
Optimization Techniques for
Data-Based Control and

Machine Learning

Von der Fakultät für Elektrotechnik, Informatik und
Mathematik der Universität Paderborn
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr. rer. nat. -

genehmigte Dissertation von

Katharina Bieker

Paderborn, 2023

Autorin
Katharina Bieker

Gutachter:innen
Jun.-Prof. Dr. Sebastian Peitz
Prof. Dr. Sina Ober-Blöbaum
Prof. Dr. Stefan Klus

Tag der mündlichen Prüfung
20.04.2023

Danksagung

An dieser Stelle möchte ich einigen Menschen danken, die mir durch ihre Un-
terstützung das Erstellen und Schreiben dieser Arbeit ermöglicht und erleichtert
haben.

Zuallerest möchte ich Jun.-Prof. Dr. Sebastian Peitz für seine Unterstützung und
die Betreuung während der letzten Jahre danken. Die Zusammenarbeit hat mir
immer viel Spaß gemacht und durch seine optimistische Art wusste er mich auch bei
Rückschlägen stets zu motivieren. Außerdem danke ich Prof. Dr. Michael Dellnitz
für die Möglichkeit, diese Arbeit an seinem Lehrstuhl zu erstellen.

Neben Sebastian Peitz möchte ich auch Prof. Dr. Sina Ober-Blöbaum und Prof.
Dr. Stefan Klus dafür danken, dass sie sich die Zeit genommen haben, meine Arbeit
zu begutachten und zu bewerten.

Des Weiteren gilt ein großes Dankeschön meinen ehemaligen Arbeitskollegen
während der letzten Jahre: Manuel Berkemeier, Bennet Gebken, Raphael Gerlach,
Sören von der Gracht, Emina Hadzialic, Benjamin Jurgelucks, Marianne Kalle,
Lukas Lanza, Karin Mora, Feliks Nüske, Veronika Schulze, Konstantin Sonntag,
Olga Weiß und Adrian Ziessler. Vielen Dank für die interessanten und aufschlussre-
ichen fachlichen Diskussionen, aber auch für die vielen Kaffee- und Mittagspausen,
die mir den ein oder anderen Tag verschönert haben. Ganz besonders möchte ich
mich bei denjenigen bedanken, die jeweils Teile dieser Arbeit Korrektur gelesen
haben.

Außerdem bin ich dankbar für die finanzielle Unterstützung durch das BMBF
im Rahmen des Forschungsprojektes "IBOSS – Information-Based Optimization
of Surgery Schedules" und durch das Land NRW sowie der EU im Rahmen des
Projektes "SET CPS – Simultanes Entwickeln und Testen von Cyber Physical
Systems (CPS) am Anwendungsbeispiel eines elektrisch angetriebenen autonomen
Fahrzeugs". Zusätzlich möchte ich dem PC2 meinen Dank ausrichten, dafür,
dass ich einen Teil meiner Berechnungen auf dem OCuLUS Cluster durchführen
konnte.

Ein besonderer Dank gilt meiner Familie, die mich auf meinem Weg immer unter-
stützt hat und bei der ich immer Rückhalt finde. Insbesondere danke ich meinen
Eltern dafür, dass sie mich dazu ermuntert haben, das zu machen, was ich gerne
mache, und mir das Studium ermöglicht haben. Auch danke ich meinen beiden
Brüdern, Manuel und Daniel, dafür, dass sie immer ein offenes Ohr für mich haben.
Auch meinen Freunden in Paderborn, Iserlohn und an den ganzen anderen Orten, an
die es sie verstreut hat, möchte ich dafür danken, dass es mit ihnen auch eine Welt
außerhalb der Mathematik gibt. Zu guter Letzt möchte ich Marcel dafür danken,
dass er immer für mich da ist und die letzten Monate viel Geduld mit mir hatte,
trotz einigen hundert Kilometern Distanz.

I

Abstract

The control of complex dynamical systems is of great importance in many different
engineering applications, for example, in autonomous driving or for the control of
combustion processes in power plants. There, the so-called model predictive control
is often used due to the simple implementation and high control quality. Thereby, the
control input is optimized based on a suitable surrogate model that can predict the
behavior of the underlying dynamical system with sufficient accuracy over a given
time horizon. Especially in recent years, data-based methods and machine learning
are increasingly used to build surrogate models, for instance, neural networks. This
thesis addresses various aspects of data-based surrogate models, in particular neural
networks, and their use in the context of model predictive control.

In the first part of this thesis, the potential of neural networks for the prediction and
control of complex dynamical systems is investigated. For this purpose, a surrogate
model based on a recurrent neural network is presented and used to control a fluid
dynamical system. On the one hand, it becomes clear that using data-based methods
for controlling complex systems is quite promising. On the other hand, there are
still difficulties in the implementation of such methods and open questions from
a theoretical point of view, which are pointed out and discussed. For example,
modeling systems with a time-dependent control input is much more complex than
modeling autonomous models without additional control input.

This issue is addressed in the second part of this thesis. There, an approach is
presented in which continuous control problems are modified to allow for a simpler
implementation of surrogate models for model predictive control using many exist-
ing data-based methods. To this end, the control input is discretized so that only
autonomous surrogate models are required for given control inputs. Error bounds
are derived, and the method is validated on several examples with different surro-
gate models. In addition, the extent to which the presented approach reduces the
amount of data needed for training compared to a single model with control input
is discussed.

Regardless of whether models with or without control input are considered, they
should generalize well, i.e., the prediction quality on the training data should not
be (significantly) better than that on independent test data. If the model is fitted
too closely to the training data, this is called overfitting. To avoid this problem,
so-called regularization procedures are often used. This typically involves adding
a weighted regularization term, e.g., the `1-norm, to the error function. The addi-
tional regularization term ensures the generation of models which are as sparse as
possible and, therefore, typically less prone to overfitting. By varying the regulari-
zation parameter, different solutions are obtained, which together form the so-called
regularization path. In the third part, this regularization problem is considered as
a (nonsmooth) multiobjective optimization problem, i.e., the error function and the
regularization term are optimized simultaneously. In the case where the `1-norm
is used as the regularization term, based on results from the field of multiobjective
optimization, the structure of the so-called Pareto critical set, which is a superset of
the regularization path, is analyzed. Furthermore, a continuation method for com-

III

puting the critical set is presented, which is specifically tailored to this problem and
takes into account the nonsmoothness of the `1-norm. Afterwards, the proposed
method is used to show, based on the training of neural networks, that relevant
solutions that generalize well are not included in the regularization path and, thus,
cannot be computed with the regularization procedures used in classical approaches.
Furthermore, it is discussed to what extent the presented algorithm scales for larger
problem instances. Finally, an outlook on the extension to more general regulariza-
tion problems is given, where the regularization term is only piecewise smooth. More
precisely, the structure of the Pareto critical set for this case is analyzed to provide
the basis for developing new continuation methods for this class of problems.

IV

Zusammenfassung

Die Steuerung und Regelung komplexer dynamischer Systeme hat in vielen ver-
schiedenen ingenieurwissenschaftlichen Anwendungen eine große Bedeutung, bei-
spielsweise im Bereich des autonomen Fahrens oder bei der Regelung von Verbren-
nungsprozessen in Kraftwerken. Hier kommt auf Grund der einfachen Umsetzbarkeit
und der hohen Regelgüte häufig die sogenannte modellprädiktive Regelung zum Ein-
satz. Dabei wird der Kontrolleingang basierend auf einem geeigneten Ersatzmo-
dell, welches das Verhalten des zugrundeliegenden dynamischen Systems über einen
gegebenen Zeithorizont ausreichend genau vorhersagen kann, optimiert. Insbeson-
dere in den letzten Jahren werden zur Bildung der Ersatzmodelle vermehrt daten-
basierte Verfahren und maschinelles Lernen eingesetzt, wie zum Beispiel neuronale
Netze. In dieser Arbeit werden verschiedene Aspekte datenbasierter Ersatzmodelle,
insbesondere neuronaler Netze, und deren Einsatz im Rahmen der modellprädiktiven
Regelung adressiert.

Im ersten Teil der Arbeit wird zunächst das Potential von neuronalen Netzen zur
Vorhersage und Regelung komplexer dynamischer Systeme untersucht. Dazu wird
ein Ersatzmodell basierend auf rekurrenten neuronalen Netzen vorgestellt und zur
Regelung eines fluiddynamischen Systems verwendet. Dabei wird zum einen deut-
lich, dass der Einsatz datenbasierter Methoden für die Regelung komplexer Systeme
überaus vielversprechend ist, zum anderen werden aber auch Schwierigkeiten bei
der praktischen Umsetzung solcher Verfahren und offene Fragestellungen aus theo-
retischer Sicht aufgezeigt und diskutiert. So ist beispielsweise die Modellierung von
Systemen mit zeitabhängigem Kontrolleingang wesentlich komplexer als die Model-
lierung autonomer Modelle ohne zusätzlichen Kontrolleingang.

Dieses Problem wird im zweiten Teil der Arbeit adressiert. Dort wird ein Ansatz
vorgestellt, bei dem kontinuierliche Kontrollprobleme so abgeändert werden, dass
die Ersatzmodellbildung für die modellprädiktive Regelung einfacher und mit vie-
len verschiedenen bestehenden datenbasierten Verfahren umgesetzt werden kann.
Dazu wird der Kontrolleingang diskretisiert, sodass nur autonome Ersatzmodelle
für vorgegebene Kontrolleingänge benötigt werden. Es werden Fehlerschranken
hergeleitet und die Methode an verschiedenen Beispielen mit unterschiedlichen Er-
satzmodellen validiert. Zudem wird diskutiert, inwieweit der vorgestellte Ansatz die
Menge der für das Training benötigten Daten gegenüber einem einzelnen Modell mit
Kontrolleingang reduziert.

Unabhängig davon, ob Modelle mit oder ohne Kontrolleingang betrachtet werden,
sollten diese gut generalisieren, d.h. die Vorhersagegüte auf den Trainingsdaten sollte
nicht (wesentlich) besser sein als die auf unabhängigen Testdaten. Ist das Modell zu
sehr auf die Trainingsdaten angepasst, spricht man von Overfitting. Um dieses Pro-
blem zu vermeiden, werden häufig sogenannte Regularisierungsverfahren eingesetzt.
Dabei wird typischerweise auf die Fehlerfunktion ein gewichteter Regularisierungs-
term, z.B. die `1-Norm, addiert. Dies sorgt dafür, dass möglichst dünn besetzte Mo-
delle generiert werden, welche normalerweise weniger zu Overfitting neigen. Durch
Variieren des Regularisierungsparameters erhält man verschiedene Lösungen, die
zusammengenommen den sogenannten Regularisierungspfad bilden. Im dritten Teil

V

wird dieses Regularisierungsproblem als (nichtglattes) Mehrzieloptimierungsproblem
aufgefasst, d.h. die Fehlerfunktion und der Regularisierungsterm werden gleichzeitig
optimiert. Für den Fall, dass die `1-Norm als Regularisierungsterm verwendet wird,
wird, basierend auf Resultaten aus dem Bereich der Mehrzieloptimierung, die Struk-
tur der sogenannten Pareto-kritischen Menge analysiert, welche eine Obermenge des
Regularisierungspfades ist. Außerdem wird ein Fortsetzungsverfahren zur Berech-
nung der kritischen Menge vorgestellt, das speziell auf dieses Problem zugeschnitten
ist und die Nichtglattheit der `1-Norm berücksichtigt. Dieses wird anschließend
genutzt, um anhand des Trainings neuronaler Netze zu zeigen, dass wesentliche Lö-
sungen, die gut generalisieren, nicht im Regularisierungspfad enthalten sind und
somit mit den Regularisierungsverfahren, welche klassischer Weise genutzt wer-
den, nicht berechnet werden können. Außerdem wird diskutiert, inwieweit der
vorgestellte Algorithmus für größere Probleminstanzen skaliert. Zum Abschluss
wird ein Ausblick zu der Erweiterung auf allgemeinere Regularisierungsprobleme
gegeben, bei denen der Regularisierungsterm lediglich stückweise glatt ist. Genauer
gesagt, wird die Struktur der Pareto-kritischen Menge für diesen Fall analysiert, um
die Grundlage für die Entwicklung neuer Fortsetzungsmethoden für diese Problem-
klasse zu schaffen.

VI

Contents

1 Introduction 1

2 Theoretical Background 9
2.1 Optimal Control and Model Predictive Control 9

2.1.1 Optimal Control . 9
2.1.2 Model Predictive Control . 14
2.1.3 Data-Based Methods and Control 18

2.2 Data-Based Surrogate Modeling . 19
2.2.1 The Basics of Machine Learning 20
2.2.2 Neural Networks . 25
2.2.3 Data-Based Approximation of the Koopman Operator 33

2.3 Multiobjective Optimization . 36
2.3.1 Pareto Optimality and Criticality 37
2.3.2 Solution Methods . 45

3 DeepMPC for Flow Control - A Motivating Example 53
3.1 Design of the RNN . 54
3.2 Application to a Fluid Flow Problem 58
3.3 Discussion . 66

4 Utilizing Autonomous Models for Model Predictive Control 69
4.1 The Basic Idea of the QuaSiModO Framework 70

4.1.1 SUR for (Mixed) Integer Control Problems 74
4.2 Error Bounds . 79
4.3 Numerical Experiments . 91

4.3.1 Lorenz System & Koopman Operator: 91
4.3.2 Mackey-Glass Equation & ESN 93
4.3.3 Kármán Vortex Street & LSTM 96

4.4 Numerical Experiments on Data Efficiency 97

5 Treating `1-Regularized Problems via Multiobjective Continuation103
5.1 The Continuation Method . 105

5.1.1 Optimality Conditions for (MOP-`1) 106
5.1.2 Predictor . 111
5.1.3 Corrector . 115
5.1.4 Changing the Activation Structure 116

VII

5.1.5 The Algorithm . 124
5.2 Numerical Results . 125

5.2.1 Toy Examples . 125
5.2.2 SINDy . 126
5.2.3 Neural Network . 128

5.3 Towards High-Dimensional Problems 131
5.4 Generalization to Piecewise Differentiable Regularization Terms . . . 135

5.4.1 The Structure of Pc . 137
5.4.2 An Example - Support Vector Machines 143

6 Conclusion and Future Work 147

List of Abbreviations 153

Bibliography 155

VIII

1 | Introduction

Control problems appear in a wide variety of areas in our everyday lives as well
as in technical applications. For instance, if we try to carry a full cup of coffee
from A to B, we compensate for the movement of our body that leads to the coffee
sloshing in the cup by making specific movements with the arm and hand to prevent
the coffee from spilling over. When driving an autonomous car, it has to follow a
predefined trajectory by controlling the angle of the steering axle and the velocity.
Mathematically, such tasks are modeled as optimal control problems. To this end, the
system dynamics is typically represented by a differential equation. For instance, the
movement of the car can be modeled by an ordinary differential equation (ODE).
To measure the performance of a certain control function u : [t0, tf] → Rnu , a
cost functional J is defined. In the case of the autonomous car, this is typically
the distance of the vehicle to the predefined trajectory. In total, optimal control
problems are of the following form:

min
u
J (y,u),

s.t. ẏ(t) = g(t,y(t),u(t)), for t ∈ [t0, tf],

y(t0) = y0,

where y : [t0, tf] → Rny is the function of the system state. Problems of this kind
can be solved with different numerical techniques, but they all have in common that
they cannot react to changes in the physical system in real-time. If we consider the
example from above of a human balancing a coffee cup using involuntary movements,
they usually directly react to unforeseen changes, such as lightly bumping an unseen
obstacle with the arm. Rather than planning the entire journey from A to B in
advance, we decide in real-time how to move our hand to prevent the coffee from
spilling over, allowing us to react better to unforeseen obstacles.

A similar methodology is used to solve control problems in practical applications.
Based on observations or measurements of the current system state, a control input
is determined and applied to the real system. Such approaches are called feedback
control and account for noise and model errors. One of the most intuitive and
also very well-working approaches is model predictive control (MPC) [GP17]. The
basic idea of MPC is to divide the problem into smaller subproblems of shorter time
horizons, i.e., instead of finding an optimal control for the whole task, an optimal
control for the next few seconds is sought. Afterwards, the computed control input
(or, more precisely, the first part of it) is applied to the real system. Then, the

1

Chapter 1. Introduction

initial state for the next subproblem is updated by observing the state of the real
system, introducing a feedback loop. To apply MPC in real-time, the optimization
over the short time horizon has to be done fast in comparison to the time scale of
the system that should be controlled. Hence, MPC was initially applied to chemical
processes modeled by linear systems, as these, on the one hand, typically exhibit
slow dynamics and, on the other hand, can be optimized efficiently [CR80; Ric+78].
Today, MPC is a state-of-the-art tool in the industry. It is used in many different
engineering disciplines, such as chemical process engineering, electrical engineering,
aerospace engineering, or automotive engineering [For+15; Lee11; Sch+21]. The
fact that the optimization can be done in real-time for these complex systems is
mainly due to improved computational resources. Besides the practical applications
showing the capability of MPC, there is also a fundamental mathematical theory
that proves error bounds, stability, and robustness of MPC [GP17].

Traditionally, the model in MPC is based on differential equations. In recent years,
however, data-based methods have gained increased attention in the control commu-
nity [BK19; Sch+21], and are also used to identify the system dynamics and build
surrogate models for MPC. The basic idea is that it is not necessary to have system
knowledge, and it is enough to observe and collect data from the real system. This
is specially amplified by the fact that through digitization and the possibilities to
store ever larger amounts of data, it is very easy to access vast data sets to build
such models. Machine learning is not only playing an increasingly important role
in the area of control problems, but also found its way into almost every industrial
and scientific field. For instance, methods from machine learning are applied in
autonomous driving [BS21; Kir+22], in the development of smart homes [BCR09],
in the health care sector [BK18], or in molecular and materials science [But+18].
Breakthroughs as IBM’s Watson, which beat two champions in Jeopardy in 2011
[Fer12], and AlphaGo by DeepMind which became the first computer program to
beat professional human Go players in 2016 [Sil+16; Sil+17], are certainly major
motivators, in particular, as these works were extensively discussed in media. One
of the best known model classes for machine learning are (artificial) neural networks
(NNs) [GBC16]. These are inspired by the structure of human brain cells and are
considered a key technology for recent successes in image and speech recognition, as
well as artificial intelligence in general. For instance, NNs are at the core of AlphaGo.
Neural networks are also used in the field of system identification. Typically, recur-
rent neural networks are used there, including long short-term memory (LSTM)
networks [HS97], and echo state networks (ESN) [Jae10; JH04]. Moreover, to build
surrogate models, regression-based frameworks for the identification of nonlinear dy-
namics [BPK16] or approximations of the Koopman operator [Bru+21; Koo31] are
often used as well.

In this work, we consider different aspects of using machine learning models in MPC
and address the training of these models, i.e., the fitting of the model to a given
data set. Essentially, the thesis can be divided into two parts. In the first part, we
study how data-based models can be used within the MPC framework. To this end,
we begin by studying a flow control problem that we want to solve using MPC and
an NN architecture. The results are promising but also leave open questions. For

2

example, the expensive data assimilation in the controlled case and the problem of
overfitting the model to the data. This is the motivation for the remaining part of
the thesis. Thus, subsequently, we analyze how autonomous surrogate models can
be used to model the controlled system. The idea is to simplify the model building
process and reduce the amount of data required to compute accurate models. In
the second part of the thesis, we use tools from multiobjective optimization to
analyze the training of NNs. More specifically, we consider regularized optimization
problems that are often considered in machine learning training to avoid overfitting
and analyze whether the perspective of multiobjective optimization helps us to gain
deeper insights into these problems and find better solutions for the NNs. In the
following, we discuss the contributions of this work in more detail.

Contributions and structure of the thesis

This thesis is settled mainly in the three areas of model predictive control, ma-
chine learning, and multiobjective optimization as summarized in Figure 1.1. More
specifically, the work is related to the two intersection areas between machine learn-
ing and model predictive control and between machine learning and multiobjective

Machine
Learning

Model
Predictive

Control

Multiobjective
Optimization

Chapter 3

Chapter 4

Chapter 5

Figure 1.1: Relevance of the topics model
predictive control, machine learning, and
multiobjective optimization in the thesis.

optimization. Hence, Chapter 2, which
introduces the theoretical basics needed
within this thesis, includes an introduc-
tion to optimal control in general and
MPC as a particular solution method to
optimal control problems in practical ap-
plications (Section 2.1). Furthermore, an
overview of machine learning with a spe-
cific focus on neural networks is given,
and the Koopman operator and its nu-
merical approximation via extended dy-
namic mode decomposition (eDMD) is
introduced (Section 2.2). Finally, an
introduction to multiobjective optimiza-
tion, where also the case of nonsmooth
functions is considered, is provided (Sec-
tion 2.3).

First, Chapter 3 shows an example of using an NN as a surrogate model in the con-
text of MPC. There, we are concerned with a flow control example, more specifically,
the fluidic pinball [Den+18; Noa+16]. Flow control problems are usually very hard
to solve since the system dynamics are described by nonlinear partial differential
equations (PDEs) that are often expensive and time-consuming to solve numeri-
cally. The fluidic pinball is an academic example that exhibits chaotic behavior
(in certain regimes) and is still relatively simple to simulate. It was explicitly con-
structed to benchmark new control algorithms. The NN architecture used to build a
surrogate model for this system was already used before in MPC to control a robot
cutting food [LKS15] and to control mode-locked lasers [BBK18]. The approach is
based on sensor data, i.e., not the full flow field is observed but only some forces

3

Chapter 1. Introduction

induced by the flow of the fluid are available. Besides the fact that it is usually im-
possible to measure a full flow field in practical applications, it seems reasonable to
reduce the problem dimension this way since humans and animals also (re-)act only
based on partial observations. Returning to the example of carrying a cup of coffee,
we cannot measure the movement of the coffee in the cup but only see the surface
or only take the amplitude of the coffee into account to determine our movement.
The numerical results derived in that chapter are very promising, and an outlook
on an extension using online learning is given. This example shows that it is, in
principle, possible to control complex dynamical systems utilizing NNs as surrogate
models based on sensor data and extend the results obtained so far. However, many
open questions and issues remain, which are discussed in Section 3.3. Some of the
detected issues motivate the other two main chapters of this thesis.

One of the essential observations in Chapter 3 is that it is unclear how much data
is needed to train the NN and how the training data should be sampled concern-
ing the time-dependent control input. This question already arises when learning
autonomous dynamical systems but becomes more complicated when adding a con-
trol input to the system. On the one hand, this is simply caused by the increased
dimension of the system and hence of the input space of the surrogate model. A
larger dimension typically requires models with more parameters, i.e., more degrees
of freedom, resulting in more data needed to train the model. On the other hand,
the system dynamics are usually no longer restricted to a low-dimensional mani-
fold and exhibit a more complicated behavior. Furthermore, the ability to steer
the system by applying different control inputs during data generation makes the
sampling process more flexible and complex. Another issue dealing with controlled
systems is that some techniques often used to build surrogate models for dynamical
systems cannot directly be applied to control-dependent systems, for instance, ap-
proaches based on the Koopman operator. To overcome this issue, a framework is
presented based on the restriction of the control set U to a finite-dimensional subset
V = {u1, . . . , um} ⊆ U in Chapter 4. The idea is that autonomous surrogate models
can be built for each of these finitely many control inputs V . Based on these various
autonomous surrogate models, the real system can be approximated. A similar idea
is followed in [PK19; POR20] for surrogate models approximating the Koopman op-
erator. If a full model is utilized, i.e., a surrogate model which gets the control input
as additional input, the optimization problem resulting from MPC is continuous. In
contrast, the optimization problem induced by the autonomous models is discrete,
as it is optimized over control inputs in V . Since such problems are much harder
to solve, different solution strategies, besides solving the optimization problem di-
rectly, are introduced in Section 4.1. These utilize relaxation techniques based on
the idea of the sum-up-rounding algorithm presented in [SBD12]. There, the algo-
rithm was used to solve mixed-integer optimal control problems. Moreover, some of
the theoretical results from [SBD12] are also utilized to derive error bounds for the
different solution strategies in Section 4.2. Finally, numerical experiments for dif-
ferent dynamical systems are presented in Section 4.3, demonstrating the numerical
applicability of the approach. Furthermore, in Section 4.4, additional experiments
show that the approach is probably advantageous concerning the required amount
of data.

4

Besides the fact that learning surrogate models for dynamical systems with control
input is usually more challenging than training models for autonomous systems,
another aspect observed in Chapter 3 is the phenomenon of overfitting. Meaning,
the model is fitted too closely to the training data and is not able to generalize to
unseen data outside the training set. For instance, think about noisy data, where the
model should not include the information of the noise but only of the underlying
system and hence should not be fitted in detail to the noisy training data. To
overcome this issue, different techniques exist. One option, which is often utilized,
is to add a regularization term to the loss function, i.e., problems of the form

min
x∈Rn

f(x) + λg(x)

are considered, where f is the original objective and g is the regularization term
weighted with some λ ∈ [0,∞). Typical choices for g are different norms, for in-
stance, the `1-norm or the (squared) `2-norm. In Chapter 5, this optimization pro-
blem is considered as a multiobjective optimization problem (MOP), i.e., f and g are
interpreted as separate objectives that have to be minimized simultaneously:

min
x∈Rn

(
f(x)

g(x)

)
.

In contrast to single objective optimization, in multiobjective optimization, it is not
clear what optimal solutions to these problems are since there is no total order of
the R2 (or more general Rk). Solutions to these problems are defined as the optimal
compromises, i.e., points where the objective value of the first objective can only
be increased if the objective value of the other function is decreased or the other
way around. The penalty approach coincides with the so-called weighted-sum method
from multiobjective optimization. It is well-known that not all optimal compromises
can be computed with this method if not both objectives are convex. Especially in
the case of training NNs, the loss function is (highly) nonconvex. Hence, the ques-
tion arises whether methods from multiobjective optimization can compute other
solutions better suited to avoid overfitting or more efficiently than the penalty ap-
proach where different penalty parameters have to be tested. In Chapter 5, the idea
is to use a continuation method to move along the Pareto critical set [Hil01]. The
Pareto critical set consists of points that fulfill a first-order optimality condition, the
so-called KKT condition. Essentially, continuation methods are based on the fact
that the Pareto critical set satisfies a smoothness condition if the objectives are twice
continuously differentiable and sufficiently regular. Since the `1-norm is nonsmooth,
a new continuation method is developed that is specifically tailored to the `1-norm
as the second objective, cf. Section 5.1. Afterwards, numerical examples, including
the training of a small NN for an academic data set, are presented. Since in more
practical settings NNs usually have many parameters, the resulting optimization
problem is correspondingly high-dimensional. Thus, in Section 5.3, it is discussed
why the presented method is not directly applicable to such high-dimensional prob-
lems and how it may be adapted. Besides regularization with smooth functions or
the `1-norm, other choices are also implemented in other applications, for instance,
the `∞-norm or total variation. To address regularization problems of these types,

5

Chapter 1. Introduction

in Section 5.4, a general analysis of the Pareto critical set is given, which may help
to develop more general continuation methods.

At the end of this thesis, Chapter 6 summarizes the achieved results, and a detailed
outlook on future work is given.

Large parts of this thesis have already been published in various scientific publica-
tions to which the author has made substantial contributions. This is indicated in
more detail at the beginning of the respective chapters. Furthermore, the main con-
tributions of this thesis (linked to the respective preceding publications) are summed
up here:

• A proof of concept in Chapter 3: The presented NN architecture can be used
to learn the essential dynamic behavior of the fluidic pinball and to control it
via MPC.

The content of Chapter 3, except for the discussion in Section 3.3, was
published before in [Bie+20], to which the author of this thesis was the
main contributor.

• Development of the “QuaSiModO” framework to allow for the use of au-
tonomous surrogate models (Section 4.1), including the proof of error bounds
for the open-loop problem (Section 4.2) and the numerical evaluation of the
approach for various numerical examples (Section 4.3 and Section 4.4).

Chapter 4 is based on [PB23], to which both authors contributed equally.
The theoretical results concerning the error bounds and the numerical
results presented in this thesis are mainly based on the work of the author
of this thesis. Compared to the paper, some minor adjustments have been
made: The error bound in Lemma 4.2.10 ((E2.a) in [PB23]) is slightly
improved, and the error introduced by sum-up-rounding is stated in more
detail. Moreover, the numerical example concerning the Mackey-Glass
equation, cf. Section 4.3.2, is slightly adapted.

• Development of a continuation method for a biobjective MOP where one ob-
jective is smooth and the other one is the `1-norm (Section 5.1).

Chapter 5 is based on [BGP22], to which the author of this thesis was the
main contributor. A brief analysis of the occurrence of kinks in the image
of the Pareto set in Remark 5.1.5 and a discussion in Remark 5.1.14 on
whether parts of the Pareto set can be missed during continuation have
been added.

• Demonstration by two small NN examples that well-suited solutions, which
avoid overfitting, are not achieved by the penalty approach but can be com-
puted by the developed continuation method (Sections 5.2.3 and 5.3).

The content of Sections 5.2.3 and 5.3 was also published in [BGP22].

• Derivation of conditions for kinks in the Pareto critical set for a biobjective
MOP where one objective is at least twice continuously differentiable and the
other one is piecewise twice continuously differentiable (Section 5.4).

6

Section 5.4 summarizes the results already published in [GBP22]. The
author of the thesis contributed substantially to this work.

7

2 | Theoretical Background

In this chapter, the main theoretical concepts used in this thesis are introduced.
First, a short introduction to optimal control, in particular to model predictive
control, is given in Section 2.1. Afterwards, in Section 2.2, we focus on different
data-based techniques for building surrogate models that can be used in this frame-
work. Particular attention is paid to neural networks since the surrogate models
used primarily in this work belong to this category. Furthermore, neural networks
are the main motivation for considering regularization paths and developing the con-
tinuation method tailored to the `1-norm, which is discussed in the last part of this
thesis. As this part is based on theoretical results from multiobjective optimization,
finally, the basics of this area are introduced in Section 2.3.

Since this thesis covers many different topics, this chapter introduces only the specific
basics needed in this thesis. For more details, the reader is referred to the related
literature in the respective sections.

2.1 Optimal Control and Model Predictive Control

This section aims to give a short overview of optimal control and model predictive
control for nonlinear dynamical systems. In Section 2.1.1, a brief introduction to the
overall concept of optimal control is given, including an overview of typical solution
methods. Afterwards, as model predictive control is used to solve control problems
in this thesis, it is introduced in Section 2.1.2. Finally, in Section 2.1.3, different
options for the application of data-based methods and machine learning in the area
of optimal control, especially in model predictive control, are discussed to give an
idea of the current state of this area of research.

2.1.1 Optimal Control

This section is mainly based on [Bin+01; Lib12]. In [Bin+01], an overview of opti-
mal control and possible solution strategies is given, whereas in [Lib12], a detailed
introduction to the theoretical foundations of optimal control can be found.

In many practical applications, dynamical systems have to be controlled, i.e., ac-
cording to a predefined task, the state of the system is steered such that a given
cost function that models the control task is minimized. The dynamical systems
considered in this thesis can be described by either ordinary differential equations

9

Chapter 2. Theoretical Background

(ODE), delay differential equations (DDE), or partial differential equations (PDE).
Regarding the latter, the system state y depends not only on the time t but also
on the location x. In principle, by introducing a discretization in space, these sys-
tems can be approximated (to arbitrary accuracy) by high-dimensional ODEs by
means of finite differences (FD) or the finite element method (FEM) as it is done,
for instance, in the method of lines [SC63]. In a system described by a DDE – in
contrast to an ODE – the derivative of the state depends not only on the current
state but also on past states, often leading to much more complex dynamics than
in ODEs. One way to solve DDEs is Bellmann’s method of steps, where the DDE
is transformed stepwise into multiple ODEs with different initial conditions [BZ03].
For this reason, and since we do not need any essential properties of DDEs or PDEs
within this thesis, we restrict ourselves to ODEs unless otherwise stated, i.e., we
consider the (nonlinear) dynamical system given by

ẏ(t) = g(t,y(t),u(t)), for t ∈ [t0, tf],

y(t0) = y0,
(2.1)

where y(t) is the state at time t, u(t) is the control input at time t and y0 is the
initial state at the initial time t0. More precisely, y : [t0, tf]→ Y ⊆ Rny is the state
function, where ny ∈ N, and we assume that Y is connected and open. Furthermore,
u : [t0, tf]→ U ⊆ Rnu , with nu ∈ N, is called the control function, and the function
g : [t0, tf]× Y × U → Y describes the system dynamics on the interval [t0, tf] with
a certain final time tf ∈ R. Note that we use bold print for the functions y and u
to make it easier to distinguish them from elements y ∈ Y and u ∈ U , i.e., from
states and control inputs at certain times. Moreover, it should be noticed that in the
area of dynamical systems, the system state of an ODE is usually denoted by x and
not by y. However, since we sometimes refer to the location as x in examples with
PDEs and use x as an arbitrary variable that is optimized in Chapter 5, the system
state is denoted by y (or y for the state function) in this work to avoid confusion.
Throughout the thesis, we always assume the local existence of a unique solution
y of (2.1) for every control u : [t0, tf] → U that is measurable and bounded. By a
solution of (2.1) for such a control u, we mean an absolutely continuous function y
with

y(t) = y0 +

ˆ tf

t0

g(t,y(t),u(t)) dt.

One way to guarantee the existence of a unique solution of (2.1) is to ensure that
the following conditions are all satisfied [Lib12, Section 3.3.1]:

• The function g is continuous in the first (t) and third argument (u) and con-
tinuously differentiable in the second argument (y).

• The partial derivative with respect to the state ∂g
∂y

is continuous in t and u.

• The control function u is measurable and bounded, e.g., u may be piecewise
continuous.

Note that, in this thesis, we usually consider systems that are not directly dependent
on the time t but only indirectly through the control input u(t), i.e., we consider

10

2.1. Optimal Control and Model Predictive Control

systems given by ẏ(t) = g(y(t),u(t)). This is not a strong limitation since many
systems do not depend directly on time and ODEs where g depends on the time
can be transformed into systems not depending directly on t by state augmentation,
i.e., we consider the expanded state ŷ := (y, t) with the system equations

˙̂y =

(
ẏ

ṫ

)
=

(
g(t,y(t),u(t))

1

)
=: ĝ(ŷ(t),u(t)). (2.2)

In order to still ensure the existence of a solution, in this case, g has to be con-
tinuously differentiable in t (or satisfy an appropriate Lipschitz condition) instead
of just being continuous as stated above [Lib12, Section 3.3.1].

The actual control task is modeled via a cost functional J depending on the control
function u and the resulting state function y. A common form of such a functional
is the Bolza form which is given by

J (y,u) =

ˆ tf

t0

CL(t,y(t),u(t)) dt+ CM(tf ,y(tf)), (2.3)

where CL : [t0, tf] × Y × U → R is called the Lagrange term and CM : Y → R
is referred to as the Mayer term. These two types of control terms can each be
transformed into the other type by state transformations [Lib12, Section 3.3.2]. A
typical control task, which is mainly considered in this thesis, is trajectory tracking,
where an output trajectory of the system should be forced to follow a predefined
reference trajectory. In this case, the Mayer term is omitted, and the Lagrange term
is given by

CL(t,y(t),u(t)) = ‖htraj(y(t))− zref(t)‖2 ,

where htraj : Y → Z ⊆ Rnz models the (observed) output trajectory of the system,
zref : [t0, tf]→ Z is the given reference trajectory, and ‖·‖ is some norm, typically
the `2-norm. If htraj is the identity (and nz = ny, Z = Y), the full state y of the
system should follow a predefined trajectory. For instance, if the ODE describes
the motion of a car, i.e., the state y ∈ R2 is the position of the car in the plane,
the control task might be to let the car follow a predefined trajectory on the street.
Another example could be the flow of a fluid around a cylinder, where the control
task is usually not to control the whole state, i.e., the velocity and pressure of the
fluid on a given spatial grid, but to steer the forces acting on the cylinder caused by
the flow, cf. Section 3.2. In this case, htraj maps the full flow field to these forces.
Combining (2.1), where we omit the direct dependency on the time t, and (2.3) leads
to the optimal control problem

min
u∈U
J (y,u) =

ˆ tf

t0

CL(t,y(t),u(t)) dt+ CM(tf ,y(tf)),

s.t. ẏ(t) = g(y(t),u(t)), for t ∈ [t0, tf],

y(t0) = y0,

(OCP)

where U is the set of measurable and bounded controls u : [t0, tf] → U . Note
that we only optimize over u ∈ U and consider the state function y not as an

11

Chapter 2. Theoretical Background

Figure 2.1: Classification of solution methods in optimal control according to
[Bin+01].

optimization variable since it is uniquely determined via the system equations by the
control function u. Depending on the application, it might be necessary to consider
additional constraints, e.g., a final point constraint of the form cf (y(tf)) = 0 or path
constraints given by cp(t,y(t),u(t)) ≤ 0. However, additional constraints are not
considered in this thesis.

Necessary optimality conditions of a control u∗ and the corresponding trajectory y∗

can be achieved by means of calculus of variations and the maximum principle, cf.
[Lib12, Chapter 4].

Solution methods Starting in the 1950s with the dynamic programming ap-
proaches presented by Bellmann [Bel10], various numerical solution methods were
developed to solve optimal control problems. A detailed overview of existing meth-
ods and their classification can be found, for instance, in [Bin+01] or [Rao09] and
is summarized in Figure 2.1. Besides dynamic programming and similar approaches
that are also based on solving the Hamilton-Jacobi-Carathéodory-Bellman equation,
cf. [Bel10], the solution methods are typically assigned to two major classes: indirect
and direct methods.

Indirect methods refer to methods that aim at deriving the first-order optimality
conditions from calculus of variation. This leads to a boundary-value problem which
can be solved numerically via discretization. Hence, these approaches are also known
as optimize-then-discretize. Numerical methods used to solve the discretized problem
are, for instance, gradient methods, multiple shooting, or collocation. Although the
calculated solutions are generally very accurate, the indirect approach requires a lot
of knowledge and experience in optimal control to derive the necessary optimality

12

2.1. Optimal Control and Model Predictive Control

conditions and the boundary value problem in such a way that they can be solved
numerically efficiently.

Direct methods avoid this issue by first discretizing the system resulting in a high-
dimensional optimization problem which can be solved with state-of-the-art opti-
mization techniques. Hence, these approaches are sometimes also referred to as
discretize-then-optimize. Although direct methods usually deliver more inaccurate
solutions than indirect methods [SB92], they have proven to perform more efficiently
in practical large-scale applications [Bin+01]. To discretize the system and solve the
underlying optimal control problem, there exist again various numerical methods,
for instance, direct single shooting, direct multiple shooting, collocation, or Galerkin-
type methods. An overview of direct solution methods can be found, for instance, in
[Pyt99]. Here, direct single shooting, e.g., see [Kra85; Kra94], is briefly explained
as this method is used within this thesis to solve the open-loop control problem in
MPC, cf. Section 2.1.2.

The main idea of direct single shooting is to introduce a discrete approximation of
the control u and take the state y as a dependent variable of this representation
since it is determined by the system equations (2.1). Via numerical integration
methods, the trajectory for a fixed discretized control can be computed, representing
the function that maps the discrete representation to the resulting system state.
Usually, a discrete approximation ũ of the control variable u is derived by taking
constant values ui ∈ U over the time horizons [ti, ti+1], where the fixed time grid
t0 < t1 < · · · < tnt = tf , nt ∈ N, is given, i.e., we introduce the approximated
control by

ũ(u0:nt−1, t) = ui for t ∈ [ti, ti+1) and i ∈ {0, . . . , nt − 1},

where u0:nt−1 = (ui)i=0,...,nt−1 ∈ Unt denotes the discrete representation of the con-
trol. This results in the nonlinear optimization problem

min
u0:nt−1∈Unt

ˆ tf

t0

CL(t,y(u0:nt−1, t), ũ(u0:nt−1, t)) dt+ CM(tf ,y(u0:nt−1, tf)),

where the dependent state y(u0:nt−1, t) is defined by the system equations (2.1) with
control input ũ(u0:nt−1, t). During the optimization, a state-of-the-art integration
method, e.g., a Runge-Kutta method, can be used to derive an approximation of
the system state in each iteration. For an introduction to integration methods, see,
for example, [AP98]. The resulting (finite-dimensional) nonlinear optimization pro-
blem can be solved with standard optimization techniques, e.g., sequential quadratic
programming (SQP), interior point, or trust-region methods [NW06].

Discrete control problem As during computation, i.e., during the numerical
integration in the direct shooting method, only discrete time steps can be realized,
we mostly consider the system and the optimal control problem in discrete time.
Note that in general, the time grid for the discretization of the state y and the control
u considered in the direct single shooting method does not have to be the same, as
the latter may be chosen coarser to reduce the dimension nt of the optimization

13

Chapter 2. Theoretical Background

problem. Nevertheless, to simplify the notation, we assume the same time grid for
both. More precisely, an equidistant time grid t0 < t1 < · · · < tnt = tf , nt ∈ N,
with ti+1− ti = ∆t for all i ∈ {0, . . . , nt− 1}, is considered. By assuming a constant
control over multiple time steps, the coarser grid for the control in the direct single
shooting can be achieved. The equidistant time grid allows for introducing the
time-T-map Φ : Y × U → Y that represents the evolution of the dynamical system
during a fixed time ∆t, i.e., for yi = y(ti) and i ∈ {0, . . . , nt − 1}, it holds

yi+1 = Φ(yi, ui),

where Φ(yi, ui) = yi +

ˆ ti+1

ti

g(y(t), ui) dt.

For the discrete version of the optimal control problem, the objective has to be
adapted as well. In particular, the integral over the Lagrange term has to be ap-
proximated, for instance, by means of quadrature rules. More efficiently, state aug-
mentation of the state y and Cl can be used to integrate the objective at the same
time as the system, cf. [GP17, Section 11.4]. However, since we are looking at the
trajectory tracking error in this thesis, it is also reasonable to determine the error
at the discrete time steps and simply sum them up, resulting in the discrete control
problem

min
u0:nt−1∈Unt

J(y1:nt , u0:nt−1) =
nt−1∑
i=0

P (ti+1, yi+1, ui),

s.t. yi+1 = Φ(yi, ui), for i ∈ {0, 1, . . . , nt − 1},
(2.4)

where y1:nt = (yi)i=1,...,nt ∈ Y nt and u0:nt−1 = (ui)i=0,...,nt−1 ∈ Unt are the discretized
state and control. The objective P : [t0, tf] × Y × U → R may represent the
tracking error, i.e., P (ti+1, yi+1, ui) = ‖htraj(yi+1)− zref(ti+1)‖2. Furthermore, it is
a common choice to add a penalty term for the control ui, i.e., the objective is
given by P (ti+1, yi+1, ui) = ‖htraj(yi+1)− zref(ti+1)‖2 + λ ‖ui‖ with λ > 0. This is
often motivated by the need to avoid high energy consumption, which is usually
associated with large control inputs, but also by the fact that the control problem
is often easier to solve numerically when adding a penalty term [GP17].

2.1.2 Model Predictive Control

Until now, we considered so-called open-loop solution strategies, i.e., strategies where
the optimal control problem is solved over the entire time interval [t0, tf] without
feedback from the system. Mathematically these methods are able to solve the
control problem exactly (up to the discretization error, which might sum up over
time). However, in practical applications, perturbations of the system state may
occur, or the differential equations representing the real system might be inaccurate,
which cannot be taken into account by these approaches. Therefore, it is useful to
combine the open-loop strategies with a feedback loop, resulting in model predictive
control (MPC). A comprehensive introduction to MPC can be found in [GP17].

14

2.1. Optimal Control and Model Predictive Control

The basic idea of MPC is to solve the open-loop problem on a finite, smaller time
horizon of p time steps, i.e., over the so-called prediction horizon tp, using a model
of the real system. Afterwards, only the first optimized control u0 is applied to the
real system, and based on the resulting state y1 of the real system, the optimization
for the next p time steps is performed. Hence, in MPC, the following optimization
problem, which is quite similar to (2.4), has to be solved for each time step tk:

min
uk:k+p−1∈Up

Jk(ỹk+1:k+p, uk:k+p−1) =

k+p−1∑
i=k

P (ti+1, ỹi+1, ui),

s.t. ỹi+1 = Φr(ỹi, ui), for i ∈ {k, . . . , k + p− 1},

(MPCk)

where uk:k+p−1 and ỹk+1:k+p denote the vector of the corresponding control inputs
and system states, respectively, i.e.,

uk:k+p−1 = (ui)i=k,...,k+p−1 and ỹk+1:k+p = (ỹi)i=k+1,...,k+p.

Similar to the previous section, we use this type of notation to denote vectors of
system variables which depend on the time steps throughout the thesis. Moreover,
to account for the inaccuracy of the model, the approximation of the real system
state yi at time ti by the model is denoted by ỹi, and Φr represents the equations
of the model of the discrete system dynamics approximating the dynamics of the
real system described by Φ, i.e., Φr(yi, ui) ≈ Φ(yi, ui) = yi+1. The model might
be given, for instance, by differential equations describing the system and solved
via numerical integration as in the previous section. Moreover, P is the discrete
objective as above, cf. (2.4), and the initial value is given by the true state of the
system, i.e., ỹk = yk.

A visualization of the concept of MPC is presented in Figure 2.2. As the time
horizon over which is optimized is moved forward by one time step after applying
the first control input uk to the system, this method is sometimes also referred to
as moving horizon or receding horizon control. The most important advances of
MPC are the straightforward implementation and the possibility to easily include
constraints on the control or the system state. Although linear models are faster to
optimize, MPC allows for using nonlinear models, which can be beneficial in complex
applications. Furthermore, stability results and robustness against the model error
of the closed-loop problem can be proven, see [GP17].

The most crucial part of MPC to allow for real-time applicability is undoubtedly
the model of the system since it should be accurate enough to achieve good con-
trol performance on the one hand and enable a computationally fast optimization
on the other hand, i.e., it should be quick to evaluate and may provide gradient
and Hessian information easily. In the setting described above, it is assumed that
the optimization step at time tk can be performed in zero time. This is obviously
unrealistic but eases the notation and the theoretical considerations. By approxi-
mating the initial condition ỹk already at time tk−1, i.e., ỹk = Φr(yk−1, uk−1), the
optimization step for solving (MPCk) can and has to be performed during one time
step, i.e., it has to be solved in time ∆t such that the computed control uk can
be applied to the system at time tk. Hence, MPC was first introduced for linear

15

Chapter 2. Theoretical Background

(a)

(b)

Figure 2.2: Visualization of the basic concepts of MPC. In (a), the interaction
between the plant, which consists of the real system represented by an ODE and the
sensor, and the MPC controller, consisting of the optimizer and the model of the
system, is shown. In (b), the concept of the shifting horizon with respect to time is
visualized, and the shift method for the initialization is outlined.

16

2.1. Optimal Control and Model Predictive Control

systems in the area of chemical processes as these typically exhibit slow dynamics
[CR80; Ric+78]. Nevertheless, due to more powerful computing technologies and
advances in model building, nowadays, MPC is successfully applied in many dif-
ferent areas and is a state-of-the-art tool in industry. For an overview of different
MPC approaches and industrial applications, see, for instance, the surveys [For+15;
Lee11; Sch+21]. Besides the modeling via physical equations, data-based methods
and machine learning models have recently received high attention [BK19; Sch+21].
This is further discussed in Section 2.1.3, and some of those modeling techniques are
presented in Section 2.2. Apart from appropriate modeling, another way to allow
for real-time application is to apply not only one but multiple control steps to the
real system after optimization and to use the feedback not in every time step but
only after the control horizon tc. Thus, the optimization can be performed during
the time tc instead of in only one time step of size ∆t.

Besides the fact that the duration of the evaluation of the model must not exceed the
specified time limit, in many practical applications, the full state y is not available in
every time step. Often it is even impossible to measure it with the help of sensors at
all. For instance, in a flow control problem, it is unrealistic to measure the velocity
and pressure of the fluid on a fine spatial grid. Instead, the velocity may only be
accessed at single sensors, or it is only possible to measure certain forces induced
by the flow, cf. Section 3.2. Hence, it is necessary that the model only acts on
the given sensor data that is available. To this end, we introduce the observable
hobs : Y → Z ⊆ Rnz , nz ∈ N, mapping a state y to the observed state z available via
the sensor data and assume that the surrogate model is given by Φr : Z × U → Z
with

zi+1 ≈ z̃i+1 = Φr(zi, ui), for i ∈ {0, 1, . . . , nt − 1},

where zi = hobs(yi) for all i ∈ {0, . . . , nt}. Obviously, an observable hobs has to meet
certain requirements to remain capable of fulfilling the control task. First of all, it is
necessary that the objective function can still be evaluated based on the given data
to rate the control performance, i.e., we assume that there exists Pobs with

P (t, y, u) = Pobs(t, hobs(y), u) ∀t ∈ [t0, tf], y ∈ Y and u ∈ U. (2.5)

For practical applications, this is usually not a limitation, as the performance of
the system has to be assessable based on the sensor data. Otherwise, it would not
be possible to rate the control performance. In the case of trajectory tracking, we
may simply assume that htraj = hobs. The assumption stated in (2.5) allows us to
reformulate (MPCk) as follows:

min
uk:k+p−1∈Up

Jobs,k(z̃k+1:k+p, uk:k+p−1) =

k+p−1∑
i=k

Pobs(ti+1, z̃i+1, ui),

s.t. z̃i+1 = Φr(z̃i, ui), for i ∈ {k, . . . , k + p− 1},

(MPCobs
k)

where the initial condition is given by the measurement of the real system at time
tk, i.e., z̃k = zk = hobs(yk). Furthermore, the observations should be chosen in such
a way that it is – at least theoretically – possible to predict the effect of the control

17

Chapter 2. Theoretical Background

input on the observed values, i.e., the observation should be able to capture the
essential dynamics of the system. This assumption is strongly related to the concept
of observability in control theory, where the full state should be reconstructible from
the observed state [GK71; Kal60a]. A possibility to realize this property with fewer
sensor measurements is to use delay coordinates, meaning that not only the current
state is observed but a time series of states [Lju98; PA16]. This concept is also used
in this thesis, cf. Section 3.1. From the perspective of dynamical system theory, this
is motivated by Takens’ embedding theorem [Tak81], which states that the attractor
of a dynamical system can be reconstructed with the help of delay coordinates. In
this thesis, the focus does not lie on the choice of the observable hobs. Therefore, we
leave it at this informal explanation and assume that hobs is appropriately chosen,
i.e., the objective can be evaluated based on the observed state z, cf. (2.5), and it is
possible to predict the influence of the control input u based on the observed state of
the previous time step, which may be realized by means of delay coordinates.

Another important point concerns the initialization of the control variable in the
optimization step. A very intuitive and numerically reasonable way is the shift
method, meaning that the optimized open-loop control of the last time step is shifted
by one. Hence, only a value for the previous initial control input is needed, which can
simply be obtained by copying the second to last control input. To make this more
precise, we assume that u∗k:k+p−1 = (u∗k, u

∗
k+1, . . . , u

∗
k+p−1) is the optimal solution of

(MPCk) or (MPCobs
k), respectively. For the initialization of the control in the next

time step, i.e., at time tk+1, we then take

uk+1:k+p = (uk+1, . . . , uk+p) = (u∗k+1, u
∗
k+2 . . . , u

∗
k+p−2, u

∗
k+p−1, u

∗
k+p−1).

For more advanced initialization techniques, see [GP17, Section 12.5].

2.1.3 Data-Based Methods and Control

In this section, we want to give a brief overview of how data-based methods can
be incorporated into optimal control and, more specifically, into MPC. Employing
data-based methods is an active field of research, recently fueled by the potential
provided by machine learning methods. For a more comprehensive introduction to
this field, we refer to [BK19, Chapter 10] and [DBN17, Chapter 2].

From the previous section, arguably, the most intuitive application of data-based
methods in optimal control is the task of system identification, i.e., the design of
models representing the system dynamics. These models can then be used as the
model Φr in the MPC framework, cf. Section 2.1.2. To accomplish the task of
system identification, various approaches have been devised, ranging from more
traditional methods to modern machine learning techniques. For instance, there
are methods based on reduced order modeling, like proper orthogonal decomposition
(POD) [KV99; MOO13]. In recent years, surrogate models based on the Koop-
man operator, e.g., the approximation via extended dynamic mode decomposition
(eDMD) [AKM18; KM18a; PK19; POR20; ŠIM21], became quite popular. Further-
more, classical machine learning approaches have just entered the field as well. One
of the most famous approaches in this area is probably the use of neural networks.

18

2.2. Data-Based Surrogate Modeling

For instance, feed-forward neural networks (FNN) [DER95; SI18] and recurrent neu-
ral networks (RNN) [BBK18; Bie+20], including long short-term memory (LSTM)
[Igl+18] and echo state networks (ESN) [Arm+19; Jor+18], were used as models
in MPC. Indeed, despite MPC, data-based methods for system identification to de-
velop controllers have a long-lasting tradition. One of the first approaches in this
direction is probably the work by Kalman [Kal60b; WB95], where the state is esti-
mated from measurements of sensors and the control. More details on data-based
surrogate modeling can be found in Section 2.2, as some of the mentioned techniques
are used later in this thesis to build surrogate models in the MPC framework.

Another way to use machine learning to solve control problems is to directly learn
control laws, called machine learning control (MLC) [DBN17]. This might be ben-
eficial as an appropriate control law can often be delivered easier, whereas the dy-
namics of the system may be hard to capture. One approach that falls into this
category is reinforcement learning [SB18]. The basic idea of reinforcement learning
is that an appropriate control law is learned by the interaction with the system over
time by using a value function that somehow describes the success or failure of the
current control [BK19; Hes+18; KBP13; LVV12]. Another approach is followed in
[DBN17]. There, genetic algorithms are used to find an optimal control law based
on a predefined class of possible controllers. For the optimization with the genetic
algorithm, different control laws are tested in a (systematic) trial-and-error fash-
ion. This way, for instance, the parameters of more traditional approaches, such as
a proportional-integral-derivative (PID) controller, can be derived or a neural net-
work can be evolved to be used as a controller. A drawback of this approach is
that relatively many control laws need to be tested before a suitable one is found,
which might be – depending on the system and the control task – computationally
expensive and unacceptable.

