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Zusammenfassung

In der vorliegenden Arbeit behandeln wir eine Fragestellung über lokale Funktionkörpererweiterungen
nach dem asymptotischen Wachstum der Anzahl von Galoiserweiterungen mit fest vorgegebener
nicht-abelscher Galoisgruppe und beschränkter Diskriminante. Von Hauptinteresse ist dabei der
Fall, dass die Charakteristik des Körpers die Gruppenordnung teilt. In dem Falle gibt es bereits
unendlich viele Cp-Erweiterungen und wir erhalten ein gänzlich anderes Verhalten als bei lokalen
Zahlkörpern.

Thorsten Lagemann löste die Fragestellung für abelsche Gruppen in seiner Dissertation. Im nicht-
abelschen Fall können wir in der vorliegenden Arbeit erste Resultate erzielen. Zum einen lösen wir
das Problem für eine Klasse von semi-direkten Produkten der Form (Cp)

roCd, wobei d | (pr−1) gilt.
Das Hauptaugenmerk liegt dabei auf Untergruppen der Affinen Gruppe der Form CpoCd ≤ AGL1(p).
Wir lösen außerdem das Problem für transitive Untergruppen des Kranzproduktes Cp o Cp über p2

Punkten. Körpertheoretisch treten diese als Galoisgruppe von Zerfällungskörpern eines Turms zweier
Cp-Erweiterungen auf. Dabei geben wir eine Beschreibung aller dieser Erweiterungen an.

Wir beweisen zudem eine explizite Formel für die Anzahl aller Körpererweiterungen mit fest vorge-
gebener abelscher Galoisgruppe A, deren Führerexponent kleiner gleich einer vorgegebenen Schranke
X ist.

Abstract

In this thesis at hand, we will study a question concerning the discriminant density of local func-
tion field extensions with a fixed non-abelian Galois group. The main interest is the case of the
characteristic dividing the group order.

In this case, there are already infinitely many Cp-extensions which stands in stark contrast to p-
adic fields. Lagemann solved in his Ph. D. Thesis the case of abelian groups. For non-abelian
groups we prove some first results. We prove the asymptotical behaviour for an infinite class of
semi-direct products (Cp)

r o Cd where d | (pr − 1). This includes subgroups of affine group of type
Cp o Cd ≤ AGL1(p). We moreover solve the counting problem for transitive subgroups of Cp o Cp.
These extensions correspond to Cp-towers over Cp-extensions. We describe all extensions over a fixed
ground field and fixed transitive subgroup of Cp o Cp.

Moreover, for given X > 0 and a fixed abelian group A, we give an explicit formula for the number
of field extensions with Galois group isomorphic to A and with conductor exponent bounded by X.
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Introduction

The main goal of the inverse Galois problem is to determine which groups occur as Galois groups
over a given field, and to construct and enumerate one or all such Galois extensions while taking
into account certain properties. A classical problem is the theory of inverse Galois theory over Q
and number fields in general. One milestone was Shafarevich’s theorem proving the inverse Galois
problem for every finite solvable group over a number field which was later generalised to global
function fields. Although commonly expected, it is still unknown whether every finite group occurs
as Galois group over Q.

Some important milestones have been achieved through asymptotic considerations. More precisely,
for a number field k and a transitive permutation group G we consider the counting function by the
norm of the discriminant

Z(k,G;X) := #{K/k : Gal(K/k) ∼= G, Nk/Q(D(K/k)) ≤ X} for X ∈ R≥0.

We are interested in the behaviour for X → ∞. Note that Z(k,G;X) < ∞. Although it is not
proven if every G is realisable as a Galois group over k, it is widely believed that there exist infinitely
many, i.e. that the counting function Z(k,G;X) is unbounded in X. Gunter Malle proposed in
his well-known conjecture the asymptotic behaviour of Z(k,G;X) for all number fields and finite
transitive permutation groups, see [Mal02], [Mal04]. The Malle conjecture predicts explicit constants
a(G), b(K,G) such that

Z(K,G;X) ∼ c(K,G) ·Xa(G) log(X)b(K,G)−1 (1)

for some constant c(K,G) > 0, where we mean f ∼ g ⇐⇒ limx→∞
f(x)
g(x) = 1 for real-valued functions

f, g : R → R>0. In general, there are no known formulas for c(K,G). The Malle conjecture is a
generalisation of works of Wright who determined in [Wri89] the asymptotic behaviour of Z(k,A;X)
for every finite abelian group A and over every global field K such that char(K) - #A, prior to the
works of Malle. This proves Malle’s conjecture for all finite abelian groups. The result in [Wri89]
provides evidence for a natural generalisation of Malle’s conjecture (1) to every global function field
k. This is supported by a heuristic by Ellenberg and Venkatesh [EV05] which connects G-extensions
of a function field to rational points of covers of Hurwitz spaces P1/Fq for some prime power q = pf

in the case p - |G|, where the constants in Malle’s conjecture reappear.

However, (1) is false if the characteristic p of the global function field divides the group order.
Lagemann [Lag10] proved that for almost all non-cyclic abelian p-extensions the number of local
extensions at a fixed place grows larger than (1) indicates.

One main reason is the existence of infinitely many local extensions of fixed degree over each wildly
ramified place. The discriminant density of local function fields already exceeds the Malle constants,
whereas in the number field case there are only finitely many local extensions of a given degree.

A local function field of characteristic p is a Laurent series ring Fq((t)) where q is a p-power. Like
in the p-adic case there exist at most finitely many fields with a given Galois group G, if the
characteristic p does not divide the group order. We are interested in the exceptional case when the
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characteristic divides the group order. Lagemann has already solved the asymptotics problem for
abelian extensions over local fields in his thesis [Lag10], but there are no known asymptotical results
for non-abelian groups in the local function field case. Our thesis addresses this problem and solves
this for some infinite series of groups. We will not be able to obtain a complete answer but rather
study and solve some examples of (infinite series of) finite groups and to gather different strategies
to attack the problem.

As a first result in the thesis, we prove the conductor density of abelian p-groups weighted by
conductor where we will give explicit formulas.

For a finite abelian group A we define the counting function by the conductor exponent

Z(F,A;n) := #{E/F Galois : Gal(E/F ) ∼= A and N (f(E/F )) ≤ qn}, n ∈ N.

We will prove the following theorem:

Theorem A. Let F = Fq((t)) and A be a finite abelian p-group with exponent exp(A) = pe. Let
αp(A) and δA : N → [−αp(A), 0] be as defined in (2.5). Then there is a pe-periodic and therefore
bounded function δA(·) such that:

(a) Z(F,A;n) = |A|
|Aut(A)|q

nαp(A)qδA(n)ε(A, q, n) for some ε(A, q, n) with limn→∞ ε(A, q, n) = 1.

(b) Z(F,A;n) ∼ |A|
|Aut(A)|q

nαp(A)qδA(n).

(c) For fixed i = 0, . . . , pe − 1 let fi(n) = n · pe + i, i.e. fi(n) ≡ i mod pe. Then we have

Z(F,A; fi(n)) ∼ ci
|A|

|Aut(A)|
qfi(n)αp(A),

with ci = qiαp(A)+δA(i) and c0 = 1.

We refer to Theorem 2.12 for an explicit formula for ε(A, q, n) and more details. We want to
highlight the periodic oscillation by δA in the formula for the conductor counting function. Although
we even restricted to conductor exponents, we can only achieve a ∼-estimate when restricting to an
arithmetic progression modulo pe. For arbitrary finite abelian groups, we use the multiplicativity
over the `-Sylow subgroups

Z(F,A;n) =
∏
`∈P

Z(F,A`;n)

where Z(F,A`;n) is bounded for n→∞ for all ` 6= p.

Like in the original formulation of Malle’s conjecture in [Mal02] and [Mal04], we will use the notion
of a Galois group also for non-Galois extensions, i.e. as the Galois group of the corresponding Galois
closure. See Paragraph 1.1.2 for details. For a finite transitive permutation group G and X ∈ R≥0

we consider the discriminant counting function

Z(F,G;X) := # {K/F : Gal(K/F ) ∼= G, N (D(K/F )) ≤ X} .



CONTENTS 11

If G is a group whose order is coprime to p, then there exist only finitely many G-extensions over F
and the counting function Z(F,G;X) is bounded forX →∞. If G is a non-trivial p-group, then there
exist infinitely many G-extensions over F and it is interesting to study the asymptotic behaviour of
the counting function Z(F,G;X). What we expect and refer to as ”solving” the asymptotics problem
is to find a constant ap(G) ∈ R≥0 such that Z(F,G;X) � Xap(G), that is, there exist real constants
B, c1, c2 > 0 such that

c1X
ap(G) ≤ Z(F,G;X) ≤ c2X

ap(G) for all X ≥ B.

This weaker notion is satisfactory, since even in the simple case G = Cp, there can not be established
an asymptotic equivalence with respect to the relation ∼. Because the discriminants are only q-
powers, the gaps between two consecutive Cp-discriminants are unbounded. Moreover, Theorem A
implies that we cannot establish an asymptotic equivalence with respect to ∼ even when restricting
to count by discriminant exponent. More details on this are given in Remark 1.37.

We solve the asymptotics problem for transitive subgroups of Cp oCp and subgroups of type CpoCd ≤
AGL1(p). In the latter case, we can extend the method to a larger class of groups with analogous
methods.

Let F = Fq((t)) be a local function field in characteristic p. In this thesis, we will prove:

Theorem B. Let d | (p− 1) and U := Cp o Cd ≤ AGL1(p).

(a) Consider Cp o Cd as a transitive subgroup of Sp. Then we have

Z(F,Cp o Cd;X) � X
1
p .

(b) Consider Cp o Cd as a transitive subgroup of Spd. Then we have

Z(F,Cp o Cd;X) � X
1
pd .

We will generalise this result to the situation of a tower of a (tamely ramified) Cd-extension and
a Cp-extension. We will describe which groups occur as Galois groups. In particular, every such
group is given by a semi-direct product U = (Cp)

k o Cd corresponding to a divisor g | (Xd − 1)
over Fp of degree deg(g) = k. We prove analogous results for the counting function by discriminant
as in Theorem B. We obtain Z(F,Upd;X) � X

k
pd considered as transitive subgroup Upd ≤ Spd, and

Z(F,Upkd;X) � X
(p−1)k

pd(pk−1) where we consider Upkd ≤ Spkd.

Furthermore, we study the asymptotics problem for transitive subgroups of Cp o Cp. There are
basically two different types of groups to consider, namely H(p, r) and H̃(p, r) of order pr+1 which
are non-isomorphic for r < p and have group exponent p and p2, respectively. For r = p, both
constructions give the wreath product Cp o Cp.

We will considered them as permutation groups over p2 points, indicated by the notation Hp2(p, r) ≤
Sp2 and H̃p2(p, r) ≤ Sp2 , respectively.

We will prove the following main results:
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Theorem C. For 1 ≤ r ≤ p− 1 we have

Z(F,Hp2(p, r);x) � xap(Hp2 (p,r)),

where ap(Hp2(p, r)) =

{
r+1
p(p+r) , r2 < p
r
p2
, r2 > p.

For the twisted Heisenberg group we prove the following main result:

Theorem D. For 1 ≤ r ≤ p− 1 we have

Z(F, H̃p2(p, r);x) � xap(H̃p2 (p,r)),

where ap(H̃p2(p, r)) =

{
pr−r2+r+1

p(p2−pr+p+r) , r2 < p
r
p2
, r2 > p.

The thesis is organised as follows: The first chapter will provide the theoretical foundation for all
the other chapters. Chapters 2, 3 and 4 are independent of each other and only require results from
Chapter 1.

In the first chapter, we will give the theoretical background for local function fields and Artin-Schreier
theory. Artin-Schreier theory is basically an additive version of Kummer theory for elementary
abelian p-extensions. The Artin-Schreier operator ℘(x) = xp−x gives a bijection between subgroups
of the quotient group F/℘(F ) and the set of elementary abelian p-extensions of F . We will rely on
this theory immensely for constructing and counting p-extensions over local function fields of charac-
teristic p. For instance, all Galois p-extensions K/F arise as towers of Artin-Schreier extensions, and
vice versa, those towers have a p-group as its Galois group. We will recall a reasonable representative
system of J(F ) = F/℘(F ).

We will give a constructive approach to construct G-extensions for a finite p-group which goes back
to Witt [Wit36]. Furthermore, we will provide some formulas and summation techniques that we
frequently use for local function field asymptotics. Particularly, we will count the Cp-extensions as
an important example.

In Chapter 2, we will give exact formulas for the number of abelian local function fields up to a
conductor bound. This easily implies the lower bound for the discriminant asymptotics in this way
and gives a nice interpretation of the discriminant exponent in terms of the conductor exponent.

The third chapter is concerned with Theorem C and generalisations thereof. We will consider the
asymptotic problem with respect to discriminant for certain subgroups of groups AGL(1, q) which
cover all transitive subgroups of AGL(1, p). We will describe the Galois module J(L) = L/℘(L) for
a tamely ramified cyclic extension L/F . We describe the groups which occur as Galois group in this
context.

The occurring Galois groups are semi-direct products of type U = (Cp)
deg(g) o Cd, where g(X) ∈

Fp[X] is a divisor of Xd−1. In order to describe the semi-direct product, it is convenient to consider
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the prime divisors of g(X) and consider (Cp)
deg(g) as direct sum of finite fields. Let Xd−1 =

∏̀
i=1

fi be

the prime factorisation in Fp[X] and I ⊆ {1, . . . , `} such that g(X) =
∏
i∈I fi. Write ri := deg(fi).

Then we can rewrite U =
⊕
i∈I
Fpri o Cd, where we can interpret the action of Cd on Fpri as a

multiplication by a certain d-th root of unity in Fpri .

We solve the asymptotic problem for groups of this type over pd points and for the normal closure.
Let U :=

∑
i∈I
Fpri o Cd ≤ AGL1(q) for p - d. Then we get

Z(F,Upd;X) � X
deg(g)
pd

for Upd ≤ Spd considered as transitive permutation group over pd points and we obtain

Z(F,Updeg(g)d;X) � X
(p−1) deg(g)

pd(pdeg(g)−1)

for Updeg(g)d ≤ Spdeg(g)d considered as transitive permutation group over pdeg(g)d points.

Chapter 4 is concerned with proving Theorem C and Theorem D. We study subgroups of Cp oCp as
a Galois group. These are the solutions of the group theoretic embedding problem

1→ (Cp)
r → G→ Cp → 1

which we will call generalised Heisenberg groups H(p, r) in the split case and twisted Heisenberg
groups H̃(p, r) in the non-split case. Note that exp(H(p, r)) = p and exp(H̃(p, r)) = p2 for 1 ≤ r ≤
p− 1, and H(p, p) ∼= H̃(p, p) ∼= Cp oCp. For this task, we first study the arithmetic of Cp-extensions
in some detail. We will give a representative system to describe all those extensions. We solve
the asymptotics problem considered as transitive permutation groups over p2 points, i.e. counting
non-Galois extensions.

Finally, in Chapter 4 we will prove Theorem C and Theorem D.
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Chapter 1

Local Function Fields

The local function fields are the analogue to the p-adic fields in characteristic p. A local function

field is a formal Laurent series field Fq((t)) = {
∞∑
i=ν

ait
i : ai ∈ Fq, ν ∈ Z} over a finite field Fq with

q elements. For a Laurent series f =
∞∑
i=ν

ait
i we call

0∑
i=ν

ait
i ∈ Fq[t−1] the main part of f .

Throughout the thesis, we write q for a p-power with p ∈ P and F = Fq((t)) for a local function field
over the finite field Fq.

1.1 Introduction to Local Function Fields

1.1.1 Valuation Theory

The local function field F = Fq((t)) has a natural normalised discrete valuation by

νF

( ∞∑
i=N

ait
i

)
=

∞,
∞∑
i=N

ait
i = 0,

min{n | an 6= 0}, else.

By discrete valuation we mean that for all α, β ∈ F we have

• νF (0) =∞ and νF (α) ∈ Z for α ∈ F×,

• νF (α · β) = νF (α) + νF (β),

• νF (α+ β) ≥ inf(νF (α), νF (β)).

The valuation is moreover normalised as νF (t) = 1 and thus νF (F×) = Z.

Every valuation induces an ultrametric absolute value by |f |F := q−νF (f). Note that F is complete
with respect to the absolute value | · | induced by νF .

15
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The valuation νF induces the valuation ring OF = {α ∈ F : νF (α) ≥ 0}. For a local function field
we have OF ∼= Fq[[t]]. It is a local ring whose unique maximal ideal is pF := {f ∈ F : νF (f) ≥
1} = t · OF . The unit group of OF is

UF := O×F = {f ∈ F× : νF (f) = 0}.

Furthermore, κF := OF /pF ∼= Fq denotes the residue class field of F .

It is well-known that OF is compact with respect to | · |F . For our purposes, it is sufficient to only
consider the exponential valuation νF only.

We write F̂ for a fixed separable closure of F and write GF := Gal(F̂ /F ) for the absolute Galois
group of F .

Extending Valuations in Extensions

Let E/F be a finite separable extension of degree [E : F ] with prime elements πE and πF respectively.
Then νE is defined as the natural valuation of E = Fq̃((πE)) where κE ∼= Fq̃.

The inertia degree of E/F is the degree of the residue field extensions, i.e. fE/F = [κE : κF ] and
eE/F := νE(πF ) is the ramification index of E/F .

These satisfy the well-known formula

[E : F ] = eE/F · fE/F , (1.1)

see for instance [Ser79, Prop. I.10] for a proof.

Remark 1.1. Note that νE is not an extension of νF . We have the relation

νE(x) = eE/F · νF (x) for all x ∈ F.

It is worth noting that two different prime elements lead to equal valuations.

Definition 1.2. We call a separable extension E/F of local function fields unramified if eE/F = 1
and ramified if eE/F > 1.

We call E/F tamely ramified if p - eE/F .

We call E/F wildly ramified if p | eE/F .

We call E/F totally ramified if eE/F = [E : F ].

In particular, all unramified extensions are tamely ramified extensions in our thesis.

Note that wildly ramified is the opposite of tamely ramified.
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Discriminant and Conductor

Let E/F be a finite separable local extension with valuation rings OE/OF .

We define the conductor as in [Iwa86, p. 112]. To be more precise, the conductor exponent c(U) of
an open subgroup U ≤ F× of finite index is defined to be the minimal natural number n such that
1 + pnF ≤ U .

Let E/F be an abelian extension, then the conductor of the extension is defined as the conductor
of its norm group: NE/F (E×) is an open subgroup of UF and cond(E/F ) := c(NE/F (E×)) is the
conductor exponent, and

f(E/F ) := p
c(NE/F (E×))

F

is called the conductor of E/F .

The co-different CE/F := {x ∈ OE : TrE/F (x · OE) ⊆ OF } is a fractional ideal of OE .

The different of E/F is the inverse ideal of the co-different, i.e.

Diff(E/F ) :=
(
CE/F

)−1
.

The discriminant ideal is the norm ideal of the different, i.e.

D(E/F ) = NE/F (Diff(E/F )) ,

where NE/F is the ideal norm which is a multiplicative function completely determined by

NE/F (pE) = p
fE/F
F . It is well-known that OE is a free OF -module (see [Iwa86, La. 2.13]). Hence

OE = OF [α] for some α ∈ OE .

Let g(X) ∈ F [X] be the minimal polynomial of α over F , then we obtain the different through the
derivative of the minimal polynomial:

Diff(E/F ) = g′(α) · OE ,
D(E/F ) = NE/F

(
g′(α)

)
· OF .

Every ideal I of OF is a power of the maximal ideal pF , so

D(E/F ) = p
disc(E/F )
F for the integer N 3 disc(E/F ) = fE/F · νE(g′(α)).

We call disc(E/F ) the discriminant exponent of E/F .

We call the natural number
D(E/F ) := |κF |disc(E/F )

the discriminant of the extension E/F .

We have |κF | = q for F = Fq((t)).

The following statement is a basic formula we will use over and over.
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Theorem 1.3 (Discriminant Tower Formula). Let K/E/F be finite extensions of local function
fields. Then we have

D(K/F ) = D(E/F )[K:E] ·NE/F (D(K/E))

and for the discriminant exponents

disc(K/F ) = [K : E] · disc(E/F ) + fE/F · disc(K/E).

For a proof, see [Neu92, page 213].

1.1.2 Galois group and Galois closure

Definition 1.4. Let E/F be a finite separable extension E/F of degree n. Let α be a primitive
element of E/F , i.e. E = F (α). Let φα be the minimal polynomial of α over F .

(a) We write SplF (E) := SplF (φα) as the splitting field of the minimal polynomial of α over F and
call this the Galois closure of E/F .

(b) We moreover define Gal(E/F ) := Gal(φα) ≤ Sn as the Galois group of the minimal polynomial
of α.

Note that this way, we define Galois groups also for non-Galois field extensions.

On the other hand, let SplF (E) = F (β) for some primitive element β and N = [SplF (E) : F ]. We
make a distinction of Gal(E/F ) = G ≤ Sn and Gal(SplF (E)/F ) ≤ SN considered as transitive
permutation groups over n respectively N points. Both are isomorphic as abstract groups, but not
as permutation groups. Viewed as permutation groups, the former describes permutations of the
roots of the n conjugates of α, while the latter describes the permutation of the N conjugates of β.

Concerning the counting function by discriminant, the discriminant weight changes quite drastically
in these two situations.

1.1.3 Artin-Schreier Theory

The Artin-Schreier theory characterises all elementary abelian p-extensions over fields of character-
istic p via the Artin-Schreier operator ℘ given by ℘(α) = αp − α and equations of type Xp −X − a.
An extension E = F (θ) where θ is a root of Xp−X−α is called an Artin-Schreier extension. Artin-
Schreier theory is in the heart of our studies and is particularly interesting for p-group extensions,
since any extension K/F with Gal(K/F ) being a finite p-group can be constructed as a tower of
Artin-Schreier extensions.

We start with the notations and basic results.

For any field F with char(F ) = p the Artin-Schreier operator is defined as

℘ : F → F, x 7→ xp − x.
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The map ℘ is Fp-linear with kernel Ker(℘) = Fp. We write J(F ) := F/℘(F ) as the cokernel of ℘. We
will mainly consider ℘ : F̂ → F̂ for the algebraic closure of a local function field F or of an extension
of F . The Artin-Schreier operator is a Gal(F̂ /F )-module homomorphism, i.e. it commutes with all
σ ∈ Gal(F̂ /F ), since

σ(℘(x)) = σ(xp − x) = σ(x)p − σ(x) = ℘(σ(x)) for all x ∈ F̂ . (1.2)

This way, J(F ) := F/℘(F ) becomes a Gal(F̂ /F )-module via σ · (α+ ℘(F )) = σ(α) + ℘(F ).

Moreover, ℘ commutes with the trace map. More precisely, for every finite extension K/F we have
TrK/F (℘(α)) = ℘(TrK/F (α)).

For every automorphism σ ∈ Gal(F̂ /F ) we get an F -linear map

(σ − 1) : F̂ −→ F̂ , α 7−→ σ(α)− α.

Using σ ◦ ℘ (1.2)
= ℘ ◦ σ we easily get

(σ − 1) ◦ ℘ = ℘ ◦ (σ − 1),

hence σ − 1 is a Gal(F̂ /F )-module homomorphism.

For a ∈ F̂ we write θa ∈ F̂ for a solution of ℘(θa) = a. A solution θa of Xp−X−a is unique modulo
Fp: If ℘(θa) = a then

Xp −X − a =
∏
λ∈Fp

(X − (θa + λ)). (1.3)

If a ∈ F and Xp −X − a is irreducible in F [X], then we call the extension F (θa) an Artin-Schreier
extension of F . Sometimes we will refer to this as a simple Artin-Schreier extension. Equation (1.3)
implies that Xp−X−a is irreducible if and only if a /∈ ℘(F ), and so Xp−X−a is either irreducible
or splits completely over F .

Denote by Cn the cyclic group with n elements. It is crucial that the Cp-extensions over F are
precisely the (simple) Artin-Schreier extensions and furthermore, the composite of those are precisely
the elementary abelian p-extensions over F .

Lemma 1.5. Let F be a local function field with char(F ) = p.

(a) A field extension K/F is a Cp-extension if and only if there exists an a ∈ F \ ℘(F ) with K =
F (θa).

(b) Let a, b ∈ F \ ℘(F ). Then F (θa) = F (θb) if and only if a = λb + ℘(c) for some λ ∈ F×p and
c ∈ F .

Proofs can be found in [VS06], Theorem 5.8.4 and Proposition 5.8.6 respectively.

We will point out an obvious consequence that we will frequently use.
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Remark 1.6. For all a ∈ F \ ℘(F ) and λ ∈ F×p , we have F (θa) = F (θλa).

Theorem 1.7 (Main Theorem of Artin-Schreier Theory). Let F be a field with char(F ) = p.

(a) There is a 1 : 1-correspondence

∆: {Fp-subspaces U ≤ F/℘(F )} −→ { p-elementary field extensions E/F}
U 7−→ F (℘−1(U)).

(b) Let U ≤ F/℘(F ) and K = F (℘−1(U)) be the corresponding extension field. Then we have a
canonical isomorphism

U ∼= Hom(Gal(K/F ),Fp), a mod ℘(F ) 7→ χa,

where χa(σ) = (σ − 1)(θa).

(c) Let U ≤ F/℘(F ) be finite and (a1 + ℘(F ), . . . , ar + ℘(F )) be an Fp-basis of U . Then the Galois
group Gal

(
F
(
℘−1(U)

)
/F
) ∼= (Cp)

r is generated by the automorphisms σi with

σi(θaj ) = θaj + δi,j for 1 ≤ i ≤ r, 1 ≤ j ≤ r,

where δi,j is the Kronecker-Delta.

Proof. Parts (a) and (b) are proven in Theorem IV.3.3 in [Neu92] respectively in Theorem VI.8.3 in
[Lan02].

Concerning part (c), it is clear by part (a) that σi indeed define automorphisms for 1 ≤ i ≤ r.
Moreover, for all λ1, . . . , λr ∈ Fp and 1 ≤ i ≤ r we get(

r∑
i=1

λiσi

)
(θai) = θai + λi,

hence
r∑
i=1

λiσi = id if and only if 0 = λi for all i. Hence, σ1, . . . , σr forms an Fp-basis of

Gal
(
F
(
℘−1(U)

)
/F
)
.

In the situation of Theorem 1.7(c), we call E = F (θa1 , . . . , θar) an Artin-Schreier extension with
generators θa1 , . . . , θar . If r = 1 we call E/F a simple Artin-Schreier extension.

Remark 1.8.
Let F = Fq((t)) and U ≤ F/℘(F ) be an Fp-subspace of J(F ). Set V := SpanFp (U,℘(F )).

(a) Every subspace U ≤ F/℘(F ) corresponds to a subspace

℘(F ) ⊆ V ≤ F.
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(b) LetK := F (℘−1(U)) be the corresponding Artin-Schreier extension. Then we have ℘(K)∩F = V
and equivalently, (℘(K) ∩ F )/℘(F ) = U .

Proof. The first part is common knowledge from algebra.

Let α ∈ ℘(K) ∩ F and consider Ũ := SpanFp (U,α+ ℘(F )) ≤ F/℘(F ). Then we have ℘−1(α) ⊆ K

and thus ℘−1(Ũ) ≤ K, hence

K = F
(
℘−1(U)

)
≤ F

(
℘−1(Ũ)

)
≤ K

which proves F
(
℘−1(Ũ)

)
= K. Using the one-to-one correspondence in Theorem 1.7 we get Ũ = U .

Using the same reasoning for all α ∈ ℘(K) ∩ F we obtain

U + (℘(K) ∩ F + ℘(F )) /℘(F ) = U = V/℘(F ),

hence V ≤ ℘(K) and V ≤ F by construction showing V ≤ ℘(K) ∩ F .

Concerning the other direction, the polynomial Xp−X−u has a root in K for all u ∈ V by definition
of K, hence ℘(K) ∩ F ≤ V .

Theorem 1.9. Let K/F be a finite Galois extension with G = Gal(K/F ) and U ≤ K/℘(K) be an
Fp-subspace. Then K(℘−1(U))/F is Galois if and only if σ(U) = U for all σ ∈ G.

Proof. Let L = K(℘−1(U)) and let V ≤ K with ℘(K) ⊆ V such that V/℘(K) = U . Assume that
the extension L/F is Galois. Then the polynomials

Xp −X − σ(v) split in L for all v ∈ V, σ ∈ G.

Thus σ(v) ∈ ℘(L) ∩K = V for all σ ∈ G and v ∈ V , thus σ(V ) = V and σ(U) = U .

On the other hand, assume σ(U) = U for all σ ∈ G which directly implies σ(V ) = V . Let σ̃ : L→ F̂
be a field homomorphism with σ̃|K = σ. We have L = K(θv | v ∈ V ) by definition, and we have
that

σ̃(θv) is a root of Xp −X − σ(v) for all v ∈ V,

and by σ(V ) = V we have σ̃(θv) = θσ(v) ∈ ℘−1(V ) ≤ L. This proves that indeed σ̃(L) = L.

Conclusively, we obtain |G| · [L : K] = [L : F ] many field homomorphisms L → F̂ with σ̃(L) = L,
and hence L/F is a Galois extension.

Definition 1.10. We call a finite field extension L/F an Artin-Schreier tower if there exists a chain
of subfields L0 := F ≤ L1 ≤ . . . ≤ Lr = L such that Li/Li−1 is a simple Artin-Schreier extension for
all 1 ≤ i ≤ r, i.e. such that Li = Li(θαi) for some αi ∈ Li−1.

It is worth pointing out that this way, we define the Galois group for non-Galois extensions as well.



22 Chapter 1. Local Function Fields

Theorem 1.11. Let M/L/K be a tower of fields such that M/L and L/K are Galois and H1 =
Gal(M/L) and H2 = Gal(L/K). Then Gal(M/K) is isomorphic to a subgroup of the wreath product
H1 oH2.

For a proof we refer the reader to Satz 1.10 in Geissler’s Ph.D. Thesis [Gei03].

Proposition 1.12. Let K/F be a (possibly non-Galois) finite separable extension. Then Gal(K/F )
is a p-group if and only if K/F is an Artin-Schreier tower.

Proof. Write L := SplF (K) as the normal closure of K/F and H = Gal(L/K). Note that each
proper subgroup H � G of a p-group is contained in a maximal normal subgroup N of index p, see
[AB95, Corollary 8.4, p. 74]. The fixed field E := Fix(N) of N is a subfield of K by construction and
satisfies Gal(E/F ) ∼= G/N ∼= Cp. Thus E/F is an Artin-Schreier extension according to Lemma 1.5
and Gal(K/E) is a p-group. Hence by induction K/E is a tower of Artin-Schreier extensions and so
is K/F .

For the inverse direction “⇐=” we consider a tower of fields F = K0 ≤ K1 ≤ . . . ≤ Kr = K such
that Ki/Ki−1 is a simple Artin-Schreier extension.

Set Lr−1 := SplF (Kr−1) and consider the composite field M := Lr−1Kr. Theorem 1.11 inductively
shows that Gal(Lr−1/F ) and thus Gal(Lr−1/Kr−1) are p-groups. By Theorem 1.11 we have

Gal(M/Kr−1) ≤ Gal(M/Lr−1) oGal(Lr−1/Kr−1) ∼= Cp oGal(Lr−1/Kr−1).

The wreath product of p-groups is a p-group again hence Gal(M/Kr−1) and Gal(Kr−1/F ) are
p-groups and thus Gal(M/F ) is a p-group since Gal(Lr−1/Kr−1) and Cp are p-groups. Finally,
Gal(M/F ) = Gal(SplF (Kr−1)Kr/F ) completes the proof.

Remark 1.13. Artin-Schreier theory can be considered as the analogue of Kummer theory of degree
p extensions of characteristic p:

Artin-Schreier Theory char(K) = p ℘ θa K/℘(K)

Kummer Theory ζp ∈ K p
√ p

√
a K×/K×p

1.1.4 System of Representatives of J(F )

Recall J(F ) = F/℘(F ) which is the Fp-vector space characterising all elementary abelian p-extensions
of F . For an element a ∈ F we will write

[a] := a+ ℘(F ) ∈ J(F ).

There is a well-known relation between the discriminant of a simple Artin-Schreier extension E =
F (θa) and the value

max
f∈F

(νF (a+ ℘(f))).

We want to construct a system of representatives of J(F ) so that this value is simply νF (a).
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Definition 1.14. We set νJ(F ) ([0]) :=∞ and for all a ∈ F \ ℘(F ) we define

νJ(F ) ([α]) := max{νF (a+ ℘(x)) : x ∈ F}

to be the reduced valuation of a in F . If νF (a) = νJ(F ) ([a]) we call the element a ∈ F reduced. A
reduced element β ∈ F such that a− β ∈ ℘(F ) is called a reduction of a in F .

Clearly, a reduction of an element a in F is far from being unique: If α is any reduction of a, then
so is α+ β for all β ∈ F with νF (β) > 0.

Remark 1.15. For the map νJ(E) : J(E)→ Z≤0 ∪ {∞} and for all α, β ∈ J(E) we have

νJ(E) ([α+ β]) ≥ min
{
νJ(E) ([α]) , νJ(E) ([β])

}
and

νJ(E) ([α+ β]) = min
{
νJ(E) ([α]) , νJ(E) ([β])

}
if νJ(E) ([α]) 6= νJ(E) ([β]) .

Proof. Let π be a prime element of E. Let α̃ = α+℘(x) ∈ [α] and β̃ = β+℘(y) ∈ [β] with x, y ∈ E
such that νJ(E) ([α]) = νE(α̃) and νJ(E) ([β]) = νE(β̃).

Then we have α̃+ β̃ = α+ β + ℘(x+ y) ∈ [α+ β]. By the ultra-metric triangle-inequality of νE we
have

νJ(E) ([α+ β]) ≥ νE(α̃+ β̃) ≥ min
{
νE(α̃), νE(β̃

}
= min

{
νJ(E) ([α]) , νJ(E) ([β])

}
.

For the second equation we can without loss of generality assume

νE(α̃) = νJ(E) ([α]) < νJ(E) ([β]) = νE(β̃).

For any γ ∈ [α+ β] there is some z ∈ E such that γ = α+ β + ℘(z). Then we have

νE(γ) = νE(α+ β + ℘(z)) = νE(α̃+ ℘(z − x− y) + β̃)
4-ineq.

= min
{
νE(α̃+ ℘(z − x− y), νE(β̃)

}
= νE(β̃)) = min

{
νJ(E) ([α]) , νJ(E) ([β])

}
.

This is true for all γ ∈ [α+ β], thus

νJ(E) ([α+ β]) = max
γ∈[α+β]

(νE(γ)) = min
{
νJ(E) ([α]) , νJ(E) ([β])

}
.

It should be noted that there are reduced elements α, β ∈ F such that α+ β is not reduced. This is
demonstrated in the following example.

Example 1.16.

(a) Take for instance F = F2((t)) and α = t−3 + t−2 and β := t−3, then α+ β = t−2 is not reduced.
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(b) Note that the multiplication of E does not lead to a well-defined multiplication of J(E) as there
exist α, β ∈ E such that α · ℘(β) /∈ ℘(E).

For instance in E := F5((t)) we have

t ∈ ℘(E), t−1 = t · t−2 /∈ ℘(F ), [t−3] = [t−1 · t−2] 6= [(t−1 + t)t−2].

Moreover, there exist λ ∈ F×q and α ∈ E such that νJ(E)([λ ·α]) 6= νJ(E)([α]) for instance if q > p
and λ ∈ ℘(Fq) \ ℘(Fp), α = 1 ∈ ℘(E).

Considering the conductor and discriminant exponent of Artin-Schreier extensions, the following
definitions and notations are helpful.

Definition 1.17. Let a ∈ F \ ℘(F ). Then we define

cond([a]) :=

{
0, νJ(F ) ([a]) = 0,

|νJ(F ) ([a])|+ 1, νJ(F ) ([a]) 6= 0.

and

disc([a]) := (p− 1) cond([a]) =

{
0, νJ(F ) ([a]) = 0,

(p− 1)
(
|νJ(F ) ([a])|+ 1

)
, νJ(F ) ([a]) 6= 0.

We occasionally use the notation da := disc([a]).

Proposition 1.18. Let a ∈ F \ ℘(F ) and E = F (θa). Then:

(a) Either νJ(F ) ([a]) = 0 or
(
νJ(F ) ([a]) < 0 and p - νJ(F ) ([a])

)
.

Moreover, E/F is ramified if and only if νJ(F ) ([a]) < 0.

(b) We get νE(θa) = νF (a).

(c) We have cond(E/F ) = cond([a]) for the conductor exponent.

(d) For the discriminant exponent we have

disc(E/F ) = da =

{
0, νJ(F ) ([a]) = 0,

(p− 1)(|νJ(F ) ([a])|+ 1), νJ(F ) ([a]) < 0.

(e) We have disc(E/F ) 6≡ −1 (mod p).

Proof. The first statement of (a) is Theorem 5.8.10 in [VS06] and the second statement is clear by
(d).

For (b), we can immediately check

νE(θpa) = νE(θa − a) = νE(a)
(a)
=

{
0, νJ(F ) ([a]) = 0,

pνF (a), νJ(F ) ([a]) < 0.
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Part (d) is Theorem 5.8.11 in [VS06]. Part (c) follows by (d) and the Conductor-Discriminant
Formula. Finally, note for part (e) that disc([a]) = 0 or p - νJ(F ) ([a]) in which case

disc([a]) = (p− 1)
(
|νJ(F ) ([a])|+ 1

)
6≡ p− 1 ≡ −1 mod p.

Hence to study the discriminants of Artin-Schreier extensions it is useful to consider reduced valua-
tions and reductions of Artin-Schreier generators.

A reduction is not unique. For this purpose we will construct some nice system of representatives of
reduced elements.

Definition 1.19. Let V ≤ F be an Fp-subspace with ℘(F ) ≤ V ≤ F .

We call an Fp-complement RV with F = RV ⊕ V a reduced complement if all elements 0 6= α ∈ RV
are reduced, that is

x ∈ RV ⇐⇒ x = 0 or νF (x) = max {νF (a) : a ∈ x+ V } .

Such a complement RV describes the factor space F/V and serves as a reduction of elements in F :
Every α = r + v is representable in a unique way with r ∈ RV and v ∈ V , where α ≡ r mod ℘(F )
and the emphasis on RV being reduced simply means that νF (r) describes the field discriminant of
F (θα)/F .

The main examples are

V = ℘(F ) or V = ℘(K) ∩ F for a separable field extension K/F.

Now we construct a reduced system of representatives of J(F ). This can be used to construct a
reduced system of representatives for all V ≤ J(F ).

Fix an Fp-basis {ω1, . . . , ωr} of Fq such that ω1 /∈ ℘(Fq). Thus, Rq := Fp · ω1 is an Fp-complement
of ℘(Fq) in Fq.

Lemma 1.20. Let F be a local function field with char(F ) = p.

(a) If α ∈ F with νF (α) > 0, then α ∈ ℘(F ).

