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Abstract

Social media is now widely recognized as a valuable source of information dur-
ing disaster situations due to its real-time communication and information-sharing
capabilities. In the aftermath of a disaster, social media can provide significant
information about the location, damage, and needs of affected individuals. This
can help emergency responders to better understand disaster situations and make
informed decisions. Social media can also facilitate rescue and relief efforts, as well
as resource distribution to those in need. Despite these benefits, the massive volume
of social media data poses significant challenges to find informative messages. Fur-
thermore, processing social media data such as tweets involves additional challenges
due to their limited content, noise, and informality. In this thesis, we aim to leverage
social media data, in particular tweets, to improve situational awareness during
disasters. Towards this goal, we developed various approaches for processing social
media data to extract relevant features and actionable information. Concretely, we
present the following contributions in this thesis:

* We propose a joint learning approach that integrates social media and environ-
mental data to classify disaster events. Our approach extracts relevant features
from social media data and outperforms baseline methods.

* Tweet classification is an essential task for finding relevant information. However,
most previous approaches consider this task as a binary or multi-class problem
and ignore the fact that a tweet may belong to one or more classes simultaneously.
For this purpose, we propose our approach, UPB-BERT, which fine-tunes the
BERT language model for multi-label classification of disaster-related tweets. Our
approach demonstrates significant performance on a real-world dataset of tweets
collected from different disaster events.

* We propose our approach, I-AID, to identify actionable information in disaster-
related tweets. Such information is critical for emergency managers and relief
organizations to respond faster and prepare efficient disaster mitigation plans.

* Situational insights can be obtained from social media data by identifying topics,
trends or hashtags. However, a large volume of shared social media data without
hashtags makes it difficult to find or categorize it efficiently. In our studies,
we propose our approach, MULTPAX, to summarize disaster-related tweets by
extracting salient phrases. This approach enables the identification of topics,
trends, or hashtags in social media data, even without hashtags. We evaluate



Vi

our approach on different benchmark datasets for keyphrase extraction, as well
as domain-specific disaster tweets. Our evaluation results demonstrate that
MULTPAX performs better than state-of-the-art baselines in extracting present
keyphrases and generating absent ones.



Abstract (German language)

Soziale Medien werden mittlerweile als wertvolle Informationsquelle in Katastro-
phensituationen anerkannt, da sie eine Echtzeitkommunikation und Information-
sweitergabe ermoglichen. Im Nachgang einer Katastrophe kénnen soziale Medien
wichtige Informationen iiber den Ort, die Schiaden und die Bediirfnisse der betroffe-
nen Personen liefern. Dies kann den Einsatzkréften helfen, Katastrophensituationen
besser zu verstehen und fundierte Entscheidungen zu treffen. Soziale Medien kon-
nen auch Rettungs- und Hilfsmafdnahmen sowie die Verteilung von Ressourcen an
Bediirftige erleichtern. Trotz dieser Vorteile stellt das massive Volumen an sozialen
Medien Daten eine erhebliche Herausforderung dar, um informative Nachrichten
zu finden. Dariiber hinaus bringt die Verarbeitung von sozialen Medien Daten wie
Tweets zusatzliche Herausforderungen mit sich, da sie einen begrenzten Inhalt, Larm
und Informalitit aufweisen. In dieser Arbeit zielen wir darauf ab, soziale Medien
Daten, insbesondere Tweets, zu nutzen, um das situative Bewusstsein wahrend
Katastrophen zu verbessern. Zu diesem Zweck haben wir verschiedene Anséatze fiir
die Verarbeitung von sozialen Medien Daten entwickelt, um relevante Merkmale
und handlungsrelevante Informationen zu extrahieren. Konkret prasentieren wir die

folgenden Beitrage in dieser These:

* Wir schlagen einen gemeinsamen Lernansatz vor, der soziale Medien und Umwelt-
daten integriert, um Katastrophenereignisse zu klassifizieren. Unser Ansatz ex-
trahiert relevante Merkmale aus sozialen Medien Daten und tibertrifft bestehende
Basismethoden.

* Die Klassifizierung von Tweets ist eine wesentliche Aufgabe, um relevante Infor-
mationen zu finden. Die meisten bisherigen Ansétze betrachten diese Aufgabe
jedoch als ein binéres oder multiklassen Problem und ignorieren die Tatsache, dass
ein Tweet gleichzeitig zu einer oder mehreren Klassen gehoren kann. Zu diesem
Zweck schlagen wir unseren Ansatz UPB-BERT vor, der das BERT-Sprachmodell
fiir die multilabel-Klassifizierung von katastrophenbezogenen Tweets feinab-
stimmt. Unser Ansatz zeigt eine signifikante Leistung auf einem realen Datensatz
von Tweets, die aus verschiedenen Katastrophenereignissen gesammelt wurden.

* Wir schlagen unseren Ansatz I-AID vor, um handlungsrelevante Informationen
in katastrophenbezogenen Tweets zu identifizieren. Solche Informationen sind
entscheidend fiir Einsatzleiter und Hilfsorganisationen, um schneller zu reagieren
und effiziente Katastrophenschutzplidne zu erstellen.

* Situative Erkenntnisse konnen aus sozialen Medien Daten gewonnen werden, in-
dem Themen, Trends oder Hashtags identifiziert werden. Ein grof3es Volumen an
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geteilten sozialen Medien Daten ohne Hashtags erschwert es jedoch, diese effizient
zu finden oder zu kategorisieren. In unseren Studien schlagen wir unseren Ansatz
MULTPAX vor, um katastrophenbezogene Tweets durch Extraktion von salienten
Phrasen zusammenzufassen. Dieser Ansatz ermdglicht die Identifizierung von
Themen, Trends oder Hashtags in sozialen Medien Daten, auch ohne Hashtags.
Wir evaluieren unseren Ansatz auf verschiedenen Benchmark-Datensatzen fiir
die Schliisselwortextraktion sowie doméanenspezifischen Katastrophentweets. Un-
sere Evaluierungsergebnisse zeigen, dass MULTPAX eine iiberlegene Leistung
im Vergleich zu state-of-the-art Baselines bei der Extraktion von vorhandenen
Schliisselwortern und der Generierung von abwesenden erreicht.
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1.1

Introduction

Social Media during Disasters

Social media platforms have become an integral part of everyday life and have
transformed the way people communicate, especially during crises'. These platforms
allow eyewitnesses to share real-time information about the damages, risks, and
needs of affected people (Ogie et al., 2022). People often rely on platforms such
as Twitter to disseminate information related to updates, alerts, rescues, and relief
requests. Therefore, emergency response organizations (e.g., Red Cross) monitor
social media data to obtain valuable insights into the situation and the needs of
disaster victims. For instance, during hurricane Harvey in 2017, the emergency
telephone number (911) in the USA was overwhelmed with thousands of calls from
people requiring immediate assistance. As an alternative, many people turned to
social media to seek help and access disaster relief information (Villegas et al.,
2018).

Various applications have been developed and integrated into social media platforms
in recent years to facilitate crisis communication and improve situational awareness.

2 is a channel for crisis communications that

For example, Facebook Crisis Response
allows users to mark themselves as safe and notify their families during nearby
crises. Moreover, organizations such as the federal emergency management agency
(FEMA) launched their own social media platform that allows users to receive
information and submit images related to disasters. These applications enable
people to share large volumes of data which pose challenges for filtering valuable
information. Hence, several studies have explored the use of social media in disaster
management and relief responses (Houston et al., 2015; Landwehr and Carley, 2014;
Simon et al., 2015). Effective disaster management can be achieved by detecting
crisis events, filtering useful information, and providing situational insights (e.g.,
event summaries) (Saroj and Pal, 2020). However, different challenges have arisen
due to the unstructured nature, limited content, and informal style of social media

data (Chy et al., 2021). Therefore, our main objective of this study is to develop

!Throughout this thesis, we use crisis, disaster, and emergency as interchangeable terms
https://www.facebook.com/about/crisisresponse/
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efficient approaches that can detect events, provide valuable information, and offer
situational insights during disaster situations.

Mining and Processing Social Media Data

Collecting Social Media Data. Twitter® is one of the most popular social media
platforms, which allows users to communicate and share information through short
posts called tweets.* During crisis events, such as natural disasters or political
upheavals, millions of tweets are generated and disseminated, containing valuable
information about the situation, the needs of the affected people, and the images
of the impacted locations. However, collecting and analyzing relevant tweets is
not a trivial task, as it requires filtering out noise and irrelevant information from
the massive stream of data. One common way of filtering is to use keywords and
hashtags that are related to the event of interest. For instance, during hurricane
SANDY, researchers collected more than 20 million tweets using hashtags #sandy
and #hurricane (Dong et al., 2013). However, this method has limitations, as not
all relevant tweets may contain keywords or hashtags of interest. Another possible
method is to use geolocation information to identify tweets that originate from
the event location. However, only a small percentage of tweets have geolocation
information attached to them (Middleton et al., 2013). To address these challenges,
various applications have been developed and integrated into social media platforms,
such as Twitter and Facebook, to collect and monitor social media data during crisis
events. In Section 2.8, we summarize some of the most popular applications that
have been developed in recent years.

Social Media Preprocessing. Through the use of search APIs and endpoint services,
various approaches have been proposed for mining large-scale social media streams.
These approaches can be categorized into supervised and unsupervised methods.
Supervised methods (e.g., Support Vector Machine (SVM), NavieBayes) have shown
significant performance in filtering data when they are trained on large labelled
data. On the other hand, unsupervised methods do not require any labelled data.
They use techniques like clustering to group similar data together and separate
them from anomalies or noisy data. However, unsupervised approaches rely on a
set of preprocessing steps to clean social media data from redundant and irrelevant
data. In Section 2.2, we describe how social media data, in particular tweets, is
processed.

3We used Twitter to collect social media data since it is the most popular social platform
*Short posts currently limited to 280 characters

Chapter 1 Introduction
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@OFA_NC #Hurricane #Sandy sent me to sea with

#USNAVY and stopped me from mailing my absentee
request! Any help to get it? | want to vote!

2:21 AM - Oct 28, 2012 - Twitter Web Client

Figure 1.1: A tweet example requested a help during hurricane Sandy
Motivation

Data is meaningless unless it is processed into information. Several studies demon-
strated that social media data can be a valuable source of information about affected
persons, donation offers, help requests, and advice during disasters (Nazer et al.,
2016). An example of such a tweet, posted during hurricane Sandy, is presented
in Figure 1.1°. The tweet expresses an urgent request for emergency aid from a
stranded person. Social media data is a form of big data that has high volume,
velocity, and variety. However, it also poses many challenges for data analysis, such
as incompleteness, noise, and informality (e.g., slang and abbreviations). Therefore,
advanced techniques are needed to extract relevant information and turn it into
actionable insights and timely actions (Villegas et al., 2018).

Previous studies have mainly focused on the binary classification of social media data
(relevant vs. irrelevant) for disaster management (To et al., 2017). However, recent
studies have highlighted the importance of fine-grained filtering of social media
data into different types of information, which can facilitate more effective disaster
responses (Olteanu et al., 2015). By categorizing crisis data into deeper levels of
information types, emergency organizations (e.g., humanitarian relief, governments,
or local police departments) can develop a taxonomy of disaster-related information,
allowing each organization to access a specific subset of crisis data based on their
information needs. For example, the Red Cross organization can benefit from
information about emergency cases such as medical reports on severely injured
or trapped individuals. On the other hand, information about resultant damages
is essential for governments to initially assess losses. In general, there are two
ways to analyze disaster events: i) understanding “the big picture”, which provides
an overview of the situation, and ii) identifying “actionable information”, which

>The content is used under the Twitter licence: https://developer.twitter.com/en/
developer-terms/agreement-and-policy

1.3 Motivation
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Unlabelled

Disaster Tweets

Related Not-Related rBinorg Classification I

[T"Iulti%abel Classification ]

[ AskforHelp ] [ MovePeople ] _____

Figure 1.2: Fine-grained classification of disaster-related tweets

requires immediate actions or interventions. Figure 1.2 illustrates the classification
of disaster-related tweets into binary and fine-grained information types.

Previous approaches have addressed the use of social media in disaster management
by tackling three main challenges:

* Detecting events from social media data: One of the essential functions of
disaster preparedness is detecting crisis events. By tracking the situation of a
crisis, first-aid responders can implement timely and appropriate responses,
thereby reducing disaster losses (Nazer et al., 2016).

* Classifying social media data into fine-grained information types: During
disasters and emergencies, emergency managers need a comprehensive view of
the crisis situation to coordinate efforts and make decisions effectively. Several
studies have focused on filtering useful information from social media (Imran
et al., 2018; Nazer et al., 2017). These approaches consider filtering crisis data
as a binary classification task, i.e., data is classified as relevant or irrelevant.
However, Olteanu et al. (2015) highlighted the importance of filtering disaster-
related data into fine-grained information types, which can support emergency
responders in taking appropriate actions.

* Summarizing events and getting situational insights: Massive amounts of
social media data (e.g., tweets) are generated during crisis events, making
it difficult to obtain situational insights from the topics discussed in crisis
data (Yu et al., 2018). Most existing approaches use keyphrase extraction from
social media data to summarize crisis events. Nevertheless, some important
terms may not be present in social media data due to their shortness and
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incompleteness. In our study, we addressed this problem into two sub-tasks: i)
present keyphrase extraction and ii) absent keyphrase generation.

These findings provide solid evidence of the crucial role that social media can play in
disaster situations. In this thesis, we identified these areas as potential opportunities
to effectively leverage social media in managing disaster situations. Our research
focused on developing efficient approaches for processing crisis information on social
media to improve situational awareness.

Research Questions and Contributions

In this section, we present the research questions derived from Section 1.3 and our
contributions.

Challenge I: Detecting disaster events using social media data

Research Question 1

How does social media data (tweets) enhance the performance of disaster
prediction models that use only environmental data?

We addressed the problem of disaster prediction by considering social media as a
complementary source of information to environmental data. We propose a joint
learning approach that integrates features from both social media and environmen-
tal data (Zahera et al., 2019b). Specifically, we analyzed disaster-related tweets
about typhoons to identify additional features for predicting typhoon categories.
Moreover, we derived adaptive features based on two joint training models (e.g.,
BILSTM+ CNN). The first model (BILSTM) acts as a Feature Extractor from social
media data, while the second model (CNN) combines features from tweets and
environmental data. We provide more details about our approach and experimental
results in Chapter 4.

Research Question 2

What is the impact of semantic embeddings in tweet representation on the
performance of disaster prediction?

To answer this question, we investigated the application of semantic embeddings
from the CONCEPTNET knowledge graph in predicting disasters (Zahera et al.,
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2019b). We identified named entities from tweets and represented them using a
fusion of traditional word embeddings and semantic embeddings from CONCEPT-
NET. Our experiments demonstrate a significant performance (in terms of Accuracy,
Precision, Recall and F1) when incorporating semantic embeddings in tweet represen-
tation compared to traditional word embeddings. Further details of our approach
can be found in Chapter 4.

Challenge II: Classifying disaster-related media data into
fine-grained information types

Research Question 3

How effective is fine-tuning a pre-trained language model in categorizing
disaster-related tweets into multiple information types?

To address this question, we explored the effectiveness of fine-tuning a pre-trained
BERT language model for multi-label classification of disaster-related tweets. To the
best of our knowledge, our approach is the first study that fine-tunes the pre-trained
BERT model for this task (Zahera et al., 2019a). We developed two variants of fine-
tuned BERT models: the first one (UPB-BERT) optimizes a binary Cross-entropy
loss function to reduce training errors, while the second one (UPB-FOcCAL) employs
a Focal loss function to mitigate the class imbalance problem in the TREC-IS dataset.
Furthermore, our approach utilizes contextualized word embeddings from a pre-
trained BERT model to capture the semantic features of tweets. The experimental
results demonstrate that fine-tuning BERT model achieves superior performance in
classifying tweets into multiple information types. We present more details of our
approach and experiments in Chapter 5.

Research Question 4

What is the impact of incorporating a pre-trained language model and graph
attention network on the categorization of disaster-related tweets into multi-
ple information types?

To address the problem of multi-label tweet classification, we propose I-AID, a
multimodel approach that automatically categorizes tweets into multiple informa-
tion types (i.e., classes or labels) (Zahera et al., 2021). I-AID consists of three
components: i) a BERT-ENCODER to represent tweets as contextualized embedding
vectors. ii) TEXTGAT, a graph attention network to identify correlations between
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tweets’ words, entities or information types, and iii) a Relation Network as a learn-
able distance metric that measures the similarity of tweets and their corresponding
information types in a supervised way. We present more details of our approach and
experiments in Chapter 6.

Research Question 5

How effective is our approach (I-AID) in identifying actionable information
from disaster-related tweets?

To answer this question, we evaluated the performance of our approach in alerting
actionable information in tweets using the Accumulated Alert Worth (AAW) met-
ric (McCreadie et al., 2019). Actionable information can be defined in two ways:
i) as high-priority information, commonly labelled as critical by human assessors,
and ii) as information type, for instance, tweets with labels MovePeople or Donations
are actionable as opposed to News or Multimediashare. In our study, we adopted the
second definition of actionable posts as highly prioritized tweets. We provide more
details in Chapter 6.

Challenge lll: Summarizing disaster-related social media data
for situational insights

Research Question 6

How do pre-trained language models and knowledge graphs improve
keyphrase extraction compared to state-of-the-art baselines?

There are two ways for summarizing text: extracting salient phrases (a.k.a. ex-
tractive summarization) or generating human-like summaries (a.k.a. abstractive
summarization). In our study, we consider the first approach to summarize social
media data to obtain situational insights. For this purpose, we propose MULTPAX, a
multi-task framework for extracting present using pre-trained language models and
generating absent ones using knowledge graphs (Zahera et al., 2022). The pipeline
of our approach consists of three steps: i) MULTPAX extracts present keyphrases
from input disaster-related tweets, ii) MULTPAX links the present keyphrases with
knowledge graphs to get more relevant phrases, and iii) finally, MULTPAX ranks
both the present and absent keyphrases based on their semantic relatedness to the
input tweets. More details about our approach can be found in Chapter 7.
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Research Question 7

How suitable are the exact-matching metrics (Precision, Recall and F;-score)
for evaluating absent keyphrases?

To answer this question, we evaluated the performance of absent keyphrases gener-
ation using the exact matching metrics. We found that evaluation based on exact
matching is not suitable for this task, as it ignores semantically similar words and
only counts matches when predicted and ground-truth keyphrases are identical. For
example, if two keyphrases are semantically similar, such as “disaster relief orga-
nization™ and “crisis responses institute”, these keyphrases are not considered as a
match by the exact matching metrics. Therefore, we propose a semantic matching
evaluation, which takes into account semantically similar keyphrases. We provide
more details in Chapter 7.

Thesis Outline

In this section, we describe the thesis structure, which includes eight Chapters. The
remaining Chapters of the thesis are summarized as follows:

* Chapter 2 introduces the background knowledge on disaster management using
social media, describes the fundamental methods for collecting and processing
social media data, and provides a list of applications developed for leveraging
social media during disasters.

* Chapter 3 reviews the state-of-the-art approaches in leveraging social media
for disaster situations, summarizing the approaches related to three disaster
management tasks: event detection using social media, filtering useful information
from massive social media, and event summarization.

* Chapter 4 describes our approach that predicts typhoon intensities using joint
learning from social media and environmental data. We investigated the impact
of applying semantically enriched data representation on the performance of our
approach. Specifically, we used semantic embeddings from the CONCEPTNET
knowledge graph to represent tweets. Our experimental results demonstrate
superior performance compared to state-of-the-art baselines in typhoon prediction
when integrating features from both social media data and environmental data.

* Chapter 5 describes our approach (UPB-BERT), a fine-tuned BERT model for
multi-label tweet classification during crises. We have collected and annotated a
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large-scale dataset of real-world tweets from various crisis events and evaluated
our model on it. To the best of our knowledge, this is the first study that applies
pre-trained language models to this task (Zahera et al., 2019a).

* Chapter 6 introduces our approach (I-AID), a multi-modal approach for multi-
label tweet classification that combines three components: BERT-ENCODER,
TEXTGAT, and RELATION NETWORK. We have shown that our approach can
effectively capture both local and global information in short texts and outper-
form existing methods on several benchmark datasets. We have also discussed
the challenges and limitations of multi-label classification and suggested proper
metrics for fine-grained evaluation.

* Chapter 7 presents our approach (MULTPAX), a multi-task framework for ex-
tracting present and absent keyphrases from crisis data. We have utilized the
pre-trained BERT model and knowledge graphs (DBPEDIA and BABELNET) to
obtain present and absent keyphrases. Our experimental results demonstrate that
knowledge graphs are valuable resources for generating keyphrases.

* Chapter 8 concludes the thesis, summarized the main findings of our research,
and suggests potential future directions for further improvement and exploration
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We developed four different approaches for analyzing crisis data in our studies,

which are available in different Github repositories. These repositories are publicly

accessible and contain the source code, documentation, and data sets that we have

used in our experiments. Furthermore, we provide a detailed experimental setup

and instructions to reproduce the results that we have reported in this thesis.
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* JOINT LEARNING: This repository provides the source code of our novel
approach that leverages both environmental and social media data to pre-
dict the categories of typhoons. Additionally, we provide the instructions to
download our Typhoon Events Dataset (TED), which contains thousands of
tweets collected during various typhoon events. More details can be found at

https://github.com/dice-group/joint-model

* I-AID: This repository contains the source code of our methods to annotate
social media data (tweets) with multiple information types. We employed
the dataset (trecis2019-B), which was provided by the TREC-IS Challenge, to
evaluate our methods. For more information, please visit https://github.

com/dice-group/I-AID.

* MULTPAX: This responsory contains the source code and datasets used in our
experiments for summarizing disaster-related tweets. We employed different
benchmark datasets, as well as crisis tweets to investigate the performance
of our approach in extracting present keyphrases and generating absent ones.
For more details, please visit https://github.com/dice-group/MultPAX.
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2.1

Background

This chapter provides the preliminaries necessary for the subsequent chapters in this
thesis. The chapter is organized into eight sections that cover the following topics:
1) Definitions of disaster-related concepts, 2) Collecting and preprocessing of social
media data, 3) Representation learning from social media, 4) Deep learning models,
5) Knowledge graphs, 6) Evaluation metrics and 7) Datasets, 8) Applications.

Concepts and Terminology

Emergency-related terms should be defined precisely since many of them have
special meanings depending on the context. We define the terms and concepts used
in our study as follows:

Disaster management is the process of identifying, assessing, and addressing
the risks and impacts of natural and human-made disasters (Stoyanov, 2017). It
involves activities such as emergency planning, evacuation, relief, assistance to
affected people, and infrastructure recovery. The aim of disaster management
is to mitigate the negative impact of disasters on individuals, communities, and
societies.

