
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Research Group System Security

Bachelor’s Thesis
Submitted to the System Security Research Group

in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science

Large Scale Scanning of
TLS Session Ticket Confusion

Tim Storm

Supervisors: Prof. Dr.-Ing. Juraj Somorovsky
Prof. Dr. Eric Bodden
Sven Hebrok M.Sc.

Date: May 14, 2023

Abstract

Session tickets are a resumption mechanism, which can speed up repeated TLS
connections. To do so, information is stored client-side, encrypted with an additional
symmetric key, which is separate from existing private keys. A server only has to store
this key, making session tickets stateless for the server. If the key is shared between
servers, a client can be misled into resuming a session with a different, less secure
server. In this thesis, we design and implement a scan for detecting prerequisites to
such an attack, by requesting and redeeming tickets for pair-wise servers. We find
that 17,901 out of 22,127 scanned (virtual) hosts are potentially vulnerable to this
attack because they share their keys and accept tickets issued for other domains. We
discuss the difficulties of detecting such an attack and show that unfortunately, our
approach does not scale to larger sample sizes.

Official Declaration

I hereby declare that I prepared this thesis entirely on my own and have not used
outside sources without declaration in the text. Any concepts or quotations applicable
to these sources are clearly attributed to them. This thesis has not been submitted in
the same or a substantially similar version, not even in part, to any other authority
for grading and has not been published elsewhere.

Eidesstattliche Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen worden ist. Alle Ausführungen, die
wörtlich oder sinngemäß übernommen worden sind, sind als solche gekennzeich-
net.

Date Tim Storm

Contents

1 Introduction 1
1.1 Current State of Research . 3
1.2 Contributions . 3
1.3 Organization of the Thesis . 4

2 Background 5
2.1 TLS . 5

2.1.1 Handshake . 5
2.1.2 Server Name Indication (SNI) 7
2.1.3 Session Resumption using Session Tickets 8

2.1.3.1 Session resumption using Pre-Shared Keys (PSKs) . 10
2.1.3.2 Recommended Ticket Construction 10
2.1.3.3 SNI in Session Resumptions 11

2.2 Session Ticket Confusion Attack . 12
2.2.1 Differences in TLS 1.3 . 12
2.2.2 Attacker Model . 13

2.3 TLS-Attacker . 13

3 Design 15
3.1 Previous Work . 15
3.2 Design Goals . 15
3.3 Scanning for STEK Sharing . 17
3.4 Restricting the Search Space to Promising Candidates 19

4 Implementation 21
4.1 Preprocessing . 21
4.2 Grouping . 22
4.3 Scanning . 22

4.3.1 Overall Architecture . 22
4.3.2 Scanning Job . 22

5 Evaluation 27
5.1 Scans . 27
5.2 Results . 28

5.2.1 STEK Sharing . 28
5.2.2 Behavior Within Groups . 29
5.2.3 Identifying Common Properties 29

viii Contents

5.2.4 Vulnerablity to Real-World Ticket Confusion 32
5.2.5 Supplementary CDN Scan . 34

5.3 Discussion . 35
5.3.1 Limitations . 37

6 Conclusion 39

Bibliography 41

List of Figures 45

List of Tables 46

1 Introduction

Transport Layer Security (TLS) [1, 2] is a widely used protocol that provides
confidentiality, integrity, and authenticity to applications on the internet. Over time
there have been different versions of the TLS protocol, TLS 1.2 [1] and 1.3 [2] are
most used today. The most common usage of TLS is secure web browsing via HTTP
over TLS (HTTPS). Before traffic can be encrypted, however, a handshake must
be performed in which the necessary parameters for a TLS session are negotiated.
This includes a key exchange, which is authenticated using public key certificates.
The handshake introduces an overhead of up to two roundtrip times. With high
latency, this can be a noticeable delay in addition to the time-intensive public key
cryptography.

Session resumption can be used to abbreviate the handshake between two parties
if they have already performed a handshake recently. The key exchange and the
certificate validation in particular are cut. Instead, both partners determine the
master secret for the new session from the previous master secret. Up until TLS 1.2,
the master secret was simply reused, since TLS 1.3 a new secret is derived from the
previous secret.

In TLS 1.2, this eliminates a full roundtrip for subsequent handshakes, effectively
cutting the time until the first application data can be received in half. TLS 1.3 has
refined the handshake protocol and requires a single round trip in both the regular
and resumed handshake, making it significantly faster than TLS 1.2. 1-RTT mode
also benefits from session resumption, since public key cryptography can be avoided.
There is even 0-RTT mode based on session resumption, which, when resuming a
session, allows a client to send so-called “early data” together with the handshake
messages themselves. This is inherently vulnerable to replay attacks but achieves
even lower latency.

Session tickets are a session resumption mechanism, which is stateless for a server:
After completing an initial handshake, the server encrypts any state relevant to the
session with a dedicated session ticket encryption key (STEK). It then sends this
ticket to the client. In a later handshake, the client presents their session ticket,
which the server attempts to decrypt with its STEK. If the decryption is successful,
they can fully recover the session from the ticket and resume the session without
storing any information server-side. As long as the STEK is only ever available to
the original server, the client can be sure that they are still talking to the same server
even after resumption [3, 2].

2 1 Introduction

However, if two servers share their STEK, a session negotiated with one server could
be decrypted and then resumed by another. This presents a possible attack in which
an attacker reroutes traffic meant for one server to another server, which shares the
STEK, but is less trustworthy (for example by hosting user-submitted content) that
then resumes the session. This would look like a regular session resumption to the
affected client, potentially misleading them into trusting data supplied by that other
server. The server itself would not detect that they were not the intended recipient.
This kind of attack can be referred to as session ticket confusion. Delignat-Lavaud
and Bhargavan first identified the vulnerability in 2015 and proved that it was feasible
in practice [4].

Response 200 OK [index.html]
(+ Session Ticket)

bank.com

git.bank.com

GET /index.html

GET /file.js
(+ Session Ticket)

STEK: 0x74696D1F451

Person
in the
middle Response 200 OK [file.js]

Figure 1.1: The basic idea behind session ticket confusion. Some time after an initial
request, a client sends another request to the same server using session
resumption but is redirected to a second server with the same STEK. The
second server accepts and faithfully answers the request with a malicious
file planted by the attacker. The client receives the file and processes it
as if it was served by the original server.

It is unlikely that servers would share a STEK purely by chance. Therefore it is
interesting whether related servers, for example, servers maintained by the same
administrator or on similar domains, share their STEK. The aforementioned different
“servers” do not have to be physically distinct: Through virtual hosting multiple
websites may be hosted on the same machine, so it might be possible to accidentally
share STEKs through misconfiguration. To distinguish between virtual servers, TLS
offers the SNI extension, which explicitly includes the target domain in the client’s
first message to the server. This, depending on the implementation, may prevent
the success of a host confusion attack, since a server could recognize the mismatch
between the domain of the original website and its own.

1.1 Current State of Research 3

1.1 Current State of Research

The problems presented by session resumption mechanisms are well explored: They
compromise Perfect Forward Secrecy [5] and can be used to track users across multiple
sessions [6]. The introduction of TLS 1.3 has overhauled session tickets and addressed
some of the problems, but also included even riskier schemes such as the 0-RTT
mode mentioned earlier.

Despite its known issues, industry [7] keeps on using session resumption purely for
its performance benefits. Current research even proposes extending session ticket
reuse across different applications connected to the same hostname [8] or even across
hostnames [9].

Rather than being vulnerable on a protocol level, there appears to be a widespread
misuse on an implementation and deployment level. The session ticket confusion
attack above, as described by Delignat-Lavaud and Bhargavan [4], could be prevented
by correctly implementing SNI. In practice, implementations seem to be inconsistent
and lenient compared to the specification [10, 2].

A 2016 study conducted by Springall, Durumeric, and Halderman [11] revealed high
exposure to attacks based on the reuse of cryptographic state, including improper
rotation and sharing of STEKs. For this, they used the key_name field of a session
ticket, queried over a six-hour window. They then grouped sites, which shared their
identifier at any point and found that a large number of websites appeared to share
their STEKs.

1.2 Contributions

While the key_name field used by Springall, Durumeric, and Halderman in [11]
is a strong indicator for STEK sharing, it is not definitive: Our work improves
upon this by practically verifying whether STEKs are being reused. Furthermore,
we focus on analyzing the practical exploitability of STEK reuse via session ticket
confusion. We implement a scan, which tries to authenticate with a session ticket to
determine whether two servers share their STEK. Our results support the claims
made by Springall, Durumeric, and Halderman; We were able to find a surprising
number of servers, which shared their STEKs. Most of the potentially vulnerable
servers are situated in Content Delivery Network (CDN) and appear to be vulnerable
to practical session ticket confusion. Unfortunately, we found that our approach
does not scale well to large sample sizes, which restricted our analysis to a modest
22,000 servers. We still included a less thorough scan of another 55,000 servers, which
supports our results.