(b) For every prime element π of F and ω1 ∈ Fq \ ℘(Fq), the set

RF (π, ω1) :=

a0ω1 +

−1∑
i=n0
p-i

biπ
i
∣∣ a0 ∈ Fp; bi ∈ Fq, n0 ∈ Z<0


is a reduced complement of ℘(F ) in F .

(c) We have J(F ) ∼= Fp
⊕
n<0
p-n

Fq as an Fp-vector space.
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Proof. For (a) let α =
∞∑
n=1

anπ
n with an ∈ Fq. Then we obtain

℘

( ∞∑
n=1

∞∑
k=0

−apkn πnp
k

)
=
∞∑
n=1

anπ
n = α

since for all n ≥ 1 we have:

℘

( ∞∑
k=0

−apkn πnp
k

)
=
∞∑
k=0

(−1)pap
k+1

n πnp
k+1 −

∞∑
k=0

−apkn πnp
k

(−1)p=−1
=

∞∑
k=1

−apkn πnp
k

+
∞∑
k=0

ap
k

n π
npk

= anπ
n +

∞∑
k=1

(
−apkn + ap

k

n

)
πnp

k

= anπ
n + 0 = anπ

n.

Note for p = 2 we simply have −1 = 1. Now for (b), let φ : Fq → Fq, a 7→ aq/p, which is a field
isomorphism as the inverse of the Frobenius automorphism. Let n = −ipk < 0 with a ∈ F×q , p - i
and k ≥ 1. Then

℘
(
φ(a) · π−ipk−1

)
= aπ−ip

k − φ(a) · πipk−1
,

hence inductively aπ−ipk ≡ ãπ−i mod ℘(F ) for some ã ∈ F×q . Thus, every α ∈ Fq((t)) is equivalent
to a Laurent series

−1∑
n=ν

gcd(n,p)=1

anπ
n + a0.

By Fp ∼= Fq/℘(Fq) and ω1 +℘(Fq) 6= ℘(Fq), the constant term a0 can be easily reduced to an element
in Fp · ω1. Therefore, for all α ∈ F exists β ∈ RF (π, ω1) such that α − β ∈ ℘(F ) which shows
F = ℘(F ) +RF (π, ω1).

Concerning directness, assume 0 6= α ∈ RF (π, ω1) ∩ ℘(F ). Then α ∈ ℘(F ) implies νF (α) ≥ 0 or
p | νF (α).

On the other hand, α ∈ RF (π, ω1) implies νF (℘(α)) ≥ 0 or p | νF (℘(α)). Thus νF (α) = 0 so
that α ∈ ℘(F )∩Fq = ℘(Fq). By construction of the set RF (π, ω1) we have RF (π, ω1)∩℘(Fq) = {0},
thus we have α = 0. Hence RF (π, ω1) ∩ ℘(F ) = 0 and RF (π, ω1) + ℘(F ) = F which proves (b).

Part (c) is now obvious as

J(F ) ∼= RF (π, ω1) ∼= Fp · ω1

⊕
n<0, p-n

Fq · πn

is a direct sum of Fp-subspaces.
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Usually we simply write RF instead of RF (π, ω1). Sometimes, as in Chapter 3, it will be important
to choose π and ω1 carefully.

Remark 1.21. We will regularly use the following easy observation: Let α, β ∈ RF \ {0}. Then we
have

disc([α]) ≥ disc([β]) ⇐⇒ |νF (α)| ≥ |νF (β)| ⇐⇒ νF (α) ≤ νF (β), (1.4)

as the reduced valuations are ≤ 0.

Remark 1.22.

(a) Let a ∈ RF and E := F (θa) then we have

Va := ℘(E) ∩ F = ℘(F ) + Fp · a.

We define RVa ≤ RF to be a complement of Fpa ∈ RF , i.e. such that

F = ℘(F )⊕ Fp · a⊕RVa = Va ⊕RVa .

Then, obviously RVa is a reduced complement of Va.

(b) For any Fp-subspace with ℘(F ) ≤ V ≤ F we can analogously construct a reduced system of
representatives RV ⊆ RF for the quotient space F/V .

Remark 1.23. Let E = F (θa) for a ∈ RF be a simple Artin-Schreier extension. Here we briefly
give a construction of a prime element of E.

If E/F is unramified, then t is a prime element of E.

If E/F is ramified, then νF (a) < 0 is not divisible by p. Let i, s ∈ N such that νF (a)i + ps = 1.
Then π = θiat

s is a prime element of R.

More generally, let L/F be a tower of Artin-Schreier extensions, i.e. there exists a chain

L = Lr/Lr−1/ . . . /L0 = F

such that Li = Li−1(θγi) for γi ∈ Li−1 for 1 ≤ i ≤ r. Then we can construct a prime element of Ln
inductively by means of this procedure.

1.1.5 Ramification Theory

Here we follow [Ser79, IV.1, IV.2]. Let K/F be a Galois extension of local fields with prime ideals
pK and pF respectively. Let G := Gal(K/F ) be the Galois group of K/F , and let πK respectively
πF be prime elements of pK respectively pF . We define the following subgroups:
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Definition 1.24. For σ ∈ G, we define iK/F (σ) := νK(σ(πK)− πK).

The n-th ramification group of K/F for n ∈ N0 is

Gn := {σ ∈ G : νK(σ(πK)− πK) ≥ n+ 1}.

A natural number n ∈ N0 is called a (lower) ramification break if Gn 6= Gn+1.

The number iK/F (σ) is well-defined, as the valuation νK(σ(π) − π) is independent of the chosen
prime element π.

The n-th ramification group Gn can be constructed as follows: Let σ ∈ G. As σ(OK) = OK and
σ(pK) = pK we have for all n ∈ N an automorphism σn : OK/pn+1

K → OK/pn+1
K . This defines a

homomorphism
Ψn : G −→ Aut(OK/pn+1

K ), σ 7−→ σn

with Ker(Ψn) = Gn.

Theorem 1.25. Let E/F be a finite Galois extension of local fields with char(κF ) = p and G =
Gal(E/F ).

(a) The ramification groups form a descending chain that becomes stationary.

(b) Gi E G for all i ≥ 0 and Gi is a p-group for each i ≥ 1.

(c) G/G0
∼= Gal(κK/κF ) is cyclic of order fK/F and |G0| = eK/F .

(d) G0/G1 is cyclic and Gi/Gi+1 is p-elementary abelian for i ≥ 1. In particular |G1| = pνp(e).

(e) For each i ≥ 0 we have an injective homomorphism

Gi/Gi+1 −→ (1 + pi)/(1 + pi+1), σ 7−→ σ(πK)

πK
.

Proofs for these facts are contained in [Ser79, p. 65-67].

Theorem 1.26. Let σ ∈ G0 s.th. σpn 6= id. Then

iK/F (σp
n−1

) ≡ iK/F (σp
n
) mod pn.

For a proof see [Sna94, Prop. 6.1.34].

The ramification groups are closely connected to the discriminant of K/F :

Theorem 1.27. Let K/F be a finite Galois extension of local function fields with inertia degree
fK/F . Then:

(a) νK(Diff(K/F )) =
∑
σ 6=id

iK/F (σ) =
∞∑
i=0

(|Gi| − 1),

(b) disc(K/F ) = fK/F ·
( ∞∑
i=0
|Gi| − 1

)
.

See [Ser79, Prop. IV.4].
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1.1.6 Abelian Conductor-Discriminant-Formula

Here we follow [Iwa86, p.113].

Let E/F be an abelian extension of local fields and χ be a character of Gal(E/F ) = G. We write
Eχ := Fix(Ker(χ)) and define the conductor of χ via

f(χ) := f(Eχ/F ).

Theorem 1.28 (Conductor-Discriminant Formula). Let E/F be an abelian extension of local fields.
Then

D(E/F ) =
∏

χ irr. character

f(χ).

A proof is given in [Iwa86, Thm. 7.15].

We use this to prove the discriminant formula for Crp-extensions which is central for the discriminant
calculations throughout the thesis.

Example 1.29. Let E/F be a Cp-extension. Let χ ∈ Gal(E/F )∗. If χ = 1, then Ker(χ) = Cp and
Eχ = Fix (Ker(χ)) = F . Hence f(1) = f(F/F ) = 1.

If χ 6= 1, then Ker(χ) = 1 and Eχ = f (Fix (Gal(E/F )) /F ) = f (E/F ), hence

D(E/F ) =
∏

χ∈Gal(E/F )∗

f(χ) = 1 ·
∏
χ 6=1

f(E/F ) = f(E/F )p−1.

Proposition 1.30. Let E/F be an elementary abelian extension with Galois group Gal(E/F ) ∼=
(Cp)

r.

(a) Then for the discriminant ideal, we have

D(E/F ) =
∏
Z≤E

Z/F cyclic

f(Z/F )p−1 =
∏
Z≤E

Z/F cyclic

D(Z/F ),

(b) Concerning the discriminant norm, there exist Cp-subfields E1, . . . , Er ≤ E such that D(Er/F ) ≥
D(Er−1/F ) ≥ . . . ≥ D(E1/F ) and

D(E/F ) =
r∏
i=1

D(Ei/F )p
i−1
.
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Proof. Let U := (℘(E) ∩ F ) /℘(F ). Then by the conductor-discriminant formula we have

D(E/F ) =
∏

χ∈Gal(E/F )∗

f(Ker(χ))
Theorem 1.7(b)

=
∏
a∈U

f(Ker(χa))

=
∏
a∈U

f(F (θa)/F ) =
∏
〈a〉≤U

f(F (θa)/F )p−1,

where the last product runs over all cyclic subgroups. Applying Example 1.29, for a fixed Cp-
extension F (θa)/F we have D(F (θa)/F ) = f(F (θa)/F )p−1.

For part (b), we consider for every x ∈ R the set

Ux := [0] ∪
{
u ∈ U | νJ(F )(u) ≥ x

}
which clearly forms an Fp-subspace of U .

Consider the ordered set {λ1 > λ2 > . . . > λs} = {νJ(F )(u) : 0 6= u ∈ U}. Let di := dimFp(Uλi).

Now choose a basis of the flag Uλ1 < Uλ2 < . . . < Uλs , i.e choose a basis v1, . . . , vd1 of Uλ1 , supplement
with vectors of Uλ2 so that v1, . . . , vd1 , vd1+1, . . . , vd2 forms a basis of Uλ2 etc. The basis (v1, . . . , vr)
built this way has the property

νJ(F )

(
r∑
i=1

µivi

)
= max

1≤j≤r
µj 6=0

(νJ(F )(vj)) for all (µ1, . . . , µr) ∈ Frp \ 0.

Using f(F (θa)/F ) = p
cond([a])
F , we get

D(E/F ) =
∏

06=u∈U
f(F (θu)/F ) =

r∏
i=1

f(F (θvi)/F )(p−1)·pr−i−1
=

r∏
i=1

D(F (θvi)/F )p
r−i−1

.

The corresponding Cp-subfields Ei := F (℘−1(vi)) fulfil the claim.

Example 1.31. Let F = Fq((t)) be a local function field with char(F ) = p. Let a, b ∈ RF be Fp-
linearly independent such that K = F (θa, θb) defines a Cp×Cp-extension. The corresponding module
is

U := SpanFp (a+ ℘(F ), b+ ℘(F )) ≤ F/℘(F ).

The Cp-subfields of K correspond to P1(Fp). The non-trivial conductors correspond to the non-zero
vectors of U . We have

disc(K/F ) =
∑

0 6=u∈U
cond(u) =

∑
(λ,µ)∈F2p\{(0,0)}

cond([λa+ µb]).

Let E1, . . . , Ep+1 ≤ K the Cp-subfields such that Ep+1 has minimal discriminant. Then we have

disc(K/F ) = pdisc(E1/F ) + disc(Ep+1/F ).

Starting with a and b, there are three cases:
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(1) Let νF (a) 6= νF (b) and assume without loss of generality |νF (a)| > |νF (b)|. Then we have

disc(K/F ) = p disc(F (θa)/F ) + disc(F (θb)/F ) = p · da + db.

(2) If νF (a) = νF (b) and νF (a + λ · b) = νF (a) for all λ ∈ F×p , then disc(E1)/F = disc(Ei/F ) for
all 1 ≤ i ≤ p+ 1 and we get

disc(K/F ) = (p+ 1) disc(E1/F ) = (p+ 1) · da.

Note that this case is only possible if q 6= p.

(3) Otherwise, we have νF (a) = νF (b) and there exists λ ∈ F×p such that c := a+ λ · b has valuation
strictly larger than the valuation of a. Thus Ep+1 = F (θc) has minimal discriminant, and we
obtain

disc(K/F ) = p disc(E1/F ) + disc(F (θc)/F ) = p · da + dc.

1.2 Asymptotics and Tauberian Theorems

In this section we introduce some tools that we use to attack the asymptotics problem. We frequently
have to deal with geometric series with a periodic twist. There is a Tauberian theorem occurring
in Ellenberg-Venkatesh we frequently use. Moreover, some formulas for counting Cp-extensions are
crucial for the whole thesis and are highlighted here.

1.2.1 Big O-Notation

For two real-valued functions f, g : R→ R we use the following notations:

f = O(g)⇐⇒ ∃B > 0, c > 0 : |f(x)| ≤ c · |g(x)| for all x ≥ B,

f = o(g)⇐⇒ lim
x→∞

f(x)

g(x)
= 0,

f ∼ g :⇐⇒ lim
x→∞

f(x)

g(x)
= 1,

f � g :⇐⇒ ∃B, c1, c2 > 0 c1f(x) ≤ g(x) ≤ c2f(x) for all x ≥ B.

We will occasionally write
f � g :⇐⇒ f = o(g)

to express that f is of strictly smaller order than g.

It is straightforward to show that ∼ and � are equivalence relations.
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Discriminant Counting Function

Our main goal is to achieve a similar result as the so-called weak Malle conjecture: Let F be a local
function field with constant field Fq and let G be a finite group. We define the counting function

Z(F,G;X) := #{E/F : Gal(E/F ) ∼= G, D(E/F ) ≤ X}.

Our goal is to find a constant αp(G) ∈ R≥0 such that

Z(F,G;X) � Xαp(G).

In order to obtain a reasonable stronger version, we try to find a periodic function δG such that

Z(F,G;X) ∼ δG(X)Xαp(G)

or could prove a ∼-asymptotics for a suitable arithmetic progression Xn = n ·D + k.

The problem is only interesting for p | #G. In the case #G being coprime to p, there exist only
finitely many extensions. Thus, there is a bound B > 0 such that Z(F,G;X) ≤ B for all X ∈ R and
we always have ap(G) = 0.

1.2.2 Counting Cp-extensions over Local Function Fields

As a first and crucial example we count Cp-extensions over F = Fq((t)). For x ∈ R, we denote the
truncation function

bxc := max{z ∈ Z : z ≤ x}.

Definition 1.32. Let p ∈ P and q = pr be a p-power.

For x ∈ R we define
Tp(x) := #{1 ≤ i ≤ |x| : i ∈ N, p - i}.

Let moreover
Γq(x) := #{α ∈ RF : |νF (α)| ≤ |x|}

and
γq(x) := #{α ∈ RF : |νF (α)| = |x|}.

Define {x} := x− bxc ∈ [0, 1) for x ∈ R.

For x ∈ R, we have

Tp(x) := b|x|c − b|x|
p
c.

Moreover, we have

Tp(n) = dn · p− 1

p
e for all n ∈ N (1.5)
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since np−1
p = n− n

p = n− dnp e if p | n, and if p - n we have

n− n

p
< n− bn

p
c ≤ n− n

p
+ 1 =⇒ Tp(n) = n− bn

p
c = dnp− 1

p
e.

Lemma 1.33.
For every p ∈ P there is a bounded periodic function εp : R≥0 → [−p−1

p , p−1
p ] of period p such that

Tp(x) =
p− 1

p
· x+ εp(x) for all x ∈ R≥0.

Proof. Write x = pN(x) + r(x) + {x} where 0 ≤ r(x) ≤ p− 1, N(x) ∈ N and {x} ∈ [0, 1) as defined
above. With respect to these notations we set

εp : R≥0 → [−p− 1

p
,
p− 1

p
], x 7−→ r(x)

p
− (p− 1) {x}

p
. (1.6)

Indeed, we have

Tp(x) = # {1 ≤ i ≤ p ·N(x) + r(x) + {x} : i ∈ N, p - i}
= (p− 1)N(x) + r(x)

=
p− 1

p
(pN(x) + r(x)) +

r(x)

p
+ {x} p− 1

p
− {x} p− 1

p

=
p− 1

p
x+

r(x)

p
− {x} p− 1

p

=
p− 1

p
x+ εp(x). (1.7)

By 0 ≤ {x} < 1 and 0 ≤ r(x) ≤ (p− 1) we immediately get

−(p− 1) ≤ r(x)− (p− 1) {x} ≤ p− 1 =⇒ −p− 1

p
≤ εp(x) ≤ p− 1

p
.

Finally r(x+ p) = r(x) by construction and {x+ p} = {x} as p ∈ N, hence εp is a periodic function
with period p.

Lemma 1.34. Let p ∈ P and q = pr be a p-power.

(a) For all x ∈ R≥0 we have
Γq(x) = p · qTp(x).

Moreover, there is a periodic function ∆q : R≥0 → [pq , pq] of period p such that

Γq(x) = q
p−1
p
x ·∆q(x).
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(b) For all n ∈ N we have

γq(n) =


p− 1, n = 0

p(q − 1)qTp(n)−1, p - n
0, else.

(c) We have Tp(p · k + r) = (p− 1)k + r for k, r ∈ N, 0 ≤ r < p, and there is a p-periodic function

δq : N→ [0, p
q − 1

q1/p
] with δq(0) := 0, δq(i) := p

q − 1

q1−i/p for i = 1, . . . , p− 1

such that
γq(n) = q

p−1
p
n
δq(n).

Proof. Set Mx := {k ∈ Z<0 : 1 ≤ |k| ≤ x, p - k}. Clearly, we have

|Mx| = bxc −#{p, . . . , bx
p
c · p} = Tp(x).

Thus, we obtain

Γq(x) = #{α ∈ RF : |νF (α)| ≤ x} = #{λω0 +
∑

−|x|≥i≥−1
p-i

ait
i : λ ∈ Fp, ai ∈ Fq}

= #{λω0 +
∑
i∈Mx

ait
i : λ ∈ Fp, ai ∈ Fq}

= p · q|Mx| = p · qTp(x). (1.8)

Define ∆q(x) := p · qεp(x) with εp(x) as defined in (1.6). With (1.7), we get

Γq(x) = p · qTp(x) (1.7)
= pq

p−1
p
x+εq(x)

= q
p−1
p
x ·∆q(x).

By −1 < −p−1
p ≤ εq(x) < p−1

p < 1 we have p · q−1 ≤ pqεp(x) = ∆q(x) ≤ pq, completing the proof of
(a).

Analogously to (1.8), we have

γq(n) = #{λω0 +
∑
i∈Mn

ait
i : λ ∈ Fp, ai ∈ Fq, an 6= 0}

=


|F×p | = p− 1, n = 0

|F×q |pq|Mn|−1 = p(q − 1)qTp(n)−1, p - n
0, p | n, n 6= 0.

Lastly n ∈Mn is equivalent to n = 0 or p - n completing the second assertion.

Combining these two results, we obtain the following:
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Corollary 1.35. Let q be a p-power, then there exist periodic functions δq : R≥0 → [0, pq] and
∆q : R→ [pq−1, pq] with period length p such that for all x ∈ R≥0 we have

γq(x) = δq(x) · q
p−1
p
x and Γq(x) = ∆q(x) · q

p−1
p
x
.

Theorem 1.36. Let p ∈ P and q = pr for some r ≥ 1 and F = Fq((t)). Then we have

Z(F,Cp;X) � X
1
p .

Proof. For every Cp-extension E/F there is an a ∈ F \ ℘(F ) such that E = F (θa).

Moreover, there exists a unique α ∈ RF such that a+ ℘(F ) = α+ ℘(F ).

By Lemma 1.5(b) there exist (p−1) elements α1, . . . , αp−1 defining the same field, given by αi := i ·α
for i ∈ F×p . The discriminant is given by the formula

disc(E/F ) =

{
(p− 1)(|νF (α)|+ 1), νF (α) < 0

0, νF (α) = 0.

Let y = logq(X), i.e. X = qy. Then we get

Z(F,Cp;X) = Z(F,Cp; q
y) = Γq

(
y

p− 1
− 1

)
La. 1.34

= pq
Tp( y

p−1
−1) − 1 for all y ∈ R≥0.

The zero-element in RF does not define a Cp-extension and we have to subtract it. Using Lemma 1.33
we get p−1

p (y − p) ≤ Tp(y) ≤ p−1
p (y + p). Thus

pq
p−1
p

( y
p−1
−p−1) ≤ pqTp( y

p−1
−1)

= Z(F,Cp; q
y) ≤ pq

p−1
p

( y
p−1

+p−1)
.

Hence, we obtain Z(F,Cp; q
y) � qy·

p−1
p

1
p−1 = q

y 1
p = X

1
p .

Remark 1.37. Set U(N) := Z(F,Cp; q
(p−1)(N+1)) and write N := q(N) · p + r(N), where 0 ≤

r(N) < p and r(N), q(N) ∈ N. Writing δ(N) := pqr(N) defines a period function of period length p
which satisfies

U(N) = q
1
p

(p−1)N · pq
r(N)
p

= q
1
p

(p−1)N · δ(N).

We conclude that U(N)

qN/p
does not converge and in particular

Z(F,Cp;X) 6∼ c ·X
1
p for all c ∈ R>0.

One general issue is that Z(F,G; qN ) = Z(F,G; qN+1 − 1) which makes it impossible to establish
a ∼-equivalence of type

Z(F,G;X) ∼ c ·Xa
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for any c > 0 and a > 0, as

lim
n→∞

Z(F,G; qn+1 − 1)

c · (qn+1 − 1)a
=

1

qa
· lim
n→∞

Z(F,G; qn)

c · qan
.

Another problem arises from oscillation effects, so that Z(F,Cp; q
(pN+k)(p−1)) considered as a function

in N has a different behaviour depending on the arithmetic progression pN + k.

However for any k ∈ {0, . . . , p− 1} we have the convergence result

U(pN + k) ∼ δ(k)qN

and combined, we have
U(N) ∼ δ(N)qN/p.

This demonstrates why we can at best expect to find a periodic function δG : N0 → R≥0 such that

Z(F,G; qN ) ∼ δ(N) · qαG·N .

Mostly, we will be satisfied with establishing an �-equivalence in our context.

1.2.3 Analytic Framework

Here we collect some basic computational methods we will frequently use. In particular we will
introduce and consider certain types of functions which play a key role in our counting. They will
involve summation over periodic functions.

Theorem 1.38 (Tauberian Theorem). Suppose (an)n∈N is a sequence of non-negative real numbers
with an = 0 whenever n is not a power of q, and suppose that the formal power series

Φ(u) :=
∞∑
r=0

aqru
−r

is a rational function in u = qs. Let B ∈ R>0. If Φ(u) has no poles with |u| ≥ qB, then∑
1≤n≤X

an � XB.

If Φ(u) has a pole at u = qa of order b and no other poles with |u| ≥ qa, then:∑
1≤n≤X

an � Xa(logX)b−1.

See [EV05, Lemma 2.3]. A complete proof is given in [Lag12, Lemma A.4].

Our main application is the following Dirichlet series. Consider F = Fq((t)) and a transitive permu-
tation group G. Let

an := #{K/F | Gal(K/F ) ∼= G, D(K/F ) = n} for n ∈ N.
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Here, we mean by ∼= that there is an isomorphism of permutation groups Gal(K/F ) ∼= G.

Then we get a sequence (an)n∈N ≥ 0 with an = 0 if n is not a power of q. Consider the Dirichlet
series

ΦF,G(s) :=
∑
K/F

Gal(K/F )∼=G

D(K/F )−s =
∑
k≥0

akk
−s.

To apply Theorem 1.38 we set u = qs, and we obtain a new power series

ΨF,G(u) =

∞∑
k=0

aqku
−k.

Now let us assume that the series ΨF,G is a rational function with a simple pole at a ∈ R and no
poles for Re(u) > a. Then we obtain for X ∈ R≥0 that∑

1≤n≤X
an =

∑
n≤X

#{K/F | Gal(K/F ) ∼= G, D(K/F ) = n}

= Z(F,G;X)
1.38� Xa.

The most obvious example is given by a geometric series.

Example 1.39. Let λ ∈ R and aqr = qλr for r ∈ N. Setting u = qs, we get a geometric series

Φ(u) =
∑
r≥0

aqru
−r =

∑
r≥1

aqλrq
−rs =

∑
r≥1

qr(λ−s) =
1

1− qλ−s
=

1

1− qλq−s
,

which is a rational function in u = qs. It has a simple pole at u = qλ and no poles with |u| > qλ,
thus Theorem 1.38 yields as expected ∑

n≤X
an � Xλ.

Periodic twist of a geometric series Some of the counting functions we consider are geometric
series twisted with a periodic function:

Notation 1.40. Let δ : N0 → R≥0 be a periodic function with period D > 0, D ∈ N and δ 6= 0.

Moreover, let α0, α1 ∈ R and α : C → C, s 7→ α0 + α1 · s be an affine function. We have the
interpretation in mind that qα1·n is a discriminant with discriminant exponent α1 · n.

For s ∈ C we write

Sδ,α,s(N) :=
N∑
n=1

δ(n) · qα(s)·n, Φδ,α(s) =
∞∑
n=1

δ(n) · qα(s)·n.

Moreover, we define
Tδ,α,s : N0 → C, Tδ,α,s(N) := Sδ,α,s(D ·N). (1.9)
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The summation in Tδ,s reflects the arithmetic progression (an)n∈N := (D · n)n∈N. We define

∆(δ, α, s) =
D∑
j=1

δ(j)qα(s)·j (1.10)

and

ΦT
δ,α(s) :=

∞∑
n=0

 D∑
j=1

δ(j)q−α(s)j

 · q−sDn =
∞∑
n=0

∆(δ, α, s) · q−sDn.

Lemma 1.41. Let δ : N0 → C be a periodic function of length D ∈ N. Let α0, α1 ∈ R with α1 > 0
and α : C→ C, z 7→ α0 − α1 · z. Let 0 6= s ∈ C and Tδ,α,s as in (1.9) and ∆δ,α,s as in (1.10).

(a) For all N ∈ N we have

Tδ,α(s)(N) = ∆(δ, α, s) · 1− q−α(s)·DN

1− q−α(s)·D .

(b) For Re(s) > α0
α1

the sequence (Tδ,α,s(N))N∈N converges absolutely and

ΦT
δ,α(s) = ∆(δ, α, s) · 1

1− q−α(s)D
is in particular rational.

Proof. For N ∈ N we have

Tδ,α,s(N) =

DN∑
n=1

δ(n) · qα(s)·n

=

N−1∑
k=0

D∑
j=1

δ(j) · qα(s)(D·k+j)

=
N−1∑
k=0

∆(δ, α, s)qα(s)·Dk

= ∆(δ, α, s) ·
N−1∑
k=0

qα(s)Dk

= ∆(δ, α, s)
1− qDN ·α(s)

1− qD·α(s)
. (1.11)

In particular ΦT
δ,α(s) is a rational function in qs.

By assumption we have δ 6= 0 and δ(n) ≥ 0 for all n ∈ N. Thus for all s ∈ R we have α(s) > 0 and
∆(δ, α, s) > 0. Thus we have a pole at s = α0

α which is the unique root of α.

The next example is a useful summation for the discriminant counting function over local function
fields.
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Proposition 1.42. Let q = pr, λ ∈ R, µ ∈ R \ {0} and X ∈ R≥0. Then we have∑
a∈RF

qµ·|νF (a)|≤X

qλ·|νF (a)| � X
λ+(p−1)/p

µ .

Proof. The condition qµ·|νF (a)| ≤ X is equivalent to |νF (a)| ≤ 1
µ · logq(X), hence to

|νF (a)| ≤ b 1

µ
· logq(X)c (1.12)

since |νF (a)| ∈ N0. Moreover, we have

qλ·n = q
λ
µ
·µn

=
(
q
λ
µ

)µ·n
for all n ∈ N0. (1.13)

We use the formula
γq(n)

Cor. 1.35
= δq(n)q

p−1
p
n
, (1.14)

where δq is periodic of period length p and in particular a bounded function. We obtain∑
a∈RF

qµ·|νF (a)|≤X

qλ·|νF (a)| (1.12)=
∑
a∈RF

|νF (a)|≤ logq(X)

µ

qλ·|νF (a)|

(1.14)
=

∑
n≤ logq(X)

µ

δq(n) · q
p−1
p
n
qλ·n

(1.13)
=

∑
n≤ logq(X)

µ

δq(n) ·
(
q
p−1
p·µ +λ

µ

)µ·n

La. 1.41�

(
q
p−1
pµ

+λ
µ

)µ·d logq(X)

µ
e
− 1

q
p−1
pµ

+λ
µ − 1

� X
λ+(p−1)/p

µ .

Example 1.43. Here we continue the example of counting Cp-extensions from Remark 1.37. For
n ∈ N0, we write n = pN + r(n) with 0 ≤ r(n) ≤ p− 1 as in the proof of Lemma 1.33. with q = pr

and the periodic function

δq(n) = p
q − 1

q
· q

r(n)
p of length p.

(a) For Cp-extensions we can apply Lemma 1.41 with α0 = p−1
p and α1 = (p − 1) to obtain the

critical pole at s = α0
α1

= 1
p .

(b) We can also apply Proposition 1.42 with λ = 0 and µ = (p− 1) and obtain the exponent

s =
λ+ p−1

p

µ
=

p−1
p

p− 1
=

1

p
.
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1.3 Cohomology and Explicit Construction

1.3.1 The Absolute Galois Group of Local Function Fields

The absolute Galois group of local fields is well understood. We will give a brief description here and
draw some conclusions concerning embedding problems. We follow the book of Ribes and Zaleskii
for notations (see [RZ00]) and collect some results from [NSW08].

Definition 1.44. An inductive system of finite groups consists of a directed partially-ordered1 index
set (I,≤), a family of finite groups (Gi)i∈I and a family of morphisms (ϕi,j : Gi → Gj)i≥j which are
compatible, i.e. for all i ≥ j ≥ k in I the following diagram commutes:

Gi
ϕi,k //

ϕi,j   

Gk

Gj

ϕj,k

>>

Definition 1.45. A projective limit of an inductive system of finite groups is called a profinite group.
It is called a pro-p-group or pro-solvable group respectively if the inductive system consists of finite
p-groups or solvable groups respectively.
Let c be a class of finite groups which is closed under subgroups, quotients and extensions. Then a
pro-c-group is a projective limit of an inductive system of groups in c.

Definition 1.46. A pro-c-group G is called free if there exists a set X ⊆ G and a map i : X → G
such that

1.) each open normal subgroup of G contains almost all elements of X and

2.) for each pro-c-group G̃ and map j : X → G̃ exists ∃! ψ : G → G̃ continuous homomorphism
such that ψ ◦ i = j.

|X| is called the rank of G and i(X) is called a basis of G.

Next we collect some important results on the structure of the absolute Galois group of a local
function field. For this, let F be a local function field with constant field κF of cardinality q and
char(F ) = p. Denote by GF the absolute Galois group of F . Its structure is completely determined
by the following theorem:

Theorem 1.47 (Absolute Galois group).
Let F = Fq((t)) be a local function field with char(F ) = p and absolute Galois group GF .

(a) For Funr, the maximal unramified extension, we have Gunr = Gal(Funr/F ) ∼= Gal(F̂q/Fq) ∼= Ẑ
where the Frobenius automorphism is a topological generator.

1I.e. ≤ is an ordering such that additionally holds: ∀i, j ∈ I ∃k ∈ I with i ≤ k and j ≤ k.
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(b) Let Ftr be the maximal tamely ramified extension of F . We have

Gtr = Gal(Ftr/F ) =
∏
`6=p
Z` oGunr = 〈σ, τ | στσ−1 = τ q〉

as a profinite group.

(c) For the absolute Galois group we get GF ∼= GpoGtr, where Gp is a free pro-p-group of countably
infinite rank.

For a proof see [NSW08], Theorem VII.5.13.

For our work, we are particularly interested in the maximal pro-p-quotient of GF . The maximal
p-extension F (p) of F is defined as the composite of all Galois extensions of F of p-power degree.
Write GF (p) := Gal(F (p)/F ) which is the maximal pro-p-factor group of GF , see [NSW08, p.414].

Theorem 1.48. Let F be a local field with char(F ) = p. Let GF be the absolute Galois group of F
and GF (p) be the maximal pro-p-factor group of GF .

Then GF (p) is a free pro-p-group of countably infinite rank.

For a proof see [NSW08], Theorem VII.5.10.

Our main interest is the following consequence:

Corollary 1.49. Let F be a local function field with char(F ) = p. Each finite p-group H is a
quotient of GF , in particular, there exists a field extension K/F with Gal(K/F ) ∼= H.

Proof. Let X = {x1, x2, . . .} ⊆ GF (p) and i : X → GF (p) satisfying the conditions of Definiton 1.46.
Consider a numbering H = {h1, . . . , h|H|} of the elements and consider the map

j : X −→ H, xk 7−→

{
hk, k ≤ |H|
h1, k > |H|.

The induced continuous homomorphism φ : GF (p)→ H is clearly surjective. Setting φ(x) = idH for
x ∈ Gtr defines a surjective homomorphism φ : GF → H as claimed.

Remark 1.50. We briefly compare this to the absolute Galois group of a p-adic field: While the
p′-part is isomorphic to the p′-part in the function field case, the p-part of the absolute Galois group
of a p-adic field is a pro-p-group of finite rank, which is free or has one relation. The relation occurs
if and only if the p-adic field contains p-th roots of unity.

Hence, there is a drastic difference concerning the p-part. Consequently, there are infinitely many
extensions of degree pn over a local function field for n ≥ 1, while there are only finitely many
degree-n-extensions over a p-adic field for any n ∈ N.
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1.3.2 Central Embedding Problems

A group extension ε with kernel N is an exact sequence of groups

1 −→ N
i−→ G

π−→ H −→ 1.

It is called central if i(N) ⊆ Z(G) and it is called split if there exists a homomorphism s : H → G
such that π ◦ s = idH . Otherwise we call it non-split . Note that the extension is split if and only if
G ∼= N oH is a semi-direct product.

Given a Galois extension K/F with Gal(K/F ) ∼= H the embedding problem for K is to find a field
extension L/K such that

Gal(L/K) ∼= N and Gal(L/F ) ∼= G

and such that the diagram

1 // Gal(L/K)

∼=
��

σ 7→σ // Gal(L/F )

∼=
��

σ 7→σ|K// Gal(K/F )

∼=
��

// 1

1 // N
ι // G

π // H // 1

commutes. We refer to this situation as the embedding problem of the group extension over K and
in short, as “embedding problem of G over K”.

We call the embedding problem solvable if such an extension field L exists.

A solution with minimal discriminant is called a minimal solution. Its discriminant over F is called
the minimal discriminant of the embedding problem. The embedding problem is called split or
central, if the corresponding group extension is split or central, respectively.

The solutions of central embedding problems with kernel N = Cp have a particularly nice structure.
If we have one solution, then all solutions are parametrised by Cp-extensions.

Proposition 1.51.
Let F be a local function field of characteristic p. Further, let H and G be finite groups and

1 −→ Cp −→ G −→ H −→ 1 (1.15)

be a central non-split embedding problem.

(a) If H is a p-group, then the embedding problem is solvable.

(b) If M = K(θa) is any solution of the embedding problem of type (1.15) then each solution of the
embedding problem is of type Mc := K(θa+c) for some c ∈ RF .

For a proof see [JLY02, App. A].

The following lemma is useful for determining minimal discriminants.
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Lemma 1.52. Assume disc(K(θα)/F ) /∈ {disc(K(θc)/F ) | c ∈ F}, then K(θα)/F is a minimal
extension.

Proof. Suppose
disc(K(θα+c)/F ) < disc(K(θα)/F ) for some c ∈ F. (1.16)

Both fieldsK(θα) andK(θα+c) are subfields of the field compositum L := K(θα, θc) with Gal(L/K) ∼=
Cp × Cp. Clearly, disc(K(θα)/K) > disc(K(θα+c)/K) by (1.16). Using Example 1.31(1) then yields

disc(L/K) = p disc(K(θα)/K) + disc(K(θα+c)/K).

We have K(θc) ≤ L with K(θc) 6= K(θα+c). Hence, Example 1.31(1) and Proposition 1.30 give

disc(K(θc)/K) = disc(K(θα)/K)

and thus disc(K(θc)/F ) = disc(K(θα)/F ) in contradiction to our assumption. Thus K(θα) is a
minimal extension.

Theorem 1.53. Let F be a local function field of characteristic p and G be a finite group.

(a) For each finite p-group G 6= 1, there are infinitely many G-extensions of F .

(b) If U ≤ Z(G) is a subgroup with p elements and there is a G/U -extension K over F , then there
are infinitely many extensions with Galois group G containing K.

(c) Let H be a finite group such that there is a field extension K/F with Gal(K/F ) ∼= H and G 6= 1
be a finite p-group. Then there are infinitely many G×H-extensions over F .

Proof. For (a) we use Proposition 1.51(a) to prove the existence and 1.51(b) for the existence of
infinitely many G-extensions. Similarly, (b) follows by 1.51(b).

For (c) note that any finite non-trivial p-group has non-trivial center. Hence using 1 → Cp → H ×
Cp → H → 1 and induction one obtains infinitely many H ×G-extensions by Theorem 1.51(b).

The following example shows the existence of finite groups G with p | |G| such that there exist only
finitely many but more than zero extensions K/F with Galois group G.

Example 1.54.

(a) We consider F = F2((t)) and G = S3. We show here that there is an extension L/F with
Gal(L/F ) ∼= S3, but there are only finitely many S3-extensions over F , although 2 = char(F ) |
|S3|.
To affirm the existence part, take for instance L := F ( 3

√
t, ζ3). This is the splitting field of

K := F ( 3
√
t) as ζ3 /∈ F2. As the extension K/F is not Galois, we have that Gal(L/F ) is

non-abelian, hence Gal(L/F ) ∼= S3.



44 Chapter 1. Local Function Fields

On the other hand, let L/F be any S3-extension. There are three subfields Ki ≤ L with [Ki :
F ] = 3 and L = K1K2. There are only finitely many degree-3-extensions of F as they are all
tamely ramified. Hence, there are only finitely many S3-extensions over F .

This shows that the statement in Theorem 1.53(c) can not be improved to semi-direct products
GoH, as S3 = C3 o C2 and 2 = char(F ) | 6 = |S3| demonstrate.

(b) If F = F4((t)), then ζ3 ∈ F and there does not exist an S3-extension over F , as every degree-
3-extension K/F is at most tamely ramified and therefore a radical extension which is a Galois
extension due to ζ3 ∈ F .

(c) Now let p = 3 and F = F3((t)). Let K := F (ω) := F9((t)) be the unramified C2-extension of F .
We will show in Chapter 3 that the infinite series of fields

Ln := K(θ℘(t−3n−1)ω), n ∈ N,

is a series of non-isomorphic field extensions with Gal(Ln/F ) ∼= S3. The fields are non-
isomorphic as the discriminant exponents disc(Ln/K) = 2 · ((3n+ 1) + 1) are pairwise different.