A natural approach to further improve the outlined methods is to integrate already
existing physical or chemical system knowledge to combine the best of both worlds.
For instance, in MLC, this can be done by choosing an appropriate class of control
laws. In system identification, the expertise might be used to reduce the amount
of data needed to train the model, thus fastening the training. Another possibil-
ity is to replace parts of the model with known system equations or to ensure the
preservation of symmetries or the energy in the system during learning, see, for in-
stance, [DF21; OO23; Rid+21]. By using system knowledge, in general, the accuracy
and the generalization of the induced model can often be improved. A comprehen-
sive introduction to this field, called physics-informed machine learning, is given in
[Kar+21].

2.2 Data-Based Surrogate Modeling

The main focus of this thesis lies on data-based surrogate modeling. Due to the
enormous progress in the field of machine learning and, probably more importantly,
the availability of a large amount of data, data-based methods have become very
popular in various industrial and scientific areas over the last decades. For instance,
as discussed briefly in the previous section, there are many possibilities to utilize

19

Chapter 2. Theoretical Background

data-based techniques to solve optimal control problems. In this section, we first
outline the basic concepts of machine learning in Section 2.2.1. Afterwards, in Sec-
tion 2.2.2, an introduction to (artificial) neural networks is given since they represent
one of the most popular model classes in machine learning and serve as the main
motivation for the second part of this thesis, where we consider regularization paths.
Finally, the approximation of the Koopman operator via extended dynamic mode de-
composition (eDMD) is explained in Section 2.2.3 since this technique is used several
times in this work to create surrogate models. Note that data-based methods, as the
approximation of the Koopman operator, are not necessarily classified as a machine
learning approach. Nevertheless, within this thesis, we do not distinguish between
data-based methods and machine learning and use the terms interchangeably as it
makes no significant difference for our purposes.

2.2.1 The Basics of Machine Learning

In this section, we want to clarify what we mean when we say that we “ learn (some-
thing) from data” and introduce the basic concepts of machine learning, i.e., we
introduce the general learning problem considered in this thesis. For a more com-
prehensive introduction to this topic, the reader is referred to [AML12; Bis06].

The underlying goal in machine learning is to approximate a target function

t : A → B,

which maps instances a from the input space A to a result b = t(a) in the out-
put space B. For example, the aim might be to find a model for the time-T-map
Φ : Y × U → Y of a dynamical system with control input. In this case, the in-
put space would be given by A = Y × U ⊆ Rny × Rnu and the output space by
B = Y ⊆ Rny . To learn the target function t, i.e., to find a good approximation
thereof, a set of possible hypotheses H is considered and, based on a given data
set

D = ((a1, b1), . . . , (aN , bN)) ⊆ D := A× B,

the hypothesis which fits best (as specified below) is chosen. Typically, the set of
possible hypotheses is implicitly given by a parameterized function

m : X ×A → B,

where X ⊆ Rnx is the parameter space. An instance mx : A → B, mx(a) = m(x, a)
for a fixed parameter x ∈ X is referred to as a model, and the set of all possible
models or the function m is often referred to as the model class. Note that we
use x ∈ X for the parameters of the model, which is rather uncommon in the
area of machine learning. However, our viewpoint is more from the optimization
perspective, where the variable with respect to which we can optimize is usually
referred to as x. Now, the aim is to utilize the information given by the data set D
to find parameters such that the resulting model approximates t well. This process
is usually referred to as training.

20

2.2. Data-Based Surrogate Modeling

In order to find a hypothesis that approximates the target function t well, a mea-
sure for the quality of a hypothesis is needed, i.e., some measure to determine the
distance between a hypothesis h ∈ H and the target t. How this measure should be
chosen depends crucially on the considered task. Typically, the mean value over the
pointwise errors of the data points in D is considered, i.e.,

LD : X → [0,∞), LD(x) =
1

|D|
∑

(a,b)∈D

d(b,m(x, a))

where d : A × B → [0,∞) is some pointwise error measure. The function LD is
usually referred to as the loss function or simply the loss. Thus, the training can
be considered as an optimization problem in the parameter space X for the loss
function defined by a chosen model class m and the fixed data set D. Considering
the example of learning the time-T-map of a controlled system, the data points
would be of the form (ai, bi) = ((yi, ui), yi+1) with yi+1 = Φ(yi, ui) and the pointwise
error might be defined as the least-squares error, i.e.,

d : Y × Y → [0,∞), d(y, ỹ) = ‖y − ỹ‖2
2 .

Note that instead of approximating a (deterministic) target function, due to the
presence of noise in real-world data, one often aims to learn a probability distribution
as a target. The deterministic case can be seen as a special case of this more general
setting. However, within this thesis, we restrict ourselves to the deterministic case
since the problems we consider are not influenced by noise.

Different types of learning Typically, learning problems are grouped into three
classes, namely, supervised, unsupervised and reinforcement learning. The learning
problem described so far is the one that arises in supervised learning. The aim is
to learn the target function t based on given labeled data, i.e., we have data points
(ai, bi) where bi denotes the correct outcome of t(ai). In this thesis, we merely
consider this type of learning problem. Depending on the output space B, these are
typically further divided into different groups. The best known are regression and
classification tasks.

If we assign a continuous value to the instances, i.e., if the target t is a function that
maps to Rm, m ∈ N, we speak about regression. An example of a regression task is
to learn a model of the time-T-map Φ. As explained above, the least-squares error
is a typical loss function for this purpose.

In classification tasks, B consists of a finite number of discrete categories, usually
labels or integers representing certain categories. For instance, one of the sim-
plest benchmark data sets for classification is the Iris data set [Fis36]. The task
is to classify the input data, which consists of four real-valued inputs (length and
width of the sepals and petals of iris flowers), i.e., A ⊆ R4, into three categories
B = {“setosa”, “versicolor”, “virginica”}. In order to make it easier to handle the set
numerically, the labels are transformed into vectors of size |B| representing whether
the instance belongs to one of the classes or not. For instance, instead of the data
point (a, “setosa”), we would consider (a, (1, 0, 0)). More precisely, we replace the

21

Chapter 2. Theoretical Background

output set B by B̂ = {b ∈ [0, 1]|B| :
∑|B|

c=1 bc = 1}. This way, the output of the model
can be interpreted as a probability vector whose components indicate to which class
an input likely belongs. Furthermore, this allows for applying the cross-entropy loss,
which is frequently used as a loss function in classification tasks. It is given by

LD(x) = − 1

|D|
∑

(a,b)∈D

|B|∑
c=1

bc log(m(x, a)c), (2.6)

where the subscript c indicates the c-th entry of the corresponding vector.

Until now, we assumed that the whole data set D is known beforehand, i.e., during
the entire training process. Two slightly different settings are active learning [Set12]
and online learning [Hoi+21]. Online learning means that new data points are
created “online” while the model is already used for prediction, i.e., not all data
points are available at the same time, but more and more information comes up
during the training, which is done in parallel to the application of the current model.
In active learning, the labels of the data points are not known beforehand but can be
queried during the training in a targeted manner. This setting is usually considered
when it is expensive to create the labels of the data points to reduce the cost of the
generation and maximize the informativeness of the data simultaneously.

In other situations, the correct result for a particular input may not be accessible
or cannot be used directly for training. Recall the example from the introduction,
where a person wants to transport a cup of coffee from A to B. One possibility to
solve the control problem would be to learn a model of the time-T-map Φ, i.e., to
model the learning task as a supervised learning problem and choose the appropriate
control based on the learned model. But we are probably unable to access detailed
information on the movement of the coffee inside the cup to prove our model outcome
and adapt it appropriately. Another possibility is that the person tries out different
movements, i.e., different control inputs, and learns which movements are helpful
and which are not, based on some kind of performance measure, e.g., the maximal
height of the coffee in the cup, i.e., the control law is learned directly. In a similar
way, reinforcement learning is often applied to control tasks, see, for instance, [BK19;
Hes+18; KBP13; LVV12]. Usually, the cost function J , cf. (2.4), can be used as a
feedback function to measure the control performance (and to optimize the model
parameters with respect to it). Another typical application of reinforcement learning
is the development of artificial players, e.g., for the game of Go. For a supervised
learning setting, the perfect move – or at least a good move that a professional player
would make – has to be known. Since this information is usually hard to access,
reinforcement learning is a good way to go, as it is easier to assign a score to a move
at a particular stage of the game. Thus, reinforcement learning is also the basis for
the famous AlphaGo by DeepMind, which was able to beat professional human Go
players [Sil+16; Sil+17].

In contrast to supervised and reinforcement learning, unsupervised learning can be
seen as learning without feedback. There, the task is to find patterns or structural
results in given unlabeled data (a1, . . . , aN). A typical task that falls into this

22

2.2. Data-Based Surrogate Modeling

category is clustering. Unsupervised learning can be a stand-alone technique or
used as a preprocessing step in supervised learning.

Generalization to points outside the data set From a theoretical perspective,
one of the first questions when considering the introduced learning setting is whether
it is really possible to approximate the function t outside the given data set D or
to give an error bound. The answer is obviously “no” if we assume that there
is no information about the target function t available, which is the underlying
assumption. Nevertheless, if we consider the problem from a probabilistic viewpoint,
it is possible to show certain bounds on the (probabilistic) error if we assume that the
data is sampled independently according to a probability distribution. For a detailed
discussion, we refer to [AML12]. Here, we leave it that abstract and introduce a
concept allowing us to estimate the performance of a trained model outside the given
data set D in practice instead.

Training, test and validation set To evaluate the model performance outside
the data used for the training, an independent data set can be used. Therefore, we
distinguish between the training set Dtr ⊆ D and the test set Dtest ⊆ D which have
to be sampled independently and only the training data set Dtr is allowed to be used
during the training. Indeed, it is possible to show that if the test set is large enough,
the error on the test set gives a good approximation of the so-called generalization
error, i.e., (loosely speaking) the error of the model outside the training data set Dtr.
If we assume that we only have the data set D available and have to divide it into Dtr

and Dtest, the trade-off between training performance, which usually gets better by
increasing the size of the training set, and the ability to estimate the generalization
error, which needs a large test set, has to be taken into account.

In addition to the training and test set, sometimes a third (independent) data set is
introduced, the so-called validation set Dval ⊆ D. It is used to estimate the ability
of the model to generalize to unseen data during the training, i.e., it is used similar
to the test set but may influence the training. Typically, a validation data set is
used to select a model from multiple trained models. For instance, a linear and
a nonlinear model are trained and one wants to decide which of them generalizes
better to unseen data. Therefore, the error on the validation data set is calculated.
As the validation set is used during training or for selecting a model, it cannot be
used to estimate the generalization performance, i.e., the validation data set has to
be collected independently of the test set.

Overfitting and regularization Another way to use the validation set, typically
used in neural network training where the training is done iteratively (by applying
a gradient descent method to solve the optimization problem), is to observe the
error on the validation set and stop the training as soon as the validation error LDval

increases. This strategy is usually referred to as early stopping. The idea behind it
is that an increasing validation error indicates that the model performance outside
the training data set gets worse, although the training error LDtr still decreases. A
typical learning curve showing this behavior is presented in Figure 2.3b. If the error

23

Chapter 2. Theoretical Background

-2 -1 0 1 2

-2

0

2

4

(a)

LDtest
LDval

LDtr

(b)

Figure 2.3: (a) Example of overfitting for the target function t : R→ R, t(a) = a2.
(b) Example curves of training and test error during iterative training. The point
where overfitting starts is marked by the orange dashed line.

on the training data set is small and the error on the validation (or test) set is huge,
the model is fitted too close to the training data. This phenomenon is also known
as overfitting.

To overcome this issue, different techniques are used. Besides early stopping, a
common idea is adding a regularization term (also called penalty term) to the loss-
function, i.e., instead of minimizing LDtrain

,

min
x∈X

LDtrain
(x) + λΩ(x)

is solved, where Ω : X → R and λ ∈ [0,∞). Obviously, the choice of Ω crucially
influences the result, and the (optimal) choice of Ω depends (again) on the concrete
learning problem. Typically, Ω is a positive function, for instance, a norm. The
basic idea behind this regularization approach is to get the simplest model that
still fits the data since these models usually generalize better, cf. [AML12]. What
is meant by a “simple” model is described by the regularization function Ω. For
instance, sparse models can be seen as simple models. To measure the sparsity of
a model, one would count the nonzero entries of the parameter x, i.e., calculate the
`0-norm ‖x‖0 (whereas ‖·‖0 is of course not a real norm). Since the `0-norm is hard
to handle during optimization, typically, approximations thereof are used, e.g., the
`1-norm. For linear models, i.e., m : Rnb×na × Rna → Rnb ,m(X, a) = Xa, it was
proven that the `1-norm indeed ensures sparse solutions if the resulting system of
equations is over-determined, i.e., N = |Dtr| < na · nb [Don06; RZH04]. Moreover,
the solution of the regularized problem depends on the choice of λ. If λ is chosen
too small, overfitting is still likely. If, in contrast, λ is too large, the trained model
may not be able to approximate the target t well enough since the model complexity
is too low, i.e., the model cannot learn from the given data. The issue of choosing
λ is also addressed in Chapter 5.

Models There is a variety of different model classes that are used to learn from
data, and depending on the specific learning problem the performance may differ.

24

2.2. Data-Based Surrogate Modeling

One of the simplest model classes is the family of linear models, which includes
support vector machines (SVM) typically used for classification tasks [Bis06]. These
are used to illustrate the results regarding the structure of the regularization path
in Section 5.4.2. Another large and well-known model class is formed by (artificial)
neural networks, which can be further divided into different architectures. These are
mainly used in this thesis and are introduced in the next section. Moreover, there are
other methods specifically tailored to build surrogate models for dynamical systems.
One of which is eDMD, which aims to approximate the Koopman operator. This
is presented in Section 2.2.3. Of course, there are many other model classes which,
however, are not discussed here.

2.2.2 Neural Networks

Probably the best known class of models in machine learning, not least due to
increased media attention, are so-called artificial neural networks or simply neural
networks (NN) [Bis06; GBC16]. Inspired by the structure of human brain cells,
these networks are composed of layers of artificial neurons where the neurons of one
layer are connected with neurons of other layers. Neural networks are considered
a key technology for recent successes in image and speech recognition, as well as
artificial intelligence in general. For instance, NNs were at the core of AlphaGo,
which was the first artificial intelligence to defeat a professional Go player [Sil+16;
Sil+17]. Furthermore, from a theoretical (mathematical) perspective, NNs are an
active research area. See, for instance, [Ber+21; E+20] for an overview of current
challenges.

The most basic structure of an NN is a perceptron or neuron, which is given by

m : X ×A → B, ((w,w0), a) 7→ b = σ
(
w>a+ w0

)
,

where A ⊆ RnI , B ⊆ R, (w,w0) ∈ X = RnI+1 and σ : R → R is a (nonlinear)
continuous function, the so-called activation function. The trainable parameters
are given by x = (w,w0), where w are called the weights and w0 is called a bias.
Here, we usually identify x with a vector in Rn, where n = nI + 1 is the number of
(trainable) parameters in the perceptron.

Combining multiple perceptrons in parallel and serial leads to a more complex model
class, a neural network, which can be described by a graph, cf. Figure 2.4. The
NN shown in Figure 2.4b is a feed-forward neural network (FNN) as the input is
propagated forward towards the output without feedback. More precisely, it is a
fully connected neural network. The function describing this model class is given by
m : X ×A → B,m(x, a) = b with

h0 = a,

hj = σhj
(
W>
j hj−1 + w0

j

)
for j ∈ {1, . . . , K}, (2.7)

b = σo(W
>
K+1hK + w0

K+1︸ ︷︷ ︸
=hK+1

), (2.8)

where (2.7) and (2.8) describe the equation of the hidden and the output layer,
respectively. Thus, K denotes the number of hidden layers. The parameters that

25

Chapter 2. Theoretical Background

(a)

(b)

Figure 2.4: Architecture of a perceptron (a) and a fully-connected FNN (b).

can be optimized are the weights Wj ∈ Rnj−1×nj and the biases w0
j ∈ Rnj , where

nj is the number of neurons of the j-th layer. Accordingly, n0 and nK+1 are equal
to the input and output dimension, respectively, i.e., n0 = nI and nK+1 = nO,
where A ⊆ RnI and B ⊆ RnO . Similar to the perceptron, we summarize the
trainable parameters in a single vector x = ((W1, w

0
1), . . . , (WK+1, w

0
K+1)) ∈ Rn,

where n =
∑K+1

j=1 nj−1 · nj + nj is the number of trainable parameters. Moreover,
σhj : Rnj → Rnj , j ∈ {1, . . . , K}, and σo : RnK+1 → RnK+1 are the activation func-
tions for the hidden layers and the output layer, respectively. As an activation
function, in principle, every continuous function can be chosen. For the hidden lay-
ers, typically, scalar functions are chosen that are applied elementwise to the input
vector. Some common choices for activation functions are summarized in Table 2.1.
If the NN consists of more than two hidden layers, the network is typically called a
deep neural network.

Besides the practical success stories, there are also theoretical reasons to apply NNs
and study them further. The most fundamental result is that FNNs can approximate
every real-valued continuous function on a compact set A arbitrary well [HSW89].
Although this result is promising in the first place, it states nothing about the
architecture and amount of data needed for a certain (probabilistic) error. Thus,
there is still an active research area studying the approximation and generalization
properties of NNs. The third aspect that has to be considered is the training of
NNs, of which some aspects are also discussed in this thesis.

There are various architectures of NNs, usually specified for certain tasks. For

26

2.2. Data-Based Surrogate Modeling

Table 2.1: Some examples for possible activation functions σ : Rm → Rk.

Mathematical Definition Applied in . . .

Tangent hyperbolicus
σ(h) = tanh(h)

hidden l.
(applied elementwise)

Softplus
σ(h) = log(exp(h) + 1)

hidden l.
(applied elementwise)

Rectified linear unit
σ(h) = ReLU(h) = max(h, 0)

hidden l.
(applied elementwise)

Logistic function/ σ(h) = 1
1+exp(−h) hidden l.

Sigmoid function (applied elementwise)

Identity σ(h) = id(h) = h linear output l.

Softmax (layer) σ(h)i = exp(h)i∑k
j=1(exp(h)j)

, i ∈ {1, . . . ,m} output l. (classification)

instance, convolutional neural networks (CNN) are used to classify images. Note
that we did not allow feedback within the network so far. The information from the
data is only propagated forward through the network, layer per layer. However, there
are also NNs that allow for feedback, so-called recurrent neural networks (RNN).
These are typically used to handle time series data and are addressed later.

Training of NNs

The training of an NN is basically solving an optimization problem where the ob-
jective is the (nonconvex) loss function L, which is assumed to be continuously
differentiable, i.e., L ∈ C1. This minimization problem is usually solved by the
steepest descent method [NW06]. Typically, the gradient is not approximated in
each optimization step, but calculated exactly (to machine accuracy) using algorith-
mic differentiation (AD) [GW08b]. In the neural network literature, the resulting
algorithm is called backpropagation. To further increase the performance of the
training, a stochastic gradient descent method is usually applied, meaning that that
the loss and the gradient are not evaluated on the entire training set Dtr but only
for single points or subsets.

Backpropagation The backpropagation algorithm is, in principle, the reverse
mode of AD. The general idea of AD is to differentiate a function given by a con-
catenation of elementary functions (e.g., +,−, . . . , sin, cos, . . .), whose derivatives
are known, utilizing the chain rule. Consider the concatenation f = g3 ◦ g2 ◦ g1 of
three differentiable functions g1 : Rn → Rm1 , g2 : Rm1 → Rm2 and g3 : Rm2 → R
and assume that their derivatives Dgi are known. Then, the gradient of f in a point
x ∈ Rn can be computed by

∇f(x) = Dg1(x)>Dg2(g1(x))>∇g3(g2(g1(x))).

The idea of the reverse mode is to compute in a first step the value of f(x) and
store the intermediate results g1(x) and g2(g1(x)) (as well as the performed op-

27

Chapter 2. Theoretical Background

erations g1,g2 and g3). In a second step, ∇f(x) can be computed by evaluating
a row of matrix vector products, i.e., z = Dg2(g1(x))>∇g3(g2(g1(x))) ∈ Rm1 and
Dg1(x)>z = ∇f(x) ∈ Rn. Applying this idea recursively to an NN yields a very effi-
cient way to compute the gradient of the loss function with respect to the trainable
parameters x ∈ X . Powerful implementations of the backpropagation algorithm are
provided, for instance, by TensorFlow [Mar+15] or PyTorch [Pas+19b]. For a more
detailed explanation of backpropagation or AD in general, the reader is referred to
[Bis06; GW08b].

Stochastic gradient descent method If the training data set is extremely large
(which is often the case in practical applications), evaluating the loss function and
its gradient can become very expensive. To overcome this issue, stochastic gradient
descent (SGD) was established, see, for instance [GBC16]. The idea is that in each
iteration, the loss function is evaluated only for a single, randomly chosen data point
from the set of data points not used so far for the training. Once all data points have
been used for one step in the gradient descent algorithm, the random data point
can be drawn from the full data set again. One pass over all data points is called an
epoch. A pseudo algorithm is given in Algorithm 1. Alternatively, it is also possible
to consider more than one data point per iteration, i.e., to use a subset of data points,
a so-called (mini) batch. This is usually referred to as mini batch learning in the
literature. If the data set cannot be distributed equally into batches of the specified
size, the remaining data points may either be left out for that epoch, cf. Algorithm 1,
or constitute a smaller batch. From a theoretical perspective, the first question is

Algorithm 1 Pseudo-algorithm for mini batch learning, including the two special
cases of SGD (b = 1) and the traditional steepest descent method (b = |Dtr| = N).
Input: loss function L : Rn × D → [0,∞) ∈ C1, training data Dtr, starting value

p0 ∈ Rn, sequence of learning rates (εk)k∈N, batch size b
Output: critical point of L
1: Set k = 0.
2: while stopping criterion not met do
3: Set Dcur = Dtr.
4: while Dcur ≥ b do
5: Choose random set B ⊆ Dcur with |B| = b.
6: Set Dcur = Dcur \B.
7: Calculate ∇LB(pk).
8: Update: pk+1 = pk + εk∇LB(pk).
9: Set k = k + 1.
10: end while
11: end while

whether we can end up in a (local) minimum with the proposed algorithm, i.e., we
are asking for a convergence proof. For the convex case, convergence can be proven
[Bot99], based on the idea of stochastic approximation [RM51]. Concerning the
convergence to global optima in the NN setting, there is a lot of current research,
also for the traditional gradient descent algorithm. Recently, convergence to a global

28

2.2. Data-Based Surrogate Modeling

optimum was shown for certain over-parameterized NNs [ALS19; Du+19].

Besides the classical SGD, there are some more sophisticated stochastic gradient
descent algorithms. One of the most famous algorithms to name is the Adam opti-
mizer [KB14]. It is based on a so-called momentum. Essentially, this means that, in
addition to the gradient, past iteration steps are taken into account, which usually
results in a faster convergence [Pol64; Sut+13]. The Adam optimizer is a state-of-
the-art optimizer for NN training. The convergence to critical points of the objective
function was recently proven under certain assumptions [BB21; CC21]. (The con-
vergence proof in the original paper [KB14] appeared to be wrong, see, for instance,
[RKK18].)

Regularization As discussed in the previous section, regularization techniques
can be used to regularize the loss function in order to avoid overfitting. Typical
choices for the regularization term for NN training are the `2- or `1-norm [GBC16,
Chapter 7]. Motivated by the case of linear models, cf. Section 2.2.1, the `1-norm
is used to ensure sparsity for NNs as well. Although there is no proof for this (to
the best of the author’s knowledge), it is often used in practice and normally yields
satisfying results. The regularization with the `1-norm is considered in the last part
of this thesis, cf. Chapter 5.

Recurrent neural networks (RNN)

In contrast to the FNN considered so far, in recurrent neural networks (RNN), feed-
back of information within the network is allowed. Typically, RNNs are used to
process sequential data, e.g., time series data of a (discrete) dynamical system. Due
to the recurrent structure, RNNs are able to save information from previous time
steps and incorporate the long time behavior of the time series data into the predic-
tion for the next time steps. The basic structure of an RNN is shown in Figure 2.5a.
To keep the notation a little bit simpler and give an intuitive interpretation, we as-
sume that the aim is to approximate the time-T-map Φ of a dynamical system with
control input and use the corresponding notation. Basically the RNN consists of an
FNN, denoted by N that gets as an input the current (observed) state zk and the
current control input uk. (In an uncontrolled setting, the input would be omitted.)
The (observed) state for the next time step zk+1 is then approximated by N and
afterwards fed back, i.e., the FNN is iteratively applied multiple times. In addition,
there is usually a hidden state hk that is also fed back to give the ability to save
information on the dynamic behavior of the system in addition to the output state.
Indeed, it is not necessary to feed back the output state zk, but it is commonly
done in time series prediction. The architecture of the described RNN may become
clearer in the unfolded representation of the RNN, cf. Figure 2.5b. Every time step
is predicted by the same FNN N but uses additional information from the previous
time steps.

When the RNN is used as a model to predict future time steps, it gets only the
current time step y0 (or the observed state z0) as an input and the predicted future
states yi, i ≥ 1, are fed back after each time step. During the training, the time

29

Chapter 2. Theoretical Background

(a) (b)

Figure 2.5: RNN for time series prediction in (a) and its unfolded version in (b).
The grey box represents an FNN denoted by N . The green circles represent the
output of the RNN, and the orange ones are the inputs.

series data includes the states of these future time steps. Hence, it is possible to just
feed the hidden state back and use the true state at time t as input. This process is
called teacher forcing.

Backpropagation through time Similar to FNNs, the training is done by em-
ploying gradient-based methods. The required gradient of the loss is usually com-
puted via backpropagation through time (BPTT), which means that the backprop-
agation algorithm (or the reverse mode of AD) is just applied to the unfolded
RNN.

Especially when the time series to be predicted are comparatively long, i.e., the RNN
cell is run many times in a row, RNNs are known to suffer from the vanishing and
exploding gradient phenomenon. This is due to the fact that the gradients become
smaller or larger cell by cell (depending on whether they are smaller or larger than 1).
To overcome this issue, specialized architectures were invented, which have proven
to work well for time series prediction, for instance, long short-term memory neural
networks and echo state networks.

Long short-term memory neural networks (LSTM) A special form of an
RNN is a so-called long short-term memory (LSTM) neural network. These are
specifically tailored to (long) sequential data, e.g., time series from dynamical sys-
tems, and are designed to avoid vanishing and exploding gradients [HS97].

The architecture of a single LSTM-cell is presented in Figure 2.6. A cell consists
of three parts, namely, the forget gate, the input gate and the output gate. The
equation of the forget gate is given by

fk = σ

(
Wf

(
zk
uk

)
+ w0

f

)
,

where σ is the sigmoid function applied elementwise. The equation of the input gate

30

2.2. Data-Based Surrogate Modeling

Figure 2.6: Architecture of a single LSTM-cell (for time series prediction).

is given by

ik = σ

(
Wi1

(
zk
uk

)
+ w0

i1

)
� tanh

(
Wi2

(
zk
uk

)
+ w0

i2

)
,

where � denotes the Hadamard product for matrices and vectors, i.e., the elemen-
twise product. Combining these two parts and the internal hidden state hk of the
previous cell (referring to the previous time step for time series prediction), hk+1 is
computed by

hk+1 = fk � hk + ik.

Finally, the output of the LSTM cell is computed as

zk+1 = σ

(
Wo

(
zk
uk

)
+ w0

o

)
� tanh(hk+1).

The matrices Wf ,Wi1 ,Wi2 ,Wo ∈ Rnh×nz+nu and the vectors w0
f , w

0
i1
, w0

i2
, w0

o ∈ Rnh

are the parameters of the network and are optimized during the training, where nh
is the number of hidden neurons and nu and nz are the dimension of the control
input and the system state, respectively. The initial values h0 and z0 are usually
chosen to be zero in a standard LSTM. If a time series should be predicted, the
initial state y0 and its observed state z0 are usually known and can also be used as
the initial value in the LSTM.

In [HS97], a specialized form of BPTT was proposed for the training of LSTMs.
The idea is to back-propagate the error not completely through the network, i.e.,
the gradients are only computed partially. However, nowadays, it is common to train
LSTMs with the standard BPTT algorithm. Moreover, there are multiple adaptions
to the original architecture, see, for instance, [Gre+17].

Concerning time series prediction for chaotic systems, there are various publica-
tions. For instance, the LSTM approach was successfully applied to forecast chaotic
systems in a reduced order space in [Vla+18].

31

Chapter 2. Theoretical Background

Figure 2.7: Scheme of an ESN used for time series prediction.

Echo state networks (ESN) Echo state networks (ESN) are another specializa-
tion of RNNs which are frequently used for time series prediction. They belong to
the field of reservoir computing. The main idea for ESNs is to simplify and speed
up the training process by limiting the training of the network to a few parame-
ters. More precisely, only the parameters in the linear output layer can be trained,
resulting in a system of linear equations that has to be solved. For an overview of
ESNs and reservoir computing in general, we refer the reader to [LJ09] and for more
details to [Jae02; Jae10; JH04].

Essentially, an ESN is an RNN with a linear output layer, as shown in Figure 2.7.
The basic idea is to map the incoming, current state into a higher dimensional
space via a sparsely connected, randomly initialized NN, called the reservoir. The
parameters in the reservoir are not trained, i.e., they are fixed. The output of
the reservoir, the so-called reservoir state rk, can be seen as a hidden state that
memorizes the long-term behavior of the data and is fed back into the reservoir in
each iteration. Formally, the reservoir state rk+1 is given by

rk+1 = σ(W inuk +W resrk +W fbzk),

where σ is a nonlinear continuous activation function, for instance, tanh. The matri-
ces W in, W res and W fb are randomly generated (sparse) matrices and are fixed, i.e.,
their entries cannot be optimized during the training. Depending on the applica-
tion, W in andW fb may be omitted. For instance, if a dynamical system with control
input is considered, the control is usually taken as additional time-dependent input.
Otherwise, for time series prediction (without control input), the term W in is omit-
ted. Based on the current reservoir state, the output state, i.e., the (observed) state
of the system in the next time step predicted by the ESN, is computed via

zk+1 = W outrk+1,

where W out is the trainable output matrix. Note that the only trainable parameters
are the ones of this linear output layer. As a surrogate model for time series pre-
diction, the ESN approximates the observed state of the next time step zk+1, which
is usually provided to the reservoir via a feedback loop, in addition to the reservoir
state rk+1, to predict the next time step.

32

2.2. Data-Based Surrogate Modeling

To train an ESN, a long time series of data (z0, . . . , zN) (or ((z0, u0), . . . , (zN , uN))
in the controlled case) is created which is mapped via the reservoir to a time series
of reservoir states (r1, . . . , rN+1). Note that the (observed) state zk is used to cre-
ate the reservoir state for each time step, i.e., we utilize teacher forcing. For the
training, only the system of linear equations Z = W outR with Z = (z1, . . . , zN) and
R = (r1, . . . , rN) has to be solved, which is much faster than applying optimization
algorithms such as gradient descent. Since the initial reservoir state highly influ-
ences the subsequent states, typically, the first time steps are left out for the training.
Note that the described training of an ESN is different from the usual RNN training
since the whole time series is used at once and not multiple short time series of fixed
length are considered as training data. This way, the reservoir state evolves over
the whole time series of training data. Thus, an ESN is able to capture the long
time behavior of a system without explicitly using delay coordinates. Still, it does
so indirectly through the feedback within the reservoir. Moreover, the prediction
by the ESN usually starts directly with the last state of the training data such that
the reservoir state already contains (implicitly) the dynamics of the previous time
steps.

There are plenty of publications studying the ability of ESNs to predict chaotic sys-
tems, see, for instance, [CHS20; Jae10; LHO18; LHW12; MW17; Pat+17; Pat+18].
Furthermore, some works discuss the use of ESNs in an MPC context [Arm+19;
Jor+18].

2.2.3 Data-Based Approximation of the Koopman Operator

The so-called Koopman operator is often considered in dynamical system theory
and was first introduced in the work by Koopman [Koo31]. The basic idea is to
study the evolution of measurements of the dynamical system state instead of the
system state itself, leading to a linear operator whose properties are related to the
dynamical system. Finite-dimensional, data-based approximations of the Koopman
operator are of special interest since these lead to linear approximations of poten-
tially nonlinear dynamics. For a comprehensive overview, including an introduction
to the topic, practical applications, and current research questions, the reader is
referred to [Bru+21].

Since the Koopman operator is defined for autonomous dynamical systems, we con-
sider those first, while systems with control input are discussed later in this section.
In accordance with Section 2.1, we consider the system given by the ODE ẏ = g(y(t))
and the corresponding time-T-map Φ : Y → Y for the discrete time system. Now,
we define the Koopman operator for Φ by

K : L2(Y)→ L2(Y), Kf = f ◦ Φ,

i.e., for a state yk ∈ Y and a measurement f ∈ L2(Y) it holds

Kf(yk) = f(Φ(yk)) = f(yk+1).

Here, Lp(Y), p ∈ [1,∞), denotes the Banach space of all (equivalence classes of)
measurable functions f : Y → R with

´
Y
|f(y)|p dy < ∞. Note that L2(Y) is even

33

Chapter 2. Theoretical Background

a Hilbert space. The Koopman operator represents the evaluation of the dynamical
system in time in the measurement space. In the literature, the measurements f are
also often referred to as observables in accordance with the observable hobs usually
given by the practical application, cf. Section 2.1.1, which also acts on the full state
y ∈ Y . Nevertheless, we distinguish between those two types of functions since the
observable hobs is firmly specified by the application (and maps to Rnz , nz ∈ N), and
the measurements f considered for the Koopman operator can be arbitrary functions
in L2(Y) (mapping to R). To compute a surrogate model for the dynamical system,
the idea is to derive a finite-dimensional approximation of the Koopman operator,
which is still linear and maps the current state lifted into the space of measurements
to an approximation of the lifted state for the next time step.

Extended dynamic mode decomposition One common technique to build
such an approximation is extended dynamic mode decomposition (eDMD) [KKS16;
WKR15]. The basic idea of eDMD is to use a dictionary of functions that spans a
subspace V ⊆ L2(Y) of the space of measurements and to approximate the Koopman
operator within this subspace. Therefore, data of the dynamical system is needed,
i.e., pairs (yi, yi+1) with yi+1 = Φ(yi) have to be collected. With the help of the
basis functions, the data is mapped into the finite-dimensional subspace, in which
a system of linear equations, whose solution is the approximation of the Koopman
operator, can be solved. eDMD is an extension of the dynamic mode decomposition
(DMD) [Sch10; Tu+14] (where only linear measurements are considered).

Formally, we assume that multiple data points are given and arrange these in two
matrices,

D =
[
y1 y2 · · · yN

]
and D̂ =

[
ŷ1 ŷ2 · · · ŷN

]
,

where ŷi = Φ(yi). The data can be collected as a consecutive time series, i.e.,
ŷi = yi+1 = Φ(yi), or D can be randomly sampled in the state space Y .

As we want to consider the approximation in the measurement space, we need a
basis that builds the subspace V. To this end, we assume that we have a dictionary
of linearly independent measurement functions {ψ1, . . . , ψM} building the basis of
V. Now, we transfer the collected data into the (usually higher dimensional) mea-
surement (sub)space and get

ΨD =
[
Ψ(y1) Ψ(y2) · · · Ψ(yN)

]
∈ RM×N and

ΨD̂ =
[
Ψ(ŷ1) Ψ(ŷ2) · · · Ψ(ŷN)

]
∈ RM×N ,

where Ψ : Rny → RM collects all the measurements ψi, i ∈ {1, . . . ,M}, in one
vector-valued function.

The idea is now to compute an approximate solution K ∈ RM×M of

ΨD̂ ≈ KΨD.

The least-squares solution of this system can be computed by

K> = ΨD̂Ψ+
D =

(
ΨD̂Ψ>D

)(
ΨDΨ>D

)−1
,

34

2.2. Data-Based Surrogate Modeling

where + denotes the Moore–Penrose inverse. Hence, the matrix K gives us now an
approximation for the discrete time update of the lifted state Ψ(y). By adding the
identity to the basis functions, which is possible if the system states are restricted to a
compact set Y , we thus get a linear approximation of the real system dynamics.

As discussed in Section 2.1.2, in practical applications, we can usually just ob-
serve the system state by an observable hobs. In this case, the presented calcula-
tions can be applied to the observed state z = hobs(y) instead of the full state y.
Nevertheless, the observable hobs obviously changes the state of measurements to
{ψ1 ◦ hobs, . . . , ψM ◦ hobs}. Depending on the observable hobs, this might inhibit the
ability to discover the whole dynamics. As already shortly discussed in Section 2.1.2,
using delay coordinates as measurements might help to overcome this issue. In the
context of the Koopman operator, this is also discussed in [Bru+17; KM18a].

In [KM18b], it was shown that the approximation of the Koopman operator com-
puted by eDMD converges to the projection of the Koopman operator to the sub-
space V in the infinite data limit. The prediction error in the finite data case was
considered in [LT20] and [Nüs+21] for DMD and eDMD, respectively.

Generator Indeed, the Koopman operator depends on the choice of the time step
∆t for the time discretization of the time-T-map Φ. Defining the Koopman operator
for arbitrary time steps ∆t leads to a family of operators that build a C0-semigroup.
The generator of this semi-group is given by

Lf = lim
t→0

f ◦ Φt − f
t

.

An approximation of the Koopman generator can also be derived from data and may
be used to build a Koopman-based surrogate model, see, for instance, [Klu+20].

Koopman operator with control input There are various approaches to use
surrogate models based on the Koopman operator within a control setting. In
contrast to the NN architectures described before, the Koopman operator frame-
work does not allow adding an additional input directly. The first intuitive idea
to overcome this issue is to consider the dynamical system for the augmented state
ŷ = (y, u) instead (similar to Equation (2.2)). This way DMD and eDMD were
extended to DMDc (for linear systems) [PBK16] and eDMDc [KM18a]. Since these
methods derive a linear surrogate model, methods from linear MPC can be utilized,
which is usually very efficient, cf. [KM18a]. The main question in this framework is
how to choose the subspace of measurements ψi. One can choose functions acting
solely on the state, solely on the control input, or on the product space, see [PBK18]
for a discussion. Moreover, in [PBK18], an alternative variant of the Koopman op-
erator was introduced that is called Koopman with inputs and control (KIC). It
takes into account that there is (usually) no evolution in time of the control that
has to (or can) be predicted by the Koopman operator and thus allows for differing
input and output spaces.

In a nonlinear controlled system, the system state usually depends nonlinearly on
the control input. Therefore, for the approximation of the Koopman operator, it

35

Chapter 2. Theoretical Background

is necessary to include measurements that act on the system state and the control.
(Although this is not proven, this seems reasonable, cf. [Bru+21]). This leads to a
much larger number of measurement functions compared to the autonomous case
(without control) and, thus, typically, to a larger amount of data that is required to
cover the dynamics in the lifted space, cf. [Nüs+21]. To overcome these larger data
requirements, another approach was followed by [Klu+20; Nüs+21; PK19; POR20].
There, the idea is to consider a finite subset {u1, . . . , um} ⊆ U of control values and
define for each control an autonomous system for which the Koopman operator is
defined. Via interpolation between the single autonomous systems, a control affine
surrogate model is created. If the underlying system is control affine, as well, error
bounds can be derived since the interpolation does not cause an additional error,
cf. [Nüs+21; POR20]. A similar approach is followed in Chapter 4 for arbitrary
surrogate models.

2.3 Multiobjective Optimization

In this thesis, we use multiobjective optimization to get a better insight into regu-
larization problems, cf. Chapter 5. Hence, this section aims at giving a short in-
troduction to this topic. For a more detailed insight into the area of multiobjective
optimization, see, for instance, [Ehr05; Mie98].

In contrast to ordinary single-objective optimization, the idea in multiobjective op-
timization is to optimize a vector-valued function, i.e., we consider the multiobjective
optimization problem (MOP)

min
x∈Rn

f(x), (MOP)

where f = (f1, . . . , fk) : Rn → Rk with n, k ∈ N and k ≥ 2. We call fi, for
i ∈ {1, . . . , k}, the objective functions or objectives, Rn the variable space and Rk

the image space. Here, we consider an unconstrained MOP. However, in principle, it
is possible to add constraints and restrict the optimization problem to a feasible set.
MOPs occur naturally in many practical applications in industry or economy, where
different (usually competing) objectives have to be taken into account. For example,
the design of electric control units (ECUs) in the field of autonomous, electric driving
must take into account driving safety and comfort as well as the cost and electric
range of the vehicle. Since the objectives are conflicting, the solution to such a task
is an (optimal) compromise between the different requirements. Obviously, there is
usually more than one possible compromise. Hence, the solution to an MOP is, in
contrast to a single-objective optimization problem, typically a set and not a single
point. The aim of multiobjective optimization is to compute this set, the so-called
Pareto set named after Vilfredo Pareto [Par06], or at least parts or single points of
it. For practical applications, it is usually necessary to choose a concrete solution
that should be realized. This process is referred to as decision making, cf. [Mie98].
For instance, the decision can be made by an expert, the so-called decision maker,
who is able to oversee the solutions in the Pareto set and decide which compromise
fits best. Decision making can be seen as a whole area itself and is not covered in
this thesis.

36

2.3. Multiobjective Optimization

We start by introducing the mathematical concept of Pareto optimality and deriving
necessary optimality conditions in Section 2.3.1. There, we consider also the case
where f is nonsmooth, i.e., f is merely locally Lipschitz continuous. Finally, we give
an overview of some solution methods in Section 2.3.2.

2.3.1 Pareto Optimality and Criticality

Since there exists no total order on Rk for k ≥ 2, from a mathematical point of view,
it is not directly clear what we mean by min f(x) for f : Rn → Rk. Intuitively, from
a practical perspective, optimal solutions of a problem with conflicting objectives
are those where the value of one objective can only be improved when at least one
other objective increases at the same time. To formalize this concept, we introduce
the following (partial) order on Rk.

Definition 2.3.1. For v, w ∈ Rk, we define

v ≤ w :⇔ vi ≤ wi ∀i ∈ {1, . . . , k}

and analogously v < w.

It is easy to verify that the order defined in Definition 2.3.1 is a (strict) partial
order. Based on this definition, we can now define what we mean by a solution of
(MOP).

Definition 2.3.2. Consider the minimization problem (MOP).

(a) We say, a point x ∈ Rn dominates a point y ∈ Rn if f(x) ≤ f(y) and
f(x) 6= f(y), i.e., if fi(x) ≤ fi(y) ∀i ∈ {1, . . . , k} and fj(x) < fj(y) for
at least one j ∈ {1, . . . , k}.

(b) A point x∗ ∈ Rn is called Pareto optimal if there is no x ∈ Rn dominating x∗.
The set P containing all Pareto optimal points is called the Pareto set and its
image f(P) is referred to as the Pareto front.

(c) A point x∗ ∈ Rn is called locally Pareto optimal if there exists an open set
U ⊆ Rn with x∗ ∈ U such that there is no x ∈ U dominating x∗.

Remark 2.3.3. In the literature Pareto optimal points are sometimes also called
Edgeworth-Pareto optimal or (Pareto) efficient points. In accordance with Defini-
tion 2.3.2(a) another common terminology is nondominated points. See [Ehr05,
Table 2.4] for a more detailed overview.

Furthermore, it is possible to define a slightly weaker form of Pareto optimality
which is also often used in the literature and helps us to formulate some of the
upcoming results.

Definition 2.3.4. Consider the minimization problem (MOP). A point x∗ ∈ Rn is
called weakly Pareto optimal if there is no x ∈ Rn with f(x) < f(x∗), i.e., x∗ is

37

Chapter 2. Theoretical Background

weakly Pareto optimal if there is no x ∈ Rn with

fi(x) < fi(x
∗) ∀i ∈ {1, . . . , k},

i.e., there is no point x ∈ Rn strictly dominating x∗ ∈ Rn. Analogously, a point
x∗ ∈ Rn is called locally weakly Pareto optimal if there exists an open set U ⊆ Rn

with x∗ ∈ U such that there is no x ∈ U with f(x) < f(x∗).

The definitions are reasonable in the sense that (weakly) Pareto optimality implies
locally (weakly) Pareto optimality and every (locally) Pareto optimal point is also
(locally) weakly Pareto optimal, i.e.,

x is Pareto opt.⇒
{
x is locally Pareto opt.
x is weakly Pareto opt.

}
⇒ x is locally weakly Pareto opt.

Furthermore, concerning the optimal points of the single objectives fi, i ∈ {1, . . . , k},
we can state the following remark.

Remark 2.3.5. Consider the minimization problem (MOP). If x∗ ∈ Rn is a (local)
minimum of fj for some j ∈ {1, . . . , k}, then x∗ is (locally) weakly Pareto optimal
for (MOP). Furthermore, if x∗ is a strict (local) minimum, then it is even (locally)
Pareto optimal for (MOP).

To visualize the concept of Pareto optimality and the different introduced terms, we
consider the following example.

Example 2.3.6. We consider (MOP) with different objectives.

(a) We start with a relatively simple example, where the objectives are given by
two parabolas, i.e., f : R→ R2 is given by

f(x) =

(
(x− 1)2

(x+ 1)2

)
. (2.9)

Intuitively, the Pareto optimal solutions are the points on the line between
the two (global) minima of the objectives as shown in Figure 2.8. Since the
minima are strict, −1 and 1 belong to the Pareto set as well, i.e., the Pareto
set is given by [−1, 1].

(b) A very similar result is obtained when we consider f : R2 → R3 given by

f(x) =

(x1 + 1)2 + (x2 + 1)2

x2
1 + (x2 − 1)2

(x1 − 1)2 + (x2 + 1)2

 . (2.10)

The graphs of these functions are paraboloids and are shown in Figure 2.9, as
well as the resulting Pareto set which is the triangle with the corners (−1,−1)>,
(0, 1)> and (1,−1)>.

38

2.3. Multiobjective Optimization

-2 -1 0 1 2

0

0.5

1

1.5

(a)

0 2 4 6 8 10

0

2

4

6

8

(b)

Figure 2.8: Results of (MOP) with f given by (2.9), i.e., Example 2.3.6(a).
(a) Graphs of f1 and f2 and the Pareto set. (b) Image of f as well as the Pareto
front. Furthermore, the global minima of the single objectives are marked by stars
in both plots.

(c) To visualize the different concepts of Pareto optimality, we consider the fol-
lowing more complex example. The objective f : R→ R2 is given by

f(x) =

(
(x− 3

2
)2

8
9
x8 + 4

3
x6 − 29

6
x4 + 19

9
x2 + 1

2

)
. (2.11)

The results are shown in Figure 2.10. Due to the local maxima and the local
minimum of f2, we observe that the intervals [−1,−0.5] and [0, 0.5] are locally
Pareto optimal. Furthermore, the global minima of f2 are not strict, and hence
−1 is only weakly Pareto optimal, whereas 1 is Pareto optimal. This means,
in particular, that −1 does not belong to the Pareto set, i.e., the Pareto set is
given by the interval [1, 1.5].

If we assume that all objective functions are at least differentiable, we can derive a
necessary condition for Pareto optimality similar to the single-objective case. For the
single-objective case, the optimality condition was derived independently by Kuhn
and Tucker [KT51], and Karush [Kar39] and are thus usually referred to as Karush-
Kuhn-Tucker (KKT) condition. The condition for the multiobjective case was also
published by Kuhn and Tucker in [KT51]. In accordance with the single-objective
case, it is often referred to as the KKT condition as well.

Proposition 2.3.7. Let f : Rn → Rk be differentiable and assume that x∗ ∈ Rn is
locally weakly Pareto optimal for (MOP). Then, there exists α∗ ∈ [0, 1]k with

k∑
i=1

α∗i∇fi(x∗) = 0 and
k∑
i=1

α∗i = 1. (KKT)

Since Proposition 2.3.7 holds for all locally weakly Pareto optimal points, it is, in
particular, a necessary condition for Pareto optimality. If we set k = 1 in Proposi-
tion 2.3.7, we obtain ∇f1(x∗) = ∇f(x∗) = 0 (with α∗1 = 1) which is the well-known

39

Chapter 2. Theoretical Background

(a) (b)

Figure 2.9: Results of Example 2.3.6(b). (a) Graphs of f1, f2 and f3 and the Pareto
set. (b) Pareto set in decision space. Furthermore, the global minima of the single
objectives are marked by stars in both plots.

necessary condition for optimality in single-objective optimization. In analogy to
the single-objective case, we make the following definition.

Definition 2.3.8. A point x ∈ Rn is called Pareto critical if it satisfies (KKT).
The corresponding αi ∈ [0, 1], i ∈ {1, . . . , k} are called KKT multipliers. The set of
all Pareto critical points is called the Pareto critical set and is denoted by Pc.

Furthermore, sufficient conditions can be derived if the objectives are twice differ-
entiable. However, these conditions are not needed within this thesis, and we refer
instead to [Mie98] for a discussion. Nevertheless, in the convex case, the KKT
condition is also sufficient, summarized in the following proposition.

Proposition 2.3.9. Let f : Rn → Rk be differentiable.

(a) Assume fi is convex for all i ∈ {1, . . . , k}. Then, x∗ ∈ Rn is weakly Pareto
optimal if and only if there exists α∗ ∈ [0, 1]k such that (KKT) holds.

(b) Assume fi is strictly convex for all i ∈ {1, . . . , k}. Then, x∗ ∈ Rn is Pareto
optimal if and only if there exists α∗ ∈ [0, 1]k such that (KKT) holds.

In Chapter 5, we consider the `1-norm, i.e., a nonsmooth function, as an objective.
Thus, we also give a brief overview of how to handle objectives that are merely
locally Lipschitz continuous (and not differentiable) in the context of multiobjective
optimization. For completeness, we give the following definition.

Definition 2.3.10. Consider f : Rn → Rk. We say that f is Lipschitz continuous
if and only if there is some L > 0 such that for all y1, y2 ∈ Rn, it holds

|||f(y1)− f(y2)||| ≤ L ‖y1 − y2‖ , (2.12)

where ‖·‖ and |||·||| denote arbitrary norms of the Rn and Rk, respectively. We say

40

2.3. Multiobjective Optimization

-1 0 1 2

0

1

2

3

4

5

(a)

0 2 4 6 8

0

5

10

15

(b)

Figure 2.10: Results of (MOP) with f given by (2.11), i.e., Example 2.3.6(c).
(a) Graphs of f1 and f2 and the (local) Pareto set. (b) Image of f as well as
the (local) Pareto front. Furthermore, the global minima of the single objectives are
marked by stars and the local minimum of f2 by a dot in both plots.

that f is locally Lipschitz continuous if and only if for all x ∈ Rn there is some L > 0
and ε > 0 such that (2.12) holds for all y1, y2 ∈ Bε(x) = {y ∈ Rn : ‖x− y‖ < ε}.

We start by introducing a generalization of the concept of gradients commonly used
in nonsmooth optimization, the so-called subdifferential. For a detailed introduc-
tion to nonsmooth functions and their optimization, we refer to [BKM14; Cla90].
Multiobjective optimization for nonsmooth functions is considered, for instance, in
[MEK14; Mie98]. Note that if we consider a locally Lipschitz continuous function f ,
the set of points, where f is not differentiable, is a null set (Rademacher’s Theorem,
[EG15, Theorem 3.2]). This allows for the following definition of the subdifferen-
tial.

Definition 2.3.11. Let f : Rn → R be locally Lipschitz continuous, and let Ω ⊆ Rn

be the set of points where f is not differentiable. Then, the (Clarke) subdifferential
of f in x is given by

∂f(x) := Conv({g ∈ Rn | ∃(xj)j ∈ Rn \ Ω with xj
j→∞−−−→ x and ∇f(xj)

j→∞−−−→ g}),

where Conv denotes the convex hull. An element g ∈ ∂f(x) is called a subgradient.

Note that ∂f(x) is nonempty, convex and compact [BKM14, Theorem 3.3]. If f is
continuously differentiable, this definition coincides with the definition of the gradi-
ent in the way that the subdifferential is the set containing the gradient, i.e., if f is
continuously differentiable in x, it holds ∂f(x) = {∇f(x)}. In the following intro-
ductory example, we calculate the subdifferential of the `1-norm, which is needed
later in Chapter 5.

41

Chapter 2. Theoretical Background

Example 2.3.12. The `1-norm, given by

f`1(x) = ‖x‖1 =
n∑
i=1

|xi|, for x ∈ Rn,

is non-differentiable in all x with xj = 0 for some j ∈ {1, . . . , n}. It is easy to verify
that the subdifferential is given by

∂f`1(x) = Conv ({g | gj = sgn(xj) if xj 6= 0, and gj ∈ {−1, 1} if xj = 0}) ,

i.e., the subgradients of f`1 are of the following form:

g =

g1

...
gn

 ∈ ∂f`1(x)⇔
{
gj = sgn(xj) if xj 6= 0,

gj ∈ [−1, 1] if xj = 0.

For instance, consider the point x̂ = (2, 0,−3, 0)> ∈ R4. Then, the subdifferential is
spanned by four subgradients:

∂f`1(x̂) = Conv





1

1

−1

−1

 ,


1

−1

−1

−1

 ,


1

1

−1

1

 ,


1

−1

−1

1



 .

Analogous to the smooth case, a necessary optimality condition for MOPs containing
nonsmooth objective functions can be obtained based on the subdifferentials of the
single objectives, see, for instance, [Mie98], or [MEK14].

