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Abstract

POTASSIUM titanyl phosphate (KTP) and related materials are largely applied in (nonlinear)
optics and could also advance in electrochemical applications, e. g., as electrodes for alkali-

ion batteries. Unfortunately, its characteristic photochromic damage, so-called gray tracks,
strongly limits the application of KTP in optical devices, but may also affect its electrochemi-
cal performance. However, it is still unclear, which microscopic mechanisms really cause gray
tracks to form, and why they do not affect the whole KTP-type family to the same extent.

In this thesis, we will use density functional theory (DFT) to investigate (i) the suitability
of potassium titanyl arsenate (KTA) for potassium-ion batteries, (ii) the absorption signatures
of oxygen vacancies, causing those Ti3+ centers to form, which are commonly discussed to
facilitate gray track formation, and (iii) the influence of different chemical environments on the
properties of these Ti3+ centers.

KTA electrodes are expected to give rise to high average working voltages and to be charac-
terized by modest volume deformations as well as low activation energies, being thus a promis-
ing cathode and anode material.

Modified hybrid functionals are used for the computation of optical absorption spectra. We
find the vacancies absorption to be similar to the one of gray tracks and strongly dependent on
the light polarization as well as their charge state.

Finally, our data suggest that the current gray-tracking model, especially regarding the po-
sition of the Ti3+ center relative to the oxygen vacancy, must be revised. Moreover, gray tracks
could be the result of a two-step process involving both the formation of an oxygen vacancy
and a displacement of potassium ions in the cell.
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Zusammenfassung

KALIUMTITANYLPHOSPHAT (KTP) und verwandte Kristalle sind in der (nichtlinearen) Op-
tik weit verbreitet und scheinen auch in der Elektrochemie, z.B. in Alkali-Ionen-Batterien,

vielversprechend zu sein. Der Einsatz von KTP in optischen Anwendungen ist jedoch durch
die Ausbildung sog. Gray Tracks eingeschränkt, die zudem auch die elektrochemische Perfor-
mance beeinträchtigen könnten. Es ist bisher unklar, welche genauen mikroskopischen Mech-
anismen zur Ausbildung von Gray Tracks führen und warum die gesamte KTP-Familie nicht
im gleichen Maße betroffen ist.

In dieser Arbeit untersuchen wir mittels Dichtefunktionaltheorie (DFT) (i) die Eignung
von Kaliumtitanylarsenat (KTA) für Kalium-Ionen-Batterien, (ii) die Absorptionsspektren von
Sauerstoffvakanzen, welche jene Ti3+-Zentren induzieren, die im Verdacht stehen, die Bildung
der Gray Tracks zu begünstigen, und (iii) den Einfluss verschiedener chemischer Umgebungen
auf die Eigenschaften dieser Ti3+-Zentren.

Es zeigt sich, dass KTA-Elektroden potenziell hohe mittlere Arbeitsspannungen, geringe
Volumenänderungen und niedrige Aktivierungsenergien aufweisen und als Kathode sowie als
Anode geeignet sein könnten.

Mittels modifizierter Hybridfunktionale berechnete Absorptionsspektren zeigen, dass die
Absorption von Sauerstoffvakanzen jener der Gray Tracks ähnelt und zudem von der Lichtpo-
larisation und deren Ladungszustand abhängig ist.

Es ergibt sich zudem, dass das aktuelle Gray-Track-Modell zu revidieren ist, besonders was
die Position der Ti3+-Zentren relativ zur Vakanz angeht. Zudem könnten Gray Tracks das
Ergebnis eines zweistufigen Prozesses sein, der sowohl die Bildung einer Sauerstoffvakanz
als auch die Verschiebung von Kaliumionen umfasst.
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1
Introduction:

Perfect Imperfections

THE presence of defects in a crystal is commonly considered a limiting factor and there is a
rigorous quest for strategies to reduce them. In fact, they can lead to a series of undesirable

effects for applications: From a reduced efficiency of solar cells[1–3], to leakage currents[4, 5], to
promoting the failure of lasers[6, 7]. Surprisingly, already modest defect concentrations (com-
mon concentrations are 100 or less ppm) can have a strong impact on the material.[8]

But, on the other hand, the effects arising from modifications to the crystal lattice can also
be exploited for applications or to customize the characteristics of a material, e. g., its dielectric
or conduction properties. In this case, however, one would refer to these impurities as doping
rather than defects. For example, doped crystals are commonly applied in electronics[9], but
can also be utilized for the construction of (tunable) solid-state lasers[10], to induce supercon-
ductivity[11], for the realization of waveguides[12], or to realize room-temperature qubits for
quantum computing[13]. Another field, in which the intentional creation of vacancies and inter-
stitials plays a major role is electrochemistry, for example within lithium-ion batteries. In fact,
the charge transfer from one electrode to the other is accompanied by the (de)intercalation of
ions[14, 15].

In both cases, it is therefore indispensable to gain a thorough understanding about the for-
mation mechanisms and the influence of impurities (dopants) on the host material. Applying
this knowledge, crystals of superior quality and with tailored properties for applications can
be grown.

In this context, an interesting material to illustrate the impairing and enhancing effects of
defects is potassium titanyl phosphate (KTiOPO4, KTP). First synthesized in 1890[16], KTP fea-
tures an exceptional combination of properties, which enables its application in plenty of de-
vices: The crystal is already well-established in the optical field[17–27] and the crystal (together
with other isomorphs) has recently also turned out to be a promising material for electrochem-
ical applications, especially in the context of alkali-ion batteries, e. g., sodium (Na), potassium
(K), or rubidium (Rb), as substitutes for technologies based on lithium (Li)[28–40].
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2 1. INTRODUCTION

Unfortunately, KTP crystals suffer from characteristic photochromic damage, the so-called
gray tracking, which negatively affects the crystals’ properties.[41–54] Different processes, for
example high-intensity laser light[41–44], electric fields[45–47] or X rays[48], can lead to their for-
mation. Gray tracks are characterized by a dark coloration and are thus an evident drawback
for optical devices, e. g., because they show a high absorption of the fundamental and second-
harmonic radiation in second-harmonic generation (SHG) applications[42–44, 46].

The formation of gray tracks is discussed to be related to the reduction of Ti atoms (i. e.,
the formation of Ti3+ centers) as a result of the charge-compensation process of potassium (K)
vacancies by a variety of point defects.[44, 47, 49–54] Among these, centers attributed to oxygen
vacancies are unique in being thermally stable[54].

In order to enhance the resistivity of KTP against the formation of gray tracks, treatments
leading to an overall improved stoichiometry with respect to the K content[55] or a small ru-
bidium (Rb) doping[56] were found to be beneficial. The effects of both approaches are similar:
The former directly reduces the overall K-vacancy concentration. The latter reduces the ionic
conductivity in the crystal and, therefore, the formation of K vacancies. As a consequence, the
formation of charge-compensating O vacancies and related Ti3+ centers is hindered.

However, the mechanisms leading to the formation of gray tracks could involve more com-
plicated processes. In fact, K ions themselves have also been discussed in the context of gray
tracking: Mürk et al.[48] indicated Ti3+ centers caused by K interstitials to be responsible for the
gray track formation. Moreover, Mu and Ding[57] resolved an "invisible damage" and attributed
its cause to the drift of K ions in the cell.

The high ionic conductivity, caused by the peculiar channel structure in KTP, on the other
hand, is really advantageous in the context of electrochemistry. In fact, to guarantee an effi-
cient (de)charging of a battery, ions should be allowed to freely migrate through the electrodes.
Nevertheless, since gray tracks are related to trapped charge carriers, this phenomenon might
also impair the electrochemical performance of KTP crystals.

This motivates the present study conducted in the framework of density functional theory
(DFT), in which we aim at:

Investigating the suitability of potassium titanyl arsenate (KTiOAsO4, KTA) for electro-
chemical applications: More precisely, we will test the suitability of KTA crystals (less affected
by gray tracks[58]) for electrodes in K-ion batteries. Both the cathode and the anode material
will be simulated. Thereby, we will concentrate on the calculation of average voltages arising
from the (de)intercalation of K atom in the crystal, volume deformations, and ion (vacancy)
diffusion mechanisms;

Calculating the absorption properties of charged O vacancies in KTP: Since O vacancies
(and related Ti3+ centers) seem to be directly connected to the gray-track phenomenon, it is
important to characterize their absorption properties to better understand their role in gray
tracking. Therefore, modified hybrid functionals are used to achieve (i) a reliable description of
defect-related mid-gap levels and (ii) realistic absorption properties. This enables a quantitative
comparison of the absorption signatures of these vacancies with those of gray tracks;

Investigating the influence of the chemical environment on the O-vacancy-related Ti3+
centers: Since real KTP crystals can show rather high K-vacancy concentrations[59] and a Rb
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doping[56] is beneficial to prevent the formation of gray tracks, it is important to investigate,
how the properties of Ti3+ centers are influenced by these chemical environments relevant for
applications. New strategies to increase the resistance of KTP against gray tracking could be
developed on the footing of this investigation.

Structure of the thesis: The thesis is structured as follows. First, we will introduce the KTP-
type family and give a general introduction to density functional theory in Chap. 2 and Chap. 3,
respectively.

Then, we will concentrate on the theoretical investigation of electrochemical properties.
Therefore, in Chap. 4, we will illustrate, how the electrochemical properties of a material can
be determined in the framework of DFT. Then, in Chap. 5, the discussed methodologies will be
applied to test the performance of KTA electrodes.

After this, we will focus on gray tracking in KTP. To this end, in Chap. 6, we will elaborate
on the computation of optical properties on different levels of theory. The optical properties
of charged oxygen vacancies will then be discussed in Chap. 7. Consequently, in Chap. 8, the
systematic investigation of different defect combinations will lead us to reconsider the current
gray-tracking model and formulate a revised hypothesis on the gray track formation.

Finally, concluding remarks will be provided in Chap. 9.





2
Potassium Titanyl Phosphate:

An All-In-One Device

IN this thesis, we will investigate a variety of properties of two constituents of the potas-
sium titanyl phosphate (KTiOPO4, KTP) crystal family. More precisely, we will compute the

electrochemical properties of potassium titanyl arsenate (KTiOAsO4, KTA) for potassium-ion
batteries. In addition, we will discuss the impact of charged oxygen vacancies (and related
Ti3+ centers) on the optical absorption properties of KTP. Moreover, we will investigate the in-
fluence of different chemical environments on the properties of these oxygen-vacancy-related
Ti3+ centers.

In this chapter, the KTP-type crystal family shall be introduced. First, in Sec. 2.1, we will
characterize the crystallographic properties of KTP-type crystals and common non-stoichiome-
tries of KTP, which are relevant for this work. Then, in Sec. 2.2, an insight into its different
application fields shall be given. Finally, in Sec. 2.3 the impairing phenomenon of gray tracking
will be discussed.

2.1 Crystallographic Properties

The name of the KTP-type family derives from its most prominent member: Potassium titanyl
phosphate (KTiOPO4). Crystals belonging to this family are isomorphic, which means they are
all characterized by the same crystal structure. Thus, we can concentrate on the properties of
KTP and eventually point out, how they differ from other members of interest, i. e., potassium
titanyl arsenate (KTiOAsO4, KTA) and rubidium titanyl phosphate (RbTiOPO4, RTP).

To the best of our knowledge, the first documented synthesis of KTP was performed in
1890[16], while the first comprehensive investigations of the crystallographic properties of this
family were carried out in the first half the 1970s by R. Masse and J. G. Grenier[60] and later by
Tordjman et al.[61]. It was found that, at room temperature, KTP assumes an orthorhombic crys-
tal lattice with the ferroelectric1 (non-centrosymmetric) space group Pna21. For temperatures

1The ferroelectricity of a material is characterized by a spontaneous electric polarization, which is caused by a
polar axis. In KTP this is represented by the c axis.

5



6 2. Potassium Titanyl Phosphate: An All-In-One Device

above the Curie temperature2 a transition to the paraelectric (centrosymmetric) space group
Pnan occurs. Thereby, the point groups mm2 and mmm are assumed, respectively.[55, 60, 61, 63]

The general constitution formula of the KTP-type family reads

MTiOXO4, (2.1)

where M denotes, e. g., potassium (K), rubidium (Rb), sodium (Na), thallium (Tl), caesium (Cs),
or ammonium (NH4), and X either phosphorus (P) or arsenic (As).[17] In addition, also crystals
with vanadium (V) occupying the Ti sites and fluorine (F) occupying special oxygen sites3 have
recently been synthesized.[28–40] These, however, are most relevant for electrochemical rather
than optical applications.

Table 2.1: Experimentally determined lattice parameters of KTP, KTA and RTP.

KTP[61] KTA[64] RTP[65]

a [Å] 12.814 13.130 12.952

b [Å] 6.404 6.581 6.493

c [Å] 10.616 10.781 10.555

The different occupation of analogous lattice sites influences to different degrees the lattice
constants of the various KTP-type crystals. Notably, the group-V elements (occupying the X
sites) have a larger impact on the dimensions of the unit cell than the alkali ions (located on
the M sites).[55] This can be clearly seen by comparing the experimentally determined lattices
constants of KTP, KTA and RTP compiled in Tab. 2.1: While the lattice constants of KTP and
RTP are very close, the difference between those of KTP and KTA are more pronounced.

The KTP-type unit cell is composed of 64 atoms. These, however, can be reduced to a system
of two nonequivalent MTiOXO4 macromolecules (i. e., 16 nonequivalent lattice sites), which
are connected by the four symmetry operations of the space group Pna21.[61] A schematic
illustration4 of the unit cell of an exemplary member of the MTiOXO4 crystal family is depicted
in Fig. 2.1.

The crystal structure can be described as a superposition of two different frameworks: The
first corresponds to a system of distorted TiO6 octahedra and XO4 tetrahedra liked into chains,
the second to a positively charged sub-lattice composed of M+ ions, see Fig. 2.1. More pre-
cisely, along the [011] and the [011] crystal directions, helical TiO6 chains can be identified.
Along the [100] and the [010] directions, on the other hand, alternated chains of TiO6 and XO4

cross the crystal. All the polyhedra are linked via mutual O atoms.[61] Therefore, the O atoms
can be further subdivided into two groups according to their coordination. The first group cor-
responds to the oxygen sites O(1)-O(8), which are coordinated to one X and one Ti atom. The
second group5 includes the sites O(9) and O(10), which are coordinated to Ti exclusively. In the
following we will refer to these two oxygen types as OTi−X and OTi−Ti, respectively.

2The Curie temperature (TC) of KTP is not clearly defined and assumes values between 883 and 960 ◦C. The Curie
temperature, in fact, assumes different values based on the K concentration: A more pronounced K deficiency leads
to lower values for TC.[62]

3More precisely, only the O atoms coordinated to two Ti (or V) atoms can be replaced with F.
4All the crystal geometries as well as wave functions, and charge densities depicted in this thesis are visualized

using the open-access program VISUALIZATION FOR ELECTRONIC AND STRUCTURAL ANALYSIS (VESTA)[66].
5As mentioned before, the atoms at the sites O(9) and O(10) can be substituted with F atoms.
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Figure 2.1: (a) View along the [010] direction of an exemplary KTP-type crystal. The position
of nonequivalent Ti, X and M lattice sites as well as one OTi−X and both OTi−Ti
atoms (O(9), O(10)) is indicated.
(b) Schematic representation of the TiO6-XO4 chains along the directions [100] and
[010], as well as the M-ion migration channels along the [001] direction.

Every TiO6 octahedron features two OTi−Ti atoms. The two Ti sites present in the lattice
differ with respect the angle these O atoms form with the central Ti atom: about 90◦ in the case
of Ti(1), about 180◦ in the case of Ti(2). The X(1) site is assumed by X atoms within chains
parallel to the [100] direction, the X(2) site by those in chains parallel to [010].[61]

The M atoms form a charged sub-lattice with M(1) and M(2) coordinated to eight and nine
O atoms, respectively. Thereby, the cage attributable to the site M(2) is by about 25 % larger
than that of M(1)[67].

The mobility of M(1) along [100] is hindered by the polyhedra chains along [010]. Despite
the presence of large channels along [010], no significant diffusion along this direction can be
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measured. The M(2) ions, on the other hand, can diffuse almost freely along [001] via vacancy
hopping mechanisms.[24, 55, 68, 69]

Regarding their synthesis, KTP crystals are exclusively grown from solutions since the
material decomposes thermally before melting. Thereby, the most common methods are hy-
drothermal processes and the growth from self-fluxes. The former method usually leads to
crystals of higher quality, while the latter can be applied for the fabrication of larger crystals.[55].
One commonly applied solvent for the synthesis of KTP is the so-called K6 (i. e., K6P4O13) fol-
lowing, for example, the reaction[70, 71]

3KH2PO4 + 2K2HPO4 + TiO2 −→ KTiOPO4 + K6P4O13 + 4H2O (2.2)

Compared to hydrothermally grown crystals, flux-grown KTP shows poorer stoichiometries
especially regarding the K content. Comparatively high K-vacancy concentrations up to 500-
800 part per million atomic (ppma) have already been measured.[59]

In Sec. 2.1.1, we will discuss common non-stoichiometries of KTP, focusing on those rele-
vant for this work.

2.1.1 Non-Stoichiometric KTP

Due to the large number of lattice sites in the cell, a plethora of point defects, both intrinsic and
extrinsic in nature, are possible. These include, for example, vacancies, substitutional atoms
or interstitials. More precisely, vacancies correspond to unoccupied lattice sites A(i), substitu-
tional atoms are sites of an element A occupied by an element B, and interstitials are atoms,
which do not occupy any lattice site. In addition, different point defects might group into a
defect complex. In the following, these will be denoted as Vq

A, Bq
A, and Aq

i , respectively, with q
indicating the charge state of the defect itself.

Among all the possible defects, the most relevant for this thesis are K and O vacancies (i. e.,
VK and VO), Rb substitutionals for K (i. e., RbK), as well as K interstitials (i. e., Ki), see Fig. 2.2.
In addition, we note that also a variety of extrinsic point defects (e. g., silicon (Si), iron (Fe), or
antimony (Sb) impurities) have also been observed[59].

As already mentioned, KTP crystals are always deficient in K and rather high K-vacancy
concentrations (up to 800 ppm[59]) are possible. Normally, K vacancies are found in the charge
state −1[72]. The creation of one neutral K atom from the KTP lattice, in fact, would induce a
hole at the valence band maximum (VBM). Since this is rather unstable, at least in the thermo-
dynamic equilibrium, K vacancies are energetically more stable in the charge state −1.

K vacancy are spontaneously charge compensated by, e. g., oxygen vacancies at the sites
OTi−Ti

[49, 52, 54] or bivalent cations (for example Pb2+) substituting for K+[73], by trapped holes
stabilized at the OTi−Ti sites[74].

The peculiar TiO6-PO4 chain network in KTP give rise to large channels along the crystal-
lographic axes a and b. Notably, the diffusion along the [100] and the [010] directions is rather
unfavorable. Nevertheless, the K+ ions can diffuse relatively freely along the [001] direction
via vacancy hopping mechanisms.[24, 55, 68, 69] At low temperatures and in the absence of any
external voltage, the K-ion migration in KTP is relatively modest and inhomogeneities formed
during the crystal growth are not spontaneously equilibrated. Thus, large KTP crystals can
show an inhomogeneous VK distribution along the growth direction: As the crystal grows, an
enrichment of K cations in the solution can be measured, i. e., the K to P ratio increases. As a
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Figure 2.2: Schematic representation of non-stoichiometries in KTP crystals relevant for this
work, i. e., two nonequivalent K vacancies (VK(1) and VK(2)) and a Rb substitutional
atom at the site K(2) (RbK(2)).

consequence, also the K content in the crystal changes, becoming more and more stoichiomet-
ric.[62]

This situation has an immediate consequence also on the properties of the crystal itself, for
example the Curie temperature[62] or the refractive index[75], which are influenced by the K
content.

On the other hand, the related O-vacancy diffusion is relatively high and causes an internal
electric field[72].

A rapid ion (de)intercalation might be very beneficial for electrochemical applications, mak-
ing these crystals perfect candidates for alkali-ion based electrodes[28–40]. However, this prop-
erty is a serious drawback during operations requiring the application of slowly varying elec-
tric fields, e. g., periodic poling[27].

Some strategies to reduce the ion migration along the crystal are, e. g., the reduction of the
temperature during poling[76] or a potassium-nitrate treatment[45]. The latter thereby enhances
the crystal stoichiometry and reduces the hopping probability. Another approach is a small Rb
doping (less than 1%)[56], i. e., RbxK1−xTiOPO4 (RKTP). Compared to K, Rb features a larger
ionic radius and is thus more likely to occupy the larger lattice site K(2)[77], see Fig. 2.2. In
addition, its migration through the crystal is less favorable, effectively blocking the channels
relevant for the K-ion migration[45].

A further effect of the Rb (or Cs) doping is an increase of the refractive index of the material,
which enables the modeling of waveguides.[26, 78]

The reduction of the ionic conductivity was also found to enhance the resistivity of KTP
against gray tracking (see for example Ref.45). A more detailed description of this phenomenon
can be found in Sec. 2.3.
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2.2 Well-Established in Optics, Promising in Electrochemistry

The spatial orientation of atoms whithin the KTP-type structure is crucial for the favorable
combination of dielectric, electro-optic, nonlinear optical, and electro-chemical properties. In
the following, we will shortly outline the properties of KTP and introduce some of its applica-
tion fields.

In the second half of the 1970s, Zumsteg and co-workers published the first investigation
on the optical properties of KTP, discovering its exceptional nonlinear properties[79]. From
then on, the crystals’ quality and, consequently, their properties have been improved and new
isomorphs have been synthesized. Nowadays, KTP crystals are most established in many (non-
linear) optical devices: They are commonly utilized as frequency doublers in Nd:YAG lasers,
converting near-infrared light (λ = 1064 nm, Eph = 1.17 eV) into green light (λ = 532 nm,
Eph = 2.33 eV)[22]. In addition, they are also suitable to be applied in optical parametric oscil-
lators (OPOs)[23], or as an electro-optic amplitude modulator[24, 25]. Additionally, upon a Rb- or
Cs-doping, they can be used to construct waveguide structures.[26, 27]

The suitability for nonlinear optical applications is not only given by its high nonlinear
coefficient, caused by the KO8,9 units[80] together with the distorted TiO6 octahedra[79], but also
by its transmission properties. In fact, with an optical band gap of Egap = 3.2− 3.8 eV[81–84],
KTP shows a broad transparency band covering the whole visible and near-infrared spectrum,
more precisely the wavelength range 350-4500 nm[79] (i. e., 0.28-3.54 eV). Moreover, it does also
feature a great thermal stability as well as a high threshold against optical damage.[85]

Finally, the internal polarization of KTP crystals is advantageous to further enhance the
efficiency of the frequency conversion: To take benefit from so-called quasi-phase matching6,
the nonlinear coefficient has to be modulated along the propagation direction of the laser beam.
For this, the orientation of the internal polarization has to be periodically reversed with a period
corresponding to the so-called coherence length. This is achieved by periodic poling, i. e., the
application of an external field antiparallel to the spontaneous polarization.[78] The reversion of
the polarization is thereby caused by (i) a repositioning of the alkali ions in the material along
the direction of the external field[86], and (ii) by a change in the bond lengths within the TiO6

octahedra, more precisely, by interchanging the lengths of long and short Ti-O bonds[87].
Unfortunately, the intrinsic ionic conductivity of KTP hampers the poling process, since it

renders the monitoring of the process and thus the reproducibility difficult.[27, 45, 78] For this
reason, many strategies have been developed to reduce the ionic current within the crystals,
e. g., via Rb doping[56] or potassium-nitrate treatment[45].

Nevertheless, what is a drawback in optical devices can be advantageous for electrochemi-
cal applications, more precisely for the modeling of new electrode materials. In fact, a fast ion
(de)intercalation is indispensable to guarantee an efficient fast charging of batteries7. The suit-
ability of KTP-type crystals as anode and cathode materials for alkali-ion batteries has recently
been shown by numerous experimental and theoretical studies.[28–40]

The application as an electrode requires the intentional creation of point defects: During

6Quasi-phase matching is a technique which is applied to prevent the dephasing of a laser beam by periodically
poling the material so that the nonlinear coefficient changes its sign. This method, in fact, prevents destructive
interferences between the second harmonic field and the driving field, and thus a reduction of the power of the
second harmonic signal.[78]

7For a detailed description of the setup and the theoretical investigation of alkali-ion batteries, the Reader is
referred to Chap. 4.
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the charging of the battery, alkali-ion vacancies are created within the cathode material. The
ions are then transported to the anode, where the formation of interstitials can be observed.
These mechanisms will be referred to as ion deintercalation and ion intercalation, respectively,
throughout this work. Simultaneously, the valence electrons are transported from one electrode
to the other via an external circuit causing the oxidation or the reduction of suitable atoms in
the cathode and anode, respectively.[14, 15]

In the case of KTP-type crystals, the oxidation takes place at the OTi−Ti atoms in MTiOXO4

compounds[28], while the replacement of all OTi−Ti with F shifts the oxidation to the Ti sites
(changing their oxidation number from +3 to +4)[33].
The reduction in the anode material, on the other hand, takes place at the Ti atoms[29].

