
Paderborn University

PhD Thesis

Testing Coherence and Identifying Winners in

Dueling Bandits: Theory and Algorithms

written by

Björn Haddenhorst

in partial fulfillment of the requirements for the academic degree of

Doctor rerum naturalium (Dr. rer. nat.)

submitted to

Paderborn University
Institute of Computer Science

supervised by

Prof. Dr. Eyke Hüllermeier
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Zusammenfassung

Zahlreiche Lernalgorithmen im stochastischen (Multi)-Dueling-Banditen-Szenario (engl.:
(multi-)dueling bandits scenario; (M)DB) erfordern, dass die dem Feedback-Mechanismus
zugrunde liegenden Gewinnwahrscheinlichkeiten gewisse Arten von Kohärenz erfüllen.
In dieser Arbeit diskutieren wir das Testen derartiger Kohärenzannahmen und führen
das Problem des Testifizierens des Condorcet Gewinners (engl.: Condorcet winner; CW)
in DB ein, als das Problem, den CW zu identifizieren, falls er existiert, und andernfalls
Nichtexistenz zu detektieren. Des Weiteren diskutieren wir die Identifikation des verallge-
meinerten Condorcet Gewinners (engl.: generalized Condorcet winner; GCW) in MDB
unter der Annahme, dass er existiert.

Wir zeigen unter anderem, dass die Kohärenz der Gewinnwahrscheinlichkeiten mit einem
Plackett-Luce-Modell in MDB unter der sogenannten Low-Noise-Annahme nicht derart
getestet werden kann, dass die erwartete Probenkomplexität (engl.: sample complexity)
im schlechtesten Fall endlich ist, und gleiches gilt in DB für diverse Arten stochastischer
Transitivität. Im Gegensatz dazu sind sowohl das Testen von schwacher stochastischer
Transitivität (engl.: weak stochastic transitivity; WST) als auch das Testifizieren des CW
in diesem Sinne möglich.

Für das Testen von WST, die Testifikation des CW als auch die Identifikation des GCW
präsentieren wir algorithmische Lösungen im sogenannten fixed-confidence Setting und
leiten instanzspezifische untere und obere Schranken an die zur Lösung der Probleme
benötigten Probenkomplexität her, welche im schlechtesten Fall bis auf logarithmische
Faktoren asymptotisch optimal sind. Zusätzlich untersuchen wir, in welchem Maße eine
Plackett-Luce-Annahme an den stochastischen Feedback-Mechanismus das Lernproblem
vereinfacht.
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Abstract

Many learning algorithms in the stochastic (multi-)dueling bandits scenario assume the
winning probabilities underlying the environment’s feedback mechanism to be appropriately
coherent. This thesis approaches the problem of checking the validity of several types
of coherence in this regard. Moreover, we introduce the task of CW identification in
dueling bandits, which consists of identifying the Condorcet winner (CW) if it exists, and
detecting non-existence otherwise. Finally, we investigate the problem of identifying the
generalized Condorcet winner (GCW) in multi-dueling bandits assuming its existence.

We show that, amongst others, coherence of the winning probabilities with a Plackett-Luce
model cannot be tested under the low-noise assumption in multi-dueling bandits within
a finite expected sample complexity in the worst case, and the same holds for several
types of stochastic transitivity in dueling bandits. In contrast, testing of weak stochastic
transitivity (WST) and even CW testification are solvable in this regard.

For all of WST testing, CW testification and GCW identification, we present multiple
algorithmic solutions in the active fixed confidence setting and derive instance-dependent
sample complexity upper and lower bounds that are in the worst case asymptotically
tight up to logarithmic terms. In addition, we investigate to which extent a Plackett-Luce
assumption on the probabilistic feedback mechanism simplifies the identification of the
GCW.
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j∈[m]\{i} Gm(j)
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{i, j}G {i, j}G = (i, j) if i

G−→ j (which means (i, j) ∈ EG), otherwise {i, j}G =
(j, i); here, G ∈ Gm

Algorithms

A an algorithm
A(x1, . . . , xl) an algorithm A called with the parameters x1, . . . , xl
D(A) the return value/decision of algorithm A
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TA the sample complexity of A, i.e., the number of samples observed by A
before termination

TA
worst worst-case query complexity of A, cf. Sec. 3.2; only defined if A is a DSTA
TA
best best-case query complexity of A, cf. Sec. 3.2; only defined if A is a DSTA
ADSTA a deterministic sequential testing algorithm (DSTA)
TA
G termination time of the DSTA A when started on G

ACoin the set of all algorithms for the coin tossing problem (2.7)
ACoin an algorithm for the coin tossing problem (2.7)

·AHoeffding
Coin (h, γ) the non-sequential solution to Ph,γ

Coin from Lem. 2.10

·ASPRT
Coin (h, γ) the solution to Ph,γ

Coin from Prop. 2.17
·AFarrell

Coin (γ) the solution to Pγ
Coin from Prop. 2.22

D(ACoin, t) D(ACoin) if ACoin has already terminated at after t samples, otherwise
“N/A”

iAG(t), j
A
G (t) distinct items compared by A at time t when started on G

GA
G(t) the picture that A has of G at time t; formally defined via EGA

G(t) =⋃
t′≤t−1{{iAG(t′), jAG (t′)}G}

DA(G) output of the DSTA A when started on G

Probability Theory

Ber(p) Bernoulli distribution with success probability p ∈ [0, 1]
Bin(n, p) Binomial distribution with success probability p ∈ [0, 1] and number of trials

n ∈ N
Cat(p) Categorical distribution with parameter p = (p1, . . . , pk) ∈ ∆[k]

N (µ, σ2) Normal distribution with mean µ and variance σ2

U(I) Uniform distribution on the set I; usually, I is a closed interval of R
δx Dirac measure on {x}, i.e., for any A ⊆ R we have δx(A) = 1 if x ∈ A and

δx(A) = 0 otherwise
χ2
(k) χ2-distribution with k degrees of freedom

KL (p,q) the Kullback-Leibler divergence of two independent random variables X ∼
Cat(p) and Y ∼ Cat(q) for p,q ∈ ∆S

kl (p, q) the Kullback-Leibler divergence between two independent random variables
X ∼ Ber(p) and Y ∼ Ber(q), i.e., kl (p, q) = KL ((p, 1− p), (q, 1− q))

Problems

PP
T(A) problem to solve task T with parameters P for any instance fulfilling A

·PΘ0,Θ1;γ
Coin problem to test H0 : p ∈ Θ0 vs. H1 : p ∈ Θ1 with confidence 1− γ based

on iid samples ∼ Ber(p)

·Pp0,p1;γ
Coin short for P{p0},{p1};γ

Coin

·Pp0;γ
Coin short for Pp0,1−p0;γ

Coin

·Ph,γ
Coin short for P [0,1/2−h),(1/2+h,1];γ

Coin

·Pγ
Coin short for P0,γ

Coin = P [0,1/2),(1/2,1];γ
Coin

·Pk,h,γ
Die problem to identify for any p ∈ ∆h

k with error probability ≤ γ correctly

mode(p) based on iid samples ∼ Cat(p); formally, Pk,h,γ
Die = Pk,k,γ

GCWi(∆
h)

·Pm,k,α,β
PL (∆h) PL testing on PMm

k (∆h) for α, β, cf. Sec. 2.5.1

·Pm,h,α,β
X X testing on Qh

m for α, β; considered in Sec. 2.5.1 for X ∈ {STI, GIA, LNM,
Marg, Mal, BS}

·Pm,h,α,β
CWv CW verificiation on Qh

m for α, β

·Pm,h,α,β
CWt CW testificiation on Qh

m for α, β

·Pm,h,α,β
CWc CW checking on Qh

m for α, β

·Pm,h,α,β
CWi (CW) CW identification on Qh

m(CW) for α, β
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·Pm,h,α,β
CWv (CW) CW verificiation on Qh

m(CW) for α, β

·Pm,h,α,β
XST XST testing on Qh

m for α, β; defined for XST ∈ {WST, MST, SST, νRST,
λST}

·Pm,k,γ
GCWi(X) GCW identification on PMm

k (X) for γ

·Pm,k,γ
GCWv(X) GCW identification on PMm

k (X) for γ

DP
T(A) deterministic problem to solve task T with parameters P for any instance

fulfilling A
·Dm

X1,...,Xk
[Z](Y) problem to deterministically assign any tournament G ∈ Gm(Y), given input

z ∈ Z, correctly one of the classes X1(z), . . . ,Xk(z)
·Dm

CWt CW testification for tournaments G ∈ Gm
·Dm

CWc CW checking for tournaments G ∈ Gm
·Dm

CWv CW verification for tournaments G ∈ Gm
·Dm

CWi(CW) CW identification for tournaments G ∈ Gm(CW)
·Dm

CWv(CW) CW verification for tournaments G ∈ Gm(CW)
·Dm

acyclic acyclicity testing for tournaments G ∈ Gm

Notation Related to the Analysis of Sticky Track-and-Stop

∆ε
(m)2

the set
{
(vi,j)1≤i<j≤m ∈ ∆(m)2 : vi,j ≥ ε for all (i, j) ∈ (m)2

}
D(v,Q,Q′)

∑
(i,j)∈(m)2

vi,jkl
(
qi,j , q

′
i,j

)
D(v,Q,Q′

m) infQ′∈Q′
m
D(v,Q,Q′)

Dm,h
CWc(Q) supv∈∆(m)2

D(v,Q,Qh
m(¬X)) if Q ∈ Qm(X), X ∈ {CW,¬CW}

Dm,h
CWt(Q) supv∈∆(m)2

D(v,Q,Qh
m(¬X)) if Q ∈ Qm(X), X ∈ {¬CW, 1, . . . ,m}

Dm,h
WST(Q) supv∈∆(m)2

D(v,Q,Qh
m(¬X)) if Q ∈ Qm(X), X ∈ {WST,¬WST}

dh(Q) max(i,j)∈(m)2 max{kl(qi,j , 1/2 + h), kl(qi,j , 1/2− h)}

Notation Related to the Likelihood-Ratio Test for WST

ϕ the transformation [0, 1] → [−π/2, π/2], x 7→ 2 arcsin(
√
x)− π/2

θ transformed ground-truth θ = (θi,j)1≤i,j≤m = (ϕ(pi,j))1≤i,j≤m

zt transformed data vector with entries (zt)i,j = ϕ((wt)i,j/(nt)i,j)

Θm transformed parameter space Θm = ϕ(Qm) = [−π/2, π/2](
m
2 )

Θm(WST) the set ϕ(Qm(WST))

Θm(¬WST) the set ϕ(Qm(¬WST))
Θ0

m the set ϕ(Q0
m) = {θ ∈ Θm | ∀(i, j) ∈ (m)2 : θi,j ̸= 0}

Θ0
m(X) the set Θ0

m ∩Θm(X) for X ∈ {WST,¬WST}
Θv

m the set {θ ∈ Θm | ∀(i, j) ∈ (m)2 : θi,j = 0 or |θi,j | > v}
Θm(X)◦ the interior of Θm(X) w.r.t. the (from Rm(m−1)/2) induced topology on Θm

Θm(θ) the set {y ∈ Θm | θi,j < 0 ⇒ yi,j < 0 for every distinct i, j ∈ [m]}
L likelihood function for H0 : Q ∈ Qm(¬WST) vs. H1 : Q ∈ Qm(WST)

L̃ slightly modified version of L
λt LRT statistic for H0 : Q ∈ Qm(WST) vs. H1 : Q ∈ Qm(¬WST)
µt LRT statistic for H0 : Q ∈ Qm(¬WST) vs. H1 : Q ∈ Qm(WST)

λ̃t LRT statistic for H0 : θ ∈ Θm(WST) vs. H1 : θ ∈ Θm \Θm(WST)
µ̃t LRT statistic for H0 : θ ∈ Θm(¬WST) vs. H1 : θ ∈ Θm \Θm(¬WST)
dnt

(z,θ) weighted Euclidean distance from z to θ with weights nt = ((nt)i,j)1≤i,j≤m

dnt
(z,Θm(X)) infθ∈Θm(X) dnt

(z,θ); here, X ∈ {WST,¬WST}.
lWST(t) decision boundary for the LRT for WST; cf. Thm. 5.13
l¬WST(t) decision boundary for the LRT for ¬WST; cf. Thm. 5.13
Θm(R) the set {θ ∈ Θm | ∀ distinct i, j ∈ [m] : ri,j = 1 ⇒ θi,j ≥ 0}
Θm(θ) the set {y ∈ Θm | ∀ distinct i, j ∈ [m] : θi,j < 0 ⇒ yi,j < 0}
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1. Introduction

This thesis deals with two learning tasks in the realm of stochastic (multi-)dueling bandits,
namely so-called best-arm identification and the problem to statistically test for various
types of coherence in the underlying environment. While identifying the best arm is now
a problem that is attracting a great deal of research interest in bandit learning scenarios,
the aforementioned testing problems have not yet been considered.

We start with the introduction of the considerd (multi-)dueling bandits setting and
then discuss different statistical assumptions common in this field. At this point, we
are trying to provide already enough details necessary for a simplified overview of the
theoretical results achieved in this thesis. Afterwards, we provide a short but far from
complete literature overview of multi-armed bandits and its (multi-)dueling variants prior
to end this introduction with some remarks on notational conventions made in this thesis.

1.1. The (Multi-)Dueling Bandits Setting

The stochastic multi-armed bandits (MAB) scenario is an often applicable learning scenario
for sequential decision making problems, which has gained much attraction in recent years.
It has its origins in [Thompson, 1933, Robbins, 1952].

In its standard form, it involves a set of m actions, that are indexed by 1, . . . ,m for
convenience, a learner may choose from at each time step t ∈ N := {1, 2, 3, . . . } upon
which a stochastic real-valued feedback Xt,i(t) for its action i(t) ∈ [m] := {1, . . . ,m} is
observed. The name of the setting comes from a prominent illustration thereof, which
interprets each action as a possible pull of one of m many (one-armed) bandits – another
term for a slot machine – and the feedback can be seen as a payoff, called reward, obtained
by playing the chosen slot machine. For this reason, the different actions are also referred
to as arms and one uses the phrase to pull an arm for saying that the corresponding
action is chosen. In general, Xt,i can be thought of as some information obtained for arm
i at time t.

Yue and Joachims [2009] introduced dueling bandits (DB) as a preference-based variant
of MABs, in which the learner chooses in each time step t not one but two distinct arms
i(t), j(t) ∈ [m] and then observes as feedback only one of the arms, which can be thought
of as the winner of the duel {i(t), j(t)} and in this sense as preferred over the other arm.
Later on, this setting was generalized to the multi-dueling bandits (MDB) setting [Brost
et al., 2016, Bengs et al., 2021] in the sense that the learner is supposed to choose at each
time step t a non-empty subset St of all arms and observes a feedback Xt,St . The set St is
referred to as a query (set) and, in analogy to DB, also as a multi-duel and supposed to
be an element of the set of allowed multi-duels ∅ ≠ S ⊆ P([m]) = {S : S ⊆ [m]}.

The focus of this thesis is on the (multi-)dueling bandits scenario with winner feedback
without ties meaning that, whenever a (multi-)duel is conducted, exactly one of the
involved arms is observed as the winner, cf. Fig. 1 for an illustration. For simplicity, we

1



a1 a2 a3 a4 a5

winner{a1, a3, a4} = a1

Figure 1.: Illustration of a MDB with winner feedback.

restrict ourselves to the homogeneous case

S = [m]k := {S ⊆ [m] : |S| = k} ,

where the allowed query sets are the k-sized subsets of [m] for some predefined k ≥ 2.
Throughout, we consider the time-stationary stochastic setting, in which the winner Xt,St

of the t-th multi-duel St is supposed to be drawn from an unkown underlying categorical
distribution Cat(P(·|St)) with values in St. Formally, we suppose {Xt,S}t∈N,S∈S to be an
independent family of categorical random variables Xt,S ∼ Cat(P(·|S)) with parameter
P(·|S), of which the learner observes at time t onlyXt,St , i.e., the feedback is supposed to be
independent across time and query sets. This way, the family P = {P(i|S)}S∈S,i∈S ⊆ [0, 1],
which consists of the probabilities P(i|S) that i is the winner in the query set S, is an
underlying parameter, that completely characterizes the stochastic feedback mechanism
over time. We call P also a probability model and write PMm

k for the set of all such
probability models when S = [m]k, i.e., PM

m
k is given as{

P = {P(i|S)}S∈[m]k,i∈[m] | ∀S ∈ [m]k : {P(i|S)}i∈S ⊆ [0, 1] and
∑

i∈S
P(i|S) = 1

}
.

Any P ∈ PMm
2 can be written via qi,j := P(i|{i, j}) ∈ [0, 1] as Q = (qi,j)1≤i,j≤m and

fulfills qi,j = 1− qj,i for all distinct i, j ∈ [m] and w.l.o.g. qi,i = 1/2 for all i ∈ [m]. This
shows, that Qm := PMm

2 is the set of reciprocal (preference) relations Q = (qi,j)1≤i,j≤m
on [m], and that any Q ∈ Qm is completely characterized by (qi,j)1≤i<j≤m and may thus
conveniently be written as

Q =


− q1,2 · · · q1,m

. . .
. . .

...
− qm−1,m

−

 .

The goals and assumptions made in the (multi-)dueling bandits setting are typically
defined in terms of P resp. Q, and we collect some of these in Sec. 1.2 below. Two
fundamentally different ways how the queries St are chosen lead to the following two
different learning scenarios:

• In the active scenario, the learner itself chooses the (multi-)duels at each time step.
In particular, by trying to choose them in a favourable way, it may try to come as
early as possible to a decision for its learning problem. Typical research questions
in this scenario are “What is a good query strategy for choosing the (multi-)duels?”
and “Which sample complexity is necessary/sufficient to solve the learning problem
at hand?”.
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• In the passive scenario instead, the learner cannot choose the (multi-)duels itself,
but instead the queries are supposed to be given by the environment or an external
force. In this case, a goal of the learner could be to correctly solve the learning task
for a huge class of environmental strategies, and its performance could be measured
in dependence of a particular query strategy of the environment.

Let us write (nt)S for the number of times S has been queried until time t, which
is formally given as (nt)S =

∑t
s=1 1{Ss=S}. Here and throughout, 1{A} denotes the

indicator function that is 1 if A is true and 0 otherwise. Moreover, we write (wt)i|S
for the number of times arm i ∈ S has been observed as a winner of S until time t,
i.e., (wt)i|S =

∑t
s=1 1{Ss=S}1{Xs,Ss=i} and (nt)S =

∑
i∈S(wt)i|S . Then, we abbreviate

nt = ((nt)S)S∈[m]k and wt = ((wt)i|S)S∈[m]k,i∈S .

To capture both the active and passive scenario in one framework, we define a sampling
strategy to be a family of random mappings, which, depending on the time t and the
observations n0,w0, . . . ,nt−1,wt−1 available before time t, determines a multi-duel St ∈
[m]k to be queried at time t ∈ N. Let Π denote the set of all sampling strategies.

In the active scenario, the learner itself chooses the sampling strategy π. In the passive
one, instead, π is supposed to be given by the environment and possibly unknown to
the learner. In any case, the learner sequentially observes at each time the outcome of
the duel queried by π and can decide after any observation (also called sample) either
to stop the learning process and output a decision or to continue. Apart from providing
a “good” decision for its learning task (which requires having seen enough samples), the
learner typically tries to minimize the total number of observations before termination,
the so-called sample complexity.

For the theoretical analysis, we will focus in the passive scenario at times on the family
Π∞ ⊊ Π of sampling strategies π, which sample every allowed query set S ∈ [m]k almost
surely (a.s.) infinitely often, i.e., (nt)S → ∞ a.s. as t → ∞. If π ∈ Π \ Π∞, then a
sampling strategy π̂ ∈ Π that chooses the same pair as π in each time step with probability
1− 1

t , and otherwise (i.e., with probability 1
t ) picks a query set St uniformly at random

from [m]k fulfills π̂ ∈ Π∞ and

P
(
π(t, (nt′ ,wt′)0≤t′≤t−1) ̸= π̂(t, (nt′ ,wt′)0≤t′≤t−1)

)
≤ 1

t
→ 0 as t → ∞ .

Thus, π̂ and π behave similarly in the limit. This shows that the assumption π ∈ Π∞,
which will be required for some of our theoretical results below, is rather mild.

1.2. Modeling Assumptions in (Multi-)Dueling Bandits

There are various learning tasks in (M)DB such as the identification of a best arm (also
called winner), and the targets typically depend on the underlying unknown parameters
P resp. Q. To simplify a learning problem or even assure that a task can be solved at all,
many works assume some type of coherence of these parameters. For example, winner
identification is typically considered in scenarios, in which P resp. Q is coherent with
the existence of a winner. In this section, we specify the theoretical learning targets and
frequently assumed coherences in that setting, which we mainly focus on in this thesis.
We start with a detailed description of those, which are relevant for the further course of
this thesis, and mention in Sec. 1.4 further alternative concepts from related literature.
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The Condorcet Winner and a Generalized Variant An often targeted learning task
in the context of multi-armed bandits and its variants is the problem of identifying the
best among all arms. While for standard MABs, the canonical definition of the “best
arm” is that arm which provides the best feedback (e.g. the largest expected reward), the
picture is less clear for its variants. In the realm of dueling bandits, a reasonable notion
of “best arm” is the Condorcet winner (CW), which is an arm that is likely to win (i.e.,
with probability ≥ 1/2) in each duel against another arm, i.e., formally i ∈ [m] is the CW
of Q (write i = CW(Q)) if

qi,j ≥ 1/2 for every j ∈ [m] \ {i}.

We write Qm(CW) := {Q ∈ Qm | ∃i ∈ [m] : i is a CW of Q} resp. Qm(¬CW) :=
Qm \ Qm(CW) for the set of reciprocal relations with resp. without a CW and further,
for i ∈ [m], Qm(i) for the set of all Q ∈ Qm(CW) with CW(Q) = i.

In practice, the Condorcet winner does not necessarily exist due to a possible presence
of preferential cycles in the probabilistic model in the sense that i is likely to win against
j, j against k, and k against i. In other words, Q might be incoherent with the existence
of a CW. For the theoretical analysis of the best-arm identification problem, this issue
is overcome in the literature either by simply assuming the existence of the CW or by
the consideration of alternative optimality concepts such as Borda winner or Copeland
winner, which will briefly be commented on in Sec. 1.4.

For the multi-dueling bandits setting, we consider the generalization of the CW as in
[Agarwal et al., 2020], i.e., an arm i ∈ [m] is called a generalized Condorcet winner (GCW)
of P ∈ PMm

k if it outperforms any other arm j in every query set S containing both i
and j in the sense that

∀S ∈ [m]k with i ∈ S, ∀j ∈ S \ {i} : P(i |S)−P(j |S) ≥ 0.

We write GCW(P) for the set of all GCWs of P and define

PMm
k (GCW) := {P ∈ PMm

k

∣∣GCW(P) ̸= ∅},
PMm

k (GCW∗) := {P ∈ PMm
k

∣∣ |GCW(P)| = 1}.

In addition, for h ∈ (0, 1], we call i ∈ [m] an hGCW of P if

∀S ∈ [m]k with i ∈ S, ∀j ∈ S \ {i} : P(i |S)−P(j |S) ≥ h,

and write PMm
k (hGCW) for the set of all P ∈ PMm

k that have an hGCW.
With a look at the definitions, we directly observe that (a) any hGCW is a GCW,

(b) if an hGCW exists, it is unique and (c) if P ∈ PMm
k (hGCW) for some h > 0,

the GCW of P is unique and coincides with the hGCW of P. Clearly, it holds that
PMm

k (GCW∗) =
⋃
h>0 PM

m
k (hGCW) and every probability model P ∈ PMm

k (GCW)
has at least one GCW, while for any P ∈ PMm

k (GCW∗) the GCW is unique. Regarding
the dueling bandits setting as the multi-dueling setting where the allowed multi-duels S
are exactly those with |S| = 2, the GCW is indeed a generalization of the CW.

The Low-Noise Assumption In the dueling bandits setting, the term q̄i,j := |qi,j − 1/2|
can be seen as a noise (or hardness) parameter for the outcomes of the duels between i
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and j: If this value is large, the outcomes of the pairwise comparisons are relatively clear
in the sense that one of i and j will clearly outperform the other one in a large portion of
samples, and thus it is relatively “easy” to decide for the learner whether qi,j > 1/2 or
qi,j < 1/2 holds. A small value of q̄i,j instead implies that the winning probabilities of i
and j are close to 1/2, and hence difficult to distinguish. Motivated by this, we define
similar as [Braverman et al., 2016, Korba et al., 2017] that, for h ∈ [0, 1/2), some Q ∈ Qm
fulfills the low-noise assumption with parameter h if it is an element of

Qhm :=
{
Q = (qi,j)1≤i,j≤m ∈ Qm | |qi,j − 1/2| > h for all (i, j) ∈ (m)2

}
.

For the case of multi-dueling bandits, we introduce the following analogon of the low-noise
assumption: We say that P = {P(i|S)}S∈[m]k,i∈S ∈ PM

m
k fulfills the low-noise assumption

with parameter h ∈ (0, 1] if

∀S ∈ [m]k ∃i ∈ S ∀j ∈ S \ {i} : P(i|S)−P(j|S) ≥ h,

and we write PMm
k (∆h) for the set of all such P. Moreover, P fulfills ∆0 if

∀S ∈ [m]k ∃i ∈ S ∀j ∈ S \ {i} : P(i|S)−P(j|S) > 0

and we denote the set of all P fulfilling ∆0 by PMm
k (∆0). As for the case of reciprocal

relations, the parameter h in this definition can be seen as a hardness parameter: If
P ∈ PMm

k (∆h) for some large h ∈ [0, 1], then, for any S ∈ [m]k, the element iS =
argmaxi∈SP(i|S) fulfills P(iS |S) ≥ P(j|S)+h and is thus “easy” to identify from S based
on independent and identically distributed (iid) samples with distribution Cat(P(·|S)).

Parametric Assumptions Other prominent assumptions in the literature [Busa-Fekete
et al., 2014a, Maystre and Grossglauser, 2017, Saha and Gopalan, 2019c] suppose that P
is coherent with an underlying probability distribution P′ on the set Sm of all rankings on
[m] in the sense that the distributions of the feedback P(i|S) are corresponding marginals
of P′. Formally, a ranking is a permutation σ : [m] → [m] and we say σ ranks i better
than j if σ(i) < σ(j). Given a probability measure P′ on Sm, the corresponding marginal
(the probability that i is the winner of S) can be written as

P(i|S) =
∑

σ∈Sm with ∀j∈S\{i}:σ(i)<σ(j)
P′(σ).

In case P′ is instantiated with a Plackett-Luce distribution [Plackett, 1975, Luce, 1959]
with unknown parameter θ ∈ (0,∞)m, we have

P′(σ) =
∏n

i=1

θσ(i)

θσ(i) + θσ(i+1) + · · ·+ θσ(m)

and the corresponding marginals are (cf. e.g. [Cheng et al., 2010])

P(i|S) = θi∑
j∈S θj

. (1.1)

Since θi1 ≥ · · · ≥ θik implies P(i1|S) ≥ · · · ≥ P(ik|S) for S = {i1, . . . , ik}, θi can be seen
as a skill parameter of arm i. We write PMm

k (PL) for the set of all P ∈ PMm
k , which
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(GCW)

(GCW∗)

(hGCW)

(PL)

(∆0)

(∆h)

Figure 2.: Overview of coherences in MDB; here, we simply write (X) instead of PMm
k (X)

for X ∈ {GCW,GCW∗, hGCW,∆0,∆h,PL}.

fulfill (1.1) for some θ ∈ (0,∞)m. There are also other parametric distributions used as
assumptions in this regard, and some of these will play a minor role in Sec. 2.5.1, but at
this point we restrict ourselves to the Plackett-Luce distribution as it is the most relevant
one for this thesis.

Fig. 2 illustrates the relationships between the different coherences in MDB in form of
a Venn diagram, that will formally be justified in Lem. 6.1.

Transitivity Assumptions for Dueling Bandits Another commonly assumed coherence of
the feedback mechanism in DB is some specific type of transitivity. An informal explanation
of this term could be stated as “If i is better than j, and j is better than k, then i is also
better than k”. Such an assumption facilitates the identification of a “best arm”, since
observations on the duels {i, j} and {j, k} would also provide information on the winner
of the duel {i, k}. For reciprocal (preference) relations, it is not uniquely determined
what “i is better than j” means, since the preference of i over j is not deterministic
but instead i is preferred over j with some probability qi,j ∈ [0, 1]. In dueling bandits,
appropriate modified versions of transitivity, so-called stochastic transitivities [Fishburn,
1973, Haddenhorst et al., 2020], play an important role: First, they may assure that
the learning task itself is actually well defined, for example that a naturally “best” arm
actually exists. Second, they are on the basis of the design of efficient learning algorithms,
which exploit generalized transitivity to reduce sample complexity [Yue and Joachims,
2011, Mohajer et al., 2017, Falahatgar et al., 2018]. This is comparable to how standard
sorting algorithms avoid the comparison of all pairs of items and achieve an O(n log n)
(instead of an O(n2)) complexity.

Two prominent types of stochastic transitivity are weak and strong stochastic transitivity.
Formally, Q = (qi,j)1≤i,j≤m ∈ Qm satisfies weak stochastic transitivity (WST) if

∀ distinct i, j, k ∈ [m] :
((
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ 1/2

)
,

and strong stochastic transitivity (SST) if

∀ distinct i, j, k ∈ [m] :
((
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ max(qi,j , qj,k)

)
.

We denote the set consisting of all stochastically transitive reciprocal relations of a certain
type XST asQm(XST) := {Q ∈ Qm : Q is XST} and writeQm(¬XST) := Qm\Qm(XST).
Then, Qm(SST) ⊊ Qm(WST) holds [Haddenhorst et al., 2020]. Further types of stochastic
transitivity will be introduced and discussed in Ch. 5.
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Deterministic Winner Feedback in Dueling Bandits We will also take a look at deter-
ministic analoga of several dueling bandits problems, i.e., those where the outcomes of a
duel between two arms is supposed to be deterministic instead of random. Formally, this
can be realized by assuming the reciprocal relation Q to be an element of

Rm := {Q = (qi,j)1≤i,j≤m ∈ Qm : qi,j ∈ {0, 1} for all distinct i, j ∈ [m]},

which can be identified with the set of tournaments on [m]. Graph-theoretical consid-
erations will result in deterministic solutions to our problems of interest and also prove
fruitful for their corresponding probabilistic counterparts.

Mixed Assumptions From a theoretical point of view, it is often interesting to combine
certain assumptions, since this allows to analyze to what extent a learning problem
under a particular assumption is influenced by the addition of another assumption.
Therefore, for any assumptions X and Y from above such as GCW, ∆h, PL for k ≥ 2
and WST,CW, SST in case k = 2, we implicitly define ¬X, X ∧ Y and X ∨ Y via
PMm

k (¬X) = PMm
k \PMm

k (X), PMm
k (X∧Y) = PMm

k (X)∩PMm
k (Y) and PMm

k (X∨Y) =
PMm

k (X) ∪ PMm
k (Y), respectively. Furthermore, we abbreviate Rm(X) := Rm ∩Qm(X)

and Qhm(X) := Qhm ∩Qm(X).

1.3. Outline and Contribution of this Thesis

This thesis is split into three parts, for each of which we provide a brief overview below.

Part I

The first part serves as preparation for the analysis of the learning problems in (M)DB
considered in Parts II and III. In it, we restate useful concentration inequalities and other
helpful lemmata. We discuss the problem of identifying the mode of categorical random
variable with a desired confidence and with as few samples as possible, starting with the
special case of two categories and generalizing it afterwards to k > 2 categories. The
obtained upper and lower bounds on the sample complexity of solutions to this problem
seem to partly improve upon the state-of-the-art and lay a basis for the theoretical results
obtained in Parts II and III. We conclude Ch. 2 with a change-of-measure inequality from
the field of multi-armed bandits, which is a main ingredient for our lower bound results in
Part III. We demonstrate its usefulness by inferring general impossibility results for testing
for several coherences in (M)DB under the low-noise assumption, which imply, e.g. to
some extent the impossibility of testing for the stochastic triangle inequality assumption
in DB and for the Plackett-Luce assumption in MDB.

Ch. 3 further prepares Part II with some graph-theoretical observations. More precisely,
we take a look at testing properties such as CW for deterministic reciprocal relations
R ∈ Rm, which can be identified with tournaments on [m]. For this, we focus on
deterministic sequential testing algorithms (DSTAs), which may query at each time step
exactly one of the edges of the tournament. We establish necessary and sufficient conditions
for the termination time of solutions to such problems. Aside of preparations for Part II,
we also address the problem of checking acyclicity of tournaments in a sequential manner.
For the case where m is even, we provide a non-trivial lower bound for the worst-case
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query complexity necessary to solve this task as well as a non-trivial sequential procedure,
which is able to test acyclicity without having to query all edges of the tournament.

Part II

The second part is dedicated to discuss the following statistical learning problems in the
dueling bandits scenario.

CW Testification & Related Problems Ch. 4 analyzes problems related to the CW in
dueling bandits. Here, our main focus is on combined testing and identification of the
Condorcet winner, which we have termed CW testification. More precisely, we say that

a (possibly probabilistic sequential) algorithm A solves CW testification on Qhm for γ if
both of the following are true:

• whenever Q ∈ Qhm(CW), A identifies the correct CW of Q with error probability at
most γ,

• whenever Q ∈ Qhm(¬CW), A outputs with error probability at most γ that Q has
no CW.

We provide a general framework called Noisy Tournament Sampling (NTS), which is
is able to passively solve the CW testification problem under mild assumptions on π.
Instantiated with an appropriate sampling strategy π, which mimics the behaviour of
an appropriately chosen DSTA for CW testification of tournaments, NTS results in a
solution to the problem, which has w.r.t. Qhm a worst-case expected sample complexity
of order Õ(m

h2
ln 1

γ ); here and throughout, we write Õ, Ω̃ and Θ̃ for those versions of
the Bachmann-Landau notations, which hide logarithmic factors. Empirically, we show
that this solution outperforms a naive two-stage procedure consisting of a state-of-the-art
CW identification algorithm and a verification procedure. The lower bounds from Part I
allow us to deduce an instance-wise lower bound for solutions to the problem, which is
formulated in terms of the parameters m, γ as well as the gaps q̄i,j := |1/2− qi,j | of the
underlying instance Q = (qi,j)1≤i,j≤m ∈ Qm.

In addition to CW testification, we also tackle the following learning problems:

• CW checking on Qhm for γ: Whenever Q ∈ Qhm, check with error probability ≤ γ
whether Q has a CW or not.

• CW verification on Qhm for γ: Whenever Q ∈ Qhm and given some input i ∈ [m],
decide with error probability ≤ γ whether i is the CW of Q or not.

• CW identification on Qhm(CW) for γ: Whenever Q ∈ Qhm(CW), identify the CW of
Q with error probability ≤ γ.

• CW verification on Qhm(CW) for γ: Whenever Q ∈ Qhm(CW) and given some input
i ∈ [m], decide with error probability ≤ γ whether i is the CW of Q or not.

We provide worst-case sample complexity bounds for these problems, that asymptotically
match the corresponding lower bounds in the worst-case sense up to logarithmic factors.
We show that any of these problems requires in the worst case Θ̃(m

h2
ln 1

γ ) samples to be
solved, and provide more sophisticated instance-wise sample complexity upper and lower
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bounds for solutions to these, again in terms of the gaps q̄i,j . As far as we know, most of
our upper and lower bounds were novel when published in [Haddenhorst et al., 2021a],
the exception being those for CW identification on Qhm(CW) for γ. Via a reduction to
pure-exploration multi-armed bandits (PE-MABs), results from Degenne and Koolen [2019]
are applicable for any of these problems and yield sharp bounds on certain asymptotics of
the expected sample complexity of solutions. These bounds are different, but consistent
with the aforementioned.

Testing for Stochastic Transitivity In Ch. 5, we discuss the problem of testing stochastic
transitivity in dueling bandits. Even though this problem is, due to frequently made
stochastic transitivity assumptions, of importance for the DB literature, it has apparently
not been tackled before [Haddenhorst et al., 2021b]. Formally, for a fixed transitivity type
XST ∈ {WST, SST, . . . } a (possibly probabilisitic, sequential) algorithm A is said to solve
XST testing on Qhm for γ if the following holds: Whenever Q ∈ Qhm, A correctly decides
with error probability ≤ γ whether Q is XST or not.

So far, we have only introduced WST and SST, but we will consider in Ch. 5 several
alternative types XST of stochastic transitivity, which are of interest for dueling bandits.
With the help of a general impossibility result established in Part I, we are able to show
that any XST ̸= WST cannot adequately be tested in the sense that the worst-case
expected sample complexity of any solution to XST testing on Qhm for γ is infinite. Hence,
we focus on WST in the further course of the work. For this type of transitivity, we
provide similarly as for the CW-related problems above instance-wise lower and upper
bounds on the sample complexity, which are in the worst-case asymptotically optimal up
to logarithmic factors and of order Θ̃(m

2

h2
ln 1

γ ). We see that the optimal sample complexity
may already be achieved with a rather naive solution. However, incorporating graph-
theoretical considerations from Ch. 3 results in an improved algorithm, which significantly
outperforms the other one in our experiments. Both the naive and improved algorithm
are supplemented with appropriate passive versions. The rough idea behind our improved
algorithm is based on conducting multiple binomial tests (one for each query set), whilst
terminating as soon as an estimated digraph is acyclic in extension (meaning that any
of its supergraphs is acyclic) and restaining from querying those pairs that correspond
to negligible edges (those, which cannot be contained in a cycle of a supergraph) of the
digraph.

Additionally, we address the WST testing problem in a different way, namely based on
the likelihood-rato test statistics λt resp. µt of

H0 : Q ∈ Qm(WST) vs. H1 : Q ∈ Qm(¬WST)

resp. H′
0 : Q ∈ Qm(¬WST) vs. H′

1 : Q ∈ Qm(WST).

With slightly modified versions λ̃t and µ̃t of these, we provide another passive solution to
WST testing on Qhm for γ, which requires mild assumptions on the sampling strategy. This
solution is computationally more expensive and w.r.t. the expected sample complexity
asymptotically worse than our other solution, but nevertheless, we state it for the sake of
completeness in full detail.
We establish bounds on supQ∈Qm(¬WST) lim supt→∞ PQ (µt > l) and the analogon for

λt, which allow for asymptotic level-α tests for WST and ¬WST. These estimates extend
upon results from Iverson and Falmagne [1985], who restricted themselves to an offline
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setting, where every pair is assumed to be queried exactly the same number of times. In
comparison, our bounds are weaker but valid for the broader scenario of DB.

Similarly as for the CW-related problems, a reduction to PE-MABs allows to state
further slightly different upper and lower bounds for WST testing, which appear overall
consistent with the other results.

In fact, we also analyzed appropriate asymmetric versions of the above mentioned learning
problems in DB with different type-I and type-II confidences 1 − α and 1 − β, but for
the sake of simplicity we restricted ourselves to the symmetric case α = β =: γ in this
overview.

Part III

In the last part, we switch from the dueling to the more general multi-dueling bandits
setting and restrict ourselves to the active scenario. Ch. 6 discusses the problem to
identify the GCW in multi-dueling bandits under different assumptions X, which are at
least as strong as the existence of a GCW, i.e., PMm

k (X) ⊆ PMm
k (GCW). Formally, we

say that a (possibly probabilistic, sequential) algorithm A solves GCW identification on

PMm
k (X) for γ (short: A solves Pm,k,γGCWi(X)) if it identifies for any P ∈ PMm

k (X) with
error probability ≤ γ a GCW of P.

We provide instance-wise sample complexity lower and upper bounds for different
choices of X. Moreover, we prove all of the worst-case sample complexity bounds shown
in Table 1.1, where the worst-case is meant w.r.t. instances in PMm

k (X ∧ Y) for some
further assumption Y. The bounds for those problems including the assumption PL are
inferred from corresponding instance-wise versions, which have been proven by Saha and
Gopalan [2020b]. The remaining lower bound is based on a measure-changing argument
from Kaufmann et al. [2016], that we already prepare in Sec. 2.5. The upper bounds from
Thm. 6.12 and Thm. 6.13 are achieved via different versions of our algorithm Dvoretzky-
Kiefer-Wolfowitz Tournament (DKWT). This is basically a knockout-procedure
and consists of different executions of an algorithm, which determines the mode of a
categorical distribution based on the Dvoretzky-Kiefer-Wolfowitz inequality and is already
presented in Sec. 2.3.

Table 1.1.: Sample complexity bounds of solutions to Pm,k,γGCWi(X).

(X) (Y) Type Asymptotic bounds References

(PL) (hGCW) in exp. Ω( m
h2k (

1
k + h) ln 1

γ ) Thm. 6.3

(∆h ∧GCW) (∆h) in exp. Ω( m
h2k ln 1

γ ) Thm. 6.4

(PL ∧GCW∗) (hGCW) w.h.p. O( m
h2k (

1
k + h) ln( kγ ln 1

h )) Thm. 6.11

(GCW ∧∆0) (∆h) w.h.p. O( m
h2k ln(mk )(ln ln

1
h + ln 1

γ )) Thm. 6.12

(hGCW ∧∆0) (hGCW) a.s. O( m
h2k ln m

kγ ) Thm. 6.13

Thm. 6.4 implies that any solution to Pm,k,γGCWi(GCW) has w.r.t. PMm
k (hGCW) a worst-

case sample complexity of Ω( m
kh2

ln 1
γ ). As Thm. 6.11 and Thm. 6.12 indicate that the

bounds in Thm. 6.3 and Thm. 6.4 are asymptotically sharp up to logarithmic factors,
the GCW identification problem seems to be easier under the PL assumption by a factor
1
k + h.
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Finally, we conclude this thesis in Ch. 7 with a brief discussion on the limitations of this
work, remaining open questions and potentially interesting further research directions.

The results presented in this thesis have mostly been published in [Haddenhorst et al.,
2021a], [Haddenhorst et al., 2021b] and [Haddenhorst et al., 2021c], but there are some
improvements (e.g., the sample complexity lower and upper bounds for solutions to

Pm,0,α,βCWt in Sec. 4) and even further results which have not been published such as the
upper and lower bounds for acyclicity testing of tournaments, the impossibility results in
Sec. 2.5.1 and all of Sec. 5.4. More details on such differences and unpublished results are
briefly mentioned at the end of each corresponding chapter.

1.4. Related Work

In general, multi-armed bandits (MABs) describe a sequential decision making problem,
in which a learner subsequently chooses at each time step a possible action and observes a
feedback for its choice from an environment. Possible differences in the available actions
of the learner (e.g. pull one or multiple “arms”, cf. below), the type of feedback (e.g.
a numerical or a binary value), assumptions on the environment (e.g. stochastic or
non-stochastic) as well as distinct learning objectives (e.g. to identify the “best arm” or a
“ranking over all arms”) result in a variety of possible learning scenarios and thus lead to
different variants of MABs.

In this thesis, we restrict ourselves to the particular variants of dueling bandits (DB)
and multi-dueling bandits (MDB) as introduced above. To give an intuition how these
fit into the bigger picture and literature on MABs, we give a small overview of the
(standard) MAB scenario and its subfields DB and MDB in general. As the field of MABs
is increasingly growing and already contains a large body of literature, giving a complete
survey would be far out of scope of this section. Instead, we can only provide a limited
overview of MAB and (M)DB at this point. A more extensive overview of and introduction
to MABs in general can be found in [Bubeck and Cesa-Bianchi, 2012, Lattimore and
Szepesvári, 2020, Slivkins, 2022]. For a survey on further real-world applications of MABs
confer [Bouneffouf and Rish, 2019], and more information on the particular subfields of
DB and MDB can be found in the surveys [Sui et al., 2018] and [Bengs et al., 2021].

(Standard) Multi-Armed Bandits The multi-armed bandit (MAB) scenario has been
introduced by Thompson [1933] and describes a simple sequential decision making problem,
in which a learner can choose at each time step from m many options, upon which it
observes a corresponding feedback value. Here, the options may be regarded as different
slot machines, and the choice of an option as a “pull” of the “arm” of the corresponding
slot machine; this explains the notion “multi-armed bandit”. The learner’s behaviour
which arm to choose at time t based on the history at time t (i.e., all previously pulled arms
and observed feedback values until time t) is modelled by means of a policy [Lattimore
and Szepesvári, 2020] or a sampling strategy [Kalyanakrishnan et al., 2012, Kaufmann
and Kalyanakrishnan, 2013], and our definition of a sampling strategy is an appropriate
modification for (M)DB of the latter term.

In (standard) MABs, the observed feedback upon pulling an arm is oftentimes a
numerical value Xt,i(t) and understood as reward of pulling that particular arm i(t). A
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typical learning objective is to achieve a large cumulative reward RT =
∑T

t=1Xt,i(t) until
some predefined time T ∈ N ∪ {∞}, or, alternatively, minimize the (cumulative) regret,
which is the corresponding gap between the reward of the chosen arm and the largest mean
of the reward distributions of all arms. Whilst solving this problem, a learner naturally
faces the so-called exploration-exploitation dilemma [Lai and Robbins, 1985, Auer et al.,
2002a, Cesa-Bianchi and Lugosi, 2006]: It wants to find a suitable tradeoff between
gathering information about all arms to identify “good” ones (known as “exploration”)
and exploiting this knowledge by playing supposedly good arms. Theoretical questions
in this scenario include, e.g. lower and upper bounds on the cumulative reward RT , and
prominent solutions for such kind of learning scenarios are, e.g. upper-confidence bound
(UCB) algorithms [Auer et al., 2002b] and Thompson sampling [Thompson, 1933].

An alternative learning scenario is that of pure-exploration multi-armed bandits (PE-
MABs), where the learner restricts itself on the identification of a good arm without
further exploiting it. More precisely, a typical theoretical objective therein consists of
identifying with confidence at least 1− γ an ε-approximately correct (i.e., best) arm, for
an appropriate notion of “approximately”, and this is known as the (ε, γ)-PAC (probably
approximately correct) paradigm1. A typical research question in this regard is “How
many arm pulls are necessary for finding with confidence at least 1− γ an ε-best arm?”
[Even-Dar et al., 2002, Mannor and Tsitsiklis, 2004, Even-Dar et al., 2006]. In case ε = 0,
where one is in fact interested in finding a best (not only approx. best) target, this scenario
is also known as γ-PAC [Kaufmann et al., 2016].

Apart from the just mentioned, there are further modifications of MABs and its variants.
For example, the works [Berry et al., 1997, Wang et al., 2009] and [Carpentier and Valko,
2015] consider MABs with infinitely many arms, whereas [Eick, 1988, Vernade et al., 2020]
and [Gael et al., 2020] consider MABs with feedback, which is not immediately observable
for the learner but instead comes with some delay. In the contextualized bandits scenario
[Auer et al., 2002b, Tewari and Murphy, 2017] the learner observes prior to its action an
additional side information, which is of relevance for observable feedbacks of the arms;
in the field of recommandation systems, this could, e.g. be some knowledge about the
customer who provides the next feedback. Recently, Badanidiyuru et al. [2013] introduced
bandits with knapsacks (cf. e.g. [Slivkins, 2022, p.122]) as a constrained MAB version,
where the learner is equipped with a certain amount of different resources, each arm pull
results (in addition to a reward value) also in a consumption of these resources, and if one
of the resources is exceeded, the learning process is terminated.

Dueling Bandits In many practically relevant applications, instead of a numerical
feedback signal, only a preference over k ≥ 2 alternatives may be observable. For example,
this is the case when ranking XBox gamers according to duel outcomes [Guo et al., 2012] or
when rating different objects according to pairwise user preferences, which can nowadays
conveniently be collected via crowdsourcing services such as Amazon Mechanical Turk
[Chen et al., 2013, Yan et al., 2022]. This led to an increased research in the field of
preference learning [Fürnkranz and Hüllermeier, 2011] and on the multi-dueling variant of
MAB. The particular case k = 2 is known as dueling bandits (DB).

Despite its obviously different type of feedback, the standard MAB setting is still of

1Usually, this setting is referred to (ε, δ)-PAC, but we use γ instead of δ here to be more consistent with
the overall notation of this thesis.
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interest for its dueling variant, because certain DB problems may be reduced to MAB
problems [Owen, 1982, Ailon et al., 2014b] and in fact, for proving a lower bound result, a
reduction to MABs will prove helpful for us in Sec. 4.1. Moreover, several algorithmic
ideas may be transferred from MAB to DB for solving DB problems. Worth mentioning
are, e.g. the two adaptations of Thompson sampling known as Double Thompson Sampling
(DTS) [Wu and Liu, 2016] and MergeDTS [Li et al., 2020], and also several variants of
UCB such as RUCB [Zoghi et al., 2014b], MergeRUCB [Zoghi et al., 2015b] and UCB-TS
[Ramamohan et al., 2016].

To formulate the objective of regret minimization, the notion of regret from MAB
has been adapted to DB in several ways: If i∗ is the target arm (i.e., a notion of
best arm such as the CW) and the learner chooses the duel {i(t), j(t)} at time t, the
suffered strong, weak and average regret are defined as rt,max := max{qi∗,i(t), qi∗,j(t)}− 1/2,

rt,min := min{qi∗,i(t), qi∗,j(t)} − 1/2 and rt,avg :=
rt,max+rt,min

2 , respectively. The learning
objective consists of minimizing the corresponding cumulative regret and is investigated,
e.g. by Yue and Joachims [2009], Urvoy et al. [2013], Zoghi et al. [2014a] for the average
regret, by Peköz et al. [2020] for the weak regret and by Chen and Frazier [2017] for
both strong and weak regret. Chen and Frazier [2016] consider as further variant a weak
utility-based regret.

As for MABs, an alternative goal is pure exploration of a “best arm”, either in an
(ε, γ)-PAC fashion [Falahatgar et al., 2018, Lin and Lu, 2018] or in a γ-PAC sense [Karnin,
2016, Mohajer et al., 2017, Ren et al., 2020]. In contrast to MABs, the notion of “best
arm” is much less clear for DBs, and in addition to the CW introduced above there exist
further prominent choices in the literature. Following Copeland’s method [Copeland,
1951], one may define for a reciprocal relation Q ∈ Qm and any i ∈ [m] the number ci(Q)
of arms j, for which i is likely to win in the sense that qi,j > 1/2, and define the Copeland
winner as that arm with largest Copeland score. A related but different notion is the
Borda winner of Q, which is that arm i with largest Borda score bi(Q) = 1

m−1

∑
j ̸=i qi,j .

Note that bi(Q) is the expected probability of i winning its duel in a randomly chosen
query set. In contrast to the CW both a Copeland winner and a Borda winner always
exist, but may be not unique. Further alternative best arm concepts of interest in the
literature include the von Neumann winner [Balsubramani et al., 2016] and the random
walk winner, see [Bengs et al., 2021] for an overview. Apart from that, further alternative
goals in this regard are the identification [Braverman et al., 2016, Mohajer et al., 2017,
Ren et al., 2020] or ranking [Mohajer et al., 2017] of the k best arms, and Ramamohan
et al. [2016] consider as a learning objective the identification of the Banks set, top cycle,
and uncovered set.

In the literature, the identification of the best arm w.r.t. some of the previously
mentioned notions is oftentimes done whilst assuming Q to have a certain type of
coherence. Some of these are formally required to assure that the learning problem is
well-defined, e.g. [Falahatgar et al., 2018] assume the existence of an ε-best arm for
the sake of identifying it, but some assumptions go beyond this. For example, making
the low-noise assumption [Braverman and Mossel, 2008] simplifies the learning problem.
Another assumption we have already sketched above states that Q is coherent with a
probability model on rankings such as the Plackett-Luce (PL) model [Szörényi et al., 2015].
Apart from PL also the Mallows model [Busa-Fekete et al., 2014a] as well as the more
general random utility model (RUM) [Saha and Gopalan, 2020a], which we briefly state
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in the paragraph on MDB below, are of interest in this regard. Moreover, also different
types of stochastic transitivity are assumptions frequently made in the realm of dueling
bandits. Falahatgar et al. [2017b,a, 2018] analyze the best-arm identification problem in
an (ε, γ)-PAC manner under weak, moderate and strong stochastic transitivity (and partly
further assumptions) and show that the stronger the assumption, the lower the required
sample complexity, whereas strong resp. relaxed stochastic transitivity is considered by
Yue et al. [2012] resp. Yue and Joachims [2011] for the sake of regret minimization. A
more thorough discussion of the CW identification problem is provided in Ch. 4, and
Ch. 5 contains more information on the different types of stochastic transitivity. For more
details on further theoretical coherences like the stochastic triangle inequality we refer to
Sec. 2.5.1, where we present negative results for statistically testing for such coherences
under the low-noise assumption.

According to our definition of the DB setting, ties are not allowed as outcomes for the
duels, i.e., each duel has its winner. When allowing ties, there are at least two ways how to
deal with them in the DB literature: One possibility is tie breaking, i.e., declare one of the
involved arms as the winner, and this may either be done randomly or in a favourable way,
cf. the differences between DTS and DTS+ in [Wu and Liu, 2016]. Another possibility is
to count a tie between i and j as half a win for both i and j [Busa-Fekete et al., 2013,
2014b].

There exist several further variants of DB, of which we only mention a small portion at
this point. Similar as for MAB, the case of infinitely many arms has been dealt with for
DB in [Yue and Joachims, 2009, Ailon et al., 2014b], and Dud́ık et al. [2015] introduced
a contextualized variant of DB that has recently been considered, e.g. in [Bengs et al.,
2022, Saha, 2021]. Gupta and Saha [2021] and Kolpaczki et al. [2022] consider regret
minimization in the case of non-stationarity, i.e., when Q may vary over time, and the
works [Ailon et al., 2014a, Dud́ık et al., 2015, Gajane and Urvoy, 2015, Zimmert and
Seldin, 2019] and [Ailon et al., 2014b] tackle the case where feedback is non-stochastic or
even adversarially generated.

Multi-Dueling Bandits Another modification of MAB and generalization of DB is the
multi-dueling bandits (MDB) scenario [Brost et al., 2016, Sui et al., 2017, Saha and
Gopalan, 2018], in which a learner chooses k ≥ 2 arms at once at each time step and then
observes one of them as a winner. MDB is also known as battling [Saha and Gopalan,
2018], preselection [Bengs and Hüllermeier, 2020] and choice bandits [Agarwal et al.,
2020] in the literature, and real-world applications include, e.g. algorithm configuration
[El Mesaoudi-Paul et al., 2020] and online retrieval evaluation [Schuth et al., 2016].

As for MAB and DB, both regret minimization [Saha and Gopalan, 2019b, Bengs and
Hüllermeier, 2020, Agarwal et al., 2020] and best-arm identification in an (ε, γ)-PAC
setting [Saha and Gopalan, 2019c, 2020a,b] have been considered as learning objectives
in the literature, where the “best arm” can again be defined in multiple ways: Similarly
as we generalized the notion of the CW to the GCW above, one can also generalize the
Copeland and Borda winner [Bengs et al., 2021]. But also alternative learning objectives
such as identification of the top-k arms [Chen et al., 2018] or an underlying ranking
(assuming its existence) in an (ε, γ)-PAC manner [Saha and Gopalan, 2019a,c, 2020a] have
been considered so far.

Similarly as in DB, many works make assumptions on the underlying parameter P
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to assure, e.g. the well-definedness of the learning task itself or to simplify it. For
example, Bengs and Hüllermeier [2020] assume P to fulfill the Plackett-Luce assumption
whereas [Saha and Gopalan, 2020a] suppose P to be coherent with a general random
utility model (RUM). This latter assumption means that there exists a parameter vector
v = (v1, . . . , vm) ∈ Rm, giving each arm i ∈ [m] a latent score vi, as well as a probability
distribution function (pdf) f on R such that, for any i ∈ [m] and S ⊆ [m] with i ∈ S,
P(i|S) = P(vi + ξi = maxj∈S vj + ξj) for iid samples ξj ∼ f , and in the special case
where the ξj ’s are standard Gumbel distributed, it is equivalent to the PL assumption.
Of a different type is the assumption made by Ren et al. [2021] for the identification
of the top-k arms and the ranking of all arms. They assume coherence of P with an
underlying ranking over all arms and also that for some unknown parameter ϑ ∈ (1/2, 1)
any multi-duel St reveals with probability ϑ the “correct winner” i (the mode of P(·|St))
whereas the corresponding probabilities for observing any other arm of St can be arbitrary.

A scenario related to MDB is that of combinatorial bandits [Cesa-Bianchi and Lugosi,
2012, Kveton et al., 2015]. It resembles MDB in the sense that the learner chooses a set
of arms at each time, but differs in the sense that the learner obtains as feedback not the
mere winner information but instead rather quantitative feedback such as corresponding
reward values for each involved arm or the total sum over such rewards. Apart from that,
there are further variations of this setting, which are of interest in the literature: Saha
and Gopalan [2018] discuss regret minimization in an MDB scenario with infinitely many
arms, Brandt et al. [2022] investigate GCW identification in a non-stochastic setting and
El Mesaoudi-Paul et al. [2020] apply a contextualized variant of MDB to the problem of
algorithm configuration.

The Learning Scenario in This Thesis To put it in the broader context of MAB and its
variants, one could describe the particular setting of (M)DB, which we focus on in this
thesis, as (multi-)dueling bandits with winner feedback in the stochastic setting : A learner
can pull at each time step k ≥ 2 many arms i1, . . . , ik, which compete against each other in
a multi-duel, and exactly one of these is observed as a winner, namely il is supposed to win
with some (unknown, underlying) probability P(il | {i1, . . . , ik}). Moreover, we suppose
that this latter probability does not depend on the time the (multi-)duel is conducted and
that the overall number of arms is finite. Throughout, our learning objective is to solve
with a predefined confidence 1− γ a decision problem for the underlying parameter Q in
DB resp. P in MDB such as “Is Q weakly stochastic transitive?” or “What is the GCW
of P?”. Thus, we are interested in pure exploration learning tasks in a γ-PAC manner.

At this point, we end our literature overview for the moment. Any of the subsequent
chapters contains in its last section more thorough remarks on the corresponding related
literature as well as a discussion on the obtained results and points out possible directions
for future research.

1.5. Notation and Conventions

In this thesis, we discuss a variety of learning problems. In an attempt to standardize
the notation, we write PP

T(A) for a learning problem with task T, that has parameters

P and shall be solved under assumptions A; e.g., Pm,h,γCWi (CW) is the problem to identify
the CW of any Q ∈ Qhm with confidence 1 − γ under the assumption that it exists
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(i.e., that Q ∈ Qhm(CW)). If no ssumptions are made, we simply write PP
T , and when

talking about the problem in general, we will leave out parts (or all) of P. Formally,
any algorithm which tackles PP

T(A) is supposed to have knowledge of all of T,P and A;

e.g., if A tackles Pm,k,γGCWi(GCW ∧∆h), it knows that it should identify the GCW of some
P ∈ PMm

k (GCW ∧∆h) with error probability at most γ and it a priori knows the values
of m, k, γ and h. We distinguish the deterministic sequential learning problems from Ch. 3
from the probabilistic ones by writing DP

T(A) instead of PP
T(A) for these, e.g., Dmacyclic

denotes the problem to deterministically test whether a tournament on [m] is acyclic or
not.

To formally address such problems, we oftentimes have to restrict ourselves to those
instances with certain properties, e.g., the property to fulfill a particular assumption.
Thus, let us write, for any set A and property X, A(X) for the set of all elements in
A, which fulfill X. If X,X1, . . . ,Xn are properties, we write as usual ¬X for “not X”,
X1 ∧ · · · ∧ Xn for “∀i ∈ [n] : Xi” and X1 ∨ · · · ∨ Xn for “∃i ∈ [n] : Xi”. Hence, we have
A(¬X) = A \A(X), A(X1 ∧ · · · ∧Xn) =

⋂
i∈[n]A(Xi) and A(X1 ∨ · · · ∨Xn) =

⋃
i∈[n]A(Xi).

Note that this notation is consistent with the definitions of PMm
k (X1 ∧ X2) etc. from

above.

For a convenient statement of the asymptotic behaviour of proven sample complexity
upper and lower bounds, we use the standard Bachmann-Landau notations O(·), Ω(·),
Θ(·) and o(·) and, if not explicitly stated otherwise, they are to be understood as any of
the corresponding involved parameters m, k, 1

h ,
1
α ,

1
β and 1

γ tend to infinity. We write

Õ(·) and Ω̃ for those modifications of O and Ω, which hide logarithmic factors, and

f(x) ∈ Ωsup(g(x)) as x → x0 for lim supx→x0
|f(x)|
g(x) > 0. Moreover, we may abbreviate

f(k, h) ∈ Θ(ln k) ∩Θ( lnh
ln lnh) for f(k, h) ∈ Θ(ln k) and f(k, h) ∈ Θ( lnh

ln lnh).

Apart from that, in order to provide detailed versions of all proven results, we introduce
lots of further convenient notation throughout this thesis. Every such notation is formally
introduced along the lines where it first comes up. As additional guidance for the reader,
we collected the most frequently used notations in a list of symbols at the beginning of
this document, and we also added a list of algorithms and a list of abbreviations there.

Since the main focus of this thesis is on the theoretical guarantees, we present most
of the proofs in the main text. For the sake of readability, some technical results and
proofs are not instantly presented but outsourced to corresponding individual sections or
subsections, and some proofs of the fundamental Chapters 2 and 3 are deferred to the
appendix.

Before starting with Ch. 2, let us briefly mention two minor inconsistencies in this thesis.
Firstly, the low-noise assumptions for k = 2 and k ≥ 3 are not fully consistent, namely
formally PMm

2 (∆h) = {Q ∈ Qm | ∀(i, j) ∈ (m)2 : |qi,j − 1/2| ≥ h/2} ̸= Qhm holds. For

this reason, one may say that Pm,h/2,γCWi (CW) ≈ Pm,2,γGCWi(hGCW) = Pm,2,γGCWi(GCW ∧ ∆h).
Despite this slight inconsistency, we follow this notation throughout this thesis for the
sake of convenience due to technical reasons, which we do not want to specify at this point.
As we are mainly interested in the asymptotic behavior of sample complexity bounds in
terms of h (and further parameters) for solving problems under the low-noise assumption
in (M)DB, Qhm =

⋃
h′>h/2 PM

m
k (∆h′) and PMm

k (∆h) =
⋂
h′<2hQh

′
m assure that this small

difference in the definitions is negligible for such asymptotic results.

Secondly, as already seen in Table 1.1, the sample complexity upper and lower bounds
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for discussed learning problems may differ in their corresponding type of guarantee. Some
of them are to be understood with respect to the expected sample complexity, whereas
others bound this term with high probability or even almost surely. Even though formally
and theoretically incorrect, it is common practice in the (M)DB literature [Bengs et al.,
2021] to compare such results of different type with each other, and throughout we
proceed in a similar manner. For example, Thm. 6.12 merely shows that the sample
complexity of an appropriate solution to Pm,k,γGCWi(GCW ∧∆0) is w.r.t. the worst-case on
PMm

k (GCW∧∆h)-instances w.h.p. at most O( m
h2k

(ln m
k )(ln ln

1
h+ln 1

γ )), and this does not

imply a corresponding upper bound for the expected termination time of that solution2 but
we compare it anyway with the lower bound from Thm. 6.4 on the expected termination
time of solutions to Pm,k,γGCWi(GCW ∧∆0) and call it then asymptotically optimal up to
logarithmic factors.

2Note that, for any fixed γ ∈ (0, 1), a bound of the form PQ(TA ≤ C) ≥ 1− γ on the sample complexity
TA of a learner A does not even imply EQ[TA] < ∞.
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Part I.

Fundamentals





2. Probabilistic Prerequisites

This chapter prepares our analysis of the (multi-)dueling bandit problems in the Parts II
and III of this thesis with some statistical and probabilistic discussions. It is split into
six sections. In the first of these, we provide a collection of rather basic results and
concentration inequalities, which will be of aid later on. In the second section, we tackle
the problem of identifying the mode of a biased coin and provide sample complexity
upper and lower bounds for solutions to this problem. Sec. 2.3 treats in a similar fashion
the more general problem of identifying the mode of a generalized die, i.e., an arbitrary
categorical random variable. After a brief empirical evaluation of the stated solutions
in Sec. 2.4, we focus in Sec. 2.5 on a change-of-measure argument, which will be a key
ingredient in some sample complexity lower bounds in the further course of this thesis. As
an application, we illustrate how this argument implies negative results on the testibility
of several statistical assumptions in (multi-)dueling bandits. We conclude this chapter in
Sec. 2.6 with further remarks on our obtained results and related literature.
For the sake of readability, the proofs of some of the results in this chapter have been

moved to the appendix.

2.1. Concentration Inequalities and Convergence Results

In this section, we collect some concentration inequalities, which will be of interest later
on. We start with two famous inequalities named after Chernoff [1952] and Hoeffding
[1963]. For convenience, we will simply refer to these as Chernoff bound resp. Hoeffding’s
inequality instead of Lem. 2.1 resp. Lem. 2.2.

Lemma 2.1 (Chernoff bound). If X1, . . . , Xn are independent random variables with
values in {0, 1} and γ ∈ (0, 1), then Sn :=

∑n
i=1Xi fulfills

P (Sn ≤ (1− γ)E[Sn]) ≤ e−
E[Sn]γ2

2 .

Proof. This is (4.5) in [Mitzenmacher and Upfal, 2017].

Lemma 2.2 (Hoeffding’s inequality). If X1, . . . , Xn are independent random variables
with P(∀i ∈ [n] : Xi ∈ [ai, bi]) = 1 for {ai}i∈[n], {bi}i∈[n] ⊆ R with ai < bi for all i ∈ [n],
then

P
(∑n

i=1
(Xi − E[Xi]) ≥ ε

)
≤ exp

(
− 2ε2∑n

i=1(bi − ai)2

)
holds for any ε > 0

Proof. This is Prop. 2.7 in [Massart, 2007].

Throughout the rest of Sec. 2.1, we suppose γ ∈ (0, 1/2) to be arbitrary but fixed

and write, for any p ∈ [0, 1], {X(p)
k }k∈N for a sequence of random variables, which are
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independent and identically distributed (iid) as X
(p)
k ∼ Ber(p), a Bernoulli distribution

with parameter p. Under such assumptions, both previous lemmata are applicable. As
immediate consequences of Hoeffding’s inequality, we obtain the following two results.
They will be of help for the proofs of Thm. 5.15 and Thm. 5.13.

Lemma 2.3. For every h ∈ (0, 12) we have

supp:|p−1/2|>h
∑

n∈N
P
(
1

n

∑n

k=1
X

(p)
k =

1

2

)
≤ 1

h2
. (2.1)

Lemma 2.4. For κ > 1 and Uκ(n, γ) :=

√
ln(nκ/γ)

2n we have

P
(
1

n

∑n

k=1
X

(p)
k − p ≥ Uκ(n, γ)

)
≤ γ

nκ
,

P
(
1

n

∑n

k=1
X

(p)
k − p ≤ −Uκ(n, γ)

)
≤ γ

nκ
.

In particular, if n′ ∈ N is such that
∑

n≥n′
1
nκ ≤ 1, then

P
(
∃n ≥ n′ : 1

n

∑n

k=1
X

(p)
k − p ≥ Uκ(n, γ)

)
≤ γ,

P
(
∃n ≥ n′ : 1

n

∑n

k=1
X

(p)
k − p ≤ −Uκ(n, γ)

)
≤ γ.

The following lemma is a rather direct consequence of the Chernoff bound and an auxiliary
result that will be used in Sec. 5.4.

Lemma 2.5. Let ϕ : [0, 1] → [−π
2 ,

π
2 ] be given as ϕ(x) := 2 arcsin(

√
x) − π/2 and

Z
(p)
n := ϕ( 1n

∑n
i=1X

(p)
i ) for any n ∈ N, p ∈ [0, 1]. Then, for fixed c ∈ (0, 12) and every

p ∈ [0, c) ∪ (1− c, 1] we obtain

P
(
Z(p)
n ϕ(p) < 0

)
≤ exp

(
−(1− 2c)2n

4(2− 2c)2

)
. (2.2)

For γ ∈ (0, 1), q := exp
(
− (1−2c)2

4(2−2c)2

)
and ñ := ⌈logq ((1− q)γ)⌉ we thus have

supp∈[0,c)∪(1−c,1] P
(
∃n ≥ ñ : Z(p)

n ϕ(p) < 0
)
≤ γ. (2.3)

Next, we provide an anytime confidence bound, which is due to Jamieson et al. [2013] and
e.g. of interest for Sec. 2.2.

Lemma 2.6. Let ε = ε(γ) ∈ (0, 1) and δ = δ(γ) ∈
(
0, ln(1+ε)e

)
be such that γ =

2+ε
ε

(
δ

ln(1+ε)

)1+ε
holds. Define Uγ(n) := Uε(γ),δ(γ) as

Uγ(n) :=
(
1 +
√
ε
)√1

2
(1 + ε)n ln

(
ln((1 + ε)n)

δ

)
.
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Then, the centered sequence Y
(p)
k := X

(p)
k − p, k ∈ N, fulfills

P
(
∀n ∈ N :

∑n

k=1
Y

(p)
k ≤ Uγ(n)

)
≥ 1− γ (2.4)

as well as
P
(
∀n ∈ N :

∣∣∣∑n

k=1
Y

(p)
k

∣∣∣ ≤ Uγ(n)) ≥ 1− 2γ. (2.5)

The next lemma is a preparation for a result in Sec. 5.4.

Lemma 2.7. Let c ∈ (0, 1/2), γ ∈ (0, 1), γ′ := γ/4 and ε′ ∈ (0, 1), δ′ ∈
(
0, ln(1+ε

′)
e

)
be such that γ′ = 2+ε′

ε′

(
δ′

ln(1+ε′)

)1+ε′
. As in Lem. 2.5 let ϕ : [0, 1] → [−π

2 ,
π
2 ], ϕ(x) :=

2 arcsin(
√
x)− π/2 and Z

(p)
n := ϕ

(
1
n

∑n
i=1X

(p)
i

)
for all n ∈ N and p ∈ [0, 1] and let

L := L(c) := supx∈[c/2,1−c/2] |ϕ′(x)|.

Define for n ∈ N

l(n) :=
1

2
L2
(
1 +
√
ε′
)2

(1 + ε′) ln

(
ln((1 + ε′)n)

δ′

)
and further

ñ :=
d′

c2
ln

(
2

δ′
ln

(1 + ε′)d′

c2δ′

)
+ 1

with d′ := 2(1 +
√
ε′)2(1 + ε′). Then, we have

supp∈[c,1−c] P
(
∃n ≥ ñ : n(Z(p)

n − ϕ(p))2 > l(n)
)
≤ γ.

The next lemma will show us that an assumption, which we make on the sample strategy
for a theoretical result below, is rather a mild one.

Lemma 2.8. Let a ≥ 1, m ∈ N and suppose f : N → [1,∞) is monotonically increasing
with f(t) ∈ o( t

lna(t)) as t → ∞. Let {Zt}t∈N be a family of independent random variables

with Zt ∼ Ber( 1
f(t)m), t ∈ N. Then,

1

lna(t)

∑t

t′=1
Zt′ → ∞ a.s. as t → ∞. (2.6)

For the proof of Thm. 5.17 and Cor. 5.19, the following lemma will be helpful. It is a
generalization of Lem. 3 in [Iverson and Falmagne, 1985]. Here and throughout, χ2

(k)

denotes the χ2-distribution with k degrees of freedom, and for a, b ∈ R we also abbreviate
a ∧ b := min{a, b} as well as a ∨ b := max{a, b}.

Lemma 2.9. For fixed c, l > 0 the sequence {at}t∈N given as

at =
1

2t

∑t

r=0

(
t

r

)
P
(
χ2
(r∧c) > l

)
is monotonically increasing.
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2.2. Sequentially Testing for the Mode of a Biased Coin

In the dueling bandits scenario, when {i, j} is pulled at time step t, the observed feedback
is supposed to be a sample ∼ Ber(qi,j). Most of the properties of the underlying parameter
Q = (qi,j)1≤i,j≤m introduced in Sec. 1.2 such as CW, WST and SST highly depend on
whether qi,j is larger or lower than some particular threshold (that may depend on the
other entries of Q). Consequently, for being able to test for those properties, it is of
benefit to be able to test whether the bias p of a coin is larger than some threshold p0 or
not. This section is dedicated to discuss the sample complexities necessary and sufficient
for solving this problem and also to provide appropriate solutions. We start with a brief
formalization of the problem.

Problem Description Suppose p ∈ [0, 1] to be fixed but unknown to us and Θ0,Θ1 ⊆ [0, 1]
be two non-empty and disjoint parameter spaces for p that we know a priori. In fact,
we will restrict ourselves to some specific choices of Θ0 and Θ1 below. Let {Xn}n∈N
be a sequence of iid samples Xn ∼ Ber(p), n ∈ N, which are w.l.o.g. defined on the
same probability space (Ω,F ,P). Here, we write Pp(A) for the probability of an event
A ∈ σ(Xn, n ∈ N) ⊆ F when Xn ∼ Ber(p), and Ep for the expectation w.r.t. Pp. We are
interested in deciding

H0 : p ∈ Θ0 versus H1 : p ∈ Θ1 (2.7)

with predefined confidence 1− γ ∈ (0, 1), based on as few of the samples Xn as possible,
which are assumed to arrive in a sequential manner in the order X1, X2, X3, . . . . If a
testing algorithm A is given, it may decide at any time to stop the learning process (i.e.,
the process of observing Xi’s) and terminate. We write

TA := sup{n ∈ N | A observes Xn}

for the termination time/sample complexity of A. Here, TA is a random variable, which
depends on the randomness in the observed samples X1, X2, . . . as well as the innate
randomness of A itself, and takes values in [0,∞]. We write D(A) = 0 or D(A) = 1 if A
decides for H0 or H1, respectively. Moreover, we denote by ACoin the set of all testing
algorithms for (2.7).

We say that an algorithm A solves PΘ0,Θ1;γ
Coin if it terminates a.s. for any p ∈ Θ0 ∪Θ1

and tests (2.7) with type I and II errors at most γ, respectively, i.e., if1

∀p ∈ Θ0 ∪Θ1 : Pp
(
TA <∞

)
= 1,

∀p ∈ Θ0 : Pp (D(A) = 0) ≥ 1− γ,
∀p ∈ Θ1 : Pp (D(A) = 1) ≥ 1− γ.

In the further course of this text, we restrict ourselves to the following choices of Θ0 and
Θ1, and define the related problems Pp0,p1;γCoin , Pp0;γCoin, P

γ
Coin and Ph,γCoin as follows:

• If Θ0 = {p0} and Θ1 = {p1} for some distinct p0, p1 ∈ [0, 1], we write Pp0,p1;γCoin for

PΘ0,Θ1;γ
Coin . For any p0 ̸= 1/2, we further abbreviate Pp0,1−p0;γCoin as Pp0;γCoin.

1The probability Pp(T
A < ∞ and D(A) = b) is taken w.r.t. both the randomness of the {Xn}n∈N (with

Xn ∼ Ber(p)) as well as the randomness involved in the (possibly) probabilistic behaviour of A.
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• If Θ0 = [0, 1/2− h) and Θ1 = (1/2+ h, 1] for some known h ∈ [0, 1/2), we also write

Ph,γCoin instead of PΘ0,Θ1;γ
Coin . For convenience, we abbreviate PγCoin := P0,γ

Coin.

If h < h′, any solution to Ph
′,γ

Coin also solves Ph,γCoin. In this regard, h can be seen as a
hardness parameter, which allows us to model the low-noise assumption in dueling bandits,
cf. Sec. 1.1. Moreover, we obtain as a direct consequence of the definitions the equivalences

A solves PγCoin ⇔ ∀h ∈ (0, 1/2) : A solves Ph,γCoin ⇔ ∀p0 > 1/2 : A solves Pp0;γCoin,

as well as, for any h ∈ (0, 1/2),

A solves Ph,γCoin ⇔ ∀p0 ∈ (1/2 + h, 1] : A solves Pp0;γCoin.

which are valid for any testing algorithm A and any fixed γ.
Before treating sequential testing algorithms, let us discuss the limitations of non-

sequential testing alorithms to the problems at hand using the examples of Ph,γCoin and

PγCoin. In Sec. 2.2.1 we present sample complexity lower bounds of solutions to Ph,γCoin,
PγCoin and also Pp0,p1;γCoin , which will be of use for proving sample complexity lower bounds
in the dueling bandits scenario in Sec. 4 and 5. Then, we continue in Sec. 2.2.2 with the
discussion of solutions to Pp0;γCoin, P

h,γ
Coin and PγCoin provide corresponding sample complexity

bounds.

Non-sequential Testing Algorithms

A first, naive idea for tackling Ph,γCoin would be to restrict ourselves to non-sequential
testing algorithms. Such a non-sequential algorithm A may choose a priori both T ∈ N
and a function f : {0, 1}T → {0, 1}, observe X1, . . . , XT and output f(X1, . . . , XT )
as decision. Obviously, the termination time TA of such an algorithm is T . An easy
application of Hoeffding’s inequality shows: If we choose T ∈ O( 1

h2
ln 1

γ ) large enough
and let f(X1, . . . , XT ) = 0 if

∑
t≤T Xt ≥ T/2 and 1 otherwise, we obtain a non-sequential

testing algorithm A, which solves Ph,γCoin. According to Anthony and Bartlett [1999], this
solution is already asymptotically optimal among all possible non-sequential solutions. Its
details and optimality are provided in the following lemma.

Lemma 2.10. Let h ∈ (0, 1/2) be fixed.

(i) Let γ ∈ (0, 1) be arbitrary. Choose T :=
⌈

1
2h2

ln 1
γ

⌉
and define f : {0, 1}T → {0, 1}

via

f(x1, . . . , xT ) :=

{
0, if 1

T

∑T
i=1 xi <

1
2 ,

1, if 1
T

∑T
i=1 xi ≥

1
2 .

The corresponding non-sequential testing algorithm A solves Ph,γCoin and P1/2+h;γ
Coin .

(ii) Let γ ∈ (0, 1/4) and suppose A to be a non-sequential testing algorithm, which solves

Ph,γCoin. Then, we have a.s.

TA ≥ 1

2

⌊
1− 4h2

h2
ln

(
1

8γ(1− 2γ)

)⌋
.

In particular, TA ∈ Ω
(

1
h2

ln 1
γ

)
as min{h, γ} → 0.
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A restriction to non-sequential testing algorithms would come with several drawbacks:

• As we will see later in Prop. 2.17, the solution to P1/2+h;γ
Coin from Lem. 2.10 is not

optimal with respect to the more general class of sequential testing algorithms.

• As a solution to PγCoin clearly solves Ph,γCoin for every h ∈ (0, 1/2), the lower bound
from Lem. 2.10 shows that there does not exist a non-sequential solution to PγCoin.

• Of course, the lower bound from Lem. 2.10 only holds for non-sequential testing
algorithms and is not applicable to sequential ones.

To overcome these issues, let us from now on consider the broader class of sequential testing
algorithms. Since the feedback in the dueling bandits is observed in an online manner, a
sequential testing algorithm is applicable there. Every such algorithm A executes in each
time step t ∈ N both of the following steps:

(i) Observe Xt.

(ii) Either skip this step or terminate. In the latter case, return either 0 or 1 as decision.

The decision whether A decides at time t for executing (i) or (ii) may depend on the
observations X1, . . . , Xt it has made until time t. Thus the number TA of samples, which
A observes before termination, is a random variable with values in N ∪ {∞}, where
TA =∞ means that A does not terminate.

In the following and throughout the entire thesis, the expectation Ep[TA] of such a
probabilistic algorithm A is also taken with regard to the possibly probabilistic behavior
of A, i.e., formally we have Ep,A[TA]. Nevertheless, we may simply write Ep[TA] for
convenience.

2.2.1. Lower Bounds

We start with a lower bound for the sample complexity of solutions to P1/2+h;γ
Coin , which

is based on the optimality of the later on discussed sequential probability ratio test, cf.
Prop. 2.17 below.

Proposition 2.11. Suppose 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1/2 to be fixed. If A is

a solution to P1/2+h;γ
Coin , then

E1/2±h[T
A] ≥ 1− 2γ

2h

 ln 1−γ
γ

ln 1/2+h
1/2−h

 ≥ c(h0, γ0)

h2
ln

1

γ

for some appropriate constant c(h0, γ0), which does not depend on γ or h. In particular,

any solution A to Ph,γCoin fulfills

supp:|p−1/2|>h Ep
[
TA] ≥ 1− 2γ

2h

 ln 1−γ
γ

ln 1/2+h
1/2−h

 ≥ c(h0, γ0)

h2
ln

1

γ
.
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Proof. The first statement follows from the optimality of the sequential probability ratio

test for P1/2+h;γ
Coin and is stated and proven in detail in Prop. 2.17 below. To prove

the second statement, note that any solution A to Ph,γCoin also solves P1/2+h+ε;γ
Coin for any

ε ∈ (0, 1 − 1/2 − h], therefore, it can be inferred from the first one by taking the limit
ε↘ 0.

Alternatively, the worst-case asymptotic lower bound from Prop. 2.11 can be deduced in
a slightly weaker version (that holds only for small values of γ) from results in [Mannor
and Tsitsiklis, 2004]. For the sake of completeness, we state this result in the following.

Proposition 2.12. Let γ ∈
(
0, 1

40e8

)
and h ∈

(
0, 14
)

be fixed. If A solves P1/2+h;γ
Coin resp.

Ph,γCoin, then

maxp∈{1/2±h} Ep
[
TA] ≥ c

h2
ln

1

γ
resp. supp:|p−1/2|>h Ep

[
TA] ≥ c

h2
ln

1

γ
,

where c > 0 is a universal constant, which does not depend on h or γ.

If A solves PγCoin, then it is also a solution to Ph,γCoin for every h ∈ (0, 1/2). In this case,

Prop. 2.11 shows that supp ̸=1/2 Ep[TA] =∞ holds. In contrast to solutions to Ph,γCoin, it is
not possible that A terminates for any p ̸= 1/2 almost surely before some time N ∈ N.

Proposition 2.13. Let γ ∈ (0, 1/2) be fixed. If A solves PγCoin, then

lim suph→ 0

E1/2±h
[
TA]

1
h2

ln ln 1
h

≥ 1

2
P1/2(T

A =∞) ≥ 1− 2γ

2
> 0.

Proof. This is stated in Thm. 1 in [Farrell, 1964]. To verify this, note that 1
| ln | ln |h||| =

1
ln ln 1

h

holds for h < 1
e and also confer the remark directly after Thm 1 therein.

Chen and Li [2015] demonstrate that the limes superior in Prop. 2.13 may not be avoided.
Moreover, they provide a slightly stronger result than Prop. 2.13 (cf. Thm. D.1 there),
but we do not discuss it here as it is not required in the further course of this thesis.
As a preparation for the proof of Prop. 5.3, we want to show lower bounds on the

expected sample complexity of solutions to Pp0,p1;γCoin for arbitrary distinct p0, p1 ∈ [0, 1].
Note that Prop. 2.17 provides a sample complexity lower bound for the particular case

p0 = 1/2− h, p1 = 1/2 + h. Reducing P1/2+h;1/2−h
Coin to Pp0,p1;γCoin will thus allow us to infer

a sample complexity lower bound for solutions to Pp0,p1;γCoin . The following lemma plays a
crucial role in this reduction.

Lemma 2.14. Suppose {X(p)}p∈[0,1] and {U (r)}r∈[0,1] to be families of random variables

X(p) ∼ Ber(p) and U (r) ∼ Ber(r) such that, for any p, r ∈ [0, 1], X(p) and U (r) are
independent.

(i) Y (p,r) := X(p) + 1{X(p)=0}U
(r) fulfills Y (p,r) ∼ Ber(p+ (1− p)r).

(ii) If p0, p1 ∈ [0, 1] with p1 > p0 and p0 + p1 ≥ 1 are fixed, we obtain with the choices

h :=
p1 − p0

2(2− p1 − p0)
and r′ :=

p0 − (1/2− h)
1/2 + h

that Y (1/2−h,r′) ∼ Ber(p0) and Y (1/2+h,r′) ∼ Ber(p1).
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With this preparation, we can prove the following sample complexity lower bound for
solutions to Pp0,p1;γCoin .

Corollary 2.15. For any fixed γ0 ∈ (0, 1/2) and ε0 ∈ (0, 1) there exists a constant
c = c(ε0, γ0) > 0 with the following property: Let γ ∈ (0, γ0), p0, p1 ∈ (0, 1) with
p0 < p1 < p0 + ε0(1 − p0) and p0 + p1 ≥ 1, and suppose A is any sequential testing
algorithm, which solves Pp0,p1;γCoin . Then,

minp∈{p0,p1} Ep[T
A] ≥ c

(
2(2− p1 − p0)

p1 − p0

)2

ln
1

γ
.

Proof of Cor. 2.15. Suppose γ0 ∈ (0, 1/2) and ε0 ∈ (0, 1) to be fixed. Due to 4x
1+2x → 1

as x↗ 1
2 , we can fix h0 := h0(ε0) ∈ (0, 1/2) with ε0 <

4h0
1+2h0

. By assumption, we have

p1 < p0 +
4h0

1 + 2h0
(1− p0) =

4h0 + p0(1− 2h0)

1 + 2h0

and thus

h :=
p1 − p0

2(2− p1 − p0)
∈ (0, h0).

Choose c := c(h0, γ0) to be the corresponding constant from Prop. 2.17. Moreover, define

r := p0−(1/2−h)
1/2+h and let U

(r)
t ∼ Ber(r) be such that the families {U (r)

t }t∈N and {X(p)
t }t∈N

are independent. Let A′ be the sequential algorithm, which simulates A in the following
way: At each time step t ∈ N, if A has not yet terminated, throw the coin C and observe

feedback X
(p)
t and pass the feedback Y

(p,r)
t := X

(p)
t + 1{X(p)

t =0}U
(r)
t to A. If A terminates

with decision w ∈ {0, 1}, A′ terminates as well and outputs w.

Note that A′ knows both the value of h as well as of p0, which are necessary to compute r.

Moreover, by construction TA = TA′
holds. From Lem. 2.14 we infer Y

(1/2−h,r)
t ∼ Ber(p0)

and Y
(1/2+h,r)
t ∼ Ber(p1). As D(A′) = w iff D(A) = w, it follows that P1/2−h(D(A′) =

0) = Pp0(D(A) = 0) ≥ 1 − γ and P1/2+h(D(A′) = 1) = Pp1(D(A) = 1) ≥ 1 − γ.

Consequently, A′ solves P1/2+h;γ
Coin . Thus, recalling the choice of c, Prop. 2.17 lets us infer

that

minp∈{p0,p1} Ep[T
A] = minp∈{1/2±h} Ep[TA′

] ≥ c

h2
ln

1

γ
,

which completes the proof due to the choice of h.

Table 2.1 summarizes the previously presented sample complexity lower bounds for
solutions to the different variants of the coin-tossing problem in a partly simplified
manner.

2.2.2. Upper Bounds

Next, we discuss different approaches for sequential solutions to Ph,γCoin and PγCoin. As
already mentioned, PγCoin cannot be solved by a non-sequential testing algorithm but

requires non-sequential solutions. Apart from that, considering sequential tests for Ph,γCoin

seems reasonable as well, since these possibly allow for earlier termination than the
non-sequential solution from above.
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Table 2.1.: Sample complexity lower bounds for sequential solutions to the coin-tossing
problems.

Problem Theoretical statement Bound

P1/2+h;γ
Coin E1/2±h[T

A] ∈ Ω( 1
h2 ln

1
γ ) Prop. 2.11

Ph,γ
Coin supp:|p−1/2|>h Ep[T

A] ∈ Ω( 1
h2 ln

1
γ ) Prop. 2.11

Pγ
Coin lim suph→ 0 E1/2+h

[
TA] /( 1

h2 ln ln
1
h ) ≥ 1/2− γ Prop. 2.13

Pp0,p1;γ
Coin minp∈{p0,p1} Ep[T

A] ≥ c
(

2(2−p1−p0)
p1−p0

)2
ln 1

γ Cor. 2.15

The Sequential Probability Ratio Test

A first approach for a sequential solution to coin-tossing is the sequential probability ratio
test (SPRT), which has its origins in [Wald, 1945]. Let us illustrate the idea of the SPRT
on a small example taken from [Siegmund, 1985, p. 10] and suppose we are interested
in solving Pp0,p1;γCoin , i.e., we want to test H0 : p = p0 versus H1 : p = p1 for some known
distinct p0, p1 ∈ [0, 1]. Performing a SPRT A here means to choose boundary values
−∞ < A′ < B′ < ∞, sample until the sequential probability ratio λn := Pp0(∀i ≤ n :
Xi = xi)/Pp1(∀i ≤ n : Xi = xi) is not in (A′, B′) and then return 0, if λn ≥ B′, and 1
otherwise. With qb := 1− pb for b ∈ {0, 1} and Sn :=

∑n
i=1(2Xi − 1) = 2

∑n
i=1Xi − n we

get
λn = (p1p

−1
0 )(n+Sn)/2(q1q

−1
0 )(n−Sn)/2 = (p1q0p

−1
0 q−1

1 )Sn/2(p1p
−1
0 q1q

−1
0 )n/2.

This shows that there exist A < B with λn ≤ A′ iff Sn ≤ A and λn ≥ B′ iff Sn ≥ B, i.e.,
A may decide based on Sn instead of λn. This justifies the following definition of the
SPRT that will be used throughout this section.

Definition 2.16. For −∞ < A < B <∞, the sequential probability ratio test (SPRT)
with barriers A and B is the testing algorithm, which stops at the first time n where
Sn :=

∑n
i=1(2Xi − 1) is not in (A,B) and then outputs 0 if Sn ≥ B and 1 if Sn ≤ A. For

B > 0, the symmetric SPRT with barrier B is the SPRT with barriers −B and B.

Writing δx for the Dirac measure on {x}, which assigns any set W ⊆ R the measure 1 if
x ∈W and 0 otherwise, Xn ∼ Ber(p) implies 2Xn− 1 ∼ pδ1 + (1− p)δ−1 and thus Sn is a
random walk on Z with drift p. In Chapters 4 and 5, we will rather use the test statistic
Xn = 1

n

∑n
i=1Xi instead of Sn, but since Sn ≥ B iff Xn ≥ 1/2 + B/n and Sn ≤ A iff

Xn ≤ 1/2−B/n, this is unproblematic.

With the particular choices −A = B =
⌈

ln((1−γ)/γ)
ln((1/2+h)/(1/2−h))

⌉
, the resulting SPRT can be

shown to be an optimal solution to P1/2+h;γ
Coin and also to Ph,γCoin with sample complexity

O( 1
h2

ln 1
γ ). The details are presented in the upcoming proposition, which also contains

and justifies the first statement of Prop. 2.11 from above.

Proposition 2.17. Suppose 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1/2 to be fixed.

(i) The symmetric SPRT A with barrier B :=
⌈

ln((1−γ)/γ)
ln((1/2+h)/(1/2−h))

⌉
solves P1/2+h;γ

Coin and

Ph,γCoin, i.e.,

∀p ≥ 1/2+h : Pp(D(A) = 0) ≥ 1−γ and ∀p ≤ 1/2−h : Pp(D(A) = 1) ≥ 1−γ.
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Moreover, the termination time TA of A fulfills

sup
p∈[0,1/2−h]∪[1/2+h,1]

Ep[TA] = E1/2±h[T
A] =

1− 2γ

2h

 ln 1−γ
γ

ln 1/2+h
1/2−h

 , (2.8)

which is in O( 1
h2

ln 1
γ ) as max{ 1h ,

1
γ } → ∞.

(ii) The testing algorithm A from (i) is w.r.t. E1/2+h[T
A] and E1/2−h[T

A] optimal among

all solutions to P1/2+h;γ
Coin . In other words: If A′ is an algorithm, which fulfills

P1/2+h(D(A′) = 0) ≥ 1− γ and P1/2−h(D(A′) = 1) ≥ 1− γ,

then it fulfills

E1/2±h[T
A′
] ≥ E1/2±h[T

A] =
1− 2γ

2h

 ln 1−γ
γ

ln 1/2+h
1/2−h

 ≥ c(h0, γ0)

h2
ln

1

γ

for some appropriate constant c(h0, γ0), which does not depend on γ or h.

Prop. 2.11 and Prop. 2.17 show that the SPRT from Prop. 2.17 is, w.r.t. the worst-case
expected sample complexity, an asymptotically optimal solution to Ph,γCoin. For P

γ
Coin, we

have the following negative result.

Lemma 2.18. There does not exist a SPRT that solves PγCoin.

The Generalized Sequential Probability Ratio Test

For solving PγCoin we generalize the notion of SPRTs in a similar way as Farrell [1964].

Definition 2.19. For A,B : N → R ∪ {±∞} with A(n) ≤ B(n) for all n ∈ N, the
generalized sequential probability ratio test (GSPRT) A with barriers A and B is that
testing algorithm, which samples until the first time n where Sn = 2

∑n
i=1Xi − n ̸∈

[A(n), B(n)] and outputs 0 if Sn > B(n) and 1 if Sn < A(n). If B = −A, we simply call
A the symmetric GSPRT with barrier B.

Example 2.20. (i) Every SPRT is a GSPRT with constant barriers. In particular, the

symmetric SPRT from Prop. 2.17 with barrier B =
⌈

ln((1−γ)/γ)
ln((1/2+h)/(1/2−h))

⌉
is a GSPRT

that solves Ph,γCoin.

(ii) If T is odd, the test from Lem. 2.10 can be regarded as a symmetric GSPRT with
a barrier B given by B(n) = ∞ for n ≤ T and B(n) = 0 for n > T , which solves

Ph,γCoin. If T is even, the GSPRT with barrier B may terminate at time T + 1 and
does not coincide with the test from Lem. 2.10.

