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Zusammenfassung

In der vorliegenden Arbeit behandeln wir eine Fragestellung tiber lokale Funktionkérpererweiterungen
nach dem asymptotischen Wachstum der Anzahl von Galoiserweiterungen mit fest vorgegebener
nicht-abelscher Galoisgruppe und beschrankter Diskriminante. Von Hauptinteresse ist dabei der
Fall, dass die Charakteristik des Korpers die Gruppenordnung teilt. In dem Falle gibt es bereits
unendlich viele Cp-Erweiterungen und wir erhalten ein génzlich anderes Verhalten als bei lokalen
Zahlkorpern.

Thorsten Lagemann 16ste die Fragestellung fiir abelsche Gruppen in seiner Dissertation. Im nicht-
abelschen Fall konnen wir in der vorliegenden Arbeit erste Resultate erzielen. Zum einen 16sen wir
das Problem fiir eine Klasse von semi-direkten Produkten der Form (C})" x Cy, wobei d | (p"—1) gilt.
Das Hauptaugenmerk liegt dabei auf Untergruppen der Affinen Gruppe der Form C, xCyq < AGL1(p).
Wir l6sen aufserdem das Problem fiir transitive Untergruppen des Kranzproduktes Cy, ! C), tiber p?
Punkten. Korpertheoretisch treten diese als Galoisgruppe von Zerfallungskorpern eines Turms zweier
Cp-Erweiterungen auf. Dabei geben wir eine Beschreibung aller dieser Erweiterungen an.

Wir beweisen zudem eine explizite Formel fiir die Anzahl aller Koérpererweiterungen mit fest vorge-
gebener abelscher Galoisgruppe A, deren Fiihrerexponent kleiner gleich einer vorgegebenen Schranke
X ist.

Abstract

In this thesis at hand, we will study a question concerning the discriminant density of local func-
tion field extensions with a fixed non-abelian Galois group. The main interest is the case of the
characteristic dividing the group order.

In this case, there are already infinitely many C)-extensions which stands in stark contrast to p-
adic fields. Lagemann solved in his Ph. D. Thesis the case of abelian groups. For non-abelian
groups we prove some first results. We prove the asymptotical behaviour for an infinite class of
semi-direct products (Cp)" x Cq where d | (p" — 1). This includes subgroups of affine group of type
Cp x Cq < AGL;(p). We moreover solve the counting problem for transitive subgroups of Cp, C,.
These extensions correspond to Cp-towers over Cp-extensions. We describe all extensions over a fixed
ground field and fixed transitive subgroup of C, 1 C,,.

Moreover, for given X > 0 and a fixed abelian group A, we give an explicit formula for the number
of field extensions with Galois group isomorphic to A and with conductor exponent bounded by X.






Justice and Peace!

Our scientific power has outrun our spiritual power.
We have guided missiles and misguided men.
Dr. Martin Luther King

Multinational Corporations — Genocide of the starving Nations

Napalm Death






Contents

1 Local Function Fields 15
1.1 Introduction to Local Function Fields . . . .. . ... .. ... ... ... ... ... 15
1.1.1  Valuation Theory . . . . . . . . . . . . 15

1.1.2  Galois group and Galois closure . . . . . . . .. ... 0oL 18

1.1.3  Artin-Schreier Theory . . . . . . . . . .. 18

1.1.4  System of Representatives of J(F') . . . . ... ... ... .. ... ..... 22

1.1.5  Ramification Theory . . . . . . . . . .. . . 27

1.1.6  Abelian Conductor-Discriminant-Formula . . . . . . . ... .. ... ... .. 29

1.2 Asymptotics and Tauberian Theorems . . . . . . .. . ... ... ... ... ..., 31
1.2.1 Big O-Notation . . . . . . . . . . . . e 31

1.2.2 Counting C)-extensions over Local Function Fields . . . . ... ... ... .. 32

1.2.3  Analytic Framework . . . . . . . .. ... 36

1.3  Cohomology and Explicit Construction . . . . . . . . . .. .. ... ... ... .... 40
1.3.1 The Absolute Galois Group of Local Function Fields . . . . .. ... ... .. 40

1.3.2 Central Embedding Problems . . . . . . .. ... ... ... .. ... 42

1.3.3 Cohomology of Groups . . . . . . . . . . . . 44

1.3.4 Construction of p-Extensions in Characteristicp . . . . . .. .. . ... ... 46

2 Abelian Conductor Density 51
2.1 Certain Quotient Groups of the Unit Group . . . . . . . ... ... ... ... .... 51
2.2 Conductor Density of Abelian p-groups . . . . . . . . . . . ... L. 54
2.3 Conductor Density of Arbitrary Finite Abelian Groups . . . . . . . . . ... ... .. 59
2.4 Lower Bounds on Discriminant Density . . . . . . . . ... ... ... ... ... .. 60



8 CONTENTS
3 On Subgroups of Affine Linear Groups AGL;(q) 65
3.1 Affine Linear Groups and Semi-direct Products . . . . . . . . .. ... ... .. ... 66
3.2 Decomposition of J(L) for a Tamely Ramified Extension L/F . . . . ... ... ... 68
3.2.1 Enumeration over pd points . . . . . . . ... 77

3.2.2 Subgroups of AGL1(p) . . . .« . 84

3.2.3 Number of Cj-Extensions with Fixed Ramification Index . . . . . . ... . .. 85

4 On Constructing Subgroups of ), C), 87
4.1 Heisenberg Groups and Arithmetic of Cp-Extensions . . . . . . ... ... ... ... 89
4.1.1 Generalised and Twisted Heisenberg Groups . . . . . . . . . .. ... ... .. 89

4.1.2 Traces in Towers of Artin-Schreier-Extensions . . . . . . .. ... ... .. .. 91

4.2 Galois Module Theory . . . . . . . . . . . 96
4.2.1 Description of (Twisted) Heisenberg Extensions . . . . . . .. ... ... ... 100

4.2.2  Minimal Heisenberg Extensions . . . . . . . .. ... ... ... ... ... 103

4.2.3 Minimal Twisted Heisenberg Extensions . . . . . . . . ... .. ... ... .. 104

4.3 Heisenberg Modules and Systems of Representatives . . . . .. ... ... ... ... 106
4.3.1 Reduced Representative System in the Ramified Case . . . ... ... .. .. 110

4.3.2 Enumeration of some Systems of Representatives . . . . . . ... ... .. .. 115

4.4 Counting Heisenberg Extensions over p? Points . . . . . .. . ... ... ....... 123
4.5 Counting Twisted Heisenberg Extensions over p? Points . . . . .. .. ... .. ... 131
4.6 On Galois Twisted Heisenberg Group Extensions . . . . . . ... ... ... ..... 134
Bibliography 143

Notation Index 146



CONTENTS 9
Introduction

The main goal of the inverse Galois problem is to determine which groups occur as Galois groups
over a given field, and to construct and enumerate one or all such Galois extensions while taking
into account certain properties. A classical problem is the theory of inverse Galois theory over Q
and number fields in general. One milestone was Shafarevich’s theorem proving the inverse Galois
problem for every finite solvable group over a number field which was later generalised to global
function fields. Although commonly expected, it is still unknown whether every finite group occurs
as Galois group over Q.

Some important milestones have been achieved through asymptotic considerations. More precisely,
for a number field £ and a transitive permutation group G we consider the counting function by the
norm of the discriminant

Z(k,G; X) == #{K/k : Gal(K/k) =G, Nyo(DE/k) <X} for X &R

We are interested in the behaviour for X — oo. Note that Z(k,G; X) < oco. Although it is not
proven if every G is realisable as a Galois group over k, it is widely believed that there exist infinitely
many, i.e. that the counting function Z(k,G; X) is unbounded in X. Gunter Malle proposed in
his well-known conjecture the asymptotic behaviour of Z(k,G; X) for all number fields and finite

transitive permutation groups, see [Mal02]|, [Mal04]. The Malle conjecture predicts explicit constants
a(G),b(K,G) such that

Z(K,G; X) ~ ¢(K, Q) - XU Jog(X)bKG)—1 (1)

(z)

for some constant ¢(K, G) > 0, where we mean f ~ g <= lim,_, @) = 1 for real-valued functions
fyg: R — Rsg. In general, there are no known formulas for ¢(K,G). The Malle conjecture is a
generalisation of works of Wright who determined in [Wri89] the asymptotic behaviour of Z(k, A; X)
for every finite abelian group A and over every global field K such that char(K) { #A, prior to the
works of Malle. This proves Malle’s conjecture for all finite abelian groups. The result in [Wri89]
provides evidence for a natural generalisation of Malle’s conjecture (1) to every global function field
k. This is supported by a heuristic by Ellenberg and Venkatesh [EV05] which connects G-extensions
of a function field to rational points of covers of Hurwitz spaces P! /F, for some prime power g = p!
in the case p |G|, where the constants in Malle’s conjecture reappear.

However, (1) is false if the characteristic p of the global function field divides the group order.
Lagemann [Lagl0| proved that for almost all non-cyclic abelian p-extensions the number of local
extensions at a fixed place grows larger than (1) indicates.

One main reason is the existence of infinitely many local extensions of fixed degree over each wildly
ramified place. The discriminant density of local function fields already exceeds the Malle constants,
whereas in the number field case there are only finitely many local extensions of a given degree.

A local function field of characteristic p is a Laurent series ring [F,((¢)) where ¢ is a p-power. Like
in the p-adic case there exist at most finitely many fields with a given Galois group G, if the
characteristic p does not divide the group order. We are interested in the exceptional case when the
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characteristic divides the group order. Lagemann has already solved the asymptotics problem for
abelian extensions over local fields in his thesis [Lagl0|, but there are no known asymptotical results
for non-abelian groups in the local function field case. Our thesis addresses this problem and solves
this for some infinite series of groups. We will not be able to obtain a complete answer but rather
study and solve some examples of (infinite series of) finite groups and to gather different strategies
to attack the problem.

As a first result in the thesis, we prove the conductor density of abelian p-groups weighted by
conductor where we will give explicit formulas.

For a finite abelian group A we define the counting function by the conductor exponent
3(F,A;n) == #{E/F Galois : Gal(E/F) = Aand N(f(E/F)) <¢"}, neN.
We will prove the following theorem:

Theorem A. Let F = Fy((t)) and A be a finite abelian p-group with exponent exp(A) = p°. Let
ap(A) and 54: N — [—a,(A),0] be as defined in (2.5). Then there is a p®-periodic and therefore
bounded function §4(+) such that:

(a) 3(F,A;n) = %qm?(mq‘;f‘(")a(& q,n) for some e(A,q,n) with lim,_,~ (A, q,n) = 1.

(b) 3(F,A;n) ~ %qmm)qmm,

(c) For fized i =0,...,p° —1 let fi(n) =n-p°+1i, i.e. fi(n) =14 mod p®. Then we have

" AL e
SE A i) ~ eipme e

with ¢; = ¢"rA+0a() gnd ¢y = 1.
We refer to Theorem 2.12 for an explicit formula for €(A,¢,n) and more details. We want to
highlight the periodic oscillation by d4 in the formula for the conductor counting function. Although
we even restricted to conductor exponents, we can only achieve a ~-estimate when restricting to an
arithmetic progression modulo p®. For arbitrary finite abelian groups, we use the multiplicativity
over the ¢-Sylow subgroups

3(F, Asn) = [[ 3(F. Agin)

LeP
where 3(F, Ag;n) is bounded for n — oo for all £ # p.

Like in the original formulation of Malle’s conjecture in [Mal02] and [Mal04], we will use the notion
of a Galois group also for non-Galois extensions, i.e. as the Galois group of the corresponding Galois
closure. See Paragraph 1.1.2 for details. For a finite transitive permutation group G' and X € Rx>q
we consider the discriminant counting function

Z(F,G; X) = #{K/F : Gal(K/F)=G, N(D(K/F)) < X}.
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If G is a group whose order is coprime to p, then there exist only finitely many G-extensions over F’
and the counting function Z(F, G; X)) is bounded for X — oo. If G is a non-trivial p-group, then there
exist infinitely many G-extensions over I’ and it is interesting to study the asymptotic behaviour of
the counting function Z(F, G; X). What we expect and refer to as "solving” the asymptotics problem
is to find a constant a,(G) € R>¢ such that Z(F,G; X) < X (G) that is, there exist real constants
B, c1,co > 0 such that

a X < Z(F,.G; X) < X% forall X > B.

This weaker notion is satisfactory, since even in the simple case G = C),, there can not be established
an asymptotic equivalence with respect to the relation ~. Because the discriminants are only ¢-
powers, the gaps between two consecutive C)p-discriminants are unbounded. Moreover, Theorem A
implies that we cannot establish an asymptotic equivalence with respect to ~ even when restricting
to count by discriminant exponent. More details on this are given in Remark 1.37.

We solve the asymptotics problem for transitive subgroups of Cj,1C), and subgroups of type C, xCyq <
AGLi(p). In the latter case, we can extend the method to a larger class of groups with analogous
methods.

Let F' =TF,((t)) be a local function field in characteristic p. In this thesis, we will prove:

Theorem B. Letd | (p—1) and U := Cp x Cq < AGL;(p).

(a) Consider C, x Cq as a transitive subgroup of S,. Then we have
Z(F,Cpx Cg; X) = X7,

(b) Consider Cp, x Cy as a transitive subgroup of Spq. Then we have
Z(F,Cpx Cg; X) = X7d.

We will generalise this result to the situation of a tower of a (tamely ramified) Cy-extension and

a Cp-extension. We will describe which groups occur as Galois groups. In particular, every such

group is given by a semi-direct product U = (C,)* x Cy corresponding to a divisor g | (X< — 1)

over [}, of degree deg(g) = k. We prove analogous results for the counting function by discriminant
k

as in Theorem B. We obtain Z(F,Upg; X) < X4 considered as transitive subgroup Upq < Spq, and

(p=Dk
CX) = R ;
Z(F,Uprg; X) < X #d"=1) where we consider Uprg < Sprg-

Furthermore, we study the asymptotics problem for transitive subgroups of Cp, ¢ Cp. There are
basically two different types of groups to consider, namely H(p,r) and H (p,7) of order p" ™! which
are non-isomorphic for » < p and have group exponent p and p?, respectively. For r = p, both
constructions give the wreath product C, ¢ C).

We will considered them as permutation groups over p? points, indicated by the notation Hy,» (p,7) <
Sy2 and prz (p,7) < Sp2, respectively.

We will prove the following main results:
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Theorem C. For 1 <r <p—1 we have

Z(F, Hyp(p, r)s ) < a2,

r+1 2
oy TO<Dp
where ap(sz (p,7)) = {Z;(er )

P’ 7"2 > Dp.

For the twisted Heisenberg group we prove the following main result:
Theorem D. For1l <r <p-—1 we have

Z(F, B (p,r); ) = 22 ®),

. pr2—7‘2+r+1 7’2 <p
where ay(Hy2(p,7)) = Pr(p —prtptr)’? )
17, re > p.

The thesis is organised as follows: The first chapter will provide the theoretical foundation for all
the other chapters. Chapters 2, 3 and 4 are independent of each other and only require results from
Chapter 1.

In the first chapter, we will give the theoretical background for local function fields and Artin-Schreier
theory. Artin-Schreier theory is basically an additive version of Kummer theory for elementary
abelian p-extensions. The Artin-Schreier operator p(x) = xP —z gives a bijection between subgroups
of the quotient group F/p(F') and the set of elementary abelian p-extensions of F.. We will rely on
this theory immensely for constructing and counting p-extensions over local function fields of charac-
teristic p. For instance, all Galois p-extensions K/F arise as towers of Artin-Schreier extensions, and
vice versa, those towers have a p-group as its Galois group. We will recall a reasonable representative
system of J(F) = F/p(F).

We will give a constructive approach to construct G-extensions for a finite p-group which goes back
to Witt [Wit36]. Furthermore, we will provide some formulas and summation techniques that we
frequently use for local function field asymptotics. Particularly, we will count the Cp-extensions as
an important example.

In Chapter 2, we will give exact formulas for the number of abelian local function fields up to a
conductor bound. This easily implies the lower bound for the discriminant asymptotics in this way
and gives a nice interpretation of the discriminant exponent in terms of the conductor exponent.

The third chapter is concerned with Theorem C and generalisations thereof. We will consider the
asymptotic problem with respect to discriminant for certain subgroups of groups AGL(1,¢q) which
cover all transitive subgroups of AGL(1, p). We will describe the Galois module J(L) = L/p(L) for
a tamely ramified cyclic extension L/F. We describe the groups which occur as Galois group in this
context.

The occurring Galois groups are semi-direct products of type U = (Cp)deg(g) x Cg, where g(X) €
F,[X] is a divisor of X —1. In order to describe the semi-direct product, it is convenient to consider
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4
the prime divisors of g(X) and consider (C,)4°8(9) as direct sum of finite fields. Let X?—1 = [[ fi be

=1
the prime factorisation in F,[X] and I C {1,...,¢} such that g(X) = [[;c; fi. Write r; := deg(f:).
Then we can rewrite U = @ Fp x Cy, where we can interpret the action of Cy on Fpri as a
el

multiplication by a certain d-th root of unity in Fpr;.

We solve the asymptotic problem for groups of this type over pd points and for the normal closure.
Let U := > Fpri x Cq < AGL1(q) for p{d. Then we get

1€l

deg(g)
d

Z(F,Upg; X) < X »
for Upq < Spq considered as transitive permutation group over pd points and we obtain

(P*dl)d(eg)@)
eg(g)
Z(F,Upges() g3 X) = x ra(rieso-1)

deg(

for Updeg(g) a < Spdeg(g> 4 considered as transitive permutation group over p 9)d points.

Chapter 4 is concerned with proving Theorem C and Theorem D. We study subgroups of Cp, 1 C), as
a Galois group. These are the solutions of the group theoretic embedding problem

1= (C) -G—=Cp—1

which we will call generalised Heisenberg groups H (p,r) in the split case and twisted Heisenberg
groups H(p,r) in the non-split case. Note that exp(H (p,r)) = p and exp(H (p,r)) = p? for 1 <r <
p—1,and H(p,p) = ﬁ(p,p) = Cy 1 C)p. For this task, we first study the arithmetic of Cy-extensions
in some detail. We will give a representative system to describe all those extensions. We solve
the asymptotics problem considered as transitive permutation groups over p? points, i.e. counting

non-Galois extensions.

Finally, in Chapter 4 we will prove Theorem C and Theorem D.
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Chapter 1

Local Function Fields

The local function fields are the analogue to the p-adic fields in characteristic p. A local function

field is a formal Laurent series field Fy((¢)) = {>_ a;it’ : a; € Fy, v € Z} over a finite field F, with

o0 . 0 .
q elements. For a Laurent series f = > a;t" we call > a;t* € F,[t7!] the main part of f.

Throughout the thesis, we write ¢ for a p-power with p € P and F' = F,((t)) for a local function field
over the finite field IF,.

1.1 Introduction to Local Function Fields

1.1.1 Valuation Theory
The local function field F' = Fy((¢)) has a natural normalised discrete valuation by
[e’e) e j
) 0, a;t' =0,
VR (Z aﬂfl> = 1§V '
i=N min{n | a, # 0}, else.
By discrete valuation we mean that for all a, 5 € F' we have
e vp(0) = o0 and vp(a) € Z for v € F*,
o vp(a-B) =vp(a)+vr(B),
o vp(a+ B) > inf(vp(a),vr(B)).

The valuation is moreover normalised as vp(t) = 1 and thus vp(F*) = Z.

Every valuation induces an ultrametric absolute value by |f|r := ¢~ **(/). Note that F is complete
with respect to the absolute value | - | induced by vp.

15



16 Chapter 1. Local Function Fields

The valuation vg induces the valuation ring Op = {a € F' : vp(a) > 0}. For a local function field
we have Op = Fy[[t]]. It is a local ring whose unique maximal ideal is pp := {f € F' : vp(f) >
1} =t - Op. The unit group of OF is

Up:=0p={feF* : vp(f)=0}.
Furthermore, kp := Op/pr = F, denotes the residue class field of F'.

It is well-known that Op is compact with respect to | - |p. For our purposes, it is sufficient to only
consider the exponential valuation vz only.

We write F' for a fixed separable closure of F and write Gp := Gal(E'/F) for the absolute Galois
group of F.

Extending Valuations in Extensions

Let E//F be a finite separable extension of degree [E : F'] with prime elements 75 and 7 respectively.
Then v is defined as the natural valuation of £ = F4((7g)) where kg = Fy.

The inertia degree of E//F is the degree of the residue field extensions, i.e. fg/p = [kp : KF] and
eg/r = vE(Tr) is the ramification index of E/F.

These satisfy the well-known formula

[E:Fl=ep/r- fe/F, (1.1)

see for instance [Ser79, Prop. 1.10] for a proof.

Remark 1.1. Note that vg is not an extension of vg. We have the relation
ve(z) = eg)p-vr(x) forall x € F.

It is worth noting that two different prime elements lead to equal valuations.

Definition 1.2. We call a separable extension E/F of local function fields unramified if ep,p = 1
and ramified if eg/p > 1.

We call E/F tamely ramified if p{ eg/p.
We call E/F wildly ramified if p | eg/p.
We call E/F totally ramified if eg/p = [E: F].

In particular, all unramified extensions are tamely ramified extensions in our thesis.

Note that wildly ramified is the opposite of tamely ramified.
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Discriminant and Conductor

Let E/F be a finite separable local extension with valuation rings Or/Op.

We define the conductor as in [Iwa86, p. 112|. To be more precise, the conductor exponent ¢(U) of
an open subgroup U < F* of finite index is defined to be the minimal natural number n such that
1+pE <U.

Let E/F be an abelian extension, then the conductor of the extension is defined as the conductor
of its norm group: Ng/p(E*) is an open subgroup of Ur and cond(E/F) := ¢(Ng,p(£>)) is the
conductor exponent, and
(Ng,p(EX))

HE/F) =pp “"
is called the conductor of E/F.
The co-different €g/p:={x € Op : Trg/p(z-Or) C Or} is a fractional ideal of Op.
The different of E/F is the inverse ideal of the co-different, i.e.

Diff (E/F) := (Cgp) "

The discriminant ideal is the norm ideal of the different, i.e.
D(E/F) = Ngr (Diff(E/F)),

where N/ p is the ideal norm which is a multiplicative function completely determined by

Ng/r (pE) = p];E/F. It is well-known that Op is a free Op-module (see [Iwa86, La. 2.13|). Hence

Of = Or|a] for some o € Op.

Let g(X) € F[X] be the minimal polynomial of a over F', then we obtain the different through the
derivative of the minimal polynomial:

Diff(E/F) = ¢'(a) - Og,
D(E/F)=Ngr (4 (a)) - OF.

Every ideal I of Op is a power of the maximal ideal pg, so
. disc(E/F) . : _ /
D(E/F) =pp for the integer N 3 disc(E/F) = fg/p - ve(d' (o).

We call disc(E/F') the discriminant exponent of E/F.

We call the natural number _
D(E/F) — |I€F|dISC(E/F)

the discriminant of the extension E/F.
We have |kp| = ¢ for F' =TF,((t)).

The following statement is a basic formula we will use over and over.
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Theorem 1.3 (Discriminant Tower Formula). Let K/E/F be finite extensions of local function
fields. Then we have
D(K/F) = D(E/F)¥Fl. Ny, p (D(K/E))

and for the discriminant exponents

disc(K/F) = [K : E] - disc(E/F) + fg/p - disc(K/E).

For a proof, see [Neu92, page 213].

1.1.2 Galois group and Galois closure

Definition 1.4. Let E/F be a finite separable extension E/F of degree n. Let « be a primitive
element of E/F | ie. E = F(«a). Let ¢, be the minimal polynomial of v over F.

(a) We write Splp(E) := Splp(¢a) as the splitting field of the minimal polynomial of a over F' and
call this the Galois closure of E/F.

(b) We moreover define Gal(E/F) := Gal(¢,) < S, as the Galois group of the minimal polynomial
of a.

Note that this way, we define Galois groups also for non-Galois field extensions.

On the other hand, let Splp(E) = F(/3) for some primitive element 8 and N = [Splp(F) : F]. We
make a distinction of Gal(E/F) = G < S, and Gal(Splp(E)/F) < Sy considered as transitive
permutation groups over n respectively N points. Both are isomorphic as abstract groups, but not
as permutation groups. Viewed as permutation groups, the former describes permutations of the
roots of the n conjugates of «, while the latter describes the permutation of the N conjugates of 3.

Concerning the counting function by discriminant, the discriminant weight changes quite drastically
in these two situations.

1.1.3 Artin-Schreier Theory

The Artin-Schreier theory characterises all elementary abelian p-extensions over fields of character-
istic p via the Artin-Schreier operator p given by p(«a) = of — a and equations of type X? — X — a.
An extension E = F'(0) where 6 is a root of X? — X — « is called an Artin-Schreier extension. Artin-
Schreier theory is in the heart of our studies and is particularly interesting for p-group extensions,
since any extension K/F with Gal(K/F) being a finite p-group can be constructed as a tower of
Artin-Schreier extensions.

We start with the notations and basic results.

For any field F' with char(F') = p the Artin-Schreier operator is defined as

p: F = F, zw— aP —x.
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The map g is [F-linear with kernel Ker(p) = F,,. We write J(F') := F//p(F') as the cokernel of p. We
will mainly consider p: F' — F for the algebraic closure of a local function field F' or of an extension
of . The Artin-Schreier operator is a Gal(F'/F)-module homomorphism, i.e. it commutes with all
o € Gal(F/F), since

o(p(z)) = o(@? —z) = o(2)? —o(z) = p(o(x)) forall ze F. (1.2)

This way, J(F) := F/p(F) becomes a Gal(F/F)-module via o - (o 4+ p(F)) = o(a) 4+ p(F).
Moreover, p commutes with the trace map. More precisely, for every finite extension K/F we have
Tri/p(p(@)) = p(Trgp(a)).
For every automorphism ¢ € Gal(F/F) we get an F-linear map

(c—1): F—F, a—so(a)—o

1.2
Using oo p (L2) p oo we easily get

(0-=1op=po(sc—1),
hence o — 1 is a Gal(E'/F)-module homomorphism.

For a € F we write 6, € F for a solution of ©(0,) = a. A solution 6, of X? — X — a is unique modulo
F,: If p(6,) = a then

XP—X—a= J[(X=(0.+N). (1.3)
AeF,

If a € F and XP — X — a is irreducible in F[X], then we call the extension F'(6,) an Artin-Schreier
extension of F'. Sometimes we will refer to this as a simple Artin-Schreier extension. Equation (1.3)
implies that X? — X — a is irreducible if and only if a ¢ p(F), and so X? — X —a is either irreducible
or splits completely over F'.

Denote by C,, the cyclic group with n elements. It is crucial that the Cp-extensions over F' are
precisely the (simple) Artin-Schreier extensions and furthermore, the composite of those are precisely
the elementary abelian p-extensions over F.

Lemma 1.5. Let F be a local function field with char(F') = p.

(a) A field extension K/F is a Cp-extension if and only if there exists an a € F'\ p(F) with K =
F(60,).

(b) Let a,b € F\ o(F). Then F(0,) = F(0y) if and only if a = A\b + p(c) for some A € F)\ and
ceF.

Proofs can be found in [VS06|, Theorem 5.8.4 and Proposition 5.8.6 respectively.

We will point out an obvious consequence that we will frequently use.
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Remark 1.6. For all a € F'\ p(F) and A € F)5, we have F'(0,) = F(0xa)-

Theorem 1.7 (Main Theorem of Artin-Schreier Theory). Let F' be a field with char(F') = p.

(a) There is a 1 : 1-correspondence
A: {Fp-subspaces U < F/p(F)} — { p-elementary field extensions E/F}
U F(p~'(U)).

(b) Let U < F/p(F) and K = F(p~'(U)) be the corresponding extension field. Then we have a
canonical isomorphism

U = Hom(Gal(K/F),F,), a mod p(F)— Xa,
where xq(0) = (0 — 1)(6,).

(c) Let U < F/p(F) be finite and (a1 + p(F),...,ar + p(F)) be an Fp-basis of U. Then the Galois
group Gal (F (9~ *(U)) /F) = (Cp)" is generated by the automorphisms o; with

0i(0a;) = 0a; +6ij for 1<i<r 1<j<r,
where 0; ; is the Kronecker-Delta.

Proof. Parts (a) and (b) are proven in Theorem IV.3.3 in [Neu92| respectively in Theorem VI.8.3 in
[Lan02].

Concerning part (c), it is clear by part (a) that o; indeed define automorphisms for 1 < i < r.
Moreover, for all A1,..., A\, € F, and 1 <17 <r we get

(Z m) (6a;) = Ba, + A,
=1

T
hence ) A\;jo; =id if and only if 0 = A; for all i. Hence, o1,..., 0, forms an Fp-basis of

i=1
Gal (F (9~ 1(U)) /F). O
In the situation of Theorem 1.7(c), we call E = F(0,,,...,0,,) an Artin-Schreier extension with
generators O, ,...,0q,. If r =1 we call E/F a simple Artin-Schreier extension.
Remark 1.8.

Let ' =TFy((t)) and U < F//p(F) be an Fj-subspace of J(F). Set V' := Spang_ (U, p(F)).

(a) Every subspace U < F/p(F) corresponds to a subspace

o(F)CV <F.
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(b) Let K := F(p~!(U)) be the corresponding Artin-Schreier extension. Then we have p(K)NF =V
and equivalently, (p(K)NF)/p(F)="U.

Proof. The first part is common knowledge from algebra.

Let o € p(K) N F and consider U := Spang, (U, a + p(F)) < F/p(F). Then we have o l(a) CK

and thus p~1(U) < K, hence

K=F(o'0)<F(o7'(0) <K

which proves F (p‘l(ﬁ)> = K. Using the one-to-one correspondence in Theorem 1.7 we get U="U.

Using the same reasoning for all a € p(K) N F we obtain
U+ (p(K)NE+p(F)) /p(F) =U = V/p(F),

hence V < p(K) and V' < F by construction showing V' < o(K)N F.

Concerning the other direction, the polynomial X? — X —wu has a root in K for all u € V by definition
of K, hence p(K)NF < V. O

Theorem 1.9. Let K/F be a finite Galois extension with G = Gal(K/F) and U < K/p(K) be an
Fp-subspace. Then K (p~1(U))/F is Galois if and only if o(U) = U for all o € G.

Proof. Let L = K(p~1(U)) and let V < K with p(K) C V such that V/p(K) = U. Assume that
the extension L/F is Galois. Then the polynomials

XP —X —o(v)splitin L forall veV,oed.

Thus o(v) € p(L)NK =V forall 0 € G and v € V, thus o(V) =V and o(U) = U.

On the other hand, assume o (U) = U for all o € G which directly implies (V) = V. Let 6: L — F
be a field homomorphism with 6|x = 0. We have L = K (6, | v € V) by definition, and we have
that

a(0,) is aroot of XP — X —o(v) forall veV,

and by o(V) =V we have 6(0,) = 0,(,) € ¢~ (V) < L. This proves that indeed 5(L) = L.

Conclusively, we obtain |G| - [L : K] = [L : F] many field homomorphisms L — F with 6(L) = L,
and hence L/F is a Galois extension. O

Definition 1.10. We call a finite field extension L/F' an Artin-Schreier tower if there exists a chain
of subfields Ly := FF < L; <...< L, = L such that L;/L;_; is a simple Artin-Schreier extension for
all 1 <i <r, ie. such that L; = L;(0,,) for some o; € L;_;.

It is worth pointing out that this way, we define the Galois group for non-Galois extensions as well.
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Theorem 1.11. Let M/L/K be a tower of fields such that M/L and L/K are Galois and H; =
Gal(M/L) and Hy = Gal(L/K). Then Gal(M/K) is isomorphic to a subgroup of the wreath product
Hi ! Hs.

For a proof we refer the reader to Satz 1.10 in Geissler’s Ph.D. Thesis [Gei03].

Proposition 1.12. Let K/F be a (possibly non-Galois) finite separable extension. Then Gal(K/F)
is a p-group if and only if K/F is an Artin-Schreier tower.

Proof. Write L := Splp(K) as the normal closure of K/F and H = Gal(L/K). Note that each
proper subgroup H < G of a p-group is contained in a maximal normal subgroup N of index p, see
[AB95, Corollary 8.4, p. 74]. The fixed field E := Fix(N) of N is a subfield of K by construction and
satisfies Gal(E/F) = G/N = C,. Thus E/F is an Artin-Schreier extension according to Lemma 1.5
and Gal(K/F) is a p-group. Hence by induction K/FE is a tower of Artin-Schreier extensions and so
is K/F.

For the inverse direction “<—=" we consider a tower of fields F' = Ky < K; < ... < K, = K such
that K;/K;_1 is a simple Artin-Schreier extension.

Set L,_1 := Splp(K,—_1) and consider the composite field M := L,_1K,. Theorem 1.11 inductively
shows that Gal(L,_;/F") and thus Gal(L,_;/K,_1) are p-groups. By Theorem 1.11 we have
Gal(M/KT_1> < Gal(M/LT_l) l Gal(LT_l/Kr_l) = Cp ! Gal(LT_l/KT_l).

The wreath product of p-groups is a p-group again hence Gal(M/K,_;) and Gal(K,_/F) are
p-groups and thus Gal(M/F) is a p-group since Gal(L,_1/K,_1) and C, are p-groups. Finally,
Gal(M/F) = Gal(Splp(K,—1)K,/F) completes the proof. O

Remark 1.13. Artin-Schreier theory can be considered as the analogue of Kummer theory of degree
p extensions of characteristic p:

Artin-Schreier Theory ‘ char(K) =p ‘ © ‘ 0a ‘ K/p(K)
Kummer Theory ‘ GpeK ‘ Y/ ‘ Ya ‘ K*/K*P

1.1.4 System of Representatives of J(F)

Recall J(F') = F//p(F') which is the [F,-vector space characterising all elementary abelian p-extensions
of F. For an element a € F' we will write

la] :=a+ p(F) € J(F).

