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Abstract

In recent decades, increasingly high performance requirements have been placed on mi-
crochips, leading to increasingly complex semiconductor technologies with ever shrinking
structure sizes, till sizes of 3 nm [TSMC2023]. Complex applications with high safety
and reliability requirements, such as functional safety during autonomous driving stan-
dardized in ISO 26262 [ISO2018], medical technology, or the application of artificial
intelligence in large data centers, are simultaneously driving the requirements for testing
and diagnosis of very large scale integrated circuits (VLSI). Throughout the entire life
cycle of a microchip, starting with manufacturing, uncertainties occur that affect the
behavior of the microchip. For example, even smallest particles can disrupt the fabri-
cation process, causing the fabricated structure to deviate from the intended structure.
This can lead to weak circuit structures, potentially causing a change in the timing of
the fabricated circuit. While this change does not necessarily have to lead to a change
in the logical behavior, it may cause Early Life Failures (ELFs), leading to a reliability
problem. Similarly, aging effects of the interconnects, such as electromigration, can lead
to uncertainties in the timing behavior of the circuit and thus in reliability problems,
resulting in a premature failure of a circuit or increased aging.

This work contributes to the treatment of uncertainties throughout the entire life cycle
of a VLSI circuit, which can be used in the context of Silicon Lifecycle Management.
With modular and hybrid compaction two test instruments are presented, which can be
used for X-tolerant test response compaction e.g. in the built-in Faster-than-At-Speed
Test (FAST). The built-in Faster-than-At-Speed Test is used to detect uncertainties in
the fabricated circuit that manifest as small delay faults. A challenge for the test re-
sponse compaction during FAST is the high and varying X-rate at the outputs of the
circuit under test. By dividing the circuit outputs into test groups and processing the
test groups separately using stochastic compactors, the presented modular compaction
can handle the high and varying X-rates. In the shown experiments the modular com-
paction achieved an X-reduction ratio (XRR) of up to 11,75, with a fault permeability
(FP) of 94,96 %. By utilizing the flexible structures of a stochastic compactor in a deter-
ministic phase after the stochastic phase in hybrid compaction, the fault permeability
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(FP) could be further increased, by specifically considering essential faults in the deter-
ministic phase. Thus, it was possible to increase the fault permeability by up to 12,31 %
by reapplying 10 % of the test pattern set to the circuit.

Another contribution of this thesis for dealing with uncertainties throughout the life
cycle of a highly integrated circuit is a method for distinguishing crosstalk on logic
interconnects and process variation. Due to the small structure sizes in current semicon-
ductor technologies, parasitic coupling capacitances between the interconnects of a VLSI
circuit occur more frequently. These parasitic coupling capacitances lead to crosstalk.
Due to the increased current flow during the crosstalk, the current density in the in-
terconnects increases, which in turn can lead to increased electromigration. To be able
to prevent the circuit from this premature aging, a method is presented that uses delay
maps describing the timing behavior of an output of a circuit at different operating
points to classify the tested circuits into fault-free and faulty using an artificial neural
network. In the case study shown, an accuracy of up to 98,8 % could be achieved with
a precision of 99,7 % and a recall of 97,9 %, where precision can be interpreted as a
measure of yield and recall as a measure of product quality.

With this work, a significant contribution has been made to addressing uncertainties
throughout the entire life cycle of VLSI circuits.



Kurzfassung

In den letzten Jahrzehnten wurden immer größere Anforderungen an die Leistungsfä-
higkeit von Mikrochips gestellt, was zu immer komplexeren Halbleitertechnologien mit
immer kleiner werdenden Strukturgrößen von bis zu 3 nm [TSMC2023] geführt hat.
Komplexe Anwendungen mit hohen Ansprüchen an Sicherheit und Zuverlässigkeit, wie
z. B. die in der ISO 26262 [ISO2018] standardisierte funktionale Sicherheit während des
autonomen Fahrens, die Medizintechnik oder die Anwendung künstlicher Intelligenz in
großen Rechenzentren, treiben gleichzeitig die Anforderungen an den Test und die Dia-
gnose hochintegrierter Schaltungen an. Während des gesamten Lebenszyklus eines Mi-
krochips, beginnend mit der Fertigung, kommt es zu Unsicherheiten, die das Verhalten
des Mikrochips beeinflussen. So können z. B. bereits kleinste Partikel den Fertigungspro-
zess stören, wodurch die gefertigte Struktur von der geplanten Struktur abweichen kann,
was zu schwachen Schaltungsstrukturen führen kann. Diese schwachen Schaltungsstruk-
turen können zu einer Veränderung des Zeitverhaltens der gefertigten Schaltung führen.
Während diese Veränderung nicht notwendigerweise zu einer Veränderung des logischen
Verhaltens führen muss, kann sie jedoch dazu führen, dass die Schaltung frühzeitig aus-
fällt und somit zu einem Zuverlässigkeitsproblem führt. Ähnlich können Alterungseffekte
der Verbindungsleitungen, wie die Elektromigration, zu Unsicherheiten im Zeitverhalten
der Schaltung und somit zu Zuverlässigkeitsproblemen führen. So kann es zu dem ver-
frühten Ausfall einer Schaltung (engl. Early Life Failure, ELF) oder einer beschleunigten
Alterung kommen.

Mit den vorgestellten Verfahren dieser Arbeit, die im Rahmen des Silicon Lifecycle Ma-
nagements eingesetzt werden können, wird ein Beitrag zur Behandlung von Unsicherhei-
ten während des gesamten Lebenszyklus geleistet. Mit der modularen und der hybriden
Kompaktierung werden zwei Testinstrumente vorgestellt, die unter anderem für die X-to-
lerante Testantwortkompaktierung im eingebauten Hochgeschwindigkeitstest verwendet
werden können. Der eingebaute Hochgeschwindigkeitstest wird eingesetzt, um Unsicher-
heiten in der gefertigten Schaltung zu detektieren, die sich als kleine Verzögerungsfeh-
ler manifestieren. Eine Herausforderung für die Testantwortkompaktierung während des
Hochgeschwindigkeitstests ist die hohe und variierende X-Rate an den Ausgängen der zu
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testenden Schaltung. Durch die Einteilung der Schaltungsausgänge in Prüfgruppen und
die separierte Kompaktierung der Prüfgruppen mithilfe von stochastischen Kompaktie-
rern, konnte mit der modularen Kompaktierung ein Kompaktierungsverfahren vorgestellt
werden, das diese hohen und variierenden X-Raten verarbeiten kann. In den durchge-
führten Experimenten erreicht die modulare Kompaktierung einen X-Reduktionsfaktor
(XRF) von bis zu 11,75, wobei die Fehlerdurchlässigkeit (FD) auf einem hohen Niveau
von 94,96 % gehalten werden konnte. Durch die Ausnutzung der flexiblen Strukturen
eines stochastischen Kompaktierers in einer deterministischen Phase nach der stochas-
tischen Phase in der hybriden Kompaktierung konnte die Fehlerdurchlässigkeit (FD)
weiter gesteigert werden, indem gezielt essenzielle Fehler in der deterministischen Phase
berücksichtigt wurden. So ist es möglich, die Fehlerdurchlässigkeit um bis zu 12,31 % zu
erhöhen, indem 10 % der Testmuster erneut an die Schaltung angelegt werden.

Ein weiterer Beitrag dieser Arbeit für den Umgang mit Unsicherheiten im Laufe des
Lebenszyklus einer hochintegrierten Schaltung ist ein Verfahren zur Unterscheidung
von Übersprechen auf Verbindungsleitungen der Logik-Schaltung und Prozessvariati-
on. Aufgrund der geringen Strukturgrößen in aktuellen Halbleitertechnologien, kommt
es vermehrt zu parasitären Koppelkapazitäten zwischen den Verbindungsleitungen einer
hochintegrierten Schaltung. Diese parasitären Koppelkapazitäten führen zu Überspre-
chen. Durch den hierbei entstehenden erhöhten Stromfluss steigt die Stromdichte in den
Verbindungsleitungen, was wiederum zu erhöhter Elektromigration führen kann. Um
Maßnahmen gegen die verfrühte Alterung vornehmen zu können, wird ein Verfahren
zur Unterscheidung von Übersprechen und Prozessvariation vorgestellt. Hierzu werden
Verzögerungskarten genutzt, die das Zeitverhalten eines Ausgangs einer Schaltung in
unterschiedlichen Arbeitspunkten beschreiben, um mithilfe eines künstlichen neurona-
len Netzes die getesteten Schaltungen in fehlerfrei und fehlerhaft zu klassifizieren. In
der gezeigten Fallstudie konnte eine Genauigkeit von bis zu 98,8 % erreicht werden, bei
einer Relevanz von 99,7 % und einer Sensitivität von 97,9 %, wobei die Relevanz als Maß
für die Ausbeute und die Sensitivität als Maß für Produktqualität interpretiert werden
kann.

Durch diese Arbeit konnte ein großer Beitrag geleistet werden, um den Unsicherheiten
im gesamten Lebenszyklus von hochintegrierten Schaltungen zu begegnen.
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1 Einleitung

Die hohen Anforderungen an die Leistungsfähigkeit moderner System-on-Chips (SoCs)
sind treibende Kräfte für die Entwicklung von Prozesstechnologien mit immer kleiner
werdenden Strukturgrößen. So sind Halbleiterfertiger z. B. in der Lage Mikrochips mit
Strukturgrößen von 3 nm zu produzieren [TSMC2023]. Aktuelle High-End SoCs, wie der
am 09. März 2022 vorgestellte Apple M1 Ultra Chip, werden bereits serienmäßig in einer
5 nm Technologie gefertigt. Aber auch andere Hersteller von High-End SoCs verwendeten
zu diesem Zeitpunkt ähnlich ambitionierte Technologiegrößen wie die 7 nm Alder Lake-
Architektur der Intel Core i Prozessoren [Intel2022] oder die 7 nm Technologie der AMD
Ryzen Threadripper Prozessoren [AMD2023].

Abbildung 1.1: Aufnahme eines Apple M1 Ultra [Apple2022].

Durch die immer kleiner werdenden Strukturgrößen ist es möglich, immer komplexere
Systeme auf einem Chip zu integrieren. Der in Abbildung 1.1 gezeigte Apple M1 Ultra
Chip integriert 114 Milliarden Transistoren, wodurch es möglich ist, 20 CPU-Kerne, 64
GPU-Kerne und 32 Neuronale-Kerne auf einem Chip zu integrieren. Dies ist auch durch
die sogenannte UltraFusion Architektur möglich, die mithilfe von direkter Durchkon-
taktierung von 10 000 Signalen auf dem Silizium eine Übertragungsrate von 2,5 TB/s
zwischen zwei identischen Apple M1 Max SoCs ermöglicht. Diese hohe Anzahl an Ver-
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bindungsleitungen ist in der Abbildung 1.1 als regelmäßige Struktur in der Mitte des
Apple M1 Ultra Chips zu sehen. [Apple2022]

Durch die schrumpfenden Strukturgrößen und die steigende Komplexität der SoCs kommt
es jedoch zu Herausforderungen im Herstellungsprozess der SoCs. Es kann daher nicht
ausgeschlossen werden, dass es während der Fertigung zu Defekten kommt. So kann
es unter anderem dazu kommen, dass durch Schmutzpartikel Strukturen nicht korrekt
aufgebracht werden, wodurch es zu Kurzschlüssen, offenen Verbindungen oder schwa-
chen Strukturen kommen kann, die zu Unsicherheiten im Zeitverhalten der gefertigten
Schaltung führen. Durch die kleinen Strukturgrößen kommt es außerdem während der
Lebensdauer des SoCs vermehrt zu Alterungseffekten, die sich als Verzögerungen der
Signalverläufe manifestieren. Gleichzeitig wachsen die Anforderungen an die Zuverläs-
sigkeit der SoCs, wie z. B. für die in der ISO 26262 [ISO2018] standardisierte funktionale
Sicherheit von SoCs in der Automobilindustrie. Daher ist der Test und die lebenslange
Überwachung der SoCs obligatorisch.

Während des gesamten Lebenszyklus eines SoCs, von der Fertigung bis zur Ausmus-
terung, werden schon heute eine Vielzahl an Daten über das SoC gesammelt. Bereits
während des Fertigungsprozesses können Daten über die Prozessbedingungen gesam-
melt werden. Der Fertigungstest liefert anschließend wichtige Informationen über den
Zustand des gefertigten Chips. Gleichzeitig kann eingebettete Testhardware während
des gesamten Lebenszyklus des SoCs wiederverwendet werden, um das Verhalten zu
überwachen. Durch die Vereinigung dieser bereits vorhandenen Datensätze und die Wie-
derverwendung von bereits vorhandenen Testinstrumenten und Testmethoden können
verschiedene Ziele, wie in Abbildung 1.2 zusammengefasst, verfolgt werden. Diese Wie-
derverwendung von Monitoren, Sensoren und anderen Testinstrumenten, die Vereinigung
von Datensätzen aus den unterschiedlichen Phasen des Lebenszyklus eines SoCs und die
Analyse dieser vereinigten Datensätze ist im Allgemeinen als Silicon Lifecycle Manage-
ment bekannt. Mithilfe des Silicon Lifecycle Managements werden dabei verschiedene
Ziele verfolgt, wie die vorhersagbare Wartung von Mikrochips, die Steigerung der Leis-
tungsfähigkeit des Systems, die Verbesserung der Testergebnisse und der Qualität des
Mikrochips, die Steigerung der Ausbeute und Identifizierung von Ausbeutebegrenzern,
sowie die Verbesserung und Beschleunigung der Design-Kalibrierung. [Crosher2022]

Eine große Herausforderung für den Test von hochintegrierten Schaltungen sind Unsi-
cherheiten, die es erschweren zwischen einem fehlerhaften und einem fehlerfreien Chip
zu unterscheiden. Zum einen unterliegt die Fertigung von Mikrochips Prozessvariatio-
nen, wie z. B. die Variation der gefertigten Gatelänge eines Transistors, was durch kleine
Verzögerungen am Ausgang der Schaltung sichtbar wird. Falls der gefertigte Chip nur
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Abbildung 1.2: Überblick über das Silicon Lifecycle Management [Crosher2022].

unter dieser Prozessvariation leidet, ist er jedoch in der Regel als fehlerfrei zu betrach-
ten und kann z. B. für Anwendungen mit geringeren Ansprüchen an die Taktperiode
des Chips genutzt werden. Zum anderen führen aber auch andere Effekte zu kleinen
Verzögerungen am Ausgang der zu testenden Schaltung. Dies können unter anderem
resistive Defekte sein, die z. B. durch Fehler während der Lithografie entstehen können
oder andere schwache Schaltungsstrukturen, die zu Frühausfällen (ELFs) führen können
[Kim2010; Malandruccolo2011]. Aber auch im Laufe des Lebenszyklus eines Mikrochips
führen Alterungseffekte in den Transistoren oder in den Verbindungsleitungen zu kleinen
Verzögerungen. Alterungseffekte, wie die Bias-Temperaturinstabilität (engl. Bias Tem-
perature Instability, BTI) und die Injektion heißer Ladungsträger (engl. Hot Carrier
Injection, HCI) [McPherson2019] führen, abhängig von der Nutzungsdauer, zu einer Er-
höhung der Schwellenspannung der Transistoren und damit zu einer Verlangsamung der
Schaltgeschwindigkeit des Transistors. Auch das Übersprechen zweier Leitungen wird mit
schrumpfenden Strukturgrößen zu einer immer größeren Herausforderung [Geden2011].
Zwei parallel verlaufende Leitungen auf einem Mikrochip sind unter anderem, wie in
dem in Kapitel 2.3.4 eingeführten Modell zu sehen, parasitär kapazitiv gekoppelt, was
zu Übersprechen führt. Einerseits kann dieses Übersprechen zu kleinen Verzögerungen
des Signalverlaufs führen und andererseits zu einem erhöhten Stromfluss in den Verbin-
dungsleitungen, was zu einer beschleunigten Alterung aufgrund von Elektromigration
führen kann [Livshits2012; Sadeghi-Kohan2021]. Diese wiederum kann zur Erhöhung
der parasitären kapazitiven Kopplung führen, was seinerseits wieder zu einer erhöhten
Elektromigration führt. Für den ganzheitlichen Test einer Schaltung ist es daher wichtig,
die Verbindungsleitungen der Schaltung zu berücksichtigen. Insbesondere ist es notwen-
dig zwischen den Ursachen für kleine Verzögerungen unterscheiden zu können.
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Eine weitere Herausforderung für den Test von Mikrochips sind unbekannte Schaltungs-
zustände, die z. B. durch nicht initialisierte Speicherelemente oder Tri-State Buffer auf-
treten. Hierbei handelt es sich um Signalpegel, die während der logischen Simulation
der Schaltung nicht eindeutig bestimmt werden können. Diese unbekannten Signalpe-
gel werden auch X-Werte genannt. Treten X-Werte in einer Schaltung auf, können die
Sollantworten für Testbelegungen nicht eindeutig vorhergesagt werden. Dies ist insbe-
sondere ein Problem beim eingebauten Selbsttest, der für die Überwachung während der
Lebenszeit einer hochintegrierten Schaltung immer wichtiger wird. Daher sind X-toleran-
te Verfahren zur Auswertung der Ausgabe während des Tests der Schaltung notwendig.
Zur Veranschaulichung ist in Abbildung 1.3 eine schematische Darstellung eines einge-
bauten Selbsttests zu sehen. Mithilfe eines Testmustergenerators werden Testmuster an
die zu testende Schaltung (engl. Circuit Under Test, CUT) angelegt. Die Antwort der zu
testenden Schaltung auf die Testmuster, die sogenannte Testantwort, wird anschließend
mithilfe von räumlichen und zeitlichen Kompaktierungsverfahren zu Signaturen kompri-
miert. Diese Signaturen können daraufhin mit im Vorfeld simulierten Referenzsignaturen
verglichen werden. Um eine eindeutige Identifikation von fehlerhaften Signaturen zu ge-
währleisten müssen die Signaturen X-frei sein.

CUTTestmuster-
generator

Signatur-
verarbeitung

Abbildung 1.3: Schema eines eingebauten Selbsttests.

Während ein Logikfehler am Ausgang der zu testenden Schaltung durch einen Vergleich
der tatsächlichen mit der simulierten Ausgangsbelegung für eine gegebene Testbelegung
detektierbar ist, kann eine kleine Verzögerung einer Signaländerung am Ausgang der zu
testenden Schaltung nur erkannt werden, wenn sie dazu führt, dass die Signaländerung
erst nach dem Beobachtungszeitpunkt stattfindet. Um eine Schaltung auf kleine Verzöge-
rungen zu testen, die nicht am Ausgang sichtbar werden, wird ein spezielles Testverfahren
benötigt. Hierzu kann der Hochgeschwindigkeitstest [Hellebrand2014; Yan2003] verwen-
det werden. Während des Hochgeschwindigkeitstests wird die zu testende Schaltung
übertaktet, um so kleine Verzögerungen sichtbar zu machen, die während der norma-
len Taktfrequenz versteckt geblieben wären. Durch Übertaktung der Schaltung kommt
es jedoch auch dazu, dass zusätzliche X-Werte generiert werden, da zum verfrühten
Beobachtungszeitpunkt noch nicht alle Signalpegel stabil an den Ausgängen der Schal-
tung anliegen. So entsteht während des Hochgeschwindigkeitstests eine höhere Anzahl
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an X-Werten, sowie eine variierende X-Rate im Verlauf des Tests. Beides führt zu neu-
en Herausforderungen während der Verarbeitung der Ausgangssignale der zu testenden
Schaltung, weswegen neue X-tolerante Kompaktierungsverfahren notwendig sind. Der
Hochgeschwindigkeitstest wird in Kapitel 2.4.3 näher erläutert.

Mit dieser Arbeit wird ein Beitrag zur Bewältigung der zuvor beschriebenen Herausfor-
derungen aufgrund von Unsicherheiten geleistet. In Kapitel 4 wird am Beispiel des ein-
gebauten Hochgeschwindigkeitstests ein Verfahren zur Testantwortkompaktierung vor-
gestellt, welches in der Lage ist hohe und variierende X-Raten zu verarbeiten. Die vor-
gestellte X-tolerante Kompaktierung ist insbesondere für das Silicon Lifecycle Manage-
ment notwendig. Um eine lebenslange Überwachung eines Mikrochips auf kleine Verzö-
gerungen zu ermöglichen, ist es notwendig einen eingebauten Hochgeschwindigkeitstest
[Kampmann2020; Hellebrand2014] zu verwenden. Hierbei wird die benötigte Testhard-
ware vollständig auf dem Chip integriert (vgl. Kapitel 2.4.3), um einen regelmäßigen
Test des Mikrochips während des gesamten Lebenszyklus zu ermöglichen. Insbesondere
ist es bei einem eingebauten Selbsttest nötig, die Ausgaben der zu testenden Schaltung
während des Tests zu kompaktieren. Mit dem in dieser Arbeit vorgestellten Verfahren
zur Testantwortkompaktierung wird ein wichtiger Beitrag zur Verarbeitung der X-be-
hafteten Ausgaben eines eingebauten Hochgeschwindigkeitstests geleistet.

Neben Unsicherheiten in Logik-Gattern kann es auch zu Unsicherheiten auf den Ver-
bindungsleitungen der Logik-Schaltung kommen. Zur ganzheitlichen Betrachtung einer
Logik-Schaltung ist es daher notwendig, auch die Verbindungsleitungen der Logik-Schal-
tung zu berücksichtigen. In Kapitel 5 wird daher ein Verfahren zur Unterscheidung
zwischen kleinen Verzögerungen, die aufgrund von Übersprechen entstehen und kleinen
Verzögerungen, die aufgrund von Prozessvariation entstehen, vorgestellt. Durch die Ana-
lyse der Testdaten eines Verzögerungstests in unterschiedlichen Arbeitspunkten mithilfe
eines künstlichen neuronalen Netzes ist es, dank des vorgestellten Verfahrens, möglich,
zwischen den Gründen für die Verzögerung zu unterscheiden. Durch das neue Testda-
tenanalyseverfahren ist es im Rahmen des Silicon Lifecycle Managements möglich, die
Ausbeute zu erhöhen, da Mikrochips mit Verzögerungen aufgrund von Prozessvariatio-
nen nicht als fehlerhaft deklariert werden müssen. Sie können somit für Anwendungen mit
geringeren Leistungsanforderungen verwendet werden. Gleichzeitig wird die Zuverlässig-
keit der gefertigten Schaltungen erhöht, da Schaltungen mit Verzögerungen aufgrund
von Übersprechen erkannt werden und somit Maßnahmen ergriffen werden können, um
eine frühzeitige Alterung aufgrund von Elektromigration zu verhindern.
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Bevor die vorgestellten Beiträge dieser Arbeit zum Silicon Lifecycle Management in
Kapitel 4 und in Kapitel 5 eingeführt werden, wird in Kapitel 2 und Kapitel 3 eine kurze
Einführung in den Test von hochintegrierten Schaltungen und in künstliche neuronale
Netze gegeben. Abschließend wird in Kapitel 6 ein Fazit der Arbeit gezogen und in
Kapitel 7 ein Ausblick auf weiterführende Arbeiten gegeben.



2 Einführung in den Test von
hochintegrierten Schaltungen

Wie in der Einleitung erwähnt, werden aktuelle High-End SoCs in Technologien mit
minimalen Strukturgrößen von 5 nm bis 7 nm gefertigt. Hierzu sind eine Vielzahl von
komplexen Prozessschritten notwendig. Während dieses hochkomplexen Fertigungspro-
zesses kann es immer wieder zu Abweichungen zwischen der gewünschten Struktur und
der gefertigten Struktur auf dem Siliziumwafer, wie z. B. durch Verunreinigungen, kom-
men. Mit diesem Kapitel wird eine kurze Einführung in den Test von hochintegrierten
Schaltungen gegeben. Weiterführende Informationen sind unter anderem in [Wang2006],
[Bushnell2000] und [Tehranipoor2011] zu finden.

Zum besseren Verständnis ist es zunächst wichtig, zwischen Defekten, Fehlverhalten und
Fehlern zu unterscheiden, die wie folgt definiert sind.

Definition 2.1 (Defekt). Defekte (engl. defect) in elektronischen Systemen sind un-
gewollte Unterschiede zwischen der produzierten Hardware und dem geplanten Design
[Bushnell2000].

Definition 2.2 (Fehlverhalten). Unter einem Fehlverhalten (engl. error) in einem elek-
tronischen System versteht man die Auswirkung eines Defektes am Ausgang der elektro-
nischen Schaltung [Bushnell2000].

Definition 2.3 (Fehler). Fehler (engl. fault) modellieren Defekte auf einer höheren Ab-
straktionsebene [Bushnell2000].