4 1 Introduction

1.3 Organization of the Thesis

This thesis is divided into 6 chapters. In Chapter 2, we provide the necessary
background for session tickets, STEK reuse and the resulting session ticket confusion
attack. Based on this knowledge we then derive certain design goals for our scan, which
we discuss in Chapter 3. In Chapter 4, we outline how our implementation addresses
these goals. Using our implementation, we collected data for several thousand hosts.
We show and discuss these results in Chapter 5. Finally, we summarize our results
and outline possible future work in Chapter 6.

2 Background

In this chapter, we introduce all necessary background for the session ticket confusion
attack. This includes what session tickets are, how they are used in a TLS handshake
and the security considerations that apply. We will use this later to motivate design
decisions for our scanning application. We also introduce TLS-Attacker, the library
that we used to implement our application.

2.1 Transport Layer Security

TLS [2, 1] is a widely used cryptographic protocol used to secure communication
over the internet by providing encryption, authentication and integrity to an ap-
plication. It is independent of the communication on the application layer and
can be used for a variety of protocols, but one of its most common usages is
HTTPS. HTTPS allows accessing and interacting with websites on the internet
securely.

2.1.1 TLS Handshake

To secure any interaction using TLS, the communicating parties perform a hand-
shaking phase in which the cryptographic parameters, such as the cipher to be used,
and keys needed for encryption are negotiated. Depending on the interaction either
of the parties can authenticate themselves using a public key certificate during this
phase.

Once the handshake has been completed, both parties can then exchange encrypted
traffic based on the previously negotiated parameters.

In this work, we consider the setting of web browsing, where an anonymous client
connects to an authenticated web server. Here the handshake aims to accomplish
two important goals:

1. After the handshake finishes both parties share a set of symmetric keys, which
they can use to securely communicate with each other.

2. After the handshake finishes, the client is sure that they are communicating
with the right server.

6 2 Background

A typical TLS 1.2 handshake, as shown in Figure 2.1, begins with the client sending a
ClientHello message to the server in which they list, amongst others, the different key
exchange methods and ciphers they support. The server responds with a ServerHello
message in which it chooses from the options suggested by the client. Together with
the ServerHello the server sends a public key certificate to be used as part of the
key exchange.

There are different key exchange schemes based on RSA or Diffie-Hellman. For our
purposes, the differences between the two are not important1. Depending on the key
exchange, the certificate can be used to encrypt a key (RSA), as part of the key (Diffie-
Hellman) or to sign part of a key (Diffie-Hellman Ephemeral). With every method, the
client and server negotiate a shared secret called the Pre-Master secret (PMS) from
which they ultimately derive the symmetric keys required for further communication.
By verifying all signatures and the certificate chain of the server’s certificate itself, a
client confirms the authenticity of the received messages. After exchanging keys, the
Server- and ClientFinished messages confirm that no messages were added to the
handshake or otherwise modified by a third party.

This handshake always requires two roundtrips from the client to the server and
back. It is only then that both parties can use the negotiated keys to safely commu-
nicate.

Figure 2.1: Full handshake using TLS 1.2

1Our illustrations will depict an ephemeral Diffie-Hellman key exchange for consistency.

2.1 TLS 7

Differences in TLS 1.3 TLS 1.3 [2] has overhauled the TLS protocol, including the
handshake. The RSA key exchange has been deprecated and Diffie-Hellman key
exchange is now used for every connection. This means that the key exchange
can be performed immediately in the ClientHello and ServerHello messages. But
since the certificate is only sent after the ServerHello message, the server has to
authenticate retrospectively with the newly introduced CertificateVerify message. In
Figure 2.2 we can see the TLS 1.3 equivalent of the handshake shown in Figure 2.1.
In conclusion, the improved handshake protocol in TLS 1.3 is quite similar to its
predecessor and achieves the same aforementioned objectives, but manages to do so
in a single roundtrip.

Figure 2.2: Full handshake using TLS 1.3

2.1.2 SNI

SNI is an extension to the TLS handshake, which allows a client to include the name
of the server it is trying to reach, in the handshake itself [10]. This is useful in the
context of “virtual hosting”, where multiple distinct web services may be hosted
on the same physical machine. A server can then use the domain name from the
extension to handle the request appropriately, for example by serving a certificate
responsible for the requested domain.

When faced with an unknown server name, a server is recommended to either ignore
the mismatch (and let the client resolve it on the application layer) or abort the
handshake completely.

A majority of TLS connections use SNI [12] and as of TLS 1.3, the extension is
mandatory to implement [2].

8 2 Background

In this work, we denote the domain name communicated via SNI to reach a host X
as “the SNI for X”.

2.1.3 Session Resumption using Session Tickets

Session tickets are a form of session resumption mechanism, introduced to TLS 1.2
in RFC5077 [3]. When a client handshakes with a server, they can request a session
ticket from the server. On the next handshake, the client can then include said ticket
in the ClientHello message to abbreviate and speed up the handshake. This can
come at the cost of security: Depending on the protocol version and implementation,
attacks can range from decrypting singular sessions to fully impersonating servers
during session resumption [5, 13].

To use session resumption, a client includes the empty SessionTicket extension in
their ClientHello message during the initial handshake. If the server wishes to issue
a ticket, it encrypts all cryptographic state relevant to the session using the STEK
and passes it to the client in the NewSessionTicket message. This interaction is
shown in Figure 2.3. The encrypted ticket contains everything the server needs to
resume the current session later, most importantly the negotiated master secret.
The ticket is stored client-side together with the respective parameters required by
the client to resume the session later. Notably, the server issuing the ticket does
not store any data after ending the initial session, making this stateless for the
server.

Figure 2.3: Ticket issuance in TLS 1.2

2.1 TLS 9

The next time the client wishes to begin a connection with the same server, the client
includes the ticket as an extension to the ClientHello. When the server receives the
ClientHello with the session ticket, it will attempt to decrypt the ticket using the
STEK. Depending on the circumstances (more on that in Subsection 2.1.3.3) the
server can either choose to reject the ticket (and fall back to the full handshake as
seen in Figure 2.1) or honor the ticket, in which case they perform an abbreviated
version of the handshake (see Figure 2.4).

The abbreviated handshake is significantly faster: Since the client and server already
share a secret (the master secret from the previous connection, encrypted in the
ticket), they do not need to perform a key exchange again. The server has already
authenticated itself to the client in the prior connection, so it does not have to send its
certificate again. This means that both parties can proceed to the ChangeCipherSpec
message right after their respective Hellos and then start exchanging application
data immediately. This not only saves a full roundtrip of latency but also saves
CPU time, because it gets rid of expensive calculations for the key exchange and
the verification of the certificate chain. In practice, session tickets have been shown
to reduce the total time for a handshake by up to 50% and CPU time by up to
95% [7].

The additional speed has risks associated with it, however: A server’s STEK allows
an attacker to decrypt any session ticket and therefore the master secret for a session.
This makes the STEK a long-term secret, which (when compromised) may be used to
decrypt sessions recorded in the past. This violates “Perfect Forward Secrecy”, even
with an otherwise perfect forward secure key exchange2. It is crucial for both parties
that the STEK and the ticket contents themselves remain a secret: From the server’s
point of view, any client with an encrypted ticket and the master secret contained
within can impersonate the identity of the original client. From the client’s point
of view, any server capable of decrypting an encrypted ticket can impersonate the
original server. To prevent an attacker from decrypting existing tickets or maliciously
creating their own, session tickets are protected using strong encryption and integrity
mechanisms [3].

Essentially, session tickets are a speed-security tradeoff: A server can speed up sessions
with previous clients by reusing previous secrets, without storing any additional
session information. Because session tickets tie a server’s identity and the security of
all sessions conducted with it to the STEK itself, the STEK becomes an additional
secret to keep safe. Regularly changing (“rotating”) the STEK and invalidating prior
tickets can limit the impact of an exposed STEK.

2Perfect Forward Secrecy is the property that “compromise of long-term keys does not compromise
past session keys”[14]. This is highly desirable and it is recommended to use perfect forward
secure cipher suites in TLS by the German government [15].

10 2 Background

Figure 2.4: Abbreviated handshake in TLS 1.2

2.1.3.1 Session resumption using PSKs

TLS 1.3 has deprecated session tickets in favor of the new Pre-Shared Keys (PSKs)
mechanism: Instead of negotiating a secret for the session, a secret can be shared
out-of-band or derived from a previous session, which is then used for communication.
There even exists a combination of (EC)DHE and PSKs, which preserves “Perfect
Forward Secrecy”.

PSKs address many of the aforementioned problems with session tickets, but we
omit any further details here: For our purposes, PSKs are session tickets. Whenever
we refer to “session tickets”, we actually mean “TLS 1.2 session tickets or TLS 1.3
PSKs” (unless explicitly stated otherwise).