In the case of KTP, the crystal lattice is characterized by a modest volume deformation both
upon ion deintercalation[28] and intercalation[29]. This is crucial to guarantee a robust long-
term operation, since it helps to prevent the fracture of the electrodes during (de)charging.
In addition, the X-ion diffusion channels along [001] allow for efficient charging mechanisms,
since they guarantee a fast ion diffusion through the crystal. However, the barriers, which have
to be overcome, strongly depend both on the nature of the X and the M atoms: Notably, the
diffusion barriers of the M+ ions where found to be higher for smaller ionic radii (i. e., Li+ or
Na+ ions) compared to K+[29].

In short, the application field of KTP crystals has recently been further enlarged. However,
the above mentioned gray-tracking phenomenon could be detrimental also for battery applica-
tions, since it could indirectly lower the electronic flux in the material. The reasons shall now
be explained in Sec. 2.3.

2.3 Gray Tracking in KTP Crystals

Gray tracks are the characteristic photochromic damage of KTP crystals. The formation of
gray tracks can be observed after a number of processes, e. g., the application of strong electric
fields[45–47], the reduction in H2 atmospheres at high temperatures[88] or the irradiation with
high-intensity laser light[41–44] or X rays[48]. Notably, in order to cause gray tracks by laser
irradiation, 532-nm photons were found to be sufficient and necessary for the gray track for-
mation.[43, 44]

During the gray track formation, two different stages can be identified: The first corre-
sponds to the initial stage and is characterized by an increase of the absorption of the funda-
mental radiation at 1064 nm. In the second stage, also the absorption of the second harmonic
(i. e., 532 nm) strongly increases.[46]

After their appearance, the crystals’ properties are strongly affected and a series of negative
effects can be measured: First of all, the formation of color centers does impair the optical
transmission properties of the crystal due to a broad absorption band, which covers the whole
visible spectrum, and shows maxima for wavelengths in the ranges of 380-440 nm and 500-
600 nm.[89] In addition, the anisotropy of the linear optical properties is increased.[41] Moreover,
the operation on damaged crystals can lead to their catastrophic failure.[43, 47, 50, 90] Thereby, the
catastrophic damage is characterized by microcracks upon the formation of plasma, leading to
the fracture of crystals.[91, 92]

Before catastrophic failure, gray tracking can be cured and the transmission can be restored
by annealing at high temperatures. The chemical composition of the atmosphere and the an-
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nealing time strongly influence the success of the annealing process. For example, Terashima
et al.[93] found that annealing at 800 ◦C in air shifted the absorption onset towards shorter
wave lengths and enhanced the overall transmission of undoped KTP crystals. Thereby, higher
O contents in the annealing atmosphere corresponded to higher transmittances. The authors
attributed the beneficial effects of the thermal and oxygen treatments to a facilitated lattice re-
ordering and to a reduction of O vacancies, respectively. Loiacono et al.[43], on the contrary,
measured an increased absorption after dry-oxygen annealing. In addition, they reported
that wet-oxygen annealing could restore the transmission properties of KTP due to charge-
stabilizing effects of OH− groups. Padberg et al.[45] found that annealing at 300◦C for 12 h in
an oxygen-enriched atmosphere leads to a complete curing of gray tracks and related absorp-
tions, while their probes only partially recovered after annealing at 200◦C for 80 h (see Fig. 2.3).
Finally, Zhang et al.[88] observed a darkening of KTP crystals thermally treated in hydrogen
atmospheres.

Mu and Ding[57] observed a second type of damage beside the visible damage. This damage
appeared after the irradiation with a cw-pump argon laser at 514.5 nm polarized parallel to the
[001] direction, and remains invisible (i. e., the typical dark traces are missing) even for higher
beam powers. Nevertheless, a laser power higher than 4.5 W leads to the fracture of all samples.
The origin of the invisible damage was thereby tentatively attributed to the drift of K+ ions. The
characteristic dark traces parallel to the c axis (and orange dots), on the other hand, appeared
only for laser light perpendicular to [001].[57]

Other studies[41–43], however, found that the gray-track related absorption is the highest for
second-harmonic radiation (i. e., 532 nm) polarized parallel to [001].

Despite numerous publications on gray tracking, there is still an ongoing research to clarify
the mechanisms leading to gray track formation. The common hypothesis is that their appear-
ance is strictly related to the reduction of Ti atoms as the result of charge compensation of
special point defects.[47, 49, 50, 53, 54, 88, 90] The stabilization of the electrons leads to the transition
from Ti4+ to Ti3+. These reduced Ti atoms are usually referred to as Ti3+ centers.

Processes which cause gray tracks to form, in fact, can lead to the creation of free charges
via, e. g., the creation of electron-hole pairs. If these electron-hole pairs do not recombine soon
after their formation, they can be stabilized by intrinsic (or extrinsic) point defects. Within the
KTP framework, holes are stabilized by OTi−Ti near a K vacancy[74] (i. e., the same effect as the
oxidation in a cathode) or Fe+2 substituting for Ti atoms[57]. Electrons can be stabilized by Ti
atoms near O vacancies at the sites OTi−Ti

[54] or by Pb2+ ions substituting for K+[73].
In analogy to the Ti3+-related absorption band in TiO2-doped phosphate glasses between

400 nm and 700 nm[94], the reduction of Ti atoms has already been suggested by Loiacono et
al.[43] as the origin of the broad absorption band after the irradiation with a Nd:YAG laser.

This hypothesis has been further enforced by the experimental detection of different Ti3+

centers via electron paramagnetic resonance spectroscopy (EPR)[47, 49, 54] and electron nuclear
double resonance spectroscopy (ENDOR)[49, 54].

According to Setzler et al.[54], four different Ti3+ centers, attributed to four different defects,
can be identified in the KTP lattice. Interestingly, the growth method of the crystal determines
the nature of the centers: Two centers can be found exclusively in hydrothermally grown KTP
and are attributed to trapped H atoms by one OTi−Ti present in the cell. One of them was
attributed to a Ti(1) site, the other one to a Ti(2) site. The remaining two are restricted to flux-
grown KTP and are caused either by a self-trapped electron at a Ti(1) site or by a positively



2.3 GRAY TRACKING IN KTP CRYSTALS 13

Figure 2.3: Gray-tracked KTP samples during different annealing stages. As indicated in (a),
gray tracks form dark needles which grow into the crystal along the z axis.
Image taken from Ref. 45.

charged OTi−Ti vacancy, which causes the reduction of a Ti(2) atom. Interestingly, only the
O-vacancy-related center is stable at room temperature. The remaining centers decay for tem-
peratures higher 140 K. Thus, we note that the formation of gray tracks might also indirectly
hamper the (de)charging mechanisms of KTP electrodes by indirectly reducing the electron
flux.

The defect models proposed by Setzler and co-workers[54] have been confirmed theoreti-
cally and partially revised in a later work[95].

To increase the resistivity of crystals against gray tracking, a number of strategies which
reduce the number of K vacancies in the crystals were found to be effective. The first strat-
egy consists of treatments to eliminate existing vacancies, for example potassium-nitrate treat-
ments[45]. The second is a small Rb doping, which shows a larger activation energy for the ion
migration along the c axis and thus blocks the migration channels for the K ions, leading to
overall less K vacancies.[56]

Since the robustness of KTP crystals can be enhanced by increasing its K content (and there-
fore reducing the number of compensating O vacancies), it is reasonable to attribute a major
role in the gray-tracking mechanisms to O vacancies. Nevertheless, the EPR-active charge state
+1 is not the only energetically stable charge state of the vacancy. In fact, its formation en-
ergy[95] reveals that also the EPR-silent charge state +2 and S = 1 spin-configuration of the
neutral vacancy are stable, and could also be relevant for gray tracking.

Nevertheless, the O-vacancy related Ti3+ center has recently also been detected within RTP
crystals[96]. So, the presence of Ti3+ centers alone can not provide a complete explanation of
the gray-tracking phenomenon, since a Rb doping was found to be beneficial to prevent its
formation. This last aspect will be investigated further in Chap. 8.





3
A Brief Introduction to a Very

Functional Theory

THE interconnected application of theoretical and experimental techniques is indispensable
to deepen our knowledge about the fundamental laws which transform physical entities

into something that we call universe. In fact, on the one hand, the value of a theory can only
be quantified, if it is verified (or rather falsified) by an appropriate experimental setup. On the
other hand, accompanying theoretical studies are crucial for the achievement of a thorough un-
derstanding of the underlying mechanisms. This holds, for example, during the investigation
of the effects caused by specific point defects (or dopants) on the properties of a material.

In a very simplistic picture, a solid can be described as a many-body quantum-mechanical
system composed of atomic nuclei surrounded by an electron cloud. The system is thereby
stabilized by attractive forces. The state of the system is described by the corresponding many-
body wave function Ψ, which depends both on all M nuclei and all N the electrons of the
system. If we indicate their coordinates with ri and RJ , respectively, the many-body wave
function reads Ψ (r1, . . . , rN , R1, . . . , RM; t) with t indicating the time. For the description of
many ground-state properties of the system, however, the time-dependency can be neglected,
leading to the stationary wave function Ψ (r1, . . . , rN , R1, . . . , RM).

At least in principle, the system can be thus completely described by the solution of the
corresponding time-independent Schrödinger equation

Ĥ Ψn = EnΨn. (3.1)

Here, Ĥ indicates the many-body Hamiltonian of the electrons and the nuclei of the system and
En corresponds to the energy eigenvalues of the quantum state Ψn. The Hamiltonian thereby
includes all the energy contributions to the total energy of the system. More precisely, if the
kinetic energy contributions are indicated by T̂, those which derive from the electrostatic inter-
actions between charged components are denoted by V̂ and the external energy contributions
(e. g., external potentials caused by the presence of electric or magnetic fields) are summed up
as V̂ext., the Hamiltonian reads

Ĥ = T̂ + V̂ + V̂ext.. (3.2)

15
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As mentioned above, a solid might be reduced to a system of negatively charged electrons and
positively charged nuclei. If mel. and MJ are the respective masses, the corresponding kinetic
energy contributions are expressed by the operators

T̂el. = −
N

∑
i=1

h̄
2mel.

∇2
ri

and T̂nuc. = −
M

∑
J=1

h̄
2MJ
∇2

RJ
. (3.3)

In addition, the electrostatic interactions correspond to the attractive (repulsive) Coulomb forces
between electrons and nuclei. Since the charge of one electron corresponds to the elementary
charge (i. e., e0), and that of a nucleus depends on its atomic number (i. e., ZJe0), the operators
take the forms

V̂el.−el. =
1
2

N

∑
i=1

N

∑
j=1,
j 6=i

e2
0

4πε0

1∣∣ri − rj
∣∣ , (3.4)

V̂el.−nuc. =
1
2

N

∑
i=1

M

∑
J=1

e2
0

4πε0

ZJ

|ri −RJ |
, (3.5)

and V̂nuc.−nuc. =
1
2

M

∑
I=1

M

∑
J=1,
J 6=I

e2
0

4πε0

ZI ZJ

|RI −RJ |
, (3.6)

with ε0 as the vacuum permittivity. The form of the operator V̂ext. = ∑i vext.(ri), with vext.

indicating the external potential, depends on the specific problem.[97]

At this point, the Reader will certainly agree that the exact, analytical solution the Schrödinger
equation is only feasible for a few, simple model systems. So, to achieve a thorough insight into
the properties of a realistic many-body system, numerical treatments are required. Two differ-
ent approaches are possible:[97]

(i) Pure ab initio calculations1, which do not require any empirical parameter;

(ii) The modeling of an ad hoc Hamiltonian, which enables the calculation of a few proper-
ties of interest at a reduced computational cost. However, the introduction of empirical
parameters is required here to properly describe the system.

In both cases, the computational effort must often be additionally reduced by the introduction
of approximations2.

One of the most successful ab initio techniques is the so-called density functional theory
(DFT), based on the works of Hohenberg and Kohn[102] and Kohn and Sham[103]. Within DFT,
the ground state of a system can be determined at an affordable computational cost, since it
replaces the determination of the ground-state wave function via the direct solution of the re-
spective Schrödinger equation, by the determination of the ground-state electron density n0(r)
of the system.

1Ab initio or "from first principles" calculations provide the solution of the Schrödinger equation under the pre-
requisite that the only parameters which have to be provided correspond to physical constants.

2Two common approximations are the Born-Oppenheimer[98] and the Hartree-Fock approximation[99–101].
Within the former the motion of the nuclei is neglected, within the latter the many-body wave function is calcu-
lated as the Slater determinant of single-particle wave functions.
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Following the discussion of Ref. 97, the fundamental concepts of DFT shall now be intro-
duced, starting from the formulation of the Hohenberg-Kohn theorems and the Kohn-Sham
equations in Sec. 3.1. In Sec. 3.2, we will describe how the interaction of electrons can be ap-
proximated via the so-called exchange and correlation potential. Finally in Sec. 3.3, the origin
of a major drawback of the theory, i. e., the underestimation of the band-gap width, will be
discussed.

For the sake of simplicity, only the non-relativistic case will be considered. Furthermore,
it is assumed that only interactions of the valence electrons can contribute to changes of the
total energy of the system. In addition, the ground state is supposed to be energetically non-
degenerate and the temperature is fixed to 0 K. In addition, CGS units will be used.

3.1 The Hohenberg-Kohn Theorems and the Kohn-Sham Equations

The fundamental idea behind DFT relies on two theorems formulated and proven by Hohen-
berg and Kohn in 1964[102]. Thanks to these theorems, it was shown that the determination of
the ground-state wave function of a many-body system with N electrons is equivalent to the
calculation of its ground-state electron density n0(r), rendering the solution of the correspond-
ing Schrödinger equation 3.1 obsolet. As one of the main consequences, these theorems reduce
the degrees of freedom from 3N to 3 and thus the computational costs.

According to Hohenberg and Kohn, there is a unique mapping between the external poten-
tial vext, the ground-state |Ψ0〉 and its electron density, more precisely,

vext ⇐⇒ |Ψ0〉 ⇐⇒ n0(r) =

〈
Ψ0

∣∣∣∣∣ N

∑
i=1

δ(r− ri)

∣∣∣∣∣Ψ0

〉
. (3.7)

This has a series of consequences:

(i) The system is in its ground state when the electron density is in its ground state, i. e.,
|Ψ0〉 = |Ψ[n0(r)]〉;

(ii) Not only the external potential determines the ground-state electron density of a system,
but also the ground-state electron density does determine the external potential (at least
up to an additive constant);

(iii) Since the external potential solely depends on n(r) and the external potential is the only
external contribution to the total energy of the system, also the energy E[n] of the many-
body system is a unique functional of the electron density. In addition, every property
(observable) of the system is a functional of the electron density.

This leads to the formulation of the first Hohenberg-Kohn theorem[102]:

Theorem 3.1. The ground-state energy E0 of a system is a unique functional of the ground-state elec-
tronic density n0.

The first theorem ensures that the computation of the electron density, for which the ground-
state energy is assumed, is equivalent to the solution of the Schrödinger equation of the system.
The second theorem by Hohenberg and Kohn, on the other hand, provides the scheme, which
allows for the determination of the ground-electron density. It reads[102]:
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Theorem 3.2. The ground-state electron density n0 corresponds to the absolute minimum E0 of the total
energy E[n] of the system under consideration.

Therefore, the ground state of a system can be identified by applying the Ritz variational
principle[104] on the energy functional E[n], which assumes its minimum for n0.

Although the procedure seems to be straight forward, the computation of the ground-state
energy is not trivial at all. In fact, the energy of the system includes, beside the (easily calcu-
lable) contributions of the external potential vext., all the internal energy contributions, caused
by the motion and the interaction of electrons and nuclei of the system as well as quantum-
mechanical effects. In their paper, Hohenberg and Kohn[102] already suggested to split the
known from the unknown contributions, by introducing the fundamental functional F[n(r)]
which includes all the internal energy contributions. This leads to the expression

E[n] =
∫

vext.(r)n(r)dr + F[n] (3.8)

for the energy of a system within an external potential vext..
Later, in 1965, Kohn together with his post-doctoral fellow Sham[103] refined this concept,

shaping F[n] and presenting a self-consistent scheme which allows for the computation of a
system’s ground-state energy: The so-called Kohn-Sham equations.

Following the suggestion by Kohn and Sham[103], the total energy of a system of interacting
particles can be expressed as follows

E[n] =
1
2

∫ ∫ n(r)n(r′)
|r− r′| dr dr′ +

∫
vext.(r)n(r)dr +Ts[n(r)] +EXC[n(r)]

= EH[n] +Eext.[n] +Ts[n] +EXC[n]. (3.9)

Here, EH is the Hartree energy, which corresponds to the mean-field Coulomb interaction of a
particle with all the electrons in the system, Eext. is the influence of any external potential, and
Ts is the kinetic energy of N non-interacting particles. The term EXC, on the other hand, is the
so-called exchange and correlation energy. It includes all the many-body effects which arise
from interaction between particles. Unfortunately, there is no universally valid expression for
EXC. Nevertheless, some approximations have been derived to account for the exchange and
correlation effects. Two common approaches will be presented in Sec. 3.2.

Coming back to the formulation of the Kohn-Sham equations, the expression in Eq. 3.9 has
to be minimized following the Hohenberg-Kohn variational principle[102]. For this, a probe
electron density ñ(r) is inserted in the expression of the energy functional, and it is varied until
the minimum energy E0 is identified, i. e.,

E[ñ] = EH[ñ] + Eext.[ñ] + Ts[ñ] + EXC[ñ] ≥ E0. (3.10)

Obviously, the ground-state electron density must fulfill the condition E[n0] = E0.
Under the condition that the number of electrons of the system does not change under the

variation of ñ(r), i. e.,
∫

ñ(r)dr = N, the Euler-Lagrange equation

δE[ñ(r)] =
∫

δñ(r)

{
veff.(r) +

δ

δñ(r)
Ts[ñ(r)]

∣∣∣∣
ñ(r)=n(r)

− ε

}
dr = 0 (3.11)
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can be formulated. Here, ε is the Lagrange multiplier which guarantees the conservation of the
number of particles, and veff. is an effective potential in which the electrons are inserted. More
precisely, veff. does account for every energy contribution except for that of the kinetic energy
Ts of the electrons of the system, i. e.,

veff.(r) = vext.(r) + vH(r) + vXC(r), (3.12)

where the Hartree and the XC potentials are defined as

vH =
∫ n(r’)
| r− r′| dr′ and vXC =

δ

δñ(r)
EXC[ñ(r)]

∣∣∣∣
ñ(r)=n(r)

. (3.13)

Note that by this, the solution of the many-body problem from which we started has been
reduced to a Lagrange equation of non-interacting particles within an effective potential.

So, if |ϕi〉 indicates the single-particle wave functions of the components of the system,
the electron density n(r) of the system itself can be determined by solving the single-particle
Schrödinger-like equations (

−1
2
∇2 + veff. − εi

)
|ϕi〉 = 0 (3.14)

with

n(r) =
N

∑
i=1
|ϕi(r)|2 (3.15)

and

veff.(r) = vext.(r) +
∫ n(r’)
| r− r′| dr′ + vXC(r). (3.16)

Equations 3.14-3.16 are the so-called Kohn-Sham equations.[103]

At this point some conclusions can be drawn: First of all, the Kohn-Sham eigenfunctions
|ϕi〉 are deprived from any physical meaning. So, they can not be directly used to determine
the ground-state wave function Ψ0 of the system under consideration, as it is, e. g., performed
within the Hartree-Fock approximation via their Slater determinant. Nevertheless, they allow
for the calculation of the ground-state electron density via Eq. 3.15, which then determines Ψ0.
In addition, since the expression for veff. depends itself on the electron density n(r) which has
to be determined, the problem has to be solved self-consistently. Finally, since the Coulomb
potential is singular in the vicinity of the nuclei, the Kohn-Sham potentials are usually substi-
tuted with smoother potentials (the so-called pseudopotentials). However, because of the form
of the wave functions near the nuclei not having a strong impact on the physical and chemical
properties of one material, the errors deriving from this approximation are often negligible.[97]

3.2 Exchange and Correlation Energy within DFT

The power of DFT calculations, beside comparatively low computational costs, is that no ap-
proximation nor empiric parameter has to be included to determine the properties of a system.

Unfortunately, this holds only theoretically: The internal contributions to the total energy
of an ensemble of atoms is not equal to the sum of all the energies of every single particle. In
fact, additional energy terms arising from the interaction of these particles as well as quantum-
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mechanical effects have to be accounted for. Within the framework of DFT, all the unknown
energy contributions are commonly summarized in the so-called exchange and correlation (XC)
energy EXC.

Two most common approximations for EXC are thereby the local density approximation
(LDA) and the generalized gradient approximation (GGA). Both will be briefly described in
the following.

The Local Density Approximation The LDA is the approach proposed by Kohn and Sham[103].
Within this formalism it is assumed that the electron density of the system can be approximated
by the electron density n = n(r) of a homogeneous electron gas. Although it is not yet possi-
ble to define an explicit expression for EXC, it can be calculated using the exchange-correlation
energy per electron εXC = εX + εC as

EXC =
∫

εXC[n(r)]n(r)dr, (3.17)

unter the constraint of a quasi-stationary electron density n(r).[103]

Thereby, the exchange energy per electron can be directly derived from Hartree-Fock theory
as[105]

εLDA
X = − 3

4π

(
3

π2 n(r)
) 1

3

. (3.18)

The calculation of the correlation energy per electron, on the other hand, is non-trivial and
can be achieved by, e. g., Monte Carlo simulations as done by Ceperley and Alder[106]. Their
results have then later been parametrized by Perdew and Zunger[107] leading to the following
expression for the correlation energy per electron

εLDA
C =

γ

1 + β1
√

rs + β2rs
(3.19)

with rs =
3

√
3

4πn
indicating the Wigner-sphere radius, γ = −0.14230, β1 = 1.05290 and

β2 = 0.3334. Note that this expression refers to the spin-unpolarized case, but the scheme of
Perdew and Zunger is also applicable to spin-polarized systems, yieldingthe local spin-density
approximation (LSDA).

At this point it has to be pointed out that the correlation contributions to the energy of
a system are usually smaller compared to the exchange contributions. In addition, the LDA
often profits from error cancellation due to an underestimation of EX and an overestimation
of EC. For this reason, although its accuracy is higher if the system can be approximated as a
homogeneous electron gas (for example a metal), the LDA scheme can provide fruitful results
also for systems featuring inhomogeneities in the electron density. Nevertheless, one major
drawback of the LDA is that it is not capable to describe negative atomic ions.[97]

One direct improvement of the LDA is the inclusion of local fluctuations of the electron
density via its gradient as within the generalized gradient approximation.

The Generalized Gradient Approximation Although it has already been successfully ap-
plied to many systems, the LDA scheme based on a uniform electron distribution does not
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account for natural fluctuations of the electron density of real systems, for example due to
ionic and covalent bonds between atoms. In addition, the LDA does not account for the so-
called exchange-correlation hole nXC(r, r′). This corresponds to the area around each electron
in which, due to the Pauli principle and the electron-electron repulsion, the probability to find
another electron is zero. Illustratively, each electron at the position r induces a hole in the
average density n(r′). Thereby the normalization∫

nXC(r, r′) dr′ = −1 (3.20)

holds, which corresponds to the total screening of the electron at the position r.[108]

To properly account for these effects, local fluctuations of the electron density have to be
considered. This is achieved within the framework of the generalized gradient approximation
(GGA) via the gradient of the electron density∇n(r) so that the value of the XC functional can
be written as[109]

EGGA
XC [n] =

∫
f [n(r), |∇n(r)|]dr. (3.21)

Compared to the LDA, the GGA provides a better approximation of the exchange and the cor-
relation, leading to a better description of total energies.[97] Some largely applied parametriza-
tions of the GGA are the one by Perdew and Wang (PW91)[110], the one by Perdew, Burke and
Ernzerhof (PBE)[109], or its extension by Perdew et al. for solid-state systems (PBEsol)[111, 112],
which provides a more accurate prediction of lattice constants. Details can be found in the
corresponding references.

Unfortunately, both the LDA and the GGA suffer from a major problem: An inaccurate
description of electronic self-energy effects. This has two major consequences: The first is
the prediction of the so-called fundamental band gap width Eg of insulators and semiconduc-
tors, which is always underestimated. The second is the insufficiently accurate description of
ground states characterized by strongly localized electrons.[113]

Some strategies to overcome these problems will be discussed in Secs. 3.3-3.6.

