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Abstract

Let k = Fq, k ⊂ K be a field extension of degree 4 and

Γ =
(
k 0
K K

)
.

The first new result of this thesis is an explicit description of indecomposable preprojective
Γ-modules with endomorphism algebra K, which completes the classification given by D. Baer.

The main focus of this thesis belongs to the structure theory of the quantized enveloping
algebra Uv

(
A

(2)
2

)
based on the study of the category mod(Γ).

By results of C. Ringel and J. A. Green, the reduced Drinfeld double of the composition
algebra of mod(Γ) is isomorphic to Uv

(
A

(2)
2

)
(where v = √q). This algebra admits another

realization UDrv

(
A

(2)
2

)
due to V. G. Drinfeld. It is known that mod(Γ) is derived equivalent

to the category Coh(X) of coherent sheaves on a certain non-commutative projective hereditary
curve X. The main result of this thesis is the description of the composition algebra of Coh(X)
via generators and relations. We identify the reduced Drinfeld double of the composition algebra
of Coh(X) with UDrv

(
A

(2)
2

)
and use the derived equivalence of mod(Γ) and Coh(X) to recover

the Drinfeld-Beck isomorphism between Uv
(
A

(2)
2

)
and UDrv

(
A

(2)
2

)
.

On the way, we detect some (minor) mistakes in the work of T. Akasaka, in which this
isomorphism was studied in detail.

As an application of this Hall-theoretical approach, we construct an explicit basis of the
positive part U+

v

(
A

(2)
2

)
which is orthogonal with respect to the Drinfeld-Rosso form.



Kurzzusammenfassung

Seien k = Fq, k ⊂ K eine Körpererweiterung von Grad 4 und

Γ =
(
k 0
K K

)
.

Das erste neue Ergebnis dieser Arbeit ist die explizite Beschreibung der unzerlegbaren präpro-
jektiven Γ-Moduln mit Endomorphismenalgebra K. Dies vervollständigt die Klassifikation von
D. Baer.

Der Hauptfokus dieser Dissertation liegt auf der Strukturtheorie der quantisierten einhüllen-
den Algebra Uv

(
A

(2)
2

)
ausgehend von der Kategorie mod(Γ).

Durch Ergebnisse von C. Ringel und J. A. Green ist bekannt, dass das reduzierte Drinfeld-
Doppel der Kompositionsalgebra von mod(Γ) isomorph ist zu Uv

(
A

(2)
2

)
(wobei v = √q). Diese

Algebra erlaubt auch eine weitere Realisierung UDrv
(
A

(2)
2

)
nach V. G. Drinfeld. Außerdem ist

bekannt, dass mod(Γ) deriviert äquivalent ist zu der Kategorie Coh(X) von kohärenten Garben
einer bestimmten nicht-kommutativen projektiven erblichen Kurve X. Das Hauptergebnis dieser
Arbeit ist die Beschreibung der Kompositionsalgebra von Coh(X) durch Erzeuger und Relatio-
nen. Wir identifizieren das reduzierte Drinfeld-Doppel der Kompositionsalgebra von Coh(X) mit
UDrv

(
A

(2)
2

)
und benutzen die derivierte Äquivalenz von mod(Γ) und Coh(X), um den Drinfeld-

Beck-Isomorphismus zwischen Uv
(
A

(2)
2

)
and UDrv

(
A

(2)
2

)
zu erhalten.

Währenddessen finden wir kleinere Fehler in der Arbeit von T. Akasaka, wo dieser Isomor-
phismus genauer studiert wurde.

Als eine Anwendung der Hall-theoretischen Herangehensweise konstruieren wir eine explizite
Basis des positiven Teils U+

v

(
A

(2)
2

)
, die orthogonal ist bezüglich der Drinfeld-Rosso-Form.
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0

0 Introduction and some Preliminary Notions
0.1 Introduction
In this dissertation, our main goal is to use a Hall algebra approach to construct an isomorphism
between the two presentations of the quantized enveloping algebra Uv

(
A

(2)
2

)
via Drinfeld-Jimbo

and UDrv
(
A

(2)
2

)
, the so-called Drinfeld representation. Our approach allows us to construct an

orthogonal PBW-basis of the positive part of Uv
(
A

(2)
2

)
with respect to the Drinfeld-Rosso form.

Quantum groups have been introduced by Drinfeld and Jimbo. They can be considered as
deformations of the universal enveloping algebra of a Lie algebra and form an important class
of Hopf algebras which are neither commutative nor cocommutative. They have connections
to statistical mechanics, conformal field theory, and knot theory. The variety of areas where
quantum groups appear leads to numerous tools that can be used to study them (see e.g. [7],
[18], or [24]).

The motivation of the dissertation is coming from the categorical perspective of the two
descriptions of the affine quantum group Uv(ŝl2) given by Burban and Schiffmann in their paper
[6]. In this work, they considered the Hall algebra of two Fq-linear categories: on one side, the
Hall algebras of the category of representations of the Kronecker quiver ~Q

• •

and on the other side, the Hall algebra of the category of coherent sheaves of the projective line
P1. In particular, they established the second vertical isomorphism in the following diagram
as well as the fact that the isomorphism of the reduced Drinfeld doubles of the Hall algebras
restricts to the double composition algebras:

Uv(ŝl2) Uv(Lsl2)

DC(RepFq ( ~Q)) DC(Coh(P1))

Drinfeld-Beck
∼=

∼= ∼=

DH(RepFq ( ~Q)) DH(Coh(P1))
∼=

Cramer

∼=

∩ ∩

(1)

In this dissertation, we study another affine case A(2)
2 , corresponding to the species • (1,4)−→ •, to

obtain a similar commutative diagram.
The concept of a Hall algebra appeared for the first time in a work by Steinitz [33]. He

introduced them in regard to the category of abelian groups to be able to say more about
symmetric functions. The second time was by Hall [17] as the algebra of partitions. Only later
in the 1980s, it was studied more in detail and the theory has developed since.

Given an abelian Fq-linear category with some conditions, one may construct a C-algebra,
called the Hall algebra of the category. The basis of the algebra is given by the isomorphism
classes of objects and the multiplication of two of these classes encodes the possible extensions.
To be more precise, if we multiply two classes [M ] · [N ] we sum up over all [R] where there exists
a short exact sequence

0→ N → R→M → 0

2



0.1 Introduction 0

with some prefactors. If the category is hereditary, one can give the Hall algebra a Hopf algebra
structure using Green’s coproduct [16]. The comultiplication can be seen as splitting [R] via
short exact sequences. However, if objects have infinitely many subobjects, the sum over all
short exact sequences becomes infinite. In these cases, it is only a topological Hopf algebra [5].
In particular, the algebras on the right-hand side of (1) are topological Hopf algebras.

An important and one of the first examples of a Hall algebra is the so-called classical Hall
algebra (see Subsection 1.5). It is the Hall algebra of the category of finite modules over a
discrete valuation ring with a finite residue field Fq. In particular, choosing the ring Fq[[t]], one
may equivalently consider the category of nilpotent Fq-representations of the Jordan quiver:

•

The classical Hall algebra is isomorphic to the ring of symmetric functions studied by Macdonald
[25]. However, even though the argument in [25] is given for a commutative ring, we may use
the same argument in a non-commutative setting of maximal orders.

Further examples of representations of a quiver or even a species (Q, d) without loops were
considered by Ringel [30], [31] and by Green [16]. They have shown that the Hall algebra in
these cases, or more precisely their composition algebra C(RepFq (Q)), correspond to the positive
part of a quantum group Uv(gQ) for v = √q:

C(RepFq (Q))
∼=−→ U+

v (gQ).

For completeness, in Section 2 we give a brief introduction to the representation theory of species.
Afterwards, in Subsection 2.5, we consider the concrete example of a species • (1,4)−→ •, which gives
rise to the quantized enveloping algebra Uv

(
A

(2)
2

)
. Instead of the representations of the species

• (1,4)−→ •, one can equivalently consider modules over the matrix algebra

Γ =
(
k 0
K K

)
.

Here k = Fq is a finite field, and k ⊂ K is a field extension of degree 4. It was proven by Dlab
and Ringel that Γ is tame and the category mod(Γ) decomposes into a preprojective component,
a regular component, and a preinjective component:

mod(Γ) = P ∨R ∨ I.

Moreover, they have shown that there are two types of indecomposable preprojective objects. In
[3], Baer classified the indecomposable preprojective objects with endomorphism ring k. Whereas
in this dissertation as the first new result, in Theorem 2.5.1 we explicitly describe the indecom-
posable preprojective objects with endomorphism ring K. In Subsection 2.6 we complete the
picture by describing the isomorphism between the composition algebra of representations of a
species and the positive part of the corresponding quantum group due to Ringel and Green.

Until now, the correspondence to quantum groups was to the positive parts. To extend the
positive part of a quantum group to the whole quantum group one needs to add the Cartan
subalgebra and then apply the reduced Drinfeld double construction [15]. The idea behind the
construction is that we have two Hopf algebras A and B with a non-degenerate bilinear Hopf
pairing (here U≥0

v (g) and U≤0
v (g)) to define a multiplication on A⊗B such that A and B are both

Hopf subalgebras of the tensor product. The final step is the identification of the two copies of

3



0.1 Introduction 0

the Cartan subalgebras in U≥0
v (g)⊗U≤0

v (g) by taking a quotient. The same construction can be
performed for Hall algebras, hence we get a presentation of the quantum group as a subalgebra
of the reduced Drinfeld double of the corresponding Hall algebra:

Uv(gQ)
∼=−→ DC(RepFq (Q)) ⊂ DH(RepFq (Q)).

In Section 3 we consider the Hall algebra of another category which is similar to the category
of coherent sheaves, hence we suggestively denote it by Coh(X). The idea of the construction of
Coh(X) is to take the preinjective component which is to the right of the regular component in
the Auslander-Reiten quiver of mod(Γ) and glue it to the left of the preprojective component. It
is a common method in the theory of exceptional curves (see e.g. [20]).

Hom

Ext1

I[−1] P R I

mod(Γ)

Coh(X)
P: prepojective component, R: regular component,

I: preinjective component in mod(Γ)

The resulting category Coh(X) is hereditary, Noetherian, and has a Serre functor τ . Furthermore,
similar to the category of coherent sheaves, it decomposes into vector bundles and torsion bundles

Coh(X) = Vec(X) ∨ Tor(X) = (I[−1] ∨ P)︸ ︷︷ ︸
=Vec(X)

∨R.

There are indecomposable vector bundles of rank 1, corresponding to the representations with
endomorphism ring k, and, contrary to the case of P1, indecomposable vector bundles of rank
2, corresponding to the representations with endomorphism ring K. Moreover, the Auslander-
Reiten quiver of Coh(X) has the following structure:

M0 M1 M2

L0 L1 L2L−1L−2

M−1M−2

...... ......

Ux Uy

Vec(X) Tor(X)

More geometrically, X is the ringed space (P1,A), where A is a certain sheaf of maximal orders
(specified by its further properties). Even though Ax is non-commutative, the modules over
Ax have similar properties to finite modules over a discrete valuation ring. Therefore, the Hall
algebra of the torsion part Tor(X) decomposes into commuting factors, each of which is isomorphic
to the ring of symmetric functions analogous to the classical Hall algebra.

4



0.1 Introduction 0

By construction, we obtain equivalent bounded derived categories Db(mod(Γ)) ' Db(Coh(X))
and by a theorem of Cramer (see [9, Theorem 1]), the reduced Drinfeld doubles of the Hall
algebras are isomorphic. Using this property and the above-mentioned structure of Coh(X),
we prove our main result, Theorem 4.3.3, in the last section: the presentation of the double
composition algebra of Coh(X) via generators and relations. To be more precise, the double
composition algebra DC(Coh(X)) is isomorphic to the quantum group UDrv

(
A

(2)
2

)
.

To prove Theorem 4.3.3, we introduce the Drinfeld realization of the quantum group of type
A

(2)
2 . The definition is given via generators and relations. By an argument due to Damiani [10],

we simplify one of the relations, namely by making the indices "constant". Then we prove that
the Hall algebra of Coh(X) has similar relations, which allows us to construct an isomorphism
between the double composition algebra of Coh(X) and the quantum group UDrv

(
A

(2)
2

)
.

Furthermore as an application, in Theorem 4.4.9, we prove that the algebra isomorphism
between the reduced Drinfeld doubles of the Hall algebras of mod(Γ) and Coh(X) restricts to an
isomorphism of the double composition algebras. As a result, we obtain a diagram similar to (1):

Uv

(
A

(2)
2

)
UDrv

(
A

(2)
2

)

DC(mod(Γ)) DC(Coh(X))

∼=

∼= ∼=
∼=

DH(mod(Γ)) DH(Coh(X))
∩ ∩∼=

The main difficulty compared to [6] is the presence of indecomposable vector bundles of rank
2. They are not needed as generators in the double composition algebra but can be written as
q-commutators of line bundles.

Furthermore, the resulting isomorphism between the two realizations of the quantum group

Uv

(
A

(2)
2

) ∼=−→ UDrv

(
A

(2)
2

)
has slightly different prefactors than in the paper [1] by Akasaka, leading to the conclusion that
[1] contained a mistake.

Our construction allows us on one side to get a better understanding of the isomorphism
between the two quantum groups, on the other side one may use this for further applications.
For example, the composition algebra side of Coh(X) has a natural orthogonal basis with respect
to Green’s form [16], and transferring this to the composition algebra of mod(Γ) we get a PBW-
type orthogonal basis of the positive part U+

v

(
A

(2)
2

)
(see Subsection 4.5). This basis may be

used to derive an explicit formula for the universal R-matrix of Uv
(
A

(2)
2

)
.

In general, this approach may be used to get a better insight into more complicated formulas
for the quantum groups Uv

(
A

(2)
2

)
and UDrv

(
A

(2)
2

)
.

5



0.2 Quantum Numbers and Notions 0

0.2 Quantum Numbers and Notions
In this work we let N := {1, 2, 3, 4, ...}, N0 := {0, 1, 2, 3, ...} and k = Fq a finite field.

We put v := √q where |k| =: q.
Then we define for n, r ∈ N0, r ≤ n:

[n] := vn − v−n

v − v−1 [n]+ := qn − 1
q − 1 = q

n−1
2 [n]

[n]! := [n] · [n− 1] · ... · [1] [n]+! := [n]+ · [n− 1]+ · ... · [1]+ = q
n(n−1)

4 [n]![n
r

]
:= [n]!

[r]![n− r]!

[n
r

]
+

:= [n]+!
[r]+![n− r]+! = q−

r(n−r)
2

[n
r

]
Given a set I and natural numbers di ∈ N for i ∈ I, we denote by [n]i respectively

[
n
r

]
i
the

quantum numbers where we replace the q’s by qdi ’s.
Furthermore, if we count the automorphisms of the finite-dimensional vector space kn, one

can easily show that

|GLn(k)| = (qn − 1)(qn − q) · ... · (qn − qn−1) = q
n(n−1)

2 (q − 1)n[n]+!

and the number of r-dimensional subspaces is

(qn − 1)(qn − q)...(qn − qr−1)
|GLr(k)| = [n]+!

[n− r]+![r]+!
q
r(r−1)

2

q
r(r−1)

2

=
[n
r

]
+
.

Observe, that the quantum numbers are elements in Z[v, v−1]:

[n] = vn − v−n

v − v−1 =
{
vn−1 + vn−3 + ...+ v1−n, n ∈ N,

0, n = 0.

and for n ≥ r + 1, n, r ∈ N0:[
n+ 1
r

]
= vs

[n
r

]
+ vs−r−1

[
n

r − 1

]
∈ Z[v, v−1],

where we set
[
n
r

]
= 0 if r < 0.

6



1

1 Hall Algebras
Since our goal is to classify a specific quantum group via Hall algebras, we first need to introduce
and define what a Hall algebra of a category is. Furthermore, we are interested in the reduced
Drinfeld double of a Hall algebra which is to the Hall algebra what the whole quantum group is to
the positive part Uv(n+). Therefore we start with several definitions and in the last subsection,
we explain what is considered to be the classical Hall algebra and its connection to the ring of
symmetrical functions.

A good introduction for the topic is [32].

1.1 Definition
First off, we need to make some requirements on the category.

Definition 1.1.1 Let A be a small abelian category. The category A is called finitary, if for all
objects M, N ∈ Ob(A):

|HomA(M,N)| <∞ ∧ |Ext1
A(M,N)| <∞.

Now let A be a small finitary abelian hereditary Fq-linear category.

Definition 1.1.2 For objects M, N ∈ Ob(A) we define the multiplicative Euler form:

〈M,N〉m :=

√
|HomA(M,N)|
|Ext1

A(M,N)|

and the additive Euler form:

〈M,N〉 := 〈M,N〉a := dimFq (HomA(M,N))− dimFq (Ext1
A(M,N))

and the corresponding symmetrization:

(M,N) := (M,N)a := 〈M,N〉a + 〈N,M〉a.

One can easily see the correspondence between the multiplicative and the additive Euler form,
namely:

〈M,N〉m = q
1
2 〈M,N〉a .

With this setup we may define the main object we are working with:

Definition 1.1.3 Let X := Ob(A)/∼= be the set of isomorphism classes of objects in A.
The Hall algebra H(A) is the vector space

H(A) =
⊕
M∈X

C[M ]

with the following multiplication:
For objectsM, N, R ∈ Ob(A) denote by PRM,N the set of short exact sequences 0→ N → R→M → 0

and set PRM,N := |PRM,N | and aM := |Aut(M)|. Then we define for M, N ∈ Ob(A):

[M ] · [N ] = q
1
2 〈M,N〉a

∑
R∈X

PRM,N

aMaN
[R].

7



1.1 Definition 1

Remark 1.1.4 If one is considering a category with actual sets plus some additional structure,
like A = A−mod for a specific algebra A, then we may think of the prefactor above differently:
For any three objects M, N, R ∈ Ob(A) it holds:

PRM,N

aMaN
= |{L ⊂ R | L ∼= N ∧R/L ∼= M}|,

hence we count the number of subobjects L of R where L ∼= N and R/L ∼= M . This follows
directly by considering the free action of Aut(M)×Aut(N) on PRM,N and the resulting quotient
can be identified with the right-hand side above.

One can prove, see [28] or [32]:

Lemma1.1.5 The multiplication is associative, i.e.:
For L, M, N ∈ Ob(A):

([L] · [M ]) · [N ] = [L] · ([M ] · [N ]).

Remark 1.1.6 The idea stems from the intuition that in the product ([L] · [M ]) · [N ] as well as
in [L] · ([M ] · [N ]) for the prefactor (without the Euler forms) of [R] one counts the number of
filtrations

0 ⊂ Q1 ⊂ Q2 ⊂ R,

where R/Q2 ∼= L, Q2/Q1 ∼= M and Q1 ∼= N .

Remark 1.1.7 Furthermore, there the multiplication is not just associative but is also unital,
to be more specific: [0], the class of the zero object, is neutral:

[M ] · [0] = [M ] = [0] · [M ]

for all isomorphism classes [M ].

Remark 1.1.8 The Hall algebra H(A) is naturally graded by the Grothendieck group K0(A)
since by definition the multiplication respects the addition in K0(A).

Now that we have an associative multiplication, we want to extend the Hall algebra by the
Grothendieck group. In reference to quantum groups, so far the Hall algebra corresponds to the
positive part Uv(n+) and the Grothendieck group to the Cartan subalgebra Uv(h). Together they
generate the Borel subalgebra Uv(b+).

Definition 1.1.9 Let H(A) be the Hall algebra and K0(A) the Grothendieck group of the
category A.

The extended Hall algebra H̃(A) is given by the vector space H̃(A)⊗C K0(A) with the sub-
algebras the Hall algebra H(A) and the group algebra CK0(A) and the relations:

∀α ∈ K0(A), [M ] ∈ X : Kα[M ]K−1
α = q

1
2 (α,M)[M ].

In particular, now we have some invertible elements in our algebra. Furthermore, it is (almost)
a Hopf algebra, hence we need to say what the comultiplication is and why there is an almost
attached to the previous sentence.

8



1.2 Green’s Coproduct 1

1.2 Green’s Coproduct
The multiplication of two objects in the Hall algebra H(A) is a linear combination of the exten-
sions. So it is only natural for the comultiplication to be some linear combination with subobjects
and quotients. The problem here is that in general an object does not only have finitely many
subobjects. Therefore, we have to either impose a finite subobjects condition on the category,
which is the case for example in the category of representations of a species over a finite field, or
the comultiplication does not go to H(A)⊗H(A) but to some completion. For that we proceed
as follows:

For α, β ∈ K0(A) we set

H(A)[α]⊗̂H(A)[β] :=
∏

M̄=α,N̄=β

C[M ]⊗ C[N ],

H(A)⊗̂H(A) :=
∏

α,β∈K0(A)

H(A)[α]⊗̂H(A)[β].

Then Green proved the following statements:

Proposition 1.2.1 (Green) The following defines on the Hall algebra H(A) the structure of a
topological coassociative coproduct:

For [R] ∈ X :

∆([R]) =
∑
M,N

q
1
2 〈M,N〉P

R
M,N

aR
[M ]⊗ [N ],

with counit ε : H(A)→ C defined by ε([R]) = δR,0.

Theorem1.2.2 (Green,[16]) The map ∆ : H(A) → H(A)⊗̂H(A)is a morphism of algebras,
i.e. for any x, y ∈ H(A) we have ∆(x · y) = ∆(x) ·∆(y).

In particular, we have a sort of topological bialgebra structure. There is also an antipode that
gives us a topological Hopf algebra structure, but we do not need it and therefore give only a
reference for it. Namely, Xiao [34] constructed a map S for the topological case which naturally
works for the categories with the finite subobject condition as well.

We can extend these to the extended Hopf algebra H̃(A) by setting for [R] ∈ X , α ∈ K0(A):

∆̃([R]Kα) =
∑
M,N

q
1
2 〈M,N〉P

R
M,N

aR
[M ]KN̄+α ⊗ [N ]Kα,

with counit ε : H̃(A)→ C defined by ε([R]Kα) = δR,0.

1.3 Green’s Pairing
In this setup one can define a pairing that respects the previously defined structures, namely:

Proposition 1.3.1 (Green,[16]) The nondegenerate scalar product ( , ) : H(A) ⊗H(A) → C
defined by

([M ], [N ]) = δM,N

aM
,

for [M ], [N ] ∈ X , is a Hopf pairing, that is for any triple x, y, z ∈ H(A) we have (xy, z) =
(x⊗ y,∆(z)).
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1.4 The Drinfeld Double 1

Corollary 1.3.2 The scalar product ( , ) : H̃(A)⊗ H̃(A)→ C defined by

([M ]Kα, [N ]Kβ) = δM,N

aM
q

1
2 (α,β),

for [M ], [N ] ∈ X , α, β ∈ K0(A), is a Hopf pairing, i.e. for any triple x, y, z ∈ H̃(A) we have
(xy, z) = (x⊗ y,∆(z)).

1.4 The Drinfeld Double
Let us make a brief excursion to Drinfeld Doubles. The idea is to double the given algebra where
one needs to specify a commutator relation between the two halves. With the idea of quantum
groups in mind, the Drinfeld double of the Borel subalgebras is the algebra Uv(b+) ⊗ Uv(b−),
where one needs to take a quotient to get the quantum group Uv(g).

For this definition/theorem, let H be a finite-dimensional Hopf algebra and let H∗coop be its
dual Hopf algebra with opposite comultiplication.

Theorem1.4.1 (Drinfeld) There exists a unique Hopf algebra structure on the vector space
DH = H ⊗H∗coop such that

(i) H and H∗coop are Hopf subalgebras of DH;

(ii) For h ∈ H and h′ ∈ H∗coop: h · h′ = h⊗ h′ ∈ DH;

(iii) The natural pairing ( , ) on DH is a Hopf pairing.

Moreover, for h ∈ H and h′ ∈ H∗coop we have

h′ · h =
∑

(h′(1), h(3))(S−1(h′(3)), h(1))h(2)h
′
(2),

where we use Sweedler’s notation for the comultiplication of Hopf algebras, i.e. ∆(x) =
∑
x(1) ⊗ x(2)

and ∆2(x) =
∑
x(1) ⊗ x(2) ⊗ x(3) for x ∈ H.

The resulting Hopf algebra is called the Drinfeld double of H.

More specifically we use the following version:

Corollary 1.4.2 Let H be a Hopf algebra with a non-degenerate Hopf pairing on H ⊗H. Let
H+ and H− be two copies of H. There exists a unique Hopf algebra structure on DH = H+⊗H−
such that

(i) H+ ⊗ 1 respectively 1⊗H− are Hopf subalgebras isomorphic to H+ respectively H−.

(ii) For all a, b ∈ H:
∑
a−(1)b

+
(2)(a(2), b(1)) =

∑
b+(1)a

−
(2)(a(1), b(2)).

In particular, we may apply it to infinite dimensional topological Hopf algebras with a possibly
even degenerate Hopf pairing (see [5]). More specifically we take the Drinfeld double of the
extended Hall algebra with respect to Green’s pairing.

Since we do not want to double the Grothendieck group in the extended Hall algebra, we
take a quotient:

10



1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

Definition 1.4.3 The reduced Drinfeld double DH(A) of an extended Hall algebra H̃(A) is the
quotient algebra of the Drinfeld double DH̃(A) by the two-sided ideal

I =
〈
K+
α ⊗K−α − 1+ ⊗ 1− | α ∈ K0(A)

〉
.

Remark 1.4.4 In this dissertation, we do not consider the Drinfeld double of a non-extended
Hall algebra. Therefore DH(A) always denotes the reduced Drinfeld double.

Furthermore, there is a connection between Hall algebras if the categories are derived equiv-
alent, namely:

The following theorem was proven by Cramer (see [9, Theorem 1]).

Theorem1.4.5 (Cramer) Let A and B be two Fq-linear finitary hereditary categories. Assume
one of them is Artinian and there is an equivalence of triangulated categories Db(A) F−→ Db(B).
Then there is an algebra isomorphism

F : DH(A) −→ DH(B)

uniquely determined by the following properties. For any object X ∈ Ob(A) such that F(X) ∼=
X̂[n] with X̂ ∈ Ob(B) and n ∈ Z we have:

F([X]±) = q
n
2 〈X̄,X̄〉[X̂]±ε(n)(K±ε(n)

X̂
)n,

where ε(n) = (−1)n. For α ∈ K0(A) we have: F(Kα) = KF(α).

Later on, we will have derived equivalent categories by construction and can therefore identify
the reduced Drinfeld doubles of their Hall algebras via isomorphism.

Now, we have made enough definitions and can start with the first categories to consider.
First, we will start with the classical Hall algebra in the next section.

1.5 The Classical Hall Algebra and the Ring of Symmetric Functions
The main reference for this subsection is [25].

The classical Hall algebra is the Hall algebra of finite modules of a discrete valuation ring o
with a finite residue field k. Let p ⊂ o be its maximal ideal. Then we have by definition k = o/p.

Finite modules are o-modules that have one of the following (equivalent) properties:

• they have a finite composition series;

• they are finitely generated o-modules M with prM = 0 for some r � 0;

• or (since we are in the case k finite) they have only a finite number of elements.

This example plays a particular role later on in the Hall algebra of Coh(X) which we want to
study, where X = (P1,A) a ringed space, A a certain sheaf of hereditary maximal orders. Namely
in this case, the torsion part of our category Tor(X) decomposes into factors

∨
x∈P1 Torx(X) where

there are no Hom or Ext between each factor. More importantly, the Hall algebra of the torsion
part decomposes into factors that commute with each other and each of the factors has a similar
structure to finite modules over a discrete valuation ring. The main difference is that the rings
are non-commutative. However, that is not a property that we use. In particular, by the same
construction, we get an isomorphism between the Hall algebra of a tube Torx(X) and the ring of
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1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

symmetric functions. We will not go into specifics about why this holds, for more information
on maximal orders see [27].

Now let us give the classical argument for the Hall algebra of finite modules of a discrete
valuation ring o with a finite residue field k.

