
Local Protocols for
Contracting and Expanding
Robot Formation Problems

Dissertation
In partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

at the Faculty of Computer Science,
Electrical Engineering and Mathematics

at Paderborn University

submitted by

JANNIK CASTENOW

Reviewers

• Prof. Dr. Friedhelm Meyer auf der Heide,
Paderborn University

• Prof. Dr. Christian Scheideler,
Paderborn University

Zusammenfassung

Inspiriert von der Vision von Roboterschwärmen, die gemeinsam Gebiete wie die Oberfläche
entfernter Planeten erkunden (z.B. Marsbees [75]), untersuchen wir die theoretischen Grundla-
gen von mobilen Roboterschwärmen. Die Roboter werden als Punkte in einem d-dimensionalen
euklidischen Raum modelliert. Jeder Roboter hat nur sehr begrenzte Fähigkeiten und lokale Infor-
mationen über seine Umgebung (er kann andere Roboter nur bis zu seiner Sichtweite wahrnehmen).
In der Regel sind die Roboter orientierungslos, d. h. sie haben kein gemeinsames Koordinaten-
oder Positionierungssystem. Aufgrund der begrenzten Fähigkeiten der Roboter werden bereits
grundlegende Aufgaben für die Roboter zu einer algorithmischen Herausforderung. In dieser Arbeit
untersuchen wir vier Formationsprobleme, bei denen sich die Roboter so bewegen sollen, dass ihre
Positionen ein vorgegebenes Muster bilden. Unser Fokus liegt auf der folgenden Frage: Wie schnell
können die Roboter ein bestimmtes Formationsproblem mit gegebenen Roboterfähigkeiten lösen?

Die Formationsprobleme können in zwei Klassen eingeteilt werden: Kontrahierende und ex-
pandierende Formationsprobleme. Das Ziel von kontrahierenden Formationsproblemen ist es, die
Roboter näher zusammenzubringen oder eine Zielstruktur zu minimieren. Auf der anderen Seite
gibt es expandierende Formationsprobleme, bei denen sich die Roboter ausbreiten müssen, um eine
möglichst große Fläche abzudecken oder eine Zielstruktur zu maximieren. Kontrahierende Forma-
tionsprobleme sind in der Literatur gut bekannt, aber über expandierende Formationsprobleme ist,
insbesondere bei Robotern mit nur lokalen Informationen, noch viel Forschungsbedarf.

Konkret untersuchen wir die kontrahierenden Formationsprobleme GATHERING und CHAIN-
FORMATION. Beim GATHERING müssen sich die Roboter zu einem einzigen, nicht vordefinierten
Punkt bewegen. Unsere Forschung identifiziert strukturelle Eigenschaften von Protokollen zur
effizienten Lösung des GATHERING-Problems in verschiedenen Zeitmodellen. Insbesondere
entwickeln wir die ersten lokalen GATHERING-Protokolle für Roboter in einem euklidischen Raum
der Dimension drei oder höher. Das CHAIN-FORMATION-Problem untersucht eine Kette von
Robotern. Genauer gesagt, sind die Roboter in einer Kettentopologie (jeder innere Roboter hat zwei
Nachbarn) zwischen zwei stationären äußeren Robotern verbunden. Das Ziel der Roboter ist es, die
Länge der Kette zu minimieren, d. h. sich auf einer geraden Linie zwischen den äußeren Robotern
zu positionieren. Wir zeigen, wie die Fähigkeit, Informationen konstanter Größe zu kommunizieren
(die Roboter haben Lichter), dazu beiträgt, schnelle (1+ ε)-Approximationsprotokolle für das
CHAIN-FORMATION-Problem zu entwickeln.

Außerdem führen wir die expandierenden Formationsprobleme MAX-CHAIN-FORMATION

und MAX-LINE-FORMATION neu ein. Beide zielen darauf ab, die Roboter in einer geraden Linie
mit maximaler Länge (in Bezug auf die Sichtweite) anzuordnen. Das Problem MAX-CHAIN-
FORMATION untersucht eine Kette von Robotern, bei der die äußeren Roboter die Fähigkeit haben,
sich zu bewegen. Beim MAX-LINE-FORMATION-Problem haben die Roboter keine vordefinierte

Kettenstruktur, können aber alle anderen Roboter in unmittelbarer Nähe sehen. Wir stellen mehrere
Protokolle vor, die von unterschiedlichen Roboterfähigkeiten ausgehen, um beide Formationsprob-
leme zu lösen. Interessanterweise zeigen wir, dass viele Ideen von Protokollen für kontrahierende
Formationsprobleme wiederverwendet werden können. Allerdings zeigen unsere Protokolle auch
ein komplexeres Konvergenzverhalten im Vergleich zu kontrahierenden Formationsprotokollen.

Abstract

Inspired by the vision of robot swarms collectively exploring hazardous areas such as the surface of
distant planets (e.g., Marsbees [75]), we study the theoretical foundations of mobile robot swarms.
The robots are modeled as points in a d-dimensional Euclidean space. Each robot on its own has
very limited capabilities and only local information about its environment (it can only observe
other robots up to its viewing range). Mostly, the robots are disoriented, i.e., they do not agree on
any common coordinate or positioning system. Due to the limited capabilities of the robots, even
basic tasks for the robots become algorithmically challenging. In this thesis, we study four robot
formation problems in which the robots are to move such that their positions fulfill a predefined
pattern. Our focus lies on the following question: How fast can the robots solve a particular
formation problem under given robot capabilities?

The formation problems can be categorized into two classes: contracting and expanding
formation problems. The goal of contracting formation problems is to move the robots closer
together or to minimize a target structure. On the opposite side, we have expanding formation
problems, where the robots have to spread out to cover as much area as possible or to maximize a
target structure. Contracting formation problems are well-established in the literature, but much less
is known about expanding formation problems, especially for robots with only local information.

Concretely, we study the two contracting formation problems GATHERING and CHAIN-
FORMATION. GATHERING demands to move the robots to a single, not predefined point. Our
research identifies structural properties of protocols to solve GATHERING efficiently in different
time models. Especially, we develop the first local gathering protocols for robots in a Euclidean
space of dimension three or higher. The CHAIN-FORMATION problem studies a chain of robots.
Precisely, the robots are connected in a chain topology (each inner robot has two neighbors) between
two stationary outer robots. The goal of the robots is to reduce the length of the chain, i.e., to
position themselves on a straight line between the outer robots. We show how the ability to commu-
nicate constant-sized information (the robots have lights) helps to derive fast (1+ε)-approximation
protocols for the CHAIN-FORMATION problem.

Furthermore, we newly introduce the expanding formation problems MAX-CHAIN-FORMATION

and MAX-LINE-FORMATION. Both aim to arrange the robots in a straight line of maximum length
(with respect to the viewing range). MAX-CHAIN-FORMATION studies a chain of robots in which
the outer robots can move. In the MAX-LINE-FORMATION problem, the robots do not have a
predefined chain structure but can observe all other robots in close vicinity. We introduce several
protocols assuming different robot capabilities to solve both formation problems. Interestingly, we
show that many ideas of protocols for contracting formation problems can be reused. However, our
protocols also exhibit a more complex convergence behavior compared to contracting formation
protocols.

Preface

As I write these words, a long, very exciting journey is coming to an end. Many people have made
this journey possible in the first place or have accompanied me on it. Following, I would like to
thank these people. First of all, I would like to thank my supervisor Friedhelm Meyer auf der
Heide, who gave me the opportunity to do research at his chair. Even in difficult times, I felt great
confidence that my approaches were the right ones and would ultimately lead to success. This trust
in combination with the freedom you gave me to find my own research profile was an important
key to the completion of this thesis.

Next, I would like to thank Till Knollmann. We have been friends since the beginning of our
studies and have also shared the time of the Ph.D. as friends, colleagues, and co-authors. You were
a great anchor and support during all this time. Dear Till, I do not know if I would have gotten this
far without you.

Apart from Till and Friedhelm, I had several other fantastic co-authors: Michael Braun, Thorsten
Götte, Jonas Harbig, Peter Kling and Daniel Jung. I would especially like to thank Peter and Daniel,
with whom I always had productive discussions despite the physical distance. Thank you for your
time, your commitment, and your constant belief in our joint research. I also thank Jonas, who
participated in my research as an undergraduate and eventually joined the research group as a Ph.D.
student.

Besides the co-authors, I would like to thank my former office colleagues Johannes and Malex.
The time with you in the office, especially the rounds together in the game World of Padman, will
remain unforgotten. Representing all other colleagues, I would like to thank Petra, Heinz-Georg,
and Matthias, who always helped me in every matter.

Furthermore, I would like to thank my family. Especially to Sarah, my wife, I owe a debt of
gratitude that I can hardly put into words. Thank you for putting up with all my moods when once
again an idea did not work out or a proof got broken. Your constant belief in me, your motivational
skills, but also your ability to distract me from work at the right moments has helped me to go this
way. I love you. Last but not least, you gifted me with our daughter Ida, who is already almost 3
years old at the time of these words. Dear Ida, you have been a big part of this journey. There was
nothing better than reading a book to you or playing with you when I was supposed to be writing
this dissertation. I am very thankful that you are with us.

Jannik Castenow
March, 2023

Contents

1 Introduction . 11

1.1 Scope . 13
1.2 Outline of the Thesis and Main Results . 16

2 Robot Models & Notation . 21

2.1 OBLOT . 21
2.2 LUMI . 24
2.3 Chains . 24
2.4 Naming . 25

3 Related Work . 27

I Contracting Problems

4 GATHERING in the OBLOT Model . 37

4.1 Contribution . 38
4.2 Model Recap and Preliminaries . 39
4.3 Continuous Time GATHERING . 40
4.4 Discrete Time GATHERING . 46
4.5 Conclusion & Outlook . 60

5 CHAIN-FORMATION in the LUMI Model . 63

5.1 Contribution . 63
5.2 Model Recap and Preliminaries . 64
5.3 Run Sequences and Movement Operations . 65
5.4 Protocols for the FSYNC Scheduler . 67
5.5 Analyses . 70
5.6 Synchronization for the SSYNC and ASYNC Schedulers 73
5.7 Conclusion & Outlook . 78

10

6 GATHERING in the LUMI Model . 81

6.1 Contribution . 81
6.2 Model Recap and Preliminaries . 82
6.3 Protocol for the FSYNC Scheduler . 83
6.4 Synchronization for the SSYNC and ASYNC Schedulers 101
6.5 Conclusion & Outlook . 102

II Expanding Problems

7 The MAX-CHAIN-FORMATION Problem . 105

7.1 Contribution . 105
7.2 Model Recap and Preliminaries . 107

7.3 Protocols and Analyses in the OBLOT F
1 Model 107

7.4 Protocols and Analyses in the OBLOT C
1 Model 120

7.5 On the Speed of the Outer Robots . 132
7.6 Conclusion & Outlook . 135

8 The MAX-LINE-FORMATION Problem . 137

8.1 Contribution . 137
8.2 Model Recap and Preliminaries . 138
8.3 Results in the OBLOT Model . 139
8.4 Results in LUMI Model . 149
8.5 Conclusion & Outlook . 155

Bibliography . 157

1. Introduction

The future is in the hands of those
who explore.

Jacques-Yves Cousteau,
Oceanographer

Since ancient times, humans have aimed to develop mechanical machines to automate various
tasks. If the machine is programmable, operates to some degree autonomously and senses and
manipulates its environment, such a machine is usually called a robot (although there is no
common definition). Robots occur in various application fields, ranging from industrial robots
for manufacturing, over warehouse robots that automate logistics, to medical robots assisting in
surgeries. When the robots can move, as the warehouse robots typically do, they are called mobile
robots. A further important application of mobile robots is the exploration of areas that are difficult
or, with current technical developments, even impossible for humans to reach. Examples of such
areas are the deep sea or distant planets since humans can reach them either only with considerable
effort or not at all (yet). In 2021, for instance, NASA’s Perseverance Rover reached Mars [73].
Since then, the rover autonomously explores the Martian surface, collects scientific data and sends
it back to earth. Researchers evaluate the data and, among other research questions, hope to find
evidence for earlier life on Mars. Similar robots exist to explore the deep sea. In contrast to
Mars, even the deepest points of earth’s seabed – called Challenger Deep – can be reached by
humans with specialized deep-sea submarines. Nevertheless, this requires extreme effort and is
still very dangerous. To overcome these drawbacks, for instance, the Nereus robotic vehicle has
been developed [17]. After reaching the ocean floor – Nereus can reach Challenger Deep – Nereus
autonomously explores the ocean ground. Despite their advantage that no humans are involved
in the exploration, both the Perseverance Rover and Nereus are highly optimized and very costly
special-purpose robotic vehicles. The estimated costs for the Perseverance Rover are 2.7 billion US
dollars and the development took several years [56]. Moreover, the maintenance periods for those
vehicles are very long and single technical errors can have a severe impact. Nereus, for instance,
imploded in 2014 on the ocean ground [4].

As a consequence, there is a natural desire for a cheaper, scalable and robust solution for
exploration tasks. Scalability is important to be able to explore larger areas and to speed up the
exploration. Both the deep sea and the Martian surface are immense such that a single robot would
take more than a human lifetime to explore a reasonable portion of the entire surface. As the
Nereus example sophisticates, robustness is also important since the exploration area might be
hazardous such that a single incident can destroy a robot. To ensure robustness and scalability,

12 Chapter 1. Introduction

current research projects, including NASA’s Marsbees [75] or the CORATAM project for (deep) sea
exploration [57], aim to distribute the exploration task over a large amount of cheap(er) and tiny
robots that collectively explore the environment. Such an approach is, among others, inspired by
swarms of fish, birds, bees or ants. While each animal on its own has only very limited capabilities,
the swarm collectively solves complex tasks. Ants, for instance, can build bridges with their bodies
to enable other ants to shortcut certain distances or even reach places that could not be reached
before. The most interesting part about ants is that they coordinate themselves without any leader.
They operate autonomously and each ant decides based on its local information what seems to be
best for the entire swarm [101]. Based on these observations, the vision is to replace single, costly
special-purpose robots with a swarm of lightweight and cheap robots that solve complex tasks
collectively.

However, to benefit from the previously described advantages, lots of challenges have to be
solved. The first challenge is the design of the robots including the choice of appropriate sensors
and hardware. To keep the cost of each robot low, it is necessary to determine the essential hardware
to solve the task the robot is designed for. Furthermore, it is interesting to determine tradeoffs:
e.g., larger memory is more expensive but potentially leads to a much faster exploration time since
the robots can locally determine which areas they have already visited. The second challenge is
the design of correct and (time-)efficient protocols (algorithms). The main challenge here stems
from the environment where the robots live and the local information. Consider for instance the
seemingly simple tasks of recollecting all robots after finishing the exploration – we will later
denote this task as the GATHERING problem. The task is easy to solve as long as the robots
have a global coordinate system (e.g., GPS) and can communicate over larger distances (e.g., via
the internet). With GPS or global communication, the robots could simply agree on a common
position where to meet and every robot moves there. In environments such as the deep sea or the
Martian surface, however, no GPS or large-scale communication infrastructure is available. Instead,
each robot can only sense its local vicinity and must base its decisions upon this small piece of
information. Therefore, seemingly simple tasks turn out to be challenging or, without appropriate
sensory capabilities, even impossible to solve.

Since already simple tasks become challenging, we focus on the basic algorithmic building
blocks of mobile robot swarms in this thesis. Concretely, we study robot formation problems
(also denoted as PATTERN FORMATION [111]), where the goal is to arrange the robots in a certain
formation. One example is the GATHERING problem, where the robots have to gather at the same
location – an important subroutine to recollect spread-out robots. Other examples involve the
MAX-LINE-FORMATION problem, where the robots have to bridge a large area. More precisely, we
look at robot formation problems for swarms of mobile robots from the perspective of distributed
computing. The research area of distributed computing studies the theoretical foundations of
distributed systems. In this research area, we abstract from the technical details of the robots
and work with common models, where robots are modeled as points in d-dimensional Euclidean
spaces that move around based on the protocols we design. The previously raised question about
the required hardware of a robot translates into the question of how powerful the robot model
has to be. The typical intriguing research question is: Which capabilities do the robots need (at
least) to solve a formation problem? As mentioned earlier, GATHERING is trivial if robots can
communicate over large distances or have access to a common positioning system. But how about
robots that can only observe other robots in their close vicinity? The second main research question
we study in this thesis is: How fast can robots solve a certain formation problem and how does
the robot model influence the runtime? For instance, how fast can oblivious robots (no persistent
memory) solve a formation task, and can the robots solve the task faster if they have access to
a small amount of persistent memory? In this thesis, we mostly focus on the second research
question, i.e., our focus lies on the interplay between the robot model and the runtime efficiency of
robot formation protocols. Nevertheless, we will also see impossibility results stating that some
formation problems are impossible to solve without certain robot capabilities. In the following

1.1 Scope 13

Section 1.1, we briefly summarize the robot models and introduce the specific formation problems.
Afterward, we summarize the results of this thesis in Section 1.2.

1.1 Scope
The broad topic of this thesis is to design local protocols for different types of robot formation
problems, to prove their correctness and to analyze their runtime. All protocols are designed for
suitable theoretical models that abstract from the physical aspects of the robots and allow us to
derive formal correctness proofs and analyze the runtime complexity. In the following, we briefly
summarize the robot model and introduce the formation problems studied in this thesis.

Model Summary. Here, we focus on the most important aspects of the robot models. A detailed
description of the models is contained in Chapter 2. In all models, the robots are point-shaped
and live in a d-dimensional Euclidean space. Each robot has its own local coordinate system
that is self-centered (the robot is located at the origin). Mostly, we assume that the robots are
disoriented, i.e., the axes of their local coordinate systems can be arbitrarily inverted and rotated
such that the robots do not agree on any directions. The disorientation is even variable, meaning
that the axes and the orientation of the coordinate system of a fixed robot might change from
time to time. In one exception (Chapter 8), we consider robots with one-axis agreement. Those
robots agree on the orientation and direction of one coordinate axis. The other axes are commonly
aligned; however, the directions might differ from robot to robot. Moreover, the robots have limited
visibility. Precisely, we consider a connectivity range of 1 and assume that the initial configuration
is connected concerning the connectivity range. In other words, we assume that the initial Unit Ball
Graph (robots are vertices and two robots share an edge if their distance is at most 1) is connected.
Additionally, the robots have a viewing range of V . In most cases (except for Chapter 8) we
consider a circular viewing range, i.e., robots can observe all other robots at a distance of at most V .
Otherwise, we consider a square viewing range of V , i.e., robots can observe other robots within
an axis-aligned square of side length 2 · V . In many cases, the viewing range and the connectivity
range are identical. However, in some cases (e.g., Chapters 5 and 6), it is beneficial to consider a
viewing range that is larger than the connectivity range.

Moreover, the robots are autonomous (there is no central control guiding the movements of
the robots), identical (all robots have the same appearance) and anonymous (there are no internal
identifiers). Furthermore, the robots are homogeneous and deterministic, i.e., all robots execute
the same deterministic protocol. In case the robots are also oblivious (no persistent memory) and
silent (no communication), this is commonly known as the OBLOT model [66]. The LUMI
model [53] replaces the properties of being oblivious and silent by equipping the robots with a light
that can, at each point in time, have one out of a constant number of colors. On the one hand, the
light is persistent (unless intentionally switched off) such that the robots obtain a constant-sized
memory. On the other hand, the light can be observed by visible robots and thus, the robots gain
the ability to communicate information of constant size to their close neighbors.

The robots operate in LCM cycles (rounds). Each cycle consists of three operations: LOOK,
COMPUTE and MOVE. First, robots take a snapshot of their environment (LOOK), compute a target
point based on the snapshot (COMPUTE) and finally move there (MOVE). The cycles might be fully
synchronous (FSYNC), semi-synchronous (SSYNC: the cycles are synchronous but only a subset
of all robots might be active) or completely asynchronous (ASYNC). Time is measured in epochs:
an epoch is the smallest time period such that each robot completes at least one LCM cycle. Under
the FSYNC scheduler, an epoch is equal to a round. Additionally, time can be continuous, i.e., the
movement of robots is defined for each real point in time by a velocity vector of length at most 1
(the speed of each robot is at most 1). We refer to this as the continuous time model.

Formation Problems. We study four different formation problems for robots with limited
visibility. The formation problems can be categorized into two classes. The first class of problems
can be described as contracting formation problems. Here, the goal is either to move robots closer

14 Chapter 1. Introduction

together or to minimize a target structure. On the opposite side, there are expanding formation
problems, where the goal is to spread the robots out to cover as much area as possible. Regarding
these two classes of formation problems, the goal of this thesis is twofold. Our studies of contracting
formation problems add new, improved and generalized results to the existing literature. While the
area of contracting formation problems of robots with limited visibility is well-established in the
literature, there is not much known about expanding formation problems. Hence, our goal regarding
expanding formation problems is to shed some light on what kinds of formation problems robots
with limited visibility can solve.

More concretely, we study the contracting formation problems GATHERING and CHAIN-
FORMATION as well as the expanding formation problems MAX-CHAIN-FORMATION and MAX-
LINE-FORMATION. GATHERING demands to move n robots r0, . . . ,rn−1 to a single, not predefined
point. Either no fixed neighborhood is given and robots can observe all other robots up to their
viewing range (we refer to this as the standard connectivity model) or the robots have fixed
neighborhoods that form a closed chain. GATHERING in the standard connectivity model is
depicted in Figure 1.1.

Figure 1.1: A visualization of the GATHERING problem in the standard connectivity model.

In a closed chain, the robot ri has the fixed neighbors ri−1 and ri+1 (all operations on indices
are modulo n: r0 and rn−1 are each other’s neighbors). Still, the robots have limited visibility
requiring the robots to ensure that the distance between themselves and their neighbors does not
exceed the connectivity range. The GATHERING problem of a closed chain of robots is visualized
in Figure 1.2.

r0 rn−1

Figure 1.2: A visualization of the GATHERING problem of a closed chain of robots.

The CHAIN-FORMATION problem considers an open chain of robots. An open chain has inner
robots r1, . . . ,rn−2 and two outer robots r0 and rn−1. Similar to the closed chain, each inner robot
ri has neighbors ri−1 and ri+1. The outer robots r0 and rn−1 have only a single neighbor: r1 is the
neighbor of r0 and rn−2 is rn−1’s neighbor. Both outer robots are stationary, i.e., both r0 and rn−1
have fixed positions throughout the entire execution of a protocol. All other robots aim to reach the
straight line between r0 and rn−1 while maintaining connectivity to their neighbors. See Figure 1.3
for a visualization of the CHAIN-FORMATION problem.

1.1 Scope 15

r0

rn−1

r0

rn−1

Figure 1.3: A visualization of the CHAIN-FORMATION problem.

MAX-CHAIN-FORMATION is a modification of the CHAIN-FORMATION problem. The differ-
ence is that the outer robots r0 and rn−1 do not remain stationary. Instead, the goal is to arrange the
chain of robots on a straight line of length n−1. The problem is depicted in Figure 1.4. Since the
viewing range is assumed to be 1, this is the maximum line length that can be achieved. Due to
the chain structure, the ordering along the final line is fixed: r0 and rn−1 are endpoints of the line.
The position and orientation of the line are, however, not predefined. Moreover, since r0 and rn−1
can only observe the position of their chain neighbors, they do not know a fixed direction to move
along to stretch the length of the chain. The movement of all robots must ensure that r0 and rn−1
eventually move in opposite directions although they cannot observe each other.

r0

rn−1r0

rn−1

Figure 1.4: A visualization of the MAX-CHAIN-FORMATION problem.

The MAX-LINE-FORMATION problem has the same goal as the MAX-CHAIN-FORMATION

problem: to arrange n robots on a straight line of length n−1. However, the robots are not connected
in a chain but in the standard connectivity model (see Figure 1.5 for a visualization). Henceforth,
there are no dedicated robots that must form the end of the line. Rather, the robots have to find
their roles in the final line themselves. Additionally, the position and orientation of the line can be
chosen by the robots.

Figure 1.5: A visualization of the MAX-LINE-FORMATION problem.

16 Chapter 1. Introduction

1.2 Outline of the Thesis and Main Results
The thesis starts with three preliminary chapters (Chapters 1 to 3). Chapter 2 contains a detailed
description of the models studied in this thesis and introduces common notation. Afterward, related
work is discussed in Chapter 3. The main contents of the thesis are split into two parts. Part I
studies the contracting formation problems GATHERING and CHAIN-FORMATION and consists of
Chapters 4 to 6. Part II introduces the expanding formation problems MAX-CHAIN-FORMATION

and MAX-LINE-FORMATION in Chapters 7 and 8. In what follows, we summarize the main results
of each chapter.

GATHERING in the OBLOT Model: In Chapter 4, we consider the OBLOT model and study
the GATHERING problem of disoriented robots with limited visibility in two different time models:
fully synchronous rounds (the FSYNC scheduler) and the continuous time model. For both time
models, a very general approach is used: we study entire classes of protocols that can be applied to
robots that live in a Euclidean space Rd of arbitrary dimension d ≥ 1.

The class of continuous protocols generalizes work presented in [96]. There, the Euclidean
plane (d = 2) is considered and the class of contracting protocols is presented which gathers
in time Θ(n ·∆), where ∆ represents the initial configuration’s Euclidean diameter (the initial
maximum distance of two robots). The definition of contracting protocols demands that robots
that are part of the global convex hull of all robots’ positions move at full speed in the global
closed convex hull. Every known protocol to solve GATHERING of robots with limited visibility
in the continuous time model has this property. We show that contracting protocols generalize to
an arbitrary dimension d (since convex hulls are analogously defined in higher dimensions) and
prove an upper runtime bound of O

(
nHd ·∆

)
, where Hd = ∑

d
i=1 1/i ∈Θ(logd) represents the d-th

Harmonic number. For the runtime analysis, we use a projection technique showing that through a
series of carefully chosen projections, the analysis of high-dimensional protocols can be reduced to
the analysis of two-dimensional protocols. To the best of our knowledge, these are the first results
for high-dimensional continuous protocols to solve GATHERING of disoriented robots with limited
visibility. The specific case of d = 3 has already been published in the following publication which
is based on some ideas derived in the Master’s thesis of Michael Braun [21] (the analysis presented
here was not part of the thesis). The case of d > 3 has not been published yet.

2020 (with M. Braun and F. Meyer auf der Heide) “Local Gathering of Mobile Robots
in Three Dimensions” In: Proceedings of the 2020 International Colloquium on
Structural Information and Communication Complexity (SIROCCO), Best Student
Paper Award, cf. [22].

When considering the FSYNC scheduler, we generalize and improve the work presented in
[5, 50]. There, robots in the Euclidean plane are studied. The GO-TO-THE-CENTER (GTC)
protocol is presented that moves robots towards the center of the smallest enclosing circle of
all visible robots while maintaining connectivity. GTC requires O

(
n+∆2

)
rounds to gather all

robots. We prove that the runtime can be improved to Θ(∆2). To do so, we present the class of
λ -contracting protocols (λ ∈ (0,1]) that solves GATHERING in Θ(∆2) rounds and we also prove
that GTC belongs to this class. λ -contracting protocols restrict the allowed target points to a
specific subset of a robot’s local convex hull (formed by the positions of all visible robots, including
itself) in the following way. Let diam denote the diameter of a robot’s local convex hull. Then,
a target point p is an allowed target point if it is the center of a line segment of length λ ·diam,
completely contained in the local convex hull. The definition guarantees that the target point lies
far enough inside the local convex hull (at least along one dimension) to decrease the swarm’s
diameter sufficiently. The class of protocols as well as the runtime bounds apply to robots that
live in Euclidean spaces of arbitrary dimension. The lower bound of Ω(∆2) even holds for a larger
class of (natural) protocols: for all protocols in which robots compute target points inside the local
convex hull of all visible robots (including themselves). Notably, in contrast to the time bound for

1.2 Outline of the Thesis and Main Results 17

the continuous time model, the bound of Θ(∆2) is independent of the dimension and the number of
robots. The class of protocols as well as their analysis are based on the first part of the following
publication1.

2022 (with J. Harbig, D. Jung, P. Kling, T. Knollmann and F. Meyer auf der Heide) “A
Unifying Approach to Efficient (Near-)Gathering of Disoriented Robots with Limited
Visibility” In: Proceedings of the 26th International Conference on Principles of
Distributed Systems (OPODIS), cf. [26].

CHAIN-FORMATION and GATHERING in the LUMI Model: For Chapters 5 and 6, we
switch from the OBLOT to the LUMI model and study the CHAIN-FORMATION problem for
an open chain and the GATHERING problem for a closed chain of robots. Regarding the CHAIN-
FORMATION problem, we improve upon work in [91] that has introduced the HOPPER protocol. The
HOPPER protocol makes use of locally visible states, which can be seen as an early implementation
of the LUMI model. After O(n) synchronous rounds (FSYNC), the HOPPER protocol achieves a√

2-approximation of the optimal configuration regarding the CHAIN-FORMATION problem. It is
important to mention that the HOPPER protocol uses distinguishable outer robots, i.e., one outer
robot participates in the protocol while the other one remains idle. We improve upon the HOPPER

protocol in the following aspects:
1. We achieve a (1+ ε)-approximation of the optimal configuration in O(n/ε) rounds for an à

priori chosen constant ε > 0.
2. We show how to use a slightly increased viewing range of 2 to drop the assumption of

distinguishable outer robots while keeping the time bound of O(n/ε) rounds.
3. We introduce a synchronization technique to transfer the protocol to the ASYNC scheduler

with a runtime of O(n/ε) asynchronous epochs.
Furthermore, the ideas derived for the CHAIN-FORMATION problem serve as a basis for a more

involved protocol that solves GATHERING of a closed chain of robots in the Euclidean plane inO(n)
rounds. Prior to this work, linear time GATHERING protocols assuming disorientation were only
known for robots that are located on a two-dimensional grid [2, 40]. Our protocol consists of two
sub-protocols: one protocol for asymmetric configurations and a second one for highly symmetric
configurations. The asymmetric protocol exploits the main ideas and movement operations of the
CHAIN-FORMATION protocol (in a more involved and complex way). For symmetric configurations,
the ideas of the CHAIN-FORMATION protocol cannot be used as they depend on asymmetries. To
overcome this drawback, we present an additional protocol for symmetric configurations. Locally,
the robots can not decide whether the global chain is symmetric or asymmetric and do their decisions
only based on their local view. Hence, some robots may follow the asymmetric protocol while others
follow the symmetric one. Some additional coordination rules ensure that the two protocols do not
hinder each other. For the GATHERING protocol, we also present a synchronization procedure to
achieve a runtime of O(n) epochs under the ASYNC scheduler. Both the CHAIN-FORMATION and
the GATHERING protocol have been published in the following journal article.

2023 (with J. Harbig, D. Jung, T. Knollmann and F. Meyer auf der Heide) “Gathering
a Euclidean Closed Chain of Robots in Linear Time and Improved Algorithms for
Chain-Formation” In: Theoretical Computer Science (TCS), cf. [28].

A preliminary version of the GATHERING result appeared in the conference proceedings of
ALGOSENSORS 2021:

1The second part of the publication is mainly authored by the co-author Jonas Harbig. There, we transformed the
class of protocols to solve the NEAR-GATHERING problem. NEAR-GATHERING requires the robots to keep unique
positions while gathering in close proximity. We show that also NEAR-GATHERING can be solved in Θ(∆2) rounds by
disoriented robots with limited visibility.

18 Chapter 1. Introduction

2021 (with J. Harbig, D. Jung, T. Knollmann and F. Meyer auf der Heide) “Gathering
a Euclidean Closed Chain of Robots in Linear Time” In: Proceedings of the 17th
International Symposium on Algorithms and Experiments for Wireless Sensor Networks
(ALGOSENSORS), Best Paper & Best Student Paper Award, cf. [27].

The MAX-CHAIN-FORMATION Problem: Chapter 7 opens the second part of the thesis and
studies the MAX-CHAIN-FORMATION problem. On a conceptual level, the problem can be seen as
an extension of the CHAIN-FORMATION problem: the outer robots gain the ability to move and
the goal changes to maximize the distance between the two outer robots. We observe that these
changes add a lot of complexity to the problem because the outer robots must move in opposite
directions despite not being able to see each other. We study the problem in the OBLOT model
and in two different time models: fully synchronous rounds (FSYNC) and the continuous time
model. For the FSYNC time model, we present a conceptually very simple protocol: inner robots
move to the midpoint between their neighbors and outer robots move as far as possible away
from their direct neighbors without losing connectivity. It turns out that even in one-dimensional
configurations (all robots’ positions are collinear), the protocol exhibits a complex behavior: some
configurations converge to the optimal configuration while others turn into a final configuration
that keeps moving through the plane forever. We characterize this behavior and prove time bounds
of Ω(n2 · log(1/ε)) and O(n2 · log(n/ε)) rounds until a (1− ε)- approximation of one of the final
configurations is reached. The time bounds match the currently best known time bounds for the
CHAIN-FORMATION problem under the same robot model [60, 88]. Moreover, we prove that
we can construct two-dimensional configurations causing the protocol to have an arbitrarily high
runtime.

Regarding the continuous time model, we present a similar protocol with an interesting twist:
while all inner robots move at full speed, the outer robots are (mostly) slowed down by a constant.
We prove that the speed difference leads to a time-optimal protocol, requiring Θ(n) time. Some
configurations, however, collapse to a single point instead of converging to the optimal configuration.
Furthermore, we prove that the speed difference does not lead to a speedup in the FSYNC time
model. All in all, we see time bounds that are similar to the comparable contracting problem
CHAIN-FORMATION; however, the protocols are more complex in terms of convergence behavior.
The problem itself, the presented protocols and their analyses are based on the following journal
article.

2022 (with P. Kling, T. Knollmann and F. Meyer auf der Heide) “A Discrete and Contin-
uous Study of the Max-Chain-Formation Problem” In: Information and Computation,
cf. [30].

A preliminary version appeared in the conference proceedings of SSS 2020:

2020 (with P. Kling, T. Knollmann and F. Meyer auf der Heide) “A Discrete and
Continuous Study of the Max-Chain-Formation Problem – Slow down to Speed Up”
In: Proceedings of the 22nd International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), Best Paper Award, cf. [29].

The MAX-LINE-FORMATION Problem: Chapter 8 is about the MAX-LINE-FORMATION prob-
lem, which has the same goal as the MAX-CHAIN-FORMATION problem: to arrange the robots on
a straight line of length n−1. In contrast to the MAX-CHAIN-FORMATION problem, the robots
follow the standard connectivity model (the robots are not arranged in a chain). On one hand,
the robots obtain more freedom in arranging themselves since there are no predefined roles (any
robot could for instance be the endpoint of the line). On the other hand, we observe additional
complexity because robots sometimes cannot locally decide whether they should be an endpoint of
the global line. For the OBLOT model, we present an impossibility result stating that the problem
is impossible to solve by robots with a constant-sized viewing range, even if the robots agree on

1.2 Outline of the Thesis and Main Results 19

both axes of their local coordinate systems. Even worse, it is impossible to find protocols that only
converge to the optimal configuration.

Afterward, we show how switching from circular to square connectivity and viewing ranges
enables the robots to solve the problem, at least if they agree on one axis of their local coordinate
systems. For square connectivity and viewing ranges, we present three protocols. All protocols
operate in two global phases (not distinguishable by the robots due to their limited visibility). First,
the robots form a line parallel to the y-axis. Afterward, the robots stretch the line to a maximum
length by applying ideas from the MAX-CHAIN-FORMATION problem.

The first protocol considers the OBLOT model and the SSYNC scheduler and converges to
the optimal configuration in O(n2 · log(n/ε)) epochs (for every ε ∈ (0,1), a (1− ε)-approximation
is reached after that time). The analysis transfers techniques designed for the analysis of specific
time inhomogeneous Markov chains to the deterministic robot world.

Lastly, we consider the LUMI model to solve the problem exactly. The second protocol is
designed for the SSYNC scheduler and reaches the optimal configuration on O(n2) epochs. Finally,
we design a protocol for the FSYNC scheduler that solves the problem optimally in Θ(n) rounds.
The results are based on the following publication.

2021 (with T. Goette, T. Knollmann and F. Meyer auf der Heide) “The Max-Line-
Formation Problem – and new Insights for Gathering and Chain-Formation” In: Pro-
ceedings of the 23rd International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), cf. [25].

2. Robot Models & Notation

The following sections introduce the robot models as well as the notation we use in this thesis. We
first define the OBLOT model thoroughly in Section 2.1. Afterward, we discuss the differences
of the LUMI model in Section 2.2. Subsequently, we define robot chains, an extension of the
OBLOT and LUMI models in Section 2.3. Finally, we introduce an abbreviated notation to
define robot models in Section 2.4.

2.1 OBLOT
The OBLOT model (an abbreviation of oblivious robots) [66] has a set of fundamental features
(such as the name-giving obliviousness) we present first in Section 2.1.1. Apart from that, the
OBLOT model offers a variety of choices regarding other aspects of the robots, e.g., the (dis-)
agreement on the local coordinate systems, limited vs. unlimited visibility or the synchronization
of the robots’ actions. We introduce our assumptions on the local coordinate systems of the robots
in Section 2.1.2 and present the different time models in Section 2.1.3.

2.1.1 Fundamental Features

The swarm consists of n robots R= {r0, . . . ,rn−1} living in Rd (d ∈ N). The position of a robot
ri at time t is denoted as pi(t) ∈ Rd in a global coordinate system (not known to the robots). We
collectively call the set of all robots’ positions at time t the configuration. The robots do not have
any extent, i.e., there can be multiple robots located at the same position. The initial positions of
all robots are pairwise distinct. All robots have a local memory and can do computations with
infinite precision real arithmetic. Moreover, the robots have precise movement capabilities, i.e.,
they can turn and move in any direction. The robots are autonomous, i.e., they operate without any
central control. Moreover, they are identical and anonymous, i.e., they all have the same external
appearance and no (unique) identifiers. Furthermore, the robots are homogeneous and deterministic:
all robots execute the same deterministic protocol. The two most characteristic features of the
OBLOT model are that robots are oblivious and silent. Oblivious robots do not have any memory
of the past (see Section 2.1.3 for a precise notion of time) and silent robots do not have any ability
to communicate directly with other robots. Since the robots can only communicate via observations
and movements, the communication is also called to be stigmergic.

2.1.2 Orientation & Visibility
Each robot has its local coordinate system that is self-centered, i.e., the robot itself is located at
the origin. We describe by p j

i (t) the position of robot r j in the local coordinate system of ri. The

22 Chapter 2. Robot Models & Notation

robots have limited visibility, i.e., they can observe other robots up to a constant distance, denoted
as the viewing range. We distinguish the terms circular and square viewing ranges. With a circular
viewing range, robots can observe all other robots at a constant distance of V . The initial visibility
graph, i.e., the graph where the nodes represent the robots and two robots share an edge if their
distance is at most V , is always connected. Sometimes it is beneficial or even necessary to assume
a well-connected initial configuration, i.e., that the swarm is even connected by a value that is a
constant smaller than the viewing range. More formally, we distinguish the terms connectivity
range and viewing range. The swarm is connected concerning the connectivity range C while the
robots have a viewing range V ≥ C. Mostly, we assume C = V . For simplicity, we assume that C = 1
throughout the entire thesis. Then, the notion of connectivity ranges induces a Unit Ball Graph
UBG(t) = (R,E(t)), where {ri,r j} ∈ E(t) if and only if ∥pi(t)− p j(t)∥2 ≤ 1, where ∥ ·∥2 denotes
the Euclidean distance. The initial Unit Ball Graph UBG(0) is connected. Robots with a square
viewing range of C can observe other robots that are located in a self-centered and axis-aligned
square of side length 2 · V . Two robots at a distance of at most 1 are also called neighbors. For a
robot ri, the set Ni(t) describes the set of all visible neighbors including itself at time t. The set
Ni(t) is also called the neighborhood of a robot ri at time t.

Furthermore, the robots do not share a common chirality, i.e., the robots do not agree on a
cyclic orientation of their environment (e.g., clockwise). Usually, with one exception in Chapter 8,
we consider disoriented robots. Disoriented robots have no agreement on their local coordinate
systems, i.e., the axes can be arbitrarily rotated and inverted. The disorientation is even variable,
i.e., the rotation and orientation of the axes of one fixed robot can change from time to time. A
stronger assumption, we (have to) use in Chapter 8, is denoted as k-axes agreement: the robots
agree on the direction and orientation of k < d axes (the axes are fixed).

2.1.3 Time
Time can be either discrete (round based) or continuous1. In the following, we describe the different
models in detail.

Discrete Time. When time is discrete, robots operate in LCM cycles consisting of the
operations LOOK, COMPUTE and MOVE. During LOOK, each robot takes a snapshot of all visible
robots in its local coordinate system, it computes a target point based on the snapshot during
COMPUTE and finally moves there within the MOVE operation. We assume a rigid movement,
i.e., the robots always reach their target points. The LCM cycles are also denoted as rounds. The
timing of the cycles is controlled by an (adversarial) scheduler that can either be fully synchronous
(FSYNC), i.e., each robot is active in every round and all robots start a new round simultaneously,
semi-synchronous (SSYNC), i.e., in every round, only a non-empty subset of all robots is activated
and starts the new round simultaneously or completely asynchronous (ASYNC), i.e., the starting
points and durations of different robots’ cycles can be completely different. Both the SSYNC or
ASYNC scheduler are fair, i.e., the time between two successive activations of the same robot is
always finite. Moreover, we call a schedule to be k-fair if, between every two successive activations
of any robot ri, every other robot is activated at most k times. By definition, the FSYNC scheduler
is 1-fair.

For the FSYNC and SSYNC schedulers, we define the class of discrete formation protocols that
are a convenient way of formally describing the behavior of the robots in each round.

Definition 2.1 A discrete robot formation protocol P defines for each robot ri and each t ∈ N a
target point targetPi (t) such that pi(t +1) = targetPi (t).

Continuous Time. We also study the continuous time model which defines movements for
every real point in time t ∈ R≥0. At every point in time, each robot computes a target point and

1In the original OBLOT definition, only discrete time is considered [66]. However, since except for the time model
all other capabilities are identical, we decided to add continuous time here.

2.1 OBLOT 23

a speed between 0 and 1 and moves with the given speed towards this point. More formally, we
obtain the following notion of continuous protocols.

Definition 2.2 A continuous robot formation protocol P defines for each robot ri and each t ∈
R≥0 a target point targetPi (t) and a speed sPi (t) ∈ [0,1] describing the robots current movement
direction and speed. Together, both define the velocity vector

vPi (t) =
sPi (t)

∥targetPi (t)− pi(t)∥2

(
targetPi (t)− pi(t)

)
.

Often, we describe only the velocity vectors. However, typical protocols are designed such that
each robot computes a target point and moves with a certain speed towards it. The function pi :
R≥0→ Rd is the trajectory of ri. The trajectories are continuous but not necessarily differentiable.
In some occasions, robots can change their direction and speed non-continuously (e.g., when a
new robot becomes visible) leading to a non-differentiable trajectory. Typical protocols have right-
differentiable trajectories. This way, we can interpret the velocity vectors as the (right) derivative of
the trajectories, i.e., vPi : R≥0→ Rd = ṗi.

There is one specific, at first sight, counterintuitive behavior of the continuous time model, we
want to emphasize. The continuous time model is certainly idealized since robots do infinitely
many observations in finite time, and there is no delay between sensing and adjusting the movement.
Therefore, the model is physically not realizable but approximates the real world reasonably
well [72]. One effect of the idealized definition is the Zenoness phenomenon: in some cases, robots
move as if they knew the velocity vectors of their neighbors (or even robots that are farther away)
although they cannot know them explicitly due to the limited visibility. Consider the following
example: For simplicity, we assume that the robots have a common understanding of up and down.
Additionally, robots can observe the positions of other robots up to a distance of 1. There are three
robots, r1, r2 and r3 with positions p1(t) = (0,0), p2(t) = (0.5,0) and p3(t) = (1,0). Our protocol
P moves the robots r1 and r3 with a speed of 1 upwards. For r2, it demands not to move in case it
is located on the midpoint between r1 and r3, i.e., p2(t) = 1

2 p1(t)+ 1
2 p3(t), and otherwise move

with speed 1 towards 1
2 p1(t)+ 1

2 p3(t). Figure 2.1 visualizes the example.

First Intuition: Reality:

Algorithmic Description:

Figure 2.1: Above, the algorithmic description is depicted: robots at the end of the line move with
speed 1 upwards. All other robots do not move as they are already located at the midpoint between
their direct neighbors. The lower left picture shows the first intuition: robots at the end of the line
move upwards, and the next robots follow shortly. The lower right picture shows the reality: all
robots simultaneously move upwards with a speed of 1.

Based on the previously described movement rules, one could think vP1 (t) = vP3 (t) = (0,1) and
vP2 (t) = (0,0) since r2 is already located on the midpoint between r1 and r3. Consequently, the

24 Chapter 2. Robot Models & Notation

first intuition would be that r1 and r3 start moving upwards and r2 follows the movement shortly.
However, this does not happen and it holds vP2 (t) = (0,1) as well. To understand this, suppose
there is a time t ′ > t with p1(t) = (0, t ′− t), p3(t) = (1, t ′− t) and p2(t) = (0.5,0). Since r1 and r3
move always with speed 1 upwards, it holds for all t ′′ ∈ (t, t ′): vP1 (t

′′) = vP3 (t
′′) = (0,1). Thus, for

infinitely many t ′′ ∈ (t, t ′) it holds p2(t ′′) ̸= 1
2 p1(t ′′)+ 1

2 p3(t ′′) and r2 must have moved upwards.
As t ′ can be chosen arbitrarily small, we conclude vP2 (t) = (0,1). Now, suppose that there are n
robots r0, . . . ,rn−1 with pi(t) = (i

2 ,0) located on the x-axis. Robots that do not see another robot to
the left or the right, holding for r0 and rn−1 in the given configuration, move with speed 1 upwards.
All other robots do not move in case they are located on the midpoint between their neighbors,
and otherwise, they move with a speed of 1 to the midpoint. With the same arguments as for the
configuration with 3 robots, all robots simultaneously move upwards with speed 1 although they
cannot know their neighbors’ velocity vectors due to the limited visibility of 1.

2.2 LUMI
The LUMI (long: LUMINOUS) model is in many parts identical to the OBLOT model but
adds a memory and communication ability to the robots: (locally) visible lights [53]. Hence, the
robots are not oblivious and silent. Instead, each robot is equipped with a light that has at any time
of color out of a color set C. The light can be perceived by nearby robots during their LOOK phase.
During the COMPUTE phase, robots can change the color of their light such that the new color of
the light becomes visible to other robots in the next round. Since the light can be perceived by
other robots, constant-size information can be communicated to the neighbors. Moreover, since
the own light is persistent (unless intentionally switched off), it can be used to store constant-size
information for the next round. Sometimes it is convenient to describe our protocols with help of
multiple lights ℓ1, . . . , ℓk, each having its own color set C1, . . . ,Ck. Note that the multiple lights can
always be represented by a single light with |C|= ∏

k
i=1 |Ci| colors.

2.3 Chains
As mentioned in Chapter 1, we also consider chains of robots which can be seen as an extension
(or modification) of the OBLOT and LUMI models. The main difference is that robots have
predefined neighborhoods of robots they can observe. More precisely, in an open chain, the robots
r0 and rn−1 are endpoints of the chain having only a single neighbor. The direct neighbor of r0 is
r1 and rn−2 is the direct neighbor of rn−1. Both r0 and rn−1 are also called outer robots. All other
robots are inner robots. The direct neighbors of a robot ri are ri−1 and ri+1. In a closed chain, all
robots are inner robots (no outer robots exist) and r0 and rn−1 are each other’s direct neighbors.
Whenever closed chains are considered, all operations on indices have to be understood modulo n.

r0

rn−1
r0 rn−1

Figure 2.2: A visualization of an open chain (left) and a closed chain (right).

For chains, we define the vectors wi(t) = pi(t)− pi−1(t). In open chains w0(t) is undefined.
These vectors are important to express the impact of protocols on the chain. Moreover, we define the

2.4 Naming 25

length of a chain at time t as L(t) := ∑
n−1
i=1 ∥wi(t)∥2 for open chains and L(t) := ∑

n−1
i=0 ∥wi(t)∥2 for

closed chains. Sometimes we consider the normalized vectors: ŵi(t) := wi(t)
∥wi(t)∥2

. The angle created
by anchoring wi+1(t) at the terminal point of wi(t) is denoted by αi(t) = ∡(wi(t),wi+1(t)) ∈ [0,π].
Moreover, sgni(αi(t)) ∈ {−1,0,1} denotes the orientation of αi(t) from ri’s point of view (this can
differ from robot to robot) and sgn(αi(t)) denotes the orientation in a global coordinate system.
Both in open and closed chains, robots have limited visibility. The robots have a connectivity range
of C = 1 which means that the distance between two direct neighbors is allowed to be at most 1.
The initial configuration is always connected. Additionally, the robots have a viewing range of
V ≥C(V ∈ N). The viewing range of V allows the robots to observe the positions of V neighbors
along the chain in each direction. More formally, a robot ri is able to observe the positions of the
robots ri−V , . . . ,ri, . . . ,ri+V . Apart from these robots, no other robots are visible even if they are
nearby. Although the robots can identify their neighbors, they do not have a common understanding
of left or right neighbors, i.e., the chain itself is also disoriented.

2.4 Naming
Throughout the thesis, we use several instances of the above-described robot models. Next, we
introduce a brief notation to describe the used models compactly.

Definition 2.3 Let MF , MS,MA and MC denote the swarm of robots in the model M ∈
{OBLOT ,LUMI} under the FSYNC (F), SSYNC (S) or ASYNC (A) schedulers or in the
continuous time model (C).

Following Definition 2.3, OBLOT F represents robots that are characterized by the OBLOT
model under the FSYNC scheduler and LUMI A represents robots in the LUMI model under the
ASYNC scheduler. Moreover, we introduce a notation that reflects also the viewing ranges of the
robots.

Definition 2.4 Let MT , M ∈ {OBLOT ,LUMI}, T ∈ {F,S,A,C} defined as in Definition 2.3.
MT

V , V ∈N denotes MT for robots with limited visibility, a connectivity range of 1 and a viewing
range of V .

According to Definition 2.4, OBLOT robots in the continuous time model that have an equal
viewing and connectivity range of 1 are described by OBLOT C

1 . Similarly, LUMI S
4 represents

robots in the LUMI model with a connectivity range of 1 and a viewing range of 4 that operate
under the SSYNC scheduler.

Lastly, in the case that chains are considered, we abuse the notation and naming slightly.
Usually, as mentioned in Section 2.3, the existence of a chain contradicts some core properties of
the OBLOT or LUMI models (since robots can recognize their predefined neighbors). Still, in
all other aspects, the robots have the same properties as robots in the OBLOT or LUMI models.
To simplify the model descriptions, whenever we discuss GATHERING of a closed chain of robots,
the CHAIN-FORMATION or the MAX-CHAIN-FORMATION problems, we say that the robots follow
the OBLOT or LUMI models and mean implicitly that the robots follow the models except for
the existence of a chain.

3. Related Work

We discuss related work falling into the research area of distributed computing of mobile robots.
For practical applications of (mobile) robot swarms, we refer the reader to the comprehensive
survey [112]. In the context of distributed computing by mobile robots, we focus on the following
broad topics: models and their relations, the ARBITRARY-PATTERN-FORMATION problem, the
GATHERING problem, the CHAIN-FORMATION problem and expanding formation problems. A
survey on the entire research field of distributed computing by mobile robots can be found in [1].
The first two paragraphs about models and their relations as well as the ARBITRARY-PATTERN-
FORMATION problem discuss the foundations of the thesis: Which robot models exist and how are
they related? Moreover, research about the ARBITRARY-PATTERN-FORMATION problem studies
which formation problems can theoretically be solved at all. The paragraphs about GATHERING

and CHAIN-FORMATION embed the results of Part I. Lastly, the paragraph on expanding formation
problems studies related work regarding Part II. Most of the literature we discuss in the next
paragraphs studies robots in the Euclidean plane. For simplicity, we always implicitly assume that
the robots live in the Euclidean plane. Whenever results hold for other environments (e.g., higher
dimensional Euclidean spaces or discrete domains), we mention the environment explicitly.

Models and Their Relations

The OBLOT model has emerged as the de-facto standard robot model. While the name and
the standardization are quite young (from 2019 [66]), the first occurrences of the model (without
the name) date back to the 90s [5, 6, 113, 114]. In the following, we describe relations between
different models with a notation first introduced in [42]. For two models M1 and M2, we write
M1 > M2 if the robots in model M1 can solve all problems that robots in model M2 can solve and
there is at least one problem robots in M1 can solve that cannot be solved by robots in M2. In this
case, we call M1 to be more powerful than M2. Additionally, M1 and M2 are called computationally
equivalent, in symbols M1 ≡M2, if the robots in M1 and M2 can solve the same set of problems.
The last option is that the models are incomparable, M1 ⊥M2, in case there is a problem robots in
M1 can solve but robots in M2 cannot and vice versa.

It is well known that OBLOT F > OBLOT S. As the FSYNC scheduler is a valid SSYNC

scheduler, robots in theOBLOT F model can solve all problems that robots in theOBLOT S model
can solve. TheOBLOT F model is more powerful than theOBLOT S model since GATHERING of
two disoriented robots (also denoted as RENDEZVOUS) is possible under the FSYNC but impossible
under the SSYNC scheduler [114]. The relation between OBLOT S and OBLOT A was for a
very long time unclear. Trivially, OBLOT S robots can solve every problem OBLOT A robots
can solve (since every SSYNC schedule is also a valid ASYNC schedule). Very recently, it was

28 Chapter 3. Related Work

proven that the COHESIVE CONVERGENCE problem of robots with limited visibility but with
measurement errors can be solved in theOBLOT S model but not in theOBLOT A model, proving
that OBLOT S >OBLOT A [87]. In the COHESIVE CONVERGENCE problem, the robots have to
converge to a single point and robots that are visible to each other have to remain visible (a natural
assumption most protocols have). Due to the combination of measurement errors and asynchrony, it
is impossible to keep connectivity in some cases, as robots do not know whether their neighbors are
moving. It is still open whether unreliable measurements are crucial for this relationship or if there
is a problem OBLOT S robots can solve that OBLOT A robots cannot solve without considering
any measurement errors.

Inspired by visible light communication, for instance in car networks [86], the LUMI model
has been proposed [41, 42, 53]. While it seems to be evident that the LUMI models are more
powerful than the OBLOT models, it is not entirely clear yet. Clearly, robots in the LUMIT

model, T ∈ {F,S,A} can solve all problems OBLOT T robots can solve (just by not using their
light). By showing that the RENDEZVOUS problem can be solved in the LUMI A model (which
is impossible in OBLOT S), it was proven that LUMI A >OBLOT S (and thus also LUMI S >
OBLOT S sinceLUMI S robots can solve all problemsLUMI A robots can solve) [42]. Moreover,
it is also known that there are problems LUMI A robots can solve that OBLOT F robots cannot
solve. An example of such a problem is the OSCILLATING POINTS problem, where two robots
have to move alternatingly towards and away from each other. Since OBLOT F robots cannot
remember what they did last, there are configurations in which the robots do not know whether they
should move towards or away from each other. The presence of lights (and thus memory) allows
LUMI A robots to solve the problem. Nevertheless, it is open whether LUMI A > OBLOT F

or LUMI A ⊥OBLOT F [42]. Notably, if the robots move on the nodes of graphs, it could be
proven that the corresponding LUMI A and OBLOT F models are incomparable [51].

Interestingly, through the presence of lights, the difference between the SSYNC and ASYNC

schedulers disappear. More formally, LUMI S ≡ LUMI A [42]. The equivalence was proven
through a simulation approach: the authors in [42] provide a protocol that simulates every LUMI S

protocol by LUMI A robots. The lights are used to synchronize the robots such that their move-
ments follow a valid SSYNC schedule.

Furthermore, there are two intermediate models, FCOM and FST A [65]. Both can be
interpreted similarly to the LUMI model: robots are equipped with a light. In the FCOM model,
robots cannot see their own light (robots gain only the ability to communicate) and in the FST A
model, the light is internal and cannot be observed by other robots (robots gain only the memory
capability). The relation between the FCOM, FST A, OBLOT and LUMI models has been
studied in [70]. First of all, the authors prove that FCOMF ≡ LUMI F , again by simulating
the models in each other. In addition, LUMI F > FST AF and FST AF > OBLOT F . The
relation FST AF >OBLOT F can again be proven with the OSCILLATING POINTS problem since
the light has only been used as a memory to store the last direction in which the robots move.
The relation LUMI F > FST AF was proven by a problem in which the robots have to form a
sequence of patterns. Lots of further relations are known, we refer the interested reader to [70].

Lastly, we would like to mention theRSYNC scheduler [23] which can be seen as an interme-
diate scheduler between FSYNC and SSYNC. Practically, it is motivated by energy-constrained
robots: after completing one LCM cycle, the robots have to rest for one cycle and can con-
tinue afterward. On the theoretical side, the scheduler can be seen as a strong intermediate
scheduler between SSYNC and FSYNC. Let R denote the RSYNC scheduler. The authors prove
LUMI F > LUMIR ≡ LUMIS [23]. Hence the authors got closer to the real boundary between
the FSYNC scheduler and less synchronized models. In the paper, lots of further relations are
studied which are out of scope for this chapter.

Apart from the previously described models, lots of related, biologically-inspired models
with different foci exist [45, 52, 90, 116]. Probably closest to the previously described ones, the
MOBLOT model describes a two-stage process of robots combining themselves in molecules

29

first and afterward form patterns as molecules [32, 33]. The smallest computational entities are
robots following mostly the OBLOT model with the difference that the robots are not identical in
their appearance but might have different colors. Based on their colors, the robots get certain roles
in molecules they have to form. As soon as the robots have arranged themselves in a molecule, the
robots in the molecule can move collectively to build larger structures. The model itself is quite
new and the first work presents the necessary conditions to build the molecules first, which can
be seen as a generalized PATTERN-FORMATION problem [32]. A subsequent work studies the
MOBLOT model by robots that are located on a two-dimensional grid [33]. Other models are
inspired by the vision of programmable matter. The celebrated Amoebot model [45, 52] considers
tiny particles (similar to robots) that live on grid graphs. The name of the model stems from the
movement of the particles that is inspired by amoeba: the particles first expand to the next cell
and contract afterward. The Amoebot model has lots of similarities to the different robot models,
e.g., local communication (LUMI) or persistent memory (LUMI or FST A). Apart from the
movement through contraction and expansion, a further severe difference is that particles can update
variables in the local memory of neighboring particles. In a new extension, the particles can also
connect themselves in reconfigurable circuits through which beeps can send (e.g., to synchronize
certain movements) [63]. For a survey about computing by programmable particles, including the
Amoebot but also further models, we refer to [44].

