
On Cloud Assisted, Restricted, and
Resource Constrained Scheduling

Dissertation
In partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

at the Faculty of Computer Science,
Electrical Engineering and Mathematics

at Paderborn University

submitted by

SIMON PUKROP

Reviewers

• Prof. Dr. Friedhelm Meyer auf der Heide,
Paderborn University

• Prof. Dr. Klaus Jansen,
Kiel University

Ja, mach nur einen Plan!
Sei nur ein großes Licht!
Und mach dann noch’nen zweiten Plan
Gehn tun sie beide nicht.

Bertolt Brecht
Lied von der Unzulänglichkeit menschlichen Strebens

Zusammenfassung

Scheduling ist eines der grundlegendsten Probleme in der Informatik. Eine Menge von
Jobs muss Maschinen zugewiesen werden, um eine gegebene Gütefunktion, oft die Gesamt-
laufzeit des resultierenden Schedules, zu optimieren. In dieser Arbeit untersuchen wir
drei verschiedene Scheduling-Problemfamilien, diskutieren ihre komplexitätstheoretische
Härte und zeigen, wie verschiedene algorithmische Ansätze für diese Probleme geeignet
sind.

Zuerst stellen wir ein neues Problem vor, das wir entwickelt haben, um die Interaktion
zwischen einem kleineren Rechner und mietbarer Cloud-Rechenleistung zu modellieren,
motiviert durch den wachsenden Trend des Cloud Computing. In diesem Modell, das wir
Server Cloud Scheduling nennen, werden große Abläufe als eine Sammlung von kleineren
Jobs mit bestimmten Abhängigkeiten zwischen ihnen gegeben. Die Jobs können auf einem
Server ausgeführt werden, der auf sequentielle Ausführung beschränkt, aber kostenlos
ist, oder in die Cloud ausgelagert werden, die unendliche Parallelität erlaubt, aber Kosten
verursacht. Das Ziel ist entweder die Minimierung der Gesamtlaufzeit unter Einhaltung
eines vorgegebenen Budgets oder die Minimierung der Kosten unter Einhaltung einer
vorgegebenen Frist. Unsere Ergebnisse beinhalten unter anderem zwei FPTAS (Fully
Polynomial Approximation Scheme), die auf dynamischer Programmierung basieren, für
recht allgemeine Spezialfälle des Modells, und ein starkes NP-härte Ergebnis, das sogar
dann gilt, wenn alle Joblängen gleich 1 sind.

Zweitens untersuchen wir Probleme aus der Familie des Unrelated Machine Schedul-
ing. Insbesondere betrachten wir das Restricted Assignment Interval Problem, bei dem
die Maschinen in einer bestimmten Reihenfolge gegeben sind und jeder Job nur auf
einer konsekutiven Teilmenge der Maschinen ausgeführt werden kann. Ziel ist dabei die
Minimierung der Gesamtlaufzeit. Obwohl es sich um einen eingeschränkten Spezialfall
des Unrelated Machine Scheduling handelt, waren die besten bekannten algorithmischen
Ergebnisse für beide Probleme im Wesentlichen von gleicher Qualität. Es ist uns gelungen,
diese Ergebnisse zu übertreffen und den ersten Approximationsalgorithmus mit einem kon-
stanten Approximationsfaktor kleiner als 2 für das Restricted Assignment Interval Problem
zu liefern. Der Algorithmus erweitert frühere Ansätze der linearen Programmierung.

Zuletzt betrachten wir Many Shared Resources Scheduling. Zusätzlich zu den Maschi-
nen und Jobs erhalten wir eine Menge von Ressourcen. Jeder Job kann nun während seiner
Laufzeit Zugriff auf eine der Ressourcen anfordern, und Jobs, die dieselbe Ressource
benötigen, können nicht parallel ausgeführt werden. Das Ziel ist erneut, die Gesamt-
laufzeit zu minimieren. Wir stellen zwei kombinatorische Approximationsalgorithmen
vor, eine einfache und elegante 5/3-Approximation und eine technisch aufwendigere
3/2-Approximation. Unser erster Algorithmus schlägt bereits den bisherigen Stand der
Technik in Form einer 2-Approximation. Wir schließen mit einigen Inapproximierbarkeit-
sergebnissen für eine Generalisierung des Problems, bei der Jobs mehr als eine Ressource
benötigen können.

Abstract

Scheduling is one of the most fundamental problems in computer science. A set of jobs
has to be assigned to a set of machines in order to optimize some utility function, often
the makespan of the resulting schedule. In this thesis, we study three different families
of scheduling problems, discuss their complexity theoretical hardness and show how the
problems lend themselves to various algorithmic approaches.

First, we introduce a new problem that we created to model interactions between
smaller computing devices and rentable cloud computing power, following the growing
trend of cloud computing. In this model, called server cloud scheduling, large tasks are
given as a collection of smaller jobs with some precedence relation between themselves.
The jobs can be processed on a purely sequential but free server or offloaded to the cloud,
which allows infinite parallelization but incurs costs. The objective is either to minimize
the makespan while adhering to a budget or to minimize the cost while adhering to a
deadline. Some of our main results are two dynamic programming based FPTAS (fully
polynomial approximation scheme) for two fairly general special cases of the model; and a
strong NP-hardness result that holds even when all processing times are equal to 1.

Second, we study problems in the family of unrelated machine scheduling. Specifically,
we consider the restricted assignment interval problem, where the machines are given
in some order, and each job is only eligible on a consecutive subset of the machines.
The objective is to minimize the makespan. Although this can be modeled as a quite
limited special case of unrelated scheduling, the best-known algorithmic results for both
were essentially of the same quality. We managed to beat these results and give the first
approximation algorithm with a constant approximation ratio less than 2 for restricted
assignment interval. The algorithm refines and expands previous linear programming
approaches.

Last, we consider many shared resources scheduling. In addition to the machines and
jobs, we are also given a set of resources. Each job may now require exclusive access
to one of the resources during its processing time, or in other words, two jobs needing
the same resource may not be scheduled in parallel. The goal is again to minimize the
makespan. We present two combinatorial approximation algorithms, a simple and elegant
5/3-approximation and a technically more involved 3/2-approximation. Both of these
beat the previous best-known algorithm, which was a 2-approximation. We conclude with
some inapproximability results for a generalization of the problem, where jobs may require
more than one resource.

Acknowledgments

I would like to sincerely thank my advisor Friedhelm Meyer auf der Heide. Both for his
support and advice on this thesis and for giving me the opportunity to work in his group
for over three and a half years with my lovely (ex-)colleagues: Marten Maack, Jannik
Castenow, Till Knollmann, Jonas Harbig, Matthias Fischer, Christian Soltenborn, André
Graute, Gleb Polevoy, Alex Mäcker, Sascha Brandt, Manuel Malatyali and Björn Feldkord.
I had a brilliant time working, traveling, laughing, and arguing with all of you.

I would like to extend my thanks to all my co-authors, namely, Friedhelm Meyer auf
der Heide, Marten Maack, Anna Rodriguez Rasmussen, Klaus Jansen, Max Deppert, and
Malin Rau. I am proud of the work we have done together! A special thanks to Marten
Maack and Till Knollmann for proofreading parts of this thesis.

Last but not least, I would like to thank my friends, my mother Gisa, my brother
Thomas, my sister Sarah and especially my soon-to-be wife Maren for supporting me
through my many ups and downs and for being the marvelous people I have the fortune to
be around.

Simon Pukrop
March 2023

Contents

1 Introduction . 13

1.1 What is Scheduling, and Why Bother? . 13
1.2 On Problems, Languages, and Efficient Encodings 14
1.3 P vs. NP and NP-Hardness . 15
1.4 Approximation Algorithms and Schemes . 16
1.5 Formal Scheduling Notation . 17
1.6 Contents of this Thesis . 18

2 Server Cloud Scheduling . 21

2.1 Introduction . 21
2.1.1 Problem Definition . 22
2.1.2 Our Results . 23
2.1.3 Related Work . 24

2.2 Chains and Fully Parallel Task Graphs . 25
2.2.1 Hardness . 25
2.2.2 Algorithms . 26

2.3 The Extended Chain Model (SCSe) . 28
2.3.1 A Preliminary Problem: Single Machine Weighted Number of Tardy Jobs . . . 29
2.3.2 Strong NP-Hardness of Scheduling Extended Chains 29
2.3.3 A (2+ ε)-approximation (Makespan) on the Extended Chain 31
2.3.4 Cases with FPTAS . 34

2.4 Constant Cardinality Source and Sink Dividing Cut (SCSψ) 35
2.4.1 Dynamic Programming for SCS . 35
2.4.2 Scaling and Rounding the Dynamic Program . 38

2.5 Strong NP-Hardness . 39
2.5.1 No Delays and Two Sizes . 40
2.5.2 Unit Size and Unit Delay (SCS1) . 41
2.5.3 Inapproximability of the General Case . 44

2.6 Algorithms for SCS1 and Instances Without Delays 45
2.6.1 A 3-Approximation (Makespan) for SCS1 . 45
2.6.2 A 1+ε

2ε
-Approximation (Cost) for SCS1 with Resource Augmentation 46

2.6.3 A 2-Approximation (Makespan) on Identical Machines and no Delays 48

2.7 Generalizations of Server Cloud Scheduling . 48
2.7.1 Changes in the Definitions . 49
2.7.2 Revisiting SCSe . 49
2.7.3 Revisiting SCSψ . 51

12

2.8 Approximating the Pareto Front . 51
2.9 Future Work . 53

3 Restricted Assignment Interval . 55

3.1 Introduction . 55
3.1.1 Problem Definition . 55
3.1.2 Relation Between the Models and the State of the Art 56
3.1.3 Our Results . 57
3.1.4 Further Related Work . 58

3.2 A (2− 1
24)-Approximation . 59

3.2.1 Preliminaries. 59
3.2.2 Linear Program. 61
3.2.3 Integrality Gap of the Linear Program . 61
3.2.4 The Rounding Algorithm. 62

3.3 A Summary of Our Complexity Results . 67
3.3.1 Three Resources . 69
3.3.2 Two Resources . 69
3.3.3 Interval Restrictions . 70

3.4 Future Work . 71

4 Many Shared Resources . 73

4.1 Introduction . 73
4.1.1 Problem Definition . 73
4.1.2 State of the Art and Motivation . 74
4.1.3 Our Results . 75
4.1.4 Further Related Work . 76
4.1.5 Preliminaries . 76

4.2 A 5/3-approximation . 76
4.3 A 3/2-approximation . 79
4.3.1 Algorithm for Instances without Huge Jobs . 81
4.3.2 Algorithm for the General Case . 85

4.4 A Summary of Our Work on Approximation Schemes 89
4.5 Inapproximability Results . 90
4.6 Future Work . 95

Bibliography . 97

1. Introduction

Scheduling is one of the foundational problems in computer science. At its core, scheduling
is about allocating finite resources to optimize for a chosen quality. A simple example is
distributing the processing of tasks onto a set of machines such that the last task is done
as fast as possible. With the steady increase in complexity in computing systems, good
scheduling algorithms are crucial for the efficiency and performance of modern systems.
Inevitably, starting in the mid-1950s, there has been ever-growing attention to scheduling
problems in research and development, both from a theoretical and a practical perspective.
This thesis is firmly located on the theoretical side of the research spectrum. It seeks to
deepen the understanding of classical scheduling problems and to establish and explore
new models that apply to different properties of real-world applications.

1.1 What is Scheduling, and Why Bother?
Scheduling problems are a class of optimization problems that involve allocating resources,
such as time or machines, to tasks efficiently and effectively. These problems are prevalent
in computer science but also in many other industries, including manufacturing, transporta-
tion, healthcare, and logistics. The impact of optimized scheduling on overall performance
and productivity in each of those areas can be immense; therefore, its importance is hard
to overstate.

Naturally, there are a lot of motivating examples to be found in computer science. One
can think about resources like CPU time, memory, and communication channels assigned
to various processes to minimize a chosen objective. Examples of such an objective include
the overall running time, energy consumption, and the maximum starvation of a single
task. The increase in complexity in computing systems poses new challenges for the
development of scheduling approaches to guarantee efficient and performant algorithms.

In manufacturing, scheduling problems involve determining the most efficient order
to produce products using limited machines and resources. For example, a factory may
have several production lines that can produce different products, but the factory only has
a limited number of machines and workers. In this case, the scheduling problem might
involve determining the optimal production order to maximize efficiency while minimizing
working hours. In transportation, a company may have a fleet of trains that need to make

14 Chapter 1. Introduction

deliveries to different locations. The scheduling problem entails determining the most
efficient train routes to minimize travel time and cost while considering the rail network’s
congestion. In health care, scheduling problems involve allocating scarce resources, such
as operating rooms and medical staff, to patients who need surgery or other procedures. A
hospital may have limited operating rooms and surgical teams, but many patients require
surgery at the same time. The scheduling problem might be finding the optimal surgery
schedule to minimize patient waiting time and maximize resource utilization. Efficient
scheduling can lead to significant cost savings, improved productivity, and better utilization
of resources. However, finding the optimal schedule can be a complex and challenging
task due to the many variables and constraints involved. The number of jobs, available
resources, time frames, and specific requirements of each task, as well as the various
constraints such as resource availability, time constraints, and deadlines, often make it a
computationally hard problem. As a result, scheduling problems pose major challenges in
both computer science and operations research.

Models completely faithful to reality are often both too vague and too complex to
be studied from the theoretical side. Therefore, we will abstract problems to a certain
degree for the analysis, which could look like the following: Imagine a problem where
jobs have to be scheduled, one after another, on a single machine. Each job has a certain
processing time, a due date, and a weight (or penalty) that has to be paid when the job does
not finish in time. This problem is called the single machine weighted number of tardy
jobs problem. For such abstracted problems, research is done on the constructive side,
developing new algorithms and techniques to solve these problems, and on the complexity
theoretical side, proving bounds on the capabilities of algorithms. Various techniques for
scheduling problems have been developed for the constructive side, including heuristics,
(mixed-)integer programming, artificial intelligence, dynamic programming, linear pro-
gramming rounding, and combinatorial approaches. These techniques have been applied to
many scheduling problems to efficiently find optimal or near-optimal solutions and in this
thesis, we will focus on the last three mentioned approaches. The complexity theoretical
research is mostly done via reductions, which can be used to show that some problem is
computationally at least as hard as another problem. In the following, we introduce the
formal concepts of problems (languages) and computational hardness as a foundation to
describe how to mathematically abstract scheduling problems.

1.2 On Problems, Languages, and Efficient Encodings
We give a short introduction to problems and languages, roughly following the discussion at
the beginning of an influential paper by Garey and Johnson from 1978 [30]. In theoretical
computer science, we depend on precise definitions and formal arguments. A foundation
for this is the notion of problems, problem instances, and languages.

A problem contains a model definition together with a question. For example, the
partition problem is defined as a set of values A ∈ N∗ and the question "is there a partition
of A into A1 and A2, with A1 ∪A2 = A and A1 ∩A2 = /0, such that ∑a∈A1 a = ∑a′∈A2 a′

?". A problem instance is a concrete instance of the model at hand, in this case, a set of
numbers. We divide problems into decision problems and optimization problems. The
former contain a yes or no question, as in the partition problem example above, and
the latter an optimization question like "what schedule finishes processing all jobs the
earliest?".

1.3 P vs. NP and NP-Hardness 15

A decision problem can also be stated as a formal language. A language is a (finite or
infinite) set of words over some finite alphabet; formally, some language L over alphabet Σ

is defined as L ⊆ Σ∗. The Kleene star operator denotes the set of all possible concatenations
of any number of elements in Σ, e.g. {a,b}∗ = {ε,a,b,aa,ab,ba,bb,aaa, . . .}, where ε

denotes an empty string. A decision problem can be represented by a formal language
L, where a word w is part of the language L if the problem instance encoded by w is a
"yes"-instance.

When speaking about the efficiency of algorithms, we want to state the runtime of an
algorithm in relation to the input size (or problem’s instance size). This is where a problem
arises: A problem definition is, in a way, encoding agnostic. Take, for example, the partition
problem mentioned above and an instance with numbers 1, 5, and 8. We can represent that
as 1;11111;11111111 (unary) or 1;101;1000 (binary), resulting in a representation length
of ∑ai =O(|A|maxai) and ∑ logai =O(|A| log(maxai)) respectively. An algorithm that
is allowed runtime linear in the input size could have exponentially more time using the
former representation than with the latter. However, for a decision problem that is given
as a language that would be well defined, as a word from a language is some specific
character sequence and therefore has some specific length.

Following usual conventions, we will, in slight abuse of formal notation, consider
problems like languages with some unspecified efficient encoding. What exactly an
efficient encoding entails remains a bit vague, but the usual requirement is that numbers
are encoded in a way that they need logarithmic space (e.g., binary). However, there are
instances where it is interesting to look at an inefficient encoding, which we will describe
in the following section.

1.3 P vs. NP and NP-Hardness
The famous P vs. NP-Problem, which is nowadays widely recognized as the most important
open question in (theoretical) computer science, was introduced by Cook in 1971 in Canada
[16] and independently by Levin in Russia in 1973 [61]. However, the real implications of
the problem classes only became obvious after Karp’s "Reducibility Among Combinatorial
Problems" in 1972 [46]. P and NP are defined as follows:

Definition 1.1 A decision problem (language) L is in P, if and only if there is a
deterministic algorithm that can decide if I ∈ L for any instance I in time poly(|I|).

Definition 1.2 A decision problem (language) L is in NP if and only if there is a
non-deterministic algorithm that can decide if I ∈ L for any instance I in time poly(|I|).

Another way to define NP is: given a solution, can we verify the correctness of the solution
in polynomial time? |I| describes the size of the problem instance, which is inferred by
some efficient encoding, as described in the previous section. The P vs. NP-Problem is
the open question: is P = NP or P ̸= NP? For the rest of this thesis, we will assume that
P ̸= NP (and therefore P ⊂ NP), as is usual in complexity theoretical research. We want
to distinguish the complexity of problems into "solvable in polynomial time" (in P) and
"at least as hard as every other problem in NP" (NP-hard) The notion of NP-hardness is
already apparent in the paper by Karp from 1972 [46] though the term NP-hardness was
coined by Knuth in 1974 [50]:

16 Chapter 1. Introduction

Definition 1.3 A decision problem (language) L is NP-hard, if and only if for every
decision problem (language) L′ ∈ NP there is a polynomial reduction such that L′ ≤p L.
A problem that is both in NP and NP-hard is called NP-complete.

In other words, an NP-hard problem L is at least as hard as every other problem in NP. A
polynomial reduction L′ ≤p L means that there is a polynomial function f that converts an
instance x to f (x), such that x ∈ L′ ⇔ f (x) ∈ L. Consequently, if we can solve L, we can
also solve L′ by transforming it into an instance of L.

Following our earlier discussion about encoding efficiency, we can make an even finer
distinction on the complexity of problems. This was formalized by Garey and Johnson
in 1978 [30]. Assume an NP-hard Problem, but its (numerical) values are given in an
inefficient encoding (unary). If the problem is now solvable in time polynomial to its new
encoding size, we call it weakly NP-hard. If the unary version remains NP-hard, we call
the problem strongly NP-hard.

Definition 1.4 A decision problem (language) L is weakly NP-hard, if and only if it is
NP-hard, but the problem in unary encoding is in P.

Directly implied by this is the existence of a pseudo-polynomial algorithm, an algorithm
that has a polynomial runtime if the numerical values of the input are bounded polynomially
in the input representation length.

Definition 1.5 A decision problem (language) L is strongly NP-hard if the problem in
unary encoding is still NP-hard.

A strongly NP-hard problem can have no pseudo-polynomial algorithm, assuming that
P ̸= NP. This also helps in identifying generalizations or special cases that impact the
hardness of a problem: The single machine weighted number of tardy jobs problem,
mentioned in Section 1.1, is weakly NP-hard, though if we add release times to the jobs,
the resulting problem turns strongly NP-hard. Two other examples of weakly and strongly
NP-hard problems are the aforementioned partition problem, and the boolean satisfiability
problem SAT, respectively.

Technically, the problem classes P and NP are defined on languages or decision
problems; an instance is either part of the problem (language) or not. We are mostly
interested in optimization problems, but we can still use the above definitions. Instead
of asking, "what is the shortest schedule for these jobs?" we can ask the yes/no question,
"is there a schedule of length at most d?" for some given value d. Naturally, if one can
find an optimal solution, one can also answer the question if there exists a solution of at
least a certain quality. Since finding an optimal solution is at least as hard as answering
the decision problem, we can show that the former is hard by proving the hardness of the
latter.

1.4 Approximation Algorithms and Schemes
As discussed earlier, we assume that P ̸= NP and, consequently, that NP-hard problems
cannot be solved in polynomial time. Consequently, we are interested in polynomial
algorithms that, while not necessarily giving optimal solutions, provide good enough
solutions. More precisely, we want to bound the ratio between optimal solutions and those
given by our algorithms.

1.5 Formal Scheduling Notation 17

Consider a minimization problem and an algorithm ALG. For some problem instance I
we denote by ALG(I) the objective value of the solution produced by ALG; on the other
hand, OPT (I) denotes the objective value of an optimal solution for I.

Definition 1.6 ALG α-approximates, or is called an α-approximation, for a minimiza-
tion problem if for every instance I: ALG(I)≤ αOPT (I). If not specified otherwise, an
approximation algorithm is required to adhere to a polynomial runtime.

Note here that we only give the definition of approximation algorithms for minimization
problems since none of the problems considered in this thesis are maximization problems.

R We define α-approximation algorithms by producing solutions that have at most value
of αOPT (I). Consequently, an α-approximation algorithm is also a β -approximation
algorithm for every β ≥ α . If there exists a problem instance I such that ALG(I) =
αOPT (I) (or an instance that converges towards equality), we call the approximation
factor α tight. For complex algorithms, it is often difficult to prove a tight approxima-
tion factor; therefore, some algorithms might be better than our given approximation
factor suggests.

It is possible to design approximation schemes with scaleable approximation quality.
There are different qualities of approximation schemes, distinguished by the impact the
scaling parameter has on the runtime.

Definition 1.7 ALGε is a polynomial time approximation scheme (PTAS) if it produces
a polynomial time (1+ ε)-approximation for every fixed ε > 0. Based on how runtime
depends on ε , we further distinguish between the following:

• E(fficient)PTAS: the runtime is in O(poly(|I|) · f (1/ε)) for any f : R 7→ R
• F(ully)PTAS: the runtime is in O(poly(|I|,1/ε))

Consequently, FPTAS ⊂ EPTAS ⊂ PTAS.

R Note here that a strongly NP-hard problem can not have an FPTAS if it has a
polynomially bounded objective function [84] (which is the case for all problems
discussed in this thesis), assuming that P ̸= NP.

1.5 Formal Scheduling Notation
Though we leave the concrete formal description of the models discussed in this thesis
to the individual chapters in which they are used, we give a small rundown on formally
notating scheduling problems. Like motivating examples for scheduling problems, there
are uncountably many variations on theoretical models.

In general, a scheduling problem consists of a set of machines M= {M1,M2, . . . ,Mm}
and a set of jobs J = { j1, j2, . . . , jn}. A job (j ∈ J) can be processed on any machine
(i ∈M) and needs (uninterrupted) time of pi(j). Each machine can only process one job
in parallel. The most common objective is then to create a schedule, a mapping of jobs
to specific time slots and machines, such that all jobs are finished as soon as possible. In
scenarios with more than one machine (which is the case in all models discussed in this
thesis), one can distinguish between different machine relations:

• Identical machines: pi(j) depends only on the job, not on the machine. In that case,
we simply write p j for readability.

• Related machines: Each machine has a speed value si, and pi(j) = p j/si

• Unrelated machines: pi(j) is any function J 7→ N or J 7→ R+

18 Chapter 1. Introduction

Additional requirements might be imposed on the problem. For example, jobs can have
precedence relations (as in Chapter 2: Server Cloud Scheduling), only be eligible on
specific machines (as in Chapter 3: Restricted Assignment with Interval Restrictions), or
need additional resources (as in Chapter 4: Scheduling with Many Shared Resources). We
leave the specifics to the corresponding model sections.

1.6 Contents of this Thesis
With scheduling being the vast topic it is, algorithmic approaches to approximate different
problems can be equally as varied. In the following three chapters, we each discuss a
particular scheduling problem, its complexity theoretical hardness, and an algorithmic
approach that is suitable for the problem at hand. We start with our original model
server cloud scheduling and dynamic programming approaches, continue with restricted
assignment interval and linear programming solutions, and end with many shared resources
scheduling and combinatorial algorithms. In addition to the concrete results, this also
functions as an exemplary overview of techniques commonly useable for scheduling
problems. We give an overview of the following content.

Chapter 2: Server Cloud Scheduling Motivated by the practice of offloading big
computation tasks to large-scale cloud providers, we present our original model server
cloud scheduling. Consider a scenario where a customer owns a small local computation
unit (the server) and has access to an unlimited number of rentable machines (the cloud).
Now, that customer has to process a large task, representing a collection of smaller jobs
in some precedence relation. More formally, the set of jobs forms a directed acyclic task
graph with a fixed source and sink. The edges of this graph model precedence constraints,
and the jobs have to be scheduled with respect to those. Processing times on the server
and in the cloud are given for each job. For each edge in the task graph, a communication
delay is included in the input and has to be taken into account if one of the two jobs is
scheduled on the server and the other in the cloud. The server processes jobs sequentially,
whereas the cloud can serve as many as needed in parallel but induces costs. We consider
both makespan minimization regarding a budget, as well as cost minimization regarding a
deadline.

We start by looking at simple instances of the problem where the task graph is either
fully sequential (a chain) or fully parallel. Both cases are already weakly NP-hard, even if
there are no communication delays. On the constructive side, we give simple FPTAS results
for both types of graphs (and both objectives). We continue with a further generalizing
combination of fully sequential and fully parallel task graphs, which we call extended
chains. We prove that our model with extended chain task graphs is strongly NP-hard.
Constructively, we give a (2+ ε)-approximation algorithm for the budget-constrained
makespan minimization on extended chains and discuss special cases where that algorithm
yields an FPTAS. Next, we look at graphs with a constant maximum cardinality source and
sink dividing cut. Imagine the task graph during a schedule and divide the jobs into already
finished and still to be processed. We count the number of edges in the task graph going
from jobs in the former set to jobs in the latter. We look at instances where this number
of crossing edges is bounded by some constant for every possible intermediate schedule.
Intuitively, this means that only a constant number of already processed jobs can affect
the remaining schedule via their communication delays. For those graphs, we are able to
give an FPTAS with regard to the budget-constrained makespan minimization. Both more

1.6 Contents of this Thesis 19

involved approximation algorithms just mentioned are built upon dynamic programming
approaches and can be seen as one of the chapter’s main constructive contributions.

After that, we concentrate on stronger hardness results, which form the other main
results of the chapter. We start with the unit case (all processing times and delays equal
1) of the scheduling problem with arbitrary task graphs. We give a reduction from 3-
SAT, which proves that this case is strongly NP-hard. Modifying this approach for the
general case of the problem, we can change the resulting scheduling instance so that, for
a satisfying assignment, no job has to spend processing time on the cloud, which in turn
means that there will be no costs. However, a schedule that corresponds to an unsatisfying
assignment has to place jobs on the cloud to meet the deadline. Resulting from that, we
get that there is no (fixed quality) approximation algorithm for the deadline-constrained
cost minimization problem since we could otherwise decide 3-SAT.

We finish the chapter with some interesting smaller results. First, we give two ap-
proximation results for the unit case and a simple approximation for instances with no
communication delays. After that, we discuss generalizations of the server cloud schedul-
ing problem and how those can be incorporated into the two main approximation results
of the chapter. Examples of generalizations are multiple server machines, multiple cloud
providers, and a different cost model. Finally, we discuss a way to imagine the problem
as a two-parameter optimization problem instead of using one as the objective and the
other as a constraint. We modify and reuse some of our earlier results to approximate a
Pareto-front for this resulting problem. Roughly speaking, the Pareto-front is the set of all
problem solutions where an improvement in one optimization parameter would necessarily
be a deterioration in the other.

This chapter is based on our submitted journal paper Server Cloud Scheduling [63],
which is in turn based on our conference paper of the same name [64], which was published
in the proceedings of WAOA 2021.

Chapter 3: Restricted Assignment Interval In Section 1.5, we briefly discussed
different machine models. Of the presented ones, the most general is the unrelated
machines model. Consider a simple version of that model: each job j has some value p j,
and for every machine Mi, the processing time of j is either p j or ∞. In other words, each
job has some fixed processing time but is only eligible on a specific subset of machines.
This case is also called restricted assignment. In Chapter 3, we mainly discuss a seemingly
simple variant of restricted assignment, called restricted assignment interval (RAI). Here,
the machines M are given in some specific order, and every job is eligible on some
consecutive interval of the machines. For the general unrelated machines problem, both
a 2-approximation and a 1.5-inapproximability result are known [57]. Naturally, two
questions arise. First, since constructive results for the general case also hold for the
special case, is there an approximation algorithm with a ratio better than 2 for RAI?
Second, are there also inapproximability results for some of the (other) subproblems of
restricted assignment? The first of the two questions was posed as an open challenge in
previous works [41, 79, 85] as early as 2010.

We were able to answer that question in the affirmative and present a (2 − 1
24)-

approximation. We give a linear programming (LP) formulation for the problem and
use a three-stage LP-rounding procedure, placing very large jobs first, then large jobs, and
finally, the remaining small jobs. We could also answer the second question for some
subproblems. We give the definition of those subproblems and a summary of the results to
better understand how the constructive result relates to present lower bounds.

20 Chapter 1. Introduction

This chapter is based on our paper (In-)Approximability Results for Interval, Resource
Restricted, and Low Rank Scheduling [67] which was published in the proceedings of ESA
2022.

Chapter 4: Many Shared Resources In the last chapter of this thesis, we look at a
scheduling extension where jobs need additional resources. This model is called many
shared resources scheduling or MSRS. The general model includes a set of identical
machines, a set of jobs, and a set of resources (with a type and how many are available).
Each job then also has resource requirements, meaning how much of which resource(s)
needs to be assigned to the job so that it can process. Resources are not consumed and
only blocked for as long as the job is processing.

We mostly consider a variant where each resource is available exactly once, and each
job needs exclusive access to exactly one resource. In other words, we can separate the
jobs into distinct classes where at any time, only one job per class can be processed in
parallel. We present two combinatorial approximation algorithms that cleverly schedule
classes of jobs of specific sizes. More specifically, we start with a short 5/3-approximation,
which works in three steps. The algorithm gives a good intuition that we have to focus
on how to handle big jobs or classes that are large in overall processing time. Notably,
the algorithm already beats the previously best-known result. The second algorithm is a
3/2-approximation that is much more involved. We handle two cases separately. First, we
give an algorithm that only works if no jobs have a processing time of more than 3/4 of
the overall makespan. Second, we give an algorithm for the general case, which first tries
to place all the jobs with a processing time of more than 3/4 of the makespan, and then
applies the first algorithm.

In the original paper, we did some work on approximation schemes for the problem at
hand. We give a short summary of the approaches and the results they yielded.

Lastly, we show some inapproximability results for cases where each job may need
more than a single resource, though all different resources are still available only once.
To be more specific, we prove a 5/4-inapproximability for the case where each job may
need up to 3 resources and all jobs have processing time 1, 2, or 3. A slight variation gives
a 5/4-inapproximability for the case where each job may need up to 5 resources, but all
jobs have a processing time of 1. Finally, another reduction gives a 4/3-inapproximability
for the case where each job may need any number of resources, but all jobs again have a
processing time of 1.

This chapter is based on our paper Scheduling with Many Shared Resources [21] which
was accepted for publication in the proceedings of IPDPS 2023

2. Server Cloud Scheduling

We introduce a new scheduling problem, called server cloud scheduling, motivated by
current trends in cloud computing. In this model large tasks are given as a collection of
smaller jobs with some precedence relation between themselves. Jobs can be processed
on a strictly sequential, but free, server or offloaded to the cloud, which allows infinite
parallelization but incurs costs. Among other results, we study the model’s complexity and
show how dynamic programming approaches can be used to approximate it.

This chapter is based on our submitted journal paper Server Cloud Scheduling [63],
which is in turn based on our conference paper of the same name [64], which was published
in the proceedings of WAOA 2021. The new sections introduced in the journal version are
Section 2.3, Section 2.7 and Section 2.8. The short Section 2.6.1 contains my refinement
of a result based on the bachelor thesis of Bastian Franke. I supervised the thesis and
recommended promising approaches.

2.1 Introduction
Scheduling with precedence constraints with the goal of makespan minimization is widely
considered a fundamental problem. It has already been studied in the 1960s by Graham [33]
and receives a lot of research attention up to this day (see e.g. [31, 51, 60]). One problem
variant that has received particular attention recently, is the variant with communication
delays (e.g. [19, 20, 51]). Another, more contemporary topic concerns scheduling using
external resources like, for instance, machines from the cloud. Several models in this
context have been considered of late (e.g. [1, 68, 76]). In this chapter, we introduce and
study a model closely connected to both settings, where jobs with precedence constraints
may either be processed on a single server machine or on one of many cloud machines.
Here, communication delays may occur only if the computational setting is changed. The
server and cloud machines may behave heterogeneously, i.e., jobs may have different
processing times on the server and in the cloud, and scheduling in the cloud incurs costs
proportional to the computational load performed in the cloud. Both makespan and cost
minimization is considered. We believe that the present model provides a useful link
between scheduling with precedence constraints and communication delays on the one
hand and cloud scheduling on the other.