Crisis informatics is an interdisciplinary field that focuses on how technology
and information systems can help manage and respond to crisis situations (Reuter
and Kaufhold, 2018). It develops tools, systems, and processes for collecting,
analyzing, and disseminating information during crises, as well as for coordinating
and supporting emergency response efforts.

Situational awareness is the ability to understand what is happening in ongoing
events, especially in the context of response and control operations (Vieweg et al.,
2010). In crisis management, situational awareness involves collecting and analyzing
information about the crisis, such as its cause, potential impacts, and possible
response strategies. By maintaining situational awareness, decision-makers can
identify urgent needs and prioritize their response efforts accordingly.

13
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Information types are categories of social media data generated during crisis
events, based on specific types of information (Olteanu et al., 2015). For example,
the information type “Donation” indicates that a collection of social media data (e.g.,
tweets) contains valuable information about donation campaigns (see Table 5.1 for
more details). A single tweet may belong to one or more information types at the
same time.

Actionable information is factual information that can be automatically acted
upon (e.g., moving people, requesting volunteers) (Zade et al., 2018). We are
concerned with social media data (e.g., tweets) that generate immediate alerts for
emergency responders, such as situational information, sentiment, and personal
opinions. Situational data is essential for assisting authorities to understand the
current disaster situation (e.g., the number of people affected) so that relief efforts
can be coordinated appropriately.

Collecting and Processing Social Media Data

In our study, we collected social media data from the Twitter platform to analyze
disaster-related posts. We used the Twitter stream API' to search for disaster-related
tweets using keywords in search terms (i.e., hashtags). We retrieved the tweets
and their corresponding information from Twitter by passing the “id” parameter to
the REST endpoint if the tweets’ IDs were available. We collected approximately
1,3 million tweets related to different typhoon events. Due to Twitter’s copyright
license, we shared only the tweets ids on the GitHub repository.> The collected
tweets are unstructured and varied in their readability, grammar, and syntax. To
preprocess these tweets, we used the TWEETARC? library, as it provides specialized
preprocessing steps for tweets. For example, TWEETARC library can identify the
emojis, ’Q’ mentions (usernames), and RT tags (retweets) commonly found in tweets.
We also removed URLs, mentions, hashtags, emojis, smileys, special characters, and
stop words since they did not contribute semantic information. Finally, we used
tokenized and lowercase words to reduce typographical errors. Figure 2.1 shows an
example of preprocessing a tweet shared during a tornado in Kansas City in 2022.
The preprocessing steps are described as follows:

* Tokenization: This process splits text into individual tokens, which can be
words, characters, symbols, or n-grams. Different delimiters, such as #, tabs,

"https://tinyurl.com/yc6wufps
*https://github.com/dice-group/joint-model/tree/master/TED%20Dataset/Tweets_IDs
*http://www.cs.cmu.edu/~ark/TweetNLP/
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I hear the tornado sires going off now !!
:Buildings downtown in kansas City being evacuated;

1 now A A Tornado Warning A A E

{ Tokenization ‘ "I", "hear", "the", ...., "Tornado", "Warning"

Y l
[ Stop Words Removal “the™; "in"

\ 4
[ Etemmlr?g a.nd ] "Build", "go" ...,"Warn"
emmatization
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( Part-of-Speech I | [pronoun] hear [verb] tornado [noun] ...

Figure 2.1: The pipeline of tweets preprocessing

whitespace, and newlines, can be used to separate these tokens. The most common
tokenization technique is whitespace splitting, which segments text into words
separated by whitespace.

* Stop Words Removal: This step removes common words with minimal semantic
value. Stop words, such as ’the’, ’a’, and ’in’, are frequently used in English but
contribute little to the meaning of a sentence.

* Stemming and Lemmatization: These techniques reduce words to their base
forms, also known as the root word or lemma (Sharma and Cse, 2012). Stemming
trims words of their affixes (prefixes or suffixes) to approximate their base forms,
also known as the root word or lemma (Sharma and Cse, 2012). For instance,
the word “warning” is transformed to “warn” by removing the “ing” suffix during
stemming. Lemmatization, on the other hand, uses a dictionary to look up the
word’s lemmas (Balakrishnan and Lloyd-Yemoh, 2014). For example, the word
“went” is transformed to “go” by finding its lemma in the dictionary. Stemming
is faster and simpler than lemmatization, but it may produce inaccurate or non-
existent words.

* Part of Speech Tagging (POS): This process annotates text with labels (i.e., tags)
based on the roles of words in a sentence (e.g., subject, verb, adjective, etc) (Brill,
1995). This helps determine the importance of words based on their tags (e.g.,
assigning more weight to nouns than adjectives).

2.2 Collecting and Processing Social Media Data 15
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Flood Earthquake ... WordN

S

Flood= [1,0,0,0,0,0,....,0]
Earthquake= [0,1,0,0,0,0,....,0]
Volunteer= [0,0,0,1,0,0,....,0]

Donation= 11,0,0,0,0,1,....,0]

Figure 2.2: One-hot encoding of words Flood, Earthquake, Volunteer, and Donation
Representation Learning Approaches

One of the key steps in preparing data for machine learning models is feature
engineering, which involves transforming raw data into features that capture the
essential patterns and relationships within data. These features should be relevant
and informative for the specific machine learning task and should reflect the domain
expertise and problem understanding of the data analyst. Thus, feature engineering
depends on knowledge and a comprehensive understanding of the data and problem
domain. Different approaches have been developed to extract features from data,
including traditional (i.e., classical) approaches, which mainly rely on statistical
features, and neural approaches that utilize deep neural networks.

Traditional Representation

One-hot encoding (Bernard and Lebboss, 2017) is a simple approach for text
encoding, wherein words are represented with numerical vectors with dimensionality
equal to the vocabulary size. Each word has a unique dimension, indicated by a one
in that dimension and zeros elsewhere. Figure 2.2 illustrates the one-hot encoding
of words (Flood, Earthquake, Volunteer, Donation) are encoding as one-hot vectors,
where only the dimension corresponding to the words is marked by one. However,
one-hot encoding can suffer from the problem of high dimensionality, especially
when dealing with categorical variables that have many categories. This can cause
the “curse of dimensionality”, where the high-dimensional feature space can pose
challenges for machine learning algorithms to analyze the data efficiently.
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#Vocabulay #Counts

food 2

damage 0

The Napa food bank is very low on food. Need emergency 0
non-perishable foods, Volunteers needed and bank 1

donations too #napaquake #earthquake
earthquake 1

help 0

donation 1

Figure 2.3: A bag-of-words representation of a tweet during California earthquake 2014

Bag-of-words (BoW) is a similar approach to one-hot encoding, which counts
the frequency of words in each sentence and represents them as a vector of word
counts (Zhang et al., 2010). For instance, in Figure 2.3, the sentence “The Napa
food bank is very low on food. Need non-perishable foods, Volunteers needed and
donations too #napaquake #earthquake” is encoded as a vector of word counts
[2,0,1,1,0,0,1,1,---], where the index corresponds to the word id and the value
represents its frequency. However, this approach also has some limitations; it can
result in sparse text representation when the input data is large, and the vocabulary
is huge. Moreover, it does not capture the semantics and meaning of words, as it
only considers their frequency.

Term frequency-inverse document frequency (TF-IDF) is a statistical method
that measures the importance of each word in a document relative to a collection
or corpus of documents (Ramos et al., 2003). TF-IDF assigns high weights to the
words that are frequent in a document but are rare in other documents. This way; it
reduces the impact of words (e.g., this, that, are, etc.) that are common across all
documents. The TF-IDF method consists of two components, as follows:

count (¢,d)

: 2.1
T @D

TF (t,d) =
where count (¢, d) is the frequency of term ¢ in document d, and ||T'|| is the total
number of terms in document d.

The Inverse Document Frequency (IDF) of term ¢ is given by:

1D]]
1+||deD:teT|’

IDF (t) = log (2.2)

2.3 Representation Learning Approaches
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Figure 2.4: An example of words embeddings in the Semantic Space

where ||D|| is the number of documents in the corpus, and |d € D : t € T| is the
number of documents d € D that contain the term ¢ € 7. The TE-IDF weight is then
computed by multiplying the TF and IDF values.

TE-IDF (t,d) = TF (t,d) x IDF (t), (2.3)

For instance, suppose we have a document with 100 terms, where tsunami term
occurs three times. The TF of tsunami is calculated as (3/100) = 0.03. Suppose
also that we have a corpus of 1000 documents and the term tsunami appears in 300
of these documents. The IDF of tsunami term is log (10,000/300) = 0.52 and the
TF-IDF weight is then 0.03 x 4 = 0.015.

Embeddings-based Representation

Word Embeddings (Word2vec) is a widely used technique that represents words
in the text as numerical vectors (called embedding vectors) in a high-dimensional
semantic space (Mikolov et al., 2013b). This representation captures the semantic
similarity between words, such that words with similar meanings have similar
embedding vectors. Figure 2.4 shows two examples of word embeddings (nouns
and verbs). We can observe that the embedding vectors of “man” and “king” are
similar to those “queen” and “woman”. Consequently, their relationship is established
as follows:

P
king — man + woman = queen.

Moreover, the embedding vectors of verbs preserve similarity across different tenses.
For instance, the embeddings vector of the verb “supporting” is close to its past tense
form “supported” in the semantic space, as shown in Figure 2.4. Various methods
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British victim of Tonga tsunami dedicated her life to rescuing dogs
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Figure 2.5: An illustration of the CBOW model vs the Skip-gram model

have been developed to learn word embeddings in semantic space. We give a brief
overview of the most common methods as follows:

* Continuous bag-of-words (CBOW) learns an embedding vector for a target
word from its context (Mikolov et al., 2013b). Specifically, CBOW takes the
surrounding words within a specified window size as an input context. Then, it
uses a projection layer to predict the target word in the centre of the window
using a weight matrix (see Figure 2.5). Finally, the predicted word and the target
word are compared to update the embedding representation based on the gradient
errors.

* Skip-gram is the reverse of the CBOW model, where the context words are
predicted from the target word. The input layer contains the target word, while
the output layer consists of multiple words from its context. In this way, Skip-
gram infers the context given a target word, unlike CBOW. Then, the similarity
between the predicted word and the context words is used to adjust the embedding
representation based on the gradient errors. Although the CBOW model trains
faster than Skip-gram, the latter performs better for rare words (Mikolov et al.,
2013a).

* GloVe is a variant of the Word2vec model that learns word representation based
on global word co-occurrence (Socher and Manning, 2014). Glove involves two
main steps: i) creating a co-occurrence matrix from the corpus, where each cell
counts how often a pair of words appear together in a context window, and ii)
applying factorization to the matrix to obtain the vectors for each word.

Contextualized embeddings: While static word embeddings have shown remark-
able performance in various natural language processing (NLP) applications, such

2.3 Representation Learning Approaches
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Figure 2.6: The architecture of BERT encoder for sentence representation

approaches assign a single representation for each word, ignoring the context in
which words may have different meanings. For example, given two sentences with
“bank” word: i) “My friend is considering taking a loan from a bank” and ii) “Rainfall
caused the Rhine river to overflow its bank”. Traditional word embeddings approaches
(e.g., Skip-gram, GloVe) learn a single embedding for the word “bank”, regardless
of its different meanings depending on the sentence context. Hence, contextu-
alized embeddings has been proposed to learn word embeddings based on their
context (Hofmann et al., 2021). Recently, various models have been developed to
provide contextualized embeddings, such as ELMo (Embeddings from Language
Models), BERT (Bidirectional Encoder Representation from Transformers), and GPT
(Generative Pre-trained Transformer). We refer readers to this survey (Ethayarajh,
2019) for more details about contextualized embedding models. In the next sec-
tion, we briefly describe the BERT’s contextualized embeddings, which we used to
represent tweets in our studies.

Bidirectional Encoder Representations from Transformers (BERT) is one of the
most influential language models that employ a transformer architecture with paral-
lel attention layers to encode both the left and right context of each word (Devlin
et al., 2019). BERT is pre-trained on two unsupervised language tasks, which aim to
improve bidirectional prediction and sentence-level understanding. The first task
is masked language model (MLM), where the model randomly masks (i.e., replaced
with the “[MASK]” token) 15% of tokens in the input and tries to predict them from
the remaining tokens. The second task is next sentence prediction (NSP), where
the model learns to classify whether two input sentences are consecutive or not.
BERT has two main variants: BERT},s. and BERT,,.¢., which differ in the number
of layers, hidden units, and attention heads. Both variants are pre-trained on a
large-scale dataset consisting of books corpora and English Wikipedia articles. A key
advantage of BERT is that it can be easily fine-tuned for various NLP downstream
tasks without requiring re-training from scratch. In our study, we used BERT to
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Figure 2.8: An example of convolution operation

generate contextualized embeddings of tweets. Moreover, we fine-tuned the BERT
model for classifying disaster-related tweets into different information types. Inter-
estingly, Liu et al. (2021) developed a specialized crisis embedding model (called
CrisisBERT) that was trained on a large corpus of crisis-related data. CrisisBERT can
detect emerging crisis events on social media, such as natural disasters, terrorist
attacks, and pandemics. Additionally, it can be used to provide contextualized
embedding vectors for social media data analysis.

Deep Learning Models for Natural Language
Processing

In recent years, deep learning approaches have achieved remarkable results in
various applications. Researchers have developed several neural architectures to
address different NLP tasks, such as sentiment analysis (Yoon and Kim, 2017), text
classification (Kim, 2014), and question answering (Sharma and Gupta, 2018). In
our study, we explored different neural models for processing crisis data. We provide
a brief overview of these models as follows:

2.4 Deep Learning Models for Natural Language Processing
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Convolutional Neural Network

Convolutional neural network (CNN) is a type of deep learning model that can
handle grid-patterned data (e.g., images). This model is inspired by the structure of
animal visual cortex (Albawi et al., 2017) and learns spatial features in a hierarchical
and adaptive manner, from low to high levels. CNN consists of three kinds of layers:
convolution, pooling, and fully connected. The convolution layer is the core component
of CNN, which performs a series of mathematical operations called convolution. The
convolution and pooling layers extract features from the input data, while the fully
connected layer maps those features into the final output. Interestingly, Kim (2014)
adapted a CNN model for text classification by using a single convolution layer on
top of a sentence representation, which is a matrix of word embeddings (n x R%)
with n words, each one represented by a d-dimension vector.

Recurrent Neural Network

AR

Figure 2.10: An example of RNN model for text classification

Although CNN has achieved remarkable results in various NLP tasks, they are not
able to capture long-term dependencies and preserve the contextual word sequence,
which is essential for understanding the overall meaning of a text in advanced
tasks such as machine translation. While text data can be processed using a simple
feedforward neural network, this approach does not account for the sequential
information of words. To address this limitation, recurrent neural networks (RNN)
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have been designed for processing sequential data, such as text (Marhon et al.,
2013)). RNN operates on each word in a sequence and produces an output that
depends on the previous computation. In RNN, the hidden layers are connected
through recurrent connections, unlike feedforward connections in CNN. Additionally,
RNN employs a “memory” cell to store information from the previous computations
up to the current word of a sequence (Zhang et al., 2018). For example, given an
input text X = {w1, we, -wy, }, with n words, each w; is represented as an embedding
vector w; € R? with d-dimensions at time ¢. The memory cell is then used to track
previous states up to time ¢ as hg, which represents a hidden state at time ¢ and acts
as the network’s memory. The hidden state h; is computed based on the current
input w; and the hidden state of the previous steps. The output of RNN (o;) is
subsequently passed to a Softmax function to compute the final predictions (7).

ay = b+ 0 x hy_y) + By (2.4)
hy = tanh(ay). (2.5)
ot = c+ Vhy. (2.6)
¥t = softmax(ot;). 2.7)

Where h is the hidden state, oy is the output, and §; is the predicted label of an
RNN at time step ¢. The hidden state h; is a function of the previous hidden state
h;__; and the current input xz;, with parameters 6 and § and bias b. The output
ot is a linear transformation of the hidden state h¢, with parameter V' and bias c.
The predicted label § is obtained by applying a Softmax function to the output o,
which normalizes the scores into probabilities.

One of the major challenges of training RNNs is the vanishing gradient problem (or
the exploding gradient problem) (Hochreiter, 1998). This problem occurs when
the gradients are multiplied by the weight contributions at each step during back-
propagation. As a result, the gradient propagated to the previous time step can either
shrink or grow significantly. A possible solution to this problem is to incorporate
additional gates into the RNN that can selectively filter the relevant information to
keep or discard for the subsequent steps. This is the idea behind Long Short-Term
Memory (LSTM), which is a mechanism for controlling gradient propagation.

Long-Short Term Memory

Long-Short Term Memory is designed to address the vanishing gradient problem by
altering the recurrence connections of the hidden states (Yu et al., 2019). LSTM

2.4 Deep Learning Models for Natural Language Processing
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Figure 2.11: The architecture of LSTM cell

uses gates to control the gradient computation in the memory cell of the recurrent
network. These gates (called the input, output, and forget) are used to update a
memory cell with the hidden states until the next time step. The gating mechanism
consists of neural network layers that decide when to forget or keep information in
the memory cell (Yu et al., 2019). Figure 2.11 illustrates the diagram of an LSTM
unit, which operates as follows:

i = oc(W;x; + Uhy1 + by), (2.8)
fi = oc(Wyx; + Ushy_1 + by), 2.9)
o = 0(Wyxt + Ushi—1 + by), (2.10)
¢t = tanh(Wexy + Uchy_1 + b,), 2.1
coc=fioci1+i0¢), (2.12)
h; = o; o tanh(cy). (2.13)

The input, forget, and output gate vectors i, f;, and o, respectively are computed
by applying a Sigmoid activation function to a linear combination of the input x;
and the previous hidden state h,_;, plus a bias term. The candidate cell state c,
represents the potential new information to be added to the cell state c;, which
stores the long-term memory. It is obtained by applying Tanh to a linear combination
of the input x; and the previous hidden state h; 1, plus a bias term. The cell state c;
is updated by adding the element-wise product of the forget gate f; and the previous
cell state ¢;_1, and the element-wise product of the input gate i; and the candidate
cell state c;. The hidden state h;, which stores the short-term memory, is computed
by applying Tanh to the current cell state c; and multiplying it element-wise with
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Figure 2.12: The architecture of BiLSTM model.

the output gate o;. These equations enable LSTM to learn long-term dependencies
and avoid vanishing or exploding gradients

Bidirectional LSTM (BiLSTM) is a sequence processing model that consists of two
LSTM layers; one processing the input in a forward direction, and the other in
a backward direction (Yu et al., 2019). The outputs or hidden states from both
directions are combined using operations such as concatenation, sum, averaging,
or multiplication. BiLSTM can increase the amount of information extracted from
the input text and capture the entire context. The BiLSTM architecture has many
advantages in real-world problems, especially in NLP, as every component of an input
sequence contains information from both left and right directions. Consequently,
BiLSTM can provide better contextualized representation by integrating LSTM layers
in both directions.

Graph Attention Network

Graph Neural Networks (GNNs) are a class of artificial neural networks for pro-
cessing graph data (Scarselli et al., 2008). GNNs can tackle complex problems in
various domains, such as content recommendation (Gao et al., 2022) and drug
discovery (Cheung and Moura, 2020). Graph data, unlike other data types such
as images, requires specialized methods for learning. To perform specific tasks on
graphs (e.g., node classification, link prediction), the GNN layer computes node
and edge representations using a technique called message passing. This technique
involves each graph node receiving and aggregating features from its neighbours to
capture the local graph structure. Different types of message passing layers perform
different aggregation strategies.

2.4 Deep Learning Models for Natural Language Processing

25



26

averaging

=[5 [-134]0%]

3

Figure 2.13: An example of the graph convolution operation.

A simple way to implement a GNN layer is to apply a convolution operation on a
graph, which is known as Graph Convolutional Networks (GCNs) (Kipf and Welling,
2017). GCNs perform a uniform aggregation, i.e., each neighbour node has the
same weight in updating the target node’s representation. Formally, given a graph
G = (V, &) where V and € represent the set of nodes and edges, respectively. Each
node is connected to itself (v;,v;) € £. Let X € R™*? be the nodes’ representation
matrix, where each node v; has a d-dimension feature vector. Given an adjacency
matrix A and its degree matrix D;; = > Aijs the diagonal elements of A are set
to 1 due to self-loops. To learn a feature representation of a target node v;, GCN
aggregates features from its neighbours (vi,vs,---v4), i.e., each neighbour node
contributes equally in updating the target node’s representation.

HIH = a<ﬁ—%jﬁ—é7{lwl>, (2.14)

where A = A+ 7 and 5; =2, .Z(ij. #! is the feature representation of all nodes at
GCN layer (. Interestingly, Yao et al. (2019) adapted GCN for text classification by
constructing a convolution network (called TEXTGCN) from an input corpus based
on word co-occurrences and relations within the corpus. Words and documents
are initially represented using one-hot encoding. Subsequently, TEXTGCN learns
embeddings for both words and documents, as supervised by ground-truth labels
of the documents. In our study, we employed a GNN with an attention mechanism
(GAT) for learning word representations. We provide more details of our approach
(I-AID) in Chapter 5.
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Figure 2.14: An example of Mona Lisa knowledge graph
Knowledge Graphs

In recent years, knowledge graphs (KGs) have become the foundation of many
knowledge-based information systems (Hogan et al., 2021). In knowledge rep-
resentation and reasoning, a knowledge graph serves as a knowledge base that
employs a graph-structured model (i.e., topology) to integrate data from various
sources. It describes information about entities of interest in a given domain (e.g.,
people, places, or events) and their relations. Figure 2.14 illustrates an example of
a knowledge graph about "Mona Lisa". Each data instance is encoded with RDF*
triples in the form (subject, predicate, object). For example, (Da Vinci, painted, Mona
Lisa) encodes the relation painted between the entities Da Vinci and Mona Lisa.

There are many applications of knowledge graphs in both research and industry (Ji
et al., 2021). In the machine learning domain, KGs are commonly employed to
i) enrich data representation by adding structural information (e.g., from linked
data), ii) understand the underlying semantics of data or on a broader scale, enable
the development of intelligent systems, and iii) enable data integration and fusion
from heterogeneous sources. In our studies, we used the CONCEPTNET knowledge
graph (Speer et al., 2017) to enrich the representation of disaster-related tweets.
We also used the DBPEDIA (Auer et al., 2007) and BABELNET (Navigli and Ponzetto,
2012) graphs to generate absent keyphrases for disaster summarization. We provide
a brief overview of these graphs as follows:

*https://www.w3.org/RDF/
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» DBPEDIA® is one of the most popular knowledge graphs in the Linked Open Data
cloud (Auer et al., 2007). It is created by extracting structured information from
Wikipedia, such as Wikipedia infoboxes. Specifically, the infoboxes types are
mapped to DBPEDIA ontologies (i.e., DBPEDIA Classes), and the infobox attributes
are assigned to the properties of a DBPEDIA ontology. According to its latest
release in 2020, DBPEDIA contains 6 million entities, 9.5 billion facts (represented
as RDF triples), and its ontology schema contains 760 classes. Since its release
in 2007, DBPEDIA has been widely used in various semantic applications. In our
studies, we exploited DBPEDIA to obtain relevant terms based on keyphrases in
the input text (see Chapter 7 for more details).

e BABELNET® is a multilingual knowledge graph that combines Wikipedia and
WordNet for cross-lingual entity disambiguation (Navigli and Ponzetto, 2012).
BABELNET provides a large collection of encyclopedic dictionaries, covering both
lexical and factual knowledge. It also includes a semantic network (ontology) that
links concepts and entities within a comprehensive semantic network containing
about 20 million synsets and around 1.4 billion word senses in 500 languages.
The BABELNET system builds on the WordNet model to incorporate multilingual
lexicalizations, based on the notion of synsets (for synonym sets). Similar to
DBPEDIA, we exploited BABELNET in our studies to obtain relevant terms for
generating absent keyphrases (see Chapter 7 for more details).