The ARBITRARY PATTERN-FORMATION Problem
The ARBITRARY PATTERN FORMATION problem is the most general robot formation problem:
the robots have to form a pattern they receive as input. Usually, the robots can choose where to
form the pattern (the positions are not predefined) and the robots can form arbitrary rotations of the
pattern at an arbitrary scale. The pattern is either given as a set of points or as a geometric predicate,
e.g., “circle”. We first summarize the dense literature about robots with unlimited visibility (robots
can observe all other robots) and focus afterward on robots with limited visibility. Unless otherwise
stated, the results consider the OBLOT model.

Unlimited Visibility. In the general form, the ARBITRARY-PATTERN-FORMATION problem is
impossible to solve under most robot capabilities due to potential symmetries of initial configu-
rations. Precisely, without agreement on both axes of the local coordinate systems, ARBITRARY-
PATTERN-FORMATION is impossible even in the OBLOT F model with chirality (i.e., the robots
agree on a common handedness, e.g., clockwise) [69]. The impossibility, however, only holds for
configurations where the number of robots is even. If the robots agree on only one axis of their
local coordinate systems and the number of robots is odd, ARBITRARY-PATTERN-FORMATION

can be solved in OBLOT A [69]. For both an odd and an even number of robots ARBITRARY-
PATTERN-FORMATION can only be solved if the robots agree on both axes of their local coordinate
systems (also denoted as consistent compasses) [69]. However, the impossibility results mostly rely
on the observation that starting from a highly symmetric configuration, e.g., the positions of the
robots form a circle, no configuration with fewer symmetries can be constructed. Still, some other
configurations might be formable. The resulting question is: Depending on the input configuration,
which target patterns can be constructed? In [114], the question has been answered based on the
notion of the symmetricity of a configuration. Consider a set P of distinct points. The symmetricity
ρ(P) of P is defined to be 1 if the center of the smallest enclosing circle of P contains a point of P.
Otherwise, ρ(P) is the number of angles α ∈ (0,2π] such that rotation of P by α yields P again.
Based on this definition, a target pattern F is only formable starting in an input configuration I
if ρ(I) divides ρ(F). An important consequence is that the only patterns that might be formable
from any input configuration must have a high symmetry. More precisely, the patterns POINT (in
the literature denoted as the GATHERING problem) and UNIFORM-CIRCLE are the only patterns
that might be formed independent of the input configuration. This observation underlines the
importance of the GATHERING problem (and the UNIFORM-CIRCLE-FORMATION problem) from
a theoretical point of view.

30 Chapter 3. Related Work

On the positive side, at least for the SSYNC scheduler, there are protocols to form any of the
potentially formable target patterns. In [117], a protocol for the OBLOT S model for robots with a
common chirality has been designed that can arrange the robots in any possibly formable pattern.
For theASYNC scheduler, no such result is known. Notably, the authors of [43] study the formation
of a series of patterns of robots in the OBLOT model. Since the robots have no memory, it is not
possible to form arbitrary series of patterns as the robots must be able to recall which pattern they
have to form next. In [43], a complete characterization of the relation between the patterns in the
series is derived.

Similar results have been derived for robots living in the three-dimensional Euclidean space
[118, 119]. Moreover, the ideas of symmetricity have also been transferred to discrete domains,
i.e., graphs, and the ARBITRARY-PATTERN-FORMATION has been studied for robots located on
graphs of different classes, mostly two-dimensional grids [13, 34, 76].

Limited Visibility. In the case of limited visibility, the picture is worse compared to the
unlimited visibility case. Some results from the unlimited visibility case transfer to this case. More
precisely, no target pattern F can be formed starting in an input configuration I with ρ(I)> ρ(F).
However, in [120] it has been proven that in the OBLOT F model, there always exists a target
pattern F that cannot be formed starting in an input configuration I even if ρ(I) divides ρ(F). As a
consequence, the limited visibility capability of the robots severely weakens the formation problems
the robots can solve. On the positive side, it could be shown that equipping the robots with memory
makes the robots as powerful as in the case with unlimited visibility. Precisely, non-oblivious robots
under the FSYNC scheduler (even with non-rigid moves) can form any target pattern F from an
input configuration I if and only if ρ(I) divides ρ(F). Under the SSYNC scheduler, the same result
holds at least under the assumption of rigid moves [120].

The GATHERING Problem
In the following, we discuss literature about the GATHERING problem and the two related problems
CONVERGENCE and NEAR-GATHERING. CONVERGENCE does not demand that the robots finally
reach the same point but only requires them to converge towards the same point. NEAR-GATHERING

considers robots with limited visibility and demands the robots to keep unique positions and to
move such that every robot can observe the entire swarm. In other words, NEAR-GATHERING

requires the robots to gather in a small area while keeping unique positions.

Possibilities & Impossibilities. In the context of robots with unlimited visibility, GATHERING

can be solved in the OBLOT F model by disoriented robots without multiplicity detection [36].
Robots without multiplicity detection cannot determine whether a position is occupied by one or
multiple robots. Under the same assumptions, GATHERING is impossible in the less synchronized
OBLOT S and OBLOT A models [110]. Multiplicity detection plays a crucial role: at least three
disoriented robots with multiplicity detection can be gathered in the OBLOT A model (and thus
also in OBLOT S) [35]. The case of two robots remains impossible [114]. Besides multiplicity
detection, an agreement on one axis of the local coordinate systems also allows the robots to solve
GATHERING in OBLOT A [10]. CONVERGENCE requires less assumptions than GATHERING. No
multiplicity detection is needed in the OBLOT A model [36].

Under the assumption of limited visibility, disoriented robots without multiplicity detection can
be gathered under the FSYNC scheduler (OBLOT F) [5] with the GO-TO-THE-CENTER (GTC)
protocol that moves every robot towards the center of the smallest circle enclosing its neighborhood.
GTC has also been generalized to three dimensions [22]. Under theASYNC scheduler (OBLOT A),
current solutions require more capabilities: GATHERING can be achieved by robots with limited
visibility that agree additionally on the axes and orientation of their local coordinate systems [68].
It is open whether fewer assumptions are sufficient to solve GATHERING of robots with limited
visibility under the SSYNC and ASYNC scheduler (OBLOT S and OBLOT A). In OBLOT S,
CONVERGENCE can be solved even by disoriented robots with limited visibility without multiplicity
detection [5]. However, similar to GATHERING, it is still open whether disoriented robots with

31

limited visibility can solve CONVERGENCE under the ASYNC scheduler. Recently, it could be
shown that multiplicity detection suffices to solve CONVERGENCE under the more restricted k-
ASYNC scheduler. The constant k bounds how often other robots can be activated within one LCM
cycle of a single robot [85, 87].

The NEAR-GATHERING problem has been introduced in [104, 105] together with a protocol
to solve NEAR-GATHERING by robots with limited visibility and agreement on one axis of their
local coordinate systems under the ASYNC scheduler (OBLOT A). An important tool to prevent
collisions is a well-connected initial configuration, i.e., the initial configuration is connected
concerning the connectivity range which is by an additive constant smaller than the viewing
range [104, 105]. In earlier work, NEAR-GATHERING has been used as a subroutine to solve
ARBITRARY PATTERN FORMATION by robots with limited visibility [120]. The solution, however,
uses infinite persistent memory for each robot. Further research directions study GATHERING and
CONVERGENCE under crash faults or Byzantine faults [3, 7, 11, 14, 15, 16, 19, 47, 78, 106] or
inaccurate measurement and movement sensors of the robots [37, 80, 87].

Runtime. Considering disoriented robots with unlimited visibility, it is known that CONVER-
GENCE can be solved in O(n · log ∆/ε) epochs under the ASYNC scheduler, where the diameter ∆

denotes the initial maximum distance of two robots [39] and ε is a convergence parameter (initially
a bound of O(n2 · log ∆/ε) has been proven in [36]). When considering disoriented robots with
limited visibility and the FSYNC scheduler, the GTC protocol solves GATHERING both in two
and three dimensions in Θ(n+∆2) rounds [22, 50]. It is conjectured that the runtime is optimal
in worst-case instances, where ∆ ∈ Ω(n) [22, 28]. A similar result could be achieved under the
OBLOT F model for robots that are located on a two-dimensional grid [24]. The protocol gathers
the robots in O(n2) rounds.

Faster GATHERING protocols could only be achieved by assuming agreement on one or two
axes of the local coordinate systems or considering the LUMI model in combination with robots
located on a two-dimensional grid. In [109], a universally optimal protocol with runtime Θ(∆) for
robots in the Euclidean plane assuming one-axis agreement in the OBLOT model is introduced.
Beyond the agreement on one axis, the robots have a viewing range of

√
10 and a connectivity

range of 1. Notably, this protocol also works under the ASYNC scheduler and hence, the robots
fulfill the properties of the OBLOT A√

10 model.
Assuming disoriented robots, the protocols that achieve a runtime of o(n2) assume robots that

are located on a two-dimensional grid and with visible states (which can be interpreted as robots
in the LUMI model): there exist two protocols having an asymptotically optimal runtime of
O (n); one protocol for closed chains [2] and another one in the standard connectivity model [40].
Both protocols use the idea of run sequences, initially introduced in [91]. A run sequence is a
locally sequential movement of the robots realized with lights. To start a run sequence, locally
asymmetric robots of the swarm are identified (on the grid such robots always exist – except for the
final configuration). The protocol for closed chains considers the LUMI F

19 and the other protocol
is designed for the LUMI F

11 model.
Also, a different time model – the continuous time model – leads to a faster runtime: there

are protocols with a runtime of O (n) in the OBLOT C model [20, 49]. The MOB protocol [49]
even has a runtime of O (OPT · log(OPT)), where OPT denotes the optimal time a protocol for
robots with unlimited visibility would require. In [97], a more general class of continuous protocols
has been introduced, the contracting protocols. Contracting protocols demand that each robot
part of the global convex hull of all robots’ positions moves at full speed towards the inside. Any
contracting protocol gathers all robots in time O (n ·∆). One such protocol also needs a runtime of
Ω(n ·∆) in a specific configuration. For instance, the continuous variant of GTC is contracting [97]
but also the protocols of [20, 49].

For the NEAR-GATHERING problem, we introduced a class of protocols for the OBLOT S
1+τ

(τ > 0) model that solves the problem in Θ(∆2) rounds. A closely related variant of the NEAR-
GATHERING problem, called collision-less GATHERING, where robots are only allowed to collide

32 Chapter 3. Related Work

(move to the same position) at the final gathering point has been studied in [97] for robots in
the OBLOT C model. For d = 1, a collision-less protocol has been invented. For d = 2, the
GO-TO-THE-GABRIEL-CENTER protocol, where robots move to the smallest enclosing circle of
all their neighbors in the Gabriel graph (i.e., two robots are connected if the circle between their
positions does not contain any other robot) has been proposed and conjectured that it is in almost
all input configurations collision-less. Under a slightly stronger robot model, LUMIC with a
common chirality, a collision-less protocol with a runtime of O(n2) has been designed in [96].

The CHAIN-FORMATION Problem.
The CHAIN-FORMATION problem has been initially introduced by [38] for robots located on
a line (one-dimensional configurations). For the GO-TO-THE-MIDDLE (GTM) protocol that
moves inner robots to the midpoint between their neighbors, it has been shown that it needs
O(n2 · log(n/ε)) rounds to converge to the optimal configuration in theOBLOT F model. Assuming
OBLOT S, a runtime of O(n5 · log(n/ε)) epochs has been proven [38]. Recently, the OBLOT S

bound has been improved to O(n2 · log(n/ε)) epochs [25]. The GTM protocol has been transferred
to two-dimensional configurations [60] with the same upper runtime bound in the OBLOT F and
OBLOT S models [25, 60]. A close lower bound of Ω(n2 · log(1/ε)) rounds for a large class of
protocols (including GTM) in the OBLOT F model was proven in [88]. By considering locally
visible states (comparable to the LUMI model) it was possible to design the HOPPER protocol – a
linear time protocol that achieves a

√
2-approximation of the optimal configuration (also under the

FSYNC scheduler) [91]. The protocol does not converge to the optimal configuration. Additionally,
the HOPPER protocol assumes that the two endpoints of the chain can be distinguished (they behave
differently).

In [20], a variant of the GTM protocol has been designed to optimize the number of rounds
as well as the maximal distance the robots have to move: the δ -bounded GTM protocol. The
difference to the original GTM protocol is that the movement of each robot per round is at most
δ . Still, the robots move towards the midpoint of their neighbors and either reach the point or
are stopped after a distance of δ . The authors prove that the choice of δ ∈Θ(1/n) optimizes both
the runtime and the maximum traveled distance of a robot. Moreover, the limit δ → 0 yields the
continuous GTM protocol in the OBLOT C

1 model. The continuous GTM protocol solves the
CHAIN-FORMATION problem in time Θ(n) [20].

In the same model (OBLOT C
1) the MOVE-ON-BISECTOR (MOB) protocol has been designed

that solves the CHAIN-FORMATION problem also in time Θ(n) [49]. Instead of moving to the
midpoints between their neighbors (GTM), robots follow with full speed the angle bisector between
vectors pointing to their direct neighbors. Interestingly, for the MOB protocol also a competitive
bound has been derived. The MOB protocol solves CHAIN-FORMATION in time O(OPT · logn),
where OPT denotes the time an optimal protocol that has access to global visibility would require.
Hence, the price of locality, i.e., the additional time protocols with local visibility require is at most
a factor of log(n) in the OBLOT C

1 model.
Further research considers a more dynamic approach, where one of the outer robots is denoted

as an explorer. The explorer moves through the plane and the goal is to make the entire chain
follow the explorer using as few robots as possible. Different protocols exist for this setting, some
require more powerful robots [60]. Furthermore, [46] studies the impact of crash faults on the
GO-TO-THE-CENTER protocol (a protocol originally designed for the GATHERING problem) in
one dimension. If exactly two robots crash, the authors observe a behavior similar to the GO-
TO-THE-MIDDLE protocol for CHAIN-FORMATION: the robots arrange themselves equidistant
between the two crashed robots.

Expanding Formation Problems
As previously discussed, the most prominent expanding formation problem is the UNIFORM-
CIRCLE-FORMATION problem as the uniform circle can be (potentially) formed out of any input

33

configuration due to its high symmetry. We first discuss results considering robots with unlimited
visibility. Early approaches showed that the problem can be solved by robots with persistent memory
under the SSYNC scheduler [114]. Later, a protocol for the OBLOT S model was proposed that
converges to the uniform circle [48]. Moreover, a combination of the protocols [54, 55, 84] yields a
protocol to solve the UNIFORM-CIRCLE-FORMATION problem starting in every input configuration
in the OBLOT S model. Assuming n ̸= 4, the protocol in [84] forms a biangular configuration,
i.e., a configuration where robots are located on a circle but form two different alternating central
angles. The protocol [54] forms a uniform circle starting in a biangular configuration and [55]
solves the remaining case n = 4. Finally, the breakthrough result [67] in combination with the
special case of n = 4 [100] showed that the UNIFORM-CIRCLE-FORMATION formation problem
can be solved in the OBLOT A model by disoriented robots. The core idea of the protocol [67]
is quite simple: to move the robots to the boundary of the smallest enclosing circle and distribute
them evenly afterward. However, due to the asynchrony lots of challenges have to be resolved,
especially avoiding collisions (i.e., robots moving to the same position) or the avoidance of cyclic
patterns in the robot’s movement.

There is much less known about robots with limited visibility to solve the UNIFORM-CIRCLE-
FORMATION problems. [58, 102] study the problems to form a uniform circle by fat robots, i.e., the
robots are modeled as disks and thus, have an extent. Both works show that the problem is solvable
by asynchronous robots; however, the robots agree on a common coordinate system. This way, the
robots can first of all move towards the global origin that serves as the center of the circle to form.
A further variant shows how to form multiple uniform circles under the same assumptions [12].
Our work in [26] shows that a combination of NEAR-GATHERING protocols with the protocol
of [67] allows solving the UNIFORM-CIRCLE-FORMATION problem in the OBLOT S

1+τ (τ > 0 is
a constant) model by disoriented robots with limited visibility. The robots collect themselves first
at distinct positions in a small area and form a circle at a small scale afterward.

Furthermore, the SCATTERING problem has a similar flaw as expanding formation problems.
Here, multiple robots can occupy the same position in the initial configuration and have to spread
out such that each robot occupies a unique position finally [9, 18, 79, 107, 108]. Naturally, such
protocols require randomness as robots with the same position and the same view of the world
cannot move to distinct locations deterministically.

Finally, we would like to mention works that study the deployment of robots in a certain area.
Deployment has various meanings in the literature. One example is the formation of grid structures.
In [92] the goal is to arrange the robots (in a model comparable to OBLOT) in a triangular grid.
The authors prove that their protocol converges but the resulting grid structure might contain holes.
The results have also been extended to the three-dimensional Euclidean space [93]. Further work
typically studies (much) more powerful robots, e.g., [62, 77].

To conclude, expanding formation problems are far less understood yet (compared to contraction
problems), especially for natural models assuming robots with limited visibility. Certainly, with
limited visibility, the task of spreading out seems more difficult at first sight as the robots do not
observe what others do. However, as we will see in two examples in this thesis, the challenges
to solve are quite similar to the ones of contraction problems (although certainly, new challenges
occur).

I Contracting Problems

4 GATHERING in the OBLOT Model 37
4.1 Contribution . 38
4.2 Model Recap and Preliminaries . 39
4.3 Continuous Time GATHERING . 40
4.4 Discrete Time GATHERING . 46
4.5 Conclusion & Outlook . 60

5 CHAIN-FORMATION in the LUMI Model 63
5.1 Contribution . 63
5.2 Model Recap and Preliminaries . 64
5.3 Run Sequences and Movement Operations 65
5.4 Protocols for the FSYNC Scheduler . 67
5.5 Analyses . 70
5.6 Synchronization for the SSYNC and ASYNC Schedulers 73
5.7 Conclusion & Outlook . 78

6 GATHERING in the LUMI Model 81
6.1 Contribution . 81
6.2 Model Recap and Preliminaries . 82
6.3 Protocol for the FSYNC Scheduler . 83
6.4 Synchronization for the SSYNC and ASYNC Schedulers 101
6.5 Conclusion & Outlook . 102

4. GATHERING in the OBLOT Model

In this chapter, we study the GATHERING problem of n disoriented robots with limited visibility
in the OBLOT C

1 and OBLOT F
1 models. For both time models (the FSYNC scheduler and the

continuous time model), we study entire classes of protocols and analyze their runtime. The class of
protocols in the continuous time model is called contracting protocols. The criterion of contracting
protocols is elegant, simple, easy to verify and many known protocols fulfill the property: A
protocol is called contracting if robots that are vertices of the global convex hull of all robots’
positions move with a speed of 1 inside the global closed convex hull [96]. We observe that the
criterion naturally generalizes to robots located in Euclidean spaces of any dimension d and prove
a runtime bound of O(nlog(d) ·∆) for every contracting protocol.

In the case of the OBLOT F
1 model, we observe that an analogous criterion does not exist.

Instead, we present λ -contracting protocols with help of a local criterion based on the neighborhood
of a robot and show that if a robot moves sufficiently far (we derive later what this exactly means)
inside the local convex hull enclosing its neighborhood, GATHERING can be achieved within Θ(∆2)
rounds. Notably, the number of rounds solely depends on the diameter ∆ of the initial configuration
and neither on the number of robots nor on the dimension d.

Section 4.3 considers contracting protocols for theOBLOT C model. While the two-dimension-
al case was studied in [96], we consider d ≥ 3 in this chapter. Notably, the case d = 3 relies on
ideas that have been derived in the Master’s thesis of Michael Braun [22] (the analysis itself is
not contained in the thesis). In Section 4.3, we present the analysis for d = 3 that is based on the
following publication. Afterward, we study d > 3 (not published yet) in Section 4.3.2.

2020 (with M. Braun and F. Meyer auf der Heide) “Local Gathering of Mobile
Robots in Three Dimensions” In: Proceedings of the 2020 International Collo-
quium on Structural Information and Communication Complexity (SIROCCO),
Best Student Paper Award, cf. [22].

In Section 4.4, we study λ -contracting protocols for the OBLOT F model based on:

2022 (with J. Harbig, D. Jung, P. Kling, T. Knollmann and F. Meyer auf der
Heide) “A Unifying Approach to Efficient (Near-)Gathering of Disoriented
Robots with Limited Visibility” In: Proceedings of the 26th International
Conference on Principles of Distributed Systems (OPODIS), cf. [26].

38 Chapter 4. GATHERING in the OBLOT Model

4.1 Contribution

Our first contribution considers disoriented robots in the OBLOT C
1 model located in a Euclidean

space of arbitrary dimension d. In [96], the class of contracting protocols for d = 2 has been
presented. A continuous robot formation protocol is called contracting if robots that are located on
vertices of the global convex hull of all robots’ positions move with a speed of 1 inside the closed
global convex hull. Typical protocols have this property, such as the continuous variant of the GTC
protocol [96]. The authors of [96] prove that every contracting protocol gathers n robots located in
R2 in time O(n ·∆), where ∆ is the Euclidean diameter of the initial configuration. Moreover, there
is at least one contracting protocol that needs a time of Ω(n ·∆) to gather all robots when the robots
are initially placed on a regular polygon with a side length of 1 (equal to the viewing range) [96].

We show that the class naturally generalizes to higher dimensions (as convex hulls are defined
analogously in higher dimensions) and prove an upper runtime bound of O(nHd ·∆), where Hd ∈
Θ(log(d)) represents the d-th Harmonic number. To familiarize ourselves with the concepts and
definitions, we first study the case d = 3 in Section 4.3.1. The result has been published in [22];
in this chapter, we present a simplified and streamlined proof. The analysis projects the original
three-dimensional configuration onto a two-dimensional projection plane and proves that the length
of the boundary of the projected global convex hull (in the following denoted as the length of the
convex hull) is monotonically decreasing at a rate in the order of Ω(1/

√
n). Note that the projection

plane must be chosen carefully, as otherwise, some robots would not move at all in the projection
plane (if the plane is orthogonal to their velocity vector). Hence, we aim to find a projection plane in
which all robots still move sufficiently fast to reduce the analysis of the original three-dimensional
contracting protocol to the analysis of its behavior in a two-dimensional projection plane. We prove
an upper time bound of O(n3/2 ·∆) for d = 3. Afterward, we study the case d > 3 in Section 4.3.2.
The main analysis idea remains the same: to find a two-dimensional projection plane in which all
robots move at a certain speed larger than 0 to analyze how the length of the projected global convex
hull changes. To do so, we use a series of projections: we first project onto a d−1-dimensional
plane, afterward onto a d−2-dimensional plane and so on until reaching a two-dimensional plane.
The projection from dimension i to i−1 ensures that the length of the projected velocity vectors
only decreases by a factor of O(1/ i−1√n). Thereby, we find a two-dimensional projection plane in
which all velocity vectors still have a length of at least n−∑

d−1
i=2

1
i . Based on this value, we prove that

the length of the projected convex hull in this plane decreases with a speed of at least n−Hd−1 . As
the initial length of the projected convex hull can be upper bounded by ∆ ·π , we derive a runtime of
O(nHd ·∆). The result is summarized in the following Theorem 4.1.

Theorem 4.1 Every contracting protocol gathers a swarm of n disoriented robots located in Rd

in the OBLOT C
1 model in time O(nlog(d) ·∆).

Our second contribution introduces a large class of GATHERING protocols for robots in the
OBLOT F model that contains several natural protocols such as GTC [5]. We prove that every
protocol from this class gathers in O(∆2) rounds, where the diameter ∆ denotes the initial maximal
distance between two robots. Note that, the bound ofO

(
∆2
)

not only reflects how far a given initial
swarm is from a gathering but also improves the GTC bound from O

(
n+∆2

)
[50] to O

(
∆2
)
. We

call this class λ -contracting protocols. Such protocols restrict the allowed target points to a specific
subset of a robot’s local convex hull (formed by the positions of all visible robots, including itself)
in the following way. Let diam denote the diameter of a robot’s local convex hull. Then, a target
point p is an allowed target point if it is the center of a line segment of length λ ·diam, completely
contained in the local convex hull. This guarantees that the target point lies far enough inside the
local convex hull (at least along one dimension) to decrease the swarm’s diameter sufficiently. See
Figure 4.1 for an illustration. We believe that these λ -contracting protocols encapsulate the core
property of fast GATHERING protocols. Their analysis is comparatively clean, simple, and holds for

4.2 Model Recap and Preliminaries 39

any dimension d. Thus, by proving that (the generalization of) GTC is λ -contracting for arbitrary
dimensions, we give the first protocol that provably gathers in O(∆2) rounds for any dimension.

Theorem 4.2 Every λ -contracting protocol gathers a swarm of n disoriented robots located in
Rd in the OBLOT F

1 model in Θ(∆2) rounds.

As a strong indicator that our protocol class might be asymptotically optimal, we prove that
every GATHERING protocol for deterministic, disoriented robots whose target points lie always
inside the robots’ local convex hulls requires Ω(∆2) rounds to gather all robots if the robots are
initially located on the vertices of a regular polygon with a side length of 1. Staying in the convex
hull of visible robots is a natural property for any known protocol designed for oblivious, disoriented
robots with limited visibility. Thus, reaching a sub-quadratic runtime – if at all possible – would
require the robots to compute target points outside of their local convex hulls sufficiently often.

Theorem 4.3 For every protocol for robots in the OBLOT F
1 model that computes the target

point of a robot always inside of the local convex hull of all visible robots, there exists an initial
configuration where the protocol requires Ω(∆2) rounds to gather all robots.

4.2 Model Recap and Preliminaries

We study the OBLOT C
1 and the OBLOT F

1 models. For the OBLOT C
1 we analyze the class of

contracting protocols. The class of protocols in the OBLOT F
1 model is denoted as λ -contracting

protocols. We summarize the most important model features in Table 5.2, and more details can be
found in Chapter 2.

Protocol Time Dimension Viewing
Range

Orientation Chain

contracting
protocols

FSYNC ≥ 1 1 disoriented no

λ -contracting
protocols

continuous
time model

≥ 1 1 disoriented no

Table 4.1: A summary of the most important model details for this chapter.

Problem Statement. The goal of the GATHERING problem is to collect all robots on the
same (not predefined) point. We say that a formation protocol (discrete or continuous) solves the
GATHERING problem, if there is a point in time t such that pi(t) = p j(t) for all pairs of indices
i, j ∈ {0, . . . ,n−1}.

Definitions & Notation. We denote the closed convex hull of all robots’ positions at time t by
CH(t). Observe that the definition is global and robots cannot observe CH(t) due to their limited
visibility. Locally, we define the local convex hull CHi(t) of a robot ri as the closed convex hull of
all robots’ positions in Ni(t), i.e., the convex hull of all visible robots of ri (including itself) at time t.
Moreover, ∆(t) denotes the Euclidean diameter of all robots’ positions, i.e., the maximum distance
of any pair of robots, at time t. Throughout the thesis, we use ∆ := ∆(0) as the Euclidean diameter
of the initial configuration. Locally, for a robot ri and time t, ∆i(t) is the Euclidean diameter of all
robots in Ni(t).

40 Chapter 4. GATHERING in the OBLOT Model

4.3 Continuous Time GATHERING

In the following, we define the class of contracting protocols based on [89, 96], where two-
dimensional protocols are studied. Since convex hulls are analogously defined in higher dimensions,
we can define the class of contracting protocols independent of the environment where the robots
live in. Informally, a continuous robot formation protocol is contracting if robots that are located
on vertices of the global closed convex hull move with a speed of 1 inside the global closed convex
hull.

Definition 4.1 A continuous robot formation protocol is called (globally) contracting if for
every point in time t and every robot ri whose position is a vertex of CH(t), it holds that
targetPi (t) ∈CH(t) and sPi (t) = 1.

Observe that Definition 4.1 refers to the global convex hull of all robots’ positions. However,
due to the limited visibility of the robots, we typically look at local protocols. Such protocols
define the target point of a robot based on its local neighborhood. Nevertheless, typical target
points such as the center of the smallest enclosing circle of a robot’s neighborhood lie inside the
global convex hull and thus fulfill – at first sight – the criterion of being contracting. Still, target
points might lie inside the global convex hull while the movements of the robots do not maintain
connectivity of UBG(t). Consider for instance the case that a protocol divides the configuration
into two connected components. The robots of the connected components might gather at two
different points. Afterward, the robots are not aware that there is a second position occupied by
robots and remain in their current location. As a result, the protocol is not contracting at this point
since the robots do not move anymore although they have not yet gathered at a single point. With
this observation, we see that maintaining connectivity is an essential property of local protocols
and define the following class of locally contracting protocols.

Definition 4.2 A continuous robot formation protocol is called locally contracting if for every
point in time t,

1. UBG(t) is connected
2. for every robot ri whose position is a vertex of CHi(t), targetPi (t) ∈CHi(t) and sPi (t) = 1.

Informally speaking, a locally contracting protocol must maintain the connectivity of UBG(t)
and robots that are located on vertices of their local closed convex hull move with a speed of 1
inside. Since local convex hulls are completely contained in the global convex hull, every locally
contracting protocol is also (globally) contracting.

Lemma 4.1 Every locally contracting protocol is globally contracting.

As a consequence, we focus on the analysis of globally contracting protocols in the following
sections. For concrete protocols, we have to prove that they maintain the connectivity of UBG(t)
and that robots compute target points inside their local convex hulls (which is often easy to see).

4.3.1 Analysis of Three-dimensional Contracting Protocols
The main tool we use for the analysis of high-dimensional contracting protocols is an orthogonal
projection of the robots’ positions and velocity vectors onto a two-dimensional plane. In this
section, we consider the three-dimensional case to make the reader familiar with the core ideas
and notation. Let h(⃗x) be the plane through the origin with normal vector x⃗ and let P⃗x denote
the orthogonal projection onto h(⃗x). Recall that we denote by a configuration at time t, the set
containing all robots’ positions at time t. Now, given a configuration C of n robots, consider their
projection C⃗x = {P⃗x · pi(t)|pi(t) ∈C} onto h(⃗x) along with the projections of their velocity vectors
vPi (t, x⃗) = P⃗x · vPi (t). Furthermore, we denote the convex hull of C⃗x as PCHt (⃗x). If the robots
perform a contracting protocol in the three-dimensional space, their projections also move towards
the inside of the projected convex hull PCHt (⃗x) since P⃗x is a linear transformation and therefore

4.3 Continuous Time GATHERING 41

preserves convexity. However, the lengths of the projected velocity vectors vPi (t, x⃗) are smaller than
1 in general. For a given projection onto a plane h(⃗x), the minimum length of the vPi (t, x⃗) will be
called the projected speed and is denoted by ε⃗x = mini ∥vPi (t, x⃗)∥2. Note that ε⃗x can even be 0 in
case h(⃗x) is orthogonal to any velocity vector. The following notion of the length of PCHt (⃗x) will
be used as a progress measure for three-dimensional contracting protocols.

Definition 4.3 Let c1(t),c2(t), ...,ck(t)(t) be the vertices of PCHt (⃗x) (ordered counter-clock-
wise), where k(t) is the number of vertices at time t. The length ℓ(t, x⃗) of PCHt (⃗x) is defined as
the sum of its edge lengths: ℓ(t, x⃗) = ∑

k(t)
ι=1 ∥cι(t),cι−1(t)∥2, where c0 := ck(t)(t).

Observe that ℓ(t, x⃗)≤ ∆ ·π . The upper bound can be reached for large n if PCHt (⃗x) is a regular
n-gon. If ℓ(t, x⃗) = 0, the robots either have gathered in the original three-dimensional Euclidean
space or form a line parallel to x⃗. In the latter scenario, it will only take a maximum of O(∆)
additional time for the robots to gather, as the robots at the endpoints of the line must move with
a speed of 1 towards each other. Later on, we choose a plane with a projected speed as large as
possible and analyze ℓ′(t, x⃗), the rate at which the length of the projected convex hull decreases. To
do so, we make use of a lemma that states how the distance between two robots changes based on
their velocity vectors.

Lemma 4.2 — [49]. Consider two robots ri and r j and let di, j(t) : R≥0→ R≥0 represent their
distance at time t. Furthermore, we assume that the robots execute the continuous robot
formation protocol P . The distance between ri and r j changes with speed

di, j
′(t) =−(sPi (t) · cos(βi, j(t))+ sPj (t) · cos(β j,i(t))),

where βi, j(t) is the angle between vPi (t) and the line segment connecting ri and r j at time t.

With help of Lemma 4.2, we prove a bound on ℓ′(t, x⃗) depending on ε⃗x.

Lemma 4.3 Consider a plane h(⃗x) with projected speed ε⃗x at time t, such that ℓ(t, x⃗)> 0 and
no two robots with different positions in R3 get projected onto the same point on h(⃗x). Then
ℓ′(t, x⃗)≤−8ε⃗x

n .

Proof. Because P⃗x is a linear transformation, each of the cι(t) (see Definition 4.3) is also the
projection of one of the vertices of the original, three-dimensional convex hull CH(t). Therefore,
the velocity vectors of the corresponding robots point towards the inside of CH(t) by the definition
of contracting protocols. Now, consider the projections of these velocity vectors onto h(⃗x). By
our assumption, ∥vPi (t, x⃗)∥2 ≥ ε⃗x, for all i. Furthermore, let αι(t) be the internal angle of PCHt (⃗x)
at cι(t). We know (by our assumption) that each corner cι(t) of PCHt (⃗x) contains only a single
robot. Hence, each αι(t) is split into two parts, β̂ι ,ι−1(t) and β̂ι−1,ι(t) by cι(t)’s velocity vector
vPι (t, x⃗), such that αι(t) = β̂ι ,ι−1(t)+ β̂ι−1,ι(t). Using Lemma 4.2, the derivative of ℓ(t, x⃗) can now
be bounded as follows: Recall that ℓ(t, x⃗) = ∑

k(t)
ι=1 ∥cι(t),cι−1(t)∥2:

ℓ′(t, x⃗) =
k(t)

∑
ι=1
−
(
∥vPι (t, x⃗)∥2 cos β̂ι ,ι−1(t)+∥vPι−1(t, x⃗)∥2 cos β̂ι−1,ι(t)

)
≤

k(t)

∑
ι=1
−
(
ε⃗x cos β̂ι ,ι−1(t)+ ε⃗x cos β̂ι−1,ι(t)

)
=−ε⃗x

k(t)

∑
ι=1

cos β̂ι ,ι−1(t)+ cos β̂ι−1,ι(t)

42 Chapter 4. GATHERING in the OBLOT Model

≤−ε⃗x

k(t)

∑
ι=1

2(αι(t)−π)2

π2 (4.1)

=−2ε⃗x

π2

k(t)

∑
ι=1

(αι(t)−π)2

For Equation (4.1) observe that for ϑ ∈ [0,1] and α ∈ [0,π], it holds that cos(αϑ)+cos(α(1−
ϑ))≥ 2(α−π)2

π2 [97]. Now, we upper bound the sum of squares by the squared sum and use the fact
that the sum of the inner angles of a convex polygon with k corners is (k−2) ·π .

ℓ′(t, x⃗)≤− 2ε⃗x

k(t) ·π2 ·
(k(t)

∑
ι=1

(αι(t)−π)
)2

=− 2ε⃗x

k(t) ·π2 ·
(
(k(t)−2) ·π− k(t) ·π

)2

=− 2ε⃗x

k(t) ·π2 · (2π)2

=− 8ε⃗x

k(t)

≤−8ε⃗x

n

■

The next goal is to find a plane h(⃗x) such that ε⃗x is large. Note that the length of x⃗ does not
matter. Hence, we look at all possible vectors x⃗ of length 1. Those vectors form the unit sphere U .
Now, consider a projection plane h(⃗x). If this plane has projected speed smaller than ε at time t,
then there is a velocity vector vPi (t), such that ∠(⃗x,vPi (t))< sin−1

ε . We say that vPi (t) blocks h(⃗x).
Conversely, given a vPi (t), we can determine the set of all the h(⃗x) that are blocked by vPi (t):

Lemma 4.4 At time t, the velocity vector vPi (t) blocks vectors from a surface area of 2π
(
1−√

1− ε2
)

on U from reaching projected speed ε .

Proof. Consider the spherical cap of U with base radius ε , apex vPi (t) and colatitude angle θ .
Further, let S be its curved surface. For all vectors x⃗ ∈ S, h(⃗x) is blocked from reaching projected
speed ε . The area of S can be computed by AS = 2πr2(1− cosθ) = 2π(1− cos(sin−1

ε)) =
2π(1−

√
1− ε2). ■

Since there are n robots, the area blocked by their velocity vectors is at most n ·2π(1−
√

1− ε2),
whereas the total surface area of U is 4π . Now, we choose ε such that at least one plane with a
projected speed of at least ε remains.

Lemma 4.5 There exists a vector x⃗ on U with ε⃗x ≥ 1√
n .

Proof. U has a surface area of 4π and the robots’ velocity vectors block an area of at most
n ·2π(1−

√
1− ε2). We want to choose ε such that the following holds:

4π > n ·2π(1−
√

1− ε2) ⇐⇒ ε < 2 ·
√

n−1
n2 .

Lastly, observe that for n≥ 2 it holds 1√
n < 2 ·

√
n−1
n2 and the statement follows.

■

4.3 Continuous Time GATHERING 43

Theorem 4.4 A swarm of n robots located in R3 and following a contracting protocol P , gathers
in time O(n3/2 ·∆).

Proof. Via Lemma 4.5, we obtain a vector x⃗ such that the projected speed of the robot configuration
on h(⃗x) is at least 1√

n . With help of Lemma 4.3, we get a bound on ℓ′(t, x⃗):

ℓ′(t, x⃗)≤−8
n
· 1√

n

=− 8
n3/2

.

Since the initial length of PCHt (⃗x) is upper bounded by ∆ ·π , we obtain a time bound of ∆·π·n3/2

8
until ℓ(t, x⃗) = 0. Afterward, the robots are either gathered or form a line parallel to x⃗. In the latter
case, the robots gather after further time ∆/2. Hence, we derive a total time bound of ∆·π·n3/2

8 +
∆/2 ∈ O(n3/2 ·∆). ■

4.3.2 Analysis of Higher-dimensional Contracting Protocols
Next, we consider d > 3. We generalize the proof of Section 4.3.1. Instead of projecting only once,
we use a series of orthogonal projections to project the original, high-dimensional configuration
to a two-dimensional plane. For the analysis, we need some preliminary definitions to compute
analogously to the three-dimensional case, the surface area of d-dimensional hyperspherical caps.

Definition 4.4 The d-sphere of radius r is defined as

Sd(r) := {x ∈ Rd+1 | ∥x∥= r}.

Definition 4.5

1. The Beta function is defined as

B(a,b) =
∫ 1

0
ta−1 · (1− t)b−1dt.

2. The regularized incomplete Beta function is defined as

Ix (a,b) =
1

B(a,b)
·
∫ x

0
ta−1 · (1− t)b−1dt.

With help of the Beta functions, we now state a formula for the surface area of d-dimensional
hyperspherical caps.

Lemma 4.6 — [95]. The surface area of a d-dimensional hyperspherical cap Acap
d (r) of a sphere

with radius r can be computed As

Acap
d (r) =

1
2
·Ad(r) · Isin2(θ)

(
d−1

2
,
1
2

)
where Ad(r) is the surface area of a d-sphere with radius r, θ is the colatitude angle of the

cap and I represents the regularized, incomplete Beta function.

44 Chapter 4. GATHERING in the OBLOT Model

The following bound on the regularized incomplete beta function is a useful tool to derive an
upper bound on the surface area of hyperspherical caps.

Lemma 4.7 For x ∈ (0,1) and d ≥ 2, we obtain

Ix2

(
d−1

2
,
1
2

)
≤ xd−1.

Proof. First observe that Ix2 (a,b) is for fixed a ≥ 1 and 0 < x < 1 monotonically increasing for
b ∈ [1

2 ,1]. Hence, for d ≥ 2, Ix2

(d−1
2 , 1

2

)
≤ Ix2

(d−1
2 ,1

)
. Applying the identify Ix(a,1) = xa yields

Ix2

(
d−1

2
,
1
2

)
≤ Ix2

(
d−1

2
,1
)
= x2

d−1
2 = xd−1.

■

The following lemma is the key lemma of the proof, stating that for every collection of n
d-dimensional vectors all of length ≥ ε , there exists a d−1-dimensional plane such that the vectors
projected orthogonally to that plane all have a length of at least ε

d−1√n in the projection.

Lemma 4.8 For every collection of n d-dimensional vectors v⃗1, . . . , v⃗n with ∥⃗vi∥2 ≥ r for all i
and 0 < r < 1, there exists a d−1-dimensional projection plane h(⃗x) with normal vector x⃗ and
a projected speed of at least r

d−1√n .

Proof. Similar to the three-dimensional analysis, we look at all possible normal vectors x⃗ of d−1-
dimensional projection planes h(⃗x). In contrast to the three-dimensional case, we do not look at
unit d-spheres but at spheres of a certain radius r since already after the first projection, the vectors
have lost in length. Hence, we consider normal vectors of length r. Now, consider a projection
plane h(⃗x). If this plane has projected speed smaller than ε < r at time t, then there is a velocity
vector vPi (t), such that ∠(⃗x,vPi (t)) < cos−1

(√
r2−ε2

r

)
. Analogously, for a single velocity vector

vi(t), the set of all blocked planes, i.e., the set of all planes in which vPi (t) has a length of less than
ε , can be expressed as the surface area of a hyperspherical cap with apex vPi (t) and colatitude angle

cos−1
(√

r2−ε2

r

)
. We want to choose ε such that the hyperspherical caps of all velocity vectors do

not block the entire surface of the d-sphere with radius r. If not the entire surface is blocked, there
is at least one d−1-dimensional plane with a projected speed of at least ε . Precisely, we aim to
choose ε , such that

Ad(r)> n · 1
2
·Ad(r) · Isin2(θ)

(
d−1

2
,
1
2

)
= n · 1

2
·Ad(r) · I ε2

r2

(
d−1

2
,
1
2

)
.

Rearranging yields

n · I ε2

r2

(
d−1

2
,
1
2

)
< 2.

Now, we apply Lemma 4.7 to get an upper bound on ε .

4.3 Continuous Time GATHERING 45

n · I ε2

r2

(
d−1

2
,
1
2

)
≤ n ·

(
ε

r

)d−1
< 2 ⇐⇒ ε ≤

d−1
√

2 · r
d−1
√

n
.

Choosing ε = r
d−1√n proves the claim. ■

Lemma 4.9 For every d-dimensional contracting protocol P , there exists a two-dimensional
projection plane with a projected speed of at least n−∑

d−1
i=2

1
i .

Proof. We apply Lemma 4.8 inductively as follows. Initially, we take the n unit vectors vPi (t) and
project them onto a d−1-dimensional plane with a projected speed of at least 1

d−1√n (Lemma 4.8).

Afterward, we take the n projected vectors of length at least 1
d−1√n and project them onto a d−2-

dimensional plane and so on. Via Lemma 4.8, we get that there is a series of d−2 projections such
the projected speed of the resulting two-dimensional plane is at least

1

∏
d−1
i=2 n

1
i
=

1

n∑
d−1
i=2

1
i
.

■

Theorem 4.1 Every contracting protocol gathers a swarm of n disoriented robots located in Rd

in the OBLOT C
1 model in time O(nlog(d) ·∆).

Proof. We need to combine the statements of Lemma 4.3 and Lemma 4.9: There exists a two-
dimensional normal vector x⃗ with a projected speed of at least n−∑

d−1
i=2

1
i (Lemma 4.9). For the plane

h(⃗x), we conclude with help of Lemma 4.3 that

ℓ′(t, x⃗)≤−8
n
·n−∑

d−1
i=2

1
i

=− 8

n∑
d−1
i=1

1
i

=− 8
nHd−1

.

Since ℓ(0, x⃗)≤ π ·∆, we conclude that after a time of nHd−1 ·π·∆
8 ∈ O(nHd−1 ·∆), the length of the

projected convex hull in h(⃗x) is 0, i.e., ℓ(t, x⃗) = 0. In this case, either the robots have gathered in
the initial d-dimensional space or they have formed a line parallel to x⃗. The latter case leads to an
additional time ofO(∆) since the robots at the end of the line always move with a speed of 1 towards
the midpoint of the line. We conclude that there is a point in time tfinal with tfinal ∈ O(nHd−1 ·∆)
such that all robots have gathered at time tfinal.

■

4.3.3 An Exemplary Contracting Protocol
Next, a continuous version of the GTC protocol [5] will be considered as a concrete example of a
contracting protocol. The two-dimensional version of this protocol was adapted for the continuous
time model by [97]. In the discrete time version of the GTC protocol, connectivity is maintained
with help of limit circles, i.e., robots sometimes do not move towards the center of the smallest
enclosing circle of their neighborhood but stop earlier. Compared to the discrete time version, no

46 Chapter 4. GATHERING in the OBLOT Model

Algorithm 1 Continuous d-GTC

1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: Si(t) := smallest enclosing hypersphere ofRi(t)
3: ci(t) := center of Si(t)
4: Move towards ci(t) with speed 1, or stay on ci(t) if ri is already positioned on it.

additional measures have to be taken to preserve connectivity in the continuous time model, as it
can be shown that this happens naturally. The protocol is summarized below.

To show that the continuous d-GTC protocol is contracting, it must first be verified that
connectivity of UBG(t) is maintained. The same reasoning that was used in the two-dimensional
case by [97] can also be applied here.

Lemma 4.10 Let R be a set of robots in Rd that follows the continuous d-GTC protocol. If
{ri,r j} is an edge in UBG(t) at time t, then {ri,r j} is an edge in UBG(t’) at t ′ ≥ t. Thus, the
continuous d-GTC protocol maintains the connectivity of UBG(t).

Proof. Consider a robot ri with neighborhood Ni(t) at time t. Let Qi(t) be the intersection of the
unit balls of all robots in Ni(t). The center of the smallest hypersphere of Ni(t) can have a radius of
at most 1 and contains all robots in Ni(t). Hence, its center ci(t) must lie in Qi(t) [97].

Now, we consider some neighbor r j ∈ Ni(t) of ri and we assume that there is some future point
in time t ′ > t, such that the distance between ri and r j is larger than 1 at time t ′ (and hence, ri and
r j are no longer neighbors). Since the movement of robots is continuous, there must be some time
t∗ ∈ [t, t ′], for which ∥pi(t∗), p j(t∗)∥2 = 1. Now, let L denote the intersection of the unit balls of ri

and r j at time t∗. Any point in L is within a distance of at most 1 of both ri and r j. Furthermore L is
a superset of both Qi(t∗) and Q j(t∗), meaning the target points ci(t∗) and c j(t∗) of both ri and r j

also lie in L. Therefore, ri and r j can only move in the direction of points that are at a distance of at
most 1 from both of them, meaning their distance can never exceed 1, creating a contradiction to
the assumption that their distance is greater than 1 at time t ′. ■

As the center of a smallest enclosing hypersphere is always a convex combination of the points
it encloses [61], we obtain that the continuous d-GTC protocol is a locally contracting protocol and
thus, also globally contracting.

Theorem 4.5 The continuous d-GTC protocol is locally contracting and therefore gathers a
swarm of n disoriented robots located in Rd with limited visibility in time O

(
nlog(d) ·∆

)
.

4.4 Discrete Time GATHERING

In this section, we study the GATHERING problem in the OBLOT F
1 model. More precisely, we

describe the class of λ -contracting protocols – a class of protocols which solve GATHERING

in Θ
(
∆2
)

rounds. Furthermore, we derive a subclass of λ -contracting protocols, called (α,β)-
contracting protocols. The class of (α,β)-contracting contracting protocols is a powerful tool
to determine whether a given gathering protocol (such as GTC) fulfills the property of being
λ -contracting. The first intuition to define a class of protocols to solve GATHERING would be to
transfer the class of continuous contracting protocols (see Section 4.3) to the discrete LCM case.
However, as we emphasize with some preliminary observations in Section 4.4.1, demanding to
move inside the local or global convex hulls is not enough to solve GATHERING in the discrete case.
Based on these observations, we derive the definition of λ -contracting protocols in Section 4.4.2.
Afterward, we state and prove upper and lower runtime bounds in Section 4.4.3 and present the
subclass of (α,β)-contracting protocols as well as concrete examples of protocols in Section 4.4.4.

4.4 Discrete Time GATHERING 47

4.4.1 Preliminary Observations

Before heading to the concrete definition of λ -contracting protocols, we make some preliminary
observations. Based on these observations, we derive the definition of λ -contracting protocols. The
first main observation is analogous to locally contracting protocols in the continuous time model:
each protocol must always maintain connectivity of UBG(t). Since the robots neither agree on a
common coordinate system nor any common direction it would be impossible to reconnect the
robots deterministically.

Observation 4.1 Each discrete robot formation protocol to solve GATHERING must preserve
the connectivity of UBG(t).

Furthermore, it must be ensured that robots with the same view, i.e., robots that observe the
same set of robots, eventually compute the same target point. Consider, for instance, the case of
n = 2 (also known as RENDEZVOUS). A discrete robot formation protocol that solves GATHERING

does not need to compute the same target point in every round. However, there must be a condition
such that at some point the two robots compute the same target point. The condition could, for
example, be based on the distance: if the distance between the two robots is less than 1/2, the robots
move to their midpoint, otherwise, each robot moves a constant distance towards the other robot.

Observation 4.2 Each discrete robot formation protocol to solve GATHERING must – at some
point – enforce robots with the same view to compute the same target points.

Moreover, it is important which points the robots compute. There are certainly invalid points
either leading to no gathering at all or a very large number of rounds. The first observation is that
robots that are located at the global boundary of the swarm have to move inside (while keeping
connectivity). Since robots do have limited visibility, they cannot decide whether they are part of
the global boundary. Hence, their decision must always be based on their local neighborhood. As a
consequence, we state that robots that are vertices of the convex hull of their neighborhood or very
close to the boundary of the convex hull should always move inside unless their movement would
destroy the connectivity.

Observation 4.3 For a robot ri, staying in its position should only be allowable if it is necessary
to maintain connectivity or if the robot itself lies sufficiently far inside of its local convex hull.

Additionally, the robots should move sufficiently far inside the local convex hull to realize a
fast runtime.

Observation 4.4 Each robot should move sufficiently far inside its local convex hull.

Lastly, robots should also compute target points that are sufficiently far away from other vertices
of their local convex hull. Consider for instance the case that robots are always allowed to move
to positions of their neighbors. In that case, one could design a protocol that does not lead to any
progress started by robots located on the vertices of a regular polygon with a side length of 1.

Observation 4.5 Target points should lie sufficiently far away from any vertex of a local convex
hull.

4.4.2 λ -contracting Protocols

Based on Observation 4.1, any discrete protocol to solve GATHERING must be connectivity preserv-
ing, i.e., it always maintains the connectivity of UBG(t). Next, we define the meaning of sufficiently
far inside of local convex hulls (Observations 4.3 to 4.5) precisely, leading to a characterization of
valid target points.

48 Chapter 4. GATHERING in the OBLOT Model

Definition 4.6 Let Q be a convex polytope with diameter diam and 0 < λ ≤ 1 a constant. A
point p ∈ Q is called to be λ -centered if it is the midpoint of a line segment that is completely
contained in Q and has a length of λ ·diam.

Figure 4.1: A visualization of λ -centered points for the values of λ = 4/7 (left) and λ = 4/11 (right).

Two examples of λ -centered points are depicted in Figure 4.1. Observe that moving to λ -
centered points while maintaining connectivity does not necessarily enforce a final gathering of the
protocols (cf. Observation 4.2). Consider, for instance, two robots. A protocol that demands the
two robots to move halfway towards the midpoint between themselves would compute 1/4-centered
target points, but the robots would only converge towards the same position. The robots must be
guaranteed to compute the same target point eventually to obtain a final gathering. We demand
this by requiring that there is a constant c < 1, such that Ni(t) = N j(t) and that ∆i(t) = ∆ j(t)≤ c
implies that the robots compute the same target point. Protocols that have this property are called
collapsing. Observe that being collapsing is reasonable since λ -centered points are always inside
local convex hulls and hence, the robots’ local diameters are monotonically decreasing in case no
further robot enters their neighborhood. Hence, demanding a threshold to enforce moving to the
same point is necessary to ensure a final gathering. For ease of description, we fix c = 1/2 in this
work. However, c could be chosen as an arbitrary constant by scaling the obtained runtime bounds
with a factor of 1/c. The combination of connectivity preserving, collapsing and λ -centered points
leads to the notion of λ -contracting protocols.

Definition 4.7 A connectivity preserving and collapsing discrete robot formation protocol P is
called λ -contracting if targetPi (t) is a λ -centered point of CHi(t) for every robot ri and every
t ∈ N0.

4.4.3 Analysis of λ -contracting Protocols
In the following, we state the upper and lower bounds about λ -contracting protocols. We start
with a lower bound that holds for an even larger class of protocols. The lower bound holds for all
discrete gathering protocols that compute robot target points always inside local convex hulls.

Theorem 4.3 For every protocol for robots in the OBLOT F
1 model that computes the target

point of a robot always inside of the local convex hull of all visible robots, there exists an initial
configuration where the protocol requires Ω(∆2) rounds to gather all robots.

To familiarize ourselves with the core ideas, we first focus on the two-dimensional case and
state a matching upper bound for λ -contracting protocols of robots located in the Euclidean plane.

Theorem 4.6 Consider a swarm of n robots located in R2. Every λ -contracting protocol gathers
all robots in 171·π·∆2

λ 3 +1 ∈ O
(
∆2
)

rounds.

Afterward, we prove a similar theorem (with a slightly increased runtime bound) for robots located
in Rd .

4.4 Discrete Time GATHERING 49

Theorem 4.7 Consider a swarm of n robots located in Rd . Every λ -contracting protocol gathers
all robots in 256·π·∆2

λ 3 +1 ∈ O
(
∆2
)

rounds.

4.4.3.1 Lower Bound

Theorem 4.3 For every protocol for robots in the OBLOT F
1 model that computes the target

point of a robot always inside of the local convex hull of all visible robots, there exists an initial
configuration where the protocol requires Ω(∆2) rounds to gather all robots.

Proof. The presented lower bound is a generalization of the lower bound of the GTC protocol [50].
In the following, we assume n≥ 5. Consider n robots that are located on the vertices of a regular
polygon with side length 1. Observe first that due to the disorientation and because the protocols are
deterministic, the local coordinate systems of the robots could be chosen such that the configuration
remains a regular polygon forever (see Figure 4.2 for an example).

Figure 4.2: Initially, the robots are located on the surrounding regular polygon. The local coordinate
systems of the robots can be chosen such that all robots execute the same movement in a rotated
fashion such that the configuration remains a regular polygon.

Henceforth, we assume in the following that the robots remain on the vertices of a regular
polygon. Let C be the surrounding circle and rC its radius. For large n, the circumference pC of C
is ≈ n and rC ≈ n/2π. Hence, ∆≈ n/π. We show that any λ -contracting protocol requires Ω

(
∆2
)

rounds until pC ≤ 2n/3. As long as pC ≥ 2n/3, each robot can observe exactly two neighbors at
distance 2/3≤ s≤ 1.

The internal angles of a regular polygon have a size of γ = (n−2)·π/n. Fix any robot ri, translate
and rotate the global coordinate system such that pi(t) = (0,0) and

pi−1(t) =
(
−s · sin(γ/2) ,s · cos(γ/2)

)
pi+1(t) =

(
s · sin(γ/2) ,s · cos

(
γ/2
))
.

Now, consider the target point targetPi (t) =
(
xtargetPi (t),ytargetPi (t)

)
. Observe that the radius rC

decreases by exactly ytargetPi (t). Next, we derive an upper bound on ytargetPi (t).

ytargetPi (t) = s · cos(γ/2)≤ cos(γ/2) = cos((n−2)·π/2n) = cos(π/2− π/n) = sin(π/n) .

For x ≥ 0 it always holds sin(x) ≤ x. Hence, sin(π/n) ≤ π/n. Therefore, it takes at least n2/3π

rounds until rC has decreased by at least n/3. The same holds for the perimeter. All in all, it takes at
least n2/3π ∈Ω

(
∆2
)

rounds until rC decreases by at least n/3. ■

50 Chapter 4. GATHERING in the OBLOT Model

4.4.3.2 Upper Bound for d = 2

The proof aims to show that the radius of the global smallest enclosing circle (SEC), i.e., the
SEC that encloses all robots’ positions in a global coordinate system, decreases by Ω(1/∆) every
two rounds. Since the initial radius is upper bounded by ∆, the runtime of O

(
∆2
)

follows. See
Figure 4.3 for a visualization. The proof idea is inspired by the analysis of the GTC protocol [50].

round t round t+ 2

∈ Ω
(
1
∆

)

λ-contracting
protocol P

Figure 4.3: We show that the radius of the global SEC decreases by Ω(1/∆) every two rounds.

High-level Analysis: We consider the fixed circular segment Sλ of the global SEC and analyze
how the inside robots behave. A circular segment is a region of a circle “cut off” by a chord. The
circular segment Sλ has a chord length of at most λ/4 (for a formal definition, see below) and we
can prove a height of Sλ in the order of Ω(1/∆) (Lemma 4.11). Observe that in any circular segment,
the chord’s endpoints are the points that have a maximum distance within the circular segment, and
hence, the maximum distance between any pair of points in Sλ is at most λ/4. Now, we split the
robots inside of Sλ into two classes: the robots ri with ∆i(t)> 1/4 and the others with ∆i(t)≤ 1/4.
Recall that every robot ri moves to the λ -centered point targetPi (t). Moreover, targetPi (t) is the
midpoint of a line segment ℓ of length λ ·∆i(t) that is completely contained in the local convex hull
of ri. For robots with ∆i(t)> 1/4 we have that ℓ is larger than λ/4 and thus, ℓ cannot be completely
contained in Sλ . Hence, ℓ either connects two points outside of Sλ or one point inside and another
outside. In the former case, targetPi (t) is outside of Sλ , and in the latter case targetPi (t) is outside
of a circular segment with half the height h of Sλ . See Lemma 4.12 for a formal statement of the
first case.