22 Chapter 2. Server Cloud Scheduling

2.1.1 Problem Definition
We consider a scheduling problem SCS where a task graph G = (J ,E) has to be scheduled
on a combination of a local machine (server) and a limitless number of remote machines
(cloud). The task graph is a directed, acyclic graph with exactly one source S ∈ J and
exactly one sink T ∈ J . Each job j ∈ J has a processing time on the server ps(j) and on
the cloud pc(j). We consider ps(S) = ps(T) = 0 and pc(S) = pc(T) = ∞, i.e., the first
and the last job must be processed on the server. For every other job, the values of ps and
pc can be arbitrary in N0, meaning that the server and the cloud are unrelated machines
in our default model. An edge e = (i, j) denotes precedence, i.e., job i has to be fully
processed before job j can start. Furthermore, an edge e = (i, j) ∈ E has a communication
delay of c(i, j) ∈ N0, which means that after job i finished, j has to wait for an additional
c(i, j) timesteps before it can start if i and j are not both scheduled on the same type of
machine (server or cloud).

A schedule π is given as a tuple (J s,J c,C). J s and J c are a proper partition of J :
J s ∩J c = /0 and J s ∪J c = J . The sets J s and J c denote jobs that are processed on
the server or cloud in π , respectively. Lastly, C : J 7→ N0 maps jobs to their completion
time. We introduce some notation before we formally define the validity of a schedule.
Let pπ(j) be equal to ps(j) if j ∈ J s, and pc(j) if j ∈ J s. The value pπ(j) denotes
the actual processing time of job j in π . Let E∗ := {(i, j) ∈ E | (i ∈ J s ∧ j ∈ J c)∨ (i ∈
J c∧ j ∈ J s)} be the set of edges between jobs on different computational contexts (server
or cloud). Intuitively, for all the edges in E∗ we have to take the communication delays
into consideration, for all edges in E \E∗ we only care about the precedence. We call a
schedule π valid if and only if the following conditions are met:

a) There is always at most one job processing on the server:
∀i∈J s ∀ j∈J s\{i} : (C(i)≤C(j)− pπ(j))∨ (C(i)− pπ(i)≥C(j))

b) Tasks are not started before the preceding tasks have been finished and the required
communication is done:
∀(i, j)∈E\E∗ : (C(i)≤C(j)− pπ(j))
∀(i, j)∈E∗ : (C(i)+ c(i, j)≤C(j)− pπ(j))

The makespan (mspan) of a schedule is given by the completion time of the sink C(T).
The cost (cost) of a schedule is given by the time it spends processing tasks on the cloud:
∑i∈J c pπ(i). Note here, that by requiring ps(S) = ps(T) = 0 and pc(S) = pc(T) = ∞, we
assume every job to start and end on the server. This is done only for convenience as it
defines a clear start and end state for each schedule.

Naturally, two different optimization problems arise from the definition. First, given a
deadline d, find a schedule with the lowest cost and mspan =C(T)≤ d. Second, given
a cost budget b, find a schedule with the smallest makespan and cost = ∑i∈J c pπ(i)≤ b.
In both instances the d, respectively the b, is strict. The natural decision variant is: given
both d and b find a schedule that adheres to both if one exists.

R Instances of SCS might contain schedules with a makespan (and therefore cost) of
0. We can check for those in polynomial time: First, by removing all edges with
communication delay 0, we get a set of connected components K. If and only if
∀k∈K

(
∀ j∈k ps(j) = 0

)
∨
(
∀ j∈k pc(j) = 0

)
, then there is a schedule with makespan

of 0. For the rest of the chapter, we will assume that our algorithms check that
beforehand and are only interested in schedules with mspan > 0.

2.1 Introduction 23

2.1.2 Our Results
We start by establishing (weak) NP-hardness already for the case without communication
delays and very simple task graphs. More precisely, when the task graph forms one chain
starting with the source and ending with the sink (chain case) and when the graph is fully
parallel, i.e., each job j ∈ J \{S,T } is only preceded by the source and succeeded by
the sink (fully parallel case). On the other hand, we establish FPTAS results for both the
chain and fully parallel case with arbitrary communication delays and with respect to both
objective functions. These results are discussed in Section 2.2.

In Section 2.3 we generalize the previous two task graph models (chain and fully
parallel) into one, called extended chain graphs. Extended chain graphs are a chain, where
any number of chain nodes can be replaced by a fully parallel graph. We prove that the
resulting scheduling problem is now strongly NP-hard, by giving a reduction from the
strongly NP-hard 1 | r j | ∑w jU j problem [56]. We present a (2+ ε)-approximation for
the budget-constrained makespan minimization for this class of task graphs. We end the
section, by discussing some small assumptions on the problem instance, which allow us to
achieve FPTAS results instead.

Table 2.1: An overview of the results of this chapter.

Algorithmic Results

fully parallel or chain task graph FPTAS w.r.t. cost and makespan
extended chain task graph (2 + ε)-approximation w.r.t.

makespan
extended chain + additional assumptions FPTAS w.r.t. makespan
extended chain task graph + generalizations (4 + ε)-approximation w.r.t.

makespan
task graph with constant ψ FPTAS w.r.t. makespan
task graph with constant ψ α-approximation of Pareto

front, for any α > 0
task graph with constant ψ + generalizations FPTAS w.r.t. makespan
c = 0, pc = ps (no delays, identical machines) 2-approximation w.r.t.

makespan
c = 0, pc = ps = 1 polynomial w.r.t. makespan and

cost
c = pc = ps = 1 (unit delays, unit sizes) 1+ε

2ε
-approximation w.r.t. cost

with makespan at most (1+ε)d,
3-approximation w.r.t makespan

Hardness Results

fully parallel or chain task graph, c = 0 (weakly) NP-hard
extended chain task graph (strongly) NP-hard
∀ j ∈ J : c(j) = 0, pc(j), ps(j) ∈ {1,2} (strongly) NP-hard
c = pc = ps = 1 (unit delays, unit sizes) (strongly) NP-hard
general problem no constant approximation w.r.t.

cost

24 Chapter 2. Server Cloud Scheduling

In Section 2.4 we aim to generalize the previous FPTAS results regarding the makespan
as much as possible. We show that an FPTAS can be achieved as long as the maximum
cardinality source and sink dividing cut ψ is constant. Intuitively, this parameter upper
bounds the number of edges that have to be considered together in a dynamic program and
in many relevant problem variants it can be bounded or replaced by the longest anti-chain
length. We provide a formal definition in Section 2.4.

We turn our attention to strong NP-hardness results in Section 2.5. We show, that a
classical reduction due to Lenstra and Rinnooy Kan [55] can be adapted to prove NP-
hardness already for the variant of SCS without communication delays and processing
times equal to one or two. SCS with unit processing times and without communication
delays, on the other hand, can be trivially solved in polynomial time. Hence we are
interested in the case with unit processing times and communication delays. We design
an intricate reduction to show that this very basic case is NP-hard as well. Note that
in this setting the server and the cloud machines are implicitly identical, except costs.
Furthermore, we are able to show that a slight variation of the reduction implies that no
constant approximation with respect to the cost objective can be achieved regarding the
general problem.

In Section 2.6, we consider approximation algorithms for the case of unit processing
times and delays. We show that a relatively simple approach yields a 1+ε

2ε
-approximation

for ε ∈ (0,1] regarding the cost objective if we allow a makespan of (1+ ε)d, aswell as
another approach that gives a 3-approximation for the makespan objective. Furthermore,
we present a 2-approximation for the case without delays and identical server and cloud
machines (pc = ps) but arbitrary task graphs and the makespan objective. Here, we
also show that the respective algorithm can also be used to solve the problem optimally
with respect to both objectives in the case of unit processing times. In Section 2.7, we
establish some natural generalizations on the model and sketch how those can be solved
by slight adaptations of our algorithms for extended chain and constant ψ graphs. Lastly,
in Section 2.8 we show how to give an α-approximation, for any chosen α > 0, on the
pareto front of a problem with a task graph with constant ψ , when we look at the problem
as a multi-objective optimization problem. This means, that for any point in the actual
pareto front, we give a nearby feasible point that is only worse by a factor of 1+α in both
dimensions. In Table 2.1 we give an overview of the important results.

2.1.3 Related Work
Probably the closest related model to ours was studied by Aba et al. [1]. In that paper a
problem instance is very similar to a problem instance of SCS, however, while we have a
limited server and an unlimited cloud, they have an an unbounded number of machines in
both and the goal is simply makespan minimization (as there are no costs). The authors
show NP-hardness on the one hand and identify cases that can be solved in polynomial
time on the other. In the conclusion of that paper, a model very similar to the one studied
in this work is mentioned as an interesting research direction. For a further discussion of
related models, we refer to the preprint version of the above work [1].

The present model is closely related to the classical problem of makespan minimization
on parallel machines with precedence constraints, where a set of jobs with processing times,
a precedence relation on the jobs (or a task graph), and a set of m machines are given. The
goal is to assign the jobs to starting times and machines such that the precedence constraints
are met and the last job finishes as soon as possible. In the 1960s, Graham [33] introduced

2.2 Chains and Fully Parallel Task Graphs 25

the list scheduling heuristic for this problem and proved it to be a (2− 1
m)-approximation.

Interestingly, to date, this is essentially the best result for the general problem. On the other
hand, Lenstra and Rinnooy Kan [55] showed that no better than 4

3-approximation can be
achieved for the problem with unit processing times, unless P = NP. In more recent days,
there has been a series of exciting new results for this problem starting with a paper by
Svensson [82] who showed that no better than 2-approximation can be hoped for assuming
a variant of the unique games conjecture. Furthermore, Levey and Rothvoss [60] presented
an approximation scheme with nearly quasi-polynomial running time for the variant with
unit processing times and a constant number of machines, and Garg [31] improved the
running time to quasi-polynomial shortly thereafter. These results utilized so-called LP-
hierarchies to strengthen linear programming relaxations of the problems. This basic
approach has been further explored in a series of subsequent works (e.g. [19, 20, 51]),
which in particular also investigate the problem variant where a communication delay is
incurred for pairs of precedence-constrained jobs running on different machines. The latter
problem variant is closely related to our setting as well.

Lastly, there is at least a conceptual relationship to problems where jobs are to be
executed in the cloud. For example, a problem was considered by Saha [76] in which
cloud machines have to be rented in fixed time blocks in order to schedule a set of jobs
with release dates and deadlines minimizing the costs which are proportional to the rented
time blocks. Another example is a work by Mäcker et al. [68] in which machines of
different types can be rented from the cloud and machine-dependent setup times have to
be paid before they can be used. Jobs arrive in an online fashion and the goal is again cost
minimization. Both papers reference further work in this context.

2.2 Chains and Fully Parallel Task Graphs
In this section, we collect some first results that give an intuition concerning the complexity
and approximability of our problem. In particular, we show weak NP-hardness already for
cases with very simple task graphs and without communication delays. Furthermore, we
discuss complementing FPTAS results for those cases and both objectives.

2.2.1 Hardness
We show that SCS is NP-hard even for two very simple types of task graphs and in a case
where every communication delay is 0. For both of these reductions we use the decision
variant of the problem: given a deadline d and a budget b, find a schedule that satisfies both.
Naturally, this shows the hardness of both the cost minimization as well as the makespan
minimization problem.

Chain Graph Case We start by reducing the decision version of knapsack to SCS with
a chain graph as its task graph. The knapsack problem is given as a capacity C, a value
threshold V and a set of items {1, . . . ,n} with weights wi and values vi. The question is;
does there exist a subset of items S such that ∑i∈S wi ≤ C and ∑i∈S vi ≥ V ? We create
the respective SCS problem as follows. For every item i ∈ {1, . . . ,n} create a task with
ps(i) = wi + vi and pc(i) = vi. Consider a task graph with those tasks as a chain (in
an arbitrary order) and each resulting edge (i, j) has c(i, j) = 0. We set the deadline to
d = ∑1≤i≤n vi +C and the budget to b = ∑1≤i≤n vi −V . It is left to show, that there is a
solution to the knapsack problem if and only if there is a schedule for our transformed

26 Chapter 2. Server Cloud Scheduling

problem. We show that there is a one-to-one relation between our schedules and knapsack
solutions. Assume there is some feasible solution (a subset of items S) for the knapsack
problem with value V ′. For each i ∈ S, we put the respective task in J s and the rest in J c.
Since the task graph is a chain we can compute a minimal makespan from this partition:
∑1≤i≤n vi +∑i∈S wi which is smaller or equal to d if and only if ∑i∈S wi ≤C. The cost for
the schedule is equal to ∑1≤i≤n vi −V ′. Therefore, the cost for the schedule is smaller or
equal to b exactly when V ′ ≥V . It is easy to see that we can construct a knapsack solution
from a schedule in a similar vein, therefore we conclude:

Theorem 2.1 The SCS problem is weakly NP-hard for chain graphs and even without
communication delays.

Fully Parallel Case Secondly, we look at problems with fully parallel task graphs,
which means that every job j besides S and T has exactly two edges: (S, j) and (j,T).
Here we do a simple partition reduction. Given a set S of natural numbers, the question
is, if there is a partition into sets S1 and S2 such that ∑i∈S1 i = ∑i∈S2 i. For every element i
in S we create a task with ps(j) = pc(j) = i, set d = b = 1

2 ∑i∈S1 i. We arrange the tasks
into a fully parallel task graph where each edge (i, j) has c(i, j) = 0. Imagine a solution
S1, S2 for the partition problem. We schedule every task related to an integer in S1 on
the server and every other task on the cloud. Since everything is fully parallel and there
are no communication delays we can conclude a makespan of max{∑i∈S1 i,maxi∈S2 i}
and costs of ∑i∈S2 . This is a correct solution for the scheduling problem if and only if
∑i∈S1 i = ∑i∈S2 i. Again it is easy to see that an equivalent argument can be made for the
other direction.

Theorem 2.2 The SCS problem is weakly NP-hard for fully parallel graphs and even
without communication delays.

2.2.2 Algorithms
In the following, we present complementing FPTAS results for the variants of SCS with
fully parallel and chain task graphs, without any limitations on processing times or com-
munication delays.

Fully Parallel Case We present how we can deal with the variant of SCS with a fully
parallel task graph using by using well-known results and techniques. In particular, we can
design two simple dynamic programs for the search version of the problem. We consider
for each job the two possibilities of scheduling them on the cloud or on the server and
compute for each possible budget or deadline the lowest makespan or cost, respectively,
that can be achieved with the jobs considered so far. These dynamic programs can then
be combined with suitable rounding procedures that reduce the number of considered
states and search procedures for approximate values for the optimal cost or makespan,
respectively, yielding:

Theorem 2.3 There are FPTAS for SCS with fully parallel task graphs for the cost
objective and for the makespan objective.

2.2 Chains and Fully Parallel Task Graphs 27

Proof. We start by designing the dynamic programs for the search version of the problem
with budget b and deadline d. Without loss of generality, we assume J = {0,1, . . . ,n,n+1}
with S = 0, T = n+1 and set c(j) = c(S, j)+ c(j,T).

For each deadline d′ ∈ {0,1, . . . ,d} and j ∈ J , we want to compute the smallest cost
C[j,d′] of all the schedules of the jobs 0,1, . . . , j adhering to the deadline d′ on the server
(j = 0 denotes the trivial case that no job after the source has been scheduled). We initialize
C[0,d′] = 0 for each d′. For all other jobs j we consider the two possibilities of scheduling
it on the cloud or server. In particular, let C1[j,d′] =C[j−1,d′]+ pc(j) if pc(j)+c(j)≤ d
and C1[j,d′] = ∞ otherwise, and, furthermore, C2[j,d′] =C[j−1,d′− ps(j)] if ps(j)≤ d′

and C2[j,d′] = ∞ otherwise. Then, we may set C[j,d′] = min{C1(j,d′),C2(j,d′)}. Now,
if C[n+1,d] > b, we know that there is no feasible solution for the search version, and
otherwise, we can use backtracking starting from C[n+ 1,d] to find one. The time and
space complexity is polynomial in d and n.

In the second dynamic program, we compute the smallest makespan M[j,b′] of all
the schedules of the jobs 0,1, . . . , j adhering to the budget b′, for each budget b′ ∈
{0,1, . . . ,b} and j ∈ J . Again, we set M[0,b′] = 0 for each b′ and consider the two
possibilities of scheduling job j on the cloud or server. To that end, let M1[j,b′] =
max{M[j − 1,b′− pc(j)], pc(j)+ c(j)} if pc(j)+ c(j) ≤ d and b′− pc(j) ≥ 0. Other-
wise, set M1[j,b′] = ∞, furthermore, M2[j,b′] = M[j− 1,b′]+ ps(j). Then, we may set
M[j,b′] = min{M1(j,b′),M2(j,b′)}. Again, if M[n+1,b]> d, we know that there is no
feasible solution for the search version, and otherwise, we can use backtracking starting
from M[n+1,b] to find one. The time and space complexity is polynomial in b and n.

For both programs, we can use rounding and scaling approaches to trade the complexity
dependence in d or b with dependence in poly(n, 1

ε
) incurring a loss of a factor (1+O(ε))

in the makespan or cost, respectively, if a solution is found. This can then be combined
with a suitable search procedure for approximate values of the optimal makespan or cost.
For details, we refer to Section 2.4, where such techniques are used and described in more
detail. In addition to the techniques mentioned there, the possibility of a zero-cost solution
has to be considered which can easily be done in this case. ■

Chain Graph Case We present FPTAS results for the variant of SCS with chain task
graph. The basic approach is very similar to the fully parallel case.

Theorem 2.4 There are FPTAS for SCS with chain task graphs for the cost objective
and for the makespan objective.

Proof. We again start by designing dynamic programs for the search version of the problem
with budget b and deadline d. Without loss of generality, we assume J = {0,1, . . . ,n+1}
with S = 0, T = n+1, and j ∈ {0,1, . . . ,n+1} being the j-th job in the chain.

For each deadline d′ ∈ {0,1, . . . ,d}, job j ∈ {0,1, . . . ,n+1}, and location loc ∈ {s,c}
(referring to the server and cloud) we want to compute the smallest cost C[d′, j, loc] of
all the schedules of the jobs 1, . . . , j adhering to the deadline d′ and with the job j being
scheduled on loc. To that end, we set C[d′,0,s] = 0, C[d′,0,c] = ∞, and with slight abuse
of notation use the convention C[z, j, loc] = ∞ for z < 0. Further values can be computed
via the following recurrence relations:

C[d′, j,s] = min{C[d′− ps(j)− c(j−1, j),c],C[d′− ps(j),s]}
C[d′, j,c] = min{C[d′− pc(j),c]+ pc(j),C[d′− pc(j)− c(j−1, j),s]+ pc(j)}

28 Chapter 2. Server Cloud Scheduling

If C[d,n+1,s]> b, we know that there is no feasible solution for the search version, and
otherwise, we can use backtracking starting from C[d,n+1,s] to find one. The time and
space complexity is polynomial in d and n.

In the second dynamic program, we compute the smallest makespan M[j,b′, loc] of all
the schedules of the jobs 0, . . . , j adhering to the budget b′ and with job j placed on location
loc, for each b′ ∈ {0,1, . . . ,b}, j ∈ {0,1, . . . ,n+1} and loc ∈ {s,c}. We set M[b′,0,s] = 0,
M[b′,0,c] = ∞, use the convention M[z, j, loc] = ∞ for z < 0, and the recurrence relations:

M[b′, j,s] = min{M[b′,c]+ ps(j)+ c(j−1, j),M[b′,s]+ ps(j)}
M[b′, j,c] = min{M[b′− pc(j),c]+ pc(j),M[b′− pc(j),s]+ pc(j)+ c(j−1, j)}

If M[b,n+1,s]> d, we know that there is no feasible solution for the search version, and
otherwise, we can use backtracking starting from M[b,n+1,s] to find one. The time and
space complexity is polynomial in b and n.

Like in the fully parallel case, we can use rounding and scaling approaches to trade
the complexity dependence in d or b with a dependence in poly(n, 1

ε
) incurring a loss of a

factor (1+O(ε)) in the makespan or cost, respectively, if a solution is found. This can
then be combined with a suitable search procedure for approximate values of the optimal
makespan or cost. For details, we again refer to Section 2.4, where such techniques are
described in more detail. In addition to the techniques mentioned there, the possibility of a
zero-cost solution has to be considered which can easily be done in this case as well. ■

2.3 The Extended Chain Model (SCSe)
As a first step towards more general models, we introduce the extended chain model. The
main idea here is to find a unifying generalization for the chain and fully parallel case.
Informally one can imagine an extended chain as a chain graph where any number of edges
were replaced with fully parallel graphs. After giving a formal definition of these graphs
we give a reduction to show that this problem is strongly NP-hard. Then, we introduce
a (2+ ε)-approximation for the budget-constrained makespan minimization. Both the
algorithm and the hardness proof use reductions to single machine weighted number of
tardy jobs scheduling. Therefore, we briefly discuss this problem here before actually
giving the reduction. We finish the constructive side by exploring some assumptions on
problem instances that allow us to achieve FPTAS results with our approach.

Model We give a constructive description of extended chain graphs. Let G = (J ,E)
with S ∈ J and T ∈ J be a chain graph. For any number of edges e = (j−1, j) ∈ E we
may remove the edge e and introduce a set of jobs J j and for every j′ ∈ J j two edges,
namely (j−1, j′) and (j′, j). The resulting graph G′ = (J ′,E ′) is an extended chain graph.
We denote by N the total number of jobs (nodes) in the graph. Denote the SCS problem
on extended chains by SCSe. For an example, we refer to Figure 2.1. Note here, that
the introduced subgraphs are fully parallel graphs as described earlier and consequently
fully parallel graphs, as well as chain graphs, are a subset of extended chain graphs. This
also directly infers that SCSe is at least weakly NP-hard as shown in Theorem 2.1 and
Theorem 2.2.

2.3 The Extended Chain Model (SCSe) 29

S T

...

...

...

...

Figure 2.1: An example extended chain with two parallel parts.

2.3.1 A Preliminary Problem: Single Machine Weighted Number of
Tardy Jobs
As mentioned before this section reduces some intermediate steps in the algorithm to the
single machine weighted tardiness problems, for which we will reuse an already established
algorithm.

The single machine weighted number of tardy jobs (WNTJ) problem, or 1 | | ∑w jU j
in three field notation [34], can be defined as follows: On a single machine, where only
one job at a time can be processed, n jobs are to be scheduled. Each job has an integer
processing time p j, weight w j and due date d j. A job is called late (or tardy) if its
scheduled completion time C j > d j and early if C j ≤ d j. The goal is to find a schedule that
minimizes the sum over the weights of the tardy (late) jobs. Pseudo-polynomial dynamic
programs with runtime in O(nmin{∑ j p j,max j d j}) and O(nmin{∑ j p j,∑ j w j,max j d j}),
respectively, were given by Lawler and Moore [52] and later Sahni [77]. Denote the former
by wTardyJobs.

A natural extension of the model is denoted by 1 | r j | ∑w jU j. It also includes release
dates r j per job j, marking the earliest time at which a job can start processing. Besides
that addition, the model stays the same as WNTJ (1 | | ∑w jU j). This extended problem
is strongly NP-hard [56]. To the best of our knowledge, no approximation algorithms with
a provable approximation factor are known for this problem. There are however practical
algorithms, which have been tested empirically. Used approaches contain mixed integer
programming [22], genetic algorithms [80] and branch-and-bound algorithms [69].

For a more comprehensive survey on both (and related) problems, we refer to [2].

2.3.2 Strong NP-Hardness of Scheduling Extended Chains
As already noted, this problem is at least weakly NP-hard, following from Theorem 2.1 as
well as Theorem 2.2. We show that this problem is actually strongly NP-hard, by giving
a reduction from the strongly NP-hard 1 | r j | ∑w jU j problem [56]. As in Section 2.2.1
we use decision variants of the considered problems, giving us results for both deadline-
constrained cost reduction and budget-constrained makespan minimization.

Theorem 2.5 The SCSe problem is strongly NP-hard.

Proof. 1 | r j | ∑w jU j is defined as follows: Given a set of jobs J = {1, . . . ,n}, each with
processing time p j, release date r j, deadline d j and weight w j, schedule the jobs (without

30 Chapter 2. Server Cloud Scheduling

S jpre C jpost T

A

B

D

E

A
B

C

server

D
E

cloud

original time frame wmax

Figure 2.2: Schematic example of resulting SCSe problem for 5 jobs, squiggly arrows
represent communication delays and model release dates and deadlines.

preemption) on a single machine, such that the sum of weights of late jobs is smaller or
equal to a given b (∑w jU j ≤ b). A job j is late (U j = 1) if it finishes processing after d j,
U j = 0 otherwise.

Given an instance of 1 | r j | ∑w jU j, create the following decision version of SCSe.
Note that we will substitute “an edge (j, j′) with communication delay c(j, j′) = k” simply
by “an edge c(j, j′) = k” to keep this readable. As per definition create S and T with
ps(S) = ps(T) = 0 and pc(S) = pc(T) = ∞. Create jobs jpre and jpost with ps(jpre) =
ps(jpost) = ∞ and pc(jpre) = pc(jpost) = 0 and edges c(S, jpre) = 0 and c(jpost ,T) = 0.
Set wmax = max j∈J w j and dmax = max j∈J d j. For every j ∈ J create a job j′ with
ps(j′) = p j, pc(j′) = w j and edges c(jpre, j′) = r j, c(j′, jpost) = wmax+dmax−d j. Set the
deadline to d′ = wmax +dmax and the budget b′ = b. Trivially, in all schedules S and T
are scheduled on the server, jpre and jpost on the cloud. Note that neither of these jobs
contributes processing time to the resulting schedule. For better comprehension, we give
an example of the structure in Figure 2.2.

It remains to show, that there is a schedule with ∑w jU j ≤ b for the original 1 | r j |
∑w jU j problem, if and only if there is a schedule with cost ≤ b′ and mspan ≤ d′ for the
SCSe problem. Assume that there is a schedule with ∑w jU j ≤ b. We can partition the jobs
into two sets J early and J late, which contain all jobs that are on time or late, respectively.
Place all jobs that correspond to a job from J late on the cloud and start them immediately.
All of them finish before d′ = wmax +dmax, since wmax ≥ pc(j′). Place all remaining jobs
(J early) on the server and let them start at the same time as in the original schedule. Since
no job starts before its release date no communication delay is violated in the new schedule.
Since all jobs from J early end before their deadline, no communication delay hinders us
from scheduling jpost and T at d′ = wmax +dmax. The cost of that schedule is equal to the
value of ∑w jU j in the original schedule and therefore cost ≤ b. One can confirm that the
other direction works analogously by keeping the schedule of jobs on the cloud intact and
simply processing all jobs from the cloud after that schedule in any order.

2.3 The Extended Chain Model (SCSe) 31

■

2.3.3 A (2+ ε)-approximation (Makespan) on the Extended Chain

Theorem 2.6 There is a (2+ ε)-approximation algorithm for the budget-constrained
makespan minimization SCSe problem.

We design a pseudo-polynomial algorithm, that given a feasible makespan estimate
T (T ≥ mspanOPT) calculates a schedule with makespan at most min{2T,2mspanOPT}.
Otherwise (T < mspanOPT) the algorithm calculates a schedule with makespan at most
min{2T,2mspanOPT} or no schedule at all. We can use a binary search to find T ≈ OPT ,
beginning with the trivial upper bound T = ∑ j∈J ′ ps(j)≥ mspanOPT .

We first introduce notation that follows the constructive description of extended chains
above. We assume J = {0,1, . . . ,n+1} with S = 0, T = n+1, and j ∈ {1, . . . ,n} being
the j-th job in the original chain. If there is a parallel subgraph between some jobs j−1
and j we denote the jobs in it by J j = {0 j,1 j, . . . ,m j}.

We reuse the state description from Theorem 2.4, but this time we iteratively create
all reachable states by going over the jobs {0,1, . . . ,n+1}. A state is a combination of
timestamp t ∈ {0,1, . . . ,T}, job j ∈ {0,1, . . . ,n+1}, and location loc ∈ {s,c} (referring to
server and cloud respectively). The value of a state is the smallest cost of all the schedules
of the jobs 0,1, . . . , j finishing processing during or before timestamp t, with j being sched-
uled on loc, denoted by [t, j, loc] = cost. Note, that we have not mentioned the parallel
subgraphs in the description above. We start with the trivial start state [0,0(=S),s] = 0.

Let STATELIST j−1 be the list of states for some job j − 1 of the chain. We create
STATELIST j in the following way: First we create a set of state extensions EXTENSIONS j,
each of form [∆t, loc j−1 → loc j] = cost. Then we form every (fitting) combination of a state
from STATELIST j−1 with an extension from EXTENSIONS j, which forms STATELIST j.
Lastly, we cull all dominated states from STATELIST j and continue with j+1.

Calculate EXTENSIONS j:
1. If there is no parallel subgraph between j−1 and j we can simply enumerate all

state extensions:
a. j−1 on server, j on server: [ps(j), s → s] = 0
b. j−1 on server, j on cloud: [pc(j)+ c(j−1, j), s → c] = pc(j)
c. j−1 on cloud, j on server: [ps(j)+ c(j−1, j), c → s] = 0
d. j−1 on cloud, j on cloud: [pc(j), c → c] = pc(j)

2. Otherwise, there is a parallel subgraph between j−1 and j with jobs
J j = {0 j,1 j, . . . ,m j}. Enumerate (or approximate) possible extensions:

a. j−1 on server, j on server:
Set ∆max = min{∑ j′∈J j ps(j′),T}, for every ∆i in {0, . . . ,∆max}, do the
following: Set J s = /0 and J c = /0. For every j′ ∈ J j check:

• ps(j′)> ∆i and c(j−1, j′)+ pc(j′)+ c(j′, j)> ∆i:
break and go to next ∆i (state extension [∆i, s → s] not feasible)

• ps(j′)> ∆i and c(j−1, j′)+ pc(j′)+ c(j′, j)≤ ∆i:
add j′ to J c (j′ has to be put on the cloud)

• ps(j′)≤ ∆i and c(j−1, j′)+ pc(j′)+ c(j′, j)> ∆i:
add j′ to J s (j′ has to be put on the server)

32 Chapter 2. Server Cloud Scheduling

If ∑ j′∈J s ps(j′)> ∆i break and go to next ∆i. More load has to be placed
on the server than there is time. Create a WNTJ instance as follows:
For every job j′ ∈ J j \ (J s ∪J c) create a job j′′ with processing time
p j′ = ps(j′), deadline d j′′ = ∆i −∑ j′∈J s ps(j′) and weight w j′′ = pc(j′).
Solve this problem with wTardyJobs, let V be the cost of the solution.
Add [∆i, s → s] = ∑ j′∈J c pc(j′)+V to EXTENSIONS j. (This could also be
solved as a knapsack problem, but we need WNTJ later either way.)

b. j−1 on server, j on cloud:
Set ∆max = min{∑ j′∈J j ps(j′)+max j′∈J j c(j′, j),T}.
For every ∆i in {0, . . . ,∆max}, do the following: Set J s = /0 and J c = /0.
For every j′ ∈ J j check:

• ps(j′)+ c(j′, j)> ∆i and c(j−1, j′)+ pc(j′)> ∆i:
break and go to next ∆i (state extension [∆i, s → c] not feasible)

• ps(j′)+ c(j′, j)> ∆i and c(j−1, j′)+ pc(j′)≤ ∆i:
add j′ to J c (j′ has to be put on the cloud)

• ps(j′)+ c(j′, j)≤ ∆i and c(j−1, j′)+ pc(j′)> ∆i:
add j′ to J s (j′ has to be put on the server)

If ∑ j′∈J s ps(j′)> ∆i break and go to next ∆i. More load has to be placed
on the server than there is time. Create a WNTJ instance as follows: For
every job j′ ∈ J j \J c create a job j′′ with processing time p(j′′) = ps(j′),
deadline d j′′ = ∆i − c(j′, j) and weight w j′′ = pc(j′) if j′ /∈ J s, w j′′ = ∞

otherwise. Solve this problem with wTardyJobs, let V be the cost of the
solution if V = ∞ break. Otherwise, add [∆i, s → c] = ∑ j′∈J c pc(j′)+V to
EXTENSIONS j.

c. j−1 on cloud, j on server:
This works analogously to the previous case. Simply replace each instance
of c(j′, j) by c(j − 1, j′) and vice versa. Add the resulting extensions
to EXTENSIONS j. Note, that for the reduction there is no computational
difference between a common release date and different deadlines and
different release dates but a common deadline.

d. j−1 on cloud, j on cloud:
We 2-approximates the resulting extensions, by precisely handling the com-
munication to the server, but upper bounding the communication from the
server. Repeat case 2b with the two following changes:
For the checks before the problem conversion use c(j − 1, j′)+ ps(j′)+
c(j′, j) and pc(j′) instead of ps(j′)+ c(j′, j) and c(j − 1, j′)+ pc(j′), re-
spectively. Let J s′ ⊆ J j be the set of jobs actually put on the server in this
step. Add [∆i+max j′∈J s′ c(j−1, j′), c → c] = ∑ j′∈J c pc(j′)+V instead of
[∆i, c → c] = ∑ j′∈J c pc(j′)+V to EXTENSIONS j. We wait for the biggest
communication delay to pass until we schedule the first job on the server.
Note, that ∆i +max j′∈J s′ c(j′, j)≤ 2∆i by construction.