Proposition 2.3.13 (Nonsmooth KKT condition). Assume that f : Rn → Rk is
locally Lipschitz continuous and x∗ is locally weakly Pareto optimal. Then

0 ∈ Conv

(
k⋃
i=1

∂fi(x
∗)

)
⊆ Rn, (2.13)

i.e., it exists α∗ ∈ [0, 1]k with
∑k

i=1 α
∗
i = 1 and gi ∈ ∂fi(x∗) for all i ∈ {1, . . . , k}

such that

0 =
k∑
i=1

α∗i gi. (2.14)

Similar to the smooth case, we make the following definition.

Definition 2.3.14. We call x ∈ Rn Pareto critical if it satisfies the KKT condition
(2.13) and we call the set of all those points the Pareto critical set Pc.

Note that the vector α ∈ [0, 1]k now depends on the concrete choice of subgradients,
i.e., the individual elements chosen from ∂fi(x). In accordance with the smooth
case, the KKT condition is sufficient in the case of convex functions, cf. [MEK14,
Theorem 14].

42

2.3. Multiobjective Optimization

Proposition 2.3.15. Let f : Rn → Rk be locally Lipschitz continuous.

(a) Assume fi is convex for all i ∈ {1, . . . , k}. Then, x∗ ∈ Rn is weakly Pareto
optimal if and only if Equation (2.13) holds.

(b) Assume fi is strictly convex for all i ∈ {1, . . . , k}. Then, x∗ ∈ Rn is Pareto
optimal if and only if Equation (2.13) holds.

We conclude this section with an example in which the Pareto critical set for (MOP)
with the `1-norm as one of two objectives is computed. Since the `1-norm is often
used to ensure sparsity of the solutions, cf. Section 2.2.1, this means that we search
for a compromise between an optimal solution of the first objective f1 and sparse
solutions. For more details, see also Chapter 5, where problems of this type are
considered.

Example 2.3.16. We consider Problem (MOP) where f : R2 → R2 is given by

f(x) =

(
(x1 − 1)2 + (x2 + 2)2

‖x‖1

)
. (2.15)

According to Proposition 2.3.13 a point x ∈ R2 is Pareto critical if α ∈ [0, 1] exists
with

0 ∈ α
{(

2(x1 − 1)

2(x2 + 2)

)}
+ (1− α)∂f2(x). (2.16)

By inserting the concrete subdifferential of the `1-norm, cf. Example 2.3.12, it is
easy to see that this condition is not fulfilled if x1 < 0 or x2 > 0 since

2α(x1 − 1)− (1− α) < 0 ∀x1 < 0 and
2α(x2 + 2) + (1− α) > 0 ∀x2 > 0.

Furthermore, if we consider the case where x1 > 0 and x2 < 0, the condition reduces
to

α

(
2(x1 − 1)

2(x2 + 2)

)
+ (1− α)

(
1

−1

)
= 0.

This is only true if x2 = −x1 − 1, (0 <) x1 ≤ 1 and −2 ≤ x2 < −1 (with
α = 1

3−2x1
= 1

2x2+5
∈ (1

3
, 1]). Hence, the line between the points (0,−1)> and (1,−2)>

is Pareto critical (including (1,−2)> and excluding (0,−1)>). Now, only the coor-
dinate axes remain, i.e., x1 = 0 or x2 = 0. To be more precise, we have to analyze
two cases: x2 = 0 and x1 ≥ 0 and the case where x1 = 0 and x2 < 0. First assume
that x2 = 0, then (2.16) is only fulfilled if

4α + (1− α)ξ = 0

with ξ ∈ [−1, 1] holds. It is easy to see that this is only true if ξ ∈ [−1, 0] with
α ∈ [0, 1

5
]. From α = 0 it follows directly that x1 = 0, i.e., the point (0, 0)> is Pareto

critical. (Since (0, 0)> is the global minimum of the `1-norm this was already clear.)

43

Chapter 2. Theoretical Background

For x1 < 0, we already now that α = 1
3−2x1

but this is equivalent to x1 = 3α−1
2α

, i.e.,
for α ∈ (0, 1

5
] it follows x1 < 0 which is a contradiction. Finally, we consider the

case where x1 = 0 and x2 < 0. Here, it has to hold

−2α + (1− α)ξ = 0 and
4α(x2 + 2) + (1− α) = 0

with ξ ∈ [−1, 1]. From the second equation it follows again that α = 1
2x2+5

(and
x2 ≥ −2 since α ∈ [0, 1]). Inserting this into the first equation leads to ξ = 1

x2+2
.

As ξ ∈ [−1, 1], it has to hold x2 ≥ −1.

To sum up, the Pareto critical set is given by the line between (0, 0)> and (0,−1)>

and the line between (0,−1)> and (1,−2)>, including the points (0, 0)>, (0,−1)>

and (1,−2)>, as shown in Figure 2.11. Since both objectives are strictly convex, the
Pareto critical set coincides with the Pareto set, cf. Proposition 2.3.15.

(a)

0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

(b) (c)

Figure 2.11: Results of (MOP) with f given by (2.15), i.e., Example 2.3.16.
(a) Graphs of f1 and f2 and the Pareto (critical) set. (b) Pareto (critical) set of
(MOP) in decision space. (c) Image of f as well as the Pareto front. Furthermore,
the (global) minima of the single objectives are marked by stars in all plots.

44

2.3. Multiobjective Optimization

Note that in the previous example, there is a kink in the Pareto set where it hits
the x1-axis, i.e., where it hits the nonsmoothness. This piecewise smooth structure
usually occurs when considering biobjective MOPs where one objective is the `1-
norm. This structure is further analyzed and exploited in Chapter 5.

2.3.2 Solution Methods

To solve (MOP), different solution methods exist. A very intuitive approach is to
transform the MOP into a single-objective optimization problem such that tradi-
tional optimization methods can be applied. Two examples of such methods are
the weighted-sum method and the ε-constraint method presented in the subsequent
sections. Besides the transformation to a single-objective problem, there also ex-
ist methods that solve (MOP) directly, for instance, multiobjective descent. The
methods named so far all have in common that they compute only one Pareto op-
timal point at a time. In contrast to that, continuation methods and evolutionary
algorithms aim at computing the entire Pareto critical or Pareto optimal set, re-
spectively. In addition to introducing the methods, we also discuss whether they
are limited to smooth problems or can be applied to nonsmooth functions.

Weighted sum

The weighted sum method is probably the simplest approach to transform an MOP
into a single-objective optimization problem. As the name suggests, the idea is to
weight the single objectives fi and just sum them up, i.e., instead of (MOP), one
solves

min
x∈Rn

k∑
i=1

αifi(x) (2.17)

with α ∈ [0, 1]k and
∑k

i=1 αi = 1. Problem (2.17) can now be solved with standard
optimization methods for single-objective problems, e.g., with the steepest descent
method or in case of non-differentiable objectives with bundle methods. By varying
the parameter α different solutions can be obtained which can be proven to be
at least weakly Pareto optimal for (MOP) (for all α ∈ [0, 1]k with

∑k
i=1 αi = 1).

Unfortunately, not all Pareto optimal solutions can be obtained by the weighted sum
method. This is only possible if all objectives fi are convex, since otherwise, the
Pareto front may be nonconvex. Formally, we say that the Pareto front is convex if
the set

f(P) + {y ∈ Rk : y ≥ 0}

is convex. Otherwise, we say that the Pareto front is nonconvex. (For a more formal
discussion of the structure of the Pareto front, the reader is referred to [Ehr05].) As
illustrated in Figure 2.12, only the convex parts of the Pareto front can be computed
by the weighted sum method. Furthermore, note that if fi is differentiable for all
i ∈ {1, . . . , k} and x∗ is a solution of (2.17) with weights α ∈ [0, 1]k, then x∗ is
Pareto critical with KKT multipliers α.

45

Chapter 2. Theoretical Background

(a) (b) (c)

Figure 2.12: Visualization of possible solutions of the weighted sum method in the
objective space: (a) Pareto set (blue). (b) Solutions computable with the weighted
sum method (green). (c) Optimal points not computable with the weighted sum
method (red).

ε-Constraint

Another approach is followed by the ε-constraint method. Here, the idea is to
minimize only one objective fj, for a j ∈ {1, . . . , k}, and introduce constraints that
ensure that the other objectives stay smaller than a chosen threshold. More formally,
instead of (MOP), one solves

min
x∈Rn

fj(x),

s.t. fi(x) ≤ εi ∀i ∈ {1, . . . , k} \ {j}
(2.18)

with εi ∈ R for all i ∈ {1, . . . , k} \ {j}. Similar to the weighted sum method,
solutions of (2.18) are at least weakly Pareto optimal and by varying the parameter
ε different solutions can be obtained. Furthermore, x ∈ Rn is Pareto optimal if
and only if x is a solution of (2.18) with εi = fi(x), i ∈ {1, . . . , k} \ {j} for all
j ∈ {1, . . . , k}. Thus, to ensure Pareto optimality, (2.18) has to be solved k-times.
In return, however, any Pareto optimal point can be computed by this approach,
and convexity is not necessary, in contrast to the weighted sum method.

Multiobjective steepest descent

In contrast to scalarization methods where the MOP is transformed such that single-
objective optimization techniques can be used, other approaches aim at adapting
algorithms known from single-objective optimization to multiobjective optimization.
A very prominent algorithm in this class is the multiobjective steepest descent method
[FS00], which is briefly explained here. As the name suggests, it is a generalization
of the steepest descent method for the single-objective case, and hence based on
gradient information, i.e., we assume that fi is at least continuously differentiable
for all i ∈ {1, . . . , k}. The basic idea is to find a direction in the decision space such
that a descent in all objectives can be realized, i.e., if xj ∈ Rn is the current point,
we want to compute a direction vj ∈ Rn such that for xj+1 = xj + tjv

j with a certain
step size tj > 0 it holds

fi(x
j+1) < fi(x

j) ∀i ∈ {1, . . . , k}.

46

2.3. Multiobjective Optimization

In the single-objective case this can be realized by taking the direction of the steepest
descent, i.e., vj = −∇f(xj). For the multiobjective case, in [FS00], the authors prove
that a suitable descent direction is given by the optimal solution of

min
(v,β)∈Rn+1

β +
1

2
‖v‖2

2 ,

s.t.∇fi(xj)>v ≤ β ∀i ∈ {1, . . . , k}.
(2.19)

Alternatively, one can derive the same descent direction vj by solving the dual
problem, cf. [FS00]. In this case, the direction is given by vj = −

∑k
i=1 ᾱi∇fi(xj)

where ᾱ is the optimal solution of

min
α∈[0,1]k

∥∥∥∥∥
k∑
i=1

αi∇fi(xj)

∥∥∥∥∥
2

2

,

s.t.
k∑
i=1

αi = 1.

(2.20)

As in the single-objective case, the descent direction has to be scaled to ensure a
descent (in all objectives), i.e., an appropriate step size tj has to be calculated. This
can be done by generalizing the well-known Armijo step size from the single-objective
case [NW06], i.e., the step size is calculated by

tj = max

({
t =

1

2l
: l ∈ N, fi(xj + tvj) < fi(x

j) + tc∇fi(xj)>vj ∀i ∈ {1, ..., k}
})

(2.21)

with c ∈ (0, 1). If xj is not critical, the set in (2.21) is not empty and hence
the maximum is well defined, cf. [FS00]. In Algorithm 2, a pseudo code of the
multiobjective steepest descent method is presented. It is possible to show that all
accumulation points of the sequence (xj)j∈N generated by this algorithm are Pareto
critical, cf. [FS00].

Algorithm 2 Pseudocode for the multiobjective steepest descent method [FS00].
1: Choose start value x0 ∈ Rn. Set j := 0.
2: while xj is not (approximately) Pareto critical do
3: Compute direction vj by solving (2.20) or (2.19).
4: Compute a step length tj such that (2.21) holds.
5: Set xj+1 = xj + tjv

j.
6: Set j = j + 1.
7: end while

To improve the convergence rate, it is possible to include second-order information
and derive a Newton direction [FDS09]. Besides gradient-based methods for smooth
MOPs, there are also methods for nonsmooth MOPs usually approximating the
subdifferentials of the objectives, e.g., the multiobjective proximal bundle method

47

Chapter 2. Theoretical Background

[MKW15] or the descent method from [GP21] which is based on the approximation
of the so-called ε-subdifferential. Furthermore, it is also possible to generalize the
SGD method presented in Section 2.2.2 to the multiobjective setting, cf. [LV21;
MPD18].

Continuation

The methods introduced so far have in common that they only compute a single
point. In contrast, continuation methods aim at computing the entire Pareto critical
set, or, to be more precise, entire connected components of it. Essentially, they are
based on the fact that the Pareto critical set Pc in combination with the KKT
multipliers is a manifold if f ∈ C2, i.e., if f is twice continuously differentiable, and
sufficiently regular. To formalize this, we define

H : Rn × [0, 1]k → Rn+1, H(x, α) =

(∑k
i=1 αi∇fi(x)

1−
∑k

i=1 αi

)
, (2.22)

i.e., it holds x ∈ Pc ⇔ ∃α ∈ [0, 1]k : H(x, α) = 0 or in short Pc = prx(H
−1(0)),

where prx : Rn+k → Rn, prx(x, α) = x is the projection onto the decision space. This
enables us to formulate the following theorem proven in [Hil01].

Theorem 2.3.17. Let be f ∈ C2, define the map H as in (2.22) and define the set
M := (H|Rn×(0,1)k)

−1(0). Furthermore, we denote the Jacobian of H by DH.

(a) If rk(DH(x, α)) = n+ 1 for all (x, α) ∈M, thenM is a (k − 1)-dimensional
submanifold of Rn+k and the tangent space in a point (x, α) ∈ M is given by
T(x,α)M = ker(DH(x, α)).

(b) If (x, α) ∈ M with rk(DH(x, α)) = n + 1 exists, then there is an open set
U ⊆ Rn+k with (x, α) ∈ U such thatM∩U is a (k−1)-dimensional submanifold
of Rn+k and the tangent space in (x, α) is given by T(x,α)M = ker(DH(x, α)).

The concrete Jacobian of H in (x, α) ∈ Rn × [0, 1]k is given by

DH(x, α) =

(∑k
i=1 αi∇2fi(x) Df(x)>

0 1

)
∈ R(n+1)×(n+k) (2.23)

This can be utilized to derive sufficient conditions which ensure that the require-
ments of Theorem 2.3.17 are fulfilled, summarized in the following lemma.

Lemma 2.3.18. Let be x ∈ Rn.

(a) Let be α ∈ [0, 1]k with
∑k

i=1 αi = 1. If
∑k

i=1 αi∇2fi(x) is regular, then
rk(DH(x, α)) = n+ 1.

(b) If ∇2fi(x) is positive definite for all i ∈ {1, . . . , k}, then rk(DH(x, α)) = n+1
for all α ∈ [0, 1]k with

∑k
i=1 αi = 1.

In particular, Lemma 2.3.18(b) implies that the requirements of Theorem 2.3.17 are
satisfied if all objectives are strongly convex, cf. [BV04].

48

2.3. Multiobjective Optimization

(a) (b) (c)

Figure 2.13: Illustration of the basic concepts of the continuation method (in the
variable space Rn): (a) Predictor step (orange). (b) Corrector step (green). (c) Mul-
tiple predictor and corrector steps resulting in an approximation of the Pareto critical
set Pc (red).

The basic idea of continuation (or homotopy) methods is to start with an initial point
(xj, αj) ∈ M and find a point (xj+1, αj+1) ∈ M near (xj, αj) by “walking along”
the manifold. Therefore, two steps are usually followed, the so-called predictor and
corrector step. Hence, these methods are also often referred to as predictor-corrector
methods. They are not limited to the application of multiobjective optimization
but are used to compute general parameterized manifolds. For a introduction to
continuation methods in general, the reader is referred to [AG90]. In Figure 2.13,
the basic concept of continuation methods is visualized for n = k = 2. Note that
only the decision space Rn is plotted and not the whole space Rn+k where the
continuation takes place.

In the predictor step, a movement along the tangent space of the manifold is done.
Since the tangent space is given by T(xj ,αj)M = ker(DH(xj, αj)) according to Theo-
rem 2.3.17, we are interested in an orthonormal basis {q1, ..., qk−1} of the null-space
of DH(xj, αj) since this allows us to derive evenly distributed directions in the case
where the manifold is of higher dimension (k > 2). Such a basis can be obtained by
utilizing a QR-factorization of DH(xj, αj)>, cf. [Hil01].

After the predictor step, a corrector step is needed to get a Pareto critical solution.
For instance, one can use the Gauss-Newton method to find a point (near the end
point of the predictor step) that fulfills the KKT condition. Alternatively, it is
possible to walk along the orthogonal space of the tangent space until the Pareto
critical set is reached, cf. [Hil01]. The resulting root-finding problem can be solved,
for instance, with Newton’s method. To get the entire (current connected compo-
nent of the) Pareto critical set, the predictor and the corrector step are repeated
iteratively.

Besides various ways to realize the corrector step, there are different options to
further adapt the continuation method, for instance:

• A crucial aspect is the step size of the predictor, where different strategies
can be followed. One possible aim might be to derive an even distribution
of the computed points in the decision or image space. In the first case, this
can be done by normalizing the predictor. In the second case, based on the

49

Chapter 2. Theoretical Background

orthonormal basis {q1, . . . , qk−1} derived in the predictor step, it is possible
to combine and scale the directions for the predictor step such that an even
distribution in the image space can be realized, cf. [Hil01].

• The endpoint of the predictor serves as the initial value to the corrector step.
If many iterations are needed within the corrector step, this initial point might
be far away from the Pareto critical set (which indicates a strong curvature).
In this case, it is probably beneficial to reduce the step size of the predictor.
If, in contrast, the corrector needs only a few iterations, it might be helpful to
increase the step size [AG90].

• The predictor and corrector step become more expensive with an increasing
dimension of the decision space Rn, especially the computation of the Hessians
∇2fi(x) becomes costly. One possibility to overcome this issue is to use update
strategies such as BFGS, cf. [NW06, Algorithm 6.1], as proposed in [MS17].

• If, on the other hand, the number of objectives k increases, the main issue
is that in the predictor step, many directions have to be followed. If k > 2,
the Pareto critical set is (usually) no longer one-dimensional, and it is hard
to handle the point cloud derived during the procedure. An alternative is to
use methods that utilize coverings by sets, for instance, by boxes, as done in
[SDD05].

• Interactive methods can help to compute just the relevant region of the Pareto
critical set and thus reduce the computational costs [MS17; Sch+19].

The above considerations and results are clearly restricted to the case where f is
smooth. In Chapter 5, a continuation method is derived for the nonsmooth case
where one objective is the `1-norm.

Evolutionary algorithms

The last class of methods we present here are evolutionary algorithms. These are
heuristic algorithms used for optimization and search in general, but there are also
variants specifically tailored to multiobjective optimization. Basically, this type of
algorithm is inspired by the evolution observable in nature. According to scientific
theory, only the fittest (or the best adapted) individuals stay alive and are able to
reproduce themselves and thus become the dominant species after a time [Dar59;
Smi93].

Evolutionary algorithms work in a similar fashion. Starting with an initial popula-
tion, i.e., a set of points in the variable space, the best-fitting points are filtered out
based on a given fitness function. Then, these points are used to create new points
by recombination and mutation to build the population of the new generation. Re-
combination means generating new points with the help of two (or more) individuals
from the selected group of points with the help of a so-called recombination opera-
tor, for instance, by linear interpolation between two points. Mutation means that
in each iteration, some random points are added to the population to ensure that
the population is not steered too much into one direction and optimal solutions are
missed. To this end, single individuals are usually adapted randomly. For instance,

50

2.3. Multiobjective Optimization

new points are sampled randomly in a region around the selected points. In the next
iteration, this newly generated population is again evaluated by the fitness function
and so on. A pseudocode for a basic evolutionary algorithm is presented in Algo-
rithm 3. For a more detailed introduction to evolutionary algorithms in general, see,
for instance, [ES15; Nis97].

Algorithm 3 Pseudocode for a basic evolutionary algorithm.
1: Create randomly an initial population X0 ⊆ Rn. Set j := 0.
2: while termination criterion is not fulfilled do
3: Compute fitness function value of all individuals x in current population Xj.
4: Choose the fittest individuals (with lowest fitness function value) from Xj.
5: Create new population Xj+1 ⊆ Rn through recombination and mutation.
6: Set j = j + 1.
7: end while

In multiobjective optimization, the fitness function is based on the concept of Pareto
optimality, i.e., usually, in the selection step, nondominated points are sorted out to
build the new population (via recombination and mutation). For the concrete reali-
zation of multiobjective evolutionary algorithms, there are many options resulting in
various implemented and used algorithms. For an overview, the reader is referred to
[Coe06; Zho+11]. One of the most popular multiobjective evolutionary algorithms
is NSGA-II (nondominated sorting genetic algorithm II) [Deb+02]. Since evolution-
ary algorithms do not make use of gradient information, they are also applicable if
there are objectives that are not differentiable. Furthermore, they are able to handle
nonconvex objectives and are easy to implement. In addition, the Pareto optimal
set can be computed at once in a single run of the algorithm. Nevertheless, they
usually need a lot of function evaluations to derive appropriate approximations of
the Pareto set, and there are usually no convergence guarantees.

51

3 | DeepMPC for Flow Control
A Motivating Example

In this chapter, an example that reflects the promising possibilities of data-based
methods, or more precisely, neural networks, in the field of complex system control
is presented. We use an RNN architecture that is able to learn the time-dependent
dynamics of a system with control input and can easily be incorporated into the
MPC framework. Due to the combination of a deep neural network and MPC, the
approach is referred to as DeepMPC. The performance is then evaluated using an
example of flow control problems, the so-called fluidic pinball.

Flow control problems appear in many different engineering problems with different
objectives, for example, to achieve more efficient combustion in cars or power plants,
to increase high lift for airplanes, or to avoid wind noise for driving vehicles but
also at architectural buildings [BW20]. These problems are described by nonlinear
partial differential equations and are often expensive and time-consuming to solve
numerically. In addition, in practical applications, there are usually only a few places
in the system where sensors can be placed, and measurement data can be collected.
Moreover, these sensors are often quite costly. Hence, real-time control based on the
full state simulation is usually infeasible. Fortunately, the essential dynamics of these
systems are often of low dimension and may be captured by measurements of only
a few sensors [Den+19; Man+18]. This enables and motivates the use of surrogate
models based on sensor data, learning the relevant parts of the dynamics.

Here, as a concrete example, the fluidic pinball is considered since it was specifically
designed to test new (machine learning) control algorithms in the area of active flow
control [Den+18; Noa+16]. It consists of a fluid that flows around three cylinders
arranged in a triangle. The cylinders can be rotated to control the flow. On the one
hand, this problem is relatively fast to solve and implement due to its simple archi-
tecture. On the other hand, the control task is challenging since the uncontrolled
system possesses complex dynamical behavior, i.e., the system behaves chaotically
in certain regimes [Den+18; Den+19]. Thus, although the fluidic pinball is an aca-
demic example, it is still a good reference for evaluating approaches to flow control.
Hence, various data-based methods were used to study and solve different control
tasks in the fluidic pinball setting. For instance, POD was used to approximate the
system in [Pas+19a]. In [PK19; POR20], approximations of the Koopman operator
and generator for fixed control inputs were computed and embedded into an MPC
framework. Furthermore, approaches falling into the category of machine learn-

53

Chapter 3. DeepMPC for Flow Control - A Motivating Example

ing control (MLC) were used, cf. Section 2.1.3, where the idea is to directly learn
a control law by utilizing genetic algorithms in a trial-and-error manner [Cor+21;
Rai+20; RM21].

The work presented here extends the previously mentioned literature and considers
an RNN architecture specifically tailored to time series prediction and can easily
be integrated into the optimization step in the MPC framework. DeepMPC with
similar RNN architectures was already used successfully in [LKS15] and in [BBK18]
for controlling robot motion and laser bifurcation, respectively. The method is based
on sensor data and allows for incorporating online learning based on data collected
during the control phase. In [Mor+18], a similar approach, also based on NNs, is
presented. There, the idea is to use an NN architecture consisting of an encoder
and decoder motivated by Koopman operator theory. In contrast to the approach
presented here, the surrogate model is based on the full state. Furthermore, the flow
around a single cylinder at a considerably smaller Reynolds number (Re = 50) is
considered as a test case, leading to significantly less complex dynamics.

After the RNN architecture and some training details are presented in Section 3.1, in
Section 3.2, the fluidic pinball setting is introduced in more detail, and the results
of the application of the DeepMPC approach are presented. In Section 3.3, the
approach is discussed further based on the presented results and related to the
research questions addressed in this thesis.

This chapter is based on [Bie+20], to which the author was the main contributor.

3.1 Design of the RNN

In the following, we present and discuss an MPC approach that uses an NN as
a model. To be more precise, an RNN architecture is used, which is specifically
tailored to the forecast of a time series based on past data similar to those presented
in [BBK18; LKS15].

The aim of the RNN is to model the behavior of a dynamical system. More specifi-
cally, it is supposed to predict the observed states for the next time step zk+1 based
on the current observed state zk = hobs(yk) and the control input uk which is applied
to the system. In the case of the fluidic pinball, the observables may be the forces
acting on the cylinders, i.e., the lift and the drag, as these can be measured easily in
practice. Motivated by the Takens’ result, cf. Section 2.1.2, the future state is pre-
dicted by using a time series of past observed states and the corresponding control
inputs, i.e., the time series

(zk−d:k, uk−d:k) = (zk−d, . . . , zk, uk−d, . . . , uk)

serves as input for the RNN cell that shall predict zk+1:

zk+1 ≈ z̃k+1 = Φr
RNN(zk−d:k, uk−d:k).

The delay d is chosen to be an even number, i.e., d = 2b with b ∈ N. This is due
to the RNN architecture, for which the time series is divided into two parts, cf.
Figure 3.1a.

54

3.1. Design of the RNN

(a) RNN cell with details

(b) Unrolled RNN

Figure 3.1: RNN architecture for the DeepMPC framework. In (a), a single RNN
cell is shown, and in (b), the unrolled RNN is presented with encoder and decoder.

Since the aim is to predict the observed state not only one but p time steps into
the future, an RNN with a feedback loop is used. In order to incorporate the long-
term behavior, an artificial hidden state lk is introduced and fed forward from one
cell to another along with the predicted observed state. Therefore, the RNN cell is
divided into two parts. The first part predicts the latent, hidden state lk, whereas
the second part predicts the observed state based on the latent state. As this hidden
state has to be initialized properly before the first time step is predicted, the RNN
is divided into an encoder and a decoder where an encoder cell predicts the hidden,
latent state and the decoder cell consists of the encoder cell and the additional part
predicting the observed state. The resulting unfolded RNN is shown in Figure 3.1b.
Obviously, the number of decoder cells is given by the number of time steps in the
prediction horizon p. The number of encoder cells, denoted by m ∈ N, has to be
chosen experimentally and depends on the underlying dynamics of the system.

Now, we want to detail the structure of a single decoder cell (including an encoder
cell), which predicts the future observed state zk+1 = hobs(yk+1) based on the time-

55

Chapter 3. DeepMPC for Flow Control - A Motivating Example

delayed data (zk−d:k, uk−d:k). The decoder cell can be divided into three functional
parts, cf. Figure 3.1a, which are composed of some FNNs represented by the smaller
grey boxes in the diagram. The three parts are related to the long-term, the current,
and the future dynamics. To this end, the input time series (zk−d:k, uk−d:k) is divided
into

apast = (zk−2b+1:k−b, uk−2b:k−b−1) ∈ RNa ,

acurrent = (zk−b+1:k, uk−b:k−1) ∈ RNa ,

ufuture = (uk−b+1:k) ∈ RNu ,

where we identify apast, acurrent and ufuture with the corresponding vectors of dimen-
sion Na = b · (nz +nu) and Nu = b ·nu, respectively. In accordance with Section 2.1,
nz denotes the dimension of the observed state z, and nu is the dimension of the
control input u. Besides the considered delay d = 2b, the number of encoder cells m,
and the number of time steps in the prediction horizon p, the user has to determine
the size of the NN by choosing a dimension of the latent state Nl and the number
of parameters in the smaller FNNs (grey boxes). As these smaller networks consist
only of one fully connected layer, it suffices to configure the output dimensions. Ex-
cept for hlatent, where the output dimension is given by Nl, the dimension is chosen
to be equal for all sub-networks and is denoted by Nh.

In the first part of the cell, we are interested in obtaining a latent state lk+1 to
represent the long-term dynamics. The purpose of the encoder cell is exactly this,
namely to encode the long-term dynamics of the system into a latent state. The
concrete equations are given by

hl,past = ReLU(Wl,past · apast + w0
l,past),

hl,current = ReLU(Wl,current · acurrent + w0
l,current),

lk+1 = hlatent = ReLU(Wlatent,h · (hl,past � hl,current) +Wlatent,l · lk + w0
latent),

where � denotes the Hadamard product, i.e., the elementwise multiplication,
and · the normal matrix-vector product. As activation function, the rectified
linear unit ReLU is chosen, cf. Table 2.1. The dimensions of the weight-matrices
and bias-vectors are given by Wl,past,Wl,current ∈ RNh×Na , Wlatent,h ∈ RNl×Nh ,
Wlatent,l ∈ RNl×Nl , w0

l,past, w
0
l,current ∈ RNh and w0

latent ∈ RNl . The second part of
the decoder cell incorporates the current dynamics and consists only of

hcurrent = ReLU(Wcurrent · acurrent + w0
current),

where Wcurrent ∈ RNh×Na and w0
current ∈ RNh . Based on the time series of the control

inputs ufuture, including the current control uk, the future dynamics are included in
the third part given by

hfuture = ReLU(Wfuture · ufuture + w0
future)

with Wfuture ∈ RNh×Nu and w0
future ∈ RNh . Based on the three mentioned parts,

together with

hpast = ReLU(Wpast · lk+1 + w0
past),

56

3.1. Design of the RNN

the (approximated) future observed state is then obtained by computing

z̃k+1 = Wout · (hpast � hcurrent � hfuture) + w0
out,

where Wpast ∈ RNh×Nl , w0
past ∈ RNh , Wout ∈ RNh×nz and w0

out ∈ Rnz .

Training of the RNN In order to train the RNN, time series data of the real
system with varying control inputs is created, i.e., a time series

((z0, u0), (z1, u1), . . . , (zN , uN))

with zk = hobs(yk) and yk+1 = Φ(yk, uk) is collected, where uk is chosen uniformly at
random in the control space U ⊆ Rnu . If the application requires a continuous con-
trol input, this has to be taken into account when creating the data, e.g., by choosing
random control inputs for certain time steps and using interpolation techniques to
compute continuous control inputs in between. As discussed in Section 2.2.2, RNNs
suffer from exploding and vanishing gradients. To avoid these issues, a three-step
approach is followed here, which was used in a similar way in [BBK18] and is based
on the approach in [LKS15]:

1) Initialization of the parameters via a conditional restricted Boltzmann machine
(RBM) and Xavier initialization

2) Training of the prediction of one time step, i.e., training of one decoder cell

3) Training of the whole RNN

In the first step, a part of the parameters is initialized via a modified conditional
RBM which was originally proposed in [THR06]. RBMs can be used to learn the
underlying probability distribution of a given data set. In the context of RNN
training, they, therefore, can be helpful in finding good initial values for the network
parameters [HS06]. Here, we use the RBM to initialize all parameters in layers
that are directly connected to an input, like hl,past or hl,current. Afterwards, the
remaining weights are initialized using the normalized Xavier initialization [GB10].
After the initialization phase, we first train the prediction of a single time step, i.e.,
the network with all m encoder cells, but only one decoder cell is trained. This is
done because numerical experiments suggested that the training can be stabilized
in this way and suffers less from exploding and vanishing gradients. In the last
step, the whole RNN is trained. In step 2) and 3) BPTT in combination with the
stochastic gradient algorithm Adam, cf. Section 2.2.2, is used to train the NN.

MPC To fulfill the actual MPC task, besides the prediction of the future (ob-
served) states, the control inputs uk:k+p−1 = (ui)i=k,...,k+p−1 have to be optimized
in the k-th time step. Similar to the training of the parameters of the NN, this
is done via a gradient-based method where the gradient of the objective function
with respect to the control inputs uk:k+p−1 is computed via backpropagation, cf. Sec-
tion 2.2.2, marked by the red arrows in Figure 3.1a. Here, we use a BFGS-method,
cf. [NW06]. Since the latent state of the RNN is computed bym encoder cells, which
need d = 2b time steps as input, an initialization phase is required wherem+2b time

57

Chapter 3. DeepMPC for Flow Control - A Motivating Example

Figure 3.2: The setting of the fluidic pinball with a snapshot of the velocity of the
uncontrolled system. On the right side, the whole domain with a colorbar for the
norm of the velocity vector is presented. On the left side, a zoom with lift and drag
coefficients and the control inputs can be seen.

steps are performed without active MPC control. In practical applications, it might
be necessary to use other control strategies during this phase to keep the system in
an admissible regime. Here, for simplicity, we keep the control input constant to 0
for the first m+ 2b time steps.

Online learning To further improve the model accuracy, additional sensor data
can be collected during the operation phase and be used to perform online learning.
This data probably represents the relevant region of the dynamical system states
better than data collected with random control inputs. Furthermore, the data col-
lection does not require additional time or effort since the data is needed for the
MPC anyway. For the optimization, the same optimizer as in the offline training can
be used. However, the choice of training parameters (hyper-parameters), e.g., the
batch size and the step size of the optimizer (learning rate), are even more crucial
as overfitting can occur easily due to the tailored data.

3.2 Application to a Fluid Flow Problem

To motivate the practical relevance of the presented RNN approach, we consider
the so-called fluidic pinball as a flow control example that was designed to provide
a control problem that behaves dynamically complicated, i.e., chaotic in certain
regimes, and yet is still comparatively cheap and fast to compute. Thus, new meth-
ods to build surrogate models and control approaches can be tested easily, as done
in [Den+19; Pas+19a; POR20].

In the setting of the fluidic pinball, a fluid flows around three cylinders arranged in
a triangle in a plane as shown in Figure 3.2. All the cylinders have the same radius
R, and a fluid enters the domain Ω from the left with constant velocity y∞ ∈ R.
We denote the position by x ∈ R2 in Cartesian coordinates and the velocity of the
fluid at time t in x in the horizontal and vertical direction with y(x, t) ∈ R2. To
analyze the performance of the presented approach, we study the system at different
Reynolds numbers Re = 2R

ν
y∞, where ν denotes the kinematic viscosity of the fluid.

To be more precise, we consider Re ∈ {100, 140, 200}. If we additionally denote the

58

3.2. Application to a Fluid Flow Problem

pressure with p, the behavior of the system can be described by the incompressible
2D-Navier Stokes equations, i.e.,

∂y(x, t)

∂t
+ y(x, t) · ∇y(x, t) = −∇p(x, t) +

1

Re
∆y(x, t),

∇ · y(x, t) = 0,

(y(x, 0),p(x, 0)) = (y0(x), p0(x)),

where∇ refers to the nabla operator, ∂ to the partial derivative and ∆ to the Laplace
operator. In this uncontrolled case, a no-slip condition (i.e., y(x, t) = 0) has to hold
at the boundary of the cylinders. By rotating the cylinders, the flow can be affected
and controlled. In this example, we allow a rotation of the two rear cylinders (1 and
2). A time-dependent Dirichlet boundary condition on the surface of the cylinders
introduces the control inputs uj, j ∈ {1, 2}, which are the angular velocities of the
rotation of the cylinders 1 and 2, respectively.

As the fluid flows around the cylinders, forces acting on the cylinders are induced.
The force in the horizontal direction is referred to as the drag (FD), and the force
in the vertical direction is called the lift (FL). These forces are strongly related to
the fluid field and can be easily computed from the full system state or be measured
when considering the real system. Therefore, as relevant system quantities that
serve as input for the RNN, we observe the lift and drag coefficients given by

CL,j =
2FL,j
ρy2
∞

and CD,j =
2FD,j
ρy2
∞

for j ∈ {1, 2, 3},

where ρ denotes the density of the fluid. Hence, the observed state is given by

z = (CL,1, CL,2, CL,3, CD,1, CD,2, CD,3).

To control the flow, we aim to steer the lift coefficients of the cylinders to predefined
constant values, which then implicitly leads to a steady state of the flow.

The DeepMPC architecture, i.e., the RNN and the MPC loop, were implemented in
Python using Tensorflow [Mar+15]. The simulation of the fluidic pinball was imple-
mented by Sebastian Peitz using the open-source solver OpenFOAM [JJT07].

To observe the behavior for different complexity levels, we consider various Reynolds
numbers, i.e., Re ∈ {100, 140, 200}. With increasing Reynolds number, the dynam-
ics become more and more complicated, cf. Figure 3.3. At Re = 100, the system
possesses a periodic solution. Interestingly, the lift coefficients do not evolve symmet-
rically with respect to the horizontal symmetry axis, and the mean of |CL,2(t)| (over
one period) is approximate twice the mean of |CL,1(t)|. According to [Den+19], the
system has three steady solutions at Re = 100, where one is symmetric with respect
to the horizontal axis and the other two break the symmetry. The symmetric solu-
tion is unstable, whereas the asymmetric solutions are stable and identical except for
mirroring on the horizontal axis. At Re = 140 and Re = 200, the system behaves
chaotically, and due to the more complex dynamics, it can be expected that the
control task is much more complicated than for Re = 100. Note that, statistically,
the symmetry of the flow is recovered for the higher Reynolds numbers since the

59

Chapter 3. DeepMPC for Flow Control - A Motivating Example

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

(a) Re = 100

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

(b) Re = 140

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

(c) Re = 200

Figure 3.3: Evolution of the lift coefficients at the three cylinders of the uncontrolled
fluidic pinball at various Reynolds numbers. In accordance with Figure 3.2, CL,1(t)
is shown in green, CL,2(t) in cyan and CL,3(t) in dark blue.

system switches quickly between the oscillation around the first asymmetric steady
solution and the other mirror-conjugated steady solution [Den+19].

The control task is to steer the first lift constantly to 1, the second to −1, and the
third to 0, i.e., the reference trajectories for the lift coefficients are given by

(Cref
L,1)k = 1, (Cref

L,2)k = −1 and (Cref
L,3)k = 0 for k ∈ {0, 1, . . . }.

As only the two rear cylinders can be rotated, the influence of the control input on
the lift coefficient CL,3 of the front cylinder is almost negligible. Nevertheless, in the
numerical experiments, forcing CL,3 to zero yielded improved results. This way, it
is probably avoided that the optimization drifts away in a regime where the model
predicts (relatively) high absolute values of CL,3. Since those values cannot occur
in the real system, the model cannot represent the real behavior and is inaccurate
when it predicts high absolute values of CL,3. To achieve the control aim, an angular
velocity of the cylinder rotation between −2 and 2 is allowed for both cylinders. In
addition to the trajectory tracking error, a penalty term for too large deviations
in the control inputs between consecutive time steps is introduced, leading to the

60

3.2. Application to a Fluid Flow Problem

following MPC problem at time tk (for k ≥ m+ 2b):

min
uk:k+p−1∈([−2,2]2)p

k+p−1∑
i=k

(
3∑
j=1

∣∣z̃j,i+1 − (Cref
L,j)i+1

∣∣2
2

+ β ·
2∑
j=1

|uj,i − uj,i−1|2
)
,

s.t. z̃i+1 = Φr
RNN(z̃i−d:i, ui−d:i) for i ∈ {k, . . . , k + p− 1},

where the initial condition is given by the real system state, i.e., z̃k−d:k = zk−d:k.
Note that u1,i = u2,i = 0 for i < m + 2b, i.e., during the initialization phase, cf.
Section 3.1. In our study, we set β = 0.1 as preliminary experiments suggested that
this is a reasonable value. The number of time steps in the prediction horizon is
set to p = 5 for Re = 100, and for the more complicated tasks at Re = 140 and
Re = 200, we found that p = 10 is a more suitable choice to achieve a robust control.
The other chosen hyper-parameters are summarized in Table 3.1.

Table 3.1: Choice of RNN hyper-parameters.

Re = 100 Re = 140 Re = 200

p 5 10

m 5

d = 2b 22

Nl 400

Nh 500

To create training data, the fluidic pinball was simulated with random but smoothly
varying control inputs, i.e., for both cylinders, a random rotation velocity between
−2 and 2 was chosen independently every 0.5 second and interpolated by splines.
The step size for the discretization of the control and hence the step size predicted
by the resulting model is ∆t = 0.1s. To get an accurate model of the fluidic pinball,
the time discretization in the FEM simulation has to be chosen even smaller. Here,
we choose 5 · 10−3 seconds. To get a constant control input for the prediction step
of ∆t = 0.1s, the mean of the control over 20 time steps were taken. This way
150 000, 200 000 and 800 000 training data points for Reynolds number 100, 140 and
200 were computed, respectively. This large amount of training data was generated
to ensure that all the dynamic properties of the system were represented in the data
since there was no indication of how many data points were needed at the beginning
of the experiments. However, the amount of data is certainly far too large and can
be significantly reduced. This question is further addressed below.

The results of the experiments at Re ∈ {100, 140, 200} over the interval [t0, tf] =
[0, 100] are shown in Figure 3.4 where the mean and the maximal error are computed
by

emean =
∆t

tf − 4

tf
∆t∑

k= 4
∆t

(
1

3

3∑
j=1

∣∣(CL,j)k − (Cref
L,j)k

∣∣2
2

)
,

61

Chapter 3. DeepMPC for Flow Control - A Motivating Example

and

emax = max
4

∆t
≤k≤

tf
∆t

(
1

3

3∑
j=1

∣∣(CL,j)k − (Cref
L,j)k

∣∣2
2

)

to measure the performance. Since the first steps belong to the initialization phase
with uk = 0, the error evaluation just starts after 4 seconds. It can be observed
that the DeepMPC scheme leads to a good control performance for Re = 100.
Nevertheless, CL,1 can be controlled less effective than CL,2. This is not surprising
as the uncontrolled system possesses an asymmetric periodic solution, cf. Figure 3.3a.
In comparison, the performance for Re = 140 and Re = 200 is considerably worse.
As chaos can be observed in the uncontrolled systems, a prediction of the system
state (by the RNN) is much more challenging and, at the same time, much harder
to control. This is also observed in [POR20].

To study the performance of the DeepMPC scheme in more depth and to improve
the control performance, different adaptions to the approach are made in the fol-
lowing.

Exploiting the symmetry A reasonable idea to improve the prediction quality
by the surrogate model, and hence the control performance is to incorporate knowl-
edge about the system (behavior). In the case of the fluidic pinball, the domain is
symmetric along the x1-axis (the vertical coordinate axis crossing the midpoint of
the front cylinder). Hence, the behavior of lift and drag is correspondingly contrary,
i.e., we can double the training data by exploiting the symmetry as

û = (−u2,−u1)> ,

ĈL = (−CL,2,−CL,1,−CL,3)> ,

ĈD = (CD,2, CD,1, CD,3)> .

(3.1)

Experiments are performed for Re ∈ {100, 140, 200} again, and the results are pre-
sented in Figure 3.5. For Re = 100, the performance is not improved. This is caused
by the fact that the training data already captured the symmetry, as the system can
easily switch between meta-stable states by random control inputs. The effort for
Re = 140 is quite significant. The error is decreased by nearly 50%, and the result
appears to be much more regular. Nevertheless, still, one lift is controlled more
accurately than the other, probably caused by the existence of two stable solutions
which are asymmetric. In the case of Re = 200, the improvement is even larger,
but still, the performance is worse than for Re = 140. Presumably, this is because
the oscillation around the stable states caused by the chaotic behavior occurs with
larger amplitudes in the uncontrolled system and is, therefore, harder to control.
Note that the presented results were generated from an RNN created in a single
training run and that performance can vary significantly from one training run to
another. Therefore, the performance increase should be taken cautiously and may
reflect only a trend. This also becomes evident when looking at the results in the
next section, where multiple training runs are performed, and a high variance of the
results is observed.

62

3.2. Application to a Fluid Flow Problem

0 20 40 60 80 100

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-2

-1

0

1

2

(a) Re = 100: emean = 0.016224 and emax = 0.050267

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

-2

-1

0

1

2

(b) Re = 140: emean = 0.043693 and emax = 0.14484

0 20 40 60 80 100

-2

-1

0

1

2

0 20 40 60 80 100

-2

-1

0

1

2

(c) Re = 200: emean = 0.14466 and emax = 0.64097

Figure 3.4: Results of the DeepMPC approach for various Reynolds numbers. The
reference values for the lift coefficients are 1, −1 and 0 for CL,1, CL,2 and CL,3,
respectively. In accordance with Figure 3.2, CL,1(t) is shown in green, CL,2(t) in
cyan and CL,3(t) in dark blue. Accordingly, u1(t) is shown in green and u2(t) in
cyan.

63

Chapter 3. DeepMPC for Flow Control - A Motivating Example

0 20 40 60 80 100

-1

-0.5

0

0.5

1

(a)
Re = 100 :

emean = 0.020012 and emax = 0.063306

0 20 40 60 80 100

-1

-0.5

0

0.5

1

1.5

(b)
Re = 140 :

emean = 0.025394 and emax = 0.11917

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

(c)
Re = 200 :

emean = 0.063864 and emax = 0.2568
(d)

Figure 3.5: In (a)-(c): Results of the DeepMPC approach where the RNN is trained
with symmetrized data according to (3.1) for varying Reynolds number. In accor-
dance with Figure 3.2, CL,1(t) is shown in green, CL,2(t) in cyan and CL,3(t) in
dark blue. In (d): The mean error emean (blue) and the maximal error emax (red)
of the experiments for Re ∈ {100, 140, 200} with original data (without circle) and
symmetrized data (with circle).

64

3.2. Application to a Fluid Flow Problem

10% 50% 100%

0

0.05

0.1

0.15

0

0.2

0.4

0.6

0.8

Figure 3.6: Mean error emean (blue) and maximal error emax (red) for experiments
at Re = 200 with varying amounts of training data both averaged over 5 training
runs.

Reduce amount of data As it is not clear a priori how much data is needed
to train the RNN to get a sufficiently accurate prediction, in the first experiments,
a huge amount of data was used to be on the safe side. Obviously, it is of great
interest to know whether fewer data would also be sufficient. In particular, when
having in mind that the symmetry does not necessarily have to be represented in
the data and can be added manually. Especially for Re = 100, the experiments
with symmetrized data suggest that much fewer data would be sufficient. Hence, we
conducted experiments varying the number of data points. We ran five experiments,
each with 100%, 50%, and 10% of the data at Re = 200, where the training data
were again doubled by exploiting the symmetry. The results are summarized in
Figure 3.6. Both the maximum error and the error averaged over time only vary a
little as the amount of data decreases. In particular, the differences are negligible if
one additionally considers the standard deviation of 0.15 for the maximum and 0.03
for the averaged error. Probably, shorter time series already capture the essential
dynamics in this case. On the other hand, this suggests that it would not be benefi-
cial to add further data to the training process created with random control inputs
to increase performance. Especially due to the unknown influence of the control
input, it is nearly impossible to estimate a priori whether the essential dynamics are
already captured in the training data. Perhaps the performance could be increased
by using a larger RNN or by reducing the time step predicted by the RNN.

Online learning Another possibility to further increase the performance of the
surrogate model, and therefore, the efficiency of the control, could be to collect
additional data in an area of interest, i.e., it can be beneficial to collect the data
online during the control process and do online learning, cf. Section 3.1. This is
demonstrated for Re = 100, and the results are presented in Figure 3.7. We only
collect a small amount of data offline before the execution of the control task and
collect data during the online phase after a fixed time of 25 seconds, i.e., by exploiting
the symmetry again, we get 500 additional data points per time period. The tracking
error is reduced very effectively, especially after the first intervals. In addition, it
can be observed that the control cost, averaged over the intervals of 25 seconds,
decreases simultaneously, which could indicate a more stable control law produced
by the DeepMPC scheme. This indicates the importance of accordingly collecting
training data again.

65

Chapter 3. DeepMPC for Flow Control - A Motivating Example

0 50 100 150 200

-1

-0.5

0

0.5

1

50 100 150 200

0

0.002

0.004

0.006

0.008

0.01

0.012

1.2

1.3

1.4

Figure 3.7: On the left, the result of the DeepMPC approach at Re = 100 with
online learning is shown. The RNN is updated every 25 second, marked by black
vertical lines. In accordance with Figure 3.2, CL,1(t) is shown in green, CL,2(t) in
cyan and CL,3(t) in dark blue. On the right, the mean error emean (blue) and the
averaged control cost ‖ui‖2 (violet) over each interval are shown.

3.3 Discussion

The presented approach, based on an RNN architecture working with sensor data,
yields positive results in the studied complex flow control problem, and the per-
formed experiments can be considered as a promising feasibility study. Even for the
chaotic system at Re = 200, the results are convincing. Although the presented
study is an important proof of concept and takes a step towards control of real
systems, there remain open questions and many possibilities to further improve the
approach, which are discussed in this section.

First, some basic questions concerning the RNN architecture are unclear. Although
the RNN performed well, other model classes might lead to improved results. For in-
stance, an LSTM or an ESN might predict the system state more precisely or equally
well, as these are also specifically tailored to time series prediction. Furthermore,
both were already used in an MPC framework [Arm+19; Igl+18; Jor+18]. Con-
versely, the optimization during MPC might be more expensive or less robust since
highly nonlinear functions are applied to the control in these architectures. Although
we did not test different architectures, the hyper-parameters of the RNN, such as the
number of neurons and delay time steps or the choice of activation functions, were
chosen in a trial-and-error manner. Hence, it is not clear whether these are optimal.
To find optimal architectures and good choices for the hyper-parameters, hyper-
parameter optimization [Bis+21] or neural architecture search [EMH19; WRP19]
could be a way to go. Another aspect, which should be analyzed further, is the
training procedure. Although the presented three-step approach proved to work
well, other methods could also be tried. Especially, the initialization of the network
parameters with the Xavier initialization, which was originally derived for sigmoid
activation functions, is probably not the best choice, and one could try whether,
for instance, the initialization presented in [He+15], which is specifically tailored
to ReLU activation functions (as used in the presented RNN architecture), delivers
improved results.

From a practical point of view, it would be of interest how the approach deals

66

3.3. Discussion

with noisy data, which naturally occur in real applications due to measuring errors.
Since modern algorithms for training NNs are particularly designed for robustness
against noise, it could be expected that this would not lead to a highly decreased
performance of the approach. Another question that probably arises when applying
the approach to a real flow problem is how it might react if the Reynolds number
slightly changes. Usually, the system dynamics should not change too much such
that this would not lead to issues. Nevertheless, when the dynamical system under-
goes a bifurcation, the dynamics can change abruptly, leading to wrong predictions
by the RNN, which results in poor control performance. Improving online learning
or transfer learning might be a suitable approach to overcome this issue. Besides the
possibility to react to small changes in the system behavior, online learning provides
the ability to use data collected on the fly in the relevant system regime, which can
reduce the amount of data that has to be collected beforehand in a time-consuming
offline procedure. Hence, it would be beneficial to improve the robustness of online
learning further, especially when the system exhibits chaotic behavior.

A more general aspect is to incorporate system knowledge into the approach, i.e.,
to use physics-informed machine learning [Kar+21]. Obviously, it should always be
advantageous to use all the knowledge available. Here, the knowledge of symmetries
in the system was used for the data acquisition process. More advanced approaches
include the system knowledge directly into the surrogate model. Besides better
performance, this might also lead to reduced data requirements.

Despite the high relevance of all the issues mentioned above, no additional studies
and experiments addressing these are done within this thesis. Instead, we focus on
two other aspects. As shown in the previous section, it is not known a priori how
much data is necessary to build an appropriate surrogate model. This is already
the case when modeling autonomous uncontrolled systems and becomes even worse
when adding a time-dependent control input. This issue is addressed in Chapter 4,
where a framework is presented which is based on a discretization of the control
space U ∈ Rn and only needs to build surrogate models which are able to predict
the behavior of the system for a single constant control input each.

Switching from the control perspective back to the machine learning perspective, a
known issue from which NNs suffer is over-parameterization of the model. A smaller
network with fewer parameters likely leads to a similar performance. Such a model
may be easier to interpret, and, more importantly, over-parameterized models are
more likely to overfit to the training data. To avoid this issue, different techniques
are followed. The most common are dropout and the regularization of the training
objective with the `1- or `2-norm of the network parameters [GB10]. The latter ap-
proach is addressed in Chapter 5, where the regularization problem is transformed
into an MOP. Since an NN is, in general, a nonconvex function, from a multiobjec-
tive perspective, the typically used penalty approach does not lead to all optimal
compromises. Hence, a continuation method for a nonconvex objective and the
`1-regularization term, which may also be used for the training of NNs, is devel-
oped.

67

4 | Utilizing Autonomous Models
for Model Predictive Control

As discussed in the last section, one issue when using data-based methods for sur-
rogate modeling in MPC is the question of how to generate the data. In particular,
it is usually unclear in advance how much data is needed and where it should be
sampled. This question is already hard to answer in the autonomous, uncontrolled
case and becomes even more complicated when adding a control input. On the one
hand, this is simply caused by the fact that the problem dimension increases, which
usually results in more complex models and the need for a larger amount of data.
On the other hand, due to the force induced by the control input, the system state is
typically not restricted to a low-dimensional manifold, as it is often the case in the
uncontrolled setting. A further issue when building surrogate models of dynami-
cal systems with control input is that many modeling techniques are specifically
tailored to autonomous systems. In principle, these methods can usually be used
nevertheless to model controlled systems by applying state augmentation, i.e., by
considering ŷ = (y, u) as the input state. However, some approaches can only be
used at the cost of a (highly) increased modeling effort. For instance, when using
projection-based methods as POD, in the context of flow control problems, special
attention to boundary conditions has to be paid as shown in [BCB05; GPT99], where
the control of a fluid flowing around a cylinder was considered. Other examples are
approaches based on the Koopman operator like eDMD, which have to be adapted
to incorporate a control input, cf. Section 2.2.3. Although approaches working with
the augmented state were recently developed, see, for instance, [KKB18; KM18a;
PBK16], they still suffer from high demand for data [PK19].