It remains to argue about robots with ∆i(t)< 1/4. Here, we consider a circular segment with an
even smaller height, namely h · λ/4. We will see that all robots which compute a target point inside
this circular segment (which can only be robots with ∆i(t)< λ/4) will move exactly to the same
position. Hence, in round t +1 there is only one position in the circular segment with height h · λ/4

occupied by robots. All other robots are located outside of the circular segment with height h/2. As
a consequence, for all robots ri in the circular segment with height h · λ/4, it must hold targetPi (t) is
outside of the circular segment with height h · λ/4. See Lemma 4.13 for a formal statement. Finally,
Lemma 4.14 combines the previous statements and gives a lower bound on how much the radius of
the global SEC decreases.

Detailed Analysis: First, we introduce some definitions. Let N := N(t) be the (global) smallest
enclosing circle of all robots in round t and R := R(t) its radius. Now, fix any point b on the
boundary of N. The two points at a distance of λ/8 of b on the boundary of N determine the circular
segment Sλ with height h. In the following, we determine by Sλ (c) for 0 < c ≤ 1 the circular
segment with height c · h that is contained in Sλ . See Figure 4.4 for a depiction of the circular
segments Sλ and Sλ

(
1/2
)

(that is used in the proofs). All subsequent lemmata consider robots that
move according to a λ -contracting protocol P .

4.4 Discrete Time GATHERING 51

λ
8

h Sλ

≤ λ
8 ≤ λ

8
N

γ

b

N

b
Sλ(

1
2)

h
2

Figure 4.4: The circular segments Sλ (to the left) and Sλ

(
1/2
)

of the global SEC N is depicted.

In the following, we prove that all robots leave the circular segment Sλ

(
λ/4
)

every two rounds.
As a consequence, the radius of N decreases by at least λ/4 ·h. Initially, we give a bound on h. We
use Jung’s Theorem to obtain a bound on R and also on h.

Theorem 4.8 — Jung’s Theorem [82, 83]. The smallest enclosing hypersphere of a point set
K ⊂ Rd with diameter diam has a radius of at most diam ·

√
d

2·(d+1) .

Lemma 4.11 h≥
√

3·λ 2

64π∆
.

Proof. Initially, we give an upper bound on the angle γ , see Figure 4.4 for its definition. The
circumference of N is 2πR. We can position at most 16

λ
πR points on the boundary of N that are at

distance λ

8 from the points closest to them and form a regular convex polygon. The internal angle
of this regular polygon is 2γ . Hence, the sum of all internal angles is

(16
λ

πR−2
)
·π . Thus, each

individual angle has a size of at most (
16
λ

πR−2)·π
16
λ

πR
= π− 2π

16
λ

πR
= π− λ

8R . Hence, γ ≤ π

2 −
λ

16R . Next, we

can bound h. First of all, we derive a relation between h and γ : cos(γ) = h
λ

8
= 8h

λ
⇐⇒ h = λ ·cos(γ)

8 .

With help of the inequality cos(x)≥− 2
π

x+1 for x ∈ [0, π

2], we obtain

h =
λ · cos(γ)

8
≥

λ · cos
(

π

2 −
λ

16R

)
8

≥
λ ·
(
− 2

π
·
(

π

2 −
λ

16R

)
+1
)

8
=

λ · λ

8πR
8

=
λ 2

64πR
.

Applying Theorem 4.8 with d = 2 yields h≥
√

3·λ 2

64π∆
.

■

We continue to prove that all robots leave Sλ

(
λ/4
)

every two rounds. First of all, we analyze
robots for which ∆i(t)> 1/4. These robots even leave the larger circular segment Sλ

(
1/2
)
.

Lemma 4.12 For any robot ri with ∆i(t)> 1/4 : targetPi (t) ∈ N \Sλ

(
1/2
)
.

Proof. Since ∆i(t)> 1/4 and P is λ -contracting, targetPi (t) is the midpoint of a line segment ℓPi (t)
of length at least λ ·∆i(t)> λ/4. As the maximum distance between any pair of points inside of Sλ

is λ

4 , it follows that ℓPi (t) either connects two points outside of Sλ or one point inside and another
point outside. In the first case, targetPi (t) lies outside of Sλ (since the maximum distance between
any pair of points inside of Sλ is λ

4 ≤ 1/4 < ∆i(t)). In the second case, targetPi (t) lies outside of
Sλ

(
1/2
)

since, in the worst case, one endpoint of ℓPi (t) is the point b used in the definition of N and
the second point lies very close above of Sλ

(
1/2
)
. Since targetPi (t) is the midpoint of ℓPi (t), it lies

closely above Sλ

(
1/2
)
. Every other position of the two endpoints of ℓPi (t) would result in a point

targetPi (t) that lies even farther above Sλ

(
1/2
)
. ■

Now, we consider the case of a single robot in Sλ

(
λ/4
)
, and its neighbors are located outside of

Sλ

(
1/2
)
. We prove that this robot leaves Sλ

(
λ/4
)
. Additionally, we prove that none of the robots

outside of Sλ

(
1/2
)

that see the single robot in Sλ

(
λ/4
)

enters Sλ

(
λ/4
)
.

52 Chapter 4. GATHERING in the OBLOT Model

Lemma 4.13 Consider a robot ri located in Sλ

(
λ/4
)
. If all its neighbors are located outside of

Sλ

(
1/2
)
, targetPi (t) ∈ N \Sλ

(
λ/4
)
. Similarly, for a robot ri that is located outside of Sλ

(
1/2
)

and
that has only one neighbor located in Sλ

(
λ/4
)
, targetPi (t) ∈ N \Sλ

(
λ/4
)
.

Proof. First, consider a robot ri that is located in Sλ

(
λ/4
)

and all its neighbors are above Sλ

(
1/2
)
. Let

p1 and p2 be the two points of CHi(t) closest to the intersection points of CHi(t) and the boundary
of Sλ

(
1/2
)

(p1 and p2 are infinitesimally above of Sλ

(
1/2
)
). In case CHi(t) consists of only two

robots, define p1 to be the intersection point of CHi(t) and Sλ

(
1/2
)

and p2 = pi(t). The maximum
distance dmax between any pair of points in CHi(t)∩Sλ

(
1/2
)

is less than max{∥p1− p2∥2,∥p1−
pi(t)∥2,∥p2− pi(t)∥2}, since p1 and p2 are slightly above of Sλ

(
1/2
)
. Clearly, ∆i(t)≥ dmax. Thus,

the maximum distance between any pair of points in CHi(t)∩ Sλ

(
λ

2

)
is less than λ · dmax. We

conclude that targetPi (t) must be located above of Sλ

(
λ/4
)

since targetPi (t) is the midpoint of a
line segment of length λ ·∆i(t) ≥ λ ·dmax either connecting two robots above of Sλ

(
λ/4
)

or one
robot inside of Sλ

(
λ/4
)

and one robot outside of Sλ

(
λ/4
)
. The arguments for the opposite case –

ri is located in Sλ

(
1/2
)
, one neighbor of ri is located in Sλ

(
λ/4
)

and all others are also outside of
Sλ

(
1/2
)

– are analogous. ■

Next, we derive with help of Lemmata 4.12 and 4.13 that Sλ

(
λ/4
)

is empty after two rounds.
Additionally, we analyze how much R(t) decreases.

Lemma 4.14 For any round t with ∆(t)≥ 1/2, R(t +2)≤ R(t)− λ 3·
√

3
256·π·∆ .

Proof. Fix any circular Sλ and consider the set of robots RS that are located in Sλ

(
λ/4
)

or compute
a target point in Sλ

(
λ/4
)
. Via Lemma 4.12, we obtain that for every robot ri ∈ RS that computes

a target point in Sλ

(
λ/4
)
, ∆i(t) ≤ 1/4. Since the maximum distance between any pair of points

in Sλ

(
λ/4
)

is 1/4, we conclude that a robot that is not located in Sλ

(
λ/4
)

but computes its target
point inside, is at distance at most 1/4 from Sλ . Hence, via the triangle inequality, it is located
at distance at most 1/2 from any other robot in RS. Thus, all robots in RS can see each other.
Now, consider the robot rmin ∈ RS which is the robot of RS with the minimal number of visible
neighbors. Furthermore, Amin is the set of robots that have the same neighborhood as rmin. For
all robots r j ∈ RS \Amin, we have that r j can see rmin and at least one robot that rmin cannot see.
Thus, ∆ j(t)> 1. We can conclude with help of Lemma 4.12 that all robots in RS \Amin compute
a target point outside of Sλ

(
1/2
)
. Since all robots ri ∈ Amin have the same neighborhood and

∆i(t)< 1/4, they also compute the same target point. Thus, at the beginning of round t +1, at most
one position in Sλ

(
λ/4
)

is occupied. In round t +1 we have the picture that one position in Sλ

(
λ/4
)

is occupied and all neighbors are located above Sλ

(
1/2
)
. Lemma 4.13 yields that the robots in

Sλ

(
λ/4
)

compute a target point outside. Moreover, Lemma 4.13 yields as well that no robot outside
of Sλ

(
λ/4
)

computes a target point inside and thus, Sλ

(
λ/4
)

is empty in round t + 2. Since the
circular segment Sλ has been chosen arbitrarily, the arguments hold for the entire circle N and thus,
R(t +2)≤ R(t)− λ/4 ·h≤ R(t)− λ 3

√
3

256·π·∆ . ■

Finally, we can conclude with help of Lemma 4.14 the main Theorem 4.6.

Theorem 4.6 Consider a swarm of n robots located in R2. Every λ -contracting protocol gathers
all robots in 171·π·∆2

λ 3 +1 ∈ O
(
∆2
)

rounds.

Proof. First, we bound the initial radius of N: R(0) ≤ ∆/
√

3 (Theorem 4.8). Lemma 4.14 yields
that R(t) decreases every two rounds by at least λ 3·

√
3

256·π·∆ . Thus, it requires 2 · 256·π·∆
λ 3 rounds until

R(t) decreases by at least
√

3. Next, we bound how often this can happen until R(t)≤ 1
4 and thus

∆(t)≤ 1
2 :

4.4 Discrete Time GATHERING 53

∆√
3
− x ·
√

3≤ 1
4
⇐⇒ ∆

3
− 1

4 ·
√

3
≤ x.

All in all, it requires x · 512·π·∆
λ 3 =

(
∆

3 −
1

4·
√

3

)
· 512·π·∆

λ 3 ≤ 171·π·∆2

λ 3 rounds until ∆(t)≤ 1
2 . As soon

as ∆(t)≤ 1
2 , all robots can see each other, compute the same target point (the protocol is collapsing)

and will reach it in the next round.
■

4.4.3.3 Upper Bound for Arbitrary d

The upper bound we derived for two dimensions can also be generalized to every dimension d.
Only the constants in the runtime increase slightly.

Theorem 4.7 Consider a swarm of n robots located in Rd . Every λ -contracting protocol gathers
all robots in 256·π·∆2

λ 3 +1 ∈ O
(
∆2
)

rounds.

The analysis is in most parts analogous to the analysis of λ -contracting protocols in two
dimensions (Section 4.4.3.2). Let GS := GS(t) be the smallest enclosing hypersphere (SEH) of all
robots in round t and R := R(t) its radius. Let B be an arbitrary point on the surface and define
the hyperspherical cap HSCλ with apex B as follows. Choose the height h of HSCλ such that the
inscribed hypercone has a slant height of λ/8. Note that this implies that the radius a of the base of
the cap is upper bounded by λ/8. Hence, the maximal distance between any pair of points in HSCλ

is λ/4. In the following, we denote by HSCλ (c) for 0≤ c≤ 1 the hyperspherical cap with apex B
of height c ·h.

Lemma 4.15 h≥
√

2·λ 2

64·π·∆ .

Proof. Initially, we give a bound on the angle γ which is the angle between the height h and the
slant height of λ/8 of the inscribed hypercone. Consider a circle K with radius R that has the same
center as GS and contains B. The angle γ can now be seen as the internal angle of a regular polygon
with side length λ/8 whose vertices lie on K. The circumference of K is 2 ·π ·R. Thus, we can
position at most 16

λ
·π ·R points on the boundary of K that are at a distance of λ/8 from the points

closest to them and form a regular convex polygon. The internal angle of this regular polygon is
2 · γ . Hence, the sum of all internal angles is

(16
λ
·π ·R−2

)
·π . Thus, each individual angle has

a size of at most (
16
λ
·π·R−2)·π
16
λ
·π·R = π− 2·π

16
λ
·π·R = π − λ

8·R . Hence, γ ≤ π

2 −
λ

16·R . Now, we can bound

h. First of all, we derive a relation between h and γ: cos(γ) = h
λ

8
= 8h

λ
⇐⇒ h = λ ·cos(γ)

8 . In the

following upper bound, we make use of the fact that cos(x)≥− 2
π

x+1 for x ∈ [0, π

2].

h =
λ · cos(γ)

8
≥

λ · cos
(

π

2 −
λ

16·R

)
8

≥
λ ·
(
− 2

π
·
(

π

2 −
λ

16·R

)
+1
)

8
=

λ · λ

8·π·R
8

=
λ 2

64πR

Lastly observe that R ≤ ∆ ·
√

d
2·(d+1) (Theorem 4.8). For any d ≥ 1, it holds

√
d

2·(d+1) ≤
1√
2

and thus R≤ ∆√
2
. We obtain a final lower bound on h: h≥ λ 2

64πR ≥
√

2·λ 2

64·π·∆ .
■

Lemma 4.16 For a robot ri with ∆i(t)> 1/4 it holds targetPi (t) ∈ GS\HSCλ

(1
2

)
.

Proof. Analogous to the proof of Lemma 4.12. ■

54 Chapter 4. GATHERING in the OBLOT Model

Lemma 4.17 Consider a robot ri located in HSCλ

(
λ

4

)
. If all its neighbors are located outside of

HSCλ

(1
2

)
, it holds targetPi (t) ∈ GS\ HSCλ

(
λ

4

)
. Similarly, for a robot ri that is located outside

of HSCλ

(1
2

)
and that has only one neighbor located in HSCλ

(
λ

4

)
, it holds targetPi (t) ∈ GS\

HSCλ

(
λ

4

)
.

Proof. Analogous to the proof of Lemma 4.13. ■

Lemma 4.18 For any round t with ∆(t)≥ 1/2, it holds R(t +2)≤ R(t)− λ 3·
√

2
256·π·∆ .

Proof. Analogous to the proof of Lemma 4.14 by replacing the lower bound of h by
√

2·λ 2

64·π·∆
(Lemma 4.15). ■

Theorem 4.2 Every λ -contracting protocol gathers a swarm of n disoriented robots located in
Rd in the OBLOT F

1 model in Θ(∆2) rounds.

Proof. First, we bound the initial radius of GS: R(0) ≤ ∆√
2

(Theorem 4.8). Lemma 4.18 yields

that R(t) decreases every two rounds by at least λ 3·
√

2
256·π·∆ . Thus, it requires 2 · 256·π·∆

λ 3 rounds until
R(t) decreases by at least

√
2. Next, we bound how often this can happen until R(t)≤ 1

4 and thus
∆(t)≤ 1

2 holds: ∆√
2
− x ·
√

2≤ 1
4 ⇐⇒

∆

2 −
1

4·
√

2
≤ x.

All in all, it requires x · 512·π·∆
λ 3 =

(
∆

2 −
1

4·
√

2

)
· 512·π·∆

λ 3 ≤ 256·π·∆2

λ 3 rounds until ∆(t)≤ 1
2 . As soon

as ∆(t)≤ 1
2 , all robots can see each other, compute the same target point (the protocol is collapsing)

and will reach it in the next round.
■

4.4.4 Examples of λ -contracting Protocols
Next, we present an exemplary λ -contracting protocol. Before introducing the concrete protocols,
we describe an important subclass of λ -contracting protocols, denoted as (α,β)-contracting
protocols, a powerful tool to decide whether a given protocol is λ -contracting. Afterward, we
introduce the known protocol GTC [5], prove it to be (α,β)-contracting, and, thus, also λ -
contracting.

(α,β)-contracting Protocols. While the definition of λ -contracting protocols describes the
core properties of efficient protocols to solve GATHERING, it might be practically challenging to
determine whether a given protocol is λ -contracting. Concrete protocols often are designed as
follows: robots compute a desired target point and move as close as possible towards it without
losing connectivity [5, 22, 98]. The GTC protocol, for instance, uses this rule. Since the robots do
not necessarily reach the desired target point, it is hard to determine whether the resulting point
is λ -centered. Therefore, we introduce a two-stage definition: (α,β)-contracting protocols. The
parameter α represents an α-centered point (Definition 4.6) and β describes how close the robots
move towards the point. As an intermediate step, we define the β -scaled convex hull around an
arbitrary point.

Definition 4.8 Let c1, . . . ,ck with ci ∈ Rd be the vertices of a convex polytope Q, p ∈ Q some
point of Q and β ∈ (0,1] a constant. Then, Q(p,β) is the convex polytope with vertices
p+(1−β) · (ci− p).

Now, we are ready to define the class of (α,β)-contracting protocols. It uses a combination
of Definitions 4.6 and 4.8: the target points of the robots must be inside of the β -scaled local
convex hull around an α-centered point. See also Figure 4.5 for a visualization of valid target points

4.4 Discrete Time GATHERING 55

in (α,β)-contracting protocols. Recall that CHi(t) defines the convex hull of all neighbors of ri

including ri in round t and CHi(t)(p,β) is the scaled convex hull around p (Definition 4.8).

Definition 4.9 A connectivity preserving and collapsing discrete robot formation protocol P
is called to be (α,β)-contracting, if there exists an α-centered point α-centerPi (t) such that
targetPi (t) ∈CHi(t)

(
α-centerPi (t),β

)
for every robot ri and every t ∈ N0.

Figure 4.5: Two examples of valid target points of (α,β)-contracting protocols. The small gray
triangle represents the 1

2 -scaled convex hull around an 1
4 -centered point marked with a square.

Next, we state the relation between (α,β)-contracting and λ -contracting protocols.

Theorem 4.9 Every (α,β)-contracting protocol P is λ -contracting with λ = α ·β .

Proof. From the definition of (α,β)-contracting protocols, we know that for a target point
targetPi (t), there exists a point α-centerPi (t) such that targetPi (t) ∈CHi(t)(α-centerPi (t),β). We
do the following geometric construction in Figure 4.6. Let p = α-centerPi (t) and p′ = targetPi (t).
We draw a line segment from α-centerPi (t) through targetPi (t) to the boundary of CHi(t). Let c be
the endpoint of this line segment. Because p is α-centered, there exists a line segment with length
∆i(t) ·α through p, let this be the line segment ab. The line segment a′b′ is a parallel to ab inside the
triangle△abc. We know that p′ ∈CHi(t)(p,β), therefore |cp′| ≥ β |cp|. By the intercept theorem,
it follows that |a′b′| ≥ β |ab|= β ·α ·∆i(t). Because the points a,b and c are all inside CHi(t), the
entire triangle△abc and a′b′ are inside CHi(t) as well. Therefore, targetPi (t) is a λ -centered point
with λ = α ·β .

hullti
hullti(p, β)

pa b

b′a′ p′

c

Figure 4.6: The construction used in the proof of Theorem 4.9.

■

Go-To-The-Center. Next, we study the two-dimensional GTC protocol [5] and its generalization
to d-dimension and prove the protocols to be (α,β)-contracting. First, we focus on the original
(two-dimensional) protocol for which it is already known that it gathers all robots in O

(
n+∆2

)
rounds [50]. We show that GTC is (α,β)-contracting (hence also λ -contracting) and thus, obtain an

56 Chapter 4. GATHERING in the OBLOT Model

improved upper runtime bound of O
(
∆2
)
. Robots always move towards the center of the smallest

enclosing circle of their neighborhood. To maintain connectivity, limit circles are used. Each robot
ri always stays within the circle of radius 1/2 centered in the midpoint m j of every visible robot r j.
Since each robot r j does the same, it is ensured that two visible robots always stay within a circle
of radius 1/2 and thus, they remain connected. Consequently, robots move only that far towards
the center of the smallest enclosing circle such that no limit circle is left. The protocol is formally
described in Algorithm 2.

Algorithm 2 GTC (view of robot ri)

1: Ci(t) := smallest enclosing circle of Ni(t)
2: ci(t) :=center of Ci(t)
3: ∀r j ∈ Ni(t) : m j := midpoint between ri and r j

4: D j : disk with radius 1
2 centered at m j

5: seg := line segment pi(t),ci(t)
6: A :=

⋂
r j∈Ni(t) D j ∩ seg

7: x := point in A closest to ci(t)
8: targetGTC

i (t) := x

Subsequently, we prove that GTC is (α,β)-contracting. First, we derive a bound on α .

Lemma 4.19 The center of the SEC of a convex polygon Q is
√

3
8 -centered.

Proof. Let C denote the smallest enclosing circle (SEC) of Q and diam the maximal distance of
two points in Q. We need to distinguish two cases: either two points are located on the boundary of
the SEC or (at least) 3 that form an acute triangle. In the first case, the two points are located on the
diameter of C. Hence, the center of the smallest enclosing circle is 1-centered since it equals the
midpoint of the two robots that define the diameter.

In the second case, we focus on the three points that form the acute triangle. We denote the
three points by ABC and the triangle by△ABC. Moreover, a,b,c denote the edges of△ABC. Since
△ABC is acute, we have that its circumcircle equals its SEC. Consequently, C equals to the SEC
of△ABC. Let p denote the center of C and r its radius. The proof aims to show that there exists a
line segment ℓ with midpoint p that is parallel to a,b or c and has a length of α ·diam, where diam
denotes the diameter of Q (we will determine the concrete value for α shortly). Without loss of
generality, we assume that a is the longest edge of△ABC. Since C is also the SEC of△ABC, r ≤ a√

3

and, thus, also r ·
√

3≤ a (Theorem 4.8). Additionally, we have r ≥ diam
2 . Hence, diam·

√
3

2 ≤ a. Now,
we rotate the coordinate system, such that B =

(
0,−a

2

)
,C =

(
0, a

2

)
and A = (xa,ya). See Figure 4.7

for a visualization of the setting. We now consider ya ≤ 0. The arguments for ya > 0 can be derived
analogously with swapped roles of B and C.

Observe first, that p= (xp,0) since p is located on the intersection of the perpendicular bisectors
of a,b and c. Additionally, we have xp ≤ xa

2 since both the starting points of the perpendicular
bisectors of b and c have the x-coordinate xp

2 and the bisectors have monotonically decreasing
x-coordinates. Now, we distinguish two cases: −a

4 ≤ ya ≤ 0 and ya < −a
4 . In the first case, we

prove that there exists a line segment parallel to a with its midpoint in p that has a length of at least
a
4 . We model the edge b as a linear function f (x) =−

a
2−ya

xa
· x+ a

2 . The value f (xp) is minimized
for xp =

xa
2 and ya =−a

4 . Hence,

f (xp)≥ f
(xa

2
)
=−

a
2 − ya

xa
· xa

2
+

a
2
=−a

4
+

ya

2
+

a
2
=

a
4
+

ya

2

≥ a
4
− a

8
=

a
8
.

4.4 Discrete Time GATHERING 57

(0, 0)

C =
(
0, a

2

)

B =
(
0,−a

2

)

A = (xa, ya)

a

b

c

Figure 4.7: A visualization of△ABC, where a is
parallel to the y-axis.

C =
(
0, a

2

)

B =
(
0,−a

2

)

A = (xa, ya)

a

b1

c

p
b2

ℓ1

ℓ2

I

Figure 4.8: A visualization of the second case,
where the line ℓ is parallel to the edge b.

Hence, we can center a line segment of length a
4 on p that is parallel to a and completely

contained in△ABC.
Next, we consider ya <−a

4 . As long as f (xp)≥ a
8 , we can use the same arguments as for the

first case. Thus, we assume that f (xp)<
a
8 . Now, we show that there is a line segment parallel to b

with midpoint p and with a length of at least diam·
√

3
8 . Since ya <−a

4 , we conclude b≥ 3
4 a. Let ℓ

be the line segment parallel to y that is completely contained in△ABC. Note that p does not need
to be the midpoint of ℓ, see also Figure 4.8 for a depiction. Let I = (xi,yi) be the intersection of ℓ
and c. We conclude xi ≥ xa

2 since p lies on the perpendicular bisector centered in the midpoint of c
with x-coordinate xa

2 and ℓ is parallel to b. Hence, |BI| ≥ c
2 . Applying the intercept theorem yields

|BI|
c = ℓ

b and ℓ
b ≥

1
2 ⇐⇒ ℓ≥ b

2 . Since b≥ 3
4 a, we conclude ℓ≥ 3

8 a.
It remains to estimate the position of p on c to give a final bound for α . We use the line segment

starting in B, leading through p and intersecting b to split b and ℓ into b1 and b2 as well as ℓ1 and ℓ2.
See also Figure 4.8 for a visualization. As f (xp)<

a
8 , we obtain b1 ≥ 3

8 a and b2 ≤ 5
8 a. Hence, also

b1 ≥ 3
8 b. The intercept theorem yields ℓ1 ≥ 3

8ℓ and hence, we can center a line segment of length
2
3ℓ in p that is parallel to b. Finally, we conclude 2

3ℓ≥
2
3 ·

3
8 a = a

4 ≥
diam·

√
3

8 . All in all, we obtain

that we can always center a line segment of length at least diam·
√

3
8 in p that is completely contained

in Q. ■

Subsequently, we state general properties of SECs to derive a lower bound on the constant β

afterward.

Theorem 4.10 — [31]. Let C be the SEC if a point set S. Then, either there are two points
P,Q ∈ S on the circumference of C such that the line segment PQ is a diameter of C or there
are three points P,Q,R ∈ S on the circumference of S such that the center c of C is inside the
acute-angled△PQR. Furthermore, C is always unique.

Lemma 4.20 A robot ri that is at distance dtarget from the center c of its SEC moves at least a
distance of dtarget

2 towards c.

58 Chapter 4. GATHERING in the OBLOT Model

Proof. Let c be the center of ri’s SEC C. We rotate and translate the coordinate system such that
c = (0,0) and ri is located at (xi,0), i.e., ri is at distance xi from c. Additionally, we define a to be
the radius of C. Observe first that a ≤ 1 since there must be at least one robot r j = (x j,y j) with
x j ≤ 0 on the boundary of C (see Theorem 4.10) and r j is at distance at most 1 from ri.

Now, let rk = (xk,yk) be a robot in ri’s neighborhood and mk be the midpoint between ri and rk.
We will prove that mk is at distance at most 1

2 from the point
(xi

2 ,0
)
. First of all, we calculate the

coordinates of mk: mk =
(1

2 · (xi + xk) ,
1
2 · yk

)
. The distance between

(xi
2 ,0
)

and mk is
√

1
4 · x

2
k +

1
4 y2

k .

Basic calculus yields
√

1
4 · x

2
k +

1
4 y2

k ≤
1
2 ⇐⇒ −1≤ xk ≤ 1 and −

√
1− x2

k ≤ yk ≤
√

1− x2
k . Since

a ≤ 1, the inequalities for xk and yk are fulfilled. Hence, ri can move at least half its distance
towards c. ■

The combination of Lemmata 4.19 and 4.20 yields the following theorem.

Theorem 4.11 GTC is
(√

3/8, 1/2
)
-contracting.

GTC can be generalized to d-dimensions by moving robots towards the center of the smallest
enclosing hypersphere of their neighborhood. We denote the resulting protocol by d-GTC.

Algorithm 3 d-GTC (view of robot ri)

1: Ci(t) := smallest enclosing hypersphere of Ni(t)
2: ci(t) :=center of Ci(t)
3: ∀r j ∈ Ni(t) : m j := midpoint between ri and r j

4: D j : hypersphere with radius 1
2 centered at m j

5: seg := line segment pi(t),ci(t)
6: A :=

⋂
r j∈Ni(t) D j ∩ seg

7: x := point in A closest to ci(t)
8: targetGTC

i (t) := x

For the analysis, we first state two general properties of smallest enclosing hyperspheres.

Lemma 4.21 — [61]. Let S be the smallest enclosing hypersphere of a set of points P⊂ Rm.
The center c of S is a convex combination of at most m+1 points on the surface of S.

Lemma 4.22 — [64]. Let T be a set of points on the boundary of some hypersphere H with
center c. H is the smallest enclosing hypersphere of T if and only if c is a convex combination
of the points in T .

Next, we state that the center of the smallest enclosing hypersphere is, in general,
√

2
8 -centered,

in contrast to
√

3
8 for d = 2.

Lemma 4.23 The center of the smallest enclosing hypersphere of a convex polytope Q⊂ Rd is√
2

8 -centered.

Proof. Let C denote the smallest enclosing hypersphere (SEH) of Q and ci its center. We need to
distinguish two cases: either two points are located on the boundary of SEH or (at least) 3. It is well
known, that ci is a convex combination of at most d +1 points on the boundary of C (Lemma 4.21).
Those points form a simplex S. From Lemma 4.22, it follows that C is also the SEH of S since C is
a circumsphere of S and ci is inside of S.

4.4 Discrete Time GATHERING 59

In case, there are only two points on the boundary of C, they must be the endpoints of a diameter
of C. Hence, the center of the SEH is 1-centered since it equals the midpoint of the two points that
define the diameter.

Otherwise, S consists of at least 3 points. We take two points of S that have the maximal
distance of all points in S and denote those points as B and C. Additionally, we take an arbitrary
third point of S and call it A. The points A,B and C form a triangle △ABC. Moreover, a,b and c
denote the edges of△ABC.

Let r denote the radius of C. The proof aims to show that there exists a line segment ℓ with
midpoint ci that is parallel to a,b or c and has a length of α ·d, where d denotes the diameter of
Q (we will determine the concrete value for α shortly). Recall that a is the longest edge of△ABC.
Since C is also the SEH of S, it holds r ≤ a ·

√
d

2·(d+1) and thus also r√
d

2·(d+1)

≤ a (Theorem 4.8).

Additionally, it holds r ≥ d
2 . Hence, d

2·
√

d
2·(d+1)

≤ a. Now, we rotate the coordinate system, such that

B =
(
0,−a

2

)
,C =

(
0, a

2

)
and A = (xa,ya). See Figure 4.7 for a visualization of the setting. We now

consider ya ≤ 0, and the arguments for ya > 0 can be derived analogously with swapped roles of B
and C.

Observe first, that ci = (xci ,0) since xi is located on the intersection of the perpendicular bisector
hyperplanes of a,b and c. Additionally, it holds xci ≤

xa
2 since both the midpoints of b and c have

the x-coordinate xp
2 and the parts of bisector hyperplanes inside of S have monotonically decreasing

x-coordinates.
Now, we distinguish two cases: −a

4 ≤ ya ≤ 0 and ya <−a
4 . In the first case, we prove that there

exists a line segment parallel to a with its midpoint in ci that has a length of at least a
4 . We model

the edge b as a linear function f (x) =−
a
2−ya

xa
·x+ a

2 . The value f (xci) is minimized for xp =
xa
2 and

ya =−a
4 . Hence,

f (xci)≥ f
(xa

2

)
=−

a
2 − ya

xa
· xa

2
+

a
2
=−a

4
+

ya

2
+

a
2
=

a
4
+

ya

2

≥ a
4
− a

8
=

a
8
.

Hence, we can center a line segment of length a
4 on ci that is parallel to a and completely

contained in△ABC.
Next, we consider ya <−a

4 . As long as f (xci)≥ a
8 holds, we can use the same arguments as for

the first case. Thus, we assume that f (xci)<
a
8 . Now, we show that there is a line segment parallel

to b with midpoint ci and a length of at least d·
√

2
8 . Since ya < −a

4 , it holds b ≥ 3
4 a. Let ℓ be the

line segment parallel to y that is completely contained in△ABC. Note that ci does not need to be
the midpoint of ℓ, see also Figure 4.8 for a depiction. Let I = (xi,yi) be the intersection of ℓ and
c. We conclude xi ≥ xa

2 since p lies on the perpendicular bisector centered in the midpoint of c
with x-coordinate xa

2 and ℓ is parallel to b. Hence, |BI| ≥ c
2 . Applying the intercept theorem yields

|BI|
c = ℓ

b and ℓ
b ≥

1
2 ⇐⇒ ℓ≥ b

2 . Since b≥ 3
4 a, we conclude ℓ≥ 3

8 a.
It remains to estimate the position of ci on c to give a final bound for α . We use the line segment

starting in B, leading through ci and intersecting b to split b and ℓ into b1 and b2 as well as ℓ1 and
ℓ2. See also Figure 4.8 for a visualization. As f (xci)<

a
8 , we obtain b1 ≥ 3

8 a and b2 ≤ 5
8 a. Hence,

also b1 ≥ 3
8 b. The intercept theorem yields ℓ1 ≥ 3

8ℓ and hence, we can center a line segment of

length 2
3ℓ in p that is parallel to b. Finally, we conclude 2

3ℓ≥
2
3 ·

3
8 a = a

4 ≥
d√
d

2·(d+1) ·8
≥ d·

√
2

8 since

lim
d→∞

√
d

2·(d+1) =
1√
2
. All in all, we obtain that we can always center a line segment of length at least

d·
√

2
8 in ci that is completely contained in Q. ■

60 Chapter 4. GATHERING in the OBLOT Model

Lemma 4.24 A robot ri that is at distance dtarget from the center c of its SEC moves at least a
distance of dtarget

2 towards c.

Proof. Let c be the center of ri’s SEC C. We rotate and translate the coordinate system such that
c = (0,0) and ri is located at (xi,0), i.e., ri is at a distance of xi of c. Additionally, we define a to be
the radius of C. Observe first that a ≤ 1 since there must be at least one robot r j = (x j,y j) with
x j ≤ 0 on the boundary of C and r j is at a distance of at most 1 of ri.

Now, let rk = (xk,yk) be a robot in ri’s neighborhood and mk be the midpoint between ri and rk.
We will prove that mk is at a distance of at most 1

2 of the point
(xi

2 ,0
)
. First of all, we calculate the

coordinates of mk: mk =
(1

2 · (xi + xk) ,
1
2 · yk

)
. The distance between

(xi
2 ,0
)

and mk is
√

1
4 · x

2
k +

1
4 y2

k .

Basic calculus yields
√

1
4 · x

2
k +

1
4 y2

k ≤
1
2 ⇐⇒ −1≤ xk ≤ 1 and −

√
1− x2

k ≤ yk ≤
√

1− x2
k . Since

a≤ 1 holds, the inequalities for xk and yk are fulfilled. Hence, ri can move at least half its distance
towards c. ■

As a consequence, we derive that d-GTC is (α,β)-contracting and thus, also λ -contracting in
any dimension d.

Theorem 4.12 d-GTC is
(√

2/8, 1/2
)
-contracting.

4.5 Conclusion & Outlook
In this chapter, we introduced the classes of contracting and λ -contracting protocols considering
robots in the OBLOT C

1 and OBLOT F
1 models. For both models, these were the first high-

dimensional protocols for disoriented robots with limited visibility and provable runtime guarantees.
The class of contracting protocols gathers in time O

(
nlog(d) ·∆

)
while a lower bound of Ω(n ·∆) is

known. Further research could investigate the gap between the upper and the lower time bound.
Our intuition is that the real answer is a time bound of Θ(n ·∆) for every dimension d. Intuitively,
the dependence on the dimension d is an artifact from the analysis (d− 2 projections) and the
important parameters in the runtime are only the number of robots and the diameter ∆. Furthermore,
the two-dimensional contracting protocol MOVE-ON-BISECTOR (MOB) gathers in time O(n)
which is in many cases severely faster than the bound of O (n ·∆) [49]. As a consequence, a
further research question is: What are the properties of continuous robot formation protocols that
gather in time O(n)? Is even a bound of O(∆) achievable? Our research about λ -contracting
protocols in the OBLOT F

1 model gives a hint that a dependence only on the diameter might be
achievable since the class of λ -contracting protocols solves GATHERING in Θ

(
∆2
)

rounds. Also
regarding λ -contracting protocols and GATHERING of disoriented robots with limited visibility
in the OBLOT F

1 model in general, several open questions remain. First of all, we did not aim
to optimize the constants in the runtime. Thus, the upper runtime bound of 256·π·∆2

λ 3 seems to
be improvable. Moreover, one major open question remains unanswered: Is it possible to solve
GATHERING of disoriented robots with limited visibility in the OBLOT F

1 model in O (∆) rounds?
We could get closer to the answer: if there is such a protocol, it must compute target points regularly
outside of the convex hulls of robots’ neighborhoods. All λ -contracting protocols are slow in
the configuration where the positions of the robots form a regular polygon with a side length
equal to the viewing range. In Chapter 6, we will show that this configuration can be gathered
in time O (∆) by a protocol where each robot moves as far as possible along the angle bisector
between its neighbors (leaving the local convex hull). However, this protocol cannot perform well
in general. See Figure 4.9 for the alternating star, a configuration where this protocol is always
worse compared to any protocol that computes target points inside of local convex hulls. Figure 4.9
gives a hint that every protocol that performs well for the regular polygon cannot perform equally

4.5 Conclusion & Outlook 61

well in the alternating star. Thus, we conjecture that Ω
(
∆2
)

is a lower bound for every protocol
that considers oblivious and disoriented robots with limited visibility in the OBLOT F

1 model.

γ1

γ2

Figure 4.9: The robots at γ1 observe a regular square, the robots at γ2 a regular octagon. Given that
each robot moves along the angle bisector between its neighbors and leaves its local convex hull,
the radius of the global SEC decreases slower than in any λ -contracting protocol.

5. CHAIN-FORMATION in the LUMI Model

The following two chapters deal with formation problems for robots in the LUMI model combined
with a (closed) chain. In this chapter, we study the CHAIN-FORMATION problem. The goal of the
CHAIN-FORMATION problem is to arrange all robots in a straight line between the two stationary
outer robots of the chain. In other words, the length of the chain should be equal to the distance
between two stationary outer robots. Earlier work on this problem introduced the HOPPER protocol
[91] in a setting comparable to the LUMI model (visible states seen by neighboring robots). The
protocol can be easily implemented in the LUMI model. The HOPPER protocol can achieve a√

2-approximation of the optimal chain length in O(n) rounds under the FSYNC scheduler. One
drawback of the HOPPER protocol is that the outer robots r0 and rn−1 need to be distinguishable.
One robot remains idle, while the other one generates certain states that are swapped along the
chain. We study improvements of the HOPPER protocol with better approximation guarantees and
we show how the assumption of distinguishable outer robots can be removed. While these are
already improvements for the CHAIN-FORMATION problem, our modifications are also a basis for
a linear time gathering protocol for closed chains we present afterward in Chapter 6. The results of
this chapter are based on the first part of the following journal article.

2023 (with J. Harbig, D. Jung, T. Knollmann and F. Meyer auf der Heide)
“Gathering a Euclidean Closed Chain of Robots in Linear Time and Improved
Algorithms for Chain-Formation” In: Theoretical Computer Science, cf. [28].

5.1 Contribution
We show improved protocols for the CHAIN-FORMATION problem inspired by the HOPPER

protocol. The HOPPER protocol uses so-called run sequences that allow a locally sequential
movement of the robots. Such run sequences are realized by forwarding a state, called run state,
along the chain. Only robots with a run state perform a movement, all other robots stay idle. If the
robot ri has a run state in round t, it will execute its movement and forward the run state either to
ri+1 or ri−1 (depending on the direction of the run sequence) such that in round t +1 one of the
neighboring robots has the run state and executes a movement. Pipelining of the run sequences,
i.e., starting a new run sequence every constant number of rounds, leads to a fast runtime. The run
sequences can be easily implemented in the LUMI mode with help of two lights: one light to
indicate an active run state and a second light to remember a run state of the previous round such
that a run sequence can keep a unique direction along the chain. Our ε-HOPPER protocol achieves
a (1+ ε)-approximation of the optimal configuration for an arbitrary constant ε ∈ (0,1] in O(n/ε)

64 Chapter 5. CHAIN-FORMATION in the LUMI Model

epochs. Prior to this work, only a
√

2-approximation was known [91]. Both the HOPPER and the
ε-HOPPER protocol consider outer robots that can be distinguished since run sequences start only
at one outer robot while the other remains stationary. We show that this restriction can be removed
by increasing the viewing range of each robot to 2. This way, the ε-2-HOPPER protocol starts
run sequences at both outer robots. As soon as two run sequences started at different ends of the
chain meet, the viewing range of 2 allows them to coordinate their movements. The ε-2-HOPPER

protocol achieves a (1+ ε)-approximation of the optimal configuration while having a runtime of
O(n/ε) epochs. We first present the protocols designed for the FSYNC scheduler in Section 5.4.
Afterward, we show a two-step synchronization approach to transfer the protocols to the SSYNC

and ASYNC schedulers with help of a constant number of additional lights in Section 5.6. Besides
the improved approximation factors, these are the first protocols with provable runtime guarantees
regarding CHAIN-FORMATION under the ASYNC scheduler. Table 5.1 contains a comprehensive
comparison of our results to previous ones about the CHAIN-FORMATION problem.

Model Protocol Identical
Outer
Robots

Approximation Runtime

OBLOT F
1 ,

OBLOT S
1

GTM [25, 60, 88] yes (1+ ε) (converging) Ω
(
n2 log(1/ε)

)
O
(
n2 log

(
n/ε

))
OBLOT C

1 MOB [49],
GTM [20]

yes optimal Θ(n)

LUMI F
1 HOPPER [91] no

√
2 (non converging) Θ(n)

LUMI A
1 ε-HOPPER no (1+ε) (non converging) Θ(n/ε)

LUMI A
2 ε-2-HOPPER yes (1+ε) (non converging) Θ(n/ε)

Table 5.1: Results about CHAIN-FORMATION of this chapter compared to existing work. The
results of this chapter are marked in gray.

5.2 Model Recap and Preliminaries

Next, we briefly recap the robot model and formalize the problem statement. We study the LUMI A
1

(ε-HOPPER) and the LUMI A
2 (ε-2-HOPPER) models in combination with an open chain of robots.

The most important features of the model required for this chapter are summarized in Table 5.2,
and more details can be found in Chapter 2.

Protocol Time Dimension Viewing
Range

Orientation Chain

ε-HOPPER ASYNC ≥ 1 1 disoriented yes
(open)

ε-2-HOPPER ASYNC ≥ 1 2 disoriented yes
(open)

Table 5.2: A summary of the most important model details for the ε-HOPPER and ε-2-HOPPER

protocols.

5.3 Run Sequences and Movement Operations 65

Problem Statement. In the CHAIN-FORMATION problem, the outer robots r0 and rn−1 are
stationary (they do not move at all). The inner robots are mobile and aim to reduce length of the
chain. More formally, the inner robots have to move such that L(t) = ∥p0(t)− pn−1(t)∥2, i.e., the
inner robots have to arrange themselves on the line segment connecting r0 and rn−1. We say that,
for a constant ε > 0, a (1+ ε)-approximation of the optimal configuration is reached at time t, if
L(t)≤ (1+ ε) · ∥p0(t)− pn−1(t)∥2.

5.3 Run Sequences and Movement Operations
A run state (introduced first in [91]) is a visible state (implemented by lights) that is passed along
the chain in a fixed direction associated with it. Robots with a run state perform a movement
operation while robots without do not. The movement is sequentialized in a way that in round t the
robot ri executes a movement operation (and neither ri−1 nor ri+1), the robot ri+1 in round t +1 and
so on. The movement of a run state along the chain is denoted as a run sequence and is visualized
in Figure 5.1.

𝑟!"#

𝑟!

𝑟!$#

𝑟!$%
𝑟!$&

𝑟!$'

𝑡 + 1

𝑡 + 2
𝑡 + 3𝑡

Figure 5.1: A run state at ri in round t is passed in its direction along the chain, i.e., it is located at
ri+x in round t + x.

Since robots are moving sequentially, any robot with a run state does not have to care about
the movements of its neighbors as they do not change their positions. There is one exception:
two run states with opposite directions might be located at two neighboring robots. In this case,
the two robots move simultaneously (see Section 5.3.1). All movements must ensure that the
distance between neighbors stays less or equal to 1 (the connectivity range). A run sequence can
be implemented with two lights: ℓrun and ℓprev. The light ℓrun indicates that a robot has a run
state in the current round and ℓprev is active if a robot had a run state in the last round. Thus, the
run sequence keeps a fixed direction along the chain; robots that have not activated the light ℓprev

and see one neighbor with an active light ℓrun will take over the run state in the next round by
activating ℓrun. After completing the movement based on the run state, ℓrun is switched off, and
ℓprev is activated such that the robot does not take over the same run state in the next round. In
case run sequences have different directions along the chain, a few more lights are needed for the
synchronization. For instance, a robot may simultaneously have two run states of run sequences
heading in opposite directions. The existence of two run states at a single robot is indicated via
an additional light ℓdouble. Robots that have not activated ℓprev and detect that both neighbors have
activated ℓrun will take over both run states by activating ℓdouble. Hence, also robots with an active
light ℓprev need to take over a run state if they detect that a neighbor has activated ℓdouble. For
ease of description and due to space constraints, we use the high-level concept of a run state to
describe our protocols and do not describe precisely how the handling with lights works. We use
the following notation to speak about run sequences. For a robot ri, run(ri, t) = true if ri has a
run state in round t. Additionally, run(Ni(t)) = {r j ∈ Ni(t)| run(r j, t) = true}. Let κ denote an
arbitrary run sequence. r(κ, t) denotes the robot that has the run state of the run sequence κ in
round t and r(κ, t +1) denotes the robot that will have the run state of the run sequence κ in round
t +1 (κ’s direction).

66 Chapter 5. CHAIN-FORMATION in the LUMI Model

5.3.1 Movement Operations

This section describes the basic movement operations that robots can execute when having a run
states. The concrete protocols are composed of these movement operations. All protocols ensure
that at most two directly neighboring robots move in the same round to maintain the connectivity of
the chain. This is done by allowing the existence of only two patterns of run states at neighboring
robots: Either ri and neither ri−1 nor ri+1 has a run state (isolated run sequence) or ri and ri+1 have
run states heading in each other’s direction while ri−1 and ri+2 do not have run states (joint run
pair). All other patterns, especially sequences of length at least 3 of neighboring robots having run
states, are avoided by all protocols. More formally:

Definition 5.1 A run sequence κ is called an isolated run sequence in round t if r(κ, t) = ri

and run(ri−1, t) = run(ri+1, t) = false. Two run sequences κ1 and κ2 with r(κ1, t) = ri and
r(κ2, t) = ri+1 are called a joint run pair in round t in case r(κ1, t +1) = ri+1, r(κ2, t +1) = ri

and run(ri−1, t) = run(ri+2, t) = false.

For robots with a run state, there are three kinds of movement operations, the merge, the
shorten and the hop. The purpose of the merge is to reduce the number of robots in the chain. It is
executed by a robot ri if its neighbors have a distance of at most 1. In this case, ri is not necessary
for the connectivity of the chain and can be safely removed. Removing ri means that it moves
to the position of its next neighbor in the direction of the run sequence, the robots merge their
neighborhoods, and both continue to behave as a single robot. The execution of a merge stops a
run sequence. The goal of a shorten is to reduce the length of the chain by moving a robot to the
midpoint of its neighbors. Intuitively, if the angle between vectors of ri pointing to its neighbors
is not too large, the shorten can reduce the length of the chain by a constant. The execution of a
shorten also stops a run sequence. In case no progress (in terms of reducing the number of robots or
the length of the chain) can be made locally, a hop is executed. The purpose of a hop is to exchange
two neighboring vectors in the chain. Thus, run sequences are associated with run vectors that are
swapped along the chain until they find a position at which progress (in terms of shortens or merges)
can be made. For each of the three operations, there is also a joint one (joint hop, joint shorten and
joint merge), which is a similar operation executed by a joint run pair. We continue by introducing
the formal definitions of all movement operations. For the ease of notation, we assume for an
isolated run sequence κ that r(κ, t) = ri and r(κ, t +1) = ri+1.

Hop and Joint hop

Consider the isolated run sequence κ . If ri executes a hop, it swaps the vectors wi(t) and wi+1(t) with
its movement. Formally, pi(t +1) = pi+1(t)−wi(t). The run sequence continues in its direction. A
joint hop is a similar operation executed by a joint run pair κ1, κ2 located at robots ri and ri+1. The
vectors wi(t) and wi+2(t) are swapped such that the new positions are pi(t +1) = pi−1(t)+wi+2(t)
and pi+1(t + 1) = pi+2(t)−wi(t). Due to the different viewing ranges of the protocols in this
thesis (the hop will also be used in Chapter 6), a joint hop is handled slightly differently. In
the first variant, both run sequences continue in their directions and skip the next robot, i.e., in
round t + 1, r (κ1, t +1) = ri+2 and r (κ2, t +1) = ri−1. See Figure 5.2 for a visualization. In
the way the concrete protocols are designed, this is only possible if the viewing range is at least
3, as the neighboring robots, ri−1 and ri+2 need to be able to detect that ri and ri+1 execute a
joint hop. The operation is split into two rounds if the viewing range is at most 2 (such as in the
ε-HOPPER and ε-2-HOPPER protocols). First, run sequences continue without skipping the next
robot: r (κ1, t +1) = ri+1 and r (κ2, t +1) = ri. Additionally, ri and ri+1 activate a light ℓ joint to
remember this situation. In the following round t +1, ri and ri+1 do not execute a movement and
the run sequences are passed to ri−1 and ri+2.

5.4 Protocols for the FSYNC Scheduler 67

𝑡

𝑡 𝑡 + 1

𝑡 + 1

Figure 5.2: Visualization of a hop (above) and a joint hop (below) in the variant with sufficient
viewing range.

Shorten and Joint shorten

In the shorten, a robot ri with an isolated run sequence moves to the midpoint between its neighbors:
pi(t + 1) = 1

2 · pi−1(t)+ 1
2 · pi+1(t). The run sequence stops. In a joint shorten executed by two

robots ri and ri+1 with a joint run pair, the vector v = pi+2(t)− pi−1(t) is subdivided into three parts
of equal length. The new positions are pi(t +1) = pi−1(t)+ 1

3 · v and pi+1(t +1) = pi+2(t)− 1
3 · v.

Both run sequences are stopped after executing a joint shorten. See Figure 5.3 for a visualization
of both operations.

𝑡

𝑡

𝑡 + 1

𝑡 + 1

Figure 5.3: A shorten (above) and a joint shorten (below).

Merge and Joint merge

Consider an isolated run sequence κ with r(κ, t) = ri and r(κ, t +1) = ri+1. If ri executes a merge,
it moves to pi+1(t). Afterward, the robots ri and ri+1 merge such that their neighborhoods are
identical, and they continue to behave like a single robot. In the joint merge, the robots ri and ri+1
both move to 1

2 pi(t)+ 1
2 pi+1(t). Afterward, the robots merge there such that they behave as a single

robot in the future. All run sequences that participate in a merge or a joint merge are immediately
stopped. See Figure 5.4 for a visualization of both operations.

5.4 Protocols for the FSYNC Scheduler
This section is dedicated to the ε-HOPPER and the ε-2-HOPPER protocols. Section 5.4.1 deals with
the ε-HOPPER protocol: it uses the same assumptions as the original HOPPER protocol, i.e., robots
have a viewing range of 1 and new run sequences are only generated at r0 while rn−1 does nothing
at all. The ε-2-HOPPER protocol is presented in Section 5.4.2. In contrast to ε-HOPPER, both r0

68 Chapter 5. CHAIN-FORMATION in the LUMI Model

𝑡

𝑡

𝑡 + 1

𝑡 + 1

Figure 5.4: A merge (above) and a joint merge (below).

and rn−1 participate such that run sequences are generated at both ends of the chain. To handle
run sequences with opposite movement directions, a viewing range of 2 is required. Section 5.5
contains the combined analysis of both protocols, proving the linear runtime and the approximation
guarantees.

5.4.1 Description of the ε-HOPPER Protocol
The ε-HOPPER protocol consists of three operations for robots with run states. For ease of notation,
we define ψ := 2 · sin−1 (1

1+ε

)
.

1. If ∥pi−1(t)− pi+1(t)∥2 ≤ 1, ri: merge.

2. Else, if αi(t)≤ ψ , ri: shorten.

3. Else, ri: hop.

The difference to the original HOPPER protocol is marginal. Only the angle size on which
decisions are based differs. While in the original HOPPER protocol a shorten is executed if αi(t)≤ π

2 ,
this angle is replaced by 2 · sin−1 (1

1+ε

)
in the ε-HOPPER protocol. Observe that for (1+ ε) =

√
2

both protocols coincide: 2 · sin−1(1√
2
) = π

2 . New run sequences are started all 3 rounds by r0.
Next, we give pseudocode for the ε-HOPPER protocol that explains how the sequential move-

ment can be implemented in the LUMI model, see Algorithm 4. We assume that each robot has 4
lights, ℓrun, ℓprev, ℓstop and ℓc. The purpose of the lights ℓprev and ℓrun is to move run sequences along
the chain as described in Section 5.3. The additional light ℓstop is needed to stop run sequences
after merges and shortens. Suppose that ri has a run state and ri+1 is supposed to take over the
run state. Due to the viewing range of 1, ri+1 cannot see which operation ri executes. Hence, it
has to take over the run state optimistically. If ri executes a shorten or a merge, it activates the
light ℓstop such that ri+1 gets to know in the next round that the run sequence is supposed to stop.
The lights ℓrun, ℓprev and ℓstop have two colors (they are either activated or switched off). The third
light, ℓc has the color set Cc = {0,1,2} and is used as a round counter. Every round, the color of
ℓc is incremented (after color 2, it starts again with color 0). For the light ℓc we use the simplified
notation ℓc = i to indicate that ℓc has color i and the notation ℓc++ is used to indicate that the color
is incremented. For the other three lights, we use the notation ℓrun = 1 to indicate that the light ℓrun

is activated and ℓrun = 0 for an inactive light (similar for ℓprev and ℓstop). Note that in the original
LUMI model, each robot only has one light; our model can be easily emulated in the LUMI
model by using 3 ·2 ·2 ·2 = 24 colors. Even better, not all of these colors are needed because the
lights ℓrun, ℓprev and ℓstop are never activated at the same time, and the light ℓc also has only a single
color in every round. Thus, only 12 colors are needed to simulate the 4 lights used in the ε-HOPPER

in the LUMI model. We denote by pi(t)← x that the target point x is computed and the robot ri

5.4 Protocols for the FSYNC Scheduler 69

moves to x in its MOVE operation. For ease of description, we represent the handling of the lights
ℓprev, ℓrun and ℓstop by an automaton. See Figure 5.5.

Algorithm 4 ε-HOPPER (executed from the view of robot ri)
1: if ℓrun = 1 then
2: if ri±1 has activated ℓstop then ▷ The run sequence has stopped
3: runStopped← true
4: else
5: if ∥pi−1(t)− pi+1(t)∥2 ≤ 1 then
6: Merge with the next robot in the direction of the run sequence ▷ Merge
7: runEnds← true
8: else if αi(t)≤ sin−1 (1

1+ε

)
then

9: pi(t)← 1
2 pi−1(t)+ 1

2 pi+1(t) ▷ Shorten
10: runEnds← true
11: else
12: pi(t)← pi+1(t)−wi(t) ▷ Hop
13: if ri = r0 and ℓc = 2
14: or ℓprev = 0 and ℓstop = 0 and ri±1 has set ℓrun = 1 then
15: takeRun← true ▷ Start new or take over run sequence if ℓprev = ℓstop = 0

16: UpdateLights-ε-HOPPER(), see Figure 5.5
17: ℓc++ ▷ Increment light for round counting

`prev{ }{ }

`run{ }

ta
ke
R
un

`stop{ }
rundEnds or

runStopped

Figure 5.5: The figure describes the handling of ℓrun, ℓprev and ℓstop in UPDATELIGHTS-ε -
HOPPER(). The states represent active lights. The transitions refer to variables in Algorithm 4.

5.4.2 Description of the ε-2-HOPPER Protocol

The following section is dedicated to the ε-2-HOPPER protocol in which robots have a viewing
range of 2. In contrast to the ε-HOPPER protocol, the ε-2-HOPPER does not distinguish the robots
r0 and rn−1. Instead, both are regularly generating new run sequences which adds new movement
operations that are necessary to handle joint run pairs to the protocol: joint hops, joint shortens
and joint merges. The ε-2-HOPPER protocol consists of two parts: The movement based on run
states and the generation of new run sequences. For better readability, we present the protocol
incrementally and omit the details about the handling of lights.

Movement

The idea of the movement is as follows. Robots that have an isolated run sequence behave identically
to the ε-HOPPER protocol (Section 5.4.1). For better readability, define ψ := 2 · sin−1 (1

1+ε

)
. The

movement of a robot ri with an isolated run sequence can be summarized as follows:

70 Chapter 5. CHAIN-FORMATION in the LUMI Model

1. If ∥pi−1(t)− pi+1(t)∥2 ≤ 1, ri: merge.

2. Else, if αi(t)≤ ψ , ri: shorten.

3. Else, ri: hop.

After some time, run sequences of opposite ends of the chain meet at two neighboring robots
(joint run pairs). Robots that are part of a joint run pair execute similar operations as robots with
isolated run sequences in the respective joint variant. In some cases, a priority rule is used (instead
of a joint shorten only one robot executes a shorten and the other run sequence stops). In summary,
two robots ri and ri+1 that are part of a joint run pair move as follows:

1. If ∥pi−1(t)− pi+2(t)∥2 < 2, both: joint merge.

2. Else, if αi(t)≤ ψ and αi+1(t)≤ ψ both: joint shorten

3. Else, if αi(t)≤ ψ , ri: shorten.

4. Else, if αi+1(t)≤ ψ , ri+1: shorten.

5. Else, if ∡(wi(t),−wi+2(t))≤ ψ both: joint shorten.

6. Else, both: joint hop.

Generation of run sequences

The generation of new run sequences is implemented as follows. Initially, both r0 and rn−1 generate
new run sequences every 4 rounds. Robots can count the number of rounds with an additional
light ℓc and color set Cc = {0,1,2,3}. The color is incremented in every round. Furthermore, the
role of generating new run sequences is passed along the chain with the help of an additional light
ℓexp. Initially, only r0 and rn−1 have activated the light ℓexp. As soon as r1 executes a hop based
on a run sequence that has been started at the other end of the chain, r1 activates the light ℓexp and
takes the responsibility to generate new run sequences. The intuition for this procedure is that
the vector belonging to the run sequence is non-conflicting, i.e., it has a small angle to all other
vectors and will not cause any shorten in the future. Henceforth, this approach prevents the vector
from being passed along the chain again. Finally, all robots have activated the light ℓexp, and the
(1+ ε)-approximation is achieved.

5.5 Analyses
First, we state an upper bound on the number of shortens.

Lemma 5.1 There are at most 2n−1 shorten operations such that one participating vector has
a length of less than 1

2 .