* CONCEPTNET’ is a knowledge graph that connects words and phrases of a natural
language with semantic relations. For instance, in the sentence “Da Vinci painted
the Mona Lisa”, a relation labelled “painted” links the words “Da Vinci” and
“Mona Lisa”. The CONCEPTNET knowledge is derived from various sources that
include expert-created resources, crowdsourcing, and purpose-driven games. The
primary goal of CONCEPTNET is to capture the commonsense knowledge involved
in understanding language, enabling NLP applications to better interpret the
meanings of words. In our studies (see Chapter 4), we used CONCEPTNET to
obtain the embedding vectors of named entities in tweets, resulting in better
performance of disaster prediction than conventional word embeddings (e.g.,
Skip-gram).

In the crisis informatics domain, knowledge graphs can help to improve disaster
responses by providing a coherent, structured, and accessible source of information
about entities and relations related to disasters (Purohit et al., 2019). This infor-
mation can cover the types of disasters that can occur, the locations where they

Shttps://www.dbpedia.org
*https://babelnet.org
"https://conceptnet.io
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Figure 2.15: Confusion matrix for Precision, Recall and F,

are most probable, the resources that can be used for response, and the potential
impacts of disasters on communities and infrastructure. Accordingly, a knowledge
graph can help disaster managers to better understand the risks and challenges
they encounter and make informed decisions about how to deal with disasters. For
example, a knowledge graph could help to locate the most vulnerable areas in a
community or to plan evacuation routes and distribute resources according to the
type and severity of a disaster.

Performance Evaluation

Accuracy, Precision, Recall, F,

In this section, we introduce the main metrics used to evaluate the performance of
our approaches in classifying social media data: Precision, Recall, and F1-score (Pow-
ers, 2020). These metrics measure how well a model can predict the correct
information types for a given set of tweets, compared to their true types. Figure 2.15
illustrates the schema of a confusion matrix, which is used to represent the results of
these comparisons. A confusion matrix consists of four counts, defined as follows:

* TP (true positive): The number of samples that are correctly predicted and
labelled as positive.

* TN (true negative): The number of samples correctly predicted and labelled as
negative.

* FP (false positive): The number of samples that are incorrectly predicted as
positive, but are actually labelled as negative.

* FN (false negative): The number of samples that are incorrectly predicted as
negative, but are actually labelled as positive.

2.6 Performance Evaluation
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Accuracy: The ratio of correctly predicted labels to the total number of predictions.

TP+TN
TP+ FP+FN+TN

Accuracy = (2.15)

Precision: The fraction of predicted positive labels that are correct.

TP
P'I"eC?:S?:OTL = m (2.16)

Recall: The fraction of actual positive labels that are correctly predicted.

TP
= ———. 2.1
Reca TP+ FN (2.17)
The F; metric is used to summarize the precision and recall of a model. It is
computed as the harmonic mean of precision and recall, i.e., it gives more weight to

low values.

F = 2 x Precision x Recall. (2.18)

Precision + Recall

Additionally, F; can be calculated in three distinct ways: i) micro-average, which
derives scores by counting all true positives, false negatives, and false positives, ii)
macro-average, which calculates metrics individually for each class and then com-
putes their unweighted average. This does not take into account class imbalances,
and iii) weight-average, which first calculates precision and recall for each class, then
computes their weighted average by considering the number of true examples for
each class.

Alert Accumulative Worth

Formerly, we used Precision, Recall, and F; score to measure the performance of
detecting relevant information from social media data. However, these metrics
are not suitable for identifying actionable information, for which alerts should
be triggered. To overcome this limitation, McCreadie et al. (2019) proposed a
new metric, Alert Accumulative Worth (AAW), which captures the effectiveness for
alerting messages. Moreover, the authors introduced a component of AAW, called
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highPriorityWorth, which focuses only on critical tweets. We calculate the scores of
tweets that should generate alerts as follows:

+((1 = a)).(ActCS t) + NActCS t s >=0.7
hight PriorityWorth(t) = a+ ((1 - a)).(ActCScore(t) + ctCScore(t))) p;
-1 otherwise.
(2.19)
|ActCy| N ActCP|

ActCS t) =1. . 2.20
ctCSeorell) =73 e8 U ActCy] (2.20)
|NActCy| N NActCf|
N Act t)=(1—7). . 2.21
ctCSeore(t) = (1-1) INActC; U N ActCf| ( )
A JActCY
v = (2.22)
0 otherwise.
For tweets that should not generate alerts, we use the following score:
argmax(l —log(% +1),—1), ; >=0.7
lowPriorityWorth(t) = g ( 9(5 +1),~1) b (2.23)
ActCScore(t) + NActCScore(t) otherwise.
The AAW metrics is defined as:
1 ' o . -
A — EZ [Eym— highPriorityWorth(t) te Thigh /critical 2.24)

teT dowPriorityWorth(t)  otherwise.

|n0w/mcdium|

where ActC;/ActCy are the actionable/non-actionable categories assigned to a
tweet ¢ by the system s and p; is its priority score. « is a hyperparameter (default

value= 0.3) that gives a reward for a correct alert regardless of the tweets categories.

T is the set of tweets to be evaluated, and Ty, /critical 1S the set of tweets that are
labelled high or critical by human assessors. § is the count of false alerts since the
last true alert. A false alert occurs when a tweet that is not in Tp;gp, /criticar has a pf
score >= 0.7. ¢ is reset to 0 each time the system gives a p{ score >= 0.7 to a tweet
in Tpigh/criticar (true alert). This reflects the user’s trust in the system over time.

The AAW value ranges from —1 and +1, where the higher values indicate better
performance in alerting critical tweets. This metric was proposed by TREC-IS® for
detecting tweets with actionable information or alerting emergency responders to
urgent situations.

8http://dcs.gla.ac.uk/~richardm/TREC_IS/
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Keyphrase Extraction Evaluation

Summarizing tweets has proven to be a useful technique to gain insights and
facilitate awareness of emerging disasters (Imran et al., 2018). There are two main
methods for tweet summarization: i) extractive summarization, which selects salient
keyphrases from tweets and ii) abstractive summarization, which generates human-
like summaries. In our study, we focus on extractive summarization by extracting
relevant keyphrases from a collection of disaster-related tweets. An important aspect
of this task is the evaluation of the quality of extracted or generated keyphrases
performance of extracted keyphrases. The main criterion for this evaluation is
comparing the number of correctly extracted keyphrases and the number of ground-
truth keyphrases. Therefore, different strategies have been developed for matching
keyphrases. In the following, we present the matching strategies, including our
semantic match metric, that we use in the evaluation of extracted keyphrases:

* Manual Match: This approach involves domain experts to judge the accuracy of
keyphrases returned by a system. However, this type of evaluation is not only
expensive but also lacks subjectivity (Zesch and Gurevych, 2009). Accordingly,
researchers have explored automatic metrics for comparing predicted keyphrases
with ground-truth ones.

* Exact Match: This method uses string similarity to compare ground-truth and
predicted keyphrases. In most cases, stemming is applied to determine if two
keyphrases are the same or not (Papagiannopoulou and Tsoumakas, 2020).

* Partial Match: This is a more flexible evaluation that compares all ground-truth
keyphrases with all extracted ones (Rousseau and Vazirgiannis, 2015). While this
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assessment can evaluate syntactic correctness, it cannot handle more complex
issues, such as the presence of overlapping keyphrases.

* Semantic Match: This is a novel approach that compares predicted and ground-
truth keyphrases based on their embedding representation (Zahera et al., 2022).
For example, if two keyphrases are semantically similar, such as “Typhoon” and
“Hurricane”, these keyphrases are not considered as a match using the previous
metrics.

2.7 Datasets

Collecting data from social media is essential for the development of disaster models.
Over the past decade, researchers have collected, analyzed, and processed large
amounts of disaster-related tweets. Using these datasets, they can build, evaluate,
and deploy disaster management systems that are based on real-world data. In our
study, we focused on disaster datasets in English since our approaches are designed
for monolingual data. We also provide a description of the most used datasets in
the literature for event detection, information extraction, and situational awareness
improvement.

¢ CrisisLexT26 (Olteanu et al., 2014): This dataset contains disaster-related
tweets from 26 events, covering natural disasters such as earthquakes, wildfires,
and floods, as well as human-induced disasters such as shootings and train
crashes. The number of tweets per event varies from 1, 1K to 157, 5K, resulting
in approximately 285K tweets in total. Paid workers annotated these tweets
using the CrowdFlower? platform based on three criteria: informativeness, type
of information, and tweet source. This dataset can be used to benchmark the
performance of disaster models in filtering informative tweets (Khare et al.,
2018b).

* TREC-IS (McCreadie et al., 2019): This is the largest annotated disaster
dataset, containing 17,6k tweets collected from various crisis events (e.g.,
earthquakes, hurricanes, or public shootings) using hashtags and keywords.
Human annotators assigned labels to tweets according to a multi-layer ontology
of information types. We used this dataset to benchmark the performance of
classifying disaster-related tweets and identifying actionable information (Za-
hera et al., 2019a, 2021).

*http://faircrowd.work/platform/crowdflower/
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Figure 2.17: An example of crisis events detection using tweets during hurricane HARVEY.
Source from (Belcastro et al., 2021)

e CrisisMMD (Alam et al., 2018): This is the first multimodal dataset that con-
tains thousands of tweets and images collected during seven major disasters,
including earthquakes, hurricanes, wildfires, and floods. Alam et al. (2018)
collected this dataset for multimodal tasks such as natural language and image
processing. This dataset can be leveraged to learn a joint embedding space
of tweets’ text and images, which can be then applied to text-to-text and
image-to-text retrieval tasks. We also find this dataset useful for other disaster
management tasks, such as estimating post-disaster damages.

* Covid-19 Tweets: Recently, Buntain et al. (2020) introduced a disaster dataset
about the Covid-19 pandemic. The dataset contains 7,590 tweets collected
from different regions around the world. These tweets are annotated with one
or more information types (e.g., ServicesAvailable, Advice, GoodsServices - in
total 12 types) similar to the TREC-IS dataset.

Applications

Information and communication technologies (ICTs) play a vital role in disaster
management, especially in facilitating the sharing of information and coordinating
with authorities during crisis events. Various applications have been developed
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to leverage the potential of ICTs for disaster response and recovery. For example,
Figure 2.17 illustrates how different crisis events were detected during hurricane
Harvey in 2017 using a social media analysis tool (Belcastro et al., 2021). Some of
the most popular applications designed for use during disasters are:

* TweetTracker: This application analyzes tweets related to a crisis event from
various perspectives, such as location, keywords, and sentiment. It provides
situational updates for first responders and humanitarian organizations by filtering
and extracting relevant information from the large volume of social media data.

More information can be found on the official website at http://blogtrackers.

fulton.asu.edu/#/.

* Facebook Crisis Response: This is a central hub for all of Facebook’s safety-
related tools. It enables users to share situational updates, mark themselves
safe, give or find help, and raise money during crisis events. It also aggregates
timely information from various sources, such as articles, photos, and videos
from public posts. Further details can be found on the official website at https:

//www.facebook.com/about/crisisresponse/.

* Emergency Situation Awareness (ESA): This web-based tool enhances situa-
tional awareness, especially during earthquakes. ESA collects, filters, and analyzes
tweets to extract valuable information for emergency managers. Its features in-
clude event detection, text classification, clustering, and geotagging. It can
help identify tweets containing critical information, such as damage reports,
requests for help, or offers of assistance. More information can be found at the of-
ficial website at https://www.csiro.au/en/research/technology-space/ai/

emergency-situation-awarenes.

» Twitcident: This situational awareness tool employs semantic methods to filter
crisis-related tweets. Specifically, Twitcident recognizes named entities and uses
external resources to retrieve attribute-value pairs for relevant tweets. Additional
details can be found at the official website at https://wis.st.ewi.tudelft.nl/
twitcident/.

* Artificial Intelligence for Disaster (AIDR): This is a web application that mon-
itors disasters and analyzes relevant information shared on Twitter. The AIDR
application collects tweets related to a crisis event and categorizes them using a
crowdsourcing platform into different types, such as donations, damage, etc. It
also generates reports about emerging events and classifies messages based on
geographical information, i.e., crisis mapping. Further information can be found
at the official website at http://aidr.qcri.org/.

2.8 Applications
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* Tweedr: This application collects crisis-related data from Twitter using keywords
and regional queries. It extracts actionable information using clustering and
classification techniques. Several classification algorithms, including SVM, sLDA,
and logistic regression are employed to identify tweets reporting losses or damage.
More details can be found on the GitHub repository at https://github.com/
dssg/tweedr.

* CrisisTracker: This application utilizes social media to track crisis-related key-
words and cluster-related stories. Volunteers manually tag stories according to
the categories of disaster reported in the associated stories. The system’s success
depends on the number and motivation of the volunteers who are assigned to
accurately label each story. More information can be found on the official website
at https://crisistracker.org/.

Summary

This chapter provided a comprehensive overview of the fundamental aspects of
using social media in disaster situations. We started by introducing the main
concepts and terminology of disaster management. Then, we explored how to
collect and filter social media data, focusing on Twitter as a prominent source of
disaster-related information. We discussed the challenges of processing tweets,
which were often informal, limited, and noisy. For example, tweets might contain
abbreviations, slang, and emojis that made them hard to understand. To address
these challenges, we presented advanced techniques for processing tweets effectively.
We emphasized the importance of feature representation for developing efficient
models that could analyze social media data. We reviewed various approaches to
represent features from social media. We pointed out the limitations of traditional
methods such as TF-IDF and bag-of-words for dealing with unstructured and noisy
data like tweets. We also showed that contextualized embeddings, such as BERT, can
overcome the limitations of static embeddings by encoding semantic and syntactic
information from text. BERT learns from the bidirectional context of a word in a
tweet, which enables it to capture situational meanings of words and produces more
rich representations of tweets than static embeddings.

We also described the deep learning models used in our experiments, such as Convo-
lutional Neural Network, Long Short Term Memory, Bidirectional Long Short Term
Memory, and Graph Attention Network. Furthermore, we gave a brief overview

Chapter 2 Background


https://github.com/dssg/tweedr
https://github.com/dssg/tweedr
https://crisistracker.org/

of the datasets and knowledge graphs that we used in our studies, such as CON-
CEPTNET, DBPEDIA, and BABELNET. Moreover, we explained how to evaluate the
performance of machine learning models in various tasks, such as multi-label tweet
classification, detection of actionable tweets, and extractive summarization. Finally,
we listed some real applications that had been developed for disaster communication

and situational awareness.

2.9 Summary
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3.1

3.1.1

State-of-the-Art

This chapter discusses state-of-the-art approaches that have been developed for
leveraging social media in disaster situations. Most approaches focus on obtaining
and processing disaster-related tweets. We organize this chapter into three sections:
i) Early Detection of Crisis Events, ii) Filtering Informative Tweets, and iii) Sum-
marization of Events for Situational Insights. In each section, we present the main
approaches and discuss their limitations.

Early Event Detection

One of the key aspects of crisis management is to identify emerging events and
provide timely warnings so that appropriate actions can be taken to reduce the
impact and subsequent damage. Remarkably, social media contains all essential
information for detecting events through shared text, images or both; thus, serving as
a rapid event detector, or so-called social-sensing from the crowd (Aiello et al., 2013;
Imran et al., 2018; Sakaki et al., 2012). Several studies have been conducted to
detect events on social media, especially on Twitter. These approaches can be mainly
categorized into i) traditional approaches which rely on statistical and linguistic
features, and ii) state-of-the-art approaches which employ deep neural models for
detecting events.

Traditional Approaches

Social media platforms generate a massive number of messages related to emerging
events, which creates a burst of associated keywords (i.e., social media trends). Tra-
ditional approaches mainly rely on linguistic-based features (e.g., term frequencies,
topic detection) or clustering techniques to identify the most relevant and salient
keywords for each event. We summarize these approaches as follows:

* Term-based approaches utilize statistical features such as term frequency features
(TF) peakiness and trending scores to detect events based on the most frequent
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words (i.e., burst words). For example, Aiello et al. (2013) developed an event
detection model that computes the frequency-inverse document frequency (TF-
IDF) for bigrams tokens and ranks events according to the most frequent keywords.
However, this method has some limitations, such as assuming a fixed number of
events over a specific period and failing to detect emerging events. Moreover,
Sakaki et al. (2012) analyzed a set of disaster tweets using keywords, word counts,
and context. They developed a probabilistic spatial-temporal model that treats
each Twitter user as a social sensor and applied Kalman and Practical filtering
techniques (Chen et al., 2003) to estimate the location and trajectory of events.
The experimental results showed that their approach can detect an earthquake
with high probability and achieve an accuracy of 96% according to the Japan
Meteorological Agency (JMA) intensity scales. Similarly, Mathioudakis and Koudas
(2010) introduced the TwitterMonitor framework that detects events on Twitter in
real time and provides informative analytics. They extracted trend keywords and
grouped them based on their co-occurrences using a context extraction algorithm.

Topic modelling approaches aims to extract latent topics by modelling a doc-
ument as a generative process and inferring the topic distributions using opti-
mization algorithms. One of the most popular and widely used topic modelling
methods is Latent Dirichlet Allocation (LDA) (Blei et al., 2003), which has been
successfully applied in various applications, especially for detecting emerging
topics on social media. LDA assumes that a document D consists of a mixture of &
topics and randomly assigns VW words to these topics. To determine the optimal
value of k, LDA performs a series of iterations until it finds the best trade-off
between perplexity and high log likelihood.

Clustering approaches have also contributed to detecting events on social media.
For instance, Li et al. (2012) proposed the Tweetvent approach, which extracts
segments of tweets that show a burst of activity within a fixed time window and
clusters them using the Jarvis-Patrick algorithm (Jarvis and Patrick, 1973). Then,
each cluster is evaluated using Wikipedia articles to identify realistic events and
their related keywords. Likewise, Parikh and Karlapalem (2013) detected events
by extracting keywords based on bigrams tokenization and ranking them accord-
ing to their frequency. Then, they clustered the keywords that belong to the same
event based on similarity. Zhang et al. (2021) developed a real-time detection
system that monitors nearby events. Their system consists of four components:
text filtering, text representation, deep clustering, and event merging. It filters
out irrelevant messages, represents event messages using entities and words and
applies the DBSCAN clustering algorithm for event detection. Similarly, Dang
et al. (2016) used the DBSCAN clustering for event detection and employed
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Dynamic Bayesian Networks, which combine information between tweets and
users to detect emerging keywords and rank them based on their co-occurrence.

3.1.2 State-of-the-art approaches

Deep learning models have recently achieved significant performance in different
NLP tasks, including event detection from short text (e.g., tweets). We categorize
the state-of-the-art deep models into two groups:

* Standalone models: One approach to event detection is using standalone models
that only consider the text of the tweet. For example, Burel et al. (2017b) ex-
tended traditional bag-of-word models by incorporating bag-of-concepts extracted
from knowledge graphs, such asWordNet, and DBpedia. However, the authors
represented the presence of concepts as a vector of indices within a concept space,
which may not capture the semantic relations among concepts. Another approach
is to use convolutional neural networks (CNNs) which have demonstrated re-
markable performance in classification tasks. Wang et al. (2017) proposed a
CNN model to classify short text. The proposed approach represents text as a
bag-of-concepts based on a taxonomy knowledge base. Then, the embeddings
of words and concepts are combined and fed to the CNN model to infer text
classes. In contrast, we leverage embeddings from the CONCEPTNET knowledge
graph that captures semantic representations of concepts (i.e., entities) and their
relationships. Additionally, Burel et al. (2017b) proposed a Dual-CNN model
with an extra semantic layer that uses the conceptual semantics of words for
fine-grained event detection. The authors also investigated how named entities
in tweets can be extracted and utilized in conjunction with their corresponding
semantic concepts. The experimental results demonstrated that the proposed
approach outperforms the traditional models (i.e., without semantic layer) in
detecting events from disaster-related tweets of 26 different events.

* Joint models have attained superior performances in various NLP tasks in recent
years (Ouyang and Wang, 2013). For instance, Chowdhury et al. (2019) proposed
a jointly trained model with two recurrent neural networks to extract keyphrases
from disaster-related tweets. By training the recurrent networks jointly, the
proposed approach achieved significant performance in detecting salient phrases
compared to different baselines. Moreover, Zheng et al. (2017) demonstrated
that the joint learning of two deep models not only learns feature representation
from users and items data but also collaborates with each other to boost the
rating prediction performance in a recommendation system task. Inspired by

3.1 Early Event Detection
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these approaches, we propose a joint learning model that employs social media
and environmental data for an early detection of disaster events.

3.2 Filtering Informative Tweets

3.2.1
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The literature on crisis informatics has extensively explored the problem of finding
relevant information from large-scale crisis data (Imran et al., 2013; Stowe et al.,
2016). This problem poses significant challenges, as emergencies generate a massive
volume of social media content that is often unstructured and noisy (Landwehr
and Carley, 2014). As we discussed in Section 2.2, this content requires advanced
analysis to extract meaningful information for crisis response. Several approaches
have tackled this problem, ranging from traditional machine learning to deep learning
techniques.

Traditional Approaches

These approaches typically use handcrafted, statistical or linguistic features to filter
out irrelevant data. Keyword matching is a common technique to select relevant
information based on the content and informativeness of tweets (Cobo et al., 2015;
Olteanu et al., 2014). For example, Guan and Chen (2014) classified disaster-related
tweets using pre-defined keywords and hashtags. They applied their method to a
collection of tweets about hurricane SANDY and investigated the correlation between
people’s Twitter activities and the damages caused by the hurricane. Similarly,
Avvenuti et al. (2014) developed a social media-based system for earthquake de-
tection that monitors tweet interactions. They extracted features based on URLs,
usernames, and bag-of-words to train their system. They also devised a method for
detecting spikes in tweet volume within a specific time window. Sakaki et al. (2010)
analyzed Twitter data for real-time earthquake detection using an SVM classifier
to remove irrelevant tweets. They then built a probabilistic model based on the
Poisson process for estimating the occurrence time of an earthquake using temporal
analysis. However, these systems have some drawbacks, such as the need to define a
set of features beforehand, which may affect the overall performance of the system.
Although traditional approaches have achieved satisfactory results in classifying
the relevance of crisis data, they have two main limitations: i) their performance
deteriorates when applied to classifying “unseen” data (Khare et al., 2018a), i.e., the
terms that appear in the test data but not in the training data and ii) the high diversity
of social media data makes these approaches unsuitable for learning meaningful
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features (Imran et al., 2018). Therefore, neural approaches have been proposed
to address this challenge, inspired by the recent advances in deep learning. In the
next section, we provide an overview of state-of-the-art approaches that have been
recently proposed for classifying disaster-related data.