Generalising Example 1.54(a), we obtain:

Lemma 1.55. Let F be a local function field with char(F ) = p and G ≤ Sn be a transitive permu-
tation group over n points with p - n. Then there are only finitely many G-extensions of F .

Proof. Let K/F be a extension of degree n with Gal(K/F ) = G ≤ Sn and let L/F be the Galois
closure of K/F . Then, L is the splitting field of K/F . As

n = [K : F ]
(1.1)
= eK/F · fK/F and p - n,

we have that K/F is tamely ramified. Thus, L/F is tamely ramified as the composite of tamely
ramified extensions. Thus, there are only finitely many tamely ramified extensions of degree |G|,
which proves the statement of the Lemma.

1.3.3 Cohomology of Groups

Here we simply recall definitions and some basic results we need. These standard definitions are
taken from [NSW08, p. 15ff].

Let G be a finite group. We call an abelian group A a G-module if G is acting on A. We will write
(G, ·) multiplicatively and (A,+) additively. We are mainly interested in the 0-th, 1-st and 2-nd
cohomology group and their interpretations.

Definition 1.56. Let G be a finite group and A be a G-module.

(a) The 0-th cohomology group is

H0(G,A) := FixG(A) = {a ∈ A | ag = a ∀g ∈ G}.
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(b) A map f : G→ A with f(στ) = f(σ)+σf(τ) for all σ, τ ∈ G is called a 1-cocycle2 and Z1(G,A)
is the set of all 1-cocycles.

A 1-coboundary3 is a map
G −→ A, σ 7−→ σ · a− a

for a fixed a ∈ A. B1(G,A) is the set of all 1-coboundaries.

(c) Z1(G,A) forms an abelian group via

f1 · f2 : G→ A, σ 7→ f1(σ) + f2(σ)

and B1(G,A) ≤ Z1(G,A) forms a subgroup.

The quotient group H1(G,A) := Z1(G,A)/B1(G,A) is the first cohomology group.

Similarly, we define in the following definition the second cohomology group H2(G,A) as the quotient
of cocycles modulo coboundaries. H2(G,A) characterises the group extensions 1 −→ A −→ G̃ −→
G −→ 1.

Definition 1.57. Let G be a finite group acting on an abelian group (A,+).

(a) Let f : G×G→ A and write fσ,τ := f(σ, τ). The map f is called a 2-cocycle4 if

f(ρ, σ) + f(ρσ, τ) = ρ · f(σ, τ) + f(ρ, στ) for all ρ, σ, τ ∈ G

and Z2(G,A) is the set of all 2-cocycles.

(b) For any map a : G→ A, σ 7→ aσ the associated function

G×G→ A, (σ, τ) 7→ aσ + σaτ − aστ

is called a 2-coboundary5 and B2(G,A) is the set of all 2-coboundaries.

(c) Z2(G,A) forms a group with pairwise multiplication, i.e.

(f1 · f2)(σ, τ) := f1(σ, τ) + f2(σ, τ).

The quotient group H2(G,A) := Z2(G,A)/B2(G,A) is called the second cohomology group.

Definition 1.58. Let A be an abelian group and

1 −→ A
ι−→ E

π−→ G −→ 1

be an exact sequence of finite groups. For all σ ∈ G let sσ be a fixed pre-image under π. Then G
acts on A via

σ · a := sσι(a)s−1
σ for all σ ∈ G, a ∈ A.

The second cohomology group H2(G,A) with respect to this G-action is also called “the cohomology
group” of the group extension.

2or crossed homomorphism
3or principal crossed homomorphism
4or factor system
5or splitting factor system
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Remark 1.59. (a) Note that A being abelian is crucial so that Zi(G,A), Bi(G,A) and H i(G,A)
indeed form groups.

(b) If the group extension 1 −→ A
ι−→ E

π−→ G −→ 1 is central, then the induced G-module on A
is trivial.

Example 1.60. Let L/F be a finite Galois extension of (local) function fields and G = Gal(L/F ).

(a) Let A = (L,+), then H0(G,L) = FixG(L) = F is the fixed field.

Moreover, we get a 1-cocycle

fγ : G→ L, σ 7→ (σ − 1)(γ)

for all γ ∈ L.

(b) For any 2-coboundary a : G→ Fp with coefficients in Fp the map

(℘(aσ))σ∈G := (apσ − aσ)σ∈G

forms a 1-cocycle. This holds as ℘ commutes with σ ∈ G and yp − y = 0 for all y ∈ Fp.

Theorem 1.61. Let L/K be a finite Galois extension with G = Gal(L/K). Then:

(a) H1(G,L×) = 0 is trivial.

(b) H1(G,L) = 0 and H2(G,L) = 0.

A proof is given in [Led05, p. 32].

Note that in general H2(G,L×) does not have to be trivial.

1.3.4 Construction of p-Extensions in Characteristic p

Finally, we state a classical construction by Witt [Wit36] for all solutions of a central embedding
problem of finite p-groups with elementary abelian kernel in characteristic p. Although we do not use
it directly in this thesis, we want to highlight this construction as it is highly useful in the context of
constructions of p-group extensions over local function fields. We used this construction to construct
some D4-extensions, Q8-extensions, H(p, 2)-extensions and H̃(p, 2)-extensions. This is very useful
because one solution automatically gives us all solutions to such a central embedding problem.

We will give the construction for the kernel Cp first.
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Preliminaries Let 1 // (Cp,+)
ι // G

π // H // 1 be a central embedding problem of
p-groups and let K/F be a field extension with Gal(K/F ) = H.

Moreover, we identify χ : Cp −→ Fp ⊆ K, i.e. χ(Cp) is the prime field of K.

(i) Let R be a fixed representative system of G/ι(Cp),

(ii) Let rσ ∈ R be a fixed pre-image of σ ∈ H under π,

(iii) Let gσ,τ ∈ Cp be satisfying rσrτ = rστ ι(gσ,τ ) for all σ, τ ∈ H.

Conclusions:

(1) (gσ,τ )σ,τ forms a 2-cocycle, i.e. g ∈ Z2(H,Cp) and

Fp 3 χ(gσ,τ ) + χ(gρ,στ ) = χ(gρ,σ) + χ(gρσ,τ ) for all ρ, σ, τ ∈ H.

Moreover, g ∈ Z2(H,K) forms a factor system over K via the inclusion Cp ↪→ K, more precisely
via the canonical map

H2(H,Fp)→ H2(H,K).

(2) Let α ∈ K such that TrK/F (α) 6= 0 and set

aσ :=
1

TrK/F (α)
·
∑
τ∈G

gσ,τ · στ(α) for σ ∈ H.

Then (aσ)σ∈H ⊆ K satisfies

gσ,τ = aσ + σaτ − aστ for all σ, τ ∈ H.

That is, the factor system is splitting over K.

(3) (℘(aσ))σ∈H forms a crossed homomorphism (or a 1-cocycle).

(4) Using TrK/F (α) 6= 0 and the choice

γ :=
1

TrK/F (α)
·
∑
τ∈G

aτ · τ(α)

we get
℘(aσ) = apσ − aσ = σ(γ)− γ for all σ ∈ H.

(5) Let θγ be a zero of Xp −X − γ. Then L = K(θγ) is a solution of the embedding problem, i.e.
Gal(L/F ) ∼= G.

(6) For each solution L̃/F , there is f ∈ F satisfying L̃ = K(θγ+f ).
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Proof: The proof is mainly done in two papers of Witt ([Wit35], [Wit36]).

(1) This is a well-known result in extension theory, see for instance [NSW08] or [Led05].

(2) We have H2(H,K) = 0, see [Led05, Ch. 4.2]. Hence H2(H,Cp) → H2(H,K) is the zero-map
and there exist aσ ∈ K, σ ∈ H such that

aσ + σaτ − aστ = gσ,τ for all σ, τ ∈ H.

An explicit construction can be found in [Wit35, I.(3)]: Take an element α ∈ K such that
TrK/F (α) 6= 0. Then a solution for (aσ)σ∈G ∈ K is given via

aσ :=
1

TrK/F (α)
·
∑
τ∈G

gσ,τ · στ(α).

(3) φ : H → K,σ 7→ ℘(aσ) forms a 1-cocycle: Firstly ℘(gσ,τ ) = 0 as gσ,τ ∈ Fp. Moreover, we have
for all σ, τ ∈ H:

φ(στ) = ℘(aστ ) = ℘(aσ + σaτ ) = ℘aσ + σ℘aτ = φ(σ) + σφ(τ).

(4) It is well-known that H1(H,K) = 0. One explicit construction is given in [Wit35, I.(2)] via
TrK/F (α) 6= 0 and

γ :=
1

TrK/F (α)
·
∑
τ∈G

aτ · τ(α).

Thus there is a γ ∈ K such that (σ − 1)(γ) = ℘(aσ) for all σ ∈ H.

(5) This assertion is proven in [Wit36, III. Konstruktion] with the verification of formulas (7) - (13b)
in that paper.

Let θ := θγ be a root of xp − x− γ. Note that the extension K(θ)/F is Galois as

σ(γ) = γ + ℘(aσ) =⇒ θ + aσ is a root of xp − x− σ(γ).

Moreover, we define uσ ∈ Gal(K(θ)/F ) for σ ∈ H via

uσ(θ) = θ + aσ, uσ(k) = σ(k) for all k ∈ K

and for all g ∈ Cp

g̃ ∈ Gal(K(θ)/F ), g̃(θ) = θ + χ(g), g̃(k) = k for all k ∈ K.

These automorphisms satisfy

uσuτ = g̃σ,τuστ ,

uσ g̃ = g̃uσ.

Thus, we conclude Gal(K(θ)/F ) ∼= G.
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(6) This is Proposition 1.51.

Example 1.62. Consider the group extension

1→ Cp → Cpn+1 → Cpn → 1.

Let Cpn = 〈σ〉. Then we have a factor system

gσi,σj =

{
1, i+ j ≥ pn,
0, i+ j < pn.

Let Kn/F be a Cpn-extension. Then every element aσ ∈ Kn such that TrKn/F (aσ) = 1 describes a
splitting factor system via

a1 = 0, aiσ = aσ + σ(aσi−1) for all 1 ≤ i ≤ pn − 1.

Let Ki be the unique subextension with [Ki : F ] = pi and Ki = Ki−1(θi). One choice for aσ is given
by

aσ := (−1)n(θ1 · · · θn)p−1.

If γn+1 ∈ Kn is a solution of
(σ − 1)(γn) = ℘(aσ)

then Kn+1 := Kn(θγn)/F is a Cpn+1-extension. The automorphism σ̃ ∈ Gal(Kn+1/F ) given by

σ̃(θn+1) := θn+1 + aσ, σ̃|Kn = σ

is a generator of Gal(Kn+1/F ).

Construction with Elementary Abelian Kernel

More generally we can use an analogous construction when considering a central extension of finite
p-groups of type

1→ Crp → G→ H → 1.

Let χ1, . . . , χr ∈ χ(Crp) = Hom(Crp ,Fp) be a basis of the characters of Crp . Then we get a factor
system χi(g) for each 1 ≤ i ≤ r given by

(χi(g))σ,τ := χi(gσ,τ ).

We solve each factor system with the approach above:

• Take (a
(i)
σ )σ∈H ∈ Ka(i)

σ + σa
(i)
τ − a(i)

στ = χi(gσ,τ ),

• Let γi ∈ K such that
(σ − 1)(γi) = ℘(a(i)

σ ) for all 1 ≤ i ≤ n,
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• Let θi ∈ K̂ such that ℘(θi) = γi and define L := K(θ1, . . . , θr).

• Then L/F is Galois and Gal(L/F ) is generated by the automorphisms

ḡ · θi = χi(g),K ≤ Fix(ḡ); uσ(θi) = θi + a(i)
σ , uσ|K = σ

for all g ∈ Crp , σ ∈ H.

Then Gal(K(θ)/F ) ∼= G, more precisely g ∈ Crp and σ, τ ∈ H satisfy the relations

uσuτ = g̃σ,τuστ ,

uσ g̃ = g̃uσ.



Chapter 2

Conductor Density of Abelian Extensions

All the results of this chapter were published in a paper with J. Klüners, see [KM20]. Here we
explicitly count all extensions of a local function field with a fixed abelian Galois group up to a
conductor bound. Let G be a finite abelian group and F be a local function field of characteristic p.
The main object is the counting function

Z(F,G;n) := #{E/F Galois : Gal(E/F ) ∼= G and N (f(E/F )) ≤ qn},

where N (f(E/F )) is the norm of the conductor. Note that we count with respect to conductor
exponent here. We will establish explicit formulas and analyse its asymptotic behaviour. The main
difficulty is the p-part of G which will be handled first.

By class field theory, all extensions of F with Galois group G are in bijection with quotient groups
of the unit group F×. For a conductor bound n, we can restrict this to a finite quotient group Xn

of F×. In a first step, we construct these quotient groups Xn and we compute the pi-ranks of these
groups. Secondly, we need to count all quotient groups of Xn isomorphic to G, which is equivalent to
computing the number of subgroups of Xn that are isomorphic to G. We apply well-known formulas
and obtain an explicit description of the conductor counting function.

Note that the problem of determining the conductor density is significantly easier than the problem
of determining the discriminant density. As by the conductor-discriminant formula, we need to
know the conductor of all subfields, in contrast to only knowing the maximal conductor of any
subfield. Nevertheless, we apply the result on the conductor density to establish a lower bound on
the discriminant density of abelian groups which Lagemann proved in [Lag10] and we obtain an
interpretation of the discriminant asymptotics exponent.

2.1 Certain Quotient Groups of the Unit Group

Let again Fq be a finite field with q = pf elements and F = Fq((t)) be the Laurent series ring over
Fq. Let OF = Fq[[t]] be the local ring with maximal ideal p = tOF . By the main theorem of local
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class field theory, we get a one-to-one correspondence of abelian extensions E/F and norm groups
U := NE/F (E×) in F×. Recall from Chapter 1 the definition of the conductor

f(E/F ) = pc(NE/F (E×))

with c(U) being the minimal natural number n such that 1 + pn ≤ U .

Theorem 2.1. The mapping E 7→ NE/F (E×) defines a bijection between finite abelian extensions
of F and open subgroups of F× of finite index.

Moreover, the Galois group Gal(E/F ) is isomorphic to the quotient group F×/U .

For a proof, see [FV02, Theorem 6.2., p. 154].

Let G be a finite abelian group of exponent exp(G). Recall F× ∼= Z×F×q ×(1+p), see Hasse ([Has69,
Ch. 15]). We define

Un := (1 + p)/(1 + pn) and Xn(G) := Z/ exp(G)Z× F×q × Un.

By class field theory, the counting problem reduces to count the number of open subgroups U ≤ F×
with F×/U isomorphic to G. The conductor bound N (F(E/F )) ≤ qn is equivalent to 1 + pn ≤ U .
Moreover, F×/U ∼= G implies that exp(G) annihilates F×/U . So for our counting problem it is
sufficient to consider the subgroups of F× containing

exp(G)Z× 1× (1 + pn)

which correspond to the subgroups of Xn(G).

By dualising, the number of subgroups of F× with quotient isomorphic to G is exactly the number of
subgroups of Xn(G) isomorphic to G. Thus we reduce our counting problem to counting subgroups
in certain finite abelian groups.

In establishing our desired formula, we first study higher unit groups, and consider formulas on
subgroups of finite abelian groups depending on the pk-ranks of the groups.

In general, for a finite abelian group and n ∈ N, we get the subgroups

Gn := {gn | g ∈ G}

and the n-th torsion subgroup
G[n] := {g ∈ G | gn = 1}.

For a prime p ∈ P, we set the pn-rank of G as

rkpn(G) := logp

(
|Gpn−1 |
|Gpn |

)
.

In the following, we will fix some notations and abbreviations for an abelian p-group.
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Definition 2.2. Let G be a finite abelian p-group and k ∈ N.

We set rk(G) := rkpk(G).

Moreover, we set r̃k(G) := rk(G)− rk+1(G).

A sequence of elements (g1, . . . , gr) is called a group-basis of G if each element g ∈ G has a unique
representation

g = gi11 · · · g
ir
r , 0 ≤ ij < ord(gj).

Remark 2.3. Let G be a finite abelian p-group of exponent pe. If (g1, . . . , gr) is a group-basis of G,
then r̃k(G) is the number of generators with ord(gj) = pk, i.e. it is the number of cyclic factors of G
isomorphic to Cpk .

rk(G) is the number of generators of order ≥ pk.

We have the decomposition

G ∼= (Cp)
r̃1(G) × (Cp2)r̃2(G) × · · · × (Cpe)

r̃e(G).

Lemma 2.4. Let (v1, . . . , vf ) be an Fp-basis of Fq. Then the following holds:

(a) 1 + p has a Zp-basis
{1 + vit

k : k ∈ N, p - k, 1 ≤ i ≤ f} and

{1 + vitk : 1 ≤ i ≤ f, k ≤ n− 1, p - k} is a group-basis of Un.

(b) For each v ∈ F×q and i ≥ 1 we have ord(1 + vti) = pdlogp(n/i)e in Un.

(c) For all j ∈ N, the torsion group Un[pj ] is generated by

{1 + vit
k : 1 ≤ i ≤ f, p - k, dn/pje ≤ k ≤ n− 1}.

(d) For all k ∈ N we have

rk(Un) = f

(
bn− 1

pk−1
c − bn− 1

pk
c
)
, rkpk(Xn(G)) = rk(Un) + 1.

Proof. (a) The first assertion on the Zp-basis is shown in [Has69, p. 227].

The second assertion concerning the group basis follows, using the elements of the Zp-generators
of Zp whose residue is non-zero in Un = (1 + p)/(1 + p)n and the fact that

r∏
i=1

∏
p-k

(
1 + vit

k
)ei,k

∈ 1 + pn ⇐⇒
(

1 + vit
k
)ei,k

∈ 1 + pn for all 1 ≤ i ≤ r, p - k.
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(b) Un is a p-group of order qn−1 since 〈1 + pi〉/〈1 + pi+1〉 ∼= Fq for all i ≥ 1. Let i ≤ n and put
α := 1 + vti ∈ 〈1 + p〉/〈1 + pn〉 with v ∈ F×q and k ∈ N. Then:

1 + vti
pk

= 1 ⇐⇒ vp
k
tip

k ∈ pn ⇐⇒ ipk ≥ n

⇐⇒ pk ≥ n

i

k∈N⇐⇒ k ≥ dlogp(
n

i
)e.

(c) This is (a) and (b) with dlogp(n/k)e ≤ j ⇐⇒ n/k ≤ pj ⇐⇒ k ≥ n/pj .

(d) By (a), B = {1 + vjti : 1 ≤ i < n and p - i} is a group-basis of Xn(G). Then

rk(Xn(G)) = |{g ∈ B : ord(g) ≥ pk}|.

By (b), we have ord(1 + vjti) ≥ pk ⇐⇒ ipk−1 < n ⇐⇒ ipk−1 ≤ n− 1, hence

rk(Un) = f · |{i : i ≤ bn− 1

pk−1
c, p - i}| = f(bn− 1

pk−1
c − bn− 1

pk
c).

Note that rk(Xn(G)) = rk(Un) + 1 since p - |F×q |.

2.2 Conductor Density of Abelian p-groups

For a finite abelian group G let Gp = {g ∈ G : ord(g) = pa for some a ∈ N0} be the p-Sylow
subgroup of G and let Gp′ denote the coprime to p part of G. For finite abelian groups G and A we
define

Inj(G,A) := {φ : G→ A monomorphism}, αG(A) := |{U ≤ A : U ∼= G}|.

We immediately get
αG(A) · |Aut(G)| = |Inj(G,A)|. (2.1)

We start with the following reduction to p-groups.

Lemma 2.5. We have the decompositions

Inj(G,A) ∼=
∏
`∈P

Inj(G`,A`) and αG(A) =
∏
`∈P

αG`(A`).

In particular αG(A) = αGp(Ap) · αGp′ (Ap′) and |Inj(G,A)| = |Inj(Gp(Ap))| · |Inj(Gp′ , Ap′)|.

Proof. The structure theorem of finite abelian groups gives decompositions G =
∏
`∈PG` and A =∏

`∈PA`, where only finitely many factors are non-trivial. So every element g ∈ G can uniquely be
written as g = (g`)`∈P for g` ∈ G`, and with this we can define

Ψ:
∏
`∈P

Inj(G`,A`) −→ Inj(G,A), (φ`) 7−→

(
g 7→

∑
`∈P

φ`(g`)

)
.
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The sum is finite and Ψ((φ`)`∈P) is injective by the Chinese Remainder Theorem.

The map Ψ has an inverse mapping given by

Φ: Inj(G,A) −→
∏
`∈P

(G`, A`), φ 7−→ (φ|G`)`∈P.

This is well-defined as monomorphisms preserve orders of group elements. More precisely, ord(g`) =
`k ⇐⇒ ord(φ(g`)) = `k for φ ∈ Inj(G,A), ` ∈ P and g` ∈ G`.

It is immediate that Φ ◦Ψ and Ψ ◦ Φ are the identity, hence Φ is an isomorphism.

The factorization of αG(A) is then immediate by the equations

αG(A) · |Aut(G)| = |Inj(G,A)|

and
|Aut(G)| =

∏
`∈P
|Aut(G`)|, |Inj(G,A)| =

∏
`∈P
|Inj(G`, A`)|.

Thus it is sufficient to consider finite abelian p-groups. In the following, G and A will be finite
abelian p-groups, and we write ri(G) = rkpi(G) throughout. As in [Lag10] we define

fG(t1, . . . , te) :=
e∏

k=1

t
rk+1(G)
k

rk(G)−1∏
j=rk+1(G)

(tk − pj). (2.2)

Lemma 2.6. Let t(A) := (pr1(A), . . . , pre(A)) for an abelian p-group A. Then:

(a) |Inj(G,A)| = fG(t(A)) =
e∏

k=1

prk(A)rk+1(G)
r̃k(G)−1∏
j=0

(prk(A) − prk+1(G)+j),

(b) |Aut(G)| = |Inj(G,G)| = fG(t(G)).

The formula goes back to works of Delsarte [Del48]. A proof can be found in [Lag10], Lemma A.1
and Remark A.3., where we use r̃k(G) = rk(G)− rk+1(G).

Remark 2.7. We get another formula which is useful for asymptotic considerations:

|Inj(G,A)| =
e∏

k=1

prk(A)rk(G)

r̃k(G)−1∏
j=0

(
1− prk+1(G)+j

prk(A)

)
. (2.3)

Proof. In formula (2.2), we pull out tk from the product and make an index shift to obtain (2.3).

We apply these formulas to the norm groups whose pk-ranks involve ceiling operations. In the
following we write {a

b

}
:=

a

b
− ba

b
c ∈ [0, 1).
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Definition 2.8. For a finite abelian p-group G of exponent pe and n ∈ N0, k ∈ N we define

δ(n, k) :=

{
n

pk

}
−
{

n

pk−1

}
= b n

pk−1
c − b n

pk
c − (p− 1)n

pk
(2.4)

and

αp(G) :=
e∑

k=1

p− 1

pk
rk(G), (2.5)

δG : N0 −→ [−αG, 0], δG(n) := −αp(G) +
e∑

k=1

rk(G) (δ(n− 1, k)) . (2.6)

We show in Remark 2.9(c) that −αG ≤ δG(n) ≤ 0 and thus, δG is well-defined.

We immediately see that δ(n, k) is pk-periodic and therefore δG(n) is pe-periodic.

Remark 2.9. Let G and H be finite abelian p-groups of exponent ≤ pe. Then:

(a) δG(n) = −αp(G) +
e∑

k=1

r̃k(G)
{
n−1
pk

}
and δG×H(n) = δG(n) + δH(n),

(b) αp(G) =
e∑

k=1

r̃k(G)p
k−1
pk

and αp(G×H) = αp(G) + αp(H),

(c) δG(1) = −αp(G) ≤ δG(n) ≤ 0 = δG(0).

Proof. We use an index shift and re+1(G) = 0 to obtain
e∑

k=1

r̃k(G)
pk − 1

pk
=

e∑
k=1

(rk(G)− rk+1(G))
pk − 1

pk

=
e∑

k=1

rk(G)

(
pk − 1

pk
− pk−1 − 1

pk−1

)

=
e∑

k=1

rk(G)
p− 1

pk

= αp(G).

Similarly, we get
e∑

k=1

r̃k(G)

{
n− 1

pk

}
=

e∑
k=1

(rk(G)− rk+1(G))

{
n− 1

pk

}

=
e∑

k=1

rk(G)

({
n− 1

pk

}
−
{
n− 1

pk−1

})

=

e∑
k=1

rk(G)δ(n− 1, k)

=αp(G) + δG(n).
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Combining these formulas with r̃k(G × H) = r̃k(G) + r̃k(H) for k ≥ 1 completes the proofs of (a)
and (b).

Finally −αp(G) = δG(1) ≤ −αp(G) +
e∑

k=1

r̃k(G)
{
n−1
pk

}
= δG(n) ≤ 0 = δG(0).

Example 2.10. Let r ∈ N.

(a) If G = (Cp)
r, then αp(G) = r · p−1

p .

(b) If G = Cpr is cyclic, then αp(G) =
r∑

k=1

p−1
pk

= pr−1
pr .

Remark 2.11. Let n ∈ N. Then:
e∏

k=1

prk(G)rk(Xn(G)) = |G|qnαp(G)qδG(n).

Proof. We use q = pf here. For all k = 1, . . . , e we have

rk (Xn(G))
La. 2.4

= 1 + f

(
bn− 1

pk−1
c − bn− 1

pk
c
)

(2.4)
= 1 + f

p− 1

pk
(n− 1) + fδ(n− 1, k). (2.7)

We get:

e∑
k=1

rk(G)rk (Xn(G))
(2.7)
=

e∑
k=1

rk(G) + f
e∑

k=1

rk(G)
p− 1

pk
(n− 1) + f

e∑
k=1

rk(G)δ(n− 1, k)

= logp(G) + fnαp(G) + fδG(n).

Using q = pf yields the required identity.

Let G be a finite abelian p-group with exponent exp(G) = pe. Let n = mpe + y with 0 ≤ y < pe and

αp(G) :=
e∑

k=1

p−1
pk
rk(G).

Theorem 2.12. Let G be a finite abelian p-group with exponent exp(G) = pe. Let αp(G) and δG(n)
as defined in (2.5) where δG(·) is pe-periodic. Let F = Fq((t)) and

ε(G, q, n) :=

e∏
k=1

r̃k(G)−1∏
j=0

(
1− prk+1(G)+j−1

q(p−1)(n−1)/pk+δ(n−1,k)

)
. (2.8)

Then we have:

(a) Z(F,G;n) = |G|
|Aut(G)|q

nαp(G)qδG(n)ε(G, q, n).

(b) limn→∞ ε(G, q, n) = 1 and Z(F,G;n) ∼ |G|
|Aut(G)|q

nαp(G)qδG(n).
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(c) For fixed i = 0, . . . , pe − 1 let fi(n) = n · pe + i, i.e. fi(n) ≡ i mod pe. Then we have

Z(F,G; fi(n)) ∼ ci
|G|

|Aut(G)|
qfi(n)αp(G)

with ci = qiαp(G)+δG(i) and c0 = 1.

Proof.

Z(F,G;n) = αG (Xn(G))
(2.1)
=
|Inj(G,Xn(G))|
|Aut(G)|

(2.3)
=

1

|Aut(G)|

e∏
k=1

prk(G)rk(Xn(G))

r̃k(G)−1∏
j=0

(
1− prk+1(G)+j

prk(Xn(G))

)

Rem.2.11
=

1

|Aut(G)|
|G|qnαp(G)qδG(n)

e∏
k=1

r̃k(G)−1∏
j=0

(
1− prk+1(G)+j

prk(Xn(G))

)
(2.7),(2.8)

=
|G|

|Aut(G)|
qnαp(G)qδG(n)ε(G, q, n).

Using |δ(n− 1, k)| < 1 we get lim
n→∞

ε(G, q, n) = 1 for all k ≥ 1 which proves (b).
Finally, δG is pe-periodic and Remark 2.9(c) yields δG(fi(0)) = δG(0) = 0 and thus c0 = 1.

Example 2.13. (a) Let G = (Cp)
r be elementary abelian. Then αp(G) = r p−1

p and

δG(n) = −αp(G) + r ·
{
n− 1

p

}
=

{
0, p | n
r(
{
n
p

}
− 1), p - n.

Hence, if p does not divide n, we get

Z(F,G;n) =
|G|

|Aut(G)|
qnαp(G)q

r(
{
n
p

}
−1)

r−1∏
j=0

1− pj−1

q
(p−1)(n−1)/p+

{
n−1
p

}
 .

(b) Let G = Cpr be cyclic. Then αp(G) = pr−1
pr and

δG(n) = −αp(G) +

{
n− 1

pr

}
=

{
0, pr | n{
n
pr

}
− 1, pr - n.

Hence, if pr does not divide n, we get(
1− p−1

q(p−1)(n−1)/pr+{(n−1)/pr}−{(n−1)/pr−1}

)
.
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2.3 Conductor Density of Arbitrary Finite Abelian Groups

We now consider an arbitrary finite abelian group G instead of a p-group. It is well-known that G
is the direct product of its abelian `-Sylow-subgroups, i.e.

G ∼=
∏
`∈P

G`.

The hard part is to analyse Gp which was already done in Chapter 2.2. For the remaining part, we
fix a prime number ` ∈ P with p 6= ` and consider the asymptotic problem for the abelian `-group
G`.

The task is to count the number of open subgroups U ≤ F× such that F×/U ∼= G`. Then the
extension given by U is at most tamely ramified, so the conductor exponent is ≤ 1 which implies
1 + p ≤ U . Hence we can consider G` as a quotient of Z× F×q ∼= Z× Cq−1. If ` - (q − 1), then there
is only the unramified G`-extension if G` is cyclic, or no G`-extension at all.

Obviously, the only possible quotients isomorphic to `-groups are groups of the form C`a×C`b , where
`b | (q − 1) and where we assume a ≥ b. This is solved in the following remark where we consider G
of this type and A as an abelian `-group with `-rank 2 and exp(A) = exp(G). Note that the number
of subgroups αG(A) of type G only depends on the pi-ranks ri(A) and ri(G) with pi ≤ exp(G).

Remark 2.14. Let G = C`a × C`b and A = C`a × C`d with a ≥ d ≥ b.

(a) If a = b or d = 0, then αG(A) = αG(G) = 1.

(b) If a > b, then

αG(A) =

{
`d−b, a > d,

(`+ 1)`d−b−1, a = d.

Proof. We write ri(A) := rk`i(A) and ri(G) := rk`i(G) in this proof.

(a) If a = b or d = 0, then we get G = A and therefore αG(A) = αG(G) = 1.

(b) By (2.1) and Lemma 2.6(a) we have

αG(A) =

a∏
k=1

`rk+1(G)rk(A)
r̃k(G)−1∏
j=0

(`rk(A) − `rk+1(G)+j)

a∏
k=1

`rk+1(G)rk(G)
r̃k(G)−1∏
j=0

(`rk(G) − `rk+1(G)+j)

=
(`rb(A) − `)(`ra(A) − 1)

(`2 − `)(`− 1)

a∏
k=1

`rk+1(G)(rk(A)−rk(G)).

As rk(G) = rk(A) for k ≤ b we have `rb(G) − ` = `2 − `. Moreover:
a∏
k=1

`rk+1(G)(rk(A)−rk(G)) =

a−1∏
k=b+1

`1·(rk(A)−1) = `min(a−1,d)−b
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and
`ra(A) − 1

`− 1
=

{
`+ 1, ra(A) = 2 ⇐⇒ d = a

1, ra(A) = 1 ⇐⇒ b ≤ d < a.

Note in the following theorem that X1(G) = Z/ exp(G)Z × Z/(q − 1)Z. We still use the notation
Gp′ for the prime to p-part of G.

Theorem 2.15. Let G be a finite abelian group and F = Fq((t)) with q = pf .

(a) G is realisable as a Galois group over F if and only if rk`(G) ≤ 2 and Gq−1
` is cyclic for all

prime numbers ` - p.

(b) If G is realisable, then for all n ≥ 1 we have

Z(F,G;n) = Z(F,Gp;n) ·
∏

`|(q−1)

αG`(C|G| × Cq−1) ≤ (q − 1)q

2
Z(F,Gp;n).

Proof. We use Lemma 2.5:

Z(F,G;n) = αG (Xn(G)) =
∏
`∈P

αG` (Xn(G)) = αGp (Xn(G)) ·
∏
p 6=`∈P

αG` (X1(G)) ,

where for the last equation we use that ` 6= p and the fact that Xn(G)/X1(G) is a p-group. If G is
realisable, we get for ` 6= p that G` is a quotient of Z × Z/(q − 1)Z and therefore Gq−1

` has to be
cyclic. Note that for ` - p(q − 1) we get by Remark 2.14 that αG` (X1(G)) = 1. It remains to show
the estimate in (b). We have∏

`|(q−1)

αG` (X1(G)) ≤
∏

`|(q−1)

`ν`(q−1)−1(`+ 1) = (q − 1)
∏

`|(q−1)

`+ 1

`

≤ (q − 1)

q−1∏
k=2

k + 1

k
= (q − 1)

q

2
.

Example 2.16. (a) For q = 3 and G = C2, the bound in Theorem 2.15(b) is sharp:

αC2 (X1(G)) = αC2(C2 × C2) = 3 =
(q − 1)q

2
.

(b) If G is cyclic of order coprime to p(q − 1), then Z(F,G;n) = 1.

2.4 Lower Bounds on Discriminant Density

The asymptotic behaviour weighted by conductor gives interesting insights to the counting problem
weighted by discriminant. Let G be a finite group and

D(F,G;n) := |{E/F : Gal(E/F ) ∼= G,N (D(E/F )) ≤ qn}|
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be the counting function of local function field extensions with Galois group G and bounded dis-
criminant. To describe the asymptotics exponent weighted by discriminant, we define for abelian
p-groups G of exponent pe

βp(G) :=
αp(G)

ρ(G)
, where ρ(G) :=

e−1∑
k=0

1

pk

(
|Gpk | − |Gpk+1 |

)
.

We use the local version of the conductor-discriminant theorem for abelian extensions, see Theo-
rem 1.28.

In preparation, we need a result on characters of Xn.

Lemma 2.17. Let G be a finite abelian group and U ≤ G a subgroup. Then there are |G/U |
characters of G with U ≤ Ker(χ).

Proof. Using |H∗| = |H| and 1→ U → G→ G/U → 1 implies

1→ (G/U)∗ → G∗ → U∗ → 1.

The idea of the proof of Theorem 2.18 is contained in [Lag15, Ch. 2].

Theorem 2.18. Let F = Fq((t)), G be a finite abelian p-group and n ∈ N.

(a) Let E/F be a normal extension with Galois group G and N (f(E/F )) = qn. Then

N (D(E/F )) ≤ N (f(E/F ))ρ(G) q|G|−1 = qn·ρ(G)q|G|−1.

(b) There exists a constant γ(F,G) > 0 such that

D(F,G;n) ≥ γ(F,G) · qnβp(G).

Proof. Let n be the conductor exponent and U be the norm group of E×. Using G = F×/U , we
have for k = 1, . . . , e :

Mk := {χ character of G : G[pk−1] ≤ Ker(χ) ∧G[pk] 6≤ Ker(χ)}.

By Lemma 2.4(c), we have c(Ker(χ)) ≤ c(Un[pk−1]) = dn/pk−1e for all χ ∈Mk.
Then we have

|Mk| = |G/G[pk−1]| − |G/G[pk]| = |Gpk−1 | − |Gpk |. (2.9)

Moreover,
e∑

k=1

|Mk| = |G| − 1 and the Mk are disjoint – we only miss the trivial character which has



62 Chapter 2. Abelian Conductor Density

trivial conductor. Thus:

N (D(E/F ))
Thm. 1.28

=
∏

χ char. of Gal(E/F )

N (f(χ)) =

e−1∏
k=0

∏
χ∈Mk

N (f(χ))

≤
e∏

k=1

∏
χ∈Mk

qdn/p
k−1e =

e∏
k=1

qdn/p
k−1e|Mk|

(2.9)
=

e∏
k=1

qdn/p
k−1e(|Gpk−1 |−|Gpk |) ≤

e∏
k=1

q(n/p
k−1+1)(|Gpk−1 |−|Gpk |)

=q

e−1∑
k=0

p−kn(|Gpk |−|Gpk+1 |)
q|G|−1 =qn·ρ(G)q|G|−1.

Hence

D(F,G;nρ(G) + |G| − 1) ≥ Z(F,G;n).

We set ñ := b(n − |G| + 1)/ρ(G)c. By Theorem 2.12 there exists a constant C > 0 such that
Z(F,G; ñ) ≥ Cqñαp(G). Hence in total

D(F,G;n) ≥ D(F,G; ñρ(G) + |G| − 1)
(a)

≥Z(F,G; ñ)

≥ C · qñαp(G) =Cq
bn−|G|+1

ρ(G)
cαp(G) ≥ Cq

n−|G|+1−ρ(G)
ρ(G)

αp(G)

= Cqnβp(G)q(−|G|+1−ρ(G))βp(G) =C̃qnβp(G).

We highlight here the following theorem which gives the asymptotic exponent for abelian p-groups
over local function fields:

Theorem 2.19 (Lagemann). Let G be a finite p-group and ri := ri(G) be the pi-rank of G. Then

Z(F,G;X) � Xap(G),

where

ap(G) =

(1− p−1)
e−1∑
i=0

pire−i

e−1∑
i=0

pi(1− p−re−i)pre−i+...+re
.

See Satz 2.1 in [Lag10].

Using index shifts we can show that our constant βp(G) coincides with the asymptotic exponent
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ap(G) from Theorem 2.19. We show this in the following computation.

ap(G) =

(1− p−1)
e−1∑
i=0

pire−i

e−1∑
i=0

pi(1− p−re−i)pre−i+...+re
=
p− 1

p

e−1∑
i=0

pire−i

e−1∑
i=0

pi(1− p−re−i)pre−i+...+re

=

(p− 1)pe
e−1∑
i=0

1
pe−i

re−i

p
e−1∑
i=0

pi(1− p−re−i)pre−i+...+re

Eq. (2.5)
=

peαp(G)

p
e−1∑
i=0

pi(pre−i − 1)pre−i+1+...+re

=
αp(G)

p1−e
e−1∑
i=0

pi(pre−i − 1)|Gpe−i |

=
αp(G)

e−1∑
i=0

p−e+i+1(|Gpe−i−1 | − |Gpe−i |)

k=e−i−1
=

αp(G)
e−1∑
k=0

p−k(|Gpk | − |Gpk+1 |)
=
αp(G)

ρ(G)
.

Example 2.20.

(a) For the elementary abelian group G = (Cp)
r we get the discriminant exponent

ap((Cp)
r) =

r(p− 1)

p
· 1

pr − 1
.