For every pair of a state ([t, j− 1, loc] = cost) ∈ STATELIST j−1 and ([∆t, loc j−1 →
loc j] = cost ′) ∈ EXTENSIONS j with loc = loc j−1 add [t +∆t, j, loc j] = cost + cost ′ to
STATELIST j. After that process, for every triple t, j, loc that has multiple states in
STATELIST j keep only the state with the lowest cost. We can also discard states with
cost > b and timestamp t > 2T . Repeat this process with j → j+1 until we computed

2.3 The Extended Chain Model (SCSe) 33

STATELISTn+1, simply move through that list and select the state with the lowest times-
tamp t. If there is no such state, there exists no schedule with makespan smaller or equal
to T .

Lemma 2.1 Given a feasible T , the described procedure calculates a 2-approximation
on the optimal makespan in time poly(N,T)

Proof. We start by showing the approximation factor. Everywhere except step 2d we
simply enumerate all (non-dominated) ways to extend a running schedule, which is
trivially optimal. Assume that we added [∆i, c → c] = ∑ j′∈J c pc(j′) +V instead of
[∆i +max j′∈J s′ c(j′, j), c → c] = ∑ j′∈J c pc(j′) +V in step 2d above. That hypotheti-

cal algorithm would calculate a (possibly infeasible) solution with makespan mspanhypo
ALG ≤

mspanOPT , since step 2d underestimates the needed time (by ignoring one of the com-
munication delays), and everything else is calculated precisely. The actual algorithm has
makespan mspanALG ≤ 2mspanhypo

ALG and therefore also mspanALG ≤ 2mspanOPT .
We show the runtime of the algorithm by bounding the time needed for each iteration

of 1. constructing state extensions EXTENSIONS j, 2. combining the extensions with the
previous STATELIST j−1 and 3. culling duplicates from the resulting STATELIST j.

1. For directly connected jobs j − 1 and j we can trivially calculate the 4 options
in constant time. Therefore, we are interested in the runtime of steps 2a, 2b, 2c
and 2d for some parallel subgraph with jobs J j. The steps get repeated for ∆i in
{0, . . . ,∆max}, where ∆max < T . The preprocessing in each iteration of all four steps
needs time linear in the size of J j. Using wTardyJobs in the steps needs time in
O(|J j|min{∑ j′∈J j\J c ps(j′),max j′∈J j\J c d j′′})≤O(T ·N2). Overall we need time
in poly(T,N) to calculate EXTENSIONS j, with |EXTENSIONS j| ≤ O(T)

2. STATELIST j−1 contains at most 2T · (n+2) ·2 (timestamp, job, location) different
states (after the previous culling). We may simply bruteforce all possible combina-
tions from STATELIST j−1 ×EXTENSIONS j. Since both of these sets have at most
poly(T,N) elements, the resulting set STATELIST j also has polynomial size.

3. By culling states from STATELIST j we reduce it back to size at most 2T · (n+2) ·2.
It should be obvious, that we can identify duplicate states in polynomial time.

Note that we iterate the above steps for each job j ∈ {1, . . . ,n+1}. Therefore we have
a polynomial repetition of steps needing polynomial time. We prevent exponential build-up
in the state lists, by culling duplicates after each iteration. ■

Now we have to scale our instance, such that our pseudo-polynomial algorithm runs
in proper polynomial time. For that, we scale T and all pc, ps and c by Nε ′

T and round
down to the next integer. Then, we run our algorithm with the scaled values, but still use
the unscaled pc to calculate the value (cost) of states, as those calculations only factor
logarithmically in the runtime, a pc exponential in the input size is fine. The algorithm
now needs time in poly(N,⌊T ·Nε ′

T ⌋) ≤ poly(N,ε ′) and finds a 2-approximation for the
scaled instance (given a feasible T). After scaling back up each job and communication
delay might need up to T

Nε ′ additional time, delaying our whole schedule by at most
3N · T

Nε ′ ≤ 3ε ′T . For ε = 3ε ′ and T = mspanOPT our resulting schedule has a makespan
of mspanALG ≤ 2mspanOPT + εT = (2+ ε)mspanOPT . Via a binary search, we can find
such a T by repeating our procedure at most log∑ j∈J ′ ps(j) times. This concludes the
proof of Theorem 2.6.

34 Chapter 2. Server Cloud Scheduling

Corollary 2.1 There is a polynomial algorithm for the deadline-constrained cost mini-
mization problem on extended chains, that finds a schedule with at most optimal cost,
but a makespan of (2+ ε)d.

R With argumentation similar to the reduction in Theorem 2.5, one can show that the
1 | r j | ∑w jU j problem is embedded in step 2d of this section’s algorithm. This
leads to the observation, that we might be able to use approximation results for
1 | r j | ∑w jU j to improve our handling of that case. Sadly, as noted earlier, there
seem to be no known approximation algorithms with a provable approximation factor
for this problem. If one becomes known in the future, it might be worthwhile to
reevaluate the approach in step 2d.

2.3.4 Cases with FPTAS
We reconsider the approximation result for three special cases of instances which allow us
to improve the result. Looking back at Theorem 2.6, we build an algorithm that would be
an FPTAS if it were not for case 2d where we needed to double our time frame ∆i to fit the
unaccounted communication delay. In the following part, we will only describe how to
approach that case, since everything else can stay as it was.

First, we assume locally small delays in the parallel subgraphs, meaning that the
smallest processing time in the subgraph is at least as big as the largest communication
delay. More precisely, for every Je with e = (j−1, j) it holds that

min
j′∈Je

min{ps(j′), pc(j′)} ≥ max
j′∈Je

max{c((j−1, j′)),c((j′, j))}.

In this case, only the first jα , and the last job jω to be processed on the server are actually
affected by their communication delay, since all other delays fit in the time frame, where
jα and jω are processed. After the preprocessing of a given ∆i, for each pair of jobs
jα , jω ∈ J j \J c with jα ̸= jω do the following: Assume jα , jω are the first and last job
to be processed on the server, respectively. Add jα and jω to J s. Now create the WNTJ
instance as follows: For every job j′ ∈ J j \ (J s ∪J c) create a job j′′ with processing
time p j′ = ps(j′), deadline d j′′ = ∆i − (c(j−1, jα)+c(jω , j))−∑ j′∈J s ps(j′) and weight
w j′′ = pc(j′). Solve this problem with wTardyJobs, let V be the cost of the solution and
note [∆i, c → c] jα

jω = ∑ j′∈J c pc(j′)+V . After all (O(N2)) combinations have been tested,

add the smallest [∆i, c → c] jα
jω to EXTENSIONS j.

Secondly, we assume a constant upper bound cmax on the communication delays inside
parallel subgraphs. More precisely, for every Je with e = (j−1, j) it holds that

cmax ≥ c(j−1, j′) and cmax ≥ c(j′, j).

Instead of brute forcing only a first and last job, we brute force the first and last cmax
timesteps. Trivially, jobs with ps = 0 can be put on the server, and therefore there are at
most O(Nc

max ·Nc
max) combinations we have to work through. The remaining part works

analogously to the first case.
Lastly, we assume that each job produces some output, that has to be sent to all of

its direct successors in full, meaning that all outgoing communication delays of a job are
equivalent. More precisely, for every Je with e = (j−1, j) it holds that

∀ j′, j′′ ∈ Je : c(j−1, j′) = c(j−1, j′′).

2.4 Constant Cardinality Source and Sink Dividing Cut (SCSψ) 35

Here we can simply reuse the result from step 2b, but subtract c(j−1, j′) from the ∆i used
in the WNTJ problem. Since all c(j−1, j′) are equal, no job could be processed on the
server in the first c(j− 1, j′) timesteps and all jobs are available after those c(j− 1, j′)
timesteps.

All these, in combination with the previously described scaling approach, lead to
FPTAS results:

Theorem 2.7 There is an FPTAS for the budget-constrained makespan minimization
problem on extended chains if at least one of the following holds for every parallel
subgraph Je with e = (j−1, j):

1. min j′∈Je min{ps(j′), pc(j′)} ≥ max j′∈Je max{c((j−1, j′)),c((j′, j))}
2. cmax ≥ c(j−1, j′) and cmax ≥ c(j′, j)
3. ∀ j′, j′′ ∈ Je : c(j−1, j′) = c(j−1, j′′)

2.4 Constant Cardinality Source and Sink Dividing Cut
(SCSψ)
In this section, we introduce a concept to bound the number of jobs that can be relevant for
scheduling decisions at the same time. Consider the task graph during a running schedule
and partition the jobs into a set of completed and a set of pending jobs. Count the number
of edges connecting jobs in the completed set to jobs in the pending set. For a given
instance, the maximum cardinality source and sink dividing cut denotes the maximum
number of crossing edges for all possible intermediate schedules. We examine cases where
this number is bounded by a constant.

Model We introduce the notion of a maximum cardinality source and sink dividing cut.
For G = (J ,E), let JS be a subset of jobs, such that JS includes S and there are no edges
(j,k) with j ∈ J \JS and k ∈ JS . In other words, in a running schedule JS and J \JS ,
could represent already processed jobs and still to be processed jobs respectively. Denote
by J G

S the set of all such sets JS . We define

ψ := max
JS∈J G

S

| {(j,k) ∈ E | j ∈ JS ∧ k ∈ J \JS} |,

the maximum number of edges between any set JS and J \JS in G. In a series-parallel
task graph ψ is equal to the maximum anti-chain size of the graph.

2.4.1 Dynamic Programming for SCS
We discuss how to solve or approximate problems with a constant size ψ , but otherwise
arbitrary task graphs (SCSψ). We first consider the deadline-constrained cost minimization,
in Theorem 2.9 we show how to adapt this to the budget-constrained makespan minimiza-
tion. We give a dynamic program to optimally solve instances of SCS with arbitrary task
graphs. At first, we will not confine the algorithm to polynomial time. Consider a given
problem instance with G = (J ,E), its source S and sink T , processing times ps(j) and
pc(j) for each j ∈ J , communication delays c(i, j) for each (i, j) ∈ E and a deadline d.

We define intermediate states of a (running) schedule, as the states of our dynamic
program (see Section 2.4.1). Such a state contains two types of variables. First, we have
two global variables, the timestamp t and the number of timesteps the server has been

36 Chapter 2. Server Cloud Scheduling

unused fs. In other words, the server has not finished processing a job since t − fs. The
second type is defined per open edge. An open edge is a e = (j,k) where j has already
been processed, but k has not. For each such edge add the variables e = (j,k) (the edge
itself), loc j ∈ {s,c} denoting if j was processed on the server (s) or the cloud (c) and f j
denoting the number of timesteps that have passed since j finished processing. If a job j is
contained in multiple open edges, loc j and f j are still only included once. Write the state
as [t, fs,e1 = (j1,k1), loc j1, f j1 , . . . ,e

m = (jm,km), loc jm , f jm], where e1, . . . ,em denote all
open edges. Note here, that there is information that we purposefully drop from a state: the
completion time and location of every processed job without open edges, as those are not
important for future decisions anymore. There might be multiple ways to reach a specific
state, but we only care about the minimum possible cost to achieve that state, which is the
value of the state.

S j0 T

j1

j2

Figure 2.3: Example state of a running schedule, open edges are orange, loc ji and f ji kept
for j0, j1 and j2.

We iteratively calculate the value of every reachable state with t = 0,1,2, We start
with the trivial state [t = 0, fs = 0,e1, . . . ,em, locS = s, fS = 0] = 0, where e1, . . . ,em ∈ E
with ei = (S, j). This state forms the beginning of our (sorted) state list. We keep this list
sorted in ascending order of state values (costs) at all times. We exhaustively calculate
every state that is reachable during a specific timestep, given the set of states reachable
during the previous timestep. Intuitively, we try every possible way to “fill up” the still
undefined time windows fs and f j. After the dynamic program is finished, we iterate
through the state list one last time and take the first state [t = d, fs]. The value of that state
is the minimum cost possible to schedule G in time d. One can easily adapt this procedure
to also yield such a schedule, by annotating each kept state with a list of all processed jobs
containing their location and completion time. Note here, that we would consider two
states that only differ in this list as identical, and only keep one of them (with either of the
lists). Finally, we give the actual dynamic program:

2.4 Constant Cardinality Source and Sink Dividing Cut (SCSψ) 37

DPFGG – Dynamic Program for General Graphs:
1. Initialize the state list SL with the start state (as defined above)
2. For all state ∈ SL:

a. Let J state be the set of all jobs that are endpoints in open edges from state
b. For all j ∈ J state:

i. Check if ∀(k, j) ∈ E : (k, j) is also an open edge in state, if not, break
and go to next job. Are all predecessors of j already processed?

ii. Can j be processed on the server?
Check fs ≥ ps(j) and for every (k, j) ∈ E: lock = s∧ fk < ps(j) or
lock = c∧ fk < ps(j)+ c(k, j). Is there enough free time on the server,
and did all predecessors finish sufficiently early, considering the pro-
cessing time as well as possible communication delays? If yes:
A. Calculate resulting state state′ as a copy of state with the same cost

value and the following changes:
For all (k, j) ∈ E remove (k, j) from state′. If j is the last open
successor of k, remove fk and lock from state′. Add f j = 0, loc j = s
and all new open edges to state′. Set fs = 0.

B. If state′ is already in SL: update the cost value of state′ in SL, if
the new value is lower. Then move state′ to correct position in SL.

C. Otherwise, add state′ to correct position in SL (always after state).
iii. Can j be processed on the cloud?

Check for every (k, j) ∈ E: lock = s∧ fk < pc(j)+ c(k, j) or lock =
c∧ fk < pc(j). Did all predecessors finish sufficiently early, considering
the processing time as well as possible communication delays? If yes:
A. Calculate resulting state state′ as a copy of state with the following

changes:
For all (k, j) ∈ E remove (k, j) from state′. If j is the last open
successor of k, remove fk and lock from state′. Add f j = 0, loc j = c
and all new open edges to state′. Increase the cost value of state′

by pc(j).
B. If state′ is already in SL: update the cost value of state′ in SL, if

the new value is lower. Then move state′ to correct position in SL.
C. Otherwise, add state′ to correct position in SL (always after state).

3. Check end condition:
If there is a state [t = d, fs] ∈ SL, return such state with the lowest cost value.

4. Else, if t < d:
a. Move from t to t +1:

For all state ∈ SL increase t, fs and each f j in state by 1.
b. Back to step 2.

Lemma 2.2 DPFGG’s runtime is bounded in O(d2ψ+3 ·n2ψ+1).

Proof. At any point, there are a maximum of O(d · (d ·n)ψ) states in the state list, given by
the maximum value of fs and the possible combination of open edges with their timestamp.
For every t we look at every state. Since we never insert a state in front of the state we
are currently inspecting (costs can only increase), this traverses the list exactly once. For
each of those states, we calculate every possible successor, of which there are O(ψ) and

38 Chapter 2. Server Cloud Scheduling

traverse the state list an additional time to correctly insert or update the state. We iterate
from t = 0 to d and therefore get a runtime of: O(d · ((d · (d ·n)ψ) ·ψ · (d · (d ·n)ψ))) =
O(d3 ·n · (d ·n)2ψ) =O(d2ψ+3 ·n2ψ+1). ■

2.4.2 Scaling and Rounding the Dynamic Program
We use a rounding approach on DPFGG to get a program that is polynomial in n =| J |,
given that ψ is constant. We scale d, c, pc, and ps by a factor ς := ε·d

2n . Denote by
d̂ := ⌈d

ς
⌉ ≤ 2n

ε
+1, p̂s(j) := ⌊ ps(j)

ς
⌋, p̂c(j) := ⌊ pc(j)

ς
⌋ and ĉ(x) := ⌊c(x)

ς
⌋. Note here, that

we round up d but everything else down. We run the dynamic program with the rounded
values but still calculate the cost of a state with the original unscaled values.

We transform the output π ′ to the unscaled instance, by trying to start every job j at
the same (scaled back up) point in time as in the scaled schedule. Since we rounded down,
there might now be points in the schedule where a job j can not start at the time it is
supposed to. This might be due to the server not being free, a parent node of j that has not
been fully processed or an unfinished communication delay. We look at the first time this
happens and call the mandatory delay on j ∆ and increase the start time of every remaining
job by ∆. Repeat this process until all jobs are scheduled. We introduce no new conflicts
with this procedure since we always move everything together as a block. Call this new
schedule π .

Theorem 2.8 DPFGG combined with the scaling technique finds a schedule π with
at most optimal cost and a makespan ≤ (1+ ε) ·d in time O(n4ψ+4 · 1

ε

2ψ+3
), for any

ε > 0. For problem instances with a constant maximum cardinality source and sink
dividing cut (ψ), this is in time poly(n, 1

ε
).

Proof. We start by proving the runtime of our algorithm. We can scale the instance in
polynomial time, this holds for both scaling down and scaling back up. The dynamic
program now takes time in O(d̂2ψ+3 ·n2ψ+1), where d̂ ≤ 2n

ε
+1, resulting in O(n4ψ+4 ·

1
ε

2ψ+3
). Since ψ is constant this results in a dynamic program runtime in poly(n, 1

ε
). In

the end, we transform the schedule as described above, by going through the schedule once
and delaying every job no more than n times. Trivially, this can be done in polynomial
time as well.

Secondly, we show that the makespan of π is at most (1+ ε) ·d. Every valid schedule
for the unscaled problem is also valid in the scaled problem, meaning that there is no
possible schedule we overlook due to the scaling. In the other direction, this might not
hold. First, while scaling everything down we rounded the deadline up. This means, that
scaled back we might actually work with a deadline of up to d + ς . Secondly, we had to
delay the start of jobs to make sure that we only start jobs when it is actually possible. In
the worst case, we delay the sink T a total of n−2 times, once for every job other than S
and T . Each time we delay all remaining jobs we can bound the respective ∆ < 2 · ς . This
is due to the fact that each of the delaying options can not delay by more than ς (as that is
the maximum timespan not regarded in the scaled problem) and only a direct predecessor
job and the communication from it needing longer can coincide to a non-parallel delay.
Taking both of these into account, a valid schedule for the scaled problem might use time
up to

d + ς +(n−2) · (2ς)≤ d +2nς = (1+ ε) ·d

2.5 Strong NP-Hardness 39

in the unscaled instance.
Lastly, we take a look at the cost of π . While rounding, we did not change the

calculation of a state’s value, and with every valid schedule of the unscaled instance being
still valid in the scaled instance we can conclude that the cost of π is smaller or equal to an
optimal solution of the original problem. ■

Theorem 2.9 DPFGG combined with the scaling technique and a binary search over the
deadline yields an FPTAS for the budget-constrained makespan minimization problem,
for graphs with a constant maximum cardinality source and sink dividing cut (ψ).

Proof. Theorem 2.8 can be adapted to solve this, assuming that we know a reasonable
makespan estimate of an optimal solution to use in our scaling factor. During the algorithm
discard any state with costs bigger than the budget and terminate when the first state [t, fs]
is reached. The t gives us the makespan.

Using a makespan estimate that is too big will lead to a rounding error that is not
bounded by ε ·mspanOPT , a too-small estimate might not find a solution. To solve this, we
start with an estimate that is purposefully large. Let dmax = ∑ j∈J ps(j) be the sum over all
processing times on the server. There is always a schedule with 0 costs and makespan dmax.
We run our algorithm with the scaling factor ς0 := ε·dmax

4n . Iteratively repeat this process
with scaling factor ς i = 1

2i ς
0 for increasing i starting with 1. At the same time half the

original deadline estimate in each step, which leads to d̂, and therefore the runtime, to stay
the same in each iteration. End the process when the algorithm does not find a solution for
the current i and deadline estimation. This infers that there is no schedule with the wanted
cost budget and a makespan smaller or equal to 1

2i dmax (in the unscaled instance), therefore
1
2i dmax < mspanOPT . We look at the result of the previous run i−1: The scaled result was
optimal, therefore the unscaled version has a makespan of at most

mspanALG ≤ mspanOPT +2n · ς i−1 (2.1)

= mspanOPT +2n · 1
2i−1 ·

ε ·dmax

4n
(2.2)

= mspanOPT + ε · 1
2i d

max ≤ (1+ ε)mspanOPT . (2.3)

It should be easy to infer from Lemma 2.2 that each iteration of this process has
polynomial runtime. Combined with the fact that we iterate at most logdmax times we get
a runtime that is in poly(n, 1

ε
). ■

R The results of this section work, as written, for a constant ψ . Note here, that
for series-parallel digraphs, this is equivalent to a constant anti-chain size. The
algorithms can also be adapted to work on any graph with constant anti-chain size,
if the communication delays are (bounded by) some constant or are locally small.
Delays are locally small, if for every (j,k) ∈ E, c(j,k) is smaller or equal than every
pc(k′), ps(k′), pc(j′) and ps(j′), where k′ is every direct successor of j and j′ every
direct predecessor of k [70].

2.5 Strong NP-Hardness
In this section, we consider more involved reductions than in Section 2.2 in order to gain a
better understanding of the complexity of the problem. First, we show that a classical result

40 Chapter 2. Server Cloud Scheduling

due to Lenstra and Rinnooy Kan [55] can be adapted to prove that already the variant of
SCS without communication delays and processing times equal to one or two is NP-hard.
This already implies strong NP-hardness. Remember that we did show in Section 2.2
that SCS without communication delays and with unit processing times can be solved
in polynomial time. Hence, it seems natural to consider the problem variant with unit
processing times and communication delays. We prove this problem to be NP-hard as
well via an intricate reduction from 3SAT that can be considered the main result of this
section. Lastly, we show that the latter reduction can be easily modified to get a strong
inapproximability result regarding the general variant of SCS and the cost objective.

2.5.1 No Delays and Two Sizes
We show strong hardness for the case without communication delays and pc(j), ps(j) ∈
{1,2} for each job j. The reduction is based on a classical result due to Lenstra and
Rinnooy Kan [55].

Let G = (V,E), k be a clique instance with | E |>
(k

2

)
, and let n =| V | and m =| E |.

We construct an instance of the cloud server problem in which the communication delays
all equal zero and both the deadline and the cost bound are 2n+3m. There is one vertex
job J(v) for each node v ∈V and one edge job J(e) for each edge e ∈ E and J({u,v}) is
preceded by J(u) and J(v). The vertex jobs have a size of 1 and the edge jobs a size of 2
both on the server and on the cloud.

Furthermore, there is a dummy structure. First, there is a chain of 2n+ 3m many
jobs called the anchor chain. The i-th job of the anchor chain is denoted A(i) for each
i ∈ {0, . . .2n+3m−1} and has size 1 on the cloud and size 2 on the server. Next, there are
gap jobs each of which has a size of 1 both on the server and the cloud. Let k∗ =

(k
2

)
and

v ≺ w indicate that an edge from v to w is included in the task graph. There are four types
of gap jobs, namely G(1, i) for i ∈ {0, . . .k−1} with edges A(2i)≺ G(1, i)≺ A(2(i+1)),
G(2, i) for i ∈ {0, . . .k∗−1} with A(2k+3i+1)≺ G(2, i)≺ A(2k+3(i+1)), G(3, i) for
i∈ {0, . . .(n−k)−1} with A(2k+3k∗+2i)≺G(3, i)≺ A(2k+3k∗+2(i+1)), and G(4, i)
for i ∈ {0, . . .(m− k∗)−1} with A(2n+3k∗+3i+1)≺ G(4, i)≺ A(2n+3k∗+3(i+1))
for i < (m−k∗)−1 and A(2n+3m−2)≺ G(4,(m−k∗)−1). Lastly, there are the source
and the sink which precede or succeed all of the above jobs, respectively.

Cloud:
Server:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0 2k 2k+3k∗ 2n+3k∗ 2n+3m

k size 1 slots k∗ size 2 slots n− k size 1 slots m− k∗ size 2 slots

Figure 2.4: The dummy structure for the reduction from the clique problem to a special
case of SCS. Time flows from left to right, the anchor chain jobs are positioned on the
cloud, and the gap jobs on the server.

Lemma 2.3 There is a k-clique, if and only if there is a schedule with length and cost
at most 2n+3m.

Proof. First, note that in a schedule with a deadline of 2n+3m+1 the anchor chain has to
be scheduled completely on the cloud. If the schedule additionally satisfies the cost bound,

2.5 Strong NP-Hardness 41

all the other jobs have to be scheduled on the server. Furthermore, for the gap and anchor
chain jobs there is only one possible time slot due to the deadline. In particular, A(i) starts
at time i, G(1, i) at time 2i+1, G(2, i) at time 2k+3i+2, G(3, i) at time 2k+3k∗+2i+1,
and G(4, i) at time 2n+3k∗+3i+2. Hence, there are k length 1 slots positioned directly
before the G(1, i) jobs left on the server, as well as, k∗ length 2 slots directly before the
G(2, i) jobs, n− k length 1 slots directly before the G(3, i) jobs, and m− k∗ length 2 slots
directly before the G(2, i) jobs (see also Figure 2.4). The m edge jobs have to be scheduled
in the length 2 slots, and hence the vertex jobs have to be scheduled in the length 1 slots.

=⇒ : Given a k-clique, we can position the k clique vertices in the first k length 1
slots, the corresponding k∗ edges in the first length 2 slots, the remaining vertex jobs in the
remaining length 1 slots, and the remaining edge jobs in the remaining length 2 slots.

⇐= : Given a feasible schedule, the vertices corresponding to the first length 1 slots
have to form a clique. This is the case because there have to be k∗ edge jobs in the first
length 2 slots and all of their predecessors are positioned in the first length 1 slots. This is
only possible if these edges are the edges of a k-clique. ■

Hence, we have:

Theorem 2.10 The SCS problem with job sizes 1 and 2 and without communication
delays is strongly NP-hard.

In the above reduction, the server and the cloud machines are unrelated relative to each
other due to the different sizes of the anchor chain jobs. However, it is easy to see that the
reduction can be modified to a uniform setting where the cloud machines have a speed of 2
and the server speed of 1. If we allow communication delays, even identical machines can
be achieved.

2.5.2 Unit Size and Unit Delay (SCS1)
We consider a unit time variant of our model in which all pc = ps = 1 and all c = 1. Note
here, that this also implies that the server and the cloud are identical machines (the cloud
still produces costs, while the server does not). We again look at the decision variant of
the problem: Is there a schedule with a cost smaller or equal to b while adhering to the
deadline d.

Theorem 2.11 The SCS1 problem is strongly NP-hard.

We give a reduction 3SAT ≤p SCS1. Let φ be any boolean formula in 3-CNF, denote
the variables in φ by X = {x1,x2, . . . ,xm} an the clauses by C = {Cφ

1 ,C
φ

2 , . . . ,C
φ
n }. Before

we define the reduction formula we want to give an intuition and a few core ideas used in
the reduction.

The main idea is that we ensure that nearly everything has to be processed on the
cloud, there are only a few select jobs that can be handled by the server. For each variable,
there will be two jobs, of which one can be processed on the server, and the selection will
represent an assignment. For each clause, there will be a job per literal in that clause, only
one of which can be processed on the server, and only if the respective variable job is ’true’.
Only if for each variable and for each clause one job is handled by the server the schedule
will adhere to both the cost and the time limits.

42 Chapter 2. Server Cloud Scheduling

a1 a2 a3

...S T

b1 b2 b3

Figure 2.5: Schematic representation of an anchor chain.

A core technique of the reduction is the usage of an anchor chain. An anchor chain
of length l consists of two chains of the same length l := d −2, where we interlock the
chains by inserting (ai,bi+1) and (bi,ai+1) for two parallel edges (ai,ai+1) and (bi,bi+1).
The source S is connected to the two start nodes of the anchor chain, and the two nodes at
the end of the chain are connected to T .

Lemma 2.4 If the task graph of a SCS1 problem contains an anchor chain, every valid
schedule has to schedule all but one of a1,b1 and one of al ,bl on the cloud. For every
job ai,bi 1 < i < l the timestep in which it will finish processing on the cloud in every
valid schedule is i+1.

Finally we give the reduction function f (φ) = G,d,b, where G = (J ,E). Set d =
12+m+n and b =| J | −(2+m+n). We define G by constructively giving which jobs
and edges are created by f . Create an anchor chain of length d−2, this will be used to limit
parts of a schedule to certain time frames. Note that by Lemma 2.4 we know that every
valid schedule of G = (J ,E),d,b has every node pair of the anchor chain (besides the
first and last) on the cloud at a specific fixed timestamp. More specifically, the completion
time of ai and ai+ j differ by exactly j time units. For each variable xi ∈ X create two jobs
jxi and jx̄i and edges (a1+i, jxi),(a1+i, jx̄i) and (jxi,a5+i),(jx̄i,a5+i). For each clause Cφ

p
create a clause job jCφ

p
and edges (a7+m+p, jCφ

p
) and (jCφ

p
,a9+m+p). Let Lp

1 ,L
p
2 ,L

p
3 be the

literals in Cφ
p . Create jobs jLp

1
, jLp

2
, jLp

3
and edges (jLp

1
,Cφ

p),(jLp
2
,Cφ

p),(jLp
3
,Cφ

p) for these
literals. For every literal job jLp

1
connect it to the corresponding variable job jxi or jx̄i by a

chain of length 1+(m− i)+ p. Also, create an edge from a3+i to the start of the created
chain and an edge from the end of the chain to a6+m+p.

ai+1 ai+2 ai+3 ai+4 ai+5 a6+m+p a7+m+p a8+m+p a9+m+p

connection chain

jCφ
p

jxi

jx̄i

Lp
1

Lp
2

Lp
3

Figure 2.6: Schematic representation of the variable and clause gadgets and their connec-
tion.

It remains to show that there is a schedule of length at most d with costs at most b in
f (φ) = G,d,b if and only if there is a satisfying assignment for φ .

2.5 Strong NP-Hardness 43

Lemma 2.5 In a deadline adhering schedule for f (φ) = G,d,b every job in the anchor
chain (except one at the front and one at the end), every job in the variable and clause
literal connecting chains and every clause job has to be scheduled on the cloud.

Proof. By Lemma 2.4 we already know that every node in the anchor chain except one
of a1,b1 and one of al ,bl has to be scheduled on the cloud. We also know that the jobs
in the anchor chain have fixed timesteps in which they have to be processed. We look
at some chain and their connection to the anchor chain. The start of the chain of length
1+(m− i)+ p is connected to a3+i, the end to a6+m+p. Between the end of a3+i and
the start of a6+m+p are 6+m+ p− 1− (3+ i) = 2+m+ p− i timesteps. So with the
processing time required to schedule all 1+(m− i)+ p jobs of the chain, there is only one
free timestep, but we would need at least 2 free timesteps to cover the communication cost
to and from the server. (Recall here that both a3+i and a6+m+p have to be processed on
the cloud). The same simple argument fixes each clause job on the server to a specific
timestep. ■

Lemma 2.6 In a deadline adhering schedule for f (φ) = G,d,b only one of jxi and
jx̄i can be processed on the server for every variable xi ∈ X . The same is true for
jLp

1
, jLp

2
, jLp

3
of clause Cφ

p .

Proof. jxi and jx̄i are both fixed to the same time interval via the edges (a1+i, jxi), (a1+i, jx̄i)
and (jxi,a5+i),(jx̄i,a5+i). Since a1+i and a5+i will be processed on the cloud and keeping
communication delays in mind, only the middle of the three timesteps in between can be
used to schedule jxi or jx̄i on the server. Since the server is only a single machine only
one of them can be processed on the server. Note here that the other job can be scheduled
a timestep earlier (on the cloud) which we will later use. The argument for jLp

1
, jLp

2
, jLp

3
works analogously to the statement above. ■

Lemma 2.7 There is a deadline adhering schedule for f (φ) = G,d,b with costs of
| J | −(2+m+n) if and only if there is a satisfying assignment for φ . The variable
jobs processed on the cloud represent this satisfying assignment

Proof. From Lemma 2.4, Lemma 2.5 and Lemma 2.6 we can infer that a schedule with
costs of | J | −(2+m+ n) has two jobs of the anchor chain, one job for each pair of
variable jobs and one job per clause on the server. Two jobs of the anchor chain can always
be placed on the server, and the choice of variable jobs is also free. It remains to show,
that we can only schedule a literal job per clause on the server if and only if the respective
clause is fulfilled by the assignment inferred by the variable jobs.

The clause job jCφ
p

of Cφ
p has to be processed in timestep 9+m+ p (between a7+m+p

and a9+m+p). Therefore, jLp
1

has to be processed no later than 8+m+ p or 7+m+ p if it
is processed on the cloud or server respectively. Let jxi be the variable job connected to
jLp

1
via a connection chain.
If jxi is true (scheduled on the cloud), it can finish processing at timestep 3+ i, which

does not delay the start of the connection chain (which is connected to a3+i, finishing in
timestep 4+ i). This means that the chain can finish in timestep 4+ i + 1+(m− i)+

44 Chapter 2. Server Cloud Scheduling

p = 5+m+ p, the timestep 6+m+ p can be used for communication, allowing jLp
1

to be
processed by the server in 7+m+ p.