Example 1.5.1 An important example, which is also talked about in [32], is the case o = k[[t]],
the power series ring. Then the finite modules are of the form of a finite-dimensional k-vectorspace
V equipped with a nilpotent endomorphism T : V → V .

Every finite o-module decomposes into a direct sum of the form

M ∼=
r⊕
i=1

o/pλi (2)

for some λi ∈ N. We may assume λ1 ≥ λ2 ≥ ... ≥ λr > 0. In particular, λ = (λ1, ..., λr) is a
partition.

Lemma1.5.2 Let M be a finite o-module and λ a partition such that M decomposes as in (2).
We set µi = dimk(pi−1M/piM). Then µ = (µ1, µ2, ...) is the conjugate partition of λ.

Proof. For each j ∈ {1, ..., r} let xj be a generator of the summand o/pλj in (2). Let p be a
generator of p. Then pi−1M is generated by the pi−1xj where λj ≥ i (otherwise pi−1xj = 0). In
particular we get µi = #{λj ≥ i}. Hence µ is the conjugate partition to λ.

A direct consequence of the Lemma 1.5.2 is that λ is uniquely determined by the module M .
Therefore we call λ the type of M . Furthermore, two finite modules are isomorphic if and only
if they are of the same type, and to every partition λ there exists a finite o-module of that type.
We have a direct correspondence

X 1:1←→ {partitions}

where X is the set of isomorphism classes of finite o-modules.
Let λ be the type of a finite o-moduleM . Then the length ofM is given by l(M) := |λ| =

∑
λi

which is also the length of a composition series of M . The length is also additive regarding short
exact sequences. Namely, for 0 → M → M ′ → M ′′ → 0 a short exact sequence it holds
l(M ′) = l(M) + l(M ′′).

For each partition λ, denote by Iλ the isomorphism class of finite o-modules of type λ.

Remark 1.5.3 Now, let us briefly discuss the Eulerform. Since there is one simple module,
namely o/p = k, and for every finite module M there is a composition series of length l(M) with
each quotient k, we only need consider the Eulerform 〈k, k〉.

Furthermore, we know Hom(k, k) ∼= k since k is simple and the only possible extensions are
of the form

k −→ k ⊕ k −→ k

or
k −→ o/p2 −→ k.

This means for the Eulerform we get

〈k, k〉 = dimk Hom(k, k)− dimk Ext1(k, k) = 1− 1 = 0.
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1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

In particular, this means the Eulerform is equal to zero for any two finite o-modules M and N :

〈M,N〉 = 0.

Furthermore, there are specific generators we want to consider:

Lemma1.5.4 The Hall algebra H(o− fmod) is generated (as a C-algebra) by the elements I(1r)
for r ≥ 1 and they are algebraically independent over C.

Before we prove the lemma, let us introduce a partial order on the set of partitions, which
will be useful in the proof.

Definition 1.5.5 Given two partitions µ and λ, we write µ = (1l1 , 2l2 , ...) < λ = (1m1 , 2m2 , ...)
if and only if for all i ≥ 1

l1 + 2l2 + ...+ (i− 1)li−1 + i(li + li+1 + ...) ≤ m1 +m2 + ...+ (i− 1)mi−1 + i(mi +mi+1 + ...).

Proof. We show that for every partition λ we can write Iλ as a linear combination of monomials
of the form I(1m1 )I(1m2 )...I(1mn ).

Let λ = (λ1, ..., λr) = (1l1 , 2l2 , ..., nln) be a partition. Consider the product

X := I(1ln )I(1ln+ln−1 )...I(1ln+...+l1 ). (3)

Then we have X =
∑
µ aµIµ, where aµ is by definition equal to the number of chains of submod-

ules of M
M = Mn ⊃Mn−1 ⊃Mn−2 ⊃ ... ⊃M0 = 0 (4)

with Mi/Mi−1 is of the type (1li+...+ln) for 1 ≤ i ≤ n, where M is of type µ.
If there exists such a chain as in (4), then we have pMi ⊂ Mi−1 for all 1 ≤ i ≤ n (since

each quotient is killed by p). In particular we get piM ⊂ Mn−i for 1 ≤ i ≤ n. If we write
µ = (1m1 , 2m2 , ...), we get l(piM) = m1 + 2m2 + ... + i(mi + mi+1 + ...) for all i. But also we
have l(Mn−i) = l1 + 2l2 + ...+ i(li + ...+ ln) by the composition series.

It directly follows

m1 + 2m2 + ...+ i(mi +mi+1 + ...) = l(piM) ≥ l(Mn−i) = l1 + 2l2 + ...+ i(li + ...+ ln).

Since this holds for all i, we get λ < µ.
One should also note that in the case µ = λ there is just one chain of submodules of the form

(4). Therefore we have
X ∈ Iλ ⊕

⊕
µ4λ

CIµ.

In particular, if we write the monomials as linear combinations of partitions, this corresponds
to a base change in the form of an upper triangular matrix with 1’s on the diagonal. Hence the
monomials of the form (3) form a basis of the Hall algebra H(o− fmod).

Therefore H(o− fmod) is generated (as a C-algebra) by the elements I(1r) for r ≥ 1.

One may also ask if the Hall algebra H(o − fmod) is commutative or cocommutative. The
answer to both is yes. To see that one needs to look at the dual of a module. Let p be a
generator of the maximal ideal p in o. For m ≤ n the multiplication by pn−m is an injective
o-homomorphism o/pm → o/pn. We denote by E the direct limit, i.e.

E := lim
→

o/pn.
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1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

Definition 1.5.6 Given any finite o-module M , the dual of M is defined as

M∧ := Homo(M,E).

Lemma1.5.7 Given a finite o-module M , the dual M∧ is a finite o-module isomorphic to M ,
in particular of the same type as M .

Proof. First, we note that taking the dual respects direct sums, i.e.

(N ⊕M)∧ = Homo(N ⊕M,E) ∼= Homo(N,E)⊕Homo(M,E) = N∧ ⊕M∧.

So let M be indecomposable. Then the dual M∧ is also indecomposable and of the same length.
But there is only one indecomposable module of a given length up to isomorphism, therefore we
have M ∼= M∧.

Since E is injective, taking the dual of an exact sequence

0→ N →M → R→ 0

gives rise to an exact sequence

0← N∧ ←M∧ ← R∧ ← 0.

Lemma1.5.8 The Hall algebra H(o− fmod) is commutative and cocommutative.

Proof. This follows directly from the above remarks, namely taking the dual of an exact sequence
reverses the arrows but does not change the types of the modules.

Furthermore, let us calculate explicitly some coproducts.

Lemma1.5.9 In the Hall algebra H(o− fmod) it holds:

∆(I(1n)) =
n∑
r=0

q−r(n−r)I(1r) ⊗ I(1n−r).

Proof. First we note for a representative M of I(1n):

M ∼= (o/p)⊕n ∼= kn.

Furthermore, each submodule of M is of type 1r for some r ≤ n as well as each quotient. Hence
we have

∆(I(1n)) =
n∑
r=0

P
(1n)
(1r),(1n−r)

a(1n)
I(1r) ⊗ I(1n−r).

The number a(1n) is given by the number of automorphism of kn, namely

a(1n) = |GLn(k)| = (qn − 1)(qn − q) · ... · (qn − qn−1) = (q − 1)nq
n(n−1)

2 [n]+[n− 1]+ · ... · [1]+.

Furthermore
P

(1n)
(1r),(1n−r)

a(1r)a(1n−1)
corresponds to the number of submodules of kn of dimension r, which

is [n
r

]
+

= [n]+[n− 1]+....[n− r + 1]+
[r]+[r − 1]+...[1]+

.
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1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

All in all, we get:

P
(1n)
(1r),(1n−r)

a(1n)
= a(1r)a(1n−r)

[n]+[n− 1]+....[n− r + 1]+
[r]+[r − 1]+...[1]+(q − 1)nq

n(n−1)
2 [n] + [n− 1]+ · ... · [1]+

= (q − 1)r(q − 1)n−r

(q − 1)n
q
r(r−1)

2 q
(n−r)(n−r−1)

2

q
n(n−1)

2

[n]+[n− 1]+....[n− r + 1]+[r]+[r − 1]+ · ... · [1]+[n− r]+[n− r − 1]+ · ... · [1]+
[r]+[r − 1]+...[1]+[n]+[n− 1]+ · ... · [1]+

= q
r2−r+n2−2nr−n+r2+r−n2+n

2

= qr
2−nr

= q−r(n−r)

Now that we have established some relations and properties of the classical Hall algebra, we
would like to identify it with another algebra, namely Macdonald’s ring of symmetric functions.

For n ∈ N one may consider the ring of symmetric polynomials in n variables

Λn := C[x1, ..., xn]Sn .

There are projective maps Λn+1 → Λn for each n by inserting 0 for the variable xn+1. Then
taking the projective limit in the category of graded rings leads to

Λ := lim
←

Λn = ”C[x1, x2, ...]S∞”.

Similar to symmetric polynomials, Λ is generated by elementary symmetric functions: For r ∈ N
we set

er =
∑

i1<i2<...<ir

xi1xi2 ...xir

and for a partition λ = (λ1, λ2, ..., λn) we define eλ = eλ1eλ2 ...eλn .
Then Macdonald has proved the following theorem.

Theorem1.5.10 (Macdonald, [25]) The set {eλ|λ a partition} forms a basis of Λ, i.e.

Λ ∼= C[e1, e2, ...].

Furthermore, there is a coproduct on the ring Λ, which was first introduced by Zelevinsky
(see [35]): For n ∈ N we consider the map ∆n : Λ2n → Λn ⊗ Λn given via the embedding

Λ2n = C[x1, x2, ..., x2n]S2n ↪→ C[x1, x2, ..., x2n]Sn×Sn = C[x1, ..., xn]Sn⊗C[y1, ..., yn]Sn = Λn⊗Λn.

Again, taking the projective limit we get a map ∆ := lim ∆n : Λ→ Λ⊗ Λ.
On the generators er the coproduct has a rather easy form, namely

∆(er) =
r∑

n=0
er−n ⊗ en,

where we set e0 = 1.
Using this setting, we can easily deduce the following theorem:
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1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

Theorem1.5.11 There is an isomorphism of C-bialgebras

Φ : H(o− fmod) → Λ,

I(1r) 7→ q−
r(r−1)

2 er.

Proof. Since we have H(o − fmod) ∼= C[I(1), I(12), ...] ∼= C[e1, e2, ...] ∼= Λ as C-algebras, there is
only left to check the coproduct which is also clear:

I(1r) q
−r(r−1)

2 er
Φ

∑r
n=0 q

−n(r−n)I(1n) ⊗ I(1r−n)
∑r
n=0 q

−n(r−n)q
−n(n−1)

2 q
−(r−n)(r−n−1)

2 en ⊗ er−n

q
−r(r−1)

2
∑r
n=0 en ⊗ er−n

∆
∆

Φ⊗ Φ

Now, just note

−n(r − n) + −n(n− 1)
2 + −(r − n)(r − n− 1)

2 = −2n(r − n)− n(n− 1)− (r − n)(r − n− 1)
2

= −nr + 2n2 − n2 + n− r2 + rn+ r + rn− n2 − n
2

= r2 − r
2

= −r(r − 1)
2 .

Hence we have ∆(Φ(I(1r))) = (Φ⊗ Φ)(∆(I(1r))).

Furthermore, Macdonald defined a bilinear form on Λ.
First, let us define some other symmetric functions. We introduce these here because later

on in Section 3, we define several torsion elements which have an analog on this side with similar
properties and the bilinear form will correspond to Green’s form. So it should give an idea of
how the elements in the Hall algebra of Tor(X) will interact.

Let α = (α1, ..., αn) ∈ Nn0 . We denote

xα := xα1
1 ...xαnn .

Hence for a partition of length smaller than n, the polynomial

mλ =
∑

xα ∈ Λn,

where we sum over all distinct permutations α of λ, is symmetric. The set (mλ)λ over all
partitions of length smaller than n forms a basis of Λn. Furthermore, the projection Λn+1 → Λn
sends mλ(x1, ...., xn+1) to mλ(x1, ..., xn) if λ has lengths smaller than n and to 0 otherwise.
Therefore by taking the projective limit we have a basis of Λ given by the mλ, the monomial
symmetric functions, indexed by all partitions.
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1.5 The Classical Hall Algebra and the Ring of Symmetric Functions 1

In this notation, we have er = m(1r).
For r ≥ 0 we define the rth complete symmetric function hr as

hr :=
∑
|λ|=r

mλ,

where the sum goes over all partitions λ = (λ1, λ2, ...) where |λ| :=
∑
i λi = r, and for r ≥ 1 the

rth power sum as
pr :=

∑
i

xri = m(r).

Using power series as generating functions, i.e. if we consider E(t) =
∑
r≥0 ert

r, H(t) =∑
r≥0 hrt

r and P (r) =
∑
r≥1 prt

r−1 we have the identities:

E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + xit),

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

(1− xit)−1,

and therefore
H(t)E(−t) = 1.

Furthermore, we get
P (t) = d

dt logH(t)

resp.
P (−t) = d

dt logE(t).

Such identities will play a role later on in Section 3. In particular, we specifically use this
construction of specific elements to receive similar elements to the power sums pr.

Furthermore, the bilinear form shall be given by the requirement, that the bases (hλ) and
(mλ) shall be dual:

〈hλ,mµ〉 = δλµ.

Now, if we set
zλ =

∏
i≥1

ini · ni!,

for any partition λ, where ni = ni(λ) is the number of parts of λ equal to i, then we have

〈pλ, pµ〉 = δλµzλ.

In particular, the pλ form an orthogonal basis.

Example 1.5.12 For λ = (r) for some r ∈ N we have zλ = r, in particular we get

〈pr, pr〉 = r.

Later on, the elements of the form pr will play a key role in Section 3 and 4, or more specifically
their analog in the Hall algebra of Coh(X).

For now, let us turn our attention to another category.
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2

2 Species and their Representations
To talk about Hall algebras, we first need to introduce the categories whose Hall algebras we
want to consider. One of these categories is the category of representations of a specific species.
Alternatively, it can be considered as a module category of a hereditary algebra.

One may think of species and their representations as a generalization of quivers and their
representations. Instead of just considering everything over a fixed field, one takes a bit more
general approach by looking at vector spaces over different (skew) fields. To still have linear
maps, one takes a modulation which is given via bimodules and we get linear maps for each
arrow with tensoring. To make this more precise see the following section.

Their representation theory is rather similar to the one of quivers (see e.g. [12]) and if one is
familiar with the latter, the former becomes a rather natural generalization.

Even though this category is not the main object of this thesis, it gives us a clearer picture
of what the main category looks like. Namely in the next section, we construct Coh(X) by

taking a specific full subcategory of the derived category Db
(
RepFq

(
• (1,4)−→ •

))
, therefore by

understanding the structure of representations of species, we also understand the structure of
Coh(X).

First, in this section, we give an introduction to the general representation theory of species
and then in Subsection 2.5, we go into our specific example which we later on use for our
construction of Coh(X). Lastly, we talk about the connection of Hall algebras of a species and
quantum groups due to Ringel and Green.

2.1 Definition
Since we want to consider a specific example of representations of a certain species, we first need
to define what a species is. One of the first introductions can be found in [13]. Another reference
on the topic of species is [23].

First, we need a specific setup:

Definition 2.1.1 A weighted graph (Q, d) is a finite set Q of vertices together with a set
d = {(dij , dji) | dij ∈ N0, i, j ∈ Q} of weights, which satisfies the following conditions:

(i) ∀i ∈ Q : dii = 0;

(ii) ∀i ∈ Q ∃fi ∈ N : ∀i, j ∈ Q : dijfj = djifi.

If it holds dij 6= 0, we draw an edge between the vertices i and j together with the weight
(dij , dji), in pictures:

i j
(dij , dji)

This way we get an unoriented graph with a finite number of vertices without loops with weights
(dij , dji) for the edges {i, j}.

A direct consequence of the second condition is that dij = 0 implies directly dji = 0 for
vertices i, j ∈ Q. In particular, we only draw an edge {i, j} if dij 6= 0 and dji 6= 0.

Definition 2.1.2 (1) An orientation Ω of a weighted graph (Q, d) is an orientation of the edges
which are then depicted as arrows.
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2.1 Definition 2

(2) For a fixed orientation Ω and i ∈ Q we define a new orientation siΩ by reversing the
orientation of the edges which are incident to the vertex i.

(3) An orientation Ω of (Q, d) is called admissible if we can find a total order of the vertices
i1, ..., in such that i1 is a sink in Ω and for all j ∈ {2, ..., n} the vertex ij is a sink in
sij−1 ...si1Ω.
In this case, we say i1, ..., in is an admissible order of sinks.

Remark 2.1.3 The following statements are equivalent:

1. The orientation Ω of (Q, d) is admissible.

2. There is no (directed) circle in (Q, d) with orientation Ω.

3. The relation

i ≤ j :⇔ there is a directed path from j to i in (Q, d) with the orientation Ω

is a partial order on Q.

Definition 2.1.4 Let k be a field and (Q, d) be a weighted graph. A k-modulationM of (Q, d)
is a family of division algebras (Fi)i∈Q together with an Fi-Fj-bimodule iMj for all edges {i, j}
such that the following conditions are satisfied:

(i) k lies in the center of all Fi and all Fi are finite-dimensional over k;

(ii) k acts centrally on all iMj ;

(iii) The bimodules jMi and iM∗j are isomorphic for all edges {i, j}, where iM∗j := HomFj (iMj , FjFjFj );

(iv) For all edges {i, j} it holds dim(iMj)Fj = dij .

Definition 2.1.5 A k-species (M,Ω) of (Q, d) is a k-modulationM of (Q, d) together with an
admissible orientation Ω.

A representation V = (Vi, jϕi)i,j∈Q is a family of finite-dimensional Fi-right modules Vi for
i ∈ Q and Fj-linear maps

jϕi : Vi ⊗Fi iMj → Vj

for all oriented edges i→ j. If there is no oriented edge i→ j we set iϕj = 0.
Given two representations V = (Vi, jϕi) and W = (Wi, jψi), a morphism of representations

is a tuple f = (fi)i∈Q : V → W of Fi-linear maps fi : Vi → Wi such that for all i, j ∈ Q the
following diagram commutes:

Vi ⊗Fi iMj Vj

Wi ⊗Fi iMj Wj

jϕi

jψi

fi ⊗ id fj

We denote by Repk(M,Ω) the category of representations of the k-species (M,Ω).
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Example 2.1.6 Very important and some of the easiest examples for representations of a species
are the representations of a quiver without multiple edges between vertices and loops. The
weights are given by dij = 1 if there is an edge from i to j or from j to i and the division
algebras are Fi = k = Fj and iMj = k if dij = 1.

Lemma2.1.7 Let V be an Fi-vector space, Wj an Fj-vector space and iMj an Fi − Fj-
bimodule, finite-dimensional over Fi and Fj, and jMi = iM

∗
j := HomFj (iMj , FjFjFj ) its dual.

Let (m1, ...,md) be a Fi-basis of iMj and (m1, ...,md) the dual basis. Then we have a natural
isomorphism of Fj − Fi-bimodules

HomFj (Vi ⊗Fi iMj ,Wj) ∼= HomFi(Vi,Wj ⊗Fj jMi),
ϕ 7→ ϕ̄,

¯̄ϕ ← [ ϕ̄,

where

ϕ̄ : Vi →Wj ⊗Fj jMi, x 7→
d∑
i=1

ϕ(x⊗mi)⊗mi

and

¯̄ϕ : Vi ⊗Fi iMj →Wj , y ⊗mz → yz where ϕ̄(y) =
d∑
i=1

yi ⊗mi.

In particular, this means that it does not matter on which side we tensor with the bimodules
iMj as long as we are consistent.

Proof. The natural bijection comes from the adjointness of the functors Hom and ⊗:

HomFj (Vi ⊗Fi iMj ,Wj) ∼= HomFi(Vi,HomFj (iMj ,Wj))
∼= HomFi(Vi,Wj ⊗Fj jMi).

One can check that the above concrete definition of ϕ̄ and ¯̄ϕ does not depend on the given basis
and is therefore natural.

Example 2.1.8 The most studied and understood weighted graphs are the Dynkin graphs and
Euclidean graphs:

• The indices in the labels for Dynkin graphs coincide with the number of vertices (we omit
the weights (1,1)):

An • • • • • n ≥ 1

Bn • • • • • n ≥ 2
(1, 2)

Cn • • • • • n ≥ 3
(2, 1)
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Dn

•

•
• • • • n ≥ 4

E6 • • • • •

•

E7 • • • • •

•

•

E8 • • • • •

•

• •

F4 • • • •
(1,2)

G2 • •
(1,3)

• The indices in the labels of the Euclidean graphs coincide with the number of vertices -1.
The Euclidean graphs arise from the Dynkin graphs by adding a node at a specific point.

Ã11 • •
(1,4)

Ã12 • •
(2,2)

Ãn n ≥ 2•
•

•

•

•

•

•
•

B̃n n ≥ 2• • • • • •
(1,2) (2,1)

C̃n n ≥ 2• • • • • •
(2,1) (1,2)

B̃Cn n ≥ 2• • • • • •
(1,2) (1,2)

C̃Dn n ≥ 3• • • • •
•

•

(2,1)

B̃Dn n ≥ 3• • • • •
•

•

(1,2)
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D̃n n ≥ 4
•

•
• • • •

•

•

Ẽ6 • • • • •

•

•

Ẽ7 • • • • • • •

•

Ẽ8 • • • • • • •

•

•

F̃41 • • • • •
(1,2)

F̃42 • • • • •
(2,1)

G̃21 • • •
(1, 3)

G̃22 • • •
(3, 1)

Now let us add some more knowledge about the category of representations of a species (see
e.g. [12]). It will not be necessary for the next sections and there are no new results until we go
into our concrete example in Subsection 2.5, but it gives a more well-rounded picture of what
exactly we are studying and what else can happen. Most of it is very similar to the theory of
representations of a quiver.

2.2 The Tensor Algebra
Similar to the path algebra of a quiver one can associate an algebra with a species. Namely an
algebra where the module category is equivalent to the category of representations.

Definition 2.2.1 The tensor algebra T (M) of a k-species (M,Ω) is defined as the k-vector
space

T (M) =
⊕
r≥0

M (r),

whereM (0) := A :=
∏
i∈Q Fi, M (1) :=

⊕
(i,j)∈Ω iMj also considered as an A−A-bimodule where

A acts via the projections A → Fi and then inductively M (r) := M (r−1) ⊗M (1). The multipli-
cation is induced by the canonical isomorphisms M (r) ⊗M (s) →M (r+s) and distributivity.

Remark 2.2.2 If the orientation Ω of the k-species (M,Ω) is admissible, then the tensor algebra
T (M) is finite-dimensional.

Example 2.2.3 Consider a field extension k ⊂ K with [K : k] = l and the k-modulation
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k kKK−→ K of the weighted oriented graph • (1,l)−→ •. Then the tensor algebra can be realized as the
matrix algebra

T =
(

k 0
KKk K

)
.

More explicitly: M (0) = k ×K, M (1) = kKK , M (2) = 0 and therefore M (r) = 0 for r ≥ 2.

Example 2.2.4 In the case of a quiver, the tensor algebra coincides with the path algebra.

Using this algebra we get the equivalence (see [12]).

Proposition 2.2.5 Given a k-species (M,Ω). Then the category Repk(M,Ω) of (finite-dimensional)
representations of (M,Ω) is equivalent to the category mod (T (M)) of right T (M)-modules of
finite length.

Proof. Here we give the explicit correspondence between objects:

• Let V = (Vi, jϕi) be a representation of (M,Ω). We define the corresponding T (M)-
module as the direct sum

V =
⊕
i∈Q

Vi,

where the A-action is again given via the projections A→ Fi and the M action on V via:
For vl ∈ Vl, mij ∈ iMj we define

vlmij =
{

0, if l 6= i,

jϕi(vl ⊗mij), if l = i.

The action of M (r) is then defined inductively: For vl ∈ Vl, mi1i2 ⊗mi2i3 ⊗ ...⊗mir−1ir ⊗
mirir+1 we define

vl(mi1i2 ⊗mi2i3 ⊗ ...⊗mir−1ir ⊗mirir+1) = (ir+1ϕir )((vl(mi1i2 ⊗ ...⊗mir−1ir ))⊗mirir+1).

Furthermore given a morphism ψ : V → W of representations, the corresponding map⊕
i∈Q ψi : V →W is T (M,Ω)-linear by definition.

• Let V be a T (M,Ω)-module. Then using the A-action on V we can decompose it as a
direct sum

V =
⊕
i∈Q

Vi, where Vi = V Fi.

Then using the M action we get the Fj-linear maps jϕi : Vi ⊗ iMj → Vj along the arrows
(i, j) ∈ Ω.

2.3 Quadratic Forms, Roots and the Weyl Group
Furthermore, we can attach a bilinear form to QQ given a weighted graph (Q, d): for vectors
x = (xi)i∈Q, y = (yi)i∈Q ∈ QQ we define

BQ(x, y) =
∑
i∈Q

fixiyi −
1
2

∑
(i,j)∈Q×Q

dijfjxiyj .
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The corresponding quadratic form QQ is then given by:

QQ(x) =
∑
i∈Q

fix
2
i −

∑
i−j

dijfjxixj ,

where the latter sum is over all edges {i, j} in (Q, d) and we use the fact dijfj = djifi for all
i, j ∈ Q.

Then we have the following classification (see e.g. [12]).

Proposition 2.3.1 Given a connected weighted graph (Q, d) and its corresponding quadratic
form QQ it holds:

1. (Q, d) is a Dynkin graph if and only if QQ is positive definite.

2. (Q, d) is an Eucilidean graph if and only if QQ is positive semidefinite.

This can be proven using two lemmas:

Lemma2.3.2 Given a connected weighted graph (Q, d) which is not a Dynkin graph (see Ex-
ample 2.1.8) then it contains either a Euclidean graph or one of the following:

• •
(d1, d2)

with d1d2 ≥ 5

or

• • •
(d1, d2) (d3, d4)

with d1d2 = 3 and d3d4 ∈ {2, 3}.

Proof. Since (Q, d) is not A1 we may consider an arbitrary edge • •
(d1, d2)

.

• If d1d2 ≥ 5 we are done.

• If d1d2 = 4 then (d1, d2) is either (1, 4), (4, 1) or (2, 2). In the first two cases, the subgraph
consisting of just the edge with the incident nodes is the Euclidean graph Ã11, in the latter
case the Euclidean graph Ã12.

• If d1d2 = 3 then (d1, d2) is either (1, 3) or (3, 1). Since (Q, d) is not G2 there is another

edge • • •
(d1, d2) (d3, d4)

. If d3d4 ≥ 2 we are done (d3d4 ≥ 4 is done in the first
two cases, d3d4 ∈ {2, 3} is the second depicted graph in the lemma). If d3d4 = 1 we have
(d3, d4) = (1, 1) so either this subgraph is G̃21 or G̃12.

• If d1d2 = 2 then (d1, d2) is either (1, 2) or (2, 1). Since (Q, d) is not B2 there is another

edge • • •
(d1, d2) (d3, d4)

. If d3d4 ≥ 3 we are in the first three cases. If d3d4 = 2
this subgraph is one of the three Euclidean graphs B̃2, C̃2 or B̃C2.
If d3d4 = 1 there is another edge
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2.3 Quadratic Forms, Roots and the Weyl Group 2

• •

•

•

(d1, d2)
(d5, d6)

or

• • • •
(d5, d6) (d1, d2)

or

• • • •
(d1, d2) (d5, d6)

Again, if d5d6 ≥ 3 we are in the previous cases, if d5d6 = 2 we get a Euclidean graph. If
d5d6 = 1 in the former case we have a Euclidean graph of type B̃D or C̃D, in the latter
two cases we can find another edge. ...
This procedure ends since Q is finite.

• If d1d2 = 1 we can find edges until either we find a Euclidean subgraph of type D̃n, Ẽ6,
Ẽ7 or Ẽ8 or find an edge with weights (di, dj) with didj ≥ 2 which we discussed in the
previous cases.