Nach dieser Definition zur Unterscheidung von Defekten, Fehlverhalten und Fehlern gibt
der folgende Abschnitt einen kurzen Überblick über häufig auftretende Defekte während
der Fertigung von hochintegrierten Schaltungen.
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2.1 Defekte

Die Abbildung 2.1 zeigt zwei Beispiele für die zuvor genannten Abweichungen. In der
linken Abbildung ist ein Querschnitt einer hochintegrierten Schaltung zu sehen, in der
zwei fehlende Durchverbindungen zwischen der letzten Metallebene (hellgrau) und dem
Polysilizium (untere Ebene) mit roten Kreisen markiert sind. In der rechten Abbildung
hingegen ist eine Aufsicht einer hochintegrierten Schaltung zu sehen, in der ein Schmutz-
partikel zur Unterbrechung einer Verbindungsleitung und zu einer Verjüngung einer
zweiten Verbindungsleitung geführt hat [Zivkovic2011].

Abbildung 2.1: Mögliche Defekte in hochintegrierten Schaltungen [Zivkovic2011].

Die so entstehenden Defekte können unter anderem zu Kurzschlüssen führen, wodurch
ein Signal z. B. dauerhaft mit dem positiven oder negativen Potential der Versorgungs-
spannung verbunden wird. Aufgrund von fehlenden Durchverbindungen kann es außer-
dem dazu kommen, dass ein Signal keinen definierten Signalpegel aufweist. Wie rechts in
der Abbildung 2.1 zu sehen ist, kann es aber auch dazu kommen, dass eine Struktur nicht
die gewünschte Breite aufweist und somit über einen erhöhten Widerstand im Vergleich
zur gewünschten Struktur verfügt. Diese resistiven Defekte können unter anderem zu
erhöhten Signallaufzeiten oder verfrühter Alterung führen. Der folgende Abschnitt gibt
einen kurzen Überblick über häufige Alterungseffekte in hochintegrierten Schaltungen.

2.2 Alterungseffekte

Während des Lebenszyklus einer hochintegrierten Schaltung werden sowohl die Halblei-
terbauelemente wie z. B. Transistoren, als auch die Leitungen der integrierten Schaltung
beansprucht, was zu Alterungseffekten führen kann. Im Laufe dieses Kapitels wird auf
die wichtigsten Alterungseffekte für Halbleiterbauelemente sowie Verbindungsleitungen
eingegangen. Wenn nicht anders gekennzeichnet basiert dieses Kapitel auf [McPher-
son2019].



2 Einführung in den Test von hochintegrierten Schaltungen 9

2.2.1 Alterungseffekte in Transistoren

Unter Alterungseffekten in Transistoren versteht man die Veränderungen der elektrischen
Eigenschaften des Transistors wie z. B. der Schwellenspannung UT H aufgrund der elektri-
schen Belastung des Transistors. Häufig auftretende Effekte in aktuellen Halbleitertech-
nologien sind die Injektion heißer Ladungsträger und die Bias-Temperaturinstabilität,
die im Folgenden kurz erläutert werden.

Injektion heißer Ladungsträger (engl. Hot Carrier Injection, HCI)
Durch die Beschleunigung der Ladungsträger im Kanal eines MOSFETs, aufgrund
des anliegenden elektrischen Feldes, können die Ladungsträger (Elektronen oder
Löcher) eine so hohe kinetische Energie erhalten, dass sie die Barriere zum Gate-
Oxid überschreiten und Löcher in die Siliziumdioxid- (SiO2-)Strukturen schlagen.
Der Effekt tritt hauptsächlich bei NMOS-Transistoren auf und führt zu einer Er-
höhung der Schwellenspannung UT H und einer Verringerung des Drain-Stroms ID.
Aufgrund der größeren Gate-Oxid-Barriere für Löcher ist der Effekt in PMOS-
Transistoren geringer.

Bias-Temperaturinstabilität (engl. Bias Temperature Instability, BTI)
Durch die Bias-Temperaturinstabilität kommt es während des Lebenszyklus ei-
nes Transistors zur Erhöhung der Schwellenspannung UT H . Der Effekt tritt bei
PMOS-Transistoren als negative Bias-Temperatur-Instabilität (engl. Negative Bi-
as Temperature Instability, NBTI) und bei NMOS-Transistoren als positive Bias-
Temperatur-Instabilität (engl. Positive Bias Temperature Instability, PBTI) auf,
wobei der Effekt in PMOS-Transistoren größer ist (NBTI). Wenn der Transistor
eingeschaltet ist, können sich in dem Übergang zwischen Kanal und Gate-Oxid
des Transistors H-Ionen lösen und vom Übergang wegdriften. Dies führt zu einer
Erhöhung der Schwellenspannung UT H des Transistors. Teilweise wird dieser Ef-
fekt repariert, wenn der Transistor ausgeschaltet ist. Eine vollständige Erholung
des Transistors ist jedoch nicht möglich.

2.2.2 Alterungseffekte in Leitungen

In hochintegrierten Schaltungen treten Alterungseffekte nicht nur innerhalb der Tran-
sistoren auf, sondern auch auf den Verbindungsleitungen zwischen den Modulen eines
SoCs und zwischen den Logikelementen von kombinatorischen Schaltungen. Im Folgen-
den wird der häufig auftretende Effekt der Elektromigration kurz erläutert.
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Elektromigration
Unter Elektromigration versteht man den Materialmigrationsprozess in metalli-
schen Leiterbahnen elektronischer Schaltung aufgrund eines elektrischen Feldes.
Die Hauptursache für die Elektromigration ist die Kraft, die aufgrund von der Im-
pulsübertragung der bewegten Ladungsträger auf die Metallionen der Leiterbahn
wirkt. [Lienig2018]

Abbildung 2.2: Veränderung der Dimensionen von Verbindungsleitungen in hochinte-
grierten Schaltungen [Geden2011].

Mit immer weiter schrumpfenden Strukturgrößen werden auch die Querschnitte von Ver-
bindungsleitungen in integrierten Schaltungen immer kleiner. Bei gleichzeitig steigender
Komplexität der hochintegrierten Schaltungen wird die Gesamtleitungslänge hingegen
immer größer, da immer mehr und längere Verbindungsleitungen benötigt werden. Da
die Stromstärke jedoch nicht im gleichen Maß schrumpft wie der Leitungsquerschnitt,
kommt es in den Verbindungsleitungen zu immer größeren Stromdichten, was wieder-
um zu erhöhter Elektromigration führt. Dies veranschaulichen auch die Diagramme in
der Abbildung 2.2. Im linken Diagramm ist die Entwicklung der Leitungsbreite über
die Jahre 2004 bis 2020 aufgetragen. Das mittlere Diagramm zeigt die Entwicklung der
Länge der Verbindungsleitungen, während im rechten Diagramm die Entwicklung der
Stromdichte zu sehen ist. [Geden2011; Lienig2018]

Abbildung 2.3: Beispiele von Elektromigration [Geden2011].
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Wie in Abbildung 2.3 zu sehen ist, kann es zu zwei unterschiedlichen Defekten durch
Elektromigration kommen. Einerseits kann es zu Fehlstellen (engl. voids) in der Verbin-
dungsleitung oder zu Auswüchsen (engl. hillocks) kommen, welche im schlimmsten Fall
zu Unterbrechungen (engl. open circuits), respektive zu Kurzschlüssen führen können.

Mithilfe von Blacks Gleichung [Black1969], kann der Zentralwert der Zeit bis zum Aus-
fall (engl. Median Time To Failure, MTTF) aufgrund von Elektromigration wie folgt
berechnet werden.

MTTF = A

Jn
e

Q
kBT (2.1)

Wobei A eine Materialkonstante ist, J die Stromdichte in A cm−2, n ein Materialparame-
ter, Q die Aktivierungsenergie der Elektromigration in eV, kB die Boltzmann-Konstante
in J K−1 und T die Temperatur in K.

Wie in [Sadeghi-Kohan2021; Lienig2018; Geden2011] gezeigt, steigt die Stromdichte der
Verbindungsleitungen immer weiter mit schrumpfender Strukturgröße, was laut (2.1)
zur Verringerung der mittleren Zeit bis zum Ausfall der Schaltung und somit zu einem
Zuverlässigkeitsproblem führt.

2.3 Fehlermodelle

Wie bereits zuvor gesehen, können neben Defekten auch Alterungseffekte und Prozessva-
riationen zu Unsicherheiten führen, die als Fehlverhalten sichtbar werden. Nicht zuletzt
die Unterscheidung der Ursachen des Fehlverhaltens stellt den Test von hochintegrierten
Schaltungen vor große Herausforderungen. Bevor in den Kapiteln 4 und 5 Lösungsan-
sätze für den Umgang mit diesen Unsicherheiten gegeben werden, werden im folgenden
Abschnitt Fehlermodelle zur Modellierung der zuvor genannten Defekte vorgestellt, die
zur Entwicklung eines Tests notwendig sind.

Zunächst wird das Haftfehlermodell vorgestellt, mit dem Defekte modelliert werden kön-
nen, die zu logischem Fehlverhalten der Schaltung führen. Anschließend werden mit
dem Pfad-Verzögerungsfehlermodell und dem Transitions-Verzögerungsfehlermodell zwei
Fehlermodelle eingeführt, mit denen Verzögerungen von Signaländerungen modelliert



12 2 Einführung in den Test von hochintegrierten Schaltungen

werden können. Zur Modellierung von kleinen Verzögerungen von Signalverläufen wird
daraufhin das Modell der kleinen Verzögerungsfehler eingeführt. Abschließend wird das
Modell der Verbindungsfehler eingeführt, mit dem parasitäre Effekte zwischen Verbin-
dungsleitungen modelliert werden können.

2.3.1 Haftfehler

Eines der weitverbreitetsten Fehlermodelle ist das Haftfehlermodell (engl. stuck-at fault
model). In diesem Fehlermodell gibt es die zwei Fehlertypen Haftfehler-an-1 und Haft-
fehler-an-0, die an einer Signalleitung der Schaltung entstehen können. Abbildung 2.4
zeigt zwei UND-Gatter an denen jeweils am Eingang A ein Haftfehler-an-1 (links) bzw.
-an-0 (rechts) aufgetreten ist. Wie in der Abbildung 2.4 zu sehen ist, wird die Leitung A
dauerhaft auf logisch 1 (UDD) oder 0 (GND) gezogen, was zu einem Fehlverhalten am
Ausgang Z führt, der dauerhaft logisch 1, respektive 0 ist, unabhängig von der Belegung
des Eingangs A.

&

𝑈!!
0

1
0/1 &𝐺𝑁𝐷

1

1
1/0

Haftfehler-an-1 Haftfehler-an-0

A

B

Z
A

B

Z

Abbildung 2.4: Beispiel eines Haftfehlers-an-1 und eines Haftfehlers-an-0 am Eingang A
eines UND-Gatters.

Wie im linken Beispiel zu sehen, wird das Signal A mit dem logischen Wert 0 belegt und
das Signal B mit 1. Aufgrund der logischen 0 am Eingang A müsste der Ausgang Z des
UND-Gatters auch den Wert 0 annehmen. Da der Eingang A des UND-Gatters dauer-
haft auf 1 gezogen wird, ist auch der Ausgang Z bei der gezeigten Eingangsbelegung 1.
Die Belegung des Ausgangs Z wird entsprechend mit 0/1 angegeben, da das Signal Z im
fehlerfreien Fall den Wert 0 annimmt und im fehlerhaften Fall den Wert 1. Das Haftfeh-
lermodell deckt eine Vielzahl von Defekten ab, wie z. B. einen Kurzschluss einer Leitung
zu UDD oder GND. Aber auch weitere Defekte können mithilfe des Haftfehlermodells
abgedeckt werden [Ma1995].

Für das Haftfehlermodell wird häufig angenommen, dass immer nur ein Fehler in einer
Schaltung vorhanden ist und nur die Signalleitungen der Schaltung beeinflusst werden.
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Das Verhalten der Logik-Gatter bleibt unberührt. Die Anzahl der möglichen Haftfehler
in einer Schaltung ergibt sich somit zu # Haftfehler = 2·ns ∈ O(ns) wobei ns die Anzahl
der Signalleitungen in der Schaltung angibt.

2.3.2 Verzögerungsfehler

Wie in der Einleitung erwähnt wurde, kommt es während der Fertigung auch zu De-
fekten, die sich als Verzögerung des Signalverlaufs manifestieren. Für die Modellierung
dieses Fehlverhaltens kann das Modell der Verzögerungsfehler verwendet werden, welches
im folgenden Abschnitt eingeführt wird. Hierbei wird zwischen zwei möglichen Modellen
unterschieden. Im Pfad-Verzögerungsfehlermodell wird ein Defekt als kumulativ auftre-
tender Verzögerungsfehler modelliert, wohingegen im Transitions-Verzögerungsfehlermo-
dell ein Defekt als lokal auftretender Verzögerungsfehler modelliert wird. Weiterführende
Informationen sind in [Krstic1998] zu finden.

2.3.2.1 Pfad-Verzögerungsfehlermodell

Zur Modellierung von Defekten, die das Zeitverhalten von Signalen verändern, wie z. B.
resistive Defekte, kann das Pfad-Verzögerungsfehlermodell verwendet werden, welches in
[Smith1985; Lin1987] eingeführt wurde. In diesem Fehlermodell können an einem Feh-
lerort zwei verschieden Fehlertypen auftreten, die jeweils das Signal verzögern. Hierbei
handelt es sich um den slow-to-rise- und den slow-to-fall-Fehlertypen. Beim slow-to-rise
Fehler wird die steigende Flanke am Fehlerort so lange verzögert, dass das Ausgangssi-
gnal der Schaltung während des Beobachtungszeitpunktes nicht mehr korrekt bestimmt
werden kann. Entsprechend wird beim slow-to-fall Fehler die fallende Flanke verzögert.

Im Pfad-Verzögerungsfehlermodell wird angenommen, dass es zu einer kumulativen Ver-
zögerung entlang eines Pfades zwischen den Eingängen und den Ausgängen kommt, wel-
che insgesamt groß genug ist, um das Ausgangssignal über den Beobachtungszeitpunkt
ts zu verzögern.

Der Beobachtungszeitpunkt ts wird dabei, bei sequenziellen Schaltungen, durch die ver-
wendete Taktperiode TCLK festgelegt, wobei gilt ts = t0 + c · TCLK für den aktuellen
Takt c ∈ N und den Startzeitpunkt t0 ∈ R. Zur Vereinfachung der Darstellung wird im
Weiteren t0 = 0 s und c = 1 angenommen, wodurch ts = TCLK gilt.
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Als Fehlerort kommen alle möglichen Pfade zwischen den Eingängen und Ausgängen
der Schaltung infrage. Da die Anzahl der Pfade einer Schaltung exponentiell mit der
Schaltungsgröße (Anzahl Gatter) steigt, kann das Pfad-Verzögerungsfehlermodell nur
für kleine Bereiche von Schaltungen verwendet werden. Die Anzahl der Pfade kann
dabei wie folgt anhand der Anzahl der Gatter ng abgeschätzt werden.

# Pfade ∈ O(2ng) (2.2)

Aufgrund des exponentiellen Wachstums der Anzahl der Fehler im Pfad-Verzögerungs-
fehlermodell ist es häufig nicht möglich, das Pfad-Verzögerungsfehlermodell auf moderne
Schaltungen mit hoher Gatteranzahl effizient anzuwenden. Daher wird häufig das Transi-
tions-Verzögerungsfehlermodell verwendet, welches im folgenden Abschnitt beschrieben
wird. [Wang2006]

2.3.2.2 Transitions-Verzögerungsfehlermodell

Im Gegensatz zum Pfad-Verzögerungsfehlermodell, welches annimmt, dass es zu einer ku-
mulativen Verzögerung entlang eines Pfades kommt, wird im Transitions-Verzögerungs-
fehlermodell angenommen, dass eine Verzögerung immer lokal an einer Signalleitung
auftritt und groß genug ist, um das Ausgangssignal über den Beobachtungszeitpunkt
ts hinaus zu verzögern. Genau wie im Pfad-Verzögerungsfehlermodell werden im Tran-
sitions-Verzögerungsfehlermodell zwei Fehlertypen unterschieden, einerseits ein Fehler,
der eine steigende Flanke verzögert (slow-to-rise) und andererseits ein Fehler, der eine
fallende Flanke verzögert (slow-to-fall).

Im Gegensatz zum Pfad-Verzögerungsfehlermodell kommen im Transitions-Verzögerungs-
fehlermodell jedoch nicht alle möglichen Pfade als Fehlerort infrage, sondern nur alle
Signalleitungen. Die Anzahl der möglichen Transitions-Verzögerungsfehler ergibt sich
somit zu

# Fehler = # Fehlertypen ·# Fehlerorte = 2 · ns ∈ O(ns), (2.3)
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wobei nS der Anzahl der Signalleitungen der zu testenden Schaltung entspricht. So-
mit entspricht die Anzahl der Transitions-Verzögerungsfehler der Anzahl der Fehler im
Haftfehlermodell, wobei mit dem Transitions-Verzögerungsfehler eine andere Menge an
Defekten abgedeckt werden kann.

2.3.3 Kleine Verzögerungsfehler

Das Fehlermodell der kleinen Verzögerungsfehler ist vergleichbar mit dem Transitions-
Verzögerungsfehlermodell. Während im Transitions-Verzögerungsfehlermodell und im
Pfad-Verzögerungsfehlermodell der Fehler als > TCLK angenommen wird, was dazu
führt, dass der Fehler zum nächsten Beobachtungszeitpunkt erkannt werden kann, wenn
er an mindestens einen Ausgang propagiert wird, wird im Modell der kleinen Verzöge-
rungsfehler ein Fehler mit einer dedizierten Größe δ ∈ R angenommen. So ist es möglich
Defekte zu modellieren, die zwar eine Abweichung des Zeitverhaltens eines Signals verur-
sachen aber nicht notwendigerweise zu einem Fehlverhalten am Ausgang der Schaltung
während des Beobachtungszeitpunktes führen.

ts

Fehlerfrei

Verzögerungsfehler

Kleiner Verzögerungsfehler

Versteckter kleiner Verzögerungsfehler

t

𝛿

𝛿

tT

𝛿 > 𝑇!"#

Abbildung 2.5: Unterschied zwischen Verzögerungsfehlern und kleinen Verzögerungsfeh-
lern.

Die Abbildung 2.5 verdeutlicht die Unterschiede zwischen den Fehlermodellen. Wäh-
rend in der ersten Zeile ein fehlerfreier Signalverlauf zu sehen ist, zeigt die zweite Zeile
dasselbe Signal, bei dem ein Verzögerungsfehler aufgetreten ist. In der dritten und vier-
ten Zeile wurde die fallende Flanke jeweils durch einen kleinen Verzögerungsfehler mit
unterschiedlicher Fehlergröße verzögert. Im letzten Fall ist die Fehlergröße des Fehlers
kleiner als der Schlupf (engl. slack) des längsten Pfades, auf dem der Fehler zum Ausgang
propagiert werden kann. Wobei der Schlupf durch die Differenz zwischen dem Beobach-
tungszeitpunkt ts und dem Zeitpunkt tT , an dem die Transition stattfindet, definiert ist.
Diese kleinen Verzögerungsfehler nennt man versteckte kleine Verzögerungsfehler (engl.
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Hidden Delay Faults, HDFs), wenn der Schlupf an allen Ausgängen immer zu groß ist,
um die Verzögerung zu erkennen.

Obwohl das Verhalten der digitalen Schaltung durch versteckte kleine Verzögerungs-
fehler nicht beeinflusst wird, ist die Detektion solcher kleiner Verzögerungsfehler wich-
tig, da sie einerseits ein Indikator für einen Frühausfall (engl. Early Life Failure, ELF)
der Schaltung [Kim2010] und andererseits ein Hinweis auf die Alterung einer hochinte-
grierten Schaltung sein können. Durch die Detektion dieser kleinen Verzögerungsfehler
im Laufe des Lebenszyklus, z. B. mithilfe eines periodisch durchgeführten eingebauten
Selbsttests (siehe Kapitel 2.4.1), kann eine Alterung der Schaltung detektiert werden. So
ist es möglich, Maßnahmen aufgrund der Alterung zu ergreifen wie z. B. die Reduktion
der Leistungsfähigkeit der Schaltung (engl. graceful degradation) oder das Senden einer
entsprechenden Wartungsaufforderung an den Nutzer, im Sinne einer vorhersagbaren
Wartung.

2.3.4 Verbindungsfehler

Während die bisherigen Fehlermodelle in erster Linie die Defekte innerhalb von Logik-
bausteinen einer digitalen Schaltung beschreiben, können außerdem parasitäre Effekte,
wie z. B. Übersprechen, zwischen Verbindungsleitungen auftreten, die von den bisherigen
Fehlermodellen nicht abgedeckt werden. Diese Übersprecheffekte können einerseits die
Signalqualität beeinflussen, wodurch sie als Fehler modelliert werden können und an-
derseits die Alterung der Schaltung aufgrund von Elektromigration fördern. In diesem
Abschnitt wird daher ein Fehlermodell für Übersprecheffekte vorgestellt.

Ein Modell zur Modellierung von Übersprechen wurde in [Roy2011] vorgestellt. Unter
Übersprechen versteht man dabei, die Beeinflussung des Signalverlaufs einer Leitung
durch den Signalverlauf einer zweiten Leitung aufgrund von parasitärer kapazitiver oder
induktiver Kopplung der beiden Leitungen. Wie in Abbildung 2.6 zu sehen ist, wird ein
Leitungspaar mithilfe von RLC-Gliedern modelliert, wobei die Leitungswiderstände R1

und R2, die Leitungskapazitäten zum Massenpotential C1 und C2, die Leitungsindukti-
vitäten L1 und L2, sowie die Koppelkapazität Cc berücksichtigt werden.

Mithilfe des Modells lassen sich vier Fehlverhalten durch Übersprechen ableiten. Die vier
Fehlverhalten sind in der Abbildung 2.7 anhand eines Beispiels mit einem Leitungspaar
dargestellt. Die obere Leitung wird hierbei als Opfer-Leitung angesehen und die untere
Leitung als Angreifer-Leitung. Wenn die Opfer-Leitung auf logisch 1 liegt und auf der
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R1
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L1

L2
Leitung 2

Leitung 1

Abbildung 2.6: RLC Fehlermodell zur Modellierung von Übersprechen [Cuviello1999].

Angreifer-Leitung eine Flanke auftritt, kann es zu einer Überhöhung der Signalspannung
oder einem negativen Signalimpuls auf der Opfer-Leitung kommen. Liegt die Opfer-Lei-
tung in der gleichen Situation auf logisch 0, kann es zu einem positiven Signalimpuls
oder einer Unterschreitung der Signalspannung auf der Opfer-Leitung kommen. Treten
sowohl auf der Opfer-Leitung als auch auf der Angreifer-Leitung gleichzeitig Flanken in
derselben Richtung auf, kommt es zu einer Beschleunigung des Signalverlaufs auf der
Opfer-Leitung. Treten die Flanken in entgegengesetzte Richtung auf, wird der Signalver-
lauf auf der Opfer-Leitung verzögert. Insbesondere die Verzögerung des Signalverlaufs
kann mithilfe des Fehlermodells der kleinen Verzögerungsfehler modelliert werden.
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Abbildung 2.7: Fehlverhalten aufgrund von Übersprechen [Chen1998].

Nachdem in diesem Abschnitt auf die am weitverbreitetsten Fehlermodelle eingegangen
wurde, wird im folgenden Abschnitt erläutert, wie diese Fehlermodelle genutzt werden
können, um einen Test für hochintegrierte Schaltungen zu entwickeln.
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2.4 Test

Wie bereits in der Einleitung erwähnt, kommt es während der Fertigung von hochinte-
grierten Schaltungen aufgrund der hohen Komplexität der Fertigungsverfahren immer
wieder zu Defekten in der Schaltung. Um defekte Schaltungen nicht auszuliefern oder so-
gar in sicherheitskritische Anwendungen wie ein selbstfahrendes Auto oder medizinische
Geräte einzubauen, werden hochintegrierte Schaltungen einem Fertigungstest unterzo-
gen. Hierzu werden an die Eingänge der zu testenden Schaltung (engl. Circuit Under
Test, CUT) unterschiedliche Signalpegel angelegt und die Ausgaben der Schaltung beob-
achtet. Eine Eingangsbelegung wird dabei als Testmuster bezeichnet und die zugehörige
Ausgabe der zu testenden Schaltung Testantwort genannt.