Note that PSKs are formalized as a key “exchange” method. While the resulting
handshakes may look nearly identical, the underlying implementation may differ
significantly between session tickets and PSKs. Therefore, implementation-specific
behavior does not necessarily apply to both [2]. We outline what this means for us
in Subsection 2.2.1.

2.1.3.2 Recommended Ticket Construction

Servers are only ever expected to receive and understand their own session tickets,
therefore their format could be custom for every server implementation. Nonetheless,
RFC 5077 recommends a structure for TLS 1.2 session tickets, shown in Figure 2.5.
While we omit the cryptographic details for simplicity, we would like to point out
the key_name field: The RFC states that it “serves to identify a particular set of

2.1 TLS 11

key_name [16] IV [16] encrypted_state [0..216 − 1] MAC [32]

Figure 2.5: Structure of ticket as recommended by RFC 5077, byte size in brackets

keys used to protect the ticket” and that it “should be randomly generated to avoid
collisions between servers” [3]. Its purpose is to quickly identify tickets that will not
be accepted, for example, foreign or expired tickets.

Previous work [16] has shown that eight out of nine TLS libraries implemented a
key_name of varying length at the beginning of their tickets. In practice, this meant
that 98.7% of the hosts supporting session tickets implemented a key_name of 16
bytes. We will consider the key_name field to be an important indicator that a ticket
was issued using a certain STEK.

TLS 1.3 The TLS 1.3 specification [2] does not include any recommendation re-
garding session ticket structure, but the aforementioned study concluded that
most implementations follow the structure recommended for TLS 1.2 in RFC
5077 [16].

2.1.3.3 SNI in Session Resumptions

SNI has a special role in session resumptions, as it is the only TLS extension, which
directly affects whether sessions may be resumed [10]. In particular, “A server that
implements this extension MUST NOT accept the request to resume the session if
the server_name extension contains a different name”. Here “MUST NOT” means
“an absolute prohibition of the specification” [17].

However, the specification for TLS 1.3 notes that “in reality the implementations
were not consistent on which [...] supplied SNI values they would use”, i.e. whether
they would use the SNI value implicitly associated with the session (see Subsec-
tion 2.1.2) or the value explicitly provided within the ClientHello. Therefore, starting
with TLS 1.3 “the SNI value is always explicitly specified in the resumption hand-
shake” [2]. This makes it especially interesting to analyze how SNI affects the
resumption handshake and whether this behavior is consistent between protocol
versions.

12 2 Background

2.2 Session Ticket Confusion Attack

Session ticket confusion is a type of virtual host confusion attack, first introduced
by Delignat-Lavaud and Bhargavan in 2015. A virtual host confusion is “when
any request is routed to a virtual host that wasn’t intended to serve the domain of
the request, without causing any authentication failure on an honest client” [4] (cf.
Subsection 2.1.2). Session ticket confusion is possible when a modern web server
(acting as a HTTP multiplexer) incorrectly handles an incoming request. Because
session resumptions do not (re-)validate certificates, a client can be tricked into a
session with a different host this way.

In the worst case, this could mean that a resumption request sent to website 𝒜 =
(IP𝐴, domain𝐴) can be rerouted to another website ℬ = (IP𝐵, domain𝐵) by a man-
in-the-middle, where ℬ shares its STEK with 𝒜. Because ℬ can decrypt the session
ticket, the client would then establish a session with ℬ. The client would believe the
session to be authenticated under 𝒜’s certificate from the original handshake. That
certificate does not have to cover ℬ: Other than sharing a STEK, 𝒜 and ℬ do not
have to be related in any way.

This only works if ℬ routes the request to an unintended virtual host: Theoretically,
ℬ could notice that the SNI contained in the ClientHello (i.e. domain𝐴), does not
exist on the target device. Similarly, the ticket itself could indicate the domain of
the original request. In practice, Delignat-Lavaud and Bhargavan did find a pair
of servers where a TLS session with one “high-trust” server could be continued
with a different “low-trust” server because they shared a session cache3. This
means that a client can be tricked so that it believes to be communicating with an
intended “high-trust” server when in reality its requests are answered by a “low-trust”
server [4].

This can but does not have to, be an exploitable vulnerability (more on that in
Subsection 2.2.2)

2.2.1 Differences in TLS 1.3

There are no fundamental differences in TLS 1.3’s design that prevent the same
attack from happening with PSKs. However, as mentioned in Subsection 2.1.3.1,
PSKs are a separate mechanism from TLS 1.2 session tickets. If two servers are
vulnerable to a TLS 1.2 session ticket confusion, this does not imply that the
same applies to PSKs and vice-versa. Theoretically, tickets usable on both versions
are possible, in practice no servers allow switching between the two for resump-
tion [16].

3Session caches are used by a different session resumption mechanism, called “session IDs”[1]

2.3 TLS-Attacker 13

2.2.2 Attacker Model

Our attacker model is based on the assumptions made by Delignat-Lavaud and
Bhargavan [4].

Attack Scenario A client has connected to server 𝒜 in the past and has been issued
a session ticket. There exists a separate server ℬ, which hosts different content but
shares its STEK with 𝒜. Both 𝒜 and ℬ are not compromised by the attacker. The
client now attempts to resume its session with server 𝒜. The attacker observes this
attempt and intercepts it.

Attacker Capabilities The attacker can redirect the corresponding TCP traffic to ℬ,
but they cannot change the redirected traffic itself, because it is protected by TLS.
The TLS session is considered secure, in particular, there are no vulnerabilities from
leaked certificate secret keys.

Attack Goals The objective is to have the client connect to ℬ and perform a session
resumption to establish a TLS session with ℬ. Because session resumption skips
the certificate verification, the client does not realize that the server has changed
and sends requests meant for 𝒜 to ℬ. ℬ has to accept and process these requests
differently from 𝒜.

Since the attacker does not control ℬ in any meaningful way, the impact of the
attack heavily depends on ℬ’s behavior: ℬ could for example visibly log requests
and thereby leak potentially confidential requests meant for 𝒜. Alternatively, ℬ
could serve user-submitted data, causing the client to request and process potentially
malicious files. Depending on the messages sent by the client this could either happen
organically or could be only made possible through a separate weakness like a CSRF
attack.

2.3 TLS-Attacker

TLS-Attacker [18] is a Java framework designed for analyzing TLS libraries. It
allows users to define arbitrary sequences of TLS messages and gives fine control
over the respective content. We employ TLS-Attacker to dynamically handshake
with different servers and observe their reaction to certain messages. We use not
naturally occurring combinations of SNI and session tickets, which are not neces-
sarily supported by other TLS client implementations. The details are outlined in
Section 3.3.

3 Design

Our objective is to implement a scanning application, which identifies servers that
are potentially vulnerable to a session ticket confusion attack because they share
STEKs (as described in Section 2.2). In this chapter, we will examine previous work
and, together with the background knowledge from the section above, determine
design goals for our application.

We present a high-level description of our proposed application, which we describe in
more technical detail in the following Chapter 4.

3.1 Previous Work

In 2016, Springall, Durumeric, and Halderman conducted a study where they in-
vestigated the use of “security shortcuts”, which served “to reduce the costs of
cryptographic computations and network round trips” [11]. This included identifying
“service groups”, larger groups of domains, operated by the same organization, that
shared their STEKs for extended amounts of time. They queried each domain on the
Alexa Top Million list ten times and grouped domains that issued tickets with a match-
ing key_name field during any one of the ten attempts.

Amongst the one million potential domains, they found 354,697 sites that sup-
ported session tickets. 184,603 of those sites were grouped, meaning they shared
their key_name with at least one other site. Based on their study, the authors
concluded that “the magnitude of sharing [STEKs] across domains was surpris-
ing” [11].

3.2 Design Goals

Springall, Durumeric, and Halderman relied on the key_name field in order to identify
shared STEKs. While the recommended ticket construction (Subsection 2.1.3.2) sug-
gests that the key_name should “identify a particular set of keys”, this does not mean
that matching key_names guarantee a matching STEK.

We propose to simulate a ticket confusion attack (Section 2.2) to confirm whether
servers share their STEK: If a server can extract the master secret from another

16 3 Design

server’s securely encrypted ticket, then both servers had to have used the same
symmetric key.

Unfortunately, a matching STEK is no guarantee for accepting a ticket: Outside
factors, such as the information encrypted in the ticket itself, or the client’s handshake
(cf. Subsection 2.1.3.3) may cause a server to reject tickets that they were able to
decrypt. This means that our approach can only prove that servers share a STEK
but never rule it out.