There is a well-known relation between the discriminant of a simple Artin-Schreier extension £ =
F(0,) and the value

I;leag(w(a + o(f)))-

We want to construct a system of representatives of J(F') so that this value is simply vp(a).
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Definition 1.14. We set v ([0]) := co and for all @ € F'\ p(F') we define

i) ([0]) = max{vp(a+ p(x)) : = € F)

to be the reduced valuation of a in F. If vr(a) = vy ([a]) we call the element a € F reduced. A
reduced element S € F' such that a — 8 € p(F) is called a reduction of a in F.

Clearly, a reduction of an element a in F' is far from being unique: If « is any reduction of a, then
sois a+ 3 for all g € F with vp(8) > 0.

Remark 1.15. For the map v;gy: J(E) — Z<o U {oc} and for all a, 8 € J(E) we have

vy (la+ B]) = min {v; ) ([o]) , vym) (18])}

and

vy (e + B]) = min {vyg) ([),vpm (B)} i vy () # v (8]) -

Proof. Let 7 be a prime element of E. Let & = a+ p(z) € [o] and § = 8+ p(y) € [8] with z,y € E

such that v;g) ([a]) = ve(a) and v;g) ([8]) = ve(B).

Then we have &+ 3 = a+ 8 + o(x +y) € [a+ B]. By the ultra-metric triangle-inequality of vy we
have

vy ([a+B]) > ve(a+ A) > min {VE(&% ’/E(ﬂ} = min {v;g) ([a]), vy (6])} -

For the second equation we can without loss of generality assume

ve(a) = vy ([a]) <vye) (6]) = ve(s).

For any v € [a + f] there is some z € E such that v = a + 5 + p(z). Then we have

V(1) = vi(a+ B+ 9() = ve(@ + oz — v — ) + B) 2V min {vp(@ + p(z — 2~ y), ve(H))}
= vg(f)) = min {vie (al), voa (18]} -
This is true for all v € [a + 3], thus
vye) ([a+B]) = max (vp(y)) =min{v,g) (o)), v (6])}. O

vEla+4]

It should be noted that there are reduced elements «, 5 € F such that a4+ 3 is not reduced. This is
demonstrated in the following example.

Example 1.16.

(a) Take for instance F = Fa((t)) and o = t=3 +t72 and B := 13, then a+ B = t=2 is not reduced.
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(b) Note that the multiplication of E does not lead to a well-defined multiplication of J(E) as there
erist o, B € E such that o - p(B) ¢ p(E).

For instance in E := F5((t)) we have
tep(B) it =t-t72¢p(F), [ =F" T £+

Moreover, there exist A € B¢ and o € E such that vygy([\-a]) # vyg)([a]) for instance if ¢ > p
and A € p(Fq) \ p(Fp), a =1 ¢ p(E).

Considering the conductor and discriminant exponent of Artin-Schreier extensions, the following
definitions and notations are helpful.

Definition 1.17. Let a € F'\ p(F'). Then we define

0, vy ([a]) =0,

cond([al]) :=
(la) %wmqul,wmuw¢o

and
0, vyr) ([a]) =0,
(= 1) (v () +1), vyr)([a]) # 0.

We occasionally use the notation d, := disc([a]).

dmwn:@—wwmwnz{

Proposition 1.18. Leta € F'\ p(F) and E = F(0,). Then:

(a) Either vy ([a]) = 0 or (vyp) ([a]) <0 and ptvyp)(a])).
Moreover, E/F is ramified if and only if vy ([a]) < 0.

(b) We get ve(6,) = vr(a).

(¢) We have cond(E/F) = cond([a]) for the conductor exponent.

(d) For the discriminant exponent we have

disc(E/F) =d, = {O’ vy ([a]) =0,
(p— 1)(|VJ(F) ([a])] + 1), VI(F) ([a]) < 0.

(e) We have disc(E/F) # —1 (mod p).

Proof. The first statement of (a) is Theorem 5.8.10 in [VS06| and the second statement is clear by
(d).

For (b), we can immediately check

vE(0h) = vp(l, —a) =vp(a) =
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Part (d) is Theorem 5.8.11 in [VS06]. Part (c) follows by (d) and the Conductor-Discriminant
Formula. Finally, note for part (e) that disc([a]) = 0 or p{ v (r) ([a]) in which case

disc(fa]) = (p— 1) (Jvym (fa)| + 1) #p—1=~1 mod p. 0

Hence to study the discriminants of Artin-Schreier extensions it is useful to consider reduced valua-
tions and reductions of Artin-Schreier generators.

A reduction is not unique. For this purpose we will construct some nice system of representatives of
reduced elements.

Definition 1.19. Let V < F be an Fj-subspace with p(F) <V < F.

We call an [F)-complement Ry with F' = Ry @V a reduced complement if all elements 0 # a € Ry
are reduced, that is

xr€Ry < =0 or vp(r)=max{vp(a) : a€x+V}.

Such a complement Ry describes the factor space F'/V and serves as a reduction of elements in F:
Every a = r + v is representable in a unique way with » € Ry and v € V', where a = r mod p(F)
and the emphasis on Ry being reduced simply means that vp(r) describes the field discriminant of
F(6a)/F.

The main examples are

V=p(F) or V=gpK)NF fora separable field extension K/F.

Now we construct a reduced system of representatives of J(F'). This can be used to construct a
reduced system of representatives for all V' < J(F).

Fix an Fp-basis {w1,...,w,} of Fy such that wi ¢ p(F,). Thus, Ry := T, - w; is an F,-complement
of p(Fy) in Fy.
Lemma 1.20. Let F be a local function field with char(F') = p.

(a) If « € F with vp(a) > 0, then a € p(F).

(b) For every prime element m of F' and wy € Fy \ p(Fy), the set

~1
RF(ﬂ',wl) =< agw1 + Z biﬂ'i ‘ ag € Fp; bi € Fq, ng € Z<0
i=ng
ol
is a reduced complement of p(F) in F.

(¢c) We have J(F') =T, @0 Fy as an Fp-vector space.
n<
pin
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o0
Proof. For (a)let o = ) a,n™ with a, € F,. Then we obtain

n=1

since for all n > 1 we have:

o [o.¢] o
P <Z —aﬁkﬂ"”k> = Z(—l)p&ﬁkﬂ7r”pk+1 =5 —a
k=0 k=0 k=0
(—1)P=—1 K >
= Z —al "+ Z ab” 7""P

Note for p = 2 we simply have —1 = 1. Now for (b), let ¢: F, — Fy,a + a%/?, which is a field

isomorphism as the inverse of the Frobenius automorphism. Let n = —ip*F < 0 with a € IFqX, p1ti
and £ > 1. Then

k—1

o (0(a) 7 ") = ar " — g(a) - 7",

hence inductively ar~ " = @z~ mod p(F) for some @ € Fx. Thus, every a € Fy((t)) is equivalent

to a Laurent series
-1

E a,m™ + ag.

n=v

By F, = F,/p(F,) and w1+ p(F,) # p(F,), the constant term ag can be easily reduced to an element
in F, - wy. Therefore, for all @ € F exists f € Rp(m,wi) such that a — 8 € p(F) which shows
F =p(F)+ Rp(m,w).

Concerning directness, assume 0 # a € Rp(m,wi) N p(F). Then a € p(F) implies vp(a) > 0 or
p|vr(a).

On the other hand, o € Rp(m,wi) implies vp(p(a)) >0 or p | ve(p(a)). Thus ve(a) = 0 so
that o € p(F)NF, = p(F,). By construction of the set Rp(m,wi) we have Rp(m,wi)Np(F,) = {0},
thus we have a = 0. Hence Rp(m,w1) Np(F) =0 and Rp(m,w1) + p(F) = F which proves (b).

Part (c) is now obvious as

J(F) = Rp(m,wi) =F)p - w @ F,-n"
n<0, ptn

is a direct sum of [F-subspaces. O
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Usually we simply write Rp instead of Rp(m,w1). Sometimes, as in Chapter 3, it will be important
to choose m and w; carefully.

Remark 1.21. We will regularly use the following easy observation: Let a, 8 € R \ {0}. Then we
have

disc([a]) > disc([8]) <= |vr(a)| 2 [vr(B)] <= vr(a) <vr(B), (1.4)

as the reduced valuations are < 0.

Remark 1.22.

(a) Let a € Rp and E := F(0,) then we have
Vai= (E)NF = p(F) +F, - a.
We define Ry, < Rp to be a complement of F,a € Rp, i.e. such that
F=pF)®F,-a® Ry, =V,® Ry,.
Then, obviously Ry, is a reduced complement of V.

(b) For any [F,-subspace with p(F) < V < F we can analogously construct a reduced system of
representatives Ry C Ry for the quotient space F/V.

Remark 1.23. Let E = F(0,) for a € Rp be a simple Artin-Schreier extension. Here we briefly
give a construction of a prime element of F.

If E/F is unramified, then ¢ is a prime element of E.

If E/F is ramified, then vp(a) < 0 is not divisible by p. Let i,s € N such that vp(a)i + ps = 1.
Then 7 = §it° is a prime element of R.

More generally, let L/F be a tower of Artin-Schreier extensions, i.e. there exists a chain
L=L,/L,—y/.../Ly=F

such that L; = L;_1(6.,) for v; € L;—; for 1 <1i < r. Then we can construct a prime element of L,
inductively by means of this procedure.

1.1.5 Ramification Theory

Here we follow [Ser79, IV.1, IV.2]. Let K/F be a Galois extension of local fields with prime ideals
px and pp respectively. Let G := Gal(K/F) be the Galois group of K/F, and let 7y respectively
mr be prime elements of pg respectively pr. We define the following subgroups:



28 Chapter 1. Local Function Fields

Definition 1.24. For 0 € G, we define ix/p(0) := vi(0(TK) — TK).
The n-th ramification group of K/F for n € Ny is
Gn:={0c€G : vg(o(rg)—7mK) >n+1}.
A natural number n € Ny is called a (lower) ramification break if G,, # Gp41.
The number i/ p(0) is well-defined, as the valuation v (o(m) — 7) is independent of the chosen
prime element 7.

The n-th ramification group G,, can be constructed as follows: Let 0 € G. As 0(Ok) = Ok and

o(px) = px we have for all n € N an automorphism o, : (’)K/p}?'l — (’)K/p}‘{H. This defines a

homomorphism
v,: G — Aut((’)K/pT[?'l), o +—> Op

with Ker(¥,,) = Gy,

Theorem 1.25. Let E/F be a finite Galois extension of local fields with char(kp) = p and G =
Gal(E/F).

(a) The ramification groups form a descending chain that becomes stationary.

(b) G; <G for alli >0 and G; is a p-group for each i > 1.

(c) G/Go = Gal(kk /kF) is cyclic of order fx/p and |Go| = ek )p.

(d) Go/Gy is cyclic and G;/Gyy1 is p-elementary abelian for i > 1. In particular |G| = p*»(©).

(e) For each i > 0 we have an injective homomorphism

o(rx)

Gi/Giz1 — (L+p")/(1+p"), o+ -
K

Proofs for these facts are contained in [Ser79, p. 65-67].
Theorem 1.26. Let o € Gy s.th. oP" #id. Then

. n—1 . n

ix/p(o? ) =igp(o? ) mod p".
For a proof see [Sna94, Prop. 6.1.34].

The ramification groups are closely connected to the discriminant of K/F":

Theorem 1.27. Let K/F be a finite Galois extension of local function fields with inertia degree
fK/F' Then:

(a) vic(Diff(K/F)) = 3 i (o) = > (1Gi = 1),

o#id i=0
(b) disc(K/F) = fic/r- (f:o Gil - 1) -

See [Ser79, Prop. IV 4].
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1.1.6 Abelian Conductor-Discriminant-Formula

Here we follow [Iwa86, p.113].

Let E/F be an abelian extension of local fields and x be a character of Gal(E/F) = G. We write
E, = Fix(Ker(x)) and define the conductor of x via

FOX) == §(Ex/F).

Theorem 1.28 (Conductor-Discriminant Formula). Let E/F be an abelian extension of local fields.
Then

oE/F) =] i

X irr. character

A proof is given in [Iwa86, Thm. 7.15].

We use this to prove the discriminant formula for C7-extensions which is central for the discriminant
calculations throughout the thesis.

Example 1.29. Let E/F be a Cp-extension. Let x € Gal(E/F)*. If x = 1, then Ker(x) = Cp and
E, =Fix (Ker(x)) = F. Hence (1) = f(F/F) = 1.

If x # 1, then Ker(x) =1 and E, = {(Fix (Gal(E/F)) /F) ={(E/F), hence

oE/F= [ o=t [[iE/F) =iE/Fr

x€Gal(E/F)* x#1

>~

Proposition 1.30. Let E/F be an elementary abelian extension with Galois group Gal(E/F')
(Cp)"-

(a) Then for the discriminant ideal, we have

oE/F)= ][I wz/Fppt= [ 2z/F)
Z<E Z<E
Z|F cyclic Z|F cyclic

(b) Concerning the discriminant norm, there exist Cp-subfields E1, ..., E, < E such that D(E,/F) >
D(E,_1/F)>...> D(E1/F) and

D(E/F) = [[ D(&E:/F)" .
=1
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Proof. Let U := (p(E)NF) /p(F). Then by the conductor-discriminant formula we have

oE/F) = ] fKer(x) 2T Ker(va)

X€Gal(E/F)* acU
=[[1F©)/F) = T] §#(F@a)/F)"
acU (a)<U

where the last product runs over all cyclic subgroups. Applying Example 1.29, for a fixed C)p-
extension F(6,)/F we have D(F(0,)/F) = f(F(0,)/F)P~L.

For part (b), we consider for every x € R the set
Up = [0]U{ueU | vyp(u) > z}
which clearly forms an Fj,-subspace of U.
Consider the ordered set {A\1 > A2 > ... > A} = {vyp)(u) : 0 #u € U}. Let d; := dimg, (U, ).

Now choose a basis of the flag Uy, < Uy, < ... < U,,, i.e choose a basis vy, ..., vq, of Uy,, supplement
with vectors of Uy, so that v1,...,v4,, V4,41, .-, v4, forms a basis of Uy, etc. The basis (v1,...,v;)
built this way has the property

J(F) (ZN@W) - 1maX (VJ( )( )) for all (Ml»- . 'a/'LT‘) € IF;\O

<j<r
=1 1570

Using f(F(0,)/F) = Cond([a]) , we get

! _1).pr—t—1 ! r i—1
D(E/F)= ]] f(F = [T1F @) /)7 = [T D(F(0,)/F)P
0Fuel i=1 i=1
The corresponding Cp-subfields E; := F(p~!(v;)) fulfil the claim. O

Example 1.31. Let F = F,((t)) be a local function field with char(F) = p. Let a,b € Rp be F)-
linearly independent such that K = F(0,,0,) defines a Cp, x Cp-extension. The corresponding module
18

U = Spang, (a+ 9(F),b+ p(F)) < F/p(F).

The Cy-subfields of K correspond to P! (Fp). The non-trivial conductors correspond to the non-zero
vectors of U. We have

disc(K/F) = Z cond(u) = Z cond([Aa + ub)).

0Auel (M) EF2\{(0,0)}
Let Ey, ..., E,1 < K the Cy-subfields such that E,11 has minimal discriminant. Then we have
disc(K/F) = pdisc(Ey /F) + disc(Ep41/F).

Starting with a and b, there are three cases:
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(1) Let vp(a) # vr(b) and assume without loss of generality |vp(a)| > |vp(b)|. Then we have

disc(K/F) = pdisc(F(0,)/F) + disc(F(0p)/F) = p - dy + dy.

(2) If vi(a) = vp(b) and vr(a+ A -b) = vp(a) for all X € )y, then disc(F1)/F = disc(E;/F) for
all1<i<p+1 and we get

disc(K/F) = (p+ 1) disc(E1/F) = (p+1) - d,.
Note that this case is only possible if ¢ # p.
(3) Otherwise, we have vp(a) = vp(b) and there evists A € F)\ such that ¢ := a+ X - b has valuation

strictly larger than the valuation of a. Thus E,i1 = F(0.) has minimal discriminant, and we
obtain

disc(K/F) = pdisc(E,/F) + disc(F(0.)/F) = p- dy + de.

1.2 Asymptotics and Tauberian Theorems

In this section we introduce some tools that we use to attack the asymptotics problem. We frequently
have to deal with geometric series with a periodic twist. There is a Tauberian theorem occurring
in Ellenberg-Venkatesh we frequently use. Moreover, some formulas for counting C),-extensions are
crucial for the whole thesis and are highlighted here.

1.2.1 Big O-Notation
For two real-valued functions f, g: R — R we use the following notations:

f=0(9) <= 3IB>0,c>0 : |f(zx)|<c-|g(x)] forall z> B,

f=olg9) = xlgrolom =0,
f~g: <= lim @—1,
w00 ()

f=<g:<=3B,c1,c2>0 c1f(z) < g(x) <cof(z) forall z> B.

We will occasionally write
f<gi+= f=o(g)

to express that f is of strictly smaller order than g.

It is straightforward to show that ~ and < are equivalence relations.
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Discriminant Counting Function

Our main goal is to achieve a similar result as the so-called weak Malle conjecture: Let F' be a local
function field with constant field IF, and let G be a finite group. We define the counting function

Z(F,G;X):=#{FE/F : Gal(E/F)=G, D(E/F)<X}.
Our goal is to find a constant a,(G) € R>¢ such that
Z(F,G; X) = X,
In order to obtain a reasonable stronger version, we try to find a periodic function dg such that
Z(F,G; X) ~ §g(X) X&)

or could prove a ~-asymptotics for a suitable arithmetic progression X,, =n-D + k.

The problem is only interesting for p | #G. In the case #G being coprime to p, there exist only
finitely many extensions. Thus, there is a bound B > 0 such that Z(F,G; X) < B for all X € R and
we always have a,(G) = 0.

1.2.2 Counting C),-extensions over Local Function Fields

As a first and crucial example we count Cp-extensions over F' = F,((t)). For z € R, we denote the
truncation function
|z] ==max{z €Z : z <z}

Definition 1.32. Let p € P and ¢ = p" be a p-power.
For x € R we define

Tp(x) =#{1<i<|z| : ieN, pfi}.
Let moreover

Tg(z) == #{a € Rr : |vr(a)| < [z[}
and

Y(x) =9 e Rp : |vp(a)| = [z]}.

Define {z} :=x — |z] € [0,1) for z € R.

For z € R, we have
|z|
Tp(z) == [|z|] — L?J-

Moreover, we have

) =n- 221 forall neN (1.5)
p
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sincen%:n—%:n— [%1if p|n, and if ptn we have
n n n n p—1
n——<n—|—]<n——+1=1Ty(n)=n—|—| =[n—1]_
p p p 8 p p
Lemma 1.33.
For every p € P there is a bounded periodic function €,: R>q — [—%1, ijl] of period p such that

1
-z + €p(x) for all x € Rxg.

Ty(x) =

p() ’

Proof. Write x = pN(z) 4+ r(z) + {z} where 0 < r(z) <p—1, N(z) € N and {z} € [0,1) as defined
above. With respect to these notations we set

p—1p-1

€p: RZO — [—7, T], T — T(];T) — (p _]19) {x} (1.6)

Indeed, we have

Tp(x) =#{1 <i<p-N(x)+r(z)+{z} : ieN, pti}
= (- 1N(@) +r(z)

B e NNV CO RPN ot SR ek
=, WN@) @)+ ==+ et == e =

—1 r(T —1
P ()_{x}L
p p p

— L+ e (@). (1.7)

By 0<{z} <1land 0<r(z)<(p—1) we immediately get

=D <r@) - (p-Diah<p-1— Tt <g < P

Finally r(xz + p) = r(x) by construction and {x + p} = {z} as p € N, hence ¢, is a periodic function
with period p. O

Lemma 1.34. Let p € P and g = p" be a p-power.

(a) For all x € R>q we have
Ly(z) =p- g

Moreover, there is a periodic function Ay: R>q — [g,pq] of period p such that
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(b) For alln € N we have

p—1, n=>0
Ye(n) = ¢ plg — g™~ pin
0, else.

(¢c) We have Tp(p-k+1)=(p—1)k+r fork,r € N, 0 <r <p, and there is a p-periodic function

—1
with  94(0) := 0, 64(%) ::pqi fori=1,...,p—1

qg—1
] ql—i/p

dg: N—=[0,p Y

such that

Proof. Set M, :={k €Z+y : 1 <|k| <z, ptk}. Clearly, we have
T
M| = =] —#{p, ..., L];J p} = Tp(x).
Thus, we obtain

Ty(x) =#{a € Rp : lvp(a)| <a}=#{dwo+ > ait' : A€Fy,a; €Fy}

—Ja|>i>-1
pti
= #{\wo + Z ait’ 1 N e Fp,a; € Fg}
1EM,

Define Ay(2) := p - ¢*®) with ¢,(x) as defined in (1.6). With (1.7), we get

By —1 < —% < glx) < % < 1 we have p- ¢~ < pg*®) = A (x) < pq, completing the proof of
(a).

Analogously to (1.8), we have

Yq(n) = #{ A wo + Z ait’ : N€F, a; €Fy, a, # 0}

1€Mp,
|]F1>)<| =D—- 17 n =70
= 9 IF [pg™ 1=t = p(q — 1)gT»™=1 pin
0, pln, n#0.
Lastly n € M, is equivalent to n = 0 or p{ n completing the second assertion. O

Combining these two results, we obtain the following:
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Corollary 1.35. Let q be a p-power, then there exist periodic functions 64: R>9 — [0,pq] and
Ay R — [pg~t, pq] with period length p such that for all x € R>q we have

p—1

Yo(@) = 64(2) - q'T ° and Tylx) = Ag(a)-q'7 °.

Theorem 1.36. Let p € P and ¢ = p” for some r > 1 and F = F,((t)). Then we have
Z(F,Cp; X) = X7,

Proof. For every Cp-extension E/F there is an a € F'\ p(F) such that E = F(6,).
Moreover, there exists a unique a € Rp such that a + p(F) = o + p(F).

By Lemma 1.5(b) there exist (p—1) elements a4, ..., op—1 defining the same field, given by o; :=i-«
for i € F;'. The discriminant is given by the formula

(= D(vr(@)|+1), vr(a) <0
0

0, vr(a) =

disc(E/F) = {

Let y = log,(X), i.e. X = ¢¥. Then we get

Z(F,Cp X) = Z(F,Cp; ) =T, (yl - 1) ba 134, G5 1 forall y € Rg.
p— >
The zero-element in Rr does not define a C)-extension and we have to subtract it. Using Lemma 1.33
we get }%(y —p) <Tp(y) < pp%l(y + p). Thus

B

pg'7 TPV < pgTGE Y = Z(F,Cpig?) < pg'7 TPV,

p—1 1

Hence, we obtain Z(F,Cy;¢¥) < ¢’ 7 1 =¢* O

3=

=Xr.

3=

Remark 1.37. Set U(N) := Z(F,Cp;q®DWN+D) and write N := ¢(N) - p + r(N), where 0 <
r(N) < p and 7(N), ¢(N) € N. Writing 6(N) := pg"™ defines a period function of period length p
which satisfies

r(N)

Ly
UN) =gV pg s
= "IN 5(N).

We conclude that Z]E,]/\;) does not converge and in particular

Z(F,Cp; X) Ac-Xr  forall e Rsg.

One general issue is that Z(F,G;q¢Y) = Z(F,G;¢"¥*! — 1) which makes it impossible to establish
a ~-equivalence of type
Z(F,G;X) ~c- X
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for any ¢ > 0 and a > 0, as

Another problem arises from oscillation effects, so that Z(F, Cp; qPN +]“)(1’*1)) considered as a function
in N has a different behaviour depending on the arithmetic progression pN + k.

However for any k € {0,...,p — 1} we have the convergence result
U(pN + k) ~ 8(k)g"™

and combined, we have

U(N) ~ §(N)g"/P.
This demonstrates why we can at best expect to find a periodic function dg: Ng — R>¢ such that
Z(F,G;q") ~ 6(N) - g™,

Mostly, we will be satisfied with establishing an =<-equivalence in our context.

1.2.3 Analytic Framework

Here we collect some basic computational methods we will frequently use. In particular we will
introduce and consider certain types of functions which play a key role in our counting. They will
involve summation over periodic functions.

Theorem 1.38 (Tauberian Theorem). Suppose (an)nen S a sequence of non-negative real numbers
with a, = 0 whenever n s not a power of q, and suppose that the formal power series

oo
O(u) = Z agru”"
r=0

is a rational function in u = q°. Let B € Rsq. If ®(u) has no poles with |u| > ¢®, then

Z an < X5,

1<n<X

If ®(u) has a pole at w = q* of order b and no other poles with |u| > ¢%, then:

Z an = X%(log X)o7 1.

1<n<X

See |EV05, Lemma 2.3]. A complete proof is given in |[Lagl2, Lemma A.4|.

Our main application is the following Dirichlet series. Consider F' = [F,((t)) and a transitive permu-
tation group G. Let

an :=#{K/F | Gal(K/F) =G, D(K/F)=n} for neN
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Here, we mean by = that there is an isomorphism of permutation groups Gal(K/F) = G.

Then we get a sequence (an)neny > 0 with a,, = 0 if n is not a power of ¢q. Consider the Dirichlet

series
(I)Rg(s) = Z K/F Zakk s

K/F k>0
Gal(K/F)=G

To apply Theorem 1.38 we set u = ¢°, and we obtain a new power series

\IJFG Za kU

Now let us assume that the series Wr is a rational function with a simple pole at a € R and no
poles for Re(u) > a. Then we obtain for X € R>q that

> an=)Y_ #{K/F| Gal(K/F) =G, D(K/F)=n}

1<n<X n<X
1.38
=Z(F,G;X) < X
The most obvious example is given by a geometric series.

Example 1.39. Let A € R and a, = ¢ for r € N. Setting u = ¢°, we get a geometric series

u) _ Zaqru—r _ Zaqqu—rs _ Z qr()\—s) _ - _1)\_8 _ 1}\

— —s’
r>0 r>1 r>1 q 1 qa’q

which is a rational function in w = ¢°. It has a simple pole at u = ¢* and no poles with |u| > ¢*,
thus Theorem 1.38 yields as expected
5 =0
an =< X",

n<X

Periodic twist of a geometric series Some of the counting functions we consider are geometric
series twisted with a periodic function:

Notation 1.40. Let §: Ny — R>( be a periodic function with period D > 0, D € N and ¢ # 0.

Moreover, let ag,a; € R and a: C — C,s — «ag + a1 - s be an affine function. We have the

interpretation in mind that ¢**™™ is a discriminant with discriminant exponent a; - n

For s € C we write

N 00
Ssas(N) = Za(n) WCOLNE YNE 25
n=1 n=1

Moreover, we define
T57a752 No — (C, T57a75(N) = 5570475(D . N) (1.9)



38 Chapter 1. Local Function Fields

The summation in T ¢ reflects the arithmetic progression (ap)nen := (D - n)pen. We define

D
A, a,5) =D 8(j)q* (1.10)
j=1

and

[e's) D [e's)
oL (s) =3 [ S 6G)a @7 | g Pm =3 A5 a,8) - g,
n=0 \ j=1 n=0

Lemma 1.41. Let §: Ng — C be a periodic function of length D € N. Let ag, 1 € R with ag > 0
and a: C = C,z—ag—oa1-2. Let 0# s € C and Ts o5 as in (1.9) and Asq s as in (1.10).

(a) For all N € N we have

T6,a(s) (N) = A((Sa «, 5) ’

(b) For Re(s) > 22 the sequence (T5a,s(N))yey converges absolutely and

1

T - B
®5.,(5) = A4, 8) e

18 in particular rational.

Proof. For N € N we have

f=

2
o
=2

v

(N) =37 6(n) - q*"

)

[
ilng

=
AR

8(j) - g Pk+I)

Il
Zz >
ol
= o

A(0, o, s)q"‘(s)'Dk

e
Il
o
r
—_

= A(67 «, S) ' qa(S)Dk

B
Il

QO
-}
=2
o

1—

«a(s)
=A(4,, s) .

(1.11)

—
|

L
S
Q
=

In particular ®_(s) is a rational function in ¢°.

By assumption we have 6 # 0 and §(n) > 0 for all n € N. Thus for all s € R we have a(s) > 0 and
A(d,a, 8) > 0. Thus we have a pole at s = <2 which is the unique root of a. O

The next example is a useful summation for the discriminant counting function over local function

fields.
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Proposition 1.42. Let g =p", A€ R, p € R\ {0} and X € R>¢. Then we have

A (p=1)/p

Y M@l < x M

a€ERp
g lrr@l<x

Proof. The condition ¢#"F(®)| < X is equivalent to |vg(a)| < i -log,(X), hence to
1

vr(a)l < | - log (X)) (1.12)
since |vp(a)| € Ng. Moreover, we have
=g = (gi)" forall ne N, (1.13)
We use the formula
Ya(n) “ 2 5, ()T, (1.14)

where d, is periodic of period length p and in particular a bounded function. We obtain

‘ve(a 1.12 ‘lvr(a
Z qA\F()I(:) Z M vr (@)

a€ERp a€RFp
Jvp(a lo, X
g lvr()l<x v (a)|< g(L( )
(1.14) =iy
= ) dm)q v e
n<10gq(X)
113 p=1 A\ M
(:) Z 5q(n)« (qzw"‘u)
n<10gq(X)
= n
logg (X)
pet Ay i [T
La. 1.41 (q " “) -1
= p=1l 4 A
qre ' r— 1
At(p—1)/p
=X & . [l

Example 1.43. Here we continue the example of counting Cp-extensions from Remark 1.57. For
n € No, we write n = pN + r(n) with 0 < r(n) < p—1 as in the proof of Lemma 1.33. with ¢ = p"
and the periodic function

-1
dq(n) = pL -q P of length p.
q
(a) For Cp-extensions we can apply Lemma 1.41 with o = % and oy = (p — 1) to obtain the
critical pole at s = g—? = %.

(b) We can also apply Proposition 1.42 with A =0 and p = (p — 1) and obtain the exponent

p—1 p—1
ST L

I p—1 p
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1.3 Cohomology and Explicit Construction

1.3.1 The Absolute Galois Group of Local Function Fields

The absolute Galois group of local fields is well understood. We will give a brief description here and
draw some conclusions concerning embedding problems. We follow the book of Ribes and Zaleskii
for notations (see [RZ00]) and collect some results from [NSWO08|.

Definition 1.44. An inductive system of finite groups consists of a directed partially-ordered! index
set (I, <), a family of finite groups (G;)iecr and a family of morphisms (¢; j: G; — G;);>; which are
compatible, i.e. for all ¢ > j > k in I the following diagram commutes:

Definition 1.45. A projective limit of an inductive system of finite groups is called a profinite group.
It is called a pro-p-group or pro-solvable group respectively if the inductive system consists of finite
p-groups or solvable groups respectively.

Let ¢ be a class of finite groups which is closed under subgroups, quotients and extensions. Then a
pro-c-group is a projective limit of an inductive system of groups in c.

Definition 1.46. A pro-c-group G is called free if there exists a set X C G and a map i: X — G
such that

1.) each open normal subgroup of G contains almost all elements of X and

2.) for each pro-c-group G and map j: X — G exists 3! Vv: G — G continuous homomorphism
such that ¢ oi = j.

| X| is called the rank of G and i(X) is called a basis of G.

Next we collect some important results on the structure of the absolute Galois group of a local
function field. For this, let F' be a local function field with constant field kg of cardinality ¢ and
char(F) = p. Denote by G the absolute Galois group of F. Its structure is completely determined
by the following theorem:

Theorem 1.47 (Absolute Galois group).
Let F =TF,((t)) be a local function field with char(F') = p and absolute Galois group Gp.

(a) For Fuyy, the mazimal unramified extension, we have Gun = Gal(Fyn/F) = Gal(@/Fq) ~ 7
where the Frobenius automorphism is a topological generator.

.e. < is an ordering such that additionally holds: Vi,j € T 3k € I with i < k and j < k.
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(b) Let Fy, be the mazimal tamely ramified extension of F. We have

Gy = Gal(Fy,/F) = HZg X Gur = (0,7 | oro™! =719)
t#p

as a profinite group.

(¢) For the absolute Galois group we get Gp = Gy, X Gy, where G, is a free pro-p-group of countably
nfinite rank.

For a proof see [INSW08|, Theorem VII.5.13.

For our work, we are particularly interested in the maximal pro-p-quotient of Gr. The maximal
p-extension F(p) of F' is defined as the composite of all Galois extensions of F' of p-power degree.
Write Gp(p) := Gal(F(p)/F) which is the maximal pro-p-factor group of G, see [NSWO08, p.414|.

Theorem 1.48. Let F' be a local field with char(F') = p. Let G be the absolute Galois group of F
and Gr(p) be the mazimal pro-p-factor group of Gp.

Then Gr(p) is a free pro-p-group of countably infinite rank.

For a proof see [NSW08], Theorem VII.5.10.

Our main interest is the following consequence:

Corollary 1.49. Let F be a local function field with char(F) = p. Fach finite p-group H is a
quotient of G, in particular, there exists a field extension K/F with Gal(K/F) = H.

Proof. Let X = {x1,x2,...} C Gp(p) and i: X — Gp(p) satisfying the conditions of Definiton 1.46.
Consider a numbering H = {hy,... By H‘} of the elements and consider the map

h k<|H
1: X — H, zp —> b < |H]

hi, k> |H|.
The induced continuous homomorphism ¢: Gr(p) — H is clearly surjective. Setting ¢(z) = idy for
x € Gy, defines a surjective homomorphism ¢: Gp — H as claimed. O

Remark 1.50. We briefly compare this to the absolute Galois group of a p-adic field: While the
p/-part is isomorphic to the p’-part in the function field case, the p-part of the absolute Galois group
of a p-adic field is a pro-p-group of finite rank, which is free or has one relation. The relation occurs
if and only if the p-adic field contains p-th roots of unity.