(b) For the cyclic p-group G = Cpr we have

ρ(G) =
r−1∑
k=0

1

pk

(
|Gpk | − |Gpk+1 |

)
=

r−1∑
k=0

1

pk

(
pr−k − pr−k−1

)
= pr(1− p−1)

r−1∑
k=0

p−2k = pr(1− p−1)
1− p−2r

1− p−2

=
pr
(
1− p−2r

)
1 + p−1

.

Hence we get the discriminant exponent

ap(G) =
αp(G)

ρp(G)
=
pr − 1

pr
1 + p−1

pr − p−r
=

(pr − 1)(p+ 1)

p(p2r − 1)
=

p+ 1

p(pr + 1)
.
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Chapter 3

On Subgroups of Affine Linear Groups
AGL1(q)

Let F = Fq((t)) be a local function field with char(F ) = p. In this chapter we consider the Galois
closure of Cp-extensions over (at most) tamely ramified cyclic Cd-extensions where p - d.

The situation is summarised in the following field diagram, where SplF (Lα) denotes the Galois closure
of Lα/F .

SplF (Lα)

(Cp)`Lα = L(θα)
Cp

L(θσi(α))

Cp

L

Cd=〈σ〉

F

Using the group ring Fp[Cd] as we will define in Definition 3.7, the Galois group is basically determined
by the cyclic Fp[Cd]-module

Fp[Cd] · α = {z · α | z ∈ Fp[Cd]} with p` = #Fp[Cd] · α.

This cyclic module is a direct sum of distinct irreducible submodules corresponding to irreducible
factors of Xd − 1 over Fp via the Frobenius normal form for linear operators.

The corresponding Galois group G := Gal (SplF (Lα)/F ) is a subgroup of Cp oCd by the Theorem of
Krasner and Kaloujnine, see Theorem 1.11. In particular, the Galois group is a semi-direct product
of type (Cp)

` oCd, where we want to interpret (Cp)
` as a direct sum of finite fields of characteristic

p. In the case that (Cp)
` corresponds to an irreducible module and Cd operates faithfully, we can

consider the Galois group as a subgroup of AGL1(p`) ∼=
(
Fp` ,+

)
o F×

p`
.

65
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We will approach as follows: In the first section, we compile some basic facts on affine groups
and semi-direct products. We use the classification theorem of tamely ramified extensions due to
Hasse [Has69] in order to construct and enumerate Cp-extensions over an at most tamely ramified
Cd-extension L/F .

For this, we use the decomposition of the group rings Fp[Cd] and Fq[Cd]. This allows us to determine
the Fp[Cd]-module structure of L and later of J(L) = L/℘(L). We give a description of the occurring
Galois groups. We will determine the asymptotic behaviour of the discriminant counting function
with respect to � over pd points, and as Galois extensions. Finally, we determine the asymptotic
behaviour of degree-p-extensions with Galois group which is a subgroup of AGL1(p). This is the
special case that requires d - (p − 1). Overall, for a ramified Cd-extension L/F with ramification
index e to exist we require e|(q − 1).

3.1 Affine Linear Groups and Semi-direct Products

First we recall the definition of the semi-direct product.

Definition 3.1. Let N,H be groups and φ : H → Aut(N) be a group homomorphism. Then the
semi-direct product of N and H by φ is the group

N oφ H := (N ×H, ◦), (n1, h1) ◦ (n2, h2) := (n1φ(h1)(n2), h1h2).

For a definition of affine groups, we follow [AB95, p.101f]. Let K be a field and V be a K-vector
space. We define

T (V ) := {Tv : V → V, x 7→ x+ v | v ∈ V }

as the set of all translations on V . Then T (V ) and GL(V ) are subgroups of Sym(V ) which have
trivial intersection, since ϕ(0) = 0 and Tv(0) = v for all ϕ ∈ GL(V ) and v ∈ V . According to the
rule

ϕTvϕ
−1 = Tϕ(v) for all ϕ ∈ GL(V ) and v ∈ V

we define the affine linear group of V as the (inner) semi-direct product

AGL(V ) := T (V )oGL(V ) ≤ Sym(V ).

Identifying T (V ) ∼= V via Tv 7→ v we get

AGL(V ) ∼= V oφ GL(V ), where φ(ϕ)(v) := ϕ(v) for all ϕ ∈ GL(V ) and v ∈ V.

It is common to define AGLn(K) := AGLK(Kn). In the case K = Fq of a finite field with q elements
we write

AGLn(q) := AGL(Fnq ).

Example 3.2. For a prime power q, the affine group (Fq,+) o Cq−1 = AGL1(q) ≤ Sym(Fq) is a
transitive primitive permutation group.
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Our main goal is to describe and enumerate Cp-extensions over tamely ramified cyclic degree d-
extensions. In particular we will study subgroups of AGL1(pr) AGL1(pr) ∼= Cp

r o Cpr−1.

Remark 3.3. Let Cn and Cm be cyclic of order n and m and let φ ∈ Hom(Cm,Aut(Cn)), then

Cn oφ Cm = 〈σ, τ | σn = τm = 1, στ = φ(τ)(σ)〉 = 〈σ, τ | σn = τm = 1, στ = σk〉,

where φ(τ)(σ) = σk for some k ∈ (Z/nZ)× with ord(k) | m.

In [Tau55] is proven that there is a group action of Aut(H)×Aut(N) on Hom(H,Aut(N)) via

(αH , αN ) · ψ(h) := ψ(α−1
H (h))αN = α−1

N ◦ ψ(α−1
H (h)) ◦ αN .

This group action can be used to decide whether two semi-direct products are isomorphic. One
variant that will be sufficient for our purposes is due to Taunt from 1955 in the same paper:

Theorem 3.4 (Taunt). Let N,H be finite soluble groups with gcd(|N |, |H|) = 1. Furthermore,
let ψi : H → Aut(N) for i = 1, 2 be two group homomorphisms from H into Aut(N). Define
Gi := N oψi H for i = 1, 2.

Then G1
∼= G2 if and only if there exist automorphisms αN ∈ Aut(N) and αH ∈ Aut(H) such that

(hαH )ψ2 =
(
hψ1

)αN
for all h ∈ H,

where
(
hψ1
)αN = α−1

N ◦ ψ1(h) ◦ αN and hαH = αH(h).

See [BE99, Theorem 5.1] or [Tau55, Theorem 3.3] for a detailed proof.

We will apply this theorem in the following case:

Proposition 3.5.

(a) Let H = 〈σ〉 be a finite cyclic group and N be a finite group. Then we get

N oψ1 H
∼= N oψ2 H ⇐⇒ ψ1(H) and ψ2(H) are conjugate in Aut(N).

(b) Let n,m ∈ N be such that Aut(Cn) is cyclic and gcd(n,m) = 1. Then for all k1, k2 ∈ (Z/nZ)×

we have for the semi-direct products Cn o Cm:

{σ, τ | σn = τm = 1, στ = σk1} ∼= {σ, τ | σn = τm = 1, στ = σk2}
⇐⇒ ord(k1) = ord(k2) in (Z/nZ)× .

Proof. (a) Since abelian groups are soluble we can apply Theorem 3.4. Thus the two semi-direct
products are isomorphic if and only if

there exists β ∈ Aut(H), α ∈ Aut(N) with ψ2(β(h)) = α−1 ◦ ψ1(h) ◦ α for all h ∈ H
⇐⇒ ψ2(β(σn)) = α−1 ◦ ψ1(σn) ◦ α for all n ∈ N
⇐⇒ ψ2(β(σ))n =

(
α−1 ◦ ψ1(σ) ◦ α

)n for all n ∈ N
⇐⇒ ψ2(β(σ)) = α−1 ◦ ψ1(σ) ◦ α
⇐⇒ ψ2(H) = α−1 ◦ ψ1(H) ◦ α for some α ∈ Aut(N).
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(b) If Aut(N) is cyclic, then conjugation is trivial and thus ψ1(H) and ψ2(H) are conjugate if and
only if they coincide. This shows that

Im(ψ1) = Im(ψ2) ⇐⇒ ord(ψ1) = ord(ψ2)

since Aut(N) is cyclic.

We will apply this proposition in the case Cpr o Cd for gcd(d, p) = 1.

3.2 Decomposition of J(L) for a Tamely Ramified Extension L/F

We give a folklore classification theorem on the structure of tamely ramified extensions in local fields.
Note that unramified extensions are also considered to be tamely ramified by our definition. Later,
we will use this to decompose the Galois module J(L) for a cyclic tamely ramified extension L/F .

Theorem 3.6 (Classification of tamely ramified extensions). Let K be a local function field with
residue class field κK = Fq and prime element πK . Let L/K be an at most tamely ramified extension
with ramification index e = eL/K and inertia degree f = fL/K . Let

(
Fqf
)×

= 〈w〉 and g := gcd(e, qf−
1).

(a) Then L is conjugate to exactly one field K(w, e
√
wrπK) where 0 ≤ r < g.

(b) The extension L/K is a Galois extension if and only if e | (qf − 1) and e | r(q − 1).
Set πL := e

√
wrπK as in (a). If L/K is Galois, then Gal(L/K) is generated by σ1, σ2 with

σ1(w) = w, σ1(πL) = wl · πL,
σ2(w) = wq, σ2(πL) = wk · πL,

where k = r(q−1)
e and l = qf−1

e . The Galois group has the finite presentation

Gal(L/K) = 〈σ1, σ2 | σe1 = 1, σr1 = σf2 , σ
σ2
1 = σq1〉.

(c) The extension L/K is abelian if and only if e | (q − 1).

It is moreover cyclic if and only if e | (q−1) and gcd(e, f, r) = 1. In this case we have a generator
via N :=

∏
`∈P, `-gcd(e,r)

` and

Gal(L/K) = 〈σ〉 with σ =

{
〈σ2〉, if gcd(e, r) = 1, or
〈σN1 σ2〉, if gcd(e, r) 6= 1.

In particular, the generator σ of Gal(L/K) has the property

σ(w) = wq, σ(πL) = wn · πL with n =

{
k, gcd(e, r) = 1

k +Nl, gcd(e, r) 6= 1.
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Proof. (a) and (b) are proven in [Has69, Chapter 16, p. 249ff].

In (c) note that ord(σ1) = e and

Gal(L/K) is abelian ⇐⇒ σ1 = σσ21 = σq1 ⇐⇒ σq−1
1 = id ⇐⇒ ord(σ1) = e | (q − 1).

If Gal(L/K) = 〈σ1, σ2〉 is abelian, we have exp(Gal(L/K)) = lcm(ord(σ1), ord(σ2)). Concerning
σ2, we use ord(σ1) = e to get

ord(σ2)
(b)
= f · ord(σr1) = f · e

gcd(e, r)
.

Thus, Gal(L/K) is cyclic if and only if Gal(L/K) is abelian and

d = exp(Gal(L/K)) ⇐⇒ e · f = lcm(ord(σ1), ord(σ2)) = lcm(e, f
e

gcd(e, r)
)

⇐⇒ e · f =
e

gcd(e, r)
· lcm (gcd(e, r), f)

· gcd(e,r)
e⇐⇒ gcd(e, r) · f = lcm(gcd(e, r), f) ⇐⇒ gcd(e, r, f) = 1.

Now we can assume that L/K is cyclic. We have ord(σ1) = e and ord(σ2) = ef
gcd(e,r) .

Let ` - gcd(e, r). Then

ν` (ord(σ2)) = ν`

(
ef

gcd(e, r)

)
= ν`(ef) and ν`

(
ord(σ`1)

)
< ν`(ef),

hence ν`
(
ord(σ`1σ2)

)
= ν` (ord(σ2)) = ν`(ef) has the right `-order.

Let ` | gcd(e, r), then ` - f by gcd(e, r, f) = 1. Thus ν` (ord(σ2)) < ν`(ef) = ν`(e) and

ν`(ord(σ1σ2)) = ν`(ord(τ)) = ν`(e) = ν`(ef).

Hence, the element σ := σN1 σ2 for N :=
∏̀
∈P

`-gcd(e,r)

` has order ef and is a generator of the Galois

group. Finally, for the last assertion we have

σ2(w) = wq = σN1 σ2(w) and σ2(πL) = wkπL

and
σN1 σ2(πL) = σN1 (wkπL) = wkσN1 (πL) = wkwNlπL.

From now on we fix L/F to be a tamely ramified Cd-extension with the notations of Theorem 3.6.
I.e. we will assume d = ef with p - d, κ(F ) ∼= Fq, that 〈w〉 =

(
Fqf
)× is a primitive

(
qf − 1

)
-st root

of unity and that

π = d
√
wrπF , L = Fqf ((π)), 〈σ〉 = Gal(L/F ) ∼= Cd with σ(w) = wq, σ(π) ∈ Fqf · π. (3.1)

Denote by µ(d) the set of d-th roots of unity and by Eigσ(ζ) ≤ L the eigenspace of σ to the eigenvalue
ζ.
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Definition 3.7. Let G be a finite group and K be a field.

(a) The group ring of G over K is defined as the K-algebra

K[G] :=

∑
g∈G

ag · g | ag ∈ K

 with K-basis G

and by the multiplication rule∑
g∈G

ag · g

 ·
∑
g∈G

bg · g

 :=
∑
g,g̃∈G

agbg̃ · gg̃ for all ag, bg ∈ K.

(b) Let Xd − 1 = f1 · · · fr ∈ Fp[X] be the prime factorisation of Xd − 1. We define

Mfi := Fp[X]/(fi) for all 1 ≤ i ≤ r, MI :=
⊕
i∈I

Mfi for all I ⊆ {1, . . . , r}.

If ηi ∈ F̂p is a root of fi for all 1 ≤ i ≤ r, we will identify Fp(ηi) ∼= Mfi via ηi 7→ X̄, and
accordingly make the identification MI = ⊕i∈IFp(ηi).

(c) We set `(i) := deg(fi) for 1 ≤ i ≤ r and `(I) :=
∑

i∈I `(i) for all I ⊆ {1, . . . , r}.

We compute the Fp[Cd]-decomposition of J(L) = L/℘(L). We proceed by considering L as Fq[Cd]-
module first. We will use the σ-invariant building blocks Vn := Fqf · πn for all n ∈ Z who occur
e-periodically, that is Vn+e

∼= Vn. By this, we can deduce the Fp[Cd]-module structure of L and
consequently of ℘(L).

We start with an example to outline the basic concepts in the specialised situation d | (q− 1) where
σ is a diagonalisable operator.

Example 3.8. Let F = Fq((t)) be a local function field with char(F ) = p ∈ P. Let d | (q − 1) and
let ζd ∈ F×q be a primitive d-th root of unity.

(a) Let f = d, e = 1 and L := Fqf ((t)) be the unramified Cd-extension of F . By Theorem 3.6(c),
there is a generator σ of Gal(L/F ) with σ(t) = t and σ|F

qf
being the Frobenius automorphism.

The minimal polynomial of σ is Xd − 1, over both F and Fq, and Xd − 1 =
d−1∏
i=0

(X − ζid), hence

σ is diagonalisable. We thus have η0, . . . , ηd−1 ∈ Fqf so that σ(ηi) = ζid · ηi. Therefore, we obtain

σ(ηit
n) = σ(ηi)σ(t)n = ζid · (ηitn) for all 0 ≤ i ≤ d− 1, n ∈ Z.

And for the eigenspaces, we have

EigF (ζid) =
∑
n∈Z

Fq · ηitn.
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(b) Now for a totally ramified Cd-extension with d = e and f = 1, we have L = F ( d
√
wrt) for some

0 ≤ r < e by Theorem 3.6. Write π := d
√
wrt. Here, we have a generator σ of Gal(L/F ) with

σ(π) = ζd · π and σ|Fq = idFq . We immediately get

σ(πn) = σ(π)n = (ζdπ)n = ζnd π
n for all n ∈ Z.

For the eigenspaces we obtain for 0 ≤ i ≤ d− 1 the assertion

EigF (ζid) =
∑
n∈Z

Fq · πd·n+i =
∑
n∈Z

Fq · πe·n+i.

Remark 3.9. Consider the prime factorisation Xd − 1 = f1 · · · fr in Fp[X]. Let d be coprime to
p ∈ P.

(a) We have Fq[Cd] ∼= (Fp[Cd])[Fq :Fp] as Fp[Cd]-modules.

(b) The group ring Fp[Cd] is semisimple and we get the module decomposition

Fp[Cd] ∼=
r⊕
i=1

Fp[X]/(fi) =: Mf1 ⊕ . . .⊕Mfr

into irreducible submodules.

(c) Let N be an Fp[Cd]-module, then we get

N ∼=
r⊕
i=1

Ker(fi(σ)) as Fp[Cd]-modules.

We will write Mfi(N) := Ker(fi(σ)), then we get

N ∼=
r⊕
i=1

Mfi(N) ∼=
r⊕
i=1

⊕
Ri

Mfi for certain index sets Ri.

Proof. For part (a) let ω1, . . . , ωs be an Fp-basis of Fq. Then

Fq[Cd] =

∑
g∈G

bg · g | bg ∈ Fq

 =

∑
g∈G

s∑
i=1

ag,iωi · g | ag,i ∈ Fp

 =

s∑
i=1

ωi · Fp[Cd] ∼= (Fp[Cd])s .

Now using s = [Fq : Fp] yields the result.

For part (b), we use Fp[Cd] ∼= Fp[X]/(Xd − 1) = Fp[X]/(f1 · · · fr) and the Chinese Remainder
Theorem.

The fact that char(F ) - #Cd = d guarantees the direct decomposition in (c). The rest follows easily
by linear algebra and due to the fact that the minimal polynomial of σ is Xd − 1 over both F and
Fq as Xd − 1 is square-free.
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In the following, we consider a local function field F = Fq((t)) with char(F ) = p and a cyclic Cd-
extension L = Fqf (( e

√
wrt)) with p - d for some (qf − 1)-st root of unity ω ∈ Fqf . Gal(L/F ) = 〈σ〉 is

cyclic with σ as in Theorem 3.6(c). In particular, σ has the properties σ|Fq = id, σ(π) ∈ Fqf · π and
σ |F

qf
acts as the Frobenius automorphism.

We will first consider the Fq[Cd]-module structure of L and use this to derive the Fp[Cd]-module
structure of J(L).

Theorem 3.10. Let p - d and L/F be a tamely ramified Cd-extension with e := eL/F and f := fL/F .
Let ω ∈ F×

qf
be a primitive (qf − 1)-st root of unity and let π := πL = e

√
ωrπF as in Theorem 3.6.

Then:

(a) The Fq-subspace Vn := Fqf · πn is σ-invariant for all n ∈ Z.

(b) There is a primitive e-th root of unity ζe ∈ Fq so that σ|Vn has minimal polynomial Xf − ζne for
all n ∈ Z. In particular, Vn+e

∼= Vn as Fq[Cd]-modules for all n ∈ Z.

(c) For all n ∈ Z, the two Fq[Cd]-modules Vn ⊕ Vn+1 ⊕ . . .⊕ Vn+e−1 and Fq[Cd] are isomorphic.

(d) For all n ∈ Z, the two Fp[Cd]-modules Vn⊕Vn+1⊕. . .⊕Vn+e−1 and (Fp[Cd])[Fq :Fp] are isomorphic.

Proof. Let n ∈ Z. Using σ(Fqf ) ⊆ Fqf and Theorem 3.6(c) we get

σ(πn)
Thm. 3.6(c)

= wt · πn for a suitable t ∈ N.

Thus Fqf · πn is a σ-invariant subspace for all n ∈ Z which proves (a).

For (b) we show the existence of a certain primitive e-th root of unity ζe so that
(
σf − ζne

)
(Vn) = 0

for all n ∈ N. We have

σf (ωk) =
(
σf (ω)

)k Gal(F
qf
/Fq)∼=Cf
= ωk for all k ∈ N.

Furthermore, let σ(π) = ωxπ, then we have

σf (πn) =
(
σf (π)

)n
=
(
ωxωqx · · ·ωqf−1xπ

)n
=
(
NF

qf
/Fq(ω

x)π
)n

=

(
ω
qf−1
q−1

x
π

)n
= ω

qf−1
q−1

x·n
πn.

Note that x =

{
r(q−1)
e , gcd(e, r) = 1

r(q−1)
e +N qf−1

e , gcd(e, r) 6= 1
with N as in Theorem 3.6(c) and that

e · q
f − 1

q − 1
x =

{
r(qf − 1), gcd(e, r) = 1,

r(qf − 1) +N(qf − 1) q
f−1
q−1 , gcd(e, r) 6= 1,
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thus ω
qf−1
q−1

x
=: ζe is an e-th root of unity. It is indeed a primitive e-th root of unity, as

Xd − 1 =

e−1∏
i=0

(Xf − ζi) for ζ a primitive e-th root of unity.

Using σf (ωk) = ωk, we thus obtain σf (ωkπn) = ζne ω
kπn, hence (σf − ζne )(Vn) = 0.

Part (c) follows by part (b), the identity Xd−1 =
e−1∏
i=0

(Xf −ζie) and Remark 3.9(b), which also holds

true for Fq[Cd].

Part (d) is a direct consequence of part (c) and Remark 3.9(b).

We can use Theorem 3.10 to decompose J(L) in components where we can read off the Galois group
and the discriminant. Naturally, J(L) is an Fp[Cd]-module via σ (α+ ℘(L)) := σ(α) + ℘(L). We
want to work with a system of representatives RL(πL, ω0) again. Therefore, we have to choose πL
and ω0 carefully so that choosing a representatives defines an Fp[Cd]-module isomorphism.

Concerning the Fp[Cd]-module structure on L/℘(L) we study for z < 0, z ∈ Z the Fp[Cd]-modules

Wz :=

ep·(z+1)−1∑
i=ep·z
p-i

Vi. (3.2)

and fix an element
ω0 ∈ F×q : ω0 /∈ ℘(Fqf ). (3.3)

Such an element ω0 exists since Fq ⊆ ℘(Fqf ) implied that the unique Cp-extension of Fq was contained
in Fqf , which is impossible by degrees.

The submodules Wz and Fpω0
∼= Fqf /℘

(
Fqf
)
determine the Fp[Cd]-structure of RL(π, ω0). Note

that we have the periodicity Wz
∼= Wz+k as Fp[Cd]-modules for all k < 0 due to Vi+kpe ∼= Vi for all

i ∈ Z.

Proposition 3.11. Let π as in (3.1) and ω0 ∈ F×q \ ℘(Fqf ) as in (3.3). Then we have an Fp[Cd]-
module isomorphism

RL(π, ω0) = Fpω0 ⊕
⊕
z<0

Wz
∼−→ J(L), x 7−→ x+ ℘(L). (3.4)

Proof. RL(π, ω0) is an Fp[Cd]-module as σ(Fqfπi) = Fqfπi and σ(ω0) = ω0 by definition.

We have already shown in Chapter 1 that the map is bijective and Fp-linear, see Lemma 1.20.

Note that σ ◦ ℘(x) = ℘ ◦ σ(x) and σ(℘(L)) = ℘(L), thus σ(w + ℘(L)) = σ(w) + ℘(L) for all
w ∈

⊕
z<0Wz. For η ∈ Fqf , we have

σ(η + ℘(L)) = σ(η) + ℘(L) = ηq + ℘(L) = η + ℘(L),
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where for the last equality we write q = ps and use the telescopic sum

ηq − η = ηp
s − η =

s−1∑
i=0

(
ηp

i+1 − ηpi
)

= ℘(
s−1∑
i=0

ηp
i
)

for the last equality. Thus, Fqf + ℘(L) is fixed under σ, and so is ω0. Hence, the map commutes
with σ and is an Fp[Cd]-module isomorphism.

From now on we will write RL := RL(π, ω0) for this specific π and ω0. Using the Fp[Cd]-module-
isomorphism RL ∼= J(L), we can now both control the Galois group and discriminant of Artin-
Schreier extensions of L.

J(L) =
r⊕
i=1

Mfi (J(L)) = Fpω0 ⊕
∞⊕
n=1

W−n ∼= Fp ⊕
∞⊕
i=1
p-i

V−i,

where Mfi (J(L)) = Ker(fi(σ)) and ω ∈ Fqf \ ℘(Fqf ).

Lemma 3.12. We use the assumptions of (3.1) and RL := RL(π, ω0) as in Proposition 3.11.

(a) For all n ∈ Z<0 we have
Wn
∼= (Fp[Cd])(p−1)·[Fq :Fp] .

(b) Let 1 ≤ i ≤ r. Assume f1 = X − 1 and define Mfi(RL) := Ker(fi(σ)) ∩RL and `(i) := deg(fi).

Then there are j1(i), . . . , jdi(i) ∈ {0, . . . , e− 1} and ηn,i,1, . . . , ηn,i,`(i) ∈ F×qf so that

Mf1(RL) = {λ0ω0 +
∑

ν≤n≤−1
p-n

`(i)∑
k=1

an,kηn,i,kπ
en | λ0 ∈ Fp, an,k ∈ Fq, ν ∈ Z}

and in the case i ≥ 2 we have

Mfi(RL) = {
∑

ν≤n≤−1
p-(en+jk(i))

`(i)∑
k=1

an,kηn,i,kπ
en+jk(i) | an,k ∈ Fq, ν ∈ Z}.

Proof. By the periodicity of σ in Theorem 3.10(b) it is sufficient to prove the statement for n = −1.
We have when considering as Fq[Cd]-modules

W−1 =

ep⊕
i=1
p-i

V−i
Thm. 3.10(b)∼=

p−1⊕
j=1

e−1⊕
i=0

V−i
Thm. 3.10(d)∼= (Fp[Cd])(p−1)[Fq :Fp] .

For part (b) we take suitable Fp-bases of V−i for p - i.
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With the notations of (3.1), consider the factorisation Xd − 1 = f1 · · · fr in Fp[X] and set

Mfi(RL) := Ker(fi(σ)) ∩RL (3.5)

with RL := RL(π, ω0) as defined in Lemma 1.20(b). Let α ∈ RL. We want to consider the Galois
group of L(θα) over F .

SplF (L(θα))

(Cp)`L(θα)
Cp

L(θσi(α))

Cp

L

Cd=〈σ〉

F

Figure 3.1: Field diagram

Theorem 3.13. Let Xd − 1 = f1 · · · fr ∈ Fp[X] be the prime factorisation over the prime field Fp.
Let 1 ≤ i ≤ r and let ηi be a root of fi in an algebraic closure of Fp. Let 0 6= α ∈ J(L) and write

α = α1 + . . .+ αr ∈Mf1(RL)⊕ . . .⊕Mfr(RL) = RL.

Moreover, let I := {1 ≤ i ≤ r | αi 6= 0}. Then:

(a) The degree of the splitting field of L(θα) is [SplF (L(θα)) : L] = p
∑
i∈I deg(fi) and

Gal (SplF (L(θα)) /F ) ∼=

(⊕
i∈I

(Fp(ηi),+)

)
oφ Cd

via the homomorphism φ = φ1 + . . . + φ|I| : Cd → Aut
(⊕

i∈I Fp(ηi)
)
with φi(k)(x) = ηki x for

x ∈ Fp(ηi) and k ∈ Z/dZ ∼= Cd and 1 ≤ i ≤ |I|.

(b) The extension L(θα)/F is Galois if and only if
∑
i∈I

deg(fi) = 1, i.e. α is a σ-eigenvector for an

eigenvalue in F×p .

(c) Let `(i) := deg(fi) and

mi := νL(αi) = νi · e+ ji < 0 for all i ∈ I
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and let τ : {1, . . . , |I|} → I be a bijection such that |mτ(1)| ≤ |mτ(2)| ≤ . . . ≤ |mτ(|I|)| . Then we
get the discriminant exponents

disc(SplF (L(θα)) /L) =

|I|∑
i=1

(p`(τ(i)) − 1)(|νL(αi)|+ 1)p`(τ(i−1))+...+`(τ(1)), (3.6)

disc(SplF (L(θα)) /F ) = p`(I)f(e− 1) +

|I|∑
i=1

(p`(τ(i)) − 1)
(
d|ντ(i)|+ d− jτ(i)f

)
. (3.7)

Proof. Consider first the case I = {i} and α = αi ∈ Mfi(L). By assumption we have αi 6= 0. Let
θσj(αi) be a root of Xp − X − σj(αi), let `(i) = deg(fi) and ∆ := 〈σj(αi) + ℘(L) : 1 ≤ j ≤
`(i)〉Fp . Note that we have an Fp-basis αi + ℘(L), σ(αi) + ℘(L), · · · , σ`(i)−1(αi) + ℘(L) of ∆ with
fi(σ)(αi + ℘(L)) = 0 as αi ∈Mfi(L). Then

SplF (L(θαi)) = L
(
℘−1(∆)

)
= L

(
θαi , θσ(αi), . . . , θσ`(i)−1(αi)

)
.

Through the identifications

Fp(ηi) ∼= Fp[X]/(fi)
∼−→ ∆ via ηi 7−→ X 7−→ σ(αi)

we get Gal
(
L(℘−1(∆))/L

) ∼= Fp(ηi) by Theorem 1.7.

Furthermore, Gal(SplF (L(θαi)) /L) is a normal subgroup of Gal(SplF (Lαi) /F ), since its fixed field
L is Galois over F . With gcd(p, d) = 1 and the Theorem of Zassenhaus (see [Hup67, Hauptsatz
I.18.1]) we have that Gal(SplF (L(θαi)) /F ) is a semi-direct product which concludes (a) for |I| = 1.

If |I| > 1, we use
⊕

i∈I〈αi〉Fp[Cd]
∼=
⊕

i∈IMfi yielding the degree and the description of the Galois
group via restriction to 〈αi〉.

For (b) we use that L(θαi)/F is Galois if and only if dimFp(∆) = 1, i.e. `(i) = [Fp(ηi) : Fp] = 1,
hence if and only if ηi ∈ Fp.

Now for (c). From the Theorem 3.13 we get

SplF (L(θα))
(a)
= L

(
θ∑
i∈I

λi·αi | λi ∈ Fp(ηi) \ {0}
)
.

Clearly νL(λ · α) = νL(α) and λ · α ∈ RL for all λ ∈ Fp(ηi)× ⊆ F×qf . Using that νL(α) < 0 is not
divisible by p, the Conductor-Discriminant Formula in Theorem 1.28 yields

disc(SplF (L(θα)) /L) =
∑

06=(λ1,...,λ|I|)∈Fp(η1)×...×Fp(η|I|)

cond

(
L(θ∑

i∈I
λi·αi)/L

)

=
∑

06=(λ1,...,λ|I|)∈Fp(η1)×...×Fp(η|I|)

(
|νL(

∑
i∈I

λi · αi)|+ 1

)
.
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In this case we have νL(
∑
i∈I

λi · αi) = νL(αm), where m = max
{
i ∈ I | λτ(i) 6= 0

}
. Thus we have

disc(SplF (L(θα)) /L) =

|I|∑
i=1

|Fp(ητ(i))
×|

∑
(λ1,...,λi−1)∈Fp(ητ(1))×...×Fp(ητ(i−1))

(
|νL(ατ(i))|+ 1

)

=

|I|∑
i=1

(p`(τ(i)) − 1) · p`(τ(1))+...+`(τ(i−1))
(
|νL(ατ(i)|+ 1

)
.

For the second formula we use the tower formula

disc(SplF (L(θα)) /F ) = p`(I) disc(L/F ) + fL/F disc(SplF (L(θα)) /L)

= p`(I)f(e− 1) + f disc(SplF (L(θα)) /L). (3.8)

We substitute (3.8) in (3.6) and rewrite νL(αi) = νie+ ji to obtain

disc(SplF (L(θα)) /F )
(3.8)
= p`(I)f(e− 1) + f disc(SplF (L(θα)) /L)

(3.6)
= p`(I)f(e− 1) + f

|I|∑
i=1

(p`(τ(i)) − 1) · p`(τ(1))+...+`(τ(i−1))
(
|νL(ατ(i)|+ 1

)
= p`(I)f(e− 1) + f

|I|∑
i=1

(p`(τ(i)) − 1) · p`(τ(1))+...+`(τ(i−1)) (νie+ ji + 1)

= p`(I)f(e− 1) +

|I|∑
i=1

(p`(τ(i)) − 1) · p`(τ(1))+...+`(τ(i−1)) (dνi + fji + d) .

3.2.1 Enumeration over pd points

According to the occurring Galois groups in Theorem 3.13 we define:

Definition 3.14. Let d = ef with p - d and L/F be a Cd-extension with eL/F = e and fL/F = f .
Let Xd − 1 = f1 · · · fr be the prime factorisation in Fp[X] with f1 = (X − 1).

Let moreover I ⊆ {1, . . . , r} with I 6= ∅.

(a) We define

MI(RL) :=
⊕
i∈I

Mfi(RL) and M̃I(RL) :=
{
y ∈MI(RL) | 〈y〉Fp[Cd]

∼= MI

}
where Mfi(RL) is defined in (3.5). Note that M{i}(RL) = Mfi(RL).
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(b) We define

Gp(d, I) :=

(⊕
i∈I
Fp(ηi)

)
oφ Cd via φ(k)(

∑
i∈I

mi) =
∑
i∈I

ηkimi.

We furthermore define Gp(d, i) := Gp(d, {i}) and we set

Gp(d) := (Fp(ζd),+)o Cd, where Cd acts via multiplication by ζd.

(c) For x ∈ R≥0 we set

YI(L;x) := #{α ∈MI(RL) : α = 0 ∨ |νL(α)| ≤ x} and

ỸI(L;x) := #{α ∈ M̃I(RL) : |νL(α)| ≤ x};
ZL(F, I;x) := #{α ∈MI(RL) : disc(L(θα)/F ) ≤ x} and

Z̃L(F, I;x) := #{α ∈ M̃I(RL) : disc(L(θα)/F ) ≤ x}.

Note that MI(RL) and M̃I(RL) depend on a choice of π and ω0, while the four counting functions
YI(L, x) et cetera are independent of these choices.

Remark 3.15. (a) We have a 1 : 1-correspondence {I ⊆ {1, . . . , r}} ↔ {g(X) ∈ Fp[X] : g(X) |
Xd − 1} by setting gI :=

∏
i∈I

fi with `(gI) = deg(g). Similarly, we can identify MgI with

Fp[X]/(g(X)) as Fp[Cd]-modules and we could have equivalently defined the group via

Gp (d, g(X)) := Gp(d, gI).

(b) The elements in M̃I(RL) correspond to gI -cyclic module generators in RL, where RL is our
standard representative system of J(L).

Then ỸI(L, x) is the number of these gI -cyclic generators up to a valuation bound, while
Z̃L(F, I;x) counts all Artin-Schreier extensions generated by MI(RL) whose discriminant over
F is bounded by x.

Remark 3.16. Let p - d and ζd be a primitive d-th root of unity. Let 0 ≤ i ≤ d− 1.

(a) If a root ηi of fi is a primitive d-th root of unity, then Gp(d, i) is isomorphic to a subgroup of
AGL1(qi) for qi = |Fp(ηi)|.

(b) We have Gp(p` − 1) = AGL1(p`) ∼= C`p o Cp`−1 and G2(3) = A4.

Proof. (a) Let u ∈ F×q be a generator of the unit group F×q . Then we have ηi = uk for some k ∈ N.
By definition, ηi acts on Fq by multiplication. Now, Cd ∼= 〈ηi〉 as ηi is a primitive d-th root of
unity by assumption which defines the semi-direct product and shows the claim.



3.2. Decomposition of J(L) for a Tamely Ramified Extension L/F 79

(b) Note that here ζp`−1 is a primitive (p` − 1)-st root of unity and that [Fp(ζp`−1) : Fp] = `. The
fact that Gp(d) is isomorphic to AGL1(p`) is obvious by part (a).

The case G2(3) is a specialisation with p = 2 and ` = 2. Then G2(3) ∼= AGL1(4) ∼= A4.

We want to prove the following: Consider MI o Cd ≤ Spd. Then we have

Z(F,MI o Cd;X) � X
`(I)
pd .

We will prove a ∼-estimate for ZL(F, I; an) for a certain arithmetic progression an and therefore
prove a �-estimate for this function.

Theorem 3.17. Let x ∈ R≥0 and ∅ 6= I ⊆ {1, . . . , r}. Let d0 := pf(e− 1) and

d(n) := pf(e− 1) + (p− 1)f(ep · n+ 1) for all n ∈ N.

(a) We have YI(L;x) =
∏
i∈I

Y{i}(L;x) and ZL(F, I;x) =
∏
i∈I

ZL(F, {i};x).

(b) We have YI(L; ep ·n) = ZL(F, I; d(n)) = qn·(p−1)`(I)pδ(I) for all n ∈ N, where δ(I) =

{
1, 1 ∈ I
0, 1 /∈ I.

(c) We have Z̃L(F, I; d(n)) ∼ pδ(I)qn·(p−1)`(I) and

ZL(F, I;x) � qx
`(I)
pd , Z̃L(F, I;x) � qx

`(I)
pd .

Proof. (a) Let α =
∑

i∈I αi ∈MI(RL), then we claim that we have

|νL(α)| = max{|νL(αi)| : i ∈ I}.

Set l := `(I). Let i1, . . . , il ∈ I be the indices such that |νL(αij )| = N is maximal. Write

αij =
0∑

k=−N
λjkπ

k for certain λjk ∈ Fq where λj−N 6= 0. Using the direct sum in Lemma 3.12(c)

the leading coefficients λ1−N , . . . , λl−N are Fp-linearly independent, thus
∑
i∈I

λi−Nπ
N 6= 0 and

|νL(α)| = N = max{|νL(αi)| : i ∈ I}.

Thus,

YI(L, x) = #{α =
∑
i∈I

αi ∈MI(RL) : |νL(α)| ≤ x}

=
∏
i∈I

#{αi ∈M{i}(RL) : |νL(αi)| ≤ x} =
∏
i∈I

Y{i}(L;x). (3.9)
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For the statement on ZL(F, I;x) we let α =
∑
i∈I

αi ∈ YI(L). If νL(α) < 0 then we have

disc(L(θα)/L) = (p− 1)(|νL(α)|+ 1)

= (p− 1)fL/F (|νL(
∑
i∈I

αi)|+ 1)

= (p− 1)f (max{|νL(αi)| : i ∈ I}+ 1)

= max{disc (L(αi)/L) : i ∈ I}

and by the discriminant tower formula, we get disc(L(θα)/F ) = max{disc (L(θαi)/F ) : i ∈ I}.

If α = 0 or νL(α), we similarly have

disc(L(θα)/F ) =

{
disc(L/F ) = max{disc (L(αi)/F ) : i ∈ I}, α = 0

p · disc(L/F ) = max{disc (L(αi)/F ) : i ∈ I}, α 6= 0, νL(α) = 0.

Hence α ∈ ZL(F, I;x) ⇐⇒ αi ∈ ZL(F, {i}, x) for all i ∈ I.