Proof. A robot ri only executes a shorten in case ∥pi−1(t)− pi+1(t)∥2 > 1. Otherwise, a merge is
executed. Hence, a shorten in which a participating vector has a length of less than 1

2 always results
in two vectors with a length of at least 1

2 . Initially, there are at most n−1 vectors of length less than
1
2 . New vectors of length less than 1

2 can only be created by merges. Since a merge is executed at
most n times, the number of such shortens is upper bounded by 2n−1. ■

5.5 Analyses 71

Lemma 5.2 Assume that a robot ri executes a shorten and both ∥wi(t)∥2≥ 1
2 and ∥wi+1(t)∥2≥ 1

2 .
Then L(t +1)≤ L(t)− ε

2 . Additionally, if a joint run pair executes a joint shorten in round t, it
holds also L(t +1)≤ L(t)− ε

ε+1 ≤ L(t)− ε

2 .

Proof. Denote a := ∥wi(t)∥2, b := ∥wi+1(t)∥2 and c := ∥wi(t) + wi+1(t)∥2. As ri moves to
1
2 pi−1(t) + 1

2 pi+1(t), the length of the chain decreases with the movement of ri by a + b− c.
By the law of cosines c =

√
a2 +b2−2ab · cos(αi(t)). Therefore, for fixed a,b the value of c is

maximized for αi(t) = 2 · sin−1 (1
1+ε

)
. Thus,

a+b− c≥ a+b−

√
a2 +b2−2ab · cos

(
2 · sin−1

(
1

1+ ε

))

= a+b−

√
a2 +b2−2ab ·

(
1−2 · 1

(1+ ε)2

)
(5.1)

Equation (5.1) holds since cos
(
2 · sin−1 (x)

)
= 1− 2x2. Using that 1

2 ≤ a,b ≤ 1 and a+ b−√
a2 +b2−2ab ·

(
1−2 · 1

(1+ε)2

)
is minimized for a = b = 1

2 , we conclude

a+b− c≥ a+b−

√
a2 +b2−2ab ·

(
1−2 · 1

(1+ ε)2

)

≥ a+b−

√
1
4
+

1
4
−2 · 1

2
· 1

2
·
(

1−2 · 1
(1+ ε)2

)

= a+b−
√

1
2
− 1

2
+

1

(1+ ε)2

= a+b− 1
1+ ε

≥ 1− 1
1+ ε

=
ε

ε +1

≥ ε

2

For a joint shorten, we observe: Let κ1 and κ2 be the two run sequences with r(κ1, t) = ri and
r(κ2, t) = ri+1. The involved vectors are wi(t), wi+1(t) and wi+2(t). For simplicity, a := ∥wi(t)∥2,
b := ∥wi+1(t)∥2, c := ∥wi+2(t)∥2 and d := ∥wi(t)+wi+1(t)+wi+2(t)∥2. The length of the chain
decreases by a+b+c−d. By the triangle inequality, it follows d≤∥wi(t)+wi+2(t)∥2+∥wi+1(t)∥2.
Thus, a+ b+ c− d ≥ a+ b−∥wi(t)+wi+2(t)∥2. Now, we can apply the same calculations as
above (since both ∥wi(t)∥2 ≥ 1

2 and ∥wi+2(t)∥2 ≥ 1
2 because all run vectors have a length of the

least 1
2) and obtain L(t +1)≤ L(t)− ε

2 . ■

Next, we introduce the notion of conflicting vectors, i.e., vectors that still could cause shortens.

Definition 5.2 A vector wi(t) is called to be conflicting if ∡(wi(t),w j(t))≤ 2 · sin−1 (1
1+ε

)
for

any j ∈ {1, . . . ,n−1}\ i. Otherwise, the vector wi(t) is called to be non-conflicting.

Definition 5.3 Define by rnc(t) the largest index of a robot such that wrnc(t)(t) is a conflicting
vector and by ℓnc(t) the smallest index of a robot such that wℓnc(t)(t) is a conflicting vector.

72 Chapter 5. CHAIN-FORMATION in the LUMI Model

The following lemma is crucial, stating that the number of the non-conflicting vectors at the
end of the chain (close to rn) does never decrease.

Lemma 5.3 Let u be a spatial vector and V = u1, . . . ,uk a set of spatial vectors. If ∡(u,ui)>
2 · sin−1 (1

1+ε

)
for all i = 1, . . . ,k, then, for any positive linear combination s of vectors from V ,

∡(u,s)> 2 · sin−1 (1
1+ε

)
holds.

Proof. Note that ∡(u,ui) determines the smaller of the two angles created by anchoring ui at the
terminal point of u. In the following, we use ∡′(u,ui) to determine the standard angle between
the two vectors u and ui. Now, observe that ∡(u,ui) ≥ 2 · sin−1 (1

1+ε

)
translates to ∡′(u,ui) ≤

π−2 · sin−1 (1
1+ε

)
.

∡′(u,ui)≤ π−2 · sin−1
(

1
1+ ε

)
⇔ u ·ui

∥u∥2 · ∥ui∥2
≥ cos

(
π−2 · sin−1

(
1

1+ ε

))
⇔ u ·ui ≥−cos

(
2 · sin−1

(
1

1+ ε

))
· ∥u∥2 · ∥ui∥2

Next, assume that s = c1 ·ui + c2 ·u j. We need to check

u · s
∥u∥2 · ∥s∥2

≥−cos
(

2 · sin−1
(

1
1+ ε

))
⇔ u · (c1 ·ui + c2 ·u j)≥−cos

(
2 · sin−1

(
1

1+ ε

))
∥u∥2 · ∥c1 ·ui + c2 ·u j∥2

This can be verified by the following observations:

u · (c1 ·ui + c2 ·u j) = c1 ·u ·ui + c2 ·u ·u j

≥−cos
(

2 · sin−1
(

1
1+ ε

))
· ∥u∥2 · (c1 · ∥ui∥2 + c2 · ∥u j∥2)

and by the triangle inequality, it follows

c1 · ∥ui∥2 + c2 · ∥u j∥2 ≥ ∥c1 ·ui + c2 ·u j∥2.

■

Lemma 5.4 In the ε-HOPPER protocol, neither the merge nor the shorten operation increase
rnc(t). In the ε-2-HOPPER protocol, the merge, joint merge, shorten and the joint shorten
operations do not decrease ℓnc(t) or increase rnc(t).

Proof. This follows immediately from Lemma 5.3 since (joint) shortens and (joint) merges are
positive linear combinations of the vectors w1(t), . . . ,wn−1(t). ■

Lemma 5.5 At most 3n− 1 + 2(n−1)
ε

run sequences are needed until all vectors are non-
conflicting.

Proof. The sum of merges and joint merges is upper bounded by n. Additionally, the number of
shortens and joint shortens is upper bounded by 2n−1+ 2·(n−1)

ε
(Lemmata 5.1 and 5.2). Lastly, no

new conflicting vectors are created according to Lemma 5.4. ■

5.6 Synchronization for the SSYNC and ASYNC Schedulers 73

Lemma 5.6 Consider a configuration, where all vectors are non-conflicting in round t. Then,
L(t)≤ (1+ ε) · ∥p0(t)− pn−1(t)∥2.

Proof. For ease of notation, define d := ∥p0(t)− pn−1(t)∥2. Sort the vectors w1(t), . . . ,wn−1(t)
ascending with respect to their angle to the line connecting r0 and rn−1. This results in the
configuration C′ = (a0(t), . . . ,ak(t)) with length |C′|. |C′| = L(t); however, the shapes of the
configurations might differ significantly. The polygon defined by the configuration C′ and the
line segment connecting the two stationary endpoints is convex (due to the sorting of the vectors).
Now, take a0(t) and ak(t) and enlarge both of them such that they form a triangle together with
the line segment connecting r0 and rn−1. The two other legs of the triangle are denoted as
a and b, and γ is the angle between a and b. Since C′ is convex, it holds |C′| ≤ a+ b. As
∡(a0(t),ak(t))> 2 · sin−1 (1

1+ε

)
, it holds γ ≥ 2 · sin−1 (1

1+ε

)
. Now, observe that for a fixed d, the

sum a+b is maximized for γ = 2 · sin−1 (1
1+ε

)
and a = b. By observing that in an isosceles triangle

it holds d = 2 ·a · sin
(

γ

2

)
, we obtain:

d = 2 ·a · sin

(
2 · sin−1 (1

1+ε

)
2

)

=
a+b
1+ ε

All in all, we can conclude a+b≤ (1+ ε) ·d. ■

Theorem 5.1 For an arbitrary constant ε ∈ (0,1], both the ε-HOPPER and the ε-2-HOPPER

protocol achieve a (1+ ε)-approximation of the optimal configuration regarding the CHAIN-
FORMATION problem in O(n/ε) rounds in the LUMI F

1 and LUMI F
2 models. The light of

each robot requires a constant number of colors.

Proof. By Lemma 5.5, at most 3n− 1+ 2(n−1)
ε

run sequences are required to make all vectors
non-conflicting. Since every 4 rounds a new run sequence is generated and each run sequence stops
after at most n− 1 rounds, the total number of rounds is 4 · (3n− 1+ 2·(n−1)

ε
)+ n− 1 ∈ O (n/ε).

Lemma 5.6 gives us that L(t)≤ (1+ ε) · ∥p0(t)− pn−1(t)∥2 holds. ■

5.6 Synchronization for the SSYNC and ASYNC Schedulers
Next, we present a two-stage synchronization approach to transfer the ε-HOPPER and the ε-2-
HOPPER protocol to the ASYNC scheduler. First, we present a synchronization approach for the
SSYNC scheduler in Section 5.6.1. Afterward, we add a second synchronization for the ASYNC

scheduler in Section 5.6.4.

5.6.1 Basic Synchronization Procedure for the SSYNC Scheduler
The main synchronization idea is to simulate a 1-fair execution of the SSYNC scheduler locally, i.e.,
in each neighborhood, each robot is activated at most once before the first robot becomes active
a second time. In practice, however, robots might become active multiple times, but they wait if
they detect that a robot in their neighborhood has not yet executed its protocol. A synchronization
can guarantee this based on the α-synchronizer [8], a synchronization protocol for asynchronous
message passing systems. As the robots do not exchange messages, we only need the main
synchronization idea of the protocol that can be implemented as follows: the robots currently count
rounds in each protocol with a light ℓc. The number of colors |Cc| differs between the protocols
but is always a small constant. The light ℓc is so far only used to keep the distance between newly
started run sequences: New run sequences are started all |Cc| rounds. We assign an additional role

74 Chapter 5. CHAIN-FORMATION in the LUMI Model

to the light ℓc. For ease of notation, we say each robot ri has a counter ci with a numerical value
out of the set Cc. We refer to the counter of robot ri with ci. The counters are used to synchronize
the robots as follows: A robot ri only executes any operation (movement and switching of lights)
if ci−1 ≥ ci and ci ≤ ci+1. Otherwise, it waits until it wakes up in the future and the condition
is fulfilled. Observe that this procedure ensures |ci− ci+1| ≤ 1 for any two neighbors ri and ri+1
[8]. However, this does not prevent a robot from becoming active twice before the direct neighbor
becomes active. Hence, it still can happen that a run sequence gets lost before the next robot takes
it over. The information that the previous robot had a run state is, however, still encoded in ℓprev.
Assume a robot ri checks whether it should take a run state of ri−1. Two cases need to be checked:
either ci−1 = ci and ri−1 has activated ℓrun or ci−1 = ci + 1 and ri−1 has activated ℓprev. In both
cases, ri activates ℓrun. This procedure can be generalized: For every light, ℓi that needs to be seen
by a neighboring robot, a second light ℓi−prev is added. After switching ℓi off, the light ℓi−prev is
activated such that the neighboring robot is always able to see the information transported by ℓi.
The synchronization ensures the following: If a robot increments its counter c for the k-th time, its
position and lights are equivalent to those obtained by an execution of the same protocol under a
1-fair SSYNC scheduler. Thus, the position and lights are equivalent to those after the k-th round of
execution under the FSYNC scheduler.

5.6.2 ε-HOPPER in SSYNC

A robot simultaneously shows its active lights of the current and the last epoch. We introduce
for every light ℓi except those only used for the synchronization (ℓc) a second light with the
suffix −prev (i.e., ℓi−prev). When Update-Lights is called, it assigns ℓi−prev ← ℓi for all such
lights before updating them. Whenever ℓi(r) (the light ℓi of robot r) is accessed by r′, it accesses
the value ℓi(r)∧ (ℓc(r) = ℓc(r′))∨ ℓi−prev(r)∧ (ℓc(r) = ℓc(r′)+1) instead. Note, that ℓrun−prev is
equivalent to ℓprev and ℓprev−prev is never accessed, therefore these two lights can be removed.
The implementation is contained in Algorithm 5. For the sake of clarity, we omit the concrete
description of the handling of ℓi−prev lights.

Algorithm 5 ε-HOPPER-SSYNC (executed from the view of robot ri)
1: if ∃r j ∈ Neighborhood with c j = ci−1 then
2: return ▷ Neighbor is in previous epoch
3: if ℓrun = 1 then
4: if ri±1 has activated ℓstop then ▷ The run sequence has stopped
5: runStopped← true
6: else
7: if ∥pi−1(t)− pi+1(t)∥2 ≤ 1 then
8: Merge with next robot in direction of the run sequence ▷ Merge
9: runEnds← true

10: else if αi(t)≤ sin−1 (1
1+ε

)
then

11: pi(t)← 1
2 pi−1(t)+ 1

2 pi+1(t) ▷ Shorten
12: runEnds← true
13: else
14: pi(t)← pi+1(t)−wi(t) ▷ Hop
15: if ri = r0 and ℓc = 2
16: or ℓprev = 0 and ℓstop = 0 and ri±1 has set ℓrun = 1 then
17: takeRun← true ▷ Start new or take over run sequence if ℓprev = ℓstop = 0

18: Update −prev lights
19: UpdateLights-ε-HOPPER(), see Figure 5.5
20: ℓc++ ▷ Increment light for round counting

5.6 Synchronization for the SSYNC and ASYNC Schedulers 75

Next, we analyze the ε-HOPPER-SSYNC protocol and prove that the lights and the position of a
robot after incrementing c the k-th time are always identical to its position and lights under a 1-fair
execution of the SSYNC scheduler.

Lemma 5.7 Consider a 1-fair execution of the SSYNC scheduler. After epoch k, the lights and
the positions of all robots match exactly with the lights and positions of the robots executing the
related ε-HOPPER protocol under the FSYNC scheduler after round k.

Proof. We show that all actions are solely based on the global snapshot taken in the LOOK phase
when the first robot became active the k-th time, which is the same information a robot has in
the related FSYNC protocol. No robot will return in line 2 of Algorithm 5 such that c(r) denotes
the number of times r was active. The way lights are accessed is based on the state of the lights
at the beginning of epoch k. When a robot ri was active before ri±1 and performed a hop, ri±1
cannot access the previous position of ri when it becomes active. However, this does not change
any actions because this information is only used when movement operations are executed, and two
direct neighbors never move in the same epoch. ■

Lemma 5.8 When ri increments its epoch counter the k-th time under a (not necessarily 1-fair)
SSYNC scheduler, it is located at the same position and has activated the same lights as under
the 1-fair SSYNC scheduler after epoch k.

Proof. We prove the claim by induction over the value of the counter c of robot ri. For c = 0,
the claim holds. Let us assume it holds for the first (arbitrary but fixed) k increments of c. When
a robot ri becomes active but a neighbor ri±1 did not increment its epoch timer the k-th time,
ℓc(ri±1) = ℓc(ri)−1 and ri returns in line 2 of Algorithm 5 without performing any action. In this
case, the claim is true because ri does not increment its epoch counter. Otherwise, both neighbors
are in a state they can have during epoch e of Lemma 5.7, therefore ri performs the same action
compared to Lemma 5.7 and this lemma holds still after incrementing the k+1-th time. ■

Lemma 5.9 The value of the epoch counter ci is always in the interval [k,k+ n] for all i in
{0, . . . ,n−1} where k denotes the current epoch.

Proof. This follows directly from the fact that neighbors always have a difference of at most 1. ■

Theorem 5.2 For an arbitrary constant ε ∈ (0,1], the following holds: The ε-SSYNC-HOPPER

protocol achieves a (1+ ε)-approximation of the optimal configuration (regarding CHAIN-
FORMATION) in O(n/ε) epochs in the LUMI S

1 model. The protocol can be implemented with a
constant number of colors.

Proof. With the introduced synchronization, our robots act as they would under a 1-fair SSYNC

scheduler (Lemma 5.8). The newly introduced lights and their handling ensure that robots perform
the same actions with the 1-fair SSYNC scheduler as in the FSYNC setting (Lemma 5.7). Hence,
after each robot performed O(n) actions, the ε-HOPPER-SSYNC reached the same or a better con-
figuration compared to ε-HOPPER regarding the CHAIN-FORMATION problem. From Lemma 5.9
we know that after f (n) ∈ O(n) epochs each robot performed at least f (n) actions. ■

76 Chapter 5. CHAIN-FORMATION in the LUMI Model

ri
ri+1

Symmetric Trapezoid Asymmetric Symmetric Z

Step 1

Step 2

Step 3

Final

ri

ri+1

ri ri+1

Figure 5.6: Visualization of modified joint hop operations.

5.6.3 ε-2-HOPPER in SSYNC

The additional challenge when transferring the ε-2-HOPPER protocol to the SSYNC scheduler is
the handling of joint run pairs in which two robots together need to execute a movement operation.
The joint shorten and joint merge do not need further synchronization: The result of a simultaneous
movement is equivalent to a sequential movement, and the operations keep the connectivity of the
chain. In a joint hop, however, two robots may have a distance larger than 1 when one performs its
hop while the other is not active. This can be prevented via a three-step execution of joint hops.
Consider two robots ri and ri+1 that are part of a joint run pair and want to execute a joint hop.
There are three kinds of configurations to distinguish, the symmetric trapezoid, the symmetric Z,
and an asymmetric configuration (see Figure 5.6).

Asymmetric Configuration: In asymmetric configurations, one robot can be determined as a
leader, either with a smaller angle αi(t) or the robot with a smaller vector length ∥wi(t)∥2. After
determining the leader, the two robots perform hops (the operation for isolated run sequences)
alternately. In steps 1 and 3, the leader performs a hop; in step 2, the other robot. This leads to the
same outcome as a joint hop in FSYNC.

Symmetric Z: No movement is necessary since the participating vectors are identical. Both run
sequences continue without movement of the participating robots.

Symmetric Trapezoid: In the symmetric trapezoid, no leader can be determined since αi(t) =
αi+1(t) and wi(t) = wi+2(t). Therefore, the operation is executed as follows (each substep ensures
connectivity): Let l be the line segment connecting ri−1 and ri+2. In the first step, each robot
computes the intersection of its angle bisector (intersecting the angle of size at most π) and l.
Afterward, it moves half the distance along its angle bisector towards the intersection point. The
second step moves onto the mirrored position (mirror axis l). The third step moves on the outer
angle bisector (intersecting the angle of size at least π) until it doubles its distance to l. When one
robot (e.g. ri+1) performs a step before the other one (ri), ri needs to compute the initial position of
ri+1. This is possible because all steps are reversible operations.

5.6 Synchronization for the SSYNC and ASYNC Schedulers 77

We need to prove that the three-step execution of the joint hop still maintains the connectivity
of the chain.

Lemma 5.10 Two robots performing a joint hop in a symmetric trapezoid configuration always
stay at a distance of at most 1 from each other.

ri

ri−1

ri+1

ri+2

α

α

d

b

a

b′

c

l

Figure 5.7: Symmetric Joint Hop - worst case distance d between ri and ri+1.

Proof. Let ri and ri+1 be the robots which perform the joint hop, let l be the line between ri−1 and
ri+2. In a worst-case configuration, both robots have a distance of 1 from their direct neighbors.
Both robots perform their operation in 3 steps, but they can be up to one step apart. There are two
relevant cases we need to consider. First, assume that ri performs the first step and ri+1 remains
in its initial position. Then, all points on the bisector between ri and l are within a range of 1 to
ri+1. Second, assume that ri performed the first step and ri+1 already the second. The resulting
configuration is shown in Figure 5.7. The respective bisectors are drawn with dotted lines. The
crosses mark the position of ri and ri+1, d denotes the distance between both robots. We derive
d by computing the side length of the shown rectangle; its side lengths are denoted by a and b.
Further, c denotes the length of the bisector segment between ri and l.

We obtain the following formulas: c = sin(α)
sin(α/2) = 2cos(α/2),a = sin(α) ⇐⇒ sin(α/2) =

a
c ,b
′ = cos2(α

2) ⇐⇒ cos(α

2) =
2b′
c ,b = 1−2b′ = 1−2cos2(α

2) and d2 = a2+b2 = sin2(α)+(1−
2cos2(α

2))
2 = 1+ sin2(α)−4cos2(α

2)+4cos4(α

2). Next, we prove d = 1 for all α .

0 ?
=−4cos2(α/2) +4cos4(α/2) +sin2(α)

=−2−2cos(α) +4cos4(α/2) +sin2(α)

=−2−2cos(α) +1+2cos(α)+ cos2(α) +sin2(α)

=−2−2cos(α) +1+2cos(α)+
cos(2α)

2
+

1
2

+sin2(α)

=−2−2cos(α) +1+2cos(α)+
cos(2α)

2
+

1
2

−cos(2α)

2
+

1
2

= 0

The derivations follow from the sine and cosine power reduction identities. ■

Lemma 5.11 The ε-2-HOPPER-SSYNC protocol reaches the same outcome as the ε-2-HOPPER

protocol.

78 Chapter 5. CHAIN-FORMATION in the LUMI Model

Proof. From Lemmata 5.7 and 5.8, it follows that the lights of other robots can be accessed without
differences to the FSYNC case. The protocol for joint hops presented above ensures that the
outcome is the same as in the respective FSYNC joint hop. The same holds for joint shortens and
joint merges. ■

Based on the previous lemmas, we conclude the following theorem about the ε-2-HOPPER-
SSYNC protocol.

Theorem 5.3 For an arbitrary constant ε ∈ (0,1], the following holds: The ε-2-HOPPER-SSYNC

protocol achieves a (1+ ε)-approximation of the optimal configuration (regarding CHAIN-
FORMATION) in O(n/ε) epochs in the LUMI S

2 model. The protocol can be implemented with a
constant number of colors.

5.6.4 From SSYNC to ASYNC

Finally, we add a synchronization procedure to transfer the protocols to the ASYNC scheduler. We
use an already known synchronization procedure for robots with unlimited visibility introduced
in [42]. The authors introduce a protocol to transfer the execution of any ASYNC protocol into a
1-fair execution under an SSYNC scheduler by using a light with 5 colors. Robots get an additional
light with the colors M (Moving), T (Trying), W (Waiting), S (Stopped), and F (Finished). Initially,
all lights are initialized with the color T . The light M indicates that a robot is currently moving.
Thus, robots that see other robots in their snapshot (taken in the LOOK phase) currently moving
switch their light to W and wait until they take a snapshot only with non-moving robots. If this
is the case (all other robots have the light T or the light S activated), a robot switches its light to
M and executes its MOVE-operation. Robots that have finished their MOVE-operation (that wake
up with an active light M) only proceed to the next light S if they see no other robot with light T .
Similarly, robots with active light W switch to T if no moving robot is in their snapshot. Finally,
robots with light S move to F if all other robots have an active light S; in the same way, robots
switch from F to T , and the procedure starts again. This procedure can take O(n) epochs of the
ASYNC scheduler to execute a single 1-fair epoch of the SSYNC scheduler. In our case, the robots
only have limited visibility: We use the same synchronization protocol, but robots only care for
the lights in their neighborhood. Similar to before, this does not result in a global 1-fair SSYNC

execution of the protocols. However, for any two neighbors, the positions afterward are the same
as under a 1-fair SSYNC scheduler. Additionally, the synchronization is much faster compared to
[42] because the robots only have to care for a constant number of neighbors. Hence, for any two
neighbors, only a constant number of epochs under the ASYNC scheduler are needed to simulate a
1-fair SSYNC execution of their movements. We denote the resulting protocols with the additional
synchronization by ε-HOPPER-ASYNC and ε-2-HOPPER-ASYNC. Then, we can formulate the
final theorem.

Theorem 5.4 For an arbitrary constant ε ∈ (0,1], both the ε-HOPPER-ASYNC and the ε-
2-HOPPER-ASYNC protocol achieve a (1+ ε)-approximation of the optimal configuration
regarding the CHAIN-FORMATION problem in O(n/ε) epochs in the LUMI A

1 and LUMI A
2

models. The light of each robot requires a constant number of colors.

5.7 Conclusion & Outlook
In this chapter, we studied the CHAIN-FORMATION problem and provided new insights compared
to the existing literature. We introduced the ε-HOPPER and ε-2-HOPPER protocols, that are able
to achieve (1+ ε)-approximations of the optimal configuration in O(n/ε) epochs. The protocols
consider the the LUMI A

1 (ε-HOPPER) and LUMI A
2 (ε-2-HOPPER) models. The new aspects of

5.7 Conclusion & Outlook 79

the protocols are the improved approximation guarantees ((1+ ε) compared to
√

2), the transfer to
the ASYNC scheduler and the study of identical outer robots in the ε-2-HOPPER protocol.

Still, there are lots of open research questions regarding the CHAIN-FORMATION problem.
While a (1+ε)-approximation seems reasonably good, the most intriguing open question is: Is there
a protocol that solves the CHAIN-FORMATION problem optimally considering discrete time in the
LUMI (or even in theOBLOT) model? For both LUMI andOBLOT , neither an impossibility
result nor a protocol reaching an optimal solution is known. Furthermore, the current protocols for
the LUMI model do not converge to the optimal solution. After reaching the approximations, no
further improvements happen. Current solutions for the OBLOT model, in contrast, converge to
the optimal solution in O(n2 · log(n/ε)) epochs [60, 88]. Hence, a further research question is: Are
there protocols for the LUMI model that converge to the optimal configuration in O(n · log(n/ε))
epochs (or at least reasonably faster compared to OBLOT)?

The last question, we want to emphasize deals with the viewing ranges. Our ε-2-HOPPER

protocol considers identical outer robots but uses a viewing range of 2. The viewing range of 2
is essential here to coordinate the movements of run sequences starting at opposite ends of the
chain. However, it is not clear whether the viewing range of 2 is needed in general. Are there
protocols that achieve a (1+ ε)-approximation of the optimal configuration in linear time that
consider identical outer robots but require a viewing range of only 1?

All in all, our conjecture is that there is a runtime difference between the OBLOT and the
LUMI models. While the time bounds in the OBLOT model seem to depend quadratically on
n, we only observe a linear dependence when considering the LUMI model. However, a formal
exploration of the boundaries between the two models with a focus on time bounds remains an
open problem.

6. GATHERING in the LUMI Model

One of the intriguing open research questions raised from Chapter 4 is about the existence of
a linear time protocol to solve GATHERING of disoriented robots with limited visibility in the
Euclidean plane. While there is a strong conjecture that such a protocol cannot exist for oblivious
robots (OBLOT), there is some evidence that such a protocol could be designed for luminous
robots (LUMI). The papers [2, 40] introduce linear time protocols for disoriented robots with
limited visibility located on a two-dimensional grid that make use of locally visible states (and
are hence implementable in the LUMI model). The protocol presented in [2] considers a closed
chain of robots while [40] studies the standard limited visibility model, where robots can observe
all nearby other robots. Both protocols use the ideas of run sequences, which we have already seen
in Chapter 5. In this chapter, we show that a linear time protocol exists in the LUMI A

4 model for
a closed chain of robots in the Euclidean plane. The results are based on the second part of the
following journal article.

2023 (with J. Harbig, D. Jung, T. Knollmann and F. Meyer auf der Heide)
“Gathering a Euclidean Closed Chain of Robots in Linear Time and Improved
Algorithms for Chain-Formation” In: Theoretical Computer Science, cf. [28].

A preliminary version appeared in the conference proceedings of ALGOSENSORS 2021:

2021 (with J. Harbig, D. Jung, T. Knollmann and F. Meyer auf der Heide)
“Gathering a Euclidean Closed Chain of Robots in Linear Time” In: Proceed-
ings of the 17th International Symposium on Algorithms and Experiments for
Wireless Sensor Networks (ALGOSENSORS), Best Paper & Best Student Paper
Award, cf. [27].

6.1 Contribution
We present a linear time protocol to solve GATHERING of a closed chain of disoriented robots with
limited visibility in the Euclidean plane. More precisely, we study the LUMI A

4 model. The main
idea of our protocol, called CLOSED-CHAIN-HOPPER (CC-HOPPER), is similar to the ε-HOPPER

and ε-2-HOPPER protocols: to use run sequences for a locally sequential movement of the robots.
In both the ε-HOPPER and the ε-2-HOPPER protocol, open chains are considered that have uniquely
identifiable outer robots (based on their neighborhood). This asymmetry of the neighborhoods
is used to start run sequences at the ends of the chain. Such outer robots do not exist in closed

82 Chapter 6. GATHERING in the LUMI Model

chains. The CC-HOPPER protocol determines (whenever possible) locally unique robots (based on
geometric properties of their neighborhoods) to generate new run sequences. One of the challenges
in the closed chain is handling highly symmetric configurations. While it is possible to identify
locally unique robots in every connected configuration on the grid (as in [40]), this is impossible in
the Euclidean plane. We identify the class of isogonal configurations based on isogonal polygons by
Grünbaum [74] and show that no locally unique robots can be determined in these configurations.
We believe this characterization is of independent interest because highly symmetric configurations
often cause a large runtime. For instance, the Ω(∆2) lower bound of the GTC protocol as well as the
lower bound for any λ -contracting protocol (Chapter 4) hold for an isogonal configuration [50]. See
Table 6.1 for comparing our results to previous results about GATHERING with limited visibility.

Model Space Protocol Orientation Runtime

OBLOT F
1 R2 GTC [50] disoriented Θ(n2)

OBLOT C
1 R2 MOB [49] disoriented Θ(n)

OBLOT C
1 R2 Contracting

Protocols [97]
disoriented Θ(n ·∆)

OBLOT A√
10 R2 [109] one-axis

agreement
Θ(∆)

OBLOT F
7 Z2 [24] disoriented O(n2)

LUMI F
19

(closed chain)
Z2 [2] disoriented O(n)

LUMI F
11 Z2 [40] disoriented O(n)

LUMI A
4

(closed chain)
R2 CC-HOPPER disoriented O(n)

Table 6.1: Results about GATHERING compared to existing work.

6.2 Model Recap and Preliminaries

We study the LUMI A
4 model in combination with a closed chain of robots. The most important

features of the model required for this chapter are summarized in Table 6.2, and more details can
be found in Chapter 2.

Protocol Time Dimension Viewing
Range

Orientation Chain

CC-HOPPER ASYNC 2 4 disoriented yes
(closed)

Table 6.2: A summary of the most important model details for the CC-HOPPER protocol.

Problem Statement. In the GATHERING problem of a closed chain of robots, all robots have
to move to the same position. More formally, we aim for a time t such that L(t) = 0.

6.3 Protocol for the FSYNC Scheduler 83

6.3 Protocol for the FSYNC Scheduler
Next, we present the CC-HOPPER protocol. Each robot has a viewing range of 4, i.e., it can always
see the positions of the next 4 neighbors in each direction along the chain. Our approach consists
of two protocols – one for asymmetric configurations and one for highly symmetric (isogonal)
configurations.

6.3.1 Intuition
The general behavior of the CC-HOPPER protocol is quite similar to the ε-2-HOPPER protocol.
However, the nature of the closed chain introduces additional challenges. In the following, we
discuss the three main challenges that are handled by the CC-HOPPER protocol: (1) the generation
of run sequences, (2) stopping of run sequences after at most n rounds and (3) handling of highly
symmetric configurations.

Generation of run sequences. In contrast to an open chain, no outer robots exist that might
start new run sequences regularly. Thus, one of the main questions to solve is where run sequences
should be started. For this, we identify geometrically unique robots in their local neighborhood.
These robots are assigned an init state (implemented with a light ℓinit) allowing them to regularly
generate new run sequences. Formally, we define for a robot ri, init(ri, t) = true if ri has an init
state in round t and init(Ni(t)) = {r j ∈ Ni(t)| init(r j, t) = true}.

To maintain the connectivity of the chain, it is essential that not too many neighbors have a run
state simultaneously. The generation of new run sequences must maintain this property. Therefore,
the protocol ensures that at most two neighboring robots have an init state. Additionally, a robot ri

with an init state only generates new run sequences in case no other run sequence is present in its
neighborhood.

Stopping of run sequences after at most n rounds. One core feature of the ε-2-HOPPER

protocol is that each run sequence stops after at most n rounds either by making some progress (in
terms of shorten or merge operations) or reaching the end of the chain. In a closed chain, however,
no end of the chain exists. Nevertheless, it is crucial for the linear runtime of the CC-HOPPER

protocol that each run sequence stops after at most n rounds since otherwise, the run sequence could
cycle multiple times around the chain and hinder other robots from generating new run sequences
that potentially lead to progress.

The CC-HOPPER protocol uses the following ideas to ensure this behavior. Robots with init
states generate two run sequences at the same time: one run sequence heading in each direction
of the chain. Additionally, the robot with the init state moves to the midpoint between its two
direct neighbors before generating the run sequences. This ensures that both run sequences start
with opposite run vectors. Furthermore, a hop is only executed if the angle between neighboring
vectors is larger than 7

8 π . Suppose that the robot starting the two run sequences lies in the origin
of a global coordinate system, and after moving to the midpoint, one of its neighbors lies on the
positive x-axis while the other one lies on the negative x-axis. The angle of 7

8 π ensures that the
run sequence that starts along the positive x-axis can only move to the right in case of a hop or
joint hop while the other run sequence can only move to the left. Hence, the two run sequences
cannot meet each other again and at least one run sequence must stop via a merge, a joint merge, a
shorten or a joint shorten. See Figure 6.1 for a visualization of this behavior.

To guarantee that also the second run sequence stops after at most n rounds, we need to ensure
that the chain structure cannot change too much in n rounds. Therefore, we add a rule: Each
run sequence that leads to a merge or a joint merge stops all run sequences in its neighborhood.
Additionally, no new run sequence is generated in this neighborhood for a constant number of
rounds. This way, it is ensured that not too many (joint) merges happen during n rounds such that
the second run sequence is also guaranteed to stop.

84 Chapter 6. GATHERING in the LUMI Model

> 7
8$

&!

> 7
8$

&!"# &!$#&!"% &!$%
Figure 6.1: Two run sequences generated by ri with opposite run vectors. Due to the threshold of
7
8 π , the run sequence at ri−1 can only execute a hop if ri−2 is positioned to the left of ri−1. The
same holds mirrored for ri+1.

Handling of Highly Symmetric Configurations. It is impossible to identify locally unique
robots in a class of highly symmetric configurations, denoted as isogonal configurations. An
example of an isogonal configuration is when the positions of the robots form a regular polygon
with a side length of 1. Then, the local coordinate systems of the robots could be aligned such
that every robot observes exactly the same. To overcome the impossibility of finding locally
unique robots, we introduce an additional protocol for these configurations that works without run
sequences. Isogonal configurations have in common that all robots lie on the boundary of a common
circle. We exploit this fact by letting the robots move towards the center of the surrounding circle
in every round until they finally gather in its center. Additional care has to be taken in case both
protocols interfere with each other. This can happen if some parts of the chain are isogonal while
others are asymmetric. Since a robot can only decide how to move based on its local view, the
robots behave according to different protocols in this case. We show how to handle such a case and
ensure that the two protocols do not hinder each other later.

6.3.2 Asymmetric Protocol
The asymmetric protocol consists of two parts: The generation of new run sequences and the
movement depending on such a run sequence. We start with explaining the movement depending on
run sequences. Assume that the number of robots in the chain is at least 6 and consider an isolated
run sequence κ in round t with r(κ, t) = ri and r(κ, t +1) = ri+1. Then, ri moves as follows:

1. If ∥pi−1(t)− pi+1(t)∥2 ≤ 1, ri: merge.

2. Else, if ∥pi(t)− pi+2(t)∥2 ≤ 1, ri: Pass the run sequence to ri+1.

3. Else, if αi(t)≤ 7
8 π , ri: shorten.

4. Else, ri: hop.

Given a joint run pair at robots ri and ri+1, the robots ri and ri+1 move according to the following
description.

1. If ∥pi−1(t)− pi+2(t)∥2 ≤ 2, both: joint merge.

2. Else, if αi(t)≤ 7
8 π and αi+1(t)≤ 7

8 π , both: joint shorten.

3. Else, if αi(t)≤ 7
8 π , ri: shorten.

4. Else, if αi+1(t)≤ 7
8 π , ri+1: shorten.

5. Else, if ∡(wi(t),−wi+2(t))≤ 7
8 π . both: joint shorten.

6. Else, both: joint hop.

6.3 Protocol for the FSYNC Scheduler 85

If the number of robots in the chain is at most 5 (robots can detect this since they can see 4
chain neighbors in each direction), the robots move towards the center of the smallest enclosing
circle of their neighborhood while ensuring connectivity. More precisely, the robots execute the
GTC protocol which ensures GATHERING after O(1) rounds [50] (and Chapter 4).

Additional Rule for Merges and Joint Merges. To ensure that all started run sequences stop,
we add a rule that stops nearby run sequences after (joint) merges to ensure that the chain structure
does not change too much within n rounds (see Section 6.3.1 for an intuition). Suppose the robot
ri (and ri+1) executes a merge (or a joint merge). Then, all run sequences in the neighborhood of
ri and ri+1 are immediately stopped and all robots in Ni(t) do not start any further run sequences
within the next 4 rounds (the robots are blocked and the counting of blocked rounds is implemented
with a light ℓblocked). Special care has to be taken of init states. Suppose that a robot ri executes a
merge into the direction of ri+1 while having an init state. The init state is handled as follows: In
case init(ri+2) = false and ri+2 does not execute a merge in the same round and init(ri+3) = true,
the init state of ri is passed to ri+1. Otherwise, the state is removed.

Where to start run sequences? New run sequences are created by robots with init states.
To generate new init states, we aim to discover asymmetric structures in the chain. When the
surrounding robots observe such a structure, the robot closest to the structure is assigned a so-called
init state. Such a robot can thus remember that it was at a point of asymmetry to generate runs in
the future. To keep the distance between run sequences (essential for maintaining the connectivity),
our rules ensure that at most two neighboring robots have an init state. Sequences of length at least
3 of robots having an init state are avoided. Intuitively, there are three sources of asymmetry in the
chain: Sizes of angles, orientations of angles, and lengths of vectors. To detect an asymmetry, we
introduce patterns depending on the size of angles, the orientation of angles, and the vector lengths.
The next class of patterns is only checked if a complete symmetry regarding the previous pattern
is identified to avoid too many fulfilled patterns. More precisely, a robot only checks orientation
patterns if all angles αi(t) in its neighborhood are identical. Similarly, a robot only checks vector
length patterns if all angles in its neighborhood have the same size and orientation. Whenever a
pattern holds, the robot observing the pattern assigns itself an init state if there is no other robot
already assigned an init state in its neighborhood. If two direct neighbors are assigned an init state,
they fulfilled the same type of pattern and formed a joint init state together.

Angle Patterns. A robot ri is assigned an init state if

αi−1(t)> αi(t)≤ αi+1(t)

or αi−1(t)≥ αi(t)< αi+1(t).

𝑟!

𝑟!"#
𝑟!$#

𝛼!(𝑡)𝛼 !"#
(𝑡) 𝛼!$# (𝑡)

Figure 6.2: A configuration in which ri fulfills
the first Angle Pattern, i.e., αi(t) is a local mini-
mum.

𝑟&'(

𝑟&)(

𝑟&)*

𝑟&𝑢&(𝑡)

𝑢
&)((𝑡) 𝑢 &'

(
(𝑡
)

Figure 6.3: A configuration in which ri (and
also ri−1) fulfills the first Vector Length Pattern,
i.e., the length of wi(t) is a local minimum.

86 Chapter 6. GATHERING in the LUMI Model

Orientation Patterns. A robot ri gets an init state if one of the following patterns is fulfilled.

1. ri is between three angles that have a different orientation than αi(t):

sgni(αi−1(t)) = sgni(αi+1(t)) = sgni(αi+2(t)) ̸= sgni(αi(t))

or sgni(αi−2(t)) = sgni(αi−1(t)) = sgni(αi+1(t)) ̸= sgni(αi(t)).

2. ri borders a sequence of at least two angles with the same orientation next to a sequence of at
least three angles with the same orientation:

sgni(αi−1(t)) = sgni(αi(t)) ̸= sgni(αi+1(t)) = sgni(αi+2(t)) = sgni(αi+3(t))

or sgni(αi+1(t)) = sgni(αi(t)) ̸= sgni(αi−1(t)) = sgni(αi−2(t)) = sgni(αi−3(t)).

𝑟!

𝑟!"# 𝑟!$#

𝑟!$%

Figure 6.4: A configuration in which ri fulfills
the first Orientation Pattern.

𝑟!𝑟!"#

𝑟!$# 𝑟!$%

𝑟!$&

Figure 6.5: A configuration in which ri fulfills
the second Orientation Pattern.

Vector Length Patterns. If Angle and Orientation Patterns fail, we consider vector lengths. A
robot ri is assigned an init state if one of the following patterns is fulfilled. In the patterns, the term
locally minimal occurs. ∥wi∥2 is locally minimal means that all other vectors that can be seen by ri

are either larger or have the same length.

1. The robot is located at a locally minimal vector next to two succeeding larger vectors, i.e.,
∥wi∥2 is locally minimal and ∥wi−1∥2 > ∥wi∥2 < ∥wi+1∥2 and ∥wi∥2 < ∥wi+2∥2 or ∥wi+1∥2
is locally minimal and ∥wi∥2 > ∥wi+1∥2 < ∥wi+2∥2 and ∥wi+1∥2 < ∥wi+3∥2.

2. The robot is at the boundary of a sequence of at least two locally minimal vectors, i.e.,
∥wi−1∥2 = ∥wi∥2 < ∥wi+1∥2 or ∥wi∥2 > ∥wi+1∥2 = ∥wi+2∥2.

How to start run sequences? Robots with (joint) init states try every 9 rounds (counted
with a light ℓc) to start new run sequences. A robot ri with init(ri) = true only starts a new run
sequence if run(Ni(t)) = /0 to ensure sufficient distance between run sequences. The constant 9 is
chosen to ensure that a robot (potentially) observes different run sequences in its neighborhoods
each time it tries to start a new run sequence (since a robot can observe 9 robots including itself
and each run sequences moves at least one robot forward per round). Additionally, ri only starts
new run sequences provided ∥pi−1(t)− pi+1(t)∥2 > 1. Otherwise, it executes a merge. Given
∥pi−1(t)− pi+1(t)∥2 > 1, ri generates two new run sequences at its direct neighbors with opposite
directions as follows: ri executes a shorten and generates two new run sequences κ1 and κ2 with
r(κ1, t + 1) = ri+1 and r(κ2, t + 1) = ri−1. Two robots ri and ri+1 with a joint init state proceed
similarly: given ∥pi−1(t)− pi+2(t)∥2≤ 2, they directly execute a joint merge. Otherwise, ri and ri+1
execute a joint shorten and induce two new run sequences at their direct neighbors with opposite
directions. Observe that this procedure ensures that every vector assigned to a run sequence has a
length of at least 1

2 .

6.3 Protocol for the FSYNC Scheduler 87

6.3.3 Symmetric Protocol
Due to the patterns in Section 6.3.2, there is a set of configurations where no init state is generated.
Intuitively, such configurations have no local criterion that identifies some robots as different
from their neighbors, i.e., they are symmetric. We start by defining precisely the class of isogonal
configurations in which no run sequence can be generated by our protocol. Afterward, we show
how we can still gather such configurations. Intuitively, a configuration is isogonal if all angles
have the same size and orientation and either all vectors have the same length or there are two
alternating vector lengths. For some round t, the set of all vectors wi(t) describes a polygon denoted
as the configuration polygon of round t. A configuration is then called an isogonal configuration
in case its configuration polygon is isogonal. A polygon P is isogonal if and only if for each pair
of vertices, there is a symmetry of P that maps the first onto the second [74]. Examples of such
polygons can be seen in Figures 6.6 and 6.7. Grünbaum [74] classified the set of isogonal polygons.
This set of polygons consists of the set of regular star polygons and polygons that can be obtained
from them by a small translation of the vertices.

Definition 6.1 — [74]. The regular star polygon {n/d} (n,d ∈ N,d ≤ n) is constructed as
follows: Consider a circle C and fix an arbitrary radius R of C. Place n points A1, . . . ,An such
that A j is placed on C and forms an angle of 2·π·d

n· j with R and connect A j to A j+1 mod n by a
segment. A configuration is called a regular star configuration in case the configuration polygon
is a regular star polygon.

Next, we describe, how isogonal polygons with two alternating edge lengths can be constructed
out of regular star polygons. The construction is based on [74]. For n odd, every isogonal polygon
is a regular star polygon. For n even, isogonal polygons that are not regular star polygons can be
constructed as follows: Take any regular star polygon {n/d} based on the circle C of radius R. Now,
choose a parameter 0 < t < n

2 and locate the vertex A j such that its angle to R is 2π

n ·(j ·d+(−1) j ·t).
Choosing t = n

2 yields the polygon {n/d} again. Larger values for t obtain the same polygons as in
the interval [0, n

2].

Figure 6.6: An isogonal configuration that has
two alternating vector lengths and all angles are
equal with n = 12.

Figure 6.7: An isogonal configuration of which
the configuration polygon is a regular star poly-
gon n = 7.

Movement. A robot ri moves according to the symmetric protocol if all αi(t) in its neighborhood
have the same size and orientation, either all vectors wi(t) have the same length or have two
alternating lengths, init(Ni(t)) = /0 and run(Ni(t)) = /0. Then, ri performs one of the two following
symmetrical operations. In case all vectors wi(t) have the same length, it performs a bisector-
operation. The purpose of the bisector-operation is to move all robots towards the center of the

88 Chapter 6. GATHERING in the LUMI Model

surrounding circle. Otherwise (in the case of two alternating vector lengths), the robot executes
a star-operation. The goal of the star-operation is to transform an isogonal configuration with
two alternating vector lengths into a regular star configuration. Afterward, bisector-operations are
executed.

Bisector-Operation & Star-Operation. In the bisector-operation, a robot ri computes the angle
bisector of vectors pointing to its direct neighbors (bisecting the angle of size less than π) and jumps
to the point p on the bisector such that ∥pi−1(t)− p∥2 = ∥pi+1(t)− p∥2 = 1. If ∥pi(t)− p∥2 >

1
5 ,

the robot moves only a distance of 1
5 towards p. Additionally, the star-operation works as follows:

Let C be the circle induced by ri’s neighborhood and R its radius. If the diameter of C is at most
2, ri jumps to the midpoint of C. Otherwise, the robot ri observes the two circular arcs Lα = α ·R
and Lβ = β ·R connecting itself to its direct neighbors. The angles α and β are the corresponding
central angles measured from the radius Ri connecting ri to the midpoint of C. Without loss of
generality, we assume that Lα < Lβ . Then, ri jumps to the point on Lβ such that Lα is enlarged by
R · ((β −α)/4) and Lβ is shortened by the same value.

6.3.4 Combination
The asymmetric and symmetric protocols are executed in parallel. More precisely, robots whose
neighborhoods fulfill the property of an isogonal configuration move according to the symmetric
protocol, while others follow the asymmetric protocol. To ensure that the two protocols do not
hinder each other, we need one additional rule: the exceptional generation of init states. Intuitively,
if some robots follow the asymmetric protocol while others execute the symmetric protocol, there
are borders at which a robot ri moves according to the symmetric protocol while its neighbor does
not move at all (the neighbor cannot have a run state; otherwise ri would not move according to the
symmetric protocol). At these borders, the length of the chain may increase. We use an additional
visible state to prevent this from happening too often (implemented with the light ℓsymm). Robots
that move according to the symmetric protocol store this via activating ℓsymm. If any robot detects
in the next round that ℓsymm is activated, but its local neighborhood does not fulfill the criterion of
being an isogonal configuration, it concludes that the chain is not entirely symmetric. To ensure this
does not occur again, the robot closest to the asymmetry is assigned an init state and thus adds a
source of asymmetry to the chain. Note that this exceptional generation is not needed to find robots
that start run sequences. Instead, the exceptional generation ensures that the symmetric operations
are not executed too often in case the global configuration is asymmetric.

6.3.5 High-level Analysis
This section presents the main course of the analysis devoted to proving the following main theorem
about the CC-HOPPER protocol under the FSYNC scheduler.

Theorem 6.1 For any initially connected closed chain of disoriented robots in the Euclidean
plane with a viewing range of 4 and a connectivity range of 1, GATHERING can be solved with
the CC-HOPPER protocol in O (n) epochs assuming the FSYNC scheduler and a light with a
constant number of colors. The number of rounds is asymptotically optimal.

One of the crucial properties of the correctness of our protocol is that it maintains the connectivity
of the chain. For the proof, we show that the operations of isolated run sequences, joint run pairs,
and the operations of the symmetrical protocol do not break the connectivity as well as no other
pattern of run states exists (for instance, a sequence of three neighboring robots having a run state).

Lemma 6.1 A configuration that is connected in round t stays connected in round t +1.

The asymmetric protocol depends on the generation of run sequences. We prove that at least one
pattern is fulfilled in every asymmetric configuration in which no robot has an init state.

6.3 Protocol for the FSYNC Scheduler 89

Lemma 6.2 A configuration without any init state in round t is either isogonal or at least one
init state exists in round t +1.

The following lemma is crucial for the asymmetric protocol: Every run sequence that is started
at robot ri will never visit ri again in the future. The run sequence either stops by a merge, a
joint merge, a shorten, a joint shorten or it is stopped by a merge or a joint merge of a different run
sequence. Consequently, a run sequence cannot execute n succeeding hops or joint hops.

Lemma 6.3 A run sequence does not visit the same robot twice.

Next, we count the number of run sequences needed to gather all robots on a single point.
Lemma 6.3 states that each run sequence stops either by a shorten, joint shorten, merge or
joint merge or it is stopped via a merge or joint merge of a different run sequence. There can
be at most n−1 merges and joint merges. To count the number of shortens and joint shortens, we
consider two cases: Either the two vectors involved in a shorten have both a length of at least 1

2 or
one vector is smaller, and the other one is larger than 1

2 (the case that both vectors are smaller than
1
2 would lead to a merge). Due to the threshold of 7

8 π , we can prove that the chain length reduces
by at least a constant in case both vectors have a length of at least 1

2 . If one vector is smaller and
the other larger than 1

2 , the chain length does not necessarily decrease by a constant. Instead, the
smaller vector increases and has a length of at least 1

2 afterward. Hence, either the chain length or
the number of small vectors decreases. New small vectors can only be created upon the execution of
merge, joint merges, star-operations or bisector-operations. For each of the mentioned operations,
we can prove that it is only executed a linear number of times. We conclude that a linear number of
run sequences is needed to gather all robots on a single point.

Lemma 6.4 At most 143n run sequences are required to gather all robots.

To conclude a final runtime for the asymmetric protocol, we need to prove that sufficiently many
run sequences are generated. We apply a witness argument. Consider an init state. Each 9 rounds,
this state either creates a new run sequence or observes other run sequences in its neighborhood
and waits. This way, we can count each 9 rounds a new run sequence: Either the robot with the init
state starts a new run sequence or it waits because of a different run sequence. Since a robot can
observe 9 neighbors, we count a new run sequence after 9 rounds. Roughly said, we can prove that
in k rounds ≈ k

9 run sequences exist. This holds until the init state is removed due to a merge or
joint merge. Afterward, we can continue counting at the next init state in the direction of the run
sequence causing the merge or joint merge.

Lemma 6.5 A configuration that does not become isogonal gathers after at most 5129n rounds.

It remains to prove a linear runtime for the symmetric protocol. The symmetric protocol consists
of two parts: First, an isogonal configuration is transformed into a regular star configuration, and
afterward, the robots move towards the center of the surrounding circle. The transformation to a
regular star configuration requires a single round in which all robots execute a star-operation.

Lemma 6.6 If the configuration is isogonal but not a regular star configuration in round t, the
configuration is a regular star configuration in round t +1.

To prove a linear runtime for regular star configurations, we analyze the runtime for the regular
polygon {n/1}. In all other regular star configurations, the inner angles are smaller; thus, the robots
can move larger distances towards the center of the surrounding circle. We use the radius of the
circumcircle as a progress measure. Although the radius decreases very slowly initially, it decreases
by a constant in every round after a linear number of rounds. The linear runtime follows.

90 Chapter 6. GATHERING in the LUMI Model

Lemma 6.7 Regular star configurations gather in at most 30n rounds.

6.3.6 Detailed Analysis
Next, we present the detailed analysis of the CC-HOPPER protocol. Section 6.3.6.1 contains a
detailed proof that all operations maintain the connectivity of the chain. Afterward, Section 6.3.6.2
deals with the analysis of the asymmetric protocol, and Section 6.3.6.3 analyses the protocol for
isogonal configurations.

6.3.6.1 Connectivity

We first prove that the individual movement operations do not violate the connectivity of the chain.

Lemma 6.8 The movement operations of isolated run sequences and joint run pairs keep the
chain connected.

Proof. A robot ri executes only a merge if ∥(pi−1(t)− pi+1(t)∥2 ≤ 1. Since ri moves either to
pi−1(t) or to pi+1(t) (depending on the direction of the run sequence) and neither ri−1 nor ri+1
move in the same round, the chain remains connected.

Consider a robot ri that executes a shorten. It moves to the midpoint between its neighbors,
more formally pi(t +1) = 1

2 pi−1(t)+ 1
2 pi+1(t). Since the configuration is connected in round t, it

holds ∥pi−1(t)− pi+1(t)∥2 ≤ 2 and thus it follows ∥pi−1(t +1)− pi(t +1)∥2 ≤ 1 and ∥pi(t +1)−
pi+1(t +1)∥2 ≤ 1 as pi−1(t +1) = pi−1(t) and pi+1(t +1) = pi+1(t).

Now, suppose ri executes a hop in the direction of ri+1. The hop exchanges the vectors wi(t)
and wi+1(t). Since both vectors have a length of at most 1, the connectivity is ensured in round
t +1. The arguments for a joint merge, joint shorten and joint hop are analogous. ■

Lemma 6.9 Star-operations and bisector-operations keep the chain connected.

Proof. For bisector-operations, this follows directly from the definition: two neighboring robots
that execute a bisector-operation jump towards the center of the same circle, and thus their distance
decreases. If a robot executes a bisector-operation while its neighbor does not move, the bisector-
operation ensures by definition that their distance is at most 1 in the next round. Other cases
cannot occur: Since bisector-operations are only executed in case no run sequence is visible in the
neighborhood of a robot, it cannot happen that a neighbor executes a different operation. Thus,
bisector-operations maintain the connectivity of the chain.

The last arguments also apply to the star-operation. A robot only executes a star-operation if
its neighbors also execute a star-operation or do not move at all. Suppose two neighboring robots
execute a star-operation. In round t they are connected via a circular arc Lα = α · r or Lβ = β · r,
where r denotes the radius of the circumcircle of the neighborhood. Assume that α < β . If the
robots are connected with Lβ , the robots move closer to each other and maintain connectivity.
Otherwise, they move away from each other, but the new circular arc connecting the two robots is
Lα + r ·

(
β−α

2

)
which is less than Lβ . Hence, the two neighboring have a distance of at most 1 in

the next round. ■

Next, we prove that either isolated run sequences or joint run pairs exist. For that, we show that
it is impossible that other patterns of run states exist. The next lemma focuses on the generation of
new run sequences.

Lemma 6.10 In every round t, there exists no sequence of neighboring robots of length at least
3, all having an init state.

6.3 Protocol for the FSYNC Scheduler 91

Proof. Robots that already have neighbors with an init state do not generate new ones. Thus, we
only have to look at sequences of robots in which no robot has an init state and show that a pattern
is fulfilled for at most two neighbors. First, consider the angle patterns. Suppose for a robot ri the
first angle pattern is fulfilled (the argumentation for the second angle pattern is analogous because
it describes the mirrored version.) Thus, it holds, αi−1(t) > αi(t) ≤ αi+1(t). For ri−1, no angle
pattern can hold because αi−1(t) is no local minimum. Additionally, ri−1 does not check any further
patterns because αi−1(t) ̸= αi(t) and hence no full symmetry is given. The only case in which an
angle pattern for ri+1 can be fulfilled is the case that αi(t) =αi+1(t). If αi+1(t)≥αi+2(t), no pattern
for ri+1 holds, since αi+1(t) is either no local minimum or αi(t) = αi+1(t) = αi+2(t). Thus, the only
case that a pattern for both ri and ri+1 holds is the case that αi−1(t)> αi(t) = αi+1(t)< αi+2(t).
Since αi+2(t) is also no local minimum, no pattern for ri+2 holds. As a consequence, an angle
pattern for both ri and ri+1 may be fulfilled, but then, neither ri−1 nor ri+2 fulfills a pattern.

We continue with the orientation patterns. There are two classes of orientation patterns;
we start with the first class. Assume that for ri, an orientation pattern is fulfilled. Thus, it
holds sgn(αi−1(t)) = sgn(αi+1(t)) = sgn(αi+2(t)) ̸= sgn(αi(t)) (the other pattern in this class is a
mirrored version and the same argumentation can be applied). No orientation pattern of the first
class is fulfilled for ri+1 because the neighboring angles have a different orientation. Additionally,
no pattern of the second class can be fulfilled, because sgn(αi(t)) ̸= sgn(αi−1(t)). For ri−1 no
pattern of the second class can be fulfilled because sgn(αi(t)) ̸= sgn(αi+1(t)). A pattern of the first
class can only be fulfilled if sgn(αi−3(t)) = sgn(αi−2(t)) = sgn(αi(t)). In this case, no pattern for
ri−2 can be fulfilled because its neighboring angles have a different orientation, and it is not located
at the boundary of two sequences of angular orientations of the length of at least two. Hence, a
pattern for ri and ri−1 may be fulfilled but then neither a pattern for ri−2 nor for ri+1 is fulfilled.

Lastly, we consider the vector length patterns. Suppose that a vector length pattern is fulfilled for
ri. We give the arguments for the first class; the second class is analogous. Arguments for the third
class are given afterward. Assume that the first vector pattern is fulfilled for ri and thus ∥wi(t)∥2
is locally minimal and ∥wi−1(t)∥2 > ∥wi(t)∥2 < ∥wi+1(t)∥2 and ∥wi(t)∥2 < ∥wi+2(t)∥2. In this
case, no pattern can be fulfilled for ri+1 because ∥wi+1(t)∥2 and ∥wi+2(t)∥2 are not locally minimal
(∥wi(t)∥2 is smaller). For ri−1 at most the second pattern can be fulfilled (because ∥wi−1(t)∥2 is
not locally minimal. The second pattern can only be fulfilled if ∥wi−2(t)∥2 > ∥wi(t)∥2. In this case,
no pattern for ri−2 can hold because neither ∥wi−2(t)∥2 nor ∥wi−1(t)∥2 are locally minimal. Thus,
a pattern for ri−1 and ri can be fulfilled, but no patterns for ri−2 and ri+1. The arguments for the
second class are analogous.