Lemma2.3.3 Let (Q, d) be a connected weighted graph with a positive definite or semidefinite
quadratic form QQ. Then for any proper subgraph Q′ ⊂ Q with corresponding weights, the
quadratic form QQ′ is positive definite.

Proof. It is clear that for any subgraph the quadratic form is either positive definite or semidef-
inite (since QQ′(x) < 0 for some x ∈ QQ

′ implies QQ(x̂) = QQ′(x) < 0 which is a contradiction
to our setting (where x̂ is x ∈ QQ

′ with x̂i = 0 for i /∈ Q′)).
Now assume there is a proper subgraph Q′ where the quadratic form is not positive definite.

Without loss of generality, we may consider a minimal proper subgraph Q′ with that property.
Let y ∈ QQ

′ \{0} with QQ′(y) = 0. Since Q′ is a minimal subgraph with positive semidefinite
quadratic form, we have yi 6= 0 for all i ∈ Q′. Consider x ∈ QQ

′ with xi = |yi|. Then it holds

0 ≤ QQ′(x) =
∑
i∈Q′

fix
2
i −

∑
i−j

dijfjxixj

≤
∑
i∈Q′

fiy
2
i −

∑
i−j

dijfjyiyj

= QQ′(y)
= 0

Hence we have QQ′(x) = 0.
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Now let j ∈ Q \Q′ with di0j 6= 0 for some i0 ∈ Q′ (this exists since Q′ is a proper subgraph
and (Q, d) is connected). Now consider z ∈ QQ with zi = xi for i ∈ Q′, zj = 1

2di0jxi0 > 0 and
zi = 0 else. Then it holds:

QQ(z) = QQ′(x)︸ ︷︷ ︸
=0

+fjz2
j −

∑
i−j

dijfjzizj

≤ fjz
2
j − di0jfjzi0zj

= fj
1
4d

2
i0jx

2
i0 − fj

1
2d

2
i0jx

2
i0

< 0

But this is a contradiction to QQ being positive definite or semidefinite.

Now to the proof of our proposition:

Proof of Proposition 2.3.1. We prove that a graph with positive definite or semidefinite quadratic
form is either a Dynkin graph or a Euclidean graph. The other direction is a direct calculation.

Let (Q, d) be a connected weighted graph which is not a Dynkin graph with positive definite
or semidefinite quadratic form. Then by Lemma 2.3.2 there is either a Euclidean subgraph or
one of the exceptional ones. But the quadratic form of the exceptional ones is neither positive
definite nor semidefinite. Hence we are in the case with a Euclidean subgraph. But Euclidean
graphs have a positive semidefinite quadratic form and by Lemma 2.3.3 proper subgraphs have
a positive definite quadratic form. In particular, this means that (Q, d) is a Euclidean graph
itself.

Now we define what the Weyl group corresponding to a graph is.

Definition 2.3.4 Let (Q, d) be a weighted graph.
Let j ∈ Q be a node. We denote by ej ∈ QQ the vector with (ej)i = δij for i ∈ Q. The

(simple) reflection σj : QQ → QQ is defined as

σj(x) = x− 2 BQ(x, ej)
BQ(ej , ej)

ej

for any x ∈ QQ.
The Weyl group WQ is defined as the group of all linear transformations of QQ generated by

the (simple) reflections (σj)j∈Q.
Let {1, ..., n} be an admissible order of sinks given by a fixed orientation Ω. Then the

corresponding Coxeter element c ∈WQ is defined as

c = σnσn−1...σ1.
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Remark 2.3.5 One can easily check that the simple reflections σj are actual reflections, namely:

σ2
j (x) = σj

(
x− 2 BQ(x, ej)

BQ(ej , ej)
ej

)
= σj(x)− 2 BQ(x, ej)

BQ(ej , ej)
σj(ej)

= x− 2 BQ(x, ej)
BQ(ej , ej)

ej − 2 BQ(x, ej)
BQ(ej , ej)

(
ej − 2BQ(ej , ej)

BQ(ej , ej)
ej

)
= x− 2 BQ(x, ej)

BQ(ej , ej)
ej + 2 BQ(x, ej)

BQ(ej , ej)
ej

= x

Example 2.3.6 For any j ∈ Q we have:

σj(ej) = ej − 2BQ(ej , ej)
BQ(ej , ej)

ej = −ej .

Remark 2.3.7 Note that the Coxeter element does not depend on the choice of the admissible
order for a fixed orientation. Namely, if there are no edges between two nodes i and j, then the
simple reflections σi and σj commute.

Definition 2.3.8 • A vector x ∈ QQ is called stable if for all ω ∈WQ:

ω(x) = x.

• We denote by RQ := {x ∈ QQ|∀ω ∈WQ : ω(x) = x}, the radical subspace of QQ defined as
the set of all stable vectors.

• A vector x ∈ QQ is called a root if there exists j ∈ Q and ω ∈WQ such that:

x = ω(ej).

• A root x ∈ QQ is positive (respectively negative) if xi ≥ 0 for all i ∈ Q (respectively xi ≤ 0
for all i ∈ Q).

One may characterize stable vectors differently:

Lemma2.3.9 Given a (connected) weighted graph (Q, d) and a vector x ∈ QQ, the following
statements are equivalent:

1. x is stable;

2. σk(x) = x for all k ∈ Q;

3. c(x) = x for a Coxeter element c;

4. BQ(x, y) = 0 for all y ∈ QQ.
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Proof. The equivalence between 1. and 2. is clear. That 2. implies 3. is also clear. Furthermore
note that each reflection σj only changes the jth coordinate, so if c(x) = x then at each reflection
σj it acts trivial, hence 3. implies 2..

Furthermore if BQ(x, ej) = 0 for each j, this clearly implies 2..
On the other hand by definition σk(x) = x implies BQ(x, ek) = 0, and if this holds for all k,

then by linearity in the second argument of BQ(x,−) we have 2. implies 4..

Then one can prove about the radical subspace:

Lemma2.3.10 • Given a Dynkin graph (Q, d), then it holds RQ = {0}.

• Given a Euclidean graph (Q, d), then RQ is one dimensional and has a generator δ with
all coordinates natural numbers and at least one coordinate equals one.

Proof. • Given a Dynkin graph, then QQ is positive definite, especially for all x 6= 0 then
QQ(x) = BQ(x, x) > 0 and therefore RQ = {0}.

• This follows by calculation of RQ in each case.

Example 2.3.11 In the case Ã12 we have BQ((x1, x2), (y1, y2)) = x1y1 + x2y2 − x1y2 − x2y1.
Hence we have BQ((1, 1), (y1, y2)) = y1 + y2 − y2 − y1 = 0 for all (y1, y2) ∈ Q2.
In this case it holds δ = (1, 1).

Remark 2.3.12 For x = ω(ek) a positive root with ω ∈ WQ it holds ωσk(ek) = ω(−ek) =
−ω(ek) = −x is a negative root.

Proposition 2.3.13 Let (Q, d) be a Dynkin or Euclidean graph. Let x ∈ QQ be a positive root.
Then for any k ∈ Q either σk(x) is positive or x = ek.

Instead of showing this, we refer to [12], for most roots this can be viewed as a corollary
of a later statement about reflection functors, to be more precise, if we can find an admissible
orientation that we may reflect as in x = ω(ej) with reflection functors, then the statement is
clear (see Proposition 2.4.2).

Corollary 2.3.14 Let (Q, d) be a Dynkin or Euclidean graph. Then a root x ∈ QQ is either
positive or negative.

Proposition 2.3.15 Let (Q, d) be a Dynkin or Euclidean graph. Let x ∈ QQ be a positive root
and c = σn...σ1 ∈WQ the Coxeter element. Then it holds:

1. c(x) is negative if and only if x = p
k

:= σ1σ2...σk−1(ek) for some 1 ≤ k ≤ n;

2. c−1(x) is negative if and only if x = q
k

:= σnσn−1...σk+1(ek) for some 1 ≤ k ≤ n.

Proof. The statement is a direct consequence of Proposition 2.3.13.
If c(x) = σn...σ1(x) is negative then choose k ∈ {1, ..., n} minimal such that σk...σ1(x) is

minimal. By Proposition 2.3.13 we have σk−1...σ1(x) = ek, in particular x = σ1σ2....σk−1(ek).
If x = σ1σ2....σk−1(ek), then it holds
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c(x) = σn...σ1σ1σ2....σk−1(ek) = σn...σk(ek) = −σn...σk+1(ek).
Since σn...σk+1 does not change the k-th coordinate, by Corollary 2.3.14 σn...σk+1(ek) is

positive and therefore c(x) negative.
The second statement can be proven analogously.

Furthermore, we can make an actual list of roots for Dynkin and Euclidean graphs. To do
this, we first need to define what the defect is.

Recall that the Weyl group WQ acts trivially on the radical subspace RQ. Thus each element
ω ∈WQ induces a linear transformation ω̄ on QQ/RQ. These still form a group which we denote
by W̄Q.

Proposition 2.3.16 Given a Dynkin or Euclidean graph (Q, d), then the group W̄Q is finite.

For a proof see [13].

Definition 2.3.17 Given a Euclidean graph (Q, d) and c a Coxeter element. Letm be the order
of c̄ in W̄Q. Then we define the defect dc(x) of x ∈ QQ to be the number for which holds

cm(x) = x+ dc(x)δ.

Now we can make a list of roots for Dynkin and Euclidean graphs (see [12]):

Proposition 2.3.18 1. Let (Q, d) be a Dynkin graph and c ∈ WQ a Coxeter element. For
each k ∈ {1, ..., n} let ak be minimal such that c−ak−1(p

k
) is negative. Then the set

{c−sp
k
| 1 ≤ k ≤ n, 0 ≤ s ≤ ak}

is a list of all positive roots of (Q, d).
Analogously, for each k ∈ {1, ..., n} let bk be minimal such that cbk+1(q

k
) is negative. Then

the set
{csq

k
| 1 ≤ k ≤ n, 0 ≤ s ≤ bk}

is a list of all positive roots of (Q, d).

2. Let (Q, d) be a Euclidean graph and c ∈WQ a Coxeter element. Then it holds:

(a) The set {c−s(p
k
) | 1 ≤ k ≤ n, s ≥ 0} is the set of all positive roots of negative defect.

(b) The set {cs(q
k
) | 1 ≤ k ≤ n, s ≥ 0} is the set of all positive roots of positive defect.

(c) The set {x0 + sgδ | s ≥ 0, x0 a root of zero defect with x0 ≤ gδ}, where g ∈ {1, 2, 3}
is a constant for the graph, is the set of all positive roots of zero defect.

Remark 2.3.19 A list for the constant g for the Euclidean graphs can be found in [13].

Example 2.3.20 Consider 1 (1,3)−→ 2. Then the Coxeter element is c = σ1σ2.

• p1 = σ2(1, 0) = (1, 0)−−2B((1,0),(0,1))
B((0,1),(0,1)) (0, 1) = (1, 0)− 2−

3
2

3 (1, 0) = (1, 1) and p2 = (0, 1);

• q1 = (1, 0) and q2 = σ1((0, 1)) = (0, 1)− 2B((0,1),(1,0))
B((1,0),(1,0)) (1, 0) = (0, 1)− 2−

3
2

1 (1, 0) = (3, 1);
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We have:

c−1(p1) = σ2σ1(1, 1)

= σ2

(
(1, 1)− 2B((1, 1), (1, 0))

B((1, 0), (1, 0))(1, 0)
)

= σ2

(
(1, 1)− 2

− 1
2

1 (1, 0)
)

= σ2(2, 1)

= (2, 1)− 2B((2, 1), (0, 1))
B((0, 1), (0, 1))(0, 1)

= (2, 1)− 20
3(0, 1)

= (2, 1)

Similarly, we can calculate the positive roots

p1 = (1, 1)

p2 = (0, 1)

(2, 1)

(3, 2)

q1 = (1, 0)

q2 = (3, 1)

c−1

c−1

c−1

c−1

Example 2.3.21 Consider 1 (1,4)−→ 2. Then the Coxeter element is c = σ1σ2.
Furthermore, we calculate:

• p1 = σ2(1, 0) = (1, 0)−−2B((1,0),(0,1))
B((0,1),(0,1)) (0, 1) = (1, 0)− 2−2

4 (1, 0) = (1, 1) and p2 = (0, 1);

• q1 = (1, 0) and q2 = σ1((0, 1)) = (0, 1)− 2B((0,1),(1,0))
B((1,0),(1,0)) (1, 0) = (0, 1)− 2−2

1 (1, 0) = (4, 1);

• Note: δ = (2, 1). It holds:

c−1(x, y) = σ2σ1(x, y)

= σ2

(
(x, y)− 2B((x, y), (1, 0))

B((1, 0), (1, 0)) (1, 0)
)

= σ2

(
(x, y)− 2x− 2y

1 (1, 0)
)

= σ2(−x+ 4y, y)

= (−x+ 4y, y)− 2B((−x+ 4y, y), (0, 1))
B((0, 1), (0, 1)) (0, 1)

= (−x+ 4y, y)− 24y + 2x− 8y
4 (0, 1)

= (−x+ 4y, y) + (0, 2y − x)
= (−x+ 4y,−x+ 3y)
= (x, y) + (−2x+ 4y,−x+ 2y)
= (x, y) + (−x+ 2y)δ

In particular c̄ is trivial in W̄Q.
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We also get a formula for the defect in this case:

dc(x, y) = x− 2y

Hence we have:

1. The set of all positive roots of negative defect:

{(1 + 2s, 1 + s), (4s, 1 + 2s) | s ≥ 0}.

2. The set of all positive roots of positive defect:

{(1 + 2s, s), (4 + 4s, 1 + 2s) | s ≥ 0}.

3. There are no positive roots of zero defect since dc(x, y) = 0 implies x = 2y and therefore
(x, y) = y(2, 1) ∈ RQ. In particular for all ω ∈ WQ: ω(x, y) = (x, y). So by definition, it
cannot be a root.

2.4 Reflection Functors
Similar to the definition of reflection functors in the case of representations of quivers, we have
reflection functors for representations of species. The idea of reflection functors is to reverse the
arrows which end in a specific sink or which begin in a specific source.

The reflection functors have several applications, for one they form an adjoint pair which
gives rise to derived equivalences. These may be used to get an automorphism on the reduced
Drinfeld double of the Hall algebra. In particular, using the connection between the Hall algebra
of representations of a species over a finite field and quantum groups which we will discuss in
Subsection 2.6, they give rise to the Lusztig symmetries on the quantum group side (see [26]).

Definition 2.4.1 (i) Let i0 ∈ Q be a sink. Then the reflection functor

S+
i0

: Repk(M,Ω)→ Repk(M, σi0Ω)

is defined as follows:

• On objects:
Given a representation V = (Vi, jϕi), we set
– S+

i0
(Vi) := Vi for i 6= i0;

– S+
i0

(Vi0) := ker
( ⊕
j→i0

i0ϕj

)
.

In particular, we have a map ι : S+
i0

(Vi0)→
⊕
j→i0

Vj⊗Fj jMi0 and we can set S+
i0

(i0 ϕ̄j) = pj ◦ ι.

We set S+
i0

(jϕi) = jϕi for all i, j 6= i0.
• On morphisms:
Given a morphism f = (fi)i∈Q0 : V →W between two representations V = (Vi, jϕi)
and W = (Wi, jψi), we set S+

i0
(fi) := fi for i 6= i0. In the case i = i0 we use the

universal property of the kernel S+
i0

(Wi0), namely there exists a unique morphism
S+
i0

(fi0) : S+
i0

(Vi0)→ S+
i0

(Wi0) such that the following diagram commutes:
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2.4 Reflection Functors 2

0

0

S+
i0

(Vi0)

S+
i0

(Wi0)

S+
i0

(fi0)

⊕
j→i0

Vj ⊗Fj jMi0

⊕
j→i0

Wj ⊗Fj jMi0

ιV

ιW

Vi0

Wi0

⊕
j→i0

fj ⊗ id fi0

(ii) Let i0 ∈ Q be a source. Then the reflection functor

S−i0 : Repk(M,Ω)→ Repk(M, σi0Ω)

is defined as follows:

• On objects: Given a representation V = (Vi, jϕi), we set
– S−i0(Vi) := Vi for i 6= i0;

– S−i0(Vi0) := coker
(⊕
j 6=i0

jϕ̄i0

)
.

In particular, we have a map ρ :
⊕
j 6=i0

Vj⊗Fj jMi0 → S−i0(Vi0) and we can set S−i0(jϕi0) =

ij◦ρ where ir is the injection ir : Vr⊗Fr rMi0 →
⊕
j 6=i0

Vj⊗Fj jMi0 onto the rth summand.

• On morphisms:
Given a morphism f = (fi)i∈Q0 : V →W between two representations V = (Vi, jϕi)
and W = (Wi, jψi), we set S−i0(fi) := fi for i 6= i0. In the case i = i0 we use the
universal property of the cokernel S−i0(Vi0), namely there exists a unique morphism
S−i0(fi0) : S−i0(Vi0)→ S−i0(Wi0) such that the following diagram commutes:

Vi0

Wi0

⊕
j 6=i0

Vj ⊗Fj jMi0

⊕
j 6=i0

Wj ⊗Fj jMi0

S−i0(Vi0)

S−i0(Wi0)

0

0

fi0

⊕
j 6=i0

fj ⊗ id S−i0(fi0)

ρV

ρW

Similar to the case of representations of quivers, one can define the Coxeter functor. Namely,
given a species (M,Ω) with admissible order of sinks i1, ..., in, the Coxeter functor is defined by

C := S+
in
...S+

i2
S+
i1

: Repk(M,Ω)→ Repk(M,Ω).

Similarly, the ’inverse’ Coxeter functor is given by applying the reflection functors S−

C− := S−i1 ...S
−
in−1

S−in : Repk(M,Ω)→ Repk(M,Ω).

They are adjoint functors, and give rise to an equivalence not on the whole category, but on the
subcategories without projective respectively injective summands (see e.g. [12]).

Furthermore, Brenner and Butler showed (see [4]), if the underlying unoriented graph of our
species is a tree (or the oriented graph has no oriented circles), by applying the Auslander-Reiten
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2.4 Reflection Functors 2

translation τ to an object we get an object which is isomorphic to the case if we had applied the
Coxeter functor. Since we consider only the isomorphism classes in the Hall algebras, instead of
the Auslander-Reiten translation τ we may use the Coxeter functor C.

Before we begin to prove some statements, namely in connection to the roots and Weyl
groups, we define the dimension vector of a representation.

Given a representation V = (Vi, jϕi) of a species (M,Ω), we define dim(V ) ∈ NQ0 to be the
vector given by the coordinates

dim(V )i := dim(Vi)Fi

for i ∈ Q.
Now, let us discuss what happens if we reflect at the same node twice (see [12]):

Lemma2.4.2 Let (M,Ω) be a species of a connected weighted graph (Q, d) with admissible
orientation Ω. Let V = (Vi, jϕi) be a representation of (M,Ω).

1. Let 1 ∈ Q be a sink. Then it holds

V ∼= S−1 S+
1 (V )⊕ P ,

where P is isomorphic to finitely many copies of the simple representation S1 with F1 at
node 1 and 0 else. In particular, if V is indecomposable either

V ∼= S1

or
V ∼= S−1 S+

1 (V ).

Furthermore in the latter case we have End(S+
1 (V )) ∼= End(V ), hence S+

1 (V ) is indecom-
posable, and dim(S+

1 (V )) = σ1(dim(V )).

2. Let n ∈ Q be a source. Then it holds

V ∼= S+
nS−n (V )⊕ I,

where I is isomorphic to finitely many copies of the simple representation Sn with Fn at
node n and 0 else. In particular, if V is indecomposable either

V ∼= Sn

or
V ∼= S+

nS−n (V ).

Furthermore in the latter case we have End(S−n (V )) ∼= End(V ), hence S−n (V ) is indecom-
posable, and dim(S−n (V )) = σn(dim(V )).

Proof. We prove the first statement, the second is given by the dual argument.
Consider the diagram of the construction of S−1 S+

1 (V ):
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2.4 Reflection Functors 2

0

0

(S+
1 (V ))1

⊕
i→1(Vi ⊗ iM1) V1

(S−1 S+
1 (V ))1

⊕
iϕ1

µ1

Since we have coker(ker(
⊕

iϕ1)) = im(
⊕

iϕ1) by definition, there exists a monomorphism
µ1 : (S−1 S+

1 (V ))1 → V1 such that the diagram commutes.
If
⊕

iϕ1 is an epimorphism then µ1 is an isomorphism. Since the other maps/nodes stay the
same, it follows V ∼= S−1 S+

1 (V ).
If
⊕

iϕ1 is not an epimorphism then V must be a direct sum of S−1 S+
1 (V ) (which can be

embedded via µ1 at V1 and id) and copies of S1. Hence we get V ∼= S−1 S+
1 (V )⊕ P .

In particular if V is indecomposable either V ∼= S1 (where already S+
1 (V ) = 0 which only

happens if V is S1) or V ∼= S−1 S+
1 (V ). Now in the latter case, we have S+

1 (V ) ∼= S+
1 S−1 S+

1 (V ), in
particular, each composition of any two maps is a bijection:

End(V )
S+

1−→ End(S+
1 (V ))

S−1−→ End(S−1 S+
1 (V ))

S+
1−→ End(S+

1 S−1 S+
1 (V )).

Hence each map is a bijection and we get End(S+
1 (V )) ∼= End(V ).

In particular, if V � S1 is indecomposable, so is S+
1 (V ).

Now to the last statement: the dimension vector of S+
1 (V ) differs from the dimension vector

of V only in the first coordinate. So it suffices to check that one. By construction we have a
short exact sequence:

0 −→ (S+
1 (V ))1 −→

⊕
j→1

(Vj ⊗ jM1) −→ V1 −→ 0.

(Here we need that
⊕

jϕ1 is an epimorphism, which is equivalent to V ∼= S−1 S+
1 (V ).)

Hence we get for the dimension at the first coordinate (denote vi for the ith coordinate of the
dimension vector of V ):

dim((S+
1 (V ))1)F1 =

∑
j→1

dim(Vj ⊗ jM1)F1 − dim(V1)F1

=
∑
j→1

vj · dj1 − v1

= v1 − 2(v1 −
1
2
∑
j→1

vj · dj1)

= v1 − 2
v1f1 − 1

2
∑
j→1 vj · dj1f1

f1
= (σ1(dim(V )))1

Hence we have dim(S+
1 (V )) = σ1(dim(V )).
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2.4 Reflection Functors 2

Given a k-species (M,Ω) with admissible orientation Ω with the order 1, ..., n. Then for
i ∈ {1, ..., n} we may define the objects

• P i := S−1 S−2 ...S
−
i−1(Si);

• Q
i

:= S+
nS+

n−1...S
+
i+1(Si),

where Si is the simple representation in Repk(M, si−1...s1Ω) (respectively Repk(M, si+1...snΩ))
with Fi at the node i;

We also get the classification of projective and injective objects (see [12]):

Proposition 2.4.3 Let V = (Vi, jϕi) be an indecomposable representation in Repk(M,Ω) and
c ∈WQ the Coxeter element corresponding to the admissible order given by Ω. Then the following
statements are equivalent:

(i) V is projective;

(ii) V ∼= P i for some 1 ≤ i ≤ n;

(iii) C(V ) = 0;

(iv) c(dim(V )) is non-positive.

Similarly, the following are equivalent:

(i) V is injective;

(ii) V ∼= Q
i
for some 1 ≤ i ≤ n;

(iii) C−(V ) = 0;

(iv) c−1(dim(V )) is non-positive.

It can be proven via two lemmas:

Lemma2.4.4 The set {P i | 1 ≤ i ≤ n} (respectively {Q
i
| 1 ≤ i ≤ n}) is the set of all

indecomposable projective (respectively injective) objects in Repk(M,Ω).

Proof. We prove the statement about the projective objects, and the statement about injectives
works analogously.

Since the set {P i | 1 ≤ i ≤ n} consists of n different non-isomorphic elements, it suffices to
show that each P i is projective.

We prove the statement by induction on i.

• For i = 1 we have P 1 = S1. Consider the diagram

S1

X Y 0
α

β
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2.4 Reflection Functors 2

for some epimorphism α : X → Y and morphism β : S1 → Y .

Since S1 is trivial at each node except 1, it suffices to check at node 1. Furthermore, since
1 is a sink, there are no commutativity relations to check concerning the maps between
nodes iϕj . Hence we consider the diagram

F1

X1 Y1 0
α1

β1
γ1

But X1 and Y1 are F1-modules, in particular there exists γ1 such that the diagram com-
mutes, hence there exists γ = (γi)i : S1 → X with γi = 0 for i 6= 1 such that α ◦ γ = β. In
particular, S1 is projective.

• Now let i > 1 and assume that P l for l < i is indecomposable and projective for any
admissible orientation. In particular P (1)

i := S−2 ...S
−
i−1(Si) is indecomposable and projec-

tive and P i = S−1 (P (1)
i ) by definition. Since P (1)

i 6= S1 is indecomposable, P i 6= S1 is
indecomposable, too, and we also have S+

1 (P i) ∼= P
(1)
i . Consider the diagram

P i

X Y 0
α

β

for some epimorphism α : X → Y and morphism β : P i → Y , and apply the functor S+
1 :

P
(1)
i

S+
1 (X) S+

1 (Y ) 0
S+

1 (α)
S+

1 (β)
γ(1)

The map S+
1 (α) is generally not an epimorphism, but the representation P

(1)
i has only

non-zero components at the nodes {2, 3, ..., i}, in particular on these nodes S+
1 (α)j = αj ,

hence it is an epimorphism there and we can apply the assumption that P (1)
i is projective.

We receive a map γ(1) as indicated such that the diagram commutes.

Now applying the functor S−1 we get the diagram:

P i

S−1 S+
1 (X) S−1 S+

1 (Y ) 0
S−1 S+

1 (α)
S−1 S+

1 (β)
S−1 (γ(1))
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2.4 Reflection Functors 2

By Lemma 2.4.2 we have Y ∼= S−1 S+
1 (Y )⊕ S⊕y1 for some y ∈ N0 and X ∼= S−1 S+

1 (X)⊕ S⊕x1
for some x ∈ N0.

Claim: im(β) ⊂ S−1 S+
1 (Y ) and α(S−1 S+

1 (X)) ⊂ S−1 S+
1 (Y ).

If im(β) * S−1 S+
1 (Y ) then there exists a non-zero map P i → S1. Since S1 is simple, it

must be an epimorphism but then S1 must be a direct summand of P i because S1 = P 1
is projective. This is a contradiction to P i being indecomposable and by definition non-
isomorphic to S1.

Furthermore α(S−1 S+
1 (X)) = S−1 S+

1 (α)(S−1 S+
1 (X)) ⊂ S−1 S+

1 (Y ) is clear. If the inclusion is
proper, and α is an epimorphism there exists a non-zero map from S1 to S−1 S+

1 (Y ) which
has no summand isomorphic to S1 which again is a contradiction.

In particular we may take γ = ι ◦ S−1 (γ(1)), where ι : S−1 S+
1 (X) → X is the inclusion and

it holds
β = α ◦ γ.

Hence P i is projective.

Lemma2.4.5 Let (M,Ω) be a species of a connected weighted graph (Q, d) with admissible
orientation Ω. Let V = (Vi, jϕi) be a representation of (M,Ω).

1. It holds
V ∼= C−C(V )⊕ P ,

where P is projective. In particular, if V is indecomposable either there exists i ∈ {1, ..., n}
with

V ∼= P i

which is equivalent to C(V ) = 0 or

V ∼= C−C(V ).

Furthermore in the latter case we have End(C(V )) ∼= End(V ), hence C(V ) is indecompos-
able, and dim(C(V )) = c(dim(V )).

2. It holds
V ∼= CC−(V )⊕Q,

where Q is injective. In particular, if V is indecomposable either there exists i ∈ {1, ..., n}
with

V ∼= Q
i

which ist equivalent to C−(V ) = 0 or

V ∼= CC−(V ).