(b) By (a) it is sufficient to consider Y{i}(L;x) and ZL(F, {i}, d(n)) for 1 ≤ i ≤ r. We first show
that Y{i}(L;x) gives the desired formula. By Lemma 3.12 we have

M{i}(RL) ∼=


Fp ⊕

⊕
n<0

F[Fq :Fp]
p

∼= Fp ⊕
⊕
n<0

Fq, i = 1⊕
n<0

F[Fq :Fp]`(i)
p

∼=
⊕
n<0

F`(i)q , i 6= 1

and we obtain accordingly

Y{i}(L; ep · n) =

{
pq(p−1)·n, i = 1

q(p−1)`(i)·n, i 6= 1

}
= pδ(I)q(p−1)`(i)·n. (3.10)

It is left to show the equality Y{i}(L; ep · n) = ZL(F, {i}; d(n)). Therefore, for any y ∈ Yi(L) we
use the discriminant formula

disc(L(θy)/F ) = pf(e− 1) + (p− 1)f (|νL(y)|+ 1) .

Set |νL(y)| =: N , then we have

Y{i}(L;N) = ZL (F, {i}; pf(e− 1) + (p− 1)f(N + 1)) , (3.11)

and using N = ep · n yields

pf(e− 1) + (p− 1)f(ep · n+ 1) = d(n).

Hence we finally obtain Y{i}(L; ep · n)
(3.11)

= ZL (F, {i}; d(n))
(3.10)

= q(p−1)`(i)·npδ(I).
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(c) We prove the ∼-statement for I = {i} first.
For n ∈ N we have

Z̃L(F, I; d(n)) = ZL(F, I; d(n))− 1
(b)
= q(p−1)`(i)npδ({i}) − 1 ∼ q(p−1)`(i)npδ({i}) for n→∞.

This shows the statement for a singleton I = {i}. For arbitrary I ⊆ {1, . . . , r} we use

Z̃L(F, I; d(n)) =
∏
i∈I

Z̃L(F, {i}; d(n)) ∼
∏
i∈I

q(p−1)`(i)npδ({i}) = q(p−1)`(I)·npδ(I),

where the identity pδ(I) =
∏
i∈I p

δ({i}) is immediate from the definitions. This proves the ∼-
statement.

For the second part, we consider x ≥ d0 and we furthermore consider nx ∈ N so that d(nx) ≤
x ≤ d(nx + 1) holds. Obviously, ZL(F, I;x) is a monotonously increasing function in x and we
get

q
− `(I)

pd · q
x`(i)
pd ≤ qnx(p−1)`(I) (b)

= ZL (F, I; d(nx)) ≤ ZL(F, I;x)

≤ ZL (F, I; d(nx + 1))
(b)

≤ pq(nx+1)(p−1)`(I) ≤ pq
`(I)
pd · qx

`(I)
pd ,

hence ZL(F, I;x) � qx
`(I)
pd . For the final statement, we use the simple estimate

ZL(F, I;x) ≥ Z̃L(F, I;x) =
∏
i∈I

(ZL(F, {i};x)− 1)

≥
∏
i∈I

q − 1

q
ZL(F, {i};x) =

(
q − 1

q

)|I|
ZL(F, I;x).

We can combine this to prove an estimate on the asymptotics of Gp(d, I)-extensions over pd points
and for the corresponding splitting fields.

Theorem 3.18. Let F be a function field with char(F ) = p, let d ∈ N be coprime to p. Let

Xd − 1 =
r∏
i=1

fi ∈ Fp[X] be its prime factorisation and let ∅ 6= I ⊆ {1, . . . , r}.

(a) Consider Gp(d, I) ≤ Spd as a transitive permutation group over pd points. Then we have

Zpd (F,Gp(d, I);X) � X
`(I)
pd .

(b) Let |I| = 1 and consider Gp(d, I) ∼= F`(I)p o Cd ≤ Sp`(I)d as a transitive permutation group over
p`(I)d points, i.e. as Galois extensions. Then we have

Zp`(I)d(F,Gp(d, I);X) � X
(p−1)`(I)

pd(p`(I)−1) .
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Proof. (a) It is clear that

Zpd(F,Gp(d, I);X) =
∑
L/F

Gal(L/F )∼=Cd

#{SplF (L(θy)) | y ∈ M̃I(RL),

disc (L(θy)/F ) ≤ logq(X)}. (3.12)

Let L/F be a Cd-extension. The Gp(d, I)-extensions containing L are parametrised by ỸI(L).
Note that for every α ∈ ỸI(L) there exist

ψ(I) :=
∏
i∈I

(p`(i) − 1)

many elements β ∈ ỸI(L) defining the same splitting field and thus defining isomorphic fields.
The analogous number is the same for Z̃L(F, I;n). Hence we get

Zpd(F,Gp(d, I);X)
(3.12)

=
∑
L/F

Gal(L/F )∼=Cd

1

ψ(I)
Z̃L
(
F, I; logq(X)

)
.

There are only finitely many degree-d-extensions of F as p - d, hence this is a finite sum and

thus ZL(F, I;X) � qlogq(X)
`(I)
pd = X

`(I)
pd . It follows that

Z̃(F,Gp(d, I);X) �
∑
finite

X
`(I)
pd � X

`(I)
pd .

(b) By the assumption |I| = 1 we have I = {i} for some i ∈ {1, . . . , r}.
Let y ∈M{i}(RL) and My = SplF (L(θy)). Then we have

disc(My/F ) = [My : L] · disc(L/F ) + fL/F disc(My/L)

(3.6)
= p`(i)f(e− 1) + f(p`(i) − 1) (|νL(y)|+ 1) .

Hence setting d̃(n) := p`(i)f(e− 1) + f(p`(i) − 1)(ep · n+ 1) for n ∈ N, we get

{y ∈M{i}(RL) | disc(My/F ) ≤ d̃(n)} = Y{i}(L; ep · n)
3.17(b)

= pδ(i)q(p−1)`(i)·n.

Hence using the monotony of the counting function, applying logq and using (3.12), we obtain

Z(F,Gp(d, {i});X) � X
(p−1)`(i)

f(p`(i)−1)pe = X
(p−1)`(i)

pd(p`(i)−1) .

Remark 3.19. The statement of Theorem 3.18 is also true for general I ⊆ {1, . . . , r}. We can adapt
the same proof and need to address some technical obstacles. We use the discriminant formula in
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Theorem 3.13(c). Moreover, for any bijection τ : {1, . . . , |I|} → I, we consider all (mi)i∈I following
an ordering of valuation given by τ , that is

|νL(mτ(1))| ≤ |νL(mτ(2))| ≤ . . . ≤ |νL(mτ(|I|))|.

For the i-th component mi, we get the discriminant weight

q(|νL(mi)|+1)·f ·(p`(τ(i))−1)·p`(τ(1)+`(τ(2))+...+`(τ(i−1))
.

The number of mi is given by

ỸL({τ(i)};mi) � q
(p−1)`(τ(i))

pe)
mi .

One can show that the concerning asymptotics exponent is then
r∏
i=1

q

p−1
pe
· `(τ(i))

f ·(p`(τ(1))+...+`(τ(i))−p`(τ(1))+...+`(τ(i)))

=q

p−1
pe
· `(τ(1))+`(τ(2))+...+`(τ(|I|))
f(p`(τ(1))+...+`(τ(|I|))−1)

=q

p−1
pe
· `(I)

f(p`(I)−1) = q

p−1
pd
· `(I)

(p`(I)−1) (3.13)

independently of the chosen bijection τ .

Example 3.20. (a) We consider the group A4 and write A4(12) ≤ S12 respectively A4(6) ≤ S6 as
transitive permutation groups over 12 points and 6 points, respectively. Let F be a local function
field with char(F ) = 2 and X3 − 1 = (X − 1) · f2 ∈ F2[X] with f2 = X2 +X + 1. We then have
that G2(3, {2}) ∼= A4. By Theorem 3.18 we have for counting degree-12-extensions

Z(F,A4(12);X) = Z12(F,G2(3, {2});X) � X
(p−1)`(2)

pd(p`(2)−1) = X
1
9 .

Considering A4(6) ≤ S6 as transitive permutation group over pd = 6 points, we get

Z(F,A4(6);X) = Z6(F,G2(3, {2}), X) � X
`(2)
6 = X

1
3 .

(b) We consider the group C3
2 oC7 ≤ S56 as transitive permutation group over 56 points. Let again

F be a local function field with char(F ) = 2. We find the decomposition into irreducible factors

X7 − 1 = (X − 1)(X3 +X + 1)(X3 +X2 + 1) ∈ F2[X].

The index sets I = {2} or I = {3} lead to the group C3
2 o C7 with our methods. We then have

Z(F,C3
2 o C7;X) � X

(p−1)`(2)

pd(p`(2)−1) = X
3

2·7·7 = X
3
98 .

(c) Let p ∈ P be any prime and d ∈ N coprime to p. Let F be a local function field with char(F ) = p.
For the wreath product Cp o Cd ≤ Sdpd , we consider I = {1, . . . , r} with `(I) = deg(Xd − 1) = d
and obtain

Z(F,Cp o Cd;X) � X
`(I)

pd(p`(I)−1) = X
d

pd(pd−1) = X
1

p(pd−1) .
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3.2.2 Subgroups of AGL1(p)

In this section we will always assume d | (p − 1) and ζd ∈ F×p to be a primitive d-th root of unity.
Then

Xd − 1 =
d∏
i=1

(X − ζid) ∈ Fp[X]

splits and thus σ is a diagonalisable F -linear map. We can identify fi with a d-th root of unity ζid
and we can regard a subset I ⊆ {1, . . . , d} as a set of d-th roots of unity. ThenMi corresponds to the
eigenspace of σ of the eigenvalue ζid. For the corresponding eigenvalue ζid we have the Galois group
Gp(d, i) ∼= Cp o Cd where we consider Cp ∼= (Fp,+) and Cd is acting by multiplication with ζid.

In this case it is obvious that the fixed field of 1× Cd defines a degree-p-extension.

Theorem 3.21. Let G = Cp o Cd ≤ AGL1(p) where 1 6= d | (p − 1). Let L/F be a Cd-extension
with Gal(L/F ) = 〈σ〉. Let α ∈ RL so that σ(α) = ζ ·α for some primitive d-th root of unity ζ ∈ F×p .
Let Kα = Fix(1× Cd) be a degree-p-subfield.

(a) We have

disc(Kα/F ) =
p− 1

d
disc(L/F ) +

fL/F

d
disc(L(θα)/L).

(b) Consider G ∼= Gp ≤ Sp with |Gp| = p · d as transitive permutation group over p points. Then we
have

Z(F,Gp;X) � X
1
p .

Proof. Part (a) is Corollary 6(2) in [FK03].

For part (b) we start with a bound on disc(L(θα)/F ) so that disc(Kα/F ) ≤ X. We have

disc(Kα/F ) ≤ X (a)⇐⇒ p− 1

d
disc(L/F ) +

fL/F

d
disc (L(θα)/L) ≤ X

⇐⇒ 1

eL/F
disc (L(θα)/L) ≤ X − p− 1

d
fL/F (eL/F − 1)

⇐⇒ disc (L(θα)/L) ≤ eL/FX − (p− 1)(eL/F − 1)

⇐⇒ (p− 1)(|νL(α)|+ 1) ≤ eL/FX − (p− 1)(eL/F − 1)

⇐⇒ |νL(α)| ≤
eL/F

p− 1
·X − eL/F . (3.14)

There might be different i leading to the same Galois group. Let I := {i ∈ {1, . . . , d} | Gp(d, i) ∼= G}.
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There are precisely (p− 1) elements in Y{i}(L) defining the same field, hence this way, we get

Z(F,Gp;X)
(3.14)

=
∑
L/F

Gal(L/F )∼=Cd

∑
i∈I

1

p− 1
Y{i}

(
L,

eL/F

p− 1
X − eL/F

)

(3.10)
�

∑
L/F

Gal(L/F )∼=Cd

∑
i∈I

X
(p−1)`(i)
p·eL/F

·
( eL/F
p−1

X−eL/F
)
� X

1
p .

3.2.3 Number of Cd-Extensions with Fixed Ramification Index

Definition 3.22. Let αH(G) := #{U ≤ G | U ∼= H} be the number of subgroups of G isomorphic
to H.

Remark 3.23. Let d ∈ N such that d | (q − 1). Then there are exactly

d
∏

`∈P, `
∣∣ d
`+ 1

`

non-isomorphic Cd-extensions of Fq((t)).

Proof. This is proven in Remark 2.14(b), see [KM20], for ` ∈ P. The general case follows by the
multiplicativity shown in Lemma 2.5.

Remark 3.24. Let d = ef with e, f ∈ N such that e | (q − 1) and gcd(d, q) = 1. Then there are
precisely

e
∏
`∈P

`|gcd(f,e)

`− 1

`

Cd-extensions of Fq((t)) with ramification index e and inertia degree f , where ϕ is the Euler totient
function.

Proof. By Theorem 3.6(a) and (c), all Cd-extensions with eL/F = e and fL/F = f are parametrised
by some

1 ≤ r ≤ gcd(e, qf − 1) with gcd(e, f, r) = 1, where gcd(e, qf − 1)
e|(q−1)

= e.

Hence, for the parameter r we have the conditions 1 ≤ r ≤ e, gcd(e, f, r) = 1. With

ϕ (gcd(e, f)) = # {1 ≤ r ≤ gcd(e, f) | gcd(r, gcd(e, f)) = 1}
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and using e = e
gcd(e,f) · gcd(e, f), we get precisely

e

gcd(e, f)
· ϕ (gcd(e, f)) =

e

gcd(e, f)
· gcd(e, f) ·

∏
`∈P

`|gcd(e,f)

`− 1

`
= e ·

∏
`∈P

`|gcd(e,f)

`− 1

`

choices for r.

Example 3.25.

(a) In the unramified case e = 1 the formula gives exactly 1 extension as expected.

(b) In the totally ramified case e = d the formula gives e extensions as expected from Theorem 3.6.



Chapter 4

On Constructing Subgroups of Cp o Cp

In this chapter we will thoroughly study the Galois group Gal(L/F ) of a tower of two Cp-extensions
L/E/F with Gal(L/E) ∼= Cp ∼= Gal(E/F ). This corresponds precisely to Gal(L/F ) ≤ Cp o Cp by
Theorem 1.11. The field extensions can be described as the Galois closure of Cp-extensions L/E/F ,
similar to the situation in Chapter 3 and Section 3.1. The possible Galois groups in this case are
well-known (e.g. [Sch14, Section 3]). Write G := Gal(L/F ). If #G = pp+1, then G ∼= Cp o Cp is
isomorphic to the wreath product. If #G = pr+1 < pp+1, then G is isomorphic to one of the two
non-isomorphic groups H(p, r) or H̃(p, r) which we will call generalised Heisenberg group and twisted
Heisenberg group, respectively (see Definition 4.1). Both groups are solutions of a group extension

1→ (Cp)
r → G→ Cp → 1

where exp (H(p, r)) = p and exp
(
H̃(p, r)

)
= p2. Hence the knowledge of #G and the exponent

exp(G) are sufficient to determine G up to isomorphism.

The main goal is to prove Theorem C and Theorem D from the introduction.

In order to achieve this, we firstly describe the groups. We will distinguish Hp2(p, r) ≤ Sp2 and
H̃p2(p, r) ≤ Sp2 which correspond to non-Galois degree p2-extensions, from Hpr+1(p, r) ≤ Spr+1 and
H̃pr+1(p, r) ≤ Spr+1 , respectively, which correspond to Galois extensions over the ground field F ,
i.e. for the Galois closure of L/F . This can be done by the module theoretic approach outlined in
Schultz [Sch14] which gives us a nice way to determine the Galois group. Writing [α] := α + ℘(E)
for any α ∈ E \℘(E), we will associate a length function given as minimal i such that (σ−1)i([α]) is
zero, and a (restricted) function εE/F which is basically determined by the value (σ− 1)(TrE/F (α)).
This will give us a description of J(E) as a Gal(E/F )-module. See Section 4.2 for the details.

We give representative systems of E/℘(E) that describe H(p, r)-extensions respectively H̃(p, r)-
extensions. This will use the fact that E = F (θa) for some a ∈ RF and that there is a generator σ of
Gal(E/F ) so that σ(θa) = θa + 1. This makes it very convenient with the power basis 1, θa, . . . , θ

p−1
a

since it is easy to describe the involved automorphisms, the trace map etc.

In Section 4.3 we provide two systems of representatives which parametrise the H(p, r)-extensions.

87



88 Chapter 4. On Constructing Subgroups of Cp o Cp

Let E = F (θa) be a Cp-extension. Then one system of representatives

Ma,r = {f0 + f1θa + . . . fr−1θ
r−1
a | fi ∈ RVa},

where RVa is defined as in Remark 1.22, has the advantage of having a very simple description
and makes it easy to read off the Galois group by Schultz’ theory. We will prove the following
decomposition:

Theorem. Let 0 6= a ∈ RF and E = F (θa). Then we have:

(a) J(E) = 〈γE〉
p−1⊕
i=1

(Ma,i + ℘(E)).

(b) For every normal H(p, r)-extension L/F containing E, there is an α ∈Ma,r such that

L = E
(
℘−1(〈α〉G)

)
.

(c) For α ∈Ma with len ([α]) = r we have Gal
(
E
(
℘−1(〈α〉G)

)
/F
) ∼= {H̃(p, r), fp−1 ∈ RF \RVa ,

H(p, r), fp−1 ∈ RVa .

The representative systemMa,r has the flaw of not consisting of reduced elements if E/F is ramified.
In order to control the discriminant of the occurring extensions in the ramified case, we develop a
reduced system of representatives ΩE,r, which basically gives a reduced element in the class f0+℘(E)
for f0 ∈ F . There is a slight twist, however, as the elements in ΩE,r define H(p, i)-extensions for
i ≤ r only as will be proven in Theorem 4.47. The technical definition of ΩE,r and further details
can be found in Section 4.3.1.

For the counting problem by discriminant, we determine the minimal discriminant for the corre-
sponding embedding problem for the permutation groups for the groups Hp2(p, r), H̃p2(p, r) and
H̃pr+1(p, r). The formulas are outlined in Subsection 4.2.2 for the minimal Heisenberg extensions
and for the minimal twisted Heisenberg extensions in (4.64) over p2 points and in Theorem 4.65
over pr+1 points where we use the notations of Defintion i. As a second ingredient, it is crucial to
determine the number of representatives up to a valuation bound.

Using the system of representatives ΩE,r this way, we prove the discriminant density of Hp2(p, r) in
Section 4.4, hence prove Theorem C from the introduction:

Theorem C. For 1 ≤ r ≤ p− 1 we have

Z
(
F,Hp2(p, r);x

)
� xap(Hp2 (p,r)),

where ap
(
Hp2(p, r)

)
=

{
r+1
p(p+r) , r2 < p
r
p2
, r2 > p.
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We approach by counting the extensions defined by ΩE,r up to a discriminant bound X over all
Cp-extensions E/F . The corresponding asymptotics exponents for all extensions with Galois group
Hp2(p, i) for 1 ≤ i ≤ r are strictly increasing in r, and so we can deduce the asymptotics exponents
for all Hp2(p, r)-extensions.

The discriminant density of H̃p2(p, r)-extensions can be proven analogously, where a simple variation
of the representative system ΩE,r does the trick which will be done in Section 4.5. Every H̃(p, r)-
extension arises as a Cp2-twist of a certain H(p, r)-extension. Therefore, we give an explicit element
γE ∈ E such that E(θγE )/F is a minimal Cp2-extensions containing E. Then the representative
system

Ω̃E,r = {λγE + α | α ∈Ma,r, λ ∈ F×p }

plays the role of ΩE,r for H̃(p, r)-extensions. We use the analogous method to the case of Hp2(p, r)
to prove Theorem D from the introduction:

Theorem D. For 1 ≤ r ≤ p− 1 we have

Z
(
F, H̃p2(p, r);x

)
� xap(H̃p2 (p,r)),

where ap
(
H̃p2(p, r)

)
=

{
pr−r2+r+1

p(p2−pr+p+r) , r2 < p
r
p2
, r2 > p.

Finally, we will consider Galois twisted Heisenberg extensions in Section 4.6, i.e. the transitive
permutation groups H̃pr+1(p, r) for 1 ≤ r ≤ p−1. We deduce the minimal solution of the embedding
problem 1 → (Cp)

r → H̃pr+1(p, r) → Cp → 1 and deduce a lower bound on the asymptotics of
H̃pr+1(p, r)-extensions in Theorem 4.67.

Concerning the lower bound on ap
(
H̃pr+1(p, r)

)
, we construct a minimal solution for the embedding

problem, see Theorem 4.65, and count the number of extensions having minimal discriminant. We
will construct a minimal solution in the terms of the description of γE with respect to the power
basis. All the other (minimal) solutions can be described by the elements in ΩE,r up to an easily
deduced valuation bound.

We conjecture the lower bound attained this way to be sharp.

4.1 Heisenberg Groups and Arithmetic of Cp-Extensions

4.1.1 Generalised and Twisted Heisenberg Groups

Let p ∈ P and 1 ≤ r ≤ p−1. Up to isomorphism, there exist two groups satisfying a group extension

1 −→ (Cp)
r −→ G −→ Cp −→ 1 where (Cp)

r is a cyclic Fp[Cp]-module.

For more details, see [Wat94, Section 3] and [Sch14, Section 3]. The construction of the groups is
taken from Definition 3.1 and 3.6 in [Sch14]. Here, we write [g, h] := ghg−1h−1 for the commutator
of two group elements.
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Definition 4.1. Let p ∈ P and 1 ≤ r ≤ p− 1. Then we define the generalised Heisenberg group as

H(p, r) := 〈α1, . . . , αr; τ | αpi = 1, τp = 1, [αi, αj ] = 1, [τ, αj ] = αj−1, [τ, α1] = 1

for 1 ≤ i ≤ r, 2 ≤ j ≤ r〉.

We define the twisted Heisenberg group as

H̃(p, r) := 〈α1, . . . , αr; τ | αpi = 1, τp = α1, [αi, αj ] = 1, [τ, αj ] = αj−1, [τ, α1] = 1

for 1 ≤ i ≤ r, 2 ≤ j ≤ r〉.

We moreover set H(p, p) := H̃(p, p) := Cp o Cp.

Note that H̃(p, r) coincides with Schultz’ definition of (Cp)
r •r Cp given in Definition 3.6 of [Sch14]

and we have H(p, r) ∼= (Cp)
r o Cp.

Remark 4.2. Let p ∈ P and 1 ≤ r ≤ p− 1.

(a) The group H(p, r) has order pr+1 and exponent p. The group H̃(p, r) has order pr+1 and
exponent p2. In particular, we have H(p, 1) ∼= Cp × Cp and H̃(p, 1) ∼= Cp2 .

(b) Let r > 1 and G = H(p, r) or H̃(p, r). Its commutator subgroup is [G,G] = 〈αi | 1 ≤ i ≤ r− 1〉
and the center is C(G) = 〈α1〉 ∼= Cp.

(c) We have the following interpretation in mind: For the normal subgroup M := 〈α1, . . . , αr〉 ≤ G,
its quotient group 〈τ〉/〈τp〉 ∼= Cp acts on M via

τ̄ ·m := τ ·m · τ−1 for all m ∈M.

Indeed, this is a well-defined Cp-action on M as τp ∈ C(G) acts trivial on M . This way, M
defines an Fp[Cp]-module, where M = 〈αr〉Fp[Cp]

∼= Fp[G]/ (σ − 1)r is a cyclic Cp-module of rank
r.

Example 4.3. Let p ∈ P.

(a) As we have seen in Remark 4.2 we have H(p, 1) ∼= Cp × Cp and H̃(p, 1) ∼= Cp2 .

(b) Let now p 6= 2 and let H be the classical Heisenberg group of upper-triangular 3 × 3-matrices
whose diagonal is 1, i.e.

H :=


1 a b

0 1 c
0 0 1

 | a, b, c ∈ Fp

 ≤ GL3(Fp).

This group is defined by the relations H := 〈u, v, w | up = vp = wp = 1, uv = vu, uw = wu,wv =
vwu〉. By manipulating the last defining relation, it is easy to see that H(p, 2) ∼= H is isomorphic
to the classical Heisenberg group. This is a non-abelian group with p3 elements and exponent p.

There is no group with these properties for p = 2 as groups of exponent 2 are abelian, and so
does the corresponding matrix group. Note that H(2, 2) := D4 is non-abelian of exponent 4.
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We have the group extensions

1 −→ (Cp)
r ι−→ G

ϕ−→ Cp = 〈σ〉 −→ 1 (4.1)

via ι (λ1, . . . , λr) := αλ11 · · ·αλrr and ϕ(αi) = 1 for 1 ≤ i ≤ r and ϕ(τ) = σ.

For p = r we have H(p, p) ∼= H̃(p, p) ∼= Cp o Cp and the wreath product Cp o Cp is the only group
satisfying this embedding problem up to isomorphism. We will not distinguish between the two.

We call a field extensionK/F a (twisted) Heisenberg extension if Gal(K/F ) ∼= H(p, r) or Gal(K/F ) ∼=
H̃(p, r) for some 1 ≤ r ≤ p, respectively.

4.1.2 Traces in Towers of Artin-Schreier-Extensions

At first we thoroughly study Cp-extensions E/F and the corresponding Galois module J(E).

In the following we fix

E = F (θa) for a ∈ RF and Gal(E/F ) = 〈σ〉 with σ(θa) = θa + 1 (4.2)

and the power basis B =
(

1, θa, . . . , θ
p−1
a

)
.

Lemma 4.4.

(a) Let E = F (θa) be an Artin-Schreier Cp-extension and f0, . . . , fp−1 ∈ F. Then we get

TrE/F

(
p−1∑
i=0

fiθ
i
a

)
= −fp−1.

(b) Let L = F (θ1, . . . , θr) be an Artin-Schreier tower as in Definition 1.10 with [L : F ] = pr. Then

TrL/F

 ∑
(e1,...,er)∈{0,...,p−1}r

f(e1,...,er)θ
e1
1 · · · θ

er
r

 = (−1)rf(p−1,...,p−1).

Proof. (Idea of proof is taken from [Alb34].)

Let B = (1, θa, . . . , θ
p−1
a ) be the power basis of F (θa)/F .

For 0 ≤ i, j ≤ p− 1 we have

θi+ja =

{
θi+ja , i+ j < p

(a+ θa)θ
i+j−p
a = aθi+j−pa + θi+j−p+1

a , i+ j ≥ p.
(4.3)

Let M = MB,B(ϕθa) be the representation matrix of θa, given by ϕθa : E → E, x 7→ x · θa. The
(k, j)-coefficient of the matrices M i with 0 ≤ i ≤ p− 1 is given by

θi+j−1
a =

p∑
k=1

(
M i
)
k,j
· θk−1
a , 1 ≤ k, j ≤ p− 1.
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Thus we obtain as matrix coefficients

(M i)k,j
(4.3)
=


1, i+ j − 1 = k − 1 or (i+ j ≥ p and i+ j − 1− p+ 1 = k − 1) ,

a i+ j − 1− p = k − 1,

0, else.

=


1, i+ j = k or i+ j − p+ 1 = k,

a i+ j − p = k,

0, else.

For the diagonal entries we get
(
M i
)
k,k

= 1 if and only if i = 0 or i = p− 1 and k ≥ 1. We cannot
have (M i)k,k = a as this implied i = p which is absurd. Hence

TrE/F (θia) = Tr(M i) =



p−1∑
k=0

1 = p = 0, i = 0

p−1∑
k=1

1 = p− 1 = −1, i = p− 1,

0, 1 ≤ i ≤ p− 2.

Thus by linearity we get TrE/F

(
p−1∑
k=0

fiθ
i
a

)
=

p−1∑
k=0

fi · TrE/F (θka) = fp−1 · (−1) = −fp−1.

For (b) let r > 1 and Lr−1 := F (θ1, . . . , θr−1). Write

γ =
∑

(e1,...,er)∈{0,...,p−1}r
f(e1,...,er)θ

e1
1 · · · θ

er
r .

By the trace formula in towers we get

TrL/F (γ) = TrLr−1/F

(
TrL/Lr−1

(γ)
)

r=1
=

Linearity of Tr
TrLr−1/F

 ∑
(e1,...,er−1)

−f(e1,...,er−1,p−1)θ
e1
1 · · · θ

er−1

r−1


Ind.
= (−1)rf(p−1,...,p−1).

Lemma 4.5. Let E = F (θa) for a ∈ RF . Then for all f0, . . . , fp−1 ∈ F we get

νE

(
p−1∑
i=0

fiθ
i
a

)
= min

{
νE(fiθ

i
a) | 0 ≤ i ≤ p− 1

}
. (4.4)

Proof. For the case f0 = f1 = . . . = fp−1 = 0 the statement is obvious.

If E/F is totally ramified, then νF (a) = νE(θa) < 0 and p - νF (a). Thus for all 0 ≤ i 6= j ≤ p − 1
with fi 6= 0 or fj 6= 0 we have

νE(fiθ
i
a) = pνF (fi) + iνF (a) 6≡ νF (fj) + jνF (a) = νE(fjθ

j
a) mod p,
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and the claim follows by the ultra-metric triangle inequality.

Now let E/F be unramified. Then 1, θa, . . . , θ
p−1
a is an Fq-basis of Fqp and t is a prime element of

E. For fi 6= 0, write fi =
∞∑
k=νi

fi,kt
k with fi,k ∈ Fq, fi,νi 6= 0 and νi = νF (fi) ∈ Z. Set νi = ∞ if

fi = 0. Let n := min {ν0, . . . , νp−1}, then

p−1∑
i=0

fiθ
i
a =

p−1∑
i=0

∞∑
k=νi

fi,kt
kθia

=

p−1∑
i=0

(
fi,nθ

i
a

)
tn +

∞∑
k=n+1

(
f0,k + f1,kθa + . . .+ fp−1,kθ

p−1
a

)
tk.

By Fq-linear independence of θ0
a, . . . , θ

p−1
a we have

p−1∑
i=0

fi,nθ
i
a 6= 0 and thus

n = νE

(
p−1∑
i=0

fiθ
i
a

)
= min

{
νE(fiθ

i
a) | 0 ≤ i ≤ p− 1

}
.

Lemma 4.6. Let E, a and σ as in Remark 4.2 and B = (1, θa, . . . , θ
p−1
a ) be the power basis of E/F .

Then:

(a) The representation matrix of σ, corresponding to B, is the upper-triangular Pascal matrix

MB(σ) = (

(
j − 1

i− 1

)
)i=1,...,p
j=i,...,p

∈ GLp(Fp).

Its inverse is the alternating Pascal matrix MB(σ−1) =
(

(−1)i+j
(
j−1
i−1

))
i=1,...,p
j=i,...,p

.

(b) We have Ker(σ − 1) = F and the image Im(σ − 1) = SpanF (1, θa, . . . , θ
p−2
a ).

(c) We have νE
(
(σ − 1)(θia)

)
= (i− 1)νE(θa) for 1 ≤ i ≤ p− 1. Moreover, for all β ∈ E we have

νE ((σ − 1)(β)) ≥ νE(β)− νE(θa).

Proof. For (a) note that σ(θa) = θa + 1, hence

σ(θia) = σ(θa)
i = (θa + 1)i =

i∑
k=0

(
i

k

)
θka (4.5)

showing the result on the coefficients of the representation matrix. The coefficients of the inverse
matrix can be found in [Yat14, Theorem 2.9].
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For part (b), let α =
p−1∑
i=0

fiθ
i
a for fi ∈ F . Then we have

(σ − 1)(α)
(4.5)
=

p−1∑
i=0

fi ·

(
i−1∑
k=0

(
i

k

)
θka

)
=

p−2∑
i=0

(
p−1∑
k=i+1

fk

(
k

i

))
θia.

This expression is 0 if and only if 0 = fp−1 = fp−2 = . . . = f1, hence Ker(σ − 1) = F .

By (4.5) we have Im(σ − 1) ⊆ SpanF (1, θa, . . . , θ
p−2
a ) and thus Im(σ − 1) = SpanF (1, θa, . . . , θ

p−2
a )

as both F -vector spaces have dimension p− 1.

For (c) note that for fi ∈ F and 1 ≤ i ≤ p− 1 we have

νE((σ − 1)(fiθ
i
a)) = νE

(
fi

(
i∑

k=0

(
i

k

)
θka − θia

))
= νE

(
fi

i−1∑
k=0

(
i

k

)
θka

)
= νE(fiiθ

i−1
a ) = νE(fiθ

i
a)− νE(θa), (4.6)

thus by the ultra-metric triangle-inequality

νE ((σ − 1)(α)) = νE

(
(σ − 1)(

p−1∑
i=0

fiθ
i
a)

)
≥ min

{
νE((σ − 1)(fiθ

i
a)) | 1 ≤ i ≤ p− 1}

}
= min

{
νE(fiθ

i
a)− νE(θa) | 1 ≤ i ≤ p− 1}

}
Lemma 4.5

= νE(α)− νE(θa).

Inserting fi = 1 in (4.6) yields the statement on νE
(
σ − 1)(θia)

)
.

Lemma 4.7. (a) The F -linear map

Ψ: SpanF (θa, . . . , θ
p−1
a ) −→ SpanF (1, θa, . . . , θ

p−2
a ), x 7→ (σ − 1)(x)

is an isomorphism.

(b) For all 0 ≤ i ≤ p− 2 there exist µ1,i+1 , . . . , µi,i+1 ∈ Fp such that

Ψ−1(θia) =
1

i+ 1
θi+1
a +

i∑
k=1

µk,i+1θ
k
a . (4.7)

(c) For all β ∈ SpanF (1, θa, . . . , θ
p−2
a ) we have νE

(
Ψ−1(β)

)
= νE(β) + νF (a).

Proof. Part (a) follows by Lemma 4.6(b).

For part (b), we consider the F -bases B = (θa, . . . , θ
p−1
a ) = (b1, . . . , bp−1) and C = (1, θa, . . . , θ

p−2
a ) =

(c1, . . . , cp−1) and the representation matrix of Ψ. We get by (4.5) that

M :=MC ,B(Ψ) =

((
i

k − 1

))
1≤i≤p−1

1≤k≤i

.
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In particular, the matrixMC ,B(Ψ) ∈ GLp−1(Fp) is an upper triangular matrix with diagonal entries
Mii =

(
i
i−1

)
= i. We get

M̃ :=MC ,B(Ψ−1) =MB,C (Ψ)−1 ∈ GLp−1(Fp)

with diagonal entries M̃ii = 1
i . Writing ci = θi−1

a and bi = θia for the base vectors, we have

Ψ−1(θia) = Ψ−1(ci+1) =

i+1∑
k=1

M̃k,i+1 · bk =

i∑
k=1

M̃k,i+1θ
k
a +

1

i+ 1
θi+1
a .

The claim in (b) follows with µk,i+1 = M̃k,i+1.

We prove part (c) first for fiθia and fi ∈ F . Let 0 ≤ i ≤ p− 2 and fi ∈ F . Then by (a),

νE
(
Ψ−1(fiθ

i
a)
)

= νE

(
1

i+ 1
fiθ

i+1
a +

i∑
k=1

µk,i+1fiθ
k
a

)
= νE(

1

i+ 1
fiθ

i+1
a ) = νE(fiθ

i
a) + νE(θa). (4.8)

Now let β =
p−2∑
i=0

fiθ
i
a. By the triangle inequality and (4.8) we have

νE(Ψ−1(β)) ≥ νE(β) + νF (a). (4.9)

To establish equality, let z := max
{

0 ≤ i ≤ p− 2 : νE(β) = νE(fiθ
i
a)
}
. Then necessarily,

νF (fz) < νF (fz+1), . . . , νF (fz) < νF (fp−1). (4.10)

Ψ−1(β) =

p−2∑
i=0

Ψ−1(fiθ
i
a)

(a)
=

p−2∑
i=0

(
1

i+ 1
fiθ

i+1
a +

i∑
k=1

µk,i+1fiθ
k
a

)

=

p−1∑
k=1

1

k
fk−1θ

k
a +

p−1∑
j=k+1

µk,jfj−1θ
k
a


=

p−1∑
k=1

(
1

k
fk−1 + µk,k+1fk + . . .+ µk,p−1fp−2

)
θka

La. 4.5
= min

{
νF

((
1

k
fk−1 + µk,k+1fk + . . .+ µk,p−1fp−2

)
θka

)
| 1 ≤ k ≤ p− 1

}
. (4.11)

For the value k = z we obtain

νE(

(
1

z + 1
fz + µz+1,z+2fz+1 + . . .+ µz+1,p−1fp−2

)
θz+1
a )

(4.10)
= νE(fzθ

z+1
a ) = νE(β) + νF (a)

and by (4.9) we have νE
(
Ψ−1(β)

)
≥ νE(β) + νF (a). This proves the equality by (4.11).
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4.2 Galois Module Theory

We follow Schultz et al. [Sch14] who study embedding problems

1→ (Cp)
r → G̃→ Cpn → 1

in both char(E) = p and char(E) 6= p. We will only consider the case n = 1.

Definition 4.8. Let E/F be a Cp-extension and G = 〈σ〉 = Gal(E/F ). For a G-module M we
define

len(M) := min{l ∈ N | (σ − 1)l(M) = 0}

as the length of M . For a field element β ∈ E we set [β] = β + ℘(E) ∈ J(E) and len ([β]) :=
len(〈[β]〉G), where 〈[β]〉G is the G-submodule of J(E) generated by [β]. We define the trace map

TrE/F : J(E)→ J(F ), [β] 7→ [TrE/F (β)].

Remark 4.9. Let [α], [β] ∈ J(E) = E/℘(E). Then we have

len ([α+ β]) ≤ max {len ([α]) , len ([β])} . (4.12)

Moreover, we have

len ([α]) 6= len ([β]) =⇒ len ([α+ β]) = max {len ([α]) , len ([β])} . (4.13)

Proof. We have (σ − 1)i([α + β]) = (σ − 1)i([α]) + (σ − 1)i([β]) for i ∈ N. With the choice i :=
max {len ([α]) , len ([β])} we get

[0] + [0] = (σ − 1)i([α]) + (σ − 1)i([β]) = (σ − 1)i([α+ β]),

thus len ([α+ β]) ≤ max (len ([α]) , len ([β])).

Now let len ([α]) 6= len ([β]). We may assume len ([α]) > len ([β]). Setting i := len ([α])− 1, we get

(σ − 1)i([α+ β]) = (σ − 1)i([α]) + (σ − 1)i([β]) = (σ − 1)i([α])︸ ︷︷ ︸
6=[0]

+[0] 6= [0],

hence len ([α+ β]) > i = len ([α]) − 1 = max(len ([α]) , len ([β])) − 1. By (4.12) we thus have
len ([α+ β]) = max(len ([α]) , len ([β])).

Recall νJ(E) ([α]) = maxx∈E (νE(α+ ℘(x))) = maxβ∈[α](νE(β)).

Lemma 4.10. Let E = F (θa) for a ∈ RF with G := Gal(E/F ) ∼= Cp. Let β ∈ E, and l := len ([β]).
Then:

(a) We get len ([β]) = min{n ∈ N | (σ − 1)n(β) ∈ ℘(E)}.
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(b) The system
(
[(σ − 1)i(β)]

)
i=0,...,l−1

forms an Fp-basis of 〈[β]〉G.
In particular, we have len ([β]) = dimFp(〈[β]〉G).