Die für den Test notwendige Menge an Testmustern wird als Testmustermenge TM

bezeichnet. In Abbildung 2.8 ist eine zu testende Schaltung mit einem Testmuster und
der zugehörigen Testantwort zu sehen. Das Testmuster und die fehlerfreie Testantwort
lassen sich dabei als Zeilenvektoren darstellen.
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Abbildung 2.8: Beispiel einer zu testenden Schaltung (CUT) mit Testmustern und Test-
antworten.

Ein naiver Ansatz zum Test einer hochintegrierten Schaltung ist, alle möglichen Kom-
binationen der Eingangsbelegungen an die zu testende Schaltung anzulegen und die
Testantworten mit zuvor berechneten Referenzantworten (engl. golden reference) zu
vergleichen. Wie im Beispiel in Abbildung 2.8 zu sehen ist, entspricht die fehlerhafte
Testantwort (o1, o2, o3, o4) = (0, 0, 0, 1) nicht der Referenzantwort (1, 0, 1, 1). Mithilfe
des Testmusters (i0, i1, i2, i3, i4, i5, i6) = (0, 1, 1, 0, 0, 1, 1) ist es somit möglich, den gege-
benen Fehler zu entdecken. Die getestete Schaltung kann so als fehlerhaft klassifiziert
und aussortiert werden, bevor sie ausgeliefert wird.
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Dieser naive Ansatz ist jedoch nicht praktikabel, was am Beispiel des im Jahr 2022
veröffentlichen Intel® Core™ i9-12900T Prozessors schnell deutlich wird. Der genannte
Prozessor wird in einem Flip Chip Land Grid Array (FCLGA) Sockel vertrieben, welcher
über 1700 Ein- und Ausgabe Pins verfügt [Intel2022]. Unter der Annahme, dass die Hälfte
der Pins als Eingang verwendet wird, müssten für einen vollständigen (engl. exhaustive)
Test 2850 ≈ 10255 Testmuster an die zu testende Schaltung angelegt werden. Bei der
Betrachtung von Verzögerungsfehlern würde sich die Anzahl der Testmuster sogar noch
weiter auf 22·850 ≈ 10511 erhöhen, da pro Test zwei Testmuster benötigt werden, um
eine Flanke am Eingang der Schaltung zu erzeugen. Wenn der Test mit der maximal
möglichen Taktfrequenz fCLK von 4,9 GHz [Intel2022] durchgeführt wird, ergibt sich
eine Testzeit von ≈ 2,59 · 10278 Jahren pro Chip.

Um einen Test in angemessener Zeit und mit möglichst geringen Kosten durchführen
zu können, müssen die Testmuster so ausgewählt werden, dass möglichst wenig Test-
muster benötigt werden und gleichzeitig eine möglichst hohe Fehlerabdeckung erreicht
wird. Unter Fehlerabdeckung versteht man dabei, wie in (2.4) definiert, den Anteil der
detektierten Fehler an der Anzahl aller Fehler im verwendeten Fehlermodell.

Fehlerabdeckung = # detektierter Fehler
# Fehler im Fehlermodell (2.4)

Zur Erzeugung einer Testmustermenge kann eine Vielzahl an Algorithmen verwendet
werden. Die Testmustererzeugung mithilfe dieser Algorithmen wird als automatisier-
te Testmustererzeugung (engl. Automatic Test Pattern Generation, ATPG) bezeichnet.
Der Stand der Technik verwendet hierzu häufig ein zweistufiges Verfahren. In der ers-
ten Phase werden zufällig Testmuster generiert und mithilfe von Fehlersimulation die
Fehlerabdeckung dieser zufälligen Testmustermenge berechnet. Mithilfe dieser zufälligen
Testmustermenge kann in der Regel bereits eine hohe Anzahl „leicht detektierbarer“
Fehler erkannt werden. Für die verbleibenden „schwer detektierbaren“ Fehler werden
in einer zweiten deterministischen Phase konkrete Testmuster für die einzelnen Fehler
mithilfe komplexer Algorithmen erzeugt. Es wurde gezeigt, dass die Testmustererzeu-
gung für einen dedizierten Fehler innerhalb einer beliebigen kombinatorischen Schaltung
NP-vollständig ist [Fujiwara1982]. Daher ist insbesondere die zweite Phase der automa-
tischen Testmustererzeugung häufig sehr zeitaufwendig. Da sie pro Schaltungsentwurf
jedoch lediglich einmal durchgeführt werden muss, ist dieser Aufwand in der Regel ver-
tretbar. Weiterführende Informationen sind in [Eggersglüß2012] zu finden.
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2.4.1 Eingebauter Selbsttest

Noch einen Schritt weiter geht der eingebaute Selbsttest (engl. Built-In Self-Test, BIST).
Hierunter versteht man die vollständige Integration der notwendigen Module für die
Durchführung des Tests in die zu testende Schaltung. Der eingebaute Selbsttest kann
z. B. von außen mithilfe eines Startsignals gestartet werden. Nach Ablauf des Tests wird
dann mithilfe eines Ausgangssignals gezeigt, ob der Test erfolgreich war und somit die
Schaltung fehlerfrei ist oder nicht.

Modul 3

Modul 4

Modul 5

Modul 2

BIST Controller

T
M
G

CUT
T
A
E

Abbildung 2.9: System-on-Chip mit eingebautem Selbsttest.

Mithilfe des eingebauten Selbsttests ist es möglich, einzelne Module eines System-on-
Chips mit individuellen Testmethoden zu testen. In Abbildung 2.9 ist z. B. eine schema-
tische Darstellung eines System-on-Chips zu sehen. Oben links in der Abbildung ist ein
Logikmodul zu sehen, welches um einen eingebauten Selbsttest erweitert wurde. Hierzu
wurde zusätzlich ein Testmustergenerator (TMG), eine Testantwortevaluierung (TAE)
und ein BIST Controller integriert.

Mithilfe des TMG Moduls werden die benötigten Testmuster direkt auf dem Chip ge-
neriert und an die zu testende Schaltung angelegt. Die Testantwort der Schaltung wird
ebenfalls direkt auf dem Chip mithilfe des TAE Moduls evaluiert. Die Steuerung des
Tests übernimmt hierzu der integrierte BIST Controller. Ein Beispiel für einen Testmus-
tergenerator ist z. B. ein linear rückgekoppeltes Schieberegister, welches genutzt wird,
um pseudozufällige Testmuster zu generieren. Der Aufbau eines linear rückgekoppelten
Schieberegisters ist [Wang2006] zu entnehmen. Beispiele für die Testantwortevaluierung
werden in Kapitel 2.4.2 gegeben. Neben dem Testmustergenerator und der Testantworte-
valuierung werden in dieser als STUMPS (engl. Self Test Using MISR and Parallel Shift
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register sequence generator) [Bardell1982] bekannten Architektur parallel angeordnete
Prüfpfade verwendet. Bei den Prüfpfaden handelt es sich um Speicherelemente der zu
testenden Schaltung, die im Testbetrieb zu Schieberegistern verschaltet sind. Durch die
Verwendung von Prüfpfaden ist es möglich, sequenzielle Schaltungen während des Tests
als rein kombinatorische Schaltungen zu betrachten. Für die Bildung der Prüfpfade kön-
nen verschiedene Optimierungsziele wie die Minimierung der Verdrahtungskosten oder
Verteilung der Schaltaktivität während des Tests verwendet werden. Je nach Optimie-
rungsziel kommt es zu unterschiedlichen Prüfpfadkonfigurationen. Die Abbildung 2.10
zeigt zwei Beispiele für unterschiedliche Prüfpfadkonfigurationen, die im Weiteren als
parallele Prüfpfade dargestellt werden.
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Abbildung 2.10: Beispiel zweier Prüfpfadkonfigurationen.

Diese parallel angeordneten Prüfpfade werden im eingebauten Selbsttest, wie in Abbil-
dung 2.11 gezeigt, mithilfe des Testmustergenerators mit Testmustern gefüllt und die
Testantworten mithilfe eines Signaturregisters mit mehreren Eingängen (engl. Multiple-
Input Signature Register, MISR) zu Signaturen komprimiert.
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Abbildung 2.11: STUMPS Architektur [Bardell1982].

Für den Test auf Verzögerungsfehler muss an den Eingängen der zu testenden Schal-
tung eine Flanke erzeugt werden, die durch den Fehlerort zu mindestens einem Ausgang
der Schaltung propagiert werden muss. Hierzu muss die Schaltung zunächst mit einem
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ersten Testmuster initialisiert und im darauffolgenden Takt eine Flanke mithilfe eines
zweiten Testmusters erzeugt werden. In der ursprünglichen STUMPS Architektur ist es
jedoch nicht möglich, ein zweites Testmuster innerhalb eines Taktes an die Schaltung
anzulegen, da zunächst das gesamte Testmuster über mehrere Taktzyklen in die Prüfpfa-
de eingeschoben werden muss, bevor es an die kombinatorische Logik angelegt werden
kann.

Um den Test auf Verzögerungsfehler auch im eingebauten Selbsttest zu ermöglichen,
muss daher die STUMPS Architektur erweitert werden. Dies ist z. B. durch die Verwen-
dung von Launch-on-Capture [Savir1994], Launch-on-Shift [Savir1993] oder Enhanced
Scan [DasGupta1995] möglich.

Bei der Launch-on-Capture Methode wird zunächst ein Testmuster in die Prüfpfade
eingeschoben und an die zu testende Schaltung angelegt. Die resultierende Testantwort
wird nun im nächsten Takt wiederum als Eingabe für die zu testende Schaltung ver-
wendet, um so die benötigten Flanken an den Eingängen der Schaltung zu erzeugen.
Die möglichen Testmusterpaare werden so jedoch durch die Struktur der zu testenden
Schaltung eingeschränkt.

Bei der Verwendung von Launch-on-Shift wird genau wie beim Launch-on-Capture zu-
nächst ein Testmuster in die Prüfpfade eingeschoben und so die Schaltung initialisiert.
Nun wird jedoch nach einem Taktzyklus das Testmuster um eine Stelle innerhalb der
Prüfpfade verschoben und so das benötigte zweite Testmuster erzeugt. Auch hier ist
die Menge der möglichen Testmusterpaare durch die Struktur der Prüfpfade einge-
schränkt.

Eine uneingeschränkte Menge an möglichen Testmusterpaaren erhält man bei der Ver-
wendung des sogenannten Enhanced Scans. Hier werden die Prüfpfadelemente durch
ein zusätzliches Latch erweitert, in dem ein weiteres Bit gespeichert werden kann. So
ist es möglich, zunächst das erste Testmuster in die Prüfpfade einzuschieben und in den
Latches der Prüfzellen abzulegen. Anschließend kann ein zweites Testmuster in die Prüf-
pfade geladen werden. Beide Testmuster können so innerhalb von zwei Taktzyklen an
die zu testende Schaltung angelegt werden.

Für unterschiedliche Module innerhalb des Systems können mithilfe des eingebauten
Selbsttests unterschiedliche Testmethoden angewandt werden. Für den Zugriff auf die
einzelnen eingebauten Testmethoden der unterschiedlichen Module kann, wie im Stan-
dard IEEE 1149 [IEEE1994] beschrieben, der standardisierte Test Access Port (TAP)
verwendet werden, der mithilfe einer Boundary Scan Architektur zu einem Schiebere-
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gister verschaltet werden kann. Auch der Zugriff auf einzelne Instrumente innerhalb der
Teststrukturen kann mithilfe von rekonfigurierbaren Prüfpfaden, wie im Standard IEEE
1687 [IEEE2014] beschrieben, realisiert werden.

Ein weiterer großer Vorteil des eingebauten Selbsttests ist, dass er auch im Laufe des
Lebenszyklus der hochintegrierten Schaltung wieder verwendet werden kann und so auch
die Detektion von Alterungseffekten ermöglicht.

2.4.2 Testantwortkompaktierung

Um während des eingebauten Selbsttests die Testantworten mit den Referenzantwor-
ten vergleichen zu können, müssen letztere auf dem Mikrochip gespeichert werden. Zur
Verringerung des hierzu benötigten Speicheraufwands, werden Verfahren zur Testant-
wortkompaktierung verwendet, die im Folgenden näher erläutert werden.

Hierzu wird zunächst die Testantwortmatrix T = (tij) definiert, die die Ausgangsbele-
gung der zur testenden Schaltung für eine gegebene Testmustermenge darstellt.

Definition 2.4 (Testantwortmatrix). Gegeben sei eine Testmustermenge TM mit k

Testmustern und eine Schaltung mit m Prüfpfaden der Länge l. Eine Testantwort T i sei
eine m× l Matrix, welche die Antwort der Schaltung auf das i-te Testmuster repräsen-
tiert. Die m × n Testantwortmatrix T = (T k−1, . . . , , T i, . . . , T 0) ergibt sich durch die
Konkatenation der k Testantworten. Die Anzahl der Spalten ergibt sich somit zu n = k ·l.

1 1 1 0

0 1 0 0

1 1 0 0

1 0 1 1

𝑻 =
0 1 0 1 1 1 1 0 1 1 0 1
1 1 0 1 0 1 0 0 1 1 1 1
1 1 1 1 1 1 0 0 1 0 0 0
0 0 0 1 1 0 1 1 1 0 1 0

𝑻!

𝑻!𝑻" 𝑻#

Abbildung 2.12: Beispiel einer Testantwortmatrix

Zur Veranschaulichung des Aufbaus der Testantwortmatrix ist in Abbildung 2.12 ein
Beispiel für eine Testantwortmatrix mit drei Testantworten gegeben. Links in der Ab-
bildung ist eine Schaltung mit vier Prüfpfaden mit je vier Elementen zu sehen. In dem
gezeigten Beispiel enthalten die Prüfpfade der Schaltung die Testantwort auf das zweite
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Testmuster T 1. Um die Testantwort verarbeiten zu können, muss sie aus der Schaltung
geschoben werden. Spaltenweise wird so jede Testantwort T i aus der Schaltung in die
Testantwortmatrix hineingeschoben. Wie rechts in der Abbildung zu sehen ist, wird die
Testantwortmatrix so von rechts nach links mit den Testantworten gefüllt, beginnend
mit der Ältesten.

Mithilfe der Testantwortmatrix T lässt sich die Testantwortkompaktierung wie folgt
definieren.

Definition 2.5 (Testantwortkompaktierung). Unter einer Testantwortkompaktierung
versteht man die Transformation der als m × n Matrix dargestellten Testantworten
T = (tij) in eine p × q Matrix der Testsignaturen S = (sij) mithilfe der Transfor-
mationsfunktion Ψ, sodass S = Ψ(T ) gilt, mit tij, sij ∈ {0, 1, X}.

Die in der Definition 2.5 eingeführten Dimensionen der Testantwortmatrix T und der
Signaturmatrix S werden entlang der Spaltenindizes 1, . . . , n als zeitliche Dimension in-
terpretiert und entlang der Zeilenindizes 1, . . . , m als räumliche Dimension, welche die
Ausgänge der zu testenden Schaltung, respektive die Ausgänge des Kompaktierers, re-
präsentieren. Durch die Konkatenation aller Testantworten, respektive Signaturen, kann
mithilfe der Testantwortmatrix oder der Signaturmatrix die Ausgabe eines gesamten
Tests dargestellt werden.

Insbesondere kann die Testantwortkompaktierung in räumliche und zeitliche Kompak-
tierungsverfahren eingeteilt werden. Wenn nach der Transformation p < m gilt, spricht
man von einer räumlichen Kompaktierung, da die Anzahl der Zeilen reduziert wurde.
Gilt q < n, spricht man von einer zeitlichen Kompaktierung, da die Anzahl der Spalten
reduziert wurde. Gilt sowohl p < m als auch q < n, fanden beide Kompaktierungsarten
simultan statt. In den folgenden beiden Abschnitten wird auf die Grundlagen der räumli-
chen und zeitlichen Kompaktierung eingegangen. Wenn nicht anders gekennzeichnet, ba-
sieren die Angaben dieses Kapitels auf [Wang2006], [Wang2008a] und [Bushnell2000].

2.4.2.1 Räumliche Kompaktierung

Betrachten wir zunächst ein Beispiel für eine räumliche Kompaktierung. In Abbildung 2.13
ist ein räumlicher Kompaktierer zu sehen, der aus zwei XOR-Bäumen besteht. Der Kom-
paktierer verfügt über acht Eingänge und zwei Ausgänge, was einer Kompaktierungsrate
von vier entspricht. Die Kompaktierungsrate ist dabei wie folgt definiert.
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Definition 2.6 (Kompaktierungsrate KR). Sei T eine m×n Testantwortmatrix und S

eine p×q Testsignaturenmatrix, dann ist die Kompaktierungsrate KR wie folgt definiert.

KR = m · n
p · q

(2.5)
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Abbildung 2.13: Beispiel einer linearen Kompaktierung mithilfe zweier XOR-Bäume.

In dem gezeigten Beispiel werden die oberen vier Eingänge des Kompaktierers vom
ersten XOR-Baum zusammengefasst und die unteren vier Eingänge vom zweiten. Dies
lässt sich mithilfe der Kompaktormatrix C = (cij) wie folgt beschreiben: jeder Eintrag
in cij der Kompaktormatrix ist genau dann 1, wenn der Ausgang j vom Eingang i

abhängt. Ansonsten ist der Eintrag cij = 0. Wenn, wie in dem Beispiel in Abbildung 2.13
zu sehen ist, der zweite Ausgang unter anderem vom fünften Eingang abhängt, dann
muss der Eintrag c52 in der zweiten Spalte und der fünften Zeile gleich 1 sein. Die
Kompaktormatrix des Beispiels ergibt sich somit zu

C =



1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1



. (2.6)
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Mithilfe der Kompaktormatrix C lässt sich die in Definition 2.5 eingeführte Trans-
formationsfunktion Ψ mithilfe einer Matrixmultiplikation darstellen. Die Signaturma-
trix S lässt sich für lineare Kompaktierer unter Verwendung von Modulo-2-Arithmetik
[Nocker2004], wie folgt bestimmen.

S = CT · T (2.7)

Für das Beispiel in Abbildung 2.13 ergibt sich die Signaturmatrix S zu

S =
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

 · [1 0 1 1 0 0 1 1
]T

=
1 · 1⊕ 1 · 0⊕ 1 · 1⊕ 1 · 1⊕ 0 · 0⊕ 0 · 0⊕ 0 · 1⊕ 0 · 1
0 · 1⊕ 0 · 0⊕ 0 · 1⊕ 0 · 1⊕ 1 · 0⊕ 1 · 0⊕ 1 · 1⊕ 1 · 1


=

1
0


(2.8)
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Abbildung 2.14: Beispiel einer Fehlermaskierung.

Während der Kompaktierung kann es zur sogenannten Fehlermaskierung kommen. Diese
tritt auf, wenn während der Kompaktierung an beiden Eingängen eines XOR-Gatters ein
Fehlverhalten auftritt. Das XOR-Gatter liefert somit im fehlerhaften und im fehlerfreien
Fall dieselbe Ausgabe, wodurch der Fehler nach der Kompaktierung nicht mehr sichtbar
ist.

Das Beispiel in Abbildung 2.14 zeigt eine zu testende Schaltung mit acht Eingängen und
vier Ausgängen, in welcher der Fehler φi aufgetreten ist. In diesem Beispiel wurde der
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Fehler φi mithilfe eines Testmusters aktiviert und zum ersten und dritten Ausgang der
Schaltung propagiert. Die Testantwort der Schaltung wird mithilfe eines XOR-Baumes
aus drei XOR-Gattern zu einem Signatur-Bit kompaktiert. Die XOR-Verknüpfung des
ersten und des zweiten Ausgangs hat, genau wie die Verknüpfung des dritten und vier-
ten Ausgangs, unabhängig von der Ausgangsbelegung des zweiten und vierten Ausgangs,
das Fehlverhalten des Fehlers φi als Ergebnis. Das Ergebnis des folgenden XOR-Gatters
ist damit sowohl im fehlerhaften als auch im fehlerfreien Fall 0. Der Fehler kann somit
nicht mit dem gegebenen Testmuster erkannt werden. Um eine möglichst hohe Fehlerab-
deckung zu erreichen, ist es daher wichtig, beim Entwurf des Kompaktierers darauf zu
achten, die Fehlermaskierung zu minimieren.

Eine weitere große Herausforderung bei der Testantwortkompaktierung ist die Verarbei-
tung von unbekannten Werten, den sogenannten X-Werten, die während der Simulation
der Schaltung auftreten, wenn der tatsächliche Signalpegel während der Simulation noch
nicht bekannt ist. Diese können aufgrund von verschiedenen Ursachen auftreten, wie
z. B. durch potentialfreien Bussignalen, uninitialisierten Speicherelementen oder durch
die Übertaktung der zu testenden Schaltung während des Hochgeschwindigkeitstests.
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Abbildung 2.15: Beispiel einer linearen Kompaktierung mit einem unbekannten Wert.

Die Abbildung 2.15 zeigt den aus dem obigen Beispiel bekannten Kompaktierer. Die
Testantwort weist jedoch diesmal einen unbekannten Wert an dem vierten Eingang des
Kompaktierers auf und ist mit einem roten X markiert. Dieser einzelne unbekannte Wert
führt dazu, dass auch der erste Ausgang des Kompaktierers einen unbekannten Wert
annimmt, was dazu führt, dass ein Fehlverhalten, das an den ersten drei Eingängen des
Kompaktierers auftritt, nicht detektiert werden kann.
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2.4.2.2 Zeitliche Kompaktierung

Bei der zeitlichen Kompaktierung werden mithilfe von sequenzieller Logik aufeinander-
folgende Testantworten zu einer geringeren Anzahl an Signaturen kompaktiert. Wie in
Definition 2.5 eingeführt, wird hier mithilfe der Transformationsfunktion Ψ die Anzahl
der Spalten q in der Signaturmatrix S reduziert. Hierzu arbeitet die Transformations-
funktion Ψ die Testantwortmatrix spaltenweise ab.

Im folgenden Abschnitt wird das Multiple Input Signature Register (MISR) als eines
der weitverbreitetsten Verfahren zur zeitlichen Kompaktierung vorgestellt.

Multiple Input Signature Register (MISR) Das Signaturregister mit mehreren Ein-
gängen (engl. Multiple-Input Signature Register, MISR) ist ein linear rückgekoppeltes
Schieberegister mit nc Eingängen und nc Flipflops, welches durch das charakteristische
Polynom f(X) (2.9) mit dem Grad nc dargestellt werden kann.

f(X) = Xnc + hnc−1X
nc−1 + · · ·+ h2X

2 + h1X + 1 (2.9)

Die Koeffizienten des charakteristischen Polynoms h1, . . . , hnc−1 können die Werte 0
und 1 annehmen und stellen die Rückkopplung des Schieberegisters dar. Wie in Ab-
bildung 2.16 mithilfe von UND-Gattern dargestellt wird, besteht eine Rückkopplung
zum i-ten Bit des Schieberegisters, wenn der Koeffizient hi = 1 ist. Der Zustand des
Schieberegisters wird durch den Inhalt der Flipflops bestimmt und kann mithilfe des Zu-
standsvektors Z repräsentiert werden. Wird das MISR für die zeitliche Kompaktierung
genutzt, werden die Eingänge des Schieberegisters mit den Ausgängen der zu testenden
Schaltung verbunden. Mit jedem Takt wird somit eine Spalte der Testantwortmatrix T ,
beginnend mit der rechten, in das MISR eingeschoben. Zum Zeitpunkt t liegt somit die
(n−t)-te Spalte der Testantwortmatrix T [n−t] am MISR an, wobei n die Anzahl der Spal-
ten der Testantwortmatrix angibt. Die einzelnen Bits des Eingangsvektors T [n−t] werden
mithilfe von XOR-Gattern mit den entsprechenden Flipflops des MISRs verknüpft.

Zur Berechnung des Zustandsvektors Z(t) zum Zeitpunkt t kann das MISR alternativ
mithilfe einer Zustandsübergangsmatrix R beschrieben werden, welche die Zustands-
übergänge eines Schiebezyklus beschreibt.
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Abbildung 2.16: Signaturregister mit mehreren Eingängen (MISR).

Der Zustand des MISRs zum Zeitpunkt t + 1 lässt sich mithilfe der Gleichung (2.10)
berechnen.

Z(t + 1) = R ·Z(t) + T [n−t] (2.10)

Wie in (2.11) gezeigt wird, repräsentiert R die Übergänge des MISRs. Die erste Zei-
le der Zustandsübergangsmatrix repräsentiert die Rückkopplung des letzten MISR-Bits
zum ersten MISR-Bit und ist daher an allen Stellen, außer an der letzten Stelle, 0. Die
restlichen nc − 1 Zeilen der letzten Spalte werden entsprechend der linearen Rückkopp-
lungen h1, ..., hnc−1 aufgefüllt. Besteht eine Rückkopplung, gilt hi = 1, sonst hi = 0. Um
das Schieben innerhalb des Schieberegisters zu beschreiben, wird die untere Nebendia-
gonale der Zustandsübergangsmatrix mit Einsen gefüllt und die verbleibenden Einträge
auf 0 gesetzt.



z0(t + 1)
z1(t + 1)
z2(t + 1)

...
znc−2(t + 1)
znc−1(t + 1)


=



0 0 . . . . . . 0 1
1 0 . . . . . . 0 h1

0 1 . . . . . . 0 h2
... . . .