This motivates the QuaSiModO approach presented in this chapter, where the con-
trol problem is adapted in such a way that autonomous models, i.e., models without
additional control input, can be used to control the system efficiently. The main
idea is to discretize the control space (Quantization) in order to construct – based
on simulation data from the underlying real system (Simulation) – finitely many
autonomous models (Modeling), each for one fixed control input. This results in a
(mixed) integer control problem that can be solved with the help of optimization
techniques from mixed-integer optimal control (Optimization). A similar idea was
already presented in [PK19] for the Koopman operator and was further developed
for the Koopman generator in [POR20]. In [PK19], the system was transformed
into a switching system, meaning that only a finite number of control input values is

69

Chapter 4. Utilizing Autonomous Models for MPC

allowed. This is similar to our quantization step. The authors proved convergence
of the single approximations of the Koopman operators to the real autonomous sys-
tems with fixed control input. However, the error introduced by the quantization
step was not examined. In [POR20], the idea was transferred to Koopman gener-
ators. To derive error bounds for the real system, only control affine systems were
considered, allowing for continuous control inputs. In this chapter, the approach is
generalized to arbitrary surrogate models. Furthermore, error bounds are derived
not only for control affine systems but for arbitrary nonlinear systems under the
assumption that the approximation error caused by the model is known.

In the remainder of this chapter, first, the framework is explained in detail in Sec-
tion 4.1. In addition, this section provides a brief overview of the sum-up-rounding
(SUR) algorithm presented in [SBD12] which is used to solve the integer control
problem. Afterwards, error bounds for the computed optimal trajectories of the
original control problem and the surrogate mixed integer problem are derived in
Section 4.2 justifying the approach. Subsequently, the feasibility is demonstrated
with various numerical examples in Section 4.3. Although the reduced dimension
of the surrogate models may intuitively lead to reduced data requirements, this is
not directly clear since the considered state space remains the same and has to be
captured in the model-building process. Hence, the chapter concludes with a dis-
cussion on the data requirements compared to models with control inputs based on
numerical experiments in Section 4.4.

Large parts of the content of this chapter were already published in [PB23], to which
both authors contributed equally. The theoretical and numerical results presented
here are mainly based on the work of the author of this thesis.

4.1 The Basic Idea of the QuaSiModO Framework

As introduced in Section 2.1.2, we aim to control a dynamical system (in discrete
time) given by an ODE with corresponding time-T-map Φ using MPC. As before, the
control task is modeled by the objective function J or P . Since we want to consider
error bounds for the open-loop problem, we start by introducing our original control
problem as the optimization problem resulting from the MPC approach for the
time-T-map of the underlying real system:

min
u0:p−1∈Up

J(y1:p) =

p−1∑
i=0

P (ti+1, yi+1),

s.t. yi+1 = Φ(yi, ui), i ∈ {0, . . . , p− 1}.
(I)

For ease of notation, we write down the system only for the first time step. Further-
more, in contrast to Section 2.1, we assume that J and P do not depend directly on
the control inputs u0:p−1 = (ui)i=0,...,p−1 but only on the states y1:p = (yi)i=1,...,p. See
Remark 4.2.6 for a discussion of the case where the objective depends on u0:p−1 as
well. In addition, we have to assume that the original control set U ⊆ Rnu is bounded
to derive meaningful error bounds. From a practical point of view, this is usually not

70

4.1. The Basic Idea of the QuaSiModO Framework

a strong limitation. For instance, U is often limited by box constraints. In the fol-
lowing, the components of the QuaSiModO framework are explained. In Figure 4.1,
these steps, including different solution strategies, are summarized.

Figure 4.1: Overview of the steps followed by the presented QuaSiModO approach
(green) and the different solution possibilities (grey), including the various MPC
optimization problems (blue) and the resulting (optimal) solutions (orange).

Quantization The main idea of the QuaSiModO approach is to restrict the control
space U to a finite subset of control inputs, i.e., we introduce the discrete control
set V = {u1, . . . , um} ⊆ U , m ∈ N. This leads to the discretized problem

min
u0:p−1∈V p

J(y1:p) =

p−1∑
i=0

P (ti+1, yi+1),

s.t. yi+1 = Φui(yi), i ∈ {0, . . . , p− 1},
(II)

where we write Φuj(y) instead of Φ(y, uj) for j ∈ {1, . . . ,m} and y ∈ Y . Note that
u with an upper index (usually j) denotes the elements in V whereas u with a lower
index (usually i) refers to the control input applied to the system at time ti. If we
consider Problem (II), it obviously also holds ui ∈ V , i.e., for all i ∈ {0, . . . , p− 1},
it exists j ∈ {1, . . . ,m} such that ui = uj. Now, we may interpret Φuj(y) as time-
T-map for the autonomous system with constant control input uj ∈ V , which are
replaced by a surrogate model in a subsequent step. Obviously, the choice of V is
crucial. On the one hand, the set should be as small as possible to reduce the effort
for the surrogate modeling and to allow for efficient optimization. On the other
hand, it should include enough and suitable values to ensure the ability to predict
the system’s behavior and, hence, a good control performance. In Section 4.2, it is
shown that the set of reachable states corresponding to U has to be within the set of
reachable states corresponding to V to introduce no error by the quantization step,
cf. Lemma 4.2.1 and Theorem 4.2.3. In the case of control affine systems where U is
given by box constraints, this is ensured by choosing V to be the set of the control
bounds, cf. Remark 4.2.2.

71

Chapter 4. Utilizing Autonomous Models for MPC

Simulation & modeling Now, the discrete control space allows us to build mul-
tiple surrogate models, one for each control uj ∈ V , that do not get the current
control as input. Hence, these models are autonomous (in contrast to a single model
getting the control as an additional input). In accordance with Section 2.1.2, we
refer to those surrogate models as Φr

uj and assume that they are not acting on the
full state space Y but in the observed space Z = hobs(Y) given by measurements of
the system, i.e., Φr

uj(zi) = z̃i+1 ≈ zi+1 = hobs(Φ(uj, yi)), where zi = hobs(yi) is the
observed state at time ti. Thus, instead, we consider the MPC problem

min
u0:p−1∈V p

Jobs(z̃1:p) =

p−1∑
i=0

Pobs(ti+1, z̃i+1),

s.t. z̃i+1 = Φr
ui

(z̃i), i ∈ {0, . . . , p− 1},
(III)

where Pobs : [t0, tp]×Z → R is the adapted objective function and z̃0 = z0 = hobs(y0)
is the initially observed state of the system.

As discussed in Section 2.1.2, due to switching to the observed space, the objective
function has to be altered as well, and we assume that it is consistent with the
original objective, i.e., we assume that Equation (2.5) holds:

Pobs(t, hobs(y)) = P (t, y) ∀t ∈ [t0, tp] and y ∈ Y. (4.1)

Hence, there is no error introduced by replacing the objective.

In order to train the models, a (long) time series with random control inputs in V
can be created and afterwards be split according to the applied control, leading to
training sets for the respective models Φr

uj . This way, it can be ensured that (in the
expected value) the entire state space is covered if the set V is appropriately chosen.
Although the entire state space has still to be captured, due to the autonomous
models, it is not necessary to cover the entire product space Y ×U but only Y ×V .
Intuitively, this leads to a reduced amount of required data. Nevertheless, it is
unclear whether the state space is covered equally fast (and accurate) by random
control inputs in V compared to random control inputs in U . Therefore, this aspect
is further investigated in Section 4.4 through numerical studies.

Optimization The optimization problem resulting from using multiple au-
tonomous models is hard to solve since it is discrete. In principle, we have three
possibilities to derive a solution of Problem (III):

(1) We can solve Problem (III) directly, e.g., with dynamic programming [BD15]
or by evaluating all possible solutions.

(2) We can use relaxation approaches to obtain a continuous problem, which can
be solved with standard solution methods for nonlinear constrained optimiza-
tion. With this solution, we can proceed in two ways:

(2a) We can apply the corresponding interpolated control directly to the sys-
tem.

72

4.1. The Basic Idea of the QuaSiModO Framework

(2b) We can use rounding techniques, e.g., sum-up-rounding (SUR) [SBD12],
cf. Section 4.1.1, resulting in a control function with values in V .

If the number of discrete control inputs m and the MPC horizon p are small, Op-
tion (1) might be a suitable strategy. Otherwise, this possibility would not be feasible
to solve the combinatorial optimization problem due to the curse of dimensional-
ity. Therefore, we make use of relaxation techniques. More specifically, we follow
the approach of (outer) convexification proposed in [Sag05] and further discussed
in [SBD12]. To this end, in a first step, we derive an equivalent formulation of Pro-
blem (III) by introducing a binary control variable ω ∈ {0, 1}m determining which
control in V is active, i.e., instead of Φr

u(z̃) we write
∑m

j=1 ωjΦ
r
uj(z̃) where

ωj =

{
1, if uj = u,

0, else,
for j ∈ {1, . . . ,m}.

Thus, to transform Problem (III), we replace u0:p−1 ∈ V p by the binary control
variable ω0:p−1 = (ωi)i=0,...,p−1 ∈ ({0, 1}m)p as described above. We denote the entries
of ωi by ωi,j, i ∈ {0, . . . , p − 1} and j ∈ {1, . . . ,m}, i.e., ωi,j ∈ {0, 1} denotes
whether uj is applied to the system at time ti. This leads to the following equivalent
formulation of Problem (III):

min
ω0:p−1∈({0,1}m)p

Jobs(z̃1:p) =

p−1∑
i=0

Pobs(ti, z̃i+1),

s.t. z̃i+1 =
m∑
j=1

ωi,jΦ
r
uj(z̃i) and

m∑
j=1

ωi,j = 1, for i ∈ {0, . . . , p− 1}.

(ÎII)

The second condition ensures that only one control input from V is considered in
each time step, i.e., for every i ∈ {0, . . . , p− 1}, it exists j′ ∈ {1, . . . ,m} with

ωi,j =

{
1, if j = j′,

0, if j 6= j′,

such that

m∑
j=1

ωi,jΦ
r
uj(zi) = Φr

uj′
(zi).

Replacing the discrete set {0, 1} by the interval [0, 1], i.e., replacing ω0:p−1 ∈
({0, 1}m)p by a continuous control variable α0:p−1 = (αi)i=0,...,p−1 ∈ ([0, 1]m)p,
yields a continuous control problem based on the discrete autonomous surrogate

73

Chapter 4. Utilizing Autonomous Models for MPC

models:

min
α0:p−1∈([0,1]m)p

Jobs(z̃1:p) =

p−1∑
i=0

Pobs(ti+1, z̃i+1),

s.t. z̃i+1 =
m∑
j=1

αi,jΦ
r
uj(z̃i),

and
m∑
j=1

αi,j = 1, for i ∈ {0, . . . , p− 1}.

(IV)

This relaxed problem can now be solved with standard techniques from nonlinear
constraint optimization, e.g., with a gradient descent method or an SQP solver
[NW06]. As stated above, there are now two possibilities to construct a control u
from the optimal solution α∗(IV) of Problem (IV). The first one, Option (2a), is to
simply calculate the convex combination given by α∗(IV), i.e.,

ui =
m∑
j=1

α∗(IV)i,j
uj, for i ∈ {0, . . . , p− 1}. (4.2)

Obviously, this is only valid if the control set U is convex. Otherwise, the calcu-
lated control would not be feasible. Furthermore, this way, an interpolation error
is introduced. Nevertheless, if a control affine system – or a “nearly affine” system
– is considered, this is the best choice since no additional interpolation error is in-
troduced in this case. Alternatively, rounding techniques can be used to derive a
control u with values exclusively in V , cf. Option (2b). Here, we use the SUR algo-
rithm presented in [SBD12]. Hence, a short introduction to this algorithm, including
some results on error bounds that are also used to derive bounds for the presented
QuaSiModO approach in Section 4.2, is given in the following subsection.

4.1.1 SUR for (Mixed) Integer Control Problems

To compute a control u0:p−1 (nearly) optimal for Problem (III) from the optimal
solution α∗(IV) of Problem (IV), we want to use rounding techniques. More precisely,
the sum-up-rounding (SUR) algorithm, originally presented in [Sag05], is used to
derive a binary control ωSUR ∈ ({0, 1}m)p from α∗(IV) which can be proven to be nearly
optimal for Problem (ÎII). By identifying the binary control ωSUR with a control
uSUR ∈ V p, we get a solution for Problem (III). In [Sag05], the SUR algorithm was
introduced to solve mixed integer control problems via relaxation and subsequent
rounding. It takes into account the rounding decision made in previous time steps
and, in contrast to other rounding strategies, provides the special ordered set property
for the rounded solution, i.e., the second constraint stated in Problem (ÎII) is fulfilled
by ωSUR. Hence, in each time step, ωSURi ∈ {0, 1}m can uniquely be identified with

74

4.1. The Basic Idea of the QuaSiModO Framework

a control value in V . The rounding is done as follows:

ω̂i,j =
i∑

k=0

α∗(IV)k,j
−

i−1∑
k=0

ωSURk,j (4.3a)

ωSURi,j =

{
1, if j = min({l ∈ {1, . . . ,m} : ω̂i,l = maxρ∈{1,...,m} ω̂i,ρ}),
0, else.

(4.3b)

Now, to compute the control uSUR, we simply have to sum up over the uj ∈ V ,
i.e.,

uSURi =
m∑
j=1

ωSURi,ju
j, i ∈ {0, . . . , p− 1}, (4.3c)

whereby only one summand is unequal zero and, hence, uSURi ∈ V .

Note that, in principle, the rounding could be done on a finer grid than the one used
to optimize the control. Indeed, to guarantee the existence of a trajectory created
by a discrete control that is arbitrary close to the optimal trajectory resulting from
a continuous control input, it is necessary to allow for an arbitrary small switching
time ∆tSUR, i.e., the time on which a constant control is applied to the system.
Nevertheless, the switching time is limited by practical requirements of the real
system (and in the case of numerical simulation by the time discretization used for
the numerical solver). In Figure 4.2, the SUR procedure is briefly demonstrated by
means of two examples.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.2: Two examples for the SUR algorithm for V = {u1, u2}, i.e., m = 2 (with
discretization ∆t = ∆tSUR = 0.1). The first components of the relaxed control (αi,1)
and the rounded control (ωSURi,1) are shown in dark blue and cyan, respectively.
(The second component is uniquely determined by 1− αi,1 or 1− ωSURi,1.)

To derive error bounds for the presented approach, in [SBD12], Grönwall’s inequal-
ity [Grö19] is used to show the similarity of trajectories resulting from the relaxed

75

Chapter 4. Utilizing Autonomous Models for MPC

control and the corresponding control derived via the SUR algorithm. Therefore,
the system in continuous time is considered there. Hence, instead of the time dis-
crete trajectories and control variables, we consider the continuous control functions
α : [t0, tp]→ [0, 1]m, ωSUR : [t0, tp]→ {0, 1}m and uSUR : [t0, tp]→ V and the respec-
tive trajectories of the time continuous system. Nevertheless, the switching time is
still greater than zero, i.e., ωSUR and uSUR are constant over the intervals of length
∆tSUR and we can still refer to these constant values by ωSURi ∈ {0, 1} or uSURi.
Thus, the formula for the SUR algorithm for a control α : [t0, tp]→ [0, 1]m is given
by (4.3), where (4.3a) is replaced by

ω̂i,j =

ˆ ti

t0

(α(t))j dt−
i−1∑
k=0

ωSURk,j ·∆tSUR. (4.4)

In [SBD12], the main result, which we use to derive the error bounds in the subse-
quent section for the presented approach as well, is that the trajectories resulting
from the relaxed control and the corresponding control derived by the SUR algo-
rithm are arbitrarily close if the switching time ∆tSUR is arbitrarily small. Assuming
that J (and P) are Lipschitz continuous, this directly implies that the optimal value
of J of Problem (ÎII) (and hence of Problem (III)) is arbitrarily close to the opti-
mal value of J in Problem (IV). To show the similarity of the two trajectories, the
authors formulated the following variant of Grönwall’s inequality which is a slight
adaption and is used in the subsequent section to prove the error bounds.

Unless otherwise stated, in the remainder of this chapter, we denote by ‖·‖ the
maximum norm ‖·‖∞. Furthermore, by L1([t0, tp], Y) we denote the Banach space of
Lebesgue integrable functions mapping from the interval [t0, tp] to the space Y ⊆ Rny

and by L∞([t0, tp],R) the space of essential bounded functions mapping from [t0, tp]
to R.

Lemma 4.1.1 (Adapted Grönwall’s Lemma). Let a, b : [t0, tp] → R be two real-
valued integrable functions on an interval [t0, tp]. Assume that for a constant L ≥ 0
it holds for almost all t ∈ [t0, tp]

a(t) ≤ b(t) + L

ˆ t

t0

a(τ)dτ.

Then, for almost all t ∈ [t0, tp], we have

a(t) ≤ b(t) + L

ˆ t

t0

eL(t−τ)b(τ)dτ.

Moreover, if b belongs to L∞([t0, tp],R), it holds for almost all t ∈ [t0, tp] that

a(t) ≤ ‖b‖ eL(t−t0). (4.5)

If a, in addition, is continuous, (4.5) is satisfied for all t ∈ [t0, tp] (and not only for
almost all t).

76

4.1. The Basic Idea of the QuaSiModO Framework

Proof. The proof can be found in [Ger11].

Based on Grönwall’s inequality, the following lemma can be proven which allows
us to estimate the distance between trajectories given by different time-T-maps
and different control inputs. A similar idea is used, for instance, in [SBD12] (and
[MK20]) to derive error bounds for the SUR algorithm. We formulate this as a
separate lemma since we use the result to derive our own error bounds as well.

Note that we here (and in the subsequent theorem) consider the case where the
function g describing the system dynamics is allowed to depend explicitly on the
time t, although we excluded this case before. This is necessary to derive an error
bound for the SUR algorithms applied to the system given by the discrete-time
surrogate models, later on, cf. Lemma 4.2.10.

Lemma 4.1.2. Let g, ḡ : [t0, tp]× Y × U → Y and u, ū : [t0, tp]→ U be measurable
functions with Y ⊆ Rny and U ⊆ Rnu. Furthermore, assume that g(·,y(·),u(·)) and
ḡ(·, ȳ(·), ū(·)) ∈ L1([t0, tp], Y) and we define y, ȳ : [t0, tp]→ Y by

y(t) = y0 +

ˆ t

t0

g(τ,y(τ),u(τ)) dτ and

ȳ(t) = ȳ0 +

ˆ t

t0

ḡ(τ, ȳ(τ), ū(τ)) dτ,

with y0, ȳ0 ∈ Y . Moreover, assume that

‖ḡ(t,y(t), ū(t))− ḡ(t, ȳ(t), ū(t))‖ ≤ Lḡ ‖y(t)− ȳ(t)‖

holds for almost all t ∈ [t0, tp]. If, in addition,

sup
t∈[t0,tp]

∥∥∥∥ˆ t

t0

g(τ,y(τ),u(τ))− ḡ(τ,y(τ), ū(τ)) dτ

∥∥∥∥ ≤M,

then,

‖y(t)− ȳ(t)‖ ≤ (M + ‖y0 − ȳ0‖)eLḡt ∀t ∈ [t0, tp].

Proof. Let t ∈ [t0, tp]. Then,

‖y(t)− ȳ(t)‖ =

∥∥∥∥y0 − ȳ0 +

ˆ t

t0

g(τ,y(τ),u(τ))− ḡ(τ, ȳ(τ), ū(τ)) dτ

∥∥∥∥
≤ ‖y0 − ȳ0‖+

∥∥∥∥ˆ t

t0

g(τ,y(τ),u(τ))− ḡ(τ,y(τ), ū(τ)) dτ

∥∥∥∥
+

∥∥∥∥ˆ t

t0

ḡ(τ,y(τ), ū(τ))− ḡ(τ, ȳ(τ), ū(τ)) dτ

∥∥∥∥
≤ ‖y0 − ȳ0‖+M +

ˆ t

t0

‖ḡ(τ,y(τ), ū(τ))− ḡ(τ, ȳ(τ), ū(τ))‖ dτ

≤ ‖y0 − ȳ0‖+M + Lḡ

ˆ t

t0

‖y(τ)− ȳ(τ)‖ dτ.

77

Chapter 4. Utilizing Autonomous Models for MPC

We can now apply Grönwall’s lemma, cf. Lemma 4.1.1, and obtain

‖y(t)− ȳ(t)‖ ≤ (M + ‖y0 − ȳ0‖) · eLḡt ∀t ∈ [t0, tp].

In the MPC context, y0 = ȳ0 is the current state, and we obtain a bound for the
distance between two trajectories related to different systems, for instance, for the
relaxed and the discrete system. Note that the bounds Lḡ and M have only to
hold for the considered trajectories, not over the entire state and control space. If ḡ
is Lipschitz continuous in the second argument, the constant Lḡ can be replaced
by the Lipschitz constant. Now, to estimate the distance between the optimal
trajectory of the relaxed and the discrete system, we can derive a bound M and
apply Lemma 4.1.2. This is also done in [SBD12], and the main results from there
that we use in this chapter are summarized in the following theorem.

Theorem 4.1.3. Let Y ⊆ Rn and V = {u1, . . . , um} ⊆ Rnu. In addition, assume
that g : [t0, tp]× Y × V → Y , y : [t0, tp] → Y and α : [t0, tp]→ [0, 1]m are measur-
able functions and that ω : [t0, tp]→ {0, 1}m is constructed from α via SUR (cf. Eq.
(4.3) and (4.4)) with switching time ∆tSUR. Then,∥∥∥∥ˆ t

t0

α(τ)− ω(τ) dτ

∥∥∥∥ ≤ (m− 1)∆tSUR ∀t ∈ [t0, tp].

Furthermore, assume that g(·,y(·), uj) is differentiable for almost all t ∈ [t0, tp] and
that constants C1 and C2 ∈ R exist for all uj ∈ V such that for almost all t ∈ [t0, tp]:∥∥∥∥ ddtg(t,y(t), uj)

∥∥∥∥ ≤ C1 and
∥∥g(t,y(t), uj)

∥∥ ≤ C2.

Then,

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

m∑
j=1

g(τ,y(τ), uj)(αj(τ)− ωj(τ)) dτ

∥∥∥∥∥ ≤ (C2 + p∆t · C1)(m− 1)∆tSUR︸ ︷︷ ︸
=:MSUR(∆tSUR)

.

Proof. This result is proven in [SBD12].

Remark 4.1.4. The bound derived in the previous theorem can be improved in two
ways. First, in [SBD12], it was proven that for m = 2 the factor (m − 1) = 1
can be reduced to 0.5. Furthermore, (for m ≥ 2) m can be replaced by the max-
imal number of nonzero elements αj(t), t ∈ [t0, tp], i.e., m can be reduced to
maxt∈[t0,tp] |{j : 1 ≤ j ≤ m and αj(t) 6= 0}|.

Remark 4.1.5. A similar result can be found in [MK20] but with weaker as-
sumptions on the function g. There, the authors proved that if g(t,y(·), uj) ∈
L1([t0, tp], Y) for all uj ∈ V and

lim
∆tSUR→0

∥∥∥∥ˆ t

t0

α(τ)− ω(τ) dτ

∥∥∥∥ = 0,

78

4.2. Error Bounds

then

lim
∆tSUR→0

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

m∑
j=1

g(τ,y(τ), uj)(αj(t)− ωj(τ)) dτ

∥∥∥∥∥ = 0.

Moreover, their results are not limited to ODEs, but they proved the error bound
for systems given by semilinear PDEs and derived the result for ODEs as a simple,
special case. Here, we use the result from [SBD12], as we want to use the concrete
error bound for a specific switching time given therein.

4.2 Error Bounds

In this section, we aim to derive error bounds for the presented approach. More
precisely, we consider the open-loop problems introduced in the previous section and
derive a bound on the difference of the value of the objective function J resulting
from the computed control input from the QuaSiModO approach and the minimal
value of J , i.e., the value of J for the optimal solution u∗(I) of Problem (I). To this
end, we first show that the trajectory induced by the optimal solution of (II) can
be arbitrarily close to the optimal trajectory y∗(I) of (I). Afterwards, we incorporate
the errors caused by the approximation of the system by a surrogate model and the
different methods to solve the discretized control problem (III), i.e., by the SUR
procedure or the linear interpolation of the control. Note that we do not consider
specific surrogate models but leave the choice open and therefore assume that the
model error is given and is not part of our study, cf. Assumption 4.2.7.

We start by showing that the optimal solutions of (I) and (II) can get arbitrarily
close, i.e., we examine the error caused by the quantization step. Obviously, the
optimal value J∗(I) of (I) is always at least as small as the optimal value J∗(II) of (II)
as V ⊆ U . For the other direction, we show that for each control u : [t0, tp]→ U , we
can construct a sequence of controls (vn)n∈N with vn : [t0, tp] → V which leads to
trajectories converging to the trajectory induced by u. In [Waż63], it was already
proven that this holds if the set of points in the state space reachable with control
inputs from U is a subset of the convex hull of the points reachable with control
inputs in V . Here, we show the same, but more constructively. This allows us to
derive concrete error bounds in the case that this assumption is not satisfied, and,
more importantly, we derive a bound for the error as a function of the switching
time ∆tSUR allowed for (II).

Although we have introduced the framework for discrete time systems in the previous
section, for simplicity and in agreement with [SBD12], cf. Section 4.1.1, we prove the
bounds for continuous-time systems. The error bounds for the optimization problem
in discrete time then follow directly.

To this end, we utilize Lemma 4.1.2. In the MPC context, y0 = ȳ0 is the current
state, and we obtain a bound for the distance between two trajectories related to
the two MPC problems (I) and (II). Note that the given bound M only has to hold
for the optimal trajectory of the original MPC problem (I), not on the entire state

79

Chapter 4. Utilizing Autonomous Models for MPC

space Y . In order to prove an error bound between the optimal solutions of (I) and
(II), according to Lemma 4.1.2, we need to construct a control v with v(t) ∈ V for
the optimal solution u∗ of (I) and derive the following bound:

sup
t∈[t0,tp]

∥∥∥∥ˆ t

t0

g(y∗(τ),u∗(τ))− g(y∗(τ),v(τ)) dτ

∥∥∥∥ ≤M. (4.6)

Therefore, we follow a similar idea as in Section 4.1.1 for the solution derived by SUR,
i.e., we consider the (outer) relaxation of (II). Hence, we consider the trajectory of
the system given by

ẏ(t) =
m∑
j=1

αj(t)g(y(t), uj), i.e.,

y(t) = y0 +

ˆ t

t0

m∑
j=1

αj(τ)g(y(τ), uj) dτ.

(4.7)

We start by proving that there is a trajectory of system (4.7) which is arbitrarily
close to the optimal trajectory of (I), i.e., we prove that (4.6) holds for those two
trajectories with a certain bound M . The existence of a solution of (II) that is
arbitrarily close to this constructed relaxed trajectory and a corresponding bound
can then be proven by employing the results from the previous section.

Lemma 4.2.1. Let U ⊆ Rnu be bounded and V = {u1, . . . , um} ⊆ U be a
finite subset. Furthermore, let g : Y × U → Y and y : [t0, tp] → Y be contin-
uous and u : [t0, tp]→ U be measurable. Then, there exists a measurable function
α : [t0, tp]→ [0, 1]m such that

∑m
j=1αj(t) = 1 ∀t ∈ [t0, tp] and

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

g(y(τ),u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ) dτ

∥∥∥∥∥ ≤ p∆t ·D =: MV ,

where D is the maximal distance between the reachable set corresponding to U and
the convex hull of the reachable set corresponding to V over the time interval [t0, tp].
More precisely,

D = sup
t∈[t0,tp]

sup
ȳ∈g(y(t),U)

d(ȳ,Conv(g(y(t), V)))

where d denotes the distance between a point a ∈ Rn and a set B ⊆ Rn, i.e.,
d(a,B) = infb∈B ‖a− b‖.

Proof. For every t ∈ [t0, tp], let yc(t) be the element in Conv(g(y(t), V)) which is
closest to g(y(t),u(t)), i.e.,

‖g(y(t),u(t))− yc(t)‖ = d(g(y(t),u(t)),Conv(g(y(t), V))).

We can write yc(t) as a convex combination, i.e.,

yc(t) =
m∑
j=1

g(y(t), uj)αj(t),

80

4.2. Error Bounds

with α(t) ∈ [0, 1]m and
∑m

j=1αj(t) = 1. Note that it is possible to choose yc(t) and
α(t) such that t 7→ α(t) is measurable. Therefore, it holds for every t ∈ [t0, tp]

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

g(y(τ),u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ) dτ

∥∥∥∥∥
≤ sup

t∈[t0,tp]

ˆ t

t0

‖g(y(τ),u(τ))− yc(τ)‖ dτ

≤ p∆t · sup
t∈[t0,tp]

‖g(y(t),u(t))− yc(t)‖

≤ p∆t · sup
t∈[t0,tp]

sup
ȳ∈g(y(t),U)

d(ȳ,Conv(g(y(t), V)))︸ ︷︷ ︸
=D

= MV .

Note that D <∞ since g and y are continuous and U is bounded.

Remark 4.2.2. According to Lemma 4.2.1, V has to be chosen such that the extreme
points of the reachable set corresponding to U can be reached with the control inputs
uj ∈ V for the (optimal) trajectory y, in order to obtain MV = 0. Since the optimal
trajectory is, in general, not known a priori, it is necessary to ensure this condition
for all states y ∈ Y or at least for all states in the “optimal region” of the system,
which may be estimated beforehand. For arbitrary systems, it is usually challenging
to determine the reachable sets. Hence, this condition is hard to prove or maybe even
impossible to verify a priori. One exception is the case of control affine systems.
There, only the extreme points of U have to be included in V , which is typically easy
to prove. In the case of box constraints, V can simply be chosen as the corners of
the box. Nevertheless, even when the system is not control affine, in many practical
applications, the engineer or expert may have a feeling for which control inputs the
system states changes the most.

Using Theorem 4.1.3 to estimate the error between the relaxed and the discrete
control, we can now ensure that for each continuous control u : [t0, tp]→ U , there is
corresponding discrete control ū : [t0, tp]→ V yielding a trajectory that is arbitrary
close to the trajectory resulting from u.

Theorem 4.2.3. Let U ⊆ Rnu be bounded and V = {u1, . . . , um} ⊆ U be a finite
subset. Assume g : Y × U → Y , Y ⊆ Rny , is continuous, u : [t0, tp] → U is
measurable and y : [t0, tp]→ Y is given by

y(t) = y0 +

ˆ t

t0

g(y(τ),u(τ)) dτ, y0 ∈ Y.

Furthermore, let g(y(·), uj) be differentiable for almost all t ∈ [t0, tp] and all uj ∈ V .
Moreover, assume that there exist constants C1 and C2 ∈ R such that for all uj ∈ V
and for almost all t ∈ [t0, tp] it holds∥∥∥∥ ddtg(y(t), uj)

∥∥∥∥ ≤ C1 and
∥∥g(y(t), uj)

∥∥ ≤ C2.

81

Chapter 4. Utilizing Autonomous Models for MPC

In addition, assume that g is Lipschitz continuous in the first argument with Lip-
schitz constant Lg for all uj ∈ V . Then, for every ε > 0, there exists a discrete
control function ū : [t0, tp]→ V , such that for ȳ given by

ȳ(t) = ȳ0 +

ˆ t

t0

g(ȳ(τ), ū(τ)) dτ, ȳ0 ∈ Y,

it holds

‖y(t)− ȳ(t)‖ ≤ (MV + ε+ ‖y0 − ȳ0‖) · eLgt ∀t ∈ [t0, tp].

Proof. Lemma 4.2.1 ensures that a measurable function α : [t0, tp]→ [0, 1]m exists
with

∑m
j=1αj(t) = 1 ∀t ∈ [t0, tp] and MV > 0, such that

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

g(y(τ),u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ) dτ

∥∥∥∥∥ ≤MV .

Now, let ω : [t0, tp] → {0, 1}m with
∑m

j=1ωj(t) = 1 ∀t ∈ [t0, tp] be the binary
control derived via SUR from α with switching time ∆tSUR. Then, according to
Theorem 4.1.3, it holds

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

m∑
j=1

g(y(τ), uj)(αj(τ)− ωj(τ)) dτ

∥∥∥∥∥ ≤MSUR(∆tSUR),

with MSUR(∆tSUR) = (C2 + p∆t · C1)(m− 1)∆tSUR. Therefore, we obtain

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

g(y(τ),u(τ))−
m∑
j=1

g(y(τ), uj)ωj(τ) dτ

∥∥∥∥∥ ≤MV +MSUR(∆tSUR). (4.8)

Now, let ε > 0. Choosing the switching time ∆tSUR sufficiently small ensures that
MSUR(∆tSUR) < ε. Thus, inserting the control function

ū : [t0, tp]→ V, ū(t) =
m∑
j=1

ωj(t)u
j

into (4.8) yields the bound

sup
t∈[t0,tp]

∥∥∥∥ˆ t

t0

g(y(τ),u(τ))− g(y(τ), ū(t)) dτ

∥∥∥∥ ≤MV + ε.

Thus, by applying Lemma 4.1.2, we obtain the desired result.

Remark 4.2.4. According to Remark 4.1.4, the factor (m− 1) in MSUR(∆tSUR) in
Theorem 4.2.3 can be reduced to (m̂− 1) with

m̂ = max
t∈[t0,tp]

|{j : 1 ≤ j ≤ m and αj(t) 6= 0}|.

Taking the proof of Lemma 4.2.1 into account, m̂ is limited by the number of elements
in V that are actually required to represent yc(t) as convex combination of g(y(t), uj).
According to Carathéodory’s theorem, these can be at most ny + 1 elements (for
each t ∈ [t0, tp]), cf. [Gal11]. Therefore, it is likely possible to prove a similar result
even for an infinite set V .

82

4.2. Error Bounds

Finally, with respect to the control problems (I) and (II), we can derive a relation
between the optimal values of Problems (I) and (II). Note that for the discrete
system (II), the switching time ∆tSUR is bounded below by the time discretization
∆t. Furthermore, to stay in the same time grid, ∆tSUR must be a multiple of
∆t.

Corollary 4.2.5. Let u∗0:p−1 ∈ Up be an optimal solution of (I) with corresponding
trajectory y∗1:p ∈ Y p for a fixed initial value y0 ∈ Y , where P : [t0, tp] × Y → R
is Lipschitz continuous with Lipschitz constant LP in the second argument for all
t ∈ [t0, tp]. Assume that the function g : Y × U → Y defining the underlying system
corresponding to the time-T-map Φ satisfies the requirements of Theorem 4.2.3 for
V ⊆ U and the optimal trajectory. Then, there exists a tuple (ȳ1:p, ū0:p−1) ∈ Y p × V p

which is feasible for (II) for the same initial value y0, where we allow for a switching
time ∆tSUR = k ·∆t, k ∈ N, such that∣∣J(y∗1:p)− J(ȳ1:p)

∣∣ ≤ Elin(V) + ESUR(∆tSUR),

where

Elin(V) = γ(∆t) · LP ·MV

ESUR(∆tSUR) = γ(∆t) · LP ·MSUR(∆tSUR)

with

γ(∆t) =

{
eLg∆t(epLg∆t−1)

eLg∆t−1
if Lg > 0,

p if Lg = 0.

Proof. First, we construct ū0:p−1. Therefore, the control α0:p−1 ∈ ([0, 1]m)p of the
relaxed system is chosen as in Lemma 4.2.1 and ω0:p−1 ∈ ({0, 1}m)p is constructed
via SUR from α0:p−1 and we define ūi :=

∑m
j=1 ωi,ju

j. Furthermore, let ȳ1:p be the
discrete trajectory derived by the control ū0:p−1. By Theorem 4.2.3 and the Lipschitz
continuity of P in the second argument, we directly obtain

∣∣J(y∗1:p)− J(ȳ1:p)
∣∣ ≤ p−1∑

i=0

LP
∥∥y∗i+1 − ȳi+1

∥∥
≤ LP (MV +MSUR(∆tSUR))

p−1∑
i=0

eLgti+1

︸ ︷︷ ︸
=γ(∆t)

.

Note again that MV = 0 (and hence Elin(V) = 0) for an appropriate choice of V .
Furthermore, it holds

lim
∆tSUR→0

MSUR(∆tSUR) = 0 and lim
∆t→0

γ(∆t) = p.

83

Chapter 4. Utilizing Autonomous Models for MPC

Thus, the error ESUR(∆tSUR) can be made arbitrarily small by choosing ∆tSUR arbi-
trary small, which requires ∆t to be arbitrarily small. Moreover, note that Lg = 0
would imply that the current state has no influence on the trajectory, i.e., the evolu-
tion of the system only depends on the control input, which is an irrelevant special
case.

Remark 4.2.6. An error bound can also be obtained if P (and J) explicitly depend
on the control u, e.g., by including the control cost ‖u‖. In this case, however, an
additional term needs to be added that pessimistically bounds the distance between
the optimal control input and the switching control with values in V . In the worst
case, the distance can only be bounded by the diameter of U , i.e., by supa,b∈U ‖a− b‖.

Combination with model error

Until now, we only proved that the error introduced by the quantization step can
be made arbitrarily small by decreasing the switching time ∆tSUR. To derive error
bounds for the whole QuaSiModO framework, the next question is how the model
error influences the solution. Afterwards, it is possible to derive error bounds for
the three different solution options (1), (2a) and (2b), proposed in Section 4.1.

To this end, we need to introduce the model error for the autonomous systems. As
stated before, we assume that this error is known beforehand since it is out of the
scope of this thesis to derive error bounds for different surrogate models. Hence, we
make the subsequent assumption. For ease of notation, we consider only a single
bound, i.e., the maximum of all bounds, for all models.

Assumption 4.2.7. In the following, we assume that Em : R≥0×R≥0 → R≥0 exists
with

‖hobs(Φuj(y))− Φr
uj(z̃)‖ ≤ Em(‖hobs(y)− z̃‖ ,∆t) ∀y ∈ Y, z̃ ∈ Z, j ∈ {1, . . . ,m}.

In the first time step of an MPC optimization step, the model acts usually on the real
system state, i.e., z̃0 = z0 = hobs(y0). In the subsequent time steps, the model error
accumulates since the model gets as input only the approximation of the observed
state, i.e., we obtain the following bounds on the model error Emodel,i at time ti:

Emodel,0 = 0,

Emodel,i ≤ Em(Emodel,i−1,∆t) for i ∈ {1, . . . , p}.
(4.9)

Depending on the technique used to build the surrogate models, such error bounds
are already available. See, for instance, [Vol11] for bounds on POD or [Nüs+21]
for the modeling error of models generated via eDMD with a finite amount of data.
Given the increasing interest in machine learning and data-based methods, especially
in recent years, it is likely that the theory will be extended to error bounds for various
surrogate modeling techniques, justifying Assumption 4.2.7 for the moment.

Now, we are able to state the different error bounds. In contrast to the previously
derived results, we directly consider the difference between the value of the objective

84

4.2. Error Bounds

J for the optimal control input and the controls computed within our approach. To
shorten the expressions and make it easier to read, we introduce a notation for the
prediction of the state by the time-T-map and its observable by the autonomous
models over the MPC horizon of p time steps, i.e., we define Φ : Up → Y p by

y1:p = Φ(u0:p−1),

where y1:p = (yi)i=1,...,p and u0:p−1 = (ui)i=0,...,p−1 with

yi+1 = Φ(yi, ui) for i ∈ {0, . . . , p− 1},

where Φ is the “normal” time-T-map of the system, we introduced before. Analo-
gously, we write z̃1:p = Φr(u0:p−1) for u0:p−1 ∈ V p in case of the surrogate models,
i.e., z̃i+1 = Φr

ui
(z̃i) where we assume z̃0 = z0 = hobs(y0). First, we study the influ-

ence of the modeling error on the objective, i.e., for a fixed control u0:p−1 ∈ V p, we
want to derive a bound for |J(Φ(u0:p−1))− Jobs(Φr(u0:p−1))| which consists of the
Lipschitz constant of the objective and the model error.

Lemma 4.2.8. Assume we are in the setting introduced in Section 4.1 and As-
sumption 4.2.7 holds. Let u0:p−1 ∈ V p be an arbitrary control sequence and Pobs

be Lipschitz continuous in the second argument with Lipschitz constant LPobs
for all

t ∈ [t0, tp]. Then,

|J(Φ(u0:p−1))− Jobs(Φr(u0:p−1))| ≤ LPobs

p∑
i=1

Emodel,i

with Φ and Φr as defined above and Emodel,i as in Equation (4.9).

Proof. Let be y1:p = Φ(u0:p−1) and z̃1:p = Φr(u0:p−1). Then,

|J(Φ(u0:p−1))− Jobs(Φr(u0:p−1))|

=

∣∣∣∣∣
p−1∑
i=0

P (ti+1,Φui(yi))− Pobs(ti+1,Φ
r
ui

(z̃i))

∣∣∣∣∣
(4.1)
=

∣∣∣∣∣
p−1∑
i=0

Pobs(ti+1, hobs(Φui(yi)))− Pobs(ti+1,Φ
r
ui

(z̃i))

∣∣∣∣∣
≤

p−1∑
i=0

LPobs

∥∥hobs(Φui(yi))− Φr
ui

(z̃i)
∥∥

≤
p∑
i=1

LPobs
Emodel,i.

Based on this lemma, we are now able to bound the error between the value of J for
the optimal solution u∗(I) of Problem (I) and the value of J that can be obtained by

85

Chapter 4. Utilizing Autonomous Models for MPC

the different controls computed by applying the different solution methods presented
in Section 4.1. Basically, the bounds are derived by summing up the different errors
using the triangular inequality. Furthermore, special attention to the case of linear
observables is paid as tighter bounds can be proven in this case.

We start by analyzing the most obvious approach (1), i.e., solving Problem (III)
directly. If we have a sufficiently small set V and a small number of time steps in
the prediction horizon p, this option can be very efficient. The derived error bound
is given in the following lemma.

Lemma 4.2.9. Let u∗(I) ∈ Up be the optimal solution of Problem (I) and u∗(III) ∈ V p

the optimal solution of Problem (III). Moreover, assume that Assumption 4.2.7
holds and P and Pobs are Lipschitz continuous in the second argument with Lip-
schitz constant LP and LPobs

, respectively. Furthermore, assume that the function
g : Y × U → Y defining the underlying system corresponding to the time-T-map Φ
satisfies the requirements of Theorem 4.2.3 for V ⊆ U and the optimal trajectory of
Problem (I). Then,

|J(Φ(u∗(I)))− J(Φ(u∗(III)))| ≤ Elin(V) + ESUR(∆tSUR) + Er(Em), (E1)

where Elin(V) and ESUR(∆tSUR) as in Corollary 4.2.5 and

Er(Em) = 2LPobs

p∑
i=1

Emodel,i. (4.10)

Proof. First, we aim at deriving a bound for |J(Φ(u∗(III)))− J(Φ(u∗(II)))|, where u∗(II)
is the (global) optimal solution of Problem (II). Since u∗(II) is the optimal solution
of Problem (II), we can neglect the absolute value, i.e., it holds∣∣J(Φ(u∗(III)))− J(Φ(u∗(II)))

∣∣ = J(Φ(u∗(III)))− J(Φ(u∗(II)))

= J(Φ(u∗(III)))− Jobs(Φr(u∗(III)))︸ ︷︷ ︸
≤
∣∣∣J(Φ(u∗(III))))−Jobs(Φr(u∗(III)))

∣∣∣
+ Jobs(Φ

r(u∗(II)))− J(Φ(u∗(II)))︸ ︷︷ ︸
≤
∣∣∣Jobs(Φr(u∗(II)))−J(Φ(u∗(II))))

∣∣∣
+ (Jobs(Φ

r(u∗(III)))− Jobs(Φr(u∗(II)))︸ ︷︷ ︸
≤0, since u∗(III) is global minimum of (III)

Lem. 4.2.8

≤ 2LPobs

p∑
i=1

Emodel,i = Er(Em).

Thus, together with Corollary 4.2.5, we get the error bound∣∣J(Φ(u∗(I)))− J(Φ(u∗(III)))
∣∣ ≤ Elin(V) + ESUR(∆tSUR) + Er(Em).

Since in many practical applications we may have a finite set V = {u1, . . . , um} ⊆ U
which is too large to solve the combinatorial problem (III) directly, we introduced

86

4.2. Error Bounds

other solution methods utilizing the relaxed Problem (IV). First, we consider Op-
tion (2b), i.e., using the SUR algorithm to derive a control uSUR ∈ V p from the
optimal solution α∗(IV) of Problem (IV). Essentially, the error is composed of the
error (E1) and the error introduced by utilizing SUR. To bound the latter, we need
to consider the SUR error with respect to the discrete system given by the surro-
gate models and the relaxation of the system, i.e., the distance between the optimal
trajectory of Problem (IV) and the trajectory created by the control derived from
the SUR algorithm applied to the optimal control α∗(IV) of Problem (IV). There-
fore, we introduce an artificial trajectory in continuous time for the relaxed system
considered in Problem (IV) (and also Problem (ÎII)) by

z̃(t) := z0 +

ˆ t

t0

m∑
j=1

αj(τ) · gr(τ, z̃(τ), uj) dτ for t ∈ [t0, tp]

with

gr(t, z, uj) =
Φr
uj(z̃i)− z̃i

∆t
for t ∈ [ti, ti+1) and i ∈ {0, . . . , p− 1},

where ∆t is the step size of the discrete time-T-map Φ and Φr
uj , respectively, and

z̃i+1 =
∑m

j=1 αi,jΦ
r
uj(z̃i) for αi,j = αj(ti) (with z̃0 = z0). This system coincides with

the discrete time systems, i.e., the systems considered in Problems (ÎII) and (IV).
Since Theorem 4.1.3 is stated for time-dependent systems, it may be applied to the
system defined by gr. To this end, let α∗ : [t0, tp] → [0, 1]m be the optimal control
for Problem (IV), i.e., the function in continuous time where the constant values
over time ∆t are given by α∗(IV), and ωSUR : [t0, tp]→ {0, 1}m be the solution derived
by SUR from α∗. Then, it holds

sup
t∈[t0,tp]

∥∥∥∥∥
ˆ t

t0

m∑
j=1

gr(τ, z̃(τ), uj)(α∗
j (τ)− ωSUR,j(τ)) dτ

∥∥∥∥∥ ≤MSURr(∆tSUR).

with

MSURr(∆tSUR) = (Cr
2 + p∆t · Cr

1)(m− 1)∆tSUR, (4.11)

where Cr
1 = 0 since gr is constant for almost all t ∈ [t0, tp], and

Cr
2 =

1

∆t
max

j∈{1,...,m}
i∈{0,...,p−1}

(Φr
uj(z̃i)− z̃i)

with z̃i being the discrete trajectory corresponding to α∗(IV). Analogously to the
considerations before, cf. Corollary 4.2.5, we can estimate the error between the
optimal objective value of (IV) and the value of Jobs corresponding to the solution
created using SUR by

ESURr(∆tSUR) = p · LPobs
·MSURr(∆tSUR). (4.12)

This allows us to state the following lemma.

87

Chapter 4. Utilizing Autonomous Models for MPC

Lemma 4.2.10. Let u∗(I) ∈ Up and α∗(IV) ∈ ([0, 1]m)p be the optimal solution of Pro-
blem (I) and (IV), respectively. Furthermore, let uSUR ∈ V p be the control derived
by SUR from α∗(IV), cf. Equation (4.3). In addition, assume that Assumption 4.2.7
holds and P and Pobs are Lipschitz continuous in the second argument with Lip-
schitz constant LP and LPobs

, respectively. Furthermore, assume that the function
g : Y × U → Y defining the underlying system corresponding to the time-T-map Φ
satisfies the requirements of Theorem 4.2.3 for V ⊆ U and the optimal trajectory of
Problem (I). Then,∣∣J(Φ(u∗(I)))− J(Φ(uSUR))

∣∣ ≤ Elin(V) + ESUR(∆tSUR) + Er(Em) + ESURr(∆tSUR),

(E2b.1)

where Er(Em) = 2LPobs

∑p
i=1Emodel,i, with Emodel,i as in Equation (4.9) and Elin(V)

and ESUR(∆tSUR) as in Corollary 4.2.5. Furthermore, ESURr(∆tSUR) is the error
caused by the SUR procedure with respect to the system given by the surrogate models
and its relaxation, cf. Equations (4.11) and (4.12).

Proof. We denote the binary control variable derived by the SUR procedure from
α∗(IV) by ωSUR, i.e.,

uSURi =
m∑
j=1

ωSURi,ju
j for i ∈ {0, . . . , p− 1}.

Moreover, analogous to the notation of Φ and Φr, we introduce Φ̄ : ([0, 1]m)p → Y p

and Φ̄r : ([0, 1]m)p → Zp given by

y1:p = Φ̄(α0:p−1) with yi =
m∑
j=1

αi,jΦuj(yi) for i ∈ {0, . . . , p− 1} and

z̃1:p = Φ̄r(α0:p−1) with z̃i =
m∑
j=1

αi,jΦ
r
uj(z̃i) for i ∈ {0, . . . , p− 1},

(4.13)

where again z̃0 = z0 = hobs(y0). Then,∣∣J(Φ(u∗(I)))− J(Φ(uSUR)︸ ︷︷ ︸
=Φ̄(ωSUR)

)
∣∣ = J(Φ̄(ωSUR))− J(Φ(u∗(I)))

≤ J(Φ̄(ωSUR))− Jobs(Φ̄r(ωSUR))︸ ︷︷ ︸
≤1

2
Er(Em)

+ Jobs(Φ̄
r(ωSUR))− Jobs(Φ̄r(α∗(IV)))︸ ︷︷ ︸

≤ESURr (∆tSUR)

+ Jobs(Φ̄
r(α∗(IV)))− Jobs(Φr(u∗(III)))︸ ︷︷ ︸

≤0

+ Jobs(Φ
r(u∗(III)))− J(Φ(u∗(I)))︸ ︷︷ ︸

≤Elin(V)+ESUR(∆tSUR)+
1
2
Er(Em),

cf. proof of Lemma 4.2.9

≤ Elin(V) + ESUR(∆tSUR) + Er(Em) + ESURr(∆tSUR),

where u∗(III) is again the optimal solution of Problem (III).

88

4.2. Error Bounds

In case that the observable hobs is linear, e.g., when considering the full state ob-
servable hobs(y) = y, we can avoid the additional error considering the SUR error in
the surrogate model and, hence, derive an enhanced bound. To be more precise, the
error bound is equal to (E1) derived for Option (1), i.e., for solving (III) directly.

Lemma 4.2.11. Let u∗(I) ∈ Up and α∗(IV) ∈ ([0, 1]m)p be the optimal solution of Pro-
blem (I) and (IV), respectively, and we assume that hobs is linear. Furthermore,
let uSUR ∈ V p be the control derived by SUR from α∗(IV). In addition, assume that
Assumption 4.2.7 holds and P and Pobs are Lipschitz continuous in the second ar-
gument with Lipschitz constant LP and LPobs

, respectively. Furthermore, assume
that the function g : Y × U → Y defining the underlying system corresponding to
the time-T-map Φ satisfies the requirements of Theorem 4.2.3 for V ⊆ U and the
optimal trajectory of Problem (I). Then,∣∣J(Φ(u∗(I)))− J(Φ(uSUR))

∣∣ ≤ Elin(V) + ESUR(∆tSUR) + Er(Em), (E2b.2)

where Er(Em) = 2LPobs

∑p
i=1 Emodel,i, with Emodel,i as in Equation (4.9) and Elin(V)

and ESUR(∆tSUR) as in Corollary 4.2.5.

Proof. If hobs is linear, we can derive a bound introduced by the surrogate model
for the relaxed systems similar to Lemma 4.2.8. To this end, let Φ̄ : ([0, 1]m)p → Y p

and Φ̄r : ([0, 1]m)p → Zp be defined as in Equation (4.13) and for α0:p−1 ∈ ([0, 1]m)p

let be y1:p = Φ̄(u0:p−1) and z̃1:p = Φ̄r(u0:p−1). Then,∣∣J(Φ̄(α0:p−1))− Jobs(Φ̄r(α0:p−1))
∣∣

=

∣∣∣∣∣
p−1∑
i=0

P

(
ti+1,

m∑
j=1

αi,jΦuj(yi)

)
− Pobs

(
ti+1,

m∑
j=1

αi,jΦ
r
uj(z̃i)

)∣∣∣∣∣
(4.1)
=

∣∣∣∣∣
p−1∑
i=0

Pobs

(
ti+1, hobs

(
m∑
j=1

αi,jΦuj(yi)

))
− Pobs

(
ti+1,

m∑
j=1

αi,jΦ
r
uj(z̃i)

)∣∣∣∣∣
hobs linear

=

∣∣∣∣∣
p−1∑
i=0

Pobs

(
ti+1,

m∑
j=1

αi,jhobs (Φuj(yi))

)
− Pobs

(
ti+1,

m∑
j=1

αi,jΦ
r
uj(z̃i)

)∣∣∣∣∣
≤

p−1∑
i=0

m∑
j=1

LPobs
· αi,j ‖hobs (Φuj(yi))− Φr

uj(z̃i)‖

≤
p∑
i=1

LPobs
Emodel,i =

1

2
Er(Em),

where Emodel,i as in Equation (4.9).