Furthermore in the latter case we have End(C−(V )) ∼= End(V ), hence C−(V ) is indecom-
posable, and dim(C−(V )) = c(dim(V )).
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2.5 The (1,4)-Case 2

Proof. The idea of the proof is to apply Lemma 2.4.2 n times for each reflection:

V ∼= S−1 S+
1 (V )⊕ S⊕x1

1

for some x1 ∈ N0. Applying the statement again to S+
1 (V ) we get

S+
1 (V ) ∼= S−2 S+

2 S+
1 (V )⊕ S⊕x2

2

for some x2 ∈ N0. Hence combining these we get

V ∼= S−1 S−2 S+
2 S+

1 (V )⊕ S−1 (S2)⊕x2︸ ︷︷ ︸
=P⊕x2

2

⊕ S⊕x1
1︸ ︷︷ ︸

=P⊕x1
1

.

Then we can apply the statement again to S+
2 S+

1 (V ) and so on until we end up with

V ∼= C−C(V )⊕ P⊕xnn ⊕ ...⊕ P⊕x2
2 ⊕ P⊕x1

1

for some xn, ..., x1 ∈ N0. Furthermore, C(P i) = 0 for all i ∈ {1, ..., n} is also a direct consequence
of Lemma 2.4.2 as well as the proof of the other two statements.

Proof of Proposition 2.4.3. From Lemma 2.4.4 we get the equivalence of (i) and (ii) and from
Lemma 2.4.5 the equivalence of (ii), (iii), and (iv).

Now, using these functors and our accumulated knowledge about the positive roots for the
Euclidean types, we get a bijection between isomorphism classes and roots of non-zero defect
(see [12]).

Definition 2.4.6 Let (M,Ω) be a k-species of a Euclidean graph (Q, d). Let V = (Vi, jϕi) be
a representation of (M,Ω). We define the defect dc(V ) to be the defect of the dimension type
dc(dim(V )).

Proposition 2.4.7 Let (M,Ω) be a k-species of a Euclidean graph (Q, d). Then we get a
bijection between the isomorphism classes of indecomposable representations of non-zero defect
and the positive roots of (Q, d) of non-zero defect:

{indecomposable representations w. non-zero defect}/∼= −→ {positive roots w. non-zero defect},
V = (Vi, jϕi) 7→ dim(V ).

2.5 The (1,4)-Case
Now let us look at our main example.

Let k = Fq ⊂ L = k(x) ⊂ K = k(x, y) = Fq4 . Hence there exist c0 ∈ k×, a0, a1 ∈ k with
x2 = c0 and y2 = a0 + a1x. Here we consider the species:

k K
kKK

The projective modules are in this case

P0 = k K
(1)

and Q0 = 0 K.
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2.5 The (1,4)-Case 2

By applying j-times the inverse Auslander-Reiten translation to P0 we get the following
prepojective objects (see [3] or [11]):

τ−j(P0) := Pj ∼= k2j+1
Kj+1

(Ij+1|Aj)

where Ij+1 ∈ K(j+1)×(j+1) is the identity matrix and

Aj =



x 0 ... 0

y x
. . .

...

0 y
. . . 0

...
. . . . . . x

0 ... 0 y


∈ K(j+1)×j .

Similarly we define Qj := τ−j(Q0).

Theorem2.5.1 For j ∈ N, the representation Qj is isomorphic to:

k4j K2j+1



1 0 ... 0 x 0 ... 0 0 ... ... 0 0 ... 0

0 1
. . .

... y x
. . .

...
...

...
...

...
...

. . . . . . 0
. . . . . . 0

1 0
...

. . . y x
...

...
...

...
0 ... ... 0 1 0 ... 0 y 0 ... ... 0 0 ... 0
0 ... ... 0 0 ... ... 0 1 0 ... 0 x 0 0
...

...
...

... 0 1
. . .

... y
. . . 0

...
...

... 0
...

. . . . . . 0 0
. . . x

0 ... ... 0 0 ... 0 xy 0
. . . 0 1 0 0 y



with End(Qj) ∼= K.

As proof, I give here the reasoning on how to arrive at this form. The proof via the endo-
morphism ring should be manageable but is too much bookkeeping with indices to fully give it
here, but one can see that it holds for the first two examples:

Example 2.5.2 • For Q0 it is clear: End(Q0) ∼= K.

• For Q1: For (A,B) ∈ End(Q1) holds1 0 x 0
0 1 y 0
0 0 xy 1

A = B

1 0 x 0
0 1 y 0
0 0 xy 1


Therefore we have A11 + xA31 A12 + xA32 A13 + xA33 A14 + xA34

A21 + yA31 A22 + yA32 A23 + yA33 A24 + yA34
xyA31 +A41 xyA32 +A42 xyA33 +A43 xyA34 +A44


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2.5 The (1,4)-Case 2

=

B11 B12 xB11 + yB12 + xyB13 B13
B21 B22 xB21 + yB22 + xyB23 B23
B31 B32 xB31 + yB32 + xyB33 B33


In particular, the first two and last columns give us directly the matrix B, and inserting it
back into the third column we get the conditions (using x2 = c0 ∈ k\{0} and y2 = a0 +a1x
with a0, a1 ∈ K):

A13 + xA33 = xB11 + yB12 + xyB13

= x(A11 + xA31) + y(A12 + xA32) + xy(A14 + xA34)
= c0A31 + xA11 + y(A12 + c0A34) + xy(A32 +A14)

Therefore we have since Aij ∈ k:

A13 = c0A31

A33 = A11

0 = A12 + c0A34

0 = A32 +A14

Furthermore, we have

A23 + yA33 = xB21 + yB22 + xyB23

= x(A21 + yA31) + y(A22 + yA32) + xy(A24 + yA34)
= a0A32 + c0a1A34 + x(A21 + a1A32 + a0A34) + yA22 + xy(A31 +A24)

Hence we get

A23 = a0A32 + c0a1A34

0 = A21 + a1A32 + a0A34

A33 = A22

0 = A31 +A24

And lastly

xyA33 +A43 = xB31 + yB32 + xyB33

= x(xyA31 +A41) + y(xyA32 +A42) + xy(xyA34 +A44)
= c0a1A32 + a0c0A34 + x(A41 + a0A32 + c0a1A34) + y(c0A31 +A42) + xyA44

In particular, we have

A43 = c0a1A32 + a0c0A34

0 = A41 + a0A32 + c0a1A34

0 = c0A31 +A42

A33 = A44

So we have the form

A =


λ µ ν γ

a1γ + a0c
−1
0 µ λ −a0γ − a1µ −c−1

0 ν
c−1
0 ν −γ λ −c−1

0 µ
a0γ + a1µ −ν −c0a1γ − a0µ λ


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for some λ, µ, ν, γ ∈ k. In particular, the endomorphism ring has dimension 4 over k.

Note, if we calculate A2 we have as each diagonal entry λ2+c−1
0 ν2+a0γ

2+a0c
−1
0 µ2+2a1γµ.

Whereas if we take the square of λ + xc−1
0 ν + yγ + xyc−1

0 µ and write it in the basis
(1, x, y, xy), we get as the prefactor of 1 the same as on the diagonal of A2. In particular,
it stands to reason that we have an isomorphism between End(Q1) and K via sending
matrices of the form A to λ+ xc−1

0 ν + yγ + xyc−1
0 µ.

Proof of Proposition 2.5.1. This proof is by induction on j.

Therefore, we use the Coxeter functor on Qj and show that Qj+1 is isomorphic to the form
above.

Let ψj be the map k4j ψj→ K2j+1 ⊗K KKk of the representation Qj . First we compute
coker(ψj):

It holds:

im(ψj) = 〈e1 ⊗ 1, ..., e2j+1 ⊗ 1︸ ︷︷ ︸
2j+1 generators

, e1 ⊗ x+ e2 ⊗ y, ..., ej−1 ⊗ x+ ej ⊗ y︸ ︷︷ ︸
j−1 generators

,

ej ⊗ x+ ej+1 ⊗ y + e2j+1 ⊗ xy, ej+2 ⊗ x+ ej+3 ⊗ y, ..., e2j ⊗ x+ e2j+1 ⊗ y︸ ︷︷ ︸
j−1 generators

〉

So we get ϕj : K2j+1 ⊗K KKk → k4j+4 as coker(ψj), where

ei ⊗ 1 7→ 0, ei ⊗ x 7→ ei+1, ei ⊗ xy 7→ e2j+3+i

for 1 ≤ i ≤ 2j + 1 and

ei ⊗ y 7→ −ei for i ∈ {1, ..., 2j + 1} \ {j + 1, j + 2},

ej+1 ⊗ y 7→ −ej+1 − e4j+4, ej+2 ⊗ y 7→ −e2j+3.
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Hence, we get for ϕ̄j : K2j+1 → k4j+1 ⊗k kKK with corresponding matrix:



−y
x −y

x
. . .
. . . −y

x −y
x

x −y

x
. . .
. . . −y

x
−y

xy
xy

. . .
xy

xy
xy

xy
. . .

−y xy



∼



−y

x
. . .
. . . −y

x −y
x
−y
x −y

x
. . .
. . . −y

x
xy

. . .
xy

xy
xy

xy
. . .

−y xy



Hence we get for ψj+1 : k4j+1 ⊗k kKK → K2j+3 the matrix



x 1
x a 1

x a 1
. . . . . . . . .

x a 1
x a

x 1
x a 1

. . . . . . . . .
x −x a 1

x −1 a



where we denote a := −xy−1 ∈ K.

By rearranging the rows and columns, multiplying everything with x−1 (after adding 2j+2nd
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2.5 The (1,4)-Case 2

column to the 3j + 5th), one can get:

1 x−1

1 y−1 x−1

1 y−1 x−1

. . . . . . . . .
1 y−1 x−1

1 y−1

1 x−1

1 y−1 x−1

. . . . . . . . .
1 y−1 x−1

−x−1 1 y−1


Now one just needs to note that since x−1 = c−1

0 x and y−1 can be written as d0y + d1xy for
some d0, d1 ∈ k (namely since y2 = a0 − a1x implies y−1 = y(a0 − a1x)−1 = d0y + d1xy for
(a0 + a1x)−1 = d0 + d1x) and some more work over k and K, we may get the required form.

Alternatively: One can easily see that the required form is indecomposable, hence it is the
unique representation of that dimension vector (see Proposition 2.4.7) up to isomorphism.

Furthermore, if one considers the representation Tx given by

k2 K,
(1 x)

then we have τ(Tx) ∼= Tx. As a small reminder: the radical subspace RQ ⊂ Q2, in this case, is
generated by (2, 1) =: δ which is also the dimension vector of Tx. Hence it was clear, that the
Coxeter functor resp. Auslander-Reiten functor does not change the dimension vector.

Now let us give a short list of some Eulerforms:

〈P0, P0〉 = 1 〈P0, Q0〉 = 0 〈Q0, P0〉 = 4 〈Q0, Q0〉 = 4
〈P0, Tx〉 = 2 〈Q0, Tx〉 = 4 〈Tx, Tx〉 = 0 〈S1, S1〉 = 1

By using the identity [Pi] = (2i + 1)[P0] − i[Q0] in the Grothendieck group, we get the
Eulerforms for i, j ∈ N:

〈Pi, Pj〉 = (2i+ 1)(2j + 1)〈P0, P0〉+ ij〈Q0, Q0〉
−(2i+ 1)j〈P0, Q0〉 − i(2j + 1)〈Q0, P0〉

= (2i+ 1)(2j + 1) + 4ij − 4i(2j + 1)
= 4ij + 2i+ 2j + 1 + 4ij − 4i− 8ij
= −2i+ 2j + 1

And by considering the short exact sequence 0 −→ Pi −→ Qi −→ Pi+1 −→ 0 we get the identity
[Qi] = [Pi+1] + [Pi] in the Grothendieck group and therefore the following:

〈Pi, Qj〉 = 〈Pi, Pj〉+ 〈Pi, Pj+1〉
= −4i+ 4j + 2 + 2
= −4i+ 4j + 4
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2.6 Hall Algebras of Representations of Species and Quantum Groups 2

and

〈Qi, Qj〉 = 〈Pi, Pj〉+ 〈Pi+1, Pj〉+ 〈Pi+1, Pj+1〉+ 〈Pi, Pj+1〉
= −8i− 4 + 8j + 4 + 4
= −8i+ 8j + 4

In [11], in the case char(k) 6= 2, one can find an explicit calculation for how the morphisms
Hom(Pn, Pm) look like, or, using the definition via orbit algebras (see [20]), the vector space
Hom(Pn, Pm) is given by the homogeneous part of degree m−n of the k-algebra Π given by the
generators X, Y and Z (with deg(X) = deg(Y ) = deg(Z) = 1) with the relations

XY − Y X = 0,
XZ − ZX = 0,

ZY + Y Z + a1X
2 = 0,

Z2 + c0Y
2 + a0X

2 = 0.

Lemma2.5.3 It holds:
dimk Hom(P0, Pn) = 2n+ 1.

Proof. We have:

Hom(P0, Pn) = {ω ∈ Π | ω homogenous of degree n}
= 〈Xn, Xn−1Y, Xn−1Z, Xn−2Y 2, Xn−2Y Z, Xn−3Y 3,

Xn−3Y 2Z, ..., XY n−2Z, Y n, Y n−1Z〉

By considering the exponent ofX in the basis, we have in each degree two basis elements with fac-
tor Xi except for i = n, where we have just one. In particular, we get dim Hom(P0, Pn) = 2n+ 1.

2.6 Hall Algebras of Representations of Species and Quantum Groups
Here the goal is to identify the Hall algebra of representations of a species with another algebra,
namely the quantum group of a specific Cartan matrix.

This subsection is about a result by Green which generalizes a result by Ringel which is in
the case of representations of quivers. Our main reference for this part is a lecture series that
was held by Ringel (see [31]).

First, let us introduce what a quantum group is.

Definition 2.6.1 Let I be a finite index set. A matrix A = (aij)i,j∈I ∈ ZI×I is called a
generalized Cartan matrix if

• ∀i ∈ I : aii = 2;

• for i 6= j ∈ I : aij ≤ 0;

• ∀i, j ∈ I : aij = 0 ⇐⇒ aji = 0.

If there exists a diagonal matrix D = diag(di, i ∈ I) with di ∈ N for all i ∈ I such that DA is a
symmetric matrix, then A is called symmetrizable.
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2.6 Hall Algebras of Representations of Species and Quantum Groups 2

Let q ∈ C× not be a root of unity, v = √q. We denote qi = qdi (respectively vi = vdi).

Definition 2.6.2 The quantum group Uv(A) associated to a generalized Cartan matrix A =
(aij) ∈ ZI×I is the associative algebra over C with 1 generated by the set {ei, fi,K±1

i | i ∈ I}
with relations:

(1) Ki ·K−1
i = 1 = K−1

i Ki and KiKj = KjKi for all i, j ∈ I;

(2) KjeiK
−1
j = v

aji
j ei for all i, j ∈ I;

(3) KjfiK
−1
j = v

−aji
j fi for all i, j ∈ I;

(4) eifj − fjei = δij
Ki−K−1

i

vi−v−1
i

for all i, j ∈ I;

(5)
∑1−aij
k=0 (−1)k

[ 1−aij
k

]
i
e

1−aij−k
i eje

k
i = 0 for all i 6= j ∈ I;

(6)
∑1−aij
k=0 (−1)k

[ 1−aij
k

]
i
f

1−aij−k
i fjf

k
i = 0 for all i 6= j ∈ I.

Definition 2.6.3 We denote by U+
v (A) (respectively U−v (A)) the subalgebra of the quantum

group Uv(A) generated by the set {ei | i ∈ I} (respectively {fi | i ∈ I}). We denote by U0
v (A)

the subalgebra generated by the set {K±1
i | i ∈ I}.

Analogously we denote by U≥0
v (A) (respectively U≤0

v (A)) the subalgebra of the quantum
group Uv(A) generated by the set {ei,K±1

i | i ∈ I} (respectively {fi,K±1
i | i ∈ I}).

Theorem2.6.4 (Triangular decomposition) There is an isomorphism of C-vector spaces

Uv(A) ∼= U−v (A)⊗ U0
v (A)⊗ U+

v (A)

given by the multiplication on the right-hand side.

Furthermore, it is also known that the quantum group is also a reduced Drinfeld double in a
sense (see e.g. [19]).

Using this we get the result (due to Drinfeld):

Theorem2.6.5 There is an isomorphism of algebras

D
(
U≥0
v (A)

)
/(K+

i K
−
i − 1)i∈I ∼= Uv(A).

Now that we know what a quantum group associated with a Cartan datum is, let us discuss
the Hall algebra of a species. Generally, we are not interested in the whole Hall algebra but in a
specific subalgebra.

From now on we fix a species (M,Ω) of a weighted graph (Q, d) over a finite field k = Fq.
Then the simple representations are given by

Si =
{
Fi at the node i;
0 else

for each i ∈ Q.
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2.6 Hall Algebras of Representations of Species and Quantum Groups 2

Definition 2.6.6 The composition algebra C(Repk(M,Ω)) is the subalgebra ofH(Repk(M,Ω))
generated by the set {[Si] | i ∈ Q}.

Remark 2.6.7 Consider the product

[Si1 ] · ... · [Sin ] = qa
∑

[M ]∈X

cM [M ]

for some i1, ..., in ∈ Q. Then there exist a ∈ 1
2Z (given by the Euler form) and cM ∈ C for each

[M ] ∈ X . Then cM corresponds to the number of composition series of the form

M = L0 ⊃ L1 ⊃ ... ⊃ Ln = 0

with quotients Lj−1/Lj ∼= Sij .

Furthermore, we would like to note:

• for each i ∈ Q: Ext1(Si, Si) = 0;

• if there is no arrow i→ j in (Q,Ω) then Ext1(Sj , Si) = 0.

In particular, since we do not allow oriented circles, we have either Ext1(Sj , Si) = 0 or Ext1(Si, Sj) = 0
for each pair i, j ∈ Q.

We set for i 6= j ∈ Q with Ext1(Sj , Si) = 0:

di = dimk End(Si),
dj = dimk End(Sj),

e(i, j) = dimk Ext1(Si, Sj),

n(i, j) = e(i, j)
di

+ 1,

n(j, i) = e(i, j)
dj

+ 1.

Note: In the case Ext1(Sj , Si) = 0 = Ext1(Si, Sj) we have e(i, j) = 0 = e(j, i) and therefore
n(i, j) = 1 = n(j, i).

Theorem2.6.8 (Ringel, [29]) Let i 6= j ∈ Q with Ext1(Sj , Si) = 0. Then the following
relations hold in the Hall algebra H(Repk(M,Ω)):

n(i,j)∑
t=0

(−1)t
[
n(i, j)
t

]
i

[Si]n(i,j)−t[Sj ][Si]t = 0

and
n(j,i)∑
t=0

(−1)t
[
n(j, i)
t

]
j

[Sj ]t[Si][Sj ]n(j,i)−t = 0.

Proof. We prove the second relation, the first one works similarly.
Let d := dj , n := n(j, i) = e(i,j)

d + 1.
Then it holds e(i, j) = d(n− 1).
We will prove it in two steps.
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2.6 Hall Algebras of Representations of Species and Quantum Groups 2

1. Step: Calculate the prefactors cMt in X := [Sj ]t[Si][Sj ]n−t of each [M ] ∈ X , namely
X = qat

∑
[M ]∈X c

M
t [M ].

Fix [M ] ∈ X and let M be a representative of the isomorphism class. Then cMt 6= 0 if
and only if there exists a composition series with n factors isomorphic to Sj and one factor
isomorphic to Si.

Let us consider the case cMt 6= 0. Let N ⊂M be a direct summand ofM of minimal length
with the composition factor Si, i.e. M = N ⊕ Smj for some m ∈ N0. The other direct
summand follows by using Ext1(Sj , Sj) = 0.

Since we also have Ext1(Sj , Si) = 0 we get:

rad(N) ∼= Sn−mj and N/ rad(N) ∼= Si.

In particular: M/ rad(N) ∼= Si ⊕ Smj .

Now let us determine cMt , the number of compositions series

M = M0 ⊃M1 ⊃ ... ⊃Mn+1 = 0 (5)

with first t factors Sj , then Si and last n− t factors again Sj .

If we have t > m then cMt = 0 since N would not be of minimal length otherwise.

Hence consider the case t ≤ m.

For each composition series (5) it holds: N ⊂Mt.

• Mt/N ⊂M/N is a submodule of length n− t− (n−m) = m− t;

• Mt+1 ⊂Mt is uniquely determined by Mt/Mt+1 ∼= Si;

• number of submodules of the form Mt:

#{(m− t)-dimensional subspaces of Fmj } =
[

m

m− t

]
j+

;

• number of composition series of M/Mt:

[t]j+!;

• number of composition series of Mt+1:

[n− t]j+!.

Hence in total, we get

cMt =
[

m

m− t

]
j+
· [t]j+! · [n− t]j+! = [m]j+![n− t]j+!

[m− t]j+! .

2. Step: Show
∑n(j,i)
t=0 (−1)tqat

[
n(j,i)
t

]
j
cMt = 0 for each [M ] ∈ X .
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First, let us determine at as well. Using the fact that the Eulerform is determined already
on the Grothendieck group we have:

2at =
t−1∑
r=1
〈Srj , Sj〉+ 〈Stj , Si〉+

n−t−1∑
r=0
〈St+rj ⊕ Si, Sj〉

=
t−1∑
r=1

dr + 0 +
n−t−1∑
r=0

(d(t+ r)− e(i, j))

=
t−1∑
r=1

dr +
n−t−1∑
r=0

(d(t+ r)− d(n− 1))

= d

(
t(t− 1)

2 +
n−t−1∑
r=0

(r − (n− t− 1))
)

= d

(
t(t− 1)

2 − (n− t− 1)(n− t)
2

)

In total we get for each M :

n(j,i)∑
t=0

(−1)tqat
[
n(j, i)
t

]
j

cMt =
m∑
t=0

(−1)tq
t(t−1)

4 − (n−t−1)(n−t)
4

j

[n
t

]
j

[m]j+![n− t]j+!
[m− t]j+!

=
m∑
t=0

(−1)tq
t(t−1)

4 − (n−t−1)(n−t)
4

j

[n]j ![m]j+![n− t]j+!
[t]j ![n− t]j ![m− t]j+!

=
m∑
t=0

(−1)tt[n]j !
[m]j+![n− t]j+!

[t]j+![n− t]j ![m− t]j+!

= [n]j !
m∑
t=0

(−1)t
[m
t

]
j

= 0

Hence, if we consider the matrix A = (aij) with aij = 1 − n(i, j) for i 6= j ∈ Q and aii = 2,
then A is a symmetrizable Cartan matrix with DA symmetric for D = diag(di, i ∈ Q).

Corollary 2.6.9 There exists a surjective homomorphism of C-algebras

π : U+
v (A) → C(Repk(M,Ω)),

ei 7→ [Si].

Theorem2.6.10 (Green, [16]) The C-algebra homomorphism π : U+
v (A) → C(Repk(M,Ω))

is an isomorphism.
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Now, if we apply all this to the (1,4)-case we have studied before we have:

Ext1(S2, S1) = 0, e(1, 2) = dimk Ext1(S1, S2) = 4,
d1 = dimk End(S1) = 1, d2 = dimk End(S2) = 4,

n(1, 2) = 4
1 + 1 = 5, n(2, 1) = 4

4 + 1 = 2,

a12 = 1− 5 = −4, a21 = 1− 2 = −1.

Hence the corresponding Cartan matrix is

A =
(

2 −4
−1 2

)
.

This is the affine Cartan matrix A(2)
2 .

So there is an isomorphism

U+
v

(
A

(2)
2

)
−→ C

(
RepFq

(
• (1,4)−→ •

))
,

ei 7−→ [Si].

And if we add the Cartan part/Grothendieck group which is given by P∨ ∼= Z2 and do the
reduced Drinfeld double construction, we also get isomorphisms, but note the relations between
the positive and negative half:

On one side we have
eifi − fiei = Ki −K−1

i

vi − v−1
i

,

but on the Hall algebra side, we get

[Si]+[Si]− − [Si]−[Si]+ = (K−1
i −Ki)(Si, Si) = −Ki −K−1

i

qi − 1 = −v−1
i

Ki −K−1
i

vi − v−1
i

.

Hence we readjust a little the prefactor of [Si]−:

Uv

(
A

(2)
2

)
−→ DC

(
RepFq

(
• (1,4)−→ •

))
,

ei 7−→ [Si]+,
fi 7−→ −vi[Si]−,
Ki 7−→ Ki.
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3

3 The Category Coh(X) and its Hall Algebra
3.1 Introduction of Coh(X)
The other category we want to consider is a category that can be characterized by similar
properties to a category of coherent sheaves. The one which is of interest to us can be viewed
intuitively as the category of representations of the Fq-species •

(1,4)−→ • from the Section 2.5, but
where we take the preinjective component and glue it to the left of the preprojective one in the
Auslander-Reiten quiver. If we consider the bounded derived categories we get the following
picture:

Db
(

Repk

(
• (1,4)−→ •

))
:

Q0 Q1 Q2

P0 P1 P2I0[−1]I1[−1]

J0[−1]J1[−1]
...... ......

Ux Uy

Db(Coh(X)):

M0 M1 M2

L0 L1 L2L−1L−2

M−1M−2

...... ......

Ux Uy

For this introduction, we mainly use [21] as a reference, see also [20].
To be more precise, consider the algebra

Γ =
(

k 0
KKk K

)
.

We denote by mod(Γ) the finitely generated right Γ-modules. Then by subsection 2.2, we know

mod(Γ) ' Repk
(
• (1,4)−→ •

)
.

Furthermore the category mod(Γ) may be written as

mod(Γ) = mod+(Γ) ∨mod0(Γ) ∨mod−(Γ),

where mod+(Γ) is the full subcategory of the preprojective objects and mod−(Γ) is the full
subcategory of preinjective objects.

Definition 3.1.1 We define the hereditary abelian k-categroy Coh(X) := H as the full subcat-
egory of Db(mod(Γ)):

Coh(X) := H := mod−(Γ)[−1] ∨mod+(Γ)︸ ︷︷ ︸
=:H+

∨mod0(Γ).

Remark 3.1.2 The category H is a homogeneous exceptional curve. They are characterized by
the following properties:
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3.1 Introduction of Coh(X) 3

• H is a connected small abelian k-category with finite-dimensional morphism and extension
spaces.

• H is hereditary, Noetherian, and contains no non-zero projective object.

• H admits a tilting object.

• For each simple object S ∈ Obj(H) we have Ext1(S, S) 6= 0.

The last condition is the definition that all tubes in H0 are homogeneous.

Remark 3.1.3 An object is called tilting in H if

1. T has no self-extensions, i.e. Ext1(T, T ) = 0;

2. T generates H, i.e. Hom(T,X) = 0 = Ext1(T,X) implies that X is the zero object.

The objects in H+ are called vector bundles and any line bundle (i.e. object of rank 1, e.g.
P0) may play the role of the structure sheaf L. Consider another bundle L̄ such that there exists
an irreducible morphism L→ L̄, in our example L = P0 take L̄ = Q1. Then KKk = Hom(L, L̄).
Furthermore T = L⊕ L̄ is a tilting bundle such that Γ = End(T ).

From now on we denote by L0 the structure sheaf, τ i(L0) =: Li, byM1 the corresponding L̄
and so on.

There are other approaches to defining the category. A more concrete construction via orbit
algebras is given as follows (see [20], [21]):

Definition 3.1.4 Let L be a fixed line bundle and σ a positive automorphism (i.e. deg(σL) >
deg(L) = 0). Then the orbit algebra R is given by the vector space

R = Π(L, σ) :=
⊕
n≥0

HomΓ(L, σnL)

and the multiplication for f ∈ Hom(L, σnL) and g ∈ Hom(L, σmL)

f ? g := σm(f)⊗ g.