For the tests from Lem. 2.10 and Prop. 2.17, if γ is fixed, the expected termination time
on the instance 1

2 + h > 1
2 is monotonically increasing in h. The next lemma shows that

this property holds in fact for any symmetric GSPRT. Its proof is based on a coupling
argument and given in the appendix.
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Lemma 2.21. If A is a symmetric GSPRT, then

∀1/2 ≤ p1 ≤ p2,∀n ∈ N : Pp1
(
TA ≤ n

)
≤ Pp2

(
TA ≤ n

)
.

In particular, the function [12 , 1] → R ∪ {∞}, h 7→ E 1
2
+h[T

A] is monotonically decreasing.

The following proposition provides us a solution A to PγCoin, which is, according to
Prop. 2.13, for fixed γ w.r.t. its asymptotic behavior of h 7→ E1/2±h[T

A] optimal. Therein,
we abbreviate for the sake of convenience ln2(·) := ln ln(·) and ln3(·) := ln ln ln(·). Accord-
ing to Farrell [1964], it is based on a version of the law of the iterated logarithm due to
Cantelli [1933].

Proposition 2.22. Let γ ∈ (0, 1/2) be fixed. Let S′
n be a symmetric random walk on Z,

i.e. S′
n =

∑n
i=1X

′
i where X ′

i ∼ 1
2(δ1 + δ−1) are iid. For arbitrary c > 3 the number

n0 := min

{
n ∈ N

∣∣P(∃ñ ≥ n+ 1 :
∣∣S′
ñ

∣∣ ≥ ñ√
2
ln2(ñ+ e) + c ln3(ñ+ ee)

)
≤ γ

}
is finite. The corresponding symmetric GSPRT A with the barrier BFarrell

γ : N → [0,∞]
given by

BFarrell
γ (n) :=

{√
n ln2(n+ e) + c ln3(n+ ee)/

√
2, if n ≥ n0 + 1,

n, otherwise

solves PγCoin and fulfills

lim
h→ 0

E1/2±h
[
TA]

1
h2

ln ln 1
h

=
1

2
P1/2(T

A =∞) > 0. (2.9)

Note that |Sn| = |
∑n

i=1(2Xi − 1)| ≤ n = BFarrell
γ (n) for n ≤ n0 implies that the GSPRT

from Prop. 2.22 does not terminate before n0; in fact, we could have equivalently defined
BFarrell
γ (n) = ∞ for n ≤ n0. As it seems hard to determine n0 in Prop. 2.22 – and this

value is presumably very large – this algorithm does not appear to be very practicable
to us. For this reason, we provide further below two other solutions to PγCoin, which are
obtained by means of a reduction to the multi-armed bandits scenario.

Before doing so, let us state yet another GSPRT, which solves Ph,γCoin with different
theoretical guarantees as the previous solutions. It is mainly based Lem. 2.6 from above,
and for the sake of generality we state and analyze a general parameterized version of it.

Proposition 2.23. (i) For h ∈ (0, 1/2), γ ∈ (0, 1) let ε = ε(γ) ∈ (0, 1) and δ = δ(γ) ∈(
0, ln(1+ε)e

)
be such that γ = 2+ε

ε

(
δ

ln(1+ε)

)1+ε
. Then, the symmetric GSPRT with

barrier BLiL
h,γ defined via

BLiL
h,γ (n) := max

{
0, (1 +

√
ε)

√
1

2n
(1 + ε) ln

(
ln((1 + ε)n)

δ

)
− h

}
. (2.10)

solves Ph,γCoin. Moreover, n 7→ BLiL
h,γ (n) is monotonically decreasing.
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(ii) Let γ0, ε0 ∈ (0, 1) be such that ( ε0
2+ε0

)
1

1+ε0 < 1
e holds2. With ε(γ) := ε0 and δ(γ) :=

( γε0
2+ε0

)
1

1+ε0 ln(1 + ε0) ∈
(
0, ln(1+ε0)e

)
we have γ = 2+ε(γ)

ε(γ)

(
δ(γ)

ln(1+ε(γ))

)1+ε(γ)
and the

symmetric GSPRT A from (i) started with h and γ fulfills

infp∈[0,1/2−h)∪(1/2+h,1] Pp
(
TA ≤ N0(h, γ)

)
= 1,

where

N0(h, γ) :=
d0
h2

ln

(
1

δ(γ)
ln

(1 + ε0)d0
h2δ(γ)

)
+ 2 ∈ O

(
1

h2

(
ln ln

1

h

)
ln

1

γ

)
with d0 :=

1
2(1 +

√
ε0)

2(1 + ε0).

In Prop. 2.23 we have to choose ε0 ∈ (0, 1) such that f(ε0) < 1/e for f(x) := ( x
2+x)

1
1+x .

As ln x
x+2 < 0 for x ∈ (0, 1), we see that

f ′(x) =

(
x

x+ 2

)1/(x+1)−1

(x+ 1)−2(x+ 2)−2

(
2(x+ 1)− x(x+ 2) ln

(
x

x+ 2

))
is positive on (0, 1). Together with f(0.54) < 1/e this shows that in particular any ε0 ≤ 0.54

would be a valid choice. If ε(γ) = ε0 = 1/2 and δ = ( γε0
2+ε0

)
1

1+ε0 ln(1+ε0) = (γ/5)2/3 ln(3/2),
we obtain

BLiL
h,γ (n) := max

{
0,

2 +
√
2

2

√
3

4n
ln
(
52/3γ−2/3 ln(3n/2)/ln(3/2)

)
− h

}
and

N0(h, γ) =
3(2
√
2 + 3)

8h2
ln

(
52/3

γ2/3 ln(3/2)
ln

(
9(2
√
2 + 3)52/3

16 ln(3/2)h2γ2/3

))
+ 2.

The proof of Prop. 2.23 makes use of the following auxiliary lemma.

Lemma 2.24. For any N ≥ 1, ε ∈ (0, 1), c > 0 and δ ∈ (0, 1] we have the implication

N >
1

c
ln

(
2

δ
ln

1 + ε

cδ

)
⇒ 1

N
ln

(
ln((1 + ε)N)

δ

)
< c.

Proof. This is the contraposition of (1) on p. 6 in [Jamieson et al., 2013].

Note that the solution from Prop. 2.23 is guaranteed to terminate before some known
time of order O( 1

h2
(ln ln 1

h) ln
1
γ ) whilst still having the chance to terminate early in case

|p− 1/2| is large. Such guarantees could not possibly be given by any SPRT: If A was a

SPRT with barriers A and B that solves Ph,γCoin for appropriately small fixed h and γ and
terminates a.s. before some time N ∈ N, then we would necessarily have B,−A > 1. But
then, Pp(TA > 0) ≥ Pp(∀n′ ≤ n : |Sn| ≤ 1) > 0 would hold for any p ∈ (0, 1) and every
n ∈ N, a contradiction to the existence of N .
For solving Ph,γCoin whilst terminating a.s. before some time O( 1

h2
ln 1

γ ), one may also

combine the test from Prop. 2.23 with the non-sequential solution to Ph,γCoin from Lem. 2.10.

2E.g., ε0 = 1/2 works here.
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Corollary 2.25. For fixed γ ∈ (0, 1), h ∈ (0, 1/2) let ε and δ be as in Prop. 2.23 and
define B : N → [0,∞] via

B(n) :=

{
BLIL
h,γ (n), if n ≤ 1

2h2
ln 1

γ

0, otherwise.

with BLIL
h,γ as in Prop. 2.23. Then, the symmetric GSPRT A with barrier B solves Ph,3γCoin

and fulfills Pp

(
TA ≤ 1

2h2
ln 1

γ + 2
)
= 1 for any p ∈ [0, 1].

Substituting γ′ = γ
3 , Cor. 2.25 yields a GSPRT A, which solves Ph,γCoin with the guar-

antee Pp
(
TA ≤ 1

2h2
ln 3

γ + 2
)

= 1 whenever |p − 1/2| > h. In particular, it fulfills

supp:|p−1/2|>h Ep[TA] ∈ O( 1
h2

ln 1
γ ) and is thus asymptotically optimal with regard to

Prop. 2.11. In addition to Prop. 2.17 and Lem. 2.10, this can be seen as a third proof
that the asymptotic lower bound from Prop. 2.13 is sharp. In comparison to A, the test
A′ from Prop. 2.23 is only up to a factor of ln ln 1

h asymptotically optimal in this sense.

However, until time
⌊

1
2h2

ln 3
γ

⌋
, the barriers of A are larger than those of A′. Thus, if A

and A′ terminate early, A′ is likely to terminate earlier than A. In particular, one cannot
say that A is per se better than A′.

A Reduction to Multi-Armed Bandits

We continue the discussion on the problem PγCoin by presenting yet another approach to
solve it, namely reducing it to the best-arm identification problem in the multi-armed
bandits setting. Suppose we are given m arms a[1], . . . , a[m] and are allowed to pull at
each time step one of them. When pulling arm a[m] for the n-th time, we obtain a

(noisy) reward Z
[i]
n . We assume that {Z [i]

n }i∈[m],n∈N are independent and that there exists

p[1], . . . , p[m] with Z
[i]
n ∼ Ber(p[i]) for every i ∈ [m]. The arm a[i

∗] is considered to be the
best arm if it yields on average the highest reward among all the available arms, i.e.,
p[i

∗] = max{p[i] : i ∈ [m]}.
Alg. 1 is a general reduction of PγCoin to the best-arm identification problem with two

arms. In order todecide whether the bias p of the observed iid samples X1, X2, . . . is
larger or smaller than 1

2 , it assigns the Xi’s as reward values to the first arm and assigns
iid samples from Ber(12) to the second arm. Then, it executes a MAB algorithm AMAB

for best-arm identification and outputs 0 iff the first arm is detected as the best arm and
1 otherwise. Since the first arm is the best one iff p > 1

2 , the decision will be correct
provided the MAB algorithm decided correctly.

For t ∈ N we write n[i](t) for the number of times arm a[i] has been pulled up to time t
and note that t = n[1](t) + · · ·+ n[m](t) holds. For the sake of convenience, we restrict
ourselves to two choices of AMAB in the following. The first of these is lil’UCB from
Jamieson et al. [2013] and provided as Alg. 2, and the second is Exponential-Gap
Estimation from Karnin et al. [2013] and stated (for the sake of convenience only for 2
arms) as Alg. 3. The two propositions below state the guarantees we obtain when properly
initializing Alg. 1 with these choices of AMAB.
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Algorithm 1 Reduction of PγCoin to best-arm identification

Input: access to an iid sequence {Xn}n∈N of Bernoulli random variables,
a MAB algorithm AMAB for best-arm identification
Initialization: Let {Yn}n∈N be iid with Yn ∼ Ber(1/2) and independent of {Xn}n∈N
Create arms a[1], a[2] with rewards Z

[1]
n = Xn and Z

[2]
n = Yn, for all n ∈ N, respectively

1: Simulate AMAB with the two-armed bandit with arms a[1] and a[2]

2: if AMAB predicts a[1] to be the best arm then return 0
3: else return 1

Algorithm 2 lil’UCB

Input: algorithm parameters δ, ε, λ, β > 0, and a MAB instance with arms a[1], . . . , a[m]

with associated rewards {Z [1]
n }n∈N, . . . , {Z

[m]
n }n∈N

Initialization: Sample each of the m arms once (i.e., n[i](t) = 1 for all i and t = n)

1: while ∀i ∈ [m] : n[i](t) < 1 + λ
∑

j ̸=i n
[j](t) do

2: Pull arm a[It], where It is

argmaxi∈[m]

 1

n[i](t)

∑n[i](t)

n′=1
Z

[i]
n′ + (1 + β)(1 +

√
ε)

√
(1 + ε) ln

(
ln((1+ε)n[i](t))/δ

)
2n[i](t)


3: Update n[k](t+ 1)← n[k](t) + 1{k=It} for all k ∈ [m], then let t← t+ 1

4: return argmaxi∈[m]n
[i](t).

Proposition 2.26. Let ε ∈ (0, 1) be fixed, define cε :=
2+ε
ε

(
1

ln(1+ε)

)1+ε
. Let γ ∈ (0, 1)

be such that δ := γ
8cε
∈
(
0, ln(1+ε)ecε

)
holds and choose β ∈ (0, 3] arbitrarily. Then, there

exists a constant λ > 0 with the following property: Denote by A Alg. 1 with sample access
to {Xn}n∈N, where the black-box component AMAB is lil’UCB instantiated with m = 2,
δ, ε, λ and β. Then, A solves PγCoin and fulfills

supp:|p−1/2|>h Pp
(
TA ≤ C(h, γ)

)
≥ 1− γ (2.11)

where C(h, γ) ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
as min{h, γ} → 0. Moreover, for any t′ ∈ N and

p ∈ [0, 1] we have Pp(TA > t′) > 0.

Jamieson et al. [2013, p. 5] suggest to use ε = 0.01, β = 1 and λ =
(
2+β
β

)2
as parameters

for lil’UCB, for which their theoretical guarantees are proven to hold. However, they
point out that the choice ε = 0, β = 1/2, λ = 1 + 1/m and γ ∈ (0, 1) works well in their
experiments even if they are not formally allowed.

Proposition 2.27. Let γ ∈ (0, 1) be arbitrary. Write A for Alg. 1 with sample access to
{Xn}n∈N with AMAB chosen to be Alg. 3 called with γ. Then, A solves PγCoin and fulfills

supp:|p−1/2|>h Pp
(
TA ≤ C(h, γ)

)
≥ 1− γ, (2.12)

where C(h, γ) ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
as min{h, γ} → 0. Moreover, for any t′ ∈ N and

any p ∈ [0, 1] we have Pp(TA > t′) > 0.
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Algorithm 3 Exponential-Gap Estimation for 2 arms

Input: γ > 0
Initialization: r ← 1
Notation: Write i⊥ := 3− i, i.e., 1⊥ = 2 and 2⊥ = 1.

1: while True do
2: S ← {1, 2}, εr ← 1

2r+2 , γr ← γ
50r3

3: Initialize ε̃1 ← εr
8 , γ̃1 ← γr

4: while |S| > 1 do

5: ∀k ∈ {1, 2}: Pull a[k] for
⌈

4
ε̃2l

ln 3
γ̃l

⌉
times, let p̃

[i]
l be its average reward

6: if ∃ k ∈ {1, 2} with p̃[k
⊥]

l < p̃
[k]
l then S ← {k}

7: Update ε̃l+1 ← 3
4 ε̃l, γ̃l+1 ← γ̃l

2 and then l← l + 1

8: i← the unique element in S

9: ∀k ∈ {1, 2}: Continue pulling a[k] s.t. it has been pulled ≥
⌈

2
ε2r

ln 2
γr

⌉
times at this

iteration of the outer while-loop; let p̂
[k]
r be its average reward

10: if p̂
[i⊥]
r < p̂

[i]
r − εr then return i

11: Update r ← r + 1

We remark that the solutions from Prop. 2.26 and Prop. 2.27 to PγCoin are not GSPRTs in
the sense of Def. 2.19. To see this indirectly for the solution A from Prop. 2.26, suppose A
was a GSPRT with barriers A,B : N → [0,∞] with A(n) ≤ B(n) for all n ∈ N. According
to its definition, Pp(TA = 0) = 0 holds, and Prop. 2.26 yields Pp(TA > t′) > 0 for every
t′ ∈ N. Hence, we have Pp(TA ∈ {0, 1}) ∈ (0, 1). Now, a closer look at A (the algorithm
from Prop. 2.26) reveals that

∀p ∈ [0, 1] ∀n ∈ N : Pp(TA = n and D(A) = 0) = P1−p(T
A = n and D(A) = 1).

Due to this, we may suppose w.l.o.g. that B(n) = −A(n) holds for every n ∈ N, i.e., A
is a symmetric GSPRT. As S1 = (2X1 − 1) ∼ pδ1 + (1− p)δ−1, Pp(TA > 1) > 0 is only
possible if B(1) ≥ 1, and B(1) ≥ 1 implies TA > 1 a.s. Consequently, Pp(TA ≤ 1) ∈ {0, 1}
has to hold, a contradiction. Exactly the same argumentation shows that the solution
from Prop. 2.27 to PγCoin is nto a GSPRT.

There exist further best-arm identification algorithms AMAB for MABs, which could be of
interest for this latter approach such as [Kalyanakrishnan et al., 2012, Shah et al., 2020]
and [Kaufmann and Kalyanakrishnan, 2013] just to mention a few. Since our main focus
is on asymptotic optimality (up to logarithmic factors), which is already provided by the
solutions from Prop. 2.17 and Prop. 2.22, we do not further elaborate on this.

A Bayesian Approach

Suppose p ̸= 1/2 fixed but unknown and write Xt = X
(p)
t . An alternative approach for

solving PγCoin could be to assume a prior distribution µ0 for the underlying value of p and
update the corresponding posterior µt when observing sample Xt motivated by Bayes’
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rule as

µt(p̂) :=
µt−1(p̂)p̂

1{Xt=1}(1− p̂)1{Xt=0}∫ 1
p̃=0 µt−1(p̃)p̃

1{Xt=1}(1− p̃)1{Xt=0}
.

When choosing as µ0 the beta distribution (e.g., the uniform distribution), which is a
well-known conjugate prior in Bayesian statistics, the resulting posterior µt is assured to
be a beta distribution as well. Recently, Waudby-Smith and Ramdas [2020] showed that

the prior-posterior ratio (PPR) Rt(p̂) :=
µ0(p̂)
µt(p̂)

is for the true value p̂ = p a martingale,
and an appropriate version of Ville’s inequality for nonnegative supermartingales allowed
them to show that the sets Ct := {p̂ : Rt(p̂) < 1/γ} form a (1− γ)-confidence sequence
in the sense that P(∃t ≥ 1 : p ̸∈ Ct) ≤ γ. As pointed out by Jain et al. [2021], when
choosing µ0 ≡ 1 (the uniform distribution on [0, 1]), the corresponding belief distribution
µt has the convenient form µt(p̂) = fBeta(p̂;W

1
t + 1,W 0

t + 1), where W 1
t =

∑t
t′=1Xt

resp. W 0
t :=

∑t
t′=1(1 − Xt) is the number of observed 1’s resp. 0’s until time t and

fBeta(p̂; a, b) denotes the pdf of a Beta-distribution with parameters a and b evaluated at
p̂. By terminating with the most frequent observation as soon as the (1− γ)-confidence
sequence does not contain 1/2, they obtained a solution PPR-Bernoulli to PγCoin. We

state it in our notations in Alg. 4, where we conveniently write (W
(0)
t ,W

(1)
t ) for the order

statistics of
(
W 0
t ,W

1
t

)
, i.e., W

(0)
t = max{W 0

t ,W
1
t } and W

(1)
t = min{W 0

t ,W
1
t }.

Algorithm 4 PPR-Bernoulli

Input: γ > 0, sample access to Ber(p)
Initialization: t← 1

1: while True do
2: Observe Xt and update W 0

t , W
1
t

3: if fBeta(
1
2 ;W

(0)
t + 1,W

(1)
t + 1) ≤ γ then

4: return argmaxb∈{0,1}W
b
t

5: t← t+ 1

Proposition 2.28. For any γ ∈ (0, 1), A :=Alg. 4 solves PγCoin and for all p > 1/2

Pp
(
TA ≤ Tγ(p)

)
≥ 1− γ, (2.13)

where Tγ(p) :=
20.775p
(p−1/2)2

ln
(

2.49
(p−1/2)2γ

)
fulfills supp:p>1/2+h Tγ(p) ∈ Θ

(
1
h2

ln 1
h2γ

)
.

Proof. The proof of Thm. 7 in [Jain et al., 2021] shows that Pp
(
1
2 ̸∈ CTγ(p)

)
≥ 1 − γ is

fulfilled for any p > 1/2, i.e., (2.13) holds. Moreover, monotonicity of γ 7→ Tγ(p) assures

Pp(TA <∞) ≥ Pp
(⋃

γ∈(0,1)
{TA < Tγ(p)}

)
= lim

γ→ 0
Pp
(
TA < Tγ(p)

)
≥ lim

γ→ 0
1− γ = 1

for all p ̸= 1/2.

In comparison to the solutions from Prop. 2.22, Prop. 2.26 and Prop. 2.27, the theoretical
guarantee of PPR-Bernoulli is thus in a worst-case sense asymptotically suboptimal

by a factor
ln 1

h

ln ln 1
h

. However, to the best of our knowledge, it is w.r.t. the empirical
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Table 2.2.: Sample complexity upper bounds for P1/2+h;γ
Coin , Ph,γCoin and PγCoin.

Alg. Idea Problem Theoretical Guarantees

Prop. 2.17 SPRT
Ph,γ

Coin, w.r.t. E1/2±h[T
A] best solution to P1/2+h;γ

Coin

P1/2+h;γ
Coin supp:|p−1/2|>h Ep[T

A] ∈ O
(

1
h2 ln 1

γ

)
Prop. 2.22

GSPRT & LIL Pγ
Coin

∀γ < 1/2: supp:|p−1/2|>h Ep[T
A] ∈ O

(
1
h2 ln ln 1

h

)
(from Cantelli) TA < ∞ a.s. ∀p ̸= 1/2

Prop. 2.23 GSPRT & LIL Ph,γ
Coin

TA ≤ f(h, γ) a.s., f(h, γ) ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
TA < ∞ a.s. ∀p ̸= 1/2

Cor. 2.25
GSPRT, Prop. 2.23 Ph,γ

Coin

TA ≤ f(h, γ) a.s., f(h, γ) ∈ O
(

1
h2 ln 1

γ

)
& Lem. 2.10 TA < ∞ a.s. ∀p ̸= 1/2

Prop. 2.26
Reduction to Pγ

Coin

TA ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
with prob. ≥ 1− γ

lil’UCB TA < ∞ a.s. ∀p ̸= 1/2

Prop. 2.27
Reduction to Pγ

Coin

TA ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
with prob. ≥ 1− γ

Exp.-gap est. TA < ∞ a.s. ∀p ̸= 1/2

Prop. 2.28
Conf. sequ. for Pγ

Coin

TA ∈ O
(

1
h2 ln 1

hγ

)
with prob. ≥ 1− γ

PPR TA < ∞ a.s. ∀p ̸= 1/2

Prop. 2.40
DKWT Pγ

Coin

TA ∈ O
(

1
h2

(
ln ln 1

h
+ ln 1

γ

))
with prob. ≥ 1− γ

for k = 2 TA < ∞ a.s. ∀p ̸= 1/2

performance currently the best solution in the literature, and we will see in Sec. 2.4 that
it in fact performs very well in practice and outperforms the other solutions.

Table 2.2 summarizes the previously stated upper bounds in partly simplified form. For the
sake of completeness, we also added the solution from Prop. 2.40 below for the case k = 2,
in which Pk,0,γDie conincides with PγCoin. Apart from the fact that Prop. 2.26 and Prop. 2.27
have the same worst-case asymptotic guarantees and imply those from Prop. 2.28 and
Prop. 2.40 for k = 2, none of the presented theoretical guarantees seems to formally imply
any of the others: E.g., the bound on Ep[TA] from Prop. 2.22 is neither necessary nor
sufficient for the almost sure bound from Prop. 2.23. Hence, all the presented bounds
appear to be of interest for themselves.

2.2.3. Lower Bounds for Multiple Coin Problems

In the folllowing, we prove lower bounds for testing problems involving multiple coins,
which will be of use later on in Part II. Let J be some finite index set and suppose we are
given independent coins Cj , j ∈ J , with unknown head probabilities pj , j ∈ J , respectively.
For fixed (unknown) p = (pj)j∈J , throwing coin Cj at time t results in the feedback
Yt,j ∼ Ber(pj), and we suppose the feedback is independent over time and coins, i.e.,
{Yt,j}j∈J,t∈N is independent. Let us define the hypothesis

H0;J : ∀j ∈ J : pj >
1

2
and H1;J : ∃j ∈ J : pj ≤

1

2
. (2.14)

If A is a (sequential probabilistic) testing algorithm for H0;J versus H1;J , we may write
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D(A) = 0 if A decides for H0;J and D(A) = 1 if it decides for H1;J . Similarly as before,
we write TA for the stopping time of the algorithm, that is, the number of samples queried
until termination, i.e., the total number of coin tosses until termination. We denote by Pp

the probability distribution on the different possible states of the algorithm, if the true
parameter is p, and write Ep for the expectation with respect to Pp.

For the proof of Thm. 5.4 we will make use of the following lower bound on the expected
termination time Ep[T

A] for algorithms A which test the above mentioned hypothesis, if
it is known in advance that |pj − 1

2 | = hj holds for every j ∈ J . For its proof, we will make
use of the optimality of the SPRT as stated in Prop. 2.17. The following theorem is a
slightly more general version of the result, which we presented as Lem. G.1 in [Haddenhorst
et al., 2021a] and as Lem. A.7 in [Haddenhorst et al., 2021b]; it is given in this form
merely for the sake of generality, we do not explicitly require this stronger version in the
further course of this thesis, but instead its weaker counterpart would suffice.

Theorem 2.29. Let h0, γ0 ∈ (0, 1/2) be fixed, γ ∈ (0, γ0) and J be some arbitrary finite
index set. Suppose {hj}j∈J ⊆ (0, h0), define p′ := (12 +hj)j∈J ∈ (0, 1)J and for each j ∈ J
also p(j) ∈ (0, 1)J via p

(j)
j := 1/2− hj and p

(j)
j′ := 1

2 + hj′ for all j′ ̸= j. Suppose A to be a
(probabilistic) testing algorithm, which, provided the fact

p ∈ P :=
{
p′} ∪⋃

j∈J

{
p(j)

}
is known whereas the concrete value of p is unknown beforehand, is able to test H0;J

versus H1;J with error probability at most γ. In other words, A fulfills

Pp′(D(A) = 0) ≥ 1− γ and ∀p ∈ P \ {p′} : Pp(D(A) = 1) ≥ 1− γ.

Then, there exist some constant c = c(h0, γ0) > 0, which does not depend on h,γ or m,
such that the corresponding stopping time TA of A fulfills

Ep′ [TA] ≥
∑

j∈J

1− 2γ

2hj

 ln 1−γ
γ

ln
1/2+hj
1/2−hj

 ≥ c
∑

j∈J

1

h2j
ln

1

γ
.

and for any j ∈ J also

Ep(j) [TA] ≥ 1− 2γ

2hj

 ln 1−γ
γ

ln
1/2+hj
1/2−hj

 ≥ c

h2j
ln

1

γ
,

which naturally coincides with the lower bound for Ph,γCoin from Prop. 2.17.

Proof of Thm. 2.29. At first, note that the case |J | = 1 of Thm. 2.29 corresponds to the
testing problem considered in Prop. 2.17. For the sake of convenience, suppose without
loss of generality that J = [N ]. For an algorithm A′ with sample access to (p1, . . . , pN ),
write TA′

j for the number of times A′ queries the coin Cj (with bias pj) until termination.

Moreover, for j ∈ [N ] and p ∈ [0, 1] define p[j](p) = (p
[j]
j′ (p))j′∈[N ] where p

[j]
j (p) = p and

p
[j]
j′ (p) =

1
2 + hj′ for j

′ ̸= j. Note that p[j](12 + hj) ∈ P and p[j](12 − hj) ∈ P hold.

Now, suppose A, p′ and p(j) to be as in the statement of this lemma. Let A(j) be the
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algorithm, which is given sample access to pj as input, simulates A with sample access
to p[j](pj) as input, terminates as soon as A terminates and outputs 0 if A outputs 0
and outputs 1 if A outputs 1. As A is able to decide H0;[N ] : ∀j ∈ [N ] : pj >

1
2 versus

H1;[N ] : ∃j ∈ [N ] : pj <
1
2 with error probability at most γ for every p ∈ P, A(j) is

able to decide whether pj >
1
2 or pj <

1
2 with error probability at most γ in both cases

pj =
1
2 + hj and pj =

1
2 − hj . Prop. 2.17 assures that A(j) fulfills

E 1
2
±hj [T

A(j)] ≥ 1− 2γ

2hj

 ln 1−γ
γ

ln
1/2+hj
1/2−hj

 ≥ c

h2j
ln

1

γ

with c = c(h0, γ0) > 0 as in Prop. 2.17, where TA(j) denotes the number of times algorithm
A(j) with sample access to p[j](pj) queries any of the coins C1, . . . , CN before termination.
As deciding whether pj >

1
2 or pj <

1
2 does not require knowledge about any of the

coins Cj′ , j
′ ̸= j, which are independent of Cj , we may assume without loss of generality

that A(j) throws only coin Cj for this purpose.
3 Regarding that p[j](12 + hj) = p′ and

p[j](12 − hj) = p(j) hold, we obtain

Ep′ [TA
j ] = E 1

2
+hj

[TA(j)] ≥ 1− 2γ

2hj

 ln 1−γ
γ

ln
1/2+hj
1/2−hj


and

Ep(j) [TA] ≥ Ep(j) [TA
j ] = E 1

2
−hj [T

A(j)] ≥ 1− 2γ

2hj

 ln 1−γ
γ

ln
1/2+hj
1/2−hj

 ≥ c

h2j
ln

1

γ
.

As this holds for each j ∈ [N ] we get

Ep′ [TA] =
∑

j∈[N ]
Ep′ [TA

j ] ≥
∑

j∈[N ]

1− 2γ

2hj

 ln 1−γ
γ

ln
1/2+hj
1/2−hj


≥ c

∑
j∈[N ]

1

h2j
ln

1

γ
,

which completes the proof.

2.3. Sequentially Testing for the Mode of a Biased Die

Similarly as Sec. 2.2 prepares our results on dueling bandits in Part II, this section provides
useful tools for those results in the multi-dueling bandits scenario in Part III. Recall
that in the multi-dueling bandits setting with winner feedback, which we focus on in this

3To see this formally, suppose on the contrary that T
A(j)
j < c

h2 ln 1
γ
. Let Ã(j) be given sample access to

p[j](pj) and behave as A(j) with the only difference that samples from any coin Cj′ ̸= Cj are replaced by
an artificial sample Ber(pj′), which is independent of all the coins. Then, none of the coins Cj′ ̸= Cj are

thrown, we have T Ã(j) = T
Ã(j)
j and thus E1/2+hj

[T Ã(j)] = E1/2+hj
[T

Ã(j)
j ] = E1/2+hj

[T
A(j)
j ] < c

h2 ln 1
γ
,

a contradiction to Prop. 2.17.
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thesis, the learner chooses at each time a set (called multi-duel) St ∈ [m]k and observes
as feedback exactly one element of St as the winner of this multi-duel. As described in
Sec. 1.1, when St = S, the winner feedback is distributed as a categorical random variable
with parameter (P(i|S)i∈S)i∈S and values in S. In this section, we focus on the special
case m = k. Due to [k]k = {[k]} the set [k] is the only query set and the feedback observed
reduces to samples of a categorical random variable (i.e., a generalized die) with parameter
p := P(·|[k]), which is an element in the simplex ∆k := {(pj)j∈[k] ∈ [0, 1]k |

∑
j∈[k] pj = 1}.

We write mode(p) := argmaxj∈[k]pj for the modes of p = (pj)j∈[k] ∈ ∆k resp. its only

element if |mode(p)| = 1 and note that this notion coincides with GCW(P) if P ∈ PMk
k

and p = P(·|[k]). Regarding that

PMk
k (∆

h) =
{
p = (pj)j∈[k] ∈ ∆k | ∀j ̸= mode(p) : pmode(p) ≥ pj + h

}
= PMk

k (hGCW)

holds for any h ∈ (0, 1], we do not have to distinguish between the sets PMm
k (∆h)

and PMm
k (hGCW) in case m = k, but may only consider ∆h

k := PMk
k (∆

h). Similarly,
the set ∆0

k :=
⋃
h∈(0,1]∆

h
k = {p ∈ ∆k | ∀j ̸= mode(p) : pmode(p) > pj} coincides with

both PMm
k (GCW∗) and PMm

k (∆0) if m = k. Hence, we may conveniently reformulate

Pk,h,γDie := Pk,k,γGCWi(∆
h) introduced in Ch. 1 with less terminology as follows:

For h ∈ [0, 1], γ ∈ (0, 1), a multi-dueling bandits algorithm A solves Pk,h,γDie if it
terminates a.s for any p ∈ ∆h

k and outputs for any p ∈ ∆h
k with error probability at most

γ correctly the mode of p, i.e., if

∀p ∈ ∆h
k : Pp

(
TA <∞

)
= 1,

∀p ∈ ∆h
k : Pp (D(A) = mode(p)) ≥ 1− γ.

Below, we provide several sample complexity lower and upper bounds for solutions to
Pk,h,γDie . Some of them are stated in an instance-wise manner in terms of the quantity4

h(p) := max{h ∈ [0, 1] |p ∈ ∆h}.

It can be seen as a hardness parameter for the problem at hand: The larger h(p), the
easier the mode of p could be identified based on iid samples from Cat(p).

2.3.1. Lower Bounds

We start with a sample complexity lower bound of solutions to Pk,h,γDie , that is based on
the optimality of the SPRT as well as on Wald’s identity.

Proposition 2.30. Let 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1 be fixed. Suppose A solves

Pk,h,γDie , let p ∈ ∆h
k be arbitrary and write i := mode(p). Then,

Ep

[
TA] ≥ f

(
pi−pj

2(pi+pj)
, γ
)

pi + pj

4Let us remark here that the term h(p) coincides with that of h(P) from Ch. 6 below if P ∈ PMk
k , and

in case k = 2 and p = (p, 1− p) we have h(p) = 2p with p = |1/2− p| as e.g. used in Thm. 4.1 later on.
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holds for all j ∈ [k] \ {i} with f(z, γ) := 1−2γ
2z

⌈
ln((1−γ)/γ)

ln((1/2+z)/(1/2−z))

⌉
, which fulfills ∀z ∈

(0, h0/2) : f(z, γ) ≥ c(h0,γ0)
z2

ln 1
γ for some appropriate constant c(h0, γ0) > 0 that does not

depend on γ or h. In particular, we obtain the worst-case bound

supp∈∆h
k
Ep[T

A] ≥ 4c(h0, γ0)

h2
ln

1

γ
(2.15)

and the instance-wise bound

∀p ∈ ∆h
k : Ep[T

A] ≥ 2c(h0, γ0)

(h(p))2

(
1

k
+ h

)
ln

1

γ
. (2.16)

This result is similar to one that has recently been given by Shah et al. [2020, Thm. 3].
In comparison to ours, their bound is based on Lem. 2.42 and does not provide the
asymptotic behavior w.r.t. k in a worst-case sense.

In the proof of Prop. 2.30 we will exploit sample complexity lower bounds of solutions
to P2,h,γ

Die . For the sake of convenience, we write p for (p, 1− p) ∈ ∆2. Note that solving

P2,h,γ
Die resp. P2,0,γ

Die reduces to deciding with error probability at most γ

H0 : p > 1/2 vs. H1 : p < 1/2 (2.17)

based on iid samples X1, X2, · · · ∼ Ber(p) for any p ∈ [0, 1] with |p − 1/2| ≥ h resp.

|p− 1/2| > 0. Regarding that Qh/2m ≈ PMm
2 (∆h), we have P2,h,γ

Die ≈ P
γ,h/2
Coin , for which we

already stated an appropriate lower bound in Prop. 2.17.
Before we give the proof of Prop. 2.30, we state two further auxiliary lemmata. The first

one is a simplified version of Walds identity [Bauer and Burckel, 1996, Thm. 17.7], which
we shortly prove for the sake of convenience in the appendix, and the second one is only
required for the instance-wise bound in Prop. 2.30. Here and throughout, we denote by
E⊥⊥E ′ independence of families E , E ′ of events, and if X is a random variable, we simply
write X⊥⊥E ′ for independence of X (i.e., of its generated sigma algebra σ(X)) and E ′.

Lemma 2.31. Let k ∈ N and (p1, . . . , pk) ∈ ∆k be fixed. Suppose {Xt}t∈N to be an iid
family of random variables Xt ∼ Cat(p1, . . . , pk) on some joint probability space (Ω,F ,P)
and {Ft}t∈N ⊆ F to be a filtration, such that {Xt}t is {Ft}t-adapted and ∀t : Xt⊥⊥Ft−1,
e.g. Ft = σ(X1, . . . , Xt). If τ is an {Ft}t-stopping time, then the random variables

Ti(τ) :=
∑

t≤τ
1{Xt=i}, i ∈ [k],

fulfill E[Ti(τ)] = piE[τ ] for each i ∈ [k]. In particular, we obtain

E[τ ] =
∑

i∈I E[Ti(τ)]∑
i∈I pi

for any I ⊆ [k] with
∑

i∈I pi > 0.

Lemma 2.32. Suppose p ∈ ∆h
k \∆h̃

k for some 0 < h < h̃ < 1 and let i := mode(p) and

j ∈ argmaxl∈[k]\{i}pl. Then, we have pi + pj ≥ 2+(k−2)h
k and pi − pj < h̃.

We refer for the proof of Lem. 2.32 to the appendix and proceed here with the proof of
Prop. 2.30.
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Proof of Prop. 2.30. We may suppose w.l.o.g. i = 1 and fix j = 2. Let us define a := p1
p1+p2

and suppose we have a coin C ∼ Ber(p) with p ∈ {a, 1 − a}. By simulating A, we will
construct an algorithm A′ for testing

H′
0 : p = a H′

1 : p = 1− a

in the following way: Whenever A makes a query at time t, we generate an independent
sample Ut ∼ U([0, 1]). Then, we return the feedback Xt = i′ ∈ {3, . . . , k} iff Ut ∈
(
∑

j′≤i′−1 pj′ ,
∑

j′≤i′ pj′ ] and in case Ut ∈ [0, p1 + p2] we generate an independent sample
Ct ∼ Ber(p) from our coin C and return

Xt =

{
1, if Ct = 1,

2, if Ct = 0.

As soon as A terminates, we terminate and return D(A′) = 0 if D(A) = 1 and D(A′) = 1
otherwise. By our construction, we have Pp(Xt = i) = pi for each i ∈ {3, . . . , k}

Pa(Xt = 1) = (p1 + p2)P(Ct = 1) = p1, Pa(Xt = 2) = (p1 + p2)P(Ct = 0) = p2

and similarly P1−a(Xt = 1) = p2 and P1−a(Xt = 2) = p1. Thus if p = a, A behaves as
started on p and if p = 1 − a, A behaves as started on p′ := (p2, p1, p3, . . . , pk) ∈ ∆h

k .

Since A solves Pk,h,γDie , we obtain

Pa(D(A′) = 0) = Pp (D(A) = 1) ≥ 1− γ

and (due to 2 = argmaxj′∈[k]p
′
j)

P1−a(D(A′) = 1) = Pp′(D(A) ̸= 1) ≥ Pp′(D(A) = 2) ≥ 1− γ,

i.e., A′ is able to decide H′
0 versus H′

1 with error probability at most γ. From Prop. 2.17
we infer that it has to throw the coin C (in both cases p ∈ {a, 1− a}) in expectation at
least f(a− 1/2, γ) times for this. Regarding that C is thrown in our construction iff we
return as feedback an element from {1, 2}, we get that

Ep[T1(T
A) + T2(T

A)] ≥ f(a− 1/2, γ) where Ti(T
A) :=

∑
t≤TA

1{Xt=i}.

An application of Lem. 2.31 yields

Ep[T
A] ≥ f(a− 1/2, γ)

p1 + p2
=
f
(

p1−p2
2(p1+p2)

, γ
)

p1 + p2
,

which completes the proof of the first statement.

The worst-case bound (2.15) then follows from the just proven bound via

supp∈∆h
k
Ep[T

A] ≥ E( 1+h
2
, 1−h

2
,0,...,0)[T

A] ≥ f
(
h

2
, γ

)
≥ 4c(h0, γ0)

h2
ln

1

γ

for some c(h0, γ0) > 0, that is assured to exist by Prop. 2.17. To prove (2.16) suppose at

first h̃ ∈ (h, 1) and p ∈ ∆h
k \∆h̃

k to be fixed and write i := mode(p). Lem. 2.32 reveals
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that there exists some j ∈ [k] \ {i} with pi+ pj ≥ 2+(k−2)h
k and pi− pj < h̃. Consequently,

the above proven bound and the estimate f(h, γ) ≥ c(h0,γ0)
h2

ln 1
γ yield

Ep[T
A] ≥

f
(

pi−pj
2(pi+pj)

, γ
)

pi + pj
≥ 4c(h0, γ0)

pi + pj
(pi − pj)2

ln
1

γ

≥ 4c(h0, γ0)

h̃2
· 2 + (k − 2)h

k
ln

1

γ

≥ 2c(h0, γ0)

h̃2

(
1

k
+ h

)
ln

1

γ
.

Since p ∈ ∆
h(p)
k \

(⋃
h̃>h(p)∆

h̃
k

)
=
⋂
h̃>h(p)(∆

h(p)
k \∆h̃

k) for any p ∈ ∆h
k , (2.16) can be

inferred from this by taking the limit h̃↘ h(p).

Based on Prop. 2.13 instead of Prop. 2.17, we also obtain the following bound. In
comparison to that from Prop. 2.30, it does not involve a dependence on k and its
dependence of h is of the order 1

h2
ln ln 1

h instead of 1
h2
.

Proposition 2.33. Let γ ∈ (0, 1/2) be fixed and suppose A solves Pk,0,γDie . Let p ∈ ∆0
k be

arbitrary, i := mode(p) and j := argmaxj∈[k]\{i}pj. Then, the family {p(h)}h∈(0,pi−pj) ⊆
∆0
k defined via (p(h))i :=

(pi+pj+h)
2 , (p(h))j :=

(pi+pj−h)
2 and (p(h))l := pl for l ∈

[k] \ {i, j} fulfills p(h) ∈ ∆h
k as well as

lim suph→ 0

Ep(h)[T
A]

1
h2

ln ln 1
h

≥ (1− 2γ)(pi + pj) > 0.

Proof of Prop. 2.33. We suppose w.l.o.g. (i, j) = (1, 2) throughout the proof. For h ∈
(0, p1− p2) we have (p(h))1 > (p(h))2 > (p(h))l for every l ∈ {3, . . . , k} and together with
|(p(h))1 − (p(h))2| = h this shows p(h) ∈ ∆h

k . Suppose we have a coin C ∼ Ber(p) for
p ≠ 1/2. By simulating A as in the proof of Prop. 2.30 we obtain an algorithm A′ for
testing H0 : p > 1/2 versus H1 : p < 1/2, which has (due to the theoretical guarantees of
A) an error probability ≤ γ for every p ≠ 1/2. Consequently, Prop. 2.13 guarantees the
existence of a sequence {h′l}l∈N ⊆ (0, 1

e4
) with

∀l ∈ N :
E1/2±h′l [T

A′
]

1
h′l

2 ln ln
1
h′l

≥ 1− 2γ

2
− ε > 0

for some arbitrarily small but fixed ε ∈ (0, 1−2γ
2 ). If we choose hl := 2(p1 + p2)h

′
l, then the

corresponding bias of the coin C in the reduction (cf. the proof of Prop. 2.30) is exactly

(p(hl))1
(p(hl))1 + (p(hl))2

=
p1+p2

2 + hl
2

p1 + p2
=

1

2
+

hl
2(p1 + p2)

=
1

2
+ h′l

Hence, if A′ is started on 1/2+h′l, its internal method A works as if started on p(hl). From
hl ≤ e−4 we obtain 4 = (12)

−2 ≤ ln 1
hl

and thus −2 ln 1
2 ≤ ln ln 1

hl
, i.e., ln 1

2 ≥ −
1
2 ln ln

1
hl
≥
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−1
2 ln

1
hl
. Consequently,

ln ln
1

h′l
= ln ln

(
1

2hl(p1 + p2)

)
≥ ln

(
ln

1

2
+ ln

1

hl

)
≥ ln

(
1

2
ln

1

hl

)
= ln

1

2
+ ln ln

1

hl
≥ 1

2
ln ln

1

hl

holds, and we obtain similarly as in the proof of Prop. 2.30

Ep(hl)[T1(T
A) + T2(T

A)] ≥ E 1
2
+h′l

[TA′
] ≥

(
1

2
(1− 2γ)− ε

)
· 1

h′l
2 ln ln

1

h′l

≥ 2(p1 + p2)
2

(
1

2
(1− 2γ)− ε

)
· 1
h2l

ln ln
1

hl
.

Regarding that this holds for arbitrarily small ε > 0, Lem. 2.31 shows5 that

Ep(hl)[T
A]

1
h2l

ln ln 1
hl

≥ (1− 2γ)(p1 + p2)

holds for every l ∈ N, which completes the proof.

2.3.2. Upper Bounds

Next, we construct a solution to Pk,h,γDie . An algorithm A, which tackles Pk,h,γDie , has to
decide in a sequential manner at each time t, whether it wants to make a further query
St ∈ [k]k resulting in a sample Xt or to output an answer D(A) ∈ [k]. As [k]k = {[k]},
we can only choose St = [k] in each time step t, upon which we observe as feedback
Xt ∼ Cat(p), i.e., Pp(Xt = i) = pi for any i ∈ [k]. Having observed X1, . . . , Xt, which are
iid by assumption, a straightforward idea for a prediction D(A) would be to use the mode
of the empirical distribution p̂t := (p̂t1, . . . , p̂

t
k) given by p̂ti :=

1
t

∑
t′≤t 1{Xt′=i}.

In fact, the prominent Dvoretzky-Kiefer-Wolfowitz inequality [Dvoretzky et al., 1956,
Massart, 1990], which we state for simplicity only for categorical random variables in the
following, assures that p̂t is w.r.t. the infinity norm ||·||∞ close to p with high confidence
for large values of t.

Lemma 2.34 (Dvoretzky-Kiefer-Wolfowitz inequality for categorical random variables).
Suppose X1, X2, . . . to be iid random variables Xn ∼ Cat(p) for some p ∈ ∆k. For t ∈ N
let p̂t be the corresponding empirical distribution after the t observations X1, . . . , Xt, i.e.,
p̂ti =

1
t

∑t
s=1 1{Xs=i} for all i ∈ [k]. Then, we have for any ε > 0 and t ∈ N the estimate

P
(∣∣∣∣p̂t − p

∣∣∣∣
∞ > ε

)
≤ 4e−tε

2/2.

Lem. 2.34 shows that, for large values of t, predicting the mode of p̂t would be the correct
prediction for mode(p) with high probability. To solve Pk,h,γDie , we have to choose t so large
that mode(p̂t) = mode(p) with confidence at least 1− γ. For this, the following lemma is
of use.

5Note here that (p(h))1 + (p(h))2 = p1 + p2.
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Lemma 2.35. For h ∈ [0, 1], ε ∈ (−h, 1],p ∈ ∆h
k and p̃ ∈ ∆k we have

(∃i : p̃i −maxj ̸=i p̃j ≥ ε and pi ̸= maxj pj) ⇒ ||p̃− p||∞ ≥
h+ ε

2
.

The bounds from Lem. 2.35 are apparently sharp, as p ∈ ∆h
k and p̃ ∈ ∆k defined via

pi =


1
2 −

h
2 , if i = 1,

1
2 + h

2 , if i = 2,

0, otherwise

and p̃i =


1
2 + ε

2 , if i = 1,
1
2 −

ε
2 , if i = 2,

0, otherwise.

fulfill p̃1 −maxj ̸=1 p̃j = ε and p1 ̸= maxj∈[k] pj and at the same time ||p− p̃||∞ = h+ε
2 .

With the choices ε = 0 and p̃ = p̂t, Lem. 2.35 shows us that
∣∣∣∣p̂t − p

∣∣∣∣
∞ > h

2 is necessary
for mode(p̂t) ≠ mode(p). Combining this with Lem. 2.34, we see that simply querying

St = [k] for T =
⌈

8
h2

ln 4
γ

⌉
many times and returning the mode of p̂T as the decision

results in a solution to Pk,h,γDie . For the sake of convenience, we provide the corresponding
pseudocode as Alg. 5 and state its guarantees as the next proposition.

Algorithm 5 DKW mode identification – (non-sequential) solution to Pk,h,γDie

Input: γ ∈ (0, 1), h ∈ (0, 1), k ∈ N, access to iid samples Xt ∼ Cat(p)

1: Let T ←
⌈

8
h2

ln 4
γ

⌉
2: Observe X1, . . . , XT ∼ Cat(p)
3: return mode(p̂T ) = argmaxi∈[k]

∑T
t=1 1{Xt=i}

Proposition 2.36. For any k ∈ N, h ∈ (0, 1) and γ ∈ (0, 1), Alg. 5 called with parameters

γ, h, k solves Pk,h,γDie and terminates after exactly
⌈

8
h2

ln 4
γ

⌉
time steps.

Proof. This is a direct consequence of Lem. 2.35 and Lem. 2.34.

According to Prop. 2.30, Alg. 5 is in a worst-case sense asymptotically optimal as a
solution to Pk,h,γDie .

Now, we intend to solve the more challenging problem Pk,0,γDie . Note that any solution

to Pk,0,γDie is also a solution to Pk,h,γDie for any h > 0, hence Prop. 2.30 shows that Pk,0,γDie

cannot be solved by any non-sequential algorithm, i.e., one which decides a priori the
number of samples it observes. To construct a solution, we make use of Alg. 6, which also
tackles the problem of finding the mode of p in a non-sequential manner but is allowed
to return UNSURE as an indicator that it is not confident enough for its prediction. In
other words, the algorithm is allowed to abstain from making a decision. We obtain the
following guarantees of Alg. 6.

Lemma 2.37. A := Alg. 6 init. with parameters γ, h ∈ (0, 1) fulfills TA =
⌈

8
h2

ln 4
γ

⌉
,

∀p ∈ ∆k : Pp(D(A) ∈ [k] and pD(A) < maxj∈[k] pj) ≤ γ, (2.18)

∀p ∈ ∆0
k : Pp(D(A) ∈ {mode(p),UNSURE}) ≥ 1− γ, (2.19)

∀p ∈ ∆3h
k : Pp(D(A) = mode(p)) ≥ 1− γ. (2.20)
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Lem. 2.37 reveals that Alg. 6 has a low failure rate (2.18) by appropriate choice of γ,
while in turn by an appropriate choice of h, namely h ≤ 1

3h(p), the correct decision will
be returned (2.20) with high probability.

Algorithm 6 DKW mode-identification with abstention

Input: γ ∈ (0, 1), h ∈ (0, 1), access to iid samples Xt ∼ Cat(p)

1: T ←
⌈

8
h2

ln 4
γ

⌉
2: Observe samples X1, . . . , XT

3: Calculate p̂T = (p̂T1 , . . . , p̂
T
k ) as p̂

T
i := 1

T

∑T
t=1 1{Xt=i}, i ∈ [k]

4: Choose i∗ ∈ mode(p̂T )
5: if p̂Ti∗ > maxj ̸=i∗ p̂

T
j + h then return i∗

6: else return UNSURE

We prepare the proof of Lem. 2.37 with the following result. More precisely, it will
assure us that Alg. 6 returns with probability ≥ 1− γ the correct mode in case p ∈ ∆3h

k .

Lemma 2.38. Let h > 0, p ∈ ∆3h
k and p̃ ∈ ∆k be fixed. Then,

∀i : p̃i ≤ maxj ̸=i p̃j + h ⇒ ||p− p̃||∞ ≥ h.

Before giving a detailed proof of Lem. 2.37, let us note the constraint p ∈ ∆3h
k in the

statement above is sharp in the sense that we have for any h ∈ (0, 1/8)

inf
{
s > 0

∣∣∣ ∀p ∈ ∆sh
k ∀p̃ ∈ ∆k : (∀i : p̃i ≤ maxj ̸=i p̃j + h ⇒ ||p− p̃||∞ ≥ h)

}
= 3.

This is justified in the next lemma.

Lemma 2.39. For any h ∈ (0, 18), ε ∈ (0, 13) and k ∈ N≥3 there exist p ∈ ∆
(3−ε)h
k and

p̃ ∈ ∆k such that

∀i ∈ [k] : p̃i ≤ maxj ̸=i p̃j + h and ||p− p̃||∞ < h.

We proceed with the proof of Lem. 2.37.

Proof of Lem. 2.37. Let p ∈ ∆k be fixed, and note that Alg. 6 terminates after exactly⌈
8
h2

ln 4
γ

⌉
time steps. Lem. 2.35 and Lem. 2.34 let us directly infer

Pp

(
D(A) ∈ [k] and pD(A) < maxj∈[k] pj

)
= P

(
∃i ∈ [k] : p̂ti −maxj ̸=i p̂

t
j > h and pi ̸= maxj∈[k] pj

)
≤ P

(∣∣∣∣p̂t − p
∣∣∣∣
∞ >

h

2

)
≤ γ. (2.21)

Next, suppose p ∈ ∆0
k and let i′ := mode(p) ∈ [k]. Again, Lem. 2.35 yields{

D(A) ∈ [k] \ {i′}
}
=
{
∃i ̸= i′ : p̂ti −maxj ̸=i p̂

t
j > h and pi′ > maxj ̸=i′ pj

}
⊆
{∣∣∣∣p̂t − p

∣∣∣∣
∞ >

h

2

}
, (2.22)
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and thus

Pp(D(A) ̸∈ {i′,UNSURE}) ≤ Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ >

h

2

)
≤ γ

follows from Lem. 2.34 and the choice of t. Now, let us suppose p ∈ ∆3h
k . A look at

Lem. 2.38 reveals

{D(A) = UNSURE} =
{
∀i ∈ [k] : p̂ti ≤ maxj ̸=i p̂

t
j + h

}
⊆
{∣∣∣∣p̂t − p

∣∣∣∣
∞ > h

}
,

and combining this with (2.22) yields

Pp(D(A) ̸= mode(p)) = Pp

(
D(A) ∈ [k] \ {i′} or D(A) = UNSURE

)
≤ Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ >

h

2

)
≤ γ,

where the last estimate is again due to Lem. 2.34.

There are two drawbacks of Alg. 6: First of all, it can also abstain from making a decision
(see (2.19)), and more importantly, the value of h(p) is unknown when solving Pk,0,γDie . As
a remedy, we could run Alg. 6 successively with appropriately decreasing choices for γ
and h until a (real) decision is returned. This approach is followed by Alg. 7 and the

following proposition shows that it is indeed a solution to Pk,0,γDie ; its proof is an adaptation
of Lem. 11 in [Ren et al., 2019a].

Algorithm 7 DKW mode-identification – Solution to Pk,0,γDie

Input: γ ∈ (0, 1), sample access to Cat(p)
Initialization: Ã := Alg. 6, s← 1, ∀r ∈ N : γr :=

6γ
π2r2

, hr := 2−r−1

1: feedback← UNSURE
2: while feedback is UNSURE do
3: feedback← Ã(γs, hs, sample access to Cat(p))
4: s← s+ 1

5: return feedback

Proposition 2.40. A := Alg. 7 initialized with the parameter γ ∈ (0, 1) solves Pk,0,γDie s.t.

Pp

(
D(A) = mode(p) and TA ≤ t0(γ, h(p))

)
≥ 1− γ

for any p ∈ ∆0
k, where t0(γ, h) is mononotically decreasing w.r.t. h with t0(γ, h) ∈

O
(

1
h2

(
ln ln 1

h + ln 1
γ

))
.

Proof of Prop. 2.40. Let p ∈ ∆0
k be fixed and abbreviate h := h(p). Moreover, denote

by D(As) the output of the instance of Alg. 6 with parameters γs, hs that is called in
iteration s of the while loop of A (Alg. 7). Let us define for each s ∈ N the set

Es1 :=

{
hs >

h

3
and D(As) ∈ {UNSURE,mode(p)}

}
,

Es2 :=

{
hs ≤

h

3
and D(As) = mode(p)

}
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and

E :=
⋃

s∈N
(Es1 ∪ Es2)

c .

From the equivalence h′ ≤ 1
3h(p)⇔p ∈ ∆3h′

k and Lem. 2.37 we infer

Pp ((Es1 ∪ Es2)
c) =

{
Pp ((Es1)

c) , if hs > h/3

Pp ((Es2)
c) , if hs ≤ h/3

}
≤ γs

and therefore

Pp(E) ≤
∑

s∈N
γs =

∑
s∈N

6γ

π2s2
= γ. (2.23)

Now, let s0 := s0(h) ∈ N be such that hs0 ≤ h
3 < hs0−1 and note that

Ec ⊆ Es02 ⊆ {D(As0) ̸= UNSURE}
⊆ {A terminates at latest after the s0-th iteration of the while loop}. (2.24)

In particular, A terminates almost surely on Ec. Regarding the construction6 of A we
also have

Ec =
⋂

s∈N
(Es1 ∪ Es2) ⊆

⋂
s∈N
{D(As) ∈ {UNSURE,mode(p)}}

⊆ {D(A) = mode(p)} . (2.25)

Since A makes in its s-th iteration of the while loop (according to Alg. 6) exactly
⌈

8
h2s

ln 4
γs

⌉
queries, combining (2.23), (2.24) and (2.25) yields

Pp

(
D(A) = mode(p) and TA ≤ t0(h, γ)

)
≥ Pp (Ec) ≥ 1− γ,

with t0(h, γ) :=
∑

s≤s0(h)

⌈
8
h2s

ln 4
γs

⌉
. As the choice of s0 = s0(h) guarantees

h
3 < hs0−1 =

2−s0 and thus s0 < log2
3
h , we obtain with regard to the choices of hs = 2−s−1 and

γs =
6γ
π2s2

that

t0(h, γ) ≤ 27
∑s0(h)

s=1
22s−1 ln

(
2π2s2

3γ

)
∈ O

(∑s0(h)

s=1
22s−1 ln

(
s0(h)

γ

))
⊆ O

(
4s0(h) ln

(
s0(h)

γ

))
⊆ O

(
4log2

3
h ln

(
log2

3
h

γ

))

⊆ O
(

1

h2

(
ln ln

1

h
+ ln

1

γ

))
as min{h, γ} → 0. It remains to show that TA is almost surely finite w.r.t. Pp. For an
arbitrary integer s ≥ log2

3
h we have hs ≤ h

3 and thus

Pp

(
TA =∞

)
≤ Pp

(
∀s′ ∈ N with hs′ ≤

h

3
: D(As′) = UNSURE

)
≤ Pp (D(As) = UNSURE) ≤ Pp((Es2)c) ≤ γs,

which directly implies Pp(T
A =∞) ≤ lims→∞ γs = 0.

6Note here that D(A) ∈ [k] holds, i.e., A cannot terminate with UNSURE as output.
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Last but not least, we discuss yet another solution, which has recently been developed
and performs very well in practice. [Jain et al., 2021] adapted the one-vs-one and one-
vs-rest paradigms, which are known in the machine learning community for multi-class
classification, for generalizing solutions to PγCoin = P2,0,γ

Die to Pk,0,γDie for general k ≥ 2. As
solutions to PγCoin the authors consider in addition to their method PPR-Bernoulli
(Alg. 4) also A1 from [Shah et al., 2020] and KL-SN from [Garivier, 2013]. They observe
that the one-vs-one variant of PPR-Bernoulli clearly outperforms any of the others,
hence we restrict ourselves at this point to giving the details of this variant.

For this, we write (Wt)i =
∑t

t′=1 1{Xt′=i} for the number of times i has been observed as
feedback until time t, and further (Wt)(1), . . . , (Wt)(k) for the order statistic of ((Wt)i)i∈[k],
i.e., {(Wt)i | i ∈ [k]} = {(Wt)(i) | i ∈ [k]} and (Wt)(1) ≥ · · · ≥ (Wt)(k). The resulting
algorithm is called PPR1v1 and stated as Alg. 8.

Algorithm 8 PPR1v1 – Solution to Pk,0,γDie

Input: γ > 0, sample access to Cat(p)
Initialization: t← 1

1: while True do
2: Observe Xt and update ((Wt)i)i∈[k]
3: if fBeta(

1
2 ; (Wt)(1) + 1, (Wt)(2) + 1) ≤ γ/(k − 1) then

4: return argmaxi∈[k](Wt)i

5: t← t+ 1

To state the theoretical guarantee for PPR1v1, we write (p(1), . . . , p(k)) for the order
statistic of p = (pi)i∈[k], i.e, {pi | i ∈ [k]} = {p(i) | i ∈ [k]} and pmode(p) = p(1) ≥ · · · ≥ p(k).

Proposition 2.41. For any γ ∈ (0, 1), A := PPR1v1 solves Pk,0,γDie s.t. for any p ∈ ∆k

Pp

(
TA ≤ Tγ(p)

)
≥ 1− γ

for Tγ(p) =
194.07p(1)

(p(1)−p(2))2
ln

(√
79.68(k−1)

γ

p(1)
p(1)−p(2)

)
with supp∈∆h

k
Tγ(p) ∈ Θ

(
1
h2

ln
(

k
h2γ

))
.

Proof. The first part is Thm. 9 in [Jain et al., 2021], where infp∈∆0
k
PP(T

A <∞) = 1 can
be seen similarly as the corresponding result in the proof of Prop. 2.28. The worst-case
result on Tγ(p) follows from the fact that h(p) = p(1) − p(2) holds for any p ∈ ∆k.

In comparison to our bound from Prop. 2.40, the worst-case upper bound w.r.t ∆h
k of

PPR1v1 is thus suboptimal by a factor
ln k

h2γ

ln ln 1
h
+ln 1

γ

∈ Θ(ln k) ∩Θ( lnh
ln lnh).

2.4. Empirical Evaluation

Before continuing, we empirically compare the mode identification algorithms which we
previously presented. For simplicity, we restrict ourselves to the case γ = 0.05 and report
only the accuracy together with the sample mean and standard error of the termination
time of the algorithms when executed on particular instances p ∈ [0, 1] resp. p ∈ ∆k.
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2.4.1. Mode Identification of a Coin

We start with the empirical comparison of the solutions to Ph,γCoin. For this, we write
AHoeffding for the non-sequential solution from Lem. 2.10, ASPRT for that from Prop. 2.17
and ALIL for the one from Prop. 2.23 with the particular choices ε = ε0 = 1

2 , δ = (γ5 )
2/3 ln 3

2 .
Table 2.3 shows the performance of these procedures when started with parameters h = 0.1
and γ = 0.05 on different instances p ∈ [0, 1], the values are averaged over 1000 repetitions
each.

In case p ∈ {0.51, 0.55} the low-noise assumption |p− 1/2| > h = 0.1 is clearly violated,
hence it is not surprising that the algorithms partly have an error > 0.05. However, in
all other cases, all algorithms achieve an accuracy of at least 0.95 as desired. We see
that ASPRT outperforms both AHoeffding and ALIL in any case, and regarding the strong
optimality result for the SPRT from Prop. 2.17 this is not at all surprising. ALIL appears
suboptimal for practical purposes, and for small values of |p− 1/2| it performs even worse
than the naive non-sequential solution AHoeffding.

Table 2.3.: Comparison of solutions to Ph,γCoin.

TA Accuracy

p AHoeffding ASPRT ALIL AHoeffding ASPRT ALIL

0.51 150.0 (0) 79.1 (2.1) 942.6 (6.8) 0.61 0.58 0.76
0.55 150.0 (0) 65.9 (1.6) 560.0 (5.1) 0.91 0.85 1.00
0.60 150.0 (0) 42.0 (0.9) 310.9 (2.8) 1.00 0.97 1.00
0.65 150.0 (0) 29.2 (0.5) 197.4 (1.7) 1.00 0.99 1.00
0.70 150.0 (0) 22.5 (0.4) 137.8 (1.2) 1.00 1.00 1.00
0.80 150.0 (0) 15.1 (0.2) 74.8 (0.6) 1.00 1.00 1.00
0.90 150.0 (0) 11.4 (0.1) 47.8 (0.3) 1.00 1.00 1.00

Next, we compare different solutions to PγCoin with each other. We write AlilUCB for the

solution from Prop. 2.26 with the choices ε = 0.01, β = 1 and λ =
(
2+β
β

)2
= 9 since these

assure its theoretical guarantees to hold, cf. our discussion after Prop. 2.26. Moreover, we
write ADKW for Alg. 7 (with k = 2), AEGE for the solution from Prop. 2.27 and APPR−Ber

for Alg. 4. We ran each of these algorithms with parameter γ = 0.05 for 100 repetitions for
different values of p, the achieved results are shown in Table 2.4. The observed accuracy
was throughout 1.00 with the only exception that APPR−Ber achieved 0.99 for p = 0.55.

We see that APPR−Ber outperforms all other solutions on any of the considered instances.
The algorithms AEGE and AlilUCB perform poorly. The round-based structure of AEGE

and ADKW imply that the sample complexity is not strictly decreasing in |p− 1/2|, but
instead there seems to be a minimum sample complexity required for any p ∈ [0, 1], namely
625.0 for ADKW and 123150.0 for AEGE for the considered choice of γ = 0.05.

We repeated this experiment for smaller values of |p − 1/2| and restricted ourselves to
ADKW and APPR−Ber at this point, the achieved results are shown in Table 2.4. The
observed accuracy was 1.00 in all cases, with the only exceptions that APPR−Ber achieved
accuracy 0.99 for p = 0.51 and for p = 0.54. Again, APPR−Ber apparently performs better
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Table 2.4.: Comparison of solutions to PγCoin.

TA

p AlilUCB ADKW AEGE APPR−Ber

0.55 67467.9 (1589.3) 16733 (453.5) 3783214.0 (0.0) 1129.2 (79.2)
0.60 16618.9 (420.1) 3256.4 (123.3) 797091.0 (0.0) 253.62 (15.7)
0.65 7144.0 (169.2) 785.5 (70.0) 132150.0 (0.0) 77.8 (5.6)
0.70 4048.7 (100.1) 625.0 (0.0) 132150.0 (0.0) 54.0 (3.9)
0.80 1780.3 (40.6) 625.0 (0.0) 132150.0 (0.0) 25.2 (1.41)
0.90 968.8 (23.9) 625.0 (0.0) 132150.0 (0.0) 12.6 (0.51)

than ADKW on any of the considered instances.

Table 2.5.: Comparison of ADKW and APPR−Ber for small values of p.

TA

p ADKW APPR−Ber

0.51 357484.9 (11037.3) 33323.5 (1970.6)
0.52 82416.0 (2794.4) 8484.7 (462.3)
0.53 57821.4 (3026.6) 3264.4 (220.5)
0.54 18328.0 (0.0) 1826.6 (126.7)

Mode Identification of a Die

Similarly as above, we want to compare several procedures for identifying the mode of
a categorical random variable. For the sake of convenience, we restrict ourselves to the
instances

• p1 := (0.5, 0.25, 0.25) ∈ ∆0
3 with h(p1) = 0.25,

• p2 := (0.4, 0.2, 0.2, 0.2) ∈ ∆0
4 with h(p2) = 0.2,

• p3 := (0.2, 0.1, 0.1, . . . , 0.1) ∈ ∆0
9 with h(p3) = 0.1,

• p4 := (0.1, 0.05, 0.05, . . . , 0.05) ∈ ∆0
19 with h(p4) = 0.05,

• p5 := (0.35, 0.33, 0.12, 0.1, 0.1) ∈ ∆0
5 with h(p5) = 0.02,

• p6 := (0.35, 0.33, 0.04, 0.04, . . . , 0.04) ∈ ∆0
10 with h(p6) = 0.02,

which have also been considered by Jain et al. [2021] in their experimental evaluation.
We write ADKW for Alg. 7 and APPR1v1 for Alg. 8. Table 2.6 shows sample mean (with
standard error in brackets) for both procedures started with parameter γ = 0.05 on the
instances p1, . . . ,p6, averaged over 100 repetitions each. For the sake of comparison, we
have also included Alg. 5, denoted by ADKWh, as a non-sequential solution to Pk,h,γDie ,
which obtains in addition to γ also the underlying (usually unknown) value h(pi) when
executed on pi.

We observed an accuracy of 1.00 for any procedure on any of p1, . . . ,p6 with the
only exception that APPR1v1 achieved 0.99 for p5. With regard to the required sample
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complexity, APPR1v1 clearly outperforms ADKW and even ADKWh on any of the six
considered instances. The results for APPR1v1 appear by and large consistent with those
from Jain et al. [2021, Table 1], who evaluated APPR1v1 on the same instances; the
differences in termination time and standard error from our results are presumably due to
partly different and small numbers of repetitions.

Table 2.6.: Comparison of ADKW, APPR1v1 and ADKWh.

TA

p k ADKW APPR1v1 ADKWh

p1 3 2614.6 (155.8) 172.8 (8.2) 561.0 (0.0)
p2 4 3769.8 (44.9) 241.0 (11.6) 877.0 (0.0)
p3 9 18328.0 (0.0) 684.8 (24.5) 3506.0 (0.0)
p4 19 81016.0 (0.0) 1661.8 (49.5) 14023.0 (0.0)
p5 5 357484.9 (11037.3) 29234.2 (1562.2) 87641.0 (0.0)
p6 10 346392.0 (0.0) 33390.8 (1492.4) 87641.0 (0.0)

2.5. A Change-of-Measure Argument

In this section, we will see a useful tool for proving lower bounds in the (multi-)dueling
bandit scenario, which will be of use in Part III. As an application of it, we provide
already in this section impossibility results for testing for some coherence in (multi-)dueling
bandits under the low-noise assumption. Before stating it, we require some preparation.
For S ∈ [m]k and p,q ∈ ∆S := {(p′j)j∈S ∈ [0, 1]S |

∑
j∈S p

′
j = 1} let us write KL (p,q)

for the Kullback-Leibler divergence of random variables X ∼ Cat(p) and Y ∼ Cat(q), i.e.,

KL (p,q) =

{∑
x∈S:px>0 px ln

(
px
qx

)
, if ∀y ∈ S : qy = 0 ⇒ py = 0,

∞, otherwise.

For the sake of convenience, we write in the binary case k = 2 simply kl(x, y) :=
KL ((x, 1− x), (y, 1− y)) for any x, y ∈ [0, 1].
Given a sequential testing algorithm A for the multi-dueling bandits scenario, let us

write SA
t for the query (element of [m]k) made at time step t. Moreover, define TA

S to be the

number of times A makes the query S ∈ [m]k before termination, i.e., TA
S =

∑TA

t=1 1{SA
t =S}

and TA =
∑

S∈[m]k
TA
S are fulfilled. Let iAt ∈ SA

t be the feedback observed by A at time

step t, after having queried SA
t , and write FA

t := σ(SA
1 , i

A
t , . . . , S

A
t , i

A
t ) for the sigma

algebra generated by the behaviour and observed feedback of A until time t, and as usual
FTA := {E ∈ F : E ∩ {TA ≤ t} ∈ Ft∀t ∈ N} with F := σ

(⋃
t∈NFt

)
.

Since A may be thought of as a multi-armed bandit with
(
m
k

)
arms (one for each

S ∈ [m]k) and “rewards” iAt ∈ SA
t , we may translate Lem. 1 from [Kaufmann et al., 2016]

to our setting as follows.

Lemma 2.42. Let P,P′ ∈ PMm
k be such that PP and PP′ are mutually absolutely

continuous. If A is a sequential testing algorithm such that TA is a.s. finite7 w.r.t. PP,

7Since PP and PP′ are mutually absolutely continuous, this is the case iff TA is a.s. finite w.r.t. PP.
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then ∑
S∈[m]k

EP

[
TA
S

]
KL
(
P(·|S),P′(·|S)

)
≥ supE∈F

TA kl (PP(E),PP′(E)) .

Proof. Cf. Lem. 1 in [Kaufmann et al., 2016].

Lemma 2.43. (i) For any S ∈ [m]k and p,q ∈ ∆S we have

KL (p,q) ≤
∑

x∈S

(px − qx)2

qx
.

In particular, kl (p, 1− p) ≤ (1−2p)2

p(1−p) and kl (1/2± h, 1/2∓ h) ≤ 4h2

1/4−h2 hold for any

p ∈ (0, 1) and h ∈ [0, 1/2).

(ii) The inequality kl(γ, 1− γ) ≥ ln 1
2.4γ holds for any γ ∈ (0, 1).

Proof. The first statement from (i) is Lem. 3 in [Chen and Wang, 2018] and implies

kl (p, 1− p) = KL ((p, 1− p), (1− p, p)) ≤ (1− 2p)2
(
1

p
+

1

p− 1

)
=

(1− 2p)2

p(p− 1)

and thus also kl (1/2± h, 1/2∓ h) ≤ 4h2

1/4−h2 .

For (ii) confer Equation (3) in [Kaufmann et al., 2016].

2.5.1. Application: Impossibility Results

Note that we may regard any P = (P(j|S))S∈[m]k,j∈S ∈ PM
m
k in a natural way as an

element in Rk·(
m
k ). This allows us to restrict the standard Euclidean norm ||·|| on Rk·(

m
k )

to PMm
k such that ∣∣∣∣P−P′∣∣∣∣2 =∑

S∈[m]k

∑
j∈S

(P(j|S)−P(j′|S))2

for any P,P′ ∈ PMm
k . For non-empty subsets P,P′ ⊆ PMm

k this gives us the distance

d(P,P′) := infP∈P infP′∈P′
∣∣∣∣P−P′∣∣∣∣ .

For the sake of convenience, let us write

Umk := {P ∈ PMm
k |P(j|S) > 0 for all S ∈ [m]k and all j ∈ S}.

Theorem 2.44. Suppose γ ∈ (0, 1
2.4) and let P,P′ ⊆ PMm

k be disjoint with P ∩ Umk ̸=
∅ ≠ P′ ∩ Umk and d(P ∩ Umk ,P′ ∩ Umk ) = 0. If A is a sequential testing algorithm, which
tests

H0 : P ∈ P versus H1 : P ∈ P′ (2.26)

with error probability at most γ correctly for any P ∈ P ∪P′ in the sense that

∀P ∈ P : PP(D(A) = 0) ≥ 1− γ and ∀P ∈ P′ : PP(D(A) = 1) ≥ 1− γ,
and ∀P ∈ P ∪P′ : PP(T

A <∞) = 1,

then we have for any P′ ∈ P′ ∩ Umk with d(P′,P ∩ Umk ) = 0 that

EP′ [TA] = supP∈P EP[T
A] =∞.
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Proof of Thm. 2.44. Suppose P′ ∈ P′ ∩ Umk to be fixed with d(P′,P ∩ Umk ) = 0. Then,
c := minS∈[m]k,j∈S P

′(j|S) > 0 and due to d(P′,P ∩ Umk ) = 0 there exists a sequence
Pn = ((Pn(j|S))S∈[m]k,j∈S)n∈N ⊆ P ∩ Umk with ||Pn −P′|| → 0 as n → ∞. Lem. 2.43
guarantees

KL
(
Pn(·|S),P′(·|S)

)
≤
∑

j∈S

(Pn(j|S)−P′(j|S))2

P′(j|S)
≤ ||Pn −P′||

c

for any S ∈ [m]k. AsA is able to test (2.26) with confidence 1−γ, En := {D(A) = 0} ∈ FTA

fulfills Pn(En) ≥ 1 − γ and P′(En) ≤ γ for any n ∈ N. Consequently, Lem. 2.42 and
Lem. 2.43 let us infer

ln
1

2.4γ
≤ kl

(
Pn(En),P′(En)

)
≤ supE∈F

TA kl
(
Pn(E),P′(E)

)
≤
∑

S∈[m]k
EPn

[
TA
S

]
KL
(
Pn(·|S),P′(·|S)

)
≤ ||Pn −P′||

c

∑
S∈[m]k

EPn [T
A
S ],

i.e., ||Pn −P′|| → 0 assures

supP∈P EP[T
A] ≥ supn∈N EPn [T

A] ≥ supn∈N
c

||Pn −P′||
ln

1

2.4γ
=∞.

It remains to prove EP′ [TA] = ∞. Due to ||Pn −P′|| → 0 as n → ∞, we can assume
with regard to the choice of c w.l.o.g. minn∈NminS∈[m]k,j∈S Pn(j|S) > c

2 . Then, Lem. 2.43
yields

KL
(
P′(·|S),Pn(·|S)

)
≤ 2 ||Pn −P′||

c
.

Similarly as above, we obtain

ln
1

2.4γ
≤ kl

(
P′(En),Pn(En)

)
≤ 2 ||Pn −P′||

c

∑
S∈[m]k

EP′ [TA
S ] =

2 ||Pn −P′||EP′ [TA]

c

and thus EP′ [TA] =∞ follows by taking the limit n → ∞.

As a consequence, we will see in the following that testing several properties under the
low-noise assumption is impossible in the beforementioned sense.

Testing for Plackett-Luce Marginals in Multi-Dueling Bandits We start with the
Plackett-Luce property (PL), which e.g. serves as modeling assumption for dueling bandits
in [Szörényi et al., 2015] and for multi-dueling bandits in [Saha and Gopalan, 2020b]. For
θ ∈ (0,∞)m we denote by P(θ) ∈ PMm

k (PL) the corresponding PM, that is coherent
with the Plackett-Luce model with parameter θ on Sm := {permutations on [m]}, i.e.,
P(θ) = {P(θ)(·|S)}S∈[m]k is defined via

P(θ)(i|S) := θi∑
a∈S θa

for any S ∈ [m]k and i ∈ S.
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As a direct consequence, we see that for any i ∈ {2, . . . ,m} the parameter θi can be recon-

structed from θ1 and P(θ) via θi =
P(θ)(i|S)
P(θ)(1|S)θ1, which holds for any S ∈ [m]k containing

both i and 1. In other words, the underlying PL-parameter θ is already determined up
to multiplicity by parts of the marginals, namely by the values {P(θ)(i|S)}S∈[m]k:1∈S,i∈S .
Since P(xθ) = P(θ) holds trivially for any x > 0, the knowledge of θ up to multiplicities
is sufficient for knowing P(θ). This shows that any P ∈ PMm

k (PL) is already fully
determined by {P(θ)(i|S)}S∈[m]k:1∈S,i∈S .
Combining these observations with Thm. 2.44 allows us to deduce an impossibility

result for the following problem, which is defined for parameters m ∈ N, k ∈ N with
2 ≤ k < m, h ∈ [0, 1) and α, β ∈ (0, 1): We say that a multi-dueling bandits algorithm

A solves PL testing on PMm
k (∆h) for α and β (short: Pm,k,α,βPL (∆h)) if it is able to test

H0 : P ∈ PMm
k (PL) versus H1 : P ∈ PMm

k (¬PL) with type I/II error at most α/β for
any P ∈ PMm

k (∆h) and a.s. terminates for any of these, i.e., if it fulfills

∀P ∈ PMm
k (∆h) : PP(T

A <∞) = 1,

∀P ∈ PMm
k (∆h ∧ PL) : PP(D(A) = PL) ≥ 1− α,

∀P ∈ PMm
k (∆h ∧ ¬PL) : PP(D(A) = ¬PL) ≥ 1− β.

Before stating the negative result for PL testing, we prepare its proof with two observations
on PMm

k (hGCW ∧ PL) and PMm
k (∆h ∧ PL), which will again be of use in Sec. 6.1.

Lemma 2.45. For θ ∈ (0,∞)m with θ1 ≥ · · · ≥ θm we have

P(θ) ∈ PMm
k (hGCW) ⇔ ∀j ∈ {2, . . . , k} : h(θ1 + · · ·+ θk) + θj − θ1 ≤ 0

⇔ h(θ1 + · · ·+ θk) + θ2 − θ1 ≤ 0

and

P(θ) ∈ PMm
k (∆h) ⇔ ∀i ∈ [m− k] : h(θi + · · ·+ θi+k−1) + θi+1 − θi ≤ 0.

Proof. This follows directly from the definitions.

From this, we obtain the following result, whose proof is given in the appendix.

Lemma 2.46. For any h ∈ (0, 1) and m, k ∈ N with k ≤ m we have PMm
k (PL∧hGCW) ⊇

PMm
k (PL ∧∆h) ̸= ∅.

Corollary 2.47. If A solves Pm,k,α,βPL (∆h) for α, β ∈ (0, 1
2.4), then EP[T

A] = ∞ for
any P ∈ PMm

k (∆h ∧ PL) ∩ Umk with d(P, PMm
k (∆h ∧ ¬PL) ∩ Umk ) = 0 and also any

P ∈ PMm
k (∆h ∧ ¬PL) ∩ Umk with d(P, PMm

k (∆h ∧ PL) ∩ Umk ) = 0. In particular,

supP∈PMm
k (∆h∧PL) EP[T

A] =∞ = supP∈PMm
k (∆h∧¬PL) EP[T

A].

Proof. At first, note that P ∈ Umk holds trivially for any P ∈ PMm
k (PL). Let us define

P := PMm
k (∆h ∧ PL) and P′ := PMm

k (∆h ∧ ¬PL). From Lem. 2.46 we know P ̸= ∅.
Thus, we may fix P ∈ P and S′ ∈ [m]k with 1 ̸∈ S ⊇ {2, 3}. There exists ε ∈ (−1, 1)
such that defining P′(2|S′) := P(2|S′) + ε, P′(3|S) := P′(3|S′)− ε and P′ := P(i|S) for
S ∈ [m]k, i ∈ S, for which S ̸= S′ or i ̸∈ {2, 3}, results in a probability model P′ =
{P′(i|S)}S∈[m]k,i∈S ∈ PM

m
k (∆h)∩Umk . AssumingP′ ∈ PMm

k (PL) for the moment, the fact
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that P(·|·) and P′(·|·) coincide on the determining set {(i, S) |S ∈ [m]k with 1 ∈ S, i ∈ S}
would imply P = P′, a contradiction. Hence, P′ ∈ PMm

k (∆h ∧ ¬PL) ∩ Umk = P′ ∩ Umk
follows.

In the construction above, ε may be chosen such that |ε| is arbitrarily small. Thus, we
obtain d(P ∩ Umk ,P′ ∩ Umk ) = 0, and the rest follows from Thm. 2.44.

The class PMm
k (PL) coincides with that of the multi-nomial logit model, which in turn

is a special case of a random utility model (RUM); note that the RUM has briefly been
introduced in Sec. 1.4. Recently, Saha and Gopalan [2020a] have investigated multi-dueling
bandit problems under such generalized assumptions, and it may be of interest for future
work to check whether analoga of the above result are valid for RUMs as well. Nevertheless,
we stop at this point and continue with further types of coherence of Q that are prominent
assumptions in the dueling bandits scenario.

Testing for Further Coherences in Dueling Bandits In the dueling bandits scenario,
there are further coherences of Q assumed in the literature. Via Thm. 2.44, we can see
that many of these are impossible to test in the above mentioned sense.

Formally, given a property X of reciprocal relations and parameters m ∈ N, h ∈ (0, 1/2)
and α, β ∈ (0, 1), let us say that a dueling bandit algorithm A solves X testing on Qhm
(short: Pm,h,α,βX ) if it is able to decide with type I/II errors at most α/β for any Q ∈ Qhm
whether H0 : Q ∈ Qm(X) or H1 : Q ∈ Qm(¬X) is true and terminates a.s. for any
Q ∈ Qhm, i.e., if

∀Q ∈ Qhm : PQ(TA <∞) = 1,

∀Q ∈ Qhm(X) : PQ(D(A) = X) ≥ 1− α,
∀Q ∈ Qhm(¬X) : PQ(D(A) = ¬X) ≥ 1− β.

For proving worst-case sample complexity bounds of solutions to Pm,h,α,βX , the following
simplified version of Thm. 2.44 will be sufficient. For the sake of convenience, we abbreviate
Q♣
m := {Q ∈ Qm | ∀(i, j) ∈ (m)2 : qi,j ≥ 1/2}.

Corollary 2.48. Let X be a property for reciprocal relations with Qhm(X) ∩Q♣
m ∩ Um2 ̸=

∅ ≠ Qhm(¬X) ∩Q♣
m ∩ Um2 and α, β ∈ (0, 1

2.4). Then, any solution A to Pm,h,α,βX fulfills

supQ∈Qh
m(X) EQ[TA] = supQ∈Qh

m(¬X) EQ[TA] =∞.

Proof. Choose P = Qhm(X)∩Q♣
m and P′ = Qhm(¬X)∩Q♣

m. Since (P∩Um2 )∪ (P′∩Um2 ) =
Qhm ∩Q♣

m ∩ Um2 is connected, the statement follows from Thm. 2.44.

Let us give a brief overview of those properties X, for which we will infer negative results
by means of Cor. 2.48 below. For more information on the relations among themselves
(including further properties such as stochastic transitivities) confer [Bengs et al., 2021].
A reciprocal relation Q ∈ Qm is said to satisfy the stochastic triangle inequality (STI) if
it fulfills

qi,j , qj,k ≥
1

2
⇒ qi,k ≤ qi,j + qj,k −

1

2

for any distinct i, j, k ∈ [m]. As a direct consequence of this definition, we see that
Qhm ⊆ Qm(STI) for any h ≥ 1

4 . For this reason, we will restrict ourselves to the case h < 1
4
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for STI testing. The assumption STI has e.g. been made in [Yue et al., 2012, Falahatgar
et al., 2017b, Ren et al., 2020].
Another property, which is e.g. of interest in [Zimmert and Seldin, 2018] and [Bengs

et al., 2021], is the general identifiablity assumption (GIA). Formally, Q ∈ Qm fulfills this
property if there exists i ∈ [m] s.t.

∀j ∈ [m] \ {i} : ∀l ∈ [m] \ {i} : qi,l > qj,l.

Moreover, Bengs et al. [2021] considered the property low noise model (LNM), which is
defined to hold for Q ∈ Qm if qi,j ̸= 1/2 and

qi,j > 1/2 ⇒
∑

l∈[m]
qi,l >

∑
l∈[m]

qj,l

is fulfilled for any distinct i, j in [m].

As mentioned in Sec. 1, one frequently assumed coherence is that Q is the marginal of
some certain type of reciprocal probability distribution on Sm. Recall here that, if P is
such a distribution, its corresponding marginals QP = (qPi,j)1≤i,j≤m ∈ Qm are given as

qPi,j =
∑

σ∈Sm with σ(i)<σ(j)
P(σ).

We say that Q ∈ Qm fulfills

• Marg if Q = QP for an arbitrary probability distribution P on Sm,

• Mal if Q = QP for a Mallows distribution [Mallows, 1957] P on Sm,

• BS if Q = QP for a Babington Smith distribution [Smith, 1950] P on Sm,

where the notions “Mallows distribution” and “Babington Smith distribution” are clarified
below.

The property Marg is clearly the most general one. Actually, it has not gained much
attention in the dueling bandit literature so far, but nevertheless, we added it for the sake
of completeness.
The assumption Q ∈ Qm(Mal) has e.g. been made in [Busa-Fekete et al., 2014a]

for identifying the most-preferred arm according to the underlying Mallows probability
distribution. There, it has also been shown that Q ∈ Qm fulfills Mal iff there exist ν ∈ Sm
and ϕ ∈ (0, 1] s.t.

qi,j = ωϕ(ν(j)− ν(i) + 1)− ωϕ(ν(j)− ν(i)) (2.27)

holds for any 1 ≤ i < j ≤ m with ωϕ(k) :=
k

1−ϕk .
The condition BS is not yet discussed in the realm of dueling bandits. However, it is

a generalization of Mal and may be of interest for further research. Even though we do
not require knowledge of the concrete marginal formulas for our purposes, we provide
the definition of the model for the sake of completeness. Formally, given an appropriate
parameter W = (wi,j)1≤i,j≤m ∈ Qm, the corresponding Babington Smith distribution
PBS(W) is defined by PBS(W)(σ) := P̂BS(W)(σ)/C(W) for any σ ∈ Sm, where

P̂BS(W)(σ) :=
∏

1≤i<j≤m
w
Ii,j(σ)
i,j (1− wi,j)1−Ii,j(σ) and C(W) :=

∑
σ∈Sm

P̂BS(W)(σ)
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with Ii,j(σ) := 1{σ(i)<σ(j)}. Here, W is meant to be appropriate if the above is well-defined,
i.e., if C(W) ̸= 0.

The impossibility result on Marg testing is prepared with the following lemma.

Lemma 2.49. If Q ∈ Qm(Marg), then

qi,j + qj,k − 1 ≤ qi,k ≤ qi,j + qj,k for any distinct i, j, k ∈ [m]. (2.28)

Proof of Lem. 2.49. This is Thm. 3.2.1 in [Fligner and Verducci, 1993].

This result has a close connection to the concept of fuzzy transitivity as e.g. discussed
in [Świtalski, 2003, Haddenhorst et al., 2020]: The property (2.28) is fulfilled iff Q is
TL-transitive, where TL(x, y) = max(x+ y − 1, 0) is the  Lukasiewicz T -norm. As noted
by Fishburn and Falmagne [1989, p. 479], (2.28) is also sufficient for Q ∈ Qm(Marg) iff
m ≤ 5.

Corollary 2.50. Suppose X ∈ {GIA,Marg,Mal,BS} and h ∈ (0, 1/2), or X = STI and

h < 1
4 , or X = LNM and h < m−2

2m . If α, β ∈ (0, 1
2.4) and A solves Pm,h,α,βX , then

supQ∈Qh
m(X) EQ[TA] = supQ∈Qh

m(¬X) EQ[TA] =∞.

Proof. To apply Cor. 2.48 it is sufficient to show, for any choice of X, existence of two
reciprocal relations Q ∈ Qhm(X) ∩ Q♣

m ∩ Um2 and Q′ ∈ Qhm(¬X) ∩ Q♣
m ∩ Um2 . With some

abuse of notation, after replacing for convenience h by h + δ for some small δ > 0, we
may suppose w.l.o.g. Qhm = {Q ∈ Qm | ∀(i, j) ∈ (m)2 : |qi,j − 1

2 | ≥ h}. We treat each case
separately.

(i) Case X = GIA. Define Q and Q′ via

qi,j :=

{
1− h

2 , if i = 1,
1
2 + h, otherwise,

and q′i,j :=

{
1− h

2 , if j − i = 1,
1
2 + h, otherwise

for any 1 ≤ i < j ≤ m and note that Q,Q′ ∈ Q♣
m ∩ Um2 . Since q1,l − qj,l ≥

1
2 −

3h
2 > 0 for all ∀j, l ∈ [m] \ {1}, we have Q ∈ Qm(GIA). For i ∈ [m − 2]

we have q′i,i+2 − q′i+1,i+2 = h
2 −

1
2 < 0, and similarly for i ∈ {m − 1,m} we have

q′i,i−1 − q′i−2,i−1 = −1
2 −

h
2 < 0, hence Q′ ∈ Qm(¬GIA) holds.

(ii) Case X = Marg. There exists Q ∈ Qhm(PL) ∩ Q♣
m according to Lem. 2.46, which

is trivially also an element in Um2 . Due to Qhm(PL) ⊆ Qhm(Marg) we obtain Q ∈
Qhm(Marg) ∩ Q♣

m. Moreover, for sufficiently small ε > 0 the relation Q′, defined by
q′1,m = 1 − 3ε and q′i,j = 1 − ε for any 1 ≤ i < j ≤ m with (i, j) ̸= (1,m), is an

element in Qhm ∩Q♣
m ∩ Um2 and fulfills q′1,m−1 + q′m−1,m − 1 = 1− 2ε > q′1,m. Hence,

Lem. 2.49 assures Q′ ∈ Qhm(¬Marg) ∩Q♣
m ∩ Um2 .

(iii) Case X = Mal. With ν = id[m] ∈ Sm the expression in (2.27) becomes ωϕ(j − i+
1)− ωϕ(j − i), which is in (0, 1) and tends to 1 as ϕ → 0 whenever i < j. Thus, a
sufficiently small choice of ϕ yields a reciprocal relation Q ∈ Qhm(Mal) ∩ Q♣

m ∩ Um2 .
By (ii), there exists Q′ ∈ Qhm(¬Marg) ∩Q♣

m ∩ Um2 ⊆ Qhm(¬Mal) ∩Q♣
m ∩ Um2 .
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(iv) Case X = BS. As shown in [Mallows, 1957], any Mallows distribution is in particular
also a Babington Smith distribution. Consequently, the element Q from (iii) fulfills
Q ∈ Qhm(Mal) ∩ Q♣

m ∩ Um2 ⊆ Qhm(BS) ∩ Q♣
m ∩ Um2 . Moreover, we have for Q′ from

(ii) that Q′ ∈ Qhm(¬Marg) ∩Q♣
m ∩ Um2 ⊆ Qhm(¬BS) ∩Q♣

m ∩ Um2 .

(v) Case X = STI. Choose Q via qi,j := 1 − h
2 for any 1 ≤ i < j ≤ m. Moreover,

let Q′ be defined via q′1,2 = q′2,3 = 1
2 + h, q′1,3 = 1 and q′i,j = 1 − h

2 for any other
1 ≤ i < j ≤ m.

(vi) Case X = LNM. In case h < m−2
2m , we can fix an arbitrary ε ∈

(
0, 12 −

mh
m−2

)
. The

reciprocal relations Q and Q′, defined via

qi,j := 1/2 + h and q′i,j :=

{
1
2 + h, if i = 1,

1− ε, otherwise

for any 1 ≤ i < j ≤ m, are elements of Q♣
m ∩ Um2 . If qi,j >

1
2 , then i < j and∑

l∈[m] qi,l − qj,l = 2h(j − i) > 0 holds, hence Q ∈ Qm(LNM). Moreover, we have

q′1,2 > 0, and ε < 1
2 −

mh
m−2 lets us infer∑

l∈[m]
q′1,l − q′2,l = (q′1,1 − q′2,1) + (q′1,2 − q′2,2) +

∑
3≤l≤m

q′1,l − q′2,l

= h+ h+ (m− 2)

(
−1

2
+ h+ ε

)
= mh+ (m− 2)

(
ε− 1

2

)
> 0.

This shows Q′ ∈ Qm(¬LNM).

2.6. Discussion and Related Work

The collection of concentration inequalities presented in Sec. 2.1 is far from complete
and restriced to those, which we actually make use of in the course of this thesis, a more
thorough overview can e.g. be found in [Massart, 2007].

