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Abstract

LEARNING CONTINUOUS REPRESENTATIONS FOR KNOWLEDGE GRAPHS

For the last two decades, we have been witnessing a technological revolution, where
Deep Learning undoubtedly plays a pivotal role. The idea of learning continuous vector
representations for inputs has been instrumental in many recent scientific and industrial
success stories.

This thesis is concerned with learning continuous vector representations for knowl-
edge graphs. Although graph-structured data is ubiquitous in the nature, most machine
learning algorithms cannot be directly applied on such discrete data. A feature engi-
neering process is necessary to leverage most machine learning algorithms on learning
problems defined over graph-structured data. Yet, this process is often is costly, arduous
and sometimes even infeasible. In this thesis, we propose eight knowledge graph em-
bedding models (Pyke, Shallom, ConEx, QMult, OMult, ConvQ, ConvO, and NeRo) that
learn continuous vector representations to improve the state-of-the-art performance
in benchmark tasks such as relation prediction, link prediction, and description logic
concept learning. Through learning continuous representations, machine learning
algorithms become amenable to graph-structured data. Additionally, we introduce
a decomposition technique (KronE) that improves a model’s parameter efficiency by
learning compressed continuous vector representations. We also present a parameter
ensemble technique (PPE) to boosts the generalization performance of a model in link
prediction with virtually no additional cost. Finally, we demonstrate an industrial and
scientific use cases based on our scientific and software contributions.

We conclude this with our future research directions that center around applying the
Erlangen Programme mindset to unify “a veritable zoo of knowledge graph embedding

models” on static, temporal and dynamic knowledge graphs.
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Zusammenfassung

LEARNING CONTINUOUS REPRESENTATIONS FOR KNOWLEDGE GRAPHS

In den letzten zwei Jahrzehnten haben wir eine technologische Revolution erlebt,
bei der Deep Learning zweifellos eine zentrale Rolle spielt. Die Idee von lernenden
kontinuierlichen Vektordarstellungen fiir Eingaben hat in den letzten Jahren zu vielen
wissenschaftlichen und industriellen Erfolgen beigetragen.

Diese Arbeit befasst sich mit dem lernenden kontinuierlichen Vektordarstellungen
fir Wissensgraphen. Obwohl graphenstrukturierte Daten in der Natur allgegenwartig
sind, konnen die meisten Algorithmen fiir maschinelles Lernen nicht direkt auf solche
diskreten Daten angewendet werden. Zur Losung von Lernproblemen, die iiber graphen-
strukturierte Daten definiert sind, ist daher ein Feature-Engineering-Prozess erforder-
lich, um die meisten maschinellen Lernalgorithmen zu nutzen. Dieser Prozess ist jedoch
oft kostspielig, mithsam und manchmal sogar undurchfiihrbar. In dieser Arbeit schlagen
wir acht Modelle zur Einbettung von Wissensgraphen vor, die kontinuierliche Vek-
tordarstellungen erlernen, um die State-of-the-Art-Leistung bei Benchmark-Aufgaben
wie der Vorhersage von Beziehungen, der Vorhersage von Links und dem Lernen von
Beschreibungslogikkonzepten zu verbessern. Durch lernende kontinuierliche Repra-
sentationen werden Algorithmen des maschinellen Lernens fiir grafisch strukturierte
Daten zuganglich. Dartiber hinaus stellen wir eine Dekompositionstechnik vor, die die
Parametereffizienz eines Modells durch das Lernen komprimierter kontinuierlicher Vek-
tordarstellungen verbessert. Auflerdem stellen wir eine Parameter-Ensemble-Technik
vor, die die Generalisierungsleistung eines Modells bei der Vorhersage von Verbindun-
gen praktisch ohne zusatzliche Kosten steigert. Schlie8lich demonstrieren wir jeweils
ein industrielles und ein wissenschaftliches Anwendungsbeispiel auf der Grundlage
unserer wissenschaftlichen und softwaretechnischen Beitrage.

Abschlieflend geht es um zukiinftige Forschungsanschliisse, die sich auf die Anwen-
dung der Denkweise des Erlangener Programms konzentrieren, um ,einen wahren
Zoo von Modellen zur Einbettung von Wissensgraphen® auf statische, temporale und

dynamische Wissensgraphen zu vereinheitlichen.
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Introduction

This thesis is concerned with learning continuous vector representations for Knowl-
edge Graphs (KGs). Our research interest centers around designing Knowledge Graph
Embedding (KGE) models to effectively tackle benchmark tasks on large KGs. This
thesis comprises four parts. Part I introduces the idea of learning continuous vector
representations for KGs and elaborates current challenges along with our research
questions. Part II presents our seven scientific contributions. Part III presents our
software contributions and two use cases. Finally, Part IV concludes this thesis with a

discussion and an overview of our ongoing works.

1.1 MOTIVATION

For the last two decades, we have been witnessing a technological revolution, where
Deep Learning (DL) undoubtedly plays a pivotal role. The 2018 Turing Award recip-
ients Yann LeCun, Yoshua Bengio, and Geoffrey Hinton along with their peers have
repeatedly shown that learning continuous vector representations has led to substan-
tial improvements over using hand-crafted representations in many challenging tasks,
including image recognition, machine translation, question answering, and sequential
decision making (Krizhevsky et al., 2012; Mikolov et al., 2013b; Sutskever et al., 2014;
Mnih et al., 2015; Silver et al., 2016; Vaswani et al., 2017; Devlin et al., 2018).!

'https://awards.acm.org/about/2018-turing accessed on the 21th of March, 2023.
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Creating hand-crafted representations for inputs can be seen as a means to incorpo-
rate domain knowledge to extract discriminative information from inputs for a given
learning problem (Bengio et al., 2013). Yet, this process is costly, arduous and sometimes
even infeasible (Goodfellow et al., 2016). On the other hand, DL models can be trained
without requiring hand-crafted representations (Bengio et al., 2013; LeCun et al., 2015,
2002). Although applying feature engineering was previously a standard technique,
learning continuous vector representations has been consistently yielding state-of-the-
art performances in the aforementioned tasks among many others (Jumper et al., 2021;
Fawzi et al., 2022).

Qutput
(object identity)

3rd hidden layer

(object parts)

2nd hidden layer
(corners and

contours)

1st hidden layer

(edges)

Visible layer
(input pixels)

Figure 1.1: Learning hidden representations for images in an object recognition task. The
image is taken from Goodfellow et al. (2016).

In Figure 1.1, we visualize a process of learning hidden continuous vector repre-
sentations for images in an object recognition task. During training, parameters of
this five-layered Convolutional Neural Network (CNN) are iteratively updated in the
negative direction of the gradient of the loss function w.r.t. parameters. By this, true

class labels of images can be accurately predicted directly from raw pixel values.
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In this thesis, we focus on learning continuous vector representations (also called
embeddings) for KGs. A KG represents a structured collection of assertions in the
form of typed relationships between entities (Hogan et al., 2020). An assertion in a
KG is a triple containing two entities (also called nodes) and a relation (also called an
edge) (more details in Section 2.3.1).2 These collections of assertions have been used
in a wide range of applications, including question answering, machine translation,
product recommendation, web search, and cancer research (Kulmanov et al., 2018;
Saleem et al., 2014; Shen et al., 2014; Moussallem et al., 2018; Noy et al., 2019; Hogan
et al.,, 2020). Yet, most Machine Learning (ML) algorithms cannot be directly applied on
these valuable resources, since they are not designed to process graph-structured data
(see Section 2.1.2). Consequently, feature engineering was previously a necessary step to
apply most ML algorithms to graph-related problems. A simple remedy was to represent
inputs with one-hot binary vector representations. For instance, Rumelhart et al. (1986)
evaluated their now very well-known algorithm (the backpropagation algorithm) in
a task similar to the link prediction problem, where a five-layered Neural Network
(NN) was trained to predict an entity given one-hot binary vector representations of
an entity and a relation. Therein, an entity and a relation are represented by a 24-
dimensional and a 12-dimensional one-hot binary vector, respectively. During training,
parameters of the five-layered NN were updated via the backpropagation algorithm to
predict an entity from a given concatenated discrete representations of an entity and a
relation. Such a discrete representation for inputs loses its applicability as the size of
the unique nodes/entities and edges/relations in a graph-structured data grows. For
instance, Bengio et al. (2000) show that learning a joint probability distribution over a
large number of discrete variables becomes more challenging as the number of unique
discrete variables grows. This partially stems from the fact that the Euclidean distance
between one-hot binary vector representations of any two different entities is always
same, i.e., V2. To mitigate this limitation among few others, Bengio et al. (2000) propose
to learn a joint probability distribution over many discrete variables by simultaneously
learning their continuous vector representations. Instead of using fixed one-hot binary
vectors, discrete inputs are represented by randomly initialized continuous vectors.
During training, such continuous vector representations are iteratively updated with

the goal of minimizing a specified loss function.

2We use the term of entity to denote a node and the term of relation to denote an edge.
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Their seminal work initiated word embedding/language models (e.g., Word2Vec,
Glove, BERT, and GPT-3 (Mikolov et al., 2013b; Pennington et al., 2014; Devlin et al.,
2018; Brown et al., 2020)) as well as KGE models (e.g., RDF2Vec and KG-Bert (Ristoski
and Paulheim, 2016; Yao et al., 2019)). The idea of learning embeddings for discrete vari-
ables has now become a standard method for addressing difficult problems in various
research areas. For instance, for the last decade, KGE models have been successfully
applied to tackle a wide range of graph-related problems, including entity classification,
community detection, link prediction, graph summarization, fact checking, and descrip-
tion logic concept learning (Bordes et al., 2013; Nickel et al., 2015; Cai et al.,, 2018; Ji
et al., 2020; Zhou et al., 2020; Firmansyah et al., 2021; Silva et al., 2021; Kouagou et al.,
2022b). Designing an effective KGE model in a benchmark task (e.g. link prediction),
while retaining its a parameter efficiency is still an open question (Trouillon et al., 2016;
Zhang et al., 2019; Balazevic et al., 2019). This non-trivial endeavor is the foundation
for the first two research questions addressed this thesis (see Sections 1.2.1 and 1.2.2).

KGE models learn embeddings for inputs in a fashion akin to language embedding
models, since both types of models learn embeddings for discrete inputs. Yet, from a
data modeling perspective, KGE models can differ from language embedding models
with an aspect. Specifically, a KG can explicitly contain a description of the world via a

set of terminological axioms as shown in Figure 1.2.

TBox:
Brother CMale
Brother C PersonWithASibling
Child T Person
Daughter C Child, Daughter C Female
/.\ Father C Male, Father C Parent
ﬂ Female C Person
Grandchild C Child
F10M171 F10F172 Granddaughter C Female
Granddaughter C Grandchild
GrandfatherC Grandparent
GrandfatherC Male

[ ] GrandmotherCFemale
—_— /*\ /ﬁ GrandmotherC Grandparent
GrandparentCParent
F10M180 F10F179 F10M173 F10F174 GrandsonCEGrandchild,GrandsonEMale

Male C Person
Mother C Person, Mother C Parent
Parent C Person

® ° PersonWithASibling C Person
/ﬂ\ /m Sister C Female
Sister C PersonWithASibling

Son E Child, Son E Male
F10F177 F10F175

Figure 1.2: A visualization of the Family KG. Colors denote Male or Female class memberships
assertions, while (-) and branching from (-) denote role assertions.
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Although KGE research has mainly focused on designing KGE models without in-
corporating terminological axioms explicitly, there is a growing interest in designing
models to learn embeddings for such logical expressions (Ren et al., 2020; Mondal
et al., 2021; Zhang et al., 2022). Designing KGE models to learn learning embeddings
for logical expressions (e.g., description logic concepts) constitutes the third and last

research question addressed in this thesis (see Section 1.2.3).

1.2 RESEARCH QUESTIONS AND CHALLENGES

In the last decade, a plethora of KGE models has been proposed (Nickel et al., 2011;
Bordes et al., 2013; Nickel et al., 2015; Trouillon et al., 2016; Wang et al., 2017; Cai et al.,
2018; Balazevic et al., 2019; Ji et al., 2020; Zhu et al., 2021). Overall, KGE research has
mainly focused on learning embeddings for entities and relations tailored towards the
link prediction problem (see Section 2.3.2). Since a KG can contain billions of triples
and millions of entities, the computation and parameter efficiency aspects of a KGE
model play important roles in large-scale applications (Dettmers et al., 2018; Ren et al.,
2022). Designing a KGE model to accurately predict missing triples on large KGs is
still a major open question. Moreover, there is an ever growing interest in designing
KGE models to learn embeddings for logical expressions, e.g., concepts (Mondal et al.,
2021) in the DL EL**. In Sections 1.2.1 to 1.2.3, we elaborate the major challenges and

articulate the research questions addressed in this thesis.

1.2.1 EFFECTIVENESS IN BENCHMARK TASKS

Most KGs are incomplete, i.e., they contain missing triples (Nickel et al., 2015; Hogan
et al., 2020). For instance, an assertion about the citizenship of Barack Obama (e.g.
(dbr:Barack_Obama, dbo:citizenship, dbr:United_States)) is still missing in the
most recent version of the DBpedia knowledge graph .> Consequently, accurately
predicting missing triples is an important ability to leverage structured assertions
in numerous applications, including approximate query answering over knowledge
graphs (Trouillon et al., 2016; Hamilton et al., 2018; Ren and Leskovec, 2020; Arakelyan
et al., 2021). Since designing effective KGE models for large KGs is still a major open

question. Hence, we pose our first research question:

Shttps://dbpedia.org/page/Barack_Obama accessed on the 21th of March, 2023.


https://dbpedia.org/page/Barack_Obama

8 1 INTRODUCTION

RQI. CAN WE DESIGN A KNOWLEDGE GRAPH EMBEDDING MODEL TO PREDICT MISSING

TRIPLES ON LARGE KNOWLEDGE GRAPHS?

To address this research question, we investigate various techniques to design KGE
models that advance the state of the art in benchmark tasks, including type prediction,
relation prediction, and link prediction. Increasing the effectiveness in a benchmark task
without increasing the number of parameters plays a central role in our investigation.
Moreover, we also investigate techniques to further increase the effectiveness of KGE
models with virtually no additional costs, e.g., applying ensemble learning, Polyak
averaging, and designing a semantics based prediction constraint. In Chapters 3 to 8,
we present our KGE models advancing the state of the art in the aforementioned

benchmark tasks.

1.2.2 EFFICIENCY IN PARAMETERS

According to the 2021 crawl of WebDataCommons, a giant joint KG containing at least 82
billion assertions can be extracted from the Web.* Learning on such a valuable resource
at scale is hence crucial for the deployment of ML models on the Web—the world’s
largest shared information source with over 5 billion users. Consequently, designing
efficient KGE models w.r.t. the number of parameters as well as computational costs
is important in the aforementioned applications. Hence, we pose our second research

question:

RQ2 CaAN WE ANSWER RQ1. WHILE ENSURING THE PARAMETER EFFICIENCY OF OUR

MODELS?

To answer this question, we incorporate the parameter efficiency aspect in the de-
sign of our KGE models. For instance, we investigate learning complex-, quaternion-,
and octonion-valued embeddings as well as leveraging a convolution operation to
increase the parameter efficiency without decreasing the effectiveness (see Chapters 5
and 6). Importantly, we focus on designing KGE models that have linear time and space
complexities in the embedding vector dimensions and the number of entities and/or
relations. We also design a technique based on the Kronecker decomposition to increase
the parameter efficiency of a KGE model, while retaining its effectiveness in the link

prediction problem (see Chapter 7).

*http://webdatacommons.org/structureddata/#results-2021-1 accessed on the 21th of March, 2023.
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We design a new training strategy to facilitate training KGE on large KGs (see Chap-
ter 8). Finally, we develop a hardware-agnostic open-source software framework to
facilitate large-scale applications of KGE models (see Chapter 10) without requiring

extensive domain knowledge.

1.2.3 LEARNING EMBEDDINGS FOR DESCRIPTION LoGic CONCEPTS

Learning embeddings for First-Order Logic (FOL) queries to obtain approximate answers
on incomplete KGs led significant improvements over traditional symbolic models
(Hamilton et al., 2018; Ren et al., 2020; Ren and Leskovec, 2020; Arakelyan et al., 2021;
Huang et al., 2022; Ren et al., 2022). Although Description Logics ( DLs) are decidable
fragments of FOL (Baader et al., 2003), learning embeddings for expressive DLs (e.g.
ALC) has not yet been extensively studied. Hence, we investigate KGE models to
learn embeddings for ALC concepts tailored towards the DL concept learning problem.
Concept Learning (CL) deals with learning DLs concepts from a background knowledge
and input examples (see Section 2.5). Although symbolic and hybrid models have been
successfully applied to tackle this problem, their large-scale applications have been
hindered due to their impractical runtimes (see Section 2.5.3). Tackling CL at large
scale (e.g. achieving low runtimes on large datasets) is an important problem since
learning in DLs is ante-hoc and globally explainable (Heindorf et al., 2022), hence it has
a potential for being a backbone for explainable Artificial Intelligence (AI) (Schockaert
et al., 2021b). We pose our third research question:

RQ3. CAN WE DESIGN A MODEL TO LEARN EMBEDDINGS FOR EXPRESSIVE DLs?

To answer this question, we leverage the knowledge acquired during our investigation
of RQ1 and RQ2. For instance, in Chapter 9, we reformulate the CL problem as a
multi-label classification problem and use a permutation-invariant neural embedding
model. By learning permutation-invariant embeddings for ALC concepts, a goal
concept can be found withing few retrieval operations. This significantly reduces total
runtimes. Therefore, the CL problem can be tackled in applications requiring low
latency. In Chapter 12, we introduce a scientific use case of leveraging a pre-trained
KGE to tackle CL. Therein, we reformulate the definition of the standard symbolic
search procedure as a sequential decision making problem in an embedding vector

space and leverage deep Q-network to alleviated the impractical runtimes of CL models.
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Treating myopic heuristic functions of CL models via a deep Q-network results in
reducing total runtimes significantly. Finally, we develop an open-source software

framework to facilitate large-scale applications of CL models (see Chapter 11).

1.3 THESIS OVERVIEW AND SUMMARY OF SCIENTIFIC PUBLICATIONS

In this section, we firstly give an overview of the structure of this thesis. Next, we
summarize our scientific contributions, while elucidating relationships between them.
Part I consists of two chapters. In Chapter 1, we motivate the idea of learning continuous
vector representations for KGs and pose our research questions. In Chapter 2, we provide
the background knowledge to make this thesis self-contained. In Part II, we present
our scientific contributions. In Part III, we present our software contributions along
with use cases. In Part IV, we conclude this thesis with a discussion and an overview of

our ongoing works.

1.3.1 A PaysicaAL EMBEDDING MODEL FOR KNOWLEDGE GRAPHS

In Chapter 3, we propose PYKE. Therein, our goal is to efficiently learn embeddings for
entities and relations of a KG such that similar entities and relations are assigned with
similar embeddings, i.e., so that the Euclidean distance between embeddings of similar
entities and relations is low. To this end, we define PYKE as a combination of a physical
model based on Hooke’s law and its inverse with ideas from simulated annealing to
efficiently learn embeddings. We prove that PYKE achieves a linear space complexity
in the number of entities and relations and in the number of embedding dimensions.
Although the time complexity for the initialization of PYKE is quadratic in the number
of unique entities and relations, the time complexity of each of its iterations is linear
in the size of the input KG. PykE allows practitioners to incorporate their domain
knowledge in the learning process by means of selecting a similarity function between
entities and relations. We compare the performance of PYKE against six state-of-the-art
KGE models on two benchmark datasets. Our experimental results suggest that PYKE
outperforms six state-of-the-art models on benchmark datasets in the type prediction
and cluster purity tasks, while maintaining superior runtimes. Our implementation
and results are open-source and are available at http://github.com/dice-group/PYKE
and https://github.com/dice-group/dice-embeddings. Our first scientific contribution

serves as Chapter 3.


http://github.com/dice-group/PYKE
https://github.com/dice-group/dice-embeddings
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TRADE-OFFs: The construction of a similarity matrix can be a bottleneck to apply
PyYkE on large KGs. This can be alleviated by samplings entities and relations uniformly
at random at each parameter update. Yet, this prohibits the incorporation of domain
knowledge in the learning process by means of selecting a similarity function. Although
PYKE can be applied to efficiently learn embeddings for entities and relations, these
embeddings can only be directly used to measure similarities between entities and
relations. Hence, PYKE cannot predict missing triples on KGs, i.e., cannot tackle the link
prediction or relation prediction problems directly. It is necessary to train a classifier
(e.g., logistic regression (see Section 2.1.2)) on embeddings of entities and relations
to predict missing triples. Although there have been KGE models proposed to solely
learn embeddings for entities and relation (e.g., RDF2Vec (Ristoski and Paulheim, 2016),
NBFNet (Zhu et al,, 2021)), KGE research has mainly focused on KGE models with

predictive abilities (see Section 2.4).

1.3.2 A SHALLOW NEURAL MODEL FOR RELATION PREDICTION

In Chapter 4, we propose SHALLOM. We design this approach to predict missing relations
given entities, while maintaining an efficient computation as in PYKE. To this end, we
design the process of learning embeddings as a multi-label classification problem. For a
given pair of entities, SHALLOM predicts missing relations via two affine transformations
with non-linear activation functions. Hence, SHALLOM is analogous to the C-BOW
variant of the well-known word embedding model Word2Vec (Mikolov et al., 2013a,b),
since both model predict a central vocabulary term given surrounding terms. While
a central term in the C-BOW model represents a word, a central term in SHALLOM
represents a relation, hence surrounding terms represent entities. We evaluate SHALLOM
on five benchmark datasets (WN18RR, FB15K-237, YAGO3-10, WN18, and FB15K). Our
experimental results suggest that SHALLOM outperforms state-of-the-art models on
many benchmark datasets, e.g., on FB15K-237 and WN18RR with margins of up to 3%
and 8% (absolute), respectively, while requiring a maximum training time of 8 minutes
on a commodity computer. An open-source implementation of SHALLOM, including
training and evaluation scripts are available at https://github.com/dice-group/Shallom
and https://github.com/dice-group/dice-embeddings. Our second scientific contribution

serves as Chapter 4.


https://github.com/dice-group/Shallom
https://github.com/dice-group/dice-embeddings
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TRADE-OFFs: Although SHALLOM addresses the inability of PYKE in predicting miss-
ing triples and maintains a strong runtime performance, SHALLOM cannot directly
predict missing triples by means of predicting missing entities. This stems from the

fact that SHALLOM learns a mapping from entities to relations.

1.3.3 CoNVOLUTIONAL COMPLEX KNOWLEDGE GRAPH EMBEDDINGS

In Chapter 5, we propose CONEx. Therein, we alleviate the limitations of PYKE and
SuarrLoMm. Inspired by two impactful works (ComplEx (Trouillon et al., 2016) and
ConvE (Dettmers et al., 2018)), we design CoNEx as a multiplicative composition
of a 2D convolution operation with a Hermitian inner product on complex-valued
embeddings. Therefore, CONEx can be seen as a multiplicative composition of ComplEx
and ConvE. CoNEx learns a complex-valued embeddings for entities and relations as
ConEx utilizes the Hadamard product to compose a 2D convolution followed by an affine
transformation with a Hermitian inner product in C. This combination endows CoNEx
with the capability of controlling the impact of the convolution on the Hermitian inner
product of embeddings and degenerating into ComplEx if such a degeneration is necessary
to further minimize the incurred training loss. We evaluate CoNEx on five benchmark
datasets (WN18RR, FB15K-237, YAGO3-10, WN18, and FB15K). Our experimental results
suggest that CONEx outperforms state-of-the-art models on four of the five datasets w.r.t.
Hits@1 and MRR even without extensive hyperparameter optimization. Our results
also indicate that the generalization performance of state-of-the-art models can be
further increased through prediction averaging, i.e., a simple form of ensemble learning.
An open-source implementation of CoNEX, including training and evaluation scripts
are available at https://github.com/dice-group/Convolutional-Complex-Knowledge-
Graph-Embeddings and https://github.com/dice-group/dice-embeddings. Our third

scientific contribution serves as Chapter 5.

TRADE-OFFSs: To reach a new-state-of-the-art performance, CoNEx often requires
100-200 more training epochs than DistMult and ComplEx. This runtime inferior perfor-
mance of CoNEx may stem from the fact that CoNEx simultaneous learns embeddings

as well as filters in the 2D convolution operation via the element-wise multiplication.


https://github.com/dice-group/Convolutional-Complex-Knowledge-Graph-Embeddings
https://github.com/dice-group/Convolutional-Complex-Knowledge-Graph-Embeddings
https://github.com/dice-group/dice-embeddings
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1.3.4 CONVOLUTIONAL HYPERCOMPLEX EMBEDDINGS FOR LINK PREDICTION

After our third scientific contribution introduced in Section 1.3.3 and elucidated in
Chapter 5, we were eager to find out whether our finding in C generalizes to the
two largest normed division algebras. Many recent works including (Dettmers et al.,
2018; Nguyen et al., 2018a; Balazevi¢ et al., 2019b) indicate that using convolutions
on R and C leads to strong performance in the link prediction problem. Yet, using
convolutions on hypercomplex numbers (Quaternions H and Octonions Q) has not been
studied in the KGE literature. In Chapter 6, we propose the four KGE models QMuLT,
OMutrt, ConvQ and ConvO. QMuLT and OMULT can be considered as quaternion
and octonion extensions of the previous state-of-the-art approaches DistMult and
ComplEx. ConvQ and ConvO build upon QMuLrT and OMuLT by including convolution
operations in a way inspired by the residual learning framework. We evaluate our four
models on seven benchmark datasets (WN18RR, FB15K-237, YAGO3-10, WN18, FB15K,
Kinship, and UMLS). Our experimental results suggest that the benefits of learning
hypercomplex-valued vector representations become more tangible as the size and link
prediction difficulty of the KG grows. ConvO outperforms state-of-the-art approaches
on FB15K-237 in MRR, Hit@1 and Hit@3, while QMurTt, OMuLT, ConvQ and ConvO
outperform state-of-the-art approaches on YAGO3-10 in all metrics. Moreover, to boost
the generalization performance, we apply ensemble learning by means of prediction
averaging. Applying ensemble learning consistently improves the link prediction
performance across models and datasets. We also design a prediction constraint rule
based on the semantics of the input KG that detects and disregards implausible entities
based on the range of a given relation at testing time. This technique further improves
the link prediction performance across models and benchmark datasets. An open-source
implementation of our models, including training and evaluation scripts are available
at https://github.com/dice-group/Convolutional-Hypercomplex-Embeddings-for-Link-
Prediction and https://github.com/dice-group/dice-embeddings. Our forth scientific

contribution serves as Chapter 6.

TRADE-OFFs: During our experiments, we observe that QMurTt, OMuLT, CONVQ, and
ConvO often require more epochs to reach their peak performance. Increasing the link
prediction performance via more complex operations (e.g., hypercomplex multiplication

or 2D convolution operation) comes often with a cost of increased runtimes.


https://github.com/dice-group/Convolutional-Hypercomplex-Embeddings-for-Link-Prediction
https://github.com/dice-group/Convolutional-Hypercomplex-Embeddings-for-Link-Prediction
https://github.com/dice-group/dice-embeddings
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1.3.5 KRONECKER DEcoMPOSITION FOR KNOWLEDGE GRAPH EMBEDDINGS

In Chapter 7, we focus on designing a generic technique to increase the parameter
efficiency of a KGE model. Therein, we propose KRONE technique to reduce the number
of explicitly stored parameters in a KGE model, while retaining its effectiveness. During
training, an embedding vector is not plainly retrieved but constructed on the fly via the
Kronecker product. Our experimental results suggest that KRoNE significantly reduces
the number of parameters with no cost of predictive performance, while making a
KGE model more robust against the noise. An open-source implementation of KRoNE
is available at https://github.com/dice-group/dice-embeddings. Our fifth scientific

contribution serves as Chapter 7.

TRADE-OFFs: Although our experiments highlight the benefits of using KRoNE in
terms of the parameter efficiency and robust predictions against noise in the input KG,
using KrRoNE consistently increases total runtimes, hence, the benefits of using KRoNE

comes with a cost of increased runtimes.

1.3.6 PorLYAK PARAMETER ENSEMBLE FOR KNOWLEDGE GRAPH EMBEDDINGS

In Chapter 8, we focus on designing a technique to increase the performance of a KGE
model without increasing computational costs. Therein, we propose PPE technique
to increase the generalization performance with virtually no additional cost through
maintaining a running weighted average of parameters. This can be seen as leveraging
ensemble learning by means of parameter averaging instead of prediction averaging.
Prediction averaging technique comes with the computational overhead of training
multiple models and increased latency and memory requirements at test time. By
utilizing the noisy approximation of mini-batch gradients at each epoch interval, PPE
constructs a high performing parameter ensemble model with an expense of training a
single KGE model. Our experiments on 9 benchmark datasets suggest that PPE improves
the performance across models and datasets. We also design a training strategy to
facilitate large-scale KGE training. Our open-source implementation, including training
and evaluation scripts, is available at https://github.com/dice-group/dice-embeddings.

Our sixth scientific contribution serves Chapter 8.


https://github.com/dice-group/dice-embeddings
https://github.com/dice-group/dice-embeddings
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TRADE-OFFs: During our experiments, we did not observe any increase in runtimes,

while applying PPE. Yet, as the size of a KGE model increases, this discrepancy may
differ.

1.3.7 LEARNING PERMUTATION-INVARIANT EMBEDDINGS FOR DESCRIPTION

LoGgic CoNCEPTS

In Chapter 9, we focus on learning embeddings for expressive DLs. More specifically, we
focus on learning embeddings for DL ‘A LC concepts and individuals tailored towards
the Concept Learning (CL). We formulate the CL problem as a multi-label classification
problem from a set of DL individuals to DL concepts and propose NERo—a permutation-
invariant neural embedding model based on a deep set neural network. NERo learns
permutation-invariant embeddings tailored towards F; scores of pre-selected DL con-
cepts w.r.t. input example DL individuals. By ranking such concepts in descending
order of predicted scores, a possible goal concept can be detected within few retrieval
operations, i.e., our model does not require excessive exploration. Importantly, top-
ranked concepts can be used to start the search procedure of state-of-the-art symbolic
models in multiple advantageous regions of a concept space, rather than starting it in
the most general concept T. Our experiments on five benchmark datasets with 770
learning problems firmly suggest that NERo significantly (p-value < 1%) outperforms
the state-of-the-art models in terms of F; score, the number of explored concepts, and
the total runtime. An open-source implementation of NERo, including training and
evaluation scripts are available at https://github.com/dice-group/Nero. Our seventh

scientific contribution serves as Chapter 9.

TrRADE-OFFs: While NERo effectively alleviates the well-known exploration problem
in CL, hence, decreases the impractical runtimes, NERo is not complete in CL as most
CL models are. Consequently, NERo may not find an existing goal concept, whereas
symbolic models (e.g. CELOE) can find a goal an existing goal concept provided that

there is no time and memory constraints.


https://github.com/dice-group/Nero




Background

In this chapter, we provide necessary background knowledge to make this thesis self-
contained. At the end of each subsection, we draw an explicit connection from an
introduced concept to our research contributions. This chapter consists of seven sections.
Section 2.1 covers a wide range of ML topics related to our research. Section 2.2 briefly
introduces Reinforcement Learning (RL). Section 2.3 elucidates knowledge graph along
with benchmark tasks and metrics. Section 2.4 introduces related works. Section 2.5

introduces description logic and the concept learning problem.

2.1 MACHINE LEARNING

2.1.1 EXPECTED AND EMPIRICAL RISK MINIMIZATION
In a supervised ML setting, our goal often is to minimize the expected risk defined as
Risk(h) = [ €h(0.y) dPaa(3) =By [(h0.9)]. @)
XxY

where X and Y denote the input space and the output space, respectively. Py, :
X XY — [0, 1] denotes an unknown joint probability distribution. An i.i.d. sampled
observation/input-output pair is denoted by (X,y) ~ Pysq. A predictor function is
definedash : X — Y and ¢ : Y XY +— Ry is a scalar function determining the

17
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discrepancy between a prediction y := h(x) and a true output y. Hence, the problem of

learning an optimal predictor function h can be defined as
h* = argmin E(yy)-p,,, [t’(h(x),y)]. (2.2)
h

Yet, finding h* entails searching through all possible families of predictor functions (e.g.,
logistic regression, neural networks, and support vector machines). Instead, in most
cases, we aim to find an optimal predictor function belonging to a particular family of

predictor functions H defined as
iy, = argmin Equy)~r,,, | €(h(0.7) | (23)
heH

Since Pj4, is unknown in almost all machine learning problems, Equations (2.1)
to (2.3) cannot be directly minimized (Bishop and Nasrabadi, 2006; Murphy, 2012;
Goodfellow et al., 2016). If P;,;, were known, through the chain rule of probability
(Piata(%,¥)) = Paata(y | X) Piara(x)), the conditional probability distribution could
be obtained to describe to the relationship between input-output pairs, i.e., searching
for h;{ or h* becomes unnecessary. Given that Py, is unknown and Equations (2.1)
to (2.3) can not be directly minimized, we often attempt to minimize Equation (2.1) via

minimizing a surrogate function (the empirical risk) that is defined as

n

Riskp (k) = = 3" e(hxp), yi) = B [¢(h(x). )| (2.4

i=1

where D := {(x;,yi)}|_, denotes a training dataset thatis D ~;;4 Pj andn € N+,
Riskgp (h) quantifies the empirical risk of A w.r.t. D. Therefore, an optimal empirical

predictor function from a particular family of predictor functions H can be defined as
hZD,(H = argmin Egp [f(h(x),y)]. (2.5)
heH

The weak law of large numbers suggests that as the size of the dataset grows |D| — +oo,
the following holds Ep[£(h(x),y)] =~ E(xy)~Psu.[£(h(X),y)] (Murphy, 2012). This

serves as a guarantee that Py, (Y | X) can be effectively approximated provided that
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O and H are sufficiently large. The expected excess risk between h* and h, , can be
defined as

EER = E|Risk(h5,) — Risk(h*)] + E[Risk(h;m) — Risk(h,)). (2.6)

Equation (2.6) comprise the approximation and estimation error parts. The former
signals the closeness between h* and h7, while the latter signals the closeness between

Py

For instance, selecting sufficiently large H (e.g., neural networks) can lead to the

and hp 4. As the size of H grows, the approximation error can be minimized.

minimization of the approximation error. Minimizing the estimation error is more
challenging, since this error is determined by 9 and ‘H. More specifically, while
selecting sufficiently complex H is desired to minimize the approximation error, this
decision often leads to the problem of overfitting without having large D, e.g., very
low approximation error and high estimation error. Conversely, selecting simple H
facilities the minimization of the estimation error, yet it often leads to the problem of
underfitting, e.g., high approximation error and low estimation error. Finding a good
ratio between the complexity of H w.r.t. |D| becomes a keystone in many successful
ML applications (Bishop and Nasrabadi, 2006; Murphy, 2012).

Bottou and Bousquet (2007) show that as |D| grows, learning h;)’w becomes com-
putationally challenging, sometimes even infeasible due to the required time and/or
computational budgets. Yet, these aspects are not involved in Equation (2.6). To address
this limitation, Bottou and Bousquet (2007) extends Equation (2.6) with the optimization

error part as follows

E|Risk(h;,) — Risk(h)| + E[Risk(h}, 4.) — Risk(hiy,)| +E|Risk(hpg) - Risk(h, 4],

(2.7)
where EZ),H € H denotes a predictor, whose iterative learning process is terminated
before reaching a minima of the empirical risk (see Equation (2.4)) w.r.t. D. For instance,
the early stopping technique can be considered as a technique to find a trade-off between
the approximation, estimation, and the optimization error parts (LeCun et al., 2002;
Prechelt, 2012).

CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: The effectiveness of ML models

is measured by their ability to generalize well on unseen data as shown in Equation (2.6).
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For instance, the effectiveness of a KGE model is often measured by means of its ability
to accurately predict missing links on a test dataset (see Chapter 2). Throughout our
scientific contributions, we aim to incorporate the approximation, estimation and
optimization error aspects in the design of our proposed models to generalize well on
unseen data as well as to our experimental setups. By designing our models as neural
networks, we ensure that the approximation error can be effectively minimized,
since neural networks are universal approximators. By using ensemble learning, the
dropout technique, the label smoothing, the batch normalization, the explicit complexity
calibration of H, designing a technique based on the Polyak averaging, we ensure that
the estimator error can be minimized. Moreover, our experimental setups are designed
in such a manner that the optimization error can be efficiently reduced subject to our
computational and time budgets. The non-trivial endeavor of minimizing Equation (2.7)

plays a central role behind of all our scientific contributions.

2.1.2 LINEAR REGRESSION AND LOGISTIC REGRESSION

Linear regression and logistic regression often serve as baseline models in regression
and classification problems. Although they can be seen as simple models, they can
generalize better than complex models, especially in cases where the training data is

relatively small as shown in Equation (2.7) (Hastie et al., 2009).

LINEAR REGRESSION

Setup: Let D := {(x;,y;)}|_, denote nii.d. sampled examples D ~;;4 P} ., where
x € X = R%, yelY = R% having d, = 1and Py, denotes an unknown data distribution
over X, Y. A linear regression predictor function can be seen as a parameterized linear
mapping from inputs to outputs in the following form h(x; w,b) = w'x + b, where
w € R%* and b € R. In practice, X is often augmented with an extra dimension of
1s to include b in w (Hastie et al., 2009). Hence, the underlying assumption in linear

regression can be defined as
V(x,y;) €D, Iw € R% such that Y= W' X; + €, (2.8)

where €; ~ N (0, 0?) denotes the zero centered Gaussian noise with constant variance.

Equation (2.8) implies that (1) relationships between y; and x; are linear, (2) errors
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(y; — w'x;) are independent, (3) noises are zero centered with a constant variance o2
Expectedly, these assumptions often do not hold in practice (Hastie et al., 2009). A
parameter vector w leading to Y(x,y) € D ,W'x ~ y can estimated/learned through
minimizing incurred discrepancies between predictions and outputs, e.g., via the residual

sum of squares/squared discrepancies or the average residual sum of squares
1 n
L(w) =~ Z(y,- ~wix)? (2.9)
1

Equation (2.9) is known as the mean squared error loss function Murphy (2012). Min-
imization of the residual sum of squares is known as the least squares estimation
(see Section 7.3 Murphy (2012) for more details). Since Equation (2.9) is differentiable,
quadratic and convex in w (hence, its minimum always exists, although it may not be a
unique), a closed-form solution exists, e.g., the Moore-Penrose pseudo-inverse (Bishop
and Nasrabadi, 2006; Hastie et al., 2009). Although a closed-form solution exists for
Equation (2.9), in practice it is often more efficient to minimize it by iteratively updating

w using the gradient of the loss function, £(-), with respect to w.

Maximum LIKELIHOOD EstimaTION (MLE): Linear regression can also be investi-
gated in a probabilistic setting. More specifically, a W leading to V(x,y) € D ,Ww!x ~ y
can be learned via MLE or Maximum a Posteriori Probability Estimation (MAP) meth-
ods. In MLE, the goal is to learn such W that maximizes the likelihood of observing D.