Now, suppose that the third pattern is fulfilled for a robot ri. Thus, it holds ∥wi−1(t)∥2 =
∥wi(t)∥2 < ∥wi+1(t)∥2 (the arguments for the other pattern are analogous because it describes the
mirrored version). In this case, no vector pattern holds for ri−1 since both neighboring vectors have
the same length. For ri+1, the third pattern can be fulfilled. It must hold ∥wi+2(t)∥2 = ∥wi+3(t)∥2 <
∥wi+1(t)∥2. However, the third pattern cannot hold for ri+2 because both neighboring vectors have
the same length. In addition, neither the first nor the second pattern can hold for ri−1 and ri+1 (due
to the definition of the third pattern) and thus both ri and ri+1 can generate an init state but neither
ri−1 nor ri+2. ■

In the following, we define undesired patterns of run states formally.

Definition 6.2 Three run states are called a prohibited run sequence if the three run states are
located at three directly neighboring robots.

Definition 6.3 Consider two run sequences κ1 and κ2. Two run sequences κ1,κ2 are called
an opposite conflicting run pair in case r(κ1, t) and r(κ2, t) are direct neighbors and r(κ1, t +
1) ̸= r(κ2, t) and r(κ2, t +1) ̸= r(κ1, t). Two run sequences κ1,κ2 are called a uni-directional
conflicting run pair in case r(κ1, t +1) = r(κ2, t) and r(κ2, t +1) ̸= r(κ1, t) or vice versa.

92 Chapter 6. GATHERING in the LUMI Model

Definition 6.4 A configuration is called to be run sequence-valid in round t if neither a
prohibited run sequence nor a conflicting run pair exists.

We aim to show that a configuration always remains run sequence-valid. To do so, we state the
following auxiliary lemma.

Lemma 6.11 Consider a run sequence-valid configuration in round t with a joint run pair of
run sequences κ1 and κ2 with r(κ1, t) = ri and r(κ2, t) = ri+1. Suppose the robots execute a
joint hop. Then, run(ri, t +1) = run(ri+1, t +1) = false.

Proof. Since the configuration is run sequence-valid, run(ri−1, t) = run(ri+2, t) = false. As the
robots execute a joint hop it holds r(κ1, t + 1) = ri+2 and r(κ2, t + 1) = ri−1. Thus, it can only
happen that run sequences different from κ1 and κ2 are located at ri or ri+1 in round t +1. Next,
we argue that this is impossible. We prove that no run sequence κ3 that is located at a robot with an
index larger than i+2 can be located at ri or ri+1, the arguments for run sequences located at robots
with smaller indices are analogous. Assume that there exists an isolated run sequence κ3 with
r(κ3, t) = ri+3. Depending on its direction it either holds r(κ3, t +1) = ri+4 or r(κ3, t +1) = ri+2.
It follows that κ3 cannot be located at ri+1 or ri. Similar arguments hold for isolated run sequences
located at robots with larger indices. Now, assume that there is a joint run pair κ3 and κ4 with
r(κ3, t) = ri+3 and r(κ4, t) = ri+4. It holds r(κ3, t + 1) = ri+5 and r(κ4, t + 1) = ri+2. Again, the
same arguments hold for joint run pairs located at robots with higher indices. It follows that
run(ri, t +1) = run(ri+1, t +1) = false. ■

Lemma 6.12 A configuration that is run sequence-valid in round t is also run sequence-valid in
round t +1.

Proof. Lemma 6.10 states that starting of new run sequences always ensures that no prohibited run
sequence exists. Beyond that, a merge or a joint merge stops all run sequences in its neighborhood
such that run sequences do not come too close such that these operations also ensure that no
prohibited run sequence exists. Shortens and joint shortens stop the involved run sequences and do
not change the number of robots in the chain. Hence, no prohibited run sequences can be generated.
Hops are only executed by isolated run sequences and continue in their direction and thus can also
not create prohibited run sequences. The only operation we have to consider in more detail is the
joint hop because the involved run sequences skip the next robot in their direction and move to the
next but one robot. Let κ1 and κ2 denote a joint run pair with r(κ1, t) = ri and r(κ2, t) = ri+1. By
the definition of a joint run pair it holds run(ri−1, t) = run(ri+2, t) = false. Moreover, Lemma 6.11
states that run(ri, t +1) = run(ri+1, t +1) = false. In the following, we prove that κ1 is not part of
a prohibited run sequence in round t +1; the arguments for κ2 are analogous. By definition, it holds
r(κ1, t +1) = ri+2. Lemma 6.11 gives us also that a prohibited run sequence cannot be generated
by a joint run pair located at ri+3 and ri+4 or ri+4 and ri+5 since in both cases no run sequences
is located at ri+4 in round t +1. Joint run pairs with larger indices are too far away to generate a
prohibited run sequence.

This cannot happen by isolated run sequences because no neighboring robots have run states,
and they move to the next. Hence, no prohibited run sequence can exist in round t +1.

Next, we argue that no conflicting run pair exists in round t +1. The start of new run sequences
never creates new conflicting run pairs. Thus, if an opposite or a conflicting run pair exists in round
t +1, both involved run sequences have already existed in round t. Consider a uni-directional run
pair at round t +1. In round t, both run sequences must have had a distance of at least 2 (one robot
without a run state in between). The distance between the two robots can only decrease based on a
merge or a joint hop. A merge stops all run sequences in the neighborhood and cannot create such
a run pair. A joint hop can also not create a uni-directional run pair since the configuration has

6.3 Protocol for the FSYNC Scheduler 93

been run sequence-valid in round t and both neighboring robots have not had a run state. Thus, no
uni-directional run pair can exist in round t +1.

Assume now that an opposite run pair exists at round t +1. This can only be the case if the two
run sequences have been heading towards each other in round t. However, joint hops, joint shortens
and joint merges ensure that no opposite run pair exists in round t +1. Hence, the configuration
remains run sequence-valid. ■

Finally, we conclude that the connectivity is always maintained.

Lemma 6.1 A configuration that is connected in round t stays connected in round t +1.

Proof. By Lemma 6.12 it holds that only isolated run sequences or joint run pairs exist (or no
run sequence at all). Lemma 6.8 states that isolated run sequence and joint run pairs keep the
connectivity of the chain and by Lemma 6.9 this also holds for all operations of the symmetric
protocol. The lemma follows. ■

6.3.6.2 Asymmetric Case

For the asymmetric case, we start by proving that in every asymmetric configuration, at least one
init state exists.

Lemma 6.2 A configuration without any init state in round t is either isogonal or at least one
init state exists in round t +1.

Proof. Assume that the configuration is not isogonal. Now, suppose that not all angles αi(t) are
identical and consider the globally minimal angle αmin(t) at the robot rmin (or any of them if the
angle is not unique). The robot rmin generates an init state if at least one of the neighboring angles
is larger. Since αmin(t) is minimal, the only situation in which rmin does not generate an init state is
that αmin−1(t) = αmin(t) = αmin+1(t). In this case, follow the chain in any direction until a robot
r′min is reached such that the next robot has a larger angle. This robot exists since we have assumed
that not all angles are identical. For this robot, an angle pattern is fulfilled. Consequently, given a
configuration in which not all angles are identical, at least one init state is generated.

Next, we consider that all angles are identical, but not all have the same orientation. Observe
first that the chain must contain two more angles of one orientation than the other because the chain
is closed. This implies that the orientations cannot be alternating along the entire chain, and it also
cannot happen that alternating sequences of two angular orientations exist. More formally, the
chain cannot consist only of the following two sequences:

1. sgni(αi) ̸= sgni(αi+1) ̸= sgni(αi+2), . . .
2. sgni(αi) = sgni(αi+1) ̸= sgni(αi+2) = sgni(αi+3) ̸= sgni(αi+4), . . .
As a consequence, at least one of the orientation patterns must be fulfilled: Either there exists a

sequence of at least three angles with the same orientation, and a pattern is fulfilled at the boundary
of the sequence, or there exists a robot ri that lies between three angles with a different orientation
than αi(t). Hence, given that all angles have the same size but not the same orientation, there must
be at least one fulfilled orientation pattern.

Lastly, we take a look at the vector length patterns. Now, we assume that all angles in the
chain have the same size and orientation. Since we assume that the configuration is not isogonal,
not all vectors can have the same length, and it also cannot be the case that there exist only two
different vector lengths that are alternating along the chain. Consider the vector of global minimal
length wmin (or any of them if the length is not unique). Two cases can occur: Either a sequence
of at least two neighboring vectors of length ∥wmin∥2 exists. At the end of such a sequence, the
third vector pattern is fulfilled. In case no such sequence exists, all vectors having the length of
∥wmin∥2 have larger direct neighbors. Since the configuration is not isogonal, there must be a vector
of length ∥wmin∥2 such that the direct neighboring vectors are larger and at least one of the next
but one vector is also larger (otherwise, the configuration is isogonal with two alternating vector

94 Chapter 6. GATHERING in the LUMI Model

lengths). In such a robot, the first or second pattern is fulfilled. All in all, we have proven that for
configurations that are not isogonal, at least one pattern is fulfilled. ■

Next, we count the number of occurrences of shortens, joint shortens, merges and joint merges
until all robots are gathered. Since each merge and joint merge reduces the number of robots in the
chain, the following lemma trivially holds.

Lemma 6.14 There are at most n−1 merges and joint merges.

There are two types of occurrences of shortens. Either both involved vectors have a length of at
least 1

2 or one vector is larger than 1
2 while the other one is shorter. We prove that the chain length

decreases by a constant in the first case. The second case reduces the number of vectors of length
less than 1

2 in the chain. The following two lemmas can be derived from lemmas we have seen in
the context of the CHAIN-FORMATION problem in Chapter 5. More precisely, the lemmas can be
derived from Lemma 5.2 by choosing ε = 2√

2+
√

2+
√

2
−1, such that 2 · sin−1 (1

1+ε

)
= 7

8 π .

Lemma 6.15 Assume an isolated run sequence κ with r(κ, t) = ri and r(κ, t +1) executes a
shorten and both ∥wi(t)∥2 ≥ 1

2 and ∥wi+1(t)∥2 ≥ 1
2 . Then L(t +1)≤ L(t)−0.019.

Joint shortens are different in the sense that every joint shorten reduces the length of the chain
by at least a constant. This holds because every run vector has a length of at least 1

2 and thus, two
involved vectors in the joint shorten have a length of at least 1

2 .

Lemma 6.16 Assume that a joint run pair executes a joint shorten in round t. Then, L(t +1)≤
L(t)−0.019.

Next, we count the total number of shortens in which both involved vectors have a length of at
least 1

2 and joint shortens. We have to take care that different operations might increase the chain
length here. However, this can only happen in a single case: A robot executes a bisector-operation
while its neighbor does not move. The exceptional generation of init states ensures that this happens
at most n times.

Lemma 6.17 There are at most
n·(1+ 1

5)
0.019 executions of shortens and joint shortens in which both

involved vectors have a length of at least 1
2 .

Proof. There is only one case in which L(t) can increase: If a robot executes a bisector-operation
while its direct neighbor does not. Since the maximal distance moved in a bisector-operation is
1
5 , L(t) can increase by at most 1

5 in this case. This, however, can happen at most n times. To see
this, observe that if a robot ri executes a bisector-operation in round t and one of its neighbors
does not, init(ri) = true in round t +1. The robot ri will not execute any further bisector-operation
until it executes a merge since an init state in the neighborhood of a robot prevents the robot from
executing a bisector-operation and the init state is only removed after a merge, Thus, such a case
can happen for at most n times and thus, L(t) is upper bounded by n ·

(
1+ 1

5

)
. Lemmata 6.15

and 6.16 state that each shorten in which both involved vectors have a length of at least 1
2 and each

joint shorten decrease the length of the chain by at least 0.019. Consequently, the total number of

such operations can be upper bounded by
n·(1+ 1

5)
0.019 . ■

To count the total number of shortens required to gather all robots, we count the number of
shortens in which one vector has a length of at most 1

2 as the last step.

6.3 Protocol for the FSYNC Scheduler 95

Lemma 6.18 There are at most 4n executions of shortens such that one of the participating
vectors has a length less than 1

2 .

Proof. There are at most n vectors of length at most 1
2 in the beginning. Every shorten in which

one vector of size at most 1
2 and the other vector of length at least 1

2 is involved increases the length
of the smaller vector to at least 1

2 . The only way to create new vectors of length less than 1
2 is

via a merge, a joint merge, a bisector-operation or a star-operation. Merges and joint merges are
executed at most n times and thus at most n vectors of length less than 1

2 can be generated.
In the following, we consider the bisector-operation and the star-operation. A robot may

execute a bisector-operation or a star-operation while its neighbor does not. In this case, the robot
generates a new init state. Thus, this happens at most n times since init states prevent the robots
in the neighborhood from executing bisector-operations or star-operations and an init state is only
removed after a merge. Therefore, at most n vectors of length less than 1

2 can be created by
bisector-operations or star-operations if a neighboring robot does not execute the same operation.

It remains to consider that a robot and its direct neighbors execute a bisector-operation and a
star-operation. Consider now the bisector-operation. This operation only takes place at a robot ri

in case ∥wi−1(t)∥2 = ∥wi(t)∥2 = ∥wi+1(t)∥2 = ∥wi+2(t)∥2. Assume now that ∥wi(t)∥2 >
1
2 . Thus,

in case ∥wi(t + 1)∥2 ≤ 1
2 it also holds ∥wi+1(t + 1)∥2 ≤ 1

2 . If the configuration is completely
isogonal, then no shorten will be executed at ri anymore, or some parts of the chain still generate
run sequences. In the latter case, ri (and maybe also ri−1 and ri+1) can execute a merge (since
∥pi−1(t +1)− pi+1(t +1)∥2 ≤ 1 as ∥wi(t +1)∥2 ≤ 1

2 and ∥wi+1(t +1)∥2 ≤ 1
2) such that the next

run sequence that comes close either executes a merge at ri−1,ri or ri+1. Thus, also this case can
happen at most n times such that at most 2n vectors of length at most 1

2 can be generated of which
at most n can be part of a future shorten.

Similar arguments apply for the star-operation: If both ∥wi(t+1)∥2 <
1
2 and ∥wi+1(t+1)∥2 <

1
2

after the star-operation at least one of them had a length of less than 1
2 in round t. Hence, at most

one vector of length less than 1
2 can be generated by a star-operation. However, the same arguments

as for the bisector-operation hold now: ri (and maybe also ri−1 and ri+1) can execute a merge (since
∥pi−1(t+1)− pi+1(t+1)∥2 ≤ 1 as ∥wi(t+1)∥2 ≤ 1

2 and ∥wi+1(t+1)∥2 ≤ 1
2) such that the next run

sequence that comes close either executes a merge at ri−1,ri or ri+1. Thus, before ri can generate a
further vector of length at most 1

2 via a further star-operation, either ri−1,ri or ri+1 execute a merge
such that this can happen also at most n times.

In total, we obtain at most 4n shortens in which one participating vector has a length of at
most 1

2 : n initial vectors that can have a length of at most 1
2 , n vectors that can be generated via

merges, n vectors that can be generated via star-operations and n vectors that can be generated via
bisector-operations. ■

Next, we prove that every run sequence is stopped after at most n rounds. More precisely, no
run sequence visits the same robot twice. For the proof, we state some auxiliary lemmata that
analyze how the position of a robot changes in a global coordinate system based on the movement
operations of the protocol. We use the notation wi(t) = (xi(t),yi(t)) to describe the components of
a vector wi(t).

Lemma 6.19 Assume that a robot ri executes a merge or a joint merge in round t. Then,
yi(t +1)≥ yi(t)−1.

Proof. Consider a run sequence κ with r(κ, t) = ri and r(κ, t+1) = ri+1. In the worst case, it holds
αi(t) = 0 and yi+1(t) = yi(t)−1 such that ri moves to the position of ri+1 and executes a merge
there. In a joint merge, the distance is even less since the robots merge in the midpoint between
their neighbors. ■

96 Chapter 6. GATHERING in the LUMI Model

Lemma 6.20 Assume that a robot ri executes a shorten or a joint shorten in round t. Then,
yi(t +1)≥ yi(t)−

√
3

2 .

Proof. Observe first that αi(t) > π

3 , otherwise a merge can be executed. Thus, to maximize the
distance covered in the vertical direction, consider the three involved robots to be the vertices of
an equilateral triangle with a side length of 1. The height of this triangle is

√
3

2 . Thus, yi(t +1)≥
yi(t)−

√
3

2 . The same holds for a joint shorten. ■

Lemma 6.21 Assume that a robot ri executes a hop or a joint hop in round t. Then, yi(t +1)≥
yi(t)− 1

2 .

Proof. Observe first that every run vector has a length of at least 1
2 . Otherwise, the robot that

initiated the run sequence would have immediately executed a merge. Assume now that ri has a run
state of run sequence κ with r(κ, t +1) = ri+1 and ri executes a hop. The largest distance to cover
in vertical direction for ri is 1

2 , in case ∥vκ∥2 =
1
2 and yi+1(t) = yi(t)−1. Larger vectors vκ lead

to a smaller distance moved in the vertical direction, in case ∥vκ∥2 > ∥wi+1(t)∥2, ri moves even
upwards. Smaller vectors wi(t +1) have the same effect. Thus, yi(t +1) ≥ yi(t)− 1

2 . The same
holds for a joint hop. ■

Lemma 6.3 A run sequence does not visit the same robot twice.

Proof. Assume that the robot ri starts two run sequences κ1 and κ2 in round t0. In round t0 +1, ri

is located on the midpoint between ri−1 and ri+1. Without loss of generality, we assume that ri is
located in the origin of a global coordinate system with ri+1 to be located on the y-axis above ri

and ri−1 to be located on the y-axis below ri. The two run vectors are denoted as vκ1 = wi+1(t0 +1)
and vκ2 =−wi(t0 +1) with vκ1 =−vκ2 . We prove exemplary for κ2 that it stops before reaching ri

again. The arguments for κ1 are analogous.
Suppose κ2 does not stop due to a shorten, joint shorten, a merge or a joint merge. This implies

that κ2 can only execute hops or joint hops in every round. Consider a round t ′ with r(κ2, t ′)= r j and
r(κ2, t ′+1) = r j−1. If r j executes a hop or joint hop, it holds α j(t)> 7

8 π . Thus, y j−1(t ′)< y j(t ′).
Since this holds for every hop and joint hop executed by κ2 it also holds y j−1(t ′)< yi(t) = 0.

We now bound yκ2(t
′+2): Since only hops are performed, it must hold that the length of the

next two vectors together is at least 1 (otherwise, the run sequence stops, and a merge is executed).

It follows that yκ2(t
′+ 2) ≤ yκ2(t

′)− cos
(

π

8

)
= yκ2(t

′)−
√

2+
√

2
2 . Thus, in every second round

yκ2(t) decreases by at least
√

2+
√

2
2 .

We now compare the movements of ri: At the same time, ri can at most execute every second
round of an operation based on a run sequence (since run sequences have a distance of 2). In case

of shortens or joint shortens, yi(t) ≥ yi(t)−
√

3
2 > yi(t)−

√
2+
√

2
2 (Lemma 6.20). In case of hops

or joint hops, yi(t)≥ yi(t)− 1
2 > yi(t)−

√
2+
√

2
2 (Lemma 6.21). Thus, in case ri executes shortens,

joint shortens, hops or joint hops, ∥yi(t)− yκ2(t)∥2 decreases every second round by a constant.
The same holds for bisector-operations and star-operations: By its definition, yi(t +1)≥ yi(t)− 1

5
in case of a bisector-operation. For a star-operation it holds yi(t + 1) ≥ yi(t)− 1

2 (since a robot
jumps to the midpoint of two circular arcs). However, no two consecutive star-operations can be
executed since either the configuration is a regular star afterward or the robot detects the asymmetry
and does not execute a further star-operation (and generates an init state instead). As a consequence,
also in case of bisector-operations and star-operations, ∥yi(t)− yκ2(t)∥2 decreases by a constant.

It remains to argue about merges and joint merges. It can happen that yi(t) decreases by 1
(Lemma 6.19). However, since all run sequences in the distance 4 are stopped, no further run

6.3 Protocol for the FSYNC Scheduler 97

sequence in the neighborhood of ri is started within the next 4 rounds; this can at most happen every

fourth round. In the same time, however, yκ2(t) decreases by at least 2 ·
√

2+
√

2
2 =

√
2+
√

2 > 1.8.
Thus, the only time in which yκ2(t) > yi(t) can hold is within the first 4 rounds after the run
sequences κ1 and κ2 have been started, more precisely only in the rounds t0 +3 and t0 +4 since
ri can execute its first merge or joint merge earliest in round t0 + 2. For every round t ′ > t0 + 4
it always holds y(κ2, t ′) < yi(t ′). Hence, κ2 cannot reach ri in a round t ′ > t0 + 4 since κ2 can
only execute hops or joint hops and to execute a further hop when located at ri+1 it must hold
yi(t ′)< yκ2(t

′) which is a contradiction. In case κ2 reaches ri again in round t0 +3 or t0 +4, the
chain only has 5 robots left. Hence, the robots move towards the center of the smallest enclosing
circle of all robots, and all run sequences are stopped. ■

Lemma 6.4 At most 143n run sequences are required to gather all robots.

Proof. At most n merges or joint merges can happen (Lemma 6.14). Additionally, as stated by

Lemma 6.15, there can be at most
n·(1+ 1

5)
0.019 run sequences that stop with a shorten or joint shorten

and two vectors of length at least 1
2 . The number of shortens in which one vector has a smaller

length is bounded by 4n (Lemma 6.17).
A run sequence may be stopped via the progress of a different run sequence or two run sequences

together create progress (in joint shortens or joint merges). Every merge or joint merge can stop
at most 4 other run sequences. A joint shorten can stop one other run sequence (in case the two
run sequences form a joint run pair and only one of them executes the shorten). Thus, every
shorten stops at most one additional run sequence. Every joint shorten and joint merge also stops
one additional run sequence because two run sequences together have progress. Lastly, in the
case of merge and joint merges, at most 4, other run sequences are stopped. Hence, we count at

most 8n run sequences for merges and joint merges, 2 · n·(1+ 1
5)

0.019 for shortens and joint shortens with
vectors of length at least 1

2 , and 8n run sequences for shortens and joint shortens in which one
vector has a length of at most 1

2 . The total number of run sequences is hence upper bounded by

16n+2 · (1+ 1
5)

0.019 ≤ 143n. ■

Lemma 6.5 A configuration that does not become isogonal gathers after at most 5129n rounds.

Proof. We make use of a witness argument here. Consider an arbitrary robot ri with init(ri) = true.
The robot ri tries every 9 rounds to start two new run sequences. In case it does not start new run
sequences, it either sees another run sequence or it is blocked by a merge of another run sequence
within the last 4 rounds. Since every run states moves to the next robot in every round, |Ni(t)|= 9
and no run sequence visits the same robot twice (Lemma 6.3), ri can at most twice be prevented
from starting new run sequences by the same run sequence. Thus, for every 9 rounds, ri either
starts two new run sequences or is hindered by a run sequence. However, it can only be hindered by
the same run sequence twice. We say that in 9k rounds, for an integer k, ri is a witness of k run
sequences.

It can however happen that ri executes a merge in some round t. Without loss of generality, we
assume that ri merges with ri+1. Now, we have to consider three cases. Either init(ri+1, t+1) = true,
init(ri+2, t +1) = true or init(ri+1, t +1) = init(ri+2, t +1) = false. Assume that init(ri+1, t +1) =
true. In the next iteration when ri+1 tries to generate new run sequences it can happen that it is
hindered by run sequence that we have already seen at ri. However, 9 rounds later, this cannot
be the case anymore because ri and ri+1 have been direct neighbors. The same argument holds if
init(ri+2, t +1) = true.

What remains is a single case where neither init(ri+1, t +1) = true nor init(ri+2, t +1) = true.
This can only happen if ri+2 has an init state in round t and executes a merge in the same round.

98 Chapter 6. GATHERING in the LUMI Model

Then, either ri+3 or ri+4 has an init state or none of them if ri+4 has an init state in round t and
executes a merge. However, at the end of such a sequence, there either must be a robot that has
an init state or all run sequences along the chain execute a merge in round t. We either continue
counting at the robot that has an init state at the end of such a sequence, or we continue counting
at an arbitrary new init state that will be generated in the next round. We do not count any run
sequence that we have already counted at ri again in both cases.

All in all, after at most 18 rounds, either a new run sequence is generated, or we count a
run sequence while counting the same run sequence at most twice. Thus, after at most 2 ·18 ·n ·(

16+2 · (1+ 1
5)

0.019

)
≤ 5124n rounds we have counted enough run sequences that are necessary to

gather all robots in a single point (Lemma 6.4). After at most n−1 additional rounds, every run
sequence has stopped, and the configuration is gathered. As soon as only 5 robots are remaining
in the chain, all robots move according to the GO-TO-THE-CENTER protocol which ensures the
gathering of 5 robots after 5 more rounds [50]. The lemma follows. ■

6.3.6.3 Symmetric Case

Lemma 6.6 If the configuration is isogonal but not a regular star configuration in round t, the
configuration is a regular star configuration in round t +1.

Proof. Given that the entire configuration is isogonal, every robot executes a star-operation. All
robots lie on the same circle in round t, and the star-operation ensures that all robots stay on
the same circle because only target points on the circle’s boundary are computed. If the circle’s
diameter is at most 2, the robots gather in round t +1. Now, assume that the diameter has a size
of at least 2. This implies that no pair of robots can be connected via a vector that describes the
circle’s diameter. Thus, the circular arcs Lα and Lβ are unique. Consider now a robot ri and its
neighbors ri−1 and ri+1. Without loss of generality, assume that ∥wi(t)∥2 < ∥wi+1(t)∥2 and thus Lα

connects ri and ri−1 and Lβ connects ri and ri+1. In the star-operation, the robots ri and ri+1 move
towards each other and the robots ri and ri−1 move away from each other. Moreover, ri enlarges Lα

by r ·
(

β−α

4

)
and reduces Lβ by the same value. Since ri−1 enlarges Lα by the same distance and

ri+1 reduces Lβ by the same value, the new circular arcs Lα(t +1) and Lβ (t +1) can be computed
as follows:

Lα(t +1) = Lα +2 · r ·
(

β −α

4

)
= r ·α + r ·

(
β −α

2

)
= r ·

(
α +β

2

)
Lβ (t +1) = Lβ −2 · r ·

(
β −α

4

)
= r ·β − r ·

(
β −α

2

)
= r ·

(
α +β

2

)
Thus, Lα(t +1) = Lβ (t +1). Since this holds for every robot, the configuration is a regular star

configuration at time t +1. ■

The next step is to prove that bisector-operations executed in regular star configurations lead
to a linear gathering time. We analyze the regular star configuration represented by the regular
polygon {n/1} with edge length 1. In {n/1} and edge length 1, the inner angles are of maximal
size, and the distances robots are allowed to move towards the center of the surrounding circle
are minimal. Thus, it is enough to prove a linear gathering time for {n/1} with edge length 1.
Afterward, we can conclude a linear gathering time for any regular star configuration. In the
following, we remove for simplicity the assumption that a robot moves at most a distance of 1

5
in a bisector-operation. We multiply the resulting rounds by 5 and get the same result. For the
proof, we introduce some additional notation. Observe first that all angles αi(t) have the same
size in a regular star configuration. Thus we simplify the notation to α(t) in this context. Let
h(t) := ∥pi(t + 1)− pi(t)∥2 for any index i be the distance of a robot to its target point. This is

6.3 Protocol for the FSYNC Scheduler 99

again the same distance for every robot ri. In addition, define d(t) := ∥pi(t)− pi+1(t)∥2 for any
index i. The positions pi(t), pi+1(t) and pi(t + 1) form a triangle. The angle between h(t) and
d(t) has a size of α(t)

2 . Let y(t) denote the angle between d(t) and the line segment connecting
pi+1(t) and pi(t +1) and β (t) be the angle between h(t) and the line segment connecting pi+1(t)
and pi(t +1). See Figure 6.8 for a visualization of these definitions.

𝛼 𝑡
2

𝛽(𝑡)

𝛾(𝑡)

Figure 6.8: The notation for the analysis of regular star configurations.

Next, we state lemmas that analyze how the radius of the surrounding circle decreases. Let r(t)
be the radius of the surrounding circle in round t and t0 the round where the protocol’s execution
starts.

Lemma 6.22 r(t +1)≤ r(t)−
√

1− 4π2·r(t)2

n2 .

Proof. Since we are considering a regular polygon, α(t) = (n−2)π
n in every round t. By the law

of sines, h(t) = sin(γ(t))
sin(α(t)

2)
. Also, β (t) = arcsin(d(t) · sin(α(t)

2)) and γ(t) = π − α(t)
2 − β (t). Thus,

sin(γ(t)) = sin(π− α(t)
2 −β (t)) = sin(α(t)

2 +β (t)). Together with r(t)
r(t0)

= d(t)
d(t0)

(intercept theorem),
we obtain the following formula for h(t):

h(t) =
sin(γ(t))

sin
(

α(t)
2

) =
sin
(

α(t)
2 +β (t)

)
sin
(

α(t)
2

)
=

sin
(

α(t)
2 + arcsin

(
d(t) · sin

(
α(t)

2

)))
sin
(

α(t)
2

)
=

sin
(
(n−2)π

2n + arcsin
(

r(t)
r(t0)
· sin

(
(n−2)π

2n

)))
sin
(
(n−2)π

2n

)
=

sin
(
(n−2)π

2n + arcsin
(

2πr(t)
n · cos

(
π

n

)))
cos
(

π

n

)
=

sin
(

π

2 −
π

n + arcsin
(

2πr(t)
n · cos

(
π

n

)))
cos
(

π

n

)
=

cos
(

π

n − arcsin
(

2πr(t)
n · cos

(
π

n

)))
cos
(

π

n

)

Next, we apply the trigonometric identities cos(x− y) = sin(x) · sin(y) + cos(x) · cos(y) and
cos(arcsin(x)) =

√
1− x2 and obtain:

100 Chapter 6. GATHERING in the LUMI Model

h(t) =
cos
(

π

n − arcsin
(

2πr(t)
n · cos

(
π

n

)))
cos
(

π

n

)
=

√
1− 4π2 · r(t)2

n2 · cos2
(

π

n

)
+

2π · r(t)
n

· sin
(

π

n

)
≥
√

1− 4π2 · r(t)2

n2

Finally, we can prove the lemma:

r(t +1) = r(t)−h(t)≤ r(t)−
√

1− 4π2 · r(t)2

n2

■

Now, define by ∆r(t) = r(t0)− r(t). For ∆r(t + 1), we can derive the formula stated by the
following lemma.

Lemma 6.23 For ∆r(t)≥ 1: ∆r(t +1)≥ ∆r(t)+
√

∆r(t)√
n

Proof. First of all, observe ∆r(t +1) = ∆r(t)+h(t).

∆r(t +1)≥ ∆r(t)+

√
1− 4π2 · (r(t0)−∆r(t))2

n2

= ∆r(t)+

√
1−

4π2 ·
(n

2π
−∆r(t)

)2

n2

= ∆r(t)+

√
4π ·∆r(t)

n
− 4π2 ·∆r(t)2

n2

= ∆r(t)+
2
√

π
√

∆r(t)√
n

√
1− π ·∆r(t)

n

≥ ∆r(t)+
2
√

π
√

∆r(t)√
2
√

n

= ∆r(t)+

√
2
√

π
√

∆r(t)√
n

≥ ∆r(t)+

√
∆r(t)√

n

■

Lemma 6.24 After 2n rounds, ∆r(t)≥ 1.

Proof. In the proof of Lemma 6.22, we identified h(t) ≥ 2π·r(t)
n · sin

(
π

n

)
. Now, assume that

r(t)≥ r(t0)
2 = n

4π
(which holds for sufficiently large n since ∆r(t)< 1). Then, h(t)≥ 2π·n

4π
·sin

(
π

n

)
=

1
2 · sin

(
π

n

)
. For n≥ 2 it now holds h(t)≥ π

4n . Thus, after 2n rounds it holds ∆r(t)≥ 1. ■

6.4 Synchronization for the SSYNC and ASYNC Schedulers 101

Lemma 6.25 After at most 6n rounds, ∆r(t)≥ n
2π

and thus r(t) = 0.

Proof. We fix the first time step t ′ such that ∆r(t ′)≥ 1 (note that ∆r(t ′)≤ 2 in this case since no
robot moves more than a distance of 1 per round). By Lemma 6.24 this holds after at most 2n
rounds. Furthermore, ∆r(t) doubles every

√
n ·
√

∆r(t) rounds (Lemma 6.23). After at most logn
doublings, it holds ∆r(t)≥ n, and the robots are gathered. The first doubling requires

√
n ·
√

∆r(t ′)
rounds, the next doublings

√
n ·
√

2 ·∆r(t ′),
√

n ·
√

4 ·∆r(t ′), . . . rounds. Thus, the number of
rounds for logn doublings can be counted as follows:

√
∆r(t ′) ·

√
n

logn

∑
k=1

√
2k =

√
∆r(t ′) ·

√
n ·
√

2
(

1+
√

2
)(√

n−1
)
≤ 4n

Therefore, the total number of rounds can be upper bounded by 6n. ■

Lemma 6.7 Regular star configurations gather in at most 30n rounds.

Proof. Generally, the bisectors of regular star configurations intersect in the center of C. Thus,
with every bisector-operation, the distance of a robot to the center of C decreases until finally, all
robots gather. We prove the runtime for regular star configurations {n/1}, which are also denoted
as regular polygons. These polygons have inner angles αi(t) of maximal size; for higher values of
d (referring to the Schläfli symbol {n/d}), the inner angles become smaller. Thus, for the regular
polygon {n/1}, the distance a robot is allowed to move within a bisector-operation is minimal
among all regular star polygons. Lemma 6.25 states that the regular star configuration {n/1} with
side length 1 is gathered in 6n rounds. Since we did not consider the assumption that a robot moves
a distance of at most 1

5 per round, we multiply the result with 5 and get an upper bound of 30n on
the number of required rounds. Hence, all other regular star configurations can be gathered in linear
time as the robots can move larger distances per round. ■

6.4 Synchronization for the SSYNC and ASYNC Schedulers
The asymmetric part of the CC-HOPPER protocol uses the same movement operations as the
ε-2-HOPPER protocol for the CHAIN-FORMATION problem. Those movements can be transferred
to the SSYNC and ASYNC schedulers, as already seen in Chapter 5.

We need one additional synchronization procedure for small chains (at most 5 robots are
remaining). In this case, all robots move towards the center of the smallest enclosing circle of the
remaining robots. Without additional synchronization, GATHERING is impossible in SSYNC. The
slight change is as follows: As long as the radius of the smallest enclosing circle of all remaining
robots is larger than 1

2 , the robots continue to execute GTC. Otherwise, (the radius is at most 1
2 , and

thus all robots are in the distance at most 1 of each other), robots move towards the center of the
smallest enclosing circle in case all other robots have the same value of the epoch counter. If at
least one epoch counter is larger, robots move simply to a robot with a larger epoch counter. This
ensures GATHERING as either all robots are activated simultaneously and gather immediately or
some robots have activated that move to the center of the smallest enclosing circle and all other
robots follow as soon as they are activated.

Lastly, the CC-HOPPER protocol also consists of a protocol for isogonal configurations. How-
ever, this does not require further synchronization as all robots are activated simultaneously, or
some robots move according to the symmetric protocol, and some do not move. In the latter case,
the exceptional generation of init states ensures that this can happen at most n times, and thus,
GATHERING is done after O(n) epochs. We denote the CC-HOPPER protocol extended by the
synchronization techniques as the CC-HOPPER-ASYNC protocol.

102 Chapter 6. GATHERING in the LUMI Model

Theorem 6.2 The CC-HOPPER-ASYNC protocol gathers a closed chain of robots in O(n)
epochs in the LUMI A

4 model. The protocol can be implemented with a constant number of
colors.

6.5 Conclusion & Outlook
We introduced and analyzed the CC-HOPPER protocol that gathers a closed chain of disoriented
robots with limited visibility in the Euclidean plane in linear time. The linear runtime originates in
a combination of run sequences implemented with help of the LUMI model and a complete char-
acterization of symmetries, where the ideas of run sequences cannot be applied. By understanding
the symmetries, we designed an additional protocol that gathers these configurations in linear time.
The CC-HOPPER protocol is the first linear time GATHERING protocol for disoriented robots with
limited visibility in the Euclidean plane.

Nevertheless, there are lots of questions left to answer for future research. First of all, there are
some questions regarding the CC-HOPPER protocol itself. The protocol uses a viewing range of 4
which is necessary for the vector length patterns to detect asymmetries to start new run sequences.
However, it is not clear whether the viewing range of 4 is needed in general. Hence, we raise the
following question: Is there a linear time protocol to gather a Euclidean closed chain of disoriented
robots with limited visibility that requires a viewing range of 3 or less? Moreover, we have analyzed
an upper runtime bound of 5129n epochs. Although the runtime is asymptotically optimal, the
constant 5129 could be reduced with a more sophisticated analysis technique. Currently, we bound
for each operation (e.g., (joint) shorten and (joint) merge) how often it could be executed in the
worst case without taking into account other operations. For instance, if initially n−3 merges are
executed, it cannot happen that still, Ω(n) (joint) shortens are executed since the remaining chain
has only a constant length. Such bounds, however, depend heavily on the order of the operations
that occur and, thus, are non-trivial to establish.

Furthermore, it remains open whether a linear time protocol for disoriented robots with limited
visibility in the Euclidean plane also exists in the standard connectivity model, i.e., without an a
priori given closed chain. The main idea would be to apply (ideas of) the CC-HOPPER protocol to
the boundaries of the swarm since the boundary itself forms a closed chain. Similarly, this has been
done on the grid [2, 40] (although the concrete protocol is much more involved compared to simply
applying the closed chain protocol to the boundaries). However, in our first approach, we identified
severe challenges. First of all, it is not clear where the boundary exactly is. Robots can locally
guess whether they could be part of the global boundary but can never be sure. Moreover, they
cannot necessarily determine which of their neighbors are also part of the boundary. Additionally,
assuming that robots can determine that they are part of the boundary, applying the CC-HOPPER

protocol could destroy the connectivity of the swarm to other robots that are not part of the boundary.
Hence, we currently observe several challenges that need to be carefully analyzed in future research.

The last open question is about a general lower bound: Is the LUMI model needed to reach a
linear time GATHERING protocol or does such a protocol also exist in the OBLOT model? We
elaborated on this question already in Section 4.5.

II Expanding Problems

7 The MAX-CHAIN-FORMATION Problem 105
7.1 Contribution . 105
7.2 Model Recap and Preliminaries . 107
7.3 Protocols and Analyses in the OBLOT F

1 Model 107
7.4 Protocols and Analyses in the OBLOT C

1 Model 120
7.5 On the Speed of the Outer Robots . 132
7.6 Conclusion & Outlook . 135

8 The MAX-LINE-FORMATION Problem 137
8.1 Contribution . 137
8.2 Model Recap and Preliminaries . 138
8.3 Results in the OBLOT Model . 139
8.4 Results in LUMI Model . 149
8.5 Conclusion & Outlook . 155

7. The MAX-CHAIN-FORMATION Problem

In Part I, we studied formation problems where robots have to move closer together (GATHERING)
or to minimize a target structure (CHAIN-FORMATION). Such tasks are basic subroutines for
recollecting spread-out robots or optimizing a communication interface realized by a chain of relay
robots. The following two chapters shift the focus to formation tasks that have an opposite goal:
to spread the robots out to cover a large area. Algorithmically, contracting formation problems
seem to be easier to solve since robots can locally guess where the inside of the swarm is. The
main challenge of expanding formation problems is that robots locally have to spread out not
knowing in which direction other robots potentially move. Probably because of these additional
challenges and since the research area is relatively young, there is not much known about expanding
formation problems for robots with limited visibility in the literature yet. Therefore, we focus on
a conceptually very simple formation: a line of maximal length (concerning the viewing ranges
of the robots). As we will observe, also this simple structure adds lots of challenges both on the
algorithmic as well as on the analysis side. In this chapter, we study the MAX-CHAIN-FORMATION

problem, where the robots are connected in an open chain and the outer robots can move. The goal
is to maximize the length of the chain. The results in this chapter are based on the following journal
article.

2022 (with P. Kling, T. Knollmann and F. Meyer auf der Heide) “A Discrete
and Continuous Study of the Max-Chain-Formation Problem” In: Information
and Computation, cf. [30].

A preliminary version appeared in the conference proceedings of SSS 2020:

2020 (with P. Kling, T. Knollmann and F. Meyer auf der Heide) “A Discrete and
Continuous Study of the Max-Chain-Formation Problem – Slow down to Speed
Up” In: Proceedings of the 22nd International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), Best Paper Award, cf. [29].

7.1 Contribution
We initiate the study of the MAX-CHAIN-FORMATION in two different time models: the FSYNC

scheduler and the continuous time model. More precisely, we study the OBLOT F
1 and OBLOT C

1
models with an open chain of robots. On the algorithmic side, we adapt the known (contracting)
CHAIN-FORMATION protocols GTM [60] (FSYNC) and MOB [49] (continuous time) such that
they still straighten the chain but, at the same time, keep extending its length. In the GTM protocol,

106 Chapter 7. The MAX-CHAIN-FORMATION Problem

inner robots move in every round to the midpoint between their neighbors. The MOB protocol
moves inner robots with a speed of 1 along the angle bisector between vectors pointing to their
neighbors. Our basic idea for the MAX-CHAIN-FORMATION problem is to let inner robots perform
the contracting protocol while the two outer robots extend the chain by moving away from their
respective neighbor. While this seems to be a minor modification of the contracting protocols on a
conceptual level, we identify a much more complex behavior of the robots caused by the extension.
Also, the analysis is much more complex – we use several different techniques: among others,
we use discrete Fourier transforms, the mixing time of Markov Chains, and the stability theory of
dynamical systems.

Section 7.3 considers theOBLOT F
1 model, for which we distinguish the one-dimensional case

(all robots are initially collinear) and the general two-dimensional case. In the one-dimensional
case, we see that symmetric configurations are problematic for any (deterministic) protocol. This is
obvious for the trivial configuration, where all robots start in the same spot. However, also from
less contrived starting positions (e.g., when the initial chain is symmetrical around the origin),
any deterministic protocol results in a non-maximal chain (that potentially keeps moving) (see
Theorem 7.4). In the following, we denote the desired configuration, a straight line of length n−1
by a max-chain. On the contrary, an undesired configuration that keeps moving through the plane
forever is called a marching chain (and is formally defined in Section 7.3.2).

Theorem 7.1 Under the MAX-GTM protocol on the line, the robot movement reaches in time
Ω
(
n2 · log(1/ε)

)
and O

(
n2 · log(n/ε)

)
an ε-approximation of a stationary, max-chain of length

n−1, if the outer robots move in different directions after n−2 rounds or a chain of non-maximal
length moving at speed 1/n (marching chain) if the outer robots move in the same direction after
n−2 rounds.

While this gives a nearly complete picture of the one-dimensional case, the two-dimensional
case exhibits a much more complex behavior. We can still prove convergence in finite time and
derive a lower bound (which now depends also on the outer robots’ initial distance) but an upper
bound remains elusive.

Theorem 7.2 Under the MAX-GTM protocol, the robot movement reaches an ε-approximation
either of the max-chain or a one-dimensional marching chain. There are configurations for which
this takes Ω(n2 · log(1/δ)) rounds, where δ denotes the initial distance between the outer robots.

Interestingly, however, fixing the position of one of the two outer robots enables us to employ tools
from Markov Chain theory (as used in previous results [88]), yielding the same almost tight runtime
bound as in the one-dimensional case (see Theorem 7.11). In combination with simple experimental
evaluations, our results indicate that the worst-case lower bound stated in Theorem 7.2 is tight.

Section 7.4 considers the OBLOT C
1 model. As in the discrete setting, very symmetric configu-

rations lead to unavoidable problems for deterministic strategies. Moreover, a naïve translation of
the MOB protocol results in the same dependency on the outer robots’ initial distance δ . However,
the continuous model allows for an interesting tweak which, as we show in Section 7.5, cannot
be done in the discrete model. Namely, it turns out that decreasing the speed of outer robots by a
small constant gets rid of the dependency on δ and yields an optimal, linear runtime bound. As
a byproduct, this also causes symmetrical initial positions to collapse to a single point instead of
becoming a marching chain. Summarized, we get the following result for our protocol MAX-MOB
designed for the OBLOT C

1 .

Theorem 7.3 MAX-MOB reaches in worst-case optimal time Θ(n) a stationary, maximum
chain of length n−1 or the chain collapses to a single point.

7.2 Model Recap and Preliminaries 107

Our results show that the idealized continuous model yields a linear speed-up for the MAX-
CHAIN-FORMATION problem, similar to contracting robot formation problems. The major open
problem is to find an upper runtime bound for MAX-GTM in the discrete setting where both
endpoints move. Moreover, while very symmetrical initial configurations pose a problem for
deterministic protocols, both experiments with a simple, custom simulator and looking at our
protocols from the perspective of dynamical systems suggest that such configurations are few and
unstable. Thus, minor, random perturbations usually yield a configuration where the robots reach
the desired maximal chain. We analyze this observation formally by proving that the marching
chain is an unstable fixed point of the related dynamical system. We discuss this in more detail in
Section 7.3.3.2.

7.2 Model Recap and Preliminaries

We study the OBLOT F
1 (MAX-GTM) and OBLOT C

1 (MAX-MOB) models in combination with
an open chain of robots. The most important model parameters are summarized in Table 7.1, and a
complete model definition can be found in Chapter 2.

Protocol Time Dimension Viewing
Range

Orientation Chain

MAX-GTM FSYNC 1&2 1 disoriented yes
(open)

MAX-MOB Continuous 1&2 1 disoriented yes
(open)

Table 7.1: A summary of the most important model details for the MAX-GTM and MAX-MOB
protocols.

Problem Statement. Throughout the chapter, we use the notation ∆i, j(t) := ∥pi(t)− p j(t)∥2
to describe the Euclidean distance between ri and r j at time t. The goal of the MAX-CHAIN-
FORMATION problem is to reach a configuration with ∆0,n−1(t) = n− 1, i.e., the outer robots
reach a distance of n− 1 which can only be the case if the chain is connected and all robots
are arranged on a straight line of maximal length. More precisely, each vector wi(t) (recall that
wi(t) = pi(t)− pi−1(t)) should have a length of 1 and wi(t) = wi+1(t) for 1≤ i≤ n−2. We call
this configuration a max-chain. We say that we have reached an ε-approximation of the max-chain
if ∆0,n−1(t)≥ (1− ε) · (n−1) and ∥wi(t)∥2 > 1− ε for all 1≤ i≤ n−1.

Definitions & Notation. Next, we introduce a characterization of configurations that is relevant
to our analyses. In one-dimensional configurations, the positions of all robots are collinear. In
two-dimensional configurations, there exists a set of at least 3 robots whose positions are not
collinear. Our analyses distinguish two special kinds of one-dimensional configurations: Opposed
configurations and marching configurations. Recall that ŵi(t) represents the normalized vector

wi(t)
∥wi(t)∥2

. In opposed configurations, the outer robots are on different sides of their neighbors,
i.e., ŵ1(t) = ŵn−1(t). In marching configurations, the outer robots are on the same side of their
neighbors, i.e., ŵ1(t) =−ŵn−1(t).

7.3 Protocols and Analyses in the OBLOT F
1 Model

In this section, we describe MAX-GTM for the FSYNC time model. Intuitively, the protocol solves
two tasks concurrently. The first task is to arrange all robots in a straight line, while the second task
is to lengthen the chain by moving the outer robots away from each other. For the first task, we

108 Chapter 7. The MAX-CHAIN-FORMATION Problem

adapt the GTM-protocol for CHAIN-FORMATION in which all inner robots move to the midpoint
between their neighbors each round. The outer robots move as far as possible away from their
neighbors for the second task while keeping the chain connected.

7.3.1 MAX-GO-TO-THE-MIDDLE (MAX-GTM)
MAX-GTM works as follows: Every inner robot moves to the midpoint between its neighbors. An
outer robot moves as far as possible away from its neighbor. To do so, in round t, the outer robot r0
normalizes the vector w1(t), imagines a virtual robot r−1 positioned at p0(t)− ŵ1(t) and moves
to the midpoint between r−1 and r1. The procedure works analogously for rn−1. In the special
case p0(t) = p1(t) (pn−2(t) = pn−1(t) respectively), r0 (rn−1) does not move. See Figure 7.1 for a
visualization of the movements.

rn

r−1

r0

rn−1

Figure 7.1: A visualization of MAX-GTM. The target point of each robot is marked by a cross.
Both r−1 and rn are virtual robots.

Formally, assuming a global coordinate system not known to the robots, the positions of all
robots in the next round can be computed as follows.

p0(t +1) =
1
2

p0(t)+
1
2

p1(t)−
1
2

ŵ1(t) (7.1)

pi(t +1) =
1
2

pi−1(t)+
1
2

pi+1(t) for 1≤ i < n−1 (7.2)

pn−1(t +1) =
1
2

pn−2(t)+
1
2

pn−1(t)+
1
2

ŵn−1(t) (7.3)

Based on Equations (7.1) to (7.3) we can derive formulas for the vectors wi(t +1).

w1(t +1) = p1(t +1)− p0(t +1)

=
1
2

p0(t)+
1
2

p2(t)−
1
2

p0(t)−
1
2

p1(t)+
1
2

ŵ1(t)

=
1
2

ŵ1(t)+
1
2

w2(t) (7.4)

wi(t +1) = pi(t +1)− pi−1(t +1)

=
1
2

pi−1(t)+
1
2

pi+1(t)−
1
2

pi−2(t)−
1
2

pi(t)

=
1
2

wi−1(t)+
1
2

wi+1(t)

wn−1(t +1) = pn−1(t +1)− pn−2(t +1)

=
1
2

pn−2(t)+
1
2

pn−1(t)+
1
2

ŵn−1(t)−
1
2

pn−3(t)−
1
2

pn−1(t)

=
1
2

wn−2(t)+
1
2

ŵn−1(t) (7.5)

7.3 Protocols and Analyses in the OBLOT F
1 Model 109

Next, define w(t) = (w1(t),w2(t), . . . ,wn−1(t))T as the matrix where the i-th row corresponds
to the vector wi(t). Simplified, we can compute w(t +1) as a matrix-vector product: w(t +1) =
S(t) ·w(t) = ∏

0
i=t S(i) ·w(0) with the protocol matrix

S(t) =



1
2·∥w1(t)∥2

1
2 0 0 . . . 0 0 0 0

1
2 0 1

2 0 . . . 0 0 0 0

0 1
2 0 1

2 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1
2 0 1

2 0

0 0 0 0 . . . 0 1
2 0 1

2

0 0 0 0 . . . 0 0 1
2

1
2·∥wn−1(t)∥2



.

The vector representation already leads to an important lemma for the analysis: MAX-GTM
always maintains the connectivity of the chain.

Lemma 7.1 Applying the MAX-GTM protocol to a connected configuration in round t leads to
a connected configuration in round t +1.

Proof. Above, we have seen w1(t +1) = 1
2 ŵ1(t)+ 1

2 w2(t), wi(t +1) = 1
2 wi−1(t)+ 1

2 wi+1(t) for all
1 < i < n−1 and wn−1(t +1) = 1

2 wn−2(t)+ 1
2 ŵn−1(t). Since each vector w j(t) (0≤ j ≤ n−1) has

a length of at most 1 at time t, we conclude by applying the triangle inequality that each vector has
a length of at most 1 at time t +1 as well. ■

Throughout the rest of the analysis, we take Lemma 7.1 for granted and do not always mention
explicitly that the connectivity is maintained.

7.3.2 One-Dimensional Analysis
Next, we investigate the performance of MAX-GTM in a one-dimensional configuration. These
configurations already reveal an interesting behavior of MAX-GTM: some configurations do not
converge to a max-chain, but to a different structure, which we denote as the marching chain,
i.e., an undesired configuration that keeps moving through the plane forever. The two classes of
configurations that play a role in this analysis are marching and opposed configurations. For the
analysis, we assume that the robots are distributed on the x-axis of a two-dimensional Cartesian
coordinate system (not known to the robots). Hence, the vectors wi(t) are one-dimensional in the
following. We divide the analysis into two parts based on the initial configuration of the robots. For
opposed configurations, we assume without loss of generality that r0 moves to the left (into negative
direction; w1(t)> 0) and rn−1 moves to the right (into positive direction; wn−1(t)> 0). Similarly,
for marching configurations, we assume that both r0 and rn−1 move to the right and thus w1(t)< 0
and wn−1(t)> 0. Define d to be −1 for opposed configurations and 1 for marching configurations.
Then, Equations (7.1) and (7.3) as well as Equations (7.4) and (7.5) simplify to

p0(t +1) =
1
2

p0(t)+
1
2

p1(t)+
1
2

d

pn−1(t +1) =
1
2

pn−2(t)+
1
2

pn−1(t)+
1
2

w1(t +1) =
1
2

w2(t)−
1
2

d

wn−1(t +1) =
1
2

wn−2(t)+
1
2
.

110 Chapter 7. The MAX-CHAIN-FORMATION Problem

In some exceptional cases, a marching configuration may be transformed into an opposed
configuration or vice versa. Luckily, we can prove that this happens at most once within the first
n−2 rounds. Afterward, no further switch can happen.

Lemma 7.2 MAX-GTM switches at most once between opposed and marching configurations.
The switch is executed after at most n−2 rounds.

Proof. Consider an outer robot, for example, r0. Without loss of generality, we assume that initially
p0(t)< p1(t) and that r0 is passed by r1, i.e., p0(t +1)> p1(t +1). Then,

p0(t +1)> p1(t +1) ⇐⇒ 1
2

p0(t)+
1
2

p1(t)−
1
2
>

1
2

p0(t)+
1
2

p2(t)

⇐⇒ p1(t)−1 > p2(t).

This implies that the distance between the two robots r1 and r2 was greater than 1 at time t which is
a contradiction since the configuration is always connected (Lemma 7.1). Thus, r1 cannot pass r0
in a single round. However, r0 and r1 could move to the same position. As a consequence, r0 does
not move in the next round and thus r1 could pass r0 in two rounds. We prove that this can only
happen once if the initial configurations have specific properties. To do so, we start by analyzing
under which conditions r0 and r1 move to the same position in the next round. The arguments for
rn−2 and rn−1 are always analogous and for readability omitted here.

p0(t +1) = p1(t +1) ⇐⇒ 1
2

p0(t)+
1
2

p1(t)−
1
2
=

1
2

p0(t)+
1
2

p2(t)

⇐⇒ p1(t)−1 = p2(t)

⇐⇒ p2(t)− p1(t) =−1

With analogous calculations for the mirrored case p0(t)> p1(t), we obtain w2(t) =−ŵ1(t). Ob-
serve that especially ∥w2(t)∥2 = 1 must hold. Now, consider any round t ′ such that ∥w2(t ′)∥2 < 1.
In the next round, ∥w2(t ′+1)∥2 = 1 can only hold if w1(t ′) = w3(t ′) and ∥w1(t ′)∥2 = ∥w3(t ′)∥2 = 1
as w2(t ′+1) = 1

2 w1(t ′)+ 1
2 w3(t ′). In a similar way, one can see that ∥w2(t ′)∥2 = 1 must hold to

obtain ∥w1(t ′+ 1)∥ = 1. Finally, consider any round t̂ such that p0(t̂) = p1(t̂) (the necessary
precondition to obtaining a switch). As p0(t̂) = p1(t̂), we have that ∥w1(t̂)∥2 = 0. Based on our
observations above, ∥w1(t̂ +1)∥2 < 1 and ∥w2(t̂ +1)∥2 < 1. Moreover, in every future round t ′′ > t̂
it will hold both ∥w1(t ′′+1)∥2 < 1 and ∥w2(t ′′+1)∥2 < 1 and hence, no second switch could occur
(as ∥w2(t ′′)∥2 = 1 must hold to obtain a switch).

It remains to argue that the precondition for the switch (p0(t) = p1(t)) can only be fulfilled in
the first two rounds. Assume that the computation starts in round 0. Then, either p0(0) = p1(0) or
w2(0) =−ŵ1(0). Assume that p0(0) ̸= p1(0) and w2(0) ̸=−ŵ1(0). Since, for any t, w2(t +1) =
1
2 w1(t)+ 1

2 w3(t) there cannot be any round t ′ in the future such that w2(t ′)=−ŵ1(t ′). Thus, a switch
can only happen if either p0(0) = p1(0) or w2(0) =−ŵ1(0). To complete the switch, r1 and r0 must
finally swap their positions. Either all robots are located in the same position or, if there is at least one
vector of length larger than 0 in the chain, the swap will be obtained after at most n−2 rounds, since
w1(t+1) = 1

2 ŵ1(t)+ 1
2 w2(t), w1(t+2) = 1

2 ŵ1(t+1)+ 1
2 w2(t+1) = 1

4 ŵ1(t+1)+ 1
4 w1(t)+ 1

4 w3(t)
and so on (after t + x rounds, w1(t + x) consists of a term w1+x(t) and thus, after n− 2 rounds,
w1(t +n−2) consists of a term for each initial wi(t)).

■

As a summary, the switch between opposed and marching configurations can only happen if
w2(0) =−ŵ1(0) or wn−2(0) =−ŵn−1(0). In this case, r0 and r1 or rn−2 and rn−1 move to the same
position and it can take up to n−2 rounds until all robots have distinct positions. As soon as all
robots have distinct positions afterward, the configuration remains either a marching configuration
or an opposed configuration. For ease of notation, we say in the following that a configuration is an

7.3 Protocols and Analyses in the OBLOT F
1 Model 111

opposed configuration if it is an opposed configuration after applying MAX-GTM for n−2 rounds
(similar for marching configurations).

As a consequence of Lemma 7.2, starting from a marching configuration, MAX-GTM does
not converge to a max-chain. For some highly symmetric configurations, for instance, the configu-
ration depicted in Figure 7.2 (contained in Section 7.3.2.2), this even cannot be obtained by any
deterministic protocol due to a high symmetry.