State-of-the-art Approaches

Different deep learning architectures (e.g., CNN, LSTM, GAT) have been designed to
capture rich representation from various sources (see Section 2.4 for more details).
One of these sources is social media, which provides valuable information during dis-
asters. However, analyzing social media data poses several challenges, such as noise,
informality, and diversity. Therefore, researchers have explored different neural
architectures and semantic features to enhance the classification of disaster-related
tweets. For instance, ALRashdi and O’Keefe (2019) compared the performance
of two neural architectures (CNN and BiLSTM) with domain-specific and GloVe
embeddings for tweet classification. They found that BiLSTM with domain-specific
embeddings achieved the best results. Similarly, Khare et al. (2018a) and Burel
et al. (2017a) leveraged semantic features extracted from knowledge graphs (e.g.,
CONCEPTNET, BABELNET, DBPEDIA) to enrich the representation of tweets. Khare
et al. (2018a) used both statistical and semantic features as input to a support vector
machine classifier, while Burel et al. (2017a) integrated semantic annotations into a
wide and deep model that combines a CNN with a generalized linear model. Both
studies reported improved performance compared to baseline models that rely only
on textual features. However, most of the existing works focus on the binary classifi-
cation of tweets (relevant vs. irrelevant), which limits the granularity and usefulness
of the extracted information. To address this limitation, more recent studies (e.g.,
(McCreadie et al., 2019; Olteanu et al., 2015)) have proposed annotation schemes
that assign multiple fine-grained labels to tweets, such as location, information
source, and people’s behaviours. These labels can provide more detailed and action-
able insights for crisis management and response. To facilitate the development and
evaluation of multi-label tweet classification, initiatives such as CrisisSNLP (Imran
et al., 2016) and TREC-IS (McCreadie et al., 2019) have been launched, which
provide large-scale datasets and shared tasks for crisis monitoring on social media
platforms.

On the other hand, previous works (Sriram et al., 2010) considered feature engi-
neering and model training as separate subtasks, allowing for the use of pre-trained
embeddings as features on the fly or fine-tuning models on domain-specific datasets.
Recent advances in deep learning have enabled end-to-end training approaches

3.2 Filtering Informative Tweets
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that can learn from raw text without manual feature extraction (Miyazaki et al.,
2019). Moreover, attention mechanisms (Vaswani et al., 2017) have been shown
to improve the representation and interpretation of a text by focusing on the most
relevant parts of the input. One of the most successful applications of attention is
BERT (Devlin et al., 2019), a pre-trained language model that can be fine-tuned for
various text classification tasks. For example, Liu et al. (2021) proposed CRISISBERT,
a fine-tuned BERT model for classifying crisis data, which achieved outperforming
results on several benchmark datasets, outperforming the baselines by up to 8.2%
and 25.0% for detection and recognition tasks, respectively. However, BERT embed-
dings are limited by their local context within sentences, and do not capture global
relations between words across the whole vocabulary (Lu et al., 2020). To address
this limitation, graph-based approaches such as graph convolution network (Kipf and
Welling, 2017) and graph attention network (Yao et al., 2019) have been introduced
to model the semantic and syntactic connections between words in a graph.

Summarizing Disaster-related Tweets

Summarizing disaster events and their impacts is essential for obtaining insights
and informing decisions. However, the vast amount of social media data generated
during such events poses a challenge for effective summarization. To address this
challenge, summarization techniques can be applied to condense social media data
into shorter, coherent, and query-specific reports that enhance the comprehension of
disaster events (Rudra et al., 2016). Two main methods exist for text summarization:
i) selecting relevant phrases (extractive summarization) and ii) producing human-like
summaries (abstractive summarization).

Traditional Approaches

Previous studies have developed unsupervised methods for keyphrase extraction,
which do not require labelled data. For example, statistical approaches such as TF-IDF
and YAKE (Campos et al., 2020) use statistical features (e.g., word frequencies and
co-occurrences) to identify important words as candidates for keyphrases. Moreover,
graph-based approaches like TEXTRANK (Mihalcea and Tarau, 2004) construct a
graph representation of text, wherein words are nodes, and their co-occurrences
are edges. Then, a node ranking algorithm (e.g., PAGERANK) is applied to sort
words, returning the top-k words as candidate keyphrases. Bougouin et al. (2013)
introduced TOPICRANK, another graph-based approach similar to TEXTRANK. This
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approach first clusters candidate phrases into topics and then ranks them based on
their significance with respect to their documents.

On the other hand, supervised approaches have also significantly contributed to the
development of keyphrase models. For example, Chowdhury et al. (2019) designed
a joint-learning model comprising two BiLSTM models. The first BILSTM model
is trained to detect keywords; this task can be seen as a binary classification (a
word is labelled with 1 if it is a keyword, and with 0 if it is not). Meanwhile,
the second BiLSTM is trained to predict keyphrases using a sequence labelling
scheme. In the BIOE tagging schema, for instance, ‘B’ denotes the beginning of
a keyphrase, ‘E’ indicates the end of a keyphrase, ‘I’ represents words within
a keyphrase (i.e., in-between ‘B’ and ‘E’), and ‘O’ indicates words outside a
keyphrase. Although traditional approaches have shown considerable performances
in extracting keyphrases that appear in the text (i.e., present keyphrases), they failed
to generate keyphrases that do not appear in the text (i.e., absent keyphrases). In the
next section, we discuss state-of-the-art approaches that have been recently proposed
to address both present keyphrase extraction and absent keyphrase generation.

State-of-the-art Approaches

Recent studies have demonstrated that embedding-based models can achieve high
performances in keyphrase extraction tasks. For example, the EMBEDRANK (Bennani-
Smires et al., 2018) approach uses part-of-speech tags to identify candidate keyphrases
from an input document. It relies on a pre-trained embedding model to represent
both phrases and their corresponding document as high-dimensional vectors. Then,
candidate keyphrases are ranked based on their Cosine similarity scores with respect
to the embedding vector of the document. However, pre-trained language models
are not capable of generating absent keyphrases that are not in their vocabulary.
Moreover, Liang et al. (2021) observed that embedding-based models only capture
local information about words within a sentence range. To overcome this limitation,
they developed a jointly trained model that incorporates both the global and local
contexts of a document. In the global view, their approach represents candidate
keyphrases and an input document as high-dimensional vectors in the same seman-
tic space. A similarity score between each candidate keyphrase and the document
is then computed to identify relevant keyphrases. In terms of the local context,
the authors constructed a graph structure based on the document context, where
nodes are candidate keyphrases and edges are similarities between them. Finally, all
keyphrases are ranked based on global and local information.

3.3 Summarizing Disaster-related Tweets
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Most previous approaches have relied on sequence-to-sequence models —with an
encoder-decoder architecture— to generate absent keyphrases (Chen et al., 2019).
These models can decode not only keyphrases that appear in the text but also
those that are absent, i.e., not explicitly mentioned. However, generating absent
keyphrases requires additional mechanisms to improve the performance of these
models. For example, Ye et al. (2021) applied a graph neural network to capture
knowledge from related references in a scholarly dataset, while Wang et al. (2019)
employed a neural topic model to expand the context of the decoder component for
generating more diverse and relevant absent keyphrases. It is noteworthy that Zhao
et al. (2021a) achieved outperforming results in extracting keyphrases by dividing
this task into two sub-tasks: present keyphrase extraction and absent keyphrase gener-
ation. Specifically, the authors proposed a multi-task approach to select, guide, and
generate keyphrases. In the selector module, a BILSTM is used to predict whether a
sentence contains a keyphrase or not. A guider network is then employed to capture
information from the attention mechanism and memorize the predictions of the
selector module. Finally, this information is fed to the generator network to generate
absent keyphrases by selecting words from both the source text and a pre-defined
vocabulary. Besides these supervised approaches, some unsupervised methods have
also achieved promising results in generating keyphrases without the need for train-
ing data. For instance, Shen et al. (2022) observed that many keyphrases absent
from a target document appear in other related documents. Therefore, they con-
structed a phrase bank of all keyphrases in a corpus and identified present keyphrases
in relevant documents as candidates for absent keyphrases for the target document.
They also used present keyphrases as sliver labels to train a sequence-to-sequence
model. Finally, all keyphrases (both present and absent) are ranked based on their
lexical and semantic similarity with respect to their corresponding document.

Summary

In this chapter, we reviewed traditional and state-of-the-art approaches that are rele-
vant to our studies and organized them into three main sections: i) early detection of
crisis events, ii) filtering informative social media data, and iii) summarizing social
media data for situational insights. Each section corresponded to one of the studies
conducted in this thesis. We also discussed how traditional and state-of-the-art ap-
proaches had been employed to process social media data during disaster situations.
We observed that traditional methods relied on linguistic and statistical features
(e.g., word frequency, co-occurrence, pre-defined terminology) to identify events,
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categorize relevant tweets, and summarize crisis events. On the other hand, state-
of-the-art approaches employed neural models (e.g., CNN, RNN, BiLSTM) as black
boxes, reducing the effort for feature engineering. There was a trade-off between
traditional and state-of-the-art approaches for processing social media data. While
traditional approaches could process social media data rapidly, they required feature
engineering to extract meaningful data representations. In contrast, deep learning
methods often required sufficient resources (e.g., GPU memory) to efficiently train
deep learning models and achieve superior results. In the following chapters, we
discuss the details of our approaches and findings regarding the application of social

media data to improve situational awareness during disasters.

3.4 Summary
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4.1

Joint Learning from
Environmental Data and
Social Media

This chapter addresses the first and second research questions (Q; and Q-, see Sec-
tion 1.4) by investigating the potential impact of social media in improving the
detection (i.e., prediction) of disaster events. In this context, we present our ap-
proach for detecting events using a combination of social media and environmental
data. The main content is based on our publication work (Zahera et al., 2019b),
which represents the first study to jointly learn from social media and environmental
data for disaster prediction. The author designed, implemented, and evaluated
the approach presented herein, and co-wrote the aforementioned paper. We pro-
vide a review of the studies related to the approach presented in this chapter in
Section 3.1.

Overview

Accurate disaster prediction and early warnings are crucial in mitigating the impact
of disasters and minimizing the resulting damage (Glade and Nadim, 2014). Despite
significant improvements in forecasting and warning systems, there are several
factors that continue to limit the accuracy of the current prediction algorithms.
These factors include incomplete data from monitoring equipment, and the highly
dynamic nature of natural hazards and their impacts (Reese, 2016). Social media
has played an increasingly significant role in disaster management and commu-
nication (Reuter and Kaufhold, 2018). During disasters, people use social media
platforms (e.g., Twitter) to express their feelings, ask for help, and contribute to
disaster relief efforts. Consequently, a significant body of research has leveraged
disaster-related information shared on social media to reduce disaster impact and
facilitate faster responses (Houston et al., 2015). For instance, Sakaki et al. (2010)
analyzed user tweets during 25 different earthquakes in Japan, demonstrating the
reliability of social media users as a source of real-time situational updates during
disasters. Additionally, decision-makers employ social media to rapidly engage
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with the public. For example, during typhoon PABLO in 2012, local authorities in
the Philippines encouraged people to use the hashtag #pabloph to obtain or share
on-site updates about the typhoon (O’Glasser et al., 2020). Such correlations are
valuable in supporting decision-makers in emergency response processes. Previous
works utilized data mining techniques to extract correlations between social media
data and crisis events. For instance, Anam et al. (2018) applied wavelet analysis to
monitor disaster progression from social media data. Their findings showed that
wavelet-based features can preserve text semantics and predict the total duration
for localized, small-scale disasters.

In our studies, we propose an end-to-end learning model for classifying the intensity
of typhoons, also known as typhoon category or class (Chen et al., 2012). Our
approach leverages both environmental data and social media posts (tweets) as
sources of information. We were inspired by previous works (Qin et al., 2016;
Tompson et al., 2014) that demonstrate the benefits of joint learning of multiple
models for various tasks. Our approach contains two models that are trained
jointly: the first model (called Feature Extractor) analyzes typhoon-related tweets
and computes statistical features, such as tweet volume and sentiment variances. To
capture tweet sentiments, we use semantic-enriched word embeddings, in which
entities are recognized and represented by semantic vectors from the CONCEPTNET!
knowledge graph. The second model (called Typhoon Classifier) takes a concatenated
vector of features extracted by the first model and environmental data as input.
Both models share a common loss function and are optimized using the same
gradient descent. Furthermore, we explored various architectures based on Deep
Neural Networks (DNN), Deep Convolutional Networks (CNN) and Recurrent Neural
Networks (e.g., RNN, LSTM and BiLSTM) as baselines.

To evaluate the performance of our approach, we used two real-world datasets:
i) Typhoon Environmental Data, obtained from the Joint Typhoon Warning Center
(JTWC)?, which contains climate change measurements (e.g., wind speed and sea-
level pressure) before, during and after typhoon landfall; and ii) Typhoon Social
Media Data: we collected typhoon-related tweets using keyword-based queries dur-
ing 2006 — 2018. Our results show that jointly trained models outperform standalone
baselines in disaster prediction. We summarize the main contributions as follows:

* To the best of our knowledge, this is the first study to leverage joint learning from
social media and environmental data for classifying typhoon intensities.

"https://conceptnet.io/
https://www.metoc.navy.mil/jtwc/jtwc. html
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* We investigated the impact of incorporating semantic embeddings from knowledge
graphs to enrich tweets representation. Our experiments demonstrate that repre-
senting named entities in tweets with their embedding vectors from CONCEPTNET
improves disaster prediction.

* We provide a disaster dataset (named TED), which contains environmental data
of different typhoons and their associated tweets up to 2018 (the last archived
date by JTWC).

* We conducted extensive experiments on a real-world disaster dataset to evaluate
the performance of disaster prediction. The evaluation results clearly indicate that
our approach outperforms state-of-the-art baselines with a significant performance
margin. The implementation of our approach is open-sourced and available at
the GitHub repository.>

4.2 Data Analysis and Preliminaries

Typhoon environmental data are recorded periodically (i.e., at regular time intervals)
before, during and after their occurrence. This data typically includes the typhoon’s
location, direction, and speed. Our research aims to detect typhoon intensity
based not only on environmental data but also on human-generated data, such as
social media posts, as complementary sources of information for typhoon intensity
detection. Specifically, we collect and analyze tweets that are posted within the
same time slots as the corresponding environmental data for four different typhoons.
Inspired by previous works (He et al., 2013; Kryvasheyeu et al., 2016), we examine
the volume and sentiment of tweets during different phases of the typhoons. As
shown in Figure 4.1, the upper row of plots presents the variation of typhoon
intensity over time, as measured by environmental data. The middle row of plots
shows the tweet count within the same time slots. The lower row of plots displays
the distribution of tweets with positive (in blue) and negative (in yellow) sentiment.
By comparing the plots for each typhoon, we can observe a clear correlation between
typhoon intensity, tweet volume and tweet sentiment. Based on these observations,
we use tweet volume and sentiment as features for typhoon intensity detection.

Datasets: We used three datasets to evaluate the performance of our approach (see
Table 6.2 for more details).

3https ://github.com/dice-group/joint-model-disaster-prediction
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Figure 4.1: Social media analysis during typhoons: HAGUIT, HAIYAN, RAMMASUN, and
SANBA

* JTWC Best-tracked (typhoons environmental data): This dataset contains 3, 162
data points for 70 typhoons that occurred between 2006 — 2018. Each data track is
labelled with one of the 4 classes (TD: tropical depression, TS: tropical storm, TY:
typhoon and ST: super typhoon). The dataset also provides timestamps, location,
maximum wind speed (VMAX), wind intensity (RAD) and sea-level pressure
(MSLP) for each typhoon. We preprocessed the dataset to remove noisy and
corrupted data (e.g., missing values) and applied the SMOTE technique (Bowyer
et al., 2011) to deal with the class imbalance problem.

* Typhoon Tweets: To collect typhoon-related tweets, we used keyword queries
based on specific terms associated with typhoons, such as the word typhoon and
typhoon names (e.g., HAIYAN). The official Twitter streaming API only allows free
access? to tweets from only the past seven days. To overcome this limitation, we
used the open-source library GetOldTiveets-python® to obtain older tweets.

*https://developer.twitter.com/en/docs/tweets/search/overview
Shttps://github.com/Jefferson-Henrique/Get0ldTweets-python
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Table 4.1: Overview of the datasets.

Dataset Training Testing Classes
JWTC Best-Track 2,529 633 4
Typhoon Tweets 1,052,599 270,364 unlabelled
Sentiment140 1,280,000 320,000 2

My heart goes out to all those affected by Typhoon
Haiyan == €9 You can help by donating to the
Philippine RED CROSS here

redcross.org

Figure 4.2: A tweet example during typhoon HAIYAN

e Stanford NLP Sentiment140:° This dataset contains 1.6 million tweets with binary
sentiments (positive or negative). We used this dataset for training and evaluating
our model in the sentiment analysis task.

Data Preprocessing: As we described in Section 2.2, we collected and preprocessed
tweets to remove informal and noisy content. Tweet preprocessing is an essential
step to ensure high-quality analysis. An example of a preprocessed tweet is shown
in Figure 4.2: [heart, goes, out, affected, [typhoon], [haiyan], can, help, donating,
Philippine, [red], [cross]], where the words in brackets are the detected named
entities. Specifically, we performed the following preprocessing steps:

* Tokenization: We split tweets into words and converted them to lowercase letters.

* (Cleaning up: We cleaned tweets by removing irrelevant and noisy data, such as
stop words, URLs, non-ASCII characters, and usernames.

* Entity recognition: In this step, we detected named entities within tweets. We
used the SPACY toolkit”, which is free and open-source and provides multiple
functions within a single pipeline (e.g., named entity recognition, POS tagging,
dependency parsing, and pre-trained word embeddings)

®http://help.sentiment140.com/for-students
"https://spacy.io/
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Table 4.2: A list of symbols used in this chapter.

Symbol Description

D Labelled Typhoons Dataset

X Typhoons observations, i.e. measurements vector of sea level, wind speed etc.

Yi Typhoon category (e.g., tropical depression, tropical storm, typhoon or super typhoon)

H(x;) The predicted typhoon category (final output)

T A collection of tweets collected during typhoons

Foo The first model in our approach (Feature Extractor)

Fe The second model in our approach (Typhoon Classifier)

L The Cross-entropy loss function

o1 The learning coefficients (i.e., weights) of 7; model

o The learning coefficients (i.e., weights) of > model

A A hyperparameter that balance the joint loss functions between F; and F»

d The dimension of an embedding vector

w; A word in a tweet

s Number of words in a tweet

B, a batch of input tweets

e; A named-entity recognized in a tweet

M An embedding matrix of a tweet (rows correspond to words and columns are their
embedding vectors)

v— The variance of negative tweets

v+ The variance of positive tweets

c The tweets count

Si The predicted sentiment of a tweet

I The average of sentiments across all tweets

Our Approach

In this section, we first formulate the problem of typhoon prediction using social
media and environmental data. Then, we describe the representation of tweets
using semantic vectors from the CONCEPTNET knowledge graph. Finally, we discuss
the details of our approach’s components: i) Feature Extractor and ii) Typhoon
Classifier. Figure 4.3 illustrates the architecture of our joint learning approach
(BiLSTM+CNN).

Problem Formulation

Let D = {(z1,y1) ... (zn,yn)} be a set of typhoon environmental data, where X =
{z1...x,} denotes the typhoon observations and Y = {y; ...y, } represents a set of
typhoon categories (i.e., labels, classes). Each z; € X" is an instance of a typhoon
data with m features (e.g., time-tamp, wind-speed, sea-level pressure and gust), and
each y; € Y corresponds to its respective typhoon category (e.g., tropical-depression,
tropical-storm, typhoon or super-typhoon). For each typhoon observation xz;, we
collect related tweets shared within its time slot, referred to as 7. Furthermore,
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we analyze these tweets to extract meaningful features that can indicate typhoon
events. We observed that statistical features, such as tweet volume and variances of
tweet sentiments, can be strong features for typhoon intensity. Finally, we combine
these features with the typhoon’s environmental data into a single vector. Our goal
is to build a classification model that can learn features from D and 7 to predict
the category (y € ) of an emerging typhoon. We designed our classification model
as a joint learning of two cascaded models: Feature Extractor (F1(7)) and Typhoon
Classifier (F2(D)). To ensure joint training between F; and F3, we combined the
loss functions of both models (L, Lr,) as follows:

Lioint = Ar, - Lp, + Ap, - L, (4.1)

The \r parameter is used to balance the individual loss functions of both models. In
our study, we set all A\ parameters to 1. To compute the training losses, we used a
Cross-entropy function as a loss function as follows:

1 n
L=——> lyilog(H(x:))) + (1 - ys) log(1 — H(z:))], (4.2)
i=1
where y; and H(x;) denote the target and predicted typhoon categories, respectively,
for a typhoon instance z;.

Joint learning from social media and environmental data. Let ¢; and ¢- be
the learning parameters (i.e., weights or coefficients) of Feature Extractor and
Typhoon Classifier models, respectively. Both ¢, ¢o are optimized simultaneously as
follows; assume two consecutive batches of training data B; and By 1, the learning
parameters in B; are updated using the same gradient descent (Adam optimizer) by
backpropagating the gradients to both models. In the subsequent batch (B;y1), the
computation of tweet features (e.g., the variance of tweet sentiments) is adapted
based on the losses of both its outputs and the final output generated by the Typhoon
Classifier.

Semantic-enriched Word Embeddings

By analyzing the corrected tweets (see Section 4.2) we showed that tweets volume
and sentiment can be used as features for predicting typhoon intensities. We used
the Skip-gram embedding method (Mikolov et al., 2013b) to learn embeddings based
on the context of each word on two different datasets (typhoons-related tweets
and Stanford-Sentiment140). However, pre-trained word embeddings models are

4.3 Our Approach
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Figure 4.3: The architecture of BILSTM+CNN. The entities (F}) vectors (in orange) are
from CONCEPTNET. The words (W,,) vectors (in blue) are from our word
embeddings.

generic (trained on Wikipedia and Google News) and do not capture domain-specific
knowledge. To overcome this limitation, we trained our word embeddings on
domain-specific data that we collected from Twitter during different typhoons using
relevant hashtags and keywords.