Now, as in Lemma 4.2.10, we denote the binary control variable derived by the
SUR procedure from α∗(IV) by ωSUR. Furthermore, we denote by ᾱ∗ ∈ ([0, 1]m)p the
optimal solution of the relaxed problem of (II), i.e., the system equation is given by

89

Chapter 4. Utilizing Autonomous Models for MPC

(4.7). Then, we derive the error bound by∣∣J(Φ(u∗(I)))− J(Φ(uSUR))
∣∣ = J(Φ̄(ωSUR))− J(Φ(u∗(I)))

= J(Φ̄(ωSUR))− J(Φ̄(α∗(IV)))︸ ︷︷ ︸
≤ESUR(∆tSUR)

+ J(Φ̄(α∗(IV)))− Jobs(Φ̄r(α∗(IV)))︸ ︷︷ ︸
≤1

2
Er(Em)

+ Jobs(Φ̄
r(α∗(IV)))− Jobs(Φ̄r(ᾱ∗))︸ ︷︷ ︸

≤0

+ Jobs(Φ̄
r(ᾱ∗))− Jobs(Φ̄(ᾱ∗))︸ ︷︷ ︸
≤1

2
Er(Em)

+ Jobs(Φ̄(ᾱ∗))− J(Φ(u∗(I)))︸ ︷︷ ︸
≤Elin(V)

≤ Elin(V) + ESUR(∆tSUR) + Er(Em)

where u∗(III) is again the optimal solution of Problem (III).

Finally, the third option is to solve (IV) and directly apply the interpolated con-
trol to the original system, cf. Equation (4.2). Obviously, this is only feasible if
Conv(V) ⊆ U . Furthermore, we introduce an additional error caused by the linear
interpolation if the system is not control affine which may be arbitrary large. Nev-
ertheless, many real systems are control affine and in this case, we can prove the
bound presented in the following lemma provided that the observable is linear as
well.

Lemma 4.2.12. Let u∗(I) ∈ Up be the optimal solution of Problem (I) where
we assume that the system is control affine and hobs is linear. Moreover, let
α∗(IV) ∈ ([0, 1]m)p be the optimal solution of Problem (IV) and assume Conv(V) ⊆ U .
Let uint ∈ Up be the control derived by interpolation from α∗(IV), cf. Equation (4.2).
In addition, assume that Assumption 4.2.7 holds and P and Pobs are Lipschitz con-
tinuous in the second argument with Lipschitz constant LP and LPobs

, respectively.
Furthermore, assume that the function g : Y × U → Y defining the underlying sys-
tem corresponding to the time-T-map Φ satisfies the requirements of Lemma 4.2.1
for V ⊆ U and the optimal trajectory of Problem (I). In addition, assume that g is
Lipschitz continuous in the first argument with Lipschitz constant Lg for all uj ∈ V .
Then, ∣∣J(Φ(u∗(I)))− J(Φ(uint))

∣∣ ≤ Elin(V) + Er(Em), (E2a)

where Er(Em) = 2LPobs

∑p
i=1Emodel,i, with Emodel,i as in Equation (4.9) and Elin(V)

as in Corollary 4.2.5.

Proof. Let Φ̄ : ([0, 1]m)p → Y p be defined as in Equation (4.13). Since the system is
control affine, it holds Φ(uint) = Φ̄(α∗(IV)). Hence, as in the proof of Lemma 4.2.11,
it follows∣∣J(Φ(u∗(I)))− J(Φ(uint))

∣∣ = J(Φ̄(α∗(IV)))− J(Φ(u∗(I))) ≤ Elin(V) + Er(Em).

90

4.3. Numerical Experiments

Note that, in contrast to the previously derived error bounds, only a part of the
requirements of Theorem 4.2.3 have to hold for Lemma 4.2.12. More precisely,
the assumptions for Lemma 4.2.1 have to be satisfied and g has to be Lipschitz
continuous. Due to the direct interpolation, the bound MSUR(∆tSUR) is not involved
in the error estimate, and thus, the assumptions concerning g from Theorem 4.1.3
can be ignored, i.e., the constants C1 and C2 do not have to exist.

The derived bounds are summarized in Table 4.1, along with an indication of whether
control affinity of the system and linearity of the observable hobs must be assumed.

Table 4.1: Summary of error bounds corresponding to the various solution methods.

Approach Error bound
Control hobs Type of
affine linear optimization

Opt. (1) – direct solution Eq. (E1) — — combinatorial
Opt. (2b) – SUR Eq. (E2b.1) — — continuous

Eq. (E2b.2) — X continuous
Opt. (2a) – interpolation Eq. (E2a) X X continuous

4.3 Numerical Experiments

To justify the approach from a numerical perspective, it is tested on several con-
trol systems with different surrogate modeling techniques. As a first example, the
Lorenz system with approximations of the respective Koopman operators via eDMD,
cf. Section 2.2.3, is presented in Section 4.3.1. There, the main focus lies on the dif-
ference between affine control systems and systems with nonlinear control input.
Afterwards, in Section 4.3.2, the Mackey-Glass equation is considered, which is an
example of a DDE. There, ESNs are used as surrogate models, cf. Section 2.2.2.
Due to the memory incorporated into the reservoir, special attention to the use
and initialization of the reservoir has to be paid. Hence, a brief explanation of the
exact use of ESNs in the QuaSiModO framework is added. In Section 4.3.3, we
conclude with a flow control example where the surrogate models are LSTMs, cf.
Section 2.2.2.

In all examples, the aim is to track a given reference trajectory zref in the observed
space hobs(Y) ⊆ Z. To achieve this, the relaxed Problem (IV) is solved and depend-
ing on the followed solution strategy the corresponding interpolated or the rounded
control is applied to the considered system, i.e., Option (2a) or (2b) is used, respec-
tively.

4.3.1 Lorenz System & Koopman Operator:

We first consider the Lorenz system, which, despite its simple equations, exhibits
chaotic behavior and is probably one of the most commonly considered systems

91

Chapter 4. Utilizing Autonomous Models for MPC

for studying chaotic behavior. Numerous studies show that the prediction of the
system over a moderate time horizon with the help of different data-based methods
is possible. For instance, NNs are used in [SM19; Zha17] and sparse regression in
[BPK16; KKB18].

We consider the Lorenz system with an additive control term in the second dimen-
sion, i.e., the system given by the ODE

d

dt

y1

y2

y3

 =

 σ(y2 − y1)

y1(ρ− y3)− y2

y1y2 − βy3

+

0

u

0

 (4.14)

with (σ, ρ, β) = (10, 28, 8
3
). Moreover, the full state is observed, i.e., for a state y ∈ Y

the observed state is given by z = hobs(y) = y. The control task is to force the second
variable to the reference trajectory given by zref

2 (t) = yref
2 (t) = 1.5 · sin(4π · t/TMPC)

over the time interval [0, TMPC] with TMPC = 20.0. Hence, the objective minimized
in the optimization step at time ti is given by

P (ti+1, yi+1) =
∥∥yref

2 (ti+1)− yi+1,2

∥∥2

2
,

where yi,2 denotes the second dimension of the state at time ti. The control sets
are given by U = [−50, 50] and V = {−50, 50}, respectively. To construct the
surrogate models, we use approximations of the Koopman operator via eDMD, cf.
Section 2.2.3. As training data, a time series over 100 seconds using piecewise
constant inputs from V is collected, resulting in 2000 data points since the step size
for the model is chosen to be ∆t = 0.05. For the dictionary in eDMD monomials up
to degree 3 are considered. The time horizon for the MPC problem is chosen to be
p = 3. The detailed parameters of the setting are summarized in Table 4.2.

Since the considered system is control affine and we observe the full state, the
interpolated control resulting from the solution of Problem (IV) can directly be
applied to the real system without introducing an additional interpolation error,
cf. Equation (E2a). Hence, the excellent performance of the interpolated control,
shown in Figure 4.3a in dark blue, was to be expected. The control input derived
by the SUR strategy leads to a slightly worse performance caused by the switching
time ∆tSUR = 5 · 10−4. Note that, due to the relatively short switching time, the
single control values cannot be identified in Figure 4.3a and, instead, appear as an
area in cyan in the plot.

In a second step, we now want to study the effect of nonlinear control inputs. There-
fore, we slightly adapt the Lorenz system (4.14) by a nonlinear substitution of the
control input, namely, the second system equation is replaced by

ẏ2 = y1(ρ− y3)− y2 + 50 · cos(u), (4.15)

and we consider U = [0, π] as control set. For the quantization step, we choose
V = {0, π} to ensure that MV = 0 in Lemma 4.2.1 still holds. Due to the nonlinear
control input, an additional interpolation error is introduced by directly applying
the linear interpolated control computed from the solution of Problem (IV) to the
system. Therefore, the control calculated with the SUR algorithm yields a significant
increase in the performance, cf. Figure 4.3b.

92

4.3. Numerical Experiments

Table 4.2: Lorenz system with Koopman-based surrogate model.

Parameter Value

System parameters (σ, ρ, β) (10, 28, 83)

Quantization U [−50, 50] or [0, π]

V {−50, 50} or {0, π}
m 2

Training data ∆tODE 5 · 10−4

Ttrain 100.0

Input Piecewise constant, random ui ∈ V

Surrogate model ∆t 100 ·∆tODE = 0.05

observable z = hobs(y) = y

ψ Monomials up to degree 3

MPC TMPC 20.0

p 3

reference yref
2 (t) = 1.5 · sin(4π · t/TMPC)

P (ti, yi)
∥∥yref

2 (ti)− y2,i
∥∥2
2

∆tSUR 5 · 10−4

4.3.2 Mackey-Glass Equation & ESN

As a second example, we consider a system described by a DDE. The Mackey-
Glass equation models the reproduction of blood cells [GM79; MG77] and is again
equipped with an additive control term, which models an increase or decrease in
the number of blood cells caused by, e.g., a transfusion or an injury. The system is
given by

ẏ(t) = β
y(t− τ)

1 + y(t− τ)η
− γy(t) + u(t) with β, γ, η > 0, (4.16)

where the state function y can be seen as a measure of the amount of blood cells
and the control u as the amount of blood cells added or removed from outside to the
body. The control task is to stabilize the blood flow by achieving a constant value
for y. Similar control problems were already studied in [KR17; SDL11], where the
authors derived different feedback laws to stabilize the systems.

The uncontrolled system (u(t) = 0) has been studied for various parameters and
chaotic behaviour was proven among other choices for (β, γ, η) = (2, 1, 9.65) [GM79]
which is the choice of parameters considered here. Similar to the Lorenz system
for ODEs, the Mackey-Glass equation was studied a lot in the context of chaotic
delay systems, and there are numerous works on the prediction of the system state
with the help of different data-based methods, for instance, by different forms of
neural networks [FLK19; Lóp+16; MBS93; Zha+14] including ESNs [GSS15; HL06;
Jae10].

Here, we want to use ESNs as surrogate models as well since these are particularly
well suited to capture the dynamics caused by the delay due to the recurrent con-

93

Chapter 4. Utilizing Autonomous Models for MPC

0 5 10 15 20

-2

0

2

0 5 10 15 20

0

0.1

0.2

0 5 10 15 20

-50

0

50

(a) Control affine Lorenz system (4.14).

0 5 10 15 20

-2

0

2

0 5 10 15 20

0

0.2

0.4

0 5 10 15 20

0

2

(b) Lorenz system with nonlinear control
input (4.15).

Figure 4.3: Results for the Lorenz system generated by Koopman-based surrogate
models derived by eDMD for (a) the control affine case and (b) with nonlinear
control input. The result obtained by the linearly interpolated control is shown in
dark blue, and the result generated via SUR after each optimization step in cyan.
The reference trajectory yref

2 is given by the red dashed line in the upper plots.

nections in the reservoir without explicitly using delay coordinates, cf. Section 2.2.2.
Moreover, it can be nicely integrated into the QuaSiModO framework. Recall that
the equations of an ESN predicting the state yk+1 are given by

rk+1 = σ(W inuk +W resrk +W fbyk),

yk+1 = W outrk+1,

where for uncontrolled systems, the input term W inuk is usually omitted.

There are some papers discussing the use of ESNs in an MPC context, for instance,
[Arm+19; Jor+18]. Therein, the control input uk at time tk serves as additional
input to the reservoir. This causes an increased input dimension, and indirectly, a
larger amount of training data is needed, as it is shown in the subsequent section
for the Lorenz system. By using the QuaSiModO framework, the input dimension
no longer increases since we train an individual ESN for each control uj ∈ V . As
only the various output layersW out

j contain information corresponding to the control
uj, we can use the same reservoir for every ESN, cf. Figure 4.4. In addition, this
way, it is ensured that the reservoir state rk, saving the system dynamics of the
past steps, is updated correctly in every time step. The training is done similarly
to the standard training of ESNs described in Section 2.2.2, i.e., a long trajectory
created with random control inputs in V is computed and mapped to a trajectory
of reservoir states by the randomly initialized reservoir. Then, the two trajectories
are divided into data sets corresponding to the different controls uj ∈ V , i.e., if
uk = uj, then rk+1, derived from yk, and yk+1 are data points in the j-th set. Based
on these data sets, for each output layer W out

j , the corresponding linear problem is
solved.

94

4.3. Numerical Experiments

Figure 4.4: Schematic of an ESN with different readout layers corresponding to
different autonomous systems.

Figure 4.5: Visualization of the data processing for ESNs in the QuaSiModO frame-
work.

As explained in Section 2.2.2, the prediction of the ESNs highly depends on the
reservoir state as it incorporates the past (observed) system states. Hence, usually,
the first time steps of the training data are used to initialize the reservoir state
and not to optimize the output layer. This is done here as well. Furthermore, the
prediction of the ESN usually follows directly after the last time step of the training
data, i.e., the training data initialize the reservoir state for the prediction task.
Therefore, in the MPC context, we have two possibilities. The first one is to start
the MPC task with the last training data point. The second option is to start with
an initialization phase, where the system is not controlled or at least not controlled
by means of MPC based on the ESN model.

The control task which should be solved is the stabilization of the blood flow at
yref = 1.0 with control inputs in U = [−0.1, 0.5]. The remaining parameter choices
are summarized in Table 4.3. Since the control enters linearly, similar to the Lorenz
system before, there is no additional error introduced by the interpolation. The ob-
tained results are presented in Figure 4.6 and show that the system can be stabilized
at 1.0 using the interpolated control.

95

Chapter 4. Utilizing Autonomous Models for MPC

Table 4.3: Mackey-Glass DDE with ESN surrogate model.

Parameter Value

System paramters (β, γ, η, τ) (2, 1, 9.65, 2)

Quantization U [−0.1, 0.5]

V {−0.1, 0.5}
m 2

Training data ∆tDDE 0.1

Ttrain 600.0

Input Random ui ∈ V

Surrogate model ∆t 0.1
observable z = hobs(y) = y

size residuum 1000
spectral radius (W res) 1.5

sparsity (W res) 0.3

MPC TMPC 20.0

p 5

P (ti, yi) = P (yi) ‖yi − 1.0‖22

4.3.3 Kármán Vortex Street & LSTM

To conclude the numerical evaluation with a more complex system, we consider a
flow control example, similar to the fluidic pinball in Section 3.2. In contrast to the
fluidic pinball, this time, we consider the flow around a single cylinder instead of
three cylinders. Despite that, the setting is the same as described in Section 3.2 and
is shown in Figure 4.7. The system is again simulated via the OpenFOAM solver.
It exhibits periodic vortex shedding at Re = 100, i.e., the so-called von Kármán
vortex street can be observed [Dea+91; Noa+03].

Similar to Section 3.2, the aim is to control the flow field by only observing the forces
acting on the cylinder (the lift CL and the drag CD) without any knowledge of the
flow field itself using the rotation of the cylinder, i.e., the control u is the velocity
of the cylinder rotation. As before, the objective is given by a reference trajectory
for the lift coefficient of the cylinder Cref

L (t).

This setting was already considered in [Bie+20], but there the architecture presented
in Chapter 3 was applied, i.e., an RNN which gets the control as additional input was
used to build the surrogate model. Here, we use LSTMs for the single autonomous
models. The detailed parameters of the setting are summarized in Table 4.4.

As the results in Figure 4.8 show, we achieve a nearly perfect tracking of the reference
trajectory and observe again that the interpolated control leads to better results
than the rounded one. The results by the SUR could be improved by choosing a
shorter switching time which is infeasible here since it is already equal to the time
discretization of the simulation.

96

4.4. Numerical Experiments on Data Efficiency

0 5 10 15 20

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

Figure 4.6: Results for the control of the Mackey-Glass system where the surrogate
models are ESNs. The result obtained by the linearly interpolated control is shown
in dark blue. The reference trajectory yref = 1.0 is given by the red dashed line in
the upper plot.

Figure 4.7: Setting of the cylinder surrounded by a fluid flowing from the left to
the right with a snapshot of the velocity of the uncontrolled system. The colorbar
shows the color corresponding to the norm of the velocity vector. Furthermore, the
forces acting on the cylinder, i.e., the lift and the drag coefficients, as well as the
control inputs, are specified.

4.4 Numerical Experiments on Data Efficiency

Although the results presented in the previous section give a numerical verification
for the presented framework, the question of whether it is beneficial in comparison
to the intuitive approach based on the augmented state, i.e., using the control as an
additional input to the model, remains still open. This aspect is addressed in this
section.

As already discussed in the introduction of this chapter, there are some methods,
especially projection-based methods such as POD, which are specifically tailored
to autonomous systems. Hence, it may be difficult to incorporate a control input.
This is avoided by the presented approach. Furthermore, existing error bounds
for the autonomous case may be directly transferred and combined with the error
bounds derived in Section 4.2. The other important motivation for the QuaSiModO

97

Chapter 4. Utilizing Autonomous Models for MPC

0 5 10 15 20
-2

0

2

0 5 10 15 20
0

1

2

3

0 5 10 15 20
-5

0

5

Figure 4.8: Results for the control of the flow around a single cylinder where the
surrogate models are LSTMs. The result obtained by the linearly interpolated con-
trol is shown in dark blue and the result generated via SUR after each optimization
step in cyan. The reference trajectory Cref

L is given by the red dashed line in the
upper plot.

98

4.4. Numerical Experiments on Data Efficiency

Table 4.4: 2D Cylinder flow with LSTM surrogate model.

Parameter Value

System parameters Re 100

Quantization U [−5, 5]

V {−5, 0, 5}
m 3

Training data ∆tPDE 0.01

Ttrain 2 · 500

Input Piecewise constant, random ui ∈ V

Surrogate model ∆t 0.1

observable z = hobs(y) = (CD, CL)

delay coordinates 15

Neurons per LSTM-cell 500

batch size 75

epochs 2

MPC TMPC 20.0

p 5

reference Cref
L (t) = sin(1

2 t)

P (ti, zi)
∥∥Cref

L (ti)− CL,i

∥∥2
2

∆tSUR 0.1

approach is the data sampling process. First, due to a smaller control space (V in-
stead of U), it may become easier to choose data points, i.e., one can choose random
control inputs in V and create a long trajectory. More important, however, is the
question of how much data is needed to achieve an acceptable control performance
for both methods in comparison. Intuitively, due to the decreased dimensionality,
the problem complexity is reduced for the autonomous systems, and we would as-
sume that less data is needed. Unfortunately, the answer to this question is more
complicated. Due to the control input, the dynamics are usually no longer restricted
to a low-dimensional subspace, and for both approaches, the entire state space has
to be somehow represented in the data. On the one hand, by the QuaSiModO
approach, we do not need to capture the dynamics for the entire control space U
but only for V , which leads to a decreased dimensionality of the input space of the
model. This gives us the hope that less data is needed. On the other hand, we
cannot assume that the reachable state space of the system is known beforehand,
and hence, we may use random control inputs from U or V to move through it.
There is a chance that it is a lot harder (or even impossible if the requirements of
Lemma 4.2.1 are not satisfied) to capture the state space by using controls from V
than from U leading indirectly to a larger amount of data needed for the training.
This issue is addressed and attempted to be answered, at least partially, by the
following presented numerical studies.

In the experiments, we consider again the Lorenz system, cf. Section 4.3.1, and
study the prediction error of different ESN and LSTM models, cf. Section 2.2.2

99

Chapter 4. Utilizing Autonomous Models for MPC

and Section 4.3.2 or Section 4.3.3, respectively. As in Section 4.3.1, we consider
U = [−50, 50] and V = {−50, 50} for the control affine Lorenz system (4.14) and
U = [0, π] and V = {0, π} for the system with nonlinear control input (4.15). To
compare the performance of both approaches, we train the models with training
data sets of varying size

(i) for the autonomous systems corresponding to the controls uj ∈ V , and

(ii) for the original system based on the augmented state ŷ = (y, u), i.e., with the
control as additional input to the model.

We refer to the second model as full model. To train the models, we collect time series
created by random control inputs in U and V , respectively. Since the performance
is subjected to random influences, e.g., the created training data, the initialization
of the reservoir of the ESN, or the SGD algorithm in the LSTM training, we repeat
the following experiment 100 times to derive statistically meaningful results:

1) Create training data over 750 seconds using random inputs from V or U ,
respectively, resulting in 15 000 data points (∆T = 0.005).

2) To study the dependency on the size of the training data set, use subsets of
different sizes of the collected data (ranging from 100 to 15 000 data points).

3) Use these data sets to train the models (for ESN and LSTM) for the two
approaches, i.e., train a model which gets the control as additional input and
train two models which belong to the controls in V = {−50, 50} or V = {0, π}.

4) Compare the relative L2 prediction error over a horizon of 2 seconds, averaged
over 100 simulations with random control sequences from either U or V . To
predict the state by the autonomous models when control inputs from U are
applied to the system, linear interpolation between the separate predictions is
used.

Note that the number of data points for the autonomous models together is the
same as for the single model based on the augmented state, as for both variants, a
single (long) time series of the same length is created in every experiment.

In Figure 4.9, the relative model error averaged over the time steps and the 100
random runs is plotted against the amount of data. In Figure 4.9a, the results for
the control affine Lorenz system are presented, whereas in Figure 4.9b, the results
with the adapted nonlinear control are shown. Naturally, for the affine control
system, the performance of the QuaSiModO models is the same for control inputs
in U and V and is of significantly higher quality than the single models getting the
control as input. In particular, less data is needed to get a low model error, which is
not surprising as we implicitly use the linearity of the underlying equations. In the
nonlinear case, the results of the interpolated control are worse, as the interpolation
error is added to the model error. However, the performance is still comparable to
the full model. Furthermore, the SUR procedure yields controls from V anyways,
such that this is the relevant control set for the comparison in the context of the
QuaSiModO framework. For this case, the prediction accuracy of the autonomous
models is, again, significantly better. For the same experiment with LSTM models,

100

4.4. Numerical Experiments on Data Efficiency

0 5000 10000 15000

0

0.1

0.2

0.3

0.4

0.5

(a) ESN for (4.14) with
U = [−50, 50], V = {−50, 50}.

0 5000 10000 15000

0

0.1

0.2

0.3

0.4

0.5

(b) ESN for (4.15) with
U = [0, π],V = {0, π}.

0 5000 10000 15000

0

0.1

0.2

0.3

0.4

0.5

(c) LSTM for (4.15) with
U = [0, π],V = {0, π}.

0 5000 10000 15000

0

0.1

0.2

0.3

0.4

0.5

(d) ESN for (4.15) with
U = [0, π],V = {0, 0.8π}.

Figure 4.9: Relative L2 prediction error (least-squares error) averaged over 100
experiments with random control inputs from U or V versus the amount of data
used in the training of the various ESN and LSTM models. The coloring is the same
in all diagrams, according to the legend in (b).

we observe a quite similar behavior, cf. Figure 4.9c. However, in contrast to the ESN
case, there is quite a large gap between the interpolated solution derived from the
autonomous models and the predictions by the full model. In the so far considered
experiments, the controls in V were chosen to be the bounds of the set U , which
leads to MV = 0 for the presented system, cf. Lemma 4.2.1. Unfortunately, in
practical applications, it may not always be that easy to choose an appropriate set
V . Thus, we repeat the same experiment for the nonlinear Lorenz system with
V = {0, 0.8π} and use again ESNs as surrogate models. The result is presented in
Figure 4.9d. The prediction for control inputs from V is significantly better using
the autonomous systems, probably caused by simpler system dynamics. At the same
time, the tracking performance for the interpolated (or, more precisely, extrapolated)
solution shown by the dark blue line decreased significantly, as expected. However,
we would like to mention that many real systems can be modeled in a control affine
manner or allow for an informed selection of the control values needed to ensure a
small MV in Lemma 4.2.1.

101

Chapter 4. Utilizing Autonomous Models for MPC

The presented numerical experiments based on the prediction error suggest that the
proposed framework is also beneficial concerning the data requirements. However,
note that for the LSTMs as well as for the ESNs, the prediction performance is
highly influenced by the chosen hyper-parameters, e.g., the size of the reservoir
or the learning rate. Hence, the results presented here do not imply that the full
model always performs worse. Nevertheless, the results were obtained without any
fine tuning on the model setting and hence may give a good idea for the data
requirements and model performance.

A further aspect slightly touching the topic of data requirements may occur in the
setting of online learning. Due to the use of autonomous systems, online learning
might be more robust against overfitting in the presented framework, especially
in case the control input stays in one part of the control space for a longer time.
Nevertheless, this does not guarantee the absence of overfitting since it can also
occur when the state stays in one region of the state space for a long time. Since
this case can also occur for the full model, the hope is that online learning can be
performed more robustly in the presented framework. This, however, remains an
open question and may be addressed in future work.

102

5 | Treating `1-Regularized Problems
via Multiobjective Continuation

In the previous section, the main focus laid on the data assimilation process, which
was simplified by adapting the control problem, i.e., by replacing the control set
with a discretization. This addresses only one of the issues identified in Section 3.3.
Another point mentioned there was the over-parameterization of neural networks,
which may lead to overfitting. This is not only an issue of neural networks but is also
true for other machine learning models, e.g., support vector machines (SVMs). The
problem of overfitting can be addressed by enforcing sparse solutions, i.e., by ensur-
ing that as many trainable parameters as possible are equal to zero and only some
parameters are unequal to zero. Besides overfitting, this may also make the result-
ing models easier to interpret. This aspect is exploited, for instance, in the SINDy
approach (sparse identification of nonlinear dynamics) [BPK16], where, based on
data, governing equations of a dynamical system are sought from a given dictionary.
In order to get an interpretable model and avoid overfitting, only some dictionary
functions should be chosen, i.e., a sparse solution is sought. Other applications
where this approach is followed can be found, for instance, in signal processing,
compressed sensing, or medical imaging [Bar+10; EFM10; EK12; Plu+10; VBL13].
A common way to ensure sparsity of the solution, especially in data-based methods,
is to add a regularization term to the original objective, cf. Sections 2.2.1 and 2.2.2,
i.e., instead of minimizing the original objective f : Rn → R, the regularized (or
penalized) problem

min
x∈Rn

f(x) + λ‖x‖ with λ ∈ R≥0 (5.1)

is considered, where ‖·‖ is typically the `1-norm or the squared `2-norm as a smooth
alternative. In this chapter, we consider the case where the regularization term is
given by the `1-norm. Obviously, the solution to this problem crucially depends on
the choice of the parameter λ. If λ is too small, the solution may not be sparse,
which can lead to overfitting. On the other hand, if λ is too large, the solution
might be too sparse in the sense that it is not able to fulfill the desired task, for
instance, to predict the data correctly. In other words, we are searching for a certain
compromise between f and the `1-norm where accuracy and sparsity are adequately
balanced, or if we look at it from the multiobjective optimization perspective, the

103

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

aim is to find a suitable solution to the MOP

min
x∈Rn

(
f(x)

‖x‖1

)
. (MOP-`1)

In this context, solving (5.1) is similar to the weighted sum approach, i.e., solving
minx∈Rn α1f(x) + α2‖x‖1 with α1, α2 ∈ [0, 1], α1 + α2 = 1, cf. Section 2.3.2. As
discussed in Section 2.3.2, it is not possible to compute all Pareto optimal solu-
tions by the weighted sum approach if f is nonconvex, cf. Figure 2.12. Since the
loss functions optimized for NN training are nonconvex (due to the form of the
NNs), well-generalizing sparse solutions may not be computable via the penalty
approach.

Furthermore, even if the relevant compromises are solutions of (5.1), estimating an
appropriate weight λ for the penalty term is difficult a priori. A naive approach
would be to simply test multiple values of λ. However, in general, this procedure
is very inefficient. A more sophisticated approach would be to use continuation
methods. For the case of two (or more) smooth objectives, these were already
introduced in Section 2.3.2. Since a first-order approximation of the Pareto critical
set is used to obtain a good initial estimate (predictor) that allows fast computation
of new critical points (corrector) by local optimization, the computation of the
Pareto critical set is usually very efficient.

Unfortunately, since the `1-norm is nonsmooth, these methods are not directly ap-
plicable to (MOP-`1). Nonetheless, for a special case of (5.1) that occurs in signal
or image processing, methods have been developed which can be interpreted as con-
tinuation methods. Similar to the previous example of the SINDy approach, in these
applications, it is common to consider (over-determined) linear regression models,
resulting in a minimization problem of the form

min
x∈Rn
‖Ax− b‖2

2 + λ ‖x‖1 , (5.2)

where A ∈ Rm×n, b ∈ Rm and λ ∈ R≥0. This problem is referred to as Lasso [Tib11;
Tib96] or basis pursuit [CD94]. The so-called homotopy methods aim at comput-
ing the entire regularization path, i.e., all solutions that can be derived by varying
λ ≥ 0 in Problem (5.2) [Bri+18; DT08; MCW05; OPT00]. Since the regularization
path is piecewise linear in this special case, the main idea of these methods is to
determine points where “kinks” occur. This is done by utilizing the necessary op-
timality conditions of (5.2), which are based on the subdifferential of the `1-norm.
In principle, these methods can be understood as continuation methods where no
corrector step is required because the predictor provides exact results due to the
linearity of the path. Furthermore, generalizations of these homotopy methods to
arbitrary convex loss functions or convex penalty terms were introduced in [PH07;
Ros04; ZY04].

Nevertheless, there is no similar method that is applicable to (MOP-`1) if f is
nonconvex. Hence, this chapter aims at developing a continuation method for the
general case where the first objective f is twice continuously differentiable and the
second objective is the `1-norm. Although due to the nonsmoothness of the `1-norm,

104

5.1. The Continuation Method

it cannot be assumed that the solution set is smooth, we show that it is piecewise
smooth for this particular problem class. This allows us to apply classical continu-
ation methods (cf. Section 2.3.2) to compute the Pareto critical set up to kinks. We
show how these kinks can be detected and addressed within the continuation by
exploiting the special structure of the optimality conditions of (MOP-`1).

Another approach to solve problem (MOP-`1) with methods of multiobjective opti-
mization in the context of NN training is presented in [Rei+22]. There, a multiob-
jective descent method in combination with pruning (a strategy to avoid overfitting
by eliminating some of the trainable parameters during the optimization) is used to
train the NN. However, the nonsmoothness of the `1-norm was not taken into ac-
count. Nevertheless, the method scales to higher dimensions since existing training
methods from the area of neural networks can be utilized. Beyond that, there are
alternative approaches in the intersection of sparse and multiobjective optimization
based on the ε-constraint method (cf. Section 2.3.2). For instance, in [AS12; AS14],
the authors train (linear) SVMs using this method. In [BF09], an efficient algorithm
to approximate the regularization path of the Lasso problem, i.e., all solutions that
can be derived by varying λ ≥ 0 in (5.2), is presented, and in [BF11], a generaliza-
tion to arbitrary convex penalty terms is derived. Another approach is followed in
[Li+12], where the solution of (MOP-`1) is computed via evolutionary algorithms.
In comparison to evolutionary methods, which also approximate the entire Pareto
set (cf. Section 2.3.2), the approximation by the presented continuation method is
usually closer to the true Pareto (critical) set while requiring fewer function evalu-
ations. Moreover, the proposed method allows for analyzing structural properties,
such as kinks or connectivity of the Pareto set, which remain unnoticed in (standard)
evolutionary methods.

After introducing the continuation method in Section 5.1, including the derivation of
optimality conditions for the concrete problem (MOP-`1), first numerical examples
are presented in Section 5.2. Afterwards, we consider two possible extensions of our
work. First, in Section 5.3, we discuss how the method may be adapted to solve
higher dimensional problems. Second, we address the question of which structural
results hold for more general regularization terms in Section 5.4.

Apart from Section 5.4, the work presented in this chapter was already published in
[BGP22], to which the author of this thesis was the main contributor. The results
shown in Section 5.4 summarize the work published in [GBP22] to which the author
made significant contributions.

5.1 The Continuation Method

Similar to the continuation method for smooth MOPs presented in Section 2.3.2,
the goal of the newly developed continuation method for (MOP-`1) is to compute
the Pareto critical set Pc or, more precisely, its single connected components. In this
special case, a possible starting value is always xstart = 0 since it is Pareto critical
as a global minimum of the `1-norm. However, in the case of multiple connected
components, we still need to compute appropriate starting values that are Pareto

105

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

critical.

Assuming a Pareto critical point xstart is given, the idea is to walk along Pc by per-
forming a predictor step along the tangent space of Pc and then a corrector step
which results in the next Pareto critical point close by. Due to the nonsmoothness
of the `1-norm, the Pareto critical set of (MOP-`1) may contain kinks, cf. Exam-
ple 2.3.16, such that we cannot exclusively rely on the tangent space in the predictor
step. Thus, we need to check whether we have reached a kink, and if this is the
case, we additionally require a mechanism that computes directions in which the
Pareto critical set continues. The rough concept of the method is summarized in
Algorithm 4. To specify the single steps of the algorithm, we first have a more
detailed look at the KKT condition given in (2.13) for the particular case of Pro-
blem (MOP-`1) in Section 5.1.1. Afterwards, we discuss the various ingredients of
our method (e.g., the predictor and the corrector step) in Sections 5.1.2 to 5.1.4
and sum up the results in Section 5.1.5 by formulating our algorithm in more detail.

Algorithm 4 The rough concept of the continuation method.
Input: f : Rn → R ∈ C2, xstart ∈ Rn satisfying (2.13)
Output: Discretization of the Pareto critical set PPC

1: PPC = ∅, x0 = xstart

2: while End of Pc component has not been reached do
3: PPC = PPC ∪ {x0}
4: if Pc is locally smooth then
5: Predictor step tangential to Pc: xp ← predictor(x0)
6: Corrector step with xc ∈ Pc: xc ← corrector(xp)
7: x0 = xc

8: else
9: Find new smooth part of Pc.
10: end if
11: end while

5.1.1 Optimality Conditions for (MOP-`1)
In Section 2.3.1, the basic concepts of multiobjective optimization, including a short
discussion on optimality conditions, were introduced. Here, most important are the
necessary conditions for a point x ∈ Rn to be Pareto optimal in the case where
the objectives are nonsmooth, i.e., the KKT condition given in Proposition 2.3.13.
Points fulfilling this condition are called Pareto critical, and the set of all Pareto
critical points is denoted by Pc. These are the points we want to compute using the
continuation method. To construct a method specifically tailored to (MOP-`1), we
start by analyzing the KKT condition for this MOP. Since we assume f to be at
least twice continuously differentiable, the gradient ∇f(x) exists for every x ∈ Rn.
The subdifferential of the `1-norm was already considered in Example 2.3.12. Since
the subgradients only depend on which of the entries of the variable x are zero or
not, we introduce the following terminology.

106

5.1. The Continuation Method

Notation 5.1.1. For x ∈ Rn, we call an index j ∈ {1, . . . , n} active if xj 6= 0 and
inactive otherwise. Furthermore, we introduce the active set in x as

A(x) := {j ∈ {1, . . . , n} | xj 6= 0} (5.3)

and denote the number of active indices by nA(x) := |A(x)| and the number of
inactive indices by n0(x) := n − nA(x). With this notation, the subdifferential is
now the convex hull of M(x) := 2n

0(x) vectors gi that are the extreme points of the
subdifferential:

∂f`1(x) = Conv
({
gi | i ∈ {1, . . . ,M(x)}

})
with

gij = sgn(xj) ∀j ∈ A(x) and gij ∈ {−1, 1} ∀j /∈ A(x),

where f`1 denotes the `1-norm, i.e., f`1(x) = ‖x‖1 for x ∈ Rn. Instead of nA(x),
n0(x) and M(x) we usually write nA, n0 and M , respectively, if it is clear to which
variable x we refer to.

Inserting this into the KKT condition (2.14), a point x is Pareto critical for (MOP-`1)
if and only if there exist α1, α2 ∈ [0, 1] with α1 + α2 = 1 and

α1∇f(x) + α2(β1g
1 + · · ·+ βMg

M) = 0, (5.4)

where βi ∈ [0, 1] for i ∈ {1, . . . ,M} and
∑M

i=1 βi = 1. In this case, we refer to α1 and
α2 as KKT multipliers. The following theorem further simplifies this condition and
is the main result of this section that we use for the construction of the continuation
method.

Theorem 5.1.2. Let x ∈ Rn with x 6= 0 and let a ∈ A(x), cf. (5.3), be any active
index. Then, the following statements are equivalent:

1. x is Pareto critical for (MOP-`1).

2. The following conditions are satisfied for all j ∈ {1, . . . , n}:

(a) If j ∈ A(x):

i. sgn(∇f(x)j) = − sgn(xj) if ∇f(x)j 6= 0 and

ii. |∇f(x)j| = |∇f(x)a|.

(b) If j /∈ A(x): |∇f(x)j| ≤ |∇f(x)a|.

Proof. First, we prove the implication 1 ⇒ 2, i.e., we assume that x ∈ Pc. Then,
there exist α1, α2 ∈ [0, 1] with α1 + α2 = 1 and βi ∈ [0, 1], i ∈ {1, . . . ,M}, with∑M

i=1 βi = 1 such that (5.4) is satisfied. Now, let be j ∈ {1, . . . , n}. In case that
j ∈ A(x), for the related indices of the subgradients spanning the subdifferential of
the `1-norm, it holds gij = sgn(xj) for all i ∈ {1, . . . ,M} and

0 = α1∇f(x)j + α2 sgn(xj)

= α1∇f(x)j + (1− α1) sgn(xj).
(5.5)

107

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

Since x 6= 0, we know that such an active j exists (e.g., a ∈ A(x)), which implies
that α1 > 0 has to hold. Hence, (5.5) is equivalent to

∇f(x)j = − 1− α1

α1︸ ︷︷ ︸
≥0

sgn(xj). (5.6)

Therefore, either ∇f(x)j = 0 (and α1 = 1) or sgn(∇f(x)j) = − sgn(xj), i.e., 2(a)i
holds. Furthermore, from (5.6), it follows for every j ∈ A(x)

|∇f(x)j| =
1− α1

α1

which means, in particular, that

|∇f(x)j| = |∇f(x)a| ,

proving that 2(a)ii holds. Now we assume that j /∈ A(x) and define

βj,− :=
∑

i:gij=−1

βi, βj,+ :=
∑
i:gij=1

βi.

From (5.4), we obtain

0 = α1∇f(x)j + α2(βj,+ − βj,−)

⇔ ∇f(x)j = (βj,− − βj,+)
1− α1

α1

⇒ |∇f(x)j| = |βj,− − βj,+|︸ ︷︷ ︸
≤1

1− α1

α1

≤ 1− α1

α1

= |∇f(x)a| ,

i.e., 2b is satisfied.

To prove the opposite direction 2⇒ 1, we assume that x satisfies the Conditions 2a
and 2b. Note that 2(a)i implies ∇f(x)a = 0 or sgn(xa)∇f(x)a < 0. In the first case,
due to 2(a)ii and 2b, it follows directly ∇f(x) = 0, i.e., x is critical with α = (1, 0)>.
In the latter case, it follows

1− sgn(xa)∇f(x)a > 1

and we can define

α1 :=
1

1− sgn(xa)∇f(x)a
∈ (0, 1).

By 2(a)i and 2(a)ii we obtain

α1 =
1

1 + |∇f(x)a|
=

1

1 + |∇f(x)j|
∀j ∈ A(x),

which is equivalent to

α1

1− α1

|∇f(x)j| =
1

1
α1
− 1
|∇f(x)j| = 1 ∀j ∈ A(x).

108

5.1. The Continuation Method

In particular, with 2(a)i it follows

α1

1− α1

∇f(x)j = sgn(∇f(x)j) = − sgn(xj).

Analogously, for all inactive j, we can use 2b to obtain

α1

1− α1

|∇f(x)j| ≤
α1

1− α1

|∇f(x)a| = 1

⇒ α1

1− α1

∇f(x)j ∈ [−1, 1].

As a result, the vector − α1

1−α1
∇f(x) can be written as a convex combination of

the subgradients gi. Let β1, ..., βM be the corresponding coefficients and define
α2 = 1− α1. Then

− α1

1− α1

∇f(x) = β1g
1 + · · ·+ βMg

M

⇔ α1∇f(x) + α2(β1g
1 + · · ·+ βMg

M) = 0,

showing that (5.4) holds, i.e., x ∈ Pc.

Theorem 5.1.2 states that a point x ∈ Rn is Pareto critical if and only if the absolute
values of all gradient entries belonging to active indices are identical and, at the same
time, the absolute values of gradient entries belonging to inactive indices are less
than or equal to the absolute value of the gradient entries corresponding to active
indices. Furthermore, the proof of the theorem yields an explicit formula for the
KKT multipliers of Pareto critical points. This allows us to infer some properties of
the Pareto front later (cf. Remark 5.1.5).

Remark 5.1.3. If x 6= 0 is Pareto critical for (MOP-`1) and a is an active index,
then the KKT multipliers corresponding to x are given by

α1 =
1

1 + |∇f(x)a|
, α2 =

|∇f(x)a|
1 + |∇f(x)a|

. (5.7)

In particular, the KKT multipliers are unique (except for x = 0).

Since (MOP-`1) is a nonsmooth problem, the Pareto critical set generally contains
points in which the tangent space does not exist, i.e., kinks in the Pareto critical set
can be observed, cf. Example 2.3.16. Based on Theorem 5.1.2, one can show that
such kinks can only occur if the activation structure changes, i.e., when an index
switches from inactive to active (or the other way around), which can only happen
if 2b in Theorem 5.1.2 is satisfied with equality. This is shown more precisely in the
following corollary.

Corollary 5.1.4. Let x0 6= 0 be a Pareto critical point of (MOP-`1) and assume
that the inequality in 2b in Theorem 5.1.2 is strict. Furthermore, let the active

109

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

indices at x0 be given by A(x0) = {j1 < ... < jnA(x0)}. We define the projection of
x ∈ Rn onto the entries corresponding to the active indices of x0 and its inverse by

pA : Rn → RnA(x0), pA(x)i = xji ∀i ∈ {1, ..., nA(x0)},

lA : RnA(x0) → Rn, lA(x̄)j =

{
0, if j /∈ A(x0),

x̄i, if j = ji ∈ A(x0),
∀j ∈ {1, ..., n}.

Then there is an open set U ⊆ Rn with x0 ∈ U such that x∗ ∈ U is Pareto critical
for (MOP-`1) if and only if A(x∗) = A(x0) and pA(x∗) is Pareto critical for the
(smooth) MOP

min
x̄∈RnA(x0)

(
f(lA(x̄))

‖x̄‖1

)
. (5.8)

Proof. Note that if A(x0) = {1, . . . , n}, i.e., x0
j 6= 0 for all j ∈ {1, . . . , n}, the `1-

norm is smooth locally around x0 and the corollary trivially holds. So, we assume
from now on that A(x0) ({1, . . . , n}. Moreover, let a ∈ A(x0) be an arbitrary
active index. This implies that ∇f(x0)a 6= 0 since otherwise the inequality in 2b in
Theorem 5.1.2 cannot be strict.

First, note that there exists an open neighbourhood U1 ⊆ Rn of x0 such that for all
x ∈ U1 it holds

sgn(xj) = sgn(x0
j) 6= 0 ∀j ∈ A(x0).

This implies, in particular,

A(x0) ⊆ A(x) ∀x ∈ U1. (5.9)

Since f is at least continuously differentiable, its gradient is continuous, and as the
inequality in 2b in Theorem 5.1.2 is strict, there has to be an open set U2 ⊆ Rn with
x0 ∈ U2 such that for all x ∈ U2

|∇f(x)j| < |∇f(x)a| ∀j /∈ A(x0). (5.10)

According to Theorem 5.1.2, this implies that every index j that is inactive in x0 is
also inactive in x ∈ U2 if x is Pareto critical for (MOP-`1), i.e.,

A(x) ⊆ A(x0) ∀x ∈ U2 ∩ Pc. (5.11)

Now, we define U := U1 ∩ U2 and assume that x ∈ U . If x ∈ Pc, then, by (5.9) and
(5.11), x has the same activation structure as x0, i.e.,

A(x) = A(x0).

In addition, according to Theorem 5.1.2, it holds

sgn(∇f(x)j) = − sgn(xj) ∀j ∈ A(x0) and
|∇f(x)j| = |∇f(x)a| ∀j ∈ A(x0).

(5.12)

110

5.1. The Continuation Method

Recall that ∇f(x)j 6= 0 for all j ∈ A(x0) since A(x0) ({1, . . . , n}.

By applying Theorem 5.1.2 to the MOP (5.8), which has the same form as (MOP-`1),
we see that these are precisely the conditions for pA(x) to be Pareto critical. For
the other direction, we assume that A(x) = A(x0) and that pA(x) is Pareto critical
for (5.8), i.e., (5.12) holds. Since x ∈ U ⊆ U2, (5.10) holds as well. Thus, according
to Theorem 5.1.2, x is Pareto critical for (MOP-`1).

The previous corollary implies that if the inequality in 2b in Theorem 5.1.2 is strict
for a point x0 ∈ Pc, then, locally around x0, the Pareto critical set of (MOP-`1) is
identical to the Pareto critical set of the MOP (5.8) lifted into the Rn via the map
lA. Note that the KKT multipliers are identical for both problems (since they are
given by (5.7) in both cases). Because the objective functions of (5.8) are smooth
around pA(x0) (as all entries of pA(x0) are nonzero by construction), we can apply
the theory for smooth MOPs. Thus, we can conclude that the tangent space of
the Pareto critical set Pc must exist in x0, cf. Theorem 2.3.17. Hence, Pc can only
possess a kink in x0 if 2b in Theorem 5.1.2 is satisfied with equality for at least one
j /∈ A(x0). These are exactly the points where the active set can potentially change,
i.e., where an inactive index could be activated (or vice versa).

In particular, this allows us to construct the predictor (Section 5.1.2) and the correc-
tor (Section 5.1.3) as in the smooth case based on (5.8), except for potential kinks.
We already know that these kinks can be detected by observing the inequality in
2b in Theorem 5.1.2. In order to overcome such points, we basically just need to
discuss how we can continue from there, i.e., how we can choose a suitable direction
for the subsequent continuation step, cf. Section 5.1.4. Finally, we summarize the
results by presenting the overall algorithm in Section 5.1.5.

Furthermore, based on the uniqueness of the KKT multipliers, cf. Remark 5.1.3,
we can make the following remark concerning kinks in the Pareto front or, more
precisely, in the image of a connected component of the Pareto critical set.

Remark 5.1.5. In [Hil01], it was proven that the KKT multipliers are orthogonal to
the tangent space of the image of the Pareto critical set if the objectives are smooth.
If we consider the image of two smooth parts of the Pareto critical set of (MOP-`1)
that touch in a point where the activation structure changes, these two paths (in the
image space) have the same derivative in the connecting point according to (5.7), i.e.,
there is no kink in the image. However, kinks in the image of a connected component
of the Pareto critical set can occur in the form of so-called turning points, which are
discussed later, see Example 5.1.6. Furthermore, there may be multiple disconnected
parts of the Pareto front that belong to different connected components of the Pareto
(critical) set. Note that disconnected components of the Pareto (critical) set do not
necessarily lead to a disconnected Pareto front.

5.1.2 Predictor

Based on the results of the previous section, we can now introduce the predictor
step. To this end, we assume that a point x0 ∈ Rn is given which is Pareto critical

111

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

for (MOP-`1) and for which 2b in Theorem 5.1.2 is satisfied strictly, i.e., according
to Corollary 5.1.4, an open neighborhood around x0 exists in which the activation
structure (in the Pareto critical set) does not change. As discussed before, this
allows us to perform the predictor (and later the corrector) step for the reduced
MOP (5.8). Since we assume that f is at least twice continuously differentiable,
both objectives in (5.8) are twice continuously differentiable, and we can compute
the predictor at the point pA(x0) as explained in Section 2.3.2 or [Hil01]. Therefore,
similar to (2.22), we define the map

H : RnA × [0, 1]2 → RnA+1, H(x̄, α) =

(
α1∇(f ◦ lA)(x̄) + α2∇f`1(x̄)

α1 + α2 − 1

)
, (5.13)

where we consider the active set with respect to x0, i.e., nA = nA(x0) and lA and pA
as in Corollary 5.1.4. The zero set of H consists of the points (x̄, α) ∈ RnA × [0, 1]2

that fulfill the KKT condition for (5.8), i.e.,

H(x̄, α) = 0

⇔ x̄ ∈ RnA is Pareto critical for (5.8) with KKT multipliers α1 and α2

⇔ lA(x̄) ∈ Rn is Pareto critical for (MOP-`1) with KKT multipliers α1 and α2.

The Jacobian of H in (pA(x0), α) ∈ RnA × [0, 1]2 is given by

DH(pA(x0), α)

=

(
α1∇2(f ◦ lA)(pA(x0)) ∇(f ◦ lA)(pA(x0)) ∇f`1(pA(x0))

0 1 1

)
=

(
α1∇2f(x0)|A(x0) ∇f(x0)|A(x0) s

0 1 1

)
∈ R(nA+1)×(nA+2),

where (∇2f(x))|A(x0) ∈ RnA×nA and ∇f(x)|A(x0) ∈ RnA denote the Hessian and the
gradient of f reduced to the active indices, respectively, and s = sgn(pA(x0)) is
the result of the sign function applied componentwise to the nonzero entries of x0.
According to Theorem 2.3.17, if DH(pA(x0), α) has rank nA + 1, the zero set of
H is a one-dimensional submanifold locally around x0. Hence, to ensure that this
property holds, we assume that the reduced Hessian matrix

(∇2f(x0))|A(x0) is regular.

This is the generic case, as the set of singular matrices is a null set, and we compute
a pointwise approximation of the Pareto critical set. Note that if (∇2f(x0))|A(x0)

would be singular, bifurcations may occur, as discussed for general continuation
methods in [AG90] and shown for a smooth MOP in [Geb22, Example 2.2.13].

Since we assume that the reduced Hessian (∇2f(x0))|A(x0) is regular, the one-
dimensional tangent space of the respective manifold is given by

ker(DH(pA(x0), α)) = ker

(
α1∇2f(x0)|A(x0) ∇f(x0)|A(x0) s

0 1 1

)
(5.14)

112

5.1. The Continuation Method

and we obtain a unique vector (up to scaling and sign) as result. In addition, we
can also give an explicit formula for the kernel. To this end, let a ∈ A(x0) be an
arbitrary active index. Then, Theorem 5.1.2 implies ∇f(x0)|A(x0) = − |(∇f(x0))a| s,
and hence, a kernel vector v̄ of (5.14) is given by

v̄ = γ · (v̄1, v̄2, v̄3)> with γ ∈ R and

v̄1 =
(1 + |∇f(x0)a|)

α1

(
∇2f(x0)|A(x0)

)−1
s,

(5.7)
= (1 +

∣∣∇f(x0)a
∣∣)2
(
∇2f(x0)|A(x0)

)−1
s,

v̄2 = 1,

v̄3 = −1.

(P)

If we would perform a predictor step for (5.8), i.e., a step in the reduced space of
active indices, it would be given by v̄1, while v̄2 and v̄3 represent the corresponding
direction in the space of KKT multipliers. The predictor direction for our original
problem (MOP-`1) is then given by v1 = lA(v̄1), i.e., the result of the predictor is
given by

xp = x0 + h · (±v1)︸ ︷︷ ︸
=:vp

, (5.15)

where it remains to choose the sign and the scaling h ∈ R>0 of v1 to obtain the final
predictor step vp.

Sign of the direction

After computing the vector v1, there still remain two possible choices for the direction
of the predictor step, namely v1 and −v1. The most intuitive approach would be
to use the directional derivative of f as an indicator. That is if we want to move
along the Pareto front in the direction in which the value of f decreases (and the
value of the `1-norm increases), we choose vp = ±v1 such that ∇f(x0)>vp < 0, and
> otherwise, as suggested in [Hil01] and [MS17].

As long as ∇f(x0)>v1 6= 0 holds, this approach is usually suitable. However, it may
happen that during the continuation, so-called turning points are passed. These
are points where we follow the Pareto critical set in the same direction, but the
corresponding direction in the objective space vanishes and then turns around, i.e.,
by following the Pareto critical set, the sign of ∇f(x)>v1 is first negative, then
becomes zero, and afterwards positive. This phenomenon is not related to the
nonsmoothness of the `1-norm but can also occur in the smooth parts, i.e., on a
single activation structure, as shown in the following example.

Example 5.1.6. Consider (MOP-`1) with

f(x) = (x1 + 1)2 + (x2 − 1)4 − 1
2

(
x2 − 1

4

)3
. (5.16)

Figure 5.1 shows the Pareto critical set for this problem (which can be computed an-
alytically). We can observe two turning points, labeled x1 and x2, where the direction
in the objective space turns around.

113

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

-0.8 -0.6 -0.4 -0.2 0

0

0.5

1

1.5

2

(a)

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

0.6

0.8

1

1.2

1.4

(b)

-0.05 0 0.05

1.3

1.4

1.5

1.6

1.7

(c)

-0.05 0 0.05

-1.5

-1

-0.5

0

0.5

(d)

Figure 5.1: (a) Pc for the MOP in Example 5.1.6. (b) Part of Pc where the turning
points x1 and x2 occur. (c) Image of Pc where the image of a point has the same
color as the point in the variable space in (b). (d) Derivative of f in the direction
of the predictor, i.e., ∇f(x)>v1, where again the corresponding coloring is used.