Hence, there is a drastic difference concerning the p-part. Consequently, there are infinitely many
extensions of degree p" over a local function field for n > 1, while there are only finitely many
degree-n-extensions over a p-adic field for any n € N.
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1.3.2 Central Embedding Problems
A group extension € with kernel N is an exact sequence of groups

1— N -G - H—1.

It is called central if i(N) C Z(G) and it is called split if there exists a homomorphism s: H — G
such that m o s = idy. Otherwise we call it non-split. Note that the extension is split if and only if
G = N x H is a semi-direct product.

Given a Galois extension K/F with Gal(K/F) = H the embedding problem for K is to find a field
extension L/K such that
Gal(L/K)= N and Gal(L/F)=G

and such that the diagram

o0k

1 —— Gal(L/K) 22% Gal(L/F) —= Gal(K/F) —1

Lk k

1 N L G T H 1

commutes. We refer to this situation as the embedding problem of the group extension over K and
in short, as “embedding problem of G over K.

We call the embedding problem solvable if such an extension field L exists.

A solution with minimal discriminant is called a minimal solution. Its discriminant over F' is called
the minimal discriminant of the embedding problem. The embedding problem is called split or
central, if the corresponding group extension is split or central, respectively.

The solutions of central embedding problems with kernel N = C), have a particularly nice structure.
If we have one solution, then all solutions are parametrised by C,-extensions.

Proposition 1.51.
Let F' be a local function field of characteristic p. Further, let H and G be finite groups and

1—C, —G—H—1 (1.15)
be a central non-split embedding problem.

(a) If H is a p-group, then the embedding problem is solvable.

(b) If M = K(60,) is any solution of the embedding problem of type (1.15) then each solution of the
embedding problem is of type M. := K(04+c) for some ¢ € Rp.

For a proof see [JLY02, App. A].

The following lemma is useful for determining minimal discriminants.



1.3. Cohomology and Explicit Construction 43

Lemma 1.52. Assume disc(K(0,)/F) ¢ {disc(K(0.)/F) | ¢ € F}, then K(0,)/F is a minimal

extenston.

Proof. Suppose
disc(K (Oq+c)/F) < disc(K(0,)/F) for some c € F. (1.16)

Both fields K (6,) and K (6,+.) are subfields of the field compositum L := K (0, 0.) with Gal(L/K) =
Cp x Cp. Clearly, disc(K (0)/K) > disc(K (0a+c)/K) by (1.16). Using Example 1.31(1) then yields
disc(L/K) = pdisc(K(0,)/K) + disc(K (0pc)/ K).

We have K (0.) < L with K(0.) # K(0a+.). Hence, Example 1.31(1) and Proposition 1.30 give
disc(K(0.)/K) = disc(K (0,)/K)

and thus disc(K(0.)/F) = disc(K(6,)/F) in contradiction to our assumption. Thus K(6,) is a
minimal extension. O

Theorem 1.53. Let F' be a local function field of characteristic p and G be a finite group.

(a) For each finite p-group G # 1, there are infinitely many G-extensions of F.

(b) If U < Z(G) is a subgroup with p elements and there is a G/U-extension K over F, then there
are infinitely many extensions with Galois group G containing K.

(c) Let H be a finite group such that there is a field extension K/F with Gal(K/F) = H and G # 1
be a finite p-group. Then there are infinitely many G X H -extensions over F.

Proof. For (a) we use Proposition 1.51(a) to prove the existence and 1.51(b) for the existence of
infinitely many G-extensions. Similarly, (b) follows by 1.51(b).

For (c) note that any finite non-trivial p-group has non-trivial center. Hence using 1 — C, — H X
Cp, — H — 1 and induction one obtains infinitely many H x G-extensions by Theorem 1.51(b). [

The following example shows the existence of finite groups G with p | |G| such that there exist only
finitely many but more than zero extensions K/F with Galois group G.

Example 1.54.

(a) We consider F = Fo((t)) and G = S3. We show here that there is an extension L/F with
Gal(L/F) = S, but there are only finitely many Ss-extensions over F, although 2 = char(F') |
|55

To affirm the existence part, take for instance L = F(3/t,(3). This is the splitting field of
K := F(Vt) as (3 ¢ Fy. As the extension K/F is not Galois, we have that Gal(L/F) is
non-abelian, hence Gal(L/F') = Ss.
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On the other hand, let L/F be any Ss-extension. There are three subfields K; < L with [K; :
F) =3 and L = K1 Ky. There are only finitely many degree-3-extensions of F as they are all
tamely ramified. Hence, there are only finitely many Ss-extensions over F.

This shows that the statement in Theorem 1.53(c) can not be improved to semi-direct products
G x H, as S3 = C3 x Cy and 2 = char(F) | 6 = |S3| demonstrate.

(b) If F = TF4((t)), then (3 € F and there does not exist an Ss-extension over F, as every degree-
3-extension K/F is at most tamely ramified and therefore a radical extension which is a Galois
extension due to (3 € F.

(¢) Now let p=3 and F =TF3((t)). Let K := F(w) := Fg((t)) be the unramified Cs-extension of F.
We will show in Chapter 3 that the infinite series of fields

Ln = K(Qp(t73nf1)w), n e N,

is a series of non-isomorphic field extensions with Gal(L,/F) = Ss. The fields are non-
isomorphic as the discriminant exponents disc(L,/K) =2-((3n+ 1) + 1) are pairwise different.
Generalising Example 1.54(a), we obtain:
Lemma 1.55. Let F be a local function field with char(F) = p and G < S, be a transitive permu-

tation group over m points with p{ n. Then there are only finitely many G-extensions of F.

Proof. Let K/F be a extension of degree n with Gal(K/F) = G < S, and let L/F be the Galois
closure of K/F. Then, L is the splitting field of K/F. As

(L.1)

1.1
n=[K:F|] = eg;p fxyr and pin,

we have that K/F is tamely ramified. Thus, L/F is tamely ramified as the composite of tamely
ramified extensions. Thus, there are only finitely many tamely ramified extensions of degree |G|,
which proves the statement of the Lemma. O

1.3.3 Cohomology of Groups

Here we simply recall definitions and some basic results we need. These standard definitions are
taken from [NSWO08, p. 15ff].

Let G be a finite group. We call an abelian group A a G-module if G is acting on A. We will write
(G,-) multiplicatively and (A, +) additively. We are mainly interested in the 0-th, 1-st and 2-nd
cohomology group and their interpretations.

Definition 1.56. Let G be a finite group and A be a G-module.

(a) The 0-th cohomology group is
H°(G, A) :=Fixg(A) ={a € A| a? =aVg € G}.
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(b) Amap f: G — A with f(o1) = f(o)+of(7) for all o, 7 € G is called a 1-cocycle? and Z1(G, A)
is the set of all 1-cocycles.

A 1-coboundary? is a map
G— A, oc+——0c-a—a

for a fixed a € A. B}(G, A) is the set of all 1-coboundaries.
(c) Z1(G, A) forms an abelian group via
fi-fa: G—= A, o fi(o)+ fa(0)
and BY(G, A) < Z1(G, A) forms a subgroup.
The quotient group H'(G, A) := Z(G, A)/B'(G, A) is the first cohomology group.

Similarly, we define in the following definition the second cohomology group H?(G, A) as the quotient
of cocycles modulo coboundaries. H?(G, A) characterises the group extensions 1 — A — G —
G — 1

Definition 1.57. Let G be a finite group acting on an abelian group (A, +).
(a) Let f: G x G — A and write f,, := f(o,7). The map f is called a 2-cocycle® if
f(p,o)+ flpo,7)=p- flo,7)+ f(p,or) forall p,o,7€G

and Z%(G, A) is the set of all 2-cocycles.

(b) For any map a: G — A, 0 + a, the associated function
GxG— A, (0,7)—a,+0ar—agr

is called a 2-coboundary® and B%(G, A) is the set of all 2-coboundaries.

(c) Z2(G, A) forms a group with pairwise multiplication, i.e.
(f1- f2)(o,7) = fio,7) + fa(o, 7).

The quotient group H?(G, A) := Z?(G, A)/B?(G, A) is called the second cohomology group.

Definition 1.58. Let A be an abelian group and
1—A-5%E-5SG—1

be an exact sequence of finite groups. For all o € G let s, be a fixed pre-image under w. Then G
acts on A via

o-a:=s41(a)s;t forall oc€G, acA.

The second cohomology group H?(G, A) with respect to this G-action is also called “the cohomology
group” of the group extension.

or crossed homomorphism
or principal crossed homomorphism
or factor system

2
3
4
Sor splitting factor system
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Remark 1.59. (a) Note that A being abelian is crucial so that Z*(G, A), B (G, A) and H* (G, A)
indeed form groups.

(b) If the group extension 1 — A -+ E -+ G — 1 is central, then the induced G-module on A

is trivial.

Example 1.60. Let L/F be a finite Galois extension of (local) function fields and G = Gal(L/F).
(a) Let A= (L,+), then H°(G, L) = Fixg(L) = F is the fized field.
Moreover, we get a 1-cocycle
fv:G—=L, o~ (c—1))
for ally € L.
(b) For any 2-coboundary a: G — ), with coefficients in F), the map
(p(as))oec = (ab — ag)sca

orms a 1-cocycle. This holds as o commutes with o € G and y? —y =0 for all y € F,,.
P

Theorem 1.61. Let L/K be a finite Galois extension with G = Gal(L/K). Then:

(a) HY(G,L*) =0 is trivial.

(b) HY(G,L) =0 and H*(G,L) = 0.
A proof is given in [Led05, p. 32].

Note that in general H2(G, L*) does not have to be trivial.

1.3.4 Construction of p-Extensions in Characteristic p

Finally, we state a classical construction by Witt [Wit36] for all solutions of a central embedding
problem of finite p-groups with elementary abelian kernel in characteristic p. Although we do not use
it directly in this thesis, we want to highlight this construction as it is highly useful in the context of
constructions of p-group extensions over local function fields. We used this construction to construct
some Dy-extensions, Qg-extensions, H (p,2)-extensions and H (p,2)-extensions. This is very useful
because one solution automatically gives us all solutions to such a central embedding problem.

We will give the construction for the kernel C), first.
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Preliminaries Let 1—— (Cp,+) = G—"-H 1 be a central embedding problem of
p-groups and let K/F be a field extension with Gal(K/F) = H.

Moreover, we identify x: C, — F, C K, i.e. x(Cp) is the prime field of K.
(i) Let R be a fixed representative system of G/i(Cp),
(ii) Let r, € R be a fixed pre-image of o € H under m,

(iii) Let gy € Cp be satistying r,r; = 7474(gs,r) for all o,7 € H.

Conclusions:
(1) (go,r),, forms a 2-cocycle, i.e. g € Z?(H,C,) and

Fp 3 x(9o,7) + X(9p.or) = X(9p,0) + X(9po,7) for all p,o, 7 € H.

Moreover, g € Z?(H, K) forms a factor system over K via the inclusion Cp — K, more precisely

via the canonical map
H?*(H,F,) — H*(H,K).

(2) Let a € K such that Trg p(a) # 0 and set

Ay =

ZgUT or(a) for o € H.
TEG

Trpe/p(a) K/ (
Then (as)seng € K satisfies

Jor =05 +0ar —a,r forall o,7€ H.
That is, the factor system is splitting over K.

(3) (p(as))sen forms a crossed homomorphism (or a 1-cocycle).

(4) Using Trg/p(a) # 0 and the choice

we get
plaz) =adl —a, =o(y)—7 forall o€ H.

(5) Let 6 be a zero of X? — X —~. Then L = K () is a solution of the embedding problem, i.e.
Gal(L/F) =G

(6) For each solution L/F, there is f € F satisfying L = K (6. f).
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Proof: The proof is mainly done in two papers of Witt ([Wit35], [Wit36]).

(1)
(2)

This is a well-known result in extension theory, see for instance [NSWO08] or [Led05].

We have H?(H, K) = 0, see [Led05, Ch. 4.2]. Hence H?(H,C,) — H*(H, K) is the zero-map
and there exist a, € K, 0 € H such that

(g +0ar — Qg7 = §or forall o,7€ H.

An explicit construction can be found in [Wit35, 1.(3)]: Take an element o € K such that
Trg p(a) # 0. Then a solution for (as)seq € K is given via

Zgo‘r 0'7'

T€EG

Ay =
7 TI"K/F

¢: H— K,o — p(as) forms a 1-cocycle: Firstly p(gr-) = 0 as g, € F,. Moreover, we have
forall o,7 € H:

¢(o7) = p(aor) = plas + oar) = pas, + opar = ¢(o) + og(7).

It is well-known that H!(H, K) = 0. One explicit construction is given in [Wit35, 1.(2)] via
Trg/p(a) # 0 and
o Y

Thus there is a v € K such that (o — 1)(y) = p(a,) for all o € H.

TrK/F

This assertion is proven in [Wit36, III. Konstruktion| with the verification of formulas (7) - (13b)
in that paper.

Let 6 := 6, be a root of 2P — x — . Note that the extension K (6)/F is Galois as
o(y) =v+pla;) = 6+asisarootof 2¥ —a—o(y).
Moreover, we define u, € Gal(K(6)/F) for o € H via
us(0) =0+ as, uys(k)=o0c(k) foral ke K
and for all g € C)
geGalK(©O)/F), §0)=0+x(g), gk)=Fk forall ke K.
These automorphisms satisfy

UoUr = Fo,rUoT,

Usg = JUg-

Thus, we conclude Gal(K(0)/F) = G
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(6) This is Proposition 1.51.

Example 1.62. Consider the group extension
1= Cp— Cpntr = Cpn — 1.

Let Cyn = (o). Then we have a factor system
iy = L, i+j=p"
70, i+ < pn

Let Kp/F be a Cyn-extension. Then every element ay € Ky, such that Trg, jp(as) = 1 describes a
splitting factor system via

a1 =0, ay=a;+0(as-1) forall 1<i<p’—1.

(e

Let K; be the unique subextension with [K; : F] = p' and K; = K;_1(0;). One choice for a, is given

by
g 1= (—1)"(6y - 0,)P .

If Y11 € Ky, is a solution of
(0 = 1)(m) = plas)
then Ky 11 := Ku(0,,)/F is a Cyni1-extension. The automorphism ¢ € Gal(Kyq1/F) given by

G(On+1) == 0Ony1 +as, Gk, =0

is a generator of Gal(Kp4+1/F).

Construction with Elementary Abelian Kernel

More generally we can use an analogous construction when considering a central extension of finite

p-groups of type
1-C,—-G—H—1

Let x1,...,Xxr € x(Cp) = Hom(C},F,) be a basis of the characters of Cj. Then we get a factor
system x;(g) for each 1 <14 <r given by

(Xi(9)5.r = Xi(go,r)-

We solve each factor system with the approach above:

o Take (agi))geH € Ka((,i) + JGS—i) — aé@ = Xi(gO',T)7

o Let v; € K such that '
(0 —D(v) = p(@?) forall 1<i<n,

g
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e Let 0; € K such that ©(0;) = ~; and define L := K(04,...,0,).
e Then L/F is Galois and Gal(L/F) is generated by the automorphisms
-0 =xi(9), K <Fix(g);  uo(0i) =i +al), uolx=o0
forallg e C), o€ H.
Then Gal(K(0)/F) = G, more precisely g € C} and 0,7 € H satisfy the relations

UsUr = Jo,rUoT,

Usg = JUqg-



Chapter 2

Conductor Density of Abelian Extensions

All the results of this chapter were published in a paper with J. Kliiners, see [KM20]. Here we
explicitly count all extensions of a local function field with a fixed abelian Galois group up to a
conductor bound. Let G be a finite abelian group and F' be a local function field of characteristic p.
The main object is the counting function

3(F,G;n) := #{E/F Galois : Gal(E/F) = G and N (f(E/F)) <q"},

where N (f(E/F)) is the norm of the conductor. Note that we count with respect to conductor
exponent here. We will establish explicit formulas and analyse its asymptotic behaviour. The main
difficulty is the p-part of G which will be handled first.

By class field theory, all extensions of F' with Galois group G are in bijection with quotient groups
of the unit group F*. For a conductor bound n, we can restrict this to a finite quotient group X,
of F*. In a first step, we construct these quotient groups X,, and we compute the p’-ranks of these
groups. Secondly, we need to count all quotient groups of X,, isomorphic to G, which is equivalent to
computing the number of subgroups of X,, that are isomorphic to G. We apply well-known formulas
and obtain an explicit description of the conductor counting function.

Note that the problem of determining the conductor density is significantly easier than the problem
of determining the discriminant density. As by the conductor-discriminant formula, we need to
know the conductor of all subfields, in contrast to only knowing the maximal conductor of any
subfield. Nevertheless, we apply the result on the conductor density to establish a lower bound on
the discriminant density of abelian groups which Lagemann proved in [LaglO] and we obtain an
interpretation of the discriminant asymptotics exponent.

2.1 Certain Quotient Groups of the Unit Group

Let again F, be a finite field with ¢ = p/ elements and F = F,((¢)) be the Laurent series ring over
F,. Let Op = F,[[t]] be the local ring with maximal ideal p = tOp. By the main theorem of local

51
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class field theory, we get a one-to-one correspondence of abelian extensions F/F and norm groups
U :=Ng/p(E*) in F*. Recall from Chapter 1 the definition of the conductor

{(E/F) = peWNe/r(E))
with ¢(U) being the minimal natural number n such that 1+ p" < U.

Theorem 2.1. The mapping E — NE/F(EX) defines a bijection between finite abelian extensions
of F' and open subgroups of F* of finite index.

Moreover, the Galois group Gal(E/F) is isomorphic to the quotient group F* /U.

For a proof, see [FV02, Theorem 6.2., p. 154].

Let G be a finite abelian group of exponent exp(G). Recall F* = Z xFy x (1+p), see Hasse ([Has69,
Ch. 15]). We define

Un:=1+p)/(1+p") and X,(G):=2Z/exp(G)Z x F; x U,.

By class field theory, the counting problem reduces to count the number of open subgroups U < F'*
with F* /U isomorphic to G. The conductor bound N (F(E/F)) < ¢" is equivalent to 1 + p" < U.
Moreover, F'* /U = G implies that exp(G) annihilates F*/U. So for our counting problem it is
sufficient to consider the subgroups of F'* containing

exp(G)Z x 1 x (14 p")

which correspond to the subgroups of X,,(G).

By dualising, the number of subgroups of F'* with quotient isomorphic to G is exactly the number of
subgroups of X,,(G) isomorphic to G. Thus we reduce our counting problem to counting subgroups
in certain finite abelian groups.

In establishing our desired formula, we first study higher unit groups, and consider formulas on
subgroups of finite abelian groups depending on the pF-ranks of the groups.

In general, for a finite abelian group and n € N, we get the subgroups
G":={g" | g€ G}

and the n-th torsion subgroup
Gnl ={geG|g¢g" =1}

For a prime p € P, we set the p™-rank of G as

Gpn71
rkyn (G) := log,, (| G ’) .

In the following, we will fix some notations and abbreviations for an abelian p-group.
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Definition 2.2. Let G be a finite abelian p-group and k£ € N.
We set 7(G) =tk (G).

Moreover, we set 7, (G) := r,(G) — r11(G).

A sequence of elements (g1, ...,g,) is called a group-basis of G if each element g € G has a unique
representation

g= g? . -gff, 0<4; < ord(gj).

Remark 2.3. Let G be a finite abelian p-group of exponent p¢. If (¢g1,..., gr) is a group-basis of G,
then 7(G) is the number of generators with ord(g;) = p*, i.e. it is the number of cyclic factors of G
isomorphic to Cpx.

(G is the number of generators of order > p*.

We have the decomposition

G= (Cp)f‘l(G) x (C 2)1’2(6‘) X e X (CpE)FG(G)'

Lemma 2.4. Let (vi,...,vs) be an Fp-basis of Fy. Then the following holds:

(a) 1+p has a Z,-basis
{1+vth  keNptk,1<i<f} and

{1+vth:1<i< fk<n-—1,ptk} is a group-basis of Uy,.

or each v € and © > 1 we have or + vtt) = plospn RIN n-
(b) F hveFS andi>1 weh d(1 ) = plo& (/D1 4, 1,
(c) For all j € N, the torsion group Uy[p’] is generated by

{1+vth:1<i< foptk,[n/p] <k<n-—1}

(d) For all k € N we have

re(Un) = f <L7;,:_11J -1 H) ke (Xa(@) = r(Un) L

Proof. (a) The first assertion on the Z,-basis is shown in [Has69, p. 227].

The second assertion concerning the group basis follows, using the elements of the Z,-generators
of Z,, whose residue is non-zero in U, = (1 +p)/(1 4+ p)" and the fact that

r k €i,k k €ik
HH(1+v,~t) €l4p" — (1+vit) el+piforall 1<i<r ptk.
i=1 plk



54 Chapter 2. Abelian Conductor Density

(b) U, is a p-group of order ¢"~! since (1 + p*)/(1 + p**1) = F, for all i > 1. Let i < n and put
a:=1+wvtt € (14+p)/(1+p") with v € FX and k € N. Then:

k

L+oti =1 <= P " ep —= ipf>n
n n

= ph > k> log,(5)].
1 1

(¢) This is (a) and (b) with [log,(n/k)] <j <= n/k<p’ < k=>n/p.
(d) By (a), Z={1+wv;t': 1 <i<nandp{i} is a group-basis of X,,(G). Then
(Xn(@)) = {g € #: ord(g) = p*}|.

By (b), we have ord(1 + v;t?) > pF <= ipt~! <n <= ip"~! <n -1, hence

o n—1 , n—1 n—1
re(Un) = f-[{i:i < LFLPMH = f(LFJ -1 o 1)-
Note that ry,(X,(G)) = r(Un) + 1 since p { [F|. O

2.2 Conductor Density of Abelian p-groups

For a finite abelian group G let G, = {g € G : ord(g) = p® for some a € Ny} be the p-Sylow
subgroup of G and let GGy denote the coprime to p part of G. For finite abelian groups G and A we
define

Inj(G,A) :=={¢ : G — A monomorphism}, ag(A):={U<A:U=G}.

We immediately get
ag(A) - [Aut(G)| = [Inj(G, A)[. (2.1)

We start with the following reduction to p-groups.

Lemma 2.5. We have the decompositions
Inj(G, A) = [ [Inj(Ge, Ar)  and  ag(A) = [ ag,(A0).
¢eP teP
In particular ag(A) = ag,(4p) - ag ,(Ay) and [Inj(G, A)| = [Inj(Gp(Ap))| - Inj(Gy, Ap)|.
Proof. The structure theorem of finite abelian groups gives decompositions G = [[,cp G¢ and A =

[1,cp A¢, where only finitely many factors are non-trivial. So every element g € G' can uniquely be
written as g = (g¢)eep for g € Gy, and with this we can define

\\/ HIHj(Gg,Ag) — Inj(G, A), (¢g) — (g — Z(W(g@)) .

LeP leP
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The sum is finite and ¥((¢¢)sep) is injective by the Chinese Remainder Theorem.

The map ¥ has an inverse mapping given by

©: Wj(G, A) — [[(Gr, 4), & — (dla,)eer-
leP

This is well-defined as monomorphisms preserve orders of group elements. More precisely, ord(gy) =
0k — ord(¢(ge)) = £¥ for ¢ € Inj(G, A), £ € P and g; € Gy.

It is immediate that ® o ¥ and ¥ o & are the identity, hence ® is an isomorphism.
The factorization of ag(A) is then immediate by the equations
ag(A4) - [Aut(G)| = [Inj(G, A)]

and
Aut(@)] = [IAut(Gy)l,  Mj(G, A)| = [[Ij(Ge, A)l. O
Lep LeP

Thus it is sufficient to consider finite abelian p-groups. In the following, G and A will be finite
abelian p-groups, and we write r;(G) = rk,i(G) throughout. As in [Lagl0] we define

e Tk(G)—].
foltr, o te) =TT T 1. (2.2)
k=1 J=rk41(G)

Lemma 2.6. Let t(A) := (p" ... p"<A) for an abelian p-group A. Then:

e 7. (G)—1
prk(A)Tk+1(G) k(l_[) (prk(A) _ prk+1(G’)+j)7
k=1 j=0

(¢) Inj(G, A)| = fa(t(A)) =

(b) [Aut(G)| = [Inj(G, G)| = fa(H(G)).

The formula goes back to works of Delsarte [Del48]. A proof can be found in [Lagl0|, Lemma A.1
and Remark A.3., where we use 7(G) = ri(G) — r4+1(G).

Remark 2.7. We get another formula which is useful for asymptotic considerations:

e 7 (G)—1 o1 (G) 43
. . , P+l J
IInj(G, A)| = Hp k(A)rK(G) H (1 — 7]9%(14) ) . (2.3)
k=1 j=0

Proof. In formula (2.2), we pull out ¢; from the product and make an index shift to obtain (2.3). O

We apply these formulas to the norm groups whose pf-ranks involve ceiling operations. In the

following we write
a a

{E} = 3 - L%J € [O’ 1)'
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Definition 2.8. For a finite abelian p-group G of exponent p® and n € Ny, k € N we define

S(n.k) = {;k} _ {p:_l} N (» ;kl)n

and

da: No — [—a@,0], dg(n) = —ap(G) + > _1(G) (6(n — 1,k)).

We show in Remark 2.9(c) that —ag < dg(n) < 0 and thus, ¢ is well-defined.
We immediately see that §(n, k) is pF-periodic and therefore dg(n) is p®-periodic.
Remark 2.9. Let G and H be finite abelian p-groups of exponent < p®. Then:

(@) da(n) = ~ay(G) + X2 7(G) { %} and b () = ba(n) + b ()
k=1

(0) (@) = 5 (@)t and 0y (G x H) = 0p(G) + a(H),

(c) dc(1) = —ap(G) < dg(n) < 0=14c(0).

Proof. We use an index shift and r.41(G) = 0 to obtain

e E e ko
SR = S 0(G) — e (@)
k=1

k k
p 1 p

=Sonie ()

p p

Similarly, we get

(2.4)
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Combining these formulas with 7(G x H) = 7(G) + 7 (H) for k > 1 completes the proofs of (a)
and (b).

Finally —a,(G) = dg(1) < —ayp(G) + kil 7(G) {np;l} = dc(n) <0 = 66(0). O

Example 2.10. Let r € N.

(a) If G = (C,)", then ay(G) =r- =1,

P

p’!"

(b) If G = Cpr is cyclic, then ap(G) = Z p;T _ -1
Remark 2.11. Let n € N. Then:

Hprk e (Xn(G)) |G|qnap 6G(n)
k=1

Proof. We use g = pf here. For all k =1,...,e we have

a. 2. n—1 n—1 2.4 -1

(6 (O) 2 1 (1 - 1) B e o e D -k, (2

We get:
e 27) e e p— 1 e
(G (Xn(@) =) k(@) + £ Y (@) ——(n = 1)+ f Y r(@)d(n—1,k)
k=1 k=1 k=1 p k=1
= 108,(G) + fnon(G) + foc(n)

Using g = pf yields the required identity. O

Let G be a finite abelian p-group with exponent exp(G) = p°. Let n = mp® +y with 0 < y < p° and
e

0(G) = 3 En(G).
k=1

Theorem 2.12. Let G be a finite abelian p-group with exponent exp(G) = p°. Let ayy(G) and g (n)
as defined in (2.5) where 6g(-) is p°-periodic. Let F' =1TF4((t)) and

e Tu(G)—1 g1 (G)+j—1
o pk+l
(G q,m) ‘_kH 11) (1q(p—1><n—1>/pk+6<n—1,k>)' (28)
=1 j=

Then we have:
(a) 3(F,G;n) = |A1‘1t(| )\qn%( )¢° G(n)f(Qq,n)-

(b) Timy o0 £(G,q,n) = 1 and 3(F, Gin) ~ (e q" (@ g,
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(c) For fized i =0,...,p¢ —1 let fi(n) =n-p°+1i, i.e. fi(n)=1i mod p®. Then we have

G
3(F,G; fi(n)) ~ A’t(| (@

with ¢; = ¢"*(G+¢() gnd ¢y = 1.
Proof.

3(F,Gin) = ag (X,(G)) &) (G Xn(G))

[Aut(G)]
" (G)—1 e
@3 1 H @@ T (1- pr (O
|Aut(G ] " prE(Xn(@)
J:
Rem2.11 1 Glqan(@ ) e k(@)1 < prkﬂ(G)Jrj)
B T (@)
|Aut(G)] Pt prE(Xn(G))
27,28 |G| (G b (n)
= o ad "e(G .
|Aut(G)|q q 6( )4, TL)
Using [6(n — 1, k)| < 1 we get ILm e(G,q,n) =1 for all k£ > 1 which proves (b).
Finally, d¢ is p®-periodic and Remark 2.9(c) yields d¢(fi(0)) = d¢(0) = 0 and thus ¢y = 1. O
Example 2.13. (a) Let G = (Cp)" be elementary abelian. Then o, (G) = r% and
n—1 0, pln
S6(n) = —a (G)+r.{ }: )
g p 7’({;}—1), pin.

Hence, if p does not divide n, we get

oy Gl @ {20 T P
3(F7 Gvn) - |Aut(G)|q q ];[ p 1)(n— 1)/P+{

(b) Let G = Cyr be cyclic. Then ap(G) = ELand

datn) = ~ay(G) + { "t} = {

Hence, if p" does not divide n, we get

1 p
(DD H =D =D/} ) -
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2.3 Conductor Density of Arbitrary Finite Abelian Groups

We now consider an arbitrary finite abelian group G instead of a p-group. It is well-known that G
is the direct product of its abelian ¢-Sylow-subgroups, i.e.

G%HGZ.

The hard part is to analyse G;, which was already done in Chapter 2.2. For the remaining part, we
fix a prime number ¢ € P with p # £ and consider the asymptotic problem for the abelian ¢-group
Gy.

The task is to count the number of open subgroups U < F* such that F'*/U = Gy. Then the
extension given by U is at most tamely ramified, so the conductor exponent is < 1 which implies
L +p < U. Hence we can consider Gy as a quotient of Z x FX = Z x Cy_1. If £ (g — 1), then there
is only the unramified Gy-extension if Gy is cyclic, or no Gy-extension at all.

Obviously, the only possible quotients isomorphic to ¢-groups are groups of the form Cya X Cp, where
?° | (¢ — 1) and where we assume a > b. This is solved in the following remark where we consider G
of this type and A as an abelian /-group with /-rank 2 and exp(A) = exp(G). Note that the number
of subgroups ag(A) of type G only depends on the p'-ranks 7;(A) and r;(G) with p’ < exp(G).

Remark 2.14. Let G = Cpa X Cpp and A = Cpa x Cpa with a > d > b.

(a) If a=bor d =0, then ag(4) = ag(G) = 1.

(b) If @ > b, then
-0 a>d
A — Y )
OéG( ) {(f‘}' 1)€d—b—1, a:d.
Proof. We write r;(A) := rk,i(A) and r;(G) := rk,i(G) in this proof.
(a) If a =b or d =0, then we get G = A and therefore ag(A) = ag(G) = 1.
(b) By (2.1) and Lemma 2.6(a) we have

[] £ (@re(a) T’“(H) () _ gria (@)+3)

aG(A) - kzl szg;)—l
[T ¢re+1(@re(@) T (re(@) — presa(G)+i)
k=1 §=0
(grb(A) _ g)(gm(A) —1) a

= @ D@D ngk-&-l(G)(rk(A)_"'k(G))'
— (-1

k=1

As 74(G) = 1 (A) for k < b we have £70(¢) — ¢ = (2 — . Moreover:

a a—1
ngk+1(G)(rk(A)—rk(G)) _ H El-(rk(A)—l) _ Kmin(a—l,d)—b
k=1 k=b+1
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and

O

e 1 U411, ry(A)=2 < d=a
(-1 1, rg(A)=1 < b<d<a.

Note in the following theorem that X;(G) = Z/exp(G)Z x Z/(q — 1)Z. We still use the notation
G,y for the prime to p-part of G.

Theorem 2.15. Let G be a finite abelian group and F = F,((t)) with ¢ = p/.

(a) G is realisable as a Galois group over F if and only if tky(G) < 2 and Gg_l s cyclic for all
prime numbers £ 1 p.

(b) If G is realisable, then for alln > 1 we have

—1
3(F,.Gin) = 3(F,Gpin) - [[ ac,(Clg x Comr) < @=Va305 ¢ ).
£l(q—1)
Proof. We use Lemma 2.5:
3(F,Gin) = ac ( = [T ee (x = ag, (Xu(@) - [] ec, (X1(G
leP pF#LEP

where for the last equation we use that ¢ # p and the fact that X,,(G)/X1(G) is a p-group. If G is
realisable, we get for ¢ # p that Gy is a quotient of Z x Z/(q — 1)Z and therefore Gz_l has to be
cyclic. Note that for £ 1 p(q — 1) we get by Remark 2.14 that ag, (X1(G)) = 1. It remains to show
the estimate in (b). We have

[T ca @< I e evn=@-1 [[ =+

€l(g—1) €l(g—1) £l(a—1)
q—1
k+1 q
< (q— 2T (g 1)L
<(¢—1) = a—1); O
k=2
Example 2.16. (a) For g =3 and G = Cy, the bound in Theorem 2.15(b) is sharp:
(a—1)q

Qcy (X1(G)) = aC’g(CZ x C9) =3 = 5

(b) If G is cyclic of order coprime to p(q — 1), then 3(F,G;n) = 1.

2.4 Lower Bounds on Discriminant Density

The asymptotic behaviour weighted by conductor gives interesting insights to the counting problem
weighted by discriminant. Let GG be a finite group and

D(F,G;n) :=|{E/F : Gal(E/F)=G,N(D(E/F)) <q"}|
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be the counting function of local function field extensions with Galois group G and bounded dis-
criminant. To describe the asymptotics exponent weighted by discriminant, we define for abelian
p-groups G of exponent p°

1 k k1
Bp(G) = , where p(G) = — (|Gp | — |GP |> .