3.3 Overcoming the Band-Gap Problem

Unlike a metal, a semiconductor (or an insulator) does not allow for electronic conductivity at
zero-temperature. This characteristic is caused by the presence of a rather large fundamental
band gap Eg. In semiconductors, the band gap corresponds to the energy gap which divides the
highest occupied state (HOMO), i. e., the valence band maximum (VBM), from the lowest un-
occupied state (LUMO), located at the bottom of the conduction band (CBM). It can, however,
be shown (see for example Ref. 97) that band gaps predicted via standard DFT calculations
always underestimate the corresponding experimental band-gap widths.

The band-gap width is defined as the difference between the electron affinity and the first
ionization energy (i. e., the energy needed to add and remove one electron to (from) the neutral
system, respectively). If EN

0 indicates the ground-state energy of a system with N electrons, the
magnitude of Eg can be quantified as follows[97, 114, 115]

Eg =
[

EN+1
0 − EN

0

]
−
[

EN
0 − EN−1

0

]
. (3.22)
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This is the so-called ∆SCF method. For non-interacting particles, the energy differences can
be replaced with the orbital energies of the Kohn-Sham eigenstates as EN+1

0 − EN
0 = εN+1

and EN
0 − EN−1

0 = εN . The so-calculated band-gap width would correspond to the differ-
ence[97, 114, 115]

∆s = εN+1 − εN . (3.23)

Unfortunately, ∆s does not correspond to the real band gap when interacting particles are
considered. The reason for this systematic underestimation of fundamental band-gap widths
is the so-called self-interaction3 error ∆XC. More precisely, the total energy of a system in de-
pendance of the number of electrons can be described as straight-line segments (see Fig. 3.3),
whose slopes change for integer occupation numbers. For this reason, the functional deriva-
tives for integer electron numbers will be discontinuous in these points. The origin of the band
gap of the system is caused by exactly this discontinuities. In the DFT framework, only the
kinetic and the exchange-correlation contributions to the total energy can be discontinuous. It
can be shown that ∆s describes the discontinuity in the kinetic energy, those attributable to
the exchange and correlation effects (i. e., ∆XC), on the other hand, are not exactly known. The
difference between the real band gap and ∆s thus corresponds precisely to ∆XC. So, to deter-
mine the real band gap of a system this self-interaction error has to be accounted for, leading
to[97, 114, 115]

Eg = εN+1 − εN + ∆XC. (3.24)

An immediate effect of the underestimation of the fundamental band gap arises during the
computation of optical properties. In fact, within the DFT framework, optical spectra usually
suffer from a severe red-shift compared to corresponding experimental measurements.

In 1981 Perdew and Zunger[107] proposed the so-called self-interaction correction (SIC)
method, which allows for directly correcting the self-interaction error by enforcing that each
particle can interact with other particles, exclusively. This, however, holds the disadvantage of
being computationally very demanding.

Beside the SIC method, three most established approaches, which provide a better cancel-
lation of electronic self-interaction are the GW approximation, the inclusion of the Hubbard
correction (DFT+U), and the application of hybrid functionals.

3.4 The Quasiparticle Picture and the GW Approximation

Band gaps of semiconductors and isolators can be experimentally determined by a combina-
tion of direct and inverse photoemission spectroscopy. Thereby, the sample is irradiated with
a photon with the energy h̄ω or an electron with the kinetic energy Ekin, respectively. Con-
sequently, an electron with the kinetic energy Ekin or a photon with the energy h̄ω will be
emitted, while the number of electrons in the system changes. If the Coulomb interaction is
neglected, these experiments allow for the calculation of the binding energy of the electron via
εi = Ekin − h̄ω. Generally speaking, however, the binding energy of the electron corresponds
to the energy difference of the system in its N-particle ground state and the (N− 1)-particle (or
(N + 1)-particle) excited state, i. e., respectively, εi = EN

0 − EN−1
i or εi = EN+1

i − EN
0 .[116]

3The self-interaction problem is an intrinsic problem of the DFT framework. In fact, since Kohn-Sham DFT
utilizes the full electron density, the repulsion of an electron with its own charge density is included. This unphysical
interaction is commonly referred to as self interaction.
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Figure 3.1: Schematic propagation of a (a) bare electron, (b) a quasi-electron and a (c) quasi-
hole in an N-electron system.

To theoretically describe this kind of processes involving a non-constant number of parti-
cles, many-body perturbation theory based on the Green’s function G(r, t; r′, t′) can be utilized.

Before discussing this formalisms, however, it is important to note that when an electron
is inserted in an N-electron system, it can not be longer treated as a bare particle. In fact, the
interactions between this electron and the N electrons already in the system has to be con-
sidered. Due to the Pauli principle and repulsive Coulomb forces, in fact, the electron will be
surrounded by a positively charged cloud, which screens the electron: The XC hole. In analogy,
the extraction of one electron will cause a positively charged hole surrounded by a negatively
charged screening cloud (also see Fig. 3.1). The combination of this electron (hole) with the sur-
rounding charge cloud is commonly referred to as quasiparticle. A direct consequence of the
unavoidable screening is that the quasiparticle will show a smaller effective charge compared
to the bare electron and thus a smaller (screened) Coulomb interaction W(r, r′; ω) compared
to the bare Coulomb potential v(r, r′). Thereby, the relation[116]

W(r, r′, ω) =
∫

ε−1(r, r′′; ω)v(r′′, r′)d3r′′

= v(r, r′) +
∫

nind(r, r′′; ω)v(r′′, r′)d3r′′ (3.25)

holds, with ε−1 as the inverse of the dielectric function4 and nind the screening cloud.
Coming back to the description of excited states which will follow Refs. 116 and 117 , the

Green’s function describes the probability amplitude for the propagation of a quasiparticle in
spacetime from its creation at (r, t) to (r′, t′). Thereby the conditions t′ > t and t′ < t hold for
an electron and hole, respectively, to guarantee causality. The Green’s function reads[117]

G(r, t; r′, t′) = −i
〈

N
∣∣∣T̂ [ψ̂(r′, t′)ψ†(r, t)

]∣∣∣N〉 , (3.26)

with |N〉 indicating the ground state in the Heisenberg picture5, ψ̂(†)(r, t) is the annihilation
(creation) operator and T̂ the Wick[118] time-ordering operator6.

As the electronic ground-state density n(r), G(r, t; r′, t′) allows for the calculation of ground-

4The computation of optical properties within the DFT framework will be addressed in Chap. 6.
5Within the Heisenberg picture, state vectors are time-independent and the time dependency is included in the

operators.
6T̂ orders all the operators in descending time order (from left to right). In the case of fermionic operators, each

operator swapping will introduce a factor of −1.
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state properties of the system under consideration. In addition, it holds the advantage to also
include all the excitation energies of the (N ± 1)-electron system. This is clearly visible from
the Lehmann representation of the Green’s function in the frequency domain[116]

G(r, r′; ω) = ∑
i

ψN+1
i (r)ψN+1∗

i (r)
h̄ω− εN+1

i + iη
+ ∑

i

ψN−1
i (r)ψN−1∗

i (r)
h̄ω− εN−1

i − iη
, (η → 0+). (3.27)

In the quasiparticle picture, the ψN±1
i and εN±1

i in Eq. 3.27 are the quasiparticle wave functions
and quasiparticle energies, respectively. So, the latter directly correspond to the excitation en-
ergies of the (N + 1)-electron and (N − 1)-electron system as measured via photoemission
spectroscopy. In the case of non-interacting electrons, on the other hand, the εN±1

i correspond
to the single-particle energies and the ψN±1

i to the (un)occupied single-particle wave functions.

In the following, we will use a short-hand notation, which expresses coordinates in space-
time using natural numbers. More precisely, i ∈ N0 will be used to indicate the space-time-
coordinates (ri; ti), or rather i+ for (ri, ti + η) (η > 0). Consequently, the following expressions
hold: δ(i− j) ≡ δ(ri,−rj)δ(ti − tj), v(ij) ≡ v(ri, rj)δ(ti − tj), and

∫
di ≡

∫
d3ri

∫ ∞
−∞ dti.

Using this notation, the equation of motion for the propagation of the quasiparticle reads[116, 117][
i

∂

∂t1
− Ĥ0(r1)

]
G(1, 2)−

∫
Σ(1, 3)G(3, 2)d3 = δ(1− 2), (3.28)

with Ĥ0 = − 1
2∇2 + vH + vext. as the Hamiltonian of the mean field and the self-energy operator

Σ accounting for all the exchange and correlation effects. Thereby, Σ allows for the calculation
of the energy difference between a bare particle and the corresponding quasiparticle[117].

Eq. 3.28 can be reformulated in order to explicitly include the Green’s function G0(r, r′; ω)

of the mean-field system, i. e., the system without self-energy effects, into the Dyson-like equa-
tion[116]

G(1, 2) = G0(1, 2) +
∫∫

G0(1, 3)Σ(3, 4)G(4, 2) d3 d4. (3.29)

Note that by inserting Eq. 3.27 in the Dyson equation Eq. 3.29, one can derive the quasiparticle
equation[116]

Ĥ0(r)ψi(r) +
∫

Σ
(

r, r′;
εi

h̄

)
ψi(r) dr′ = εiψi(r) (3.30)

with ψi(r) indicating again the quasiparticle wave functions, and εi the quasiparticle energies.

In 1965, Hedin[119] derived a set of five integro-differential equations, whose self-consistent
solution provides the exact solution of the Green’s function7: The so-called Hedin’s[119] or
Hedin-Lundqvist[120] equations. Usually, the utilized self-consistent scheme is schematized
via the pentagon in Fig. 3.2.

In the following, we will shortly discuss the main aspects of this formalism, a more detailed
description can be found, e. g., in Refs.116, 117, 119, 121, 122.

The Hedin’s equations can be formulated by adopting the Dyson’s formulation of Eq. 3.28
with G0 as the Green’s function of the mean field. This leads to the following integro-differential
equations[116, 117, 119]

7For the proof, Hedin calculated the system’s response to a time-dependent test potential, which was set to 0 at
the end.[119]
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Figure 3.2: Self-consistent solution of Hedin’s equations before (a) and after (b) the GW ap-
proximation using the Green’s function G0 of the mean field as the starting point.
Although the scheme can be self-consistently iterated, usually one stops after the
zeroth or the first iteration, so that the GW should actually be referred to as G0W0
approximation. The first iteration of the scheme is required for the solution of the
Bethe-Salpeter equation, also see Sec. 6.1.2.

G(1, 2) = G0(1, 2) +
∫∫

G0(1, 3)Σ(3, 4)G(4, 2)d3 d4, (3.31)

Γ(1, 2; 3) = δ(12)δ(13) +
∫∫∫∫

δΣ(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(6, 7; 3)d4 d5 d6 d7, (3.32)

P(1, 2) = −i
∫∫

G(2, 3)Γ(3, 4; 1)G(4, 2)d3 d4, (3.33)

W(1, 2) = v(1, 2) +
∫∫

v(1, 3)P(3, 4)W(4, 2)d3 d4, (3.34)

Σ(1, 2) = i
∫∫

G(1, 4)W(1+, 3)Γ(4, 2; 3)d3 d4. (3.35)

Here, W denotes the screened Coulomb potential, P the polarizability, Σ the self-energy and
Γ is the three-point vertex function. In addition, v refers again to the bare Coulomb potential,
i. e., the electrostatic interaction between a bare electron and the system.

Unfortunately, a direct solution of Hedin’s equations is impossible without a number of ap-
proximations. The approach proposed by Hedin[119], is to set G = G0 and to completely neglect
exchange and correlation effects, i. e., by setting Σ ≡ 0, for the zeroth iteration. This approxi-
mation is usually referred to as random-phase approximation (RPA)[117]. As a consequence, Σ
is approximated as the product of the Green’s function (G) with the screened Coulomb interac-
tion (W). For this reason, this approximation was later called GW approximation.

With these simplifications, Hedin’s equations assume the form[116, 117]

G(1, 2) = G0(1, 2) +
∫∫

G0(1, 3)Σ(3, 4)G(4, 2)d3 d4, (3.36)

Γ(1, 2; 3) = δ(1− 2)δ(1− 3), (3.37)

P(1, 2) = −ih̄G0(1, 2)G0(2, 1), (3.38)

W(1, 2) = v(1, 2) +
∫∫

v(1, 3)P(3, 4)W(4, 2)d3 d4, (3.39)

Σ(1, 2) = ih̄G0(1, 2)W(1+, 2). (3.40)



26 3. A Brief Introduction to a Very Functional Theory

In order to reduce computational costs, usually only the first iteration is actually carried out
(G0W0). This, however, still guarantees a reliable description of band-gap widths of many
systems, especially when combined with hybrid functionals[123].

3.5 Describing Strongly Localized Shells: The Hubbard Correction

In Sec. 3.4, we discussed how the inclusion of self-energy effects can improve the prediction
of band gaps. However, beside this problem, the self-interaction problem can have more se-
rious consequences during the description of systems featuring strongly localized states, i. e.,
elements of the d and f blocks. In fact, since every electron does partially repel itself, wave
functions can be over-delocalized. This lead to delocalized valence electrons, promoting the
erroneous prediction of stable metallic ground states.[124] As a consequence, computations can
result in unreliable magnetic ground states, for example in the case of Mott insulators[125], or
systems featuring strongly localized defect states[124].

The so-called DFT+U8, first introduced by Anisimov and co-workers[126–128], is based on
the Hubbard model[129–134] and represents a convenient approach to overcome the delocaliza-
tion of states. Within this picture, the total energy can be calculated by correcting the approxi-
mate energy EDFT as computed using (semi)local functionals with the term EHub derived from
the Hubbard Hamiltonian for the modeling of localized states as[124, 135]

EDFT+U [n(r)] = EDFT[n(r)] + EHub

[{
nIσ

mm′

}]
− Edc

[{
nIσ
}]

. (3.41)

Here, nIσ
m represents the atomic-orbital occupations of the atom at the site I on which the cor-

rection shall be applied, with σ as the spin and m the magnetic quantum number. The third
term Edc in Eq. 3.41 is the so-called double-counting (dc) energy required to cancel out the parts
of the interactions accounted for both by EDFT and EHub. The double-counting energy thereby
depends on the total, spin-projected occupation of the correlated manifold nIσ = ∑

m
nIσ

m .[124, 135]

The form of Edc is not exactly known and many different definitions can be found in litera-
ture. In its original formulation[126], the energy terms were defined as follows

ELDA+U = ELDA +
U
2 ∑

m, m′,
σ

(
nIσ

m − n0

) (
nI−σ

m′ − n0

)
+

U − J
2 ∑

m, m′,
σ

(m 6=m′)

(
nIσ

m − n0

) (
nIσ

m′ − n0

)
,

with n0 indicating the average occupancy. In the case of, e. g., a d orbital, this corresponds
to n0 = nd/10.[126] The parameters U and J, on the other hand, correspond to the Hubbard
parameter (i. e., the screened Coulomb repulsion) and the Hund’s-exchange parameter (i. e.,
the Stoner parameter), respectively.[126, 135]

To understand why the Hubbard correction overcomes the artificial delocalization of states,
it is helpful to refer to the potential of the system. In the so-called fully localized limit, the

8In its original formulation, the Hubbard correction was applied on LDA functionals so that it was later re-
ferred to as LDA+U. However, since it can also be applied to other functionals, we will adopt the more general
nomenclature DFT+U, where "DFT" shall be substituted with a suitable functional.
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Figure 3.3: Schematic representation of the total energy Etot of a system in dependence of the
number of electrons. The red curve indicates the exact (real) piecewise linear en-
ergy profile. The black curve, on the other hand, represents the continuous energy
profile as predicted by (semi-)local DFT functionals. The blue curves corresponds
to the difference of the latter two, and illustrates the magnitude the required Hub-
bard correction for a single-electron system.

potential caused by the Hubbard correction can be calculated as[124, 127, 128]

∆V = ∑
I, m

U I
(

1
2
− nIσ

m

) ∣∣∣ϕI
m

〉 〈
ϕI

m

∣∣∣ . (3.42)

This term thus becomes repulsive, if the occupation of the orbitals is lower 1/2, and attractive,
if the occupation is higher 1/2. This clearly promotes the localization of states by preventing a
fractional occupation of localized orbitals.

In 2005, Cococcioni and de Gironcoli[135] presented a simplified scheme to include the
DFT+U formalism. Their version features an effective U parameter, does not depend on the
basis set and allows for the self-consistent determination of the U parameters, too. Since we
will use their scheme to include the Hubbard correction in our calculations (see Chaps. 5, 7 and
8), this methodology shall now be described in more detail. The discussion thereby follows
Ref.135.

First of all, the form of the occupation matrices nIσ
mm′ , allowing for a physically accurate

description of the system under consideration, has to be defined. There is a number of inter-
changeable choices for nIσ

mm′ , but they can all be summarized with the general form

nIσ
mm′ = ∑

k,ν
f σ
kν 〈ψσ

kν| PI
mm′ |ψσ

kν〉 . (3.43)

Here, ψσ
kν indicates the electronic wave function of the state (kν) and f σ

kν the corresponding oc-
cupation number. The operators PI

mm′ , on the other hand, correspond to generalized projectors
on the localized-electron manifold. The projection operators fulfill the following properties:
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∑
m′

PI
mm′P

I
m′m′′ = PI

mm′′

PI
mm′ = (PI

m′m)
†

PI
mm′P

I
m′′m′′′ = 0 for m′ 6= m′′.

The projector of the entire manifold of localized states of the atom at the site I is given by
PI = ∑

m
PI

mm. Thus, the total localized-states occupation for the atom I is given as

nI = ∑
σ

∑
k,ν

f σ
kν 〈ψσ

kν| PI |ψσ
kν〉 = ∑

σ,m
nIσ

mm. (3.44)

Note that projectors on different sites are not assumed to be orthogonal. In their work, Cococ-
cioni and de Gironcoli used the definition

PI
mm′ =

∣∣∣ϕI
m

〉 〈
ϕI

m′

∣∣∣ (3.45)

which corresponds to a projection of localized states on pseudo-wave-functions, with the va-
lence atomic orbital ϕI

m of the atom I with angular momentum |lm〉.

The simplification by Cococcioni and de Gironcoli consists in neglecting higher, multipolar
terms in the Coulomb interaction and the proper description of magnetic interactions, thereby
considering mainly the effects which can be attributed to the on-site Coulomb repulsion. Con-
sequently to the neglection of these multipolar terms, the term J can be set to zero, or rather
the Hubbard parameter can be redefined by introducing an effective Ueff = U − J to account
for the effects of multipolar terms. With this simplification, the energy correction reads[135]

EU

[{
nIσ

mm′

}]
= EHub

[{
nI

mm′

}]
− Edc

[{
nI
}]

=
Ueff

2 ∑
I

∑
m,σ

{
nIσ

mm −∑
m′

nIσ
mm′n

Iσ
m′m

}

=
Ueff

2 ∑
I,σ

Tr
[
nIσ(1− nIσ)

]
=

U
2 ∑

I,σ
∑

i
λIσ

i (1− λIσ
i ). (3.46)

In the last step, Ueff was set to U and the representation diagonalizing the occupation matrices
of localized orbitals (i. e., nIσvIσ

i = λIσ
i vIσ

i , with 0 ≤ λIσ
i ≤ 1) was chosen. In addition, the

following definition has been applied for the double-counting term[135]

Edc = ∑
I

U
2

nI
(

nI − 1
)
−∑

I

J
2

[
nIσ
(

nIσ − 1
)
+ nI−σ

(
nI−σ − 1

)]
. (3.47)

Eq. 3.46 clearly shows that the Hubbard correction does not correct the energies of completely
empty or filled orbitals (e. g., λ = 0 or λ = 1, respectively). This behavior is crucial to illustrate
the effects during the description of localized states of the Hubbard correction. In fact, the
total energy of an open atomic system in contact with a reservoir of electrons is represented
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by a piecewise linear curve, whose vertices correspond to the energies assumed for an integer
occupation, also see Fig. 3.3. The exact multiparticle framework does reproduce this behavior,
but under the application of LDA or GGA functionals, unphysical energy values for fractional
occupations are predicted. These are caused by nonlinear energy contributions induced by
the self-interaction of partially occupied Kohn-Sham orbitals. Nevertheless, the differences of
total energies assumed for an integer occupation calculated within LDA and GGA are pretty
accurate so that the exact shape of the energy curve can be restored by an energy correction
added only on states with fractional occupation as the one in Eq. 3.46 does.

3.5.1 Self-consistent calculation of the Hubbard U

For a single electron-system, the magnitude for the U can be directly derived from the differ-
ence between the real and the DFT total energy, also see Fig. 3.3. For more complex systems,
the determination of U is more complicated. Sometimes, the U parameter is simply tuned
to reproduce, e. g., experimental or GW band-gap widths[136–138] or intercalation potentials[33].
However, since the U parameter does not only depend on the chemical environment of the
atoms on which the correction is applied, but also on the chosen functionals, an accurate de-
termination of its value is crucial for the achievement of meaningful results. Nevertheless,
Cococcioni and de Gironcoli[135] also present a method for the self-consistent determination of
the U energy correction for the system under consideration. We will follow their discussion to
briefly elaborate on this method.

For the calculation the U parameter, the total energy of the system with interacting particles
in dependence of the localized-level occupation {qI} has to be determined as

E[{qI}] = min
n(r),αI

{
E[n(r)] + ∑

I
αI(nI − qI)

}
(3.48)

with nI as defined in Eq. 3.44 and αI as the Lagrange multipliers. Then, an analogous calcu-
lation has to be performed to determine the total energy of the corresponding non-interacting
Kohn-Sham problem:

EKS[{qI}] = min
n(r),αI

{
EKS[n(r)] + ∑

I
αKS

I (nI − qI)

}
. (3.49)

The value of U then follows from the difference in curvatures of both energy functions as

U =
∂2E[{qI}]

∂q2
I
− ∂2EKS[{qI}]

∂q2
I

. (3.50)

In fact, the curvature of the first energy E[{qI}] alone does not correspond to the Hubbard
U, since it is not purely caused by the energy needed to localize an electron in a specific site:
Some contributions can be attributed to re-hybridization, arising from the band structure of the
non-interacting system. Thereby Janak’s theorem[139] can be used to calculate the curvatures as
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∂E[{qJ}]
∂qI

= −αI ,
∂2E[{qJ}]

∂q2
I

= −∂αI

∂qI

∂EKS[{qJ}]
∂qI

= −αKS
I ,

∂2EKS[{qJ}]
∂q2

I
= −∂αKS

I
∂qI

. (3.51)

Although this procedure seems to be straight-forward, in real calculations one would rather
prefer a representation, where the αI are the independent variables. This is possible via a Leg-
endre transform, leading to the expressions

E[{αI}] = min
n(r)

{
E[n(r)] + ∑

I
αInI

}

EKS[{αI}] = min
n(r)

{
EKS[n(r)] + ∑

I
αKS

I nI

}
. (3.52)

Notably, the effect of the αI is to shift the localized levels of the atom at the site I by adding a
potential term ∆V = ∑I αI PI to the single particle potential.
Finally, using the relations in Eq. 3.51, the formula for the calculation of the Hubbard U reads

U = +
∂αKS

I
∂qI
− ∂αI

∂qI
=
(

χ−1
0 − χ−1

)
I I

, (3.53)

where χ
(0)
I J indicate the density response functions defined as

χI J =
∂2E

∂αI∂αJ
=

∂nI

∂αJ

χ0
I J =

∂2EKS

∂αKS
I ∂αKS

J
=

∂nI

∂αKS
J

To compute the magnitude of the χ
(0)
I J numerically, a small positive and a small negative poten-

tial shift has to be added on each nonequivalent lattice site, on which the Hubbard correction
shall be applied. Then, the variation of the occupations of all these sites has to be computed
both by allowing for a self-consistent readjustment of the Kohn-Sham potential to screen this
localized perturbation ∆V = αJ PJ (J indicates the lattice site) and without the screening. The
derivatives of the so-calculated occupations correspond to the matrices χI J and χ0

I J .