Since these turning points also occur if we consider the neuronal network training,
we use a different criterion that stems from classical continuation for dynamical
systems and is proposed in [AG90]. There, the authors suggest to observe the sign
of the determinant of the augmented Jacobian Ja =

(
DH(pA(x0), α)>, v̄

)>
, which

determines the orientation of the curve. In our case, the augmented Jacobian is
given by

Ja :=

α1∇2f(x0)|A(x0) ∇f(x0)|A(x0) s

0 1 1

v̄>1 v̄2 v̄3

 . (5.17)

Furthermore, a simple (but rather technical) calculation based on the Laplace ex-
pansion shows that

det (Ja) = −v̄2 · z · det (α1∇2f(x0)|A(x0)), (5.18)

where z = 2+(1+|∇f(x0)a|)4
∥∥(∇2f(x0)|A(x0))

−1s
∥∥2

2
> 0 with a ∈ A(x0). As a result,

only the determinant of ∇2f(x0)|A(x0) has to be computed to determine the sign of

114

5.1. The Continuation Method

det (Ja). If the sign of det (Ja) is constant in one activation structure, then this
ensures that v̄ has the same orientation with respect to the image of DH(pA(x0), α).
This way, it prevents us from walking back in the direction we came from in the
variable space. As discussed in Section 5.1.4, the correct direction is usually known
in points where we change the activation structure. Thus, keeping the sign of det (Ja)
constant over parts with constant activation structure is a suitable criterion to choose
the direction in each predictor step.

Step size

Now that we know how to compute the direction v1 and determine its sign, we still
need to choose a step size h ∈ R>0 in (5.15). To this end, different strategies can be
followed. Here, we aim for a uniform coverage of the Pareto critical set. Therefore,
we choose a constant step size in the variable space, i.e., for a predefined constant
τ ∈ R>0, we choose

h :=
τ

‖v1‖2

. (5.19)

Another possibility would be to derive an even distribution in the objective space.
In this case, one may choose

h :=
τ

‖Jv1‖2

with J = (∇f(x0), sgn(x0))> as step size, as suggested in [Hil01; MS17]. Further-
more, it could be useful to consider the curvature of the Pareto critical set. In
[AG90], different criteria are suggested to take the curvature into account, for in-
stance, the length of the corrector step or the angle between the predictor directions
of subsequent iterations.

In addition, it is necessary to ensure that the activation structure remains constant
to be able to perform the corrector step in a smooth region of the problem. To this
end, in case the predictor step crosses zero in an active index, the step size h has to
be shortened, i.e., we choose

ĥ = min(h, h̄) (5.20)

as step size, where

h̄ = sup({h ∈ R>0 : A(xp) = A(x0) for xp = x0 + hv1}).

5.1.3 Corrector

Similar to the usual continuation methods for smooth MOPs, the aim of the corrector
step is to map the endpoint of the predictor xp to the closest Pareto critical point, cf.
Section 2.3.2. Here, we additionally need to ensure that the zero structure does not
change, as it otherwise would be difficult to formulate the correct KKT condition,
i.e., to choose suitable subgradients. Hence, we are searching for a point xc ∈ Pc

115

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

which is close to xp and for which A(xc) = A(xp) = A(x0) holds. Theoretically,
to derive such a point, one could solve the equations given by the KKT condition,
cf. Equation (5.4), using xp as a starting point, whereby constraints have to be
added to ensure the constant zero structure. Depending on the number of nonzero
elements, this can lead to very large systems as the subdifferential of the `1-norm
is spanned by M(x0) = 2n

0(x0) subgradients. Fortunately, Theorem 5.1.2 provides
an alternative that allows us to avoid the explicit use of subgradients. Therefore, in
the corrector step, we solve the following optimization problem:

min
x∈Rn
‖x− xp‖2

2 ,

s.t. (∇f(x)j)
2 − (∇f(x)a)

2 = 0 if x0
j 6= 0,

(∇f(x)j)
2 − (∇f(x)a)

2 ≤ 0 if x0
j = 0,

∇f(x)j ≤ 0 if x0
j > 0,

∇f(x)j ≥ 0 if x0
j < 0,

xj ≥ 0 if x0
j > 0,

xj ≤ 0 if x0
j < 0,

xj = 0 if x0
j = 0,

(C)

where a ∈ A(x0) is some index that is currently active, i.e., x0
a 6= 0 (and hence, also

xpa 6= 0).

5.1.4 Changing the Activation Structure

With the predictor and the corrector step, we are now able to compute the smooth
parts of the Pareto critical set, i.e., the parts with constant activation structure.
Hence, if we were able to overcome kinks caused by indices becoming inactive or
active, we could compute the entire Pareto critical set or, to be more precise, a
connected component of it. Thus, this section aims at deriving mechanisms that
allow for changing the activation structure A(x), i.e., activating and deactivating
indices, during the continuation and proceed the continuation in the new activation
structure.

The most obvious case for deactivating an index is when the predictor crosses zero
in one of the entries. As already discussed in Section 5.1.2, in this case we reduce
the step length h to h̄ as the largest step size such that

xpj ≤ 0 if x0
j < 0 and xpj ≥ 0 if x0

j > 0

for all j ∈ A(x0), and the indices in A(x0) \ A(xp) are considered as inactive in the
subsequent corrector step. If the corresponding Problem (C) has a solution, then
the continuation method can continue on the new activation structure. Otherwise,
we choose a step length in (0, h̄) to find a new Pareto critical point with respect to
the old active set A(x0). The likelihood of an active index being falsely deactivated
(meaning that it is deactivated too early and we miss relevant parts of the Pareto
critical set) by this mechanism depends on the constant step size τ and the curvature
of the Pareto critical set.

116

5.1. The Continuation Method

The second situation, where the active set may change, is the case where the cor-
rector terminates at a point where equality holds in 2b in Theorem 5.1.2 for some
index j ∈ {1, . . . ,m}, i.e., xj = 0 and |∇f(x)j| = |∇f(x)a| with a ∈ A(x). We call
such an index j potentially active and denote the set of all potentially active indices
by

Ap(x) := {j ∈ {1, . . . , n} | xj = 0 and |∇f(x)j| = |∇f(x)a|}. (5.21)

Potentially active indices can occur if the corrector computes a point xc where one
of the previously active indices is now zero, i.e., xcj = 0 for some j ∈ A(x0). Note
that this situation is relatively unlikely compared to the predictor crossing the zero
in an active index. Much more likely is that the corrector ends in a point xc where
an index j is potentially active that was inactive before, i.e., x0

j = 0, and has to be
activated in xc. Nevertheless, mathematically, both situations are equivalent, so we
do not distinguish between them.

Thus, let us assume that we are in a Pareto critical point x∗ with Ap(x
∗) 6= ∅. If

x∗ is an endpoint of the current activation structure, then the construction of the
corrector ensures that we reach it after a finite number of steps (if the step length
τ is sufficiently small). If x∗ is not an endpoint, then we are, in general, unable to
detect it during continuation since we move with a constant step size. Fortunately,
the latter points are less likely to exist, as discussed briefly in Remark 5.1.14.

Note that not all potentially active indices necessarily need to be activated or deac-
tivated, so a way to identify the relevant indices is required. Denoting the number of
potentially active indices with p, we have 2p possible activation structures. For every
possible activation structure Alp ⊆ Ap(x

∗), l ∈ {1, . . . , 2p}, we can compute a vector
v̄l = (v̄l1, v̄

l
2, v̄

l
3) as in the predictor step (Section 5.1.2). If we assume |∇f(x∗)a| > 0,

then according to 2a in Theorem 5.1.2, the correct sign of the possibly active indices
is given by − sgn(∇f(x∗))j. Therefore, we have to consider the directions v̄l given
by

ker

(
α1∇2f(x∗)|A(x∗)∪Alp ∇f(x∗)|A(x∗)∪Alp sl

0 1 1

)
, (5.22)

with sl = − sgn(∇f(x∗)|A(x∗)∪Alp). If the Hessian ∇2f(x∗)|A(x∗)∪Alp is regular, we
obtain, similar to (P),

v̄l1 = (1 + |∇f(x∗)a|)2
(
∇2f(x∗)|A(x∗)∪Alp

)−1

sl,

v̄l2 = 1,

v̄l3 = −1.

(5.23)

Analogously to Section 5.1.2, we obtain the direction vl1 ∈ Rn by the corresponding
embedding lA(x∗)∪Alp : RnA(x∗)+|Alp| → Rn. If Alp is a set of potentially active indices
that can indeed be activated, i.e., if there is a curve γ of Pareto critical points
starting in x∗ with the active set A(x∗)∪Alp, then by construction, vl1 is the tangent
vector of that curve. By analyzing the relationship between the derivative of γ at
x∗ and the conditions in Theorem 5.1.2, we obtain necessary conditions for Alp to be
activated. This is done in the following lemma and the subsequent corollary.

117

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

Lemma 5.1.7. Let x∗ ∈ Pc \ {0} with ∇f(x∗) 6= 0. Let γ : (−1, 1)→ Rn be a map
such that

(i) γ is continuously differentiable,

(ii) γ(t) ∈ Pc ∀t ∈ [0, 1),

(iii) γ(0) = x∗ and

(iv) the active set A(γ(t)) =: Aγ is constant ∀t ∈ (0, 1).

Let a ∈ A(x∗) and w = γ̇(0). Then, for all j ∈ Aγ \ A(x∗), it holds

(a) either wj = 0 or sgn(wj) = − sgn(∇f(x∗)j).

Furthermore, if Ap(x∗) is given by (5.21), we have for all j ∈ Ap(x∗) \ Aγ
(b) sgn(∇f(x∗)j)(∇2f(x∗)w)j ≤ sgn(∇f(x∗)a)(∇2f(x∗)w)a.

Proof. First, since∇f(x∗) 6= 0, according to Theorem 5.1.2 and due to the continuity
of ∇f and γ, there exists ε > 0 such that

∇f(γ(t))j 6= 0 ∀t ∈ [0, ε) and j ∈ A(x∗) ∪ Ap(x∗).

This implies that

sgn(∇f(γ(t))j) is constant ∀t ∈ [0, ε) and j ∈ A(x∗) ∪ Ap(x∗). (5.24)

Furthermore, note that Aγ ⊆ A(x∗)∪Ap(x∗), i.e., (5.24) is especially true for j ∈ Aγ.
We start by proving (a). To this end, assume that j ∈ Aγ \ A(x∗). Due to (ii) and
(iv), according to 2(a)i in Theorem 5.1.2, we have for all t ∈ (0, 1)

sgn(γj(t)) = − sgn(∇f(γ(t))j), (5.25)

if ∇f(γ(t))j 6= 0. By (5.24), this implies that sgn(γj(t)) is constant for all t ∈ (0, ε).
Due to (iii), we have γj(0) = x∗j = 0 and, thus,

wj = γ̇j(0) = lim
t→0

γj(t)− γj(0)

t
= lim

t→0

γj(t)

t
= lim

t↓0

γj(t)

t
.

If wj 6= 0, since sgn(γj(t)) is constant for all t ∈ (0, ε), we have

sgn(wj) = sgn(γj(t)) for t ∈ (0, ε)

and, thus,

sgn(wj)
(5.25)
= − sgn(∇f(γ(t))j)

(5.24)
= − sgn(∇f(x∗)j) for t ∈ (0, ε).

Now, we prove (b). Let j ∈ Ap(x
∗) \ Aγ. From (ii) and 2b in Theorem 5.1.2, it

follows that

sgn(∇f(γ(t))j)∇f(γ(t))j = |∇f(γ(t))j|
≤ |∇f(γ(t))a| = sgn(∇f(γ(t))a)∇f(γ(t))a

(5.26)

118

5.1. The Continuation Method

for all t ∈ [0, 1). As j ∈ Ap(x
∗), we have |∇f(x∗)j| = |∇f(x∗)a| and thus,

sgn(∇f(γ(0))j)∇f(γ(0))j = sgn(∇f(γ(0))a)∇f(γ(0))a. Hence, from (5.26), we can
conclude

sgn(∇f(γ(t))j)∇f(γ(t))j
t

− sgn(∇f(γ(0))j)∇f(γ(0))j
t

≤ sgn(∇f(γ(t))a)∇f(γ(t))a
t

− sgn(∇f(γ(0))a)∇f(γ(0))a
t

(5.27)

for all t ∈ [0, 1). Recall that sgn(∇f(γ(t))j) and sgn(∇f(γ(t))a) are constant for
t ∈ [0, ε). Thus, by (5.27), we have

sgn(∇f(γ(0))j)
∇f(γ(t))j −∇f(γ(0))j

t
≤ sgn(∇f(γ(0))a)

∇f(γ(t))a −∇f(γ(0))a
t

for all t ∈ [0, ε). If we consider the limit t ↓ 0 on both sides of (5.27), we get

sgn(∇f(γ(0))j)(∇2f(γ(0))γ̇(0))j ≤ sgn(∇f(γ(0))a)(∇2f(γ(0))γ̇(0))a.

Substituting γ(0) = x∗ and γ̇(0) = w yields

sgn(∇f(x∗)j)(∇2f(x∗)w)j ≤ sgn(∇f(x∗)a)(∇2f(x∗)w)a.

Since we do not know what the Pareto critical set looks like, we do not know whether
such a curve γ for the activation structure A(x∗) ∪ Alp exists. Nevertheless, the
existence of γ|(0,1) follows from the smooth structure of (5.8). Thus, we can use
the derived properties of such a curve γ as necessary conditions to prove whether a
direction vl1 (given by (5.23)) is admissible. Note that the existence of γ implies a
certain type of regularity of the smooth parts when they reach a kink. For example,
roughly speaking, continuous differentiability of γ on an open neighborhood of t = 0
implies that the “curvature” of Pc is bounded. By the construction in (5.23), w is
(up to scaling) equal to the direction vl1 for the index set Alp = Aγ \ A(x∗).

Corollary 5.1.8. Let x∗ ∈ Pc \ {0} with ∇f(x∗) 6= 0, let γ be a curve as in Lemma
5.1.7 and let a ∈ A(x∗). Furthermore, let vl1 be the vector computed via (5.23) for
the index set Alp = Aγ \ A(x∗). Then, for w = σvl1 with σ ∈ {−1,+1},

(a) either wj = 0 or sgn(wj) = − sgn(∇f(x∗)j) ∀j ∈ Alp, and

(b) sgn(∇f(x∗)j)(∇2f(x∗)w)j ≤ −σ(1 + |∇f(x)a|)2 ∀j ∈ Ap(x∗) \ Alp.

Remark 5.1.9. According to Corollary 5.1.8(a), for all possible activation struc-
tures Alp ⊆ Ap(x

∗), Alp 6= ∅, there either exists only one valid direction (+vl1 or
−vl1) or the tangent vector w of the corresponding curve γ has to satisfy wj = 0
for all j ∈ Ap(x

∗), i.e., γ has to be tangential to a vector with activation struc-
ture A(x∗), which is unlikely. In addition, in that situation, both directions +vl1
or −vl1 have to satisfy the inequality in Corollary 5.1.8(b), i.e., it has to hold
sgn(∇f(x∗)j)(∇2f(x∗)vl1)j = −(1 + |∇f(x)a|)2 for all j ∈ Ap(x∗) \ Alp.

119

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

Using the conditions from Corollary 5.1.8, we can eliminate certain possible acti-
vation structures and determine the correct sign of the directions corresponding to
the remaining structures. These remaining directions can then be interpreted as the
initial predictor steps for the new activation structures. Except for the direction
we came from, we have to proceed with the continuation method in each of the
remaining directions. In Examples 5.1.10 and 5.1.11, we show how Corollary 5.1.8
can be applied.

Example 5.1.10. Consider (MOP-`1) with

f(x) = (x1 − 2)2 + (x2 − 1)2 + (x3 − 1)2.

Figure 5.2a shows the Pareto critical set for this problem. Consider the Pareto
critical point x∗ = (1, 0, 0)>. Since ∇f(x∗) = (−2,−2,−2)>, the set of potentially
active indices is given by Ap(x∗) = {2, 3}, cf. (5.21). According to (5.23), we get the
following possible directions:

v0
1 =

9/2

0

0

 , v1
1 =

9/2
9/2

0

 , v2
1 =

9/2

0
9/2

 , v3
1 =

9/2
9/2
9/2

 ,

corresponding to A0
p = ∅, A1

p = {2}, A2
p = {3}, and A3

p = {2, 3}. After checking
Condition (a) in Corollary 5.1.8, we know that only

v0
1,−v0

1, v
1
1, v

2
1 and v3

1

remain as suitable directions. By checking the inequality in (b) in Corollary 5.1.8,
the set of admissible directions can be reduced to

−v0
1 and v3

1.

Assuming that we started in the origin, we have to walk in direction v3
1, i.e., indices

2 and 3 become active (and positive).

Example 5.1.11. Consider (MOP-`1) with

f(x) = (x1 − 2)2 − x1(x2 − 1)2 + 2x1x3 + 2x2
2x1.

The relevant part of Pc for this problem is shown in Figure 5.2b. Consider the
Pareto critical point x∗ = (1.25, 0, 0)>. Since ∇f(x∗) = (−2.5, 2.5, 2.5)>, the set of
potentially active indices is given by Ap(x∗) = {2, 3}. According to (5.23), we get as
possible directions:

v0
1 =


49/8

0

0

 , v1
1 =


441/8

−49

0

 , v2
1 = v3

1 =

−
49/8

0

49/4

 ,

corresponding to A0
p = ∅, A1

p = {2}, A2
p = {3}, and A3

p = {2, 3}. After checking
the Conditions (a) and (b) in Corollary 5.1.8, only −v0

1, −v2
1 and −v3

1 remain as

120

5.1. The Continuation Method

admissible directions. Thus, assuming that we started in the origin, we have to
proceed with the continuation into the directions −v2

1 and −v3
1. After a predictor step

along the direction −v3
1, the result of the subsequent corrector step is x∗, i.e., the

continuation in this direction terminates immediately. Therefore, the only remaining
direction is −v2

1. Thus, only j = 3 is activated.

0
0

0.5

1

1
1 0.5

2 0

(a)

0
1

2 0
1

2

-1

-0.5

0

(b)

Figure 5.2: (a) Pc for the MOP in Example 5.1.10. (b) Part of Pc for the MOP in
Example 5.1.11.

Typically, only one direction, excluding the old direction one comes from, remains
after applying Corollary 5.1.8. If this is not the case, there is usually only one
direction left after the first correction step, cf. Example 5.1.11. However, there are
some situations where the continuation can be continued in more than one direction,
i.e., the Pareto critical set splits. The following example shows such a situation.

Example 5.1.12. Consider (MOP-`1) with

f(x) = (x1 − 2.5)2 + ((x2 + 1)2 + (x3 − 1)2 − 3)2.

The Pareto critical set Pc and its image are presented in Figure 5.3. We see that in
the point x∗ = (0.5, 0.0, 0.0)>, the Pareto critical set splits into three parts, visualized
in different colors. In the blue part, only the indices 1 and 3 are active. In the
turquoise part, the active set consists of the indices 2 and 3, whereas all indices are
active in the yellow part. Obviously, this is caused by the symmetry in x2 and x3,
i.e., by the fact that f((x1, x2, x3)>) = f((x1,−x3,−x2)>). Note that all three parts
have the same image, cf. Figure 5.3b.

If no direction satisfies the conditions in Corollary 5.1.8, we have reached the end
of a connected component of Pc. In the general smooth case, assuming that the
weighted Hessian matrix

∑k
i=1 αi∇2fi(x) in (2.23) is regular, which implies that

DH has full rank, a connected component of the Pareto critical set can only end in
a critical point of one of the objective functions [GPD19]. For (MOP-`1), we have
to distinguish between two cases. If all indices are active, the end of the component
can only be reached if ∇f(x) = 0 as both objectives are smooth in this part, and

121

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

-0.4

-0.3

0

-0.2

-0.1

0

0.41
0.22

0

(a)

0 2 4 6 8

0

1

2

3

(b)

Figure 5.3: (a) Pc for the MOP in Example 5.1.12. In the red point, Pc splits into
the blue, turquoise and yellow part. (b) The image of Pc, with the image of the
point where Pc splits marked in red.

the gradient of the `1-norm cannot become zero. Otherwise, ∇f(x) = 0 means that
all inactive indices are potentially active, i.e., Ap(x) = {1, . . . , n} \ A(x). Besides
the fact that the set Ap(x) may be extremely large, Corollary 5.1.8 is not applicable.
This situation is discussed in more detail in the following remark.

Remark 5.1.13. Assume that we are in a point x∗ with ∇f(x∗) = 0 and Ap(x∗) 6= ∅,
i.e., there are inactive indices. In the case that (a part of) the Pareto critical set
continues in the current activation structure, such a point is likely missed during
the continuation due to the discretization. If Pc does not continue along the current
activation structure, the corrector will end up in x∗. In this case, we would have to
consider every possible combination of the signs of potentially active indices for every
possible activation structure Alp since we cannot predict the sign of xj with j ∈ Ap(x∗)
via the sign of the gradient. Although the requirements of Corollary 5.1.8 are not
satisfied, similar conditions can be derived based on the directional derivative in
direction vl1 to ensure that the conditions derived in Theorem 5.1.2 are satisfied. First
of all, sgn((∇2f(x∗)w)j) = − sgn(x∗j) has to hold for all j ∈ A(x). Furthermore, for
the newly active indices j ∈ Alp, we get sgn((∇2f(x∗)w)j) = − sgn(wj) (or wj = 0).
As last condition, replacing Corollary 5.1.8(b), |(∇2f(x∗)w)j| ≤ |(∇2f(x∗)w)a| has
to be satisfied for all indices j ∈ Ap(x∗) \ Alp, i.e., for all indices staying inactive.
Although these conditions would be easy to check, the number of inactive indices tends
to be large (since we are looking for sparse solutions), resulting in a vast number of
directions that have to be computed and for which the conditions need to be checked.
Therefore, for this situation, a different strategy would be required. Nevertheless, it
seems quite unlikely that a critical point of the objective f is of such a nature that
the activation structure has to change in it. Hence, in practice, it is reasonable to
stop the continuation if a point x∗ with ∇f(x∗) = 0 is reached, and compute a new
starting point xstart for the continuation method.

As discussed in the previous remark, in the case that ∇f(x) = 0 is satisfied on a part
with constant activation structure, this point is probably missed by the continuation

122

5.1. The Continuation Method

method, i.e., if the Pareto critical set would split in this point, we probably would
not recognize the other parts of the Pareto critical set. This is obviously not only the
case for ∇f(x) = 0 but can happen in general if Pc splits up and one part remains
in the old activation structure. But based on Corollary 5.1.8 and Remark 5.1.9,
one can show that such points are unlikely to exist in practice, as discussed in the
following remark.

Remark 5.1.14. During the normal continuation, a point x∗ where the Pareto set
splits into two (or more) parts could only be missed if one part of the Pareto critical
set remains in the old activation structure. According to Corollary 5.1.8 this would
only be possible if both directions for the activation structure A(x∗), i.e., for A0

p = ∅,
are allowed. According to Corollary 5.1.8(b), for the direction v0

1 computed via (5.23)
and the appropriate embedding lA : RnA(x∗) → Rn and projection pA : Rn → RnA(x∗)

as in Corollary 5.1.4, we have

sgn(∇f(x∗)j)(∇2f(x∗)v0
1)j = −(1 + |∇f(x∗)a|)2 ∀j ∈ Ap(x∗)

⇔
(
∇2f(x∗) · lA

(
(∇2f(x∗)|A(x∗))

−1s
))
j

= − sgn(∇f(x∗)j) ∀j ∈ Ap(x∗), (5.28)

where s = sgn(pA(x∗)). Now, assume that the conditions in Corollary 5.1.8 are
satisfied for a curve γ with activation structure Aγ = A(x∗)∪Āp, where Āp ⊆ Ap(x

∗)
and Āp 6= ∅, i.e., we assume that the Pareto set splits and it exists an additional part
with different activation structure. Since ∇2f(x∗)|A(x∗) and ∇2f(x∗)|Aγ are invertible
by assumption, we can use the Schur-complement to compute the new direction v̄γ1
according to (5.23) for the activation structure Aγ. Without loss of generality, we
assume that the indices are sorted in such a way that

∇2f(x∗)|Aγ =

(
HA C>

C D

)
,

where HA = ∇2f(x∗)|A(x∗). Before we derive an expression for v̄γ1 , we note that
(5.28) has to be satisfied in particular for j ∈ Āp, i.e., it has to hold

s∗ =
(
C D

)(H−1
A s

0

)
= CH−1

A s,

where s∗ = − sgn(∇f(x∗)|Āp). Thus, by using the Schur-complement and (5.23), we
get

v̄γ1
(1 + |∇f(x∗)a|)2

=
(
∇2f(x∗)|Aγ

)−1
(
s

s∗

)
=

(
H−1
A +H−1

A C>(D − CH−1
A C>)−1CH−1

A −H−1
A C>(D − CH−1

A C>)−1

−(D − CH−1
A C>)−1CH−1

A (D − CH−1
A C>)−1

)(
s

s∗

)
=

(
H−1
A s+H−1

A C>(D − CH−1
A C>)−1(s∗ − s∗)

(D − CH−1
A C>)−1(−s∗ + s∗)

)
=

(
H−1
A s

0

)
.

123

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

According to (5.23), the tangent vector v̄0
1 for the activation structure A(x∗) is given

by v̄0
1 = (1 + |∇f(x∗)a|)−2H−1

A s. Thus, we have v̄γ1 = (v̄0
1, 0)>. Since v̄γ1 is the

tangent vector of γ in x∗, this implies that the curve γ has to be tangential to the
part of the Pareto critical set with activation structure A(x∗). Although it is difficult
to prove, we believe that this is an unlikely scenario. Therefore, the likelihood of
missing a point where the activation structure changes is generally small as long as
the respective Hessian matrices are invertible.

5.1.5 The Algorithm

By combining the predictor, the corrector, and the strategies to activate or deactivate
indices, we are able to compute the connected component of the Pareto critical set
that contains our starting point xstart. A more detailed version of Algorithm 4 is
given in Algorithm 5 to sum up the presented results.

Algorithm 5 Continuation for (MOP-`1).
Input: f : Rn → R ∈ C2, xstart ∈ Rn satisfying (2.13)
Output: Discretization of the Pareto critical set PPC

1: PPC = ∅, x0 = xstart, A = {j ∈ {1, . . . , n} : x0
j 6= 0}

2: while End of Pc component has not been reached do
3: PPC = PPC ∪ {x0}
4: if Ap(x0) = ∅ (cf. (5.21)) then

Predictor step:
5: Compute direction v1 = lA(v̄1) using (P),
6: Determine sign of v1 using (5.18),
7: Compute the step size along ±v1 using (5.19),
8: Determine xp = x0 + h · (±v1).

Corrector step:
9: Compute xc ∈ Pc by solving (C) with initial value xp.
10: x0 = xc

11: else
(De-)Activate entries:

12: Calculate vl for all Alp ⊆ Ap(x
0) using (5.23),

13: Reduce number of directions using Corollary 5.1.8,
14: Proceed with the corrector step for all remaining directions with A = Alp.
15: end if
16: end while

As already mentioned at the beginning of this section, the most intuitive choice for
the starting point would be xstart = 0 since it is Pareto critical and even Pareto
optimal as the global minimum of the `1-norm. According to Theorem 5.1.2, the
first index that has to be activated in xstart = 0 is the one that corresponds to the
largest absolute value of the gradient. The sign of the gradient entry furthermore
tells us whether we have to proceed in the positive or negative direction. If there
are multiple maxima, we can apply the strategy described in Section 5.1.4 to decide
which indices should be activated. Obviously, any other Pareto critical point can be

124

5.2. Numerical Results

chosen as a starting point, as well. In this case, running the continuation method
in both directions may be useful, i.e., in the very first predictor step, the method is
proceeded for v1 and −v1.

Often, the Pareto critical set consists of more than one connected component. Hence,
multiple starting values (at least one for each connected component) are usually re-
quired. One possible approach would be to directly perform a multi-start, i.e., to
create (more or less randomly) multiple Pareto critical points to start from. In prac-
tice, it may be more beneficial to compute an appropriate new starting value when
one connected component is completely computed. To this end, methods acting in
the objective space can be useful. Usually, we are interested in a new solution with
a smaller value of f and a larger `1-norm or vice versa (depending on whether we
reached the lower or the upper end of the image of the component). To this end, the
ε-constraint method (cf. Section 2.3.2) can be used or, alternatively, the so-called
reference point methods (cf. [Ehr05]) may be utilized, where an optimal solution
is computed that is near an appropriate chosen reference point in the objective
space.

Lastly, it is important to note that the continuation method only computes points
that are Pareto critical, but not necessarily Pareto optimal. To verify whether the
computed points are really optimal, in theory, a consecutive non-dominance test
[Sch03] can be applied to the approximation of the Pareto critical set.

5.2 Numerical Results

Now we want to evaluate the presented continuation method by means of some nu-
merical examples. We begin with two toy examples to illustrate the basic behavior,
where the second one is of higher dimension (n = 1000). Afterwards, we compute
the Pareto critical set for an example motivated by the SINDy approach mentioned
in the introduction of this chapter [BPK16]. Finally, the use of our method in the
context of NN training is studied in more detail.

5.2.1 Toy Examples

As a first illustrating example, we consider a low-dimensional (nonconvex) problem.

Example 5.2.1. Consider (MOP-`1) where the first objective is given by

f(x) =
(
x1 − 1

4

)2
+
(
x2 − 1

2

)2
+ (x3 − 1)4 − 1

2

(
x3 − 1

4

)3
.

The result of the continuation method (which coincides with the analytic solution) is
presented in Figure 5.4. We can observe that indices are activated and deactivated
multiple times. Points where the activation structure changes are x1 = (0, 0, 0.375)>,
x2 = (0, 0.25, 83

151
)>, x3 ≈ (0, 0.25, 0.81)>, x4 ≈ (0, 0, 1.07)>, x5 ≈ (0, 0, 1.93)>, as

well as x6 ≈ (0, 0.25, 2.014)>. Note that with the standard weighted sum method,
i.e., by solving (5.1), only the convex parts of Pc can be computed. In particular,

125

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

0
0.40

1

0.1 0.2

2

0.2
0

(a)

-2 -1 0 1 2

0

1

2

3

(b)

Figure 5.4: (a) Pc for the MOP in Example 5.2.1, where the various activation
structures are differently colored. (b) Image of Pc with the corresponding coloring.

a large part where only j = 3 is active would be missed, which again highlights the
necessity for a method that is able to handle a nonconvex function f .

In the next example, we want to study the applicability of the continuation method
to higher dimensional problems. Therefore, we consider a (relatively simple) poly-
nomial function f in the space R1000, motivated by Example 1 in [SDD05].

Example 5.2.2. Consider (MOP-`1) with

f(x) = (x1 − a1)4 +
n∑
i=2

(xi − ai)2,

where a1 = 1 and ai, i ∈ {2, . . . , n}, are randomly chosen values in the interval
[−1, 1]. Figure 5.5 shows the Pareto front resulting from the continuation method
for n = 1000 with step size τ = 0.25 (which coincides with the analytical solution).
Note that the computation of Pc does not suffer from the “curse of dimensionality”
(with respect to n), since the dimension of the Pareto set depends on the number of
objective functions k and is thus still one.

5.2.2 SINDy

In the next example, we consider the SINDy approach [BPK16], already briefly
mentioned in the introduction of this chapter. Similar to the surrogate models dealt
with in Chapters 3 and 4, it aims at building an approximation of a dynamical
system given by

ẏ(t) = g(y(t)),

where y : [t0, tf]→ Y ⊆ Rny is the state function and g : Y → Y defines the system
dynamics. More precisely, the idea of SINDy is to represent g via a dictionary of
c ansatz functions (denoted by Θ : Y → Rc) with the corresponding coefficients
X ∈ Rc×ny :

gr(y(t)) = X>Θ(y(t)).

126

5.2. Numerical Results

0 100 200 300 400

0

200

400

600

Figure 5.5: Pareto front for the MOP in Example 5.2.2.

The entries of Θ are arbitrary linear and nonlinear functions such as sine and cosine
or polynomials. For the SINDy approach, we assume that N (potentially noisy)
training data points of the form ((y1, ẏ1), ..., (yN , ẏN)) are given, i.e., we assume
that we know (or can approximate) the derivative of the state y. Using these data
points, the objective is to identify a sparse representation of g in terms of Θ, and
to obtain a robust and interpretable dynamical system from data this way. The
corresponding main objective is thus the following least squares term:

f(X) =
1

nycN

N∑
i=1

∥∥X>Θ(yi)− ẏi
∥∥2

2
. (5.29)

As this is a convex function, the corresponding MOP is also convex and can thus be
addressed using the standard penalization approach, i.e., the weighted sum method
minX f(X) +λ‖X‖1 (where X is transformed to one large weight vector). However,
the solution to this problem may be highly sensitive with respect to λ, which makes
choosing an appropriate λ difficult.

As a concrete example, we consider again the Lorenz system (without an additional
control input) with parameters σ = 10, ρ = 28 and β = 8

3
, for which the dynamical

system possesses a chaotic solution:

ẏ =

 σ · (y2 − y1)

y1 · (ρ− y3)− y2

y1 · y2 − β · y3

 .

We collect N = 10 000 training data points of a single long-term simulation to which
we add white noise. The dictionary Θ consists of polynomial terms up to order 3
and thus c = 20 terms per dimension, i.e., X ∈ R20×3.

The result obtained by the new continuation method for the corresponding MOP,
i.e., for (MOP-`1) where f is given by (5.29), is shown in Figure 5.6. We see that,
although the objectives are convex, choosing the weight λ in a penalization approach
can be very challenging. Large parts of the Pareto front are almost parallel to either
the horizontal or vertical axis, such that a slight change in the penalty weight leads

127

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

50 100 150 200

0

10

20

30

40

(a)

0 500 1000 1500
10

-1

10
0

10
1

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-20

0

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-20

0

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

50

(c)

Figure 5.6: (a) Convex Pareto front for the SINDy approach (f of (MOP-`1) is given
by (5.29)) applied to the Lorenz system. (b) Evolution of all Xi,j that were greater
than 0.5 in at least one iteration step. (c) Trajectory of the Lorenz system (black)
and the resulting trajectories of the approximated solutions, where the corresponding
point on the Pareto front is marked in (a).

to a significant deviation in the image space. In particular, for most of the weights
λ, the solution of the penalization approach is close to the so-called knee point.
A knee point is a point at which a small decrease in one objective function leads
to a large increase in the other objective [Bra+04], which in the example here is
(approximately) the turquoise point. In many applications, knee points represent
desirable solutions when choosing a point from the Pareto set. However, the solution
belonging to the yellow point is clearly better than the solution corresponding to
the turquoise point, i.e., here, the knee point is not the desired solution.

5.2.3 Neural Network

Now we come to the main motivation for developing the presented continuation
method – the training of neural networks. We consider a fully connected FNN,

128

5.2. Numerical Results

recall Section 2.2.2. Thus, the equations of the NN are given by

h0 = a,

hj = σh
(
W>
j hj−1 + w0

j

)
for j ∈ {1, . . . , K},

b = σo(W
>
K+1hK + w0

K+1︸ ︷︷ ︸
=hK+1

),

where K is the number of hidden layers, and σh and σo are the activation functions
for the hidden layers and the output layer, respectively. The parameters that can
be optimized are the weights Wj ∈ Rnj−1×nj and the biases w0

j ∈ Rnj , where nj is
the number of neurons of the j-th layer. Accordingly, n0 and nK+1 are equal to the
input and output dimension, respectively. For simplicity of notation, we combine
these into a single variable x = ((W1, w

0
1) . . . , (WK+1, w

0
K+1)) that we identify with

a vector in Rn, where n is the number of (trainable) parameters of the NN. In
this concrete example, we consider an FNN with K = 2 hidden layers to solve the
classification task of the well-known Iris data set [Fis36], cf. Section 2.2.1. Each
hidden layer consists of two neurons, and the activation function for the hidden
layers is given by σh = tanh. For the output layer, we choose the softmax function,
i.e.,

σo(hK+1)i =
exp(hK+1)i∑nK+1

j=1 exp(hK+1)j
for i ∈ {1, . . . , nK+1}. (5.30)

Note that the output dimension nK+1 is equal to the number of possible classes
in the output set B of the data set, i.e., nK+1 = 3, such that the total number of
weights is n = 25 [= (4 · 2 + 2) + (2 · 2 + 2) + (2 · 3 + 3)]. Since we consider a
classification task, the loss function is chosen as the mean of the cross-entropy loss,
cf. Equation (2.6). Figure 5.7 shows the Pareto front obtained via the continuation
method applied to three different starting values, i.e., we computed three connected
components of the Pareto critical set and applied a non-dominance test afterwards.
As an initial starting value, we chose xstart = 0 as the global minimum of the `1-
norm. After computing the corresponding connected component, the ε-constraint
method was applied to find a new suitable starting value. This was repeated after the
computation of the second connected component. As (constant) step size, τ = 0.1
was chosen. Note that the single connected components do not appear as distinct
connected components in the objective space since their images intersect.

To compare the result to the classical training via SGD applied to the regularized
objective f(x) +λ‖x‖1, several solutions were computed using the Adam algorithm,
cf. Section 2.2.2. To this end, random initial conditions, as well as varying weights
λ, were used. Furthermore, a fixed number of 5000 epochs was chosen. (Note
that this way, the influence of early stopping to avoid overfitting is left out.) As
expected, too large values of λ lead to the calculation of solutions close to x = 0.
These cause a large training error since they cannot represent any information of the
training data. We see that the Adam optimizer usually ends up in points close to the
calculated Pareto front, but the solutions cluster in two places, and Pareto optimal
points corresponding to the middle part of the Pareto front are not obtained. This

129

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

0 0.02 0.04

20

30

40

50

60

1.09 1.095 1.1

0

0.1

0.2

0.3

0.4

Figure 5.7: Pareto front computed via continuation for the NN training on the
Iris data set (black) in (a). The colored dots show solutions obtained via the Adam
algorithm with different weights for the `1-penalty term. These cluster in two places,
cf. the two zoomed-in plots at the bottom.

is probably caused by the fact that large parts of the Pareto front are nonconvex, as
marked in Figure 5.8. Furthermore, some parts of the convex segments of the Pareto
front have a very low curvature, which implies that the subset of weights λ that need
to be chosen to find these segments is small, i.e., it is difficult to find a suitable λ
and to compute the solutions in a numerically stable way. Moreover, for λ = 10−3,
we obtain solutions in both clusters, depending on the initial condition. This is
probably caused by the randomness induced by the batch-wise learning in the Adam
optimizer or by the choice of the initial weights. This shows again the difficulties of
the standard penalty term approach and the advantage of the continuation method,
which still provides good compromise solutions in this case.

However, when training NNs, one is not directly interested in the training error but
instead would like to find solutions that do not lead to overfitting. To assess this, we
need to consider the test error on unseen test data, cf. Section 2.2.1. The test error
for the solutions computed via continuation and the Adam algorithm are shown in
Figure 5.9. While both approaches are capable of finding solutions with similar low
test errors, we see that the continuation method finds a solution with a significantly
smaller `1-norm. Moreover, since the test error of the Adam solutions for λ = 10−3

varies strongly, the continuation method is more robust.

130

5.3. Towards High-Dimensional Problems

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

Figure 5.8: Pareto front computed via continuation for the NN training on the Iris
data set where the nonconvex parts are marked in red.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Figure 5.9: Test error (black) and training error (grey) against `1-norm for the
Pareto optimal points computed via the continuation method (and the subsequent
non-dominance test). The colored dots represent the test error of the corresponding
Adam solutions shown in Figure 5.7.

Furthermore, in terms of the runtime, the continuation method is not necessarily
slower than the penalty approach solved via Adam since the Adam solver has to
be started multiple times to derive good solutions. Nevertheless, the presented
continuation method lacks scalability to higher dimensions. How this issue might
be overcome is discussed in the subsequent section. In addition, note that in a
real training process, validation data has to be used to choose the best solution.
The performance of the derived models can then be evaluated based on unseen test
data.

5.3 Towards High-Dimensional Problems

Apart from the polynomial toy example, the examples presented in the last section
were of relatively small dimension. As briefly mentioned at the end of that sec-
tion, the proposed method does not scale well to larger dimensions. Especially in
the training of NNs, we encounter some difficulties mainly caused by the numerous

131

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

symmetries in the networks, which also turn up in greater numbers as the dimension
increases. It is well-known that symmetries are an issue for continuation methods
in general [AG90]. It is also common knowledge in the area of machine learning
that it is important to pay attention to them. There, the main issue is that once a
symmetry occurs in the parameters, it cannot be eliminated since the corresponding
gradient entries stay equal [GB10]. Typically, this is taken into account by an ap-
propriate initialization that avoids (unwanted) symmetries in the standard training
algorithms.

The main issues we face when dealing with higher dimensional problems in the
presented continuation method are the following:

1. Although we only need to consider the reduced Hessian matrix, i.e., the rows
and columns corresponding to nonzero entries of the current activation struc-
ture, the computation of the reduced Hessian and its inverse become very
expensive with an increasing number of active indices nA (which usually also
increases if the problem dimension n increases).

2. The necessary conditions for activating indices, cf. Corollary 5.1.8, often yield
a unique direction in which to continue. Unfortunately, there are also cases
where several directions remain, and the Pareto critical set splits into multiple
branches, cf. Example 5.1.12. In particular, this is the case if f possesses
symmetries, as it is often the case for NNs. With an increasing dimension,
such situations are more likely to occur, and it becomes more expensive to
compute all Pareto critical branches.

3. The reduced Hessian matrix may become singular in certain situations. This
is particularly an issue when there are multiple potentially active indices, and
one has to prove which directions are suitable (with the necessary conditions
from Corollary 5.1.8). Similar to the previous point, singular Hessian matrices
can be caused by symmetries which, especially in the case of neural networks,
occur much more frequently if the problem is of high dimension.

4. With an increasing dimension of the variable x, the ε-constraint method, which
we use to find a new component, becomes more expensive and sometimes
numerically unstable.

There are different possibilities to overcome these issues. The most obvious is to
use approximations of the Hessian instead of the exact one to address Issue 1. For
instance, during the optimization in the corrector step, a BFGS or SR1 update, cf.
[NW06], can be used. The final approximation of the Hessian can then also be used
in the subsequent predictor step. Furthermore, we can directly compute the inverse
by a rank-1-update. First experiments suggest that the SR1 update may be more
suitable in our case. A similar approach (using the BFGS update rule) is followed
in [Mar14; MS17].

To handle Issue 2, we can apply a greedy strategy, i.e., we proceed only in the first
suitable direction and ignore the others. This is particularly reasonable for splitting
caused by symmetries where the branches of Pc correspond to the same part of the
Pareto front and thus lead to equivalent well-suited solutions. If we consider neural

132

5.3. Towards High-Dimensional Problems

networks, due to the symmetric graph structure, we often face symmetries of the
form that f(ν, 0) = f(βν, (1 − β)ν) for all β ∈ [0, 1], ν ∈ R, i.e., f(βν, (1 − β)ν)
has the same value for all β ∈ [0, 1]. Furthermore, the value of the `1-norm is also
constant, i.e.,

∥∥(βν, (1− β)ν)>
∥∥

1
= |ν| for all β ∈ [0, 1]. Hence, the Pareto critical

set is not one-dimensional where this symmetry condition holds. If both indices are
activated, from the symmetry of f as above, it follows that the Hessian matrix is
singular. By activating only one of the indices, the reduced Hessian matrix is only
one-dimensional and may be invertible (unless it is zero). Thus, Issue 3 is at least
partially addressed. Nevertheless, it is an open problem how to continue if it is
necessary to consider an activation structure for which the reduced Hessian matrix
is not regular.

The most efficient way to solve Issue 4 is to compute only the connected component
that is relevant for the considered application by computing an appropriate xstart.
For instance, in the case of NNs, a scalarization method in combination with an ef-
ficient training algorithm can be used, such as the weighted sum solved with Adam.
However, it remains open how to ensure that a suitable solution is found. Alter-
natively, additional knowledge (e.g., regarding the influence of bias neurons on the
number of connected components in an NN) may help to find suitable transitions to
neighboring connected components, but this is left as a topic for future work.

In the following example, we apply the above suggestions to train a larger NN to
learn an adaption of the well-known MNIST data set [LCB10].

Example 5.3.1 (NN for reduced MNIST). As in Section 5.2.3, we consider an FNN
and want to solve a classification task. Here, we consider the MNIST data set, which
consists of images with 28 × 28 pixels showing handwritten digits between 0 and 9.
Without adaptions, this would result in a vast number of parameters. (Even for one
hidden layer and one neuron, we already would have 805 parameters.) Therefore,
we only take images labeled with “3” or “6” and reduce the number of pixels to 6× 6
by using bilinear interpolation, see, for instance, [GW08a]. We consider an NN
with K = 2 hidden layers consisting of 4 neurons each. This results in n = 173
parameters to train. This time, we choose the softplus activation function for the
hidden layers, i.e., h(·) = log(exp(·) + 1) (applied elementwise to the input vector).
For the output layer, we use again the softmax function, cf. (5.30).

Figure 5.10a shows the Pareto front obtained via the continuation method when
starting in xstart = 0 with τ = 0.25. Similar to Section 5.2.3, we computed three
components and used a non-dominance test to obtain the results. The shown Adam
solutions are obtained with 500 epochs.

We observe again that the Adam solutions cluster in two places, and solutions in both
clusters are derived for λ = 0.0005. Furthermore, the solutions are significantly less
sparse than those obtained via the continuation. If we assume that the Adam solver
converged to Pareto optimal solutions, this part is missing in the solution derived by
the continuation method. To compute this part, an appropriate additional starting
value would be required. However, as can be seen in Example 5.3.1, the effect on
both training and test error is negligible. Thus, these solutions are not of practical

133

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

0.2 0.4 0.6

0

50

100

(a)

0.6925 0.693 0.6935

0

0.02

0.04

0.06

0.08

0.1

(b)

0 50 100 150

0

0.2

0.4

0.6

0.8

(c)

Figure 5.10: Results of Example 5.3.1. (a) Pareto front for the NN training via
continuation on the reduced MNIST data set (black). The colored dots show so-
lutions obtained via Adam with different weights for the `1-term. (b) Zoom-in on
the bottom right of (a). (c) Test error (black) and training error (grey) against the
`1-norm for Pareto critical points computed via continuation. The colored dots show
the test error of the corresponding Adam solutions.

relevance since the solutions derived by the continuation method are equally good.
Furthermore, note that the test error does not increase with a higher value of the
`1-norm, i.e., no overfitting can be observed. This is probably caused by the small
size of the model, which already avoids overfitting.

Although the results are promising, modern NNs have millions of parameters that
have to be trained. Problems of such a size cannot be solved efficiently with the
presented method, even when applying the suggested adaptations. Nevertheless, the
proposed method is a very efficient solver for smaller problems and, in the case of
NNs, indicates that it is helpful and important to integrate knowledge from multi-
objective optimization into NN training methods. Hence, other methods inspired
by multiobjective optimization should be developed to improve the training algo-
rithms.

134

5.4. Generalization to Piecewise Differentiable Regularization Terms

5.4 Generalization to Piecewise Differentiable
Regularization Terms

Up to this point, this chapter was concerned with problems where the `1-norm
is used as the regularization term. Beyond that, many other functions are used
in practice as regularization terms, for instance, various norms like the already
mentioned `2-norm or the maximum norm. As the `1-norm, these regularization
terms are often nonsmooth. Thus, to generalize the previous results of this chapter,
we now consider the problem

min
x∈Rn

f(x) + λg(x), (5.31)

where λ ∈ [0,∞), f is at least twice continuously differentiable and g : Rn → R is
nonsmooth. Some examples of such nonsmooth regularization terms g are given in
Table 5.1. These examples have in common that they are not merely nonsmooth but

Table 5.1: An overview of applications utilizing nonsmooth regularization terms.
The optimized variable is always x.

Application Objective Regularization term

Sparse regression [HTF09; Tib96] ‖b−Ax‖22
sparsity
‖x‖1

NN Training [Bis06; GBC16] loss function
e.g., sparsity
‖x‖1 (or ‖x‖22)

SVM [Bis06; HTF09]
loss function

hinge loss∑N
i=1 max(0, 1− bi(w>ai + w0))

(see also Section 5.4.2) x = (w,w0); (ai, bi): data points

Image denoising [Cha04]
‖y − x‖22 total variation

y: noisy image
∑n−1

i=1 |xi+1 − xi|

Penalty method [BKM14; NW06]
obj. function

feasibility
(constrained optimization)

∑p
i=1 max(ci(x), 0)

ci: constraints, i ∈ {1, . . . , p}

(at least) piecewise twice continuously differentiable. Thus, it seems reasonable to
restrict ourselves to such functions, i.e., we assume g ∈ PC2, where PCr is formally
defined as follows, cf. [Sch12].

Definition 5.4.1. Let U ⊆ Rn be open. Let g : U → R be continuous and
gi : U → R, i ∈ {1, . . . , k}, be a set of r-times continuously differentiable (or Cr)
functions for r ∈ N ∪ {∞}. If g(x) ∈ {g1(x), . . . , gk(x)} for all x ∈ U , then g is
piecewise r-times differentiable (or a PCr-function). In this case, {g1, . . . , gk} is
called a set of selection functions of g. Moreover, we denote by

I(x) := {i ∈ {1, . . . , k} : g(x) = gi(x)}

135

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

-2 -1 0 1 2

-1

0

1

2

3

4

-2 -1 0 1 2

-1

0

1

2

3

4

Figure 5.11: Graphs of gi, i ∈ {1, 2, 3}, and g from Example 5.4.2. The (es-
sentially) active sets of the marked points are given by I(x1) = Ie(x1) = {1, 3},
I(x2) = Ie(x2) = {1, 2} and Ie(x3) = {2, 3} (I(x3) = {1, 2, 3}.

the active set in x ∈ U and by

Ie(x) := {i ∈ {1, . . . , k} : x ∈ cl(int({y ∈ U : g(y) = gi(y)}))}

the essentially active set at x ∈ U .

Note that the term “active” is used differently than before when we solely considered
the `1-norm. Here, it refers to one of the selection functions gi (or its index) that has
the same value as the function g, i.e., it currently represents g, whereas it referred to
the nonzero entries of x (or the corresponding index) before. The following example
briefly illustrates the previous definition.

Example 5.4.2. Consider the function

g : R→ R, g(x) = max(x2, ‖x‖1) = max(x2, x,−x).

This function is a PC∞-function with the set of selection functions {g1, g2, g3} where
g1(x) = x2, g2(x) = x and g3(x) = −x. The graphs and the (essentially) active sets
are visualized in Figure 5.11. Note, in particular, that the active set in x3 = 0 is
given by I(0) = {1, 2, 3}, but the essentially active set is only the subset Ie(0) =
{2, 3}.

As shown in the previous example, PCr-functions are an intuitive way to define
piecewise differentiability for a multivariate function. Moreover, the subdifferential
of such a function can be easily determined if the essentially active set is known. If
g : U → R is a PCr-function with selection functions {g1, ..., gk}, then the subdif-
ferential of g, cf. Definition 2.3.11, is given by

∂g(x) = Conv({∇gi(x) : i ∈ Ie(x)}) ∀x ∈ U. (5.32)

Since f and g may be nonconvex, similar to the considerations of the particular case
of the `1-norm, we want to consider the MOP

min
x∈Rn

(
f(x)

g(x)

)
(5.33)

136

5.4. Generalization to Piecewise Differentiable Regularization Terms

instead of (5.31) and analyze the Pareto critical set Pc of (5.33).

The structure of the regularization path, i.e., all solutions that can be derived by
varying λ ≥ 0 in (5.31), was analyzed for some special cases already by other authors.
In [Efr+04; OPT00], it was shown that for sparse regression, the regularization path
is piecewise linear, and a path-following method was proposed for its computation.
Similar results were shown in [Has+04] for support-vector machines. In a more
general setting in [RZ07], it was proven that if f is piecewise quadratic and g is
piecewise linear, then the regularization path is always piecewise linear. In the case
of the exact penalty method in constrained optimization, it was shown in [ZL15]
that if the constrained problem is convex (and the equality constraints are affinely
linear), then the regularization path is piecewise smooth.

This section aims at deriving the fundamentals for new continuation methods for
Problem (5.33), similar to the one presented in the previous sections of this chapter
where g was the `1-norm. To be more precise, conditions for the Pareto critical set to
be locally smooth are presented. Parts of the Pareto critical set satisfying these as-
sumptions can then be computed by continuation methods for smooth MOPs.

In Section 5.4.1, a rough overview of the theoretical results is given. Afterwards,
in Section 5.4.2, the different types of kinks which occur by violating different as-
sumptions are visualized using an SVM training example. More details, including
the proofs of the mentioned results, can be found in [GBP22], to which the author
of this thesis made significant contributions.

5.4.1 The Structure of Pc
The basic idea to analyze the structure of Pc of (5.33), is to decompose Pc as
follows

Pc
(2.13)
= {x ∈ Rn : 0 ∈ Conv({∇f(x)} ∪ ∂g(x))}

= {x ∈ Rn : 0 ∈ Conv({∇f(x)} ∪ {∇gi(x) : i ∈ Ie(x)})}

=
⋃

I⊆{1,...,k}

PIc ∩ ΩI , (5.34)

where
PIc := {x ∈ Rn : 0 ∈ Conv({∇f(x)} ∪ {∇gi(x) : i ∈ I})},
ΩI := {x ∈ Rn : Ie(x) = I},

(5.35)

i.e., PIc is the Pareto critical set of the (smooth) MOP with the objective vector
(f, gi1 , . . . gi|I|)

> (for I = {i1, ..., i|I|}) and ΩI is the set of points in Rn in which
precisely the selection functions with an index in I are essentially active. Thus,
(5.34) expresses Pc as the union of Pareto critical sets of smooth MOPs that are
intersected with the sets of points with constant essentially active sets. The following
example illustrates the decomposition for a problem with the `1-norm.