Given a preprocessed t = (wi,ws,e1,...,€j,ws), each word is represented by its
word embeddings vector in w; € R? with d dimension. Unlike traditional word em-
beddings, we represent named entities (e, ..., e;), such as locations, organizations,
or events, with their embedding vectors from CONCEPTNET graph, where entities
and relationships are projected into the same embedding space. For each input
tweet, we build an embedding matrix M € R** 4l where s is the number of words
per tweet. Each row i of M represents the Word2vec embedding of word w; at the
corresponding position ¢ in a tweet. Our Word2vec model has a dimension d of 200
and vocabulary size of 47,137 words and 1, 152 detected entities. Since tweets have
variable lengths, we fix the tweet length (s) to the average number of words per
tweet in our dataset, to maintain a consistent embedding matrix. Since tweets have
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variable lengths, we fix the tweet length (s) to the average number of words per
tweet to maintain a consistent embedding matrix. As a result, we truncated longer
tweets and padded shorter tweets with zeros.

Model |: Feature Extractor

The first model of our approach is designed to extract features from disaster-related
tweets using a BiLSTM network. This network preserves the word sequences within
the tweets and maps words to their embedding vectors using a look-up layer. The
BiLSTM layer contains 64 units and a dropout rate of 0.25, followed by a dense layer
with a Softmax function. For a given sequence of words (wy, we, . . ., ws), the BILSTM
network captures the context of a target word w, from both directions (left-to-right
7 and right-to-left %) and concatenated them into a vector [7 . %] Moreover,
BiLSTM associates each time-stamp with an input 4;, a memory cell m,;, a forget
gate f; and an output gate o;. The output vector h, is then obtained by applying the

following equations:

i) = 0(9910;'$(t) + Q;E-h(t_l) + b;).
fay = o052 + Ohphi—r) + by)
0(t) = 0(0z02(t) + Oo-h(1—1) + bo) (4.3)
9(t) = tanh(0zy-2) + Og-h-1) + by)
my = fi) @ ma-1) +i@) @ g1)

h@ =04 ® tanh(m(t)),

where 6,0, ¢, 0:0, 0,4 are the weight vectors of the input, forget, memory and output
gates for the input vector . Similarly, 0p;, Opf, Oro, Oy are the weights vectors
for the previous hidden vector h(,_yy and b;, by, b,, b, are the bias terms for the four
gates. o and ® represent the Sigmoid function and element-wise multiplication,
respectively. The Feature Extractor outputs the probabilities of positive and negative
sentiments. We then extract these features from the BiLSTM outputs and combine
them with typhoon environmental data as D € R™*[™tev-v+] where n is the
number of typhoon observations and m is the number of features. ¢, v_, v represent
the tweets-based features: tweets count, variance of negative sentiments and variance
of positive sentiments. The variance of sentiments is computed as follows:
1E 9
=" (8 —p)?, (4.4)

)
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where S; denotes the predicted sentiment of tweet i, 1 is the average of sentiments,
and c is the tweets count.

Model II: Typhoon Classifier

Typhoon Classifer is the second model in our approach that takes the features
extracted by the Feature Extractor as input and predicts the typhoon intensities
as output. The architecture of this model consists of two convolution layers with
RELU activation function. The first convolution layer has 32 filters with a kernel
size of 3. The output of this layer is passed to the second convolutional layer, which
has 16 filters with a kernel size of 3, which further refine the features. The details
of the convolutional layers are explained in Section 2.4.1. After each convolution
operation, a max-pooling layer is applied to reduce the output dimension. In addition,
dropout rates of 0.3 and 0.2 are used after the first and second convolutional layers,
respectively, to prevent overfitting and enhance model robustness. The final layer
is a dense layer with a Softmax function, which computes the probabilities of each
typhoon intensity category and returns the category with the highest probability as
the final output, as shown in Equation (6.2)

Experiments

This section describes the experimental setup, the datasets, the baselines, and the
evaluation results of our study. We conduct our experiments to answer the two
research questions (Qi, Q2) that address Challenge I in section 1.4. Specifically,
we investigate how social media data can enhance the performance of models that
rely solely on environmental data for disaster prediction. Further, we examine
how semantic embeddings of tweet representation affect the performance of our
approach.

Baselines

We compared our approach with various baselines, including traditional machine
learning and deep learning models. We chose the SVM classifier as a traditional
baseline since it has superior performance and outperforms several machine learning
models (Burel et al., 2017b). We also used four deep models (DNN, RNN, CNN,
and BiLSTM) as neural baselines. Unlike Burel et al. (2017b), who proposed
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enriching data representation by detecting named entities and creating a bag-of-
concepts feature, we detect named entities and obtain their representations from the
CONCEPTNET knowledge graph, which captures not only the existence of an entity
but also its context. We summarize the variations of our approach as follows:

* LSTM+DNN rd2vec): This is our first approach that combines LSTM and DNN
models in a joint-learning setting. LSTM serves as the Feature Extractor and
DNN as the Typhoon Classifier. We use classical word embeddings (Skip-gram) to
represent tweets.

* LSTM+DNN  crmantic—ems.): his model is similar to LSTM+DNN,,0p42vec), Dut we
enrich word embeddings with semantic vectors from CONCEPTNET.

* LSTM+RNN(0r420ec): In this model, we use LSTM as the Feature Extractor and
RNN as the Typhoon Classifier. Both models are trained jointly and represent
tweets with Skip-gram word embeddings.

* LSTM+RNN cmantic—emp.): This model is the same as LSTM+RNN 0rq2vec), DUt
incorporates semantic vectors from CONCEPTNET in addition to word embeddings.

* BiLSTM+CNN 5, d2vec): This model investigates a BILSTM model as the Feature
Extractor and CNN as the Typhoon Classifier. Both models are trained jointly with
combined features from typhoons’ environmental data and word embeddings.

* BiLSTM+CNN ,cpnantic—ems.): This model is the same as BILSTM +CNN yord2vec),
but includes semantic vectors from CONCEPTNET in addition to word embeddings.

We adopted the same experimental setup as the baseline models for a fair compari-
son. Moreover, we investigated the effect of using semantic vectors derived from
knowledge graphs to represent tweets versus the Skip-gram word embeddings.

Evaluation Setup

We used various metrics to evaluate the performance of our approach. These metrics
include: Accuracy (Acc), Precision (Pre), Recall (Rec), and F; score, which are
defined and explained in Section 2.6.1. We randomly split the dataset (described
in Section 5.3.1) into 80% training and 20% testing sets. To avoid training overfitting,
we applied an early stopping technique during the training phase of the model.

4.4 Experiments
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Table 4.3: Performance evaluation on the test dataset using accuracy (Acc), precision (Pre),
recall (Rec) and F;. Best results are in Bold

Model Acc Pre Rec F,

SVM 0.579 0.347 0.579 0.430
DNN (yordzvec) 0.756 0.809 0.756 0.781
RNN (yord2vec) 0.802 0.827 0.802 0.814
CNN (word2vec) 0.702 0.918 0.702 0.796
BiLSTM (yord2vec) 0.840 0.880 0.840 0.859
LSTM+DNN 07 d2vec) 0.873 0.892 0.873 0.882
LSTM+DNN (yemantic—emb) 0.917 0.922 0.925 0.917
LSTM+RNN 40y d20ec) 0.860 0.875 0.860 0.855
LSTM+RNN (semantic_emb) 0.891 0.904 0.891 0.891
BiLSTM+CNN (07 d2uec) 0.847 0.938 0.847 0.890

BiLSTM+CNN semantic_wery ~ 0-902  0.933  0.902  0.917

Discussion and Result Analysis

To answer Q;, we compared the performance of different baselines (SVM, DNN,
RNN, CNN and BiLSTM) in predicting typhoon categories based on features extracted
from typhoons data. The results are presented in the top section of Table 4.3. We also
propose three jointly-learning models (LSTM+DNN, LSTM+RNN, BiLSTM+CNN)
that leverage both typhoon data and tweet features. The tweet features included the
count ¢, the variance of positive v, and negative v_ sentiments of relevant tweets.
We found that deep learning classifiers outperformed the SVM classifier on this
task. Moreover, our models achieve significant improvements when incorporating
tweet features with typhoon data. The highest accuracy was obtained by the
BiLSTM+CNN model, which improved the micro-average F; score by 12.1% over
CNN and by 3.1% over BiLSTM. The other models (LSTM+DNN and LSTM+RNN)
also show substantial gains over their respective baselines (by 11% for DNN and
by 5.8% for RNN) on average. These results indicate that social media can provide
valuable features and enhance the performance of disaster prediction models. To
further understand the contribution of each feature, we used the RandomForest
classifier to evaluate the feature’s importance. As illustrated in Figure 4.5, tweet
features were more influential than environmental features, which were derived
from sensor devices and had incomplete measurements (Morton and Levy, 2011).

To answer Q,, We evaluated the impact of embedding representations from CON-
CEPTNET on the performance of our models. Our results show that CONCEPTNET
embedding vectors for named entities enhance the performance across different
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Figure 4.4: The evaluation of model’s over-fitting

metrics, such as Accuracy, Precision, Recall, and F;. Specifically, our approach ob-
tains an accuracy gain of up to 3% in both LSTM+DNN and LSTM+RNN models
compared to their baselines, which rely only on traditional word embeddings. These
findings conclude that semantic embeddings from knowledge graphs can enhance
the representation of entities and their relationships rather than traditional word

embeddings.

Training Robustness. To ensure that our models are generalized well, we evaluated
their robustness during the training phase. As depicted in Figure 4.4, all models
were trained using an early stopping technique to ensure they did not overfit to the
training data, and their robust performance in the testing set as well.

Summary and Conclusion

This chapter presented our approach to predicting typhoon intensities by jointly
learning from social media and environmental data. We evaluated our approach

on real-world datasets that included different typhoons and their associated tweets.

Our approach differed from previous studies in that it extracted adaptive features

4.5 Summary and Conclusion
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Figure 4.5: Importance of environmental and tweets-based features

by jointly learning from two models (e.g., BILSTM+CNN). The BiLSTM model
served as a Feature Extractor from social media, providing the CNN model with
features derived from relevant tweets. Furthermore, we investigated the effect of
using semantic embeddings to represent named entities on the performance of our
approach. We detected named entities in tweets and obtained their embedding
vectors from the CONCEPTNET graph. The evaluation results demonstrated that our
approaches (LSTM+DNN: 87.3%, LSTM+RNN: 86.0% and BiLSTM+CNN: 0.90%)
outperformed different baselines (DNN: 75.6%, RNN: 80.2%, CNN: 70% and BiL-
STM: 84%). Remarkably, we observed that incorporating semantic vectors into
our approach yielded improved F; scores (up to 3% in LSTM+DNN, up to 4% in
LSTM+RNN and up to 2.7% in BILSTM+CNN). In our future work, we plan to
investigate methods for building knowledge graphs in disaster data. Our goal is to
preserve semantic information and efficiently enable the integration of disaster data
with their corresponding tweets.
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Classifying Social Media into
Multiple Information Types

This chapter addresses the research question Qs, (see Section 1.4), which explores
how to classify social media data (tweets) into different information types simultane-
ously (i.e., multi-label classification). We present our approach UPB-BERT), which
fine-tunes the BERT model for this task. The main content of this chapter is based
on our publication work (Zahera et al., 2019a) where the author designed, imple-
mented, and evaluated herein and co-wrote the aforementioned paper. Additionally,
we provide a review of related works in Section 3.2.

Overview

In recent years, social media has emerged as a crucial information source during
emergencies, enabling instant communication, and providing situational updates (Si-
mon et al., 2015). As a result, several approaches (Houston et al., 2015; Landwehr
and Carley, 2014) have been proposed to leverage social media data for mitigating
disaster impacts and delivering faster relief responses. For instance, Sakaki et al.
(2010) designed an earthquake-detection system that analyzes real-time tweets to
locate affected regions and assist affected people. Furthermore, Stowe et al. (2016)
developed a disaster information system for classifying social media posts (tweets)
during and after disasters. Specifically, the authors investigated filtering tweets into
fine-grained categories (e.g., sentiment, reporting, action) instead of filtering only
relevant tweets. The evaluation results showed the effectiveness of the proposed
approach in classifying disaster tweets, allowing emergency managers to access
critical information and make faster disaster responses.

Most of the previous studies have focused on filtering informative social media
data as either binary classification (i.e., relevant, or irrelevant) or a multi-class
problem. For example, Caragea et al. (2016) proposed a CNN-based model to classify
informative messages during disasters. The proposed approach demonstrated a
significant improvement over traditional models, which use bag-of-words or n-grams
features. Similarly, Burel et al. (2017a) developed an enhanced classification model
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Table 5.1: The description of crisis information types (Olteanu et al., 2015)

Intent Type Information Type Description
GoodServices Request for a particular service or physical good
REQUEST SearchAndRescue The user is requesting a rescue for themselves or others
InformationWanted The user is requesting information
Weather Weather report
FirstPartyObservation The user is giving an eyewitness account
ThirdPartyObservation The user is reporting information from someone else
EmergingThreats Problems that cause loss or damage
ServiceAvailable Someone is providing a service
REPORT SignificantEventChange New occurrence to which officers need to respond
MultimediaShare Shared images or video
Factoid The user is reporting some facts, typically numerical
Official Report by a government or public representative
CleanUp Report of the cleanup after an event
Hashtags Report with hashtags correspond to each event
Volunteer Call for volunteers to help in response efforts
CALLTOACTION Donations Call for donations of goods or money
MovePeople Call to leave an area or go to another area
PastNews The post is reporting an event that has occurred
ContinuingNews The user is providing/linking to a continuous event
OTHER Advice Provide some advice to the public
Sentiment The post is expressing some sentiments about an event
Discussion Users are discussing an event
Irrelevant The post is irrelevant

with two CNN layers: i) a semantic layer that captures contextual information, and
ii) a traditional CNN layer. The authors also incorporated semantic features (e.g.,
bag-of-entities) in tweet representation. The experimental results indicated superior
performance when using semantic information within deep neural models compared
to the traditional Word2vec embedding model. However, these approaches did not
consider the possibility of classifying tweets into multiple information types (see
Table 5.1) simultaneously. There is a lack of efficient tools that can categorize disaster
tweets into more than one type. For example, a tweet may contain information
about emerging threats and actionable information, such as moving people. In
this case, a disaster model should assign both “EmergingThreats” and “MovePeople”
types to the tweet. Olteanu et al. (2015) highlighted the importance of filtering
disaster information into fine-grained types, which enable disaster organizations to
quickly find relevant information. For example, humanitarian relief organizations
may be particularly interested in tweets containing information about “volunteers” or
“donations” information types, while local police might focus on information types
such as “MovePeople”. Toward this goal, TREC-IS! initiative was launched to help
researchers to evaluate their systems in classifying real-world crisis tweets.

http://dcs.gla.ac.uk/~richardm/TREC_IS/
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5.2

5.2.1

Transfer learning from pre-trained models (especially BERT) has achieved impres-
sive results in various NLP tasks without requiring training these models from
scratch (Sun et al., 2019). Inspired by this success, we propose our approach
(UPB-BERT) that fine-tunes the BERT model for multi-label classification of disaster
tweets. In this context, we further train the BERT model on a dataset of tweets col-
lected during different disaster events. By fine-tuning the BERT model, we achieve
outperforming results in tweet classification using a small domain-specific dataset
(34k tweets) and reduce the computing time. We summarize the main contributions
of our study as follows:

* To the best of our knowledge, this is the first that fine-tunes BERT for multi-label
classification of disaster-related tweets.

* We conducted several experiments on real-world datasets provided by TREC-IS.
Our evaluation showed that our fine-tuned BERT model can effectively classify
tweets into multiple information types when fine-tuned on a crisis dataset.

Our Approach

This section presents our approach to categorizing disaster-related tweets into
multiple information types. We first describe the preprocessing steps required for
cleaning redundant data and noises from tweets. Then, we explain the fine-tuning
of the BERT model for multi-label tweet classification.

Tweets Preprocessing

Processing tweets poses unique challenges compared to longer documents. Due to
their nature, tweets are inherently noisy, full of informal abbreviations and emojis.
As discussed in Section 2.2, specialized preprocessing is essential for generating
better features from tweets. To accomplish this, we used the tweettokenize API?,
which offers ad-hoc preprocessing and creates a uniform representation of tweets.
Figure 5.1 shows an example of preprocessing a tweet about hurricane SANDY into a
vector of words. We applied the following steps for tweet preprocessing:

* We removed URLs, usernames, and Unicode characters from tweets. Additionally,
we eliminated all extra white spaces, duplicated full stops, question marks, and
punctuation points.

https://www.nltk.org/api/nltk.tokenize.html
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sad, sandy

Figure 5.1: An example tweet shared during hurricane SANDY

* We retained stop words to provide sufficient contextual information for the BERT
model. For example, such negative words (e.g., not, nor, and never) provide
critical information on the meaning of the subsequent words (e.g., "not happy"
implies "sad").

* For emojis symbols, we employed the emoji® library to convert them into text. For
example, the emoji ” : (” is converted into the word "sad".

* We applied stemming and lemmatization techniques to normalize words and
restore general forms using WordNetLemmatizer®.

¢ We converted all tweet tokens to lowercase letters.

Fine-tuning BERT Model

BERT, or Bidirectional Encoder Representation from Transformers, is a ground-
breaking model proposed by (Devlin et al., 2019), which can be easily adapted
to various downstream NLP tasks through fine-tuning. Since its release in 2018,
BERT has become the flagship of pre-trained language models, demonstrating
successful applications across numerous tasks, such as text classification (Munikar
et al., 2019), natural language understanding (Jawahar et al., 2019), and question
answering (Yang et al., 2019)). BERT enables faster development, reduces data
requirements, and achieves superior results. Motivated by the success of fine-tuning
BERT (Chang et al., 2020), we developed our own fined-tuned BERT model (named

*https://pypi.org/project/emoji/
*https://www.nltk.org/_modules/nltk/stem/wordnet.html
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Figure 5.2: Our fine-tuned BERT model for multi-label tweets classification

UPB-BERT) to classify crisis-related tweets into multiple information types, as
shown in Figure 5.2. The pre-trained contextualized embeddings from BERT have
proved to be rich representations of words and sentences, eliminating the need
for handcrafted features. As discussed in Section 2.3.2, BERT input should be
transformed into a specific format. A [C'LS] token is inserted at the beginning of
each sentence, and a [SEP] token is used to specify the sentence end. The input
is then tokenized by the WordPiece tokenizer (Song et al., 2021). Each token ¢; is
associated with three types of embeddings: token embeddings (E;,), which represents
the vocabulary index of each token; segmentation embeddings, which distinguish
between input sentences (F 4 or Eg); and position embeddings (E;), which indicate
the position of each word.

In our study, we used the BERT},,. model, which consists of 12 transformer blocks,
12 self-attention heads, and a hidden size of 768. The maximum length input
is truncated to no more than 512 tokens as required for the BERT input. The
embedding vector of the input is obtained from the hidden state of the [C'LS] token
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Figure 5.3: An example of attention visualization of BERT model

Table 5.2: Overview of the TREC-IS dataset

# Statistic Train Test
Total No. of events 15 6
Total No. of tweets 34,290 8,573

No. of Information Types 24 25

(i.e., the summary token). To predict the information types of an input tweet, we
added an additional Dense layer (i.e., Fully connected) with a Sigmoid activation
function. Furthermore, we minimized the classification errors during the training
using a binary Cross-entropy loss function (see Equation (4.2)). By applying a
threshold value (> 0.5), we filtered the most relevant information types to the input
tweet.

A

yZU(WZ' xxi—i—bi), (5.1

where z; is the embedding vector of tweet i and W; is the weight matrix of BERT
that has been tuned. Additionally, o denotes the Sigmoid function, and b represents
the bias.
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Figure 5.4: Information types per tweets in the TREC-IS dataset
Experiments

In this section, we describe the datasets, baselines, and evaluation metrics employed
in our experiments to answer the research question (Qs), which focuses on evaluating
the performance of fine-tuning BERT model in multi-label tweets classification.

Dataset

We conducted our experiment on the TREC-IS dataset (Mccreadie, 2019), which was
curated from various disaster events, such as earthquakes, hurricanes, and public
shootings. The dataset comprises 34, 2k tweets for training, 8, 5k for testing, and an
overall total of 42, 7Tk tweets. A statistical overview of the train and test sets used
in this study is presented in Table 7.3. For each event, tweets were collected using
event-related hashtags and keywords through the Twitter search API. Furthermore,
human annotators were recruited to label tweets according to a multi-layer ontology
of information types, as shown in Table 5.1. According to this annotation, a tweet
could be classified into one or more information types (i.e., classes). Figure 5.4
shows the distribution of tweets across different information categories.

We observed that most tweets are labelled with the “Sentiment” class (up to 7k
tweets), while few tweets have labels such as “MovePeople”. Our analysis also
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Table 5.3: The evaluation results of our two variants of fine-tuned BERT (UPB-BERT and
UPB-FocAL) under metrics: AAW, Fq, Acc, and RMSE

System AWW(high) AWW(au) Fl(act) Fl(all) Acc RMSE(aCt) RMSE(a”)
UPB-BERT -0.95 -0.47 0.13 0.14 0.1 0.15 0.09
UPB-FocaL -0.93 -0.47 0.12 0.18 0.81 0.14 0.08
Median -0.91 -0.46  0.03 0.10 0.85 0.17 0.10

showed highly imbalanced distributions of the information types in the TREC-IS
dataset. To address this issue, we used macro-average scores of evaluation metrics:
Precision, Recall, and F;. Additionally, we assigned weights to classes relative to
the number of tweets they contained. Specifically, classes with a large number of
instances were assigned lesser weights, while classes with few instances were given
greater weights. In our future work, we plan to use recent language models, such
as GPT-4, to generate a large number of tweets, thereby achieving a better balance
within the dataset.

Baselines

We implemented two versions of our approach:

* UPB-BERT: This model uses a pre-trained BERT model which was fine-tuned
for the task using a standard cross-entropy loss function.

* UPB-FOCAL: This model has the same architecture as UPB-BERT but em-
ploys the focal loss function during training to address the class imbalance
problem (Mulyanto et al., 2020).

The two models were evaluated against different approaches that participated in the
TREC-IS Challenge 2019.° The challenge, organized by the University of Glasgow,
aimed to promote research in information retrieval technologies for emergency
response situations. The participant approaches employed different techniques,
ranging from traditional machine learning approaches (e.g., Support Vector Machine,
RandomForest) to deep neural approaches (e.g., LSTM, CNN). A detailed description
of the participant methods can be found in the TREC-IS evaluation report (McCreadie
et al., 1970).

Our models, UPB-BERT and UPB-FOCAL, were evaluated against the baseline
methods, and their performance is presented in Table 5.4. The table shows the full

Shttp://dcs.gla.ac.uk/~richardm/TREC_IS/2020/task.html
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Figure 5.5: F; scores of the UPB-BERT across all information types

evaluation results from the TREC-IS challenge 2019 (run B), providing a compre-
hensive comparison of the various approaches.