3.6 Hybrid Functionals: Larger Band Gaps and Localized States

The idea behind hybrid functionals is to combine the exact treatment of the exchange contribu-
tions from Hartree-Fock theory (EXX) with (semi-)local DFT functionals to take advantage from
error compensation and achieve realistic band gaps. In fact, in the framework of Hartree-Fock
theory, excitation energies (and thus band-gap widths) are drastically overestimated, since the
unscreened exchange does decay very slowly. On the other hand, DFT band gaps are always
underestimated, so their combination is expected to yield intermediate and, therefore, more
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realistic fundamental band gaps.[113]

Some early attemps tried to enhance the reliability of chemical properties calculated via lo-
cal LSDA9 functionals by combining the full exact exchange10 Eexact

x with the LSDA correlation
energy ELSDA

C . The exchange-correlation functional thus reads[140]

EXC = Eexact
X + ELSDA

C . (3.54)

This approach seems reasonable at first glance, since the exchange has certainly a greater im-
pact than the correlation part of the XC. Unfortunately, it does not yield a satisfactory chem-
ical accuracy. The origin of this problem is that the separate treatment of the exchange and
the correlation effects via two different theories is deprived from the physical meaning of
the exchange-correlation functional. More precisely, although Hartree-Fock theory provides
a mathematically exact representation of the exchange, it does not account for the correlation
component and the correlation from LSDA can not fully correct the missing interactions.[140]

Becke[140] showed that the limitation deriving from the combination of the EXX with the
LDSA correlation can be overcome introducing the "half-and-half" theory. For this, he showed
that EXC can also be expressed in terms of the average potential of the fully non-interacting
and the fully interacting system. The former corresponds to the exact exchange as calculated
within the Kohn-Sham framework. The latter can be approximated with the LSDA exchange-
correlation energy, leading to the expression[140]

EXC ≈
1
2

Eexact
X +

1
2

ELSDA
XC . (3.55)

In the same paper, Becke suggested that Eq. 3.55 can be generalized as

EXC ≈ c0Eexact
X + c1ELSDA

XC , (3.56)

where the coefficients c0 and c1 can be derived by tailoring calculations to experimental data.
The model by Becke has since then been amplified and refined, and more and more hy-

brid functionals have been introduced. Examples of well established functionals are, e. g., the
Heyd-Scuseria-Ernzerhof (HSE)[141, 142], the PBE0[143, 144] or the Becke-3-parameter-Lee-Yang-
Parr (B3LYP)[145–147] functionals.

In this work, we will utilize the PBE0[143, 144] functional, which features the full PBE correla-
tion, but replaces a fraction α11 of its exchange with the EXX leading to

EPBE0
XC = αEexact

X + (1− α)EPBE
X + EPBE

C . (3.57)

By further tuning the fraction of EXX in Chap. 7, we aim at partially compensating for
quasiparticle and excitonic effects, in order to overcome the band-gap problem and compute
realistic absorption properties of defect geometries previously determined using the PBEsol+U
formalism.

9Within the LSDA, the number of spin-up electrons can differ from that of spin-down electrons.
10Within the DFT framework, the term "exact exchange" is more appropriate compared to Hartree-Fock, because

it corresponds to the exchange as calculated from the Slater determinant of the Kohn-Sham instead of the Hartree-
Fock orbitals.[140]

11In its original formulation, the value α = 25 % (determined via perturbation theory) was suggested.[143] This
shall be denoted as "standard PBE0" in the following chapters.





4
Alkali-Ion Batteries

THE development of renewable forms of energy is strictly connected with the quest for effi-
cient energy storage. In this context, alkali-ion batteries, in particular, lithium-ion batteries

(LIBs), are already well-established in electronic devices. They not only combine great energy
densities with low self-discharge rates, but also feature good charging efficiencies with long
lifetimes. This is, in fact, basically restricted only by the number of charging cycles.[148–150]

Nevertheless, under special conditions and treatments, these batteries can be charged several
thousands of times without any serious deterioration of their properties.[151, 152]

However, current lithium-based technologies are not suitable for the large scale especially
due to the low lithium (Li) in Earth’s crust[153, 154]. Moreover, new electrode materials could
empower the development new technologies, for example of flexible devices[155].

Therefore, the suitability of new electrodes based on other largely available, inexpensive
and non-toxic elements has to be investigated. Since all alkali metals show similar properties,
sodium-ion (Na-ion, NIBs) and potassium-ion (K-ion, KIBs) based electrodes, but also multi-
valent ions such as Mg or Ca could be promising alternatives for LIBs.[152, 154, 156–162]

Unfortunately, due to larger ionic radii, the electrodes currently used for Li-ion technologies
have to be substituted. For this reason, finding new electrode materials is unavoidable. Since
the synthesis of new electrode materials can be rather expensive, the suitability of a material
for electrochemical applications should be theoretically tested beforehand, using, e. g., DFT.

In this Chapter, we will first introduce alkali-ion batteries by describing their setup. Then,
in Sec. 4.2, we aim at illustrating the theoretical prediction of electrochemical properties via
DFT routines.

4.1 Setup

An alkali-ion battery is a device which allows for energy storage by reversible chemical pro-
cesses, accompanied by ion (de)intercalation mechanisms1. In order to build an alkali-ion bat-
tery, five key elements are required: Two electrodes, an electrolyte, a separator and an external

1In electrochemistry, ion intercalation and ion deintercalation in/from a material refer to the ion in-diffusion and
out-diffusion, respectively. The former thus corresponds to the creation of interstitials, the latter to the formation of
vacancies.
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circuit. A schematic representation of an alkali-ion battery is shown in Fig. 4.1. The electrodes
are the host of the mobile ions. During the charging of the battery, an external voltage has to
be applied to the system, in order to deintercalate ions out of the positive electrode, transport
them within the electrolyte and through the separator to the negative electrode, where they are
finally intercalated. During the discharge, the ions migrate spontaneously from the negative to
the positive electrode due an internal potential difference. The separator is thereby required to
prevent a short-circuit of the electrodes by allowing only the positively charged ions to tran-
sit from one electrode to the other. The electrons, on the other hand, are conducted from one
electrode to the other through the external circuit.[14]

During the charging of the battery, the deintercalation of the alkali ions in conjunction with
the extracted electrons causes the oxidation of one component in the cathode. In the anode,
on the contrary, one component is reduced upon the intercalation process. The redox reactions
during the discharge are reversed. As a consequence, the positive and the negative electrode
should be referred to as cathode and anode, respectively, during charging. During the dis-
charge, on the other hand, the nomenclature should be reversed. However, for the sake of
simplicity, in the following, we will adopt the convention to denote the positive electrode with
cathode and the negative with anode.

To guarantee high average working voltages, materials with a high redox potential (e. g.,

+ _

e-

Figure 4.1: Schematic representation of the charging process of an alkali-ion battery. An exter-
nal voltage causes the deintercalation of the alkali ions out of the positive electrode
(cathode). These are then transported trough the electrolyte and the separator to
the negative electrode (anode), where the ions intercalate. The electrons, on the
other hand, are conducted through an external circuit.
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transition metal oxides[163]) are usually used as the cathode, while materials with a rather low
potential (e. g., graphite[164] or alloys[165]) are adopted for the anode. The electrolyte, on the
other hand, is usually composed of an organic solvent in which a salt (for example LiPF6

[166]) is
dissolved. In addition to the liquid solutions, also specific superionic conductors can be used
to build solid-state batteries.[167, 168]

Together with high average voltages, batteries should also feature broad working tempera-
ture ranges, a robust long-term operation, be save and ideally not be costly during their produc-
tion. In addition, also high gravimetric and volumetric energy densities are desirable.[14, 15, 152]

Thereby, the gravimetric (volumetric) energy density is a measure for the number of electrons
which can be stored per mass (volume).

4.2 Theoretical Investigation of Electrochemical Properties

When it comes to the design of new electrodes, it is often convenient to test their suitability by
characterizing them theoretically. Many (electrochemical) properties can, in fact, be calculated
within the DFT framework at a moderate computational cost. In the following, some tech-
niques for the theoretical prediction of these properties shall be elaborated, thereby we will
use M+ to generally indicate the alkali cation, on which the alkali-ion battery is based. The
discussion follows Ref. 15.

One property of an alkali-ion battery, which can be easily predicted, is the so-called open-
circuit voltage (OCV). This quantity describes the ideal voltage of the entire battery in thermo-
dynamic equilibrium. The thermodynamic equilibrium thereby corresponds to a minimum of
the total Gibbs free energy, which depends implicitly on the temperature T, the pressure p, as
well as on the number of atoms of other species.

If the electrode/electrolyte interfaces are relatively small, the contributions of the surfaces
and interfaces can be neglected. So, the total Gibbs free energy may then be written as the sum
of the Gibbs free energy in the anode (A), cathode (C) and electrolyte (E), yielding[15]

Gtot(NA
M+ , NC

M+ , NE
M+ , NA

e− , NC
e−) = GA(NA

M+ , NA
e−) + GC(NC

M+ , NC
e−) + GE(NE

M+). (4.1)

In Eq. 4.1, the internal degrees of freedom are represented by the number of alkali ions in the
battery’s components (i. e., NA

M+ , NC
M+ , and NE

M+ in the anode, cathode, and electrolyte, respec-
tively), and that of the valence electrons in anode and cathode (i. e., NA

e− , and NC
e− , respectively).

Note that the electrolyte should not contain any electrons.

The change of the free energy of a system α after the intercalation of an ion M+ is expressed
by its electrochemical potential ηα

M+ . It can be calculated via the partial derivative[15]

ηα
M+ =

∂Gα

∂Nα
M+

, (4.2)

where Gα indicates the Gibbs free energy of the component α of a battery. The electrochemical
potential of an electron ηα

e− can be calculated in a similar way.

Under the condition dNα
M = dNα

M+ = dNα
e− (which means that the number of neutral

atoms is equal to the number of ions and electrons), the electrochemical potentials of ions and
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electrons can be used to calculate the chemical potential µα
M of the neutral atom M as[15]

µα
M =

∂Gα

∂Nα
M

=
∂Gα

∂Nα
M+

∂Nα
M+

∂Nα
M

+
∂Gα

∂Nα
e−

∂Nα
e−

∂Nα
M

= ηα
M+ + ηα

e− , (4.3)

which describes the free-energy change after the intercalation of one neutral atom M.
For the equilibrium state, the free energy of the battery has to be minimized with respect to

the redistribution of the M+ ions in the components of the battery. This redistribution of ions,
however, should not affect the overall number of ions NM+ in the battery. Therefore, NM+ can
be considered as constant, i. e., NM+ = NA

M+ + NC
M+ + NE

M+ , and the independent variables are
reduced to two, e. g., NC

M+ and NE
M+ .

With this, it can be shown that the electrochemical potential of the alkali ion M+ is the same
in every component of the battery, i. e., ηA

M+ = ηC
M+ = ηE

M+ . Therefore, the partial derivatives of
the total free energy with respect to NC

M+ and NE
M+ must equal zero, yielding[15]

(
∂G

∂NC
M+

)
NE

M+

=

(
∂GC

∂NC
M+

+
∂GA

∂NC
M+

+
∂GE

∂NC
M+

)
NE

M+

=
∂GC

∂NC
M+

+
∂GA

∂NA
M+

(
∂NA

M+

∂NC
M+

)
= ηC

M+ − ηA
M+ = 0 (4.4)

and
(

∂G
∂NE

M+

)
NC

M+

=

(
∂GC

∂NE
M+

+
∂GA

∂NE
M+

+
∂GE

∂NE
M+

)
NE

M+

=
∂GE

∂NE
M+

+
∂GA

∂NA
M+

(
∂NA

M+

∂NE
M+

)
= ηE

M+ − ηA
M+ = 0. (4.5)

The relations derived in Eqs. 4.3 and 4.4 bring us to the formulation of the Nernst equation,
which can be applied to calculate the voltage V of a battery via its intrinsic thermodynamic
parameters. In a more general formulation also accounting for multivalent ions Mz (z > +1),
the Nernst equation reads[15]

V = −
ηC

e− − ηA
e−

ze0
= −

µC
M − µA

M
ze0

, (4.6)

with e0 as the elementar charge. Note that, since z indicates the oxidation number of the ion, it
also corresponds to the fraction of transferred charge per (de)intercalated ion.

Instead of calculating V, however, usually the voltage is averaged over a full charge/discharge
cycle. For this, Eq. 4.6 has to be integrated between the fully (de)intercalated electrode and the
pristine electrode material.[169]

The average voltage V of a cathode (anode) with respect to an anode (cathode) of the trans-
ferred element in its metallic phase2 can be calculated using DFT routines, via[15, 169–174]

V = ±∆G
zF

, (4.7)

where ∆G is the change of the Gibbs free energy caused by the alkali-ion (de)intercalation

2This quantity is also referred to as half-cell redox potential.
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and F = e0NA = 96485.309 C mol−1 is the Faraday constant. Here, NA denotes the Avogadro
constant. The change in Gibbs free energy has to be related to the specific direction of the
reactions. This is achieved by the positive and negative sign, which refer to the cathode and
anode, respectively.

The change in Gibbs free energy corresponds to ∆G = ∆E + p∆V − T∆S, where ∆E is the
change in internal energy, p the pressure, T the temperature and ∆S the change in entropy.
Within the (standard) DFT framework, the temperature is fixed to T = 0 K, so the term T∆S
equals zero. In addition, if also volume effects are neglected, i. e., p∆V = 0, the change of the
Gibbs free energy can be approximated by the change of the internal energy ∆E. Thus Eq. 4.7
reads[15, 169–174]

V ≈ ±∆E
zF

, (4.8)

where the quantity ∆E can be derived from the ground-state energies of the structures with
different alkali-ion concentrations.

In the case of monovalent ions, the fraction of transferred charge z can be expressed as
z = xe0 with x as the concentration of (de)intercalated M per formula unit of the electrode
material. With this, Eq. 4.8 reads

V ≈ ±∆E
zF

= ± ∆E
xe0F

= ±
E(de)in

e0F
. (4.9)

where ∆E(de)in denotes the (de)intercalation energy of the alkali atoms. The (de)intercalation
energy thereby describes how much energy is released or has to be applied to the system in
order to (de)intercalate a neutral atom in (from) the host. It can be calculated as[28, 175]

Edein =
E− Ehost + x · EM

x
(4.10)

and Ein =
E− Ehost − x · EM

x
, (4.11)

with EM as the chemical potential of the element M, while Ehost and E denote the ground-state
energy per formula unit of the stoichiometric host and of the material after the (de)intercalation
of M, respectively.

Unfortunately, however, the self-interaction error, which is not corrected by (semi-)local
exchange-correlation functionals (i. e., LDA and GGA), also affects the calculation of redox po-
tentials. In fact, these functionals commonly underestimate redox potentials. To achieve a more
accurate description, hybrid functionals or the Hubbard correction (see Secs. 3.6 and 3.5, respec-
tively) can be applied for the calculation of intercalation voltages and anionic oxidation.[176–181]

In addition, when more defect concentrations x have been computed, it is helpful to con-
struct the so-called convex hull, allowing for the determination of thermodynamically stable
phases. Thereby, the formation energy E f

[182]

E f = E− (1− x) · Ehost − x · Ehost−M (4.12)

is plotted against the concentration x3.

3Note that this formation energy refers to the formation energy of the vacancies in the cathode.
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Figure 4.2: Convex-hull construction of an exemplary cathode material. The concentration x
indicates the concentration of deintercalated alkali atoms per formula unit. Stable
phases are predicted for 0.000 ≤ x ≤ 0.625. For 0.625 < x < 1.000 a mixed phase
(composed of areas with x = 0.625 and x = 1.000) is expected.

Then, to build the convex hull, the lowest-energy ordered phases have to be connected via
straight lines. Only the defect concentrations which intersect the convex hull are predicted to be
stable. Otherwise, the phase is expected to be unstable with respect to a mixed phase consisting
of the start and the end point of the underneath-lying line.[182] A schematic representation of
an exemplary convex-hull construction is depicted in Fig. 4.2.

Apart from average voltages, DFT geometry optimization can also be used to quantify
volume deformations upon alkali-ion (de)intercalation. Suitable electrode materials, in fact,
should not suffer from strong volume expansion (shrinkage) upon ion (de)intercalation to
avoid the battery from breaking.

Furthermore, the theoretical gravimetric capacity C4, can be determined from the number
of alkali ions (de)intercalated per formula unit and the total molar mass mx of the host after the
(de)intercalation[15, 29]

C =
xF
mx

. (4.13)

Likewise, the volumetric capacity Cv corresponds to how much charge can be extracted or
stored per unit volume. From this, the gravimetric (volumetric) energy density corresponds to
ρ(v) = V C(v)

[15].
Finally, nudged-elastic band (NEB)[183] calculations can be performed to investigate the

ion-migration (vacancy-migration) mechanisms in the cell. The NEB method allows for the
calculation of energy barriers for the migration of an ion (or a vacancy) in a material. For the

4The gravimetric (volumetric) capacity expresses how much charge can be extracted or stored per unit weight
(volume).
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calculation, the minimum energy path has to be computed by minimizing the energy of the so-
called intermediate images along the path connecting the starting and the final position of the
ion (vacancy). Thereby, the spacing between neighboring images is kept constant. During the
optimization, the norm of the force component perpendicular to the path is minimized until it
is lower than a preset threshold. At the end, the energy barriers are calculated as the difference
between the lowest and the highest energy values along each segment.





5
Electrochemical Properties of KTA

TECHNOLOGIES based on heavier alkali ions are expected to be promising substitutes for
Li-ion batteries. However, due to the larger ionic radii, the investigation of new electrode

materials is essential. The requirements for new electrodes are stringent: They should not only
provide a high operation voltage, but also have to guarantee high capacities, a long-lasting and
robust operation as well as efficient charging mechanisms.

In this context, a number of studies indicate KTP-type crystals as excellent cathode and
anode materials for alkali-ion batteries.[28–39] These crystals, in fact, are characterized by a high
ionic conductivity, which on the one hand hampers techniques requiring the application of
external fields, e. g., periodic poling[27], but could be a benefit for battery applications, since it
facilitates efficient (de)charging mechanisms.

In particular, KTP seems to be promising both for cathodes and anodes. Thereby, the dein-
tercalation of K from the cathode material leads to the oxidation of Ti-Ti coordinated oxygen
atoms[28]. In the anode material, on the other hand, the intercalation of alkali ions provokes the
reduction of the Ti sites near the intercalation place[29].

As discussed in Chapter 2, reduced Ti atoms in the vicinity of oxygen vacancies are dis-
cussed to be instrumental for the characteristic gray tracking. These Ti3+ centers are not only
thermally stable[54], but an electron is more prone to be trapped near an oxygen vacancy in-
stead of far away from it[95]. Since the electronic flux could thus be hindered, this phenomenon
may also indirectly impair the electrochemical performance of the material.

However, gray tracking does not affect the whole KTP family to the same extent[56, 58]. It
is therefore reasonable to study the suitability of further KTP isomorphs for battery applica-
tions[30–39]. KTA for example is more robust against gray tracking[58], and is applied in similar
fields as KTP[26, 27, 85, 184]. To ensure a sufficient high electrode conductivity caused by the large
band gap[185], however, further material processing such as a electro-conducting carbon coating
could be mandatory[29, 186].

In this chapter, we will discuss the performance of KTA both as cathode and anode for
potassium-ion batteries (KIBs) using density functional theory. The results have already been
published and the discussion follows Ref. 187.
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5.1 Computational Details

To investigate the electrochemical performance of KTA, we apply DFT as implemented in the
open-source program QUANTUM ESPRESSO (QE)[188, 189]. For the modeling of the electron-
ion interaction, norm-conserving pseudopotentials, which treat the Ti 3d2 3s2 3p6, As 4s2 4p3,
K 4s1, and O 2s2 2p4 states as valence states, are used. The remaining states are considered to be
frozen in the core and to not participate in chemical bonding.

In addition, the electronic XC energy contributions are included using the generalized gra-
dient approximation GGA via the PBEsol functional[111, 112]. As mentioned in Chap. 4, the suit-
ability of (semi-)local functionals for the prediction of electrochemical properties is to some
extent limited, as these functionals typically underestimate redox voltages. A quantitatively
better description of voltages can be achieved by the application of hybrid functionals[180].
Unfortunately, hybrid DFT is computationally very demanding. So, since plenty of complex
structures have to be simulated in order to account for every defect geometry, its application
would lead to non-affordable computational costs. In the literature, however, many studies
indicate the Hubbard correction as a valid substitute for hybrid functionals, leading to realis-
tic intercalation voltages and anionic oxidation[176–181] at a much lower computational cost as
hybrid functionals. To include the Hubbard energy correction, we followed again the simpli-
fied version by Cococcioni and de Gironcoli[135], including an energy correction of U = 5.8 eV,
which has been determined self-consistently (for details see Sec. 7.1). To evaluate the accuracy
of the PBEsol+U methodology during the computation of the cathode material, we compare
the voltages calculated using Eq. 4.9 for a KTA cell with one deintercalated potassium atom
once under the application of the Hubbard correction and once under the application of hybrid
PBE0[143, 144]. Since the results agree within 0.3 V, we expect the Hubbard correction to lead
to meaningful results. Beside a more reliable prediction of voltages, the Hubbard correction
is also required to describe accurately the reduction of titanium atoms in the anode upon the
intercalation of potassium atoms.

Atomic wave functions are expanded into plane waves up to an energy cutoff of 100 Ry.
The Baldereschi point[190] is used for Brillouin-zone sampling. In addition, atomic positions
and lattice parameters are optimized until fluctuations in energy and total forces are below
10−8 Ry and 10−4 Ry/bohr, respectively.

This procedure yields values of a = 13.412 Å, b = 6.777 Å, and c = 10.834 Å for the lattice
parameters of KTA, slightly overestimating the respective experimental values[64].

Finally, to study the potassium (de)intercalation mechanisms in KTA crystals, NEB[183] cal-
culations are performed. The simulation is carried out until the norm of the force orthogonal
to the migration path falls below 0.05 eV/Å. The remaining convergence criteria remain un-
changed.

5.2 KTA Cathodes

5.2.1 Modeling of the Cathode Material

To simulate the charging of the battery, oxidizing defects have to be introduced in the cath-
ode. In KTA, this can be achieved by the deintercalation of potassium atoms, which causes the
oxidation of neighboring Ti-Ti coordinated oxygen atoms (OTi−Ti).
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-1 0
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Figure 5.1: (Adapted from Ref. 187) Schematic representation of the oxidation of one OTi−Ti
atom near the K deintercalation site. The yellow isosurfaces indicate the electron
charge density.

Using the KTA unit cell for the numerical simulation, up to eight potassium atoms can be
deintercalated. This results in K-deficient K1−xTiOAsO4 with x = 0.125-1.000 as the concentra-
tion of deintercalated K per formula unit.

In the thermodynamic equilibrium, potassium vacancies are more likely to be found in the
one-fold negatively charged state −1, since the deintercalation of a neutral potassium atom
would generate a hole at the top of the valence band. As a matter of fact, a hole at the valence
band maximum is rather unstable. So, the vacancy is energetically more favorable in the charge
state −1. This means that per each removed K+ ion, one valence electron remains in the cell.
The retained electrons are thereby mainly stabilized by one OTi−Ti near the vacancy.

For a correct charging of the KIB, beside the ion flux, however, also the electron has to transit
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Figure 5.2: (Adapted from Ref. 187) Convex hull to determine, which vacancy concentrations
x lead to stable phases. The concentrations x = 0.000, 0.250, 0.500, and 1.000 are
expected to be stable with respect to the mono-phase. The phases with x = 0.125,
0.750, and 0.875 might be stabilized by entropy. A mixed phase is predicted at least
for 0.25 < x < 0.50 and 0.50 < x < 0.75.
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from one electrode. Thereby, the following reaction takes place

KTiOAsO4 −→ K1−xTiOAsO4 + x
(

K+1 + e−
)

. (5.1)

So, to achieve an accurate description of this oxidation, a two-step procedure is required. First,
we optimize the energetically more stable charge state V−1

K . Consequently, we also extract the
excess electron from the cell and relax the structure again, obtaining the neutral V0

K.
In addition, during the calculations, we set the total spin angular momentum to S = n

2 , with
n = 1-8 as the number of deintercalated potassium atoms. This is important to model quasi-
non-interacting, isolated defects. As visible from the electron density depicted in Fig. 5.1, this
method describes accurately the oxidation of the above mentioned oxygen atom.

To cover all possible defect configurations, in theory, the ground-state geometry of 256 va-
cancy combinations has to be determined. However, this number can be reduced if symmetry-
equivalent configurations are grouped. To determine which defect concentrations are thermo-
dynamically stable, we construct the convex hull as described in Sec. 4.2, by compiling the
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Figure 5.3: (Adapted from Ref. 187) Geometries of the most stable vacancy configurations in
K1−xTiOAsO4 with 0.125 ≤ x ≤ 0.500. In addition, the electronic DOS as well as
the electronic orbitals of mid-gap levels are shown. EF indicates the Fermi level.
For the concentrations 0.625 ≤ x ≤ 1.000 see Fig. 5.4
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formation energy E f of each defect configuration calculated as

E f = EK1−xTiOAsO4 − (1− x) · EKTiOAsO4 − x · ETiOAsO4 (5.2)

against the concentration of deintercalated K per formula unit. In Eq. 5.2, EK1−xTiOAsO4 , EKTiOAsO4

and ETiOAsO4 refer to to the ground-state energy of one formula unit of K1−xTiOAsO4, KTiOAsO4

and TiOAsO4, respectively. The so-calculated values for E f together with the corresponding
convex hull (violet curve) are plotted in Fig. 5.2.