Based on Hoeffding’s inequality, we obtained in Lem. 2.10 already a non-sequential solution
to Ph,γCoin that is asymptotically optimal. However, the SPRT plays a major role, as its
optimality result allowed us to infer a lower bound for sequential testing algorithms.

Prop. 2.13 is interesting since it provides a sharper lower bound for solutions to Ph,γCoin in

case h = 0, namely the worst-case sample complexity of solutions to P0,γ
Coin w.r.t. instances

in Qhm is by a factor ln ln 1
h larger than corresponding worst-case sample complexity of

solutions to Ph,γCoin. The original bound by Farrell [1964] underlying Prop. 2.13 holds
for the more general case where the Xt’s belong to the exponential family, but we have
restricted ourselves to the case of Bernoulli random variables for simplicity. Jamieson
et al. [2013] provide a weaker version of this result, which comes with a simpler proof than
the original one but additionally assumes A to be a GSPRT as defined above and the Xt

to be normally distributed. Chen and Li [2015] improved upon Farrell’s original bound
in the sense that they weakened the exponential family assumption and also provide
guarantees that are slightly stronger than merely bounding the limes superior of the
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expected termination time. We restricted ourselves to Farrell’s lower bound result as it
already suffices our purposes.

As the theoretically (in an appropriate sense) optimal solution to PγCoin from Prop. 2.22
seems infeasible for practical purposes, we also included two solutions based on reductions
to multi-armed bandits as well as PPR-Bernoulli from [Jain et al., 2021]. The latter one
is to the best of our knowledge w.r.t. empirical performance currently the best solution to
PγCoin in the literature. As already mentioned, there exist even more solutions to Ph,γCoin

and PγCoin. For example, Zhao et al. [2016] and Balsubramani [2014] presented further
anytime LIL confidence bounds that are similar to Lem. 2.6 and could potentially be
used to construct in a similar fashion as Prop. 2.23 corresponding GSPRTs that solve
Ph,γCoin. The works [Karp and Kleinberg, 2007] and [Ren et al., 2020] contain alternative
solutions to PγCoin, and apart from that, numerous further solutions to the best-arm
identification problem in MABs such as those in [Kalyanakrishnan et al., 2012, Shah et al.,
2020, Kaufmann and Kalyanakrishnan, 2013] can be used in Alg. 1 for creating solutions
to PγCoin; cf. [Chen et al., 2017] for a more extensive literature overview and a more

thorough analysis of best-arm identification in MABs. Last but not least, P2,h,γ
Die ≈ P

h/2,γ
Coin

and P2,0,γ
Die = PγCoin assure that any solution to Pk,h,γDie can be seen with k = 2 as a solution

to the corresponding mode identification problem for a coin. Comparing all solutions
prevalent in the literature would certainly exceed the scope of this chapter, hence we
restricted ourselves to those ones stated in Sec. 2.2.2, because they apparently suffice to
achieve (almost) asymptotically optimal sample complexity results for our problems of
interest in Part II.

Lem. 17 in [Ren et al., 2019a] resp. Lem. 15 in the corrected preprint version [Ren et al.,
2019b] provides a sample complexity lower bound for a problem related to that discussed
in Sec. 2.2.3. Informally, they consider the problem of testing for any of m biased coins
whether the bias is head or tails, whereas we are interested in deciding whether all of
them are biased towards head or not. Apparently, their problem is more difficult than
ours, hence proving sample complexity lower bounds of corresponding solutions is easier
in their setting than in ours. They establish a bound of order Ωsup(

m
h2

ln ln 1
h) by using the

above mentioned improved version of Farrell’s lower bound underlying Prop. 2.13 from
Chen and Li [2015]. Unfortunately, this argument does not seem applicable in our setting
and we merely obtained a bound of order Ωsup(

1
h2

ln ln 1
h).

The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality stated in Lem. 2.34 actually holds for
quite general distributions of Xt [Kosorok, 2008]. For the particular case of categorical
random variables, Devroye [1983] and Berend and Kontorovich [2012] provide improved
concentration inequalities for ||p− p̂t||1 =

∑
i∈[k] |pi − (p̂t)i| instead of ||p− p̂t||∞. For

our purpose of mode identification, these did not result in improved solutions to Pk,h,γDie .

Alg. 7 will be a main ingredient for our solution to Pm,k,γGCWi(GCW ∧ ∆0) in Ch. 6. Its
idea is similar to that underlying the solution SEEBS from [Ren et al., 2020] to PγCoin, a
major difference thereof is that its guarantees are based on the DKW inequality instead of
Hoeffding’s inequality and the Chernoff bound. Alg. 6 is an important building block of
Alg. 7, but it will also be of importance for our solution to Pm,k,γGCWi(hGCW ∧∆0) in Ch. 6.

We have seen in Prop. 2.23 how an appropriate anytime confidence bound (Lem. 2.6) can
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be used to construct a solution to Ph,γCoin, which has a worst-case sample complexity of

order O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
whilst having the chance to terminate early. This raises the

question whether an appropriate anytime version of the DKW inequality may lead to
similar solutions to Pk,h,γDie , i.e., whether an analogon of Lem. 2.6 holds with essentially the

same Uγ(n) but
∑n

k=1 Y
(p)
k replaced by ||p− p̂n||∞. The proof technique used in Lem. 3

in [Jamieson et al., 2013], which is underlying Lem. 2.6, does not appear transferrable for
this purpose. Recently, Howard and Ramdas [2021, Thm. 2] gave an anytime version of
the DKW inequality, which could be of use for the construction of such a solution.

Shah et al. [2020] also analyzed the mode identification problem for categorical random
variables. Based on Lem. 2.42, they proved an instance-wise lower bound (cf. Thm. 3
in their paper), which is asymptotically comparable to Prop. 2.30. In contrast to theirs,
our bound also captures the asymptotical behavior as k → ∞. Moreover, the authors
provide a solution for Pk,0,γDie (cf. Thm. 2 in their paper). For this, they make use of
confidence intervals that are given via improved empirical Bernstein bounds. Our solution
from Prop. 2.40 theoretically outperforms theirs with respect to two essential aspects:
First, its sample complexity bound is constant instead of increasing in k and second, their
dependence on the hardness parameter h(p) is 1

h2(p)
ln 1

h(p) instead of 1
h2(p)

ln ln 1
h(p) as in

Prop. 2.30. Their solution empirically performs worse than PPR1v1 [Jain et al., 2021]
and was thus not added to our empirical comparison.

Jain et al. [2021] showed that their solution A = PPR1v1 has in addition to its good

empirical performance also the appealing property that limγ↘0
Ep[TA]
LB(p,γ) = 1 for any p ∈ ∆0

k,

where LB(p, γ) is the above mentioned sample complexity lower bound for an arbitrary

solution to Pk,0,γDie on instance p from [Shah et al., 2020]. This raises the question whether

the other solutions to Pk,h,γDie or Ph,γCoin come with analogous guarantees.

We think that the idea of constructing solutions to Pk,h,γDie from solutions to Ph,γCoin via a
one-vs-one paradigm could possibly be fruitful for the case h > 0 as well. More precisely,

one may ask whether the SPRT as optimal solution to Ph
′,γ

Coin can be used to construct

a good solution to Pk,h,γDie , and presumably the difficulty lies in deciding which value
h′ = h′(h) to choose here.

The measure-changing argument stated as Lem. 2.42 is a frequently used approach for
proving sample complexity lower bounds in (multi-)dueling bandits [Saha and Gopalan,
2020b, Agarwal et al., 2020, Bengs and Hüllermeier, 2020] and it could also be used as an
argument for proving lower bounds in Chapters 4 and 5 below. However, we will exploit
the optimality of the SPRT for this purpose, because the SPRT has apparently the best
guarantees for solutions to Ph,γCoin, cf. Prop. 2.17.

In Sec. 2.5, we already discussed the problem to test several properties of probability
models and reciprocal relations, which are of relevance in (multi-)dueling bandits, including
the stochastic triangle inequality (STI) [Yue et al., 2012, Falahatgar et al., 2017b, Ren
et al., 2020] as well as the properties of being marginals of a Plackett-Luce [Szörényi et al.,
2015, Saha and Gopalan, 2020b], a Mallows [Busa-Fekete et al., 2014a] or any probability
distribution on rankings on [m]. However, our impossibility results from Sec. 2.5 must
be used with caution: They do not at all imply that testing any of the aforementioned
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properties is per se impossible, but only show that testing these with finite worst-case
termination time under the low-noise assumption is not possible. When restricting e.g.
to instances in QSTI>h

m := {Q ∈ Qm | d(Q, ∂Qm(STI)) > h}, one could presumably con-
struct a solution A to STI testing on QSTI>h

m with finite worst-case termination time,
and similarly for other properties X ̸= STI. But in contrast to the low-noise assumption,
assumptions like Q ∈ QSTI>h

m seem rather artificial and unreasonable to us. Also, one
could still formulate instance-wise bounds for solutions to the STI testing on Qhm for
α and β. Even though our results from Sec. 2.5 may appear rather trivial, we think
they could be of interest as they indicate to some extend the hardness of checking such
frequently made statistical assumptions in (multi-)dueling bandits. There exists some
literature on testing hypothesis in the context of such assumptions, e.g., Busa-Fekete
et al. [2021] tested in an offline manner for the parameter of a Mallows model by means
of ranking feedback and Rastogi et al. [2020] analyzed the impact of WST, SST, MST
and the Plackett-Luce assumption as parameter restrictions in a two-sample hypothesis
testing scenario. However, such results appear rather loosely related to the learning tasks
in this thesis, thus we did not consider them in more detail.
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3. Graph-Theoretical Considerations

This chapter is dedicated to the graph-theoretical prerequisites required in Chapters 4
and 5 and also analyzes deterministic variants of the problems CW identification, CW
testification, CW verification and WST testing. Throughout this chapter, if not explicitly
stated otherwise, we assume m ≥ 3.

3.1. Basic Terminology

Let us write Gm for the set of all simple directed graphs (short: digraphs) on [m] without
loops and with at most one edge between each two nodes. In other words, Gm contains all
digraphs G = ([m], EG) with EG ⊆ ⟨m⟩2 := {(i, j) ∈ [m]×[m] | i ̸= j} such that (i, j) ̸∈ EG
or (j, i) ̸∈ EG holds for every distinct i, j ∈ [m]. Let Gm be the set of tournaments on [m],
i.e., Gm ⊆ Gm contains all digraphs G = ([m], EG), where for every (i, j) ∈ ⟨m⟩2 either

(i, j) ∈ EG (we write i → j in G, or i
G−→ j) or (j, i) ∈ EG. For G ∈ Gm and disjoint

V1, V2 ⊆ [m] we use in illustrations a double arrow V1↠V2 to indicate that G contains all
the edges i1 → i2 with i1 ∈ V1, i2 ∈ V2. For example, the graph G = ([m], EG) ∈ Gm with
the set of edges EG = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} may be illustrated as follows.

1 3, 4 2

Given a tournament G ∈ Gm, a permutation σ ∈ Sm is called a topological sorting if
σ(i) < σ(j) iff i → j in G. Moreover, we call (i1, . . . , ik) ∈ [m]k a k-cycle (or simply a
cycle) in G if i1, . . . , ik are distinct, i1 → . . . → ik−1 → ik → i1 holds and k ≥ 3 is
fulfilled. We say that G ∈ Gm is acyclic if it does not contain any cycle. We say that a
property X, that is applicable to tournaments on [m], is possible if the restricted set

Gm(X) :=
{
G ∈ Gm |G fulfills X

}
is non-empty. Given possible properties X,X1, . . . ,Xn, we implicitly define the properties
¬X, X1 ∧ · · · ∧Xn and X1 ∨ · · · ∨Xn via Gm(¬X) := Gm \ Gm(X), Gm(X1 ∧ · · · ∧Xn) :=⋂

1≤l≤n Gm(Xl) and Gm(X1 ∨ · · · ∨ Xn) :=
⋃

1≤l≤n Gm(Xl), respectively. We focus on
combinations of the possible properties ∅, i, CW and acyclic given by

Gm(∅) := Gm,
Gm(i) :=

{
G ∈ Gm | ∀j ∈ [m] \ {i} : i → j

}
,

Gm(CW) :=
⋃

i∈[m]
Gm(i),

Gm(acyclic) :=
{
G ∈ Gm | ∃ topological sorting of G

}
.

Clearly, G ∈ Gm is acyclic iff G has a topological sorting, that is, we have {G ∈
Gm |G is acyclic} = Gm(acyclic).
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For Q ∈ Q0
m, the associated tournament G(Q) ∈ Gm of Q is defined via

i → j in G(Q) :⇔ qi,j >
1

2
.

The map Φm : Rm → Gm,Q 7→ G(Q) provides a one-to-one connection between the
tournaments on [m] and the deterministic reciprocal relations on [m]. Note that Q ∈
Q0
m ⊋ Rm has i as Condorcet winner iff i → j holds in G(Q) for any j ∈ [m] \ {i}, i.e.,

we have Φm(Rm(i)) = Gm(i) and Φm(Rm(CW)) = Gm(CW). Hence, we may say that i is
the Condorcet winner of G ∈ Gm if Φ−1

m (G) ∈ Rm and then write CW(G) = i. We obtain
the following connection between stochastically transitive reciprocal relations and acyclic
tournaments.

Proposition 3.1. If Q ∈ Q0
m, then

Q ∈ Q0
m(WST) ⇔ G(Q) ∈ Gm(acyclic).

Moreover, for XST ∈ {MST,SST, νRST} we have Φm(Rm(XST)) = Gm(acyclic).

We prepare its proof with the following lemma, which is common knowledge [Moon, 2015].
For the sake of completeness, we restate it here and provide a proof in the appendix.

Lemma 3.2. Some G ∈ Gm is acyclic iff it does not contain a 3-cycle.

Proof of Prop. 3.1. Note that Q = (qi,j)1≤i,j≤m ∈ Q0
m is not WST if and only if there

exist distinct i, j, k ∈ [m] such that qi,j , qj,k ≥ 1
2 and qi,k <

1
2 . Regarding the definition of

Q0
m, this is equivalent to qi,j , qj,k, qk,i >

1
2 , which is fulfilled if and only if G(Q) contains a

3-cycle. The first statement then follows from Lem. 3.2, which shows that the existence of
a 3-cycle in G(Q) is equivalent to the existence of a k-cycle for k ≥ 3 in Φm(Q).
The second statement follows from the first one by using that any Q ∈ Rm ⊊ Q0

m fulfills

Q ∈ Rm(XST) ⇔ for all distinct i, j, k ∈ [m] : (qi,j = qj,k = 1 ⇒ qi,k = 1)

⇔ Q ∈ Rm(WST).

By exploiting the connection of reciprocal relations to tournaments, one obtains the
following result. This has already been stated in [Haddenhorst et al., 2020] and for the
sake of completeness we provide a proof in the appendix.

Lemma 3.3. For any Q ∈ Q0
m there exists a permutation σ on [m] s.t. qσ(i),σ(i+1) >

1
2

for every i ∈ [m− 1].

The remainder of this chapter is dedicated to the analysis of the following deterministic
variants of the CW-related and transitivity testing problems introduced in Sec. 1.3:

• CW testification on Gm (short: DmCWt): For any G ∈ Gm(CW), if G has a CW,
return it, and otherwise return ¬CW.

• CW checking on Gm (short: DmCWc): For any G ∈ Gm(CW), decide whether G has a
CW or not.
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• CW verification on Gm (short: DmCWv): For any G ∈ Gm(CW) and any input z ∈ [m],
decide whether CW(G) = z or not.

• CW identification on Gm(CW) (short: DmCWi(CW)): For any G ∈ Gm(CW), identify
the CW of G.

• CW verification on Gm(CW) (short: DmCWv(CW)): For any G ∈ Gm(CW) and any
input z ∈ [m], decide whether CW(G) = z or not.

• acyclicity testing on Gm (short: Dmacyclic): For any G ∈ Gm, decide whether G is
acyclic or not.

Formally, any of these problems can be regarded as a deterministic variant of its cor-
responding probabilistic counterpart with error probability γ = 0 and the additional
assumption Q ∈ Rm. Unlike in the dueling bandits scenario, we mainly restrict ourselves
throughout this chapter to deterministic solutions of these problems, i.e., to such, which
are not allowed to choose their queries in a probabilistic manner. For this purpose, we
start with some observations for such algorithms and more general decision problems.

3.2. Deterministic Sequential Testing Algorithms

Let Y be an arbitrary property of tournaments on [m]. We say a deterministic sequential
testing algorithm (DSTA) for Gm(Y) is an algorithm A, which, when started on any
G ∈ Gm, chooses until its termination at each time step t a query {iAG(t), jAG(t)} ∈ [m]2
and then observes whether iAG(t) → jAG (t) or j

A
G (t) → iAG(t) holds in G. Here, we suppose

that A receives only m as parameter and has – apart from the fact G ∈ Gm(Y) – no a
priori knowledge of G. For any G, let DA(G) be the return value of A started on G and
write TA

G for the termination time of A started on G, i.e., the number of queries made
by A before termination. We measure the performance of A by means of its worst-case
termination time

TA := TA
worst := maxG∈Gm(Y) T

A
G ,

and at times, we will also consider its best-case termination time

TA
best := minG∈Gm(Y) T

A
G .

As querying any already queried {i, j} ∈ [m]2 is of no benefit, we assume w.l.o.g. that all
queries made by A are disjoint, hence we have TA

G ≤ |EG| ≤
(
m
2

)
for any G ∈ Gm, and

TA ≤
(
m
2

)
. Moreover, we define the picture of A started on G at time t as that digraph

GA
G (t) := ([m], E′) ∈ Gm with

E′ :=
{
(i, j) | ∃t′ ≤ t :

{
iAG(t

′), jAG (t
′)
}
G
= (i, j)

}
,

where we have used the notation

{i′, j′}G :=

{
(i′, j′), if i′ → j′ in G,

(j′, i′), if j′ → i′ in G

for distinct i′, j′ ∈ [m]. Note that GA
G (t) contains all information gathered by A started

on G until time t.
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If X1, . . . ,Xn are possible properties of tournaments on [m] s.t. Gm(Y) =
⋃
k∈[n] Gm(Xk)

is a distinct union, we say that a DSTA A for Gm(Y) solves DmX1,...,Xn
(Y) if

∀k ∈ [n]∀G ∈ Gm(Xk) : DA(G) = Xk.

We call a solution A to DmX1,...,Xn
(Y) optimal if every solution A′ to DmX1,...,Xn

(Y) fulfills

TA′ ≥ TA. In case Y = ∅, we simply write DmX1,...,Xn
for DmX1,...,Xn

(Y).

Note that, with this general framework, we are already able to model four of the six
deterministic decision problems from above as follows:

DmCWt = Dm1,...,m,¬CW, DmCWc = DmCW,¬CW,

DmCWi(CW) = Dm1,...,m(CW) and Dmacyclic = Dmacyclic,¬acyclic.

For being able to incorporate CW verification, we require yet a further generalization.
Given a non-empty set Z, let us say that A is a DSTA for Gm(Y) with input space Z if,
for any z ∈ Z, A started with z (denoted by A(z)) is a DSTA for Gm(Y). If A is started

with z on G, we write {iA(z)
G , j

A(z)
G } for the query at time t, G

A(z)
G (t) for its picture at

time t of G and DA(z)(G) for the corresponding output, and the worst- resp. best-case
termination times of A are simply defined as

TA = TA
worst := maxz∈Z T

A(z)
worst and TA

best := minz∈Z T
A(z)
best .

If X1, . . . ,Xn : Z 7→ {possible properties of tournaments on [m]} are s.t. Gm(Y) =⋃
k∈[n] Gm(Xk(z)) is a disjoint union for any z ∈ Z, we say that a DSTA A for Gm(Y)

with input space Z solves DmX1,...,Xn
[Z](Y) if

∀z ∈ Z : A(z) solves DmX1,...,Xn
[z](Y) := DmX1(z),...,Xn(z)

(Y).

Furthermore, let us call a solution A to DmX1,...,Xn
[Z](Y) optimal if every solution A′

to DmX1,...,Xn
[Z](Y) fulfills TA′ ≥ TA. In case Y = ∅, we simply write DmX1,...,Xn

[Z] for
DmX1,...,Xn

[Z](Y).

Clearly, this notion of DSTAs with inputs generalizes that of DSTAs, and in the particular
case |Z| = 1 these concepts are equivalent. With the particular choices Z := [m] and
X∗

1(z) := z, X∗
2(z) := ¬z for each z ∈ Z, we obtain the characterizations

DmCWv = DmX∗
1,X

∗
2
[Z] and DmCWv(CW) = DmX∗

1,X
∗
2
[Z](CW).

When m, properties Y,X1, . . . ,Xn and an input space Z are fixed, the number of different1

DSTAs is finite and thus conducting an extensive brute-force search would trivially allow
to find an optimal solution to DmX1,...,Xn

[Z](Y). However, this approach seems practically
infeasible, because the set of possible DSTAs is extremely large. To get an intuition how
large this value could be, note that a DSTA A for Gm(Y) with input space Z, which
fulfills |Z| = 1 for simplicity, is specified by its initital query {i1, j1} as well as the actions
it takes when observing a feedback. Here, the set of possible actions consists of querying
an unqueried edge or returning a decision. A may be depicted in form of a tree as in
Fig. 3, where each node represents an action. Upon querying {ixt , jxt } (the x-th query in

1Here, we regard two DSTAs A1 and A2 as equal iff both DA1(G) = DA2(G) and TA1
G = TA2

G hold for
any G ∈ Gm.
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Figure 3.: Representation of a DSTA as a tree.

the t-th row of the tree), A observes as feedback either ixt or jxt and then decides for the
action in the left resp. child if it observed ixt resp. jxt . It continues this way until it finally
reaches a leave node, where it outputs a decision D(p) ∈ {X1, . . . ,Xn} depending on the
path p from this leave node to the root i1, j1. Here, p encodes all the queries chosen and
feedback observed by A. If N is the number of leave nodes, there are nN different possible
assignments of X1, . . . ,Xn to the leave nodes and any such assignment leads to a different
DSTA. If A queries for every G ∈ Gm all

(
m
2

)
edges of G, the number of leave nodes is

N = 2(
m
2 ). Hence, there are at least n(2

m(m−1)/2) different DSTAs. Regarding that we have
ignored all cases where this representation of A is not a complete tree, the total number
of possible DSTAs is in fact by far larger than this lower bound, and a brute-force search
for an optimal solution to DmX1,...,Xn

[Z](Y) appears infeasible.

3.3. Properties in Extension

To construct a solution A to DmX1,...,Xn
[Z](Y) with small worst-case termination time, we

would like to decide (for each i ∈ [n]) as early as possible and only based on the input

z and G
A(z)
G (t) whether G ∈ Gm(Y) fulfills G ∈ Gm(Xi(z)) or not. For being at time

t absolutely sure that G ∈ Gm(Xi(z)) holds, each supergraph G′ ∈ Gm(Y) of G
A(z)
G (t)

should fulfill Xi(z). This motivates the following definitions, where Y is an arbitrary
possible property of tournaments on [m]:

• For G = ([m], EG) ∈ Gm, a Y-extension of G is a tournament G′ = ([m], EG′) ∈
Gm(Y) with EG ⊆ EG′ . If Y = ∅, such a G′ is simply called an extension of G.

• Given a possible property X of tournaments on [m] with Gm(X) ⊆ Gm(Y), a digraph
G ∈ Gm is X in Y-extension if the set of all Y-extensions of G is a non-empty
subset of Gm(X). We write Gm(X |Y) for the set of all G ∈ Gm that are X in
Y-extension. In case Y = ∅, we abbreviate Gm(X) := Gm(X |Y) and simply say
that each G ∈ Gm(X) fulfills X in extension. For the sake of convenience, we write
Gm(X |Y) := Gm(X ∧Y |Y) in case Gm(X) ̸⊆ Gm(Y).

In our notation, Gm(acyclic) is not the set of all acyclic digraphs in Gm, instead it is the
set of all G ∈ Gm that are acyclic in extension. In case m ≥ 3 we have

{G ∈ Gm |G is acyclic} ⊋ Gm(acyclic),
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e.g., ([m], ∅) is an acyclic digraph that is not acyclic in extension.

To get used to the newly introduced notation, let us consider a small example. The only
extensions of G := ([3], {(1, 2), (2, 3)}) ∈ G3 are the tournaments

G1 := ([3], {(1, 2), (2, 3), (1, 3)}) and G2 := ([3], {(1, 2), (2, 3), (3, 1)}).

In contrast to G2, G1 is also an acyclic-extension of G; the topological sorting of G2

is id[3] : [3] → [3], x 7→ x. From G2 ̸∈ G3(acyclic) we infer G ̸∈ G3(acyclic), and

G1 ∈ G3(acyclic) implies G ̸∈ G3(¬acyclic). Since G1 is the only acyclic-extension of G
and it is an element of G3(1 | acyclic) but not of G3(2 | acyclic), we have G ∈ G3(1 | acyclic)
and G ̸∈ G3(2 | acyclic). Moreover, 1

G→ 2 implies that G has no 3-extension, and thus
G ̸∈ G3(X | 3) for any property X.

The following Prop. 3.4 provides a link between X testing under Y-assumption and the
notion of X in Y-extension. Even though it may appear a bit technical, its basic idea is
rather naive and not new to the literature [Bollobás, 1978, p. 429ff.]. In simple words, it
states that a correct DSTA can only terminate with decision X as soon as it is absolutely
sure that G has property X.

Proposition 3.4. If a DSTA A for Gm(Y) with input space Z solves DmX1,...,Xn
[Z](Y),

then

∀z ∈ Z ∀k ∈ [n] ∀G ∈ Gm(Xk(z)) : G
A(z)
G

(
T
A(z)
G

)
∈ Gm(Xk(z) |Y).

Proof. Let z ∈ Z be fixed. Recall Gm(Y) =
⋃
k∈[n] Gm(Xk(z)). To show the contraposition,

suppose there is some k ∈ [n] and G ∈ Gm(Xk(z)) with G
A(z)
G

(
T
A(z)
G

)
̸∈ Gm(Xk(z) |Y).

Then, there exists some extension G′ of G
A(z)
G

(
T
A(z)
G

)
with G′ ∈ Gm(Y) \ Gm(Xk[z]), i.e.,

G′ ∈ Gm(Xk′ [z]) for some k′ ̸= k. Since A(z) started on G′ observes until termination
exactly the same feedback as if started on G, we have DA(z)(G′) = DA(z)(G) = Xk(z) ̸=
Xk′(z). Thus, A does not solve DmX1,...,Xn

[Z](Y).

Since A(z) started on G is assumed to make every query {i, j} at most once, G
A(z)
G

(
T
A(z)
G

)
contains exactly T

A(z)
G edges, and Prop. 3.4 directly lets us infer the following result.

Corollary 3.5. If a DSTA A for Gm(Y) with input space Z solves DmX1,...,Xn
[Z](Y), then

∀z ∈ Z ∀k ∈ [n]∀G ∈ Gm(Xk(z)) : T
A(z)
G ≥ min {|E| : ([m], E) ∈ Gm(Xk(z) |Y)} .

In particular,

TA
best ≥ min {|E| : ([m], E) ∈ Gm(Xk(z) |Y) for some z ∈ Z, k ∈ [n]} .

Proof. This is a direct consequence of Prop. 3.4.

Before continuing with more specific choices of X and Y, we state in the next lemma some
rather straight-forward observations concerning the newly introduced notions. For the
sake of completeness, we provide its proof in the appendix.
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Lemma 3.6. Let X,X1,X2 and Y be possible properties of tournaments on [m]. Then,
we have:

(i) If G ∈ Gm fulfills G ∈ Gm(Y) and has a subgraph G̃ ∈ Gm(X |Y), then G ∈ Gm(X).

(ii) Gm(X |Y) ∩ Gm = Gm(X ∧Y).

(iii) Gm(X1 |Y) ⊆ Gm(X2 |Y) iff Gm(X1 ∧Y) ⊆ Gm(X2 ∧Y).

(iv) If G ∈ Gm(X |Y) and G′ ∈ Gm(Y) with EG ⊆ EG′, then G′ ∈ Gm(X |Y).

(v) Gm(X |Y) ⊆ Gm \ Gm(¬Y) with equality iff Gm(X) = Gm(Y).

(vi) Gm(X1 ∧X2 |Y) = Gm(X1 |Y) ∩ Gm(X2 |Y).

(vii) Gm(X1 ∨X2 |Y) ⊇ Gm(X1 |Y) ∪ Gm(X2 |Y).

(viii) If Gm(X1) ∩ Gm(X2) = ∅, then Gm(X1 |Y) ∩ Gm(X2 |Y) = ∅.

(ix) If Gm(Y) ⊆ Gm(X), then Gm(X |Y) = {G ∈ Gm | ∃Y-extension of G}.

Under the assumptions of Lem. 3.6, we do not necessarily have Gm(X1 ∨ X2 |Y) ⊆
Gm(X1 |Y) ∪ Gm(X2 |Y). A look at the definitions reveals that any G ∈ Gm fulfills
G ∈ Gm(X1 ∨X2 |Y) \ (Gm(X1 |Y) ∪ Gm(X2 |Y)) iff

∀Y-extensions G′ of G : G′ ∈ Gm(X1 ∨X2),

∃Y-extension G1 of G : G1 ̸∈ Gm(X1),

∃Y-extension G2 of G : G2 ̸∈ Gm(X2).

To illustrate this, suppose m = 3, Y = ∅, X1 = 1, X2 = 2 and G := ([3], {(1, 3), (2, 3)}).
The set of ∅-extensions of G consists of the following two graphs G1 and G2:

1 3 2 1 3 2

Due to G1 ∈ G3(1) \ G3(2) and G2 ∈ G3(2) \ G3(1) the above conditions are fulfilled and
we have G ∈ G3(1 ∨ 2) \ (G3(1) ∪ G3(2)). By Prop. 3.7 stated below, we similarly see that
for arbitrary m ≥ 3

Gm(CW) = Gm(1 ∨ · · · ∨m) ⊊
⋃

i∈[m]
Gm(i).

3.4. CW in Extension

In this section, we characterize the sets Gm(CW), Gm(¬CW), Gm(i), Gm(¬i), Gm(i |CW)
and Gm(¬i |CW) as well as particular combinations of these. The insights obtained
will be of value for solving the CW-related problems in the dueling bandits scenario.
Moreover, they will be of use in Sec. 3.5, where we discuss solutions to DmCWt, DmCWc,
DmCWv, DmCWi(CW) as well as DmCWv(CW). We start with a characterization of Gm(CW).

Proposition 3.7. For G ∈ Gm we have G ∈ Gm(CW) iff there exists some i0, i1 ∈ [m]
such that G contains at least one of the subgraphs
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i0 [m] \ {i0} or
i0 [m] \ {i0, i1} i1

In other words, G ∈ Gm(CW) is fulfilled iff at least one of the following holds:

(a) There exists i0 ∈ [m] such that i0
G−→ j holds for every j ∈ [m] \ {i0}.

(b) There exist distinct i0, i1 ∈ [m] with i0
G−→ j and i1

G−→ j for every j ∈ [m] \ {i0, i1}.

In particular, |EG| ≥ m− 1 holds for every G ∈ Gm(CW).

In order to prove Prop. 3.7, we at first need some prerequisites. Given some G ∈ Gm and
distinct i, j ∈ [m] we define Gi↔j ∈ Gm to be the tournament in which the edge between
i and j is reversed (in comparison to G) and all the other edges are the same, i.e., if
(i, j) ∈ EG then

EGi↔j = (EG \ {(i, j)}) ∪ {(j, i)}.

Note in particular that Gi↔j is not the graph G with nodes i and j interchanged. For
example, G1 and G2 from p. 69 fulfill G1 = (G2)1↔2.

Lemma 3.8. If G ∈ Gm(CW), i0 := CW(G) and i1 ∈ [m] \ {i0} are such that G′ :=
Gi0↔i1 ∈ Gm(CW), then i1 = CW(G′) holds.

Proof of Lem. 3.8. For every j ∈ [m]\{i0, i1} we can infer from i0 = CW(G) that i0
G−→ j

and thus also i0
G′
−→ j hold. Together with i1

G′
−→ i0 this shows CW(G′) ̸∈ [m] \ {i1}, and

thus further CW(G′) = i1.

With this, we are able to prove Prop. 3.7.

Proof of Prop. 3.7. To show “⇒ ” indirectly, assume that there was some G ∈ Gm(CW)
such that neither (a) nor (b) holds. Choose an arbitrary extension G0 ∈ Gm of G and
note that G ∈ Gm(CW) implies that i0 := CW(G0) is well-defined. As (a) does not hold,

there exists some i1 ∈ [m] \ {i0} with ¬(i0
G−→ i1). Moreover, the definition of i0 ensures2

¬(i1
G−→ i0). Consequently, G1 := (G0)i0↔i1 ∈ Gm is also an extension of G, and by

assumption on G we have G1 ∈ Gm(CW). Thus, we can infer i1 = CW(G1) from Lem. 3.8.

Since (b) does not hold, there exist b ∈ {0, 1} and k ∈ [m] \ {i0, i1} such that ¬(ib
G−→ k)

holds. From ib
Gb−→ k we can infer ¬(k G−→ ib). As we have seen that G does neither

contain any edge between ib and k nor between i1−b and ib and G1−b is an extension of G,
also the graph

G′ :=

 (G1−b)i1−b↔ib = Gb, if k
G1−b−→ ib,(

(G1−b)i1−b↔ib

)
ib↔k

, if ib
G1−b−→ k,

is an extension of G. Due to G ∈ Gm(CW) we obtain G′ ∈ Gm(CW), hence Lem. 3.8
guarantees CW(G′) ∈ {ib, i1−b, k}. This is a contradiction, since G′ contains by its
definition the edges i1−b → k, k → ib and ib → i1−b.
It remains to show “⇐”. For this, suppose G ∈ Gm to be such that (a) or (b) holds

and let G′ ∈ Gm be an arbitrary extension of G. In case (a) holds, we obtain for each

2In fact, assuming i1 → i0 in G would also imply i1 → i0 in G0, which is according to i0 = CW(G0)
not possible.
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j ∈ [m] \ {i0} due to i0
G−→ j that i0

G′
−→ j is fulfilled. Thus, we can infer CW(G′) = i0

and in particular G′ ∈ Gm(CW). In case (b) holds, G′ contains all the edges i0 → j,

i1 → j, j ∈ [m] \ {i0, i1}. Moreover, for one b ∈ {0, 1} we have ib
G′
−→ i1−b and we obtain

ib = CW(G′), i.e., G′ ∈ Gm(CW).

Proposition 3.9. For G ∈ Gm we have the equivalence

G ∈ Gm(¬CW) ⇔ ∀ i ∈ [m]∃ j ∈ [m] \ {i} : j G−→ i.

In particular, |EG| ≥ m holds for every G ∈ Gm(¬CW).

Proof of Prop. 3.9. Let G ∈ Gm be fixed. To see “⇐” suppose that there is for all i ∈ [m]

some j = j(i) ∈ [m] \ {i} with j G−→ i and let G′ be an arbitrary extension of G. Then,

for any i ∈ [m], j(i)
G′
−→ i shows that i cannot be the Condorcet winner of G′. We infer

G′ ∈ Gm(¬CW), and arbitrariness of G′ lets us conclude G ∈ Gm(¬CW).
To show “⇒” we prove its contraposition. Thus, let us suppose there exists some i ∈ [m]

such that ¬(j G−→ i) holds for every j ∈ [m] \ {i}. Then, we can choose an extension G′

of G with i
G′
−→ j for every j ∈ [m] \ {i}. Thus, G′ ∈ Gm(CW) holds with i = CW(G′),

which implies G ̸∈ Gm(¬CW).

Proposition 3.10. If G ∈ Gm and i∗ ∈ [m], then

G ∈ Gm(i∗) ⇔ ∀j ∈ [m] \ {i∗} : i∗ G−→ j and G ∈ Gm(¬i∗) ⇔ ∃j ∈ [m] : j
G−→ i∗.

In particular, |EG| ≥ m − 1 holds for every G ∈ Gm(i∗), and |EG| ≥ 1 holds for every
G ∈ Gm(¬i∗).

Proof. Let G ∈ Gm be fixed. For showing “⇒” indirectly suppose there was some

j ∈ [m] \ {i∗} with ¬(i∗ G−→ j). Then, there exists an extension G′ ∈ Gm of G with

j
G′
−→ i∗, which is trivially not in Gm(i∗). Thus, we would obtain that G ̸∈ Gm(i∗), which

is a contradiction.
In order to see “⇐” suppose on the contrary G ̸∈ Gm(i∗). Then, there exists some

extension G′ ∈ Gm of G with G′ ̸∈ Gm(i∗). Now, i∗ ̸= CW(G′) implies the existence of

some j ∈ [m] with j
G′
→ i∗, and as G′ is an extension of G this shows ¬(i∗ G−→ j).

For identifying the CW of a tournament G ∈ Gm under the assumption that it exists, the
sets Gm(i |CW) and Gm(¬i |CW) are of interest. These are characterized in the following.

Proposition 3.11. We have

Gm(i |CW) =
{
G ∈ Gm | ∀l ̸= i : ¬(l G→ i) and ∀j ̸= i ∃k ̸= j : k

G→ j
}

=
⋂

j ̸=i
Gm(¬j) \ Gm(¬CW)

and

Gm(¬i |CW) = Gm(¬i) \ Gm(¬CW).
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Proof. At first, suppose G ∈ Gm(i |CW). Then, there is a CW-extension G′ of G with G′ ∈
Gm(i), i.e., i

G′
→ l for every l ̸= i and in particular G ̸∈ Gm(¬CW). Since G is a subgraph

of G′, we thus have ∀l ̸= i : ¬(l G→ i). Moreover, assuming ∃j ̸= i∀k ̸= j : ¬(k G→ j)
would imply the existence of some extension G′′ of G with G′′ ∈ Gm(j) ⊆ Gm(j |CW),

which is due to Gm(i) ∩ Gm(j) = ∅ not in Gm(i |CW). Thus, ∀j ̸= i∃k ≠ j : k
G→ j holds,

which directly implies G ∈
⋂
j ̸=i Gm(¬j). This proves “⊆” in both equalities of the first

statement.
To see “⊇”, fix G ∈

⋂
j ̸=i Gm(¬j) \ Gm(¬CW). For each j ̸= i, we infer from G ∈ Gm(¬j)

that some k ̸= j exists with k
G→ j. Furthermore, G ̸∈ Gm(¬CW) implies indirectly

∀l ̸= i : ¬(l G→ i). In particular, there exists some extension G′ of G with G′ ∈ Gm(i).
Due to ∀j ≠ i∃k ̸= j : k

G→ j, each CW-extension of G is in Gm \ (
⋃
j ̸=i Gm(j)) = Gm(i).

Thus, G ∈ Gm(i |CW) holds, which concludes the proof of the first statement.
The second statement is a consequence of the equivalences

G ∈ Gm(¬i |CW) ⇔ ∃ CW-extension of G and all CW-extensions of G are in Gm(¬i)

⇔ ∃ CW-extension of G and ∃j ̸= i : j
G→ i

⇔ G ∈ Gm(¬i) and G ̸∈ Gm(¬CW)

⇔ G ∈ Gm(¬i) \ Gm(¬CW),

which hold for any G ∈ Gm.

We finish this section with the following lemma, which will be crucial for the proofs of
Theorems 4.6 and 4.12 below. It allows us to project graphs in Gm(CW), Gm(¬CW),
Gm(i∗), Gm(¬i∗) as well as in

Gm(∆i∗) := Gm(¬CW) ∪
⋃

j∈[m]:j ̸=i∗
Gm(j) and Gm(♢) :=

⋃
i∈[m]

Gm(i)

to characteristic subgraphs, respectively. Note here that Gm(∆i∗) ̸= Gm(¬i∗), as for
instance the graph ([m], {(2, 1)}) is contained in Gm(¬1) but not in Gm(∆1). According
to Prop. 3.7, Gm(CW) ⊋ Gm(♢), hence these notions are not redundant.

Lemma 3.12. Let i∗ ∈ [m]. There exist mappings lCW, l¬CW, li∗ , l¬i∗ , l∆i∗ , l♢ : Gm → Gm
with the following properties:

(a) ElCW(G), El¬CW(G), Eli∗ (G), El¬i∗ (G), El∆i∗ (G), El♢(G) ⊆ EG for every G ∈ Gm,

(b) for every G ∈ Gm we have |ElCW(G)| ∈ {0,m − 1, 2m − 4}, |El¬CW(G)| ∈ {0,m},
|Eli∗ (G)| ∈ {0,m − 1}, |El¬i∗ (G)| ∈ {0, 1}, |El∆i∗ (G)| ∈ {0,m − 1,m} as well as
|El♢(G)| ∈ {0,m− 1},

(c) for every G ∈ Gm we have the equivalences

G ∈ Gm(CW) ⇔ lCW(G) ∈ Gm(CW), G ∈ Gm(¬CW) ⇔ l¬CW(G) ∈ Gm(¬CW),

G ∈ Gm(i∗) ⇔ li∗(G) ∈ Gm(i∗), G ∈ Gm(¬i∗) ⇔ l¬i∗(G) ∈ Gm(¬i∗),
G ∈ Gm(∆i∗) ⇔ l∆i∗(G) ∈ Gm(∆i∗), G ∈ Gm(♢) ⇔ l♢(G) ∈ Gm(♢).

72



Proof. To define lCW suppose G ∈ Gm to be fixed for the moment. In case G ̸∈ Gm(CW)
we may simply define lCW(G) := ([m], ∅), and in case G ∈ Gm(CW) there exist according
to Prop. 3.7 two distinct i0, i1 ∈ [m] such that at least one of

E[i0] := {(i0, j) : j ∈ [m] \ {i0}}

and

E[i0; i1] := {(i0, j) : j ∈ [m] \ {i0, i1}} ∪ {(i1, j) : j ∈ [m] \ {i0, i1}}

is a subset of EG, i.e., we may define

lCW(G) :=

{
([m], E[i0]), if E[i0] ⊂ EG,
([m], E[i0; i1]), otherwise.

It is straightforward to check that lCW fulfills all the desired properties.

The existence of l¬CW, li∗ and l¬i∗ follow from Prop. 3.9 and Prop. 3.10.

For defining l∆i∗ let G ∈ Gm be given. In case G ̸∈ Gm(∆i∗) we define l∆i∗(G) := ([m], ∅).
In the remaining case G ∈ Gm(∆i∗) we choose

l∆i∗(G) :=

{
lj(G), if ∃j ∈ [m] \ {i∗} with G ∈ Gm(j),
l¬CW(G), otherwise.

Note that this is due to Gm(j) ∩ Gm(j′) = ∅ for j ̸= j′ well-defined. Then, l∆i∗ has all the
properties stated above.

Finally, we define l♢ via

l♢(G) :=

{
lj(G), if ∃j ∈ [m] with G ∈ Gm(j),
([m], ∅), otherwise.

3.5. DSTAs for CW-related Problems

Next, let us discuss DSTAs for DmCWt, DmCWc, DmCWv, DmCWi(CW) and DmCWv(CW). Recall
that, for any of these problems, Prop. 3.4 provides us necessary conditions on solutions to
these problems, e.g. if a DSTA A solves DmCWc = DmCW,¬CW, then

GA
G

(
TA
G

)
∈ Gm(CW) for all G ∈ G(CW)

and

GA
G

(
TA
G

)
∈ Gm(¬CW) for all G ∈ Gm(¬CW).

Together with the characterizations of the sets Gm(CW), Gm(¬CW), Gm(i), Gm(¬i),
Gm(i |CW) and Gm(¬i |CW) from Sec. 3.4 this will allow us to provide lower query
complexity bounds for solutions to these problems.

Proposition 3.13. (i) Alg. 9 is an optimal solution to DmCWv with worst- and best-case
termination time m− 1.
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Algorithm 9 An optimal DSTA for DmCWv and DmCWv(CW)

Input: i ∈ [m]
Initialization: W ← [m] \ {i}

▷ W = set of nodes j ∈ [m], which have not yet been compared to i

1: while |W | ≥ 1 do
2: Choose an arbitrary j ∈W
3: (i′, j′)← {i, j}G ▷ Query {i, j}
4: if (i, j′) = (j, i) then return ¬i ▷ i cannot be the CW
5: else W ←W \ {j} ▷ j has been compared to i

6: return i

(ii) Alg. 9 is an optimal solution to DmCWv(CW) with worst- and best-case termination
time m− 1.

Proof. It is easy to check that A :=Alg. 9 solves DmCWv and makes exactly m− 1 queries
when started with any input i ∈ [m] on any G ∈ Gm, hence it has worst-case termination
time m− 1. In particular, it is also a solution to the less difficult task DmCWv(CW) with
worst-case termination time m−1 and has – for both DmCWv and DmCWv(CW) – a best-case
termination time of m− 1.
To prove the lower bounds, let A be any solution to DmCWv(CW) and fix arbitrary i ∈ [m]

and G ∈ Gm(i). By Prop. 3.4 we have G
A(i)
G

(
T
A(i)
G

)
∈ Gm(i |CW) , hence Prop. 3.11

assures that for each j ̸= i there exists k ̸= j such that k → j in G
A(i)
G

(
T
A(i)
G

)
, i.e.,

G
A(i)
G

(
T
A(i)
G

)
has ≥ m− 1 edges. Thus, TA ≥ TA(i)

G ≥ m− 1 holds. Since any solution to

DmCWv also solves DmCWv(CW), an optimal solution to DmCWv has worst-case termination
time ≥ m− 1. Consequently, A is optimal for both problems.

Algorithm 10 An optimal DSTA for DmCWt [Procaccia, 2008]

Initialization: Construct an almost complete binary tree T of height D := ⌈logm⌉ with
m leaves, which are labeled by 1, . . . ,m. Here, almost complete means that there are
exactly 2d nodes on each level d ≤ D − 1.

1: while height(T ) > 0 do
2: Pick two sibling leave nodes i, j ∈ [m] of T and compare them
3: if {i, j}G = (i, j) then ▷ j cannot be the CW
4: Label the unique parent of i and j with i, then remove its children from T
5: else ▷ i cannot be the CW
6: Label the unique parent of i and j with j, then remove its children from T

7: Let i∗ be the label of the only node in T
8: Compare i∗ with all other alternatives, with which it has not been compared yet
9: if i∗ has won all of its duels then return i∗

10: else return ¬CW

Proposition 3.14. Alg. 10 is an optimal solution to DmCWt with worst- and best-case
termination time 2m− ⌊log2m⌋ − 2.
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Proof. Cf. Thm. 2.1 in [Procaccia, 2008] and Lem. 3.2 in [Balasubramanian et al.,
1997].

Algorithm 11 An optimal DSTA for DmCWi(CW)

Initialization: S ← [m], i← 1 ▷ S = set of candidates for CW
▷ i = the current candidate

1: while |S| > 1 do
2: Choose an arbitrary j ∈ S \ {i}
3: (i′, j′)← {i, j}G ▷ Query {i, j}
4: if (i, j′) = (i, j) then S ← S \ {j} ▷ j cannot be the CW
5: else S ← S \ {i}, i← j ▷ i is not the CW, j is the new candidate

6: return i ▷ S = {i}

Proposition 3.15. Alg. 11 is an optimal solution to DmCWi(CW) and has worst- and
best-case termination time m− 1.

Proof. Write A :=Alg. 11 for the moment. In Alg. 11, |S| decreases by 1 in each iteration
of the while loop, hence A terminates after exactly m − 1 time steps when started on
any G ∈ Gm(CW). Hence, TA

worst = TA
best = m − 1 holds. For fixed G ∈ Gm(CW), A

returns at termination the only remaining element i of S. The construction of S assures
CW(G) ̸= j for each j ∈ [m] \ S, i.e., DA(G) = CW(G) has to be fulfilled. Hence, A
solves DmCWi(CW).
To see the lower bound, suppose A to be any solution to DmCWi(CW) and fix G ∈ Gm(CW)

and i := CW(G). According to Prop. 3.4 we have G
A(i)
G

(
T
A(i)
G

)
∈ Gm(i |CW). Therefore,

Prop. 3.11 guarantees that for each j ̸= i some k ̸= j exists with k → j in G
A(i)
G

(
T
A(i)
G

)
,

i.e., G
A(i)
G

(
T
A(i)
G

)
has ≥ m− 1 edges. Thus, TA ≥ T

A(i)
G ≥ m− 1 holds. Consequently,

the worst-case termination time of A is at least m− 1.

Algorithm 12 An optimal DSTA for DmCWc

Simulate Alg. 10 until it terminates, let d be its return value
if d = ¬CW then return ¬CW
else return CW

Proposition 3.16. Alg. 12 is an optimal solution to DmCWc and has worst- and best-case
termination time 2m− ⌊log2m⌋ − 2.

Proof. Since Alg. 10 solves DmCWt, Alg. 12 solves DmCWc. Moreover, they have the same
worst-and best-case termination time, which is 2m− ⌊log2m⌋ − 2. For the lower bound
confer e.g. Lem. 3.2 in [Balasubramanian et al., 1997].
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3.6. Acyclicity in Extension

This section is dedicated to discuss the property acyclicity in extension, i.e., the set
Gm(acyclic). Even though this notion is only defined by means of acyclicity of tournament
graphs, acyclicity itself is applicable to any digraph G ∈ Gm. In fact, we can show the
following result.

Lemma 3.17. Any G ∈ Gm is acyclic in extension iff every supergraph G̃ ∈ Gm of it is a
acyclic.

Proof. Obviously, if any supergrah G̃ ∈ Gm of G is acyclic, G is acyclic in extension. On
the other side, if any of the supergraphs G̃ ∈ Gm of G was not acyclic, any arbitrary
supergraph G̃′ ∈ Gm of G̃ would be a non-acyclic supergraph of G and hence G would not
be acyclic in extension.

Let us fix some further notation. For G ∈ Gm, we denote for convenience, with a slight
abuse of notation, by EG also the set of all {i, j} ∈ [m]2 with (i, j) ∈ EG or (j, i) ∈ EG.
This way, “{i, j} ∈ EG” means “(i, j) ∈ EG or (j, i) ∈ EG”, “{i, j} ̸∈ EG” means
“(i, j) ̸∈ EG and (j, i) ̸∈ EG”, and thus the set [m]2 \EG is given as {{i, j} ∈ [m]2 | (i, j) ̸∈
EG and (j, i) ̸∈ EG}. Before characterizing the set Gm(acyclic), we prove a necessary
condition for G ∈ Gm(acyclic).

Proposition 3.18. (i) For every G ∈ Gm(acyclic) we have |EG| ≥
(
m
2

)
− ⌊m2 ⌋.

(ii) For any m ≥ 3 there exists G ∈ Gm(acyclic) with |EG| =
(
m
2

)
− ⌊m2 ⌋

Proof. (i) Let G ∈ Gm(acyclic) with |EG| ≤
(
m
2

)
− ⌊m2 ⌋ − 1. Then

K := {{i, j} ∈ [m]2 | (i, j), (j, i) ̸∈ EG}

fulfills |K| =
(
m
2

)
− |EG| ≥ ⌊m2 ⌋ + 1. Thus, there exist distinct i, j, k ∈ [m] with

{i, j}, {j, k} ∈ K. In the case (i, k) ∈ EG we may define G̃ ∈ Gm with EG ⊆ EG̃
and (j, i), (k, j) ∈ EG, hence G̃ would contain the cycle i → k → j → i, and
thus G ̸∈ Gm(acyclic) follows. In the remaining case (i, k) ̸∈ EG we can similarly
construct G̃ ∈ Gm fulfilling EG ⊆ EG̃ as well as (k, i), (i, j), (j, k) ∈ EG, which also
implies G ̸∈ Gm(acyclic).

(ii) If m = 3, choose G := ([m], (1, 2), (2, 3)), and for m = 5 and m = 6 appropriate
choices of G are depicted below this proof. We proceed with a formal proof for the
case m ≥ 4.

First, suppose m ≥ 4 to be even. Define G = ([m], EG) ∈ Gm via

(i, j) ∈ EG iff i < j and (i, j) ̸∈ K

with K := {(1, 2), (3, 4), . . . , (m − 1,m)}. Due to |K| = ⌊m2 ⌋, G fulfills |EG| =(
m
2

)
− ⌊m2 ⌋, it remains to show G ∈ Gm(acyclic). For this, let G′ ∈ Gm be an

arbitrary extension of G. For proving acyclicity of G′ it is according to Lem. 3.2
sufficient to show that for any distinct i, j, k ∈ [m] with (i, j), (j, k) ∈ EG′ also
(i, k) ∈ EG′ holds. Let such i, j, k ∈ [m] be fixed in the following. By its definition,
K contains at most one of the tuples (i, j), (j, i), (j, k), (k, j), (i, k), (k, i).
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Case 1: (i, j), (j, i), (i, k), (k, i) ̸∈ K and ((j, k) ∈ K or (k, j) ∈ K).
Then, (i, j) ∈ EG′ ∩EG implies i < j. Since k ∈ {j − 1, j + 1} has to be fulfilled, we
obtain i < k and thus (i, k) ∈ EG′ ∩ EG.

Case 2: (j, k), (k, j), (i, k), (k, i) ̸∈ K and ((i, j) ∈ K or (j, i) ∈ K).
Similarly to Case 1 we get j < k from (j, k) ∈ EG′ ∩EG and thus i ∈ {j − 1, j +1, },
which implies i < k and consequently (i, k) ∈ EG′ ∩ EG.

Case 3: (i, j), (j, i), (j, k), (k, j) ̸∈ K.
We infer {(i, j), (j, k)} ⊆ EG′∩EG, which implies i < j < k. In particular, (i, k) ̸∈ K
and thus (i, k) ∈ EG ⊆ EG′ holds.

Thus, we obtain (i, k) ∈ EG in every case, which shows G′ ∈ Gm(acyclic).

Finally, suppose m ≥ 4 to be odd. We have just proven that there exists a graph
G̃ ∈ Gm−1(¬acyclic) with |EG̃| =

(
m−1
2

)
− ⌊m−1

2 ⌋ edges. Let G = ([m], EG) ∈ Gm be
the graph with

(i, j) ∈ EG iff j = m or (i, j) ∈ EG̃,

i.e., G contains the same edges as G̃ and in addition also all the edges (i,m),
i ∈ [m−1]. Then, G is acyclic in extension and has exactly

(
m
2

)
−⌊m−1

2 ⌋ =
(
m
2

)
−⌊m2 ⌋

edges.

For m = 6 and m = 5, the graphs G ∈ Gm(acyclic) with |EG| =
(
m
2

)
− ⌊m2 ⌋ edges, which

we constructed in the proof of Prop. 3.18, can be illustrated as follows. In the picture, we
denote the missing edges by dashed lines.

2 4 6

1 3 5

2 4

1 3

5

For G ∈ Gm, we call a pair {i, j} ∈ [m]2 negligible for G if for every k ∈ [m] \ {i, j} either
(i, k), (j, k) ∈ EG or (k, i), (k, j) ∈ EG holds. The following result provides a link between
acyclicity in extension and the notion of negligibility.

Proposition 3.19. The set Gm(acyclic) is

{G ∈ Gm |G is acyclic and ∀ {i, j} ∈ [m]2 \ EG : {i, j} is negligible for G} .

We prepare the proof of Prop. 3.19 with two rather straight-forward observations on
negligibility.

Lemma 3.20. Let G1 = ([m], EG1) ∈ Gm and G2 ∈ Gm be a subgraph of G1, i.e.,
G2 = ([m], EG2) and EG2 ⊆ EG1 . If some {i, j} ∈ [m]2 is negligible for G2, then it is also
negligible for G1.
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Proof. This is a direct consequence of the definition of negligibility together with EG2 ⊆
EG1 .

Proposition 3.21. Let G ∈ Gm. If {i, j} ∈ [m]2 is negligible for G, then i and j are not
contained in a 3-cycle in G.

Proof. Let G ∈ Gm and {i, j} ∈ [m]2 be fixed. If i and j are contained in a 3-cycle, there
exists some k ∈ [m] \ {i, j} with either k → i → j → k or k → j → i → k, that is
either (j, k), (k, i) ∈ EG or (k, j), (i, k) ∈ EG. Thus, {i, j} is not negligible for G.

Now, we are ready to prove Prop. 3.19.

Proof of Prop. 3.19. At first, suppose G ∈ Gm to be acyclic and such that every {i, j} ∈
[m]2 \ EG is negligible. Let G̃ ∈ Gm with EG ⊆ EG̃ and assume there was a cycle in G̃.

According to Lem. 3.2 there was also a 3-cycle in G̃. Since G does not contain a 3-cycle,
this 3-cycle in G̃ has to contain at least one edge (i∗, j∗) ∈ EG̃ \ EG. Then, {i

∗, j∗} ̸∈ EG
holds and {i∗, j∗} is thus negligible for G by assumption. Lem. 3.20 ensures that {i∗, j∗}
is also negligible for G̃, and thus Prop. 3.21 implies that (i∗, j∗) cannot be contained in
any 3-cycle in G̃. This is a contradiction to the choice of (i∗, j∗).  We conclude that G̃
is acyclic. Since G̃ was arbitrary, G ∈ Gm(acyclic) follows. This completes the first part
of the proof.

It remains to show that whenever G ∈ Gm(acyclic) and {i, j} ∈ [m]2 \ EG, then {i, j}
is negligible for G. To prove the contraposition of this, suppose G ∈ Gm(acyclic) and
{i, j} ∈ [m]2 \ EG are such that {i, j} is not negligible for G. By the definition of
negligibility, there exists some k ∈ [m] \ {i, j} with

((i, k) ̸∈ EG or (j, k) ̸∈ EG) and ((k, i) ̸∈ EG or (k, j) ̸∈ EG) .

Consequently, one of the following holds:

(a.1) {i, k} ̸∈ EG and j → k in G, (a.2) {i, k} ̸∈ EG and k → j in G,

(b.1) {j, k} ̸∈ EG and i → k in G, (b.2) {j, k} ̸∈ EG and k → i in G,

(c.1) i → k → j in G, (c.2) j → k → i in G,

(d) {i, j}, {j, k} ̸∈ EG.

Then, we may straigthforwardly construct an extension G′ of G, which contains the cycle

(a.1) j → k → i → j, (a.2) k → j → i → k,

(b.1) i → k → j → i, (b.2) k → i → j → k,

(c.1) i → k → j → i, (c.2) j → k → i → j,

(d) i → j → k → i.

In particular, G ̸∈ Gm(acyclic) holds, which completes the proof.

The remainder of this section is dedicated to the following result, which will serve in the
proof of Thm. 5.8 as justification for the scaling factor

(
m
2

)
− ⌊m+1

3 ⌋ of the desired type II
error of our improved WST testing algorithm.
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Proposition 3.22. For any G ∈ Gm(acyclic) with |EG| >
(
m
2

)
− ⌊m+1

3 ⌋ there exists some

G̃ ∈ Gm(acyclic) with EG̃ ⊊ EG and |EG̃| =
(
m
2

)
− ⌊m+1

3 ⌋.

As preparation for the proof of Prop. 3.22 we formulate two auxiliary results.

Proposition 3.23. Let G ∈ Gm(acyclic) and σ be its topological sorting. Then, {i, j} ∈
[m]2 is negligible for G if and only if |σ(i)− σ(j)| = 1.

Proof. To show sufficiency, we show the contraposition and may assume w.l.o.g. σ(i) <
σ(j). If |σ(i)− σ(j)| > 1, then there exists some k ∈ [m] with σ(i) < σ(k) < σ(j). This
implies (i, k), (k, j) ∈ EG and thus {i, j} is not negligible for G.
In order to show the necessity, let k ∈ [m]\{i, j}. Then, either σ(k) < σ(i), σ(j) or

σ(i), σ(j) < σ(k) hold, so that negligibility of {i, j} follows directly.

The proof of the following lemma is straight-forward and thus deferred to the appendix.

Lemma 3.24. Let m ≥ 3 and S ⊆ [m].

(a) If |S| > m− ⌊m3 ⌋, there exists i ∈ [m− 2] with i, i+ 1, i+ 2 ∈ S.

(b) If |S| > m− ⌊m+2
3 ⌋, then {1, 2} ⊆ S or {m− 1,m} ⊆ S or there exists i ∈ [m− 2]

with i, i+ 1, i+ 2 ∈ S.

Equipped with the graph theoretical results just shown, we are now in the position to
verify Prop. 3.22.

Proof of Prop. 3.22. Let G ∈ Gm(acyclic) with |EG| >
(
m
2

)
−⌊m+1

3 ⌋ be fixed. Let G
′ ∈ Gm

be an arbitrary extension of G. As G is acyclic in extension, G′ is acyclic and has thus a
topological order σ such that i → j in G′ iff σ(i) < σ(j). Moreover, let i1, . . . , im ∈ [m]
be such that σ(i1) < σ(i2) < · · · < σ(im), i.e., i1 → i2 → . . . → im in G′. Define
S := {l ∈ [m−1] | il → il+1 in G}. By assumption onG, at most ⌊m+1

3 ⌋ edges {i, j} ∈ [m]2

are not contained in EG, hence we have |S| > (m − 1) − ⌊ (m−1)+2
3 ⌋. Lem. 3.24 assures

that (a) ∃l ∈ [m− 3] with l, l + 1, l + 2 ∈ S or (b) 1, 2 ∈ S or (c) m− 2,m− 1 ∈ S, i.e.,
we have (a) il → il+1 → il+2 → il+3 or (b) i1 → i2 → i3 or (c) im−2 → im−1 → im
in G (and in G′).

Let us first suppose that (a) holds. Define G̃ ∈ Gm via EG̃ := EG \ {(il+1, il+2)}.

Claim 1: Any {i, j} ∈ [m]2 \ (EG̃ ∪ {{il+1, il+2}}) is negligible for G̃.
Proof: Let {i, j} ∈ [m]2 \ (EG̃ ∪{{il+1, il+2}}) = [m]2 \EG be fixed. As G ∈ Gm(acyclic),
Prop. 3.19 lets us infer that {i, j} is negligible for G, and Lem. 3.20 implies that {i, j}
is negligible for G′. Consequently, Prop. 3.23 yields {i, j} = {il′ , il′+1} for some l′ ∈
[m− 1]. Recalling that il → il+1 → il+2 → il+3 holds in G (and thus in G′), we have
{il′ , il′+1} ∩ {il+1, il+2} = ∅. With a look at the definition of G̃ we may thus infer from
the negligibility of {il′ , il′+1} for G that {il′ , il′+1} is also negligible for G̃. ■
Claim 2: {il+1, il+2} is negligible for G̃.
Proof: Let k ∈ [m]\{l+1, l+2} be arbitrary. As G′ ∈ Gm is acyclic with i1 → . . . → im
in G′, we have (ik, il+1), (ik, il+2) ∈ EG′ if k ≤ l and (il+1, ik), (il+2, ik) ∈ EG′ if k ≥ l + 3.
Suppose for the moment k ≤ l. From G′ ∈ Gm(acyclic) and |(l + 2)− k| ≥ 2 we infer via
Prop. 3.23 that {ik, il+2} is not negligible for G′. Now, Lem. 3.20 guarantees that {ik, il+2}
is not negligible for G, and due to G ∈ Gm(acyclic) Prop. 3.19 yields {ik, il+2} ∈ EG and
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thus also {ik, il+2} ∈ EG̃. As G̃ is a subgraph of G′ we obtain ik → il+2 in G̃. If k = l,

we have by choice of l that il → il+1 in G and thus, by choice of G̃, also ik = il → il+1 in
G̃. If not, then l+1− k > 2 and a similar argumentation as before (for proving ik → il+2

in G̃) yields that ik → il+1 in G̃.
We have shown ik → il+1 and ik → il+2 in G̃ for any k ≤ l. An analogue argumentation
yields il+1 → ik and il+2 → ik in G̃ for any k ≥ l + 3. Hence, {il+1, il+2} is negligible
for G̃. ■
Due to Claims 1 and 2, G̃ ∈ Gm(acyclic) follows from Prop. 3.19. This finishes our
discussion of (a).

Next, let us consider the case (b), i.e., suppose i1 → i2 → i3 in G. Define G̃ ∈ Gm via
EG̃ := EG \ {(i1, i2)}. Similarly as in (a), we see that each {i, j} ∈ [m]2 \ EG̃ is negligible

for G̃: Any {i, j} ∈ [m]2 \ (EG ∪ {{i1, i2}}) is according to Prop. 3.19 negligible for G,
can be shown to be of the form {il′ , il′+1} and fulfills {i, j} ∩ {i1, i2} = ∅, and is thus also
negligible for G̃. Moreover, negligibility of {i1, i2} follows from i2 → i3 and ik → ik+2 in
G̃ for any k ∈ [m− 2]. Thus, G̃ is acyclic in extension according to Prop. 3.19. The case
(c) can be treated exactly similar to (b).

As we have proven in each of the possible cases (a), (b) and (c) the existence of some
G̃ ∈ Gm(acyclic) with |EG̃| = |EG| − 1, the statement follows via induction. To be more

precise, as long as the resulting G̃ fulfills |EG̃| >
(
m
2

)
− ⌊m+1

3 ⌋, we can iteratively repeat

the argumentation above by substituting G with G̃ and in this way obtain G̃1, ..., G̃r ∈
Gm(acyclic) such that |EG̃i+1

| = |EG̃i
| − 1, EG̃i

⊊ EG for all i ∈ [r] and |EG̃r
| =(

m
2

)
− ⌊m+1

3 ⌋.

We conclude this section with the following result, which shows optimality of the term
⌊m+1

3 ⌋ in Prop. 3.22.

Proposition 3.25. For any m ∈ N≥3 there exists some G ∈ Gm(acyclic) with |EG| =(
m
2

)
−⌊m+1

3 ⌋ such that any proper subgraph G̃ of G (i.e., EG̃ ⊊ EG) is not in Gm(acyclic).

Proof. At first, consider the case m ≡ 1mod 3, i.e., ⌊m+1
3 ⌋ =

m−1
3 . Let G′ ∈ Gm(acyclic)

be the acyclic tournament with 1 → 2 → . . . → m in G′. Now, define G ∈ Gm via

EG := EG′ \
(⋃(m−1)/3

l=1
{(3l − 1, 3l)}

)
= EG′ \ {(2, 3), (5, 6), . . . , (m− 2,m− 1)},

where m−1
3 ∈ N by assumption on m. That is, G contains exactly all those edges i → j

with j > i+ 1 and the following edges:

1 2 3 4 5 · · · m− 4 m− 3 m− 2 m− 1 m

Note that each {3l − 1, 3l}, 1 ≤ l ≤ m−1
3 , is negligible for G. Thus, G ∈ Gm(acyclic)

follows from Prop. 3.19. Next, we show

∀{i, j} ∈ EG : {i, j} is not negligible for G. (3.1)

To see this indirectly, suppose there was some {i, j} ∈ EG, i < j, which was negligible
for G. Let G′′ ∈ Gm be an arbitrary extension of G. Recalling G ∈ Gm(acyclic) and the
construction of G, G′′ has a topological sorting of the form

1 → i1 → j1 → 4 → i2 → j2 → 7 → · · · → m− 3 → im−1
3
→ jm−1

3
→ m

80



for some distinct i1, j1, . . . , im−1
3
, jm−1

3
with {il, jl} = {3l − 1, 3l} for 1 ≤ l ≤ m−1

3 .

According to Prop. 3.23 and Lem. 3.20, i and j have to be consecutive elements in the
topological sorting of G′′. Due to i < j and the fact that EG does not contain any {il, jl},
we have either i = 3l− 2, j = 3l− 1 or i = 3l, j = 3l+1 for some 1 ≤ l ≤ m−1

3 . In the first
case, we could find an extension of G that contains the cycle 3l → 3l− 1 → 3l− 2 → 3l,
and in the latter case one with the cycle 3l + 1 → 3l → 3l − 1 → 3l + 1, which would
both contradict the fact that Lem. 3.20 guarantees neglibility of {i, j} for any extension
of G. This proves (3.1).

To finish the proof of the proposition, suppose G̃ to be any proper subgraph of G and
let {i, j} ∈ EG \EG̃. If G̃ was acyclic in extension, Prop. 3.19 would imply that {i, j} was
negligible for G̃, and thus also negligible for G by Lem. 3.20. This would clearly contradict
Claim (3.1), hence we conclude G̃ ̸∈ Gm(acyclic).

In the remaining cases m ≡ 0 mod 3 resp. m ≡ 2 mod 3 let again G′ ∈ Gm(acyclic) with
1 → 2 → . . . → m in G′, define

EG := EG′ \
(⋃m/3

l=1
{(3l − 2, 3l − 1)}

)
resp. EG := EG′ \

(⋃(m+1)/3

l=1
{(3l − 2, 3l − 1)}

)
and argue similarly as above.

3.7. DSTAs for Testing Acyclicity of Tournaments

In this section, we present a solution to Dmacyclic for even m ≥ 4 and then discuss lower
bounds for this problem.

Proposition 3.26. If m ≥ 4 is even, Alg. 13 solves Dmacyclic with worst-case termination

time
(
m
2

)
− 1.

Proof. Let m ≥ 4 be even and fixed, and write A for Alg. 13. Suppose A is started on an
arbitrary G ∈ Gm. If A terminates in Step 2, D(A) = acyclic is correct. Thus, suppose
that the queries {i, j}, 1 ≤ i < j ≤ m − 1 made in Step 1 do not reveal a cycle of G.
Then, G|[m−1] = ([m − 1], {(i, j) ∈ EG | 1 ≤ i, j ≤ m − 1}) is acyclic and there exists a
topological sorting σ̃ : [m − 1] → [m − 1] of G[m−1]. In particular, the mapping σ in
Step 3 exists and is given by σ(i) = σ̃−1(i) for i ∈ [m− 1] and σ(m) = m.
In Step 4, A queries all the edges {σ(l),m} for l ∈ L = {2, 4, . . . ,m − 2} and these

queries have not been made before. We proceed with a case distinction for the observed
feedback for these queries.

Case 1: ∀l ∈ L : m → σ(l).
According to Step 5, A chooses e := {σ(1),m}, and then queries in Step 9 all edges
from [m]2 \ {e}, which have not been queried yet. Thus, it has made T =

(
m
2

)
− 1

queries in total when it terminates in Step 10 or 11. In fact, the only edge that is
not queried by A is e = {σ(1),m}. If there exists l̃ ∈ L with σ(l̃ + 1) → m, then
σ(l̃+1) → m → σ(l̃) → σ(l̃+1) is a cycle in GA

G (T ) (because of the choice of σ and the
fact that this cycle does not contain e), and thus A correctly outputs D(A) = ¬acyclic
in Step 11. Otherwise, we have m → σ(j) for all j ∈ [m− 1] \ {1} and by definition of
σ also σ(1) → σ(j) in GA

G (T ) for all j ∈ [m − 1], hence e = {σ(1),m} is negligible for
GA
G (T ). Consequently, Prop. 3.19 assures that the output of A will be correct.
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1 2 3 l − 1 l l + 1 l + 2 l + 3 m− 2 m− 1

m

Figure 4.: Illustration of Case 2 in the proof of Prop. 3.26, where σ = id.

Case 2: ∃l ∈ L : ∀l′ ∈ L ∩ [0, l] : σ(l′) → m and ∀l′′ ∈ L ∩ (l,∞) : m → σ(l′′).
In this case, A queries all edges in [m]2 except e = {σ(l + 1),m}, i.e., we have again
T =

(
m
2

)
− 1 in Step 9. In case there exists a j ∈ {1, 3, . . . , l − 1} with m → σ(j),

j+1 ∈ L∩ [0, l] implies that m → σ(j) → σ(j+1) → m is a cycle in GA
G (T ). Moreover,

if there is a j ∈ {l+3, l+5, . . . ,m−1} with σ(j) → m, then j−1 ∈ L∩(l,∞) assures that
σ(j) → m → σ(j − 1) → σ(j) is a cycle in GA

G (T ). Consequently, there is either a cycle
in GA

G (T ), which leads to the correct decision of A, or we have for any j ∈ [m−1]\{l+1}
the equivalence σ(j) → m iff σ(j) → σ(l + 1). In the latter case, e = {σ(l + 1),m} is
negligible, and thus A terminates according to Prop. 3.19 with the correct decision.

Case 3: None of the Cases 1 and 2 are true.
Then, there exist l′, l′′ ∈ L with l′ < l′′ and σ(l′′) → m → σ(l′). Consequently, we
have the cycle σ(l′) → σ(l′′) → m → σ(l′) in G and A correctly terminates with
D(A) = ¬acyclic in Step 8.

Algorithm 13 Solution to Dmacyclic if m ≥ 4 is even.

Input: Query access to a tournament G on [m]

1: Query all edges {i, j} with 1 ≤ i < j ≤ m− 1.
2: if the observations in Step 1 reveal a cycle in G then return ¬acyclic
3: Fix the permutation σ : [m] → [m] with

σ(m) = m and σ(i) → σ(j) for all 1 ≤ i < j ≤ m− 1.

4: Query all the edges {σ(l),m} for l ∈ L := {2, 4, . . . ,m− 2}.
5: if ∀l ∈ L : m → σ(l) then let e := {σ(1),m}
6: else if ∃l ∈ L : ∀l′ ∈ L ∩ [0, l] : σ(l′) → m and ∀l′′ ∈ L ∩ (l,∞) : m → σ(l′′) then
7: let e := {σ(l + 1),m}
8: else return ¬acyclic
9: Query edges from [m]2 \ {e}, which have not been queried yet. Let T be the total

number of queried edges.
10: if GA

G (T ) is acyclic in extension then return acyclic
11: else return ¬acyclic

Corollary 3.27. If A solves Dmacyclic, then TA
G ≥

(
m
2

)
− ⌊m2 ⌋ is fulfilled for any G ∈

Gm(acyclic).

Proof. This follows directly from Prop. 3.4 and Prop. 3.18.
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Theorem 3.28. Suppose m ≥ 4 is even and let A be a solution to Dmacyclic. Then, either

TA
G ≥

(
m
2

)
−⌊m2 ⌋+1 for every G ∈ Gm(acyclic) or there exists some G̃ ∈ Gm(acyclic) with

TA
G̃
≥
(
m
2

)
− ⌊m2 ⌋+ 2. In particular, TA ≥

(
m
2

)
− ⌊m2 ⌋+ 1 is fulfilled.

Proof of Thm. 3.28. Let m ≥ 4 be even and A be a fixed solution to Dmacyclic. In case

TA
G ≥

(
m
2

)
− m

2 + 1 for any G ∈ Gm, there is nothing to show, hence let us suppose w.l.o.g.
TA
G ≤

(
m
2

)
−m

2 for some fixed G ∈ Gm(acyclic). Then, G is topologically sortable, and after
possibly relabeling the items in [m] we may suppose w.l.o.g. that G has the topological
ordering 1 → 2 → · · · → m. As A is correct and G ∈ Gm(acyclic), Prop. 3.4 assures
GA
G

(
TA
G

)
∈ Gm(acyclic) and thus TA

G ≥ |EGA
G(T

A
G )| ≥

(
m
2

)
− m

2 by Prop. 3.18. Thus, we

have TA
G =

(
m
2

)
− m

2 and from Prop. 3.19 we infer3

EGA
G(T

A
G ) = EG \ {(i, i+ 1) | i ∈ [m] is odd} (3.2)

That is, GA
G

(
TA
G

)
can be depicted as follows.

1

2

3

4

m− 3

m− 2

m− 1

m

Therein, we have left out those edges (i, j) ∈ EGA
G(T

A
G ) with j − i ≥ 4, and have depicted

those edges which are not contained in GA
G

(
TA
G

)
as dotted lines. Now, let

E′ :=
{
(i, j) ∈ EGA

G(T
A
G ) | (i odd and j − i ≤ 3) or (i even and j − i ≤ 2)

}
be the set of edges of GA

G

(
TA
G

)
which are depicted as solid lines in the picture, and define

the time
T ′ := max

{
t ∈ N | {iAG(t), jAG (t)}G ∈ E′}

at which A (if started on G) queries the last edge contained in E′. As E′ ⊆ EGA
G(T

A
G )

holds, we trivially have T ′ ≤
(
m
2

)
− m

2 . Denote the corresponding last query as {i′, j′} =
{iAG(T ′), jAG(T

′)} with i′ < j′. Due to (i′, j′) ∈ E′ ⊆ EGA
G(T

A
G ), there exists an odd

z ∈ [m − 3] with {i′, j′} ⊊ {z, z + 1, z + 2, z + 3}, and a look at (3.2) reveals that
i′ ∈ {z, z + 1} and j′ ∈ {z + 2, z + 3} has to hold. Define i′′, j′′ ∈ [m] such that
{i′, i′′} = {z, z + 1} and {j′, j′′} = {z + 2, z + 3}.

Now, let G̃ ∈ Gm be that tournament with topological ordering

1 → 2 → · · · → i′′ → j′ → i′ → j′′ → · · · → m− 1 → m.

Comparing this with the topological ordering of G and regarding the choice of z above,
we see z = σG̃(i

′′), z + 1 = σG̃(j
′), z + 2 = σG̃(i

′) and z + 3 = σG̃(j
′′).

Claim 1: We have{
{i, j} ∈ [m]2 | {i, j}G ̸= {i, j}G̃

}
⊆ {{i′, i′′}, {j′, j′′}, {i′, j′}}.

3Note here: According to Prop. 3.19, every edge (i, j) ∈ EG \ GA
G

(
TA
G

)
=: Ẽ has to be of the form

(i, i+ 1) and there cannot be two consecutive ones, i.e., if (i, i+ 1) ∈ Ẽ then neither (i− 1, i) ∈ Ẽ nor
(i+ 1, i+ 2) ∈ Ẽ. Thus, |Ẽ| = m

2
implies Ẽ = {(1, 3), (3, 5), . . . , (m− 1,m)}.
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Proof: Comparing the topological orderings of G and G̃, we see on the one hand

∀ distinct i, j ∈ [m] \ {i′, j′, i′′, j′′} : (i, j) ∈ EG ⇔ (i, j) ∈ EG̃

and on the other hand that for every i ∈ [m] and j ∈ {i′, i′′, j′, j′′} the two implications

i < j ⇒ (i, j) ∈ EG̃ ∩ EG and i > j ⇒ (j, i) ∈ EG̃ ∩ EG

hold, i.e., {i, j}G = {i, j}G̃ is fulfilled in every such cases. It remains to consider
the three possible choices of {i, j} where i, j ∈ {i′, j′, i′′, j′′} are distinct and {i, j} ̸∈
{{i′, i′′}, {j′, j′′}, {i′, j′}}, i.e., the choices {i′′, j′}, {i′, j′′} and {i′′, j′′}. From z = σG̃(i

′′),
z+1 = σG̃(j

′) and i′′ ∈ {z, z+1}, j′ ∈ {z+2, z+3} we infer {i′′, j′}G̃ = (i′′, j′) = {i′′, j′}G,
and similarly we see {i′, j′′}G̃ = (i′, j′′) = {i′, j′′}G as well as {i′′, j′′}G̃ = (i′′, j′′) =
{i′′, j′′}G. ■

Equation (3.2) assures that A started on G queries neither {i′, i′′} = {z, z + 1} nor
{j′, j′′} = {z + 2, z + 3} before termination, and according to the definition of T ′ it does
not query {i′, j′} before time T ′. Consequently, Claim 1 implies that A started on G
makes until time T ′ exactly the same queries as started on G̃, and GA

G̃
(T ′) looks as follows.

1

2

i′′ j′ i′ j′′

m− 1

m

In particular, the set

X := {{i, j} ∈ [m]2 : {i, j} = {σG̃(l), σG̃(l + 1)} for some l ∈ [m− 1]

and A started on G̃ queries {i, j} before termination}
⊇ {{l, l + 1} | l ∈ [m− 1] even} ∪ {{z, z + 1}, {z + 2, z + 3}}.

contains at least ⌊m−1
2 ⌋+2 = m

2 +1 elements. From Propositions 3.4 and 3.19 we know that

A started on G̃ may only leave out those queries {i, j}, which are neglibible for GA
G̃

(
TA
G̃

)
,

and according to Prop. 3.23 these can only be of the form {i, j} = {σG̃(l), σG̃(l+1)} for some
l ∈ [m−1]. Thus, |X| ≥ m

2 +1 assures us |E
GA

G̃

(
TA
G̃

)| ≥ (m2 )−(m−1)+m
2 +1 =

(
m
2

)
−m

2 +2,

and we conclude TA ≥ TA
G̃
≥
(
m
2

)
− m

2 + 2.

Corollary 3.29. Alg. 13 is an optimal solution to D4
acyclic.

Proof. This is a direct consequence of Prop. 3.26 and Thm. 3.28.

Consequences for Randomized Testing Algorithms Above, we have seen that any
deterministic sequential testing algorithm, which correctly classifies any G ∈ Gm as acyclic
or ¬acyclic, has to make in the worst case at least

(
m
2

)
−⌊m2 ⌋+1 queries before termination.

But from Thm. 3.28 we can also obtain a result for possibly randomized solutions of this
classification problem, as we will discuss in the following.

For this, suppose A to be any sequential testing algorithm for this problem, which may
incorporate in each time step some randomness in the choice of its next query. Let us
call A correct if it outputs with probability 1 for any G ∈ Gm the correct decision, i.e.,
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writing PG for the probability measure on the possible states of A started on G, and as
usual D(A) for the decision of A started on G, A is correct if PG(D(A) = acyclic) = 1
for all G ∈ Gm(acyclic) and PG(D(A) = ¬acyclic) = 1 for all G ∈ Gm(¬acyclic). Write A
for the set of all correct DSTAs that solve Dmacyclic and note that |A| <∞. If A is correct,

there exists (pa)a∈A ∈ [0, 1]|A| with
∑

a∈A pa = 1 s.t. A behaves for any G ∈ Gm with
probability pa exactly as a ∈ A. By Yao’s minimax principle [Yao, 1977], we obtain for

any subclass G′m ⊂ Gm of instances and any probability distribution µ′ on G′m for A’s
sample complexity TA the worst-case lower bound

max
G∈G′

m
EG[TA] ≥ mina∈A EG∼µ′ [T

a
G].

For arbitrary G ∈ Gm(acyclic) we know from Cor. 3.27 that T aG ≥
(
m
2

)
− ⌊m2 ⌋ for any

a ∈ A and thus applying Yao’s principle with G′m = {G} and µ′(G) = 1 trivially yields

EG[TA] ≥
(
m

2

)
−
⌊m
2

⌋
.

Based on the proof of Thm. 3.28, we are able to obtain a slightly stronger result.

Corollary 3.30. If A is a (possibly random) sequential algorithm, which correctly tests
any G ∈ Gm for acyclicity, then

max
G∈G′

m
EG[TA] ≥

(
m

2

)
−
⌊m
2

⌋
+

2

3(m− 3) + 1

for a subclass G′m ⊊ Gm(acyclic) of size |G′m| ≤ 3(m− 3) + 1.

Proof. As in the proof of Thm. 3.28 letG ∈ Gm(acyclic) be the tournament with topological
sorting 1 → . . . → n. Moreover, suppose a ∈ A to be a DSTA, which solves Dmacyclic. In
the proof, we have constructed an element G̃ ∈ Gm(acyclic), which was dependent on the
algorithmic behaviour of a and is thus denoted by G̃a in the following, with the property

∀a ∈ A : T aG =

(
m

2

)
− ⌊m/2⌋ ⇒ T a

G̃a
≥
(
m

2

)
−
⌊m
2

⌋
+ 2.

More precisely, we have seen that G̃a is a tournament with topological sorting

1 → 2 → · · · → i′′ → j′ → i′ → j′′ → · · · → m− 1 → m

for some appropriate values i′′, j′, i′, j′′ with {i′, i′′} = {z, z+1} and {j′, j′′} = {z+2, z+3}
for an appropriate choice of z ∈ [m − 3], which depend on a itself. Let G′m be the set

of all tournaments on [m], which fulfill these constraints. Note that G ∈ G′m. Moreover,
there are m− 3 choices for z, and for each of these there are four choices of i′, j′, i′′, j′′

such that the constraints are met, and one of these four yields exactly G as a tournament.
Consequently, there are at most 3(m − 3) + 1 elements in G′m. Now, let µ′ be defined

via µ′ : G′m → [0, 1], µ′(G′) := 1/|G′m| for all G′ ∈ G′m. Abbreviate x :=
(
m
2

)
− ⌊m2 ⌋. By

the proof of Thm. 3.28 we have, for any a ∈ A, that (a) min
G′∈G′

m
T aG′ ≥ x + 1 or (b)

∃G′ ∈ G′m : T aG′ ≥ x+ 2 and ∀G′ ∈ G′m \ {G} : T aG′ ≥ x. Hence,

EG′∼µ′ [T
a
G′ ] ≥ min

{
x+ 1,

(|G′m| − 1)x+ (x+ 2)

|G′m|

}
= x+

2

|G′m|
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for any a ∈ A, and we conclude via Yao’s minimax principle [Yao, 1977]

max
G′∈G′

m
EG′ [TA] ≥ mina∈A EG′∼µ′ [T

a
G′ ] ≥ x+

2

|G′m|
≥
(
m

2

)
−
⌊m
2

⌋
+

2

3(m− 3) + 1
.

3.8. Discussion and Related Work

With regard to the further course of this thesis, the main contributions of this chapter
are the optimal solution to DmCWc with its guarantees resp. the theory on negligible edges
and acyclicity in extension, as these will be of particular interest in Chapters 4 resp. 5.
But along the road, we achieved further insights in testing properties of tournaments in
general, with a special emphasis on (non-)acyclicity, (non-)existence of a CW and related
properties. Many results were already published in [Haddenhorst et al., 2021a,b], but
in comparison to these, we defined for general graph properties X and Y the term X in
Y-extension and generalized the notion of a DSTA accordingly, corrected some minor
mistakes, and also discussed acyclicity testing on Gm.

The notion of a tournament is quite basic in graph theory, and it may not be surprising
that learning problems for tournaments have already attained some attention in the
literature. Moon [2015] provides an extensive overview of observations on tournaments in
graph theory, and the author discusses problems such as “Provided G ∈ Gm(acyclic), how
many queries of G are in the worst-case necessary and sufficient to find the topological
sorting of G?” (Sec. 16) or also “Given a property X, what is the minimal/maximal size
of m such that a tournament G ∈ Gm with property X exists?” (Sec. 11) for a particular
choice X. However, such questions are rather loosely related to our work, because they
apparently do not help with our particular problems at hand.

Bollobás [1978] considered the problem of sequentially testing properties of undirected
graphs on [m] in the form of a two-player game, in which a player A tries to detect (as early
as possible) whether a graph G, that is iteratively constructed by an adversary player B,
has some property X or not. Here, at each time step, A may either terminate and decide
for X or ¬X or alternatively choose a query {i, j} ∈ [m]2, whereupon B decides whether
{i, j} is an edge in G or not. A tries to correctly terminate as early as possible, whereas
B tries to work against this. The number c(X) of queries A makes before termination,
when both A and B are optimal players, is considered as complexity of X and it can be
seen as an analogon of the worst-case termination time of DSTAs for tournaments as
introduced above. The author is particularly interested whether X is elusive meaning that
c(X) =

(
m
2

)
, and shows that a huge class of properties X is non-elusive. Thm. VIII.1.2

in [Bollobás, 1978] states that acyclicity (of undirected graphs) is elusive in case m ≥ 3.
In contrast, transferring this language to our setting, Thm. 3.26 shows that acyclicity of
tournaments (i.e., particular digraphs) is non-elusive if m ≥ 4 is even. As far as we know,
this is a novel result, and we are not aware whether an analogon is true for odd m ≥ 4.

It has already been known that testing acyclicity (amongst several other properties) on
Gm requires Ω(m2) queries in a worst-case sense [Rivest and Vuillemin, 1975, Holt and

Reingold, 1972]; more precisely, they show that at least m2−1
4 queries are necessary for

acyclicity testing. We have shown that actually at most O(m) of the
(
m
2

)
possible queries

{i, j} ∈ [m]2 may be left out by a solution whenever G ∈ Gm(acyclic). More precisely,
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our observations on acyclicity in extension rather straight-forwardly implied that any
deterministic solution A to Dmacyclic fulfills minG∈Gm(acyclic) T

A
G ≥

(
m
2

)
− ⌊m2 ⌋ (Cor. 3.27).

From this, an application of Yao’s minimax principle [Yao, 1977] can already assure
maxG∈Gm(acyclic) EG[T

A] ≥
(
m
2

)
− ⌊m2 ⌋ for any probabilistic solution A to Dmacyclic. For

even m ≥ 4, we improved these bounds in Thm. 3.28 and Cor. 3.30 for deterministic and
probabilistic algorithms by additional summands 1 and 2

3(m−3)+1 , respectively. We have to
admit that this is only a small improvement, but the corresponding proofs are non-trivial
and thus added for the sake of completeness. To the best of our knowledge, these results
are novel, and we believe that similar lower bounds can also be obtained for odd m ≥ 4.

Both the upper and lower bounds on solutions to Dmacyclic are not going to be exploited in
the further course of this paper. Instead, they can rather be seen as interesting by-products
of our graph-theoretical observations and are certainly of interest on their own.

The problem DmCWt has apparently been solved independently of each other by Bollobás
and Eldridge [1978], Balasubramanian et al. [1997] and Procaccia [2008], and we stated
its provably optimal solution in Prop. 3.14. For the sake of completeness, we also gave
solutions and lower bound results for the related problems DmCWc, DmCWv, DmCWi(CW),
DmCWv(CW) even though they may appear rather trivial.

Throughout, we have mainly focused on worst-case query complexity of DSTAs, as the
theoretical analysis of solutions to the dueling bandits in Chapters 4 and 5 mainly require
such type of guarantees. From a theoretical perspective, also best- or average-case or
even weighted analoga appear interesting, and (where directly obtainable) we already
stated some results regarding the best-case query complexity. Apart from that, it might
be interesting to further discuss the sample complexity of randomized algorithms for the
testing problems from above: We have merely given an expected sample complexity bound
of randomized solutions to Dmacyclic that are with probability 1 correct for any G ∈ Gm,
but one might e.g. also ask for corresponding bounds of algorithms that are only correct
with confidence 1− γ for all G ∈ Gm.
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Part II.

Learning Problems in Dueling Bandits





4. Testification for the Existence of a
Condorcet Winner

In Part II, we discuss several decision problems in the realm of dueling bandits (DB),
starting with the CW-related decision problems introduced in Sec. 1.1 in this chapter.
Recall from Sec. 1.2 that in the field of DB any arm that is likely to win (i.e., with
probability ≥ 1/2) in each duel against another arm is called the Condorcet winner (CW).
Even though the existence of a CW in the dueling bandits problem is required in a variety
of papers – either explicitly or implicitly (cf. e.g. [Bengs et al., 2021] or Sec. 4.7 for a
small overview) –, Zoghi et al. [2015a] noted that its existence can neither be guaranteed
in theory nor in real-life scenarios. However, the arguments put forward by the authors
are purely empirical, and the conclusion that a CW does not exist in the considered
applications are only derived in hindsight, after having seen all the data. In particular,
the authors do not provide a statistical framework to verify or reject the CW assumption,
neither in an offline nor in an online manner. For this reason, we suggested the problem
CW testification as combined testing and verification of the CW: If a CW exists, return it,
otherwise return ¬CW. Here, testing means finding the CW if it exists, which is usually
referred to as “CW identification” throughout this thesis for clearer separation from CW
testification, whereas verification refers to CW verification as introduced already in Ch. 1.
A naive approach for tackling CW testification may be to treat both CW identification
and CW verification therein separately in two consecutive phases, and in fact this will
result in a solution to CW testification. However, a natural question is whether a more
sophisticated approach, which interleaves both phases, can do better. In a similar problem,
which we briefly elaborate on directly before Sec. 4.1, the answer is “yes”, but for the more
difficult problem of CW testification we can merely show that our particular improved,
interleaved solution outperforms a particular reasonable naive one both empirically and
theoretically.

Overview of Decision Problems In Ch. 1, we have already introduced several CW-related
decision problems in dueling bandits. Informally, CW testification is the problem

“Is Q in Qm(CW)? If so, determine the CW and return it, otherwise return ¬CW.”,

and similarly, CW checking and CW verification are binary classification problems with
classes CW and ¬CW resp. i and ¬i (given as input i ∈ [m]) of the form

“Is Q in Qm(CW)? If so, return CW, otherwise return ¬CW.”,

“Is i the CW of Q? If so, return i, otherwise return ¬i.”.

For the latter, the type I/II error of the testing algorithm corresponds to a false posi-
tive/negative classification.

Now, let us formally introduce appropriate asymmetric versions for any of these problems.
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As usually, we write D(A) for the decision of an algorithm A and A(z) for A started with
input z. Throughout, we focus on algorithms A, which might be probabilistic and interact
with the underlying dueling bandits environment, as stipulated by the definition of a
sampling strategy π (cf. Sec. 1.1). Moreover, we suppose m ∈ N, a hardness parameter
h ∈ [0, 1/2) and desired error probabilities α, β ∈ (0, 1) to be fixed for the moment. Given
m,h, α, β as parameters, we say that A solves

• CW testification on Qhm for α, β (short: Pm,h,α,βCWt ) if

infi∗∈[m] infQ∈Qh
m(i∗) PQ

(
D(A) = i∗

)
≥ 1− α,

infQ∈Qh
m(¬CW) PQ

(
D(A) = ¬CW

)
≥ 1− β,

infQ∈Qh
m
PQ

(
TA <∞

)
= 1,

(4.1)

• CW checking on Qhm for α, β (short: Pm,h,α,βCWc ) if, whenever given any i ∈ [m] as
input,

infQ∈Qh
m(CW) PQ(D(A) = CW) ≥ 1− α,

infQ∈Qh
m(¬CW) PQ(D(A) = ¬CW) ≥ 1− β,

infQ∈Qh
m
PQ

(
TA <∞

)
= 1,

• CW verification on Qhm for α, β (short: Pm,h,α,βCWv ) if, whenever given any i ∈ [m] as
input, and

infQ∈Qh
m(CW):CW(Q)=i PQ(D(A(i)) = i) ≥ 1− α

infQ∈Qh
m:Q∈Qm(¬CW) or CW(Q)̸=i PQ(D(A(i)) = ¬i) ≥ 1− β,

infQ∈Qh
m
infi∈[m] PQ

(
TA(i) <∞

)
= 1,

(4.2)

• CW identification on Qhm(CW) for α (short: Pm,h,αCWi (CW)) if

infi∈[m] infQ∈Qh
m(CW):CW(Q)=i PQ(D(A) = i) ≥ 1− α,
infQ∈Qh

m(CW) PQ

(
TA <∞

)
= 1,

• CW verification on Qhm(CW) for α, β (short: Pm,h,α,βCWv (CW)) if, whenever given any
i ∈ [m], the following holds:

infQ∈Qh
m(CW):CW(Q)=i PQ(D(A(i)) = i) ≥ 1− α,

infQ∈Qh
m(CW):CW(Q) ̸=i PQ(D(A(i)) = ¬i) ≥ 1− β,

infQ∈Qh
m(CW) infi∈[m] PQ

(
TA(i) <∞

)
= 1.