(c) For all (λ0, . . . , λl−1) ∈ Flp we have

νJ(E)

([
l−1∑
i=0

λi(σ − 1)i(β)

])
= νJ(E) ([(σ − 1)z(β)]) ,

where z := min{0 ≤ i ≤ l − 1 | λi 6= 0}.

(d) In particular, for the field discriminant of the degree pl-extension we get

disc(E(〈[β]〉G)/E) =

l−1∑
i=0

pi discJ(E)((σ − 1)l−i−1(β)).

Proof. The maps ℘ and σ commute, thus (σ − 1)(℘(x)) = ℘ ((σ − 1)(x)) for all x ∈ E and [(σ −
1)(β)] = (σ − 1)([β]).

This shows (b) and (a) via (σ − 1)i([β]) = [0] ⇐⇒ (σ − 1)i(β) ∈ ℘(E).

(c) Choose βi ∈ [(σ − 1)i(β)] such that νJ(E)([(σ − 1)i(β)]) = νE(βi) for 0 ≤ i ≤ len ([β]) and let
z := min{0 ≤ i ≤ l − 1 | λi 6= 0}
If E/F is totally ramified, then Lemma 4.6(c) immediately proves that

νE(β0) < νE(β1) < . . . < νE(βlen([β])−1)

are pairwise different and the result follows by the ultrametric triangle-inequality.

Let E/F be unramified now. Again, we have

νE(β0) ≤ νE(β1) . . . ≤ νE(βlen([β])−1).

Write βi =
p−1∑
k=0

gi,kθ
k
a for gi,k ∈ F , and set

ρ(i) := max
(

0 ≤ k ≤ p− 1 | νE(βi) = νE(gi,kθ
k
a)
)

for 0 ≤ i ≤ len ([β])− 1.

Note that we have p - νE(βi) or νE(βi) = 0 and βi /∈ ℘(E) for 0 ≤ i ≤ len ([β]) − 1. By
assumption and (4.6) we have νF (gi,ρ(z)) > νF (gz,ρ(z)) for all i > z. Hence with Lemma 4.5 we
get

νE(

l−1∑
i=0

λiβi)
0=λz−1=...=λ0

= νE(

l−1∑
i=z

λiβi) = νE(

len([β])−1∑
i=0

λi

p−1∑
k=0

gi,kθ
k
a)

= νE(
∑
i=0

λigi,ρ(i)θ
ρ(i)
a )

La. 4.5
= νE(βz).
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As p - νE(βz) or βz /∈ ℘(E) and νE(βz) = 0, we have

νE(βz) = νJ(E) ([βz]) = νJ(E)

([
l−1∑
i=0

βi

])
.

(d) (βi)i=0,...,l−1 := ([(σ − 1)i(β)])i=0,...,l−1 forms an Fp-basis of 〈[β]〉 by (b). The discriminant
formula for elementary abelian p-extensions implies

disc(E(℘−1(〈[β]〉))/E) =
∑

(λ0,...,λl−1)∈Flp\0

cond(E(℘−1(
l−1∑
i=0

λiβi))/E)

=
∑

(λ0,...,λl−1)∈Flp\0

(condJ(E)(

l−1∑
i=0

λiβi))

(c)
=

l−1∑
i=0

(pl−i − pl−i−1) condJ(E)(βi)

=

l−1∑
i=0

pl−1−i discJ(E)(βi) =

l−1∑
i=0

pi discJ(E)(βl−1−i).

Inserting βi = [(σ − 1)i(β)] proves (d).

Corollary 4.11. Let α, β ∈ E such that 〈α〉G = 〈β〉G. Then νJ(E) ([α]) = νJ(E) ([β]).

Proof. Let l = len ([α]). Using the F -basis
(
(σ − 1)i(α)

)
0≤i≤l−1

we get

[β] =

l−1∑
i=0

λi[(σ − 1)i(α)] for some λi ∈ Fp.

Suppose λ0 = 0, then len ([β]) = len

([
l−1∑
i=1

λi[(σ − 1)i(α)]

])
< l and 〈α〉G 6= 〈β〉G.

Thus λ0 6= 0 and by Lemma 4.10(c) we have νJ(E) ([α]) = νJ(E) ([β]).

Following [Sch14] we suggest the following definition.

Definition 4.12. Let E = F (θa) for a ∈ RF .

(a) Let B be an Fp-basis of J(F ) such that [a] ∈ B. Consider the corresponding dual basis (λv)v∈B.
Then we define a map

εE/F : J(E) 7−→ Fp, [β] 7−→ λ[a]([TrE/F (β)]).
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(b) For 1 ≤ r ≤ p− 1 we set

Jr(E) := {[β] ∈ J(E) : len ([β]) ≤ r, εE/F ([β]) = 0}

and
J̃r(E) := {[β] ∈ J(E) : len ([β]) ≤ r, εE/F ([β]) 6= 0}

Moreover, we set Jp(E) := {[β] ∈ J(E) : len ([β]) ≤ p} = J(E).

(c) For 1 ≤ r, s ≤ p, s 6= p and x ∈ R≥0 we set

Jr(E, x) :=
{

[β] ∈ Jr(E) : |νJ(E) ([β])| ≤ x
}
,

J̃s(E, x) :=
{

[β] ∈ J̃s(E) : |νJ(E) ([β])| ≤ x
}
.

Schultz uses in his paper [Sch14, Section 4.1] actually a different definition from our definition of εE/F
and defines it in greater generality. For now, letK/F be a cyclic Cpn-extension with 〈σ〉 = Gal(K/F ).
Let (σ − 1) : J(K) → J(K), [β] 7→ [σ(β) − β] be the corresponding endomorphism on J(K). Then
Schultz defines the function

e : Ker((σ − 1)p
n−1)→ Fp, [β] 7→ [(σ − 1)(θTrK/F (β))].

In the case n = 1, this definition indeed coincides with εK/F on Ker(σ−1)p−1 as we show next. This
way, we can apply all results from [Sch14] on the function e on our function εE/F .

Remark 4.13. Let n = 1 and E/F be a Cp-extension, then e([β]) = εE/F ([β]) for all [β] ∈
Ker((σ − 1)p−1).

Proof. Let β =
p−1∑
i=0

fiθ
i
a with fi ∈ F and (σ − 1)p−1([β]) = 0. This means that fp−1 ∈ ℘(E) ∩ F =

Fp · a+ ℘(F ), hence

fp−1 = µa+ ℘(f) = −TrE/F (β) for some µ ∈ Fp, f ∈ F. (4.14)

Thus we get

(σ − 1)
(

[θTrE/F (β)]
)

= [(σ − 1)(−µθa − f)] = −µ = λ[a]([−µa + ℘(f)]) = εE/F ([β]).

The purpose of the εE/F -function is to predict the group exponent of the Galois group defined by a
cyclic module. More precisely, let K/F be an Cpn-extension. Let [β] ∈ J(K) with len ([β]) = r < pn

and write L := K(℘−1(〈β〉)). For any σ̂ ∈ Gal(L/F ) such that σ̂|E = σ, Schultz proves the
equivalence

σ̂p
n

= id ⇐⇒ σ̂p(θβ) = θβ ⇐⇒ (σ̂ − 1)(θTrE/F (β)) = 0. (4.15)

If len ([β]) < pn, then TrK/F (β) ∈ ℘(K)∩F and thus, σ̂ acts the same as σ on θTrK/F (β) ∈ K. Thus
εE/F ([β]) is indeed independent of any choice of σ̂.
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Conclusively, considering the embedding problem 1 → (Cp)
r → G → Cpn → 1 with r < pn, we get

exp(G) = pn if and only if εE/F ([β]) = 0. In our case n = 1, this enables us to distinguish H(p, r)

and H̃(p, r). Embedding theoretically, this means that all pre-images of σ in G have the same order.

This is not true in the case r = pn, where εE/F is not base-independent. It depends on a choice
of either a basis of J(E) or a choice of a continuation σ̂, or a choice on a pre-image of σ in the
group extension. On the other hand, both groups are isomorphic, hence the length is sufficient as
an invariant.

Finally, in the case n = 1 and r = p, it is worth pointing out that the trace describes the underlying
Cp × Cp-extension, as

SpanFp
(
a,TrE/F (β)

)
+ ℘(F ) = ℘(L) ∩ F is of rank 2 modulo ℘(F ).

Remark 4.14.

(a) Note that TrE/F (℘(α)) = ℘
(
TrE/F (α)

)
for all α ∈ E, thus εE/F is a well-defined Fp-linear map.

However, the definition of εE/F depends on the chosen basis B of J(E).

(b) Let f0, . . . , fp−1 ∈ F . Using Lemma 4.4(a) we have

εE/F

([
p−1∑
i=0

fiθ
i
a

])
= λ[a]([TrE/F (

p−1∑
i=0

fiθ
i
a)]) = λ(a) ([−fp−1]) for all fi ∈ F. (4.16)

Therefore we get

εE/F

([
p−2∑
i=0

fiθ
i
a + ℘(fp−1)θp−1

a

])
= 0 for all fi ∈ F. (4.17)

If we write [fp−1] = µ[a] · [a] +
∑

[b]∈B\{[a]} µ[b] · [b] as its unique Fp-linear combination of B, then
we obtain

εE/F ([fp−1θ
p−1
a ]) = λ[a]([−fp−1]) = −µ[a].

4.2.1 Description of (Twisted) Heisenberg Extensions

Theorem 4.15. Let [α] ∈ J(E) and r := len ([α]).

(a) If r < p, then E(℘−1(〈α〉G)) is an H(p, r)- or an H̃(p, r)-extension. Moreover, it is a twisted
Heisenberg extension if and only if εE/F ([α]) 6= 0.

(b) If r = p then E(℘−1(〈α〉G)) is a Cp o Cp-extension.

A proof is given in [Sch14, Prop. 4.2]. The major step is (4.15) combined with Lemma 4.10(b).
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Theorem 4.16. Let a ∈ RF with E = F (θa) and 1 ≤ r ≤ p− 1.

(a) For any α ∈ E with νE(α) > rνF (a) we get len ([α]) ≤ r.

(b) Let α = f0 + f1θa + . . .+ frθ
r
a ∈ E with fi ∈ F . Then

len ([α]) = r + 1⇐⇒ fr /∈ ℘(E) ∩ F.

Proof. (a) If E/F is unramified, then the assertion νE(α) > rνF (a) implies that νE(α) > 0. There-
fore α ∈ ℘(E) and len ([α]) = 0 ≤ r.
Now assume E/F to be totally ramified. Then by Lemma 4.6(c) we have

νE ((σ − 1)r(α)) ≥ νE(α)− rνF (a) > 0,

thus (σ − 1)r(α) ∈ ℘(E) and len ([α]) ≤ r which shows (a).

(b) For f ∈ F we have

(σ − 1)(fθia) = f ·
(
(θa + 1)i − θia

)
= f ·

j−1∑
i=0

(
i

j

)
θja

hence
(σ − 1)r(f0 + f1θa + . . .+ frθ

r
a) = λfr for λ = r! ∈ F×p .

Thus (σ − 1)r+1(α) = 0 and len ([α]) ≤ r + 1. Moreover

[(σ − 1)r(α)] = [λfr] = 0
La. 1.5(b)⇐⇒ [fr] = 0⇐⇒ fr ∈ ℘(E).

Thus len(α) = r + 1⇐⇒ fr /∈ ℘(E).

Example 4.17. Let 1 ≤ r ≤ p − 1 and f0, . . . , fr ∈ F . In the case fr ∈ ℘(E) ∩ F every length

len

([
r∑
i=0

fiθ
i
a

])
∈ {0, . . . , r} is possible: For this, choose gr ∈ RF and fr = ℘(gr). We get

℘(grθ
r
a) = ℘(gr)︸ ︷︷ ︸

=fr

θra +
r−1∑
i=0

(
r

i

)
gpra

r−iθia =: frθ
r
a + hr−1θ

r−1
a + . . .+ h0 ∈ ℘(E) (4.18)

and this element has length 0.

For length r − 1 take for instance β := Ψ−(r−1)(℘(g)θa), then len ([β]) = r − 1.

Note furthermore that hi /∈ ℘(E) ∩ F for all 0 ≤ i ≤ r − 2. Thus len

([
i∑

k=0

hiθ
i
a

])
= i, hence

len
([
frθ

r
a + hr−1θ

r−1
a + . . .+ hi+1θ

i+1
a

])
= len

([
℘(grθ

r
a)−

i∑
k=0

hiθ
i
a

])
La. 4.9

= max(0, i) = i.
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Lemma 4.18. Let E = F (θa) for a ∈ RF be a totally ramified Cp-extension. Define γE :=

Ψ−1(℘(θp−1
a )).

(a) Write γE =
p−1∑
i=1

fiθ
i
a for fi ∈ F . Then

fi = (−1)i−1 · 1

i
· ap−i + hi, where hi ∈ F with νF (hi) > νF (ap−i).

(b) We have len ([γE ]) = 1 and εE/F ([γE ]) = −1. In particular, E(θγE )/F is a Cp2-extension.

Proof. (a) We have

℘(θp−1
a ) = (θpa)

p−1 − θp−1
a = (θa + a)p−1 − θp−1

a = −θp−1
a +

p−1∑
i=0

(
p− 1

i

)
ap−1−iθia

=

p−2∑
i=0

(
p− 1

i

)
ap−1−iθia =

p−2∑
i=0

(−1)iap−1−iθia. (4.19)

Thus there is a pre-image of ℘(θp−1
a ) under the isomorphism Ψ by Lemma 4.7. Again by

Lemma 4.7

γE
(4.11)

=

p−1∑
i=1

(
(−1)i−1 1

i
ap−iθia +

p−2∑
k=i

(−1)kµi,ka
p−(k+1)θia

)
. (4.20)

Using νF (a) < 0 we get νF (ap−k) > νF (ap−i) for all i < k which proves the description of γE .

(b) By the calculation in (a) we have fp−1 = −a and thus

εE/F ([γE ]) = λ[a]([TrE/F (γE)])
(4.17)

= λ[a]([−a]) = −1.

Note that γE /∈ ℘(E) as νE(γE) < 0 and p - νE(γE). Then Theorem 4.15 shows that E(θγE )/F
is indeed a Cp2-extension.

Corollary 4.19. Let E = F (θa) for a ∈ RF and 2 ≤ r ≤ p − 1. Then [β] ∈ J(E) defines a
H̃(p, r)-extension if and only if [β] = [α] + λ[γE ], where λ ∈ F×p and [α] defines a H(p, r)-extension.

Proof. By Theorem 4.15 we have len ([β]) = r and εE/F ([β]) = λ = λ · εE/F ([γE ]) for some λ ∈ F×p .
Set [α] := [β − λγE ], then we get

εE/F ([β − λγE ]) = εE/F ([β])− λεE/F ([γE ]) = λ− λ = 0.

Moreover len ([α]) = len ([β − λγE ])
Rem. 4.9

= r as len ([β]) = r 6= 1 = len ([λγE ]). Thus [α] defines a
H(p, r)-extension by Theorem 4.15.
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In the case r = 1 we easily get a similar result by the reasoning: [β] ∈ J(E) defines a Cp2-extension
if and only if [β] = [α] + λ[γE ], where λ ∈ F×p and [α] = [0] or [α] defines a Cp × Cp-extension.

The only difference is that we cannot establish equality for the length, and the length of [α] can be
0.

In Schultz [CMS16] we find the following nice decomposition for fields of characteristic p. We need
the n = 1 situation.

Theorem 4.20. Let Z/F be a Cpn-extension. Then there exists γ ∈ J(Z) and ∆ ⊆ J(Z) such that

J(Z) = 〈γ〉 ⊕
⊕
α∈∆

〈α〉G and

• len ([γ]) = 1, εZ/F ([γ]) 6= 0,

• 〈α〉G ∼= Fp[Cpn ] for all α ∈ ∆.

A proof is given in [CMS16, Prop. 6.2].

In the case n = 1 we can take γ = γE with γE defined in Lemma 4.18.

4.2.2 Minimal Heisenberg Extensions

Corollary 4.21. Let a ∈ RF so that E = F (θa)/F is totally ramified and let 1 ≤ r ≤ p.

(a) If ω0 ∈ Fq \ ℘(Fq) then Lr(a) := E(θω0θ
r−1
a

) defines an Hp2(p, r)-extension of degree p2 over F
containing E of minimal discriminant.

(b) The corresponding discriminants over p2 points are disc (L1(a)/F ) = p disc(E/F ) for r = 1 and

disc (Lr(a)/F ) = (p+ r − 1) disc(E/F )− (p− 1)(r − 2) for 2 ≤ r ≤ p.

Proof. We have len
([
ω0θ

r−1
a

])
= r by Theorem 4.16(b) thus the corresponding extension has Galois

group H(p, r) or H̃(p, r). If r = p, we have H(p, p) = H̃(p, p) and Lr(a) defines a H(p, p)-extension.

For r < p we immediately get εE/F ([ω0θ
r−1
a ]) = 0 by (4.17). Thus the corresponding extension has

Galois group H(p, r) by Theorem 4.15(a).

For minimality, let β ∈ RE be any element with νE(β) > νE

(
θω0θ

r−1
a

)
= (r − 1)νF (a), then

len ([β]) ≤ (r− 1) by Theorem 4.16(a) and thus E(θβ)/F does not define a H(p, r)-extension. Thus
no extension of E/F of smaller discriminant is an H(p, r)-extension which proves the minimality.

For the discriminant we consider r = 1 first. Then νE
(
ω0θ

0
a

)
= νE(ω0) = 0 and

disc (L1(a)/F ) = pda+ 0 = pda.
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For r ≥ 2, the tower formula yields

disc (Lr(a)/F ) = p disc(E/F ) + (p− 1)
(
|νE(ω0θ

r−1
a )|+ 1

)
= p disc(E/F ) + (p− 1) ((r − 1)|νE(ω0θa)|+ 1)

= p disc(E/F ) + (r − 1)(p− 1) (|νE(θa)|+ 1)− (p− 1)(r − 2)

= (p+ (r − 1)) disc(E/F )− (p− 1)(r − 2).

Remark 4.22. We also have

disc (Lr(a)/F ) = (p+ r − 1)(p− 1)|νF (a)|+ (p− 1)(p+ 1) (4.21)

since

disc(Lr(a)/F ) = (p+ r − 1) disc(E/F )− (p− 1)(r − 2)

= (p+ r − 1)(p− 1)(|νF (a)|+ 1)− (p− 1)(r − 2)

= (p+ r − 1)(p− 1)|νF (a)|+ (p− 1)(p+ 1).

Lemma 4.23. Let a ∈ RF with νF (a) = 0 so that E = F (θa)/F is unramified and let 1 ≤ r ≤ p.
Then Lr(a) := E(θt−1θr−1

a
) defines a minimal H(p, r)-extension over p2 points, with discriminant

disc(Lr(a)/F ) = 2p(p− 1).

Proof. The discriminant is given by the formula

disc(Lr(a)/F ) = pda + fE/F (p− 1)(|νE(t−1θr−1
a )|+ 1) = 0 + p · (p− 1) · 2.

Note that Gal(Lr(a)/F ) ∼= H(p, r) by Theorem 4.16(b) as t−1 /∈ ℘(E)∩F . Moreover, it is a minimal
Heisenberg extension as any extension with smaller discriminant is unramified and therefore defines
an abelian extension.

4.2.3 Minimal Twisted Heisenberg Extensions

Let E = F (θa) for some a ∈ RF . Recall Lemma 4.18 and the element

γE = Ψ−1(℘(θp−1
a ))

and write γE =
p−1∑
i=1

fiθ
i
a as its representation with respect to the power basis 1, θa, . . . , θ

p−1
a .

For 1 ≤ r ≤ p− 1 we can decompose

γE =
r−1∑
i=1

fiθ
i
a︸ ︷︷ ︸

:=δE,r

+

p−1∑
i=r

fiθ
i
a︸ ︷︷ ︸

:=γE,r

= δE,r + γE,r, (4.22)

where we are mainly interested in the element γE,r.
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Lemma 4.24. Let E = F (θa) for some a ∈ RF with G = Gal(E/F ) and 1 ≤ r ≤ p− 1.

(a) We have len ([γE,r]) = r.

(b) The element γE,r generates a H̃(p, r)-extension, that is Gal(E(〈[γE,r]〉G)/F ) ∼= H̃pr+1(p, r).

(c) If νF (a) < 0 we have νE(γE,r) = (p(p− r) + r) νF (a).

Proof. (a) For the coefficients we have

νF (fr) = νF (ap−r) for 1 ≤ r ≤ p− 1, νE(γE) = (p2 − 1)νF (a). (4.23)

If r < p− 1 we have p− r > 1 and we obtain fr−1 /∈ ℘(E) ∩ F . Then we have

len ([δE,r])
Thm. 4.16

= (r − 1) + 1 = r,

thus we have len ([γE,r]) = r as well by (4.13).

(b) We have
−1 = εE/F ([γE ]) = εE/F ([δE,r]) + εE/F ([γE,r]) = 0 + εE/F ([γE,r]).

Using part (a) and Theorem 4.15, the element γE,r defines a H̃(p, r)-extension.

(c) Using Lemma 4.18 we have

νE(γE,r) = νE

(
p−1∑
i=r

(−1)i−1

i
ap−iθia + hiθ

i
a

)
with hi ∈ F and νF (hi) > νF (ap−i),

thus

νE(γE,r) = min{νE(ap−iθia) : r ≤ i ≤ p− 1} = νE(ap−rθra) = (p(p− r) + r) νF (a).

We will show later in Theorem 4.60 that γE,r defines a minimal twisted Heisenberg extension. Our
proof requires to know all possible discriminants for Heisenberg extensions first. We illustrate the
notations and ideas with an example here.

Example 4.25. Let us consider p = 3 and F = F3((t)). Let E = F (θa) for some a ∈ RF with
νF (a) < 0. Using our standard generator σ ∈ Gal(E/F ) with σ(θa) = θa + 1 and the isomorphism
Ψ = σ − 1 from Lemma 4.7 with the F -bases B = (θa, θ

2
a) and C = (1, θa). We have

MB,C (Ψ) =

(
1 1
0 2

)
=
(
MB,C (Ψ)

)−1 ∈ GL2(F3). (4.24)

Now ℘(θ2
a) = (a+ θa)

2 − θ2
a = 2aθa + a2 and

γE = Ψ−1
(
℘(θ2

a)
) (4.24)

= 2a(θa + 2θ2
a) + a2θa = aθ2

a + (a2 − a)θa.

Note γE,1 = γE and γE,2 = aθ2
a.
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• A minimal C9-extension over E is given by Z = E(θγE ) with

disc(Z/E) = (p− 1)
(
|νE((a2 − a)θa)|+ 1

)
= 2 · (7|νF (a)|+ 1) = 14|νF (a)|+ 2.

• A minimal H̃9 (3, 2)-extension over E is given by E(θγE,2).

First of all, γE,2 = (a2 − a)θa corresponds to a module of length 2, as

(a2 − a)θa /∈ ℘(E) and (σ − 1)((a2 − a)θa) = a2 − a /∈ ℘(E).

Secondly, εE/F
(
[(a2 − a)θa]

)
= 0 by Remark 4.14(b), hence combining these two facts, the

element γE,2 defines a H̃9(3, 2)-extension by Theorem 4.15.

To show the minimality, take β = f0 + f1θa + f2θ
2
a ∈ E with fi ∈ F such that E(θβ) defines a

H̃(p, 2)-extension. Then len ([β]) = 2 which implies f2 ∈ ℘(E) ∩ F . Moreover, by εE/F ([β]) =
λ[a]([−f2]) 6= 0, we get f2 /∈ ℘(F ). Hence f2 = ℘(f) ± a for some f ∈ F , and thus νF (f2) =
νF (℘(f)± a) ≤ νF (a). Thus

disc (E(θβ)/E) = 2 ·(|νE(β)|+1) ≥ 2 ·(|νE(aθ2
a)|+1) = 2 ·(|νE(γE,2)|+ 1) = disc(E(θγE,2)/E).

This shows that the minimal twisted Heisenberg extension has smaller discriminant than the
minimal cyclic Cp2-extension, considered over p2 points.

• To construct the wreath product C3 o C3 as a Galois group, we can take the Galois closure of
E
(
℘−1

(
θ2
a

))
. As ℘(F3) = 0 and 1 /∈ ℘(F3), we have len

([
1 · θ2

a

])
= 3.

This example works in principal analogously in the case p > 3 where it is just more difficult to
explicitly describe the element γE .

4.3 Heisenberg Modules and Systems of Representatives

Our next goal is to enumerate Heisenberg Hp2(p, r)-extensions of degree p2 containing a fixed Cp-
extension E = F (θa) for some a ∈ RF . For this purpose we will construct new systems of repre-
sentatives of J(E). The main emphasis lies on expressing the representatives in terms of the power
basis 1, θa, . . . , θ

p−1
a rather than in terms of powers of a prime element (opposed to RE(π) defined in

Chapter 1). This is done to easily read off properties of the Galois group from the defined extensions
E(θα) for a representative α.

We will use these systems to describe the set of all module generators for modules of length ≤ r with
εE/F -value 0.

Remark 4.26. For a ∈ RF recall the Fp-vector spaces Va = ℘(F (θa)) ∩ F and RVa we defined in
Remark 1.22.

Va = ℘(F )⊕ Fp · a.
Let RVa ≤ RF be a suitable subspace of codimension 1 such that RF = RVa ⊕ Fp · a. Then RVa is a
reduced complement of F/Va with RVa ⊆ RF .

Note that x ∈ RVa ∩ Va ⇐⇒ x = 0 and x ∈ RF ∩ ℘(F ) ⇐⇒ x = 0.
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Definition 4.27. Let a ∈ RF and 1 ≤ r ≤ p. We define

Ma := {f0 + f1θa + . . .+ fp−1θ
p−1
a : fi ∈ RVa , fp−1 ∈ RF } and

Ma,r := {f0 + f1θa + . . .+ fr−1θ
r−1
a ∈Ma : 0 6= fr−1 ∈ RVa}.

We give an overview on useful direct sum decompositions for a given a ∈ RF where some will be
proven in this subsection:

E = ℘(E)⊕RE = ℘(E)⊕Ma, ℘(E) ∩ F = ℘(F )⊕ Fp · a =: Va,

F = ℘(F )⊕RF = ℘(F )⊕ Fp · a⊕RVa

Lemma 4.28. Let 1 ≤ r ≤ p, E := F (θa) and α ∈ Ma,r. Let L := E
(
℘−1(〈α〉G)

)
be the extension

defined by α. Then Gal(L/F ) ∼= H(p, r).

Proof. Let α =
r−1∑
i=0

fiθ
i
a with fi ∈ RVa and fr−1 6= 0. Then len ([α]) = r by Theorem 4.16(b).

If r < p, then fp−1 = 0 and thus TrE/F (α)
La. 4.4

= 0. This shows εE/F ([α]) = 0 by Remark 4.14(b).
Thus Gal(L/F ) ∼= H(p, r). For p = r the Galois group is the wreath product Cp o Cp ∼= H(p, p).

Remark 4.29. Define Wa :=
⊕p

i=1Ma,i. Then Ma 6= Wa, more specifically,

f0 + f1θa + . . .+ fp−1θ
p−1
a ∈Ma \Wa ⇐⇒ fp−1 ∈ RF \RVa . (4.25)

Lemma 4.30. Let a ∈ RF , E := F (θa) and Wa :=
⊕p

i=1Ma,i.

(a) We have dimFp(Ma/Wa) = 1.

(b) If Gal(E(θγ)/F ) ∼= Cp2 generates a cyclic extension for some γ ∈Ma, then Fp · γ ⊕Wa = Ma.

Proof. Consider the projection

pr: Ma −→ F, f0 + f1θa + . . .+ fp−1θ
p−1
a 7−→ fp−1. (4.26)

Then u ∈ Wa if and only if pr(u) ∈ RVa . Consequently, there exists v ∈ V with pr(v) /∈ RVa . Now
RVa ≤ RF has codimension 1, hence pr(Fp · v + W ) = RF . Consequently, Fp · v ⊕Wa = Ma and
V = Fp · v which proves (a).

Let γ ∈Ma generate a Cp2-extension. Then we have

TrE/F (γ)
La. 4.4

= −pr(γ) /∈ ℘(F ),

hence Fp · γ ∩Wa = 0 and Fp · γ ⊕Wa
(a)
= Ma by part (a).



108 Chapter 4. On Constructing Subgroups of Cp o Cp

Lemma 4.31. Let a ∈ RF and E := F (θa). Then E = ℘(E)⊕Ma.

Proof. We first analyse ℘(E). For f ∈ F and i ∈ {1, . . . , p− 1} we get

℘(fθia)
θpa=θa+a

= fp(θa + a)i − fθia =

i−1∑
k=0

(
i

k

)
fpai−kθka + ℘(f)θia, (4.27)

where ℘(f) = 0 ⇐⇒ f ∈ Fp. Hence if x0, . . . , xr ∈ F with xr 6= 0 then

℘(x0 + . . .+ xrθ
r
a)

(4.27)
= ℘(xr)θ

r
a + (r · axpr + ℘(xr−1))θr−1

a +
r−2∑
i=0

yiθ
i
a =:

r∑
i=0

yiθ
i
a,

where the yi ∈ F are defined by the last equality. We get

xr /∈ Fp =⇒ 0 6= ℘(xr) =: yr ∈ ℘(F ) ⊆ Va, or
0 6= xr ∈ Fp =⇒ yr = 0 and 0 6= yr−1 = rxpr︸︷︷︸

∈Fp

a+ ℘(xr−1) ∈ ℘(F )⊕ Fp · a = Va. (4.28)

Conclusively, if α ∈ E and ℘(α) =
s∑
i=0

yiθ
i
a for certain yi ∈ F with ys 6= 0 then (4.28) implies

{
ys ∈ ℘(F ), s = p− 1

ys ∈ Va, s < p− 1.

As the three systemsMa,r, RF , and RVa are additively closed satisfying RVa∩Va = 0 and RF∩℘(F ) =
0 this immediately shows

℘(E) ∩Ma = 0.

We are left to prove

x ∈ E =⇒ ∃ γ ∈Ma such that x+ ℘(E) = γ + ℘(E).

For 0 < r < p− 1 let xr ∈ F and x = xrθ
r
a. We show that

∃γ ∈Ma, y0, . . . , yr−1 ∈ F, β ∈ E : x = γ +

r−1∑
i=0

yiθ
i
a + ℘(β). (4.29)

By Va ⊕RVa = F we get

∀f ∈ F ∃ f0 ∈ F, µ ∈ Fp : f − ℘(f0) + µa ∈ Va. (4.30)

Thus there exist f0 ∈ F and µ ∈ Fp such that

xr − ℘(f0)− µa ∈ RVa . Set f := ℘(f0) + µa. (4.31)
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Then (xr − f)θra ∈Ma by definition of Ma and we get

℘(f0θ
r
a)

(4.27)
= ℘(f0)θra +

r−1∑
k=0

(
r

k

)
fp0a

r−kθka ,

℘(
µ

r + 1
θr+1
a )

(4.27)
= 0 + µaθra +

r−1∑
k=0

(
r + 1

k

)
µ

r + 1
ar+1−kθka

and

x = xrθ
r
a = ((xr − f) + f) θra

(4.31)
= (xr − f)θra + (℘(f0) + µa)θra

= (xr − f)θra + ℘(f0θ
r
a +

µ

r + 1
θr+1
a )

+

r−1∑
k=0

((
r

k

)
fpar−k +

(
r + 1

k

)
µ

r + 1
ar+1−k

)
θka

= (xr − f)θra + ℘(β) +

r−1∑
i=0

yiθ
i
a,

which proves (4.29) for r ≤ p− 2. For r = p− 1 we can use the same proof as for 0 < r < p− 1 only
with µ = 0, f = ℘(f0) ∈ ℘(F ) and f − xp−1 ∈ RF .

For arbitrary α =
p−1∑
i=0

fiθ
i
a ∈ E, fi ∈ F , we can apply (4.29) on fp−1θ

p−1
a , then f̃p−2θ

p−2
a etc. and

lastly apply (4.30) which shows that α ≡ γ mod ℘(E) for some γ ∈Ma.

Corollary 4.32. Let E = F (θa) for a ∈ RF and let γE = Ψ−1(℘(θp−1
a )) as in Lemma 4.18. Let

J(Wa) = {[β] β ∈Wa}. Then we have

J(E) = 〈[γE ]〉 ⊕ J(Wa).

Proof. The class [γE ] defines a Cp2-extension by Lemma 4.18. Now combine Lemma 4.30 and The-
orem 4.20.

In total, we obtain a nice description of all Heisenberg extensions.

Corollary 4.33. Let 1 ≤ r ≤ p− 1 and α =
p−1∑
i=0

fiθ
i
a ∈Ma with fi ∈ F . Then:

(a) For every normal H(p, r)-extension L/F containing E, there is an α ∈Ma,r such that

L = E
(
℘−1(〈α〉G)

)
.
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(b) For α ∈Ma with len ([α]) = r we have Gal
(
E
(
℘−1(〈α〉G)

)
/F
) ∼= {H̃(p, r), fp−1 ∈ RF \RVa ,

H(p, r), fp−1 ∈ RVa .

Proof. For part (a), consider U := ℘(L)/℘(E) ≤ J(E). It is a cyclic Gal(E/F )-module, i.e. U = 〈[β]〉
for some β ∈ E. By Lemma 4.31 we have β = α+℘(h) for some α ∈Ma and h ∈ E. By the condition
len ([β]) = r = len ([α]) we have α ∈Ma,r, so U = 〈[α]〉 and L = E(℘−1(E

(
℘−1(〈α〉G)

)
)).

For proving part (b), note that the condition fp−1 ∈ RF \RVa implies

fp−1 = µa+ ℘(b) for some µ ∈ F×p , b ∈ F.

Thus
εE/F ([α]) = λ[a]([−fp−1]) = λ[a](−[µa+ b]) = −µ 6= 0,

and E(θα)/F is a twisted Heisenberg extension by Theorem 4.16.

4.3.1 Reduced Representative System in the Ramified Case

Let α ∈ E. Recall the valuation-type function

νJ(E) : J(E)→ Z, νJ(E) ([α]) = max
β∈E

(νE(α+ ℘(β))) .

We call an element α ∈ E reduced if νE(α) = νJ(E) ([α]).

For α to be reduced it is necessary that νE(α) ≤ 0 and it is sufficient that p - νE(α) if νE(α) < 0 or
that νE(α) = 0 and the leading coefficient is not in ℘(Fq).

A reduced element α̃ ∈ E with α− α̃ ∈ ℘(E) is called a reduction of α in E.

If E/F is totally ramified, then νE(f) = p ·νF (f) for every f ∈ F and thus, any element f0 ∈ F with
νF (f0) < 0 is not reduced in E. Hence we need to find a reduction of f0 to turn Ma into a reduced

system of representatives. Note that the elements of the form
r∑
i=1

fiθ
i
a are reduced in E.

Notation 4.34. Let E = F (θa) for a ∈ RF be a Cp-extension and (1, θa, . . . , θ
p−1
a ) be the power

basis of E. For 0 ≤ i ≤ p− 1 we denote

πi : E −→ F,

p−1∑
k=0

fkθ
k
a 7−→ fiθ

i
a

as the i-th projection. Obviously, πi is F -linear.

We start with an easy observation from (4.27).

Definition 4.35. Let E = F (θa) for some 0 6= a ∈ RF . Let 1 ≤ r ≤ i and f ∈ F . We define

βr,i(f) :=

i∑
k=r

πk
(
℘(f · θia)

)
.
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Lemma 4.36. Let E = F (θa) for 0 6= a ∈ RF , f ∈ F and 1 ≤ i ≤ p− 1.

(a) π0(℘(fθia)) = fpai.

In particular, we have −fpai ≡ β1,i(f) mod ℘(E).

(b) πi(℘(fθia)) = ℘(f)θia.

(c) For 1 ≤ r ≤ i we have πr(℘(fθia)) =
(
i
r

)
fpai−rθra.

Proof. We have

℘(fθia) = fp(a+ θa)
i − fθia = fpai +

i−1∑
k=1

(
i

k

)
fpai−kθka + ℘(f)θia. (4.32)

This shows by definition (a), (b) and (c) except for the second choice of (a).

By re-arranging the terms, we get

℘(fθia)− fpai =
i−1∑
k=1

(
i

k

)
fpai−kθka + ℘(f)θia = β1,i(f).

Hence −fpai ≡ β1,i(f) mod ℘(E).

Definition 4.37. For a ∈ RF and z ∈ Z we define wz(a) := b z|νF (a)|
p c and

R(z)
a := twz(a) · Fq[t−1].

Note that R(z)
a is the Fq-vector space with basis

(
ti : i ≤ wz(a)

)
. The elements f ∈ R(z)

a can be
thought of as shifted polynomial expressions f =

∑
i≤wz(a)

fit
i so that every term 0 6= fit

i satisfies

νF (fit
piaz) ≤ 0⇐⇒ fit

i ∈ R(z)
a ⇐⇒ i ≤ wz(a). (4.33)

The integer wz(a) ∈ Z is maximal with the property νF (tp·naz) ≤ 0. Note that νE(tnθza) = νF (tpnaz)
if νF (a) < 0.

Lemma 4.38. Let a ∈ RF with νF (a) < 0. Let f ∈ F and 1 ≤ r ≤ i ≤ p− 1. Then:

(a) If i = r we have βr,r(f) = ℘(f)θra and νE(βr,r(f)) = νE(fpθra) if νF (f) < 0.

(b) In the case i > r or νF (f) 6= 0 we have

νE(βr,i(f)) =

{
νE(fpai−rθra) = p2νF (f) + (p(i− r) + r)νF (a) νF (fpai−r) ≤ 0

νE(fθia) = νF (fpai), νF (fpai−r) > 0.

Moreover, νE(βr,i(f)) < rνF (a) ⇐⇒ νF (fpai) < 0.
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(c) We have νE(βr,i(f)) ≤ rνF (a) ⇐⇒ νF (fpai−r) ≤ 0 ⇐⇒ νF (f) ≤ wi−r(a).

Proof. Now to prove (a), if i = r we simply have

νE (βr,r(f)) = νE (℘(f)θra) = νE (fpθra − fθra)

and νE(fpθra) 6≡ νE(fθa) mod p. Thus we get the claim in (a).

In case of (b) we have i > r. We first show

νE (γr,i(θa)) = νE(ai−rθra) = (p(i− r) + r)νF (a). (4.34)

Since νE(a) = pνE(θa) = pνF (a) < 0 we have

νE

(
θa
a

)
= νF (a)− pνF (a) = −(p− 1)νF (a) > 0. (4.35)

Thus for all 1 ≤ r < k ≤ i we get

νE(ai−kθka) = νE(ai−rθra) + (k − r)νE
(
θa
a

)
(4.35)
> νE(ai−rθra).

Thus we can prove equation (4.34) using

νE(γi,r(θa)) = νE(ai−rθra) = (p(i− r) + r)νF (a).

Then
νE(fpai−rθra) 6≡ νE(fθia) mod p (4.36)

and using βr,i(f) = fpγi, r − fθia we get

νE(βr,i(f)) = νE
(
fpγr,i(θa)− fθia

) (a)
=

(4.36)
min

{
νE(fpai−rθra), νE(fθia)

}
.