At zero temperature, only the vacancy concentrations x = 0.00, 0.25, 0.50, and 1.00 are
predicted to lead to stable phases. Notably, the same vacancy concentrations have already
been reported as stable phases also for KTP cathodes[28]. The defect structures of the remaining
concentrations x are all located above the convex hull and, thus, predicted to be unstable with
respect to a mixture of adjacent stable vacancy concentrations. However, at finite temperatures
the phases with x = 0.125, 0.750, and 0.875 could be stabilized by entropy, since they are
located less than 10 meV above the convex hull. For the defect concentrations 0.25 < x < 0.50

K0.375TiOAsO4

K0.125TiOAsO4

K0.250TiOAsO4

TiOAsO4

DOS

DOS

DOS

DOS

6

6

6

6

4

4

4

4

2

2

2

2

0

0

0

0

-2

-2

-2

-2

E
ne
rg
y
(e
V
)

E
ne
rg
y
(e
V
)

E
nergy

(eV
)

E
nergy

(eV
)

EF

O 2p O 2p

EF

EF

O 2p
EF

Figure 5.4: (Adapted from Ref. 187) Geometries of the most stable vacancy configurations in
K1−xTiOAsO4 with 0.625 ≤ x ≤ 1.000. In addition, the electronic DOS as well as
the electronic orbitals of mid-gap levels are shown. EF indicates the Fermi level.
For the concentrations 0.125 ≤ x ≤ 0.500 see Fig. 5.3
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Figure 5.5: (Adapted from Ref. 187) (a) Volume reduction and (b) average voltages calculated
for K1−xTiOAsO4 with 0.125 ≤ x ≤ 1.000.

and 0.50 < x < 0.75, on the other hand, the system is expected to undergo a phase separation.

The deintercalation of potassium from the KTA matrix does not have a strong influence
on the overall appearance of the crystal structure, which is qualitatively preserved. In fact, as
shown in Figs. 5.3 and 5.4, the most visible effect is a redistribution of the remaining K atoms
in the cell. Note that only the energetically most favorable geometry for each vacancy concen-
tration is depicted. The mesh of TiO6 octahedra and AsO4 tetrahedra, on the other hand, is
only negligibly altered. Though, a slight deformation of the lattice angles is calculated and,
as expected, the unit cell volume undergoes a rather small reduction. The highest shrinkage
is predicted after the deintercalation of all the K atoms in the cell, i. e., TiOAsO4, with a vol-
ume shrinkage of about 7% compared to stoichiometric KTA, see Fig. 5.5a. In KTP it was
found that the deintercalation of all K atoms present in the cell results in a volume shrinkage
of only 1.5%[28], so the KTP framework seems to be more robust compared to KTA. However,
the volume shrinkage predicted here is slightly lower than that of another KTP isomorph, i. e.,
KVPO4F, of about 7.8%[28]. So, the structural stability of KTA under the deintercalation of K
should still be high enough to guarantee a stable long-term operation, especially for moderate
x.

On the other hand, K vacancies affect the electronic density of states (DOS) of KTA crystals,
see Figs. 5.3 and 5.4. The main impact of the deintercalation of K atoms is the formation of O 2p
defect states within the band gap. For some vacancy configurations, these levels are completely
empty, for others partially occupied. More precisely, the mid-gap states can be attributed to the
two neighboring OTi−Ti. One of these corresponds to the oxidized OTi−Ti atom as shown in
Fig. 5.1.

In order to deintercalate K atoms from the cell, energy has to be applied to the system. This
corresponds to the charging of the battery. To quantify the amount of energy required for this
procedure, we calculate the deintercalation energy Edein for each simulated defect geometry x
as described in Sec. 4.2, by adapting Eq. 4.10 to KTA. The so-obtained expression reads

Edein =
EK1−xTiOAsO4 − EKTiOAsO4 + x · EK

x
. (5.3)
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Here, EK = −0.82 Ry is the chemical potential of metallic K1.
According to Eq. 4.10, we obtain average deintercalation energies Edein between 4.5 eV and

4.8 eV. These energies are of the same order of magnitude, but slightly larger than the corre-
sponding values in KTP, which were found to vary between 4.2 eV and 4.6 eV[28].

Consequently, using Eq. 4.9, we calculate the resulting average voltage V for each concen-
tration x. The so obtained V are compiled in Fig. 5.5b. As more K is deintercalated from the
matrix, the average voltage increases. The same behavior holds also for KTP cathodes. How-
ever, the average voltages calculated here are slightly higher than the one in KTP, i. e., between
4.47 and 4.80 V vs. up to 4.59 V[28], respectively. An opposite trend is visible for the gravimet-
ric capacity of the two materials. In fact, due to the higher molar mass of As compared to P,
the gravimetric capacity of KTA can reach a maximum value of 132.17 mAhg−1, while that of
KTP[28] can reach up to 168.73 mAhg−1, upon the deintercalation of all the K atoms from the
cell. As a consequence, also the gravimetric energy density calculated for KTA is lower than
that of KTP[28], i. e., 634.57 Wh/kg and 774.46 Wh/kg , respectively. Nevertheless, it is close to
that of KVPO4F (664.68 Wh/kg)[28] and in the same range of actual cathodes for Li-ion batteries
(between about 500 and 1000 Wh/kg)[152].

5.2.2 Potassium-Vacancy Diffusion

Apart from outstanding electrochemical properties and stability, a good electrode material
should also permit a fast vacancy (ion) diffusion to guarantee fast (de)charging mechanisms
and to ease the ion (de)intercalation. To explore the migration mechanisms in KTA, we per-
form NEB calculations. In total, we consider six different pathways in the KTA unit cell, two
are oriented along [100], the remaining four along [001], see Fig. 5.6. The activation energies of
the vacancy migration along the [010] direction of the crystal were found to be rather unfavor-
able in the KTP family members[29, 31, 68] and, for this reason, these pathways are not considered
here. Note that for the NEB calculations the start and end images have to feature the same lat-
tice dimensions. However, the lattice constants of the defect cells do not match after volume
relaxation. But considering that compared to the stoichiometric KTA unit cell, the change in
volume is less that 0.5 %, it is reasonable to use defect geometries, which have only been re-
laxed with respect to the atomic positions while the lattice parameters are kept fixed at the
values of stoichiometric KTA.

The so-calculated activation barriers are compiled in Fig. 5.6. Notably, the vacancy migra-
tion is locally facilitated when the vacancy is shifted from a K(1) to a K(2) site compared to the
opposite direction. In addition, also the vacancy formation energy is more favorable if it is lo-
cated at the site K(2). A possible explanation for this phenomenon can be found in the internal
polarization of the crystal.

For each segment, the computed activation energies are found to be lower than 0.8 eV.
Thereby, the most favorable pathway is characterized by activation energies lower than 370 meV,
and corresponds to the anti-clockwise spiral pathway (e) along the c axis (i.e., K(2)−→K(5)−→
K(6) −→ K(1) −→ K(2)), see Fig. 5.6. This reflects the experimental finding, that the ionic con-
ductivity along the [001] direction is by far higher compared to those along [100] and [010][191].

1To calculate the chemical potential of elemental M, the energy of one M atom in the bulk material has to be
determined. Here, we use the ground-state energy per atom of metallic K (bcc) to calculate the chemical potential
K.
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Figure 5.6: (Adapted from Ref. 187) K-vacancy migration along [100] (pathways (a) and (b))
and [001] (pathways (c)-(f)) as well as the corresponding activation energies.

Despite being slightly less favorable than the corresponding values in KTP[28] and those re-
ported for the Rb migration in RbVPO4F[31], the K deintercalation should still be fast enough
for battery applications.
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5.3 KTA Anodes

5.3.1 Models

Contrary to the modeling of the cathode material, to model a KTA anode additional potassium
atoms have to be intercalated in the material. These provoke the reduction of neighboring
titanium atoms. Upon the K intercalation the following reaction takes places

KTiOAsO4 + x
(

K+1 + e−
)
−→ KTiOAsO4Kx. (5.4)

Here, x is the concentration of intercalated K per formula unit. In analogy to the cathode
material, the intercalation of neutral K atoms is simulated and the spin angular momentum is
set to S = n

2 , with n = 1-4 as the number of intercalated potassium atoms per unit cell.

Unlike in KTP anodes, where eight possible intercalation sites were found[29], in KTA the
number of possible intercalation sites is reduced to four: The sites found in Ref. 29 are rather
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for KTiOAsO4Kx with 0.125 ≤ x ≤ 0.500.

unfavorable in KTA crystals probably due the larger volume of the AsO4 units compared to the
PO4 tetrahedra. So, the intercalated potassium is more likely to position in larger cages parallel
to the [010] direction instead of the [100] direction in KTA. More precisely, the intercalation
sites in KTA correspond to the sites M1-M4 by Huang et al.[29], shifted by circa −25 % of the
lattice parameter b. Consequently, the concentration of intercalated potassium is in the range
x = 0.125-0.5, summing up to 15 possible combinations for KTiOAsO4Kx. All of these have
been simulated and the lowest-energy configurations are depicted in Fig. 5.7.

The valence electron of every intercalated K atom reduces one of the neighboring Ti atoms
transforming them from Ti4+ into Ti3+ centers. This is also visible from the plotted atomic
orbitals in Fig. 5.7. Interestingly, only Ti(2) sites are reduced. The reduction of the titanium is
accompanied by the formation of occupied Ti 3d mid-gap levels as visualized by the electronic
DOS plotted in Fig. 5.7.

Simultaneously, the volume of the unit cell increases by up to 6.89 % for x = 0.5, see
Fig. 5.8a. This volume expansion is in the same order as the one in KTP[29] for the same con-
centration, and should not hinder a stable long-term operation.

Adapting Eq. 4.11 to KTA, the intercalation energy Ein (required for the calculation of the
average voltage of the anode) can be calculated as

Ein =
EKTiOAsO4Kx − EKTiOAsO4 − x · EK

x
, (5.5)

with EKTiOAsO4Kx corresponding to the energy of one formula unit of KTiOAsO4Kx. Assuming
values between −0.8 eV (when only one K is intercalated) and −0.2 eV (when all intercalation
sites are occupied), the intercalation energy is always negative, indicating that the K atoms will
spontaneously intercalate in the anode material.

According to Eq. 4.9, this leads to values between 0.83 and 0.90 V for the average voltage,
with the voltage increasing as more K is intercalated in the cell, see Fig. 5.8b. Similar to the
cathode material, KTA thus leads to slightly higher voltages compared to KTP[29] also in the
case of the anode.

On more time, the higher molar mass of As compared to P results in lower gravimetric
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capacities (between 13.58 and 51.26 mAhg−1) and lower gravimetric energy densities (between
11.32 and 46.37 Whkg−1) as the one obtained for KTP (between 16.52 and 61.61 mAhg−1) for
the same values of x[29].

5.3.2 Potassium-Ion Diffusion

To complete the discussion about the electrochemical performance of KTA anodes, we shall
now discuss the K-ion intercalation mechanisms in the material. We thereby investigate the
migration mechanisms of one single K interstitial (Ki) using again NEB routines.

Due to the peculiar positioning of the K intercalation sites, the K-ion migration along the
[100] axis is hindered by the TiO6-PO4 chains parallel to [010]. Therefore, these pathways are
rather unfavorable and will not be analyzed further.

Nevertheless, we will compute the migration along the [010] and the [001] directions. In
the former case, the intercalated K ion would migrate from one intercalation site of one unit
cell into its equivalent site of one adjacent cell. Therefore, a larger supercell, corresponding to
the KTA unit cell doubled along [010], has to be modeled for the simulation. In the latter case,
simulations are again performed within the KTA unit cell. As for the cathode material, four
different ion migration pathways along the [001] axis can be identified, see Fig. 5.9.
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Figure 5.9: (Adapted from Ref. 187) K-ion migration along [001] as well as the corresponding
activation energies. The ion migrates through the lattice assuming both intercala-
tion sites Ki and intrinsic lattice sites K(i).
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Although the pathway features large channels, the migration along the [010] axis is charac-
terized by an activation energy of 1.91 eV and, is therefore, quite improbable.

Along [001], on the other hand, the Ki migrates across the crystal occupying intercalation
and intrinsic lattice sites. Different from the cathode material, the activation energy does not
change locally in dependence of the direction in which the Ki moves. An attempt to explain
this finding is that K+ ions located at intrinsic and intercalation sites just interchange their
positioning, so that none of the configurations is more favorable than the other. The energy
barriers calculated for the ion migration do not differ significantly with respect to the chosen
path. In addition, being all below 0.76 eV, they are lower than the one calculated for KTP
crystals along the [100] axis[29]. To our knowledge, the migration mechanisms of Ki along the
[001] axis of KTP have not been investigated, yet2, so we are unaware of the barriers magnitude
in this direction. Nevertheless, in analogy with the cathode material, we assume that they could
be slightly more favorable than the one predicted here.

As found for the cathode, the most favorable migration pathway is the spiral pathway along
the c axis, i.e., Ki(3) −→ K(2) −→ K(5) −→ Ki(2) −→ K(6) −→ K(1) −→ Ki(3), corresponding to
letter (d) in Fig. 5.9, which are characterized by barriers lower than 600 meV. So, both vacancies
and ions would be more likely to follow this path during the migration across the crystal. This
also reflects the experimental finding[191] that the diffusion coefficient along the c axis in KTA
is higher compared to the remaining two.

5.4 Conclusion and Outlook

The electrochemical performance of KTA applied as a cathode and anode for K-ion batteries
has been evaluated within the framework of DFT. We thereby focussed on the voltages arising
upon K (de)intercalation, the volume deformation, and the diffusion barriers for the K-ion (K-
vacancy) migration.

For the simulation of the cathode, we modeled K-deficient K1−xTiOAsO4 by deintercalating
up to eight K atoms from the KTA unit cell. To simulate the anode, on the other hand, reducing
defects were introduced by intercalating up to four K atoms in the cell.

Overall, the here calculated properties are promising. KTA is expected to reach high av-
erage working voltages of about 3.8 V, when it is simultaneously applied as cathode and an-
ode. In addition, the material should guarantee a robust long term operation, since the K-
(de)intercalation does not significantly affect the crystal lattice: The maximum volume shrink-
age and expansion was calculated to be less than 7%.

Finally, the most favorable K-vacancy (K-ion) diffusion pathway corresponds to spiral K-
channels along [001] and is characterized by activation energies lower than 370 meV (600 meV).
KTA thus shows similar properties as other members of the KTP-type family.

Nevertheless, some considerations have to be made. First of all, KTA anodes do only allow
for the intercalation of four K atoms compared to eight in KTP[29]. KTA cathodes, on the other
hand, show higher average voltages compared to KTP[28]. So, we would suggest that KTA
would show a better performance if applied as a cathode rather than an anode. In addition,
due to the heavier group-V element, the gravimetric capacity is lower than the one in KTP[28, 29].

2Note that in Ref. 29 a different convention for the orientation for the crystal axes was used. More precisely, our
a, b and c axes correspond to their a, −c and b, respectively.
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Finally, it has to be pointed out that KTA clearly holds the disadvantage of featuring a toxic
element, i. e., arsenic (As).

Nevertheless, apart from the difference already pointed out, the material’s performance is
found to be close to the one of KTP. This means that our calculations show that the electro-
chemical performance of KTP-type crystals is not significantly altered by the nature of the XO4

group. So, we suggest that the KTP framework might be also suitable to host different elements
at the X sites, for example silicon (Si). Silicates, i. e., Li2FeSiO4, have already been tested as a
cathode material. The material does show promising electrochemical properties, but is limited
with respect to the ion mobility.[192] We expect that this problem could be solved by the high
ionic conductivity of the KTP framework, which also allows for the migration of larger alkali
ions. In addition, the lighter Ti atoms compared to Fe atoms would be beneficial in providing
higher gravimetric capacities, and thus reduce the overall weight of the battery.

The replacement of As with Si should at least in theory be possible, since the average bond
length[193] of the SiO bonds in Li2FeSiO4 is about 1.62 Å, which is very close to the average bond
length of the AsO bonds in KTA (i. e., 1.68 Å[194]) and of the PO bonds in KTP (i. e., 1.54 Å[194]).
Thereby, the (partial) replacement of OTi−Ti with fluorine (F) or higher concentrations of the
alkali element could be required to compensate for the missing valence electron.





6
Optical Properties from First Principles

THE electronic properties of a solid-state system are encoded in its band structure. In the
framework of quantum theory, the transition from one state to another can be accompanied

by the absorption (excitation of an electron into a higher, unoccupied state) or the emission
(relaxation of an electron into a lower, empty state) of a photon. The photon energy h̄ω thereby
corresponds to the difference between the energies E1 and E2 assumed by the electron as

h̄ω = E2 − E1. (6.1)

The description of the light-matter interaction, however, can be carried out in a more classical
picture. Under the influence of an electromagnetic wave, the electron and nuclei of the system
start to oscillate with the frequency of the light field. Due to the oscillation, the fluctuating
particles will in turn generate secondary waves, which can interfere with the original light
field and other oscillating particles.[195]

In a crystal, all these microscopic fields can be averaged over each unit cell to generate a
continuous function depending on the space coordinate r. The average electric field causes an
oscillating dipole moment, which leads to the electric polarization per unit cell P[195]

P =
1
V

∫
ρ ∆r dV, (6.2)

with V as the unit-cell volume, ρ as the charge density and ∆r indicating the amplitude of the
oscillation, i. e., the charge displacement.

The combination of the electric field and the electric polarization leads to the electric dis-
placement D = E + 4πP. For moderate electric fields, the electric field is linear in the polariza-
tion, so the relation simplifies to[195]

Di =
3

∑
j=1

εijEij, (6.3)

where εij corresponds to dielectric tensor.

55
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In short, the dielectric tensor describes the response of the material to an incident electro-
magnetic field and should therefore depend both on its wave vector k and its frequency ω.
Under the assumption that the spatial dispersion of the wave can be neglected, i. e., the case of
large wavelengths compared to the unit cell dimensions, the dependency on the wave vector
can be neglected, i. e., εij(k, ω) ≈ εij(ω).[195]

In the following, we will use ε to indicate one of the principal values of the dielectric ten-
sor. To account for a phase difference between the electric field and the corresponding dis-
placement, ε must assume complex values, i. e., ε = ε1 + iε2. Thus, the expressions for both
quantities read[195]

E(ω) = E0e−iωt + E∗0eiωt (6.4)

D(ω) = ε(ω)E0e−iωt + ε(−ω)E∗0eiωt = ε(ω)E0e−iωt + ε∗(ω)E∗0eiωt (6.5)

In the last step, the relation ε(−ω) = ε∗(ω) was assumed to guarantee a real value for D(ω).

To determine the losses per oscillation, the average dissipation rate W =
1

4π

〈
E · ∂D

∂t

〉
has

to be integrated over a oscillation period leading to[195]

W =
ωε2(ω)

4π
〈E2〉. (6.6)

Eq. 6.6 shows that the absorption properties of a medium are proportional to the imaginary
part of the dielectric function. Therefore, losses can be attributed to non-zero values of ε2.

Depending on the application, high absorption coefficients can be either desirable (e. g., in
solar cells) or detrimental (e. g., in waveguides). Thus, the determination of the influence of
dopants (or impurities) on a material’s absorption properties is crucial for knowledge-driven
solutions to enhance its response. In this chapter, we will introduce methodologies how to
determine the dielectric function ε within DFT on different levels of theory. The discussion
follows Ref.117.

6.1 A Short Overview

For the calculation of the dielectric function ε within the DFT framework, a relation connecting
the electronic density with the incident light field has to be derived. This can be achieved by
the self-consistent solution of the Hedin’s equations, which have already been introduced in
Sec. 3.4.

From the Hedin’s equations, a series of physical properties can be determined. One of these
is the dielectric function of the system, which can be calculated as[117]

ε(1, 2) = δ(1− 2)−
∫

v(1− 3)P(3, 2)d3. (6.7)

As mentioned before, for the solution of Hedin’s equations, some approximations are required.
Within the RPA (see Sec. 3.4), the expression for the polarizability reads

P(1, 2) ≡ P0(1, 2) = −iG(1, 2)G(2, 1). (6.8)
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At this point, it should be noted that the polarizability functions P0 and P in the framework of
the Green’s function formalism are used as synonyms for the independent-particle polarization
χ0 and the full polarizability χ. However, formally only the equality χ0 = P0 holds. These
two quantities describe, how the electronic density responds to a change in the total effective
potential veff. and in the external potential vext., respectively, as[117]

δn(r) =
∫

χ0(r, r′)δveff.(r′)d3r′

δn(r) =
∫

χ(r, r′)δvext.(r′)d3r′. (6.9)

The dielectric function can be derived from the polarizability as

ε(1, 2) = δ(1− 2)−
∫

v(1− 3)χ(3, 2)d3, (6.10)

assuming the same shape as Eq. 6.7. Under the constraint that the perturbation is caused by a
test particle, the RPA can again be applied leading to the following simplified expression for
the dielectric function[117]

εRPA = δ(1− 2)−
∫

v(1− 3)χ0(3, 2)d3. (6.11)

In the following two sections we will elaborate on the computation of ε within the DFT frame-
work at different levels of theory.

6.1.1 The Independent-Particle Approximation

The above discussed dielectric function corresponds to the microscopic dielectric function. Its
inverse is a measure for the screening of a system and is defined as the variation of the effective
potential under a change in the external potential as

ε−1(1, 2) ≡ δveff.(1)
δvext.(2)

. (6.12)

This expression can be transformed into momentum space via the Fourier transform over the
Brillouin zone (BZ) as[117]

ε−1(r, r′; ω) =
1

2π3

∫
BZ

∑
G, G′

ei(q+G)·r ε−1
GG′(q, ω) e−i(q+G)·r′ dq. (6.13)

In Eq. 6.13 G and G′ are reciprocal lattice vectors and the wave vector q lies in the first BZ.
Although all microscopic electric fields vary with the same frequency ω, due to a non-constant
value for q + G they undergo microscopic fluctuations. These microscopic fluctuations are
thereby referred to as local-field effects.[117]

The inverse of the dielectric function ε−1 can be related to the macroscopic dielectric func-
tion, which describes the optical properties of a material via

εM(ω) = lim
q→0

1
ε−1

GG′(q, ω)

∣∣∣∣∣
G=G′=0

(6.14)
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as showed by Adler[196] and Wiser[197]. Thereby, the limit q → 0 implies that only vertical
transitions are allowed. So, adopting matrix notation for brevities sake, the inverse of Eq. 6.11
in the RPA is given by[117]

ε−1
RPA = 1 + v(1− χ0v)−1χ0. (6.15)

One of the possible approximations carried out during the calculation of χ0 is the neglection
of local-field effects. This corresponds to the so-called independent-particle approximation
(IPA), where the polarization of independent particles χ0 corresponds to the Adler-Wiser ex-
pression[117, 196, 197]

χ0(r, r′; ω) = 2 ∑
i,j
( fi − f j)

ϕi(r)ϕ∗j (r)ϕ∗i (r
′)ϕj(r′)

εi − εj − h̄(ω + iη)
, (6.16)

with its Fourier transform

χ0(q; ω) = 2 ∑
i,j

(
fi − f j

) 〈ϕj
∣∣ e−i(q+G)·r |ϕi〉 〈ϕi| ei(q+G′)·r′ ∣∣ϕj

〉
εi − εi − h̄(ω + iη)

. (6.17)

In Eqs. 6.16 and 6.17, the summation extends over the quantum numbers of a solid, i. e., i and
j indicate the band index (v for a valence band, c for a conduction band) and the correspond-
ing wave vectors k and k′. η > 0 is an infinitesimal number and fi,j indicate the respective
occupation numbers. For a semiconductor, f can assume either the values 1 or 0 for valence or
conduction bands. In addition,

∣∣ϕi,j
〉

and εi,j refer to the Kohn-Sham eigenstates and eigenval-
ues, respectively.

Neglecting local-field effects, only the matrix element for G = G′ = 0 has to be consid-
ered in Eq. 6.14. With these simplifications and indicating the unit-cell volume with V, the
macroscopic dielectric function reads[117]

εM(ω) = 1 + 2
4π

V
lim
q→0

1
q2 ∑

k,c,v

{ ∣∣〈ck + q| eiq·r |vk〉
∣∣2

εck+q − εvk − h̄(ω + iη)

+

∣∣〈ck− q| e−iq·r |vk〉
∣∣2

εck−q − εvk + h̄(ω + iη)

}
(6.18)

Spectra calculated within the IPA usually do not reproduce experimental absorption spectra ac-
curately: In fact, the IPA does not only suffer from a pronounced redshift due to the systematic
underestimation of the fundamental band gap, but it does also neglects excitonic effects, i. e.,
electrostatic interactions between electrons and holes.[198] In this thesis, we will show that the
intrinsic limitations of the IPA can be overcome to some extent by the use of modified hybrid
functionals1. Thus, a detailed discussion of approaches most established for the computation
of realistic optical properties will go beyond the scope of this work. Nevertheless, they shall be
shortly introduced in Sec. 6.1.2.