In the symmetric case α = β = γ, we abbreviate Pm,h,γCWt := Pm,h,γ,γCWt , Pm,h,γCWc := Pm,h,γ,γCWc and
so forth. Our primary interest lies in the discussion of the sample complexity necessary and
sufficient to solve the previously introduced problems. Not surprisingly, the corresponding
sample complexities depend on the predefined error bounds α, β, the number of available
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arms m, as well as on the parameter h of the class of preference relations Qhm satisfying
the low noise assumption. As we will see, any of these problems requires in the symmetric
case α = β = γ an expected worst-case sample complexity of order Θ̃(m

h2
ln 1

γ ).

The problem Pm,h,αCWi (CW) is also known as best-arm identification in the dueling bandits
literature and (matching) sample complexity lower and upper bounds for it have already
been established by Braverman et al. [2016].

Degenne and Koolen [2019] consider the pure exploration multi-armed bandit problem
with multiple correct answers in a quite general setting, which also allows for CW
testification. From their results one can obtain instance-wise optimal lower and upper
bounds on the asymptotics of CW testification algorithms, which we elaborate on in
Sec. 4.5. Unfortunately, these bounds do not provide any information of the sample
complexity for solving the CW testification task with a predefined level of confidence,
which is probably the most common use case in reality. Apart from this, the CW
testification problem has merely been addressed in the deterministic scenario, in which
the outcome of a duel between two arms, if queried repeatedly, is always the same. This
problem, termed DmCWt by us in Sec. 3.5, has already been investigated by Bollobás and
Eldridge [1978], Balasubramanian et al. [1997] and Procaccia [2008], and we have restated
in Prop. 3.14 an optimal deterministic solution for it.

An important use case of a solution to Pm,k,α,βCWv may be to verify the validity of a ranking
over the arms, say σ ∈ Sm, which shall be coherent with Q in the sense that qσ(i),σ(j) > 1/2
iff i < j. Such a ranking could be the output of some ranking learning algorithm in the
realm of the dueling bandits setting, for instance. By iteratively verifying the arm with
rank i ∈ [m] to be the CW among the arms with lower ranks, one needs at most m− 1

executions of Pm,k,α,βCWv to decide, up to some adjustable confidence, whether σ is correct.

Outline of This Chapter We start our analysis in Sec. 4.1 with worst-case sample
complexity lower bounds for solutions to Pm,h,α,βCWt , Pm,h,α,βCWc , Pm,h,α,βCWv and Pm,h,α,βCWv (CW).
Asymptotically, these turn out to be of the form Ω(m

h2
ln 1

α∨β ) and thus basically resemble

in the case α = β the bound for Pm,h,αCWi (CW) given by Braverman et al. [2016]. Afterwards,
we provide in Sec. 4.2 solutions to these problems, which are proven to be (up to logarithmic
factors and in case α = β = γ) asymptotically optimal w.r.t. the quantities γ, m and
h. For the case of CW testification, this almost optimal sample complexity is already
achieved by means of a simple two-stage approach A-then-Verify, in which at first a
solution A to the best-arm identification problem finds a candidate for the CW and then
verifies this in a subsequent phase. However, we provide a more sophisticated algorithmic
framework called Noisy Tournament Sampling (NTS), which exploits a connection of
the testing problems to the graph-theoretical considerations from Ch. 3 and has several
advantages over A-then-Verify: On the one hand, it outperforms the latter one both
theoretically and empirically, and on the other hand it also allows for CW testification
in a passive scenario. For the sake of readability, we deferred the technical proof of the
theoretical guarantees of NTS to Ch. 4.3.

In Sec. 4.4 we briefly discuss the problems Pm,h,γCWi (CW) and Pm,h,α,βCWv (CW), which
assume the existence of a CW. The former one is also known as best-arm identification
in the literature. Afterwards, we empirically investigate the performance of our CW
testification algorithm.
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In Sec. 4.5, we discuss for the sake of comparison and completeness to which extent
results from pure exploration bandits with multiple correct answers as defined in [Degenne
and Koolen, 2019] are suited to solve the problems at hand. For this, we focus on the two
problems CW testification and CW checking and reduce these to the setting of Degenne
and Koolen [2019]. More precisely, we will see that any solution A(γ) to Pm,h,γCWt necessarily
fulfills

lim inf
γ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≥ 1

Dm,h
CWt(Q)

(4.3)

for some known constant Dm,h
CWt(Q) > 0, and that there exists a solution A(γ) to Pm,h,γCWt

with

lim
γ→ 0

EQ[TA(γ)]

ln 1
γ

≤ 1

Dm,h
CWt(Q)

. (4.4)

We will prove that

(m− 1)(1/4− h2)
4h2

≤ supQ∈Qh
m

1

Dm,h
CWt(Q)

≤ m

8h2
(4.5)

holds, hence any optimal solution A(γ) to Pm,h,γCWt fulfills

supQ∈Qh
m

lim
γ→ 0

EQ[TA(γ)]

ln 1
γ

∈ Θ
(m
h2

)
. (4.6)

Similar results are provided for Pm,h,γCWc . Unfortunately and in contrast to our results in
Sec. 4.1 and 4.2, these results do not yield any information for cases where γ is fixed.
Moreover, the algorithmic solution A(γ) presented by Degenne and Koolen [2019] is very
inefficient if not infeasible in practice, which is due to a hard min-max problem that has
to be solved at each time step.

Before continuing with the discussion on the CW-related problems, we give, as promised,
a related problem where a combined testification approach can be provably better than
a two-stage procedure. For this purpose, suppose we want to testify for the total order
σR : [m] → [m] of a relation R = (ri,j)1≤i,j≤m ∈ Rm (in the sense that σR(i) < σR(j)
iff ri,j = 1), where each ri,j is a random sample from Ber(qi,j) for some a priori known
qi,j ∈ [0, 1]. Let A be any two-stage solution to the problem, which at first finds a
candidate σ̂ (e.g. via conducting the quicksort algorithm on the observed feedback) and
then checks whether σ̂ is in fact the true underlying total order. In case Q ≈ (1/2)1≤i,j≤m,
the well-known average-case lower bound for sorting lets us infer that A has an expected
sample complexity EQ[TA] ∈ Ω(m lnm), cf. e.g. [Knuth, 1973].

On the other side, consider a testification algorithm A′ that chooses distinct (i1, j1),
(j1, k1), (k1, i1), . . . , (im, jm), (jm, km), (km, im) ∈ ⟨m⟩2 (which is possible if m is large
enough) and checks a priori whether there is any 3-cycle of the form il → jl → kl → il
or jl → il → kl → jl in R, when interpreting i → j as ri,j = 1. As soon as it detects
such a cycle, it terminates, otherwise it continues sampling until it has seen each entry of
R once and then outputs the observed total order. In case Q ≈ (1/2)1≤i,j≤m, we have for
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all l ∈ [m]

PQ (il, jl, kl form a cycle) ≈ 2

23
=

1

4
,

PQ

(
il, jl, kl form a cycle and ∀l′ ≤ l − 1 : il′ , jl′ , kl′ do not form a cycle

)
≈ 3l−1

4l
,

PQ

(
∀l′ ≤ m : il′ , jl′ , kl′ do not form a cycle

)
≈ 3m

4m
.

Consequently, the average sample complexity of A′ is then

EQ

[
TA′

]
≲
∑m

l=1
3l · 3

l−1

4l−1
· 1
4
+
m23m

4m
= 3

(
4− (m+ 4)3m

4m

)
+
m23m

4m
∈ o(m lnm).

Hence, A′ provably outperforms A on average on these instances for large values of m.

4.1. Lower Bounds

In this section, we provide sample complexity lower bounds for solutions to the previously
defined problems. They are mainly based on Thm. 2.29 and Prop. 2.13. Thm. 4.2 from
below reveals that the impact of the key quantities (i.e., α, β,m, h) on the order of the
worst-case sample complexity for the testification problem is similar as for the worst-case
sample complexity for the sole CW identification task under the stricter assumption
of existence of a total order [Braverman et al., 2016]. Moreover, the dependency on
the number of arms in (4.7) below coincides with (4.5). The following lower bound is
instance-wise and formulated in terms of the gaps q̄i,j = |qi,j − 1/2| of the underlying
instance Q.

Theorem 4.1. For any fixed h0, γ0 ∈ (0, 1/2) there exists a constant c = c(h0, γ0) > 0
such that the following holds:

(i) Let h ∈ (0, h0), α, β ∈ (0, γ0) and suppose that A is some (probabilistic) algorithm,

which solves Pm,h,α,βCWv . Then, for all i ∈ [m] and every Q ∈ Qhm(CW) with CW(Q) =
i, we have

EQ

[
TA(i)

]
≥ c

∑
j∈[m]\{i}

1

q̄2i,j
ln

1

α ∨ β
.

In particular, A fulfills for each i ∈ [m] the estimate

supQ∈Qh
m
EQ

[
TA(i)

]
≥ c(m− 1)

h2
ln

1

α ∨ β
.

(ii) Let h ∈ (0, h0), α, β ∈ (0, γ0) and suppose that A is some (probabilistic) algorithm,

which solves Pm,h,α,βCWc . Moreover, let Q ∈ Qhm(CW) be fixed and suppose σ to be a
permutation1 on [m] such that qσ(i),σ(j) > 1/2 iff i < j. Then,

EQ

[
TA] ≥ c∑m

j=3

1

q̄2σ(1),σ(j)
ln

1

α ∨ β

≥ cminj∈[m]\{CW(Q)}
∑

j′∈[m]\{CW(Q),j}

1

q̄2CW(Q),j′
ln

1

α ∨ β
.

1For the existence of such a permutation confer Lem. 3.3.
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In particular, A fulfills

supQ∈Qh
m
EQ[TA] ≥ c(m− 2)

h2
ln

1

α ∨ β
.

Proof of Thm. 4.1. (i) As any (probabilistic) algorithm A that solves Pm,h,α,βCWv , trivially
also fulfills the guarantees

infQ∈Qh
m(CW):CW(Q)=i PQ(D(A(i)) = i) ≥ 1−max{α, β} and

infQ∈Qh
m:Q∈Qm(¬CW) or CW(Q) ̸=i PQ(D(A(i)) = ¬i) ≥ 1−max{α, β}

for every i ∈ [m], which are weaker than (4.2), we may suppose w.l.o.g. α = β :=γ
from now on.

Let i ∈ [m] be fixed. Choose J := {i} × ([m] \ {i}). As A solves Pm,h,γCWv , A(i) is able
to decide2

H0;J : ∀j ∈ [m] \ {i} : pi,j ≥ 1/2 H1;J : ∃j ∈ [m] \ {i} : pi,j < 1/2

for each p = (pi,j)j∈[m]\{i} ∈
∏
j∈[m]\{i}{1/2 ± q̄i,j} with error probability ≤ γ. If

Q ∈ Qhm(CW) with CW(Q) = i, then qi,j = 1/2+ q̄i,j > 1/2 for every (i, j) ∈ J and
thus Thm. 2.29 implies

EQ[TA(i)] ≥ c
∑

j∈[m]\{i}

1

q̄2i,j
ln

1

γ

with c = c(h0, γ0) as in Thm. 2.29. By choosing Q(ε) ∈ Qhm(CW) with CW(Q(ε)) =
i such that |qi′,j′ − 1/2| = h+ ε for all (i′, j′) ∈ (m)2 and arbitrarily small ε > 0 we
obtain

supQ∈Qh
m
EQ[TA(i)] ≥ EQ(ε)[T

A(i)] ≥ c(m− 1)

(h+ ε)2
ln

1

γ
,

hence taking the limit ε↘ 0 completes the proof of (i).

(ii) As in part (i), we may suppose w.l.o.g. α = β :=γ from now on. As Q = (qi,j)1≤i,j≤m
has a CW iff (qσ(i),σ(j))1≤i,j≤m ∈ Qm has a CW, we may suppose w.l.o.g. σ = id
in the following, i.e., CW(Q) = 1 and qi,i+1 > 1/2 for every i ∈ [m − 1]. For
p = (p1,3, . . . , p1,m) ∈ [0, 1]m−2 define Q̂(p) ∈ Qm via

Q̂(p)i,j =

{
pi,j , if i = 1 and j ∈ {3, . . . ,m},
qi,j , otherwise,

for any 1 ≤ i < j ≤ m. As mini∈[m−1] qi,i+1 > 1/2 by assumption on σ, for any

p ∈ [0, 1]m−2 either Q̂(p) ∈ Qm(¬CW) or CW(Q̂(p)) = 1 is fulfilled. Provided
p ∈ ([0, 1/2) ∪ (1/2, 1])m−2, we thus have the equivalence

Q̂(p) ∈ Qm(CW) ⇔ ∀j ∈ {3, . . . ,m} : p1,j > 1/2.

2Note here that for every i ∈ [m] and (pi,j)j∈[m]\{i} ∈
∏

j∈[m]\{i}{1/2± hi,j} with mini ̸=j hi,j > h, there

is a Q′ = (q′i′,j′)1≤i′,j′≤m ∈ Qh
m(i) with q′i,j = pi,j for every j ∈ [m] \ {i}, and CW(Q′) = i holds iff

pi,j ≥ 1/2 for any j ∈ [m] \ {i}.
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Suppose A′ to be the algorithm, which gets as input sample access to p ∈ [0, 1]m−2,
simulates A on Q̂(p) and then outputs 0 if D(A) = CW, and 1 if D(A) = ¬CW.

As A solves Pm,h,γCWc , the algorithm A′ is able to decide

H0 : ∀j ∈ {3, . . . ,m} : p1,j ≥ 1/2 versus H1 : ∃j ∈ {3, . . . ,m} : p1,j < 1/2

with error probability at most γ for every p ∈ ([0, 1/2 − h) ∪ (1/2 + h, 1])m−2.
Regarding that Q ∈ Qhm(CW) with CW(Q) = 1 implies p′ := (q1,3, . . . , q1,m) =
(1/2 + q̄1,3, . . . , 1/2 + q̄1,m) ∈ (1/2 + h, 1]m−2, Thm. 2.29 yields

EQ[TA] = Ep′

[
TA′

]
≥ c

∑m

j=3

1

q̄21,j
ln

1

γ
≥ c min

j∈[m]\{1}

∑
j′∈[m]\{1,j}

1

q̄21,j′
ln

1

γ
.

The rest follows as in Part (i), i.e., by considering relations Q(ε) with entries in
{1/2± (h+ ε)} and taking the limit ε↘ 0.

The following theorem provides an instance-wise lower bound on the sample complexity
of any algorithm solving Pm,h,α,βCWt . With Thm. 4.1, the proof of it becomes trivial.

Theorem 4.2. For h0, γ0 ∈ (0, 1/2) there exists a constant c = c(h0, γ0) > 0 with the

following property: Let h ∈ (0, h0), α, β ∈ (0, γ0) and A be any solution to Pm,h,α,βCWt . Then,
for any Q ∈ Qhm(CW), we have

EQ

[
TA] ≥ c∑

j ̸=CW(Q)

1

q̄2CW(Q),j

ln
1

α ∨ β
.

In particular, A fulfills

supQ∈Qh
m
EQ[TA] ≥ c(m− 1)

h2
ln

1

α ∨ β
. (4.7)

Proof of Thm. 4.2. Suppose Q ∈ Qhm(CW) to be fixed and let i∗ := CW(Q). If A solves

Pm,h,α,βCWt , then the algorithm Â which takes any i ∈ [m] as input, simulates A until it
terminates and then outputs

D
(
Â[i]

)
:=

{
i, if D(A) = CW,

¬i, if D(A) = ¬CW or D(A) ∈ [m] \ {i},

solves Pm,h,α,βCWv . Therefore, the statement follows directly from Part (i) of Thm. 4.1 with
the choice i = i∗.

Since any solution to Pm,0,α,βCWt also solves Pm,h,α,βCWt , the above theorem also provides us a

sample complexity lower bound for solutions to Pm,0,α,βCWt . In case m,α and β are fixed, we
can improve upon this lower bound w.r.t. its asymptotics in terms of h as follows.

At first sight, the following result may appear to contradict (4.4) and (4.5), which does
not involve an additional ln ln 1

h -factor. However, note that (4.4) only yields an upper

bound on the asymptotics of
EQ[TA(γ)]

ln 1
γ

as γ ↘ 0, whereas the lower bound from Thm. 4.3

holds for any fixed γ.3 Thus, there is actually no contradiction.

3To illustrate this difference, note that f : (0, 1)2 → R defined via f(γ, h) := 1
h2 ln ln 1

h
if h ≤ γ and

f(γ, h) := 1
h2 if h > γ fulfills limγ → 0 f(γ, h) =

1
h2 for all fixed h ∈ (0, 1), but at the same time we have

limh→ 0
f(γ,h)

1
h2 ln ln 1

h

= 1.
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Theorem 4.3. If α, β ∈ (0, 12) and A is a (probabilistic) algorithm, which solves Pm,0,α,βCWt ,
then

lim suph↘0 supQ∈Qh
m

EQ

[
TA]

1
h2

ln ln 1
h

≥ 1− 2(α ∨ β)
2

> 0.

Proof. Since A solves Pm,0,γCWt with γ := max{α, β}, we may suppose w.l.o.g. α = β = γ.
To exploit Prop. 2.13, we will show that A can be used to construct a solution to PγCoin.
For this, define

Q(p) :=


− 1 . . . 1 p
− 1 . . . 1

. . .
. . .

...
. . . 1

−

 ∈ Qm

for every p ∈ [0, 1] and note

Q(p) ∈ Qm(CW) ⇔ p >
1

2

and also that, for any h ∈ [0, 1/2),

Q(p) ∈ Qhm ⇔
∣∣∣∣p− 1

2

∣∣∣∣ > h.

Let A′ be that algorithm, which is given sample access to a coin C ∼ Ber(p), and then
simulates A on Q(p) and returns D(A′) = 0 if D(A) ∈ [m] and otherwise it returns
D(A′) = 1. This algorithm has the guarantees

Pp
(
D(A′) = 0

)
= PQ(p) (D(A) ∈ [m]) ≥ 1− γ

and

Pp
(
D(A′) = 1

)
= PQ(p) (D(A) = ¬CW) ≥ 1− γ,

and since A terminates a.s. for any Q ∈ Q0
m, A′ terminates a.s. for any p ̸= 1

2 . In other
words, A′ solves PγCoin. By Prop. 2.13, A′ has to throw the coin C sufficiently often for
this, and as each throw of C corresponds to a query of {1,m} from A, we obtain

lim suph↘0 supQ∈Qh
m

EQ

[
TA]

1
h2

ln ln 1
h

≥ lim suph↘0 supp∈[0,1/2−h)∪(1/2−h]
EQ(p)

[
TA]

1
h2

ln ln 1
h

≥ lim suph↘0 supp∈[0,1/2−h)∪(1/2−h]
Ep
[
TA′]

1
h2

ln ln 1
h

≥ 1− 2γ

2
> 0.

Thm. 4.1, Thm. 4.3 and Thm. 4.2 do not provide a lower bound for solutions to the
problem Pm,h,α,βCWv (CW). This is due to the fact, that the proof technique used in the
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proofs of these theorems does not seem to work for Pm,h,α,βCWv (CW). However, we can
obtain an appropriate lower bound by means of the change-of-measure argument from
Sec. 2.5. In fact, it even allows for a more general result for multi-dueling bandits, which
we present in full detail as Thm. 6.9 in Sec. 6.1 below. For the sake of convenience, we
merely deduce the following lower bound from this more general version at this point and
leave the correctness of it for Sec. 6.1.

Proposition 4.4. Suppose A solves Pm,h,α,βCWv (CW). Then, for any i ∈ [m] and any
Q ∈ Qhm(CW) with CW(Q) = i, we have

EQ

[
TA(i)

]
≥
∑

j∈[m]\{i}

ln 1
2.4(α∨β)

kl (qi,j , 1− qj,i)
≥

ln 1
2.4(α∨β)

4

∑
j ̸=i

1− q̄2i,j
q̄2i,j

.

In particular, A fulfills for each i ∈ [m] the estimate

supQ∈Qh
m
EQ[TA(i)] ≥ (m− 1)(1− h2)

4h2
ln

1

α ∨ β
.

Proof. Let γ := α ∨ β. According to Thm. 6.9 we have

EQ[TA(i)] ≥
∑

j∈[m]\{i}

ln 1
2.4γ

kl (qi,j , 1− qj,i)
,

and since Lem. 2.43 assures

kl (qi,j , 1− qi,j) = kl (1/2 + q̄i,j , 1/2− q̄i,j) ≤
4q̄2i,j

1/4− q̄2i,j
,

the statement follows.

4.2. Solutions for CW Testification

In this section, we systematically provide practically feasible algorithmic solutions to
Pm,h,α,βCWt , starting with the straightforward approach that performs identification and
verification of the CW separately one after the other. For the construction of our dueling
bandits algorithms, both the testing algorithms ACoin ∈ ACoin presented in Sec. 2 as well
as the insights achieved in Sec. 3 will play an important role. Recalling the definitions of nt
and wt from Ch. 1, we will conveniently write (nt)i,j := (nt)i|{i,j} and (wt)i,j := (wt)i|{i,j}
for the rest of Part II.

4.2.1. Naive Approaches

Next, we give a first naive attempt to interleave identification and testing in an algorithmic
solution whose obvious flaws together with graph-theoretical considerations from Sec. 3 will
help us to design a more sophisticated algorithmic solution. For the sake of convenience,
let us consider first the symmetric case α = β =: γ. To construct the first solution, suppose
A to be an algorithm with parameters m,h, γ, which is able to find the CW whenever4

4In particular, A is not required to have any guarantees for Q ∈ Qh
m(¬CW) here.
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Q ∈ Qhm(CW) with an error probability at most γ, i.e., A is a solution to Pm,h,γCWi (CW).
We define A-then-verify via Alg. 14. It executes A(m,h, γ/2), observes its output i
(the alleged CW) and afterwards verifies with error probability at most γ/2 whether i is
indeed the CW by querying each of the pairs {i, j}, j ̸= i, sufficiently often. Actually, the

verification phase (Lines 2–4) of Alg. 14 could be replaced by any solution to Pm,h,γ/2CWv ,
but for simplicity we restrict ourselves to the stated one.
At first sight, our framework may resemble the Explore-Verify Framework from

Karnin [2016], but in contrast to ours the latter can only be used to identify the CW
provided it exists and does not to solve the CW testification task. Prop. 4.5 assures that
A-then-verify indeed solves Pm,h,γCWt .

Algorithm 14 A-then-verify
Input: m,h, γ, a testing algorithm ACoin ∈ ACoin

Initialization: for any (i, j) ∈ (m)2 let Ai,jCoin be an instance of ACoin.

1: i← A(m,h, γ/2)
2: for j ∈ [m] \ {i} do
3: Via executing Ai,jCoin until its termination test whether H0 : qi,j > 1/2 or H1 :
qi,j < 1/2 with an error ≤ γ

2(m−1) .

4: if D(Ai,jCoin) = 1 for any j ∈ [m] \ {i} then return ¬CW
5: return i

Proposition 4.5. Let ACoin be a any solution to Ph,γ/(2m−2)
Coin . If A solves Pm,h,γ/2CW (CW),

then A-then-Verify (Alg. 14) started with m,h, γ and ACoin solves Pm,h,γ,γ/2CWt and in

particular Pm,h,γCWt .

Proof. Suppose A to be a fixed solution to Pm,h,γ/2CWi (CW) and write for convenience
A-then-Verify for the corresponding version of Alg. 14 with parameters m,h, γ and
ACoin. Due to a union bound, for any Q ∈ Qhm, the probability that the sign of any
qi,j − 1/2, j ̸= i, is estimated incorrectly in lines 2–4 of Alg. 14 is at most γ/2.
Suppose at first Q ∈ Qhm(CW). If A-then-Verify makes an error, then the output

of A in line 1 is incorrect or a mistake is made in lines 2–4. Since both of these happen
happen with error probability ≤ γ/2, the overall error of A-then-Verify is at most γ.
Now, suppose Q ∈ Qhm(¬CW). If an error occurs, the candidate i of A from Step 1 is
falsely verified to fulfill minj ̸=i qi,j > 1/2 in lines 2–4, hence

PQ(D(A-then-Verify) ∈ [m])

=
∑

i∈[m]
PQ

(
an error is made in steps 2–4

∣∣D(A) = i
)
PQ(D(A) = i)

≤ γ/2.

Recall that the problem of identifying the CW (i.e., Pm,h,γCWi (CW)) is also referred to
as the best-arm identification problem in the dueling bandits literature [Karnin, 2016,
Bengs et al., 2021]. As many solutions to this problem have stronger requirements than
the mere existence of the CW, they cannot be used without further adaptations as a

100



candidate for A in Prop. 4.5. For example, SEEBS from [Ren et al., 2020] formally
requires strong stochastic transitivity (SST) as well as the stochastic triangle inequality
(STI) to hold, which we introduced above in Sec. 1.2 and Sec. 2.5.1; thus, SEEBS is proven
to correctly identify the CW with error probability ≤ γ only for any Q in a proper subset
Qhm(SST ∧ STI) ⊊ Qhm(CW). As a consequence, the error probability of SEEBS-then-
verify could only be guaranteed to be ≤ γ whenever Q ∈ Qhm(SST∧STI)∪Qhm(¬CW) ⊊
Qhm. In other words, we cannot infer that SEEBS-then-verify solves Pm,h,γ,γCWt .
The algorithm SELECT from Mohajer et al. [2017] is a state-of-the-art solution to

the best-arm identification problem. Their authors suppose for its theoretical anal-
ysis weak stochastic transitivity (WST) to hold. Fortunately, it can be shown that
this assumption is not necessary and instead the mere existence of a CW suffices,
hence SELECT-then-verify is a solution to Pm,h,γCWt . SELECT conducts a knockout-
tournament between all m arms, in which two competing arms i, j are dueled for a fixed
number of times N and i wins this comparison if it wins at least N/2 of the duels. Choosing

N :=
(1 + ε) ln(2) log2(log2m)

2h2
with ε := − ln(γ/2)

ln(log2m)
,

it can be shown that SELECT is a solution to Pm,h,γ/2CWi (CW) with constant sample
complexity ⌈(m − 1)N⌉. With the help of Prop. 4.5 and Prop. 2.17 we can infer that

SELECT-then-verify solves Pm,h,γCWt with a worst-case expected sample complexity on
Qhm of order Õ(m

h2
ln 1

γ ), which is with regard to Thm. 4.2 (up to logarithmic terms)
asymptotically optimal.

Despite this (almost) satisfactory theoretical guarantee of the latter approach, it seems
unfavorable to separate identification and testing in the learning process, as an unnecessary
verification might be conducted at the end of the learning process. Quite naturally, the
question arises how testing and identification could be interleaved in a suitable way, which
formally boils down to construct an appropriate decision criterion.

As a gentle start for the development of our decision criterion, consider the following naive
criterion: For each pair (i, j) ∈ (m)2, sample repeatedly noisy pairwise comparisons of
the corresponding pairwise probability qi,j until being confident enough whether qi,j is
above or below 1/2 with confidence ≥ 1− γ′ for some γ′ ∈ (0, 1), based on the pairwise

probability estimates (q̂t)i,j :=
(wt)i,j
(nt)i,j

. Then, decide for ¬CW in case q̂t := ((q̂t)i,j)1≤i,j≤m

is in Qm(¬CW), and otherwise decide for i∗ = argmaxi∈[m]

∑
j ̸=i 1{(q̂t)i,j>1/2}, which

necessarily exists in this case. Let us denote the resulting algorithm by Anaive and let
γ′ = γ/

(
m
2

)
. Then, by virtue of independence of the individual stopping decisions in the

pairwise samplings and Bernoulli’s inequality,

PQ(D(Anaive) = ¬CW) = PQ(q̂t ∈ Qm(¬CW)) ≥ (1− γ′)(
m
2 ) ≥ 1− γ

holds for any Q ∈ Qhm(¬CW). Similarly, the first inequality in (4.1) holds, i.e., Anaive is a

solution to Pm,h,γCWt . Evidently, however, this algorithm has an expected sample complexity
that depends quadratically on the number of arms m. In addition, it is not clearly specified
what it means that Anaive is “confident enough” about the sign of qi,j − 1/2.

In order to overcome the obvious flaws of Anaive, we formulate the following questions,
the answers of which will lead us to a more sophisticated algorithm for the testification
problem:
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(i) How can we decide, as early as possible and with confidence ≥ 1− γ′, based on (q̂t)i,j ,
whether qi,j > 1/2 or qi,j < 1/2 holds?

(ii) Do we need to be sure about the sign of qi,j − 1/2 for all pairs (i, j) ∈ (m)2?
(iii) Is the choice γ′ = γ/

(
m
2

)
necessary, or is γ′ = γ/m′ with some m′ <

(
m
2

)
sufficient?

For answering the first question, the preparations made in Sec. 2 come into play: Instead
of deciding non-sequentially after a fixed number of time steps, we may apply a more
sophisticated, sequential testing algorithm ACoin ∈ ACoin.

For questions (ii) and (iii), it will be fruitful to exploit a connection of the testification
problem to graph-theoretical concepts of tournaments. In particular, we will see that
question (ii) can be answered negatively, while the answer to question (iii) is γ′ = γ/m in
the symmetric case and γ′ = α

m ∧
β

m−1 in the asymmetric case.

4.2.2. Noisy Tournament Sampling

We incorporate the graph-theoretical observations from Sec. 3 into a more sophisticated
testification algorithm, which we call the Noisy Tournament Sampling (NTS) and denote
by ANTS. The name stems from the resemblance of its underlying sampling idea to noisy
sorting algorithms [Braverman and Mossel, 2008], which will be described more thoroughly
in the following. The procedure is shown in Alg. 15, and therein, the updates of nt and

wt after having seen the sample X
[t]
i,j are formally given as (nt)i,j := (nt−1)i,j + 1{{i(t),j(t)}={i,j}},

(wt)i,j := (wt−1)i,j + 1{{i(t),j(t)}={i,j} and X
[t]
i,j=1}.

(4.8)

Recall from Sec. 1.1 that a sampling strategy in dueling bandits is a family of random
mappings, which, depending on the time t and the observations n0,w0, . . . ,nt−1,wt−1

available before time t, determines two arms it, jt to be dueled at time t ∈ N.
The algorithm ANTS maintains a graph Ĝt := ([m], Êt) and successively adds edges
(corresponding to pairs (i, j) ∈ ⟨m⟩2) to Ĝt, for which at time t the algorithm ANTS is
confident with level 1− γ′ that qi,j > 1

2 holds (lines 7–10). ANTS stops only in two cases:

One in which the graph Ĝt is in Gm(¬CW), i.e., none of its tournament extensions can
bring forth a CW (line 13), the other in which the graph Ĝt is in Gm(i∗) for some i∗ ∈ [m],
i.e., all tournament extensions are preference relations with i∗ as CW. According to which
event caused the termination, either the supposed CW (i.e., i∗) or ¬CW is returned
(lines 12–13). Formally, we have D(ANTS) = i∗ if Ĝt ∈ Gm(i∗) and D(ANTS) = ¬CW if
Ĝt ∈ Gm(¬CW). Regarding the definition of Gm(i∗) and Gm(¬CW) (as well as Prop. 3.4),
termination is only reasonable if Ĝt is in

⋃
i∗∈[m] Gm(i∗) ∪ Gm(¬CW).

4.2.3. The Passive Scenario

In this section we discuss the passive testification scenario, where the sampling strategy π
might not be specifically designed in order to ensure a quick termination of the testing
algorithm. In other words, π might be any sampling strategy as defined in Sec. 1.1. Recall
that Π∞ is the set of all sampling strategies π ∈ Π, which sample every pair {i, j} ∈ [m]2
a.s. infinitely often, and that the assumption π ∈ Π∞ is rather mild (cf. Lem. 2.8).
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Algorithm 15 ANTS : Noisy tournament sampling

Input: m, a sampling strategy π, a testing algorithm ACoin ∈ ACoin

Initialization: for any (i, j) ∈ (m)2 let Ai,jCoin be an instance of ACoin,

n0 ← w0 ← (0)1≤i,j≤m, Ê0 ← ∅,
1: for t ∈ N do
2: {i, j} ∼ π(t, (nt′ ,wt′)0≤t′≤t−1), w.l.o.g. i < j
3: Êt ← Êt−1

4: Observe X
[t]
i,j ∼ Ber(qi,j)

5: Update nt and wt according to (4.8)

6: Reveal X
[t]
i,j to A

i,j
Coin

7: if Ai,jCoin terminated with D(Ai,jCoin) = 0 then

8: Êt ← Êt ∪ {(i, j)}
9: if Ai,jCoin terminated with D(Ai,jCoin) = 1 then

10: Êt ← Êt ∪ {(j, i)}
11: Ĝt ← ([m], Êt)
12: if ∃i∗ ∈ [m] : Ĝt ∈ Gm(i∗) then return i∗

13: if Ĝt ∈ Gm(¬CW) then return ¬CW

Theorem 4.6. Let π ∈ Π∞, h ∈ [0, 1/2) and α, β ∈ (0, 1) be fixed, write γ′ = α
m ∧

β
m−1

and let ACoin ∈ ACoin be a solution to Ph,γ
′

Coin. Let A be Alg. 15, called with the parameters

π, m and ACoin. Then, A solves Pm,h,α,βCWt .

Prop. 3.9 and Prop. 3.10 indicate that the used correction term in the choice of γ′ in
Thm. 4.6 is optimal. Note here that, in contrast to Thm. 5.2 in [Haddenhorst et al.,

2021a], Thm. 4.6 also provides a solution to Pm,0,α,βCWt .

For the sake of readability, the proof of Thm. 4.6 is deferred to Sec. 4.3. By (passively)
monitoring the statistical validity of the CW assumption, the algorithmic framework
presented in Thm. 4.6 can be utilized in order to justify the usage of dueling bandits
algorithms focusing on alternative best arm concepts for the goal of regret minimization, if
the test component detects a violation of the CW assumption. Finally, it is worth noting
that A-then-verify cannot be used in a sensible way for this passive scenario due to
the strictly separated identification and testing phases.

4.2.4. The Active Scenario

The key question is how to construct a sampling strategy π such that ANTS terminates
as soon as possible. Apparently, one needs to construct the internal tournament Ĝt in
Alg. 15 such that it quickly becomes clear whether each extension admits a CW or not (cf.
lines 12 and 13). Thus, a natural approach would be to build this tournament according
to a deterministic sequential testing algorithm (DSTA) for testification of the CW in a
tournament, as those are commonly designed specifically for that purpose. However, as
the outcome of a duel in the underlying problem is in general not deterministic, one has
to conduct the duels several times until having enough confidence on the actual pairwise
probability.
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Based on these considerations, we define an epoch-based sampling strategy (implicitly
defined by lines 1, 9 and 13 in Alg. 16) using such a DSTA, say ADSTA, to determine which
pair shall be sampled repeatedly during an epoch. To be more precise, at the beginning
of each epoch, the Noisy Tournament Sampling strategy queries ADSTA to provide a pair
(i, j) for a duel. This duel is repeated until the sign of qi,j − 1/2 is determined with a
specific confidence (based on α, β and h) leading to both, the end of the current epoch,
and no consideration of the pair in any upcoming epoch (lines 3–14). If the sign is assumed
to be positive resp. negative, ADSTA is provided with the feedback i→ j resp. j → i, as if
no randomness was involved, leading ADSTA either to suggest the next pair to be queried
(lines 9 and 13) or to terminate. If ADSTA terminates before ANTS came to a decision,
we suppose ANTS to continue until its termination by choosing the duels uniformly at
random from ⟨m⟩2 (lines 18–20). As a result, we obtain Alg. 16, which is essentially a
modification of Alg. 15, where line 2 is replaced by the just described sampling mechanism
based on interaction with ADSTA. Its theoretic guarantees are provided in the theorem
below. As ACoin we use the SPRT that solves Ph,γCoin from Prop. 2.17 due to its optimality
guarantees shown in that lemma and denote it by ASPRT

Coin (h, γ) in the following.

Theorem 4.7. Let ADSTA be any DSTA for Gm and γ0 ∈ (0, 1/2) be fixed. Then, for any
α, β ∈ (0, γ0) and h ∈ (0, 1/2), the noisy sorting algorithm ANTS (Alg. 16) called with the
parameters ADSTA as its black-box DSTA and ASPRT

Coin (h, γ′) with γ′ = α
m ∧

β
m−1 as ACoin,

solves Pm,h,α,βCWt . Moreover, if ADSTA solves DmCWt, then

supQ∈Qh
m
EQ

[
TANTS

]
∈ O

(
TADSTA

h2
ln

1

γ′

)
as max{ 1h ,

1
γ′ } → ∞.

Proof of Thm. 4.7. Write A := ANTS for the algorithm as considered in the statement
of this theorem. Note that the choices of the queries in Alg. 16 can indeed be described
by an appropriate sampling strategy π, i.e., A is of the form as stipulated by Alg. 15
with α = β = γ. Lines 18–20 in Alg. 16 and the same argumentation as in the proof of
Thm. 4.6 assure that A – and hence also π – fulfills (nt)i,j → ∞ almost surely for every
(i, j) ∈ (m)2. Thus, according to Thm. 4.6, A terminates a.s. for any Q ∈ Qhm. Moreover,
Prop. 2.17 assures that each duel proposed by ADSTA is conducted in expectation at most
O( 1

h2
ln 1

γ′ ) times.
Now, suppose ADSTA to be a solution to DmCWt. If ADSTA terminates, then we have

according to Prop. 3.4 that Ĝt ∈ Gm(¬CW) ∪
⋃
i∈[m] Gm(i). Consequently, A terminates

before reaching Line 18; at termination it has queried only those edges, which have been
proposed by ADSTA, i.e., at most TADSTA many. From this, we can directly infer that
supQEQ∈Qh

m
[TA] ∈ O(TADSTA

h2
ln 1

γ′ ) as max{ 1h ,
1
γ′ } → ∞.

When replacing ASPRT
Coin (h, γ′) by the solution to Pγ

′

Coin from Prop. 2.22, which we denote

by AFarrell
Coin (γ′) from now on, we obtain a solution to Pm,0,α,βCWt with the following guarantees.

Theorem 4.8. Let ADSTA be any DSTA for Gm and γ0 ∈ (0, 1/2) be fixed. Then, for any
α, β ∈ (0, γ0), the noisy sorting algorithm A = ANTS (Alg. 16) called with the parameters

ADSTA as its black-box DSTA and AFarrell
Coin (γ′) with γ′ = α

m ∧
β

m−1 as ACoin, solves Pm,0,α,βCWt .

104



Moreover, if ADSTA solves DmCWt, then there exists h0 ∈ (0, 1/2) s.t. for all Q ∈ Q0
m with

0 < h̃ ≤ q̄i,j ≤ h0 for all distinct i, j ∈ [m]

EQ

[
TA] ≤ TADSTA

2h̃2
ln ln

1

h̃
.

Proof. Recall that Prop. 2.22 assures that ACoin = AFarrell
Coin (γ′) solves Pγ

′

Coin and thus A
solves Pm,0,α,βCW according to Thm. 4.6.

Now, suppose ADSTA to be a solution to DmCWt. Prop. 2.22 lets us choose h0 ∈ (0, 1/2)
such that

E1/2±h
[
TACoin

]
1
h2

ln ln 1
h

≤ 1

2

holds for any h ≤ h0. As each Ai,jCoin is an instance of ACoin, we have for any Q ∈ Q0
m

with h̃ ≤ q̄i,j ≤ h0 for all (i, j) ∈ (m)2 the estimate

Eqi,j
[
TAi,j

Coin

]
≤ 1

2q̄2i,j
ln ln

1

q̄i,j
≤ 1

2h̃2
ln ln

1

h̃
(4.9)

As in the proof of Thm. 4.7, a look at Alg. 16 shows that A queries at most TADSTA distinct
{i, j} ∈ [m]2, and it does not query {i, j} after Ai,jCoin has terminated. Hence, EQ

[
TA] ≤∑

(i,j)∈(m)2
Eqi,j

[
TAi,j

Coin

]
and combining this with (4.9) completes the proof.

Without much effort, we obtain the following instance-wise bound for the expected sample
complexity of Alg. 16 when ACoin is chosen as the SPRT from Prop. 2.17.

Theorem 4.9. Let m ∈ N, α, β ∈ (0, 1/2), h ∈ (0, 1/2) and γ′ = α
m ∧

β
m−1 . Suppose

ADSTA to be a solution to DmCWt and let A = ANTS be Alg. 16 called with ADSTA as its

black-box DSTA and ASPRT
Coin (h, γ′) as ACoin. Then, A solves Pm,h,α,βCWt . Let Q ∈ Qhm and

suppose (i1, j1), . . . , (i(m2 )
, j(m2 )

) ∈ (m)2 to be distinct and such that q̄i1,j1 ≤ · · · ≤ q̄i(m2 ),j(m2 )
holds. Then, we have with c(h, γ′) :=

⌈
ln((1−γ′)/γ′)

ln((1/2+h)/(1/2−h))

⌉
that

EQ

[
TA] ≤∑TADSTA

k=1

c(h, γ′)

2q̄ik,jk

∣∣∣∣1− 2
(
1 + (1/2 + q̄ik,jk)

c(h,γ′)(1/2− q̄ik,jk)
−c(h,γ′)

)−1
∣∣∣∣ .

Proof. Similarly as in the proof of Thm. 4.7 we see that A solves Pm,h,α,βCWt and also that
it only queries those edges, which have been proposed by ADSTA. According to the choice
of ACoin and the identity (A.6) stated in the proof of Prop. 2.17, any such edge (i′, j′)
proposed by ADSTA is queried in expectation at most

c(h, γ′)

2q̄i′,j′

∣∣∣∣1− 2
(
1 + (1/2 + q̄i′,j′)

c(h,γ′)(1/2− q̄i′,j′)−c(h,γ
′)
)−1

∣∣∣∣
times by A. This immediately concludes the proof.

We have seen in Sec. 3.5 a solution ADSTA to DmCWt, which achieves the optimal worst-
case sample complexity TADSTA = 2m− ⌊log2m⌋ − 2 (Alg. 10, Prop. 3.14). As a direct
consequence of Thm. 4.7, we thus obtain the following result.
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Algorithm 16 ANTS using ADSTA as sampling strategy

Input: m, ADSTA,a testing algorithm ACoin ∈ ACoin.
Initialization: For any (i, j) ∈ (m)2 let Ai,jCoin be an instance of ACoin.

Let Ê0 ← ∅, n0 ← (0)1≤i,j≤m, w0 ← (0)1≤i,j≤m, t
′ ← 1, t← 1

▷ Êt = set of edges (i, j), for which qi,j >
1
2 w.h.p.

▷ t = number of observations for π
▷ t′ = number of observations for ADSTA

1: (i, j)← (iADSTA(1), jADSTA(1)) ▷ Get first query of ADSTA

2: while ADSTA did not terminate yet do

3: Observe X
[t]
i,j ∼ Ber(qi,j)

4: Êt ← Êt−1

5: Reveal X
[t]
i,j to A

i,j
Coin

6: if Ai,jCoin terminated with D(Ai,jCoin) = 0 then ▷ i → j in G(Q) w.h.p.

7: Êt ← Êt ∪ {(i, j)}
8: Forward 1 to ADSTA and set t′ ← t′ + 1 ▷ ADSTA observes
iADSTA(t′) → jADSTA(t′)

9: Let (i, j)← (iADSTA(t′), jADSTA(t′)) ▷ Choose next query from ADSTA

10: else if Ai,jCoin terminated with D(Ai,jCoin) = 1 then ▷ j → i in G(Q) w.h.p.

11: Êt ← Êt ∪ {(j, i)}
12: Forward 0 to ADSTA and set t′ ← t′ + 1 ▷ ADSTA observes

jADSTA(t′) → iADSTA(t′)
13: Let (i, j)← (iADSTA(t′), jADSTA(t′)) ▷ Choose next query from ADSTA

14: t← t+ 1
15: if ∃i∗ ∈ [m] : Ĝt ∈ Gm(i∗) then
16: return i∗

17: if Ĝt ∈ Gm(¬CW) then return ¬CW
18: while True do ▷ No interaction with ADSTA anymore
19: Sample a pair (i, j) uniformly at random from ⟨m⟩2.
20: Do Steps 3–7, 10, 11 and 14–17

Corollary 4.10. Let γ0 ∈ (0, 1/2) be fixed, α, β ∈ (0, γ0) and h ∈ (0, 1/2). The algorithm
ANTS called with ADSTA as defined in Alg. 10 as its black-box DSTA as well as ACoin =
ASPRT

Coin (h, γ′) with γ′ = α
m ∧

β
m−1 as in Thm. 4.9, solves Pm,h,α,βCWt such that

supQ∈Qh
m
EQ

[
TANTS

]
∈ O

(
m lnm

h2
ln

1

γ′

)
.

According to Thm. 4.2, the algorithm ANTS from Cor. 4.10 is optimal w.r.t. the worst-case
expected sample complexity up to a factor of lnm for the problem Pm,h,γCWt .
In contrast to (4.6), Thm. 4.2 and Cor. 4.10 specifically yield asymptotic lower and

upper bounds on the sample complexity for solving Pm,h,γCWt if γ is fixed. The next lemma

compares the algorithmic solution ANTS to Pm,h,γCWt from Cor. 4.10 with the two-stage
approach A-then-verify from Sec. 4.2.1. More precisely, we show that the solution
from Cor. 4.10 theoretically outperforms SELECT-then-verify when the corresponding
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testing algorithm ACoin is chosen to be the SPRT from Prop. 2.17. Again, we decided
for this choice of ACoin as it is known to be a solution to Ph,γCoin that is optimal w.r.t. its
worst-case expected sample complexity. Of course, there are other candidates for A in
A-then-verify, e.g., as already indicated in Sec. 4.2.1, an appropriate solution A to
Pm,h,γCWv may be inferred from [Karnin, 2016]. For the sake of convenience and simplicity,
we have restricted ourselves to SELECT at this point, because the algorithm itself and
its theoretical guarantees fit into our setting – e.g., it is implicitly assumed that Q ∈ Qhm –
and thus makes the discussed optimality (up to logarithmic terms) of SELECT-then-
verify rather easy to see. Even though a theoretical comparison of our solution to
SELECT-then-verify on arbitrary instances appears infeasible, we are able to show
the following result.

Lemma 4.11. Let m ∈ N and γ ∈ (0, 1/2) be arbitrary. For sufficiently small h > 0 and
sufficiently large h̃ ∈ (h, 1/2) we have: Whenever ANTS from Cor. 4.10 and A′ :=SELECT-
then-Verify are started with parameters m,h, γ and the SPRT from Prop. 2.17 as ACoin,
then

EQ

[
TANTS

]
≤

EQ

[
TA′]
2

holds for any Q ∈ Qh̃m ⊊ Qhm.

Proof. At first, let us recall the corresponding lower and upper bounds for ANTS and A′,
which we will use. For any m ∈ N, γ ∈ (0, 1), h ∈ (0, 1/2), h̃ ∈ (h, 1/2) and Q ∈ Qm \Qh̃m
the instance-wise upper bound from Thm. 4.9 (with ADSTA chosen as in Cor. 4.10) yields

EQ

[
TANTS

]
≤ c(h, γ′)(2m− ⌊log2m⌋ − 2)

2h̃

∣∣∣∣1− 2
(
1 +

(
(1/2+h̃)/(1/2−h̃)

)c(h,γ′))−1
∣∣∣∣ =: g(h̃)

for any Q ∈ Qh̃m, where γ′ := γ/m and

c(h, γ′) :=

⌈
ln((1− γ′)/γ′)

ln(1/2 + h)/(1/2− h))

⌉
.

Moreover, the “SELECT-part” of SELECT-then-verify (started with m, γ, h) requires
for any Q ∈ Qm exactly

(m− 1)(1 + ϵ(m, γ)) ln(2) log2(log2m)

2h2
with ϵ(m, γ) := − ln(γ/2)

ln(log2m)

samples. Note that this is trivially a lower bound for EQ[TA′
].

Now, let m ∈ N and γ ∈ (0, 1/2) be fixed. Define γ′ := γ/m and choose h ∈ (0, 1/2)
with

h <
(m− 1)(1 + ϵ(m, γ)) ln(2) log2(log2m)

2 ln((1− γ′)/γ′)(2m− ⌊log2m⌋ − 2)
.

Then, c(h, γ′) is fixed. As ln((1/2+ ĥ)/(1/2− ĥ)) > 4ĥ holds for any ĥ ∈ (0, 1/2), we have

c(h, γ′) < ln((1−γ′)/γ′)
4h . Regarding that 1

2ĥ
→ 1 and

(
1/2+ĥ

1/2−ĥ

)c(h,γ′)
→ ∞ as ĥ → 1/2, we

obtain

g(ĥ) −→ c(h, γ′)(2m− ⌊log2(m)⌋ − 2) ≤ ln((1− γ′)/γ′)(2m− ⌈log2m⌉ − 2)

4h
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Consequently, we have for sufficiently large h̃ ∈ (h, 1/2) and any Q ∈ Qh̃m

EQ

[
TANTS

]
≤ g(h̃) ≤ ln((1− γ′)/γ′)(2m− ⌈log2m⌉ − 2)

2h

≤ (m− 1)(1 + ϵ(m, γ)) ln(2) log2(log2m)

4h2
≤

EQ

[
TA′

]
2

,

where the third inequality holds due to the choice of h.

4.3. Proof of Theorem 4.6

We continue with the proof of Thm. 4.6, which states that Alg. 15 indeed solves Pm,h,α,βCWt ,
provided π is a sampling strategy in Π∞. Note that the correction terms 1

m and 1
m−1

associated for the type I/II error probabilities α/β are chosen in an optimal way with
regard to a Bonferroni correction due to Prop. 3.9 and Prop. 3.10, respectively. For
convenience, if ACoin ∈ ACoin, we may write in the following

D(ACoin, t) :=

{
“N/A”, if t < TACoin , i.e. ACoin has not terminated yet,

D(ACoin), if t ≥ TACoin
(4.10)

for the outcome of ACoin after having observed t samples.

Proof of Thm. 4.6. For convenience we abbreviate T := TA and write (i(t), j(t)) for the
query sampled from π at time t. With regard to the definition of A, the testing algorithm

Ai,jCoin observes the sample X
[t]
i,j ∼ Ber(qi,j) iff (i(t), j(t)) = (i, j), and after time t it has

observed exactly (nt)i,j of these samples. Let Q ∈ Qhm be fixed for the moment. Recall

that γ′ = α
m ∧

β
m−1 . We split the remaining proof into four parts.

Part 1: Almost sure finiteness of T
Let A′ be that modification of A, which simulates A until it terminates, memorizes D(A)
but then continues until all Ai,jCoin’s are terminated and afterwards terminates with the
decision D(A). Since a.s. termination of A′ would directly imply a.s. termination of A,
we may suppose w.l.o.g. A to be replaced by A′ throughout our proof of Part 1. By the
assumption π ∈ Π∞, we have (nt)i,j → ∞ almost surely as t → ∞ for each (i, j) ∈ (m)2.

For any (i, j) ∈ (m)2, Ai,jCoin solves by assumption Ph,γ
′

Coin and hence the stopping time

Ti,j = min
{
t ∈ N : D

(
Ai,jCoin, (nt)i,j

)
̸= “N/A”

}
is a.s. finite. In particular,

T ′ := max(i,j)∈(m)2 Ti,j

is a.s. finite, since each Ti,j is a.s. finite by assumption. Regarding the definitions of A
and T ′ we see that ĜT ′ is almost surely an element of Gm =

⋃
i∗∈[m] Gm(i∗) ∪ Gm(¬CW),

i.e., ĜT ′ is with probability 1 either in Gm(¬CW) ⊊ Gm(¬CW) or in Gm(i∗) ⊊ Gm(i∗) for
some i∗ ∈ [m]. Consequently, we obtain

T = min
{
t ∈ N : Ĝt ∈ Gm(¬CW) or Ĝt ∈ Gm(i∗) for some i∗ ∈ [m]

}
≤ T ′ <∞ a.s.,
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which completes the proof of Part 1. ■

Before showing the guarantees on the type I and II errors we fix some further notation:
For Q ∈ Qm, E ⊆ [m] × [m] and {i, j} ∈ [m]2 we say that {i, j} is assigned incorrectly
(ass. inc.) in E w.r.t. Q if

(i, j) ∈ E and qi,j < 1/2 or (j, i) ∈ E and qi,j > 1/2

holds, where we may omit the term “w.r.t. Q” in case Q is clear from the context.

Part 2: Showing PQ({i, j} is ass. inc. in ÊT ) ≤ γ′ in case |qi,j − 1/2| > h

A look at lines 8 and 10 of Alg. 15 reveals Êt−1 ⊆ Êt for all t ≤ T and moreover

(i, j) ∈ ÊT ⇔ Ti,j ≤ T and D
(
Ai,jCoin

)
= D

(
Ai,jCoin, T

)
= 0.

As Ai,jCoin solves Ph,γ
′

Coin, we infer in case qi,j < 1/2− h that

PQ

(
{i, j} is assigned incorrectly in ÊT

)
= PQ((i, j) ∈ ÊT )

≤ PQ

(
D
(
Ai,jCoin

)
= 0
)
≤ γ′,

and in case qj,i > 1/2 + h we similarly obtain

PQ({i, j} is assigned incorrectly in ÊT ) = PQ((j, i) ∈ ÊT ) ≤ γ′.

This shows the assertion of Part 2. ■

Part 3: Bounding the type I error

In the following let l∆i∗ for i∗ ∈ [m] and l♢ be defined as in Lem. 3.12. Suppose i∗ ∈ [m]
and Q ∈ Qhm(i∗). Part (c) of Lem. 3.12 yields the identity

PQ(D(A) ̸= i∗) = PQ(D(A) = ¬CW or D(A) = j for some j ∈ [m] \ {i∗})
= PQ(ĜT ∈ Gm(∆i∗)) = PQ(l∆i∗(ĜT ) ∈ Gm(∆i∗)). (4.11)

For the sake of convenience, we write G for the set {{i, j} | (i, j) ∈ EG or (j, i) ∈ EG} for
G ∈ Gm. By Part 2 we have

PQ

(
{i, j} is ass. inc. in El∆i∗ (ĜT )

∣∣∣ l∆i∗(ĜT ) = G
)
≤

{
0, if {i, j} ̸∈ G,
γ′, if {i, j} ∈ G,

for any G ∈ Gm with PQ

(
l∆i∗(ĜT ) = G

)
> 0. If no {i, j} ∈ l∆i∗(ĜT ) was assigned

incorrectly in El∆i∗ (ĜT ), then l∆i∗(ĜT ) ∈ Gm(∆i∗) (i.e., in particular i∗ ̸= CW(l∆i∗(ĜT )))

would imply CW(Q) ̸= i∗. Consequently, Q ∈ Qhm(i∗) lets us infer that l∆i∗(ĜT ) ∈
Gm(∆i∗) is only possible if there exists some {i, j} ∈ l∆i∗(ĜT ), which is assigned incorrectly
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in El∆i∗ (ĜT ). Regarding that |G| = |EG|, we thus get

PQ

(
l∆i∗(ĜT ) ∈ Gm(∆i∗) and l∆i∗(ĜT ) = G

)
≤ PQ

(
∃{i, j} ∈ G, which is ass. inc. in El∆i∗ (ĜT ) and l∆i∗(ĜT ) = G

)
≤
∑

{i,j}∈G
PQ

(
{i, j} is ass. inc. in El∆i∗ (ĜT ) and l∆i∗(ĜT ) = G

)
≤ γ′|EG|PQ

(
l∆i∗(ĜT ) = G

)
for every G ∈ Gm. Together with (4.11) and PQ

(∣∣∣El∆i∗ (ĜT )

∣∣∣ ≤ m) = 1, which holds

according to (b) of Lem. 3.12, we infer

PQ(D(A) ̸= i∗) = PQ

(
l∆i∗(ĜT ) ∈ Gm(∆i∗)

)
=
∑

G:G∈Gm

PQ

(
l∆i∗(ĜT ) ∈ Gm(∆i∗) and l∆i∗(ĜT ) = G

)
≤
∑

G:G∈Gm

PQ

(
∃{i, j} ∈ G, which is ass. inc. in El∆i∗ (ĜT ) and l∆i∗(ĜT ) = G

)
≤ γ′

∑
G:G∈Gm

|G|PQ

(
l∆i∗(ĜT ) = G

)
≤ γ′m ≤ α,

where we have used that
∑

G:G∈Gm
PQ

(
l∆i∗(ĜT ) = G

)
= 1 holds trivially. ■

Part 4: Bounding the type II error
Now, we consider the case Q ∈ Qhm(¬CW). Similarly as above in Part 3, Lem. 3.12 yields

PQ(D(A) ̸= ¬CW) = PQ(D(A) ∈ [m]) = PQ(ĜT ∈ Gm(♢)). (4.12)

Next, using l♢ as defined in Lem. 3.12, an analogue argumentation as above shows that

l♢(ĜT ) ∈ Gm(♢) is only possible if there exists some {i, j} ∈ l♢(ĜT ), which is assigned
incorrectly in El♢(ĜT ). From this and Part 2 we can infer that

PQ

(
l♢(ĜT ) ∈ Gm(♢) and l♢(ĜT ) = G

)
≤ γ′|EG|PQ

(
l∆i∗(ĜT ) = G

)
(4.13)

holds for every G ∈ Gm. According to Lem. 3.12(b) we have PQ

(∣∣∣El♢(ĜT )

∣∣∣ ≤ m− 1
)
= 1,

hence combining (4.12) with (4.13) yields

PQ(D(A) ̸= ¬CW) ≤ γ′
∑

G:G∈Gm

|G|PQ

(
l∆i∗(ĜT ) = G

)
≤ γ′(m− 1) ≤ β.

This completes the proof of Part 4 and also the proof of the theorem.
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4.4. Solutions to Other CW-Related Problems

In this section we discuss solutions to Pm,h,α,βCWc and Pm,h,α,βCWv . Suppose h ∈ [0, 1/2),
γ0 ∈ (0, 1) and α, β ∈ (0, γ0) to be fixed. Denote by ANTS the corresponding algorithm
from Cor. 4.10 called with parameters h, α and β. Now, let Â1 be the algorithm, which
simulates ANTS, terminates as soon as ANTS terminates, and outputs

D(Â1) =

{
¬CW, if D(ANTS) = ¬CW,

CW, if D(ANTS) = i for some i ∈ [m].

Similarly, define Â2 to be the algorithm, which, given any i ∈ [m], simulates ANTS,
terminates as soon as ANTS terminates and then returns

D(Â2[i]) =

{
i, if D(ANTS) = i,

¬i, otherwise.

Since ANTS solves Pm,h,α,βCWt , it follows that Â1 resp. Â2 solves Pm,h,α,βCWc resp. Pm,h,α,βCWv .

Moreover, both Â1 and Â2 have exactly the same runtime as ANTS. Consequently, we
have with regard to Cor. 4.10 in case h > 0 with γ′ = α

m ∧
β

m−1

supQ∈Qh
m
EQ

[
T Â1

]
∈ O

(
m lnm

h2
ln

1

γ′

)
and also

supQ∈Qh
m
maxi∈[m] EQ

[
T Â2[i]

]
∈ O

(
m lnm

h2
ln

1

γ′

)
as max{m, 1h ,

1
γ′ } → ∞, respectively. We conclude this section with an enhanced solution

to Pm,h,α,βCWv .

Algorithm 17 ANTS
CWv : Noisy tournament sampling for Pm,h,α,βCWv

Input: α, β, h, π, i∗, a testing algorithm ACoin ∈ ACoin

Initialization: n0,w0 ← (0)1≤i,j≤m, Ê0 ← ∅, γ′ ← min{α, β
m−1}

1: for t ∈ N do
2: Do steps 2–11 of Alg. 15
3: if Ĝt ∈ Gm(i∗) then return i∗

4: if Ĝt ∈ Gm(¬i∗) then return ¬i∗

Theorem 4.12. Let π ∈ Π∞, h ∈ [0, 1/2) and α, β ∈ (0, 1) be fixed. Then, ANTS
CWv

(Alg. 17) called with parameters h, α, β, and π as the sampling strategy, solves Pm,h,α,βCWv .

Proof. Let us abbreviate A := ANTS
CWv, write T := TA and suppose A is given a fixed

i∗ ∈ [m] as input. For the sake of convenience we simply write A for A(i∗) in the following.
Let Q ∈ Qhm be arbitrary but fixed. Due to Gm(i∗) ∪ Gm(¬i∗), we infer similarly as in the
proof of Thm. 4.6 that A terminates almost surely. Moreover, using the notation from
the proof of Thm. 4.6 we obtain also

PQ

(
{i, j} is assigned incorrectly in ÊT

)
≤ γ′
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for every {i, j} ∈ [m]2 with |qi,j − 1/2| > h.

To bound the type I error, suppose that Q ∈ Qhm(i∗). Then, Lem. 3.12 ensures

PQ(D(A) ̸= i∗) = PQ(D(A) = ¬i∗) = PQ(l¬i∗(ĜT ) ∈ Gm(¬i∗)). (4.14)

The same argumentation as in the proof of Thm. 4.6 yields

PQ

(
l¬i∗(ĜT ) ∈ Gm(¬i∗) and l¬i∗(ĜT ) = G

)
≤ γ′|EG|PQ

(
l¬i∗(ĜT ) = G

)
for every G ∈ Gm. Combining this with (4.14), using

∑
G:G∈Gm

PQ

(
l¬i∗(ĜT ) = G

)
≤ 1

and the fact that |El¬i∗ (ĜT )| = 1 holds a.s. (see (b) of Lem. 3.12) shows that

PQ(D(A) ̸= i∗) =
∑

G:G∈Gm

PQ

(
l¬i∗(ĜT ) ∈ Gm(¬i∗) and l¬i∗(ĜT ) = G

)
≤ γ′.

For showing the guarantee on the type II error, let Q ∈ Qhm \ Qhm(i∗) be fixed. Again, a
similar argumentation as in the proof of Thm. 4.6 yields

PQ(D(A) ̸= ¬i∗) = PQ(D(A) = i∗) = PQ(ĜT ∈ Gm(i∗)) = PQ(li∗(ĜT ) ∈ Gm(i∗))

≤ γ′
∑

G:G∈Gm

|G|PQ(li∗(ĜT ) = G) ≤ (m− 1)γ′ ≤ β,

where we have used that |Eli∗ (ĜT )| ≤ m− 1 holds a.s. according to (b) of Lem. 3.12.

Similar to Thm. 4.9, one may obtain an instance-wise expected sample complexity bound
of Alg. 17, when initialized with the SPRT from Prop. 2.17 as ACoin. The more restrictive
problem Pm,h,γCWv (CW) has also been considered by Urvoy et al. [2013] and Karnin [2016]
for constructing an algorithmic solution to identify the CW. Note that an upper bound
for Pm,h,α,βCWv (CW) is a direct consequence of the upper bound for Pm,h,α,βCWv .

4.5. A Reduction to Pure Exploration Multi-Armed Bandits

Degenne and Koolen [2019] have proposed the Sticky Track-and-Stop algorithm for
the setting of pure exploration bandits with multiple correct answers, which also covers
our problems of interest. In this section we explicitly state Sticky Track-and-Stop
for Pm,h,α,βCWc and Pm,h,α,βCWt and state and discuss its guarantees in these scenarios. For the
sake of simplicity, we restrict ourselves to the symmetric case α = β =: γ. Moreover, we
omit the problems Pm,h,γCWv , Pm,h,γCWv (CW) and Pm,h,γCWi (CW) here, because minor changes of

the version for Pm,h,γCWt would result in corresponding solutions with similar guarantees.

For the sake of convenience, we start with the easier problem Pm,h,γCWc . Let us define

∆(m)2 :=

{
(vi,j)1≤i<j≤m ∈ R(

m
2 ) :

∑
(i,j)∈(m)2

vi,j = 1 and vi,j ≥ 0 for all (i, j) ∈ (m)2

}
and for any ε > 0 also

∆ε
(m)2

:=
{
(vi,j)1≤i<j≤m ∈ ∆(m)2 : vi,j ≥ ε for all (i, j) ∈ (m)2

}
.
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Recall kl (p, q) = p ln p
q + (1− p) ln 1−p

1−q from Sec. 2.5 and define for v = (vi,j)1≤i<j≤m ∈
∆(m)2 and Q,Q′ ∈ Qm the value

D(v,Q,Q′) :=
∑

(i,j)∈(m)2
vi,jkl

(
qi,j , q

′
i,j

)
,

and for Q′
m ⊆ Qm let further

D(v,Q,Q′
m) := infQ′∈Q′

m
D(v,Q,Q′).

4.5.1. Sticky Track-and-Stop for CW Checking

In the setting of Pm,h,γCWc , the Sticky Track-and-Stop algorithm from Degenne and
Koolen [2019] can be stated as Alg. 18. Note that Steps 2 and 11 of Alg. 18 are already
computationally expensive, but the calculation of D(v,Q,Qhm(¬X)) in step 5 is even more
involved, especially in the case X = ¬CW, because Qhm(CW) is non-convex5. Hence, the
algorithm appears to be infeasible for practical applications to us.

For fixed m ∈ N and h ∈ [0, 1/2), we define for any Q ∈ Qm the value

Algorithm 18 : Sticky Track-and-Stop for CW checking

Input: γ ∈ (0, 1), h ∈ [0, 1/2), a sequence (εt)t∈N, functions t 7→ f(t) and (t, γ) 7→ β(t, γ)
Initialization: t← 1, Q̂0 ← (0)1≤i<j≤m, n0 ← (0)1≤i,j≤m.

1: while True do
2: Let Ct ← {Q′ ∈ Qhm : D(nt−1/(t− 1), Q̂t−1,Q

′) ≤ ln(f(t− 1))}
3: Compute It = {X ∈ {CW,¬CW} | ∃Q′ ∈ Qhm(X) ∩ Ct}
4: Choose an element X from It, prefer CW over ¬CW
5: Compute that weight vt ∈ ∆(m)2 , which maximizes D(vt, Q̂t−1,Qhm(¬X))
6: Compute the projection vεtt of vt onto ∆εt

(m)2

7: Pull (i, j) = argmin(i′,j′)∈(m)2(nt)i′,j′ −
∑t

s=1(v
εs
s )i′,j′ , observe Xi,j ∼ Ber(qi,j)

8: Update wt via (wt)k,l ← (wt−1)k,l + 1{{k,l}={i,j} and Xk,l=1} ∀1 ≤ k, l ≤ m
9: Update nt via (nt)k,l ← (nt−1)k,l + 1{{k,l}={i,j}} ∀1 ≤ k, l ≤ m

10: Update Q̂t ← wt
nt

.

11: Let Dt ← {Q′ ∈ Qhm : D(nt/t, Q̂t,Q
′) ≤ β(t, γ)}

12: if ∃X ∈ {CW,¬CW} with Dt ∩Qhm(¬X) = ∅ then
13: return X
14: Update t← t+ 1

Dm,h
CWc(Q) :=

{
supv∈∆(m)2

D(v,Q,Qhm(¬CW)), if Q ∈ Qm(CW),

supv∈∆(m)2
D(v,Q,Qhm(CW)), if Q ∈ Qm(¬CW).

This characteristic plays a crucial role in the theoretical results proven by Degenne and
Koolen [2019], which we will state and comment on below in Prop. 4.16. As a first step,

we prove upper and lower bounds for Dm,h
CWc(Q). For this purpose, we will make use of

the following lemma. It is taken from [Bubeck and Cesa-Bianchi, 2012] and is a mere
consequence of Pinsker’s theorem as well as the inequality lnx ≤ x− 1, which holds for
all x > 0.
5It is the union of disjoint convex sets.
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Lemma 4.13. For p, q ∈ [0, 1] we have

2(p− q)2 ≤ kl (p, q) ≤ (p− q)2

q(1− q)
.

Moreover, we will make use of the following result, which follows immediately by the
definition of the CW.

Lemma 4.14. Suppose Q ∈ Qm(CW) with i = CW(Q), j ∈ [m] \ {i} and let Q′ =
(q′i,j)1≤i,j≤m be defined via q′i,j = 1 − qi,j and q′i′,j′ = qi′,j′ for every (i′, j′) ∈ ⟨m⟩2 \
{(i, j), (j, i)}. Then, either j = CW(Q′) or Q′ ∈ Qm(¬CW).

We obtain the following lower and upper bounds for Dm,h
CWc(Q). In it, we restrict ourselves

to the interesting case m ≥ 3. Note that the factor m− 2 in (i) in the following lemma

is in accordance with the factor m− 2 in our lower bound for solutions to Pm,h,γCWc from
Thm. 4.1.

Lemma 4.15. Let h ∈ [0, 1/2) and m ≥ 3 be fixed.

(i) For any Q ∈ Qhm(CW) we have

Dm,h
CWc(Q) ≤ dh(Q)

m− 2

with dh(Q) := max(i,j)∈(m)2 max{kl (qi,j , 1/2 + h), kl (qi,j , 1/2− h)}.

(ii) For any h̃ ∈ [h, 1/2) \ {0} and any Q ∈ Qh̃m we have

Dm,h
CWc(Q) ≥

kl
(
1/2 + h, 1/2− h̃

)
m− 1

≥ 2(h+ h̃)2

m− 1
. (4.15)

Proof. (i) LetQ ∈ Qhm(CW) be fixed, and suppose v ∈ ∆(m)2 to be fixed for the moment.
Let i := CW(Q). By assumption on v there exists6 some distinct j′, j′′ ∈ [m] \ {i}
with max{vi,j′ , vi,j′′} ≤ 1

m−2 . According to Lem. 4.14 we can choose j ∈ {j′, j′′}
such that qj,k < 1/2 for at least one k ∈ [m] \ {i}. Thus, for arbitrarily small
δ ∈ (0, 1/2− h), Q′ ∈ Qhm defined via

q′r,s :=


1/2− (h+ δ), if (r, s) = (i, j),

1/2 + h+ δ, if (r, s) = (j, i),

qr,s, otherwise,

for each (r, s) ∈ (m)2, fulfills Q
′ ∈ Qhm(¬CW). As qi,j > 1/2+h holds by assumption

on Q and i, the definition of Q′ assures∑
(r,s)∈(m)2

vr,skl
(
qr,s, q

′
r,s

)
≤ vi,jkl

(
qi,j , q

′
i,j

)
≤ kl (qi,j , 1/2− (h+ δ))

m− 2
.

6Indeed, as
∑

j′ ̸=i vi,j′ ≤ 1 one can choose j′ ̸= i with vi,j′ ≤ 1
m−1

. Now,
∑

j′′ ̸∈{i,j′} vi,j′′ ≤ 1 allows us

to choose j′′ ∈ [m] \ {i, j′} with vi,j′′ ≤ 1
m−2

. Then, max{vi,j′ , vi,j′′} ≤ 1
m−2

holds.
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Regarding Q′ ∈ Qhm(¬CW) and that this estimate is obtained for any v ∈ ∆(m)2 ,
we can conclude that

Dm,h
CWc(Q) = supv∈∆(m)2

infQ′∈Qh
m(¬CW)

∑
(r,s)∈(m)2

vr,skl
(
qr,s, q

′
r,s

)
≤ kl (qi,j , 1/2− (h+ δ))

m− 2
.

Taking the limit δ ↘ 0 yields

Dm,h
CWc(Q) ≤ kl (qi,j , 1/2− h)

m− 2
≤ dh(Q)

m− 2
.

(ii) Let h̃ ∈ [h, 1/2) \ {0} and Q ∈ Qh̃m be fixed. We distinguish two cases.

Case 1: Q ∈ Qh̃m(CW). Let i := CW(Q) and define v = (vr,s)(r,s)∈(m)2 ∈ ∆(m)2

via vr,s = 1{i∈{r,s}}(m− 1)−1 for each (r, s) ∈ (m)2. For any Q′ ∈ Qhm(¬CW) there
exists some j ∈ [m] \ {i} with q′i,j < 1/2− h, as otherwise CW(Q′) = i would hold.

But by assumption on i, qi,j > 1/2 + h̃ holds, hence we can estimate with Lem. 4.13
that ∑

(r,s)∈(m)2
vr,skl

(
qr,s, q

′
r,s

)
≥ vi,jkl

(
qi,j , q

′
i,j

)
≥

kl
(
1/2 + h̃, 1/2− h

)
m− 1

≥ 2(h+ h̃)2

m− 1
.

As this holds for arbitrary Q′, (4.15) follows.

Case 2: Q ∈ Qh̃m(¬CW). For every i ∈ [m], CW(Q) ̸= i implies the existence of
some j(i) ∈ [m] \ {i} with qi,j(i) < 1/2− h̃. Now, choose v = (vr,s)(r,s)∈(m)2 ∈ ∆(m)2

such that

vr,s =

{
1
m , if (r, s) ∈ {(i, j(i)), (j(i), i)} for some i ∈ [m],

0, otherwise,

for any (r, s) ∈ (m)2. Let Q
′ ∈ Qhm(CW) be arbitrary and write i′ = CW(Q′). Then,

q′i′,j(i′) > 1/2 + h but at the same time qi′,j(i′) < 1/2− h̃ holds. Therefore, assuming

for convenience w.l.o.g.7 i′ < j(i′), we obtain again with the help of Lem. 4.13 the
estimate∑

(r,s)∈(m)2
vr,skl

(
qr,s, q

′
r,s

)
≥ vi′,j(i′)kl

(
qi′,j(i′), q

′
i′,j(i′)

)
≥

kl
(
1/2 + h, 1/2− h̃

)
m

≥ 2(h+ h̃)2

m
.

As Q′ was arbitrary, we obtain (4.15).

Equipped with these results, we show the following:

7In case i′ > j(i′) estimate the following sum by vj(i′),i′kl
(
qj(i′),i′ , q

′
j(i′),i′

)
and argue analogously.
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Proposition 4.16. (i) Let h ∈ [0, 1/2) and m ∈ N≥3 be fixed. If A(γ) solves Pm,h,γCWc

for any γ > 0, then

lim inf
γ→ 0

EQ[TA(γ)]

ln 1
γ

≥ 1

Dm,h
CWc(Q)

for any Q ∈ Qhm, and consequently in case h > 0

supQ∈Qh
m(CW) lim inf

γ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≥ (m− 2)(1/4− h2)
4h2

,

and in case h = 0 for every h̃ > 0

sup
Q∈Qh̃

m(CW)
lim inf
γ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≥ m− 2

4h̃2
.

(ii) Let m ∈ N and C > 0 s.t. C ≥ e
∑∞

t=1 t
−2
(
e/(m2 )

)(m2 ) (ln2(Ct2) ln(t))(m2 ), suppose
h ∈ [0, 1/2) and

εt :=
1

2

((
m

2

)2

+ t

)− 1
2

, f(t) := Ct10 and β(t, γ) := ln
Ct2

γ
.

Write A(γ) for Alg. 18 called with parameters γ, h, (εt)t, f and β. Then, A(γ) solves

Pm,h,γCWc and fulfills

lim
γ→ 0

EQ[TA(γ)]

ln 1
γ

=
1

Dm,h
CWc(Q)

for any Q ∈ Qhm. In particular, we have in case h > 0

supQ∈Qh
m

lim
γ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≤ m

8h2

and in case h = 0 for any h̃ > 0

sup
Q∈Qh̃

m
lim
γ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≤ m

2h̃2
.

Proof. (i) The first statement corresponds to Thm. 1 in [Degenne and Koolen, 2019].
Next, suppose h > 0 and let Q = Q(δ) ∈ Qhm(CW) be such that qi,j ∈ {1/2±(h+δ)}
for all (i, j) ∈ (m)2 and some arbitrarily small δ > 0. It holds that

dh(Q) = max(i,j)∈(m)2 max{kl (qi,j , 1/2 + h), kl (qi,j , 1/2− h)}

= kl (1/2 + (h+ δ), 1/2− h) ≤ 4(h+ δ/2)2

1/4− h2
,

where we have used Lem. 4.13 in the last step. Thus, the second statement follows
from part (i) of Lem. 4.15 by taking the limit δ ↘ 0.
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Now, consider the case h = 0. Let h̃ ∈ (0, 1/2) and Q ∈ Qh̃m with entries qi,j ∈
{1/2± (h̃+ δ)} for all (i, j) ∈ (m)2 and some δ ∈ (0, 1/2− h). As

d0(Q) = max(i,j)∈(m)2 kl (qi,j , 1/2) = kl
(
1/2 + (h̃+ δ), 1/2

)
≤ 4(h̃+ δ)2

is assured by Lem. 4.13, the statement thus follows again from part (i) of Lem. 4.15
via taking the limit δ ↘ 0.

(ii) Thm. 11 in [Degenne and Koolen, 2019] implies the first statement. For the choice
of εt confer p. 7 in [Garivier and Kaufmann, 2016], for f(t) see Lem. 14 on p. 9 in
[Degenne and Koolen, 2019] and for β(t, γ) see Thm. 10 on p. 6 in [Degenne and

Koolen, 2019]. The second statement follows directly from the bound on Dm,h
CWc(Q)

stated in Lem. 4.15.

4.5.2. Sticky Track-and-Stop for CW Testification

Define I := {¬CW, 1, . . . ,m} and recall that, for any h ∈ [0, 1/2), Qhm =
⋃

X∈I Qhm(X) is
a disjoint union. We endow I with the ordering ≻I defined8 via 1 ≻I 2 ≻I · · · ≻I m ≻I
¬CW; This way, choosing, e.g., an element from {2, 3,¬CW} ⊂ I according to ≻I means
to choose 2. Let ∆(m)2 and ∆ε

(m)2
be defined as above. For v = (vi,j)1≤i<j≤m ∈ ∆(m)2 ,

Q,Q′ ∈ Qm and Q′
m ⊆ Qm recall the definitions of D(v,Q,Q′) and D(v,Q,Q′

m) from
Sec. 4.5.1. For Q ∈ Qm define

iF (Q) := argmaxX′∈I

(
X′ 7→ supv∈∆(m)2

D(v,Q,Qhm(¬X′))
)
.

and note that (¬CW) ̸∈ iF (Q) whenever Q ∈ Qhm(CW) holds9.

In the setting of Pm,h,γCWt , the Sticky Track-and-Stop algorithm from Degenne and
Koolen [2019] can be stated as Alg. 19. Steps 2 and 11 of Alg. 19 are the same as in
Alg. 18 and thus similarly computationally very expensive, and analogously step 5 is
expensive, in particular if X = ¬CW. Moreover, as there are m + 1 possible answers
(namely 1, . . . ,m,¬CW) for Pm,h,γCWt whereas Pm,h,γCWc is a problem with a binary outcome
(CW or ¬CW), Step 3 in Alg. 19 is far more complex than the corresponding step in
Alg. 18. This step requires to calculate for each Q ∈ Ct the set iF (Q) ⊆ I, which is the
set of maximizers of X′ 7→ supv∈∆(m)2

D(v,Q,Qhm(¬X′)). Finding iF (Q) for one fixed Q

already requires the solution of a difficult min-max problem; doing this for any Q ∈ Ct is
seemingly infeasible. This indicates that Alg. 19 is computationally even far more complex
than Alg. 18.

To analyze its theoretical performance, define for m ∈ N, h ∈ [0, 1/2), X ∈ I and any
Q ∈ Qm(X) the value

Dm,h
CWt(Q) := supv∈∆(m)2

D(v,Q,Qhm(¬X))

= supv∈∆(m)2
infQ′∈Qh

m(¬X)

∑
(r,s)∈(m)2

vr,skl
(
qr,s, q

′
r,s

)
.

8Here, we merely have to choose any fixed ordering on I, which one is not of importance.
9In fact, if Q ∈ Qh

m(CW) with CW(Q) = k, then D(v,Q,Qh
m(¬k)) > 0 = D(v,Q,Qh

m(CW)).
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Algorithm 19 : Sticky Track-and-Stop for CW testification

Input: γ ∈ (0, 1), h ∈ [0, 1/2), a sequence (εt)t∈N, functions t 7→ f(t) and (t, γ) 7→ β(t, γ)
Initialization: t← 1, Q̂0 ← (0)1≤i<j≤m, n0 ← (0)1≤i,j≤m.

1: while True do
2: Let Ct ← {Q′ ∈ Qhm : D(nt−1/(t− 1), Q̂t−1,Q

′) ≤ ln(f(t− 1))}
3: Let It =

⋃
Q′∈Ct iF (Q

′)
4: Choose an element X from It according to ≻I
5: Compute that weight vt ∈ ∆(m)2 , which maximizes D(vt, Q̂t−1,Qhm(¬X))
6: Compute the projection vεtt of vt onto ∆εt

(m)2

7: Pull (i, j) = argmin(i′,j′)∈(m)2(nt)i′,j′ −
∑t

s=1(v
εs
s )i′,j′ , observe Xi,j ∼ Ber(qi,j)

8: Update wt via (wt)k,l ← (wt−1)k,l + 1{{k,l}={i,j} and Xk,l=1} ∀1 ≤ k, l ≤ m
9: Update nt via (nt)k,l ← (nt−1)k,l + 1{{k,l}={i,j}} ∀1 ≤ k, l ≤ m

10: Update Q̂t ← wt
nt

.

11: Let Dt ← {Q′ ∈ Qhm : D(nt/t, Q̂t,Q
′) ≤ β(t, γ)}

12: if ∃X ∈ I with Dt ∩Qhm(¬X) = ∅ then
13: return X
14: Update t← t+ 1

As Qhm =
⋃

X∈I Qhm(X) is a disjoint union, Dm,h
CWt(Q) is well-defined for any Q ∈ Qhm.

Similarly as in Lem. 4.15 we obtain the following result. Therein, the term m− 1 is in
accordance to our lower bound from Thm. 4.2.

Lemma 4.17. Let h ∈ [0, 1/2) be fixed.

(i) For any Q ∈ Qhm(CW) we have

Dm,h
CWt(Q) ≤ dh(Q)

m− 1

with dh(Q) := max(i,j)∈(m)2 max{kl (qi,j , 1/2 + h), kl (qi,j , 1/2− h)}.

(ii) For any h̃ ∈ [h, 1/2) \ {0} and any Q ∈ Qh̃m we have

Dm,h
CWt(Q) ≥ 2(h+ h̃)2

m

and in case Q ∈ Qh̃m(CW) we even obtain Dm,h
CWt(Q) ≥ 2(h+h̃)2

m−1 .

Proof. (i) Let Q ∈ Qhm(CW) and v ∈ ∆(m)2 be fixed for the moment. Let i := CW(Q).
By assumption on v there exists some j ∈ [m] \ {i} with vi,j ≤ 1/(m − 1). For
arbitrary small but fixed δ ∈ (0, 1/2− h) define Q′ ∈ Qhm via

q′r,s :=


1/2− (h+ δ), if (r, s) = (i, j),

1/2 + h+ δ, if (r, s) = (j, i),

qr,s, otherwise,

for each (r, s) ∈ (m)2. Then, Q
′ ∈ Qhm(¬i) due to q′i,j < 1/2− h. As qi,j > 1/2 + h

holds by assumption on Q and i, the definition of Q′ assures∑
(r,s)∈(m)2

vr,skl
(
qr,s, q

′
r,s

)
≤ vi,jkl

(
qi,j , q

′
i,j

)
≤ kl (qi,j , 1/2− (h+ δ))

m− 1
.
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Regarding Q′ ∈ Qhm(¬i) and that this estimate is obtained for any v ∈ ∆(m)2 , we
can conclude (taking into account that Q ∈ Qm(i)) that

Dm,h
CWt(Q) = supv∈∆(m)2

infQ∈Qh
m(¬i)

∑
(r,s)∈(m)2

vr,skl
(
qr,s, q

′
r,s

)
≤ vi,jkl

(
qi,j , q

′
i,j

)
≤ kl (qi,j , 1/2− (h+ δ))

m− 1

and taking the limit δ ↘ 0 yields

Dm,h
CWt(Q) ≤ kl (qi,j , 1/2− h)

m− 1
≤ dh(Q)

m− 1
.

(ii) Let h̃ ∈ [h, 1/2) \ {0}, X ∈ I and Q ∈ Qh̃m(X) be arbitrary but fixed. In case

X = ¬CW we have due to Qhm(¬(¬CW)) = Qhm(CW) the equality Dm,h
CWc(Q) =

Dm,h
CWt(Q), hence Dm,h

CWt(Q) ≥ 2(h+h̃)2

m follows from Lem. 4.15.
Now, consider the case X = i ∈ {1, . . . ,m}. Define v = (vr,s)(r,s)∈(m)2 ∈ ∆(m)2 via

vr,s = 1{i∈{r,s}}(m− 1)−1 for each (r, s) ∈ (m)2. For arbitrary Q′ ∈ Qhm(¬i) there
exists some j ∈ [m] \ {i} with q′i,j < 1/2− h, as otherwise CW(Q′) = i would hold.

But by assumption on i, qi,j > 1/2 + h̃ holds, hence we can estimate with Lem. 4.13
that ∑

(r,s)∈(m)2
vr,skl

(
qr,s, q

′
r,s

)
≥ vi,jkl

(
qi,j , q

′
i,j

)
≥

kl
(
1/2 + h, 1/2− h̃

)
m− 1

≥ 2(h+ h̃)2

m− 1
.

As Q′ ∈ Qhm(¬i) was arbitrary, we get Dm,h
CWt(Q) ≥ 2(h+h̃)2

m−1 > 2(h+h̃)2

m .

With this, we obtain the following result, which is an analogon to Prop. 4.16.

Proposition 4.18. (i) Let h ∈ [0, 1/2) and m ∈ N be fixed. If A(γ) solves Pm,h,γCWt for
any γ > 0, then

lim inf
γ→ 0

EQ[TA(γ)]

ln 1
γ

≥ 1

Dm,h
CWt(Q)

for any Q ∈ Qhm. In particular, we have in case h > 0

supQ∈Qh
m(CW) lim inf

γ→ 0

EQ[TA(γ)]

ln 1
γ

≥ (m− 1)(1/4− h2)
4h2

and in case h = 0 for any h̃ > 0

sup
Q∈Qh̃

m(CW)
lim inf
γ→ 0

EQ[TA(γ)]

ln 1
γ

≥ m− 1

4h̃2
.
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(ii) Let h ∈ [0, 1/2) and m ∈ N be fixed. Choose C > 0, (εt)t∈N, t 7→ f(t) and
(t, γ) 7→ β(t, γ) as in Prop. 4.16. Write A(γ) for Alg. 19 called with parameters

γ, h, (εt)t, f and β. Then, A(γ) solves Pm,h,γCWt and fulfills

lim
γ→ 0

EQ[TA(γ)]

ln 1
γ

=
1

Dm,h
CWt(Q)

for any Q ∈ Qhm. In particular, we have in case h > 0

supQ∈Qh
m
limγ→ 0

EQ[TA(γ)]

ln 1
γ

≤ m

8h2

and in case h = 0 for any h̃ > 0

sup
Q∈Qh̃

m
limγ→ 0

EQ[TA(γ)]

ln 1
γ

≤ m

2h̃2
.

Proof. (i) The proof is essentially the same as that of Prop. 4.16. In fact, the statements
can be seen via following the lines of the latter one and using part (i) of Lem. 4.17
instead of part (i) of Lem. 4.15.

(ii) Thm. 11 in [Degenne and Koolen, 2019] implies the first statement. For the choice
of εt confer p. 7 in [Garivier and Kaufmann, 2016], for f(t) see Lem. 14 on p.9 in
[Degenne and Koolen, 2019] and for β(t, γ) see Thm. 10 on p.8 in [Degenne and

Koolen, 2019]. The second statement follows directly from the bound on Dm,h
CWt(Q)

stated in part (ii) of Lem. 4.17.

4.6. Empirical Evaluation

In this section, we present an experimental study to illustrate the performance of our
algorithm ANTS for CW testification. Throughout these experiments, we denote by ANTS

(or simply NTS) Alg. 16 initiated as in Cor. 4.10 with Alg. 10 as ADSTA and with the SPRT
ASPRT

Coin (h, γ′) from Prop. 2.17 as ACoin, and parameters m, h and α = β = γ. Prop. 3.14
and Prop. 2.17 indicate optimality of this choices of ADSTA and ACoin. Moreover, we write
ANTS

PPR for Alg. 16 initiated with Alg. 10 as ADSTA and with with PPR-Bernoulli (Alg. 4)
as ACoin, and parameters m, h and α = β = γ. Since PPR-Bernoulli solves PγCoin,

Thm. 4.6 assures us that ANTS
PPR solves Pm,0,γCWt . Throughout this section, all experiments,

which involved a variation of γ, were conducted with the values 0.001, 0.005, 0.01, 0.015,
0.02, 0.03, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.35, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.95 and 0.99 for γ.

4.6.1. The Active Scenario

We start with a comparison between ANTS and SELECT-then-verify (StV). For this,
we sample uniformly at random relations Q from Q0.05

m , execute ANTS and StV on this
instance with the same parameters h and γ and report the average termination times and
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observed accuracies. To guarantee stability of the results, we average over 25000 runs for
m = 5 and over 100000 runs for m ∈ {8, 10}. Since Q is usually unknown in practice, we
try out and compare different values of h and γ as parameters for ANTS and StV, which
causes a variation in the number of iterations before the algorithms terminate. These free
parameters cause a variation in the used confidence bounds and thus in the number of
iterations before the algorithms terminate.

Figure 5.: Success rate and total number of comparisons until termination for the proposed
ANTS and StV for different values of the gap h to 1/2.

Figure 6.: Accuracy and termination time of ANTS and StV for 8 arms (on the left) and
10 arms (on the right).

The curves in Fig. 5 and Fig. 6 have been produced through variation of the parameter γ
and illustrate the compromise between the success rate and the number of iterations of the
algorithms (decreasing γ increases the success rate but also the sample complexity). As
can be seen, the curves of ANTS dominate the curves of StV for any considered choices of
m and h. Indeed, with the same number of comparisons, ANTS achieves a higher success
rate than StV, regardless of m and h, and in fact ANTS seems to be quite robust towards
incorrect choices of this parameter.

Fig. 6 illustrates the effect of increasing the number of arms on the success rate and
termination time of both algorithms. It is clearly visible that the larger the value of m,
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the larger both the success rate and the termination times of both algorithms.

Table 4.1.: Experimental results for m = 20, γ = 0.05, h = 0.05, N = 100 and varying h′.

TA Accuracy

h′ ANTS StV ANTS StV

0.45 887 (4.1) 21751 (42.4) 1.00 1.00
0.40 980 (5.4) 21730 (43.7) 1.00 1.00
0.35 1085 (6.5) 21707 (48.1) 1.00 1.00
0.30 1262 (8.5) 21773 (47.0) 1.00 1.00
0.25 1447 (10.8) 21730 (52.3) 1.00 1.00
0.20 1798 (15.6) 21832 (47.7) 1.00 1.00
0.15 2331 (21.8) 21870 (51.0) 1.00 1.00
0.10 3383 (29.3) 22096 (50.8) 1.00 1.00
0.05 6607 (88.6) 22544 (92.3) 1.00 1.00
0.02 14155 (234.6) 23567 (167.9) 1.00 1.00

To further compare ANTS with StV, we conduct the following experiment: We fix m ∈ N,
γ ∈ (0, 1/2) and h ∈ (0, 1/2) in advance, sample relations Q1, . . . ,QN uniformly at random
from Q̂h′m := {Q ∈ Qm | qi,j ∈ {1/2± h′}∀(i, j) ∈ (m)2} and execute ANTS and StV with
parameters m,h, γ on every instance Qi, i ∈ {1, . . . , N}. Table 4.1 shows the observed
mean sample complexities (with standard errors in brackets) as well as the accuracies of
both algorithms for N = 100, m = 20, γ = 0.05 and h = 0.05 for different values of h′.
Both algorithms achieve an accuracy of 100% for any h′ ≥ h = 0.05 and even for h′ = 0.02.
Moreover, ANTS clearly outperforms StV for any h′ > h, and the magnitude to which
extend this happens (i.e., the sample complexity gap) appears to be increasing in h′.

Existence or Non-Existence of the CW

Next, we repeat our experiment from above with the only difference that we sample Q
uniformly at random from Q0.05

5 (CW) or from Q0.05
5 (¬CW), respectively. Again, the plots

are generated by averaging over 25000 repetitions each. The results are shown in Fig. 7
and 8 and demonstrate that ANTS outperforms StV in both cases.

Figure 7.: Accuracy and termination time of ANTS and StV for 5 arms provided a CW
exists.
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Figure 8.: Accuracy and termination time of ANTS and StV for 5 arms provided a CW
does not exist.

