3	0,3	0,0	1,2	1,2	1,2	1,2	1,2	1,2
N	0,6	0	2,5	0,6	0,0	0,6	0,0	0,3	0,3	0,6	1,2	1,2	1,2	1,2	1,2	1,2
PE	2,5	2,5	0	2,5	2,5	2,5	2,5	5,0	5,0	5,0	2,5	2,5	5,0	5,0	5,0	5,0
L1 _{Var}	0,0	0,6	2,5	0	0,6	0,6	0,6	0,3	0,3	0,6	1,2	1,2	1,2	1,2	1,2	1,2
N _{Var}	0,6	0,0	2,5	0,6	0	0,6	0,6	0,3	0,3	0,6	1,2	1,2	1,2	1,2	1,2	1,2
L1 _{EMI}	0,0	0,6	2,5	0,6	0,6	0	0,6	0,3	0,3	0,6	1,2	1,2	1,2	1,2	1,2	1,2
N _{EMI}	0,6	0,0	2,5	0,6	0,6	0,6	0	0,3	0,3	0,6	1,2	1,2	1,2	1,2	1,2	1,2
Inv _{Out1}	0,3	0,3	5,0	0,3	0,3	0,3	0,3	0	0,5	1,0	1,2	1,2	1,2	1,2	1,2	1,2
Inv _{Out2}	0,3	0,3	5,0	0,3	0,3	0,3	0,3	0,5	0	0,6	1,2	1,2	1,2	1,2	1,2	1,2
Cs _{Out}	0,0	0,6	5,0	0,6	0,6	0,6	0,6	1,0	0,6	0	1,2	1,2	1,2	1,2	1,2	1,2
Rec _{In1}	1,2	1,2	2,5	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	1,0	1,0	1,0	1,0	1,0
Rec _{In2}	1,2	1,2	2,5	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	0	1,0	1,0	1,0	1,0
Rec _{Out}	1,2	1,2	5,0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	1,0	0	1,0	1,0	1,0
Rec _{Out-}	1,2	1,2	5,0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	1,0	1,0	0	1,0	1,0
Bat+	1,2	1,2	5,0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	1,0	1,0	1,0	0	1,0
Bat-	1,2	1,2	5,0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	1,0	1,0	1,0	1,0	0

Abbildung 102: Kriechstrecken in mm nach IEC 60664-1/LV123 für Verschmutzungsgrad 1 für Materialgruppe IIIb

d _{cr} /mm	L1	N	PE	L1 _{Var}	N _{Var}	L1 _{EMI}	N _{EMI}	Inv _{Out1}	Inv _{Out2}	Cs _{Out}	Rec _{In1}	Rec _{In2}	Rec _{Out+}	Rec _{Out-}	Bat+	Bat-
L1	0	1,1	2,5	0,0	1,1	0,0	1,1	0,4	0,4	1,1	2,4	2,4	2,4	2,4	2,4	2,4
N	1,1	0	2,5	1,1	0,0	1,1	0,0	0,4	0,4	1,1	2,4	2,4	2,4	2,4	2,4	2,4
PE	2,5	2,5	0	2,5	2,5	2,5	2,5	5,0	5,0	5,0	2,5	2,5	5,0	5,0	5,0	5,0
L1 _{Var}	0,0	1,1	2,5	0	1,1	1,1	1,1	0,4	0,4	1,1	2,4	2,4	2,4	2,4	2,4	2,4
N _{Var}	1,1	0,0	2,5	1,1	0	1,1	1,1	0,4	0,4	1,1	2,4	2,4	2,4	2,4	2,4	2,4
L1 _{EMI}	0,0	1,1	2,5	1,1	1,1	0	1,1	0,4	0,4	1,1	2,4	2,4	2,4	2,4	2,4	2,4
N _{EMI}	1,1	0,0	2,5	1,1	1,1	1,1	0	0,4	0,4	1,1	2,4	2,4	2,4	2,4	2,4	2,4
Inv _{Out1}	0,4	0,4	5,0	0,4	0,4	0,4	0,4	0	0,7	2,1	2,4	2,4	2,4	2,4	2,4	2,4
Inv _{Out2}	0,4	0,4	5,0	0,4	0,4	0,4	0,4	0,7	0	1,1	2,4	2,4	2,4	2,4	2,4	2,4
Cs _{Out}	1,1	1,1	5,0	1,1	1,1	1,1	1,1	2,1	1,1	0	2,4	2,4	2,4	2,4	2,4	2,4
Rec _{In1}	2,4	2,4	2,5	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0	2,0	2,0	2,0	2,0	2,0
Rec _{In2}	2,4	2,4	2,5	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,0	0	2,0	2,0	2,0	2,0
Rec _{Out}	2,4	2,4	5,0	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,0	2,0	0	2,0	2,0	2,0
Rec _{Out-}	2,4	2,4	5,0	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,0	2,0	2,0	0	2,0	2,0
Bat+	2,4	2,4	5,0	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,0	2,0	2,0	2,0	0	2,0
Bat-	2,4	2,4	5,0	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,0	2,0	2,0	2,0	2,0	0