1The application of hybrid functionals is motivated by strongly localized defect states, which can not be de-
scribed by (semi-)local functionals. So, using this wrong electronic structure as a starting point for further calcula-
tions is expected to lead to unreliable optical properties.
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6.1.2 Towards Realistic Absorption Properties

One major problem of the IPA is a drastical underestimation of single-particle excitation ener-
gies. As a consequence, IPA spectra usually suffer from a severe red shift compared to experi-
mental data, ensuring only to a qualitative agreement between theory and experiment.[198]

An immediate correction of the absorption onset can be achieved by substituting the Kohn-
Sham eigenvalues εi in Eq. 6.18 with the quasiparticle energies (see Eq. 3.30) as calculated
within the GW[121, 198] (DFT+GW), yielding the independent-quasiparticle approximation (IQA).

The quasiparticle energies can, for example, be directly obtained by calculating self-energy
corrections within the GW approximation. Another approach to include the GW blueshift was
presented by Del Sole and Girlanda in Ref.199: If the magnitude of the blueshift is known and
nonlocality and gauge invariance are taken into account, the IQA dielectric function can also
be computed on top of (semi-)local wave functions by the application of a scissor operator ∆.
For this, the band-gap width is opened rigidly by ∆ and, thus, the absorption onset of the IPA
dielectric function εIPA is shifted by ω′ = ∆/h̄ towards higher energies, as

εIQA,scissor = εIPA
(

ω− ∆
h̄

)
. (6.19)

For the explicit inclusion of local-field effects, on the other hand, the dielectric matrix has
to be inverted as required by Eq. 6.14. This computationally very demanding approach can be
overcome by introducing the modified polarizability[117]

P̄GG′(q, ω) = PGG′(q, ω) + ∑
K,K′

PGK(q, ω)ε̄ −1
KK′(q)v̄K′(q)P̄K′G′(q, ω), (6.20)

with
ε̄G,G′ ≡ δG,G′ − v̄G(q)PG,G′(q, ω) (6.21)

and neglecting the Coulomb interactions for G = 0 via

v̄G ≡
{

0 , G = 0
vG , G 6= 0

. (6.22)

This leads to the following expression for the macroscopic dielectric function

εM(ω) = 1− lim
q→0

[v0(q)P̄00(q, ω)] . (6.23)

For details, the Reader is referred to Ref. 117.
Although the IQA has already been shown to yield optical spectra in closer agreement with

the experiment compared to IPA, it still neglects excitonic effects.[198]

The excitonic effects, however, can have a very strong influence on the absorption properties
of a material, leading not only to a red-shifted absorption spectrum compared to the IQA, but
can also cause the formation of sharp, localized absorption signatures (located at energies lower
than the absorption onset), which are caused by the excitonic states themselves.[122]

For the inclusion of excitonic effects, one has to go beyond the GW approximation by further
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iterating Hedin’s equations. The result of the additional iteration is the Bethe-Salpeter equation
(BSE)[117, 200]

P̄ = P0 + P0(v̄−W)P̄. (6.24)

In Eq. 6.24, P̄ is a generalization of the two-point polarizability P(1, 2) into a four-point one
and v̄ corresponds to the Coulomb potential without the long-range part. For the sake of com-
pleteness (details can be again found again in Ref. 117), the macroscopic dielectric function
after the solution of the BSE reads[117]

εM(ω) = 1− 2 lim
q

v0(q)∑
λ


∣∣∣∣∣∑v,c,k
〈vk| e−iq·r |ck〉 A(vck)

λ

∣∣∣∣∣
2

×
(

1
Eλ − (ω + iη)

+
1

Eλ + (ω + iη)

)}
. (6.25)

Here, A(vck)
λ and Eλ are the eigenfunctions and the eigenvalues of the BSE Hamiltonian.

The solution of the BSE partially compensates the GW blueshift by redistributing the oscilla-
tor strengths to lower photon energies.[121, 201–203] Thus, a combined application of the GW+BSE
is most established for the computation of optical properties in quantitatively good agreement
with experimental spectra.[204–207]



7
Optical Absorption Properties

of Oxygen Vacancies

IN this chapter we will examine the impact of O vacancies on the transmission properties of
KTP crystals.

As described in Sec. 2.3, O vacancies located between two Ti atoms are discussed to be in-
strumental for the formation of gray tracks in KTP crystals. In order to investigate if their pres-
ence can directly be connected to this phenomenon, ab initio studies have to be conducted. Only
within theoretical investigations, in fact, isolated point defects can be modeled and their char-
acteristic optical signatures can be resolved. During the computation, however, the correction
of the fundamental-gap width is crucial for the achievement of realistic absorption properties.

The combined application of the GW+BSE methodology, which is most-established to over-
come the intrinsic band-gap problem of DFT-calculations caused by (semi-)local exchange and
correlation functionals, has already provided fruitful results for the calculation of the optical
response of stoichiometric KTP[208, 209]: It was found that the inclusion of self-energy effects in-
duces a blue shift of about 2 eV, which is then partially compensated by a 1.5-eV red shift caused
by excitonic effects[208]. The combined application then leads to spectra in close agreement with
experimental data[81].

This procedure, unfortunately, is not directly applicable after the introduction of OTi−Ti va-
cancies. In fact, the peculiar nature of Ti 3d defect states caused by O(10) vacancies hinders
the utilization of the GW+BSE methodology: Since the underlying (semi-)local PBEsol func-
tional delocalizes these defect states, the GW approximation based on this improper electronic
structure would lead to unreliable optical properties.

In the following sections, a different approach for the calculation of high-end optical prop-
erties will be presented, combining (i) a realistic prediction of the system’s fundamental band
gap with (ii) an accurate localization of defect states: The PBE0-10% methodology1. The va-

1Note that the PBE0[143, 144] functional is applied, since it provides defect geometries and hyperfine tensors in
close agreement with PBEsol+U[111, 112, 135] structures in Ref.95, and 10% refers to the fraction α of EXX, which has
to be included in the calculation to match the absorption onset of GW+BSE optical properties. However, different
systems may require the application of different hybrid functionals, e.g., B3LYP[145–147] or HSE[141, 142], and/or
different fractions of EXX.

61
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lidity of this procedure as an alternative to the GW+BSE will be shown in Sec. 7.3. The results
presented in this Chapter have already been published and the discussion follows Ref. 210.

7.1 Computational Details

The open-source program package QUANTUM ESPRESSO (QE)[188, 189] is used to determine of
the ground-state (defect) geometries within the DFT framework. Throughout this chapter, it is
assumed that the defect concentration is low enough to not alter the crystal shape. Thus, the
lattice constants are kept at the fixed values of a = 12.859 Å, b = 6.432 Å, and c = 10.599 Å
determined in a previous study[211]. This values deviate less than 0.5 % from experimental
data[61].

During the geometry optimization, the Brillouin-zone sampling is restricted to the Baldere-
schi point[190], and atomic wave functions are expanded into plane waves up to an energy cutoff
of 100 Ry. Thereby, the atomic positions are optimized until fluctuations of energy and residual
forces are below 10−8 Ry and 10−4 Ry/bohr, respectively. For the modeling of the electron-
ion interactions, norm-conserving pseudopotentials with the Ti 3d3 4s0.5, P 3s2 3p3, K 4s1, and
O 2s2 2p4 states as valence states are used2.

Electronic exchange and correlation is described within the GGA using the PBEsol[111, 112]

functional. The vacancy of interest, i.e., VO(10), features strongly localized occupied defect lev-
els within the one-fold positively charged and the neutral charge state. Under the application
of (semi-)local functionals and the Slater-Janak transition state model[139, 212], their formation
energy suggests that both the neutral V0

O(10) and the EPR active V+1
O(10) are not energetically fa-

vorable, since both the (+2/ + 1) and the (+1/0) charge transition states are located above the
band gap[211]. In order to achieve an accurate description of these defect states, a Hubbard[135]

energy correction of U = 5.1 eV[95] is applied to the Ti 3d states. The Hubbard correction has
been determined self-consistently[211] via the simplified scheme of Cococcioni and de Giron-
coli[135] (also see Sec. 3.5) based on an effective Hubbard U and atomic wave functions for the
construction of the projectors on the localized orbitals. This procedure results in KTP bulk3

and defect geometries, which have been verified by comparing calculated[95] and measured[54]

hyperfine tensors.
The optical properties of the PBEsol+U structures are computed utilizing the open-source

code Yambo[213, 214]. Thereby, calculations are limited to the IPA level of theory. In order to com-
pute realistic absorption spectra, a modification of the hybrid functional PBE0[143, 144] (PBE0-
10% in the following) is used. Normally, the PBE0 functional describes the electron correla-
tion within the PBE[109], but replaces the PBE exchange with a fraction α = 25 % of EXX from
Hartree-Fock theory. Here, the α is reduced to 10 % to partially compensate for the quasiparti-
cle energies as well as excitonic effects. To achieve numerically converged spectra, the k-point
sampling is increased to a Γ-centered 3 × 6 × 3 mesh, while the energy cutoff is lowered to
90 Ry to reduced the computational effort.

2The fractional occupation of the orbitals is deprived from any physical meaning and motivated by technical
reasons to improve the transferability of the pseudopotentials.

3Note that also defects will be modeled within bulk material. In this work, however, the term "bulk" will be used
to indicate stoichiometric volume cells.
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7.2 Oxygen Vacancies in KTP: Charge States and Spin Configurations

As mentioned in Chap. 2, it is impossible to grow perfect stoichiometric KTP crystals. In fact,
every crystal is to some extent deficient in K. These defects can be charge-compensated by a
variety of defects, for example (charged) oxygen vacancies.

Due to their coordination, two different types of O vacancies can be identified. Eight atoms
(i. e., O(1)-O(8)) are coordinated to both one Ti and one P atom. The remaining two (i. e., O(9)
and O(10)) are coordinated to Ti, exclusively. The respective O vacancies will be denoted as
VTi−P and VTi−Ti, respectively.

Regardless their coordination, O vacancies can release up to two electrons. These elec-
trons can be stabilized by the Ti atoms near the vacancy, thus leading to their reduction, or
be extracted from the cell. On the other hand, positively charged O vacancies may also trap
unpaired electrons. Thus, the charge states +2, +1, and 0 are theoretically possible.

Notably, the different coordinations of the O atoms have a strong influence on the nature
of the related defect states. As shown in Ref. 211, VTi−P in the charge states +1 and 0 give
rise to localized mid-gap defect levels already on the DFT level of theory (i.e., using the (semi-
)local PBEsol). Nevertheless, their formation energies calculated using the Slater-Janak transi-
tion state model[139, 212], suggest that these vacancies show a pronounced negative-U behavior4.
One of the main consequences of the negative-U effect is that, at least in the thermodynamic
equilibrium, the vacancies are not expected to be stable within the charge state +1. So, being
EPR silent in the equilibrium charge states, these vacancies can not be experimentally resolved,
but may still strongly impair the properties of KTP5.[211]

(Semi-)local functionals, on the other hand, fail in the description of the defect states caused
by VTi−Ti. The application of the PBEsol functional leads to an artificial delocalization of occu-
pied Ti 3d defect states so that the charges q = +1 and q = 0 are erroneously predicted to be
metallic (also see Fig. 7.3). Therefore, the PBEsol formation energy would exclude the gener-
ation of these two charge states. This clearly contradicts the experimental findings of an EPR
and ENDOR study by Setzler et al.[54], who attributed the hyperfine signatures of thermally
stable Ti3+ centers (which are discussed to be strictly related to the gray-track phenomenon,
also see Sec. 2.3) to be caused by VTi−Ti.

The inaccurate prediction of the electronic structure of the one-fold positively charged and
the neutral vacancy can, however, be overcome by applying a Hubbard energy correction of
U = 5.1 eV on the Ti 3d states[95]. This correction provides a better description of the strongly
localized Ti 3d orbitals and is thus helpful to model the defect states of interest, here. Subse-
quent to the application of the Hubbard U, in fact, the defect-related occupied states lower into
the band gap[95] (see Fig. 7.3). As a consequence, also the (+2/ + 1) and the (+1/0) charge
transition states are lowered, and also the charge states +1 and 0 are predicted to be stable, also
see Fig. 7.1.

4Negative-U behavior can be observed if the defect under consideration traps the second hole (or electron) more
strongly than the first[215].

5The negative-U behavior is caused by a strong geometry relaxation during the transition from +1 to +2 due
to electrostatic forces: After the removal of the oxygen atom, a dangling bond at the P site forms. This stabilized
the main part of the released charge in the one-fold positively charged and the neutral charge state, leading to the
formation of an electron cloud between the Ti and the P sites. So, since these atoms hold an effective positive charge,
the electron cloud helps to shield the repulsive force acting on the two atoms. In the charge state +2, i.e., when the
dangling bond is completely emptied, this compensating effect vanishes and the two atoms repel each other. This
causes a strong geometry relaxation.[211]
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Figure 7.1: (Adapted from Refs. 95 and 210) PBEsol+U defect geometries and formation en-
ergy calculated via the Slater-Janak transition state model[139, 212] of the vacancy
Vq

O(10) within the three charge states q = +2, +1, and 0. EF indicates the Fermi
energy. The yellow isosurfaces correspond to the charge density of the occupied
defect levels present in the charge states +1 and 0. Note that the charge state +2
does not feature any occupied defect level. For the neutral V0

O(10), three different
spin configurations can be identified. Thereby, the most stable configuration (A)
corresponds to a spin-triplet (S = 1), the remaining (B and C) to two nonequivalent
spin-singlet (S = 0) configurations.

In addition, the one-fold positively charged vacancy V+1
O(10) (causing the reduction of the Ti

atom at the site Ti(2) near the vacancy, see Fig. 7.1) was thereby found[95] to lead to the best
agreement with the experimental Ti3+-related hyperfine tensors by Setzler and co-workers[54].

Regarding the neutral vacancies, on the other hand, a total of three different geometries
are possible: The energetically most stable is thereby the spin-triplet (S = 1) configuration
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(V0, A
O(10)), which is already predicted under the application of the Hubbard correction[95]. In

this case, the electrons released by the O vacancy are localized at the Ti(1) and T(2) atoms
adjacent to the vacancy and cause two defect states in the band gap, see Fig. 7.1. V0, A

O(10) might
be experimentally resolvable under intentional excitation, and its hyperfine signatures should
be distinguishable from those of the S = 1

2 configuration.
In addition, two neutral spin-singlet configurations (S = 0) can be achieved by including

25 % of EXX via the hybrid PBE0 functional during the geometry optimization. As a starting
point, the defect geometries of V0, A

O(10) and V+1
O(10) are chosen. The so-obtained defect structures

are referred to as V0, B
O(10) and V0, C

O(10), respectively, see Fig. 7.1. Note that a subsequent geom-
etry relaxation under the application of the PBEsol+U functional does not change the defect
geometries significantly. Since they are diamagnetic, their presence in the crystal cannot be
directly measured via EPR spectroscopy. However, they may still form upon charge transition
or optical excitation despite being 1.03 eV and 1.24 eV energetically less favorable compared to
V0, A

O(10) (see Fig. 7.1). In both diamagnetic configurations, the extra electrons are localized by a
hybridization of the Ti(1) and Ti(2) orbitals.

Comparing the three defect geometries of the neutral vacancies with that of V+1
O(10), it is

notable that the S = 0 spin configurations undergo a rather strong geometry relaxation. This
holds especially for V0, C

O(10), see Fig. 7.1. After the geometry optimization upon the removal of
one electron, however, all the three neutral vacancies relax into the same structure. This defect
geometry does not differing significantly from V+1

O(10), but the position of the trapped electron
is located at the Ti(1) and not at the Ti(2) site near the vacancy. Nevertheless, since there is no
experimental evidence of their presence in KTP crystals, this vacancy will not be considered
further in this chapter.

7.3 Assessing an Unconventional Approach

Although the PBEsol+U formation energy does indeed predict the formation of the charge
state of interest, it still fails in widening the fundamental band gap, i. e., EPBEsol+U

g = 2.8 eV

vs. Eopt.
g = 3.2− 3.8 eV[81–84] derived from optical measurements, resulting in a severe red shift

of the imaginary part of the dielectric function ε, see Figs. 7.2.
As discussed in Chap. 6, in order to compute realistic spectra, the combined application

of the GW approximation and the solution of the Bethe-Salpeter equation (BSE) is most estab-
lished. Thereby, the former corrects the electronic self-interaction as well as many-body ef-
fects and the latter includes excitonic effects. Unfortunately, the strongly localized defect states
discussed in this work prevent us from applying of this methodology. Most probably, a self-
consistent GW on top on the PBEsol+U electronic structure could result in reliable electronic
properties. However, this method would lead to unaffordable computational costs, caused by
the system’s size and the presence of symmetry-lowering defects.

Nevertheless, in the literature many examples can be found, in which the single-particle ex-
citation energies have been corrected by the inclusion of a fraction α of EXX from Hartree-Fock
theory via hybrid functionals. The magnitude of the α can be adapted to fit the experimental
band gap and hybrid functionals simultaneously provide an accurate description of localized
defect states, too.[216–223]

First, however, we will have to investigate if this unconventional approach does lead to
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reliable spectra. For this, we start by comparing the optical absorption of stoichiometric KTP
calculated (i) on the IQA level of theory (see Sec. 6.1.2) and (ii) on the IPA level of theory (see
Sec. 6.1.1) on top of the PBE0 electronic structure.

Applying the standard fraction[143] α = 25 % of EXX included in the PBE0 functional widens
the fundamental gap from EPBEsol+U

gap = 2.8 eV to EPBE0
gap = 5.33 eV. Although this value strongly

overestimates the absorption onset of KTP[81–84], it is in good agreement with the one obtained
by Neufeld et al.[208] after the inclusion of quasiparticle effects via the GW approximation (i. e.,
EGW

gap = 5.23 eV). Due to the larger fundamental band-gap width, also the onset of the imag-
inary part of the IPA dielectric function is blue-shifted by more than 2.5 eV compared to the
PBEsol+U spectra, resulting in an onset comparable to the IQA spectra by Neufeld et al.[208].
In the second step, exploiting the error compensation between electron-hole interactions and
self-energy effects[201–203, 224, 225], we tune the fraction of EXX in order to emulate the red shift
induced by the inclusion of excitonic effects via the solution of the BSE. More precisely, we
find that the fraction α = 10 % red-shifts the absorption onset by over 1.5 eV, leading to a good
agreement with both experimental data[81] and previous GW+BSE studies[208, 209], see Fig. 7.2.

Thus, since this modified hybrid functional does also describe the position and the shape
of the main absorption peak correctly, we conclude that IPA spectra computed on top on the
PBE0-10% electronic structure provide a realistic description of the optical properties of stoi-
chiometric KTP.

Nevertheless, is the PBE0-10% still sufficiently accurate in the description of defect-related
mid-gap levels, and thus also suitable for the computation of the optical signatures caused by
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Figure 7.2: (Adapted from Ref. 210) Diagonal components of the imaginary part of the dielec-
tric function ε calculated for a stoichiometric KTP unit cell under the application
of (a) the PBEsol functional together with a Hubbard correction of U = 5.1 eV, (b)
the BSE+GW methodology[208], (c) the standard PBE0 functional (including 25 % of
EXX), and (d) the PBE0+10% formalism.
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these strongly bound excitonic states?
To answer the first part of this question, we compute the electronic density of states (DOS)

of the vacancy V+1
O(10) under the application of different functionals. The results are depicted

in Fig. 7.3. The standard PBE0 functional (i. e., α = 25 %) locates the defect level caused by
the vacancy at about 2.4 eV above the valence band maximum (VBM). It is clearly visible that
the position of this level remains nearly unchanged also under the application of the modi-
fied PBE0-10%. Thus, the energetic positioning of occupied defect levels is not significantly
affected by the reduction of the α. At this point, however, we have to point out that the ener-
getic position of the mid-gap level within the PBEsol+U framework does not match with those
previously discussed. The reason for this finding is that the magnitude of the U parameter
influences the positioning of the state in the gap.

However, the reduction of the α strongly influences the positioning of unoccupied defect
states as well es conduction states: These bands, in fact, are lowered in energy by about 1.5 eV.
Notably, this energy difference matches the excitonic BSE shift computed in Ref. 208. So, we
conclude that the red shift obtained by including a smaller fraction of EXX in our calculations
is comparable to that obtained via the inclusion of excitonic effects. This illustrates the good
agreement between the main absorption peak of previous GW+BSE[208, 209] studies and ours.

In order to quantify the error bars of the PBE0-10% methodology, adequate reference data
have to be identified. Unfortunately, we are not aware of any suitable experimental data. In
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The highlighted Ti states correspond to the Ti 3d states of the atoms Ti(1) and Ti(2)
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Figure 7.4: (Adapted from Ref.210) Diagonal components of the imaginary part of the dielec-
tric function ε of the vacancy V0

O(1) under the application of GW+BSE (black lines),
and PBE0-10% (purple lines).

fact, it is nearly impossible to experimentally resolve the absorption signatures of isolated point
defects. Nevertheless, KTP features an additional O-vacancy type which shows localized defect
levels already on the DFT level of theory: The vacancies V0

Ti−P. Thus, the optical properties for
this vacancy type can be calculated via both GW+BSE and PBE0-10%, and a comparison of
both spectra would yield the required error bars. For the sake of simplicity we restrict our
calculation on one non-symmetry-equivalent site (i. e., V0

O(1)). The remaining are expected to
behave similarly.

The so-calculated spectra are depicted in Fig. 7.4. In order to reduce the computational
effort, the Brillouin-zone sampling for the GW+BSE spectra is reduced to a 1× 2× 1-Γ-centered
k-point mesh. This unfortunately causes a reduced resolution of the defect-related absorption.
For example, the defect signatures in the zz blend into the main absorption peak. Though,
some quantitative differences have to be pointed out, too. While PBE-10% overestimates the
position of the main absorption peak by up to 0.5 eV with respect to the GW+BSE one, the
defect signatures are red-shifted by up to 0.2 eV. Thereby, the main deviations are found for the
zz component of the dielectric function. Thus, error bars expected upon the application of the
PBE0-10% method are estimated by the maximum difference in peak position, i.e., up to 0.5 eV.

Still, the qualitatively good agreement suggests that PBE-10% is a valid alternative for the
calculation of defect-related optical absorptions.

7.4 Absorption Properties of Oxygen Vacancies

We apply the above described PBE0-10% methodology for the computation of the optical-
response properties of O vacancies featuring different charge states and spin configurations.
Note that all the defect geometries have been relaxed on the PBEsol+U level of theory. The
diagonal components of the so-calculated IPA spectra are depicted in Fig. 7.5. In order to bet-
ter illustrate the electronic transitions upon optical excitation, the renormalized DOS∗ is also
shown next to the corresponding spectra.

It is clearly visible that the O vacancy induces a redistribution of the oscillator strength of
the main absorption peak located at about 4.5 eV. In all charge states, electronic transitions from
the upper valence band into empty defect levels contribute to the forming of a shoulder located
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at the low-energy side of the main absorption peak at photon energies between 3 and 4 eV. Its
intensity decreases upon the formation of occupied defect levels, which cause absorption peaks
for mid-gap energies: The neutral and the one-fold positively charged vacancy are character-
ized by absorption signatures covering the near ultraviolet and the whole visible spectrum.
The vacancy V+2

O(10), on the other hand, does not feature any occupied defect level, and the Ti3+

generate resonances in the conduction band, so the related mid-gap absorption is missing here.
Notably, the intensities of the mid-gap absorptions are strongly polarization dependent: It
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Figure 7.5: (Adapted from Ref. 210) Diagonal components of Im(ε) for the vacancy VO(10) in
three different charge states (+2, +1, 0) and spin configurations. In addition, also
the renormalized DOS∗ is shown. Within the charge states +1 and 0, the vacancy
features occupied mid-gap levels, causing additional mid-gap absorption peaks.
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is highest for the zz component, and it steadily decreases for yy and xx. For this reason and
because the resistance against gray tracking is the poorest for laser light at 532 nm polarized
along the z axis[41–43], we will discuss this polarization in more detail. Thereby, the focus will
lay on the neutral and the one-fold positively charged states.

The occupied defect level of the EPR-active V+1
O(10) gives rise to an absorption band in the

energy range 0.5 − 2.5 eV. Here, three relative maxima (a1, 2, 3) can be distinguished. a1 and
a2 are generated by transitions from the occupied mid-gap level into unoccupied Ti3+-related
defect levels, which are located underneath the conduction band, and a3 by transitions into the
lowest conduction band.

Interestingly, the impact of the neutral vacancy strongly depends on its spin configuration.
The S = 1 spin-triplet configuration shows similar absorption features to the charge state +1.
This phenomenon can be explained by the relative positioning of the highest occupied defect
level with respect to the conduction band. In fact, in both cases it is situated at about 0.7 eV
below the conduction band and it can be attributed to the Ti(2) site near the vacancy. Thus, it
could be stated that occupied Ti(1)3+ states have a smaller impact on the KTP optical properties
than the Ti(2)3+ states. On the other hand, the two S = 0 spin-singlet defect geometries show
even more pronounced absorption characteristics: Not only are their absorption signatures
broader and higher in intensity, but they also feature additional bands in the ranges 2.4− 3.2 eV
and 2.0− 2.3 eV, respectively. Their origin can be traced back to transitions from the mid-gap
levels into Ti(1) 3d states located at about 5.6 eV (B) and 5.0 eV (C).