Theorem 7.4 There are marching configurations that cannot be transformed into a max-chain
by any deterministic protocol.

Proof. Assume that there is a deterministic protocol s that transforms an initial marching configura-
tion into a max-chain. Then s must switch the marching configuration to an opposed configuration.
Consider an initial marching configuration w(0) that is symmetric in the sense that the local situation
of any robot ri is equivalent to the local situation of robot rn−1−i for each 0≤ i≤ n−1. Assume
that s transforms w(0) into an opposed configuration at time step t. Thus, r0 changes its direction at
time t. Since the configuration is symmetric, s is deterministic, and the robots are anonymous, rn−1
changes its direction at time t as well. Then, w(t +1) is still a marching configuration which poses
a contradiction. ■

7.3.2.1 Analysis of Opposed Configurations

For opposed configurations, we can show that MAX-GTM converges to the max-chain.

Theorem 7.5 Started in an opposed configuration, MAX-GTM needs at most O(n2 · log(n/ε))
rounds to achieve an ε-approximation of the max-chain.

Proof. We use the potential φ1(t) = ∑
n−1
i=1 (1−∥wi(t)∥2)

2 for a time step t. First, observe that for

mi(t) = 1−∥wi(t)∥2, we have that φ1(t) = ∑
n−1
i=1 mi(t)2 and φ1(t + 1) = ∑

n−1
i=1

(
mi−1(t)+mi+1(t)

2

)2
.

Also, since the virtual robots r−1 and rn are always at a distance of 1 to their neighbors, m0(t) =
mn(t) = 0. The potential function φ1(t) is nearly identical to the function ψ(t) of [38]. In particular,
this allows us to apply the same discrete sine transformations and the proof of Theorem 2.2 of [38]
works analogously up to Equation 5 resulting in φ1(t +1)≤ cos2

(
π

n+1

)
φ1(t)≤ cos2 t

(
π

n+1

)
φ1(0)

for any time step t. Note that the difference in the denominator comes from the fact that we consider
n moving robots in contrast to the N− 2 moving robots assumed in [38]. Next, using standard

methods and Taylor’s theorem, we can derive that for y ∈ R and 0≤ y≤ π

2 : cos(y)≤
(

1− y2

4

)2
.

Setting t =
⌈
(n+1)2

π2 ln((n−1)2

ε2)
⌉
∈ O(n2 log(n/ε)) then yields φ1(t)≤ ε2

(n−1)2 ·φ1(0)≤ ε2

n−1 . The last
inequality holds because φ1(0) is upper bounded by n−1. Obviously, there cannot be any vector
wi(t) fulfilling ∥wi(t)∥2 < 1− ε since φ1(t) ≤ ε2

n−1 holds. Thus, for each individual vector wi,
∥wi∥2 > 1− ε and thus, a ε-approximation of the max-chain is achieved. ■

The analysis of the mixing time of a Markov Chain allows us to prove a close lower bound of
Ω
(
n2 · log(1/ε)

)
rounds. Here, we can rewrite w(t) and S(t) slightly such that the resulting protocol

matrix is a stochastic matrix that can be interpreted as the transition matrix of a Markov Chain with
a single absorbing state. Markov Chains with a single absorbing state have a unique stationary
distribution, such that some bounds for the mixing times of Markov Chains can be applied.

Theorem 7.6 There exist opposed configurations such that MAX-GTM needs at least Ω
(
n2 ·

log(1/ε)
)

rounds to achieve an ε-approximation of the max-chain.

For the proof consider the protocol matrix S(t) of MAX-GTM as described in Section 7.3.1.
Recapitulate that the transition function for the outer robots simplifies as described at the beginning

112 Chapter 7. The MAX-CHAIN-FORMATION Problem

of this section for one dimension. Therefore, the respective entries in S(t) collapse for the entries
w1(t) and wn−1(t). To achieve the addition of a constant for these vectors in each executed step, we

change both w(t) and S(t). w(t) is extended to w′(t) =
[

1 w1(t) . . . wn−1(t)

]T

. S(t) changes

to the following matrix, independent of the current time t:

A1 =



1 0 0 0 0 0 . . . 0 0 0 0

1
2 0 1

2 0 0 0 . . . 0 0 0 0

0 1
2 0 1

2 0 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1
2 0 1

2 0

0 0 0 0 0 0 . . . 0 1
2 0 1

2

1
2 0 0 0 0 0 . . . 0 0 1

2 0



.

Similar to before the behavior of MAX-GTM in one step is described by w′(t +1) = A1 ·w′(t).
Furthermore, A1 is stochastic and can also be interpreted as a Markov Chain with n states, where
the first state is absorbing. Similar to [88], the following eigenvalues can be derived:

Lemma 7.3 A1 has the eigenvalues λ j+1 = cos
(

jπ
n

)
for j = 0, . . . ,n−1 and the unique station-

ary distribution π(A1) =

[
1 0 . . . 0

]
.

Next, we introduce the mixing time of a Markov Chain formally. For two probability distri-
butions α and β , ∥α−β∥TV := 1

2 ∑
n−1
i=0 |αi−βi| denotes the total variation distance of α and β .

Each row of a stochastic matrix (such as A1) can be interpreted as a probability distribution. We
denote by Pi,. the i-th row of a matrix P. Given that a transition matrix P of a Markov Chain that
converges to a unique stationary distribution π , the distance from stationarity after t steps is defined
as d(t) := max0≤i≤n−1 ∥Pt

i,.−π∥TV . Then, the mixing time is tmix(ε) := min{t ∈ N0 |d(t)≤ ε}.
The following lemma relates the eigenvalues of the transition matrix of a reversible, irreducible,

and aperiodic Markov Chain to its mixing time.

Lemma 7.4 — [81, 94]. Let P be the transition matrix of a reversible, irreducible, and aperiodic
Markov Chain over a state space of size n. Furthermore, let πmin(P) be the smallest entry of its
stationary distribution π(P) and λ2 the second largest absolute eigenvalue of P. Then, we obtain(

1
1−λ2
−1
)
· 1

log(2ε) ≤ tmix(ε)≤
(

1
1−λ2
−1
)
· ln
(

1
ε·πmin(P)

)
. The lower bound even holds in case

the Markov Chain is not irreducible and aperiodic; it must only converge to a unique stationary
distribution.

Proof of Theorem 7.6. Observe that by Lemma 7.3, the eigenvalues of A1 are equivalent to the
ones used in [88], since we have k = 1 and consider configurations given by n vectors in contrast
to n+1 vectors assumed in [88]. Due to [88, Theorem 5], for the spectral gap of A1 we conclude
λ2 ∈Θ

(
1− 1

n2

)
. Combined with Lemma 7.4, we can see that the mixing time for a factor of 2ε is

at least tmix(2ε)≥
(

1
1−λ2
−1
)
· 1

log(4ε) ∈Ω
(
n2 log(1/ε)

)
. Assume we are at time step t < tmix(2ε).

Consider At
1 and note that we can express the configuration at step t by w(t) = At

1 ·w(0). Due
to the mixing time and the stationary distribution of A1 introduced in Lemma 7.3, we know that
there is an i ∈ [0,n− 1] such that At

1[i,1] < (1− 2ε). Further, At
1[i,n− 1] ≤ 1. Define the initial

configuration by w1(0) = 1,wi(0) =−0.313 for 2 ≤ i ≤ n, and wn−1(0) = ε. Notice that w(0) is

7.3 Protocols and Analyses in the OBLOT F
1 Model 113

a valid opposed configuration. Also wi(t +1) = ∑
n−1
j=0 At

1[i, j] ·w j(0)< (1−2ε)+ ε = (1− ε) and
thus, no ε-approximation of the optimal configuration has been reached. ■

7.3.2.2 Analysis of Marching Configurations

Marching configurations do not converge to a max-chain but have a different convergence behavior.
They converge to the marching chain. It is called marching chain because the robots all together
move in the same direction and never stop. For even n, the configuration wM(t) defines the marching
chain. wM(t) = (1− 2

n ,1−
4
n , . . . ,

2
n ,0, −

2
n ,−

4
n , . . . ,−(1−

2
n))

T . For odd n, the configuration is
similar: wM(t) = (1− 2

n ,1−
4
n , . . . ,

1
n , −1

n ,−
3
n , . . . ,−(1−

2
n))

T . Figure 7.2 visualizes the marching
chain for an even number of robots. Observe that S(t) ·wM(t) = wM(t) (wM(t) is an eigenvector of
S(t) to the eigenvalue 1). In the marching chain, each robot moves a distance of 1

n per round.

r0

r9

r1 r2 r3 r4

r5r6r7r8

w1(t) w2(t) w3(t) w4(t)

w9(t) w8(t) w7(t) w6(t)

w5(t)

Figure 7.2: A marching chain for n = 10. Every position is occupied by two robots.

Starting in a marching configuration, the convergence time until all vectors only differ up to ε

from their corresponding vector in the marching chain is equal to the runtime bound for opposed
configurations. Here, we can again use the analysis of the mixing time of a Markov Chain for a
slightly different transition matrix.

Theorem 7.7 Given a marching configuration, MAX-GTM needs at most O(n2 · log(n/ε)) and
at least Ω(n2 · log(1/ε)) rounds to achieve an ε-approximation of the marching chain.

For the proof of Theorem 7.7, we analyze the distance a robot moves in each time step. Define
zi(t) := pi(t +1)− pi(t) to be the vector pointing from pi(t) to pi(t +1). Without loss of generality,
we assume that the outer robots both move in a positive direction. More formally:

z0(t) =
1
2

p0(t)+
1
2

p1(t)+
1
2
− p0(t)

zi(t) =
1
2

pi−1(t)+
1
2

pi+1(t)− pi(t) for 1≤ i < n−1

zn−1(t) =
1
2

pn−2(t)+
1
2

pn−1(t)+
1
2
− pn−1(t)

Note that for an arbitrary t ∈ N0, ∑
n−1
i=0 zi(t) = 1. The corresponding equations for the next time

step can be computed as follows:

z0(t +1) =
1
2

z0(t)+
1
2

z1(t)

zi(t +1) =
1
2

zi−1(t)+
1
2

zi+1(t) for 1≤ i < n−1

zn−1(t +1) =
1
2

zn−2(t)+
1
2

zn−1(t)

Now, let z(t) be a column vector of length n whose i-th entry contains zi(t). For the next time step,
z(t +1) can be computed as the product of the transition matrix A2 and z(t):

114 Chapter 7. The MAX-CHAIN-FORMATION Problem

z(t +1) =



1
2

1
2 0 0 0 0 . . . 0

1
2 0 1

2 0 0 0 . . . 0

0 1
2 0 1

2 0 0 . . . 0

0 0 1
2 0 1

2 0 . . . 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 1
2

1
2


· z(t) = At

2 · z(1)

Note that A2 can also be interpreted as the transition matrix of an aperiodic and irreducible
Markov Chain. The mixing time of this matrix has already been analyzed in [88].

Lemma 7.5 — [88]. For A2, tmix(ε) ∈Ω
(
n2 log 1/ε

)
and tmix(ε) ∈ O

(
n2 log n/ε

)
.

Based on the results in [88], Theorem 7.7 follows.

7.3.3 Two-Dimensional Analysis
The analysis of two-dimensional configurations exhibits a much more complex behavior than the
one-dimensional case. Still, we can prove convergence: the chain either converges to a marching
chain or the max-chain and thus, no additional convergence behavior exists when switching to two
dimensions (Section 7.3.3.1). However, it is much harder to predict the final configuration based
on the properties of the initial configuration. In Section 7.3.3.2, we prove based on results about
non-linear discrete dynamical systems that marching chains are unstable fixed points. Intuitively,
this means that configurations close to marching chains converge to max-chains. This gives a hint
that the set of initial configurations converging to the marching chain is tiny. Using this insight about
the stability of marching chains, we derive a lower bound configuration for the two-dimensional
case in Section 7.3.3.3. The runtime of MAX-GTM started in this lower bound configuration does
not only depend on the number of robots but also a geometric property of the initial configuration.
Hence, we see an interesting gap in the runtime between one-dimensional and two-dimensional
configurations. We conclude this section by considering the case that only one of the outer robots
moves while the other one remains stationary in Section 7.3.3.4. We can prove the same runtime
bounds as for the one-dimensional case for this case.

7.3.3.1 Convergence Result

Next, we prove a convergence result for two-dimensional configurations, stating that an initial
configuration either converges to the max-chain or the marching chain. In the analysis, we again
consider the vectors zi(t) = pi(t +1)− pi(t) and the function φ2(t) = ∑

n−1
i=0 ∥zi(t)∥2

2. We can bound
φ2(t)−φ2(t +1) as follows:

Lemma 7.6 φ2(t)−φ2(t +1)≥ 1
4 ∑

n−1
i=0 ∥zi−1(t)− zi+1(t)∥2

2

Proof.

φ2(t +1) =
n−1

∑
i=0
∥ pi−1(t +1)+ pi+1(t +1)

2
− pi(t +1)∥2

2

=
1
4

n−2

∑
i=1
∥zi−1(t)+ zi+1(t)∥2

2 +∥z0(t +1)∥2
2 +∥zn−1(t +1)∥2

2

7.3 Protocols and Analyses in the OBLOT F
1 Model 115

With ∥z0(t +1)∥2
2 ≤ 1

4∥z0(t)+ z1(t)∥2
2 and ∥zn−1(t + 1)∥2

2 ≤ 1
4∥zn−2(t)+ zn−1(t)∥2

2 it follows
that φ2(t +1)≤ 1

4 ∑
n−1
i=0 ∥zi−1(t)+ zi+1(t)∥2

2. Now, define ∆φ2(t) to be φ2(t)−φ2(t +1). With help
of the parallelogram law, we derive a lower bound on ∆φ2(t):

∆φ2(t)≥
n−1

∑
i=0
∥zi(t)∥2

2−
1
4

n−1

∑
i=0
∥zi−1(t)+ zi+1(t)∥2

2

=
n−1

∑
i=0
∥zi(t)∥2

2−
n−1

∑
i=0

(
∥zi(t)∥2

2−
1
4
∥zi−1(t)− zi+1(t)∥2

2

)
=

1
4

n−1

∑
i=0
∥zi−1(t)− zi+1(t)∥2

2

■

Theorem 7.8 Given an arbitrarily connected chain in the Euclidean plane, MAX-GTM converges
either to the marching chain or to the max-chain.

Proof. φ2(t) is a monotonically decreasing function of t, bounded from below by 0, and the potential
difference can be lower bounded by 1

4 ∑
n−1
i=0 ∥zi−1(t)− zi+1(t)∥2

2 (Lemma 7.6). Hence, the potential
difference can only be 0 in case all vectors zi(t) are equal. Either z0(t) = z1(t) = · · ·= zn−1(t)> 0
or z0(t) = · · ·= zn−1(t) = 0. In the first case, all robots move the same distance in the same direction
(a marching chain). In the second case, no robot moves at all, which can only be the case if the
chain is stretched to a max-chain. ■

7.3.3.2 Stability Result

This section aims to prove that the marching chain is an unstable fixed point of MAX-GTM,
interpreted as a discrete (non-linear) dynamical system. We split the vector representation of a
configuration into its x- and y-components. More precisely, consider the vector wi(t) := (xi(t),yi(t)).
Now, define the state of a system to be s(t) := (x1(t), . . . ,xn−1(t),y1(t), . . . ,yn−1(t)) . The dynamical
system consists of 2(n−1) variables each representing an entry of the vector representation.
Applying MAX-GTM to the configuration can now be interpreted as a set of 2(n−1) functions,
one function for each variable.

x1(t +1) = fx1(s(t)) =
x1(t)

2 ·
√

x1(t)2 + y1(t)2
+

1
2

x2(t)

xi(t +1) = fxi(s(t)) =
1
2

xi−1(t)+
1
2

xi+1(t) for 1 < i < n−1

xn−1(t +1) = fxn−1(s(t)) =
1
2

xn−2(t)+
xn−1(t)

2 ·
√

xn−1(t)2 + yn−1(t)2

y1(t +1) = fy1(s(t)) =
y1(t)

2 ·
√

x1(t)2 + y1(t)2
+

1
2

y2(t)

yi(t +1) = fyi(s(t)) =
1
2

yi−1(t)+
1
2

yi+1(t) for 1 < i < n−1

yn−1(t +1) = fyn−1(s(t)) =
1
2

yn−2(t)+
yn−1(t)

2 ·
√

xn−1(t)2 + yn−1(t)2

Next, we compute the Jacobian matrix J of the dynamical system. For this dynamical system,
J is a 2 · (n−1)× 2 · (n−1)-matrix. Each row corresponds to one of the 2 · (n−1) transition
functions. An entry Ji, j represents ∂ fi

∂ j , the derivative of fi with respect to variable j. Each function
depends on at most 3 variables, and thus each row contains at most 3 non-zero elements. For better
readability, we omit the time parameter t and define ηi(t) = 2 · (x2

i + y2
i)

3/2.

116 Chapter 7. The MAX-CHAIN-FORMATION Problem

J =



y2
1

η1

1
2 0 . . . 0 0 −x1·y1

η1
0 . . . 0 0

1
2 0 1

2 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 1
2

y2
n−1

ηn−1
0 0 . . . 0 −xn−1·yn−1

η1

−x1·y1
ηn−1

0 0 . . . 0 0 x2
1

2η1

1
2 . . . 0 0

0 0 0 . . . 0 0 1
2 0 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 . . . 0 0 0 0 0 . . . 0 1
2

0 0 . . . 0 0 −xn−1·yn−1
ηn−1

0 0 . . . 1
2

x2
n−1

ηn−1



(7.6)

To prove that the marching chain is an unstable fixed point, we have to evaluate J at that
fixed point. Recall the marching chain is one-dimensional. Thus we assume that xi(t) = 0 for
1≤ i≤ n−1. The variables yi(t) are defined according to the marching chain: y1(t) = 1− 2

n , y2(t) =
1− 4

n , . . . ,yn−1(t) = −
(
1− 2

n

)
. Plugging these values into the Jacobian matrix (Equation (7.6))

yields the following matrix:

JwM =



n
2(n−2)

1
2 0 . . . 0 0 0 0 . . . 0 0

1
2 0 1

2 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 1
2

n
2(n−2) 0 0 . . . 0 0

0 0 0 . . . 0 0 0 1
2 . . . 0 0

0 0 0 . . . 0 0 1
2 0 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 . . . 0 0 0 0 0 . . . 0 1
2

0 0 . . . 0 0 0 0 0 . . . 1
2 0



(7.7)

The stability of the marching chain can now be analyzed with the help of the eigendecomposition
of JwM . More precisely, in the case that at least one eigenvalue of JwM has a magnitude larger than
1, it follows that the marching chain is an unstable fixed point (see for instance [71]). The following
lemma helps us to prove a lower bound on the largest eigenvalue of JwM .

Lemma 7.7 — [115]. Define uT = (1, . . . ,1). The largest eigenvalue λ1(A) of a symmetric
n×n matrix A can be lower bounded by λ1(A)≥ uT ·A·u

uT ·u .

Theorem 7.9 The marching chain is an unstable fixed point.

Proof. As JwM is a 2 · (n−1)×2 · (n−1) matrix, it follows uT ·u = 2 · (n−1). Next, observe that
every column of JwM , except for the first and the lst one, are stochastic. The first and the last column

7.3 Protocols and Analyses in the OBLOT F
1 Model 117

sum up to 1
2 +

n
2·(n−2) = 1+ 1

n−2 . Thus, we can compute uT ·A=
(
1+ 1

n−2 ,1, . . . ,1,1+
1

n−2 ,1, . . . ,1
)

and uT ·A · u = 2 · (n− 1)+ 2
n−2 . Finally, we can bound λ1(JwM) via Lemma 7.7 and prove the

theorem:

λ1(JwM)≥
2 · (n−1)+ 2

n−2

2 · (n−1)
= 1− 1

n−1
+

1
n−2

> 1 (given n > 2).

■

7.3.3.3 Derivation of a Lower Bound

In case both outer robots move, we identify a certain class of configurations that lead to an arbitrarily
high runtime based on a parameter δ , which can be seen as the width of the configuration. Before
defining the configurations, we give some intuition about their construction: As the marching chain
is an unstable fixed point (see Section 7.3.3.2), we know that configurations that are close to a
marching chain converge to the max-chain. Additionally, the largest eigenvalue of the Jacobian
matrix evaluated at that fixed point is very close to one (in the order of 1+ 1

n), and thus, the
dynamics close to the marching chain are very slow. Therefore, we investigate configurations that
are close to marching chains, we denote them as discrete δ -V-configurations. See also Figure 7.3
for a visualization.

Definition 7.1 For odd n, a discrete δ -V-configuration is defined by the vectors

wi(t) :=
(

δ

n−1
,1− 2 · i

n

)T

for i = 1, . . . ,n−1.

r0 r6

r3

δ

Figure 7.3: A discrete δ -V-configuration.

Observe that for δ = 0, discrete δ -V-configurations and marching chains coincide. Choosing
any δ > 0 changes the behavior such that the configuration converges to the max-chain. The
runtime, however, can be arbitrarily high depending on δ .

Theorem 7.10 Starting in a discrete δ -V-configuration, MAX-GTM needs at least Ω
(
n2 ·

log(1/δ)
)

rounds to achieve an ε-approximation of the max-chain.

For the proof of Theorem 7.10, we need two auxiliary lemmata.

Lemma 7.8 During an execution of MAX-GTM starting in a discrete δ -V-configuration at time
step 0, ∥wi(t)∥2 ≥ ∥wi(0)∥2 for all t and all 1≤ i≤ n−1.

Proof. Observe that for all wi(t) it always holds xi(t)≥ 0 and for 0≤ i≤ n
2 −1 : yi(t)≤ 0 and for

n
2 −1≤ i≤ n−1 : yi(t)≥ 0. We prove the fact for vectors wn/2 to wn−1 by induction over t. The in-
duction for the first half of vectors is analogous. The induction base is clear. Consider time step t+1
and an vector wi(t+1) = 1

2 wi−1(t)+ 1
2 wi+1(t). Observe that ∥wi(t +1)∥2 =

1
2∥wi−1(t)+wi+1(t)∥2.

Since xi−1(t),xi+1(t),yi−1(t) and yi+1(t)≥ 0, ∥wi(t +1)∥2 ≥ 1
2∥wi−1(0)+wi+1(0)∥2 = ∥wi(0)∥2.

■

118 Chapter 7. The MAX-CHAIN-FORMATION Problem

Lemma 7.9 When applying MAX-GTM to a discrete δ -V-configuration, we have x1(t)≥ 1
2

after Ω
(
n2 · log(1/δ)

)
rounds.

Proof. Trivially, x2(t)≤ x1(t) for all t. Thus, we can bound x1(t +1) as follows.

x1(t +1)≤ 1
2− 4

n

x1(t)+
1
2

x2(t)

=
1
2

x1(t)+
1

n−2
x1(t)+

1
2

x2(t)

≤
(

1+
1

n−2

)
x1(t)

Thus, x1(t) doubles at most every O(n) rounds. Since x1(0) = δ

n−1 it requires at least O(n2)
rounds until x1(t)≥ 2δ . The lemma follows. ■

Lemma 7.9 together with the lower bound for one-dimensional configurations imply The-
orem 7.10. Hence, the runtime of MAX-GTM can be arbitrarily high depending on δ . The
dependence on δ can be removed in the continuous time model by an (at first sight) counter-
intuitive approach: The outer robots move slower than the inner robots (Section 7.4). The same
approach does not work in FSYNC (see Section 7.5).

7.3.3.4 Upper bound for one Stationary Outer Robot

Interestingly, by assuming that only one of the outer robots moves while the other remains stationary,
we can prove the same upper runtime bound as for one-dimensional configurations. Note that no
marching chain can exist in this case as one outer robot does not move. The proof relies on the
analysis of φ2(t) for this case. Again, the analysis of a transition matrix plays a role here – since
only one outer robot moves, we obtain a substochastic transition matrix where every row except
one sums up to 1. The last row only sums up to 1/2 such that high powers of this matrix converge to
the 0-matrix. Diagonalization of the transition matrix yields the following runtime bound.

Theorem 7.11 In case one of the outer robots is stationary and all other robots move according
to MAX-GTM, an ε-approximation of the max-chain is achieved after O(n2 · log(n/ε)) rounds.

For the proof, we assume without loss of generality that r0 does not move and thus p0(0) = p0(t)
for all t. We again use a potential function φ2(t), which sums up the squared distances of robots to
their target points. This time, z0(t) = 0 for all t, and therefore, we exclude z0(t) from the summation
and obtain φ2(t) = 4∑

n−1
i=1 ∥zi(t)∥2

2. The new equation for z1(t +1) simplifies as follows (all other
equations remain unchanged):

∥z1(t +1)∥2
2 = ∥

1
2

p0(t +1)+
1
2

p2(t +1)− p1(t +1)∥2
2

= ∥1
2

p0(t)+
1
4

p1(t)+
1
4

p3(t)−
1
2

p0(t)−
1
2

p2(t)∥2
2

=
1
4
∥z2(t)∥2

2 ≤
1
2
∥z2(t)∥2

2.

Define z′(t) =
(
∥z1(t)∥2

2, . . . ,∥zn−1(t)∥2
2
)T . Given two n-dimensional column vectors v and v′

we define v≤ v′ if vi ≤ v′i for all 1≤ i≤ n−1. Then, we can upper bound z′(t +1) as follows.

7.3 Protocols and Analyses in the OBLOT F
1 Model 119

z′(t +1)≤



0 1
2 0 0 0 0 . . . 0

1
2 0 1

2 0 0 0 . . . 0

0 1
2 0 1

2 0 0 . . . 0

0 0 1
2 0 1

2 0 . . . 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 1
2

1
2


· z′(t) = A3 · z′(t) = At+1

3 · z′(0)

Observe that A3 is a substochastic matrix in which every row except for the first one is stochastic.
To analyze the convergence time, we determine the largest eigenvalue and the eigenvectors of A3.

Lemma 7.10 The eigenvalues of A3 are λ j = cos
(
(2 j−1)·π

2n−1

)
for j = 1, . . . ,n− 1. The corre-

sponding eigenvectors are given by x j[i] = cos
(
(2 j−1)·(2i−1)

2·(2n−1)

)
for i, j = 1, . . . ,n−1 where x j[i]

denotes the i-th entry of eigenvector j.

Proof. The matrix A3 is a special tridiagonal matrix whose eigenvalues and eigenvectors have been
analyzed in [121]. A more general result about these matrices can be found in [99]. The matrices
in [121] are defined as

T (a,b,c,α,β) =



−α +b c 0 0 0 0 . . . 0

a b c 0 0 0 . . . 0

0 a b c 0 0 . . . 0

0 0 a b c 0 . . . 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 a −β +b


.

In our case, a = c = 1
2 ,b = α = 0,β = −

√
ac = −1

2 . For these values of a,b,c,α and β ,
Lemma 7.10 follows from Theorem 2 in [121]. ■

Next, we introduce a technical lemma from [59] that upper bounds the entries of A3 by its
eigenvalues and eigenvectors.

Lemma 7.11 — Lemma 2 in [59]. For any irreducible, symmetric, substochastic n×n matrix P
with pairwise distinct eigenvalues and any i, j we have Pk[i, j]≤ n ·α ·β k where β is the largest
absolute eigenvalue of P and α = maxi, j,i′, j′ |x j[i] · x j′ [i′]| with x j denoting the j-th eigenvector
of P.

Now, we have collected all tools needed to give the proof of Theorem 7.11.

Proof of Theorem 7.11. We apply the results of Lemma 7.11. Due to Lemma 7.10, we have α ≤ 1
and β = cos

(
π

2n−1

)
. Using cos(x) ≤ 1− 2x2

π2 for −π ≤ x ≤ π , we can derive β ≤ (1− 1
(2n−1)2).

For t = (2n− 1)2 we obtain β t ≤ 1
e . Hence, for t ′ ≥ (2n− 1)2 · ln

(
4n4

ε2

)
we have that for all

120 Chapter 7. The MAX-CHAIN-FORMATION Problem

i, j At ′
3 [i, j] ≤ ε2

4n3 . Since initially ∥zi(0)∥2
2 ≤ 1 for all 1 ≤ i ≤ n− 1, we obtain for all 2 ≤ i ≤ n:

∥zi(t ′)∥2
2 ≤ ε2

4n2 . After t ′ rounds, no robot moves a distance of larger than ε2

4n2 anymore.
We conclude by proving that after t ′ rounds also an ε-approximation of the max-chain is

reached. First of all, we prove ∥wi(t)∥2 ≥ (1− ε) for 1 ≤ i ≤ n−1. Consider zn−1(t ′). Without
loss of generality, we assume that pn−1(t ′) = (0,0) and pn(t ′) = (1,0) and pn−2(t ′) = (xn−2,0).
Since ∥zn−1(t ′)∥2

2 ≤ ε2

4n2 , we obtain ∥zn−1(t ′)∥2 ≤ ε

2n . Hence, − ε

2n ≤
1
2 xn−2 +

1
2 ≤

ε

2n , implying
−
(
1+ ε

n

)
≤ xn−2 ≤ −

(
1− ε

n

)
. As 0 ≤ ε , we can simplify to −1 ≤ xn−2 ≤ −

(
1− ε

n

)
. Now,

observe wn−1(t ′) = (−xn−2,−yn−2) and thus ∥wn−1(t ′)∥2 ≥
(
1− ε

n

)
. With similar arguments, we

can conclude ∥wn−1− j(t ′)∥2 ≥ (1− (j+ 1) · ε

n) and thus ∥w1(t ′)∥2 ≥ (1− (n− 1) · ε

n) ≥ (1− ε).
Hence, all vectors have a length of at least (1− ε). In the same style, we can prove ∆0,n−1(t ′)≥
(1− ε) · (n−1).

■

7.4 Protocols and Analyses in the OBLOT C
1 Model

This section is dedicated to the MAX-MOB protocol that transforms a connected chain into a
max-chain in the continuous time model. After introducing the protocol, we continue with some
preliminaries in Section 7.4.1. The following Section 7.4.2 deals with a more detailed explanation
of the velocity vectors of outer robots based on the Zenoness phenomenon, which is part of the
continuous time model (see Section 2.1.3). Afterward, we provide an intuitive explanation of the
protocol combined with a proof outline in Section 7.4.3. The complete analysis can be found in
Section 7.4.4.

MAX-MOVE-ON-BISECTOR (MAX-MOB). In the following, we omit the protocol name in the
velocity vectors, i.e., we only write vi(t) to describe the velocity vector of ri at time t. Outer robots
move with a maximal speed of (1− τ) for a constant 0 < τ ≤ 1/2 as follows: In case ∥w1(t)∥2 < 1:
v0(t) = −(1− τ) · ŵ1(t). Similarly, in case ∥wn−1(t)∥2 < 1, vn−1(t) = (1− τ) · ŵn−1(t). In other
words, outer robots move with a speed of (1− τ) away from their direct neighbors. Otherwise,
provided ∥w1(t)∥2 = 1 (∥wn−1(t)∥2 = 1 respectively), an outer robot adjusts its speed and tries to
stay in distance 1 to its neighbor while moving with a maximal speed of 1− τ . An inner robot ri

with 0 < αi(t)< π moves only if at least one of the following three conditions holds: ∥wi(t)∥2 = 1,
∥wi+1(t)∥2 = 1 or αi(t)< ψ for ψ := 2 · cos−1 (1− τ) . Otherwise, an inner robot does not move
at all. If one of the conditions holds, an inner robot moves with speed 1 along the angle bisector
formed by the vectors pointing to its neighbors. As soon as the position of the robot and the
positions of its neighbors are collinear, it continues moving with a speed of 1 towards the midpoint
between its neighbors while ensuring staying collinear. Once it has reached the midpoint, it adjusts
its speed to stay on the midpoint. See Figure 7.4 for a visualization.

7.4.1 Preliminaries
For both outer robots, we determine the index of the first robot that is not collinear with its neighbors
and the respective outer robot.

Definition 7.2 Define ℓ(t) to be the index, such that for all 1 < j ≤ ℓ(t) either w j(t) = (0,0) or
ŵ j(t) = ŵ1(t),wℓ(t)+1(t) ̸= (0,0) and ŵℓ(t)+1(t) ̸= ŵ1(t). Similarly, define r(t) to be the index
such that for all r(t)< j < n−1 either w j(t) = (0,0) or ŵ j(t) = ŵn−1(t) and wr(t)(t) ̸= (0,0)
and ŵr(t)(t) ̸= ŵn−1(t). In case there is no such an index define ℓ(t) = r(t) = 0. αℓ(t)(t) and
αr(t)(t) are denoted as outer angles.

We omit the time parameter t in indices, when it is clear from the context, e.g., we write αℓ(t)
instead of αℓ(t)(t). In addition to the indices ℓ(t) and r(t), we define the last indices of robots
(starting to count at ℓ(t) and r(t)) that are collinear with their neighbors and the corresponding
robot with index ℓ(t) or r(t).

7.4 Protocols and Analyses in the OBLOT C
1 Model 121

r0 rn−1

rℓ(t)

rr(t)

ri

αi(t) < ψ

Figure 7.4: A chain visualizing the movements of MAX-MOB. The velocity vectors are depicted by
dashed arrows. Both rℓ(t) and rr(t) move since a neighboring vector has a length of 1. Additionally,
ri moves because αi(t)< ψ . The robots between rℓ(t) and ri do not move because their neighboring
vectors have a length smaller than 1.

Definition 7.3 Let ℓ+(t) be the smallest index larger than ℓ(t) such that αℓ+(t)< π . Similarly
let r+(t) be the largest index less than r(t) such that αr+(t)< π .

Definition 7.4 The left outer length is defined as Oℓ(t) := ∑
ℓ(t)
i=1 ∥wi(t)∥2 and the right outer

length as Or(t) := ∑
n−1
i=r(t)+1 ∥wi(t)∥2. The maximal values of the left and right outer length are

denoted by γℓ(t) := ℓ(t) and γr(t) := n−1− r(t). Additionally, the inner length is defined as
I(t) := ∑

r(t)
i=ℓ(t)+1 ∥wi(t)∥2.

The following Figure 7.5 depicts Definitions 7.2 to 7.4.

r0

rn−1

rℓ(t)

rℓ+(t)

rr+(t)

rr(t)

Oℓ(t)

Or(t)

Figure 7.5: A visualization of ℓ(t), ℓ+(t),r(t), r+(t), Oℓ(t) and Or(t).

We conclude this section with a helpful lemma stating how the distance between two robots
changes, depending on their trajectories. We have seen this lemma with a slightly different notation
in Lemma 4.2. Here, we restate it according to the notation used in this chapter. For this purpose,
we define the angles

βi, j(t) := ∠
(
vi(t), p j(t)− pi(t)

)
.

In other words, βi, j(t) denotes the signed angle between the velocity vector of ri and the line
segment connecting ri and r j at time t.

Lemma 7.12 — Lemma 3.1 in [49]. Consider two robots ri and r j and let ∆i, j(t) : R≥0→ R≥0
represent their distance at time t. The distance between ri and r j changes with speed

∆i, j
′(t) =−(∥vi(t)∥2 · cos(βi, j(t))+∥v j(t)∥2 · cos(β j,i(t))).

122 Chapter 7. The MAX-CHAIN-FORMATION Problem

7.4.2 A Note on The Velocity Vectors of Outer Robots
While the velocity vectors of inner robots might be clear from the description, the velocity vectors of
outer robots are special in the sense that they might not only depend on the length of the neighboring
vector. To clarify this behavior, we formally analyze and state the velocity vectors v0(t) and vn−1(t).
As we are in a continuous time model, the velocity vectors might depend on the positions and
movements of the neighbors of a robot and on robots that are at a farther distance. More precisely,
if there is a subchain in which multiple robots are already located on a straight line, the velocity
vectors of these robots are influenced by the first and last robot of that subchain. This phenomenon
is called Zenoness [72], see also Section 2.1.3.

There are two possible velocity vectors for outer robots which only differ in their length. In
both cases, the direction of the velocity vector is the same as the direction of the vector pointing
from their neighbors to themselves. The length of the velocity vector only depends on Oi(t). We
now derive the velocity vector v0(t), and the vector vn−1(t) can be derived analogously. There
are two cases to consider, Oℓ(t)< γℓ(t) and Oℓ(t) = γℓ(t). The case Oℓ(t)< γℓ(t) consists of two
sub-cases in which r0 moves with speed 1− τ . If the robot detects ∥w1(t)∥2 < 1, it moves with
speed 1− τ away from its neighbor. Otherwise, (∥w1(t)∥2 = 1), let j be the smallest index such
that ∥w j(t)∥2 < 1. Since Oℓ(t)< γℓ(t), we have that j < ℓ(t). The robot r j−1 moves with speed 1
to the midpoint between its neighbors which lies on the straight line between r0 and rℓ(t) closer to
r0. Thus, ∥w1(t)∥2 immediately decreases such that r0 moves with speed 1− τ .

In case Oℓ(t) = γℓ(t), every vector with an index less than ℓ(t) has a length of 1 and points
in the same direction. rℓ(t) moves along the bisector of vectors pointing to its neighbors and

decreases the length of Oℓ(t) with speed cos
(

αℓ(t)
2

)
, since βℓ,1(t) =

αℓ(t)
2 (Lemma 7.12). Provided

that cos
(

αℓ(t)
2

)
≤ 1− τ , r0 can move fast enough such that Oℓ(t) remains unchanged. Therefore,

r0 moves only with speed cos
(

αℓ(t)
2

)
. Otherwise, in case cos

(
αℓ(t)

2

)
> 1− τ , r0 moves at its

maximum speed of 1− τ . The resulting velocity vectors can be summarized as follows:

v0(t) =

{
−(1− τ) · ŵ1(t) if Oℓ(t) < γℓ(t)

−min{cos
(

αℓ(t)
2

)
,1− τ} · ŵ1(t) if Oℓ(t) = γℓ(t)

vn−1(t) =

{
(1− τ) · ŵn−1(t) if Or(t)< γr(t)

min{cos
(

αr(t)
2

)
,1− τ} · ŵn−1(t) if Or(t) = γr(t)

Lastly, if every robot is located on a single point or the straight line of length n−1 is reached,
the outer robots do not move at all such that their velocity vector is the zero vector.

7.4.3 Intuition & Proof Outline
The main idea of MAX-MOB is to flatten and stretch the chain starting at the outer robots and
towards the inside of the chain. At first, ∥w1(t)∥2 = 1 and ∥wn−1(t)∥2 = 1 is ensured, afterward
the angles α1(t) and αn−2(t) should reach a size of π and so on until finally all vectors have length
1 and all angles have a size of π . Figure 7.6 visualizes this core idea.

To achieve this behavior, one of the two cases in which an inner robot ri moves demands either
∥wi(t)∥2 = 1 or ∥wi+1(t)∥2 = 1 because locally, it can assume that it is already located on the
straight line to one outer robot and all vectors into the direction of the outer robot have a length of
1. In addition, an inner robot ri moves if αi(t)< ψ (ψ := 2 · cos−1 (1− τ)). In Section 7.5 we see
that this property is crucial for the linear runtime of the protocol by introducing configurations that
have a high runtime that not only depends on the number of robots in case the property is ignored.

To express the behavior of flattening and stretching the chain starting at the outer robots towards
the inside of the chain, we have introduced the indices ℓ(t) and r(t). For each of the two sets
of robots r0, . . . ,rℓ(t) and rr(t), . . . ,rn−1 it always holds that these robots continue to stay collinear

7.4 Protocols and Analyses in the OBLOT C
1 Model 123

1) 2)

∥w1(t)∥ = 1, ∥wn−1(t)∥ = 1∥w1(t)∥ < 1, ∥wn−1(t)∥ < 1

3) 4)

α1(t) = π, αn−2(t) = π ∥w2(t)∥ = 1, ∥wn−2(t)∥ = 1

Figure 7.6: A visualization of the core idea of MAX-MOB. 1) depicts an initial configuration. 2)
visualizes the configuration after stretching w1(t) and wn−1(t). In 3), α1(t) = π and αn−2(t) = π .
In 4) r0 and r1 as well as rn−2 and rn−1 have moved such that ∥w1(t)∥2 = ∥w2(t)∥2 = ∥wn−2(t)∥2 =
∥wn−1(t)∥2 = 1.

for the rest of the execution. Thus, ℓ(t) is monotonically increasing and r(t) is monotonically
decreasing such that after some time ℓ(t) = r(t) (Lemma 7.14). Consequently, at most one angle of
size less than π remains in the chain. Assuming ℓ(t) = r(t) we prove that after a linear time, the
chain is properly stretched to a max-chain or all robots are located on the same point (Lemma 7.23).

To bound the time until ℓ(t) = r(t), the outer angles αℓ(t) and αr(t) play an important role. We
divide the possible sizes into three intervals, [0,ψ), [ψ, 3

4 π] and (3
4 π,π]. For an outer angle αi(t) ∈

[0,ψ)(i ∈ {ℓ(t),r(t)}) two properties hold: I(t) decreases with speed at least 1− τ (Lemma 7.15)
and the corresponding outer length decreases since the outer robots move with speed at most 1− τ

(Lemma 7.18). As I(t) decreases with a constant speed of at least 1− τ , the total time in such a
case is upper bounded by O (n) (Corollary 7.1). Given αi(t) ∈ [ψ, 3

4 π], the protocol is designed
such that ri only moves if Oi(t) = γi(t). Thus, as long as Oi(t)< γi(t), Oi(t) increases with speed
1− τ (Lemma 7.17). As soon as Oi(t) = γi(t), the robot ri starts moving along its bisector. This
movement causes a decrease of I(t) with speed at least cos

(3
8 π
)

while the length of Oi(t) does not
change (Lemma 7.19). Since I(t) decreases with constant speed, this case can hold for a time at
most O(n) (Corollary 7.2). For the last interval, αi(t) ∈ (3

4 ,π] we use a different progress measure
since large angles cause a very slight decrease of I(t) which cannot be bounded by a constant
anymore. Therefore, we consider the height Hi(t). Assume that i = ℓ(t), then Hℓ(t) denotes the
distance between rℓ(t) and the line segment connecting r1 and rℓ+(t). Intuitively, if we consider
the line segment connecting r1 and rℓ+(t) as a line parallel to the x-axis, the robot rℓ moves with a
velocity vector that has a small angle to the y-axis towards this line segment. Thus, Hi(t) decreases
with constant speed (Lemma 7.21). All in all, we can prove that the total time of outer angles in
any of these intervals is upper bounded by O (n) such that finally ℓ(t) = r(t). Plugging all these
results together yields the following theorem.

124 Chapter 7. The MAX-CHAIN-FORMATION Problem

Theorem 7.12 Starting MAX-MOB in a two-dimensional configuration, the initial chain is
either transformed into a straight line of length n−1 or all robots are located at the same position
after time O(n).

7.4.4 Detailed Analysis
The basis for the entire analysis is that MAX-MOB maintains the connectivity of the chain as stated
by the following lemma.

Lemma 7.13 Given a connected configuration at time t ′, MAX-MOB ensures that the configu-
ration remains connected for all t ′ > t.

Proof. Consider first of all two neighboring inner robots ri and ri+1 with αi(t)< π and αi+1(t)< π .
By Lemma 7.12, we obtain

∆
′
i,i+1(t) =−

(
∥vi(t)∥2 · cos

(
αi(t)

2

)
+∥vi+1(t)∥2 · cos

(
αi+1(t)

2

))
.

Based on the protocol’s description, ∥vi(t)∥2,∥vi+1(t)∥2 ∈ {0,1} depending on the sizes of
αi(t) and αi+1(t). Additionally, since αi(t),αi+1(t) ∈ [0,π), we obtain both cos

(
αi(t)

2

)
> 0 and

cos
(

αi+1(t)
2

)
> 0. Consequently, ∆′i,i+1(t) < 0 and ri and ri+1 stay in distance at most 1 of each

other. Now, we assume without loss of generality that αi(t) = π (the arguments for αi+1(t) are
analogous) and ∆i,i+1(t) = 1 (since we consider continuous functions this case must occur before
the chain might get disconnected at this point). Next, we assume that pi(t) ̸= 1

2 pi−1(t)+ 1
2 pi+1(t)

and hence, ri moves with speed 1 to this position. The movement implies βi, j(t) = 0 and thus

∆
′
i,i+1(t) =−(1 · cos(0)+∥vi+1(t)∥2 · cos(βi+1,i(t)))

=−(1+∥vi+1(t)∥ · cos(βi+1,i(t))).

Since ∥vi+1(t)∥ · cos(βi+1,i(t)) is lower bounded by −1 (for ∥vi+1(t)∥2 = 1 and βi+1,i(t) =
π), it follows ∆′i,i+1(t) ≤ 0. In case pi(t) = 1

2 pi−1(t) + 1
2 pi+1(t), ri follows the movement of

1
2 pi−1(t)+ 1

2 pi+1(t) and thus, also ∆′i,i+1(t)≤ 0.
Lastly, consider an outer robot and its neighbor, without loss of generality, we consider r0 and

r1. The arguments for rn−2 and rn−1 are analogous. Based on the protocol’s description, always
β0,1(t) = π , given that r0 moves (which is always the case except for the final configuration). Given
α1(t)< π – which implies ℓ(t) = 2 – and ∆0,1(t) = 1, we obtain that r1 moves with speed 1 along
its angle bisector. Based on the explanations in Section 7.4.2, we conclude

∆
′
0,1(t) =−

(
min{cos

(
α1(t)

2

)
,1− τ} · cos(π)+∥v1(t)∥2 · cos

(
α1(t)

2

))
.

=−
(
−min{cos

(
α1(t)

2

)
,1− τ}+ cos

(
α1(t)

2

))
.

Due to the minimum term in the last line, it follows ∆′0,1(t)≤ 0. Lastly, in case α1(t) = π and
∆0,1(t) = 1 both r0 and r1 adjust their speed and stay in distance at most 1 based on the protocol’s
description. ■

Throughout the following analysis, we always take Lemma 7.13 for granted and do not always
argue again that the connectivity is maintained.

7.4 Protocols and Analyses in the OBLOT C
1 Model 125

Lemma 7.14 The index ℓ(t) is monotonically increasing and the index r(t) is monotonically
decreasing until ℓ(t) = r(t).

Proof. We prove that ℓ(t) is monotonically increasing. With the same arguments, r(t) is mono-
tonically decreasing. First of all, every robot located in a straight line between its neighbors or
in the same position with at least one of its neighbors will never compute a target point that does
not lie between its neighbors. Additionally, it will not compute a target point to the left of its left
neighbor or the right of its right neighbor. Additionally, all the robots follow the movements of
their neighbors and thus all robots between r0 and rℓ(t) stay on the straight line connecting r0 and
rℓ(t). Hence, none of these robots causes a decrease of ℓ(t). ■

Lemma 7.15 I(t) is monotonically decreasing.

Proof. An inner robot r j can execute three different movements. Either it does not move, moves
with speed 1 along the bisector, or follows the movements of the midpoint of its neighbors. Non-
moving robots do not increase the length of any vector. Robots r j that move along the bisector

decrease both ∥w j(t)∥2 and ∥w j+1(t)∥2 with speed cos
(

α j(t)
2

)
> 0. This is a conclusion from

Lemma 7.12 since β j, j−1(t) = β j, j+1(t) =
α j(t)

2 and r j moves with speed 1. Robots that follow the
movements of their neighbors also cannot increase the length of any vector because they neither
follow the movement of r0 nor the movement of rn−1. Thus, they follow robots that decrease
the lengths of neighboring vectors (or do not move at all). Since all possible movements cause a
decrease of I(t), I(t) is monotonically decreasing. ■

While I(t) can only decrease (Lemma 7.15), Oℓ(t) and Or(t) can either increase or decrease,
depending on the current sizes of outer angles.

Lemma 7.16 Consider a configuration with ℓ(t) ̸= r(t) and an outer angle fulfilling 0≤ αi(t)<
ψ , for i ∈ {ℓ(t),r(t)}. Then, −τ < Oi

′(t)≤ 0.

Proof. Assume that i = ℓ(t) and let us analyze Oℓ
′(t). In this configuration, β0,ℓ(t) = π and

βℓ,0(t) =
αℓ(t)

2 . Since αℓ(t) < ψ it follows cos(βℓ,0(t)) > 1− τ . Thus, the outer robot moves

at full speed, i.e., ∥v0(t)∥2 = 1− τ . Lemma 7.12 yields Oℓ
′(t) = −

(
−(1− τ)+ cos

(
αℓ(t)

2

))
=

1−τ−cos
(

αℓ(t)
2

)
. Lastly, we observe 1−τ < cos

(
αℓ(t)

2

)
≤ 1 and conclude−τ < Oi

′(t)≤ 0. ■

In case the outer angle αi(t) has a size of at least ψ , the robot ri does not move at all in case
Oi(t)< γi(t). Consequently, the length of Oi(t) increases with constant speed.

Lemma 7.17 Consider a configuration with an outer angle fulfilling αi(t)≥ψ and Oi(t)< γi(t).
Then, Oi

′(t) = 1− τ .

Proof. Without loss of generality, we assume that i = ℓ(t). We prove that rℓ(t) does not move in
this case. In case ∥wℓ(t)∥2 < 1, the robot rℓ(t) does not move at all due to the definition of the
protocol. Consider the case ∥wℓ(t)∥2 = 1. Since Oi(t) < γi(t), there must be at least one vector
with an index less than ℓ(t) that has a length smaller than 1. Let j be the highest index of such a
vector so that ∥wi(t)∥2 = 1 for all j < i < ℓ(t). The robot r j moves with speed 1 into the direction
of r j+1 as ∥w j(t)∥2 < ∥w j+1(t)∥2 and therefore the midpoint between r j−1 and r j+1 must lie closer
to r j+1. Note that β j,ℓ(t) = 0 and thus, by Lemma 7.12, ∆ j,ℓ

′(t) = −1. Since all robots with an
index between j and ℓ(t) follow the movement of the midpoint between their neighbors, it follows
that all vectors wi(t) for an index j < i≤ ℓ(t) decrease in length. Hence, after an infinitesimal time
interval, ∥wℓ(t)∥2 < 1 and thus rℓ(t) does not move at all.

126 Chapter 7. The MAX-CHAIN-FORMATION Problem

At the same time, r0 can move with speed 1− τ away from rℓ(t) and increases the distance
between r0 and rℓ(t) with speed 1− τ . To see this, we again have to consider two cases. In case
∥w1(t)∥2 < 1, r0 moves with speed 1− τ due to the definition of the protocol. In the other case,
namely ∥w1(t)∥2 = 1 consider the smallest index k < ℓ(t) such that ∥wi(t)∥2 = 1 for all 0 < i < k
and ∥wk(t)∥2 < 1. The robot rk−1 moves with speed 1 towards the midpoint between rk−2 and rk.
Due to the definition of k, this midpoint lies closer to rk−2 than to rk. This implies βk−1,0(t) = 0
and by Lemma 7.12 it follows that the movement of rk−1 decreases ∆k−1,0(t) with speed 1. Since
all robots with an index between 1 and k follow the midpoint movement between their neighbors, it
follows that all vectors wi(t) for an index 2≤ i < k decrease in length. This implies that ∥w1(t)∥2
decreases after an infinitesimal time interval such that r0 can move at its maximum speed 1− τ .

Combining the movements of r0 and rℓ(t) it follows that rℓ(t) does not move at all, while r0
moves with speed 1− τ with an angle β0,ℓ(t) = π such that Oℓ

′(t) = 1− τ by Lemma 7.12. The
arguments for Or(t) are analogous.

■

In configurations with an outer angle of size at most ψ , we have that that I(t) decreases with
speed 1− τ . Therefore, the total time such a configuration can exist is upper bounded by n−3

1−τ
since

I(t) is upper bounded by n−3.

Lemma 7.18 In configurations having an outer angle αi(t)< ψ , i ∈ {ℓ(t),r(t)}, we have that
I(t) decreases with speed at least 1− τ .

Proof. Without loss of generality, we assume that i = ℓ(t), the arguments for i = r(t) are analogous.
In such a configuration, ℓ(t) moves with speed 1 along the bisector of vectors pointing to its
neighbors. At the same time, rℓ+(t) either does not move or it moves with speed 1 along its bisector
(provided αℓ+(t)< ψ). In case it does not move, ∆ℓ,ℓ+(t) decreases with speed cos

(
αℓ(t)

2

)
≥ 1− τ ,

as βℓ,ℓ+(t) =
αℓ(t)

2 . In case both move, ∆ℓ,ℓ+(t) decreases with speed cos
(

αℓ(t)
2

)
+ cos

(
αℓ+ (t)

2

)
≥

2 · (1− τ). This can be derived from Lemma 7.12 since βℓ,ℓ+(t) =
αℓ(t)

2 and βℓ+,ℓ(t) =
αℓ+ (t)

2 and
∥vℓ(t)∥2 = ∥vℓ+(t)∥2 = 1. Since ∆ℓ,ℓ+(t) is part of I(t), we can conclude that I(t) decreases with
speed at least 1− τ . ■

Corollary 7.1 The total time an outer angle of size less than ψ exists while ℓ(t) ̸= r(t), is upper
bounded by n−3

1−τ
.

Next, we analyze the behavior of outer angles that have a size of at least ψ . A robot correspond-
ing to an outer angle αi(t)≥ ψ only moves in case Oi(t) = γi(t). The following lemmata assume
that Oi(t) = γi(t).

Lemma 7.19 Assume that i ∈ {ℓ(t),r(t)}. In configurations with an outer angle of size

αi(t) ∈ [ψ, 3
4 π] while Oi(t) = γi(t) and ℓ(t) ̸= r(t) we have that I′(t)≤−

√
2−
√

2
2 .

Proof. Without loss of generality, we assume that i = ℓ(t). Since Oℓ(t) = γℓ(t), we have that
∥wℓ(t)∥2 = 1 and thus rℓ(t) moves with speed 1 along the bisector formed by vectors pointing to its

neighbors. By noticing βℓ,0(t) =
αℓ(t)

2 and applying Lemma 7.12, we conclude that the movement

of rℓ(t) decreases ∆ℓ,ℓ+(t) with speed at least cos
(3

8 π
)
=

√
2−
√

2
2 and at most cos

(
ψ

2

)
= 1− τ . As

r0 can move with speed at most 1− τ , r0 moves fast enough such that the distance between r0
and rℓ(t) does not decrease and thus Oℓ(t) and especially ∥wℓ(t)∥2 remains constant. Hence, rℓ(t)

continues moving along its bisector while decreasing I(t) with speed at least
√

2−
√

2
2 since all other

7.4 Protocols and Analyses in the OBLOT C
1 Model 127

vectors that are part of I(t) are monotonically decreasing with the same arguments as used in the
proof of Lemma 7.15. ■

Corollary 7.2 The total time an outer angle αi(t) of size αi(t) ∈ [ψ, 3
4 π] exists, while Oi(t) =

γi(t) and ℓ(t) ̸= r(t), is upper bounded by 2·(n−3)√
2−
√

2
.

It remains to analyze outer angles that have a size of at least 3
4 π . It turns out that an outer angle

of size at least 3
4 π only increases.

Lemma 7.20 Assume that i ∈ {ℓ(t),r(t)}. In configurations fulfilling ℓ(t) ̸= r(t), αi(t)≥ 3
4 π

and Oi(t) = γi(t), the size of an outer angle αi(t) is monotonically increasing.

Proof. We give the proof for αℓ(t). For this, we rewrite αℓ(t) = π− c for 0≤ c < 1
4 π . Let fℓ(t) =

cos(αℓ(t)). We compute the derivation fℓ′(t) and prove fℓ′(t) < 0. As cos(x) is monotonically
decreasing in the interval [3

4 π,π), this proves that αi(t) is monotonically increasing. Let β−(t)
be the angle enclosed by the line segments connecting r0 and rℓ+(t) and r0 and rℓ(t). Similarly, let
β+(t) denote the angle enclosed by the line segments connecting r0 and rℓ+(t) and rℓ+(t) and rℓ(t).
See Figure 7.7 for a visualization.

We start by giving a formula for fℓ(t) and compute its derivation. Note that Oℓ(t) stays constant
as βℓ,0(t) =

αℓ(t)
2 and thus the movement of rℓ(t) decreases Oℓ(t) with speed at most cos

(3
8

)
. Since

cos
(3

8

)
< 1− τ , r1 moves fast enough such that Oℓ(t) = γℓ(t) remains constant.

Now, consider the triangle formed by r0, rℓ(t) and rℓ+(t). By our assumption, ∆0,ℓ(t) = γℓ(t).
Via the law of cosines, we obtain

∆0,ℓ+(t)
2 = γℓ(t)2 +∆ℓ,ℓ+(t)

2−2 ·∆0,ℓ+(t) ·∆ℓ,ℓ+(t) · cos(αℓ(t)) .

By substituting cos(αℓ(t)) by fℓ(t) and rearranging the terms, we get the following formula for
fℓ(t).

fℓ(t) =
γℓ(t)2 +∆ℓ,ℓ+(t)2−∆0,ℓ+(t)2

2 · γℓ(t) ·∆ℓ,ℓ+(t)
.

Now, we compute fℓ′(t). Remember that γℓ
′(t) = γℓ(t) as stated above.

fℓ′(t) =
∆ℓ,ℓ+

′(t) ·
(
−γℓ(t)2 +∆ℓ,ℓ+(t)2 +∆0,ℓ+(t)2

)
2 · γℓ(t) ·∆ℓ,ℓ+(t)2 −

2 ·∆ℓ,ℓ+(t) ·∆0,ℓ+(t)∆ℓ,ℓ+
′(t)

2 · γℓ(t) ·∆ℓ,ℓ+(t)2

Applying the law of cosines again gives us

−γℓ(t)2 +∆0,ℓ+(t)
2 +∆ℓ,ℓ+(t)

2 = 2 ·∆ℓ,ℓ+(t) ·∆0,ℓ+(t) · cos
(
β
+(t)

)
.

Replacing this in the original formula for fℓ′(t) yields

fℓ′(t) =
∆0,ℓ+(t)

γℓ(t) ·∆ℓ,ℓ+(t)
·
(
∆ℓ,ℓ+

′(t) · cos
(
β
+(t)

)
−∆0,ℓ+

′(t)
)
.

Now, we have to consider two cases. Either rℓ+(t) is moving and thus αℓ+(t) ≤ ψ or rℓ+(t) does
not move. In both cases, ∆ℓ,ℓ+(t)≤ 0 as ℓ(t) ̸= r(t) (Lemma 7.15). We start by analyzing the case
that rℓ+(t) does not move. Observe β0,ℓ+(t) = π−β−(t). By Lemma 7.12, we obtain ∆0,ℓ+

′(t) =
−∥v0(t)∥2 · cos(π−β−(t))> 0 as β−(t) can be upper bounded by 1

4 π and thus π−β−(t)> 3
4 π .