However, even if two servers share a STEK and accept each other’s tickets, this only
constitutes an attack if the destination server processes the requests accordingly
(see Subsection 2.2.2). Therefore, we want to refine our scan by also looking at
different scenarios regarding SNI: Unlike an attacker, we can freely manipulate the
SNI, because we are acting as both the attacker and the victim. As we discussed
in Subsection 2.1.3.3, SNI is the most relevant factor in getting a ticket accepted
apart from the STEK. Because SNI has a record of being poorly implemented
in session resumption, we expect that some servers will likely handle SNI values
inconsistently [2]. By experimenting with different SNIs, we will try to identify
different levels of vulnerability.

This motivates our first major design goal: Instead of relying only on the key_name,
we want to check whether two domains share a STEK by requesting a session ticket
from server 𝒜 and then attempting to resume a session using that ticket on server
ℬ with ℬ’s SNI. Only if this succeeds, the servers can be considered potentially
vulnerable to a session ticket confusion attack. If the servers share a STEK, we
want to try different SNI values to assess the possibility of a session ticket confusion
attack.

This approach has one caveat: Since we have to check pairs of two domains, we scale
quadratically in the number of domains. For common datasets such as the Tranco Top
1 Million list [19], this number becomes prohibitively large.

We cannot avoid the scaling factor, but we do not have to consider every single
combination: The odds of two servers sharing a randomly generated 128-bit AES
key (a reasonable choice for encrypting/securing tickets) by chance are negligible.
Rather we are interested in domains where the STEKs are shared intentionally or
accidentally through misconfiguration. Our overall goal here is to consider systemic
misuse, rather than finding singular instances. In this case, there has to be some
logical proximity between the hosts, e.g. servers hosted in the same data center,
multiple domains hosted on the same physical machine, domains maintained by the
same system administrator, etc.

Thus, our second design goal: Rather than checking every possible combination, we
only want to analyze promising candidate pairs that are related. Here we want to
implement pre-sorting hosts into potential “service groups” such as the ones found
by [11]. We present criteria for this in Section 3.4.

3.3 Scanning for STEK Sharing 17

3.3 Scanning for STEK Sharing

We consider pairs of virtual hosts, meaning pairs of IP addresses and hostnames
for our scans. To check whether hosts 𝒜 and ℬ share a STEK, we first initiate
an ordinary connection to host 𝒜 in which we request a session ticket from the
server.

We then use the ticket issued by 𝒜 with ℬ, by treating our request to ℬ as an ordinary
resumption request, except we include 𝒜’s ticket in the extension. If ℬ performs the
abbreviated handshake (cf. Figure 2.4), that means that ℬ was able to decrypt the
session ticket, proving that they use the same STEK as 𝒜.

Since our overarching goal is to evaluate the likelihood of session ticket confusion at-
tacks, this may not be enough: Especially SNI may interfere (see Subsection 2.1.3.3).
Therefore, we have to consider how adjusting different elements of the handshake
influences whether the foreign ticket is accepted. Changing other parameters, such as
the protocol version or the used cipher suites before resuming, has been shown to lead
to rejection with almost all servers [16], so SNI is the only value that we chose to ma-
nipulate between the initial handshake and resumption.

With these considerations in mind, our tool should perform the following steps:

1. Initiate handshake with 𝒜

2. Prepare resumption handshake to 𝒜

3. Adjust SNI accordingly

4. Send resumption handshake to IP𝐵

5. Check if abbreviated handshake succeeds

There are four different SNI scenarios worth examining (see Subsection 2.1.3.3 and
Subsection 2.2.2), which correspond to different attack paths:

“Adjusted confusion” Set the SNI for the resumption to domain𝐵 . This check is the
most likely to succeed (as it eliminates all rejection factors within our control) and
therefore is the most reliable indicator of whether the two servers share their STEK. To
exploit this as an attack, an attacker needs to outright change the SNI, which requires
strong control over requests sent by the client. Under such circumstances, session
ticket confusion would be an unlikely attack choice.

18 3 Design

“Original confusion” Set the SNI to domain𝐴. This check is the closest to our
attacker model because it simulates an attacker being able to reroute a client’s
messages without any changes in the messages themselves. On its own, it does not
tell us a lot about the possibility of an attack, because of load balancing and virtual
hosting: If IP𝐴 = IP𝐵 or if IP𝐴 is a mirror of IP𝐵, this is a legitimate resumption
attempt without any reason to fail.

“Invalid confusion” Change the SNI to a domain unknown to the server (in our case:
falscherservername.de). This check helps us differentiate whether an “original
confusion” succeeded, only because the server recognized the name (in which case
this fails) or due to an improper fallback (in which case this check also succeeds). In
case an attacker gains limited influence on the SNI, invalid confusion may become
an attack vector. Across different servers, this is equivalent to “original confusion”,
but it can also work on virtual hosts of the same server when there is an insecure
fallback in place.

“Missing confusion” Do not include the SNI extension at all. This attack path
requires an insecure fallback, when there is no SNI supplied. In the past, down-
grade attacks were used to effectively remove SNI from a handshake [4]. If an
exploit to remove SNI is discovered in the future, this may become a viable attack
scenario.

Our base attacker model (Subsection 2.2.2) only considers “original confusion”, where
the attacker does not have any TLS level capabilities. If an attacker can manipulate
the SNI accordingly, by abusing another weakness like CSRF, each of these scenarios
can become a full-fledged attack. Depending on the changes made to the SNI and
the behavior of the destination server, different targets are possible. We summarize
the circumstances needed in Table 3.1. In any case, an attacker needs to be able to
redirect traffic between two servers that share a STEK to perform a ticket confusion
attack.

Type Changes to SNI Destination accepts Required routing Possible targets
Adjusted Arbitrary – – Other servers + VHosts
Missing Remove SNI extension without SNI Fallback Other servers + VHosts
Invalid Set to unknown invalid SNI Fallback Other servers + VHosts
Original – invalid SNI Fallback Other servers

Table 3.1: A summary of the different attack types. In any case, the source and
destination host need to share a STEK, but with additional control over
the SNI, more possible attacks open up. Notably, virtual hosts can only
become a target when there is some kind of control over the SNI because
otherwise, the request becomes a proper resumption with the original
host.

3.4 Restricting the Search Space to Promising Candidates 19

Based on the importance of the different variations and to improve speed, we have
chosen to execute “adjusted confusion” as a base test: We only ever perform the
other three if adjusted confusion succeeded.

Note that the test is directional: While STEK sharing necessarily applies to both par-
ties, that is not the case for actually accepting any tickets. To meaningfully evaluate
the danger of session ticket confusion attacks we, therefore, perform the described scan
from 𝒜 to ℬ and vice-versa. We also repeat the scan for both TLS versions 1.2 and
1.3, due to the differences outlined in Subsection 2.2.1.

3.4 Restricting the Search Space to Promising Candidates

As explained above, our scan has to be performed in both directions, making an
exhaustive search of all 𝑛 · (𝑛 − 1) pairs of hosts infeasible for any common sample
size. Instead, we are interested in pairs of hosts that have some degree of logical
proximity. Their STEKs might be shared due to external factors besides pure chance.
Possible reasons include human error, such as misconfiguration of multiple virtual
hosts, intentional configuration, such as mirrored servers for a load-balancing setup,
or automated deployment with unchanged default values. We believe that CDNs are
especially likely to share their STEK because they directly profit off of the increased
speed with little associated risk, as long as all entry points to the network behave
the same.

We need some indicators to decide whether we consider a pair to be worth scanning,
so we introduced a pre-processing stage: There we collected different data points
and grouped different hosts based on these. We then perform pairwise, bi-directional
scans for all hosts within a group.

We will now explain the different factors we originally considered and why they are
a potential indicator for STEK sharing:

Keyname As explained in Subsection 2.1.3.2, the key_name field is used to identify
a “set of keys [3]”, meaning a STEK. Therefore equal key_names are the strongest
indicator that two servers share their STEKs.

IP blocks Hosts with IP addresses that are near (or even equal) to each other
indicate that the hosts may be on the same physical machine or in the same network.
Here, different hosts may be serviced by the same admin or deployed within the same
infrastructure, which increases the chance of accidentally sharing the STEK. At the
same time STEKs may be shared intentionally, e.g. with different, load-balancing
servers. We especially considered IPs from the same /24 block, i.e. IPs that only
differ in the last 8 bits (for a total of 255 distinct addresses) to limit the number of
pairs.

20 3 Design

Domain similarity Hosts with similar domains are likely to belong to the same organi-
zation. “Similar” can refer either to subdomains, e.g. panda.upb.de and paul.upb.de,
different top-level domains (google.de and google.com), or lexicographically similar
second-level domains like upb.de and upb50.de.

Ticket length It is very unlikely that implementations would issue tickets with
different content lengths between contents (cf. Figure 2.5), so we considered the
ticket length as a possible criterion.