We use the local version of the conductor-discriminant theorem for abelian extensions, see Theo-
rem 1.28.

In preparation, we need a result on characters of X,,.

Lemma 2.17. Let G be a finite abelian group and U < G a subgroup. Then there are |G /U]
characters of G with U < Ker(x).

Proof. Using |H*| = |H|and 1 - U — G — G/U — 1 implies
1-(G/U) -G -U"— 1 O

The idea of the proof of Theorem 2.18 is contained in |Lagl5, Ch. 2].

Theorem 2.18. Let F =TF,((t)), G be a finite abelian p-group and n € N.

(a) Let E/F be a normal extension with Galois group G and N (f(E/F)) = q". Then

N (D(E/F)) < N (§(B/F))©) 9= = o @i,

(b) There exists a constant v(F,G) > 0 such that

D(F,G;n) > ~v(F,QG) - q"ﬁp(G).

Proof. Let n be the conductor exponent and U be the norm group of E*. Using G = F* /U, we
have for k=1,...,¢e:

M, := {x character of G : G[p""!] < Ker(x) AG[p"] £ Ker(x)}.

By Lemma 2.4(c), we have c¢(Ker(x)) < e(Un[p*~1]) = [n/p*~1] for all x € My.
Then we have
1

| _

|My.| = |G/Glp" Y| — 1G/Glp*)| = |67 — |G¥"|. (2.9)

€
Moreover, » |My| = |G| —1 and the M}, are disjoint — we only miss the trivial character which has
k=1
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trivial conductor. Thus:

e—1
Thm. 1.28
N(D(E/F)) = II N () =11 IT ~Goo)
X char. of Gal(E/F) k=0 xeMj,
< H H gIm/P* — H qIm/P* 1 IM|
k=1 xeMy k=1
2 ) P G < T o/t +1 0 i=iery
k=1 k=1
el k k+1
p~Fn(IGPT =GP )
—=gk=0 qlG1-1 =g PG glGI-1
Hence
D(F, Ginp(G) + |G| - 1) = 3(F.Gsn).
We set nn := [(n — |G| + 1)/p(G)]. By Theorem 2.12 there exists a constant C' > 0 such that

3(F,G;n) > Cq¢™»(&). Hence in total

(a)
D(F,G;n) = D(F,G;np(G) + |G| — 1) >3(F,G;n)
L) :th%m(cn > Cq%%(@
— () g(IGIH1=p(@))5r(G) — g (@), 0

We highlight here the following theorem which gives the asymptotic exponent for abelian p-groups
over local function fields:

Theorem 2.19 (Lagemann). Let G be a finite p-group and r; := r;(G) be the p‘-rank of G. Then
Z(F,G; X) =< X(@),

where

e—1 |
(1 _pil) %plre—i
1=

aP(G) = e—1 .
> (L= pTesi)preittre
=0

See Satz 2.1 in |Lagl0].

Using index shifts we can show that our constant 3,(G) coincides with the asymptotic exponent
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ap(G) from Theorem 2.19. We show this in the following computation.

e—1 |
(1 - p_l) z:oplrefi
1=

_ _p—1

E pi<1 _ p*T‘efi)p’f‘ef'LJF“.‘i”rc Z pi(l —p*Te—i)pTeme-..ﬂ"e
=0 =0

e—1
(= Dp° Y s
=0

e—1 |
Z P'Te—i
=0

e—1

p Zopl(]_ _ p—’i"efi)p’r’e,i{-,_._i_re
Fo- 29 P op(G)
o e—1
p z:opz(pre,i — 1)p7°871‘+1+...+re
= o (G)
B - i e—1i
pl—e Z%pz(pre,i _ 1)‘Gp ‘
op(G)
e—1 v ‘
Z p—e+i+1(|Gp67171| B ‘Gpeﬂ‘
=0
k:e;ifl ap(G) _ ap(G)
p(G)

e—1
kZOP*’“(IkaI —[GP*)

Example 2.20.

a) For the elementary abelian group G = (C,)" we get the discriminant exponent
P

r(p—1) 1
() =" L
(b) For the cyclic p-group G = Cpr we have
— 1/ b e 1
+ —k r—k—1
(@)=Y (Ie7 16" ) =30 ()
k=0 p =0 p
r—1 1— p72r
=P (L=p )Y = - )
k=0 -P
B pr (1 p72r
=

Hence we get the discriminant exponent

a(G):ap(G):pr—l 1+p_1:(pr—1)(p+1): p+1
? pp(G)  pr op—pT p(p* — 1) p(p +1)
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Chapter 3

On Subgroups of Affine Linear Groups
AGL(q)

Let F' =T4((t)) be a local function field with char(F) = p. In this chapter we consider the Galois
closure of Cp-extensions over (at most) tamely ramified cyclic Cy-extensions where p { d.

The situation is summarised in the following field diagram, where Spl; (L) denotes the Galois closure
of Ly/F.

SPIF(La)

Using the group ring IF,,[Cy] as we will define in Definition 3.7, the Galois group is basically determined
by the cyclic F,[Cy]-module

F[Cql-a={z-a|z€cF,[Cq} with p’=#F,[C4-a.

This cyclic module is a direct sum of distinct irreducible submodules corresponding to irreducible
factors of X% — 1 over [F,, via the Frobenius normal form for linear operators.

The corresponding Galois group G := Gal (Splp(La)/F) is a subgroup of C, 1 Cy by the Theorem of
Krasner and Kaloujnine, see Theorem 1.11. In particular, the Galois group is a semi-direct product
of type (Cp)’ x Cy, where we want to interpret (C,,)* as a direct sum of finite fields of characteristic
p. In the case that (Cp)z corresponds to an irreducible module and Cy operates faithfully, we can

~

consider the Galois group as a subgroup of AGL; (p’) = (sz, +) X IF;Z.

65
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We will approach as follows: In the first section, we compile some basic facts on affine groups
and semi-direct products. We use the classification theorem of tamely ramified extensions due to
Hasse [Has69] in order to construct and enumerate Cp-extensions over an at most tamely ramified
Cy-extension L/F.

For this, we use the decomposition of the group rings F,,[Cy] and F,[Cy]. This allows us to determine
the F,[Cg]-module structure of L and later of J(L) = L/p(L). We give a description of the occurring
Galois groups. We will determine the asymptotic behaviour of the discriminant counting function
with respect to < over pd points, and as Galois extensions. Finally, we determine the asymptotic
behaviour of degree-p-extensions with Galois group which is a subgroup of AGL;(p). This is the
special case that requires d 1 (p — 1). Overall, for a ramified Cy-extension L/F with ramification
index e to exist we require e|(¢ — 1).

3.1 Affine Linear Groups and Semi-direct Products

First we recall the definition of the semi-direct product.

Definition 3.1. Let N, H be groups and ¢: H — Aut(N) be a group homomorphism. Then the
semi-direct product of N and H by ¢ is the group

N >4¢ H = (N X H, O), (nl,hl) o (nz,hg) = (n1¢(h1)(n2),h1h2).

For a definition of affine groups, we follow [AB95, p.101f]. Let K be a field and V' be a K-vector
space. We define
TWV)={T,: Vo>V, z—z+v|veV}

as the set of all translations on V. Then T(V) and GL(V') are subgroups of Sym(V) which have
trivial intersection, since ¢(0) = 0 and 7,(0) = v for all ¢ € GL(V) and v € V. According to the
rule

Ty ' =T,

ww) forall o€ GL(V) and veV

we define the affine linear group of V' as the (inner) semi-direct product
AGL(V) :=T(V) x GL(V) < Sym(V).
Identifying (V') 2 V via T, — v we get
AGL(V) 2V x4 GL(V), where ¢(¢)(v) := ¢(v) for all p € GL(V) and v e V.

It is common to define AGL,,(K') := AGLg(K™). In the case K = F of a finite field with ¢ elements
we write

AGL,(q) := AGL(F).

Example 3.2. For a prime power q, the affine group (Fq,+) x Cy—1 = AGLi(q) < Sym(F,) is a
transitive primitive permutation group.
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Our main goal is to describe and enumerate Cp-extensions over tamely ramified cyclic degree d-
extensions. In particular we will study subgroups of AGL;(p") AGL1(p") = C," x Cpr_1.

Remark 3.3. Let C),, and C,, be cyclic of order n and m and let ¢ € Hom(Cy,, Aut(Cy,)), then
Cp Xy Crp= (0,7 | 0" =7 =1,0" = (1)(0)) = (0,7 | e =T = 1,07 = o"),

where ¢(7)(c) = o for some k € (Z/nZ)* with ord(k) | m.

In [Taub5]| is proven that there is a group action of Aut(H) x Aut(N) on Hom(H, Aut(N)) via
(am, an) - $(h) := Plag ()™ = ay' ov(ay' (h)) o an.

This group action can be used to decide whether two semi-direct products are isomorphic. One
variant that will be sufficient for our purposes is due to Taunt from 1955 in the same paper:

Theorem 3.4 (Taunt). Let N, H be finite soluble groups with ged(|N|,|H|) = 1. Furthermore,
let ;: H — Aut(N) for i = 1,2 be two group homomorphisms from H into Aut(N). Define
Gi =N NwinOT‘i: 1,2.

Then G1 = Gy if and only if there exist automorphisms an € Aut(N) and ag € Aut(H) such that
(i )2 — (h%)a’v for all heH,

where (h¥1)*" = ay' o1 (h) o ay and h*H = ay(h).

See [BE99, Theorem 5.1] or [Tau55, Theorem 3.3| for a detailed proof.

We will apply this theorem in the following case:
Proposition 3.5.

(a) Let H = (o) be a finite cyclic group and N be a finite group. Then we get
N Xy, H= N Xy, H <= 11(H) and Y2(H) are conjugate in Aut(N).

(b) Let n,m € N be such that Aut(C,,) is cyclic and ged(n,m) = 1. Then for all ki, ke € (Z/nZ)*
we have for the semi-direct products Cy X Chp,:

{o,7|o"=7m"=1, 0T ="M} ={o,7 | " =1 =1, 07 ="}

<= ord(ky) = ord(ks) in (Z/nZ)" .

Proof. (a) Since abelian groups are soluble we can apply Theorem 3.4. Thus the two semi-direct
products are isomorphic if and only if

there exists § € Aut(H), € Aut(N) with  ¢o(8(h)) =a ' o¢py(h)oa forall h e H
— Po(B(0™) =a Lo (0™)oa forallm €N
= P2(B(0))" = (047101#1(0)004)71 forallm € N
= a(B(0)) =a " othi(0) o
(H) = a o Y1(H)oa for some a € Aut(V).
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(b) If Aut(N) is cyclic, then conjugation is trivial and thus ¢ (H) and ¢2(H) are conjugate if and
only if they coincide. This shows that

Im(31) = Im(p2) <= ord(y1) = ord(32)

since Aut(N) is cyclic. O

We will apply this proposition in the case Cpr x Cy for ged(d, p) = 1.

3.2 Decomposition of J(L) for a Tamely Ramified Extension L/F

We give a folklore classification theorem on the structure of tamely ramified extensions in local fields.
Note that unramified extensions are also considered to be tamely ramified by our definition. Later,
we will use this to decompose the Galois module J(L) for a cyclic tamely ramified extension L/F.

Theorem 3.6 (Classification of tamely ramified extensions). Let K be a local function field with
residue class field ki = Fq and prime element w. Let L/K be an at most tamely ramified extension
with ramification index e = ey, i and inertia degree f = fr /. Let (qu) * = (w) and g := ged(e, ¢ —
1).

(a) Then L is conjugate to exactly one field K(w, /w"ng) where 0 < r < g.

(b) The extension LK is a Galois extension if and only if e | (¢f — 1) and e | r(q —1).
Set mp, := Jw'ng as in (a). If L/K is Galois, then Gal(L/K) is generated by 01,09 with

al(w):w, Ul(ﬂL):wl-ﬂ'L,

oa(w) = w, oo(mp) = whk T,

where k = r(qgl) and |l = Le_l. The Galois group has the finite presentation
Gal(L/K) = (01,00 | 0f =1, o} = o}, 072 = 5%).

(c) The extension L/K is abelian if and only if e | (¢ — 1).

It is moreover cyclic if and only ife | (¢—1) and ged(e, f,r) = 1. In this case we have a generator
via N := I ¢ and
LeP, tged(e,r)

_ ) B (02), if ged(e,r) =1, or
Gal(L/K) = (o) with o= {(a{vag), i sed(er) £ 1

In particular, the generator o of Gal(L/K) has the property

k, ged(e,r) =1

i W th  n=
o(w)=vf, olrz)=w"-m with n {k+Nz, ged(e,r) # 1.
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Proof. (a) and (b) are proven in [Has69, Chapter 16, p. 249ff|.
In (c) note that ord(o;) = e and

Gal(L/K) is abelian <= 0] =072 = 0! <= o7 ' =id <= ord(c1) =€ | (¢ —1).

If Gal(L/K) = (01, 09) is abelian, we have exp(Gal(L/K)) = lem(ord(oy), ord(oz)). Concerning

o9, we use ord(o1) = e to get
(—b) . T - . L
ord(og) = f-ord(c]) = f scd(e.r)’

Thus, Gal(L/K) is cyclic if and only if Gal(L/K) is abelian and
e

d =exp(Gal(L/K)) <= e- f =lecm(ord(cq),ord(o2)) = lem(e, fm)
=
—e-f aed(e.r) cm (ged(e, ), f)
<= ged(e,r) - f =lem(ged(e, r), f) < ged(e,r, f) = 1.
Now we can assume that L/K is cyclic. We have ord(o;) = e and ord(o3) = nge(J; ok

Let £ 1 ged(e, 7). Then

s ) = wtes) and v (ondoh)) < (e
hence v (ord(c%o2)) = v (ord(o2)) = (ef) has the right ¢-order.

Let ¢ | ged(e,r), then £4 f by ged(e,r, f) . Thus vy (ord(o2)) < ve(ef) = vy(e) and
ve(ord(o102)) = ve(ord(7)) = ve(e) = vy(ef).

veord(o)) = e (ol
)

Hence, the element o := ooy for N := [ ¢ has order ef and is a generator of the Galois

LEP
Uged(e,r)

group. Finally, for the last assertion we have
oo(w) = w? = o oy(w) and oo(my) = whny

and

oNoy(nr) = ol (whnp) = whed (nr) = wFwNlnp. O

From now on we fix L/F to be a tamely ramified Cy-extension with the notations of Theorem 3.6.
Le. we will assume d = ef with p{d, x(F) = F,, that (w) = (qu)X is a primitive (qf —1)-st root
of unity and that

m=Vuwrp, L=F;((r)), (0)=Gal(L/F)=Cyq with o(w)=w, o(r)cFy-m. (3.1)

Denote by p(d) the set of d-th roots of unity and by Eig,(¢) < L the eigenspace of o to the eigenvalue
¢.
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Definition 3.7. Let G be a finite group and K be a field.

(a) The group ring of G over K is defined as the K-algebra

K[G]:==4Y ag-glage Ky with K-basis G
geG

and by the multiplication rule

Zag.g . Zbgg = Zagbg-ggforall G;g,bgGK.
geG geG 9,9€G

(b) Let X¢— 1= fy--- f. € F,[X] be the prime factorisation of X¢ — 1. We define

My, =TF,[X]/(fi) forall 1 <i<r, M:= EBMfi forall T C{1,...,r}.
el
Ifn € E‘; is a root of f; for all 1 < i < r, we will identify Fy(n;) & My, via n; — X, and
accordingly make the identification M = @;c1Fp(n;).

(c) We set £(i) := deg(f;) for 1 <i <rand {(]):= >, £(i) forall I C{1,...,7}.

We compute the F),[Cy]-decomposition of J(L) = L/p(L). We proceed by considering L as F,[Cq]-
module first. We will use the o-invariant building blocks V,, := qu - 7" for all n € Z who occur
e-periodically, that is Vj,1. = V,. By this, we can deduce the F,[Cy]-module structure of L and
consequently of p(L).

We start with an example to outline the basic concepts in the specialised situation d | (¢ — 1) where
o is a diagonalisable operator.

Example 3.8. Let F' = F,((t)) be a local function field with char(F) =p € P. Letd | (¢ — 1) and
let ¢4 € F be a primitive d-th root of unity.

(a) Let f =d,e =1 and L := F;((t)) be the unramified Cq-extension of F'. By Theorem 3.6(c),
there is a generator o of Gal(L/F) with o(t) =t and 0|]qu being the Frobenius automorphism.

d—1 ,
The minimal polynomial of o is X® — 1, over both F and Fy, and X¢ — 1= [[ (X — ¢y, hence
i=0
o is diagonalisable. We thus have no, ...,na—1 € Fyr so that o(n) = Cfl -1;. Therefore, we obtain

o(nit") = a(n)o(®)" = ¢ (;t") forall 0<i<d—1, neZ.
And for the eigenspaces, we have

Eigp(Ch) = Y Fy-mit™.
nez
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(b) Now for a totally ramified Cy-extension with d = e and f = 1, we have L = F(y/w"t) for some
0 < r < e by Theorem 3.6. Write m := ~/w"t. Here, we have a generator o of Gal(L/F) with
o(m) = (q-m and o, = idg,. We immediately get

o(m™) =o(m)" = ((gm)" = yn" for all n € Z.

For the eigenspaces we obtain for 0 <i < d—1 the assertion

ElgF Cd Z F 7Td n+i __ Z ]Fq X ﬂ_e.n—l-i’

nez ne”L

Remark 3.9. Consider the prime factorisation X¢ — 1 = f;--- f. in F,[X]. Let d be coprime to
pel.
(a) We have F,[Cy] = (F p[Cd])[Fq:Fp} as Fp[Cy4]-modules.

(b) The group ring F,[Cy] is semisimple and we get the module decomposition

@F =M, ®...0M,

into irreducible submodules.

(c) Let N be an F,[Cy]-module, then we get

N = @ Ker(fi(o)) as Fy[Cql-modules.
i=1

We will write My, (N) := Ker(fi(0)), then we get

T T
N = @ My, (N) = @ @ My, for certain index sets R;.
= i=1 R;

Proof. For part (a) let wi,...,ws be an F)-basis of F,. Then

Zbg-g|ngIFq = ZZa97iwi-g|ag7¢€Fp Zwl »[Cal = (F,[Cal)’ .
geG gelG i=1

Now using s = [F, : F)] yields the result.
For part (b), we use F,[Cy] = Fp[X]/(X¢ — 1) = Fy[X]/(f1-- fr) and the Chinese Remainder

Theorem.

The fact that char(F') { #C4 = d guarantees the direct decomposition in (c). The rest follows easily
by linear algebra and due to the fact that the minimal polynomial of o is X¢ — 1 over both F' and
F, as X 4 _ 1 is square-free. O
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In the following, we consider a local function field F' = Fy((t)) with char(F) = p and a cyclic Cy-
extension L = F s ((v/w"t)) with pt d for some (¢/ — 1)-st root of unity w € Fur. Gal(L/F) = (o) is
cyclic with o as in Theorem 3.6(c). In particular, o has the properties o|p, = id, o(7) € F s - 7 and
o |Fq ; acts as the Frobenius automorphism.

We will first consider the F,[Cy]-module structure of L and use this to derive the F,[Cy]-module
structure of J(L).

Theorem 3.10. Let ptd and L/F be a tamely ramified Cy-extension with e := ep/p and f := fr/p.

Let w € F;f be a primitive (¢f — 1)-st root of unity and let © := 7, = /w7 as in Theorem 3.6.
Then:

(a) The Fy-subspace Vi, :=F s - " is o-invariant for all n € Z.

(b) There is a primitive e-th root of unity (. € Fy so that o|y, has minimal polynomial X' — (2 for
alln € Z. In particular, Ve =V, as Fq[Cql-modules for all n € Z.

(¢) For all n € Z, the two Fy[Cq]-modules V, & Vi1 @ ... & Ve and Fy[Cy] are isomorphic.

d) Foralln € Z, the two F,|Cy|-modules V, ®Vyp1B. .. & Vyqe—1 and (F,[Cy Fa:Fo] e isomorphic.
p p

Proof. Let n € Z. Using o(F ;) C F s and Theorem 3.6(c) we get

Thm. 3.
m:3 6(c) wt - 7™ for a suitable t € N.

o(m™)

Thus F s - 7" is a o-invariant subspace for all n € Z which proves (a).

For (b) we show the existence of a certain primitive e-th root of unity (. so that (af — cg) (V) =0
for all n € N. We have

WP for all k € N.

k Gal(]F f/]Fq)%Cf
oW = (I w) =

Furthermore, let o(7) = w®n, then we have

= wqqf:llw’nﬁ”
rle=1) ged(e,r) =1

Note that x = { with N as in Theorem 3.6(c) and that

e Y
(¢-1) f-1
M) NEEL ged(e,r) # 1

e qf - 1.’E o T(qf - 1)) ng(e)T) = 1)
¢—1" @ D+ N - DL, ged(e,r) #1,
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qf—l
thus w a1 * =: {, is an e-th root of unity. It is indeed a primitive e-th root of unity, as

e—1
Xi_1= H(Xf — ¢ for ¢ a primitive e-th root of unity.
i=0

Using o7 (w¥) = w”, we thus obtain of (wWF7r™) = (Pw*n™, hence (of — () (V;,) = 0.

e—1 )

Part (c) follows by part (b), the identity X¢—1 = [] (X —¢!) and Remark 3.9(b), which also holds
i=0

true for Fq[Cyl.

Part (d) is a direct consequence of part (c) and Remark 3.9(b). O

We can use Theorem 3.10 to decompose J(L) in components where we can read off the Galois group
and the discriminant. Naturally, J(L) is an F,[Cgl-module via o (o + p(L)) := o(a) + p(L). We
want to work with a system of representatives Ry (7p,wy) again. Therefore, we have to choose 7,
and wy carefully so that choosing a representatives defines an IF,,[Cy]-module isomorphism.

Concerning the F),[Cy]-module structure on L/p(L) we study for z < 0, z € Z the F),[Cy]-modules

ep-(z+1)—1
W= > V. (3.2)
i=ep-z
pli
and fix an element
wo € F; Two ¢ p(qu). (3.3)

Such an element wy exists since F, C p(IFq r) implied that the unique Cp-extension of F, was contained
in F 7, which is impossible by degrees.

The submodules W, and Fpwo = Fyr/p (qu) determine the F,[Cy]-structure of Ry (m,wp). Note
that we have the periodicity W, = W, as F,[Cy]-modules for all k < 0 due to Viyppe = V; for all
1€ Z.

Proposition 3.11. Let 7 as in (3.1) and wo € Fy \ p(F,r) as in (3.3). Then we have an Fp[Cy]-
module isomorphism

Rp(m,wo) = Fypwo ® @PW. = J(L), z v+ z+ po(L). (3.4)
z<0
Proof. Rp(m,wo) is an Fy[Cygl-module as o(F ;7') = F ;7" and o(wp) = wo by definition.
We have already shown in Chapter 1 that the map is bijective and [Fp-linear, see Lemma 1.20.
Note that o o p(z) = poo(x) and o(p(L)) = p(L), thus o(w + p(L)) = o(w) + p(L) for all
we @, oW.. ForneF, we have

on+p(L)) =0+ e(L)=n"+p(L) =n+ p(L),
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where for the last equality we write ¢ = p® and use the telescopic sum

s—1 s—1

== —-n=> (npi+1 - npi) =03 ")

i=0 =0

for the last equality. Thus, F s + p(L) is fixed under o, and so is wp. Hence, the map commutes
with o and is an F),[Cg]-module isomorphism. O

From now on we will write Ry, := Ry (m,wp) for this specific 7 and wy. Using the F,[Cy]-module-
isomorphism Ry = J(L), we can now both control the Galois group and discriminant of Artin-
Schreier extensions of L.

J(L) =@ My, (J(L) =Fpwo © @PW_ =F, a PV,
=1 n=1 zp:}ﬂl
where My, (J(L)) = Ker(fi(7)) and w € F s \ p(F,r).

Lemma 3.12. We use the assumptions of (3.1) and Ry, := Rp(m,wp) as in Proposition 3.11.

(a) For alln € Zy we have
Wi & (Fp[Ca]) P~ Fe™],
(b) Let 1 <i<r. Assume fi = X — 1 and define My,(Ry) := Ker(f;(0)) N Ry, and £(i) := deg(f;).
Then there are j1(i),. .., jq; (i) € {0,...,e =1} and M1, - e € F;f so that
£(i)
Mg (Rp) ={dowo+ Y > aninigm™ | Ao € Fp, anp € Fy, v € L}
v<n<—1k=1

ptn

and in the case i > 2 we have

£(4)
Mfi (RL) = { Z Zan,knn,i,kﬂ-en—i—jk(i) | Qn K € qu Ve Z}
v<n<-—-1 k=1

plen+jk (7))

Proof. By the periodicity of o in Theorem 3.10(b) it is sufficient to prove the statement for n = —1.
We have when considering as F,[Cy]-modules

ep Thm. 3.10(b) P €1 Thm. 3.10(d) R
Wa=@Qv. = Qv = Ele)vIEE
j=1 i=0

i=1
pli

For part (b) we take suitable [F,-bases of V_; for p {i. O
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With the notations of (3.1), consider the factorisation X? — 1= f; --- f,. in F,[X] and set
Mfi (RL) = Ker(fi(a)) N Ry, (35)

with Ry, := Rp(m,wo) as defined in Lemma 1.20(b). Let v € Rr. We want to consider the Galois
group of L(6,) over F.

Figure 3.1: Field diagram

Theorem 3.13. Let X% — 1= f,--- f, € F,[X] be the prime factorisation over the prime field F,.
Let 1 <i <r and let n; be a root of f; in an algebraic closure of Fp,. Let 0 # « € J(L) and write

a:a1+...+arEMfl(RL)EB...@MfT(RL):RL.

Moreover, let I :=={1 <i <7 | a; #0}. Then:

(a) The degree of the splitting field of L(6,) is [Splp (L(6y)) : L] = p2=icr 483 gnd
Gal (Splp (L(ba)) /F) = (@ (Fp(m)ﬁ)) Xy Ca
el

via the homomorphism ¢ = ¢1+ ... + @2 Ca = Aut (@, Fp(mi)) with ¢i(k)(x) = nFx for
xeFy(n) and k € Z/dZ = Cy and 1 <1 < |I].

(b) The extension L(0,)/F is Galois if and only if > deg(fi) =1, i.e. a is a o-eigenvector for an
el
eigenvalue in F.

(c) Let ((i) := deg(f;) and

m; =vp(a;) =vi-e+75; <0  forall i€l
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and let 7: {1,...,|I|} — I be a bijection such that |m | < |myo)| < ... < |myqml . Then we
get the discriminant exponents

11|
disc(Splp (L(6a)) /L) = > (0" = 1)(Jvp(ay)| 4 1)p!TE- D), (3.6)
i=1
11|
disc(Splp (L(0a)) /F) = p" D fle — 1) + Z (dlvro)] +d = dr@y f) - (3.7)

Proof. Consider first the case I = {i} and o« = o; € My,(L). By assumption we have oy # 0. Let

O0i(a;) be a root of XP — X — o/(a;), let £(i) = deg(fi) and A := (07(a;) + (L) : 1 <j <
( ))F,. Note that we have an Fy-basis o; + p(L),0(a;) + p(L),- - LoD () 4 p(L) of A with
fi(o )(04z + (L)) =0as a; € My, (L). Then

SplF (L(gai)) =L (@_I(A)) =L (9041" ea(ai)a sy eaz(i)*l(ai)) .
Through the identifications
Fp(n:) = Fp[X]/(fi) = A via g — X — o(qy)

we get Gal (L(p~(A))/L) = Fpy(n;) by Theorem 1.7.

Furthermore, Gal(Sply (L(6a,)) /L) is a normal subgroup of Gal(Sply (L,,) /F), since its fixed field
L is Galois over F. With ged(p,d) = 1 and the Theorem of Zassenhaus (see [Hup67, Hauptsatz
1.18.1]) we have that Gal(Sply (L(f,,)) /F') is a semi-direct product which concludes (a) for |I| = 1.

If [I] > 1, we use @;c (i), [cy = Dicr My, yielding the degree and the description of the Galois
group via restriction to (o).

For (b) we use that L(0,)/F is Galois if and only if dimp,(A) = 1, i.e. £(i) = [Fp(n;) : Fp] = 1,
hence if and only if n; € F,,.

Now for (c). From the Theorem 3.13 we get

Sply (L(0a)) 2 L (92A w N EF (m)\{O})-

iel

Clearly v, (A - o) = vp(a) and A - o € Ry, for all A € Fy(n;)* C F;f. Using that v (a) < 0 is not
divisible by p, the Conductor-Discriminant Formula in Theorem 1.28 yields

disc(Sply (L(0a)) /L) = > cond (L(@Z Aea) /L)

0A (A1, A 1)) EFp (m1) X .. XFp (1) 1)) el

= > (WZ A o)) + 1) |

O#(Al,...,)\lIl)EFp(nl)X...XFp(m]‘) el
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In this case we have v(3 Ai - ;) = vp(am,), where m = max {i € I | A;;) # 0}. Thus we have
el

]

disc(Splp (L Z\F UZO) Z (|VL(047-(1'))’ + 1)
()‘1""7)‘1’*1)er(7]7‘(1))X"'X]Fp(nr(i—l))
1]

= Z(pf(T(i)) — 1) - ptr)+ AT (1) (Ivr (] + 1).

For the second formula we use the tower formula

disc(Splp (L(0a)) /F) = p"D disc(L/F) + f1,/p disc(Splp (L(6a)) /L)
=p"D f(e—1) + f disc(Splp (L(0a)) /L). (3.8)

We substitute (3.8) in (3.6) and rewrite vy (o) = v;e + j; to obtain

B8 WD fle — 1) + f dise(Sply (L(64)) /L)
1|

(36 (r(2 T T(1—
L9 D fle — 1) +fz () PO+ 6 G=D) (1 (0| +1)

disc(Splp (L(0a)) / F)

(e—1)+f Z @) — 1) pTONF-HTED) (e 4 Gy 4 1)

=D f(e— 1)+ 3 (T — 1) pHEOIAUTED) (g 1 fji 1 d). O

3.2.1 Enumeration over pd points
According to the occurring Galois groups in Theorem 3.13 we define:

Definition 3.14. Let d = ef with p{d and L/F be a Cy-extension with e /r = e and fr/p = f.
Let X¢ — 1= f;--- f, be the prime factorisation in F,[X] with f; = (X —1).

Let moreover I C {1,...,r} with I # 0.
(a) We define

=@M (Rr) and Mi(Re) = {y € Mi(RL) | {y)s,c,) = Mr}
iel

where My, (Rp) is defined in (3.5). Note that M, (Rr) = My, (RL).
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(b) We define
Gp(d,f) = (@Fp<772)) A Cyq via ¢(k)(z mz) = anmz
el i€l el

We furthermore define Gy (d, 1) := Gp(d, {i}) and we set

Gp(d) = (Fp(Ca),+) x Cq, where Cg acts via multiplication by (4.

(c) For x € R>( we set

) (Rr) : a=0V|vp(a)] <z} and
Yi(L; @) o= #{a € M(Ry) : |vi(a)] < 2}

) (Rr) : disc(L(0y)/F) <z} and

) (Rp) : disc(L(0,)/F) < z}.

Note that M;(Ry) and M, 7(Rr) depend on a choice of m and wy, while the four counting functions
Yi(L, z) et cetera are independent of these choices.

Remark 3.15. (a) We have a 1 : 1-correspondence {I C {1,...,7}} < {g(X) € F,[X] : g(X) |

X® — 1} by setting gr := [] f; with £(g;) = deg(g). Similarly, we can identify M,, with
i€l
F,[X]/(9(X)) as F,[Cy]-modules and we could have equivalently defined the group via

Gp (d,g9(X)) := Gp(d, gr).

(b) The elements in M, 1(Ry) correspond to gr-cyclic module generators in Ry, where Ry is our
standard representative system of J(L).

Then ?I(L,a;) is the number of these gr-cyclic generators up to a valuation bound, while

Z1(F,I;z) counts all Artin-Schreier extensions generated by M(Ry) whose discriminant over
F' is bounded by x.

Remark 3.16. Let ptd and {4 be a primitive d-th root of unity. Let 0 <i <d — 1.

(a) If a root n; of f; is a primitive d-th root of unity, then G,(d, ) is isomorphic to a subgroup of
AGL1(q;) for i = [Fp(ns)!.

(b) We have Gp(p* —1) = AGL1(p") = Cf x Cpe_; and Go(3) = Ay.
Proof. (a) Let u € F; be a generator of the unit group Fy. Then we have n; = uF for some k € N.

By definition, n; acts on F, by multiplication. Now, Cyq = (n;) as n; is a primitive d-th root of
unity by assumption which defines the semi-direct product and shows the claim.
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(b) Note that here (¢, is a primitive (p* — 1)-st root of unity and that [Fp(Cpe—1) : Fp] = £. The
fact that Gy(d) is isomorphic to AGLy(p*) is obvious by part (a).

The case G2(3) is a specialisation with p = 2 and ¢ = 2. Then G2(3) = AGL;(4) = Ay. O

We want to prove the following: Consider M7 x Cy < S,q. Then we have

£(I)

Z(F, M x Cd;X) = X rd .

We will prove a ~-estimate for Zp(F,I;ay) for a certain arithmetic progression a, and therefore
prove a =-estimate for this function.

Theorem 3.17. Let x € R>g and 0 # 1 C{1,...,r}. Let dy :=pf(e — 1) and
din):=pfle=1)+(p—1)f(ep-n+1) for all neN.

(a) We have Yi(L;z) = [ Yiiy (L z) and ZL(F, I;x) = [[ ZL(F, {i}; z).
el i€l

1, 1el

e have Yr(Lsep-n) = Zp(L, 1;d(n)) = q\ p or attn € N, where =
b) We have Yi(L Zi(F, I;d n =D pdU) for alln € N, where §(1 0 141

(c) We have ZL(F, I;d(n)) ~ p®gm@e=DUD gnq

oI

oD _
Zp(F,I;x) < ¢" v, Zp(F, I;2) < q¢"»d .