If jxi is false (scheduled on the server), it finishes processing at timestep 4+ i, which,
combined with the induced communication delay, delays the start of the chain by 1.
Therefore, the chain only finishes in timestep 6+m+ p, and jLp

1
has to be processed on

the cloud since there is not enough time for the communication back and forth. Trivially,
the same argument holds true for jLp

2
and jLp

3
. ■

It should be easy to see that the reduction function f is computable in polynomial time.
Combined with Lemma 2.7, this concludes the proof of our reduction 3SAT ≤p SCS1. The
correctness of Theorem 2.11 directly follows from that.

2.5.3 Inapproximability of the General Case
Adapting the previous reduction we can show an even stronger result for the general
case of SCS. Basically, we are able to degenerate the reduction output in a way, that a
satisfying assignment results in a schedule with a cost of 0, while every other assignment
(schedule) has costs of at least 1. It should be obvious, that this also means that there is no
(cost minimization) approximation algorithm for this problem with a fixed multiplicative
performance guarantee if P ̸= NP.

This reduction uses processing times and communication delays of 0, ∞ and values in
between. Note that ∞ can simply be replaced by d+1. To keep the following part readable
we again substitute “an edge (j, j′) with communication delay c(j, j′) = k” simply by “an
edge c(j, j′) = k”.

We follow the same general structure (an anchor chain, variable-, clause- and connec-
tion gadgets). The anchor chain now looks as follows: For every timestep create two jobs ai
and a′i with ps(ai) = 0, pc(ai) = ∞, ps(a′i) = ∞, pc(a′i) = 0 and an edge c(ai,a′i) = 0. These
chain links are then connected by an edge c(a′i,ai+1) = 1. Finally we create c(S,a1) = 1
and c(ad,T) = 0. Every schedule will process ai and a′i in timestep i on the server and the
cloud respectively. This gives us anchors to the server and to the cloud for every timestep,
without inducing congestion or costs. Since the anchor jobs themselves have a processing
time of 0, the “usable” time interval between some ai and ai+1 is one full timestep. By
this construction, waiting in the anchor chain is purely realized by communication and,
therefore, cost free.

For each variable xi ∈X create two jobs jxi , jx̄i with ps(jxi) = ps(jx̄i) = 1 and pc(jxi) =
pc(jx̄i) = 0. Create edges c(ai, jxi) = 1, c(ai, jx̄i) = 1 and c(jxi,ai+1) = 0, c(jx̄i,ai+1) = 0.
In short, only one of them can be processed on the server, the other on the cloud. Both will
finish in timestep i+1, the one processed on the server is true, therefore processing both
on the cloud is possible, but not helpful.

For each clause Cφ
p create a clause job jCφ

p
with ps(jCφ

p
) = ∞, pc(jCφ

p
) = 0 and edges

c(a′5+m+3p, jCφ
p
) = ∞ and c(jCφ

p
,a′6+m+3p) = ∞. This means, that jCφ

p
has to finish process-

ing by timestep 6+m+3p. Let Lp
1 ,L

p
2 ,L

p
3 be the literals in Cφ

p . Create jobs jLp
1
, jLp

2
, jLp

3
each

with pc = ps = 1 and edges c(jLp
1
,Cφ

p) = 0, c(jLp
2
,Cφ

p) = 0, c(jLp
3
,Cφ

p) = 0 for these literals.
Create edges c(a3+m+3p, jLp

1
) = 0, c(a3+m+3p, jLp

2
) = 0 and c(a3+m+3p, jLp

3
) = 0,

so that, in theory, all three of the literal jobs can be processed on the server, finishing in
timesteps 4+m+ 3p, 5+m+ 3p and 6+m+ 3p respectively. Lastly, for every literal

2.6 Algorithms for SCS1 and Instances Without Delays 45

job jLp
1

connect it to the corresponding variable job jxi (or jx̄i) by an edge with a com-
munication delay of m− i+3p+3. Since jxi (or jx̄i) finish processing in timestep i+1,
this means that jLp

1
can start no earlier than m+3p+4 (and therefore finish processing in

5+m+3p), if jxi (or jx̄i) were processed on the cloud.
Recall here, that a variable job being scheduled on the server denotes that it is true. So

only a literal job that evaluates to true, can be scheduled so that it finishes processing in
timestep 4+m+3p on the cloud.

It follows directly, that a schedule for this construction will have costs of 0 if and only
if the assignment derived from the placement of the variable jobs fulfills every clause.

Theorem 2.12 There is no approximation algorithm for the deadline-constrained cost
minimization SCS problem that has a fixed performance guarantee, assuming that
P ̸= NP.

2.6 Algorithms for SCS1 and Instances Without Delays
We explore some simple algorithms on instances with arbitrary task graphs but constraints
on job sizes and communication delays. We start by examining the unit case SCS1 (all
processing times and communication delays are one) for which we showed strong NP-
hardness in Theorem 2.11. We give both an algorithm for the budget-constrained makespan
minimization as well as the deadline-constrained cost minimization. Secondly, we give
an algorithm for budget-constrained makespan minimization for instances with arbitrary
processing times, but without communication delays.

2.6.1 A 3-Approximation (Makespan) for SCS1

Since we are looking at the unit version of the problem, we can make a general observation
about the relevance of communication delays. In timestep t, we only need to care about
communication delays of jobs that were processed in timestep t −1. In other words, after a
single timestep, it is irrelevant for future jobs, if a job was processed on the server or on the
cloud. We will make heavy use of that by creating a schedule that schedules jobs in blocks,
beginning and ending with a synchronization step and a parallelization step in the middle.

We start by constructing a hypothetical schedule πh, where every job starts as soon as
all of its predecessors finished processing. This hypothetical schedule is neither bound in
the number of parallel tasks, nor in its cost. For every t from 1 to mspanh let J t be the
set of jobs finished in timestep t by πh. Following the definition, we know that jobs in J t

have no predecessors in J t or J t+i for any i.

Algorithm: We construct our schedule π as follows:
• remaining-budget = b
• For every t in {1,mspanh}:

– If |J t |<= 3, place all jobs in J t on the server, in any order.
– Else, place 3 jobs from J t on the server, call the middle one jt .

As long as remaining-budget > 0 and there are still unscheduled jobs in
J t , place one of those jobs on the cloud, on the same timestep as jt . Re-
peat this until all jobs in J t are scheduled, or remaining-budget = 0. If
remaining-budget = 0, place all remaining jobs from J t onto the server.

46 Chapter 2. Server Cloud Scheduling

S T

1 2 3

J 1 J 2 J 3

(a) Hypothetical schedule πh

S T

1 2 3 4 5 6 7 8

B1 B2 B3

(b) Resulting schedule π , blue jobs scheduled on the cloud

Figure 2.7: Sets J t of πh and the corresponding blocks Bt of π

Theorem 2.13 There is a 3-approximation for the budget-constrained makespan mini-
mization SCS1 problem.

Proof. We start by showing that the given algorithm does indeed construct a valid schedule.
Our algorithm schedules jobs from some J t strictly after all jobs from any J t−i. Call
the time frame in which jobs from J t are scheduled block Bt . Since the blocks are non-
overlapping and scheduled in increasing order, no precedence constraints will be violated.
Furthermore, a block with jobs on the cloud consists of at least 3 timesteps. In both the
first and third timestep a single job is placed on the server (synchronization steps), while
jobs on the cloud are always scheduled on the second timestep of a block (parallelization
step). That gives us, that the first and third timestep of a block can always be used to fulfill
all arising communication delays from and to the second timestep since there are no edges
between jobs of the same block.

We prove the approximation ratio by looking at the remaining-budget at the end.
Case remaining-budget = 0: That means that we process as many jobs on the cloud as
possible. Furthermore, by construction there is no timestep where the server idles, giving
us mspanALG = n− b. Since the optimal solution is also limited by the budget and the
sequentiality of the server, we know that n−b = mspanOPT = mspanALG.
Case remaining-budget ̸= 0: That means that our algorithm never got out of budget
while placing blocks. We can conclude that each Bt consists of at most 3 timesteps,
which directly infers that mspanALG ≤ 3 ·mspanh. Since mspanh is the optimal makespan
under the assumption that we only have to adhere to precedence constraints, we know
that mspanh ≤ mspanOPT . Combined we get mspanALG ≤ 3 ·mspanOPT , concluding our
proof. ■

2.6.2 A 1+ε

2ε
-Approximation (Cost) for SCS1 with Resource Augmenta-

tion
We use resource augmentation and ask: given a SCS1 problem instance with deadline
d, find a schedule in polynomial time that has a makespan of at most (1+ ε) · d that
approximates the optimal cost in regards to the actual deadline d.

2.6 Algorithms for SCS1 and Instances Without Delays 47

Algorithm: If there is a chain of length d or d −1, that chain has to be scheduled on
the server, since there is no time for the communication delay. For instances with a
chain of size d that is trivially optimal, for those with d−1 we can check in polynomial
time if any other job also fits on the server, again, finding an optimal solution. From
now we assume that there is no chain of length more than d −2.

First, construct a schedule that places every job on the cloud, as fast as possible.
The resulting schedule from timestep 1 to (1+ ε) ·d looks as follows: one timestep of
communication, at most d −2 timesteps of processing on the server, another timestep
for communication followed by at least εd empty timesteps. Now pull (one of) the last
job(s) that is processed on the cloud to the last empty timestep and process it on the
server instead. Repeat this process until the last job can not be moved to the server
anymore. Do the whole procedure again, but this time starting with the cloud schedule
at the end of the schedule, and each time pulling the first job to the beginning. Keep the
result with lower costs.

Note that one can always fill the timestep being used solely for communicating from the
server to the cloud by processing one job on the server, which otherwise would be one of
the first jobs being processed on the cloud (the same holds for the other direction).

Theorem 2.14 There is a 1+ε

2ε
-approximation for the deadline-constrained cost mini-

mization SCS1 problem with resource augmentation that allows a deadline of (1+ ε) ·d
instead of d.

Proof. Case n ≤ (1+ ε)d: The algorithm places all jobs on the server, the cost is 0 and
therefore optimal.
Case (1+ ε)d < n < (1+2ε)d: Assume that the preliminary cloud-only schedule needs
d − 2 timesteps on the cloud, if that is not the case, we stretch the schedule to that
length. There are n jobs distributed onto d − 2 timesteps. Therefore, either from the
front or from the end, there is an interval of length d

2 −1 with at least d
2 −1 and at most

n
2 < (1+2ε)d

2 = d
2 + εd many jobs. The algorithm will schedule those at most d

2 + εd −1
jobs to the d

2 − 1 plus the free εd many time slots. If the interval included less than
d
2 + εd −1 jobs, it will simply continue until the d

2 −1+ εd timesteps are filled with jobs
being processed on the server. With the one job we can process on the server during
the communication timestep we process d

2 + εd jobs on the server and have costs of
n− (d

2 + εd). An optimal solution has costs of at least n− d. For ε ≥ 0.5 it holds that:
costALG = n− (d

2 + εd)≤ n−d ≤ costOPT , otherwise:

costALG

costOPT
≤

n− (d
2 + εd)

n−d
≤

(1+ ε)d − (d
2 + εd)

(1+ ε)d −d
≤ 0.5d

εd
=

1
2ε

Case (1+ 2ε)d ≤ n: In this case, we simply observe that our algorithm places at least
εd many jobs on the server. For ε ≥ 1 it holds that: costALG = n− εd ≤ n−d ≤ costOPT ,
otherwise:

costALG

costOPT
≤ n− εd

n−d
≤ (1+2ε)d − εd

(1+2ε)d −d
=

d + εd
2εd

=
1+ ε

2ε

■

48 Chapter 2. Server Cloud Scheduling

2.6.3 A 2-Approximation (Makespan) on Identical Machines and no
Delays
We design a simple heuristic for the case in which the server and the cloud machines
behave the same (except costs), that is, pc(j) = ps(j) for each job j (except for the source
and sink), and the communication delays all equal zero. In this case, we may define the
length of a chain in the task graph as the sum of the processing times of the jobs in the
chain.

Algorithm: The first step in the algorithm is to identify a longest chain in the task graph,
which can be done in polynomial time. The jobs of the longest chain are scheduled
on the server and the remaining jobs on the cloud each as early as possible. Now, the
makespan of the resulting schedule is the length of a longest chain, which is optimal
(or better) and there are no idle times on the server. However, the schedule may not be
feasible since the budget may be exceeded. Hence, we repeatedly do the following: If
the budget is still exceeded, we pick a job scheduled on the cloud with maximal starting
time and move it onto the server right before its first successor (which may be the sink).
Some jobs on the server may be delayed by this but we can do so without causing idle
times.

If all the processing times are equal this procedure produces an optimal solution, oth-
erwise, there may be an additive error of up to the maximal job size. Hence, we
have:

Theorem 2.15 There is a 2-approximation for the budget-constrained makespan mini-
mization SCS problem without communication delays and identical server and cloud
machines.

It is easy to see, that the analysis is tight considering an instance with three jobs: One with
size b, one with size b+ ε , and one with size 2ε . The first job precedes the last one. Our
algorithm will place everything on the server, while the first job is placed on the cloud in
the optimal solution.

Note that we can take a similar approach to find a solution with respect to the cost
objective by placing more and more jobs on the server as long as the deadline is still
adhered to. However, an error of one job can result in an unbounded multiplicative error
in the objective in this case. On the other hand, it is easy to see that in the case of unit
processing times, there will be no error at all in both procedures yielding:

Corollary 2.2 The variant of SCS without communication delays and unit processing
times can be solved in polynomial time with respect to both the makespan and the cost
objective.

2.7 Generalizations of Server Cloud Scheduling
In this section, we introduce some generalizations to the SCS problem. We consider
different aspects like multiple clouds and server machines and direction-specific delays. We
sketch how to adapt our algorithms for SCSe and SCSψ to cover those new generalizations.

2.7 Generalizations of Server Cloud Scheduling 49

2.7.1 Changes in the Definitions
We shortly define the changes to the model that we explore in this section.

Machine Model: So far we imagined a single server machine and one homogeneous
cloud in our problem definition. Now, instead of a single server machine, there can be
any (constant) number of identical server machines: SERVER = {s1, . . . ,sz}. Instead of
one homogeneous cloud, there can be any number of different cloud contexts: CLOUDS =
{c1, . . . ,ck}. Each cloud context still consists of an unlimited number of parallel machines.

Jobs: Jobs are still given as a task graph G = (J ,E). A job j ∈ J has processing time
ps(j) on any server machine and processing time pci(j) on a machine of cloud context
ci. An edge e = (i, j) and machine contexts m1,m2 ∈ {s,c1, . . . ,ck} have a communication
delay of cm1▷m2(i, j) ∈ N0, which means, that after job i finished on a machine of type
m1, j has to wait an additional cm1▷m2(i, j) timesteps before it can start on a machine of
type m2. For m1 = m2 we set cm1▷m2(i, j) = 0. Note that this function does not need to be
symmetric, e.g. cm1▷m2(i, j) and cm2▷m1(i, j) may be unequal.

Costs and Schedules: Previously we defined cost simply by “time spent on the cloud”.
While considering multiple clouds, that is not sensible anymore. A faster cloud will not
be universally cheaper than a slower one. We define a cost function based on the cloud
context and job, cost : J ×CLOUDS 7→N0. A schedule still consists of C : J 7→N0 (maps
jobs to their completion time), but instead of a partition we give a mapping function
η : J 7→ {s1, . . . ,sz}∪ {c1, . . . ,ck}. Note that si refers to one specific server machine,
while ci refers to a cloud context, consisting of infinitely many machines.

We call a schedule π = (C,η) valid if and only if the following conditions are met:
a) There is always at most one job processing on each server:

∀i, j∈J ,i̸= j:η(i)=η(j)∈SERVER : (C(i)≤C(j)− ps(j))∨ (C(i)− ps(i)≥C(j))

b) Tasks are not started before the previous tasks has been finished/ the required com-
munication is done:

∀(i, j)∈E : (C(i)+ cη(i)▷η(j)(i, j)≤C(j)− pη(j) j)

The makespan (mspan) of a schedule is still given by the completion time of the sink T :
C(T). The cost (cost) of a schedule is given by:

∑
j∈ jobs:η(j)∈clouds

cost(j,η(j)).

2.7.2 Revisiting SCSe

We briefly sketch how to adapt the algorithm from Section 2.3 to incorporate the previously
defined changes in the model. We will use the observations, that multiple server machines
only affect the scheduling of parallel parts and that we can always calculate an optimal
cloud location for a job in a given situation (part of the schedule, time frame and location
of predecessor and successor).

50 Chapter 2. Server Cloud Scheduling

Theorem 2.16 There is a (4+ ε)-approximation algorithm for the budget-constrained
makespan minimization problem on extended chains, even when there are z server
machines, k different cloud contexts, the communication delays are directionally de-
pendent on the machine context, and costs are given as an arbitrary cost function
cost : J × CLOUDS 7→ N0.

Proof. We adapt the pseudo-polynomial algorithm from Section 2.3 that given a feasible
makespan estimate T (T ≥ mspanOPT) calculates a schedule with makespan of at most
min{2T,2mspanOPT}, such that it incorporates the changes to the model and calculates
a schedule with makespan of at most min{4T + ε ′,4mspanOPT + ε ′}. The only change
in the state description is that loc ∈ {s,c1, . . . ,ck} instead of loc ∈ {s,c}. As the state
description is used for the chain parts of the extended chain, we do not differentiate the
server machines here. The creation of the state extension list EXTENSIONS j (each of form
[∆t, loc j−1 → loc j] = cost), has the following changes:

• Instead of the four combinations s → s, s → c, c → s, c → c, we consider all
combinations from {s,c1, . . . ,ck}×{s,c1, . . . ,ck}.

• Substitute the corresponding values, for example [pc(j)+c(j−1, j), s → c] = pc(j)
becomes [pci(j)+ cs▷ci(j−1, j), s → ci] = cost(j,ci).

• If there is a parallel subgraph between j−1 and j we adapt the calculation in the
following way:

– Calculate ∆max as before (the sum over all processing times on the server plus
the biggest relevant in- and outgoing communication delays)

– Iterate over ∆i in {0, . . . ,∆max}:
◦ As before, check for each job if it fits: (1) only on the servers, (2) not on

the servers but on at least one cloud context, (3) on both, (4) on none. If at
least one job falls into (4) break.

◦ Calculate for each job j in (2) or (3) the cheapest fitting option to schedule
that job on some available cloud in the time frame ∆i. Use that cost c j for
j for the remainder of the iteration.

◦ Greedily put jobs in (1) onto server machines (1 to k) until the current
server has load ≥ ∆i, proceed with the next machine and so on. If not all
jobs in (1) can be placed this way break, as there is not enough space to
place jobs on the server that do not fit on the cloud in the given time frame.

◦ Sort the jobs in (3) by their ratio of cost c j to processing time on the server
(highest to lowest cost per time). Continue by greedily placing those on
the server machines as before. When all jobs in (3) are placed, or all
server machines have load ≥ ∆i, put all remaining jobs from (3) on their
corresponding cheapest cloud context.

◦ Put all jobs from (2) on their corresponding cheapest cloud context.
◦ insert time in the front and back corresponding to the biggest communica-

tion delay invoked by the (sub-)schedule for the parallel part.
The rest of the algorithm behaves as before. The changes to state extensions spanning a
parallel subgraph calculate solutions that have at most optimal cost for a time frame of ∆i,
while using a time frame of 4∆i. The 4 times correspond to: at most 2∆i time for all in- and
outgoing communication delays since the communication delays have to fit into ∆i to be
considered, at most 2∆i time for our greedy packing of the server machines since we can
add a job of size ∆i to a machine currently having load ∆i − ε . It should be easy to see that

2.8 Approximating the Pareto Front 51

the greedy packing of “highest cost jobs”, with what is essentially resource augmentation
of a multiple knapsack problem, gives at most optimal cost. Note that we could also utilize
a PTAS for multiple knapsack here to stay in a time frame of 3∆i, but we want to find a
solution with optimal cost (or lower), to remain strictly budget-adhering. It remains to
simply use the same scaling technique used in Section 2.3 to get the 4+ ε-approximation.

■

If the communication delays are (bounded by some) constant the result can be easily
adapted to yield a 2+ε-approximation, by getting rid of the added time for communication
delays.

2.7.3 Revisiting SCSψ

In a similar vein as the previous subsection, we briefly sketch how to adapt the results from
Section 2.4 to include most of the previously defined model generalizations. Naturally, we
still require the maximum cardinality source and sink dividing cut (ψ) to be bounded by a
constant. In contrast to the previous result, we require the number of server machines to be
a constant.

Theorem 2.17 There is an FPTAS for the budget-constrained makespan minimization
problem for graphs with a constant maximum cardinality source and sink dividing
cut (ψ), even when there are a constant number of server machines, k different cloud
contexts, the communication delays are directionally dependent on the machine context,
and costs are given as an arbitrary cost function cost : J × CLOUDS 7→ N0.

Proof. We make the following two changes to the state definition: We consider loc j ∈
{s,c1, . . . ,ck} instead of loc j ∈ {s,c}, we track the unused time of every server machine
individually so instead of a single fs the state contains fs1, . . . , fsz . The dynamic program
needs only minor tweaks. When iterating through the jobs that are open (and of which all
predecessors have been processed) use the server si with the smallest fitting fsi and set
fsi = 0. Instead of checking if the job fits on “the cloud” we simply go through all clouds,
and add corresponding states for each fitting location. While calculating the value of a
state use the new cost function cost instead of pc, while checking if a job fits we use the
directional communication delays. After a full iteration, increase each fsi by one (instead
of only increasing the singular fs). It should be easy to see, that these adaptations do
not change the correctness of the algorithm. The runtime (after the rounding technique)
naturally increases to poly(nz,k, 1

ε
), which is polynomial, if and only if z (the number of

server machines) is a constant.
■

2.8 Approximating the Pareto Front
The problem variants we describe and analyze in this chapter are multi-criteria optimization
problems. To simultaneously handle the two criteria cost and makespan, we either looked
at decision variants “is there a schedule with makespan ≤ d and cost ≤ b” or we used one
of them as a constraint and asked “given a budget of b, minimize the makespan” (or vice
versa). Naturally, one might be interested in finding an assortment of different efficient
solutions, without giving a specific budget or deadline. A solution is called efficient, or
Pareto optimal, if we can not improve one of the criteria, without worsening the other.

52 Chapter 2. Server Cloud Scheduling

The set of all Pareto optimal solutions is called the Pareto front. In the following, we will
use the term point to refer to the makespan and cost of a feasible solution of a given SCS
problem.

For our NP-hard problems, we will not be able to efficiently calculate the exact Pareto
front, but we can find a set of points that is close to the optimum. In the literature, one
can find slightly different definitions for such approximations. In [54], the authors scale
each criteria to an interval from 0 to 1. A set of points is an α-approximation if, for each
point in the actual Pareto front, there is a point where each dimension is offset by at most
an additional ±α . We follow the definition of Pareto front approximations given in [75]
(adapted to our case with exactly 2 objectives):

Definition 2.1 A set of points S is an α-approximation of a Pareto front P, if for
each point p = (mspanp,cost p) ∈ P there is a point p′ = (mspanp′,cost p′) in S with
mspanp′ ≤ (1+α)mspanp and cost p′ ≤ (1+α)cost p.

The dynamic programming algorithms established in this chapter can be used to find
such an approximation. We use the results from Section 2.4 to show how this is done, but
note that a similar approach can be used for other results of this chapter.

Intuitively our dynamic programs calculate a collection of possible results but only
report a single one, where the “best” is selected based on the current objective. Imagine
that one of our deadline-constrained algorithms with approximation factor (1+ ε) reports
every non-dominated solution it finds instead. The result for d = 10 and ε = 0.1 could look
like Figure 2.8. For every reported point (mspan,cost) we can infer a lower bound on the
makespan of mspan− ε ·d any schedule with a given cost has, due to the approximation
factor of the algorithm. Note that the gap is in relation to a given d and therefore results with
a smaller makespan are less precise. We will circumvent that by repeating the algorithm
with smaller values for d.

1

3

5

7

9
cost

1 3 5 7 9 mspan

Figure 2.8: Reported solutions by our algorithm, filled circles and empty circles represent
reported points and best possible solutions due to the approximation factor, respectively.
Blue-dotted region is infeasible, the orange-striped region is feasible but dominated.

Theorem 2.18 Using DPFGG (see Section 2.4) one can α-approximate the Pareto front
of a SCSψ problem with constant maximum cardinality source and sink dividing cut (ψ)
in polynomial time, for any α > 0.

2.9 Future Work 53

Proof. Given some SCSψ problem with constant ψ run DPFGG (with the rounding ap-
proach) with d = ∑ j∈J ps(j). Normally the algorithm reported the lowest cost state
[d̂, fs] = cost it found. Now, instead let the algorithm find the first state [t, fs] = cost for
every t ∈ (0.5d̂, d̂]. For each of those states calculate an upper bound on the makespan
for the respective schedule in the unscaled instance. Following the argumentation in the
proof for Theorem 2.8, we know that the makespan is ≤ t + ς +(n−2)2ς = (t +2n−4)ς .
Report the point (mspan = (t +2n−4)ς ,cost) and add it to S. After that full algorithm
iteration, set d := 0.5d and repeat the process. Do this until d = 1. Finally, return the
reported point set S.

We want to show that for every point p = (mspanp,cost p) of a Pareto front, there
is a reported point p′ = (mspanp′,cost p′) with mspanp′ ≤ (1+α)mspanp and cost p′ ≤
(1+α)cost p. Given some point p = (mspanp,cost p), look at the iteration where 0.5d <
mspanp ≤ d. Since there is a feasible schedule with mspanp and cost p at some point during
that iteration we found a feasible scaled schedule with t = ⌊mspanp

ς
⌋ and cost ≤ cost p. The

calculated upper bound for that schedule in unscaled is then (⌊mspanp

ς
⌋+ 2n− 4)ς ≤

mspanp +(2n−4)ς = mspanp +(2n−4) ε·d
2n ≤ mspanp + εd ≤ (1+2ε)mspanp (recall:

ς := ε·d
2n). Therefore, a point p′ = (mspanp′,cost p′) with mspanp′ ≤ (1+2ε)mspanp and

cost p′ ≤ cost p got reported. Setting ε = 0.5α and noting that we repeat the process no
more than log(∑ j∈J ps(j)) times concludes the proof. ■

2.9 Future Work
We give a small overview of some future research directions that emerge from our work.
SCSe: If good approximations for 1 | r j | ∑w jU j become established, the algorithm given
in Section 2.3 for the extended chain could probably be improved. One could model the
incoming communication delay with release dates and get an equivalent subproblem to
solve, instead of the approximate subproblem currently used. SCS: Section 2.5 gives
a strong inapproximability result for the general case with regard to the cost function.
For two easy cases (chain and fully parallel graphs) we could establish FPTAS results,
for graphs with a constant source and sink dividing cut (ψ) we have an algorithm that
finds optimal solutions with a (1+ ε) deadline augmentation. Here one could explore
if there are FPTAS results for different assumptions, whether there are approximation
algorithms without resource augmentation for constant ψ instances, and lastly, if there
are approximation algorithms with resource augmentation for the general case. For the
makespan objective, we already have an FPTAS for graphs with a constant ψ . It remains
to explore approximation algorithms or inapproximability results for the general case of
this problem. SCS1: We show strong NP-hardness even for this simplified problem. Since
this is a special case of the general problem all constructive results still hold, additionally
we were able to give first simple algorithms for both cost and makespan optimization in
general graphs. Here it would be interesting to look into more involved approximation
algorithms that give better performance guarantees.

3. Restricted Assignment Interval

We consider the restricted assignment interval problem, which is a special case of the
well studied unrelated scheduling problem. In this problem, machines are given in some
order, and each job is eligible on a specific interval of those machines. We show how to
extend known linear programs and develop a rounding strategy that gives the first better
than 2-approximation for this problem and establish some new inapproximability results
for the problem family.

This chapter is based on our paper (In-)Approximability Results for Interval, Resource
Restricted, and Low Rank Scheduling [67] which was published in the proceedings of ESA
2022. The original paper is divided into two main parts, a constructive part containing an
approximation algorithm and a complexity-theoretical part containing several inapprox-
imability results. The first part, which is given in full here, was written and developed
by myself, with help from Marten Maack. I added a small section on the integrality gap
of the considered LP to this thesis, which was not part of our paper. The second part
was mostly the work of Marten Maack and Anna Rodriguez Rasmussen, with only small
contributions by myself. Therefore, we only summarize the results, give an intuition for
the used approaches, and direct the interested reader to the full version of the paper.

3.1 Introduction
Makespan minimization on unrelated parallel machines, or unrelated scheduling for short,
is considered a fundamental problem in approximation and scheduling theory. We consider
the family of subproblems included in the general problem, with a focus on the restricted
assignment interval problem.

3.1.1 Problem Definition
First consider the general problem of makespan minimization on unrelated parallel ma-
chines, or unrelated scheduling for short. In this problem, a set J of jobs has to be assigned
to a set M of machines via a schedule π : J →M. Each job j has a processing time pi j
depending on the machine i it is assigned to, and the goal is to minimize the makespan
Cmax(π) = maxi∈M∑ j∈π−1(i) pi j.

56 Chapter 3. Restricted Assignment Interval

A natural special case is the restricted assignment problem. In it, each job j has a
size p j and pi j ∈ { p j,∞} for each machine i. For each job j we denote its set of eligible
machines by M(j) = {i ∈M| pi j = p j}.

We look at the following special cases of both unrelated scheduling and restricted
assignment.

Interval Restrictions. In the variant of restricted assignment with interval restrictions,
denoted as RAI in the following, there is a total order of the machines and each job j
is eligible on a discrete interval of machines, i.e., M= {M1,M2, . . . ,Mm } and M(j) =
{Mℓ,Mℓ+1, . . .Mr } for some ℓ,r ∈ {1, . . . ,m}.

Resource Restrictions. In the restricted assignment problem with R resource re-
strictions, or RAR(R), a set R of R (renewable) resources is given, each machine i has
a resource capacity cr(i) and each job j has a resource demand dr(j) for each r ∈ R.
The eligible machines are determined by the corresponding resource constraints, i.e.,
M(j) =

{
i ∈M

∣∣∀r ∈R : dr(j)≤ cr(i)
}

for each job j.

Low Rank Scheduling. In the rank D version of unrelated scheduling, or LRS(D),
the processing time matrix (pi j) has a rank of at most D. Alternatively (see [14]), we
can assume that each job j has a D dimensional size vector s(j) and each machine i a D
dimensional speed vector v(i) such that pi j = ∑

D
k=1 sk(j)vk(i).

3.1.2 Relation Between the Models and the State of the Art
As stated earlier, restricted assignment is a subproblem of unrelated scheduling. We can
formulate a few additional special cases and relationships between the models. Consider
the hierarchical case of RAI in which each job is eligible on an interval of the form
{M1,M2, . . .Mr }, i.e., the first machine is eligible for each job. It should be easy to see that
this problem is equivalent to RAR(1). Sort the machines in RAR(1) from most to least
capable; the set of eligible machines of each job now is an interval from the first up to the
last machine, which is capable enough for the respective job. For the other direction, we
assign a strictly descending resource capability to the machines, and each job’s resource
demand is exactly the capability of the last eligible job. In a similar vein, RAI is a subset
of RAR(2), which we can show by restating any RAI problem as a RAR(2) problem [66].
For each machine Mi ∈ {M1,M2, . . . ,Mm } set c1(i) = i and c2(i) = m− i. Now we can use
the first resource to model the left border of a job’s interval and the second resource for
the right border, i.e., for every job j with M(j) = {Mℓ,Mℓ+1, . . .Mr }, set d1(j) = ℓ and
d2(j) = r. As RAR(R) is a special case of restricted assignment, which in turn is a special
case of unrelated scheduling, we get the following picture.

Theorem 3.1 There is the following relationship between special cases of unrelated
scheduling and restricted assignment:

hierarchical RAI = RAR(1)⊊ RAI ⊊ RAR(2)⊊ restricted assign. ⊊ unrelated sched.

Naturally, that means that every constructive result also works for the included problems,
and every inapproximability result also holds for the larger problems.

Unrelated Scheduling is considered a fundamental problem in approximation and
scheduling theory. In 1990, Lenstra, Shmoys, and Tardos [57] presented a 2-approximation

3.1 Introduction 57

for it and further showed that no better than 1.5-approximation can be achieved (unless
P = NP) already for the restricted assignment problem. Closing or narrowing the gap
between 2-approximation and 1.5-inapproximability is a famous open problem in approxi-
mation [86], and scheduling theory [78]. We give an overview of the state of the art and
the most relevant results concerning the discussed subproblems of unrelated scheduling.

Interval Restrictions. There are several variants and special cases of this problem that
are known to admit a polynomial time approximation scheme (PTAS), see [27, 41, 48, 62,
72, 79], the most prominent of which is probably the previously mentioned hierarchical
case [62]. For RAI, on the other hand, there is an (1+δ)-inapproximability result for some
small but constant δ > 0 [66]. Furthermore, Schwarz [79] designed a (2−2/(max j∈J p j))-
approximation (assuming integral processing times); and Wang and Sitters [85] studied
an LP formulation that provides an optimal solution for the special case with two distinct
processing times and some additional assumption.