Certificate names Certificates can contain different domain names for which they
are valid (through wildcards or the “Subject Alternative Name” field), so a web
server can serve different domains with a single certificate and potentially use the
same STEK.

panda.upb.de
paul.upb.de
google.de
google.com
upb.de
upb50.de

4 Implementation

Based on the design presented in Chapter 3, we have implemented a pipeline consisting
of Preprocessing, Grouping and Scanning. In the Preprocessing step, we collect
data points, as described in Section 3.4, about all domains from the Tranco Top 1
Million list. We use these data points to create groups of promising hosts. Finally,
we perform a scan, as described in Section 3.3, for each host pair within each
group.

In this chapter, we dive into implementation details for each of the steps. The
resulting implementation will eventually be the base for our evaluation presented in
Chapter 5.

4.1 Preprocessing Phase

We first filtered out invalid entries in our domain list by using ZDNS [20]. This
gave us a list of all resolving domains and each of their responsible IP addresses1.
We then used ZMap [21] to discard all gathered IP addresses, which expose TCP
port 443. Finally, we recombined the remaining IP addresses and their respective
domains.

This left us with all responding combinations of IPs and domains from our initial
list: Using ZGrab2, we performed 3 handshakes each with the ––session-ticket
option enabled, which requests a session ticket during the handshake. For each host,
we determined the key_name by taking the prefix shared amongst the most tickets
[13]. This way, we reduced the handshake data down to tuples of (ip, domain,
key_name, ticket_length).

ZGrab only supports TLS up to version 1.2 at the moment, so we only consider
hosts that support TLS 1.2 tickets, regardless of PSK support. This means that
the key_name for any host is only based on TLS 1.2 tickets, hosts that exclusively
support PSKs are filtered out. It also means that we need to check for PSK support
for any given host before performing the scan.

1We restricted ourselves to IPv4 addresses because including the IPv6 space increases the search
space significantly.

2https://github.com/zmap/zgrab2

https://github.com/zmap/zgrab2

22 4 Implementation

4.2 Grouping Phase

We constructed groups of hosts using the aforementioned tuples in a simple Python
script via itertools’ groupby3 function. Our final implementation used the key_name,
the ticket_length, and the first 24 bits of the IP address as a grouping key.
The output was a list of all pairs of different hosts from within each generated group,
each tagged with an arbitrary index for their respective group. We discarded groups of
size one because they do not contain a pair of candidate hosts.

4.3 Scanning Phase

4.3.1 Overall Architecture

Each ticket confusion scan is independent of the others and we can trivially parallelize
the scanning workflow described in Section 3.3. Therefore, we modeled each scan job
as a separate SessionTicketConfusionScanner object. Each consists of a unique
combination of source and destination hosts.

The SessionTicketConfusionScanner class implements the Callable interface.
Using Java’s inbuilt ExecutorService class, we can simply submit all of our scan
jobs and leave multithreading to the operating system. We go into detail about
the implementation of a single job in Subsection 4.3.2. To prevent data loss from
unforeseen interruptions, we immediately collect the results of each job and write the
results to an external database. In our case, we used the Java driver for MongoDB,
a document-oriented NoSQL database. The resulting architecture can be seen in
Figure 4.1.

4.3.2 Scanning Job

In our implementation of an individual scan job, we have taken the SNI variations
proposed in Section 3.3, but added additional steps to improve robustness and
speed. We first check whether we have the technical prerequisites to perform a
ticket confusion, that is whether we get a ticket from 𝒜 and whether we can redeem
tickets with ℬ. While this should have been ensured by our pre-processing, we
encountered some servers that behaved inconsistently between connections. This
also serves as a check for PSK support in the TLS 1.3 case (cf. Section 4.1). The
resulting scan job is shown in Figure 4.2. It is the same for both TLS 1.2 and
1.3.

We implemented each of the steps as its own Probe class, derived from two abstract su-
perclasses (see Figure 4.3): ResumptionProbe and SessionTicketConfusionProbe.

3https://docs.python.org/3/library/itertools.html#itertools.groupby

https://docs.python.org/3/library/itertools.html#itertools.groupby

4.3 Scanning 23

Figure 4.1: Simplified class diagram depicting the architecture of our scanning appli-
cation. For brevity, we have omitted and simplified classes surrounding
SessionTicketConfusionScanner.

Figure 4.2: Activity diagram depicting the flow for a single scan job.

24 4 Implementation

ResumptionProbe provides utility functions to perform a session resumption, which
we adapted from Hebrok et al. [13]. Based on the IP and domain of the target, as well
as the protocol version, it can generate a State, which represents a sequence of mes-
sages the client will send and expect to receive (“workflow”), within the TLS-Attacker
framework. We generate different States for the different handshakes of the session
resumption. Once executed, we can then verify if our workflow succeeded, meaning
the server responded in the way we expected/wanted it to. Our initial handshake
workflow succeeds if the server accepts the handshake itself and issues a session ticket
(see Figure 2.3). The resumption handshake succeeds if the server accepts the ticket
without falling back to a full handshake (see Figure 2.4).

To capture the notion of ticket confusion, where the host for the initial hand-
shake does not match the host for the resumption, we introduced the subclass
SessionTicketConfusionProbe: It implements Section 3.3, by exposing the ab-
stract function configureResumptionHandshake(), to change the Config used
for the initial handshake before attempting to resume. This allows us to freely
manipulate the SNI and the destination host between handshakes by subclassing
SessionTicketConfusionProbe.

A possible resulting entry of our scan, as saved in the database, is shown in Fig-
ure 4.4.

Figure 4.3: Class diagram depicting each probe. This diagram omits technical details
related to multithreading and serialization.

4.3 Scanning 25

{
_id: ObjectId(’640258c642b1c23a59ab15a0’),
source: { domain: ’zerotothree.org’, ip: ’141.193.213.20’, index: 21447 },
destination: { domain: ’6sense.com’, ip: ’141.193.213.21’, index: 21447 },

scanResult: {
confusionResultMap: {

TLS12: {
sourceIssuesSessionTickets: ’TRUE’,
destinationPerformsResumption: ’TRUE’,
allowsTicketConfusionWithOriginalSNI: ’COULD_NOT_TEST’,
allowsTicketConfusionWithInvalidSNI: ’COULD_NOT_TEST’,
allowsTicketConfusionWithoutSNI: ’COULD_NOT_TEST’,
allowsTicketConfusionWithAdjustedSNI: ’FALSE’

},
TLS13: {

sourceIssuesSessionTickets: ’FALSE’,
destinationPerformsResumption: ’FALSE’,
allowsTicketConfusionWithOriginalSNI: ’COULD_NOT_TEST’,
allowsTicketConfusionWithInvalidSNI: ’COULD_NOT_TEST’,
allowsTicketConfusionWithoutSNI: ’COULD_NOT_TEST’,
allowsTicketConfusionWithAdjustedSNI: ’COULD_NOT_TEST’

}
}

}
}

Figure 4.4: A possible resulting database entry for a job. Note that this might not
appear consistent to Figure 4.1, because the class diagram was simplified.

5 Evaluation

We used the implementation described in Chapter 4 to perform a large-scale evaluation
of hosts in the wild. In this chapter, we present the results of our evaluation and
analyze which hosts are potentially vulnerable and why. We do so by taking a closer
look at the host pairs we found and which probes they were susceptible to on which
TLS version.

5.1 Scans

Host Groups Selection We used the standard Tranco Top 1 Million list obtained on
February 22, 2023 [19]1 for our scan. After our initial pre-processing step, we were left
with 1,239,420 unique combinations of IP and domain (“hosts”) to consider. To test
our implementation and to provide an initial benchmark, we first applied our scan to
around 6,000 entries. Based on the runtime of this preliminary scan we settled on the
choice of grouping criteria outlined in Section 4.2, to reduce the runtime to a feasible
level. This included limiting ourselves to the first 100,000 entries of the Tranco Top
1 Million list. This gave us 122,701 unique combinations of IP and domain, resulting
in 87,677 unique hosts, spread across 7143 groups.

Excluding CDNs While much more manageable, this still would have required 43
million individual scan jobs (approximately 90 days). A closer examination revealed
that a few strongly related clusters accounted for a majority of those: Three clusters
of sizes 3810, 3304, and 2949 made up close to 10% of all scans. We were able to
track these hosts to a few major CDN providers: CloudFlare, Fastly, and Amazon
CloudFront (AWS). We assumed that CDN endpoints would follow a streamlined
implementation and would behave consistently across clusters. We decided to focus
our efforts on hosts on the outside and filtered out hosts belonging to either of the
three providers (using their publicly available IP ranges).

Scan Setup This left us with 22,132 hosts in 4,470 groups for a total of 1.2 million
individual jobs. They were completed using an Intel Xeon CPU E5-2695 v3 @
2.30GHz in around 9 days. The tool used 200 Java threads on 22 virtual CPU cores.
We later performed equally many scans, randomly sampled from the CDN hosts we

1available at https://tranco-list.eu/list/LYVG4/1000000

https://tranco-list.eu/list/LYVG4/1000000

28 5 Evaluation

filtered out, to validate our assumptions. These scans were performed in three days
with the same setup.