In MAP, the goal is to maximize the likelihood of observing w given D.
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Starting from Equation (2.10) to Equation (2.23), we derive the MLE solution for

linear regression with a parametric probability distribution Py,oge;(+; W).

w = arg max Ppoge1(D;w) Max. likel. of D (2.10)
W
R
w = argmax | | Puodel (Xi, Yi; W) iid. samples (2.11)
w i=1
L
w =argmax | | Pmodel(Yi | Xi; W) Proger (Xi; W) Chain Rule (2.12)
w i=1
7
w = argmax | | Puoder(yi | Xi; W) Remove Const. (2.13)
w i=1
n
W = arg maXZ log (Pmodel(y,- | xi;w)) Use Log (2.14)
w i=1
n
W = arg min Z —log (Pmodel(y,- | Xi; w)) Negative Log Likelihood (2.15)
w i=1

Maximizing the likelihood of observing D is equivalent to minimizing the negative
log conditional likelihood of outputs given inputs. In Equation (2.15), the Gaussian
distribution or the Laplace Gaussian can be used to model (Pppqe(¢|-; W)) the linear
relationship between inputs and noisy outputs. The conditional likelihood of outputs

given inputs with the Gaussian distribution can be defined as follows

(w'x - y)z)’

Pmodel(y:yl{\,:X;W): 202

~ exp ( — (2.16)

2no

where 02 € R, and 7 denote the variance and the pi constant. Similarly, the conditional

likelihood of outputs given inputs with the Laplace distribution can be defined as follows

1 —WTXi
P =41 X =)= B3]

= (2.17)
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where b € R denotes the scale parameter. In Equations (2.18) and (2.23), we show
the steps to derive MLE solution with the Gaussian distribution. In the last step, the

incurred discrepancies are averaged to make the loss interpretable.

n T 2
1 . — 1
W = arg min Z —log [ exp ( - w)] Insert Eq.2.16 (2.18)
W = 270 20
n T 2
R . 1 (W' xi — yi) I
W =argmin ) —log ( ) —log (exp (——)) Distribute Log (2.19)
w ; V2ro? 20°
Y (w'x; - yp)°
W = arg“fnin ; —log (exp (- #)) Remove Const. (2.20)
1 n
W = arg min 252 Z(WTXi —y;)? Distribute Log (2.21)
v =
n
W = arg minZ(wai —y;)? Remove Const. (2.22)
W=l
1 n
w = arg“r,nin - Z(WTX,' —y;)* Objective (2.23)

i=1

Important to note that Equation (2.23) and Equation (2.9) are identical. Hence, the least
squares estimation is equivalent to the MLE with the Gaussian noise model, i.e., noises
€; are normally distributed with equal variance. Moreover, it can be shown that using
the Laplace distribution as the noise model (see Equation (2.17)) in MLE is equivalent
of the least absolute deviation estimation, i.e., the minimization of the mean absolute

error loss function defined as

n
. . 1 T
W = arg min — Y — W X; 2.24
gmin ) 1y = whi| (224)
The Laplace distribution may be more suitable to increase robustness against outliers
(see Section 13.3 in Murphy (2012)), since the Laplace distribution has heavier tails than

the Gaussian distribution.

MAP: There is an extra assumption Pp4qm(W) that represents a prior belief about
possible parameter vectors. Choosing a particular prior distribution incorporates a

belief of a domain expert into the process of learning w. For instance, through choosing
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the Gaussian distribution with zero mean and an isotropic covariance (w ~ N(0, 72I) )
defined in Equation (2.25), the absence of a prior belief can be incorporated in the given

learning problem (Bishop and Nasrabadi, 2006; Murphy, 2012).
WTW)

1
ex -
\/27.”-2 P ( 2’['2

Note that using an isotropic covariance results in the same amount of variance in every

Pparam(w) = (2.25)

direction. Starting from Equation (2.26) to Equation (2.34), we derive the MAP solution
for linear regression. Using Equation (2.25) in MAP for linear regression results in

Tw encourages a w to decay

learning smaller parameter vectors, since adding 217w
towards zero, unless supported by D (Bishop and Nasrabadi, 2006). # can be used
to control the size of possible parameters vectors, i.e., the complexity/size of possible

prediction functions in H.

w = argmax P(w | D) Max. likel. of w  (2.26)
w
Pmo e Z) w P aram w
W = arg‘:’nax del }l)(z;) param (W) Bayes Rule (2.27)
w = argmax Ppogel (D | W) Pparam (W) Remove Const.  (2.28)
W = arg max [ 1—[ Prodel (Xi, Yi | W)]Ppamm(w) iid. (2.29)
w i=1
W = arg max [ 1—[ Proder (Yi | i, W)]Ppamm(w) Remove Const.  (2.30)
w i=1
n
W = arg max Z log (Pmodel(yi | xi, w)) + log (Ppamm(w)) Use Log (2.31)
w i=1
n
N . Z T 2
w =argmin ) (W' x; —y;)” +log (Ppamm (w)) Insert eq. (2.16) (2.32)
w i=1
s 1
W = arg min Z(WTXi —y)* 4+ —ZWTW Insert 2.25 (2.33)
w i=1 2T

n
W = arg min Z(WTXi —y)l+ Awlw Objective (2.34)
W=l
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An overview of commonly used likelihoods and priors is given in Table 2.1. Note
that MAP with a uniform distribution corresponds to MLE and we refer Chapter 7 of
Murphy (2012) for more details about MLE and MAP.

Table 2.1: Overview of linear regression model w/o probabilistic interpretation. A regulariza-
tion constant denoted by A.

Proder () Pparam(+) Objective Name Regularization
Gaussian - ,—11 Z;’zl(WTxi —y;)? Mean Squared Error -
Gaussian Laplace % > (wlx —y)?+ A Z;j [w | Mean Squared Error I; norm
Gaussian Gaussian % — (wlix; —y)?+ A Z? W? Mean Squared Error I norm
Laplace - ,—11 . |wTlx; — y; Mean Absolute Error -
Laplace Laplace S wTx -yl + A Z;i |w ;] Mean Absolute Error I; norm
Laplace Gaussian " |wlx; —y;| + A Z? wﬁ Mean Absolute Error I, norm

LoGisTic REGRESSION

Setup: Let D := {(x;,y;)}|_, denote n iid. sampled examples D ~;;4 P] ., where
x € X =R%,y e Y = {1,0} and Pyy, denotes an unknown data distribution over X, Y.
Logistic regression can be seen as linear regression with two modifications: (1) the
likelihood of an output given an input is modeled with a discrete probability distribution
and (2) a prediction is confined within the unit interval (see Equation (2.36)). With

Bernoulli distribution, (1) is computed as follows

Pmodel(y | X, W) = ﬁy(l - ﬁ)l_y; (2.35)

where
1

1+exp(-wlix)

ij:=0o(w'x)= (2.36)
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Therefore, Ppogei(y = 1 | X; W) + Progei(y = 0 | x; w) = 1. Note that the first four
equations provided in the solution of MLE for linear regression hold in the derivation

of the MLE solution for logistic regression.

n
W = arg max n Prodel (Ui | Xi3 W) Maximize likelihood of i.i.d (2.37)
w i=1
W = arg max Z log (Pmodel(yi | xi; w)) Use Log (2.38)
w i=1
W = arg min Z —log (Pmodel(yi | x;; W)) Negative Log Likelihood (2.39)
w i=1
n
W =argmin |~ log (Q?(l - g)l-y) Bernoulli Dist. (2.40)
w i=1
n
W = arg min Z —ylog(g;) — (1 —y) log(1—1) Binary Cross-Entropy (2.41)
w i=1

Maximizing the log-likelihood is equivalent to minimizing the binary cross-entropy.
Although there is no closed-form solution for Equation (2.41), it can be effectively
minimized through iteratively updating w in the negative direction of the gradient of
Equation (2.41) w.r.t w. This is possible, as Equation (2.41) is a convex and continuous
function. Note that deriving the MAP estimation for logistic regression results in adding
(wlw) to Equation (2.41) in the MAP estimation for linear regression provided that the

Gaussian prior is used.

CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: Most knowledge graph embed-
ding models are defined as scoring functions based on logistic regression (see Section 2.4).
Through minimizing the binary cross-entropy function, parameters of knowledge graph
embedding models are learned to discriminating positive triples (V(h,r, t) € G) from
negative triples (V(x,y, z) ¢ G). Such parameters often contain embedding vectors for
entities and relations as well as other trainable parameters (e.g., the batch normalization
parameters (Ioffe and Szegedy, 2015)). In Chapter 12, we formulate the concept learning
problem as a regression problem with the mean squared loss function, i.e, a problem of

maximizing cumulative discounted reward.
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2.1.3 LEARNING WITH GRADIENT DESCENT

Objective loss functions introduced in Section 2.1.2 can be written in a generic form

1
Lo(w) = 7 (X;Df(h(x; W), ), (2.42)

where ¢ and h denote a loss function and a parameterized predictor function. Ly (w)
denotes the empirical risk of h(:; w) on D, i.e., the average incurred loss of using h with
w on D. Provided that ¢ in Equation (2.42) is a continuous and mostly differentiable
function, iteratively updating w in the direction of the negative gradient of the Ly
w.r.t. w may lead to finding a w minimizing Equation (2.42).! This formulation gives
a rise to well known Gradient Descent (GD) algorithm (Robbins and Monro, 1951).
There are three major different variations of GD: Full-batch GD, Stochastic Gradient
Descent (SGD), and mini-batch SGD.

FuLrL-BaTcH GD: At each the full-batch GD update, w is updated as follows

Wil =Wy — 1]

D Vu t(h(xwi),y) = Wi = Vo Lo (W), (2.43)
(xy)eD

1
1D
where n € R denotes the learning rate. The computational cost for a single GD update

is O(|D]). Consequently, as |D| grows to billions, a single gradient step becomes
prohibitively long (Goodfellow et al., 2016).

SGD: SGD can be seen as an extreme simplified version of the full-batch GD. At each
SGD update, w is updated as follows

W1 = Wy — NVl (h(X:); Wi, Uy), (2.44)

where (x4, y;) € D denotes a randomly sampled data point. Hence, SGD reduces the
computational cost of the parameter update from O(|D]) to O(1).

INote that although the mean absolute error (see Table 2.1) is not differentiable at 0, it can be also
minimized in practice.
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Mini-BATCH SGD: The mini-batch SGD can be seen as a less simplified version of
the full-batch GD compared to SGD. The parameter update is defined as

Wiyl =Wy —1h

D, Vw tlh(sw),y) =wi =y Vo Lp(w),  (245)
(xy)eB

1
18|
where 8 C D denote a set of data points that are sampled uniformly at random
without replacement. Hence, the mini-batch SGD reduces the computational cost for
a parameter update from O(|D]) to O(|B|), where |D| >> |B|. The size of the batch
size is often selected w.r.t. the available hardware (see Goodfellow et al. (2016) for more
details). For the sake of brevity, we will omit the term of the mini-batch. We refer
Section 1.5. of LeCun et al. (2002) for details about the convergence properties of SGD
and GD.

MoMENTUM UpPDATE: In Equations (2.43) and (2.45), gradients are elementwise
averaged. This often leads to oscillating parameter updates provided that 7 is not
sufficiently small (LeCun et al., 2002). Oscillating parameter updates can slow down
convergence and sometimes even lead to divergence during training (Goodfellow et al.,
2016). Although using sufficiently small 7 alleviates oscillating parameter updates, it
results in slower convergence. The momentum update dampens this oscillating behavior
by updating parameters with exponential moving average of previous gradients (LeCun
et al., 2002; Sutskever et al., 2013). More specifically, SGD with the momentum update

is defined as

Virg = p v+ (1= )V Lg(wy) Momentum Update (2.46)

Wit = Wi — Vi, Parameter Update (2.47)

where p € [0,1) denotes the momentum decay controlling the impact of old gradients
and v; = 0. If y = 0, then the impact of old gradients in the parameter update is discarded,
i.e., previous gradients are scaled to 0. Conversely, setting y ~ 0.99 implies that w is
not updated in the direction of the steepest descent. If the loss surface is highly non-
spherical, using Momentum often accelerates the convergence as it smooths/dampens
the size of the parameter updates along directions of high curvature. This results in

larger parameter updates along the directions of low curvature (LeCun et al., 2002).
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RMSProOP AND ADaM: Tieleman and Hinton (2012) propose RMSprop that tackles
the oscillating parameter update behavior by finding an adaptive learning rate for each

parameter. More specifically, the parameter update in RMSprop is defined as

Uy = puy + (1— p) (VwLs(w;) o VyLg(w;)) Moving Avg. of Sq. Grads. (2.48)
\Y
Wi = Wy — UM, Parameter Update (2.49)
U +€
where all operations in Equation (2.49) are performed in an elementwise fashion and
€ = 1078 (Tieleman and Hinton, 2012). Dividing the current gradient element-wise by
running average of squared gradients results in individual learning rate per parameter.
This permits using larger learning rates 5. Kingma and Ba (2014) propose Adam that

combines Momentum with RMSprop with bias correction terms as follows

Virr = p1vi+ (1= B1)Vw Lg(wy) Momentum (2.50)

U1 = foup + (1 - f2) (VwLs(wy) o VywLp(w;)) RMSprop (2.51)

Vgl = th Momentum Correction (2.52)
(1 - ﬁ1)

A Urp1 .

U1 = ——— RMSprop Correction (2.53)
(1 - ﬂg)

Wil =Wy — 1) AVHI , Parameter Update (2.54)

U +€

where f1, f, € [0, 1). Kingma and Ba (2014) show that initializing u and v with zero
vectors biases weight updates towards zeros, hence it slows the learning process during

the early phase of the training process.

CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: In most of our scientific con-
tributions, we apply the Adam optimizer in a stochastic mini-batch fashion (Kingma
and Ba, 2014). Yet, as the size of the input knowledge graph grows, the extra memory
overhead caused by storing v and u becomes more tangible w.r.t. our computational
budget. Consequently, during our experiments, we carefully selected gradient-based op-
timizers w.r.t. the size of benchmark datasets as well as memory constraints. Moreover,
we incorporate our domain knowledge in our open-source framework (see Chapter 10)

to facilitate large-scale applications.
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2.2 REINFORCEMENT LEARNING

In recent years, RL has been successfully applied in learning policies for sequential
decision-making problems. Notable examples range from deep Q-learning for Atari
game-playing (Mnih et al., 2015) to protein folding (Jumper et al., 2021). Moreover,
various RL models have been applied in diverse tasks on KGs, including question
answering, link prediction, fact checking and knowledge graph completion (Zheng
etal., 2018; Xian et al., 2019; Das et al., 2018; Lin et al., 2018; Xiong et al., 2017). Sequential
decision problems in RL are often modeled as Markov Decision Processs (MDPs) applied
to model the synchronous interaction between an agent and an environment in RL.
Formally, an MDP is defined by a 5-tuple (S, A, R, T, y), which comprises of a set of
states S, a set of actions A, a reward function R, a transition function T and the discount
rate y € [0,1]. Given a state s; € S at a time ¢, an agent takes an action a; from the set
A(s;) of actions available on s;. Upon taking an action, the agent receives a reward
ry and reaches the next state s;,;. The probability of reaching s;;; and receiving r; by

taking action a; in a given s; is assigned by T. This synchronous interaction between

an agent and an environment induces a trajectory r. The discounted return of the '
point in a trajectory is defined as
2 —
Gr=ri+yrip+yrue+...+ y|T| tr|T|_t, (2.55)

where the discount rate y € (0,1] determines the present value of future rewards.
Setting y = 0 implies that the present value of future rewards is ignored, whereas
setting y = 1 implies that the present value of future rewards is equally important
as the current reward. The goal of an RL agent is to select actions in a fashion that
maximizes the cumulative discounted rewards (Sutton and Barto, 2018). A policy 7
prescribes which action to take in a given state. An optimal policy 7, hence prescribes
actions on any state that maximize G;. To obtain 7., value functions are often used.

The action-value function Q, : S X A — R is defined as

Qn(s,a) =E; [G; | st = s,a; = a]. (2.56)
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LEARNING TO ACT OPTIMALLY: Using the Bellman equation, the optimal action-

value function Q. can be approximated:
Qiv1(s,a) — Qi(s,a) +n[r+y max, Qi(sa") ~Qi(s, a)], (2.57)
a S

where s,a € A(s),s’,r, and n denote the current state, the action taken on s, the
next stated reached by taking a on s, the reward of reaching s’, and the learning rate,
respectively. Through using the iterative update defined in Equation (2.57), Q; converges
to Q. as i — oo (Sutton and Barto, 2018). However, iteratively approximating exact
optimal values is often computationally infeasible as [S| or |A| increase. In practice, a
neural network parameterized with © is commonly applied to approximate the optimal
action-value function, Q(s, a; ©) ~ Q.(s,a) (Riedmiller, 2005). To this end, trajectories
are often accumulated as a RL agent interacts with an environment. A training dataset
D is iteratively built through appending trajectories. © is learned via minimizing the
following loss function (r + y maxyea(s) Q(s’,a’;©) — Q(s, a; ©))? (Riedmiller, 2005).
Through introducing the experience replay mechanism and using the target network
idea, Mnih et al. (2015) extend the previous work and design the following Q-loss

function

, 2.58
a’eA(s’) ( )

2
‘E(G)l) = E(s,a,r,s’)~U(Z)) |:(7’ +y max Q(S,’ a,; G)l_) - Q(S> a; 61))

where (s,a,r,s’) ~ U(D) denotes drawing a data point uniformly at random from a
set of most recent data points. Hence, the size of D is fixed and it contains only most
recent interactions between an RL agent and an RL environment. Moreover, ©; is the
parameters of the neural network at iteration i and ©; is the parameters of the same
neural network that is only updated at every few steps. This framework (known as
deep Q-learning) allows approximating Q. even in large state-action spaces (Sutton
and Barto, 20138).

CONNECTION TO OUR RESEARCH CONTRIBUTIONS: In Chapter 12, we use a pre-
trained KGE model to represent a quasi-order DL concept space as a RL environment
and use a deep-Q-network as a non myopic heuristic function. This approach plays a

foundational role in an industrial use case (see Chapter 13).
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2.3 KNOWLEDGE GRAPH AND LINK PREDICTION

2.3.1 KNOWLEDGE GRAPH

A Knowledge Graph (KG) represents structured collections of assertions describing the
world (Hogan et al., 2020). These collections of assertions have been used in a wide range
of applications, including web search, personal assistants, recommendation, question
answering, fact checking, summarization, machine translation, and cancer research
(Eder, 2012; Saleem et al., 2014; Zhang et al., 2016; Malyshev et al., 2018; Moussallem
et al,, 2019; Balog and Kenter, 2019; Hogan et al., 2020; Silva et al., 2021). Formally, a KG
is often defined as a set of triples G := {(h,r, t)} € EXRXE, where € and R represent
a set of entities and a set of relations, respectively (Dettmers et al., 2018; Balazevic¢
et al., 2019¢,b). Each triple (h,r,t) € G represents a true assertion and is based on two
entities h, t € & and a relation r € R. h and t are also known as head and tail entities,
respectively. A relation r is symmetric iff. (h,r,t) <= (t,r,h) holds for h,t € &.
Analogously, r is anti-symmetriciff (h,r,t) € G = (t,r,h) ¢ G forallh # t. A relation
ris transitive iff (h,r,t) e GA(t,r,y) € G = (h,r,y) € Gforallh,t,y € & (Sunetal,

1 is a relation

2019; Kazemi and Poole, 2018). The inverse of a relation r, denoted r~
such that for any two entities h and t, (h,r,t) € G < (t,r ,h) € G. Moreover,
the domain and range of a relation are defined as domain(r) = {h | V (h,r,t) € G},

range(r) = {t |V (h,r,t) € G}, respectively.

2.3.2 LINK PREDICTION

Link prediction on KGs refers to the problem of predicting missing triples (Dettmers
et al., 2018). This task is also known as a single-hop reasoning task over KGs (Ren et al.,
2022). In recent years, the link prediction problem has become a benchmark task to
evaluate performance of KGE models. A missing triple can be predicted in one of the
two following means: (1) by predicting a missing relation given two entities or (2) by
predicting a missing entity given an entity and a relation. (1) and (2) correspond to
relation prediction and entity prediction, respectively. (2) can be divided into into two
subcategories: predicting a missing head entity given a relation and a tail entity, and
predicting a missing tail entity given a head entity and a relation. (2) is known as the
link prediction problem in the literature (Dettmers et al., 2018; Ruffinelli et al., 2019).



2.3 KNOWLEDGE GRAPH AND LINK PREDICTION 33

The link prediction problem is often tackled by learning a parameterized scoring
function ¢g : & X R X & — R such that ¢g(h, r, t) ideally signals a likelihood of (h,
r, t) being true (Dettmers et al., 2018). The performance of a KGE model defined as
a parameterized scoring function is quantified by its ability of generalizing well on

unseen triples, i.e., assigning high likelihoods for (h,r, t) € Ggrest,

LiNK AND RELATION PREDICTION EVALUATION: Mean Reciprocal Rank (MRR)
and Hits@N are benchmark metrics to evaluate the performance of a KGE model in the

link prediction problem. The former is defined as

MRR = Z 1 t— (2.59)
- Test bl .
A6 g TANK(Sn h) - rank(S, )

where rank(-, -) returns the filtered rank of an entity and S denotes tuples of entities
with corresponding scores sorted in descending order of scores, e.g., S, = [(x, score)|x €
E Ascore == ¢(x,r,t) A(x,r,t) ¢ G, where the score in S, [i] > the score in Sy, [ ]
provided that i < j. Similarly, Hits@N is defined as

Hits@N =

Z I(rank(Sy, k) < N) + (I(rank(S, £) < N),  (2.60)
(h’r’t)eg’rest

1
2 | gTest |

where I(condition) returns 1 if condition is true, otherwise 0. MRR for the relation

prediction task is defined as

1 1
MRR =——— _, 2.61
|GTest| " rt)ZegTeS‘ rank(S;,r) (2.61)

where rank(-, -) returns the filtered rank of a relation and S denotes tuples of relations
and scores sorted in descending order of scores. Similarly, Hits@N in relation prediction

is computed as

1
Hits@N =—— Z I(rank(S, r) < N), (2.62)
|g | (h,r,t)egTeSt

where I(condition) returns 1 if condition is true, otherwise 0.
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2.4 RELATED WORKS FOR KNOWLEDGE GRAPH EMBEDDINGS

Most Knowledge Graph Embedding (KGE) models are designed to learn continuous
vector representations of entities and/or relations tailored towards link prediction. They
are often formalized as parameterized scoring functions ¢g : & X R X & — R (Wang
et al., 2017; Trouillon et al., 2016; Dettmers et al., 2018; Sun et al., 2019), where &, R
and © denote a set of entities, a set of relations and training parameters, e.g., an
entity embedding matrix E € RIEXd 3 relation embedding matrix R € RIRIXd \where d
represents the number of dimensions. Note that there are also few KGE models that do
not learn such relation embeddings explicitly, e.g., RESCAL represents each relation
as a matrix or SHALLOM does not learn relation embeddings. An embedding vector for
an entity e € & is denoted by e,. Similarly, an embedding vector for a relation r € R
is denoted by e,. A general training procedure for KGE models can be summarized as
follows: During training, given a training data point consisting of a triple (h, r, t) and a
binary label y, embedding vectors of h, r, and t are retrieved ey, e, €; € R?. Thereafter,
these three vectors are transformed into a scalar value, e.g., z = e o e, - e;. Next, the
resulting scalar value z is mapped into the unit interval using the sigmoid function

function, i.e., § = This normalized scalar value g reflects the likelihood of (h,

r, t) being true, i.e., the likelihood of being an element of G. Finally, an incurred loss
between y and g is computed. The resulting models are then evaluated w.r.t. their link
ability of predicting missing entity rankings (Nickel et al., 2015; Dettmers et al., 2018;
Ruffinelli et al., 2019). In Sections 2.4.1 and 2.4.2, we elucidates selected state-of-the-art

KGE models and three commonly used training strategies.

2.4.1 BASELINE MODELS

Here, we give a chronological overview of baseline KGE models. Table 2.2 provides
a detailed overview of state-of-the-art KGE models. Nickel et al. (2011) propose a
three-way factorization of a third-order binary tensor representing an input KG. The
proposed approach (RESCAL) is limited in its scalability as it has a quadratic complexity
in the factorization rank (Nickel et al., 2016). More specifically, as |R| increases, |®| of
RESCAL grows quadratically in the entity embedding dimension. Balazevi¢ et al. (2019c)
propose to apply the Tucker decomposition on third-order binary tensor representing

an input KG.
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Yang et al. (2015) propose DistMult that can be seen as an extension of RESCAL with
a diagonal matrix per relation, where the dense core tensor is replaced with diagonal
matrices. DistMult does not perform well on triples with antisymmetric relations
(e.g., (Barack, HasChild, Malia)), whereas it performs well on symmetric relations
(e.g., (Barack, Married, Michelle)). To avoid this shortcoming, Trouillon et al. (2016)
extend DistMult by learning representations in a complex vector space. Their approach
(ComplEx) can infer both symmetric and antisymmetric relations via complex vector
multiplication followed by a Hermitian inner product of embeddings which involves the
conjugate-transpose of one of the two input vectors. ComplEx yields state-of-the-art
performance on the link prediction problem, while leveraging linear space and time
complexity of the dot products (Ruffinelli et al., 2019). Sun et al. (2019) design RotatE
that employs a rotational model by taking relations as rotations between entities in a
complex space via the Hadamard product. RotatE performs well on transitive relations,
while ComplEx performs poorly (Sun et al., 2019). Zhang et al. (2019) extend ComplEx
into quaternions through applying the quaternion multiplication followed by an inner
product to compute scores of triples. Cao et al. (2021) propose to learn dual quaternion
valued embeddings by this they aim to universally models relations as the compositions
of translation and rotation operations.

All aforementioned models learn embeddings of entities and/or relations via element-
wise vector operations (e.g., the Hadamard product or inner product product). Although
such models perform well in terms of predictive accuracy and computational complexity,
to increase their expressiveness the embedding vector size is the only option. Dettmers
et al. (2018); Nguyen et al. (2018a); Balazevi¢ et al. (2019b) show that convolution opera-
tion can be applied to increase the expressiveness of KGE models without significantly
increasing the number of parameters. Dettmers et al. (2018) design ConvE that applies
a 2D convolution to model the interactions between entities and relations. Through
interactions captured by 2D convolution, ConvE yields a state-of-art performance in
link prediction. Nguyen et al. (2018a) propose ConvKB that extends ConvE by omitting
the reshaping operation. Similarly, HypER extends ConvE by applying relation-specific
convolution filters as opposed to applying filters from concatenated subject and relation

vectors (Balazevic¢ et al., 2019b).
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Table 2.2: State-of-the-art KGE models with training strategies. e denotes embeddings, € € C
corresponds to the complex conjugate of e. =, f, concat(),vec() and <« denote a convolution
operation with w kernel, rectified linear unit function, concatenation operation, flattening op-
eration, and unit normalization, respectively. ®, %, o, - denote Hamilton/Quaternion, Octonion,
Hadamard and inner products, respectively. In ConvE, the reshaping operation is omitted. The
tensor product along the n-th mode is denoted by X, and the core tensor is represented by ‘W.
conv(-, -) denotes 2D convolution operation followed by affine transformations. Bold capital
letters denotes a weight matrix to perform linear transformation. MSE, BCE and MB denote
mean squared error, binary cross entropy, margin based loss functions. NegSamp stands for
negative sampling.

Model Scoring Function VectorSpace Loss Training
RESCAL (Nickel et al., 2011) e, - W, -e; ep,e; € R MSE Full

DistMult (Yang et al., 2015) (ep, e, €;) ener,e; € R MB NegSamp
ComplEx (Trouillon et al., 2016) Re({ep, e, €;r)) en er,e; € C BCE NegSamp

ConvE (Dettmers et al.,, 2018)  f(vec(f([en;er] * w))W) - €; ep,e,,e; € R BCE KvsAll
HyPER (Balazevic et al., 2019b)  f(vec(ep * vec(e,H))W)) - e; e, e,,e; € R BCE KvsAll

TuckER (Balazevi¢ et al., 2019¢) W X1 ep Xy €, X3 €; ene,e; € R BCE KvsAll
RotatE (Sun et al., 2019) —|lence —e; || enere; € C MB NegSamp
QuatE (Zhang et al., 2019) ey, e e ey, e, e; € H BCE NegSamp
SHALLOM (ours) W - f(H - concat(ey, e;)) en,e; €ER BCE KvsAll
CoNEx (ours) Re((conv(eh, e ), epn, er,e_t)) ene,e; € C BCE KvsAll
QMutt (ours) eL®e e ey e,e; € H BCE KvsAll
OMutr (ours) epke, - e enerne; € 0 BCE KvsAll
ConvQ (ours) conv(ep,e,)o (e, ®e,) e epe,e, € H BCE KvsAll
ConvO (ours) conv(ep, e,) o (epke,) e epe,e €0 BCE KvsAll

2.4.2 TRAINING STRATEGIES

There are three commonly used training strategies for KGE models.

NEGATIVE SAMPLING: Bordes et al. (2013) design a negative sampling technique via
perturbing an entity in a randomly sampled triple, i.e., replacing an entity given a triple
with a randomly sampled entity. In this setting, a triple (h,r,t) € G is considered as a
positive example, whilst {(h, r, x)|Vx € &} U {(x,r, t)|Vx € &} is considered as a set of
possible candidate negative examples. For each positive triple (h,r, t) € G, a negative

triple is sampled from the set of corresponding candidate negative triples.
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1vsALL: Lacroix et al. (2018) discard the idea of randomly sampling negative triples
and propose 1vsAll the training strategy. For each (h,r,t) € G, all possible tail per-
turbed set of triples are considered as negative triples regardless of whether a perturbed
triple exists in an input KG, i.e., {(h,r,x)|Vx € & : x # t}. Given that this setting
does not involve negative triples via head perturbed entities, a data augmentation
technique is applied to add inverse triples (t, r™!, h) for each (h, r, t). r™!is a syn-
tactically generated relation denoting the inverse of a relation r, e.g., for (h, bornIn,
t), (t, reverse_bornIn, t) obtained. Therefore, the size of the data is doubled. Their
results showed that even simpler models reached state-of-the-art performance in link

prediction task via 1vsAllL

KvsALL: Dettmers et al. (2018) propose KvsAll by extending 1vsAll via constructing
multi-label binary vectors for each (h, r) Ruffinelli et al. (2019).2 More specifically, a
training data point consists of a pair (h, r) and a binary vector containing 1 for {x|x €
E A (h,r,x) € G} and 0s for other entities. Recent KGE models are commonly trained
with KvsAll (Balazevic et al., 2019; Nguyen et al., 2018a; Demir and Ngonga Ngomo,
2021a; Ruffinelli et al., 2019; BalaZevi¢ et al., 2019b).

KvsSaMPLE: We design a new training strategy called KvsSample that allows practi-
tioners to find a middle ground between the negative sampling and KvsAll methods
w.r.t. available computational budgets. As in KvsAll, a training data point consists of a
pair (h, r) and a binary vector containing 1s for all {x|x € & A (h,r,x) € G} and 0s for
other entities. At each mini-batch construction, a binary label vector is dynamically

constructed by up or subsampling 1s or 0s. This technique is elucidated in Chapter 8.

OpPTIMIZATION: During training with 1vsAll or KvsAll, for a given pair (h, r), pre-
dicted scores for all entities are computed, ie., Vx € & : ¢((h,r,x))) = z € Rl

Through the logistic sigmoid function o(z) = scores are normalized to obtain

1
1+exp(-z)°’

ZNote that the KvsAll strategy is called 1-N scoring in Dettmers et al. (2018) Here, we follow the
terminology of Ruffinelli et al. (2019).
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predicted likelihood of entities denoted by ¥ . An incurred binary cross-entropy loss on

a training data point is computed as

€]

1 i o (i i o (i
&l Z yPlog(3) + (1 - yD)log(1 -7, (2.63)
i=1

f(}}s Y) = -
where y € [0,1]/®! is a binary sparse label vector. If (h,r,&;) € G, then y) = 1,
otherwise y( = 0. Recent works show that this optimization process often leads to

state-of-the-art link prediction performance (Balazevic et al., 2019; Ruffinelli et al., 2019).

CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: In Chapter 4, Chapter 5, Chap-
ter 6, Chapter 7, and Chapter 8, we focus on knowledge graph embedding models
tackling the link prediction and/or relation prediction problems. In most of experi-
ments, we use KvsAll as the training strategy and the binary cross-entropy loss function.
In Chapter 9, we formulate the description logic concept learning problem as a multi-
label classification problem from sets of input examples to pre-selected concepts, where

the binary cross-entropy function is used as a loss function.

2.5 DEscrIPTION LoGIics, KNOWLEDGE BASE AND CONCEPT LEARNING

2.5.1 DEscRrRIPTION LoGICS

A Description Logic (DL) is a decidable fragment of the First-Order Logic (FOL) that
uses only unary and binary predicates (Baader et al., 2003). The set of unary predicates,
binary predicates and constants correspond to the set of named concepts N¢, roles N,
and individuals N of the DLs respectively. Throughout this work, we focus on DL
ALC (Attributive Language with Complements) (Schmidt-Schaufl and Smolka, 1991)
as in most recent works (Bithmann et al., 2016; Kouagou et al., 2022a; Tran et al., 2017).

The model-theoretic semantics of ALC are given in Table 2.3.

2.5.2 KNOWLEDGE BASE

A Knowledge Base (KB) is often defined as a tuple of terminological axioms and asser-
tions K = (Tbox, Abox) (Lehmann, 2010; Kouagou et al., 2022b). Therein, Thox denotes
a set of terminological axioms describing relationships between named concepts Ne.

Every terminological axiom is in the form of AC Bor A = Bs.t. A,B € Nc.
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Tbox is also refereed as an ontology (Schockaert et al., 2021a). Abox denotes a set
of assertions describing relationships among individuals a, b € Nj via roles r € Ny as
well as instantiation/membership relationships between N; and N¢. Every assertion in
Abox must in the form of A(x)/(x, type,A) and r(x,y)/(x,r,y), where A € N¢, r € Np,
and x,y € N;. A KB can always be translated into a KG and vice-versa. In a KB, an
information is categorized as a terminological axiom or an assertion, whereas such
dichotomy does not exists in a KG (see Section 2.3.1). Most KBs on the Web provide a
large collections of facts in the form of assertions (Nickel et al., 2015). Yet, they often
lack well-structured ontologies (Nickel et al., 2012; Schockaert et al., 2021a).

Table 2.3: ALC syntax and semantics. I stands for an interpretation, AZ for its domain.

Construct Syntax Semantics

Atomic concept A Al c AT

Role r rf c AT x AT

Top concept T A

Bottom concept 1 0

Conjunction cnD ¢t np?

Disjunction cubD cfup?

Negation -C A\ !

Existential restriction Ar.C {x|3y(x,y) erf Ayecl)
Universal restriction Vr.C {x | Vy.(x,y) € r! impliesy € C*}

2.5.3 CONCEPT LEARNING

We define Concept Learning (CL) in a fashion akin to Lehmann and Hitzler (2010).
Let K = (Tbox, Abox) over ALC , the set E* of positive examples, and the set E~ of
negative examples be given, where E*,E~ ¢ N A E* N E~ = (. The goal of CL is to
find a H such that fulfills the following conditions

Vp € E*,Vn € E*(K | H(p)) A (K I H(n)), (2.64)

where H € C denotes an ALC concept and C denotes all valid ALC concepts under
the constructionrules: C:=A | -C|CNC|CuUC | 3r.C|Vr.C|, where A € N¢c and
r € Np.
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K E H(p) implies that an inference of the class membership H(p) is a logical
consequence of K. Note that CL is also commonly called as Class Expression Learn-
ing (CEL) since a DL concept can be translated to an Web Ontology Language (OWL)
class expression (Lehmann, 2010; Lehmann et al.,, 2011). Checking whether a H ful-
fills Equation (2.64) is performed by a retrieval function R : C — 2N defined under
Open World Assumption (OWA) or Close World Assumption (CWA). The CL prob-
lem is often transformed into a search problem within a quasi-ordered state space
(S, <) (Bithmann et al., 2018; Fanizzi et al., 2019; Lehmann et al., 2011; Lehmann and
Hitzler, 2010; Tran et al., 2017; Kouagou et al., 2022a), where each state is an ALC
concept. Traversing in § is commonly conducted via top-down (also called downward)

refinement operators, which are defined as p : S — 25 with
VAeS:p(A) c{BeS|B<A}L (2.65)

State-of-the-art CL models begin their search towards a H, after a search tree is ini-
tialized with the most general DL concept (T) as a root node. This search tree is
iteratively built by selecting a node containing a quasi-ordered DL concept with the
highest heuristic value and adding its qualifying refinements as its children into a search
tree (Lehmann and Hitzler, 2010).

HEeURIsTICS. A heuristic function is the key to an efficient search in § towards a
H (Lehmann et al., 2011). The number of explored concepts and runtimes are used as
proxy for the efficiency. Various heuristic functions have been investigated (Lehmann
et al., 2011; Westphal et al., 2021). Most heuristic functions of state-of-the-art models can
be considered as myopic functions favoring syntactically short and accurate concepts.
Hence, they are prone to stuck in a local optimum (Westphal et al., 2021). For instance,
the heuristic function of CELOE is defined as

¢ceLoE(A B) = Q(B) + A+ [Q(B) - Q(A)] - - |BI, (2.66)
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where A € S, B € p(A). f > A > 0 and Q(-) denotes a quality function (e.g., the F;
score). Through Q(-) and | - |, the search is steered based on solely A and B towards

more accurate and syntactically shorter concepts. F; (+) is defined as

| E*NR(A) |

Fi(4) = | E*NR(A) | +0.5(] E-NR(A) |+ | E*\ R(A) |)’

(2.67)

As the size of KB grows, runtimes of performing retrieval operations R(-) increase (Bin
et al.,, 2016, 2017; Lehmann, 2010). Traversing in S becomes a computational bottleneck
on large KBs. Therefore, reducing the number of explored concepts plays an important
role to tackle to tackle CL on KBs. Although state-of-the-art models (e.g. CELOE) apply
redundancy elimination and expression simplification rules to reduce the number of
explored concepts, impractical long runtimes of state-of-the-art models still prohibit
large-scale applications (d’Amato, 2020; Hitzler et al., 2020).

The selected assumption underlying R(-) also plays a role to tackle CL on large
KBs. Due to the incomplete nature of KBs, OWA seems to be a more suitable assump-
tion (Rudolph, 2011). Yet, Using OWA often makes membership queries (e.g., H(+))
computationally more challenging (Fanizzi et al., 2008; Lehmann et al., 2011). Conse-
quently, CWA is often adopted in many recent works (Heindorf et al., 2022; Kouagou
et al., 2022a; Tran et al., 2017).

CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: In Chapter 9, we formulate the
concept learning problem as a multi-label classification problem. To tackle this problem,
we propose a permutation-invariant neural embedding model that learns embeddings
for sets of examples tailored towards F; scores of pre-selected description logic concepts
w.r.t. input examples. In Chapter 12, we introduce an use case for applying a pretrained

KGE model to tackle the concept learning problem.
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2.6 HYPERCOMPLEX NUMBERS

2.6.1 QUATERNIONS

The quaternions are a 4-dimensional normed division algebra (Hamilton, 1844). A
quaternion number Q € H is defined as Q = a + bi + ¢j + dk, where a, b, ¢, d are real
numbers and i, j, k are imaginary units satisfying Hamilton’s rule: i = j? = k* = ijk =

—1. The quaternion multiplication of Q; and Q; is defined as

01 ® Qy = (araz — biby — cicy — didy)
+ (albg + b1a2 + Cldg - d1C2) i
+ (a102 - b1d2 +ciap + dlbz)_]

+ (a1d2 + b1c2 - Clbg + dlaz) k.

The quaternion multiplication is also known as the Hamilton product (Zhang et al.,

2021). The inner product of two quaternions is defined as

Q1 - Q2 =(a1az) + (b1b2) + (cic2) + (d1d2).

For a d-dimensional quaternion vectora +bi+cj+dk witha, b,c,d € R4, the inner

product and multiplication is defined accordingly.

2.6.2 OCTONIONS

The Octonions are an 8-dimensional algebra where an octonion number O; € O is
defined as O; = xg + x1€1 + X2€5 + X3€3 + X4€4 + X5€5 + Xs€¢ + X7€7, Where e, e, ... €7
are imaginary units (Baez, 2002). The inner product of two octonions O; - O; € R is
obtained as defined by taking the inner products between corresponding scalars and

imaginary units:
01 . 02 = XoYo + X1Y1 + X2Y2 + X3Y3 + X4lY4 + X5Ys5 + XeYg + X7Y7. (268)

A d-dimensional octonion-valued vector is defined as {xo+xe1+- - -+x7€7 : Xq,...,X7 €

R?} with the vector operations being defined correspondingly to quaternions.
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The octonion multiplication of O; and O, is defined as

O1% 0z = (XoYo — X1Y1 — X2Y2 — X3Y3 — XaYs — X5Y5 — XsY6 — X7Y7)
+(Xoy1 + X1Yo + X2Y3 — X3Y2 + X4Y5 — X5Ys — XeY7 + X7Ys) €1
+(Xoy2 = X1Y3 + XaYo + X3Y1 + X4Ys + X5Y7 — XeYs4 — X7Y5) €2
+(X0y3 + x1y2 — X2y1 + X3Yo + X4Y7 — X5Ys + X6Ys — X7Y1) €3
+(X0Ya — X195 — X2Ys — X3Y7 + XaYo + X5Y1 + XeY2 + X7Y3) €4
+(X0Ys + X1Ys — X2Y7 + X3Ys — X4Y1 + X5Yo — XeY3 + X7Y2) €5
+(X0Ys + X1Y7 + X2y — X3Ys5 — XaY2 + X5y3 + XeYo — X7Y1) €6

+(XoY7 — X1Y6 + X2Us + X3Ys — X4Y3 — Xs5Y2 + XeY1 + X7Yo) €7.

CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: In Chapter 5 and Chapter 6, we
design KGE models to learn complex-, quaternion-, and octonion-valued embeddings

for entities and relations to advance the state of the art in benchmark tasks.

2.7 HADAMARD AND KRONECKER PRODUCTS

For any matrix X € R™" and Y € R™", the Hadamard product X o Y is defined as

XY oo XpYip
XoY = : - : € R™", (2.69)
Xleml .. anYmn

where X;; only interacts with Y;;. For any matrix Z € RP*9, the Kronecker Product (KP)
X ® Z is a block matrix defined as

XuZ ... Xl
XQZ=| : - © | e R (2.70)
XmZ ... XmunZ
where every element of X interacts with every element of Z. In contrast to the Hadamard

product, the Kronecker product is not commutative, i.e., X® Z # Z ® X most commonly
holds. For more details, we refer to (Van Loan, 2000; Graham, 2018).
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CONNECTION TO OUR SCIENTIFIC CONTRIBUTIONS: In Chapter 7, we design a tech-
nique based on Kronecker product to decrease the number of parameters in a knowledge

graph embedding model, while retaining its effectiveness in the link prediction problem.
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A Physical Embedding Model for
Knowledge Graphs

PReAMBLE: This chapter is based on Demir and Ngonga Ngomo (2020).

DECLARATION OF AUTHORSHIP: The original idea was introduced by Axel-Cyrille
Ngonga Ngomo. The research contributions were further developed by Caglar Demir
and discussed with Axel-Cyrille Ngonga Ngomo. Caglar Demir implemented the al-
gorithm, conducted the experiments, and analyzed their results. Caglar Demir wrote
the manuscript and revised it with Axel-Cyrille Ngonga Ngomo. The code is avail-
able at https://github.com/dice-group/PYKE and https://github.com/dice-group/dice-
embeddings.

RESEARCH QUESTIONS: In this work, we are concerned with the following two

research questions:

1. RQ1. Can we design a knowledge graph embedding model to predict missing
triples on large knowledge graphs?

2. RQ2. Can we answer RQ1. while ensuring the parameter efficiency of our

models?
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3.1 METHODOLOGY

In this chapter, we introduce PYKE. Here, our goal is to learn real-valued continuous
vector representations for entities and relations of a Knowledge Graph (KG) such that
similar entities and relations are assigned with similar embedding vectors. To this end,
we design PyYKE that is a physical model based on Hooke’s law and its inverse with
ideas from simulated annealing to compute embeddings for KGs efficiently. We prove
that PYKE achieves a linear time complexity of each of its iterations in the size of the
input KG. The architecture of PYKE allows practitioners to incorporate their domain
knowledge in the learning process my means of selecting a similarity function. Our
findings suggest that PYKE outperforms many state-of-the-art models in type prediction
and cluster purity downstream tasks, while attaining a superior runtime performance.

In Table 3.1, we summarize the symbols used in this chapter.

Table 3.1: An overview of our notation used in Chapter 3.

Notation Description

G An RDF knowledge graph

R, P, B, L Set of all RDF resources, predicates, blank nodes and literals, respectively
S Set of all RDF subjects with type information

V, o Vocabulary of G and similarity function on V, respectively

Ed Embedding of x at time ¢

F,,F, Attractive and repulsive forces based on the Hooke’s law, respectively
PPMI(-,) The positive pointwise mutual information function

K Threshold for positive and negative examples

P Function mapping each x € V to a set of attracting elements of V

N Function mapping each x € V to a set of repulsive elements of V

w, & Repulsive constant and System energy, respectively

€ Upper bound on alteration of locations of x € V across two iterations
Ae Energy release

g Objective function

3.1.1 RDF KNOWLEDGE GRAPHS

In this work, we focus on computing embeddings for RDF KGs. Let R be the set of all
RDF resources, 8 be the set of all RDF blank nodes,  C R be the set of all properties
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and £ denote the set of all RDF literals. An RDF KG @G is a set of RDF triples (s, p, 0)
where s €e RUB,p € Pando € RU B U L. We aim to compute embeddings for
resources and blank nodes. Hence, we define the vocabulary of an RDF knowledge
graphGasV ={x:x e RUPUBAI(s,p,0) € G:x € {s,p,o}}. Essentially, V
stands for all the URIs and blank nodes found in G. Finally, we define the subjects with
type information of G as S = {x : x € R\ P A (x,rdf: type,0) € G}, where rdf: type

stands for the instantiation relation in RDF.

3.1.2 Hooke’s Law

Hooke’s law describes the relation between a deforming force on a spring and the
magnitude of the deformation within the elastic regime of said spring. The increase of
a deforming force on the spring is linearly related to the increase of the magnitude of

the corresponding deformation. Formally, Hooke’s law can be expressed as follows:
F=-kA (3.1)

where F is the deforming force, A is the magnitude of deformation and k is the spring
constant. Let us assume two points of unit mass located at x and y respectively, e.g.,
embeddings of two entities in a vector space. We assume that the two points are
connected by an ideal spring with a spring constant k, an infinite elastic regime and an
initial length of 0. Then, the force they are subjected to has a magnitude of k||x — y||.
Note that the magnitude of this force grows with the distance between the two mass
points. The inverse of Hooke’s law, where

k

Finverse = _Z (3.2)

has the opposite behavior. It becomes weaker with the distance between the two mass
points it connects.
3.1.3 PosSITIVE POINTWISE MUTUAL INFORMATION

The Positive Pointwise Mutual Information (PPMI) is a means to capture the strength

of the association between two events (e.g., two entities appearing in a triple of a KG).
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Let a and b be two events. Let P(a, b) stand for the joint probability of a and b, P(a) for
the probability of a and P(b) for the probability of b. Then, PPMI(aq, b) is defined as

(3.3)

PPMI(a, b) = max( P(a,b) ) ,

R TPE)

3.1.4 INTUITION

PYKE is an iterative approach that aims to represent each element x of the vocabulary
V of an input KG G as a vector in the n-dimensional space R". Our approach begins by
assuming that each element of V' is mapped to a single point (i.e., its embedding) of unit
mass whose location can be expressed via an n-dimensional vector in R" according to
an initial (e.g., random) distribution at iteration ¢ = 0. In the following, we will use X,
to denote the embedding of x € V at iteration ¢. We also assume a similarity function
0: VXYV — [0,0) (e.g., a PPMI-based similarity) over V to be given. Simply put,
our goal is to improve this initial distribution iteratively over a predefined maximal

number of iterations (denoted T) by ensuring that

1. the embeddings of similar elements of V are close to each other while

2. the embeddings of dissimilar elements of V' are distant from each other.

Letd : R" X R" — R* be the distance (e.g., the Euclidean distance) between two em-
beddings in R". According to our goal definition, a good iterative embedding approach

should have the following characteristics:

Cy: If o(x,y) > 0, then d(?t,_y>t) < d(_x)t_l,_y>t_1). This means that the embeddings
of similar terms should become more similar with the number of iterations. The

same holds the other way around:

Cp: If o(x,y) = 0, then d(¥ 1, Y1) > d(X -1, 7 1-1).

We translate C; into our model as follows: If x and y are similar (i.e., if o(x,y) > 0),
then a force F, (X t,_y)t) of attraction must exist between the masses which stand for x
and y at any time t. F,(%;, 7 ;) must be proportional to d(X,,7/}), i.e., the attraction
between must grow with the distance between (¥; and 7/;). These conditions are

fulfilled by setting the following force of attraction between the two masses:

”Fa(_x)ta_y)t)ll =o(x,y) X d@t,_y)t)- (3.4)
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From the perspective of a physical model, this is equivalent to placing a spring with a
spring constant of o(x, y) between the unit masses which stand for x and y. At time
t, these masses are hence accelerated towards each other with a total acceleration
proportional to ||F, (X t,_y)t) ||. The translation of C, into a physical model is as follows:
If x and y are not similar (i.e, if o(x,y) = 0), we assume that they are dissimilar.
Correspondingly, their embeddings should diverge with time. The magnitude of the
repulsive force between the two masses representing x and y should be strong if the
masses are close to each other and should diminish with the distance between the two
masses. We can fulfill this condition by setting the following repulsive force between
the two masses:

IIF, (X0, o)l = (3.5)

®

e
where @ > 0 denotes a constant, which we dub the repulsive constant. At iteration ¢,
the embeddings of dissimilar terms are hence accelerated away from each other with
a total acceleration proportional to ||F,(¥;, 7 )||. This is the inverse of Hooke’s law,
where the magnitude of the repulsive force between the mass points which stand for
two dissimilar terms decreases with the distance between the two mass points.

Based on these intuitions, we can now formulate the goal of PYKE formally: We aim
to find embeddings for all elements of V which minimize the total distance between
similar elements and maximize the total distance between dissimilar elements. Let
P : ¥V — 2V be a function which maps each element of V to the subset of V it is
similar to. Analogously, let N : V — 2V map each element of V to the subset of Vit

is dissimilar to. PYKE aims to optimize the following objective function:

JWV =2, 2 dER |-, >, dR D (3.6)

x€V yeP(x) x€V yeN(x)

PykE implements the intuition described above as follows: Given an input KG G,
PyYKE first constructs a symmetric similarity matrix A of dimensions |V| X |V|. We
will use ay, to denotes the similarity coefficient between x € V and y € V stored
in A. PYKE truncates this matrix to (1) reduce the effect of oversampling and (2)
accelerate subsequent computations. The initial embeddings of all x € V in R" are then
determined. Subsequently, PYKE uses the physical model described above to improve

the embeddings iteratively. The iteration is ran at most T times or until the objective
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function J (V) stops decreasing. In the following, we explain each of the steps of the

approach in detail. We use the RDF graph shown in Figure 3.1 as a running example.!

Figure 3.1: A visualization of an RDF knowledge graph.

BUILDING THE SIMILARITY MATRIX: For any two elements x, y €V, we set Axy =

o(x,y) = PPMI(x, y) in our current implementation. We compute the probabilities
P(x), P(y) and P(x,y) as follows:

_Hspo)eGixelspolll

Fx) {(5p.0) € G (37)
Similarly,
_ H(s,p,0) € G:y € {s,p,o}}
TP S PV R (38)
Finally,
P(x,y) = H{(s,p,0) € G: {x,y} C {s,p,o}}l. (3.9)

[{(s.p,0) € G}

This example is provided as an example in the DL-Learner framework at http://dl-learner.org.
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PPMI Similarity Matrix
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Figure 3.2: A visualization of the PPMI similarity matrix of resources in the RDF knowledge
graph shown in Figure 3.1.

For our running example (see Figure 3.1), PYKE constructs the similarity matrix shown
in Figure 3.2. Note that our framework can be combined with any similarity function
o. Exploring other similarity function is out the scope of this paper but will be at the

center of future works.

CoMPUTING P AND N: To avoid oversampling positive or negative examples, we
only use a portion of A for the subsequent optimization of our objective function. For
each x € V, we begin by computing P(x) by selecting K resources which are most
similar to x. Note that if less than K resources have a non-zero similarity to x, then
P(x) contains exactly the set of resources with a non-zero similarity to x. Thereafter,
we sample K elements y of V with a,, = 0 randomly. We call this set N(x). For all
y € N(x), we set ay, to —w, where w is our repulsive constant. The values of a,, for
y € P(x) are preserved. All other values are set to 0. After carrying out this process
for all x € V, each row of A now contains exactly 2K non-zero entries provided that

each x € V has at least K resources with non-zero similarity. Given that K << |V|,
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A is now sparse and can be stored accordingly.? The PPMI similarity matrix for our

example graph is shown in Figure 3.2.

INITIALIZING THE EMBEDDINGS: Each x € V is mapped to a single point X, of
unit mass in R" at iteration ¢t = 0. As exploring sophisticated initialization techniques
is out of the scope of this paper, the initial vector is set randomly.? Figure 3.3 shows a

3D projection of the initial embeddings for our running example (with n = 50).

ITERATION: This is the crux of our approach. In each iteration ¢, our approach

assumes that the elements of P(x) attract x with a total force

F,(%;) = Z o(x,y) X (—y>t ~%)). (3.10)

YyeP(x)

On the other hand, the elements of N (x) repulse x with a total force

F.(%y) =- i (3.11)
ye;(x) (_y>t - Xt)

We assume that exactly one unit of time elapses between two iterations. The em-
bedding of x at iteration ¢ + 1 can now be calculated by displacing X ; proportionally
to (F,(¥;) + F.(¥;)).However, implementing this model directly leads to a chaotic
(i.e., non-converging) behavior in most cases. We enforce the convergence using an
approach borrowed from simulated annealing, i.e., we reduce the total energy of the
system by a constant factor Ae after each iteration. By these means, we can ensure
that our approach always terminates, i.e., we can iterate until /() does not decrease

significantly or until a maximal number of iterations T is reached.

IMPLEMENTATION: Algorithm 1 shows the pseudocode of our approach. PYKE up-
dates the embeddings of vocabulary terms iteratively until one of the following two

stopping criteria is satisfied: Either the upper bound on the iterations T is met or a

2We use A for the sake of explanation. For practical applications, this step can be implemented using
priority queues, hence making quadratic space complexity for storing A unnecessary.

3Preliminary experiments suggest that applying a singular value decomposition on A and initializing the
embeddings with the latent representation of the elements of the vocabulary along the n most salient
eigenvectors has the potential of accelerating the convergence of our approach.
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Figure 3.3: A visualization of the 2D PCA projected 50-dimensional embeddings for our
running example. Left are the randomly initialized embeddings. The figure on the right shows
the 50-dimensional PYyke embedding vectors for our running example after convergence. PYKE
was configured with K = 3, w = —0.3, Ae = 0.06 and € = 1073,

lower bound € on the total change in the embeddings (i.e., }; I[%; —%:1]|) is reached.

x€
A gradual reduction in the system energy & inherently guarantees the termination of
the process of learning embeddings. A 3D projection of the resulting embedding for

our running example is shown in Figure 3.3.

3.1.5 COMPLEXITY ANALYSIS

SPACE COMPLEXITY: Let m = |V|. We would need at most @ entries to store

A, as the matrix is symmetric and we do not need to store its diagonal. However, there
is actually no need to store A explicitly. P(x) can be implemented as a priority queue
of size K in which the indexes of K elements of V most similar to x as well as their
similarity to x are stored. N(x) can be implemented as a buffer of size K which contains
only indexes. Once N(x) reaches its maximal size K, then new entries (i.e., y with
PPMI(x,y)) are added randomly. Hence, we need O(Kn) space to store both P and N.
Note that K << m. The embeddings require exactly 2mn space as we store x; and X ;_;
for each x € V. The force vectors F, and F, each require a space of n. Hence, the space
complexity of PYKE lies clearly in O(mn + Kn) and is hence linear w.r.t. the size of the
unique entities and relations when the number n of dimensions of the embeddings and

the number K of positive and negative examples are fixed.

TiIME cOMPLEXITY: Initializing the embeddings requires mn operations. The initial-

ization of P and N can also be carried out in linear time. Adding an element to P and
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Algorithm 1 PykE

Require: T,V,K, €, Ae, w, n

//initialize embeddings
for each x in V do

_x)o = random vector in R";
end for
//initialize similarity matrix
A = new Matrix[|V|][|V]];
for each x in V do

for each yinV do

Axy = PPMI(x,y);

end for
end for
// perform positive and negative sampling
for each x in V do

P(x) = getPositives(A, x, K) ;

N(x) = getNegatives(A, x,K) ;
end for
// iteration
t=1;
E=1;
whilet < T do

for each x in V do

// Simulation of elementwise pull

Fo= % o(xy) X (_y>t-1 _?t—1)§

yeP(x)
// Simulation of elementwise push
F=- Z 5—55—;
yEN(x) Yr-1—X¢t-1

// Parameter Update
X=X +E X (F,+F);
end for
E=E - Ae;

if 3 |[¥;—%:1]| < € then
xeV
break

end if
t=t+1;
end while
return Embeddings ¥,
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N is carried out at most m times. For each x, the addition of an element to P(x) has a
runtime of at most K. Adding elements to N(x) is carried out in constant time, given
that the addition is random. Hence the computation of P(x) and N(x) can be carried
out in linear time w.r.t. m. This computation is carried out m times, i.e., once for each x.
Hence, the overall runtime of the initialization for PYkE is on O(m?). Importantly, the
update of the position of each x can be carried out in O(K), leading to each iteration
having a time complexity of O(mK). The total runtime complexity for the iterations
is hence O(mKT), which is linear in m. This result is of central importance for our
subsequent empirical results, as the iterations make up the bulk of PYKE’s runtime.

Hence, PYKE’s runtime should be close to linear in real settings.

3.2 EXPERIMENTS & RESULTS

3.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

The goal of our evaluation was to compare the quality of the embeddings generated by
PykE with the state of the art. We used two evaluation scenarios. In the first scenario, we
measured the type homogeneity of the embeddings generated by the KGE approaches
we considered. We achieved this goal by using a scalable approximation of DBSCAN
dubbed HDBSCAN (Campello et al., 2013). In our second evaluation scenario, we
compared the performance of PYKE on the type prediction task against that of 6 state-of-
the-art algorithms. In both scenarios, we only considered embeddings of the subset S
of V as done in previous works (Melo et al., 2016; Thoma et al., 2017). All experiments
were carried out on Ubuntu 18.04 with 126 GB RAM with 16 Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz processors. We provide hyperparameter optimization, training
and evaluation scripts at https://github.com/dice-group/PYKE.

DATASETS

We used six datasets (2 real, 4 synthetic) throughout our experiments. An overview of

the datasets used in our experiments is shown in Table 3.2. Drugbank* is a small-scale

*download.bio2rdf.org/#/release/4/drugbank


https://github.com/dice-group/PYKE
download.bio2rdf.org/#/release/4/drugbank
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KG, whilst the DBpedia (version 2016-10) dataset is a large cross-domain dataset.> The
four synthetic datasets were generated using the LUBM generator (Guo et al., 2005) with
100, 200, 500 and 1000 universities.

Table 3.2: An overview of RDF datasets used in our experiments. |G|, |'V|,|S|, and |C| denote
the number of triples, the number of unique entities and relations, the number of unique
entities having type information, and the number of unique RDF classes, respectively.

Dataset |G| V] |S] IC|
Drugbank 3,146,309 521,428 421,121 102
DBpedia 27,744,412 7,631,777 6,401,519 423
LUBM100 9,425,190 2,179,793 2,179,766 14
LUBM200 18,770,356 4,341,336 4,341,309 14
LUBMS500 46,922,188 10,847,210 10,847,183 14
LUBM1000 93,927,191 21,715,108 21,715,081 14

EvAaLUATION METRICS

We evaluated the homogeneity of embeddings by measuring the purity of the clusters
generated by HDBSCAN (Campello et al., 2013). The original cluster purity equation
assumes that each element of a cluster is mapped to exactly one class (Manning et al.,
2010). Given that a single resource can have several types in a knowledge graph (e.g.,
BarackObama is a person, a politician, an author and a president in DBpedia), we
extended the cluster purity equation as follows: Let T = {1, t5, ...} be the set of all class
types found in G. Each x € § was mapped to a binary type vector type(x) of length
|T|. The i-th entry of type(x) was 1 iff x was of type t;. In all other cases, t; was set to

0. Based on these premises, we computed the purity of a clustering as follows:

|C]

Purity = Z ﬁ Z Z cos(type(x), type(y)),
i=1

x€C; yEC,'

(3.12)

Note that we compile the DBpedia datasets by merging the dumps of mapping-based objects, skos
categories and instance types provided in the DBpedia download folder for version 2016-10 at
downloads.dbpedia.org/2016-10.


downloads.dbpedia.org/2016-10
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where C := [C;...Cy] denotes the clusters computed by HDBSCAN, where x € C;
denotes a entity being element of in the i-th cluster. A high purity means that resources
with similar type vectors (e.g., presidents who are also authors) are located close to
each other in the embedding space, which is a wanted characteristic of a KGE.

In our second evaluation, we performed a type prediction experiment in a manner
akin to (Melo et al., 2016; Thoma et al., 2017). For each resource x € S, we used the u
closest embeddings of x to predict x’s type vector. We then compared the average of

the types predicted with x’s known type vector using the cosine similarity:

1
rediction score = — cos|type(x), type , 3.13
p 512 (typeo). 3 type(v)) (313)

yepnn(x)

where pnn(x) stands for the p nearest neighbors of x.

HYPERPARAMETER OPTIMIZATION

We set K = 45, Ae = 0.0414 and o = 1.45557 throughout our experiments. The values
were computed using a Sobol Sequence optimizer (Saltelli et al., 2010). We searched
several different nearest neighbors at type prediction p € {1, 3, 5, 10, 15, 30, 50, 100} in
our experiments. Preliminary experiments showed that performing the cluster purity
and type prediction evaluations on embeddings of large KGs is prohibited by the long
runtimes of the clustering algorithm. For instance, HDBSCAN did not terminate in 20
hours of computation when |S| > 6 X 10°. Consequently, we had to apply HDBSCAN
on embeddings on the subset of S on DBpedia which contained resources of type
Person or Settlement. The resulting subset of S on DBpedia consists of 428, 289 RDF
resources. For the type prediction task, we sampled 10° resources from S according to
a random distribution and fixed them across the type prediction experiments for all
KGE models.

3.2.2 RESULTS

Table 3.3 reports cluster purity results for all competing approaches. PYKE achieves
a cluster purity of 0.75 on Drugbank and clearly outperforms all other approaches.
DBpedia turned out to be a more difficult dataset. Still, PYKE outperformed models by
between 11% and 26% on Drugbank and between 9% and 23% on DBpedia.
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Table 3.3: Cluster purity results. The best results are marked in bold. Experiments marked
with * did not terminate after 24 hours of computation.

Approach  Drugbank  DBpedia

PYKE 0.75 0.57
Word2vec 0.43 0.37
ComplEx 0.64 *

RESCAL * *

TransE 0.60 0.48
Cp 0.49 0.41
DistMult 0.49 0.34

PYKE
w2v
TranskE
Ccp

0.25
DistMult
0.20
0.15
0.10
0.05 I
0.00
1 3 5 10 15 30 50 100

Nearest Neighbors

Prediction Score

Figure 3.4: Mean results on type prediction scores on 10° randomly sampled entities of
DBpedia.

Note that in 3 cases, the implementations available were unable to complete the
computation of embeddings within 24 hours.

Figure 3.4 and Figure 3.5 show our type prediction results on the Drugbank and
DBpedia datasets. PYKE outperforms all state-of-the-art approaches across all experi-
ments. In particular, it achieves a margin of up to 22% (absolute) on Drugbank and 23%
(absolute) on DBpedia. Like in the previous experiment, all KGE approaches perform
worse on DBpedia, with prediction scores varying between < 0.1 and 0.32.

Table 3.4 show runtime performances of all models on the two real benchmark
datasets, while Figure 3.6 display the runtime of PYKE on the synthetic LUBM datasets.

Our results support our original hypothesis. The low space and time complexities of
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Figure 3.5: Mean of type prediction scores on all entities of Drugbank.

Table 3.4: Runtime performances (in minutes) of all competing approaches. All approaches
were executed three times on each dataset. The reported results are the mean and standard
deviation of the last two runs. The best results are marked in bold. Experiments marked with *
did not terminate after 24 hours of computation.

Approach  Drugbank DBpedia

PykE 25+1 309+ 1
Word2vec 41 +1 420 +1
ComplEx 705 + 1 *
RESCAL * *
TransE 68 £1 685+ 1
CP 230 + 1 1154 + 1

DistMult 210+ 1 1030 = 1
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Figure 3.6: Runtime performances of PYKe on synthetic KGs. Colored lines represent fitted
linear regressions with fixed K values of PYkE.

PYKE mean that it runs efficiently: Our approach achieves runtimes of only 25 minutes
on Drugbank and 309 minutes on DBpedia, while outperforming all other approaches
by up to 14 hours in runtime. In addition to evaluating the runtime of PYKE on synthetic
data, we were interested in determining its behavior on datasets of growing sizes. We
used LUBM datasets and computed a linear regression of the runtime. The runtime
results for this experiment are shown in Figure 3.6. The linear fit shown in Table 3.5
achieves R? values beyond 0.99, which points to a clear linear fit between PYKE’s runtime
and the size of the input dataset.

We believe that the good performance of PYKE stems from (1) its sampling procedure
and (2) its being akin to a physical simulation. Employing PPMI to quantify the similarity
between resources seems to yield better sampling results than generating negative
examples using the local closed word assumption that underlies sampling procedures of
all of competing state-of-the-art KG models. More importantly, positive and negative
sampling occur in our approach per resource rather than per RDF triple. Therefore, PYKE is
able to leverage more from negative and positive sampling. By virtue of being akin to a
physical simulation, PYKE is able to run efficiently even when each resource x is mapped
to 45 attractive and 45 repulsive resources (see Table 3.4) whilst all state-of-the-art KGE

required more computation time.
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Table 3.5: Results of fitting linear regression on runtimes.

K Coefficient  Intercept R?

5 4.52 10.74 0.997
10 4.65 13.64 0.996
20 5.23 19.59 0.997

3.2.3 DISCUSSION

By virtue of being akin to a physical simulation, PYKE retains a linear space complexity.
This was proven through a complexity analysis of our approach. While the time
complexity of the approach is quadratic due to the computation of P and N, all other
steps are linear in their runtime complexity. Hence, we expected our approach to behave
closes to linearly. Our evaluation on LUBM datasets suggests that this is indeed the case
and the runtime of PYKE grows close to linearly. This is an important result, as it means
that our approach can be used on very large knowledge graphs and return results faster
than popular algorithms such as Word2vec and TransE. However, time efficiency is
not all. Our results suggest that PYKE outperforms state-of-the-art approaches in the
two tasks of type prediction and clustering. Hence, our results confirm that the two

research questions can be answered via PYKE.

TRADE-OFFs & PossIBLE IMPROVEMENTS: Most KGE models (see Section 2.4) can
predict missing triples by means of assigning a likelihood score for a given triple.
Although embeddings learned with PYKE can be directly used to quantify the similarity
between entities and relations, PYKE cannot assign a score for a given triple.

In Algorithm 1, embeddings are updated with a gradually decreasing learning/update
rate & — Ae. Using line-search techniques to automatically find a good learning rate
w.r.t. the current input may further improve the performance (Vaswani et al., 2019).
Moreover, enriching this update rule with the bias corrected momentum update (i.e.,

Adam Equation (2.54)) may also improve the performance.
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RESEARCH QUESTIONS: In this work, we are concerned with the following two

research questions:

1. RQ1. Can we design a knowledge graph embedding model to predict missing
triples on large knowledge graphs?

2. RQ2. Can we answer RQ1. while ensuring the parameter efficiency of our
models?
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4.1 METHODOLOGY

In this chapter, we introduce SHALLOM. Here, our goal is to design a KGE model that ef-
ficiently learns real-valued continuous vector representations (embeddings) for entities
and relations of a Knowledge Graph (KG), while alleviating the inability of PYKE in pre-
dicting missing triples. SHALLOM learns embeddings for entities and relations tailored
towards relation prediction. Given a pair of entities, SHALLOM predicts missing relations
via two affine transformations with non-linear activation functions. Hence, SHALLOM is
analogous to a very-well-known word embedding model (Word2Vec (Mikolov et al.,
2013b)), since both model predict a central vocabulary term given surrounding terms.

In Table 4.1, we summarize the symbols used in this chapter.

Table 4.1: An overview of our notation used in Chapter 4.

Notation Description

G A knowledge graph

E R Sets of unique entities and relations in G, respectively
D Training dataset

o(+) The sigmoid function

ReLU(") The rectified linear unit function

d The size of embedding vectors for entities
C) Model parameters

concat(-,-)  Concatenation operation

H, b, An affine transformation

W, b, An affine transformation

E An entity embedding matrix

£(-,-) Binary cross-entropy loss function

We define SHALLOM as follows
SHALLOM(S, 0)g = G(W -ReLU(H - concat(es, ,) + by) + bz), (4.1)

where concat(s,0) € R* H € RF% W ¢ RIRIXk b, e RX and b, € RIRI, o(z) =
m, ReLU(z) = max(z, 0). Hence, © = {W, b,, H, by, E}. Given (s, 0), concat(s, 0)

returns concatenated embeddings of (s, 0). Thereafter, we perform two affine transfor-
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mations with the ReLU and the sigmoid function to obtain predicted probabilities for

relation (§ € [0, 1]'%!). Finally, the incurred loss is computed by the binary cross-entropy
function:
1 IR]
(3:3) = =177 2, ¥i - 1og(3n) + (1 = yi) - log(1 - ) (42)

where ¥ is the vector of predicted probabilities and y is a binary vector of indicating
multi labels. Note that Equation (4.2) computes an incurred loss on a single training data
point. From the perspective of MLE, our goal is to learn such © so that the likelihood

of observing i.i.d sampled training data points O := {(x;,y;)}!, is maximized,

© = arg max rl P(y; | x;;©) Max.like. of iid D (4.3)

® =1
n

© = arg max Z log (‘][(yi | x;; @)) Use Log  (4.4)
® =

© = arg max Z log ()73” (1- 37,-)1_}'") Bernoulli Dist.  (4.5)
® =

© = arg min — Z yilog(y:) + (1 —y;)log(1 —)) Convert to min.  (4.6)
© i=1

© = arg min — Z yilog(y:) + (1 —y;) log(1 —y;) BCE (4.7)
© i=1

© =argmin » - " y/log(y)) + (1 - y) log(1 - y/) Objective.  (4.8)
® =1 =1

In Equation (4.5), the Bernoulli distribution is used to model binary labels elementwise.
Figure 4.1 shows the architecture of SHALLOM. To obtain a composite representation
of (s, 0), we concatenate embeddings of entities as opposed to averaging them, since
averaging embeddings loses the order of the input (as in the standard bag-of-words

representation (Le and Mikolov, 2014)).
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Figure 4.1: A visualization of SHALLOM.

4.2 EXPERIMENTS & RESULTS

4.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

We compared SHALLOM against many state-of-the-art approaches and Uniform Random
Classifier (URC) in the relation prediction task on benchmark datasets. All experi-
ments were carried out on a single core of a server running Ubuntu 18.04 with 126 GB
RAM with 16 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processors. To alleviate the
hardware requirements for the reproducibility of our results and to foster further re-
producible research, we provide hyperparameter optimization, training and evaluation
scripts along with pre-trained models at https://github.com/dice-group/Shallom and
https://github.com/dice-group/dice-embeddings.

EVvALUATION

We applied the Hits@N metric to evaluate the prediction performances. To evaluate
runtime performances, we measured the elapsed runtime during the training phase.
Ergo, we ignored the elapsed time during the data preprocessing since the training setup
for SHALLOM is done on the fly while some approaches, including RDF2Vec (Ristoski
and Paulheim, 2016), require additional computations such as applying the random
walk technique. All approaches were trained four times on datasets. The reported

runtimes (RT) of approaches are in seconds and the mean of the last three runs.
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DATASETS

We used five of the most commonly used benchmark datasets (WN18, WN18RR, FB15K,
FB15K-237 and YAGO3-10) (Dettmers et al., 2018). An overview of the datasets is
provided in Table 4.2.

Table 4.2: An overview of datasets in terms of number of entities, number of relations, and
node degrees in the train split along with the number of triples in each split of the dataset.

Dataset |&E] |R| Degr. (M+SD) |GTrin| |gValidation| | Test|
YAGO3-10 123,182 37 9.6+8.7 1,079,040 5,000 5,000
FB15K 14,951 1,345 32.46+69.46 483,142 50,000 59,071
WN18 40,943 18 3.49+7.74 141,442 5,000 5,000
FB15K-237 14,541 237 19.7£30 272,115 17,535 20,466
WN18RR 40,943 11 2.2+3.6 86,835 3,034 3,134

HYPERPARAMETER OPTIMIZATION

We selected the hyperparameters of SHALLOM via grid search according to the Hits@1
on the validation set of each dataset. The hyperparameter ranges for the grid search
were set as follows: embedding size d = [30, 50, 100, 200], epochs = [30, 50, 100], the
width of the hidden layer k = [.5d,d, 3d], batch size = [256,1000], dropout rate =
[.0,.2,.5] and L,-normalizer = [.0,.1]. Initially, we used the default hyperparameters
for all competing approaches provided in Trouillon et al. (2017). However, RESCAL,
ComplEx, CP and DistMult did not terminate within three hours of computation. The
long runtimes are corroborated by Trouillon et al. (2017). We hence optimized the
hyperparameters of RESCAL, CP, TransE, DistMult and ComplEx via a grid search
according to the Hits@1 on the validation set of each dataset. The hyperparameter
ranges for the grid search were as follows: epochs = [100, 200], negative ratio per
valid triple = [1,5,10,50], and batch size = [256,512, |G ™"|/100]. We omitted d,
regularization term and learning rate from grid-search and used the parameter settings
provided in Trouillon et al. (2017). We selected the hyperparameters of RDF2Vec
via grid search according to the Hits@1 on the validation set of each dataset. The
hyperparameter ranges of RDF2Vec for the grid search were set as follows: embedding
size d = [50,100], epochs = 100, number of negatives for Word2Vec = [25,100] and



70 4 A SHALLOW NEURAL MODEL FOR RELATION PREDICTION

random walk depth = [3,5,7]. After the embedding vectors are generated, we train
the same scoring function defined in Equation (4.1) (look-up operation performed on

RDF2Vec embeddings), by following the same optimization schema as our approach.

4.2.2 RESULTS

Table 4.3, Table 4.4 and Table 4.5 report the HitsN relation prediction results on
the five benchmark datasets. Overall, SHALLOM outperforms many state-of-the-art
approaches while maintaining a superior runtime performance. The slightly superior
(.018 absolute) performance of ProjE on the FB15K comes with the cost of more than 3
hours of computation. SHALLOM is significantly more time-efficient; it requires only
8 minutes, on average, a commodity computer. Since we could not reproduce the
reported relation prediction results (Shi and Weninger, 2017), we could neither re-
evaluate ProjE on FB15K nor include it on the other benchmark datasets. Approaches
perform significantly better on WN18 than on FB15K. This may stem from the fact that
WN18 contains (1) significantly fewer relations and (2) entity pairs having multiple
relations than FB15K. More specifically, FB15K and WN18 datasets contain 63.856 and
277 number entity pairs, respectively, that occurred with multiple relations in the

training splits.

Table 4.3: Hits@1 relation prediction results on FB15K and WN18. Results are taken from
corresponding papers.

Method FB15K WN18
TransE (Shi and Weninger, 2017) 0.651 0.736
TransR (Xie et al., 2016a) 0.702 0.713
ProjE-listwise (Shi and Weninger, 2017) 0.758 -
PTransE (ADD, len-2 path) (Shi and Weninger, 2017) 0.695 -
DKLR(CNN) (Xie et al., 2016a) 0.698 -
TKRL (RHE) (Xie et al., 2016b) 0.711 -
RDFDNN (Onuki et al., 2017) 0.691 0.770
KGML (Onuki et al., 2019) 0725  0.975
SSP (Xiao et al., 2017) 0.709 -

SHALLOM 0.734 0.970
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Table 4.4 shows that SHALLOM outperforms all state-of-the-art approaches on the
WN18RR and FB15K-237 datasets while maintaining an overall superior runtime perfor-
mance. Note that the RT solely denotes the elapse training runtime. Initially, we trained
RESCAL, TransE, ComplEx, CP and DistMult with hyperparameters provided in Trouil-
lon et al. (2016). However, models other than TransE did not terminate within 3 hours
of computation. Consequently, we selected the hyperparameters of approaches via grid
search as explained in Section 4.2.1. TransE and DistMult yield a surprisingly better
performance on WN18RR and FB15K-237 than on WN18 and FB15K. This may stem
from (1) the hyperparameter optimization and (2) the fact that fewer numbers of entity
pairs have multiple relations on training and testing datasets. The hyperparameters of
TransE were not optimized in Shi and Weninger (2017); Onuki et al. (2017, 2019) where
the Hit@1 performances of TransE were taken. CP performed poorly on the WN18RR
due to the small number of relations as observed in Trouillon et al. (2017). During
the training phase, the batch size was set to 32 in KGML and RDFDNN (Onuki et al.,
2019, 2017). Although training models with a small-batch regime seemed to alleviate a
possible degradation in the generalization performances of models Keskar et al. (2016),
it came with the cost of increased runtime. By virtue of being a shallow NN, the error
propagation was computationally more efficient in SHALLOM than KGML. Importantly,
KGML and RDFDNN do not optimize the width of the hidden layers. Conversely, we
optimized the width of SHALLOM, as per the suggestion in Nguyen et al. (2018b)—that
optimizing the width of the network has an impact on the generalization performance.
RDFDNN erroneously assumes one-to-one mapping between entity pairs to relations
and possibly suffers from the hyperbolic tangent saturation as the hyperbolic tangent
is applied in the hidden layer (Krizhevsky et al., 2012). RDF2Vec outperforms RESCAL,
TransE, CP and DistMult w.r.t. Hits@3 and Hits@5 on WN18RR.