Resource Restrictions. As mentioned, RAR(1) corresponds to the hierarchical RAI
case, which admits a PTAS [62]. On the other hand, there can be no approximation algo-
rithm with ratios smaller than 48/47 ≈ 1.02 or 1.5 for RAR(2) and RAR(4), respectively,
unless P = NP, see [66]. While the hierarchical case, i.e., RAR(1), has been studied
extensively before, RAR(R) was first introduced in a paper by Bhaskara et al. [6], who
mentioned it as a special case of the next problem that we consider.

Low Rank Scheduling. Now, LRS(1) is exactly makespan minimization on uniformly
related parallel machines, which is well known to admit a PTAS [37]. Bhaskara et
al. [6], who introduced LRS(D), presented a QPTAS for LRS(2) along with some initial
inapproximability results for D > 2. Subsequently, Chen et al. [15] showed that there
can be no better than 1.5-approximation for LRS(4) unless P = NP, and for LRS(3) the
same authors together with Marx [14] ruled out a PTAS. On an intuitive level, resource
restrictions can be seen as a restricted assignment version of low rank scheduling. However,
there is a more direct relationship between the two problems: For each RAR(R) instance,
there exist LRS(R+1) instances that are arbitrarily good approximations of the former (see
[66]). Hence, any approximation algorithm for LRS(R+1) can also be used for RAR(R),
and any inapproximability result for RAR(R) carries over to LRS(R+1). In fact, many
(but not all) inapproximability results for low rank scheduling essentially have this form.

3.1.3 Our Results
The main result of this chapter is the improved approximation result for RAI with a ratio
2− 1

24 ≈ 1.96 presented in Section 3.2; This marks the first constant better than 2 result for
RAI, which was posed as an open challenge in previous works [41, 79, 85], the earliest of
which is from 2010. When considering the respective results in [79] and [85], in particular,
it seems highly probable that the actual goal of the research was to address exactly that
challenge. The presented approximation algorithm follows the approach of solving and
rounding a relaxed linear programming formulation of the problem, which has been used
in the classical work by Lenstra et al. [57] and many of the results thereafter. In particular,
we extend the so-called assignment LP due to Lenstra et al. [57] and design a customized
rounding approach. Both the linear programming extension and the rounding approach
utilize extensions and refinements of ideas from [79] and [85]. Our result joins the relatively
short list of special cases of the restricted assignment problem that do not allow a PTAS

58 Chapter 3. Restricted Assignment Interval

and for which an approximation algorithm with a rate smaller than 2 is known. Other
notable entries are the restricted assignment problem with only two processing times [13]
and the so-called graph balancing case [24], where each job is eligible on at most two
machines.

The other results from this chapter’s underlying paper are inapproximability results
for the introduced subproblems of unrelated scheduling. The four reductions result in the
following (unless P = NP):

• a 1.5-inapproximability result, for RAR(3) presented in Section 3.3.1;
• a 8/7-inapproximability result for RAR(2) presented in Section 3.3.2;
• a 9/8-inapproximability result for RAI presented in Section 3.3.3;
• and a 1.5-inapproximability result for LRS(3) (not furter presented in this thesis).

In this chapter, we give a summary of three of them and sketch the main ideas. The
inapproximability results we summarize here directly build upon the results presented
in the paper [66], which in turn utilizes many of the previously published ideas, e.g.,
from [6, 14, 15, 24, 57]. We use a specifically tailored satisfiability problem presented
in [66] as the starting point for all of the reductions. For the RAI result in particular, we
refine and restructure the respective results from [66] aiming for a significantly better ratio.
The respective reduction involves a sorting process, and curiously the main improvement
in the reduction involves changing a sorting process resembling insertion sort into one
resembling bubble sort. Due to this change, the construction becomes locally less complex,
enabling the use of smaller processing times and hence a stronger inapproximability result.
Furthermore, the simplified construction in the result enables us to use the basic structure
of the reduction as a starting point for the second main result of the underlying paper,
namely, the 1.5-inapproximability result for RAR(3). For this reduction, several additional
considerations and gadgets are needed, arguably making it the most elaborate of the
reductions presented in this chapter.

The search for an inapproximability result with a reasonably big ratio for RAR(3)
was stated as an open challenge in the long version of [14]. Adding the new result yields
a very clear picture regarding the approximability of low rank makespan minimization:
There is a PTAS for LRS(1), a QPTAS for LRS(2), and a 1.5-inapproximability result
for LRS(D) with D ≥ 3. The last two reductions regarding RAR(2) and RAR(3) yield
much-improved inapproximability results for the respective problems using comparatively
simple and elegant reductions. The result regarding RAR(3), in particular, closes a gap
in the results of [66] and also yields an (arguably) easier, alternative proof for the result
of [15]. Finally, we note that all of the inapproximability results regarding restricted
assignment with resource restrictions can be directly applied to the so-called fair allocation
or Santa Claus versions of the problems. In these problem variants, we maximize the
minimum load received by the machines rather than minimization of the maximum load,
i.e., the objective function is given by Cmin(π) = mini∈M∑ j∈π−1(i) pi j in this case.

3.1.4 Further Related Work
We already discussed the most relevant related results in Section 3.1.2. We refer to [66], the
corresponding long version [65], and the references therein for a more detailed discussion
of related work and only briefly discuss some further references. Regarding the problem
of closing the gap between the 2-approximation and 1.5-approximability, there has been a
promising line of research (e.g. [3, 43]) in the last decade, starting with a breakthrough
result due to Svensson [83], which in turn was preceded by corresponding results for the

3.2 A (2− 1
24)-Approximation 59

fair allocation (Santa Claus) version of the problem, see, e.g., [5, 29]. These results are
based on local search algorithms that usually do not run in polynomial time but can be used
to prove a small integrality gap for a certain linear program, which, therefore, can be used
to approximate the optimum objective value in polynomial time without actually producing
a schedule. In the online setting, versions of restricted assignment with different types of
restrictions, and variants of RAR(1) in particular, have been intensively studied. We refer
to the surveys [53, 58, 59] for an overview. Lastly, we note that the low rank scheduling
has also been considered from the perspective of fixed-parameter tractable algorithms [14].

3.2 A (2− 1
24)-Approximation

In this section, we establish the first approximation algorithm for RAI with an approxima-
tion factor better than 2:

Theorem 3.2 There is a (2− γ)-approximation for RAI with γ = 1
24 .

The particular value of the parameter γ is justified in the end. To achieve this result, we
first formulate a customized linear program based on the assignment LP due to Lenstra et
al. [57] and develop a rounding approach that places different types of jobs in phases. Note
that the placement of big jobs with a size close to OPT (where OPT is the makespan of an
optimal schedule) is often critical when aiming for an approximation ratio of smaller than
2 for a makespan minimization problem. For instance, the classical 2-approximation [57]
for restricted assignment produces a schedule of length at most OPT+max j∈J p j where
OPT is the makespan of an optimal schedule and hence the approximation ratio is better
if max j∈J p j is strictly smaller than OPT. This is also the case with our approach – the
main effort goes into the careful placement of such big jobs. In particular, we place the
largest jobs in the first rounding step and the remaining big jobs in the second. All of these
jobs have the property that each machine should receive at most one of them, and they are
placed accordingly. Moreover, the placement is designed to deviate not too much from the
fractional placement due to the LP solution. In the last step, the remaining jobs are placed.
Each rounding step is based on a simple heuristic approach that considers the machines
from left to right and places the least flexible eligible jobs first, i.e., the jobs that have
not been placed yet, are eligible on the current machine, and have a minimal last eligible
machine in the ordering of the machines. Both the LP and the rounding approach reuse
ideas from [79, 85]. Hence, the main novelty lies in the much more elaborate approach for
placing the mentioned big jobs in two phases.

In the following, we first establish some preliminary considerations; then briefly discuss
the least flexible first heuristic utilized in the rounding approach; next, we formulate the LP
and argue that it is indeed a relaxation of the problem at hand, shortly discuss its integrality
gap and then introduce and analyze the different phases of the rounding procedure step by
step.

3.2.1 Preliminaries.
We apply the standard technique (see [57]) of using a binary search framework to guess
a candidate makespan T (≥ max j∈J p j). The goal is then to either correctly decide that
no schedule with makespan T exists or to produce a schedule with makespan at most
(2− γ)T . Given this guess T , we divide the jobs j into small (p j ≤ 0.5T), large (0.5T <

60 Chapter 3. Restricted Assignment Interval

p j ≤ (0.5+ξ)T) and huge ((0.5+ξ)T < p j) jobs depending on some parameter ξ = 1
24

which is justified later on. We denote the sets of small, large, and huge jobs as S, L, and
H, respectively. Furthermore, we fix the (total) order of the machines such that each job
is eligible on consecutive machines. This is possible since we are considering RAI. For
the sake of simplicity, we assume M= {0, . . . ,m−1} with the ordering corresponding
to the natural one and set M(ℓ,r) = {ℓ, . . . ,r} for each ℓ,r ∈ M. When considering
the machines, we use a left-to-right intuition with predecessor machines on the left and
successor machines on the right. Note that for each job j, there exists a left-most and
right-most eligible machine, and we denote these by ℓ(j) and r(j), respectively, i.e.,
M(j) = M(ℓ(j),r(j)). For a set of jobs J ⊆ J , we call a job j ∈ J least flexible in J
if r(j) is minimal in {r(j′) | j′ ∈ J}, and a job j is called less flexible than a job j′ if
r(j)≤ r(j′). Lastly, we set J(ℓ,r) =

{
j ∈ J

∣∣M(j)⊆M(ℓ,r)
}

for each set of jobs J ⊆J
and pair of machines ℓ,r ∈M, and p(J) = ∑ j∈J p j.

Least Flexible First. Consider the least flexible first heuristic for RAI: The optimum
makespan OPT is lower bounded by the maximum job size max j∈J p j as well as the
average load p(J (ℓ,r))/|M(ℓ,r)| of jobs that have to be placed in any given interval of
machines M(ℓ,r) in a feasible schedule. Let L ≤ OPT be the maximum of all of the above
lower bounds. Starting with the left-most machine in the ordering, the heuristic works as
follows:

• Let i∗ be the current machine and J the set of jobs that have not been placed yet and
are eligible on i∗.

• If i∗ has received a load of at most L up to now and J ̸= /0, place a least flexible job
j ∈ J on i∗, i.e., a job j ∈ J with minimal r(j), and consider i∗ again.

• Otherwise, consider the next machine in the ordering or stop if there is none.
It is easy to see that this simple approach yields a 2-approximation:

Lemma 3.1 The least flexible first heuristic places each job, and each machine receives
a load of at most L+max j∈J p j ≤ 2 OPT.

Proof. The heuristic obviously never places a load greater than L+max j∈J p j on any
machine. Now assume for the sake of contradiction that there exists a job that is not placed
by this heuristic. Let j∗ be a job that is not placed, i.e., after considering the right-most
eligible machine r∗ = r(j∗), the job j∗ has not been placed by the algorithm. Then r∗ did
receive a load greater than L, and we have r(j)≤ r∗ for each job j placed on r∗. Let ℓ∗ ≤ r∗

be the left-most machine with the properties that each machine in M(ℓ∗,r∗) did receive a
load greater than L and r(j)≤ r∗ for each job j placed on M(ℓ∗,r∗). Furthermore, let J∗

be the set of jobs placed on M(ℓ∗,r∗) by the algorithm together with j∗. Then ℓ(j)≥ ℓ∗ for
each j ∈ J∗ since otherwise there exists a machine i directly preceding ℓ∗ that could have
received j as well but did not. This would imply that i did receive a load greater than L of
jobs less flexible than j yielding a contradiction to the choice of ℓ∗. Hence, J∗ ⊆ J (ℓ∗,r∗)
yielding the contradictory statement p(J (ℓ∗,r∗))≥ p(J∗)> |M(ℓ∗,r∗)|L ≥ p(J (ℓ∗,r∗))
(considering the definition of L). ■

We are not aware of this observation being published before, but consider it very likely
that it was already known, in particular, since variants thereof are used in [79, 85].

3.2 A (2− 1
24)-Approximation 61

3.2.2 Linear Program.
The classical assignment LP (see [57]) is given by assignment variables xi j ∈ [0,1] for
each i ∈M and j ∈ J and the following constraints:

∑
i∈M

xi j = 1 ∀ j ∈ J (3.1)

∑
j∈J

p jxi j ≤ T ∀i ∈M (3.2)

xi j = 0 ∀ j ∈ J , i ∈M\M(j) (3.3)

Equation (3.1) guarantees that each job is (fractionally) placed exactly once; Equation (3.2)
ensures that each machine receives at most a load of T ; and due to Equation (3.3), jobs are
only placed on eligible machines. We add additional constraints that have to be satisfied
by any integral solution. In particular, we add the following constraints using parameters
UB(ℓ,r) for each ℓ,r ∈M with ℓ≤ r, which will be properly introduced shortly:

∑
j∈L∪H

xi j ≤ 1 ∀i ∈M (3.4)

∑
i∈M(ℓ,r)

∑
j∈H

xi j ≤UB(ℓ,r) ∀ℓ,r ∈M, ℓ≤ r (3.5)

Equation (3.4) captures the simple fact that no machine may receive more than one job of
size larger than 0.5T and was used in [24] as well. The bound UB(ℓ,r), on the other hand,
is defined in relation to the total load of small jobs that has to be scheduled in the respective
interval M(ℓ,r). In particular, we consider the overall load of small jobs that have to be
placed in the interval together with the load due to huge jobs with their sizes rounded down
to their minimum size. The respective load has to be bounded by T times the number
of machines in the interval, i.e., ∑i∈M(l,r)∑ j∈H(0.5+ξ)T xi j + p(S(ℓ,r)) ≤ T |M(l,r)|.
Since the number of huge jobs placed in an interval is integral for an integral solution,
we can therefore set UB(ℓ,r) =

⌊
(T |M(l,r)|− p(S(ℓ,r)))/((0.5+ξ)T)

⌋
. We note that a

constraint similar to Equation (3.5) is also used in [79, 85]. Summing up, we try to solve
the linear program given by Equations (3.1) to (3.5), which is indeed a relaxation for RAI.
If this is not successful, we reject T and otherwise round the solution x using the procedure
described in the following and yield a rounded solution x̄.

3.2.3 Integrality Gap of the Linear Program
The classical assignment LP as given by Equations (3.1) to (3.3) has an integrality gap of
(at least) 2, which would naturally not be sufficient to get a better than 2-approximation
with our approach. Consider an instance with m jobs of size 1−1/m and a single job of
size 1, where each job is eligible on every machine (m denotes the number of machines),
and T = 1. The LP can place one size 1−1/m job on each machine and distribute the size
1 job onto the machines evenly, resulting in an LP solution of 1. The integral solution,
however, has to place two jobs on one machine, resulting in a makespan of at least 2−2/m,
which approaches 2 for big m.

This specific example would be captured by Equation (3.4) since the LP solution places
a total of 1+1/m parts of large or huge jobs on one machine. However, we can simply
transform the m jobs of size 1−1/m into very small jobs with the same total load, where
for every machine i, a set of jobs with total load 1−1/m is eligible exclusively on i. This
construction results in the same integrality gap of (at least) 2.

62 Chapter 3. Restricted Assignment Interval

With Equation (3.5), no (fractional) part of a huge job may be placed on a machine with
local small load of more than (0.5−ξ)T . Therefore, the LP has no fractional solution for
the instance mentioned above unless we increase T until the huge job is not huge anymore,
or the small load only makes up (0.5−ξ)T total load per machine. Specifically, that would
mean to increase T from 1 to 1/(0.5+ξ), and lower the integrality gap of that instance
from 2 to 1+2ξ . We have two options for similar constructions. The first maximizes the
small load such that the LP can fractionally distribute one huge job over two machines; the
second does a similar thing with one big job over many machines. Consider an instance
with 2 machines, each with a local small load of 0.5−ξ , as well as a huge job of size 1
and two jobs of size ξ , each eligible on both machines. The fractional LP solution is 1,
while the best integral solution is 1.5−ξ . The second construction looks as follows. We
have m machines, each with small local jobs of total size 1−1/m and one large job of size
0.5+ξ eligible on all machines. As in the first example, we can distribute the large job
over all machines, resulting in an LP solution of ≈ 1, while the best integral solution has
size ≈ 1.5+ξ (for big m). The integrality gap of our LP is, therefore, at least 1.5+ξ . The
distinction between big and huge jobs is not motivated by the constructions given above,
as they would imply the best result for ξ = 0. However, Equation (3.5) becomes more
restrictive with increasing ξ , which allows our following three-phase algorithm to achieve
an approximation ratio better than 2.

3.2.4 The Rounding Algorithm.
Assume that we have successfully solved the LP as given above, giving us a solution x. We
start by placing the huge jobs as follows.

Step 1 Placement of Huge Jobs: Starting with the first machine in the ordering, do
the following:

• Let i∗ be the current machine and H the set of huge jobs that have not been placed
yet and are eligible on i∗.

• If
⌊
∑i∈M(0,i∗)∑ j∈H xi j

⌋
>
⌊
∑i∈M(0,i∗−1)∑ j∈H xi j

⌋
and H ̸= /0, place a least flexi-

ble job j ∈ H on i∗, i.e., we set x̄i∗ j = 1.
• Consider the next machine in the ordering or stop if there is none.

We denote the set of machines that are considered by the above procedure as X , i.e.,
X =

{
i∗ ∈M

∣∣⌊∑i∈M(0,i∗)∑ j∈H xi j
⌋
>
⌊
∑i∈M(0,i∗−1)∑ j∈H xi j

⌋}
.

This procedure indeed works, and we preserve a connection to the original LP solu-
tion:

Lemma 3.2 All of the huge jobs are placed (on eligible machines) by the above proce-
dure and, for each ℓ,r ∈M with ℓ≤ r, we have ∑i∈M(ℓ,r)∑ j∈H x̄i j ≤

⌈
∑i∈M(ℓ,r)∑ j∈H xi j

⌉
.

Proof. The second statement directly follows from the fact that we only place a new job if
the sum of fractional huge jobs placed up to the current machine in the LP solution reaches
a new integer. Regarding the first, assume for the sake of contradiction that there exists a
huge job j∗ that is not placed. We set r∗ = r(j∗). Note that X ∩M(j∗) ̸= /0 since j∗ was
placed fractionally by the LP and for the same reason the last such machine r′ ≤ r∗ or
some predecessor did receive some of the fractional load of j∗ in the LP as well. Then r′

did receive a huge job j with r(j)≤ r(j∗). Let ℓ∗ be the left-most machine such that each
machine in M(ℓ∗,r∗)∩X did receive a huge job j with r(j)≤ r(j∗) and let H∗ be the set

3.2 A (2− 1
24)-Approximation 63

of huge jobs placed by the procedure on M(ℓ∗,r∗)∩X together with j∗. Then we have
ℓ∗ ≤ ℓ(j) for each j ∈ H∗ since otherwise there exists a machine i ∈ X directly preceding
ℓ∗ that may have received a job from H∗. Since this did not happen, it must have received
a less flexible job, which is a contradiction to the choice of ℓ∗. Hence, H∗ ⊆ H(ℓ∗,r∗)
but |M(ℓ∗,r∗)∩X |< |H∗|. This is a contradiction since each job in H∗ was completely
placed in M(ℓ∗,r∗) by the LP which implies |M(ℓ∗,r∗)∩X | ≥ |H∗|. ■

We note that this first rounding step is very similar to the first rounding step in [85].
In the next step, we divide the machines into regions, where each region did receive

fractional large load of (roughly) one.

Step 2 Mapping out the Regions: We define a set of border machines B as the
machines considered from left to right where the sum of fractionally placed large jobs
hits a new integer, i.e., B =

{
i′ ∈M

∣∣⌊∑i∈M(0,i′)∑ j∈L xi j
⌋
>
⌊
∑i∈M(0,i′−1)∑ j∈L xi j

⌋}
.

Moreover, let B = { i1, . . . , iq } with i1 < · · ·< iq and i0 be the left-most machine with
∑ j∈L xi0 j > 0. For each s ∈ {0, . . . ,q−1}, we may initially define the s-th region as
Rs =M(is, is+1). At this point, consecutive regions overlap by one machine. We change
this while guaranteeing that each region retains at least one candidate machine that may
receive a large job in the following. In particular, a machine i ∈M is a candidate if it
did receive some fractional large or huge job in the LP solution, i.e., ∑ j∈H∪L xi j > 0,
but no huge job afterward, i.e., ∑ j∈H x̄i j = 0. We denote the set of candidate machines
as C. For each s ∈ [q−1], apply the following procedure in incremental order:

• Check whether region Rs needs the last machine to have at least one candidate,
i.e., M(is, is+1 −1)∩C = /0.

– If this is the case, set Rs+1 =M(is+1 +1, is+2).
– Otherwise set Rs =M(is, is+1 −1).

After applying this procedure, we have:

Lemma 3.3 The regions are non-overlapping and each contain at least one candidate.

Proof. The first statement is obvious, and we show the second via contradiction. Assume
that there is a region Rr without a candidate machine. After running the procedure the
original left and right borders is and is+1 of a region Rs may or may not be included in Rs

and we set inner(Rs) =M(is +1, is+1 −1) for each s ∈ [q]. Since Rr does not contain
candidates, we know that inner(Rr) cannot contain candidates, ir+1 was assigned to Rr

by the algorithm and is not a candidate either. Let ℓ ≤ r be maximal with the property
that Rℓ did receive iℓ in the algorithm and Rs did receive is+1 for each s ∈ {ℓ, . . . ,r}.
Then the rules of the algorithm imply that iℓ is not a candidate and inner(Rs) does not
contain a candidate either for each s ∈ {ℓ, . . . ,r}. Hence, the only possible remaining
candidate machines in the respective regions are the borders B∩M(iℓ+1, ir). Let C be the
set of candidates in the respective regions, i.e., C = C ∩

⋃
s∈{ℓ,...,r}Rs, and k = |{ℓ, . . . ,r}|.

Then the above implies |C| ≤ k−1. For the remainder of the proof, we introduce some
additional notation: the set of assigned huge jobs in

⋃
s∈{ℓ,...,r}Rs is given by H and the

fractional number of large or huge jobs placed in these regions according to x is denoted
as fracLarge or fracHuge, respectively, i.e., fracLarge = ∑i∈M(iℓ,ir+1)∑ j∈L xi j and
fracHuge = ∑i∈M(iℓ,ir+1)∑ j∈H xi j. Since iℓ ∈ Rℓ and ir+1 ∈ Rr, the definition of the
borders yields fracLarge≥ k. Note that each machine in the regions that did receive a

64 Chapter 3. Restricted Assignment Interval

fractional large or huge job in the LP solution but is not a candidate subsequently received
a huge job. Hence, we have

|H|+ |C|
(3.4)
≥ fracHuge+fracLarge≥ fracHuge+ k

and therefore |H| ≥ fracHuge+1. However, Lemma 3.2 gives us |H| ≤ ⌈hugeLoad⌉<
hugeLoad+1. ■

Before proceeding with the placement of the large jobs, we note the following technical
observation:

Lemma 3.4 Let ℓ,r ∈M with ℓ≤ r, ℓ∈ Rs, r ∈ Rt , k = |{s, . . . , t }|, and fracLarge=

∑i∈M(ℓ,r)∑ j∈L xi j. Then we have
• k−2 < fracLarge< k+2.

Furthermore,
• fracLarge< k+1 if either ℓ > is or r < it+1,
• fracLarge< k if both of these conditions hold.

Proof. There are at least k−2 regions that are completely included in M(ℓ,r), including
their original outer borders. Hence, the definition of the regions yields k−2 < fracLarge.
For the remaining statements, we consider the definition of the regions more closely.
Note that there exist numbers λu ∈ [0,1) and ρu ∈ (0,1] for each u ∈ [q] such that λu +(

∑i∈inner(Ru)∑ j∈L xi j
)
+ρu = 1 (using the notation of the last proof); and furthermore

∑ j∈L xi0 j = λ0 if i0 ̸= i1, ∑ j∈L xiu j = ρu−1 +λu for u ∈ {1, . . . ,q−1}, and ∑ j∈L xiq j =
ρq−1. We assume for now s > 0 and t < q− 1. Then we have fracLarge ≤ ρs−1 + k+
λt+1 < k+2, fracLarge ≤ k+λt+1 < k+1 if ℓ > is, fracLarge < ρs−1 + k ≤ k+1 if
r < it+1, and fracLarge< k if both of the conditions hold. If s = 0 or t = q, we can prove
the statement analogously. ■

Using the regions, we place the large jobs via the following procedure.

Step 3 Placement of Large Jobs: Starting with the first region, do the following:
• Let R∗ be the current region and L the set of large jobs that have not been placed

yet and are eligible on at least one candidate machine from R∗.
• Do the following twice: Pick a least flexible large job j ∈ L, place it on the

leftmost eligible candidate machine i ∈ R∗, i.e. x̄i j = 1, and update L.
• Consider the next region in the ordering or stop if there is none.

Observe that the placement of both the large and huge jobs guarantees that only machines
that did receive fractional large or huge load in the LP solution may receive any large or
huge job, and each such machine receives at most one such job. We argue that this proce-
dure works and also retains some connection to the original LP solution x.

Lemma 3.5 All large jobs are placed (on eligible machines) by the described procedure
and, for each ℓ,r ∈M with ℓ≤ r, we have ∑i∈M(ℓ,r)∑ j∈L x̄i j < 2(∑i∈M(ℓ,r)∑ j∈L xi j +
2).

Proof. Regarding the second statement, note that we place at most two jobs in each region,
and hence Lemma 3.4 directly yields the proof. As usual, we prove the first statement by

3.2 A (2− 1
24)-Approximation 65

contradiction. To that end, assume that there exists a large job j∗ that is not placed by
the procedure. First, note that there is at least one eligible candidate machine for j∗. To
see this, consider the set M of eligible machines i ∈M(j) that either received fractional
load of j∗ or some huge load, i.e., xi j > 0 for j ∈ { j∗ }∪H. Then Equation (3.4) implies
∑i∈M ∑ j∈H xi j ≤ |M|−1. Hence, at most |M|−1, many huge jobs are placed on machines
from M due to Lemma 3.2, and therefore, at least one of these machines is a candidate.
There are two possibilities why j∗ was not placed on such a machine: either a less flexible
job got placed on the machine, or two other less flexible jobs were already placed in
the same region. Let r∗ = r(j∗) and ℓ∗ ≤ ℓ be minimal with the property that each large
job that was placed in M(ℓ∗,r∗) is less flexible than j∗ and each free candidate machine
in the interval is free because two other machines in the same respective region already
received a large job less flexible than j∗. Furthermore, let J∗ be the set of large jobs
placed in M(ℓ∗,r∗) together with j∗. We argue that ℓ(j)≥ ℓ∗ for each j ∈ J∗. Otherwise,
there exists a job j ∈ J∗ eligible on machine ℓ∗− 1. Then there are three possibilities
regarding this machine. It was not a candidate before the procedure; it was a candidate
and received a job less flexible than j (and therefore also less flexible than j∗); or it was a
candidate and did not receive a large job because two other machines in the same region
received a job less flexible then j. Each yields a contradiction to the definition of ℓ∗.
Let fracLarge = ∑i∈M(ℓ∗,r∗)∑ j∈L xi j be the sum of fractional large jobs in M(ℓ∗,r∗)
according to x. Note that we did show J∗ ⊆ J (ℓ∗,r∗) and hence fracLarge≥ |J∗|.

Let M∗ ⊆M(ℓ∗,r∗) be the set of machines that did receive a fraction of a job from J∗∪
H. Then Equation (3.4) implies ∑i∈M∗ ∑ j∈H xi j ≤ |M∗|−|J∗|, and furthermore Lemma 3.2
yields that at most |M∗|− |J∗| huge jobs are placed on machines from |M∗|. Hence, there
are at least |J∗| candidate machines in M(ℓ∗,r∗). Since not all of the jobs from J∗ have
been placed by the procedure, there is, therefore, at least one free machine in i∗ ∈M(ℓ∗,r∗).
The definition of ℓ∗ yields that two jobs less flexible than j∗ have been placed in the same
region as i∗ and these jobs have to be included in J∗ (and the machines they are placed on
in M(ℓ∗,r∗)).

We now take a closer look at the regions (partially) included in M(ℓ∗,r∗). Let ℓ∗ ∈ Rs,
r∗ ∈ Rt , and k = |{s, . . . , t }|. We consider three cases: If we have ℓ∗ = is and r∗ = it+1,
i.e., the borders of the interval correspond to the (original) outer borders of their regions,
then each of the regions Rs, . . . ,Rt did receive at least one job from J∗ and one received at
least two yielding k ≤ |J∗|−2 ≤ fracLarge−2. Moreover, if ℓ∗ > is or r∗ < it+1, then
one of the regions Rs, . . . ,Rt may not have received a job from J∗ changing the inequality
to k ≤ fracLarge−1. Lastly, if both ℓ∗ > is and r∗ < it+1, then the two outer regions may
have received no job from J∗ yielding k ≤ fracLarge. However, Lemma 3.4 considers the
same three cases, yielding fracLarge< k+2, fracLarge< k+1, and fracLarge< k,
respectively. ■

Lastly, we place the small jobs.

Step 4 Placement of Small Jobs: Starting with the first machine, do the following:
• Let i∗ be the current machine and J the set of jobs that have not been placed yet

and are eligible on i∗.
• Successively place least flexible jobs j on i∗, i.e., set x̄i∗ j = 1, until either J = /0

or placing the next job would raise the load of i∗ above (2− γ)T .
• Consider the next machine in the ordering or stop if there is none.

66 Chapter 3. Restricted Assignment Interval

We argue that this procedure works under certain conditions:

Lemma 3.6 All small jobs are placed (on eligible machines) by the described procedure
if γ ≤ ξ , γ +ξ ≤ 1

12 , and 8ξ +7γ ≤ 0.75 hold. In the resulting schedule, each machine
has a load of at most (2− γ)T .

Proof. For the sake of easier presentation, we assume T = 1 in the following (this can
be established via scaling). As usual, the second statement is easy to see, and we prove
the first via contradiction. To that end, let j∗ be a small job we cannot place. Let
load(i) = ∑ j∈J p jx̄i j be the load machine i ∈M did receive. We call a machine full if we
stop placing small jobs on it because placing another job would have caused a load of more
than 2− γ . Note that load(i)> 1.5− γ for full machines i ∈M. Let r∗ = r(j∗). Then r∗

is full since we were not able to place j∗ and we have load(i)+ p j∗ > 2− γ . Moreover,
all the small jobs placed on r∗ are less flexible than j∗. Let ℓ∗ be the left-most machine
with the property that each machine in M(ℓ∗,r∗) is full and each small job placed on such
a machine is less flexible than j∗, and let S∗ be the set of small jobs placed on M(ℓ∗,r∗)
together with j∗. We have ℓ(j)≥ ℓ∗ for each j ∈ S∗ since otherwise machine ℓ∗−1 has to
be full and each small job placed on this machine must be less flexible than j yielding a
contradiction to the choice of ℓ∗. Hence, we have S∗ ⊆ S(ℓ∗,r∗).

We establish some further notation. Let fracHuge, fracLarge, and fracSmall, be
the summed up number of fractional huge, large, or small jobs, respectively, in M(ℓ∗,r∗),
e.g., fracHuge= ∑i∈M(ℓ∗,r∗)∑ j∈H xi j. Furthermore, let H∗ and L∗ be the sets of huge and
large jobs placed in M(ℓ∗,r∗) by the rounding procedure, and k = |M(ℓ∗,r∗)| the length
of the interval of machines. Now, we have already established:

p(S∗)+ p(L∗)+ p(H∗) = p j∗ + ∑
i∈M(ℓ∗,r∗)

load(i)> (k−1)(1.5− γ)+(2− γ) (3.6)

Furthermore, we have |H∗| ≤ ⌈fracHuge⌉ ≤ ⌈⌊(k − p(S(ℓ∗,r∗)))/(0.5 + ξ)⌋⌉ ≤
(k− p(S(ℓ∗,r∗)))/(0.5+ξ) due to Lemma 3.2 and Equation (3.5) yielding:

p(S∗)≤ p(S(ℓ∗,r∗))≤ k− (0.5+ξ)|H∗| (3.7)

On the other hand, already the classical assignment LP constraints upper bound the load in
the interval by k, which implies:

∑
i∈M(ℓ∗,r∗)

∑
j∈S

p jxi j ≤ k− ∑
i∈M(ℓ∗,r∗)

∑
j∈H∪L

p jxi j < k−0.5 ·fracLarge−(0.5+ξ) ·fracHuge

Hence, Lemma 3.2 and Lemma 3.5 give us:

p(S∗)≤ ∑
i∈M(ℓ∗,r∗)

∑
j∈S

p jxi j ≤ k−0.5 · |L
∗|−4
2

− (0.5+ξ) · (|H∗|−1) (3.8)

We conclude the proof by considering two cases. In particular, if |L∗| ≤ 6, we have:

(2− γ)
(3.6)
< p(S∗)+ p(L∗)+ p(H∗)− (k−1)(1.5− γ)

(3.7)
≤ k− (0.5+ξ)|H∗|+(0.5+ξ)|L∗|+ |H∗|− (k−1)(1.5− γ)

= (γ −0.5)(k−|H∗|− |L∗|)−ξ |H∗|+ξ |L∗|+ γ|H∗|+ γ|L∗|+1.5− γ

≤ ξ |L∗|+ γ|L∗|+1.5− γ ≤ 6ξ +6γ +1.5− γ ≤ 2− γ

3.3 A Summary of Our Complexity Results 67

Note that we did use γ ≤ 0.5, γ ≤ ξ , and γ +ξ ≤ 1
12 . If |L∗| ≥ 7, on the other hand, we

have:

(2− γ)
(3.6)
< p(S∗)+ p(L∗)+ p(H∗)− (k−1)(1.5− γ)

(3.8)
< k− |L∗|−4

4
− (0.5+ξ)(|H∗|−1)+(0.5+ξ)|L∗|+ |H∗|− (k−1)(1.5− γ)

= (γ −0.5)(k−|H∗|− |L∗|)− |L∗|
4

−ξ |H∗|+ξ +ξ |L∗|+ γ|H∗|+ γ|L∗|+3− γ

≤ (ξ + γ − 1
4
)|L∗|+ξ +3− γ

≤ (ξ + γ − 1
4
)7+ξ +3− γ = 1.25+8ξ +7γ − γ ≤ 2− γ

This time, we used γ ≤ 0.5, γ ≤ ξ , ξ + γ ≤ 0.25 and 8ξ +7γ ≤ 0.75. Since we did reach
the contradiction (2− γ)< (2− γ) in both cases, the proof is complete. ■

Lastly, we choose values for ξ and γ , which satisfy all the requirements of the above
lemma and maximize γ . The biggest γ is achieved by setting γ = ξ = 1

24 . This concludes
the proof of Theorem 3.2.