5.2 Results

5.2.1 STEK Sharing

We say that a host is vulnerable, if it accepted a probes resumption handshake in at
least one instance. As shown in Figure 5.1, we found that a majority of surveyed
hosts were vulnerable to adjusted confusion, which indicates a high amount of STEK
sharing. In particular, 80.9% of the hosts shared their STEK at least once on either
TLS version 1.2 or 1.3. 44.7% of all vulnerable hosts did so only on TLS 1.2, while
another 30.4% did so on both versions of the protocol. Only 5.8% of scanned hosts
were found to share their STEKs on TLS 1.3 exclusively.

Do not share their STEK

19.1%

On TLS 1.2 only

44.7%

On TLS 1.3 only

5.8%

On both versions

30.4%

Proportion of hosts sharing their STEK

Figure 5.1: Proportion of hosts, sharing their STEK. Two hosts share their STEK
when adjusted confusion is successful.

We see that the host vulnerable to the adjusted and original confusion probes are
closely related, which means most hosts with shared STEKs would also be vulnerable
to a real attack. However, we also found a noticeable distance to the missing and
invalid confusion probes, which indicates that our number of “true” original confusions
is inflated: There must have been servers, that accepted the original SNI confusion
because they recognized it (i.e. virtual hosts or mirrors), rather than falling back
because of an unknown SNI.

5.2 Results 29

Because of our preprocessing, all scanned hosts supported TLS 1.2 session tick-
ets, but only 43.4% of the hosts also supported PSKs2: By looking at the relative
number of vulnerable hosts, we see that the share of vulnerable servers is similar
between versions. In fact, TLS 1.3 has a higher proportion of hosts with STEK
sharing. Compared to 75.1% of TLS 1.2 STEK sharing, 83.4% of hosts with PSK
support shared their STEK (see Figure 5.2b). Only fallback confusion (i.e. miss-
ing or invalid confusion) is noticeably less prevalent in TLS 1.3 both in the share
of vulnerable hosts and the difference between “proper” and fallback confusion.
We believe that this is due to the requirement of explicit SNI, outlined in Subsec-
tion 2.1.3.3.

5.2.2 Behavior Within Groups

The notion that one occurrence of confusion makes a host vulnerable ignores the
dynamics within the scanned groups themselves: We found that the hosts we identified
as vulnerable by each of our probes (Figure 5.2a), behaved consistently within their
groups: For adjusted confusion and original confusion, the share of hosts that accepted
the tickets of all other hosts within their group was 69.4% and 70.2% respectively,
with invalid and missing confusion sitting even higher at 81.0% and 80.4% (see
Figure 5.3a). This means that when two hosts share a STEK, most often the whole
group does.

Additionally, we tried visualizing groups to find irregular structures in terms of
the possible directions but were unable to do so. Most groups resulted in a highly
connected graph, although it has to be noted that not all groups were fully connected.
We also found service groups that would be split into subgroups of vulnerable
combinations – both can be seen in Figure 5.3b. This is likely a consequence of
our scanning methodology, as server configurations could have changed during the
execution (for example due to STEK rotation).

5.2.3 Identifying Common Properties

To understand which hosts were most likely to share their STEK, we looked at the
IP addresses of successful adjusted confusion attempts (Figure 5.4). We found that a
majority of hits happened with nearly consecutive IPs – 63.5% of detections occurred
between hosts with a difference of less than four. 35.7% of these can be accounted to
hosts with an IP difference of zero, i.e. virtual hosts on the same machine.
While these results support our initial assumption that close IP addresses are more
likely to be vulnerable to confusion, it must be considered that they are somewhat

2A similar proportion can be seen amongst Tranco Top 1 Million as a whole: 65.9% of support
TLS 1.2 session tickets, while only 33.8% support TLS 1.3 session tickets, according to https:
//tls-scanner.cs.uni-paderborn.de/properties/sessionResumption on April 5, 2023

https://tls-scanner.cs.uni-paderborn.de/properties/sessionResumption
https://tls-scanner.cs.uni-paderborn.de/properties/sessionResumption

30 5 Evaluation

Adjusted SNI Original SNI Missing SNI Invalid SNI
Probe types

5000

10000

15000

20000

Nu
m

be
r o

f v
ul

ne
ra

bl
e

ho
st

s

Vulnerable hosts by probe type
Total
TLS 1.2
TLS 1.3

(a) The absolute number of vulnerable servers per version for
each of our probes.

Adjusted SNI Original SNI Missing SNI Invalid SNI
Probe types

0

10

20

30

40

50

60

70

80

90

100

Sh
ar

e
of

 v
ul

ne
ra

bl
e

ho
st

s (
in

 %
)

Share of vulnerable hosts by probe type
TLS 1.2
TLS 1.3

(b) The share of vulnerable servers compared out of the servers
that support TLS 1.2/1.3 tickets respectively.

Figure 5.2: Analysis of vulnerable servers per version per probe type.

skewed: Since the number of individual scans scales quadratically with the group
size, larger groups tend to be overrepresented.

We also manually inspected the largest groups of vulnerable hosts to understand
what types of services/organizations shared STEKs on a larger scale: By look-
ing at the IPs and the certificates used by the respective hosts, we were able to

5.2 Results 31

Adjusted SNI Original SNI Missing SNI Invalid SNI
Probe types

0

10

20

30

40

50

60

70

80

90

100

Sh
ar

e
of

 v
ul

ne
ra

bl
e

ho
st

s (
in

 %
)

Vulnerable hosts by probe type
Some scans in group
All scans in group

(a) Comparison of the number of hosts that are vulnerable in
at least one instance to the number of hosts consistently
vulnerable for all pairs within their group. Our results indicate
that groups as a whole tend to be vulnerable rather than
singular pairs.

(b) Visualizationa of accepted tickets for one service group. Directed
edges indicate successful adjusted confusion. Here we can see a
strongly (but not necessarily perfectly) connected structure within
a group. Some groups split into disjunct subgroups like this,
presumably because of STEK rotation over time.

ausing https://github.com/vasturiano/force-graph

Figure 5.3: Analysis of the vulnerability of whole service groups.

identify the entities responsible for each of the major groups. They are shown in
Table 5.5.

https://github.com/vasturiano/force-graph

32 5 Evaluation

0 50 100 150 200 250
Distance between IPs

0

50000

100000

150000

200000

250000

Nu
m

be
r o

f o
cc

ur
re

nc
es

Distance between IPs for successful confusion attempts

Figure 5.4: IP distances between successful confusion attempts

Most identified parties appear to be either CDN providers (Pantheon, Vercel, Al-
iCDN and StackPath/Highwinds) or hosters for user content (such as WPEngine,
WordPress, Shopify and GitHub). Surprisingly enough, the majority of the actual
underlying infrastructure turned out to be provided by a few major providers -
including the ones we previously filtered out. Both WPEngine and Shopify are
served on CloudFlare infrastructure, although with IP ranges outside of the public
CloudFlare ranges. GitHub uses Fastly for their repositories as well as GitHub
Pages. Highwinds Network Group was acquired by StackPath and their “platform
[was] integrated with existing StackPath offerings”, so we consider them as one
combined service provider [22]. Tallying these up gives us the numbers portrayed in
Table 5.6.

5.2.4 Vulnerablity to Real-World Ticket Confusion

As mentioned earlier, almost all hosts vulnerable to adjusted confusion are also
vulnerable to original confusion: To understand whether these were “true” confusions,
we analyzed instances of original confusion from 𝒜 to ℬ by requesting certificates
from ℬ with domain𝐴 and comparing them to the certificates supplied by 𝒜 in the
first place. If they are the same, ℬ would have been able to perform the exact same
handshake as 𝒜, making them a legitimate stand-in.

Our results show that for a majority of these confusions, the certificates did not
match, which means that the client was confused into trusting ℬ, as can be seen in
Figure 5.7. Note that there are two major limitations to this observation: We did
not query the different certificates on the same day, which may falsify the results,

5.2 Results 33

Table 5.5: The twenty largest vulnerable groups we found. All of them are either
part of a CDN or host user pages.

Service group #hosts
WPEngine #1 460
Pantheon 428
WPEngine #2 405
Shopify 280
WordPress 231
xvideos 154
Vercel #1 152
AliCDN #1 147
Vercel #2 137
WPEngine #3 120

Service group #hosts
WPEngine #4 108
Highwinds 101
AliCDN #2 101
StackPath 101
WordPress VIP 86
CloudFlare 80
GitHub #1 74
GitHub #2 74
GitHub #3 72
GitHub #4 72

Table 5.6: Twenty largest vulnerable groups, summed by the underlying infrastructure.
Most groups identified in Table 5.5 are realized using the same underlying
infrastructure.