Then we consider the quotient category

H := mod(R)/mod0(R),

namely the Serre quotient category of finitely generated R-modules by finite length R-modules.

Remark 3.1.5 In particular, using the terminology of [2], the category H is a noetherian pro-
jective scheme. Hence in our case, we from now on denote it by Coh(X).

In correspondence to the (1,4)-species we considered before, we have:

Theorem3.1.6 (Kussin, [20]) Let k be a field. Consider the tower of (commutative) fields

k ⊂ k(x) ⊂ k(x, y) = K

such that x2 = c0 and y2 = a0 + a1x for some c0, a0, a1 ∈ k. Let M be the tame bimodule
M = kKK .
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1. The orbit algebra R = Π(L, σx) is the k-algebra on the three generators X, Y and Z with
relations

XY − Y X = 0,
XZ − ZX = 0,

ZY + Y Z + a1X
2 = 0,

Z2 + c0Y
2 − a0X

2 = 0.

If char(k) = 2 and a1 = 0 then R is commutative, otherwise its center is given by k[X,Y 2].

2. The function field k(X) is isomorphic to the quotient division ring of

k〈U, V 〉/(V U + UV + a1, V
2 + c0U

2 − a0).

If char(k) = 2 and a1 = 0 then k(X) is commutative, otherwise its center is k(U2).

Remark 3.1.7 Note, that this is the (1, 4)-case we have studied since by construction we have
the same orbit algebra already mentioned at the end of Section 2.5. However, we use for calcula-
tions for the most part just our knowledge about the representations of the species and transfer
it via the concrete construction in Definition 3.1.1 instead of this one.

Now to a direct consequence, namely the Grothendieck groups K0(Coh(X)) and K0

(
Rep

(
• (1,4)−→ •

))
are isomorphic. Both are isomorphic to Z2, and one can for example consider the automorphism:

K0(Coh(X))

K0

(
Rep

(
• (1,4)−→ •

))
Z2

Z2

(
rk

deg

)

dim

=
(

1 2
1 1

)(
−1 2
1 −1

)

In particular, we have the basis elements:

L0

P0

(
1
0

)
(

1
1

)
Tx

Tx

(
0
1

)
(

2
1

)

Then the (additive) Euler form is given by: For F , G ∈ Ob(Coh(X)):

〈F ,G〉 = rk(F) rk(G) + 2 rk(F) deg(G)− 2 deg(F) rk(G)

or written as bilinear form
(rkF ,degF)

(
1 2
−2 0

)(
rkG

deg G

)
.
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Remark 3.1.8 For any α = (a, b) ∈ K0(Coh(X)) it holds:

((0, 1), (a, b)) = 〈(0, 1), (a, b)〉+ 〈(a, b), (0, 1)〉
= 0 · a+ 2 · 0 · b− 2 · 1 · a+ a · 0 + 2 · a · 1− 2 · b · 0
= 0

In particular, in H̃(Coh(X)) the element C := K(0,1) is central.
Also note, by the above identification, (0, 1) ∈ K0(Coh(X)) corresponds to the element

δ = (2, 1) ∈ K0

(
Rep

(
• (1,4)−→ •

))
, the generator of the radical subspace of QQ = Q2.

As mentioned above, the category Coh(X) decomposes into vector bundles H+ =: Vec(X) and
torsion bundles Tor(X). As one might expect of torsion bundles, they decompose further into
subcategories that have no homomorphisms or extensions between them:

Tor(X) =
∨
x∈P1

k

Torx(X) =
∨
d∈N

∨
x∈P1

k
[d]

Torx(X),

where P1
k[d] are the points of degree d.

To each point x, there is a unique simple object Sx in Torx(X) =: Ux. The difference to
coherent sheaves of P1

k is given by two points (see [22, Example 10.8]):

• a point we denote by π with deg(π) = 1 and End(Sπ) ∼= Fq2 ,

• a point we denote by ω with deg(ω) = 2 and End(Sω) ∼= Fq4 .

For all other points x ∈ P1
k \ {π, ω} where d = deg(x) it holds End(Sx) ∼= Fqd .

Furthermore, in this setup, the Hall algebras H(Ux) of each tube is isomorphic as a C-algebra
to the ring of symmetric functions Λ over the field End(Sx) ∼= Fqd studied in the Subsection 1.5
as a Hall algebra of a discrete valuation ring.

With no homomorphisms and extensions between the tubes Ux it also follows that the Hall
algebra of all torsion bundles H(Tor(X)) is commutative.

Now let us start with some more concrete calculations.

3.2 Some Calculations in DH(Coh(X))
For the computations always keep in mind the corresponding elements in the bounded derived

category Db
(
Repk

(
• (1,4)−→ •

))
, e.g. Pn 7→ Ln, Qn 7→ Mn for n ∈ N0.

Example 3.2.1 It holds:

[L0][L−1] = q
1+2(−1)

2 (q2+1[L0 ⊕ L−1] + q4 − 1
q − 1 [M0])

= q
5
2 [L0 ⊕ L−1] + q−

1
2
q4 − 1
q − 1 [M0]

and

[L−1][L0] = q
1+2·1

2 [L0 ⊕ L−1]
= q

3
2 [L0 ⊕ L−1].
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Hence we can write [M0] using the q-commutator of rank 1 line bundles:

[M0] = q
1
2
q − 1
q4 − 1([L0][L−1]− q 5

2 [L0 ⊕ L−1])

= q
1
2
q − 1
q4 − 1([L0][L−1]− q 5

2 q−
3
2 [L−1][L0])

= q
1
2
q − 1
q4 − 1 [[L0], [L−1]]q .

Furthermore, we have
[M0][L−1] = q0 · q4[M0 ⊕ L−1] and [L−1][M0] = q2[M0 ⊕ L−1].

In particular, we get the commutator relation:[
[[L0], [L−1]]q , [L−1]

]
q2

= 0.

Now let us introduce some more general elements. The definition and properties are analogs
to elements which can be found in [6] and [32] for Hall algebras of other categories.

Definition 3.2.2 We define the elements 1(r,d) for (r, d) ∈ Z2 as:

1(r,d) :=
∑
[F]:

F=(r,d)

[F ].

Then we can make several calculations straight away. It holds:

1(1,s) =
∑
l≥0

q−l[Ls−l]1(0,l)

In particular:
[Ls] = 1(1,s) −

∑
l≥1

q−l[Ls−l]1(0,l)

⇒ [L0] = 1(1,0) −
∑
l≥1

q−l[L−l]1(0,l)

= 1(1,0) −
∑
l1≥1

q−l1

1(1,−l1) −
∑
l2≥1

q−l2 [L−l1−l2 ]1(0,l2)

 1(0,l1)

= 1(1,0) −

∑
l1≥1

q−l11(1,−l1)

+
∑

l1, l2≥1
q−l1−l2 [L−l1−l2 ]1(0,l2)1(0,l1)

= 1(1,0) −

∑
l1≥1

q−l11(1,−l1)


+

∑
l1, l2≥1

q−l1−l2

1(1,−l1−l2) −
∑
l3≥1

q−l3 [L−l1−l2−l3 ]1(0,l3)

1(0,l2)1(0,l1)

= ...

=
∑
n≥0

q−n1(1,−n)
∑
r≥0

(−1)r
∑

l1+...+lr=n
1(0,l1)...1(0,lr)
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This leads us to the following definition:

Definition 3.2.3 We define the elements:

χn =
∑
r≥1

(−1)r
∑

l1+...+lr=n
1(0,l1)...1(0,lr),

and the power sum series:
1(s) = 1 +

∑
l≥1

1(0,l)s
l

and
χ(s) = 1 +

∑
l≥1

χls
l.

Using these, we can rewrite the above formula as follows:

[L0] =
∑
n≥0

q−n1(1,−n)χn (6)

and it holds:

1(s)χ(s) =

1 +
∑
l≥1

1(0,l)s
l

1 +
∑
n≥1

χns
n


=

1 +
∑
l≥1

1(0,l)s
l

1 +
∑
n≥1

∑
r≥1

(−1)r
∑

l1+...+lr=n
1(0,l1)...1(0,lr)s

n


= 1 +

∑
l≥1

1(0,l)s
l +
∑
n≥1

∑
r≥1

(−1)r
∑

l1+...+lr=n
1(0,l1)...1(0,lr)s

n

+
∑
l,n≥1

∑
r≥1

(−1)r
∑

l1+...+lr=n
1(0,l)1(0,l1)...1(0,lr)s

l+n

= 1 +
∑
l≥1

1(0,l)s
l −
∑
n≥1

1(0,n)s
n

︸ ︷︷ ︸
=0

+
∑
n≥1

∑
r≥2

(−1)r
∑

l1+...+lr=n
1(0,l1)...1(0,lr)s

n

+
∑
m≥2

∑
r≥2

(−1)r−1
∑

l1+...+lr=m
1(0,l1)...1(0,lr)s

m

= 1 +
∑
n≥2

∑
r≥2

(−1)r
∑

l1+...+lr=n
1(0,l1)...1(0,lr)s

n −
∑
m≥2

∑
r≥2

(−1)r
∑

l1+...+lr=m
1(0,l1)...1(0,lr)s

m

= 1

We are also interested in the coproduct but refer to the explicit proof somewhere else which
works analogously to this case.

Lemma3.2.4 It holds:

∆̃(1(r,d)) =
∑

α+β=(r,d)

q−
1
2 〈α,β〉1αKβ ⊗ 1β
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Proof. [32] Schiffmann, Lectures on Hall algebras, Lemma 1.7

Now let us go back to consider the coproduct on the (not extended) Hall algebra H(Coh(X)).

Corollary 3.2.5 It holds:
∆(1(s)) = 1(s)⊗ 1(s)

Proof.

∆(1(s)) = ∆

1 +
∑
l≥1

1(0,l)s
l


= ∆(1) +

∑
l≥1

sl∆(1(0,l))

= 1⊗ 1 +
∑
l≥1

sl∆(1(0,l))

= 1⊗ 1 +
∑
l≥1

∑
a+b=l

q−〈(0,a),(0,b)〉(sa1(0,a))⊗ (sb1(0,b))

=

∑
a≥0

1(0,a)s
a

⊗
∑
b≥0

1(0,b)s
b


= 1(s)⊗ 1(s)

Since 1(s)χ(s) = 1, it follows ∆(χn) =
∑n
r=0 χr ⊗ χn−r. In particular, in the setting of the

extended Hall algebra H̃(Coh(X)) it holds for n ∈ N:

∆̃(χn) =
n∑
i=0

χiK(0,n−i) ⊗ χn−i.

We can use these coproducts now to calculate the comultiplication of line bundles:

Proposition 3.2.6 It holds:

∆̃([L0]) = [L0]⊗ 1 +
∑
l≥0

θlK(1,−l) ⊗ [L−l],

where θl =
∑l
i=0 q

l−2i1(0,l−i)χi.

Proof. Since L0 is a line bundle, the only subobjects are other line bundles L−l for l ∈ N or the
zero object.

In particular, it follows for the comultiplication:

∆̃([L0]) = ∆̃(1,0),(0,0)([L0]) +
∑
l≥0

∆̃(0,l),(1,−l)([L0])
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By equation (6) and using that ∆ is an algebra homomorphism we get:

∆̃([L0]) = ∆̃

∑
n≥0

q−n1(1,−n)χn


=

∑
n≥0

q−n∆̃(1(1,−n))∆̃(χn)

=
∑
n≥0

q−n

 ∑
α, β:

α+β=(1,−n)

q−
1
2 〈α,β〉1αKβ ⊗ 1β

( n∑
i=0

χiK(0,n−i) ⊗ χn−i

)

=
∑
n≥0

∑
α, β:

α+β=(1,−n)

n∑
i=0

q−n−
1
2 〈α,β〉q

1
2 (β,(0,i))1αχiKβ+(0,n−i) ⊗ 1βχn−i

In particular for ∆̃(0,l),(1,−l)([L0]) the indices α and β are for fixed n and i: β = (1,−l − n+ i)
and α = (0, l − i), therefore we get 〈α, β〉 = −2(l − i) and (β, (0, i)) = 0.

∆̃(0,l),(1,−l)([L0]) =
∑
n≥0

n∑
i=0

q−n+l−i1(0,l−i)χiK(1,−l) ⊗ 1(1,−l−n+i)χn−i

=
l∑
i=0

∑
n≥i

q−n+l−i1(0,l−i)χiK(1,−l) ⊗ 1(1,−l−n+i)χn−i

=
l∑
i=0

ql−i1(0,l−i)χiK(1,−l) ⊗
∑
n≥i

q−n1(1,−l−n+i)χn−i

k=n−i=
l∑
i=0

ql−i1(0,l−i)χiK(1,−l) ⊗
∑
k≥0

q−k−i1(1,−l−k)χk

(6)=
l∑
i=0

ql−2i1(0,l−i)χi︸ ︷︷ ︸
=:θl

K(1,−l) ⊗ [L−l]

In total we get the formula:

∆̃([L0]) = ∆̃(1,0),(0,0)([L0]) +
∑
l≥0

∆̃(0,l),(1,−l)([L0])

= [L0]⊗ 1 +
∑
l≥0

θlK(1,−l) ⊗ [L−l]

Lemma3.2.7 Let d ∈ N and n ∈ Z. It holds:

1dδ[Ln] =
d∑
s=0

q−s[2s+ 1]+[Ln+s]1(d−s)δ
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Proof. There are q2s+1−1
q−1 injective maps Ln ↪→ Ln+s up to a scalar by Lemma 2.5.3. Alltogether

we have q2s+1−1
q−1 q2(d−s) injective maps Ln ↪→ Ln+s ⊕ T(0,d−s) for a torsion bundle T(0,d−s) of

degree d− s. Hence we get:

1dδ[Ln] =
d∑
s=0

q
1
2 〈(0,d),(1,n)〉 q

2s+1 − 1
q − 1 q2(d−s)

∑
T̄=(0,d−s)

[Ln+s ⊕ T ]

=
d∑
s=0

q
1
2 (〈(0,d),(1,n)〉−〈(1,n+s),(0,d−s)〉)︸ ︷︷ ︸

=q−2d+s

q2s+1 − 1
q − 1 q2(d−s)[Ln+s]1(d−s)δ

=
d∑
s=0

q−s[2s+ 1]+[Ln+s]1(d−s)δ.

3.3 The Elements Tr

Now, let us briefly focus on the torsion part. Recall the last paragraphs in Subsection 3.1:
Since there are no extensions and homomorphisms between different tubes Ux we have

Tor(X) =
∨
x∈P1

k

Ux,

where Tor(X) is the full subcategory with all objects of rank 0.
Following the terminology in [22], the curve X is a curve of genus zero with ramification

sequence (21, 22) (see [22, Example 10.8]). This means that the Ux correspond to the skyscraper
sheaves in coh(P1) except in two points. One is given by the simple regular representation

Sπ = (k2 ⊗K (1,x)−→ K)

where k ⊂ k(x) =: L ⊂ k(x, y) =: K are field extensions with [L : k] = [K : L] = 2. Further-
more, we have End(Sπ) ∼= L which is unique. In this case we have qπ := |End(Sπ)| = q2 but
deg(π) = dπ = 1. The other point which differs has qω = q4 and deg(ω) = dω = 2.

Furthermore, the Hall algebra of each tube Ux is isomorphic to the ring of symmetric functions
Λqx , where qx = |kx|, as a discrete valuation ring with residue field kx. Let ψx : Λqx → H(Ux)
be that isomorphism and dx the degree of x.

Definition 3.3.1 We define the elements Tx,k as the image of the power sums pr up to a factor,
namely for x ∈ P1, k ∈ N we define

Tx,k :=
{

[2k]
k dxψx

(
p k
dx

)
, if dx|k,

0, else.

The elements Tk are then given by the sum

Tk :=
∑
x∈P1

Tx,k.
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Remark 3.3.2 From Subsection 1.5 we know the elementary symmetric function er corresponds
to the indecomposable of degree r. The power sums pr correspond to the elements Tx,r up to
a factor. Similarly, since the complete symmetric functions hr are by definition the sum of all
monomials of rank r, the corresponding elements in the Hall algebra are all torsion bundles of a
given rank, namely

1x,(0,k) :=
∑

[F]: F∈Ob(Ux):
F̄=(0,k)

[F ].

Lemma3.3.3 The elements Tk can also be expressed via a power sum series:

exp

∑
k≥1

Tk
[2k]s

k

 = 1(s).

Proof. Since the Hall algebra of Tor(X) is commutative and by definition of Tk as a sum, we have

exp

∑
k≥1

Tk
[2k]s

k

 =
∏
x∈P1

exp

∑
k≥1

Tx,k
[2k] s

k

 .

We may also split 1(s) into factors of the subalgebras H(Ux), i.e. let

1x,(0,k) :=
∑

[F]: F∈Ob(Ux):
F̄=(0,k)

[F ],

then by the commutativity and the fact there are no extensions between tubes, we get

1(s) =
∏
x∈P1

1 +
∑
r≥1

1x,(0,r)s
r

 .

In particular, it is enough to show the identity in each H(Ux), namely

exp

∑
k≥1

Tx,k
[2k] s

k

 = 1 +
∑
k≥1

1x,(0,k)s
k.
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But this follows by the identity in the ring of symmetric functions:

ψ−1
x

exp

∑
k≥1

Tx,k
[2k] s

k

 = exp

∑
k≥1

ψ−1
x (Tx,k)

[2k] sk


= exp

∑
l≥1,
dx|l

p l
dx
· dx
l

s
l
dx


= 1 +

∑
k≥1

hks
k

= 1 +
∑
k≥1

ψ−1
x (1x,(0,k))sk

= ψ−1
x

1 +
∑
k≥1

1x,(0,k)s
k


This proves the Lemma.

Remark 3.3.4 By rewriting the formula we get∑
k≥1

Tk
[2k]s

k = log(1(s)),

and therefore for k ∈ N:

Tk = [2k]
k∑
r=1

∑
i1,...,ir∈N:
i1+...+ir=k

(−1)r+1

r
1i1δ...1irδ.

The first three can be easily written down:

T1 = [2]1δ

T2 = [4]
(

12δ −
1
212

δ

)
T3 = [6]

(
13δ − 12δ1δ + 1

313
δ

)
Remark 3.3.5 By construction we have that the Tr are primitive, i.e. for r ∈ N

∆̃(Tr) = Tr ⊗ 1 + Cr ⊗ Tr.

Remark 3.3.6 The θn can also be defined via the generating series:

θ(s) := 1 +
∞∑
n=1

θns
n = exp

(
(q 1

2 − q− 1
2 )
∞∑
r=1

Trs
r

)
.

Namely, using the definition of the Tk we have:

1(s) = exp

∑
k≥1

Tk
[2k]s

k

 .
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Furthermore, using χ(s)1(s) = 1, we have

χ(s) = exp

−∑
k≥1

Tk
[2k]s

k

 .

Hence we have

θ(s) := 1 +
∞∑
n=1

θns
n = 1 +

∞∑
n=1

n∑
i=0

qn−2i1(0,n−i)χis
n

= 1(qs)χ(q−1s)

= exp

∑
k≥1

Tk
[2k]q

ksk

 exp

−∑
k≥1

Tk
[2k]q

−ksk


= exp

∑
k≥1

qk − q−k

[2k] Tks
k


= exp

(q 1
2 − q− 1

2 )
∑
k≥1

Tks
k


From now on we denote by Tk for integers k < 0 the elements T−−k ∈ DH̃(Coh(X)).
Using that the comultiplication of the line bundles takes the same form as the ones in the

category Coh(P1) (see e.g. [32]), one gets the same formula for the reduced Drinfeld double for
the commutator [[Ln]+, [Lm]−]. Namely:

Corollary 3.3.7 [6] For n,m ∈ Z it holds:

[[Ln]+, [Lm]−] = −q− 1
2
K(1,m)θ

+
n−m −K(−1,−n)θ

−
n−m

q
1
2 − q− 1

2
,

where
∑∞
k=0 θ

±
±ku

k = exp
(
±(q 1

2 − q− 1
2 )
∑∞
l=1 T±lu

l
)
.

Proof. We use the formula of Corollary 1.4.2:
∑
a−(1)b

+
(2)(a(2), b(1)) =

∑
b+(1)a

−
(2)(a(1), b(2))

We have
∆̃([Ln]+) = [Ln]+ ⊗ 1 +

∑
l≥0

θ+
l K(1,n−l) ⊗ [Ln−l]+

and
∆̃([Lm]−) = [Lm]− ⊗ 1 +

∑
j≥0

θ−l K
−1
(1,m−j) ⊗ [Lm−j ]−.

Hence inserting in the formula yields on the left-hand side:

[Lm]−(1 · (1, [Ln])︸ ︷︷ ︸
=0

+
∑
l≥0

[Ln−l]+ · (1, θlK(1,n−l)))︸ ︷︷ ︸
=δl,0

+
∑
j≥0

θ−l K
−1
(1,m−j)(1 · ([Lm−j ], [Ln])︸ ︷︷ ︸

=δm−j,n 1
q−1

+
∑
l≥0

[Ln−l]+ ([Lm−j ], θlK(1,n−l))︸ ︷︷ ︸
=0

)

= [Lm]−[Ln]+ + θ−m−nK
−1
(1,n)

1
q − 1
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and on the right-hand side:

[Ln]+(1 · (1, [Lm])︸ ︷︷ ︸
=0

+
∑
j≥0

[Lm−j ]− · (1, θjK−1
(1,m−j)))︸ ︷︷ ︸

=δj,0

+
∑
l≥0

θ+
l K(1,n−l)(1 · ([Ln−l], [Lm])︸ ︷︷ ︸

=δn−l,m 1
q−1

+
∑
j≥0

[Lm−j ]− ([Ln−l], θjK−1
(1,m−j))︸ ︷︷ ︸

=0

)

= [Ln]+[Lm]− + θ+
m−nK(1,m)

1
q − 1

Comparing both sides we get:

[[Ln]+, [Lm]−] = [Ln]+[Lm]− − [Lm]−[Ln]+

= θ−m−nK
−1
(1,n)

1
q − 1 − θ

+
m−nK(1,m)

1
q − 1

= −q− 1
2
K(1,m)θ

+
n−m −K(−1,−n)θ

−
n−m

q
1
2 − q− 1

2

Now, let us consider some more the elements Tr. Since there are no homomorphisms and
extensions between the tubes Ux we have that

Tr =
∑
x∈P1

T xr =
∑
d|r

∑
x∈P1
dx=d

T xr , (7)

where each T xr ∈ H(Ux) and dx is the degree of the point x ∈ P1. But as mentioned before, each
H(Ux) is isomorphic to the ring of symmetric functions Λqx . Using our definition of Tr we have
a direct correspondence to power sums pr. In particular, we can use this to calculate the bilinear
forms.

Remark 3.3.8 In [32] one can find also the case for general curves and the analogous definition
for the T̃r respectively T̃ xr = [r]

r deg(x)Φ̃x(p r
deg(x)

) and their bilinear forms

(T̃ xr , T̃ xr ) = [r]2 deg(x)

r
(
q

r
deg(x)
x − 1

)
Remark 3.3.9 In the case of coherent sheaves of the projective line Coh(P1), the elements Tr
have a slightly different normalization, namely, they are given by the generating series

∑
k≥1

TP1

k

[k] s
k = log(1(s)).

And the bilinear form is given by (see [6])

(TP1

r , TP1

s ) = δr,s
[2r]

r(v − v−1) .

(Note: in [6] they switch v and v−1.)
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In particular, using the result in Coh(P1) and the knowledge of how it differs, namely in only
two specific points x ∈ P1, we can calculate the bilinear form in our case:

Lemma3.3.10 It holds for all r, s ∈ N:

(Tr, Ts) = δrs
[2r]
r

qr + (−1)r+1 + q−r

v − v−1 .

Proof. First, using (7) and the orthogonality we have

(Tr, Tr) =
∑
d|r

∑
x∈P1
dx=d

(T xr , T xr ).

We consider two cases, namely r odd and r even.

• Case r odd: In this case, we only have one exceptional point to consider, namely the point
we denoted by π, where dπ = 1 but qπ = q2.

(Tr, Tr) = (TP1

r , TP1

r ) · [2r]2

[r]2 −
[2r]2

r

(
1

qr − 1 −
1

q2r − 1

)
︸ ︷︷ ︸

difference given by π

= [2r]
r(v − v−1) ·

[2r]2

[r]2 −
[2r]2

r

(
qr + 1
q2r − 1 −

1
q2r − 1

)
= [2r]2

[r]2r

(
[2r]

(v − v−1) −
[r]2qr

q2r − 1

)
= [2r]2

[r]2r

(
v2r − v−2r

(v − v−1)2 −
(vr − v−r)2v2r

(v − v−1)2(v4r − 1)

)
= [2r]2

[r]2r

(
(v2r − v−2r)2

(v2r − v−2r)(v − v−1)2 −
(vr − v−r)2

(v − v−1)2(v2r − v−2r)

)
= [2r]2(vr − v−r)2((vr + v−r)2 − 1)

[r]2r(v − v−1)2(v2r − v−2r)

= [2r]2(v2r + 2 + v−2r − 1)
r(v2r − v−2r)

= [2r](v2r + 1 + v−2r)
r(v − v−1)

• Case r even: In this case, there exists another point of degree 2, namely the point ω with
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qω = q4 instead of qω = q2. Hence we have

(Tr, Tr) = [2r](v2r + 1 + v−2r)
r(v − v−1) − 2 · [2r]2

r

(
1

qr − 1 −
1

q2r − 1

)
= [2r]

r

(
(v2r + 1 + v−2r)

v − v−1 − 2 · (v2r − v−2r) · qr

(v − v−1)(q2r − 1)

)
= [2r]

r

(
(v2r + 1 + v−2r)

v − v−1 − 2 · (v2r − v−2r)
(v − v−1)(v2r − v−2r)

)
= [2r]

r
· (v2r + 1 + v−2r − 2)

v − v−1

= [2r](v2r − 1 + v−2r)
r(v − v−1)

Similar using the bilinear form for the Tr with itself we can calculate this for θr with the Tr:

Corollary 3.3.11 It holds for all r ∈ N:

(θr, Tr) = [2r]
r

(qr + (−1)r+1 + q−r)

Proof. Considering the generating series (see Remark 3.3.6)

θ(s) = exp

(q 1
2 − q− 1

2 )
∑
k≥1

Tks
k


and the fact (Ts, Tr) = 0 for r 6= s we get:

(θr, Tr) = ((v − v−1)Tr, Tr)

= [2r]
r

(qr + (−1)r+1 + q−r).

Furthermore, we may use the bilinear pairing to calculate the relations of Tr in DH̃(Coh(X)):

Corollary 3.3.12 For k, l ∈ Z \ {0} it holds in DH̃(Coh(X)):

[Tk, Tl] = δk+l,0
[2k]
k

(qk + (−1)k+1 + q−k)C
k − C−k

v − v−1 .

Proof. First, we note, that if both indices are positive or both negative the commutator is zero
since the torsion part of the Hall algebra commutes. Hence it remains to check the relation for
k > 0 and l < 0 (and vice versa).

Let k > 0 and l < 0. We use the relation in Corollary 1.4.2 and the fact that the Tr are
(quasi) primitive:

TlTk(1, Ck) + Ck(Tk, T−l) = TkTl(Cl, 1) + Cl(T−l, Tk)
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Hence we get

TlTk − TkTl = (Tk, T−l) · (Cl − Ck).

Inserting gives:

[Tk, Tl] = δk+l,0
[2k]
k

(qk + (−1)k+1 + q−k)C
k − C−k

v − v−1 .

We are also able to calculate the commutator of the Tr with the line bundles [Ln]:

Proposition 3.3.13 Let n ∈ Z, k ∈ N. Then it holds:

[Tk, [Ln]] = [2k]
k

(qk + (−1)k+1 + q−k)[Ln+k].