Comparison of ANTS and ANTS
PPR

Next, we investigate the influence that a priori knowledge of the low-noise parameter h
has for CW testification. For this purpose, we compare the ANTS with ANTS

PPR when started
with parameter γ = 0.05 on Q1(x) ∈ Qm(1) and Q2(x) ∈ Qm(¬CW) defined via

Q1(x) :=


− x x x x
− x x x
− x x
− x

x

 and Q2(x) :=


− x 1− x x x
− x 1− x x

− x x
− x

x


for different values of x ∈ (1/2, 1]. Table 4.2 shows the observed accuracy and sample
complexity (with the corresponding standard error in brackets) averaged over 1000
repetitions. Throughout, ANTS obtained as additional parameter h = 0.1. In any case,
both ANTS with ANTS

PPR achieved an accuracy ≥ 0.95 as desired. With regard to the strong

optimality guarantee of the SPRT (Prop. 2.17) as a solution to P0.6,0.4;γ
Coin , it is not surprising

that ANTS empirically outperforms ANTS
PPR on Q1(0.6) and Q2(0.6). Even though this

superiority of ANTS over ANTS
PPR also holds for the other considered choices of x, this effect

seems to be decreasing in x.

Table 4.2.: Comparison of ANTS and ANTS
PPR on Q1(x) and Q2(x) for different x.

TA Accuracy

Q ANTS ANTS
PPR ANTS ANTS

PPR

Q1(0.9) 85 (0.2) 92 (0.5) 1.00 1.00
Q1(0.8) 111 (0.5) 166 (1.1) 0.99 1.00
Q1(0.7) 166 (0.9) 386 (3.0) 1.00 1.00
Q1(0.6) 332 (2.8) 1662 (14.3) 1.00 1.00

Q2(0.9) 85 (0.2) 93 (0.5) 0.99 0.99
Q2(0.8) 112 (0.4) 166 (1.2) 1.00 1.00
Q2(0.7) 164 (0.9) 387 (3.2) 1.00 1.00
Q2(0.6) 329 (2.8) 1669 (14.1) 1.00 1.00

As a further experiment, we evaluated ANTS (with parameter h = 0.05) and ANTS
PPR

started with γ = 0.05 on 1000 instances Q that have been drawn uniformly at random
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from a set Q′
m ⊊ Qm. We restrict ourselves in our choice of Q′

m to Qh′m(CW) and
Qh′m(¬CW) for different values of h′. In Table 4.3 we collected the observed accuracy and
average termination time, again with the corresponding standard errors in brackets. Both
algorithms achieve in any considerd scenario as desired an accuracy, which is at least
0.95. In contrast to the results shown in Fig. 7 and Fig. 8, it does not seem to make a
difference for this particular experiment whether the sampled instances Q have or do not
have a CW, the observed termination times are almost the same. Moreover, we see that
ANTS clearly outperforms ANTS

PPR when Qm = Qh′m((¬)CW) for small values of h′, and this
effect decreases with h′, which is overall consistent with our observations from Table 4.2.
Surprisingly, for h′ = 0.25 > 0.05 = h, ANTS

PPR even performs better than ANTS, and this
may appear at first sight contradictory to Prop. 2.17; but recalling that Prop. 2.17 only
states that the SPRT is that solution to Ph,γCoin, which is w.r.t. the worst-case expected
sample complexity optimal, there is actually no contradiction and if h′ − h is large, the
entries qi,j from Q ∈ Qh′m((¬)CW) are far from the “worst case”, which is 1/2± h.

Table 4.3.: Comparison of ANTS and ANTS
PPR on different sets Q′

m ⊆ Qm.
TA Accuracy

Q′
m ANTS ANTS

PPR ANTS ANTS
PPR

Q0.25
m (¬CW) 183 (1.0) 128 (1.2) 1.00 1.00
Q0.10
m (¬CW) 262 (2.3) 335 (6.4) 1.00 1.00
Q0.05
m (¬CW) 325 (4.2) 729 (22.9) 1.00 0.99

Q0.25
m (CW) 182 (0.9) 127 (1.2) 1.00 1.00
Q0.10
m (CW) 264 (2.4) 331 (6.5) 1.00 1.00
Q0.05
m (CW) 331 (4.2) 688 (18.9) 1.00 1.00

4.6.2. The Passive Scenario

Finally, we demonstrate how the passive setting described in Sec. 4.2.3 can be utilized in
order to justify the usage of dueling bandits algorithms focusing on alternative best arm
concepts for the goal of regret minimization, if the test component detects a violation of
the CW assumption. For this purpose, we consider two sampling strategies:

• Relative Upper Confidence Bound (RUCB) from Zoghi et al. [2014b], which is a
dueling bandit algorithm based on the CW assumption.

• Double Thompson Sampling (DTS) from Wu and Liu [2016], which is a dueling
bandit algorithm not relying on the CW assumption, but instead focusing on the
set of Copeland winners (cf. Sec. 1.4 or [Bengs et al., 2021]).

Similar as Zoghi et al. [2015a], we consider the regret based on the difference in the
normalized Copeland scores of the Copeland winner and the two chosen arms. It is well
known that RUCB can achieve linear regret in case no CW exists, while DTS provably
only suffers sub-linear regret (with respect to the Copeland scores) in such cases.

In light of this, we consider a two-staged algorithm (denoted by RUCB→DTS), which
executes in its first stage Alg. 15 (with parameters γ = 0.1 and h = 0.1) instanti-
ated with RUCB as its sampling strategy, and in its second stage simply DTS in case
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that no CW exists in the ground truth relation and otherwise RUCB. In other words,
RUCB→DTS switches from the CW-based sampling strategy RUCB to the Copeland
winner based DTS procedure if the CW assumption is likely violated. Additionally, we
also consider RUCB→DTS(PPR), which is that modification of RUCB→DTS which uses
PPR-Bernoulli (Alg. 4) instead of the SPRT as ACoin in Alg. 15 and thus obtains as
parameter only γ = 0.1 (and not h = 0.1). For evaluating the algorithms we choose as the
underlying ground-truth preference relation the reciprocal relation

QHudry :=
1

10



5 1 1 1 6 6 6 6 6 6 6 6 6
5 9 1 1 1 1 9 9 9 9 9 9

5 9 9 9 9 1 1 1 9 9 9
5 9 9 9 9 9 9 1 1 1

5 9 9 9 9 9 1 1 1
5 9 9 9 9 1 1 1

5 9 9 9 1 1 1
5 9 9 9 9 9

5 9 9 9 9
5 9 9 9

5 9 9
5 9

5


∈ Q13,

which does not have a CW, and 4 as the unique Copeland winner [Ramamohan et al.,
2016].

Fig. 9 illustrates the benefit of changing from RUCB to DTS with regard to the
regret. In particular, RUCB→DTS does not suffer the linear regret of RUCB but instead
its cumulative regret appears only by a constant term larger than that of DTS. Even
though RUCB→DTS(PPR) does not have knowledge of h, it performs almost exactly
like RUCB→DTS. Since all non-diagonal entries of QHudry are in {0.1, 0.9}, this seems
consistent with our observations in Sec. 2.4.1, where we saw that testing with desired
confidence 0.95 for the mode of a coin p ∈ {0.1, 0.9} via PPR-Bernoulli requires almost
the same sample complexity as solving this task via the SPRT with additional information
|p− 1/2| = 0.4, cf. Tables 2.3 and 2.4.

4.7. Discussion and Related Work

The notion of the Condorcet winner (CW) dates back to the 18th century [Caritat, 1785]
and also appears in the social choice literature [Fishburn, 1974, Fishburn and Gehrlein,
1976], where the data is typically assumed to be available in the form of a list containing
total rankings over all alternatives from different voters. In dueling bandits, the CW is
arguably the most natural choice of the “best arm” one may think of, and identifying it is
a prevalent goal [Bengs et al., 2021]. Unfortunately, it is not guaranteed to exist, neither
in theory nor in real-life scenarios [Zoghi et al., 2015a]. In a variety of papers, this issue is
circumvented by simply assuming its existence, either explicitly [Urvoy et al., 2013, Zoghi
et al., 2014b, Komiyama et al., 2015, Karnin, 2016, Chen and Frazier, 2017, Li et al.,
2020] or implicitly as a consequence of stronger assumptions on the underlying preference
relation, such as a total order of arms or some kind of stochastic transitivity [Yue and
Joachims, 2011, Yue et al., 2012, Falahatgar et al., 2017b,a, 2018, Mohajer et al., 2017],
by assuming latent utilities [Yue and Joachims, 2009, Ailon et al., 2014b, Kumagai, 2017,
Maystre and Grossglauser, 2017] or an underlying statistical ranking model [Busa-Fekete
et al., 2014a, Szörényi et al., 2015]. Other papers, instead, focused on alternative best arm
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Figure 9.: Copeland regret of DTS, RUCB, RUCB→DTS and RUCB→DTS(PPR) on
QHudry.

concepts that always exist, such as the Copeland winner [Zoghi et al., 2015a, Komiyama
et al., 2016, Wu and Liu, 2016], the Borda winner [Jamieson et al., 2015, Lin and Lu,
2018], or more general tournament solutions [Ramamohan et al., 2016].

Falahatgar et al. [2017b,a, 2018] restricted themselves to the identification of a weakened
notion of the CW in form of an ε-best arm for some ε > 0, i.e., an arm i that fulfills
qi,j ≥ −ε for all j ∈ [m] \ {i}. Similar as for the CW, the existence of such an ε-best
arm is not guaranteed in theory, and analoga of CW testification, CW checking and CW
verification for this notion may be formulated and of interest. The parameter ε resembles
our low-noise parameter h to some extent, but in fact these scenarios are different, as e.g.,
in contrast to the CW, an ε-best arm of Q ∈ Qhm does not have to be unique if existent.
Hence, our results are not directly applicable to this setting.

This chapter contains to large parts results from [Haddenhorst et al., 2021a] but also
extends upon these in the sense that we also consider the CW-related problems on Qhm
for h = 0 here. We introduced CW testification as combined testing and verification of
the CW in the passive and active scenario. In contrast to the quite prominent best-arm-
identification problem [Mohajer et al., 2017, Ren et al., 2020, Bengs et al., 2021], actually
testing validity of the underlying assumption that the CW exists has not been discussed
so far. Here, our passive solution is of huge interest as it allows for passively checking the
validity of an underlying CW assumption.

In the active scenario, we presented instance-dependent sample complexity lower and
upper bounds for solutions to the problem, which match in the worst-case up to logarithmic
factors. We saw that CW testification on Qhm for γ requires roughly the same sample
complexity as any of CW verification, CW identification and CW checking, namely
Θ̃(m

h2
ln 1

γ ). As a main ingredient for most of these lower bounds, we used the optimality of
the SPRT for solving a coin tossing problem (cf. Thm. 2.29 and Prop. 2.11); an alternative

approach, which is actually underlying the lower bound for Pm,h,γCWv (CW) from Thm. 4.4,
would be to use the change-of-measure argument presented in Sec. 2.5.
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Thm. 4.3 shows that any solution to CW testification on Q0
m for γ necessarily fulfills

lim suph↘0 supQ∈Qh
m

EQ[TA]
1
h2

ln ln 1
h

> 0 and – even though explicitly stated – this result can

supposedly also be transferred to CW checking, CW identification and CW verification.
This indicates the necessity of an additional ln ln 1

h factor in the required sample complexity

when comparing Pm,h,γCWt to Pm,0,γCWt , but it does only capture the dependence on h and neither
on γ nor on m. In fact, when trying to show a lower bound of order Ωsup(

m
h2
(ln ln 1

h) ln
1
γ ),

we faced obstacles that we were not yet able to resolve; cf. for this our related discussions
in Sec. 2.6 and 5.7.

In Ch. 5 below, we tackle WST testing via a likelihood-ratio based approach, resulting
in a suboptimal solution for WST testing on Qhm for γ as well as asymptotic size-α tests
for WST resp. ¬WST. We suppose that these results might be transferrable to the CW
related problems from this chapter; however, we do not expect a better solution for CW
testification (or related problems) on Qhm for γ with this and such asymptotic size-α tests
are not the focus of this work, hence we did not go further into this direction.

In Sec. 4.5, we restricted ourselves to formulate the guarantees of Sticky-Track-and-
Stop-solutions for the problems Pm,h,γCWt and Pm,h,γCWc . However, this framework is so general

that it presumably also yields analogous guarantees for the remaining problems Pm,h,γCWv ,

Pm,h,γCWi (CW) and Pm,h,γCWv (CW).

In addition to the above mentioned open questions and conjectures, there are multiple
possible directions for future research.

The sample complexity of our proposed solution Noisy Tournament Sampling for CW
testification on Qhm depends to a large extend on ACoin as a parameter thereof. In case
h > 0, the SPRT seems to be, due to its strong optimality guarantees, the best choice for
ACoin. If h = 0, however, the picture is not so clear as we have seen in Sec. 2.2. Instead,
there are several reasonable choices with different types of guarantees, and it would thus
be of interest to compare different of these in additional experiments. So far, we have
restricted ourselves in the experiments to the solution PPR-Bernoulli to PγCoin as a
choice of ACoin in Alg. 15 and Alg. 16, because it empirically outperformed the other
solutions in Sec. 2.4.1.

Over and above the theoretical sample complexity upper and lower bounds for CW
testification proven so far, one could also try to show further bounds of distinct type,
e.g. an upper bound on the expected sample complexity or a high-probability lower
bound. Alternatively, one might think of replacing the low-noise assumption by potentially
stronger ones and e.g. discuss CW testification whilst assuming the stochastic triangle
inequality or WST to hold. There are several modifications one might think of in this
regard, and addressing any of these only seems reasonable if that learning scenario is
of interest for either an existent algorithmic procedure or a particular theoretical result.
In addition, one could further investigate the instance-wise sample complexity necessary
to solve CW testification: Our bounds were merely shown to be sharp in a worst-case
asymptotic sense, but how large is the true gap between the necessary and sufficient
sample complexity of a solution A to Pm,h,γCWt when executed on some instance Q ∈ Qm?

Apart from that, also the generalization of the learning problem could lead to interesting
research questions, e.g., one could formulate for the best-k arm identification problem
[Braverman et al., 2016, Mohajer et al., 2017, Ren et al., 2020], which coincides with CW
identification for k = 1, possibly also a testification variant and theoretically analyze this
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more general problem.
Our empirical evaluation is quite limited and could be extended in several ways. One

could further investigate our proposed active solution with regard to other performance
measures such as worst-case termination time on subsets Q′

m ⊆ Qm which are not of the
form Q′

m = Qhm. Yet another path to take could be to apply our passive CW testification
procedure in further real-life scenarios. We have already seen in an example that the
possibility to detect violations of the CW assumption may allow for a shift of strategies
and prevent in this way from suffering linear regret in one particular scenario, and it
could be that such an approach might also be fruitful for other scenarios, e.g., for pure
exploration tasks. Last but not least, the mere idea of testification might be transferred to
other machine learning problems as well in order to be more robust against violations of
falsely made assumptions. For example, instead of only identifying the underlying ranking
in dueling bandits whilst assuming its existence, one could try do so if it exists and detect
non-existence if apparent.
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5. Testing for Stochastic Transitivity

This chapter discusses the testing of yet another type of coherence, which is a common
statistical assumption in the dueling bandits scenario, namely that of stochastic transitivity.
Recall that the concept of transitivity is usually understood to be a property of the form
“If i is better than j, and j is better than k, then i is also better than k”. As mentioned in
Ch. 1, for the case of reciprocal relations, which model the feedback in dueling bandits, it
is not uniquely determined what “a is better than b” means. In fact, there are different
notions of stochastic transitivity [Fishburn, 1973, Haddenhorst et al., 2020], which play a
role in the dueling bandits literature, either as explicitly made assumptions [Yue et al.,
2012, Yue and Joachims, 2011, Mohajer et al., 2017, Falahatgar et al., 2017a,b, 2018] or
implicitly as consequence of even stronger assumptions [Szörényi et al., 2015, Maystre
and Grossglauser, 2017], cf. Sec. 5.7 for slightly more details on this.

Somewhat surprisingly, the problem of testing the validity of transitivity assumptions
underlying various algorithms has not been considered in the dueling bandits scenario
before. Needless to say, this would be important to guarantee the meaningfulness of
the results produced by algorithms, which formally require transitivity. In fact, if the
assumptions made by an algorithm are violated by the data-generating process in a
concrete application, then neither its prediction nor any of its guarantees can be trusted
anymore. Before formalizing our testing problem and giving an overview over the results
obtained in this chapter, we define the transitivity conditions of interest, two of which have
already been mentioned in Ch. 1, and emphasize the importance of transitivity testing by
means of a particular example.

Notions of Stochastic Transitivity A reciprocal relation Q = (qi,j)1≤i,j≤m ∈ Qm is said
to satisfy

• weak stochastic transitivity (WST) if(
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ 1/2 ,

• moderate stochastic transitivity (MST) if(
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ min{qi,j , qj,k} ,

• ν-relaxed stochastic transitivity (νRST) for some ν ∈ (0, 1) if(
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ νmax{qi,j , qj,k}+ (1− ν)/2 ,

• strong stochastic transitivity (SST) if1(
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ max{qi,j , qj,k} ,

1The notion of SST is originally due to Davidson and Marschak [1958].
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• λ-stochastic transitivity (λST) for some λ ∈ (0, 1) if(
qi,j ≥ 1/2 ∧ qj,k ≥ 1/2

)
⇒ qi,k ≥ λmax{qi,j , qj,k}+ (1− λ)min{qi,j , qj,k},

where all previous conditions must hold for all distinct i, j, k ∈ [m], respectively. Given
a transitivity type XST ∈ {WST,MST, νRST, λST, SST}, we write Qm(XST) for the
set of all Q ∈ Qm, which fulfill XST, and abbreviate Qm(¬XST) := Qm \ Qm(XST).
The following relationships hold between the different types of stochastic transitivities
[Haddenhorst et al., 2020]:

Qm(SST) ⊊ Qm(XST) ⊊ Qm(WST) for XST ∈ {MST, νRST, λST},

but neither

Qm(XST) ⊆ Qm(MST) nor Qm(MST) ⊆ Qm(XST)

for XST ∈ {λST, νRST}.

In order to demonstrate the relevance of the WST assumption and the undesirable
consequences in case of its violation, we provide an illustrative toy example. For this,
let us introduce some more notation: Given Q ∈ Q0

m, we write σQ for a permutation on
[m], which fulfills qσQ(i),σQ(i+1) > 1/2 for every i ∈ [m]. We have seen in Lem. 3.3 that

σQ exists for every Q ∈ Q0
m. In case Q ∈ Q0

m(WST), σQ is the underlying ground-truth
ranking of Q, and permuting rows and columns according to σQ results in a reciprocal
relation with entries > 1/2 above the diagonal.

Now, suppose we want to identify in a DB scenario the ranking σQ for the underlying
reciprocal relation Q, and that Q ∈ Q3(¬WST) is given by q1,2 = 0.9, q1,3 = 0.1 and
q2,3 = 0.8. Next, consider the (noisy) sorting-based ranking algorithm by Maystre and
Grossglauser [2017], which terminates in any case and returns a ranking of the arms. This
approach basically employs multiple runs of Quicksort yielding in turn multiple noisy
rankings over the arms, which are then combined into a single final ranking via Copeland
aggregation: The arms are ranked in an increasing order according to their Copeland
score, that is, the number of other arms beaten in a majority of the noisy rankings, while
ties are broken arbitrarily. Due to this aggregation step, the final ranking will likely
correspond to the Copeland ranking, which, however, is any possible permutation of the
three arms for Q as above. In particular, the final ranking will be arbitrary to a great
extent, and since Q ∈ Q3(¬WST), no ranking (permutation) σ is coherent with Q in the
sense that qσ(i),σ(j) ≥ 1

2 holds for every 1 ≤ i < j ≤ m.

Thus, without an appropriate test of WST, this algorithm would never notice the viola-
tion of WST during its learning phase, and consequently cannot ensure the trustworthiness
for its final output. However, having a test component running in parallel to the learner,
it may allow to either give a warning that the learned ranking is probably incoherent with
the preference relation, or even intervene and interrupt the ranking algorithm. The other
way around, the information that WST is not violated would increase the trustworthiness
of the ranking predicted by the online learner.

In dependence of a low-noise parameter h ∈ [0, 1/2), error probabilities α, β ∈ (0, 1),
the number m ∈ N of arms, we define the XST testing problem as follows: A (possibly
probabilistic, sequential) algorithm A solves XST testing on Qhm for α and β (short:
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Pm,h,α,βXST ) if TA is a.s. finite on any instance Q ∈ Qhm and both

infQ∈Qh
m(XST) PQ(D(A) = XST) ≥ 1− α

and infQ∈Qh
m(¬XST) PQ(D(A) = ¬XST) ≥ 1− β

(5.1)

are fulfilled.

Outline of The Chapter In the further course of this chapter, we discuss Pm,h,α,βXST

for several choices of parameters. For XST ̸= WST, we point out that XST testing
on Qhm for α and β is impossible in the sense that any solution A to Pm,h,α,βXST fulfills
supQ∈Qm(XST) EQ[T

A] = ∞. For this reason, we focus on the case of WST from that
point on.

Similarly as for the CW-related problems, WST testing may be reduced to pure
exploration multi-armed bandits and results from Degenne and Koolen [2019] translate

into a solution A(γ) to Pm,h,γWST := Pm,h,γ,γWST , which is optimal with respect to the quantity

supQ∈Qh
m

lim
γ→ 0

EQ[TA(γ)]

ln 1
γ

.

Moreover, for this optimal A(γ), this quantity is of the order Θ(m
2

h2
ln 1

γ ). But again, this

does neither result in a solution to WST testing on Qhm for fixed confidences 1− α and
1−β, nor is it applicable in the passive scenario. As this approach is not our main interest,
we postpone its discussion to Sec. 5.5.

With the help of the lower bounds from Sec. 2.2 we infer expected sample complexity
lower bounds for solutions to Pm,h,α,βWST . More precisely, for any Q ∈ Qhm(WST), we obtain
an instance-wise lower bound for EQ[TA] in terms of the gaps q̄i,j = |qi,j − 1/2| of Q. In

the symmetric case α = β = γ, this results in a worst-case bound of order Ω(m
2

h2
ln 1

γ ).

Afterwards, we follow two distinct approaches for tackling the WST testing problem:
The first one is similar to that followed in Ch. 4 for solving Pm,h,α,βCWt , it basically uses for
each pair {i, j} a binomial test to decide whether qi,j > 1/2 holds or not, and aggregates
this information into a final decision. The second one instead is based on two likelihood
ratio test statistics, which indicate fulfillment resp. violation of WST.

As we will see, for h > 0, the first approach yields without much effort a “naive” solution
to Pm,h,α,βWST that is w.r.t. its worst-case sample complexity already asymptotically optimal
up to logarithmic factors. However, the incorporation of graph-theoretical considerations
from Sec. 3 allows us to construct a more sophisticated solution, which outperforms the
naive one both empirically and theoretically. This solution is applicable in the passive
as well as in the active scenario, and in the latter one we provide instance-wise sample
complexity bounds, which are up to logarithmic factors asymptotically optimal in a
worst-case sense. Moreover, we solve Pm,0,α,βWST and obtain, compared to the solution of

Pm,h,α,βWST , an additional factor of ln ln 1
h in the – w.r.t. Qhm – worst-case sample complexity

bound. A corresponding lower bound result indicates that this factor is indispensable.

In Sec. 5.4, we develop an alternative solution to Pm,h,α,βWST by following a likelihood-
ratio test approach. Its main idea is to decide based on the LRT statistic λt of the
hypotheses H0 : Q ∈ Qm(WST) versus H1 : Q ∈ Qm(¬WST) and the LRT statistic µt
of the corresponding interchanged hypotheses. Simple modifications thereof lead to test
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statistics λ̃t and µ̃t, which are the basis for a passive solution to Pm,0,α,βWST with merely mild
assumptions on the underlying sampling strategy π. A particular choice of π results in a
corresponding active solution, which has in the symmetric case α = β = γ a worst-case
expected sample complexity of order O(m2κ

h4
ln 1

γ ) w.r.t. Q
h
m-instances for some parameter

κ > 1 and is thus far from optimal. Nevertheless, we have included it for the sake of
completeness. Additionally, we elaborate in Sec. 5.4.6 on the asymptotic behaviour of the
test statistics and obtain results similar to those from [Iverson and Falmagne, 1985] in the
more general dueling bandits scenario: We show that, under mild assumptions on π, the
LRT statistics fulfill

sup
Q∈Qm(¬WST)

lim supt→∞ P (µt > l) ≤ 2−M
∑M

a=0

(
M

a

)
Pθ

(
χ2
(a∧(⌊m/2⌋+1)) > l

)
,

sup
Q∈Qm(WST)

lim supt→∞ P (λt > l) ≤ 2−M
∑M

a=0

(
M

a

)
Pθ

(
χ2
(a∧(M−2)) > l

)
,

where M =
(
m
2

)
, A is the closure of A ⊆ Qm ∼= RM and χ2

(k) denotes the χ
2-distribution

with k degrees of freedom. This allows the formulation of asymptotic size-α tests for
testing WST and ¬WST, respectively.

After a discussion on the above mentioned implications of [Degenne and Koolen, 2019]
in Sec. 5.5 and an empirical evaluation in Sec 5.6, we conclude this chapter in Sec. 5.7
with remarks on possible further research questions and the related literature.

5.1. Impossibility Results for Several Types of Stochastic
Transitivity

We start our analysis of XST testing with the statement of negative results for the case
XST ̸= WST. Similarly as Cor. 2.50, Cor. 2.48 allows us to infer without much effort the
following.

Corollary 5.1. Suppose XST ∈ {SST,MST, λST, νRST} and h ∈ (0, 1/2), with ν > 2h

if XST = νRST. If α, β ∈ (0, 1
2.4) and A solves Pm,h,α,βXST , then

supQ∈Qh
m(XST) EQ[TA] = supQ∈Qh

m(¬XST) EQ[TA] =∞.

Proof. As in the proof of Cor. 2.50, with a slight abuse of notation, we may replace h by
h + δ for some small δ > 0 and then suppose w.l.o.g. Qhm = {Q ∈ Qm | ∀(i, j) ∈ (m)2 :
|qi,j − 1/2| ≥ h} throughout this proof. Suppose XST ∈ {SST,MST, λST, νRST} to be
arbitrary but fixed. The reciprocal relation Q ∈ Qm defined via qi,j := 1/2 + h for all
1 ≤ i < j ≤ m fulfills Q ∈ Qhm(SST) ∩ Q♣

m ∩ Um2 , and Qm(SST) ⊆ Qm(XST) implies
Q ∈ Qhm(XST) ∩Q♣

m ∩ Um2 with Q♣
m and Um2 defined as in Sec. 2.5.1.

If XST ∈ {SST,MST, λST}, let ε ∈ (0, 1/4− h/2) and define Q′ ∈ Qm via

q′i,j :=

{
1− 2ε, if (i, j) = (1,m),

1− ε, otherwise

for any 1 ≤ i < j ≤ m. Then, Q′ ∈ Qhm ∩ Q⊥
m ∩ Um2 holds and q′1,m = 1 − 2ε < 1 − ε =

min(q′1,m−1, q
′
m−1,m) assures Q′ ∈ Qm(¬MST). As Qm(SST) ∪ Qm(λST) ⊆ Qm(MST)
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holds, we thus have Q′ ∈ Qhm(¬XST) ∩Q♣
m ∩ Um2 .

Now, we tackle the case XST = νRST, in which ν > 2h holds by assumption. Fix
ε ∈ (0,min{1/2− h, 1− 2h/ν}) and define Q′ ∈ Qm via

q′i,j :=

{
ν(1− ε/2) + (1− ν)/2, if (i, j) = (1,m),

1− ε, otherwise

for any 1 ≤ i < j ≤ m and note that ε > 0 > (ν − 1)/(2ν) assures q′1,m ∈ (1/2, 1), i.e., Q′

is well-defined and an element in Q♣
m ∩ Um2 . Note that ε < 1/2− h resp. 1− 2h/ν assure

1− ε > 1/2 + h resp. ν(1− ε/2) + (1− ν)/2 > 1/2 + h and thus Q′ ∈ Qhm. Moreover,

q′1,m = ν(1− ε/2) + (1− ν)/2 < ν(1− ε) + (1− ν)/2 = νmax(qi,j , qj,k) + (1− ν)/2

yields Q′ ∈ Qm(¬νRST).
To conclude, for any XST ∈ {SST,MST, λST, νRST}, we have given reciprocal relations

Q ∈ Qhm(XST)∩Q♣
m∩Um2 and Q′ ∈ Qhm(¬XST)∩Q♣

m∩Um2 . Consequently, the statement
follows directly from Cor. 2.48.

The technical assumption ν > 2/h made in Cor. 5.1 assures Qhm(¬νRST) ∩ Q♣
m ̸= ∅. In

fact, since Q♣
m ∩Qhm ⊆ Qhm(WST) holds, the necessity of this assumption is shown with

the following lemma.

Lemma 5.2. If ν ≤ 2h, then Qhm(WST) ⊆ Qm(νRST).

Proof. Let Q ∈ Qhm ∩ Qm(WST) and i, j, k ∈ [m] be distinct with qi,j , qj,k ≥ 1/2. As
Q fulfills WST, we obtain qi,k ≥ 1/2, i.e., qi,j , qj,k, qi,k > 1/2 + h holds with regard to
Q ∈ Qhm. Hence,

qi,k − νmax(qi,j , qj,k)−
1− ν
2

>
1

2
+ h− ν − 1− ν

2
= h− ν

2
≥ 0

holds and Q ∈ Qm(νRST) follows.

By applying Thm. 2.44 instead of Cor. 2.48, one could obtain stronger results in the
setting of Cor. 5.1, namely EQ[T

A] = ∞ for any Q ∈ Qhm(XST) ∩ ∂Qhm(¬XST) ∩ Um2 .
We did not state this here, because via an alternative approach based on Lem. 2.15, we
additionally obtain such a negative result also for Q ∈ (Qhm(XST) ∩ ∂Qhm(¬XST)) \ Um2 .
The following proposition has also been given in [Haddenhorst et al., 2021b]; here we also
treat XST = λST and state ν > 2h as an additional assumption for XST = νRST.

Proposition 5.3. Let h, α, β ∈ (0, 1/2), m ∈ N≥3 and XST ∈ {MST, SST, νRST, λST}
be fixed, where ν > 2h if XST = νRST. If A solves Pm,h,α,βXST , then EQ[T

A] =∞ for any
Q ∈ Qhm(XST) ∩ ∂Qhm(¬XST) ̸= ∅. In particular, we have supQ∈Qh

m
EQ[TA] =∞.

Proof of Prop. 5.3. Let XST ∈ {MST, SST, λST, νRST} be fixed and suppose A solves

Pm,h,α,βXST . Then, A solves in particular Pm,h,γXST with γ := max{α, β}. With gXST : [0, 1]2 →
[0, 1] defined via

gXST(x, y) :=


min(x, y), if XST = MST,

max(x, y), if XST = SST,

νmax(x, y) + (1− ν)/2, if XST = νRST,

λmax(x, y) + (1− λ)min(x, y), if XST = λST,
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a look at the definition of XST reveals that Qm(XST) is the set

{Q ∈ Qm | ∀ distinct i, j, k ∈ [m] : (qi,j ≥ 1/2 ∧ qj,k ≥ 1/2) ⇒ qi,k ≥ gXST(qi,j , qj,k)}.
(5.2)

We showed in the proof of Cor. 5.1 that none of the sets Qhm(XST)∩Q♣
m and Qhm(¬XST)∩

Q♣
m is empty, hence closedness of Qm(XST) and connectedness of Q♣

m guarantee us
that Qhm(XST) ∩ ∂Qhm(¬XST) ̸= ∅. Now, suppose Q ∈ Qhm(XST) ∩ ∂Qhm(¬XST) to be
arbitrary but fixed. By Lem. 3.3 there exists σ ∈ Sm such that qσ(i),σ(i+1) > 1/2 for all

i ∈ [m− 1], and Q ∈ Qhm(XST) ⊆ Qhm(WST) lets us infer that qσ(i),σ(j) > 1/2 holds for
any (i, j) ∈ (m)2. By considering (qσ(i),σ(j))1≤i,j≤m instead of Q, we may suppose from
now on w.l.o.g. σ = id, i.e., qi,j > 1/2 for all (i, j) ∈ (m)2.

According to (5.2), Q ∈ ∂Qhm(¬XST) assures the existence of a pair (i, k) ∈ (m)2 s.t.
qi,k = gXST(qi,j , qj,k) for at least one j ∈ {i+ 1, . . . , k− 1}. Since Q ∈ Qhm, we have qi,k >
1/2+h. Hence, for any r ∈ [0, qi,k−(1/2+h)) the relation Q(r) = (q(r)i′,j′)1≤i′,j′≤m ∈ Qm,
defined via

q(r)i′,j′ :=

{
qi′,j′ − r, if (i′, j′) = (i, k),

qi′,j′ , otherwise

for any (i′, j′) ∈ (m)2, fulfills Q(r) ∈ Qhm. We have Q(0) = Q, which is an element of
Qhm(XST), whereas q(r)i,j = qi,j > 1/2, q(r)j,k > 1/2 and

q(r)i,k = qi,k − r = gXST(qi,j , qj,k)− r = gXST(q(r)i,j , q(r)j,k)− r

reveal that Q(r) ∈ Qhm(¬XST) for any r ∈ (0, qi,k − (1/2 + h)).

To show EQ[T
A] =∞, suppose we are given a coin C with unknown head probability

p ∈ {qi,k, qi,k − r}, where r ∈ (0, qi,k − (1/2 + h)) is fixed for the moment. Define Ã to be
the algorithm, which simulates A in the following way: Whenever A makes a query {i′, j′}
for some (i′, j′) ∈ (m)2 \ {(i, k)}, then we provide as feedback a sample ∼ Ber(q(r)i′,j′),
which is independent of the rest. If A queries {i, k}, we throw coin C and provide its
outcome as feedback. Then, we terminate as soon as A terminates, and output 0 in case
D(A) = XST and 1 if D(A) = ¬XST. Since A solves Pm,h,γ,γXST , Ã is able to test

H0 : p = qi,k H1 : p = qi,k − r

with type I/II errors of at most γ. According to Cor. 2.15, for small r, Ã has to throw
the coin C in any case (i.e., if p = qi,k and if p = qi,k − r) in expectation at least
c(4− 2r)2/r2 ln 1

γ times for some constant c > 0, which does not depend on r. We obtain

min
{
EQ[TA],EQ(r)[T

A]
}
= minp∈{qi,k,qi,k−r} Ep

[
T Ã] ≥ c(4− 2r)2

r2
ln

1

γ
.

As this holds for any sufficiently small r ∈ (0, qi,k − (1/2 + h)), taking the limit r ↘ 0
reveals EQ[TA] =∞.

For XST ̸= WST, the negative results above indicate that XST testing under the low-noise
assumption is in the worst-case infeasible to some extent. For this reason, we will mainly
focus on WST testing throughout the rest of this chapter.
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5.2. Lower Bounds for WST Testing

In this section, we provide lower bounds on the expected termination time of any algorithm
solving Pm,h,α,βWST . Similar to Prop. 5.3, these results are obtained by reducing a testing

problem for the biases of independent coins to Pm,h,α,βWST . A sample complexity analysis of
the latter testing problem results in the bounds stated below, where we write as usual
q̄i,j = |qi,j − 1/2|.

Theorem 5.4. Let h0, γ0 ∈ (0, 1/2) be fixed, h ∈ (0, h0), α, β ∈ (0, γ0) and m ∈ N≥3.

Suppose A is an algorithm that solves Pm,h,α,βWST , and let Q ∈ Qhm(WST) be arbitrary.
Define γ := max{α, β} and σ = σQ. Then, there exists a constant c = c(h0, γ0) > 0 such
that

EQ[TA] ≥
∑

1≤i<j−1<m

1− 2γ

2q̄σ(i),σ(j)

⌈
ln((1− γ)/γ)

ln((1/2+q̄σ(i),σ(j))/(1/2−q̄σ(i),σ(j)))

⌉
≥ c

∑
1≤i<j−1<m

1

q̄2σ(i),σ(j)
ln

1

γ
≥ c

h2

(
m− 1

2

)
ln

1

γ
. (5.3)

Thus, supQ∈Qh
m
EQ[TA] is in Ω(m

2

h2
ln 1

γ ).

Proof. As any (probabilistic) algorithm A, which solves Pm,h,α,βWST also solves the easier

problem Pm,h,γ,γWST , we may suppose w.l.o.g. α = β = γ from now on. Moreover, by replacing
Q with (qσ(i),σ(j))1≤i,j≤m we may suppose w.l.o.g. σ = id in the following, i.e., qi,i+1 > 1/2

for any i ∈ [m − 1]. Suppose for the moment Q′ = (q′i,j)1≤i,j≤m ∈ Qhm to be arbitrary
with q′i,i+1 = qi,i+1 for all i ∈ [m− 1]. As by assumption qi,i+1 > 1/2 for all i ∈ [m− 1],
we obtain by the definition of WST that

Q′ ∈ Qhm(WST) ⇔ q′i,j > 1/2 for all 1 ≤ i < j − 1 ≤ m− 1.

Hence, in particular Q fulfills qi,j > 1/2 for all 1 ≤ i < j − 1 ≤ m − 1. Since A solves

Pm,h,γ,γWST , it is able to decide

H′
0 : ∀1 ≤ i < j − 1 ≤ m− 1 : q′i,j ≥ 1/2

H′
1 : ∃1 ≤ i < j − 1 ≤ m− 1 : q′i,j < 1/2

for any

(q′i,j)1≤i<j−1≤m−1 ∈
∏

1≤i<j−1≤m−1

{1/2± q̄i,j}

with an error probability of at most γ in any case.2 Regarding that q′i,j = 1/2+ q̄i,j for all
1 ≤ i < j − 1 ≤ m− 1 implies Q′ = Q, Thm. 2.29 thus yields

EQ[TA] ≥
∑

1≤i<j−1≤m−1

1− 2γ

2q̄i,j

⌈
ln((1− γ)/γ)

ln((1/2+q̄i,j)/(1/2−q̄i,j))

⌉
≥ c

∑
1≤i<j−1≤m−1

1

q̄2i,j
ln

1

γ

2More precisely, define A′ to be the algorithm, which is given sample access to Ber(q′i,j), 1 ≤ i < j − 1 ≤
m − 1, runs A on Q′ and terminates with the output of A as soon as A terminates. Then, this
algorithm is able to decide with an error probability of at most γ whether H′

0 or H′
1 is fulfilled.
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with c = c(h0, γ0) as in Thm. 2.29. The assumption Q ∈ Qhm assures that this quantity is

bounded from below by c
h2

(
m−1
2

)
1
γ , which is in Ω(m

2

h2
ln 1

γ ) as max{m, 1h ,
1
γ } → ∞.

Note that the right-hand side of (5.3) is of the order m2

h2
ln 1

γ , which is coherent with the
results shown later on in Sec. 5.5. The fact that the instance-wise bound only depends on(
m−1
2

)
instead of all

(
m
2

)
entries of Q is due to our proof technique, which is nonetheless

w.r.t. m asymptotically of the same order.
Let us now consider the more complex case h = 0. As any solution to Pm,0,α,βWST is also a

solution to Pm,h,α,βWST for any h ∈ (0, 1/2), Thm. 5.4 is applicable in this case. However, we
can slightly improve upon this. For this, recall the notion of Ωsup from Sec. 1.5.

Theorem 5.5. Let α, β ∈ (0, 1/2) be fixed and suppose A to be an algorithm that solves

Pm,0,α,βWST . Then, the following holds:

(a) EQ[TA] =∞ for any Q in a set ∅ ≠ Q†
m ⊊ ∂Qm(WST) ∩ ∂Qm(¬WST),

(b) supQ∈Qh
m
EQ[TA] ∈ Ω(m

2

h2
) ∩ Ωsup(

1
h2

ln ln 1
h) as max{m, 1h} → ∞.

As we point out in the proof of this theorem the set Q†
m in (a) can be chosen as the

set of all Q ∈ Qm, for which some permutation σ on [m] exists such that the following
conditions are fulfilled:

∀1 ≤ i < j ≤ m : qσ(i),σ(j) ≥ 1/2,

∀i ∈ [m− 1] : qσ(i),σ(i+1) > 1/2,

∃1 ≤ i′ < j′ − 1 ≤ m− 1 : qσ(i′),σ(j′) = 1/2.

In the proof of the theorem, to make (b) more explicit, we provide several examples for a
family {Q(h)}h∈(0,1/2) ⊆ Qhm(WST), for which

lim suph↘0

EQ(h)[T
A]

1
h2

ln ln 1
h

≥ 1− 2γ

2
.

Regarding the occurrence of the limes superior in Prop. 2.13, this is the best we may infer
from Prop. 2.13.

Proof of Thm. 5.5. Similarly as in the proof of Thm. 5.4, we suppose w.l.o.g. α = β = γ
for convenience. We start with the proof of (b). For this, suppose h1,2, . . . , hm−1,m ∈ (12 , 1)
to be fixed and define

Q̃(h) := (1/2)1≤i,j≤m +



− h1,2 h · · · · · · h

− h2,3 h · · ·
...

. . .
. . .

. . .
...

− hm−2,m−1 h
− hm−1,m

−


∈ Qm

and for 1 ≤ i < j − 1 ≤ m− 1 the relation Q̃[i,j](h) = (q̃[i,j](h)i′,j′)1≤i′,j′≤m ∈ Qm via

∀1 ≤ i′ < j′ ≤ m : q̃[i,j](h)i′,j′ =

{
1/2 + h, if (i′, j′) = (i, j),

1/2 + hi′,j′ , otherwise.
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We will show in the following that

lim suph↘0

EQ̃(h)[T
A]

1
h2

ln ln 1
h

≥ 1− 2γ

2
and lim suph↘0

EQ̃[i,j](h)[T
A]

1
h2

ln ln 1
h

≥ 1− 2γ

2

holds for any 1 ≤ i < j − 1 ≤ m− 1, which is a stronger result than (b) in the statement
of this theorem.
Let c(γ) := 1

2(1 − 2γ) > 0. At first, let (hi,j)1≤i<j≤m ∈ (1/2, 1](
m
2 ) and 1 ≤ i <

j − 1 ≤ m− 1 be fixed and Q̃[i,j](h) be defined as above. Regarding the definition of weak
stochastic transitivity, we have the equivalence

Q̃[i,j](h) ∈ Qm(WST) ⇔ 1/2 + h > 1/2.

As A solves Pm,0,γ,γWST , A can be used3 to decide whether the (unknown) bias p of a coin
C fulfills p > 1/2 or p < 1/2 with an error probability of at most γ in any case. As
Prop. 2.13 reveals, it has to throw the coin sufficiently often for this and we obtain

lim suph↘0

EQ̃[i,j](h)[T
A]

1
h2

ln ln 1
h

≥ c(γ).

Since Q̃[i,j](h) ∈ Qh̃m holds for any h̃ ∈ (0,min{h, h1,2, . . . , hm−1,m}), we infer the bound
supQ∈Qh

m
EQ[T

A] ∈ Ωsup(
1
h2

ln ln 1
h). Hence, in combination with the lower bound from

Thm. 5.4 this shows supQ∈Qh
m
EQ[TA] ∈ Ω(m

2

h2
) ∩ Ωsup(

1
h2

ln ln 1
h) as max{m, 1h} → ∞.

To see the asymptotic behaviour on instances Q̃(h), note at first that, similarly as above,

Q̃(h) ∈ Qm(WST) ⇔ 1/2 + h > 1/2 (5.4)

follows from the definition of weak stochastic transitivity. Suppose now we are given
sample access to iid coins Ci,j ∼ Ber(p), 1 ≤ i < j − 1 ≤ m − 1, where the bias p is
unknown. Define A′ to be the algorithm, which simulates A on Q̃(h) in the following way:
Whenever A makes a query of the form {i, i+ 1} it obtains a sample ∼ Ber(1/2 + hi,i+1)
as answer and whenever it makes a query {i, j}, 1 ≤ i < j − 1 ≤ m − 1, it obtains as
feedback a sample of the coin Ci,j . Then, A′ terminates as soon as A terminates and

returns 0 if A outputs WST and returns 1 if A outputs ¬WST. As A solves Pm,0,γ,γWST and
(5.4) holds, A is able to test whether p > 1/2 or p < 1/2 with error at most γ. Moreover,
as the coins are iid and throws of one coin are independent, the behaviour of A′ (i.e., its
type I/II errors and its termination time) is the same if we replace each throw of a coin
Ci,j by a throw of a single coin C ∼ Ber(p). This modification of A′, denoted by A′′, tests
with an error probability of at most γ whether one coin C ∼ Ber(p) with unknown bias p
fulfills p > 1/2 or p < 1/2. Consequently, Prop. 2.13 assures us that

lim suph↘0

EQ̃(h)[T
A]

1
h2

ln ln 1
h

= lim suph↘0

E1/2+h[T
A′′

]
1
h2

ln ln 1
h

≥ c(γ),

3More precisely: Given sample access to a coin C ∼ Ber(p) with p = 1/2 + h, simulate A on Q̃[i,j](h).
I.e., whenever {i, j} is queried, throw coin C, and if another query {i′, j′} is made, draw a sample
∼ Ber(1/2 + hi′,j′) instead. Then, terminate as soon as A terminates and return 0 if D(A) = WST,
and 1 if D(A) = ¬WST.
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which shows (b).

To prove (a), recall that Sm is the set of all permutations on [m] and define

Q†
m :=

{
Q ∈ Qm(¬WST) | ∃σ ∈ Sm s.t. ∀1 ≤ i < j ≤ m : qσ(i),σ(j) ≥ 1/2

and ∀i ∈ [m− 1] : qσ(i),σ(i+1) > 1/2

and ∃1 ≤ i′ < j′ − 1 ≤ m− 1 : qσ(i′),σ(j′) = 1/2
}
.

Suppose Q ∈ Q†
m and let σ ∈ Sm be such that ∀1 ≤ i < j ≤ m : qσ(i),σ(j) ≥ 1/2 and

∀i ∈ [m− 1] : qσ(i),σ(i+1) > 1/2 and ∃1 ≤ i′ < j′− 1 ≤ m− 1 : qσ(i′),σ(j′) = 1/2 are fulfilled.
By considering (qσ(i),σ(j))1≤i,j≤m instead of Q, we may suppose w.l.o.g. σ = id.

At first, let us note that Q ∈ Qm(¬WST) holds: Indeed, assuming weak stochastic
transitivity of Q, the (in-)equalities

qj′,i′ = 1/2, qi′,i′+1 > 1/2, qi′+1,i′+2 > 1/2 . . . qj′−2,j′−1 > 1/2

would assure that qj′,j′−1 ≥ 1/2 holds, which clearly contradicts qj′−1,j′ > 1/2.

Now, let us define the set J of all (i, j) ∈ (m)2, for which qi,j = 1/2. By our assumption
on Q, we have |J | ≥ 1 and (i, i+ 1) ̸∈ J for any i ∈ [m− 1]. For any h ∈ [0, 1/2) let us
define the relation Q(h) = (q(h)i,j)1≤i,j≤m ∈ Qm via

q(h)i,j :=

{
qi,j , if (i, j) ∈ (m)2 \ J,
1/2 + h, if (i, j) ∈ J

for any (i, j) ∈ (m)2. In case h > 0, q(h)i,j > 1/2 for any (i, j) ∈ (m)2 shows that
Q(h) ∈ Qm(WST). Since [0, 1/2) → Qm, h 7→ Q(h) is continuous with Q(0) = Q, we
infer Q ∈ ∂Qm(WST) ∩ ∂Qm(¬WST).

Suppose we have a coin C with unknown head probability p ∈ {1/2, 1/2 + h}, where
h ∈ (0, 1/2) is fixed for the moment. Let Ã be the algorithm, which simulates A in the
following way: Whenever A makes a query {i, j} for some (i, j) ∈ (m)2 \ J , then provide
as feedback a sample ∼ Ber(q(h)i,j), which is independent of the rest. If A makes a query
{i, j} for some (i, j) ∈ J instead, then throw coin C and provide its outcome as feedback.
Terminate as soon as A terminates, and output 0 in case D(A) = WST and 1 in case
D(A) = ¬WST. As A solves Pm,0,γ,γWST , Ã is able to test

H0 : p = 1/2 H1 : p = 1/2 + h

with type I/II errors of at most γ. From Cor. 2.15 we infer that, for any h < 1/4, Ã
has to throw the coin C in expectation at least c (h/(4− 2h))−2 ln(γ−1) times in any of
the cases p ∈ {1/2, 1/2 + h}, where c = c(ε0, γ0) > 0 is the constant from Cor. 2.15 with
arbitrary but fixed ε0 ∈ (1/2, 1) and γ0 ∈ (γ, 1/2). As the throws of the coins as well as
the feedback generated by the arm pairs in our setting are independent, we thus obtain

min
{
EQ[TA],EQ(h)[T

A]
}
≥ minp∈{1/2,1/2+h} Ep[T Ã] ≥ c(4− 2h)2

h2
ln

1

γ
.

Since this holds for any h < 1/4, taking the limit h↘ 0 yields EQ[TA] =∞.
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5.3. Approach I: Conducting Multiple Binomial Tests

Guided by our findings in Sec. 5.2, we now focus on the WST testing problem in the
framework developed in Sec. 1.1. Note that WST is in any case of particular interest for
the ranking problem in dueling bandits, as it is both a sufficient and a necessary condition
for the existence of a ranking over the arms consistent with the preference relation Q, in
the sense that an arm i is preferred over an arm j if and only if qi,j ≥ 1/2.

Algorithm 20 Anaive

Parameters: m, a sampling strategy π, a testing algorithm ACoin ∈ ACoin.
Initialization: For any (i, j) ∈ (m)2 let Ai,jCoin be an instance of ACoin

n0 ← (0)1≤i,j≤m, w0 ← (0)1≤i,j≤m, Q
′ ← (1/2)1≤i,j≤m ∈ Qm, Ê0 ← ∅

1: for t ∈ N do
2: {i, j} ∼ π(t, (nt′ ,wt′)0≤t′≤t−1), w.l.o.g. i < j
3: Êt ← Êt−1

4: Observe X
[t]
i,j ∼ Ber(qi,j)

5: Update nt and wt according to (4.8)

6: Reveal X
[t]
i,j to A

i,j
Coin

7: if Ai,jCoin terminated with D(Ai,jCoin) = 0 then

8: q′i,j ← 1, q′j,i ← 0, Êt ← Êt ∪ {(i, j)}
9: if Ai,jCoin terminated with D(Ai,jCoin) = 1 then

10: q′i,j ← 0, q′j,i ← 1, Êt ← Êt ∪ {(j, i)}
11: if |Êt| =

(
m
2

)
and Q′ ∈ Qm(WST) then return WST

12: else if |Êt| =
(
m
2

)
and Q′ ∈ Qm(¬WST) then return ¬WST

A first naive approach for a testing component for the passive scenario (cf. Sec. 1) is Alg. 20,
which does the following: Terminate as soon as we can decide, for every (i, j) ∈ (m)2,
each with error probability at most γ′ = min{α, β}/

(
m
2

)
, whether qi,j > 1/2 or qi,j < 1/2

holds, and output WST if an auxiliary relation Q′ generated during runtime is WST, and
¬WST otherwise. To construct Q′, the value q′i,j is set to 1 resp. 0 whenever we are sure
enough (for the first time) that qi,j > 1/2 resp. qi,j < 1/2 holds. Here, testing the sign of

qi,j − 1/2 with confidence level 1− γ′ may be done by means of an instance Ai,jCoin of a

testing algorithm ACoin ∈ ACoin that solves Ph,γ
′

Coin.

As the following theorem shows, this simple approach results in a solution to Pm,h,α,βWST .
In its proof, we may make use of the notation D(ACoin, t) introduced in (4.10).

Theorem 5.6. Let m ∈ N≥3, α, β ∈ (0, 1), and h ∈ [0, 1/2) be fixed, define γ′ :=

min{α, β}/
(
m
2

)
and let ACoin ∈ ACoin be a solution to Ph,γ

′

Coin. For any π ∈ Π∞, A :=Alg. 20

instantiated with parameters m, π and ACoin is a solution to Pm,h,α,βWST .

Proof. Abbreviate T := TA and {i(t), j(t)}, i(t) < j(t), for the query sampled from
π at the t-th iteration of the loop. The testing algorithm Ai,jCoin observes the sample

X
[t]
i,j ∼ Ber(qi,j) iff (i(t), j(t)) = (i, j), and after time t it has observed exactly (nt)i,j of

these samples. Let Q ∈ Qhm be fixed for the moment and recall γ′ = α
m ∧

β
m−1 . We split

the remaining proof into two parts.
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Part 1: Almost sure finiteness of T
As in the proof of Thm. 4.6, we may suppose for the proof of Part 1 w.l.o.g. that A does
not terminate before all of the internal testing algorithms Ai,jCoin have terminated. By
assumption on π, we have (nt)i,j → ∞ almost surely as t → ∞ for each (i, j) ∈ (m)2.

For any (i, j) ∈ (m)2, Ai,jCoin solves by assumption Ph,γ
′

Coin and hence the stopping time

Ti,j = min
{
t ∈ N : D

(
Ai,jCoin, (nt)i,j

)
̸= “N/A”

}
is a.s. finite. In particular,

T ′ := max(i,j)∈(m)2 Ti,j

is a.s. finite. Since an edge between i and j is added to Êt iff t = Ti,j , we have in particular
|ÊT ′ | =

(
m
2

)
. Regarding that either Q′ ∈ Qm(WST) or Q′ ∈ Qm(¬WST) holds, this

shows T = T ′, i.e., A terminates a.s. This completes the proof of Part 1.

Part 2: Correctness of A
Let (i, j) ∈ (m)2 be arbitrary. As Ai,jCoin solves Ph,γ

′

Coin, we obtain in case qi,j > 1/2+ h that

PQ(q′i,j = 0) = PQ

(
D
(
Ai,jCoin

)
= 1
)
≤ γ′

and similarly in case qi,j < 1/2− h that

PQ(q′i,j = 1) = PQ

(
D
(
Ai,jCoin

)
= 0
)
≤ γ′.

Consequently, we have with probability ≥ 1−
(
m
2

)
γ′ that

∀(i, j) ∈ (m)2 : qi,j > 1/2 ⇔ q′i,j > 1/2,

which is a sufficient condition for Q ∈ Qm(WST)⇔Q′ ∈ Qm(WST). Regarding the
definition of γ′, A thus fulfills

PQ(D(A) = WST) ≥ 1− α if Q ∈ Qhm(WST)

and
PQ(D(A) = ¬WST) ≥ 1− β if Q ∈ Qhm(¬WST),

which completes the proof.

By construction, the sample complexity of Alg. 20 is exactly the number of iterations
that are required for testing the signs of all qi,j − 1/2, (i, j) ∈ (m)2. By choosing

ACoin as the non-sequential solution to Ph,γ
′

Coin from Lem. 2.10, which we denote by

AHoeffding
Coin (h, γ′) throughout this thesis, testing the sign of qi,j − 1/2 requires in any case

exactly N := ⌈ 1
2h2

ln 1
γ ⌉ iid samples governed by Ber(qi,j). However, the explicit time at

which a pair has been sampled at least N times highly depends on the underlying sampling
strategy π, so that an analysis of the sample complexity of Anaive can only be done w.r.t.
the corresponding sampling strategy π. As the testing component is working in parallel
to π in the passive setting, i.e., it has no influence on the behavior of π, the minimum
requirement for a test component in the passive online test seems to be consistency in
terms of an a.s. finite termination time and the adherence to predefined error bounds for
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a general class of sampling strategies. Both requirements are met by the test underlying

Anaive by Thm. 5.6 for the class Π∞ if Anaive is instantiated with a solution to Ph,γ
′

Coin.

In the passive online testing scenario, i.e., the sampling strategy π is instantiated in a
black-box fashion by some dueling bandits algorithm based on a transitivity assumption
(such as those by Falahatgar et al. [2017a, 2018]), it might happen that π terminates
before the testing algorithm came to a decision, and in particular that π is not defined
any more. In this case, if one is still interested in whether transitivity was fulfilled in
hindsight, one may continue sampling according to the strategy π̂, which picks each query
{i, j} ∈ [m]2 with probability 1/

(
m
2

)
. The other way around, if the testing algorithm came

to a positive decision (D(A) = XST), although the online ranking algorithm has not yet
terminated, one can simply continue the sampling strategy without the testing component.
In case of a negative decision (D(A) = ¬XST), the online ranking algorithm should be
interrupted due to violating the assumptions.

In the active online testing scenario, on the other side, we have the possibility to choose
π in a favorable way and consequently analyze the sample complexity of Alg. 20. For
this purpose, we consider a sampling strategy πWST, which chooses its queries from the
time-dependent set consisting of all pairs {i, j}, for which it is (according to the internal
testing algorithm Ai,jCoin of Alg. 20) not yet sure with confidence level 1 − γ′ whether
qi,j > 1/2 or qi,j < 1/2 holds. Formally, the following set is considered:

U(t) :=
{
{i, j} ∈ [m]2 | i < j and D

(
Ai,jCoin, (nt−1)i,j

)
̸= “N/A”

}
In each time t, the sampling strategy πWST queries {i, j} ∈ [m]2 uniformly at random
from U(t), if U(t) is non-empty, and otherwise queries {i, j} ∈ [m]2 uniformly at random
from [m]2. Note that the second case (i.e., U(t) is empty) is only defined in order to ensure
that πWST ∈ Π∞, which in turn allows for applying Thm. 5.6. In light of this, we obtain
the following corollary.

Corollary 5.7. Let m ∈ N≥3, h ∈ [0, 1/2), α, β ∈ (0, γ0) for some γ0 ∈ (0, 1), choose

γ′ := min{α, β}/
(
m
2

)
and let ACoin ∈ ACoin be a solution to Ph,γ

′

Coin. Let πWST be the
sampling strategy from above and suppose A to be Alg. 20 called with parameters m, πWST

and ACoin. Then, A solves Pm,h,α,βWST and fulfills

EQ

[
TA] = (m

2

)∑
(i,j)∈(m)2

Eqi,j
[
TAi,j

Coin

]
=

(
m

2

)∑
(i,j)∈(m)2

Eqi,j
[
TACoin

]
In case h > 0 and ACoin = AHoeffding

Coin (h, γ′), we obtain

TA =

(
m

2

)⌈
1

2h2
ln

(
m(m− 1)

2(α ∧ β)

)⌉
PQ-almost surely for all Q ∈ Qhm,

i.e., if γ = α ∧ β, we have

supQ∈Qh
m
EQ

[
TA] ∈ O(m2 lnm

h2
ln

1

γ

)
.

Proof of Cor. 5.7. Throughout this proof, we will use for convenience the notation T :=
TA. Suppose Q ∈ Qhm to be fixed. With

U ′(t) :=

{
U(t), if U(t) ̸= ∅,
[m]2, otherwise,
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the sampling strategy πWST may formally be defined via

PQ(π(t, (nt′ ,wt′)0≤t′≤t−1) = {i, j}) =

{
1

|U ′(t)| , if {i, j} ∈ U ′
C(t),

0, otherwise.

Since ACoin solves Ph,γ
′

Coin, eventually {i, j} ̸∈ U(t) holds for all (i, j) ∈ (m)2 for large values
of t, and from then on π picks its queries {i, j} uniformly at random from (m)2. Thus,

πWST is an element of Π∞ and Thm. 5.6 shows that A solves Pm,h,α,βWST .

With Ti,j defined as in the proof of Thm. 5.6, Ai,jCoin terminates after having seen
exactly (nTi,j )i,j samples. The algorithm A terminates as soon as its internal statistic

Êt (cf. Alg. 20) contains
(
m
2

)
edges, which is equivalent to U(t) = ∅. Until then, πWST

does not make any query {i, j} ∈ [m]2 \ U(t); in other words, it queries until T the pair
{i, j} so often as is necessary for Ai,jCoin to terminate, that is we have (nTi,j )i,j = (nT )i,j .
Consequently, T =

∑
(i,j)∈(m)2

(nT )i,j =
∑

(i,j)∈(m)2
(nTi,j )i,j holds and we obtain

EQ [T ] =
∑

(i,j)∈(m)2

EQ

[
(nTi,j )i,j

]
=

∑
(i,j)∈(m)2

Eqi,j
[
TAi,j

Coin

]
=

∑
(i,j)∈(m)2

Eqi,j
[
TACoin

]
,

where we have used in the last step that each Ai,jCoin is an instance of ACoin.

If h > 0 and ACoin = AHoeffding
Coin (h, γ′) ∈ ACoin is the corresponding non-sequential testing

algorithm from Lem. 2.10, each testing algorithm Ai,jCoin terminates a.s. after having seen

exactly
⌈

1
2h2

ln
(
m(m−1)
2(α∧β)

)⌉
samples. Therefore, we have a.s.

T =
∑

(i,j)∈(m)2
(nT )i,j =

(
m

2

)⌈
1

2h2
ln

(
m(m− 1)

2(α ∧ β)

)⌉
.

With regard to Thm. 5.4, the testing algorithm from Cor. 5.7 is a solution to Pm,h,γWST that is
w.r.t. the worst-case sample complexity already asymptotically optimal up to logarithmic
factors. Nevertheless, one may ask, firstly, whether termination is only possible as soon as
being sure about the signs of qi,j − 1/2 of all the

(
m
2

)
many {i, j} ∈ [m]2, and secondly,

if the rough correction term in the error probability (i.e.,
(
m
2

)
) for the sign test of any

qi,j − 1/2, is optimal. In the following, we answer both questions negatively, giving rise
to more sophisticated testing procedures. Moreover, we also present instance-wise upper
bounds for Pm,h,α,βWST .

5.3.1. Enhanced Online WST Testing

In this section, we will improve upon the algorithm from Cor. 5.7 by exploiting the graph
theoretical results from Sec. 3. Recall that we have defined for Q ∈ Qm the tournament
G(Q) ∈ Gm via

i → j in G(Q) ⇔ qi,j > 1/2.

As seen in Prop. 3.1, any Q ∈ Q0
m is WST iff G(Q) is WST. Thus, to test whether such

Q is WST or not, one may initialize Ê = ∅, and, whenever sure enough that qi,j > 1/2,
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add the edge (i, j) to Ê. Provided all edges in Ê are correct, ([m], Ê) is a subgraph of
G(Q). In case ([m], Ê) is acyclic in extension resp. non-acyclic in extension, we could thus
correctly conclude that G(Q) was acyclic resp. non-acyclic, which implies Q ∈ Qm(WST)
resp. Q ∈ Qm(¬WST). By Prop. 3.22, acyclicity in extension resp. non-acyclicity of
([m], Ê) would be determined by at most

(
m
2

)
− ⌊m+1

3 ⌋ resp. m of its edges, hence for an

overall type I/II error of α/β it would be sufficient to be sure about each edge in Ê with
confidence 1−min{ αm , β(

(
m
2

)
− ⌊m+1

3 ⌋)
−1}.

Following these ideas results in Alg. 21, which we suggest as a testing procedure for
Pm,h,α,βWST . In addition to AHoeffding

Coin and ASPRT
Coin , we will also consider the optimal solution

to PγCoin from Prop. 2.22, denoted by AFarrell
Coin (γ), as a particular choice for ACoin in the

analysis of Alg. 21. In the next theorem, we verify that this algorithm has in fact the
desired theoretical guarantees; its proof is deferred to Sec. 5.3.3. In contrast to Thm. 8.4
in [Haddenhorst et al., 2021b], Thm. 5.8 also allows h = 0.

Algorithm 21 : Aimproved

Parameters: m, a sampling strategy π, a testing algorithm ACoin ∈ ACoin

Initialization: For any (i, j) ∈ (m)2 let Ai,jCoin be an instance of ACoin,

n0 ← (0)1≤i,j≤m, w0 ← (0)1≤i,j≤m, Ê0 ← ∅
1: for t ∈ N do
2: {i, j} ∼ π(t, (nt′ ,wt′)0≤t′≤t−1), w.l.o.g. i < j

3: Observe X
[t]
i,j ∼ Ber(qi,j)

4: Update nt and wt according to (4.8)

5: Reveal X
[t]
i,j to A

i,j
Coin

6: Êt ← Êt−1

7: if Ai,jCoin terminated with D(Ai,jCoin) = 0 then ▷ qi,j > 1/2 w.h.p.

8: Êt ← Êt ∪ {(i, j)}
9: else if Ai,jCoin terminated with D(Ai,jCoin) = 1 then ▷ qi,j < 1/2 w.h.p.

10: Êt ← Êt ∪ {(j, i)}
11: if ([m], Êt) is acyclic in extension then return WST
12: else if ([m], Êt) contains a cycle then return ¬WST

Theorem 5.8. Let π ∈ Π∞, α, β ∈ (0, 1) and h ∈ [0, 1/2) be fixed, define γ′ :=

min{ αm , β(
(
m
2

)
− ⌊m+1

3 ⌋)
−1} and let ACoin ∈ ACoin be a solution to Ph,γ

′

Coin. Write A
for Alg. 21 called with parameters m, π and ACoin. Then, A solves Pm,h,α,βWST . In case
ACoin = AX

Coin[h, γ
′] for X ∈ {Hoeffding, SPRT,Farrell} and Ã is Alg. 20 called with pa-

rameters m, π and ACoin = AX
Coin(h, γ̃) with γ̃ := min{α,β}/(m2 ) (as suggested by Thm. 5.6),

TA ≤ T Ã holds almost surely w.r.t. PQ for any Q ∈ Q0
m.

Prop. 3.25 indicates that one cannot expect to choose a correction term smaller than(
m
2

)
− ⌊m+1

3 ⌋ for the desired type II error within the choice of γ in Alg. 21. Furthermore,
the fact that the graph G ∈ Gm with edges 1 → 2 → . . . → m → 1 contains a cycle,
unlike any of its proper subgraphs, demonstrates optimality of the correction term m
for the desired type I error within the choice of γ. As a direct consequence of Thm. 5.8,
we obtain in case h > 0 a result analogous to the one stated in Cor. 5.7 for Alg. 21
called with m, the sampling strategy π from Cor. 5.7, and ACoin = ASPRT

Coin (h, γ′) with
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γ′ = min{ αm , β(
(
m
2

)
− ⌊m+1

3 ⌋)
−1}, so that it achieves an optimal worst-case runtime (up

to a logarithmic term of m) in the active online testing scenario as well.

5.3.2. Instance-wise Upper Bounds and Exploiting Negligibility of Edges

Next, we turn to more sophisticated solutions to Pm,h,α,βWST in the active setting, that also
take into account that those queries {i, j}, which are with high probability negligible (cf.
Sec. 3.6), are superfluous and should be avoided. To this end, we define the sampling
strategy π∗WST as the sampling strategy which, similarly to the sampling strategies πWST

considered in Cor. 5.7, keeps track of a specific subset of [m]2 consisting of all {i, j} for
which qi,j > 1/2 or qi,j < 1/2 can be decided with enough confidence (with regard to the

internal testing algorithm Ai,jCoin of Alg. 21) at time t. In contrast to the latter, the subset
used by π∗WST takes also the negligibility of edges into account. Formally, π∗WST considers
the following set at time t:

U∗(t) :=
{
{i, j} ∈ [m]2

∣∣ (i, j), (j, i) ̸∈ Êt−1 and

{i, j} is not negligible for ([m], Êt−1)
}
.

Now, let π∗WST be defined just like πWST where U(t) is replaced by U∗(t), i.e., π∗WST

chooses its t-th query uniformly at random from U∗(t) if U∗(t) ̸= ∅, and uniformly at
random from [m]2 if U∗(t) = ∅.
Note that the set Êt−1 may be defined as the set of all {i, j} ∈ (m)2, for which

∃s ∈ [t− 1] : D
(
Ai,jCoin, (ns)i,j

)
= 0 and ∀s′ ∈ [s− 1] : D

(
Ai,jCoin, (ns′)i,j

)
= “N/A”

This condition only depends on the randomness of Alg. 21 up to time t − 1 (and with
this for 1 ≤ i < j ≤ m also on that of Ai,jCoin up to time (nt−1)i,j) and thus only on
n0,w0, . . . ,nt−1,wt−1 but not on (nt′ ,wt′) for t

′ ≥ t. Hence, π∗WST is in fact a sampling
strategy as stipulated in Sec. 1.1.

From Thm. 5.8, we immediately obtain that Alg. 21 called with parameters m, π∗WST

and the solution ACoin ∈ ACoin to Ph,γ
′

Coin, which π
∗
WST formally depends on, is a solution to

Pm,h,α,βWST . But even if this guarantee holds for any solution ACoin to Ph,γ
′

Coin, it is desirable to
choose ACoin in such a way that the sample complexity of the corresponding algorithm is
low. According to Prop. 2.17, Prop. 2.22, and Prop. 2.13, the choices ACoin = ASPRT

Coin (h, γ′)
resp. ACoin = AFarrell

Coin (γ′) are to some extent optimal in this regard for the cases h > 0 resp.
h = 0. With these, we obtain the following instance-wise upper bounds on the expected
termination time for solutions to Pm,h,α,βWST . They show that the gaps q̄i,j = |qi,j − 1/2|
determine the complexity of testing whether Q is weakly stochastic transitive or not.
In comparison to the lower bound stated in Thm. 5.4, our instance-wise upper bounds
depend on all

(
m
2

)
instead of only

(
m−1
2

)
entries of Q. Needless to say, in terms of the

asymptotic behavior as m → ∞, this difference is negligible.

Theorem 5.9. Suppose m ∈ N≥3, α, β ∈ (0, 1/2), h ∈ [0, 1/2), let ACoin ∈ ACoin be
arbitrary and define γ′ := min{ αm , β(

(
m
2

)
− ⌊m+1

3 ⌋)
−1}. Write A for Alg. 21 called with

parameters m, the sampling strategy π∗WST and ACoin as testing algorithm.

(i) If ACoin solves Ph,γ
′

Coin, then A solves Pm,h,α,βWST .
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(ii) If h > 0 and ACoin = ASPRT
Coin (h, γ′) is the corresponding solution to Ph,γ

′

Coin from
Prop. 2.17, the following holds: Suppose Q ∈ Qhm is fixed. Then, with e(h, γ′) :=⌈

ln((1−γ′)/γ′)
ln((1/2+h)/(1/2−h))

⌉
, we have that EQ[TA] is bounded from above by

∑
(i,j)∈(m)2

e(h, γ′)

2q̄i,j

∣∣∣∣1− 2
(
1 + (1/2 + q̄i,j)

e(h,γ′)(1/2− q̄i,j)−e(h,γ
′)
)−1

∣∣∣∣ . (5.5)

(iii) If h = 0 and ACoin = AFarrell
Coin (γ′) is the corresponding solution to Ph,γ

′

Coin from

Prop. 2.22, then A solves Pm,0,α,βWST and there exists h0 ∈ (0, 1/2) such that

EQ[TA] ≤ 1

2

∑
(i,j)∈(m)2

1

q̄2i,j
ln ln

1

q̄i,j

holds for any Q ∈ Q0
m, for which q̄i,j ≤ h0 for all distinct i, j ∈ [m].

Proof of Thm. 5.9. Throughout this proof, we will write for convenience T := TA.

(i) Let Q ∈ Qhm be fixed and suppose at first ACoin ∈ ACoin to be an arbitrary solution

to Ph,γ
′

Coin. Then, each Ai,jCoin terminates a.s. by assumption, and thus |Êt| →
(
m
2

)
holds a.s. as t → ∞. From this we infer (nt)i,j → ∞ a.s. for any (i, j) ∈ (m)2, i.e.

π ∈ Π∞. Consequently, Thm. 5.8 is applicable and yields that A solves Pm,h,α,βWST .

(ii) Suppose h > 0 and ACoin = ASPRT
Coin (h, γ′). As ACoin solves Ph,γ

′

Coin by Prop. 2.17, (i)

assures that A solves Pm,h,α,βWST . For arbitrary Q ∈ Qhm, Prop. 2.17 also yields

Eqi,j
[
TAi,j

Coin

]
=
e(h, γ′)

2q̄i,j

∣∣∣∣1− 2
(
1 + (1/2 + q̄i,j)

e(h,γ′)(1/2− q̄i,j)−e(h,γ
′)
)−1

∣∣∣∣ (5.6)

for any (i, j) ∈ (m)2. A look at Alg. 21 and the choice of π∗WST shows that A
does not query {i, j} after Ai,jCoin has terminated. Hence, we have EQ

[
TA] ≤∑

(i,j)∈(m)2
Eqi,j

[
TAi,j

Coin

]
and combining this with (5.6) completes the proof of (ii).

(iii) If h = 0 and ACoin = AFarrell
Coin (γ′), Prop. 2.22 assures that ACoin solves Ph,γ

′

Coin and

thus A solves Pm,h,α,βWST according to (i). Moreover, Prop. 2.22 allows us to choose an
h0 ∈ (0, 1/2) such that

E1/2±h
[
TACoin

]
1
h2

ln ln 1
h

≤ 1

2

holds for any h ≤ h0. As each Ai,jCoin is an instance of ACoin, we have for any Q ∈ Q0
m

with q̄i,j ≤ h0 for all (i, j) ∈ (m)2 the estimate

Eqi,j
[
TAi,j

Coin

]
≤ 1

2q̄2i,j
ln ln

1

q̄i,j

for any (i, j) ∈ (m)2. Thus, a similar argumentation as in (ii) proves the desired
statement.
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By means of Prop. 2.17, it immediately follows that the algorithm A from Thm. 5.9(ii)

fulfills supQ∈Qh
m
EQ[T

A] ∈ O(m2 lnm
h2

ln 1
γ ), i.e., it is asymptotically optimal up to a

lnm-factor. In order to compare the result of Thm. 5.9 with the instance-wise lower
bound from Thm. 5.4 more thoroughly, suppose Q ∈ Qhm(WST) and (i, j) ∈ (m)2 with
|σQ(i)− σQ(j)| > 1 to be fixed for the moment and let α = β = γ for simplicity. Due to
e(h, γ′) ∈ Θ( 1h) as h↘ 0, the dependency of (5.5) on the (i, j)-entry of Q is approximately
1

q̄i,jh
, whereas this dependency in (5.3) is of the form 1

q̄2i,j
. This suggests, that the two

bounds are closest in case h ≈ q̄i,j . Considering that the choice ACoin = ASPRT
Coin (h, γ′)

assures optimal early detection of sign(qi,j − 1/2) only in case |qi,j − 1/2| = h, the
appearance of 1

h in (5.5) may not come as a surprise. Moreover, the scaling γ′ ≈ γ/m2

leads to an additional factor of 2 lnm in (5.5) compared to (5.3).

Before giving a detailed proof of Thm. 5.8, let us briefly discuss the computational
complexity of the presented WST testing solution required in any time step t ∈ N. If
Aimproved observes the feedback for its t-th query {i(t), j(t)}, updating nt and wt can

be done in O(1) and the cost for updating Êt is basically the cost of updating Ai(t),j(t)Coin ,
which is also O(1) for all choices of ACoin considered in Thm. 5.9. Thus, the overall cost
is dominated by (a) the cost for updating U∗(t) and (b) the cost of deciding whether Êt
is acyclic in extension or contains a cycle.

If {i, j} is negligible for ([m], Êt), then it is either negligible for ([m], Êt−1) or {i, j} ∩
{i(t), j(t)} ≠ ∅, and the same holds for non-negligibility. Hence, to calculate U∗(t) from
U∗(t− 1) one has to check negligibility of the O(m) many sets {{i, j} | j ∈ {i(t), j(t)}},
and naively checking negligibility (according to its definition) of any such {i, j} can be
done in O(m). Therefore, the costs for (a) are at most O(m2). For (b), one only has to
test (a)cyclicity in extension of ([m], Êt) if Êt ̸= Êt−1. In this case, Êt contains exactly
those edges as Êt−1 and in addition either (i(t), j(t)) or (j(t), i(t)), one only has to check
whether this additional edge leads to a cycle in Êt containing i(t) and j(t), which may
e.g. be done by means of a breadth-first search and requires at most O(m2) operations.
Moreover, Prop. 3.19 assures that acyclicity in extension of ([m], Êt) can be checked
with knowledge of U∗(t) in O(m2). Thus, (b) can be done in O(m2) and the overall
computational complexity for time step t is O(m2).

5.3.3. Proof of Thm. 5.8

Proof of Thm. 5.8. Similarly as in the proof of Thm. 5.6, we abbreviate T := TA and
write {i(t), j(t)}, i(t) < j(t), for the query sampled from π at the t-th iteration of the loop.

The testing algorithm Ai,jCoin observes the sample X
[t]
i,j ∼ Ber(qi,j) iff (i(t), j(t)) = (i, j), and

after time t it has observed exactly (nt)i,j of these samples. For the sake of convenience,
we write G for the set {{i, j} | (i, j) ∈ EG or (j, i) ∈ EG} for G ∈ Gm. We denote by Êt
the internal statistic of Alg. 21 at the end of the t-th iteration. Moreover, we abbreviate
ĜT := ([m], ÊT ). Prop. 3.22 allows us to fix a function lacyclic : Gm → Gm such that for
all G ∈ Gm we have Elacyclic(G) ⊆ EG, |Elacyclic(G)| ≤

(
m
2

)
− ⌊m+1

3 ⌋ as well as

G ∈ Gm(acyclic) ⇔ lacyclic(G) ∈ Gm(acyclic). (5.7)

Recall Gm(¬acyclic) = {G ∈ Gm |G contains a cycle} and that Q ∈ Qm(¬WST) iff G(Q)
contains a cycle. As every cycle in any graph on [m] contains at most m edges, it is
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straightforward to define a mapping l¬acyclic : Gm → Gm such that El¬acyclic(G) ⊆ EG,
|El¬acyclic(G)| ≤ m and

G ∈ Gm(¬acyclic) ⇔ l¬acyclic(G) ∈ Gm(¬acyclic)

hold for all G ∈ Gm. For Q ∈ Qm, E ⊆ [m]× [m] and {i, j} ∈ [m]2 we say that {i, j} is
assigned incorrectly (ass. inc.) in E w.r.t. Q if

(i, j) ∈ E and qi,j < 1/2 or (j, i) ∈ E and qi,j > 1/2

holds, where we may omit the term “w.r.t. Q” in case Q is clear from the context. We
split the proof into five parts.

Part 1: A terminates a.s. for any Q ∈ Qhm
As in the proof of Thm. 4.6, we may suppose for the proof of Part 1 w.l.o.g. that A does
not terminate before all of the internal testing algorithms Ai,jCoin have terminated. By the
assumption π ∈ Π∞, we have (nt)i,j → ∞ almost surely as t → ∞ for each (i, j) ∈ (m)2.

For any (i, j) ∈ (m)2, Ai,jCoin solves by assumption Ph,γ
′

Coin and hence the stopping time

Ti,j = min
{
t ∈ N : D

(
Ai,jCoin, (nt)i,j

)
̸= “N/A”

}
(5.8)

is a.s. finite. In particular,
T ′ := max(i,j)∈(m)2 Ti,j

is a.s. finite. Regarding the definitions of A and T ′ we see that ĜT ′ is almost surely an
element of Gm = Gm(acyclic) ∪ Gm(¬acyclic). Consequently, we obtain

T = min
{
t ∈ N : Ĝt ∈ Gm(acyclic) or Ĝt ∈ Gm(¬acyclic)

}
≤ T ′ <∞ a.s.,

which completes the proof of Part 1. ■

Part 2: Showing PQ({i, j} is ass. inc. in ÊT ) ≤ γ′ in case |qi,j − 1/2| > h

A look at lines 6–10 of Alg. 21 reveals Êt−1 ⊆ Êt for all t ≤ T and moreover

(i, j) ∈ ÊT ⇔ Ti,j ≤ T and D
(
Ai,jCoin

)
= D

(
Ai,jCoin, T

)
= 1.

As Ai,jCoin solves Ph,γ
′

Coin, we infer in case qi,j < 1/2− h that

PQ

(
{i, j} is assigned incorrectly in ÊT

)
= PQ((i, j) ∈ ÊT )

≤ PQ

(
D
(
Ai,jCoin

)
= 0
)
≤ γ′,

and in case qj,i < 1/2− h we similarly obtain

PQ({i, j} is assigned incorrectly in ÊT ) = PQ((j, i) ∈ ÊT )

≤ PQ

(
D
(
Ai,jCoin

)
= 1
)
≤ γ′.

This shows the assertion of Part 2. ■

Part 3: Bounding the type I error
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Let us first consider the case Q ∈ Qhm(WST). According to the choice of l¬WST we have

PQ(D(A) ̸= WST) = PQ(ĜT ∈ Gm(¬acyclic)) = PQ(l¬acyclic(ĜT ) ∈ Gm(¬acyclic)).
(5.9)

By Part 2 we have

PQ

(
{i, j} is ass. inc. in El¬acyclic(ĜT )

∣∣∣ l¬acyclic(ĜT ) = G
)
≤

{
0, if {i, j} ̸∈ G,
γ′, if {i, j} ∈ G.

If no {i, j} ∈ l¬acyclic(ĜT ) was assigned incorrectly in El¬acyclic(ĜT ), then l¬acyclic(ĜT ) ∈
Gm(¬acyclic) would imply Q ∈ Qm(¬WST). Consequently, Q ∈ Qhm(WST) lets us infer

that l¬acyclic(ĜT ) ∈ Gm(¬acyclic) is only possible if there exists some {i, j} ∈ l¬acyclic(ĜT ),
which is assigned incorrectly in E¬lacyclic(ĜT ). Regarding that |G| = |EG|, we thus get

PQ

(
l¬acyclic(ĜT ) ∈ Gm(¬acyclic) and l¬acyclic(ĜT ) = G

)
≤ PQ

(
∃{i, j} ∈ G, which is ass. inc. in El¬acyclic(ĜT ) and l¬acyclic(ĜT ) = G

)
≤
∑

{i,j}∈G
PQ

(
{i, j} is ass. inc. in El¬acyclic(ĜT ) and l¬acyclic(ĜT ) = G

)
≤ γ′|EG|PQ

(
l¬acyclic(ĜT ) = G

)
for every G ∈ Gm. Together with (5.9) and PQ(|El¬acyclic(ĜT )| ≤ m) = 1, which holds

according to the choice of l¬acyclic, we infer

PQ(D(A) ̸= WST) = PQ

(
l¬acyclic(ĜT ) ∈ Gm(¬acyclic)

)
=
∑

G:G∈Gm

PQ

(
l¬acyclic(ĜT ) ∈ Gm(¬acyclic) and l¬acyclic(ĜT ) = G

)
≤
∑

G:G∈Gm

PQ

(
∃{i, j} ∈ G, which is ass. inc. in El¬acyclic(ĜT ) and l¬acyclic(ĜT ) = G

)
≤ γ′

∑
G:G∈Gm

|EG|PQ

(
l¬acyclic(ĜT ) = G

)
≤ γ′m ≤ α,

where we have used that
∑

G:G∈Gm
PQ(l¬acyclic(ĜT ) = G) = 1 holds trivially. ■

Part 4: Bounding the type II error
Now, we consider the case Q ∈ Qhm(¬WST). Similarly as above in Part 3, the choice of
lacyclic yields

PQ(D(A) ̸= ¬WST) = PQ(ĜT ∈ Gm(acyclic)) = PQ(lacyclic(ĜT ) ∈ Gm(acyclic)). (5.10)

An analogue argumentation as above shows that lacyclic(ĜT ) ∈ Gm(acyclic) is only possible

if there exists some {i, j} ∈ lacyclic(ĜT ), which is assigned incorrectly in Elacyclic(ĜT ). From

this and Part 2 we can infer that

PQ

(
lacyclic(ĜT ) ∈ Gm(acyclic) and lacyclic(ĜT ) = G

)
≤ γ′|EG|PQ

(
lacyclic(ĜT ) = G

)
(5.11)
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is fulfilled for every G ∈ Gm. According to the choice of lacyclic we have PQ(|Elacyclic(ĜT )| ≤(
m
2

)
− ⌊(m+ 1)/3⌋) = 1, so that combining this with (5.10) and (5.11) yields

PQ(D(A) ̸= ¬WST) ≤ γ′
∑

G:G∈Gm

|EG|PQ

(
lacyclic(ĜT ) = G

)
≤ γ′

((
m

2

)
−
⌊
m+ 1

3

⌋)
≤ β.

This completes the proof of Part 4. ■

Part 5: Comparing Alg. 21 to Alg. 20

Now, suppose X ∈ {Hoeffding, SPRT,Farrell} and let A =: A1 and Ã =: A2 as specified
in the statement of this theorem above, i.e., A1 is called with AX

Coin[h, γ
′] whereas A2

is called with AX
Coin[h, γ̃] as input. Further, suppose Q ∈ Q0

m to be fixed and let T
(l)
i,j

for l ∈ {1, 2} be defined as in (5.8) by using the statistics nA1
t = ((nA1

t )i,j)1≤i,j≤m resp.
nA2
t = ((nA2

t )i,j)1≤i,j≤m of A1 resp. A2. According to Ex. 2.20 and Prop. 2.22, AX
Coin[h, γ

′]
resp. AX

Coin[h, γ̃] are symmetric GSPRTs with some barriers B′ resp. B̃, that fulfill B′ ≤ B̃
due to γ′ > γ̃. Consequently, AX

Coin(h, γ
′) terminates a.s. not later than AX

Coin(h, γ̃), which

shows T
(1)
i,j ≤ T

(2)
i,j . As (i, j) ∈ (m)2 was arbitrary, we obtain by construction of A1 and

A2 that

TA1 ≤ max(i,j)∈(m)2 T
(1)
i,j ≤ max(i,j)∈(m)2 T

(2)
i,j ≤ T

A2 a.s. w.r.t. PQ.

5.4. Approach II: A Likelihood-ratio Based Approach

In this section, we approach WST testing from another direction. For the sake of
convenience, we assume (n0)i,j = 1 for each distinct i, j ∈ [m], i.e., we suppose that each
of the queries {i, j} ∈ [m]2 has already been made exactly once at time t = 1. Moreover,
if not explicitly stated differently, we suppose throughout this section π ∈ Π∞. Recall
that we are interested in sequentially testing the hypotheses

HWST
0 : Q ∈ Qm(WST) HWST

1 : Q ∈ Qm(¬WST). (5.12)

Here, to assure a type I error bound for our testing algorithm, we follow a likelihood-ratio
test (LRT) approach for (5.12), while we control the type II error by following an LRT
approach for the corresponding interchanged hypotheses

H̃WST
0 : Q ∈ Qm(¬WST) H̃WST

1 : Q ∈ Qm(WST). (5.13)

In combination, this will allow us to construct a solution to Pm,0,α,βWST . Our approach is
an extension of the LRT for WST by Iverson and Falmagne [1985] to the online testing
setting, for which finite sample properties instead of asymptotic ones are necessary. Again,
we will treat both the passive and the active testing scenario. In the passive one, we
restrict ourselves to sampling strategies π ∈ Π∞ that fulfill further constraints as specified
in the following.
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Definition 5.10. Recall the definition of a sampling strategy from Sec. 1.1 and write

Πln ln
∞ for the set of sampling strategies which fulfill limt→∞

(nt)i,j
ln ln t =∞ a.s. as t → ∞

for any (i, j) ∈ (m)2.

If π ∈ Π \ Π∞, a sampling strategy π̂ ∈ Π that chooses π(t, (nt′ ,wt′)0≤t′≤t−1) =
π̂(t, (nt′ ,wt′)0≤t′≤t−1) with probability 1− 1√

t
, and otherwise samples uniformly at random

from [m]2 with probability 1√
t
, fulfills π̂ ∈ Πln ln

∞ (Lem. 2.8) and

P(π(t, (nt′ ,wt′)0≤t′≤t−1) ̸= π̂(t, (nt′ ,wt′)0≤t′≤t−1)) ≤
1√
t
→ 0

as t → ∞. Thus, π̂ and π behave similarly in the limit. This shows that the assumption
π ∈ Πln ln

∞ , which is required for theoretical results in our framework, is rather mild.

We start this section with the introduction of the LRT statistics λt and µt for (5.12) and
(5.13) as well as conveniently modified statistics λ̃t and µ̃t. These statistics allow us to

construct passive and active solutions to Pm,0,α,βWST . We provide a theoretical analysis of
the used statistics and also sophisticated update formulas for the calcuation of these.
Afterwards, we turn to the asymptotic behaviour of λt and µt and formulate asymptotic
size-α tests for testing WST resp. ¬WST. These latter results extend upon the work by
Iverson and Falmagne [1985].

5.4.1. The Likelihood-ratio Test Statistics

Let us suppose for the moment to be in the passive scenario, where the query {i, j} made
at time t is chosen according to an arbitrary but fixed sampling strategy π ∈ Π∞, and
we want to test WST of Q based on the statistics (nt)i,j , (wt)i,j for (i, j) ∈ (m)2, t ∈ N.
Recall that (wt)i,j ∼ Bin((nt)i,j , qi,j) holds for any time step t. Hence, a naive approach
for testing (5.12) with a (sequential) LRT would be based on the binomial distribution of
wt, leading to the test statistic

λt := −2 ln
(
supQ∈Qm(WST) L(Q|wt,nt)

supQ∈Qm
L(Q|wt,nt)

)
,

where

L(Q|wt,nt) =
∏

i<j
P
(
Bin((nt)i,j , qi,j) = (wt)i,j

)
is the likelihood for Q given the observed outcomes represented by wt and nt. However,
the specific form of the log-likelihood is analytically unwieldy and thus makes the finite
sample analysis cumbersome. A remedy can be found by using a suitable transformation
of the parameter space and an accompanying normal approximation of the underlying
binomial distribution. For this, let us define the monotonically increasing transformation

ϕ : [0, 1] → [−π/2, π/2], ϕ(x) := 2 arcsin(
√
x)− π/2.

From the equivalence

(qi,j , qj,k ≤ 1/2 ⇒ qi,k ≤ 1/2) ⇔ ( qk,j , qj,i ≥ 1/2 ⇒ qk,i ≥ 1/2) ,
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which holds for every distinct i, j, k ∈ [m], we can directly infer that any Q ∈ Qm is WST
iff

qi,j , qj,k ≤ 1/2 ⇒ qi,k ≤ 1/2

is fulfilled for every distinct i, j, k ∈ [m]. Consequently, writing θi,j := ϕ(qi,j) as well as
θ = ϕ(Q) = (θi,j)1≤i,j≤m, it is easy to see that some Q ∈ Qm is WST iff

θi,j , θj,k ≤ 0 ⇒ θi,k ≤ 0

for any distinct i, j, k ∈ [m]. Thus, instead of (5.12), we may equivalently consider testing

H0 : θ ∈ Θm(WST) H1 : θ ∈ Θm \Θm(WST), (5.14)

with Θm := ϕ(Qm) = [−π/2, π/2](
m
2 ) and Θm(WST) := ϕ(Qm(WST)) = ϕ(Qm(WST))

being the closure of ϕ(Qm(WST)) in Θm; here and throughout, we regard Θm ⊆ Rm(m−1)/2

to be equipped with the corresponding topology, which is induced by the standard topology
on Rm(m−1)/2, i.e., U ′ ⊆ Θm is open iff U ′ = Θm ∩ U for an open U ⊆ Rm(m−1)/2.
In particular, the boundary ∂Θm(WST) of Θm(WST) is a subset of {θ ∈ : ∃(i, j) ∈
(m)2 : θi,j = 0} and e.g. (π/2)1≤i<j≤m ∈ Θm(WST) \ ∂Θm(WST) holds. Due to
ϕ(Qm(WST)) ⊆ Θm(WST), the type I error of any test for (5.12) is at most as large as
its type I error for (5.14). Note that the choice of Θm(WST) instead of ϕ(Qm(WST)) as
the null hypothesis ensures the existence of the maximum likelihood estimator (MLE) on
Θm(WST), as Θm(WST) is compact.

Let us define zt ∈ [−π/2, π/2](
m
2 ) via (zt)i,j := ϕ

(
(wt)i,j/(nt)i,j

)
for every (i, j) ∈ (m)2.

Whenever qi,j ∈ (0, 1), the delta method [Van der Vaart, 2000] yields4
√
(nt)i,j((zt)i,j −

θi,j)
D−→ N (0, 1) as t → ∞, which means that (zt)i,j is approximately distributed as

N (θi,j , 1/(nt)i,j) for sufficiently large t (cf. Lem. 5.12 below). This motivates the usage of

λ̃t := −2 ln

(
maxθ∈Θm(WST) L̃(θ|zt)

maxθ∈Θm L̃(θ|zt)

)
(5.15)

as the LRT statistic, where

L̃(θ|zt) :=
∏

i<j

√
(nt)i,j√
2π

exp
(
− ((zt)i,j − θi,j)2

2(nt)
−1
i,j

)
.

Due to
supθ∈Θm

L̃(θ|zt) = L̃(zt|zt) =
∏

i<j

√
(nt)i,j/

√
2π

we obtain the identity

λ̃t = −2 ln
(√

2πL̃(θ̂|zt)
/∏

i<j

√
(nt)i,j

)
= −2 ln

(∏
i<j

exp(−((zt)i,j − θ̂i,j)2(nt)i,j)
)

=
∑

i<j
(nt)i,j((zt)i,j − θ̂i,j)2 =: dnt(zt, θ̂),

4This convergence result serves only as motivation for the choice of (zt)i,j , it will neither be an argument
in the construction of our passive and active solutions to WST testing nor for the tail bounds on µt

and νt that we will achieve below. Nevertheless, let us note that a uniform delta method could be

used to show that
√

(nt)i,j((zt)i,j − θi,j)
D−→ N (0, 1) holds even (in an appropriate sense) uniformly

for all θ in a compact subset Θ′
m ⊆ Θm.
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with θ̂ = argmaxθ∈Θm(WST)L̃(θ|zt) as the MLE of θ in Θm(WST) and dnt the weighted

Euclidean distance in Θm ⊆ Rm(m−1)/2 with weights nt. By definition of L̃, it holds that
L̃(θ|zt) ≤ L̃(θ̃|zt) if and only if dnt(zt,θ) ≥ dnt(zt, θ̃), so that we get the representation

λ̃t = minθ∈Θm(WST) dnt(zt,θ)

and θ̂ = argminθ∈Θm(WST)dnt(zt,θ). In other words, θ̂ is the point in Θm(WST) closest

to zt with respect to the weighted Euclidean distance dnt , and λ̃t = dnt(zt, θ̂).