Infrastructure # hosts
CloudFlare 1453
Pantheon 428
WordPress 317
Fastly 292
Vercel 289
AliCDN 249
StackPath 202
xvideos 154

because certificates may have changed in the meantime. Secondly, we only checked
for exact certificate matches: Technically multiple distinct certificates could be issued
for the same domain, so ℬ might have had a different certificate for domain𝐴, possibly
through a wildcard certificate or multiple Subject Alternative Names. This would
possibly make it legitimate for ℬ to handle the resumption request, even when the
actual certificate may be different.

It would be possible to inspect the names of the certificate, but even then, ℬ has
to serve the same content as 𝒜 (cf. Subsection 2.2.2). Unfortunately, this is best
verified by also taking the HTTP content served into account, which was out of the
scope of this thesis.

Due to these limitations, we cannot say for certain whether a host is vulnerable.
Nonetheless, we conclude that it is dangerous for hosts to accept tickets under a

34 5 Evaluation

different certificate because the client only verifiably trusts the original certificate.

TLS 1.2 TLS 1.3
TLS versions

2000

4000

6000

8000

10000

Nu
m

be
r o

f h
os

ts

Hosts vulnerable to incoming original confusion
Same certificate
Different certificate

Figure 5.7: Comparison of successful original confusions

The same cannot be said for the fallback variants (invalid and missing confusion):
On TLS level (compare Figure 5.2a), we encountered a clear increase in rejected con-
nections. Furthermore, we found that all major infrastructure providers identified in
Table 5.6, employed countermeasures on the Application layer at least: These ranged
from specialized error codes (CloudFlare) to HTTP 404 (WordPress, Pantheon, Fastly
to an extent) to central redirects (Vercel). In either case, we were unable to identify
evidence for unusual and potentially vulnerable behavior.

5.2.5 Supplementary CDN Scan

As mentioned in Subsection 2.1.3, we performed a second scan of only CDN hosts
that we had previously filtered out. These scans were picked randomly and accounted
for 2.9% of possible scans in this set. They are not meant to be exhaustive, but to
validate our assumption, that CDN nodes tend to behave homogenously regarding
ticket confusion.

Our random sample contained 52,302 new unique hosts: 29.9% belonged to AWS,
60.2% to CloudFlare and 9.9% to Fastly. We found a lower percentage of hosts
sharing STEKs (see Figure 5.8). We attribute this to the sparse coverage of poten-
tial scans. This still amounted to 24,370 new hosts sharing their STEK. Only
5.0% of vulnerable hosts belong to AWS, 75.0% to CloudFlare and 20.0% to

5.3 Discussion 35

Fastly. This shows, that STEK sharing is a problem among all evaluated CDN
providers.

None

53.4%

TLS 1.2 only

41.8%

TLS 1.3 only
0.4% Both4.5%

Protocol versions on which CDN hosts shares their STEK

Figure 5.8: The portion of CDN hosts, sharing their STEK on a specific version.

Categorizing the hosts by vulnerability to the different probes (see Figure 5.9) is far
less uniform than before (Figure 5.2a). For each CDN, adjusted confusion is closely
related to original confusion. Missing and invalid confusion differ between CDNs:
AWS CloudFront and an overwhelming part of CloudFlare require a correct SNI to
accept the resumption. Fastly servers on the other hand servers seem to be indifferent
to the supplied SNI and always react the same. Overall, the success rate varies
strongly between the different CDNs, especially CloudFront is an outlier with a rate
of only 7.8%. This may be due to the low sample size.

However, these additional scans still confirm, that CDNs are equally vulnerable to
STEK sharing and ticket confusion (although at varying degree). This aligns with our
previous findings, indicating that our results generalize to the Tranco Top 100k list
(at least).

5.3 Discussion

In our evaluation, we confirmed 17,901 instances of STEK sharing for 22,127 of
the scanned hosts, which were spread evenly between protocol versions3. The sheer
scale of the vulnerability indicates a general disregard for STEKs as truly unique
secrets.

3Relative to the overall support of session tickets.

36 5 Evaluation

Adjusted SNI Original SNI Missing SNI Invalid SNI
Probe types

0

10

20

30

40

50

60

70

80

90

Sh
ar

e
of

 v
ul

ne
ra

bl
e

ho
st

s (
in

 %
)

Vulnerable hosts by probe type (normalized)

AWS Cloudfront
CloudFlare
Fastly

Figure 5.9: The portion of CDN hosts, that are vulnerable to one of the probes,
grouped by CDN providers.

We believe, however, that this is intentional: We saw, that the largest identified
groups were all associated with CDNs, which were positioned on closely related IPs
and behaved consistently across their respective groups. A less exhaustive scan of
servers directly hosted by AWS, CloudFlare and Fastly supports this hypothesis:
Although the exact numbers differed, we found another 24,370 potentially vulnerable
hosts, distributed across all three. It makes sense for these kinds of services to do so
- as long as each entry node is capable of handling every domain on the network, this
can improve speed across wildly different websites without actually compromising
security.

One important prerequisite to a session ticket confusion attack is improper routing
on the destination: If rerouting a client’s connection does not change the received
content, there is simply no effect. In practice, we found inconclusive evidence, which
suggests that rerouting circumvented authentication under the original certificate,
which violates expectations to an extent. To properly evaluate this risk, proper
fingerprinting on the HTTP level is recommended.

Ultimately we found STEK reuse on 56.8% of all surveyed hosts - although we did
not find a way for direct exploitation, this is an avoidable risk to security in the
future. The results confirm that the key_name is indeed a strong indicator for STEK
sharing as proposed in [11].

5.3 Discussion 37

5.3.1 Limitations

During the implementation of our scanning approach, we ran into two main lim-
itations outlined below, which should be considered when interpreting the re-
sults.

Scaling and speed The resulting application is quite slow and scales quadratically
by design: We overestimated the effect our pre-processing would have in cutting
down the total number of scans and we were not able to perform a scan without
heavily restricting the search space. Furthermore, we could only perform our scan
once, which makes us highly vulnerable to any changes to the system during the
runtime, as well as external factors such as connection loss. Even though our findings
are strong within our selected sample, our findings do not necessarily generalize to a
larger population of hosts.

TLS-only scanning Our TLS-level approach to the problem proved to be insufficient
for conclusively recognizing any real attack vectors and made it hard to extract
meaningful, general statistics which properly represented the widely different groups
we inspected.

It is possible to address the latter, by extending the scan to include HTTP-level
fingerprinting, but it seems unlikely to solve the former problem. Due to SNI, it is
impossible to eliminate the pairwise scanning and therefore the poor scaling, which
unfortunately makes our approach unsuitable for further experiments of untargeted,
large-scale scanning.

6 Conclusion

In this thesis, we explored an approach for scanning pairs of (virtual) hosts for the
reuse of STEKs in TLS session resumption and the resulting danger of a session ticket
confusion attack. We found that 80.9% of hosts and 46.6% of large CDN hosts we
evaluated, shared their STEK with at least one other host. In both sets, the largest
vulnerable groups were placed within CDN/load-balancing setups, where the STEKs
seem to have been shared deliberately. In most of these cases, practical session ticket
confusion appears to be possible on TLS level.

Overall, our results show that STEK sharing is quite common and might be the
stepping stone for attacks in the future. However, our scanning approach is severely
limited by the sheer number of possible host pairs and does not scale to a desirable
number of hosts (upwards of 100 thousand), which makes future internet-wide
scanning unrealistic.

Future Work Instead, we propose to concentrate the efforts on single organizations:
We still believe to have uncovered a widespread issue amongst CDN providers, which
do not consider STEKs to be a proper long-term secret. A closer examination
of services such as CloudFlare, with a focus on STEK sharing and the different
certificates used for hosts within the network, may result in a practically exploitable
session ticket confusion attack. In particular, the evaluation would need to be
extended to the Application layer, to analyze the routing behavior of servers affected
by ticket confusion. This would require comparing the served hypertext depending
on the SNI and the ticket.

Bibliography

[1] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard). RFC. Obsoleted by RFC 8446,
updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919,
8447. Fremont, CA, USA: RFC Editor, Aug. 2008. doi: 10.17487/RFC5246.
url: https://www.rfc-editor.org/rfc/rfc5246.txt.

[2] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, Aug. 2018.
doi: 10.17487/RFC8446. url: https://www.rfc-editor.org/rfc/rfc8446.
txt.

[3] J. Salowey et al. Transport Layer Security (TLS) Session Resumption without
Server-Side State. RFC 5077 (Proposed Standard). RFC. Obsoleted by RFC
8446, updated by RFC 8447. Fremont, CA, USA: RFC Editor, Jan. 2008. doi:
10.17487/RFC5077. url: https://www.rfc-editor.org/rfc/rfc5077.txt.