Abbildung 103: Kriechstrecken in mm nach IEC 60664-1/LV123 für Verschmutzungsgrad 2 für Materialgruppe IIIb

B.3 WEITERE FOTOS DER LABORMUSTER

Abbildung 104: Foto der Sensor-Leiterkarte, die zur Verifikation der Hysterese-Regelung verwendet wurde (FPGA ist auf der Rückseite bestückt)

Abbildung 105: Gehäuseoberteil des Prototyps inkl. der zugehörigen Leiterkarte

Abbildung 106: Gehäuseunterteil des Prototyps inkl. der zugehörigen Leiterkarte

190

Abbildung 107: Prototyp inkl. Transformator während der Inbetriebnahme

Abbildung 108: Fertigung des Mittelschenkels mittels der Ferritfräse Compact 350 von imes-icore

C

- [A] L. Keuck, F. Schafmeister, J. Böcker. Computer-Aided Design and Optimization of an Integrated Transformer with Distributed Air Gap and Leakage Path for an LLC Resonant Converter. In: Proc. 34th IEEE Applied Power Electronics Conference (APEC). IEEE; 2019:1415-1422.
- [B] L. Keuck, N. Jabbar, F. Schafmeister, J. Böcker. Switching Loss Characterization of Wide Band-Gap Devices by an Indirect Identification Methodology. In: Proc. 20th European Conference on Power Electronics and Applications (EPE-ECCE Europe). EPE; 2018:1-10.
- [C] L. Keuck, N. Fröhleke, J. Böcker. Formaler Regelungsentwurf für netzfreundliche PFC-Ladegleichrichter unter Anwendung eines Netzbeobachters, Internationaler ETG Kongress, Berlin, Germany, 2013
- [D] L. Keuck, N. Fröhleke, J. Böcker and A. Ziessler. *PFC-control for improved inductor utilization*, 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), 2015, pp. 1-7, doi: 10.1109/EPE.2015.7309373.
- [E] L. Keuck et al.. Neuro control of a PFC rectifier for harmonic reduction at partial loads, 2014 International Conference on Advances in Green Energy (ICAGE), 2014, pp. 94-99, doi: 10.1109/ICA-GE.2014.7050149.
- [F] L. Keuck, F. Almai, S. Bolte, N. Froehleke and J. Böcker. Frequencyand Mode-Adaptive Control of DC-DC Converter for Efficency Improvement, PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016, pp. 1-8.
- [G] L. Keuck, P. Hosemann, B. Strothmann and J. Böcker. A Comparative Study on Si-SJ-MOSFETs vs. GaN-HEMTs Used for LLC-Single-Stage Battery Charger, PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2017, pp. 1-8.
- [H] L. Keuck, A. Munir, F. Schafmeister and J. Böcker. Adaptive Frequency Control of DC-DC-Converters for Maximum Efficiency Using Artificial Neural Network, PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2018, pp. 1-8.

- [I] L. Keuck, F. Schafmeister, J. Böcker, H. Jungwirth and M. Schmidhuber. Computer-Aided Design and Optimization of an Integrated Transformer with Distributed Air Gap and Leakage Path for LLC Resonant Converter, PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2019, pp. 1-8.
- [J] L. Keuck, F. Schafmeister and J. Böcker. Robust Hysteresis Control for Full-Bridge LLC Resonant Converters Using an Isolated Measurement Scheme, PCIM Europe 2022; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2022, pp. 1-6, doi: 10.30420/565822190.
- [K] L. Keuck, B. Strothmann, R. Hermelingmeier, N. Fröhleke and J. Böcker. *Single-stage battery charger based on a LLC resonant converter - a concept study*, 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), 2016, pp. 1-6, doi: 10.1049/cp.2016.0139.
- [L] L. Zhu, H. Bai, A. Brown and L. Keuck. A Current-fed Three-port DC/DC Converter for Integration of On-board Charger and Auxiliary Power Module in Electric Vehicles, 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 577-582, doi: 10.1109/APEC42165.2021.9487263.
- [M] S. Bolte, L. Keuck, J. K. Afridi, N. Fröhleke and J. Böcker. Calorimetric measurements with compensating temperature control, 2017 IE-EE 26th International Symposium on Industrial Electronics (ISIE), 2017, pp. 636-639, doi: 10.1109/ISIE.2017.8001320.
- [N] T. Vogt, L. Keuck, N. Fröhlecke, J. Böcker and S. Kempen. Analysis of industrial microgrid power curves based on the theory of stochastic variables for control system development and component sizing, 2014 International Conference on Advances in Green Energy (ICAGE), 2014, pp. 66-73, doi: 10.1109/ICAGE.2014.7050145.
- [O] A. Körner, C. Buhlheller, L. Keuck, E. de Oliveira. Voltage in transformation – Power electronic Converter for Hybrid and Electric Vehicles. ETG-Fachtagun, Bad Nauheim, Bauelemente der Leistungselektronik und ihre Anwendungen 2017.
- [P] J. Böcker, L. Keuck, W. Peters, O. Wallscheid. Herausforderung Elektromobilität - Erhöhung der Reichweite elektrisch angetriebener Fahrzeuge, ForschungsForum Paderborn, 2015.