To confirm the performance of SHALLOM, we compared it with some of the best
approaches in terms of runtime requirement and Hits@1 on a large benchmark dataset.
Table 4.5 shows that SHALLOM reaches close to 1.0 Hits@5 and requires less than 10
minutes on the YAGO3-10. We could not evaluate KGML on YAGO3-10 due to its high

memory consumption requiring more than 16 GB RAM.
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Table 4.4: Average Hits@N relation prediction and runtime results on WN18RR and FB15K-
237.

WN18RR FB15K-237

Hits Hits
RT @1 @3 @5 RT @1 @3 @5
RESCAL 1860+6 0.331 0.529 0.734 5160+4 0.115 0.327 0.456
TransE 960+11 0.507 0.761 0.864 540+10 0.774 0.899 0.918
ComplEx 2160+15 0.515 0.652 0.758 5880+30 0.153 0.300 0.378
CP 840+15 0.332 0.518 0.659 8040+39 0.467 0.609 0.675
DistMult 780+13 0.497 0.677 0.799 1140+8 0.092 0.176 0.428
KGML 840+15 0.868 0.954 0.975 1080+10 0.921 0.960 0.976
RDFDNN 540+8 0.819 0.967 0.985 720+10 0.913 0.934 0.953

RDF2Vecgkip-Gram  310+5 0.534 0.815 0.940  482+6 0.518 0.600 0.677
RDF2Veccpow 337+10 0.451 0.785 0.932 472+8 0.522 0.608 0.687
URC 0.095 0.265 0.446 0.003 0.013 0.020

SHALLOM 610+13 0.874 0.982 0.995 404+8 0.948 0.993 0.997

Table 4.5: Average Hits@N relation prediction and runtime results on YAGO3-10.

YAGO3-10
Hits
RT @1 @3 @5
RDF2Vecsyip-Gram ~ 593%11 0.487 0.796 0.875
RDF2Veccpow 625+12 0.491 0.803 0.873

SHALLOM 562+19 0.630 0.983 0.996
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4.2.3 DISCUSSION

The superior performance of SHALLOM stems from: (1) it being a shallow neural model,
(2) optimizing the width of the hidden layer, (3) the task and evaluation measures
used. By virtue of being a shallow NN, SHALLOM requires only 562 seconds to train on
|G| > 10° on a commodity computer. NNs are required to be wide enough (larger than
the input dimension) to learn disconnected decision regions Nguyen et al. (2018b). Lastly,
given the example (Obama, Hawaii), SHALLOM assigns high scores for BirthPlace and
low scores for SpouseOf. This stems from the fact that input G does not involve triples
such as (SpouseOf, Hawaii), while it involves many triples (BirthPlace, Hawaii).
SHALLOM assigns presumably a high score (Obama, BirthPlace, Paderborn) although
such a triple is not contained in G. Since the test splits of the benchmark datasets do
not involve such false triples, the Hit@N metric quantifies merely the performances
of the relation prediction approaches on the valid triples. Ergo, the idea of corrupted
triples is not necessary for relation prediction as each entity pair found in the test split

is linked with a relation.

TRADE-OFFS & PossiBLE IMPROVEMENTS: Most KGE models can directly predict a
missing head entity, relation or tail entity (see Section 2.4), whereas SHALLOM can only
directly predict a missing relation. This stems from the fact that SHALLOM is defined as
a sequence of non-linear mappings from a pair of entities to relations.

The relation prediction performance of SHALLOM may be further improved via the
batch normalization technique (loffe and Szegedy, 2015). Referring to the running
analogy between SHALLOM and Word2vec, increasing the window size of SHALLOM may
further improve the performance. More specifically, a sequence of entities and relations
can be used as input (e.g., x := (entity22,relationl,entity2, ?,entity4)), instead
of using two entities as an input x := (entity2, ?,entity4). By this, SHALLOM may
incorporate multi-hop information in the relation prediction problem and learn entity

embeddings tailored towards relation prediction.
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Graph-Embeddings and https://github.com/dice-group/dice-embeddings.

RESEARCH QUESTIONS: In this work, we are concerned with the following two

research questions:

1. RQ1. Can we design a knowledge graph embedding model to predict missing
triples on large knowledge graphs?

2. RQ2. Can we answer RQ1. while ensuring the parameter efficiency of our

models?
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5.1 METHODOLOGY

In this chapter, we introduce CoNEx. Here, our goal is to design a knowledge graph
embedding (KGE) model that effectively combines two state-of-the-art KGE models
(ComplEx (Trouillon et al., 2016) and ConvE (Dettmers et al., 2018)) to advance the
state of the art in link prediction. To this end, we design CoNEx—a multiplicative
composition of a 2D convolution operation with a Hermitian inner product on complex-
valued embeddings. Previously, Sun et al. (2019) suggest that ComplEx is not able to
model triples with transitive relations since ComplEx does not perform well on datasets
containing many transitive relations (see Table 5 and Section 4.6 in Sun et al. (2019)).
Motivated by this consideration, we propose CoNEx, which applies the Hadamard
product to compose a 2D convolution followed by an affine transformation with a
Hermitian inner product in C. By virtue of the proposed architecture (see Equation (5.1)),

CoNEx is endowed with the capability of
1. leveraging a 2D convolution operation and

2. degenerating to ComplEx if such degeneration is necessary to further minimize

the incurred training loss.

CoNEx benefits from the parameter sharing and equivariant representation proper-
ties of convolutions (Goodfellow et al., 2016). The parameter sharing property of the
convolution operation allows CoNEx to achieve parameter efficiency, while the equiv-
ariant representation allows CoNEx to effectively integrate interactions captured in
the stacked complex-valued embeddings of entities and relations into computation of
scores. This implies that small interactions in the embeddings have small impacts on
the predicted scores!. The rationale behind this architecture is to increase the expres-
siveness of our model without increasing the number of its parameters. As previously
stated in (Trouillon et al., 2016), this nontrivial endeavor is the keystone of embedding
models. Ergo, we aim to overcome the shortcomings of ComplEx in modeling triples
containing transitive relations through combining it with a 2D convolutions followed
by an affine transformation on C. In Table 5.1, we summarize the symbols used in this

chapter.

WWe refer to Goodfellow et al. (2016) for further details of properties of convolutions.
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Table 5.1: An overview of our notation used in Chapter 5.

Notation Description

G A knowledge graph

E,R Set of unique entities and relations in G, respectively

C) Model parameters

E A complex-valued entity embedding matrix

R A complex-valued relation embedding matrix

Re(-),Im(-) Real and imaginary parts of a complex number, respectively
o(-),ReLU(") Logistic sigmoid and rectified linear unit functions, respectively
conv(-,-) The convolution connection function in CoNEx

W, b Affine transformation used in conv(-, -)

d the size of embedding vectors for entities and relations
vec(-) Flattening operation

* Convolution operation

1) Filters/kernels for the convolution operation

£(-,-) Binary cross-entropy loss function

APPROACH: Given a triple (h,r, t), CONExX : & X R X & — R computes a triple score
as
ConEx(h, r, t)e = Re({conv(ep, e;), ep, €, €)), (5.1)

where conv(-, ) : €%+ ¢4 is defined as
conv(ey, €,) = ReLU(vec(ReLU([ey, €] * @)) - W +b), (5.2)

where ReLU(-) denotes the rectified linear unit function (ReLU), vec(-) stands for a
flattening operation, * is the convolution operation, w stands for kernels/filters in the
convolution, and (W, b) characterize an affine transformation. ® = {E,R,W,b, 0w}
denotes the model parameters, where E € Ci R e Cl W e cClokd andb e €4,
CoNEx is enriched with the capability of controlling the impact of a 2D convolution

and Hermitian inner product on the predicted scores.
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The gradients of loss w.r.t. embeddings can be propagated in two ways, namely,
via conv(ep, e,) or Re({ep, e,,€;)). Equation (5.1) can be equivalently expressed by

expanding its real and imaginary parts:

d
ConEx(hr,t) = Re( ) (rilenlen(@)) (5.3)
k=1

= (Re(y),Re(ep),Re(er), Re(er))
+ (Re(y),Re(ep), Im(e;), Im(e;))
+ (Im(y),Im(ep), Re(e,), Im(e;))
— (Im(y), Im(ep), Im(e,),Re(e;)) (5.4)

where €; is the conjugate of e; and y denotes the output of conv(ey, e,) for brevity. Such
multiplicative inclusion of conv(-, -) equips CoONEx with two more degrees of freedom

due the Re(y) and Im(y) parts.

CoNNEcCTION TO CoMPLEX: During the optimization, conv(-, -) is allowed to reduce
its range into y € C such that Re(y) = 1 AIm(y) = 1. This allows CoNEx to degenerate
into ComplEx as shown in Section 5.1. This multiplicative inclusion of conv(-,-) is
motivated by the scaling parameter in the batch normalization (see section 3 in Ioffe
and Szegedy (2015)). Consequently, CONEx is allowed use a 2D convolution followed

by an affine transformation as a scaling factor in the computation of scores.

ADDITIVE CONNECTIONS: To measure an possible impact of multiplicative con-
nections instead of additive connections, we define an additive variant of CoNEX as

follows

ACoNEx(h,r,t) = {(a+Re(ep),Re(e,),Re(e;))
+ (b + Re(ep), Im(e,), Im(e;))
+{(c + Im(ep),Re(e,),Im(e;))
—(d +Im(ep),Im(e,),Re(e;)) (5.5)

where [a, b, c,d] := conv(ey, e,), hence W € Clolx2d and b € R,
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TRAINING: We train our approach by following a standard setting (Dettmers et al.,
2018; Balazevic et al., 2019c). Similarly, we applied the standard data augmentation
technique, the KvsAll training procedure?. After the data augmentation technique for a
given pair (h, r), we compute scores for all x € & with CoNEx(h, r, x). We then apply
the logistic sigmoid function o(CoNEx((h,r, t))) to obtain predicted probabilities of
entities. CONEX is trained to minimize the binary cross-entropy loss function ¢ that

determines the incurred loss on a given pair (h, r) as defined in the following:

5]

1 . N . N
& Dy Vlog3?) + (1 - yNlog(1 - 31, (5.6)
i=1

0y, y) =~
where § € RI€l is the vector of predicted probabilities and y € [0, 1]/! is the binary

label vector.

5.2 EXPERIMENTS & RESULTS

5.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

We compared CoNEx against many state-of-the-art approaches in the link prediction
task on benchmark datasets All experiments were carried out on a single core of a
server running Ubuntu 18.04 with 126 GB RAM with 16 Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz processors. Throughout our experiments, the seed for the pseudo-
random generator was fixed to 1. We provide hyperparameter optimization, training
and evaluation scripts along with pre-trained models at https://github.com/dice-group/
Convolutional-Complex-Knowledge-Graph-Embeddings and https://github.com/dice-
group/dice-embeddings.

DATASETS

We used five of the most commonly used benchmark datasets (WN18, WN18RR, FB15K,
FB15K-237 and YAGO3-10). An overview of the datasets is provided in Table 5.2.
WN18 and WN18RR are subsets of Wordnet, which describes lexical and semantic

?Note that the KvsAll strategy is called 1-N scoring in Dettmers et al. (2018). Here, we follow the
terminology of Ruffinelli et al. (2019).


https://github.com/dice-group/Convolutional-Complex-Knowledge-Graph-Embeddings
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hierarchies between concepts and involves symmetric and antisymmetric relation types,
while FB15K, FB15K-237 are subsets of Freebase, which involves mainly symmetric,

antisymmetric and composite relation types (Sun et al., 2019).

Table 5.2: An overview of datasets in terms of number of entities, number of relations, and
node degrees in the train split along with the number of triples in each split of the dataset.

Dataset |&E] |R| Degr. (M+SD) |GTmain| |gValidation ) Test|
YAGO3-10 123,182 37 9.6+8.7 1,079,040 5,000 5,000
FB15K 14,951 1,345 32.46+69.46 483,142 50,000 59,071
WN18 40,943 18 3.49+7.74 141,442 5,000 5,000
FB15K-237 14,541 237 19.7+£30 272,115 17,535 20,466
WN18RR 40,943 11 2.2+3.6 86,835 3,034 3,134

EvALUATION METRICS

We used the filtered MRR and Hits@N to evaluate link prediction performances, as in
previous works (Sun et al., 2019; Trouillon et al., 2016; Dettmers et al., 2018; Balazevi¢
et al., 2019c). The filtered MRR and Hits@N metrics are defined in Equation (2.59), Equa-
tion (2.60), respectively.

HYPERPARAMETER OPTIMIZATION

We selected the hyperparameters of CoNEx based on the MRR score obtained on the
validation set of WN18RR. Hence, we evaluated the link prediction performance of
CoNEx on FB15K-237, YAGO3-10, WN18 and FB15K by using the best hyperparameter
configuration found on WN18RR. This decision stems from the fact that we aim to
reduce the impact of extensive hyperparameter optimization on the reported results and
the CO; emission caused through relying on the findings of previously works (Ruffinelli
et al.,, 2019). Strubell et al. (2019) highlighted the substantial energy consumption of
performing extensive hyperparameter optimization. Moreover, Ruffinelli et al. (2019)
showed that model configurations can be found by exploring relatively few random
samples from a large hyperparameter space. With these considerations, we determined
the ranges of hyperparameters for the grid search algorithm optimizer based on their

best hyperparameter setting for ConvE (see Table 8 in Ruffinelli et al. (2019)). Specifically,
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the ranges of the hyperparameters were defined as follows: d: {100, 200}; dropout
rate:{.3, .4} for the input; dropout rate: {.4, .5} for the feature map; label smoothing: {.1}
and the number of output channels in the convolution operation: {16, 32}; the batch size:
{1024}; the learning rate: {.001}. After determining the best hyperparameters based on
the MRR on the validation dataset; we retrained CoNEx with these hyperparameters on
the combination of train and valid sets as applied in (Joulin et al., 2017). Motivated by
the experimental setups for ResNet and AlexNet (He et al., 2016; Krizhevsky et al., 2017),
we were interested in quantifying the impact of ensemble learning on the link prediction
performances. Ensemble learning refers to learning a weighted combination of learning
algorithms. In our case, we generated ensembles of models by averaging the predictions
of said models.? To this end, we re-evaluated state-of-the-art models, including TucKER,
DistMult and ComplEx on the combination of train and validation sets of benchmark
datasets. Therewith, we were also able to quantify the impact of training state-of-
the-art models on the combination of train and validation sets. Moreover, we noticed
that link prediction performances of DistMult and ComplEx, on the YAGO3-10 dataset
were reported without employing new training strategies (KvsAll, the reciprocal data
augmentation, the batch normalization, and the ADAM optimizer). Hence, we trained
DistMult, ComplEx on YAGO3-10 with these strategies.

5.2.2 RESULTS

Table 5.3, Table 5.4, and Table 5.5 report the link prediction performances of CoNEx
on five benchmark datasets. Overall, CoNEx outperforms state-of-the-art models on
four out of five datasets. In particular, CONEx outperforms ComplEx and ConvE on
all five datasets. This supports our original hypothesis, i.e., that the composition of a
2D convolution with a Hermitian inner product improves the prediction of relations
in complex spaces. We used the Wilcoxon signed-rank test to measure the statistical
significance of our link prediction results. Moreover, we performed an ablation study
(see Table 5.9) to obtain confidence intervals for prediction performances of CoNEx. Bold
and underlined entries denote best and second-best results in all tables. Table 5.3 reports
that CoNEx outperforms all state-of-the-art models on WN18 and FB15K, whereas such
distinct superiority is not observed on WN18RR and FB15K-237. Table 5.4 shows that
CoNEx outperforms many state-of-the-art models, including RotatE, ConvE, HypER,

3Ergo, the weights for models were set to 1 (see Cection 16.6 in Murphy (2012) for more details.)
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ComplEx, NKGE, in all metrics on WN18RR and FB15K-237. This is an important
result for two reasons: (1) CoNEx requires significantly fewer parameters to yield
such superior results (e.g., CONEx only requires 26.63M parameters on WN18RR, while
RotatE relies on 40.95M parameters), and (2) we did not tune the hyperparameters of
ConEx on FB15K-237. Furthermore, the results reported in Table 5.4 corroborate the
findings of Ruffinelli et al. (2019): training DistMult and ComplEx with KvsAll, the
reciprocal data augmentation, the batch normalization, and the ADAM optimizer leads

to a significant improvement, particularly on FB15K-237.

Table 5.3: Link prediction results on WN18 and FB15K. Results are obtained obtained from Bal-
azevic et al. (2019c); Zhang et al. (2019).

WN18 FB15K

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult 0.822  0.936 0914 0.728 0.654 0.824 0.733  0.546
ComplEx 0.941 0.947 0.936 0.936  0.692 0.840 0.759  0.599
ANALOGY 0.942 0.947 0.944 0939 0.725 0.854 0.785  0.646

R-GCN 0.819 0.964 0.929 0.697 0.696 0.842 0.760  0.601
TorusE 0.947 0.954 0.950 0943 0.733 0.832 0.771 0.674
ConvE 0.943 0.956 0.946 0935 0.657 0.831 0.723  0.558
HypER 0.951 0.958 0.955 0947 0.790 0.885 0.829 0.734
SimplE 0.942 0.947 0944 0939 0.727 0.838 0.773  0.660
TuckER 0.953 0.958 0.955 0949 0.795 0.892 0.833  0.741
QuatE 0.950 0.962 0.954 0944 0.833 0.900 0.859  0.800
ConEx 0.976 0.980 0.978 0.973 0.872 0.930 0.896 0.837

During our experiments, we observed that many state-of-the-art models are not
evaluated on YAGO3-10. This may stem from the fact that the size of YAGO3-10 prohibits
performing extensive hyperparameter optimization even with the current state-of-the-
art hardware systems. Note that YAGO3-10 involves 8.23 and 8.47 times more entities
than FB15K and FB15K-237, respectively. Table 5.5 indicates that DistMult and ComplEx
perform particularly well on YAGO3-10, provided that KvsAll, the reciprocal data
augmentation, the batch normalization, and the ADAM optimizer are employed. Our
results support findings of Ruffinelli et al. (2019). During training, we observed that the

training loss of DistMult and ComplEx seemed to converge within 400 epochs, whereas
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Table 5.4: Link prediction results on WN18RR and FB15K-237. Results are obtained from
corresponding papers. ¥ denotes the recently reported results of corresponding models.

WN18RR FB15K-237
MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult (Dettmers et al., 2018)  0.430  0.490 0.440 039  0.241 0.419 0.263  0.155
ComplEx (Dettmers et al., 2018) 0.440  0.510 0.460 0.410 0.247 0.428 0.275  0.158
ConvE (Dettmers et al., 2018) 0.430  0.520 0.440 0.400 0.335 0.501 0.356  0.237
RESCAL (Ruffinelli et al., 2019) 0.467 0.517 0.480 0.439 0357 0.541 0.393  0.263
DistMult’ (Ruffinelli et al., 2019) 0.452  0.530 0466 0413 0343 0.531 0.378  0.250
ComplEXT (Ruffinelli et al., 2019) 0.475  0.547 0.490 0438 0.348 0.536 0.384  0.253
ConvE" (Ruffinelli et al., 2019)  0.442  0.504 0.451 0411 0339 0.521 0.369  0.248
HypER (Balazevic et al., 2019b)  0.465  0.522 0.477 0436 0341 0.520 0.376  0.252

NKGE (Zhang et al., 2019) 0.450  0.526 0.465 0421 0330 0.510 0.365  0.241
RotatE (Sun et al., 2019) 0476 0.571 0492 0428 0.338 0.533 0.375  0.241
TuckER (Balazevi¢ et al., 2019c)  0.470  0.526 0.482 0443 0358 0.544 0.394  0.266
QuatE (Zhang et al., 2019) 0.482 0.572 0.499 0436 0.366 0.556 0.401 0.271
DistMult 0.439  0.527 0.455 0399 0353 0.539 0.390  0.260
ComplEx 0.453  0.546 0.473 0408 0332 0.509 0.366  0.244
TuckER 0.466  0.515 0476 0441 0363 0.553 0.400  0.268
ConEx 0.481 0.550 0493 0.448 0.366 0.555 0.403 0.271

the training loss of TuckER seemed to continue decreasing. Ergo, we conjecture that
TuckER is more likely to benefit from increasing the number of epochs than DistMult
and ComplEx. Table 5.5 shows that the superior performance of CoNEx against state-of-
the-art models including DistMult, ComplEx, HypER can be maintained on the largest
benchmark dataset for the link prediction.

Delving into the link prediction results, we observed an inconsistency in the test
splits of WN18RR and FB15K-237. Specifically, the test splits of WN18RR and FB15K-237
contain many out-of-vocabulary entities.* For instance, 6% of the test set on WN18RR
involves out-of-vocabulary entities. During our experiments, we did not remove such
triples to obtain fair comparisons on both datasets. To quantify the impact of unseen
entities on link prediction performances, we conducted an additional experiment. We
reported a detail analysis on the impact of unseen entities in Demir and Ngonga Ngomo
(2021c).

4github.com/TimDettmers/ConvE/issues/66
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Table 5.5: Link prediction results on YAGO3-10.

YAGO3-10

MRR Hits@10 Hits@3 Hits@1

DistMult (Dettmers et al., 2018) 0.340 0.540 0.380 0.240
ComplEx (Dettmers et al., 2018) 0.360 0.550 0.400 0.260
ConvE (Dettmers et al., 2018) 0.440 0.620 0.490 0.350
HypER (Balazevic et al., 2019b) 0.533 0.678 0.580 0.455
RotatE (Sun et al., 2019) 0.495 0.670 0.550 0.402
DistMult 0.543 0.683 0.590 0.466
ComplEx 0.547 0.690 0.594 0.468
TuckER 0.427 0.609 0.476 0.331
ConEx 0.553 0.696 0.601 0.474

LiINK PREDICTION PER RELATION

Table 5.6 reports the link prediction per relation performances on WN18RR. Over-
all, models perform particularly well on triples containing symmetric relations such
as also_see and similar_to. CoNEx performs better on triples containing transitive
relations (e.g., hypernym and has_part) compared to RotatE, DistMult, ComplEx and
TuckER. Allen et al. (2021) ranked the complexity of type of relationsasR > S > C
in the link prediction task. Based on this ranking, superior performance of CoNEx

becomes more apparent as the complexity of relations increases.

ENSEMBLE LEARNING

Table 5.7 reports the link prediction performances of ensembles based on pairs of models.
These results suggest that ensemble learning can be applied as an effective means to
boost the generalization performance of existing approaches including CoNEx. These
results may also indicate that models may be further improved through optimizing
the impact of each model on the ensembles, e.g., by learning two scalars « and f in

(aCONEx( s,p,0) + fTuckER(s, p, o)) instead of averaging predicted scores.
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Table 5.6: MRR link prediction on each relation of WN18RR. Results of RotatE are taken
from Zhang et al. (2019). The complexity of type of relations in the link prediction task is
defined as R > S > C Allen et al. (2021).

Relation Name Type RotatE DistMult ComplEx TuckER ConNEx
hypernym S 0.148 0.102 0.106 0.121 0.149
instance_hypernym S 0.318 0.218 0.292 0.375 0.393
member_meronym C 0.232 0.129 0.181 0.181 0.171
synset_domain_topic_of C 0341 0.226 0.266 0.344  0.373
has_part C 0.184 0.143 0.181 0.171 0.192
member_of domain_usage C 0.318 0.225 0.280 0.213 0.318
member_of_domain_region C 0.200 0.095 0.267 0.284  0.354
derivationally_related_form R 0.947 0.982 0.984 0.985 0.986
also_see R 0.585 0.639 0.557 0.658 0.647
verb_group R 0.943 1.000 1.000 1.00 1.000
similar_to R 1.000 1.000 1.000 1.00 1.000

PARAMETER ANALYSIS

Table 5.8 indicates the robustness of CoNEx against the overfitting problem. Increas-
ing the number of parameters in CoNEx does not lead to a significant decrease in
the generalization performance. In particular, CONEx achieves similar generalization
performance, with p = 26.63M and p = 70.66M, as the difference between MRR scores
are less than absolute 1%. This cannot be explained with convolutions playing no role
as CoNEx would then degrade back to ComplEx and achieve the same results (which is

clearly not the case in our experiments).

StaTisTicAL HYPOTHESIS TESTING

We performed the Wilcoxon signed-rank test to check whether our results are sig-
nificant. Our null hypothesis was that the link prediction performances of CoNEx,
ComplEx and ConvE come from the same distribution. The alternative hypothesis was
correspondingly that these results come from different distributions. To perform the
Wilcoxon signed-rank test (two-sided), we used the differences of the MRR, Hits@1,
Hits@3, and Hits@10 performances on WN18RR, FB15K-237 and YAGO3-10.
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Table 5.7: Link prediction results of ensembled models on WN18RR and FB15K-237. Second
rows denote link prediction results without triples containing out-of-vocabulary entities. CoNEx-
CoNEx stands for ensembling two CoNEX trained with the dropout rate 0.4 and 0.5 on the
feature map.

WN18RR FB15K-237

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult-ComplEx 0.446  0.545 0.467 0.398 0.359 0.546 0.397  0.265
0.475 0.579 0.497 0.426 0.359 0.546 0.397  0.265
DistMult-TuckER  0.446  0.533 0461 0.405 0.371 0.563 0.410  0.275
0.476  0.569 0.492 0433 0.371 0.563 0.411  0.275
ConEx-DistMult 0.454 0.545 0.471 0.410 0.371 0.563 0.409  0.275
0.484 0.580 0.501 0.439 0.367 0.556 0.403  0.272
CoNEx-ComplEx 0.470 0.554 0.487 0.428 0.370 0.559 0.407  0.276
0.501 0.589 0.518 0.456  0.360 0.547 0.397  0.267
CoNEx-TuckER 0.483  0.549 0494 0.449 0.375 0.568 0.414 0.278
0.514 0.583 0.526 0.479 0375 0.568 0414 0.278
ConNEx-CoNEx 0.485 0.559 0.495 0.450 0.376 0569 0.415 0.279
0.517 0.594 0.526 0.479 0.376 0.570 0.415 0.279

We performed two hypothesis tests between CoNEx and ComplEx as well as between
ConEx and ConvE. In both tests, we were able to reject the null hypothesis with a

p-value < 1%. Ergo, the superior performance of CoNEX is statistically significant.

ABLATION STUDY

We conducted our ablation study in a fashion akin to Dettmers et al. (2018). We evaluated

2 different parameter initializations to compute confidence intervals, that is defined

as x +1.96 - %, where x = % 2ix;and s = 4/ w, respectively. Hence, the mean
and the standard deviation are computed without Bessel’s correction. Our results
suggest that the initialization of parameters does not play a significant role in the link
performance of CoNEx. The dropout technique is the most important component in the
generalization performance of CoNEx. This is also observed in Dettmers et al. (2018).
Moreover, replacing the Adam optimizer with the RMSprop optimizer (Tieleman and

Hinton, 2012) leads to slight increases in the variance of the link prediction results.
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Table 5.8: Influence of different hyperparameter configurations for CONEx on WN18RR.
d, ¢ and p stand for the dimensions of embeddings in C, number of output channels in 2D
convolutions and number of free parameters in millions, respectively.

WN18RR
d c p MRR Hits@10 Hits@3 Hits@1
300 64 70.66M 0.475 0.540 0.490 0.442
250 64 52.49M 0.475 0.541 0.488 0.441
300 32 47.62M 0.480 0.548 0.491 0.447
250 32 36.39M 0.479 0.545 0.490 0.446
300 16 36.10M 0.479 0.550 0.494 0.445
250 16 28.48M 0.477 0.544 0.489 0.443
200 32 26.63M 0.481 0.550 0.493 0.447
100 32 10.75M 0.474 0.533 0.480 0.440
100 16 9.47TM 0.476 0.536 0.486 0.441
50 32 4.74M 0.448 0.530 0.477 0.401

During our ablation experiments, we were also interested in decomposing CoNEx
through removing conv(-, -), after CONEX is trained with it on benchmark datasets.
By doing so, we aim to observe the impact of a 2D convolution in the computation of
scores. Table 5.10 indicates that the impact of conv(-, -) differs depending on the input
knowledge graph. As the size of the input knowledge graph increases, the impact of

conv(, -) on the computation of scores of triples increases.

5.2.3 MULTIPLICATIVE VS. ADDITIVE CONNECTIONS

We conducted further experiments to observe the impact of replacing the multiplicative
connection of 2D convolution operation with an additive connection of 2D convolution
operation. We selected the following configuration: Embeddings are represented with
32 real-valued numbers, the mini-batch size is set to 1024, Adam with 0.1 learning rate
is used as optimizer and 32 kernels of shape 3 by 3 are used.

Tables 5.11 and 5.12 suggest that ACONEx outperforms CoNEX in all metrics with all
configuration settings. We conjecture that using the last ReLU activation function in

conv(ey, e,) leads to such performance differences.
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Table 5.9: Ablation study for CONEx on FB15K-237. dp and Is denote the dropout technique
and the label smoothing technique, respectively.

FB15K-237
MRR Hits@10 Hits@3 Hits@1
Full 0.366+0.000  0.556+0.001  0.404+0.001  0.270+0.001
With RMSprop 0.361+0.004  0.550+0.007  0.400£0.005  0.267+0.003
No dp on inputs 0.282+0.000  0.441£0.001  0.313+0.001  0.2030.000
No dp on feature map ~ 0.351£0.000  0.533+0.000  0.388+0.001  0.259+0.001
No Is 0.321£0.001  0.498+0.001  0.354+0.001  0.232:0.002

Table 5.10: Link prediction results on benchmark datasets. CONEx™ stands for removing
conv(-, ) in CoNEx during the evaluation.

CoNEx CoNEx™

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

WN18RR 0481 0.550 0.493 0.448 0.401 0.494 0.437 0.346
FB15K-237 0.366 0.555 0.403 0.271 0.284 0.458 0.314 0.198
YAGO3-10 0.553 0.696 0.601 0.477 0.198 0.324 0.214 0.136

Each negative number in the output vector of the affine transformation in conv(ey, ;)
is mapped to 0 by the last ReLU activation function. Therefore, Os in y := conv(ep, ;)
more heavily influences the final score in CoNEx than ACoNEx. In CoNEx, the impact of
conv(ey, e,) in the final score is ignored iff conv(ey, e,) =: y € 1, whereas, in ACONEX,
the impact of conv(ey, e,) is ignored conv(ey, e,) =: y € 0. Due to the last ReLU

activation function, the latter is arguably more easily learned than the former.

5.2.4 DIiScUSSION

The superior performance of CoNEx stems from the composition of a 2D convolution
with a Hermitian inner product of complex-valued embeddings. Trouillon et al. (2016)
show that a Hermitian inner product of complex-valued embeddings can be effectively
used to tackle the link prediction problem. Applying the convolution operation on
complex-valued embeddings of subjects and predicates permits CoNEx to recognize in-

teractions between subjects and predicates in the form of complex-valued feature maps.
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Table 5.11: Link prediction results with multiplicative and additive connections. ACONEx
denotes CoNEx with an additive connection of the 2D convolution operation.

KINSHIP UMLS

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ConNEx-train  0.219 0.113  0.223 0.438 0.935 0.884 0.984 0.993
ConEx-val 0.188 0.084  0.183 0.415 0.830 0.725  0.924 0.974
ConEx-test 0.185 0.082  0.183 0.395 0.820 0.704  0.926 0.979

ACoONEXx-train 0.855 0.579 0.926 0.986 0.999 0.999 1.000 1.000
AConEx-val 0.711 0.579 0.808 0.951 0.733 0.597 0.847 0.956
AConEx-test 0.711 0.582 0.823  0.952 0.743 0.611 0.845 0.973

Through the affine transformation of feature maps and their inclusion into a Hermitian
inner product involving the conjugate-transpose of complex-valued embeddings of
objects, CONEXx can accurately infer various types of relations. Moreover, the number
and shapes of the kernels permit to adjust the expressiveness, while CONEx retains the
parameter efficiency due to the parameter sharing property of convolutions. By virtue
of the design, the expressiveness of CoNEx may be further improved by increasing the
depth of the conv(-, -) via the residual learning block (He et al., 2016).

TRADE-OFFS & PossIBLE IMPROVEMENTS: During our experiments, we observe
that DistMult often requires less runtime than ComplEx and ComplEx requires less
runtime than CoNEX per epoch. This may stem from the fact that, a single score for a
given triple requires less elementwise operations per embedding dimension in DistMult
and ComplEx than in CoNEx. Moreover, during our experiments, we observe that
DistMult often requires fewer epoch than ComplEx to reach its peak performance, i.e.,
the trajectory of the loss function stabilizes. We conjecture that it may be beneficial
to train models longer that based on more complex operations (e.g., an Hermitian
inner product or a convolution operation). Using the last ReLU activation function
in Equation (5.2) leads to ignoring the impact of negative complex numbers in computed
scores for CoNEx. Omitting the ReLU activation or replacing it with the Leaky ReLU

function may improve the performance.
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Table 5.12: Link prediction performance comparison CoNEx and ACoNEx on FB15k-237 with
different training epochs.

CoNEx ACoNEx

N MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

100 train 0.164 0.111 0.178 0.266 0.490 0.382 0.548 0.697
val 0.180 0.126 0.194 0.287 0.264 0.187 0.288 0.417
test 0.178 0.123  0.194 0.283 0.259 0.182 0.285 0.412

300 train 0.189 0.129  0.204 0.306 0.584 0.483 0.644 0.774
val 0.209 0.149  0.226 0.328 0.271 0.192 0.294  0.428
test 0.208 0.146  0.228 0.328 0.266 0.187 0.290 0.422

500 train 0.203 0.138  0.218 0.326 0.584 0.484 0.642 0.772
val 0.219 0.157 0.236 0.340 0.265 0.189 0.288  0.420
test 0.215 0.152  0.233 0.339 0.265 0.187 0.290 0.421
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6.1 METHODOLOGY

In this chapter, we introduce four hypercomplex KGE models QMuLT,OMuLT, CONVQ
and ConvO. Here, our goal is to confirm whether our finding in using convolutions on
complex numbers C (see Chapter 5) generalizes to to the two largest normed division
algebras, i.e., hypercomplex numbers (Quaternions H and Octonions 0). To this end,
we propose four KGE models—QMurt,OMuLrT, ConvQ and ConvO. The former two
model learn quaternion- and octonion-valued embeddings based on element-wise
multiplications followed by an inner product in Quaternions and Octonions. respectively.

The latter two model extend the former two by including 2D convolution operation.

MoTivaTioN: Dettmers et al. (2018) suggest that indegree and PageRank can be
used to quantify the difficulty of predicting missing links in KGs. Results indicate that
the superiority of ConvE becomes more apparent against DistMult and ComplEx as
the complexity of the knowledge graph increases, i.e., indegree and PageRank of a
KG increase (see Table 6 in Dettmers et al. (2018)). In turn, Zhang et al. (2019) show
that learning quaternion-valued embeddings via multiplicative interactions can be a
more effective means of predicting missing links than learning real and complex-valued
embeddings. Although learning quaternion-valued embeddings through multiplicative
interactions yields promising results, the only way to further increase the expressiveness
of such models is to increase the number of dimensions of embeddings. This does not
scale to larger knowledge graphs (Dettmers et al., 2018). Increasing parameter efficiency
while retaining effectiveness is a desired property in many applications (Zhang et al.,
2021; Trouillon et al., 2016, 2017).

Motivated by findings of aforementioned works, we investigate the composition
of convolution operations with hypercomplex multiplications. The rationale behind
this composition is to increase the expressiveness without increasing the number of
parameters. This nontrivial endeavor is the keystone of embedding models (Trouillon
et al., 2016). The sparse connectivity property of the convolution operation endows
models with parameter efficiency, which helps to scale to larger knowledge graphs.
Additionally, different configurations of the number of kernels and their shapes can be
explored to find the best ratio between expressiveness and the number of parameters.
Although increasing the number of feature maps results in increasing the number of

parameters, we are able to benefit from the parameter sharing property of convolu-
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tions (Goodfellow et al., 2016). In Table 6.1, we summarize the symbols used in this

chapter.
Table 6.1: An overview of our notation used in Chapter 6.
Notation Description
G Knowledge graph
E,R Set of unique entities and relations in G, respectively
C) Model parameters
E A hypercomplex-valued entity embedding matrix
R A hypercomplex-valued relation embedding matrix
o Hadamard product
® Hamilton/Quaternion product
* Octonion product
o(-),ReLU(:)  Logistic sigmoid and rectified linear unit functions, respectively
conv(-,-) The convolution connection function
W, b Affine transformation used in conv(-, -)
d the size of embedding vectors for entities and relations
vec(-) Flattening operation
* Convolution operation
@ Filters/kernels for the convolution operation
£(-,-) Binary cross-entropy loss function

APPROACHES: Given a triple (h,r, t), QMuLT : & X R X & — R computes a triple
score through the quaternion multiplication of head entity embeddings e;, and relation

embeddings e, followed by the inner product with tail entity embeddings e; as
QMurt(h, 1, t)e = e, Q €, - €y, (6.1)

where © = {E,R} denotes the model parameters, where E € H9, and R € H?, hence,
e, e, e € He.
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Similarly, OMuLT : & X R X & — R performs the octonion multiplication followed

by the inner product as
OMuLrt(h,r,t)e = ep ke, - €;, (6.2)

where © = {E,R} denotes the model parameters, where E € 04, and R € 07, hence,
en e, e € 04 Computing scores of triples in this setting can be illustrated in two
consecutive steps: (1) rotating e; through e, by applying quaternion/octonion multipli-
cation, and (2) squishing (e; ® e,) and e; into a real number line by taking the inner
product. During training, the degree between (e, ® e,) and e; is minimized provided
(h,r,t) € G. Motivated by the response of John T. Graves to W. R. Hamilton,! we

combine 2D convolutions with QMuLT and OMuULT as defined

ConvQ(h,r,t)g = conv(ep, e,) o (e, Q@ ey) - €, (6.3)
ConvO(h,r,t)e = conv(ep, e,) o (eyke,) - e, (6.4)

where conv(-,-) : H*? — H? (respectively : 0°¢ — 09) is defined as
conv(ey, ;) = ReLU(vec(ReLU([ey, €/] * w)) - W +b). (6.5)

ReLU(+), vec(-), %, w, [, -], and (W, b) denote the rectified linear unit function, a flatten-
ing operation, convolution operation, kernel in the convolution, stacking operation,

and an affine transformation, respectively.