. . . . . .
... ...

0 0 . . .
. . . 0 hnc−2

0 0 . . . . . . 1 hnc−1


·



z0(t)
z1(t)
z2(t)

...
znc−2(t)
znc−1(t)


+



t
[n−t]
0

t
[n−t]
1

t
[n−t]
2
...

t
[n−t]
nc−2

t
[n−t]
nc−1


(2.11)

Mit dieser Gleichung lässt sich die Ausbreitung des Datenwortes T [n−t] berechnen, wenn
der anfängliche Statusvektor Z(0) bekannt ist. Dies lässt sich in einem Beispiel zeigen,
indem der Zustandsvektor nach zwei Verschiebungen berechnet wird.
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Für dieses Beispiel gelte ohne Einschränkung der Allgemeinheit Z(0) = 0. Die Zu-
standsvektoren Z(1) und Z(2) nach einem, respektive zwei Taktzyklen können wie folgt
bestimmt werden.

Z(1) = T [n] (2.12)

Z(2) = R ·Z(1) + T [n−1]

= R · T [n] + T [n−1]
(2.13)

Bereits nach zwei Verschiebungen zeigt sich, dass die Propagierung der Eingabedaten
nur vom Anfangszustand des MISRs und den Eingabedaten abhängt. Mithilfe von voll-
ständiger Induktion kann gezeigt werden, dass der Zustandsvektor nach t+1 Taktzyklen
wie folgt berechnet werden kann.

Z(t) = Rt−1 · T [n] + Rt−2 · T [n−1] + · · ·+ T [n−t−1] (2.14)

Diese Gleichung lässt sich in (2.15) zusammenfassen.

Z(t + 1) =
t∑

i=0
Rt−i · T [n−i] (2.15)

Mit (2.15) haben wir dann eine vereinfachte Gleichung zur Berechnung der Ausbreitung
der Daten im MISR.

Mithilfe eines solchen MISRs ist es möglich, sehr hohe Kompaktierungsraten zu erreichen,
solange keine unbekannten Werte das MISR erreichen. Wie in (2.15) zu erkennen ist,
werden bereits einzelne X-Werte im Eingangsvektor T [n−t] mit der Zeit über die Flipflops
des MISRs verteilt, was dazu führt, dass der gesamte Zustand des MISRs unbekannt wird
und somit nicht mit der Referenzantwort verglichen werden kann.

Auch für die zeitliche Kompaktierung von X-behafteten Testantworten finden sich Lö-
sungsansätze in der Literatur, wie zum Beispiel das in [Touba2007] vorgestellte X-Can-
celing MISR. Beim X-Canceling MISR wird ausgenutzt, dass die X-Werte unbekannt
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aber fest sind und symbolisch verarbeitet werden können. Zwei gleiche X-Symbole he-
ben sich somit auf, wenn sie während der Berechnung der Signatur miteinander XOR-
verknüpft werden. Durch die lineare Kombination der MISR-Bits ist es im Allgemei-
nen möglich, unbekannte Werte so zu kombinieren, dass deren Effekt auf die Signatur
aufgehoben wird. Wenn q X-freie Linearkombinationen der MISR-Bits gebildet werden,
können (1 − 2−q) · 100% der Fehler, die das X-Canceling MISR erreichen, auch nach
der Kompaktierung noch erkannt werden. Werden z. B. q = 8 X-freie Kombinationen
betrachtet, kann die Fehlerdurchlässigkeit mit 99,61 % abgeschätzt werden.

Erreichen zu viele X-Werte das X-Canceling MISR, ist es nicht mehr möglich, genü-
gend X-freie Kombinationen der MISR-Bits zu bilden und die Fehlerinformation in der
Signatur geht verloren. Um dies zu verhindern, muss das X-Canceling MISR zurückge-
setzt und die Zwischensignatur gespeichert werden, sobald nicht mehr genügend X-freie
Kombinationen gebildet werden können. Die Anzahl der nötigen Zwischensignaturen nz,
die gespeichert werden müssen, wenn ein m-Bit MISR verwendet wird und mindesten q

X-freie Kombinationen der MISR-Bits als Signatur verwendet werden sollen, kann mit
(2.16) abgeschätzt werden. Dabei ist XT otal die Anzahl der X-Werte, die das X-Canceling
MISR während des gesamten Tests erreichen. [Touba2007]

nz = XT otal

m− q
(2.16)

Auch im Hochgeschwindigkeitstest, der für den Test von kleinen Verzögerungsfehlern
eingesetzt wird, wird ein X-Canceling MISR zur zeitlichen Kompaktierung verwendet.
Der Hochgeschwindigkeitstest wird im folgenden Abschnitt erläutert.

2.4.3 Hochgeschwindigkeitstest

Während für den Test von kleinen Verzögerungsfehlern ATPG-Algorithmen existieren,
die versuchen die kleinen Verzögerungsfehler über möglichst lange Pfade an die Ausgänge
zu propagieren [Sauer2013; Eggersglüß2012], ist es für versteckte kleine Verzögerungs-
fehler, wie in Kapitel 2.3.3 gezeigt, nicht möglich, das Fehlverhalten über einen langen
Pfad an einen Ausgang der Schaltung zu propagieren. Zur Detektion von versteckten
kleinen Verzögerungsfehlern muss daher der konventionelle Verzögerungstest zum Hoch-
geschwindigkeitstest erweitert werden. [Yan2003; Ahmed2006; Lee2008; Hellebrand2014;
Kampmann2020]
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Während des Hochgeschwindigkeitstests wird die Schaltung unter erhöhter Taktfrequenz
getestet. Dadurch kann die Schaltung zu einem früheren Zeitpunkt beobachtet werden,
als es mit der nominellen Taktfrequenz möglich wäre.
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Abbildung 2.17: Detektion eines versteckten kleinen Verzögerungsfehlers (HDF) mithilfe
eines Hochgeschwindigkeitstests [Sprenger2019].

In Abbildung 2.17 ist ein Beispiel für die Anwendung eines Hochgeschwindigkeitstests
gegeben. In der Abbildung ist eine kombinatorische Schaltung (links) mit vier Ein- und
Ausgängen gezeigt. Rechts sind die Signalverläufe der vier Ausgänge zu sehen. Wenn
der kleine Verzögerungsfehler φ1 auftritt, kann das Fehlverhalten an die Ausgänge o1

und o2 propagiert werden. In diesem Beispiel wird der Fehler über einen langen Pfad an
den Ausgang o1 propagiert, sodass der Fehler während der nominellen Beobachtungszeit
tnom = 1/fnom sichtbar ist und somit in einem normalen Verzögerungstest detektiert
werden kann. Der Fehler φ2 hingegen kann nur über einen kurzen Pfad an den Aus-
gang o3 propagiert werden, wodurch der Fehler zur nominellen Beobachtungszeit nicht
erkannt werden kann. Der versteckte kleine Verzögerungsfehler kann im Hochgeschwin-
digkeitstest erkannt werden, indem eine erhöhte Taktfrequenz fF AST verwendet wird.
Zur Beobachtungszeit tF AST = 1/fF AST wird der Fehler φ2 sichtbar. Aufgrund der er-
höhten Taktfrequenz muss jedoch der Ausgang o1 als unbekannt angenommen werden,
da das Signal noch keinen stabilen Wert angenommen hat, was durch die schraffierten
Flächen angedeutet wird. Um die Testdauer möglichst gering zu halten, ist es wichtig
möglichst wenige Taktfrequenzen zu verwenden und gleichzeitig viele versteckte kleine
Verzögerungsfehler abzudecken. Arbeiten zur optimalen Frequenzauswahl sind in [Hel-
lebrand2015; Kampmann2015; Liu2018; Kampmann2020] zu finden.

Wie in [Hellebrand2014] vorgestellt, wird zur Verarbeitung der Testantworten die in
Abbildung 2.18 gezeigte Architektur verwendet. Mithilfe eines Testmustergenerators
(TMG) werden Testmuster an die zu testende Schaltung angelegt. Die Testantwort-
en durchlaufen anschließend ein zweistufiges Kompaktierungsverfahren. Dabei werden
die Testantworten zunächst räumlich kompaktiert, um anschließend eine zeitliche Kom-
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Abbildung 2.18: Testarchitektur für den Hochgeschwindigkeitstest [Sprenger2019].

paktierung mithilfe eines X-Canceling MISRs zu durchlaufen. Die bei der zeitlichen
Kompaktierung generierten Zwischensignaturen werden in einem kleinen Speicher zur
weiteren Verarbeitung gespeichert. Zur Verarbeitung von variierenden X-Raten, wird in
Kapitel 4 ein Verfahren zur X-toleranten räumlichen Kompaktierung entwickelt.





3 Einführung in künstliche neuronale
Netze

Künstliche neuronale Netze sind eine bekannte Methode des maschinellen Lernens und
erhalten aufgrund von ihrer Vergleichbarkeit mit dem menschlichen Gehirn eine große
Aufmerksamkeit. Insbesondere durch die immense Steigerung der Rechenleistung von
Computersystemen in den letzten Jahrzehnten finden künstliche neuronale Netze An-
wendung in nahezu allen Forschungsbereichen und in einer Vielzahl kommerzieller Pro-
dukte. Das erste künstliche neuronale Netz wurde dabei schon 1943 von McCulloch und
Pitts [McCulloch1943] vorgestellt.

In diesem Kapitel wird eine kurze Einführung in die in dieser Arbeit verwendeten
künstlichen neuronalen Netze gegeben. Eine umfassende Einführung in das Thema des
maschinellen Lernens ist unter anderem in [Bishop2016; Duda2012; Géron2020; Abu-
Mostafa2012] zu finden, auf denen dieses Kapitel basiert, falls nicht anders gekennzeich-
net.

Σ

w1

w3

w2

x1

x2

x3

Eingabe: 𝒙 Gewichte: 𝒘

Gewichtete Summe: 
𝑧 = 𝒙!𝒘+ 𝑏

Aktivierungsfunktion:
𝜙 𝑧 = 𝑠𝑡𝑒𝑝(𝑧)

Ausgabe:
h𝐰(𝐱) = 𝑠𝑡𝑒𝑝(𝒙!𝒘+ 𝑏)

		𝑏

Bias-Term: 𝑏

Abbildung 3.1: Beispiel eines künstlichen Neurons.

Ein künstliches neuronales Netz ist aus einer Vielzahl einzelner künstlicher Neuronen
aufgebaut. Ein Beispiel eines künstlichen Neurons mit drei Eingängen ist in der Ab-
bildung 3.1 dargestellt. Um die Ausgabe des künstlichen Neurons zu bestimmen, wird
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zunächst die gewichtete Summe der Eingänge gebildet. Mithilfe des Eingangsvektors x,
des Vektors w, der die einzelnen Gewichte des Neurons repräsentiert und des Bias-Terms
b lässt sich die gewichtete Summe wie folgt berechnen.

z = xT w + b (3.1)

Jeder Eingangswert xi wird hierzu mit dem zugehörigen Gewicht wi multipliziert und
die Ergebnisse werden aufsummiert. Auf die gewichtete Summe der Eingänge wendet das
künstliche Neuron anschließend die Aktivierungsfunktion ϕ(z) an. In dem hier gezeigten
Beispiel wird die Stufenfunktion als Aktivierungsfunktion verwendet ϕ(z) = step(z).
Wobei die Stufenfunktion step(x) wie folgt definiert ist.

step(x) =


0, wenn x < 0
1, wenn x ≥ 0

(3.2)

Als Aktivierungsfunktion können jedoch beliebige Funktionen verwendet werden. In An-
lehnung an das biologische Vorbild, das Gehirn, wurden häufig Funktionen verwendet,
die das Verhalten von biologischen Neuronen imitieren, wie z. B. die Sigmoidfunktion
sig(x) (vgl. (3.3)) oder der Tangens hyperbolicus tanh(x) (vgl. (3.4)). Aktuelle For-
schungsarbeiten zeigen jedoch, dass diese Funktionen nicht zwangsläufig zu den bes-
ten Ergebnissen führen. Daher finden vermehrt Funktionen wie die ReLU-Funktion
(engl. Rectified Linear Unit, ReLU) (vgl. (3.5)) Verwendung als Aktivierungsfunktion.

sig(x) = 1
1 + e−x

(3.3)

tanh(x) = 1− 2
e2x + 1 (3.4)

relu(x) = max(0, x) (3.5)
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Die Abbildung 3.2 zeigt den Verlauf der Stufenfunktion step(x), der Sigmoidfunkti-
on sig(x), des Tangens hyperbolicus tanh(x) und der ReLU-Funktion relu(x) für x ∈
[−4, 4]. Wie in der Abbildung zu sehen ist, sind die Wertebereiche der Sigmoidfunktion
und des Tangens hyperbolicus auf [0, 1], respektive [1, 1] beschränkt und die Funktionen
sind stetig differenzierbar. Während der Wertebereich der Stufenfunktion ebenfalls be-
schränkt ist, ist die Funktion nicht stetig differenzierbar. Der Wertebereich der ReLU-
Funktion ist hingegen nur einseitig beschränkt und die Funktion ist ebenfalls nicht stetig
differenzierbar.
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Abbildung 3.2: Verlauf der Aktivierungsfunktionen step(x), sig(x), tanh(x) und relu(x).

Die Ausgabe hw(x) des in Abbildung 3.1 gezeigten künstlichen Neurons in Abhängigkeit
von w und x lässt sich mithilfe der Aktivierungsfunktion ϕ(z) wie folgt bestimmen.

hw(x) = ϕ(z) = step(xT w + b) (3.6)
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Mithilfe der vorgestellten künstlichen Neuronen lassen sich, wie in Abbildung 3.3 gezeigt,
einfache künstliche neuronale Netze aufbauen. Das hier gezeigte einschichtige künstliche
neuronale Netz wird auch Perzeptron genannt und besteht im Allgemeinen aus einem
oder mehreren künstlichen Neuronen, wobei alle Eingänge mit allen Neuronen verbun-
den sind. Zur besseren Veranschaulichung wurde auf die Darstellung des Bias-Terms b

verzichtet. Mithilfe eines solchen Perzeptrons ist es bereits möglich linear separierbare
Klassifizierungsprobleme, wie z. B. das des logischen UND-Operators, zu lösen.

Σ

Σ

x1

x2

x3

y1

y2

Abbildung 3.3: Beispiel eines Perzeptrons.

Ein Klassifizierungsproblem wird linear separierbar genannt, wenn es mithilfe einer li-
nearen Hyperebene möglich ist, die Punkte eines Raumes in ihre zugehörigen Klassen
einzuteilen. Im Beispiel des in Abbildung 3.4 zu sehenden zweidimensionalen Raumes ist
es beispielsweise möglich, die Klasse der orangenen Punkte und die Klasse der blauen
Rauten mithilfe einer Geraden zu separieren.
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Abbildung 3.4: Linear separierbares Klassifizierungsproblem.

Um auch nicht linear separierbare Klassifizierungsprobleme lösen zu können, muss das
Perzeptron zu einem mehrschichtigen Perzeptron (MLP) erweitert werden. Bei einem
mehrschichtigen Perzeptron handelt es sich um ein vollständig verbundenes, vorwärts
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gerichtetes, künstliches neuronales Netz mit mindestens einer versteckten Ebene. Als
versteckte Ebenen werden dabei die Ebenen bezeichnet, die zwischen Eingabe- und Aus-
gabe-Ebene liegen. Abbildung 3.5 zeigt ein mehrschichtiges Perzeptron mit einer Einga-
be-Ebene, die die Eingabewerte aufnimmt, zwei versteckten Ebenen und einer Ausgabe-
Ebene. Häufig wird bei der Verwendung eines mehrschichtigen Perzeptrons mit mehr als
zwei versteckten Ebenen auch von einem tiefen künstlichen neuronalen Netz (engl. Deep
Neural Network, DNN) gesprochen.
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Abbildung 3.5: Künstliches neuronales Netz mit zwei versteckten Ebenen.

Die Herausforderung ist nun die einzelnen Gewichte so auszuwählen, dass das künstli-
che neuronale Netz das gewünschte Verhalten aufweist, wie z. B. die Klassifizierung der
Eingabedaten in unterschiedliche Klassen. Hierzu muss das mehrschichtige Perzeptron
zunächst mithilfe eines überwachten Lernverfahrens trainiert werden. Ein überwachtes
Lernverfahren zeichnet sich dadurch aus, dass ein Datensatz zur Verfügung steht, in
dem jedem Datenpunkt ein sogenanntes Label zugewiesen ist, welches der gewünsch-
ten Antwort des künstlichen neuronalen Netzes entspricht, wenn der Datenpunkt an die
Eingänge des Netzes angelegt wird. Hierzu wird in der Regel eine Variante des Backpro-
pagation-Algorithmus [Rumelhart1987] verwendet, der auf einem Gradientenverfahren
basiert. Zu Beginn des Backpropagation-Algorithmus werden zunächst alle Gewichte
des mehrschichtigen Perzeptrons mit zufälligen Werten initialisiert. Anschließend wird
in einem Vorwärtsdurchlauf die Vorhersage des mehrschichtigen Perzeptrons für einen
Teil des Trainingsdatensatzes bestimmt.
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Mithilfe der erwarteten Antworten (Label) kann daraufhin eine Fehlerfunktion bestimmt
werden. Als Fehlerfunktion E(w) kann z. B. die Summe der quadratischen Fehler zwi-
schen den Labeln l und der tatsächlichen Antworten y auf n Eingabevektoren eines
Trainingsdatensatzes, wie in (3.7) definiert, verwendet werden. Der Vektor li gibt da-
bei die aus dem Trainingsdatensatz bekannte Antwort auf den i-ten Eingabevektor an,
während der Vektor yi die Antwort des neuronalen Netzes auf den i-ten Eingabevektor
für die im Vektor w zusammengefassten verwendeten Gewichte darstellt.

E(w) = 1
2

n∑
i=1

(li − yi) = 1
2 ||l− y||2 (3.7)

Im folgenden Schritt wird für jede Schicht, angefangen mit der Ausgabeschicht, der
Beitrag jeder Verbindung zu dem zuvor berechneten Fehler berechnet und das Gewicht
äquivalent zu einem Gradientenverfahren aktualisiert. So wird der Trainigsdatensatz
mehrfach durchlaufen, wobei jeder Durchlauf als Epoche bezeichnet wird.

Soll ein mehrschichtiges Perzeptron zur Klassifizierung eingesetzt werden, kann die Aus-
gabe des künstlichen neuronalen Netzes als Einordnung in eine bestimmte Klasse in-
terpretiert werden. So ist es z. B. mithilfe eines einzelnen künstlichen Neurons in der
Ausgabeschicht möglich, eine binäre Klassifikation durchzuführen. Für eine Einteilung
in eine von mehreren Klassen, die sogenannten Multiclass-Klassifizierung, wird ein Neu-
ron je Klasse in der Ausgabeschicht benötigt. Als Aktivierungsfunktion der Ausgabe-
schicht sollte hier die softmax-Funktion verwendet werden. Diese sorgt dafür, dass die
Ausgabewerte des mehrschichtigen Perzeptrons zwischen 0 und 1 liegen und die Summe
der Ausgabewerte 1 ergibt. Somit lassen sich die Ausgabewerte als Wahrscheinlichkei-
ten interpretieren, mit der sich der aktuelle Datenpunkt in der entsprechenden Klasse
befindet.

softmax : RK → [0, 1]K

softmax(x)j = exj

ΣK
k=1e

xk
, j = 1, · · · , K

(3.8)
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3.1 Merkmalsextraktion

Eine Herausforderung für das maschinelle Lernen ist der sogenannte Fluch der Dimen-
sionen [Bellman1961]. Hierunter versteht man das exponentielle Wachstum des Merk-
malraums in Abhängigkeit der Anzahl der Merkmale (engl. features) des verwendeten
Datensatzes. Unter einem Merkmal versteht man dabei eine Dimension des Eingabe-
vektors, der die Lage des Datenpunktes in einem mehrdimensionalen Raum beschreibt.
Die Anzahl der möglichen Punkte innerhalb dieses mehrdimensionalen Raums wächst
exponentiell mit der Anzahl der Dimensionen.

Da für das Training eines künstlichen neuronalen Netzes in einem großen Merkmalsraum
entsprechend viele Trainingsdatenpunkte notwendig sind, werden häufig Verfahren zur
Reduktion der Dimensionalität oder Merkmalsextraktion eingesetzt.

Einfache Verfahren wählen die Merkmale entweder rein zufällig oder anhand von sta-
tistischen Eigenschaften des Datensatzes aus. Eine Möglichkeit zur Merkmalsextraktion
ist z. B. die Auswahl anhand der Varianz der einzelnen Merkmale. Dabei werden nur die
Merkmale ausgewählt, die eine Varianz oberhalb eines gegebenen Grenzwertes aufwei-
sen. Somit werden Merkmale mit einer geringen Varianz vernachlässigt, da sie nur wenig
zur Klassifizierung des Datensatzes beitragen. Eine weitere Möglichkeit ist die Auswahl
der Merkmale anhand von Hypothesentests wie z. B. dem χ2-Test. Hierbei wird je ein
Merkmal und die zugehörige Klasse als Zufallsvariable modelliert und ihre statistische
Unabhängigkeit geprüft. So können die Merkmale, die statistisch unabhängig von dem
Ergebnis der Klassifikation sind, vernachlässigt werden.

Ein häufig verwendetes Verfahren der Merkmalsextraktion ist das Verfahren der Haupt-
komponentenanalyse (engl. Principal Component Analysis, PCA), welches im Folgenden
kurz erläutert wird.

3.1.1 Hauptkomponentenanalyse

Die Hauptkomponentenanalyse (engl. Principal Component Analysis, PCA) ist ein Ver-
fahren, das häufig zur Merkmalsextraktion oder zur Visualisierung von mehrdimensiona-
len Datensätzen angewandt wird. Mithilfe der PCA ist es möglich, einen m-dimensiona-
len Raum auf einen n-dimensionalen Raum abzubilden, wobei typischerweise n < m gilt.
Dabei wird der m-dimensionale Raum mithilfe einer orthogonalen Projektion so auf den
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n-dimensionalen Raum abgebildet, dass die Varianz der abgebildeten Daten maximal ist.
Entsprechend [Bishop2016] lassen sich die n Hauptkomponenten eines m-dimensionalen
Datensatzes xi ∈ Rm mit k Datenpunkten bestimmen, indem man die n Eigenvekto-
ren der n größten Eigenwerte der Kovarianzmatrix der Daten KV bestimmt, wobei die
Kovarianzmatrix wie folgt definiert ist.

KV = 1
k

k∑
i=1

(xi − x̄)(xi − x̄)T (3.9)

x̄ entspricht dabei dem Mittelwert des Datensatzes. Durch die n Eigenvektoren wird
so ein neuer Merkmalraum mit n Dimensionen aufgespannt, was einer Reduktion auf n

Merkmale entspricht.

3.2 Ensemble-Methoden

Zur Lösung eines Klassifizierungsproblems können durch die Variation der Architektur
eines künstlichen neuronalen Netzes oder durch Variation des Lernprozesses des Netzes
unterschiedliche Prädiktoren gebildet werden. Eine Menge von Prädiktoren für dasselbe
Klassifizierungsproblem wird Ensemble genannt. Mithilfe von verschiedenen Ensemble-
Methoden können die Prädiktoren des Ensembles zu einem neuen Prädiktor zusammen-
gefasst werden, der eine bessere Vorhersagegenauigkeit als die einzelnen Prädiktoren
des Ensembles aufweisen kann. In der Regel werden hierzu die Ergebnisse der einzelnen
Prädiktoren mithilfe eines Mehrheitsentscheids zu einem neuen Ergebnis zusammenge-
fasst.

Eine häufig verwendete Ensemble-Methode ist das sogenannte Bagging [Breiman1996],
das im Folgenden kurz erläutert wird. Für die Bagging-Methode werden zunächst meh-
rere zufällige Stichproben aus dem Trainingsdatensatz gezogen. Wie in Abbildung 3.6
zu sehen ist, werden mithilfe dieser zufälligen Stichproben mehrere künstliche neuro-
nale Netze trainiert. Für die Klassifizierung eines neuen Datenpunktes treffen zunächst
alle trainierten künstlichen neuronalen Netze eine separate Entscheidung. Mithilfe ei-
nes Mehrheitsentscheids wird anschließend die Entscheidung für das gesamte Ensemble
gebildet.
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Abbildung 3.6: Schema der Bagging Ensemble-Methode [Géron2020].