We can conclude,−∆0,ℓ+
′(t)< 0 and fℓ′(t)< 0 in this case. As both ∆ℓ,ℓ+(t)≤ 0 and−∆0,ℓ+

′(t)< 0

128 Chapter 7. The MAX-CHAIN-FORMATION Problem

it follows fℓ′(t) < 0. It remains to analyze the case that rℓ+(t) is moving. We compute ∆0,ℓ+
′(t).

Depending on the orientation of αℓ+(t), there are two possible variants of ∆0,ℓ+
′(t). Either αℓ(t)

and αℓ+(t) have the same or different orientations. Consider the case that αℓ(t) and αℓ+(t) have the
same orientation. In this case

∆0,ℓ+
′(t) = cos

(
αℓ(t)

2

)
· cos

(
β
−(t)

)
− cos

(
αℓ+(t)

2
−β

+(t)
)
. (7.8)

In the other case, we have that

∆0,ℓ+
′(t) = cos

(
αℓ(t)

2

)
· cos

(
β
−(t)

)
− cos

(
αℓ+(t)

2
+β

+(t)
)

≥ cos
(

αℓ(t)
2

)
· cos

(
β
−(t)

)
− cos

(
αℓ+(t)

2
−β

+(t)
)
.

Thus, we assume that Equation (7.8) holds. Note that cos(a−b) = sin(a) · sin(b)+ cos(a)+
cos(b) and thus cos

(
αℓ+ (t)

2 −β+(t)
)
= sin

(
αℓ+ (t)

2

)
· sin(β+(t))+ cos

(
αℓ+ (t)

2

)
· cos(β+(t)). Ad-

ditionally, we obtain via Lemma 7.12, ∆ℓ,ℓ+
′(t) =−

(
cos
(

αℓ(t)
2

)
+ cos

(
αℓ+ (t)

2

))
. For improved

readability, define

σ(t) :=
∆0,ℓ+(t)

γℓ(t) ·∆ℓ,ℓ+(t)

µ(t) :=
(
cos
(
β
−(t)

)
+ cos

(
β
+(t)

))
.

Next, we plug all these insights into fℓ′(t).

fℓ′(t) = σ(t)
(

sin
(

αℓ+(t)
2

)
· sin

(
β
+(t)

)
− cos

(
αℓ(t)

2

)
·µ(t)

)
≤ σ(t)

(
sin(ψ) · sin

(
β
+(t)

)
− cos

(
αℓ(t)

2

)
·µ(t)

)
= σ(t)

(√
1− (1− τ)2 · sin

(
β
+(t)

)
− cos

(
αℓ(t)

2

)
·µ(t)

)
(7.9)

≤ σ(t)

(√
3

2
· sin

(
β
+(t)

)
− cos

(
αℓ(t)

2

)
·µ(t)

)
(7.10)

≤ σ(t)

(√
3

2
· sin(c)− sin(c) · cos

(c
2
−β

+(t)
))

≤ σ(t)

(√
3

2
· sin(c)− sin(c) · cos

(c
2

))

= σ(t) sin(c) ·

(√
3

2
− cos

(c
2

))
< 0

We use the following observations. Equation (7.9) holds as sin
(
cos−1 (x)

)
=
√

1− x2. Ad-
ditionally, cos

(
π

2 − x
)
= sin(x) and thus cos

(
π

2 −
c
2

)
= sin

(c
2

)
. For Equation (8.1), note that

β−(t) = π−αℓ(t)−β+(t) as the sum of internal angles of a triangle is equal to π . Hence, we can
rewrite cos(β−(t)) = cos(π−αℓ(t)−β+(t)) = cos(π−π + c−β+(t)) = cos(c−β+(t)). Ob-
serve that cos(β+(t)) +cos(c−β+(t)) = 2 · cos

(c
2

)
· cos

(c
2 −β+(t)

)
. As a last step we use the

7.4 Protocols and Analyses in the OBLOT C
1 Model 129

β−(t) β+(t)

αℓ(t)

r0

rℓ(t)

rℓ+(t)

γℓ(t)

∆0,ℓ+(t)

∆ℓ,ℓ+(t)

r0

rℓ(t)

rℓ+(t)

γℓ(t)

∆0,ℓ+(t)

∆ℓ,ℓ+(t)

Hℓ(t)

Figure 7.7: Visualization of Hℓ(t). To the left, the gray part marks the area of all possible
vectors vℓ(t). In the right triangle, the definitions of all angles are depicted (used in the proofs of
Lemmata 7.20 and 7.21).

equality 2 · cos
(x

2

)
· sin

(x
2

)
= sin(x). Plugging all statements together yields sin

(c
2

)
· µ(t) =

sin(c) · cos
(c

2 −β+(t)
)
. Finally, we can conclude that fℓ(t) is monotonically decreasing for

αℓ(t) ∈
[3

4 π,π
]

and, thus, that αℓ(t) is monotonically increasing in the same interval.
■

To bound the total time such large outer angles can exist, we cannot use I(t) as a progress
measure because for very large angles in the order of π− 1

n , I(t) does not decrease with constant
speed anymore. Therefore, we introduce another progress measure that decreases with constant
speed in this case (see Figure 7.7).

Definition 7.5 Define Hℓ(t) to be the distance of rℓ(t) to the line segment connecting r0 and
rℓ+(t) and define Hr(t) to be the distance of rr(t) to the line segment connecting rr+(t) and rn−1.

Lemma 7.21 In configurations fulfilling ℓ(t) ̸= r(t), αi(t) ≥ 3
4 π , i ∈ {ℓ(t),r(t)} and Oi(t) =

γi(t), the inequality Hi
′(t)≤− 1

20 holds.

Proof. We assume that i = ℓ(t), the proof for i = r(t) is analogous. We have to analyze the
movements of r0,rℓ(t) and rℓ+(t) in this case. We rewrite αℓ(t) = π− c for c≤ π

4 . Without loss of
generality, assume that rℓ(t) is located in the origin and the line segment connecting r1 and rℓ+(t) to
be a parallel line to the x-axis above of rℓ(t). As all robots between r1 and rℓ(t) as well as all robots
rℓ(t), . . .rℓ+(t) are collinear, vℓ(t) must point upwards. Since αℓ(t)≥ 3

4 π , vℓ(t) must form an angle
of size less than π

8 with the y-axis. Hence, rℓ(t) moves with speed at least cos
(

π

8

)
> 0.92 upwards.

At the same time the robots r0 and rℓ+(t) could move. Consider the movement of r0. Similar to the
proof of Lemma 7.20 (see also Figure 7.7), let β−(t) be the angle formed by vectors pointing from
r0 to rℓ(t) and from r0 to rℓ+(t) and let β+(t) be the angle formed by vectors pointing from rℓ+(t) to r0

and from rℓ+(t) to rℓ. v0(t) =−cos
(

αi(t)
2

)
· ŵ1(t). Thus, β0,ℓ(t) = π−β−(t). Therefore, r0 moves

upwards with speed sin(β−(t)) · cos
(

αℓ(t)
2

)
= sin(β−(t)) · sin

(
π

2 −
αℓ(t)

2

)
= sin(β−(t)) · sin

(c
2

)
.

Lastly, observe β−(t)≤ c as the sum of internal angles of a triangle is π . Hence, r0 moves upwards
with speed at most sin(c) · sin

(c
2

)
≤ sin

(1
4 π
)
· sin

(
π

8

)
< 0.28. It remains to analyze the speed of

rℓ+(t) moving upwards. As r(t) ̸= ℓ(t), rℓ+(t) either does not move at all or αℓ+(t)< ψ . In case rℓ+(t)
does not move at all H ′ℓ(t)<=−0.92+0.28 =−0.64. Now, consider αℓ+(t)< ψ . β+(t) could be
almost 0, such that in the worst case the angle formed by vℓ+(t) and the line segment connecting r0
and rℓ+(t) lies completely above that line segment. In this case, rℓ+(t) moves upwards with speed

at most sin
(

ψ

2

)
=

√
1− (1− τ)2 =

√
1−1+2 · τ− τ2 =

√
2 · τ− τ2 ≤

√
2 · 1

2 −
1
4 =

√
3

2 < 0.87.

Therefore, H ′ℓ(t)≤−0.92+0.87 =−0.05 =− 1
20 . ■

130 Chapter 7. The MAX-CHAIN-FORMATION Problem

By noticing that Hi(t), for i ∈ {ℓ(t),r(t)}, is upper bounded by ∆i,i+(t)≤ |i− i+(t)| and using
the fact that Hi(t) cannot decrease anymore since αi(t) is monotonically increasing, we can derive
the total time an outer angle can have a size of at least 3

4 π while Oi(t) = γi(t).

Corollary 7.3 The total time an outer angle of size at least 3
4 π exists, while Oi(t) = γi(t) and

ℓ(t) ̸= r(t), is upper bounded by 20 · (n−3).

A combination of the preceding insights leads to the following upper bound until ℓ(t) = r(t).

Lemma 7.22 After time at most 2 · (n−3) ·
(

1
1−τ

+ 1√
2−
√

2
+10

)
, we have that ℓ(t) = r(t).

Proof. The total time in configurations with an outer angle of size at most ψ is upper bounded by
n−3
1−τ

(Corollary 7.1). It remains to bound the time of configurations with larger outer angles. As soon
as an outer angle reaches a size of at least ψ , Oi(t) increases with speed 1−τ (Lemma 7.17) until it
reaches maximal length. Additionally, by Lemma 7.16, Oi(t) will only decrease in the future in case
the corresponding outer angle has a size of less than ψ . Hence, the total time all Oi(t) can decrease
is upper bounded by n−3

1−τ
, the total time outer angles can have a size of less than ψ . In case an outer

angle αi(t) has a size of at least ψ and Oi(t)< γi(t), the outer length Oi(t) increases with speed
1− τ (Lemma 7.17). As Oi(t) is upper bounded by n−3 while ℓ(t) ̸= r(t), the total time all Oi(t)
can increase with speed 1− τ is upper bounded by n−3

1−τ
. Furthermore, the total time Oi(t) = γi(t)

and αi(t) ≤ 3
4 π is upper bounded by 2·(n−3)√

2−
√

2
(Corollary 7.2). The total time Oi(t) = γi(t) and

αi(t)≥ 3
4 π is upper bounded by 20 · (n−3). Hence, the total time needed until ℓ(t) = r(t) is upper

bounded by 2·(n−3)
1−τ

+ 2·(n−3)√
2−
√

2
+ 20 · (n−3) = 2 · (n−3) ·

(
1

1−τ
+ 1√

2−
√

2
+10

)
. ■

Lastly, it remains to analyze the case ℓ(t) = r(t). The combination of Lemmata 7.22 and 7.23
yields a total runtime bound.

Lemma 7.23 Assume that ℓ(t) = r(t). Then, after time 3n ·
(1

τ
+ 1

1−τ

)
, the configuration is

transformed into a max-chain or all robots are located at the same position.

For the proof of Lemma 7.23, we need some lemmata about one-dimensional configurations.

Lemma 7.24 Starting MAX-MOB in a one-dimensional configuration, ℓ(t) ̸= r(t) can hold for
time at most n−3

2 .

Proof. The robot ri moves with speed 1 along the bisector of vectors pointing to its neighbors.
This movement decreases ∆i,i+(t) with speed cos

(
αi(t)

2

)
= cos(0) = 1. This can be derived from

Lemma 7.12 by observing βi,i+(t) =
αi(t)

2 = 0. At the same time, ri+(t) is defined such that αi+(t)<
π . Thus, ri+(t) also moves along the bisector between its neighbors. Hence, the movement
of ri+(t) can also not increase ∆i,i+(t). All robots in between stay on the straight line between
ri(t) and ri+(t). Lastly, observe ∆i,i+(t) is part of I(t). Thus, I(t) decreases with speed at least

cos
(

αℓ(t)
2

)
+ cos

(
αr(t)

2

)
= 2 · cos(0) = 2. ■

Lemma 7.25 A one-dimensional configuration fulfilling ℓ(t) = r(t) = 0 is transformed into a
max-chain after time at most n−1

2·(1−τ) .

7.4 Protocols and Analyses in the OBLOT C
1 Model 131

Proof. In case ℓ(t) = r(t) = 0, we have that αℓ(t) = π and thus all vectors point into the same
direction rendering the configuration an opposed configuration. In opposed configurations, the
outer robots move both with speed (1− τ) away from each other such that their distance decreases
with speed 2 · (1− τ). Since the maximal distance is n−1, a straight line of length n−1 is obtained
after time at most n−1

2·(1−τ) . ■

Lemma 7.26 A one-dimensional configuration fulfilling ℓ(t) = r(t) = x for 0 < x < n−1 and
p0(t) ̸= pn−1(t) is transformed into a max-chain after time at most n−1

2 ·
(1

τ
+ 1

1−τ

)
.

Proof. In such a configuration, Oℓ(t) ̸= Or(t) and αℓ(t) = 0. The robot rℓ(t) moves with speed 1
towards the two outer robots. The outer robots move with speed 1−τ away from rℓ(t). These move-
ments cause a decrease of both Oℓ(t) and Or(t) with speed τ . To see this, note that β0,ℓ(t) =
βn−1,ℓ(t) = π and βℓ,0(t) = βℓ,n−1(t) = 0. Lemma 7.12 yields ∆0,ℓ

′(t) = Oℓ
′(t) = −∥v0(t)∥2

·cosβ0,ℓ(t)−1 · cosβℓ,1(t) =−(1− τ)+1 =−τ . As a consequence, after time at most n−1
2·τ either

Oℓ(t) or Or(t) reaches size 0 such that in the following ℓ(t) = r(t) = 0. Such a configuration is
transformed into a straight line of length n−1 after time at most n−1

2·(1−τ) (Lemma 7.24). ■

Lemma 7.27 A one-dimensional configuration fulfilling ℓ(t) = r(t) = x for 0 < x < n−1 and
p0(t) = pn−1(t) is transformed into a configuration in which all robots are located on the same
position after time at most n−1

2·τ .

Proof. Since the outer robots are located at the same position it must hold Oℓ(t) = Or(t) and
αℓ(t) = 0. rℓ(t) moves with speed 1 towards the two outer robots. In this configuration, β0,ℓ(t) =
βn−1,ℓ(t) = π and βℓ,0(t) = βℓ,n−1(t) = 0. Combined with ∥v0(t)∥2 = ∥vn−1(t)∥2 = 1− τ and
∥vℓ(t)∥2 = 1, Lemma 7.12 gives us ∆0,ℓ

′(t) = Oℓ
′(t) =−(−(1− τ)+1) =−τ . As Oℓ(t) and Or(t)

are both bounded by n−1
2 , the lemma follows. ■

Next, we consider a special two-dimensional configuration fulfilling ℓ(t) = r(t) and analyze the
runtime started in such a configuration. See Figure 7.8 for a visualization of these configurations.

Definition 7.6 Let δ be a positive constant and define θ = 2 · sin−1
(

δ

n

)
. For n odd, the

continuous δ -V-configuration forms an isosceles triangle with ∥wi(t)∥2 = 1 for all 1≤ i≤ n−1,
αn/2(t) = θ and all other angles equal to π .

r0 r6

r 6
2

δ

Figure 7.8: A continuous
δ -V-configuration.

132 Chapter 7. The MAX-CHAIN-FORMATION Problem

Lemma 7.28 Starting in a continuous δ -V-configuration, MAX-MOB needs time at most
n ·
(1

τ
+ 1

1−τ

)
to transform the configuration into a max-chain.

Proof. Fix a point in time 0 in which the configuration is a continuous δ -V-configuration. Note
that a continuous δ -V-configuration forms an isosceles triangle whose legs have a length of n

2
and the base (∆0,n−1(0)) has a length of δ . Without loss of generality, we assume that pℓ(0) =
(0,0), p0(0) = (x0,y0) and pn−1(0) = (xn−1,yn−1) with x0 = − δ

2 ,y0 =
n
2 · cos

(
θ

2

)
, xn−1 =

δ

2 and
yn−1 = n

2 · cos
(

θ

2

)
. Consider the case αℓ(t) = θ < ψ . rℓ(t) moves with speed 1 upwards. As

r0 and rn−1 move with speed at most 1− τ , Hℓ(t) and Hr(t) decrease with speed at least τ . As
Hℓ(0) = n

2 ·cos
(

θ

2

)
< n

2 , αℓ(t)≥ ψ must hold after time at most n
2·τ , otherwise Hℓ(t) = 0 and, thus,

αℓ(t) = π . Since αℓ(t)< ψ initially and αℓ(t) changes continuously, αℓ(t)≥ ψ must hold before
Hℓ(t) = 0. As soon as αℓ(t) reaches a size of ψ , rℓ(t) stops moving as its movement has decreased
Oℓ(t) and Or(t). Then, both Oℓ(t) and Or(t) increase with speed 1− τ (Lemma 7.17). As Oℓ(t)
and Or(t) are bounded by n

2 we have that Oℓ(t) = γℓ(t) and Or(t) = γr(t) after time at most 1
1−τ
· n

2 .
Afterward, rℓ(t) continues moving with speed 1 upwards, decreasing Hℓ(t) with speed at least τ (we
can apply the same arguments as before). Thus, finally after additional time of at most n

2·τ , we have
Hℓ(t) = 0 and the configuration is a one-dimensional opposed configuration that is transformed
into a straight line of length n−1 after time at most n−1

2·(1−τ) (Lemma 7.25). We conclude that the

total time is upper bounded by 2·n
2·τ +

n
2 ·

1
1−τ

+ n−1
2·(1−τ) < n ·

(1
τ
+ 1

1−τ

)
. ■

Proof of Lemma 7.23. There are two cases in which ℓ(t) = r(t). Either ℓ(t) = r(t) = 0 or ℓ(t) =
r(t) = j with 1 ≤ j ≤ n− 2. In case ℓ(t) = r(t) = 0, this means that either every vector is the
0-vector and thus all robots are located on a single point, or all robots are located on the same
line in an opposed configuration. This is a one-dimensional configuration and transformed into a
line of length n−1 after time at most n

2·(1−τ) (Lemma 7.25). It remains to consider ℓ(t) = r(t) = j
with 1≤ j ≤ n−2. In case αℓ(t) = 0 the configuration is one-dimensional and transformed into a
straight line or a single point after time at most n−1

2 ·
(1

τ
+ 1

1−τ

)
(Lemmata 7.26 and 7.27). Assume

that αℓ(t)> 0. This configuration has only a single angle of size less than π . For the special case of
a continuous δ -V-configuration we have proven a runtime of at most n ·

(1
τ
+ 1

1−τ

)
in Lemma 7.28.

Now, suppose the triangle formed by ro,rℓ(t) and rn−1 is not isosceles. Without loss of generality, we
assume that ∆ℓ,n−1(t)< ∆0,ℓ(t). In this case, enlarge the line segment connecting rℓ(t) and rn−1 such
that it has length ∆0,ℓ(t) and place a virtual robot rv at the end of this line segment. Now, the triangle
formed by r0, rℓ(t) and rv is an isosceles triangle. Assume that the virtual robot rv moves exactly as
rn−1. Define Hv(t) to be the distance of rℓ(t) to the line segment connecting r0 and rv. rℓ(t) moves
with speed 1 upwards while both r0 and rv can move with speed at most 1− τ upwards. The rest of
the argumentation is analogous to continuous δ -V-configurations with the only difference that Hv(t)
is upper bounded by n−2 (in case Oℓ(t) = n−2 and Or(t) = 1 or vice versa). Thus the total time
spent in such a configuration can be bounded by 2n ·

(1
τ
+ 1

1−τ

)
+ n

2·(1−τ) < 3n ·
(1

τ
+ 1

1−τ

)
. ■

Finally, the combination of Lemmata 7.22 and 7.23 yields the main theorem.

Theorem 7.12 Starting MAX-MOB in a two-dimensional configuration, the initial chain is
either transformed into a straight line of length n−1 or all robots are located at the same position
after time O(n).

7.5 On the Speed of the Outer Robots
We conclude by discussing the role of the speeds of outer robots in MAX-MOB and MAX-GTM,
revealing an interesting runtime gap between the continuous time model and the FSYNC scheduler.
There are two classes of configurations that play an important role in this discussion, discrete δ -V-
configurations (Definition 7.1 and Figure 7.3) and continuous δ -V-configurations (Definition 7.6

7.5 On the Speed of the Outer Robots 133

and Figure 7.8). With the help of these configurations, we give evidence of why the speed of outer
robots is reduced to 1− τ in MAX-MOB.

Initially, we show the difference between the behavior of MAX-MOB and the analogous protocol
in which outer robots always move with full speed started in continuous δ -V-configurations. In
Section 7.4.4 we have already seen that MAX-MOB resolves continuous δ -V-configurations in
time O (n). Consider now the naïve approach that the maximum speed of the outer robots is not
reduced by a constant in MAX-MOB (thus, the maximum speed is 1). We call this protocol NAIVE-
MAX-MOB. We prove that the runtime of NAIVE-MAX-MOB for continuous δ -V-configurations
also depends on δ , exactly as in the lower bound for the discrete case. Thus, the inner robots must
move significantly faster upwards than the outer robots in these configurations to flatten the chain.

Theorem 7.13 NAIVE-MAX-MOB transforms a continuous δ -V-configuration into a max-chain
in time Ω(n · log(1/δ)).

For the proof of Theorem 7.13, we state the following lemma.

Lemma 7.29 When applying NAIVE-MAX-MOB to continuous δ -V-configurations,

∆0,n−1
′(t) = ∆0,n−1(t)cos

(θ

2
)
· 2

n

.

Proof. Due to the symmetry, we obtain β0,ℓ(t) = βn−1,ℓ(t) = π

2 + θ

2 . Additionally, the distances
∆ℓ,ℓ+(t) and ∆r,r+(t) remain constant, because the outer robots can move with speed 1. Hence, the

outer robots move with speed cos
(

θ(t)
2

)
as the robot r n

2
reduces ∆ℓ,ℓ+(t) and ∆r,r+(t) with speed

cos
(

θ(t)
2

)
. Thus, we can calculate ∆0,n−1

′(t) according to Lemma 7.12.

∆0,n−1
′(t) =−2 ·

(
cos
(

θ

2

)
· cos

(
π

2
+

θ

2

))
=−2 ·

(
−cos

(
θ

2

)
· sin

(
θ

2

))
= sin(θ)

Via the law of sines, we then obtain

∆0,n−1(t)
sin(θ)

=
n
2

sin
(

π−θ

2

) ⇐⇒ sin(θ) =
∆0,n−1(t) · cos

(
θ

2

)
n
2

.

■

Proof of Theorem 7.13. Fix a point 0 such that ∆0,n−1(0) = δ , according to the definition of
continuous δ -V-configurations. Since cos(θ(t)/2) ≤ 1, we can bound ∆0,n−1

′(t) ≤ 2·∆0,n−1(t)
n (see

Lemma 7.29). Thus, it requires time O(n) until ∆0,n−1(t) doubles. To increase ∆0,n−1(t) such
that ∆0,n−1(t) ≥ c for an arbitrary constant (less than 1), it requires time Ω(n · log(1/∆0,n−1(0))) =
Ω(n · log(1/δ)). ■

The high runtime also explains another crucial property of the MAX-MOB protocol. Remember
that an inner robot moves in case either ∥wi(t)∥2 = 1, ∥wi+1(t)∥2 = 1 or αi(t)< ψ . Suppose we
drop the last assumption and inner robots move only in case either ∥wi(t)∥2 = 1, ∥wi+1(t)∥2 = 1.
Consequently, we would lose the speed gain obtained by reducing the speed of the outer robots! To
see this, observe that in a continuous δ -V-configuration with very small angles θ , the robot r⌈ n

2 ⌉

134 Chapter 7. The MAX-CHAIN-FORMATION Problem

moves fast enough such that Oℓ(t) and Or(t) decrease with constant speed such that immediately
∥w n

2
(t)∥2 < 1 and ∥w n

2+1(t)∥2 < 1 hold. Hence, r n
2

stops moving and waits until Oℓ(t) and Or(t)
reach their maximum length again. As the process is continuous, r n

2
does not wait until this happens

but is slowed down to a speed of 1− τ such that r n
2

and the outer robots move with the same speed
that results in a runtime depending on δ . To summarize, two aspects in the design of MAX-MOB
are crucial for the linear runtime: Slowing down the outer robots to a speed of 1− τ and allowing
the inner robots to move at full speed in case they are located at a very small angle.

Since slowing down the outer robots in the continuous time model removes the dependence one
δ , one could conjecture that the same approach would work in the discrete time model. Next, we
prove this conjecture to be wrong. Consider the protocol (1− τ)-MAX-GTM, in which the outer
robots do not move the entire distance to their target point but only 1− τ times the distance they
would usually move. The movement of inner robots remains unchanged. The new positions of r0
and rn−1 can be computed as follows:

p0(t +1) = p0(t)+(1− τ)

(
1
2
· p1(t)+

1
2

p0(t)−
1
2

ŵ1(t)− p0(t)
)

=
(1+ τ)

2
· p0(t)+

(1− τ)

2
· p1(t)−

(1− τ)

2
· ŵ1(t)

pn−1(t +1) =
(1+ τ)

2
· pn−1(t)+

(1− τ)

2
· pn−2(t)+

(1− τ)

2
· ŵn−1(t)

For the vector representation, we obtain the following equations:

w1(t +1) =
1
2

w2(t)+
τ

2
w1(t)+

(1− τ)

2
· ŵ1(t)

wn−1(t +1) =
1
2
·wn−2(t)+

τ

2
·wn−1(t)+

(1− τ)

2
· ŵn−1(t)

Similar to Definition 7.1, we can define configurations that have the same behavior under (1− τ)-
MAX-GTM as discrete δ -V-configurations under MAX-GTM showing that a speed reduction does
not work here.

Definition 7.7 For n even, a discrete (δ ,1− τ)-V-configuration is defined by the vectors

wi(t) =
(

δ

n−1 ,
n
2+1−2·(i−1)

n
2+1

(
1−τ

1−τ+ 2
n−2

))
for all 1≤ i≤ n−1.

Note that for τ = 0, discrete δ -V-configurations and discrete (δ ,1− τ)-V-configurations coincide.
Also for δ = 0, discrete (δ ,1− τ)-V-configurations have a marching chain behavior. However the
movement distance per round scales with τ .

Theorem 7.14 Starting in a discrete (δ ,1− τ)-V-configuration, (1− τ)-MAX-GTM needs at
least Ω

(
n2 · log(1/δ)

)
rounds to achieve an ε-approximation of the max-chain.

The proof is analogous to the proof of Theorem 7.10. First, we state that all vectors wi(t) are
always at least as large as their initial length.

Lemma 7.30 During an execution of (1− τ)-MAX-GTM starting in a discrete (δ ,1− τ)-V-
configuration at time step 0, ∥wi(t)∥2 ≥ ∥wi(0)∥2 for all t and all 1≤ i≤ n−1.

Proof. The proof is analogous to the proof of Lemma 7.8. ■

Next, we show that it requires Ω
(
n2 · log(1/δ)

)
until the x-coordinate of w2(t) is larger than a

constant.

7.6 Conclusion & Outlook 135

Lemma 7.31 Assume that we start (1− τ)-MAX-GTM in a discrete (δ ,1− τ)-V-configuration.
We have that x1(t)≥ 1

2 after Ω
(
n2 · log(1/δ)

)
rounds.

Proof.

x1(t +1)≤ 1
2

x2(t)+
τ

2
· x1(t)+

1− τ

2 · 1−τ

1−τ+ 2
n−2

· x1(t)

=
1
2

x2(t)+
(

1
2
+

1
n−2

)
· x1(t)

≤
(

1+
1

n−2

)
· x1(t)

The last line is the same formula that has been obtained in the proof of Lemma 7.9 and thus,
the same lower bound applies. ■

7.6 Conclusion & Outlook
We defined the MAX-CHAIN-FORMATION problem and presented two protocols, one for the
OBLOT F

1 model and a second one for the OBLOT C
1 model. The MAX-CHAIN-FORMATION

can be seen as an extension of the CHAIN-FORMATION problem, with different roles of the
outer robots. In the same way, we also designed the protocols: we took protocols to solve the
CHAIN-FORMATION problem in the respective models and added additional movement rules
for the outer robots to stretch the chain. Since the outer robots can only observe the position
of their direct neighbor, our rules demand that the outer robots move as far as possible away
from the direct neighbor without losing connectivity. Compared to the CHAIN-FORMATION

protocols, we observed a more complex convergence behavior. The MAX-GTM protocol for the
OBLOT F

1 model converges either to the optimal configuration or to a configuration that keeps
moving through the plane forever. We completely characterized this behavior for one-dimensional
(all robots’ positions are initially collinear) configurations and proved upper and lower runtime
bounds of Ω(n2 · log(1/ε)) and O(n2 · log(n/ε)) rounds. For two-dimensional configurations, such
a characterization is not known yet and is left for future research. Starting in two-dimensional
configurations, the runtime of MAX-GTM can be arbitrarily high, depending on the initial distance
δ of the outer robots. More precisely, we could prove a bound of Ω(n2 · log(1/δ)) rounds. As δ can
be chosen arbitrarily small, the high runtime follows.

Apart from a complete understanding of the MAX-GTM protocol, it is also worthwhile to
consider different protocols. Can we modify the movement of the outer robots such that the
undesired marching chains are removed from the configuration space? Moreover, our simulations
indicate that a small random perturbation of the input configuration removes all undesired behavior
and results in a configuration that converges to the max-chain with high probability. Future research
could analyze the impact of random perturbations, underlying our conjecture that there are only a
few configurations that converge to the marching chain.

Furthermore, the LUMI model allows potentially to design faster protocols. Similar ideas as
for the ε-HOPPER and ε-2-HOPPER protocols (Chapter 5) could be applied here. Obviously, the
merge operation needs to be handled differently as removing robots from the chain would reduce
the maximum chain length. Nevertheless, the hop and the shorten operations could remain and the
outer robots obtain the role to enlarge certain vectors.

For the OBLOT C
1 model, we have introduced the MAX-MOB protocol. Compared to MAX-

GTM, MAX-MOB has an interesting twist: the outer robots are mostly slowed down by a constant.
The speed reduction allows for a time-optimal protocol, requiring O(n) time. Nevertheless, also
the MAX-MOB protocol does not always converge to the max-chain. Instead, some configurations
collapse to a single point. Also here, a complete characterization of the input space is left for future

136 Chapter 7. The MAX-CHAIN-FORMATION Problem

research. Additionally, a protocol that never collapses to a single point would be of interest. There
are certainly highly symmetric input configurations that cannot be stretched to a maximum length.
Hence, the first step would be to characterize all input configurations for which the problem is
impossible to solve and afterward to design a protocol that stretches all remaining configurations
properly to a max-chain.

8. The MAX-LINE-FORMATION Problem

In this last chapter, we study the MAX-LINE-FORMATION problem, where the goal is to arrange
n robots located in R2 on a straight line of length n−1. While the goal is identical to Chapter 7
(the MAX-CHAIN-FORMATION problem), we consider a different robot model in this chapter:
instead of considering a chain topology, we consider the standard connectivity model, where robots
can observe all robots within their viewing range and do not have any predefined neighborhoods.
Previously (Chapter 7), we have seen that this task is even with the potentially helpful assumption
of a chain difficult to establish. In this chapter, we will see that – without a chain – the problem
is for oblivious robots (OBLOT) even impossible to solve. We discuss how to enhance the local
views of the robots to allow at least solutions that converge to the optimal configuration. Moreover,
we show how switching to the LUMI model allows the robots to solve the problem optimally.
The results of this chapter are based on the following publication.

2021 (with T. Goette, T. Knollmann and F. Meyer auf der Heide) “The Max-
Line-Formation Problem – and new Insights for Gathering and Chain-Formation”
In: Proceedings of the 23rd International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), cf. [25].

8.1 Contribution

We introduce the MAX-LINE-FORMATION problem. The goal is to arrange n robots on a straight
line of length (n−1). We start with an impossibility result and prove that there are initial configura-
tions for which the problem cannot be solved deterministically by robots in the OBLOT F model
with constant sized circular viewing and connectivity ranges. In addition, also no protocol that
converges to the optimal solution can exist for these configurations. The impossibility result even
holds under strong assumptions: fully synchronized robots (FSYNC) that agree on both axes of
their local coordinate systems.

Theorem 8.1 In the OBLOT F model, for every constant circular connectivity and viewing
range, there exists an initial configuration with robots located at distinct positions such that
MAX-LINE-FORMATION is unsolvable. Furthermore, no protocol that converges to the optimal
configuration can exist for these configurations. This holds even for robots that agree on both
axes of their local coordinate systems.

138 Chapter 8. The MAX-LINE-FORMATION Problem

On the positive side, we show that the problem becomes solvable for robots with identical
square connectivity and viewing ranges. While square connectivity and viewing ranges already
have been proven to be useful to derive an efficient GATHERING protocol [109], MAX-LINE-
FORMATION is the first known problem that can be solved under square viewing ranges but not
under circular viewing ranges. Our protocols require the robots to agree on one axis of their local
coordinate systems. We introduce three protocols. The first protocol considers the OBLOT model
and converges to the optimal configuration in O(n2 · log(n/ε)) epochs under the SSYNC scheduler.
The analysis idea is based on the sample variance of time inhomogeneous Markov chains (a concept
similar to the mixing time of the time-homogeneous case) inspired by [103].

Theorem 8.2 In the OBLOT S
1 model with square viewing ranges and robots that agree on one

axis of their local coordinate systems, there exists a protocol such that for every ε ∈ (0,1), after
O(n2 · log(n/ε)) epochs, the robots have formed a line of length at least (1− ε) · (n−1).

Afterward, we show that enhancing the robots with the LUMI model allows us to derive an
improved protocol, i.e., the protocol solves the problem exactly while simultaneously improving
the runtime. The protocol considers the FSYNC scheduler and solves the problem in Θ(n) epochs.
The runtime is asymptotically optimal. Moreover, the protocol can be implemented with 9 colors.
Compared to the OBLOT protocol, the LUMI protocol for the FSYNC scheduler makes use of
the idea of run sequences, which we have already introduced in Chapter 5. Robots that locally
believe that they are endpoints of the line maximize the distance to their closest neighbor and start
run sequences to swap the maximized vector along the line.

Theorem 8.3 In the LUMI F
1 model with square viewing ranges and robots that agree on one

axis of their local coordinate systems, there exists a protocol such that after O(n) epochs, the
robots have solved the MAX-LINE-FORMATION problem.

With some additional synchronization we have already used in Chapter 5, a combination of
the two protocols can solve the problem exactly with the help of lights in O(n2) epochs under the
SSYNC scheduler1. The second part of the protocol uses the same approach with run sequences as
the FSYNC protocol. However, under the SSYNC scheduler, our current solution requires more
time to arrange all robots in a line initially.

Theorem 8.4 In the LUMI S
1 model with square viewing ranges and robots that agree on one

axis of their local coordinate systems, there exists a protocol such that after O(n2) epochs, the
robots have solved the MAX-LINE-FORMATION problem.

8.2 Model Recap and Preliminaries

Initially, we show for theOBLOT F
c model, for a constant c≥ 1, that the MAX-LINE-FORMATION

problem is unsolvable, even if the robots agree on both axes of their local coordinate systems.
For the rest of the chapter, we assume that the robots agree on the x-axis of their local coordinate
systems, i.e., all robots have a common understanding of left and right and the coordinate systems
of all robots are commonly aligned. However, the robots do not have any agreement on the y-axis,
i.e., the understanding of up and down can be different from robot to robot. Moreover, the robots
have a square viewing and connectivity range of 2. This means, that robots can observe all other
robots within the axis-aligned square of side length 2 centered at their own position. As we also

1Note that synchronization in Chapter 5 works even for the ASYNC scheduler. However, some parts of the protocols
in this section do not rely on a locally sequential movement. Since the synchronization in Chapter 5 heavily relies on the
sequentiality, we cannot use it entirely in this section.

8.3 Results in the OBLOT Model 139

consider a square connectivity range, this implies that the distance between two neighboring robots
can be at most

√
2 (and thus slightly larger than 1, compared to the previous chapters of this thesis).

Protocol Model Dimension Viewing
Range

Orientation Chain

Section 8.3.3 OBLOT S 1,2 2 (square) one-axis
agreement

no

Section 8.4.1 LUMI F 1,2 2 (square) one-axis
agreement

no

Section 8.4.4 LUMI S 1,2 2 (square) one-axis
agreement

no

Table 8.1: A summary of the most important model details for the MAX-GTM and MAX-MOB
protocols.

Problem Statement. The goal of the MAX-LINE-FORMATION problem is to reach a configu-
ration that is connected and there are two robots ri and r j that have a distance of ∥pi(t)− p j(t)∥2 =
n−1. The positions of all robots have to be collinear and there is a renaming of the robots such
that in the renaming, r0 and rn−1 only observe a single neighbor (r1 and rn−2) and all other robots
ri observe exactly two neighbors ri−1 and ri+1.

Definitions & Notation. For a robot ri, ri
ℓ(t) denotes the leftmost robot of its neighborhood

in round t. The position of ri
ℓ(t) in the local coordinate system of ri in round t is denoted by

pi
ℓ(t) = (xi

ℓ(t),y
i
ℓ(t)). In case there are multiple such robots, ri

ℓ(t) represents an arbitrary robot of all
leftmost ones. Similarly, ri

r(t) and pi
r(t) are defined for the rightmost neighbor. Additionally, define

ri
+(t) and pi

+(t) to be the closest neighbor above of ri and its position in the local coordinate system
of ri. Analogously, ri

−(t) and pi
−(t) is defined as the closest neighbor below and its position. In

case no such robot exists, ri
+(t) = ri and ri

−(t) = ri. For a vector v, we denote by v̂ the normalized
vector 1

∥v∥2
v.

8.3 Results in the OBLOT Model
The following sections study the MAX-LINE-FORMATION problem in the OBLOT model. We
start with the impossibility result in Section 8.3.1. Afterward, we emphasize why square viewing
ranges circumvent the impossibility in Section 8.3.2. Our protocol for the OBLOT S model is
presented in Section 8.3.3 and analyzed in Section 8.3.4.

8.3.1 Impossibility Result
This section proves that MAX-LINE-FORMATION is unsolvable with constant-sized circular viewing
and connectivity ranges in the OBLOT F

1 model (and thus also for OBLOT S
1 and OBLOT A

1).

Theorem 8.1 In the OBLOT F model, for every constant circular connectivity and viewing
range, there exists an initial configuration with robots located at distinct positions such that
MAX-LINE-FORMATION is unsolvable. Furthermore, no protocol that converges to the optimal
configuration can exist for these configurations. This holds even for robots that agree on both
axes of their local coordinate systems.

Proof. Initially, we assume an identical viewing and connectivity range of c. The arguments for
viewing ranges that are larger than the connectivity range are analogous. We prove the claim by

140 Chapter 8. The MAX-LINE-FORMATION Problem

contradiction. We assume that there is a protocolM that can solve the MAX-LINE-FORMATION

problem. Next, we derive a combination of 2 initial configurations C1 and C2 and prove that if
M can solve the problem starting in C1, it cannot solve it starting in C2. The configuration C1
consists of three robots r1, r2 and r3 at arbitrary (connected) positions. SinceM can solve the
problem, there is a time step t f such that the MAX-LINE-FORMATION problem is solved. Without
loss of generality, we assume that r1 and r3 are located at the end of the line and p1(t f), p2(t f)
and p3(t f) form a line parallel to the y-axis (otherwise we could rename the robots and rotate the
following configuration C2 accordingly). More precisely, p1(t f)− p2(t f) = p2(t f)− p3(t f) = (0,c).
See Figure 8.1 for a depiction of the effects ofM started in C1.

The configuration C2 consists of 7 robots, r4, . . . ,r10 located at the following positions in
a global coordinate system (not known to the robots): p4(t) = (−c,c), p5(t) = (−c,0), p6(t) =
(−c,−c), p7(t) = (0,0), p8(t) = (c,c), p9(t) = (c,0), and p10(t) = (c,−c). See Figure 8.2 for a
visualization of the configuration. In C2, r4 can only see r5 and is located at a distance of c of
r5. Moreover, it holds p4(t)− p5(t) = p1(t f)− p2(t f). Thus,M is not allowed to move r4 since
M cannot distinguish r1 in configuration C1 after time t f and r4 in configuration C2. By similar
arguments,M is also not allowed to move r6,r8 and r10. Hence, the only remaining robots that
could be moved by M are r5, r7 and r9. However, also these robots are not allowed to move.
Consider the robot r5 which is located at a maximum vertical distance of 1 to r4, r6 and r7. No
matter where r5 moves, it loses the connectivity to either r4 or r6 as these robots remain at their
position. The same arguments hold for r7 and r9. It follows thatM cannot solve the problem
starting in C2, which contradicts the assumption.

r1

r2
r3

r1

r2

r3

M

Figure 8.1:M applied to C1.

r4

r5

r6

r8

r9

r10

r7

Figure 8.2: The configuration C2.

■

8.3.2 Intuition about Square Viewing Ranges

Next, we argue why the proof of Theorem 8.1 does not hold when considering square viewing and
connectivity ranges. We assume that the protocolM transforms the configuration C1 into a line that
is parallel to the y-axis. Then, also the configuration C2 is aligned with the y-axis. Still, the robots
r4,r6,r8 and r10 are not allowed to move. The robots r5 and r9, however, gain the possibility to
move horizontally. More precisely, r5 is allowed to move to the right without losing the connectivity
to r4 and r6 since the complete line segment connecting r5 and r7 is contained in the square viewing
range of both r4 and r6. Similarly, r9 can move to the left. Consequently, a protocol solving the
MAX-LINE-FORMATION with the help of square ranges should arrange the robots on a line parallel
to the y-axis. The square ranges are only beneficial in case the local coordinate systems have the
same orientation. In case the robots are disoriented, the impossibility result of Section 8.3.1 also
holds with square ranges.

8.3 Results in the OBLOT Model 141

r4

r5

r6

r8

r9

r10

r7

Figure 8.3: The configuration C2 with square ranges instead of circular ones.

8.3.3 OBLOT S
1 Protocol with Square Viewing Ranges

The protocol works in two phases. In the first phase, the positions of all robots are arranged on a
straight line parallel to the y-axis. Afterward, the line is stretched in the second phase. Since the
robots are oblivious and have limited visibility, robots cannot distinguish the phases and act upon
their local view. Nevertheless, we will show that there is a round t ′ such that all robots have joined
the second phase and will remain there for the rest of the execution.

Phase 1: A robot ri whose neighborhood has not yet formed a line parallel to the y-axis moves
only if its position is rightmost in its neighborhood. Then, ri moves horizontally to the x-coordinate
of its leftmost neighbor. If another robot already occupies this position, ri executes a slight vertical
movement into the positive (from its local view) y-direction to avoid a collision. More precisely,
if the robot is located topmost in its neighborhood, it moves a constant distance upwards. If the
robot is not topmost, it determines the value yi

min, the y-coordinate of its closest neighbor to the
top. Afterward, it moves 1/3 · yi

min upwards. The factor of 1/3 is essential since the robot with
y-coordinate yi

min might do the same movement while having an inverted understanding of up and
down. Thereby, a collision between the two robots is avoided.

Phase 2: In the second phase, all robots are located on the same line parallel to the y-axis, which
can be seen as a particular case of the MAX-CHAIN-FORMATION problem. Thus, the robots
execute the MAX-GTM protocol designed for MAX-CHAIN-FORMATION (Chapter 7): each inner
robot (robots that have neighbors in each direction) move to the midpoint between their closest
northern and their closest southern neighbor. Outer robots (at the end of the line) have to stretch
the line and move as far as possible away from their closest neighbor without losing connectivity.
Concretely, outer robots move as follows. Let r0 be an outer robot and r1 its closest neighbor and
v(t) = p0(t)− p1(t). Then, r0 imagines a virtual robot rv at the position pv(t) = p0(t)+ v̂(t) and
moves to 1/2 · pv(t)+ 1/2 · p1(t).

More formally, we define the following set of possibly colliding robots. For a robot ri, define
Ci(t) = {r j ∈ Ni(t)|xi

j(t) = 0 or xi
j(t) = xi

ℓ(t)}. Now, ri
min ∈Ci(t) is the robot with minimal yi

min(t)
among all robots with yi

min(t) > 0. Thus, ri
min represents the robot lying above of ri (from ri’s

view) that has the smallest y-coordinate among all robots in Ci(t). If no such robot exists, define
yi

min = 1/10. Algorithm 6 describes the movement of a robot ri.

142 Chapter 8. The MAX-LINE-FORMATION Problem

Algorithm 6 OBLOT MAX-LINE-FORMATION

1: if xi
r(t) = 0 and xi

ℓ(t)< 0 then ▷ Check if ri is rightmost but not leftmost
2: if no robot is located on (xi

ℓ(t),0) then
3: pi(t +1)← (xi

ℓ(t),0) ▷ ri can move safely to the left
4: else
5: pi(t +1)← (xi

ℓ(t),
1
3 · y

i
min) ▷ ri avoids a collision with a vertical movement

6: else
7: if xi

r(t) = 0 and xi
ℓ(t) = 0 then ▷ Check if neighbors are collinear

8: if yi
+(t) = 0 and yi

−(t)< 0 then ▷ Check if ri is topmost
9: v−(t)← pi

−(t)− pi(t)
10: pv(t)← pi(t)− v̂−(t) ▷ Position of virtual robot
11: pi(t +1)← 1

2 p−(t)+ 1
2 pv(t)

12: else if yi
+(t)> 0 and yi

−(t) = 0 then ▷ Check if ri is bottom-most
13: v+(t)← pi

+(t)− pi(t)
14: pv(t)← pi(t)− v̂+(t) ▷ Position of virtual robot
15: pi(t +1)← 1

2 p+(t)+ 1
2 pv(t)

16: else
17: pi(t +1)← 1

2 p−(t)+ 1
2 p+(t)

18: ri moves to pi(t +1)

8.3.4 Analysis of the OBLOT S Protocol
The following section is dedicated to the proof of Theorem 8.2.

Theorem 8.2 In the OBLOT S
1 model with square viewing ranges and robots that agree on one

axis of their local coordinate systems, there exists a protocol such that for every ε ∈ (0,1), after
O(n2 · log(n/ε)) epochs, the robots have formed a line of length at least (1− ε) · (n−1).

All following theorems and lemmata refer to an execution of Algorithm 6.

Lemma 8.1 After O(n2) epochs, all robots are located in distinct positions on the same vertical
line parallel to the y-axis. Moreover, the configuration is connected.

Proof. Initially, at most n distinct x-coordinates that are occupied by robots exist. In every epoch,
at least one robot that occupies the rightmost x-coordinate moves to the left as the configuration
is connected. This movement does not create any new x-coordinate as the robot moves to the
x-coordinate of its leftmost neighbor. Additionally, no robot moves to the right. Hence, after at
most n epochs, no robot occupies the rightmost x-coordinate anymore. Thus, after O(n2) epochs,
all robots are located on the same vertical line by applying the same argument inductively. The
connectivity and non-existence of collisions follow from the protocol’s description. ■

Now, we can assume that the first phase is completed, and thus all robots are located on the same
vertical line. Without loss of generality, we rename the robots such that y0(t)≤ y1(t)≤ ...≤ yn−1(t).
Moreover, we define w0(t) = 1 and wi(t) = yi(t)− yi−1(t) for 1≤ i≤ n−1. In addition, we define
zi(t) = wi(t)−w0(t). The protocol is designed such that limt→∞ wi(t) = 1 for all i. To analyze this
behavior, we consider the following function.

Φ(t) =
n−1

∑
i=1

zi(t)2.

8.3 Results in the OBLOT Model 143

The function Φ(t) is also known as the sample variance [103]. The name comes from a relation
to time inhomogeneous Markov chains. Although the protocol is deterministic, the behavior of the
vectors wi(t) can be interpreted as a time inhomogeneous Markov Chain with an absorbing state
(since w1(t) = 1 for all t). The main course of our analysis is based on [103], where the authors
analyzed a similar behavior in the context of the distributed averaging consensus problem. In this
problem, there are n agents, each having a numerical opinion. Every round, an agent updates its
opinion to the average opinion of its neighbors. Our application has one important difference: the
values wi(t) do not average but converge to the fixed value w1(t). Hence, many parts of the proof
in [103] have to be reworked and adapted to our application.

First, we derive a formula for Φ(t +1). To do so, we introduce some additional notation. We
define τi(t) = 1 if and only if ri is active in round t. Next, we derive formulas for the vectors
wi(t +1). For each vector, we have to consider 4 cases: Case 1: τi−1(t) = 1 and τi(t) = 1, Case 2:
τi−1(t) = 1 and τi(t) = 0, Case 3: τi−1(t) = 0 and τi(t) = 1 and Case 4: τi−1(t) = 0 and τi(t) = 0.
In the following, we introduce indicator variables that are equal to 1 if a certain case is fulfilled and
otherwise equal to 0. The indicator variables are µi(t), µ

−
i (t) and µ

+
i (t). The variable µi(t) = 1 if

and only if Case 1 is fulfilled and µ
−
i (t) = 1 and µ

+
i (t) = 1 reflect Cases 2 and 3. More formally,

µ
−
i (t) := τi−1(t) · (τi−1(t)− τi(t))

µi(t) := τi−1(t) · τi(t)

µ
+
i (t) := τi(t) · (τi(t)− τi−1(t)) .

Next, we introduce the variables d−i (t),di(t) and d+
i (t) which express how Φ(t +1) changes

with respect to round t. For the ease of notation, d−1 (t) = d1(t) = 0 and d+
n−1(t) = dn−1(t) = 0 for

all t. In every other case, the formulas are

d−i (t) := µ
−
i (t) · (wi(t)−wi−1(t))

2

di(t) := µi(t) · (wi−1(t)−wi+1(t))
2

d+
i (t) := µ

+
i (t) · (wi(t)−wi+1(t))

2 .

Observe that d−i (t),di(t) and d+
i (t) are defined such that at most one of the three terms can be

larger than 0 (the other ones are equal to 0). Lastly, define wn(t) = w0(t).

Lemma 8.2 For any round t, it holds

Φ(t +1) = Φ(t)− 1
4

n−1

∑
i=1

d−i (t)+di(t)+d+
i (t).

Proof. Consider a vector wi(t) with 1 < i < n−1. Next, we calculate wi(t +1) based on Cases 1-4.
• Case 1:

wi(t +1) = pi(t +1)− pi−1(t +1)

=
1
2

pi−1(t)+
1
2

pi+1(t)−
1
2

pi−2(t)−
1
2

pi(t)

=
1
2

pi+1(t)−
1
2

pi(t)+
1
2

pi−1(t)−
1
2

pi−2(t)

=
1
2

wi+1(t)+
1
2

wi−1(t)

• Case 2:

wi(t +1) = pi(t +1)− pi−1(t +1)

144 Chapter 8. The MAX-LINE-FORMATION Problem

= pi(t)−
1
2

pi−2(t)−
1
2

pi(t)

=
1
2

pi(t)−
1
2

pi−2(t)

=
1
2

pi(t)−
1
2

pi−1(t)+
1
2

pi−1(t)−
1
2

pi−2(t)

=
1
2

wi−1(t)+
1
2

wi(t)

• Case 3:

wi(t +1) = pi(t +1)− pi−1(t +1)

=
1
2

pi−1(t)+
1
2

pi+1(t)− pi−1(t)

=
1
2

pi+1(t)−
1
2

pi−1(t)

=
1
2

pi+1(t)−
1
2

pi(t)+
1
2

pi(t)−
1
2

pi−1(t)

=
1
2

wi(t)+
1
2

wi+1(t)

• Case 4: wi(t +1) = wi(t)
The formulas for the boundary vectors w1(t) and wn−1(t) are slightly different. Case 1’:

τ0(t) = 1, τ1(t) = 1, τn−2(t) = 1,τn−1(t) = 1, Case 2’ and 3’: τ0(t) = 1, τ1(t) = 0,τn−2(t) = 0 and
τn−1(t) = 1 or vice versa and Case 4′: τ0(t) = 0,τ1(t) = 0,τn−2(t) = 0 and τn−1(t) = 0. We derive
the formulas explicitly for w1(t +1), and the formulas for wn−1(t +1) can be derived analogously.

• Case 1’:

w1(t +1) = p1(t +1)− p0(t +1)

=
1
2

p0(t)+
1
2

p2(t)−
1
2

p0(t)+
1
2
− 1

2
p1(t)

=
1
2

w0(t)+
1
2

w2(t)

wn−1(t +1) =
1
2

wn−2(t)+
1
2

wn(t)

• Case 2’:

w1(t +1) = p1(t +1)− p0(t +1)

= p1(t)−
1
2

p0(t)+
1
2
− 1

2
p1(t)

=
1
2

w0(t)+
1
2

w1(t)

wn−1(t +1) =
1
2

wn−1(t)+
1
2

wn(t)

• Case 3’:

w1(t +1) = p1(t +1)− p0(t +1)

=
1
2

p0(t)+
1
2

p2(t)− p0(t)

=
1
2

p2(t)−
1
2

p1(t)+
1
2

p1(t)−
1
2

p0(t)

=
1
2

w2(t)+
1
2

w1(t)

wn−1(t +1) =
1
2

wn−2(t)+
1
2

wn−1(t)

8.3 Results in the OBLOT Model 145

• Case 4’:

w1(t +1) = w1(t)

wn−1(t +1) = wn−1(t)

Next, we derive a formula for zi(t +1)2 for 1 < i < n−1. Observe first zi(t)2 = (wi(t)−1)2 =
wi(t)2−2 ·wi(t)+1.

• Case 1:

zi(t +1)2 = (
1
2

wi−1(t)+
1
2

wi+1(t)−1)2

=
1
4

wi−1(t)2 +
1
4

wi+1(t)2 +
wi−1(t) ·wi+1(t)

2
−wi−1(t)−wi+1(t)+1

=
1
4

zi−1(t)2 +
1
4

zi+1(t)2 +
wi−1(t) ·wi+1(t)

2
− 1

2
wi−1(t)−

1
2

wi+1(t)+
1
2

(8.1)

=
1
2

zi−1(t)2 +
1
2

zi+1(t)2− 1
4

wi−1(t)2− 1
4

wi+1(t)2 +
wi−1(t) ·wi+1(t)

2
(8.2)

=
1
2

zi−1(t)2 +
1
2

zi+1(t)2− 1
4
· (wi−1(t)−wi+1(t))

2

Equation (8.2) can be derived by adding 1
4 wi−1(t)2 + 1

4 wi+1(t)2 on both sides, rearranging
the right side to 1

2 zi−1(t)2 + 1
2 zi+1(t)2 + wi−1(t)·wi+1(t)

2 and subtracting 1
4 wi−1(t)2 + 1

4 wi+1(t)2

on both sides.
• Case 2:

zi(t +1)2 =
1
4

wi−1(t)2 +
1
4

wi(t)2 +
wi−1(t) ·wi(t)

2
−wi−1(t)−wi(t)+1

=
1
4

zi−1(t)2 +
1
4

zi(t)2 +
wi−1(t) ·wi(t)

2
− 1

2
wi−1(t)−

1
2

wi(t)+
1
2

=
1
2

zi−1(t)2 +
1
2

zi(t)2− 1
4
· (wi−1(t)−wi(t))

2

• Case 3:

zi(t +1)2 =
1
4

wi(t)2 +
1
4

wi+1(t)2 +
wi(t) ·wi+1(t)

2
−wi(t)−wi+1(t)+1

=
1
4

zi(t)2 +
1
4

zi+1(t)2 +
wi(t) ·wi+1(t)

2
− 1

2
wi(t)−

1
2

wi+1(t)+
1
2

=
1
2

zi(t)2 +
1
2

zi+1(t)2− 1
4
· (wi(t)−wi+1(t))

2

• Case 4:

zi(t +1)2 = zi(t)2

Similar formulas can be derived for z1(t +1)2 and zn−1(t +1)2.
• Case 1’:

z1(t +1) =
(

1
2

w0(t)+
1
2

w2(t)−1
)2

=

(
1
2

w2(t)−
1
2

)2

=
1
4

w2(t)2− w2(t)
2

+
1
4

=
1
4

z2(t)

zn−1(t +1) =
1
4

zn−2(t)

146 Chapter 8. The MAX-LINE-FORMATION Problem

• Case 2’:

z1(t +1) =
(

1
2

w0(t)+
1
2

w1(t)−1
)2

=

(
1
2

w1(t)−
1
2

)2

=
1
4

z1(t)2

zn−1(t +1) =
1
4

zn−1(t)2

• Case 3’:

z1(t +1) =
(

1
2

w2(t)+
1
2

w1(t)−1
)2

=
1
2

z1(t)2 +
1
2

z2(t)2− 1
4
· (w1(t)−w2(t))

2

zn−1(t +1) =
1
2

zn−2(t)2 +
1
2

zn−1(t)−
1
4
· (wn−2(t)−wn−1(t))

2

• Case 4’:

w1(t +1) = w1(t)

wn−1(t +1) = wn−1(t)

Based on the previous formulas, we derive a form each zi(t +1)2 that reflects all cases.

z1(t +1)2 =
τ0(t)

2
· z1(t)2 +µ

+
i (t) · z1(t)2 +

τ1(t)
2
· z2(t)2

+(1− τ0(t)) · (1− τ1(t)) · z1(t)2− 1
4

d+
1 (t)

zi(t +1)2 =
τi−1(t)

2
· zi−1(t)2 +µ

−(t) · zi(t)2 +µ
+(t) · zi(t)2 +

τi(t)
2
· zi+1(t)2

+(1− τi−1(t)) · (1− τi(t)) · zi(t)2− 1
4

di(t)−
1
4

d−i (t)−
1
4

d+
i (t)

zn−1(t +1)2 =
τn−1(t)

2
· zn−1(t)2 +µ

−
i (t) · zn−2(t)2 +

τn−2(t)
2
· zn−2(t)2

+(1− τn−2(t)) · (1− τn−1(t)) · zn−1(t)2− 1
4

d−n−1(t)

When focusing only on the zi(t)2 terms, we observe that τi(t) = 1 (1 < i < n−1) adds 1
2 zi+1(t)2 to

zi(t +1) and 1
2 zi(t)2 to zi+1(t +1). Moreover, τi(t) = 0 (1 < i < n−1) adds 1

2 zi(t)2 to zi(t +1) and
1
2 zi+1(t)2 to zi+1(t +1). Hence, no matter if a robot is active or not, the same zi(t)2 summands are
added to Φ(t +1). We can make similar observations for τ1(t) and τn−1(t). All in all, we obtain
the following formula for Φ(t +1):

Φ(t +1) =
n−1

∑
i=1

zi(t)2− 1
4
·

n−1

∑
i=1

(
d−i (t)+di(t)+d+

i (t)
)

= Φ(t)− 1
4
·

n−1

∑
i=1

(
d−i (t)+di(t)+d+

i (t)
)

■

8.3 Results in the OBLOT Model 147

Based on the formula for Φ(t + 1) (Lemma 8.2), we derive a bound on the change of Φ(t)
between two epochs. Define wπ1(tek), . . . ,wπn−1(tek) to be the values wi(tek) sorted from largest to
smallest with ties broken arbitrarily.