Example 5.4.3. Consider problem (5.33) with f : R2 → R, x 7→ (x1−2)2+(x2−1)2,

137

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

0 0.5 1 1.5 2

0

0.5

1

Figure 5.12: Decomposition of Pc for the MOP in Example 5.4.3 into the sets PIc ∩ΩI

as in (5.34).

and

g1 : R2 → R, x 7→ x1 + x2,

g2 : R2 → R, x 7→ x1 − x2,

g3 : R2 → R, x 7→ −x1 + x2,

g4 : R2 → R, x 7→ −x1 − x2,

g : R2 → R, x 7→ ‖x‖1 = max({g1(x), g2(x), g3(x), g4(x)}).

It is possible to show that the Pareto critical (and in this case Pareto optimal) set
is given by

Pc = {(0, 0)>} ∪ ((0, 1]× {0}) ∪ {x ∈ R2 : x1 ∈ (1, 2], x2 = x1 − 1}
= (P{1,2,3,4}c ∩ Ω{1,2,3,4}) ∪ (P{1,2}c ∩ Ω{1,2}) ∪ (P{1}c ∩ Ω{1}).

Figure 5.12 shows the decomposition of Pc into the sets PIc ∩ ΩI as in (5.34).

Based on this decomposition, five assumptions can be derived that ensure that the
Pareto critical set locally around a critical point x0 ∈ Pc is smooth. These assump-
tions are summarized in Table 5.2 and are roughly explained throughout this section.
The essential idea is to allow for the application of the level set theorem, cf. [Lee12,
Theorem 5.12], to a smooth function H whose projected zero level set coincides
locally with Pc, precisely as done for the case of the `1-norm, cf. Equation (5.13).

The first assumption is mainly influenced by the choice of the concrete selection
functions to represent g. The choice can usually be adapted such that Assump-
tion A1 is satisfied. More precisely, A1(i) ensures that all selection functions are
indeed relevant for the representation of g (in the considered neighborhood U of x0)
since each selection function is at least active in x0. Note that no additional selection
functions can be active in U if it is chosen small enough. The Assumption A1(ii)
ensures that it does not matter if we consider the active or the essentially active set
in U , which allows for an easier representation of ΩI . Finally, A1(iii) makes sure

138

5.4. Generalization to Piecewise Differentiable Regularization Terms

Table 5.2: An overview of the five assumptions required to have a smooth structure
of the Pareto critical set Pc of (5.33) around x0 ∈ Pc. For the definition of aff and
affdim, see Definitions 5.4.4 and 5.4.5.

Let x0 ∈ Pc.

A1 There is an open nbd. U 3 x0 and a set of sel. fct. {g1, . . . , gk} of g|U with
(i) I(x0) = {1, . . . , k},
(ii) Ie(x) = I(x) ∀x ∈ U ,
(iii) affdim(aff({∇gi(x) : i ∈ {1, . . . , k}}))

= affdim(aff({∇gi(x0) : i ∈ {1, . . . , k}})) ∀x ∈ U .

A2 It holds ∇f(x0) /∈ aff(∂g(x0)).

A3 Let {g1, . . . , gk} be a set of selection functions of g.
It exists {i1, . . . , ir} ⊆ {1, . . . , k} and α0 ∈ R, β0 ∈ Rr

with α0 +
∑r

j=1 β
0
j = 1 such that

(i) r = affdim(aff({∇f(x0)} ∪ ∂g(x0))),
(ii) {∇f(x0)} ∪ {∇gi(x0) : i ∈ {i1, . . . , ir}} aff. ind.,
(iii) α0∇f(x0) +

∑r
j=1 β

0
j∇gij(x0) = 0,

(iv) α0 > 0, (β0)j > 0 ∀j ∈ {1, ..., r}.

A4 Assume that A1, A2 and A3 hold and let H be defined as in Lemma 5.4.8.
(a) rk(DH(x, α, β)) = n+ r ∀(x, α, β) ∈ H−1(0) or
(b) rk(DH(x, α, β)) is constant ∀(x, α, β) ∈ Rn × R>0 × (R>0)r.

A5 Let {g1, . . . , gk} be a set of selection functions of g.
There is an open neighborhood U 3 x0 with Ie(x) = Ie(x0) ∀x ∈ Pc ∩ U .

that the representation of ∂g(x0) via the gradients of our selection functions has the
same affine dimension on the whole set U . For completeness, a formal definition of
the affine dimension is given here. To this end, we first introduce the terms affine
hull and affine space, see, for instance, [Gal11].

Definition 5.4.4.

(a) Let k ∈ N and ai ∈ Rn, i ∈ {1, . . . , k}. Let λ ∈ Rk with
∑k

i=1 λi = 1. Then∑k
i=1 λia

i is an affine combination of {a1, . . . , ak}.

(b) Let E ⊆ Rn. Then aff(E) is the set of all affine combinations of elements of
E, called the affine hull of E. Formally,

aff(E) :=

{
k∑
i=1

λia
i : k ∈ N, ai ∈ E, λi ∈ R, i ∈ {1, . . . , k},

k∑
i=1

λi = 1

}
.

(c) Let E ⊆ Rn. If aff(E) = E, then E is called an affine space.

139

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

Affine spaces can be thought of as linear spaces that do not pass through the origin
but have been shifted by a certain value. More precisely, if E is an affine space and
a′ ∈ E, then the set

E − a′ = {a− a′ : a ∈ E} =: V (5.36)

is a linear subspace of Rn. Note that V does not depend on the choice of a′. This
allows for the definition of affine bases (also known as affine frames) and affine
independence. Moreover, we can assign a dimension to an affine space.

Definition 5.4.5. Let k ∈ N and let E be an affine space with corresponding linear
subspace V (cf. (5.36)). Let {a1, . . . , ak} ⊆ E.

(a) Then {a1, . . . , ak} is called affinely independent if {ai−aj : i ∈ {1, . . . , k}\{j}}
is linearly independent for some j ∈ {1, . . . , k}.

(b) Then {a1, . . . , ak} is called an affine basis of E if {ai−aj : i ∈ {1, . . . , k}\{j}}
is a basis of V for some j ∈ {1, . . . , k}.

(c) The (affine) dimension of E is the dimension of V , denoted by affdim(E).

For our analysis, we consider the affine hull of the subdifferential of g, later also
combined with the gradient of f . In this context, the affine dimension may be seen
as a more general concept than the rank of the Jacobian of a smooth function and
takes into account, for instance, that it makes no difference for the “regularity” of
the function g if there are two identical functions in the set of selection functions.
Thus, roughly speaking, A1(iii) can be interpreted as a constant rank condition in
the nonsmooth case.

Assumption A2 ensures that the gradient of f is not in the affine hull of the subdif-
ferential of g. It is possible to show that, in this case, the coefficient of the gradient
of f of the convex combination in (2.14) is unique. Although a Pareto critical point
x0 with ∇f(x0) ∈ aff(∂g(x0)) may not necessarily cause nonsmoothness of Pc, we
need to make this assumption to avoid an irregularity in the augmented space of
Pc and the corresponding KKT multipliers, cf. Lemma 5.4.8. Note that in the case
of g being the `1-norm, Assumption A2 always holds and the KKT multipliers are
unique, cf. Remark 5.1.3. Moreover, according to the discussion in Remark 5.1.5,
the non-uniqueness of the multipliers indicates a kink in the Pareto front.

Assumption A3 is the first assumption that is directly related to kinks in the Pareto
critical set. Essentially, it ensures that there is a choice of r selection functions such
that Conv({∇f(x0)}∪∂g(x0)) is spanned by ∇gi1(x0), . . . , gir(x

0) and ∇f(x0), and,
at the same time, there is a vanishing convex combination of these gradients. We
can give a necessary condition for Assumption A3 based on the relative interior
of Conv({∇f(x0)} ∪ ∂g(x0)). In particular, this necessary condition, given in the
following lemma, is independent of the choice of selection functions.

Definition 5.4.6. Let A ⊆ Rn and let aff(A) be endowed with the subspace topology
of Rn. Then the relative interior of A, denoted by ri(A), is the interior of A in

140

5.4. Generalization to Piecewise Differentiable Regularization Terms

aff(A), i.e.,

ri(A) := {x ∈ A : ∃U ⊆ Rn open with x ∈ U and U ∩ aff(A) ⊆ A}.

Lemma 5.4.7. Let x0 ∈ Pc. If there is a set of selection functions such that
Assumption A3 holds, then

0 ∈ ri(Conv({∇f(x0)} ∪ ∂g(x0))).

Proof. See [GBP22, Appendix A.2].

Using the Assumptions A1, A2 and A3, it is possible to show that PIc ∩ ΩI is the
projection of a level set from a higher dimensional space onto the variable space Rn.

Lemma 5.4.8. Let x0 ∈ Pc. Let U ⊆ Rn be an open neighborhood of x0 and
let {g1, . . . , gk} be a set of selection functions of g|U satisfying Assumption A1.
In addition, assume that Assumption A2 holds and that there exists an index set
{i1, . . . , ir} ⊆ {1, . . . , k} such that Assumption A3 is satisfied. Then there is an
open neighborhood U ′ ⊆ U of x0 such that

P{1,...,k}c ∩ Ω{1,...,k} ∩ U ′ = prx(H
−1(0)) ∩ U ′, (5.37)

where prx : Rn × R× Rr → Rn is the projection onto the first n components and

H : Rn×R>0×(R>0)r → Rn×R×Rr−1, (x, α, β) 7→

α∇f(x) +
∑r

j=1 βj∇gij(x)

α +
∑r

j=1 βj − 1

(gij(x)− gi1(x))j∈{2,...,r}

 .

Proof. See [GBP22, Proof of Lemma 6].

So far, we have only exploited the fact that f is continuously differentiable and g
is PC1. This implies that the map H in the previous lemma is at least continuous.
If H is actually continuously differentiable, the level set theorem can be used to
analyze the structure of its level sets on the right-hand side of (5.37). This is done
in the following theorem, which can be seen as an analogue to Theorem 2.3.17.

Theorem 5.4.9. In the setting of Lemma 5.4.8 it holds:

(a) If DH(x, α, β) has full rank for all (x, α, β) ∈ H−1(0), then H−1(0) is a
1-dimensional submanifold of Rn × R>0 × (R>0)r.

(b) If DH(x, α, β) has constant rank m ∈ N for all (x, α, β) ∈ Rn×R>0× (R>0)r,
then H−1(0) is an (n+r+1−m)-dimensional submanifold of Rn×R>0×(R>0)r.

In both cases, the tangent space of H−1(0) is given by

T(x,α,β)(H
−1(0)) = ker(DH(x, α, β)). (5.38)

141

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

Proof. See [GBP22, Proof of Theorem 2]. The proof is essentially based on the level
set theorem, cf. [Lee12].

The additional requirements of Theorem 5.4.9 are summarized in Assumption A4.
Note that violating Assumption A4 is not necessarily caused by the nonsmoothness
of g and can also happen for smooth objective functions, see, for instance, Example 1
in [GPD19].

Theorem 5.4.9 considers the structure of PIc ∩ ΩI , i.e., the structure of parts where
the (essentially) active set does not change. The only nonsmooth points in Pc, not
addressed so far, may arise by taking their union, i.e., at points where the set of
(essentially) active selection functions changes. These points are excluded by As-
sumption A5. Unfortunately, in contrast to Assumptions A1 to A4, Assumptions A5
is only an a posteriori condition, i.e., we already have to know Pc around x0 to be
able to check if Assumption A5 holds. Although the considered examples suggest
that typically Assumption A3 or A2 do not hold when Assumption A5 is violated,
so far, it could not be proven that Assumption A5 may be already covered by the
other four assumptions.

In summary, the main result of this section is that if we have a Pareto critical point
x0 for which Assumptions A1 to A5 hold, the Pareto critical set Pc is the projection
of a certain manifold around x0 by Theorem 5.4.9. This allows us to formulate
an abstract version of a continuation method for the computation of Pc, similar to
Algorithm 4, which is presented in Algorithm 6.

Algorithm 6 Rough draft of the continuation method.
Input: Step size h > 0, initial point xstart ∈ Pc and I ⊆ {1, ..., k} such that

xstart ∈ PIc ∩ ΩI

1: Initialize i = 0 and x0 = xstart.
2: Compute the projected tangent space of PIc ∩ΩI in xi via Lemma 5.4.8 and The-

orem 5.4.9 and choose a tangent vector v in the current direction of continuation.
(Predictor step)

3: Compute a point xi+1 in PIc ∩ ΩI close to xi + hv. (Corrector step)
4: if the end of PIc ∩ ΩI is detected then
5: Compute the endpoint x̄ of PIc ∩ ΩI .
6: for all I ′ ⊆ Ie(x̄), I ′ 6= I, PI′c ∩ ΩI′ 6= ∅ do
7: Restart this method with I = I ′ and some x1 ∈ PI′c ∩ ΩI′ close to x̄.
8: end for
9: else
10: Set i = i+ 1 and go to step 2.
11: end if

Obviously, this algorithm cannot be implemented directly, and, depending on the
concrete problem to solve, strategies to realize steps 3 to 6 have to be further in-
vestigated. Some considerations of practical issues are summarized in the following
remark.

142

5.4. Generalization to Piecewise Differentiable Regularization Terms

Remark 5.4.10. (a) For the development of continuation methods, it is crucial
to be able to detect nonsmooth points during the computation of Pc. If the
different sets Pc ∩ ΩI are computed separately, then typically (but not neces-
sarily), the nonsmooth points of the path are the endpoints of these sets (in
case the path is “1-dimensional”). Thus, since continuation methods compute
a pointwise approximation of the path, these endpoints roughly appear as points
where the method fails to continue with the currently active set I ⊆ {1, ..., k}.
To find the exact nonsmooth point, one could try to find the closest point where
one of the Assumptions A1 to A5 is violated. While it is unclear how this can
be done numerically in the general setting presented here, it is easier in spe-
cific applications, where more structure can be exploited, as done for the case
of `1-regularization in the previous part of this chapter.

(b) If Assumption A5 is violated in x0 ∈ Pc, then there are Pareto critical points
arbitrarily close to x0 with a different (essentially) active set I ′ 6= Ie(x0).
Within a continuation method, it may be of interest to find I ′ to compute the
direction in which Pc continues once the nonsmoothness in x0 is detected. To
this end, let {g1, . . . , gk} be the set of selection functions that are all essen-
tially active in x0. While it is not possible to determine I ′ solely from the
set Conv({∇f(x0)} ∪ ∂g(x0)) = Conv({∇f(x0)} ∪ {∇g1(x0), . . . ,∇gk(x0)}),
we can at least determine all potential candidates for I ′ by finding all subsets
{i1, . . . , im} ⊆ {1, . . . , k} with

0 ∈ Conv({∇f(x0)} ∪Conv({∇gi1(x0), . . . ,∇gim(x0)})).

5.4.2 An Example - Support Vector Machines

Assume that a data set D = {(ai, bi) : ai ∈ Rl, bi ∈ {−1, 1}, i ∈ {1, . . . , N}} is given.
Then, the goal of an SVM is to find parameters w ∈ Rl and w0 ∈ R such that

sgn(w>ai + w0) = bi ∀i ∈ {1, . . . , N}.

In other words, the goal is to find a hyperplane {d ∈ Rl : w>d+ w0 = 0} such that
all ai with bi = 1 lie on one side and all ai with bi = −1 lie on the other side of the
hyperplane, cf. [Bis06].

Since such a hyperplane is usually not unique, a second criterion is introduced.
To get a robust classification, the hyperplane that has the largest distance to the
given data points ai, the so-called margin, is computed. As in the case of sparse
optimization with respect to the `1-norm, this is typically done via regularization.
More precisely, we consider Problem (5.31) with

f : Rl × R→ R, x = (w,w0) 7→ 1

2
‖w‖2

2 and

g : Rl × R→ R, x = (w,w0) 7→
N∑
i=1

max{0, 1− bi(w>ai + w0)}.

Often g is referred to as the hinge loss, cf. Table 5.1. Note that in the literature,
the roles of f and g are typically reversed.

143

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

In theory, the most favorable hyperplane would be one with g(w,w0) = 0 and
f(w,w0) as small as possible. But in practice, when working with large and noisy
data sets, a perfect separation might not be possible. Furthermore, an imperfect
separation, where only a few points violate the separation, may be more desirable to
get a more robust classifier that is not overfitted to the training data. The balance
between the margin and the quality of the separation can be controlled via the pa-
rameter λ in (5.31). Since both objectives are convex, the regularized problem has
the same solution (excluding the global minimum of g) as the MOP (5.33). The so-
lution set of this problem class was already considered in earlier works. In [Has+04],
it was shown that the set is 1-dimensional and piecewise linear up to certain degen-
erate points, and a path-following method was proposed that exploits this structure.
It was conjectured (without proof) that the existence of these degenerate points is
related to certain properties of the data points (ai, bi), like having duplicates of the
same point in the data set or having multiple points with the same margin. In
[OSY10], these degeneracies were analyzed further, and a modified path-following
method was proposed, specifically taking degenerate data sets into account. Other
methods for degenerate data sets were proposed in [Dai+13; SAG16; Wan+19]. In
the following, we analyze how these degeneracies are related to the nonsmooth points
we characterized before.

Obviously, f is twice continuously differentiable and g is PC2 with selection func-
tions {

x = (w,w0) 7→
∑
i∈I

1− bi(w>ai + w0) : I ⊆ {1, . . . , N}

}
.

Since f is quadratic and all selection functions are linear, it is possible to show that
Pc is piecewise linear (but not necessarily 1-dimensional) up to points violating the
Assumptions A1 to A5, cf. [GBP22, Remark A.3]. Due to the properties of g, the
Assumption A1 always holds, cf. [GBP22, Remark A.5].

In the following, we consider the remaining Assumptions A2 to A5 for a concrete
example. To be more precise, we consider Example 1 from [OSY10], which was
specifically constructed to have a degenerated Pareto critical set (or regularization
path).

Example 5.4.11. Consider the data set

D =
{

((0.7, 0.3)>, 1), ((0.5, 0.5)>, 1), ((2, 2)>,−1),

((1, 3)>,−1), ((0.75, 0.75)>, 1), ((1.75, 1.75)>,−1)
}
.

The Pareto critical set for the MOP induced by this data set can be computed ana-
lytically and is shown in Figure 5.13a. In the following, we analyze the points x1,
x2, x3 and x4 highlighted in Figure 5.13a.

There are two 2-dimensional parts of the Pareto critical set, and the point x1 lies
in one of them. It is possible to show that g is smooth around x1 and easy to verify

144

5.4. Generalization to Piecewise Differentiable Regularization Terms

(a) (b)

Figure 5.13: Pc for the MOP induced by the data set in Example 5.4.11 and the
points x1 = 1

372
(−35,−65, 137)>, x2 = 1

93
(−35,−65, 137)>, x3 = 1

3
(−2,−2, 5)>, and

x4 = 1
5
(−4,−4, 11)>. (b) Image of Pc with yi = (f(xi), g(xi))>, i ∈ {1, . . . , 4}, and

the same coloring as in (a).

that Assumptions A2, A3 and A5 are satisfied. Concerning Assumption A4, it holds
r = affdim(aff({∇f(x1)} ∪ ∂g(x1))) = 1 and

DH(x, α, β) =


2α 0 0 − 35

372
14
5

0 2α 0 − 65
372

26
5

0 0 0 0 0

0 0 0 1 1


with rk(DH(x, α, β)) = 3 for all (x, α, β) ∈ Rn×R>0×R>0. Thus, A4(b) holds which
by Theorem 5.4.9 implies that Pc is the projection of an n+r+1−m = 3+1+1−3 = 2
dimensional manifold around x1, as expected.

In x2, we observe a kink of the Pareto critical set. The subdifferential of g in x2 can
be computed analytically and is shown in Figure 5.14a.

(a) (b) (c)

Figure 5.14: Gradient of f , subdifferential of g and the (relative) boundary of the
convex hull (dashed) in x2, x3, and x4 in Example 5.4.11.

In this case, we have affdim(aff(∂g(x2))) = 2 and ∇f(x2) /∈ aff(∂g(x2)). Hence,
Assumption A2 is satisfied. But, according to Lemma 5.4.7, Assumption A3 has

145

Chapter 5. Treating `1-Regularized Problems via Multiobjective Continuation

to be violated since zero lies on the relative boundary of Conv({∇f(x2)} ∪ ∂g(x2)).
Furthermore, the active set changes in x2, i.e., Assumption A5 is violated, as well.

A different type of kink occurs at point x3. The corresponding subdifferential of g is
shown in Figure 5.14b. As for x2, Assumptions A3 and A5 are violated in x3. But
in contrast to x2 we have affdim(aff(∂g(x2))) = 3, so ∇f(x2) ∈ aff(∂g(x2)) = R3

trivially holds and Assumption A2 is violated additionally. This results in a kink in
the Pareto front in the image of x3 under the objective vector (f, g), as can be seen
in Figure 5.13b.

Finally, x4 marks a corner of one of the 2-dimensional parts of the Pareto critical
set, and the corresponding subdifferential is shown in Figure 5.14c. As for x3, As-
sumptions A2, A3 and A5 are violated in x4. But unlike x3, when we consider the
image of x4 in Figure 5.13b, we see that there is no kink in y4. This suggests that
the KKT multiplier of f may be unique even though Assumption A2 is violated.

146

6 | Conclusion and Future Work

Motivated by the rapid development in the field of machine learning and the impor-
tance of controlling complex nonlinear dynamical systems, this thesis dealt with the
use of data-based methods in the context of MPC and analyzed regularized opti-
mization problems which are often encountered in the training of machine learning
models. First, it was shown, using an example of a flow control problem, that it may
be sufficient to consider only measurement data of sensors and a specific neural net-
work architecture as a surrogate model to solve complex control problems via MPC.
Subsequently, it was proven that multiple autonomous models can be used to build
a surrogate model for a controlled system which may reduce the amount of data
needed to train accurate models. In the second part of the thesis, regularized op-
timization problems, which often occur in the training of machine learning models
to avoid overfitting, were studied from a multiobjective optimization perspective.
This allows for a better understanding of the trade-off between the objectives and
for developing new solution methods.

To conclude this thesis, this chapter summarizes the main contributions and provides
an outlook on future research questions.

DeepMPC for Flow Control

In Chapter 3, an approach that embeds a deep recurrent neural network as a surro-
gate model in the MPC framework was presented and applied to the fluidic pinball.
This is an academic flow control problem specifically designed to test new control
algorithms in the area of fluid dynamics, as it behaves chaotically in specific regimes
[Den+18; Den+19]. The results, presented in Section 3.2, are promising and proved
(for this specific example) that it is possible to (a) learn the relevant dynamics only
based on sensor data and (b) use a deep neural network as a surrogate model to
achieve robust control of the system, even if the underlying system is chaotic. Fur-
thermore, it turned out to be helpful to double the training data by exploiting the
system’s symmetry. In the last step, online learning was considered for the case
of Re = 100, where the system does not behave chaotically but periodically. The
resulting model also performed very well. Nevertheless, many open questions were
raised, as discussed in Section 3.3.

Part of the discussion in Section 3.3 dealt with structural issues of the studied
experiment, such as the concrete architecture of the NN or the initialization used,
but also with the applicability to noisy measurement data, which would be relevant,

147

Chapter 6. Conclusion and Future Work

especially for more challenging real-world examples. By addressing these issues, a
significant improvement can likely be achieved for the concrete problem of the fluidic
pinball and flow control problems in general.

The question of the applicability of the presented or similar approaches based on
machine learning models in real physical systems raises further problems. In the
presented experiment, the “real” system was a computer simulation. In practice,
the data must be taken from a real physical system, which is much more complex.
On the one hand, it can be expensive to collect data. This aspect was partially
addressed in Chapter 4. On the other hand, it may be inadmissible to collect data
in every region of the state space, e.g., an accident of an autonomous vehicle or a
setting on a power plant that may lead to its damage should not be tested in a
real physical experiment. Here, the combination of simulations and physical experi-
ments can be helpful. However, a simulation is, of course, based on a model and
is, therefore, less accurate, which has to be taken into account. Another possibility
to reduce the data needed to train an accurate model could be by incorporating
active learning strategies, see, for instance, [TBM21]. Moreover, in terms of the
real-world applicability of machine learning systems for control problems, the need
for further development of online and transfer learning, although already known in
the community, is an important insight from the experiments. In Section 3.2, online
learning was only performed for Re = 100. It would be of interest to develop more
robust online learning algorithms that are capable of improving the results for more
complex or even chaotic systems. Transfer learning means that based on a model
for one task, a model for another (related) task is learned. For instance, we might
have trained a model for the system identification of the fluidic pinball for Re = 100
and would like to train a model for Re = 120. To this end, continuation methods
may be used, similar to the ones from multiobjective optimization. If the system
does not undergo a bifurcation, this likely works well. Moreover, the system identi-
fication at different Reynolds numbers can be seen as a multitask learning problem
if we want to train a single model that can predict the system dynamics for different
Reynolds numbers. The problem of multitask learning can also be addressed as a
multiobjective optimization problem, cf. [SK18].

A more general point, also raised in Section 3.3, is the idea of combining existing
system knowledge with machine learning techniques, called physics-informed ma-
chine learning [Kar+21]. This area was also briefly introduced in Section 2.1.3 and
is a very active area of research.

Utilizing Autonomous Models for Model Predictive Control

In Chapter 4, a framework for the use of (data-based) surrogate models in MPC
was presented, which is based on the idea of using multiple autonomous models
that do not receive the control u ∈ U as an input but only the (observed) system
state z ∈ Z. To this end, a finite subset V = {u1, . . . , um} of the control set U is
introduced, and for each control input ui, i ∈ {1, . . . ,m}, a separate surrogate model
is trained that represents the system dynamics for the specific input. A similar idea
was followed in [PK19; POR20] for surrogate models approximating the Koopman
operator or generator. Here, we allowed for arbitrary surrogate models which may

148

act on measurement data given by an observable or on the full state. However,
knowledge of an error bound on the approximation error was assumed to derive error
bounds for the open-loop problem in Section 4.2. In Section 4.3, we demonstrated
good control performance of the approach on a variety of dynamical systems using
different control inputs, observations, and surrogate modeling techniques. Moreover,
we discussed whether the presented approach is advantageous in the sense that it
requires less data than training a full model with the same accuracy. To this end,
additional numerical experiments were performed and presented in Section 4.4.

As mentioned before, the derivation of the error bounds for the open-loop problem
assumes that the model error is known, cf. Assumption 4.2.7. Therefore, it would
be necessary to derive (improved) error bounds for data-based methods like neural
networks. Moreover, the derived error bounds are not tight and only concern the
open-loop problem. Therefore, for error bounds that are useful in practice, the
closed-loop problem should be considered, including stability and robustness issues.
The stability and robustness issues are not specific to the presented framework but
are generally important when machine learning is used to solve control problems
[BS15; MRW21]. Furthermore, the issue of how much data is needed has only been
addressed in some numerical experiments. A more detailed mathematical analysis
needs to be carried out here. Another more practical issue is the choice of V , which
is essential for good control performance, cf. Remark 4.2.2. Moreover, an additional
issue arises if we consider V to be the set of control bounds, e.g., if the control
space is given by U = [−1, 1]nu and we choose V as the set consisting of the corners,
i.e., V = {(−1, . . . ,−1)>, (−1, . . . ,−1, 1)>, . . . , (1, . . . , 1)>} ⊆ {−1, 1}nu . In this
case, the number of autonomous systems to be learned increases exponentially, i.e.,
we have 2nu systems to approximate. For affine control systems, this problem can
be avoided by allowing for extrapolation. This way, only one autonomous system
corresponding to u = 0 and nu autonomous systems corresponding to the Euclidean
basis vectors for the control space (u1 = (1, 0, . . . , 0)>, u2 = (0, 1, 0, . . . , 0)>, etc.)
have to be trained, resulting in the training of nu+1 systems. Thus, the complexity
(in terms of the number of autonomous systems) is merely linear in the control
dimension. This has already been considered in [POR20] for approximating the
Koopman generator as a surrogate model. Finally, bang-bang control, resulting from
the SUR algorithm, is generally not admissible for practical applications. Therefore,
it may be of interest to pursue other interpolation approaches and include constraints
on the smoothness of the control function in the control cost.

Treating `1-regularized Problems via Multiobjective Continuation

In the last part of the thesis, regularization problems were considered. These arise,
for example, when machine learning models are trained and a regularization term
is added to avoid overfitting, cf. Sections 2.2.1 and 2.2.2. Here, instead of using the
sum of the loss function and the regularization term, the idea was to consider the
biobjective MOP that has the loss function as the first objective and the regulari-
zation term as the second objective. More precisely, in Chapter 5, the biobjective
MOP was considered where the first objective is a twice continuously differentiable
and the second objective is the `1-norm, cf. (MOP-`1). From the multiobjective op-

149

Chapter 6. Conclusion and Future Work

timization point of view, the standard approach of adding the regularization term to
the loss function is equivalent to the weighted sum method. However, this method
cannot be used to compute all Pareto optimal solutions, so the idea of a continuation
method was pursued. Since the `1-norm is not differentiable, existing continuation
methods, cf. [Hil01; SDD05], cannot be used. Therefore, in Section 5.1, a novel
continuation method was developed for this particular problem. The optimality
conditions, derived in Section 5.1.1, show that the Pareto critical set Pc is piecewise
smooth and thus allows continuation methods from the smooth case to be applied
almost everywhere. Furthermore, at points where Pc is nonsmooth, the derived
results allow for exploiting the structure of the set to proceed efficiently with the
continuation method, cf. Section 5.1.4. In Section 5.2.3, the method was used to
train a (small) NN. This numerical experiment showed that relevant solutions can
be missed by the traditional penalty approach but can be computed by the continu-
ation method. Finally, two extensions were discussed. First, Section 5.3 discussed
how the method can be scaled to larger dimensions and the special problems that
arise when dealing with NNs. Second, more general regularization problems were
considered in Section 5.4, where the `1-norm was replaced by a piecewise twice con-
tinuously differentiable function. For these more general problems, the structure
of the Pareto critical set was analyzed by deriving conditions that ensure that the
Pareto critical set is locally smooth (A1 to A5). The results are mainly based on a
partition of the Pareto critical set Pc into parts with constant essentially active sets,
which allowed us to apply techniques from differential geometry to obtain structural
results. In Section 5.4.2, the kinks occurring when (at least) one of the assumptions
is violated were visualized by an example of SVMs.

For future work, based on the results presented in Section 5.4, continuation meth-
ods for MOPs of the form (5.33) can be developed, supplementing the continuation
methods from Section 5.1 and [Hil01; RZ07; ZL15]. These may address other appli-
cations, such as image denoising via total variation. Although the presented results
have laid the foundations of such methods, in that nonsmooth points can be charac-
terized, and the tangent space can be computed on smooth sections, there is still a
large gap to a concrete implementation. In particular, it is unclear how to compute
a corrector step, as in Section 5.1.3, or how to detect kinks and find a new direction
for the following predictor step, analogous to Section 5.1.4.

Concerning the concrete continuation method for the Problem (MOP-`1), it should
be improved to scale to a higher dimension. This would be of particular interest
for the training of NNs. A first step was done in Section 5.3 by approximating the
(reduced) Hessian matrix and its inverse. Furthermore, especially in the context
of NN training, more structural questions arise. First of all, the symmetries in
NNs have to be understood and handled better, as these cause the splitting of the
Pareto critical set and singular Hessian matrices. Moreover, local minima, which
occur frequently in the loss function of NNs, usually cause the Pareto critical set
to consist of multiple connected components. Since it is expensive to compute new
starting points on other components, it may be an option to compute only a few
starting points with different methods, for instance, by multiobjective stochastic
gradient descent methods [LV21; MPD18], and start the continuation method from

150

there to derive more sparse and robust solutions.

To further generalize the presented results on the structure of Pareto critical sets,
an arbitrary number of (nonsmooth) objectives may be considered, and constraints
can be added. Likely, most of the results presented in Section 5.4 hold with mi-
nor adjustments if the first objective f would be merely piecewise differentiable.
Furthermore, adding more objectives will lead to similar results but with a higher
dimensional regularization path. Moreover, the continuation method for (MOP-`1)
can probably be directly extended to an arbitrary number of additional smooth ob-
jectives similar to the Pareto explorer [Sch+19], which can handle MOPs with more
than two objectives and equality constraints. This is also of practical interest. For
instance, for the elastic net regularization, two regularization terms, the `1-norm
and the squared `2-norm, are considered at the same time [ZH05].

To address the problem of NN training with regularization terms, other methods
from multiobjective optimization can be utilized. To improve the efficiency, com-
bining them with existing techniques from NN training, as done in [Rei+22], can
be helpful. Besides the regularization problems considered here, utilizing techniques
from multiobjective optimization in the area of machine learning is promising in
general. For instance, the transfer and multitask learning mentioned before can
be interpreted as multiobjective optimization problems, see, for example, [Lin+19;
SK18], or [MDM20] for the application to a control problem.

151

List of Abbreviations

AD algorithmic differentiation 27

Adam adaptive moment estimation – a special SGD algorithm for NN training 29

BFGS Broyden-Fletcher-Goldfarb-Shanno update 50

BPTT backpropagation through time 30

CNN convolutional neural network 27

DDE delay differential equation 10

DeepMPC deep model predictive control 53

DMD dynamic mode decomposition 34

eDMD extended dynamic mode decomposition 34

ESN echo state network 32

FEM finite element method 10

FNN feed-forward neural network 25

KKT Karush-Kuhn-Tucker (condition) 39, 42

LSTM long short-term memory 30

MLC machine learning control 19

MOP multiobjective optimization problem 36

MPC model predictive control 14

NN neural network 25

ODE ordinary differential equation 10

153

List of Abbreviations

PDE partial differential equation 10

POD proper orthogonal decomposition 18

QuaSiModO quantization, simulation, modeling and optimization 69

RBM restricted Boltzmann machine 57

RNN recurrent neural network 29

SGD stochastic gradient descent 28

SINDy sparse identification of nonlinear dynamics 126

SQP sequential quadratic programming 13

SR1 symmetric rank-one update 132

SUR sum-up-rounding 74

SVM support vector machine 143

154

Bibliography

[AG90] Eugene L. Allgower and Kurt Georg. Numerical Continuation Methods.
Springer Berlin Heidelberg, 1990. doi: 10.1007/978-3-642-61257-2
(pages 49, 50, 112, 114, 115, 132).

[AKM18] Hassan Arbabi, Milan Korda, and Igor Mezic. “A Data-Driven Koopman
Model Predictive Control Framework for Nonlinear Partial Differential
Equations”. In: 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 6409–6414. doi: 10.1109/cdc.2018.8619720 (page 18).

[ALS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence The-
ory for Deep Learning via Over-Parameterization”. In: Proceedings of
the 36th International Conference on Machine Learning, ICML 2019.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019,
pp. 242–252. url: https://proceedings.mlr.press/v97/allen-
zhu19a.html (page 29).

[AML12] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin.
Learning From Data. AMLBook, 2012 (pages 20, 23, 24).

[AP98] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations. Society for
Industrial and Applied Mathematics, 1998 (page 13).

[Arm+19] Luca Bugliari Armenio, Enrico Terzi, Marcello Farina, and Riccardo
Scattolini. “Model Predictive Control Design for Dynamical Systems
Learned by Echo State Networks”. In: IEEE Control Systems Letters 3.4
(2019), pp. 1044–1049. doi: 10.1109/LCSYS.2019.2920720 (pages 19,
33, 66, 94).

[AS12] Haldun Aytug and Serpil Sayın. “Exploring the trade-off between gener-
alization and empirical errors in a one-norm SVM”. In: European Jour-
nal of Operational Research 218.3 (2012), pp. 667–675. doi: 10.1016/
j.ejor.2011.11.037 (page 105).

[AS14] Ayşegül Aşkan and Serpil Sayın. “SVM classification for imbalanced
data sets using a multiobjective optimization framework”. In: Annals of
Operations Research 216.1 (2014), pp. 191–203. doi: 10.1007/s10479-
012-1300-5 (page 105).

[Bar+10] Richard G. Baraniuk, Emmanuel Candes, Michael Elad, and Yi Ma.
“Applications of Sparse Representation and Compressive Sensing [Scan-
ning the Issue]”. In: Proceedings of the IEEE 98.6 (2010), pp. 906–909.
doi: 10.1109/JPROC.2010.2047424 (page 103).

155

https://doi.org/10.1007/978-3-642-61257-2
https://doi.org/10.1109/cdc.2018.8619720
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://doi.org/10.1109/LCSYS.2019.2920720
https://doi.org/10.1016/j.ejor.2011.11.037
https://doi.org/10.1016/j.ejor.2011.11.037
https://doi.org/10.1007/s10479-012-1300-5
https://doi.org/10.1007/s10479-012-1300-5
https://doi.org/10.1109/JPROC.2010.2047424

Bibliography

[BB21] Anas Barakat and Pascal Bianchi. “Convergence and Dynamical Be-
havior of the ADAM Algorithm for Nonconvex Stochastic Optimiza-
tion”. In: SIAM Journal on Optimization 31.1 (2021), pp. 244–274. doi:
10.1137/19M1263443 (page 29).

[BBK18] Thomas Baumeister, Steven L. Brunton, and J. Nathan Kutz. “Deep
learning and model predictive control for self-tuning mode-locked
lasers”. In: Journal of the Optical Society of America B 35.3 (2018),
pp. 617–626. doi: 10.1364/JOSAB.35.000617 (pages 3, 19, 54, 57).

[BCB05] Michel Bergmann, Laurent Cordier, and Jean-Pierre Brancher. “Opti-
mal rotary control of the cylinder wake using proper orthogonal de-
composition reduced-order model”. In: Physics of Fluids 17.9 (2005),
pp. 097101-1–097101-21. doi: 10.1063/1.2033624 (page 69).

[BCR09] Oliver Brdiczka, James L. Crowley, and Patrick Reignier. “Learning
Situation Models in a Smart Home”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 39.1 (2009), pp. 56–63.
doi: 10.1109/TSMCB.2008.923526 (page 2).

[BD15] Richard E. Bellman and Stuart E. Dreyfus. Applied Dynamic Program-
ming. Princeton University Press, 2015. doi: 10.1515/9781400874651
(page 72).

[Bel10] Richard E. Bellman. Dynamic Programming. Princeton University
Press, 2010. doi: 10.1515/9781400835386 (page 12).

[Ber+21] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen.
The Modern Mathematics of Deep Learning. 2021. doi: 10 . 48550 /
ARXIV.2105.04026 (page 25).

[BF09] Ewout van den Berg and Michael P. Friedlander. “Probing the Pareto
Frontier for Basis Pursuit Solutions”. In: SIAM Journal on Scien-
tific Computing 31.2 (2009), pp. 890–912. doi: 10.1137/080714488
(page 105).

[BF11] Ewout van den Berg and Michael P. Friedlander. “Sparse Optimization
with Least-Squares Constraints”. In: SIAM Journal on Optimization
21.4 (2011), pp. 1201–1229. doi: 10.1137/100785028 (page 105).

[BGP22] Katharina Bieker, Bennet Gebken, and Sebastian Peitz. “On the Treat-
ment of Optimization Problems With L1 Penalty Terms via Multiob-
jective Continuation”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 44.11 (Nov. 2022), pp. 7797–7808. doi: 10.1109/
TPAMI.2021.3114962 (pages 6, 105).

[Bie+20] Katharina Bieker, Sebastian Peitz, Steven L. Brunton, J. Nathan Kutz,
and Michael Dellnitz. “Deep model predictive flow control with limited
sensor data and online learning”. In: Theoretical and Computational
Fluid Dynamics 34.4 (Mar. 2020), pp. 577–591. doi: 10.1007/s00162-
020-00520-4 (pages 6, 19, 54, 96).

[Bin+01] Thomas Binder et al. “Introduction to Model Based Optimization of
Chemical Processes on Moving Horizons”. In: Online Optimization of
Large Scale Systems. Springer Berlin Heidelberg, 2001, pp. 295–339.
doi: 10.1007/978-3-662-04331-8_18 (pages 9, 12, 13).

156

https://doi.org/10.1137/19M1263443
https://doi.org/10.1364/JOSAB.35.000617
https://doi.org/10.1063/1.2033624
https://doi.org/10.1109/TSMCB.2008.923526
https://doi.org/10.1515/9781400874651
https://doi.org/10.1515/9781400835386
https://doi.org/10.48550/ARXIV.2105.04026
https://doi.org/10.48550/ARXIV.2105.04026
https://doi.org/10.1137/080714488
https://doi.org/10.1137/100785028
https://doi.org/10.1109/TPAMI.2021.3114962
https://doi.org/10.1109/TPAMI.2021.3114962
https://doi.org/10.1007/s00162-020-00520-4
https://doi.org/10.1007/s00162-020-00520-4
https://doi.org/10.1007/978-3-662-04331-8_18

Bibliography

[Bis+21] Bernd Bischl et al. Hyperparameter Optimization: Foundations, Algo-
rithms, Best Practices and Open Challenges. 2021. doi: 10 . 48550 /
ARXIV.2107.05847 (page 66).

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. In-
formation Science and Statistics. Springer New York, 2006 (pages 20,
25, 28, 135, 143).

[BK18] Andrew L. Beam and Isaac S. Kohane. “Big Data and Machine Learning
in Health Care”. In: JAMA 319.13 (2018), pp. 1317–1318. doi: 10.1001/
jama.2017.18391 (page 2).

[BK19] Steven L. Brunton and J. Nathan Kutz. Data-driven science and engi-
neering : machine learning, dynamical systems, and control. Cambridge:
Cambridge University Press, 2019. doi: 10 . 1017 / 9781108380690
(pages 2, 17–19, 22).

[BKM14] Adil Bagirov, Napsu Karmitsa, and Marko M. Mäkelä. Introduction to
Nonsmooth Optimization. Springer International Publishing, 2014. doi:
10.1007/978-3-319-08114-4 (pages 41, 135).

[Bot99] Léon Bottou. “On-line learning and stochastic approximations”. In: On-
line Learning in Neural Networks. Cambridge University Press, 1999,
pp. 9–42. url: https://dl.acm.org/doi/10.5555/304710.304720
(page 28).

[BPK16] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Discover-
ing governing equations from data by sparse identification of nonlinear
dynamical systems”. In: Proceedings of the National Academy of Sci-
ences 113.15 (2016), pp. 3932–3937. doi: 10.1073/pnas.1517384113
(pages 2, 92, 103, 125, 126).

[Bra+04] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Oss-
wald. “Finding Knees in Multi-objective Optimization”. In: Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 722–
731. doi: 10.1007/978-3-540-30217-9_73 (page 128).

[Bri+18] Bjoern Bringmann, Daniel Cremers, Felix Krahmer, and Michael
Moeller. “The homotopy method revisited: Computing solution paths of
`1-regularized problems”. In: Mathematics of Computation 87.313
(2018), pp. 2343–2364. doi: 10.1090/mcom/3287 (page 104).

[Bru+17] Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Eurika
Kaiser, and J. Nathan Kutz. “Chaos as an intermittently forced linear
system”. In: Nature Communications 8.1 (2017). doi: 10.1038/s41467-
017-00030-8 (page 35).

[Bru+21] Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz.
Modern Koopman Theory for Dynamical Systems. 2021. doi: 10.48550/
ARXIV.2102.12086 (pages 2, 33, 36).

[BS15] Felix Berkenkamp and Angela P. Schoellig. “Safe and robust learning
control with Gaussian processes”. In: 2015 European Control Confer-
ence (ECC). 2015, pp. 2496–2501. doi: 10.1109/ECC.2015.7330913
(page 149).

[BS21] Mrinal R. Bachute and Javed M. Subhedar. “Autonomous Driving Ar-
chitectures: Insights of Machine Learning and Deep Learning Algo-

157

https://doi.org/10.48550/ARXIV.2107.05847
https://doi.org/10.48550/ARXIV.2107.05847
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1017/9781108380690
https://doi.org/10.1007/978-3-319-08114-4
https://dl.acm.org/doi/10.5555/304710.304720
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1007/978-3-540-30217-9_73
https://doi.org/10.1090/mcom/3287
https://doi.org/10.1038/s41467-017-00030-8
https://doi.org/10.1038/s41467-017-00030-8
https://doi.org/10.48550/ARXIV.2102.12086
https://doi.org/10.48550/ARXIV.2102.12086
https://doi.org/10.1109/ECC.2015.7330913

Bibliography

rithms”. In: Machine Learning with Applications 6 (2021), p. 100164.
doi: 10.1016/j.mlwa.2021.100164 (page 2).

[But+18] Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev,
and Aron Walsh. “Machine learning for molecular and materials sci-
ence”. In: Nature 559.7715 (2018), pp. 547–555. doi: 10.1038/s41586-
018-0337-2 (page 2).

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004. doi: 10 . 1017 / CBO9780511804441
(page 48).

[BW20] Dennis M Bushnell and Israel Wygnanski. “Flow Control Applications”.
In: NASA/TM – 2020 – 220436 (2020). url: https://ntrs.nasa.
gov/citations/20200000702 (page 53).

[BZ03] Alfredo Bellen and Marino Zennaro. Numerical Methods for Delay Dif-
ferential Equations. Oxford University Press, 2003. doi: 10 . 1093 /
acprof:oso/9780198506546.001.0001 (page 10).

[CC21] Kushal Chakrabarti and Nikhil Chopra. “Generalized AdaGrad (G-
AdaGrad) and Adam: A State-Space Perspective”. In: 60th IEEE Con-
ference on Decision and Control (CDC). 2021, pp. 1496–1501. doi:
10.1109/CDC45484.2021.9682994 (page 29).

[CD94] Shaobing Chen and D. Donoho. “Basis pursuit”. In: Proceedings of 1994
28th Asilomar Conference on Signals, Systems and Computers. Vol. 1.
IEEE, 1994, pp. 41–44. doi: 10.1109/ACSSC.1994.471413 (page 104).

[Cha04] Antonin Chambolle. “An Algorithm for Total Variation Minimization
and Applications”. In: Journal of Mathematical Imaging and Vision
20 (2004), pp. 89–97. doi: 10.1023/b:jmiv.0000011325.36760.1e
(page 135).

[CHS20] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subrama-
nian. “Data-driven predictions of a multiscale Lorenz 96 chaotic system
using machine-learning methods: reservoir computing, artificial neural
network, and long short-term memory network”. In: Nonlinear Processes
in Geophysics 27.3 (2020), pp. 373–389. doi: 10.5194/npg-27-373-
2020 (page 33).

[Cla90] Frank H. Clarke. Optimization and Nonsmooth Analysis. Society
for Industrial and Applied Mathematics, 1990. doi: 10 . 1137 / 1 .
9781611971309 (page 41).

[Coe06] Carlos A. Coello Coello. “Evolutionary multi-objective optimization: a
historical view of the field”. In: IEEE Computational Intelligence Maga-
zine 1.1 (2006), pp. 28–36. doi: 10.1109/MCI.2006.1597059 (page 51).

[Cor+21] Guy Y. Cornejo Maceda, Yiqing Li, François Lusseyran, Marek
Morzyński, and Bernd R. Noack. “Stabilization of the fluidic pinball
with gradient-enriched machine learning control”. In: Journal of Fluid
Mechanics 917 (2021), A42-1–A42-43. doi: 10.1017/jfm.2021.301
(page 54).

[CR80] Charles R. Cutler and Brian L. Ramaker. “Dynamic matrix control – A
computer control algorithm”. In: Joint Automatic Control Conference
17 (1980), p. 72 (pages 2, 17).

158

https://doi.org/10.1016/j.mlwa.2021.100164
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1017/CBO9780511804441
https://ntrs.nasa.gov/citations/20200000702
https://ntrs.nasa.gov/citations/20200000702
https://doi.org/10.1093/acprof:oso/9780198506546.001.0001
https://doi.org/10.1093/acprof:oso/9780198506546.001.0001
https://doi.org/10.1109/CDC45484.2021.9682994
https://doi.org/10.1109/ACSSC.1994.471413
https://doi.org/10.1023/b:jmiv.0000011325.36760.1e
https://doi.org/10.5194/npg-27-373-2020
https://doi.org/10.5194/npg-27-373-2020
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1109/MCI.2006.1597059
https://doi.org/10.1017/jfm.2021.301

Bibliography

[Dai+13] Jisheng Dai, Chunqi Chang, Fei Mai, Dean Zhao, and Weichao Xu. “On
the SVMpath Singularity”. In: IEEE Transactions on Neural Networks
and Learning Systems 24.11 (2013), pp. 1736–1748. doi: 10 . 1109 /
tnnls.2013.2262180 (page 144).

[Dar59] Charles Darwin. On the Origin of Species by Means of Natural Selection.
or the Preservation of Favored Races in the Struggle for Life. Murray,
1859 (page 50).

[DBN17] Thomas Duriez, Steven L. Brunton, and Bernd R. Noack. Machine
Learning Control – Taming Nonlinear Dynamics and Turbulence.
Springer International Publishing, 2017. doi: 10.1007/978-3-319-
40624-4 (pages 18, 19).

[Dea+91] Anil E. Deane, Ioannis G. Kevrekidis, George Em Karniadakis, and
Steven A. Orszag. “Low-dimensional models for complex geometry
flows: Application to grooved channels and circular cylinders”. In:
Physics of Fluids A: Fluid Dynamics 3.10 (1991), pp. 2337–2354. doi:
10.1063/1.857881 (page 96).

[Deb+02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and Thirunavukarasu
Meyarivan. “A fast and elitist multiobjective genetic algorithm: NSGA-
II”. In: IEEE Transactions on Evolutionary Computation 6.2 (2002),
pp. 182–197. doi: 10.1109/4235.996017 (page 51).

[Den+18] Nan Deng, Luc R. Pastur, Marek Morzyński, and Bernd R. Noack.
“Route to Chaos in the Fluidic Pinball”. In: Proceedings of the ASME
2018 Fluids Engineering Division Summer Meeting. American Soci-
ety of Mechanical Engineers, 2018. doi: 10.1115/FEDSM2018- 83359
(pages 3, 53, 147).

[Den+19] Nan Deng, Bernd R. Noack, Marek Morzyński, and Luc R. Pastur.
“Low-order model for successive bifurcations of the fluidic pinball”. In:
Journal of Fluid Mechanics 884 (2019). doi: 10.1017/jfm.2019.959
(pages 53, 58–60, 147).

[DER95] Andreas Draeger, Sebastian Engell, and Horst Ranke. “Model predictive
control using neural networks”. In: IEEE Control Systems Magazine
15.5 (1995), pp. 61–66. doi: 10.1109/37.466261 (page 19).

[DF21] Eva Dierkes and Kathrin Flaßkamp. “Learning Hamiltonian Sys-
tems considering System Symmetries in Neural Networks”. In: IFAC-
PapersOnLine 54.19 (2021). 7th IFAC Workshop on Lagrangian and
Hamiltonian Methods for Nonlinear Control LHMNC 2021, pp. 210–
216. doi: 10.1016/j.ifacol.2021.11.080 (page 19).

[Don06] David L. Donoho. “For most large underdetermined systems of linear
equations the minimal l1-norm solution is also the sparsest solution”.
In: Communications on Pure and Applied Mathematics 59.6 (2006),
pp. 797–829. doi: 10.1002/cpa.20132 (page 24).

[DT08] David L. Donoho and Yaakov Tsaig. “Fast Solution of `1-Norm Mini-
mization Problems When the Solution May Be Sparse”. In: IEEE Trans-
actions on Information Theory 54.11 (2008), pp. 4789–4812. doi: 10.
1109/TIT.2008.929958 (page 104).

159

https://doi.org/10.1109/tnnls.2013.2262180
https://doi.org/10.1109/tnnls.2013.2262180
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1063/1.857881
https://doi.org/10.1109/4235.996017
https://doi.org/10.1115/FEDSM2018-83359
https://doi.org/10.1017/jfm.2019.959
https://doi.org/10.1109/37.466261
https://doi.org/10.1016/j.ifacol.2021.11.080
https://doi.org/10.1002/cpa.20132
https://doi.org/10.1109/TIT.2008.929958
https://doi.org/10.1109/TIT.2008.929958

Bibliography

[Du+19] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. “Gra-
dient descent finds global minima of deep neural networks”. In: Proceed-
ings of the 36th International Conference on Machine Learning, ICML
2019. Vol. 97. Proceedings of Machine Learning Research. PMLR. 2019,
pp. 1675–1685. url: http://proceedings.mlr.press/v97/du19c/
du19c.pdf (page 29).

[E+20] Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a
Mathematical Understanding of Neural Network-Based Machine Learn-
ing: what we know and what we don’t. 2020. doi: 10.48550/ARXIV.
2009.10713 (page 25).

[EFM10] Michael Elad, Mário A. T. Figueiredo, and Yi Ma. “On the Role of
Sparse and Redundant Representations in Image Processing”. In: Pro-
ceedings of the IEEE 98.6 (2010), pp. 972–982. doi: 10.1109/JPROC.
2009.2037655 (page 103).

[Efr+04] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.
“Least angle regression”. In: The Annals of Statistics 32.2 (2004),
pp. 407–499. doi: 10.1214/009053604000000067 (page 137).

[EG15] Lawrence Craig Evans and Ronald F. Gariepy. Measure Theory and
Fine Properties of Functions, Revised Edition. Chapman and Hall/CRC,
2015. doi: 10.1201/b18333 (page 41).

[Ehr05] Matthias Ehrgott. Multicriteria optimization. 2nd ed. Springer Berlin,
2005. doi: 10.1007/3-540-27659-9 (pages 36, 37, 45, 125).

[EK12] Yonina C. Eldar and Gitta Kutyniok, eds. Compressed Sensing: Theory
and Applications. Cambridge University Press, 2012. doi: 10.1017/
CBO9780511794308 (page 103).

[EMH19] Thomas Elsken, Jan H. Metzen, and Frank Hutter. “Neural Architecture
Search: A Survey”. In: Journal of Machine Learning Research 20.55
(2019), pp. 1–21. url: http://jmlr.org/papers/v20/18-598.html
(page 66).