CoNNECTION TO COMPLEX AND DisTMULT: During training, conv(-, -) can reduce
its range into y € 1 if such reduction is necessary to further decrease the training loss.
In the following Equations (6.6) to (6.10), we elucidate the reduction of ConvQ into
QMurt and ComplEx:

ConvQ(h,r,t)e =yo (e, ®e;) - €. (6.6)

“If with your alchemy you can make three pounds of gold, why should you stop there?” Baez (2002).
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Equation (6.6) corresponds to QMULT provided that conv(ep, e,) = y = 1. CONVQ can
be further reduced into ComplEx by setting the imaginary parts j and k of ey, e, and e;
to zero:

y o ((ap + bpi) ® (a, + byi)) - (ar + byi). (6.7)

Computing the quaternion multiplication of two quaternion-valued vectors corresponds
to Equation (6.8):

yo[(apoa, —byob,)+ (apob, +byoa)i] - (a; + bii). (6.8)
The resulting quaternion-valued vector is scaled with y = [y, y2]:
[(yioapoa, —y10obyoby)+ (y20ap0b, +y,0bp0a,)i] - (a; +bid).  (6.9)
Through taking the inner product of the former vector with (a; + b;i), we obtain

ConvQ(h, r, t) = (y1, an, ar, a)
+(y2, b, ar, by)
+(y2, ap, br, br)
—(¥1, bw, by, ay),

(6.10)

where (a, b, c,d) = ) axbicrdy corresponds to the multi-linear inner product. Equa-
tion (6.10) corresponds to ComplEx provided that y = 1. In the same way, CoNvQ can
be reduced into DistMult by setting all imaginary parts i, j, k to zero for ey, e,, and e;
yielding

ConvQ(h,r,t) = (y1, an, ar, as). (6.11)

CONNECTION TO RESIDUAL LEARNING: The residual learning framework facilitates
the training of deep neural networks. A simple residual learning block consists of two
weight layers denoted by ¥ (x) and an identity mapping of the input x (see Figure 2
in He et al. (2016)). Increasing the depth of a neural model via stacking residual learning
blocks led to significant improvements in many domains. In our setting, ¥ (-) and x
correspond to conv(-,-) and [ey, e,], respectively. We replaced the identity mapping of
the input with the hypercomplex multiplication. To scale the output, we replaced the

element-wise vector addition with the Hadamard product.



96 6 CONVOLUTIONAL HYPERCOMPLEX EMBEDDINGS FOR LINK PREDICTION

By virtue of such inclusion, ConvQ and ConvO are endowed with the ability of
controlling the impact of conv(-, -) on predicted scores as shown in Equation (6.10).
Ergo, the gradients of loss w.r.t. head entity and relation embeddings can be propagated
in two ways, namely, via conv(ey, e,) or hypercomplex multiplication. Moreover, the
number of feature maps and the shape of kernels can be used to find the best ratio
between expressiveness and the number of parameters. Hence, the expressiveness of
models can be adjusted without necessarily increasing the embedding size. Although
increasing the number of feature maps results in increasing the number of parameters in

the model, we are able to benefit from the parameter sharing property of convolutions.

6.2 EXPERIMENTS & RESULTS

EXPERIMENTAL SETUP

We compare our models against many state-of-the-art approaches in the link prediction
task on benchmark datasets. All experiments are carried out on a single core of a
server running Ubuntu 18.04 with 126 GB RAM with 16 Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz processors and a single NVIDIA GeForce RTX 3090. Throughout our
experiments, the seed for the pseudo-random generator is fixed to 1. We provide
hyperparameter optimization, training and evaluation scripts along with pre-trained
models at https://github.com/dice-group/Convolutional-Hypercomplex-Embeddings-
for-Link-Prediction and https://github.com/dice-group/dice-embeddings.

DATASETS

We use seven benchmark datasets: WN18RR, FB15K-237, YAGO3-10, FB15K, WN18,
UMLS and Kinship. An overview of the datasets is provided in Table 6.2. The latter four
datasets are included for the sake of the completeness of our evaluation. Since the KvsAll
training strategy is applied, the training, validation and test sets are augmented with
reciprocal triples ((t, r1, h)) as done in previous works (Dettmers et al., 2018; Balazevié
et al., 2019b,c). For link prediction based on only tail entity ranking experiments

(see Table 6.6), we omit the data augmentation on the test set, as in (Bansal et al., 2019).
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Table 6.2: An overview of benchmark datasets in terms of entities, relations, average node
degree plus/minus standard deviation.

Dataset |E| IR| Degree |gTain| | gVal| |G Test|
YAGO3-10 123,182 37 9.6+8.7 1,079,040 5,000 5,000
FB15K 14,951 1,345 32.5+69.5 483,142 50,000 59,071
WN18 40,943 18 3.5+£7.7 141,442 5,000 5,000
FB15k-237 14,541 237 19.7+30 272,115 17,535 20,466
WN18RR 40,943 11 2.2+3.6 86,835 3,034 3,134
KINSHIP 104 25 82.2+3.5 8,544 1,068 1,074
UMLS 135 46 38.6x£32.5 5,216 652 661

EvALUATION METRICS

We use the standard metrics (filtered MRR and Hits@N) to evaluate link prediction
performances, as in previous works (Trouillon et al., 2016; Dettmers et al., 2018; Sun
et al., 2019; Balazevi¢ et al., 2019b,c). The filtered MRR and Hits@N metrics are defined
in Equation (2.59), Equation (2.60), respectively. For the sake of completeness, we also
report link prediction performances based on only tail rankings, i.e., without including

triples with reciprocal relations into test data, as done in Bansal et al. (2019).

HYPERPARAMETER OPTIMIZATION

We apply the standard training strategy as Dettmers et al. (2018); Balazevi¢ et al.
(2019b,c): Following the KvsAll training procedure,2 for a given pair (h, r), we compute
scores for all x € & with ¢(h, r, x) and apply the logistic sigmoid function o (@ (h, r, x)).
Models are trained to minimize the binary cross entropy loss function, where y € R/€l

and y € [0, 1]/®! denote the predicted scores and binary label vector, respectively.

&
1l

(33) = =157 2,y log ) + (1= y)log(1 - 3. (6.12)
i=1

We employ the Adam optimizer (Kingma and Ba, 2014), dropout (Srivastava et al.,
2014), label smoothing and batch normalization (Ioffe and Szegedy, 2015), as in the

’Here, we follow the terminology of Ruffinelli et al. (2019).
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literature (Balazevic et al., 2019b,c; Dettmers et al., 2018). Moreover, we selected hy-
perparameters of our approaches by random search based on validation set perfor-
mances (Balazevic et al., 2019c). Notably, we did not search a good random seed for the

random number generator, and we fixed the seed to 1 throughout our experiments.

6.2.1 RESULTS

Table 6.3 reports link prediction results on the WN18RR, FB15K-237, and YAGO3-10
datasets. Overall, the superior performance of our approaches becomes more and more
apparent as the size and complexity of the knowledge graphs grow. On the smallest
benchmark dataset (WN18RR), QMuLt, OMurT, ConvQ and ConvO outperform many
approaches including DistMult, ConvE and ComplEx in all metrics. However, QuatE,
TuckER, and RotatE yield the best performance. On the second-largest benchmark
dataset (FB15K-237 is 3.1X larger than WN18RR), ConvO outperforms all state-of-the-
art approaches in 3 out of 4 metrics. Additionally, QMuLT and ConvQ outperform all
state-of-the-art approaches except for TucKER in terms of MRR, H@1 and H@3. On the
largest benchmark dataset (YAGO3-10 is 12.4X larger than WN18RR), QMuLT, ConvO,
ConvQ outperform all approaches in all metrics. Surprisingly, QMurt and OMuLT
reach the best and second-best performance in all metrics, whereas ConvO does not
perform particularly well compared to our other approaches. CoNnvO outperforms
QMurt, OMutrTt, and ConvQ in 8 out of 12 metrics, whereas QMULT yields better
performance on YAGO3-10. Overall, these results suggest that superiority of learning
hypercomplex embeddings becomes more apparent as the size and complexity of
the input knowledge graph increases, as measured by indegree (see Table 6.2) and
PageRank (see Table 6 in Dettmers et al. (2018)). In Table 6.4, we compare some of the
best performing approaches on WN18RR, FB15K-237 and YAGO3-10 in terms of the
number of trainable parameters. Results indicate that our approaches yield competitive

(if not better) performance on all benchmark datasets.

ENSEMBLE LEARNING

Table 6.5 reports link prediction results of ensembled models on benchmark datasets.
Two models are ensembled by averaging their predictions at testing time. Averaging

the predicted scores of models improved the performance by circa 1-2% in MRR.
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Table 6.3: Link prediction results on WN18RR, F15K-237 and YAGO3-10. Results are obtained
from corresponding papers. Bold and underlined entries denote best and second-best results.
The dash (-) denotes values missing in the papers.

WN18RR FB15K-237 YAGO3-10
MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

TransE (Ruffinelli et al., 2019)  0.228 0.053 0.368 0.520 0.313 0.221 0.347 0.497 - - - -
ConvE (Ruffinelli et al., 2019)  0.442 0.411 0.451 0.504 0.339 0.248 0.359 0.521 - - - -
TuckER (Balazevic et al., 2019c) 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 - - - -
A2N (Bansal et al., 2019) 0.450 0.420 0.460 0.510 0.317 0.232 0.348 0.486 - - - -
QuatE (Zhang et al., 2019) 0.482 0.436 0.499 0.572 0.311 0.221 0.342 0.495 - - - -
HypER (Balazevi¢ et al., 2019b) 0.465 0.436 0.477 0.522 0.341 0.252 0.376 0.520 0.533 0.455 0.580 0.678
DistMult (Dettmers et al., 2018) 0.430 0.390 0.440 0.490 0.240 0.160 0.260 0.420 0.340 0.240 0.380 0.540
ConvE (Dettmers et al., 2018)  0.430 0.400 0.440 0.520 0.335 0.237 0.356 0.501 0.440 0.350 0.490 0.620
ComplEx (Dettmers et al., 2018) 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428 0.360 0.260 0.400 0.550

REFE (Chami et al., 2020) 0.455 0.419 0.470 0.521 0.302 0.216 0.330 0.474 0.370 0.289 0.403 0.527
ROTE (Chami et al., 2020) 0.463 0.426 0.477 0.529 0.307 0.220 0.337 0.482 0.381 0.295 0.417 0.548
ATTE (Chami et al., 2020) 0.456 0.419 0.471 0.526 0.311 0.223 0.339 0.488 0.374 0.290 0.410 0.538
ComplEx-N3 (Chami et al., 2020)0.420 0.390 0.420 0.460 0.294 0.211 0.322 0.463 0.336 0.259 0.367 0.484
MuRE (Chami et al., 2020) 0.458 0.421 0.471 0.525 0.313 0.226 0.340 0.489 0.283 0.187 0.317 0.478
RotatE (Sun et al., 2019) 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.495 0.402 0.550 0.670
QMuLt 0.438 0.393 0.449 0.537 0.346 0.252 0.383 0.535 0.555 0.475 0.602 0.698
OMuLt 0.449 0.406 0.467 0.539 0.347 0.253 0.383 0.534 0.543 0.461 0.592 0.692
ConvQ 0.457 0.424 0.470 0.525 0.343 0.251 0.376 0.528 0.539 0.459 0.587 0.687
ConvO 0.458 0.427 0.473 0.521 0.366 0.271 0.403 0.543 0.489 0.395 0.546 0.664

Table 6.4: Number of parameter comparisons on the WN18RR, FB15K-237 and YAGO3-10
datasets. The dash (-) denotes values missing in the papers.

WN18RR FB15K-237 YAGO3-10

QuatE (Zhang et al., 2019) 16.38M 5.82M -
RotatE (Sun et al., 2019) 40.95M 29.32M 123.22M

QMuLt 16.38M 6.01M 49.30M
OMuLt 16.38M 6.01M 49.30M
ConvQ 21.51M 11.13M 54.42M

ConvO 21.51M 11.13M 54.42M
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Table 6.5: Link prediction results via ensemble learning.

WN18RR FB15K-237 YAGO3-10
MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10
Q-OMuLt 0.444 0.399 0.458 0.544 0.356 0.260 0.393 0.545 0.557 0.478 0.601 0.700

QOMurt-ConvQ 0.446 0.406 0.455 0.538 0.357 0.263 0.392 0.546 0.561 0.483 0.606 0.703
QMurr-ConvO 0.449 0.410 0.459 0.536 0.372 0.275 0.411 0.564 0.543 0.460 0.594 0.693
OMuLrT-ConvQ 0.444 0.403 0.453 0.537 0.357 0.262 0.391 0.547 0.558 0.478 0.602 0.700
OMuLrTt-ConvO  0.462 0.425 0.475 0.539 0.372 0.277 0.411 0.564 0.535 0.450 0.588 0.692
ConvQ-O-OMuLrt 0.463 0.425 0.475 0.539 0.372 0.275 0.411 0.567 0.552 0.470 0.599 0.702

We conjecture that link prediction performance may be further improved through

optimizing the impact of each model in the constructed ensemble.

ImpPAcCT OF TAIL ENTITY RANKINGS

During our experiments, we observed that models often perform more accurately in
predicting missing tail entities compared to predicting missing head entities, which was
also observed in Bansal et al. (2019). Table 6.6 indicates that MRR performance based
on only tail entity rankings are on average absolute 10% higher than MRR results based
on head and tail entity rankings on FB15K-237 while such difference was not observed
on WN18RR.

LiINK PREDICTION PER RELATION AND DIRECTION

We reevaluate link prediction performance of some of the best-performing models
from Table 6.3 in Tables 6.7 and 6.8. Allen et al. (2021) distinguish three types of
relations: Type S relations are specialization relations such as hypernym, type C denote
so-called generalized context-shifts and include has_part relations, and type R relations
include so-called highly-related relations such as similar_to. Our results show that
our approaches accurately rank missing tail and head entities for type R relations.
For instance, our approaches perfectly rank (1.0 MRR) missing entities of symmetric
relations (verb_group and similar_to). However, the direction of entity prediction
has a significant impact on the results for non-symmetric type C relations. For instance,
MRR performances of QMuLT, ConvQ, OMuLT, and ConvO differ by up to absolute

0.63 for the relation member_of_domain_region.
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Table 6.6: Link prediction results based on only tail entity rankings.
WN18RR FB15K-237 YAGO3-10
MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10
DistMult 0.430 0.410 0.440 0.480 0.370 0.275 0.417 0.568 - - - -
ComplEx 0.420 0.380 0.430 0.480 0.394 0.303 0.434 0.572 - - - -
ConvE 0.440 0.400 0.450 0.520 0.410 0.313 0.457 0.600 - - - -
MINERVA 0.450 0.410 0.460 0.510 0.293 0.217 0.329 0.456 - - - -
A2N 0.490 0.450 0.500 0.550 0.422 0.328 0.464 0.608 - - - -
QOMuLt 0.451 0.403 0.472 0.553 0.439 0.341 0.485 0.636 0.692 0.626 0.736 0.799
OMurt 0.461 0.414 0.482 .559 0.440 0.340 0.486 0.636 0.689 0.623 0.733 0.801
ConvQ 0.470 0.437 0.482 0.538 0.441 0.344 0.482 0.632 0.674 0.612 0.715 0.783
ConvO 0473 442 0.491 0.535 0.465 0.367 0.512 0.654 0.622 0.535 0.682 774
Q-OMuLt 0.457 0.401 048 0.559 0.448 0.347 0.495 0.644 0.696 0.632 0.734 0.804
OMurT-ConvQ 0.466 0.424 0.480 0.557 0.451 0.353 0.496 0.646 0.697 0.635 0.737 0.803
OMurT-ConvO 0.474 0.435 0.487 0.558 0.467 0.367 0.516 0.662 0.680 0.610 0.727 0.800
OMurt-ConvQ 0.471 0.430 0.487 0.560 0.452 0.354 0.495 0.647 0.696 0.632 0.735 0.803
OMurt-ConvO 0.476 0.436 0.488 0.559 .466 0.366 0.515 0.662 0.676 0.602 0.724 0.803
ConvQ-O 0.477 0.442 0.494 0.548 0.468 0.370 0.515 0.661 0.675 0.603 0.724 0.795

Table 6.7: MRR link prediction results per relations on WN18RR. Ensemble refers to averaging
predictions of CoNvQ-CoNvO-OMuLT.

Relation Name

Rel. Type RotatE QMurt ConNvQ OMurt CoNvO Ensemble

hypernym
instance_hypernym
member_meronym
synset_domain_topic_of
has_part

member_of domain_usage
member_of domain_region
derivationally_related_form
also_see

verb_group

similar_to

0]

~ ™™™ OOOOO0OWw

0.15
0.32
0.23
0.34
0.18
0.32
0.20
0.95
0.59
0.94
1.00

0.10
0.35
0.22
0.31
0.19
0.29
0.25
0.98
0.67
1.00
1.00

0.14
0.37
0.20
031
0.17
0.28
0.38
0.98
0.65
1.00
1.00

0.11
0.36
0.23
0.32
0.18
0.27
0.30
0.98
0.66
1.00
1.00

0.13
0.37
0.20
033
0.18
0.33
0.37
0.98
0.66
1.00
1.00

0.13
0.39
0.23
0.34
0.19
0.29
0.38
0.98
0.66
1.00
1.00
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Table 6.8: Link prediction results depending on the direction of prediction (head vs. tail
prediction) on WN18RR. Ensemble refers to averaging predictions of ConvQ-CoNnvO-OMuLrT.

QMuLt ConvQ OMuLt ConvO Ensemble

(h, r, x)

hypernym 0.12 0.18 0.13 0.18 0.17
instance_hypernym 0.53 0.56 0.53 0.57 0.58
member_meronym 0.17 0.09 0.16 0.08 0.14
synset_domain_topic_of 0.49 0.47 0.51 0.52 0.52
has_part 0.15 0.12 0.15 0.14 0.14
member_of domain_usage 0.04 0.02 0.07 0.08 0.05
member_of_domain_region  0.05 0.06 0.05 0.06 0.05
derivationally_related form  0.98 0.98 0.98 0.98 0.98
also_see 0.67 0.63 0.65 0.63 0.63
verb_group 1.0 1.0 1.0 1.00 1.0
similar to 1.0 1.0 1.0 1.00 1.0
(x,r, t)

hypernym 0.07 0.09 0.09 0.08 0.10
instance_hypernym 0.17 0.13 0.19 0.17 0.19
member_meronym 0.27 0.31 0.29 0.33 0.32
synset_domain_topic_of 0.13 0.14 0.13 0.15 0.15
has_part 0.22 0.22 0.22 0.22 0.24
member_of_domain_usage 0.53 0.54 0.47 0.59 0.54
member_of domain_region  0.45 0.69 0.55 0.67 0.70
derivationally_related form  0.98 0.98 0.98 0.99 0.98
also_see 0.68 0.67 0.66 0.69 0.68
verb_group 1.00 1.0 1.0 1.0 1.0
similar_to 1.00 1.0 1.0 1.0 1.0
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Table 6.9: Link prediction results with the batch and unit normalization.

Kinship UMLS
MRR H@l @3 @10 MRR @1 @3 @10

GNTP-Standard (Minervini et al., 2020) 0.72 059 082 09 080 070 088 0.95
GNTP-Attention (Minervini et al., 2020)  0.76 0.64 085 09 086 076 095 0.98

NTP (Minervini et al., 2020) 0.35 0.24 037 057 080 070 088 0.95
NeuralLP (Minervini et al., 2020) 0.62 048 0.71 091 0.78 064 087 0.96
MINERVA (Minervini et al., 2020) 0.72 0.60 0.81 092 083 073 09 0.97
ConvE (Dettmers et al., 2018) 0.83 0.74 092 098 094 092 096 0.99
QMutrt (batch) 088 081 094 099 096 093 098 1.0
QMurt (unit) 0.69 0.58 0.78 090 077 069 082 0.93
OMutT (batch) 0.87 0.80 094 099 095 091 098 1.0
OMutt (unit) 0.69 0.57 0.77 089 0.76 066 082 0.93
ConvQ (batch) 0.86 077 093 098 092 086 098 1.0
ConvQ (unit) 0.61 049 0.68 085 055 045 059 0.75
ConvO (batch) 0.86 077 093 098 090 0382 098 1.0
ConvO (unit) 0.65 053 0.72 086 056 046 0.61 0.78

The low performance of hypernym (type S) may stem from the fact that there are 184
triples in the test split of WN18RR where hypernym occurs with entities of which at
least one did not occur in the training split (Demir and Ngonga Ngomo, 2021c). Models
often perform poorly on type C relations but considerably better on type R relations

corroborating findings by Allen et al. (2021).

BAaTcH vSs. UNIT NORMALIZATION

We investigate the effect of using batch normalization, instead of unit normalization
as previously proposed by Zhang et al. (2019). Table 6.9 indicates that the scaling
effect of hypercomplex multiplications can be effectively alleviated by using the batch
normalization technique. Replacing unit normalization with the batch normalization
technique allows benefiting (1) from its regularization effect and (2) from its numerical
stability. Through batch normalization, our models are able to control the rate of
normalization and benefit from its implicit regularization effect (Ioffe and Szegedy,
2015).



104 6 CONVOLUTIONAL HYPERCOMPLEX EMBEDDINGS FOR LINK PREDICTION

Training loss per epoch on YAGO3-10

0.40 —— QMult
OMult
—— ConvQ
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Figure 6.1: A plot of convergence during training on YAGO3-10.

CONVERGENCE ON YAGO3-10

Figure 6.1 indicates that incurred binary cross entropy losses significantly decrease
within the first 100 epochs. After the 300th iteration, ConvQ and ConvO appear to
converge as losses do not fluctuate, whereas training losses of QMuLT and OMULT

continue fluctuating.

LINK PREDICTION RESULTS ON PREVIOUS BENCHMARK DATASETS

Table 6.10 reports results on WN18 and FB15K showing that our approaches ConvQ
and ConvQ outperform state-of-the-art approaches in 6 out of 8 metrics on the datasets.

SEMANTIC CONSTRAINT

we design a semantic constraint technique that incorporates the domain and range
information of a relation at testing time to further boost link prediction performance.
For a given (h,r,t) € G""®", all entities x ¢ domain(r) are filtered out at computing

the rank of missing head entity.
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Table 6.10: Link prediction results on WN18 and FB15K.

WN18 FB15K

Model Param. MRR Hit@10 Hit@3 Hit@1 Param. MRR Hit@10 Hit@3 Hit@1

TransE - 0.495 0.943 0.888 0.113 - 0.463  0.749 0.578  0.297
TransR - 0.605  0.940 0.876  0.335 - 0.346  0.582 0.404 0.218
ER-MLP - 0.712  0.863 0.775  0.626 - 0.288  0.501 0.317  0.173
RESCAL - 0.890  0.928 0.904 0.842 - 0.354  0.587 0.409  0.235
HolE - 0.938  0.949 0.945 0.930 - 0.524  0.739 0.613  0.402
SimplE - 0.942  0.947 0.944 0.939 - 0.727  0.838 0.773  0.660
TorusE - 0.947 0954 0.950 0.943 - 0.733  0.832 0.771  0.674
RotatE - 0.947  0.961 0.953  0.938 - 0.699  0.872 0.788  0.585
QuatE - 0.949  0.960 0.954 0.941 - 0.770  0.878 0.821  0.700
QuatE? - 0.950  0.962 0.954 0.944 - 0.833  0.900 0.859  0.800

OMurr 16.39M  .975 .980 .976 972 7.05M 0.755 0.896 0.819  0.668
OMurtr 16.39M 975 0.981 976 972 7.05M 0.748  0.889 0.813  0.660
ConvQ 21.51M 0.976 .980 0.977 0.973 12.17M 813  0.923 0.868 0.743

ConvO 21.51IM 0.976 0.980 0.977 0.973 12.17M 0.810 0.923 0.865 0.739

All entities x ¢ range(r) are filtered out at computing the rank of missing tail entity.

Table 6.11 reports link prediction results with semantic constraint technique.

6.2.2 DISCUSSION

Our approaches often outperform many state-of-the-art approaches on all benchmark
datasets. QMuULT and OMULT outperform many state-of-the-art approaches including
DistMult and ComplEx. These results indicate that scoring functions based on hyper-
complex multiplications are more effective than scoring functions based on real and
complex multiplications. This observation corroborates findings of Zhang et al. (2019).
ConvO often perform slightly better than ConvQ on all datasets. Additionally, QMuLT
and OMuLT perform particularly well on YAGO3-10. Figure 1 indicates that ConvQ
and CoNvO reach lower training errors than QMurT and OMurT on YAGO3-10.
Overall, superior performance of our models stems from (1) hypercomplex embed-
dings and (2) the inclusion of convolution operations. Our models are allowed to degrade
into ComplEx or DistMult if necessary. Inclusion of the convolution operation followed
by an affine transformation permits finding a good ratio between expressiveness and

the number of parameters.
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Table 6.11: Link prediction results on WN18RR, F15K-237 and YAGO3-10. Results are obtained
from corresponding papers. Bold entries denote best results. The dash (-) denotes values missing
in the papers. T represents applying the semantic constraint at prediction time

WN18RR FB15K-237 YAGO3-10
MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

QMurt 0.438 0.393 0.449 0.537 0.346 0.252 0.383 0.535 0.555 0.475 0.602 0.698
QMurr 10.473 0.427 0.491 0.566 0.382 0.285 0.421 0.576 0.576 0.490 0.631 0.728

OMurt 0.449 0.406 0.467 0.539 0.347 0.253 0.383 0.534 0.543 0.461 0.592 0.692
OMurrt 10.484 0.444 0.504 0.563 0.381 0.284 0.418 0.576 0.563 0.480 0.612 0.716

ConvQ 0.457 0.424 0.470 0.525 0.343 0.251 0.376 0.528 0.539 0.459 0.587 0.687
ConvQ 70.474 0.442 0.486 0.535 0.375 0.280 0.409 0.568 0.497 0.403 0.553 0.672

ConvO 0.458 0.427 0.473 0.521 0.366 0.271 0.403 0.543 0.489 0.395 0.546 0.664
ConvO 70.471 0.441 0.484 0.529 0.398 0.301 0.437 0.592 0.545 0.463 0.594 0.694

CoNEx 0.481 0.448 0.493 0.550 0.366 0.271 0.403 0.555 0.552 0.474 0.601 0.696
ConNEx 10.491 0.457 0.504 0.561 0.398 0.301 0.437 0.595 0.565 0.484 0.613 0.709

TRADE-OFFS & PossIBLE IMPROVEMENTS: During our experiments we observe
that QMuLrT and OMULT consistently require less runtime than ConvQ and ConvO.
This corroborate our previous findings at Chapter 5, i.e., as the number of operations
increases to compute a score for a single triple, the required number of epochs for the
convergence increases. For instance, Figure 6.1 shows that QMuLT and OMULT reaches
a better training loss than ConvQ and CoNvO around the first 50 epochs. Consequently,
to benefits 2D convolutions and non-linearity in ConvQ and ConvO, the computation

budget for the training should permit longer training.
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RESEARCH QUESTIONS: In this work, we are concerned with the following two

research questions:

1. RQ1. Can we design a knowledge graph embedding model to predict missing
triples on large knowledge graphs?

2. RQ2. Can we answer RQ1. while ensuring the parameter efficiency of our

models?
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108 7 KRONECKER DECOMPOSITION FOR KNOWLEDGE GRAPH EMBEDDINGS

7.1 METHODOLOGY

In this section, we introduce KrRoNE. Previous works have shown that pre-trained
overparameterized language models can be effectively decomposed into smaller weight
matrices (Sanh et al., 2019; Jiao et al., 2019; Sun et al., 2020; Rashid et al., 2021). Par-
ticularly, the Kronecker Decomposition (KD) based on the Kronecker Product (KP)
elucidated in Section 2.7 leads to a significant reduction in the number of parameters
with at most a mild cost of predictive accuracy (Edalati et al., 2021; Tahaei et al., 2021).
Analogous to the aforementioned two works, findings of Zhang et al. (2021) and Wu
(2016) suggest that training a neural network via KD on weight matrices results in
increased parameter efficiency. We are interested in learning compressed KGE by ap-
plying KD during training. We aim to design a generic technique that can be applied in
existing knowledge graph embedding (KGE) models to reduce the number of explicitly
stored parameters while retaining their expressiveness. Importantly, through KD on
embedding matrices, we aim to capture interactions within an embedding vector with-
out requiring additional parameters. This is expected to encourage parameter reuse
and reduces redundancy in model’s parameters (Huang et al., 2017). In Table 7.1, we

summarize the symbols used in this chapter.

Table 7.1: An overview of our notation used in Chapter 7.

Notation  Description

G Knowledge graph

ER Entities and relations, respectively

C) Model parameters

do(---) Parameterized scoring function

E,R Entity and relation embedding matrices, respectively
o Hadamard product

® Kronecker product

d Embedding vector dimensions

o(-) Logistic sigmoid function

£(-,-) Binary cross-entropy loss function

Most KGE models are designed as a parameterized scoring function ¢g : & X R X

& — R that maps an input triple (h,r,t) € G to a scalar value that is mapped to
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the unit interval using the sigmoid/logistic function. This normalized scalar value is
interpreted to reflect the likelihood of (h, r, t) is true. ® denotes the parameters of ¢

that consists of an entity embedding matrix E € RI€xd

, a relation embedding matrix
R € RIRIX4d and other trainable parameters, such as affine transformation over input
embeddings, convolutions, batch normalization or instance normalization. Assume that

¢ =: DistMult and © := {E, R}, for a given (h,r, t) € G, a score is computed as
DistMult(h,r,t) = e, o e, - ;. (7.1)

In Equation 7.1, a triple score is computed thorough element-wise interactions between
3 d-dimensional real-valued embedding vectors, e.g., given d = 2 and, a,b,c,d, e, f € R,
a triple score is [a b] o [c d] - [e f] = ace+bdf . During training, the gradient of the set
loss function (e.g., the binary cross entropy) w.r.t. 3 d-dimensional embedding vectors
en, e, €; is computed. The gradient of the loss w.r.t. the first item a in e}, is computed in
two steps: the gradient of the loss. w.r.t. the prediction is computed and distributed over
the addition operation and the element-wise multiplication via ce. Yet, the interaction
between (a, b) as well as between (a, a) are ignored, although a and b constituted e,
together. This stems from computing a scalar value via element-wise operations. These
ignored interactions can be captured through applying KD on embedding vectors as

follows

[aa ab ab bb] o [cc cd cd dd] - [ee ef ef ff] = aacce
+ 2(abcdef) (7.2)
+ bbddff .

Through the middle term in Equation 7.2, interactions between (a, b) and (a, a) are
incorporated without requiring additional parameters. Hence, we argue that DistMult
defined in Equation 7.1 is less expressive than its KD variation defined in Equation 7.2.
Consequently, if the both models are trained properly, the latter model is expected to
perform at least as well as the former model in the link prediction problem. Importantly,
the number of possible interactions within an embedding vector grows by (d + 1)*
when d grows by 1. Although these interactions are expected to encourage feature reuse
and reduce redundancy in model’s parameters, the computation of KP on embedding
vectors may become a bottleneck due to high computationally complexity of KD. In
this setting, E and R can be seen as compressed embeddings of entities and relations.

Hence, given a triple (h, r, t), their compressed embeddings are retrieved and a triple
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score is computed via their decompressed embeddings. Our technique can be readily
applied on many multiplicative based KGE models. For the numerical stability, the
batch normalization or layer normalization can be applied to reduce the dependence of
gradients on the scale of embedding vectors as these normalization techniques have
beneficial effect on the gradient flow through models Ioffe and Szegedy (2015); Ba et al.
(2016); Xu et al. (2019).

7.1.1 KRONECKER DECOMPOSITION FOR RELATION EMBEDDINGS

KD on relation embeddings of DistMult can be applied as
KD-Rel-DistMult(h,r,t) = e, o (e, ® €,) - €, (7.3)

where ey, e; € E:EcR% ande, cR:R € RV The parameter gain can be computed as
(d —Vd) x (|R]). Note that scores of triples are still computed based on 3 d-dimensional
embedding vectors. As the size of the input graph and the number of relations grow,

the parameter gain becomes more tangible.

7.1.2 KRONECKER DECOMPOSITION OF EMBEDDINGS FOR 1VSALL

Most KGs contain more entities than relations (see Table 7.2). Hence, the potential
parameter gain of applying KD on entity embeddings is expectedly larger than applying
KD on relation embeddings. Yet, applying KD on tail entities embeddings in 1vsAll
or KvsAll increase the runtime and memory requirements as these training strategies
require considering all entities to compute an incurred loss for a single prediction. To

alleviate this limitation, KD can be applied as
d
KD-DistMult(h, r, t) = Z R((er®ep) o (e, ®e,)), - ey, (7.4)
i

where R(-) reshapes a d* dimensional vector into d by d matrix. The matrix vector
product of the resulting vector and e; is summed to obtain a score for an input triple (h,
r, t).

In Section 7.1.1 and 7.1.2, we elucidated applying KD on embedding vectors. Yet, KD
can be also applied to decompose linear transformation weight matrices in feed-forward

and convolutional based embedding models during training.
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Table 7.2: An overview of benchmark datasets.

Dataset |8| |R| |gTrain| |gVal.| |gTest|

UMLS 136 93 10,432 1304 1965
KINSHIP 105 51 17,088 2136 3210

7.2 EXPERIMENTS & RESULTS

7.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

All experiments were carried out on a single core of a server running Ubuntu 18.04
with 126 GB RAM with 16 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processors.

DATASETS

We used two of benchmark datasets (KINSHIP and UMLS). The Kinships knowledge
graph describes the 26 different kinship relations of the Alyawarra tribe and the unified
medical language system (UMLS) knowledge graph describes 135 medical entities via
49 relations describing (Trouillon and Nickel, 2017). Note that we omitted WN18RR,
FB15K-237, and YAGO3-10 from our experiments for two reasons: First, we aim to
conduct experiments to quantify the impact of Kronecker Decomposition in a fine-
grained many unique configurations with very large number of epochs (1000). KINSHIP
and UMLS datasets are considerably smaller datasets compared to WN18RR, FB15K-237,
and YAGO3-10. Hence, training three models with 21 unique configurations for 1000
epochs on WN18RR, FB15K-237, and YAGO3-10 can take up to a month. Moreover,
two recent works showed that these datasets involve entities on the validation and
test data splits that do not occur in the train split (Broscheit et al., 2020; Demir and
Ngonga Ngomo, 2021c¢).

EvaLuAaTION

We use the standard metrics filtered MRR and hits at N (H@N) for link prediction (Dettmers
et al., 2018; Balazevic et al., 2019¢,b). We also evaluate link prediction performances of

approaches with respect to number of parameters.
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In 1vsAll or KvsAll, for each test triple (h, r, t), the score of (h, r, x) triples for all
x € & is computed. Based on these scores, the filtered ranking rank; of the triple
having ¢ is obtained. Then the MRR: @ 2i(hrt)egtest m:lkt is computed. Next, Hi@1,
H@3, and H@10 are computed in literature (Dettmers et al., 2018; Balazevi¢ et al.,
2019c; Ruffinelli et al., 2019). The number of parameters consists of |E|, |R|, and all

other trainable parameters. Moreover, we illustrate our methodology with DistMult

for three reasons: (1) many recent KGE model can be seen as an effective extension of
DistMult, i.e., the Hadamard product followed by an inner product of input embeddings
(see Section 2.4.1). (2) Findings of Ruffinelli et al. (2019) indicate that DistMult perform
competitive performance provided that it is properly trained. (3) DistMult requires
less floating point operations than more sophisticated recent models. Hence, it can be
trained in less time (Costabello et al., 2019; Valeriani, 2020).

HYPERPARAMETER OPTIMIZATION

We train approaches with the 1vsAll training strategy as commonly done in the litera-
ture (Lacroix et al., 2018; Ruffinelli et al., 2019). All models are trained with the ADAM
optimizer (Kingma and Ba, 2014) and minimize the binary cross entropy loss function
(see Equation (6.12)). We use the same loss function for all approaches on all datasets
as Mohamed et al. (2019) previously showed that generalization performance of KGE
models can be significantly influenced by the choice of the loss function. Moreover, we
apply the batch normalization to facilitate numerical stability and accelerate conver-
gence during training (Ioffe and Szegedy, 2015). We trained the model for 1000 epochs
with a learning rate of .01 and a batch size of 1024. We further optimized the embedding
vector sizes in {4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 289, 324, 361,400} us-
ing a grid search. For label smoothing and label relaxation, we consider « € {.1,.2}.
This results in training models with soften target values, i.e., 0 < y'¥ < 1. Through
large parameter sweep in the embedding vector size, we aim to obtain a fine-grained
performance analysis. As elucidated in Section Section 9.1, we hypothesize that the
impact of learning compressed embeddings becomes more tangible as the size of the
embedding vector increases. Importantly, we also share test and train performance of
all operations with all configurations. By doing so, we aim to quantify the impact of

applying label smoothing and label relaxation during training and testing separately.
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We do not apply an explicit regularization (e.g., L1, L2 regularization or the Dropout
technique (Srivastava et al., 2014)) as regularization techniques may not allow to observe

any regularization effect of label smoothing and label relaxation.

7.2.2 RESULTS
STANDARD LINK PREDICTION

Table 7.3 reports link prediction results on benchmark datasets. Overall results indicate
that applying KD on embedding matrices reduces the number of required parameters,
while yielding a competitive performance. KD-DistMult outperforms DistMult and
KD-Rel-DistMult in 9 out of 10 metrics in Table 7.3 with surprisingly less parameters.
Specifically, KD-DistMult outperforms DistMult and KD-DistMult, while requiring
18.2% and 11.4X fewer number of parameters than DistMult and KD-Rel-DistMult on
UMLS, respectively. Similarly, KD-DistMult requires 14.6X and 14.2X fewer number
of parameters than DistMult and KD-Rel-DistMult on KINSHIP, respectively. After
observing these results, we delved into the details of training process to validate the
existence of overfitting. To this end, we evaluated each model on the training datasets
and added the MRR and Hit@N scores in Table 7.3.

Table 7.3: Link prediction results on UMLS and KINSHIP. |®| denotes the number of parame-
ters. Bold entries denote best results.

UMLS KINSHIP

] MRR @1 @3 @10 |0) MRR @1 @3 @10

DistMult 67,915 0.517 0.441 0.536 0.659 46,818 0.568 0.500 0.593 0.693
on training set 0.995 0992 1.00 1.00 0.919 0.876 0.952 0.991

KD-Rel-DistMult 42,619 0.531 0.432 0.584 0.684 45,420 0.562 0.493 0.588 0.694
on training set 0.996 0.993 0.999 1.00 0.914 0.867 0.953 0.992

KD-DistMult 3,728 0.541 0.447 0.598 0.684 3,200 0.599 0.534 0.631 0.709
on training set 0.814 0.704 0.904 0.989 0.705 0.572 0.804 0.950

These results suggest that (a) all models seem to suffer from overfitting and (b)
increasing embedding vector size does not proportionally increase the expressiveness
of the model.
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DistMult with 59% more number of parameters than KD-Rel-DistMult does not lead
to a significant change in MRR and Hit@N scores on the training datasets. These
results also highlight the importance of applying extensive extensive hyperparameter

optimization and model calibration to increase generalization performances.