The condition for the minimum is

νE(βr,i(f)) = νE(fθia)
(4.36)⇐⇒ νE(fθia) < νE(fpai−rθra)

(a)⇐⇒ pνF (f) + iνF (a) < p2νF (f) + (pi− (p− 1)r)νF (a)

⇐⇒ 0 < (p2 − p)νF (f) + (p− 1)(i− r)νF (a)

· 1
p−1⇐⇒ 0 < pνF (f) + (i− r)νF (a)

⇐⇒ 0 < νF (fpai−r),

proving (b) and (c) by using νF (fpai−r) < 0 ⇐⇒ νF (f) ≤ wi−r(a).
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Remark 4.39. For the only missing case i = r and νF (f) = 0 we write f =
∞∑
k=0

fkt
k so that

νE(βr,r(f)) = νE(℘(f)θra) =

{
νE(θra) = rνF (a), ℘(f0) 6= 0

νE((f − f0)θra) = pνF (f − f0) + rνF (a), ℘(f0) = 0.

Combining Lemma 4.38 and Proposition 4.31 we obtain a generating system for allH(p, j)-extensions
with j ≤ r containing E = F (θa) as follows:

{f1θ
1
a + . . .+ fr−1θ

r−1
a + βθa,i(gi) | fj ∈ RVa ; gi ∈ F for 1 ≤ i ≤ p− 1}.

Our next task is to find a minimal generating system. We will fix one element ω0 ∈ Fq \ ℘(Fq).

Lemma 4.40. Let a ∈ RF with νF (a) < 0.

(a) For any f ∈ F there exist a β ∈ F and uniquely determined λ0 ∈ Fp, g1 ∈ R(1)
a , . . . , gp−1 ∈

R
(p−1)
a such that

f = ℘(β) + λ0ω0 +

p−1∑
i=1

gpi a
i.

(b) For all f ∈ RVa there exist λ ∈ Fp and gi ∈ R(i)
a for 1 ≤ i ≤ p such that

f ≡ λ0ω0 +

p−1∑
i=1

βi(gi) mod ℘(E)

is a reduction of f in E, where βi(gi) is defined in (4.32).

Proof. We first use induction on |νF (f)| for the existence part.

Let νF (f) ≥ 0 and f =
∞∑
i=0

fit
i. Then νE(f − f0) > 0 and thus f − f0 = ℘(β̃) ∈ ℘(F ). Moreover,

we have f0 = h0 + ℘(β0) for some h0 ∈ RF with h0 a constant and β0 ∈ F , thus h0 = λ0ω0 for a
uniquely determined λ0 ∈ Fp so that

f = λ0ω0 + ℘(β0 + β̃).

Now let n = νF (f) < 0, then f = λtn + f̃ for uniquely determined λ ∈ F×q and f̃ ∈ F where
νF (f̃) > n.

Assume first that p | n, that is n = pk for some k ∈ Z. Then there exists a unique µ ∈ F×q such that
µp = λ, thus

℘(−µtk) = −µtk + λtn

and νF (f + ℘(−µtk)) > νF (f). Now we can apply induction to f + ℘(−µtk) and we are done.



114 Chapter 4. On Constructing Subgroups of Cp o Cp

Otherwise p - n. As p - νF (a) there exists an 1 ≤ j ≤ p− 1 such that

n ≡ jνF (a) mod p, n = pk + jνF (a),

Hence νF (λtn) = νF (tpkaj) and there exists a uniquely determined µ ∈ F×q such that

νF (λtn − µptpkaj) > νF (λtn).

Thus we can use induction on (f − (µtk)p · aj) and have proven the existence in (a).

The uniqueness of g1, . . . , gp−1 follows by

gi ∈ R(i)
a and gpi a

i ∈ ℘(F ) ⇐⇒ gi = 0.

Consequently, β is unique up to ker(℘) = Fp.

For (b) we combine part (a) and (4.32): By (a) there exist λ0 ∈ Fp and gi ∈ R(i)
a , β ∈ F such that

f
(a)
= ℘(β) + λ0ω0 +

p−1∑
i=1

gpi a
i

leading to

f
Eq. (4.32)

= ℘(β) + λ0ω0 +

p−1∑
i=1

(
℘(giθ

i
a)− βi(gi)

)
(−1)p=−1

= ℘(β) + λ0ω0 +

p−1∑
i=1

(
℘(giθ

i
a) + βi(−gi)

)
=℘(β + g1θa + . . .+ gp−1θ

p−1
a ) + λ0ω0 +

p−1∑
i=1

βi(−gi).

Finally, we have −gi ∈ R(i)
a for all 1 ≤ i ≤ p− 1.

Example 4.41. Let F = F2((t)) and a := t−7 ∈ RF . Let E = F (θa).

• We have w1(a) = 3, as we have

νF (t2ia) = νF (t2i−7) = 2i− 7 < 0 ⇐⇒ i ≤ 3.

We then have R(a)
1 =

{
3∑
i=ν

bit
i | bi ∈ F2, ν ≤ 3

}
.

• Choosing the basis B =
(
1 · t0, t−2i+1

)
i∈N we get

RVa =
{
λ0 + b−1t

−1 + b−3t
−3 + b−5t

−5 + b−9t
−9 + . . . b−(2n+1)t

−2n−1 | bi ∈ F2, 3 6= n ∈ N0

}
.

We have Ma,1 = {f0 + f1θa | fi ∈ RVa}.
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• Let 0 6= β = f0 + f1θa for f0, f1 ∈ RF . Then we have

Gal(E(θβ)/F ) ∼=


C2 × C2, f1 = 0

C4, f1 = a

D4, else.

In the special case p = 2 we have F×2 = {1} and γE = aθa has a very simple shape.

• For b ∈ F we have β1,1(b) = ℘(b) · θa.

4.3.2 Enumeration of some Systems of Representatives

Now we construct a system of representatives of Jr(E) in order to analyse the asymptotics of Heisen-
berg extensions of degree p2. For this, we combine the system of representatives Ma with the de-
scription of f0 ∈ F from Lemma 4.40.

For 1 ≤ r ≤ j ≤ p− 1 and gj ∈ F recall βr,j(gj) := ℘(gj)θ
j
a +

j−1∑
i=r

gpj
(
j
i

)
aj−iθia.

Let πE be a uniformiser of E and recall

RE = {µ0ω0 +
−1∑
i=ν
p-i

λiπE | µ0 ∈ Fp, λi ∈ Fq, ν ≤ 0}.

Definition 4.42. Let a ∈ RF with νF (a) < 0 and E = F (θa).

(a) We define for 1 ≤ r ≤ p− 1:

Nr(E) := {α ∈ RE : νE(α) > rνE(θa)} = {α ∈ RE : |νE(α)| < r|νE(θa)|},

ΩE,r := {α0 +
r−1∑
i=1

fiθ
i
a + ℘(fr)θ

r
a +

p−1∑
i=r+1

βr,i(fi) : α0 ∈ Nr(E), fi ∈ R(i−r)
a }.

(b) For r = p we set ΩE,p := RE .
(c) For x ∈ R≥0 and 1 ≤ r ≤ p we define ΩE,r(x) := {α ∈ ΩE,r : |νE(α)| ≤ x}.

The purpose of ΩE,r is to describe all module generators of length ≤ r with εE/F (α) = 0. The key
difference to the representative system Ma is that we decompose f0 according to

f0 = λ0ω0 +

p−1∑
i=1

fpi a
i ≡ λ0ω0 +

p−1∑
i=1

β1,i(fi) mod ℘(E).

In particular, now the valuations for f1, . . . , fr−1 can be divisible by p which was excluded in Ma.
Moreover, βr,j(gj) have to be considered. And finally, we use a technical distinction between terms
with valuation > rνE(θa) and with valuation ≤ rνE(θa). We use this to simplify νE(βr,i(fi)), while
on the other hand the elements in Nr(E) are easy to count.
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Example 4.43. We continue Example 4.41 with F = F2((t)) and a = t−7. Let E = F (θa) and
r = 1. We choose the prime element π := t4θa of E.

• We have N1(E) = {α ∈ RE : νE(α) > νE(θa) = −7} = {b0 +b−1π
−1 +b−3π

−3 +b−5π
−5 | bi ∈

F2}.

• We have R(1)
a = {

3∑
i=ν

bit
i : ν ≤ 3, bi ∈ F2} and R(0)

a =

{
0∑
i=ν

bit
i | ν ≤ 0, bi ∈ F2

}
.

• We have ΩE,1 =
{
α0 + ℘(f1)θa : α0 ∈ N1(E), f1 ∈ R(0)

a

}
.

Note that ΩE,1 \ {0} only corresponds to C2 × C2-extensions.

Lemma 4.44. For a ∈ RF with νF (a) < 0 and 1 ≤ r ≤ p− 1 we have the direct sum decomposition

ΩE,r = Nr(E)⊕
r−1⊕
i=1

R(i−r)
a · θia ⊕

p−1⊕
j=r

βr,j(R
(j−r)
a ). (4.37)

More precisely, we have

(i) νE(β) ≤ rνF (a) for all β ∈ ΩE,r \Nr(E).

(ii) For A := νF (a) we have

νE(fiθ
i
a) ≡ iA mod p for all 1 ≤ i ≤ r − 1 and fi ∈ R(i−r)

a

νE (βr,j(fj)) ≡ rA+ p(j − r)A mod p2 for all r ≤ j ≤ p− 1 and fj ∈ R(j−r)
a .

In particular, their valuations are pairwise different or both ∞.

Proof. By assumption E/F is totally ramified and thus νE(f) = pνF (f) for all f ∈ F . For all
fi ∈ R(i−r)

a we get

νE(fiθ
i
a) = pνF (fi) + iνE(θ) = pνF (fi) + iA ≡ iA mod p (4.38)

and

νE(fiθ
i
a) = νF (fpi a

i) = νF (fpi a
i−r) + rνF (a)

(4.33)
≤ 0 + rνF (a),

where the final inequality is valid by the definition of R(i−r)
a . Moreover, by Lemma 4.38(a) and (c)

we have

νE(βr,j(fj)) = p2νF (fj) + (p(j − r) + r) νF (a) ≡ p(j − r)A+ rA mod p2 (4.39)

and fj ∈ R(j−r)
a implies pνF (fpj a

j−r) ≤ 0 and thus νE (βr,j(fj)) ≤ rνF (a). This concludes (i).
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Part (ii) follows by combining (4.38) and (4.39), as the resulting valuations are pairwise incongruent
modulo p2: Note that p(j − r)A+ rA ≡ rA mod p, thus for all 1 ≤ i ≤ p− 1 and all fi ∈ R(j−r)

a we
have

νE

r−1∑
i=1

fiθ
i
a +

p−1∑
j=r

βr,j(fj)

 = min
{
νE(f1θa), . . . , νE(fr−1θ

r−1
a ), νE(βr,r(fr)), . . . , νE(βr,p−1(gp−1))

}
.

Combining this with (i), the sum in (4.37) is direct.

Lemma 4.45. Let a ∈ RF with νF (a) < 0, let π be a prime element of E = F (θa) and 1 ≤ r ≤ i ≤
p− 1.

(a) For r < i let ρi−r ∈ {−(p− 1), . . . ,−1, 0} with ρi−r ≡ (i− r)νF (a) mod p. Then there exists a
valuation-preserving bijection

βr,i(R
(i−r)
a )

∼−→ Fq[π−p
2
] · πpρi−r+rνF (a).

For r = i we have a valuation-preserving bijection

βr,r(R
(0)
a )

∼−→ ℘(Fq)πrνF (a) ⊕
⊕

k<rνF (a)
k≡rνF (a) mod p2

Fq · πk.

(b) For x ∈ R≥0 set βr,i(R
(i−r)
a , x) := #{α ∈ βr,i(R(i−r)

a ) : |νE(α)| ≤ x}. Then for r < i we have

βr,i(R
(i−r)
a , x) = q#{−|x|≤k≤rνF (a) : k≡rνF (a)+pρi−r mod p2}

and r = i we have

βr,r(R
(0)
a , x) =

1

p
q#{−|x|≤k≤rνF (a) : k≡rνF (a) mod p2}.

Proof. For g ∈ R(i−r)
a we will implicitly write

g =
∑

k≤wi−r(a)

gkt
k, with gk ∈ Fq.

We show that we have valuation-preserving bijections

βr,i(R
(i−r)
a )

Ψ1−→ {gp : g ∈ R(i−r)
a } · ai−rθra

Ψ2−→ Fq[π−p
2
] · πρi−r+rνF (a),

βr,i(g) 7−→ gp · ai−rθra 7−→
∑

k≤wi−r(a)

gkπ
p2k+p(i−r)νF (a)+rνF (a).

We start with the injectivity of Ψ1. For g, h ∈ R(i−r)
a we have

Ψ1 (βr,i(g)) = Ψ1 (βr,i(h))
La. 4.36

=⇒
r<i

gpai−rθra = hpai−rθra =⇒ g = h
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as p-powering is injective, thus Ψ1 is injective. Moreover,

νE (βr,i(g))
La. 4.38

= νE(gpai−rθra) = νE (Ψ1(βr,i(g))) ,

and similarly, Ψ1 is surjective.

For Ψ2 we write
g =

∑
k≤wi−r(a)

gkt
pk =

∑
k̃≤0

gk̃+wi−r(a)t
pk̃+pwi−r(a). (4.40)

Moreover
νF (tpkai−r) < 0 ⇐⇒ k ≤ wi−r(a), νF (tpwi−r(a)ai−r) = ρi−r(a), (4.41)

where the first equivalence is true by (4.33), and νF (tpwi−r(a)ai−r) is the minimal integer ≤ 0 con-
gruent to νF (ai−r) modulo p, which shows the second equation. Thus we obtain

νE(tpk̃+pwi−r(a)ai−rθra)
(4.41)

= p2k̃ + pρi−r(a) + rνF (a). (4.42)

This shows that Ψ2 is valuation-preserving. Finally, Ψ2 is indeed bijective as p-powering is injective
on F and it defines an isomorphism on Fq.

For the case i = r we use
βr,r(g0) = ℘(g0)θra for g0 ∈ Fq

and the results follow analogously to the proven case of r < i.

For part (b), we consider for r ≤ i ≤ p− 1 the exponents

er,i(x) := #{r|νF (a)| ≤ k ≤ x : k ∈ Z, k ≡ rνF (a) + ρi−r mod p2},

with ρr,r := 0. By the bijections established in (a) we have

#βr,i(R
(i−r)
a , x) =

{
qer,i(x), r < i
1
pq
er,r(x), r = i.

Lemma 4.46. Let a ∈ RF with νF (a) < 0, let E = F (θa) and 1 ≤ r ≤ p. Then we get:

(a) #Nr(E) = Γq(r(p− 1)|νF (a)|) = pq
d r(p−1)|νF (a)|

p
e.

(b) Let x ∈ R≥0, then

#ΩE,r(x) =

Γq(bxc) = pq
d p−1
p
·bxce

, x < r|νF (a)|

q
p−1

p2
r·(x−r|ν(a)|) · q

p−1
p
r·|νF (a)| · εr(a, x), x ≥ r|νF (a)|

where εr(a, x) ∈ [q−(p−1)r, q(p−1)r].
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Proof. Recall Definition 4.42. For x < r|νF (a)| we have

β ∈ ΩE,r \Nr(E)
(4.37)
=⇒ νE(β) ≤ rνF (a) =⇒ β /∈ ΩE,r(x),

thus ΩE,r(x) ⊆ Nr(E) in this case. We get

ΩE,r(x) = #{α ∈ ΩE,r : |νE(α)| ≤ x < r|νF (a)|}
= #{α ∈ Nr(E) : |νE(α)| ≤ x}

= #{α ∈ RE : |νE(α)| ≤ x} (1.5)
= pq

d bxc(p−1)
p

e
,

which proves the equality in the first case of (b) and proves (a) with the choice x = r|νF (a)| − 1.

Now assume x ≥ r|νF (a)|. Write E(x) := {α ∈ E : |νE(α)| ≤ x}. Then the decomposition (4.37)
yields

ΩE,r(x) = |Nr(E)| ·
r−1∏
i=1

|R(i−r)
a · θia ∩ E(x)| ·

∏
i=r

|βr,i
(
R(i−r)
a

)
∩ E(x)|. (4.43)

We have computed |Nr(E)| in (a), moreover for 1 ≤ i ≤ r − 1 we simply have

|R(i−r)
a · θia ∩ E(x)| = q#{−x≤pk+iνF (a)≤rνF (a) | k∈Z}, (4.44)

and using βr,i
(
R

(i−r)
a

)
∩ E(x) = βr,i(R

(i−r)
a , x) we get

|βr,i
(
R(i−r)
a

)
∩ E(x)| La. 4.45

=

{
1
pq

#{−x≤k≤rνF (a) : k≡r·νF (a) mod p2}, r = i,

q#{−x≤k≤rνF (a) : k≡(p(i−r)+r)·νF (a) mod p2}, r < i.
(4.45)

Thus by counting

er(x) := #{r|νF (a)| ≤ n ≤ x : n ≡ νF (a), . . . , (r − 1)νF (a) mod p

∨ n ≡ rνF (a), (r + p)νF (a), . . . , (r + (p− 1− r)p)νF (a) mod p2},

we get
1

p
qer(x)

(4.44)
=

(4.45)
|R(i−r)

a · θia ∩ E(x)| ·
∏
i=r

|βr,i
(
R(i−r)
a

)
∩ E(x)|.

Note that er(x) corresponds to p(r − 1) + (p − r) = (p − 1)r congruence classes modulo p2. Thus
er(·) is a monotonously increasing function with

er(p
2N + r|νF (a)|) = (p− 1)r ·N for all N ∈ N. (4.46)

For all z, Z ∈ Z we get

#{Z+p2N ≤ k ≤ Z+p2N +y : k ≡ z mod p2} = #{Z ≤ k ≤ Z+y : k ≡ z mod p2}. (4.47)
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Thus, for x ∈ R>0 and x = r|νF (a)|+ p2N + y with 0 ≤ y < p2 we get

er(x) = er(r|νF (a)|+ p2N + y)
(4.47)

= er(r|νF (a)|+ p2N) + er(r|νF (a)|+ y)

= (p− 1)rN + er(r|νF (a)|+ y)

=
r · (p− 1)

p2
x+ er(r|νF (a)|+ y)− r(p− 1)

p2
· y︸ ︷︷ ︸

=:
r · (p− 1)

p2
x+ εr(y). (4.48)

Using (4.46), we have 0 ≤ er(r|νF (a)|+ y)
y<p2

≤ (p− 1)r and −(p− 1)r ≤ −r p−1
p2
r ≤ 0, thus

−(p− 1)r ≤ εr(y) = er(r|νF (a)|+ y)− r(p− 1)

p2
· y ≤ (p− 1)r. (4.49)

Lastly, to analyse the auxiliary function εr we have

q
d (p−1)r|νF (a)|

p
e

= q
(p−1)r|νF (a)|

p · εr(a) for some εr(a) ∈ [1, q] (4.50)

by Lemma 1.33. Setting εr(a, x) := εr(a)qεr(y) we get

q−(p−1)r ≤ εr(a, x) ≤ q1+(p−1)r.

Altogether we get

#ΩE,r(x)
(4.43)

= q
d (p−1)r|νF (a)|

p
e
qer(x)

(4.48)
= q

d (p−1)r|νF (a)|
p

e · q
(p−1)r(x−r|νF (a)|)

p2 qεr(y)

(4.50)
= q

(p−1)

p2
·r(x−r|νF (a)|)

q
p−1
p
r·|νF (a)|

εr(a, x).

Theorem 4.47. Let E/F be a ramified Cp-extension and 1 ≤ r ≤ p. Then ΩE,r is a representative
system of Jr(E) of all classes [α] ∈ J(E) with len ([α]) ≤ r and εE/F ([α]) = 0.

Proof. For r = p this is obvious by the definitions of Jp(E) = J(E) and ΩE,p = RE and by
Lemma 1.20(b).

Now let 1 ≤ r ≤ p− 1. We will show the following:

(i) εE/F ([α]) = 0 for all α ∈ ΩE,r.

(ii) len ([α]) ≤ r for all α ∈ ΩE,r.

(iii) For all 1 ≤ i ≤ r and α ∈Ma,i there exists a α̃ ∈ ΩE,r such that α ≡ α̃ mod ℘(E).

(iv) For two elements x 6= y ∈ ΩE,r we have x 6≡ y mod ℘(E).
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For (i) write α = α0 +
r−1∑
i=1

fiθ
i
a +

p−1∑
j=r

βr,j(fj) with νE(α0) > rνF (a) and fi ∈ R(i−r)
a . Then

εE/F ([α]) = εE/F ([α0]) + εE/F ([

r−1∑
i=1

fiθ
i
a]) +

p−1∑
i=r

εE/F ([βr,i(fi)])

Rem. 4.14(b)
= εE/F ([α0]) + 0 + εE/F

(
[℘(fp−1)θp−1

a ]
)

Rem. 4.14(b)
= εE/F ([α0]) + 0 + 0.

Write α0 =
p−1∑
i=0

hiθ
i
a ∈ Nr(E) for suitable hi ∈ F . We have

|νE(α0)|
by def.
≤ (r − 1)|νE(θa)| ≤ (p− 1)|νE(θa)| = νE(θp−1

a ).

Thus νF (hi) ≥ 0 > νF (a) and

εE/F ([α0])
Rem. 4.14(b)

= λ[a]([−hp−1]) = 0.

This shows εE/F ([α]) = 0 and thus (i).

Now to prove (ii). For all α ∈ Nr(E) we have len ([α]) ≤ r by Theorem 4.16. For all f0, . . . , fr−1 ∈ F
we have shown in Corollary 4.33 that

len
([
f0 + f1θa + . . .+ fr−1θ

r−1
a

])
≤ r. (4.51)

Furthermore, for all g ∈ F and r ≤ j ≤ p− 1 we have

βr,j(g)
(4.32)

=

r−1∑
k=0

gpaj−k
(
j

k

)
θka ,

hence len ([βr,j(g)]) ≤ r by (4.51). Thus len ([x+ y]) ≤ max(len ([x]) , len ([y])) completes (ii).

For (iii) let α = f0 + f1θa + . . . + fi−1θ
i−1
a ∈ Ma,i for certain fj ∈ RVa . Let fj =

∑
k∈Z fj,kt

k with
fj,k ∈ Fq. Then we write

fj := xj + yj with xj =
∑

k≤wj−r(a)

fj,kt
k ∈ R(j−r)

a and yj := fj − xj .

By (4.51) we have νE(yjθ
j
a) = pνF (yj)+jνF (a) ≥ rνF (a). Thus yiθia ∈ Nr(E) ⊆ ΩE,r and xiθia ∈ ΩE,r

per definition. For the constant term we decompose

f0 = λ0ω0 +

p−1∑
j=1

gpja
j with gj ∈ F
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which implies by Lemma 4.40

f0 ≡ λ0ω0 +

p−1∑
j=1

β1,j(gj) mod ℘(E).

For j ≥ r we write

β1,j(gj) :=
r−1∑
i=1

hjiθ
i
a︸ ︷︷ ︸

:=δr,j(gj)

+

j∑
i=r

hjiθ
i
a︸ ︷︷ ︸

:=βr,j(gj)

.

By what we have already shown in (ii) we know there exist αi ∈ ΩE,r such that δr,j(gj) ≡ αj
mod ℘(E) for r ≤ j ≤ p− 1 and β1,i(gi) ≡ αi mod ℘(E) for 1 ≤ i ≤ r− 1. Finally note for βr,j(gj)
that

νE(βr,j(gj)) > rνE(θa) ⇐⇒ νF (gpja
j) > rνF (a).

Thus there is some βj ∈ ΩE,r such that βr,j(gj) ≡ βj ∈ ΩE,r we have shown (iii).

Lastly, for (iv) note that ΩE,r is additively closed, thus the claim is true if ΩE,r ∩ ℘(E) = {0}.
This fact holds true as α ∈ ΩE,r implies either νE(α) > rνF (a) and thus α ∈ RE by definition, or
νE(α) ≤ rνF (a) is non-divisible by p. This shows (iv).

Remark 4.48. Here, we briefly consider the missing case r = p. Let E/F be an arbitrary Cp-
extension. Then ΩE,p = RE is a representative system of J(E), hence corresponds to all Cp-
extensions K/E. Let x ∈ R>0. In Lemma 1.34 we have already computed

#ΩE,p(x) = Γq(x)
La. 1.34

= p · qTp(x) = pq
b p−1
p
|x|c
.

Lemma 4.49. Let 1 ≤ r ≤ p and α ∈ Ma,r. Then there are precisely pr − pr−1 elements in Ma,r

defining the same G-module.

Proof. Let α ∈ E such that 〈[α]〉G is an Fp-space of length r. Then Nα := Ker(σ − 1)r−1 ∩ 〈[α]〉G is
a subspace of 〈[α]〉G of codimension 1. Thus the pr − pr−1 elements of 〈[α]〉G \Nα are precisely the
G-module generators of 〈[α]〉G. Finally, every generator has precisely one representative inMa,r.

Example 4.50. Let a ∈ RF and E = F (θa) be an Artin-Schreier extension.

(a) Let p > 2. Then E(θaθa)/F is a Cp × Cp-extension since TrE/F (aθa)
4.4
= 0 and (σ − 1)(aθa) =

a ∈ ℘(E).

(b) However, if p = 2 we get (σ − 1)(aθa) = a ∈ ℘(E) and

(σ − 1)(θTrE/F (aθa)) = (σ − 1)(θa) = 1,

hence E(θaθa)/F is a cyclic Cp2-extension.
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4.4 Counting Heisenberg Extensions over p2 Points

In this section we consider Hp2(p, r) ≤ Sp2 as a permutation group over p2 points and we will count
non-Galois extensions, i.e. field extensions L/F with [L : F ] = p2 and Gal(L/F ) ∼= Hp2(p, r), and
H̃p2(p, r) ≤ Sp2 analogously. We will analyse the corresponding counting functions for x ∈ R≥0:

Z
(
F,Hp2(p, r);x

)
:= #

{
L/F : Gal(L/F ) ∼= Hp2(p, r), [L : F ] = p2,disc(L/F ) ≤ x

}
,

Z
(
F, H̃p2(p, r);x

)
:= #

{
L/F : Gal(L/F ) ∼= H̃p2(p, r), [L : F ] = p2,disc(L/F ) ≤ x

}
.

We start by counting all wanted fields containing a given cyclic E/F .

Proposition 4.51. Let 1 ≤ r ≤ p. For a fixed Cp-extension E/F and x ∈ R≥0 we write
ZE(r, x) := #{L ∈ Z(F,Hp2(p, r);x) | E ≤ L} and
Z̃E(r, x) := #{L ∈ Z(F, H̃p2(p, r);x) : E ≤ L}. Then

ZE(r, x) � Z̃E(r, x) � qx
r
p2 .

Proof. Firstly, let E/F be unramified. For any α =
p−1∑
i=0

fiθ
i
a ∈ E which is reduced and which defines

a Hp2(p, r)-extension, we have that E(θα)/E is ramified and thus

disc(E(θα)/F ) = 0 + p(p− 1)(|νE(α)|+ 1) = p(p− 1)(max {|νF (fi)| : 1 ≤ i ≤ p− 1}+ 1).

For 1 ≤ r ≤ p− 1, every Hp2(p, r)-extension L/F containing E is generated by some α ∈Ma,r.
In the case r = p, every such extension L/F is generated by some β = α + λγE with α ∈ Ma,p and
λ ∈ Fp. Then the cyclic generator γE defines an unramified extension with νE(γE) = 0. Thus,

νE(α+ λγE) = νE(α) for all λ ∈ Fp and α ∈Ma \ {0}.

For any element α = f0 + . . .+ fr−1θ
r−1
a ∈Ma,r we have fi ∈ RF with constant coefficient fi(0) = 0

for all i.

Thus disc(E(θα)/F ) ≤ x ⇐⇒ |νF (fi)| ≤ x
p(p−1) − 1 for all 0 ≤ i ≤ r − 1. As

(
pr − pr−1

)
elements

α generate the same module. We thus get for cp = p and cr = 1 for r < p that

ZE(r, x) =
cr

pr − pr−1
#{α ∈Ma,r : |νE(α)| ≤ x

p(p− 1)
− 1}

=
cr

pr − pr−1
q
r·Tp

(
x

p(p−1)
−1
)

La. 1.33
=

cr
pr − pr−1

q
r
(
p−1
p

(
x

p(p−1)
−1
)

+εp(x/p(p−1)−1)
)

= crq
r x
p2 · ε0(x)

pr − pr−1
q
−r p−1

p ,
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where

0 < ε0(x) = q−r+εp(x/p(p−1)−1)
La. 1.33
≤ q

r+ p−1
p

is a bounded error term for all x ≥ 0. This proves ZE(r, x) � q
x· r
p2 when E/F is the unramified

Cp-extension.

Consider now E/F to be totally ramified, that is da = disc(E/F ) > 0 and assume x > (p+ r)da.

Any Hp2(p, r)-extension containing E is generated by some α ∈ ΩE,r \ ΩE,r−1 and we have

disc(E(θα)/F ) = pda + (p− 1)(|νE(α)|+ 1) ≤ x

⇐⇒ |νE(α)|+ 1 ≤ x− pda
p− 1

⇐⇒ |νE(α)| ≤ x− pda
p− 1

− 1. (4.52)

For each module generator of length r there exist pr − pr−1 generators of the same module, and we
obtain for the numbers of fields

ZE(r, x)
Thm. 4.47

=
(4.52)

1

pr − pr−1

(
#ΩE,r

(
x− pda
p− 1

− 1

)
−#ΩE,r−1

(
x− pda
p− 1

− 1

))
.

Writing x0 := x−pda
p−1 − 1− r|νF (a)| and x̃0 := x−pda

p−1 − 1− (r − 1)|νF (a)| we have(
pr − pr−1

)
#ZE(r, x) =#ΩE,r(x0 + r|νF (a)|))−#ΩE,r−1(x̃0 + (r − 1)|νF (a)|)

La. 4.46
= pq

r(p−1)

p2
x0 · qr

(p−1)
p
|νF (a)| · εr(a, x)− pq

(r−1)(p−1)x̃0
p2 · q(r−1)

(p−1)|ν(a)|
p · εr−1(a, x)

=pq
r(p−1)

p2(p−1)
x− prda+r

2(p−1)|νF (a)|
p2 · qr

(p−1)|νF (a)|
p · q−

r(p−1)

p2 εr(a, x)

− pq
(r−1)(p−1)x

p2(p−1)
− p(r−1)da+(r−1)2(p−1)2|νF (a)|

p2(p−1) · q(r−1)
(p−1)|νF (a)|

p · εr−1(a, x)

da=(p−1)(|νF (a)|+1)
= q

r
p2
x
q
− r

2(p−1)|νF (a)|
p2 · pq−

r(p−1)

p2 εr(a, x)

− q
r−1

p2
x
q
− (r−1)2(p−1)|νF (a)|

p2 · pq−
(r−1)(p−1)

p2 εr−1(a, x)

=q
r·x
p2 · c1(a, x)− q

(r−1)x

p2 · c2(a, x) � q
r
p2
x
,

where c1(a, x), c2(a, x) > 0 are constants depending only on r, νF (a), {x} and the residues of bxc
and νF (a) modulo p. Clearly, c1(a, x) > 0 and c2(a, x) > 0 are bounded in x for fixed r, p and a.
This shows ZE(r, x) � qr

x
p2 .

Finally, we have Z̃E(r, x) = (p− 1)ZE(r, x) for x� 0 as we will show in Theorem 4.60(c). This then
shows

Z̃E(r, x) = (p− 1)ZE(r, x) � qx·
r
p2 .
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Definition 4.52. For 1 ≤ r ≤ p we define

ap
(
Hp2(p, r)

)
:= max

(
r + 1

p(p+ r)
,
r

p2

)
.

It is easy to check

ap
(
Hp2(p, r)

)
=

{
r+1
p(p+r) , r2 < p,
r
p2
, r2 > p.

Remark 4.53. By elementary calculations we get

ap(Hp2(p, r)) =
r

p2
⇐⇒ r2 > p, (4.53)

as indeed
r

p2
≥ r + 1

p(p+ r)
⇐⇒ r(p2 + pr) ≥ (r + 1)p2 ⇐⇒ pr2 ≥ p2 ⇐⇒ r2 ≥ p.

Here, r
p2

is the exponent attained in Proposition 4.51 by fixing one Cp-extension E/F . In the

following we will show that ap(Hp2(p, r)) is the local asymptotic exponent.

We start with a lemma and use the notations

νF (RF ) := {ν(f) : f ∈ RF } and |νF (RF )| := {|νF (f)| : f ∈ RF }.

Lemma 4.54. Let q > 1, p ∈ P and c ∈ R. Then we have

∑
n∈|νF (RF )|

0<n≤X

qc·n =
∑

0<n≤X
n-p

qc·n �


1, c < 0

qcX , c > 0

X, c = 0.

Proof. The first equality is clear by the definition of RF .

For c = 0, write X = pN + r+ ε ∈ R>0 with N ∈ N, 0 ≤ r ≤ p− 1 and ε ∈ [0, 1). Then we just have∑
0<n≤X
p-n

1 = (p− 1)N + r � X.

For c < 0, the geometric series is a converging majorant.
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For c > 0, we set δ : N0 → C, δ(x) :=

{
0, x ∈ p · N0

1, else.
Then δ is periodic with period p. We can apply Lemma 1.41 with D := p and α(z) := −c. Note

that ∆(δ, α, s) =
p−1∑
j=0

δ(j)qcj =
p−1∑
j=1

qcj = qcp−qc
q−1 . Then

∑
0≤n≤x
p-n

qcn =
∑

0≤n≤bxc

δ(n)qcn =
1− q−α(s)pbx

p
c

1− q−α(s)p
∆(δ, α, s) � q−α(s)px

p = q−(−c)x = qcx.

For technical purposes, we introduce the constant

Λr(a) := (p+ r)da − (r − 1)(p− 1) = (p− 1)(p+ r)|νF (a)|+ (p+ 1)(p− 1), (4.54)

which arises as the maximal discriminant exponent for fields generated by Nr(F (θa)). We will use
this to handle the different cases arising out of Lemma 4.46.

Recall Jr(E) and Jr(E, x) as defined in Definition 4.12.

Theorem 4.55. Let 1 ≤ r ≤ p. Then we have

Z(F,Hp2(p, r);x) � xap(Hp2 (p,r)), where ap
(
Hp2(p, r)

)
=

{
r+1
p(p+r) , r2 < p,
r
p2
, r2 > p.

I.e. there exist constants C1, C2 > 0 such that for all x ≥ 0 holds

C1x
ap(Hp2 (p,r)) ≤ Z(F,Hp2(p, r);x) ≤ C2x

ap(Hp2 (p,r)).

Proof. Throughout this proof we will write Tp(x) := bxc − bxpc.

Let Ea := F (θa) for 0 6= a ∈ RF . Let

da := disc(Ea/F ) and xa := max

(
x− pda
p− 1

− 1, 0

)
. (4.55)

As in (4.52) we obtain by the tower-discriminant formula

Z(F,Hp2(p, r);x) =
∑
a∈RF

1

pr − pr−1
(Jr (F (θa), xa)− Jr−1 (F (θa), xa))

Thm. 4.47
=

∑
a∈RF

1

pr − pr−1

(
#ΩF (θa),r(xa)−#ΩF (θa),r−1 (xa)

)
.

We approach by finite induction on r to prove∑
E/F

Jr(E, xa) � qap(Hp2 (p,r))·x and Jr−1(E, xa) = o(Jr(E, xa)).
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Case r = 1: Then we have Hp2(p, 1) ∼= Cp × Cp and

ap(Cp × Cp) =
2

p(p+ 1)
=

r + 1

p(p+ r)

by results of Lagemann, see Example 2.20 and Theorem 2.19.

Case 2 ≤ r ≤ p: Recall xa from (4.55). Using Λr(a) = (p+ r)da− (r− 1)(p− 1) as defined in (4.54)
we have

Ur(x) :=
∑
a∈RF

Λr(a)>x

#ΩEa,r(xa), Wr(x) =
∑
a∈RF

Λr(a)≤x

#ΩEa,r (xa) . (4.56)

With these notations, we get the decomposition

∑
a∈RF

Jr(Ea, xa) =
∑
a∈RF

#ΩEa,r(xa) =: Ur(x) +Wr(x). (4.57)

The sum Ur(x) counts all fields Ea/F with large discriminant such that ΩEa,r(x) ⊆ Nr(Ea), i.e. we
only consider small module generators. This gives an easier counting formula.

Whereas Wr(x) corresponds to fields Ea/F with small discriminant such that

ΩEa,r(x) 6⊆ Nr(Ea).

We treat the two cases separately.