Mithilfe der in den letzten beiden Kapiteln eingeführten Grundlagen, werden die Beiträge
dieser Arbeit zur Bewältigung von Unsicherheiten während der gesamten Lebenszeit
einer hochintegrierten Schaltung in den folgenden beiden Kapiteln eingeführt.





4 Testantwortkompaktierung für den
Hochgeschwindigkeitstest

Eine der Herausforderungen für den Test auf versteckte kleine Verzögerungsfehler (engl.
Hidden Delay Faults, HDFs) mithilfe des eingebauten Hochgeschwindigkeitstests stellt
die variierende X-Rate im Verlauf des Tests dar. Wie in Kapitel 2.4.3 erläutert wurde,
kommt es durch die Verwendung unterschiedlicher Testfrequenzen zu variierenden X-
Raten während des Tests. Die variierenden X-Raten führen dazu, dass Kompaktierungs-
verfahren, die dem Stand der Technik entsprechen, nicht effizient verwendet werden kön-
nen, da sie immer für den schlechtesten Fall ausgelegt werden müssen. In diesem Kapitel
wird ein effizientes Verfahren zur räumlichen Testantwortkompaktierung für variierende
X-Raten vorgestellt.
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(b) Dreifache Taktfrequenz (f2 = 3 · fnom)

Abbildung 4.1: X-Verteilung für b17_1 [Sprenger2019].

Abbildung 4.1 zeigt die Verteilung der X-Werte für die Schaltung b17_1 aus der ITC’99
Benchmark-Suite [Corno2000] für zwei verkürzte Taktperioden. In Abbildung 4.1a wurde
mit TF AST = 1794 ps die Hälfte der nominellen Taktperiode verwendet und in Abbil-
dung 4.1b wurde mit TF AST = 1196 ps ein Drittel der nominalen Taktperiode verwendet.
Auf der X-Achse wurden dabei die einzelnen Testantworten auf eine Testmenge für Ver-
zögerungsfehler aufgeführt. Die verwendete Testmenge wurde mithilfe einer kommerzi-
ellen Software generiert. Auf der Y-Achse sind die Ausgänge der Schaltung aufgetragen.
Jeder blaue Punkt in der Abbildung stellt dabei einen unbekannten Wert (X-Wert) dar.
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Dabei fällt auf, dass mit sinkender Taktperiode die Anzahl der X-Werte steigt. Aber
auch während der Nutzung einer einzelnen Taktperiode variiert die Anzahl der X-Werte
pro Testantwort. [Sprenger2018b; Sprenger2019]

Daraus ergeben sich zwei Anforderungen an das Verfahren zur Testantwortkompaktie-
rung im Hochgeschwindigkeitstest. Einerseits muss das Kompaktierungsverfahren flexi-
bel auf die variierenden X-Raten bei unterschiedlichen Testfrequenzen reagieren können.
Andererseits muss innerhalb einer Testfrequenz auf die schwankenden X-Raten reagiert
werden können. Neben den Anforderungen zur Flexibilität des Kompaktierungsverfah-
rens soll die Fehlerabdeckung durch das Kompaktierungsverfahren nicht signifikant ver-
ringert werden. Zur Unterstützung des zur zeitlichen Kompaktierung verwendeten X-
Canceling MISRs im eingebauten Hochgeschwindigkeitstests ist es außerdem notwen-
dig, die X-Rate am X-Canceling MISR zu reduzieren, um die Anzahl der benötigten
Zwischensignaturen zu reduzieren.

Im Laufe dieses Kapitels wird ein Verfahren zur räumlichen Testantwortkompaktierung
vorgestellt, welches die oben genannten Anforderungen erfüllt. Hierzu wird in Kapitel 4.1
zunächst der Stand der Technik vorgestellt, bevor in Kapitel 4.2 die modulare Kompak-
tierung eingeführt wird. Im Anschluss wird in Kapitel 4.3 der modulare Kompaktierer
zum hybriden Kompaktierer erweitert.

4.1 Stand der Technik

In der Literatur sind eine Vielzahl an Verfahren zur X-toleranten Kompaktierung von
Testantworten zu finden, wie zum Beispiel die sogenannte X-Blockierung [Naruse2003;
Wang2008b]. Hier werden die unbekannten Werte auf dem Weg vom Entstehungsort
zum Eingang der Kompaktierung blockiert, und somit wird verhindert, dass unbekannte
Werte in der Testantwort sichtbar werden.

In der Abbildung 4.2 ist ein Beispiel einer X-Blockierung zu sehen. Ein Teil der zu testen-
den Schaltung enthält eine X-Quelle (graue Markierung). Diese X-Quelle kann mithilfe
des gezeigten UND-Gatters blockiert werden. Der unbekannte Wert erreicht somit die
Kompaktierung nicht. Ein Nachteil der X-Blockierung ist der hohe Hardwareaufwand in
der zu testenden Schaltung. Ein weiteres Problem ist, dass Fehler, die nur über einen
der blockierten Pfade propagiert werden können, nicht detektiert werden können und
somit die Fehlerabdeckung verringert wird.
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Abbildung 4.2: Beispiel einer X-Blockierung.

Ein weiteres Verfahren ist die X-Maskierung [Pomeranz2002; Wohl2004; Volkerink2005;
Rajski2005; Tang2006; Wohl2007; Wohl2008; Czysz2010; Mrugalski2022b]. Bei der X-
Maskierung werden die unbekannten Werte mithilfe von zusätzlichen UND- oder ODER-
Gattern maskiert, um so einen deterministischen Wert am Eingang des Kompaktierers
zu erzeugen.
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Abbildung 4.3: Beispiel einer X-Maskierung.

Die Abbildung 4.3 zeigt eine zu testende Schaltung mit einer X-Maskierung und ei-
ner Kompaktierung. Die grau markierte X-Maskierung wurde hier mithilfe von UND-
Gattern und einer Maskierungssteuerung implementiert. Mithilfe von Steuerungsvekto-
ren, die von der Maskierungssteuerung zur Verfügung gestellt werden, ist es so möglich,
entweder die Ausgänge an die Kompaktierung weiterzuleiten oder die Ausgänge zu mas-
kieren. Um einen Ausgang zu maskieren, wird von der Maskierungssteuerung eine 0 an
das zugehörige UND-Gatter angelegt und somit eine logische 0 an die Kompaktierung
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weitergeleitet. So können die von der zu testenden Schaltung erzeugten X-Werte maskiert
werden. Ein Nachteil der X-Maskierung ist die große Menge an benötigten Steuerungs-
vektoren. Für jede Ausgabe der zu testenden Schaltung muss auch ein Steuerungsvektor
an die Maskierungslogik angelegt werden, was zu einem hohen Hardwareaufwand führen
kann.

Zur Reduktion des Hardwareaufwands ist es möglich hierarchische Verfahren zu verwen-
den, bei denen die Maskierung über mehrere Takte konstant gehalten wird. Hierdurch
kann es jedoch dazu kommen, dass erkennbare Fehler maskiert werden und dadurch
die Fehlerabdeckung des Tests verringert wird. In [Rabenalt2009] wird hierzu ein hier-
archisches Maskierungsregister vorgestellt, das es ermöglicht die Maskierung nur auf
eine Teilmenge der Kompaktierereingänge anzuwenden. Für diese Teilmenge kann das
Maskierungsregister anschließend mit Steuerungsvektoren geladen werden, die für jedes
Testmuster optimiert sind. Mithilfe eines einzelnen Steuerungssignal kann der aktuelle
Steuerungsvektor dann taktweise aktiviert bzw. deaktiviert werden. Dieser hierarchische
Ansatz findet aktuell auch in kommerziellen Kompaktierern Anwendung [Rajski2008;
Liu2021; Mrugalski2022a]. Hier werden ebenfalls Konfigurationsregister verwendet, die
es einerseits ermöglichen, Kompaktierereingänge gruppenweise über mehrere Testmus-
ter hinweg zu maskieren und andererseits ermöglichen, einzelne Kompaktierereingänge
taktgenau zu maskieren. Zur weiteren Reduktion des benötigten Speicheraufwands wer-
den die Steuerungsvektoren in diesen Ansätzen komprimiert auf dem Chip gespeichert
oder an den Chip übertragen. Hierzu können z. B. Verfahren, wie das LFSR reseeding
[Naruse2003] verwendet werden.

Während des Entwurfs der hochintegrierten Schaltung kann die X-Maskierung unter-
stützt werden, indem die X-Rate der einzelnen Speicherelemente berücksichtigt wird. So
wird in [Kampmann2018] ein graphbasiertes Verfahren zur Bildung von Prüfpfaden vor-
gestellt, welches die Speicherelemente anhand der zu erwartenden Anzahl an X-Werten
während des Tests gruppiert. Prüfpfade, die aus den Speicherelementen gebildet wer-
den, welche die meisten X-Werte enthalten, werden auch X-Pfade [Wohl2008] genannt.
Während der X-Maskierung können diese X-Pfade für einzelne oder mehrere Testant-
worten blockiert werden, wodurch der Speicheraufwand der Steuerungsvektoren geringer
wird.

Zur Einführung in das in diesem Kapitel vorgestellte Kompaktierungsverfahren wird im
folgenden Abschnitt näher auf codebasierte Kompaktierungsverfahren [Patel2003; Shar-
ma2005] eingegangen, die fehlerkorrigierende Codes ausnutzen, um X-Werte in Testant-
worten zu tolerieren. Zunächst wird auf das X-Compact [Mitra2004a] Verfahren einge-
gangen und anschließend die stochastische Kompaktierung [Mitra2004b] erläutert.
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4.1.1 X-tolerante lineare Kompaktierung (X-Compact)

Bei dem in [Mitra2004a] vorgestellten X-toleranten Kompaktierungsverfahren handelt
es sich um eine lineare Kompaktierung mithilfe von XOR-Bäumen. Wie in dem Beispiel
in Abbildung 4.4 zu sehen ist, werden die acht Ausgänge der zu testenden Schaltung an
den X-Kompaktierer angeschlossen und so auf vier Kompaktiererausgänge abgebildet.
Der X-Kompaktierer kann dabei durch die Kompaktormatrix C = (cij), wie rechts in
Abbildung 4.4 zu sehen, repräsentiert werden. Die Spalten der Matrix stellen hierzu die
Ausgänge des Kompaktierers dar und die Zeilen die Eingänge.

1
1
0
0
1
0
1
0

0
1
1
1
1
0
0
0

0
0
0
1
1
1
1
0

0
1
0
1
0
0
1
1

𝑚
K
om
paktierer

E
ingänge

𝑝 Kompaktierer
Ausgänge

Eingang 2

Eingang 3

Eingang 4

Eingang 5

Eingang 6

Eingang 7

Eingang 1

Eingang 8

=1

=1

=1

=1

=1

=1

=1

=1

=1

=1

=1

=1

Ausgang 1

Ausgang 2

Ausgang 3

Ausgang 4

Abbildung 4.4: Aufbau eines X-Kompaktierers und Matrixrepräsentation.

In der linearen Kompaktierung kann es, wie in Kapitel 2.4.2.1 erläutert wurde, zu einer
Fehlermaskierung kommen. Diese tritt auf, wenn eine gerade Anzahl an Fehlereffekten
in einem Kompaktiererausgang zusammengefasst wird.

Um die Fehlermaskierung im X-Kompaktierer zu verhindern, können aus der Kodie-
rungstheorie bekannte Theoreme zur Bildung von Checkmatrizen linearer Codes [Huff-
man2003] angewandt werden. Im Folgenden werden die in [Mitra2004a] beschriebenen
Theoreme zum Aufbau linearer Kompaktierer eingeführt.

Theorem 4.1. Wenn in einem Taktzyklus nur ein Ausgang der zu testenden Schal-
tung fehlerhaft ist, dann ist der Fehler genau dann am Ausgang des X-Kompaktierers zu
erkennen, wenn keine Zeile der Kompaktormatrix nur 0en enthält.

Theorem 4.2. Wenn in einem Taktzyklus ein, zwei oder eine ungerade Anzahl an Aus-
gängen fehlerhaft sind, dann wird der Fehler genau dann am Ausgang des Kompaktierers
erkannt, wenn jede Zeile der Kompaktormatrix mindestens einen Wert ̸= 0 enthält, ein-
deutig ist und eine ungerade Anzahl 1en enthält.
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Durch das Theorem 4.2 wird garantiert, dass, wenn ein Fehlverhalten an einem, zwei oder
einer ungeraden Anzahl an Ausgängen sichtbar wird, der Fehler mindestens an einem
Ausgang des Kompaktierers erkennbar wird. Beim Auftreten von Fehlern, die nicht durch
die Theoreme 4.1 oder 4.2 abgedeckt sind, kann keine Garantie zur Detektion des Fehlers
gegeben werden.

Die Fehlererkennung bei einem unbekannten Wert wird durch folgendes Theorem cha-
rakterisiert.

Theorem 4.3. Wenn in einem Taktzyklus ein oder zwei Ausgänge der Schaltung fehler-
haft sind und zusätzlich ein unbekannter Wert auftritt, dann ist das Fehlverhalten genau
dann am Ausgang des Kompaktierers sichtbar, wenn:

1. keine Zeile der Kompaktormatrix nur 0en enthält.
2. für jede Zeile der Kompaktormatrix gilt, dass in der Untermatrix, die dadurch ent-

steht, wenn die jeweilige Zeile und alle Spalten, die eine 1 in dieser Zeile enthalten,
entfernt werden, alle Zeilen eindeutig sind und keine Zeile nur 0en enthält.

Mithilfe des in [Mitra2004a] vorgestellten Algorithmus erhält man für einen linearen
Kompaktierer mit acht Eingängen die folgende Kompaktormatrix C, die das Theorem
4.3 erfüllt.

C =



1 1 1 0 0 0
1 1 0 0 0 1
1 0 1 0 1 0
0 1 1 1 0 0
0 1 0 1 0 1
1 0 0 0 1 1
0 0 1 1 1 0
0 0 0 1 1 1



(4.1)

An einem Beispiel mit einem X-Wert am ersten Eingang des Kompaktierers lässt sich das
Theorem 4.3 nachvollziehen. Tritt ein X-Wert am ersten Eingang des Kompaktierers auf,
dann sind laut Kompaktormatrix C auch die ersten drei Ausgänge des Kompaktierers
unbekannt, da sie vom ersten Eingang abhängen. Die verbleibenden drei Ausgänge des
Kompaktierers sind unabhängig vom ersten Eingang und in diesem Beispiel somit X-
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frei. Die Submatrix Csub, die durch das Entfernen der ersten Zeile und der ersten drei
Spalten entsteht, sieht wie folgt aus.

Csub =



0 0 1
0 1 0
1 0 0
1 0 1
0 1 1
1 1 0
1 1 1


(4.2)

Tritt an einem oder zwei der verbleibenden Eingänge ein Fehlverhalten auf, so bleibt es
an mindestens einem der verbleibenden Ausgänge sichtbar.

Um auch mehrere X-Werte und gleichzeitig mehrere Fehlverhalten zu tolerieren, muss
folgendes gelten.

Theorem 4.4. Wenn in einem Taktzyklus maximal k1 Ausgänge fehlerhaft sind und an
maximal k2 Ausgängen ein unbekannter Wert auftritt, dann ist das Fehlverhalten am
Ausgang des Kompaktierers genau dann sichtbar, wenn

1. keine Zeile der Kompaktormatrix nur 0en enthält.
2. für jede Menge M aus k1 Zeilen der Kompaktormatrix, jede Menge aus k2 Zeilen

der Untermatrix, die dadurch entsteht, wenn die Zeilen der Menge M und alle
Spalten, die eine 1 in einer dieser Zeilen enthalten, aus der Kompaktormatrix
entfernt werden, linear unabhängig sind.

Lineare Kompaktierer, die die oben genannten Theoreme erfüllen, werden während der
Entwurfsphase der zu testenden Schaltung entwickelt und können nicht flexibel auf va-
riierende X-Raten reagieren. Daher müssen sie für die höchste auftretende X-Rate ent-
worfen werden, was zu einer sehr großen Kompaktormatrix und somit zu einem hohen
Hardwareaufwand führt.

Um die Erzeugung der Kompaktormatrizen zu vereinfachen, wurde in [Mitra2004b] eine
stochastische Methode zur Generierung der Kompaktormatrizen vorgestellt. Diese wird
im folgenden Abschnitt kurz erläutert.
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4.1.2 Stochastische Kompaktierung

In [Mitra2004b] erweitern Mitra et al. die Idee des X-Kompaktierers zu einem stochasti-
schen Kompaktierer. Während bei dem X-Compact Verfahren die Kompaktorkonfigurati-
on einmalig deterministisch festgelegt wird, wird bei einem stochastischen Kompaktierer
die Kompaktorkonfiguration während des Betriebs zufällig geändert. In jedem Taktzy-
klus werden zufällig neue Linearkombinationen der Kompaktoreingänge gebildet, was
sich durch die Verwendung von Wahrscheinlichkeiten in der Kompaktormatrix beschrei-
ben lässt. Die gebildeten Linearkombinationen lassen sich mithilfe der Kompaktormatrix
C = (cij) beschreiben. Jeder Eintrag cij nimmt mit der Wahrscheinlichkeit p den Wert
1 an. Wie im vorherigen Abschnitt beschrieben wurde, ist der Ausgang j vom Eingang i

abhängig, falls cij = 1 ist. Der Ausgang j ist unabhängig vom Eingang i falls cij = 0. Wie
in [Mitra2004b] gezeigt wurde, ist die Wahrscheinlichkeit, dass die Fehlerinformation am
Ausgang sichtbar ist, am höchsten, wenn p = 1/(kx + 1) gilt, wobei kx die Anzahl der
X-Werte an den Eingängen des Kompaktierers angibt.
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Abbildung 4.5: Implementierung eines stochastischen Kompaktierers [Sprenger2019].

Wie in Abbildung 4.5 zu sehen ist, kann ein stochastischer Kompaktierer mithilfe von
XOR-Bäumen, UND-Gatter Netzwerken und einem Modul zur gewichteten pseudozufäl-
ligen Mustererzeugung (engl. Weighted Pseudo Random Pattern Generator, WPRPG)
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[Strole1991] implementiert werden. Mithilfe eines WPRPG ist es möglich eine Sequenz
von Steuerungsvektoren zu erzeugen, in der jedes Bit mit einer Wahrscheinlichkeit von
p den Wert 1 annimmt. Je Ausgang werden zunächst alle Eingänge des stochastischen
Kompaktierers mithilfe eines UND-Gatters mit dem zugehörigen pseudozufälligen Si-
gnal pij verbunden, welches durch den WPRPG erzeugt wird. Anschließend werden
diese UND-Gatter mit einem XOR-Baum verbunden. So ist es möglich, dass der sto-
chastische Kompaktierer in Abhängigkeit der pseudozufälligen Signale pij eine beliebige
Konfiguration annimmt.

Stochastische
Kompaktierung

s1 . . . 1 X 1 0 X 1 1 X

s2 . . . 1 1 0 X X 1 X X

s3 . . . X 1 X X 1 X X 0

s4 . . . X 0 1 1 X 0 1 X

s5 . . . 1 X X 1 0 1 0 1

s6 . . . 2 2 2 2 3 1 2 3X-Anzahl

Abbildung 4.6: Beispiel stochastischer Kompaktierer.

Zur Veranschaulichung ist in Abbildung 4.6 ein Beispiel einer stochastischen Kompaktie-
rung für eine Schaltung mit fünf Prüfpfaden gegeben. Die Belegung der Prüfpfade zeigt
eine Testantwort auf eine Testbelegung mit unbekannten Werten, die mit X markiert
wurden. Unter der Schaltung ist die Anzahl der X-Werte pro Taktzyklus kx gegeben.
Dabei ist zu erkennen, dass die Anzahl der X-Werte pro Taktzyklus variiert und daher
in nahezu jedem Takt die Wahrscheinlichkeit p angepasst werden muss. Durch die Varia-
tion der Wahrscheinlichkeit p ist es dem stochastischem Kompaktierer zwar möglich auf
die variierende X-Rate zu reagieren, für einen eingebauten Selbsttest muss jedoch für
jeden Takt eine Wahrscheinlichkeit auf dem Chip gespeichert werden, was zu einem sehr
hohen Speicheraufwand führt. Im folgenden Abschnitt wird ein Verfahren vorgestellt,
welches die Flexibilität der stochastischen Kompaktierung ausnutzt und gleichzeitig nur
einen kleinen Speicherbedarf aufweist.

4.2 Modulare Kompaktierung

Wie bereits in Kapitel 2.4.2 erläutert wurde, sind X-tolerante Verfahren zur Testant-
wortkompaktierung unter anderem im eingebauten Selbsttest [Bardell1982] unumgäng-
lich. Insbesondere bei der Erweiterung zu einem eingebauten Selbsttest für den Hoch-
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geschwindigkeitstest [Hellebrand2014; Kampmann2020] kommt es, wie in Kapitel 2.4.3
gezeigt wurde, durch die Verwendung von erhöhten Taktfrequenzen zu vermehrten un-
bekannten Werten in den Testantworten der Schaltung, den sogenannten X-Werten.

Um das Problem der variierenden X-Raten zu lösen, wurde die in Kapitel 2.4.3 vorge-
stellte Architektur für den Hochgeschwindigkeitstest, wie bereits in [Sprenger2018a] und
[Sprenger2019] gezeigt, erweitert. Wie in Abbildung 4.7 zu sehen ist, wird der räum-
liche Kompaktierer durch mehrere kleinere stochastische Kompaktierer ersetzt. Hierzu
werden die Ausgänge der zu testenden Schaltung gruppiert und auf die einzelnen stochas-
tischen Kompaktierer aufgeteilt. Die Ausgänge der stochastischen Kompaktierer werden
anschließend an ein X-Canceling MISR [Touba2007] weitergegeben. Die vom X-Canceling
MISR erzeugten Zwischensignaturen werden in einem kleinen Speicher abgelegt. Durch
die Gruppierung der Prüfpfade ist es möglich, die Variation der X-Rate während einer
Testfrequenz im Hochgeschwindigkeitstest zu reduzieren, wodurch die Wahrscheinlich-
keit p des stochastischen Kompaktierers während einer Testfrequenz konstant gehalten
werden kann, ohne die Fehlerdurchlässigkeit des Kompaktierers zu verringern.
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Abbildung 4.7: Testarchitektur für den Hochgeschwindigkeitstest mit modularer Kom-
paktierung [Sprenger2019].

Durch die Rekonfiguration der Wahrscheinlichkeit p des Kompaktierers kann, wie in
Kapitel 4.1.2 gezeigt wurde, auf die variierenden X-Raten, aufgrund der wechselnden
Taktfrequenzen während eines Hochgeschwindigkeitstests, reagiert werden. Für eine ho-
he Fehlerdurchlässigkeit des stochastischen Kompaktierers muss jedoch zusätzlich eine
konstante Anzahl an X-Werten pro Takt vorliegen.

In Abbildung 4.8 ist das aus der Abbildung 4.6 bekannte Beispiel für die Verwendung
der modularen Kompaktierung mithilfe von zwei stochastischen Kompaktierern zu se-
hen. Um die Varianz der X-Rate pro Taktzyklus festzustellen, wird zunächst der Vektor
XCount(GT otal) gebildet. Hierzu wird die Anzahl der X-Werte je Takt (im Beispiel die An-
zahl X-Werte pro Spalte) berechnet. Anschließend kann die Varianz σ2(XCount(GT otal)) ≈
0,41 über den Vektor XCount(GT otal) berechnet werden, wobei GT otal die Menge aller Prüf-
pfade der zu testenden Schaltung repräsentiert.
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s1 . . . 1 X 1 0 X 1 1 X

s2 . . . 1 1 0 X X 1 X X

s3 . . . X 1 X X 1 X X 0

s4 . . . X 0 1 1 X 0 1 X

s5 . . . 1 X X 1 0 1 0 1

s6 . . . 2 1 1 1 2 1 1 2 σ2(XCount(G1)) ≈ 0.27XCount(G1)

s7 . . . 0 1 1 1 1 0 1 1 σ2(XCount(G2)) ≈ 0.21XCount(G2)

s8 . . . 2 2 2 2 3 1 2 3 σ2(XCount(GTotal)) ≈ 0.41XCount(GTotal)

Stochastische
Kompaktierung

Stochastische
Kompaktierung

Abbildung 4.8: Beispielkonfiguration der modularen Kompaktierer [Sprenger2019].