Evaluation Metrics

We obtained the evaluation results from the TREC-IS evaluation system, in terms of
Accuracy (Acc), F1, and Accumulated Alert Worth (AWW), as detailed in Section 2.6.1.
Additionally, the evaluation system computed Root Squared Mean Error (RMSE) to
estimate the prediction errors of high-priority tweets compared to human-generated
scores. This evaluation aspect aims to evaluate the ability of classification models in
generating timely and accurate alerts for highly critical tweets.

Results and Discussion

Table 5.3 shows the results of the two variants of our approach (UPB-BERT and
UPB-FocCAL), in comparison with the median scores of all participant approaches in
the TREC-IS evaluation in 2019. The evaluations are reported in two divisions: high
priority information types and all types. Apparently, our approach (UPB-FOCAL)
demonstrates enhanced performance under the F; metric with an improvement of
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Table 5.4: The results of participant systems in the TREC-IS 2019 challenge (McCreadie

et al., 1970). The best results are in bold

Information Feed Prioritization

Systems Info. Type Positive Info. Type Accuracy Prioritization RMSE

Actionable All All Actionable All
CS-UCDpustine 0.1355 0.223 0.7495 0.0859 0.0859
UPB-BERT 01338 0.2343 0.8139 0.1558 0.0938
CMUInformedia 0.1321 0.2167 0.8605 0.0788 0.0544
BERT-FOCAL 0.1287  0.2343 0.8159 0.1416 0.0829
CS-UCDvistmbeta 0.1269  0.1676 0.8378 0.1004 0.0822
CS-UCSpeeimo 0.1099  0.1721 0.8452 0.1036 0.0769
DLRgErr—r 0.0998  0.1989 0.0856 0.1834 0.1019
NYU fastmutti 0.0854  0.2256 0.8808 0.2153 0.1185
CMUInformedia,;»  0.0642  0.1382 0.8624 0.1025 0.0683
CS-UCDisstmaipha 0.0614 0.171 0.8600 0.1521 0.0893
NYUjgse.sing 0.0606  0.1373 0.8658 0.1836 0.1104
CMUInformedia, ;3  0.0592  0.0813 0.8434 0.1660 0.2063
NYU f4st.5ing 00431 0.1228 0.8739 0.2085 0.1169
UAGPLSIqsetine 0.0386  0.0302 0.8753 0.2067 0.1169
UAGPLSI,,., 0.0386  0.0302 0.8753 0.2138 0.1175
UAGPLSL, ¢ gative 0.0377  0.0278 0.8758 0.2075 0.1154
UAGPLSI,; 0.0377  0.0278 0.8758 0.2138 0.1177
ICTNETy, 0.0347  0.0871 0.7285 0.1254 0.1451
CMUInformedia,;;  0.0300  0.1361 0.8638 0.0815 0.0551
IITBHU, .2 0.0275 0.0548 0.7892 NA NA
DLR rusion 0.0249  0.0939 0.8689 0.1916 0.1077
IRIT, 02 0.0248  0.1725 0.8534 0.1175 0.0659
[ITBHU, ., 0.0191 0.0893 0.8139 0.1879 0.1128
DLRsr_g 0.016 0.1004 0.8605 0.2093 0.1129
IRIT, 41 0.0151 0.1677 0.8418 0.1316 0.0911
DLR j/can 0.0071 0.0922 0.8635 0.2111 0.1153
IRIT, 4 0 0.1317 0.7576 0.1461 0.0775
IRIT, 03 0 0.131 0.8565 0.1771 0.01028
CBNU(¢; 0 0 0.8788 NA NA
IRITg; 0 0 0.8788 NA NA
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Figure 5.8: RMSE scores of the UPB-FOCAL across all information types

8% and a reduced error of 3%. However, the AAW metric indicates that our approach
does not perform effectively in detecting tweets containing actionable information.
To address this gap, we developed an improved architecture with an additional
graph neural component, which is described in the next Chapter.

We analyzed the evaluation results (in terms of F; and RMSE) in Figure 5.5, Fig-
ure 5.6, Figure 5.7, and Figure 5.8 of our approaches (UPB-BERT and UPB-FOCAL)
for all information types. The results show that we obtained higher precision and
recall for categories (News, Sentiment, MultimediaShare, Factoid) that were more
represented in the training dataset. In contrast, our approaches were unable to
generalize well across information types with fewer tweets, such as GoodServices,
SearchAndRescue, CleanUp, and Volunteer.

Limitation of our approach: Despite the significant results that our approach
achieved in classifying tweets into multiple types, we observed that our models
(UPB-BERT and BERT-FocAL) were not efficient in detecting actionable information
compared to other methods in Table 5.4. We attributed this sub-optimal performance
to our approach, which depends on the contextualized representation of the BERT
model. This representation ignores global relationships between words across the
tweet corpus and only considers local information within sentences. Therefore,
we propose an improved approach called 1-AID in Chapter 6 to address these
challenges.
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5.4 Summary and Conclusion

This chapter described our studies for fine-tuning of BERT language model in
classifying disaster-related tweets. Specifically, we proposed two fined-tuned BERT
models: the first model (UPB-BERT) minimizes training errors using a binary Cross-
entropy loss function, while the second model (UPB-FocAL) employs the Focal loss
function to handle imbalances in the TREC-IS dataset. Additionally, our approach
leveraged contextualized embeddings from a pre-trained BERT model to represent
tweets. The experimental results showed that the BERT model can effectively classify
tweets into multiple labels with appropriate fine-tuning. However, the BERT model
showed insufficient performance in detecting tweets with high-priority information.
In the next Chapter, we describe our study to categorize disaster-related tweets with
more focus on detecting actionable information.

5.4 Summary and Conclusion 75
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6.1

|dentifying Actionable
Information From Social
Media

This chapter addresses the research questions Q4 and Qs (see Section 1.4) for
identifying actionable information from social media. The main content of this
chapter is based on our publication work (Zahera et al., 2021), where the author
developed, evaluated, and co-wrote the said paper. Furthermore, we provide a
review of related work in Section 3.2.

Overview

Social media has become an essential medium for disseminating information in
emergency situations (Zade et al., 2018). A significant difference between social
media and traditional news sources is the real-time feedback from the affected peo-
ple. This two-way communication channel can assist disaster relief organizations in
both informing the public and gaining insight into disaster situations. Consequently;,
extracting crisis information from social media posts (e.g., tweets) can enhance
situational awareness and accelerate relief responses. Previous works (Stowe et al.,
2018; To et al., 2017) primarily addressed information extraction from social media
as a binary classification task, i.e., filtering tweets into Relevant or Irrelevant cat-
egories. However, there is a lack of efficient systems that can categorize relevant
posts into fine-grained labels, as defined in (McCreadie et al., 2019) (see Figure 6.1).
Fine-grained labels are invaluable for crisis responders, since they facilitate the
filtering of critical data by more informative types, enabling faster disaster responses.
In particular, labelling disaster-related tweets with multiple labels allows the rapid
detection of tweets containing actionable information. Table 5.1 shows the list of
information types (used as labels) defined by McCreadie et al. (2019). We adopt
the definition of actionable tweets as formalized in (Zade et al., 2018). Actionable
tweets are those that require immediate attention from emergency managers who
are seeking critical information such as SearchAndRescue, and MovePeople), in con-
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O@Anon user [ FirstPartyObservation ]

EmergingThreats
| hear the tornado sires going off now. Buildings in
downtown Kansas City being evacuated now! Tornado
Warning.

News

Figure 6.1: An example of a multi-label tweet classification

trast to non-actionable tweets that are labelled with categories such as Hashtags or
FirstPartyObservation (refer to Table 5.1).

Tweet classification is a well-known challenging NLP task (Song et al., 2014), since
tweets often lack contextual information, are inherently noisy (i.e., contain mis-
spellings, acronyms, emojis, etc.), and have insufficient contextual information.
Moreover, multi-label classification becomes even more challenging, as a tweet can
simultaneously belong to multiple labels. In our study, we aim to i) categorize
disaster-related tweets with fine-grained information types and ii) identify action-
able or critical tweets that may be relevant for disaster relief and support disaster
mitigation. Our approach consists of three components: i) BERT-ENCODER, which
utilizes BERT as a sentence encoder to capture the semantics of tweets and represent
them as contextualized embedding vectors, ii) TEXTGAT, which employs a graph at-
tention network (GAT) to capture correlations between words and entities in tweets
and the labels of these tweets, and iii) RELATION NETWORK (Sung et al., 2018),
which is used as a learnable distance metric to compute the similarity between
tweets vectors (obtained from the BERT-ENCODER) and labels vectors (obtained
from the TEXTGAT) in a supervised way. This integration allows us to incorporate
a contextualized representation of tweets from BERT and structural information
between tweets and their labels from the TEXTGAT. Our main contributions can be
summarized as follows:

* We propose a multi-model approach (named I-AID) to categorize disaster-related
tweets into multiple information types.

* Our approach leverages a contextualized representation from the pre-trained
BERT model to capture the tweet’s semantics. Additionally, our approach employs
a GAT component to capture the structural information between words and
entities in tweets and their labels.

* We employ a learnable distance metric, in a supervised way, to determine the
similarity between a tweet vector and label vectors.
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6.2

6.2.1

Table 6.1: A list of symbols used in this chapter

Symbol Description

S Number of tweets in the dataset.

w Tweet tokens (e.g., word or entity).

gy Ground-truth multi-label assigned to a tweet 1.
g Predicted multi-label assigned to a tweet 1.

A A single label/information type for a tweet.

N Number of nodes in a graph

V Nodes of a graph

& Edges between nodes in a graph
A Adjacency matrix of a graph

7@ Embedding vector of tweet ¢ learned by BERT
R Embedding vector of node v(*)

F Dimension of node vector

1) Embedding vector for label \(¥

Z The concatenated vector of 7(*) and ¢

L Binary cross-entropy loss function

i Attention score between nodes v(9 and v(?)
hPW (t) Scoring function for high-priority tweets.
hPW (1) Scoring function for low-priority tweets.

* We conducted various experiments to evaluate the performance of our approach
and the state-of-the-art baselines in multi-label text classification. The implemen-
tation of our approach and the datasets are available at the Github repository.!

Our Approach

In this section, we begin by providing a formal definition of multi-label tweet
classification. Subsequently, the details of each component in our approach are
discussed in Section 6.2.2. Figure 6.2 gives an overview of our approach and how
its components work together.

Problem Formulation

Let 7 denotes a set of tweets and A = {A\1, A, -+, A\x} be a set of k predefined
labels, also referred to as information types. We formulate the problem of identifying

https://github.com/dice-group/I-AID
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Figure 6.2: The I-AID architecture: BERT-ENCODER embeds a tweet t(*) into a feature vector
(), TEXTGAT builds a graph G from our dataset and employs graph attention
layers and output labels vectors «. RELATION NETWORK learns a distance metric
between 7(*) and ¢, then predicted labels §(*) for ¢(*).

crisis information from tweets as a multi-label classification task, where a tweet ¢
can be assigned one or more labels from A simultaneously. Our objective is to build a
multi-label model M : 7 — (0, 1)* that maps tweets 7 to their relevant labels from

A. Given a labelled dataset D = {(t(, @) x {0, 1};?}?:1 consisting of S tweets, each

)

tweet ¢() is labelled with a set of relevant classes y(*). Here, yji = 1 indicates that

t() belongs to the class \;, while y](.i)

Aj. Our approach aims to learn the function M using three neural components. First,

= (0 means that t(") does not belong to the class

we obtained a contextualized embedding vector (7(*)) to represent tweet ¢(*) using
a pre-trained BERT model. Concurrently, our approach acquires the embeddings
vectors of labels ¢ through a graph attention network. Both vectors (7(V) @ .) are
then concatenated and fed to the last component (RELATION NETWORK) to match
the most relevant labels to the input tweet.

The I-AID Architecture

Component I (BERT-ENCODER): This is the first component in our framework that
transforms an input tweet into a vector representation 7 that captures its contextual
meaning. As illustrated in Figure 6.2, the BERT-ENCODER takes a tweet ¢t(?) with m
tokens [w%i), wg), . ,wﬁ,’?] and generates its embedding vector 7(9). We employ the
BERT-base architecture comprising 12 encoder blocks, 768 hidden dimensions, and
12 attention heads. We refer readers to the original BERT paper (Devlin et al., 2019)
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for a detailed description of its architecture and input representation. As discussed
earlier in Section 2.3.2, a special preprocessing is performed for BERT input. Specif-
ically, a [CLS] token is appended to the beginning of a tweet, and another token
[SEP] is inserted after each sentence as an indicator for sentence boundaries. Each
token w( is assigned three types of embeddings (token, segmentation, and position).
These three embeddings are combined into a single output vector 7(?) that captures
the meaning of the input tweet.

Component II (TEXTGAT): Traditional methods (e.g., Word2vec (Mikolov et al.,
2013a)) are capable of adequately representing words as embedding vectors based
on the local context of a target word (within a window size of n words). However,
these methods ignore the structural information and relationships between words
in a text corpus (Peng et al., 2018). Recently, graph neural networks (Yao et al.,
2019) have successfully addressed this challenge by modelling text as a graph, where
words are considered as nodes and relations between them are edges. In our study,
we construct a graph G = (V,€) from the dataset D with V and £ representing
sets of nodes and their edges, respectively. Each node v() € V can be a word,
named entity® or tweet label (see Table 5.1). Nodes are represented using a feature
matrix H = {h(), ) ... hV)} where h(?) € R is the feature vector of a node
v with F dimension, and N denotes the number of nodes. First, we initialize the
nodes’ representation H with pre-trained embeddings from the GloVe model (Socher
and Manning, 2014). Additionally, relations between nodes are modelled using an
adjacency matrix A € RV*Y, As depicted in Figure 6.2, the TEXTGAT component
consists of two graph attention layers. Each layer takes nodes’ features H as input
and performs an attention operation (Velickovic et al., 2018) to learn a new feature
H = {hW @ ... 1M} for each node based on the importance of its neighbours
(i.e., attention from its neighbours). Consequently, we employ the shared attention
mechanism att : R” x R” — R over all nodes. The graph attention operated on
the node representation can be expressed as:

a;; = att (Wv(i),WU(j)), (6.1)

where att is a single-layer feedforward network, parameterized by a weight matrix
W < RF*F which is applied to every node. Finally, a Softmax function is used to
normalize the attention scores, as shown in Equation (6.2).

exp(aij)
= . 6.2
2_keN; exp(i) (6.2)

aw

2We detected named entities in tweets using SPACY entity recognizer https://spacy.io/api/
entityrecognizer
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82

To this end, TEXTGAT learns the structural information between nodes based on the
importance of neighbour nodes. The label vectors are then concatenated with the
tweet vector and fed to the next component, as shown in Figure 6.2.

Component III (RELATION NETWORK): This component aims to learn the similarity
between the tweet’s vector () and label vectors ¢ in a supervised manner (also
known as learning-to-learn or meta-learning). We employ a neural network as a
learnable (i.e., non-linear distance) function to identify patterns of similarity. The
RELATION NETWORK takes as inputs the concatenated matrix Z = 7! ® ; from the
BERT-ENCODER and the label vectors. Since our task is a multi-label classification,
we use a binary Cross-entropy as a loss function in Equation (6.3). Afterwards, we
compute the probability of each label independently over all possible labels using a
Sigmoid function in the output layer. Finally, a set of relevant labels is returned as
the final result.

52 [1108(3) + (1~ y @) log(1 — (5], (6.3)

z:l

where y( and §(¥) are the predicted and ground-truth labels of a tweet i, respectively.
S is the size of tweets in the training dataset.

Experiments

This section presents the experimental setup, the datasets, the baselines, and the
evaluation metrics that we employed in our experiments. We aim to address the
research questions Qg, and Q5 (see Section 1.4), which focus on i) assessing the
performance of our approach to classifying disaster-related tweets into multiple
information types, ii) evaluating the performance of our approach in identifying
actionable information, and iii) finally benchmark the impact of each component in
our approach on overall performance (i.e., an ablation study).

Datasets

We used two benchmark datasets, which contain crisis-related tweets collected by
TREC (McCreadie et al., 2019). Table 6.2 provides an overview of each dataset,
including the number of tweets in the training set (#Train), validating (#Valid),
and testing (#Test), as well as the total number of classes (#Classes). We split
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6.3.2

Table 6.2: Overview of the Datasets.

Datasets #Train #Valid #Test #Classes

TREC-IS 27,467 6,867 8,584 25
COVID-19 Tweets 4,844 1,211 1,514 12

each dataset with an 80% — 20% ratio, where we used 80% of the tweets for training
and 20% for testing. During the training phase, we used 20% of the training data to
validate the model. We briefly summarize each dataset as follows:

e TREC-IS: This dataset contains approximately 35K tweets collected during 33
different disasters between 2012 and 2019 (e.g., wildfires, earthquakes, hurricanes,
bombings, and floods). Human experts and volunteers were employed to label the
tweets with 25 information types.

¢ COVID-19 Tweets: This dataset contains a collection of tweets about the COVID-
19 pandemic. In total, the dataset has 7,590 tweets labelled with one or more
information types (the same as for the TREC-IS dataset).

Figure 6.3 shows the distribution of tweets per information type in both datasets. As
we can see, the datasets are highly imbalanced with respect to the distribution of
tweets across different information types. For example, in the TREC-IS dataset, there
are more than 6k tweets that are categorized into the information types Hashtags,
News, MultimediaShare, and Location. In contrast, the information types CleanUP,
InformationWanted, and MovePeople have significantly fewer tweets. Similarly, in
COVID-19 Tweets, the tweets’ distribution is extremely imbalanced; most tweets are
categorized into Irrelevant, Contextuallnformation, Advice, or News. Because of this
skewing in the tweets’ distribution, the multi-label classification of tweets becomes a
more challenging task. This is because the model is more likely to learn to predict
the more common information types and will be less likely to learn to predict the
less common information types.

Baselines

We considered different approaches for multi-label classification as baselines in our
evaluation. We briefly describe each baseline as follows:

¢ TextCNN (Kim, 2014) utilizes a convolutional neural network to construct text
representation. First, it applies multiple convolution filters, followed by a max-
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Figure 6.3: Tweets distribution of all information types in both datasets (TREC-IS and
COVID-19 Tweets)

pooling layer to construct an embedding vector representation. At the final layer,
the authors employ a dense with a Softmax function to predict the tweets classes.

* HAN (Yang et al., 2016) uses a hierarchical attention neural network to represent
tweets. Two levels of attention mechanisms are applied at the word and sentence
levels, allowing differential attention to be paid to more and less important
content during constructing the tweet’s representation.
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* BiLSTM (Zhou et al., 2016) is a bidirectional LSTM model that parses an input
text from left to right and right to left, then uses the final hidden state as a feature
representation of the input text. Finally, a dense layer is added on top of BiLSTM
layers with a Softmax function to compute final outputs.

* MAGNET (Pal et al., 2020) employs a bidirectional LSTM with BERT embeddings
to represent tweets and GAT for labels classifiers. Then it uses a dot-product
function to compute similarities between the tweet’s vector and the labels’ vectors.
The most similar labels are returned as multi-label output.

Implementation and Preprocessing

We obtained the implementation of baseline methods from their GitHub reposi-
tories: TextCNN®, HAN*, and BiLSTM®. Moreover, we implemented the code for
the MAGNET model since it has not been open-sourced to date. We followed the
hyperparameter settings reported in the original papers for the baseline models. We
performed a grid search method to optimize the hyperparameters, seeking optimal
values that yield the best performances. Specifically, we obtained the best results
with the following values: training-epochs of 200, batch-size of 128 and Adam op-
timizer (Kingma and Ba, 2015) with a learning-rate of 2e~°. To avoid overfitting,
we added a dropout layer with a rate of 0.25 and applied an early stopping tech-
nique during the model’s training. The implementation of our approach (I-AID) is
open-source and available on the GitHub repository.®

Data Preprocessing: We performed the following steps to process tweets:
» We used the NLTK’s TweetTokenize’ API to tokenize tweets.
* We removed stop words, URLs, usernames, and Unicode characters.

* We eliminated extra white spaces, repeated full stops, question marks, and
exclamation marks.

¢ We converted emojis to text using the emoji® python library.

e We used the sPACY? library to extract named-entities from tweets.

*https://github.com/delldu/TextCNN
*https://github.com/tqtg/hierarchical-attention-networks
Shttps://github.com/yezhejack/bidirectional-LSTM-for-text-classification
*https://github.com/dice-group/I-AID
"https://www.nltk.org/api/nltk.tokenize.html
®https://pypi.org/project/emoji/

*https://github.com/explosion/spaCy
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We adopted the standard metrics for evaluating multi-label predictions. Specifically,
we used a weighted-average F1 score, Hamming loss and Jaccard index to evaluate
the performance:

* Weighted-average F;: This metric computes the harmonic mean of Precision
and Recall scores (Takahashi et al., 2022). We calculated F; scores for each label
independently using a weighted-average approach, then added them together and
applied a weight relative to the total number of tweets in each label.

(6.4)

|T,| Precisiony; x Recally,
w avg. — =2 Z
|T| Precisiony, + Recally,’

where |T), | denotes the number of tweets with label \; and |T'| is the total number
of tweets.

* Hamming Loss: To estimate the error rate in the predicted labels, we used the
Hamming loss function (Schapire and Singer, 1999), which computes the fraction
of incorrectly predicted labels out of all predicted labels. Lower Hamming loss
scores indicate better performance.

y® @ gD, (6.5)

hamming Loss (y®,5®)

CQ\
0 Mm
?r\

where S denotes the dataset size, k represents the total number of labels (i.e., |A]
), @ signifies the XOR operator, and y) and 4 correspond to the ground-truth
and predicted labels of tweet i, respectively.

e Jaccard Index: To evaluate the accuracy, we used the Jaccard index, which
measures the similarity between predicted () and ground-truth labels y(*) (Gouk
et al., 2016). Jaccard index computes the ratio of common labels in two sets of
all labels as follows:

,y(i) N g(i),

: : 6.6
PEDEEl) 0

jaccard (y(i) , gj(i)) =

where y; and §; denote the ground-truth and predicted labels for a tweet 7. N and
U represent intersection and union set operations, respectively.
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Table 6.3: The results of our approach (I-AID) and baselines under metrics: weighted-
average F;, Hamming Loss and Jaccard Index. The best results are in bold.

Baselines
Datasets Metrics I-AID
TextCNN HAN BiLSTM MAGNET
Fly.avg. 0.25 0.37 0.31 0.53 0.59
TREC-IS Jaccard Index 0.18 0.28 0.19 0.38 0.43
Hamming Loss  0.24 0.15 0.26 0.09 0.07
Fly.avg. 0.47 0.40 0.43 0.51 0.55
COVID-19 Tweets  Jaccard Index 0.33 0.28 0.21 0.40 0.43

Hamming Loss  0.11 0.04 0.07 0.12 0.08

Evaluating Actionable Information

Our main goal is to evaluate the effectiveness of our approach in identifying action-
able information in tweets. Actionable information refers to any information that
requires an immediate response or intervention, such as requests for search and
rescue or reports of emerging threats. For this purpose, we adopted the Accumulated
Alert Worth (AAW) metric, which was specifically designed for evaluating systems
that identify actionable information in the context of TREC-IS (McCreadie et al.,
1970).