Concerning the bound for Ur(x) we have #ΩEa,r(x) = 0 ⇐⇒ pda > x and thus require

pda ≤ x < Λr(a) ⇐⇒ p(p− 1)(|νF (a)|+ 1) ≤ x < (p− 1)(p+ r)|νF (a)|+ (p− 1)(r − 1)

⇐⇒ x

(p− 1)p
− 1 ≥ |νF (a)| > x− (p− 1)(r − 1)

(p− 1)(p+ r)
. (4.58)

By ΩEa,r(xa) = RE(xa) we have the simple formula

#ΩEa,r(xa)
La. 4.46

= Γq(xa) = pqTp(xa) La. 1.33
= pq

p−1
p
xaε(x, νF (a)), (4.59)

where ε(x, νF (a)) := εp(xa) ∈ [1, q] only depends on x and |νF (a)|. We will also write ε(x, |νF (a)|) :=
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ε(x, νF (a)). Thus we have

Ur(x) =
∑
a∈RF

pda≤x<Λr(a)

#ΩEa,r(xa)
(4.59)

=
(4.54)

∑
a∈RF

pda<x≤(p+r)da−(r−1)(p−1)

pqTp(xa)

(4.58)
=

∑
a∈RF

x−(p−1)(r−1)
(p−1)(p+r)

≤|νF (a)|≤ x
(p−1)p

−1

pqTp(xa)

=
∑
a∈RF

x−(p−1)(r−1)
(p−1)(p+r)

≤|νF (a)|≤ x
(p−1)p

−1

pq
Tp(

x−(p−1)p(|νF (a)|+1)

p−1
)

La. 1.33
=

∑
A∈νF (RF )

x−(p−1)(r−1)
(p−1)(p+r)

≤|A|≤ x
(p−1)p

−1

γq(|A|) · pq
1
p

(x−(p−1)p(|A|+1)))
ε(x,A)

La. 1.33
=

∑
A∈νF (RF )

x
(p−1)(p+r)

≤|A|≤ x
(p−1)p

p(q − 1)q
p−1
p
|A|
pq

x
p
−(p−1)|A|

qεp(|A|)ε(x,A)q−1

=
∑

A∈νF (RF )
x

(p−1)(p+r)
≤|A|≤ x

(p−1)p

q
x
p
−1
q
− (p−1)2

p
|A|
qεp(|A|)ε(x,A)q−1

= q
x
p q
− (p−1)2

p
x

(p−1)(p+r)

r·x
(p−1)p(p+r)

−1∑
A=0
p-A

q
− (p−1)2

p
A
qεp(A)ε(x,A)q−1 · q

{
x

(p−1)(p+r)

}

� qx
r+1
p(p+r) , (4.60)

as indeed for the exponent

x

p
− (p− 1)2x

p(p− 1)(p+ r)
=
x(p+ r − (p− 1))

p(p+ r)
=
x(r + 1)

p(p+ r)
,

and the finite sum running over A is bounded by a constant via

q−1 ≤

r·x
(p−1)p(p+r)

−1∑
A=0
p-A

q
− (p−1)2

p
A
qεp(A)ε(x,A)q−1q

{
x

(p−1)(p+r)

}
≤
∞∑
A=0

q
− (p−1)2

p
A
q3 =

q3

1− q−
(p−1)2

p

<∞.
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Secondly, we have

Wr(x) =
∑
a∈RF

Λr(a)≤x

#ΩEa,r (xa) =
∑
a∈RF

Λr(a)≤x

#ΩEa,r

(
x− p(p− 1)(|νF (a)|+ 1)

p− 1

)

(4.58)
=

∑
A∈νF (RF )

|A|≤x−(r−1)(p−1)
(p−1)(p+r)

γq(|A|)#ΩEa,r

(
x− p(p− 1)(|A|+ 1)

p− 1

)

La. 4.46
=

La. 1.33

∑
A∈νF (RF )
|A|≤ x

(p−1)(p+r)

p(q − 1)q
p−1
p

(|A|−1)
q
r· p−1

p
|A|
q

(
x−p(p−1)(|A|+1)

p−1
−r·|A|

)
r(p−1)

p2 εp(A)εr(A, xA)

�
∑

A∈νF (RF )
|A|≤ x

(p−1)(p+r)

q
r
p2
x
q

(r+1) p−1
p
|A|
q
− r(p+r)(p−1)

p2
|A|

=
∑

A∈νF (RF )
|A|≤ x

(p−1)(p+r)

q
r
p2
x
q
|A|(p−1)

p2
((r+1)p−pr−r2)

= q
r
p2
x ∑

A∈νF (RF )
|A|≤ x

(p−1)(p+r)

q
|A| (p−1)

p2
(p−r2)

. (4.61)

With the values

X = λ(x) :=
x

(p− 1)(p+ r)
and c :=

(p− 1)(p− r2)

p2

we can apply Lemma 4.54 and obtain

q
r
p2
x ∑

A∈νF (RF )
|A|≤ x

(p−1)(p+r)

q
|A| (p−1)

p2
(p−r2)

= q
r
p2
x ∑
A∈νF (RF )
|A|≤λ(x)

q|A|·c �

{
q
r
p2
x
, c < 0

q
r
p2
x · qc·λ(x), c ≥ 0.

(4.62)

We have c ≥ 0 ⇐⇒ (p− r2) ≥ 0. In this case we get

q
r
p2
x · qc·λ(x) = q

r
p2
x · q

(p−1)(p−r2)
p2(p+r)(p−1)

x
= q

pr+p

p2(p+r)
x

= q
r+1
p(p+r)

x
.

If p− r2 < 0 then ∑
A∈νF (RF )
|A|≤ x

(p−1)(p+r)

q
|A| (p−1)

p2
(p−r2)

= O(1) and Wr(x) � q
r
p2
x
.

Note that p− r2 < 0 if and only if r
p2
≥ r+1

p(p+r) . Hence we have

Wr(x) � qap(Hp2 (p,r)).



130 Chapter 4. On Constructing Subgroups of Cp o Cp

Together with (4.60) in (4.57) we obtain
r∑
i=1

Z(F,Hp2(p, i);x) � qap(Hp2 (p,r)).

Having completed the induction, we see that
r−1∑
i=1

Z(F,Hp2(p, i);x) � qap(Hp2 (p,r−1))

is of strictly smaller order as
r + 1

p(p+ r)
>

r

p(p+ r − 1)
⇐⇒ (r + 1)(p+ r − 1) > r(p+ r) ⇐⇒ p− 1 > 0

and r
p2
> r−1

p2
and r

p2
> r

p(p+r−1) . This finally proves that Z(F,Hp2(p, r);x) � qap(Hp2 (p,r)).

Remark 4.56. The proof gives some more insights and an interpretation of the constants.

(i) The sum Wr(x) counting the fields E/F with small enough discriminant is always in the main
term of the asymptotics.

(ii) If r2 > p then the Hp2(p, r)-asymptotics over F is dominated by the asymptotical growth of
the Hp2(p, r)-extensions over one fixed Cp-extension, see Proposition 4.51.

The same statement holds true in the case of the twisted Heisenberg groups H̃p2(p, r) which
will be addressed in the next subsection.

(iii) Counting only the minimal Heisenberg extensions over each field E, we obtain the asymptotical
growth x

r
p(p+r−1) which is in the error term of the respective counting function.

(iv) The exponent r+1
p(p+r) arises by counting the Hp2(p, r)-extensions over all Cp-extensions E/F

satisfying disc(K/F ) ≤ (p+ r) disc(E/F ). This has asymptotical growth x
r+1
p(p+r) .

In the case of r2 < p this is dominant for the asymptotics, otherwise this subfamily is in the
error term of the asymptotics.

Example 4.57. (a) For r = 1 we get H(p, 1) ∼= Cp × Cp and

ap(Hp2(p, 1)) =
r + 1

p(p+ r)
=

2

p(p+ 1)
,

which coincides with the asymptotic exponent found in Lagemann [Lag10].

(b) For r = p we get the wreath product. Here we have the exponent

ap(Hp2(p, p)) =
r

p2
=

1

p
= ap(Cp).

Furthermore, for E/F a fixed Cp-extension, it is obvious that Jp(E) corresponds to all Cp-
extensions over E and hence, ap

(
Hp2(p, p)

)
corresponds to the asymptotics exponent of the Cp-

extensions over E. Thus ap(Cp) = ap
(
Hp2(p, p)

)
= 1

p .



4.5. Counting Twisted Heisenberg Extensions over p2 Points 131

4.5 Counting Twisted Heisenberg Extensions over p2 Points

Recall the definition of the finite p-group H̃(p, r) in Definiton 4.1 for 1 ≤ r < p. We exclude the case
r = p here as H(p, p) ∼= H̃(p, p).

In the following, we count all twisted Heisenberg group extensions H̃p2(p, r) ≤ Sp2 over p2 points
with respect to the discriminant. More precisely, for a given discriminant bound X ≥ 0 we consider
the set {

L/F : [L : F ] = p2, Gal(L/F ) ∼= H̃(p, r), D(L/F ) ≤ X
}
.

We can approach analogously as for Hp2(p, r).

Fix a ∈ RF and E = F (θa) as well as 1 ≤ r ≤ p− 1. We recall

γE := Ψ−1(℘(θp−1
a )) =

p−1∑
i=1

fiθ
i
a ∈ SpanF (θa, . . . , θ

p−1
a )

as defined in Lemma 4.18 and (4.20).

Definition 4.58. Let 1 ≤ r ≤ p− 1. Let E = F (θa) for a ∈ RF . We set

Ω̃E,r := {α+ λ · γE : α ∈ ΩE,r, λ ∈ F×p }

and Ω̃E,r(x) := {β ∈ Ω̃E,r : |νE(β)| ≤ x} for x ∈ R≥0.

Using (4.22) and translation by δE,r ∈ ΩE,r we also get

Ω̃E,r = {α+ λ · γE,r : α ∈ ΩE,r, λ ∈ F×p }. (4.63)

Remark 4.59. Let E = F (θa) for some a ∈ RF and 1 ≤ r ≤ p− 1 .

(a) Let β ∈ Ω̃E,r with len ([β]) = s ≤ r, then E(θβ) defines a H̃(p, s)-extension. 1

(b) If E(θβ) for β ∈ E defines a H̃(p, r)-extension, then there exists β̃ ∈ Ω̃E,r such that β̃ ≡ β
mod ℘(E).

Proof.

(a) Let α ∈ ΩE,r and λ ∈ F×p such that β = α + λγE . We have len ([γE ]) = 1 and len ([α]) ≤ r by
Theorem 4.47 for all α ∈ ΩE,r which shows the inequality len ([β]) ≤ r by Remark 4.9. Moreover,

εE/F ([β]) = εE/F ([α+ λγE ]) = εE/F ([α]) + λεE/F ([γE ]) = 0− λ 6= 0,

hence E(θβ) defines a twisted Heisenberg extension. Then len ([β]) = s ≤ r and εE/F (β) 6= 0,
i.e. E(θβ) defines a H̃(p, s)-extension by Theorem 4.15.

1Analogously to ΩE,r corresponding to generators of H(p, i)-extensions with i ≤ r.
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(b) We have J(E) = 〈[γE ]〉 ⊕ J(Wa) by Corollary 4.32 and εE/F ([β]) 6= 0. As J(Wa) ≤ Ker(εE/F )
we have [β] = λ[γE ] + [w] for some w ∈ Wa and 0 6= λ ∈ F×p . The assumption on the Galois
group implies len([β]) = r, thus len([w]) ≤ r which shows w ∈Ma,r and β = λγE +w+℘(x) for
some x ∈ E which proves (b).

Theorem 4.60. Let E = F (θa) for a ∈ RF and 1 ≤ r ≤ p− 1.

(a) For all α ∈ ΩE,r and λ ∈ F×p we have

νE(α+ λγE,r) = min {νE(α), νE(γE,r)} and νE(α) 6= νE(γE,r).

(b) E(θγE,r) is a minimal H̃p2(p, r)-extension containing E with discriminant

Λ̃r(a) := disc(E(θγE,r)/F )

= (p− 1) (p(p− r + 1) + r) · |νF (a)|+ (p− 1)(p+ 1). (4.64)

(c) For x ∈ R≥0 and Λ̃r(a) as defined in (b), we have

#Ω̃E,r(x) =

{
0, x < Λ̃r(a),

(p− 1) ·#ΩE,r(x), else.

Proof. (a) We have νE(γE,r) = (p(p− r) + r) νF (a) by Lemma 4.24 and we get

νJ(E) ([γE,r]) = νE(γE,r) = νE(ap−rθra) = (p2−pr+r)νF (a) ≡ (−pr+r)νF (a) mod p2. (4.65)

We have to show for (a) that the value νE(γE,r) is not equal to νE(α) for all α ∈ ΩE,r. Consider
any α ∈ ΩE,r. Then there are x ∈ RF with |νF (x)| > r|νF (a)| and gi ∈ R(i)

a so that

α
Def. 4.42

= x+
r−1∑
i=1

giθ
i
a +

p−1∑
i=r

βr,i(gi), |νE(x)| ≤ r|νF (a)| and gi ∈ R(i)
a .

Firstly, νE(x) ≥ rνF (a) > (pr − r)νF (a), thus νE(x) 6= νE(γE,r). Moreover, νE(γE,r) is incon-

gruent to νE
(
r−1∑
i=1

giθ
i
a +

p−1∑
i=r

βr,i(gi)

)
modulo p2, since

νE(giθ
i
a)

νF (a)6=0
≡ iνF (a) 6≡ rνF (a) mod p for all 1 ≤ i ≤ r − 1

and g ∈ R(i−r)
a implies

νE(βr,i(g))
4.38≡
4.39

{
(p(i− r) + r) νF (a) mod p2, r < i,

rνF (a) mod p2, r = i
for all r ≤ i ≤ p− 1.

Thus νE(γE,r) 6= νE(βr,i(gi)) as r ≥ 1 and νE(γE,r) 6= νE(giθ
i
a) for 1 ≤ i ≤ r−1 which concludes

νE(γE,r) 6= νE(α).
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(b) In Subsection 4.2.3 we have already shown that E(θγE,r) defines a H̃p2(p, r)-extension.

It is a minimal extension by (a) and the fact that every H̃(p, r)-extension is given by β =
α+ λ · γE,r for some α ∈ ΩE,r and λ ∈ F×p . For its discriminant we have by the tower formula

disc(E(θγE,r)/F ) = p disc(E/F ) + fE/F disc(E(θγE,r)/E)

=p disc(E/F ) + (p− 1) (|νE(γE,r)|+ 1)

(4.65)
= (p− 1)p(|νF (a)|+ 1) + (p− 1)(p(p− r) + r)|νF (a)|+ (p− 1)

=|νF (a)|(p− 1)(p(p− r + 1) + r) + (p− 1)(p+ 1).

(c) This follows by (b) and |F×p | = p− 1.

Theorem 4.61. For 1 ≤ r ≤ p− 1 we have

Z(F, H̃p2(p, r);x) � xap(H̃p2 (p,r)),

where ap(H̃p2(p, r)) =

{
pr−r2+r+1

p(p2−pr+p+r) , r2 < p
r
p2
, r2 > p.

Proof. We follow the proof of Theorem 4.55. Let Λ̃r(a) as defined in (4.64). This formula directly
implies Λ̃r−1(a) ≥ Λ̃r(a) for all 1 ≤ r ≤ p− 1. Thus we obtain

#Ω̃Ea,r(x) = 0 =⇒ #Ω̃Ea,i(x) = 0 ∀ i ≤ r for all x < Λ̃r(a),

so that we only need to consider the sum of type Wr(x) as seen in (4.56). For β ∈ Ω̃E,r we have

disc(E(θβ)/F ) ≤ x ⇐⇒ |νE(β)| ≤ x− pda
p− 1

− 1 (4.66)

as in (4.58). We therefore obtain the expression

W̃r(x) :=
∑
a∈RF

Λ̃r(a)≤x

#Ω̃E,r

(
x− pda
(p− 1)

− 1

)
(4.66)

=
∑
a∈RF

|νF (a)|≤x−(p−1)(p+1)
p(p−r+1)+r

−1

#Ω̃E,r

(
x− pda
(p− 1)

− 1

)

Thm. 4.60(c)
= (p− 1)

∑
a∈RF

|νF (a)|≤x−(p−1)(p+1)
p(p−r+1)+r

−1

#ΩE,r

(
x− pda
(p− 1)

− 1

)
.

We set λ(x) := x
(p−1)(p(p−r+1)+r) − 1 and c := (p−1)(p−r2)

p2
. Then analogously to (4.61) and (4.62) the

above sum W̃r(x) can be estimated via

W̃r(x) � q
r
p2
x ∑
A∈νF (RF )
|A|≤λ(x)

q
(p−r2)(p−1)

p2
|A| �

q
r
p2
x
, r2 ≥ p,

q
r
p2
x
q

(p−r2)(p−1)

p2
λ(x)

, p < r2.
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We lastly calculate the exponent in the case p < r2:

r

p2
x+

(p− 1)(p− r2)

p2
λ(x)

=
r

p2
x+

(p− 1)(p− r2)

p2

x

(p− 1)(p(p− r + 1) + r)
− (p− 1)(p− r2)

p2(p− 1)(p(p− r + 1) + r)

=
r(p2 − pr + p+ r) + (p− r2)

p2(p2 − pr + p+ r)
· x+O(1)

=
p2r − pr2 + pr + p

p2(p2 − pr + p+ r)
· x+O(1)

=
pr − r2 + r + 1

p(p2 − pr + p+ r)
· x+O(1),

which shows W̃r(x) � xap(H̃p2 (p,r)). By elementary calculations it can be shown that ap(H̃p2(p, r)) is
strictly monotonously increasing. Thus we can conclude analogously to the Heisenberg group case
that

W̃r(x) � xap(H̃p2 (p,r)) � Z(F, H̃p2(p, r);x).

Example 4.62. For r = 1 we have H̃p2(p, 1) = Cp2. Then clearly p > r2 = 1 and indeed we have

ap

(
H̃p2(p, 1)

)
=

p+ 1

p(p2 + 1)
.

This coincides with Lagemann’s constant ap(Cp2) from Example 2.20(b).

4.6 Lower Bound on the Asymptotics of Galois Twisted Heisenberg
Groups

Let E/F be a Cp-extension and G := Gal(E/F ). We have seen in Section 4.1 that every H̃(p, r)-
extension containing E can be generated by some module element [β] ∈ J(E) with len ([β]) = r and
εE/F ([β]) 6= 0. Due to Remark 4.59, the element [β] is given by some

β = α+ λγE,r for some λ ∈ F×p , α ∈ ΩE,r.

Since εE/F ([α]) = 0, we always have εE/F ([α+ λγE,r]) 6= 0, while its length might be less than r.

Next we consider the discriminant of such an extension over pr+1 points and consider the minimal
H̃pr+1(p, r)-extensions containing E.

Lemma 4.63. Let 1 ≤ r ≤ p − 1. Let E = F (θa) for a ∈ RF be ramified with Galois group
G = Gal(E/F ) and let

d̃iscr(E) := min{disc(E
(
℘−1(〈ω0θ

r−1
a + γE,i〉G)

)
/F ) : i = 1, . . . , r}. (4.67)

Then d̃iscr(E) is the minimal discriminant for a twisted Heisenberg H̃pr+1(p, r)-extension containing
E.
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Proof. By (4.63) and Theorem 4.60, it is clear that E
(
℘−1(〈ω0θ

r−1
a + γE,i〉G)

)
defines a H̃pr+1(p, r)-

extension for all 1 ≤ i ≤ r.

Recall the definition for γE =
p−1∑
i=1

fiθ
i
a and the equality νF (fi) = νF (ap−i) from Lemma 4.18. Let

M/F be any H̃pr+1(p, r)-extension containing E. Then M = E
(
℘−1(〈β〉G)

)
for some β ∈ E. For

the discriminant we have

disc(E
(
℘−1(〈β〉G)

)
/E)

La. 4.10(d)
=

r−1∑
i=0

pr−1−i(p− 1)
(
|νJ(E)

([
(σ − 1)i(β)

])
|+ 1

)
. (4.68)

Considering the relative discriminant exponent over E and using Theorem 4.60(b), we get

(p− 1)
(
|νJ(E) ([β])|+ 1

)
= disc(E(θβ)/E) ≥ disc(E(θγE,r)/E) = (p− 1) (|νE(γE,r)|+ 1) ,

hence νJ(E) ([β]) ≤ νE(γE,r) = νE(frθ
r
a) and consequently, there exists a minimal 1 ≤ i ≤ r such

that νJ(E) ([β]) ≤ νE(fiθ
i
a).

With this choice of i, we get

νJ(E) ([β]) ≤ νE(fiθ
i
a) = νJ(E)

([
γE,i + ω0θ

r−1
a

])
and

νJ(E)

([
(σ − 1)k(β)

])
≤ νE(fiθ

i−k
a ) for 1 ≤ k ≤ i− 1.

Furthermore, we have νJ(E)

([
(σ − 1)k(β)

])
≤ νE(θr−1−k

a ) due to Lemma 4.16(b) and the fact that
len ([β]) = r. Since νE(θr−1−k

a ) = νJ(E)

([
(σ − 1)k

(
γE,i + ω0θ

r−1
a

)])
for i ≤ k ≤ r − 1 we get for

0 ≤ k ≤ r − 1

νJ(E)

([
(σ − 1)kβ

])
≤ νJ(E)

([
(σ − 1)k(γE,i + ω0θ

r−1
a )

])
,

thus equation (4.68) guarantees disc(E
(
℘−1(〈β〉G)

)
/E) ≥ disc(E

(
℘−1(〈γE,i + ω0θ

r−1
a 〉G)

)
/E).

Conclusively, in comparing the finitely many discriminants of these explicit fields, we can compute
the minimal discriminant of the embedding problem

1 −→ (Cp)
r ι−→ H̃pr+1(p, r)

ϕ−→ Cp −→ 1

as defined in (4.1). We give those fields a name first. We define

Li,r(a) := E
(
℘−1(〈ω0θ

r−1
a + γE,i〉G)

)
for 1 ≤ i ≤ r

and we show that the minimal value is attained when i = r and compute the discriminant exponents
over E and F .

Definition 4.64. For 1 ≤ i ≤ r ≤ p− 1 and j ∈ Z we define

(i) ηp(j) :=
j∑

k=1

kpk for j ∈ Z,
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(ii) d̃i,r := (p− 1)
(
ηp(r − i− 1) + pr−i+1 (p−i)(pi−1)

p−1 + pr−i−1ηp(i)
)
and di,r := d̃i,r + (p− 1)pr,

(iii) the discriminant exponents D̃i,r(a) := disc (Li,r(a)/E) and Di,r(a) := disc (Li,r(a)/F ).

With these notations at hand we can show that the discriminant exponent is basically di,r · |νF (a)|
and that the minimal discriminant is attained by Dr,r(a).

Theorem 4.65. Let E = F (θa) for a ∈ RF with νF (a) < 0, i.e. E/F is totally ramified, and
1 ≤ i ≤ r ≤ p− 1. Let G := Gal(E/F ).

(a) We have D̃i,r(a) = d̃i,r · |νF (a)|+ (pr − p) and Di,r(a) = (pr + d̃i,r) · |νF (a)|+ (pr+1 − p).

(b) For all 2 ≤ i ≤ r we have D̃i,r(a) ≤ D̃i−1,r(a).

In particular, d̃iscr(E) = Dr,r(a) = disc(E
(
℘−1(〈γE,r〉G)

)
/F ) is the minimal twisted Heisenberg

discriminant for the embedding problem (4.1).

Proof. (a) With D̃i,r(a) = disc (Li,r(a)/E) and

Li,r(a) = E
(
℘−1(〈ω0θ

r−1
a + γE,i〉G)

)
= E(℘−1

(
ω0θ

r−1
a + γE,i

)
, . . . , ℘−1

(
(σ − 1)r−1(ω0θ

r−1
a + γE,i)

)
)

len([γE,i])=i
= E

(
℘−1

(
ω0θ

r−1
a + γE,i

)
, . . . , ℘−1

(
(σ − 1)i−1(ω0θ

r−1
a + γE,i)

)
,

℘−1
(
(σ − 1)i(ω0θ

r−1
a )

)
, . . . , ℘−1

(
(σ − 1)r−1(ω0θ

r−1
a )

) )
we have

D̃i,r(a)
La. 4.10(d)

=
r−1∑
k=0

pr−1−k(p− 1)
(
|νJ(E)

([
(σ − 1)k(ω0θ

r−1
a + γE,i)

])
|+ 1

)
.

Note that ω0 ∈ RE is reduced and νE
(

(σ − 1)(fθja)
)

= νE(fθj−1
a ) is reduced for all f ∈ F with

νF (f) ≤ 0 and 2 ≤ j ≤ p− 1, hence we get

νJ(E)

([
(σ − 1)j(ω0θ

r−1
a + γE,i)

])
=νE

(
(σ − 1)j(γE,i)

)
=νE

(
ap−iθi−ja

)
for all 0 ≤ j ≤ i− 1 (4.69)

and

νJ(E)

([
(σ − 1)j(ω0θ

r−1
a + γE,i)

])
=νE

(
(σ − 1)j(ω0θ

r−1
a )

)
=νE(ω0θ

r−1−j
a ) for all i ≤ j ≤ r − 1. (4.70)
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Conclusively, we get

D̃i,r(a) = p0 disc([ω0]) + p disc([ω0θa]) + . . .+ pr−i−1 disc([ω0θ
r−i−1
a ])

+ pr−i disc([ap−iθa]) + . . .+ pr−1 disc([ap−iθia])

(4.69)
=

(4.70)

r−i−1∑
k=1

pk(p− 1)
(
|νE(θka)|+ 1

)
+

i∑
k=1

pr−i+k−1(p− 1)
(
|νE(ap−iθka)|+ 1

)
=

r−i−1∑
k=1

pk(p− 1) (k|νF (a)|+ 1)

+ pr−i−1
i∑

k=1

pk(p− 1) (1 + (p(p− i) + k) |νF (a)|)

= (p− 1)|νF (a)|

(
r−i−1∑
k=1

pkk + pr−i−1
i∑

k=1

pk (p(p− i) + k)

)
+ (p− 1)

r−1∑
j=1

pj︸ ︷︷ ︸
c̃r

(4.71)

Def. i(i)
= (p− 1)

(
ηp(r − i− 1) + pr−i−1p(p− i)

i∑
k=1

pk + pr−i−1ηp(i)

)
|νF (a)|+ c̃r

= (p− 1)

(
ηp(r − i− 1) + pr−i+1(p− i)

i−1∑
k=0

pk + pr−i−1ηp(i)

)
|νF (a)|+ c̃r

= (p− 1)

(
ηp(r − i− 1) + pr−i+1 (p− i)(pi − 1)

p− 1
+ pr−i−1ηp(i)

)
|νF (a)|+ c̃r.

Finally, c̃r = (p − 1)
r−1∑
j=1

pj = pr − p concludes the formula for D̃i,r(a) in (a). The assertion on

Di,r(a) is now clear from the discriminant tower formula.
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(b) Next we need to compare the values of D̃i,r(a) and D̃i−1,r(a). Using the formulas in (a), we get

D̃i,r(a)− D̃i−1,r(a)

(p− 1)|νF (a)|

(4.71)
=

r−i−1∑
k=1

pkk −
r−i∑
k=1

pkk +
i∑

k=1

pr−i+k−1(p(p− i) + k)−
i−1∑
k=1

pr−i+k(p(p− i+ 1) + k)

=− pr−i(r − i) + pr−i(p2 − pi+ 1) +

i∑
k=2

pr−i+k−1(p(p− i) + k)

−
i−1∑
k=1

pr−i+k(p(p− i+ 1) + k)

=− pr−i(r − i) + pr−i(p2 − pi+ 1) +
i−1∑
k=1

pr−i+k(p(p− i) + k + 1)

−
i−1∑
k=1

pr−i+k(p(p− i+ 1) + k)

=pr−i
(
p2 − pi+ 1− (r − i)

)
+ pr−i

i−1∑
k=1

pk (p(p− i)− p(p− i+ 1) + k + 1− k)

=pr−i
(
p2 − pi+ 1− (r − i)

)
+ pr−i

i−1∑
k=1

pk (−p+ 1)

=pr−i
(
p2 − (p− 1)i− r + 1

)
− (p− 1)pr−i+1 p

i−1 − 1

p− 1

=pr−i
(
p2 − ip+ i− r + 1− pi + p

)
For i ≥ 2 and using i ≤ r we have

p2 − ip+ i− r︸︷︷︸
≤0

+1− pi + p ≤ −pi + p2 − ip+ p+ 1 ≤ −pi + p2 − (p− 1) < −p2 + p2 = 0.

This shows D̃r,i(a)− D̃r−i−1(a) < 0 and concludes the proof for all i ≥ 2.

Example 4.66. Let 1 ≤ r ≤ p− 1. Then we have

d̃r,r = (p− 1)

(
p · (p− r)(pr − 1)

p− 1
+ p−1ηp(r)

)
, (4.72)

and

dr,r = (p− 1)

(
pr + p · (p− r)(pr − 1)

p− 1
+ p−1ηp(r)

)
. (4.73)
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For the minimal discriminant we thus have Dr,r(a) = dr,r · |νF (a)|+ (pr+1 − p).

For r = 1, we simply have ηp(1) = p and d1,1 = (p− 1) (p+ p(p− 1) + 1) = (p− 1)(p2 + 1).

For r = 2, we get

d2,2 = (p− 1)

(
p2 + p

(p− 2)(p2 − 1)

p− 1
+ p−1(p+ 2p2)

)
= (p− 1)

(
p2 + p(p− 2)(p+ 1) + 1 + 2p

)
= (p− 1)(p3 + 1) = p4 − p3 + p− 1.

We can use the minimal discriminants to effectively obtain a lower bound on the asymptotics ex-
ponent. For this purpose, we define for every Cp-extension E/F the set of minimal H̃pr+1(p, r)-
extensions given by

F̃r(E) := {E
(
℘−1

(
〈γE,r + β〉Gal(E/F )

))
: β ∈ ΩE,r, |νE(β)| < |νE(γE,r)|},

and consider
F̃r :=

⋃
E/F

Gal(E/F )∼=Cp

F̃r(E).

Consider the corresponding counting function

Zmin(F, r;X) := #{L ∈ F̃r : D(L/F ) ≤ X}.

Note that this is obviously a lower bound for the discriminant counting function Z(F, H̃pr+1(p, r), X).

Theorem 4.67. Let 1 ≤ r ≤ p − 1 and let Φ̃r(s) :=
∑
L∈F̃r

q− disc(L/F )s. Then Φ̃r(s) has a pole at

s = (p−1)(1+r(p−r+1))
p·dr,r and is convergent for Re(s) > (p−1)(1+r(p−r+1))

p·dr,r , where dr,r is as in (4.73). In
particular, we get for the asymptotics exponent

ap(H̃pr+1(p, r)) ≥ (p− 1) (1 + r(p− r + 1))

p · dr,r
.

Proof. For the generating series of the minimal H̃pr+1(p, r)-extensions, we obtain

Φ̃r(s) =
∑
L∈F̃r

q− disc(L/F )s =
1

p− 1

∑
a∈RF

L∈F̃r(F (θa))

q− disc(L/F )s

=
1

p− 1

∑
νF (a)∈νF (RF )

γq(|νF (a)|) ·#Ω̃F (θa),r (|νE(γE,r)|) · q−dr,r(a)·s.

Let a ∈ RF with νF (a) < 0 and Ea := E(θa). Using Theorem 4.65 the extension

Lr,r(a) = Ea
(
℘−1(〈γEa,r〉Gal(Ea/F ))

)
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is a minimal H̃pr+1(p, r)-extension containing Ea. Moreover, for every reduced element β ∈ Ea with
len ([β]) ≤ r and |νE(β)| < |νEa(γEa,r)| we obtain a H̃pr+1(p, r)-extension

Lβ := Ea
(
℘−1

(
〈γE,r + β〉Gal(Ea/F )

))
.

Using νE
(
(σ − 1)j(β)

)
≥ νE(β)− jνE(θa) by Lemma 4.6 and (4.69), we easily get

|νE
(
(σ − 1)j(γE,r + β)

)
| = |νE

(
(σ − 1)j(γE,r)

)
| for all 0 ≤ j ≤ r − 1,

thus disc(Lβ/E) = disc(Lr,r(a)/E). We have

λr := |νE(γEa,r)| = (p(p− r) + r)|νF (a)| ≥ r|νF (a)|,

hence

#ΩEa,r(λr)
La. 4.46

= q
p−1
p
r|νF (a)|

q
p−1

p2
r(λr−r|νF (a)|)

εa,r(λr)

= q
p−1
p
r|νF (a)|

q
p−1

p2
r(p(p−r)|νF (a)|)

εa,r(λr)

= q
(p−1)r(p−r+1)

p
|νF (a)|

εa,r(λr). (4.74)

Thus for the generating series counting the minimal H̃pr+1(p, r)-extensions for each Cp-extension
Ea/F , we obtain

Φ̃r(s) =
1

p− 1

∑
νF (a)∈νF (RF )

γq(|νF (a)|) ·#Ω̃F (θa),r (|νE(γE,r)|) · q−(dr,r|νF (a)|+c̃r)·s

(4.74)
=

1

p− 1

∑
νF (a)∈νF (RF )

pq
p−1
p
|νF (a)| · q

(p−1)r(p−r+1)
p

|νF (a)| · q−dr,r|νF (a)|s · q−c̃rsεa,r(λr)

=
1

p− 1

∑
A∈νF (RF )

q
|νF (a)|

(
(p−1)(1+r(p−r+1))

p
|νF (a)|−dr,r·s

)
· pεa,r(λr)q−c̃rs

:=
1

p− 1

∑
A∈νF (RF )

q
|νF (a)|

(
(p−1)(1+r(p−r+1))

p
|νF (a)|−dr,r·s

)
· C(A, r, s),

where 0 6= |C(A, r, s)| is bounded for all A ∈ Z and s ∈ C. Moreover, C(A, r, s) > 0 for all s ∈ R.
Thus Lemma 4.54 yields the convergence of Φ̃(s) for all s ∈ C with Re(s) > (p−1)(1+r(p−r+1))

p·dr,r , and it

is unbounded for s = (p−1)(1+r(p−r+1))
p·dr,r . Thus by the Tauberian Theorem 1.38, we obtain

Zmin(F, r;X) =
∑
L∈F̃r

D(L/F )≤X

1 � X
(p−1)(1+r(p−r+1))

p·dr,r ,

and hence we obtain the lower bound on the asymptotics exponent.
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Remark 4.68. (a) We conjecture that the bound (p−1)(1+r(p−r+1))
p·dr,r given in Theorem 4.67 is sharp.

(b) To make this bound slightly more explicit, we have

(p− 1) (1 + r(p− r + 1))

p · dr,r
=

(p− 1) (1 + r(p− r + 1))

p · (p− 1)
(
pr + p(p− r)pr−1

p−1 + p−1ηp(r)
)

=
1 + r(p− r + 1)

pr+1 + p2(p− r)pr−1
p−1 + ηp(r)

=
1 + r(p− r + 1)

pr+1 + p2(p− r)pr−1
p−1 +

r∑
k=1

kpk
.

(c) One could use the formula

ηp(r) =

r∑
k=1

kpk = p
pr(rp− r − 1) + 1

(p− 1)2
= p · r · p

r − pr−1 − . . .− p− 1

p− 1

which, however, only results in a minor simplification.

Example 4.69. (a) For r = 1 the lower bound of Theorem 4.67 is

(p− 1)(1 + p)

pdr,r
=

(p− 1)(p+ 1)

(p− 1)p(p2 + 1)
=

p+ 1

p(p2 + 1)
.

This coincides with the asymptotics exponent in [Lag10, Satz 2.1] using r1 = r2 = 1, see Theo-
rem 2.19

(b) For r = 2, the lower bound is

1 + 2(p− 1)

p3 + p2(p− 2)(p+ 1) + (1 + 2p)
=

2p− 1

p4 − 2p2 + 2p+ 1
.
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Notation Index

General Notations

P, Q, R, C Set of prime numbers, rational numbers, real numbers, complex numbers
⊕ Direct sum
[K : F ] Degree of a field extension
Zp Field of p-adic numbers
Fq Finite field with q elements
K[[t]] Power series ring in t over K Page 15
K((t)) Laurent series field over K Page 15
νF normalised exponential valuation of a local field F Page 15
OF , pF , UF Valuation ring / maximal ideal / unit group of F Page 15
κF Residue Field of a local field F Page 15
F̂ Separable algebraic closure of F Page 16
eK/F , fK/F Ramification index, inertia degree of K/F Page 16
cond(K/F ) Conductor exponent of K/F Page 17
f(K/F ) Conductor of K/F Page 17
SplF (K) Splitting field resp. normal closure of K/F Page 18
disc(K/F ) Discriminant exponent of K/F Page 17
D(K/F ) Discriminant ideal of K/F Page 17
D(K/F ) Discriminant of K/F Page 17
Diff(K/F ) Different of K/F Page 17
℘(α) = αp − α Artin-Schreier operator Page 18
θa Element in ℘−1(a), a root of xp − x− a Page 19
J(F ) = F/℘(F ) Cokernel of ℘ Page 19
SpanK((vi)i∈I) K-Vector space generated by the system of vectors (vi)i∈I ≤ V Page 20
νJ(K)(α) = max{νK(x) | x ∈ α}, νJ(K)(0) =∞ reduced valuation of α in K Page 23
cond([a]) Conductor exponent disc(F (θa)/F ) for a ∈ F \ ℘(F ) Page 24
disc([a]) Discriminant exponent disc(F (θa)/F ) for a ∈ F \ ℘(F ) Page 24
RF (π, ω) = RF Fpω

⊕
n<0
p-n

Fq · πn Reduced complement of ℘(F ) in F : RF ⊕ ℘(F ) = F Page 25

Tp(x) = |x| − b |x|p c The number of integers 1 ≤ n ≤ |x| not divisible by p Page 32
Γq(x) pqTp(x) Page 32
γq(x) Γq(x)− Γq(x− 1) Page 32
f(χ) Conductor of a character Page 29
G∗ Dual group of G Page 30
TrK/F Trace map Page 17
f ∼ g Asymptotic equivalence, meaning: limx→∞

f(x)
g(x) = 1 Page 31

f = O(g) 0 ≤ lim supx→∞
f(x)
g(x) <∞ Page 31

f � g f = O(g) and f = o(g) Page 31
Z(F,G;X) Counting function w.r.t. discriminant Page 32
Aut(G) Automorphism group of G



Notations from Chapter 2

Z(F,G;n) Counting function w.r.t. conductor Page 51
Un = 〈1 + p〉/〈1 + pn〉 Page 52
ri(H) pi-rank of H Page 53
r̃i(H) = ri(H)− ri+1(H) number of pi-blocks of H Page 53
exp(H) Exponent of the group H Page 57
H[pi] pi-torsion of H Page 52
αG(A) Number of subgroups U ≤ A which are isomorphic to G Page 54
{x} = x− bxc for x ∈ R Page 55

αp(G) =
e∑

k=1

p−1
pk
rk(G): Conductor exponent for an abelian p-group Page 56

Notations from Chapter 3

G oH Wreath product of G and H Page 22
N oφ H Semi-direct product of N and H by some homomorph. φ ∈ Hom(H,Aut(N)) Page 66
AGL(V ) Affine group of a K-vector space V Page 66
AGLn(q) ∼= (Fq)n oGLn(Fq) Affine group of An(Fq) Page 66
EigF (ζ) F -eigenspace of σ to the eigenvalue ζ Page 70
K[G] Group ring of G with coefficients in K Page 70

Notations from Chapter 4

H(p, r) Generalised Heisenberg group Page 90
H̃(p, r) Twisted Heisenberg Group Page 90
len ([γ]) = len(〈γ〉G) for γ ∈ J(K) Page 96
εE/F Special Fp-linear map εE/F : J(E)→ Fp Page 98
Jr(E) =

{
[β] ∈ J(E) : len ([β]) ≤ r, εE/F ([β]) = 0

}
for 1 ≤ r ≤ p− 1 Page 99

Jp(E) = J(E) Page 99
Jr(E, x) =

{
[β] ∈ Jr(E) : νJ(E) ([β]) ≤ x

}
Page 99

γE Special cyclic Cp2-generator Page 102
γE,r Generator of a minimal H̃(p, r)-extension Page 104
Ma,r representative system for H(p, r)-extensions

= {f0 + f1θa + . . .+ fr−1θ
r−1
a | fi ∈ RVa for 0 ≤ i ≤ p− 2, fp−1 ∈ RF , fr−1 6= 0} Page 107

πi i-th projection w.r.t. power basis Page 110



βr,j(g) = ℘(g)θja + gp ·
j−1∑

k=r+1

aj−kθka
(
j
k

)
Page 110

wz(a) = b z|νF (a)|
p c for a ∈ RF and z ∈ Z Page 111

R
(z)
a = t

b z·|νF (a)|
p

c · Fq[t−1] Page 111
Nr(E) = {α ∈ RE | νE(α) > r · νE(θa)} Page 115
ΩE,r Special representative system of Yr(E)

= Nr(E)
⊕r−1

i=1 R
(i−r)
a · θia

⊕p−1
j=r βr,j

(
R

(j−r)
a

)
Page 115

Ω̃E,r Set of twisted Heisenberg generators of length ≤ r Page 131
ΩE,r(X) Set of α ∈ ΩE,r with |νE(α)| ≤ X Page 131
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