Lemma 8.3 For any epoch k,

Φ(tek)−Φ(tek+1)≥
1
4

n−1

∑
i=1

(
wπi(tek)−wπi+1(tek)

)2
.

Proof. By Lemma 8.2, we obtain

Φ(tek)−Φ(tek+1)≥
1
4
·

tek+1

∑
t=tek

n−1

∑
i=1

(
d−i (t)+di(t)+d+

i (t)
)
.

The first part of the proof deals with finding a lower bound for any d−i (t)+di(t)+d+
i (t) given

that at least one of the terms is larger than 0 (at most one of the three terms is positive). The lower
bound, however, depends on the sorted sequence wπ1(t), . . . ,wπn−1(t). Since we lose much structure
due to the sorting, some definitions are needed. Let π : N→ N be the permutation that maps each
index i of the vectors wi to an index π(i) such that the sequence by the indices π(i) is sorted. In
other words, π : N→N is the function that maps the indices of w1(tek), . . . ,wn−1(tek) into the sorted
sequence wπ1(tek), . . . ,wπn−1(tek) and π−1 its inverse. Hence, πx ist the index of the x-th element
of the sorted sequence wπ1(tek), . . . ,wπn−1(tek). More precisely, for instance π(i) = π f if and only
if wi(tek) = wπ f (tek). Next, we define by dπm(t) the di(t)’s of the sorted sequence. More formally,
dπm(t) = dπ−1(πm)(t),d

−
π−1(πm)

(t) and d+
π−1(πm)

(t). Furthermore, define σm,i, j(t) = 1 if and only if
one of the following three cases is fulfilled:

1. dπm(t)> 0 and π(π−1(πm)−1) = πi and π(π−1(πm)+1) = π j or vice versa
2. d−πm

(t)> 0 and π(π−1(πm)−1) = πi and π(π−1(πm)) = π j or vice versa
3. d+

πm
(t)> 0 and π(π−1(πm)) = πi and π(π−1(πm)+1) = π j or vice versa

Due to the sorting, we lose the nice property that only neighboring wi(t)’s are involved in
dπm(t), d−πm

(t) and d+
πm
(t). For instance in case dπm(t)> 0 we cannot conclude that wπm−1(t) and

wπm+1(t) ar involved. Thus, intuitively, σm,i, j(t) = 1 if and only if dπm(t),d
−
πm
(t) or a d+

πm
(t) is larger

than 0 and both wπi(t) and wπ j(t) are involved.
Next, define tℓ (1 ≤ ℓ ≤ n) to be the first round larger than or equal to tek such that there

exists an index πℓ as well as three indices πi,π j and πm (πi ̸= π j but πi = πm, π j = πm or πm = πℓ

might hold) with πi ≤ πℓ < π j (or πi and π j are exchanged) and σm,i, j(t) = 1. In other words,
tℓ denotes the first round in which the values wπ1(tek), . . . ,wπℓ

(tek) and wπℓ+1(tek), . . . ,wπn−1(tek)
influence each other. By influencing each other, we mean that wπm(t + 1) = 1

2 wπi(t)+
1
2 wπ j(t),

since either dπm(t)> 0,d−πm
(t)> 0 or d+

πm
(t)> 0.2

For all t ∈ {tek , . . . , tek+1} let L(t) = {ℓ | tℓ = t}, i.e., L(t) represents all indices ℓ at time t such
that the two sets {wπ1(tek), . . .wπℓ

(tek)} and {wπℓ+1(tek), . . . ,wπn−1(tek)} influence each other for the
first time.

Now, we define all pairs of indices πi,π j at time t such that there exists a πℓ and a πm with
πi ≤ πℓ < π j and σm,i, j(t) = 1: Cℓ,m(t) = {{πi,π j}|πi ≤ πℓ < π j and σm,i, j(t) = 1}. Lastly, define
for fixed i, j and t: Fi j(t) = {ℓ ∈ L(t) | there is an index πm with {πi,π j} ∈Cℓ,m(t)}.

Fix some πi and π j with πi < π j and a round t such that |Fi j(t)|> 0. Let Fi j(t) = {ℓ1, . . . , ℓk}
sorted in increasing order. Since ℓ1 ∈ L(t), it holds by definition that there exists no round
t ′ ∈ [tek , . . . , t] and no index πm with πi ≤ πℓ1 < π j and σm,i, j(t ′) = 1. It follows wπi(t)≥ wπℓ1

(tek)

2In the context of averaging consensus each index 1, . . . ,n corresponds to a node in the graph. Thus, the index ℓ can
be interpreted as a cut in the graph and the time tℓ as the first time with communication across the cut represented by ℓ.

148 Chapter 8. The MAX-LINE-FORMATION Problem

(since wπi(t) was so far only influenced by elements of the set wπ1(tek), . . . ,wπℓ1
(tek) which are all

larger or equal to wπℓ1
(tek)). Similarly, one can argue wπ j(t)≤ wπℓk+1(tek). Hence, we can conclude

wπi(t)−wπ j(t)≥ wπℓ1
(tek)−wπℓk+1(tek)≥ ∑

πℓ∈Fi j(t)

(
wπℓ

(tek)−wπℓ+1(tek)
)
.

The last line directly leads to

(wπi(t)−wπ j(t))
2 ≥ ∑

πℓ∈Fi j(t)

(
wπℓ

(tek)−wπℓ+1(tek)
)2
.

The second part of the proof now deals with fixing a round t and finding a lower bound for
∑

n−1
i=1

(
d−i (t)+di(t)+d+

i (t)
)
.

n−1

∑
i=1

(
d−i (t)+di(t)+d+

i (t)
)
= ∑
(πm,πi,π j):σm,i, j(t)=1

(
wπi(t)−wπ j(t)

)2

≥ ∑
(πm,πi,π j):σm,i, j(t)=1

∑
πℓ∈Fi j(t)

(
wπℓ

(tek)−wπℓ+1(tek)
)2

≥ ∑
πℓ∈L(t)

(
wπℓ

(tek)−wπℓ+1(tek)
)2
.

Lastly, we plug all insights together to conclude the proof.

Φ(tek)−Φ(tek+1)≥
1
4
·

tek+1

∑
t=tek

n−1

∑
i=1

(
d−i (t)+di(t)+d+

i (t)
)

≥ 1
4
·

tek+1

∑
t=tek

∑
πℓ∈L(t)

(
wπℓ

(tek)−wπℓ+1(tek)
)2
.

=
1
4

n−1

∑
πℓ=1

(
wπℓ

(tek)−wπℓ+1(tek)
)2
.

The last line follows since each robot moves at least once per epoch. ■

Based on Lemma 8.3, a lower bound on the relative change is derived.

Lemma 8.4 Suppose that Φ(tek)> 0. Then,
Φ(tek)−Φ(tek+1)

Φ(tek)
≥ 1

8n2 .

Proof. Lemma 8.3 leads to

Φ(tek)−Φ(tek+1)

Φ(tek)
≥ 1

4
∑

n−1
πℓ=1

(
wπℓ

(tek)−wπℓ+1(tek)
)2

∑
n−1
πℓ=1 (wπℓ

(tek)−1)2 .

=
1
4

∑
n−1
πℓ=1

(
wπℓ

(tek)−wπℓ+1(tek)
)2

∑
n−1
πℓ=1 (wπℓ

(tek)−wπ1(tek))
2 .

The second line follows since w0(t) = 1 for all t and thus wπ1(tek) = 1. Observe that the
right-hand side does not change if we multiply each wπi(tek) with the same constant. Additionally,
it also does not change if we add the same constant to each wπi(tek). Hence, we can assume without
loss of generality that ∑

n−1
πℓ=1 wπℓ

(tek) = 0 and that ∑
n
πℓ=1 (wπℓ

(tek)−wπ1(tek))
2 = 1 and obtain

8.4 Results in LUMI Model 149

Φ(tek)−Φ(tek+1)

Φ(tek)
≥ 1

4
min

w1≥w2,...,≥wn−1
∑i wi=0

∑i(wi−w1)
2=1

n−1

∑
i=1

(wi−wi+1)
2

The assumption ∑i (wi−w1)
2 = 1 implies that the average value of all (wi−w1)

2 is 1
n and hence

there is at least some j with |w j−w1| ≥ 1√
n . As a consequence, either |w1| ≥ 1

2·
√

n or |w j| ≥ 1
2·
√

n .

Without loss of generality, we assume that |w1| ≥ 1
2
√

n and moreover assume w1 > 0. The case
w1 < 0 can be handled by multiplying each wi with −1 and sorting the elements in descending
order.

Now, define ui = wi−wi+1 for i < n−1 and un−1 = 0. It holds ui ≥ 0 for all i and ∑
n−1
i=1 wi =

w0−wn−1. Since at least one w1 ≥ 1
2
√

n and the ∑i wi = 0, we can conclude un−1 < 0 and thus

∑i ui ≥ 1
2
√

n .
As a final step, we obtain

Φ(tek)−Φ(tek+1)

Φ(tek)
≥ 1

4
min

ui≥0,∑i ui≥1/(2
√

n)

n−1

∑
i=1

w2
i .

The solution of the minimization problem is ui =
1

2·n3/2 for each i. Hence,

Φ(tek)−Φ(tek+1)

Φ(tek)
≥ 1

4
· 1

2 ·n2 =
1

8n2 .

■

Lemma 8.5 After O
(
n2 · log(n/ε)

)
epochs, it holds ∑

n−1
i=1 wi(t)≥ (1− ε) · (n−1).

Proof. Fix any epoch ek. By Lemma 8.4, we obtain Φ(tek+1)≤ (1− 1
8n2) ·Φ(tek) and thus Φ(tek+x)≤(

1− 1
8n2

)x ·Φ(tek). Observe that (1− y)x ≤ e−y·x where e denotes Euler’s number. Thus, choosing
x≥ 8n2 · ln(1

r) yields Φ(tek+x)≤ r ·Φ(tek). Since Φ(tek)< n−1, r ≤ ε

n−1 leads to Φ(tek+x)≤ ε and
thus ∑

n−1
i=1 wi(t)≥ (1− ε) · (n−1). ■

8.4 Results in LUMI Model
In this section, we mainly derive a protocol that solves MAX-LINE-FORMATION optimally (no
convergence) in the LUMI F

1 model. The protocol (Algorithm 7) achieves an optimal runtime of
Θ(n) rounds and is the topic of Section 8.4.1. Afterward, we argue briefly in Section 8.4.4, how a
combination of the OBLOT S and the LUMI F protocol solves the MAX-LINE-FORMATION also
optimally in the LUMI S model at the cost of a slightly larger runtime.

8.4.1 LUMI F
1 Protocol with Square Viewing Ranges

Similar to the OBLOT S protocol, the protocol works in two phases: In the first phase, all robots
are arranged on a straight line parallel to the y-axis, and in the second phase, the line is stretched
until it has maximal length. Note that these are global phases not known to the robots. Since the
robots can only act based on their local view, some robots might behave according to phase 1 while
other robots already move according to phase 2. Nevertheless, we will prove that there is a point in
time such that globally phase 1 is completed such that in the following, all robots move according
to phase 2. Compared to the OBLOT protocol (Section 8.3.3), the protocol uses different core
ideas in both phases. In the first phase, all robots (instead of only the rightmost ones of their

150 Chapter 8. The MAX-LINE-FORMATION Problem

neighborhood) move to the left – this is necessary to achieve a linear speedup of the first phase. The
second phase makes use of lights to implement run sequences, as we have already seen in Chapter 5.
To focus on the core ideas, we initially present a variant of the protocol in which the robots still
move to the left during the second phase. More precisely, after a linear number of rounds, the first
phase ends, and the robots form a line parallel to the y-axis that continuously moves a distance of 1
to the left. Simultaneously, the robots stretch the line until it has maximal length. However, the line
structure is always maintained such that MAX-LINE-FORMATION is solved finally and remains
solved (although the line keeps moving to the left). Moving continuously to the left can be removed
from the protocol with some additional effort; an intuition is given in Section 8.4.3.

Phase 1: All robots move as far as possible (regarding their neighborhood) to the left: each
robot ri moves to the x-coordinate xi

r(t)− 1. Again, collision avoidance has to be ensured.
While moving to xi

r(t)− 1, the robot ri could collide with every robot located on its local x-
axis. The robot ri executes a vertical movement to avoid a collision. Based on the ordering
of neighbors on the local x-axis, ri gets assigned a unique y-coordinate as follows: Define
Yi(t) = {r j ∈ Ni(t)|yi

j(t) = 0} and let xπ1(t),xπ2(t), . . . ,xπ|Yi(t)|
(t) be the x-coordinates of robots

in Yi(t) in increasing order. Additionally, let ki(t) ∈ {1, . . . , |Yi(t)|} denote the position of xi(t) in
the sorted sequence xπ1(t),xπ2(t), . . . ,xπ|Yi(t)|

(t). Furthermore, define yi
min(t) to be the minimal yi

j(t)
of all yi

j(t) > 0 of robots r j ∈ Ni(t). If no such robot exists, define yi
min(t) =

1
10 (any constant of

size at most 1 works). Then, ri gets assigned the y-coordinate ki(t)−1
|Yi(t)| ·

1
3 yi

min(t). The factor ki(t)−1
|Yi(t)| is

unique for every robot on the local x-axis and the factor of 1
3 is needed to prevent a collision with

other robots that execute the same collision avoidance.
Phase 2: For the second phase, lights are used. Without loss of generality, we assume that

the robots are ordered along the y-axis, i.e., y0(t)≥ ·· · ≥ yn−1(t). The core idea is to implement
run sequences started at r0 and rn−1 with the help of lights. Assume that a run sequence starts in
round t. Then, only r0 and rn−1 move. In round t +1, only r1 and rn−2 move and so on. A new
run sequence is started every three rounds. The realization with the lights works as follows. The
first required light ℓc with color set Cc = {0,1,2} is used as a round counter. Every round, all
robots increment their light ℓc. Whenever ℓc = 2 holds, both r0 and rn−1 activate a light ℓrun with
Crun = {0,1} (the light is either active or inactive). Thus, in the next round, it holds ℓc = 0 and
both r0 and rn−1 detect an active light ℓrun. Both r0 and rn−1 now execute a movement (see below).
Additionally, they deactivate the light ℓrun and activate a light ℓprev with color set Cprev = {0,1} to
remember the movement. Simultaneously, the robots r1 and rn−2 observe a neighbor on the y-axis
with active light ℓrun (r0 and rn−1). Additionally, neither r1 nor rn−2 has activated ℓprev. Hence, the
robots activate ℓrun to continue the run sequence. In the next round, r0 and rn−1 observe a neighbor
with active light ℓrun but do not activate their own light ℓrun since ℓprev is active.

Robots that have a run state (the light ℓrun is active) move as follows. In case r0 has a run
state and not r1 (n > 2), r0 moves at a distance of 1 vertically away from r1. More formally,
p0(t +1) = (x0

r (t)−1,− y0
1(t)
|y0

1(t)|
) (remember that in this variant the robots move also in phase 2 to

the left). Similar, rn−1 moves away from rn−2 at a distance of 1. In case a robot ri has a run state
that came from ri−1 (ri−1 has activated ℓprev and ri has activated ℓrun) and ri+1 does not have a run

state, ri moves in vertical distance 1 away from r+1: pi(t +1) = (xi
r(t)−1,− yi

i+1(t)
|yi

i+1(t)|
). Lastly, in

case two neighboring robots have a run, for instance, ri and ri+1 have activated ℓrun both move only

a vertical distance of 1
2 away from each other: pi(t +1) = (xi

r(t)−1,− yi
i+1(t)

2|yi
i+1(t)|

). The handling of
the lights and the corresponding movement is depicted in Figure 8.4.

8.4 Results in LUMI Model 151

Algorithm 7 LUMI F
1 Protocol executed from the local view of ri

1: if all neighbors are located on the y-axis then
2: if ri = ri

+(t) or ri = ri
−(t) then

3: if ℓrun = 1 then ▷ ℓrun = 1 implies ℓc = 0
4: ℓrun← 0;ℓprev← 1
5: rc← closest neighbor on y-axis
6: if rc has activated ℓrun then ▷ Special case n = 2
7: pi(t +1)← (xi

r(t)−1,− 1
2·|yc(t)| · yc(t)) ▷ Move distance of 1

2
8: else
9: pi(t +1)← (xi

r(t)−1,− 1
|yc(t)| · yc(t)) ▷ Move distance of 1

10: else
11: if ℓprev = 1 then ▷ Deactivate ℓprev

12: ℓprev← 0
13: else
14: if ℓc = 2 then ▷ Start new run sequence
15: ℓrun← 1
16: pi(t +1)← (xi

r(t)−1,0))
17: else
18: if ℓrun = 1 then
19: ℓrun← 0, ℓprev← 1
20: if closest neighbor above and below have set ℓrun = 0 then
21: rc← closest neighbor with ℓprev = 0
22: pi(t +1)← (xi

r(t)−1,− 1
|yc(t)| · yc(t))

23: else
24: rc← neighbor with ℓrun = 1
25: pi(t +1)← (xi

r(t)−1,− 1
2·|yc(t)| · yc(t))

26: else
27: if ℓprev = 1 then
28: ℓprev← 0
29: else
30: if closest neighbor above or below has set ℓrun = 1 then
31: ℓrun← 1
32: pi(t +1)← (xi

r(t)−1,0))
33: else
34: {ℓrun, ℓprev}← 0 ▷ Deactivate lights if neighborhood is not in phase 2
35: if |Yi(t)|> 0 then
36: pi(t +1)← (xi

r(t)−1, ki(t)−1
|Yi(t)| ·

1
3 yi

min(t))
37: else
38: pi(t +1)← (xi

r(t)−1,0)
39: ℓc← ℓc +1
40: ri moves to pi(t +1)

152 Chapter 8. The MAX-LINE-FORMATION Problem

ℓc = 0 ℓc = 1ℓc = 2 ℓc = 2 ℓc = 0

1

1

1

1
1

1

Figure 8.4: A square (cross) depicts a robot with active light ℓrun (ℓprev). Time proceeds from left to
right. In the first line, it holds ℓc = 2 for all robots. In this round, the topmost and the bottom-most
robot activate ℓrun. In the next round (ℓc = 0), these two robots move at a distance of 1 of their
neighbor (depicted by an arrow) and additionally deactivate ℓrun while activating ℓprev. Afterward,
the movement continues.

8.4.2 Analysis of the LUMI F
1 Protocol

In the analysis, we prove that after a linear number of rounds, the first phase ends. Moreover, it
is proven that as soon as phase 2 is reached, the robots remain in phase 2 (following from the
protocol’s description).

Lemma 8.6 After O(n) epochs, all robots are located in distinct positions on the same vertical
line parallel to the y-axis. Moreover, the configuration is connected.

Proof. The connectivity and collision avoidance can be directly concluded from the protocol’s
description. To prove the linear runtime, define xmax(t) to be the maximal x-coordinate in the
global coordinate system. Furthermore, define kmax(t) to be the number of robots with xi(t) ∈
(xmax(t)− 1,xmax(t)]. Observe that every robot ri with xi(t) ∈ (xmax(t)− 1,xmax(t)] moves such
that xi(t +1) ∈ (xmax(t)−2,xmax(t)−1]. Since the configuration is always connected, there must
have been a robot r j with x j(t) ∈ (xmax(t)−2,xmax(t)−1] that cannot leave the interval. It follows
kmax(t +1)≥ kmax(t)+1 Thus, after O(n) rounds, all robots have x-coordinates in an interval of
size at most 1. Fix one round t and assume that all robots have x-coordinates in an interval of size
at most 1. Consider the robot rmax with globally maximal x-coordinate. None of its neighbors can
see a robot that has a larger x-coordinate, and thus, all robots of Nmax(t) are collinear in round t +1.
Furthermore, all of these robots still have the globally largest x-coordinate in round t +1. Now,
consider the topmost robot r j ∈ Nmax(t). It follows that all robots of N j(t +1) have a smaller or
equal x-coordinate and cannot see any other robot with a larger x-coordinate. Thus, in round t+2 all
robots in Nmax(t) and N j(t +1) are collinear. The same argument holds for the bottom-most robot.
Applying the same argument inductively yields that all robots are collinear after O(n) rounds. ■

Afterward, the run sequences of the second phase are analyzed. The first run sequence ensures
that after O(n) rounds, the robots r⌊n/2⌋−1 and r⌊n/2⌋ have a vertical distance of 1. The second run

8.4 Results in LUMI Model 153

sequence ensures the same both for r⌊n/2⌋−2 and r⌊n/2⌋−1 as well as r⌊n/2⌋+1 and r⌊n/2⌋+2. Hence,
afterO(n) run sequences, the line reaches maximal length. Since each 3 rounds, a new run sequence
is started, and the linear runtime follows.

Theorem 8.5 After O(n) epochs, the robots have solved MAX-LINE-FORMATION.

Proof. By Lemma 8.6 all robots are collinear on a line parallel to the y-axis after O(n) epochs. It
remains to prove the linear runtime until the optimal configuration is formed. Rename the robots
such that r0 is the topmost robot and rn−1 is the bottom-most robot. Define wi(t) = yi(t)− yi−1(t).
Both r0 and rn−1 activate their light ℓrun every 3 rounds and ensure w1(t) = wn−1(t) = 1. In
round t +1 it holds w2(t +1) = wn−2(t +1) = 1 and so on. Assume n to be even (the arguments
for odd n are analogous). After n

2 − 1 rounds, the movement meets at the two robots rn/2 and
rn/2+1 and they move such that yn/2+1(t + n

2 − 1) = 1 holds. The next two movements ensure
yn/2(t + n

2 + 2) = yn/2+2(t + n
2 + 2) = 1 and so on. Since every third round a new movement is

started, the optimal configuration is reached in O(n) rounds. ■

The protocol can be implemented in the classical LUMI model with a single light having 9
colors. Observe that no robot ever activates the lights ℓprev and ℓrun at the same time. Thus, for
each robot, the following always holds: either ℓprev, ℓrun or none of both are activated. Additionally,
each robot counts rounds with the light ℓc requiring 3 colors. Hence, the total number of required
colors is 9: 3 colors of ℓc, each combined with 3 possible cases for the lights ℓrun and ℓprev.

8.4.3 Adjusted FSYNC Protocol
The FSYNC protocol presented in Section 8.4 is – to keep the pseudocode comprehensible –
designed such that the robots still move to the left after MAX-LINE-FORMATION is already solved.
In this section, we explain how 3 additional lights help to remove this behavior to design a protocol
that forms a stationary line.

Observe first that in Algorithm 7, two run sequences can only be located at two neighboring
robots in case the protocol is already in phase 2. Otherwise, at least one robot observes that its
neighborhood is not yet aligned parallel to the y-axis, and the corresponding run sequence is stopped
(line 31 in Algorithm 7). We use this observation as follows: As soon as two run sequences meet
at neighboring robots, the two robots activate a light ℓ f inal to store this information. Robots with
an active light ℓ f inal do not move to the left anymore. Additionally, robots that observe a robot in
their neighborhood that has activated ℓ f inal , activate their light ℓ f inal . Hence, after O(n) rounds,
all robots have activated ℓ f inal . While propagating ℓ f inal , it might, however, happen that some
robots move to the left while other robots remain stationary (due to the limited visibility). See
Figure 8.5 for a depiction of such a case. To rebuild the line shape again run sequences at robots
with active light ℓ f inal behave slightly differently. The vertical movement is identical to before. The
horizontal movement changes: instead of moving to the left, a robot moves a distance of 1 to the
right if it is leftmost in its neighborhood, and there is at least one robot in a horizontal distance
of 1 to the right. Finally, the robots align again on the initial line (before activating ℓ f inal) and
MAX-LINE-FORMATION gets solved after O(n) rounds.

154 Chapter 8. The MAX-LINE-FORMATION Problem

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

Figure 8.5: To the left, the robots are arranged on a straight line parallel to the y-axis. After some
time, two run sequences meet in the middle at r4 and r5 that activate their light ℓ f inal . In the next
round, r3 and r6 activate their light ℓ f inal and so on. However, r0, r1, r2, r3, r6, r7, r8 and r9 move a
distance of 1 to the left before r3 and r6 become stationary. Similarly, r0, . . . ,r2 and r7, . . . ,r9 move
a distance of 1 further to the left than r2 and r5 and so on. The final configuration might look like it
is depicted to the right.

8.4.4 High-level LUMI S
1 Protocol

The first phase of the LUMI S
1 protocol is identical to the first phase of the OBLOT protocol

(Section 8.3.3): Each robot that is rightmost in its neighborhood moves horizontally to the x-
coordinate of its leftmost neighbor. In case this position is already occupied, a slight vertical
movement is used to avoid collisions. The main idea of the second phase is the sequential movement
(run sequence) of Section 8.4. Due to the SSYNC scheduler, an additional synchronization procedure
needs to be added. In FSYNC, a robot with active light ℓrun can always be sure that the neighbors
observe and adapt the light. Since only a subset of robots is active in every round in SSYNC,
the light ℓrun might not be seen, and thus, the run sequence stops. To overcome this, we add
a synchronization done with the light ℓc. In contrast to the FSYNC protocol, the robots do not
increment the light in every round they become active. Instead, each run sequence gets associated
with a color of the light ℓc. More precisely, the main idea is as follows. Assume that the robots
have already formed a line parallel to the y-axis. Moreover, we rename the robots such that
y1(t) ≤ y2(t) ≤ ·· · ≤ yn−1(t). Additionally, assume the configuration is well-initialized, i.e., all
robots have set ℓc = 0. We describe the procedure from the view of r0, it works analogously for rn−1.
We denote by ℓi(r j) the color of r j’s light ℓi in round t (the time parameter is omitted for readability).
As soon as r1 is activated, it observes ℓc(r2) = ℓprev(r2) = ℓrun(r2) = 0. Then, r1 activates ℓrun. As
soon as r1 wakes up again, it executes its movement (it moves at a distance of 1 of r2), deactivates
ℓrun, activates ℓprev and increments ℓc such that ℓc = 1. In the future, r1 will only deactivate ℓprev

in case it detects ℓc(r2) = 1 (indicating that r2 has taken over the run sequence). Hence, as soon
as r2 is activated and detects ℓc(r1) = ℓprev(r1) = 1 and ℓc(r3) = ℓprev(r3) = ℓrun(r3) = 0, it will
activate ℓrun. Upon its next activation, r2 executes its movement, deactivates ℓrun, activates ℓprev

and increments ℓc. As soon as two neighboring robots have activated ℓrun both move at a distance
of 1

2 away from each other and stop the run sequence (exactly as in Algorithm 7). This way, the run

8.5 Conclusion & Outlook 155

sequences proceed along the line. To conclude, a robot r j only takes over a run sequence from its
neighbor r j−1 in case ℓc(r j−1) = ℓc(r j)+1. Additionally, r j will only deactivate ℓprev as soon as
ℓc(r j−1)≥ ℓ(r j) and ℓc(r j+1) = ℓc(r j). Note that it might happen due to the limited visibility that
some run sequences already start while the first phase is not completed. Hence, at the beginning
of phase 2, not all robots might be initialized with the same color of the light ℓc. In case a robot
detects such a violation (e.g., the next robot that should take over the light ℓrun has a larger value
of ℓc), the usual movement is not executed. Instead, simply the light ℓc is incremented. Hence,
for each constant number of run sequences, the light of one more robot is well-initialized, and the
protocol adjusts the colors of the lights ℓc in a self-stabilizing manner. All in all, the first phase has
a runtime of O(n2) epochs (Lemma 8.1), the second phase is after O(n) epochs well-initialized
(arguments above) and completed after additional O(n) epochs (Theorem 8.5). The runtime of
O(n2) epochs follows. All in all, we obtain the following theorem.

Theorem 8.4 In the LUMI S
1 model with square viewing ranges and robots that agree on one

axis of their local coordinate systems, there exists a protocol such that after O(n2) epochs, the
robots have solved the MAX-LINE-FORMATION problem.

8.5 Conclusion & Outlook
In this chapter, we considered the MAX-LINE-FORMATION problem, which is similar to the
MAX-CHAIN-FORMATION problem but does not consider a chain of robots. In general, we saw
that the problem is unsolvable in the OBLOT model, even under quite strong robot capabilities:
robots that agree on both axes of their local coordinate system and operate under the FSYNC

scheduler. Afterward, we extended the local views of the robots slightly by considering square
viewing ranges instead of circular ones. This slight increase in the viewing ranges allowed us to
derive three protocols. The first one was for the OBLOT S model and can converge to the final
configuration while requiring a runtime of O

(
n2 · log n/ε

)
epochs. The second and third protocols

were designed for the LUMI model. The protocol for the LUMI F
1 solves the problem optimally

in Θ(n) rounds. Lastly, the protocol for the LUMI S
1 model solves the problem optimally but

requires O(n2) epochs.
Based on these three protocols, we observe several future research questions. Throughout the

entire thesis (for the CHAIN-FORMATION, the MAX-CHAIN-FORMATION and the MAX-LINE-
FORMATION problems) we have seenOBLOT protocols that only converge to the optimal solution
but never reach it. Also for the MAX-LINE-FORMATION problem, it would be interesting to
determine whether a protocol for the OBLOT model exists that solves the problem exactly. As the
CHAIN-FORMATION, the MAX-CHAIN-FORMATION and the MAX-LINE-FORMATION problem
are quite similar in this behavior, a solution for one protocol (either an impossibility result or a
positive result) would help to find a solution for the remaining problems.

Moreover, the impossibility result for the MAX-LINE-FORMATION problem only holds for the
OBLOT model. It seems possible that there is a protocol to solve the MAX-LINE-FORMATION

problem with circular viewing and connectivity ranges in the LUMI model. Consider again the
configuration C2 we used in the impossibility result for theOBLOT model (Figure 8.1). Under the
LUMI model, the robot r9 still cannot move immediately. However, it can communicate with help
of lights that it observes the robot r7 to the left. Doing so ensures that both r8 and r10 notice that
they have to move as the global configuration cannot be final. Thus, the robots get a chance to form
a line. Still, lots of additional algorithmic challenges need to be solved which are left for future
research. Lastly, our protocols for the LUMI F

1 and LUMI S
1 exhibit a runtime gap. The LUMI F

1
protocol is significantly faster (O(n) vs. O(n2)). Up to now, it is unclear whether a faster protocol
for the SSYNC scheduler can be designed. Furthermore, solving the problem under the ASYNC

scheduler remains open. The second phase of the protocols can be synchronized even under the
ASYNC schedulers with the ideas presented in Chapters 5 and 6 as also run sequences with a locally

156 Chapter 8. The MAX-LINE-FORMATION Problem

sequential movement are used. However, in the first phase of all protocols, the movement is not
sequential and hence it is unclear whether the techniques work. We conjecture that the techniques
can be applied and lead to a correct protocol that solves the MAX-LINE-FORMATION problem but
the runtime increases since the local synchronization might involve more than a constant number of
robots in the worst case.

Bibliography

[1] Distributed Computing by Mobile Entities, Current Research in Moving and Computing,
volume 11340 of Lecture Notes in Computer Science. Springer, 2019.

[2] Sebastian Abshoff, Andreas Cord-Landwehr, Matthias Fischer, Daniel Jung, and Fried-
helm Meyer auf der Heide. Gathering a Closed Chain of Robots on a Grid. In Proceedings
of the 2016 IEEE International Symposium on Parallel & Distributed Processing (IPDPS),
pages 689–699. IEEE, May 2016.

[3] Noa Agmon and David Peleg. Fault-Tolerant Gathering Algorithms for Autonomous Mobile
Robots. SIAM Journal on Computing (SICOMP), 36(1):56–82, 2006.

[4] Jonathan Amos. Nereus deep sea sub ’implodes’ 10km-down. https://www.bbc.com/
news/science-environment-27374326, May 2014. Accessed: 2023-03-08.

[5] Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and Masafumi Yamashita. Distributed
memoryless point convergence algorithm for mobile robots with limited visibility. IEEE
Transactions on Robotics and Automation, 15(5):818–828, 1999.

[6] Hideki Ando, Ichiro Suzuki, and Masafumi Yamashita. Formation and agreement prob-
lems for synchronous mobile robots with limited visibility. In Proceedings of the 10th
International Symposium on Intelligent Control (ISIC), pages 453–460. IEEE, 1995.

[7] Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain. Certified
Impossibility Results for Byzantine-Tolerant Mobile Robots. In Stabilization, Safety, and
Security of Distributed Systems (SSS), Lecture Notes in Computer Science, pages 178–190.
Springer, 2013.

[8] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),
32(4):804–823, 1985.

[9] Lali Barriere, Paola Flocchini, Eduardo Mesa-Barrameda, and Nicola Santoro. Uniform scat-
tering of autonomous mobile robots in a grid. In Proceedings of the 2009 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pages 1–8. IEEE, 2009.

[10] S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya. Fault-tolerant gathering of asyn-
chronous oblivious mobile robots under one-axis agreement. Journal of Discrete Algorithms,
36:50–62, 2016.

[11] Subhash Bhagat and Krishnendu Mukhopadyaya. Fault-tolerant Gathering of Semi-
synchronous Robots. In Proceedings of the 18th International Conference on Distributed
Computing and Networking (ICDCN), pages 1–10. ACM, 2017.

[12] Mainak Biswas, Saif Rahaman, Moumita Mondal, and Sruti Gan Chaudhuri. Multiple
Uniform Circle Formation by Fat Robots Under Limited Visibility. In Proceedings of the
24th International Conference on Distributed Computing and Networking (ICDCN), pages
311–317. ACM, 2023.

[13] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary
pattern formation on infinite grid by asynchronous oblivious robots. Theoretical Computer
Science (TCS), 815:213–227, 2020.

https://www.bbc.com/news/science-environment-27374326
https://www.bbc.com/news/science-environment-27374326

158 BIBLIOGRAPHY

[14] Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of Mobile Robots Tolerating
Multiple Crash Faults. In Proceedings of the 2013 IEEE 33rd International Conference on
Distributed Computing Systems (ICDCS), pages 337–346. IEEE, 2013.

[15] Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Byzantine Conver-
gence in Robot Networks: The Price of Asynchrony. In Principles of Distributed Systems
(OPODIS), Lecture Notes in Computer Science, pages 54–70. Springer, 2009.

[16] Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal Byzantine-
resilient Convergence in Unidimensional Robot Networks. Theoretical Computer Science
(TCS), 411(34-36):3154–3168, 2010.

[17] Andrew D. Bowen, Dana R. Yoerger, Chris Taylor, Robert McCabe, Jonathan Howland,
Daniel Gomez-Ibanez, James C. Kinsey, Matthew Heintz, Glenn McDonald, Donald B.
Peters, John Bailey, Eleanor Bors, Tim Shank, Louis L. Whitcomb, Stephen C. Martin,
Sarah E. Webster, Michael V. Jakuba, Barbara Fletcher, Chris Young, James Buescher,
Patricia Fryer, and Samuel Hulme. Field trials of the Nereus hybrid underwater robotic
vehicle in the challenger deep of the Mariana Trench. In OCEANS 2009, pages 1–10. IEEE,
2009.

[18] Quentin Bramas and Sébastien Tixeuil. The Random Bit Complexity of Mobile Robots
Scattering. In Ad-Hoc, Mobile, and Wireless Networks (ADHOC-NOW), Lecture Notes in
Computer Science, pages 210–224. Springer, 2015.

[19] Quentin Bramas and Sébastien Tixeuil. Wait-Free Gathering Without Chirality. In Struc-
tural Information and Communication Complexity (SIROCCO), Lecture Notes in Computer
Science, pages 313–327. Springer, 2015.

[20] Philipp Brandes, Bastian Degener, Barbara Kempkes, and Friedhelm Meyer auf der Heide.
Energy-efficient strategies for building short chains of mobile robots locally. Theoretical
Computer Science (TCS), 509:97–112, 2013.

[21] Michael Braun. Local gathering of mobile robots in three dimensions. Master’s thesis,
Paderborn University, 2022.

[22] Michael Braun, Jannik Castenow, and Friedhelm Meyer auf der Heide. Local Gathering
of Mobile Robots in Three Dimensions. In Structural Information and Communication
Complexity (SIROCCO), Lecture Notes in Computer Science, pages 63–79. Springer, 2020.

[23] Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and Koichi
Wada. On the Computational Power of Energy-Constrained Mobile Robots: Algorithms
and Cross-Model Analysis. In Structural Information and Communication Complexity
(SIROCCO), Lecture Notes in Computer Science, pages 42–61. Springer, 2022.

[24] Jannik Castenow, Matthias Fischer, Jonas Harbig, Daniel Jung, and Friedhelm Meyer auf der
Heide. Gathering Anonymous, Oblivious Robots on a Grid. Theoretical Computer Science
(TCS), 815:289–309, 2020.

[25] Jannik Castenow, Thorsten Götte, Till Knollmann, and Friedhelm Meyer auf der Heide. The
Max-Line-Formation Problem. In Stabilization, Safety, and Security of Distributed Systems
(SSS), Lecture Notes in Computer Science, pages 289–304. Springer, 2021.

[26] Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann, and Friedhelm
Meyer auf der Heide. A Unifying Approach to Efficient (Near)-Gathering of Disoriented
Robots with Limited Visibility. In Proceedings of the 26th International Conference on

BIBLIOGRAPHY 159

Principles of Distributed Systems (OPODIS), volume 253 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 15:1–15:25. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023.

[27] Jannik Castenow, Jonas Harbig, Daniel Jung, Till Knollmann, and Friedhelm Meyer auf
der Heide. Gathering a Euclidean Closed Chain of Robots in Linear Time. In Algorithms
for Sensor Systems (ALGOSENSORS), Lecture Notes in Computer Science, pages 29–44.
Springer, 2021.

[28] Jannik Castenow, Jonas Harbig, Daniel Jung, Till Knollmann, and Friedhelm Meyer auf der
Heide. Gathering a Euclidean closed chain of robots in linear time and improved algorithms
for chain-formation. Theoretical Computer Science (TCS), 939(1):261–291, 2023.

[29] Jannik Castenow, Peter Kling, Till Knollmann, and Friedhelm Meyer auf der Heide. A
Discrete and Continuous Study of the Max-Chain-Formation Problem. In Stabilization,
Safety, and Security of Distributed Systems (SSS), Lecture Notes in Computer Science, pages
65–80. Springer, 2020.

[30] Jannik Castenow, Peter Kling, Till Knollmann, and Friedhelm Meyer auf der Heide. A
discrete and continuous study of the Max-Chain-Formation problem. Information and
Computation, 285:104877, 2022.

[31] George Chrystal. On the problem to construct the minimum circle enclosing n given points
in a plane. Proceedings of the Edinburgh Mathematical Society, 3:30–33, 1884.

[32] Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. MOBLOT:
Molecular Oblivious Robots. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pages 350–358. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2021.

[33] Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. Molecular
Robots with Chirality on Grids. In Algorithmics of Wireless Networks (ALGOSENSORS),
Lecture Notes in Computer Science, pages 45–59. Springer, 2022.

[34] Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. Arbitrary
pattern formation on infinite regular tessellation graphs. Theoretical Computer Science
(TCS), 942:1–20, 2023.

[35] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Com-
puting by Mobile Robots: Gathering. SIAM Journal on Computing (SICOMP), 41(4):829–
879, 2012.

[36] Reuven Cohen and David Peleg. Convergence Properties of the Gravitational Algorithm in
Asynchronous Robot Systems. SIAM Journal on Computing (SICOMP), 34(6):1516–1528,
2005.

[37] Reuven Cohen and David Peleg. Convergence of Autonomous Mobile Robots with Inaccurate
Sensors and Movements. SIAM Journal on Computing (SICOMP), 38(1):276–302, 2008.

[38] Reuven Cohen and David Peleg. Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science (TCS), 399(1):71–82, 2008.

[39] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara
Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer
auf der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann,
and Daniel Wonisch. A New Approach for Analyzing Convergence Algorithms for Mobile

160 BIBLIOGRAPHY

Robots. In Automata, Languages and Programming (ICALP), Lecture Notes in Computer
Science, pages 650–661. Springer, 2011.

[40] Andreas Cord-Landwehr, Matthias Fischer, Daniel Jung, and Friedhelm Meyer auf der Heide.
Asymptotically Optimal Gathering on a Grid. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 301–312. ACM, 2016.

[41] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Ya-
mashita. The Power of Lights: Synchronizing Asynchronous Robots Using Visible Bits. In
Proceedings of the 2012 IEEE 32nd International Conference on Distributed Computing
Systems (ICDCS), pages 506–515. IEEE, 2012.

[42] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theoretical Computer Science (TCS), 609:171–184,
2016.

[43] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. On the computa-
tional power of oblivious robots: Forming a series of geometric patterns. In Proceedings of
the 29th ACM Symposium on Principles of Distributed Computing (PODC), pages 267–276.
ACM, 2010.

[44] Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by Programmable Particles. In Distributed Computing by Mobile Entities: Current
Research in Moving and Computing, Lecture Notes in Computer Science, pages 615–681.
Springer, 2019.

[45] Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot
Model: Algorithms and Concurrency Control. In Proceedings of the 35th International
Symposium on Distributed Computing (DISC), volume 209 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 20:1–20:19. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

[46] Jean-Lou De Carufel and Paola Flocchini. Fault-induced dynamics of oblivious robots on a
line. Information and Computation, 271:104478, 2020.

[47] Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin-Parvédy. Fault-
Tolerant and Self-stabilizing Mobile Robots Gathering. In Distributed Computing (DISC),
Lecture Notes in Computer Science, pages 46–60. Springer, 2006.

[48] Xavier Défago and Samia Souissi. Non-uniform circle formation algorithm for oblivious
mobile robots with convergence toward uniformity. Theoretical Computer Science (TCS),
396(1):97–112, 2008.

[49] Bastian Degener, Barbara Kempkes, Peter Kling, and Friedhelm Meyer auf der Heide. Linear
and Competitive Strategies for Continuous Robot Formation Problems. ACM Transactions
on Parallel Computing (TOPC), 2(1):2:1–2:18, 2015.

[50] Bastian Degener, Barbara Kempkes, Tobias Langner, Friedhelm Meyer auf der Heide,
Peter Pietrzyk, and Roger Wattenhofer. A tight runtime bound for synchronous gathering
of autonomous robots with limited visibility. In Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 139–148. ACM,
2011.

[51] Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. Synchronous Robots vs Asyn-
chronous Lights-Enhanced Robots on Graphs. Electronic Notes in Theoretical Computer
Science, 322:169–180, 2016.

BIBLIOGRAPHY 161

[52] Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Amoebot - a new model for programmable matter. In Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
220–222. ACM, 2014.

[53] Giuseppe Antonio Di Luna and Giovanni Viglietta. Robots with Lights. In Distributed
Computing by Mobile Entities: Current Research in Moving and Computing, Lecture Notes
in Computer Science, pages 252–277. Springer, 2019.

[54] Yoann Dieudonné and Franck Petit. Swing Words to Make Circle Formation Quiescent.
In Structural Information and Communication Complexity (SIROCCO), Lecture Notes in
Computer Science, pages 166–179. Springer, 2007.

[55] Yoann Dieudonné and Franck Petit. Squaring the Circle with Weak Mobile Robots. In
Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, pages 354–365.
Springer, 2008.

[56] Casey Dreier. Cost of Perseverance. https://www.planetary.org/space-policy/
cost-of-perseverance. Accessed: 2023-03-08.

[57] Miguel Duarte, Vasco Costa, Jorge Gomes, Tiago Rodrigues, Fernando Silva, Sancho Moura
Oliveira, and Anders Lyhne Christensen. Evolution of Collective Behaviors for a Real
Swarm of Aquatic Surface Robots. PLOS ONE, 11(3):e0151834, 2016.

[58] Ayan Dutta, Sruti Gan Chaudhuri, Suparno Datta, and Krishnendu Mukhopadhyaya. Circle
Formation by Asynchronous Fat Robots with Limited Visibility. In Distributed Computing
and Internet Technology (ICDCIT), Lecture Notes in Computer Science, pages 83–93.
Springer, 2012.

[59] Miroslaw Dynia, Jarosław Kutyłowski, Paweł Lorek, and Friedhelm Meyer auf der Heide.
Maintaining Communication Between an Explorer and a Base Station. In Biologically
Inspired Cooperative Computing, IFIP International Federation for Information Processing,
pages 137–146. Springer US, 2006.

[60] Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide, and Jonas Schrieb.
Local strategies for maintaining a chain of relay stations between an explorer and a base
station. In Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 260–269. ACM, 2007.

[61] D. Jack Elzinga and Donald W. Hearn. The Minimum Covering Sphere Problem. Manage-
ment Science, 19(1):96–104, 1972.

[62] Milan Erdelj, Nathalie Mitton, and Tahiry Razafindralambo. Robust Wireless Sensor Network
Deployment. Discrete Mathematics and Theoretical Computer Science, 3(1):105, 2016.

[63] Michael Feldmann, Andreas Padalkin, Christian Scheideler, and Shlomi Dolev. Coordinating
Amoebots via Reconfigurable Circuits. Journal of Computational Biology, 29(4):317–343,
2022.

[64] Kaspar Fischer, Bernd Gärtner, and Martin Kutz. Fast Smallest-Enclosing-Ball Computation
in High Dimensions. In Algorithms - ESA 2003, Lecture Notes in Computer Science, pages
630–641. Springer, 2003.

[65] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory.
Theoretical Computer Science (TCS), 621:57–72, 2016.

https://www.planetary.org/space-policy/cost-of-perseverance
https://www.planetary.org/space-policy/cost-of-perseverance

162 BIBLIOGRAPHY

[66] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Moving and Computing Models:
Robots. In Distributed Computing by Mobile Entities: Current Research in Moving and
Computing, Lecture Notes in Computer Science, pages 3–14. Springer, 2019.

[67] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed
computing by mobile robots: Uniform circle formation. Distributed Computing, 30(6):413–
457, 2017.

[68] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
asynchronous robots with limited visibility. Theoretical Computer Science (TCS), 337(1-
3):147–168, 2005.

[69] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern
formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science
(TCS), 407(1):412–447, 2008.

[70] Paola Flocchini, Nicola Santoro, and Koichi Wada. On Memory, Communication, and Syn-
chronous Schedulers When Moving and Computing. In Proceedings of the 23rd International
Conference on Principles of Distributed Systems (OPODIS), volume 153 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 25:1–25:17. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020.

[71] Oded Galor. Discrete Dynamical Systems. Springer, 2007.

[72] Noam Gordon, Israel A. Wagner, and Alfred M. Bruckstein. Gathering Multiple Robotic
A(ge)nts with Limited Sensing Capabilities. In Ant Colony Optimization and Swarm Intelli-
gence, Lecture Notes in Computer Science, pages 142–153. Springer, 2004.

[73] Tony Greicius. Mars Perseverance Mission Overview. http://www.nasa.gov/
perseverance/overview, July 2016. Accessed: 2023-03-08.

[74] Branko Grünbaum. Metamorphoses of Polygons, volume 11, pages 35–48. American
Mathematical Society, 1994.

[75] Loura Hall. Marsbee - Swarm of Flapping Wing Flyers for Enhanced Mars Exploration.
http://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/
Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration,
March 2018. Accessed: 2023-03-08.

[76] Rory Hector, Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Optimal
Arbitrary Pattern Formation on a Grid by Asynchronous Autonomous Robots. In Proceedings
of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1151–1161. IEEE, 2022.

[77] Nojeong Heo and Pramod K. Varshney. A distributed self spreading algorithm for mo-
bile wireless sensor networks. In Proccedings of the 2003 IEEE Conference on Wireless
Communications and Networking (WCNC), volume 3, pages 1597–1602 vol.3. IEEE, 2003.

[78] Taisuke Izumi, Zohir Bouzid, Sébastien Tixeuil, and Koichi Wada. Brief Announcement:
The BG-Simulation for Byzantine Mobile Robots. In Distributed Computing (DISC), Lecture
Notes in Computer Science, pages 330–331. Springer, 2011.

[79] Taisuke Izumi, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Connectivity-
Preserving Scattering of Mobile Robots with Limited Visibility. In Stabilization, Safety, and
Security of Distributed Systems (SSS), Lecture Notes in Computer Science, pages 319–331.
Springer, 2010.

http://www.nasa.gov/perseverance/overview
http://www.nasa.gov/perseverance/overview
http://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration
http://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration

BIBLIOGRAPHY 163

[80] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier Défago, Koichi
Wada, and Masafumi Yamashita. The Gathering Problem for Two Oblivious Robots with
Unreliable Compasses. SIAM Journal on Computing (SICOMP), 41(1):26–46, 2012.

[81] Daniel Jerison. General mixing time bounds for finite markov chains via the absolute spectral
gap. https://arxiv.org/abs/1310.8021, 2013.

[82] Heinrich Jung. Über die kleinste Kugel, die eine räumliche Figur einschliesst. Journal für
die reine und angewandte Mathematik, 123:241–257, 1901.

[83] Heinrich Jung. Über den kleinsten Kreis, der eine ebene Figur einschließt. Journal für die
reine und angewandte Mathematik, 137:310–313, 1910.

[84] Branislav Katreniak. Biangular Circle Formation by Asynchronous Mobile Robots. In
Structural Information and Communication Complexity (SIROCCO), Lecture Notes in
Computer Science, pages 185–199. Springer, 2005.

[85] Branislav Katreniak. Convergence with Limited Visibility by Asynchronous Mobile Robots.
In Structural Information and Communication Complexity (SIROCCO), Lecture Notes in
Computer Science, pages 125–137. Springer, 2011.

[86] Latif Ullah Khan. Visible light communication: Applications, architecture, standardization
and research challenges. Digital Communications and Networks, 3(2):78–88, 2017.

[87] David Kirkpatrick, Irina Kostitsyna, Alfredo Navarra, Giuseppe Prencipe, and Nicola San-
toro. Separating Bounded and Unbounded Asynchrony for Autonomous Robots: Point
Convergence with Limited Visibility. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing (PODC), pages 9–19. ACM, 2021.

[88] Peter Kling and Friedhelm Meyer auf der Heide. Convergence of local communication chain
strategies via linear transformations: Or how to trade locality for speed. In Proceedings of
the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 159–166. ACM, 2011.

[89] Peter Kling and Friedhelm Meyer auf der Heide. Continuous Protocols for Swarm Robotics.
In Distributed Computing by Mobile Entities: Current Research in Moving and Computing,
Lecture Notes in Computer Science, pages 317–334. Springer, 2019.

[90] Irina Kostitsyna, Cai Wood, and Damien Woods. Turning Machines. In Proceedings of the
26th International Conference on DNA Computing and Molecular Programming (DNA),
volume 174 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:21.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

[91] Jarosław Kutyłowski and Friedhelm Meyer auf der Heide. Optimal strategies for maintaining
a chain of relays between an explorer and a base camp. Theoretical Computer Science (TCS),
410(36):3391–3405, 2009.

[92] Geunho Lee and Nak Young Chong. A geometric approach to deploying robot swarms.
Annals of Mathematics and Artificial Intelligence, 52(2):257–280, 2008.

[93] Geunho Lee, Yasuhiro Nishimura, Kazutaka Tatara, and Nak Young Chong. Three dimen-
sional deployment of robot swarms. In Proceedings of the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5073–5078. IEEE, 2010.

[94] David A. Levin and Yuval Peres. Markov Chains and Mixing Times. American Mathematical
Society, 2017.

https://arxiv.org/abs/1310.8021

164 BIBLIOGRAPHY

[95] S. Li. Concise Formulas for the Area and Volume of a Hyperspherical Cap. Asian Journal
of Mathematics & Statistics, 4(1):66–70, 2010.

[96] Shouwei Li, Christine Markarian, Friedhelm Meyer auf der Heide, and Pavel Podlipyan.
A continuous strategy for collisionless gathering. Theoretical Computer Science (TCS),
852:41–60, 2021.

[97] Shouwei Li, Friedhelm Meyer auf der Heide, and Pavel Podlipyan. The impact of the Gabriel
subgraph of the visibility graph on the gathering of mobile autonomous robots. Theoretical
Computer Science (TCS), 852:29–40, 2021.

[98] J. Lin, A. S. Morse, and B. D. O. Anderson. The Multi-Agent Rendezvous Problem. Part 1:
The Synchronous Case. SIAM Journal on Control and Optimization (SICON), 46(6):2096–
2119, 2007.

[99] L. Losonczi. Eigenvalues and eigenvectors of some tridiagonal matrices. Acta Mathematica
Hungarica, 60(3):309–322, 1992.

[100] Marcello Mamino and Giovanni Viglietta. Square Formation by Asynchronous Oblivious
Robots. In Proceedings of the 28th Canadian Conference on Computational Geometry
(CCCG), pages 1–6. Simon Fraser University, Vancouver, British Columbia, Canada, 2016.

[101] Mark W. Moffett, Simon Garnier, Kathleen M. Eisenhardt, Nathan R. Furr, Massimo War-
glien, Costanza Sartoris, William Ocasio, Thorbjørn Knudsen, Lars A. Bach, and Joachim
Offenberg. Ant colonies: Building complex organizations with minuscule brains and no
leaders. Journal of Organization Design, 10(1):55–74, 2021.

[102] Moumita Mondal and Sruti Gan Chaudhuri. Uniform Circle Formation by Swarm Robots
Under Limited Visibility. In Distributed Computing and Internet Technology (ICDCIT),
Lecture Notes in Computer Science, pages 420–428. Springer, 2020.

[103] Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N. Tsitsiklis. On Distributed
Averaging Algorithms and Quantization Effects. IEEE Transactions on Automatic Control,
54(11):2506–2517, 2009.

[104] Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting Close without Touching.
In Structural Information and Communication Complexity (SIROCCO), Lecture Notes in
Computer Science, pages 315–326. Springer, 2012.

[105] Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting close without touching:
Near-gathering for autonomous mobile robots. Distributed Computing, 28(5):333–349,
2015.

[106] Debasish Pattanayak, Kaushik Mondal, H. Ramesh, and Partha Sarathi Mandal. Fault-
Tolerant Gathering of Mobile Robots with Weak Multiplicity Detection. In Proceedings
of the 18th International Conference on Distributed Computing and Networking (ICDCN),
pages 1–4. ACM, 2017.

[107] Pavan Poudel and Gokarna Sharma. Time-optimal uniform scattering in a grid. In Pro-
ceedings of the 20th International Conference on Distributed Computing and Networking
(ICDCN), pages 228–237. ACM, 2019.

[108] Pavan Poudel and Gokarna Sharma. Fast Uniform Scattering on a Grid for Asynchronous
Oblivious Robots. In Stabilization, Safety, and Security of Distributed Systems (SSS), Lecture
Notes in Computer Science, pages 211–228. Springer, 2020.

Bibliography 165

[109] Pavan Poudel and Gokarna Sharma. Time-Optimal Gathering under Limited Visibility with
One-Axis Agreement. Information, 12(11):448, 2021.

[110] Giuseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots.
Theoretical Computer Science (TCS), 384(2-3):222–231, 2007.

[111] Giuseppe Prencipe. Pattern Formation. In Distributed Computing by Mobile Entities:
Current Research in Moving and Computing, Lecture Notes in Computer Science, pages
37–62. Springer, 2019.

[112] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm Robotic
Behaviors and Current Applications. Frontiers in Robotics and AI, 7, 2020.

[113] Kazuo Sugihara and Ichiro Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots. Journal of Robotic Systems, 13(3):127–139, 1996.

[114] Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. SIAM Journal on Computing (SICOMP), 28(4):1347–1363, 1999.

[115] S. G. Walker and P. Van Mieghem. On lower bounds for the largest eigenvalue of a symmetric
matrix. Linear Algebra and its Applications, 429(2):519–526, 2008.

[116] Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science (ITCS),
pages 353–354. ACM, 2013.

[117] Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theoretical Computer Science (TCS), 411(26):2433–
2453, 2010.

[118] Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. Plane Formation
by Synchronous Mobile Robots in the Three Dimensional Euclidean Space. In Distributed
Computing (DISC), Lecture Notes in Computer Science, pages 92–106. Springer, 2015.

[119] Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Pattern formation problem
for synchronous mobile robots in the three dimensional euclidean space. https://arxiv.
org/abs/1509.09207, 2015.

[120] Yukiko Yamauchi and Masafumi Yamashita. Pattern Formation by Mobile Robots with
Limited Visibility. In Structural Information and Communication Complexity (SIROCCO),
Lecture Notes in Computer Science, pages 201–212. Springer, 2013.

[121] Wen-Chyuan Yueh. Eigenvalues of several tridiagonal matrices. Applied Mathematics
E-Notes, 5:66–74, 2005.

https://arxiv.org/abs/1509.09207
https://arxiv.org/abs/1509.09207

	1 Introduction
	1.1 Scope
	1.2 Outline of the Thesis and Main Results

	2 Robot Models & Notation
	2.1 OBLOT
	2.2 LUMI
	2.3 Chains
	2.4 Naming

	3 Related Work
	I Contracting Problems
	4 Gathering in the Oblot Model
	4.1 Contribution
	4.2 Model Recap and Preliminaries
	4.3 Continuous Time Gathering
	4.4 Discrete Time Gathering
	4.5 Conclusion & Outlook

	5 Chain-Formation in the LUMI Model
	5.1 Contribution
	5.2 Model Recap and Preliminaries
	5.3 Run Sequences and Movement Operations
	5.4 Protocols for the Fsync Scheduler
	5.5 Analyses
	5.6 Synchronization for the Ssync and Async Schedulers
	5.7 Conclusion & Outlook

	6 Gathering in the LUMI Model
	6.1 Contribution
	6.2 Model Recap and Preliminaries
	6.3 Protocol for the Fsync Scheduler
	6.4 Synchronization for the SSync and Async Schedulers
	6.5 Conclusion & Outlook

	II Expanding Problems
	7 The Max-Chain-Formation Problem
	7.1 Contribution
	7.2 Model Recap and Preliminaries
	7.3 Protocols and Analyses in the Foblot Model
	7.4 Protocols and Analyses in the Coblot Model
	7.5 On the Speed of the Outer Robots
	7.6 Conclusion & Outlook

	8 The Max-Line-Formation Problem
	8.1 Contribution
	8.2 Model Recap and Preliminaries
	8.3 Results in the Oblot Model
	8.4 Results in Lumi Model
	8.5 Conclusion & Outlook

	Bibliography