LiNK PREDICTION WITH MODEL CALIBRATION

To observe the impact of model calibration, we retrain models with label smoothing
and label relaxation. Table 7.5 shows that performances of models are improved with
model calibration on UMLS, whereas performances are not increased and in some
circumstances decreased. Importantly, model calibration seem to help more on those
models that suffer greatly from the overfitting. For instance, models seem to perform

better without model calibration on KINSHIP, where the overfitting is less severe.

LINK PREDICTION UNDER NOISE

We were interested to observe the impact of adding noisy triples into the training
dataset in the link prediction task, since many real-world KGs contains noisy triples. To
this end, we add 10% noise in the training splits and evaluate models. Table 7.4 suggest
that 10% noise in the input data decrease the standard DistMult model by absolute
7% in MRR on KINSHIP, whereas performance of KD-Rel-DistMult and KD-DistMult
are more robust against the input noise. Surprisingly, KD-Rel-DistMult reaches the
highest MRR, Hit@1 and Hit@3 scores throughout our experiments with 10% noisy
data. Bishop (1995) showed that the addition of noise to the numerical input training
data lead to significant improvements in generalization performance. Our results signal

that adding additional noise in the structured data may have the similar effect.

PARAMETER ANALYSIS

Table 7.6 and Table 7.7 report performances with a wide range of embedding vector
sizes. Overall, our results corroborate our hypothesis, namely, as the size of embedding
vectors decreases, benefits of applying KD becomes less tangible. More specifically,
Table 7.6 suggests that as |®| grows KD-Rel-DistMult and KD-DistMult perform quite
well compared to DistMult on the both benchmark datasets.
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Table 7.4: Link prediction results on noisy UMLS and KINSHIP. || denotes the number of
parameters. Bold entries denote best results.

UMLS KINSHIP
] MRR @1 @3 @10 o] MRR @1 @3 @10
DistMult 23,500  0.448 0319 0484 0741 16200 0523 0452 0538  0.665

28,435 0.470 0.382 0.497 0.677 19,602 0.512 0.444 0.523 0.655
33,840 0.423 0.335 0.411 0.621 23,328 0.508 0.439 0.517 0.658
39,715 0.518 0.418 0.556 0.741 27,378 0.510 0.440 0.524 0.658
46,060 0.489 0.355 0.586 0.738 31,752 0.512 0.438 0.529 0.668
52,875 0.465 0.339 0.500 0.677 36,450 0.518 0.445 0.534 0.671
60,160 0.422 0.340 0.413 0.591 41,472 0.520 0.447 0.536 0.679
67,915 0.485 0.396 0.497 0.699 46,818 0.517 0.443 0.534 0.679
76,140 0.532 0.436 0.562 0.746 52,488 0.523 0.447 0.547 0.674
84,835 0.448 0.341 0.467 0.695 58,482 0.529 0.453 0.551 0.684
94,000 0.466 0.343 0.541 0.662 64,800 0.529 0.454 0.556 0.685

KD-Rel-DistMult 15,130 0.521 0.428 0.534 0.730 11,610 0.540 0.477 0.554 0.674
18,205 0.550 0.467 0.578 0.690 13,992 0.516 0.449 0.528 0.655
21,564 0.456 0.349 0.499 0.676 16,596 0.507 0.442 0.514 0.644
25,207 0.469 0.338 0.591 0.718 19,422 0.500 0.439 0.502 0.631
29,134 0.515 0.422 0.561 0.701 22,470 0.503 0.437 0.511 0.645
33,345 0.580 0.500 0.617 0.701 25,740 0.503 0.436 0.509 0.647
37,840 0.526 0.432 0.544 0.718 29,232 0.506 0.438 0.515 0.644
42,619 0.567 0.493 0.607 0.693 32,946 0.505 0.431 0.519 0.655
47,682 0.439 0.322 0.482 0.678 36,882 0.511 0.440 0.529 0.661
53,029 0.554 0.490 0.574 0.671 41,040 0.511 0.441 0.524 0.657
58,660 0.583 0.503 0.632 0.728 45,420 0.514 0.442 0.531 0.666

KD-DistMult 2,330 0.461 0.339 0.527 0.651 1,600 0.562 0.487 0.592 0.699
2,563 0.331 0.233 0.343 0.496 1,760 0.573 0.501 0.609 0.703
2,796 0.376 0.252 0.448 0.622 1,920 0.567 0.497 0.599 0.696
3,029 0.346 0.254 0.370 0.506 2,080 0.576 0.505 0.604 0.702
3,262 0.374 0.274 0.391 0.541 2,240 0.567 0.498 0.589 0.703
3,495 0.393 0.259 0.480 0.559 2,400 0.569 0.502 0.597 0.690
3,728 0.452 0.329 0.529 0.626 2,560 0.572 0.503 0.603 0.697
3,961 0.374 0.276 0.385 0.655 2,720 0.566 0.501 0.590 0.694
4,427 0.358 0.247 0.376 0.589 2,880 0.578 0.509 0.607 0.703
4,194 0.545 0.438 0.596 0.744 3,040 0.584 0.520 0.609 0.698
4,660 0.366 0.258 0.406 0.541 3,200 0.586 0.521 0.612 0.612

avg. DistMult 55,225 0.470 0.364 0.501 0.691 38,070 0.518 0.446 0.535 0.670
avg. KD-Rel-DistMult 34,765 0.524 0.431 0.565 0.700 26,850 0.510 0.443 0.521 0.653
avg. KD-DistMult 3,495 0.398 0.287 0.441 0.594 2,400 0.573 0.504 0.601 0.691
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7.2.3 DI1SCUSSION

We conjecture that all KGE models may benefit from an extensive hyperparameter
optimization. Yet, here, we were interested in relative link prediction performances
under optimizing solely the embedding vector size. We aimed to observe possible
benefits of learning compressed embeddings in link prediction task. Table 7.3 and
Table 7.7 suggest that benefits of learning compressed embeddings becomes more
beneficial as the embedding vector size grows. Increasing the size of embedding vectors
in DistMult does not decrease training loss as well as MRR and Hit@N scores on
training datasets. This may stem from the fact that increasing the size of embeddings
increases redundancy in the parameters, hence does not improve training and test
performance of DistMult. Yet, Table 7.5 shows that model calibration consistently
improved generalization performances on UMLS, while performances on KINSHIP are
not improved as such. In our experiments, performance of KD-Rel-DistMult and KD-
DistMult suggest that learning compressed knowledge graph embeddings does not only
lead to a competitive and sometimes superior performance but also decrease the the
need of over-parameterization. We argue that a comprehensive study including many
recent state-of-the-art knowledge graph embedding models on benchmark datasets
from different domains is needed to further analyze the benefits of learning compressed
embeddings via KD.

TRADE-OFFS & PosSIBLE IMPROVEMENTS: During our experiments, we observe
that using KrONE consistently increased total runtimes. Consequently, the benefits
of using KRONE come with a cost of increased runtimes. The performance of KRoNE
may be further improved by replacing the plain Kronecker product with the Kronecker

attention operator (Gao et al., 2020).
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Table 7.5: Link prediction results on UMLS and KINSHIP with model calibration. Rows with
on training set report the performances on the training dataset. |®|, LS, LR denote the number
of parameters, Label Smoothing and Label Relaxation, respectively. Bold entries denote best
results.

UMLS KINSHIP

2] MRR @1 @3 @10 2] MRR @1 @3 @10
DistMult 67,915 0.517 0.441 0.536 0.658 46,818 0.568 0.499 0.593 0.693
on training set 0.995 0.992 1.000 1.000 0.919 0.876 0.952 0.991
withLS a = .1 0.568 0.499 0.602 0.707 0.515 0.417 0.563 0.685
on training set 0.996 0.993 1.000 1.000 0.918 0.845 0.954 0.992
with LS a = .2 0.548 0.475 0.582 0.690 0.502 0.398 0.555 0.667
on training set 0.995 0.992 0.999 1.000 0.916 0.871 0.952 0.992
with IR o = .1 0.552 0.436 0.630 0.723 0.567 0.499 0.592 0.694
on training set 0.995 0.992 1.000 1.000 0.919 0.875 0.952 0.992
with LR a = .2 0.579 0.487 0.648 0.725 0.567 0.499 0.592 0.695
on training set 0.995 0.992 1.000 1.000 0.917 0.873 0.952 0.992
KD-Rel-DistMult 42,619 0.531 0.432 0.584 0.684 32,946 0.556 0.487 0.580 0.689
on training set 0.996 0.993 0.999 1.000 0.913 0.865 0.951 0.992
withLS o = .1 0.565 0.493 0.611 0.704 0.500 0.394 0.555 0.677
on training set 0.996 0.992 0.999 1.000 0.913 0.866 0.951 0.991
with LS a = .2 0.592 0.531 0.617 0.704 0.504 0.403 0.556 0.671
on training set 0.994 0.990 0.999 1.000 0.907 0.855 0.949 0.991
withLR @ = .1 0.543 0.444 0.602 0.692 0.555 0.486 0.577 0.692
on training set 0.996 0.993 0.999 1.000 0.912 0.864 0.952 0.992
with LR a = .2 0.562 0.476 0.600 0.718 0.555 0.487 0.576 0.689
on training set 0.993 0.999 1.000 1.000 0.912 0.863 0.952 0.992
KD-DistMult 3,728 0541 0447  0.598  0.684 3,200  0.599  0.534  0.631  0.709
on training set 0.814 0.704 0.904 0.989 0.665 0.519 0.774 0.936
withLSa = .1 0.592 0.511 0.627 0.751 0.519 0.382 0.621 0.705
on training set 0.796 0.677 0.897 0.984 0.640 0.491 0.745 0.928
with LS a = .2 0.572 0.475 0.623 0.754 0.486 0.326 0.605 0.704

on training set 0.781 0.655 0.888 0.980 0.629 0.476 0.730 0.930
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Table 7.6: Link prediction results on UMLS and KINSHIP with the highest half of the the
parameter sweep in the number of parameters |®|. Bold entries denote best results.

UMLS KINSHIP
€] MRR @1 @3 @10 (€] MRR @1 @3 @10
DistMult 28435 0430 0346 0430  0.650 19,602  0.556  0.487  0.585  0.687

33,840 0.439 0.357 0.455 0.545 23,328 0.563 0.494 0.589 0.695
39,715 0.425 0.344 0.435 0.596 27,378 0.562 0.493 0.587 0.695
46,060 0.484 0.419 0.480 0.585 31,752 0.563 0.494 0.588 0.699
52,875 0.507 0.439 0.525 0.646 36,450 0.565 0.498 0.589 0.693
60,160 0.459 0.363 0.487 0.646 41,472 0.567 0.498 0.598 0.700
67,915 0.517 0.441 0.536 0.659 46,818 0.568 0.500 0.593 0.693
76,140 0.471 0.374 0.485 0.677 52,488 0.548 0.460 0.596 0.697
84,835 0.454 0.354 0.496 0.632 58,482 0.567 0.498 0.598 0.697
94,000 0.436 0.353 0.439 0.587 64,800 0.563 0.493 0.591 0.697

KD-Rel-DistMult 18,205 0.544 0.475 0.576 0.665 13,992 0.546 0.478 0.568 0.684
21,564 0.532 0.426 0.576 0.735 16,596 0.544 0.462 0.580 0.691
25,207 0.455 0.368 0.473 0.639 19,422 0.546 0.476 0.567 0.687
29,134 0.477 0.373 0.508 0.661 22,470 0.544 0.472 0.571 0.688
33,345 0.525 0.452 0.548 0.642 25,740 0.548 0.475 0.576 0.691
37,840 0.516 0.441 0.549 0.669 29,232 0.553 0.484 0.578 0.689
42,619 0.531 0.432 0.584 0.684 32,946 0.556 0.487 0.580 0.689
47,682 0.483 0.397 0.519 0.640 36,882 0.390 0.155 0.578 0.694
53,029 0.525 0.447 0.554 0.643 41,040 0.559 0.488 0.587 0.693
58,660 0.435 0.348 0.438 0.598 45,420 0.562 0.493 0.588 0.694

KD-DistMult 2,563 0.357 0.275 0.374 0.453 1,760 0.556 0.487 0.581 0.686
2,796 0.403 0.276 0.468 0.637 1,920 0.579 0.509 0.613 0.702
3,029 0.354 0.271 0.375 0.492 2,080 0.567 0.493 0.606 0.698
3,262 0.357 0.267 0.372 0.470 2,240 0.577 0.511 0.605 0.701
3,495 0.361 0.252 0.382 0.618 2,400 0.572 0.501 0.607 0.706
3,728 0.541 0.447 0.598 0.684 2,560 0.591 0.526 0.621 0.703
3,961 0.407 0.282 0.474 0.645 2,720 0.587 0.521 0.619 0.701
4,194 0.379 0.302 0.392 0.461 2,880 0.591 0.526 0.620 0.708
4,427 0.382 0.285 0.390 0.605 3,040 0.599 0.535 0.628 0.707
4,660 0.505 0.397 0.581 0.697 3,200 0.599 0.534 0.631 0.709

avg. DistMult 58,397 0.462 0.379 0.477 0.622 40,257 0.562 0.491 0.591 0.695
avg. KD-Rel-DistMult 36,728 0.502 0.416 0.532 0.658 28,374 0.535 0.447 0.577 0.690
avg. KD-DistMult 3,611 0.405 0.305 0.441 0.576 2,480 0.582 0.514 0.613 0.702
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Table 7.7: Link prediction results on UMLS and KINSHIP with the lowest half of the the
parameter sweep in the number of parameters |©|. Bold entries denote best results.

UMLS KINSHIP

€] MRR @1 @3 @10 (€] MRR @1 @3 @10

DistMult 940 0475 0378 0501  0.669 648 0450 0291 0559  0.686
2,115 0550 0472 0579  0.668 1458 0582 0516  0.607  0.707

3,760 0493 0336 0.633 0757 2,592 0.607 0554  0.634  0.712

5875  0.584  0.498  0.626 0749 4,050  0.613 0554  0.640  0.714

8,460 0488 0363 0567  0.681 5,832 0612 0555  0.631  0.709

11,515 0409 0326 0417  0.601 7,938 0597 0533 0625  0.710

15040 0473 0378 0502  0.679 10,368 0581 0519  0.605  0.699

19,035 0548 0476 0590 0709 13,122 0560 0492 0584  0.690

23,500 0489 0409 0518 0598 16200 0549 0480 0570  0.683

KD-Rel-DistMult 754 0.385 0220 0550  0.683 546 0.508 0428 0532  0.679
1,557 0537 0444 0582  0.692 1,152 0382 0137 0581  0.69%4

2,644 0531 0453 0559  0.646 1,980 0579 0508  0.609  0.710

4015 0547 0466 0579  0.694 3030 0591 0523  0.621 0712

5670 0457 0367 0487  0.635 4,302 0599 0536  0.620  0.709

7,609 0560 0431  0.657  0.742 5796 0592 0529 0615  0.709

9832 0555 0477 0576 0716 7,512 0581 0517  0.607  0.703

12339 0507 0415 0550  0.679 9450 0575 0512 0593  0.698

15,130 0565  0.503  0.586  0.687 11,610 0560 0493 0581  0.693

KD-DistMult 466 0354 0266 0384  0.539 320 0358 0358  0.400  0.528
699 0321 0215 0309  0.564 480 0428 0380 0421 0508

932 0347 0252 0357  0.643 640 0492 0422 0505  0.643

1,165 0360 0260 0381 0503 800 0524 0454 0547  0.660

1,398 0335 0225 0347  0.620 960 0527 0457 0553  0.655

1,631 0375 0225 0493  0.651 1,120 0550 0483 0573 0676

1,864 0357 0248 0362  0.686 1,280 0575 0503  0.607  0.708

2,097 0355 0244 0373  0.648 1,440 0572 0500  0.603  0.707

2330 0533 0433 0588  0.737 1,600 0557 0488  0.587  0.689

avg. DistMult 10,026 0501 0404 0548 0679 6912  0.572  0.499  0.606  0.701
avg. KD-Rel-DistMult 6,616  0.516  0.420  0.569  0.686 5,042 0552 0465 0595  0.701
avg. KD-DistMult 1,398 0371 0263 0399  0.621 960 0.509 0449 0534  0.642
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RESEARCH QUESTIONS: In this work, we are concerned with the following two

research questions:

1. RQ1. Can we design a knowledge graph embedding model to predict missing
triples on large knowledge graphs?

2. RQ2. Can we answer RQ1. while ensuring the parameter efficiency of our

models?
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8.1 METHODOLOGY

In this section, we introduce PPE. Prediction averaging improves the generalization
performance of various knowledge graph embedding models in link prediction. Yet,
prediction averaging comes with two disadvantages: the computational overhead of
training multiple models and increased latency and memory requirements at test time.
PPE improves the generalization performance of KGE models in the link prediction
problem with virtually no additional computational cost. To this end, PPE maintains a
running weighted average of parameters at each epoch interval. By utilizing the noisy
approximation of mini-batch gradients at each epoch interval, PPE constructs a high
performing parameter ensemble model with an expense of training a single knowledge

graph embedding model. In Table 8.1, we summarize the symbols used in this chapter.

Table 8.1: An overview of our notation used in Chapter 8.

Notation  Description

G Knowledge graph

ER Sets of entities and relations, respectively
\4 Model parameters

d Embedding vector dimension

D, B Training dataset and a subset of D

£(+) Binary cross entropy loss function

Lg, (W) A mini-batch loss based at time ¢t

The mini-batch SGD update can be defined as

1
Wit = Wi — Ut@ Z Vwly (W) = w; — va-ﬁﬂt (wy), (8.1)
t
b

where w; € R% 5, > 0 and B, := {(x, Y»)}y., denote the model parameters, the
learning rate, a randomly sampled training data points from the training dataset 8 ¢ D

at a time t, respectively. Vi, (w;) denotes the gradient of the loss function on the bases
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of a single (xp, yp) w.r.t. w;. Let w; ® w* = argminy, Ly (w) be given. Two consecutive
mini-batch SGD updates can be defined as

Wil = Wy — ’7ti£8; (Wt) (8-2)

Wi = Wi — ’7t+le-£Bt+1 (Wt+1)~ (8~3)

A sequence of mini-batch updates leads w; to hover/circle around w* provided that
VwLg(w;) # Vi Lp(w) and n; /> 0ast — +oo. Since the variance of the fluctuations
around w* is proportional to 1, decreasing 5 is necessary (LeCun et al., 2002). The
former condition of the noisy gradient approximation often holds, since O does not
consists copies of a single data point (LeCun et al., 2002). Using an optimizer (e.g.,
Adam) adapting n; w.r.t. Vi, Lg(w;) or using a learning rate scheduling technique
can often alleviate the issue in practice. Yet, we conjecture that a parameter ensemble
model can be constructed from a linear combination of all parameter vectors obtained
at each epoch interval. By this, (1) this circling issue can be alleviated regardless of the
optimizer and (2) a high performing parameter ensemble is constructed with virtually
no additional computational cost. Hence, we propose PPE (Polyak Parameter Ensemble)

technique defined as

N
wppg = PPE(a) = Z a o wi, (8.4)
i=1
where w; € R? and a; with Zf] a; = 1) denote a parameter vector of a model at the
end of the i-th epoch, and a scalar weight/ensemble coefficient for the i-th epoch,
respectively. © multiplies every element of w; with a scalar a;. Therefore, wppg, is a
linear combination of all parameter vectors obtained at each epoch. At each epoch i, PPE
updates the running weighted average of parameters by a scalar matrix multiplication.
Setting all @p.y—1 = 0 and @y_1.y = 1 results in obtaining a parameter ensemble model
that is only influenced by a parameter vector obtained at the end of the final epoch.
Using positive equal ensemble coefficients a; = % corresponds to applying the Polyak
averaging technique at each epoch interval. Next, we show that using such a mitigates
the issue of hovering around w*. A parameter vector w;,; at the end of the i-th epoch
can derived as

T
Wiy = W; — Z r’(i,t) VWLB(“) (w(i,t))a (85)

t=1
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where T denotes the number of mini-batches to iterative over the training dataset. 1(; )
and £3(i’ N (W(iy)) denote the learning rate and the incurred mini-batch loss for the t-th
mini-batch step in the i-th epoch, respectively. Assume that T = 2 and N = 2 with n, a

parameter ensemble model is obtained as follows

WPPE = 0!1(W0 - (U(o,l)VwLB(o,n + ’7VW£3<0,2>)) +
a2 (wo = (10,1 VwL B, + 1002 Vwlsy +
N VwLso, + 102 Vwls,))- (8.6)

where Vi, Lg, , denotes the gradients of the loss on the bases of the random mini-batch
w.r.t. parameter vectors at the i-th epoch and j-th parameter update. Using positive
equal ensemble coefficients @; = a; = 1/2 results in the following parameter ensemble

ensemble model

WPPE = Wo — (U(O,l)VWLB(O,l) + ’7(0,2)VW£3<0,2>+

U(Z,Z)VWLB(LD + ’7(2>2)VW‘£B(2,2))

2 2
More generally, using PPE with equal ensemble coefficients a(.; = 0 and @ 1.y = NL_J
can be rewritten as
N T
U(i,t) VWLB(,' ) )
WPPE = Wj — _. 8.7
/R DIDIE (8.7)

i=j+1 t

Therefore, using such ensemble coefficients (i.e., averaging parameters at each epoch
interval) results in deriving such wppg that is more heavily influenced by the parameter
vectors obtained at the early stage of the training phase starting from w;. Consequently,
selecting such j-th epoch, after Lq(w) stagnates, the circling issue around a minima
can be alleviated. Yet, using positive equal @ arguably may not be optimal for all learning
problems, since it is implicitly assumed that w; ~ w*. Given @, wppg can be iteratively
constructed as shown in Algorithm 2. In Section 8.1.1, we propose two techniques to

determine a.
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Algorithm 2 Polyak Parameter Ensemble

Require: a,n,N,T, L
1: wppg = 0 « Initialize
2: w « Initialize
3: fori=1,...,Ndo
4 fort=1,...,Tdo
5 B « Sample mini-batch
6: L g < Compute mini-batch loss
7 VwLg(w) « Compute gradients
8 w:=w — nVy, Lg(w) « Parameter Update
9

end for
10: Wppg += @;W < Running Average Update
11: end for
12:

13: return wppg

8.1.1 DETERMINING ENSEMBLE COEFFICIENTS

Parameter ensemble coefficients & can be determined in various fashion. For instance,
a can be dynamically determined by tracking the trajectory of the validation losses at
each epoch. More specifically, initially a are initialized with zeros. As the discrepancy
between the validation and training loss exceeds a certain threshold at the end of
the j-th epoch, positive equal ensemble coefficients can be used, i.e., @p;; = 0 and
ajN = NL_J Although this may alleviate possible overfitting, hence improve the
generalization performance, assigning equal weights for N — j epochs may not be ideal
for all learning problems. Instead, remaining parameter ensemble coefficients & can be
determined in an exponentially increasing manner, i.e., @1 = Aa;j, where 1 is a scalar
value denoting the rate of increase. Figure 8.1 visualizes the ensemble coefficients with
different growth rates. Using a growth rate of 1.0 implies that wppg is constructed with

positive equal coefficients.

8.1.2 KvsSAMPLE TRAINING STRATEGY

During our experiments, we observe that applying the KvsAll training strategy becomes
a computational bottleneck as |&| grows. On the YAGO3-10 dataset, computing a single
forward pass ¢y (+) with |8| = 1024 and d = 256 requires 1024 X 256 X 123182 X 32-bit

memory.
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Figure 8.1: Ensemble coefficients with different growth rates.

Although the memory requirement of applying the negative sampling technique is
lower than KvsAll, the size of the mini-batch increases with a rate of k X m and the
regularization effect of KvsAll is not utilized Dettmers et al. (2018). Here, we design a
new training strategy called the KvsSample training strategy that combines the negative
sampling with the KvsAll training strategies. As in KvsAll (see Section 2.4.2), a training
data point consists of a unique pair of a head entity and a relation (x=(h, r)) and a
binary vector y € [0, 1]|8|, wherey; = 1iff h,r,e; € G, otherwise 0. Yet, KvsSample
stochastically subsamples y. As the negative sample ratio k increases, the size of the
mini-batch in KvsSample remains unchanged, while the size of the mini-batch in the
negative sampling technique increases with a rate of k X m. Algorithm 3 illustrates the

KvsSample training strategy.
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Algorithm 3 KvsSample Training strategy

Require: B,k
1: fori=1,...,|8|do

22 (h,r),{ey,..., e} u=B; « A data point
3. if |[t| > k then

4: t := sample({ey, ..., e}, k)

5: neg := sample(&, k)

6: else

7: t:={e,...,ex}

8: neg := sample(E, k + (k — |t])

9: endif

10: y = 02k

11y =11

120 Vindex = [t neg]

13: B = ((h,r), Yinger Y) < An updated data point
14: end for

8.2 EXPERIMENTS & RESULTS

8.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

All experiments were carried out on a single core of a server running Ubuntu 18.04
with 126 GB RAM with 16 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processors.

DATASETS

We used the standard benchmark datasets (UMLS, KINSHIP, NELL-995 h25, NELL-
995 h50, NELL-995 h100, FB15K-237, YAGO3-10) for the link prediction problem. An
overview of the datasets is provided in Table 8.2. KINSHIP describes the 26 different
kinship relations of the Alyawarra tribe and the unified medical language system
(UMLS) describes 135 medical entities via 49 relations describing (Trouillon and Nickel,
2017). FB15K-237 and YAGO3-10 are subsets of Freebase and YAGO (Dettmers et al.,
2018), Never-Ending Language Learning datasets are designed to multi-hop reasoning
capabilities released (NELL-995 h25, NELL-995 h50, NELL-995 h100) (Xiong et al., 2017).
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We were also interested to evaluate PPE on other benchmark datasets. So, we
include Mutagenesis and Carcinogenesis benchmark datasets that are often used in the

description logic concept learning problem (Heindorf et al., 2022).

Table 8.2: An overview of datasets in terms of number of entities, number of relations, and
node degrees in the train split along with the number of triples in each split of the dataset.

Dataset & IR| | gTrain| | G Validation| 1GTest|
Mutagenesis 14,250 8 55,023 - -
Carcinogenesis 22,540 9 63,382 - -
UMLS 135 46 5,216 652 661
KINSHIP 104 25 8,544 1,068 1,074
NELL-995 h100 22,411 43 50,314 3,763 3,746
NELL-995 h50 34,667 86 72,767 5,440 5,393
NELL-995 h25 70,145 172 122,618 9,194 9,187
FB15K-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000
EvALUATION

We evaluated the link prediction performance of DistMult, ComplEx, and QMult
with and without PPE. To this end, we used the Hits@N and MRR benchmark met-
rics Ruffinelli et al. (2019); Demir et al. (2021a); Trouillon et al. (2016). We reported the
Hits@N and MRR training, validation and test scores on each benchmark dataset for
the link prediction problem. By reporting the training and validation scores, we aim
to detect possible impacts on the training performance. Since the Mutagenesis and
Carcinogenesis datasets do not contain the validation and test splits, we applied 10-fold

cross validated results and reported the mean results.

HYPERPARAMETER OPTIMIZATION

We followed the experimental setup used in Ruffinelli et al. (2019); Demir et al. (2021a).
More specifically, we trained DistMult, ComplEx, and QMult KGE models with the
following hyperparameter configuration: the number of epochs N € {200, 250}, Adam
optimizer with 7 = 0.1, batch size 1024, layer normalization on embedding vectors and
an embedding vector size d € {256, 128,64}, and A € {1.0,1.1}.
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Note that d = 256 corresponds to 256 real-valued embedding vector size, hence
128 and 64 complex- and quaternion-valued embedding vector sizes respectively. We
ensure that all models have the same number of parameters, while exploring various d.
Throughout our experiments, we used KvsAll training strategy, unless said otherwise.
On all datasets, we used the same the j-th epoch to determine ensemble coefficients a
(see Equation (8.7)) We fixed the j-th epoch as 200. Hence, in our experiments, we did
not dynamically determined a by tracking the validation loss. By doing this, we ensure
that PPE does not benefit any additional information (e.g., the validation loss)

during the training process.

8.2.2 RESULTS

Overall, our experiments suggest that using PPE consistently improves the link pre-
diction performance of DistMult, ComplEx, and QMult on all datasets. Results of our
parameter analysis suggest that as the embedding size d increases, the benefits of
using PPE becomes more tangible. Throughout our experiments, we did not detect any
runtime overhead of using PPE. Despite all models are trained with the Adam optimizer,
PPE seems alleviate the circling behavior around a minima further. Tables 8.3, 8.4, 8.6
and 8.7 report the link prediction results on FB15K-237 and YAGO3-10, NELL-995 h25,
NELL-995 h50, NELL-995 h100, UMLS, and KINSHIP benchmark datasets.

Table 8.5 reports the 10-fold cross validated link prediction results on bio-related
benchmark datasets that do not have validation and test splits. Table 8.8 reports the
link prediction results with different embedding dimensions and different growth rates
for ensemble coefficients. Using PPE improves the results across datasets, three models
and four metrics.

Overall, results suggest that PPE improves the generalization performance of Dist-
Mult, ComplEx, and QMult on the both datasets. As d grows, the benefits of PPE
becomes more tangible. For instance, if d > 32 DistMult with PPE reaches 81 higher
Hit@N or MRR out of 96 scores, while DistMult with PPE performed slightly worse
at only 6 out of 96 scores. Using the 1.1 growth rate leads to slight improvement over
the 1.1 growth rate.

Tables 8.9 and 8.10 report link prediction performance comparisons between the
KvsSample and the negative sampling techniques with different negative sample ratios.

As k grows, the size of a single mini-batch increases by the rate of k X m, where m
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Table 8.3: Link prediction results on the train, validation and test splits of FB15K-237 and
YAGO3-10. Bold results indicate the best results.

FB15K-237 YAGO3-10

MRR @1 @3 @10 MRR @1 @3 @10
DistMult-train 0.991 0.985 0.999 1.000 0.980 0.962 0.998 1.000
With PPE 0.994 0.990 0.997 1.000 0.981 0.963 0.998 0.999
DistMult-val 0.124 0.074 0.132 0.222 0.400 0.337 0.433 0.520
With PPE 0.138 0.082 0.149 0.249 0.446 0.384 0.481 0.558
DistMult-test 0.122 0.071 0.129 0.223 0.393 0.330 0.425 0.512
With PPE 0.134 0.080 0.145 0.243 0.441 0.377 0.481 0.558

ComplEx-train 0.995 0.991 0.999 1.000 0.984 0.969 1.000 1.000

With PPE 0.996 0.993 1.000 1.000 0.984 0.969 1.000 1.000
ComplEx-val 0.128 0.075 0.138 0.233 0.408 0.344 0.439 0.530
With PPE 0.153 0.095 0.169 0.270 0.444 0.378 0.484 0.562
Complex-test 0.126 0.075 0.134 0.229 0.394 0.325 0.431 0.525
With PPE 0.150 0.094 0.165 0.264 0.433 0.366 0.473 0.554
QMult-train 0.989 0.981 0.997 0.999 0.821 0.790 0.841 0.877
With PPE 0.995 0.990 1.000 1.000 0.828 0.792 0.852 0.881
QMult-val 0.141 0.083 0.151 0.258 0.306 0.241 0.338 0.427
With PPE 0.172 0.108 0.188 0.302 0.341 0.283 0.367 0.346
QMult-test 0.138 0.082 0.146 0.253 0.300 0.232 0.334 0.424
With PPE 0.167 0.102 0.183 0.298 0.339 0.282 0.365 0.444

denotes the number of positive training data points (see Section 2.4.2), whereas the
size of the mini-batch in KvsSample does remains unchanged. In KvsSample, k only
influences the size of the sparse multi-label vectors. Important to note that, since the
full computation runtimes are reported, the overhead of iterating over all triples to
store unique head entity and relation pairs is visible at k = 2. Moreover, since there are
few unique entity relation pairs occur more than k = 2 times on an input KG, setting k
very low with KvsAll often leads to inferior performance on both benchmark dataset.
Results suggest that as the negative sample ratio k increases, the rate of increase in the
total computation time is larger for the negative sampling training technique than the

KvsSample technique.
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Table 8.4: Link prediction results on the train, validation and test splits of UMLS and KINSHIP
benchmark datasets. Bold results indicate the best results.

UMLS KINSHIP

MRR @1 @3 @10 MRR @1 @3 @10
DistMult-train 0.992 0.987 0.997 1.000 0.847 0.781 0.893 0.977
With PPE 0.999 0.998 0.999 1.000 0.865 0.806 0.906 0.981
DistMult-val 0.458 0.325 0.500 0.753 0.399 0.256 0.432 0.741
With PPE 0.499 0.376 0.528 0.778 0.426 0.288 0.455 0.760
DistMult-test 0.450 0.321 0.491 0.755 0.404 0.260 0.442 0.755
With PPE 0.493 0.372 0.526 0.778 0.433 0.290 0.470 0.782

ComplEx-train 0.998 0.997 1.000 1.000 0.993 0.989 0.998 1.000

With PPE 1.000 1.000 1.000 1.000 0.996 0.993 0.999 1.000
ComplEx-val 0.442 0.285 0.521 0.766 0.521 0.378 0.595 0.829
With PPE 0.491 0.350 0.550 0.783 0.599 0.463 0.677 0.861

ComplEx-test 0.444 0.287 0.528 0.773 0.533 0.388 0.614 0.821

With PPE 0.502 0.361 0.573 0.787 0.603 0.479 0.675 0.842
QMult-train 0.998 0.998 0.999 0.999 0.990 0.983 0.996 0.999
With PPE 1.000 1.000 1.000 1.000 0.995 0.992 0.998 0.999
QMult-val 0.445 0.280 0.524 0.791 0.500 0.352 0.571 0.805
With PPE 0.485 0.326 0.578 0.803 0.598 0.468 0.675 0.852
QMult-test 0.426 0.272 0.498 0.757 0.502 0.355 0.580 0.801
With PPE 0.480 0.334 0.555 0.786 0.591 0.467 0.668 0.838

DiscussioN Our results indicate that constructing a parameter ensemble model by
maintaining a weighted average of parameters obtained at each epoch interval improves
the generalization performance across datasets and knowledge graph embedding models.
We show that with our formulation, weights/parameter ensemble coefficients can
be determined in various forms, e.g., dynamically by tracking the validation loss or
choosing an exponential function over coefficients. Overall, results suggest that using
exponentially increasing ensemble coefficients consistently improves the generalization
results. This may suggest that although Adam dynamically adapts the learning rate
w.r.t. the gradients, our weighted parameter averaging approach (PPE) accelerates
the converge on a minima during training. Yet, our parameter analysis show that the

benefits of applying PPE dissipates if the embedding vector is very low (e.g. d < 16).
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Table 8.5: 10-fold cross validated link prediction results on Mutagenesis and Carcinogenesis
datasets. Bold results indicate the best results.

Mutagenesis Carcinogenesis

MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.150 0.121 0.151 0.204 0.045 0.025 0.047 0.085
With PPE 0.186 0.156 0.192 0.225 0.059 0.034 0.063 0.106

ComplEx 0.143 0.109 0.148 0.200 0.054 0.027 0.056 0.110
With PPE 0.203 0.158 0.220 0.286 0.056 0.027 0.059 0.117

QMult 0.136 0.104 0.137 0.190 0.033 0.014 0.029 0.065
With PPE 0.195 0.154 0.203 0.266 0.033 0.015 0.029 0.065

Our results also suggest that the KvsSample training strategy finds a middle ground
between the negative sampling technique and the KvsAll training strategy. As |&| grows,
the KvsAll training strategy can be more suitable than using the negative sampling

strategy in terms of runtimes as well as effectiveness in the link prediction problem.

TRADE-OFFS & PossIBLE IMPROVEMENTS: Tracking the validation loss and deter-
mining the ensemble coeflicients accordingly may further improve the generalization

performance in the link prediction problem.
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Table 8.6: Link prediction results on the train, validation and test splits of NELL-995 h25 and
NELL-995 h50 benchmark datasets. Bold results indicate the best results.

h25 h50

MRR @1 @3 @10 MRR @1 @3 @10
DistMult-train ~ 0.995  0.991  0.998  1.000 0.955 0934 0974  0.990
With PPE 0.995 0992  0.999  1.000 0895 0863 0921  0.951
DistMult-val 0.151 0107  0.164  0.235 0162 0114 0178  0.258
With PPE 0.159 0.116  0.172  0.240 0.164 0.116  0.184  0.257
DistMult-test 0.154 0111 0168  0.238 0164 0116 0116  0.257
With PPE 0.162 0.119  0.177  0.245 0.166 0.119  0.184  0.258
ComplEx-train ~ 1.000  1.000  1.000  1.000 0991 098  0.995  0.996
With PPE 1.000  1.000  1.000  1.000 0995 0.991 0.999  1.000
ComplEx-val 0.105 0.069 0.110  0.175 0.079 0048  0.082  0.143
With PPE 0.105 0.069 0.110 0.176 0.089  0.054 0.094  0.160
Complex-test 0.106  0.071  0.110  0.175 0.080 0049 0085  0.141
With PPE 0.105 0069  0.110  0.178 0.093  0.058 0.097  0.160
QMult-train 0977 0967 098  0.994 0917 0890 0934  0.962
With PPE 1.000  0.999  1.000  1.000 0924 0902 0.937  0.966
QMult-val 0.084 0055  0.090  0.140 0.102  0.058  0.115  0.191
With PPE 0.090 0.059 0.096  0.150 0.114  0.068 0.127  0.206
QMult-test 0.081 0052  0.086  0.138 0.105 0061 0114  0.191

With PPE 0.086 0.055 0.090 0.146 0.116 0.070 0.126 0.211
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Table 8.7: Link prediction results on the train, validation and test splits of NELL-995 h100
benchmark datasets. Bold results indicate the best results.

h100

MRR @1 @3 @10
DistMult-train ~ 0.962 0.940  0.982 0.992
With PPE 0.970  0.952  0.987  0.995
DistMult-val 0.158  0.107  0.171 0.265
With PPE 0.173  0.119 0.186  0.282
DistMult-test 0.151 0.101 0.165 0.254
With PPE 0.169 0.118 0.186  0.275

ComplEx-train 0.943 0.914 0.970 0.990

With PPE 0.916 0.879 0.942 0.979
ComplEx-val 0.104 0.056 0.118 0.198
With PPE 0.111 0.063 0.123 0.209
Complex-test 0.097 0.052 0.105 0.191
With PPE 0.107 0.060 0.116 0.107
QMult-train 0.704 0.634 0.751 0.826
With PPE 0.913 0.868 0.957 0.979
QMult-val 0.087 0.050 0.096 0.159
With PPE 0.104 0.063 0.117 0.189
QMult-test 0.083 0.048 0.094 0.152

With PPE 0.101 0.063 0.114 0.179
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Table 8.8: Link prediction results of DistMult with different embedding dimensions d on
the train, validation and test splits of UMLS and KINSHIP benchmark datasets. PPE" denotes
applying PPE with A = 1.1. Bold results indicate the best results.

d UMLS KINSHIP
MRR @1 @3 @10  MRR @1 @3 @10
DistMult-test 2 0309 0225 0321 0470 0.061 0.010 0.039  0.123
With PPE 0310  0.226 0318 0469 0054 0.010 0033  0.106
With PPE? 0309 0225 0316 0469 0055 0.010 0031  0.107

DistMult-test 4 0.617 0.486 0.711 0.834 0.105 0.038 0.083 0.218
With PPE 0.627 0.490 0.724 0.837 0.099 0.028 0.083 0.220
With PPE" 0.626 0.489 0.723 0.840 0.102 0.033 0.082 0.221

DistMult-test 8 0.775 0.663 0.869 0.939 0.518 0.351 0.602 0.886
With PPE 0.763 0.643 0.865 0.935 0.533 0.373 0.616 0.883
With PPE" 0.764 0.644 0.865 0.935 0.534 0.376 0.614 0.883

DistMult-test 16 0.862 0.781 0.936 0.981 0.665 0.520 0.771 0.938
With PPE 0.863 0.785 0.932 0.982 0.669 0.523 0.779 0.932
With PPE" 0.865 0.788 0.934 0.983 0.676 0.534 0.783 0.934

DistMult-test 32 0.812 0.722 0.883 0.970 0.704 0.569 0.796 0.958
With PPE 0.839 0.760 0.896 0.974 0.713 0.584 0.801 0.957
With PPE" 0.837 0.759 0.898 0.974 0.714 0.585 0.803 0.959

DistMult-test 64 0.673 0.539 0.760 0.940 0.602 0.437 0.717 0.924
With PPE 0.680 0.551 0.759 0.939 0.632 0.483 0.724 0.932
With PPE" 0.686 0.554 0.777 0.946 0.629 0.475 0.724 0.932

DistMult-test 128 0.665 0.527 0.767 0.934 0.481 0.307 0.561 0.884
With PPE 0.667 0.532 0.766 0.933 0.507 0.338 0.591 0.889
With PPET 0.669 0.531 0.766 0.933 0.520 0.351 0.600 0.890

DistMult-test 256 0.648 0.503 0.746 0.932 0.444 0.270 0.518 0.851
With PPE 0.651 0.506 0.746 0.933 0.464 0.291 0.539 0.861
With PPE" 0.659 0.511 0.765 0.936 0.475 0.309 0.541 0.868
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Table 8.9: Link prediction performance comparison with the KvSample and negative sampling
training strategies. k and RT denotes the number of negative example per triple and the total
runtime in seconds, respectively. Bold results indicate the best results.