3.3 A Summary of Our Complexity Results
We want to introduce our complexity results to frame the context of our constructive
algorithm. We give an intuitive summary here without going too much into the technical
details. We give the underlying basic reduction in more detail and sketch how to adapt
the techniques already present there for the other problems. The complexity results build
upon the ones in [66]. In that work, a satisfiability problem denoted as 3-SAT∗ was
introduced and shown to be NP-hard, and all reductions in the present work start from
this problem. An instance of the problem 3-SAT∗ is a conjunction of clauses with exactly
3 literals each. Each of the clauses is either a 1-in-3-clause or a 2-in-3-clause; that is,
they are satisfied if exactly one or two of their literals, respectively, evaluate to true in a
given truth assignment. We denote a 1-in-3-clause (2-in-3-clause) with literals x, y, and
z as (x,y,z)1 ((x,y,z)2). Furthermore, we use the notation [n] = {0, . . . ,n−1} for each
integer n. There are as many 1-in-3-clauses in a 3-SAT∗ instance as there are 2-in-3-clauses,
and each literal occurs exactly twice. Hence, a minimal example for a 3-SAT∗ instance
is given by (x0,x1,¬x2)1 ∧ (¬x0,x1,x2)1 ∧ (x0,¬x1,¬x2)2 ∧ (¬x0,¬x1,x2)2. We have two
1-in-3-clauses and two 2-in-3-clauses, and two occurrences of xi and ¬xi for each i ∈ [3].
The formula is satisfied if we map every variable to false.

In each reduction, we start with an instance I of 3-SAT∗ with m many 1-in-3-clauses
C0, . . . ,Cm−1, m many 2-in-3-clauses Cm, . . . ,C2m−1 and n variables x0, . . . ,xn−1. Since
there are 2m clauses with 3 literals each and 4 occurrences for each variable, we have
6m = 4n. In the following, the precise positions of the occurrences of the variables are
important, and we have to make them explicit. To this end, let for each j ∈ [n] and t ∈ [4]
the pair (j, t) correspond to the first or second positive occurrence of variable x j if t = 0 or
t = 1, respectively, and to the first or second negative occurrence of variable x j if t = 2 or
t = 3. Furthermore, let κ : [n]× [4]→ [2m]× [3] be the bijection that maps (j, t) to the cor-
responding clause index and position in that clause. For instance, in the above example we
have κ(0 =̂ x0,2 =̂ third occurance) = (1 =̂ second clause,0 =̂ first variable of clause)
and κ(2,1) = (3,2).

68 Chapter 3. Restricted Assignment Interval

Next, we construct an instance I′ of the problem considered in the respective case. For
the restricted assignment type problems, all job sizes are integral and upper bounded by
some constant T such that the overall size of the jobs equals |M|T . Hence, if a machine
receives jobs with an overall size of more or less than T , the objective function value is
worse than T for both the makespan and fair allocation case. The goal is to show that
there is a schedule with makespan T for I′, if and only if I is a yes-instance. This rules
out approximation algorithms with a rate lower than (T +1)/T for the makespan problem
since the overall load is |M|T . For the low rank problem, we first design a restricted
assignment reduction using the above approach and then show that there exist low rank
scheduling instances that approximate the restricted assignment instance with arbitrary
precision.

Simple Reduction. We start with a simple reduction for the general restricted assign-
ment problem (with arbitrary restrictions), introducing several ideas and gadgets relevant
to the following reductions. Note that the reduction is very similar to the one by Ebenlendr
et al. [24] and to a reduction in [66].

2

1

0

TJx

¬x

¬x

TJy

¬y

¬y

z

z

TJz

CJ

x

CJ CJ

CJ

x

CJ

CJ

¬z

x true y true z false
TMachs for x,y,z

x ∨ ¬y ∨ z

1-in-3-clause

x ∨ ¬y ∨ ¬z

2-in-3-clause

Figure 3.1: (Incomplete) example schedule from the reduction. TJobs (grey) form the
assignment, in this case, x and y are true, and z is false. The VJobs (orange) corresponding
to the chosen assignment can fill empty slots on the clause machines (CMachs), while
the VJobs not corresponding to the assignment can be put on the respective TMach. The
CMachs have one or two empty slots if they represent a 1-in-3-clause or 2-in-3-clause,
respectively. The location of these slots is flexible, as the CJobs (blue) of a clause can be
scheduled in any permutation on the respective machines.

We have three types of basic jobs and machines, namely, truth assignment machines
and jobs that are used to assign truth values to variables, clause machines and jobs that
model clauses being satisfied, and variable jobs that connect the first two types. More
formally:

• Truth assignment machines: TMach(j,0) and TMach(j,1) for each j ∈ [n].
• Truth assignment jobs: TJob(j) with size 2, eligible on {TMach(j,0),TMach(j,1)}

for each j ∈ [n].
• Clause machines: CMach(i,s) for each i ∈ [2m] and s ∈ [3] .
• Clause jobs: CJob(i,s) eligible on {CMach(i,s′) |s′ ∈ [3]}, for each i ∈ [2m] and

s ∈ [3]. The job CJob(i,0) has size 1, CJob(i,2) has size 2, and CJob(i,1) has size
2 if clause Ci is a 1-in-3-clause and size 1 otherwise.

• Variable jobs: VJob(j, t) with size 1, eligible on {TMach(j,⌊ t
2⌋),CMach(κ(j, t))}

for each j ∈ [n] and t ∈ [4].

3.3 A Summary of Our Complexity Results 69

Note that the overall job size ∑ j∈J p(j) is equal to 2|M|. Consider the case that
we have a satisfying truth assignment for instance I (as in Figure 3.1). If variable
x j is assigned to true, we place TJob(j) on TMach(j,0), VJob(j,0) and VJob(j,1) on
CMach(κ(j,0)) and CMach(κ(j,1)), respectively, together with local size 1 clause jobs.
Furthermore, VJob(j,2) and VJob(j,3) are placed on TMach(j,1) and CMach(κ(j,2)) and
CMach(κ(j,3)) each receive a local size 2 clause job. If variable x j is assigned to false,
we place TJob(j) on TMach(j,1), and the placement strategy of the positive and negative
variable jobs is reversed. The placement of the clause jobs has to work out since the truth
assignment is satisfying. This approach yields a schedule with a makespan of 2. The other
way around, we can create a satisfying truth assignment for I, by basing the assignment of
x j on the placement of TJob(j), and hence we have:

Lemma 3.7 There is a satisfying truth assignment for I, if and only if there is a schedule
with makespan 2 for I′.

This reduction forms the basis of all the other ones considered in this section.

3.3.1 Three Resources
The RAR(3) case is the cleanest usage of the previous construction. In the end, sched-
ules look the same as before, though the eligible machines are defined through resources
and are slightly different. Imagine all truth assignment machines TMach on a line. With
one resource that is increasing throughout the machines and one that is decreasing, we
can easily choose demands, such that each TJob(j) is only eligible on TMach(j,0) and
TMach(j,1). The clause machines CMach are interleaved with the truth assignment ma-
chines corresponding to the same variable on that conceptual machine line. Though the
specific choices of resource capacities and demands are a bit technical, the construction
ensures that the truth assignment and variable jobs have the same sets of eligible machines
as before. The clause jobs have slightly different eligibilities. We use the third resource
to model that the ith set of three clause jobs is eligible on all clause machines CMach(i′,s)
with i′ ≥ i (instead of i′ = i as before). Since each clause machine needs exactly one clause
job to ensure a makespan of 2, placing the last set of clause jobs fixes the machines for the
penultimate set of clause jobs, and so on.

Hence, Lemma 3.7 works the same as before, and we have:

Theorem 3.3 There is no better than 1.5-approximation for RAR(3) and no better than
2-approximation for the fair allocation version of this problem, unless P = NP.

3.3.2 Two Resources
The reduction for RAR(2) follows the same ideas but is more technical. We have to
reintroduce the restrictions we are losing from the third resource via arguments over job
sizes and the target makespan. For that, we have to increase the target makespan of a
schedule corresponding to a yes-instance of the 3-SAT∗ to 7, which also changes the
inapproximability result reached in the end. Through this technical adaptation that we omit
here, we get:

70 Chapter 3. Restricted Assignment Interval

Theorem 3.4 There is no better than 8
7-approximation for RAR(2) and no better than

7
6 -approximation for the fair allocation version of this problem, unless P = NP.

3.3.3 Interval Restrictions
In order to motivate the new ideas for the RAI reduction and to make them easier to
understand, it is helpful to revisit the reduction from [66] first. One of the main ingredients
in that result is a simple trick we use extensively.

Pyramid Trick. Consider the case depicted in Figure 3.2. We have 2ℓ consecutive
machines and ℓ pairs of jobs. The i-th pair of jobs is eligible on the i-th machine and up
to and including the (2ℓ+1− i)-th machine. Furthermore, we assume that each machine
has to receive at least one of the jobs. Then the first and last machine each have to receive
one job from the first pair because there are no other eligible jobs that can be processed on
these machines. Now, the same argument can be repeated for the second and second to last
machine and so on. Hence, machine i and (2ℓ+1− i) each have to receive exactly one job
from pair i.

1 2 ℓ ℓ+1 2ℓ−12ℓ
.1 1

2 2

ℓ ℓ ...
...

1
1

2
2

ℓ

ℓ
ℓ+1
ℓ

2ℓ−1
2

2ℓ
1.

Figure 3.2: A visualization of the pyramid trick. Squares represent jobs, and the intervals
in brackets next to them represent their sets of eligible machines.

Sorting. Since we are considering the interval case, we have to fix some ordering of the
machines. Imagine that the truth assignment machines are placed on the left and the clause
machines on the right. We could use similar truth assignment and clause jobs as in the
reductions before. However, variable jobs were eligible on one truth assignment machine
and one clause machine. Since they have to be eligible on an interval, all machines in
between would also be eligible in a naive adaptation of the reduction. We want to use the
pyramid trick to deal with this problem. The main work in [66] was to sort the information
regarding the variables made in the truth assignment gadget to enable the use of the
pyramid trick. Several gadgets have been introduced that were intertwined with the truth
assignment gadget and carefully built up the ordered information using the pyramid trick
and interlocking job sizes. The problem with this approach is that the job sizes can get big
rather fast if too many different job types are eligible on the same machines resulting in a
high value for T (and, therefore, a weak inapproximability result). The main idea in our
work is to decouple the decision and the sorting process and make the sorting process as
simple as possible to enable smaller job sizes and, therefore, a stronger result. Curiously,
the sorting process in [66] could be interpreted as some variant of insertion sort, while the
one used in the present reduction resembles bubble sort.

Keeping in mind the general ideas from before, we roughly sketch the new construction.
We have a truth assignment gadget that determines the truth values of the variables and
is followed by a gateway gadget whose sole purpose is to decouple the used job sizes

3.4 Future Work 71

in the truth assignment gadget and the sorting gadget. Next, there is the sorting gadget
that slowly reorders the information about the decisions in the truth assignment gadget.
Lastly, there is the clause gadget in which the truth assignment is evaluated. We again
refer to our paper [67] for the concrete reduction. Using that reduction, we can show the
following:

Theorem 3.5 There is no better than 9
8-approximation for RAI and no better than

8
7 -approximation for the fair allocation version of this problem, unless P = NP.

3.4 Future Work
We conclude this chapter with a brief discussion of possible future research directions in this
topic area. There are some obvious questions that can be pursued, building directly upon the
presented results. Most notably, it might be possible that the analysis of our approximation
algorithm is not tight, and a better parameter could therefore be chosen. Further narrowing,
or even closing, the gap between the best-known approximation and the inapproximability
result for RAI could also be approached via different algorithmic techniques or by even
stronger inapproximability results for RAI. Of course, an improved approximation ratio
(or inapproximability) for any problem of the family would be interesting to develop. We
would like to highlight LRS(2), in particular, as the, in some sense, easiest problem in the
family without a known polynomial time approximation with a ratio better than 2. Lastly,
only very little is known regarding fixed-parameter tractable algorithms for this family of
problems, even though fixed-parameter tractability, in general, has gotten a lot of attention
lately. For instance, it is open whether RAR(1) is fixed-parameter tractable with respect to
the objective value.

4. Many Shared Resources

We consider the many shared resources scheduling problem. In this model, we are given a
set of resources in addition to the machines and jobs. A job may require exclusive access
to one of the resources during its processing time, or in other words, two jobs needing the
same resource may not be scheduled in parallel. We show how combinatorial algorithms
can be used to tackle this problem and greatly improve the state of the art. We also prove
how jobs that need more than one resource increase the complexity of the problem.

This chapter is based on our paper Scheduling with Many Shared Resources [21] which
was accepted for publication in the proceedings of IPDPS 2023. Overall the paper was
developed and written in equal parts by my coauthors and myself. I did more work on
the approximation algorithms (see Section 4.2 and Section 4.3) and less work on the
approximation schemes. The approximation schemes are, therefore, only summarized in
this thesis (see Section 4.4). The part on inapproximability in Section 4.5 is completely
my work and includes three results, of which the last two are original to this thesis.

4.1 Introduction
The study of scheduling problems with additional resources has a long and rich tradition.
Already in 1983, Blazewicz et al. [9] provided a classification for such problems along
with basic hardness results, and several additional surveys have been published since
then [7, 8, 25]. The problem of makespan minimization on identical parallel machines
with many shared resources or many shared resources scheduling (MSRS) for short, in
particular, was introduced by Hebrard et al. [36]. In this model, jobs need exclusive access
to a specific resource from a resource set during their processing.

4.1.1 Problem Definition
We consider many shared resources scheduling (MSRS). In this problem, we are given m
identical machines, a set J of n jobs, and a processing time or size p j ∈ N≥0 for each job
j ∈ J . Furthermore, each job needs exactly one additional shared resource in order to be
executed and no other job needing the same resource can be processed at the same time.
Hence, the jobs are partitioned into (non-empty) classes C, i.e.,

⋃
C = J , such that each

class corresponds to one of the resources. A schedule (π, t) maps each job to a machine

74 Chapter 4. Many Shared Resources

π : J → {1, . . . ,m} and a starting time t : J → N≥0. It is called valid if no two jobs
overlap on the same machine and no two jobs of the same class are processed in parallel,
i.e.:

• ∀ j, j′ ∈ J , j ̸= j′ with π(j) = π(j′): t(j)+ p j ≤ t(j′) or t(j′)+ p′j ≤ t(j)
• ∀c ∈ C : j, j′ ∈ c, j ̸= j′: t(j)+ p j ≤ t(j′) or t(j′)+ p′j ≤ t(j)

The makespan Cmax of a schedule is defined as max j∈J t(j)+ p j and the goal is to find a
schedule with minimum makespan. Note that MSRS also models the case in which some
jobs do not need a resource since in this case private resources can be introduced.

4.1.2 State of the Art and Motivation
As already mentioned, the MSRS problem was introduced by Hebrard et al. [36]. In their
application scenario, a satellite has a communication link with a ground station only for very
limited time, during which files stored on several memory banks should be downloaded via
several download channels. The download time of a file is proportional to its size, but only
one file from each memory bank can be downloaded at the same time. Hence, the download
channels correspond to the parallel machines, the files to the jobs, and the memory banks to
the resources. In that paper, they provided a (2m/(m+1))-approximation for the problem.
Strusevich [81] revisited MSRS and presented an additional application in human resource
management. Moreover, he provided a faster, alternative (2m/(m+ 1))-approximation
that is claimed to be simpler as well and a 6/5-approximation for the case with only two
machines. The work also extends the three field notation for scheduling problems based
on the convention for additional resources introduced in [9] to encompass the problem at
hand. In particular, MSRS is denoted as P|res · 111|Cmax (identical parallel machines |
resources each available once, each job needs one | makespan objective) in this notation.

The most recent result regarding MSRS is due to Dósa et al. [23] who provided an
efficient polynomial time approximation scheme (EPTAS) for MSRS with a constant
number of machines. In fact, the EPTAS even works for a more general setting where each
job j additionally may only be assigned to a machine belonging to a given set M(j) of
eligible machines.

Since MSRS includes makespan minimization on identical machines (without resource
constraints) as a subproblem, it is NP-hard already on two machines and strongly NP-hard
if the number of machines is part of the input due to straightforward reductions from
the partition and 3-partition problem, respectively. Hence, approximation schemes are
essentially the best we can hope for.

The MSRS problem has also been considered with regard to the total completion time
objective [44, 45]. The study of this variant is motivated by a scheduling problem in the
semiconductor industry. On the one hand, the authors show NP-hardness for generalizations
of the problem. On the other, they argue that the approach yielding a polynomial time
algorithm for total completion time minimization in the absence of resource constraints
leads to a (2−1/m)-approximation for the considered problem.

Another way of looking at MSRS is to consider it as a variant of scheduling with
conflicts, where a conflict graph is given in which the jobs are the vertices and no two jobs
connected by an edge may be processed at the same time. This problem was introduced
for unit processing times by Baker and Coffman in 1996 [4]. It is known to be APX-hard
[28] already on two machines with job sizes at most 4 and a bipartite agreement graph,
i.e., the complement of the conflict graph. There are many positive and negative results
for different versions of this problem (see, e.g., [4, 28] and the references therein). For

4.1 Introduction 75

instance, the problem is NP-hard on cographs with unit-size jobs but polynomial-time
solvable if the number of machines is constant [11]. Note that in the case of MSRS, we
have a particularly simple cograph, i.e., a collection of disjoint cliques.

4.1.3 Our Results
We present a 5/3-approximation in Section 4.2, a 3/2-approximation in Section 4.3,
approximation schemes in Section 4.4, and inapproximability results in Section 4.5. Note
that the 5/3- and 3/2-approximation have better approximation ratios than the previously
known (2m/(m+1))-approximation [36] already for 6 and 4 machines, respectively.

The 5/3-approximation is a simple and fast algorithm that is based on placing full
classes of jobs taking special care of classes containing jobs with particularly big sizes and
of classes with large processing time overall. While the 3/2-approximation reuses some
of the ideas and observations of the first result, it is much more involved. To achieve the
second result, we first design a 3/2-approximation for the instances in which jobs cannot
be too large relative to the optimal makespan and then design an algorithm that carefully
places classes containing such large jobs and uses the first algorithm as a subroutine for
the placement of the remaining classes. Note that our approaches are very different from
the one in [36], which successively chooses jobs based on their size and the size of the
remaining jobs in their class and then inserts them with some procedure designed to avoid
resource conflicts, and the one in [81], which merges the classes into single jobs to avoid
resource conflicts.

We summarize the two EPTAS results from our original paper for MSRS. The first
works if the number of machines is constant. The second uses resource augmentation for
the general case. In particular, we need ⌊(1+ε)m⌋ many machines in the latter result. Both
results make use of the basic framework introduced in [38], which in turn utilizes relatively
recent algorithmic results for integer programs (IPs) of a particular form – so-called N-fold
IPs. Compared to the mentioned work by Dósa et al. [23] – which provides an EPTAS
for the case with a constant number of machines as well – our result is arguably simpler
and faster (going from at least triply exponential in m/ε to doubly exponential). We also
provide the result with resource augmentation for the general case, which may be refined
in the future to work without resource augmentation as well.

Finally, we provide inapproximability results for variants of MSRS where each job
may need more than one resource. In particular, we show that there is no better than 5/4-
approximation for the variant of MSRS with multiple resources per job, unless P = NP,
even if no job needs more than three resources and all jobs have processing time 1, 2 or 3.
An alternative version of that result that we also sketch gives the same inapproximability
result if all jobs have a processing time of 1 and no job needs more than five resources. A
third approach shows that there exists no better than 4/3-approximation for the variant of
MSRS with multiple resources per job, unless P = NP when all jobs have processing time
1, but without a limit on the number of resources per job. Previously, the APX-hardness
result due to Even et al. [28] for scheduling with conflicts was known, which did focus
on a different context and in particular, does not provide bounds regarding the number of
resources a job may require.

76 Chapter 4. Many Shared Resources

4.1.4 Further Related Work
As mentioned above, there exists extensive research regarding scheduling with additional
resources and we refer to the surveys [7–9, 25] for an overview. For instance, the variant
with only one additional shared renewable resource where each job needs some fraction of
the resource capacity has received a lot of attention (see [40, 42, 49, 73] for some relatively
recent examples). Interestingly, Hebrard [36] pointed out that this basic setting is more
closely related to MSRS than it first appears: Consider the case that we have dedicated
machines, i.e., each job is already assigned to a machine, and we only have to choose the
starting times; each job needs one unit of the single additional shared resource, and the
shared resource has some integer capacity. This problem is equivalent to MSRS if the
multiple resources take on the roles of the machines and the machines take the role of the
single resource. Hence, results for variants of this setting translate to MSRS as well. For
instance, MSRS can be solved in polynomial time if at most two classes include more
than one job [47] and [35] yields a (3+ ε)-approximation.

Scheduling with conflicts has also been studied from the orthogonal perspective, where
jobs that are in conflict may not be processed on the same machines. This problem was
already studied in the 1990s (see e.g. [11, 12]), and there has been a series of recent results
[18, 32, 74] regarding the setting corresponding to MSRS where the conflict graph is a
collection of disjoint cliques.

4.1.5 Preliminaries
We introduce some additional notation and a first observation that will be used throughout
the following sections.

For any set of jobs X , let p(X) = ∑ j∈X p j denote its total processing time. Also, let
p(j) = p j for all jobs j ∈ J . While creating or discussing a schedule, for any machine m,
denote by p(m) the (current) total load of jobs on that machine m. Subsequently, for a set
of machines M, p(M) = ∑m∈M p(m).

For any combination of a set X ∈ {J ,C }, a relation ∗ ∈ {<,≤,≥,>}, and a num-
ber λ , we define X∗λ = {x ∈ X | p(x)∗λ }. Furthermore, given an interval v let Xv =
{x ∈ X | p(x) ∈ v}. For example it holds that J>1/2 = { j ∈ J | p(j)> 1/2} and C(1/2,3/4]=
{c ∈ C | p(c) ∈ (1/2,3/4]}.

Observation 1 It holds that OPT ≥ max{ p(J)
m ,maxc∈C p(c)}.

Hence, we assume that m < |C| as otherwise, there is a trivial schedule with one machine
per class. Furthermore, let us assume that we sort the jobs in decreasing order of processing
time. Consider the jobs jm and jm+1 at position m and m+1. Note that it has to hold that
OPT ≥ p(jm)+ p(jm+1), since either jm+1 has to be scheduled on the same machine as
one of the first m jobs, or two of the first m jobs have to be scheduled at the same machine.

4.2 A 5/3-approximation
In this section, we introduce a first simple algorithm that gives some intuition on the
problem that will be used more cleverly in the next section. We start by lower bounding
the makespan T of an optimal schedule and construct a schedule with makespan at most
5
3T . The algorithm works by placing full classes of jobs in a specific order. More precisely,

4.2 A 5/3-approximation 77

first classes that contain a job of size at least 1
2T , then classes with total processing time

larger than 2
3T , and lastly, all residual classes get placed.

Theorem 4.1 There exists an algorithm that, for any instance I of MSRS, finds a
schedule with makespan bounded by 5

3T in O(|I|) steps, where for the jobs jm and jm+1
with m-th and (m+1)-st largest processing time we define

T := max{ 1
m

p(J),max
c∈C

p(c), p(jm)+ p(jm+1)} .

As noted earlier, T denotes a lower bound on the makespan. We scale each job by
1/T . As a consequence, all jobs have a processing time in (0,1] and the total load is
bounded by m. Denote by CB+ := {c ∈ C | |c∩J>1/2|= 1} all classes containing a job of
size greater than 1/2. We aim to find a schedule with makespan in [1,5/3]. The following
two observations are directly implied by the definition of T .

Observation 2 For each class c ∈ C it holds that |c∩J>1/2| ≤ 1.

Observation 3 It holds that |CB+|= |J>1/2| ≤ m.

Lastly, we address classes with a large total processing time.

Lemma 4.1 Each class c ∈ C>2/3 \CB+ can be partitioned into parts c1 and c2 = c\ c1
such that 1/3 ≤ p(c1) ≤ 2/3 and p(c2) ≤ 2/3. This partition can be found in time
O(|c|).

Proof. If there exists a job j⊤ in c with p(j⊤)> 1/3, we define c1 = { j⊤ } and c2 = c\c1.
Note that c does not contain a job with processing time larger than 1/2 and hence, p(c1) ∈
(1/3,1/2] and p(c2) = p(c)− p(c1)< 1−1/3 = 2/3.

Otherwise, greedily add jobs from c to an empty set c1 until p(c1) ≥ 1/3 and set
c2 = c\ c1. Since all the jobs of c have processing time at most 1/3, it holds that p(c1) ∈
[1/3,2/3]. Consequently, it holds that p(c2)≤ 2/3 as well. ■

Algorithm: Algorithm_5/3

Step 1 Consider all classes containing a job with processing time larger than 1/2, CB+ .
Each of these classes is assigned to an individual machine, and all jobs from such a
class are scheduled consecutively, see Figure 4.1a.

Step 2 Consider all remaining classes with total processing time larger than 2/3,
C>2/3 \CB+ . Try to add these classes on the machines filled with the classes CB+ and
afterward proceeds to empty machines, see Figure 4.1b. If the considered machine
has load in (1,5/3], close the machine and no longer attempt to place any other job on
it. Note that after placing the classes CB+ all machines remained open. Let mi be the
machine we try to place class c ∈ C>2/3 \CB+ on. If mi has load p(mi) ≤ 5/3− p(c),
place the entire class on this machine and close it. Otherwise, partition the class c in
two parts c1 and c2 such that p(c2)≤ p(c1)≤ 2/3 (cf. Lemma 4.1). Place the larger

78 Chapter 4. Many Shared Resources

part c1 on the current machine starting at 5/3− p(c1) and close it, moving to the next
machine. All jobs on this machine are delayed such that the first job starts at p(c2). All
jobs from c2 are scheduled between 0 and p(c2) on this machine. If it has load of at
least 1, this machine is closed as well.

Step 3 — Greedy. Finally, place the classes C≤2/3 \CB+ , see Figure 4.1c. Consider the
residual machines one after another and add each class c ∈ C≤2/3 \CB+ entirely to the
considered machine. As soon as the load of a machine exceeds 1, close it and move to
the next.

5
3

4
3

1

2
3

1
3

0

J1 J2
J3 J4 J5

(a) Classes with large jobs

5
3

4
3

1

2
3

1
3

0

J1

J2 J3

J4

J5

(b) Placing large classes

5
3

4
3

1

2
3

1
3

0

J1

J2 J3

J4

J5

(c) Adding all other classes

Figure 4.1: The three steps of the algorithm (where J>1/2 = {J1, . . . ,J5 })

Algorithm Correctness.

Lemma 4.2 Given any instance I = (m,C) of MSRS, Algorithm_5/3 produces a
feasible schedule with makespan at most 5

3OPT(I).

Proof. To prove the correctness and approximation ratio of the algorithm, we have to prove
the following points:

• All jobs can be scheduled
• The processing times of two jobs from the same class never overlap.
• The latest completion time of a job is given by 5/3
We start by proving that all jobs are scheduled by showing that the algorithm closes

only machines that have a total load of at least 1. Since the total load of the jobs is bounded
by m, when attempting to schedule the last class, there has to exist a non-closed machine.
The only time the algorithm potentially closes a machine with load less than 1 is in step
2 when a class C>2/3 \ CB+ is split into two parts. Let cB+ be the class already on the
machine, and c1 and c2 be the parts of the class the algorithm tries to schedule in this step,
such that p(c1) ≥ p(c2). Since the class was split in two by the algorithm, it holds that
p(cB+)+ p(c1)+ p(c2)> 5/3. Furthermore, since p(c1)+ p(c2)≤ 1 and p(c1)≥ p(c2)
it holds that p(c2)≤ 1/2 and hence p(cB+)+ p(c1)> 7/6. Hence that closed machine has
a load of at least 1.

4.3 A 3/2-approximation 79

Next, we prove that the processing of two jobs from the same class never overlaps in
time. Again, the only time one class is scheduled on more than one machine is in step 2.
When placing the two parts, these parts do not overlap since they have a processing time of
at most 1 and one of the parts starts at 0 while the other ends at 5/3. The algorithm does
not generate any overlapping by shifting jobs already on the machine since those have to
originate from classes in CB+ , which each got placed on an individual machine.

Finally, we prove that the latest completion time of a job is given by 5/3. After step 1
all the machines have a load of at most 1 since each class has a total processing time of
at most 1. In step 2, we only add an entire class if the total load is bounded by 5/3. If a
class is split, the part that is added has a total processing time of at most 2/3. Since before
adding this part the machine had a load of at most 1, the load of the closed machine is
bounded by 5/3. ■

The existence and correctness of Algorithm_5/3 directly proves Theorem 4.1.

4.3 A 3/2-approximation
In this section, we introduce the more involved algorithm hinted at earlier. While the
general idea is similar, finding a lower bound T for the makespan and then placing classes
depending on included big jobs and total processing time, the steps are a lot more granular.
We first give a 3/2-approximation algorithm for instances without jobs of size bigger than
3/4T . After that, we introduce a second 3/2-approximation algorithm that places classes
with jobs of size bigger than 3/4T on distinct machines and fills them with other jobs in a
clever way such that we can reuse the first algorithm for the remaining classes.

Theorem 4.2 There exists an algorithm that, for any given instance I of MSRS, finds a
schedule with makespan bounded by 3

2OPT in O(n+m log(m)) steps.

In the following, let us assume that we have scaled the instance such that OPT = 1. In
order to provide a 3/2-approximation algorithm, we consider four different types of jobs.
We split the jobs of a given instance into huge jobs JH = J>3/4 = { j ∈ J | p j > 3/4},
big jobs JB = J(1/2,3/4] = { j ∈ J | p j ∈ (1/2,3/4]}, medium jobs JM = J(1/4,1/2] =
{ j ∈ J | p j ∈ (1/4,1/2]}, and all residual jobs (with a processing time of at most 1/4)
which we refer to as small jobs.

Furthermore, turning to the classes C we define the subset CH = {c ∈ C : |JH ∩ c|= 1}
of all classes containing a huge job, the subset CB = {c ∈ C : |JB ∩ c|= 1} of all classes
containing a big job, the subset C≥3/4 = {c ∈ C | p(c)≥ 3/4} of all classes with a total
processing time of at least 3/4, and the subset C(1/2,3/4) = {c ∈ C | p(c) ∈ (1/2,3/4)} of
all classes with a total processing time in (1/2,3/4).

Lemma 4.3 For any normalized optimal schedule and the corresponding partition of C
into CH ,CB,C≥3/4 \ (CH ∪CB) and C \C≥3/4 it holds that

|CH |+max
{
|CB|,

⌈
1
2
(
|CB|+ |C≥3/4 \ (CH ∪CB)|

)⌉}
≤ m.

Proof. Clearly, it holds that |CH |+ |CB| ≤ m. Let us consider the total load processed in
the time corridor between 1/4 and 3/4 (over the entire schedule). For each class c ∈ CH

80 Chapter 4. Many Shared Resources

we have to schedule at least load 1/2 in this corridor, since the tallest job in c, which
has a processing time of at least 3/4, has to start before 1/4 and has to end after 3/4.
For each class c ∈ CB, at least load 1/4 is scheduled in this corridor since its big job,
which has a processing time in (1/2,3/4), has to end after 1/2 and has to start before
1/2. Finally, each class in C≥3/4 \ (CH ∪CB) has load of at least 3/4. Since at most 1/2
of this load can be scheduled outside of the corridor, there has to be load of at least 1/4
scheduled inside of this corridor. Hence the total load scheduled in this corridor is at least
1
2 |CH |+ 1

4(|CB|+ |C≥3/4 \ (CH ∪CB)|).
Since each machine covers at most 1/2 of this load, it holds that

m≥

⌈
1
2 |CH |+ 1

4(|CB|+ |C≥3/4 \ (CH ∪CB)|
1
2

⌉
= |CH |+

⌈
1
2
(
|CB|+ |C≥3/4 \ (CH ∪CB)|

)⌉
and that proves the claim. ■

Next, we prove that in O(n+m log(m)) steps it is possible to find the smallest value T
with max{ 1

m p(J),maxc∈C p(c)} ≤ T ≤ OPT such that the instance scaled by 1/T fulfills
the properties from Observations 2 and 3 and Lemma 4.3. The algorithms presented in this
section will find a schedule with a makespan of at most 3/2 for this scaled instance, i.e.
the schedule for the original instance will have a makespan of at most (3/2)T .