[4] Antoine Delignat-Lavaud and Karthikeyan Bhargavan. “Network-Based Origin
Confusion Attacks against HTTPS Virtual Hosting”. In: Proceedings of the
24th International Conference on World Wide Web. WWW ’15. Republic
and Canton of Geneva, CHE: International World Wide Web Conferences
Steering Committee, May 2015, pp. 227–237. isbn: 978-1-4503-3469-3. doi:
10.1145/2736277.2741089. (Visited on 10/30/2022).

[5] We Need to Talk about Session Tickets. https://words.filippo.io/we-need-to-
talk-about-session-tickets/. Sept. 2017. (Visited on 10/30/2022).

[6] Erik Sy et al. “Tracking Users across the Web via TLS Session Resumption”.
In: Proceedings of the 34th Annual Computer Security Applications Conference.
Dec. 2018, pp. 289–299. doi: 10.1145/3274694.3274708. arXiv: 1810.07304
[cs]. (Visited on 10/30/2022).

[7] TLS Session Resumption: Full-speed and Secure. http://blog.cloudflare.com/tls-
session-resumption-full-speed-and-secure/. Feb. 2015. (Visited on 10/30/2022).

[8] Jens Hiller et al. “The Case for Session Sharing: Relieving Clients from TLS
Handshake Overheads”. In: 2019 IEEE 44th LCN Symposium on Emerging
Topics in Networking (LCN Symposium). Osnabrueck, Germany: IEEE, Oct.
2019, pp. 83–91. isbn: 978-1-72812-561-9. doi: 10.1109/LCNSymposium47956.
2019.9000667. (Visited on 10/30/2022).

https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC5077
https://www.rfc-editor.org/rfc/rfc5077.txt
https://doi.org/10.1145/2736277.2741089
https://doi.org/10.1145/3274694.3274708
https://arxiv.org/abs/1810.07304
https://arxiv.org/abs/1810.07304
https://doi.org/10.1109/LCNSymposium47956.2019.9000667
https://doi.org/10.1109/LCNSymposium47956.2019.9000667

[9] Erik Sy et al. Enhanced Performance for the Encrypted Web through TLS
Resumption across Hostnames. Feb. 2019. doi: 10.48550/arXiv.1902.02531.
arXiv: 1902.02531 [cs]. (Visited on 10/30/2022).

[10] D. Eastlake 3rd. Transport Layer Security (TLS) Extensions: Extension Defi-
nitions. RFC 6066 (Proposed Standard). RFC. Updated by RFCs 8446, 8449.
Fremont, CA, USA: RFC Editor, Jan. 2011. doi: 10.17487/RFC6066. url:
https://www.rfc-editor.org/rfc/rfc6066.txt.

[11] Drew Springall, Zakir Durumeric, and J. Alex Halderman. “Measuring the
Security Harm of TLS Crypto Shortcuts”. In: Proceedings of the 2016 Internet
Measurement Conference. IMC ’16. New York, NY, USA: Association for
Computing Machinery, Nov. 2016, pp. 33–47. isbn: 978-1-4503-4526-2. doi:
10.1145/2987443.2987480. (Visited on 10/30/2022).

[12] Sergey Frolov and Eric Wustrow. “The Use of TLS in Censorship Circumven-
tion”. In: Jan. 2019. doi: 10.14722/ndss.2019.23511.

[13] Sven Hebrok et al. “We Really Need to Talk About Session Tickets: A Large-
Scale Analysis of Cryptographic Dangers with TLS Session Tickets”. In: Apr.
2023.

[14] Alfred J. Menezes and Scott A. Vanstone. Handbook of Applied Cryptography.
1st edition. Boca Raton: CRC Press, Oct. 1996. isbn: 978-0-8493-8523-0.

[15] BSI TR-02102-2 "Kryptographische Verfahren: Verwendung von Transport
Layer Security (TLS)" Version: 2023-1. url: https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/
TR02102/BSI-TR-02102-2.html?nn=132646 (visited on 05/07/2023).

[16] Simon Nachtigall. “Evaluation of TLS session tickets”. MA thesis. Paderborn
University, Aug. 2021. (Visited on 03/20/2023).

[17] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC
2119 (Best Current Practice). RFC. Updated by RFC 8174. Fremont, CA, USA:
RFC Editor, Mar. 1997. doi: 10.17487/RFC2119. url: https://www.rfc-
editor.org/rfc/rfc2119.txt.

[18] Juraj Somorovsky. “Systematic Fuzzing and Testing of TLS Libraries”. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’16. New York, NY, USA: Association for Com-
puting Machinery, Oct. 2016, pp. 1492–1504. isbn: 978-1-4503-4139-4. doi:
10.1145/2976749.2978411. (Visited on 04/30/2023).

[19] Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation”. In: Proceedings 2019 Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2019. isbn: 978-
1-891562-55-6. doi: 10.14722/ndss.2019.23386. (Visited on 10/30/2022).

[20] ZDNS | Proceedings of the 22nd ACM Internet Measurement Conference.
https://dl.acm.org/doi/10.1145/3517745.3561434. (Visited on 04/06/2023).

https://doi.org/10.48550/arXiv.1902.02531
https://arxiv.org/abs/1902.02531
https://doi.org/10.17487/RFC6066
https://www.rfc-editor.org/rfc/rfc6066.txt
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.14722/ndss.2019.23511
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2.html?nn=132646
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2.html?nn=132646
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2.html?nn=132646
https://doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc2119.txt
https://www.rfc-editor.org/rfc/rfc2119.txt
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.14722/ndss.2019.23386

[21] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. “ZMap: Fast Internet-
Wide Scanning and Its Security Applications”. In: Proceedings of the 22nd
USENIX Conference on Security. SEC’13. USA: USENIX Association, Aug.
2013, pp. 605–620. isbn: 978-1-931971-03-4. (Visited on 04/06/2023).

[22] Highwinds Joins StackPath | StackPath. https://www.stackpath.com/blog/highwinds-
joins-stackpath. (Visited on 05/08/2023).

List of Figures

1.1 The basic idea behind session ticket confusion. Some time after an
initial request, a client sends another request to the same server using
session resumption but is redirected to a second server with the same
STEK. The second server accepts and faithfully answers the request
with a malicious file planted by the attacker. The client receives the
file and processes it as if it was served by the original server. 2

2.1 Full handshake using TLS 1.2 . 6
2.2 Full handshake using TLS 1.3 . 7
2.3 Ticket issuance in TLS 1.2 . 8
2.4 Abbreviated handshake in TLS 1.2 10
2.5 Structure of ticket as recommended by RFC 5077, byte size in brackets 11

4.1 Simplified class diagram depicting the architecture of our scanning
application. For brevity, we have omitted and simplified classes sur-
rounding SessionTicketConfusionScanner. 23

4.2 Activity diagram depicting the flow for a single scan job. 23
4.3 Class diagram depicting each probe. This diagram omits technical

details related to multithreading and serialization. 24
4.4 A possible resulting database entry for a job. Note that this might

not appear consistent to Figure 4.1, because the class diagram was
simplified. 25

5.1 Proportion of hosts, sharing their STEK. Two hosts share their STEK
when adjusted confusion is successful. 28

5.2 Analysis of vulnerable servers per version per probe type. 30
5.3 Analysis of the vulnerability of whole service groups. 31
5.4 IP distances between successful confusion attempts 32
5.7 Comparison of successful original confusions 34
5.8 The portion of CDN hosts, sharing their STEK on a specific version. 35
5.9 The portion of CDN hosts, that are vulnerable to one of the probes,

grouped by CDN providers. 36

List of Tables

3.1 A summary of the different attack types. In any case, the source and
destination host need to share a STEK, but with additional control
over the SNI, more possible attacks open up. Notably, virtual hosts
can only become a target when there is some kind of control over the
SNI because otherwise, the request becomes a proper resumption with
the original host. 18

5.5 The twenty largest vulnerable groups we found. All of them are either
part of a CDN or host user pages. 33

5.6 Twenty largest vulnerable groups, summed by the underlying infras-
tructure. Most groups identified in Table 5.5 are realized using the
same underlying infrastructure. 33

	Introduction
	Current State of Research
	Contributions
	Organization of the Thesis

	Background
	TLS
	Handshake
	sni
	Session Resumption using Session Tickets
	Session resumption using psk
	Recommended Ticket Construction
	SNI in Session Resumptions

	Session Ticket Confusion Attack
	Differences in TLS 1.3
	Attacker Model

	TLS-Attacker

	Design
	Previous Work
	Design Goals
	Scanning for STEK Sharing
	Restricting the Search Space to Promising Candidates

	Implementation
	Preprocessing
	Grouping
	Scanning
	Overall Architecture
	Scanning Job

	Evaluation
	Scans
	Results
	STEK Sharing
	Behavior Within Groups
	Identifying Common Properties
	Vulnerablity to Real-World Ticket Confusion
	Supplementary CDN Scan

	Discussion
	Limitations

	Conclusion
	Bibliography
	List of Figures
	List of Tables