Eine Varianz σ2(XCount(Gi)) = 0 würde bedeuten, dass die Anzahl der X-Werte pro Takt-
zyklus in der Prüfgruppe Gi konstant ist. Eine Prüfgruppe stellt dabei eine Gruppe von
Prüfpfaden (Zeilen der Testantwortmatrix T ) dar. Mit einer Varianz von
σ2(XCount(GT otal)) ≈ 0,41 variiert die Anzahl der X-Werte jedoch relativ stark.

Nach der Bestimmung der Varianzen σ2(XCount(G1)) ≈ 0,27 und σ2(XCount(G2)) ≈ 0,21
für die beiden Prüfgruppen G1 und G2 fällt auf, dass die einzelnen Varianzen geringer
ausfallen als zuvor. Die geringeren Varianzen bedeuten, dass die Anzahl der X-Werte in
den Prüfgruppen G1 und G2 weniger variiert als bei der Verwendung aller Prüfpfade in
einer Prüfgruppe GT otal.

Die Ausgänge jeder Prüfgruppe können nun mit einem stochastischen Kompaktierer
verbunden werden. Für jede Taktfrequenz während des Hochgeschwindigkeitstests und
jeden stochastischen Kompaktierer kann nun, wie in [Mitra2004b] gezeigt wurde, eine
optimale Wahrscheinlichkeit p berechnet werden. Der benötigte Speicherplatz M hängt
dabei von der Anzahl der verwendeten Frequenzen f , der Anzahl der benötigten Prüf-
gruppen |G | und der Anzahl w der auswählbaren Wahrscheinlichkeiten des WPRPG
ab. Werden die auswählbaren Wahrscheinlichkeiten binär codiert, dann lässt sich der
Speicherplatz M in Bit wie folgt berechnen.

M = f · |G | · ⌈log2(w)⌉ (4.3)

Zur besseren Anpassung an die variierenden X-Verteilungen kann die Prüfgruppeneintei-
lung auch je Taktfrequenz durchgeführt werden. Allerdings ist hierzu ein rekonfigurier-
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bares Verbindungsnetzwerk zwischen den Ausgängen der zu testenden Schaltung und
den Eingängen der stochastischen Kompaktierer notwendig. Wird anstatt dessen eine
feste Konfiguration des Verbindungsnetzwerkes gewählt, wird zwar die Anpassung an
die X-Verteilungen eingeschränkt, dafür ist jedoch eine einfache Implementierung des
Verbindungsnetzwerkes möglich. Die in dem folgenden Abschnitt vorgestellten Gruppie-
rungsalgorithmen können für beide Anwendungsfälle verwendet werden.

4.2.1 Gruppierungsalgorithmen

Im Folgenden werden verschiedene Gruppierungsalgorithmen zur Einteilung der Prüf-
gruppen eines gegebenen Tests vorgestellt. Alle Testantworten des Tests werden hierzu,
wie in Definition 2.4 eingeführt, zu einer Testantwortmatrix zusammengefasst. Das Pro-
blem der optimalen Prüfgruppeneinteilung lässt sich für eine gegebene Testantwortma-
trix T wie folgt definieren.

Problem 4.1 (Optimale Prüfgruppeneinteilung (OPE)). Gegeben sei eine Schaltung
mit einer Menge S = {s1, ..., sn} von n Prüfpfaden und einer Testantwortmatrix T über
{0, 1, X}. Finde eine Prüfgruppeneinteilung der Prüfpfade in m disjunkte Prüfgruppen
G = {G1, . . . , Gm}, so dass

m∑
j=1

σ2(XCount(Gj)) (4.4)

minimal ist. [Sprenger2018b]

Das Problem ist vergleichbar mit dem Partitionsproblem (engl. Set-Partitioning-Problem)
[Balas1976], das wie folgt definiert ist.

Problem 4.2 (Partitionsproblem). Gegeben sei eine Menge S = {s1, ..., sn} und die
Teilmengen Gj ⊂ S mit den Kosten cj, j ∈J = {1, ..., l}. Finde eine Überdeckung an
disjunkten Teilmengen Gj, j ∈J ∗ ⊂J , so dass

∑
j∈J ∗

cj (4.5)

minimal ist.
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Während im Partitionsproblem die Kosten der Teilmengen cj frei wählbar und unabhän-
gig voneinander sind, sind die Kosten der Prüfgruppen σ2(XCount(Gj)) in der optimalen
Prüfgruppeneinteilung voneinander abhängig. Das Problem der optimalen Prüfgruppen-
einteilung ist somit als Spezialfall des Partitionsproblems anzusehen.

4.2.1.1 Lösungsansatz mithilfe von linearer Programmierung

Mithilfe von gemischter ganzzahliger Optimierung (engl. Mixed Integer Linear Pro-
gramming) kann für das Problem 4.1 eine optimale Lösung gefunden werden [Flou-
das1995]. Um die beste mögliche Auswahl an Prüfgruppen aus allen möglichen Prüf-
gruppen G1, ..., GL zu treffen, wird die Kostenfunktion

L∑
j=1

xj · σ2(XCount(Gj)) (4.6)

minimiert unter den Randbedingungen

∑
j∈Γ(i)

xj = 1; i = 1, . . . , n. (4.7)

Mithilfe der binären Variablen xj wird angegeben, ob die Prüfgruppe Gj Teil der Lö-
sung ist. Die Randbedingung (4.7) stellt sicher, dass jeder Prüfpfad si genau einmal
ausgewählt wurde, wobei Γ(i) die Menge aller Prüfgruppen ist, die den Prüfpfad si bein-
halten. Durch die Reduktion der möglichen Prüfgruppen G1, ..., GL kann der Suchraum
weiter eingeschränkt werden und damit auch die benötigte Laufzeit zur Berechnung der
optimalen Lösung. Die Anzahl der möglichen Prüfgruppen G1, ..., GL steigt jedoch ex-
ponentiell mit der Anzahl der verwendeten Prüfpfade. Da die Anzahl der verwendeten
Prüfpfade typischerweise mit der Größe der Schaltung steigt, kann nur für kleine Schal-
tungen eine optimale Lösung in vertretbarer Zeit gefunden werden. Mit der Anpassung
der Kostenfunktion könnten weitere Ziele verfolgt werden. Um die Homogenität der X-
Verteilungen zu steigern, könnte z. B. die Differenz zwischen zwei Varianzen minimiert
werden.
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4.2.1.2 Heuristische Lösungen

Um eine Lösung des Problems 4.1 in akzeptabler Laufzeit zu erhalten, müssen heuris-
tische Verfahren angewandt werden. Dies ermöglicht es auch, benutzerorientierte Rand-
bedingungen zu berücksichtigen oder praxisorientierte Ansätze zu verfolgen. So könnte
z. B. die Anzahl der verwendeten stochastischen Kompaktierer eine Entwurfsentschei-
dung sein oder die Anzahl der Eingänge je stochastischem Kompaktierer.

Testunabhängige Prüfgruppeneinteilung In dem ersten heuristischen Ansatz werden
zunächst keine Testmuster berücksichtigt. Dies hat den Vorteil, dass der Entwurf der
Schaltung schon abgeschlossen werden kann, bevor die Testmustererzeugung abgeschlos-
sen ist. Jedoch kann nicht auf die tatsächliche X-Verteilung der Schaltung eingegangen
werden. In diesem einfachen Ansatz wird nur die Anzahl an verwendeten Prüfpfaden
berücksichtigt. Der Algorithmus 4.1 teilt hierzu die Prüfpfade in Prüfgruppen der Größe
N ein. Die Anzahl der Prüfgruppen ergibt sich damit zu m = ⌈n/N⌉, wobei n der Anzahl
an Prüfpfaden |S | entspricht.

Algorithmus 4.1 Testunabhängige Prüfgruppeneinteilung [Sprenger2019]
1: function TestunabhängigeEinteilung(S , N)
2: n← |S |
3: m← ⌈n/N⌉
4: G ← {Gj ← ∅|∀j ∈ {1, ..., m}} ▷ Generiere leere Prüfgruppen
5: for i← 1 to n do ▷ Auffüllen der Prüfgruppen anhand der Prüfpfadindizes
6: G⌈i/N⌉ ← G⌈i/N⌉ ∪ {si}
7: end for
8: return G
9: end function

Nachdem die Anzahl der benötigten Prüfgruppen berechnet wurde, werden zunächst
m leere Prüfgruppen erzeugt. In den Zeilen 5-6 iteriert der Algorithmus 4.1 dann über
die Prüfpfade in aufsteigender Reihenfolge und fügt die ersten N Prüfpfade in die erste
Prüfgruppe. Anschließend werden die restlichen m− 1 Prüfgruppen mit Prüfpfaden ge-
füllt. Falls die Anzahl an Prüfpfaden nicht ganzzahlig durch die Anzahl der Prüfgruppen
teilbar ist, weicht die Größe der m-ten Prüfgruppe von der Zielgröße N ab und die letzte
Prüfgruppe enthält die verbleibenden Prüfpfade. Für eine ausgeglichene Prüfgruppen-
größe können in einem weiteren Schritt die Prüfpfade der letzten Prüfgruppe auf die
ersten m− 1 Prüfgruppen aufgeteilt werden.

In der Abbildung 4.9 ist das Ergebnis eines Durchlaufs des Algorithmus 4.1 mit fünf
Prüfpfaden und einer Prüfgruppengröße von N = 2 gegeben. Dementsprechend wurden
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X11X01X1

XX1XX001

0XX1XX1X

X10X011X

1011XXX1

21021010

…s1
…s2

…s3

…s4

…s5

…XCount(G1) 𝜎!(XCount(G1)) ≈ 0.61

11111102…XCount(G2) 𝜎!(XCount(G2)) = 0.25

00001110…XCount(G3) 𝜎!(XCount(G3)) ≈ 0.23

Prüfgruppengröße = 2

Abbildung 4.9: Beispiel für die testunabhängige Prüfgruppeneinteilung [Sprenger2019].

drei Prüfgruppen gebildet. Die erste Prüfgruppe enthält die ersten beiden Prüfpfade,
die zweite Prüfgruppe die nächsten beiden und der letzte Prüfpfad wurde der dritten
Prüfgruppe zugeordnet.

Bin-Packing Prüfgruppeneinteilung Bei diesem Algorithmus wird nach einer festen
Anzahl m Prüfgruppen gesucht. Jede Prüfgruppe wird dabei als Behälter angesehen
mit einer gegebenen X-Kapazität γ, welche die Anzahl an X-Werten vorgibt, die der
zugehörige stochastische Kompaktierer verarbeiten kann. Jeder Behälter wird dabei so
gefüllt, dass die X-Kapazität nicht überschritten wird. Dies entspricht einem klassischen
Behälterproblem, für welches eine Vielzahl an Heuristiken bekannt sind. Der in Algo-
rithmus 4.2 gezeigte Bin-Packing Algorithmus ist eine Variante des klassischen First-Fit
Algorithmus. [Korte2018]

Algorithmus 4.2 besitzt drei Eingabeparameter, die Menge der Prüfpfade S , die Anzahl
der Behälter m und die Anzahl der X-Werte innerhalb der Schaltung unter Verwen-
dung der gegebenen Testmustermenge XT otal. Die Anzahl der X-Werte innerhalb einer
Prüfgruppe gibt XT otal(Gj) an.

In Zeile 2 des Algorithmus 4.2 wird zunächst die X-Kapazität γ der einzelnen Behälter
berechnet mithilfe von (4.8).

γ =
⌈

XT otal

m

⌉
(4.8)
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Algorithmus 4.2 Bin-Packing Prüfgruppeneinteilung [Sprenger2019]
1: function BinPacking(S , m, XT otal)
2: γ ← ⌈XT otal/m⌉ ▷ Berechne die X-Kapazität γ der Behälter
3: G ← {Gj ← ∅|∀j ∈ {1, ..., m}} ▷ Generiere leere Prüfgruppen
4: N C ← ∅
5: for i← 1 to n do ▷ Auffüllen der Prüfgruppen
6: added← false
7: j ← 1
8: while (j < m) and (not added) do
9: if XT otal(Gj ∪ {si}) ≤ γ then

10: Gj ← Gj ∪ {si} ▷ Füge Prüfpfad si zur Prüfgruppe Gj hinzu
11: added← true
12: end if
13: j ← j + 1
14: end while
15: if not added then
16: N C ← N C ∪ {si} ▷ Füge Prüfpfad si zur Prüfgruppe N C hinzu
17: end if
18: end for
19: for i← 1 to |N C | do ▷ N C = {sNC(1), sNC(2), ...}
20: Gmin ← arg min

Gj∈G
{XT otal(Gj)} ▷ XT otal(Gmin) ist minimal

21: Gmin ← Gmin ∪ {sNC(i)}
22: end for
23: return G
24: end function

Anschließend werden m leere Behälter erzeugt, sowie ein Behälter N C für nicht einge-
ordnete Prüfpfade. Für alle Prüfpfade in S iteriert der Bin-Packing Algorithmus nun
über die Behälter Gj und fügt den Prüfpfad zu dem ersten Behälter hinzu, in dem, nach
dem Hinzufügen des aktuellen berücksichtigten Prüfpfades si, die X-Kapazität nicht
überschritten wird. Kann der Prüfpfad zu keinem Behälter Gj hinzugefügt werden, ohne
die X-Kapazität zu überschreiten, wird der Prüfpfad dem Behälter N C hinzugefügt.
Nachdem alle Prüfpfade einem der m + 1 Behälter zugeordnet wurden, werden die Prüf-
pfade die dem Behälter N C zugeordnet sind, so auf die restlichen m Behälter verteilt,
dass die X-Kapazität möglichst wenig überschritten wird. Hierzu wird über die Prüfpfa-
de sNC(i) des Behälters N C iteriert und der Prüfpfad dem Behälter zugeteilt, der bisher
die geringste Zahl an X-Werten enthält.

In Abbildung 4.10 ist ein Beispiel zur Anwendung des Bin-Packing Algorithmus gege-
ben. Wie in Abbildung 4.10a zu sehen ist, werden die ersten Prüfpfade solange dem
ersten Behälter G1 zugeordnet, bis die X-Kapazität überschritten wird. Dies ist der Fall
sobald versucht wird, den Prüfpfad s3 hinzuzufügen. Da dies nicht möglich ist, wird
der Prüfpfad dem nächsten Behälter G2 zugeteilt. Nachdem alle Prüfpfade abgearbeitet
wurden, befinden sich die ersten beiden Prüfpfade in dem Behälter G1, die folgenden
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Abbildung 4.10: Beispiel für die Bin-Packing Prüfgruppeneinteilung [Sprenger2019].

beiden Prüfpfade in dem Behälter G2, und der Prüfpfad s5 befindet sich im Behälter
N C , da er keinem Behälter hinzugefügt werden konnte (Siehe Abbildung 4.10b). Im
Nachbearbeitungsschritt wird anschließend der Prüfpfad s5 dem Behälter G1 zugeteilt,
da dieser die geringste Auslastung der X-Kapazität aufweist.

Varianzorientierte Prüfgruppeneinteilung Bei der dritten Heuristik, die in dieser Ar-
beit vorgestellt wird, handelt es sich um einen gierigen (engl. greedy) Algorithmus,
der die aktuelle Prüfgruppe anhand der Varianz der X-Verteilung σ2(XCount(Gj)) in-
nerhalb der Prüfgruppe Gj aufbaut. Hierzu wird, wie in Kapitel 4.2 erläutert, die X-
Verteilung XCount(Gj) und die Varianz σ2(XCount(Gj)) für die aktuelle Prüfgruppe Gj

berechnet, um iterativ Prüfpfade zu der Prüfgruppe hinzuzufügen, so dass die Varianz
σ2(XCount(Gj)) sinkt. Hierzu wird mithilfe von (4.9) die X-Verteilung in der bisherigen
Prüfgruppe Xold

Count(Gj) mit der X-Verteilung des zu bewertenden Prüfpfades XCount(si)
addiert und so die X-Verteilung in der aktuellen Prüfgruppe Xnew

Count(Gj) berechnet.
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Xnew
Count(Gj) = Xold

Count(Gj) + XCount(si) (4.9)

Algorithmus 4.3 Varianzorientierte Prüfgruppeneinteilung [Sprenger2019]
1: function VarianzorientierteEinteilung(S , numRuns)
2: N Y C ← S ▷ Menge der noch nicht eingeteilten Prüfpfade N Y C
3: j ← 1
4: G ← ∅
5: while N Y C ̸= ∅ do
6: Wähle Prüfpfad s ∈ N Y C
7: Gj ← {s} ▷ Initialisiere Prüfgruppe Gj

8: N Y C ← N Y C \ {s}
9: success← false

10: runs← numRuns
11: for each s ∈ N Y C do
12: if σ2(XCount(Gj ∪ {s})) < σ2(XCount(Gj)) then ▷ Prüfgruppe iterativ befüllen
13: Gj ← Gj ∪ {s}
14: success← true
15: end if
16: end for
17: if success then
18: N Y C ← N Y C \ {Gj} ▷ Aktualisiere N Y C
19: else
20: while (runs > 0) and N Y C ̸= ∅ do
21: smin ← arg min

s∈N Y C
{σ2(XCount(Gj ∪ {s}))− σ2(XCount(Gj))}

22: ▷ s mit kleinster Steigerung von σ2

23: Gj ← Gj ∪ {smin}
24: N Y C ← N Y C \ {smin}
25: runs← runs− 1
26: end while
27: end if
28: G ← G ∪ Gj

29: j ← j + 1
30: end while
31: return G
32: end function

Wie in Algorithmus 4.3 gezeigt, hat der varianzorientierte Algorithmus die Menge der
Prüfpfade S und die Anzahl der Prüfpfade numRuns, welche die Varianz einer Prüf-
gruppe erhöhen dürfen, als Eingabeparameter. Zunächst werden alle Prüfpfade in die
Menge der noch nicht zugeordneten Prüfpfade N Y C hinzugefügt. Solange noch Prüf-
pfade existieren, die noch nicht zugeordnet wurden, wird in Zeile 7 des Algorithmus 4.3
eine neue Prüfgruppe Gj erstellt und der aktuelle Prüfpfad s ∈ N Y C hinzugefügt.
Anschließend wird der Prüfpfad s aus der Menge der noch nicht zugeordneten Prüfpfade
N Y C entfernt. In den Zeilen 11 - 16 wird nun für alle Prüfpfade, die noch keiner Prüf-
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gruppe angehören, geprüft, ob sich die Varianz σ2(XCount(Gj)) der aktuellen Prüfgruppe
verringert, wenn der Prüfpfad zur Prüfgruppe hinzugefügt wird. Falls sich die Varianz
verringert, wird der Prüfpfad zur Prüfgruppe hinzugefügt. Falls mindestens ein Prüfpfad
in die aktuelle Prüfgruppe hinzugefügt werden konnte, werden die Prüfpfade der aktuel-
len Prüfgruppe aus der Menge, der noch nicht zugeordneten Prüfpfade entfernt und eine
neue Prüfgruppe wird aufgebaut, falls noch Prüfpfade zuzuordnen sind. Sollte es keinen
Prüfpfad geben, der die Varianz σ2(XCount(Gj)) verringern kann, werden in den Zeilen
20 - 26 des Algorithmus 4.3 die numRuns Prüfpfade, welche die Varianz am wenigsten
erhöhen, zu der aktuellen Prüfgruppe Gj hinzugefügt. Mithilfe des Parameters numRuns

ist es einerseits möglich, die Größe der Prüfgruppen zu beeinflussen, anderseits ist es so
möglich lokalen Minima in der Kostenfunktion des Algorithmus zu entkommen.
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Abbildung 4.11: Beispiel für die varianzorientierte Prüfgruppeneinteilung [Spren-
ger2019].

Ein Beispiel für die Anwendung des varianzorientierten Algorithmus ist in Abbildung 4.11
zu sehen. Zunächst wird die Prüfgruppe G1 erstellt und, wie in Abbildung 4.11a gezeigt,
mit dem Prüfpfad s1 gefüllt. Anschließend wird versucht, den Prüfpfad s2 zur Prüfgrup-
pe G1 hinzuzufügen. Hierzu wird, wie in Abbildung 4.11b gezeigt, zunächst XCount(G1)
aktualisiert und die Varianz σ2(XCount(G1)) ≈ 0,61 berechnet. Da die Varianz gestiegen
ist, wird der Prüfpfad s3 nicht zur Prüfgruppe hinzugefügt und der nächste Prüfpfad
wird untersucht. Wie in Abbildung 4.11c zu sehen ist, reduziert sich die Varianz der Prüf-
gruppe G1 auf 0. Die Anzahl der X-Werte je Taktzyklus ist somit konstant. Da sich die
Varianz der Prüfgruppe verringert hat, wird der Prüfpfad s3 der Prüfgruppe hinzugefügt.
Da die Varianz nicht weiter reduziert werden kann, kann in diesem Fall kein weiterer
Prüfpfad zur Prüfgruppe hinzugefügt werden, wenn der Parameter numRuns = 1 ist.
Nur Prüfpfade, die keine X-Werte beinhalten oder an jeder Stelle ein X tragen, können
zu einer Prüfgruppe hinzugefügt werden, ohne die Varianz zu erhöhen.
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Daher wird in diesem Beispiel eine weitere Prüfgruppe aufgebaut, in die zunächst der
Prüfpfad s2 hinzugefügt wird. Die Abbildung 4.11d zeigt den Zustand der Prüfgruppen-
einteilung, nachdem anschließend versucht wurde die Prüfpfade s4 und s5 hinzuzufügen.
Beide Prüfpfade würden die Varianz σ2(XCount(G2)) erhöhen und wurden somit nicht
zur Prüfgruppe hinzugefügt. Daher wird der Prüfpfad zur Prüfgruppe hinzugefügt, der
die Varianz am wenigsten erhöht.

In der Abbildung 4.12 sind die Prüfgruppeneinteilungen für die drei Heuristiken, bei
der Verwendung von 5 äquidistanten Testfrequenzen zwischen der nominellen Taktfre-
quenz und der dreifachen nominellen Taktfrequenz, dargestellt. Für die Taktperioden
gilt Tnom = TF AST1 > TF AST2 > TF AST3 > TF AST4 > TF AST5 = Tnom/3. Die verwendete
Testmustermenge für Verzögerungsfehler wurde mithilfe eines kommerziellen Testmus-
tergenerators erzeugt. Als Schaltung wurde eine Industrieschaltung mit 128 Prüfpfaden
verwendet. Auf der X-Achse sind die ersten sieben Prüfgruppen aufgetragen. Die Y-Achse
zeigt den Prüfpfadindex. Wie zu erwarten, gibt es bei der Verwendung des Algorithmus
zur testunabhängigen Prüfgruppeneinteilung (Abbildung 4.12a) keinen Unterschied bei
unterschiedlichen Testfrequenzen, da das Verfahren unabhängig von der Testmustermen-
ge und von der Testfrequenz ist. Bei der Anwendung der Bin-Packing und der varianzori-
entierten Prüfgruppeneinteilung in Abbildung 4.12b und Abbildung 4.12c hingegen fällt
auf, dass die Verteilung der Prüfpfade auf die Prüfgruppen für unterschiedliche Test-
frequenzen stark variieren kann. Um die Rekonfiguration der Prüfgruppen nach einem
Testfrequenzwechsel zu ermöglichen, ist jedoch ein erheblicher Hardwareaufwand not-
wendig, da ein rekonfigurierbares Verbindungsnetzwerk zwischen zu testender Schaltung
und den stochastischen Kompaktierern notwendig ist. Daher wird im Rest dieser Arbeit
die Prüfgruppeneinteilung für den gesamten Test durchgeführt.

Wie in Kapitel 2.4.3 gezeigt wurde, können mithilfe des Hochgeschwindigkeitstests klei-
ne Verzögerungsfehler detektiert werden, die bei einem gewöhnlichen Verzögerungstest
nicht detektiert werden können. Mithilfe des hier vorgestellten Kompaktierungsverfah-
rens soll die Architektur des eingebauten Hochgeschwindigkeitstests [Hellebrand2014;
Kampmann2020] unterstützt werden. In dieser Architektur folgt auf den modularen
Kompaktierer, wie in Abbildung 4.7 gezeigt wurde, eine zeitliche Kompaktierung. Hier-
zu wird ein X-Canceling MISR [Touba2007] verwendet, welches durch die Reduzierung
der X-Werte am MISR-Eingang unterstützt werden soll. Des Weiteren ist es wichtig so
viele Fehlerinformationen wie möglich zu dem X-Canceling MISR zu propagieren. Mit
Hinblick auf diese Eigenschaften werden der X-Reduktionsfaktor (XRF) und die Feh-
lerdurchlässigkeit (FD) als Metriken für die Bewertung des Kompaktierungsverfahrens
verwendet. Bevor die Metriken definiert werden können, wird zunächst die Fehlermenge
F (sij) wie folgt definiert.
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Abbildung 4.12: Prüfgruppeneinteilung mit unterschiedlichen Algorithmen für fünf Test-
frequenzen.
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Definition 4.1 (Fehlermengen). Die Fehlermenge F sei die Menge aller Fehler in
einer Schaltung bei einem gegebenen Fehlermodell. Die Fehlermenge F (tij) ⊆ F sei die
Fehlermenge, die in tij der Testantwortmatrix T = (tij) sichtbar wird und F (sij) ⊆ F

sei die Fehlermenge, die in sij der Signaturmatrix S = (sij) sichtbar wird.