Lemma 4.4 In O(n+m log(m)) for any given instance I, it is possible to find a lower
bound T ≤ OPT such that for the instance normalized by 1/T and the corresponding
partition of C into CH ,CB,C≥3/4 \ (CH ∪CB) and C \C≥3/4 it holds that

|CH |+max
{
|CB|,

⌈
1
2
(
|CB|+ |C≥3/4 \ (CH ∪CB)|

)⌉}
≤ m.

Proof. By Observation 1, we know that we can set T ≥ max{ 1
m p(J),maxc∈C p(c)}. Let

p̃i denote the (m+1)-st largest processing time (in a list of processing times containing
one entry per job). Since each machine can contain at most one job with processing times
larger than OPT/2, we set T ≥ max{ 1

m p(J),maxc∈C p(c), p̃m + p̃m+1 }. It is possible to
find pm+1 in O(n) steps by using the famous median algorithm of Blum et al. [10].

Since each class in CH ∪CB contains an item with processing time ≥ 1/2, only the
m classes containing the largest items are candidates for these sets. These classes can
be found in O(n) by identifying the largest item of each class and comparing it to pm+1.
Similarly the number of classes in C≥3/4 is bounded by (4/3)m, which can be identified in
O(n) by comparing their processing time to max{ 1

m p(J),maxc∈C p(c), p̃m + p̃m+1 }.
After identifying the potential classes, we have to deal with at most O(m) classes. For

each of these classes there exist three threshold values for T ∈ N (i.e., ⌈4
3(max j∈c p j)+

1/3⌉,2(max j∈c p j)+1, and ⌈4
3 p(c)+1/3⌉), that would categorize these classes to be no

longer in CH , CB, and C≥3/4, respectively, which after the first two steps can be found in
O(m) for all the classes, since they depend on the largest processing time in the class and
the total processing time of that class.

The algorithm can take all these values and sort them by size in O(m log(m)). Via
binary search in O(m log(m)), it is possible to find the smallest value T such that T ≥

4.3 A 3/2-approximation 81

max{ 1
m p(J),maxc∈C p(c),2pm+1 } and for the instance normalized by 1/T and the cor-

responding partition into of C into CH ,CB,C≥3/4 \ (CH ∪CB) and C \C≥3/4 it holds that

|CH |+max
{
|CB|,

⌈
1
2
(
|CB|+ |C≥3/4 \ (CH ∪CB)|

)⌉}
≤ m. ■

In the following, we only consider the instance that was scaled by 1/T . We present
two Lemmas stating the possibility of partitioning some classes into two parts that will be
scheduled on two different machines.

Lemma 4.5 Let c ∈ C≥3/4 and max j∈c p j ≤ 3/4. Then c can be partitioned into
two parts č and ĉ with p(č) ≤ 1/2 and p(ĉ) ≤ 3/4 and p(č) ≤ p(ĉ). Furthermore, if
max j∈c p j ≤ 1/2, it holds that p(č) ∈ (1/4,1/2] or p(ĉ) ∈ (1/4,1/2].

Proof. Let c ∈ C≥3/4 and max j∈c p j ≤ 3/4. If max j∈c p j > 1/2, we set ĉ to include the
job from c with size bigger than 1/2 and č = c\ ĉ. If max j∈c p j ∈ (1/4,1/2], then let c′

include a maximal job from c and let ĉ, č ∈ {c′,c\ c′} be distinct such that p(č) ≤ p(ĉ).
Lastly, if max j∈c p j ≤ 1/4, then we construct c′ by greedily adding jobs from c to c′ until
p(c′)> 1/4 and again define ĉ, č ∈ {c′,c\ c′} to be distinct such that p(č)≤ p(ĉ). ■

Lemma 4.6 Let c ∈ C with p(c) ∈ (1/2,3/4) and max j∈c p j ≤ 1/2. Then c can be
partitioned into two parts č and ĉ with p(č)≤ p(ĉ)≤ 1/2 and 1/4 < p(ĉ).

Proof. Let c ∈ C with p(c) ∈ (1/2,3/4) and max j∈c p j ≤ 1/2. If max j∈c p j ∈ (1/4,1/2],
then let c′ include a maximal job from c and let ĉ, č ∈ {c′,c \ c′} be distinct such that
p(č)≤ p(ĉ). If max j∈c p j ≤ 1/4, then we construct c′ by greedily adding jobs from c to
c′ until p(c′)> 1/4 and again define ĉ, č ∈ {c′,c\ c′} to be distinct such that p(č)≤ p(ĉ).
1/4 < p(ĉ) follows directly from the fact that p(č)≤ p(ĉ) and 1/2 < p(č)+ p(ĉ). ■

In the following, we will present two algorithms. The first can only handle instances
with classes that do not possess an item with a processing time larger than 3/4. This
algorithm will be used as a subroutine for the second algorithm, which can handle all
instances.

4.3.1 Algorithm for Instances without Huge Jobs
Here we give an algorithm for instances with |CH |= 0. We assume that the instance was
scaled by a value 1/T and the classes are categorized as described earlier. The main idea is
to repeatedly take combinations of classes with specific parameters which conveniently fill
one, two or three machines without opening additional ones. Fill in this case means that the
average load of full machines is in [1,3/2]. We start with taking two classes with total size
in (1/2,3/4) each, as those fill one machine. Then we continue with four classes with total
size ≥ 3/4 each and show how those can be arranged to fill three machines. The procedure
continues with different combinations of classes until all jobs are scheduled. We show the
correctness of the algorithm by arguing that closed machines have on average load of at
least 1, and every scheduled job is finished at 3/2. At some point in the algorithm, we
reach a state where only jobs of classes with a total load of at most 1/2 are left. Those can
be scheduled greedily by placing full classes on residual machines until a machine has
load at least 1.

82 Chapter 4. Many Shared Resources

Since we repeatedly have to refer to the jobs which have not been scheduled, we
introduce the notation of C̄X ⊆ CX to denote the subset of classes that have not been
scheduled at the described step for any class specifier X . Note that at the beginning of the
algorithm, we have C̄X = CX for all the sets. Furthermore, the algorithm will close some
of the machines during the construction of the schedule and will not add jobs to closed
machines. We denote the set of closed machines as Mc. The algorithm is as follows:

Algorithm: Algorithm_no_huge

Step 1 By applying Lemma 4.5, partition every class c ∈ C>3/4 into two parts č, ĉ ⊆ c
with p(č)≤ p(ĉ)≤ 3/4 and p(č)≤ 1/2.

Step 2 While |C̄(1/2,3/4)| ≥ 2: Take c1,c2 ∈ C̄(1/2,3/4). Schedule c1 and c2 on one
machine such that c1 starts at 0 and c2 ends at 3/2.

Claim The load of each machine closed in this step is in (1,3/2). After this step, it holds
that |C̄(1/2,3/4)| ≤ 1, the partial schedule is feasible, and the total load of closed machines
Mc is at least |Mc|.

Step 3 While |C̄≥3/4| ≥ 4: Take c1,c2,c3,c4 ∈ C̄≥3/4. On the first machine schedule ĉ1
and ĉ2, such that ĉ1 starts at 0 and ĉ2 ends at 3/2. On the second machine schedule č1
and c3, such that č1 ends at 3/2 and starts after 1. On the third machine schedule č2 and
c4, such that č2 starts at 0 and ends before 1/2 followed by c4, see Figure 4.2b for an
example. Close all three machines.

Claim After this step |C̄(1/2,3/4)| ≤ 1 and |C̄≥3/4| ≤ 3, the partial schedule is feasible, and
the total load of closed machines Mc is at least |Mc|. Furthermore, all scheduled jobs are
finished by 3/2.

3
2

5
4

1
3
4

1
2

1
4

0

c1

c2

(a) Step 2

3
2

5
4

1
3
4

1
2

1
4

0

ĉ1

ĉ2

c3

č1

č2

c4

(b) Step 3

3
2

5
4

1
3
4

1
2

1
4

0

c3

ĉ1

č1

c2

(c) Step 4

3
2

5
4

1
3
4

1
2

1
4

0

c

(d) Step 5

Figure 4.2: Examples for Steps 2 to 5

Step 4 If |C̄≥3/4| ≥ 2 and |C̄(1/2,3/4)| = 1: Take c1,c2 ∈ C̄≥3/4 and c3 ∈ C̄(1/2,3/4).
Schedule c3 on the first machine, followed by ĉ1 such that it ends at 3/2. Schedule

4.3 A 3/2-approximation 83

č1 on the second machine followed by the jobs from c2 and close both machines, see
Figure 4.2c for an example.

Claim After this step it holds that |C̄(1/2,3/4)| = 0 and |C̄≥3/4| ≤ 3 or it holds that
|C̄(1/2,3/4)| = 1 and |C̄≥3/4| ≤ 1. This implies that |C̄>1/2| ≤ 3 after this step and that
C̄>1/2 contains at most one class with total processing time less than 3/4. Furthermore, the
partial schedule is feasible, the total load of closed machines Mc is at least |Mc|, and no
scheduled job finishes after 3/2.

Depending on the size of |C̄>1/2| the algorithm chooses one of three procedures:

Step 5 If |C̄>1/2| ≤ 1: Place this class c on one machine. Fill this machine and the
residual machines greedily with the residual classes in C̄≤1/2.

Claim After this step, it either holds that 2 ≤ |C̄>1/2| ≤ 3 or all jobs have been scheduled
feasibly with no job finishing after 3/2.

Proof. In the latter case, we can place all remaining jobs since there are at least as many
open machines as there is open load because, before this step, we had p(Mc)≥ |Mc|. Each
opened machine will be filled with load in [1,3/2] since each residual job has a size of at
most 1/2. ■

Step 6 If |C̄>1/2|= 2: Let C̄>1/2 = {c1,c2 } with p(c1)≥ p(c2). We know that p(c1)≥
3/4.

1. If p(c2)≤ 3/4:
a. If p(c1)+ p(c2)≤ 3/2: Schedule both on one machine (with c1 starting at 0

and c2 ending at 3/2), close it, and continue greedily with the residual jobs.
b. If p(c1)+ p(c2)> 3/2: Place c2 on one machine followed by ĉ1 such that

ĉ1 ends at 3/2 and close the machine. Place č1 on the next machine and
continue greedily with the residual jobs in C̄≤1/2.

2. If p(c2)≥ 3/4:
a. If p(ĉ1)+ p(ĉ2)≤ 1: Schedule c2 followed by ĉ1 on one machine and close

it. Start č1 at 0 on the next machine and continue greedily with the residual
jobs in C̄≤1/2.

b. If p(ĉ1)+ p(ĉ2) > 1: Then place ĉ1 and ĉ2 on one machine such that ĉ1
starts at 0 and ĉ2 ends at 3/2. Place č2 at the bottom and č1 at the top of the
next machine. Continue greedily with the residual classes in C̄≤1/2. Start
placing them between č2 and č1 until the load of that machine is at least 1
and then continue with the empty machines.

Claim After this step, it either holds that |C̄>1/2| = 3 or all jobs have been scheduled
feasibly with no job finishing after 3/2.

Proof. We will prove the latter case. If p(c2)≤ 3/4, the load of the machines that contains
either c1 and c2 or only c2 and ĉ1 has a load in (1,3/2]. Each residual class (or part of a
class) has a total processing time of at most 1/2. Furthermore, up to this step, it holds that
p(Mc)≥ |Mc|. As a consequence, greedily scheduling the residual classes starting with č1
is possible.

84 Chapter 4. Many Shared Resources

3
2

5
4

1
3
4

1
2

1
4

0

c2

ĉ1

č1

(a) Step 6.2a

3
2

5
4

1
3
4

1
2

1
4

0

ĉ1

ĉ2

č2

č1

(b) Step 6.2b

3
2

5
4

1
3
4

1
2

1
4

0

ĉ1

c2

c3

č1

(c) Step 7.1

3
2

5
4

1
3
4

1
2

1
4

0

ĉ1

ĉ2

č2

c3

č1

(d) Step 7.2a

3
2

5
4

1
3
4

1
2

1
4

0

ĉ1

ĉ2

c3

č1

č2

(e) Step 7.2b

Figure 4.3: Examples for Step 6 and Step 7. Orange blocks represent space for residual
classes.

If, on the other hand, p(c2)> 3/4 holds, the machine containing c2 and ĉ1 (or ĉ2 and ĉ1
respectively) has a total load of at least 1 in either case and placing č1 (and č2) as described
does not provoke an overlapping of two jobs requiring the same resource (see Figure 4.3).
Furthermore, the machine containing c2 and ĉ1 (or ĉ2 and ĉ1 respectively) has a total load
of at most 3/2 since p(č2)+ p(ĉ1)+ p(ĉ2)≤ 1/2+1 if p(ĉ1)+ p(ĉ2)≤ 1 and p(ĉi)≤ 3/4
for i ∈ {1,2}. The residual classes can again be scheduled greedily. This is easy to see in
the case p(ĉ1)+ p(ĉ2)≤ 1 and otherwise, we have p(č2)+ p(č1) ∈ [0,1), and hence the
remaining gap has a size of at least 1/2. Since all remaining classes have total load of at
most 1/2 it is possible to greedily add such classes until the total load of that machine is at
least 1 or all remaining classes have been placed. ■

Step 7 If |C̄>1/2|= 3: Then C̄>1/2 = C̄≥3/4. Let C̄≥3/4 = {c1,c2,c3 }.
1. If there exists an i ∈ {1,2,3} such that ĉi ≤ 1/2: Let w.l.o.g. ĉ1 ≤ 1/2. On the

first machine, schedule ĉ1 followed by all the jobs from c2. On the next machine,
schedule all the jobs from c3 and the job č1 such that it ends at 3/2 and close both
machines. Greedily schedule the jobs in C̄≤1/2 on the non-closed machines.

2. If ĉi > 1/2 for all i ∈ {1,2,3}: Place ĉ1 and ĉ2 on one machine such that ĉ1 starts
at 0 and ĉ2 ends at 3/2.

a. If p(č1)+ p(č2)+ p(c3)≤ 3/2: On the next machine place č2 followed by
c3 and č1 and let č1 end at 3/2. Close both machines.

b. If p(č1)+ p(č2)+ p(c3)> 3/2: Then w.l.o.g. p(č1)> 1/4 and we place c3
and č1 on the next machine, such that č1 ends at 3/2. Close both machines.
On the next machine, place č2 such that it starts at 0.

Greedily schedule the jobs in C̄≤1/2 on the non-closed machines.

Claim After this step, all scheduled jobs are finished by 3/2, and the schedule is feasible.

Proof. Note that the two machines containing the classes c1, c2, and c3 (or c1, ĉ2, and c3
respectively) have a total load of at least 2. As a consequence, all machines Mc closed to
this point have a load of at least |Mc|. Therefore, their residual load fits on the residual

4.3 A 3/2-approximation 85

machines. When greedily scheduling the classes, each machine is overloaded by at most
1/2 since each residual class has a processing time of at most 1/2. ■

Lemma 4.7 Given an instance I = (m,J ,C) that does not contain a huge job, the
algorithm Algorithm_no_huge finds a schedule with makespan at most 3

2T , where
T = max{ 1

m p(J),maxc∈C p(c), p̃m + p̃m+1 }.

4.3.2 Algorithm for the General Case
Now we present the above-mentioned algorithm that can handle any instance of the problem
and uses the previous algorithm in a subroutine. More specifically, this algorithm places all
classes which contain a huge job on a separate machine and fills those machines with jobs
from other classes. This is done by working through different combinations of classes until
we reach a point where we can handle the remaining classes and machines as a separate
problem instance, at which point the previous algorithm is used. As before, we assume that
the instance is scaled by a value 1/T , and the classes are categorized as described earlier.

We keep the following invariant of the remaining instance over the whole algorithm.

Invariant The total load of unscheduled jobs and jobs placed on open machines is
upper bounded by the number of open machines (open machines are all machines not
explicitly closed), i.e., p(M̄H)+ p(C̄)≤ |M̄u|+ |M̄H |, and in each step the cardinality of
the set of unused machines M̄u is bounded analogous to Lemma 4.3:

|M̄u| ≥ max{|C̄B|,⌈(|C̄B|+ |C̄≥3/4 \ (CH ∪CB)|)/2⌉} .

Algorithm: Algorithm_3/2

Step 1 Combine specific jobs of the same class into one job. The simplification is done
as follows: Iterate all classes c ∈ C

• If c ∈ CH combine all jobs in c to one huge job.
• Else if p(c) > 3/4 partition it into parts ĉ and č with p(č) ≤ p(ĉ) ≤ 3/4 and

p(č) ≤ 1/2. Introduce for each part a new job with processing time p(ĉ) and
p(č), see Lemma 4.5.

• Else if c ∈ C(1/2,3/4)∩CB: partition it into ĉ and č, such that ĉ contains the largest
job and č contains the rest.

• Else if c ∈ C(1/2,3/4) \CB partition it into parts ĉ and č with p(č) ≤ p(ĉ) ≤ 1/2,
see Lemma 4.6.

• Else if p(c)≤ 1/2 introduce one job of size p(c).

Claim This partition is feasible, and every solution for this simplified instance will still
be a solution for the original instance.

Step 2 For each c ∈ CH : Open one new machine and assign class c to it. Let MH be the
set of these opened machines. Close all the machines that have load exactly 1. Denote
by M̄H the set of currently open machines containing a class from CH .

86 Chapter 4. Many Shared Resources

Claim After this step, there are |M̄H | open machines with load in (3/4,1), |C̄H |= 0, and
the Invariant holds.

Step 3 Assign classes cs with p(cs) ≤ 1/2 greedily to machines M̄H and close each
machine with load at least 1. Continue until either no machines in M̄H with load less
than 1 is left, or no class with load at most 1/2 is left. If |M̄H | = 0, continue with
Algorithm_no_huge on the residual instance.

Claim After this step, either all jobs are scheduled feasibly, or it holds that |M̄H | ≥ 1 and
|C̄≤1/2|= 0. Furthermore, the partial schedule is feasible, all scheduled jobs are finished
by 3/2, and the Invariant holds.

Proof. Since we only closed machines with load at least one in this step and did not open
any new machines, the invariant on the number of unused machines is trivially true. Hence,
if we have used Algorithm_no_huge on the residual instance, by Lemma 4.7 it generates
a schedule with makespan at most 3/2 because p(C̄)≤ |M̄u| at that point and no class was
scheduled partially. ■

Step 4 While |M̄H | ≥ 2 and |C̄(1/2,3/4) \ C̄B| ≥ 1: Take m1,m2 ∈ M̄H , c ∈ C̄(1/2,3/4) \CB.
Shift the huge job on m2 up such that it ends at 3/2 and starts at or after 1/2. Schedule
ĉ on m1 such that it ends at 3/2, schedule č on m2 starting at 0 and close both machines,
see Figure 4.4a. If |M̄H | = 0, continue with Algorithm_no_huge on the residual
instance.

3
2

5
4

1
3
4

1
2

1
4

0

ĉ1

č1

m1 m2

(a) Step 4

3
2

5
4

1
3
4

1
2

1
4

0

č

ĉ

b

m1 m2

(b) Step 6

3
2

5
4

1
3
4

1
2

1
4

0

č1

č2
ĉ1

ĉ2

m1 m2 m3

(c) Step 8

Figure 4.4: Examples for Step 4, Step 6, and Step 8

Claim After this step, either all jobs are scheduled feasibly, or one of the following
two conditions holds: |M̄H |= 1 and |C̄≤1/2|= 0, or |M̄H | ≥ 2 and |C̄ \ (CB ∪ C̄≥3/4)|= 0.
Furthermore, the partial schedule is feasible, all scheduled jobs are finished by 3/2 and all
machines not in M̄H are either closed or empty, and the Invariant holds.

Proof. Note that we have not opened any other machine in this step. Hence the lower
bound on |M̄u| is trivially true. The total load of m1,m2 and c is at least 2 ·3/4+1/2 = 2.

4.3 A 3/2-approximation 87

Hence in each of these steps, we close two machines but also reduce the residual load
by at least 2, proving the upper bound on the residual load. Hence, if we have used
Algorithm_no_huge on the residual instance, by Lemma 4.7 it generates a schedule with
makespan at most 3/2 because p(C̄) ≤ |M̄u| at that point and no class was scheduled
partially. ■

Step 5 If |MH |= 1:
• If there exists c ∈ C̄ \ CB: Choose c′ ∈ { ĉ, č} with c′ ∈ (1/4,1/2]. Schedule c′

on the last open machine m0. Use Algorithm_no_huge to schedule the residual
instance, including the job c′′ ∈ c\ c′. "Rotate" the load on m0, such that c′ does
not overlap with c′′.

• If C̄ \ CB is empty: Assign all the residual classes to an individual machine.

Claim After this step, all jobs have been scheduled feasibly or |M̄H | ≥ 2 and |C̄ \ (CB ∪
C̄≥3/4)|= 0. Additionally, the partial schedule is feasible, all scheduled jobs are finished
by 3/2, and the Invariant holds.

Proof. First consider the case that C̄ \ CB ̸= /0. We know that such a required c′ exists.
This is given by Lemma 4.6 and Lemma 4.5 for classes in C̄(1/2,3/4) \CB and C̄≥3/4 \CB,
respectively. The residual instance will be scheduled with the algorithm for instances
without huge jobs. This generates a feasible schedule since all machines that are non-empty
before the start of this subroutine have load of at least 1. Furthermore, only class c is
partially scheduled, and the load on m0 can be rotated, such that ĉ and č do not overlap.
This rotation is always possible: The residual job c′′ of the class is smaller than 3/4
and will therefore be scheduled consecutively by Algorithm_no_huge. No matter when
c′′ gets scheduled, before or after, it will be a large enough gap that fits c′ since c′ got
scheduled starting at 0 (or ending at 3/2 after the rotation). Therefore, a correct rotation is
possible.

In the case that C̄ \ CB = /0, we put the residual classes to individual machines. This is
possible since only classes in CB are left and the number of residual machines is at least
|C̄B|. ■

Step 6 While |M̄H | ≥ 1, |C̄(1/2,3/4) ∩CB| ≥ 1, and |C̄≥3/4| ≥ 1: Take m1 ∈ M̄H , b ∈
C̄(1/2,3/4)∩CB and c ∈ C̄≥3/4. Open one new machine m2. Schedule č on m1 such that it
ends at 3/2. Schedule ĉ on m2 such that it starts at 0 and ends before 3/4. Schedule
b at m2 such that it ends at 3/2, see Figure 4.4b. Close both machines. If |M̄H | = 0,
continue with Algorithm_no_huge on the residual instance.

Claim After this step, all jobs are scheduled feasibly or |M̄H | ≥ 1 and |C̄ \ (C̄(1/2,3/4)∩
CB)|= 0 or |C̄ \ C̄≥3/4|= 0. Furthermore, all jobs are scheduled feasibly in this step, all
scheduled jobs are finished by 3/2, and the Invariant holds.

Proof. Note that we open one more machine in each iteration of the step. This machine
has to exist since in each of these steps, we have |C̄B|+ |C̄≥3/4 \CB| ≥ 2. In this step, we
have reduced |C̄B|+ |C̄≥3/4 \CB| by 2 and |C̄B| at least by 1. Hence there still have to exist
max{|C̄B|,⌈(|C̄B|+ |C̄≥3/4 \CB|)/2⌉} unused machines. In each iteration of this step, we

88 Chapter 4. Many Shared Resources

close two machines but also reduce the residual load by at least 3/4+ 1/2+ 3/4 = 2,
proving the upper bound on the residual load.

Hence, if we have used Algorithm_no_huge on the residual instance, by Lemma 4.7
it generates a schedule with makespan at most 3/2 because p(C̄)≤ |M̄u| at that point and
no class was scheduled partially. ■

Step 7 If |C̄(1/2,3/4)∩CB| ̸= 0, open one machine for each of these classes.

Claim After this step, all jobs are feasibly scheduled, or it holds that |M̄H | ≥ 1 and all
residual classes have a total processing time of at least 3/4, all scheduled jobs are finished
by 3/2, and the Invariant holds.

Proof. Note that if |C̄(1/2,3/4) ∩CB| ̸= 0 this set is the only set containing unscheduled
classes. Since we still have |M̄u| ≥ |C̄B| unused machines, we can feasibly open one
machine for each of these classes and are done. ■

Step 8 While |M̄H | ≥ 2 and |C̄≥3/4| ≥ 2: Take m1,m2 ∈ M̄H , c1,c2 ∈ C̄≥3/4 starting
with the classes in C̄B. Shift all jobs on m2 to the top, such that the last job ends at 3/2.
Schedule č1 on m1 as one block that ends at 3/2 and all the jobs from č2 as one block on
m2 that starts at 0. Open one more machine m3 where we start the jobs from ĉ1 at 0 and
let the last job from ĉ2 end at 3/2, see Figure 4.4c. Close all three machines m1,m2,m3.
If |M̄H |= 0, continue with Algorithm_no_huge on the residual instance.

Claim After this step, all jobs are scheduled, or it holds that either |M̄H |= 1 or |C̄≥3/4| ≤ 1.
Furthermore, |C̄ \ C̄≥3/4| = 0, and in each iteration, the partial schedule is feasible, all
scheduled jobs are finished by 3/2, and the Invariant holds.

Proof. In each of these steps, no two jobs from the same class overlap. Note that we
open one more machine in each iteration of the step. This machine has to exist, since
|C̄B|+ |C̄≥3/4 \CB| ≥ 2 before this step. Since all remaining classes have load at least 3/4
it holds that |C̄B| = |C̄B| ∩ C̄≥3/4. Therefore, if |C̄B| ≠ 0 we used at least one such class
and reduced |C̄B| by at least 1. We also reduced |C̄B|+ |C̄≥3/4 \CB| by 2 and hence there
are still max{|C̄B|,⌈(|C̄B|+ |C̄≥3/4 \CB|)/2⌉} unused machines. Lastly, in each of these
steps, we close three machines but also reduce the residual load by at least 3 (4 classes
with processing time at least 3/4 each), proving the upper bound on the residual load.

Hence, if we have used Algorithm_no_huge on the residual instance, by Lemma 4.7
it generates a schedule with makespan at most 3/2 because p(C̄)≤ |M̄u| at that point and
no class was scheduled partially. ■

Step 9 If |M̄H | ≥ 2 or |C̄ \CB|= 0, open one machine for each of the remaining classes.

Claim After this step, either all jobs are scheduled, or it holds that |M̄H |= 1, |C̄ \ C̄≥3/4|=
0, C̄ \ CB ̸= /0, the partial schedule is feasible, all scheduled jobs are finished by 3/2, and
the Invariant holds.

4.4 A Summary of Our Work on Approximation Schemes 89

Proof. Due to the previous steps |M̄H | ≥ 2 implies |C̄≥3/4| ≤ 1, and if |C̄≥3/4| = 0 we
have already scheduled all the jobs. Otherwise, if |C̄≥3/4|= 1, there has to be one unused
machine because there are at least max{|C̄B|,⌈(|C̄B|+ |C̄≥3/4 \CB|)/2⌉} unused machines.

If, on the other hand, |C̄ \ CB|= 0, we still have |M̄u| ≥ |C̄B| unused machines, we can
feasibly open one machine for each of these classes and are done. ■

Step 10 If |M̄H |= 1, take c∈ C̄ \CB. It holds that p(c)≥ 3/4 and there exists c′ ∈{ ĉ, č}
with p(c′) ∈ (1/4,1/2]. Place c′ on m0 ∈ M̄H . Continue with Algorithm_no_huge to
schedule the residual jobs, including the job c′′ ∈ c\{c′ }. Rotate the load on m0 such
that c′ does not overlap with c′′.

Claim After this step, all jobs are scheduled feasibly, and all scheduled jobs are finished
by 3/2.

Proof. The algorithm for instances without huge jobs can feasibly finish the schedule
with makespan at most 3/2 by Lemma 4.7 since p(C̄)≤ |M̄u| at that point, all non-empty
machines have load at least 1 on average, and every class except c is either fully scheduled,
or not scheduled at all. Like in Step 5, the rotation makes sure that there is no conflict
within c. ■

Lemma 4.8 Given any instance I = (m,C) of MSRS, Algorithm_3/2 produces a
feasible schedule with makespan at most 3

2OPT(I).

Proof. This is a direct consequence when considering the state after each step of the
algorithm. ■

The existence and correctness of algorithm Algorithm_3/2 proofs Theorem 4.2.

4.4 A Summary of Our Work on Approximation Schemes
For a more comprehensive picture on the costructiv results fo MSRS, we give a summary
of the work on approximation schemes that we did in the original paper. To keep this short
and easily comprehensible, we will explain the general ideas used without too much focus
on formal completeness. For the technical details, we refer to the original paper. The two
results are given by the following theorem:

Theorem 4.3 There is an EPTAS for MSRS if either the number m of machines
is constant or ⌊εm⌋ additional machines may be used, i.e., resource augmentation is
allowed.

To achieve these results, we follow a framework that was introduced in [38] and also used
in [39]. We use the standard technique (see [37]) of applying a binary search framework
to acquire a makespan guess T . The goal is then to either find a schedule of length
(1+O(ε))T or correctly report that no schedule of length T exists. Assume from now on
that we already know T .

We divide the jobs into categories of length big, medium, or small. The definition of
medium and small is chosen in a way such that small jobs from classes in which the small
jobs have overall size of a medium job and medium jobs themselves only contribute an ε

90 Chapter 4. Many Shared Resources

fraction of the total load. We then consider a simplified version of the problem: Let I be
the input instance and I1 the instance where (i) we remove all medium jobs or (ii) remove
all medium jobs from classes including at most εT medium load and the entire classes
containing at least εT medium load.

Lemma 4.9 Let (i) m be a constant or (ii) m be part of the input. If there is a schedule
with makespan T ′ for I, then there is also a schedule with makespan T ′ for I1; and if
there is a schedule with makespan T ′ for I1, then there is also a schedule with makespan
T ′+ εT for I ((ii) using at most ⌊εm⌋ additional machines).

The first direction is obvious. For the other direction, in the case of (i), note that the overall
size of the medium jobs is upper bounded by εT , and hence we can place all of them at the
end of the schedule on some arbitrary machine. For the case of (ii), the proof idea is to use
two greedy procedures placing the removed medium jobs from classes, including at most
εT medium load at the end of the schedule and the remaining removed medium jobs on
the additional machines.

We define a certain structure for schedules, called layered schedules, where jobs can
only start on distinct multiples of a given layer height. We round the processing time of
big jobs to multiples of the layer height, discard small jobs from classes with little total
load, and replace the remaining small jobs with dummy batches (that instance is called I3).
We prove the existence of a solution structured in that way, with only bounded loss in the
objective compared to an optimal solution of the I1 instance. The problem of finding such
a solution can then be formulated as an integer program (IP) of a particular form. This IP
can be solved efficiently using N-fold integer programming algorithms. Furthermore, we
show how that solution for the simplified I3 problem can be used to derive a solution for
the original one with only little loss in the objective value. The main challenge lies in the
design of the well-structured solution and the proof of its existence. This also causes the
limitations of our result: A certain group of jobs may cause problems in the respective
construction, and to deal with them, we either use a more fine-grained approach, yielding a
polynomial running time if m is constant, or place the respective jobs on (few) additional
machines using resource augmentation.

4.5 Inapproximability Results
We consider the case in which each job may need more than a single resource. Let
us assume that we have a set R of resources, and each job j needs some subset R(j)
in order to be processed. The classes then correspond to subsets of resources R ⊆ R
with J (R) = { j ∈ J |R(j) = R}. We can adapt an APX-hardness result from [28] by
recreating their conflict graph with resources. This is done by creating a resource re per
edge e = {u,v} and letting jobs u and v require that resource. This reduction needs two
machines, job sizes in 1,2,3,4 but roughly as many distinct resources per job as there are
jobs. Subsequently, we give a new unrelated reduction for an instance of the problem with
a constant bound on the number of distinct resources per job.

4.5 Inapproximability Results 91

Theorem 4.4 There is no 5/4− ε-approximation algorithm with ε > 0 for the MSRS
with multiple resources per job if P ̸= NP. This holds true, even if no job needs more
than 3 resources (∀ j ∈ J : |R(j)| ≤ 3) and all jobs have processing time 1, 2 or 3
(∀ j ∈ J : p(j) ∈ {1,2,3}). Furthermore, this also holds when the number of machines
is unlimited.

Proof. We show this by giving a reduction from the NP-hard MONOTONE 3-SAT-(2,2)
problem [17], which is a satisfiability problem with the following restrictions: The boolean
formula is in 3CNF, each clause contains either only unnegated or negated variables, and
each literal appears in exactly 2 clauses (and every variable in exactly 4 clauses). Note
here that we only use the bounded occurrence of literals, not the monotony.

The main idea of this reduction is to create a dummy structure, variable jobs, and clause
jobs in such a way that a specific time interval was only useable by satisfied clause jobs.
The overall dummy structure and processing times of jobs make sure that this specific
time interval has to be filled completely to get a schedule with a makespan of 4. Confer
Figure 4.5 for an overview of the construction.