The classical sequential probability ratio test approach [Ghosh and Sen, 1991] determines
a stopping rule (a termination criterion) on the test statistic by deriving a lower resp.
an upper bound triggering a stop of the test procedure in case of a shortfall resp. an
exceedance. In case π ∈ Π∞, (zt)i,j converges due to the law of large numbers almost
surely to θi,j as t → ∞ and the asymptotical behavior of λ̃t is

lim
t→∞

λ̃t =

{
0, for Q ∈ Q0

m(WST),

∞, for Q ∈ Q0
m(¬WST).

(5.16)

For convenience, we defer the theoretical justification of this to Prop. 5.11 below.
This demonstrates that large values of λ̃t are an indicator for violations of WST. Since

zt ∈ Θm(WST) implies λ̃t = 0, it might happen by chance that the former is fulfilled
for the current data at time step t, although Q is not WST. Therefore, the classical
sequential probability ratio test approach with a lower bound for the test statistic λ̃t
does not appear suitable for the detection of WST in this framework, as the type II error
cannot be bounded appropriately.

To circumvent this disadvantage, we also consider the test in (5.13) and incorporate the
considerations as before to test

H̃0 : θ ∈ Θm(¬WST) H̃1 : θ ∈ Θm \Θm(¬WST) (5.17)

with Θm(¬WST) := ϕ(Qm(¬WST)) = Θm \Θm(WST). Note here that Θm(¬WST) ̸=
Θm \ Θm(WST) but instead Θm(WST) ∩ Θm(¬WST) = ∂Θm(WST) = ∂Θm(¬WST)
holds. Similarly as above, we consider

µ̃t := −2 ln

(
maxθ∈Θm(¬WST) L̃(θ|zt)

maxθ∈Θm L̃(θ|zt)

)
, (5.18)

with L̃ as above, as LRT statistic and note that µ̃t = dnt(zt, θ̂) with θ̂ being the point in
Θm(¬WST) that is closest to zt with respect to dnt . Furthermore, an asymptotic property
analogous to (5.16) holds for µ̃t as well by interchanging the conditions, cf. Prop. 5.11
below. Therefore, large values of µ̃t seem to indicate that Q is WST. To adequately state
the following proposition, let us write for convenience

Θ0
m := ϕ(Q0

m) = {θ ∈ Θm | ∀ (i, j) ∈ (m)2 : θi,j ̸= 0} (5.19)

and abbreviate Θ0
m(WST) := Θ0

m ∩Θm(WST) and Θ0
m(¬WST) := Θ0

m ∩Θm(¬WST).

Proposition 5.11. (i) If θ ∈ Θ0
m(WST), then λ̃t → 0 and µ̃t → ∞ almost surely as

t → ∞. Provided π ∈ Πln ln
∞ , we even have µ̃t/ln ln t → ∞ almost surely as t → ∞.
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(ii) Similarly, if θ ∈ Θ0
m(¬WST), then µ̃t → 0 and λ̃t → ∞ almost surely as t → ∞.

In case π ∈ Πln ln
∞ we have λ̃t/ln ln t → ∞ almost surely as t → ∞.

Proof of Prop. 5.11. We only show (i), as (ii) follows by an analogous argumentation. Let

ε := min1≤i<j≤m |qi,j − 1/2| > 0

and write Q̂(t) = (q̂i,j(t))1≤i,j≤m =
( (wt)i,j
(nt)i,j

)
1≤i,j≤m. The law of large numbers guarantees

q̂i,j(t) → qi,j a.s. as t → ∞ for every distinct i, j ∈ [m], in particular there exists an a.s.
finite stopping time T0 with |q̂i,j(t)− qi,j | ≤ ε/

(
2
√
(m2 )

)
for every t ≥ T0. In, other words,

Q̂(t) ∈ B ε
2
(Q) ⊆ Qm(WST) and thus zt ∈ Θ0

m(WST) holds for every t ≥ T0, wherein

B ε
2
(Q) denotes the ball with radius ε

2 in R(
m
2 ) equipped with the Euclidean distance.

Consequently, λ̃t = dnt(zt,Θm(WST)) = 0 holds for every t ≥ T0 and the first statement
in (i) already follows. Note that

|q̂i,j(t)− 1/2| ≥ |qi,j − 1/2| − |q̂i,j(t)− qi,j | ≥ ε−
ε

2
√(

m
2

) ≥ ε

2

holds for every t ≥ T0. Since ϕ(p) = −ϕ(1− p) holds for every p ∈ [0, 1] and ϕ is strictly
monotonically increasing on [1/2, 1], we thus obtain the estimate

(zt)
2
i,j = ϕ2 (q̂i,j(t)) ≥ ϕ2

(
1

2
+
ε

2

)
> 0

for every t ≥ T0 and every distinct i, j ∈ [m]. Together with zt ̸∈ Θm(¬WST) for t ≥ T0
and regarding the geometry of ∂Θm(¬WST) we conclude that

limt→∞, t≥T0 µ̃t = limt→∞, t≥T0 dnt(zt,Θm(¬WST))

≥ limt→∞, t≥T0 mini<j(nt)i,j(zt)
2
i,j

≥ ϕ2
(
1

2
+
ε

2

)
limt→∞, t≥T0 mini<j(nt)i,j =∞

holds a.s., where we have used that π ∈ Π∞ assures (nt)i,j → ∞ a.s. as t → ∞ for any
(i, j) ∈ (m)2. In the case π ∈ Πln ln

∞ we similarly obtain the stronger result

limt→∞, t≥T0
µ̃t

ln ln t
≥ ϕ2

(
1

2
+
ε

2

)
limt→∞, t≥T0

mini<j(nt)i,j
ln ln t

=∞ a.s.

Lemma 5.12. Let p ∈ (0, 1) be fixed and let
{
X

(p)
k

}
k∈N be a sequence of i.i.d. random

variables X
(p)
k ∼ Ber(p) and ϕ : [0, 1] → [−π

2 ,
π
2 ] given by ϕ(x) = 2 arcsin(

√
x)− π/2 as

above. Then,
√
n

(
ϕ

(
1

n

∑n

k=1
X

(p)
k

)
− ϕ(p)

)
D−→ N (0, 1).

Proof. Since X
(p)
k has expectation p and variance p(1 − p), the central limit theorem

ensures
√
n

(
1

n

∑n

k=1
X

(p)
k − p

)
D−→ N (0, p(1− p)).
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As ϕ is differentiable, the delta method [Van der Vaart, 2000] thus yields

√
n

(
ϕ

(
1

n

∑n

k=1
X

(p)
k

)
− ϕ(p)

)
D−→ N (0, p(1− p)ϕ′(p)2).

Due to ϕ′(x) = 1√
−(x−1)x

, straightforward calculations show p(1− p)ϕ′(p)2 = 1.

5.4.2. Passive WST Testing

Algorithm 22 LRT-based solution to Pm,0,α,βWST

Input: m, α, β, κ, c, a sampling strategy π.
Initialization: Let n′ ∈ N be such that

∑
n≥n′

1
nκ ≤ 1.

Choose d := 3(1 + 1√
2
)2, w := (60

(
m
2

)
)
2
3 and

n′′ :=
2d

c2
ln

2w ln

(
3dw

2c2(α∧β)
2
3 ln(3/2)

)
(α ∧ β)

2
3 ln(3/2)

+ 1, n′′′ :=
64

(1− 2c)4

(
ln

(
6
(
m
2

)
α ∧ β

)
+ κ

)
.

Fix q := exp (−(1−2c)2/4(2−2c)2) and ñ :=
⌈
max

{
n′, n′′, n′′′, logq

(
(1−q)(α∧β)/3(m2 )

) }⌉
.

Define L := L(c) := supx∈[c/2,1−c/2] |ϕ′(x)| = 1/
√

c
2(1−

c
2)

1: for t ∈ N do
2: Choose {i, j} ∼ π(t, (nt′ ,wt′)0≤t′≤t−1), w.l.o.g. i < j.

3: Observe X
[t]
i,j ∼ Ber(qi,j).

4: Update nt and wt accordingly.

5: Let ĉi,j := ĉi,j(t) :=

√
1

2 (nt)i,j
ln

(
6(m2 )(nt)κi,j

α∧β

)
for all (i, j) ∈ (m)2.

6: Let Êt :=
{
(i, j) ∈ (m)2

∣∣∣ (wt)i,j
(nt)i,j

∈ [0, c+ ĉi,j)∪ (1−c− ĉi,j , 1]
}
and K̂t := (m)2 \ Êt.

7: Let lWST(t) := f(α, t) and l¬WST(t) := f(β, t) with

f(γ, t) :=
3L2|K̂t|

4

[
1 +

1√
2

]2
ln

[
(60|K̂t|)

2
3 ln 3t

2

γ
2
3 ln 3

2

]
.

8: Calculate λ̃t and µ̃t from (5.15) and (5.18)
9: if mini<j(nt)i,j ≥ ñ and λ̃t > lWST(t) then

10: return WST.
11: if mini<j(nt)i,j ≥ ñ and µ̃t > l¬WST(t) then
12: return ¬WST.

With the deliberations above, we obtain with Alg. 22 an online WST testing algorithm
which guarantees reasonable type I and type II error bounds by choosing appropriate
critical values for λ̃t and µ̃t. The identity L(c) = 1/

√
− c

2(1−
c
2) stated in Alg. 22 can

be shown straight-forwardly and is verified in detail later on directly before the proof of
Thm. 5.15.
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Theorem 5.13. For any m ∈ N≥3, α, β ∈ (0, 1), c ∈ (0, 1/2), π ∈ Πln ln
∞ and κ > 1,

Alg. 22 called with these parameters solves Pm,0,α,βWST .

For the sake of convenience, we defer a detailed proof of Thm. 5.13 to Sec. 5.4.3 below.
Before, let us explain at this point the rough idea behind the obtained Alg. 22, which we
denote by A and suppose to be initialized with appropriate parameters m,α, β, c, π and κ
in the following. Naturally, whether some Q ∈ Q0

m is WST or not depends exclusively
on the set {(i, j) ∈ (m)2 | qi,j > 1/2}, and in particular the closer qi,j is to 1/2, the more
difficult it is to decide whether (i, j) is in this set or not. With this in mind, the parameter
c serves as a threshold at which A classifies pairs (i, j) as difficult, namely it estimates
the set

E := {(i′, j′) ∈ (m)2 | qi′,j′ ∈ [0, c) ∪ (1− c, 1]}

via Êt and regards K̂t as the set of difficult pairs of winning probabilities5. The value ñ is
chosen large enough so that, as soon as A has queried every {i, j} ∈ [m]2 at least ñ times
each, we have:
• A is confident enough whether qi,j > 1/2 or qi,j < 1/2 holds for each non-difficult
pair (i, j) ∈ E,
• the deviation

∣∣ϕ((wt)i,j/(nt)i,j)− ϕ(qi,j)
∣∣ is small enough with high confidence for

all difficult pairs (i, j) ∈ (m)2 \ E.
The technical requirements on ñ made in Alg. 22 suffice to ensure satisfactory error
guarantees for A. More precisely,
• ñ ≥ n′ allows to control via Lem. 2.4 the probability that the algorithms estimation
Êt of E is not contained in E,
• ñ ≥ n′′ helps us to bound with Lem. 2.7 the error probability in case all pairs
(i, j) ∈ (m)2 are classified correctly in some appropriate sense,
• and ñ ≥ logq

(
(1−q)(α∧β)/3(m2 )

)
allows to bound by means of Lem. 2.5 the probability

in case a corresponding misclassification happens.
As the proof of Thm. 5.13 below reveals, choosing ñ = ⌈max{n′, n′′, logq

(
(1−q)(α∧β)/3(m2 )

)
}⌉

would actually already suffice for the results obtained in the passive scenario; the additional
assumption ñ ≥ n′′′ is only used to achieve the corresponding sample complexity bound
in the active scenario (Thm. 5.15), but for the sake of convenience, we have incorporated
n′′′ already in the statement of Alg. 22.
The confidence length terms ĉi,j(t) as well as the choices of the decision boundaries

lWST(t) and l¬WST(t) are mainly due to Lem. 2.7. It is worth noting that lWST(t) and
l¬WST(t) are decreasing with the cardinality of Êt, so that the easier the problem instance
Q (corresponding to a large cardinality of |E|), the sooner the termination of A. The
remainder of this section is dedicated to prepare and present the proof of Thm. 5.13.

5.4.3. Proof of Thm. 5.13

We prepared the proof of Thm. 5.13 already with Lem. 2.7, which allows us to control
the tail probabilities of the summands occuring in the test statistics λ̃t resp. µ̃t. As
further preparation, the following lemma shows that changing specific components zt in
an appropriate way if their sign is not coherent with the underlying component of the
transformed parameter θ = (θi,j)1≤i,j≤m leads to a modified vector, which is an element
of the parameter space of θ, that is, of Θm(WST) or Θm(¬WST).

5Note here, that π ∈ Π∞ and the law of large numbers ensure Êt → E as t → ∞.
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Lemma 5.14. If X ∈ {WST,¬WST}, E ⊆ (m)2, θ ∈ Θm(X) and z ∈ Θm are s.t.

θi,jzi,j ≥ 0 and θi,j ̸= 0 for every (i, j), (j, i) ∈ E,

then z′ = (z′i,j)1≤i,j≤m ∈ Θm defined via

z′i,j :=

{
zi,j , if (i, j) ∈ E or (j, i) ∈ E,
θi,j , otherwise,

fulfills z′ ∈ Θm(X).

Proof of Lem. 5.14. Let X ∈ {WST,¬WST}, θ ∈ Θm(X) and z ∈ Θm be fixed and such
that they fulfill the above mentioned constraints. Let (i, j) ∈ (m)2 be arbitrary. If
(i, j) ∈ E or (j, i) ∈ E holds, we have due to θi,jz

′
i,j = θi,jzi,j ≥ 0 as well as θi,j ̸= 0 the

implications
z′i,j < 0 ⇒ θi,j < 0 and z′i,j > 0 ⇒ θi,j > 0. (5.20)

In the other case (i, j), (j, i) ̸∈ E the definition of z′ reveals z′i,j = θi,j , and thus (5.20)
holds true as well.
We continue with a case distinction and start with the case X = WST. For this, assume

z′ ̸∈ Θm(WST). Then there exists some distinct i′, j′, k′ ∈ [m] with z′i′,j′ , z
′
j′,k′ < 0 and

z′i′,k′ > 0. As (5.20) holds for every (i, j) ∈ (m)2 we thus obtain θi′,j′ , θj′,k′ , θk′,i′ > 0. This
contradicts θ ∈ Θm(WST). 
Now, consider the case X = ¬WST. Assuming z′ ̸∈ Θm(¬WST) there does not exist

any distinct i′, j′, k′ ∈ [m] with z′i′,j′ , z
′
j′,k′ , z

′
k′,i′ ≤ 0. In other words, for every distinct

i′, j′, k′ ∈ [m] there exists some (i′′, j′′) ∈ {(i′, j′), (j′, k′), (k′, i′)} with z′i′′,j′′ > 0, which
implies θi′′,j′′ > 0 according to (5.20). Thus, there does not exist any distinct i′, j′, k′ ∈ [m]
with θi′,j′ , θj′,k′ , θk′,i′ ≤ 0, which contradicts θ ∈ Θm(¬WST). 

In the proof of Thm. 5.13, we assume w.l.o.g. that a family {X [n]
i,j }n∈N,1≤i<j≤m of

independent random variables X
[n]
i,j ∼ Ber(pi,j) exists such that (wt)i,j =

∑(nt)i,j
n=1 X

[n]
i,j

holds for every (i, j) ∈ (m)2. Recall that we assume throughout Sec. 5.4 that (n0)i,j = 1
for every (i, j) ∈ (m)2. If π ∈ Π∞ is fixed, we define λ̃t and µ̃t as in Sec. 5.4.1. Moreover,
for X ∈ {WST,¬WST}, we write dnt(z,Θm(X)) for the distance of z ∈ Θm to Θm(X),
i.e., dnt(z,Θm(X)) = minθ∈Θm(X) dnt(z,Θm(X)).

Proof of Thm. 5.13. Suppose m ∈ N, α, β ∈ (0, 1), c ∈ (0, 1/2), π ∈ Πln ln
∞ and κ > 1 to be

fixed and write A for Alg. 22 called with these parameters. For convenience, we abbreviate
T := TA. We split the proof into five steps.

Step 1: Almost sure finiteness of T
Since π ∈ Πln ln

∞ ⊆ Π∞ holds by assumption, the stopping time

Tñ := inf{t ∈ N | (nt)i,j ≥ ñ for every distinct i, j ∈ [m]}

is a.s. finite and we have Tñ ≤ T . Thus, using max{λ̃t, µ̃t} ∈ {λ̃t, µ̃t}, we can estimate

Pθ(T =∞) = Pθ(∀t ≥ Tñ : λ̃t ≤ lWST(t) and µ̃t ≤ l¬WST(t))

≤ Pθ(∀t ≥ Tñ : max{λ̃t, µ̃t} ≤ max{lWST(t), l¬WST(t)})
= 1− Pθ(∃t ≥ Tñ : max{λ̃t, µ̃t} > max{lWST(t), l¬WST(t)}). (5.21)
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As lWST(t), l¬WST(t) ∈ O(ln ln t) as t → ∞, Prop. 5.11 lets us infer that

max{λ̃t, µ̃t}
max{lWST(t), l¬WST(t)}

−→ ∞

almost surely as t → ∞, consequently for every t1 ∈ N we obtain

Pθ

(
∃t ≥ t1 : max{λ̃t, µ̃t} > max{lWST(t), l¬WST(t)}

)
= 1.

Therefore, abbreviating t1 ∧ Tñ = min{t1, Tñ}, an application of Lebesgue’s dominated
convergence theorem yields

Pθ

(
∃t ≥ Tñ : max{λ̃t, µ̃t} > max{lWST(t), l¬WST(t)}

)
= limt1 →∞ Pθ

(
∃t ≥ t1 ∧ Tñ :

max{λ̃t, µ̃t}
max{lWST(t), l¬WST(t)}

> 1

)
= 1,

and thus T <∞ almost surely follows from (5.21).

Step 2: Decomposition of the weighted projection tail probabilities
Let θ = ϕ(Q) ∈ Θm. Due to Θm = Θm(WST) ∪ Θm(¬WST) there exists some X ∈
{WST,¬WST} with θ ∈ Θm(X). Regarding the definitions of λ̃t and µ̃t and taking the
arbitrariness of θ into account it is sufficient for the theoretical guarantees of this test to
show

Pθ (dnT (zT ,Θm(X)) > lX(T )) ≤

{
α, if X = WST,

β, if X = ¬WST.

We call some (i, j) ∈ (m)2 classified correctly if (zT )i,jθi,j ≥ 0 holds, otherwise we say
that (i, j) is misclassified. Moreover, we write

Ai,j := {(zT )i,jθi,j < 0}

for the event that (i, j) is misclassified, i.e., on Ai,j either (zT )i,j > 0 and θi,j < 0 or
(zT )i,j < 0 and θi,j > 0 hold. Define the limit set of Êt as

E := {(i, j) ∈ (m)2 | qi,j ∈ [0, c) ∪ (1− c, 1]}

and further set

E :=
{
ÊT ⊆ E

}c
,

which is the event that, at its termination, the algorithms estimation of E is not contained
in E. With this, we obtain

Pθ (dnT (zT ,Θm(X)) > lX(T ))

≤ Pθ

({
dnT (zT ,Θm(X)) > lX(T )

}
∩
⋃

(i,j)∈E
Ai,j ∩ Ec

)
+ Pθ

({
dnT (zT ,Θm(X)) > lX(T )

}
∩
⋂

(i,j)∈E
Aci,j ∩ Ec

)
+ Pθ (E) . (5.22)
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In the following three steps of the proof we will bound each summand in (5.22) separately

by min{α,β}
3 .

Step 3: Bounding the tail probabilities of the misclassified pairs
To obtain an estimate of the first summand in (5.22) note that for every distinct i, j ∈ [m]
the equality

Pθ(Ai,j) = Pθ((zT )i,jθi,j < 0)

= P
(
ϕ

(
1

(nT )i,j

∑(nT )i,j

k=1
X

(qi,j)
k

)
ϕ(qi,j) < 0

)
holds for a sequence {X(qi,j)

k }k∈N of i.i.d. random variables X
(qi,j)
k ∼ Ber(qi,j) due to the

definition of (zT )i,j . Therefore, using (nT )i,j ≥ ñ for every distinct (i, j) ∈ E, Lem. 2.5
yields

Pθ(Ai,j) ≤ P
(
∃n ≥ ñ : ϕ

(
1

n

∑n

k=1
X

(qi,j)
k

)
ϕ(qi,j) < 0

)
≤ min{α, β}

3
(
m
2

) .

Thus, by means of the union bound we infer that

Pθ

({
dnT (zT ,Θm(X)) > lX(T )

}
∩
⋃

(i,j)∈E
Ai,j ∩ Ec

)
≤
∑

(i,j)∈E
Pθ(Ai,j) ≤

min{α, β}
3

. (5.23)

Step 4: Bounding the tail probabilities of the correctly classified pairs
Next, we show

Pθ

({
dnT (zT ,Θm(X)) > lX(T )

}
∩
⋂

(i,j)∈E
Aci,j ∩ Ec

)
≤ 1

3

{
α, if X = WST,

β, if X = ¬WST.

(5.24)

For this, let K := (m)2 \ E and define z′ ∈ Θ via

z′i,j :=

{
(zT )i,j , (i, j) ∈ E or (j, i) ∈ E,
θi,j , otherwise,

for every distinct i, j ∈ [m]. Observe that θi′,j′(zT )i′,j′ = ϕ(qi′,j′)(zT )i′,j′ ≥ 0 holds for
every (i′, j′) ∈ E on the event A′ :=

⋂
(i′,j′)∈E A

c
i′,j′ . Since c <

1
2 ensures θi,j ̸= 0 for every

(i, j) ∈ E and θ ∈ Θm(X) holds by assumption, Lem. 5.14 implies z′ ∈ Θm(X) on the
event A′. We obtain the estimate

Pθ

({
dnT (zT ,Θm(X)) > lX(T )

}
∩
⋂

(i,j)∈E
Aci,j ∩ Ec

)
≤ Pθ

({
dnT (zT , z

′) > lX(T )
}
∩ Ec

)
= Pθ

({∑
(k,l)∈K

(nT )k,l((zT )k,l − θk,l)2 > lX(T )
}
∩ Ec

)
≤
∑

(k,l)∈K
Pθ

({
(nT )k,l((zT )k,l − θk,l)2 >

lX(T )

|K|

}
∩ Ec

)
. (5.25)
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In order to bound this further, we may suppose without loss of generality |K| ≥ 1 in the
following and write γWST = α and γ¬WST = β for the moment. Choosing ε′ := 1

2 and

δ′X :=

(
γX

60|K|

) 2
3

ln
3

2
∈ (0, ln(1+ε′)/exp(1))

we have γX
12|K| = 5

(
δ′X

ln(3/2)

) 3
2
= 2+ε′

ε′

(
δ′X

ln(1+ε′)

)1+ε′
. As ÊT ⊂ E and thus |K| ≤ |K̂T | holds

on Ec, we have with regard to the definition of lX(T ) on this event

lX(T )

|K|
≥ 3L2

4

[
1 +

1√
2

]2
ln

[
ln(3t/2)(60|K̂T |)2/3)

γ
2/3
X ln(3/2)

]

≥ 3L2

4

[
1 +

1√
2

]2
ln

[
ln(3t/2)(60|K|)2/3)

γ
2/3
X ln(3/2)

]

=
1

2
L2(1 +

√
ε′)2(1 + ε′) ln

(
ln((1 + ε′)t)

δ′X

)
.

Using |K| ≤
(
m
2

)
and γX ≥ min{α, β} a straightforward calculation reveals

ñ ≥ n′′ ≥ d′

c2
ln

(
2 ln

(
(1 + ε′)d′/(c2δ′X)

)
δ′X

)
+ 1

with d′ = 2(1+
√
ε′)2(1 + ε′). Note that T ≥

(
m
2

)
ñ and in particular for each (k, l) ∈ (m)2

we have T ≥ (nT )k,l ≥ ñ and thus lX(T ) ≥ lX((nT )k,l). Hence, an application of Lem. 2.7
guarantees that for each (k, l) ∈ K

Pθ

({
(nT )k,l((zT )k,l − θk,l)2 >

lX(T )

|K|

}
∩ Ec

)
≤ Pθ

({
(nT )k,l((zT )k,l − θk,l)2 >

lX((nT )k,l)

|K|

}
∩ Ec

)
≤ 4γX

12|K|
=

1

3|K|

{
α, if X = WST,

β, if X = ¬WST.
(5.26)

Combining (5.25) with (5.26) yields (5.24).

Step 5: Negligibility of the event E
Regarding (5.22) and the already shown inequalities (5.23) and (5.24) it is sufficient for
the theoretical guarantees on the type I/II errors of A to show

Pθ (E) ≤
min{α, β}

3
. (5.27)
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Note that

Pθ (E) = Pθ(∃ (i, j) ∈ ÊT ∩K)

≤
∑

(i,j)∈K
Pθ

(
(wT )i,j
(nT )i,j

< c− ĉi,j(T )
)
+
∑

(i,j)∈K
Pθ

(
(wT )i,j
(nT )i,j

> 1− c+ ĉi,j(T )

)
≤
∑

(i,j)∈K
P
(
∃n ≥ ñ :

1

n

∑n

k=1
X

(qi,j)
k < c− ĉi,j(n)

)
+
∑

(i,j)∈K
P
(
∃n ≥ ñ :

1

n

∑n

k=1
X

(qi,j)
k > 1− c+ ĉi,j(n)

)
.

As (nT )i,jñ ≥ n′ for all and c < qi,j < 1− c hold for every (i, j) ∈ K, we can infer from
this by means of Lem. 2.4 with γ = min{α,β}/6(m2 ) that

Pθ(E) ≤
∑

(i,j)∈K
P
(
∃n ≥ n′ : 1

n

∑n

k=1
X

(qi,j)
k − qi,j < −ĉi,j(n)

)
+
∑

(i,j)∈K
P
(
∃n ≥ n′ : 1

n

∑n

k=1
X

(qi,j)
k − qi,j > ĉi,j(n)

)
≤
(
m

2

)(
min{α, β}

6
(
m
2

) +
min{α, β}

6
(
m
2

) )
=

min{α, β}
3

.

This shows (5.27).

5.4.4. Active Online Testing

As already discussed in Sec. 5.3, in the passive online testing scenario the algorithm
has no influence on the sampling strategy π. Since the explicit termination time of
any test component highly depends on π, deriving general sample complexity bounds is
cumbersome. Hence, we restricted the analysis of the test from Thm. 5.13 to proving a.s.
finite termination time and adherence to predefined error bounds in case π ∈ Πln ln

∞ .
In the active online testing scenario, however, where the sampling strategy and the

testing component are more interleaved, one can specify a sampling strategy to derive
results on the expected termination time of the test. Needless to say, the relation
Q ∈ Q0

m the algorithm is started with plays a crucial role for the termination time. As
mentioned above, the closer its entries qi,j are to 1

2 , the closer ϕ(Q) is to the boundary
∂Θm(WST) = ∂Θm(¬WST) and thus the harder it becomes to decide correctly whether
ϕ(Q) ∈ Θm(WST) or ϕ(Q) ∈ Θm(¬WST) holds. Encouraged by this idea, we analyze
the worst-case sample complexity of our algorithm only on instances Q ∈ Qhm for some
arbitrary but fixed h ∈ (0, 1/2). In the following corollary, we do this analysis for the
sampling strategy π = RoundRobin, which iterates through the set of all pairs in a
deterministic way, i.e., it repeatedly queries {1, 2}, . . . , {1,m}, {2, 3}, . . . , {m−1,m}. This
sampling strategy ensures that, for all t ∈ N,

max(i,j)∈(m)2(nt)i,j −min(i,j)∈(m)2(nt)i,j ≤ 1

is fulfilled and thus arrives as fast as possible at that time t′, where (nt′)i,j ≥ ñ holds for
every (i, j) ∈ (m)2. For the sake of convenience we only analyze the case α = β.
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Theorem 5.15. Let κ > 1 be fixed. For any m ∈ N≥3, γ ∈ (0, 1) and h ∈ (0, 1/4),
A :=Alg. 22 called with parameters m, α = γ, β = γ, κ, c = 1/2 − h/2 and π =
RoundRobin solves Pm,0,γWST and fulfills

supQ∈Qh
m
EQ

[
TA] ∈ O(m2κ

h4
ln

1

γ

)
(5.28)

as max{m, 1h ,
1
γ } → ∞.

Before proving Thm. 5.15, we further analyze the transformation ϕ : [0, 1] → [−π/2, π/2],
x 7→ 2 arcsin(

√
x)− π

2 , which we have used for the definition of the test statistics λ̃t and
µ̃t. Its derivative

ϕ′(x) =
1√

−(x− 1)x
, x ∈ (0, 1),

is monotonically decreasing on (0, 1/2), strictly positive on (0, 1) and symmetric around
1/2. Thus, the function L : (0, 1/2) → (0,∞), L(c) := supx∈[c/2,1−c/2] |ϕ′(x)| defined in
Alg. 22 is decreasing and fulfills L(c) = ϕ′(c/2) as well as limc↗1/2 L(c) = 2. Moreover,

ϕ is bijective and its inverse ϕ−1 : [−π/2, π/2] → [0, 1], ϕ−1(x) = sin2
(
2x+π

4

)
is strictly

monotonically increasing.

Proof of Thm. 5.15. Let κ > 1 be fixed. Suppose m ∈ N≥3, h ∈ (0, 1/4) and γ ∈ (0, 1) to
be arbitrary and A as stated in the theorem. Since π = RoundRobin ∈ Πln ln

∞ , Thm. 5.13
assures that A solves Pm,0,γWST . According to its definition, the termination time TA is given
as

inf
{
t ∈ N | (λ̃t > l(t) or µ̃t > l(t)) and (nt)i,j ≥ ñ ∀(i, j) ∈ (m)2

}
with ñ =

⌈
max

{
n′, n′′, n′′′, logq

(
(1−q)min{α,β}/3(m2 )

) }⌉
and

l(t) =
3L2|K̂t|

4

[
1 +

1√
2

]2
ln

[
(60|K̂t|)

2
3 ln 3t

2

γ
2
3 ln 3

2

]
,

with L as in Alg. 22 and in Lem. 2.7. Note here that ñ directly depends on m and γ and
via n′′ = n′′(c) and c = c(h) := 1/2− h/2 also on h, whereas L depends via c on h, i.e.,
we may write ñ = ñ(m,h, γ) and L = L(h). Started with some arbitrary Q ∈ Qhm, the
termination time TA of A can be bounded as

EQ

[
TA] ≤ 1 +

(
m

2

)
ñ(m,h, γ) +

∑
t≥(m2 )ñ(m,h,γ)

PQ

(
TA > t

)
. (5.29)

In the following, we treat the second and third summand in (5.29) separately.

Part 1: We have (
m

2

)
ñ(m,h, γ) ∈ O

(
m2 lnm

h4
ln

1

γ

)
(5.30)

as max{m, 1h ,
1
γ } → ∞.
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For h ∈ (0, 1/4) let q(h) := e
− (1−2c(h))2

4(2−2c(h))2 = e
− 1

4
h2

(1+h)2 ∈ (0, 1). Using that ln z ≤ z−1√
z

for

z > 1 and ez − 1 ≥ z for any z ≥ 0 are fulfilled, we can estimate

ln
1

1− q(h)
≤ 1/(1− q(h))− 1√

1/(1− q(h))
=

q(h)√
1− q(h)

=
e
− 1

4
h2

(1+h)2√
1− e−

1
4

h2

(1+h)2

=
e
− 1

4
h2

(1+h)2√
e
− 1

4
h2

(1+h)2

· 1√
e

1
4

h2

(1+h)2 − 1

≤ 1√
h2

4(1+h)2

=
2(1 + h)

h

and hence a look at the definition of q(h) reveals

ln(1− q(h))
ln q(h)

≤ 8(1 + h)3

h3
for all h ∈ (0, 1/4).

Consequently,

logq(h)
(1− q(h))γ

3
(
m
2

) =
ln(γ3 )− ln

(
m
2

)
+ ln(1− q(h))

ln q(h)

≤
4(1 + h)2(ln(3/γ) + ln

(
m
2

)
)

h2
+

8(1 + h)3

h3

holds, which is in O
(
lnm
h3

ln 1
γ

)
as max{m, 1h ,

1
γ } → ∞. Moreover, the expressions

n′′′ =
64

(1− 2c(h))4

(
ln

(
6
(
m
2

)
γ

)
+ κ

)
and

n′′ =
2d

c(h)2
ln

2(60
(
m
2

)
)
2
3 ln

(
3d(60(m2 ))

2
3

2c(h)2γ
2
3 ln(3/2)

)
γ

2
3 ln(3/2)

+ 1

with d = 3(1 + 1√
2
)2 are in O

(
lnm
h4

ln 1
γ

)
resp. O

(
lnm ln 1

γ

)
as max{m, 1h ,

1
γ } → ∞. We

assume w.l.o.g. that Alg. 22 chooses n′ ∈ N minimal s.t.
∑

n≥n′
1
nκ ≤ 1 holds. Since κ is

fixed, n′ is constant. Hence, according to the definition of ñ(m,h, γ), (5.30) follows.

Part 2: The term
∑

t≥(m2 )ñ(m,h,γ)
PQ

(
TA > t

)
is in O(m2κ) as max{m, 1h ,

1
γ } → ∞.

As A uses RoundRobin as its sampling strategy and (n0)i,j = 1 holds for every (i, j) ∈
(m)2 by assumption, we have for all t ∈ N and (i, j) ∈ (m)2

1 + ⌊t/(m2 )⌋ ≥ (nt)i,j ≥ ⌊t/(m2 )⌋ ≥ t/(m2 )− 1. (5.31)

In particular, mini<j(nt)i,j ≥ ñ(m,h, γ) is fulfilled as soon as t ≥
(
m
2

)
ñ(m,h, γ). By the

assumption of the theorem it holds that the limit set of Êt is

E := {(i, j) ∈ (m)2 | qi,j ∈ [0, c(h)) ∪ (1− c(h), 1]}
= {(i, j) ∈ (m)2 | qi,j ∈ [0, 1− h/2) ∪ (1/2 + h/2, 1]}
= (m)2,
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since Q ∈ Qhm. Define Et := {K̂t ̸= ∅} and note that

Et = {∃(i, j) ∈ (m)2 : (i, j) /∈ Êt} and

Ect = {K̂t = ∅} = {Êt = E = (m)2}.

Writing θ = ϕ(Q) we have, according to the definitions of A and its test statistics λ̃t and
µ̃t,

PQ

(
TA > t

)
≤ Pθ

(
λ̃t ≤ l(t) and µ̃t ≤ l(t)

)
≤ Pθ

(
{λ̃t ≤ l(t) and µ̃t ≤ l(t)} ∩ Ect

)
+ Pθ(Et). (5.32)

On Ect it holds that l(t) = 0. Using that λ̃t and µ̃t cannot be positive at the same time and
also that λ̃t = 0 = µ̃t is only possible in case zt ∈ ∂Θm(WST), i.e., if (zt)i,j = 0 for at
least one (i, j) ∈ (m)2, we can estimate the first term on the right-hand side of (5.32) via

Pθ

(
{λ̃t ≤ l(t) and µ̃t ≤ l(t)} ∩ Ect

)
≤ Pθ(∃(i, j) ∈ (m)2 : (zt)i,j = 0)

and thus Lem. 2.3 ensures∑
t≥(m2 )ñ(m,h,γ)

Pθ

({
λ̃t ≤ l(t) and µ̃t ≤ l(t)

}
∩ Ect

)
≤
∑

(i,j)∈(m)2

∑
t∈N

Pθ((zt)i,j = 0) ≤
(
m

2

)
h−2. (5.33)

The second term on the right-hand side of (5.32) can be bounded as follows6

Pθ (Et) ≤
∑

(i,j)∈(m)2
Pθ

(
(wt)i,j
(nt)i,j

≥ c(h)− ĉi,j(t)
)
1{qi,j∈[0,1/2−h)}

+
∑

(i,j)∈(m)2
Pθ

(
(wt)i,j
(nt)i,j

≤ 1− c(h) + ĉi,j(t)

)
1{qi,j∈(1/2+h,1]}

≤
∑

(i,j)∈(m)2
Pθ

(
(wt)i,j
(nt)i,j

− qi,j ≥ h/2− ĉi,j(t)
)
1{qi,j∈[0,1/2−h)}

+
∑

(i,j)∈(m)2
Pθ

(
(wt)i,j
(nt)i,j

− qi,j ≤ −h/2 + ĉi,j(t)

)
1{qi,j∈(1/2+h,1]} (5.34)

Using mini<j(nt)i,j ≥ ñ(m,h, γ) ≥ n′′′ for every t ≥
(
m
2

)
ñ(m,h, γ), we obtain with regard

to the definition of n′′′ that √
(nt)i,j ≥

8

h2
(
ln
(
6(m2 )/γ

)
+ κ
)

and together with 2κ
√
(nt)i,j ≥ 2κ ln(

√
(nt)i,j) = ln((nt)

κ
i,j) we see that

h2

4
≥ 2√

(nt)i,j

(
ln
(
6(m2 )/γ

)
+ κ
)
≥ 2

(nt)i,j

(
ln
(
6(m2 )/γ

)
+ ln((nt)

κ
i,j)
)

6Here, we use the notation x1A =

{
x, if A holds,

0, otherwise.
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holds, i.e., h2 ≥ 2ĉi,j(t) holds for every t ≥
(
m
2

)
ñ(m,h, γ). With regard to (5.31), we can

estimate (5.34) by means of Lem. 2.4 for every t ≥
(
m
2

)
ñ(m,h, γ) further as

Pθ (Et) ≤
(
m

2

)κ min{α, β}
3 (t−

(
m
2

)
)κ
,

where we also used that (n0)i,j = 1 for all (i, j) ∈ (m)2. Using that
(
m
2

)
ñ(m,h, γ)−

(
m
2

)
≥

n′ holds with n′ s.t.
∑

n≥n′ n−κ ≤ 1, we obtain

∑
t≥(m2 )ñ(m,h,γ)

Pθ (Et) ≤
(
m

2

)κmin{α, β}
3

∑
t≥(m2 )ñ(m,h,γ)

1

(t−
(
m
2

)
)κ

≤
(
m

2

)κmin{α, β}
3

.

Together with (5.32) and (5.33) this completes the proof of Part 2. Finally, combining
(5.29), Part 1 and Part 2 completes the proof.

5.4.5. Sequential Update Formulas for the LRT Statistics

Owing to the dynamic aspect of the dueling bandit framework, it is tempting to have
sequential update formulas for the test statistics at hand. Recall the definition of Rm
from Sec. 1.2. For the sake of convenience, abbreviate R0

m := Rm(WST) and R1
m :=

Rm(¬WST) = Rm \ R0
m, i.e., some R ∈ Rm is in R0

m iff it is transitive in the sense
that, whenever ri,j = ri,j = 1, then ri,k = 1. For any R ∈ Rm, let Θm(R) ⊊ Θm be
the set of all parameters θ ∈ Θm which fulfill θi,j ≥ 0 whenever ri,j = 1 holds. It is
easy to see that Θm =

⋃
R∈Rm

Θm(R), Θm(WST) =
⋃

R∈R0
m
Θm(R) and Θm(¬WST) =⋃

R∈R1
m
Θm(R). Thus, we directly obtain λ̃t = minR∈R0

m
dnt(zt,Θm(R)), as well as

µ̃t = minR∈R1
m
dnt(zt,Θm(R)).

Now, let R = (ri,j)1≤i,j≤m ∈ Rm be fixed for the time being. As the term dnt(zt,θ) =∑
i<j(nt)i,j((zt)i,j−θi,j)2 is monotonically increasing in each of its summands, a minimizer

θ̂
t
(R) = (θ̂ti,j(R))1≤i,j≤m ∈ argminθ∈Θm(R)dnt(zt,θ) is given by

θ̂ti,j(R) =

{
(zt)i,j , if (ri,j = 1 and (zt)i,j > 0) or (ri,j = 0 and (zt)i,j < 0),

0, otherwise.

Note that the latter can be written in a more compact way as

θ̂ti,j(R) = (zt)i,j1{(ri,j−1/2)(zt)i,j>0} . (5.35)

Thus, to calculate λ̃t and µ̃t, we may at first calculate θ̂
t
(R) ∈ Θm(R) for each R ∈ Rm

via (5.35) and then obtain

λ̃t = minR∈R0
m
dnt

(
zt, θ̂

t
(R)

)
,

µ̃t = minR∈R1
m
dnt

(
zt, θ̂

t
(R)

)
.

(5.36)

Let us denote {k, l} = π(t+ 1, (nt′ ,wt′)0≤t′≤t) for the moment and assume w.l.o.g. k < l.
Then, (nt+1)i,j = (nt)i,j as well as (wt+1)i,j = (wt)i,j for every (i, j) with i < j such that
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{i, j} ≠ {k, l} and (nt+1)k,l = (nt)k,l + 1 as well as (wt+1)k,l = (wt)k,l + 1{X[t+1]
k,l =1} hold.

This shows

dnt+1

(
zt+1, θ̂

t+1
(R)

)
− dnt

(
zt, θ̂

t
(R)

)
= ((nt)k,l + 1)(zt+1)

2
k,l1{(rk,l−1/2)(zt+1)k,l≤0} − (nt)k,l(zt)

2
k,l1{(rk,l−1/2)(zt)k,l≤0} . (5.37)

Abbreviating d(t,R) := dnt

(
zt, θ̂

t
(R)

)
, the values {d(t,R)}R∈Rm can thus be updated

sequentially, and these values are sufficient to compute the test statistics λ̃t and µ̃t,
cf. (5.36). Nevertheless, updating all of these |Rm| = 2m(m−1)/2 values in each time
step appears to be infeasible for large m. Fortunately, (5.37) also lets us infer that the
calculation of λ̃t and µ̃t are sometimes much less expensive. To be more specific, if it is
known that R̂ ∈ argminR∈R0

m
d(t,R) and d(t+ 1, R̂) < d(t, R̂) or d(t+ 1, R̂) = 0 holds,

then λ̃t+1 = d(t+ 1, R̂) is fulfilled, and an analogous result holds for µ̃t (cf. Prop. 5.16
below). For sake of brevity, we will write η0t := λ̃t and η

1
t := µ̃t in the following proposition.

Proposition 5.16. Let b ∈ {0, 1} be fixed. If R = (ri,j)1≤i,j≤m ∈ Rbm is such that
ηbt = d(t,R) and d(t+ 1,R) < d(t,R) hold, we have ηbt+1 = d(t+ 1,R).

Proof. Suppose R = (ri,j)1≤i,j≤m ∈ Rbm fulfills both ηbt = d(t,R) and d(t+1,R) < d(t,R).
Furthermore, fix R′ = (r′i,j)1≤i,j≤m ∈ Rbm with

d(t+ 1,R′) = ηbt+1 = minR̃∈Rb
m
d(t+ 1, R̃).

We have to show d(t+ 1,R) ≤ d(t+ 1,R′). In the case d(t+ 1,R′) − d(t,R′) ≥ 0 this
follows due to

d(t+ 1,R) < d(t,R) ≤ d(t,R′) ≤ d(t+ 1,R′).

In the remaining case d(t + 1,R′) − d(t,R′) < 0 a first look at equation (5.37) shows
(zt)k,l ̸= 0 with {k, l} = π(t+ 1, (nt′ ,wt′)0≤t′≤t). Now, a second look at (5.37) reveals

r′k,l =

{
1, if (zt)k,l > 0,

0, if (zt)k,l < 0.

Since by assumption d(t+ 1,R)− d(t,R) < 0 holds, we similarly obtain

rk,l =

{
1, if (zt)k,l > 0,

0, if (zt)k,l < 0,

which shows r′k,l = rk,l. Consequently, according to (5.37), we have d(t+1,R)− d(t,R) =
d(t + 1,R′) − d(t,R′) and together with d(t,R) ≤ d(t,R′) this yields d(t + 1,R) ≤
d(t+ 1,R′).

5.4.6. Asymptotic Behaviour of the LRT Statistics

Next, we discuss the asymptotic behaviour of the test statistics µt, λt, µ̃t and λ̃t. More
precisely, we derive non-trivial upper bounds for asymptotic expressions like Pθ(µt > l) etc.
as t → ∞. This allows us to formulate one-sided hypothesis tests for WST resp. ¬WST
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with asymptotic guarantees on the type I error. Our results generalize to some extent
those from Iverson and Falmagne [1985], and we discuss on this on page 170. Moreover,
provided π fulfills a rather mild condition, the asymptotics of Pθ(µ̃t > l) and Pθ(λ̃t > l)
can be bounded uniformly with respect to θ in a restricted set

Θv
m := {θ ∈ Θm | ∀(i, j) ∈ (m)2 : θi,j = 0 or |θi,j | > v} ⊊ Θm

for some v ∈ (0, π/2). This restriction is related to the low-noise assumption in the sense

that in particular ϕ
(
Qhm
)
⊊ Θ

ϕ(h)
m for any h ∈ (0, 1/2). Note here that Θ0

m ⊊
⋃
v>0Θ

v
m

with Θ0
m as in (5.19), e.g. we have (0)1≤i,j≤m ∈ Θv

m \Θ0
m for any v ∈ (0, π/2).

For X ∈ {WST,¬WST} write Θm(X)
◦ for the interior and ∂Θm(X) for the boundary of

Θm(X) ⊊ Θm. Recalling that the considered topology on Θm is induced by the standard
topology on Rm(m−1)/2, Θm(X)

◦ is the set of all θ ∈ Θm(X) with infθ′∈Θm(¬X)

∣∣∣∣θ − θ′∣∣∣∣
2
>

0, where ||·||2 denotes the standard Euclidean norm on Rm(m−1)/2. Since Θm(¬WST)◦ ⊋
Θ0
m(¬WST), the notion of Θm(X)

◦ is not redundant to that of Θ0
m(X) from p. 152.

According to Prop. 5.11, the limits of Pθ(µ̃t > l) and Pθ(λ̃t > l) (as t → ∞) are trivial in
case θ ∈ Θ0

m ⊆ Θm(WST)◦ ∪Θm(¬WST)◦. For θ ∈ ∂Θm(WST) = ∂Θm(¬WST) it may
appear reasonable to conjecture this limit to depend on the number ψ(θ) of all (i, j) ∈ (m)2
with θi,j = 0: The larger ψ(θ), the more the property θ ∈ Θm(WST)◦ ∪ Θm(¬WST)◦

appears to be violated. In fact, we derive in the upcoming theorem asymptotic bounds for
Pθ(µ̃t > l) and Pθ(λ̃t > l) (as t → ∞), which explicitly depend on ψ(θ). For the uniform
convergence result in the theorem we assume that, for any t′ ∈ N, Pθ(nt ≥ t′) converges
uniformly on ∂Θm(WST) ∩ Θv

m to 1. That this assumption is rather mild can be seen
exactly as the mildness of the assumption π ∈ Π∞, which was discussed directly after
introducing the term sampling strategy in Sec. 1.1. If π ∈ Π violates this assumption, the
sampling strategy π̂ ∈ Π defined there behaves in the limit similar to π but at the same
time it not only fulfills π̂ ∈ Π∞ but also the above uniform convergence assumption. In
Thm. 5.17 we bound the limes superior of expressions like Pθ(µ̃t > l), since it is – without
further assumptions on π ∈ Π∞ – not clear whether these expressions actually converge
for any θ of interest. For example, if π was (for a fixed θ ∈ Θm) adversarially tailored
towards creating a strictly increasing sequence {tn}n∈N ∈ N with Pθ(µ̃t2n−1 > l) < ε and
Pθ(µ̃t2n > l) > ε′ for some 0 < ε < ε′ < 1 and all n ∈ N the limit of {Pθ(µ̃t > l)}t∈N
would not exist.

Theorem 5.17. Suppose π ∈ Π∞. For any θ ∈ ∂Θm(WST) = ∂Θm(¬WST) we have

lim supt→∞ Pθ(µ̃t > l) ≤ 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
, (5.38)

lim supt→∞ Pθ(λ̃t > l) ≤ 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧((m2 )−2)) > l

)
. (5.39)

If v ∈ (0, π/2) and limt→∞ infθ∈∂Θm(WST)∩Θv
m
Pθ(nt ≥ t′) = 1 for any t′ ∈ N, then we
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even have

lim sup
t→∞

sup
θ∈∂Θm(¬WST)∩Θv

m

Pθ(µ̃t > l)− 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
≤ 0,

(5.40)

lim sup
t→∞

sup
θ∈∂Θm(WST)∩Θv

m

Pθ(λ̃t > l)− 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧((m2 )−2)) > l

)
≤ 0.

(5.41)

According to Lem. 2.9, the right-hand sides of (5.38) and (5.39) are monotonically
increasing in ψ(θ), respectively. In this way, ψ(θ) can be seen as a hardness parameter
for testing for WST resp. ¬WST based on λ̃t and µ̃t. A detailed proof of Thm. 5.17 is
technical and requires some preparations. For this reason, we defer it to Sec. 5.4.7 and
restrict ourselves at this point to a proof sketch for the bound on limt→∞ Pθ(µ̃t > l).
Before, let us introduce some convenient notation. Recall the definition of Θm(R) from
Sec. 5.4.5 and define

Θm(θ) := {y ∈ Θm | θi,j < 0 ⇒ yi,j < 0 for every distinct i, j ∈ [m]}

and Θm(θ ∧R) := Θm(θ) ∩ Θm(R) for any θ ∈ Θm, R ∈ Rm. For θ ∈ Θm let Rm(θ)
denote the set of all R ∈ Rm with θ ∈ Θm(R), i.e.,

R ∈ Rm(θ) ⇔ ∀ distinct i, j ∈ [m] : (θi,j < 0 ⇒ ri,j = 0)

holds. Then, we have

Θm(θ) =
⋃

R∈Rm

Θm(θ ∧R) =
⋃

R∈Rm(θ)
Θm(θ ∧R). (5.42)

For R, R̃ ∈ Rm write

∆(R, R̃) = |{(i, j) ∈ (m)2| ri,j ̸= r̃i,j}|

for the number of pairs (i, j) ∈ (m)2, on which R and R̃ disagree. For every R ∈ Rm and
every subset K ⊆ (m)2 of size |K| = τ there exist exactly

(
τ
a

)
relations R̃ ∈ Rm with

ri,j = r̃i,j for every (i, j) ∈ (m)2 \K and ∆(R, R̃) = a.

As an example we have for

θ =


− 0.6 0.6 0
− 0.6 0

− 0.6
−


that

R4(θ) =

R̃x,y :=


− 1 1 x
− 1 y
− 1
−

 : x, y ∈ {0, 1}

 ,

∆(R̃0,0, R̃0,1) = 1 = ∆(R̃0,1, R̃1,1) and ∆(R̃0,0, R̃1,1) = 2.
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Proof Sketch for Thm. 5.17. Let θ ∈ ∂Θm(WST) = ∂Θm(¬WST) and fix a relation
R¬WST ∈ Rm(¬WST) with θ ∈ Θm(R¬WST). By means of Hoeffding’s inequality and

the convergence
√
(nt)i,j(zt)i,j

D→ N (0, 1) we can choose t0 ∈ N such that for any t′ ≥ t0

(i) the approximation Pθ

(∑
(i,j)∈K(nt)i,j(zt)

2
i,j > l

∣∣∣nt ≥ t′) ≈ P
(
χ2
(|K|) > l

)
is good

enough for any ∅ ≠ K ⊆ (m)2 with θi,j = 0 for all (i, j) ∈ (m)2,
(ii) the probability Pθ

(
zt ̸∈ Θm(θ)

∣∣nt ≥ t′) is small enough.

In case zt ∈ Θm(θ∧R) for someR ∈ Rm(θ), setting at most ∆(R,R¬WST(θ))∧(⌊m/2⌋+1)
of its entries (say, those indexed byK¬WST ⊊ (m)2) to 0 results in a point z′

t ∈ Θm(¬WST).
Then,

µ̃t ≤ dnt(zt, z
′
t) =

∑
(i,j)∈K¬WST

(nt)i,j(zt)
2
i,j

holds and (i) assures us

Pθ

(
µ̃t > l

∣∣zt ∈ Θm(θ ∧R) ∧ nt ≥ t0
)
≲ P

(
χ2
(∆(R,R¬WST(θ))∧(⌊m/2⌋+1)) > l

)
.

Using that (zt)i,j is symmetric in case θi,j = 0, one can show

Pθ

(
zt ∈ Θm(θ ∧R)

∣∣ zt ∈ Θm(θ) ∧ nt ≥ t′
)
= 2−ψ(θ).

Since there are exactly
(
ψ(θ)
a

)
possible choices of R ∈ Rm(θ) with ∆(R,R¬WST(θ)) = a,

the above approximate inequality allows us to infer

Pθ(µ̃t > l|zt ∈ Θm(θ) ∧ nt ≥ t2) ≲ 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
.

Taking into account (ii) and the assumption π ∈ Π∞, we conclude for large values of t

Pθ (µ̃t > l)

≤ Pθ

(
µ̃t > l

∣∣zt ∈ Θm(θ) ∧ nt ≥ t2
)
+ Pθ

(
zt ̸∈ Θm(θ)

∣∣nt ≥ t2)+ 2Pθ (¬(nt ≥ t2))

≲ 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
.

For the uniform variant, we choose R¬WST = R¬WST(θ) and K¬WST = K¬WST(θ,R) in
an appropriate uniform way.

For further extending Thm. 5.17, the following proposition will be of use. It can be seen
as a uniform variant of results in Prop. 5.11, and its proof is deferred to Sec. 5.4.8

Proposition 5.18. Let v ∈ (0, π/2) and π ∈ Π∞ be s.t. limt→∞ infθ∈Θv
m
Pθ (nt ≥ t′) = 1

for all t′ ∈ N. For any ε > 0 there exists t1 ∈ N with

supt≥t1 supθ∈Θm(WST)◦∩Θv
m
Pθ

(
λ̃t > 0

)
≤ ε, supt≥t1 supθ∈Θm(¬WST)◦∩Θv

m
Pθ (µ̃t > 0) ≤ ε.

By means of Prop. 5.18, we can extend the uniform result from Thm. 5.17 as follows.
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Corollary 5.19. If π ∈ Π∞ and v ∈ (0, π/2) with limt→∞ infθ∈Θv
m
Pθ(nt ≥ t′) = 1 for

all t′ ∈ N, then we have with M :=
(
m
2

)
that

lim supt→∞ supθ∈Θm(¬WST)∩Θv
m
Pθ (µ̃t > l) ≤ 2−M

∑M

a=0

(
M

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
,

lim supt→∞ supθ∈Θm(WST)∩Θv
m
Pθ

(
λ̃t > l

)
≤ 2−M

∑M

a=0

(
M

a

)
P
(
χ2
(a∧(M−2)) > l

)
.

Proof. For any X ∈ {WST,¬WST} we have Θm(X)∩Θv
m ⊆ (Θm(X)

◦ ∩Θv
m)∪ (∂Θm(X)∩

Θv
m) and trivially also ψ(θ) ≤ M for all θ ∈ ∂Θm(X). Hence, the statement follows

directly from combining Thm. 5.17, Lem. 2.9 and Prop. 5.18.

So far, we have restricted ourselves to the asymptotics of µ̃t and λ̃t. The following lemma
guarantees that, for any θ ∈ Θm, µt − µ̃t and λt − λ̃t converge in probability to 0 as
t → ∞. This allows us to transfer the results from Thm. 5.17 and Cor. 5.19 to uniform
bounds on the asymptotics of the tails of µt and λt as t → ∞.

Lemma 5.20. For every ε > 0 we have

supθ∈Θm
limt→∞ Pθ

(
|λt − λ̃t| > ε

)
= 0, supθ∈Θm

limt→∞ Pθ (|µt − µ̃t| > ε) = 0.

For the sake of readability, the proof of Lem. 5.20 is given in Sec. 5.4.8.

Corollary 5.21. Suppose π ∈ Π∞ and θ ∈ ∂Θm(WST) = ∂Θm(¬WST). Then, (5.38)
and (5.39) also hold for µt and λt instead of µ̃t and λ̃t. In particular, if π is such that
limt→∞ infθ∈Θv

m
Pθ(nt ≥ t′) = 1 for all t′ ∈ N, we obtain with M :=

(
m
2

)
that

supθ∈Θm(¬WST) lim supt→∞ Pθ (µt > l) ≤ 2−M
∑M

a=0

(
M

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
,

supθ∈Θm(WST) lim supt→∞ Pθ (λt > l) ≤ 2−M
∑M

a=0

(
M

a

)
P
(
χ2
(a∧(M−2)) > l

)
.

Proof of Cor. 5.21. We only show the results for µt, those concerning λt can be seen
similarly. To see that (5.38) also holds with µ̃t replaced by µt, suppose θ ∈ ∂Θm(¬WST)
and ε > 0 to be arbitrary but fixed. Using ψ(θ) ≤M , Lem. 5.20 allows us to infer

lim supt→∞ Pθ (µt > l + ε) ≤ lim supt→∞ Pθ (|µt − µ̃t| > ε) + Pθ (µ̃t > l)

= lim supt→∞ Pθ (µ̃t > l)

≤ 2−ψ(θ)
∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
.

Hence, the statement follows via ε↘ 0. Using that

Θm(¬WST) ∩Θv
m ⊆ (Θm(¬WST)◦ ∩Θv

m) ∪ (∂Θm(¬WST) ∩Θv
m)

and ψ(θ) ≤M , combining this with Prop. 5.18 yields

supθ∈Θm(¬WST) lim supt→∞ Pθ (µt > l) ≤ 2−M
∑M

a=0

(
M

a

)
P
(
χ2
(a∧(⌊m/2⌋+1)) > l

)
.
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With the help of the obtained bounds we can provide the following asymptotic hypothesis
tests for WST and ¬WST.

Corollary 5.22 (Asymptotic level-α tests for testing WST resp. ¬WST).
Let α ∈ (0, 1) and π ∈ Π∞ be fixed. Choose lWST, l¬WST > 0 such that

1

2M

M∑
a=0

(
M

a

)
P
(
χ2
(a∧(M−2)) > lWST

)
= α,

1

2M

M∑
a=0

(
M

a

)
P
(
χ2
(a∧(⌊m

2
⌋+1))) > l¬WST

)
= α

with M =
(
m
2

)
.

• Let A0(t) be the testing algorithm, which chooses its queries until time t according
to π and outputs ¬WST if λt > lWST and WST otherwise. Then, we have for any
θ ∈ Θm(WST) that lim supt→∞ Pθ(D(A0(t)) = ¬WST) ≤ α.

• Let A1(t) be the testing algorithm, which chooses its queries until time t according
to π and outputs WST if µt > l¬WST and ¬WST otherwise. Then, we have for any
θ ∈ Θm(¬WST) that lim supt→∞ Pθ(D(A1(t)) = WST) ≤ α.

The same guarantees are valid when λt and µt are replaced in the definitions of A0(t) and
A1(t) by λ̃t and µ̃t.

Despite its asymptotic guarantees on the type I error, the tests from Cor. 5.22 do not tell
us when to stop sampling and decide to terminate. For this reason, they are apparently
less applicable in real-world scenarios than solutions to Pm,h,α,βWST .

Comparison to Related Work Iverson and Falmagne [1985] have analyzed the con-
vergence of the asymptotic behaviour of the WST test statistics λt and λ̃t under the
assumption that at each time t, every pair {i, j} has been queried exactly t times. By choos-
ing π = RoundRobin and restriction to the time steps M, 2M, 3M, . . . with M =

(
m
2

)
(instead of 1, 2, 3, . . . ), this can be seen as a special case of our setting, in which at each
time step only one query is made. With this particular choice, the authors have shown
that

supθ∈Θm(WST) lim supt→∞ Pθ

(
λ̃tM > l

)
≤ 2−M

′∑M ′

a=0

(
M ′

a

)
P
(
χ2
(a) > l

)
(5.43)

with M ′ =
(
m−1
2

)
. Regarding Lem. 2.9, this bound is apparently stronger than ours, which

depends on
(
m
2

)
>
(
m−1
2

)
. This is due to the benefits this particular choice of π provides

for the analysis: With it, we have (ntM )i,j = t for all (i, j) ∈ (m)2 and thus

λ̃tM = dntM (ztM ,Θm(WST)) = tminθ∈Θm(WST)

∑
(i,j)∈(m)2

((ztM )i,j − θi,j)2

holds, i.e. λ̃tM/t is the unweighted Euclidean distance from ztM to Θm(WST). In
particular, the standard Euclidean basis is an orthogonal basis w.r.t. the underlying inner
product. Regarding that ∂Θm(WST) is the union of appropriate spans of these basis
vectors, the orthogonal projections of ztM onto Θm(WST) are thus rather easy to handle,
and geometric arguments allow Iverson and Falmagne [1985] to prove (5.43).
In our general case, where π ∈ Π∞ is arbitrary, λ̃t is a weighted Euclidean distance from
zt to Θm(WST), where the weights are nt and thus dependent on π. Therefore, the
geometric arguments from [Iverson and Falmagne, 1985] do not seem to be transferrable
to our setting and the obtained bounds are weaker than those for their special case.
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5.4.7. Proof of Thm. 5.17

We prepare the proof of Thm. 5.17 with the following technical lemma. It will enable us
to choose R¬WST and K¬WST from the proof sketch of (5.38) in an appropriate uniform
way. For this, let us write P((m)2) := {A : A ⊆ (m)2} and define for convenience

Ψ(θ) = {(i, j) ∈ (m)2 : θi,j = 0}

for every θ ∈ Θm. Then, we have ψ(θ) := |Ψ(θ)| and regarding the definition of Rm(θ)
also

(i, j) ∈ Ψ(θ) ⇔ ∃R, R̃ ∈ Rm(θ) : ri,j ̸= r̃i,j

for any θ ∈ Θm and (i, j) ∈ (m)2.

Lemma 5.23. Given K ⊆ (m)2 and y ∈ Θm, write for convenience y\K for the element
y′ = (y′i,j)1≤i,j≤m ∈ Θm defined via

y′i,j :=

{
0, if (i, j) ∈ K,
yi,j , if (i, j) ∈ (m)2 \K.

For X ∈ {WST,¬WST} there exist mappings

RX : ∂Θm(X) → Rm(X), KX : ∂Θm(X)×Rm → P((m)2)

s.t. for all θ ∈ ∂Θm(WST) = ∂Θm(¬WST) and R ∈ Rm(θ) the following holds:

(i) |KWST(θ,R)| ≤ (
(
m
2

)
− 2) ∧∆(R,RWST(θ))

(ii) |K¬WST(θ,R)| ≤ (⌊m/2⌋+ 1) ∧∆(R,R¬WST(θ))

(iii) KX(θ,R) ⊆ Ψ(θ) and y\KX(θ,R) ∈ Θm(X) for any y ∈ Θm(θ ∧ R) and X ∈
{WST,¬WST}.

The proof of Lem. 5.23 is based on the following two corollaries, which are rather direct
consequences of the graph theoretical considerations made in Sec. 3. In their proof, we use
the notation G(R) as introduced in Sec. 3.1 and also write R(G) for the relation R ∈ Rm
defined via ri,j = 1 iff (i, j) ∈ EG.

Corollary 5.24. Let R ∈ Rm. Then, for any subset K ⊆ (m)2 of size |K| > ⌊m/2⌋ there
exists R̃ ∈ Rm(¬WST) with

r̃k,l = rk,l for all (k, l) ∈ (m)2 \K. (5.44)

This bound for |K| is optimal in the sense that there exists R ∈ Rm(WST) and a particular
choice of K with |K| = ⌊m2 ⌋ such that every R̃ ∈ Rm fulfilling (5.44) is in Rm(WST) as
well.

Proof of Cor. 5.24. To prove the first statement, suppose R ∈ Rm and K ⊆ (m)2 of size
|K| > ⌊m/2⌋ to be fixed. Abbreviate G := G(R) ∈ Gm, i.e. (i, j) ∈ EG iff ri,j = 1, and
define G′ = ([m], EG′) ∈ Gm via

(i, j) ∈ EG′ iff (i, j) ∈ EG and {(i, j), (j, i)} ∩K = ∅.
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According to Prop. 3.18, |EG′ | = |EG| − |K| <
(
m
2

)
− ⌊m/2⌋ implies that G′ has a

supergraph G̃ ∈ Gm(¬acyclic). Hence, the statement follows with R̃ := R(G̃).

To validate second statement, note that Prop. 3.18 allows us to fix a G ∈ Gm(acyclic)
with |EG| =

(
m
2

)
−⌊m/2⌋. Let G′ ∈ Gm(acyclic) be any extension of G. Now, R := R (G′)

has the desired properties.

Corollary 5.25. Let R ∈ Rm. Then, for any subset K ⊆ (m)2 of size |K| >
(
m
2

)
− 3

there exists a relation R̃ ∈ Rm(WST) that fulfills

r̃k,l = rk,l for all (k, l) ∈ (m)2 \K. (5.45)

This bound for |K| is optimal in the sense that there exists some R ∈ Rm(¬WST) and a
particular choice of K with |K| =

(
m
2

)
− 3 such that every R̃ ∈ Rm fulfilling (5.45) is an

element of Rm(¬WST) as well.

Proof of Cor. 5.25. The first statement follows from the fact that every graphG ∈ Gm with
at most 2 edges has a supergraph G′ ∈ Gm(acyclic). To see the second statement, choose
an arbitrary R ∈ Rm with r1,2 = r2,3 = r3,1 = 1 and let K = (m)2 \ {(1, 2), (2, 3), (1, 3)}.
Then, R ∈ Rm(¬WST) and every relation R̃ ∈ Rm satisfying (5.45) fulfills r̃1,2 = r̃2,3 =
r̃3,1 = 1 and thus R̃ ∈ Rm(¬WST).

Proof of Lem. 5.23. We start with the definition of R¬WST and K¬WST. Note that we
can fix a mapping R¬WST such that R¬WST(θ) ∈ Rm(θ) ∩ Rm(¬WST) holds for any
θ ∈ ∂Θm(¬WST). For the sake of completeness, define K¬WST(θ,R) := ∅ if R ̸∈ Rm(θ),
and suppose in the following θ ∈ ∂Θm(¬WST) and R ∈ Rm(θ) to be arbitrary but fixed.
From R,R¬WST(θ) ∈ Rm(θ) we infer that

K ′(θ,R) := {(i, j) ∈ (m)2 : ri,j ̸= (R¬WST(θ))i,j}

is a subset of Ψ(θ), i.e., ∆(R,R¬WST(θ)) = |K ′(θ,R)| ≤ ψ(θ). If |K ′(θ,R)| > ⌊m/2⌋+1,
we can fix a subset K ′′(θ,R) ⊆ K ′(θ,R) of size ⌊m/2⌋+ 1 and according to Cor. 5.24 a
relation R̃ ∈ Rm(¬WST) such that7

r̃i,j = ri,j for all (i, j) ∈ (m)2 \K ′′(θ,R).

Define

K¬WST(θ,R) :=

{
{(i, j) ∈ (m)2 : ri,j ̸= r̃i,j}, if |K ′(θ,R)| > ⌊m/2⌋+ 1,

K ′(θ,R), otherwise,

and noteK¬WST(θ,R) ⊆ K ′(θ,R) ⊆ Ψ(θ). If ∆(R,R¬WST(θ)) = |K ′(θ,R)| > ⌊m/2⌋+1,
we have |K¬WST(θ,R)| ≤ |K ′′(θ,R)| = ⌊m/2⌋+ 1, and if ∆(R,R¬WST(θ)) ≤ ⌊m/2⌋+ 1,
then |K¬WST(θ,R)| = |K ′(θ,R)| = ∆(R,R¬WST(θ)). Hence, |K¬WST(θ,R)| ≤ (⌊m/2⌋+
1) ∧∆(R,R¬WST(θ)) holds in any case.

7In order enforce uniqueness of the choices of R̃ and K′′(θ,R) we may equip Rm resp. (m)2 with a
unique ordering ≻ and choose R̃ resp. K′′(θ,R) as the (w.r.t. ≻) highest ordered element with the
desired property.
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Now, suppose y ∈ Θm(θ ∧R) to be fixed. In case |K ′(θ,R)| ≤ ⌊m/2⌋+ 1 the point y′ is
given by

y′i,j =

{
0, if ri,j ̸= (R¬WST(θ))i,j ,

yi,j , otherwise

and thus y′ ∈ Θm(θ ∧R¬WST(θ)) ⊆ Θm(¬WST). In the remaining case |K ′(θ,R)| >
⌊m/2⌋+ 1 we have

y′i,j =

{
0, if ri,j ̸= r̃i,j ,

yi,j , otherwise.

To see y′ ∈ Θm(θ ∧ R̃) ⊆ Θm(¬WST), let (i, j) ∈ (m)2 with ri,j = 0 be arbitrary. In
case r̃i,j ̸= ri,j we have y′i,j ≤ 0 by definition of y. If r̃i,j = ri,j = 0, then y ∈ Θm(θ ∧R)
assures y′i,j = yi,j ≤ 0. In particular, y′ ∈ Θm(¬WST) holds in any case.
The mappings RWST and KWST can be defined analogously by using Cor. 5.25 instead of
Cor. 5.24.

We proceed with the proof of Thm. 5.17.

Proof of Thm. 5.17. We start this proof with three auxiliary results. Then, we prove
(5.40) and (5.41) separately, and finally we show (5.38) and (5.39).

Claim 1: For any ε > 0 there is t0(ε) ∈ N s.t. for any θ ∈ ∂Θm(WST) and any t′0 ≥ t0(ε)

∀∅ ≠ K ⊆ Ψ(θ) :

∣∣∣∣Pθ

(∑
(i,j)∈K

(nt)i,j(zt)
2
i,j > l

∣∣∣nt ≥ t′0)− P
(
χ2
(|K|) > l

)∣∣∣∣ ≤ ε.
Proof: This follows from the fact that π ∈ Π∞ assures

√
(nt)i,j(zt)i,j

D−→ N (0, 1) as
t → ∞ for any (i, j) ∈ Ψ(θ) for any θ ∈ ∂Θm(WST). ■

Claim 2: For any ε > 0 there exists t1(ε) ∈ N s.t. for any θ ∈ Θv
m and any t′1 ≥ t1(ε)

Pθ

(
zt ̸∈ Θm(θ)

∣∣nt ≥ t′1) ≤ ε.
Proof: The transformation ϕ is bijective, its inverse function ϕ−1 : [−π/2, π/2] → [0, 1]
is given as ϕ−1(x) = sin2((2x+ π)/4) and strictly monotonically increasing. In particular,
c := ϕ−1(0) − ϕ−1(−v) is positive. Since

∑∞
s=t(e

−2c)s → 0 as t → ∞, we can choose
t1 ∈ N with

∑∞
s=t1

(e−2c)s ≤ ε/
(
m
2

)
. Using again monotonicity of ϕ−1, we obtain by means

of Hoeffding’s inequality for any θ ∈ Θv
m and any t′1 ≥ t1 the estimate

Pθ

(
zt ̸∈ Θm(θ)

∣∣nt ≥ t′1)
= Pθ

(
∃ distinct i, j ∈ [m] with qi,j ≤ ϕ−1(−v) : (wt)i,j/(nt)i,j ≥ ϕ−1(0)

∣∣nt ≥ t′1)
≤
∑

(i,j)∈(m)2:θi,j ̸=0
Pθ

(
|(wt)i,j/(nt)i,j − qi,j | ≥ c

∣∣nt ≥ t′1)
≤
(
m

2

)∑∞

s=t1
e−2cs ≤ ε.

■

Claim 3: For any θ ∈ ∂Θm(WST), R ∈ Rm(θ) and any t′ ∈ N we have

Pθ

(
zt ∈ Θm(θ ∧R)

∣∣ zt ∈ Θm(θ) ∧ nt ≥ t′
)
= 2−ψ(θ).

173



Proof: Let θ ∈ ∂Θm(WST), R ∈ Rm(θ) and t′ ∈ N be fixed and suppose zt ∈ Θm(θ) for
the moment. For {i, j} ∈ [m]2 with (i, j), (j, i) ̸∈ Ψ(θ) we have θi,j < 0 or θi,j > 0. In the
first case, zt ∈ Θm(θ) resp. R ∈ Rm(θ) assure (zt)i,j < 0 resp. ri,j = 0, and in the other
case an analogous argumentation yields (zt)i,j > 0 and ri,j = 1. Consequently, we have in
particular

∀{i, j} ∈ [m]2 with (i, j), (j, i) ̸∈ Ψ(θ) : ri,j = 1 ⇒ (zt)i,j ≥ 0,

and, as zt ∈ Θm(θ) holds by assumption, this implies

zt ∈ Θm(θ ∧R)

⇔ zt ∈ Θm(R)

⇔ ∀{i, j} ∈ [m]2 : ri,j = 1 ⇒ (zt)i,j ≥ 0

⇔ ∀{i, j} ∈ [m]2 with (i, j) ∈ Ψ(θ) or (j, i) ∈ Ψ(θ) : ri,j = 1 ⇒ (zt)i,j ≥ 0.

In other words, conditioned on {zt ∈ Θm,nt ≥ t′}, zt ∈ Θm(θ ∧ R) holds iff the
ψ(θ) = |Ψ(θ)| many signs of {(zt)i,j}(i,j)∈Ψ(θ) are consistent with the corresponding entries

{ri,j}(i,j)∈Ψ(θ) of R. Recall that (zt)i,j ∼ ϕ
(

1
(nt)i,j

∑(nt)i,j
s=1 (xs)i,j

)
for any (i, j) ∈ (m)2.

If (i, j) ∈ Ψ(θ), then θi,j = 0 and thus (xs)i,j ∼ Ber(1/2) for any s ∈ N. Using that
ϕ(1/2 + x) = ϕ(1/2− x) we thus obtain (zt)i,j ∼ −(zt)i,j and the statement follows. ■

Claim 4: (5.40) is fulfilled.
Proof: Let ε > 0 be arbitrary but fixed and R¬WST : ∂Θm(¬WST) → Rm(¬WST)
and K¬WST : ∂Θm(¬WST) × Rm → P((m)2) be as postulated in Lem. 5.23. Let
t0 = t0(ε) resp. t1 = t1(ε) be as in Claims 1 resp. 2 and abbreviate t2 := max{t0, t1}. Let
θ ∈ ∂Θm(¬WST) and R ∈ Rm(θ) be fixed and suppose zt ∈ Θm(θ ∧R) and nt ≥ t2. By
Lem. 5.23, z′

t = (zt)\K¬WST(θ,R) ∈ Θm defined via

(z′
t)i,j :=

{
0, if (i, j) ∈ K¬WST(θ,R),

(zt)i,j , if (i, j) ∈ (m)2 \K¬WST(θ,R)

fulfills z′
t ∈ Θm(¬WST). Hence,

µ̃t = minθ̃∈Θm(¬WST) dnt(zt, θ̃) ≤ dnt(zt, z
′
t)

=
∑

(i,j)∈K¬WST(θ,R)
(nt)i,j

(
(zt)i,j − (z′

t)i,j
)2

=
∑

(i,j)∈K¬WST(θ,R)
(nt)i,j(zt)

2
i,j

and thus

Pθ

(
µ̃t > l

∣∣zt ∈ Θm(θ ∧R) ∧ nt ≥ t2
)

≤ Pθ

(∑
(i,j)∈K¬WST(θ,R)

(nt)i,j(zt)
2
i,j > l

∣∣∣nt ≥ t2) .
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By means of Claim 3 we can thus estimate for each θ ∈ ∂Θm(¬WST)

Pθ (µ̃t > l|zt ∈ Θm(θ) ∧ nt ≥ t2)

≤
∑

R∈Rm(θ)
Pθ

(
µ̃t > l

∣∣zt ∈ Θm(θ ∧R) ∧ nt ≥ t2
)

× Pθ (zt ∈ Θm(θ ∧R) | zt ∈ Θm(θ) ∧ nt ≥ t2)

≤ 2−ψ(θ)
ψ(θ)∑
a=0

∑
R∈Rm(θ):

∆(R,R¬WST(θ))=a

Pθ

(∑
(i,j)∈K¬WST(θ,R)

(nt)i,j(zt)
2
i,j > l

∣∣∣nt ≥ t2) .
(5.46)

For any θ ∈ ∂Θm(¬WST), R ∈ Rm(θ) and (i, j) ∈ K¬WST(θ,R) ⊆ Ψ(θ) we have
|K¬WST(θ,R)| ≤ ∆(R,R¬WST(θ)) ∧ (⌊m/2⌋+ 1), thus we can estimate with Claim 1

Pθ

(∑
(i,j)∈K¬WST(θ,R)

(nt)i,j(zt)
2
i,j > l

∣∣∣nt ≥ t2)
≤ P

(
χ2
(|K¬WST(θ,R)|) > l

)
+ ε

≤ P
(
χ2
(∆(R,R¬WST(θ))∧(⌊m/2⌋+1)) > l

)
+ ε.

Using that Rm(θ) contains exactly
(
ψ(θ)
a

)
relations R with ∆(R,R¬WST(θ)) = a, we can

combine this estimate with (5.46) and obtain

Pθ(µ̃t > l|zt ∈ Θm(θ)∧nt ≥ t2)− ε ≤ 2−ψ(θ)
ψ(θ)∑
a=0

(
ψ(θ)

a

)
Pθ

(
χ2
(a∧(⌊m/2⌋+1)) > l

)
=: f(θ)

for all θ ∈ ∂Θm(¬WST) ∩Θv
m. Since Claim 2 ensures

Pθ (µ̃t > l)

= Pθ

(
µ̃t > l

∣∣zt ∈ Θm(θ) ∧ nt ≥ t2
)
Pθ (zt ∈ Θm(θ) ∧ nt ≥ t2)

+ Pθ (zt ̸∈ Θm(θ) ∨ ¬(nt ≥ t2))
≤ Pθ

(
µ̃t > l

∣∣zt ∈ Θm(θ) ∧ nt ≥ t2
)
+ Pθ

(
zt ̸∈ Θm(θ)

∣∣nt ≥ t2)Pθ (nt ≥ t2)
+ 2Pθ (¬(nt ≥ t2))
≤ f(θ) + ε+ 2(1− Pθ (nt ≥ t2))

for all θ ∈ ∂Θm(¬WST) ∩Θv
m, we obtain

lim supt→∞ supθ∈∂Θm(¬WST)∩Θv
m
Pθ (µ̃t > l)− f(θ)

≤ ε+ 2
(
1− lim inft→∞ infθ∈∂Θm(¬WST)∩Θv

m
Pθ(nt ≥ t2)

)
≤ ε.

Hence, (5.40) follows due to arbitrariness of ε. ■

Claim 5: (5.41) is fulfilled.
Proof: Suppose again ε > 0 to be arbitrary but fixed, let t0, t1, t2 be as in the proof of
Claim 4 and let RWST : ∂Θm(WST) → Rm(WST) and KWST : ∂Θm(WST) × Rm →
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P((m)2) be as in Lem. 5.23. Let θ ∈ ∂Θm(WST) and R ∈ Rm(θ) be fixed. Similarly as
in the proof of Claim 4 we see that, provided zt ∈ Θm(θ ∧R), z′

t = (zt)\KWST(θ,R) is an
element in Θm(WST) and thus

Pθ

(
λ̃t > l

∣∣zt ∈ Θm(θ ∧R) ∧ nt ≥ t2
)

≤ Pθ

(∑
(i,j)∈KWST(θ,R)

(nt)i,j(zt)
2
i,j > l

∣∣∣nt ≥ t2) .
Using KWST(θ,R) ⊆ Ψ(θ), |KWST(θ,R)| ≤ ∆(R,RWST(θ)) ∧

((
m
2

)
− 2
)
and Claim 1,

we obtain analogously as above

Pθ

(
λ̃t > l

∣∣zt ∈ Θm(θ) ∧ nt ≥ t2
)

≤ 2−ψ(θ)
∑ψ(θ)

a=0

∑
R∈Rm(θ):

∆(R,RWST(θ))=a

Pθ

(∑
(i,j)∈KWST(θ,R)

(nt)i,j(zt)
2
i,j > l

∣∣∣nt ≥ t2)
≤ 2−ψ(θ)

∑ψ(θ)

a=0

∑
R∈Rm(θ):

∆(R,RWST(θ))=a

P
(
χ2
(∆(R,RWST(θ))∧((m2 )−2)) > l

)
+ ε.

By repeating exactly the same argumentation as in the proof of Claim 4 we thus get

Pθ

(
λ̃t > l

)
≤ 2−ψ(θ)

∑ψ(θ)

a=0

(
ψ(θ)

a

)
P
(
χ2
(∆(R,RWST(θ))∧((m2 )−2)) > l

)
+ ε+ 2 ((1− Pθ(nt ≥ t2)) .

Since limt→∞ infθ∈∂Θm(WST)∩Θv
m
Pθ(nt ≥ t2) = 1 holds by assumption, (5.41) follows due

to arbitrariness of ε. ■

Claim 6: (5.38) and (5.39) are fulfilled.
Proof: In Claim 4 we have seen that for arbitrary but fixed ε > 0 and any θ ∈ ∂Θm(WST)

Pθ(µ̃t > l|zt ∈ Θm(θ) ∧ nt ≥ t2)− ε ≤ f(θ)

is fulfilled, where t2 and f(θ) are as in Claim 4. As π ∈ Π∞, limt→∞ Pθ (nt ≥ t2) = 1
holds. The identity Θm =

⋃
v>0Θ

v
m allows us to choose v > 0 with θ ∈ Θv

m, and thus
lim supt→∞ Pθ (zt ̸∈ Θm(θ)) ≤ ε is fulfilled according to Claim 2. Consequently,

lim supt→∞ Pθ (µ̃t > l)

≤ lim supt→∞ Pθ (µ̃t > l ∧ zt ∈ Θm(θ) ∧ nt ≥ t2) + lim supt→∞ Pθ (zt ̸∈ Θm(θ))

≤ lim supt→∞ Pθ

(
µ̃t > l

∣∣∣zt ∈ Θm(θ) ∧ nt ≥ t2
)
+ ε

≤ f(θ) + ε

holds and (5.38) follows via ε↘ 0. (5.39) can be seen similarly.

5.4.8. Proofs of Proposition 5.18 and Lemma 5.20

Proof of Prop. 5.18. As in the proof of Thm. 5.17 (in the proof of Claim 2) choose c :=
ϕ−1(0)−ϕ−1(−v) > 0 and a t0 ∈ N with

∑∞
s=t0

(e−2c)s ≤ 1
2ε/
(
m
2

)
. Let θ ∈ Θm(WST)◦∩Θv

m
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and t′0 ≥ t0 be arbitrary but fixed for the moment. Due to λ̃t = 0 ⇔ zt ∈ Θm(WST) we
have

Pθ

(
λ̃t > 0

∣∣nt ≥ t′0) = Pθ

(
zt ∈ Θm(¬WST)◦

∣∣nt ≥ t′0)
for any t′0 ≥ t0. If zt ∈ Θm(¬WST)◦, then

∀ distinct i, j ∈ [m] : (zt)i,j ≥ 0 ⇒ θi,j ≥ 0

would imply θ ∈ Θm(¬WST) and contradict θ ∈ Θm(WST)◦. Using θ ∈ Θv
m, monotonicity

of ϕ−1 and Hoeffding’s inequality, we can thus estimate as in the proof of Thm. 5.17 for
any t′0 ≥ t0

Pθ

(
λ̃t > 0

∣∣nt ≥ t′0) ≤ Pθ

(
∃ distinct i, j ∈ [m] : (zt)i,j ≥ 0 and θi,j ≤ −v

∣∣nt ≥ t′0)
= Pθ

(
∃ distinct i, j ∈ [m] : |(wt)i,j/(nt)i,j − qi,j | ≥ c

∣∣nt ≥ t′0)
≤
(
m

2

)∑∞

s=t0
e−2cs ≤ ε/2.

By assumption on π there exists t1 ≥ t0 with infθ∈Θv
m
Pθ(nt ≥ t0) ≥ 1− ε/2 for all t ≥ t1.

Combining these estimates yields

supt≥t1 supθ∈Θm(WST)◦∩Θv
m
Pθ

(
λ̃t > 0

)
≤ supt≥t1 supθ∈Θm(WST)◦∩Θv

m
Pθ

(
λ̃t > 0

∣∣nt ≥ t0)+ supt≥t1 supθ∈Θv
m
Pθ (¬(nt ≥ t0))

≤ ε/2 + ε/2 = ε.

The statement for µ̃t can be proven analogously.

We prepare the proof of Lem. 5.20 with the following result.

Lemma 5.26. If π ∈ Π∞, then we have for any θ′ ∈ Θm

Pθ′

(
limt→∞ supθ∈Θm

∣∣∣ln(L(θ|zt))− ln(L̃(θ|zt))
∣∣∣ = 0

)
= 1.

Proof. Suppose θ′ ∈ Θm as well as a sample (nt,wt)t∈N to be fixed. According to [Bagui
and Mehra, 2017, pp. 403ff.] we have for any (i, j) ∈ (m)2 that

C(qi,j , (nt)i,j) := ln (P(Bin((nt)i,j , qi,j) = (wt)i,j))

− ln

(√
(nt)i,j√
2π

exp

(
−(nt)i,j

(
ϕ

(
(wt)i,j
(nt)i,j

)
− ϕ(qi,j)

)2
))

fulfills C(qi,j , (nt)i,j) → 0 as t → ∞ (due to (nt)i,j → ∞ as t → ∞). Furthermore, it
is shown in [Bagui and Mehra, 2017, pp. 404ff.] that C is a polynomial in qi,j and thus
we may conclude

supqi,j∈[0,1] limt→∞ |C(qi,j , (nt)i,j)| → 0 as t → ∞.

Taking a look at the definitions of L and L̃ we can infer

supθ∈Θm
| ln(L(θ|zt))− ln(L̃(θ|zt))| = supQ∈Qm

∏
i<j
|C(qi,j , (nt)i,j)|

=
∏

i<j
supqi,j∈[0,1] |C(qi,j , (nt)i,j)| → 0

as t → ∞.
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Proof of Lem. 5.20. Nonnegativity of L and L̃ imply for Θ̂m ∈ {Θm(WST),Θm} on the
one hand

sup
θ∈Θ̂m

L(θ|zt)
sup

θ̃∈Θ̂m
L̃(θ̃|zt)

≤ sup
θ∈Θ̂m

L(θ|zt)
L̃(θ|zt)

and on the other hand

sup
θ∈Θ̂m

L(θ|zt)
sup

θ̃∈Θ̂m
L̃(θ̃|zt)

= sup
θ∈Θ̂m

L(θ|zt) inf θ̃∈Θ̂m

1

L̃(θ̃|zt)
≥ inf

θ∈Θ̂m

L(θ|zt)
L̃(θ|zt)

.

Thus, monotonicity of the logarithm implies∣∣∣∣∣ln sup
θ∈Θ̂m

L(θ|zt)
sup

θ̃∈Θ̂m
L̃(θ̃|zt)

∣∣∣∣∣ ≤ max

{
sup

θ∈Θ̂m

∣∣∣∣ln L(θ|zt)L̃(θ|zt)

∣∣∣∣ , infθ∈Θ̂m

∣∣∣∣ln L(θ|zt)L̃(θ|zt)

∣∣∣∣}

for any Θ̂ ∈ {Θm(WST),Θ}. Recalling that

λt = −2 ln
(
supθ∈Θm(WST) L(θ|zt)

supθ∈Θm
L(θ|zt)

)
and λ̃t = −2 ln

(
supθ∈Θm(WST) L̃(θ|zt)

supθ∈Θm
L̃(θ|zt)

)

we estimate for any θ′ ∈ Θm

Pθ′(|λt − λ̃t| > ε)

≤ Pθ′

(∣∣∣ln(supθ∈Θm(WST) L(θ|zt)
)
− ln

(
supθ∈Θm(WST) L̃(θ|zt)

)∣∣∣ > ε

4

)
+ Pθ′

(∣∣∣ln (supθ∈Θm
L(θ|zt)

)
− ln

(
supθ∈Θm

L̃(θ|zt)
)∣∣∣ > ε

4

)
. (5.47)

The first summand fulfills

Pθ′

(∣∣∣ln(supθ∈Θm(WST) L(θ|zt)
)
− ln

(
supθ∈Θm(WST) L̃(θ|zt)

)∣∣∣ > ε

4

)
= Pθ′

(∣∣∣∣∣ln
(
supθ∈Θm(WST) L(θ|zt)
supθ∈Θm(WST) L̃(θ|zt)

)∣∣∣∣∣ > ε

4

)

≤ Pθ′

(
max

{
supθ∈Θm(WST)

∣∣∣∣ln L(θ|zt)L̃(θ|zt)

∣∣∣∣ , infθ∈Θm(WST)

∣∣∣∣ln L(θ|zt)L̃(θ|zt)

∣∣∣∣} >
ε

4

)
−→ 0

as t → ∞, wherein the convergence follows from Lem. 5.26. Similarly, we see

Pθ′

(∣∣∣ln (supθ∈Θm
L(θ|zt)

)
− ln

(
supθ∈Θm

L̃(θ|zt)
)∣∣∣ > ε

4

)
≤ Pθ′

(
max

{
supθ∈Θm

∣∣∣∣ln L(θ|zt)L̃(θ|zt)

∣∣∣∣ , infθ∈Θm

∣∣∣∣ln L(θ|zt)L̃(θ|zt)

∣∣∣∣} >
ε

4

)
−→ 0

as t → ∞. Combining these convergence results with (5.47) completes the proof of the
first statement. The second one can be seen analogously.
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5.4.9. Notes on Other Types of Stochastic Transitivity

Now, let us briefly discuss the possibility as well as the difficulties arising by applying the
LRT approach for testing other types of stochastic transitivity than WST. Let us focus
on the case of strong stochastic transitivity (SST) first, and let π be again some fixed but
arbitrary sampling strategy in Π∞. Writing θ = ϕ(Q) as above, the relation Q ∈ Qm is
SST iff

θi,j , θj,k ≤ 0 ⇒ θi,k ≤ min{θi,j , θj,k} (5.48)

is fulfilled for every distinct i, j, k ∈ [m]. Writing Θm(SST) := ϕ(Qm(SST)) and further
Θm(¬SST) := ϕ(Qm(¬SST)) = Θm \Θm(SST), we might define the test statistics

λ̃SSTt := −2 ln
maxθ∈Θm(SST) L̃(θ|zt)

maxθ∈Θm L̃(θ|zt)
, µ̃SSTt := −2 ln

maxθ∈Θm(¬SST) L̃(θ|zt)
maxθ∈Θ L̃(θ|zt)

with L̃ defined as in Sec. 5.4.1. With these, we may obtain analogous results as in
Thm. 5.13 for the case of SST. But as (5.48) might already indicate, the geometry of
∂Θm(SST) is much more complicated than that of ∂Θm(WST). In fact, ∂Θm(WST) is

equal to [−π
2 ,

π
2 ]
(m2 ) ∩ A, where A ⊊ Rm(m−1)/2 is a union of hyperplanes of the form

span{ei1 , . . . , eil} with e1, . . . , em(m−1)/2 being the standard basis of Rm(m−1)/2. Thus,

the projection of zt ∈ Θm onto ∂Θm(WST), which equals θ̂, is realized by simply replacing
some of its entries (say those in I ⊆ (m)2) by 0 and maintaining the others; we can infer

λ̃t = dnt(zt,Θm(WST)) =
∑

i<j
(nt)i,j((zt)i,j − θ̂i,j)2 =

∑
(i,j)∈I

(nt)i,j(zt)
2
i,j .

In contrast to this, ∂Θm(SST) has geometrically a much more complicated form than
∂Θm(WST) and consequently projections of z ∈ Θm onto ∂Θm(SST) do not permit a
straight-forward closed-form computation formula. Hence, the calculation as well as the
analysis of sequential update formulas for λ̃SSTt is much more cumbersome than for λ̃t.
Since the corresponding analogous definitions of MST, λST and νRST in terms of the
parameter θ = ϕ(Q) resemble (5.48), similar feasibility issues arise for these types of
transitivity as well.

5.5. A Reduction to Pure Exploration Multi-Armed Bandits

Similar as Pm,h,γCWt , Pm,h,γCWc and Pm,h,γCWv , the problem Pm,h,γWST can be reduced to the pure
exploration multi-armed bandits scenario with multiple correct answers as presented by
Degenne and Koolen [2019], and in fact, we obtain similar results as for the CW-related
problems. In this section, we discuss the corresponding guarantees obtained for WST
testing and compare them with our previously stated solutions to Pm,h,α,βWST .

For this purpose, let ∆(m)2 , ∆
ε
(m)2

, D(v,Q,Q′) and D(v,Q,Q′
m) be defined as in

Sec. 4.5.1 and define, for h ∈ [0, 1/2) and Q ∈ Qhm, the complexity term Dm,h
WST(Q) via
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Dm,h
WST(Q) :=

{
supv∈∆(m)2

D(v,Q,Qhm(¬WST)), if Q ∈ Qhm(WST),

supv∈∆(m)2
D(v,Q,Qhm(WST)), if Q ∈ Qhm(¬WST).

=

 supv∈∆(m)2
infQ′∈Qh

m(¬WST)

∑
(i,j)∈(m)2

vi,jkl
(
qi,j , q

′
i,j

)
, if Q ∈ Qhm(WST),

supv∈∆(m)2
infQ′∈Qh

m(WST)

∑
(i,j)∈(m)2

vi,jkl
(
qi,j , q

′
i,j

)
, if Q ∈ Qhm(¬WST).