Der X-Reduktionsfaktor (XRF) kann mit

XRF = # X-Werte vor der Kompaktierung
# X-Werte nach der Kompaktierung (4.10)

berechnet werden und die Fehlerdurchlässigkeit (FD) mit

FD =
⋃

sij∈S |F (sij)|⋃
tij∈T |F (tij)|

. (4.11)

4.2.2 Ausnutzung von X-Pfaden und essenziellen Prüfpfaden

Steht weitere Information über die Prüfpfadkonfiguration zur Verfügung, kann diese ge-
nutzt werden, um den X-Reduktionsfaktor (XRF) oder die Fehlerdurchlässigkeit (FD)
zu erhöhen. Wie in Kapitel 4.1 eingeführt wurde, können z. B. die Speicherelemente mit
hohen X-Raten zu X-Pfaden gruppiert werden. Soll der X-Reduktionsfaktor erhöht wer-
den, können diese X-Pfade, wie in Abbildung 4.13a gezeigt wird, während der räumlichen
Kompaktierung vollständig blockiert werden. Dies wird als X-Pfad-Blockierung bezeich-
net. Kein X-Wert des X-Pfades erreicht somit die Phase der zeitlichen Kompaktierung,
wodurch der X-Reduktionsfaktor erhöht wird.

Prüfpfade mit Speicherelementen, in denen viele Fehler sichtbar sind, können hingegen
zu essenziellen Prüfpfaden zusammengefasst werden. Die essenziellen Prüfpfade tragen
nur wenige, oder keine X-Werte und können daher direkt an der räumlichen Kompak-
tierung vorbeigeführt werden, wie in Abbildung 4.13b gezeigt. Diese wenigen X-Werte
können mithilfe eines X-toleranten Verfahrens zur zeitlichen Kompaktierung verarbeitet
werden. Mithilfe dieses sogenannten Pfad-Bypasses ist es möglich die Fehlerdurchläs-
sigkeit zu erhöhen, da keine Fehler während der räumlichen Kompaktierung maskiert
werden können.
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Abbildung 4.13: Stochastische Kompaktieurng mit X-Pfad-Blockierung und Pfad-By-
pass für essenzielle Prüfpfade.

Der Nachteil bei dem jeweiligen Verfahren ist, dass entweder die Fehlerdurchlässigkeit
weiter abgesenkt wird, wenn Fehlerinformationen blockiert werden, oder der X-Redukti-
onsfaktor abgesenkt wird, wenn sich X-Werte in den essenziellen Prüfpfaden befinden.

4.2.3 Experimente

Um das vorgestellte Verfahren zur Testantwortkompaktierung zu bewerten, wurden
verschiedene Experimente mit unterschiedlichen Benchmark-Schaltungen durchgeführt.
Die Ergebnisse für zwei Schaltungen der ITC’99 Benchmark-Suite [Davidson1999; Cor-
no2000] und vier Industrieschaltungen werden hier gezeigt.

Die Eigenschaften der Schaltungen werden in der Tabelle 4.1 zusammengefasst. In der
ersten Spalte werden die Bezeichnungen der Schaltungen aufgeführt. Die nominelle Takt-
periode Tnom der Schaltung in ns wird in der zweiten Spalte angegeben. Die Anzahl der
Logik-Gatter in den Schaltungen wird in der dritten Spalte gezeigt. Die vierte und fünfte
Spalte geben die Anzahl der primären und pseudo-primären Eingänge, respektive Aus-
gänge an. In der sechsten Spalte ist die Anzahl der verwendeten Prüfpfade |S | gegeben.
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In der Spalte |TM | ist die Anzahl der verwendeten Testmuster gegeben. Die Anzahl der
X-Werte und der detektierbaren Fehler in den zugehörigen Testantworten sind in der
achten und neunten Spalte gegeben. [Sprenger2018b; Sprenger2019]

Tabelle 4.1: Eigenschaften der verwendeten Benchmark-Schaltungen [Sprenger2019]
Name Tnom [ns] # Gatter # Eingänge # Ausgänge |S | |TM | XT otal |F (T )|

b17_1 3,588 21 858 1827 1348 32 1935 72 526 48 777
b18_1 4,533 75 618 4116 3085 64 3507 163 536 116 231
bench1 3,191 22 414 3739 2550 64 3596 668 783 64 840
bench2 1,604 78 665 4029 3952 64 3541 1 049 623 363 317
bench3 2,240 56 662 4627 4557 64 6601 511 116 186 959
bench4 3,040 53 836 5902 5829 128 6601 511 116 186 959
bench5 1,511 46 504 3148 3484 64 929 681 995 208 282

Als Testeingabe wurde eine Testmenge für Verzögerungsfehler verwendet, die mithilfe
eines kommerziellen Testmustergenerators erzeugt wurde. Für die gezeigten Experimen-
te wurde der Hochgeschwindigkeitstest mit fünf äquidistanten Testfrequenzen zwischen
der nominellen Taktfrequenz und der dreifachen Taktfrequenz durchgeführt. Für die zu-
gehörigen Taktperioden gilt Tnom = TF AST1 > TF AST2 > TF AST3 > TF AST4 > TF AST5 =
Tnom/3. Für die Prüfgruppeneinteilung wurden alle Testantworten des Tests zu einer
Testantwortmatrix T konkateniert.

4.2.3.1 Kompaktierungsrate vs. Prüfgruppengröße

Selbst bei der Verwendung derselben Prüfgruppeneinteilung kann es bei unterschiedli-
chen Kompaktierungsraten KR zu unterschiedlichen Ergebnissen kommen. Zur Erläu-
terung des Einflusses der Kompaktierungsrate ist in Abbildung 4.14 ein kleines Beispiel
gegeben. In der Abbildung sind zwei Konfigurationen zu sehen, die dieselbe Prüfgruppen-
einteilung verwenden. Der einzige Unterschied ist die Kompaktierungsrate des stochas-
tischen Kompaktierers K1. In der linken Konfiguration wird eine Kompaktierungsrate
KR = Anzahl Eingänge/Anzahl Ausgänge = 2 verwendet, während in der rechten Kon-
figuration eine Kompaktierungsrate KR = 4 für den Kompaktierer K1 verwendet wird.
Die Kompaktierungsrate der rechten Konfiguration steigt damit von 2 auf 2,67.

Zur Untersuchung des Einflusses der Kompaktierungsrate auf den X-Reduktionsfaktor
und die Fehlerdurchlässigkeit (FD) wurden Experimente mit variierenden Kompaktie-
rungsraten durchgeführt. Die Ergebnisse sind in den Diagrammen in Abbildung 4.15 und
Abbildung 4.16 für die verwendeten Benchmark-Schaltungen zu sehen. Für die gezeigten
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Abbildung 4.14: Kompaktierungsrate vs. Prüfgruppengröße [Sprenger2019].

Ergebnisse wurde die testunabhängige Prüfgruppeneinteilung mit einer Prüfgruppengrö-
ße von 32 verwendet. Auf der X-Achse ist die Kompaktierungsrate aufgetragen.

Es konnte gezeigt werden, dass im Allgemeinen der X-Reduktionsfaktor mit der Kom-
paktierungsrate steigt, wohingegen die Fehlerdurchlässigkeit (FD) mit steigender Kom-
paktierungsrate fällt. Um vergleichbare Ergebnisse zu erhalten, werden die gezeigten
Ansätze nur bei Verwendung der gleichen Kompaktierungsrate verglichen.

Es konnte ebenfalls gezeigt werden, dass die Prüfgruppengröße einen Einfluss auf den
X-Reduktionsfaktor (XRF) und die Fehlerdurchlässigkeit (FD) hat. Die Diagramme in
der Abbildung 4.17 und Abbildung 4.18 zeigen den Einfluss der Prüfgruppengröße bei
der Verwendung des Algorithmus zur testunabhängigen Prüfgruppeneinteilung bei einer
Kompaktierungsrate von 2. Diesmal ist auf der X-Achse die Prüfgruppengröße aufge-
tragen. Während der X-Reduktionsfaktor mit der Prüfgruppengröße sinkt, steigt die
Fehlerdurchlässigkeit mit der Prüfgruppengröße.
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Abbildung 4.15: Einfluss der Kompaktierungsrate auf den X-Reduktionsfaktor (XRF)
für die testunabhängige Prüfgruppeneinteilung bei einer Prüfgruppen-
größe von 32 [Sprenger2019].



70 4 Testantwortkompaktierung für den Hochgeschwindigkeitstest

2 4 8 16 32
0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

Kompaktierungsrate

Fe
hl

er
du

rc
hl

äs
sig

ke
it

(F
D

)

b17_1 FD
b18_1 FD
bench1 FD
bench2 FD
bench3 FD
bench4 FD

Abbildung 4.16: Einfluss der Kompaktierungsrate auf die Fehlerdurchlässigkeit für die
testunabhängige Prüfgruppeneinteilung bei einer Prüfgruppengröße von
32 [Sprenger2019].
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Abbildung 4.17: Einfluss der Prüfgruppengröße auf den X-Reduktionsfaktor (XRF) für
die testunabhängige Prüfgruppeneinteilung bei einer Kompaktierungs-
rate von 2 [Sprenger2019].
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Abbildung 4.18: Einfluss der Prüfgruppengröße auf die Fehlerdurchlässigkeit (FD) für
die testunabhängige Prüfgruppeneinteilung bei einer Kompaktierungs-
rate von 2 [Sprenger2019].
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Die in den Abbildungen 4.15 - Abbildung 4.18 dargestellten Ergebnisse sind ebenfalls in
der Tabelle 4.2, respektive Tabelle 4.3 zu finden. Die erste Spalte der beiden Tabellen
gibt dabei die Kompaktierungsrate KR bzw. die Prüfgruppengröße |Gj| an, während in
den folgenden 12 Spalten abwechselnd der X-Reduktionsfaktor (XRF) und die Fehler-
durchlässigkeit (FD) der Benchmark-Schaltungen angegeben wird.

Tabelle 4.2: Einfluss der Kompaktierungsrate (KR) auf X-Reduktionsfaktor (XRF) und
Fehlerdurchlässigkeit (FD) bei einer Prüfgruppengröße von 32

KR XRF FD [%] XRF FD [%] XRF FD [%] XRF FD [%] XRF FD [%] XRF FD [%]

b17_1 b18_1 bench1 bench2 bench3 bench4

2 0,41 99,61 0,33 99,66 0,97 99,11 0,54 99,47 0,26 99,87 0,29 99,77
4 0,83 98,54 0,67 98,91 1,95 96,75 1,09 98,45 0,52 99,36 0,58 99,49
8 1,65 95,17 1,33 96,71 3,90 91,96 2,18 96,50 1,05 97,60 1,16 98,89
16 3,31 88,34 2,66 92,17 7,78 85,42 4,34 93,41 2,10 93,50 2,31 97,20
32 6,68 79,10 5,30 85,64 15,69 77,14 8,73 89,01 4,18 0,87 4,63 94,08

Tabelle 4.3: Einfluss der Prüfgruppengröße (|Gj|) auf X-Reduktionsfaktor (XRF) und
Fehlerdurchlässigkeit (FD) bei einer Kompaktierungsrate von 2

|Gj |
XRF FD [%] XRF FD [%] XRF FD [%] XRF FD [%] XRF FD [%] XRF FD [%]

b17_1 b18_1 bench1 bench2 bench3 bench4

2 1,24 97,62 1,21 98,27 1,54 97,42 1,44 98,78 1,19 98,78 1,24 99,12
4 0,80 97,85 0,76 98,80 1,21 99,19 0,96 98,91 0,73 98,66 0,81 99,21
8 0,58 98,33 0,53 98,65 1,08 99,23 0,72 99,18 0,50 99,07 0,57 99,27
16 0,46 99,06 0,39 99,11 0,97 98,73 0,61 99,36 0,35 99,52 0,44 99,62
32 0,41 99,61 0,33 99,66 0,97 99,11 0,54 99,47 0,26 99,87 0,29 99,77
64 - - 0,26 99,85 0,92 99,30 0,43 99,73 0,18 99,95 0,20 99,75

4.2.3.2 Auswertung der Gruppierungsalgorithmen

In den folgenden Experimenten wird untersucht, wie gut das X-Canceling MISR, das
in der vorgestellten Architektur auf die räumliche Kompaktierung folgt, mithilfe der
modularen Kompaktierung unterstützt werden kann. Aufgrund der in Kapitel 4.2.3.1
dargestellten Experimente wurden die Parameter für den Bin-Packing Algorithmus und
für den Algorithmus zur testunabhängigen Prüfgruppeneinteilung so gewählt, dass die
größte Prüfgruppengröße erreicht wird, mit der die geforderte Kompaktierungsrate noch
eingehalten werden kann. Durch die Maximierung der Prüfgruppengröße wird, wie in
Abbildung 4.17 gezeigt, auch der X-Reduktionsfaktor maximiert. Der Benutzerparame-
ter numRuns des varianzorientierten Algorithmus wurde über 2i für i ∈ {0, 1, 2, 3, 4, 5}
iteriert, um anschließend das beste Ergebnis auszuwählen.
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Zunächst wurde ein Experiment zum Vergleich der heuristischen Algorithmen mit der
optimalen Lösung des Problems 4.1 durchgeführt. Eine optimale Lösung kann nur für
Schaltungen mit einer geringen Anzahl an Prüfpfaden in angemessener Zeit gefunden
werden. Daher wurden für dieses Experiment die Benchmark-Schaltung b17_1 mit 8
(b17_1_8) und 16 (b17_1_16) Prüfpfaden genutzt und für Kompaktierungsraten von
2, 4 und 8 untersucht. Die Gruppierungsalgorithmen wurden für alle Testfrequenzen
individuell angewandt, bis auf den Algorithmus zur testunabhängigen Prüfgruppenein-
teilung, da dieser für jede Testfrequenz dieselbe Prüfgruppeneinteilung liefern würde.

Tabelle 4.4 und Tabelle 4.5 zeigen die Ergebnisse für den X-Reduktionsfaktor (XRF) und
die Fehlerdurchlässigkeit (FD). In beiden Tabellen gibt die erste Spalte die verwendete
Schaltung an. In der zweiten Spalte wird dann die Kompaktierungsrate KR angegeben.
In den folgenden Spalten werden die Ergebnisse für den X-Reduktionsfaktor (XRF), re-
spektive die Fehlerdurchlässigkeit (FD) der verschiedenen Gruppierungsalgorithmen in
der folgenden Reihenfolge angegeben. Zunächst sind die Ergebnisse für die Verwendung
eines einzelnen stochastischen Kompaktierers, wie in [Mitra2004b] vorgestellt, angege-
ben. Mit MILP sind die Spalten mit den optimalen Ergebnissen markiert, die mithilfe
von gemischter ganzzahliger Optimierung (engl. Mixed Integer Linear Programming,
MILP) gefunden wurden. Die folgenden drei Spalten geben die Ergebnisse für die heu-
ristischen Methoden der varianzorientierten Prüfgruppeneinteilung (Varianzorientiert),
der Bin-Packing Prüfgruppeneinteilung (Bin-Packing) und der testunabhängigen Prüf-
gruppeneinteilung (Testunabhängig) an.

Es zeigt sich, dass durch die Prüfgruppeneinteilung immer eine Verbesserung des X-
Reduktionsfaktors (XRFs) erreicht werden konnte, wobei die Fehlerdurchlässigkeit (FD)
in den meisten Fällen nur um 1 % bis 2 % reduziert wurde. Je nach Konfiguration können
die besten Ergebnisse mit unterschiedlichen Gruppierungsalgorithmen erreicht werden.

Tabelle 4.4: X-Reduktionsfaktor (XRF) [Sprenger2018b]
Name KR XRF XRF XRF XRF XRF

Stochastisch MILP Varianzorientiert Bin-Packing Testunabhängig
b17_1_8 2 0,67 1,24 1,32 1,27 1,29

4 1,34 1,71 2,04 1,77 1,77
b17_1_16 2 0,49 1,21 1,02 1,24 1,24

4 0,98 1,61 1,73 1,65 1,64
8 1,97 2,43 3,30 2,44 2,41
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Tabelle 4.5: Fehlerdurchlässigkeit (FD) [Sprenger2018b]
Name KR FD FD FD FD FD

Stochastisch MILP Varianzorientiert Bin-Packing Testunabhängig
b17_1_8 2 97,97 % 97,55 % 96,65 % 97,66 % 97,28 %

4 95,71 % 94,29 % 92,84 % 94,17 % 94,17 %
b17_1_16 2 98,77 % 97,29 % 96,79 % 97,62 % 97,45 %

4 97,37 % 94,77 % 94,13 % 94,29 % 94,96 %
8 93,15 % 90,71 % 86,39 % 90,88 % 91,08 %

Die Abbildung 4.19 zeigt die Ergebnisse aus den Tabellen 4.4 und 4.5 als Balkendia-
gramm. In der linken Grafik (Abbildung 4.19a) wird der X-Reduktionsfaktor (XRF) für
die Kompaktierungsraten 2, 4 und 8 bei der Verwendung von 8 und 16 Prüfpfaden ange-
geben. In der rechten Grafik (Abbildung 4.19b) wird die Fehlerdurchlässigkeit (FD) für
dieselben Konfigurationen gezeigt. Es zeigt sich, dass der varianzorientierte Algorithmus
in den meisten Fällen den besten Kompromiss zwischen X-Reduktionsfaktor (XRF) und
Fehlerdurchlässigkeit (FD) erreicht. Nur für eine Kompaktierungsrate KR = 2 und bei
der Verwendung von 16 Prüfpfaden (|S | = 16) ist der X-Reduktionsfaktor des varianz-
orientierten Algorithmus geringer als bei alle anderen Heuristiken und als bei der MILP-
Lösung.
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Abbildung 4.19: Vergleich zwischen optimaler Lösung und Heuristiken für die Schaltung
b17_1 [Sprenger2018a; Sprenger2018b; Sprenger2019].

In einem weiteren Experiment wurden größere Schaltungen untersucht. Da in diesen
Schaltungen eine größere Anzahl an Prüfpfaden verwendet wurde, wurden nur die Heu-
ristiken zur Prüfgruppeneinteilung bei einer Kompaktierungsrate von 16 verwendet. Wie
in der Abbildung 4.20 zu sehen ist, sind die Ergebnisse vergleichbar mit den Ergebnissen
des vorherigen Experiments. Die genauen Ergebnisse sind in der Tabelle 4.6 aufgeführt.
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Abbildung 4.20: X-Reduktionsfaktor (XRF) und Fehlerdurchlässigkeit (FD) bei zufälli-
ger Prüfpfadkonfiguration [Sprenger2019].

Um die bestmögliche Konfiguration zu erhalten, können in der Praxis alle Heuristiken
simuliert werden, um so den bestmöglichen X-Reduktionsfaktor (XRF) und die best-
mögliche Fehlerdurchlässigkeit (FD) zu erreichen. Erwähnenswert ist dabei, dass durch
die Reduktion der Fehlerdurchlässigkeit (FD) nicht die Fehlerabdeckung des normalen
Verzögerungstests vermindert wird, da aufgrund von niedrigeren X-Raten herkömmli-
che Verfahren zur Testantwortkompaktierung verwendet werden können. Der erhöhte X-
Reduktionsfaktor (XRF) führt jedoch zur Reduktion der X-Werte, die das folgende X-
Canceling MISR erreichen (vgl. Abbildung 4.7). Dies führt wiederum, wie in Kapitel
2.4.2.2 gezeigt wurde, zu einer Reduktion der zu speichernden Zwischensignaturen.

4.2.3.3 Einfluss der Prüfpfadkonfiguration

Während der Testerzeugung kann häufig kein Einfluss auf die Prüfpfadkonfiguration ge-
nommen werden, da diese bereits während der Entwurfsphase unter Berücksichtigung
unterschiedlicher Optimierungsziele, wie z. B. Verdrahtungskosten oder Randbedingun-
gen zur Signallaufzeit, festgelegt wurden. Daher wurden die Experimente mit einer wei-
teren Prüfpfadkonfiguration wiederholt, um den Einfluss der Prüfpfadkonfiguration auf
den X-Reduktionsfaktor und die Fehlerdurchlässigkeit zu untersuchen. Während in den
bisherigen Experimenten eine zufällige Anordnung der Speicherelemente innerhalb der
Prüfpfade verwendet wurde, wurde für die zweite Durchführung eine graphbasierte Prüf-
pfadkonfiguration verwendet [Kampmann2016; Kampmann2017; Kampmann2018].



4 Testantwortkompaktierung für den Hochgeschwindigkeitstest 75

In der Tabelle 4.6 werden die Ergebnisse unter Verwendung der zufälligen Prüfpfadkon-
figuration aus dem Kapitel 4.2.3.2 mit den Ergebnissen der graphbasierten Prüfpfad-
konfiguration verglichen. Die Tabelle 4.6 ist wie folgt aufgebaut. Die erste Spalte gibt
die zugrunde liegende Prüfpfadkonfiguration an und die zweite Spalte den verwendeten
Gruppierungsalgorithmus. Die folgenden zwölf Spalten geben abwechselnd den X-Reduk-
tionsfaktor (XRF) und die Fehlerdurchlässigkeit (FD) in % für die sechs verwendeten
Benchmark-Schaltungen an.

Tabelle 4.6: Vergleich zwischen zufälliger und graphbasierter Prüfpfadkonfiguration
[Sprenger2019]

Prüfpfad XRF FD XRF FD XRF FD XRF FD XRF FD XRF FD

Konfig. Algorithmus b17_1 b18_1 bench1 bench2 bench3 bench4

Zufall

Stochastisch 3,32 87,97 2,38 94,20 8,38 85,07 4,11 93,45 1,67 96,09 2,00 98,67
Testunabhängig 3,75 85,97 3,26 90,16 8,17 83,09 5,09 91,86 2,61 92,17 3,44 96,17
Bin-Packing 3,73 86,06 3,22 89,96 8,29 82,66 4,58 92,77 2,60 91,89 2,70 96,57
Varianzorientiert 5,57 79,45 3,37 89,47 9,53 83,83 5,55 91,10 2,66 91,25 3,15 96,57

Graph

Stochastisch 3,31 88,34 2,13 95,38 7,35 85,14 3,45 94,10 1,45 96,92 1,42 98,82
Testunabhängig 3,70 86,17 3,15 90,79 7,74 85,05 4,90 92,73 2,81 92,14 3,51 95,61
Bin-Packing 3,52 86,07 2,59 92,85 7,35 80,32 4,28 93,44 1,85 93,56 1,72 96,26
Varianzorientiert 5,33 80,54 3,96 86,79 11,75 94,96 5,70 89,86 4,11 90,03 2,87 96,83
Blockierung 3,77 81,93 3,23 86,36 7,55 83,95 5,08 92,69 3,07 91,57 3,71 92,63
Bypass 2,95 87,19 2,77 91,38 7,13 85,59 3,77 93,04 2,71 93,32 2,58 96,22

Es zeigt sich, dass die Prüfpfadkonfiguration nur einen geringen Einfluss auf den X-Re-
duktionsfaktor (XRF) und die Fehlerdurchlässigkeit (FD) hat, wobei die zufällige Prüf-
pfadkonfiguration leicht bessere Ergebnisse für den X-Reduktionsfaktor erzeugt. Auch
in diesem Experiment zeigt der varianzorientierte Algorithmus bessere Ergebnisse als
die normale Anwendung des stochastischen Kompaktierers. Wie in Abbildung 4.21 zu
sehen ist, zeigt aber auch der Algorithmus zur testunabhängigen Prüfgruppeneinteilung
bereits gute Ergebnisse.