Proof. (a) Let o=}, ;a; € Mp(Rp), then we claim that we have
lvr ()| = max{|vr ()| : i € T}.

Set | := {(I). Let i1,...,i; € I be the indices such that |vz(a;;)| = N is maximal. Write

0
;= ) \j, 7" for certain A;, € F, where \;_, # 0. Using the direct sum in Lemma 3.12(c)
k=—N
the leading coefficients A;_,...,\;_, are F-linearly independent, thus ) A; N7rN # 0 and
el
lvp ()] = N = max{|vp(a;)| : i € T}.
Thus,
Yi(L,z) = #{a = Zai € Mi(Rr) :|vi(a)| < x}
i€l
= [[#{i € My(RL) = Jvp(ew)| < 2} = [[ Vi (L ). (3.9)

icl icl



80

Chapter 3. On Subgroups of Affine Linear Groups AGL1(q)

For the statement on Zr(F, I;x) we let « = > ay € Y7(L). If vy () < 0 then we have
iel

disc(L(0a)/L) = (p = D(lvr()] +1)
=(p— 1)fL/F(’VL(Z ai)| +1)
i€l
= (p—1)f (max{|vp(es)| : i€} +1)
= max{disc (L(«a;)/L) : i€ I}
and by the discriminant tower formula, we get disc(L(6,)/F) = max{disc (L(6n,)/F) : i € I}.
If @ =0 or v(a), we similarly have
diso(L{6.)/F) = {disch/F) = Iiax{disc ‘(L(ozi) JF) z"e'I}, a=0 )
p-disc(L/F) = max{disc (L(o;)/F) : i €I}, a#0,vi(a)=0.
Hence o € Zp(F,I;z) < «; € Zp(F,{i},x) for all i € I.

By (a) it is sufficient to consider Y;y(L;2) and Zp(F,{i},d(n)) for 1 < i < r. We first show
that Yy;1(L; x) gives the desired formula. By Lemma 3.12 we have

Fp@ @ FI[JFq:Fp] ng@ @ Fq, i=1

~ n<0 n<0
My (Rp) = o F][[)]qump]z(z‘) ~ @ Fl) i1

n<0 n<0
and we obtain accordingly

(p—1)m =1 ,
(Liep-n) =4 P4 N _ 0D (p—1)L(i)n
Y{z}(L,ep n) { q(p_l)z(z)'", i1 } p’q . (3.10)

It is left to show the equality Y, (L;ep - n) = Z(F, {i};d(n)). Therefore, for any y € Y;(L) we
use the discriminant formula

disc(L(6y)/F) =pfle = 1)+ (p = 1).f (lvr(y) + 1)
Set |v(y)| =: N, then we have
Yy (Ls N) = Zp (F {i}ipf(e = 1) + (p — (N + 1)), (3.11)
and using N = ep - n yields
pfle=1)+(p—1)f(ep-n+1)=d(n).

(3.11)

Hence we finally obtain Yi;(L;ep - n) Zp (F,{i};d(n)) (3.10) gD npd ),
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(c) We prove the ~-statement for I = {i} first.

For n € N we have
Zy(F, I;d(n)) = Z(F, I;d(n)) — 1 © PO o DO for 1 — 0.

This shows the statement for a singleton I = {i}. For arbitrary I C {1,...,r} we use

Zi(F, I;d(n HZLF{}d qu DE@npd{i) — o= DI npd (1)
el i€l
where the identity po( = [Lerp 91} is immediate from the definitions. This proves the ~-
statement.

For the second part, we consider z > dy and we furthermore consider n, € N so that d(n,) <
x < d(ng + 1) holds. Obviously, Zr(F, I;x) is a monotonously increasing function in = and we
get

g < g0 Y 7 (B Ld(n,) < Zu(F T )

an e

b
< Zp(F,I;d(n, +1)) (_<) pq et VPV < g0 od . g

(1)
hence Zp(F,I;x) < ¢ 77 . For the final statement, we use the simple estimate

ZL(F, ;) > Z(F, I;w) = [ [ (Zu(F, {i};2) = 1)
i€l

o\
>Hq L 2R iyim) = <qql> Z1(F, I; ). 0

el

We can combine this to prove an estimate on the asymptotics of G,(d, I)-extensions over pd points
and for the corresponding splitting fields.

Theorem 3.18. Let F be a function field with char(F) = p, let d € N be coprime to p. Let
T

X?—1=T] fi € Fp[X] be its prime factorisation and let ) #1 C {1,...,r}.
i=1

(a) Consider Gp(d,I) < Spq as a transitive permutation group over pd points. Then we have
o(I)

Zpa (F,Gp(d, 1); X) < X v

(b) Let |I| =1 and consider Gp(d,I) = Ff;(l) X Cy < Spung as a transitive permutation group over

p'Dd points, i.e. as Galois extensions. Then we have

(p=1)&(I)

Zyun JF.Gp(d, I); X) XXW.
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Proof. (a) It is clear that

Zpa(F,Gp(d, 1); X) = >~ #{Splp (L(6y)) | y € My(Ry),
L/F
Gal(L//F)%Cd

disc (L(6y)/F) < log,(X)}. (3.12)

Let L/F be a Cy-extension. The Gj(d, I)-extensions containing L are parametrised by Yi(L).
Note that for every o € Y7(L) there exist

el

many elements § € 171(L) defining the same splitting field and thus defining isomorphic fields.
The analogous number is the same for Zp (F, I;n). Hence we get

(3.12) 1 =
Zpa(F,Gp(d, I); X) =" ) mZL(F,I;logchf)).
L/F
Gal(L/F)=Cy

There are only finitely many degree-d-extensions of F' as p t d, hence this is a finite sum and
[4¢0)

X o (X)ED D
thus Zp(F,I; X) < q °*"/rd = X »d . It follows that

~ o(I) o(I)
Z(F,Gp(d,I1); X) < Y X vl < Xvi,

finite

(b) By the assumption |I| =1 we have I = {i} for some ¢ € {1,...,7}.
Let y € My (Rr) and M, = Splp(L(6,)). Then we have

disc(My/F) = [M, : L] - disc(L/F) + fr,/p disc(M, /L)
36) o i
PO f e = 1)+ 10"~ 1) (vaw)l + 1)
Hence setting d(n) := p/@ f(e — 1) + f(pD — 1)(ep-n+ 1) for n € N, we get
{v € Mgy(Rp) | disc(M,/F) < d(n)} = Yy (Liep-n) “ 2 p7 g 0Gm,

Hence using the monotony of the counting function, applying log, and using (3.12), we obtain

(p—1)€(i) (p=1)£(3)

Z(F,Gp(d, {i}); X) < X 10" -1pe = X pdo*)-1) O

Remark 3.19. The statement of Theorem 3.18 is also true for general I C {1,...,r}. We can adapt
the same proof and need to address some technical obstacles. We use the discriminant formula in
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Theorem 3.13(c). Moreover, for any bijection 7: {1,...,|I|} — I, we consider all (m;);cs following
an ordering of valuation given by 7, that is
v (mem)| < vp(me@)l < ... < [vp(meqn)l-
For the i-th component m;, we get the discriminant weight
q(|l,L(mi)|+1).f.(p€(7(i))_1).pé(7(1)+£(7<2))+uA-Hf(f(i—l))
The number of m; is given by
- , (p=D(r(@)
Ye({r(0)}smi) < ¢ 79
One can show that the concerning asymptotics exponent is then

r  p-1 £(r (1)

H qu‘ f,(pz(7<1)>+...+z<7(i>>,pz(T<1))+...+e(T(i)))

i=1
p=1 L) +e(r(2)+...+(r(|I])
—q pe f(pf(‘r(l))+...+f(7'(|l|))71)

p—1 £(1) p—1 £(I)

pe .f(pz(f)_1> _ F.(pf(”_l)

(3.13)

independently of the chosen bijection 7.

Example 3.20. (a) We consider the group A4 and write A4(12) < Sio respectively A4(6) < Sg as
transitive permutation groups over 12 points and 6 points, respectively. Let F' be a local function
field with char(F) =2 and X3 — 1= (X — 1) - fo € Fo[X] with fo = X?>+ X + 1. We then have
that G2(3,{2}) = A4. By Theorem 3.18 we have for counting degree-12-extensions

(p=1)€(2)

Z(F, A4(12); X) = Z1o(F, G2(3,{2}); X) < X a6’ -1) = X5
Considering A4(6) < Sg as transitive permutation group over pd = 6 points, we get

£(2) 1
6 — XS_

Z(F, A4(6); X) = Zo(F, Ga(3,{2}), X) = X

(b) We consider the group C3 x C7 < Ssg as transitive permutation group over 56 points. Let again
F be a local function field with char(F') = 2. We find the decomposition into irreducible factors

XT-1=X-D)(XP+ X+ )X+ X? +1) € Fay[X].

The index sets I = {2} or I = {3} lead to the group C3 x Cr with our methods. We then have

(p=1)£(2)

Z(F,C3 % C7; X) = X" 1) = X377 = X5,

(c) Let p € P be any prime and d € N coprime to p. Let F' be a local function field with char(F) = p.
For the wreath product Cp 1 Cq < Sy,a, we consider I = {1,...,r} with £(I) = deg(X? — 1) =

and obtain
£(I) d 1

Z(F, Cp LCy; X) = X pdpt@D-1) — X pdp?-1) — X p(p?-1)
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3.2.2 Subgroups of AGL,(p)

In this section we will always assume d | (p — 1) and (4 € F,; to be a primitive d-th root of unity.
Then
d
X112 [[(X - ¢ € Fy[X]
i=1

splits and thus o is a diagonalisable F-linear map. We can identify f; with a d-th root of unity Cfl
and we can regard a subset I C {1,...,d} as a set of d-th roots of unity. Then M; corresponds to the
eigenspace of ¢ of the eigenvalue Cfl. For the corresponding eigenvalue Cé we have the Galois group
Gp(d,i) = Cp x Cgq where we consider C), = (Fp, +) and Cy is acting by multiplication with ¢}.

In this case it is obvious that the fixed field of 1 x C; defines a degree-p-extension.

Theorem 3.21. Let G = Cp x Cy < AGL1(p) where 1 #d | (p —1). Let L/F be a Cy-extension
with Gal(L/F) = (o). Let a € Ry, so that o(a) = (-« for some primitive d-th root of unity ¢ € F,’.
Let K, = Fix(1 x Cy) be a degree-p-subfield.

(a) We have

disc(Ko/F) =2 ; L dise(L/F) + de/F disc(L(6a)/L).

b) Consider G = G, < S, with |G| = p-d as transitive permutation group over p points. Then we
P P P
have

Z(F,Gp; X) = X7.

Proof. Part (a) is Corollary 6(2) in [FKO03|.
For part (b) we start with a bound on disc(L(0,)/F) so that disc(K,/F) < X. We have
disc(L/F) + fo disc (L(6a)/L) < X

L dise (£(00)/1) < x — 221

1
disc(Ko/F) < X 42 P

— fryplerp—1)
€L/F
<~

disc (L(0a)/L) < er/pX — (p— 1) p — 1)
— (= 1(ve(@)+1) < erpX — (p—1)(eryr —1)

= () < HE X —epp. (3.14)

There might be different ¢ leading to the same Galois group. Let I := {i € {1,...,d} | Gp(d,i) = G}.
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There are precisely (p — 1) elements in Yy;, (L) defining the same field, hence this way, we get

) (3.14) 1 €L/F
Z(F,Gp; X) = Z Z]fly{z} <Lap_1X_€L/F>

L/F i€l
Gal(L/F)=Cy

(p=1)e(:) (°L/F

3.10 . X— 1

429 > > X reur (5 xewre) _ b O
L/F icl

Gal(L/F)=Cy

3.2.3 Number of C;-Extensions with Fixed Ramification Index

Definition 3.22. Let ag(G) := #{U < G | U = H} be the number of subgroups of G isomorphic
to H.

Remark 3.23. Let d € N such that d | (¢ — 1). Then there are exactly

non-isomorphic Cg-extensions of Fy((t)).

Proof. This is proven in Remark 2.14(b), see [KM20], for £ € P. The general case follows by the
multiplicativity shown in Lemma 2.5. O

Remark 3.24. Let d = ef with e, f € N such that e | (¢ — 1) and ged(d,q) = 1. Then there are
precisely
-1
e |] —

leP
£lged(fe)

Cg-extensions of Fy((t)) with ramification index e and inertia degree f, where ¢ is the Euler totient
function.

Proof. By Theorem 3.6(a) and (c), all Cy-extensions with ey, /p = e and fr/p = f are parametrised
by some

1<r<ged(e,q — 1) with ged(e, f,r) =1, where ged(e, q¢ - 1) ellz=t) e.
Hence, for the parameter r we have the conditions 1 <r <e, ged(e, f,r) =1. With

¥ (ng(67 f)) =# {1 <r< ng(e’ f) | ng(T, ng(ea f)) = 1}
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and using e = m -ged(e, f), we get precisely

e e {—1 -1
—— - p(ged(e, f)) = —— - ged(e, f) - —— =c-
wile PN = gy e I = Il =
£lged(e, f) £ged(e, f)
choices for r. O

Example 3.25.

(a) In the unramified case e = 1 the formula gives exactly 1 extension as expected.

(b) In the totally ramified case e = d the formula gives e extensions as expected from Theorem 3.6.



Chapter 4

On Constructing Subgroups of Cy C),

In this chapter we will thoroughly study the Galois group Gal(L/F') of a tower of two C)-extensions
L/E/F with Gal(L/E) = C, = Gal(E/F). This corresponds precisely to Gal(L/F) < Cp 1 Cp, by
Theorem 1.11. The field extensions can be described as the Galois closure of Cp-extensions L/E/F,
similar to the situation in Chapter 3 and Section 3.1. The possible Galois groups in this case are
well-known (e.g. [Sch14, Section 3]). Write G := Gal(L/F). If #G = pP™!, then G = C, 1 C), is
isomorphic to the wreath product. If #G = p"t1 < pP*l then G is isomorphic to one of the two
non-isomorphic groups H (p, r) or H(p, r) which we will call generalised Heisenberg group and twisted
Heisenberg group, respectively (see Definition 4.1). Both groups are solutions of a group extension

1= (Cp) " -G—=C,—1

where exp (H(p,r)) = p and exp (E[(p,r)) = p?. Hence the knowledge of #G and the exponent

exp(G) are sufficient to determine G up to isomorphism.
The main goal is to prove Theorem C and Theorem D from the introduction.

In order to achieve this, we firstly describe the groups. We will distinguish H, (p,r) < Sp2 and
H2(p,r) < Sp2 which correspond to non-Galois degree p?-extensions, from Hyri1(p,7) < Spri1 and

ﬁlpr+1(p, r) < S,r+1, respectively, which correspond to Galois extensions over the ground field F,
i.e. for the Galois closure of L/F. This can be done by the module theoretic approach outlined in
Schultz [Sch14| which gives us a nice way to determine the Galois group. Writing [a] := o + p(F)
for any a € E'\ p(F), we will associate a length function given as minimal i such that (o —1)%([a]) is
zero, and a (restricted) function e, which is basically determined by the value (o —1)(Trg/p(a)).

This will give us a description of J(E) as a Gal(E/F)-module. See Section 4.2 for the details.

We give representative systems of E/p(E) that describe H(p,r)-extensions respectively H(p,r)-
extensions. This will use the fact that £ = F(,) for some a € Rp and that there is a generator o of
Gal(E/F) so that 0(0,) = 6, + 1. This makes it very convenient with the power basis 1,0,, ... ot
since it is easy to describe the involved automorphisms, the trace map etc.

In Section 4.3 we provide two systems of representatives which parametrise the H (p, r)-extensions.

87
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Let E = F(0,) be a Cp-extension. Then one system of representatives

Ma,r - {fO + flea +.. 'f'r—leg_l ’ fz S RVa}a

where Ry, is defined as in Remark 1.22, has the advantage of having a very simple description
and makes it easy to read off the Galois group by Schultz’ theory. We will prove the following
decomposition:

Theorem. Let 0 # a € Rp and E = F(0,). Then we have:

p—1
(a) J(E) = (vE) 691 (Mai + p(E)).
1=
(b) For every normal H(p,r)-extension L/F containing E, there is an o € My, such that

L=E(p '((a)a)) -

ﬁ[(p,?’), fpfl € RF\RV(N

(¢c) For o € M, with len ([a]) = r we have Cal (E (9~ (o)) /F) = {H@ Py fp1 € Ry,

The representative system M, , has the flaw of not consisting of reduced elements if E/F is ramified.
In order to control the discriminant of the occurring extensions in the ramified case, we develop a
reduced system of representatives Qg ,, which basically gives a reduced element in the class fo+p(E)
for fo € F. There is a slight twist, however, as the elements in Qg , define H(p,i)-extensions for
i < r only as will be proven in Theorem 4.47. The technical definition of {1g , and further details
can be found in Section 4.3.1.

For the counting problem by discriminant, we determine the minimal discriminant for the corre-
sponding embedding problem for the permutation groups for the groups H:(p,r), prz (p,r) and
flpr+1(p, r). The formulas are outlined in Subsection 4.2.2 for the minimal Heisenberg extensions
and for the minimal twisted Heisenberg extensions in (4.64) over p? points and in Theorem 4.65
over p"+1 points where we use the notations of Defintion i. As a second ingredient, it is crucial to

determine the number of representatives up to a valuation bound.

Using the system of representatives 2, this way, we prove the discriminant density of H,2(p,r) in
Section 4.4, hence prove Theorem C from the introduction:

Theorem C. For1<r <p—1 we have
Z (F, Hp(p,r); :U) = xa"(HP2(p’T)),
r+1

where a, (Hy2(p, 7)) = {Zjan”ﬂ)’

p27

r? <p

—~

r? > p.
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We approach by counting the extensions defined by g, up to a discriminant bound X over all
Cp-extensions E/F. The corresponding asymptotics exponents for all extensions with Galois group
H2(p, i) for 1 <4 < r are strictly increasing in r, and so we can deduce the asymptotics exponents
for all H(p,r)-extensions.

The discriminant density of PNIpz (p, r)-extensions can be proven analogously, where a simple variation
of the representative system (g, does the trick which will be done in Section 4.5. Every ﬁ(p,r)—
extension arises as a Cp2-twist of a certain H (p,r)-extension. Therefore, we give an explicit element
ve € E such that E(0,,)/F is a minimal C)2-extensions containing E. Then the representative

system N
Qpr={Me+alac M, AeF}

plays the role of Qp , for ﬁ(p, r)-extensions. We use the analogous method to the case of H2(p,r)
to prove Theorem D from the introduction:

Theorem D. For1l <r <p-—1 we have
o (F  Hye (p,1); f”) = (),

pr—r2+7"+1 2
~ S, <
where ay, (sz (p, 7“)) - {P(PQP”P”)’ b

r

I?, 7’2>p.

Finally, we will consider Galois twisted Heisenberg extensions in Section 4.6, i.e. the transitive
permutation groups Hy,r+1 (p,7) for 1 <r < p—1. We deduce the minimal solution of the embedding

problem 1 — (Cp)" — ﬁlpr+1(p,r) — C, — 1 and deduce a lower bound on the asymptotics of

H,r11(p, 7)-extensions in Theorem 4.67.

Concerning the lower bound on a, (Hpr+1 (p, r)), we construct a minimal solution for the embedding

problem, see Theorem 4.65, and count the number of extensions having minimal discriminant. We
will construct a minimal solution in the terms of the description of vg with respect to the power
basis. All the other (minimal) solutions can be described by the elements in Qg , up to an easily
deduced valuation bound.

We conjecture the lower bound attained this way to be sharp.

4.1 Heisenberg Groups and Arithmetic of C,-Extensions

4.1.1 Generalised and Twisted Heisenberg Groups

Let pe Pand 1 <r < p—1. Up to isomorphism, there exist two groups satisfying a group extension
1— (C))" — G —Cp, —1 where (Cp)" is a cyclic Fp[Cp]-module.

For more details, see [Wat94, Section 3| and [Sch14, Section 3]. The construction of the groups is
taken from Definition 3.1 and 3.6 in [Sch14]. Here, we write [g, h] := ghg~'h~! for the commutator
of two group elements.



90 Chapter 4. On Constructing Subgroups of C}, 1 C),

Definition 4.1. Let p € P and 1 < r < p — 1. Then we define the generalised Heisenberg group as
H(p,r):={a1,...;an7 | = 1,77 =1, [0y, 5] = 1,[1, o] = aj_1, [T,01] =1
for 1<i<r, 2<j<r).
We define the twisted Heisenberg group as

H(p,?”) = <O‘17"'7O[’I“;T | O‘f = 177_}7 :ala[aiaaj] = 1,[7’,0[]'] :aj—la[T7a1] =1
for1<i<r 2<j<r).

We moreover set H(p,p) := fl(p,p) = Cp L Oy,

Note that H(p,r) coincides with Schultz’ definition of (Cp)" e, Cp given in Definition 3.6 of [Sch14]
and we have H(p,r) = (Cp)" x C).

Remark 4.2. letpePand 1 <r<p-1.

(a) The group H(p,r) has order p"*! and exponent p. The group I;T(p,r) has order p"t! and

exponent p?. In particular, we have H(p,1) = Cp x C, and H(p,1) = Cpp.

(b) Let r > 1 and G = H(p,r) or H(p,r). Its commutator subgroup is [G,G] = (a; | 1 <i <r—1)
and the center is C(G) = (a1) = C).

(¢c) We have the following interpretation in mind: For the normal subgroup M := (aq,...,q,) < G,
its quotient group (7)/(7P) = C), acts on M via
Fom:=71-m-1 " forall me M.
Indeed, this is a well-defined C)p-action on M as 77 € C(G) acts trivial on M. This way, M

defines an IF[Cy]-module, where M = (o )r, ¢, = Fp[G]/ (0 — 1)" is a cyclic Cp-module of rank
T

Example 4.3. Let p € P.

(a) As we have seen in Remark 4.2 we have H(p,1) = C), x C), and I:T(p, 1) = Cp.

(b) Let now p # 2 and let H be the classical Heisenberg group of upper-triangular 3 X 3-matrices
whose diagonal is 1, i.e.

1 b
H = 0 c| | abcelF, <GL3(F)).
0 1

o = 2

This group is defined by the relations H := (u,v,w | uP = oP = wP =1, uv = vu, uw = wu, wv =
vwu). By manipulating the last defining relation, it is easy to see that H(p,2) = H is isomorphic
to the classical Heisenberg group. This is a non-abelian group with p3 elements and exponent p.

There is no group with these properties for p = 2 as groups of exponent 2 are abelian, and so
does the corresponding matriz group. Note that H(2,2) := Dy is non-abelian of exponent 4.
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We have the group extensions
1—(C) =G5 C=(0) —1 (4.1)
via t (A, ..., Ap) = ai‘l ---a;\r and p(a;) =1for 1 <i<rand ¢(7) =0.

For p = r we have H(p,p) = H(p,p) = Cp 1 Cp and the wreath product Cp, C, is the only group
satisfying this embedding problem up to isomorphism. We will not distinguish between the two.

We call a field extension K/F' a (twisted) Heisenberg extension if Gal(K/F') = H(p,r) or Gal(K/F') =
H(p,r) for some 1 < r < p, respectively.

4.1.2 Traces in Towers of Artin-Schreier-Extensions

At first we thoroughly study Cp-extensions E/F and the corresponding Galois module J(E).

In the following we fix

E=F(0,) for a€ Rp and Gal(E/F)= (o) with o(0,) =0, +1 (4.2)
and the power basis Z = (1,9a, e 9571)
Lemma 4.4.

(a) Let E = F(6,) be an Artin-Schreier Cp-extension and fo, ..., fp—1 € F. Then we get

p—1
Trgyp (Z fl-e;) = —fp1.
=0

(b) Let L = F(01,...,0,) be an Artin-Schreier tower as in Definition 1.10 with [L : F] =p". Then

Try p Z fler,en)01" 00 | = (=1) flp-1,..p—1)-

(e1,...,er)€90,....p—1}"
Proof. (Idea of proof is taken from [Alb34].)
Let B = (1,0,,...,02") be the power basis of F(6,)/F.
For 0 <i,57 <p—1 we have

L giti i+
9};” = ‘0 e itj— i+j—p+1 H_j =P (4.3)
(a+9a)0a TP = a7 0,77 , t+g=p.

Let M = Mg 5(ps,) be the representation matrix of 6,, given by @g,: £ — E,x — x - 0,. The
(k, j)-coefficient of the matrices M* with 0 < i < p — 1 is given by

p
gt :Z(Mi)kj-e’ffl 1<k j<p-—1.

a
1
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Thus we obtain as matrix coefficients
1, i+j—1=k—1lor (i+j>pandi+j—1—p+1=k—-1),
My D0 v i—1-p=k-1,
0, else.
1, i+j=kori+j—p+1=k,
={a i+j-p=Fk
0

, else.

For the diagonal entries we get (M’)k , = 1lifandonlyifi=0ori=p—1and k> 1. We cannot
have (M*)yx = a as this implied i = p which is absurd. Hence

T
) —
—_
Il
s
Il
=
o~
Il
(e}

Trp/p(0;) = Te(M') =

I\
[
I

=3
|
—
I
|
\.I—l
-~
I
=
|
J—‘

\'O??‘
—_
A
.

A\

b

|
[N}

p—1 ) p—1

Thus by linearity we get Trg,p (Z fﬂ%) =3 fi- Trgp(0) = fp-1- (1) = = fp—1.
k=0 k=0

For (b) let r > 1 and L,_1 := F(0y,...,6,_1). Write

= Z f(e1,...,er)9T1 s 9?.

(€1, ) {0, p—1}"

By the trace formula in towers we get

Trpp(y) =Trp, ,yp (Trpyn, (7))

r=1 e1 er—1
Trp, \/rF > ~ferer 10507

Linearity of Tr
(61 ----- 67‘71)

Ind. r
='(-1) f(p—1,...,p—1)- O

Lemma 4.5. Let E = F(0,) for a € Rp. Then for all fo, ..., fp—1 € F we get
p—1
Vg <Z f19;> = min {VE(fZHZL) |0<i<p-— 1} . (4.4)
i=0

Proof. For the case fo = fi = ... = fp—1 = 0 the statement is obvious.

If E/F is totally ramified, then vr(a) = vg(0,) < 0 and p{ vp(a). Thus for all 0 <i # j <p—1
with f; # 0 or f; # 0 we have

ve(fi0l) = prp(fi) +ive(a) £ ve(f;) + jvr(a) = ve(f;6)) mod p,
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and the claim follows by the ultra-metric triangle inequality.

Now let E/F be unramified. Then 1,60,,... ,05_1 is an F,-basis of Fy» and ¢ is a prime element of
o0

E. For f; # 0, write f; = > fijktk with f;r € Fy, fi, # 0 and v; = vp(fi) € Z. Set v; = oo if
k=v;

fi=0. Let n := min{vy,...,vp_1}, then

p—1 oo
Z fba=2_ ) st
1=0 k=v;
p—1 ' 00
=" (finbi) "+ > (for+ fruba+ o+ fporpt ) F
i=0 k=n+1

—1
By FF4-linear independence of 6, ... Gaf we have Z fi, 20 # 0 and thus

1=

p—1
n=vg (Zfﬁfl):min{l/E(fﬂiHOSiSp—l}. O

Lemma 4.6. Let E, a and o as in Remark 4.2 and B = (1,0,, ..., 95_1) be the power basis of E/F .
Then:

(a) The representation matriz of o, corresponding to A, is the upper-triangular Pascal matrix

Map(o) = <<”‘1)> 1 € GLy(F).

,L_l 7"7p

Its inverse is the alternating Pascal matriz Mg(o™') = (( 1)t (J 1))

(b) We have Ker(o — 1) = F' and the image Im(o — 1) = Spang(1,60,, ..., 05_2).

(c) We have v ((o —1)(6)) = (i — 1)vg(ba) for 1 <i < p—1. Moreover, for all 3 € E we have
vg ((0 = 1)(B)) = ve(B) — ve(fa)-
Proof. For (a) note that o(6,) = 0, + 1, hence

o(0) = 0(0a) = (Bu+1) = 3 (k) 0 (45)

k=0

showing the result on the coefficients of the representation matrix. The coefficients of the inverse
matrix can be found in [Yat14, Theorem 2.9].
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p—1 )
For part (b), let « = Y f;0., for f; € F. Then we have
=0
. p—2
=00 @S (S (1)) -5 (£ al))e
k=0 i+1
This expression is 0 if and only if 0 = f,—1 = fp—2 = ... = f1, hence Ker(c — 1) = F.

By (4.5) we have Im(c — 1) C Spany(1,6,,...,6% %) and thus Im(c — 1) = Spany(1,6,, ...,65 %)
as both F-vector spaces have dimension p — 1.

For (c) note that for f; € F'and 1 <7 <p — 1 we have

i, -1 .
ve((o —1)(fi8) = v <fi (Z (;;) o — 92)) = Vg (.fi Z (;) 0’;)
k=0 k=0
= vp(fiby ") = ve(fify) — ve(a), (4.6)
thus by the ultra-metric triangle-inequality

p—1
vi ((0 = 1)(@)) = ve ((0' -1 fi%)) > min {vp((0 —1)(fi8,)) [ 1 <i<p—1}}
=0
=min {vp(fi0}) —vp(f.) | 1 <i<p—1}}
Lemréa 4.5 I/E(Oé) . VE(ga)-

Inserting f; = 1 in (4.6) yields the statement on vg (o — 1)(65)). O

Lemma 4.7. (a) The F-linear map
U: Spanp(fg,...,00 ") — Spanp(1,6,,...,007%), 2~ (0 —1)(z)

s an isomorphism.

b) For all0 < i <p—2 there exist 1 +1 ,---, Miit1 € Fp such that
i+ i+ D
—1/pi i+1 Z
(ea) + 19(1 + M, Z-‘rle (47)

(¢) For all B € Spanp(1,0,,...,0° %) we have vg (¥=1(B)) = ve(B) + vr(a).

Proof. Part (a) follows by Lemma 4.6(b).

For part (b), we consider the F-bases B = (0, . .. ,05_1) = (b1,...,bp—1)and € = (1,6,, ... ,65_2) =
(c1,...,¢p—1) and the representation matrix of ¥. We get by (4.5) that

M := Mg (V) = ((k i 1>)1§i§p—.1 '

1<k<i
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In particular, the matrix My 2(¥) € GL,_1(F,) is an upper triangular matrix with diagonal entries
M;; = (zjl) =1. We get

M = My z(T1) = Myye(¥)! € GL,1(F)p)

with diagonal entries Z\fZZZ = % Writing ¢; = 93{1 and b; = 92 for the base vectors, we have

i+1
—1,ni _ 1
Lo = 0 (eiq1) = §jM,H+1 bk_E:M,”HH + - Hegﬂ.
k=1 k=1

The claim in (b) follows with gy ;41 = Mk,i+1'
We prove part (c) first for f;0° and f; € F. Let 0 <i <p—2and f; € F. Then by (a),

v (V7 (fi6})) = ve (Hllfﬂz;“ +Zuk,i+1fi0§> = uE<i+11fiez;“> = vp(fif}) +ve(0a). (4.8)
k=1

p=2
Now let 8 = > fi6.. By the triangle inequality and (4.8) we have
=0
ve(¥H(B8)) > ve(B) + vr(a). (4.9)

To establish equality, let z := max {0 <i <p—2 : vg(B) = vg(fi#})}. Then necessarily,

vi(fz) <ve(fe1), - vr(fz) <ve(fp-1). (4.10)
p—2 @ p72 1 A 7
UNCIEDBAGAEDY ( L fiba" +Zuk,i+1fiei:>
=0 1=0 - k=1
p—1 1 p—1
= %fk—ﬂa + > mgfia0s
k=1 j=k+1
p—1
= ( Je—1 + e gerfr o+ Mk,plfp—2) 0
k=1
La.:4.5

. 1
min {VF <<kfk—1 + Mg g1 S+ ,Uk,p—lfp2> 92) |1<k<p- 1} . (411)

For the value k = z we obtain

(4.10)

1
VE( (Z ¥ 1fz + Hz+1, z+2fz+1 +...+ Mz+1,p1fp2> GZ—H) z/E(fZHZH) = Z/E(ﬁ) + VF(CL)

and by (4.9) we have vg (V"1(8)) > vg(B8) + vr(a). This proves the equality by (4.11). O
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4.2 Galois Module Theory

We follow Schultz et al. [Sch14] who study embedding problems
1= (Cp)" =G — Cpn — 1
in both char(E) = p and char(E) # p. We will only consider the case n = 1.

Definition 4.8. Let E/F be a Cp-extension and G = (o) = Gal(E/F'). For a G-module M we
define
len(M) :=min{l € N | (¢ — 1))(M) = 0}

as the length of M. For a field element 8 € E we set [] = 8+ p(E) € J(E) and len ([f]) =
len(([5])a), where ([§])c is the G-submodule of J(E) generated by [5]. We define the trace map

Trg/p: J(E) = J(F), [B]— [Trg/r(8)].