7.5 About the Possible Role in Gray Track Formation

In the previous section, a detailed description of the impact of VO(10) in different charge states
has been provided. Now, these results shall be compared to experimental observations with
the aim at finding some evidence for the link between the formation of O vacancy and the
gray-tracking phenomenon.

First of all, it was experimentally observed that the gray-tracking affinity of KTP crystals
is not isotropic along each crystal axis. Actually, its resistance is the lowest for laser beams
whose polarization is parallel to the z axis.[41–43] This situation is also reflected by our data,
since the impact of O(10) vacancies is the highest for the zz component of the imaginary part
of the dielectric function, irrespective of the assumed charge state.

In addition, beside the anisotropic behavior, the vacancies’ charge state seems to play a
major role during the gray track formation. In fact, although every KTP crystal naturally fea-
tures O vacancies to charge compensate for K vacancies, some crystals are less affected by gray
tracking. For example, crystals with a high K-vacancy concentration are very prone to gray
tracking[53, 55], while those doped with Pb show a higher resistance[73, 226]. The charge state as-
sumed by the vacancy can be influenced to some extent by the Fermi-level lowering (or rising)
effect of dopants. As a matter of fact, a p-type doping (e. g., Pb2+ substitutional cations) will
result in a lowered, while an n-type doping (e. g., K vacancies) in a raised position of the Fermi
level. According to Ref. 95, the charge state +2 (which shows nearly no mid-gap absorption)
is assumed for lower Fermi-energy positions. On the other hand, the charge states causing
new absorption peaks in the near infrared and visible spectrum (i. e., the one-fold positively
charged and the neutral vacancy) are more likely to be assumed for Fermi levels higher than
1.5 eV. Thus, our results suggest that the resistance against gray tracking is directly connected
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Figure 7.6: (Adapted from Ref. 210) Charge density of conduction states of the vacancy V+1
O(10).

The mid-gap absorption peaks of the vacancy V+1
O(10) (i. e., a1, 2, 3 in Fig. 7.5) are

caused by transitions from the occupied defect level into these states.

to the presence of occupied defect levels which arise for the charges +1 and 0.
Moreover, the spectra calculated here do also allow for a more quantitative comparison

with experimental data. Before the damage creation, KTP crystals are transparent for visible
and near-ultraviolet light, not showing any relevant absorption during optical applications. In
the initial state of gray tracking, however, it was observed that the absorption at 1064-nm (i.e.,
1.17-eV) light increases[46, 227]. In the second stage of gray tracking, also the absorption of the
second harmonic at 532 nm (i.e., 2.3-eV) increases[46]. Although the accuracy of PBE0-10% is
to some extent restricted and the present calculations neglect thermal broadening and the mo-
tional relaxation of selection rules, our results still reflect the experimental measurements and
reinforce the hypothesis that gray tracking could be related to a successive charge transition of
O vacancies: Before the darkening, most VO(10) would assume the charge state +2. After, e.g.,
the creation of electron-hole pairs or the detachment of self-trapped electrons at temperatures
higher 140 K[54], some of the Ti atoms near oxygen vacancies will reduce, leading to EPR-active
V+1

O(10). This charge state shows characteristic absorption signatures in the range 0.8-1.3 eV,

clearly matching those of the initial stage of gray tracking[46]. If the concentration of electrons
is high enough, however, the oxygen vacancy may stabilize a second electron and will assume
the neutral charge state. Thereby, if the spin-singlet (S = 0) configurations B and C are as-
sumed, the absorption is shifted to higher energy positions (with maxima at 2.3 eV and 3.0 eV),
corresponding to the absorption maxima in the energy ranges 380− 440 nm and 500− 600 nm
(i. e., 2.82− 3.26 eV and 2.07− 2.48 eV, respectively), caused by the presence of laser-induced
color centers[89].

The present results also fortify the hypothesis that the additional absorptions related to
the gray tracking could be caused by a charge transfer in Ti3+-Ti4+ pairs[41, 42]. In fact, the
wave functions of final states of the a1, 2, 3 peaks (see Fig. 7.6) visualize that optical transitions
correspond to a charge transfer from Ti(2)- into Ti(1)-related states.

In addition, the relaxation of excited defect states back into their ground state could justify
the presence of a luminescence band in the range between 1-1.8 eV observed by Deepthy et
al.[228] after irradiating KTP crystals with an argon laser at 514.5 nm (i.e., 2.4 eV).

Finally, gray tracks can be cured and the transmission restored by thermal and O treat-
ments.[43, 45, 93] Due to the thermal treatment the recombination of electron-hole pairs could
be facilitated, promoting the non-absorbent charge state +2. Thus, charged O-vacancy could
really be related to this early stage of photochromic damage.
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7.6 Conclusions and Outlook

The optical absorption properties of charged O vacancies in KTP have been calculated. Due to
the peculiar nature of strongly localized defect states, the most-established combined applica-
tion of the GW approximation, to overcome the band-gap problem of standard DFT, and the
solution of the BSE, for the inclusion of excitonic effects, is not applicable here.

Nevertheless, we show that a modification of the hybrid PBE0 functional (more precisely we
reduce the fraction of EXX to 10 %) allows for emulating the effects of the GW+BSE method, and
does lead to a good agreement with previous BSE[208, 209] and experimental[81] spectra already
at the IPA level of theory.

So, since the PBE0-10% does also provide a reliable description of the energetic position
of defect-related mid-gap levels, it could be used to calculate the absorption properties of O
vacancies at a relatively moderate computational cost.

We find that the absorption characteristics of O vacancies depend on the light polarization:
Despite the charge state of the vacancy, the strongest impact is found for light polarized along
the z axis, reflecting the experimental finding that the gray-track resistivity is the lowest for this
polarization[41–43]. Moreover, also the vacancy’s charge has a strong impact on the transmission
properties of KTP. The weakest absorption was calculated for the charge state +2 not featur-
ing any occupied defect level. In the one-fold positively charged state and the neutral charge
states, the vacancy features occupied defect levels, whose excitation induces additional mid-
gap absorptions. These are concentrated at about 1.1 eV in the case of V+1

O(10) and the neutral

spin-triplet configuration V0,A
O(10). This matched the absorption characteristics of the initial stage

of gray tracking[46]. For the diamagnetic neutral vacancies V0,B
O(10) and V0,C

O(10), on the other hand,
also absorptions at higher photon energies are predicted, in agreement with the experimentally
resolved absorption maxima induced by color centers after laser irradiation[89]. Thus, our data
support the hypothesis that a consequent charging of O vacancies could be responsible for the
gray track formation, i. e., the characteristic photochromic damage of KTP. The decharging of
the vacancy, on the other hand, could explain, why gray tracks (at least in an early stage) are
completely curable and the transparency can be restored via annealing.[43, 45, 93]

Nevertheless, the gray track formation in KTP crystals could involve more complex mecha-
nisms. Despite the matching absorption characteristics, the O-vacancy model does not explain
why gray tracks look like needles growing from one electrode into the crystal[45]. In fact, we
would expect, at least for smaller crystals, a rather homogeneous distribution of O vacancies,
and thus also of the gray color. More concretely, the role of the K sub-lattice as well as the bene-
ficial effects of a Rb-doping during gray tracking must be further investigated and understood.
For this in Chap. 8, we will investigate O vacancies in different chemical environments.
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Gray Tracks in KTP:

New Insights into a Dark Phenomenon

DUE to their similar absorption features, oxygen vacancies and related related Ti3+ centers
seem to be directly connected with the gray track formation in KTP. Nevertheless, gray

track formation is complex and depends on many aspects.
In fact, a Ti3+ center caused by O vacancies has also been detected in RTP crystals[96], even

though Rb-doped KTP crystals (RKTP) are more resistant against gray tracking[56]. So, the
presence of O vacancies and associated Ti3+ centers alone does not provide a satisfactory ex-
planation for gray track formation in KTP crystals and some, more complicated mechanisms
are still to be investigated.

In addition, even though it provides a good agreement with former GW+BSE studies[208, 209],
the methodology to compute the absorption properties discussed in Chap. 7 is, to some extent,
subjected to additional internal error sources. It benefits, however, from error cancellation, but
the absorption properties of O vacancies could in reality differ from the absorption signatures
of gray tracks.

Lastly, to the best of our knowledge, the influence of the chemical environment as well as
the localization of Ti3+ on different Ti atoms near the vacancy has never been considered.

Thus, in this Chapter, we aim at investigating the influence of O vacancies in defect com-
plexes. More precisely, the combination of OTi−Ti vacancies with Rb substitutional atoms and
K vacancies. Thereby, we will limit ourselves to the discussion of EPR-active vacancies V+1

O , so
experimentally resolved hyperfine tensors[54] can be used to validate our models. In addition
to the hyperfine signatures, we will also examine the energetic stability of different Ti3+ centers
and the energy position of defect-related mid-gap levels. By this, at the end of this chapter, we
will be able to formulate a revised hypothesis on the formation mechanisms of gray tracks in
KTP.

73
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8.1 Computational Details

Calculations are performed within the framework of DFT using the open-source program pack-
age QUANTUM ESPRESSO[188, 189].

EPR-active vacancies and defect complexes will be modeled within a KTP single unit cell
under periodic boundary conditions. We are aware of the fact that this supercell choice could
lead to unrealistically high defect concentrations (especially in the case of defect clusters1), but
a larger supercell would result in significantly higher computational cost, and thus go beyond
the scope of this study.

Experimental lattice constants a = 12.814 Å, b = 6.404 Å, and c = 10.616 Å[61] are used and
kept fixed throughout the simulations, allowing for the simulation of quasi-non-interacting
and isolated point defects. The atomic positions, on the other hand, are relaxed until variations
of the total energy and residual forces are lower than 10−8 Ry and 10−4 Ry/bohr, respectively.

In Chap. 7, norm-conserving pseudopotentials treating the Ti 3d3 4s0.5, P 3s2 3p3, K 4s1, and
O 2s2 2p4 states as valence states were applied. Although these pseudopotentials lead to defect
geometries, whose hyperfine signatures are in accordance with experimental data[54, 95], their
application yield a fundamental band gap of only EGap = 2.73 eV, which strongly underesti-
mates other DFT studies on KTP[208, 209].

Taking advantage of the work by Neufeld et al.[208], who found that the band gap of KTP
can already be slightly enlarged by increasing the number of valence states attributed to the
Ti atoms, we exchanged the above-mentioned Ti pseudopotential with one featuring more va-
lence states, i. e., the Ti 3d2 3s2 3p6 states, leaving the remaining parameters unchanged. And,
indeed, this procedure leads to a larger fundamental band gap of EPBEsol

Gap = 3.27 eV already at
the GGA level of theory.

Again, for the modeling of the O vacancies, a formalism suitable for the description of local-
ized Ti 3d states is required. To avoid larger computational costs related to hybrid functionals,
we will apply the Hubbard correction on top of the PBEsol[111, 112] functional during the ge-
ometry optimization and the computation of hyperfine structures. Ground-state energies as
well as the energetic position of defect-related mid-gap levels will be recalculated using the
PBE0[143, 144] functional with the standard fraction α = 25 % of EXX.

Following the methodology described in Sec. 3.5.1 for the self-consistent determination of
the U parameter, we obtain the values of U1 = 5.91 eV and U2 = 5.87 eV for the sites Ti(1) and
Ti(2), respectively. Thus, for the sake of simplicity, we will treat all the Ti equally and apply the
average value U = 5.9 eV to all the Ti sites in the cell.

Under the application of the Hubbard correction, the band gap is further increased to
E+U

Gap = 3.61 eV, matching extremely well with the gap obtained with the PBE0-10% method.
The increase of the band-gap width upon the application of the Hubbard correction is not sur-
prising, since other studies have already shown that the magnitude of the Hubbard U can be
tuned to match the experimental or the GW gap.[136–138]

The Brillouin-zone sampling, on the other hand, is again restricted to the Baldereschi point[190].
Other than in Chap. 7, in the following we will also investigate, how the properties of posi-

tively charged OTi−Ti vacancies are influenced by the chemical environment. To this end, in ad-

1Here, we will simulate either O vacancies alone or in combination with either a K vacancy or a Rb substitutional
atom. Referring the defect concentration on the number of atoms in the unit cell, this will lead to rather high defect
concentrations of 1:64 or 1:32.
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dition to stoichiometric KTP, we choose to simulate Rb-doped KTP (i. e., RKTP) and K-deficient
KTP. Both of these are relevant for applications since KTP crystals are commonly doped with
Rb to enhance their resistance against gray tracking[56], and since undoped KTP crystals are
always deficient in K[70].

Since Rb substitutional atoms are far more likely to assume the lattice site K(2)[77], charac-
terized by a larger cage volume[67], we will substitute one K(2) site with one Rb atom for the
modeling of RKTP. For the K-deficient KTP, on the other hand, we will introduce one negatively
charged K vacancy in the KTP unit cell, considering both nonequivalent lattice sites, i. e., V−1

K(1)

and V−1
K(2). In fact, due to the high diffusion coefficients in KTP[68], both vacancy sites could

be assumed. We will refer to the host materials featuring either the vacancy V−1
K(1) or V−1

K(2) as
KTP-K1 and KTP-K2, respectively. Note that in the following each of these cells will be treated
as if they were stoichiometric bulk cells unless they feature O vacancies.

The geometries of the four host materials are depicted in Fig. 8.1. It has to be mentioned
that there is no noticeable difference between KTP and RKTP, while V−1

K(2) leads to a stronger

reordering of the remaining K ions than V−1
K(1) does.

Being energetically nearly degenerate under PBEsol+U, for a comprehensive study, we will
investigate both O(9) and O(10) vacancies in the four host materials just mentioned. To further
validate the defect geometries, however, we will refer to the hyperfine signatures measured

Figure 8.1: Geometries of the four host materials, i. e., stoichiometric KTP, Rb-doped KTP
(RKTP), and KTP featuring the K vacancies V−1

K(1) as well as V−1
K(2) (KTP-K1 and

KTP-K2, respectively). The position of the nearest atoms O(9) and O(10), which
will be removed to simulate the O vacancies, are marked in each material.
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by Setzler et al. in Ref. 54, concentrating on the thermally stable Ti3+ center, which has been
assigned to the Ti(2) site near one OTi−Ti vacancy.

Originally, the hypothesis that reduced Ti3+ centers are crucial for the gray track formation
was formulated due to similarities with the absorption properties of these centers in titanium-
oxide-doped phosphate glasses.[43]

In this context, some considerations regarding the localization of the Ti3+ centers in titania
have to be done. In fact, Albuquerque et al.[229] showed that the spacial positioning of the
reduced Ti atoms upon the formation of O vacancies is not restricted to the Ti sites directly
adjacent the O vacancy: Especially in fully and partially localized spin-triplet configurations,
electrons are found to be energetically more stable if they are not trapped directly at the under-
coordinated Ti sites adjacent the vacancy.

Thus, the investigation of effects arising from different localization sites of the defect-related
Ti3+ center in KTP is unavoidable. In order to specifically reduce the Ti atoms surrounding the
O vacancy, a two-step procedure is required: First, we will apply the Hubbard correction exclu-
sively to the Ti atom which we want to reduce and optimize the defect geometry. Second, we
will relax the structure again, applying the energy correction on all the Ti sites in the lattice. The
starting points for the relaxation are thereby either the two-fold positively charged O vacancy
or the bulk cell itself.

8.2 Introduction of a New Defect Model

An earlier DFT study on the hyperfine splittings of various Ti3+ centers in KTP crystals[95] has
already showed a great agreement with the experimental tensors by Setzler and co-workers[54].
Nevertheless, some differences have to be pointed out: The DFT hyperfine structure of the
nucleus 31P(1) slightly overestimates the corresponding experimental values while 31P(2) and
31P(3) clearly underestimate the respective experimental data. One possible explanation for the
discrepancy could be given by the presence of other (point) defects in real crystals, which have
not been considered during the former theoretical investigation.

In this section, we aim at achieving a deeper understanding of the Ti3+ formation mech-
anisms in KTP crystals by investigating the influence of the chemical environment on the O
vacancy formation, but also that of the localization site of the Ti3+ center itself. The experimen-
tal hyperfine tensors by Setzler et al.[54] are used again to validate our models.

The introduction of an oxygen vacancy at the sites O(9) or O(10) obviously leads to a ge-
ometry relaxation of the TiO5 polyhedra, but also the position of the K+ sub-lattice is affected
to different extents. Interestingly, in the case of KTP and RKTP, the vacancy V+1

O(10) leads to a

stronger repositioning of the K+ ions near the vacancy than the vacancy V+1
O(9) does. In fact,

the positions of the K ions vary up to 1.2 Å and less than 0.5 Å, respectively, compared to their
position in the pristine (R)KTP cell.

In combination with K vacancies, on the other hand, no clear trend can be observed: The
strongest repositioning is visible for the cluster composed of V+1

O(9) and V−1
K(1), the weakest for

that composed of V+1
O(10) and V−1

K(1). In combination with the vacancy V−1
K(2), on the other hand,

both O vacancies lead to an intermediate repositioning of the K+ ions.
To investigate the effects arising from the site occupied by the Ti3+ center, we will use the

Hubbard correction to selectively reduce the Ti(2) sites in the cell using the above described
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Figure 8.2: Schematic representation of the position of the two investigated Ti(2)3+ centers,
i. e., IO

X and I IO
X , with respect to the O vacancy before geometry relaxation. IO

X
refers to the center adjacent the O vacancy, I IO

X to the next-nearest center, with X
indicating the host material as defined in the text. The oxygen vacancy, on the
other hand, can be located either at the site O(9) or O(10).

two-step procedure. Considering exclusively Ti3+ centers located at Ti(2) sites seems restric-
tive at the first sight. However, this choice is enforced by two main reasons: The first is that
the Ti3+ caused by the O vacancy has been attributed unequivocally to the lattice site Ti(2) by
experimental studies[54]. The second reason arises from a comparison with the behavior of an-
other KTP isomorph, i. e., KTiPO4F studied in Ref.33: The crystal structure of KTiPO4F (KTPF)
crystals corresponds to that of KTP except for the substitution of OTi−Ti atoms with fluorine (F).
So, these crystals feature eight additional electrons compared to KTP due to the F substitution.
Each of these extra electrons is trapped by one Ti atom in a ferromagnetic spin configuration
(i. e., S = 4). The deintercalation of neutral K atoms from KTPF leads to the oxidation of the
Ti atoms, changing their oxidation number from +3 to +4. It was found that the Ti(2) atoms
do not change their oxidation state until all the Ti(1) sites have completely oxidized.[33] Con-
sequently, upon the intercalation of K atoms in a K-deficient KTPF host, the Ti(2) sites should
reduce first. Note that a similar trend was also observed in Chap. 5 for the reduction upon the
intercalation of K atoms in the KTA anode material.
As already mentioned, O vacancies in KTP crystals can assume three different charge states by
trapping (or, depending on the point of view, releasing) up to two electrons. In the absence of
other electron traps, these electrons will be stabilized by Ti sites in the cell. Thus, in analogy
with KTPF crystals, if we consider a modest quantity of electrons in KTP featuring O vacancies,
we would expect them to be trapped more likely at Ti(2) sites. It has to be mentioned, however,
that Setzler and co-workers[54] attributed other defect-related Ti3+ hyperfine signatures to Ti(1)
sites. Nevertheless, since they were found to be thermally unstable[54], these findings should
not contradict our assumption. Theoretically, the reduction of all Ti(2) present in the cell featur-
ing one O vacancy should be investigated to analyze how the distance of the O vacancy from
the reduced Ti atom influences the stability and the energetic positioning of the defect-related
mid-gap level. However, some attempts in obtaining fully localized states with the electron
localized in the TiO6 spiral not featuring the O vacancy were not successful.
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Figure 8.3: The geometries of the centers IO(9)
X adjacent to the O(9) vacancy are depicted on the

left, the next-nearest centers I IO(9)
X on the right. The yellow isosurfaces correspond

to the charge density of the occupied defect levels. Note that due to the different
positioning of the O(9) vacancy in KTP-K1, the positions of IO(9)

C and I IO(9)
C deviate

compared to the remaining cells.
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Figure 8.4: The geometries of the centers IO(10)
X adjacent to the O(10) vacancy are depicted

on the left, the next-nearest centers I IO(10)
X on the right. The yellow isosurfaces

correspond to the charge density of the occupied defect levels.
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We expect that the modeling of Ti3+ centers located far from O vacancies requires either hybrid
functionals or a larger supercell corresponding to a KTP unit cell doubled along the c axis.
However, this would lead to higher computational costs and therefore go beyond the scope
of this work. Thus, we will limit ourselves to the investigation of the Ti3+ centers located at
the Ti(2) directly adjacent the OTi−Ti vacancy and the next-nearest Ti(2) in a KTP unit cell. In
the following, these centers will be referred to as IO

X and I IO
X , respectively, where the index

X ∈ {A, B, C, D } indicates the host material with A = KTP, B = RKTP, C = KTP-K1 and
D = KTP-K2. The O indicates the position of the O vacancy, i. e., either O(9) or O(10), see
Fig. 8.2.

A schematic representation of all studied V+1
O(9) and V+1

O(10) geometries can be found in
Figs. 8.3 and 8.4, respectively. The yellow isosurfaces correspond to the charge density of the
occupied defect level and thus indicates the position of the Ti3+ center.

The hyperfine tensors calculated for all the above described defect configurations are com-
piled in Tab. 8.1. Note that only centers with significant splittings are shown and that the 31P(i)
nuclei do not necessarily correspond to the same P atom in each cell.

We will first discuss the centers modeled in stoichiometric KTP, starting with the center
caused by the vacancy at the site O(10), which has already been proposed[95] to be responsible
for the formation of thermally stable Ti3+ centers, i. e., IO(10)

A .

The here calculated hyperfine tensors of the center IO(10)
A are in good agreement with those

reported in Ref. 95, but show some qualitative differences:

(i) The splittings of the nucleus 31P(2) are clearly higher than those previously calculated,
and therefore closer to the experiment[54];

(ii) Also, the splittings of the nucleus 31P(3) are slightly higher, but still underestimate the
experimental findings;

(iii) The splittings of the nucleus 31P(4), on the other hand, are found to deviate stronger from
the experimental data.

Interestingly, however, the hyperfine signatures of the center I IO(10)
A located at the next-nearest

Ti(2) atom is even closer to the experimental data[54]. This holds especially for the splittings of
the nuclei 31P(3) and 31P(4), both showing overall larger components and thus a better agree-
ment with the experiment[54].

Regarding the centers caused by the vacancy at the site O(9) in KTP, it is evident that only
the center I IO(9)

A provides comparable values to the experiment, although the second-largest
interactions with the 31P are slightly underestimated and only qualitatively in good agreement.
In a first attempt, the different behavior of the centers IO(9)

A and IO(10)
A could be explained by

differences in the distance between each Ti3+ center and the interacting 31P nuclei.
The Rb substitution does not show a strong influence on the hyperfine signatures of the O-

vacancy-related Ti3+ centers. In fact, each center identified in KTP can also be found in RKTP.
This is not surprising, since there is experimental evidence that the same O-vacancy-related
Ti3+ center in KTP is also present in RTP crystals, see Ref. 96.

Finally, some considerations about the vacancy clusters will follow: First, again the centers
I IO(9,10)

C,D lead to a better agreement with the experimental study by Setzler and co-workers[54]

than the centers IO(9,10)
C,D do. This is most evident for the the nuclei 31P(3) and 31P(4). Second,
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Table 8.1: Absolute values of the hyperfine tensors (in MHz) of the Ti3+ centers of positively
charged O(9) and O(10) vacancies in different host materials. The indices A, B, C
and D refer to KTP, RKTP, KTP-K1 and KTP-K2, respectively. For a better compar-
ison, the experimental values of the O-vacancy-related Ti3+ center in KTP[54] are
reported, too. Note that the experimental tensors are sorted in descending order,
the DFT values of A1, A2, and A3 correspond to their exact attribution.