The AAW metric assigns a score between —1 and +1 to each tweet, where a positive
score indicates a high-priority tweet that should trigger an alert, and a negative
score indicates a low-priority tweet that should not trigger an alert. We provide a
summary of the AAW metric (see Section 2.6.2 for more details) as follows:

AAW = 257 1Tl

T ﬁ‘lPW(t) otherwise

L. hPW ifteT
1 { (t) ifteTy 6.7)

where 7}, and 7; are the sets of high and low-priority tweets, respectively. hPT (t)
function assigns a score for each tweet that should generate, while [ PW (¢) function
assigns a score to each tweet that should not trigger an alert.

Results and Discussion
Performance Comparison (Q4): We evaluated the performance of our approach

(I-AID) compared to the baseline methods using different metrics. All approaches
were trained on the same training set and tested on the same test set to ensure a
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fair comparison. Table 6.3 presents the evaluation results for each approach on the
TREC-IS and COVID-19 Tweets datasets. We used the weighted-average F; score
as the main criterion to rank all approaches. The weighted-average F; reflects the
average performance across all information types. Overall, our approach, I-AID,
achieves superior performance compared to the other baselines on several metrics.
Specifically, our approach outperforms the MAGNET model —the state-of-the-art
baseline in multi-label tweets classification — by +6%, and +4% improved F; scores on
the TREC-IS and COVID-19 Tweets datasets, respectively. We also used the Jaccard
index and Hamming loss to evaluate the accuracy and error rate of the models. The
Jaccard index indicates that our approach achieves higher accuracy than all baseline
methods. Specifically, I-AID obtains 43% Jaccard index on both datasets, while
MAGNET’s score obtains 38% on the TREC-IS and 40% on the COVID-19 Tweets
dataset. On the other hand, our approach yields sub-optimal results using Hamming
loss. On the TREC-IS dataset, I-AID has a Hamming loss with 0.07%, which is the
best among all models. On the Covid-19 Tweets, our approach achieves 0.08%,
which is slightly higher than some baselines (HAN and BiLSTM).

To summarize our findings, our evaluation shows that I-AID can effectively classify
disaster-related tweets into different types. This performance can be attributed to
three factors: i) we use a multi-model framework that leverages contextualized
embeddings from the BERT model and capture contextual information in tweets, ii)
we incorporate label information into tweet representations and as well as structural
information from the graph attention network and iii) we employ a RELATION
NETWORK to detect similarities between tweets and labels using a learnable distance
function.

Actionable Information in Tweets (Q5): To identify tweets that contain actionable
information, we used the AAW metric (Equation (6.7)). There are two ways to
define actionable tweet (Zade et al., 2018): i) as the level of priority assigned by
human assessors, or ii) as the type of information conveyed in the tweet. In our
studies, we adopted the latter definition and evaluated our approach based on the
information types. The evaluation results are presented in Table 6.4, where the
top six rows correspond to the baselines, the middle rows show the AAW scores of
the best-performing systems from the TREC-IS challenge 2019 (run B) (McCreadie
et al., 2019), and the last row presents the result of our approach (I-AID). As shown
in Table 6.4, I-AID achieved significant performance overall baseline methods; for
high-priority tweets, I-AID obtained an absolute improvement of +26% AAW score
higher than the MAGNET model and +32% higher than nyu-smap, the best-achieved
result in TREC-IS 2019. It is noteworthy that our approach is the first to achieve
a positive AAW score for high-priority tweets. Despite these promising results, we
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Table 6.4: The evaluation results using the AAW metric on the TREC-IS test dataset (run
B). A higher AAW value indicates better prediction

Accumulated Alert Worth (AAW)

Systems
High Priority All

TextCNN -0.9764 -0.4884
HAN -0.7816 -0.4600
Bi-LSTM -0.8760 -0.4482
BERT (UPB_BERT) -0.9680 -0.4882
TEXTGAT -0.9794 -0.4897
MAGNET -0.9436 -0.4726
Median -0.9197 -0.4609
BJUTDMS-run2 -0.9942 -0.4971
IRIT -0.9942 -0.4971
irlabISIBase -0.2337 -0.4935
UCDbaseline -0.7856 -0.4131
nyu-smap -0.1213 -0.1973
SC-KRun28482low -0.9905 -0.4955
xgboost -0.9942 -0.4972
UCDrunEL2 -0.8556 -0.4382
cmu-rf-autothre -0.8481 -0.4456
I-AID 0.2044 -0.1509

believe that further research is still needed to reliably detect high-priority tweets
that acquire urgent actions in real-case scenarios.

Ablation Study

Our approach, as described in Section 6.2, combines three main components (BERT-
ENCODER, TEXTGAT, and RELATION NETWORK). To assess the contribution of the
main components for tweet representations (BERT-ENCODER, and TEXTGAT), we
conducted an ablation study where used them as standalone models for tweets
classification: i) BERT-ENCODER, which only uses the BERT model for classifying
tweets, and ii) TEXTGAT, which only relies on the graph attention network. Table 6.5
reports the evaluation results for each component. The system with BERT-ENCODER
performed better than the one with TEXTGAT component. On the TREC-IS dataset,
BERT-ENCODER obtains an F; score of 50%, while TEXTGAT reaches only 26%. This
indicates that BERT-ENCODER is more effective in learning rich representations from
short texts than TEXTGAT.
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Table 6.5: The ablation study of I-AID Model

Datasets Metrics BERT-ENCODER TEXTGAT I-AID
Fly.aug. 0.50 0.26 0.59

TREC-IS Jaccard Index 0.34 0.18 0.43
Hamming Loss 0.11 0.24 0.07
Fly.qvg. 0.47 0.36 0.55

COVID-19 Tweets  Jaccard Index 0.37 0.15 0.43
Hamming Loss 0.10 0.17 0.05

On the same dataset, our approach (I-AID) achieved superior results with +9%
improved F; score compared to the BERT-ENCODER and +33% compared to the
TEXTGAT. We also observed these models achieved similar performances on the
COVID-19 Tweet datasets. Our approach outperforms BERT-based and GAT-based
baselines in F; scores by +8%, +19%, respectively. Noteworthy, the TEXTGAT model
achieves better performance when predicting fewer labels as output. On COVID-19
Tweets with 12 labels, TEXTGAT achieved an F; score that is +10% higher than its
performance on the TREC-IS dataset with 25 labels.

Summary and Conclusion

In this chapter, we presented our approach (I-AID), a multi-model approach for
classifying tweets with multiple labels. Our approach consists of three components:
BERT-ENCODER, TEXT-GAT, and RELATION NETWORK. The BERT-ENCODER captured
local information, while the TEXTGAT component learned correlations between the
tokens (words or named entities) of tweets and their potential labels. Finally, the RE-
LATION NETWORK was used to determine the relevance of each label concerning the
tweet content. The main contributions of our study could be summarized as follows:
i) we showed that the combination of BERT-ENCODER and TEXTGAT enhanced the
representation of short texts and significantly improved multi-label classification. ii)
Transfer learning from pre-trained language models could effectively handle sparsity
and noise in social media data (tweets), and iii) we highlighted the challenges of
evaluating the multi-label classification task, which required appropriate metrics
for fine-grained analysis. On the TREC-IS dataset, I-AID achieved its best-weighted
average F; score of 0.59. The results clearly demonstrated the limitation of our
approach in dealing with imbalanced datasets, which is a direction of our future
work.
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We plan to use data augmentation techniques (e.g., GPT-4 text generation) to
generate synthetic tweets for under-represented classes. Furthermore, there is a lack
of semantic resources that can be leveraged in disaster management. A possible
extension of our work is to construct a disaster ontology of actionable information
extracted from tweets. Using this semantic resource, critical information could be
efficiently linked with their relevant crisis responses.

6.4 Summary and Conclusion
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7.1

Keyphrases Extraction from
Disaster-related Tweets

This chapter addresses the research questions Qg and Q7 (see Section 1.4) for
extracting keyphrases using pre-trained language models and knowledge graphs.
The main content of this chapter is based on our publication work (Zahera et al.,
2022), the author co-designed, evaluated and co-wrote the said paper. We also
provide a review of the related in Section 3.3.

Overview

Keyphrase extraction process aims to identify a set of phrases that best describe a
document. This technique has been used in various downstream applications, such
as text summarizing, organizing, and indexing (Merrouni et al., 2020). Keyphrase
extraction can be divided into: i) extracting present keyphrases (PKE) that appear
in a document, and ii) generating absent keyphrases (AKG) that do not present
in the original document but are essential for downstream applications (e.g., text
summarization, indexing). Table 7.1 provides an example of extracting present and
absent keyphrases.

In the context of disaster events, many tweets lack hashtags, which makes it difficult
to filter and analyze them. For instance, emergency responders may not be able
to find relevant tweets without hashtags and gain valuable insights. Keyphrase
extraction from disaster-related tweets can improve disaster management by quickly
and efficiently identifying essential trends, as shown in Figure 7.1). Additionally,
many keyphrases are absent from tweets due to their informality, noise, and short
length (tweet length is limited to 280 characters). Our study aims to not only
extract present keyphrases from disaster-related tweets but also to generate absent
keyphrases that are relevant and do not appear in a tweet. Previous works pri-
marily focus on extracting present keyphrases from text using supervised learning
(e.g., sequence labelling (Sahrawat et al., 2019)) and unsupervised learning (e.g.,
TEXTRANK (Mihalcea and Tarau, 2004), YAKE (Campos et al., 2020)), however,
generating absent keyphrases is a challenging task. A statistical study by Ye et al.
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Figure 7.1: Wordcloud of top 100 keyphrases from tweets collect during tornado JOPLIN
and hurricane SANDY

(2021) shows that some benchmark datasets, such as Inspec (hul, 2003)), miss
up to 37.7% of absent keyphrases. Few studies have been proposed to cope with
this challenge, one method is to use a supervised sequence-to-sequence with a copy
mechanism that can copy relevant words from the source text instead of generating
new ones Meng et al. (2017). However, this method requires a lot of labelled data
for training. Further, the copy mechanism can only generate one word at a time
without considering word dependencies (Zhao et al., 2021b). Another method is to
use external knowledge sources to generate absent keyphrases. For example, Shen
et al. (2022) creates a phrase bank with all keyphrases from a text corpus, assuming
that keyphrases not present in one document could be in other related documents.
However, this approach requires creating a domain-specific phrase bank for each
dataset.

We propose an unsupervised multitask framework, called MULTPAX that uses pre-
trained language models and knowledge graphs to reduce the effort of developing
a keyphrase model. Our framework has the following pipeline: i) tokenizing and
embedding the input document and its n-gram phrases as vectors in a shared se-
mantic space, ii) extracting the phrases closest to the document’s vector as present
keyphrase candidates, and iii) linking the present keyphrases to knowledge graphs
to find related terms (e.g., synonyms, hypernyms). For this purpose, we developed a
new version of the MAG framework (Moussallem et al., 2017), optimized for linking
keywords and extracting related terms; and iv) ranking all keyphrases (i.e., present
and absent) based on their similarity to the input document, and returning the top-k
phrases as the output.
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Table 7.1: An example of present and absent keyphrase extraction from Inspec dataset.
The predicted keyphrases are highlighted in green, and the absent ones are in
red

“This paper shows the importance that management plays in
the protection of information and in the planning to handle
a security breach when a theft of information happens. Re-
Input Text cent thefts of information that have hit major companies have
caused concern. These thefts were caused by companies’ inabil-
ity to determine risks associated with the protection of their
data and these companies’ lack of planning to properly manage
a security breach when it occurs.” quoted from (Polstra III,

2005)
Groundtruth security breach, risk analysis, management issue, theft of
Keyphrases information
Predicted security breach, theft of information

Keyphrases security management, security risk, data management

Additionally, we propose an improved metric for evaluating predicted keyphrases
based on their semantic matching with ground-truth keyphrases. Existing stud-
ies (Liang et al., 2021; Meng et al., 2017; Zhao et al., 2021a) consider Preci-
sion, Recall, and F; based on the exact matching between predicted and ground-
truth keyphrases, which works well for present keyphrases. However, this metric
fails to capture the semantic similarity of absent keyphrases that have different
words (Chowdhury et al., 2019). For instance, if “Cryptocurrency” is a ground-truth
keyphrase, and a model generates “Bitcoin” as a predicted keyphrase, the exact
matching metric considers them unrelated, even though they have semantic relat-
edness. By means of word embeddings, those words are similar and close in the
embedding space. Therefore, we propose an embedding-based F;-score for a more
accurate evaluation of absent keyphrases. We evaluated MULTPAX’s performance on
four benchmark datasets and compared it with different baselines. The evaluation
results show that our approach significantly outperformed state-of-the-art baselines
with a significance t-test p < 0.041 and F; score up to 0.535. The main contributions
of our study can be summarized as follows:

* We propose an unsupervised multi-task framework for extracting present keyphrases
and generating absent ones.

* To the best of our knowledge, our approach is the first study to leverage knowledge
graphs for keyphrase generation without the need for keyphrases vocabularies or
phrase banks.

7.1 Overview
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Table 7.2: A list of symbols used in this chapter

Symbol Description

D A document of input text (e.g., disaster tweets)

S A sentence in a document D, it can also represent a tweet.
T Tokens of a sentence S

yp A set of extracted present keyphrases

ye A set of generated absent keyphrases

ygold A set of ground-truth keyphrases

H; A contextualized embedding of a sentence i

Hp A contextualized embedding of a document D

k A number of top relevant keyphrases to a document

C; A candidate link for a pre-marked entity i in the search index
ap The authority score computed by the Hits algorithm

hp The hub score for a node p

Pak The precision scores of top-k ranked keyphrases
RQEK The recall scores of top-k ranked keyphrases
F,Qk The F; scores of top-k ranked keyphrases

* We propose an embedding-based F; that considers the semantic similarity be-
tween generated and ground-truth keyphrases for precise evaluation of absent
keyphrases.

* We conducted several experiments on four benchmark datasets, and the evaluation
results demonstrate the efficacy of our approach keyphrase extraction compared
to several baseline methods. The implementation of our approach and the datasets
are available at the Github repository.!

Our Approach

This section describes our approach for extracting and generating present and absent
keyphrases. Figure 7.2 depicts the architecture of our MULTPAX framework, which
consists of three components: i) present keyphrase extraction (PKE), ii) absent
keyphrase generation (AKG), and iii) Keyphrases Semantic Matching.

Problem Formulation

Given an input D with |S| sentences; each sentence s € S is a sequence of |s|
tokens 7 = {t1,t2,--- ,t|5}. Our goal is to build a keyphrase model that can extract

https://github.com/dice-group/MultPAX
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present keyphrases VP = {y?, 45, - ,y‘pyp‘} and also generate absent keyphrases
Y =A{yf,vs,--- ,y|‘lya|} relevant to D using knowledge graphs. Following previous
works (Gollapalli et al., 2017; Sahrawat et al., 2020), we divide keyphrase extraction
into three sub-tasks: Present Keyphrase Extraction (PKE), Absent Keyphrase Generation
(AKG) and Semantic Matching. First, we consider PKE as a ranking problem, where
we extract and rank candidate keyphrases based on their similarities to the input
document (see Section 7.2.2). Second, we formulate AKE as a linking problem to
infer relevant information from knowledge graphs. We use an unsupervised entity-
linker (Shen et al., 2014) that maps a present keyphrase ()?) to its corresponding
entity (i.e., resource) in a knowledge graph (e.g., DBPEDIA, BABELNET) and then
get relevant terms (e.g., from dct:subject, gold:hypernym properties) as absent
keyphrases candidates. Finally, we rank all keyphrases ) U Y based on their
similarities to D and return the top-k keyphrases as the output.

Present Keyphrase Extraction

We employ the BERT model (Devlin et al., 2019) to extract present keyphrases
based on their semantic similarity to a document. The main steps are as follows:
i) We tokenize an input document D into n-gram phrases and annotate each token
with part-of-speech tags (e.g., ADJ: adjectives, NOUN: nouns, VERB: verbs). We
remove stop words and keep noun phrases comprising zero or more adjectives
followed by one or multiple nouns (Wan and Xiao, 2008). ii) We encode the
candidate keyphrases and the input document as embedding vectors using the pre-
trained language model (BERT-Encoder) in a shared semantic space. As discussed
earlier in Section 2.3.2, a special preprocessing is applied to the input text of the
BERT-Encoder. A [CLS] token is added at the beginning of each sentence, which is
used to obtain the contextualized embedding vector of that particular sentence. An
additional token [SEP] is inserted to mark the end of a sentence. Further, the input
is tokenized by the WordPiece tokenizer (Song et al., 2021); each token ¢; has three
types of embeddings: token embeddings (E;,) for the vocabulary index, segmentation
embeddings for the input sentence (E4 or Eg), and position embeddings (F;) for
the word position. The output of the BERT-Encoder is the sentence’s representation
matrix H = [ho, h1, - - - hj4|], where h; is the embedding vector of token ¢;. Formally,
the embedding vector of a sentence s; is

H; = BERT-Encoder ({t1,t2, - - t4}). (7.1)

Pooling is an essential operation for creating sentence and document embed-
dings (Chen et al., 2018). It is commonly used to aggregate (e.g., mean, max)

7.2 Our Approach
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Figure 7.2: The architecture of MULTPAX framework with components: Present Keyphrase
Extraction, Absent Keyphrase Generation and Semantic Matching

multiple representations (e.g., sentences) into one embedding vector. We use a
Max-Pooling to aggregate all sentences’ vectors into one for the document repre-
sentation ‘Hp. Formally,

Hp = MaxPooling({H1, Ha, - H|g|})- (7.2)

Finally, we use Cosine distance to measure similarities between the embedding
vectors of candidate keyphrases H; € H, 1| and the document vector Hp. We select
the top-k keyphrases as present keyphrases candidates.

Absent Keyphrase Generation

To obtain absent keyphrases, we first link all present keyphrases ) to a knowledge
graph and get additional surface forms (i.e., strings that could be synonyms or
alternative names). We use DBPEDIA knowledge graph, which covers a wide range
of common entities and provides their surface forms. For entity linking, we adopt a
similar approach to the MAG framework (Moussallem et al., 2017).

The MAG framework includes two stages: candidate generation and candidate disam-
biguation, to extract entity links. In the candidate generation stage, MAG identifies
candidate links (C1, ..., C),) for pre-marked entities in the search index. To achieve
this, MAG uses acronyms and labels from a knowledge graph to map pre-marked
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entity spans from the input text to candidate entities. Furthermore, MAG also relies
on the Concise Bounded Description (CBD)? of the entities in a knowledge graph,
comparing the context of entity spans in the input document with the CBD of an
entity in a knowledge graph. We apply the candidate generation step from MAG to
the present keyphrases extracted by the PKE component. In the candidate disam-
biguation stage, MAG creates a local graph using a breadth-first-search method for
all candidate entities on a knowledge graph. Then, MAG applies the HITS ranking
algorithm (Kleinberg, 1999) to jointly rank candidate links for all entities in the
local graph. HITS ranks nodes in a directed graph based on incoming and outgoing
edges. Authorities are the nodes that contain essential information, while hubs are
the nodes that point to numerous authority nodes. Therefore, the authority score
a, of a node p is computed based on the hub score of the nodes that have directed
edges to p. Further, the hub score h,, of p is calculated based on the authority score
of the nodes linked by p (Kleinberg, 1999). Formally, HITS calculates the authority
score a,, for the node p as

ap= Y hg (7.3)

a:(a.p)EG

where h,, is the hub score for a node ¢, given that there is an a directed edge from ¢
to p in the graph G. The hub score h,, for a node p is calculated as

hp = Z a’qu (74)

q:(¢,p)eG

where q, is the authority score for a node ¢, which is linked by node p (Kleinberg,
1999). a4 and h,, are initialized randomly and updated iteratively until convergence.
Unlike MAG, our approach not only links present keyphrases but also extracts related
terms for each linked keyphrase from a knowledge graph. Moreover, we extract the
top-ranked candidates for each entity and n nodes with the highest authority scores
in the local graph, as their surface forms could be candidates for absent keyphrases.
In our approach, we also use BABELNET to find hypernyms for the present keyphrases,
besides the surface forms from DBPEDIA.

Keyphrases Semantic Matching

The last component in our approach aims to identify the top-k relevant keyphrases
(present and absent), where we set k = {5, 10,20} in our experiments. We regard this
task as a semantic textual similarity problem (Majumder et al., 2016). To measure
the semantic relatedness between a document D and candidate keyphrases, we

https://www.w3.org/Submission/CBD/
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Table 7.3: Overview of the datasets (#Doc: number of documents, #Test: size of test set,
#Avg. KP: average keyphrase per document, #Ratio%: percentage of absent
keyphrase per dataset).

Dataset #Doc #Test Avg. KP Ratio%
Inspec 2k 500 7.65 37.7%
Krapivin 2.3k 460 3.03 15.3%
SemEval2010 144 100 7.15 11.3%
NUS 211 211 2.71 17.8%

embed them into a common semantic space using the pre-trained BERT model. We
then use Cosine distance to rank the top-k closest keyphrases (#;) to the document’s
vector Hp and return them as the final keyphrase predictions. Formally,

Hi  Hp
Cos (Hi, Hp) = — B 5
os (Mi: o) = [an > o] 73)

where H; denotes the embedding vector of a candidate keyphrase (present y! or
absent y{' ), and Hp represents the embedding vector of the input document.

Experiments

This section describes the setup of our experiments, including the datasets, the
baselines, and evaluation metrics. We aim to answer the research questions Qg and
Q7 (see Section 1.4), which examine how well our approach in extracting present
keyphrases from disaster-related tweets. We also investigated the suitability of
existing exact-matching metrics (i.e., Precision, Recall, and F;-score) for evaluating
absent keyphrases. Furthermore, we conducted an ablation study to measure the
impact of each component on the overall performance.

Experimental Setup

Datasets. We used four benchmark datasets (English corpus) in our experiments,
namely, Inspec (hul, 2003), SemEval2010 (Kim et al., 2010), Krapivin (Krapivin
et al., 2009), and NUS (Vijayakumar et al., 2018). Table 7.3 provides an overview
of each dataset, including the total number of documents (#Doc.), the number of
documents in the evaluation set (#Test), the average keyphrases per document (Avg.
KP) and the ratio of absent keyphrases in each dataset (Ratio%).
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Baselines. We compared our approach with the following baseline methods:

* TEXTRANK: (Mihalcea and Tarau, 2004) This is an unsupervised approach that
constructs a graph representation of a document, where nodes are phrases and
edges are based on lexical similarities. Then, TEXTRANK uses the PageRank
algorithm to extract present keyphrases.