Remark 4.9. Let [a],[5] € J(E) = E/p(E). Then we have
len ([ + 5]) < max {len ([a]) ,len ([3])}. (4.12)

Moreover, we have

len ([a]) # len ([8]) = len ([a + A]) = max {len ([a]) , len ([3])} . (4.13)

Proof. We have (o — 1){([a + B]) = (¢ — 1)¥([a]) + (¢ — 1)([8]) for @ € N. With the choice i :=
max {len ([a]),len ([5])} we get

[0] +10] = (o = D)*([ad) + (o = D)([8]) = (0 = 1)"([ev + B)),
thus len ([a 4+ 5]) < max (len ([«]) , len ([5])).
Now let len ([«]) # len ([5]). We may assume len ([a]) > len ([f]). Setting i := len ([a]) — 1, we get
(o = 1)(fa+8]) = (0 = D([a]) + (o = D*([8]) = (0 — 1)'([a]) +[0] # [0],
#[0]

hence len ([a+ f5]) > ¢ = len([a]) — 1 = max(len([a]),len([F])) — 1. By (4.12) we thus have
len ([o + f]) = max(len ([¢]) , len ([5])). O

Recall v ([a]) = maxgep (VE(a + p(7))) = maxge|q (VE(S))-

Lemma 4.10. Let E = F(0,) for a € Rp with G := Gal(E/F) = C,. Let § € E, and | := len ([f]).
Then:

(a) We get len ([8]) = min{n € N | (o — 1)"(8) € p(E)}.
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(b) The system ([(c — 1)"(5)])1:0’“_71_1 forms an Fp-basis of ([B])a.
In particular, we have len ([3]) = dimg, ({[8])c).

(¢) For all (Xo,..., Ni—1) € FL, we have

-1
Vj(E) ([Z Ai(o — 1)i(5)]> = vy ([(e=1)*B)]),
=0

where z :=min{0 <i <1 —1| X\; # 0}.
(d) In particular, for the field discriminant of the degree p'-extension we get

-1

disc(E(([8)a)/E) = Y p'disc (g (0 = 1)'71(8)).

1=0

Proof. The maps p and o commute, thus (o — 1)(p(x)) = p((c —1)(z)) for all x € E and [(0 —
D(B)] = (o = 1)([A)])-
This shows (b) and (a) via (o — 1)([8]) = [0] < (o0 — 1)(B) € p(E).
(¢) Choose f3; € [(¢ —1)"(8)] such that vy g ([(c — 1) (8)]) = ve(Bi) for 0 < i < len([f]) and let
z:=min{0 <i<l—-1] X\ #0}
If E/F is totally ramified, then Lemma 4.6(c) immediately proves that

ve(Bo) <ve(B1) < ... < VE(Bien(g)-1)

are pairwise different and the result follows by the ultrametric triangle-inequality.

Let E/F be unramified now. Again, we have

vE(Bo) < vE(B1) -+ < VE(Blen(j8))-1)-

p—1
Write 5; = > g@k@fj for g; , € F', and set
k=0

p(i) := max (0 <k<p-—1|veB) = VE(g@kQ’;)) for 0 <i<len([g]) — 1.

Note that we have p { vg(8;) or vg(fi) = 0 and 5; ¢ p(E) for 0 < i < len([5]) — 1. By
assumption and (4.6) we have vr(g; p(z)) > VF(gs p(z)) for all i > 2. Hence with Lemma 4.5 we
get

len([8])-1  p-1

-1 -1
ve(3 A T E T T wp(Y A = e Y A gikdh)

=0

i)y La. 4.
= vp(> Nigipoy05) =7 vp(Be).
=0
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As ptvg(B,) or B, ¢ p(F) and ve(B,) = 0, we have
ve(B:) = vy ([B:]) = vy (lz Bl] ) .

(d) (Bi)izo...1-1 == ([(c = 1)Y(B)]))i=0....1—1 forms an F,-basis of ([8]) by (b). The discriminant

formula for elementary abelian p-extensions implies

disc(E(o ' ((B))/E)= 3. cond(E sz )/E)

(A0, A1—1)EFL\O

= > (cond ;(z Z AifBi))
()\0,...,)\171)6151 \O

é Z ‘ l - 1 CondJ (ﬁl)

i=0
-1

~
[y

~.

,\\.

P diseyp Zp disc () (Br-1-4)-

0

.
Il

Inserting (3; = [(o — 1)*(B)] proves (d). O

Corollary 4.11. Let o, 8 € E such that (o) = (B)a. Then vy ([a]) = vyg) (16])-

Proof. Let | =len ([o]). Using the F-basis ((o — 1)i(a))0<i<l_1 we get
-1

18] = Xil(o = 1)i(@)]  for some \; € F.

i=0
-1 ,
Suppose Ag = 0, then len ([3]) = len <[Z Ai(o — 1)%04)]]) <land (a)g # (B)a-
i=1
Thus Ao # 0 and by Lemma 4.10(c) we have v g ([a]) = vyg) ([8])- O
Following [Sch14]| we suggest the following definition.
Definition 4.12. Let E = F(6,) for a € Rp.

(a) Let # be an [F)-basis of J(F') such that [a] € #. Consider the corresponding dual basis (Ay),,c-
Then we define a map

eg/r: J(E) — Fp, 18] — Ao ([Trg/r(B)])-
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(b) For 1 <r <p-—1 we set

Jr(E) :={[Bl € J(E) : len([]) <7, epyr([8]) =0}

and

Jr(B) :={[8l € J(E) : len([]) <7, epr((f]) # 0}
Moreover, we set J,(E) := {[f] € J(E) : len([8]) < p} = J(E).

(c) For 1 <r,s <p,s#pandz e R>g we set

Jo(B,2) = {[B] € J1(E) : |vym) ([B])] < 2},

Ti(B,2) = {[8] € J(E) : v (18)] < =

Schultz uses in his paper [Sch14, Section 4.1] actually a different definition from our definition of e,
and defines it in greater generality. For now, let K/F be a cyclic Cpn-extension with (o) = Gal(K/F).
Let (6 —1): J(K) — J(K),[B] — [0(B) — B] be the corresponding endomorphism on J(K). Then
Schultz defines the function

e: Ker((o —1)P" 71 = F,, [B]~ [(0 — DO, ()]

In the case n = 1, this definition indeed coincides with e/ on Ker(o — 1)P~! as we show next. This
way, we can apply all results from [Sch14] on the function e on our function e /F-

Remark 4.13. Let n = 1 and E/F be a Cp-extension, then e([3]) = eg,p([B]) for all [3] €
Ker((o — 1)P71).

p—1
Proof. Let 8= 3 fif, with f; € F and (o — 1)P~Y([B]) = 0. This means that f,—1 € p(E)NF =

1=

F, - a+ o(F), hence

fo-1=pa+o(f) =—Trg/p(B) forsome pel, fecF (4.14)

Thus we get

(0= 1) (s )] = [l = (=400 = )] = =1 = Moy~ + 9(/)]) = eme((8). O

The purpose of the e, p-function is to predict the group exponent of the Galois group defined by a
cyclic module. More precisely, let K/F' be an Cyn-extension. Let [3] € J(K) with len ([8]) = < p"
and write L := K(p~'({8))). For any 6 € Gal(L/F) such that #|g = o, Schultz proves the
equivalence

6" =id <= 6%(05) =05 < (6 —1)(Onr,,,(5) = O- (4.15)

If len ([8]) < p", then Try/p(B) € p(K) N F and thus, 6 acts the same as o on b1y, (5 € K. Thus
eg/r([B]) is indeed independent of any choice of 5.
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Conclusively, considering the embedding problem 1 — (Cp)" — G — Cpn — 1 with r < p™, we get
exp(G) = p" if and only if eg,p([8]) = 0. In our case n = 1, this enables us to distinguish H(p, )

and H (p, 7). Embedding theoretically, this means that all pre-images of ¢ in G have the same order.

This is not true in the case r = p", where eg/p is not base-independent. It depends on a choice
of either a basis of J(E) or a choice of a continuation &, or a choice on a pre-image of ¢ in the
group extension. On the other hand, both groups are isomorphic, hence the length is sufficient as
an invariant.

Finally, in the case n = 1 and r = p, it is worth pointing out that the trace describes the underlying
Cp x Cp-extension, as

Spang, (a, Trg p(B)) + p(F) = p(L)NF is of rank 2 modulo p(F).
Remark 4.14.

(a) Note that Trg,p(p(a)) = p (Trg/p(a)) for all @ € E, thus e/ p is a well-defined Fp-linear map.
However, the definition of e/ depends on the chosen basis % of J(E).

(b) Let fo,..., fp—1 € F. Using Lemma 4.4(a) we have

p—1
EE/F ( [Z fibe
i=0

Therefore we get

p—1
) = N ([Trg/r (O fi)]) = Moy (= fp—1])  forall fie P, (4.16)
1=0

p—2
EB/F ([Z fiaz + p(fp_1)951]> =0 for all f; € F. (4.17)

=0

If we write [fp—1] = p(a) - [a] + 2opje 2 f[a)y 1p) - [b] @s its unique Fp-linear combination of 2, then
we obtain

en/r(lfp—1057"0) = g ([=Fp-1]) = —plal.

4.2.1 Description of (Twisted) Heisenberg Extensions
Theorem 4.15. Let [o] € J(E) and r := len ([a]).

(a) If r < p, then E(p~'((a)q)) is an H(p,r)- or an H(p,r)-extension. Moreover, it is a twisted
Heisenberg extension if and only if eg/p([a]) # 0.

(b) If r =p then E(p ' ({a)q)) is a Cp U Cp-extension.

A proof is given in [Sch14, Prop. 4.2]. The major step is (4.15) combined with Lemma 4.10(b).



4.2. Galois Module Theory 101

Theorem 4.16. Let a € Rp with E=F(0,) and 1 <r <p-—1.

(a) For any o € E with vgp(a) > rvp(a) we get len ([a]) < 7.
(b) Let o = fo+ fiba+ ...+ [0, € E with f; € F. Then

len([a]) =r+1<= f. ¢ p(E)NF.

Proof. (a) If E/F is unramified, then the assertion vg(«) > rvp(a) implies that vg(a) > 0. There-
fore a € p(E) and len ([a]) =0 < r.

Now assume E/F to be totally ramified. Then by Lemma 4.6(c) we have
vg (0 — 1) (a)) > veg(a) — rvp(a) > 0,
thus (0 — 1)"(a) € p(F) and len ([a]) < r which shows (a).
(b) For f € F we have
j-1 .
(o=t =1 (O + 1 - 8) =73 (1)
i=0

hence
(0 =1)"(fo+ fifa + ...+ fr0,) = Xfr for A=r!lcF}.

Thus (0 — 1)""!(a) = 0 and len ([a]) < 7 + 1. Moreover

La 15

[(0 =) ()] = [M:] = h =0 f, € p(B).
Thus len(a) =7+ 1 <= f, ¢ p(E). O

Example 4.17. Let 1 < r < p—1 and fo,...,fr € F. In the case f, € p(E)NF every length
T .

len ([Z fﬁé}) € {0,...,r} is possible: For this, choose g» € Rr and f, = p(gr). We get
i=0

0(g-0") = gr ) o + Z < )grar 9 = £.0" 4+ he 107+ 4 g € p(E) (4.18)
_fT
and this element has length 0.

For length v — 1 take for instance B := ¥~V (p(g)8,), then len ([]) = r — 1.

Note furthermore that h; ¢ p(E) N F for all 0 <i <r —2. Thus len <[Z hiﬁé]) =1, hence
k=0

len ([fr0h + hr—1007 " + ...+ hip105T1]) =len ([ (g-07) Z hi 01) ba 49 max(0,17) = 4.
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Lemma 4.18. Let E = F(6,) for a € Rp be a totally ramified Cp-extension. Define vg =
T (p(657)).

p—1 )
(a) Write yg = Y fi0., for fi € F. Then
i=1

1 . .
fi=(=1)"t. T a’~" + hi, where h; € F with vp(h;) > vp(aP™").

(b) We have len ([vg]) = 1 and g p([ve]) = —1. In particular, E(0,;)/F is a Cp2-extension.

Proof. (a) We have
p—1 1
R D M M L
=0

p—2 f 1 p—2
_ - p—l—igi _ 1 1 p—1—i i' 4.1
S (77 )= St (1.19)

1=0

Thus there is a pre-image of 9(9571) under the isomorphism ¥ by Lemma 4.7. Again by

Lemma 4.7
(4.11) ' 11 i = k (k+1) i
= E 1)t ZaPe! § —1)%p; paP~ Kt gl ) 4.20
YE < <( ) ia a + k:i( ) Mg kG a) ( )

Using vr(a) < 0 we get vp(aP~*) > vp(aP~?) for all i < k which proves the description of v.
(b) By the calculation in (a) we have f,_; = —a and thus

ey (1E]) = Mo (T p(16)]) 27 Ag([—a]) = —1.

Note that vg ¢ p(F) as vg(yg) < 0 and p t vg(yg). Then Theorem 4.15 shows that E(0.,,)/F
is indeed a C)2-extension. O

Corollary 4.19. Let E = F(0,) for a € Rp and 2 < r < p—1. Then [3] € J(E) defines a
H(p,r)-eatension if and only if [3] = [a] + A[vg], where X\ € F) and [a] defines a H (p,r)-extension.

Proof. By Theorem 4.15 we have len ([8]) = 7 and eg/p([B8]) = A = X - eg/p([y£]) for some \ € F.
Set [a] := [8 — AyEg], then we get

ep/r([B — ME]) = cp/r(B]) — Xeg/p((VE]) = A = A= 0.

Rem. 4.9

Moreover len ([a]) =len([8 — Myg]) = ~ raslen([f]) =r # 1 =len([Ag]). Thus [a] defines a
H (p,r)-extension by Theorem 4.15. O
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In the case r = 1 we easily get a similar result by the reasoning: [5] € J(E) defines a C)2-extension

if and only if [3] = [a] + A[yg], where A € F and [a] = [0] or [a] defines a C}, x Cj-extension.

The only difference is that we cannot establish equality for the length, and the length of [a] can be
0.

In Schultz [CMS16| we find the following nice decomposition for fields of characteristic p. We need
the n = 1 situation.

Theorem 4.20. Let Z/F be a Cyn-extension. Then there exists v € J(Z) and A C J(Z) such that

J(Z2)=(meoPle and

a€A

o len([y]) =1, ez/r(Y]) # 0,
o (a)g = TFp[Cpn] for all a € A.

A proof is given in [CMS16, Prop. 6.2].

In the case n = 1 we can take v = yg with vg defined in Lemma 4.18.

4.2.2 Minimal Heisenberg Extensions
Corollary 4.21. Let a € Rp so that E = F(0,)/F is totally ramified and let 1 < r < p.

(a) If wo € Fg \ p(Fy) then Ly(a) := E(0,, gr-1) defines an Hy(p,r)-extension of degree p? over F
containing E of minimal discriminant.

(b) The corresponding discriminants over p* points are disc (L1(a)/F) = pdisc(E/F) forr =1 and

disc (Ly(a)/F) = (p+r—1)disc(E/F) — (p—1)(r—2) for2<r <p.

Proof. We have len ([w()@g*l]) = r by Theorem 4.16(b) thus the corresponding extension has Galois

group H(p,r) or H(p,r). If r = p, we have H(p,p) = H(p,p) and L,(a) defines a H (p, p)-extension.
For r < p we immediately get e p([wof;,!]) = 0 by (4.17). Thus the corresponding extension has
Galois group H(p,r) by Theorem 4.15(a).

For minimality, let 5 € Rg be any element with vg(8) > vg (9‘009;71) = (r — )vp(a), then

len ([3]) < (r — 1) by Theorem 4.16(a) and thus E(6g)/F does not define a H (p, r)-extension. Thus
no extension of F/F of smaller discriminant is an H (p, r)-extension which proves the minimality.

For the discriminant we consider » = 1 first. Then vg (woeg) =vg(wo) =0 and

disc (L1(a)/F) = pda + 0 = pd,.
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For r > 2, the tower formula yields
disc (L, (a)/F) = pdisc(E/F) + (p — 1) ([ve(weby ") + 1)
=pdisc(E/F)+ (p—1) ((r — 1)|vp(woba)| + 1)
=pdisc(E/F) + (r=1)(p—1) (lve(fa)| +1) = (p = 1)(r — 2)
=(p+ (r—1))disc(E/F)— (p—1)(r —2). O

Remark 4.22. We also have
disc (L,(a)/F) = (p+r—1)(p = Dlvr(a) + (p— 1)(p+1) (4.21)
disc(Ly(a)/F) = (p+r —1)disc(E/F) — (p—1)(r — 2)

=@+r—1@-D(vr(a)|+1) - (p—-1)(r—2)
=@+r—1p-1vr(a)|+(@E-1({p+1).

Lemma 4.23. Let a € Rp with vp(a) = 0 so that E = F(0,)/F is unramified and let 1 < r < p.
Then Ly(a) := E(0,-14r-1) defines a minimal H (p, r)-extension over p? points, with discriminant
disc(Ly(a)/F) = 2p(p — 1).
Proof. The discriminant is given by the formula
disc(Lr(a)/F) = pda + fr/p(p = D(lvp(t™ 0,7 ) +1) =0+p-(p—1) - 2.

Note that Gal(L,(a)/F) = H(p,r) by Theorem 4.16(b) as t ! ¢ o(E)NF. Moreover, it is a minimal
Heisenberg extension as any extension with smaller discriminant is unramified and therefore defines
an abelian extension. O

4.2.3 Minimal Twisted Heisenberg Extensions

Let E = F(0,) for some a € Rp. Recall Lemma 4.18 and the element

ve =¥ (p(0h )

p—1

and write yg = Y. fif as its representation with respect to the power basis 1,6, ... ,0{1)_1.
i=1
For 1 <r < p—1 we can decompose
r—1 p—1
vE =Y [l + > fit = 0pr + Ve, (4.22)
= =r
3:6E,r =YE,r

where we are mainly interested in the element g ..
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Lemma 4.24. Let E = F(0,) for some a € Rp with G = Gal(E/F) and 1 <r <p-—1.

(a) We have len ([yg,]) =17.

(b) The element yg, generates a H (p,r)-extension, that is Gal(E([ver))a)/F) = .FNIpr+1(p, T).
(¢) If vr(a) <0 we have ve(yp,) = (p(p — 1) + 1) vE(a).

Proof. (a) For the coefficients we have

ve(fy) =vp(@™) forl<r<p-1, ve(ve) = (p* — Dvr(a). (4.23)

If r <p—1we have p—r > 1 and we obtain f,_1 ¢ p(F)N F. Then we have

len ([6p,]) "= r -+ 1=1,
thus we have len ([yg,|) = r as well by (4.13).

(b) We have
~1=¢eg/r(VE]) = cp/r(0Es]) + ep/r(lvEr]) =0+ eg/p(VEL])-
Using part (a) and Theorem 4.15, the element vg , defines a ﬁ(p, 7)-extension.
(c) Using Lemma 4.18 we have

p—1 i—1
-1 o . .
vE(YEr) = VE ( g iap_l% + hi92> with h; € F and vp(h;) > vp(aP™"),
i

i=r

thus
vE(VEy) = min{yE(a”_iﬁé) cr<i<p—1} =vg(@ ") = (p(p —r) +r)ve(a). O

We will show later in Theorem 4.60 that vg , defines a minimal twisted Heisenberg extension. Our
proof requires to know all possible discriminants for Heisenberg extensions first. We illustrate the
notations and ideas with an example here.

Example 4.25. Let us consider p = 3 and F = F3((t)). Let E = F(0,) for some a € Rp with
vr(a) < 0. Using our standard generator o € Gal(E/F) with 0(6,) = 0, + 1 and the isomorphism
U =0 — 1 from Lemma 4.7 with the F-bases B = (04,0%) and € = (1,60,). We have

Mz (V) = (é ;) = (Mz5(¥)) " € GLa(Fs). (4.24)

Now p(62) = (a + 0,)? — 62 = 2a0, + a* and

g = U1 (9(92)) (429 2a(0, + 262) + a0, = ab? + (a* — a)b,.

Note vg1 = vE and yp2 = aﬂg.
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o A minimal Cy-extension over E is given by Z = E(0.,,) with

disc(Z/E)=(p—1) (|1/E((a2 —a)b,)| + 1) =2 (Tlvp(a)|+ 1) = 14|vp(a)| + 2.

o A minimal Hy (3,2)-extension over E is given by E(0y.,)-

First of all, yg2 = (a?

(a®> —a)by ¢ p(F) and (o0 —1)((a®> —a)by) = a® —a ¢ p(E).
Secondly, g/ ([(a2 - a)@a]) = 0 by Remark 4.14(b), hence combining these two facts, the
element yg 2 defines a ﬁg(?), 2)-extension by Theorem 4.15.
To show the minimality, take B = fo + fi10a + f20% € E with fi € F such that E(03) defines a

H(p, 2)-extension. Then len ([3]) = 2 which implies fo € p(£) N F. Moreover, by eg/p([B]) =

Aa)([=f2]) # 0, we get fo & (F). Hence fo = o(f) + a for some f € F, and thus vr(f2) =
ve(p(f) £a) <vp(a). Thus

disc (E(0p)/E) = 2- (lvp(8)| +1) 2 2- (lvp(ab)| +1) = 2- (jvp(ve2)| + 1) = disc(E(by,)/E).-

—a)f, corresponds to a module of length 2, as

This shows that the minimal twisted Heisenberg extension has smaller discriminant than the
minimal cyclic C2-extension, considered over p? points.

o To construct the wreath product Cs ! Cs as a Galois group, we can take the Galois closure of

E(p~t(07)). As p(F3) =0 and 1 ¢ p(F3), we have len ([1-62]) = 3.

This example works in principal analogously in the case p > 3 where it is just more difficult to
explicitly describe the element ~vg.

4.3 Heisenberg Modules and Systems of Representatives

Our next goal is to enumerate Heisenberg H,(p, r)-extensions of degree p? containing a fixed C)-
extension £ = F(0,) for some a € Rp. For this purpose we will construct new systems of repre-
sentatives of J(F). The main emphasis lies on expressing the representatives in terms of the power
basis 1,60,, ... ,95_1 rather than in terms of powers of a prime element (opposed to Rg(7) defined in
Chapter 1). This is done to easily read off properties of the Galois group from the defined extensions
E(0,) for a representative a.

We will use these systems to describe the set of all module generators for modules of length < r with
eg/p-value 0.

Remark 4.26. For a € Rp recall the F,-vector spaces V, = p(F(0,)) N F and Ry, we defined in
Remark 1.22.
Vo, = p(F) & F, - a.

Let Ry, < Rr be a suitable subspace of codimension 1 such that Rr = Ry, ©F, -a. Then Ry, is a
reduced complement of F'/V, with Ry, C Rp.

Note that z € Ry, NV, <= x=0and x € Rp Np(F) < = =0.
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Definition 4.27. Let a € Rp and 1 < r < p. We define
My = {fo+ fiba+ ...+ fp102"' © fi€ Ry, f,o1 € Rp}  and

Ma,r = {fO + flea +...+ fr7192_1 € Ma : 0 7& frfl € RVa}-

We give an overview on useful direct sum decompositions for a given a € Rr where some will be
proven in this subsection:

E=p(E)® R = p(E) ® M,, P(E)NF =p(F)®F, -a=:V,,
F=p(F)®Rr=p(F)®F, - a® Ry,

Lemma 4.28. Let 1 <r < p, E:=F(0,) and o € M,,. Let L := E (p~'({(a)¢)) be the extension
defined by ov. Then Gal(L/F) = H(p,r).

r—1 )
Proof. Let o = ) f;0! with f; € Ry, and fr_1 # 0. Then len ([a]) = r by Theorem 4.16(b).
t

2

If r <p, then f, 1 = 0 and thus Trg,p(a) 211 0. This shows eg/r(la]) = 0 by Remark 4.14(b).

Thus Gal(L/F) = H(p,r). For p = r the Galois group is the wreath product C,1C, = H(p,p). O

Remark 4.29. Define W, := le M, ;. Then M, # W,, more specifically,
fo+ f1ba+ ...+ fr16P7 € M\ W, <= f,_1 € Rr \ Ry,. (4.25)
Lemma 4.30. Let a € Rp, E := F(0,) and W, := @!_, M,;.

(a) We have dimg, (M,/W,) = 1.

(b) If Gal(E(0,)/F) = C,2 generates a cyclic extension for some v € Mg, then Fy, - v © W, = M,.

Proof. Consider the projection
pr: M, — F, fot fila+ .o 4 o167 — £ (4.26)

Then u € W, if and only if pr(u) € Ry,. Consequently, there exists v € V' with pr(v) ¢ Ry,. Now
Ry, < Rp has codimension 1, hence pr(F, - v+ W) = Rp. Consequently, F, - v® W, = M, and
V =T, - v which proves (a).

Let v € M, generate a Cp2-extension. Then we have

Trgp(v) =" = pr(y) ¢ p(F),

hence F, - yNW, =0and F, -y & W, @ M, by part (a). O
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Lemma 4.31. Let a € Rp and E := F(0,). Then E = o(FE) ® M,.

Proof. We first analyse p(E). For f € F andi e {1,...,p— 1} we get

i—1

p(10) B (0, + a)' — f0, = (k> Pa' =g + o( )0 (4.27)

k=0

where p(f) =0 <= f € F,. Hence if zy,...,z, € F with z, # 0 then

r—2 T
4.27 _ . .

oo+ ..+ 280) Z o@)0 + (r - aa? + plar )L+ Sy = Syl

i=0 i=0
where the y; € I’ are defined by the last equality. We get
:UT¢FPZ>07£@($T) =y, € p(F) CVy, or
O#z,€Fp,=9y=0 and 0#y,1=rala+p(x,1)€p(F)dF,-a=V,. (4.28)
~—

€k,
S

Conclusively, if a € E and p(a) = Y 505 for certain y; € F with ys # 0 then (4.28) implies
i=0

ysep(F)a Szp—l
Ys € Vi, s<p-—1.

As the three systems M, ,, Rr, and Ry, are additively closed satisfying Ry, NV, = 0 and RpNp(F') =
0 this immediately shows
p(E)N M, =0.

We are left to prove

x € E = 3~ € M, such that x + p(E) = v+ p(F).

For0 <r <p—1let x, € F and x = z,0],. We show that

r—1
IyEMa, Yo, yr 1 €F, BEE © =7+ b+ o(B). (4.29)
i=0
By Vo, & Ry, = F we get
VfeF3foeFuelF, : f—p(fo)+pacV,. (4.30)

Thus there exist fo € F' and pu € F), such that

zr — p(fo) = pa € Ry,.  Set f:= o(fo) + pa. (4.31)
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Then (z, — f)0, € M, by definition of M, and we get
r ( : r r r—k k
0,) = )0 g ya" "oy
p(fO a) fO at (k)

r—1
B g1y (4:27) r TN B pkpk
0 0 0, —_— 0
ol +ha kgg( g et e

and

x=uz.0, = ((x, — f)+ f) 0,
U2V (@ = O+ (o(fo) + pa)6]

_ _ r r H r+1
- (x’!‘ f)ea + p(foea r+ 1011 )

r—1
™ op ek, (TFLY B ik ok
+Z<(k>fa +<k rl” ba
= (2 — )by + (8 +Zyz

which proves (4.29) for r < p—2. For r = p— 1 we can use the same proof as for 0 < r < p—1 only
with p =0, f = p(fo) € p(F) and f —z,_1 € Rp.

For arbitrary o = Z fi0i € E, fi € F, we can apply (4.29) on f,_ 10771 then fp_295‘2 etc. and

lastly apply (4.30) Wthh shows that « =+ mod p(F) for some v € M,. O

Corollary 4.32. Let E = F(0,) for a € Rp and let vp = W~ (p(05"")) as in Lemma 4.18. Let
J(Weo) ={[p] B e W,}. Then we have

J(E) = (lel) & J(Wa).

Proof. The class [yg] defines a C)2-extension by Lemma 4.18. Now combine Lemma 4.30 and The-
orem 4.20. O

In total, we obtain a nice description of all Heisenberg extensions.
p—1 )

Corollary 4.33. Let 1 <r<p—1and o= > fi0) € M, with f; € F. Then:
=0

(a) For every normal H(p,r)-extension L/F containing E, there is an o € Mg, such that

L=E(p '((a)a)) -
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H(p,?"), fp—l € RF\RVG7

(b) For oo € M, with len ([a]) = r we have Gal (E (¢~ ' ((o)a)) /F) = {H(p ), fp—1 € Ry,
) p— a’

Proof. For part (a), consider U := p(L)/p(E) < J(E). Itisacyclic Gal(E/F)-module, i.e. U = ([5])
for some § € E. By Lemma 4.31 we have 8 = a+gp(h) for some o € M, and h € E. By the condition
len ([8]) = r = len ([o]) we have a € My, so U = ([a]) and L = E(p Y(E (p ' ((a)c))))-

For proving part (b), note that the condition f,—1 € Rp \ Ry, implies
fo-1=pa+pb) forsome peF,, beF.

Thus
ep/r([e]) = Mg ([=fp-1]) = My (=lpa +0]) = —p # 0,
and E(0,)/F is a twisted Heisenberg extension by Theorem 4.16. O

4.3.1 Reduced Representative System in the Ramified Case

Let a € E. Recall the valuation-type function

vie): J(E) = Z, vyg)(la])= Tﬁngg(VE(Oé +(8))) -

We call an element o € E reduced if vg(a) = vypy ([a]).

For a to be reduced it is necessary that vg(a) < 0 and it is sufficient that p { vg(«a) if vg(a) < 0 or
that vg(a) = 0 and the leading coefficient is not in p(Fy).

A reduced element @ € E with a — & € p(E) is called a reduction of o in E.

If E/F is totally ramified, then vg(f) = p-vp(f) for every f € F and thus, any element fy € F with
vr(fo) < 0 is not reduced in E. Hence we need to find a reduction of fy to turn M, into a reduced

T .
system of representatives. Note that the elements of the form > f;0! are reduced in E.
i=1

Notation 4.34. Let E = F(f,) for a € Rp be a Cp-extension and (1,6,,... ,0%71) be the power
basis of F. For 0 <17 < p — 1 we denote

p—1
7Tl':E—>F, ka0§+—>f10;
k=0

as the i-th projection. Obviously, 7; is F-linear.

We start with an easy observation from (4.27).

Definition 4.35. Let E = F(,) for some 0 # a € Rp. Let 1 <r <iand f € F. We define

Brz Zﬂ—k f 01
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Lemma 4.36. Let E=F(0,) forO#a€ Rp, f€ Fand1 <i<p-—1.

(a) mo(p(f0L)) = fPa’.

In particular, we have — fPa’ = By ;(f) mod p(E).
(b) mi(p(f0)) = o(f)b%.
(c) For 1 <r <i we have 7, (p(f0)) = (i)fpai—reg'

Proof. We have

i—1 .
p(f0) = f(a+00)' = [0, = fai+ Y (k> JPa Ok + ()0
k=1

This shows by definition (a), (b) and (c) except for the second choice of (a).
By re-arranging the terms, we get

i—1 .
o783) = 170 = 3 () ) #7740k + o165 = 51

k=1
Hence — fPa’ = B1,;(f) mod p(E).
Definition 4.37. For a € Rp and z € Z we define w,(a) := LWJ and

R .= =) [ [t7Y).

a

111

(4.32)

Note that Rff) is the F -vector space with basis (ti s < wz(a)). The elements f € Rt(f) can be
thought of as shifted polynomial expressions f = Y.  fit' so that every term 0 # f;t* satisfies

1<w;(a)

ve(fitha®) < 0 < fit' € RY) «= i < w.(a).

(4.33)

The integer w,(a) € Z is maximal with the property vp(t""a*) < 0. Note that v (t"07) = vr(tP"a?)

if Z/F((I) < 0.

Lemma 4.38. Let a € Rp with vp(a) < 0. Let f € Fand1 <r <i<p-—1. Then:

(a) If i = r we have B, ,(f) = p(f)0, and ve(B,,(f)) = ve(fPo,) if vr(f) <O0.
(b) In the case i > r or vp(f) # 0 we have

ve(Bri(f) = {

Moreover, vg(Br:(f)) < rvp(a) < vp(fPa’) <O.

vi(fPa'~05) = pur(f) + (p(i — ) + r)vp(a)  vp(fPa™") <0
VE(fefz) = Z/F(fpai), VF(fpai—r) > 0.
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(c) We have vg(Bri(f)) < rvp(a) < vp(fPa"™") <0 <= vp(f) <wi—.(a).

Proof. Now to prove (a), if i = r we simply have

vi (Brr(f) = ve (p(£)0,) = ve (f70, — f0;,)
and vg(fPOl) # ve(ff,) mod p. Thus we get the claim in (a).
In case of (b) we have i > r. We first show
vE (i(0a)) = ve(a'™"0;) = (p(i — 1) + r)vr(a). (4.34)

Since vg(a) = pre(f,) = prr(a) < 0 we have

Oa
) <a> =vp(a) — pvr(a) = —(p — vp(a) > 0. (4.35)
Thus for all 1 <r < k < i we get
, , 4.35 .
ve(a™*0%) = vp(a®"0") 4 (k — r)vg (ia) ( > ) ve(a'™"oy).

Thus we can prove equation (4.34) using

vE(ir(6a)) = vE(a""0;) = (p(i —7) +1)vr(a).
Then
vi(fPai=0) £ wp(f6) mod p (4:36)
and using B,;(f) = fPyi,r — 0 we get

vE(Bra(f) = v (fPrma(0a) — £61) 2 min {vp(fPai="00), v (fo)}.

(4.36)

The condition for the minimum is

ve(Bri(£)) = vi(F01) ‘E2 vp(£0L) < vp(fra’="0])

& pup(f) + ivp(a) < pur(f) + (i — (p — Dr)vr(a)
= 0< (p* —pvr(f) + (p—1)(i —r)vp(a)

1

2L o< pvr(f) + (i — r)vp(a)
— 0<vp(ffa™"),

proving (b) and (c) by using vp(fPa’™") <0 <= vp(f) < wi_r(a). O
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oo
Remark 4.39. For the only missing case i = r and vp(f) = 0 we write f = > fitF so that
k=0

vi(0y) = rvr(a), ©(fo) #0
( .

ve(Brr(f)) = ve(p(f)ba) = {,,E( — f0)0y) = pvr(f = fo) +rve(a), p(fo) =0

Combining Lemma 4.38 and Proposition 4.31 we obtain a generating system for all H(p, j)-extensions
with j7 < r containing E = F(,) as follows:

{f105+ ...+ fr10, "+ Bo,.i(9:) | f5 € Ry,; gi € Ffor 1 <i<p—1}.
Our next task is to find a minimal generating system. We will fix one element wy € Fy, \ p(F,).