[ES15] A.E. Eiben and Jim E. Smith. Introduction to Evolutionary Computing.
Springer Berlin, Heidelberg, 2015. doi: 10.1007/978-3-662-44874-8
(page 51).

[FDS09] Jörg Fliege, L. M. Graña Drummond, and Benar F. Svaiter. “Newton’s
Method for Multiobjective Optimization”. In: SIAM Journal on Opti-
mization 20.2 (2009), pp. 602–626. doi: 10.1137/08071692x (page 47).

[Fer12] David A. Ferrucci. “Introduction to “This is Watson””. In: IBM Journal
of Research and Development 56.3.4 (2012), 1:1–1:15. doi: 10.1147/
JRD.2012.2184356 (page 2).

[Fis36] Ronald A. Fisher. “The use of multiple measurements in taxonomic
problems”. In: Annals of Eugenics 7.2 (1936), pp. 179–188 (pages 21,
129).

[FLK19] Akhmad Faqih, Aldo Pratama Lianto, and Benyamin Kusumoputro.
“Mackey-Glass Chaotic Time Series Prediction Using Modified RBF
Neural Networks”. In: Proceedings of the 2nd International Conference
on Software Engineering and Information Management. ICSIM 2019.
Association for Computing Machinery, 2019, pp. 7–11 (page 93).

160

http://proceedings.mlr.press/v97/du19c/du19c.pdf
http://proceedings.mlr.press/v97/du19c/du19c.pdf
https://doi.org/10.48550/ARXIV.2009.10713
https://doi.org/10.48550/ARXIV.2009.10713
https://doi.org/10.1109/JPROC.2009.2037655
https://doi.org/10.1109/JPROC.2009.2037655
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1201/b18333
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1017/CBO9780511794308
https://doi.org/10.1017/CBO9780511794308
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1137/08071692x
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356

Bibliography

[For+15] Michael G. Forbes, Rohit S. Patwardhan, Hamza Hamadah, and
R. Bhushan Gopaluni. “Model Predictive Control in Industry: Chal-
lenges and Opportunities”. In: IFAC-PapersOnLine 48.8 (2015). 9th
IFAC Symposium on Advanced Control of Chemical Processes AD-
CHEM 2015, pp. 531–538. doi: 10.1016/j.ifacol.2015.09.022
(pages 2, 17).

[FS00] Jörg Fliege and Benar F. Svaiter. “Steepest descent methods for mul-
ticriteria optimization”. In: Mathematical Methods of Operations Re-
search (ZOR) 51.3 (2000), pp. 479–494. doi: 10.1007/s001860000043
(pages 46, 47).

[Gal11] Jean Gallier. Geometric Methods and Applications. Texts in applied
mathematics. Springer New York, 2011. doi: 10.1007/978-1-4419-
9961-0 (pages 82, 139).

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of
training deep feedforward neural networks”. In: Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2010. Vol. 9. JMLR Proceedings. JMLR.org, 2010, pp. 249–
256. url: http : / / proceedings . mlr . press / v9 / glorot10a . html
(pages 57, 67, 132).

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learn-
ing. Adaptive computation and machine learning. MIT Press, 2016.
url: http://www.deeplearningbook.org (pages 2, 25, 28, 29, 135).

[GBP22] Bennet Gebken, Katharina Bieker, and Sebastian Peitz. “On the struc-
ture of regularization paths for piecewise differentiable regularization
terms”. In: Journal of Global Optimization (Sept. 2022). doi: 10.1007/
s10898-022-01223-2 (pages 7, 105, 137, 141, 142, 144).

[Geb22] Bennet Gebken. “Computation and analysis of Pareto critical sets in
smooth and nonsmooth multiobjective optimization”. PhD thesis. 2022.
doi: 10.17619/UNIPB/1-1327 (page 112).

[Ger11] Matthias Gerdts. Optimal Control of ODEs and DAEs. De Gruyter,
2011. doi: 10.1515/9783110249996 (page 77).

[GK71] Ernest William Griffith and Kadaba S. P. Kumar. “On the observabil-
ity of nonlinear systems: I”. In: Journal of Mathematical Analysis and
Applications 35.1 (1971), pp. 135–147. doi: 10.1016/0022-247X(71)
90241-1 (page 18).

[GM79] Leon Glass and Michael C. Mackey. “Pathological conditions resulting
from instabilities in physiological control systems”. In: Annals of the
New York Academy of Sciences 316.1 (1979), pp. 214–235. doi: 10.
1111/j.1749-6632.1979.tb29471.x (page 93).

[GP17] Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control.
2nd ed. Springer International Publishing, 2017. doi: 10.1007/978-3-
319-46024-6 (pages 1, 2, 14, 15, 18).

[GP21] Bennet Gebken and Sebastian Peitz. “An Efficient Descent Method for
Locally Lipschitz Multiobjective Optimization Problems”. In: Journal
of Optimization Theory and Applications 188.3 (2021), pp. 696–723.
doi: 10.1007/s10957-020-01803-w (page 48).

161

https://doi.org/10.1016/j.ifacol.2015.09.022
https://doi.org/10.1007/s001860000043
https://doi.org/10.1007/978-1-4419-9961-0
https://doi.org/10.1007/978-1-4419-9961-0
http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org
https://doi.org/10.1007/s10898-022-01223-2
https://doi.org/10.1007/s10898-022-01223-2
https://doi.org/10.17619/UNIPB/1-1327
https://doi.org/10.1515/9783110249996
https://doi.org/10.1016/0022-247X(71)90241-1
https://doi.org/10.1016/0022-247X(71)90241-1
https://doi.org/10.1111/j.1749-6632.1979.tb29471.x
https://doi.org/10.1111/j.1749-6632.1979.tb29471.x
https://doi.org/10.1007/978-3-319-46024-6
https://doi.org/10.1007/978-3-319-46024-6
https://doi.org/10.1007/s10957-020-01803-w

Bibliography

[GPD19] Bennet Gebken, Sebastian Peitz, and Michael Dellnitz. “On the hier-
archical structure of Pareto critical sets”. In: Journal of Global Opti-
mization 73.4 (2019), pp. 891–913. doi: 10.1007/s10898-019-00737-6
(pages 121, 142).

[GPT99] W. R. Graham, Jaume Peraire, and K. Y. Tang. “Optimal control of vor-
tex shedding using low-order models. Part I – open-loop model develop-
ment”. In: International Journal for Numerical Methods in Engineering
44.7 (1999), pp. 945–972. doi: 10.1002/(SICI)1097-0207(19990310)
44:7<945::AID-NME537>3.0.CO;2-F (page 69).

[Gre+17] Klaus Greff, Rupesh K. Srivastava, Jan Koutník, Bas R. Steunebrink,
and Jürgen Schmidhuber. “LSTM: A Search Space Odyssey”. In: IEEE
Transactions on Neural Networks and Learning Systems 28.10 (2017),
pp. 2222–2232. doi: 10.1109/TNNLS.2016.2582924 (page 31).

[Grö19] Thomas Hakon Grönwall. “Note on the Derivatives with Respect to a
Parameter of the Solutions of a System of Differential Equations”. In:
Annals of Mathematics 20.4 (1919), pp. 292–296. doi: 10.2307/1967124
(page 75).

[GSS15] Alireza Goudarzi, Alireza Shabani, and Darko Stefanovic. “Product
reservoir computing: Time-series computation with multiplicative neu-
rons”. In: 2015 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2015, pp. 1–8. doi: 10.1109/ijcnn.2015.7280453
(page 93).

[GW08a] Rafael C. González and Richard E. Woods. Digital image processing,
3rd Edition. Pearson Education, 2008 (page 133).

[GW08b] Andreas Griewank and Andrea Walther. Evaluating derivatives: prin-
ciples and techniques of algorithmic differentiation. SIAM, 2008. doi:
10.1137/1.9780898717761 (pages 27, 28).

[Has+04] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. “The
Entire Regularization Path for the Support Vector Machine”. In: Journal
of Machine Learning Research 5 (2004), pp. 1391–1415. url: http:
//jmlr.org/papers/volume5/hastie04a/hastie04a.pdf (pages 137,
144).

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving
Deep into Rectifiers: Surpassing Human-Level Performance on Image-
Net Classification”. In: Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV). IEEE, 2015, pp. 1026–1034. doi:
10.1109/ICCV.2015.123 (page 66).

[Hes+18] Michael Hesse, Julia Timmermann, Eyke Hüllermeier, and Ansgar
Trächtler. “A Reinforcement Learning Strategy for the Swing-Up of the
Double Pendulum on a Cart”. In: Procedia Manufacturing 24 (2018),
pp. 15–20. doi: 10.1016/j.promfg.2018.06.004 (pages 19, 22).

[Hil01] Claus Hillermeier. Nonlinear Multiobjective Optimization. Birkhäuser
Basel, 2001. doi: 10.1007/978-3-0348-8280-4 (pages 5, 48–50, 111–
113, 115, 150).

162

https://doi.org/10.1007/s10898-019-00737-6
https://doi.org/10.1002/(SICI)1097-0207(19990310)44:7<945::AID-NME537>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-0207(19990310)44:7<945::AID-NME537>3.0.CO;2-F
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.2307/1967124
https://doi.org/10.1109/ijcnn.2015.7280453
https://doi.org/10.1137/1.9780898717761
http://jmlr.org/papers/volume5/hastie04a/hastie04a.pdf
http://jmlr.org/papers/volume5/hastie04a/hastie04a.pdf
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1016/j.promfg.2018.06.004
https://doi.org/10.1007/978-3-0348-8280-4

Bibliography

[HL06] Márton Albert Hajnal and András Lőrincz. “Critical Echo State Net-
works”. In: Artificial Neural Networks – ICANN 2006. Springer Berlin
Heidelberg, 2006, pp. 658–667. doi: 10.1007/11840817_69 (page 93).

[Hoi+21] Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. “Online learn-
ing: A comprehensive survey”. In: Neurocomputing 459 (2021), pp. 249–
289. doi: 10.1016/j.neucom.2021.04.112 (page 22).

[HS06] Geoffrey E. Hinton and Ruslan Salakhutdinov. “Reducing the Dimen-
sionality of Data with Neural Networks”. In: Science 313.5786 (2006),
pp. 504–507. doi: 10.1126/science.1127647 (page 57).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.
1997.9.8.1735 (pages 2, 30, 31).

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural Net-
works 2.5 (1989), pp. 359–366. doi: 10.1016/0893-6080(89)90020-8
(page 26).

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. 2nd ed. Springer Series in Statistics. Springer
New York, 2009. doi: 10.1007/978-0-387-84858-7 (page 135).

[Igl+18] Ramon Iglesias et al. “Data-Driven Model Predictive Control of Au-
tonomous Mobility-on-Demand Systems”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 6019–
6025. doi: 10.1109/ICRA.2018.8460966 (pages 19, 66).

[Jae02] Herbert Jaeger. Short term memory in echo state networks. Vol. 152.
German National Research Center for Information Technology, 2002.
url: https://www.ai.rug.nl/minds/uploads/STMEchoStatesTechRe
p.pdf (page 32).

[Jae10] Herbert Jaeger. “The “echo state” approach to analysing and training
recurrent neural networks – with an erratum note”. In: GMD Technical
Report 148 (2010), pp. 1–47. url: https://www.ai.rug.nl/minds/
uploads/EchoStatesTechRep.pdf (pages 2, 32, 33, 93).

[JH04] Herbert Jaeger and Harald Haas. “Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless Communication”. In:
Science 304.5667 (2004), pp. 78–80. doi: 10.1126/science.1091277
(pages 2, 32).

[JJT07] Hrvoje Jasak, Aleksandar Jemcov, and Željko Tuković. “OpenFOAM
: A C++ Library for Complex Physics Simulations”. In: International
Workshop on Coupled Methods in Numerical Dynamics - CMND2007
(2007), pp. 47–66 (page 59).

[Jor+18] Jean P. Jordanou, Eduardo Camponogara, Eric Aislan Antonelo, and
Marco Aurélio Schmitz Aguiar. “Nonlinear Model Predictive Control of
an Oil Well with Echo State Networks”. In: IFAC-PapersOnLine 51.8
(2018), pp. 13–18. doi: 10.1016/j.ifacol.2018.06.348 (pages 19, 33,
66, 94).

[Kal60a] Rudolf E. Kalman. “On the general theory of control systems”. In: IFAC
Proceedings Volumes 1.1 (1960). 1st International IFAC Congress on

163

https://doi.org/10.1007/11840817_69
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1109/ICRA.2018.8460966
https://www.ai.rug.nl/minds/uploads/STMEchoStatesTechRep.pdf
https://www.ai.rug.nl/minds/uploads/STMEchoStatesTechRep.pdf
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.ifacol.2018.06.348

Bibliography

Automatic and Remote Control, Moscow, USSR, 1960, pp. 491–502.
doi: 10.1016/S1474-6670(17)70094-8 (page 18).

[Kal60b] Rudolf. E. Kalman. “A New Approach to Linear Filtering and Predic-
tion Problems”. In: Journal of Basic Engineering 82.1 (1960), pp. 35–
45. doi: 10.1115/1.3662552 (page 19).

[Kar+21] George Em Karniadakis et al. “Physics-informed machine learning”. In:
Nature Reviews Physics 3.6 (2021), pp. 422–440. doi: 10.1038/s42254-
021-00314-5 (pages 19, 67, 148).

[Kar39] William Karush. “Minima of Functions of Several Variables with In-
equalities as Side Conditions”. MA thesis. Department of Mathematics,
University of Chicago, 1939 (page 39).

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. doi: 10.48550/ARXIV.1412.6980 (page 29).

[KBP13] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement learn-
ing in robotics: A survey”. In: The International Journal of Robotics Re-
search 32.11 (2013), pp. 1238–1274. doi: 10.1177/0278364913495721
(pages 19, 22).

[Kir+22] B. Ravi Kiran et al. “Deep Reinforcement Learning for Autonomous
Driving: A Survey”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 23.6 (2022), pp. 4909–4926. doi: 10.1109/TITS.2021.
3054625 (page 2).

[KKB18] Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. “Sparse iden-
tification of nonlinear dynamics for model predictive control in the
low-data limit”. In: Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 474.2219 (2018), p. 20180335. doi:
10.1098/rspa.2018.0335 (pages 69, 92).

[KKS16] Stefan Klus, Péter Koltai, and Christof Schütte. “On the numerical
approximation of the Perron-Frobenius and Koopman operator”. In:
Journal of Computational Dynamics 3.1 (2016), pp. 51–79. doi: 10.
3934/jcd.2016003 (page 34).

[Klu+20] Stefan Klus et al. “Data-driven approximation of the Koopman genera-
tor: Model reduction, system identification, and control”. In: Physica D:
Nonlinear Phenomena 406 (2020), p. 132416. doi: 10.1016/j.physd.
2020.132416 (pages 35, 36).

[KM18a] Milan Korda and Igor Mezić. “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control”. In: Auto-
matica 93 (2018), pp. 149–160. doi: 10.1016/j.automatica.2018.03.
046 (pages 18, 35, 69).

[KM18b] Milan Korda and Igor Mezić. “On Convergence of Extended Dynamic
Mode Decomposition to the Koopman Operator”. In: Journal of Non-
linear Science 28.2 (2018), pp. 687–710. doi: 10.1007/s00332-017-
9423-0 (page 35).

[Koo31] Bernard O. Koopman. “Hamiltonian Systems and Transformation in
Hilbert Space”. In: Proceedings of the National Academy of Sciences
17.5 (1931), pp. 315–318. doi: 10.1073/pnas.17.5.315 (pages 2, 33).

164

https://doi.org/10.1016/S1474-6670(17)70094-8
https://doi.org/10.1115/1.3662552
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.3934/jcd.2016003
https://doi.org/10.3934/jcd.2016003
https://doi.org/10.1016/j.physd.2020.132416
https://doi.org/10.1016/j.physd.2020.132416
https://doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1007/s00332-017-9423-0
https://doi.org/10.1007/s00332-017-9423-0
https://doi.org/10.1073/pnas.17.5.315

Bibliography

[KR17] Gábor Kiss and Gergely Röst. “Controlling Mackey–Glass chaos”. In:
Chaos: An Interdisciplinary Journal of Nonlinear Science 27.11 (2017),
p. 114321. doi: 10.1063/1.5006922 (page 93).

[Kra85] Dieter Kraft. “On Converting Optimal Control Problems into Nonlin-
ear Programming Problems”. In: Computational Mathematical Program-
ming. Springer Berlin Heidelberg, 1985, pp. 261–280. doi: 10.1007/
978-3-642-82450-0_9 (page 13).

[Kra94] Dieter Kraft. “Algorithm 733: TOMP–Fortran modules for optimal con-
trol calculations”. In: ACM Transactions on Mathematical Software 20.3
(1994), pp. 262–281. doi: 10.1145/192115.192124 (page 13).

[KT51] Harold W. Kuhn and Albert W. Tucker. “Nonlinear programming”. In:
Proceedings of the Second Berkeley Symposium on Mathematical Statis-
tics and Probability. Berkeley, Calif.: University of California Press,
1951, pp. 481–492 (page 39).

[KV99] Karl Kunisch and Stefan Volkwein. “Control of the Burgers Equation by
a Reduced-Order Approach Using Proper Orthogonal Decomposition”.
In: Journal of Optimization Theory and Applications 102.2 (1999),
pp. 345–371. doi: 10.1023/a:1021732508059 (page 18).

[LCB10] Yann LeCun, Corinna Cortes, and Chris J. Burges. “MNIST handwrit-
ten digit database”. In: ATT Labs [Online] 2 (2010). url: http://
yann.lecun.com/exdb/mnist (page 133).

[Lee11] Jay H. Lee. “Model predictive control: Review of the three decades of
development”. In: International Journal of Control, Automation and
Systems 9.3 (2011), pp. 415–424. doi: 10.1007/s12555-011-0300-6
(pages 2, 17).

[Lee12] John M. Lee. Introduction to Smooth Manifolds. Springer New York,
2012. doi: 10.1007/978-1-4419-9982-5 (pages 138, 142).

[LHO18] Zhixin Lu, Brian R. Hunt, and Edward Ott. “Attractor reconstruc-
tion by machine learning”. In: Chaos: An Interdisciplinary Journal of
Nonlinear Science 28.6 (2018), p. 061104. doi: 10.1063/1.5039508
(page 33).

[LHW12] Decai Li, Min Han, and Jun Wang. “Chaotic Time Series Prediction
Based on a Novel Robust Echo State Network”. In: IEEE Transactions
on Neural Networks and Learning Systems 23.5 (2012), pp. 787–799.
doi: 10.1109/TNNLS.2012.2188414 (page 33).

[Li+12] Hui Li, Xiaolei Su, Zongben Xu, and Qingfu Zhang. “MOEA/D with It-
erative Thresholding Algorithm for Sparse Optimization Problems”. In:
Proceedings of the 12th International Conference on Parallel Problem
Solving from Nature - PPSN XII. Vol. 7492. Lecture Notes in Computer
Science. Springer, 2012, pp. 93–101. doi: 10.1007/978-3-642-32964-
7_10 (page 105).

[Lib12] Daniel Liberzon. Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2012. doi: 10.1515/
9781400842643 (pages 9–12).

[Lin+19] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong.
“Pareto Multi-Task Learning”. In: Advances in Neural Information Pro-

165

https://doi.org/10.1063/1.5006922
https://doi.org/10.1007/978-3-642-82450-0_9
https://doi.org/10.1007/978-3-642-82450-0_9
https://doi.org/10.1145/192115.192124
https://doi.org/10.1023/a:1021732508059
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1007/s12555-011-0300-6
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1063/1.5039508
https://doi.org/10.1109/TNNLS.2012.2188414
https://doi.org/10.1007/978-3-642-32964-7_10
https://doi.org/10.1007/978-3-642-32964-7_10
https://doi.org/10.1515/9781400842643
https://doi.org/10.1515/9781400842643

Bibliography

cessing Systems. Vol. 32. Curran Associates, Inc., 2019. url: https:
//proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed
565881917c71c-Paper.pdf (page 151).

[LJ09] Mantas Lukosevicius and Herbert Jaeger. “Reservoir computing ap-
proaches to recurrent neural network training”. In: Computer Science
Review 3.3 (2009), pp. 127–149. doi: 10.1016/j.cosrev.2009.03.005
(page 32).

[Lju98] Lennart Ljung. “System Identification”. In: Signal Analysis and Pre-
diction. Birkhäuser Boston, 1998, pp. 163–173. doi: 10.1007/978-1-
4612-1768-8_11 (page 18).

[LKS15] Ian Lenz, Ross A. Knepper, and Ashutosh Saxena. “DeepMPC: Learn-
ing Deep Latent Features for Model Predictive Control”. In: Robotics:
Science and Systems XI, Sapienza University of Rome, Rome, Italy,
July 13-17, 2015. 2015. doi: 10.15607/RSS.2015.XI.012 (pages 3, 54,
57).

[Lóp+16] Carlos H. López-Caraballo et al. “Mackey-Glass noisy chaotic time se-
ries prediction by a swarm-optimized neural network”. In: Journal of
Physics: Conference Series 720 (2016), p. 012002. doi: 10.1088/1742-
6596/720/1/012002 (page 93).

[LT20] H. Lu and D. M. Tartakovsky. “Predictive Accuracy of Dynamic Mode
Decomposition”. In: SIAM Journal on Scientific Computing 42.3 (2020),
pp. 1639–1662. doi: 10.1137/19M1259948 (page 35).

[LV21] Suyun Liu and Luis Nunes Vicente. “The stochastic multi-gradient al-
gorithm for multi-objective optimization and its application to super-
vised machine learning”. In: Annals of Operations Research (2021). doi:
10.1007/s10479-021-04033-z (pages 48, 150).

[LVV12] Frank L. Lewis, Draguna Vrabie, and Kyriakos G. Vamvoudakis. “Re-
inforcement Learning and Feedback Control: Using Natural Decision
Methods to Design Optimal Adaptive Controllers”. In: IEEE Control
Systems Magazine 32.6 (2012), pp. 76–105. doi: 10.1109/MCS.2012.
2214134 (pages 19, 22).

[Man+18] Krithika Manohar, Bingni W. Brunton, J. Nathan Kutz, and Steven
L. Brunton. “Data-Driven Sparse Sensor Placement for Reconstruction:
Demonstrating the Benefits of Exploiting Known Patterns”. In: IEEE
Control Systems Magazine 38.3 (2018), pp. 63–86. doi: 10.1109/MCS.
2018.2810460 (page 53).

[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/ (pages 28, 59).

[Mar14] Adanay Martín. “Pareto Tracer: A Predictor Corrector Method for
Multi-objective Optimization Problems”. MA thesis. 2014 (page 132).

[MBS93] Thomas M. Martinets, Stanislav G. Berkovich, and Klaus J. Schul-
ten. “’Neural-gas’ network for vector quantization and its application
to time-series prediction”. In: IEEE Transactions on Neural Networks
4.4 (1993), pp. 558–569. doi: 10.1109/72.238311 (page 93).

166

https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1007/978-1-4612-1768-8_11
https://doi.org/10.1007/978-1-4612-1768-8_11
https://doi.org/10.15607/RSS.2015.XI.012
https://doi.org/10.1088/1742-6596/720/1/012002
https://doi.org/10.1088/1742-6596/720/1/012002
https://doi.org/10.1137/19M1259948
https://doi.org/10.1007/s10479-021-04033-z
https://doi.org/10.1109/MCS.2012.2214134
https://doi.org/10.1109/MCS.2012.2214134
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1109/MCS.2018.2810460
https://www.tensorflow.org/
https://doi.org/10.1109/72.238311

Bibliography

[MCW05] D. M. Malioutov, M. Cetin, and A. S. Willsky. “Homotopy continuation
for sparse signal representation”. In: Proceedings. (ICASSP ’05). IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2005. Vol. 5. 2005, v/733–v/736 Vol. 5. doi: 10.1109/ICASSP.2005.
1416408 (page 104).

[MDM20] Pingchuan Ma, Tao Du, and Wojciech Matusik. “Efficient Continuous
Pareto Exploration in Multi-Task Learning”. In: Proceedings of the 37th
International Conference on Machine Learning, ICML 2020. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 2020, pp. 6522–
6531. url: http : / / proceedings . mlr . press / v119 / ma20a . html
(page 151).

[MEK14] Marko M. Mäkelä, Ville-Pekka Eronen, and Napsu Karmitsa. “On Non-
smooth Multiobjective Optimality Conditions with Generalized Con-
vexities”. In: Optimization in Science and Engineering: In Honor of the
60th Birthday of Panos M. Pardalos. Springer New York, 2014, pp. 333–
357. doi: 10.1007/978-1-4939-0808-0_17 (pages 41, 42).

[MG77] Michael C. Mackey and Leon Glass. “Oscillation and Chaos in Phys-
iological Control Systems”. In: Science 197.4300 (1977), pp. 287–289.
doi: 10.1126/science.267326 (page 93).

[Mie98] Kaisa Miettinen. Nonlinear multiobjective optimization. 1st ed. Springer
New York, 1998. doi: 10.1007/978-1-4615-5563-6 (pages 36, 40–42).

[MK20] Paul Manns and Christian Kirches. “Improved regularity assumptions
for partial outer convexification of mixed-integer PDE-constrained op-
timization problems”. In: ESAIM: Control, Optimisation and Calculus
of Variations 26 (2020), p. 32. doi: 10.1051/cocv/2019016 (pages 77,
78).

[MKW15] Marko M. Mäkelä, Napsu Karmitsa, and Outi Wilppu. “Proximal Bun-
dle Method for Nonsmooth and Nonconvex Multiobjective Optimiza-
tion”. In: Computational Methods in Applied Sciences. Springer Inter-
national Publishing, 2015, pp. 191–204. doi: 10.1007/978- 3- 319-
23564-6_12 (page 48).

[MOO13] Alejandro Marquez, Jairo José Espinosa Oviedo, and Darci Odloak.
“Model Reduction Using Proper Orthogonal Decomposition and Pre-
dictive Control of Distributed Reactor System”. In: Journal of Control
Science and Engineering 2013 (2013), pp. 1–19. doi: 10.1155/2013/
763165 (page 18).

[Mor+18] Jeremy Morton, Antony Jameson, Mykel J. Kochenderfer, and Freddie
D. Witherden. “Deep Dynamical Modeling and Control of Unsteady
Fluid Flows”. In: Advances in Neural Information Processing Systems.
Vol. 31. Curran Associates, Inc., 2018, pp. 9258–9268. url: https:
//proceedings.neurips.cc/paper/2018/file/2b0aa0d9e30ea3a55fc
271ced8364536-Paper.pdf (page 54).

[MPD18] Quentin Mercier, Fabrice Poirion, and Jean-Antoine Désidéri. “A
stochastic multiple gradient descent algorithm”. In: European Jour-
nal of Operational Research 271.3 (2018), pp. 808–817. doi: 10.1016/
j.ejor.2018.05.064 (pages 48, 150).

167

https://doi.org/10.1109/ICASSP.2005.1416408
https://doi.org/10.1109/ICASSP.2005.1416408
http://proceedings.mlr.press/v119/ma20a.html
https://doi.org/10.1007/978-1-4939-0808-0_17
https://doi.org/10.1126/science.267326
https://doi.org/10.1007/978-1-4615-5563-6
https://doi.org/10.1051/cocv/2019016
https://doi.org/10.1007/978-3-319-23564-6_12
https://doi.org/10.1007/978-3-319-23564-6_12
https://doi.org/10.1155/2013/763165
https://doi.org/10.1155/2013/763165
https://proceedings.neurips.cc/paper/2018/file/2b0aa0d9e30ea3a55fc271ced8364536-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2b0aa0d9e30ea3a55fc271ced8364536-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2b0aa0d9e30ea3a55fc271ced8364536-Paper.pdf
https://doi.org/10.1016/j.ejor.2018.05.064
https://doi.org/10.1016/j.ejor.2018.05.064

Bibliography

[MRW21] Ian R. Manchester, Max Revay, and Ruigang Wang. “Contraction-
Based Methods for Stable Identification and Robust Machine Learning:
a Tutorial”. In: 2021 60th IEEE Conference on Decision and Control
(CDC). 2021, pp. 2955–2962. doi: 10.1109/CDC45484.2021.9683128
(page 149).

[MS17] Adanay Martín and Oliver Schütze. “Pareto Tracer: a predictor–
corrector method for multi–objective optimization problems”. In: En-
gineering Optimization 50.3 (2017), pp. 516–536. doi: 10 . 1080 /
0305215x.2017.1327579 (pages 50, 113, 115, 132).

[MW17] Patrick L. McDermott and Christopher K. Wikle. “An Ensemble
Quadratic Echo State Network for Nonlinear Spatio-Temporal Fore-
casting”. In: Stat 6.1 (2017), pp. 315–330. doi: 10.1002/sta4.160
(page 33).

[Nis97] Volker Nissen. Einführung in Evolutionäre Algorithmen. Vieweg+
Teubner Verlag Wiesbaden, 1997. doi: 10.1007/978-3-322-93861-9
(page 51).

[Noa+03] Bernd R. Noack, Konstantin Afanasiev, Marek Morzyński, Gilead Tad-
mor, and Frank Thiele. “A hierarchy of low-dimensional models for the
transient and post-transient cylinder wake”. In: Journal of Fluid Me-
chanics 497 (2003), pp. 335–363. doi: 10.1017/s0022112003006694
(page 96).

[Noa+16] Bernd R. Noack, Witold Stankiewicz, Marek Morzyński, and Peter
J. Schmid. “Recursive dynamic mode decomposition of transient and
post-transient wake flows”. In: Journal of Fluid Mechanics 809 (2016),
pp. 843–872. doi: 10.1017/jfm.2016.678 (pages 3, 53).

[Nüs+21] Feliks Nüske, Sebastian Peitz, Friedrich Philipp, Manuel Schaller, and
Karl Worthmann. Finite-data error bounds for Koopman-based predic-
tion and control. 2021. doi: 10.48550/ARXIV.2108.07102 (pages 35,
36, 84).

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2nd ed.
Springer Series in Operations Research and Financial Engineering.
Springer New York, 2006. doi: 10.1007/978-0-387-40065-5 (pages 13,
27, 47, 50, 57, 74, 132, 135).

[OO23] Sina Ober-Blöbaum and Christian Offen. “Variational learning of Eu-
ler–Lagrange dynamics from data”. In: Journal of Computational and
Applied Mathematics 421 (Mar. 2023), p. 114780 (page 19).

[OPT00] M. R. Osborne, B. Presnell, and B. A. Turlach. “A new approach to vari-
able selection in least squares problems”. In: IMA Journal of Numerical
Analysis 20.3 (2000), pp. 389–403. doi: 10.1093/imanum/20.3.389
(pages 104, 137).

[OSY10] Chong-Jin Ong, Shiyun Shao, and Jianbo Yang. “An Improved Algo-
rithm for the Solution of the Regularization Path of Support Vector Ma-
chine”. In: IEEE Transactions on Neural Networks 21.3 (2010), pp. 451–
462. doi: 10.1109/tnn.2009.2039000 (page 144).

[PA16] Alberto Padoan and Alessandro Astolfi. “A Note on Delay Coordinates
for Locally Observable Analytic Systems”. In: IEEE Transactions on

168

https://doi.org/10.1109/CDC45484.2021.9683128
https://doi.org/10.1080/0305215x.2017.1327579
https://doi.org/10.1080/0305215x.2017.1327579
https://doi.org/10.1002/sta4.160
https://doi.org/10.1007/978-3-322-93861-9
https://doi.org/10.1017/s0022112003006694
https://doi.org/10.1017/jfm.2016.678
https://doi.org/10.48550/ARXIV.2108.07102
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1093/imanum/20.3.389
https://doi.org/10.1109/tnn.2009.2039000

Bibliography

Automatic Control 61.5 (2016), pp. 1409–1412. doi: 10.1109/TAC.
2015.2478128 (page 18).

[Par06] V. Pareto. Manuale di Economia Politica. Piccola biblioteca scientifica.
Societa Editrice, 1906 (page 36).

[Pas+19a] Luc R. Pastur, Nan Deng, Marek Morzyński, and Bernd R. Noack.
“Reduced-Order Modeling of the Fluidic Pinball”. In: 11th Chaotic Mod-
eling and Simulation International Conference. Springer International
Publishing, 2019, pp. 205–213. doi: 10.1007/978-3-030-15297-0_19
(pages 53, 58).

[Pas+19b] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems. Vol. 32. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf (page 28).

[Pat+17] Jaideep Pathak, Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Ed-
ward Ott. “Using machine learning to replicate chaotic attractors and
calculate Lyapunov exponents from data”. In: Chaos: An Interdisci-
plinary Journal of Nonlinear Science 27.12 (2017), p. 121102. doi:
10.1063/1.5010300 (page 33).

[Pat+18] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward
Ott. “Model-Free Prediction of Large Spatiotemporally Chaotic Sys-
tems from Data: A Reservoir Computing Approach”. In: Physical Review
Letters 120.2 (2018), p. 24102. doi: 10.1103/PhysRevLett.120.024102
(page 33).

[PB23] Sebastian Peitz and Katharina Bieker. “On the universal transformation
of data-driven models to control systems”. In: Automatica 149 (2023),
p. 110840. doi: 10.1016/j.automatica.2022.110840 (pages 6, 70).

[PBK16] Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. “Dynamic
Mode Decomposition with Control”. In: SIAM Journal on Applied Dy-
namical Systems 15.1 (2016), pp. 142–161. doi: 10.1137/15M1013857
(pages 35, 69).

[PBK18] Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. “Gener-
alizing Koopman Theory to Allow for Inputs and Control”. In: SIAM
Journal on Applied Dynamical Systems 17.1 (2018), pp. 909–930. doi:
10.1137/16m1062296 (page 35).

[PH07] Mee Young Park and Trevor Hastie. “L1-regularization path algorithm
for generalized linear models”. In: Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology) 69.4 (2007), pp. 659–677. doi:
https://doi.org/10.1111/j.1467-9868.2007.00607.x (page 104).

[PK19] Sebastian Peitz and Stefan Klus. “Koopman operator-based model
reduction for switched-system control of PDEs”. In: Automatica 106
(2019), pp. 184–191. doi: 10 . 1016 / j . automatica . 2019 . 05 . 016
(pages 4, 18, 36, 53, 69, 148).

[Plu+10] Mark D. Plumbley, Thomas Blumensath, Laurent Daudet, Rémi Gri-
bonval, and Mike E. Davies. “Sparse Representations in Audio and
Music: From Coding to Source Separation”. In: Proceedings of the

169

https://doi.org/10.1109/TAC.2015.2478128
https://doi.org/10.1109/TAC.2015.2478128
https://doi.org/10.1007/978-3-030-15297-0_19
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1063/1.5010300
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1016/j.automatica.2022.110840
https://doi.org/10.1137/15M1013857
https://doi.org/10.1137/16m1062296
https://doi.org/https://doi.org/10.1111/j.1467-9868.2007.00607.x
https://doi.org/10.1016/j.automatica.2019.05.016

Bibliography

IEEE 98.6 (2010), pp. 995–1005. doi: 10.1109/JPROC.2009.2030345
(page 103).

[Pol64] Boris T. Polyak. “Some methods of speeding up the convergence of iter-
ation methods”. In: USSR Computational Mathematics and Mathemati-
cal Physics 4.5 (1964), pp. 1–17. doi: 10.1016/0041-5553(64)90137-5
(page 29).

[POR20] Sebastian Peitz, Samuel E. Otto, and Clarence W. Rowley. “Data-
Driven Model Predictive Control using Interpolated Koopman Gener-
ators”. In: SIAM Journal on Applied Dynamical Systems 19.3 (2020),
pp. 2162–2193. doi: 10.1137/20m1325678 (pages 4, 18, 36, 53, 58, 62,
69, 70, 148, 149).

[Pyt99] Radosław Pytlak. Numerical Methods for Optimal Control Problems
with State Constraints. Lecture Notes in Mathematics. Springer Berlin
Heidelberg, 1999. doi: 10.1007/BFb0097244 (page 13).

[Rai+20] Cédric Raibaudo, P. Zhong, Bernd R. Noack, and Robert J. Martinuzzi.
“Machine learning strategies applied to the control of a fluidic pinball”.
In: Physics of Fluids 32.1 (2020), pp. 015108-1–015108-13. doi: 10.
1063/1.5127202 (page 54).

[Rao09] Anil V. Rao. “A survey of numerical methods for optimal control”.
In: Advances in the Astronautical Sciences 135.1 (2009), pp. 497–528
(page 12).

[Rei+22] Malena Reiners, Kathrin Klamroth, Fabian Heldmann, and Michael
Stiglmayr. “Efficient and sparse neural networks by pruning weights
in a multiobjective learning approach”. In: Computers & Operations
Research 141 (2022), p. 105676. doi: 10.1016/j.cor.2021.105676
(pages 105, 151).

[Ric+78] J. Richalet, A. Rault, J.L. Testud, and J. Papon. “Model predictive
heuristic control: Applications to industrial processes”. In: Automatica
14.5 (1978), pp. 413–428. doi: 10 . 1016 / 0005 - 1098(78) 90001 - 8
(pages 2, 17).

[Rid+21] Steffen Ridderbusch, Christian Offen, Sina Ober-Blöbaum, and Paul
Goulart. “Learning ODE Models with Qualitative Structure Using
Gaussian Processes”. In: 2021 60th IEEE Conference on Decision and
Control (CDC). 2021, pp. 2896–2896. doi: 10.1109/CDC45484.2021.
9683426 (page 19).

[RKK18] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. “On the Conver-
gence of Adam and Beyond”. In: International Conference on Learning
Representations. 2018. url: https://openreview.net/forum?id=
ryQu7f-RZ (page 29).

[RM21] Cédric Raibaudo and Robert J. Martinuzzi. “Unsteady actuation and
feedback control of the experimental fluidic pinball using genetic pro-
gramming”. In: Experiments in Fluids 62.219 (2021), pp. 1–18. doi:
10.1007/s00348-021-03309-1 (page 54).

[RM51] Herbert Robbins and Sutton Monro. “A Stochastic Approximation
Method”. In: The Annals of Mathematical Statistics 22.3 (1951),
pp. 400–407. doi: 10.1214/aoms/1177729586 (page 28).

170

https://doi.org/10.1109/JPROC.2009.2030345
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1137/20m1325678
https://doi.org/10.1007/BFb0097244
https://doi.org/10.1063/1.5127202
https://doi.org/10.1063/1.5127202
https://doi.org/10.1016/j.cor.2021.105676
https://doi.org/10.1016/0005-1098(78)90001-8
https://doi.org/10.1109/CDC45484.2021.9683426
https://doi.org/10.1109/CDC45484.2021.9683426
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://doi.org/10.1007/s00348-021-03309-1
https://doi.org/10.1214/aoms/1177729586

Bibliography

[Ros04] Saharon Rosset. “Following Curved Regularized Optimization Solution
Paths”. In: Advances in Neural Information Processing Systems. Vol. 17.
MIT Press, 2004, pp. 1153–1160. url: https://proceedings.neurips.
cc/paper/2004/hash/32b991e5d77ad140559ffb95522992d0-Abstract
.html (page 104).

[RZ07] Saharon Rosset and Ji Zhu. “Piecewise linear regularized solution
paths”. In: The Annals of Statistics 35.3 (2007), pp. 1012–1030. doi:
10.1214/009053606000001370 (pages 137, 150).

[RZH04] Saharon Rosset, Ji Zhu, and Trevor Hastie. “Boosting as a Regularized
Path to a MaximumMargin Classifier”. In: Journal of Machine Learning
Research 5 (2004), pp. 941–973. url: https://dl.acm.org/doi/10.
5555/1005332.1016790 (page 24).

[Sag05] Sebastian Sager. “Numerical Methods for Mixed-Integer Optimal Con-
trol Problems”. PhD thesis. 2005 (pages 73, 74).

[SAG16] Christopher G. Sentelle, Georgios C. Anagnostopoulos, and Michael
Georgiopoulos. “A Simple Method for Solving the SVM Regularization
Path for Semidefinite Kernels”. In: IEEE Transactions on Neural Net-
works and Learning Systems 27.4 (2016), pp. 709–722. doi: 10.1109/
tnnls.2015.2427333 (page 144).

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 2018 (page 19).

[SB92] Oskar von Stryk and Roland Z. Bulirsch. “Direct and indirect methods
for trajectory optimization”. In: Annals of Operations Research 37.1
(1992), pp. 357–373. doi: 10.1007/bf02071065 (page 13).

[SBD12] Sebastian Sager, Hans Georg Bock, and Moritz Diehl. “The integer ap-
proximation error in mixed-integer optimal control”. In: Mathematical
Programming 133.1-2 (2012), pp. 1–23. doi: 10.1007/s10107- 010-
0405-3 (pages 4, 70, 73–79).

[SC63] E.N. Sarmin and L.A. Chudov. “On the stability of the numerical inte-
gration of systems of ordinary differential equations arising in the use
of the straight line method”. In: USSR Computational Mathematics and
Mathematical Physics 3.6 (1963), pp. 1537–1543. doi: 10.1016/0041-
5553(63)90256-8 (page 10).

[Sch+19] Oliver Schütze, Oliver Cuate, Adanay Martín, Sebastian Peitz, and
Michael Dellnitz. “Pareto Explorer: a global/local exploration tool for
many-objective optimization problems”. In: Engineering Optimization
52.5 (2019), pp. 832–855. doi: 10 . 1080 / 0305215x . 2019 . 1617286
(pages 50, 151).

[Sch+21] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. “Re-
view on model predictive control: an engineering perspective”. In: The
International Journal of Advanced Manufacturing Technology 117.5–6
(2021), pp. 1327–1349. doi: 10.1007/s00170-021-07682-3 (pages 2,
17).

[Sch03] O. Schütze. “A New Data Structure for the Nondominance Problem in
Multi-objective Optimization”. In: Lecture Notes in Computer Science.

171

https://proceedings.neurips.cc/paper/2004/hash/32b991e5d77ad140559ffb95522992d0-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/32b991e5d77ad140559ffb95522992d0-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/32b991e5d77ad140559ffb95522992d0-Abstract.html
https://doi.org/10.1214/009053606000001370
https://dl.acm.org/doi/10.5555/1005332.1016790
https://dl.acm.org/doi/10.5555/1005332.1016790
https://doi.org/10.1109/tnnls.2015.2427333
https://doi.org/10.1109/tnnls.2015.2427333
https://doi.org/10.1007/bf02071065
https://doi.org/10.1007/s10107-010-0405-3
https://doi.org/10.1007/s10107-010-0405-3
https://doi.org/10.1016/0041-5553(63)90256-8
https://doi.org/10.1016/0041-5553(63)90256-8
https://doi.org/10.1080/0305215x.2019.1617286
https://doi.org/10.1007/s00170-021-07682-3

Bibliography

Springer Berlin Heidelberg, 2003, pp. 509–518. doi: 10.1007/3-540-
36970-8_36 (page 125).

[Sch10] Peter J. Schmid. “Dynamic mode decomposition of numerical and ex-
perimental data”. In: Journal of Fluid Mechanics 656 (2010), pp. 5–28.
doi: 10.1017/S0022112010001217 (page 34).

[Sch12] Stefan Scholtes. Introduction to Piecewise Differentiable Equations.
Springer Briefs in Optimization. Springer New York, 2012. doi: 10.
1007/978-1-4614-4340-7 (page 135).

[SDD05] Oliver Schütze, Alessandro Dell’Aere, and Michael Dellnitz. “On Con-
tinuation Methods for the Numerical Treatment of Multi-Objective
Optimization Problems”. In: Practical Approaches to Multi-Objective
Optimization. Dagstuhl Seminar Proceedings 04461. Internationales
Begegnungs- und Forschungszentrum f"ur Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005. url: https://drops.dagstuhl.de/opus/
volltexte/2005/349/pdf/04461.SchuetzeOliver.Paper.349.pdf
(pages 50, 126, 150).

[SDL11] Huan Su, Xiaohua Ding, and Wenxue Li. “Numerical bifurcation con-
trol of Mackey–Glass system”. In: Applied Mathematical Modelling 35.7
(2011), pp. 3460–3472. doi: 10.1016/j.apm.2011.01.009 (page 93).

[Set12] Burr Settles. “Active learning”. In: Synthesis lectures on artificial in-
telligence and machine learning 6.1 (2012), pp. 1–114. doi: 10.2200/
S00429ED1V01Y201207AIM018 (page 22).

[SI18] Carlos Sánchez-Sánchez and Dario Izzo. “Real-Time Optimal Control
via Deep Neural Networks: Study on Landing Problems”. In: Journal
of Guidance, Control, and Dynamics 41.5 (2018), pp. 1122–1135. doi:
10.2514/1.G002357 (page 19).

[Sil+16] David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529.7587 (2016), pp. 484–489. doi: 10.
1038/nature16961 (pages 2, 22, 25).

[Sil+17] David Silver et al. “Mastering the game of Go without human knowl-
edge”. In: Nature 550.7676 (2017), pp. 354–359. doi: 10.1038/nature
24270 (pages 2, 22, 25).

[ŠIM21] Marko Švec, Šandor Ileš, and Jadranko Matuško. “Model predictive con-
trol of vehicle dynamics based on the Koopman operator with extended
dynamic mode decomposition”. In: 2021 22nd IEEE International Con-
ference on Industrial Technology (ICIT). Vol. 1. 2021, pp. 68–73. doi:
10.1109/ICIT46573.2021.9453623 (page 18).

[SK18] Ozan Sener and Vladlen Koltun. “Multi-Task Learning as Multi-
Objective Optimization”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 31. Curran Associates, Inc., 2018. url: https:
//proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f
35a30c8f65edce-Paper.pdf (pages 148, 151).

[SM19] Sebastian Scher and Gabriele Messori. “Generalization properties of
feed-forward neural networks trained on Lorenz systems”. In: Nonlinear
Processes in Geophysics 26.4 (2019), pp. 381–399. doi: 10.5194/npg-
26-381-2019 (page 92).

172

https://doi.org/10.1007/3-540-36970-8_36
https://doi.org/10.1007/3-540-36970-8_36
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1007/978-1-4614-4340-7
https://doi.org/10.1007/978-1-4614-4340-7
https://drops.dagstuhl.de/opus/volltexte/2005/349/pdf/04461.SchuetzeOliver.Paper.349.pdf
https://drops.dagstuhl.de/opus/volltexte/2005/349/pdf/04461.SchuetzeOliver.Paper.349.pdf
https://doi.org/10.1016/j.apm.2011.01.009
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2514/1.G002357
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/ICIT46573.2021.9453623
https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://doi.org/10.5194/npg-26-381-2019
https://doi.org/10.5194/npg-26-381-2019

Bibliography

[Smi93] John M. Smith. The theory of evolution. Cambridge University Press,
1993 (page 50).

[Sut+13] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On
the importance of initialization and momentum in deep learning”. In:
Proceedings of the 30th International Conference on Machine Learn-
ing, ICML 2013. Vol. 28. Proceedings of Machine Learning Research.
PMLR. 2013, pp. 1139–1147. url: https://proceedings.mlr.press/
v28/sutskever13.html (page 29).

[Tak81] Floris Takens. “Detecting strange attractors in turbulence”. In: Dynami-
cal Systems and Turbulence, Warwick 1980. Springer Berlin Heidelberg,
1981, pp. 366–381. doi: 10.1007/BFb0091924 (page 18).

[TBM21] Annalisa T. Taylor, Thomas A. Berrueta, and Todd D. Murphey. “Ac-
tive learning in robotics: A review of control principles”. In: Mechatron-
ics 77 (2021), p. 102576. doi: 10.1016/j.mechatronics.2021.102576
(page 148).

[THR06] Graham W. Taylor, Geoffrey E. Hinton, and Sam T. Roweis. “Modeling
Human Motion Using Binary Latent Variables”. In: Advances in Neural
Information Processing Systems. Vol. 19. MIT Press, 2006, pp. 1345–
1352. url: https://proceedings.neurips.cc/paper/2006/hash/
1091660f3dff84fd648efe31391c5524-Abstract.html (page 57).

[Tib11] Robert Tibshirani. “Regression shrinkage and selection via the lasso:
a retrospective”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 73.3 (2011), pp. 273–282. doi: 10.1111/j.
1467-9868.2011.00771.x (page 104).

[Tib96] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”.
In: Journal of the Royal Statistical Society: Series B (Methodological)
58.1 (1996), pp. 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
(pages 104, 135).

[Tu+14] Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven
L. Brunton, and J. Nathan Kutz. “On Dynamic Mode Decomposition:
Theory and Applications”. In: Journal of Computational Dynamics 1.2
(2014), pp. 391–421. doi: 10.3934/jcd.2014.1.391 (page 34).

[VBL13] D. Vidaurre, C. Bielza, and P. Larrañaga. “A survey of L1 regression”.
In: International Statistical Review 81.3 (2013), pp. 361–387. doi: 10.
1111/insr.12023 (page 103).

[Vla+18] Pantelis R. Vlachas, Wonmin Byeon, Zhong Y. Wan, Themistoklis P.
Sapsis, and Petros Koumoutsakos. “Data-driven forecasting of high-
dimensional chaotic systems with long short-Term memory networks”.
In: Proceedings of the Royal Society A: Mathematical, Physical and En-
gineering Sciences 474.2213 (2018). doi: 10.1098/rspa.2017.0844
(page 31).

[Vol11] Stefan Volkwein. “Model reduction using proper orthogonal decompo-
sition”. In: Lecture Notes (2011) (page 84).

[Wan+19] Binyu Wang, Lei Zhou, Zheng Cao, and Jisheng Dai. “Ridge-Adding
Approach for SVMpath Singularities”. In: IEEE Access 7 (2019),
pp. 47728–47736. doi: 10.1109/access.2019.2909297 (page 144).

173

https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1016/j.mechatronics.2021.102576
https://proceedings.neurips.cc/paper/2006/hash/1091660f3dff84fd648efe31391c5524-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/1091660f3dff84fd648efe31391c5524-Abstract.html
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1111/insr.12023
https://doi.org/10.1111/insr.12023
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1109/access.2019.2909297

Bibliography

[Waż63] Tadeusz Ważewski. “On an optimal control problem”. In: Differential
equations and their applications (1963), pp. 229–242 (page 79).

[WB95] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.
Tech. rep. USA, 1995 (page 19).

[WKR15] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. “A Data-Driven
Approximation of the Koopman Operator: Extending Dynamic Mode
Decomposition”. In: Journal of Nonlinear Science 25.6 (2015), pp. 1307–
1346. doi: 10.1007/s00332-015-9258-5 (page 34).

[WRP19] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A Survey on
Neural Architecture Search. 2019. doi: 10.48550/arXiv.1905.01392
(page 66).

[ZH05] Hui Zou and Trevor Hastie. “Regularization and variable selection via
the elastic net”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67.2 (2005), pp. 301–320. doi: 10.1111/j.
1467-9868.2005.00503.x (page 151).

[Zha+14] Junsheng Zhao, Yongmin Li, Xingjiang Yu, and Xingfang Zhang.
“Levenberg-Marquardt Algorithm for Mackey-Glass Chaotic Time Se-
ries Prediction”. In: Discrete Dynamics in Nature and Society 2014
(2014), pp. 1–6. doi: 10.1155/2014/193758 (page 93).

[Zha17] Lei Zhang. “Artificial neural networks model design of Lorenz chaotic
system for EEG pattern recognition and prediction”. In: 2017 IEEE Life
Sciences Conference (LSC). 2017, pp. 39–42. doi: 10.1109/LSC.2017.
8268138 (page 92).

[Zho+11] Aimin Zhou et al. “Multiobjective evolutionary algorithms: A survey
of the state of the art”. In: Swarm and Evolutionary Computation 1.1
(2011), pp. 32–49. doi: 10.1016/j.swevo.2011.03.001 (page 51).

[ZL15] Hua Zhou and Kenneth Lange. “Path following in the exact penalty
method of convex programming”. In: Computational Optimization and
Applications 61.3 (2015), pp. 609–634. doi: 10.1007/s10589- 015-
9732-x (pages 137, 150).

[ZY04] P. Zhao and B. Yu. Boosted lasso. Tech. rep. University of California,
Berkeley, 2004 (page 104).

174

https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.48550/arXiv.1905.01392
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1155/2014/193758
https://doi.org/10.1109/LSC.2017.8268138
https://doi.org/10.1109/LSC.2017.8268138
https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1007/s10589-015-9732-x
https://doi.org/10.1007/s10589-015-9732-x

	Introduction
	Theoretical Background
	Optimal Control and Model Predictive Control
	Optimal Control
	Model Predictive Control
	Data-Based Methods and Control

	Data-Based Surrogate Modeling
	The Basics of Machine Learning
	Neural Networks
	Data-Based Approximation of the Koopman Operator

	Multiobjective Optimization
	Pareto Optimality and Criticality
	Solution Methods

	DeepMPC for Flow Control - A Motivating Example
	Design of the RNN
	Application to a Fluid Flow Problem
	Discussion

	Utilizing Autonomous Models for Model Predictive Control
	The Basic Idea of the QuaSiModO Framework
	SUR for (Mixed) Integer Control Problems

	Error Bounds
	Numerical Experiments
	Lorenz System & Koopman Operator:
	Mackey-Glass Equation & ESN
	Kármán Vortex Street & LSTM

	Numerical Experiments on Data Efficiency

	Treating l1-Regularized Problems via Multiobjective Continuation
	The Continuation Method
	Optimality Conditions for MOP-l1
	Predictor
	Corrector
	Changing the Activation Structure
	The Algorithm

	Numerical Results
	Toy Examples
	SINDy
	Neural Network

	Towards High-Dimensional Problems
	Generalization to Piecewise Differentiable Regularization Terms
	The Structure of Pc
	An Example - Support Vector Machines

	Conclusion and Future Work
	List of Abbreviations
	Bibliography