* YAKE (Campos et al., 2020) This is a simple unsupervised method that extracts
keywords by leveraging statistical features such as word co-occurrence and fre-
quency.

* EMBEDRANK (Bennani-Smires et al., 2018) This is an unsupervised method that
leverages word embeddings to identify words relevant to a document as candidate
keyphrases. Additionally, EMBEDRANK applies the Maximum Marginal Relevance
algorithm to increase the diversity of the extracted keyphrases.

* CoPYRNN (Meng et al., 2017) This is a supervised baseline that trains a sequence-
to-sequence framework with a copy mechanism on the KP20K dataset (Meng et al.,
2017). This approach serves as a baseline for both present keyphrase extraction
and absent keyphrase generation, allowing us to compare the performance of
copy mechanism in generating keyphrases.

* AUTOKEYGEN (Shen et al., 2022) This is an unsupervised approach that constructs
a phrase bank by aggregating keyphrases from all documents in a corpus. AuU-
TOKEYGEN uses lexical- and semantic-level similarities to select the top candidate
keyphrases (present and absent) for each document.

Evaluation Metrics. We evaluated the performance of our approach and the baseline
methods using different metrics. In the following, we describe how we computed the
Precision, Recall, and F; scores for keyphrase extraction task. Precision measures the
proportion of correctly matched keyphrases among all predicted keyphrases. Given a
list of predicted keyphrases ) = (y1, .. .,y|y|), we select the top-k ranked keyphrases
Vi = (Y1, -+ Ymin (k,|y|)) @nd compare them with the top-k ranked keyphrases in
the ground-truth set. We set k& = {5, 10} for present keyphrases and k£ = {10,20}
for absent ones in our experiments. Following previous works (Shen et al., 2022;
Ye and Wang, 2018), we used the Porter Stemmer from the NLTK library® v3.7 to
determine exact matches between the top-k predicted ().;,) and the ground-truth
(V9°'4) keyphrases. The Precision of the top-k predicted keyphrases is defined as:

*https://www.nltk.org/index.html
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|V N Y9

PQk =
‘yk’

(7.6)

Recall measures the proportion of correctly matched keyphrases among all ground-
truth keyphrases. Formally, Recall is defined as

2N gold
Rap = 220 7
’y:k ’
and the F;@k-score is defined as the harmonic mean of PQk and RQk
PQk x RQk
F =2X —. .
1Ok =2 X 5ok + Rak (7.8)

Although the exact-matching metric has been used widely in the literature (Liang
etal., 2021), there remains potential for improvement in evaluating absent keyphrases
evaluation based on semantic similarity. Consequently, we propose in Section 7.3.3
a semantic matching between the predicted and ground-truth keyphrases based on
their semantic relatedness.

Hyperparameters. We used a grid search method to optimize the hyperparameters
of our approach. We obtained the best F; scores with the following values. For
the PKE component, we tokenized the input text into phrases of 2 — 4 grams and
selected the top-10 ranked phrases as candidates for present keyphrases. For the
baseline methods, we set the hyperparameters according to their original papers.
In the MAG framework, we modified the extraction of common entities to cover a
boarder range of entity types. Moreover, we used the standard configuration* of the
MAG framework for the other hyperparameter values.

Present Keyphrase Evaluation

To answer Qg, we compared the effectiveness of our approach (MULTPAX) with
different baselines in extracting present keyphrases. As shown in Table 7.4, MULTPAX
significantly surpasses all baselines by a large margin on most of the datasets, with
a significant t-test p < 0.041. This performance can be attributed that MULTPAX
employs semantic similarity between candidate keyphrases and the input document
using a start-of-the-art pre-trained model in semantic textual matching (Xia et al.,

*https://github.com/dice-group/AGDISTIS/blob/master/src/main/resources/config/
agdistis.properties
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Table 7.4: The evaluation results of present keyphrases extraction on Inspec, SemEval2010,
Krapivin, and NUS datasets. F; @k scores are reported based on exact-matching
between the predicted and ground-truth keyphrases.

Inspec SemEval2010 Krapivin NUS

Model

F,@5 F,@l0 F,@5 F,@l0 F,@5 F,@l0 F,@5 F,@10
TextRank 0.263 0.279 0.183 0.181 0.148 0.139 0.187 0.195
YAKE 0.027 0.038 0.050 0.242 0.013 0.020 0.013 0.020
EmbedRank 0.295 0.344 0.108 0.145 0.131 0.138 0.103 0.134
CopyRNN 0.292 0.336 0.291 0.296 0.302 0.252 0.342 0.317
AutoKeyGen 0.303 0.345 0.187 0.240 0.171 0.155 0.218 0.233
MULTPAX 0.371 0.210 0.449 0.255 0.384 0.334 0.535 0.344

Table 7.5: The evaluation results of absent keyphrases generation (in terms of R@Q10, R@20).
All results are reported based on exact-matching between the predicted and
ground-truth keyphrases, except the last row shows Recall results based on
semantic-matching

Inspec SemEval2010 Krapivin NUS
Model R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20
CopyRNN 0.051 0.068 0.049 0.057 0.116 0.142 0.078 0.10

AutoKeyGen-Bank 0.015 0.017 0.007 0.009 0.031 0.041 0.021 0.026
AutoKeyGen-Full 0.017 0.021 0.010 0.011 0.033 0.054 0.024 0.032
MULTPA X exact 0.079 0.080 - - - - 0.017 0.017

MULTPA X semantic 0.696 0.584 - - - - 0.608 0.669

2021). In contrast, COPYRNN (Meng et al., 2017) and AUTOKEYGEN (Shen et al.,
2022) employ sequence-to-sequence models to encode an input document as low-
dimensional vectors and decode it back into sequences of predicted keyphrases.

We also observed that YAKE exhibits suboptimal performance in detecting present
keyphrases from short texts, such as paper abstracts. This is because YAKE relies
on statistical features like word co-occurrence and frequency, which are only effi-
ciently computed in long texts, such as full papers or news articles. Remarkably,
the embedding-based baseline, (EMBEDRANK), achieves comparable results; how-
ever, it fails to generate absent keyphrases. In our approach, we extract present
keyphrases from text using contextualized embeddings and semantic matching.
We conclude that pre-trained language models are not only efficient at identifying
present keyphrases without labelled data but also outperform the state-of-the-art
approach (AUTOKEYGEN).
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Absent Keyphrase Evaluation

To address Q7 that investigates the performance of our approach in generating absent
keyphrases, we conducted additional experiments comparing our approach to two
baselines, namely, COPYRNN and AUTOKEYGEN. Following previous work (Shen
et al., 2022), we employed the Recall metric (R@10, R@20) based on exact-matching
for performance evaluation, as shown in Table 7.5. Since we used the same ex-
perimental setup as the COPYRNN and AUTOKEYGEN approaches, we obtained
the evaluation results from their respective papers (Meng et al., 2017; Shen et al.,
2022).

Regarding the research question Q7, we can clearly see that all approaches achieve
poor performances when considering exact matches between predicted and ground-
truth keyphrases. For example, if two keyphrases are semantically similar, such
as “disaster relief organization” and “crisis responses institute”, these keyphrases
are not be considered as a match using existing metrics. Consequently, we found
that such metrics are unsuitable for evaluating absent keyphrases and propose
an improved evaluation metric based on the semantic-matching. Formally, let )
represents predicted keyphrases, and )9°!¢ denotes ground-truth keyphrases. We
first embed each keyphrase in Y* and )9°/Y. Then, we use Cosine distance to
compute similarities between the embeddings of each keyphrase in )V and )90/,
We set a threshold (> 0.5) for similarity scores to consider semantic matching
between Y and V9?4, The two last rows in Table 7.5 present the evaluation results
of R@10 and R@20 based on semantic-matching compared to exact-matching in
absent keyphrase extraction. The AUTOKEYGEN baseline demonstrates competitive
performance in generating absent keyphrases on the NUS dataset. However, the
keyphrases generated by AUTOKEYGEN are limited to those from the phrase bank of
each dataset. In contrast, our approach leverages public knowledge graphs, such
as DBPEDIA and BABELNET, to obtain relevant phrases as candidates for absent
keyphrases.

Limitation of our work. In our experiment, we used the MAG framework to link
present keyphrases to the DBPEDIA knowledge graph (see Section 7.2.3). In the
SemEval2010 and Krapivin datasets, we were unable to link the present keyphrases
due to the insufficient coverage of these keyphrases in the DBPEDIA knowledge
graph. This limitation accounts for the missing values shown in the last two rows
of Table 7.5 for these datasets. In our future work, we plan to integrate additional
knowledge graphs, such as YAGO and WIKIDATA, to extend the coverage of entity
linking in the MAG framework.
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Table 7.6: The ablation Study of MULTPAX framework on Inspec dataset. F; @K-scores are
reported based on semantic-matching between the predicted and ground-truth

keyphrases
MuLTPAX-variant F,@5 F,@10
MULTPAX-PKE 0.892 0.686
MULTPAX-AKER beiNet 0.907 0.701
MULTPAX-AKEpppedia 0.911 0.727
MULTPAX g1 0.911 0.763

7.3.4 Ablation Study

7.3.5

We analyzed the impact of each component of our framework on the overall per-
formance. For this purpose, we developed four variants of our framework. The
first variant, MULTPAX-PKE, focused only on extracting present keyphrases, without
generating absent keyphrase generation or linking with knowledge graphs. We
also created two variants of MULTPAX to assess the generation of absent absent
keyphrases, namely MULTPAX-AKEpgpedia and MULTPAX-AKEg,peinet- Moreover, we
configured the MAG framework to link present keyphrases only with DBPEDIA in case
of MULTPAX-AKEpgpedia, and exclusively with BABELNET for MULTPAX-AKEgapeinet-
Finally, we evaluated the complete framework, MULTPAXg,, as our fourth variant.
Table 7.6 presents the evaluation results of each component in terms of semantic-
matching F1 @5, and F1 @10 on the Inspec dataset, as it contains the highest ratio
of absent keyphrases among the benchmark datasets. We observed that the per-
formance of MULTPAX-PKE improves when it is linked with knowledge graphs;
for instance, MULTPAX-AKEpgpedia Outperforms MULTPAX-PKE by +0.41 in F;@10.
Additionally, we noted that our approach retrieves more terms from DBPEDIA than
BABELNET, since DBPEDIA contains more semantic ontologies with approximately
3.5 million instances extracted from Wikipedia information boxes. Our MULTPAX-g,;1
demonstrates improved performance, achieving F;-scores of 0.911 in F; @5, 0.763
in F;@10 when incorporating both DBPEDIA and BABELNET knowledge graphs,
compared to individual variants.

Use Case: Keyphrase Extraction from Crisis Tweets
In disaster situations, keyphrases can be particularly useful for finding relevant

information that can improve situational awareness. To evaluate the effectiveness
of our approach in the context of crisis data, we conducted a use-case experiment
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Table 7.7: Keyphrase extraction from disaster-related tweets

Tweet: "Severe flooding causing road closures and evacuations, please follow
evacuation orders #flood #evacuation"

Keyphrases: Flood, Road closures, Evacuation orders
Tweet: "Breaking: Earthquake with magnitude 7.1 just struck the region. If you

are safe, please check on your neighbours and report any injuries or
damage to authorities."

Keyphrases: Earthquake, magnitude 7.1, region, safe, neighbours, injuries, damage,

authorities

Tweet: "Devastating tornado just hit the town. Emergency services are over-
whelmed with calls. If you are able, please consider donating blood to
help those injured in the storm."

Keyphrases: Tornado, town, emergency services, calls, donate blood, injured, storm

on a disaster-related dataset (Zhang et al., 2016), which contains 110K labelled
tweets from different disaster events. Table 7.7 shows examples of keyphrases ex-
tracted from tweets during different disasters. We applied our approach (MULTPAX)
to extract keyphrases, treating each tweet as a separate document. Unlike long
documents, extracting keyphrases from tweets is more challenging due to their
shortness. The experimental results reveal that our approach outperforms baseline
methods in identifying present keyphrases, achieving in F; @1 and F; @3 of 0.58 and
0.67, respectively, in contrast to YAKE (0.047, 0.023), TEXTRANK (0.35, 0.37), and
Embrank (0.27, 0.29). Nevertheless, we were unable to evaluate the performance of
the keyphrases generated because there are no ground-truth phrases in this dataset.
Overall, our findings suggest that keyphrase extracting can significantly improve
situational awareness during disasters, particularly when dealing with short texts
like tweets.

Summary and Conclusion

In this chapter, we presented the MULTPAX framework, a multi-task approach for
extracting present and generating absent ones. The framework consisted of three
components: i) Present Keyphrase Extraction, ii) Absent Keyphrases Generation, and
iii) Semantic Matching. In our approach, we used a pre-trained language model
(BERT) and knowledge graphs (DBPEDIA and BABELNET) to extract keyphrase from
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documents. Our experiments demonstrated that pre-trained language models could
effectively extract present keyphrases. Furthermore, knowledge graphs proved to be
valuable resources for generating keyphrases that were absent, especially in a short
text.

In our future work, we plan to apply a bootstrapped approach for extracting
keyphrases from DBPEDIA abstracts to find more relevant terms. Specifically, we
aim to apply MULTPAX iteratively on the abstracts of DBPEDIA entities. We will
experiment with other knowledge graphs (e.g., YAGO and WIKIDATA) to extend the
entity linking coverage in the MAG framework.

7.4 Summary and Conclusion
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8.1

Conclusion

In this chapter, we present a summary of the insights gained through our studies
into leveraging social media for disaster management. We summarize the main
contributions of this thesis and conclude with potential research directions and the
broader impact of our studies.

Summary

In this thesis, we studied the impact of using social media in disaster management.
We conducted several experiments on real-world datasets, with the aim of answering
the research question “To what extent can we leverage social media in disaster
situations?”. We also tackled various challenges involved in processing social
media data, including i) collecting relevant data from Twitter (tweets), ii) applying
specialized preprocessing steps to filter out noise and irrelevant information from
tweets, and iii) extracting meaningful features. Our studies demonstrated that
social media is a valuable source of information during crises. People often use
platforms such as Twitter to share and obtain situational updates during crises (see
examples in Figures 1.1 and 4.2). Moreover, authorities can also obtain valuable
reports regarding affected individuals and consequent damages from social media
data. Overall, our goal was to improve disaster management by developing efficient
approaches for processing crisis data on social media. Concretely, we designed four
novel approaches that facilitated the following:

* Early detection of disaster events: In Chapter 4, we presented a novel approach
for improving disaster prediction by joint learning from social media and en-
vironmental data. Our approach addressed the challenges posed by the noise
and incompleteness of environmental data. We conducted our experiments on
real-world environmental data about typhoons and their corresponding tweets.
The evaluation results demonstrated the value of social media as a complementary
information source to environmental data. By extracting meaningful features
from social media, such as tweet volume and sentiment variances, we achieved
significant improvements in typhoon prediction (up to 12.1% in F; scores).
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* Multi-label classification of crisis-related tweets: Extracting meaningful features

from tweets is a challenging task due to their limited content, informal nature,
and noise. Additionally, multi-label classification requires assigning one or more
labels to an input tweet simultaneously, which requires an efficient feature rep-
resentation. To cope with these challenges, we fine-tuned the BERT language
model on domain-specific data curated from different crisis events. In Chapter 5,
we provide the details of our approach and experiments on real-world disaster
tweets collected from 22 crisis events. The evaluation results demonstrate that
fine-tuning the BERT model is an efficient solution for classifying tweets into
multiple information types. By categorizing disaster tweets into fine-grained types,
disaster relief organizations can find relevant information and make proper deci-
sions quickly. Furthermore, we conducted additional experiments to benchmark
the performance of detecting “actionable” tweets, i.e., which contain such infor-
mation as “Move People” or ‘Ask for help”. In this regard, we designed an improved
approach called I-AID, which consists of three components (BERT-ENCODER,
TEXTGAT) to detect actionable information, and RELATION NETWORK to match
similarities between the input tweet and one or more information types. In Chap-
ter 6, we describe our approach and experiments on two real-world datasets:
i) TREC-IS, which contains thousands of related tweets collected from different
disasters, and ii) COVID-19 tweets with pandemic-related content. To evaluate
our approach, we used the Accumulated Alert Worth (AAW), which is designed to
estimate the performance of algorithms for the detection of alerting tweets, i.e.,
tweets which contain highly critical information. The evaluation results indicate
that our approach achieves superior performance with an absolute +26% in AAW
compared with state-of-the-art baselines.

Disaster event summarization: Several studies have been conducted in the
aftermath of disasters to conclude lessons learned and develop effective disaster
management strategies. According to Imran et al. (2018), obtaining timely and
accurate situational information from emerging disaster events is essential for
rapid and effective disaster response. One approach to capturing a "big picture" of
crisis events is to summarize related data using keyphrase extractive techniques.
In our study, we employed extractive summarization using keyphrase extraction
from disaster-related tweets. However, keyphrase extraction from tweets is more
challenging compared to long documents. This is due to tweet characteristics such
as shortness and noisiness. In addition, absent keyphrase generation is essential
for categorizing and retrieving relevant tweets. Previous research has shown that
many disaster-related tweets do not have user-provided hashtags, which makes it
difficult to identify relevant information. For example, Chowdhury et al. (2020)
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found that approximately 5,200 rescue requests were shared on social media
but missed by emergency responders due to the lack of relevant search terms
or hashtags. In Chapter 7, we describe our approach, MULTPAX, for extracting
present and absent keyphrases. Specifically, we used the BERT language model
to extract present keyphrases and generate absent ones from knowledge graphs
such as DBPEDIA and BABLENET. Our study showed that pre-computed resources,
such as pre-trained language models and knowledge graphs, can significantly
reduce the effort required to build an efficient keyphrase model compared to
state-of-the-art baselines, which required building a domain-specific phrase bank.

8.1.1 Research Contributions

This thesis presents four significant contributions to processing social media data for
disaster management. First, our study shows that multiple models trained in a “joint
or shared” space outperform “standalone” models. In Chapter 4, we demonstrate
that jointly learning from two sources of data leads to improved performance in
detecting typhoons. Second, an end-to-end training between the pre-trained BERT
model and a graph attention network in Chapter 5 leads to efficient identification of
actionable information from crisis-related tweets. Third, our study also highlights
the role of social media as a valuable source of information during emergencies. Al-
though applications such as Facebook Crisis Response offer effective communication
channels, there is still a need for advanced tools capable of detecting crisis events,
identifying actionable information, and summarizing situational insights. To address
this gap, this thesis provides four different approaches, namely JOINT-MODEL (Zahera
et al., 2019b), UPB-BERT (Zahera et al., 2019a), I-AID (Zahera et al., 2021) and
MULTPAX (Zahera et al., 2022), which can improve situational awareness and enable
faster crisis responses. The thesis also demonstrates the significance of semantic
information from knowledge graphs. For instance, embeddings representation from
CONCEPTNET (i.e., semantic embeddings) improves the performance of event detec-
tion compared to traditional word embeddings. Additionally, knowledge graphs such
as DBPEDIA, BABELNET prove to be rich resources for generating absent keyphrases
without the need for creating phrase banks for each dataset.

To this end, our works provide a foundation for further research directions to
enhance the efficiency of disaster management. In the next section, we present some
potential research directions that arose while carrying out this work.
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Open Challenges and Future Work

Our studies in processing crisis data for improving disaster management have raised
a number of interesting (open) research questions.

* Towards a crisis recommender system: A central question regarding the future
work of this thesis is how to design an action-based recommender system that
supports crisis responders in taking timely actions. While existing disaster man-
agement systems monitor and track emerging events efficiently, disaster responses
still heavily rely on human expertise. We believe disaster management systems
should learn historical data from previous disasters and automatically recommend
appropriate actions. Therefore, our open research question is: "Can we develop
a recommender system that not only monitors, and tracks disasters, but also rec-
ommends proper actions?" Such a disaster response system could use machine
learning to analyze data from various sources, such as weather forecasts, satellite
imagery, and social media posts, to estimate the potential impact of a disaster.
Based on this analysis, the recommender system could suggest how to prepare
for and respond to a disaster. For example, it could suggest deploying specific
resources, such as emergency shelters or medical supplies, to certain locations to
reduce disaster impact.

* Damage estimation from social media data:

Estimating damages after disasters is a time-critical process. Usually, human
experts conduct field surveys, which can take weeks, to assess the damage in
affected areas such as roads, bridges, and buildings. One approach to estimate
the damages is using natural language processing to analyze social media content
about the disaster. This analysis helps to identify common keywords and phrases
(e.g., damage, injured, or evacuated), which enables the estimation of a disaster’s
overall impact, including the number of affected people and resulting damages.
While our study focused on textual information from social media data, recent re-
search has demonstrated promising results in rapidly estimating disaster damages
using satellite images (Imran et al., 2022; Nguyen et al., 2017). We observe that
shared images can also provide valuable information about damage and can be
used to implement disaster recovery plans as early as possible. It is noteworthy
that Alam et al. (2018) provides a benchmark dataset called CrisisMMD that con-
tains thousands of annotated tweets and images collected during different crisis
events. We believe that developing a multi-modal system capable of processing
both text and images is a promising research direction for improving situational
awareness and damage estimation.
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* Towards a crisis knowledge graph:

One of the most challenging aspects of processing crisis data is the lack of reliable
resources that can model data semantics (i.e., linked data) for efficient linking and
reasonable tasks. In other domains, such as criminology and health, researchers
have developed knowledge graphs to enable semantically interoperable access to
heterogeneous data sources. In the crisis informatics domain, Purohit et al. (2019)
presented the design and requirements for creating knowledge graphs to support
disaster management functions. Purohit et al. (2019) found that knowledge
graphs can facilitate crisis management systems by querying critical resources to
improve disaster preparedness, response, and recovery decisions. We believe this
is a crucial research direction for semantifying the crisis data to develop rapid,
comprehensible, and effective approaches. For instance, assume a hurricane is
approaching a coastal city. Disaster managers can access a knowledge graph
containing extensive information about the hurricane’s location and intensity, as
well as available resources for disaster response. This knowledge graph could
be employed to identify high-risk areas for hurricanes, such as flood-prone and
low-lying regions. In this way, a knowledge graph can offer disaster managers a
comprehensive and accessible information source, assisting them in making more
informed decisions about disaster response and community protection.

* Crisis data augmentation: One of the primary challenges in constructing effective
disaster models is the lack of benchmark datasets. While there are a few available
crisis-related datasets that we used in our experiments, these datasets suffer
from class imbalance and require extensive hyperparameter tuning to extract
meaningful features. We believe that data generation is now achievable through
the use of advanced large-scale language models, such as GPT-4, which can be
employed to augment tweets tailored to a particular disaster type. By providing
augmented data, a machine learning model could be trained efficiently, avoid
overfitting, and enhance its generalization to unseen data.
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