In the following, we write that two (or more) jobs j and j′ "share a resource r", which
means that r ∈R(j) and r ∈R(j′) and for all other jobs j∗, j∗ ̸= j and j∗ ̸= j′, r /∈R(j∗).
Let φ be the given formula and C, X the sets of clauses and variables in φ , respectively. We
start by creating a dummy structure that we can anchor jobs to by using shared resources.
Create |C| many pairs of dummy jobs jA

i , ja
i with p(jA

i) = 3, p(ja
i) = 1, which share a

unique resource Ai. Furthermore, ja
i and jA

i+1 share a unique resource Ai→i+1. Create |X|
many pairs of dummy jobs jb

i , jB
i with p(jb

i) = p(jB
i) = 2, which share a unique resource

Bi. Furthermore, jB
i and jb

i+1 share a unique resource Bi→i+1. Lastly, ja
|C| and jb

1 share a
unique resource A→B

For every xi ∈ X create three variable jobs jxi , jx̄i and jdxi which all share a resource
Xxi , moreover jdxi and jB

i share a resource Bxi . Set p(jxi) = p(jx̄i) = 1 and p(jdxi) = 2.
For every ci ∈ C with ci = {xci

1 ,x
ci
2 ,x

ci
3 } create four clause jobs jci

x1 , jci
x2 , jci

x3 and jci
d which

all share a resource Cci and all with processing time 1. For every unnegated literal xi find
the two clauses c′ and c′′ in which it is contained. Let jc′

xi
and jc′′

xi
be the two corresponding

clause jobs created for xi in c′ and c′′ respectively, then jxi shares a unique resource with
jc′
xi

and another unique resource with jc′′
xi

(see connections from jw to its two occurrences in
clauses in Figure 4.5b). Repeat this process for x̄i and its negated occurrences. Furthermore
jci
d and jA

i shares a resource Aci .
Finally, we set the number of machines to 2|C|+2|X| (remark: we could also give an

unlimited number of machines, as the resources limit the number of concurrently usable
machines either way).

Lemma 4.10 There is an optimal schedule with makespan 4 if and only if there is
a satisfying assignment for the MONOTONE 3-SAT-(2,2) problem. Otherwise, the
optimal schedule has a makespan of 5.

We first show that there is a trivial schedule with makespan 5 for each instance of the
resulting scheduling problem. Place the dummy jobs as in Figure 4.5a, after that, for each
jdxi place the two corresponding jobs jxi and jx̄i directly below it (in any order). Lastly, for
every jci

d leave the timestep directly above it empty, and place jci
x1 , jci

x2 , jci
x3 above the empty

timestep, finishing in timestep 5. It should be easy to see that this is always possible.

92 Chapter 4. Many Shared Resources

5

4

3

2

1

0
ja
1

jA
1

. . .

. . .

ja
|C|

jA
|C|

jB
1

jb
1

. . .

. . .

jB
|X|

jb
|X|

jc1
d . . .

satisfied literals

any clause jobs

unsatisfied literals

assignment

var jobs

jdx1 . . .

(a) Structure of emergent schedules

4

3

2

1

0

w

x

y

ȳ

w̄

z̄

w

x

z

ȳ

w̄

x̄

jw

jw̄

jx

jx̄

jȳ

jy

jz̄

jz

(b) Clause-variable connections

Figure 4.5: Dummy structure and connection between clause and variable jobs. The
time interval [4,5] has to be used if there is no satisfying assignment for the MONOTONE

3-SAT-(2,2) problem. Grey lines represent a resource each; red lines represent pairwise
resources of jA

i and jci
d (jB

i and jdxi , respectively).

Secondly, we show how to construct a schedule with a makespan of 4 if there is a
satisfying assignment. We again start by placing the dummy jobs as in Figure 4.5a. For
each jdxi we place the two corresponding jobs jxi and jx̄i below it. Now, look at the
satisfying assignment for φ , if xi is true (false) in the assignment, jxi is placed below
(above) jx̄i . The job corresponding to the true assignment finishes at timestep 1, the other
at 2. For every jci

d place jci
x1 , jci

x2 , jci
x3 above it. From the three jobs, choose one of which

the corresponding literal is satisfied in the given assignment to be placed directly above
jci
d (note that there has to be at least one such job since the assignment satisfies φ). This

is the only of the three (non-dummy) clause jobs that overlap the variable jobs placed
earlier, but the variable job it shares a resource with was scheduled in the first timestep
(see Figure 4.5b).

Lastly, we show how to construct a satisfying assignment from a schedule with
makespan 4. One can verify that each dummy job in such a schedule has a fixed time
window where it has to be scheduled due to the conflicts with other dummy jobs (we ignore
that the whole schedule can be "flipped on its head" since it is equivalent). Furthermore, in
such a schedule every time interval on every machine must be filled. Each pair of jA

i , ja
i or

jb
i , jB

i occupies an interval of [0,4], jdxi is scheduled in [0,1] and every jci
d is scheduled in

[2,4] (see Figure 4.5a). We count the remaining open slots: [0,1]: |X|, [1,2]: |X|+ |C| and
[2,4]: |C|. The variable jobs jxi and jx̄i can only be scheduled in [0,2] (due to their dummy
job) and can not be scheduled concurrently (due to their shared resource). Therefore,
for every pair jxi and jx̄i one job is scheduled in [0,1] and one in [1,2]. After that, the
remaining open slots are [1,4]: |C|. Following an analogously argumentation for each
triple of clause jobs jci

x1 , jci
x2 , jci

x3 one job gets scheduled in [1,2], [2,3] and [3,4]. For every
of those in [1,2], the corresponding variable job has to be scheduled in [0,1] (because they
share a resource), which gives us, that the variable jobs in [0,1] directly correspond to a
satisfying assignment for the original MONOTONE 3-SAT-(2,2) Problem. ■

Following a similar construction, we can show the same inapproximability result for
unit jobs and 5 or fewer resources per job. Furthermore, it is possible to give a 4/3− ε

inapproximability result for the problem by giving a reduction from the NAE-3SAT
problem. That reduction uses unit jobs but a non-constant number of resources per job.
We briefly sketch both constructions here.

4.5 Inapproximability Results 93

Theorem 4.5 There is no 5/4− ε-approximation algorithm with ε > 0 for the MSRS
with multiple resources per job if P ̸= NP. This holds true, even if no job needs more than
5 resources (∀ j ∈J : |R(j)| ≤ 5) and all jobs have processing time 1 (∀ j ∈J : p(j)= 1).
Furthermore, this also holds when the number of machines is unlimited.

Proof. The general idea here is the same as before. We only have to adapt the dummy
structure in a way such that it only uses jobs with a processing time of 1. Again let φ be
the given formula and C, X the sets of clauses and variables in φ , respectively. We replace
the dummy structure from before as follows: Create |C|+2|X| many dummy jobs jA

i , jB
i ,

jCi , jD
i , each with processing time 1. The ith set of dummy jobs is connected to the i+1th

set of dummy jobs in the following way:
• jA

i , jB
i+1, jCi+1, jD

i+1 all share a resource Ai.
• jB

i , jA
i+1, jCi+1, jD

i+1 all share a resource Bi.
• jCi , jA

i+1, jB
i+1, jD

i+1 all share a resource Ci.
• jD

i , jA
i+1, jCi+1, jCi+1 all share a resource Di.

Additionally jA
1 , jB

1 , jC1 , jD
1 all share a resource A0. The web of resources makes sure that

only dummy jobs with the same letter can be processed at the same time. Now we can use
these dummy jobs as an anchor in the same way as before.

For the variable jobs replace each jdxi with two jobs j1
dxi

and j2
dxi

, both with pro-
cessing time 1. The jobs jxi , jx̄i , j1

dxi
, and j2

dxi
all share a resource Xxi . Moreover, j1

dxi
,

jB
|X|+2i, jC|X|+2i, and jD

|X|+2i share a resource X1
xi

. Analogously, j2
dxi

, jA
|X|+2i+1, jC|X|+2i+1,

and jD
|X|+2i+1 share a resource X2

xi
. This fixes j1

dxi
and j2

dxi
to the timesteps of the dummy

jobs jA
i and jB

i , respectively. The clause jobs remain nearly identical, only jci
d now shares a

resource Aci with jA
i , jB

i , and jCi (instead of with the respective single 3 long dummy job
as before), this fixes jci

d to the timestep of the jD
i . Finally, we set the number of machines

to 2|C|+ 3|X| (remark: we again could give an unlimited number of machines, as the
resources limit the number of concurrently usable machines either way). We omit the rest
of the proof as it is nearly identical to the one above. ■

Theorem 4.6 There is no 4/3− ε-approximation algorithm with ε > 0 for the MSRS
with multiple resources per job if P ̸= NP. This holds true, even if all jobs have
processing time 1 (∀ j ∈ J : p(j) = 1). Furthermore, this also holds when the number
of machines is unlimited.

Proof. We show this via reduction from the NP-complete Not-all-equal 3-satisfiability
(NAE-3SAT) problem [71]. An instance of the problem is a boolean formula in 3CNF,
and the question is whether there exists an assignment such that every clause contains at
least one satisfied and one unsatisfied literal. The idea of this reduction is similar to the
ones above. Before, we used a dummy structure and variable jobs in such a way that a
specific time interval was only useable by satisfied clause jobs. Now we remove a part of
the dummy structure, such that one specific time interval is only useable by satisfied clause
jobs, while another is only useable by unsatisfied clause jobs. See Figure 4.6 for a visual
representation.

Again we are given a formula φ with the sets of clauses C and variables X. All jobs
created in this reduction have a processing time of 1. We create a dummy structure as in

94 Chapter 4. Many Shared Resources

4

3

2

1

0
jC1

jB
1

jA
1

.

.

.

jC|X|

jB
|X|

jA
|X|

any clause jobs

unsatisfied literals

satisfied literals

any clause jobs

jdx1 .

true assigned variables

unchoosen assignment

Figure 4.6: Emergent structure of schedules for the reduction from NAE-3SAT. Each job
in satisfied literals shares a resource with a job in true assigned variables (analogously
for unsatisfied literals and unchoosen assignment). The time interval [3,4] has to be used
if there is no correct assignment for the NAE-3SAT problem. The red line represents a
resource Dxi per set jdxi , jA

i and jB
i , fixing jdxi to the same time interval as jCi .

the last reduction, but with a total length of 3 instead of 4: Create |X| many dummy jobs
jA
i , jB

i , jCi . The ith set of dummy jobs is connected to the i+1th set of dummy jobs in the
following way:

• jA
i , jB

i+1, jCi+1 all share a resource Ai.
• jB

i , jA
i+1, jCi+1 all share a resource Bi.

• jCi , jA
i+1, jB

i+1 all share a resource Ci.
Additionally jA

1 , jB
1 , jC1 all share a resource A0.

For every xi ∈ X create three variable jobs jxi , jx̄i and jdxi which all share a resource
Xxi , moreover jdxi , jA

i and jB
i share a resource Dxi .

For every ci ∈C with ci = {xci
1 ,x

ci
2 ,x

ci
3 } create three clause jobs jci

x1 , jci
x2 , and jci

x3 which all
share a resource Cci . The clause job jci

x1 (representing the literal x1
ci) and the corresponding

negated or unnegated variable job jxk or jx̄k share a resource V ci
xk (analogously for jci

x2 and
jci
x3). Finally, we set the number of machines to 2|C|+ |X| (remark: we again could give an

unlimited number of machines, as the resources limit the number of concurrently usable
machines either way).

We give an intuition why there is a schedule with makespan 3 if and only if there is
an assignment such that in every clause, at least one literal is satisfied and at least one is
unsatisfied. For each variable the three variable jobs jxi , jx̄i and jdxi are assigned to one
machine. Assume w.l.o.g. that all jdxi get scheduled at [0,1]. For every pair jxi , jx̄i we can
schedule them at [1,2] and [2,3] or at [2,3] and [1,2], respectively. The former represents
xi is true, and the latter xi is false. For each clause we now have to distribute jci

x1 , jci
x2 , and

jci
x3 onto [0,1], [1,2] and [2,3] such that:

• A clause job that represents a satisfied literal has to be scheduled to [2,3]
• A clause job that represents an unsatisfied literal has to be scheduled to [1,2]
• Any clause job can be scheduled to [0,1]

If the jobs can not be arranged in this way, that means that a clause contains only satisfied
or only unsatisfied literals. In that case, we would have to schedule one of the jobs to [3,4],
thus getting a makespan of 4. ■

R For both of the two sketched reductions, we can permutate the time intervals in any
order. Note here that the dummy structure makes sure that a specific set of jobs has
to be processed in the same time interval. It is of no relevance in which order these
intervals are processed. Our explanations and figures simply assume some fixed order
for comprehensibility.

4.6 Future Work 95

4.6 Future Work
The results discussed in this chapter greatly improved the state of the art regarding the
approximability of MSRS. There are several interesting directions emerging for further
investigation. Firstly, there is the question of whether a PTAS for MSRS without resource
augmentation can be achieved. It seems plausible that the approximation schemes results
of the present work could be further refined to reach this goal. For the case with only a
constant number of machines, on the other hand, an FPTAS is not ruled out at this point.

Moreover, it would be interesting to explore natural extensions of MSRS and, in
particular, to investigate for which variants approximation schemes may or may not be
feasible. From the negative perspective, we have already provided initial results in this
chapter. We would like to point out one further question in this direction: Note that MSRS
can be seen as a special case of scheduling with conflicts where the conflict graph is a
cograph. This problem is known to be NP-hard already for unit size jobs [11], and it would
be interesting to explore inapproximability for arbitrary sizes. Regarding the design of
approximation schemes, on the other hand, variants, where the corresponding conflict
graph is a particularly simple cograph, may be interesting.

Finally, from a broader perspective, it seems interesting to explore the possibilities of
N-fold IPs and related concepts [26] for scheduling with additional resources.

Bibliography

[1] Massinissa Ait Aba, Alix Munier Kordon, and Guillaume Pallez. Scheduling on
Two Unbounded Resources with Communication Costs. In Proceedings of the 25th
Annual International Conference on Parallel and Distributed Computing (Euro-Par),
volume 11725 of Lecture Notes in Computer Science, pages 117–128, 2019.

[2] Muminu O Adamu and Aderemi O Adewumi. A Survey of Single Machine Schedul-
ing to Minimize Weighted Number of Tardy Jobs. Journal of Industrial & Manage-
ment Optimization, 10(1):219, 2014.

[3] Chidambaram Annamalai. Lazy Local Search Meets Machine Scheduling. SIAM
Journal on Computing, 48(5):1503–1543, 2019.

[4] Brenda S. Baker and Edward G. Coffman Jr. Mutual Exclusion Scheduling. Theoreti-
cal Computer Science, 162(2):225–243, 1996.

[5] Nikhil Bansal and Maxim Sviridenko. The Santa Claus Problem. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing (STOC), pages 31–40,
2006.

[6] Aditya Bhaskara, Ravishankar Krishnaswamy, Kunal Talwar, and Udi Wieder. Mini-
mum Makespan Scheduling with Low Rank Processing Times. In Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 937–947,
2013.

[7] Jacek Blazewicz, Nadia Brauner, and Gerd Finke. Scheduling with Discrete Resource
Constraints. In Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. 2004.

[8] Jacek Blazewicz, Klaus H. Ecker, Erwin Pesch, Günter Schmidt, Malgorzata Sterna,
and Jan Weglarz. Scheduling under Resource Constraints. In Handbook on Schedul-
ing: From Theory to Practice, pages 475–525. 2019.

[9] Jacek Blazewicz, Jan Karel Lenstra, and A. H. G. Rinnooy Kan. Scheduling Subject to
Resource Constraints: Classification and Complexity. Discrete Applied Mathematics,
5(1):11–24, 1983.

[10] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert En-
dre Tarjan. Time Bounds for Selection. Journal of Computer and System Sciences,
7(4):448–461, 1973.

[11] Hans L. Bodlaender and Klaus Jansen. On the Complexity of Scheduling Incom-
patible Jobs with Unit-Times. In Proceedings of the 18th Annual International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 711
of Lecture Notes in Computer Science, pages 291–300, 1993.

98 BIBLIOGRAPHY

[12] Hans L. Bodlaender, Klaus Jansen, and Gerhard J. Woeginger. Scheduling with
Incompatible Jobs. Discrete Applied Mathematics, 55(3):219–232, 1994.

[13] Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1, ε)-Restricted As-
signment Makespan Minimization. In Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1087–1101, 2015.

[14] Lin Chen, Dániel Marx, Deshi Ye, and Guochuan Zhang. Parameterized and Ap-
proximation Results for Scheduling with a Low Rank Processing Time Matrix. In
Proceedings of the 34th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), volume 66 of LIPIcs, pages 22:1–22:14, 2017.

[15] Lin Chen, Deshi Ye, and Guochuan Zhang. An Improved Lower Bound for Rank
Four Scheduling. Operations Research Letters, 42(5):348–350, 2014.

[16] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing (STOC), pages 151–158,
1971.

[17] Andreas Darmann and Janosch Döcker. On simplified NP-complete variants of
Monotone 3-Sat. Discrete Applied Mathematics, 292:45–58, 2021.

[18] Syamantak Das and Andreas Wiese. On Minimizing the Makespan when some
Jobs cannot be Assigned on the same Machine. In Proceedings of the 25th Annual
European Symposium on Algorithms (ESA), volume 87 of LIPIcs, pages 31:1–31:14,
2017.

[19] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao
Zhang. Scheduling with Communication Delays via LP Hierarchies and Clustering.
In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 822–833, 2020.

[20] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao
Zhang. Scheduling with Communication Delays via LP Hierarchies and Clustering
II: Weighted Completion Times on Related Machines. In Proceedings of the 32nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2958–2977,
2021.

[21] Max A. Deppert, Klaus Jansen, Marten Maack, Simon Pukrop, and Malin Rau.
Scheduling with Many Shared Resources. In Proceedings of the 37th Annual IEEE
International Parallel & Distributed Processing Symposium (IPDPS), (accepted for
publication, arXiv:2210.01523), 2023.

[22] Boris Detienne. A Mixed Integer Linear Programming Approach to Minimize the
Number of Late Jobs with and without Machine Availability Constraints. European
Journal of Operational Research, 235(3):540–552, 2014.

[23] György Dósa, Hans Kellerer, and Zsolt Tuza. Restricted Assignment Scheduling
with Resource Constraints. Theoretical Computer Science, 760:72–87, 2019.

[24] Tomás Ebenlendr, Marek Krcál, and Jirí Sgall. Graph Balancing: A Special Case of
Scheduling Unrelated Parallel Machines. Algorithmica, 68(1):62–80, 2014.

BIBLIOGRAPHY 99

[25] Emrah B. Edis, Ceyda Oguz, and Irem Ozkarahan. Parallel Machine Scheduling
with Additional Resources: Notation, Classification, Models and Solution Methods.
European Journal of Operational Research, 230(3):449–463, 2013.

[26] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin
Koutecký, Asaf Levin, and Shmuel Onn. An Algorithmic Theory of Integer Program-
ming. CoRR, arXiv:1904.01361, 2019.

[27] Leah Epstein and Asaf Levin. Scheduling with Processing Set Restrictions: PTAS
Results for Several Variants. International Journal of Production Economics,
133(2):586–595, 2011.

[28] Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling with
Conflicts: Online and Offline Algorithms. Journal of Scheduling, 12(2):199–224,
2009.

[29] Uriel Feige. On Allocations that Maximize Fairness. In Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 287–293,
2008.

[30] M. R. Garey and David S. Johnson. "Strong" NP-Completeness Results: Motivation,
Examples, and Implications. Journal of the ACM, 25(3):499–508, 1978.

[31] Shashwat Garg. Quasi-PTAS for Scheduling with Precedences using LP Hierarchies.
In Proceedings of the 45th Annual International Colloquium on Automata, Languages,
and Programming (ICALP), volume 107 of LIPIcs, pages 59:1–59:13, 2018.

[32] Kilian Grage, Klaus Jansen, and Kim-Manuel Klein. An EPTAS for Machine
Scheduling with Bag-Constraints. In Proceedings of the 31st Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 135–144, 2019.

[33] Ronald L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell System
Technical Journal, 45(9):1563–1581, 1966.

[34] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG Rin-
nooy Kan. Optimization and Approximation in Deterministic Sequencing and
Scheduling: a Survey. In Annals of discrete mathematics, volume 5, pages 287–
326. 1979.

[35] Alexander Grigoriev and Marc Uetz. Scheduling Jobs with Time-Resource Tradeoff
via Nonlinear Programming. Discrete Optimization, 6(4):414–419, 2009.

[36] Emmanuel Hebrard, Marie-José Huguet, Nicolas Jozefowiez, Adrien Maillard, Cédric
Pralet, and Gérard Verfaillie. Approximation of the Parallel Machine Scheduling
Problem with Additional Unit Resources. Discrete Applied Mathematics, 215:126–
135, 2016.

[37] Dorit S. Hochbaum and David B. Shmoys. Using Dual Approximation Algorithms
for Scheduling Problems Theoretical and Practical Results. Journal of the ACM,
34(1):144–162, 1987.

100 BIBLIOGRAPHY

[38] Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the
Configuration-IP: new PTAS Results for Scheduling with Setup Times. Mathematical
Programming, 2021.

[39] Klaus Jansen, Alexandra Lassota, and Marten Maack. Approximation Algorithms
for Scheduling with Class Constraints. In Proceedings of the 32nd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 349–357,
2020.

[40] Klaus Jansen, Marten Maack, and Malin Rau. Approximation Schemes for Machine
Scheduling with Resource (In-)dependent Processing Times. ACM Transactions on
Algorithms, 15(3):31:1–31:28, 2019.

[41] Klaus Jansen, Marten Maack, and Roberto Solis-Oba. Structural Parameters for
Scheduling with Assignment Restrictions. Theoretical Computer Science, 844:154–
170, 2020.

[42] Klaus Jansen and Malin Rau. Closing the Gap for Single Resource Constraint
Scheduling. In Proceedings of the 29th Annual European Symposium on Algorithms
(ESA), volume 204 of LIPIcs, pages 53:1–53:15, 2021.

[43] Klaus Jansen and Lars Rohwedder. A Quasi-Polynomial Approximation for the
Restricted Assignment Problem. SIAM Journal on Computing, 49(6):1083–1108,
2020.

[44] Teun Janssen. Optimization in the Photolithography Bay: Scheduling and the Trav-
eling Salesman Problem. PhD thesis, Delft University of Technology, Netherlands,
2019.

[45] Teun Janssen, Céline M. F. Swennenhuis, Abdoul Bitar, Thomas Bosman, Dion
Gijswijt, Leo van Iersel, Stéphane Dauzère-Pérès, and Claude Yugma. Parallel
Machine Scheduling with a Single Resource per Job. CoRR, arXiv:1809.05009,
2018.

[46] Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings
of the IBM symposium on the Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103, 1972.

[47] Hans Kellerer and Vitaly A. Strusevich. Scheduling Problems for Parallel Dedicated
Machines under Multiple Resource Constraints. Discrete Applied Mathematics,
133(1-3):45–68, 2003.

[48] Kamyar Khodamoradi, Ramesh Krishnamurti, Arash Rafiey, and Georgios Stamoulis.
PTAS for Ordered Instances of Resource Allocation Problems with Restrictions on
Inclusions. CoRR, arXiv:1610.00082, 2016.

[49] Peter Kling, Alexander Mäcker, Sören Riechers, and Alexander Skopalik. Sharing
is Caring: Multiprocessor Scheduling with a Sharable Resource. In Proceedings of
the 29th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 123–132, 2017.

BIBLIOGRAPHY 101

[50] Donald E. Knuth. Postscript about NP-hard Problems. SIGACT News, 6(2):15–16,
1974.

[51] Janardhan Kulkarni, Shi Li, Jakub Tarnawski, and Minwei Ye. Hierarchy-Based Algo-
rithms for Minimizing Makespan under Precedence and Communication Constraints.
In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2770–2789, 2020.

[52] Eugene L Lawler and J Michael Moore. A Functional Equation and its Application to
Resource Allocation and Sequencing Problems. Management science, 16(1):77–84,
1969.

[53] Kangbok Lee, Joseph Y.-T. Leung, and Michael L. Pinedo. Makespan Minimization
in Online Scheduling with Machine Eligibility. Annals of Operations Research,
204(1):189–222, 2013.

[54] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approximating the
Pareto Front of Multi-criteria Optimization Problems. In Proceedings of the 16th
Annual International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 6015 of Lecture Notes in Computer Science,
pages 69–83, 2010.

[55] Jan Karel Lenstra and A. H. G. Rinnooy Kan. Complexity of Scheduling under
Precedence Constraints. Operations Research, 26(1):22–35, 1978.

[56] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Complexity of Machine
Scheduling Problems. In Annals of discrete mathematics, volume 1, pages 343–362.
1977.

[57] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation Algorithms for
Scheduling Unrelated Parallel Machines. Mathematical Programming, 46:259–271,
1990.

[58] Joseph Y-T Leung and Chung-Lun Li. Scheduling with Processing Set Restrictions:
A Survey. International Journal of Production Economics, 116(2):251–262, 2008.

[59] Joseph Y-T Leung and Chung-Lun Li. Scheduling with Processing Set Restrictions:
A Literature Update. International Journal of Production Economics, 175:1–11,
2016.

[60] Elaine Levey and Thomas Rothvoss. A (1+ε)-approximation for Makespan Schedul-
ing with Precedence Constraints using LP Hierarchies. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 168–177,
2016.

[61] Leonid A. Levin. Universal Sequential Search Problems. Problems of Information
Transmission, 9(3):265–266, 1973.

[62] Chung-Lun Li and Xiuli Wang. Scheduling Parallel Machines with Inclusive Pro-
cessing Set Restrictions and Job Release Times. European Journal of Operational
Research, 200(3):702–710, 2010.

102 BIBLIOGRAPHY

[63] Marten Maack, Friedhelm Meyer auf der Heide, and Simon Pukrop. Extended Server
Cloud Scheduling. CoRR, arXiv:2108.02109, 2021.

[64] Marten Maack, Friedhelm Meyer auf der Heide, and Simon Pukrop. Server Cloud
Scheduling. In Proceedings of the 19th Annual International Workshop on Approxi-
mation and Online Algorithms (WAOA), volume 12982 of Lecture Notes in Computer
Science, pages 144–164, 2021.

[65] Marten Maack and Klaus Jansen. Inapproximability Results for Scheduling with
Interval and Resource Restrictions. CoRR, arXiv:1907.03526, 2019.

[66] Marten Maack and Klaus Jansen. Inapproximability Results for Scheduling with
Interval and Resource Restrictions. In Proceedings of the 37th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 154 of LIPIcs, pages
5:1–5:18, 2020.

[67] Marten Maack, Simon Pukrop, and Anna Rodriguez Rasmussen. (In-)Approx-
imability Results for Interval, Resource Restricted, and Low Rank Scheduling. In
Proceedings of the 30th Annual European Symposium on Algorithms (ESA), volume
244 of LIPIcs, pages 77:1–77:13, 2022.

[68] Alexander Mäcker, Manuel Malatyali, Friedhelm Meyer auf der Heide, and Sören
Riechers. Cost-efficient Scheduling on Machines from the Cloud. J. Comb. Optim.,
36(4):1168–1194, 2018.

[69] Rym M’Hallah and R. L. Bulfin. Minimizing the Weighted Number of Tardy Jobs on
a Single Machine with Release Dates. European Journal of Operational Research,
176(2):727–744, 2007.

[70] Rolf H. Möhring, Markus W. Schäffter, and Andreas S. Schulz. Scheduling Jobs with
Communication Delays: Using Infeasible Solutions for Approximation (Extended
Abstract). In Proceedings of the 4th Annual European Symposium on Algorithms
(ESA), volume 1136 of Lecture Notes in Computer Science, pages 76–90, 1996.

[71] Cristopher Moore and Stephan Mertens. The Nature of Computation. 2011.

[72] Gabriella Muratore, Ulrich M. Schwarz, and Gerhard J. Woeginger. Parallel Machine
Scheduling with Nested Job Assignment Restrictions. Operations Research Letters,
38(1):47–50, 2010.

[73] Martin Niemeier and Andreas Wiese. Scheduling with an Orthogonal Resource
Constraint. Algorithmica, 71(4):837–858, 2015.

[74] Daniel R. Page and Roberto Solis-Oba. Makespan Minimization on Unrelated Parallel
Machines with a few Bags. Theoretical Computer Science, 821:34–44, 2020.

[75] Christos H. Papadimitriou and Mihalis Yannakakis. On the Approximability of
Trade-offs and Optimal Access of Web Sources. In Proceedings of the 41st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 86–92, 2000.

Bibliography 103

[76] Barna Saha. Renting a Cloud. In Proceedings of the 33rd Annual IARCS Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
volume 24 of LIPIcs, pages 437–448, 2013.

[77] Sartaj Sahni. Algorithms for Scheduling Independent Tasks. Journal of the ACM,
23(1):116–127, 1976.

[78] Petra Schuurman and Gerhard J Woeginger. Polynomial Time Approximation Al-
gorithms for Machine Scheduling: Ten Open Problems. Journal of Scheduling,
2(5):203–213, 1999.

[79] Ulrich M. Schwarz. Approximation Algorithms for Scheduling and Two-dimensional
Packing Problems. PhD thesis, University of Kiel, 2010.

[80] Marc Sevaux and Stéphane Dauzère-Pérès. Genetic Algorithms to Minimize the
Weighted Number of Late Jobs on a Single Machine. European Journal of Opera-
tional Research, 151(2):296–306, 2003.

[81] Vitaly A. Strusevich. Approximation Algorithms for Makespan Minimization on
Identical Parallel Machines under Resource Constraints. Journal of the Operational
Research Society, 0(0):1–12, 2020.

[82] Ola Svensson. Hardness of Precedence Constrained Scheduling on Identical Ma-
chines. SIAM Journal on Computing, 40(5):1258–1274, 2011.

[83] Ola Svensson. Santa Claus Schedules Jobs on Unrelated Machines. SIAM Journal
on Computing, 41(5):1318–1341, 2012.

[84] Vijay V. Vazirani. Approximation Algorithms. 2001.

[85] Chao Wang and René Sitters. On some Special Cases of the Restricted Assignment
Problem. Information Processing Letters, 116(11):723–728, 2016.

[86] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
2011.

	1 Introduction
	1.1 What is Scheduling, and Why Bother?
	1.2 On Problems, Languages, and Efficient Encodings
	1.3 P vs. NP and NP-Hardness
	1.4 Approximation Algorithms and Schemes
	1.5 Formal Scheduling Notation
	1.6 Contents of this Thesis

	2 Server Cloud Scheduling
	2.1 Introduction
	2.1.1 Problem Definition
	2.1.2 Our Results
	2.1.3 Related Work

	2.2 Chains and Fully Parallel Task Graphs
	2.2.1 Hardness
	2.2.2 Algorithms

	2.3 The Extended Chain Model (SCS e)
	2.3.1 A Preliminary Problem: Single Machine Weighted Number of Tardy Jobs
	2.3.2 Strong NP-Hardness of Scheduling Extended Chains
	2.3.3 A (2+)-approximation (Makespan) on the Extended Chain
	2.3.4 Cases with FPTAS

	2.4 Constant Cardinality Source and Sink Dividing Cut (SCS)
	2.4.1 Dynamic Programming for SCS
	2.4.2 Scaling and Rounding the Dynamic Program

	2.5 Strong NP-Hardness
	2.5.1 No Delays and Two Sizes
	2.5.2 Unit Size and Unit Delay (SCS 1)
	2.5.3 Inapproximability of the General Case

	2.6 Algorithms for SCS 1 and Instances Without Delays
	2.6.1 A 3-Approximation (Makespan) for SCS 1
	2.6.2 A 1+2-Approximation (Cost) for SCS 1 with Resource Augmentation
	2.6.3 A 2-Approximation (Makespan) on Identical Machines and no Delays

	2.7 Generalizations of Server Cloud Scheduling
	2.7.1 Changes in the Definitions
	2.7.2 Revisiting SCS e
	2.7.3 Revisiting SCS

	2.8 Approximating the Pareto Front
	2.9 Future Work

	3 Restricted Assignment Interval
	3.1 Introduction
	3.1.1 Problem Definition
	3.1.2 Relation Between the Models and the State of the Art
	3.1.3 Our Results
	3.1.4 Further Related Work

	3.2 A (2-124)-Approximation
	3.2.1 Preliminaries.
	3.2.2 Linear Program.
	3.2.3 Integrality Gap of the Linear Program
	3.2.4 The Rounding Algorithm.

	3.3 A Summary of Our Complexity Results
	3.3.1 Three Resources
	3.3.2 Two Resources
	3.3.3 Interval Restrictions

	3.4 Future Work

	4 Many Shared Resources
	4.1 Introduction
	4.1.1 Problem Definition
	4.1.2 State of the Art and Motivation
	4.1.3 Our Results
	4.1.4 Further Related Work
	4.1.5 Preliminaries

	4.2 A 5/3-approximation
	4.3 A 3/2-approximation
	4.3.1 Algorithm for Instances without Huge Jobs
	4.3.2 Algorithm for the General Case

	4.4 A Summary of Our Work on Approximation Schemes
	4.5 Inapproximability Results
	4.6 Future Work

	Bibliography