UMLS

k RT MRR @1 @3 @10
NegSample-test 2 24.2 0.797 0.698 0.873 0.976
KvsSample-test 30.8 0.864 0.796 0.917 0.979
NegSample-test 4 31.1 0.753 0.646 0.828 0.954
KvsSample-test 29.1 0.857 0.798 0.892 0.973
NegSample-test 8 52.1 0.805 0.718 0.866 0.970
KvsSample-test 31.0 0.811 0.734 0.852 0.964
NegSample-test 16 86.6 0.807 0.718 0.865 0.974
KvsSample-test 37.3 0.833 0.762 0.880 0.974

NegSample-test 32 267.8 0.789 0.696 0.856 0.961
KvsSample-test 52.9 0.809 0.719 0.877 0.970

NegSample-test 64 540.7 0.789 0.697 0.852 0.967
KvsSample-test 110.8 0.823 0.740 0.879 0.976

NegSample-test 128 976.3 0.838 0.765 0.897 0.976
KvsSample-test 142.8 0.838 0.765 0.899 0.980

NegSample-test 256 1857.9 0.843 0.772 0.894 0.979
KvsSample-test 279.9 0.867 0.812 0.903 0.980
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Table 8.10: Link prediction performance comparison with the KvSample and negative sampling
training strategies. Results are obtained by training DistMult with a selected training strategy.
k and RT denotes the number of negative example per triple and the total runtime in seconds,
respectively. Bold results indicate the best results.

KINSHIP

k RT MRR @1 @3 @10
NegSample-test 2 36.4 0.559 0.397 0.647 0.904
KvsSample-test 63.6 0.519 0.351 0.605 0.887
NegSample-test 4 52.8 0.505 0.341 0.585 0.877
KvsSample-test 62.7 0.527 0.359 0.624 0.895
NegSample-test 8 80.4 0.507 0.348 0.574 0.870
KvsSample-test 58.5 0.555 0.385 0.649 0.915
NegSample-test 16 83.6 0.502 0.342 0.572 0.877
KvsSample-test 56.9 0.534 0.363 0.620 0.910

NegSample-test 32 403.4 0.493 0.324 0.571 0.881
KvsSample-test 96.9 0.514 0.350 0.593 0.889

NegSample-test 64 788.1 0.481 0.312 0.556 0.861
KvsSample-test 158.2 0.539 0.376 0.622 0.901

NegSample-test 128 1558.0 0.485 0.323 0.553 0.865
KvsSample-test 276.1 0.528 0.371 0.596 0.889

NegSample-test 256 3059.5 0.507 0.343 0.583 0.892
KvsSample-test 555.8 0.536 0.381 0.600 0.889
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RESEARCH QUESTIONS: In this work, we are concerned with the following research

question:

1. RQ3. Can we design a model to learn embeddings for expressive DLs?
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140 9 LEARNING PERMUTATION-INVARIANT EMBEDDINGS FOR DESCRIPTION LoGic CONCEPTS

9.1 METHODOLOGY

In this section, we introduce NERo. The goal in the Concept Learning (CL) problem is
to find a DL concept H € C ideally maximizing Equation (2.67), given a set of positive
examples E* and a set of negative examples E~. Given E* and E~, NERo predicts F

scores of pre-selected DL concepts as shown in Figure 9.1.

3 hasSibling.Female
Female M Mother
V hasSibling. T

Figure 9.1: A visualization of NERo. Boxes and values denote the pre-selected unique DL
concepts and their predicted F; scores, respectively.

By ranking pre-selected DL concepts in descending order of predicted scores, a
goal concept can be found by only exploring few top-ranked concepts. Importantly,
top-ranked concepts can be used to initialize the standard search procedure of state-
of-the-art models, if a goal concept is not found. By this, a state-of-the-art CL model
is endowed with the capability of starting the search in more advantageous states,
instead of starting it in the most general concept T. Our experiments on 5 benchmark
datasets with 770 learning problems indicate that NERo significantly (p-value < 1%)

outperforms the state-of-the-art models in standard metrics such as F; score, the number
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of explored concepts, and the total runtime. Importantly, equipping NERo with a state-
of-the-art model (e.g. CELOE) further improves F; scores on benchmark datasets with
a low runtime cost. The results of Wilcoxon signed rank tests confirm that the superior
performance of NEROo is significant. In Table 9.1, we summarized the symbols used in

this chapter.

Table 9.1: An overview of our notation used in Chapter 9.

Notation  Description

K Knowledge base

L A description logic

C All description logic concepts in £
R(-) Instance retrieval function

N; A set of individuals on K

Ne A set of concepts on K

Nr A set of roles on K

E*,E- Positive and negative example sets
o(-) Logistic sigmoid function

() A deep set neural network

(), () Continuous functions used in f(-)
T Pre-selected target class expressions
£(-,-) Binary cross entropy loss function
D Training dataset

ApPROACH. Equation (2.67) indicates that F; (+) is invariant to the order of individuals
in E*, E”, and R(-). Previously, Zaheer et al. (2017) have proven that all functions being

invariant to the order in inputs can be decomposed into

f&0=¢( Y v). ©1)

XEX

where x = {x1,...,x,} € 2¥ and ¢(-) and ¢/(-) denote a set of input and two parame-
terized continuous functions, respectively. A permutation-invariant neural network
defined via Equation (9.1) still abides by the universal approximation theorem (Zaheer
et al.,, 2017).
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We conjecture that such neural network can learn permutation-invariant embeddings
for sets of individuals (e.g., E* and E™) tailored towards predicting F; scores of pre-
selected concepts.

Through accurately predicting F; scores of pre-selected DL concepts, possible goal
concepts from pre-selected concepts can be detected without using F; () and R(+). With

these considerations, we define NERo as follows

NeRo(E*, E7) =a(¢( D) -¢( ¢<x>)), 02

x€E* x€E~

where /() : Nt = R™and ¢ : R™ — [0, 1]!71 denote an embedding look-up operation
and an affine transformation, respectively. 7 represents the pre-selected DL concepts.
The result of the translation operation denoted with z € R™ is normalized via the logistic
m. Hence, NERoO : 2 x 2N — |0, 1]|T| can be seen as

a mapping from two sets of individuals to |77| unit intervals. NERo can be seen as a

sigmoid function o(z) =

multi-task learning approach that leverages the similarity between multi-tasks, where
a task in our case corresponds to accurately predicting the F; score of a pre-selected
DL concept (Caruana, 1998).

SELECTING DEscRIPTION LoGgic CoNCEPTs: The importance of learning represen-
tations tailored towards related tasks has been well investigated (Goller and Kuchler,
1996; Caruana, 1998). Motivated by this, we elucidate the process of selecting DL
concepts in Algorithm 4. We select such concepts that their canonical interpretations
do not fully overlap (see the 4.th line). As shown therein, NERoO can be trained on

knowledge base defined over any DLs provided that R(-) and p(-) are given.

TRAINING PrRoOCEss: Let O = {(E], E;, y,-)}fi | represent a training dataset, where a

data point (E*, E7,y) is obtained in four consecutive steps:
1. Sample C from 7 uniformly at random,
2. Sample k individuals E* ¢ R(C) uniformly at random,
3. Sample k individuals E~ ¢ N; \ E* uniformly at random, and

4. Compute F; scores y via Equation (2.67) w.r.t. E*, E~, for 7.
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Algorithm 4 Constructing target DL concepts
Input: R(-), p(-), d, maxlength Output: 7
1: 7 :={C|Ce p(T) A|C| £ maxlength A0 < |R(C)|}
2: for each A € 7 do
3:  for eachBe 7 do

4: if R(A) # R(B) then

5: for each X € {AMB,ALB} do
6: if |[R(X)| > 0 AR(X) ¢ {R(E) | E € 7 } then
7: Add Xto 7.

8: end if

9: if |7| = d then
10: return 7
11: end if
12: end for
13: end if
14:  end for
15: end for

16: if |77| < d then
17:  Go to the step (2).
18: end if

For a given (E*, E7,y) and predictions y := NERO(E*, E7), an incurred binary cross
entropy loss. Important to note that after training process, permutation-invariant
embeddings of any ALC DL concepts can be readily obtained omitting the translation
operation in NERo. In Figure 9.2, we visualize a 2D PCA visualization of few concepts
on the Family KB.

9.2 EXPERIMENTS & RESULTS

9.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

We based our experimental setup on Bithmann et al. (2016); Lehmann et al. (2011);
Bithmann et al. (2018) and used learning problems provided therein. To perform exten-
sive comparisons between models, we also generated additional learning problems by
randomly sampling E* and E~. We ensured that none of the learning problems used in
our evaluation has been used in the unsupervised training phase. In our experiments,

we evaluated all models in ALC for CEL on the same hardware.
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Figure 9.2: Regression on 2D PCA Visualization of all 1-length expressions on the Family
benchmark knowledge base. Blue shaded are represents confidence interval.

All experiments were conducted with Ubuntu 18.04 with 16 GB RAM and an Intel(R)
Core(TM) i5-7300U CPU v4 @ 2.60GHz.

DATASETS

An overview of the benchmark datasets is provided in Table 12.3.

EVALUATION

In our experiments, we evaluated all models in ALC for CL. We evaluated models via
the F; score, the runtime and number of explored concepts. The F; score is used to
measure the quality of the concepts found w.r.t. positive and negative examples, while
the runtime and the number of explored concepts are to measure the efficiency. We
measured the full computation time including the time spent prepossessing time of the

input data and tackling the learning problem.
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Table 9.2: An overview of class expression learning benchmark datasets.

Dataset | N;| | Nc| | NRg|
Family 202 18 4
Carcinogenesis 22372 142 21
Mutagenesis 14145 86 11
Biopax 323 28 49
Lymphography 148 49 1

We used two standard stopping criteria for state-of-the-art models. We set the
maximum runtime to 10 seconds, although models often reach good solutions within
1.5 seconds (Lehmann and Hitzler, 2010). The models are configured to terminate as
soon as they found a goal concept. We only considered top-100 ranked concepts to

evaluate NERo.

HYPERPARAMETER OPTIMIZATION

During training, we set |7°| = 1000, N = 50, d = 100, the batch size to 512, and used
Adam optimizer with 0.01 learning rate.

9.2.2 RESULTS

RESULTS WITH BENCHMARK LEARNING PROBLEMS: Table 9.3 reports the concept
learning results with benchmark learning problems. Table 9.3 suggests that equipping
NERo with the standard search procedure improves the state-of-the-art performance in
terms of F; scores even further with a small cost of runtimes. CELOE and ELTL require
at least 14.7X more time than NERo to find accurate concepts on Family. This stems
from the fact that NERo explores on average only 21 concepts, whereas CELOE explored
1429. On Mutagenesis and Carcinogenesis, NERo finds more accurate concepts, while
exploring less, hence, achieving better runtime performance. Runtime gains stem from
the fact that NERo explores at least 2.3x fewer concepts.

Important to note we did not use parallelism in NERo and we reload parameters
of NERo for each single learning problem. To conduct more extensive evaluation,

we generated total 750 random learning problems on five benchmark datasets. Since
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Table 9.3: Results on benchmark learning problems. Fy, T, and Exp. denote F; score, total run-
time in seconds, and the number of explored concepts, respectively. NERo" denotes equipping
NeRo with CELOE. ELTL does not report the Exp.

Dataset NeRo' NERo CELOE ELTL
F; T Exp. F T Exp. F; T Exp. F; T
Family 0.987 083 26 0984 0.68 21 0.980 4.65 1429 0.964 4.12

Mutagenesis 0.714 17.30 200 0.704 13.18 100 0.704 23.05 516 0.704 21.04
Carcinogenesis 0.725 32.23 200 0.720 26.26 100 0.714 37.18 230 0.719 36.29

Lymphography and Biopax datasets do not contain any learning problems, they are
not included in Table 9.3.

REsuULTS WITH RANDOM LEARNING PROBLEMSs: Table 9.4 reports the concept
learning results with random learning problems. Table 9.4 suggests that CELOE explores
at least 3.19x more concepts than NERo. Importantly, NERo finds on-par or more
accurate concepts, while exploring less. Here, we load the parameters of NERo only
once per dataset and are used to tackle learning problems sequentially. This resulted in
reducing the total computation time of NERo by 3 — 6Xx on Family, Mutagenesis and
Carcinogenesis benchmark datasets. Although NERo can tackle learning problems in
parallel (e.g., through multiprocessing), we did not use any parallelism, since CELOE
and ELTL do not abide by parallelism Bithmann et al. (2018). Loading the learning
problems in a standard mini-batch fashion and using multi-GPUs may further improve
the runtimes of NERo. These results suggest that NERo can be more suitable than

CELOE and ELTL on applications requiring low latency.

REsuLTs wiTH LIMITED EXPLORATION: Table 9.5 reports concept learning results
with limited exploration on five benchmark datasets. Table 9.5 suggests that NERo-10
often outperforms CELOE and ELTL (see Table 9.4) in all metrics even when exploring
solely 10 top-ranked concepts.

S1GNIFICANCE TESTING: To validate the significance of our results, we performed
Wilcoxon signed-rank tests (one and two-sided) on F; scores, runtimes and the number
of explored concepts. Our null hypothesis was that the performances of NERo and

CELOE come from the same distribution. We were able to reject the null hypothesis
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Table 9.4: Random learning problems with different sizes per benchmark dataset. Each
row reports the mean and standard deviations attained in 50 learning problems. |E| denotes

|E*| +|E”|.
Dataset |E| NERo CELOE ELTL
Fy T Exp. F T Exp. F T

Family 10 0.913+0.06 0.16 £0.51 74+43 0.903+0.06 11.61 +3.58 5581 +£2375 0.718 £0.01 4.45+ 2.84
20 0.807 £0.04 0.16 £0.49 10000 0.795+0.05 13.28 +£1.47 7586 + 645 0.678 £0.02 3.59 +1.27
30 0.775+£0.03 0.15+0.41 10000 0.760 +0.03 13.24 +1.42 7671+ 575 0.672 +£0.01 3.46 + 1.59

Lymphography 10 0.968 +0.07 0.12+0.43 75+41 0.968 £0.07 6.63 +4.29 5546 +5169 0.733 +0.09 3.07 +0.30
20 0.828 £0.04 0.13+£0.40 100+ 00 0.826 +0.05 13.01 +1.23 11910 + 1813 0.678 £0.02 3.08 £ 0.50
30 0.780 £0.04 0.13 +£0.01 10000 0.780 +0.04 13.02 + 1.69 13138 2601 0.672 £0.01 3.09 £0.72

Biopax 10 0.859 +£0.08 0.19+0.71 86 +34 0.806 +0.07 13.26 +1.94 4752 +£2153 0.685+0.06 3.71+0.10
20 0.793 £0.05 0.19£0.52 100 £ 00 0.746 +0.04 13.63 £0.10 4151 + 748 0.668 +£0.06 3.72 +0.10
30 0.749 £0.03 0.18 £0.52 100 £ 00 0.718 £0.02 13.91 £0.44 3843 + 963 0.668 £ 0.06 3.90 + 0.22

Mutagenesis 10 777 +0.05 3.47+£1.61 100+ 00 0.753 £0.06 20.27 £1.39 546 + 613 0.670 £ 0.02 10.29 + 0.40
20 0.746 £ 0.05 3.09+£1.75 100+ 00 0.712 +£0.02 20.38 + 1.30 430 + 28 0.667 £ 0.00 10.73 +£1.10
30 0.721 £0.03 2.89+£1.60 100+ 00 0.700 +0.02 20.39 + 1.06 429 + 38 0.667 £ 0.00 11.74 +0.97

Carcinogenesis 10 0.768 + 0.06 5.39 +2.98 98 +14 0.764 +0.06 29.90 £ 1.02 401 + 125 0.673 £ 0.05 19.99 + 0.67
20 0.722+0.03 5.40+£1.87 100+ 00 0.713 +£0.02 30.30 £0.19 318 + 152 0.667 £ 0.00 20.00 + 1.11
30 0.704 £0.05 4.70 £2.78 100+ 00 0.697 £0.02 29.99 + 0.58 319 £43 0.667 = 0.00 20.38 + 0.85

Table 9.5: Performance comparison with different number of explored concepts. Each row
reports the mean and standard deviations attained in 50 learning problems.

Dataset |E] NERo-1 NERo-10 NERo0-1000
K T K T F T
Family 10 0.906 = 0.07 0.08 £ 0.06 0.910+0.05 0.09+0.06 0.916 +£0.06 0.81+0.50
20 0.793+0.05 0.08 £0.05 0.806+0.04 0.09+0.05 0.807 +0.04 1.17+0.50
30 0.742+0.05 0.08+£0.05 0.773+0.03 0.09+0.05 0.775+0.03 1.15+0.50
Lymphography 10 0.882 +0.07 0.08 £0.06 0.905+0.05 0.08 +£0.06 0.916 +0.06 0.77 +0.50
20 0.793 £0.05 0.07 £0.05 0.827 £0.04 0.08 £0.05 0.828+0.04 1.03+0.50
30 0.738+0.05 0.07+£0.06 0.777 +0.04 0.08 £0.05 0.780+0.03 1.00 +0.60
Biopax 10 0.853 +0.08 0.09 +£0.06 0.856+0.05 0.97 +0.59 0.868 +£0.08 1.31+0.80
20 0.779+0.05 0.09 £0.06 0.791+0.04 0.10+0.62 0.793 +0.04 1.35+0.60
30 0.708 £0.07 0.09 +£0.06 0.742+0.04 0.10+0.63 0.749+0.03 1.39+0.60
Mutagenesis 10 0.733 £0.07 0.32+2.03 0.785+0.06 0.57+1.81 0.803+0.06 36.98 +5.81
20 0.689+0.08 0.31+£1.99 0.734 £0.05 0.52+1.82 0.751+0.04 34.29 £5.91
30 0.673+0.08 0.31 +£2.03 0.712+0.04 0.49+1.77 0.728 +0.03 32.88 +6.13
Carcinogenesis 10 0.717 £0.09 0.41 +2.53 0.740 +0.09 0.89+£2.89 0.783 £0.02 56.941 + 9.55
20 0.680+0.06 0.40 £2.49 0.707 +£0.05 0.82 +£2.45 0.731 +£0.02 57.205 £+ 5.08
30 0.610+0.11 0.41+2.83 0.671+0.06 0.77+2.66 0.716 +0.02 52.872 + 7.58
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with a p-value < 1% across all the datasets, hence, the superior performance of NeRo is

statistically significant.

9.2.3 DISCUSSION

Our results uphold our hypothesis: F; scores of DL concepts can be accurately predicted
by means of learning permutation-invariant embeddings for sets of individuals.
Through considering top-ranked DL concepts at first, the need of excessive number
of retrieval operations to find a goal concept can be mitigated. Throughout our experi-
ments, NERO consistently outperforms state-of-the-art models w.r.t. the F; score, the
number of explored concepts and the total computational time. Importantly, starting
the standard search procedure on these top-ranked concepts further improves the
results. Hence, NERO can be applied within state-of-the-art models to decrease their
runtimes. However, it is important to note that Lehmann et al. Lehmann et al. (2011)
have previously proved the completeness of CELOE in the CL problem, i.e., for a given
learning problem, CELOE finds a goal expression if it exists provided that there are no
upper-bounds on the time and memory requirements. Although these requirements are
simply not practical, equipping NERo with the search procedure of CELOE is necessary

to achieve the completeness in CL.

TRADE-OFFs & PossIBLE IMPROVEMENTS: Replacing the deep set neural network
with the set transformer model may improve the performance further (Lee et al., 2019).
Moreover, designing a heuristic function based on embeddings of DL concepts may

improve the search procedure of symbolic models.
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DICE Embeddings Framework

PrReAMBLE: This chapter is based on Demir and Ngomo (2022).

DECLARATION OF AUTHORSHIP: The original research contributions were developed
by Caglar Demir and discussed with Axel-Cyrille Ngonga Ngomo. Caglar Demir
implemented the framework, conducted the experiments, and analyzed their results.
Caglar Demir wrote the manuscript and revised it with Axel-Cyrille Ngonga Ngomo.
The code is available at https://github.com/dice-group/dice-embeddings and https:
//pypi.org/project/dicee/.

10.1 LARGE-SCALE KNOWLEDGE GRAPH EMBEDDINGS

Here, we introduce our open-source software framework that facilitates large-scale
applications for knowledge graph embedding models. Recently developed KGE frame-
works can be effectively applied in research related applications. Yet, these frameworks
do not fulfill many requirements of real-world applications. For instance, finding
a suitable hyperparameter setting w.r.t. time and computational budgets are left to
practitioners. In addition, the continual learning aspect in KGE frameworks is often
ignored, although continual learning plays an important role in many real-world (deep)

learning-driven applications (Lopez-Paz and Ranzato, 2017; Lesort et al., 2020).
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Most of publicly available frameworks require domain knowledge to move computa-
tion from a commodity computer to a cluster of computers We develop a framework
based on the frameworks Pytorch, Pytorch Lightning, Hugging Face, Pandas, and Po-
lars software libraries to compute embeddings for large-scale knowledge graphs in a
hardware-agnostic manner, which can address real-world challenges pertaining to the

scale of real applications.

SETUP: Let & and R represent the sets of entities and relations, respectively. A KG
is often formalized as a set of triples G = {(h,r,t)} € & X R X & where each triple
contains two entities h,t € & and a relation r € R (Dettmers et al., 2018). Most KGE
models are defined as a parameterized scoring function ¢g : & X R X & = R such
that ¢e(h, r, t) ideally signals the likelihood of (h, r, t) is true (Dettmers et al., 2018).

|E|xd

In a simple setting, © contains an entity embedding matrix E € R and a relation

RIRIXd \where d stands for the embedding vector size. Given the

embedding matrix R €
triples (Barack, Married, Michelle) and (Michelle,HasChild,Malia) € G, a good
scoring function is expected to return high scores for (Barack, HasChild, Malia) and
(Michelle, Married, Barack), while returning a considerably lower score for (Malia,

HasChild, Barack).

10.1.1 CHALLENGES

As |G| increases, the total training time required to learn © accurately for a given
task also increases. Consequently, This magnifies the importance of effectively uti-
lizing the available computational resources. Most available frameworks including
KGE frameworks (e.g. PyKEEN (Ali et al., 2021) and Libkge (Broscheit et al., 2020))
solely rely on a single CPU to load and prepossess the data into the main memory.
Consequently, even loading a large KG can take few hours with these frameworks. The
aforementioned frameworks facilitate multi-CPU and multi-GPU training as they rely
on Pytorch and/or Pytorch-lightning. Yet, they do not support the multi-node training
without modification of the code. For instance, to use the multi-node training module
of Pytorch, the torchrun module must be included in PyKEEN. Yet, this module is not
available. Consequently, without distributed computing software skills, the aforemen-
tioned frameworks can only be successfully used provided that data fits into a single

computer/node.
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Within the publicly available frameworks, downstream applications of pre-trained
KGE models are often neglected. To alleviate these limitations among few others, we

develop the Dice Embedding Framework.

10.2 DICE EMBEDDINGS: HARDWARE-AGNOSTIC FRAMEWORK FOR LARGE-SCALE

KNOWLEDGE GRAPH EMBEDDINGS

10.2.1 HARDWARE-AGNOSTIC COMPUTATION

The goal of our framework is to facilitate learning large-scale knowledge graph embed-
dings in an hardware-agnostic manner. Hence, practitioners can use our framework
to learn embeddings of KG on commodity hardware as well as a cluster of computers
without changing a single line of code. We based our framework on Pytorch, Pytorch
Lightning (Falcon et al., 2019), Pandas (pandas development team, 2020), Polars software
frameworks (Vink et al., 2023). We use Pandas or Polars to read and preprocess the
data in a parallel fashion by using multi-threading and/or multi-CPUs. We observe
that most embedding frameworks rely on a single core in reading and preprocessing
the input KG. As the size of KG grows, this design decision becomes a hindrance to
the scalability and increases the total runtimes. Moreover, the process of the reading,
preprocessing, and indexing an input KG is often intransparent to practitioners. That
means that as the size of KG grows, practitioners are not informed about the current
stage of the total computation. Pytorch and Pytorch Lightning allow our framework to

use multi-CPUs,-GPU and even -TPUs in an hardware-agnostic manner.

10.2.2 FINDING SUITABLE CONFIGURATIONS

Our framework dynamically suggests a suitable configuration setting for a given dataset
and available computational resources. This includes many features, e.g., finding most
memory efficient integer data type for indexing as well as finding a batch size w.r.t. the
computational resources. We are actively working on decreasing the domain expert
knowledge to facilitate the usage of framework. By this, we aim to share our expert
knowledge with practitioners to that their computational and time budgets can be
effectively utilized. Computational and time budgets of practitioners play an important

role in real-world successful ML applications (Bottou and Bousquet, 2007).
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10.2.3 CONTINUAL LEARNING

Our framework assists practitioners to deploy a pre-trained model or continuously train
a pre-trained model without writing a single line of code. In many ML applications,
the input data set evolves with the time. Hence, continual learning plays an important
role in successful applications of ML models Diethe et al. (2019). Although the validity
of many assertions is confined withing a time interval (e.g. (BarackObama, president,
USA)), most KGE frameworks do not provide means for conform the confined validity
of assertions. Hence, pre-trained KGE models are not continuously improved by newly

emerging assertions.

10.3 DOWNSTREAM APPLICATIONS

In our framework, a pre-trained KGE model can be easily used in many applications
including link prediction, triple classification, relation prediction, and conjunctive query

answering. Moreover, currently we are working on description logic concept learning.

FINDING Mi1SSING TRIPLES IN A KNOWLEDGE GRAPH

A pre-trained model can be used to detect missing triples as shown in Figure 10.1. Given
a path of a pre-trained model, a set of missing triples can be easily computed. For a
given entity and a relation, triples whose predicted likelihoods are greater or equal to
0.95, can be found.

from dicee import KGE

model = KGE(path='...")

model . find_missing_triples(confidence=0.1,
entities=["'..."'],
relations=["'..."'])

Figure 10.1: Finding missing triples with a pre-trained KGE model.

ANSWERING CONJUNCTIVE LOoGIC QUERIES

A pre-trained model can be used to answer conjunctive logic queries as shown in Fig-

ure 10.1. Given an entity, spouses of the given entities siblings can be computed.
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from dicee import KGE

model = KGE(path="'")

model . predict_conjunctive_query(entity="...",
relations=["'..."'],
topk=1)

Figure 10.2: Conjunctive query answering with a pre-trained KGE model.

DEscriPTION LOGICc CONCEPT LEARNING

Currently, we are working on learning description logic concepts by using a pre-trained
KGE model as a reasoner. As shown in Figure 10.3, a pre-trained KGE model will be

used as a description logic concept learner model.

from dicee import KGE
model = KGE(path='..")
model.learn_concepts(pos={"'"'},neg={""}, topk=1)

Figure 10.3: Learning description logic concept via a pre-trained KGE model.

10.3.1 DEPLOYMENT

A pre-trained model can be deployed in a web-application without writing a single line

of code as shown in Figure 10.4.

ComplEx Deployment
1. Enter a triple to compute its score, 2. Enter a subject and predicate pair to obtain most likely top ten entities or 3. Checked the random examples box and click submit

SUBJECT
Screenshot
PREDICATE

OBJECT

RANDOM EXAMPLES

Clear

Figure 10.4: A web-application for the deployment without writing a single line of code.
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class ComplEx (BaseKGE):

def

def

__init__(self, args):

super().__init__(args)

self.name = 'ComplEx'

forward_triples(self, x: torch.LongTensor) -> torch.

FloatTensor:

# (1) Retrieve Embedding Vectors

head_ent_emb, rel_ent_emb, tail_ent_emb = self.
get_triple_representation(
x)

# (2) Split (1) into real and imaginary parts.

emb_head_real, emb_head_imag = torch.hsplit(head_ent_emb, 2)

emb_rel_real, emb_rel_imag = torch.hsplit(rel_ent_emb, 2)

emb_tail_real, emb_tail_imag = torch.hsplit(tail_ent_emb, 2)

# (3) Compute Hermitian inner product.

real_real_real = (emb_head_real * emb_rel_real x*
emb_tail_real).sum(dim=1)

real_imag_imag = (emb_head_real * emb_rel_imag =
emb_tail_imag).sum(dim=1)

imag_real_imag = (emb_head_imag * emb_rel_real =

emb_tail_imag).sum(dim=1)
(emb_head_imag * emb_rel_imag =
emb_tail_real).sum(dim=1)
return real_real_real + real_imag_imag + imag_real_imag -
imag_imag_real

imag_imag_real

Figure 10.5: An example of including state-of-the-art embedding model.

10.3.2 EXTENDABILITY

The software design of our framework allows practitioners to solely focus on their

novel ideas, instead of engineering. For instance, by creating a subclass of the BaseKGE

class, a new embedding model can be included into our framework without an effort

as shown in Figure 10.5. The structure of BaseKGE class and along with few existing

knowledge graph embedding models is visualized in Figure 10.6.

10.3.3 Di1SCUSSION

PyKEEN uses a single thread on a single CPU core to load a dataset, whereas, our frame-

work uses multi-threads on multi-CPUs. Moreover, our framework can automatically

find a good batch size w.r.t. the available CPU memory, whereas a batch size needs to

be predetermined in PyKEEN. By automatically finding a large possible batch size, we

aim to decrease domain expert knowledge to successfully train KGE models.
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Figure 10.6
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TRADE-OFFS & PossIBLE IMPROVEMENTS: Compared to PyKEEN, our framework
offers fewer KGE models and less detailed software documentation. Although we are

actively improving these matters, our software framework is not as mature as PyKEEN.
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Ontolearn Framework

DECLARATION OF AUTHORSHIP: Caglar Demir implemented the framework, con-
ducted the initial experiments, and analyzed their results. Thereafter, the framework
has been continuously developed by DICE Group members. The code is available at

https://github.com/dice-group/Ontolearn and https://pypi.org/project/ontolearn/.

11.1 OWL CrLAss EXPRESSIONS IN PYTHON

Here, we introduce Ontolearn—an open-source a machine learning framework for class
expression learning in Python programming language. Ontolearn includes wide range
of class expression learning (CEL) models. Therein, efficient Python implementations
of state-of-the-art symbolic models (CELOE, OCEL, ELTL, and DL-Foil), hybrid models
(CLIP, EvoLearner), and a neuro-symbolic model (e.g., NCES, DriLL, NERO) are available
(Fanizzi et al., 2008; Lehmann et al., 2011; Kouagou et al., 2021, 2022b; Heindorf et al.,
2022). Importantly, we implement the following features to facilitate CEL applications:
A binding to easily use the DL-learner framework within Ontolearn, automatic learning
problem generation, enriching input RDF knowledge base by learned description logic
axioms, and an web-service to deploy class expression learning algorithms.
Ontolearn allows practitioners to developed applications by using CEL models with

an ease. For instance, as shown in Figure 11.1, a CEL model can be used with few lines of
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Python code. The documents of Ontolearn is provided in the project page. !  Ontolearn
is used in the BMWi-funded project RAKI (01MD19012D) and the BMBF-funded project
DAIKIRI (011S19085B). The two industrial use case based on our scientific and software

contributions are elucidated in Chapter 13.

from ontolearn import =*

from owlapy import =*

NS = Namespaces('ex', 'http://example.com/father#"')

# (1) Learning problem

positive_examples = {OWLNamedIndividual (IRI.create(NS, 'stefan')),
OWLNamedIndividual (IRI.create (NS, 'markus')),
OWLNamedIndividual (IRI.create(NS, 'martin'))}

negative_examples = {OWLNamedIndividual (IRI.create(NS, 'heinz')),
OWLNamedIndividual (IRI.create(NS, 'anna')),
OWLNamedIndividual (IRI.create(NS, 'michelle'))}

# (2) Class Expression Learner

model = ModelAdapter (learner_type=CELOE,
reasoner_factory=ClosedWorld_ReasonerFactory,
path="KGs/father.owl")

# (3) Learning starts

model . fit(pos=positive_examples,neg=negative_examples)

# (4) Display best prediction

dlsr = DLSyntaxObjectRenderer ()

for desc in model.best_hypotheses(1):

print('The result:', dlsr.render(desc.concept), 'has quality',
desc.quality)

Figure 11.1: An example of using CELOE model in Ontolearn.

Figure 11.2 illustrates the software design of Ontolearn.

TRADE-OFFS & PossIBLE IMPROVEMENTS: Reading a large input data is a challenge
as most open-source libraries read knowledge graphs with a single thread on a single
CPU core. Moreover, the standard search procedure for the class expression learning
problem becomes a computational bottleneck. Findings of our current work being
under review show that tackling the class expression learning problem via our triple

store (Tentris (Bigerl et al., 2020)) is an efficient means to scale on large data.

https://github.com/dice-group/Ontolearn
*https://ontolearn-docs-dice-group.netlify.app
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Use Case: Deep Reinforcement Learning

for Class Expression Learning

PReAMBLE: This chapter is based on Demir and Ngonga Ngomo (2021b).

DECLARATION OF AUTHORSHIP: The original research idea was introduced by Axel-
Cyrille Ngonga Ngomo. The original research contributions were developed by Caglar
Demir and discussed with Axel-Cyrille Ngonga Ngomo. Caglar Demir implemented
the algorithm, conducted the experiments, and analyzed their results. Caglar Demir
wrote the manuscript and Axel-Cyrille Ngonga Ngomo revised it. The code is available
at https://github.com/dice-group/DRILL. Chapter 13 presents an industrial application
of DriLL with our DICE Embedding framework.

12.1 METHODOLOGY

Here, we introduce a scientific use case for using a pre-trained knowledge graph
embedding model (KGE) to tackle the class expression learning (CEL) problem. We
represent a description logic concept/class expression in an embedding vector space by
using a pre-trained KGE model. By this, we can represent quasi-ordered description
logic concept space as a quasi-ordered reinforcement learning (RL) environment and

train a RL agent to tackle the CEL problem more efficiently.
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Our model idea plays a foundational role in the BMWi-funded project RAKI (01MD19012D).

An industrial use case of this idea is introduced in Chapter 13.

MorTrvaTioN: Devising a suitable heuristic function is crucial in CEL (Lehmann et al.,
2011) as also explained in Section 2.5.3. The search of a H € C satisfying Equation (2.64)
and ideally maximizing Equation (2.67) is steered by a heuristic ¢ : S X S + R that
signals how well refining a quasi-ordered state and transition into one of its refinement
state assists to find a H. Equation (2.66) indicates that ¢(A,B) of state-of-the-art
approaches compute heuristic values without incorporating any information pertaining
to p(B). This is analogous to setting y = 0 in Equation (2.55), i.e., to setting the present
value of future rewards to 0. This implies that heuristic functions of state-of-the-art CEL
models correspond to myopic RL agents, whose only concern is to maximize immediate
rewards (Sutton and Barto, 2018). To address this drawback, we leverage the deep

Q-learning framework. In Table 12.1, we summarized the symbols used in this chapter.

Table 12.1: An overview of our notation used in Chapter 12.

Notation Description

K Knowledge Base

Nc, Ng, N; Set of named concepts, roles, and individuals, respectively
C Set of all valid description logic concepts

S Quasi-ordered C/search space

R(-) Instance retrieval function

E* E- Positive and negative example sets for a CEL problem, respectively
DCELOE CELOE'’s heuristic function

DRiLLg DriLL’s parameterized heuristic function

W, H Two linear transformations

&E(Y) Embedding lookup function for ALC concepts

d Embedding vector dimensions

p(+) Refinement operator

R(-, ) Reward function

b4 Concatenation function

* 2D convolution operation

1) Filters/kernels in the convolution operation
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QuAsI-ORDERED RL ENVIRONMENT: A RL environment is constructed via con-
tinuous vector representations of quasi-ordered states. To obtain these representa-
tions, we use pre-trained knowledge graph embedding models provided in (Demir and
Ngonga Ngomo, 2021a). An embedding of ALC class expression A corresponds to
an embedding of a set of individuals obtained via the retrieval function R(A). This
embedding lookup operation is denoted with E(R(-)), where & : 2N — RI2VIxd A
RL state is represented via R with a pre-trained embedding model (e.g., CoNEx). For
instance, the initial state of this RL environment is represented with embeddings of T,
i.e., embedding of all individuals E(R(T)). In this environment, we consider a RL action
as an action of refining a quasi-ordered state and transitioning to another quasi-ordered

state.