V+1
O(9) KTP KTP RKTP KTP-K1 KTP-K2

Expt.[54]

IO(9)
A I IO(9)

A IO(9)
B I IO(9)

B IO(9)
C I IO(9)

C IO(9)
D I IO(9)

D
31P(1):

A1 16.58 31.342 18.850 32.059 18.903 25.394 22.030 26.822 21.103
A2 16.75 30.620 18.384 31.328 18.472 24.312 21.623 26.151 20.658
A3 23.36 35.627 24.669 36.395 24.859 32.107 28.222 31.180 27.199

31P(2):
A1 14.28 12.476 12.789 11.508 12.422 19.642 7.867 12.937 9.714
A2 14.68 12.048 12.250 11.066 11.911 18.428 7.433 12.449 9.252
A3 21.37 17.592 18.650 16.529 18.265 27.195 13.271 18.428 15.258

31P(3):
A1 3.74 1.585 5.548 1.063 6.514 0.146 7.080 1.579 5.342
A2 4.24 0.179 4.489 0.331 5.453 1.364 5.892 0.265 4.266
A3 7.23 3.399 8.357 2.793 9.449 2.141 10.035 3.466 8.102

31P(4):
A1 0.84 0.108 2.806 0.257 2.964 0.815 2.599 0.782 1.149
A2 1.40 1.205 1.682 1.336 1.837 0.484 1.340 1.819 0.052
A3 3.94 1.453 5.406 1.294 5.626 2.678 5.219 0.777 3.540

V+1
O(10) KTP KTP RKTP KTP-K1 KTP-K2

Expt.[54]

IO(10)
A I IO(10)

A IO(10)
B I IO(10)

B IO(10)
C I IO(10)

C IO(10)
D I IO(10)

D
31P(1):

A1 16.58 21.290 19.475 21.698 18.438 23.033 26.348 19.980 19.910
A2 16.75 20.831 19.165 21.245 18.172 22.372 25.974 18.815 19.762
A3 23.36 26.161 25.742 26.588 24.713 27.495 33.086 27.583 26.368

31P(2):
A1 14.28 17.692 16.751 17.307 17.271 14.945 13.689 15.423 11.303
A2 14.68 17.224 16.510 16.884 17.046 14.474 13.515 14.057 11.054
A3 21.37 23.489 23.104 23.198 23.725 20.273 19.562 20.248 16.748

31P(3):
A1 3.74 2.983 5.493 3.190 5.581 2.372 4.447 0.048 7.225
A2 4.24 1.549 4.399 1.722 4.461 0.859 3.231 1.357 6.036
A3 7.23 5.123 8.317 5.336 8.417 4.466 7.173 2.128 10.243

31P(4):
A1 0.84 1.603 1.883 1.722 2.290 1.654 2.526 0.631 2.769
A2 1.40 2.760 0.698 2.865 1.089 2.860 1.194 0.912 1.512
A3 3.94 0.168 4.116 0.292 4.578 0.368 4.660 2.486 5.404
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the hyperfine structures caused by the combination of a K vacancy with an O vacancy are all
qualitatively similar.

However, comparing the hyperfine splittings of the 31P nuclei with the largest splittings, it
is visible that the values of 31P(1) overestimate and those of 31P(2) underestimate the respective
experimental data to different degrees in all the examined cases. This finding, however, could
be related to the chosen supercell size and the consequent unreasonably high defect concen-
tration. To exclude this scenario, a larger supercell is required. This would also allow for the
investigation of effects related to the distance between the K and the O vacancies.

A comparison of the defect geometries suggests that the differences in the hyperfine struc-
tures of the defect complexes can not be explained only with the different distances between
the relevant 31P atoms and the Ti3+ center: The centers I IO(10)

C , and I IO(10)
D , for example, differ

with respect to their hyperfine signatures, but correspond to the exact same Ti site. In addition,
also the geometries of the vacancy V+1

O(10) in KTP-K1 (I IO(10)
C ) and KTP-K2 ( I IO(10)

D ) are very
similar except for the position of one K+ ion near the O vacancy. In fact, as already mentioned,
the repositioning of the K+ ions is weaker for V+1

O(10) in KTP-K1 than in the case of V+1
O(10) in

KTP-K2. So, the hyperfine structure is also influenced by the K sub-lattice.
To sum up, despite different chemical environments, all the investigated O vacancies lead to

a good agreement with experimental hyperfine tensors, but our data suggest that the previous
defect model, which consists of a Ti3+ adjacent a OTi−Ti vacancy[54, 95, 96], has to be partially
revised by shifting the reduced Ti atom to the next-nearest Ti(2).

Due to the quantitatively better agreement with the experiment, however, we are still more
prone to attribute the thermally stable Ti3+ center to the vacancy V+1

O(10) rather than the va-

cancy V+1
O(9). Nevertheless, we note that the center resolved by the experiment could also be

attributable to defect clusters composed of one OTi−Ti and one K vacancy. The Ti3+ centers,
however, are expected again to be localized at the next-nearest Ti(2) rather than at the under-
coordinated Ti(2) adjacent the O vacancy.

8.3 Discussion and Outlook

In the previous section, it has been shown that the agreement of O-vacancy-related hyperfine
splittings can be enhanced by shifting the Ti3+ center from the Ti(2) site adjacent the vacancy
to the next-nearest Ti(2) atom. However, is this modified defect model also energetically more
favorable compared to the previous model?

We will see that this is in fact true, but before we have to stress on the following points.
First of all, it has to be pointed out that the DFT+U formalism is largely applied during the
geometry optimization and it does indeed lead to realistic defect models, but the energy posi-
tion of defect-related mid-gap levels strongly depends on the value attributed to the Hubbard
correction. We expect the application of hybrid functionals to be beneficial in solving this issue,
since these functionals provide a reliable description of the position of defect states[221–223].

In addition, one could suppose that, as shown in Chap. 7, a partial compensation of exci-
tonic and local-field effects could be achieved by a customized fraction of EXX, leading to the
computation of realistic optical properties. However, due to the larger DFT band gap (caused
by the additional Ti valence states), the PBE0-α methodology is not applicable here: The ap-
plication of the PBE0 functional with the standard fraction of α = 25% leads to a fundamental
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Table 8.2: Differences of the PBE0 ground-state energy of the centers IO
X and I IO

X caused by the
same O vacancy in each host material X.

Host KTP (A) RKTP (B) KTP-K1 (C) KTP-K2 (D)

O vacancy V+1
O(9) V+1

O(10) V+1
O(9) V+1

O(10) V+1
O(9) V+1

O(10) V+1
O(9) V+1

O(10)

∆E [meV] +241 +164 +223 +166 +291 +146 +247 +188

band gap width of EPBE0
KTP = 5.39 eV, overestimating by about 160 meV the GW band gap of

Neufeld et al.[208]. In order to emulate the excitonic red shift, the fraction of EXX has to be re-
duced to about 6%. Unfortunately, this small fraction of EXX does not shift the defect level’s
position of each defect cell in the same way and their relative position (with respect to the va-
lence band maximum) deviates from those obtained via the standard PBE0. So, since we are
not able to judge, if the position of the defect levels after the reduction of the fraction of EXX is
reliable or not, the solution discussed in Chap. 7 has to be discarded in this case.

The second consideration involves the calculation of the formation energy of O vacancies
themselves. Normally, during the investigation of charged point defects, two approaches are
established to level out effects attributable to different charge states. One is the application of
energy corrections (see for example Ref. 230) to align the energy of the stoichiometric cell to
that of the cell featuring defects, being therefore subjected to additional error sources. Another
one, holding the advantage of not requiring any energy correction, is the Slater-Janak transition
state model[139, 212]. This, however, would require the computation of all possible charge states
of the vacancy, leading unfortunately to several additional simulations because of the neutral
vacancy. In fact, we would have to revise the geometries at least of its paramagnetic spin
configurations discussed in the Chap. 7, and first determine, at which Ti site the second electron
would be trapped.

Nevertheless, it is still possible to judge the stability of one configuration by comparing
the ground-state energies of cells of the same stoichiometry: The lower the value, the more
favorable the configuration is to be assumed2. For a better comparability between structures of
different stoichiometries, however, we will not discuss directly the PBE0 ground-state energy
of different structures, but the energy differences between cells featuring the same number of
atoms of the same species. More precisely, we will (i) determine, which of the centers IO

X and
I IO

X are the most favorable to be assumed for each studied case and (ii) discuss how the O-
vacancy site and the chemical environment influences the energy position of related mid-gap
defect levels.

The energy differences are calculated as

∆E = EI − EI I , (8.1)

where EI and EI I correspond to the PBE0 ground-state energy of the cells featuring the centers
IO
X and I IO

X , respectively. The so-calculated values are reported in Tab. 8.2.
Notably, all the energy differences ∆E happen to be positive. This means, that in all exam-

2Note that the ground-state energies of stable systems are always negative
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ined cases the center I IO
X (i. e., the center located at the next-nearest Ti(2) and in better agree-

ment with the hyperfine signatures by Setzler et al.[54]) is in fact energetically more favorable
than the center IO

X directly adjacent the O vacancy. This trend is most pronounced if the O
vacancy is located at the site O(9).

As we have already mentioned before, the K+ sub-lattice seems to influence the hyperfine
structure of the Ti3+ centers. So, we tried to figure out, if there is some relation between the
centers IO

X and I IO
X and the surrounding K+ suitable to explain, why I IO

X is always energetically
more stable than IO

X . We found that (apart from the different coordination number) the two

Ti sites differ with respect to their distance to the next K+ ion
(

KTi3+
)

. More precisely, the

center I IO
X is located by an average of 0.19 Å closer to a K+ ion than the IO

X modeled in the same
cell, see Tab. 8.3. So, the Ti3+ centers seem to be stabilized by electrostatic forces between the
positively charged K+ ion and the trapped electron.

Having a closer look on the entries in Tab. 8.3, it is notable that in the case of V+1
O(10) in

KTP-K1 also the center IO(10)
C is characterized by a rather small distance to the next K+ ion,

while for the same vacancy in KTP-K2 the difference is not as pronounced. Interestingly, V+1
O(10)

also generates the energetically most stable Ti3+ center caused by defect complexes, i. e., I IO(10)
C .

The energetic position of each defect level with respect to the lowest unoccupied state of the
centers I IO

X are compiled in Tab. 8.4. For a better discussion, this value has been determined
not only within the PBEsol+U formalisms, but also using the PBE0 hybrid functional. Due to
the problematics discussed above, we will refrain from a detailed quantitative discussion of
defect-level induced absorption peaks. Still, some qualitative trends shall be pointed out.

First of all, the values of EPBEsol+U
Def. and EPBE0

Def. deviate less than 0.3 eV from each other. We
note that in the case of the IO

X -related defect levels, the deviation between PBEsol+U and PBE0
is even smaller, both yielding energy differences in close agreement with the PBE0 values re-
ported in Tab. 8.4.

Second, the Rb doping only shows a minor impact on the energy position of the defect level,
while the K vacancy slightly shifts them towards higher energies.

In Chap. 7, we have drawn a possible link between gray tracking and the absorption sig-
natures of O vacancies. The energetic positions of the defect levels with respect to the lowest
unoccupied state calculated here seem, however, too large to support this hypothesis. In fact,

Table 8.3: Distances between the Ti3+ centers IO
X and I IO

X and the nearest K+ ion.

KTP RKTP KTP-K1 KTP-K2

IO(9)
A I IO(9)

A IO(9)
B I IO(9)

B IO(9)
C I IO(9)

C IO(9)
D I IO(9)

D

KTi3+ [Å] 3.75 3.63 3.75 3.61 3.87 3.55 3.82 3.57

IO(10)
A I IO(10)

A IO(10)
B I IO(10)

B IO(10)
C I IO(10)

C IO(10)
D I IO(10)

D

KTi3+ [Å] 3.87 3.63 3.86 3.63 3.66 3.55 3.88 3.74
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Table 8.4: Energy position of the occupied defect level with respect to from the lowest unoc-
cupied state using both the PBEsol+U and the PBE0 functional.

KTP RKTP KTP-K1 KTP-K2

I IO(9)
A I IO(10)

A I IO(9)
B I IO(10)

B I IO(9)
C I IO(10)

C I IO(9)
D I IO(10)

D

EPBEsol+U
Def. [eV] 3.17 3.10 3.14 3.09 3.04 2.96 3.09 3.01

EPBE0
Def. [eV] 2.98 2.92 2.97 2.88 2.77 2.85 2.84 2.79

considering that the PBEsol+U band gap calculated here already matches the PBE0-10% band
gap discussed in Chap. 7, the energetic position of the defect level (i. e., about 3 eV below the
lowest unoccupied defect level irrespective of the used functional) could be a reasonable (first)
estimation for the first excitation energy. In addition, this level might also not be directly ex-
cited by the second harmonic radiation of 2.3 eV (i. e., 532 nm).

Nevertheless, we still expect O vacancies to be essential for the early stage of gray tracking,
since they provide a stabilizing force for photo-electrons causing thermally stable Ti3+ centers.
More precisely, the band-gap edge of KTP is located at about 350 nm (i. e., about 3.54 eV). So,
two-photon processes involving the fundamental and the second-harmonic radiation (which
have already been found to cause the formation of color centers in KTP[42]) can lead to the
formation of electron-hole pairs, which are then stabilized by defects, i. e., O and K vacancies,
respectively. However, and this is the eventually the most important result of our investigation,
our data suggest that the formation of thermally stable Ti3+ centers is the product of a two-step
process: First, the formation of an OTi−Ti vacancy leads to a displacement of surrounding K+

ions. Second, electrons released either by the O vacancy itself or by other processes are trapped
by Ti(2) sites and stabilized by electrostatic forces caused by a nearby K+, forming a bound
polaron. Thereby, the electron trap is not located at the undercoordinated Ti(2) next to the
oxygen vacancy, but rather at the next-nearest Ti(2) atom.

However, we propose that the formation of O-vacancy-related Ti3+ centers alone does not
provide a valid and satisfactory explanation of the gray track formation in KTP. In fact, since
the O-vacancy-related hyperfine signatures have also been detected in RTP crystals[96] and al-
though irradiated RTP crystals also assume a light gray coloration[96], a small Rb doping is
beneficial to enhance the gray-track resistance of KTP crystals[45, 56].

In addition, we believe that the trapped electron could follow the migration of the K+ along
the c axis, which is promoted for example by the application of dc electric fields or laser irradi-
ation (see Sec. 2.3), thus leading to areas with an unusually high concentration of these bound
polarons. We propose that gray tracks could correspond to exactly these areas showing a sur-
plus of K+ ions which, together with their accompanying Ti3+ electron trap, cause additional
mid-gap absorptions and thus the characteristic coloration, see Fig. 8.5. For an easy test, we
model one neutral K interstitial in the KTP unit cell. The valence electron is trapped by the
closest Ti(2) atom, leading to a reduced Ti3+ center and its related mid-gap defect level. The
energy position of this level is located at 2.68 eV and 2.50 eV under the application of PBEsol+U
and PBE0, respectively. They are thus located closer to the conduction band compared to the
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O-vacancy-related defect states. Therefore, we expect that they could be directly excited by the
second harmonic at 2.3 eV.

Our model can, thus, be seen as an amplification of the one by Mürk et al.[48]: In their
model, gray tracking is characterized by two stages of coloration. The first corresponds to
the recharging of (not-further specified) preradiational defects and the second to the creation
of new defects caused by the radiation itself. The origin of the crystal coloration was thereby
attributed to electron-hole pairs stabilized by K+

i causing Ti3+ and O atoms acting as hole traps,
respectively. In addition, they found a thermal treatment enhancing the rigidity of the K sub-
lattice to be beneficial in preserving the transparency of KTP crystals upon the irradiation with
X rays.

Moreover, Mu and Ding in Ref. 57 have already discussed the displacement of K+ ions
along [001], or rather the separation of K+ and V−K , in the context of gray tracking. Contrary
to other authors[41–43], who indicated the highest gray-track susceptibility for light polarized
along [001], however, Mu and Ding found that gray tracks showing their characteristic col-
orations can only form upon the irradiation with laser light (at 514.5 nm) perpendicular to [001].
For light polarized parallel to [001], on the other hand, only invisible damage was resolved.
The visible damage, i. e., orange dots and dark traces, was explained by the formation of Fe3+

ions acting as hole traps and reduced Ti3+ centers, respectively. The invisible damage was at-
tributed to a displacement of K+ ions along [001], thereby indicating the photogalvanic effect
as the origin of both types of damage. The photogalvanic effect was also already proposed by
Alexandrovski et al.[46] to explain the gray track formation, in analogy with the photorefractive
damage in lithium niobate (LiNbO3).

In Ref. 45, gray tracks caused by the application of high-voltage pulses along the c axis
were described as needles which form at one electrode and grow into the crystal towards the
opposite electrode. In addition, it was found that gray-tracked areas show a reduced ionic

Figure 8.5: Schematic representation of the gray track formation upon laser irradiation.
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conductivity. In our model, the needles could be explained by overpopulated K-ion migration
channels (see Fig. 8.5), which hinder the migration of the K via vacancy hopping mechanisms,
thus reducing the ionic conductivity.

On the other hand, it has also been shown that thermal annealing in nitrogen atmospheres
leads to a thermal decomposition of the surface, which corresponds to the loss of K[62, 231] and
P[231]. Notably, the deterioration of the surface expressed itself as a translucent layer, whose
removal upon cooling results in a transparent crystal[62]. In addition, it was stated that the loss
of K and P promotes the annealing of bulk defects in the crystal, thus restoring their trans-
parency[231].

Finally, our model may also explain why KTA is less affected by gray tracking[58] than KTP
and why a Rb-doping is beneficial to prevent the gray tracks to form in KTP: Due to the larger
volume of the AsO4 tetrahedra, the K intercalation sites in KTA are located at different posi-
tions than in KTP (see Chap. 5), which might reduce the stabilizing forces of the Ti3+ centers.
Regarding the Rb doping, the higher activation energies for the Rb migration[45] simply prevent
the accumulation of bound polarons.

We expect that our work is instrumental to clarify the formation mechanisms of gray tracks
and paves the way for further experimental and theoretical investigation. In fact, at this point
it appears to be unavoidable to:

1. Verify (for example by concentration measurements), if gray tracked areas really show an
enrichment in K.

2. Further deepen the knowledge on the interplay of delocalized K+ and Ti3+, especially
with regard to the migration mechanisms of the K+. More precisely, it is still to be inves-
tigated if the O-vacancy-related Ti3+ follows the migration of the displaced K+ ion (i. e., a
bound polaron), or if the position of the O-vacancy-related Ti3+ is not affected by the ion
migration. Nevertheless, in the latter scenario the so-forming K+

i could cause additional
Ti3+ centers far away from the V+1

O -V−1
K complexes.
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Concluding Remarks

IN this thesis, various properties of KTP-type crystals have been investigated in the frame-
work of density functional theory. A major focus was laid on the investigation of the effects

caused by defects in the crystal lattice, aiming at further clarifying the complex phenomenon
of gray track formation in KTP. In addition, the electrochemical performance of KTA crystals
has been studied. A series of conclusions can be drawn from our results.

Towards KTA electrodes and beyond To investigate the electrochemical properties of KTA,
we simulated the charging of a K-ion battery. Thereby, K-intercalation and K-deintercalation
mechanisms in the anode and cathode material were achieved by modeling KTiOAsO4Kx and
K1−xTiOAsO4, respectively.

To evaluate the performance of KTA electrodes, we determined (i) the average voltages
upon different concentrations of (de)intercalated K, (ii) the corresponding lattice deformations,
and (iii) the energy barriers for the K ion (K vacancy) migration. Thereby, the Hubbard correc-
tion was applied to achieve an accurate description of redox potentials.

Our results are promising, since they suggest that KTA batteries could be characterized by
high average voltages, modest volume deformations and relatively low activation energies for
the alkali-ion (alkali-vacancy) migration. However, it has to be pointed out that the suitability
of KTA for electrochemistry is not superior (apart from slightly higher average voltages) com-
pared to KTP. In addition, KTA holds the disadvantage of containing the toxic element arsenic.

At the beginning of the thesis, we motivated this part of our investigation by the fact that
KTA shows a higher resistivity of KTA compared to KTP against the gray track formation. This
phenomenon is in fact related to stable trapped electrons and could thus also be detrimental
for electrochemical applications. Nevertheless, referring to our revised gray-track model, we
expect that trapped electrons (i. e., Ti3+ centers) will follow the migration of K+ ions and the
electronic flux should (at least in theory) not be affected.

Are our results therefore deprived from any relevance? The answer is certainly no. In fact,
we showed that the electrochemical performance of KTP-type crystals is not significantly in-
fluenced by the group-V element included in the XO4 tetrahedra. This allows for further mod-
ifications and optimizations of the crystal structure by substituting the X sites. More precisely,
the substitution of As with, e. g., silicon (Si) could be promising, as this element is non-toxic and

89
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largely available in the Earth’s crust. Due to the similar atomic radii, the replacement should
theoretically be possible, but might require a fluorine (F) doping to compensate for the missing
valence electron.

Absorption features of oxygen vacancies in KTP The computation of realistic absorption
properties of oxygen vacancies and related Ti3+ centers required an unconventional approach
to (partially) compensate for quasiparticle as well es excitonic effects. O vacancies provide
the stabilizing force for up to two electrons, which are trapped by Ti atoms surrounding the
vacancies. This leads to the formation of Ti3+ centers and related mid-gap defect states. Since
these states are strongly localized, they cannot be described in the framework of (semi-)local
DFT. In fact, under the application of GGA functionals, the system was erroneously predicted
to be metallic. Consequently, the application of the GW+BSE on top of an erroneous electronic
structure would result in an inaccurate description of optical properties. We expect that the
use of a self-consistent GW scheme could be helpful to overcome this problem. Unfortunately,
however, due to the complexity of the system this would provoke unfeasible computational
costs.

To overcome this limitation, modified hybrid functionals were applied. We showed that by
reducing the fraction of exact exchange (EXX) included in the calculations, we were able to (i)
achieve similar absorption properties as compared to the GW+BSE already on the IPA level of
theory, and (ii) to also accurately describe the energetic position of defect-related states. So to
our knowledge, this methodology allowed us to realistically describe the absorption properties
of charged O vacancies and to relate them to those of gray tracks for the first time.

We found that the absorption signatures of O vacancies are strongly influenced by both their
charge state and the light polarization. More precisely, the strongest impact was calculated for
light polarized parallel to [001]. In addition, the charge state +2 (corresponding to completely
emptied defect levels) does not cause additional mid-gap absorptions. The charge state +1,
whose EPR signatures have already been experimentally resolved, as well the neutral vacancy
in the spin configuration S = 1, show absorption maxima for photon energies of about 1 eV.
These match the absorption characteristics of gray tracks in an early stage.

Neutral vacancies featuring a diamagnetic spin configuration, on the other hand, show
overall higher absorptions and additional peaks located at higher photon energies. The latter
are in good agreement with the absorption maxima of gray tracks.

So, because of the similar absorption characteristics, our data support the scenario that gray
tracking could be the result of successive charging of O vacancies.

Understanding gray track formation The gray tracking phenomenon, however, could involve
more complex mechanisms, which have not been considered, yet, and there are still open ques-
tions. In particular, why a small rubidium doping (less than 1%) is beneficial in preventing the
formation of gray tracks, despite O-vacancy-related Ti3+ centers also being present in RTP crys-
tals, is yet unknown. In addition, also the influence of K vacancies on the properties of these
Ti3+ centers has never been systematically investigated before. These aspects were addressed
in the last part of this thesis.

To this end, we modeled O vacancies in different chemical environments, which are relevant
for optical applications, i. e., stoichiometric KTP, Rb-doped KTP (RKTP), and K-deficient KTP.
For the modeling, we used the Hubbard correction to specifically reduce one Ti atom in the
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cell. More precisely, in each case we simulated two different Ti3+ centers. The first corresponds
to the Ti(2) atom directly adjacent the vacancy, the second to the next-nearest Ti(2) atom. We
did not simulated any Ti(1)3+ center, because (i) the relevant Ti3+ center has been attributed to
the Ti(2) by experiment, and (ii) in analogy to KTiPO4F crystals, electrons are expected to be
trapped first by Ti(2) sites.

Our calculations suggest that the defect model commonly attributed to the gray track for-
mation has to be partially revised: We still think that the formation of O vacancies is necessary,
since they enable the reduction of the Ti atoms in the cell. However, we would shift the posi-
tion of the Ti3+ from the undercoordinated Ti(2) site near the vacancy to the next-nearest Ti(2).
This, in fact, leads to far better agreement with experimental hyperfine tensors. In addition,
this attribution is also energetically more stable compared to the former. Notably, this holds
for every investigated defect complex. Nevertheless, we doubt that O-vacancy-related defect
states can be directly excited by either the first or the second harmonic of KTP. Two-photon
processes, however, might still possible. In fact, upon the inclusion of additional Ti valence
states, the position of the Ti3+-related defect states was shifted towards the valence band, so
higher photon energies could be required for their excitation.

Energetically more stable Ti3+ centers are characterized by a nearby K+ ion, which we ex-
pect to stabilize the trapped electron via electrostatic forces, i. e., a bound polaron. We believe
that the Ti3+ center could follow the migration of the K+ ion through the lattice. This could
lead to overpopulated K channels, which, together with their neighboring Ti3+ center, might
correspond to gray tracks. To conclude, our findings are crucial to further deepen the knowl-
edge on the gray track formation in KTP. Our hypothesis, in fact, requires additional theoretical
and experimental investigations to (i) confirm (falsify) that gray tracks show an excess of K and
(ii) better understand the migration mechanisms of bound polarons through the lattice.
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