In our setting, the Sticky Track-and-Stop algorithm from [Degenne and Koolen,
2019] can be stated as Alg. 23. Before discussing the theoretical guarantees and sample

Algorithm 23 : Sticky Track-and-Stop for WST testing

Input: γ ∈ (0, 1), h ∈ [0, 1/2), a sequence (εt)t∈N, functions t 7→ f(t) and (t, γ) 7→ β(t, γ)
Initialization: t← 1, Q̂0 ← (0)1≤i<j≤m, n0 ← 0.

1: while True do
2: Let Ct ← {Q′ ∈ Qhm : D(nt−1/(t− 1), Q̂t−1,Q

′) ≤ ln(f(t− 1))}
3: Compute It = {X ∈ {WST,¬WST} | ∃Q′ ∈ Qhm(X) ∩ Ct}
4: Choose an element X from It, prefer WST over ¬WST
5: Compute that weight vt ∈ ∆(m)2 , which maximizes D(v, Q̂t−1,Qhm(¬X))
6: Compute the projection vεtt of vt onto ∆εt

(m)2

7: Pull (i, j) = argmin(i′,j′)∈(m)2(nt)i′,j′ −
∑t

s=1(v
εs
s )i′,j′ , observe Xi,j ∼ Ber(qi,j)

8: Update wt via (wt)k,l ← (wt−1)k,l + 1{{k,l}={i,j} and Xk,l=1} ∀1 ≤ k, l ≤ m
9: Update nt via (nt)k,l ← (nt−1)k,l + 1{{k,l}={i,j}} ∀1 ≤ k, l ≤ m

10: Update Q̂t ← wt
nt

.

11: Let Dt ← {Q′ ∈ Qhm : D(nt/t, Q̂t,Q
′) ≤ β(t, γ)}

12: if ∃X ∈ {WST,¬WST} with Dt ∩Qhm(¬X) = ∅ then
13: return X
14: Update t← t+ 1

complexity of Alg. 23, note that running this algorithm in practice requires – similarly
as its CW-related counterparts from Sec. 4.5 – a large computational complexity: For
fixed v ∈ ∆(m)2 , calculating D(v,Q,Qhm(X)) is computationally costly for X = WST

resp. X = ¬WST, because Qhm(WST) resp. Qhm(¬WST) is a union of m! resp. 2(
m
2 ) −m!

hypercubes (one for for each permutation of m elements resp. one for each non-transitive
deterministic reciprocal relation with m alternatives) and in particular non-convex. Hence,
estimating D(v,Q,Qhm(X)) via a grid search with L(m) relations per hypercube results

in computational costs of L(m)m! for X = WST and L(m)(2(
m
2 ) −m!) for X = ¬WST.

These considerations suggest that any iteration step of Alg. 23 is computationally costly,
and running the algorithm until termination is seemingly infeasible in practice. Therefore,
we focus only on the theoretical analysis of it and do not incorporate it in our simulation
study in Sec. 5.6.

From [Degenne and Koolen, 2019] we obtain the following results regarding the asymp-

totics (w.r.t. γ) of the expected sample complexities of solutions to Pm,h,γWST .

Theorem 5.27. Let h ∈ [0, 1/2) and m ∈ N≥3 be fixed. If A(γ) solves Pm,h,γWST for any
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γ > 0, then

lim inf
γ→ 0

EQ[TA(γ)]

ln 1
γ

≥ 1

Dm,h
WST(Q)

.

for any Q ∈ Qhm.

Proof. Confer Thm. 1 in [Degenne and Koolen, 2019].

We obtain the following analogon to the second statement in Prop. 4.16.

Theorem 5.28. Let h ∈ [0, 1/2) and m ∈ N≥3 be fixed. Choose C > 0 and εt, f(t)
and β(γ, t) for any t ∈ N as in (ii) of Prop. 4.16. Write A(γ) for Alg. 23 called with

parameters γ, h, (εt)t, f and β. Then, A(γ) solves Pm,h,γWST and fulfills

lim
γ→ 0

EQ[TA(γ)]

ln 1
γ

=
1

Dm,h
WST(Q)

for any Q ∈ Qhm.

Proof. The statement corresponds to Thm. 11 in [Degenne and Koolen, 2019]. For the
choice of εt confer p. 7 in [Garivier and Kaufmann, 2016], and for f(t) resp. β(t, γ) see
Lem. 14 on p. 9 resp. Thm. 10 on p. 8 in [Degenne and Koolen, 2019].

The next definition will be helpful for analyzing 1/Dm,h
WST(Q).

Definition 5.29. For X ∈ {WST,¬WST} and Q ∈ Q0
m(X) write ρ(Q) for the minimum

number of entries qi,j, (i, j) ∈ (m)2, which have to be modified via qi,j ⇝ 1− qi,j such that
the resulting relation Q′ is in Q0

m(¬X), i.e., formally ρ(Q) is given as

min{k ∈ N | ∃ distinct (i1, j1), . . . , (ik, jk) s.t. Q((i1, j1), . . . , (ik, jk)) ∈ Qhm(¬X)},

where Q((i1, j1), . . . , (ik, jk)) =: Q
′ = (q′i,j)1≤i,j≤m is defined for all (i, j) ∈ (m)2 via

q′i,j =

{
1− qi,j , if (i, j) ∈ {(i1, j1), . . . , (ik, jk)},
qi,j , otherwise.

As the term ρ(Q) will play a crucial role in our lower bounds on Dm,h
WST(Q), let us

briefly discuss some of its properties. It is straight-forward to show that ρ(Q) = 1 for
any Q ∈ Q0

m(WST), for the sake of completeness we prove this in Lem. 5.30 below.
In case Q ∈ Q0

m(¬WST), ρ(Q) may take any value in {1, . . . , f(m)} where f(m) :=
maxQ∈Q0

m(¬WST) ρ(Q). Moreover, in this case, ρ(Q) is the minimum number of edges in
G(Q), which have to be flipped to obtain an acyclic tournament, or in other words, a
tournament containing no cycles. This value is also known as the Slater index of G(Q)
[Slater, 1961, Bermond, 1972]. It is a well known fact (see [Bermond, 1972] and references
therein for the proofs) that⌊

m

3

⌊
m− 1

2

⌋⌋
≤ f(m) ≤

⌊m
2

⌋⌊m− 3

2

⌋
for all m ∈ N and also that

∀ε > 0 ∃m′ ∈ N ∀m ≥ m′ : f(m) >

(
m

2

)
(1− ε).
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Lemma 5.30. For any Q ∈ Q0
m(WST) we have ρ(Q) = 1.

Proof. Let Q ∈ Q0
m(WST) be fixed. According to Lem. 3.3, there exists a permutation σ

on [m] s.t. qσ(i),σ(i+1) > 1/2 holds for all i ∈ [m−1]. By replacing Q with (qσ(i),σ(j))1≤i,j≤m
we may suppose w.l.o.g. σ = id in the following, i.e., qi,i+1 > 1/2 for any i ∈ [m − 1].
As Q is weakly stochastic transitive, q1,2, q2,3 > 1/2 lets us infer q1,3 > 1/2. Thus,
Q′ := Q((1, 3)) fulfills q′1,2, q

′
2,3, q

′
3,1 > 1/2, which shows Q((1, 3)) ∈ Q0

m(¬WST). We infer
ρ(Q) ≤ 1. Moreover, ρ(Q) ≥ 1 holds trivially.

For proving lower and upper bounds on 1/Dm,h
WST(Q), the following lemma will be of use.

Lemma 5.31. For every m ∈ N≥4 and v = (vi,j)1≤i<j≤m ∈ ∆(m)2 there exists some
(i, j), (j, k) ∈ (m)2 such that vi,j , vj,k ≤ 24/

(
m
2

)
.

Proof. At first, let

I :=
{
(i, j, k) ∈ [m]3 : 1 ≤ i < j < k ≤ m

}
.

Note that |I| =
(
m
3

)
= 1

6m(m − 1)(m − 2) ≥ 1
24m

3 holds due to m ≥ 4. Moreover,
v ∈ ∆(m)2 implies∑

(i,j,k)∈I
vi,j + vj,k ≤ 2

∑
i∈[m]

∑
(j,k)∈(m)2

vj,k ≤ 2m.

Combining this with |I| ≥ 1
24m

3 and
(
m
2

)
≤ m2

2 , we conclude that there exists some
(i, j, k) ∈ I with max{vi,j , vj,k} ≤ vi,j + vj,k ≤ 48

m2 ≤ 24/
(
m
2

)
.

To establish bounds on the term 1/Dm,h
WST(Q), we make again use of Lem. 4.13.

Lemma 5.32. Let m ∈ N≥4 and h ∈ [0, 1/2) be fixed.

(i) For any Q ∈ Qhm(WST) we have

Dm,h
WST(Q) ≤ 48dh(Q)(

m
2

)
with dh(Q) := max(i,j)∈(m)2 max{kl (qi,j , 1/2 + h), kl (qi,j , 1/2− h)}.

(ii) For any h̃ ∈ [h, 1/2) \ {0} and any Q ∈ Qh̃m we have

Dm,h
WST(Q) ≥

ρ(Q)kl
(
1/2 + h, 1/2− h̃

)
(
m
2

) ≥ 2ρ(Q)(h+ h̃)2(
m
2

) .

Proof. (i) Let Q ∈ Qhm(WST) be fixed, and suppose v ∈ ∆(m)2 to be fixed for the
moment. According to Lem. 5.31 there exist (i, j), (j, k) ∈ (m)2 such that vi,j , vj,k ≤
24/
(
m
2

)
. Now, define Q′ ∈ Qhm via

q′r,s :=


1/2− (h+ δ), if (r, s) ∈ {(i, j), (j, k)} and qi,k > 1/2,

1/2 + (h+ δ), if (r, s) ∈ {(i, j), (j, k)} and qi,k < 1/2,

qr,s, otherwise
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for each (r, s) ∈ (m)2 and some small δ ∈ (0, 1/2− h). The definition of Q′ assures
that ∑

(r,s)∈(m)2
vr,skl

(
qr,s, q

′
r,s

)
≤ vi,jkl

(
qi,j , q

′
i,j

)
+ vj,kkl

(
qj,k, q

′
j,k

)
≤ 48(

m
2

) max(r,s)∈(m)2 max {kl (qr,s, 1/2 + h+ δ), kl (qr,s, 1/2− h− δ)} .

As either q′i,j , q
′
j,k, q

′
k,i > 1/2 or q′i,j , q

′
j,k, q

′
k,i < 1/2 holds, we have Q′ ∈ Qhm(¬WST),

which allows us to infer via taking the limit δ ↘ 0 that

infQ′∈Qh
m(¬WST)

∑
(i,j)∈(m)2

vi,jkl
(
qi,j , q

′
i,j

)
≤ 48dh(Q)(

m
2

) .

As this estimate is obtained for any v ∈ ∆(m)2 , we can conclude that

Dm,h
WST(Q) = supv∈∆(m)2

infQ∈Qh
m(¬WST)

∑
(i,j)∈(m)2

vi,jkl
(
qi,j , q

′
i,j

)
≤ 48dh(Q)(

m
2

) .

(ii) Let h̃ ∈ [h, 1/2)\{0} and Q ∈ Qh̃m be fixed and let X ∈ {WST,¬WST} be such that

Q ∈ Qh̃m(X). For any Q′ ∈ Qhm(¬X) there exist distinct (i1, j1), . . . , (iρ(Q), jρ(Q)) ∈
(m)2 such that (qil,jl − 1/2)(q′il,jl − 1/2) < 0 for every 1 ≤ l ≤ ρ(Q). Due to Q ∈ Qh̃m
and Q′ ∈ Qhm we thus obtain∑

(i,j)∈(m)2
kl
(
qi,j , q

′
i,j

)
≥
∑ρ(Q)

l=1
kl
(
qil,jl , q

′
il,jl

)
≥ ρ(Q)kl

(
1/2 + h̃, 1/2− h

)
.

As Q′ ∈ Qhm(¬X) was arbitrary, choosing v = (1/
(
m
2

)
)(i,j)∈(m)2 lets us infer

Dm,h
WST(Q) = supv∈∆(m)2

infQ′∈Qh
m(¬X)

∑
(i,j)∈(m)2

vi,jkl
(
qi,j , q

′
i,j

)
≥ ρ(Q)(

m
2

) kl
(
1/2 + h̃, 1/2− h

)
≥ 2ρ(Q)(

m
2

) (h+ h̃)2,

where we have used Lem. 4.13 in the last step.

Note that the bounds on Dm,h
WST(Q) above are instance-wise, since they depend on dh(Q)

resp. ρ(Q). For our analysis of the worst-case value of 1/Dm,h
WST(Q), we estimate dh(Q)

according to Lem. 4.13 and use the simple bound ρ(Q) ≥ 1.

Corollary 5.33. Let m ∈ N≥4 be fixed.

(i) Under the assumptions of Thm. 5.27 we get in case h ∈ (0, 1/2)

sup
Q∈Qh

m(WST)

lim infγ→ 0
EQ

[
TA(γ)

]
ln 1

γ

≥ sup
Q∈Qh

m(WST)

1

Dm,h
WST(Q)

≥ 1/4− h2

192h2

(
m

2

)
and in case h = 0 for each h̃ ∈ (0, 1/2)

sup
Q∈Qh̃

m(WST)

lim infγ→ 0
EQ

[
TA(γ)

]
ln 1

γ

≥ sup
Q∈Qh̃

m(WST)

1

Dm,0
WST(Q)

≥ 1

192h̃2

(
m

2

)
.
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(ii) Under the assumptions of Thm. 5.28 we obtain in case h ∈ (0, 1/2)

supQ∈Qh
m
limγ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≤ supQ∈Qh
m

1

Dm,h
WST(Q)

≤ 1

8h2

(
m

2

)
and in case h = 0

sup
Q∈Qh̃

m
limγ→ 0

EQ

[
TA(γ)

]
ln 1

γ

≤ sup
Q∈Qh̃

m

1

Dm,0
WST(Q)

≤ 1

2h̃2

(
m

2

)
for any h̃ ∈ (0, 1/2).

Similarly as Thm. 4.3, Part (ii) of Cor. 5.33 may at first appear contradictory to Part (b) of
Thm. 5.5, which involves an additional ln ln 1

h -factor. But actually, there is no contradiction,

since Cor. 5.33 only yields an upper bound on the worst-case of the asymptotic of
EQ[TA(γ)]

ln 1
γ

as γ ↘ 0, whereas the lower bound from Thm. 5.5 holds for any fixed γ.

Proof of Cor. 5.33. (i) At first, let us consider the case h > 0. For Q ∈ Qhm(WST) with
qi,j ∈ {1/2± (h+ δ)} for all (i, j) ∈ (m)2 and an arbitrarily small δ ∈ (0, 1/2− h)
we have

dh(Q) = max(i,j)∈(m)2 max {kl (qi,j , 1/2 + h), kl (qi,j , 1/2− h)}

= kl (1/2 + (h+ δ), 1/2− h) ≤ 4(h+ δ/2)2

1/4− h2
,

where we have used Lem. 4.13 in the last step. Thus, the statement follows from
Thm. 5.27 and part (i) of Lem. 5.32 via taking the limit δ ↘ 0.

Now, suppose h = 0. Let h̃ ∈ (0, 1/2) and Q ∈ Qh̃m with entries qi,j ∈ {1/2± (h̃+δ)}
for all (i, j) ∈ (m)2 and some δ ∈ (0, 1/2− h̃) be fixed. As

d0(Q) = max(i,j)∈(m)2 kl (qi,j , 1/2) = kl
(
1/2 + (h̃+ δ), 1/2

)
≤ 4(h̃+ δ)2

is assured by Lem. 4.13, the statement follows again from Thm. 5.27 and part (i) of
Lem. 5.32 by taking the limit δ ↘ 0.

(ii) As ρ(Q) ≥ 1 for every Q ∈ Qhm is guaranteed by Lem. 5.30, the statement follows
from Thm. 5.28 and Part (ii) of Lem. 5.32.

5.6. Empirical Evaluation

In this section, we compare the WST testing procedures from Theorems 5.6 and 5.8. Since
the solution obtained by Degenne and Koolen [2019] appears infeasible in practice as
indicated in Sec. 5.5, we do not consider it in our experiments.

For the sake of convenience, we restrict ourselves to the symmetric case α = β = 0.05 =: γ
throughout this section. Given a sampling strategy π ∈ Π∞ and h ∈ (0, 1/2), we abbreviate
γ′ := γ/(m2 ) and γ

′′ := γ/((m2 )−⌊m+1
3

⌋) and write
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WST ¬WST

Anaive ASPRT
improved APPR

improved Anaive ASPRT
improved APPR

improved

m = 4 5346 (299.8) 4081 (254.7) 2062 (238.1) 5075 (284.0) 3022 (205.3) 1558 (266.1)
m = 5 12579 (651.9) 10502 (645.2) 7393 (899.8) 13789 (624.3) 4371 (348.1) 1776 (336.8)
m = 6 21014 (1036.5) 17614 (958.3) 14019 (1413.5) 20374 (921.3) 4903 (235.6) 1216 (139.6)
m = 7 33922 (1605.2) 31064 (1616.5) 26686 (2407.4) 35261 (1535.9) 6203 (342.1) 1549 (272.8)
m = 8 53275 (2152.6) 48502 (1965.7) 42545 (2891.6) 55728 (1910.8) 7067 (191.8) 1039 (724.7)

Table 5.1.: Comparison of Anaive, ASPRT
improved and APPR

improved on Q0.05
m (WST) and

Q0.05
m (¬WST).

• Anaive(h, π) for Alg. 20 called with the parameters m, π and ACoin = ASPRT
Coin (h, γ′),

• ASPRT
improved(h, π) for Alg. 21 called with parameters m, π and ACoin = ASPRT

Coin (h, γ′′),

• APPR
improved(π) for Alg. 21 called with m, π and ACoin = APPR−Ber(γ

′′).

According to Thm. 5.8, Anaive(h, π) and ASPRT
improved(h, π) solve Pm,h,γWST and APPR

improved(π)

solves Pm,0,γWST . Here, we have chosen ACoin due to its optimal behavior w.r.t. the expected
runtime on some instances as stated in Prop. 2.17, and PPR-Bernoulli due to its good
empirical performance observed in Sec. 2.4.1.

The Passive Scenario

For the sake of simplicity, we restrict ourselves in the passive testing scenario to that
sampling strategy π = πRandom ∈ Π∞, which chooses its queries at each time step uniformly
at random from [m]2, fix h = 0.01 in the following and simply write Anaive, ASPRT

improved and

APPR
improved for Anaive(h, π), ASPRT

improved(h, π) and APPR
improved(π), respectively. Note here that

APPR
improved does not need and does not obtain h as a parameter.

In the first experiment, we investigate the termination time of Anaive, ASPRT
improved and

APPR
improved for preference relations in Q0.05

m (WST) or Q0.05
m (¬WST). To this end, we sample

Q uniformly at random from Q0.05
m (WST) (resp. Q0.05

m (¬WST)), run the test algorithms
until termination, respectively, and repeat this process for 100 times. When started with
such Q, all algorithms observe the same duel chosen by π in each time step, as well as the
same outcome of the duel. As stated in Thm. 5.8, ASPRT

improved may thus terminate earlier
than Anaive in any case.

Table 5.1 reports the obtained average termination times (and the corresponding
standard error in brackets) for varying values of m. The results reveal that ASPRT

improved

and APPR
improved throughout need significantly less samples for checking WST than Anaive,

and the effect is strongest if Q is not WST and m is large. If the underlying preference
relation is not WST, the termination time of APPR

improved resp. ASPRT
improved is mostly decreasing

resp. slightly increasing with the number of available arms, while the termination time of
Anaive, on the other side, increases rapidly with the number of arms. Moreover, the three
testing algorithms did not make any error in deciding whether WST holds or not for the
underlying preference relation Q, i.e., the observed accuracy of all testing algorithms was
100% throughout. Last but not least, it is worth mentioning that ASPRT

improved (as well as
Anaive) terminates for each problem scenario much earlier than the derived worst-case
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upper bound 1
2h

⌈
ln((1−γ′′)/γ′′)

ln((1/2+h)/(1/2−h))

⌉
(1 − 2γ′′)

(
m
2

)
, which is ≥ 4370

(
m
2

)
for any m ≥ 3 (cf.

Thm. 5.9). Moreover, APPR
improved apparently even outperforms ASPRT

improved in any case .

Next, we analyze the impact of the degree of violation of WST within a preference
relation Q –measured by the number of cycles8 in the identifying tournament G(Q) – on
the sample complexities of Anaive, ASPRT

improved and APPR
improved, respectively. For this purpose,

we choose Q1 := (x)1≤i<j≤6 ∈ Q6 and Q2,Q3 and Q4 as
− x y x x x

− x x x x
− x x x

− x x
− x

−

 ,


− x y x y x

− x y x x
− x x x

− x x
− x

−

 and


− x y x y x

− x y x x
− x x y

− x x
− x

−

 ,

respectively, where x := 0.6 and y := 0.4. Table 5.2 shows the number of cycles in G(Qi)
together with the average runtimes (as well as the empirical standard errors in brackets)
of the three testing procedures, if started with Qi, over 100 runs. We also added the
average elapsed time Telapsed (in seconds) per run as an indicator of the computational
costs of the algorithms.

These results support the following conclusions: Firstly, the larger the number of cycles in

Anaive ASPRT
improved APPR

improved

i #cycles in G(Qi) TA Telapsed TA Telapsed TA Telapsed

1 0 25919 (332.3) 0.60 25639 (340.8) 2.16 18811 (560.8) 2.64
2 1 25170 (296.4) 0.58 10609 (187.4) 0.44 6963 (302.1) 0.83
3 9 25599 (366.1) 0.60 8988 (110.3) 0.31 4518 (155.3) 0.50
4 28 26014 (355.7) 0.60 9063 (110.7) 0.31 4716 (121.7) 0.53

Table 5.2.: Comparison of Anaive, ASPRT
improved and APPR

improved on Q1, Q2, Q3 and Q4.

the identifying tournament G(Qi) of the underlying preference relation Qi (i.e., the more
severe the WST property is violated), the lower the sample complexity of ASPRT

improved and

APPR
improved is on average. Secondly, the latter effect reveals an “elbow” dependency in the

sense that the decrease of the termination time is rapidly declining with the number of
cycles, with the strongest decline if at least one cycle is present. Thirdly, Anaive does not
seem to benefit from stronger violations of WST and in fact does not exploit structural
properties of the current estimated preference relation for an early termination such as
ASPRT

improved and APPR
improved do. Finally, the results for Q1 with regard to the averaged elapsed

time demonstrate that checking acyclicity in extension of the internal graph maintained
by Anaive (i.e., line 7 in Alg. 21) increases the computational cost per iteration step by a
factor of ≈ 2.16

25639
25919
0.6 ≈ 3.64. However, the superiority of ASPRT

improved and APPR
improved over

Anaive in terms of sample complexity is so strong, that they outperform Anaive even with
regard to computational costs on Q3 and Q4, and for ASPRT

improved this holds also on Q2.

In summary, the experiments empirically confirm our theoretical results on the superi-
ority of the enhanced testing algorithm ASPRT

improved compared to Anaive.

8Recall that, according to our definition above, any cycle is of the form i1 → . . . → ik → i1, where
i1, . . . , ik are distinct.
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The Active Scenario

For arbitrary but fixed h ∈ (0, 1/2) write Anaive for Anaive(h, πRandom) with πRandom ∈ Π∞
as before, i.e., πRandom chooses its queries at each time step uniformly at random from
[m]2. Recall the definition of γ′′ from the beginning of this section and let π∗SPRT be
the improved sampling strategy π∗WST from Sec. 5.3.2 with9 ACoin = ASPRT

Coin (h, γ′′), and
similarly write π∗PPR for that version of π∗WST with ACoin = APPR−Ber(γ

′′). With this,
let us abbreviate ASPRT

improved := ASPRT
improved(h, π

∗
SPRT) and APPR

improved := APPR
improved(π

∗
PPR). By

Thm. 5.8 and Thm. 5.9, any of Anaive, ASPRT
improved and APPR

improved solves Pm,h,γWST . We ran these
three algorithms for 100 runs each on Q1 and Q3 from above and repeated this experiment
for different values of h. Apart from the fact that Anaive resp. ASPRT

improved achieved an
accuracy of 0.99 resp. 0.97 on Q1 for h = 0.1, all algorithms achieved throughout an
accuracy of 1.00. Hence, we report in Table 5.3 only the observed estimated sample
complexity together with the corresponding standard error in brackets.

As already indicated by Thm. 5.8 and Thm. 5.9, ASPRT
improved outperforms Anaive in any

case. Since APPR
improved does not depend on h, its sample complexity on a fixed instance

is constant in h, whereas that of Anaive and ASPRT
improved are decreasing in h, and this is

consistent with the observations on the underlying algorithm ASPRT
Coin made in Sec. 2.2.

As a result, we see that ASPRT
improved outperforms APPR

improved for large values of h, whereas

APPR
improved is better than ASPRT

improved when h is small.

Q h Anaive APPR
improved ASPRT

improved

Q1 0.10 3575 (108.1) 5769 (84.6) 1097 (14.7)
Q1 0.05 6339 (173.4) 5769 (84.6) 2150 (22.4)
Q1 0.02 13503 (269.1) 5769 (84.6) 5321 (352.6)
Q1 0.01 25705 (363.5) 5769 (84.6) 10457 (51.8)

Q3 0.10 3575 (108.1) 4564 (91.2) 829 (15.3)
Q3 0.05 6340 (173.4) 4564 (91.2) 1826 (29.7)
Q3 0.02 13505 (269.1) 4564 (91.2) 4819 (47.4)
Q3 0.01 25705 (363.5) 4564 (91.2) 9699 (58.7)

Table 5.3.: Comparison of Anaive, ASPRT
improved and APPR

improved on Q1 and Q3.

In Sec. 5.4 we have developed with Alg. 22 yet another solution to Pm,0,γWST . If initiated with
π = RoundRobin as sampling strategy, an analysis of its expected sample complexity
resulted in a worst-case sample complexity bound for instances in Qhm that is of order

O
(
m2κ

h4
ln 1

γ

)
(cf. Thm. 5.15) and thus with regard to Thm. 5.9 far from optimal (as a

solution to Pm,h,γWST ). As we will see in the following, A :=Alg. 22 (with π = RoundRobin)
does not only seem to be suboptimal to ASPRT

improved and APPR
improved from a theoretical

perspective but also with regard to its performance in practice.

If we choose m = 6, h = 0.1, α = β = 0.05 and c = 1
2 −

h
2 = 0.45 as suggested by

9Recall that π∗
WST depends via Êt on ACoin.
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Thm. 5.15, A has to query – regardless of the choice of κ > 1 – each pair in [m]2 at least

ñ >
64

(1− 2c)4

(
ln

(
6
(
m
2

)
α ∧ β

)
+ 1

)
> 5437146

times before it terminates, i.e., for any Q ∈ Qm, A would fulfill TA ≥ 5437146 ·
(
6
2

)
=

81557190 a.s. w.r.t. PQ. As a result, the observed average sample complexity for Q1 and
Q3 for A would be by far larger than those of Anaive, APPR

improved and ASPRT
improved shown in

Table 5.3.

Nevertheless, we want to validate that A fulfills its desired guarantees. For this reason,
we executed it for 100 times for m = 4, h = 0.1, α = β = 0.05, c = 1

2 −
h
2 = 0.45 and

κ = 2 on the two instances

Q =


− 0.65 0.65 0.65

− 0.65 0.65
− 0.65

−

 and Q′ =


− 0.65 0.35 0.65

− 0.65 0.65
− 0.65

−


from Qh4 . On all of these 100 repetitions, A correctly classified Q as WST and Q′ as
¬WST and terminated after exactly 32944326 queries, i.e., after having queried each pair
in [4]2 exactly ñ = 5490721 times. Of course, this experimental evaluation of A is far
from extensive, but as the stated results already indicate a huge suboptimality of A as a
solution to Pm,0,α,βWST , we kept it to a minimum and did not investigate A further.

5.7. Discussion and Related Work

The literature on testing transitivity conditions is primarily rooted in the social sciences,
psychology, and economics, with a special focus on experimental studies for real data. The
works by McNamara and Diwadkar [1997] and Waite [2001] carry out multiple binomial
tests to test weak stochastic transitivity (WST) of preferences in different field studies,
while Cavagnaro and Davis-Stober [2014] suggest the use of Bayes factors for the testing of
stochastic transitivity. A rigorous mathematical treatment of testing for WST is provided
by Iverson and Falmagne [1985]. In particular, they derive an asymptotic likelhood
ratio test (LRT) for WST and apply their method to empirical data. Ballinger and
Wilcox [1997] empirically carry out LRTs for strong stochastic transitivity conditions.
Yet, all these works are settled in classical hypothesis testing, assuming all the data to be
available beforehand. In contrast to these works, we are interested in testing the validity
of stochastic transitivity assumptions in the dueling bandits scenario; thus, we consider
hypothesis testing in an online manner, assuming that data arrives sequentially and test
decisions should be taken as quickly as possible, while maintaining a predefined level of
confidence.

In dueling bandits, testing for stochastic transitivity is of particular interest as this
type of transitivity plays a crucial role for several dueling bandits algorithms: Yue
et al. [2012] resp. Yue and Joachims [2011] considered regret minimization under strong
stochastic transitivity (SST) resp. ν-relaxed stochastic transitivity (νRST), Mohajer et al.
[2017] investigated the best-arm identification problem as well as the (top-k-)ranking
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of arms under WST, whereas Agarwal et al. [2022] resp. [Falahatgar et al., 2017a,b,
2018] analyzed top-k identification under SST resp. the impact of various transitivity
assumptions on these latter two goals in an online (ε, γ)-PAC setting. In these works,
the transitivity assumption is explicitly required for the theoretical guarantees, while
other approaches assume transitivity properties in a more indirect way, for instance by
considering probabilistic models for the feedback process. This includes the Plackett-Luce
model [Luce, 1959, Plackett, 1975] resp. Bradley-Terry model [Bradley and Terry, 1952]
considered by Szörényi et al. [2015] resp. Maystre and Grossglauser [2017], as well as the
Mallows model [Mallows, 1957] studied by Busa-Fekete et al. [2014a]; in the notation of
Sec. 2.5.1, we have Qm(PL) ∪Qm(Mal) ⊆ Qm(SST) [Haddenhorst et al., 2020]. Finally,
transitivity assumptions were also analyzed in batch learning scenarios, for example to
estimate the underlying pairwise preference relation [Shah et al., 2016], or for the purpose
of rank aggregation [Korba et al., 2017].

In this chapter, we analyzed XST testing on Qhm for α, β from several perspectives. We
saw that testing for XST ̸= WST is impossible to some extent, and, similarly as those
from Sec. 2.5.1, these results should be used with caution: They do not show impossibility
per se but only with respect to finite worst-case expected sample complexity on Qhm,
and testing might still be possible in a different manner. For example, we suppose that
SST testing may actually be doable via the general Sticky-Track-and-Stop procedure
from Degenne and Koolen [2019], but as the geometry of Qm(SST) is far more complex
than that of Qm(WST), this approach appears even less computationally feasible for
SST testing than for WST testing. Moreover, one could try to approach SST testing via
corresponding analoga of the ideas for STI testing that we gave in Sec. 2.6.

Note that we actually provided two approaches for showing these impossibility results:
Cor. 5.1 was a rather direct consequence of Cor. 2.48 and thus relies on the change-of-
measure argument from Sec. 2.5, whereas Prop. 5.3 mainly exploits the optimality of
the SPRT stated in Prop. 2.17. Even though these results are very similar, there are
slight differences, as briefly commented on before the statement of Prop. 5.3, and thus we
included both into this thesis for the sake of completeness.

For WST testing on Qhm for α and β, we presented instance-wise sample complexity upper
and lower bounds, which asymptotically coincide in the symmetric case α = β = γ in a
worst-case sense up to logarithmic factors and are then of order Θ̃(m

2

h2
ln 1

γ ). In contrast

to the CW-related problems, their dependence on m is of order Θ̃(m2) instead of Θ̃(m),
which indicates that basically all of the Θ(m2) entries of Q have to be taken into account
for WST testing, and hence a naive testing procedure is already optimal in this regard.
This difference in terms of the asymptotics w.r.t. m coincides with the results from Ch. 3
for deterministic CW testification and WST testing. However, we saw that incorporating
the graph-theoretical concept of acyclicity in extension (as well as negligibility of edges
for the active scenario) potentially allows for earlier termination and results in a more
sophisticated WST testing procedure that outperforms the naive one both theoretically
and in experiments. This variant is not guaranteed to terminate before being sure about
all
(
m
2

)
entries of Q, but if m ≥ 4 is even, Thm. 3.26 would allow the construction of a

solution A to Pm,h,γWST with worst-case sample complexity Õ
(
m2

h2
ln 1

γ

)
, which queries until

termination a.s. only
(
m
2

)
− 1 different pairs {i, j} ∈ [m]2. However, we do not expect this

solution to be better than that from Thm. 5.9(ii) and thus we did not state it here.
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In Part (ii) of Thm. 5.5 we saw that any solution A to Pm,0,α,βWST necessarily fulfills
supQ∈Qh

m
EQ[T

A] ∈ Ωsup

(
1
h2

ln ln 1
h

)
, which is w.r.t. h by a factor of ln ln 1

h larger than

the corresponding lower bound for solutions to Pm,h,α,βWST , and this is consistent with
our lower bounds for CW testification stated in Ch. 4. Unfortunately, this bound only
captures the asymptotic behaviour w.r.t. h for fixed m,α and β. We suppose that even

supQ∈Qh
m
EQ[T

A] ∈ Ωsup

(
m2

h2

(
ln ln 1

h

)
ln 1

α∨β

)
holds, but we were not able to show it,

because the limes superior in Prop. 2.13 seemingly does not allow to prove an appropriate

sample complexity lower bound of order Ωsup

(
|J |
h2

(
ln ln 1

h

)
ln 1

α∨β

)
for the multiple coin

tossing problem (2.14); cf. our related discussion in Sec. 2.6.

In Sec. 5.4 we approached the WST testing problem via the LRT statistics for H0 : Q ∈
Qm(WST) and H1 : Q ∈ Qm(¬WST) and the corresponding interchanged hypotheses.

Our efforts resulted in an alternative solution (Alg. 22) to Pm,0,γWST and thus also to Pm,h,γWST ,
which is applicable in both the passive and active scenario. For the latter one, we proved

a sample complexity bound of order O
(
m2κ

h4
ln 1

γ

)
that is with regard to Thm. 5.9 up to a

factor Θ̃
(
m2κ−2

h2

)
suboptimal. In our experiments, Alg. 22 performed much worse than

Alg. 21; nevertheless, we incorporated this solution for the sake of completeness.
Further investigation of the above mentioned LRT statistics allowed us in Sec. 5.4.6

to formulate asymptotic size-α tests for WST and ¬WST, which are of the same fashion
as corresponding results in [Iverson and Falmagne, 1985]. There, the authors did not
consider the general DB setting but restricted themselves to an offline scenario, in which
the analysis is easier and sharper bounds on the asymptotics of the tail probabilities are
obtained, cf. our discussion at the end of Sec. 5.4.6. Even though these asymptotic results
are not the focus of this thesis, we added them for the sake of completeness.

As already mentioned, some of the results presented in this chapter have been published
in [Haddenhorst et al., 2021b], but some others are novel: In contrast to Thm. 4.2 in
the paper, we showed in Sec. 5.1 also impossibility of XST testing on Qhm for the case
XST = λST and deduced some of our results from Cor. 2.48. Whereas the content of
Sec. 5.2, Sec. 5.3 and 5.5 has basically already been contained in [Haddenhorst et al.,
2021b], all of Sec. 5.4 has not been published so far. And for the empirical evaluation

in Sec. 5.6, we added here APPR
improved as a further solution to Pm,h,α,βWST and also briefly

discussed Alg. 22.

There appear to be multiple aspects that could potentially be of interest for further research.
In comparison to Ch. 4, we merely focused on WST testing. As any Q ∈ Q0

m(WST)
admits an underlying ranking σ ∈ Sm such that qi,j > 1/2 iff σ(i) < σ(j), one may also
consider the problem of testification for this underlying ranking. Since verifying the true
ranking can presumably only be done when being sure enough about all entries of Q, an
early termination appears only possible in case one decides for ¬WST. For this reason, we
suppose the worst-case sample complexity of testification of this ranking on Qhm to be of

the order Θ̃
(
m2

h2
ln 1

γ

)
. This would basically coincide with the sample complexity required

to identify such a ranking whilst assuming its existence [Falahatgar et al., 2017b,a, 2018,
Ren et al., 2019a, Jamieson and Nowak, 2011]. Related to this is the problem to learn
the top-k ranking, a ranking over the best k arms according to Q, as e.g. discussed in
[Mohajer et al., 2017], and for this problem one might also formulate and investigate a
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testification variant.
Apart from that, further investigation of other types of transitivity could be of interest.

Recall that the impossibility results for testing XST ̸= WST from Sec. 5.1 merely show
that XST testing is to some extent impossible in a worst-case sense on Qhm. One could
still investigate XST testing with guarantees for all Q in an appropriate parameter space
Q′
m ≠ Qhm or ask for more explicit instance-wise sample complexity bounds. Last but not

least, one might analyze XST testing with respect to alternative performance measures:
Our main focus has been to prove upper and lower bounds for the expected sample
complexity of solutions to Pm,h,α,βWST , but of course one could also ask for high-probability
bounds instead. For such purpose, one would presumably require lower bounds for solutions
to Ph,γCoin and PγCoin that hold with high probability; though we restricted ourselves in
Ch. 2 to lower expected sample complexity bounds, such kind of bounds have already been
shown in related testing scenarios [Daskalakis and Kawase, 2017] and might potentially
be transferrable for this purpose.
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Part III.

Learning Problems in Multi-Dueling
Bandits





6. Identification of the GCW in
Multi-Dueling Bandits

In this chapter, we move from the dueling to the more general multi-dueling bandits
(MDB) scenario, which has recently been introduced [Brost et al., 2016, Sui et al., 2017,
Saha and Gopalan, 2018] as a generalization of the former. It comes with multiple
practically relevant applications, such as algorithm configuration [El Mesaoudi-Paul et al.,
2020] or online retrieval evaluation [Schuth et al., 2016]. Instead of pairs of arms, in this
generalization a set consisting of k ≥ 2 arms can be chosen in each time step. These
arms compete against each other and determine a single winner, which is observed as
feedback by the learner. The outcomes of the (multi-)duels in the MDB scenario are
typically assumed to be of time-stationary stochastic nature in the sense that whenever
arms 1, . . . , k compete against each other, then i wins with some underlying (unknown)
ground-truth probability P(i|{1, . . . , k}).
We will analyze the problem to identify the “best” of all arms in MDB, which is an

often targeted learning task in the context of multi-armed bandits (MAB) and its variants.
Similarly as for dueling bandits, the term “best arm” is not uniquely defined in the field
of MDB, but instead there are several possible notions prevalent in the literature. We
will focus on the generalized Condorcet winner (GCW), which we introduced in Sec. 1.2,
as the notion for the “best arm”, and analyze the best-arm identification problem in a
γ-PAC scenario. In Sec. 6.4, we briefly address alternative notions and learning scenarios
in the literature.

More precisely, we analyze the sample complexity of (probabilistic) algorithms that are
able to identify the GCW with high probability under the assumption of mere existence as
well as more restrictive assumptions. We provide upper and lower bounds on the sample
complexity for this task, which depend on the desired confidence, the total number m of
alternatives, the size k of allowed query sets as well as the underlying unknown preference
probabilities P(i|S). With only a few exceptions that we briefly comment on in Sec. 6.4,
all results presented in this chapter have already been published in [Haddenhorst et al.,
2021c].

Parameter Classes As a gentle start, we fix the notation used in the further course,
some of which has already been introduced in Ch. 1 and Sec. 2.3, but is restated here
for the sake of convenience. If not explicitly stated otherwise, we suppose throughout
this chapter the total number of arms m, the query set size k ∈ {2, . . . ,m}, a desired
confidence 1 − γ ∈ (0, 1) and a complexity parameter h ∈ (0, 1) to be arbitrary but
fixed. Recall [m]k = {S ⊆ [m] | |S| = k}. For any subset of size k, i.e., S ∈ [m]k, define
∆S := {p = (pj)j∈S ∈ [0, 1]|S| |

∑
j∈S pj = 1} as the set of all possible parameters for a

categorical random variable X ∼ Cat((pj)j∈S), i.e., P(X = j) = pj for any j ∈ S. For
p ∈ ∆S , we write mode(p) := argmaxj∈Spj and in case |mode(p)| = 1 we denote by
mode(p)—with a slight abuse of notation—also the unique element in mode(p). Let us
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define for h ∈ (0, 1] the sets

∆h
S :=

{
p ∈ ∆S | ∃i ∈ S s.t. pi ≥ maxj∈S\{i} pj + h

}
,

and with this ∆0
S :=

⋃
h∈(0,1)∆

h
S = {p ∈ ∆S | ∃i ∈ S s.t. pi > maxj∈S\{i} pj}. These

sets are nested in the sense that ∆h
S ⊆ ∆h′

S ⇔ h ≥ h′. If p ∈ ∆S is fixed, the value
h(p) := max{h ∈ [0, 1] |p ∈ ∆h

S} is well-defined and we have p ∈ ∆h
S iff h ≤ h(p).

Obviously, the equivalence |mode(p)| = 1 ⇔ p ∈ ∆0
S holds for all p ∈ ∆S .

Recall that we called a family P = {P(· |S)}S∈[m]k of parameters P(· |S) ∈ ∆S , S ∈ [m]k,
a probability model (PM) on [m]k, and write PMm

k for the set of all probability models
on [m]k. We have defined the particular subsets

PMm
k (∆0) := {P = {P(· |S)}S∈[m]k

∣∣∀S ∈ [m]k : P(· |S) ∈ ∆0
S},

PMm
k (∆h) := {P = {P(· |S)}S∈[m]k

∣∣∀S ∈ [m]k : P(· |S) ∈ ∆h
S },

PMm
k (PL) := {{P(· |S)}S∈[m]k

∣∣∃θ ∈ (0,∞)m ∀S ∈ [m]k : P(i |S) = θi/(
∑

j∈S θj)}

of PMm
k , where PMm

k (PL) is the set of all probability models P coherent with a Plackett-
Luce (PL) model [Plackett, 1975, Luce, 1959]. Writing

h(P) := maxh∈[0,1]{P ∈ PMm
k (∆h)} = minS∈[m]k h(P(· |S)),

it is easy to see that P ∈ PMm
k (∆h) iff h ≤ h(P). As already defined in Ch. 1, an element

i ∈ [m] is called a generalized Condorcet winner (GCW) of P if

∀S ∈ [m]k with i ∈ S,∀j ∈ S : P(i |S)−P(j |S) ≥ 0

and we write GCW(P) for the set of all GCWs of P. With this, we have defined

PMm
k (GCW) := {P = {P(· |S)}S∈[m]k

∣∣GCW(P) ̸= ∅},
PMm

k (GCW∗) := {P = {P(· |S)}S∈[m]k

∣∣ |GCW(P)| = 1}

and further PMm
k (hGCW) as the set

{{P(· |S)}S∈[m]k

∣∣ ∃i : ∀S ∈ [m]k with i ∈ S, ∀j ∈ S \ {i} : P(i |S)−P(j |S) ≥ h}.

Note that PMm
k (GCW∗) =

⋃
h>0 PM

m
k (hGCW) and every P ∈ PMm

k (GCW) has at
least one GCW, whereas any P ∈ PMm

k (GCW∗) has a unique GCW.

The following lemma reveals the relationships consisting between the different introduced
classes of probability models; in addition these results have been illustrated as a Venn
diagram in Fig. 2, which we restate for convenience as Fig. 10. For simplicity, we simply
refer to these classes as assumptions.

Lemma 6.1. For any k,m ∈ N and h ∈ (0, 1) we have the implications

PMm
k (hGCW) ⊊ PMm

k (GCW∗) ⊊ PMm
k (GCW),

PMm
k (∆h) ⊊ PMm

k (∆0),

PMm
k (PL) ⊊ PMm

k (GCW),

PMm
k (∆h) ∩ PMm

k (GCW) ⊆ PMm
k (hGCW),

PMm
k (∆0) ∩ PMm

k (GCW) ⊆ PMm
k (GCW∗).

If k = m, the last two statements are correct with = instead of ⊆, and otherwise with ⊊.
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(GCW)

(GCW∗)

(hGCW)

(PL)

(∆0)

(∆h)

Figure 10.: Problem classes for GCW identification in multi-dueling ban-
dits; here, we simply write (X) instead of PMm

k (X) for X in
{GCW,GCW∗, hGCW,∆0,∆h,PL}.

Proof. This is a direct consequence of the definitions.

Also, let us briefly recap the notion of a multi-dueling bandits algorithm. At any time
step t ∈ N, such an algorithm is allowed to choose one query set St ∈ [m]k, for which
it then observes a winner Xt,St . Here, we suppose the family {Xt,S}t∈N,S∈[m]k to be an
independent family of categorical random variables Xt,S ∼ Cat(P(·|S)) ∈ S, i.e., the
observed feedback is supposed to be independent across time and query sets. At some
time, A may decide to make no more queries and output a decision D(A), which can
e.g. be seen in a GCW identification scenario as a guess for the GCW of P. As usual,
TA ∈ N∪{∞} denotes the sample complexity of A, i.e., the total number of queries made
by A before termination, and both D(A) and TA are apparently random variables w.r.t.
the sigma-algebra generated by the stochastic feedback mechanism. We write PP for the
probability measure corresponding to the stochastic feedback mechanism if the unknown
ground-truth probability model is P.

If an assumption X with PMm
k (X) ⊆ PMm

k (∃GCW), m, k ∈ N with 2 ≤ k ≤ m and
γ ∈ (0, 1) are given, we say that such an algorithm A solves GCW identification on

PMm
k (X) (short: Pm,k,γGCWi) if

PP

(
D(A) ∈ GCW(P)

)
≥ 1− γ for all P ∈ PMm

k (X).

To state the yet missing argument in the proof of Prop. 4.4 from above, we also take a
look at a generalization of Pm,h,γCWv (CW). Formally, if k,m, γ and X are as above, A is said

to solve GCW verification on PMm
k (X) (short: Pm,k,γGCWv(X)) if

∀i ∈ [m] ∀P ∈ PMm
k (X) : PP

(
D(A(i)) = 1{GCW(P)=i}

)
≥ 1− γ,

where we have as usual written A(i) for A started with input i. In other words, whenever
started with a parameter i ∈ [m], it correctly decides with error probability ≤ γ for any
P ∈ PMm

k (X) whether GCW(P) = i is true or not.

Regarding that [k]k = {[k]} and PMk
k = ∆k, PM

k
k (∆

h) = PMk
k (hGCW) = ∆h

k ,

PMk
k (GCW∗) = ∆0

k and h(P) = h(p) hold, we have the identity Pk,k,γGCWi(∆
h ∧GCW) =

Pk,k,γGCWi(hGCW) = Pk,h,γDie for any h ∈ [0, 1], i.e., the case m = k of GCW identification
coincides with the mode identification problem of a die, which has already been discussed
in Sec. 2.3.

Outline of The Chapter In this chapter, we treat the combinatorically more challenging
case m > k and show the worst-case bounds presented in Table 1.1, which we restate

197



below for convenience as Table 6.1. Recall from Sec. 1.3 that the bounds in the table are
sample complexity lower and upper bounds for solutions to Pm,k,γGCWi(X), which are valid in
the worst-case w.r.t. PMm

k (X∧Y). In fact, for most of the bounds therein, we also obtain
more sophisticated but technical instance-wise versions below. We start with several
sample complexity lower bounds for Pm,k,γGCWi(X) under different assumptions X (Thm. 6.3,

Thm. 6.4 and Thm. 6.8) as well as the promised lower bound for Pm,k,γGCWv(∆
h∧GCW), that

we state as Thm. 6.9. Then, we develop a solution to Pm,k,γGCWi(GCW ∧∆0), which we call
Dvoretzky-Kiefer-Wolfowitz tournament (DKWT), since it is a knockout procedure and
based on the famous Dvoretzky-Kiefer-Wolfowitz inequality (Thm. 6.12). For the easier

problem Pm,k,γGCWi(hGCW ∧∆0) we construct a slightly modified version of DKWT that
comes with appealing theoretical guarantees (Thm. 6.13). A look at the corresponding
lower bounds will indicate (up to logarithmic factors) asymptotic optimality of both
solutions in a worst-case sense, showing that both problems require basically Θ̃( m

kh2
ln 1

γ )
samples to be solved. By translating results from [Saha and Gopalan, 2020b] into our
setting, we will see that an additional Plackett-Luce assumption simplifies the GCW
identification problem by a factor 1

k + h w.r.t. the worst-case asymptotic required sample
size.

Similarly as in the previous chapters, we try to improve the readability of this chapter
by deferring technical proofs and also some technical instance-wise bounds to separate
sections.

Table 6.1.: Sample complexity bounds of solutions to Pm,k,γGCWi(X).

(X) (Y) Type Asymptotic bounds Reference

(PL) (hGCW) in exp. Ω( m
h2k

( 1
k
+ h) ln 1

γ
) Thm. 6.3

(∆h ∧GCW) (∆h) in exp. Ω( m
h2k

ln 1
γ
) Thm. 6.4

(PL ∧GCW∗) (hGCW) w.h.p. O( m
h2k

( 1
k
+ h) ln( k

γ
ln 1

h
)) Thm. 6.11

(GCW ∧∆0) (∆h) w.h.p. O( m
h2k

ln(m
k
)(ln ln 1

h
+ ln 1

γ
)) Thm. 6.12

(hGCW ∧∆0) (hGCW) a.s. O( m
h2k

ln( m
kγ

)) Thm. 6.13

6.1. Lower Bounds on the GCW Identification Problem

In this section we provide sample complexity lower bounds for solutions to the GCW
identification problem for arbitrary 2 ≤ k ≤ m. We start with bounds for solutions
to Pm,k,γGCWi(PL). For this purpose, recall the notion of P(θ) ∈ PMm

k (PL) introduced in
Sec. 2.5.1, i.e., for θ ∈ (0,∞)m, P(θ) = {P(θ)(·|S)}S∈[m]k is given via

P(θ)(i|S) := θi∑
a∈S θa

for any S ∈ [m]k and i ∈ S.

As P(xθ) = P(θ) holds for any x > 0 and θ ∈ (0,∞)m, we may restrict ourselves w.l.o.g.
to those θ with maxi∈[m] θi = 1 throughout the rest of this chapter.

Saha and Gopalan [2020b] gave the following instance-wise sample complexity lower

bound for solutions to Pm,k,γGCWi(PL) in dependence on the underlying Plackett-Luce para-
meter.
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Theorem 6.2. Any solution A to Pm,k,γGCWi(PL) fulfills

EP(θ)

[
TA] ∈ Ω

(
max

(∑m

j=2

θj
(1− θj)2

ln
1

γ
,
m

k
ln

1

γ

))
for any θ ∈ (0, 1]m with 1 = θ1 > maxj≥2 θj.

Proof. Confer Thm. 7 in [Saha and Gopalan, 2020b].

By means of the characterization of PMm
k (PL ∧ hGCW) made in Lem. 2.45, this bound

translates to a lower bound for solutions to Pm,k,γGCWi(PL ∧ hGCW) as follows.

Theorem 6.3. Any solution A to Pm,k,γGCWi(PL) fulfills

supP∈PMm
k (PL∧hGCW) EP

[
TA] ∈ Ω

(
m
(
1
k + h

)
ln 1

γ

kh2

)
. (6.1)

Proof of Thm. 6.3. Define θ ∈ (0, 1]m via θ1 := 1 and θj := 1−h
h(k−1)+1 for 2 ≤ j ≤ m.

Then,

h
∑k

j=1
θj + θ2 − θ1 = h

(
1 +

(k − 1)(1− h)
h(k − 1) + 1

)
+

1− h− h(k − 1)− 1

h(k − 1) + 1

=
h(h(k − 1) + 1 + (k − 1)(1− h))− hk

h(k − 1) + 1
= 0

shows with regard to Lem. 2.45 that P(θ) ∈ PMm
k (hGCW) is fulfilled. Moreover, for

j ∈ {2, . . . ,m} we have 1− θj = hk
h(k−1)+1 and thus

θj
(1− θj)2

=
(h(k − 1) + 1)(1− h)

h2k2
=
hk(1− h) + (1− h)2

h2k2
,

which is in Θ( 1
hk + 1

h2k2
) = Θ

(
1
kh2

(
1
k + h

))
, since 1− h ∈ Θ(1) as h↘ 0. In particular,

m∑
j=2

θj
(1− θj)2

∈ Θ

(
m

kh2

(
1

k
+ h

))

and thus the statement follows from Thm. 6.2.

One of the key ingredients for Thm. 6.2 is the change-of-measure argument by Kaufmann
et al. [2016], which we already stated as Lem. 2.42. By means of the latter technique, we
are also able to show the following instance-based as well as worst-case lower bounds for
any solution to Pm,k,γGCWi(∆

h ∧GCW).

Theorem 6.4. Suppose A solves Pm,k,γGCWi(∆
h ∧GCW) and let P ∈ PMm

k (∆h ∧GCW) be
arbitrary with minS∈[m]k minj∈S P(j|S) > 0. For S ∈ [m]k write mS := mode(P(·|S)) and

for any l ∈ S \ {mS} define P[l](·|S) ∈ ∆S via

P[l](l|S) := P(mS |S), P[l](mS |S) := P(l|S), ∀j ∈ S \ {l,mS} : P[l](j|S) := P(j|S).
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Then,

EP

[
TA] ≥ ln 1

2.4γ

k − 1

∑
l∈[m]\{GCW(P)}

minS∈[m]k:l∈S\{mS}
1

KL(P(·|S),P[l](·|S))
,

where KL(P(·|S),P[l](·|S)) denotes the Kullback-Leibler divergence between two categorical
distributions X ∼ Cat(P(·|S)) and Y ∼ Cat(P[l](·|S)). Moreover, we have

supP∈PMm
k (∆h∧GCW) EP

[
TA] ≥ m(1− h2) ln 1

2.4γ

4kh2
.

Proof of Thm. 6.4. We prove the instance-wise and asymptotic worst-case lower bound
separately.

Part 1: Proof of the instance-wise bound
After relabeling the items in [m], we may suppose w.l.o.g. GCW(P) = 1 throughout the
proof. Write for convenience P[1] := P, recall that mS = mode(P[1](·|S)) for any S ∈ [m]k
and define P[l] ∈ PMm

k (∆h) for each l ∈ {2, . . . ,m} via

P[l](l|S) := P[1](mS |S), P[l](mS |S) := P[1](l|S),
P[l](j|S) := P[1](j|S) for all j ∈ S \ {l,mS} (6.2)

for any S ∈ [m]k with l ∈ S and

P[l](j|S) := P[1](j|S) for all j ∈ S

for any S ∈ [m]k with l ̸∈ S. Abbreviating P
[r]
S := P[r](·|S) we have KL

(
P

[1]
S ,P

[l]
S

)
= 0

whenever S ̸∈ [m]
(l)
k := {S ∈ [m]k | l ∈ S and l ̸= mS}. Define

Σ(l) :=
∑

S∈[m]
(l)
k

EP[1]

[
TA
S

]
for each l ∈ {2, . . . ,m}. Now, suppose l to be fixed for the moment and note that

GCW(P[l]) = l holds by construction of P[l]. As A solves Pm,k,γGCWi(∆
h ∧GCW), the event

E := {D(A) = 1} ∈ FTA fulfills PP[1](E) ≥ 1 − γ and PP[l](E) ≤ γ. Consequently, by
applying Part (ii) of Lem. 2.43 and Lem. 2.42, we obtain

ln
1

2.4γ
≤ kl (PP[1](E),PP[l](E))

≤
∑

S∈[m]k
EP[1]

[
TA
S

]
KL
(
P

[1]
S ,P

[l]
S

)
=
∑

S∈[m]
(l)
k

EP[1]

[
TA
S

]
KL
(
P

[1]
S ,P

[l]
S

)
,

that is,

Σ(l) ≥ ln

(
1

2.4γ

)
min

S∈[m]
(l)
k

1

KL
(
P

[1]
S ,P

[l]
S

) . (6.3)
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For any S = {i1, . . . , ik} ∈ [m]k with i1 := mS the term EP[1]

[
TA
S

]
appears exactly k − 1

times as a summand in

Σ(2) + · · ·+Σ(m) =
∑m

l=2

∑
S∈[m]k:mS ̸=l∈S

EP[1]

[
TA
S

]
,

namely as one summand in Σ(i2), . . . ,Σ(ik) each. Hence, (6.3) lets us infer

(k − 1)EP[1]

[
TA] =∑

S∈[m]k
(k − 1)EP[1]

[
TA
S

]
≥ Σ(2) + · · ·+Σ(m)

≥ ln

(
1

2.4γ

)∑m

l=2
min

S∈[m]
(l)
k

1

KL
(
P

[1]
S ,P

[l]
S

) .
This completes our proof of the instance-wise bound. ■

Part 2: Proof of the worst-case bound
Since the statement is trivial for h = 1, we may assume w.l.o.g. h ∈ (0, 1) in the following.
Let us abbreviate ∆[m]k

:= {w = (wS)S∈[m]k ∈ [0, 1][m]k |
∑

S∈[m]k
wS = 1}. For S ∈ [m]k,

write S = {S(1), . . . , S(k)} with S(1) < · · · < S(k). Suppose ε ∈ (0, 1/2 ∧ (1 − h)) to be

arbitrary but fixed for the moment and define P[1,ε] ∈ PMm
k (GCW ∧∆h) via

P[1,ε](S(1)|S) :=
1 + h− ε

2
, P[1,ε](S(2)|S) :=

1− h− ε
2

and
∀j ∈ {3, . . . , k} : P[1,ε](S(j)|S) :=

ε

k − 2

for any S ∈ [m]k. For l ∈ {2, . . . ,m} let P[l,ε] be as P[1,ε] with [m] being relabeled via the
l-shift νl : [m] → [m] given by

1 7→ l, 2 7→ l + 1, . . . m− l − 1 7→ m, m− l 7→ 1, . . . m 7→ l − 1,

i.e., P[l,ε](νl(ir)|{νl(i1), . . . , νl(ik)}) = P[1,ε](ir|{i1, . . . , ik}) for any {i1, . . . , ik} ∈ [m]k and
r ∈ [k]. Then, P[l,ε] ∈ PMm

k (GCW∧∆h) and GCW(P[l,ε]) = l hold for any l ∈ [m]. Write

P∗(ε) :=
{
P[1,ε],P[2,ε], . . .P[m,ε]

}
and define P∗(¬l) as the set{

P ∈ PMm
k (GCW ∧∆h) |GCW(P) ̸= l and ∀S ∈ [m]k : minj∈S P(j|S) > 0

}
.

For any P,P′ ∈ PMm
k (GCW ∧ ∆h) fulfilling minS∈[m]k minj∈S P(j|S) > 0 as well as

minS∈[m]k minj∈S P
′(j|S) > 0 and GCW(P) ̸= GCW(P′) Lem. 2.42 guarantees similarly

as above

ln
1

2.4γ
≤
∑

S∈[m]k
EP

[
TA
S

]
KL
(
PS ,P

′
S

)
,

where we have written PS resp. P′
S for P(·|S) resp. P′(·|S). Regarding arbitrariness

of P and P′ therein and using that EP[T
A] > 0 and

(
EP[TA

S ]/EP[TA]
)
S∈[m]k

∈ ∆[m]k hold
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trivially for any P ∈ PMm
k , we may follow an idea from Garivier and Kaufmann [2016]

(cf. the proof of Thm. 1 therein) and estimate

ln
1

2.4γ
≤ minP∈P∗(ε) infP′∈P∗(¬GCW(P))

∑
S∈[m]k

EP

[
TA
S

]
KL
(
PS ,P

′
S

)
≤ minP∈P∗(ε) EP[T

A] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

EP

[
TA
S

]
EP[TA]

KL
(
PS ,P

′
S

)
≤ supw∈∆[m]k

minP∈P∗(ε) EP[T
A] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

wSKL
(
PS ,P

′
S

)
. (6.4)

Suppose w ∈ ∆[m]k to be arbitrary but fixed for the moment. The identity

k = k
∑

S∈[m]k
wS =

∑
l∈[m]

∑
S∈[m]k:l∈S

wS

assures the existence of some l = l(w) ∈ [m] with
∑

S∈[m]k:l∈S wS ≤
k
m . Abbreviate

P := P[l,ε]. After relabeling [m] via ν−1
l , we may assume w.l.o.g. l = 1 in the following,

i.e. P = P[1,ε] ∈ P∗(ε). Define P′ ∈ PMm
k via

P′(2|S) := 1 + h− ε
2

, P′(minS \ {2} |S) := 1− h− ε
2

and P′(j|S) := ε

k − 2

for any j ∈ S \ {2,min(S \ {2})}, if 2 ∈ S, and

P′(j|S) := P(j|S)

for any j ∈ S, if 2 ̸∈ S. From P′ ∈ PMm
k (GCW∧∆h) and GCW(P′) = 2 ̸= 1 = GCW(P)

we infer P′ ∈ P∗(¬GCW(P)). In case {1, 2} ̸⊆ S, we have P(j|S) = P′(j|S) for any
j ∈ S and thus KL (PS ,P

′
S) = 0. In the remaining case {1, 2} ⊆ S Lem. 2.43 allows us to

estimate

KL
(
PS ,P

′
S

)
= KL

((
1 + h− ε

2
,
1− h− ε

2
,

ε

k − 2
, . . .

)
,

(
1− h− ε

2
,
1 + h− ε

2
,

ε

k − 2
, . . .

))
≤ h2

(
2

1− h− ε
+

2

1 + h− ε

)
=

4h2(1− ε)
(1− h− ε)(1 + h− ε)

.

Regarding the choice of l = 1 we infer∑
S∈[m]k

wSKL
(
PS ,P

′
S

)
=
∑

S∈[m]k:{1,2}⊆S
wSKL

(
PS ,P

′
S

)
≤ 4h2(1− ε)

(1− h− ε)(1 + h− ε)
∑

S∈[m]k:1∈S
wS

≤ 4kh2(1− ε)
m(1− h− ε)(1 + h− ε)

and thus clearly

EP[T
A]
∑

S∈[m]k
wSKL

(
PS ,P

′
S

)
≤ 4kh2(1− ε)
m(1− h− ε)(1 + h− ε)

EP[T
A].
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Since w was arbitrary and P = P[l(w),ε], combining this with (6.4) yields

ln
1

2.4γ

≤ supw∈∆[m]k
minP∈P∗(ε) EP[T

A] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

wSKL
(
PS ,P

′
S

)
≤ supw∈∆[m]k

EP[l(w),ε] [TA] infP′∈P∗(¬GCW(P[l(w),ε]))

∑
S∈[m]k

wSKL
(
P

[l(w),ε]
S ,P′

S

)
≤ 4kh2(1− ε)
m(1− h− ε)(1 + h− ε)

supw∈∆[m]k
EP[l(w),ε] [TA]

≤ 4kh2(1− ε)
m(1− h− ε)(1 + h− ε)

maxl∈[m] EP[l,ε] [TA].

As ε ∈ (0, 1/2 ∧ (1− h)) was arbitrary, we finally conclude

supP∈PMm
k (GCW∧∆h) EP

[
TA] ≥ supε∈(0,1/2∧(1−h))maxl∈[m] EP[l,ε]

[
TA]

≥ supε∈(0,1/2∧(1−h))
m(1− h− ε)(1 + h− ε)

4kh2(1− ε)
ln

1

2.4γ

≥ m(1− h2)
4kh2

ln
1

2.4γ
.

In the case of dueling bandits (k = 2), the instance-dependent bound from Thm. 6.4 has
apparently been a novel result when published in [Haddenhorst et al., 2021c]1. It reduces
to

EP

[
TA] ≥ ln

1

2.4γ

∑
l∈[m]\{i}

1

KL(P(·|{i, l}),P[l](·|{i, l}))

= ln
1

2.4γ

∑
l∈[m]\{i}

1

kl(P(i|{i, l}),P(l|{i, l}))

for any P ∈ PMm
2 (GCW∧∆h) with GCW(P) = i and any solution A to Pm,2,γGCWi(GCW∧

∆h). By means of this, we obtain the following worst-case sample complexity lower bound,

which is by a factor 2(m−1)
m larger than the worst-case one stated in Thm. 6.4.

Corollary 6.5. If A solves Pm,2,γGCWi(GCW ∧∆h), then

supP∈PMm
2 (GCW∧∆h) EP

[
TA] ≥ (m− 1)(1− h2)

4h2
ln

1

2.4γ
.

Proof. Define P ∈ PMm
2 (GCW ∧ ∆h) via P(i|{i, j}) := 1+h

2 for any 1 ≤ i < j ≤ m.

1So far, existing sample complexity lower bounds for solutions to Pm,γ
2 (∆h ∧GCW) are either restricted

to worst-case scenarios [Braverman and Mossel, 2008] or to the special case where P belongs to a
Thurstone model [Ren et al., 2020] or a Plackett-Luce model [Saha and Gopalan, 2020b].

203



Thm. 6.4 and Lem. 2.43 allow us to infer

EP

[
TA] ≥ m− 1

kl((1 + h)/2, (1− h)/2)
ln

1

2.4γ

≥ (m− 1)

(
2h2

1− h
+

2h2

1 + h

)−1

ln
1

2.4γ

=
(m− 1)(1− h2)

4h2
ln

1

2.4γ
.

For k ≥ 3, the worst-case bound in Thm. 6.4 is not a consequence of the instance-wise
version, instead it requires a more involved proof than the latter. This is made formal in
the next remark.

Remark 6.6. The instance-wise bound in Thm. 6.4 appears to be maximal on an instance
P ∈ PMm

k defined via

P(mS |S) :=
1− h+ hk

k
and P(j|S) := 1− h

k
for each j ∈ S \ {mS}.

with mS := minS for each S ∈ [m]k. Note that P(mS |S) = P(j|S) + h is fulfilled for each
S ∈ [m]k, j ∈ S \ {mS}. Regarding the definition of mS we thus have P ∈ PMm

k (∆h)
with GCW(P) = 1. With P[l](·|S) defined as in Thm. 6.4 we can estimate for each
l ∈ {2, . . . ,m} and S ∈ [m]k with l ∈ S \ {mS} via Lem. 2.43

KL
(
P(·|S),P[l](·|S)

)
≤
∑

j∈S

(P(j|S)−P[l](j|S))2

P(j|S)

=
(P(mS |S)−P[l](mS |S))2

P[l](mS |S)
+

(P(l|S)−P[l](l|S))2

P[l](l|S)

=
(P(mS |S)−P(l|S))2

P(l|S)
+

(P(l|S)−P(mS |S))2

P(mS |S)

=
(P(mS |S)−P(l|S))2(P(mS |S) +P(l|S))

P(mS |S)P(l|S)

=
h2k(1− h+ hk + 1− h)

(1− h+ hk)(1− h)
≤ 2kh2

1− h
,

where we have used hk ≥ 0 in the last step. Consequently, the instance-wise bound from
Thm. 6.4 yields

EP

[
TA] ≥ (m− 1)(1− h)

2h2k(k − 1)
ln

1

2.4γ
∈ Ω

(
m

k2h2
ln

1

γ

)
,

which is by a factor 1
k asymptotically smaller than the worst-case bound from Thm. 6.4.

As the next remark illustrates, for m = k the instance-wise lower bound underlying
Prop. 2.30 is apparently larger than that of Thm. 6.4. The reason is that the proof for
the instance-wise bound in Thm. 6.4 is tailored to the problem class PMm

k (∆h ∧GCW)
and consequently has to deal with combinatorial issues arising in case k < m.
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Remark 6.7. Suppose A solves Pk,k,γGCWi(∆
h), let p ∈ ∆h

k and write i := mode(p). Accord-
ing to Prop. 2.30 we have

Ep

[
TA] ≥ maxl∈[m]\{i}

1− 2γ

2ϕl,i(p)(pl + pi)

⌈
ln((1− γ)/γ)

ln((1/2+ϕl,i(p))/(1/2−ϕl,i(p)))

⌉
=: LB1(p, γ)

with ϕl,i(p) :=
pi−pl

2(pl+pi)
, and Thm. 6.4 guarantees

Ep

[
TA] ≥ ln 1

2.4γ

k − 1

∑
l∈[k]\{i}

(
pl ln

(
pl
pi

)
+ pi ln

(
pi
pl

))−1

=: LB2(p, γ).

In an empirical study we observed LB1(p, γ) > LB2(p, γ) for 1000 parameters p sampled
iid and uniformly at random from ∆0

k, for any (k, γ) ∈ {5, 10, 15} × {0.01, 0.05, 0.1}. For
example, we have

LB1((0.2, 0.2, 0.15, 0.2, 0.25), 0.05) ≈ 252 > 152.9 ≈ LB2((0.2, 0.2, 0.15, 0.2, 0.25), 0.05).

This indicates that the instance-wise lower bound of Prop. 2.30 is larger than that from
Thm. 6.4.

Prop. 2.33 indicated that for the special case m = k, a ln ln 1
h -factor is indispensable. The

next theorem formally shows that an analogon is true in case m ≥ k.

Theorem 6.8. Suppose m, k and γ to be fixed. There is a family {Ph}h∈(0,1) with

Ph ∈ PMm
k (∆h) for all h ∈ (0, 1) such that any solution A to Pm,k,γGCWi(∆

0) fulfills

lim sup
h↘0

EPh [TA]
1
h2

ln ln 1
h

> 0.

Proof of Thm. 6.8. Define Ph = {Ph(·|S)}S∈[m]k ∈ PM
m
k for any h ∈ (−1, 1) via

Ph(i|S) :=


1/2 + h/2, if i = maxS,

1/2− h/2, if i = minS,

0, otherwise.

and note that Ph ∈ PMm
k (∆|h|) with GCW(Ph) = m if h > 0 and GCW(Ph) = 1 if

h < 0. Let A be any solution to Pm,k,γGCWi(∆
0). Suppose a ∈ [0, 1] to be arbitrary and let

C ∼ Ber(a). Define A′ to be that algorithm, which simulates A in the following way: If A
makes its query St ∈ [m]k, draw a sample Ct from the coin C and and provide as feedback

Xt =

{
maxSt, if Ct = 1,

minSt, if Ct = 0,

and in case A terminates, terminate and output D(A′) = 0 if D(A) = m and D(A′) = 1
otherwise.

In case a = 1/2±h/2 for h > 0, the feedback observed by A is distributed as if generated

by P±h ∈ PMm
k (∆0). Since A solves Pm,k,γGCWi(∆

0), we have

P1/2+h/2(D(A′) = 0) = PPh(D(A) = m) ≥ 1− γ,
P1/2−h/2(D(A′) = 1) = PP−h(D(A) ̸= m) ≥ PP−h(D(A) = 1) ≥ 1− γ,
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that is, A′ is thus able to correctly decide H0 : a > 1/2 vs. H1 : a < 1/2 with error
probability ≤ γ for any a ̸= 1/2. Regarding that A′ has by construction the same sample
complexity as A′,

lim suph↘0

EPh [TA]
1
h2

ln ln 1
h

= lim suph↘0

E1/2+h/2[T
A′
]

1
h2

ln ln 1
h

> 0

follows from Prop. 2.13.

Note here that the lower bound from Thm. 6.8 is only valid for any fixed m and k, it does
not provide a bound of order Ω( m

kh2
ln ln 1

h). We will briefly address this again in Sec. 6.4.

We conclude this section with a lower bound for solutions to Pm,k,γGCWv(∆
h ∧ GCW). Its

proof is almost identical to the first part of the proof of Thm. 6.4.

Theorem 6.9. Suppose A solves Pm,k,γGCWv(∆
h ∧ GCW) and P ∈ PMm

k (∆h ∧ GCW) is
fixed with i = GCW(P). For any S ∈ [m]k let mS and P[l](·|S) for l ∈ [m] \ {mS} be
defined as in Thm. 6.4. Then,

EP

[
TA(i)

]
≥

ln 1
2.4γ

k − 1

∑
l∈[m]\{GCW(P)}

minS∈[m]k:l∈S\{mS}
1

KL(P(·|S),P[l](·|S))
.

Proof of Thm. 6.9. After relabeling [m], we may suppose w.l.o.g. GCW(P) = 1 and that
A is started with 1 as input. For convenience, write A for A(1). Let P[l] be defined

as in the proof of Thm. 6.4. Since A solves Pm,k,γGCWi(∆
h ∧GCW) and GCW(P[l]) = 1 iff

l = 1, it correctly outputs 1{l=1} whenever started with P[l]. Consequently, the event
E := {D(A) = 1} ∈ FTA fulfills

PP (E) ≥ 1− γ and PP (E) ≤ γ.

Thus, the same argumentation as in the proof of Thm. 6.4 completes the proof.

6.2. Upper Bounds on the GCW Identification Problem

Saha and Gopalan [2020b] introduced PAC-Wrapper, an algorithm able to identify
the GCW under the Plackett-Luce assumption with (up to logarithmic terms) optimal
instance-wise sample complexity. Instead of discussing it in detail, we restrict ourselves to
state its theoretical guarantees.

Theorem 6.10. The algorithm A := PAC-Wrapper from [Saha and Gopalan, 2020b]

solves Pm,k,γGCWi(PL ∧GCW∗) and fulfills for any θ ∈ (0, 1]m with 1 = θ1 > maxj≥2 θj the
estimate

PP(θ)

(
D(A) ∈ GCW(P) and TA ≤ t′(θ, k, γ)

)
≥ 1− γ

with

t′(θ, k, γ) ∈ O
(
Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

)))
and Θ[k] := maxS∈[m]k

∑
a∈S θa.

Proof. Confer Thm. 3 in [Saha and Gopalan, 2020b] and note that minj≥2
1

(1−θj)2 ≥ 1

holds for any θ ∈ (0, 1]m with 1 = θ1 > maxj≥2 θj .

206



By translating the sample complexity result of PAC-Wrapper into our setting, we obtain
the following result, which is also by Thm. 6.3 suggested to be optimal up to logarithmic
factors. Its proof is a bit technical, but we provide it for the sake of completeness.

Theorem 6.11. The solution A := PAC-Wrapper from [Saha and Gopalan, 2020b]

solves Pm,k,γGCWi(PL ∧GCW∗) s.t.

infP∈PMm
k (PL∧hGCW) PP

(
D(A) ∈ GCW(P) and TA ≤ t′(m,h, k, γ)

)
≥ 1− γ

holds with t′(h,m, k, γ) ∈ O

(
m( 1

k
+h) ln

(
k
γ
ln 1

h

)
kh2

)
.

Proof of Thm. 6.11. Suppose γ ∈ (0, 1), h ∈ (0, 1) and m, k ∈ N≥2 with k ≤ m to
be arbitrary but fixed for the moment and let A := PAC-Wrapper from [Saha and
Gopalan, 2020b]. Recall the guarantees of A from Thm. 6.10. For l ∈ {2, . . . , k} define
gl : [0, 1]

m → R via gl(θ) := h(1 + θ2 + · · ·+ θk) + θl − 1 and denote by B the set

{θ ∈ (0, 1]m | 1 = θ1 > θ2 ≥ · · · ≥ θm and ∀l ∈ {2, . . . , k} : gl(θ) ≤ 0}.

Lem. 2.45 assures that any P ∈ PMm
k (PL) with GCW(P) = 1 fulfills P ∈ PMm

k (hGCW)
iff P = P(θ) for some θ ∈ B. Consequently, it is with regard to Thm. 6.10 sufficient to
show that

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

))
≤ 6m

kh2

(
1

k
+ h

)
ln

(
k

γ
ln

1

h

)
(6.5)

holds for any θ ∈ B. We prove this in several steps.

Claim 1: For any θ ∈ B we have∑k

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ 3(1 + hk)

h2
. (6.6)

Proof of Claim 1: Let B′ be the set of all θ = (1, θ2, . . . , θk) with 1 ≥ θ2 ≥ · · · ≥ θk ≥ 0
and gl(θ) ≤ 0 for all l ∈ {2, . . . , k}. As (1, θ2, . . . , θk) ∈ B′ holds for any (1, θ2, . . . , θm) ∈
B, it is sufficient to show that (6.6) holds for any θ = (1, θ2, . . . , θk) ∈ B′.

Claim 1a: For any θ ∈ B′ and l ∈ {2, . . . , k} we have θl ≤ 1− h.
Proof: For θ = (1, θ2, . . . , θk) ∈ B′ and l ∈ {2, . . . , k} we have

0 ≥ gl(θ) = h(1 + θ2 + · · ·+ θk) + θl − 1 ≥ h+ θl − 1,

and thus θl ≤ 1− h. ♣

According to Claim 1a, B′ is a compact subset of {1} × [0, 1− h]k−1. Consequently, the
continuous function f : B′ → R, f(θ) :=

∑k
j=2

1+θ2+···+θk
(1−θj)2 is well-defined and takes its

maximum on B′ in a point θ∗ ∈ B′.

Claim 1b: There is some j ∈ {2, . . . , k} s.t. g2(θ∗) = · · · = gj(θ
∗) = 0 and θ∗j+2 = · · · =

θ∗k = 0.
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Proof: To show indirectly the existence of some j ∈ {2, . . . , k} with gj(θ∗) = 0 assume
on the contrary that gl(θ

∗) < 0 for any l ∈ {2, . . . , k}. Then, if ε > 0 is small enough,
θε := (1, θ∗2 + ε, θ∗3, . . . , θ

∗
k) is an element of B′. Since

∂f

∂θ2
(θ) =

2θ2(1 + θ2 + · · ·+ θk)

(1− θ2)3
+
∑k

l=2

1

(1− θl)2
> 0

holds for any θ in the interior of B′, we would obtain f(θε) > f(θ∗) in contradiction to the
optimality of θ∗. Hence, there has to be a j ∈ {2, . . . , k} with gj(θ∗) = 0. In case j ≥ 3, we
may infer from gj−1(θ

∗)− gj(θ∗) = θ∗j−1− θ∗j ≥ 0 inductively 0 = gj−1(θ
∗) = · · · = g2(θ

∗).
It remains to prove θ∗j+2 = · · · = θ∗k = 0. Assume this was not the case, i.e., j ≤ k − 2
and j′ := max{l ∈ {2, . . . , k} | θ∗l > 0} ≥ j + 2. By definition of j we have gj(θ

∗) < 0.
Consequently,

θ′
ε := (1, θ∗2, . . . , θ

∗
j , θ

∗
j+1 + ε, θ∗j+2, . . . , θ

∗
j′ − ε, 0, . . . , 0)

is for small values of ε ≥ 0 an element of B′. Using
∑k

l=2(θ
′
ε)k =

∑k
l=2 θ

∗
l we see that

d

dε
f(θ′

ε) =
2

(1− θ∗j+1 − ε)3
− 2

(1− θ∗j′ + ε)3
,

which is due to θ∗j+1 ≥ θ∗j′ positive for small values of ε > 0. In particular, f(θ′
ε) > f(θ′

0) =
f(θ∗) holds for small ε > 0, which contradicts the optimality of θ∗. This completes the
proof of Claim 1b. ♣

According to Claim 1b we may fix some j ∈ {2, . . . , k} with g2(θ∗) = · · · = gj(θ
∗) = 0 and

θ∗j+2 = · · · = θ∗k = 0. Since gl(θ
∗)− gl′(θ∗) = θ∗l − θ∗l′ = 0 holds for any l, l′ ∈ {2, . . . , k},

we have θ∗2 = · · · = θ∗j . From 0 ≥ g2(θ∗) ≥ h(1 + (j − 1)θ∗2) + θ∗2 − 1 we infer

θ∗2 = · · · = θ∗j ≤
1− h

1 + (j − 1)h
= 1− hj

1 + h(j − 1)
.

Together with θ∗j ≥ θ∗j+1 ≥ 0 = θ∗j+2 = · · · = θ∗k we obtain

1 + θ∗2 + · · ·+ θ∗k
(1− θ∗2)2

≤ 1 + jθ∗2
(1− θ∗2)2

≤ (1 + h(j − 1))2

h2j2

(
1 +

j(1− h)
1 + h(j − 1)

)
=

(1 + h(j − 1))(1− h+ j)

h2j2
≤ 2

(
1

h2j
+
h(j − 1)

h2j

)
≤ 2

h2

(
1

j
+ h

)
,

where we have used that 1− h+ j ≤ 2j holds trivially. Combining this with the fact that

g2(θ
∗) ≤ 0 implies (1 + θ∗2 + · · ·+ θ∗k) ≤

1−θ∗2
h ≤ 1

h yields

f(θ∗) =
∑k

l=2

1 + θ∗2 + · · ·+ θ∗k
(1− θ∗l )2

≤ (1 + θ∗2 + · · ·+ θ∗k)

(∑j+1

l=2

1

(1− θ∗2)2
+
∑k

l=j+2
1

)
≤ 2j

h2

(
1

j
+ h

)
+
k − j − 1

h
≤ 3(1 + hk)

h2
.
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Since θ∗ was a maximum point of f in B′, Claim 1 follows. ■

Claim 2: For any θ ∈ B we have
∑m

j=2
1

(1−θj)2 ≤
m−1
k−1

∑k
j=2

1
(1−θj)2 .

Proof of Claim 2: Using 1 ≥ θ2 ≥ · · · ≥ θm, this follows directly from comparing the
(m−1)(k−1) summands in (k−1)

∑m
j=2

1
(1−θj)2 =

∑m
j=2

1
(1−θj)2 + · · ·+

∑m
j=2

1
(1−θj)2 with

those in (m− 1)
∑k

j=2
1

(1−θj)2 . ■

Claim 3: Inequality (6.5) holds for any θ ∈ B.
Proof of Claim 3: Let θ ∈ B be fixed and note that Θ[k] = 1 + θ2 + · · · + θk holds.

From 1 ≥ θ2 ≥ · · · ≥ θm ≥ 0 we get Θ[k] ∈ [1, k]. Together with 1−θ2
Θ[k]

=
hΘ[k]−g2(θ)

Θ[k]
≥ h

this shows 1 − θj ≥ 1 − θ2 ≥ h and in particular ln 1
1−θj ≤ ln 1

h for each j ∈ {2, . . . ,m}.
In combination with Claims 1 and 2 this allows us to conclude

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

))
≤ 1

k
ln

(
k

γ
ln

1

h

)∑m

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ m− 1

k(k − 1)
ln

(
k

γ
ln

1

h

)∑k

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ 3(m− 1)(1 + hk)

k(k − 1)h2
ln

(
k

γ
ln

1

h

)
≤ 6m

kh2

(
1

k
+ h

)
ln

(
k

γ
ln

1

h

)
,

where we have used that m−1
k−1 ≤

2m
k holds due to k ≥ 2. This completes the proof of

Claim 3 and of the theorem.

Algorithm 24 Dvoretzky–Kiefer–Wolfowitz tournament (DKWT) – Solution

to Pm,k,γGCWi(GCW ∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k
Initialization: ADie := Alg. 7, choose S1 ∈ [m]k arbitrary, F1 ← [m], γ′ ← γ

⌈m/(k−1)⌉ ,
s← 1
▷ Ss : candidates in round s, Fs : remaining elements in round s, is : output of ADie

in round s

1: while s ≤ ⌈ m
k−1⌉ − 1 do

2: is ← ADie(γ
′, sample access to P(·|Ss))

3: Fs+1 ← Fs \ Ss
4: Write Fs+1 = {j1, . . . , j|Fs+1|}.
5: if |Fs+1| < k then
6: Fix distinct j|Fs+1|+1, . . . , jk−1 ∈ [m] \ Fs+1.

7: Ss+1 ← {is, j1, . . . , jk−1}
8: s← s+ 1

9: is ← ADie(γ
′, sample access to P(·|Ss))

10: return is
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Next, we consider the problem Pm,k,γGCWi(GCW ∧∆0), for which we propose the Dvoret-
zky–Kiefer–Wolfowitz tournament (DKWT) algorithm (see Alg. 24). DKWT is
a simple round-based procedure eliminating in each round those arms from a candidate
set of possible GCWs that have been discarded by Alg. 7 with high confidence as being
the GCW. In the following theorem we derive theoretical guarantees for DKWT.

Theorem 6.12. Let A be DKWT (Alg. 24) called with the parameters k,m ∈ N with

k ≤ m and γ ∈ (0, 1). Then, A solves Pm,k,γGCWi(GCW ∧∆0) and fulfills

PP

(
D(A) = GCW(P) and TA ≤ t′(P,m, k, γ)

)
≥ 1− γ

for any P = {P(·|S)}S∈[m]k ∈ PM
m
k (GCW ∧∆0), where t′(P,m, k, γ) is given as

max
{∑

s≤s′
t0(h(P(·|Bs)), γ′) : B1, B2, . . . , Bs′ ∈ [m]k s.t.

⋃
s≤s′

Bs = [m]
}

(6.7)

with s′ := ⌈ m
k−1⌉, γ

′ := γ
s′ and t0(h, γ) defined as in Prop. 2.40, i.e.,

t0(h, γ) =
∑

s≤s0(h)

⌈
8

h2s
ln

4

γs

⌉
with s0(h) =

⌈
log2

3

h

⌉
− 1.

In particular, A fulfills

PP

(
D(A) ∈ GCW(P) and TA ≤ T ′(h(P),m, k, γ)

)
≥ 1− γ

for all P ∈ PMm
k (GCW ∧∆0), where T ′(h,m, k, γ) ∈ O

(
m
kh2

(
ln m

k

) (
ln ln 1

h + ln 1
γ

))
.

Proof. Suppose P = {P(·|S)}S∈[m]k ∈ PMm
k (GCW ∧ ∆0) to be fixed and abbreviate

i := GCW(P). Recall the internal values s, Ss and Fs of Alg. 24. If A terminates, then
the value of s is s′ := ⌈ m

k−1⌉. Let us write Ãs for the instance of Alg. 7, which is called
with parameters m, γ′ and sample access to P(·|Ss) in Step 2 (or Step 9), i.e., we have
is = D(Ãs) ∈ Ss for each s ≤ s′. For s ≥ 2, Ss and Fs depend on the outcome of Ãs−1

and are thus random variables.

Claim 1: On the event {TA <∞} we have

(i) Fs′ = ∅ and
⋃
s≤s′ Ss = [m], i.e.,

∑
s≤s′ t0(γ

′, h(P(·|Ss))) ≤ t′(P,m, k, γ) holds a.s.,

(ii) {D(A) ̸= i} ⊆
⋃
s≤s′{D(Ãs) ̸= mode(P(·|Ss))}.

Proof of Claim 1: Suppose TA < ∞. Clearly, |Fs| is monotonically decreasing in s.
Whenever |Fs| ≥ k, then |Ss ∩ Fs| ≥ k − 1 and thus |Fs+1| ≤ |Fs| − (k − 1) are fulfilled.
Hence, |Fs| ≤ m− s(k− 1) holds for any s ≤ s′− 1. In particular, we have |Fs′−1| ≤ k− 1,
which implies Fs′ = ∅.
From [m] = F0 ⊇ F1 ⊇ · · · ⊇ Fs′ = ∅ and ∀s ≤ s′ : Fs+1 = Fs \Ss we infer

⋃
s≤s′ Ss = [m],

which proves (i). Regarding that the implications

j ∈ Ss \ Ss′ ⇒ ∃l ∈ {0, . . . , s′ − s} : j ∈ Ss+l−1 \ Ss+l

and
j ∈ Ss \ Ss+1 ⇒ j ̸= is
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are trivially fulfilled for all j ∈ [m] and s ∈ {0, . . . , s′ − 1}, we obtain

{i ̸∈ Ss′} ⊆ {∃s < s′ : i ∈ Ss and i ̸∈ Ss+1}
⊆ {∃s < s′ : i ∈ Ss and is ̸= i}.

Due to {i ∈ Ss and is ̸= i} ⊆ {D(Ãs) ̸= mode(P(·|Ss))}, this implies

{D(A) ̸= i} = {i ∈ Ss′ and i ̸= is′} ∪ {i ̸∈ Ss′}

⊆
⋃

s≤s′
{i ∈ Ss and i ̸= is}

⊆
⋃

s≤s′
{D(Ãs) ̸= mode(P(·|Ss))}.

■

Claim 2: We have the estimate

PP

(
∃s ≤ s′ : D(Ãs) ̸= mode(P(·|Ss))) or T Ãs > t0(γ

′, h(P(·|Ss)))
)
≤ γ.

Proof of Claim 2: For s ≤ s′ let

Es :=
{
D(Ãs) ̸= mode(P(·|Ss))) or T Ãs > t0(γ

′, h(P(·|Ss)))
}

denote the set, where A fails at round s in the sense that Ãs either makes an error in
finding mode(P(·|Ss)) or queries “too many” samples for this. For B ∈ [m]k and s ≤ s′−1
with PP({Ss = B} ∩

⋂
s̃≤s−1E

c
s̃) > 0 we have with regard to Prop. 2.40

PP

(
Es

∣∣∣ {Ss = B} ∩
⋂

s̃≤s−1
Ecs̃

)
= PP(·|B)

(
D(Ãs) ̸= mode(P(·|B)) or T Ãs > t0(γ

′, h(P(·|B)))
)
≤ γ′,

where we have used that both
⋂
s̃≤s−1E

c
s̃ and the choice {Ss = B} are independent of the

samples observed by Ãs. We conclude

PP

(⋃
s≤s′

Es

)
= PP

(⋃
s≤s′

Es \
(⋃

s̃≤s−1
Es̃

))
≤
∑

s≤s′

∑
B∈[m]k

PP

(
Es ∩ {Ss = B} ∩

⋂
s̃≤s−1

Ecs̃

)
=
∑

s≤s′

[∑
B
PP

(
Es

∣∣∣{Ss = B} ∩
⋂

s̃≤s−1
Ecs̃

)
PP

(
{Ss = B} ∩

⋂
s̃≤s−1

Ecs̃

)]
≤
∑

s≤s′
γ′ ≤ γ,

where
∑

B denotes the sum over all B ∈ [m]k with PP

(
{Ss = B} ∩

⋂
s̃≤s−1E

c
s̃

)
> 0. ■

Now, let us define for s ≤ s′ the events

Rs :=
{
T Ãs ≤ t0(γ′, h(P(·|Ss)))

}
and R :=

⋂
s≤s′ Rs. Due to TA =

∑
s≤s′ T

Ãs we have

R ⊆
{
TA ≤

∑
s≤s′

t0(γ
′, h(P(·|Ss)))

}
⊆
{
TA <∞

}
.
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The equality Rc =
⋃
s≤s′ Rcs together with Part (ii) of Claim 1 and Claim 2 let us infer

PP ({D(A) ̸= i} ∪ Rc) = PP (({D(A) ̸= i} ∩ R) ∪Rc)

≤ PP

(⋃
s≤s′

{
D(Ãs) ̸= mode(P(·|Ss)))

}
∪Rcs

)
= PP

(
∃s ≤ s′ : D(Ãs) ̸= mode(P(·|Ss))) or T Ãs > t0(γ

′, h(P(·|Ss)))
)

≤ γ

and we can thus conclude with the help of Part (i) of Claim 1 that

PP

(
D(A) = i and TA ≤ t′(P,m, k, γ)

)
≥ PP

(
D(A) = i and TA ≤

∑
s≤s′

t0(γ
′, h(P(·|Ss))

)
≥ PP ({D(A) = i} ∩ R)
≥ 1− γ.

It remains to show the second statement of the theorem. By definition of h(P) we have
h(P(·|S)) ≥ h(P) for any S ∈ [m]k, hence monotonicity of t0(h, γ) from Prop. 2.40 w.r.t.
h shows us that t0(h(P(·|S)), γ) ≥ t0(h(P), γ) for any S ∈ [m]k. Thus, a look at (6.7)
reveals that

t′(P,m, k, γ) ≤ T ′(h(P),m, k, γ)

with T ′(h,m, k, γ) :=
⌈
m
k−1

⌉
t0

(
h, γ

⌈m/(k−1)⌉

)
, which is according to Prop. 2.40 contained

in O
(
m
kh2

(
ln m

k

) (
ln ln 1

h + ln 1
γ

))
.

The result stated in Table 6.1 for (X) = (GCW ∧ ∆0) and (Y) = (∆h) follows from
Thm. 6.12 by noting that h(P) ≥ h holds for any P ∈ PMm

k (hGCW ∧∆h). Regarding
Prop. 2.33, the additional factor ln ln 1

h in the upper bounds from Thm. 6.11 and Thm. 6.12
appears indispensable. Since PMm

k (PL ∧GCW∗) ̸⊆ PMm
k (GCW ∧∆0) and PMm

k (PL ∧
GCW∗) ̸⊆ PMm

k (GCW ∧∆0) hold, a solution to Pm,k,γGCWi(PL ∧GCW∗) is in general not

comparable with a solution to Pm,k,γGCWi(GCW ∧∆0), i.e., neither Thm. 6.11 nor Thm. 6.12
implies the other one.

Replacing GCW∧∆0 with the more restrictive assumption hGCW∧∆0 (as an assumption
on P) makes the GCW identification task much easier. This is similar to the case of

Pk,k,γGCWi(∆
h) = Pk,h,γDie and Pk,k,γGCWi(∆

0) = Pk,0,γDie discussed in Sec. 2.3.2. For Pm,k,γGCWi(hGCW∧
∆0) we can modify Alg. 24 in order to incorporate the knowledge of h as follows: Choose
in round s a query set Ss ⊆ Fs (filled up with |Fs| − k further elements from [m] \ Fs if
|Fs| < k) and execute Alg. 6 with parameters h

3 ,
γ

⌈m/(k−1)⌉ and sample access to P(·|Ss).
In case Alg. 6 returns as decision an element i ∈ Ss, we let Fs+1 = Fs \ (Ss \ {i}),
and otherwise Fs+1 = Fs. Then we proceed with the next round s+ 1. We repeat this
procedure until |Fs| = 1, and return the unique element in Fs as the prediction for the
GCW. Detailed pseudocode of this procedure is given as Alg. 25.