Proof. By applying Lemma 3.2.7 we get the following:

Tk[Ln] = [2k]
k∑
r=1

∑
i1,...,ir∈N:
i1+...+ir=k

(−1)r+1

r
1i1δ...1irδ[Ln]

= [2k]
k∑
r=1

∑
i1,...,ir∈N:
i1+...+ir=k

(−1)r+1

r
1i1δ...1ir−1δ

ir∑
sr=0

q−sr [2sr + 1]+[Ln+sr ]1(ir−sr)δ

= [2k]
k∑
r=1

∑
i1,...,ir∈N:
i1+...+ir=k

(−1)r+1

r

i1∑
s1=0

...

ir∑
sr=0

q−(s1+...+sr)

 r∏
j=1

[2sj + 1]+

 [Ln+s1+...+sr ]
r∏
j=1

1(ij−sj)δ

Notice that this is a telescoping sum. Only the two cases s1 = s2 = ... = sr = 0 and (s1 =
i1 ∧ s2 = i2 ∧ ... ∧ sr = ir) remain. In particular, we get:

Tk[Ln] = [2k]
k∑
r=1

∑
i1,...,ir∈N:
i1+...+ir=k

(−1)r+1

r

[Ln]1i1δ...1irδ + q−k

 r∏
j=1

[2ij + 1]+

 [Ln+k]


= [Ln]Tk + [2k]q−k

k∑
r=1

∑
i1,...,ir∈N:
i1+...+ir=k

(−1)r+1

r

 r∏
j=1

[2ij + 1]+


︸ ︷︷ ︸

=:Φk

[Ln+k]

It remains to be shown Φk = [2k]
k (qk + (−1)k+1 + q−k). Here our previous calculations of the

bilinear forms and the coproduct come to play (see Proposition 3.2.6 and Corollary 3.3.11):
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Note that [Ln]Tk always has torsion, therefore pairing the commutator with [Ln+k] we get:

Φk([Ln+k], [Ln+k]) = (Tk[Ln], [Ln+k])
= (Tk ⊗ [Ln], ∆̃([Ln+k]))

=

Tk ⊗ [Ln], [Ln+k]⊗ 1 +
∑
l≥0

θlK(1,n+k−l) ⊗ [Ln+k−l]


︸ ︷︷ ︸

only the summand l = k is non-zero in the pairing

= (Tk, θkK(1,n))([Ln], [Ln])

= [2k]
k

(qk + (−1)k+1 + q−k)([Ln], [Ln])

Now just using the fact ([Ln+k], [Ln+k]) = ([Ln], [Ln]) = 1
q−1 , we are done.

Remark 3.3.14 By considering partitions of k ∈ N we get:

Partition #
k = 1 1 1 [3]+ = 1 + q + q2

k = 2 2 1 [5]+ = 1 + q + q2 + q3 + q4

1 + 1 1 [3]2+ = 1 + 2q + 3q2 + 2q3 + q4

k = 3 3 1 [7]+ = 1 + q + q2 + q3 + q4 + q5 + q6

2 + 1 2 [5]+[3]+ = 1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + q6

1 + 1 + 1 1 [3]3+ = 1 + 3q + 6q2 + 7q3 + 6q4 + 3q5 + q6

k = 4 4 1 [9]+ = 1 + q + q2 + q3 + q4 + q5 + q6 + q7 + q8

3 + 1 2 [7]+[3]+ = 1 + 2q + 3q2 + 3q3 + 3q4 + 3q5 + 3q6 + 2q7 + q8

2 + 2 1 [5]2+ = 1 + 2q + 3q2 + 4q3 + 5q4 + 4q5 + 3q6 + 2q7 + q8

2 + 1 + 1 3 [5]+[3]2+ = 1 + 3q + 6q2 + 8q3 + 9q4 + 8q5 + 6q6 + 3q7 + q8

4 · 1 1 [3]4+ = 1 + 4q + 10q2 + 16q3 + 19q4 + 16q5 + 10q6 + 4q7 + q8

k = 5 5 1 [11]+ = 1 + q + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10

4 + 1 2 [9]+[3]+ = 1 + 2q + 3q2 + 3q3 + 3q4 + 3q5 + 3q6 + 3q7 + 3q8 + 2q9 + q10

3 + 2 2 [7]+[5]+ = 1 + 2q + 3q2 + 4q3 + 5q4 + 5q5 + 5q6 + 4q7 + 3q8 + 2q9 + q10

3 + 1 + 1 3 [7]+[3]2+ = 1 + 3q + 6q2 + 8q3 + 9q4 + 9q5 + 9q6 + 8q7 + 6q8 + 3q2 + q10

2 + 2 + 1 3 [5]2+[3]+ = 1 + 3q + 6q2 + 9q3 + 12q4 + 13q5 + 12q6 + 9q7 + 6q8 + 3q9 + q10

2 + 3 · 1 4 [5]+[3]3+ = 1 + 4q + 10q2 + 17q3 + 23q4 + 25q5 + 23q6 + 17q7 + 10q8 + 4q9 + q10

5 · 1 1 [3]5+ = 1 + 5q + 15q2 + 30q3 + 45q4 + 51q5 + 45q6 + 30q7 + 15q8 + 5q9 + q10

So by direct calculation, one may check the first few values of Φk in the first formula:
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Φ1 = [2]q−1 (−1)2

1 [3]+

= [2](q−1 + 1 + q)

Φ2 = [4]q−2
(

(−1)2

1 [5]+ + (−1)3

2 [3]2+
)

= [4]q−2(1 + q + q2 + q3 + q4 − 1
2(1 + 2q + 3q2 + 2q3 + q4))

= [4]
2 q−2(1 + 0− q2 + 0 + q4)

= [4]
2 (q−2 − 1 + q2)

Φ3 = [6]q−3
(

(−1)2

1 [7]+ + 2(−1)3

2 [5]+[3]+ + (−1)4

3 [3]3+
)

= [6]q−3(1 + q + q2 + q3 + q4 + q5 + q6 − (1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + q6)

+1
3(1 + 3q + 6q2 + 7q3 + 6q4 + 3q5 + q6))

= [6]
3 q−3(1 + 0 + 0 + q3 + 0 + 0 + q6)

= [6]
3 (q−3 + 1 + q3)

Furthermore we get the relation in the reduced Drinfeld double DH(Coh(X)), where again
we denote Tk := T−−k for k < 0 and Tk := T+

k for k > 0:

Corollary 3.3.15 Let n ∈ Z, k ∈ Z \ {0}. Then it holds:

[
Tk, [Ln]±

]
= ± [2k]

k
(qk + (−1)k+1 + q−k)[Ln+k]±.

Proof. • For k > 0:
By Proposition 3.3.13 we have

[
Tk, [Ln]+

]
= [2k]

k
(qk + (−1)k+1 + q−k)[Ln+k]+.

By the definition of the Drinfeld double and the coproduct of Tr (see Remark 3.3.5) we
can see since [Ln]− has the opposite coproduct:

[
[Ln]−, Tk

]
= [2k]

k
(qk + (−1)k+1 + q−k)[Ln+k]−

Hence we have [
Tk, [Ln]±

]
= ± [2k]

k
(qk + (−1)k+1 + q−k)[Ln+k]±.

• For k < 0:
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By definition of Tk for k < 0 we have by Proposition 3.3.13

[
Tk, [Ln]−

]
= − [2k]

k
(qk + (−1)k+1 + q−k)[Ln+k]−.

Also by the previous case, we get

[
Tk, [Ln]±

]
= ± [2k]

k
(qk + (−1)k+1 + q−k)[Ln+k]±.

3.4 The Product of Line Bundles
Now, as a last calculation in this section, let us go back to vector bundles, or to be more accurate,
the line bundles Ln.

Proposition 3.4.1 Let n, m ∈ Z. Then it holds:

[Ln][Lm] =



q
1+2(m−n)

2 [Lm ⊕ Ln], if n < m,

q
1
2 (q + 1)[L⊕2

n ], if n = m,

q
1+2(m−n)

2 (q2(n−m)+1[Ln ⊕ Lm] +
bn−m−1

2 c∑
a=1

(q − 1)−1γ
(n−m−2a)
a [Ln−a ⊕ Lm+a]

+I2Z(n−m)(q − 1)−1αn−m
2

[Ln−m
2
⊕ Ln−m

2
]

+I2Z+1(n−m)(q − 1)−1βn−m−1
2

[Mn+m+1
2

]), if n > m,

where I2Z respectively I2Z+1 is the indicator function of 2Z respecitvely 2Z + 1, and α•, γ• and
β• are given by the series

• A(w) =
∑∞
l=0 αlw

l = (q2 − 1) 1+q2w
1+qw

1−q2w
1−q4w

• B(w) =
∑∞
l=0 βlw

l = (q4 − 1) 1−q2w
1−q4w

1
1+qw

• C(r)(w) =
∑∞
l=0 γ

(r)
l wl = q2r+1(q − 1) (1−w)(1+q3w)

(1+qw)(1−q4w)

For the proof, we first start with the following lemma:

Lemma3.4.2 Let n, m ∈ Z and F ∈ Obj(Coh(X)), such that there exists a short exact sequence

0 −→ Lm
f−→ F g−→ Ln −→ 0.

Then there are only the following cases:

(i) If n < m, then F ∼= Lm ⊕ Ln.

(ii) If n ≥ m and n+m even, then there exists 0 ≤ a ≤ n−m
2 such that F ∼= Ln−a ⊕ Lm+a.

(iii) If n ≥ m and n + m odd, then there exists 0 ≤ a ≤ bn−m2 c such that F ∼= Ln−a ⊕ Lm+a
OR F ∼=Mn+m+1

2
.
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Proof. First off, we note that F is torsion free because there are no homomorphisms from a
torsion bundle to a line bundle, in this case Ln.

Since the Euler form is additive, we know F = (2, n + m) = (1, n) + (1,m) = Ln + Lm. In
particular, since F is torsion free, F decomposes into Lr⊕Ls for some r and s or F is isomorphic
toMt for some t. In the latter case, we know (2, 2t− 1) =Mt = F = (2, n+m). Hence we get
t = n+m+1

2 ∈ Z and n+m must be odd.
In the first case, the short exact sequence either splits, therefore r = n and s = m or vice

versa, or if we write f = i ⊕ j and g = k ⊕ l, then i 6= 0 6= j and k 6= 0 6= l. Therefore we
have m ≤ min(r, s) and n ≥ max(r, s) because otherwise there is no nonzero morphism in one
of the four cases. In particular, it follows m ≤ n, and again by degree considerations, we get
r + s = n+m.

Example 3.4.3 Using the power series A(w), B(w) and C(w), we get:

• For A(w):

A(w) = (q2 − 1)1 + q2w

1 + qw

1− q2w

1− q4w

= (q2 − 1)(1− q4w2)(1− qw + q2w2 − q3w3 + ...)(1 + q4w + q8w2 + q12w3 + ...)
= (q2 − 1)(1 + (q4 − q)w + (q8 − q5 − q4 + q2)w2 + (q12 − q3 + q5 − q8 − q9 + q6)w3 + ...)

Hence we get:

– α0 = q2 − 1,
– α1 = (q2 − 1)(q4 − q),
– α2 = (q2 − 1)(q8 − q5 − q4 + q2),
– α3 = (q2 − 1)(q12 − q9 − q8 + q6 + q5 − q3).

• For B(w):

B(w) = (q4 − 1)1− q2w

1− q4w

1
1 + qw

= (q4 − 1)(1− q2w)(1 + q4w + q8w2 + q12w3 + ...)(1− qw + q2w2 − q3w3 + ...)
= (q4 − 1)(1 + (q4 − q2 − q)w + (q8 + q2 − q5 + q3 − q6)w2 + ...)

Hence we get:

– β0 = q4 − 1,
– β1 = (q4 − 1)(q4 − q2 − q),
– β2 = (q4 − 1)(q8 − q6 − q5 + q3 + q2).

• For C(r)(w):

C(r)(w) = q2r+1(q − 1) (1− w)(1 + q3w)
(1 + qw)(1− q4w)

= q2r+1(q − 1)(1− w)(1 + q3w)(1− qw + q2w2 − q3w3 + ...)(1 + q4w + q8w2 + q12w3 + ...)
= q2r+1(q − 1)(1 + (−1 + q3 − q + q4)w + (q2 + q8 − q3 + q − q4 − q4 + q7 − q5)w2 + ...)

Hence we get:
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– γ
(r)
0 = q2r+1(q − 1),

– γ
(r)
1 = q2r+1(q − 1)(q4 + q3 − q − 1),

– γ
(r)
2 = q2r+1(q − 1)(q8 + q7 − q5 − 2q4 − q3 + q2 + q).

Proof of Proposition 3.4.1. By the previous Lemma 3.4.2 for the cases n ≤ m there is only one
possible extension, namely [Ln ⊕ Lm].

In the case n < m there is only one possible way to embed Lm into the direct sum Ln ⊕Lm,
hence there we only have the prefactor given by the Eulerform 〈Ln,Lm〉 = 1 + 2(m− n).

In the case n = m there are the possibilities

Ln
(1,α)−→ L⊕2

n −→ Ln for some α ∈ k

and
Ln

(0,1)−→ L⊕2
n −→ Ln

up to automorphism. Hence the prefactor is given by the product of (q + 1) and the factor
corresponding to the Eulerform 〈Ln,Ln〉 = 1.

In the case n < m one summand is just the direct sum [Ln ⊕ Lm] where the prefactor is
given by |Hom(Lm,Ln)| = q2(n−m)+1 (see Lemma 2.5.3). For the other cases by Lemma 3.4.2
we calculate the prefactors as follows.

We do αa, βa and γa case by case:

• α: The number αa is given by #{L0 ⊕ L0 � La} = αa
q−1 . Let us consider the morphisms

L0 ⊕ L0 → La. It holds:
# Hom(L0 ⊕ L0,La) = q2a+2

The image of a non-zero morphism in Hom(L0 ⊕L0,La) is isomorphic to a line bundle Lb
with 0 ≤ b ≤ a.

L0 ⊕ L0 La

Lb = im(f)

f

q2(a−b)+1−1
possible embeddings

We get the formula

#{ϕ : L0 ⊕ L0 → La | im(ϕ) ∼= Lb} = αb ·
q2(a−b)+1 − 1

q − 1︸ ︷︷ ︸
=:δa−b

.

In particular, for all morphisms we get:

# Hom(L0 ⊕ L0,La) \ {0} =
n∑
b=0

αb · δa−b. (8)

Define the power sum series:

A(w) =
∞∑
k=0

αkw
k, D(w) :=

∞∑
k=0

δkw
k and E(w) :=

∞∑
k=0

(q4k+2 − 1)wk.
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By the equation (8) we get the identity:

E(w) = A(w) ·D(w).

We may rewrite the powersum series E(w) and D(w):

E(w) =
∞∑
k=0

(q4k+2 − 1)wk

=
∞∑
k=0

q4k+2wk −
∞∑
k=0

wk

=
∞∑
k=0

q2(q4w)k −
∞∑
k=0

wk

= q2 1
1− q4w

− 1
1− w

= q2(1− w)− (1− q4w)
(1− q4w)(1− w)

= q2 − q2w − 1 + q4w

(1− q4w)(1− w)

= (q2 − 1)(1 + q2w)
(1− q4w)(1− w)

D(w) = 1
q − 1

∞∑
k=0

δkw
k

= 1
q − 1

∞∑
k=0

(q2k+1 − 1)wk

= 1
q − 1

( ∞∑
k=0

q(q2w)k −
∞∑
k=0

wk

)

= 1
q − 1

(
q

1− q2w
− 1

1− w

)
= 1

q − 1
q(1− w)− (1− q2w)

(1− q2w)(1− w)

= 1
q − 1

q − qw − 1 + q2w

(1− q2w)(1− w)

= 1
q − 1

(q − 1)(1 + qw)
(1− q2w)(1− w)

= 1 + qw

(1− q2w)(1− w)

Hence we get:

A(w) = E(w)
D(w) = (q2 − 1)(1 + q2w)

(1− q4w)(1− w)
(1− q2w)(1− w)

1 + qw
= (q2 − 1)1 + q2w

1 + qw

1− q2w

1− q4w
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• β: Similar to αa, the constant βa is given by #{M0 � La} = βa
q−1 . Considering all

morphisms, we have
# Hom(M0,La) = q4(a+1).

The image of a non-zero morphism M0 → La is isomorphic to a line bundle Lb with
0 ≤ b ≤ a. It holds:

#{ϕ :M0 → La | im(ϕ) ∼= Lb} = βb ·
q2(a−b)+1 − 1

q − 1︸ ︷︷ ︸
=δa−b

Using the powersum series D(w), B(w) :=
∑∞
k=0 βkw

k and F (w) :=
∑∞
k=0(q4(k+1) − 1)wk

we get the identity:
F (w) = B(w)D(w).

We rewrite F (w):

F (w) =
∞∑
k=0

(q4(k+1) − 1)wk

=
∞∑
k=0

q4(q4w)k −
∞∑
k=0

wk

= q4

1− q4w
− 1

1− w

= q4(1− w)− (1− q4w)
(1− q4w)(1− w)

= q4 − q4w − 1 + q4w

(1− q4w)(1− w)

= q4 − 1
(1− q4w)(1− w)

Hence we get:

B(w) = F (w)
D(w) = q4 − 1

(1− q4w)(1− w)
(1− q2w)(1− w)

1 + qw
= (q4 − 1) (1− q2w)

(1− q4w)(1 + qw)

• γ: The constant γ(r)
a is given by #{L0 ⊕ Lr � Lr+a} = γ(r)

a

q−1 . Considering all morphisms
we have:

# Hom(L0 ⊕ Lr,Lr+a) = q2(r+a)+1q2a+1 = q2r+4a+2.

We consider morphisms with image Lr+b.

L0 ⊕ Lr Lr+a

Lr+b = im(f)

(ϕ,ψ)
ψ 6= 0

q2(a−b)+1−1
possible embeddings
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3.4 The Product of Line Bundles 3

So we have the formula for the number of all morphisms (ϕ,ψ) : L0 ⊕ Lr → Lr+a with
ψ 6= 0:

a∑
k=0

γkδa−k = q2r+1q2a(q2a+1 − 1).

So using the powersum series D(w), C(r)(w) =
∑∞
k=0 γ

(r)
k wk, and

G(r)(w) = q2r+1
∞∑
k=0

q2k(q2k+1 − 1)wk

we get the identity:
G(r)(w) = C(r)(w)D(w).

Rewriting G(r)(w) we get:

G(r)(w) = q2r+1
∞∑
k=0

q2k(q2k+1 − 1)wk

= q2r+1

( ∞∑
k=0

q(q4w)k −
∞∑
k=0

(q2w)k
)

= q2r+1
(

q

1− q4w
− 1

1− q2w

)
= q2r+1 q(1− q2w)− (1− q4w)

(1− q4w)(1− q2w)

= q2r+1 q − q3w − 1 + q4w

(1− q4w)(1− q2w)

= q2r+1 (q − 1)(q3w + 1)
(1− q4w)(1− q2w)

Hence we get:

C(r)(w) = G(r)(w)
D(w)

= q2r+1 (q − 1)(q3w + 1)
(1− q4w)(1− q2w)

(1− q2w)(1− w)
1 + qw

= q2r+1(q − 1) (q3w + 1)(1− w)
(1 + qw)(1− q4w) .

Now let us introduce the Drinfeld representation of the quantum group/quantum loop algebra
to show which other relations we should discuss.
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4 The Drinfeld Realization UDr
v

(
A

(2)
2

)

4.1 Definition of UDr
v

(
A

(2)
2

)
and its Relations

For this subsection, we follow [10]. The goal is to define the quantum group UDrv
(
A

(2)
2

)
and give

the argument by I. Damiani of how we may simplify the relations without changing the algebra.
To consider the relations, we define several algebras with generators, where some of the

relations hold.
Let v = √q ∈ C.
This definition can also be found in e.g. [8].

Definition 4.1.1 We denote by

• UDrv
(
A

(2)
2

)
= Uv(L(sl3)τ )) the associative C-algebra with generators (G) = {X±k , Hl, K

±1, C±1 |
k ∈ Z, l ∈ Z \ {0}} and the following relations:

(CU) C is central;
(CK) CC−1 = 1 = C−1C, KK−1 = 1 = K−1K;

(KX±) KX±k K−1 = v±2X±k for k ∈ Z;
(KH) KHk = HkK for k ∈ Z \ {0};

(XX) [X+
k , X

−
l ] = C−lKψ+

k+l−C
−kK−1ψ−

k+l
v−v−1 for k, l ∈ Z,

where
∑∞
k=0 ψ

±
±ku

k = exp
(
±(v − v−1)

∑∞
l=1H±lu

l
)
;

(HX±) [Hk, X
±
l ] = ± 1

k
[2k]v(v2k + v−2k + (−1)k+1)︸ ︷︷ ︸

=:bk

X±k+l for k ∈ Z \ {0}, l ∈ Z;

(HH) [Hk, Hl] = δk+l,0bk
Ck−C−k
v−v−1 for k, l ∈ Z \ {0};

(X2±) X±k+2X
±
l + (v∓2 − v±4)X±k+1X

±
l+1 − v±2X±k X

±
l+2 =

v±2X±l X
±
k+2 + (v±4 − v∓2)X±l+1X

±
k+1 −X

±
l+2X

±
k for k, l ∈ Z;

(X3−,±) Sym(v3X±k∓1X
±
l X

±
m− (v+ v−1)X±k X

±
l∓1X

±
m + v−3X±k X

±
l X

±
m∓1) = 0 for k, l, m ∈ Z;

(X3+,±) Sym(v−3X±k±1X
±
l X

±
m− (v+ v−1)X±k X

±
l±1X

±
m + v3X±k X

±
l X

±
m±1) = 0 for k, l, m ∈ Z.

• ŨDrv
(
A

(2)
2

)
the C-algebra generated by the generators (G) with the relations (CU), (CK),

(KX±), (XX) and (HX±).

• ŪDrv
(
A

(2)
2

)
the C-algebra generated by (Ḡ) = {C±1, K±1, X±k | k ∈ Z} and relations

(CU) and (CK).

The above definition for UDrv
(
A

(2)
2

)
is the standard you can find in most papers. Further-

more, in the original definition of Drinfeld [14] only (X3−,−) and (X3+,+) appear. The relations
(X3−,+) and (X3+,−) are introduced for symmetry in [8] as consequences of other relations.

In particular, it suffices to use only the two relations (X3−,−) and (X3+,+) without the other
two.
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4.1 Definition of UDrv
(
A

(2)
2

)
and its Relations 4

Remark 4.1.2 As shown in [10], we can reformulate the relations with commutators:

Sym(v−3X±k±1X
±
l X

±
m − (v + v−1)X±k X

±
l±1X

±
m + v3X±k X

±
l X

±
m±1)

= Sym(v−3(X±k±1X
±
l X

±
m − v4X±k X

±
l±1X

±
m − v2X±k X

±
l±1X

±
m + v6X±k X

±
l X

±
m±1))

= Sym(v−3(X±k±1X
±
l X

±
m − v2X±l X

±
k±1X

±
m − v4X±mX

±
k±1X

±
l + v6X±mX

±
l X

±
k±1))

= Sym(v−3([X±k±1, X
±
l ]v2X±m − v4X±m[X±k±1X

±
l ]v2))

= Sym(v−3[[X±k±1, X
±
l ]v2 , X±m]v4)

Hence the relation (X3+,±) is equivalent to

Sym([[X±k±1, X
±
l ]v2 , X±m]v4) = 0 for all m, k, l ∈ Z.

Similarly the relation (X3−,±) is equivalent to

Sym([[X±k∓1, X
±
l ]v−2 , X±m]v−4) = 0 for all m, k, l ∈ Z.

Remark 4.1.3 In the relation (XX) one should note that ψ+
k = 0 for k < 0, ψ−k = 0 for k > 0

and ψ+
0 = ψ−0 = 1. In particular, only in the case k+ l = 0 are there two terms in the numerator

of the relation for [X+
k , X

−
l ]. Furthermore, using this relation one can write the generators Hr’s

with the other generators.

Remark 4.1.4 We have:

1. the algebra UDrv
(
A

(2)
2

)
is a quotient of ŨDrv

(
A

(2)
2

)
;

2. the algebra ŨDrv
(
A

(2)
2

)
is a quotient of ŪDrv

(
A

(2)
2

)
by the previous remark (see [10, Section

6]).

Let (R) be a set of relations in an algebra U given via a set Z depending on parameters
r ∈ Zl and s ∈ Zl̃ for some l, l̃ ∈ N0, i.e. for ζ ∈ Z we have relations of the form Sζ(r, s) = 0.

Then we define the ideals:

I(R) = (Sζ(r, s) | ζ ∈ Z, r ∈ Zl, s ∈ Zl̃),

Ic(R) = (Sζ(r1, s) | ζ ∈ Z, r ∈ Z, s ∈ Zl̃),

I0(R) = (Sζ(0) | ζ ∈ Z),

where 0 ∈ Zl+l̃.
By definition we have I0(R) ⊂ Ic(R) ⊂ I(R).
Our goal is to show that we can reduce (X3±,±) to (X3±,±c ) where we only consider k = l =

m ∈ Z.

Lemma4.1.5 In ŨDrv
(
A

(2)
2

)
consider, for r = (r1, r2, r3) ∈ Z3,

S±X3(r1, r2, r3) :=
∑
σ∈S3

σ.(v−3X±r1±1X
±
r2X

±
r3 − (v + v−1)X±r1X

±
r2±1X

±
r3 + v3X±r1X

±
r2X

±
r3±1)
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(
A

(2)
2

)
and its Relations 4

and let p ∈ Z \ 0. It holds:

[Hp, S
±
X3(r)] = ±bp

3∑
u=1

S±X3(r + peu),

where eu ∈ Z3 is the vector consisting of 0s with one 1 at the uth spot.

Proof. The lemma follows by simple calculation and applying (HX±) three times:
Let p ∈ Z \ {0}, r1, r2, r3 ∈ Z. It holds:

HpX
±
r1X

±
r2X

±
r3 = ±bpX±r1+pX

±
r2X

±
r3 +X±r1HpX

±
r2X

±
r3

= ±bpX±r1+pX
±
r2X

±
r3 ± bpX

±
r1X

±
r2+pX

±
r3 +X±r1X

±
r2HpX

±
r3

= ±bpX±r1+pX
±
r2X

±
r3 ± bpX

±
r1X

±
r2+pX

±
r3 ± bpX

±
r1X

±
r2X

±
r3+p +X±r1X

±
r2X

±
r3Hp

Hence by definition of S±X3(r) we get

[Hp, S
±
X3(r)] = ±bp

3∑
u=1

S±X3(r + peu).

Definition 4.1.6 Define the algebra homomorphism t̃ : ŨDrv
(
A

(2)
2

)
→ ŨDrv

(
A

(2)
2

)
on the

generators:
C±1 7→ C±1, K±1 7→ (KC−1)±1, X±r 7→ X±r∓1, Hr 7→ Hr.

Remark 4.1.7 It is easy to check, that t̃ is a well-defined automorphism. The least obvious
relation is (XX):

t̃([X+
k , X

−
l ]) = [X+

k−1, X
−
l+1]

=
C−l−1Kψ+

k+l − C−k+1K−1ψ−k+l
v − v−1 .

By definition of ψ±r we have t̃(ψ±r ) = ψ±r since they are given by terms in Hr’s. Hence we get:

C−l−1Kψ+
k+l − C−k+1K−1ψ−k+l
v − v−1 =

C−lt̃(K)ψ+
k+l − C−k t̃(K−1)ψ−k+l
v − v−1

= t̃

(
C−lKψ+

k+l − C−kK−1ψ−k+l
v − v−1

)
.

Furthermore, we note t̃(S±X3(r1, r2, r3)) = S±X3(r1 ∓ 1, r2 ∓ 1, r3 ∓ 1). In particular the ideals
I(X3+,±) and Ic(X3+,±) in ŨDrv

(
A

(2)
2

)
are t̃-stable.

Analogously, we get that the ideals I(X3−,±) and Ic(X3−,±) in ŨDrv
(
A

(2)
2

)
are t̃-stable.