Lemma 4.40. Let a € Rp with vp(a) < 0.

(a) For any f € F there exist a € F and uniquely determined \g € F,, g1 € R((ll), s Gp—1 €

Ef -1 such that
p—1

f=p(B) + Aowo + ngai-

i=1

(b) For all f € Ry, there exist A\ € F), and g; € Ré") for 1 <i < p such that

p—1
f=Xowo+ Y Bi(g:) mod p(E)
=1

is a reduction of f in E, where 5;(g;) is defined in (4.32).

Proof. We first use induction on |vp(f)| for the existence part.

Let vp(f) > 0 and f = 3 fit". Then vg(f — fo) > 0 and thus f — fo = p(8) € p(F). Moreover,
i=0
we have fy = ho + ©(Bo) for some hg € Rp with hy a constant and By € F, thus hg = Agwp for a

uniquely determined \g € ), so that
£ = 2owo + p(Bo + B).

Now let n = vp(f) < 0, then f = A" + f for uniquely determined A € Fy and f € F where

ve(f) > n.

Assume first that p | n, that is n = pk for some k € Z. Then there exists a unique p € F such that
uP = X, thus
o(—put") = —pt* + At"

and vp(f + p(—ut*)) > vr(f). Now we can apply induction to f + p(—ut*) and we are done.
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Otherwise ptn. As p{vp(a) there exists an 1 < j < p — 1 such that

n=jvp(a) modp, n=pk+jve(a),
Hence vp(At") = vp(tP¥al) and there exists a uniquely determined p € F)¢ such that

ve(M" — 1PtPRad) > vp(A).

Thus we can use induction on (f — (ut*)P - @) and have proven the existence in (a).
The uniqueness of g1,. .., gp—1 follows by

gi € R((j) and gfai € p(F) < g¢g;=0.
Consequently, § is unique up to ker(p) = IF,,.
For (b) we combine part (a) and (4.32): By (a) there exist A\g € I, and g; € R, B € F such that

p—1
£ o(8) + Aowo + 3 ga
i=1
leading to
Eq. (4.32
f 4 (: ) + Aowo + Z gzez - Bi gz))
—1)P=—
iz ) + Aowo + Z ) + Bi(—gi))
p—1
=p(B+ g10a + ...+ gp—10271) + Xowo + Z Bi(—9i)-
i=1
Finally, we have —g; € Rgf) forall 1 <¢<p-—1. O

Example 4.41. Let F = Fy((t)) and a :=t"7 € Rp. Let E = F(0,).

o We have wi(a) = 3, as we have
vp(t¥a) = vpt* ) =2 -7 <0 < i< 3.
3 )
We then have Rga) = {Z bit" | bj € Fa, v < 3} .

o Choosing the basis B = (1 . to,t_%“‘l) we get

1€N
Rva = {Ao + b_lt_l + b_3t_3 + b_5t_5 + b_gt_g + ... b_(2n+1)t_2n_1 | b e Fy, 3#£n € No} .

We have My 1 = {fo+ fib. | fi € Rv, }.
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o Let 0 # B = fo+ f10, for fo, f1 € Rr. Then we have

CaxCy f1=0
Gal(E(0g)/F) = q C4, fi=a
Dy, else.

In the special case p = 2 we have F5 = {1} and vg = ab, has a very simple shape.

e Forbe F we have B11(b) = p(b) - Oq.

4.3.2 Enumeration of some Systems of Representatives

Now we construct a system of representatives of J,.(E) in order to analyse the asymptotics of Heisen-
berg extensions of degree p?. For this, we combine the system of representatives M, with the de-
scription of fy € F' from Lemma 4.40.

.og—l L
For 1 <r <j<p-1andg;€ F recall B ;(g;) :== p(g;)0a + 3 g?(g)ajﬂez.
i=r

Let mg be a uniformiser of E and recall
-1
Rr = {powo —i—Z)\ﬂrE | o € Fp, i €Fy, v < 0}.

=V
pti

Definition 4.42. Let a € Rp with vp(a) < 0 and E = F(6,).

(a) We define for 1 <r <p-—1:
N, (E):={a € Rp : vg(a)>rvp(t,)} ={a € Rp : |ve(a)| <rlve(6.)|},

r—1 p—1
Q= {ao+ Y fill +o(f)00+ D Brilfi) = a0 € No(E), f; € BRIV},
i=1 i=r+1
(b) For r =p we set Qg = REg.
(c) For x € R>p and 1 <7 < p we define Qg ,(z) :={a € Qp, : |vp(o)| < x}.

The purpose of 1, is to describe all module generators of length < r with eg/p(a) = 0. The key
difference to the representative system M, is that we decompose fy according to

p—1 p—1
fo=owo + Y fla" = Xowo + Y Bri(fi) mod p(E).
i=1 1=1
In particular, now the valuations for fi,..., fr_1 can be divisible by p which was excluded in M,.
Moreover, B, ;(gj) have to be considered. And finally, we use a technical distinction between terms
with valuation > rvg(f,) and with valuation < rvg(6,). We use this to simplify vg(8,:(fi)), while
on the other hand the elements in N, (E) are easy to count.
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Example 4.43. We continue Ezample 4.41 with F = Fo((t)) and a = t~". Let E = F(0,) and
r = 1. We choose the prime element 7 := t*0, of E.

o We have Nl(E) = {a € Rp Z/E(Oé) > VE(QQ) = —7} = {b0+b_17T71+b_37T73+b_57T75 ‘ b; €
Fy).

3 ) 0 .
o We have R = {Sbitt : v <3, b; € Fy} and R = {zbiﬁ | v <0, bing}.

i=v 1=V

o We have Q1 = {ao +o(f1)0s : ap € N1(E), f1 € Réo)}.

Note that Qg1 \ {0} only corresponds to Cy x Cy-extensions.

Lemma 4.44. For a € Ry with vp(a) <0 and 1 <r < p—1 we have the direct sum decomposition

r—1 p—1
Qp,r = N(BE) e @RI -0, & ) Brj(RY™). (4.37)
i=1 j=r

More precisely, we have

(i) ve(B) < rvp(a) for all B € Qp, \ N.(E).
(ii) For A :=vp(a) we have
ve(fi0))=iA modp foral 1<i<r—1andf; € RV
ve (Brj(fj) =rA+p(j —r)A mod p? forall r<j<p-—1 and fj € R((Ij_r).
In particular, their valuations are pairwise different or both oo.
Proof. By assumption E/F is totally ramified and thus vg(f) = pvp(f) for all f € F. For all
fi € Rﬁf‘” we get

I/E(fﬂ;) =pvr(fi) +iwvg(0) = prvr(fi) +iA=iA mod p (4.38)

and

. , . (4.33)
ve(fify) = ve(ffa’) = vp(ffa'™") + rvr(a) < 0+rvp(a),
where the final inequality is valid by the definition of R, Moreover, by Lemma 4.38(a) and (c)

we have
ve(Brj(fi)) = P*ve(f;) + (i — )+ r)vr(a) = p(j —r)A+7rA mod p (4.39)

and f; € RY™ implies pl/p(f]paj_r) < 0 and thus vg (By;(f;)) < rvr(a). This concludes (i).
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Part (ii) follows by combining (4.38) and (4.39), as the resulting valuations are pairwise incongruent

modulo p*: Note that p(j —r)A+rA=rA mod p, thus forall 1 <i <p—1 andall f; € RY " we
have

r—1 p—1

VE Z fiefz + Z Bm‘(fj) = min {VE(flea)a e vVE(folesz_l), VE(ﬂ?",T(fT))» ceey VE(BT,pfl(gpfl))} .
i=1 j=r

Combining this with (i), the sum in (4.37) is direct. O

Lemma 4.45. Let a € Rp with vp(a) <0, let m be a prime element of E = F(6,) and 1 <r <i <
p—1.

(a) Forr <ilet piy € {—(p—1),...,—1,0} with p;—, = (i — r)vrp(a) mod p. Then there exists a
valuation-preserving bijection

/Bri(Rgifr)) AN Fq[TFPQ] . gPPi—rtrvE(a)
For r =i we have a valuation-preserving bijection

Bro(RD) " pF)n @ e P Fyeat.
k<rvp(a)
k=rvp(a) mod p?

(b) For x € R>q set BT,i(Réi_r),a:) =H#{a € 6r7i(R¢(f_T)) . |lvg(a)| < z}. Then for r < i we have

Bri(R((j—T)’x) — q#{_|l'|gk§7’1/p(a) : kET'l/F(CL)—l-ppi_T mod pQ}

and r =1 we have
BTT‘(R(O) J}) _ lq#{—|x|§k’§ru}:(a) : k=rvp(a) mod p2}.
5 a p

Proof. For g € Rc(f_T) we will implicitly write
g= Z gktk, with g € Fy.
k<w;_r(a)

We show that we have valuation-preserving bijections

Bri(RUTD) =5 {g” = g € RUT} - al 770 =2 Byl #] - poimrtrorla),
Bri(g) — g7 - atTOr —s Z gyl FPi=rvr (@) trvp(a),
k<w;_r(a)
We start with the injectivity of ;. For g, h € RSLH) we have

Uy (Bri(g)) = Uy (Brs(h)) "2 gPai=707 = WPai =707 = g = h

r<i
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as p-powering is injective, thus ¥, is injective. Moreover,

La. 4.38

ve (Bri(g)) =" ve(gPa""0;) = vp (V1(Bri(9)))
and similarly, Wy is surjective.
For ¥y we write 3
9= G =) G @ (4.40)
k<w;_r(a) k<0
Moreover
vp(tPai ™) < 0 <= k<wi_,(a), vp{PiDaTT) = pi_(a), (4.41)

where the first equivalence is true by (4.33), and vp(t?*-+(®a*~") is the minimal integer < 0 con-
gruent to vp(a’~") modulo p, which shows the second equation. Thus we obtain

VE(tpic-‘rpwi—r(a)ai—reg) (4é1) pZ% + pPi—r(a) + rup(a). (4'42)

This shows that W, is valuation-preserving. Finally, W5 is indeed bijective as p-powering is injective
on I and it defines an isomorphism on F,.

For the case 71 = r we use
Brr(90) = 9(g0)0, for go € Fy

and the results follow analogously to the proven case of r < 3.
For part (b), we consider for r <i < p — 1 the exponents

eri(x) == #{rlvp(a)| <k <z : k€Z, k=rvp(a) + pi_r mod p°},
with p,, := 0. By the bijections established in (a) we have

i@ <

#Br:(RE 2) = {

1 e x —
>4 rr(@) =,

Lemma 4.46. Let a € Rp with vp(a) <0, let E = F(0,) and 1 < r <p. Then we get:

r(p—1)|vp(a
|—(p v (a)

(a) #N:(E) =Ty(r(p — Vlvp(@)) =pg" » .

(b) Let x € R>q, then

p=ly
#Qp(z) = Ty([)) =pg' 7 1, v <rlr(a)l
Br(T) = qu;er-(wfrlv(a)l) _q”;lT'\VF(a”

P cer(a,x), x>rlvp(a)l

where e,(a,z) € [q- P~ ¢P=Dr],
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Proof. Recall Definition 4.42. For x < r|vp(a)| we have

B e, \ No(B) L vp(8) < rupla) = B ¢ Qp,(2),

thus Qg ,(x) € N,(E) in this case. We get

Qpr(v) =#{a € Qp, ¢ |vp(a)| <z <rlvp(a)}
=#{a e N.(E) : |vp(a)| <z}

1.5 lz](p—1)
—#{a€Rp : |up(a) <z} ' pg

which proves the equality in the first case of (b) and proves (a) with the choice x = r|vp(a)| — 1.
Now assume z > r|vp(a)|. Write E®) := {a € E : |vg(a)| < x}. Then the decomposition (4.37)
yields

r—1
O, () = [N(E)| - [TIRE - 0,0 B@] T[160s (RED) 0 E@). (1.43)
i=1 i=r

We have computed | N, (E)| in (a), moreover for 1 <14 <r — 1 we simply have

|RG") . g0 0 E@)| = g#{-a<phtive(a)<rvp(a) | k€Z} (4.44)

and using [, (R((Li_r)) NE® = BM(RELZ'_T), x) we get

1 #{—2<k<rvp(a) : k=r-vp(a) mod p?} r =1
pq ) - b

1By (Rfj—’”)) n E@) 24 { (4.45)

q#{fxgkgrzq:(a) s k=(p(i—r)+r)vp(a) mod pz}’ r<i.
Thus by counting

er(z) :=#{rlvr(a)| <n<z : n=vp(a),...,(r—1vr(a) mod p
vn=rvp(a),(r+pea),...,(r+({p—1-=r)pve(a) mod p°},

we get
1 (4.44)

—q“ ()

p (4.45)

a

IRG—) . gi o B@)] ‘H| Bra ( Rg—m) nE®).

Note that e,(z) corresponds to p(r — 1) + (p — r) = (p — 1)r congruence classes modulo p?>. Thus
er(+) is a monotonously increasing function with

er(P?N +rlvp(a))) = (p—1)r-N  forall N eN. (4.46)

For all z, Z € Z we get

H{Z+p’ N <k<Z+p?N+y : k=2 modp’} =#{Z<k<Z+y : k=2 mod p*}. (4.47)
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Thus, for 2 € Rsg and = r|vp(a)| + p?N + y with 0 < y < p? we get

e(@) = en(rlvp(a) + PN + ) "2 e, (rlvr(a)] + p2N) + en(rlve(a)] + )

= —1rN +er(rlvr(a)l + y)

-2 D et + ) - T2
= 7n'(22_1)$+€r(y)~ (4.48)

2

<
Using (4.46), we have 0 < e, (r|vp(a)| + y) ygp (p—1)rand —(p—1)r < —r&s 2 Ly <0, thus

r(p—1
- < ) = e (lvr(a) +9) - "2y < o1y (4.49)
P2
Lastly, to analyse the auxiliary function €, we have
[(Pfl)T\VF(a)IW (p=Drlvp(a)|
q z =q Z - €-(a) for some €,(a) € [1, ] (4.50)

by Lemma 1.33. Setting €,(a,z) := €.(a)q¥) we get

¢~ < erfa,x) < g7
Altogether we get

(443) [CUrp@ly o

#Qp,(z) ="q g

—rivp(a (p—D)r(z—rlvp(a)l)
(4é8) q’—(!) Drive( )\-| p=l)re—rivpla)l) ()

P - q v’
(4.50) q% rerlvr(@D 2R vr @l (g 7). -

Theorem 4.47. Let E/F be a ramified Cp-extension and 1 <r < p. Then Qg is a representative
system of J.(E) of all classes [a] € J(E) with len ([a]) < r and ep/p([a]) = 0.

Proof. For r = p this is obvious by the definitions of J,(E) = J(E) and Qg, = Rp and by
Lemma 1.20(b).

Now let 1 <r < p—1. We will show the following:
(i) eg/r([a]) =0 for all a € Qp ;.
(i) len ([o]) < r for all & € Qg ;.
(iii) For all 1 <4 <r and o € M, ; there exists a & € Qp, such that o« =& mod p(F).
)

(iv) For two elements = # y € Q0g, we have x Zy mod p(E).
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r—1 ) p—1 .
For (i) write o« = ag + Y fibl, + > Brj(f;) with vg(ag) > rvp(a) and f; € RY™ . Then
i=1 j=r

r—1 p—1
eryr([e]) = egyr(ao]) + epyr()D | fibi]) + Z eg/r([Bri(fi)])

=1
fem LU0 e(ao)) + 0+ exyp ([p(fp-1)0271)

e 2140 ep/r([ao]) +0+0.

p—1 ,
Write ag = > h;0, € N,.(E) for suitable h; € F. We have
i=0
by def. _1
ve(ao)l < (r=Dwe(l)] < (p = Dlve(ba)] = ve(dy).

Thus vr(hi) > 0 > vp(a) and

exym(lao) " E Y Moy ([=hp]) = 0.

This shows eg/p([a]) = 0 and thus (i).
Now to prove (ii). For all & € N,.(E) we have len ([a]) < r by Theorem 4.16. For all fo,..., fr—1 € F

we have shown in Corollary 4.33 that

len ([fo + f10.+ ...+ fr_legfl]) <r. (4.51)

Furthermore, for all g € F and r < j < p — 1 we have
(132) =, i x(d
) "2 S ()

hence len ([3,;(g)]) < r by (4.51). Thus len ([z + y]) < max(len ([z]),len ([y])) completes (ii).

For (ili) let a = fo + fi0a + ... + fi_10571 € M, for certain f; € Ry,. Let f; = >,y fixt® with
fix € Fy. Then we write

fj=xj+y; with z; = Z fj,ktk € R((ljfr) and y; = f; — ;.
k<wj;_,(a)

By (4.51) we have I/E(yjeg) = pvr(y;)+ijvr(a) > rvp(a). Thus y;0 € N,(E) C Qp, and 2,6}, € Qp.,
per definition. For the constant term we decompose

p—1
fo = Aowo + Zg‘;’aj with g; € F
j=1
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which implies by Lemma 4.40

p—1
fo=dowo + > Brj(g;) mod p(E).
j=1

For j > r we write
r—1 7
ﬁl?j (gj) = Z hjiezl + Z hjiez .
1=1 i=r

—_—— ——
=0r,j(95)  =Br;(g5)
By what we have already shown in (ii) we know there exist o; € Qg, such that 6,;(g;) =
mod p(E) for r < j <p—1and £1;(g;) = o mod p(F) for 1 <i <r — 1. Finally note for 5, ;(g;)
that
vE(Bri(95)) > rvE(0a) <= vr(gia’) > rvr(a).

Thus there is some ; € Qg such that 5, ;(g;) = B; € Qg, we have shown (iii).
Lastly, for (iv) note that Qp, is additively closed, thus the claim is true if Qg, N p(E) = {0}.

This fact holds true as o € Qp, implies either vg(a) > rvp(a) and thus a € Rp by definition, or
vie(a) < rvp(a) is non-divisible by p. This shows (iv). O

Remark 4.48. Here, we briefly consider the missing case r = p. Let E/F be an arbitrary C)-
extension. Then Qp, = Rp is a representative system of J(E), hence corresponds to all Cp-
extensions K/E. Let x € Ryo. In Lemma 1.34 we have already computed

#Qp ,(2) = Ty(z) 2% p . (T @ = pgl*5 171,

Lemma 4.49. Let 1 <r < p and o € M,,. Then there are precisely p" — P’ elements in Mg,
defining the same G-module.

Proof. Let a € E such that ([a])¢ is an Fp-space of length r. Then N, := Ker(oc — 1)" "1 N ([a])¢ is
a subspace of {[a])g of codimension 1. Thus the p” — p"~! elements of ([a])g \ N, are precisely the
G-module generators of ([a])g. Finally, every generator has precisely one representative in M, ,. [

Example 4.50. Let a € Rp and E = F(60,) be an Artin-Schreier extension.

(a) Let p > 2. Then E(04,)/F is a Cp x Cp-extension since Trg p(abdy) 240 and (0 —1)(aby) =
a € p(F).
(b) However, if p =2 we get (6 —1)(ab,) = a € p(E) and
(0= D)0y o) = (7~ 1(6a) = 1,

hence E(0q0,)/F is a cyclic Cz-extension.
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4.4 Counting Heisenberg Extensions over p? Points

In this section we consider H» (p,7r) < Sp2 as a permutation group over p? points and we will count
non-Galois extensions, i.e. field extensions L/F with [L : F] = p? and Gal(L/F) = H,2(p,r), and

Hy2(p,r) < 8,2 analogously. We will analyse the corresponding counting functions for 2 € R>o:

12

Z (F,Hyp(p,r);z) :=#{L/F : Gal(L/F)=H,

Z(F,flpz(p,r);x> ::#{L/F : Gal(L/F)%prz(p,r),[L:F]:p2,disc(L/F)§x}.

2(p,7),[L : F] = p?, disc(L/F) < x} ,

We start by counting all wanted fields containing a given cyclic E/F.

Proposition 4.51. Let 1 <r < p. For a fized Cp-extension E/F and x € R>o we write
Zp(r,x) :==4{L € Z(F,Hy(p,7);x) | E < L} and
Zp(r,x) :=4{L € Z(F,Hy(p,r);x) : E<L}. Then

T
2

Zp(rx) = Zp(r,z) < ¢ .
p—1
Proof. Firstly, let E/F be unramified. For any a = ) f;0! € E which is reduced and which defines

=0
a H,2(p,r)-extension, we have that F(6,)/E is ramified and thus
disc(E(0a)/F) = 04 p(p — 1)(lve(a)l +1) = p(p — D(max{|vp(fi)| : 1<i<p—1}+1).

For 1 <r <p—1, every H,2(p,r)-extension L/F containing E is generated by some o € M, -.
In the case r = p, every such extension L/F' is generated by some = a + A\yg with a € M, , and
A € Fp,. Then the cyclic generator g defines an unramified extension with vg(yg) = 0. Thus,

sl + Xog) = v(a) for all A€, and a € M, \ {0}

For any element o = fo+ ...+ fr_ 1071 € M, we have f; € Rp with constant coefficient f;(0) =0
for all 1.

Thus disc(E(0,)/F) <z <= |vr(fi)| < oo — Lforall0 <i<r—1. As (p" —p"!') elements

o generate the same module. We thus get for ¢, = p and ¢, = 1 for r < p that

C T
Zp(r,x) = pr_i;r—l#{a € Moy ¢ |vp(a)] < p(p—1) -1}
___ & q’"'Tp(ﬁ”)
pr _p'r—l
La. 1.33 Cr r(%(ﬁfl)ﬂp(m/p(pfl)*l))
- Wq
= erTp% : 60(3:) —rijl’

pr _ prfl
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where
0 < €o(x) = g " Her(@/plp—1)=1) La-<1-33 qr+ijl

is a bounded error term for all > 0. This proves Zg(r,z) < ¢* »* when E/F is the unramified
C)p-extension.

Consider now E/F to be totally ramified, that is d, = disc(E/F) > 0 and assume = > (p + r)d,.

Any H2(p, r)-extension containing E is generated by some a € Qg , \ Qg ,—1 and we have

disc(E(0a)/F) = pda + (p — 1)(Jve(a) +1) <=

T — pd,
< 1< —
el +1< = H
—pd
= |vpla) < = pla ~1. (4.52)
p_

For each module generator of length r there exist p” — p"~! generators of the same module, and we
obtain for the numbers of fields

m 1 - da _ da
Zg(r, ) T 147 T — <#QE,r (x Pla _ 1> —#0pr1 <x Pla _ 1>> .
(4.52) p"—p p—1 p—1

T—pda _ T—pdg — 1=
p—1

Writing ¢ := —1—=rlvp(a)| and zg := =55 (r —1)|vp(a)| we have

(0" =" ") #Zp(r,x) =#Qp,(vo + rlvr(a)]) — #Qp,—1(To + (r — 1)|ve(a)))

(1) (o—1) (r=1)(p—1)irg (p=1Dv(a)|
La. 4.46 =e=b) =1 —ne=blva)l
=g g O (ax) —pg 7 U i (aya)
rp-1) _pr-da+v-2<p;1>|uF<a>| Se=Dlvp@|  _re=1)
=pqr (p—1) p - q P - q p2 67»(0,,13)
(r=1)(p—Ve _p(r—Dda+(r—1%@-1)2|vp(a)| (r—1) =DIVE @)
—pq PPe-D p2(p—1) -q" P ~€r—1(a,x)
2
da=(p*1)gl/F((l)|+1) T o (P—UQ\VF(“)\ _T(Pgl)
= qrq B ‘pg P e(a,x)
iy _(r—1>2<p—21>\up<a>\ _ =D
—q7 g P ‘pg 7 &-1(a,)

rex (r—1)zx

—¢ eia,a)—g - eala,x) = g

where ¢ (a, ), ca2(a,z) > 0 are constants depending only on r, vr(a), {x} and the residues of |z
and vp(a) modulo p. Clearly, ¢i(a,xz) > 0 and c2(a,z) > 0 are bounded in z for fixed r,p and a.

This shows Zg(r,z) = ¢ »°.

Finally, we have Zg(r,z) = (p— 1) Zg(r, ) for 2 > 0 as we will show in Theorem 4.60(c). This then
shows N .
Zp(r,z) = (p— 1) Zp(r,z) < q 7. O
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Definition 4.52. For 1 < r < p we define

ap (Ha(p, ) = max <p&)_:—17“)’ ;) .

It is easy to check

r+1 2
y T <D,
ap (Hy2(p, 7)) = { PP+
) = {0 7
Remark 4.53. By elementary calculations we get
r
ap(Hy2(p,7)) = o — 2>y, (4.53)

r+1

——— = (PP Hpr) = (r+1)p? = pr? 2P = P >
p(p+r)

as indeed >

,
P2
Here, p% is the exponent attained in Proposition 4.51 by fixing one Cp-extension E/F. In the

following we will show that a,(H,y2(p,r)) is the local asymptotic exponent.

We start with a lemma and use the notations

ve(Rrp) :={v(f) : f€Rrp} and |vp(Rp)|:={lvr(f)] : f € Rr}.

Lemma 4.54. Let ¢ > 1, p € P and c € R. Then we have

1, c<0
Z — Z ¢“"=<q¢X, ¢>0
n€lvr(Rp)| O<n<X X, c¢=0.

0<n<X nfp

Proof. The first equality is clear by the definition of Rp.
For ¢ =0, write X =pN+r+e€Rsgwith N e N, 0<r <p—1ande € [0,1). Then we just have

Z l=p—-1)N+r=<X.
0<n<X
pin

For ¢ < 0, the geometric series is a converging majorant.
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0, ep-N
For ¢ > 0, we set : Ng — C,d(x) := cEPo
1, else.
Then ¢ is periodic with period p. We can apply Lemma 1.41 with D := p and a(z) := —c. Note
p—1 o op=1l o e
that A0, a,8) = > 0(j)gY = > ¢9 = q::lq . Then
j=0 J=1
1_ q—a(s)pL%J Ca(s)pE e -
Z " = Z 5(”)QCHZWA(57O[’S)’“Q » =gq = q“*. OJ
0<n<z 0<n<| x|
pin

For technical purposes, we introduce the constant

Ar(a) == (p+r)da = (r=1)(p-1) = (p -V +7)lvr(@) + @+ 1 -1, (4.54)

which arises as the maximal discriminant exponent for fields generated by N,.(F(6,)). We will use
this to handle the different cases arising out of Lemma 4.46.

Recall J,.(E) and J,(F,x) as defined in Definition 4.12.

Theorem 4.55. Let 1 <r < p. Then we have

N R
2, Hyp(p,r)s2) = 2200 where a (Hyp(p,r)) = { 2070 7 <P
P2 e >p.

Le. there exist constants C1,Co > 0 such that for all x > 0 holds
Cra 2@ < Z(F, Hye (p,r); ) < Coa 2 ®7).

Proof. Throughout this proof we will write Tp,(x) := |z] — | 7]
Let E, := F(0,) for 0 # a € Rp. Let

dg == disc(E,/F) and =z, :=max <$ —pfa - 1,0> . (4.55)
p —_—

As in (4.52) we obtain by the tower-discriminant formula

Z(F, Hp(p,r)io) = Y pr_lpr_l@ (F(6), 2a) — Jr1 (F(6a), )
a€ERp

Thm. 4.47 1
= E ——— (#Qr9.)r (Ta) = #Qp(0,) 01 (Ta)) -
a€Rp p p

We approach by finite induction on 7 to prove

S I (B, xg) < ¢ R and (B, x,) = o( (B, 7).
E/F
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Case 7 = 1: Then we have Hy2(p,1) = C, x C, and

2 r+1
C,x C,)) = —
a(Cp  Cy) p(p+1) plp+r)

by results of Lagemann, see Example 2.20 and Theorem 2.19.

Case 2 < r < p: Recall z, from (4.55). Using A(a) = (p+7)ds — (r—1)(p—1) as defined in (4.54)
we have

Ur(x) = > #Qp,,(xa),  Wela)= D #0p,, (2a). (4.56)
a€ERp a€Rp
Ar(a)>x Ar(a)<z

With these notations, we get the decomposition

> J(Bara) = Y #Qp,0(xa) = Up(z) + We(z). (4.57)

a€ERFp a€Rp

The sum U, (z) counts all fields E,/F with large discriminant such that Qp, ,(x) C N,.(E,), i.e. we
only consider small module generators. This gives an easier counting formula.

Whereas W,.(z) corresponds to fields E,/F with small discriminant such that
Qp,r(x) £ Ni(Ea).

We treat the two cases separately.

Concerning the bound for U, (z) we have #Qp, ,(x) =0 <= pd, > x and thus require

pde <z < Ap(a) <= pp—1D(lvr(a)|+1) <z <(p—D@+7r)|vr(a)+ (-1 —1)
z—(p-10r-1)

~1 > |vp(a) > (4.58)

(p—1)p =1 +r)
By Qg, r(zq) = RE(z,) we have the simple formula
La. 4.4 z.) La. 1. p—l,.
#QEE,T(«T@) = 0 I‘q(a':a) = qup( a) :1 % pq *® E(IL’, VF(a))7 (459)

where €(z, vp(a)) = €,(x4) € [1, ¢ only depends on z and |vp(a)|. We will also write e(x, |vp(a)|) ==
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€(xz,vr(a)). Thus we have

Ul)= Y #Qp,.(x) :i 3 @)

a€ERp a€RFp
pde<z<Ar(a) pda<z<(ptr)da—(r—1)(p—1)
(4.58) Z P qu(xa)
a€Rp
z—(p—1)(r—1 x
T Svr @IS Gy -1
_ Z qup(z_(p_l)i(_liF(a)‘+l))
a€ERR
z—(p—1)(r—1 T
G Sr@)S G -1
La. 1.33 —1)p(|Al+1
a. 1 Z va(lA]) - pqp z—(p—1)p(| A )))e(x,A)
AEVF(RF)
z—(p—1)(r—1) T
oD SIS L
La. 1.33 p—1 —1)|A -
= > plg — 1)g"7 lpgs =@~ gen(4D¢(z, A)g~!
TAGVF(RF) .
(pfljkp+r)§|A‘§(P*1)p
z_q _(P*1)2 A A _
= > gr g7 Mg Ae(z, A)g™!
AEZIF(RF)
e <A< Gomp
Tz -1
2 . (p—1)p(p+7)
:q%q,@ pl) (p—1)(p+r) Z q L= 1) A fp(A) {(p 1)(p+7)}
A=0
ptA
z r+1
= q P+ (4.60)
as indeed for the exponent
e (p=D’x  _aptr—(p-1) a(r+1)
p plp—1)(p+r) p(p+r) p(p+7)’

and the finite sum running over A is bounded by a constant via

[CEyIer=ol

(p-1)? o S U
qil < Z qi : pl Aqep(A)E(.Z',A)qilq{(Pfl)(pﬂLr)} < Z qi%AqS = qi < 0.

A= A= —-q
MAO 0 1—q »
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Secondly, we have

= > #p,(rd)= > #Qp, < p(p—;)_(lzip(a)|+1)>

a€ERp a€ERp
Ar(a)<z Ar(a)<z
(4.58) z—pp-—1(A+1)
DY b, (T
AEI/F(RF)
z—(r—1)(p—1
A<= G ST
La. 4.46 Al—1) 7.2=l14 z*p(pfl)(\AIH)fr_M‘ r(p—1)
Lt S plg-1g'T 7 (A gt 'q( =l ) ep(A)er(A, )
o AEVF(RF)
A< =D
_r(ptr)(p—1)
e
AGVF(RF)
A< =G
_ Z qp%xqil‘q‘;p{n ((r+1)p—pr—r2)
AEVF(RF)
A< =D
r (=1) (.2
—gt Y R (4.61)
AGVF(RF)
|A|<(p 1)(p+7
With the values 9
T Hp—r
X=XNz)=——F—— and c:= p=Dp=r7) )(Qp )
(p—1D+r) P
we can apply Lemma 4.54 and obtain
5o T S _ e g, c<0 (462)
q =dq q ~ p%z M@ o> :
Aevr (Rp) Acvp(Rp) q q » €2 U
A< =G [Al<A@)
We have ¢ > 0 <= (p —72) > 0. In this case we get
r - (p=1)(p—r?) rt r
qum . qc-)\(:r) = q?m . qu(errz))(p*l) = qu(pfr) = qp(ptrlr)x,

If p—r? < 0 then

=D, 27
S MECTZ00) and W) = ¢
Aevp(Rp)

€T
N =)

2 : e r+1
Note that p —r= < 0 if and only if 2 > o) Hence we have

Wa(e) = (0.
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Together with (4.60) in (4.57) we obtain

S Z(F, Hyp(p, i); ) = g (2 ®7),
=1

Having completed the induction, we see that

r—1
N Z(F Hyp(p,i);x) = ¢ ®r=)
i=1

is of strictly smaller order as

r+1 r
> — (r+1l)(p+r—1)>r(p+r) <= p—1>0
plp+r) " pp+r—1) r+ 1) ) > rip+r)
and ]% > TP;QI and 1% > m. This finally proves that Z(F, H,:(p,r);x) < qap(HpQ(p’r)). O]

Remark 4.56. The proof gives some more insights and an interpretation of the constants.

(i)

(i)

(iii)

(iv)

The sum W, (x) counting the fields E/F with small enough discriminant is always in the main
term of the asymptotics.

If 72 > p then the H,2(p,r)-asymptotics over F' is dominated by the asymptotical growth of
the H2(p,r)-extensions over one fixed Cj-extension, see Proposition 4.51.

The same statement holds true in the case of the twisted Heisenberg groups I:Ipz (p,r) which
will be addressed in the next subsection.

Counting only the minimal Heisenberg extensions over each field E, we obtain the asymptotical

growth xr®+=1 which is in the error term of the respective counting function.

p(’;? Jfr) arises by counting the H(p,r)-extensions over all Cp-extensions E/F
r+1

satisfying disc(K/F) < (p + r) disc(E/F). This has asymptotical growth z @+,
In the case of 72 < p this is dominant for the asymptotics, otherwise this subfamily is in the
error term of the asymptotics.