We conclude this section with a theorem on the theoretical guarantees of Alg. 25. For
technical reasons, we consider in its proof also a modified version of Alg. 25, which we
state as Alg. 26.
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Algorithm 25 Solution to Pm,k,γGCWi(hGCW ∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), h ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k ,

Initialization: ADie := Alg. 6, i0 ← UNSURE, h′ ← h
3 , γ

′ ← γ
⌈m/(k−1)⌉ , let S1 ∈ [m]k

arbitrary, F1 ← [m], s← 1
▷ Ss : candidate set in round s, Fs : remaining elements in round s

▷ is ∈ Ss ∪ {UNSURE} : output of ADie in round s

1: while |Fs| > 0 do
2: is ← ADie(h

′, γ′, sample access to P(·|Ss))
3: Fs+1 ← Fs \ Ss
4: Write Fs+1 = {j1, . . . , j|Fs+1|}.
5: if |Fs+1| < k then
6: Fix distinct j|Fs+1|+1, . . . , jk ∈ [m] \ (Fs+1 ∪ {is}).
7: if is ∈ [m] then Ss+1 ← {is, j1, . . . , jk−1}
8: else Ss+1 ← {j1, . . . , jk}
9: s← s+ 1

10: is ← ADie(h
′, γ′, sample access to P(·|Ss))

11: if is ∈ [m] then return is
12: else return 1

Theorem 6.13. Let A be Alg. 25 called with parameters m, k ∈ N with k ≤ m and
γ, h ∈ (0, 1). Then, A solves Pm,k,γGCWi(hGCW ∧ ∆0) and terminates a.s. for any P ∈
PMm

k (hGCW ∧∆0) before some time t′(m, k, h, γ) ∈ O
(
m
kh2

ln m
kγ

)
.

Before proving Thm. 6.13, note that Thm. 6.4 shows that this solution to Pm,k,γGCWi(hGCW∧
∆0) is asymptotically optimal up to logarithmic factors in a worst-case sense w.r.t.
PMm

k (hGCW ∧∆0).

Proof of Thm. 6.13. Let us define the random variable sA := min{s ∈ N |Fs = ∅} ∈
N ∪ {∞} and suppose P ∈ PMm

k to be arbitrary but fixed for the moment.

Claim 1: We have sA ≤ s′ := ⌈ m
k−1⌉ a.s. w.r.t. PP.

Proof of Claim 1: Assume on the contrary that sA > s′. Note that |Fs| is monotonically
decreasing in s. Whenever |Fs| ≥ k, then |Ss∩Fs| ≥ k− 1 and thus |Fs+1| ≤ |Fs|− (k− 1)
are fulfilled. Hence, |Fs| ≤ m− s(k − 1) holds for any s ≤ s′ − 1. In particular, we have
|Fs′−1| ≤ k − 1, which implies Fs′ = ∅, contradicting the assumption sA > s′. This proves
that sA ≤ s′ is fulfilled a.s. ■

Using that A makes exactly sA calls of ADie (i.e., Alg. 6) with parameters h′, γ′ and each

such call is executed with a sample complexity of exactly
⌈

8
h′2

ln 4
γ′

⌉
, the total sample

complexity of A is at most

s′⌈8 ln(4/γ′)/h′2⌉ =
⌈

m

k − 1

⌉⌈
72

h2
ln

(
4⌈m/(k − 1)⌉

γ

)⌉
,

which is in O
(
m
kh2

ln m
kγ

)
as max{m, k, 1h ,

1
γ } → ∞. It remains to prove correctness of A.

Write A′ for Alg. 26 called with the same parameters as A.
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Claim 2: For any P ∈ PMm
k , we have

PP (D(A) ̸= GCW(P)) = PP

(
D(A′) ̸= GCW(P)

)
.

Proof of Claim 2: This follows directly from the fact that for any S ∈ [m]k, different
calls of ADie on P(·|S) are by assumption executed on different samples of P(·|S) and
thus independent of each other. ■

This result shows that it is sufficient to prove correctness of A′. In the following, we
denote by s, is, Fs and Ss the internal statistics of A′ and write Ãs for that instance of
ADie, which is executed in A′ to determine is. Let P ∈ PMm

k (hGCW ∧∆0) be fixed and
define i := GCW(P).

Claim 3: For all s ≤ s′ we have

PP (i ∈ Ss and is ̸= i) ≤ γ′.

Proof of Claim 3: Suppose B ∈ [m]k with i ∈ [m] and PP(Ss = B) > 0 to be arbitrary
but fixed for the moment. By assumption on P we have P(·|B) ∈ ∆3h′

k and since Ãs
is Alg. 6 executed with parameters h′, γ′ and sample access to P(·|Ss) only, Lem. 2.37
assures

PP (i ∈ Ss and is ̸= i|Ss = B)

= PP(·|B)(Alg. 6 started with h′, γ′ does not output mode(P(·|B))) ≤ γ′.

Claim 3 thus follows via summation over all such B. ■

On the event {TA′
<∞}, we infer from [m] = F0 ⊇ F1 ⊇ · · · ⊇ FsA = · · · = Fs′ = ∅ and

∀s ≤ s′ : Fs+1 = Fs \ Ss similarly as in the proof of Thm. 6.12

{D(A′) ̸= i} ⊆
⋃

s≤s′
{i ∈ Ss and is ̸= i}.

As TA′
<∞ holds a.s. w.r.t. PP, combining this with Claim 3 directly yields

PP(D(A′) ̸= i) ≤
∑

s≤s′
γ′ = γ,

which completes the proof.

6.3. Empirical Evaluation

In this section, we empirically investigate the GCW identification problem. We present
experimental results on DKWT, which have already been published in [Haddenhorst
et al., 2021c], and additionally also include as further solution to GCW identification a
modification of Alg. 24, which uses as ADie – instead of Alg. 7 – the procedure PPR1v1
stated in Alg. 8. For the sake of completeness, we stated PPRT as Alg. 27. Since PPR1v1
solves Pk,0,γDie (Prop. 2.41), a similar argumentation as in the proof of the correctness of

DKWT (Thm. 6.12) reveals that PPRT solves Pm,k,γGCWi(GCW ∧∆0).
Throughout all experiments, if not specified differently in the pseudocode, every choice of
an element within a specific set made by DKWT or PPRT is performed uniformly at
random.
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Algorithm 26 Modification of Alg. 25 for the proof of Thm. 6.13

Input: k,m ∈ N, γ ∈ (0, 1), h ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k ,

Initialization: ADie := Alg. 6, i0 ← UNSURE, h′ ← h
3 , γ

′ ← γ
⌈m/(k−1)⌉

S1 ← [k], F1 ← [m], s← 1

1: Execute steps 1–8 of Alg. 25.
2: let s′ ← ⌈ m

k−1⌉
3: while s < s′ do
4: is ← ADie(h

′, γ′, sample access to P(·|Ss))
5: Fs+1 ← Fs, Ss+1 ← Ss
6: s← s+ 1

7: is ← ADie(h
′, γ′, sample access to P(·|Ss))

8: return is

Algorithm 27 PPRT – Solution to Pm,k,γGCWi(GCW ∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k
Initialization: ADie :=Alg. 8, and initialize S1, F1, γ

′ and s as in Alg. 24

1: Execute Steps 1–10 from Alg. 24.

6.3.1. Comparison of DKWT and PPRT with PAC-Wrapper

At first, we compare DKWT and PPRT with PAC-Wrapper (PW), which is the

solution to Pm,k,γGCWi(PL) in [Saha and Gopalan, 2020b] underlying Thm. 6.11 and so far, to
the best of our knowledge, the only solution in the literature for identifying the GCW in
MDB with confidence 1− γ under some assumptions on P. Table 6.2 resp. Table 6.3 show
the results of both algorithms when started on an instance P ∈ PM5

k (PL) with underlying
PL-parameter θ = (1, 0.8, 0.6, 0.4, 0.2) resp. θ = (1, 2−1, 2−2, . . . , 2−9) and γ = 0.05 resp.
γ = 0.1, for different values of k. The observed termination time TA, the corresponding
standard error (in brackets) and the accuracy are averaged over 10 repetitions. The fact
that the observed sample complexities are not throughout decreasing in k is supposedly
due to the large standard errors and the little number of repetitions.

All algorithms achieve the desired accuracy ≥ 95% for Table 6.2 and ≥ 90% for Table 6.3
in every case, respectively, but DKWT requires far less samples than PW to find the
GCW, and PPRT requires even less samples. Note that the observed extremely large
sample complexity of PW appears to be consistent with the experimental results in [Saha
and Gopalan, 2020b] and is supposedly caused by multiple runs of a costly procedure
PAC-Best-Item, which is based on applications of the Chernoff bound.

Next, we compare DKWT, PPRT and PW on the synthetic data considered in [Saha

Table 6.2.: Termination times of DKWT, PPRT and PW and on θ = (1, 0.8, 0.6, 0.4, 0.2);
all observed accuracies are 1.00.

k DKWT PW PPRT

3 44293 (3695.6) 1631668498 (1453661392.0) 2931 (452.1)
4 32427 (2516.2) 263543687 (127401593.7) 3074 (357.3)
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Table 6.3.: Termination times of DKWT, PPRT and PW on θ = (1, 2−1, 2−2, . . . , 2−9);
all observed accuracies are 1.00.

k DKWT PW PPRT

2 8310 (0.0) 2509460 (226634.0) 290 (30.6)
3 4078 (348.9) 46277676 (30635546.4) 229 (38.1)
4 3925 (1014.3) 775101 (108535.7) 336 (47.1)
5 3397 (529.2) 6450264 (1363336.3) 263 (56.0)
6 2213 (465.0) 130069344 (77405795.5) 246 (28.8)
7 2856 (507.4) 253206333 (125199242.0) 222 (23.7)
8 3817 (608.9) 27159632 (12458792.0) 305 (65.1)
9 2855 (680.7) 146229360 (79427860.6) 342 (32.2)

and Gopalan, 2020b], where PW has first been introduced. We restrict ourselves to
θarith,θgeo ∈ [0, 1]16 defined via

θarith1 := 1, ∀i ∈ [15] : θarithi+1 := θarithi − 0.06,

θgeo1 := 1, ∀i ∈ [15] : θgeoi+1 :=
4

5
· θgeoi ,

because the other synthetic datasets considered in Fig. 2 of [Saha and Gopalan, 2020b]
(i.e., g1 and b1) are not in PMm

k (GCW ∧∆0), which is formally required for DKWT.
For θ ∈ {θarith,θgeo} we execute DKWT and PPRT with γ = 0.01 for 1000 repetitions
on feedback generated by P(θ) and report the mean termination time (and standard error
in brackets) as well as the observed accuracy in Table 6.4. A look at Fig. 2 of [Saha and
Gopalan, 2020b] reveals that both DKWT and PPRT outperform PW on both datasets
while still keeping its theoretical guarantees, and PPRT clearly outperforms DKWT.

Table 6.4.: Termination times of DKWT and PPRT on θarith and θgeo; all observed
accuracies are 1.00.

DKWT PPRT

θarith 1277781 (22284.0) 71724 (917.8)
θgeo 55132 (910.5) 4243 (61.7)

6.3.2. DKWT and PPRT versus SELECT, SEEBS and Explore-then-Verify

For k = 2, the GCW identification problem coincides with the CW identification problem
in dueling bandits. Thus, we can compare DKWT and PPRT to state-of-the art solutions
for finding the CW if it exists: SELECT [Mohajer et al., 2017], SEEBS 2 [Ren et al.,
2020] and Explore-then-Verify (EtV) [Karnin, 2016]. Formally, SELECT requires

h ∈ (0, 1) as a parameter as it solves Pm,2,γGCWi(GCW ∧∆h) = Pm,h,γCWi (CW), while DKWT,

SEEBS and EtV solve the more challenging problem Pm,2,γGCWi(GCW ∧∆0) = Pm,0,γCWi (CW).

2We include SEEBS even though it techniqually requires P ∈ PMm
2 = Qm to fulfill SST and STI as

defined in Sec. 1.2 and 2.5.1. In particular, SEEBS is only proven to identify the correct (G)CW with
confidence ≥ 1− γ for any P in a set PMm

2 (GCW ∧∆0 ∧ SST ∧ STI) ⊊ PMm
2 (GCW ∧∆0).
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For this reason, we provide SELECT a priori the value of h, whereas DKWT, SEEBS,
EtV and PPRT do not obtain this information.

Table 6.5 shows the observed termination times (and standard errors thereof in brackets)
of the different algorithms compared on PMm

2 (GCW ∧∆h) obtained for γ = 0.05 and
different choices of m and h, the numbers are averaged over 100 repetitions for m ∈ {5, 10}
and over 10 repetitions for m ∈ {15, 20}. The accuracy of SELECT is 0.97, 0.99, 0.95,
0.98, 0.99 and 0.90 if (m,h) is (5, 0.2), (5, 0.1), (10, 0.2), (10, 0.15), (10, 0.1) and (20, 0.2),
respectively, and all the other observed accuracies in the scenario of Table 6.5 are 1.00.
DKWT clearly outperforms SEEBS and EtV in any case. Again, PPRT achieves an
even better performance than DKWT, and it is for small values of h even better than
SELECT, which is due to its unfair knowledge of h in any other case unsurprisingly
superior to all other procedures. Overall, these results show that DKWT and PPRT are
also well suited for the dueling bandit case.

Table 6.5.: Comparison of DKWT, SELECT, SEEBS and EtV and PPRT.

TA

m h DKWT SELECT SEEBS EtV PPRT

5 0.20 6010 (293.2) 252 (4.2) 7305 (432.1) 8601 (589.2) 449 (26.8)
5 0.15 8874 (460.0) 460 (7.3) 13393 (904.5) 11899 (986.9) 604 (45.6)
5 0.10 15769 (1457.1) 989 (17.0) 19802 (1543.2) 260171 (210678.1) 1003 (83.4)
5 0.05 31454 (4127.4) 3924 (68.6) 36855 (3533.2) 156534 (115903.1) 2080 (195.8)

10 0.20 14334 (492.8) 565 (2.5) 16956 (617.9) 26115 (969.2) 963 (41.7)
10 0.15 18563 (734.5) 1009 (4.2) 27527 (1126.7) 32548 (2514.6) 1433 (74.8)
10 0.10 33040 (1625.1) 2245 (9.7) 47330 (2138.2) 68858 (11304.5) 2290 (124.3)
10 0.05 78660 (6517.2) 8971 (39.2) 83877 (5842.6) 220098 (92484.9) 5442 (472.1)

15 0.20 21932 (1618.1) 803 (13.9) 28605 (2161.5) 54197 (5307.3) 1596 (89.2)
15 0.15 27446 (2500.0) 1436 (12.3) 38084 (4985.3) 78753 (27741.4) 2521 (408.6)
15 0.10 45737 (6709.6) 3248 (20.7) 67383 (8117.1) 116014 (24282.2) 3324 (376.6)
15 0.05 114152 (18704.0) 12993 (82.7) 108738 (19780.4) 2804238 (2560594.1) 11170 (1938.6)

20 0.20 32038 (1209.2) 1154 (8.7) 40910 (2893.1) 78286 (3451.5) 2301 (161.2)
20 0.15 39792 (3923.6) 2080 (12.6) 58793 (4828.0) 122582 (24065.7) 3144 (304.9)
20 0.10 87667 (13380.8) 4616 (32.3) 105249 (13231.8) 631195 (281883.6) 5725 (426.5)
20 0.05 134628 (21743.3) 18375 (138.2) 164439 (30175.4) 2094505 (1694236.4) 13924 (2197.2)

6.3.3. Comparison of DKWT with Alg. 25

Finally, we compare DKWT, PPRT and Alg. 25 by means of their average sample com-
plexity and accuracy when executed on 1000 instances P, which were drawn independently
and uniformly at random from (a) PM5

k (GCW ∧∆h) and (b) PM5
k (hGCW ∧∆0.01). We

choose γ = 0.05, consider h ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and restrict ourselves to k ∈ {2, 3, 4},
because PM5

5 (GCW ∧∆h) = PM5
5 (hGCW ∧∆0.01) holds for any h ≥ 0.01. Similarly as

in our comparison to SELECT, Alg. 25 is revealed the true value of h and started with
this as parameter. The results are collected in (a) Table 6.6 and (b) Table 6.7. In any
of the cases (a) and (b), DKWT apparently outperforms Alg. 25 if h is smaller than
some threshold h0, and the value of h0 appears to be significantly larger for (a) than
for (b). This indicates that Alg. 25 may be preferable over DKWT if h(P) is small and
P ∈ PMm

k (∃h′GCW ∧∆0) holds for some a priori known h′ ∈ (0, 1/2).
Moreover, PPRT clearly outperforms both competitors in (a), and in (b) it is in any

case better than DKWT and also better than Alg. 25 except if h is large.
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Table 6.6.: Termination times of DKWT, Alg. 25 and PPRT on PM5
k (GCW ∧∆h); all

observed accuracies are 1.00.

k h DKWT Alg. 25 PPRT

2 0.9 4155 (0.0) 2664 (0.0) 63 (0.2)
2 0.7 4155 (0.0) 4405 (0.0) 87 (0.6)
2 0.5 4155 (0.0) 8630 (0.0) 135 (1.4)
2 0.3 4195 (12.7) 23970 (0.0) 264 (3.9)
2 0.1 14729 (423.4) 215695 (0.0) 1075 (29.7)

3 0.9 2298 (0.0) 1464 (0.0) 40 (0.2)
3 0.7 2298 (0.0) 2418 (0.0) 61 (0.5)
3 0.5 2298 (0.0) 4737 (0.0) 100 (1.0)
3 0.3 2381 (17.5) 13155 (0.0) 216 (3.2)
3 0.1 14933 (436.1) 118383 (0.0) 1006 (26.5)

4 0.9 1428 (0.0) 1356 (0.0) 28 (0.2)
4 0.7 1428 (0.0) 2238 (0.0) 43 (0.4)
4 0.5 1428 (0.0) 4386 (0.0) 75 (0.8)
4 0.3 1492 (15.0) 12183 (0.0) 163 (2.2)
4 0.1 13449 (306.4) 109626 (0.0) 786 (16.9)

Table 6.7.: Termination times of DKWT, Alg. 25 and PPRT on PM5
k (hGCW ∧∆0.01);

all observed accuracies are 1.00.

k h DKWT Alg. 25 PPRT

2 0.9 53913 (7092.4) 2477 (8.0) 4611 (651.9)
2 0.7 63647 (8322.8) 4124 (13.0) 4388 (682)
2 0.5 54370 (6753.8) 8167 (24.2) 4815 (776)
2 0.3 59488 (7738.0) 23275 (53.4) 5024 (637.4)
2 0.1 60682 (7256.5) 214358 (236.4) 4874 (512.9)

3 0.9 40359 (6188.7) 1464 (0.0) 3296 (522.0)
3 0.7 27069 (3621.2) 2418 (0.0) 3472 (558.3)
3 0.5 37362 (5774.2) 4737 (0.0) 2057 (317.3)
3 0.3 31553 (4551.6) 13155 (0.0) 3107 (440.3)
3 0.1 45929 (5277.3) 118383 (0.0) 2766 (347.0)

4 0.9 24164 (4446.0) 1356 (0.0) 1998 (373.9)
4 0.7 39088 (6293.2) 2238 (0.0) 1986 (359.2)
4 0.5 31835 (5462.0) 4386 (0.0) 2095 (342.4)
4 0.3 31796 (5131.8) 12183 (0.0) 2775 (454.9)
4 0.1 48202 (5765.3) 109626 (0.0) 2708 (391.0)
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6.4. Discussion and Related Work

The multi-dueling bandits (MDB) setting has recently been introduced by Brost et al. [2016]
and is used in several practically relevant applications such as algorithm configuration
[El Mesaoudi-Paul et al., 2020] or online retrieval evaluation [Schuth et al., 2016]. Multiple
works considered this framework under different names, e.g. Saha and Gopalan [2018] as
battling, Agarwal et al. [2020] as choice and [Bengs and Hüllermeier, 2020] as preselection
bandits, and Bengs et al. [2021] termed a generalization thereof as preference-based multi-
armed bandits (PB-MAB).

Whereas for standard MABs, the canonical definition of the “best arm” is the arm with
highest expected reward, the picture is less clear for its variants. A majority of papers on
MDBs assume latent utility values for the arms and the feedback process to be coherent
with a random utility model (RUM) initialized with these values [Ben-Akiva and Bierlaire,
1999]. This assumption quite naturally provides an underlying ordering over the arms –
namely that one given by the utility values – and thus makes it easy to define an objective
such as the best arm or the top-k arms. In such a scenario, the PB-MAB multi-dueling
bandits problem was investigated with respect to various performance metrics such as the
regret [Saha and Gopalan, 2019b, Bengs and Hüllermeier, 2020, Agarwal et al., 2020] or
the sample complexity in an (ϵ, γ)-PAC setting [Saha and Gopalan, 2019c, 2020a,b]. In
contrast to these works, we focused as Agarwal et al. [2020] on a generalized concept of the
Condorcet winner (CW) from dueling bandits, the generalized Condorcet winner (GCW).
If latent utility values for the arms and a RUM for the feedback process are assumed, the
GCW coincides with that arm with highest utility. While in [Agarwal et al., 2020] the
problem for finding this GCW is investigated in a regret minimization scenario, we are
interested in the minimum sample complexity required to identify it with confidence 1− γ.
In light of this, the work by Saha and Gopalan [2020b] is the most related to the setting of
this chapter, although the authors assume a PL model, which is a special case of a RUM.

Apart from that, there are a number of similar problem scenarios, namely the stochastic
click model (SCM) [Zoghi et al., 2017], the dynamic assortment problem (DAS) [Caro
and Gallien, 2007] and the best-of-k-bandits [Simchowitz et al., 2016]. However, all these
scenarios take into account other specific aspects in the modelling such as the order of
the arms in the action subset (SCM), known revenues associated with the arms (DAS)
or a so-called “no-choice option” (all three). Accordingly, these problem scenarios are
fundamentally different from our learning scenario (see also Sec. 6.6 in [Bengs et al., 2021]
for a more detailed discussion). The same is true for combinatorial bandits [Cesa-Bianchi
and Lugosi, 2012], which also allow subsets of arms as actions, but differ fundamentally in
the nature of feedback (quantitative vs. qualitative feedback).

The CW is also a prominent notion in the realm of social choice [Fishburn, 1974, Fishburn
and Gehrlein, 1976], and there have been several generalizations of it in this field. For
example, Saari [1992] introduced a weighted variant, where the weights control the
relevance given to the ranking positions of the alternatives, while Meyers et al. [2014]
defined the k-winner as an alternative that (in some appropriate sense) outperforms all
other arms among any k alternatives. In contrast to our work, these papers focus on
offline learning tasks and suppose full rankings over all alternatives to be given. The
particular notion of the generalized Condorcet winner (GCW), which we introduced in
Sec. 1.2 and that is used throughout this thesis, is basically taken from [Agarwal et al.,
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2020]. Regarding the DB setting as the MDB setting where the allowed multi-duels S are
exactly those with |S| = 2, the GCW is indeed a generalization of the CW.

In this chapter, we solved multiple variants of the GCW identification problem which differ
in the assumptions made on the feedback mechanism. We presented sophisticated instance-
dependent sample complexity upper and lower bounds for several variants and presented
the solution Dvoretzky-Kiefer-Wolfowitz tournament (DKWT) to Pm,k,γGCWi(GCW ∧ ∆0),
which is up to logarithmic factors asymptotically optimal in a worst-case sense w.r.t
PMm

k (GCW ∧∆h)-instances. Its name comes from the fact that a major ingredient of

DKWT is a solution ADie to Pk,h,γDie , whose correctness relies on the Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality. When replacing ADie in the construction of DKWT by an

alternative solution to Pk,h,γDie , e.g. one of those stated in [Shah et al., 2020] or [Jain et al.,

2021], one obtains further solutions to Pm,k,γGCWi(GCW∧∆0). We saw in Sec. 2.3 and Sec. 6.3
that the particular choice ADie = PPR1v1 from [Jain et al., 2021] leads to better empirical
results but comes with the cost of slightly weaker theoretical guarantees (in the form of

larger sample complexity) for Pk,h,γDie and thus also for GCW identification; more precisely,
PPR1v1 comes with an additional factor ln k in its sample complexity bound whereas the
DKW inequality allowed us to formulate a corresponding upper bound without this factor
for Alg. 7, which is used as ADie in DKWT, cf. Prop. 2.40 and Prop. 2.41.

As DKWT solves Pm,k,γGCWi(GCW∧∆0), it also solves the easier problem Pm,k,γGCWi(hGCW∧∆0).
Nevertheless, modifications of DKWT allowed us to formulate yet another solution to
Pm,k,γGCWi(hGCW ∧∆0), for which we have proven a sample complexity upper bound that is
valid in a worst-case sense w.r.t. PMm

k (hGCW ∧∆0); the worst-case upper bound for
DKWT only takes instances P ∈ PMm

k (GCW∧∆h) ⊊ PMm
k (hGCW∧∆0) into account.

To informally summarize our results, one could say that GCW identification with confidence
1− γ whilst assuming GCW ∧∆h or hGCW ∧∆0 requires roughly Θ̃( m

kh2
ln 1

γ ) samples
in a worst-case sense. Interestingly, this problem apparently becomes (in a worst-case
asymptotic sense) to a factor 1

k + h easier when including a Plackett-Luce assumption
on the feedback mechanism. This exact term also appeared in Prop. 2.30 in a different
context, but unfortunately, we were not able to explain this phenomenon. As already
mentioned, almost all of the results presented in this chapter have been published in
[Haddenhorst et al., 2021c] before. In fact, only the lower bound for GCW verification
(Thm. 6.9) and the statement and empirical evaluation of PPRT (Alg. 27) are novel in
this regard.

Ren et al. [2021] have analyzed GCW identification in a related MDB setting, where
they allowed all queries in S ′ := {S ⊆ [m] : 2 ≤ |S| ≤ k}. Under the assumption
that the underlying parameter P = {P(i|S)}S∈S′,i∈S fulfills, for some fixed q ∈ (1/2, 1],
maxi∈S P(i|S) = q for all S ∈ S ′, they showed that identifying the GCW with confidence
1−γ based on winner feedback requires Ω(mk ln 1

γ ) samples and can be done withO(mk ln ln k
γ )

samples. For fixed h ∈ (0, 1), our lower bound from Thm. 6.4 is also of order Ω(mk ln 1
γ )

and thus basically coincides with their result, but our upper bound from Thm. 6.12 is of
order O(mk ln m

k ln 1
γ ) and therefore slightly larger than theirs. This is supposedly due to

the fact that the subtle differences in the learning scenario make the GCW identification
problem easier in their setting than in ours.
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Regarding Sec. 4.5 and Sec. 5.5, one may ask whether one could also reduce GCW
identification to the pure exploration multi-armed bandits (PE-MAB) setting and obtain,
similar as for CW testification and WST testing, a solution based on the general Sticky
Track-and-Stop procedure from [Degenne and Koolen, 2019]. We suppose that this is not
as easily possible as for the DB problems: The natural reduction from MDB to MAB is
supposedly that one which models each query set S ∈ [m]k as an arm with corresponding
reward distribution P(·|S), which is a categorical distribution. As Degenne and Koolen
[2019] restrict themselves to learning problems that can be defined in terms of the means
of these reward distributions whereas the GCW is defined in terms of their modes, their
results do not appear applicable for GCW identification in case k ≥ 3.

To conclude this chapter, let us collect some suggestions how this line of research could
be extended in the future. Similarly as in Ch. 4 and Ch. 5, a presumably natural question
is whether a lower bound of order Ωsup(

m
kh2

(ln ln 1
h) ln

1
γ ) might be shown for the quantity

supP∈PMm
k (GCW∧∆h) E[TA] if A solves Pm,k,γGCWi(GCW ∧∆0). When trying to answer this

question, we faced basically the same obstacles as discussed in Sec. 2.6 and Sec. 5.7.
We have already seen that and to which extend incorporating an additional Plackett-

Luce assumption simplifies the GCW identification problem. In a similar fashion, one could
investigate in which sense the incorporation of alternative assumptions has an influence
on the required sample complexity. For example, one could ask whether assuming a
more general random utility model (RUM) underlying the feedback already makes GCW

identification easier, i.e., does there exist a solution A to Pm,k,γGCWi(GCW ∧∆0 ∧ RUM) for

which supP∈PMm
k (GCW∧∆h∧RUM) EP[T

A] is asymptotically smaller than Θ̃( m
kh2

ln 1
γ )? Saha

and Gopalan [2020a] have considered best-arm identification in MDB in an (ε, γ)-PAC
scenario under such a RUM assumption, which might be a good starting point.

Moreover, the GCW identification problem itself may be modified in several ways. One
could consider as the set S of all queries other choices than [m]k and e.g. allow all query
sets S ⊆ [m] of size 2 ≤ |S| ≤ k; this particular variant has also been considered under
the Plackett-Luce assumption in [Saha and Gopalan, 2019b, Agarwal et al., 2020] for
regret-minimization or in [Saha and Gopalan, 2019c, Ren et al., 2021] in a PAC setting.
Above, we have already defined the problem GCW verification, and – similarly as for

the CW in Ch. 4 – one could also formulate checking- and testification-variants for the
GCW in MDB. Since verifying that i ∈ [m] is the GCW of P formally requires verifying
i = argmaxj∈SP(j|S) for the

(
m−1
k

)
many query sets S ∈ [m]k with i ∈ S, verification

and testification of the GCW appear at first sight not efficiently solvable without further
restrictions on the feedback mechanism.
Last but not least, one could address GCW identification and its counterparts under

alternative restrictions on P that capture dependencies on the parameters P(·|S) across the
query sets S; for example, one might consider in this regard the weak optimal set consistency
from [Yang et al., 2021], that has initially been defined in a regret minimization setting
but is presumably also transferrable to γ-PAC learning, as well as further generalizations
of the general RUM model, which have recently been introduced by Ghoshal and Saha
[2022] and have already been analyzed in an (ε, γ)-PAC best-arm identification scenario.
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7. Conclusion and Outlook

The dueling and multi-dueling variants of multi-armed bandits describe sequential learning
scenarios, which attained increased attention in the recent years, and have possible real-
world applications in the realm of algorithm configuration and online retrieval evaluation.
Prevalent goals in this regard include the identification of a best arm, the top-k arms or
even a ranking over all arms, and these are oftentimes achieved by means of algorithms
that formally require some type of coherence of the underlying feedback mechanism to
be fulfilled. Even though violations of such assumptions would result in the loss of the
theoretical guarantees of the corresponding algorithm, the statistical testing of these
coherences has not gained much attention so far. In this thesis, we discussed testing for
the particular coherences of the existence of a best arm in form of a Condorcet winner
(CW) and also for different types of stochastic transitivity in dueling bandits. Moreover,
we analyzed the best-arm identification problem in multi-dueling bandits under several
assumptions.

The CW is arguably the most intuitive notion of the best arm in dueling bandits, and
many works tackle the CW identification task under the assumption that it exists. We
introduced CW testification as combined testing for and verification of the CW: In case
a CW exists, a solution to this problem shall find and return it, and otherwise it shall
detect non-existence of it. Based on a deterministic sequential testing algorithm for the
analogue deterministic problem, we developed Noisy Tournament Sampling as a solution
with interleaved testing and verification of the CW under mild assumptions. A passive
version thereof can be used to detect on-the-fly violations of the CW-assumption made by
a dueling bandits algorithm, and an appropriate active version was shown to be optimal up
to logarithmic terms in the worst-case sense and outperforms a naive two-stage approach
consisting of a separated testing and verification phase. We provided instance-dependent
sample complexity lower and upper bounds on solutions of CW testification and obtained
via a reduction to pure-exploration multi-armed bandits (PE-MABs) further different
but consistent bounds. In a similar fashion, we also discussed the related problems CW
checking, CW identification and CW verification (the latter one both with and without
assuming the existence of a CW).

Other prominent coherences apparent as modelling assumptions in the realm of dueling
bandits are different types of stochastic transitivity. We showed that, from these, any other
than weak stochastic transitivity (WST) is to some extent impossible to test for. Hence,
we focused on WST and, by making use of insights on acyclicity testing of tournaments,
we presented a sophisticated algorithm, which solves WST testing almost asymptotically
optimal in a worst-case sense. Again, we gave instance-dependent sample complexity
lower and upper bounds, compared our results to those obtainable from the literature
on PE-MABs and also provided a passive testing procedure. Moreover, we approached
WST testing via likelihood ratio test statistics for WST resp. ¬WST. This resulted on
the one hand in suboptimal passive and active solutions to the problem, and on the other
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hand we derived asymptotic bounds on the tails of the LRT statistics that allowed us to
formulate asymptotic size-α tests for WST resp. ¬WST.

Graph-theoretical considerations used for the construction of our dueling bandits algo-
rithms led as by-product to further results on deterministic property testing of tournaments,
which are of interest on their own. For example, we saw that testing acycilicity of a
tournament with an even number of nodes in an online, sequential and deterministic
manner can be done without querying all edges.

In the realm of multi-dueling bandits, we analyzed the problem to identify the generalized
Condorcet winner (GCW) under several assumptions, all of which imply existence of the
GCW. We restricted ourselves to the active scenario and stated instance-wise sample
complexity lower and upper bounds, asymptotically (worst-case) almost optimal solutions
and pointed out to which extent the problem gets easier when incorporating an additional
Plackett-Luce assumption on the feedback. We prepared our analysis with a theoretical
discussion on mode identification for categorical random variables, and some of the therein
stated results may be of interest for themselves.

There are various possible directions for future work. As already mentioned in the discus-
sion sections of the chapters, we formulated several apparently unsolved precise research
questions such as “Which sample complexity is actually required for testing acyclicity
of tournaments?”. There, we also mentioned that some approaches are presumably also
transferrable to other problems but have not been analyzed in full detail so far. This
includes e.g. Sticky Track-and-Stop for CW verification, and testification of the underlying
ranking in DB whilst assuming Q ∈ Q0

m to be WST. Even though testing for the validity
of statistical assumptions on the data generating process (the environment) is important,
since violations of these may easily lead to erroneaous outputs, it has received little
attention in the field of (multi-)dueling bandits so far. In this regard there is much room
for possibly interesting future work: Firstly, there are prominent assumptions such as a
general underlying random utility model (RUM) or the existence of an ε-best arm that
have not been tested in this thesis. Secondly, one could test combinations of different
assumptions X and Y such as X∧Y or X∨Y or “X whilst assuming Y to be true” – with
(X,Y) = (SST,STI), the former variant would e.g. be of particular interest for validating
whether the assumptions of SEEBS, which we compared our solution to in Sec. 6.3,
are fulfilled. Thirdly, our impossibility results on testing for STI, SST, the assumption
Q ∈ Qm(Mal) etc. are mere worst-case statements w.r.t. the low-noise assumption and
they do not show non-testibility per se, but there could still be the possibility to test these
properties in a different manner, e.g. under different assumptions. And finally, the mere
idea of testification could be generalized to “If a problem is solvable, solve it, otherwise
detect non-solvability”. In this way, several other testification problems may be considered
in the dueling bandits scenario, e.g. testification of the top-k arms or testification of
an ε-best arm, and testification might also be considered in the realm of multi-dueling
bandits.

Last but not least, motivated by real-life scenarios, some works in the field of DB assume
that multiple queries can be evaluated in parallel and then aim to minimize not only
the total number of queries but also the number of parallel rounds. However, the notion
of a round is not used consistently in the literature: Lin and Lu [2018] discuss Borda
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winner identification under the assumption that any pairwise distinct queries can be run
in parallel, as it would e.g. be the case in a chess tournament. In contrast, Agarwal et al.
[2022] tackle top-k identification in a scenario, where any arbitrary family of queries can
be evaluated in parallel. It might be interesting to discuss the (M)DB problems treated
in this thesis also under such kinds of parallelization assumptions, and at first sight both
types of parallelization appear plausible and appealing for this purpose.
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002a.
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Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):
1–122, 2012.
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Online rank elicitation for Plackett-Luce: A dueling bandits approach. In Proceedings
of Advances in Neural Information Processing Systems (NIPS), pages 604–612, 2015.

Ambuj Tewari and Susan A. Murphy. From Ads to Interventions: Contextual Bandits in
Mobile Health, pages 495–517. Springer International Publishing, 2017.

William R. Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.
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A. Remaining Proofs for Chapter 2

Lemma 2.3. For every h ∈ (0, 12) we have

supp:|p−1/2|>h
∑

n∈N
P
(
1

n

∑n

k=1
X

(p)
k =

1

2

)
≤ 1

h2
. (2.1)

Proof of Lem. 2.3. Let h ∈ (0, 12) be fixed and p ∈ [0, 12 − h) ∪ (12 + h, 1] be fixed for the
moment. With the help of Hoeffding’s inequality we obtain in the case p ∈ [0, 12 − h) that

P
(
1

n
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k=1
X

(p)
k =

1

2

)
≤ P

(
1

n
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k=1
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(p)
k − p > h

)
≤ P

(∑n

k=1
X

(p)
k − np > nh

)
≤ e−2h2n.

As X
(p)
k is distributed as 1−X(1−p)

k for every k ∈ N, we have in the case p ∈ (12 + h, 1]

P
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1
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1

2

)
= P

(
1

n
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k=1
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(1−p)
k =

1

2

)
≤ e−2h2n.

Consequently, using that 1− e−z ≥ z
2 for every z ∈ (0, 1) we obtain∑

n∈N
P
(
1
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k=1
X

(p)
k =

1

2

)
≤
∑

n∈N

(
e−2h2

)n
=

1

1− e−2h2
≤ 1

h2
.

As this bound does not depend on the explicit value of p, we obtain (2.1).

Lemma 2.4. For κ > 1 and Uκ(n, γ) :=

√
ln(nκ/γ)

2n we have
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n
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k=1
X

(p)
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≤ γ

nκ
,

P
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1
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k − p ≤ −Uκ(n, γ)

)
≤ γ

nκ
.

In particular, if n′ ∈ N is such that
∑

n≥n′
1
nκ ≤ 1, then
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∃n ≥ n′ : 1

n
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≤ γ,

P
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∃n ≥ n′ : 1
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)
≤ γ.

Proof of Lem. 2.4. For any n ∈ N an application of Hoeffding’s inequality yields
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,
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and due to
∑

n≥n′
1
nκ ≤ 1 summation over n shows

P
(
∃n ≥ n′ : 1

n

∑n

k=1
X

(p)
k − p ≥ Uκ(n, γ)

)
≤ γ.

Since X
(1−p)
k is distributed as 1−X(p)

k , the rest follows due to symmetry.

Lemma 2.5. Let ϕ : [0, 1] → [−π
2 ,

π
2 ] be given as ϕ(x) := 2 arcsin(

√
x) − π/2 and

Z
(p)
n := ϕ( 1n

∑n
i=1X

(p)
i ) for any n ∈ N, p ∈ [0, 1]. Then, for fixed c ∈ (0, 12) and every

p ∈ [0, c) ∪ (1− c, 1] we obtain

P
(
Z(p)
n ϕ(p) < 0

)
≤ exp

(
−(1− 2c)2n

4(2− 2c)2

)
. (2.2)

For γ ∈ (0, 1), q := exp
(
− (1−2c)2

4(2−2c)2

)
and ñ := ⌈logq ((1− q)γ)⌉ we thus have

supp∈[0,c)∪(1−c,1] P
(
∃n ≥ ñ : Z(p)

n ϕ(p) < 0
)
≤ γ. (2.3)

Proof of Lem. 2.5. Suppose c ∈ (0, 12) and p ∈ [0, c) ∪ (1− c, 1] to be fixed and note that
we have the equivalence

Z(p)
n = ϕ
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i=1
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)
< 0 ⇔ 1
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2
. (A.1)

Hence, in the case p ∈ (1− c, 1] this equivalence together with ϕ(p) > 0 imply the identity
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. Applying the Chernoff bound shows
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. (A.2)

Let us now consider the case p ∈ [0, c). Taking into account that
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and (A.1) hold, ϕ(p) = −ϕ(1− p) < 0 implies
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.

By means of (A.2) this can be bounded further as
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)
≤ exp
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)
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since 1 − p ∈ (1 − c, 1] is fulfilled. To see (2.3) note that (2.2), the definition of ñ and
q ∈ (0, 1) ensure for every p ∈ [0, c) ∪ (1− c, 1] that

P
(
∃n ≥ ñ : Z(p)

n ϕ(p) < 0
)
≤
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n≥ñ
P
(
Z(p)
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qñ
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≤ qlogq((1−q)γ)

1− q
= γ.

Lemma 2.6. Let ε = ε(γ) ∈ (0, 1) and δ = δ(γ) ∈
(
0, ln(1+ε)e

)
be such that γ =

2+ε
ε

(
δ

ln(1+ε)

)1+ε
holds. Define Uγ(n) := Uε(γ),δ(γ) as

Uγ(n) :=
(
1 +
√
ε
)√1

2
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δ
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.

Then, the centered sequence Y
(p)
k := X

(p)
k − p, k ∈ N, fulfills

P
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Y
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k ≤ Uγ(n)
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≥ 1− γ (2.4)

as well as
P
(
∀n ∈ N :

∣∣∣∑n

k=1
Y

(p)
k

∣∣∣ ≤ Uγ(n)) ≥ 1− 2γ. (2.5)

Proof of Lem. 2.6. According to Hoeffding’s Lemma (cf. Lemma 4.13 in [Mitzenmacher
and Upfal, 2017]), for every k ∈ N, the random variable Yk is centered and sub-Gaussian
with scale parameter σ = 1/2, i.e., E[Yk] = 0 and E[etYk ] ≤ exp

(
t2σ2/2

)
for every t ∈ R

hold. Consequently, Lem. 3 in [Jamieson et al., 2013] implies (2.4). To see (2.5) note that
(2.4) does not only hold for {Yk}k∈N, but, due to symmetry, also for {Y ′

k}k∈N given by
Y ′
k = −Yk, k ∈ N.

Lemma 2.7. Let c ∈ (0, 1/2), γ ∈ (0, 1), γ′ := γ/4 and ε′ ∈ (0, 1), δ′ ∈
(
0, ln(1+ε

′)
e

)
be such that γ′ = 2+ε′

ε′

(
δ′

ln(1+ε′)

)1+ε′
. As in Lem. 2.5 let ϕ : [0, 1] → [−π

2 ,
π
2 ], ϕ(x) :=

2 arcsin(
√
x)− π/2 and Z

(p)
n := ϕ
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1
n
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i

)
for all n ∈ N and p ∈ [0, 1] and let
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ε′)2(1 + ε′). Then, we have
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Proof of Lem. 2.7. Let p ∈ [c, 1− c] be arbitrary but fixed. Defining the event

A :=

{
∀n ≥ ñ :

∣∣∣∣ 1n∑n

k=1
X

(p)
k − p
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2
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we can estimate
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}
∩A

)
+ P(Ac) (A.3)

and it suffices to show that every summand therein is bounded by 2γ′. Due to p ∈ [c, 1− c]
we have 1

n

∑n
k=1X

(p)
k ∈

[
c
2 , 1−

c
2

]
for every n ≥ ñ on the event A, and thus Lipschitz

continuity of ϕ on
[
c
2 , 1−

c
2

]
with Lipschitz constant L and an application of Lem. 2.6

lets us conclude with regard to the definition of l(n) that

P
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Moreover, as Lem. 2.24 yields for every n ≥ ñ

1

n
ln

(
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)
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c2

d′
=

c2
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and thus
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n
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we can estimate with the help of Lem. 2.6 further

P(Ac) = P
(
∃n ≥ ñ :
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X

(p)
k − p
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)

≤ 2γ′. (A.5)

As p ∈ [c, 1− c] was arbitrary, combining (A.3), (A.4) and (A.5) completes the proof.

Lemma 2.8. Let a ≥ 1, m ∈ N and suppose f : N → [1,∞) is monotonically increasing
with f(t) ∈ o( t

lna(t)) as t → ∞. Let {Zt}t∈N be a family of independent random variables

with Zt ∼ Ber( 1
f(t)m), t ∈ N. Then,

1

lna(t)

∑t

t′=1
Zt′ → ∞ a.s. as t → ∞. (2.6)
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Proof of Lem. 2.8. Abbreviate n(t) :=
∑t

t′=1 Zt′ , let C > 8 be arbitrary but fixed and
define for each t ∈ N the event Dt := {n(t) ≤ C lna(t)}. The assumption f(t) ∈ o(t/lna(t))
as t → ∞ ensures the existence of some t1 ∈ N such that 2mCf(t) lna(t) ≤ t holds for
every t ≥ t1. As monotonicity of f allows us to estimate E[n(t)] ≥ t

f(t)m , an application
of the Chernoff bound yields for each t ≥ t1
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.

We obtain
∑

t∈N P(Dt) ≤ t1 +
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1
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and thus the Borel-Cantelli lemma lets us infer
P(lim supt→∞Dt) = 0, i.e.

lim inf
t→∞

n(t)

lna(t)
> C a.s.

As C > 8 was arbitrary, we obtain (2.6).

Lemma 2.9. For fixed c, l > 0 the sequence {at}t∈N given as

at =
1

2t

∑t

r=0

(
t

r

)
P
(
χ2
(r∧c) > l

)
is monotonically increasing.

Proof of Lem. 2.9. Let (Yt)t∈N be a sequence of iid random variables Yt ∼ Ber(12) and
abbreviate Xt := Y1 + · · ·+ Yt. Note that Xt ≤ Xt+1 holds almost surely by construction

and Xt ∼ Bin(t, 12). Therefore, monotonicity of r 7→ P
(
χ2
(r∧c) > l

)
lets us conclude
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Lemma 2.10. Let h ∈ (0, 1/2) be fixed.

(i) Let γ ∈ (0, 1) be arbitrary. Choose T :=
⌈

1
2h2

ln 1
γ

⌉
and define f : {0, 1}T → {0, 1}

via
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{
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1
2 ,
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T
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i=1 xi ≥

1
2 .

The corresponding non-sequential testing algorithm A solves Ph,γCoin and P1/2+h;γ
Coin .

(ii) Let γ ∈ (0, 1/4) and suppose A to be a non-sequential testing algorithm, which solves

Ph,γCoin. Then, we have a.s.

TA ≥ 1

2

⌊
1− 4h2

h2
ln

(
1

8γ(1− 2γ)
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.

In particular, TA ∈ Ω
(

1
h2

ln 1
γ

)
as min{h, γ} → 0.
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Proof of Lem. 2.10. (i) Suppose p ∈ [0, 1] with |p− 1/2| ≥ h to be fixed, let {Xn}n∈N
be an iid sequence of random variables Xn ∼ Ber(p). Due to symmetry we have

Pp (f(X1, . . . , XT ) = 1) = P1−p (f(X1, . . . , XT ) = 0) ,

hence we may suppose w.l.o.g. p ≤ 1
2 − h. Due to Ep[Xn] ≤ 1

2 − h an application of
Hoeffding’s inequality lets us infer

Pp (f(X1, . . . , XT ) = 1) = Pp
(
1

T

∑T

i=1
Xi ≥

1

2

)
≤ Pp

(
1

T

∑T

i=1
Xi −

T (1/2− h)
T

≥ h
)

≤ Pp
(
1

T

∑T

i=1
(Xi − E[Xi]) ≥ h

)
≤ e−2Th2 ≤ γ.

(ii) Confer Lem. 5.1 on p. 59 in [Anthony and Bartlett, 1999].

Proposition 2.12. Let γ ∈
(
0, 1

40e8

)
and h ∈

(
0, 14
)

be fixed. If A solves P1/2+h;γ
Coin resp.

Ph,γCoin, then

maxp∈{1/2±h} Ep
[
TA] ≥ c

h2
ln

1

γ
resp. supp:|p−1/2|>h Ep

[
TA] ≥ c

h2
ln

1

γ
,

where c > 0 is a universal constant, which does not depend on h or γ.

Proof of Prop. 2.12. This follows from the proof of Thm. 13 in [Mannor and Tsitsiklis,

2004]. More precisely, the problem P1/2+h;γ
Coin is the problem of testing (2.7) if p ∈

{12 − h,
1
2 + h} is known beforehand with error ≤ γ, and this corresponds exactly to the

problem Π2 the authors define on p. 642. Reducing this to another problem Π3 allows
them to infer from Thm. 5 in [Mannor and Tsitsiklis, 2004] the lower bound on the
sample complexity of Π2, which is of the form maxp∈{1/2±h} Ep

[
TA] ≥ c

h2
ln 1

γ . If A is

a solution to Ph,γCoin, then it solves P1/2+h+ε;γ
Coin for small ε > 0, which leads to the bound

maxp∈{1/2±(h+ε)} Ep
[
TA] ≥ c

(h+ε)2
ln 1

γ . Taking ε ↘ 0 we see supp:|p−1/2|>h Ep
[
TA] ≥

c
h2

ln 1
γ .

Lemma 2.14. Suppose {X(p)}p∈[0,1] and {U (r)}r∈[0,1] to be families of random variables

X(p) ∼ Ber(p) and U (r) ∼ Ber(r) such that, for any p, r ∈ [0, 1], X(p) and U (r) are
independent.

(i) Y (p,r) := X(p) + 1{X(p)=0}U
(r) fulfills Y (p,r) ∼ Ber(p+ (1− p)r).

(ii) If p0, p1 ∈ [0, 1] with p1 > p0 and p0 + p1 ≥ 1 are fixed, we obtain with the choices

h :=
p1 − p0

2(2− p1 − p0)
and r′ :=

p0 − (1/2− h)
1/2 + h

that Y (1/2−h,r′) ∼ Ber(p0) and Y (1/2+h,r′) ∼ Ber(p1).

248



Proof of Lem. 2.14.

(i) We have Y (p,r) ∈ {0, 1} and

P
(
Y (p,r) = 1

)
= P

(
X(p) = 1

)
+ P

(
X(p) = 0 and U (r) = 1

)
= p+ (1− p)r.

(ii) The choices of p0 and p1 guarantee that h ∈ (0, 1/2) and r′ ∈ [0, 1]. Moreover, a
straight-forward calculation shows that

1/2− h+ (1/2 + h) r′ = p0 and 1/2 + h+ (1/2− h) r′ = p1,

hence the statement follows from (i).

Proposition 2.17. Suppose 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1/2 to be fixed.

(i) The symmetric SPRT A with barrier B :=
⌈

ln((1−γ)/γ)
ln((1/2+h)/(1/2−h))

⌉
solves P1/2+h;γ

Coin and

Ph,γCoin, i.e.,

∀p ≥ 1/2+h : Pp(D(A) = 0) ≥ 1−γ and ∀p ≤ 1/2−h : Pp(D(A) = 1) ≥ 1−γ.

Moreover, the termination time TA of A fulfills

sup
p∈[0,1/2−h]∪[1/2+h,1]

Ep[TA] = E1/2±h[T
A] =

1− 2γ

2h

 ln 1−γ
γ

ln 1/2+h
1/2−h

 , (2.8)

which is in O( 1
h2

ln 1
γ ) as max{ 1h ,

1
γ } → ∞.

(ii) The testing algorithm A from (i) is w.r.t. E1/2+h[T
A] and E1/2−h[T

A] optimal among

all solutions to P1/2+h;γ
Coin . In other words: If A′ is an algorithm, which fulfills

P1/2+h(D(A′) = 0) ≥ 1− γ and P1/2−h(D(A′) = 1) ≥ 1− γ,

then it fulfills

E1/2±h[T
A′
] ≥ E1/2±h[T

A] =
1− 2γ

2h

 ln 1−γ
γ

ln 1/2+h
1/2−h

 ≥ c(h0, γ0)

h2
ln

1

γ

for some appropriate constant c(h0, γ0), which does not depend on γ or h.

Proof of Prop. 2.17. (i) The test A from (i) is the sequential probability ratio test
(SPRT) for the problem at hand and has its origins in [Wald, 1945]. Statement (i)
can be inferred from p.10–15 in [Siegmund, 1985]. More precisely, equation (2.28)
on p.15 in [Siegmund, 1985] shows that

P1−p (STA ≤ −B) = Pp (STA ≥ B) =
(
1 + (1−p)B/pB)

)−1

249



for every p ̸= 1/2. Since B is chosen such that the right-hand side is ≤ γ if p = 1
2−h,

A solves P1/2+h;γ
Coin . As p 7→ 1/(1+ (1− p)B/pB) is monotonically increasing on [12 , 1],

A decides H0 : p > 1
2 versus H1 : p < 1

2 with error probability at most γ also for

every p ∈ [0, 12 − h) ∪ (12 + h, 1], i.e., it solves Ph,γCoin. Moreover, equation (2.29) on
p.15 in [Siegmund, 1985] shows that for each h′ ∈ (0, 12)

E1/2±h′ [T
A] =

1

2h′
B
∣∣∣1− 2

(
1 +

(
(1/2+h′)B/(1/2−h′)B

))−1
∣∣∣ , (A.6)

which is continuous and decreasing in h′ for h′ ∈ (0, 12). Consequently, (2.8) holds
by the choice of B. Using that x

x+1 < ln(1 + x) < x holds for each x > −1 we see
that ln((1/2+h)/(1/2−h)) ∈ Θ(h) as h → 0, and thus the right-hand side of (2.8) is in

O
(

1
h2

ln 1
γ

)
as min{h, γ} → 0.

(ii) For the optimality of A stated in (ii) as a solution for deciding H0 : p >
1
2 versus

H1 : p < 1
2 with error ≤ γ for p ∈ {12 ±h} confer pages 19–22 in [Siegmund, 1985] or

[Ferguson, 1967, Theorem 2, pp. 365] or the original proof from Wald and Wolfowitz
[1948].

In order to conclude the lemma, we need the show a lower bound for the right-hand
side of (2.8) of the form c(h0,γ0)

h2
ln 1

γ for some appropriate constant c(h0, γ0), which

does not depend on γ or h. The function f : (0, 1) → R, γ 7→ ln((1−γ)/γ)·(1−2γ)
ln(1/γ)

fulfills f(1/2) = 0 and

f ′(γ) =
(1− 2γ) ln 1

γ − (γ − 1) ln
(

1
γ − 1

)(
2γ + 2γ ln 1

γ − 1
)

(γ − 1)γ ln2 1
γ

< 0

for every γ ∈ (0, 12). Consequently, there exists some c′(γ0) > 0 with ln((1−γ)/γ)(1−
2γ) ≥ c′(γ0) ln

1
γ for each γ ∈ (0, γ0). Moreover, as ln(1 + x) < x for x > −1, we

obtain for h ∈ (0, h0) the inequality

ln

(
1
2 + h
1
2 − h

)
= ln

(
1 +

4h

1− 2h

)
<

4h

1− 2h
<

4h

1− 2h0
.

Combining these estimates, we obtain with c(h0, γ0) :=
c′(γ0)(1−2h0)

8 that

1− 2γ

2h

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
≥ c(h0, γ0)

h2
ln

1

γ
.

As the SPRT is optimal (w.r.t. expected runtime) this shows, with regard to (2.8),
that any such algorithm A′ as in (ii) fulfills

E1/2±h

[
TA′

]
≥ 1− 2γ

2h

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
≥ c(h0, γ0)

h2
ln

1

γ
.

Lemma 2.18. There does not exist a SPRT that solves PγCoin.
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Proof of Lem. 2.18. Assume that A was a SPRT, which solves PγCoin for some γ < 1,
i.e., there exist some A,B ∈ R with A < B such that A stops as soon as Sn ̸∈ (A,B)
and outputs 0 if Sn ≥ B and 1 if Sn ≤ A. As by assumption on A, for any p ̸= 1/2,
both {D(A) = 0} and {D(A) = 1} have probability greater than zero, A < 0 < B is

fulfilled. Now, choose h ∈ (0, 1/2) such that max{−A,B}+ 1 <
⌈

ln((1−γ)/γ)
ln((1/2+h)/(1/2−h))

⌉
=: C

and denote by Ã the corresponding SPRT from Prop. 2.17, which has boundaries −C
and C and solves P1/2+h;γ

Coin . As A is also a solution to P1/2+h;γ
Coin , Prop. 2.17 shows that

E1/2+h[T
Ã] ≤ E1/2+h[T

A]. But at the same time, −C + 1 < A < B < C − 1 implies

E1/2+h[T
Ã] > E1/2+h[T

A], a contradiction.

Lemma 2.21. If A is a symmetric GSPRT, then

∀1/2 ≤ p1 ≤ p2,∀n ∈ N : Pp1
(
TA ≤ n

)
≤ Pp2

(
TA ≤ n

)
.

In particular, the function [12 , 1] → R ∪ {∞}, h 7→ E 1
2
+h[T

A] is monotonically decreasing.

Proof of Lem. 2.21. Let B : N → [0,∞] be the barrier function for A. Recall that A
observes an iid sequence {X(p)

n }n∈N where X
(p)
n ∼ Ber(p) for some p ∈ [0, 1] and that it

terminates as soon as M
(p)
n := |

∑n
i=1 Z

(p)
i | ≥ B(n) holds, where Z

(p)
i := 2X

(p)
i − 1 for

every i ∈ N. According to [Ross, 1996, pp. 166-167], M
(p)
n is a random walk on N0 with

transition probabilities

P
(
M

(p)
n+1 = i

∣∣∣M (p)
n = j

)
=


1, if j = 0, i = 1,

ai(p), if j > 0, i = j + 1,

1− ai(p), if j > 0, i = j − 1,

0, otherwise,

where ai(p) :=
pi+1+(1−p)i+1

pi+(1−p)i . Writing x := p− 1
2 we see that

ai(p) =
(12 + x)i+1 + (12 − x)

i+1

(12 + x)i + (12 − x)i
=

1

2
+ xbi(x) with bi(x) =

(12 + x)i − (12 − x)
i

(12 + x)i + (12 − x)i
.

Now, d
dxbi(x) =

2i(1/4−x2)
i−1

((1/2−x)i+(1/2+x)i)2
≥ 0 for all x ∈ (0, 1/2) and i ∈ N lets us infer that

x 7→ bi(x) is monotonically increasing on [0, 12 ], i.e., p 7→ ai(p) is monotonically increasing
on [12 , 1].

Moreover, for fixed p ∈ [1/2, 1], we may extend N ∋ i 7→ ai(p) to a differentiable function

(0,∞) → R, i 7→ ai(p) :=
pi+1+(1−p)i+1

pi+(1−p)i . Here, we obtain

d

di
ai(p) = −

(2p− 1)(−(p− 1)p)i(ln(1− p)− ln(p))

(pi + (1− p)i)2
.

As p ∈ [12 , 1] assures 2p − 1 ≥ 0 and −(p − 1)p ≥ 0 as well as ln(1 − p) − ln(p) ≤ 0, we

have d
diai(p) ≥ 0 on (0,∞). In other words, i 7→ ai(p) is monotonically increasing.
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Now, suppose 1
2 ≤ p1 ≤ p2 to be fixed and assume that X

(p1)
n and X

(p2)
n , n ∈ N, are all

defined on a common probability space. Let {Un}n∈N be a family of iid random variables
Un ∼ U([0, 1]). Define for k ∈ {1, 2} the function

fk : N0 × [0, 1] → N0, fk(i, u) :=


i+ 1, if i > 0, u ≤ ai(pk),
i− 1, if i > 0, u > ai(pk),

1, if i = 0.

Then, for k ∈ {1, 2},Mk
0 := 0 andMk

n+1 := fk(M
k
n , Un+1) defines a random walk {Mk

n}n∈N
on N0 with Mk

n ∼M
(pk)
n for all n ∈ N. We will show in the following that

M1
n ≤M2

n almost surely. (A.7)

To see this inductively, note at first that M1
0 = 0 =M2

0 holds, and then suppose (A.7) to
hold for some arbitrary but fixed n ∈ N. In the case M1

n+1 −M1
n = −1 we trivially have

M1
n+1 =M1

n − 1 ≤M2
n − 1 ≤M2

n+1 a.s.

In the other case, i.e., M1
n+1 −M1

n = 1, either (a) M1
n = 0 or (b) Un+1 ≤ aM1

n
(p1) holds.

As Mk
0 = 0 and |Mk

ñ+1 −Mk
ñ | = 1 for all ñ ∈ N hold for k ∈ {1, 2}, M1

n is even iff M2
n is

even. Consequently, in the case (a) either M2
n ≥ 2 or M2

n = 0 is fulfilled, which directly
assures M1

n+1 ≤M2
n+1. If (b) is fulfilled, then the monotonicity properties of ai(p) shown

above reveal Un+1 ≤ aM1
n
(p1) ≤ aM1

n
(p2) ≤ aM2

n
(p2) a.s. Hence, M

2
n+1 −M2

n = 1 and thus
M2
n+1 = 1 +M2

n ≥ 1 +M1
n =M1

n+1 follows in this case.
From (A.7) we infer

min
{
n ∈ N : M1

n ≥ B(n)
}
≥ min

{
n ∈ N : M2

n ≥ B(n)
}

a.s.,

hence the statement follows due to Mk
n ∼M

(pk)
n .

Proposition 2.22. Let γ ∈ (0, 1/2) be fixed. Let S′
n be a symmetric random walk on Z,

i.e. S′
n =

∑n
i=1X

′
i where X ′

i ∼ 1
2(δ1 + δ−1) are iid. For arbitrary c > 3 the number

n0 := min

{
n ∈ N

∣∣P(∃ñ ≥ n+ 1 :
∣∣S′
ñ

∣∣ ≥ ñ√
2
ln2(ñ+ e) + c ln3(ñ+ ee)

)
≤ γ

}
is finite. The corresponding symmetric GSPRT A with the barrier BFarrell

γ : N → [0,∞]
given by

BFarrell
γ (n) :=

{√
n ln2(n+ e) + c ln3(n+ ee)/

√
2, if n ≥ n0 + 1,

n, otherwise

solves PγCoin and fulfills

lim
h→ 0

E1/2±h
[
TA]

1
h2

ln ln 1
h

=
1

2
P1/2(T

A =∞) > 0. (2.9)
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Proof of Prop. 2.22. In the proof of Thm. 1 in [Farrell, 1964] it is shown that A fulfills

Pp(D(A) = 0) ≥ 1− γ and P1−p(D(A) = 1) ≥ 1− γ

for any p > 1/2 and also (2.9); more precisely, the construction of the test can be found
on pp. 68f. For verifying (2.9) note that 1

| ln | ln |h||| =
1

ln ln 1
h

holds for h < 1
e .

To see that A terminates almost surely for any p ̸= 1
2 , we may assume due to symmetry

w.l.o.g. p = 1
2 + h ∈ (12 , 1]. Note that (2.9) guarantees the existence of some h′ ∈ (0, h)

with E1/2+h′ [T
A] = 1

2P1/2(T
A = ∞)

(
1
h′2 ln ln

1
h′

)
< ∞. Therefore, we can infer from

Lem. 2.21 that E1/2+h[T
A] ≤ E1/2+h′ [T

A] < ∞ holds, i.e., in particular TA < ∞ holds
a.s. w.r.t Pp.

Proposition 2.23. (i) For h ∈ (0, 1/2), γ ∈ (0, 1) let ε = ε(γ) ∈ (0, 1) and δ = δ(γ) ∈(
0, ln(1+ε)e

)
be such that γ = 2+ε

ε

(
δ

ln(1+ε)

)1+ε
. Then, the symmetric GSPRT with

barrier BLiL
h,γ defined via

BLiL
h,γ (n) := max

{
0, (1 +

√
ε)

√
1

2n
(1 + ε) ln

(
ln((1 + ε)n)

δ

)
− h

}
. (2.10)

solves Ph,γCoin. Moreover, n 7→ BLiL
h,γ (n) is monotonically decreasing.

(ii) Let γ0, ε0 ∈ (0, 1) be such that ( ε0
2+ε0

)
1

1+ε0 < 1
e holds1. With ε(γ) := ε0 and δ(γ) :=

( γε0
2+ε0

)
1

1+ε0 ln(1 + ε0) ∈
(
0, ln(1+ε0)e

)
we have γ = 2+ε(γ)

ε(γ)

(
δ(γ)

ln(1+ε(γ))

)1+ε(γ)
and the

symmetric GSPRT A from (i) started with h and γ fulfills

infp∈[0,1/2−h)∪(1/2+h,1] Pp
(
TA ≤ N0(h, γ)

)
= 1,

where

N0(h, γ) :=
d0
h2

ln

(
1

δ(γ)
ln

(1 + ε0)d0
h2δ(γ)

)
+ 2 ∈ O

(
1

h2

(
ln ln

1

h

)
ln

1

γ

)
with d0 :=

1
2(1 +

√
ε0)

2(1 + ε0).

Proof of Prop. 2.23. As N 7→ ln ln(cN)/N is monotonically decreasing for every c > 0,
Bh,γ(N) := BLiL

h,γ (N) is in fact monotonically decreasing. For the sake of convenience,

suppose p ∈ [0, 12 − h) ∪ (12 + h, 1], h ∈ (0, 12) and γ ∈ (0, 1) to be fixed for the moment.
Recall that the termination time TA of the symmetric GSPRT A with barrier Bh,γ is
given by

TA = min

{
N ∈ N

∣∣∣ 1
N

∑N

n=1
X(p)
n ̸∈

[
1

2
−Bh,γ(N),

1

2
+Bh,γ(N)

]}
,

where {X(p)
t }t∈N is an iid family of random variables X

(p)
t ∼ Ber(p), and that A decides

at termination for “p > 1
2” if 1

TA
∑

t≤TA X
(p)
t > 1

2 +Bh,γ(T
A) and for “p < 1

2” otherwise.
We split the proof into two parts.

1E.g., ε0 = 1/2 works here.
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Part 1: A fulfills its error guarantees.

We start with the case p > 1
2 + h. As 1−X(1−p)

n ∼ Ber(p) ∼ X(p)
n holds for every n ∈ N,

the inequality h+Bh,γ(N) ≥ 1
NUγ(N) and Lem. 2.6 yield

P
(

1

TA

∑TA

n=1
X(p)
n <

1

2
−Bh,γ(TA)

)
≤ P

(
∃N ∈ N :

1

N

∑N

n=1
X(p)
n <

1

2
−Bh,γ(N)

)
= P

(
∃N ∈ N :

1

N

∑N

n=1

(
1−X(1−p)

n

)
<

1

2
−Bh,γ(N)

)
= P

(
∃N ∈ N :

1

N

∑N

n=1

(
X(1−p)
n − (1− p)

)
> p− 1

2
+Bh,γ(N)

)
≤ P

(
∃N ∈ N :

1

N

∑N

n=1

(
X(1−p)
n − (1− p)

)
> h+Bh,γ(N)

)
≤ P

(
∃N ∈ N :

1

N

∑N

n=1

(
X(1−p)
n − (1− p)

)
>

1

N
Uγ(N)

)
= 1− P

(
∀N ∈ N :

∑N

n=1

(
X(1−p)
n − (1− p)

)
≤ Uγ(N)

)
≤ 1− (1− γ) = γ.

In the other case p < 1
2 − h we have 1− p > 1

2 + h and thus we can infer

P
(

1

TA

∑TA

n=1
X(p)
n >

1

2
+Bh,γ(T

A)

)
= P

(
− 1

TA

∑TA

n=1
X(1−p)
n > −1

2
+Bh,γ(T

A)

)
= P

(
1

TA

∑TA

n=1
X(1−p)
n <

1

2
−Bh,γ(TA)

)
≤ γ.

Part 2: Bounding TA.

With d := (1+
√
ε)2(1+ε)
2 and

N0 :=
d

h2
ln

(
1

δ
ln

(1 + ε)d

h2δ

)
(A.8)

Lem. 2.24 implies that for every N > N0

1

N
ln

(
ln((1 + ε)N)

δ

)
<
h2

d
=

2h2

(1 +
√
ε)2(1 + ε)

and thus

Uγ(N)

N
= (1 +

√
ε)

√
1+ε
2 ln (ln((1+ε)N)/δ)

N
< h

is fulfilled, with Uγ(N) as in Lem. 2.6. In particular, Bh,γ(N) = 0 holds for every N > N0.

On the event {TA > N0 + 2} we have | 1
N0+2

∑N0+2
n=1 X

(p)
n − 1

2 | ≤ Bh,γ(N0 + 2) = 0 and

| 1
N0+1

∑N0+1
n=1 X

(p)
n − 1

2 | ≤ Bh,γ(N0 + 1) = 0. But this implies 2
∑N0+2

i=1 X
(p)
n = N0 + 2 as

well as 2
∑N0+1

i=1 X
(p)
n = N0 + 1, i.e., N0 would have to be odd and even at the same time.

This is not possible, hence TA ≤ N0 + 2 holds with probability 1.
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Now, suppose ε0 ∈ (0, 1) to be such that ( ε0
2+ε0

)
1

1+ε0 < 1
e holds and let ε(γ) = ε0

for all γ ∈ (0, 1). Then, δ(γ) := ( γε0
2+ε0

)
1

1+ε0 ln(1 + ε0) ∈
(
0, ln(1+ε0)e

)
fulfills γ =

2+ε(γ)
ε(γ)

( δ(γ)
ln(1+ε(γ)

)1+ε(γ)
for each γ ∈ (0, 1). With the argumentation from above we obtain

for every h ∈ (0, 12), γ ∈ (0, γ0) and p ∈ [0, 12−h)∪(
1
2+h, 1] that A started with parameters

h and γ fulfills

TA ≤ d0
h2

ln

(
1

δ(γ)
ln

(1 + ε0)d0
h2δ(γ)

)
+ 2 =: N0(h, γ) a.s. w.r.t. Pp,

where d0 :=
(1+

√
ε0)2(1+ε0)
2 . Due to δ(γ) ∈ O(γ1/(1+ε0)) we have

N0(h, γ) ∈ O
(

1

h2

(
ln ln

1

h

)
ln

1

γ

)
as max

{
1

h
,
1

γ

}
→ ∞. (A.9)

Corollary 2.25. For fixed γ ∈ (0, 1), h ∈ (0, 1/2) let ε and δ be as in Prop. 2.23 and
define B : N → [0,∞] via

B(n) :=

{
BLIL
h,γ (n), if n ≤ 1

2h2
ln 1

γ

0, otherwise.

with BLIL
h,γ as in Prop. 2.23. Then, the symmetric GSPRT A with barrier B solves Ph,3γCoin

and fulfills Pp

(
TA ≤ 1

2h2
ln 1

γ + 2
)
= 1 for any p ∈ [0, 1].

Proof of Cor. 2.25. As in the proof of Prop. 2.23 we see that TA ≤ 1
2h2

ln 1
γ + 2 has

probability one for every p ∈ [0, 1]. As A is symmetric, for proving that it solves Ph,γCoin we
only have to consider the case p < 1/2− h. The probability that A makes an error in this
case is given by

Pp(D(A) = 1)

= Pp
({

D(A) = 1 and TA ≤ 1

2h2
ln

1

γ

}
∪
{
D(A) = 1 and TA >

1

2h2
ln

1

γ

})
≤ Pp

(
D(A) = 1 and TA ≤ 1

2h2
ln

1

γ

)
+ Pp

(
D(A) = 1 and TA >

1

2h2
ln

1

γ

)
Until time ⌈ 1

2h2
ln 1

γ ⌉, A coincides with the solution Ã (with barrier BLIL
h,γ ) from Prop. 2.23

and thus correctness of the latter yields

Pp
(
D(A) = 1 and TA ≤ 1

2h2
ln

1

γ

)
= Pp

(
D(Ã) = 1 and TA ≤ 1

2h2
ln

1

γ

)
≤ Pp

(
D(Ã) = 1

)
≤ γ.

As we have already seen TA ≤ 1
2h2

ln 1
γ +2 a.s., TA > 1

2h2
ln 1

γ is with probability one only

possible when TA ∈ {T + 1, T + 2} where T := ⌈ 1
2h2

ln 1
γ ⌉. A look at its proof shows that
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Lem. 2.10(i) also holds for T + 1 and T + 2 instead of T , hence we obtain

Pp
(
D(A) = 1 and TA >

1

2h2
ln

1

γ

)
≤ Pp

(
D(A) = 1 and TA = T + 1

)
+ Pp

(
D(A) = 1 and TA = T + 2

)
≤ Pp

(
1

T + 1

∑T+1

t=1
Xt ≥ 1/2

)
+ Pp

(
1

T + 2

∑T+2

t=1
Xt ≥ 1/2

)
≤ γ + γ = 2γ

Consequently, A solves Ph,3γCoin.

Proposition 2.26. Let ε ∈ (0, 1) be fixed, define cε :=
2+ε
ε

(
1

ln(1+ε)

)1+ε
. Let γ ∈ (0, 1)

be such that δ := γ
8cε
∈
(
0, ln(1+ε)ecε

)
holds and choose β ∈ (0, 3] arbitrarily. Then, there

exists a constant λ > 0 with the following property: Denote by A Alg. 1 with sample access
to {Xn}n∈N, where the black-box component AMAB is lil’UCB instantiated with m = 2,
δ, ε, λ and β. Then, A solves PγCoin and fulfills

supp:|p−1/2|>h Pp
(
TA ≤ C(h, γ)

)
≥ 1− γ (2.11)

where C(h, γ) ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
as min{h, γ} → 0. Moreover, for any t′ ∈ N and

p ∈ [0, 1] we have Pp(TA > t′) > 0.

Proof of Prop. 2.26. To see indirectly that A terminates almost surely for p ̸= 1/2, assume
A does not terminate, i.e., AMAB does not terminate. According to Line 1 in Alg. 2 this
means n[1](t) → ∞ and n[2](t) → ∞ as t → ∞. But the law of large numbers ensures
that

1

n[i](t)

∑n[i](t)

n′=1
Z

[i]
n′ + (1 + β)(1 +

√
ε)

√
(1 + ε) ln

(
ln((1+ε)n[i](t))/δ

)
2n[i](t)

−→ p[i] a.s.

as n[i](t) → ∞. Therefore, p[1] = p ̸= 1/2 = p[2] and Line 2 let us infer that with
probability 1 the best arm is pulled infinitely often, whereas the other suboptimal one is
only pulled finitely often. According to Line 1 in Alg. 2 this is not possible. Consequently,
A terminates a.s.
According to Thm. 2 in [Jamieson et al., 2013], with probability≥ 1−4

√
cεδ−4cεδ ≥ 1−γ,

AMAB correctly identifies the best of the arms a[1], a[2] from Alg. 1 and stops after observing
at most c1

h2
ln 1

δ+
c3
h2

max
{
0, ln ln 1

h2

}
samples from both arms, where c1, c3 > 0 are constant

and only depend on ε and β. As TA corresponds to the number of times arm a[1] has
been pulled, we infer (2.11). As the output of A is correct iff AMAB outputs the index of
the best arm, A solves PγCoin.

Finally, suppose λ > 1 and let t′ ∈ N and p ∈ [0, 1] be arbitrary but fixed. Writing
i⊥ := 3− i, i.e., 1⊥ = 2 and 2⊥ = 1, we have

Pp
(
TA ≥ t′

)
= Pp

(
∀t̃ ≤ t′ ∀i ∈ {1, 2} : n[i](t̃) < 1 + λn[i

⊥](t̃)
)

≥ Pp
(
∀t̃ ≤ t′ ∀i ∈ {1, 2} : n[i](t̃) < 1 + n[i

⊥](t̃)
)

= P
(
∀t̃ ≤ t′ : |n[1](t̃)− n[2](t̃)| ≤ 1

)
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Since Z
[2]
n ∼ Ber(12) implies P(∀n ∈ [N ] : Z

[2]
n = zn) > 0 for every (z1, . . . , zN ) ∈ {0, 1}N

and every N ∈ N, this latter probability is positive and we conclude Pp
(
TA ≥ t′

)
> 0.

Proposition 2.27. Let γ ∈ (0, 1) be arbitrary. Write A for Alg. 1 with sample access to
{Xn}n∈N with AMAB chosen to be Alg. 3 called with γ. Then, A solves PγCoin and fulfills

supp:|p−1/2|>h Pp
(
TA ≤ C(h, γ)

)
≥ 1− γ, (2.12)

where C(h, γ) ∈ O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
as min{h, γ} → 0. Moreover, for any t′ ∈ N and

any p ∈ [0, 1] we have Pp(TA > t′) > 0.

Proof of Prop. 2.27. For p ̸= 1
2 , the law of large numbers assures that the average reward

over n pulls of a[k] converges to p[k] as n → ∞, for k ∈ {1, 2}, respectively. Together with
p[1] = p ̸= 1

2 = p[2] this shows that both the inner and the outer while loops in Alg. 3 are
left with probability 1, i.e., A terminates a.s. for any p ̸= 1

2 .
According to Thm. 3.1 in [Karnin et al., 2013], AMAB outputs with probability ≥ 1− γ

the index of the best arm with at most O
(

1
h2

(
ln ln 1

h

)
ln 1

γ

)
pulls of arms. Consequently,

A solves PγCoin and fulfills (2.12).
Now, let t′ ∈ N be arbitrary. At termination, both arms a[1] and a[2] have been pulled

exactly the same number of times. With regard to Line 10 of Alg. 3 we thus get

Pp(TA > t′) ≥ Pp(∀t̃ ≤ 2t′ : Z
[1]
t = Z

[2]
t ) > 0,

for every p ≠ 1
2 , where the last inequality follows since p[2] = 1

2 assures P((Z [2]
1 , . . . , Z

[2]
2t′) =

(z1, . . . , z2t′)) > 0 for every (z1, . . . , z2t′) ∈ {0, 1}2t
′
.

Lemma 2.31. Let k ∈ N and (p1, . . . , pk) ∈ ∆k be fixed. Suppose {Xt}t∈N to be an iid
family of random variables Xt ∼ Cat(p1, . . . , pk) on some joint probability space (Ω,F ,P)
and {Ft}t∈N ⊆ F to be a filtration, such that {Xt}t is {Ft}t-adapted and ∀t : Xt⊥⊥Ft−1,
e.g. Ft = σ(X1, . . . , Xt). If τ is an {Ft}t-stopping time, then the random variables

Ti(τ) :=
∑

t≤τ
1{Xt=i}, i ∈ [k],

fulfill E[Ti(τ)] = piE[τ ] for each i ∈ [k]. In particular, we obtain

E[τ ] =
∑

i∈I E[Ti(τ)]∑
i∈I pi

for any I ⊆ [k] with
∑

i∈I pi > 0.

Proof of Lem. 2.31. Since {t ≤ τ} = {t > τ}c = {τ ≤ t− 1}c ∈ Ft−1 holds for any t ∈ N
and Xt⊥⊥Ft−1, we obtain

E
[
1{Xt=i}1{t≤τ}

]
= E

[
E
[
1{Xt=i}1{t≤τ}

∣∣Ft−1

]]
= E[1{t≤τ}E[1{Xt=i}|Ft−1]] = piE[1{t≤τ}].

Via an application of the monotone convergence theorem we infer

E [Ti(τ)] = limT →∞ E[Ti(τ ∧ T )] = limT →∞
∑

t≤T
E
[
1{Xt=i}1{t≤τ}

]
= pi limT →∞

∑
t≤T

E
[
1{t≤τ}

]
= pi limT →∞ E[τ ∧ T ] = piE[τ ].

and thus in particular
∑

i∈I E[Ti(τ)] = E[τ ]
∑

i∈I pi.
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Lemma 2.32. Suppose p ∈ ∆h
k \∆h̃

k for some 0 < h < h̃ < 1 and let i := mode(p) and

j ∈ argmaxl∈[k]\{i}pl. Then, we have pi + pj ≥ 2+(k−2)h
k and pi − pj < h̃.

Proof of Lem. 2.32. From p ∈ ∆h
k and mode(p) = i we infer that pl ≤ pi − h holds for

each l ∈ [k] \ {i}. Thus,

1 =
∑

l∈[k]
pl ≤ pi +

∑
l ̸=i

(pi − h) = kpi − (k − 1)h

shows us that pi =
1+(k−1)h

k + ε for some ε ≥ 0. Due to
∑

l ̸=i pl = 1 − pi and pj =
maxl∈[k]\{i} pl, we have

pj ≥
1− pi
k − 1

=
1− 1+(k−1)h

k − ε
k − 1

=
1− h
k
− ε

k − 1
.

Consequently,

pi + pj ≥
1 + (k − 1)h

k
+ ε+

1− h
k
− ε

k − 1

=
2 + (k − 2)h

k
+

(k − 2)ε

k − 1

≥ 2 + (k − 2)h

k
.

Moreover, p ̸∈ ∆h̃
k assures the existence of some j′ ∈ [k] \ {i} with pi < pj′ + h̃. Since the

choice of j guarantees pj′ + h̃ ≤ pj + h̃, this implies pi − pj < h̃.

Lemma 2.34 (Dvoretzky-Kiefer-Wolfowitz inequality for categorical random variables).
Suppose X1, X2, . . . to be iid random variables Xn ∼ Cat(p) for some p ∈ ∆k. For t ∈ N
let p̂t be the corresponding empirical distribution after the t observations X1, . . . , Xt, i.e.,
p̂ti =

1
t

∑t
s=1 1{Xs=i} for all i ∈ [k]. Then, we have for any ε > 0 and t ∈ N the estimate

P
(∣∣∣∣p̂t − p

∣∣∣∣
∞ > ε

)
≤ 4e−tε

2/2.

Proof of Lem. 2.34. Confer [Dvoretzky et al., 1956, Massart, 1990] as well as Thm. 11.6
in [Kosorok, 2008]. Moreover, note that the cumulative distribution functions2 F resp. F̂ t

of X1 ∼ Cat(p) resp. p̂t fulfill pj = F (j)− F (j − 1) and p̂tj = F̂ t(j)− F̂ t(j − 1) and thus

|p̂tj − pj | ≤ |F̂ t(j)− F (j)|+ |F̂ t(j − 1)− F (j − 1)|.

for each j ∈ [k].

Lemma 2.35. For h ∈ [0, 1], ε ∈ (−h, 1],p ∈ ∆h
k and p̃ ∈ ∆k we have

(∃i : p̃i −maxj ̸=i p̃j ≥ ε and pi ̸= maxj pj) ⇒ ||p̃− p||∞ ≥
h+ ε

2
.

2Recall that the cumulative distribution function of a real-valued random variable X is defined as
F (x) = P(X ≤ x) for x ∈ R.
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Proof of Lem. 2.35. Suppose there is some i ∈ [k] s.t. p̃i−maxj ̸=i p̃j ≥ ε and pi ̸= maxj pj
hold. Then, there exists some j ∈ [k] \ {i} with

pj ≥ pi + h and p̃i ≥ p̃j + ε

and we conclude

2 ||p̃− p||∞ ≥ |pj − p̃j |+ |p̃i − pi| ≥ (pj − pi) + (p̃i − p̃j) ≥ h+ ε.

Lemma 2.38. Let h > 0, p ∈ ∆3h
k and p̃ ∈ ∆k be fixed. Then,

∀i : p̃i ≤ maxj ̸=i p̃j + h ⇒ ||p− p̃||∞ ≥ h.

Proof of Lem. 2.38. To prove the contraposition, we suppose ||p− p̃||∞ < h to be fulfilled.
Let i := mode(p) ∈ [k] and fix some arbitrary j ∈ [k] \ {i}. Since p ∈ ∆3h

k assures
pi ≥ pj + 3h, we obtain

p̃i − p̃j = pi + (p̃i − pi) + (pj − p̃j)− pj ≥ pi − pj − 2 ||p− p̃||∞
> pi − pj − 2h ≥ h.

As j was arbitrary, we conclude that p̃i > maxj ̸=i p̃j + h, which completes the proof.

Lemma 2.39. For any h ∈ (0, 18), ε ∈ (0, 13) and k ∈ N≥3 there exist p ∈ ∆
(3−ε)h
k and

p̃ ∈ ∆k such that

∀i ∈ [k] : p̃i ≤ maxj ̸=i p̃j + h and ||p− p̃||∞ < h.

Proof of Lem. 2.39. Suppose h ∈ (0, 18), ε ∈ (0, 13) and k ∈ N≥3 to be fixed. Now, define
p ∈ ∆k and p̃ ∈ ∆k via

pj :=


1
2 + h, if j = 1,
1
2 − (2− ε)h, if j = 2,
(1−ε)h
k−2 , if j ≥ 3,

and

p̃j :=


p1 − (1− ε

4)h = 1
2 + εh

4 , if j = 1,

p2 + (1− ε
4)h = 1

2 + (3ε4 − 1)h, if j = 2,
(1−ε)h
k−2 , if j ≥ 3.

From h < 1
8 we infer 1

2 − (2− ε)h > 1
2 − 2h > 1

4 and thus

∀j ≥ 3 :
(k − 2)pj

p2
=

(1− ε)h
1
2 − (2− ε)h

< 4(1− ε)h < 4h <
1

2
< k − 2.

This shows p1 − (3− ε)h = p2 > maxj≥3 pj and consequently p ∈ ∆
(3−ε)h
k . Since p̃j = pj

is fulfilled for each j ≥ 3, we have p̃1 > p̃2 > p2 > maxj≥3 p̃j , and together with

p̃1 − p̃2 =
εh

4
− 3εh

4
+ h =

(
1− ε

2

)
h < h

we see that p̃i ≤ maxj ̸=i p̃j + h holds for each i ∈ [k]. Finally ||p− p̃||∞ < h follows from
|p1 − p̃1| = (1− ε

4)h = |p2 − p̃2| as well as pj = p̃j for all j ≥ 3.
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Lemma 2.46. For any h ∈ (0, 1) and m, k ∈ N with k ≤ m we have PMm
k (PL∧hGCW) ⊇

PMm
k (PL ∧∆h) ̸= ∅.

Proof of Lem. 2.46. Note that PMm
k (PL ∧ hGCW) ⊇ PMm

k (PL ∧∆h) is a direct conse-
quence from the definitions. To see PMm

k (PL ∧∆h) ̸= ∅ we fix x > 1 with h+ h
x ≤ 1 and

define θ ∈ (0, 1]m via θj :=
hj

(kx)j
for any j ∈ [m]. Then,

h(θi + · · ·+ θi+k−1) + θi+1 − θi

=
hi+1

(kx)i
+

(
hi+2

(kx)i+1
+ · · ·+ hi+k

(kx)i+k−1
+

hi+1

(kx)i+1

)
− hi

(kx)i

≤ hi+1

(kx)i
+

khi+1

(kx)i+1
− hi

(kx)i
=

hi

(kx)i

(
h+

h

x
− 1

)
≤ 0

holds for any i ∈ [m− k] and thus P(θ) ∈ PMm
k (PL ∧∆h) follows from Lem. 2.45.
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B. Remaining Proofs for Chapter 3

Lemma 3.2. Some G ∈ Gm is acyclic iff it does not contain a 3-cycle.

Proof of Lem. 3.2. If G is acyclic then it clearly does not contain a 3-cycle. Therefore,
we might suppose that G contains a cycle. Then

k∗ := min{k ∈ N |G contains a k-cycle}

exists and there is a cycle (i1, . . . , ik∗) in G. To show k∗ ≤ 3 indirectly, let us assume that
k∗ ≥ 4 holds. Since G is complete, either i1 → i3 or i3 → i1 in G. In the first case, we
would have the (k∗ − 1)-cycle (i1, i3, i4, . . . , ik∗), and in the second one, we would have
the 3-cycle (i1, i2, i3), which is in both cases a contradiction to the minimality of k∗.  
Hence, k∗ = 3 holds, which completes the proof.

Lemma 3.3. For any Q ∈ Q0
m there exists a permutation σ on [m] s.t. qσ(i),σ(i+1) >

1
2

for every i ∈ [m− 1].

Proof of Lem. 3.3. By replacing qi,j with 1 if qi,j > 1/2 and with 0 if qi,j < 1/2, we may
assume w.l.o.g. Q ∈ Rm. The Theorem of Rédei (cf. e.g. [Sachs, 1971]) assures that
Φm(Q) contains a Hamiltonian path, i.e., there exists a permutation σ on [m] such that
(σ(i), σ(i+1)) ∈ EG for every i ∈ [m− 1]. Regarding the definition of Φm, this proves the
statement.

Lemma 3.6. Let X,X1,X2 and Y be possible properties of tournaments on [m]. Then,
we have:

(i) If G ∈ Gm fulfills G ∈ Gm(Y) and has a subgraph G̃ ∈ Gm(X |Y), then G ∈ Gm(X).

(ii) Gm(X |Y) ∩ Gm = Gm(X ∧Y).

(iii) Gm(X1 |Y) ⊆ Gm(X2 |Y) iff Gm(X1 ∧Y) ⊆ Gm(X2 ∧Y).

(iv) If G ∈ Gm(X |Y) and G′ ∈ Gm(Y) with EG ⊆ EG′, then G′ ∈ Gm(X |Y).

(v) Gm(X |Y) ⊆ Gm \ Gm(¬Y) with equality iff Gm(X) = Gm(Y).

(vi) Gm(X1 ∧X2 |Y) = Gm(X1 |Y) ∩ Gm(X2 |Y).

(vii) Gm(X1 ∨X2 |Y) ⊇ Gm(X1 |Y) ∪ Gm(X2 |Y).

(viii) If Gm(X1) ∩ Gm(X2) = ∅, then Gm(X1 |Y) ∩ Gm(X2 |Y) = ∅.

(ix) If Gm(Y) ⊆ Gm(X), then Gm(X |Y) = {G ∈ Gm | ∃Y-extension of G}.

Proof of Lem. 3.6. (i) Any Y-extension of a subgraph G̃ ∈ Gm of G ∈ Gm is also a
Y-extension of G.
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(ii) The only extension of G ∈ Gm is itself.

(iii) The first implication “⇒ ” follows from (ii). To show the other one, suppose
Gm(X1 |Y) ⊆ Gm(X2 |Y). For G ∈ Gm(X1 |Y), any Y-extension is an element of
Gm(X1 ∧Y) ⊆ Gm(X2 ∧Y), hence G ∈ Gm(X2 |Y).

(iv) Any Y-extension of G is also a Y-extension of any of its supergraphs.

(v) If G ∈ Gm(¬Y), (iv) assures that each extension of it is in Gm(¬Y) ∩ Gm = Gm(¬Y).
In other words, G has no Y-extension and thus G ̸∈ Gm(X |Y).
To show the first part of the equivalence indirectly, suppose (possibly after replacing
X with X∧Y) w.l.o.g. that some G ∈ Gm(Y) \ Gm(X) exists. Then, G ∈ Gm(¬Y) ⊆
Gm(¬Y) holds and at the same time (ii) shows G ∈ Gm(X |Y).
For seeing the second part of the equivalence let Gm(X) = Gm(Y) and fix G ∈
Gm \ Gm(¬Y). Then, there exists a Y-extension of G and by assumption this has
the property X = Y. Consequently, G ∈ Gm(X |Y).

(vi) For G ∈ Gm we have the equivalences

G ∈ Gm(X1 ∧X2 |Y) ⇔ G has a Y-extension and every Y-extension of G is in

Gm(X1 ∧X2) = Gm(X1) ∩ Gm(X2)

⇔ G ∈ Gm(X1 |Y) ∧ Gm(X2 |Y).

(vii) Suppose G ∈ Gm(X1 |Y) ∪ Gm(X2 |Y), and assume w.l.o.g. G ∈ Gm(X1 |Y). Any
Y-extension of G is an element of Gm(X1 ∧ Y) ⊆ Gm((X1 ∨ X2) ∧ Y), hence G ∈
Gm(X1 ∨X2 |Y) follows.

(viii) Let G ∈ Gm(X1 |Y). Any Y-extension G′ of G is in Gm(X1) and thus not in Gm(X2).
Therefore, G ̸∈ Gm(X2 |Y).

(ix) By definition, any G ∈ Gm(X |Y) requires the existence of a Y-extension of G.
On the other side, if some G ∈ Gm with a Y-extension is fixed, then each of its
Y-extensions is an element of Gm(Y) ⊆ Gm(X), which implies G ∈ Gm(X |Y).

Lemma 3.24. Let m ≥ 3 and S ⊆ [m].

(a) If |S| > m− ⌊m3 ⌋, there exists i ∈ [m− 2] with i, i+ 1, i+ 2 ∈ S.

(b) If |S| > m− ⌊m+2
3 ⌋, then {1, 2} ⊆ S or {m− 1,m} ⊆ S or there exists i ∈ [m− 2]

with i, i+ 1, i+ 2 ∈ S.

Proof of Lem. 3.24. (a) If |S| > m− ⌊m3 ⌋, the set Sc = [m] \ S has < ⌊m3 ⌋ elements. In
particular, at least one of the ⌊m3 ⌋ disjoint sets

Al := Sc ∩ {3l + 1, 3l + 2, 3l + 3}, 0 ≤ l ≤
⌊m
3

⌋
− 1,

is empty. With l′ ∈ {0, . . . ⌊m3 ⌋ − 1} such that Al′ = ∅ we can thus conclude
{3l′ + 1, 3l′ + 2, 3l′ + 3} ⊆ S.
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(b) As m = 3 and m = 4 are trivial, suppose w.l.o.g. m ≥ 5 and let S ⊆ [m] with
|S| > m− ⌊m+2

3 ⌋, {1, 2} ̸⊆ S and {m− 1,m} ̸⊆ S. Then, S′ := S \ {1, 2,m− 1,m}
fulfills

|S′| ≥ |S| − 2 > (m− 2)−
⌊
m+ 2

3

⌋
= (m− 4)−

⌊
m− 4

3

⌋
.

By replacing [m] with [m] \ {1, 2,m− 1,m}, (a) lets us conclude that some 3 ≤ i ≤
m− 3 exists with i, i+ 1, i+ 2 ∈ S′ ⊊ S.
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