To prove I(X3+,±) = Ic(X3+,±) and I(X3−,±) = Ic(X3−,±) in ŨDrv
(
A

(2)
2

)
, we first make

a general statement about algebras:
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(
A

(2)
2

)
and its Relations 4

Lemma4.1.8 Let U be an algebra over a field of characteristic 0. Let t be an automorphism
of U , Y ⊂ U a subset and consider elements zm, Ny(r) ∈ U for m ∈ N, y ∈ Y, r ∈ Zl with l ∈ N
fixed such that:

(i) ∀y ∈ U, r ∈ Zl : t(Ny(r)) = Ny(r + 1);

(ii) ∀m ∈ N : [zm, Y ] ⊂ Y ;

(iii) ∀m ∈ N, y ∈ U, r ∈ Zl : [zm, Ny(r)] = N[zm,y](r) +
∑l
u=1Ny(r +meu).

For y ∈ U define Sy(r) =
∑
σ∈Sl Ny(σ(r)). Let Y be a subset of U .

Then: If Ny(0) = 0 for all y ∈ Y then Sy(r) = 0 for all y ∈ Y, r ∈ Zl.

Proof. First we note that Sy(σ(r)) = Sy(r) by definition. Hence it is enough to consider r1 ≤
r2 ≤ ... ≤ rl. Furthermore, the properties (i) and (iii) also hold for Sy, e.g.

t(Sy(r)) = t

(∑
σ∈Sl

Ny(σ(r))
)

=
∑
σ∈Sl

t(Ny(σ(r))) =
∑
σ∈Sl

Ny(σ(r + 1)) = Sy(r + 1).

Hence by applying the automorphism t−r1 to Sy(r), we can reduce the claim to the case 0 =
r1 ≤ r2 ≤ ... ≤ rl.

Define v := max{u ∈ {1, ..., l} | ru = 0}. If v = l we have Sy(r) = Sy(0) = l!Ny(0) = 0 by
definition of Sy and hypothesis. If v < l then for a := rv+1 6= 0:

max{u ∈ {1, ..., l} | (r − aev+1)u = 0} = v + 1

and
∀b > v + 1 : max{u ∈ {1, ..., l} | (r − aev+1 + aeb)u = 0} = v + 1.

By induction on v, we may assume Sy(r − aev+1) = 0 = Sy(r − aev+1 + aeb) for l ≥ b > v + 1
and for all y ∈ Y .

Using the commutator with za we get:

0 = [za, Sy(r − aev+1)] = S[za,y](r − aev+1)︸ ︷︷ ︸
=0

+
l∑

u=1
Sy(r − aev+1 + aeu)

=
v+1∑
u=1

Sy(r − aev+1 + aeu)︸ ︷︷ ︸
=Sy(r) by symmetry

+
l∑

u=v+2
Sy(r − aev+1 + aeu)︸ ︷︷ ︸

=0

= (v + 1)Sy(r)

Hence, by induction, we get the claim for all y ∈ Y, r ∈ Zl: Sy(r) = 0.

Proposition 4.1.9 In ŨDrv
(
A

(2)
2

)
we have I(X3+,+) = Ic(X3+,+) and I(X3−,−) = Ic(X3−,−).

Proof. Consider the following data:

• U := ŨDrv

(
A

(2)
2

)
;

• Y := {0, 1};
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4.2 Relations in the Hall Algebra 4

• t := t̃−1;

• zm := 1
bm
Hm for m ∈ N;

• Ny(r) := y(v−3X+
r1+1X

+
r2X

+
r3 − (v + v−1)X+

r1X
+
r2+1X

+
r3 + v3X+

r1X
+
r2X

+
r3+1) for y ∈ Y .

These satisfy the conditions of Lemma 4.1.8.
In ŨDrv

(
A

(2)
2

)
/Ic(X3+) we have N1(0) = 1

6S
+
X3(0) = 0 and therefore by applying Lemma

4.1.8 we have S+
X3(r) = 0 for all r ∈ Z3. In particular we have I(X3+) = 0. Therefore we get

I(X3+) ⊂ Ic(X3+) in ŨDrv
(
A

(2)
2

)
.

Similarly, we get I(X3−) ⊂ Ic(X3−) in ŨDrv
(
A

(2)
2

)
.

In total this means, in the definition of UDrv
(
A

(2)
2

)
we may substitute the relations (X3±,±)

with (X3+,+
c ) and (X3−,−c ), where

(X3+,+
c ) [[X+

r+1, X
+
r ]v2 , X+

r ]v4 = 0 for all r ∈ Z;

(X3−,−c ) [[X−r+1, X
−
r ]v−2 , X−r ]v−4 = 0 for all r ∈ Z.

4.2 Relations in the Hall Algebra
Now, to the main part of this thesis: We want to find elements in DH(Coh(X)) with the same
relations, such that we have a subalgebra isomorphic to UDrv

(
A

(2)
2

)
. We already know that

C = K(0,1) is central. Let us consider the following subalgebra:

Definition 4.2.1 The double composition algebra DC(Coh(X)) is defined as the C-subalgebra
of DH(Coh(X)) generated by the following elements

{
[Ln]±, Tk, C±1,K±1 | n ∈ Z, k ∈ Z \ {0}

}
,

where K = K(1,0).

Now, let us prove some more relations that are similar to the one of the quantum group
UDrv

(
A

(2)
2

)
.

Proposition 4.2.2 In H̃(Coh(X)) it holds for all k, l ∈ Z:
[Lk+2][Ll] + (q−1 − q2)[Lk+1][Ll+1]− q[Lk][Ll+2] =

q[Ll][Lk+2] + (q2 − q−1)[Ll+1][Lk+1]− [Ll+2][Lk]

Here we use the following lemma:

Lemma4.2.3 We have the following identities for the power sums in Proposition 3.4.1:

(i) A(w)− α2w
2 − α1q − α0 + (q − q−1)(A(w)− α1w − α0)w − q5(A(w)− α0)w2 = 0

(ii) B(w)− β2w
2 − β1q − β0 + (q − q−1)(B(w)− β1w − β0)w − q5(B(w)− β0)w2 = 0

(iii) C(l)(w)−γ(l)
2 w2−γ(l)

1 q−γ(l)
0 +(q−q−1)(C(l)(w)−γ(l)

1 w−γ(l)
0 )w−q5(C(l)(w)−γ(l)

0 )w2 = 0

Proof. Direct calculations.
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4.2 Relations in the Hall Algebra 4

Proof of Proposition 4.2.2. We reformulate the equation to:

([Lk+2][Ll] + [Ll+2][Lk]) + (q−1 − q2)([Lk+1][Ll+1] + [Ll+1][Lk+1])
−q([Lk][Ll+2] + [Ll][Lk+2]) = 0

We need to consider the cases k = l, k = l+ 1, k = l+ 2 and k > l+ 2. Because of the symmetry
in the equation the cases k < l follow.

Due to the Auslander-Reiten translation, it is enough to show the equation for l = 0. Applying
τ alternatively τ− often enough, we get the equation for an arbitrary l.

• Case k = l = 0:

[L2][L0] + [L2][L0] + (q−1 − q2)([L1][L1]+ + [L1][L1])− q([L0][L2] + [L0][L2])

= 2 · (q
1+2·(−2)

2 (q2·2+1[L2 ⊕ L0] + (q2 − 1)q
4 − q
q − 1 [L⊕2

1 ])

+(q−1 − q2)q 1
2 (q + 1)[L⊕2

1 ]− q · q
1+2·2

2 [L2 ⊕ L0])
= 2 · ((q− 3

2 · q5 − q · q 5
2 )︸ ︷︷ ︸

=0

[L2 ⊕ L0] + (q− 3
2 (q2 − 1)q(q2 + q + 1) + (q−1 − q2)q 1

2 (q + 1))︸ ︷︷ ︸
=0

[L⊕2
1 ])

= 0

• Case k = l + 1 = 1:

[L3][L0] + [L2][L1] + (q−1 − q2)([L2][L1] + [L1][L2])− q([L1][L2] + [L0][L3])

= q
1+2·(−3)

2 (q2·3+1[L0 ⊕ L3] + q2+1(q4 + q3 − q − 1)[L1 ⊕ L2] + q4 − 1
q − 1 (q4 − q2 − q)[M2])

+q
1+2·(−1)

2 (q2·1+1[L1 ⊕ L2] + q4 − 1
q − 1 [M2])

+(q−1 − q2)(q
1+2·(−1)

2 (q2·1+1[L1 ⊕ L2] + q4 − 1
q − 1 [M2]) + q

1+2·1
2 [L1 ⊕ L2])

−q(q
1+2·1

2 [L1 ⊕ L2] + q
1+2·3

2 [L0 ⊕ L3])
= (q− 5

2 · q7 − q · q 7
2 )[L0 ⊕ L3]

+(q− 5
2 · q2+1(q4 + q3 − q − 1) + q−

1
2 · q3 + (q−1 − q2)(q− 1

2 · q3 + q
3
2 )− q · q 3

2 )[L1 ⊕ L2]

+(q− 5
2 · q

4 − 1
q − 1 (q4 − q2 − q) + q−

3
2
q4 − 1
q − 1 + (q−1 − q2)q− 3

2
q4 − 1
q − 1 )[M2]

= 0

• Case k = l + 2 = 2: Analogously.
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• Case k > 2, l = 0:

([Lk+2][L0] + [L2][Lk]) + (q−1 − q2)([Lk+1][L1] + [L1][Lk+1])
−q([Lk]+[L2]+ + [L0]+[Lk+2]+)

= q
1+2(−k−2)

2 (q2(k+2)+1[Lk+2 ⊕ L0] +
b k+1

2 c∑
a=1

(q − 1)−1γ(k+2−2a)
a [Lk+2−a ⊕ La]

+I2Z(k)(q − 1)−1α k+2
2

[L k+2
2
⊕ L k+2

2
] + I2Z+1(k)(q − 1)−1β k+1

2
[M k+3

2
])

+q
1+2(k−2)

2 [Lk ⊕ L2]

+(q−1 − q2)q
1+2(−k)

2 (q2k+1[Lk+1 ⊕ L1] +
b k−1

2 c∑
a=1

(q − 1)−1γ(k−2a)
a [Lk−a ⊕ La]

+I2Z(k)(q − 1)−1α k
2
[L k+2

2
⊕ L k+2

2
]+ + I2Z+1(k)(q − 1)−1β k−1

2
[M k+3

2
])

+(q−1 − q2)q
1+2k

2 [Lk+1 ⊕ L1]

−q · q
1+2(−k+2)

2 (q2(k−2)+1[Lk ⊕ L2] +
b k−3

2 c∑
a=1

(q − 1)−1γ(k−2−2a)
a [Lk−2−a ⊕ L2+a]

+I2Z(k)(q − 1)−1α k−2
2

[L k+2
2
⊕ L k+2

2
] + I2Z+1(k)(q − 1)−1β k−3

2
[M k+3

2
])

−q · q
1+2(k+2)

2 [Lk+2 ⊕ L0]

=
(
q−k−

3
2 · q2k+5 − qk+ 7

2

)
[Lk+2 ⊕ L0]

+
(
q−k−

3
2
γ

(k)
1

q − 1 + (q−1 − q2)qk+ 3
2 + (q−1 − q2)qk+ 1

2

)
[Lk+1 ⊕ L1]

+
(
q−k−

3
2
γ

(k−2)
2
q − 1 + qk−

3
2 + (q−1 − q2)q−k+ 1

2
γ

(k−2)
1
q − 1 − q

k+ 1
2

)
[Lk ⊕ L2]

+
b k−3

2 c∑
a=1

(
q−k−

3
2
γ

(k−2+2a)
2+a
q − 1 + (q−1 − q2)q−k+ 1

2
γ

(k−2−2a)
a+1
q − 1 − q · q−k+ 5

2
γ

(k−2−2a)
a

q − 1

)
[Lk−a ⊕ La+2]

+I2Z(k)
(
q−k−

3
2
α k+2

2

q − 1 + (q−1 − q2)q−k+ 1
2
α k

2

q − 1 − q · q
−k+ 5

2
αn−2

2

q − 1

)
[L k+2

2
⊕ L k+2

2
]

+I2Z+1(k)
(
q−k−

3
2
β k+1

2

q − 1 + (q−1 − q2)q−k+ 1
2
β k−1

2

q − 1 − q · q
−k+ 5

2
β k−3

2

q − 1

)
[M k+3

2
]

So we need to check, that the factors are zero.
The first three can be checked easily with Example 3.4.3:

– q−k−
3
2 · q2k+5 − qk+ 7

2 = 0

– q−k−
3
2
γ

(k)
1
q−1 + (q−1 − q2)qk+ 3

2 + (q−1 − q2)qk+ 1
2

= q−k−
3
2 q2k+1(q4 + q3 − q − 1) + (q−1 − q2)qk+ 3

2 + (q−1 − q2)qk+ 1
2

= qk(q 7
2 + q

5
2 − q 1

2 − q− 1
2 + q

1
2 − q 7

2 + q−
1
2 − q 5

2 )
= 0
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– q−k−
3
2
γ

(k−2)
2
q−1 + qk−

3
2 + (q−1 − q2)q−k+ 1

2
γ

(k−2)
1
q−1 − q

k+ 1
2

= qk(q− 3
2 q−3(q8+q7−q5−2q4−q3+q2+q)+q− 3

2 +(q−1−q2)q 1
2 q−3(q4+q3−q−1)−q 1

2 )
= qk(q 7

2 + q
5
2 − q 1

2 − 2q− 1
2 − q− 3

2 + q−
5
2 + q−

7
2 + q

1
2 + q−

1
2 − q− 5

2 − q− 7
2 − q 7

2 − q 5
2

+q 1
2 + q−

1
2 − q 1

2 )
= 0

For the other three, we need to apply Lemma 4.2.3.

To prove q−k− 3
2
γ

(k−2+2a)
2+a
q−1 + (q−1 + q2)q−k+ 1

2
γ

(k−2−2a)
a+1
q−1 − q · q−k+ 5

2
γ(k−2−2a)
a

q−1 = 0 for all a > 0,
k > 2, it is equivalent to show:

q−
3
2
γ

(r)
2+a
q − 1 + (q−1 + q2)q 1

2
γ

(r)
a+1
q − 1 − q · q

5
2
γ

(r)
a

q − 1 = 0 for all r ∈ N, a > 0.

Multiplying the left side with wa+2 and adding up over all a, this is equivalent to:

0 =
∞∑
a=1

(
q−

3
2
γ

(r)
2+a
q − 1 + (q−1 − q2)q 1

2
γ

(r)
a+1
q − 1 − q · q

5
2
γ

(r)
a

q − 1

)
wa+2

= q−
3
2

( ∞∑
a=1

γ
(r)
2+a
q − 1w

a+2

)
+ (q 1

2 − q 5
2 )
( ∞∑
a=1

γ
(r)
a+1
q − 1w

a+1

)
w − q 7

2

( ∞∑
a=1

γ
(r)
a

q − 1w
a

)
w2

= q−
3
2 (C(r)(w)− γ(r)

2 w2 − γ(r)
1 q − γ(r)

0 + (q − q−1)(C(r)(w)− γ(r)
1 w − γ(r)

0 )w
−q5(C(r)(w)− γ(r)

0 )w2)

This is the identity (iii) in Lemma 4.2.3.
Similarly, one can show the other two identities.

Hence we get the following result:

Proposition 4.2.4 There is a surjective C-algebra morphism Φ : UDrv
(
A

(2)
2

)
→ DC(Coh(X)),

given on the generators by:

X+
n 7→ [Ln]+, X−n 7→ −v[L−n]−, Hr 7→ Tr, K 7→ K, C 7→ C for n ∈ Z, r ∈ Z \ {0}.

Proof. Since we are defining Φ on the generators, we need to show that the images of the
generators satisfy the relations of UDrv

(
A

(2)
2

)
. Then the map Φ is well-defined. By using the

fact that the images also generate DC(Coh(X)) as an algebra by definition, the surjectivity
immediately follows.

We have already proven most of the relations:

(CU) Remark 3.1.8;

(CK) by definition;
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(KX±) follows from the definition of the extended Hall algebra (1.1.9)/reduced Drinfeld double of
the Hall algebra DH(Coh(X)) (1.4.1):

K[Ln]±K = q±
1
2 ((1,0),(1,n))[Ln]± = q±1[Ln]± for all n ∈ Z;

(KH) follows as above from the definitions:

KTrK = q±
1
2 ((1,0),(0,r))Tr = Tr for all r ∈ Z \ {0};

(XX) Consider Corollary 3.3.7: For n,m ∈ Z it holds:

[[Ln]+, [Lm]−] = −q− 1
2
K(1,m)θ

+
n−m −K(−1,−n)θ

−
n−m

q
1
2 − q− 1

2
.

In particular, we get

Φ([X+
n , X

−
m]) = −v[[Ln]+, [L−m]−]

=
K(1,−m)θ

+
n+m −K(−1,−n)θ

−
n+m

v − v−1

= Φ
(
C−mKψ+

n+m − C−nK−1ψ−n+m
v − v−1

)
;

(HX±) Proposition 3.3.13 and Corollary 3.3.15;

(HH) follows from Corollary 3.3.12;

(X2±) Proposition 4.2.2 for the positive half, note for the negative half for k, l ∈ Z:

Φ
(
X−k+2X

−
l +X−l+2X

−
k + (q − q−2)(X−k+1X

−
l+1 +X−l+1X

−
k+1)− q−1(X−k X

−
l+2 +X−l X

−
k+2)

)
= q

(
[L−k−2]−[L−l]− + [L−l−2]−[L−k]−

+(q − q−2)([L−k−1]−[L−l−1]− + [L−l−1]−[L−k−1]−)
−q−1([L−k]−[L−l−2]− + [L−−l[L−k−2]−)

)
= q([L−k−2]−[L−l]− + [L−l−2]−[L−k]−)

+(q2 − q−1)([L−k−1]−[L−l−1]− + [L−l−1]−[L−k−1]−)
−([L−k]−[L−l−2]− + [L−−l[L−k−2]−)

= −
(
[L−k]−[L−l−2]− + [L−l]−[L−k−2]−

+(q−1 − q2)([L−k−1]−[L−l−1]− + [L−l−1]−[L−k−1]−)
−q([L−k−2]−[L−l]− + [L−l−2]−[L−k]−)

)
4.2.2= 0;

(X3−,±) follows from (X3+,+
c ) and (X3−,−c );

(X3+,±) follows from (X3+,+
c ) and (X3−,−c ). By Remark 4.1.2 we write (X3+,+

c ) as

[[X+
r+1, X

+
r ]v2 , X+

r ]v4 = 0 for all r ∈ Z.

By using the Auslander-Reiten translation τ and its inverse τ−, this follows from our
calculation in Example 3.2.1 where the relation (X3+,+

c ) is proven for r = −1. Similarly
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one gets (X3−,−c ), namely for the two halves we have the same relation in the composition
algebra but the map Φ also switches the indices hence we have

Φ([[X−r+1, X
−
r ]v−2 , X−r ]v−4) = v3[[[L−r−1]−, [L−r]−]v−2 , [L−r]−]v−4

= p(v)[[M−r−1]−, [L−r]−]v−4

= p(v)(v4[M−r−1 ⊕ L−r]− − v−4q4[M−r−1 ⊕ L−r]−)
= 0

for some function p.

4.3 The Isomorphism between UDr
v

(
A

(2)
2

)
and DC(Coh(X))

From the Proposition 4.2.4 in the previous section, we already have a surjective map

Φ : UDrv
(
A

(2)
2

)
� DC(Coh(X)).

Hence it remains to be shown that this map is also injective.

Remark 4.3.1 Using the known basis of the Hall algebra H(Coh(X)) and our knowledge
of the Auslander-Reiten quiver we get the following basis of the double composition algebra
DC(Coh(X)): A basis element in H(Coh(X)) is of the form

[L⊕n1
i ⊕M⊕m1

i+1 ⊕ L
⊕n2
i+1 ⊕ ...⊕M

⊕mj−i
j︸ ︷︷ ︸

vector bundle part

⊕T ⊕pr,zr,z ⊕ ...⊕ T ⊕ps,ys,y︸ ︷︷ ︸
torsion part

]

where n1, ..., nj−i,m1, ...,mj−i, pr,z, ..., r, ..., s ∈ N0, i, j ∈ Z, y, ..., z ∈ X, written as a direct sum
of indecomposables.

In DC(Coh(X)) we get the indecomposable rank 2 vector bundles by using the q-commutator.
However, we do not get all of the torsion modules, but only "direct sums of the Tr for r ∈ Z\{0}",
where we set T−r = T−r for r ∈ N. This follows from the fact that Φ in Proposition 4.2.4 is
surjective.

Since there are only trivial extensions M → M ⊕ N → N if M is to the right of N in the
Auslander-Reiten quiver, we get as a basis written as products in the generators of the double
composition algebra elements of the form:

[Li]+n1 · [[Li+1]+, [Li]+]b1q · [Li+1]+n2 · ... · [[Lj+1]+, [Lj ]+]bj−iq ·
T t1r1 · ... · T

ts
rs ·K

k · Cc· (9)
[[Lx]−, [Lx−1]−]d1

q−1 · [Lx−1]−m1 · ... · [Ly]−mx−y

for i, j, x, y ∈ Z, n1, ..., nj−i,m1, ...,mx−y, b1, ..., d1, ..., dx−y ∈ N0 with n1 + b1 6= 0 6= nj−i + bj−i,
r1 < r2 < ... < rs ∈ Z, t1, ..., ts ∈ N, k, c ∈ Z.

Lemma4.3.2 Any element in UDrv
(
A

(2)
2

)
may be written as a C-linear combination of elements

of the form

X+li
i [X+

i+1, X
+
i ]biq X

+li+1
i+1 [X+

i+2, X
+
i+1]bi+1

q ...X
+lj
j ·Hh1

g1
...Hhr

gr ·K
kCc
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·X−mnn [X−n−1, X
−
n ]anq X

−mn−1
n−1 [X−n−2, X

−
n−1]an−1

q ...X−moo , (10)

where g1 < g2 < g3 < ... < gr, i < j, n > o, li, bi, ..., bj , lj , h1, ..., hr,mn, an, ..., ao,mo ∈ N0,
k, c ∈ Z.

Proof. The basic idea is, given a word in the generators, one can use the relations of UDrv
(
A

(2)
2

)
to write it as a linear combination of elements of the above form.

In more detail:
Every element in UDrv

(
A

(2)
2

)
is a linear combination of words in the generators. Hence we

show that any word can be written as a linear combination of elements of the above form instead
of taking a general element. We do this by following these steps:

• We pull all letters X−n to the right:

– Since C is central, we can pull X−n past C-factors.
– Using (KX−) we can pull X−n past K-factors and get factors of v.

X−n ·Kr = v2rKr ·X−n for r ∈ Z.

– Using (XX) we can pull X−n past X+
m by generating additionally new summands

without X−n and X+
m but Hr‘s.

X−n X
+
m = X+

mX
−
n +

C−nK−1ψ−n+m − C−mKψ+
n+m

v − v−1 ,

where the ψ±‘s are given by the generating series
∑∞
k=0 ψ

±
±ku

k = exp
(
±(v − v−1)

∑∞
l=1H±lu

l
)
.

– Using (HX−) we can pull X−n past Hr by generating an additional summand without
X−n and Hr but with X−n+r.

X−n Hr = HrX
−
n −

1
r

[2r]v(v2r + v−2r + (−1)r+1)X−n+r.

Hence we can write any word in the generators as a linear combination of words where all
X−n -factors are on the very right.
So we now consider only words in the form AB where A is a word in the generators X+

i ’s,
Hr’s, K±1 and C±1 and B is a word only in the generators X−n ’s.

• We pull all letters with X+
i to the left:

So we want to order the word A. Similar to the X−n case, we use the relations:

– Since C is central, we can pull X+
i past C-factors.

– Using (KX+) we can pull X+
i past K-factors and get factors of v.

X+
i ·K

r = v−2rKr ·X+
i for r ∈ Z.

– Using (HX+) we can pull X+
i past Hr by generating an additional summand without

X+
i and Hr but with X+

i+r.

X+
i Hr = HrX

+
i + 1

r
[2r]v(v2r + v−2r + (−1)r+1)X+

i+r.
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Hence any element can be written as a linear combination of words of the form CA′B
where C is a word in X+

i ’s, A′ is a word in the generators Hr’s, K±1 and C±1 and B is a
word only in the generators X−n ’s.

• Now we want to bring more order to each part of the word.

– The first part, the word in X+
i ’s:

The idea is to use the relations (X2+) and (X3±,+) to get the required form.
Using (X2+) we can reduce the distance between the indices, i.e. X+

k X
+
l can be

written as:

X+
k X

+
l = (v4−v−2)X+

k−1X
+
l+1+v2X+

k−2X
+
l+2+v2X+

l X
+
k +(v4−v−2)X+

l+1X
+
k−1−X

+
l+2X

+
k−2

If k > l+2 then the indices are closer together and some even in the right order where
the left index is smaller than the right one in a product.
In the case k = l + 2 we have by pulling the last summand to the left-hand side and
dividing by 2:

X+
k X

+
k−2 = (v4 − v−2)X+2

k−1 + v2X+
k−2X

+
k

Hence both products are in the required form.
Now we need to consider the case X+n

k+1X
+m
k with n,m ∈ N. Using the relation (X2+)

we would not gain anything. But we can use (X3±,+) to pull at least some to the
right side, worst case we get something of the form (X+

k+1X
+
k )a.

We do induction on n+m:
1. Case n+m = 2: We get directly

X+
k+1X

+
k = v−2X+

k X
+
k+1 − v

−2[X+
k , X

+
k+1]v2 ,

which is the required form.
2. Case n+m > 2:
∗ m = 1, n > 1:

X+n
k+1X

+
k = X+n−2

k+1 X+
k+1X

+
k+1X

+
k

(X3−,+)= X+n−2
k+1 (−v6X+

k X
+
k+1X

+
k+1 + (v4 + v2)X+

k+1X
+
k X

+
k+1)

= −v6X+n−2
k+1 X+

k︸ ︷︷ ︸
=:?1

X+
k+1X

+
k+1 + (v4 + v2)X+n−1

k+1 X+
k︸ ︷︷ ︸

=:?2

X+
k+1

?1 and ?2 can be written by induction in the required form, hence this whole
section can be written in such a way.

∗ m > 1, n ≥ 1:

X+n
k+1X

+m
k = X+n−1

k+1 X+
k+1X

+
k X

+
k X

+m−2
k

(X3+,+)= X+n−1
k+1 ((v4 + v2)X+

k X
+
k+1X

+
k − v

6X+
k X

+
k X

+
k+1)X+m−2

k

= ... ’apply (X3+,+) (m− 1)-times’
= X+n−1

k+1 (λX+m−1
k X+

k+1X
+
k + µX+m

k X+
k+1)

= λX+n−1
k+1 X+m−1

k X+
k+1X

+
k︸ ︷︷ ︸

=:?3

+µX+n−1
k+1 X+m

k︸ ︷︷ ︸
=:?4

X+
k+1
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for some λ, µ ∈ C.
On ?4 we can use the induction hypothesis. For ?3 either n = 1 and we can
apply the first case on the two right factors X+

k+1X
+
k and are done.

Also note:

X+
k+1[X+

k , X
+
k+1]v2 = X+

k+1X
+
k X

+
k+1 − v

2X+2
k+1X

+
k

= X+
k+1X

+
k X

+
k+1 + v8X+

k X
+2
k+1 − (v6 + v4)X+

k+1X
+
k X

+
k+1

= (1− v6 − v4)X+
k+1X

+
k X

+
k+1 + v8X+

k X
+2
k+1 (11)

The first summand can be written as claimed by applying the first case on
the first two factors.
In particular using the induction hypothesis on X+n−1

k+1 X+m−1
k in ?3 we are

considering linear combinations of

X+a
k [X+

k , X
+
k+1]bv2X+c

k+1X
+
k+1X

+
k = −v−2X+a

k [X+
k , X

+
k+1]bv2X+c

k+1[X+
k , X

+
k+1]v2

+v−2X+a
k [X+

k , X
+
k+1]bX+c

k+1X
+
k X

+
k+1,

where a+ b = m− 1, b+ c = n− 1. The first summand can be reordered by
equation (11) and the last one by using the induction hypothesis on all but
the last factor X+

k+1.