The exponent

Example 4.57. (a) Forr =1 we get H(p,1) = C, x Cp, and

(b)

r+1 2
ap(Hpe (p. 1)) = plo+r)  plp+1)

which coincides with the asymptotic exponent found in Lagemann [Lag10].

For r = p we get the wreath product. Here we have the exponent

T 1
ap(Hp2(p7p)) = ? = ;) = ap(Cyp).

Furthermore, for E/F a fixed Cp-extension, it is obvious that J,(E) corresponds to all Cp-
extensions over E and hence, a, (sz (p,p)) corresponds to the asymptotics exponent of the Cp-

extensions over E. Thus a,(Cp) = ayp (sz (p,p)) = %,
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4.5 Counting Twisted Heisenberg Extensions over p? Points

Recall the definition of the finite p-group H (p,r) in Definiton 4.1 for 1 < r < p. We exclude the case
r = p here as H(p,p) = H(p,p).

In the following, we count all twisted Heisenberg group extensions prz (p,7) < Sp2 over p? points
with respect to the discriminant. More precisely, for a given discriminant bound X > 0 we consider
the set

{L/F . [L: F] = p% Gal(L/F)= H(p,r), D(L/F) gX}.

We can approach analogously as for H2(p,r).

Fix a € Rp and E = F(0,) as well as 1 <r < p — 1. We recall

p—1
vE =T p(0h ) = Zfi% € Spanp(fa,...,05")
=1

as defined in Lemma 4.18 and (4.20).
Definition 4.58. Let 1 <r <p—1. Let E = F(0,) for a € Rp. We set
QE,T ={a+X-vp : a€Qp,, /\EIE‘;}
and ﬁEr(x) ={f € QEJ : lve(B)| < x} for x € Rxo.
Using (4.22) and translation by 6g, € Qg, we also get

SN)E’T = {a + A YEr @ Q€ QE,ra AE F;} (463)

Remark 4.59. Let E = F(f,) for somea € Rpand 1 <r<p-—1.

(a) Let B € §~2E7r with len ([5]) = s <, then E(6g) defines a H(p, s)-extension. !

(b) If E(#g) for B € E defines a f[(p, r)-extension, then there exists B e S~2E7T such that 8 = 8
mod p(F).

Proof.

(a) Let a € Qp, and A € F) such that 8 = a + Ayg. We have len ([yg]) = 1 and len ([a]) < r by
Theorem 4.47 for all &« € Qg , which shows the inequality len ([5]) < r by Remark 4.9. Moreover,

ep/r([8]) = epyp(la+ ME]) = cp/p(la]) + Aeg/p([ve]) =0 = A #0,

hence E(0p) defines a twisted Heisenberg extension. Then len ([8]) = s < r and eg/p(B3) # 0,
i.e. E(03) defines a H(p, s)-extension by Theorem 4.15.

! Analogously to Qg , corresponding to generators of H(p,i)-extensions with i < r.
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(b) We have J(E) = ([vg]) ® J(W,) by Corollary 4.32 and eg,p([8]) # 0. As J(W,) < Ker(eg/r)
we have [3] = A[yg] + [w] for some w € W, and 0 # A € F. The assumption on the Galois
group implies len([3]) = r, thus len([w]) < r which shows w € M, , and 8 = Ay +w + p(x) for
some x € E which proves (b). O

Theorem 4.60. Let E = F(0,) fora € Rp and 1 <r <p-—1.

(a) For all a € Qp, and X € F) we have
ve(a+Mg,) = min{vg(e), ve(ve,)}  and ve(a) #ve(e,)-
(b) E(0,y,) is a minimal ﬁpz (p,7)-extension containing E with discriminant
Ry (a) := dise(B(0y,,,)/F)
=@-D@e-r+)+r)-lvr(a)|+{@-1Dp+1) (4.64)
(c) For x € R>o and A(a) as defined in (b), we have

0, T < KT(a),

#QE,r(ﬂJ) = {(p ~1)- #QE,r(l’)a else.

Proof. (a) We have vg(vyg,) = (p(p —r) + r)vr(a) by Lemma 4.24 and we get

vie) (DEs]) = vE(YE,) = vE(@TT0;) = (0° —pr+7r)vr(a) = (—pr+r)vr(a) mod p°. (4.65)

We have to show for (a) that the value vg(vg,) is not equal to vg(a) for all @ € Q.. Consider
any o € Qp,. Then there are x € Rp with |vp(x)| > rlvr(a)| and g; € R so that

r—1 p—1
Def. 4.42 ; i
o P2 0 ST 000+ B, vs(@)| < rlvp(a)l and g€ RO,
i=1 i=r
Firstly, vg(z) > rvp(a) > (pr — r)vr(a), thus vg(z) # ve(ye,). Moreover, vg(yg,,) is incon-
r—1 ) p—1
gruent to vg <Z g0 + > /Bm-(gi)> modulo p?, since
i=1 i=r

. vp(a)#0
vi(gi6?) F(E;”é ivp(a) Zrvp(a) modp forall 1<i<r-—1

~

and g € R&"*’") implies

ve(Bri(9)) =

b '— 2 .
i;z{@(l r)+r)vp(a) modp?, r<i, o, r<i<p-l1.

rvp(a) mod p?, r=1

Thus vg(ver) # vE(Bri(g:) asr > 1 and vg(ve,) # ve(gif,) for 1 < i < r—1 which concludes
ve(Yer) # VE(Q).
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(b) In Subsection 4.2.3 we have already shown that (6, ,) defines a I:sz (p, r)-extension.

It is a minimal extension by (a) and the fact that every H(p,r)-extension is given by 8 =
a+ \-yg, for some o € Qp, and A € IF;;. For its discriminant we have by the tower formula

disc(E(6yy,)/F) = pdisc(E/F) + fgp disc(E(0,,)/E)
=pdisc(E/F) + (p— 1) (lve(ve,)| + 1)
(4.65)

="(p—Dp(lvr(a)| +1) + (p— D(pp —7) +7)lvr(a) + (p— 1)
=lvr(a@)|(p-1E-r+1)+r)+@@E-1)pE+1).

C 1S I0lIOWS an = — 1.
(¢) This follows by (b) and [FX| =p — 1 0

Theorem 4.61. For1 <r <p—1 we have

Z(F, Hyp(p,r);x) = a2,

2
pr—r<4+r+1 2
7 oo ———— re<p
where ap(sz (p,7)) = p(p2—pr+p+r)’
r 2
Pa e >p.

Proof. We follow the proof of Theorem 4.55. Let A,(a) as defined in (4.64). This formula directly
implies A,_1(a) > A(a) for all 1 < < p— 1. Thus we obtain

#Qp, (1) =0 = #Qp, i(x) =0V i<r forall z< A (a),
so that we only need to consider the sum of type W, (z) as seen in (4.56). For § € QE,T we have

T — pd,
p—1

disc(E(03)/F) <z <= |vp(B)| < -1 (4.66)

as in (4.58). We therefore obtain the expression

() r ()

aER a€Rp
Ar(a)<z lvp(a)| < St
Thm. 4.60(c) —pd,
-y 2 #QE”’(@—S_I)'

a€Rp
z—(p—1)(p+1)
lvr(a)l< p(p—r+1)+r -1

1) (p—r2
We set A(z) := = 1)(p(p 0 L and ¢ := (1)%757). Then analogously to (4.61) and (4.62) the

above sum W,(z) can be estimated via

A 2
N r (p—r2)(p—1) qvr* re>p
- 2% p) Al _ ’ —
Wi (x) < qv > g v =4z, e=reeny )
AEI/F(RF) qp q P ) p <7

|A|<A(x)
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We lastly calculate the exponent in the case p < r?:

r —1 —7r?
Per —(p ;}2;0 ))\(3:)
=Dl x i (p—1p—r?)
p? p? p—Dpp—-—r+1)+r) pp—1DppE-r+1)+r)

@ —prtpt+r)+(p—1?) 1 O()
P*(p* —pr+p+r)
2 2
p’r—pr’+pr+p
= x4 0(1
F@—prrprn " TOW
2
—r’4+r+1
S ki z+O(1),
p(p* —pr+p+r)

which shows Wr(x) = g% Hp2(Pr) By clementary calculations it can be shown that ap(ﬁpz (p,7)) is
strictly monotonously increasing. Thus we can conclude analogously to the Heisenberg group case
that

W, () < 2o (H2er) - Z(F, Efpz (p,7); ). O
Example 4.62. For r =1 we have ﬁpz (p,1) = Cp2. Then clearly p > r?2 =1 and indeed we have
~ p+1
Hao(p, 1)) = ———.

This coincides with Lagemann’s constant a,(Cy2) from Ezample 2.20(b).

4.6 Lower Bound on the Asymptotics of Galois Twisted Heisenberg
Groups

Let E/F be a Cp-extension and G := Gal(E/F'). We have seen in Section 4.1 that every H(p,r)-
extension containing E can be generated by some module element [3] € J(E) with len ([5]) = r and
eg/r([B]) # 0. Due to Remark 4.59, the element [f] is given by some

B=a+ Mg, for some AeFy,

a € E,r-
Since eg/p([a]) = 0, we always have e/ p ([ + Ayg,r]) # 0, while its length might be less than r.
Next we consider the discriminant of such an extension over p" ! points and consider the minimal

Hri1(p, r)-extensions containing E.

Lemma 4.63. Let 1 < r < p—1. Let E = F(6,) for a € Rp be ramified with Galois group
G = Gal(E/F) and let

(/iTs/cT(E) := min{disc(F (p_l(<w092_1 +v84)a)) /F) + i=1,...,r}. (4.67)

Then (/ﬂs/cT(E) is the minimal discriminant for a twisted Heisenberg ﬁprﬂ(p, r)-extension containing
E.
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Proof. By (4.63) and Theorem 4.60, it is clear that E (p~ ((wob; ' + vE,i)¢)) defines a ﬁpr+1(p, T)-
extension for all 1 <i <.

p=l ,
Recall the definition for v = > f;0! and the equality vp(f;) = vrp(a?™") from Lemma 4.18. Let
i=1

M/F be any ﬁp7-+1(p,r)—extension containing £. Then M = E (p71(<,3>g)) for some 8 € E. For
the discriminant we have

dise(E (07 (8)e) /B) " = Y0 T o= 1) (e ([0 = D' BDI+1) . (468)

Considering the relative discriminant exponent over E and using Theorem 4.60(b), we get

(P = 1) (Ivg(m) ([BD] + 1) = disc(E(0)/E) > disc(E(0y,)/E) = (p = 1) (ve(ve,) + 1),

hence v;g) ([8]) < ve(ve,) = ve(firb;) and consequently, there exists a minimal 1 < ¢ < r such
that v;g) ([8]) < ve(fif,)-
With this choice of i, we get

vie (1) < ve(fibl) = vy ([ve + wdy ')

and

Ve ([(a - 1>k<5)D <vp(fili*) for 1 <k <i—1.

Furthermore, we have vy ([(0 — 1)*(B)]) < vg(05717%) due to Lemma 4.16(b) and the fact that
len ([8]) = r. Since vp(8,~17F) = vy ([(o — D* (v, + woby1)]) for i < k < r—1 we get for
0<k<r—1

VJ(E) <[(0’ - 1)%’]) < Vyi(m) ({(0’ — 1) (yp, +WO92_1)D ,
thus equation (4.68) guarantees disc(E (p~'((8)¢)) /E) > disc(E (o' ((ve: + wob Ha)) /E). O

Conclusively, in comparing the finitely many discriminants of these explicit fields, we can compute
the minimal discriminant of the embedding problem

1— (Cp)" = Hysi (p,1) =5 Cp — 1
as defined in (4.1). We give those fields a name first. We define
Liy(a) = E (p '((wob, " +vE4)c)) for 1<i<r

and we show that the minimal value is attained when ¢ = r and compute the discriminant exponents
over ¥ and F.

Definition 4.64. For 1 <i<r <p—1 and j € Z we define

i
(i) np(j) = kE kp" for j € Z,
=1
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(i) i = (p = 1) (mp(r — i = 1) + pr= 1 D00 o pr=izly ()} and dyy o= doye + (p = 1)
(iii) the discriminant exponents D; ,(a) := disc (L;,(a)/E) and D; ,(a) := disc (Li,(a)/F).

With these notations at hand we can show that the discriminant exponent is basically d; , - |[vr(a)]
and that the minimal discriminant is attained by D, ,(a).

Theorem 4.65. Let E = F(0,) for a € Rp with vp(a) < 0, i.e. E/F is totally ramified, and
1<i<r<p-1. Let G:= Gal(E/F).

(a) We have Di(a) = dir - [vp(a)| + (0" = p) and Diz(a) = (b +di;r) - [ve(a)| + (77 = p).

(b) For all 2 < i <r we have ﬁm(a) < 152-_1,~(a).

)

In particular, disc,(E) = Dry(a) = disc(E (o *((ver)c)) /F) is the minimal twisted Heisenberg
discriminant for the embedding problem (4.1).

Proof. (a) With l~)i77~(a) = disc (L;r(a)/FE) and

(

-1 (60092_1 +YEi) - p ! ((oc — 1) Hwolh ™t + VE)))

= .E(p_l (woly ™ +7m) -0 (0= 1) Hwolly " +78.40))
o7 (0= D (@oly ) o (0= 17 oty )

we have

r—1

Dirla) =" 3077 = 1) (s ([0 = DMl ™ +3m0)] )1 +1)

k=0

Note that wy € RE is reduced and vg ((a = 1)(f0é)) = vp(f657") is reduced for all f € F with
vr(f) <0and 2 <j <p-—1, hence we get

vie ([(0 = 1) (woly ™ +vg4)]) =ve (0 — 1) (8,))
=vp (aP7'0,7) forall 0<j<i—1 (4.69)

and

vie) ([(0 = 1D (woby ™" +7e.4)]) =vE (0 — 1) (wobl, "))
—vp(wef ) for all i< j<r—1. (4.70)
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Conclusively, we get

ﬁiyr(a) = p%disc([wo)) + pdisc([woba]) + ... + p " Hdisc([wedt 1)
+ p U disc([aPT0,]) 4 . .. + p"t disc([aPi0Y))

r—i—1
(4.69) k k
= ’; P(p = 1) (Jve () + 1)
#3051 (a0 +1)
r—i— 1:
= > P -1 Glvr(a)] +1)
k=1

+pr Zpk(p — 1) (14 (p(p — i) + k) [vr(a)])

r—i—1 r—1
= (p—1|vp(a (Z P+ 1Zp p—i +k)> p-1)> p (471

Jj=1

Cr

Def. i(i)

= (-1 (np(r —i—1)+p""p(p i) Zpk +pr_i_177p(i)> vr(a)| + ¢

=@-1 (%(7“—@—1) T Zp’“rpr ! ()) lvr(a)l + ¢

-1 (mlr=i-1 +pf-i+1@‘;)(_p;‘” ) ) +

r—1 -

Finally, ¢, = (p — 1) > p/ = p" — p concludes the formula for D;,(a) in (a). The assertion on
j=1

D; r(a) is now clear from the discriminant tower formula.
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(b) Next we need to compare the values of D;,(a) and D;_; ,(a). Using the formulas in (a), we get

Diy(a) = Di—1,(a)

(p—1)|vr(a)l
r—i—1 r—i i i—1
CIDS™ k= STk S plp — i) + k) = S (plp — i 4 1) + k)
k=1 k=1 k=1 k=1
=—p r=)+p P —pi )+ T (p(p — i) + k)
k=2
i—1 4
= 0T —i+1) + k)
k=1

i—1
=—p r—)+p P —pi 1)+ p Hplp— i)+ k+1)

k=1
1—1 ‘
> 0 pp—i+1) + k)
k=1
1—1

=" (PP —(p—-1)i—r+1)—(p—1)p

:pr_i(pQ—iiji—r—l-l—pi—l—p)

For ¢ > 2 and using ¢ < 7 we have

PP—ipti—r+l—p +p< —p'+p —ip+tp+1< —p'+p°—(p—1) < —p’+p*=0.
<0

This shows 5m~(a) — D,_i_1(a) < 0 and concludes the proof for all i > 2. O

Example 4.66. Let 1 <r <p—1. Then we have

G == (pr T ), (4.72)
and _—
dryr = (p—1) (p’“ +p- W +p177p(7’)> : (4.73)
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For the minimal discriminant we thus have D, (a) = dy, - |[vp(a)| + (p"™* — p).

For r =1, we simply have ny(1) =p and d11 = (p— 1) (p+p(p—1)+1) = (p— 1)(p? + 1).

Forr =2, we get

d22 = (p—1) <p2 +p(p—2)£pi—1)

=(p-D)@P*+1)=p"'-p*+p-1

+p_1(p+2p2)> =p-1D) @ +plp—-2)(p+1)+1+2p)

We can use the minimal discriminants to effectively obtain a lower bound on the asymptotics ex-
ponent. For this purpose, we define for every Cp-extension E/F the set of minimal H+1(p,7)-
extensions given by

Fo(E):={E (¢ " ((ver + Blcais/m)) : BEQpy, [ve(B)| <|ve(ve)l}

and consider
Fe=J F®&.
E/F
Gal(E/F)~C,

Consider the corresponding counting function
Zmin(F,r;X) == #{L € F. : D(L/F) < X}.

Note that this is obviously a lower bound for the discriminant counting function Z(F, .Flpr+1 (p,7), X).

Theorem 4.67. Let 1 < r < p—1 and let ®.(s) := 5 ¢ Uc&/F)s Then &,(s) has a pole at
LEF,

and is convergent for Re(s) > (p_l)(ygfi_rﬂ)), where dy., is as in (4.73). In

(p=1)(A+r(p—r+1))

S =
p‘dT,r
particular, we get for the asymptotics exponent

ap(Hyi1 (p, 7)) > (p—1) (1; Zlii_ r1)

Proof. For the generating series of the minimal EIPTH (p, r)-extensions, we obtain

Y —disc s 1 —disc s
®,.(s) = Z g~ dise(L/F) :ﬁ Z g~ dise(L/F)

LeF, acRp
LeF,(F(6a))
1 O - a)-s
=—— Y @) # e, (ve(e,)) -
Z/F(CL)EVF(RF)

Let a € Rp with vp(a) < 0 and E, := E(6,). Using Theorem 4.65 the extension

Lyy(a) = Eq (97 (VEu ) Gal(Ea/F))
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is a minimal ﬁpru(p, r)-extension containing E,. Moreover, for every reduced element 5 € E, with
len ([3]) < r and |ve(B)| < |vE,(VE,r)| We obtain a H,r+1(p, r)-extension

Lg = Eq (07" ((vEr + B)caEa/r))) -

Using vg ((o — 1)7(8)) > vi(B) — jve(f,) by Lemma 4.6 and (4.69), we easily get
ve (0 = 1Y (ver +8)) = lve (0 = 1) (ve,)) | forall 0<j <r—1,
thus disc(Lg/E) = disc(Ly,(a)/E). We have
Ar = [VE(YE,r)| = (p(p — 1) +7)lvp(a)| = rlvr(a)l,
hence

_ —1
# g, () LI @l G Qe @Dy

_ @l B el @D,

(p—1)r(p—r+1) lvp(a)|

=q » g (). (4.74)

Thus for the generating series counting the minimal ﬁprﬂ(p,r)—extensions for each Cp-extension
E,/F, we obtain

" 1 ~ — vp(a)|+cr)-s
o)== D allr(@) e (bplim)]) g )
vr(a)evp(RF)
Oz L s @l R @ e @s g, (3,
p—1 |
vr(a)evrp(RF)
1 v (=) (A+tr(p=r+1)),, 7 — —Crs
=— > ¢ r@l( v (@)l >'p5a77‘()‘7“)q ’
p AGVF(RF)
G=) O+ @) | ) s
. % Z q|l/p(a)‘< P pP lvr(a)|—dr,r ) . C(A,T, 8),
p Acvp(RF)

where 0 # |C(A,r,s)| is bounded for all A € Z and s € C. Moreover, C(A,r,s) > 0 for all s € R.

Thus Lemma 4.54 yields the convergence of ®(s) for all s € C with Re(s) > (pfl)(lpfgfﬁfrﬂ)), and it

is unbounded for s = 2 _1)(1;;«(6 ~r+D) Thus by the Tauberian Theorem 1.38, we obtain

(p=1)(1+r(p—r+1))
Zmin(Fv r; X) = E I=X prdr,r )
LeF,
D(L/F)<X

and hence we obtain the lower bound on the asymptotics exponent. O
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Remark 4.68. (a) We conjecture that the bound (p_l)(lggfzz_r—’_l)) given in Theorem 4.67 is sharp.

(b) To make this bound slightly more explicit, we have

P-—1)A+r(p—r+1) pP—1)(A+r(p—r+1))
p-drr p-(p—1) (pr +p(p—r)ES +p‘1np(r))
1+r(p—r+1)

N = )
1+r(p—r+1)

= _ .
P pA(p — ) Bt + kz_:l kpk
(¢) One could use the formula

. prirp—r—1)+1 repl—pl - —p—1
mp(r) = kp* =p =p-
k=1

(p—1)? p—1
which, however, only results in a minor simplification.
Example 4.69. (a) Forr =1 the lower bound of Theorem 4.67 is

(p—D(1+p)  (-pE+1)  p+1

pdy C(p—Dp@*+1)  p(p*+1)

This coincides with the asymptotics exponent in [Lagl0, Satz 2.1] using 11 = ro = 1, see Theo-
rem 2.19

(b) Forr =2, the lower bound is

1+2(p—1) B 2 —1
P+ -2)p+1)+(1+2p) p*—2p2+2p+1




142 Chapter 4. On Constructing Subgroups of C}, 1 C),



Bibliography

|[ABY5|

[Alb34]

[BE99)

[CMS16]

[Del48)

[EVO05]

[FKO3|

[FV02]

[Gei03]

[Has69]

[Hup67]

Jonathan L. Alperin and Rowen B. Bell. Groups and representations, 1995. 22, 66

Abraham Albert. Cyclic fields of degree p™ over F' of characteristic p. Bull. Amer. Math.
Soc., 40(8):625-631, 1934. 91

Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symbolic Comput.,
27(4):387-404, 1999. 67

Sunil Chebolu, Jan Mina¢, and Andrew Schultz. Galois p-groups and Galois modules.
Rocky Mountain J. Math., 46(5):1405-1446, 2016. 103

S. Delsarte. Fonctions de Mébius sur les groupes abeliens finis. Ann. of Math. (2), 49:600—
609, 1948. 55

Jordan Ellenberg and Akshay Venkatesh. Counting extensions of function fields with
bounded discriminant and specified Galois group. In Geometric Methods in Algebra and
Number Theory, volume 235 of Progress in Mathematics, pages 151-168. Birkh&user, 2005.
9, 36

Claus Fieker and Jiirgen Kliiners. Minimal discriminants for fields with small Frobenius
groups as Galois groups. J. Number Theory, 99(2):318-337, 2003. 84

Ivan Fesenko and Sergei Vostokov. Local fields and their extensions, volume 121 of Trans-
lations of Mathematical Monographs. American Mathematical Society, Providence, RI,
second edition, 2002. With a foreword by I. R. Shafarevich. 52

Katharina Geifsler. Berechnung von Galoisgruppen iber Zahl- und Funktionenkdrpern.
Doctoral thesis, Technische Universitiat Berlin, Fakultat II - Mathematik und Naturwis-
senschaften, Berlin, 2003. 22

Helmut Hasse. Zahlentheorie. Dritte berichtigte Auflage. Akademie-Verlag, Berlin, 1969.
52, 53, 66, 69

Bertram Huppert. FEndliche Gruppen. I. Die Grundlehren der mathematischen Wis-
senschaften, Band 134. Springer-Verlag, Berlin-New York, 1967. 76

143



144

[Twas6]

[JLY02]

[KM20]

[Lag10]

|Lag12]

[Lag15]

[Lan02]

[Led05]

[Mal02]

[Mal04]

[Neu92|

[NSWOS]

[RZ00]

[Sch14]

[Ser79]

BIBLIOGRAPHY

Kenkichi Iwasawa. Local class field theory. Oxford Science Publications. The Clarendon
Press, Oxford University Press, New York, 1986. Oxford Mathematical Monographs. 17,
29

Christian Jensen, Arne Ledet, and Noriko Yui. Generic polynomials, volume 45 of Mathe-
matical Sciences Research Institute Publications. Cambridge University Press, Cambridge,
2002. Constructive aspects of the inverse Galois problem. 42

Jiirgen Kliiners and Raphael Miiller. The conductor density of local function fields with
abelian Galois group. J. Number Theory, 212:311-322, 2020. 51, 85

Thorsten Lagemann. Asymptotik wild verzweigter abelscher Funktionenkorper. Disserta-
tionsschrift, Technische Universitat Berlin, 2010. Logos—Verlag, ISBN 978-3-8325-2710-5.
9, 10, 51, 55, 62, 130, 141

Thorsten Lagemann. Distribution of Artin-Schreier extensions. J. Number Theory,
132(9):1867-1887, 2012. 36

Thorsten Lagemann. Distribution of Artin-Schreier-Witt extensions. J. Number Theory,
148:288-310, 2015. 61

Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New
York, third edition, 2002. 20

Arne Ledet. Brauer type embedding problems, volume 21 of Fields Institute Monographs.
American Mathematical Society, Providence, RI, 2005. 46, 48

Gunter Malle. On the distribution of Galois groups. J. Number Theory, 92(2):315-329,
2002. 9, 10

Gunter Malle. On the distribution of Galois groups. II. Ezperiment. Math., 13(2):129-135,
2004. 9, 10

Jiirgen Neukirch. Algebraische Zahlentheorie. Springer-Verlag, Berlin, 1992. 18, 20

Jiirgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields,
volume 323. Springer-Verlag, Berlin, second edition, 2008. 40, 41, 44, 48

Luis Ribes and Pavel Zalesskii. Profinite groups, volume 40. Springer-Verlag, Berlin, 2000.
40

Andrew Schultz. Parameterizing solutions to any Galois embedding problem over Z/p"Z
with elementary p-abelian kernel. Journal of Algebra, 411:50 — 91, 2014. 87, 89, 90, 96,
98, 99, 100

Jean-Pierre Serre. Local fields. Springer-Verlag, New York-Berlin, 1979. Translated from
the French by Marvin Jay Greenberg. 16, 27, 28



BIBLIOGRAPHY 145

[Sna94|

[Taub5]

[VS06]

[Wat94]

[Wit35]

[Wit36]

[Wri89]

[Yat14]

Victor P. Snaith. Ezplicit Brauer induction, volume 40 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1994. With applications to algebra
and number theory. 28

Derek Taunt. Remarks on the isomorphism problem in theories of construction of finite
groups. Proc. Cambridge Philos. Soc., 51:16-24, 1955. 67

Gabriel Daniel Villa Salvador. Topics in the theory of algebraic function fields. Math-
ematics: Theory & Applications. Birkhduser Boston, Inc., Boston, MA, 2006. 19, 24,
25

William C. Waterhouse. The normal closures of certain Kummer extensions. Canad. Math.
Bull., 37(1):133-139, 1994. 89

Ernst Witt. Der Existenzsatz fiir abelsche Funktionenkorper. J. Reine Angew. Math.,
173:43-51, 1935. 48

Ernst Witt. Konstruktion von galoisschen Kérpern der Charakteristik p zu vorgegebener
Gruppe der Ordnung pf. J. Reine Angew. Math., 174:237-245, 1936. 12, 46, 48

David Wright. Distribution of discriminants of abelian extensions. Proc. London Math.
Soc., 58:17-50, 1989. 9

Lindsay Yates. Linear algebra of pascal matrices, 2014.
https://www.gcsu.edu/sites/files/page-assets/node-808 /attachments/yates.pdf. 93



Notation Index

General Notations

P, Q, R, C Set of prime numbers, rational numbers, real numbers, complex numbers
&) Direct sum
[K : F] Degree of a field extension
Ly, Field of p-adic numbers
F, Finite field with ¢ elements
KI[t]] Power series ring in ¢ over K Page 15
K((t)) Laurent series field over K Page 15
vp normalised exponential valuation of a local field F Page 15
Op, pp, Up Valuation ring / maximal ideal / unit group of F Page 15
KE Residue Field of a local field Page 15
F Separable algebraic closure of F Page 16
ex/Fy JK/F Ramification index, inertia degree of K/F Page 16
cond(K/F) Conductor exponent of K/F Page 17
f(K/F) Conductor of K/F Page 17
Splp(K) Splitting field resp. normal closure of K/F Page 18
disc(K/F) Discriminant exponent of K/F Page 17
D(K/F) Discriminant ideal of K/F Page 17
D(K/F) Discriminant of K/F Page 17
Diff(K/F) Different of K/F Page 17
pla) =af —« Artin-Schreier operator Page 18
04 Element in p~!(a), a root of 2P — x — a Page 19
J(F)=F/p(F) Cokernel of p Page 19
Spang ((vi)ier) K-Vector space generated by the system of vectors (v;)icr <V Page 20
vyk)(a) =max{vk(z) | v € a}, vyk)(0) =00 reduced valuation of a in K Page 23
cond(]al) Conductor exponent disc(F(0,)/F) for a € F'\ p(F) Page 24
disc([a]) Discriminant exponent disc(F(0,)/F') for a € F \ p(F) Page 24
Rp(m,w) = Rp Fow @ F, - 7" Reduced complement of p(F) in F: Rp @ p(F) = F Page 25
%0
Tp(z) = |z| — L%J The number of integers 1 < n < |z| not divisible by p Page 32
[y(x) pqTr(@) Page 32
Yq() Fy(x) —Ty(x —1) Page 32
f(x) Conductor of a character Page 29
G* Dual group of G Page 30
Try/p Trace map Page 17
f~g Asymptotic equivalence, meaning: lim,_ % =1 Page 31
f=0(9) 0 <limsup,_,., % < 00 Page 31
f=g f=0(g) and f = o(g) Page 31
Z(F,G; X) Counting function w.r.t. discriminant Page 32

Aut(G) Automorphism group of G



Notations from Chapter 2

3(F,G;n)
Un
ri(H)
7 (H)
exp(H)
H[p']
ag(4)
{z}
(@)

Counting function w.r.t. conductor

= (1+p)/{1+p")

p'-rank of H

=r;(H) —rip1(H) number of p-blocks of H
Exponent of the group H

p'-torsion of H

Number of subgroups U < A which are isomorphic to G
=z —|z] forxzeR

e
=> pp;klrk(G): Conductor exponent for an abelian p-group
k=1

Notations from Chapter 3

G'H

N x4 H
AGL(V)
AGLy(q)

Eigp(()
KI[G]

Wreath product of G and H

Semi-direct product of N and H by some homomorph. ¢ € Hom(H, Aut(N))
Affine group of a K-vector space V

= (Fy)" x GL,(F,) Affine group of A™(F,)

F-eigenspace of o to the eigenvalue ¢

Group ring of G with coefficients in K

Notations from Chapter 4

H(p,r)
H(p,r)
len ([7])
€E/F
JT(E)
Jp(E)
Jr(E,x)
YE

VEr
Me,

Uy

Generalised Heisenberg group

Twisted Heisenberg Group

= len((y)q) for v € J(K)

Special Fy-linear map ep/p: J(E) — F

(Bl e J(B) len((B) <7, epyp(f) =0} for 1 <r<p—1
= J(E)

={[8l € J:(E) : vy (B]) <2}

Special cyclic C2-generator

Generator of a minimal H (p, r)-extension

representative system for H (p, r)-extensions

={fo+ fiba+...+ froa0 | fi€ Ry, for 0<i<p—2, f,u1 € Rp, fr_1 # 0}

i-th projection w.r.t. power basis
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(g)gnggp. jz aj—kelc(j)

k=r+1
= LZ"’I‘; |J fora € Rpand z € Z
L ‘VF(‘I)U _
=t Byt

={a € Rg |vp(a)>1r-vE(,)}

Special representative system of Y;.(F)

= NAE) @2 R -0 @) B (RETT)

Set of twisted Heisenberg generators of length < r
Set of o € Qp, with |vg(a)] < X

Page 110

Page 111

Page 111
Page 115

Page 115

Page 131
Page 131



	Local Function Fields
	Introduction to Local Function Fields
	Valuation Theory
	Galois group and Galois closure
	Artin-Schreier Theory
	System of Representatives of J(F)
	Ramification Theory
	Abelian Conductor-Discriminant-Formula

	Asymptotics and Tauberian Theorems
	Big O-Notation
	Counting Cp-extensions over Local Function Fields
	Analytic Framework

	Cohomology and Explicit Construction
	The Absolute Galois Group of Local Function Fields
	Central Embedding Problems
	Cohomology of Groups
	Construction of p-Extensions in Characteristic p


	Abelian Conductor Density
	Certain Quotient Groups of the Unit Group
	Conductor Density of Abelian p-groups
	Conductor Density of Arbitrary Finite Abelian Groups
	Lower Bounds on Discriminant Density

	On Subgroups of Affine Linear Groups AGL1(q)
	Affine Linear Groups and Semi-direct Products
	Decomposition of J(L) for a Tamely Ramified Extension L/F
	Enumeration over pd points
	Subgroups of AGL1(p)
	Number of Cd-Extensions with Fixed Ramification Index


	On Constructing Subgroups of Cp Cp
	Heisenberg Groups and Arithmetic of Cp-Extensions
	Generalised and Twisted Heisenberg Groups
	Traces in Towers of Artin-Schreier-Extensions

	Galois Module Theory
	Description of (Twisted) Heisenberg Extensions
	Minimal Heisenberg Extensions
	Minimal Twisted Heisenberg Extensions

	Heisenberg Modules and Systems of Representatives
	Reduced Representative System in the Ramified Case
	Enumeration of some Systems of Representatives

	Counting Heisenberg Extensions over p2 Points
	Counting Twisted Heisenberg Extensions over p2 Points
	On Galois Twisted Heisenberg Group Extensions

	 Bibliography
	 Notation Index