DriLL: The standard deep Q-loss function introduced in Equation (2.58) cannot be
directly applied in this quasi-ordered RL environment since the set of possible actions is
not fixed as in (Mnih et al., 2015). To mitigate this issue, (Edwards et al., 2020) designed
the state-state Q function that leads RL agents to naturally avoid redundant states. As
the number of redundant states increases, using the state-state Q function often leads
in more favorable results than using the state-action Q function. The ability of avoiding
redundant states without requiring any additional computation is particularly important
in our purpose, as many state-of-the-art symbolic models (e.g., CELOE, OCEL, and
ELTL) apply redundancy elimination technique to remove redundant states from their
search (Lehmann, 2010; Lehmann et al., 2011). Therefore, minimizing the state-state Q
function permits incorporating consideration for future states in immediate decisions and
pruning redundant states without additional computation. With these considerations in
mind, we designed the following loss function
2

(r +y max Q(s',x,es,e_;0;7) — Q(s,s", ey, e_; 91')) )

[(61) = E(s,s’,r,eJ,,e,)~U(Z)) (121)

To minimize Equation (12.1), we propose a convolutional deep Q-Network parameterized
with © = [w, W, H] as follows

DritLo([s, s, e, e_]) = ReLU( vec(ReLU[¥([s, s, e, e_]) * )] - w) H,  (122)
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where s € RIR®)IXd and ¢” € RIRSIIXE denote two RL states that are represented with
embeddings of two ALC expressions S and S’. Embeddings of S and S’ are obtained
through applying R(-) and &(-) consecutively. Similarly, e, € RF"*? and e_ € RIF"xd
are obtained via &(-). Note that &(+) returns a set of embedding vectors of size d. To
obtain permutation-invariant representations, we apply ¥(:) to convert a input into
R**4 by averaging the embeddings of its input. By doing so, the output of ¢pgy; is
invariant to the order of items in s, s’, e, and e_. Permutation invariance is required
as items in a set do not have an ordering. Moreover, ReLU(-), vec(+), * and w denote
the rectified linear unit function, a flattening operation, the convolution operation, and
kernels in the convolution operation. W and H denote two linear transformations,
respectively. We design DRILL via the convolution operation as we aim benefit its

parameter efficiency (Mnih et al., 2013, 2015).

CONSTRUCTION OF REwWARDSs: We base our reward function on the heuristic function
of CELOE:
maxreward,  if F1-score(S’)=1;
R(s,s’) = (12.3)
¢ceLog(S,S”), if Fl-score(S’)<1.
A reward of transition from RL state s to s” is based on the heuristic value of refining a
quasi-ordered class expression S and transitioning to S’ provided that S’ is not a class
expression satisfying Equation (2.64). Through minimizing Equation (12.1) on data
points with such rewards, DRILL is expected to steer the search towards shorter class
expressions without computing lengths of class expressions. This stems from the fact
that DRILL is trained on rewards that involves the length information provided within
dcrLoe (see Equation (2.66)). DRILL mitigates the myopic heuristic nature of ¢cgror
through learning discounted cumulative future rewards, i.e., discounted cumulative
future CELOE heuristic values. Through minimizing Equation (12.1) on O, DRILL is
expected to steer the search towards shorter class expressions without computing

lengths of class expressions.

12.1.1 UNSUPERVISED TRAINING

To generate learning problems, p(-) is iteratively applied in a randomized depth-first
search manner starting from T. During this randomized process, each state s satisfying
the length constraint 1 < |S| < maxlen and |R(S)| > 0 is stored.
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Algorithm 5 DriLL with deep Q-learning training procedure

Require: EYE7, p,R, R, E,0, T, M, T ,U
1: form:=1, M do

2: S0, S0 = E(R(T)), T

3 fort:=0,T do

4 z:={s" € p(st)|E(R(s"))}

5 if € > .1 then

6: Select random s’ € z

7 else

8 Select 8" := argmaxy e;¢prus([s:, 8, €4, €-]); ©)
9 end if
10: Compute reward r; := R(s;, s’)
11: Append [s;,s, e, e_, 1] to D
12: Set ;41 :=s;

13:  end for
14: Reduce € with a constant
15: if m % U == 0 then

16: Sample random mini-batches from D

17: Compute loss of mini-batches w.r.t. Equation (12.1)
18: Update © accordingly

19:  endif

20: end for

21: return ©
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In our experiments, we set maxlen = 5. To ensure the heterogeneity of the set of
learning problems, we perform this task m times. For each stored state, we compute all
positive E* = R(S) and negative examples E~ = N; \ R(S), respectively. This operation
often results in creating imbalanced E* and E~, with |[E~| >> |E*| being common. To
alleviate imbalanced examples, we randomly undersample the largest set of examples
so that |E*| = |E™|. The procedure is applied several times to generate various learning

problems.

12.1.2 REFINEMENT OPERATOR

So far, we have assumed that a refinement operator p is given. In the following, we
present the refinement operator on ALC designed for DRriLL. The operator is designed
to make no use of subsumption information but rather to consider concept length as
ordering. This in contrast to most refinement operators found the in the literature,
which order concepts w.r.t. the subsumption relation. We chose to design such an
operator to measure the influence of subsumption semantics on DRILL.

Let N be a finite set of named concepts and let N be a finite set of roles. We write T
to denote the top concept and L to denote the bottom concept. We set Nt = NcU{T, L}.
The set S of all ALC class expressions built upon N¢ and Ny, is defined as follows: First,
NZ C S. Now, let r € Ng. If C and D are elements of S, then so are (CM D), (CU D),
3Jr.C, Vr.C, and —C. The semantics of ALC are given in Table 12.2.

Table 12.2: ALC syntax and semantics. I stands for an interpretation, AL for its domain.

Construct Syntax Semantics

Atomic concept A Al c AT

Role r rf ¢ AT x Af

Top concept T A

Bottom concept 1 0

Conjunction cnD cfnp!
Disjunction CuD cfup?

Negation -C A\t
Existential restriction Ar.C {x|3y.(x,y) erl andy € C*}

Universal restriction Vr.C {x | Vy.(x,y) € r! impliesy € C*}
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Let X,Y € S and r € Ni. We define the length of a concept C € S (denoted |C|) as

follows:
1. If C € N}, then |C| = 1;
2.IfC=XuUYorC=XnY,then|C|=|X|+]|Y|+1;
3. If C=3r.X or C =Vr.X, then |C| = |X]| + 2;
4. If C = =X, then |C| = |X| + 1.

We use the length of concepts to define an ordering over the set S as follows: VC,D €
S:C < Diff |C| < |D|. We define the operator p over (S, <) as follows:

{IrC,Vr.Cc,COT,CUT,-C,C} foranyC
{3r.p(X)} ifC=3arX
{¥rp(X)} if C=Vr.X
p(C) = {-p(X)} if C=-X (12.4)
{p(X)up(Y)} ifC=XuyYy
{p(X)np(Y)} ifC=XxnyYy
N{ ifC=T

We use notation such as 3r.p(X) and Vr.p(X) as a shorthand for 3r.Y|Y € p(X)
and Vr.Y|Y € p(X) respectively. We write the operator in this fashion for the sake
of legibility. Note that several of the rules can apply for a given C. For example, if
C = 3Jr.D, then the first and second rule apply. In this case, the operator returns the
union of the outputs of the rules which apply. In the following, we will assume that p

begins the refinement process from T.
Theorem 1 p is an upward refinement operator over (S, <).

Proof 1 We need to prove that |p(C)| > |C|. This is a direct consequence of the construc-
tion of C. For each possible refinement computed p and by virtue of the definition of | - |, p
either preserves the length of a concept (e.g., if C € N{) or leads to longer concepts (e.g.,
for some refinements in the first line of the specification of p).

It is obvious that p is redundant, i.e., there can be more than one sequence of refinements

from T to a concept C.
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The operator is finite as |p(C)| < oo for any ALC concepts C built upon a finite set
of named concepts N¢ and a finite set of roles. We exploited these two characteristics
during the implementation of our refinement operator. In particular, we implemented
the operator to only explore duplicate concepts once refraining from backtracking to

deal with infinite refinements.

12.2 EXPERIMENTS & RESULTS

12.2.1 EXPERIMENTS
EXPERIMENTAL SETUP

We based our experimental setup on (Bithmann et al., 2016) and used learning problems
provided therein. To perform an extensive comparison between approaches, we also
generated learning problems automatically. We ensured that none of the learning
problems used in our evaluation has been used in the unsupervised training phase.
In our experiments, we evaluated all models in ALC for CEL on the same hardware.
All experiments were conducted with Ubuntu 18.04 with 16 GB RAM and an Intel(R)
Core(TM) i5-7300U CPU v4 @ 2.60GHz.

DATASETS

We used four benchmark datasets (Family, Carcinogenesis, Mutagenesis and Biopax) to
evaluate DrILL (Bin et al., 2016; Fanizzi et al., 2008, 2019; Lehmann and Hitzler, 2010).

An overview of the datasets is provided in Table 12.3.

Table 12.3: An overview of class expression learning benchmark datasets.

Dataset | Ny | | Nc| | NR|
Family 202 18 4
Carcinogenesis 22372 142 21
Mutagenesis 14145 86 11

Biopax 323 28 49
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EVALUATION

We compared approaches via the F1-score, accuracy, the runtime and number of tested
class expressions in a manner akin to Lehmann and Hitzler (2010).

The F1-score and accuracy were used to measure the quality of the class expressions
found w.r.t. positive and negative examples, while the runtime and the number of tested
class expressions were used to measure the efficiency. We used two standard stopping
criteria for all approaches. We set the maximum runtime to 5 seconds as models often
reach good solutions within 1.5 seconds (Lehmann and Hitzler, 2010). Approaches were
configured to terminate as soon as they found a goal state (i.e., a state with F1-score =
1.0).

HYPERPARAMETER OPTIMIZATION

We generated 10 learning problems for each benchmark datasets by following the
unsupervised training procedure. For each learning problem, DRILL is trained according
to Algorithm 5. In our experiments, we used the pretrained embeddings of input knowl-
edge graphs provided by (Demir and Ngonga Ngomo, 2021a). The parameter selection
was carried out based on (Mnih et al., 2015) by using the following configuration: ADAM
optimizer with learning rate of .01, mini-batches of size 512, number of episodes set
to 100, an epsilon decay of .01, a discounting factor y of .99, 32 input channels, and
(3 x 3) kernels. The parameter selection was carried out based on (Mnih et al., 2015).
The offline training on all benchmark datasets took 18 minutes on Family, 143 minutes

on Mutagenesis, 119 on Carcinogenesis, and 21 minutes on Biopax.

12.2.2 RESULTS

COMPARISON WITH THE STATE OF THE ART Table 12.4 reports results on standard
learning problems provided within the DL-Learner framework (Bithmann et al., 2016).
These results suggest that approaches yield similar performances in terms of F1-score
and accuracy on benchmark datasets. Yet, DrILL outperforms all other approaches on all
datasets w.r.t. its runtime. On all benchmark datasets, DRILL requires at most 4 seconds
to yield competitive performance, while CELOE and ELTL require at most 21 seconds
and 18 seconds, respectively. Overall, DrILL is at least 2.7 times more time-efficient
than CELOE, OCEL and ELTL on all standard learning problems. Moreover, during our

experiments, we observed that (1) the number of tested class expressions in ELTL and
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(2) the F1-score of the best found class expression in OCEL are not reported. Results
also indicate that CELOE, OCEL, and ELTL do not terminate within the set maximum
runtime.

We delved into their implementations in the DL-Learner framework and observed
that the maximum runtime criterion is not checked until refinements of a given class
expression are obtained. Table 12.4 indicates that CELOE explores fewer states than
other approaches. This is probably due to the redundancy elimination and expres-
sion simplification implemented in the DL Learner (see section 6.1 in (Lehmann and
Hitzler, 2007)). The redundancy elimination means that CELOE exploits the proven
redundancy of its refinement operator by querying whether an expression already exists
in the search tree. If yes, then this expression is not added into the search tree. The
expression simplification reduces long expressions into shorter ones, e.g., T LI Person
and Vr.T into Person and T, respectively. These modifications often lead to explore
less number of states. However, they introduce extra computation, which are clearly
reflected in the longer runtimes of CELOE w.r.t. DRILL (see Table 12.4). Note that we
also evaluated DL-FOIL in our initial experiments. However, we observed that DL-FOIL

often failed to terminate within 5 minutes. This may stem from the fact:

1. DL-FOIL does not use the elapsed time as a stopping criterion (see Section
4 (Fanizzi et al., 2008)).

2. DL-FOIL requires to find a class expression H with Vn € E~ K [ H(n) to

terminate (see Figure 1 in (Fanizzi et al., 2008)).

Consequently, we could not include DL-FOIL in our final set of experiments. Moreover,
we could not include SParCEL into our experiments as the publicly available code
cannot be executed with some dependencies that are not provided (Tran et al., 2017).

Table 12.5 shows the details of our evaluation on 18 learning problems on the Family
dataset. These details suggest that DriLL and CELOE often converge towards shorter
concepts compared to OCEL and ELTL. This may stem from the fact that DriLL indeed
learned to assign low values for longer concepts as DRILL is trained on rewards based
on the heuristic function of CELOE. DRILL finds a goal state within a second in 12 out
of 18 learning problems.

We also observed that there are only few learning problems per dataset. To perform
more extensive comparisons, we automatically and randomly generated more learning

problems.
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Table 12.4: Results on benchmark learning problems. F1, Acc, T and Exp denote the F1-score,
the accuracy, runtime in seconds, and number of class expression tested respectively. T stands
for no solution found and by the respective approach.  indicates that respective value is not
reported in DL-Learner. Bold entries denote best results.

Dataset DRriLL CELOE OCEL ELTL

F1 Acc T Exp F1 Acc T Exp F1 Acc T Exp F1 Acc T Exp
Family 0.96 0.95 1.2 2052 0.97 0.97 3.6 646 * 094 6.1 2563 096 095 3.4 *
Carcinogenesis 0.71 0.56 3.3 305 0.71 0.56 21.1 230 f { 23.5 802 0.710.57 22.1 ~
Mutagenesis 0.70 0.54 3.0 3941 0.70 0.54 13.9 135 { { 13.2 4023 0.70 0.54 13.2 *

Table 12.6 reports results on 370 learning problems generated automatically on
benchmark datasets. These results confirm that DriLL finds a goal state faster than all
other approaches. Importantly, DrRiLL was always able to find goal concepts in all 370

learning problems.

StaTisTicAL HYPOTHESIS TESTING: We carried out a Wilcoxon signed-rank test to
check whether our results are significant. Our null hypothesis was that the performances
of DriLL and CELOE come from the same distribution provided that a goal state is found.
The alternative hypothesis was that these results come from different distributions. To
perform the Wilcoxon signed-rank test (one-and two-sided ), we used the runtimes of
DrirL and CELOE on benchmark datasets provided both approaches found a goal state.
We were able to reject the null hypothesis with a p-value < 1%. Ergo, the superior
runtime performance of DRILL is statistically significant.

PARAMETER ANALYSIS AND OPTIMIZATION: DRILL achieves state-of-the-art per-
formance on all datasets without over-parameterization and extensive parameter opti-
mization. Throughout our experiments, DRILL is trained with a fixed configuration: 32

input channels, (3x3) kernel.

12.2.3 DI1scUSSION

Our results on all benchmark datasets suggest that DRILL achieves state-of-the-art
performance w.r.t. the quality of the expressions found during the search, while outper-
forming the state of the art significantly w.r.t. its runtime.

The superior performance of DRILL is due to the following:
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Table 12.5: Results on individual learning problems of the Family benchmark dataset. ¥
denotes no solution found by the respective approach. L, F1, Acc and T denote the length
of predicted class expression, F1-score, accuracy and runtime in seconds, respectively. Bold
entries denote best results.

Expression DriLL CELOE OCEL ELTL

L F1 Acc T L F1 Acc T L F1 Acc T L F1 Acc T
Aunt 6 0.83 0.79 3.3 6 0.83 0.79 57 16 * 1.00 58 1 0.800 0.76 2.8
Brother 1 1.00 1.00 0.2 1 1.00 1.00 29 1 * 1.00 58 5 1.00 1.00 3.8
Cousin 4 0.73 0.65 29 5 0.79 0.74 59 21 * 1.00 6.2 1 0.66 0.50 3.0
Daughter 1 1.00 1.00 0.2 1 1.00 1.00 29 1 * 1.00 59 3 1.00 1.00 2.9
Father 1 1.00 1.00 0.2 1 1.00 1.00 30 1 * 1.00 6.0 3 1.00 1.00 3.0
Granddaughter 1 1.00 1.00 0.2 1 1.00 1.00 3.1 1 * 1.00 53 1 1.00 1.00 2.9
Grandfather 1 1.00 1.00 0.2 1 1.00 1.00 29 1 * 1.00 5.7 1 1.00 1.00 3.0
Grandgranddaughter 1 1.00 1.00 0.2 1 1.00 1.00 29 1 * 1.00 59 7 1.00 1.00 3.0
Grandgrandfather 1094 094 3.2 5 1.00 1.00 3.0 5 * 1.00 58 7 1.00 1.00 3.7
Grandgrandmother 9 094 094 3.3 5 1.00 1.00 3.1 5 * 1.00 59 7 1.00 1.00 3.7
Grandgrandson 1092 092 3.5 5 1.00 1.00 57 5 * 1.00 6.6 7 1.00 1.00 3.1
Grandmother 1 1.00 1.00 0.2 1 1.00 1.00 28 1 * 1.00 59 1 1.00 1.00 3.1
Grandson 1 1.00 1.00 0.2 1 1.00 1.00 2.8 1 * 1.00 6.0 1 1.00 1.00 3.0
Mother 1 1.00 1.00 0.2 1 1.00 1.00 29 1 * 1.00 59 5 1.00 1.00 3.1
PersonWithASibling 1 1.00 1.00 0.2 1 1.00 1.00 2.8 1 * 1.00 7.0 1 1.00 1.00 3.1
Sister 1 1.00 1.00 0.2 1 1.00 1.00 28 1 * 1.00 58 5 1.00 1.00 3.0
Son 1 1.00 1.00 0.2 1 1.00 1.00 3.0 1 * 1.00 5.7 3 1.00 1.00 2.9
Uncle 6 0.90 0.89 29 6 09008959 f f§ f 58 1 0.88 0.87 2.9

Table 12.6: Results on automatically generated learning problems. #LP denotes the number
learning problems. Bold entries denote best results.

Dataset #LP DRILL CELOE OCEL ELTL
F1 Acc T Exp F1 Acc T Exp F1 Acc T Exp F1 Acc T Exp
Family 74 1.001.00 1.1 32 1.001.00 3.6 14 * 1.00 6.2 2403 1.00 1.00 3.5 *

Carcinogenesis 100 1.00 1.00 2.2 47 1.001.0017.3 16 * 1.00 20.6 5876 1.00 1.00 19.1 *
Mutagenesis 100 1.00 1.00 1.4 268 1.00 1.00 10.0 148 * 0.98 12.9 3867 0.97 0.97 10.2 *
Biopax 96 1.00 1.00 1.1 40 0.99 0.99 3.7 55 * 1.006.745691 0.99 0.98 3.7 *
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1. deep Q-learning with the state-state Q loss function,
2. the length-based refinement operator and
3. the efficient computation of heuristic values.

Deep Q-learning endows DRiLL with the ability of considering future rewards, while
selecting the next state for the refinement. State-of-the-art approaches lack this ability.
Through minimizing the state-state Q-loss function, DRILL can detect redundant states
without any additional computation. To detect redundant states, CELOE, OCEL, and
ELTL require additional computations. Moreover, DRILL learns to converge to simple
expressions without computing lengths of expressions, whereas other approaches yet
again perform addition computations (see Equation (2.66)). These additional computa-
tions inherently increase their runtimes. Moreover, the Q-network used in DRILL can
assign scores for the refinements in a batch manner, while the sequential nature of
state-of-the-art models precludes batch computation.

To exclude that our results were due to the approach used to generate learning prob-
lems being akin to that used to train DRriLL, we carried out experiments with learning
problems whose positive and negative examples were selected randomly. Although
CEL problems are rarely constructed at random, we aimed to check the hypothesis that
our runtime improvement was due to our approach to problem generation. Our results
clearly indicate that this is not the case.

We also wanted to know how the performance of the different approaches changes
as the input size of random learning problems increases. Table 12.7 suggests that OCEL
does not find any adequate solution as the size of the random inputs increase. ELTL
performs poorly compared to CELOE and DriLL. Moreover, DriLL and CELOE often
return expressions that have similar F1-scores. However, DRILL often finds expressions
having higher accuracy in a significantly better time. Hence, we can conclude that
it is improbable that the better runtime of DRILL is due to the experimental setting.
Finally, we were also interested in comparing the impact of length-based and CELOE’s
refinement operator in DriLL’performance. Table 12.8 shows that DriLL with length-
based performance performs better than using CELOE’s refinement operator. These
results suggest that our length-based refinement operator allows DRILL to steer the

search towards more accurate expressions efficiently.
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Table 12.7: Results on random learning problems. Each row reports average results of 10
learning problems. E* and E~ are constructed via drawing N each random individuals Ny
without replacement. { and #LP stand for no solution found by the approach and for the
number learning problems, respectively. * indicates that respective value is not reported in
DL-Learner. Bold entries denote best results.

Dataset N DRriLL CELOE OCEL ELTL

F1 Acc T Exp Fl1 Acc T Exp Fl1 Acc T Exp TF1 Acc T Exp

Family 1 0.97 095 0.4 563 0.97 0.95 3.6 250 * 1.0 6.1 4083 0.97 0.95 3.6 *
10 0.77 0.73 1.3 4968 0.78 0.72 63 3218 { f ¥ T 0.67 0.51 33 *

Carcinogenesis 1 0.93 0.90 1.2 123 0.93 0.90 19.3 466 * 0.80 20.1 9253 0.93 0.90 19.3 *
10 0.71 0.60 2.2 305 0.71 0.58 22.7 208 f T ¥ T 0.67 0.50 19.6 *

Mutagenesis 1 090 0.85 2.8 1192 0.97 0.95 11.4 345 * 0.90 14.0 4880 0.93 0.90 11.6 *
10 0.71 0.61 3.2 3909 0.70 0.58 13.9 208 f f ¥ T 0.67 0.50 10.9 *

Biopax 1 0.93 090 1.0 1708 0.93 0.90 4.9 369 * 0.80 7.3 4943 0.93 090 47 *
10 0.73 0.65 3.7 7033 0.72 0.60 7.1 1514 f f ¥ T 0.67 0.50 4.4 *

TRADE-OFFS & PossIBLE IMPROVEMENTS: Compared to symbolic models, DRILL
requires two separate training phases: training a knowledge graph embedding model
phase and a reinforcement learning offline training phase. Performance of DRILL can
be improved by replacing the mean operation by a Deep Set or Set Transformer models
to obtain invariant representations Zaheer et al. (2017); Lee et al. (2019). Moreover,
designing a technique to measure the difficulty of learning problem in the context of
class expression learning may also improve DRILL by ignoring trivial learning problem
during the offline training.

Table 12.8: Results on automatically generated learning problems. N, F1, Acc, T and Exp.
denote the number of learning problems, the F1-score, accuracy, runtime in seconds, and the
number of class expression tested respectively. Results are obtained by using our length-based
refinement operator and CELOE’s refinement operator. Bold entries denote best results.

Dataset N Length-Based Ref. @ CELOE’s Ref.
F1 Acc T Exp F1 Acc T Exp
Family 74 1.00 1.00 1.1 32 0.97 097 1.25 1075

Carcinogenesis 100 1.00 1.00 2.2 47 0.93 0.93 12.8 475
Biopax 96 1.00 1.00 1.1 40 0.99 0.99 1.68 13
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Use Case: Rapid Explainability For Skill

Description Learning

PReEAMBLE: This chapter is based on Demir et al. (2022a).

DECLARATION OF AUTHORSHIP: The original research idea was introduced by Axel-
Cyrille Ngonga Ngomo in the BMWi-funded project RAKI (01MD19012D). Caglar Demir
implemented the framework containing the inductive logic programming and the deep
reinforcement learning modules, conducted the experiments, and analyzed their results.

Caglar Demir wrote the manuscript and all authors revised it.

UsE case:  Within the Industry 4.0, smart factories and cyber-physical systems are tied
to the promise of increased flexibility, adaptability, and transparency in production, thus
increasing the autonomy of machines. One such manufacturing process is skill matching,
where operations in a production process are assigned to machines. A prerequisite for
this technology are skill descriptions of the machines and skill requirements of the
operations (Himmelhuber et al., 2020). In some cases, skill descriptions are only partially
available or not available at all. Defining and digitizing skill descriptions of a production
module are typically done manually by domain experts in a time- and resource-intensive
process. Here, we report on the initial results of the RAKI project jointly carried out by

Paderborn University, Leipzig University, and Siemens AG. We designed a framework
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to facilitate Description Logic (DL) concept learning on large industrial RDF knowledge
bases. Our framework learns Description Logics (DL) concepts significantly faster
than state-of-the-art models. Through verbalization means, our framework obtains
interpretable results even for non-domain experts. We open-sourced our framework to
foster large-scale applications'. This use-case has been supported by the BMWi-funded
project RAKI (01MD19012D).

OBJECTIVES: Our goal is to efficiently tackle the skill description learning problem.
Given that skills can be encoded as OWL class expressions, addressing this challenge
can be mapped to a OWL CEL problem (Lehmann et al., 2011). This form of ante-
hoc explainable AI (XAI) is well suited for skill learning, as class expressions are
interpretable—e.g., through verbalization techniques (Moussallem et al., 2020)—and,
a lack of transparency and explainability in AI would reduce the acceptance of the
skill descriptions learned automatically (Holzinger et al., 2019). However, successful
large-scale industrial applications of CEL models have not yet taken place. Arguably,
this stems from the impractical runtimes of CEL models due to their reliance of fixed
myopic heuristic functions and not utilizing parallelism. We hence rely on a framework
that reduces the impractical runtimes of classical CEL approaches so that CEL can be
carried out on large RDF knowledge bases. The framework includes a verbalization
module to decrease the amount of Al expertise necessary to interpret results of CEL
problems. Hence, learned concepts are interpretable even for novice practitioners. The
proposed CEL framework is generic and has the potential of easing the use of XAl in
real-life applications along with contributing to the corresponding societal advantages
tied to explainability (Burnett, 2020).

SoruTioN: We design the RAKI framework that is based on inductive logic program-
ming, deep reinforcement learning and verbalization modules. We design a model
(DriLL) based on deep Q-Network model to significantly decrease the impractical
runtimes. This model is elucidated in Chapter 12. This is achieved by replacing a
fixed myopic heuristic function with a learned Q-function that incorporates future

considerations in immediate actions.

Thttps://github.com/dice-group/DRILL


https://github.com/dice-group/DRILL
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In the RAKI framework, knowledge graph embedding model can be easily learned
with our Dice framework (elucidated in chapter 10) to train DriLL. The verbalization

module translates a learned class expression into natural language sentences.

REesurLTs: The RAKI framework was evaluated on learning problems from the skill
description use case. The results show that our framework yields the best performance
with respect to accuracy and F1-score, and that it can also learn class expressions that
describe the positive and negative examples in the learning problem more precisely
than state-of-the-art baselines. In particular, the integration of domain knowledge by
excluding previously defined concepts leads to non-trivial and thus more useful class
expressions. Especially the high scalability of the framework allowed the calculation of
results in a short time, while the second-fastest baseline needed approximately 8 times
as long on this use case. Moreover, the verbalization of OWL class expressions to natural
language made it easier for the plant operators to understand the skill descriptions,

facilitating the subsequent skill matching step.

BUSINESS VALUE: Automatizing the skill description learning problem reduces per-
sonnel expenses since a skill description of a production module can be learned without
a domain expert. Moreover, the verbalization module saves time of domain experts, as
learned descriptions can be interpreted easily. Importantly, the ability of tackling this
problem efficiently allows us to fully utilize large RDF knowledge bases. Thanks to the
RAKI project, we have developed DrILL introduced in Chapter 12 that combines for
Inductive Logic Programming (ILP) with RL to learn DL concepts for the skill learning

problem, where a skill corresponds to a DL concept.
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Conclusion and Discussion

In this thesis, we focused on learning continuous vector representations for knowledge
graphs. Designing effective and efficient knowledge graph embedding models consti-
tuted the core of the thesis. In this chapter, we provide a summary of our contributions,
and elucidate our findings.

+ In Chapters 3 to 6, we proposed seven knowledge graph embedding models: PYKE,
Suarrom, CoNEx, QMutrT, ConvO, OMuLT, and ConvO. Our models reached
new state-of-the-art performances in the type prediction, relation prediction
and link prediction problems. Our experiments suggest that ensemble learning
consistently improved link prediction performance across models on benchmark
datasets. Our experiments also show that exploiting semantics (e.g., excluding
an entity not being an element the range of a relation from a set of possible
predictions) can be effectively used to improve link prediction performance

without addition computation.

« In Chapter 7, we proposed a novel technique (KRONE) based on the Kronecker
decomposition that improve the parameter efficiency of knowledge graph embed-
ding models, while preserving their effectiveness in the link prediction problem.
Our experiments show that applying KRoNE on a knowledge graph embedding
model improve the robustness against noisy triples/randomly generated triples

in the link prediction problem.
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« In Chapter 8, we proposed a parameter ensemble technique (PPE) to improve

the generalization performance of a knowledge graph embedding model in the
link prediction problem with virtually no additional computational cost. Our
extensive experiments on benchmark datasets with different knowledge graph
embedding models suggest that constructing a parameter ensemble model by
maintaining a weighted average of parameters during training improves the

performance across models and datasets.

In Chapter 9, we proposed a knowledge graph embedding model (NERO) to learn
embeddings for description logic concepts tailored towards concept learning.
Therein, we formulated the learning problem as a multi-label classification prob-
lem from a set of description logic individuals/entities to pre-selected description
logic concepts. Our experiments on benchmark datasets with 770 learning prob-
lems firmly suggest that NERoO significantly outperforms the state-of-the-art
models in terms of F; scores, the number of explored concepts, and the total

runtime.

In Chapters 10 and 11, we presented three software frameworks developed within
this thesis. In Chapter 10, we developed the DICE embedding open-source soft-
ware framework to learn embeddings for knowledge graphs. Therein, we showed
that the DICE Embedding framework can be easily used on large knowledge
graphs. Importantly, the DICE Embedding framework allows practitioners to
deploy a pre-trained knowledge graph embedding model without writhing a
single line of code. In Chapter 11, we developed the Ontolearn open-source
software framework to tackle the class expression learning problem. The On-
tolearn open-source software framework includes many class expression learning

models.

In Chapter 12, we introduced a scientific use case of leveraging a knowledge
graph embedding model in concept learning. Therein, we presented a scientific
use case of using pre-trained a knowledge graph embedding model in the context
of concept learning. Therein, we reformulated the concept learning problem as a
reinforcement learning problem. A quasi-ordered concept space is represented
with a pre-trained a knowledge graph embedding model. By this, our novel deep
Q agent (DriLL) effectively tackled the concept learning problem.
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« In Chapter 13, we introduced an industrial use cases based on our scientific contri-
butions and software frameworks. Therein, we introduced an industrial use case,
where our industrial partners in the BMWi-funded RAKI project (01MD19012D)
effectively used DriLL, CONEX, and the DICE Embedding framework in the skill
learning problem. Their results suggest that our contributions can be used to

tackle class expression learning problem on tabular data.

Here, we provide a summary of our findings.

+ Chapter 3: Incorporating domain knowledge through a similarity function in
the learning process and designing it within a physical system governed by
the Hook’s Law accelerates the embedding learning process, i.e., it reduces the
runtimes. Selecting such similarity function for PYkE tailored towards a particular

downstream task improves the performance across datasets.

« Chapter 4: Using a deep neural network is not necessary to reach the new state-
of-the-art relation prediction performance on benchmark knowledge graphs.
A shallow neural network (SHALLOM) can accurately predict relations between
two entities. This is an important finding due to the following reasons: (1)
The total energy consumption of the training, hyperparameter optimization and
deployment phases for a deep neural network is substantially larger than for a
shallow neural network. (2) Since deep neural networks are more prone to suffer
from overfitting, elaborately designed hyperparameter optimization setup is often
required to generalize well on unseen data. (3) Impact of selected hyperparameters
(e.g. applied parameter initialization and activation normalization techniques and
dropout rates for each layer) is magnified. In the knowledge graph embedding
research, these three points were often left unstudied. Considering these three
aspects, SHALLOM can be a good choice to reach competitive performance for a
large-scale applications. Reported results in two industrial applications based on

large knowledge graphs corroborate our findings !.

« Chapter 5: Combining two state-of-the-art models into a single composite model
with additive or multiplicative connections lead to new state-of-the-art perfor-

mance in the link prediction problem across datasets.

'The BMWi-funded project RAKI (01MD19012D) and BMBF-funded project DAIKIRI (011519085).
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A particular aspect of our proposed combination allows the learning procedure to
decide the importance of each models in the propose composite model (CoNEx).
This is an important findings as most knowledge graph embedding models do
not come with such flexibility, i.e., their structure is often fixed. Finally, applying
2D convolution operation on complex numbers C in the context of knowledge
graph embedding models were not extensively studied. These finding influenced

our later works.

Chapter 6: Applying 2D convolution operations on Quaternions H and Octonion
O leads to better link prediction than applying it on R across datasets. Yet, the
slight improvement in the effectiveness often comes with a cost of increased

runtimes.

Chapter 7: Entity and relation embedding matrices can be considered as com-
pressed matrices and during the training, compressed embedding vectors of
entities and relations can be decompressed to compute the training loss. Via
our technique (KroNE), embeddings of entities and relations are not plainly re-
trieved but reconstructed on the fly. Applying the Kronecker product ensures that
elementwise interactions between three embedding vectors are extended with
interactions within each embedding vector. This implicitly reduces redundancy
in embedding vectors and encourages feature reuse. Hence, learning compressed
knowledge graph embeddings reduces the memory requirements and makes the
model more robust against noise in the input data. Yet, using KrRoNE to learn
compressed embeddings via Kronecker product comes with the cost of increased

runtimes.

Chapter 8: Although prediction averaging (a simple form of ensemble learning)
improves the link prediction performance across models and datasets, it comes
with three disadvantages: the computational overhead of training multiple models
and increased latency and memory requirements at test time. Our findings suggest
that these disadvantages can be alleviated by averaging model parameters instead
of averaging predictions of models. During training, our approach (PPE) maintains
a running weighted average of the model parameters at each epoch interval.
By this, the drawbacks of prediction averaging are can be alleviated and the

performance of a single model can be improved.
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This is an important finding as PPE can be applied on many knowledge graph em-
bedding models and improve the model performance with virtually no additional

cost.

Chapter 9: Learning embeddings for concepts in expressive description logics
substantially improves the performance (particularly runtimes) in the concept
learning problem. To best of our knowledge, learning embeddings of ALC
description logic has not yet been studied. Although our approach (NERO) can be
find accurate concepts without exploration (hence reduced runtimes), it is not
complete in the concept learning problem. Our findings suggest that performing
the search for a goal concept in a continuous vector space, instead of a quasi-
ordered symbolic space can further accelerate the learning process. By this,

concept learning problem can be tackled in large-scale applications.

Chapters 12 and 13: A quasi-ordered infinite description logic concept space can
be represented by a pre-trained knowledge graph embedding model. To best of
our knowledge, representing ALC concept space in a continuous domain has
not yet been studied. Through transforming the symbolic concept space to a
continuous space, the search of a goal concept can be steered by a non-myopic

guide implemented by a deep Q-network.
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Future Works

In this chapter, we briefly discuss our future works. Until the end of the nineteenth cen-
tury, the word geometry was understood as being equivalent to the Euclidean geometry.
Yet, this monopoly ceased with the construction of the non-Euclidean geometries such
as Hyperbolic geometry and Elliptic geometry. Felix Klein then unified the study of
geometry by studying invariants (Klein, 1893). By focusing on the invariant properties
of a geometry under some class of transformations, the relationships between different
geometries became apparent. This approach is known as the Erlangen Programme.
Bronstein et al. (2021) applied the Erlangen Programme mindset to unify “a veritable
zoo of deep neural network architectures”. Therein, various neural network architec-
tures (e.g., convolutional, recurrent, graph neural networks as well as transformers) are
unified under the Geometric Deep Learning framework. By this unification, the rela-
tionship between different architectures can be elucidated, hence a possible reinvention
or rebranding of the same concepts can be avoided. Arguably, such a unification is also
needed to unify “a veritable zoo of knowledge graph embedding models”.

Most knowledge graph embedding models, including the models elucidated in this
thesis are designed to learn embeddings for entities and relations in a pre-determined
normed division algebra, e.g., R, C, H, and O. Most of these models can be unified under
a feature composition operator followed by an approximation operator in a respective
selected algebra. For instance, DistMult, ComplEx, QMult and OMult can be unified

under a category, where an element-wise multiplication operation is used as a feature

189



190 15 FUTURE WORKS

composition operator and an inner product is used as an approximation operator in R,
C, H, and O, respectively. It can be shown that this unification holds for many other
knowledge graph embedding model, including TransE, RotatE, and MuRE (Bordes et al.,
2013; Sun et al., 2019; Balazevic¢ et al., 2019a). In future, we plan to follow the Erlangen
Programme mindset to establish a principle to unify knowledge graph embedding
models. Specifically, we will investigate Clifford algebras Cl,, ; and design a knowledge
graph embedding model that parameterizes the algebra within which it operates. By
this, a knowledge graph embedding model will be endowed with the capability of
selecting a particular algebra (e.r. R, C, H or H @ H) within which it learns embeddings
for knowledge graphs.

This approach to modeling knowledge graph embeddings gives rise to new means
of adding supplementary features—in particular time-to embeddings. The veracity
of an assertion can be modeled as a time interval. For instance, the veracity of the
assertion the chancellor of Germany is Angela Merkel is confined to the closed time
interval 2005-2021, whereas the veracity of the assertion the birth place of Stephen
Hawking is Oxford, United Kingdom can be regarded as a half-infinite interval, whose
starting point is the birthday of Stephen Hawking. Although the time line plays an
important role in the underlying assumption of knowledge graphs—hence knowledge
graph embeddings—, this aspect have not yet been extensively studied in the knowledge
graph embedding research domain. Recently, there has been a growing interesting in
learning embeddings for knowledge graphs containing temporal information about
assertions. Yet, at the time being, it is unclear how to update a pre-trained knowledge
graph embedding model only on those assertions, whose veracities either begin to
be true or cease to be true. Achieving this non-trivial goal is important to decrease
the energy consumption of training models periodically. In future, we also plan to
follow the Erlangen Programme mindset to establish a principle for the unification
of knowledge graph embedding models in learning the temporal aspect of assertions.
We conjecture that incorporating the temporal aspect of assertions as an additional
subspace into the direct sum of all subspaces of Cl,, 4. Finally, our unified approach to
knowledge graph embeddings may also serve as a catalyst for learning embeddings
on dynamic knowledge graphs and their possible alignments. At the time being, it is
unclear how to update embeddings of entities based on assertions stored in different

knowledge graphs.
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In future, we plan to investigate techniques to establish a principle for the unification

of knowledge graph embedding models trained on different knowledge graphs.
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