In total, we can write any word in X+
i ’s as a linear combination of words of the form

X+n1
i1

[X+
i2
, X+

i2+1]n2
v2X

+n3
i3

...[X+
ir
, X+

ir+1]nrv2 ,

where i1 ≤ i2 < i3 ≤ i4 < ... ≤ ir and n1, n2, ..., nr ∈ N0.
– The word in X−i ’s works analogously to the X+

i ’s case due to the symmetry of the
relations.
Hence we can write any word in X−i ’s as a linear combination of words of the form

X−n1
i1

[X−i2 , X
−
i2−1]n2

v−2X
−n3
i3

...[X−ir , X
−
ir−1]nrv−2 ,

where i1 ≥ i2 > i3 ≥ i4 > ... ≥ ir and n1, n2, ..., nr ∈ N0.
– Since the Hr commute among themselves and with K and C, we may order the middle

word in any way. In particular we can write any word in the generators Hr’s, K and
C in the form:

Hn1
g1
Hn2
g2
...Hnr

gr K
kCc,

where g1 < g2 < .... < gr, for some r ∈ N0, n1, ..., nr ∈ N, k, c ∈ Z.

All in all, we may order any expression in the generators as a linear combination of elements of
the form (10). Hence we are done.

Now, this finally allows us to formulate and prove the main theorem.

Theorem4.3.3 There is C-algebra isomorphism Φ : UDrv
(
A

(2)
2

)
→ DC(Coh(X)), given on the

generators by:

X+
n 7→ [Ln]+, X−n 7→ −v[L−n]−, Hr 7→ Tr, K 7→ K, C 7→ C for n ∈ Z, r ∈ Z \ {0}.
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Proof. From Proposition 4.2.4 we already have a surjection Φ : UDrv
(
A

(2)
2

)
→ DC(Coh(X))

sending the generators to generators. It remains the injectivity.
Let f ∈ ker(Φ). By the above Lemma 4.3.2 we may write f as a linear combination of

elements of the form:

X+li
i [X+

i+1, X
+
i ]biq X

+li+1
i+1 [X+

i+2, X
+
i+1]bi+1

q ...X
+lj
j ·Hh1

g1
...Hhr

gr ·K
kCc

·X−mnn [X−n−1, X
−
n ]aiq X

−mn−1
n−1 [X−n−2, X

−
n−1]an−1

q ...X−moo ,

But we already know that the corresponding images are a basis inDC(Coh(X)). In particular,
if Φ(f) =

∑
λ... = 0 all pre-factors must be 0. Hence f = 0 and therefore ker(Φ) = {0}. In

particular, Φ is injective.

4.4 Passing to Q(ṽ)-Algebras
In most cases, quantum groups are defined as algebras over C(ṽ) or even R = Z[ṽ, ṽ−1], where q̃
respectively ṽ is an indeterminate instead of q ∈ C× \ {1} respectively v ∈ C× \ {±1}. Then one
may go from there via tensoring to the definition we have used. Now recall the Definition 2.6.2.

Definition 4.4.1 • The generalized quantum group Ũṽ(A) associated to a generalized Car-
tan matrix A ∈ ZI×I is the associative algebra over Q(ṽ) with 1 generated by the set
{ei, fi,K±1

i | i ∈ I} with relations:

(1) Ki ·K−1
i = 1 = K−1

i Ki and KiKj = KjKi for all i, j ∈ I;

(2) KjeiK
−1
j = ṽ

aji
j ei for all i, j ∈ I;

(3) KjfiK
−1
j = ṽ

−aji
j fi for all i, j ∈ I;

(4) eifj − fjei = δij
Ki−K−1

i

ṽi−ṽ−1
i

for all i, j ∈ I;

(5)
∑1−aij
k=0 (−1)k

[ 1−aij
k

]
i
e

1−aij−k
i eje

k
i = 0 for all i 6= j ∈ I;

(6)
∑1−aij
k=0 (−1)k

[ 1−aij
k

]
i
f

1−aij−k
i fjf

k
i = 0 for all i 6= j ∈ I.

where now the quantum numbers are with the parameter q̃ := ṽ2 (respectively ṽ) instead
of q respectively v.

• Analogously, the generealized Drinfeld representation ŨDrṽ

(
A

(2)
2

)
the associative Q(ṽ)-

algebra with generators (G) = {X±k , Hl, K
±1, C±1 | k ∈ Z, l ∈ Z \ {0}} and the

relations of Definition 4.1.1 where we replace v by ṽ.

Remark 4.4.2 For v ∈ C× not a root of unity, one may get back to our original definitions by
considering C as a R := Z[ṽ, ṽ−1]-module where ṽ acts via multiplication with v. Then it holds

Ũṽ(A)⊗R C ∼= Uv(A) and ŨDrṽ

(
A

(2)
2

)
⊗R C ∼= UDrv

(
A

(2)
2

)
as C-algebras.
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Similarly, we want to consider generalized double composition algebras. They are defined as
follows:

Let P = {pt | t ∈ N, p prime} ⊂ N. Denote byDHq(Coh(X)) respectivelyDH
(

RepFq

(
• (1,4)−→ •

))
the reduced Drinfeld doubles of the Fq-linear categories as before for q ∈ P.

Definition 4.4.3 We define the generalized (reduced) Hall algebras by

DHgen(Coh(X)) :=
∏
q∈P

DHq(Coh(X))

and
DHgen

(
• (1,4)−→ •

)
:=
∏
q∈P

DH
(

RepFq

(
• (1,4)−→ •

))
.

Let us consider the following elements in DHgen
(
• (1,4)−→ •

)
:

• ṽ := (vq)q∈P , where vq ∈ DH
(

RepFq

(
• (1,4)−→ •

))
is given by the (positive) root of q;

• S̃±i = ([Sqi ]±)q∈P , where [Sqi ] is the class of the simple object Si in RepFq

(
• (1,4)−→ •

)
for

i ∈ {1, 2};

• K̃α = (Kα,q)q∈P , whereKα,q is the element of the group algebra C

(
K0

(
RepFq

(
• (1,4)−→ •

)))
corresponding to α ∈ K0.

Then DHgen
(
• (1,4)−→ •

)
can be considered as a Q(ṽ)-algebra.

Similarly, consider the following elements in DHgen(Coh(X)):

• ṽ := (vq)q∈P , where vq ∈ DHq(Coh(X)) is given by the root of q;

• L̃±n := ([Lqn]±)q∈P , where [Lqn] is the class of the line bundle Ln in Coh(X) (over the field
Fq);

• K̃ := (Kq)q∈P , where Kq is the element K ∈ DHq(Coh(X));

• C̃ := (Cq)q∈P , where Cq is the element C ∈ DHq(Coh(X));

Then DHgen(Coh(X)) can be considered as a Q(ṽ)-algebra.
In general, for Y an object, denote by Ỹ the element in the generalized Hall algebra where

each component is the class of Y in the respective category (if Y can be considered as an element
in each Fq-linear category).

Definition 4.4.4 • The generalized double composition algebra DCgen
(
• (1,4)−→ •

)
is defined

as the Q(ṽ)-subalgebra of the generalized Hall algebra DHgen
(
• (1,4)−→ •

)
generated by the

elements {S̃±i ,Kα | i ∈ {1, 2}, α ∈ K0}.
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4.4 Passing to Q(ṽ)-Algebras 4

• The generalized double composition algebraDCgen(Coh(X)) is defined as the Q(ṽ)-subalgebra
of the generalized Hall algebra DHgen(Coh(X)) generated by the elements {L̃±n , K̃, C̃ | n ∈
Z}.

Then by a result of Green (see [16], [31]) we have

DCgen

(
• (1,4)−→ •

)
∼=−→ Ũq̃

(
A

(2)
2

)
,

S̃+
1 7→ e1,

S̃+
2 7→ e2,

S̃−1 7→ −ṽ−1f1,

S̃−2 7→ −ṽ−4f2,

K1 7→ K1,

K2 7→ K2

as Q(ṽ)-algebras.
Similarly, by Theorem 4.3.3 and its proof, we get an isomorphism

ŨDrṽ

(
A

(2)
2

) ∼=−→ DCgen(Coh(X)),

X+
i 7→ L̃+

i ,

X−i 7→ −ṽL̃−−i,
K 7→ K̃,

C 7→ C̃

as Q(ṽ)-algebras.
Furthermore, since by the Theorem of Cramer (Theorem 1.4.5 or see [9]) the factorsDHq(Coh(X))

and DH
(

RepFq

(
• (1,4)−→ •

))
are isomorphic for each q ∈ P, their generic forms DHgen(Coh(X))

and DHgen
(
• (1,4)−→ •

)
are isomorphic as well as Q(ṽ)-algebras.

Hence as a last goal, it remains to check that the generalized double composition algebras
are also isomorphic.

For this we note for the isomorphism F : DHgen
(
• (1,4)−→ •

)
→ DHgen(Coh(X)) it holds:

S̃+
1 7→ ṽ〈L−1,L−1〉L̃−−1K̃

−1C̃ = ṽL̃−−1K̃
−1C̃,

S̃+
2 7→ M̃+

0 = ṽ
1

[4]+
[
L̃+

0 , L̃
+
−1
]
ṽ2 ,

S̃−1 7→ ṽL̃+
−1K̃C̃

−1,

S̃−2 7→ ṽ
1

[4]+
[
L̃−0 , L̃

−
−1
]
ṽ2 ,

K̃1 7→ K̃2C̃−1,

K̃2 7→ K̃C̃.

In particular, the images of the generators of the generalized double composition algebraDCgen
(
• (1,4)−→ •

)
is contained in DCgen(Coh(X)). For the other direction, we need the following statement:
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Proposition 4.4.5 (Reinecke, [28]) Let (M,Ω) be an Fq-species of a Dynkin or Euclidean
graph.

The derived reflection functors RS+
∗ and LS−∗ induce an isomorphism on the reduced Drinfeld

doubles DH(RepFq (M,Ω)) and DH(RepFq (M, s∗Ω)), which may be restricted to an isomorphism
of the double composition algebras DC(RepFq (M,Ω)) and DC(RepFq (M, s∗Ω)).

More specifically, there are formulas for the image of the generators, analogous to the Lusztig
symmetries.

For the proof see [28, Theorem 3.29].
Using this, we immediately get the following corollaries for our case k kKK−→ K:

Corollary 4.4.6 For n ∈ N0 it holds [Pn]±, [In]± ∈ DC
(

RepFq

(
• (1,4)−→ •

))
.

Proof. It holds: [I0]± = [S1]± ∈ DC
(

RepFq

(
• (1,4)−→ •

))
is clear by definition.

For P0 it holds:

[S1][S2] = v〈S1,S2〉([S1 ⊕ S2] + q4 − 1
q − 1 [P0])

= v−4(ṽ[S2][S1] + q4 − 1
q − 1 [P0])

Hence [P0] can be written as an expression in [S1] and [S2].
For n > 0, we apply Proposition 4.4.5 2n-times by considering the Coxeter functors. The Cox-

eter functor C = S+
1 S+

2 induces by the same argument an automorphism ofDC
(

RepFq

(
• (1,4)−→ •

))
.

In particular, for n ∈ N0 it holds

[Pn]± = [Cn(P0)]± ∈ DC
(

RepFq

(
• (1,4)−→ •

))
and

[In]± = [C−n(I0)]± ∈ DC
(

RepFq

(
• (1,4)−→ •

))
.

Corollary 4.4.7 For n ∈ N0 it holds P̃±n , Ĩ±n ∈ DCgen
(
• (1,4)−→ •

)
.

Corollary 4.4.8 The generators of DCgen(Coh(X)) are contained in the image F
(
DCgen

(
• (1,4)−→ •

))
.

Theorem4.4.9 The generalized double composition algebras DCgen(Coh(X)) and DCgen
(
• (1,4)−→ •

)
are isomorphic via F .
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Hence if we combine the discussed morphisms, we get an isomorphism Ũq̃

(
A

(2)
2

)
→ ŨDrṽ

(
A

(2)
2

)
:

e1 7→ −X−−1K
−1C,

e2 7→ ṽ
1

[4]+
[
X+

0 , X
+
−1
]
ṽ2 ,

f1 7→ −ṽ2X+
−1KC

−1,

f2 7→ −ṽ5 1
[4]+

[
X−1 , X

−
0
]
ṽ−2 ,

K1 7→ K−1C,

K2 7→ K2C−1.

Note, that this is not the same isomorphism that can be found in the literature, e.g. in [1] by
Akasaka where it has the form

e1 7→ X+
0 ,

e2 7→ ṽ−2 1
[4]+

CK−2 [X−0 , X−1 ]ṽ2 ,

f1 7→ X−0 ,

f2 7→ ṽ2 1
[4]+

C−1 [X+
−1, X

+
0
]
ṽ−2 K

2,

K1 7→ K,

K2 7→ CK−2,

c
1
2 7→ C

1
2 ,

where there is an additional generator c 1
2 , or in [8] by Chari and Pressley

e1 7→ X+
0 ,

e2 7→ K−2 [X+
0 , X

+
−1
]
ṽ2 ,

f1 7→ X−0 ,

f2 7→ 1
[4]2

[
X−0 , X

−
−1
]
ṽ−2 K

2,

K1 7→ K,

K2 7→ K−2,

where in the latter one there is no generator C.
But there are certainly similarities in the given forms, in particular, one may note that in

our case the generator e1 is sent to the negative part of the Drinfeld double whereas in the
isomorphisms stated by Akasaka and Chari and Pressley the generator e2 is sent to the negative
part, which is a result of considering the k-species • (1,4)−→ • instead of • (1,4)←− • which is derived
equivalent via the derived reflection functors, namely the derived equivalence

Db
(
Rep

(
• (1,4)←− •

))
→ Db(Coh(X))

has the form on the simple objects

S1 7→ L0 and S2 7→ M0[1].
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Hence by the known isomorphisms and the theorem of Cramer, we get

e1 7→ X+
0 ,

e2 7→ ṽ3 1
[4]+

[
X−0 , X

−
1
]
ṽ2 CK

−2,

f1 7→ X−0 ,

f2 7→ ṽ8 1
[4]+

C−1 [X+
0 , X

+
−1
]
ṽ−2 K

2,

K1 7→ K,

K2 7→ CK−2.

This is (almost) the isomorphism which can be found in [1], namely the two prefactors of the
images of e2 and f2 differ in the exponent of ṽ but the rest is the same. One should note
though, that Akasaka uses a slightly different definition. To be specific: instead of the form of
the relations (HX) and (XX) which we use here (see Definition 4.1.1), the exponents of the C
are different. They use the relation

[Hk, X
±
n ] = ±1

k
[2k]bkC∓

|k|
2 X±n+k

and

[X+
k , X

−
l ] =

C
k−l

2 Kψ+
k+l − C

l−k
2 K−1ψ−k+l

v − v−1 .

However, this small discrepancy may be fixed as follows:
Instead of using the generating series as in Lemma 3.3.3

exp

∑
k≥1

Tk
[2k]s

k

 = 1 +
∑
r≥1

1(0,r)s
r

and the generating series in Remark 3.3.6

1 +
∞∑
n=1

θns
n = exp

(
(v − v−1)

∞∑
r=1

Trs
r

)
,

we replace them with

exp

∑
k≥1

TkC
− k2︸ ︷︷ ︸

=:T̃k

1
[2k]s

k

 = 1 +
∑
r≥1

1(0,r)C
− r2 sr

and

1 +
∞∑
n=1

θnC
−n2︸ ︷︷ ︸

=:θ̃n

sn = exp

(v − v−1)
∞∑
r=1

TrC
− r2︸ ︷︷ ︸

=:T̃r

sr

 .

With these replacements we still have the same pairing for r > 0

(θ̃r, T̃r) = (θrC−
r
2 , TrC

− r2 ) = (θr, Tr)
3.3.11= [2r]

r
(qr + (−1)r+1 + q−r)

but slightly different coproducts:
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• For n ∈ Z:

∆̃([Ln]) = [Ln]⊗ 1 +
∑
l≥0

θlC
n−lK ⊗ [Ln−l]

= [Ln]⊗ 1 +
∑
l≥0

θ̃lC
n− l

2K ⊗ [Ln−l]

• For n ∈ N:

∆̃(T̃n) = ∆̃(Tn) · ∆̃(C−n2 )
= T̃n ⊗ C−

n
2 + C

n
2 ⊗ T̃n.

In particular in turn, they yield the relations for k ∈ N, n,m ∈ Z

[T̃k, [Ln]] = 1
k

[2k]bkC∓
k
2 [Ln+k]

and

[[Ln]+, [Lm]−] =
C
m−n

2 Kθ̃+
n−m − C

n−m
2 K−1θ̃−n−m

v − v−1 .

Similarly, the other relations may be deduced. Hence via an analogous argument and replacing
the generators Tr by T̃r etc. we get the relations as in [1].

4.5 An Orthogonal PBW-Basis of U+
v

(
A

(2)
2

)
As a last small application, we now discuss how one may compute the universal R-matrix for
Uv

(
A

(2)
2

)
. By definition, it is an element in the completion Uv

(
A

(2)
2

)
⊗̂Uv

(
A

(2)
2

)
. The com-

putation may be done by constructing an orthogonal basis, namely if we consider the Drinfeld
double D(A) of an algebra A via a non-degenerate form and one has an orthonormal basis (ai)i∈I
of A, then the universal R-matrix may be expressed as

R =
∑
i∈I

(ai ⊗ 1)⊗ (1⊗ ai) ∈ D(A)⊗̂D(A).

One of the properties is that they solve the quantum Yang-Baxter equation

R12R13R23 = R23R13R12.

Considering our constructed isomorphisms, Green’s form is easily calculated on the Hall

algebra side C
(

RepFq

(
• (1,4)−→ •

))
. The hardest part is to determine the contribution of regular

representations, but this easily follows from our knowledge of the torsion part in DC(Coh(X)).
To be more precise, given the Auslander-Reiten quiver (recall the beginning of Section 3.1), we
can directly write down an orthogonal basis with elements of the form

[Q⊕q00 ][P⊕p0
0 ][Q⊕q11 ][P⊕p1

1 ] · ... ·Rt11 R
t2
2 ... · [I

⊕i1
1 ][J⊕j00 ][I⊕i00 ] =: Zq,p,t,i,j (12)

in the positive part, where ql, pl, tr, il, jl ∈ N0 for l ∈ N0 and r ∈ N and almost all are zero, and
the factors Rr are the pre-image of the Tr in the Hall algebra of Coh(X) of the isomorphism Φ.
Furthermore, with our knowledge of the bilinear form regarding the elements Tr, one can easily
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4

deduce the norms to compute the universal R-matrix in DC

(
• (1,4)−→ •

)
and Uv

(
A

(2)
2

)
. Only

the fact that monomials in Tr’s form an orthogonal basis has not been discussed, though it will
be proven more in detail.

Elements of the form (12) correspond to the elements

[Q⊕q00 ⊕ P⊕p0
0 ⊕Q⊕q11 ⊕ P⊕p1

1 ⊕ ...”Rt11 R
t2
2 ”...⊕ I⊕i11 ⊕ J⊕j00 ⊕ I⊕i00 ]

up to a pre-factor by construction, namely using the knowledge given by the Auslander-Reiten
quiver, there are no other extensions that could appear as a summand in the product. Fur-
thermore, it is a concrete description of the decomposition into indecomposable summands. In
particular, if one takes two such products and if even one of the factors differs, Green’s form of
the two vanishes.

It remains to compute the norms. First, one may consider the norms on the C(Coh(X))-side
of the Tr. The torsion part is generated by the Tr in the sense

Λ := C(Tor(X)) = C[T1, T2, ...],

which is also N0-graded with deg(Tr) = r. Furthermore, each generator is primitive (in the
unextended version)

∆(Tr) = Tr ⊗ 1 + 1⊗ Tr

for r ∈ N. If we consider elements of the form

Tm = Tm1
1 Tm2

2 Tm3
3 · ...,

where m = (m1,m2, ...) ∈ NN
0 with almost all entries 0, it holds for Green’s form:

Lemma4.5.1 For m,n ∈ NN
0 with almost all entries 0 it holds

• (Tm)m is an orthogonal basis of Λ;

• (Tm, Tn) = δm,n ·
∏
j≥1(mj ! · b

mj
j ), where bj = [2j]

j
qj+(−1)j+1+q−j

v−v−1 as before.

Proof. An important fact that we use here is that Green’s form is a Hopf pairing.

• Claim: (Tmr , Tmr ) = m! · bmr for m, r ∈ N.
This can be done by induction. (Tr, Tr) = br was proven in Lemma 3.3.10.
Now for the case m > 1:

(Tmr , Tmr ) = (∆(Tr)m, Tm−1
r ⊗ Tr)

= ((Tr ⊗ 1 + 1⊗ Tr)m, Tm−1
r ⊗ Tr)

= m · (Tm−1
r , Tm−1

r )(Tr, Tr)
ind.= m! · bmr

where we use that in (Tr ⊗ 1 + 1⊗ Tr)m only the summand mTm−1
r ⊗ Tr yields a non-zero

pairing by considering the degree of each term.
Also by degree considerations, we have (Tmr , Tnr ) = 0 for n 6= m.
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• Furthermore, if we pair Tr with Tm with mj 6= 0 for some j 6= r, we get using the mth

coproduct

∆(m)(Tr) = Tr ⊗ 1⊗ 1⊗ ...⊗ 1︸ ︷︷ ︸
m times

+1⊗ Tr ⊗ 1⊗ ...⊗ 1 + ...+ 1⊗ ...⊗ 1⊗ Tr

where m :=
∑
jmj <∞:

(Tr, Tm) = (∆(m)(Tr), T⊗m1
1 ⊗ T⊗m2

2 ⊗ ...)
= ...+ ...(1, Tj)...+ ...(Tr, Tj)...+ ...(1, Tj)...+ ...

= 0,

since each summand has at least one factor 0. Similarly, it follows (T ar , Tm) = 0 with
mr = 0, since ∆(a)(Tm) can be written using expressions in Tj with j 6= r and 1’s.

• By an analogous argument, if say m = (m1,m2, ...,ml) and n = (n1, ..., nl) with nl 6= 0
and ml = 0:

(Tm, Tn) = (Tm, Tn1
1 · ... · T

nl−1
l−1 · T

nl
l )

= (∆(Tm), Tn1
1 · ... · T

nl−1
l−1 ⊗ T

nl
l )

=
∑

(T ′, Tn1
1 · ... · T

nl−1
l−1 )(T ′′, Tnll )

= 0,

since T ′′ is an expression in T1, ..., Tl−1 and by the previous argument, the pairing (T ′′, Tnll )
vanishes.

• Now, consider n = (n1, ..., nl) with nl 6= 0 and a ∈ N. The pairing (T al , Tn) is only unequal
zero if a · l =

∑l
j=1 jnj , therefore unless Tn = T al which was discussed in the first case, we

may assume 0 6= nl < a.

(T al , Tn) = (T al , T
n1
1 · ... · T

nl−1
l−1 · T

nl
l )

= (∆(Tl)a, Tn1
1 · ... · T

nl−1
l−1︸ ︷︷ ︸

orthgonal to T b
l

⊗Tnll )

= (T ′, Tn1
1 · ... · T

nl−1
l−1 )(Tnll , Tnll )

= 0,

since T ′ is an expression in Tl and 1, and there exists j < l with nj 6= 0.

• Now, by the last case and analogous step-by-step calculations we get (Tm, Tn) 6= 0 if and
only if m = n. Hence the monomials form an orthogonal basis.
Furthermore, the second to last line in the calculation yields

(Tm, Tn) = δm,n ·
∏
j≥1

(Tmjj , T
mj
j )

= δm,n ·
∏
j≥1

(mj ! · b
mj
j ).
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To recap, therefore elements of the form (12) are orthogonal and by construction form an
orthogonal basis.

As mentioned before, one may construct the universal R-matrix for Uv
(
A

(2)
2

)
with a more

accessible understanding of the formulas, or even some further applications.
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Hall algebra approach. Glasgow Mathematical Journal, 54(2):283–307, 2012.

[7] V. Chari and A. Pressley. A Guide to Quantum Groups. Cambridge University Press, 1995.

[8] V. Chari and A. Pressley. Twisted quantum affine algebras. Comm Math Phys, 196:461–476,
August 1996.

[9] T. Cramer. Double Hall algebras and derived equivalences. Advances in Mathematics,
224(3):1097–1120, June 2010.

[10] I. Damiani. Drinfeld realization of affine quantum algebras: the relations. Publ. Res. Inst.
Math. Sci., 48(3):661–733, 2012.

[11] K. Dietrich. Funktorielle Operationen auf präprojektiven Komponenten von zahmen Bi-
moduln. Master’s thesis, Universität Paderborn, February 2008.

[12] V. Dlab. Representations of valued graphs. Presses de l’Université de Montréal, 1980.

[13] V. Dlab and C. M. Ringel. Indecomposable representations of graphs and algebras. Memoirs
of the American Mathematical Society, 173 = Vol. 6(3), 1976.

[14] V. G. Drinfeld. A new realization of Yangians and of quantum affine algebras. Dokl. Akad.
Nauk SSSR, 36(2):212–216, 1988.

[15] V. G. Drinfeld. Quantum groups. Journal of Soviet Mathematics, 41(2):898–915, 1988.

[16] J. A. Green. Hall algebras, hereditary algebras and quantum groups. Inventiones mathe-
maticae, 120:361–377, December 1995.

[17] P. Hall. The algebra of partitions. In Proc. 4th Canad. math. congress, Banff 1957, pages
147–159. Univ. of Toronto Press, 1959.

[18] C. Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1995.

[19] A. Klimyk and K. Schmüdgen. Quantum Groups and Their Representations. Theoretical
and Mathematical Physics. Springer Berlin, Heidelberg, 1 edition, 1997.

97



References 4

[20] D. Kussin. Parameter curves for the regular representations of tame bimodules. Journal of
Algebra, 320(6):2567–2582, September 2008.

[21] D. Kussin. Noncommutative curves of genus zero: related to finite dimensional algebras.
Memoirs of the American Mathematical Society, 201(942), 2009.

[22] D. Kussin. Weighted noncommutative regular projective curves. Journal of Noncommutative
Geometry, 10(4):1465–1540, 2016.

[23] J. Lemay. Valued graphs and the representation theory of Lie algebras. Axioms, 1, 09 2011.

[24] G. Lusztig. Introduction to Quantum Groups. Springer Science and Business Media, 2010.

[25] I. G. Macdonald. Symmetric functions and Hall polynomials. The Clarendon Press, Oxford
University Press, New York, 1979. Oxford Mathematical Monographs.

[26] C. Reinecke. Hallalgebren zahmer Gattungen. PhD thesis, Universität zu Köln, 2017.

[27] I. Reiner. Maximal Orders. London Mathematical Society monographs series: London
Mathematical Society. Clarendon Press, 2003.

[28] C. M. Ringel. Hall algebras, volume 26,1 of Banach Center publications, pages 433–447.
Balcerzyk, Stanislaw, 1990.

[29] C. M. Ringel. Hall algebras revisited. 1992.

[30] C. M. Ringel. The Hall algebra approach to quantum groups. Escuela Latinoamericana de
Matemáticas, 1993.

[31] C. M. Ringel. Green’s theorem on Hall algebras. In CMS Conference Proceedings, 1996.

[32] O. Schiffmann. Lectures on Hall algebras. arXiv Mathematics e-prints, January 2006.
arXiv:math/0611617v2 [math.RT].

[33] E. Steinitz. Zur Theorie der Abel’schen Gruppen. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 9:80–85, 1901.

[34] J. Xiao. Drinfeld double and Ringel-Green theory of Hall algebra. J. Algebra, 190(1):100–
144, 1997.

[35] A. V. Zelevinsky. Representations of Finite Classical Groups. A Hopf Algebra Approach.
Springer Berlin, Heidelberg, 1981.

98