4.2.3.4 X-Pfad-Blockierung und Pfad-Bypass für essenzielle Prüfpfade

Wie im vorherigen Abschnitt gezeigt wurde, hat die Prüfpfadkonfiguration nur einen
geringen Einfluss auf die Qualität des gezeigten Kompaktierungsverfahrens. In einem
weiteren Experiment wurde untersucht, wie weitere Information über die Prüfpfadkon-
figuration, wie in Kapitel 4.2.2 beschrieben, genutzt werden kann, um die Qualität der
Kompaktierung weiter zu verbessern.
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Abbildung 4.21: Vergleich von X-Reduktionsfaktor (XRF) und Fehlerdurchlässigkeit
(FD) für zufällige und graphbasierte Prüfpfadkonfigurationen [Spren-
ger2019].
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Abbildung 4.22: Einfluss von X-Pfad-Blockierung und Pfad-Bypass auf X-Reduktions-
faktor (XRF) und Fehlerdurchlässigkeit (FD) bei einer Kompaktie-
rungsrate von 16 [Sprenger2019].
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Für dieses Experiment wurde zunächst der Prüfpfad mit der höchsten X-Rate (X-Pfad)
und der Prüfpfad mit der größten Fehlermenge (essenzieller Prüfpfad) in der graphba-
sierten Prüfpfadkonfiguration bestimmt und während der Phase der räumlichen Kom-
paktierung blockiert (X-Pfad-Blockierung) oder an der räumlichen Kompaktierung vor-
beigeführt (Pfad-Bypass).

In der Abbildung 4.22 werden der X-Reduktionsfaktor (Abbildung 4.22a) und die Feh-
lerdurchlässigkeit (Abbildung 4.22b) für die Verwendung eines einzelnen stochastischen
Kompaktierers [Mitra2004b], der modularen Kompaktierung mit einer Prüfgruppenein-
teilung nach dem Algorithmus zur testunabhängigen Prüfgruppeneinteilung (Testunab-
hängig), dem zusätzlichen Blockieren von X-führenden Prüfpfaden (X-Pfad-Blockierung)
und der Umgehung für essenzielle Prüfpfade (Pfad-Bypass) miteinander verglichen. Die
genauen Ergebnisse sind in der Tabelle 4.6 zu finden.

Wie der Tabelle 4.6 zu entnehmen ist, wird durch die X-Pfad-Blockierung der X-Reduk-
tionsfaktor für alle Schaltungen im Vergleich zur stochastischen Kompaktierung erhöht,
wobei die Fehlerdurchlässigkeit reduziert wird. Entsprechend wird durch die Verwen-
dung eines Prüfpfad-Bypasses die Fehlerdurchlässigkeit für alle gezeigten Schaltungen
im Vergleich zur modularen Kompaktierung ohne Prüfpfad-Bypass erhöht. Wie zu er-
warten war, wird jedoch der X-Reduktionsfaktor durch den Prüfpfad-Bypass verringert.
Je nach Anwendung kann so auf Anforderungen an den X-Reduktionsfaktor oder die
Fehlerdurchlässigkeit reagiert werden.

4.2.4 Fazit

In diesem Kapitel wurde mit der modularen Kompaktierung ein stochastisches Kom-
paktierungsverfahren vorgestellt, welches es ermöglicht mithilfe von programmierbaren
gewichteten Zufallssignalen auf variierende X-Raten, wie sie unter anderem während
des Hochgeschwindigkeitstests entstehen, zu reagieren. Dabei ist die Anwendung nicht
auf die variierenden X-Raten während des Hochgeschwindigkeitstests beschränkt. An-
dere Quellen von hohen oder variierenden X-Raten wie Alterungseffekte oder IR-drop
[Ahmed2006; Ahmed2010] können ebenfalls gehandhabt werden. Hierzu wurde der Kom-
paktierer in mehrere kleine Kompaktierer aufgeteilt, welche disjunkte Prüfgruppen der
Schaltungsausgänge kompaktieren. So ist es möglich den X-Reduktionsfaktor zu erhöhen
und die Fehlerdurchlässigkeit aufrecht zu erhalten.
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Die Gruppierungsalgorithmen können an benutzerdefinierte Bedingungen angepasst wer-
den, um so bestimmte Prüfgruppengrößen oder eine bestimmte Anzahl an Prüfgruppen
zu erreichen. Mit dem Algorithmus zur testunabhängigen Prüfgruppeneinteilung ist au-
ßerdem ein testunabhängiger Gruppierungsalgorithmus gegeben. Durch die X-Pfad-Blo-
ckierung oder den Pfad-Bypass kann außerdem auf benutzerspezifische Anforderungen
an den X-Reduktionsfaktor oder die Fehlerdurchlässigkeit eingegangen werden.
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4.3 Hybride Kompaktierung

Wie in Kapitel 4.2 gezeigt wurde, kann mithilfe der modularen Kompaktierung auf die
variierenden X-Raten des Hochgeschwindigkeitstest eingegangen werden. Während der
X-Reduktionsfaktor (XRF) mithilfe des vorgestellten Kompaktierungsverfahrens erhöht
werden konnte, konnte die Maskierung von Fehlerinformation während des Verfahrens
nicht ausgeschlossen werden. Um diesen Nachteil auszugleichen, wurde in [Maaz2019b]
und [Maaz2019a] ein hybrides Kompaktierungsverfahren vorgestellt, das die stochasti-
sche Phase durch eine deterministische Phase ergänzt.

Zur Untersuchung der verlorenen Fehlerinformation wurde zunächst ein Experiment
durchgeführt mit demselben Versuchsaufbau wie in Kapitel 4.2.3. Für jedes Testmuster
wurde die Fehlerinformation vor und nach der stochastischen Kompaktierung bestimmt,
um festzustellen, welche Fehlerinformation pro Testmuster verloren gegangen ist. Soll-
te die Fehlerinformation in einer anderen Testfrequenz am Ausgang des stochastischen
Kompaktierers sichtbar sein, wird die Fehlerinformation aus der Liste der verlorenen Feh-
ler gestrichen. So konnte für jedes Muster innerhalb der Testmustermenge eine Liste der
tatsächlich verlorenen Fehler erzeugt werden. In der Abbildung 4.23 sind die verlorenen
Fehler für die ersten 100 Testmuster für die höchste Testfrequenz für eine Industrieschal-
tung aufgetragen. Während auf der X-Achse der Testmusterindex aufgeführt ist, ist auf
der Y-Achse die Anzahl der verlorenen Fehler angegeben.
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Abbildung 4.23: Verlorene Fehler für die Benchmark-Schaltung bench5 (KR=8)
[Maaz2019a].
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Es fällt auf, dass für einzelne Testmuster sehr viel Fehlerinformation verloren geht. Durch
die Rückgewinnung der Fehlerinformation in diesen wenigen Testmustern könnte die Feh-
lerdurchlässigkeit (FD) bereits signifikant erhöht werden. Um dies zu erreichen, wurde
das in Kapitel 4.2 erläuterte stochastische Verfahren zur modularen Kompaktierung um
eine deterministische Phase zu einem hybriden Kompaktierer erweitert. Aus Gründen
der Übersichtlichkeit wird das Verfahren hier an einem Kompaktiererblock erläutert. Das
Verfahren kann jedoch auch auf kleinere Kompaktiererblöcke angewendet werden.

Die Idee des hybriden Kompaktierers ist es, einige wenige Testmuster nach der stochas-
tischen Phase der Kompaktierung noch einmal mithilfe einer spezifischen Konfiguration
der Kompaktormatrix zu kompaktieren. Hierzu wurde die Architektur der modularen
Kompaktierung, wie in Abbildung 4.24 gezeigt, um einen Speicher für deterministische
Steuerungsvektoren, einen Multiplexer und einen kleinen endlichen Zustandsautomat
erweitert. Mithilfe des Zustandsautomaten wird zwischen der stochastischen und der de-
terministischen Phase umgeschaltet, um mithilfe des Multiplexers die deterministischen
Steuerungsvektoren an die UND-Netzwerke des stochastischen Kompaktierers weiterlei-
ten zu können. So ist es möglich, in Abhängigkeit der Testantwoten, spezifisch X-Werte
zu blockieren und Fehlermaskierung zu vermeiden.
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Abbildung 4.24: Hybride Kompaktierung [Maaz2019b; Maaz2019a].



4 Testantwortkompaktierung für den Hochgeschwindigkeitstest 81

Zum Entwurf eines hybriden Kompaktierers sind zwei Schritte notwendig.

1. Identifikation der n kritischen Testmuster
2. Bestimmung der deterministischen Steuerungsvektoren

Während der erste Schritt bereits in diesem Kapitel erläutert wurde, wird im folgenden
Abschnitt auf den zweiten Schritt eingegangen.

4.3.1 Bestimmung der deterministischen Steuerungsvektoren für
die hybride Kompaktierung

Häufig ist es das Ziel, Kompaktierer zu entwerfen, die unabhängig von der Testmus-
termenge bestimmte Eigenschaften erfüllen wie z. B. bei den bereits erwähnten code-
basierten linearen Kompaktierern [Reddy1988; Mitra2004a]. Bisher gibt es nur wenige
Ansätze, welche die Testmustermenge beim Entwurf des Kompaktierers berücksichtigen
[Chakrabarty1998; Morosov2001]. Während bei der Berücksichtigung der Testmuster-
menge direkt die Fehlermaskierung verhindert werden kann, hat es den Nachteil, dass
bei der Veränderung oder Ergänzung der Testmustermenge auch die Konfiguration des
Kompaktierers angepasst werden muss. Wie in Kapitel 4.1.2 gezeigt wurde, erlaubt die
Struktur des stochastischen Kompaktierers bereits die Rekonfiguration des Kompaktie-
rers, was es ermöglicht Testmuster-spezifische Steuerungsvektoren zur Konfiguration zu
verwenden. Um den benötigten Speicher für die Steuerungsvektoren zu beschränken,
kann die Granularität der Rekonfigurationen angepasst werden. Im Weiteren wird eine
Rekonfiguration pro Testmuster angenommen.

Die Testantworten der kritischen Testmuster, d. h. der Testantworten mit verlorener
Fehlerinformation, sollen so kompaktiert werden, dass die vorhandenen X-Werte nicht
propagiert werden und die Fehlerinformation nicht maskiert wird. Das Problem zur
Definition des besten Steuerungsvektors für eine gegebene Testantwortmatrix kritischer
Testmuster kann wie folgt definiert werden.

Problem 4.3 (Optimale Kompaktierer Konfiguration (OKK)). Gegeben sei eine Tes-
tantwortmatrix T = (til) und eine Kompaktormatrix C = (cij). Finde eine Belegung der
Einträge cij ∈ {0, 1}, sodass die Fehlerdurchlässigkeit (FD) und der X-Reduktionsfaktor
(XRF) nach der Kompaktierung von T maximal ist.
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Mithilfe der Testantwortmatrix T und der Kompaktormatrix C lässt sich die Signatur-
matrix S mit (2.7) bestimmen. Die Fehlerdurchlässigkeit und der X-Reduktionsfaktor
wird, wie in Kapitel 4.2.1.2 erläutert, berechnet.

Wie bereits in Kapitel 4.1.1 gezeigt wurde, beschreibt die Kompaktormatrix C, wie die
Ausgänge der zu testenden Schaltung mit den XOR-Bäumen des Kompaktierers verbun-
den werden. Um das Problem 4.3 zu lösen, müssen die Eingänge des Kompaktierers in
Eingangsgruppen eingeteilt werden, die dann den einzelnen XOR-Bäumen eines stochas-
tischen Kompaktierers zugewiesen werden.
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Abbildung 4.25: Beispiel einer Eingangsgruppeneinteilung für die hybride Kompaktie-
rung.

In Abbildung 4.25 ist ein Beispiel mit vier Prüfpfaden und einem stochastischen Kom-
paktierer mit einer Kompaktierungsrate von 2 gegeben. Die Prüfpfade in diesem Beispiel
sind in zwei Eingagnsgruppen eingeteilt. Die erste Eingangsgruppe G1 = {i1, i2}, beste-
hend aus dem ersten und zweiten Eingang des Kompkatierers, soll mithilfe des ersten
XOR-Baumes kompaktiert werden und die zweite Eingangsgruppe G2 = {i3, i4} mithilfe
des zweiten. Die Kompaktormatrix ergibt sich somit zu

C =


1 0
1 0
0 1
0 1

 . (4.12)

Zur Reduktion des Suchraums wurden zunächst nur disjunkte Teilmengen der Menge
der Prüfpfade S berücksichtigt.
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Die vorgestellte Eingangsgruppeneinteilung ist ein heuristisches Verfahren zur Lösung
des OKK Problems 4.3 und basiert auf dem Ähnlichkeits-Index η, der wie folgt definiert
ist.

Definition 4.2 (Ähnlichkeitsindex). Sei T = (til) eine m×n Testantwortmatrix. ti und
ti′ seien zwei Zeilen der Matrix T . Der Ähnlichkeits-Index η(ti, ti′) ist dann definiert als

η(ti, ti′) =
n∑

l=1
η(til, ti′l), (4.13)

mit

η(til, ti′l) =



1 , wenn til = ti′l = X

− 1− 0,5 · |F (til)| , wenn til ̸= X, ti′l = X

− 1− 0,5 · |F (ti′l)| , wenn til = X, ti′l ̸= X

− 0,5 · |F (til) ∩F (ti′l)|, sonst.

Während der Kompaktierung werden alle Eingänge des Kompaktierers, die sich in einer
Eingangsgruppe befinden XOR-verknüpft. Mithilfe des Ähnlichkeits-Index soll bewertet
werden, wie sehr die XOR-Verknüpfung zweier Prüfpfade den X-Reduktionsfaktor (XRF)
und die Fehlerdurchlässigkeit (FD) erhöht. Werden zwei X-Werte zusammengefasst (til =
ti′l = X) erhöht sich der X-Reduktionsfaktor. Daher wird der Ähnlichkeits-Index um 1
erhöht. Wird ein deterministisches Bit mit einem X-Wert verknüpft (til ̸= X, ti′l = X

oder til = X, ti′l ̸= X), wird der X-Wert propagiert und etwaige Fehlerinformation geht
verloren. Für diesen ungewollten Fall wird der Ähnlichkeits-Index reduziert. Für das
Propagieren des X-Wertes wird der Index um 1 reduziert. Zusätzlich wird für jeden
Fehler, der verloren geht, der Index um 0,5 verringert. Im letzten Fall werden zwei
deterministische Bits miteinander verknüpft. Handelt es sich hierbei um D-Bits, welche
dieselben Fehler transportieren, kommt es zur Fehlermaskierung, die vermieden werden
soll. Daher wird für jeden maskierten Fehler der Index ebenfalls um 0,5 reduziert.

Zur Erläuterung ist in Abbildung 4.26 ein Beispiel mit zwei Prüfpfaden und fünf Taktzy-
klen gegeben. Die X-Werte sind mit X markiert. Deterministische Bits werden mithilfe
der Fehlermenge F (til) dargestellt. Im ersten Taktzyklus werden zwei X-Werte mitein-
ander verknüpft, daher ergibt sich ein Ähnlichkeits-Wert η(til, ti′l) von 1. Die zweiten Bits
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der Prüfpfade tragen keine Fehlerinformation. Bei der Kombination der beiden Bits geht
daher auch keine Fehlerinformation verloren und nach Definition 4.2 ergibt sich der Ähn-
lichkeits-Wert zu 0. Im dritten Taktzyklus wird ein X-Wert propagiert und es geht die
Information eines Fehlers verloren. Somit wird 1,5 vom Ähnlichkeits-Index abgezogen.
Bei der Verknüpfung der vierten Bits werden die Fehler φ1 und φ2 maskiert, der Ähnlich-
keits-Index muss daher um 1 reduziert werden. Der Ähnlichkeits-Wert für den fünften
Taktzyklus ist −1,5, da wie im Taktzyklus 3 ein X-Wert propagiert wird und ein Fehler
verloren geht. Der Ähnlichkeits-Index ergibt sich somit zu 1 + 0− 1,5− 1− 1,5 = −3.
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Abbildung 4.26: Beispiel für den Ähnlichkeits-Index η [Maaz2019a].

Definition 4.3 (Essenzielles D-Bit). Sei T = (til) eine m × n Testantwortmatrix und
ti′l′ ̸= X sei ein D-Bit. Dann ist ti′l′ ein essenzielles D-Bit in Bezug auf T , wenn
F (ti′l′) einen Fehler enthält, welcher in keiner anderen Fehlermenge F (til) enthalten
ist für 1 ≤ i ̸= i′ < m und 1 ≤ l ̸= l′ < n.

Mithilfe der so definierten, essenziellen D-Bits lässt sich der Ähnlichkeits-Index anpas-
sen, um den Verlust von essenzieller Fehlerinformation zu verhindern. Durch die Tes-
tantwortmatrix können mithilfe der Definition 4.3 die essenziellen D-Bits für die hybride
Kompaktierung bestimmt werden.

In Algorithmus 4.4 ist ein gieriger (engl. greedy) Algorithmus zur Eingangsgruppenein-
teilung aufgrund des Ähnlichkeits-Index η(ti, ti′) angegeben. Die Eingabeparameter des
Gruppierungsalgorithmus sind die Anzahl der Eingänge und Ausgänge des Kompaktie-
rers m und n, die Testantwortmatrix T , sowie die Menge der Prüfpfade S . Zunächst
wird die Eingangsgruppengröße size = ⌈m/n⌉ bestimmt. Für die ersten n−1 Ausgänge,
die je einen XOR-Baum repräsentieren, wird in der Zeile 6 eine Eingangsgruppe (G In

j )
mithilfe der Funktion newCluster gebildet. Die in G In

j verwendeten Prüfpfade werden
anschließend aus der Menge der Prüfpfade S und die entsprechenden Zeilen aus der Tes-
tantwortmatrix T entfernt. Aus den verbleibenden Prüfpfaden wird die Eingangsgruppe
für den n-ten Ausgang G In

n gebildet.
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Algorithmus 4.4 Eingangsgruppeneinteilung [Maaz2019a]
1: function Eingangsgruppeneinteilung(m, n, T , S )
2: size← ⌈m/n⌉
3: G In ← ∅
4: for j ← 1 to (n-1) do
5: G In

j ← newCluster(size, S , T )
6: S ← S \ G In

j

7: Löschen der Prüfpfade aus G In
j in T

8: G In ← G In ∪ G In
j

9: end for
10: G In

n ← S
11: G In ← G In ∪ G In

n

12: end function

Algorithmus 4.5 Algorithmus zur Bildung neuer Eingangsgruppen [Maaz2019a]
1: function newCluster(size, S , T )
2: G In

new ← ∅
3: calculate η(ti, ti′)∀i ̸= i′ ∈ {1, . . . , m}
4: si, si′ ← arg maxi ̸=i′∈{1,...,m} η(ti, ti′)
5: G In

new ← G In
new ∪ {si, si′}

6: delete rows corresponding to G In
new in T

7: t = ti ⊕ ti′

8: while |G In
new| < size do

9: calculate η(ti, t)∀i ∈ {1, . . . , numRows(T )}
10: si,← arg maxi∈{1,...,numRows(T )} η(ti, t)
11: G In

new ← G In
new ∪ {si}

12: delete rows corresponding to si in T
13: t← t⊕ ti

14: end while
15: end function
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Die essenzielle Funktion im Algorithmus 4.4 ist die Funktion newCluster, welche eine
neue Eingangsgruppe der Größe size aus der Menge der Prüfpfade S und der Testant-
wortmatrix T bildet. Wie in Algorithmus 4.5 gezeigt wurde, wird hierzu zunächst für alle
Prüfpfadkombinationen der Ähnlichkeits-Index η(ti, ti′) berechnet. Anschließend werden
die beiden Prüfpfade si und si′ , die den Ähnlichkeits-Index maximieren, ausgewählt und
der neuen Eingangsgruppe G In

new hinzugefügt und die entsprechenden Reihen aus T ent-
fernt. Daraufhin wird die XOR-Verknüpfung der beiden Zeilen ti und ti′ der Testantwort-
matrix gebildet. Der Zeilenvektor t repräsentiert damit die kompaktierte Testantwort der
bisherigen Eingangsgruppe G In

new. Bis die gewünschte Größe der Eingangsgruppe erreicht
wird, wird in den Zeilen 7-13 der Ähnlichkeits-Index der aktuellen Eingangsgruppe mit
allen verbleibenden Prüfpfaden berechnet (η(ti, t)∀i ∈ {1, . . . , numRows(T )}) und der
Prüfpfad mit dem höchsten Ähnlichkeits-Index der aktuellen Eingangsgruppe hinzuge-
fügt.

Da als Granularität in dieser Arbeit ein Testmuster verwendet wurde, wird der Steue-
rungsvektor nur einmal pro Testmuster verändert. Daher ist es in der deterministischen
Phase des hybriden Kompaktierers nicht immer möglich, 100 % Fehlerdurchlässigkeit zu
erreichen. Falls 100 % Fehlerdurchlässigkeit erreicht werden soll, kann für jeden Takt-
zyklus ein optimaler Steuerungsvektor bestimmt werden. Dies hat jedoch den Nachteil,
dass die benötigte Speichergröße zum Speichern der deterministischen Steuerungsvek-
toren ansteigt. Sollte die Speichergröße für die Granularität eines Testmusters nicht
ausreichen, ist es außerdem möglich, mehrere Testmuster zusammenzufassen.

4.3.2 Experimente

Zur Evaluierung des vorgestellten hybriden Kompaktierungsverfahrens wurden Experi-
mente für eine ITC’99 Benchmark-Schaltung [Davidson1999; Corno2000] und fünf In-
dustrieschaltungen durchgeführt. In der Tabelle 4.7 sind die Schaltungseigenschaften
zusammengefasst. In der ersten Spalte sind die Bezeichnungen der Benchmark-Schal-
tungen zu sehen. Die Anzahl der Ein- und Ausgänge sind in der zweiten und dritten
Spalte zu finden. Die vierte Spalte zeigt die Anzahl der implementierten Prüfpfade. Die
Kardinalität der Testmustermenge ist in der fünften Spalte dargestellt. Die Anzahl der
detektierbaren versteckten kleinen Verzögerungsfehler und die Anzahl der X-Werte in
den Testantworten sind in den letzten beiden Spalten angegeben.

Für alle Versuche wurde ein Hochgeschwindigkeitstest mit fünf Testfrequenzen und einer
stochastischen Kompaktierung durchgeführt. Die Testfrequenzen wurden äquidistant im
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Tabelle 4.7: Schaltungseigenschaften
CUT # Eingänge # Ausgänge |S | |TM | |F (T )| XT otal

b18_1 4116 3085 64 3507 116 231 163 536
bench1 3739 2550 64 3596 64 840 668 783
bench2 4029 3952 64 3541 363 317 1 049 623
bench3 4627 4557 64 6600 186 959 511 116
bench4 5902 5829 128 5506 145 221 339 691
bench5 3148 3484 64 929 208 282 681 995

Intervall [fnom, 3 · fnom] ∈ R verteilt. Der stochastische Kompaktierer wurde entspre-
chend den Vorgaben in [Mitra2004b] konfiguriert. Nach der stochastischen Phase wurde
während der deterministischen Phase eine Teilmenge der Testmustermenge noch einmal
auf die Testschaltung angewandt. Zur Eingangsgruppeneinteilung wurde der Algorith-
mus 4.4 verwendet. In einem weiteren Experiment wurde außerdem ein Referenzversuch
mit einem Steuerungsvektor pro Taktzyklus durchgeführt (Takt-Granularität).

Zunächst wurde die Fehlerdurchlässigkeit (FD) untersucht. In der Tabelle 4.8 werden
die Fehlerdurchlässigkeit für die stochastische Phase der Kompaktierung (Stochastisch)
mit der deterministischen Phase verglichen bei einer Granularität eines Testmusters
(Hybrid) und eines Taktes (Hybrid pro Takt). Als Kompaktierungsrate wurde 16 und
32 verwendet. Für die Experimente wurden 10 % der Testmustermenge ein weiteres Mal
angewendet.

Tabelle 4.8: Fehlerdurchlässigkeit (FD) für KR = 16 und KR = 32 bei der Wiederan-
wendung von 10 % der Testmuster [Maaz2019a]

Kompaktierungsrate 16 Kompaktierungsrate 32
CUT Stochastisch Hybrid Hybrid Stochastisch Hybrid Hybrid

pro Takt pro Takt

b18_1 94,20 % 97,98 % 98,49 % 87,51 % 91,86 % 96,63 %
bench1 85,07 % 93,08 % 93,49 % 77,45 % 89,77 % 91,07 %
bench2 93,45 % 96,20 % 98,84 % 88,61 % 90,90 % 98,24 %
bench3 96,09 % 98,95 % 99,25 % 90,28 % 95,16 % 97,77 %
bench4 98,67 % 99,90 % 99,94 % 96,37 % 99,08 % 99,31 %
bench5 80,74 % 87,23 % 98,84 % 75,55 % 82,78 % 98,56 %

Es zeigt sich, dass durch die Wiederanwendung der kritischen Testmuster in einer de-
terministischen Phase die Fehlerdurchlässigkeit, bei der Verwendung eines Steuerungs-
vektors pro Testmuster, gesteigert werden konnte. Die kleinste Verbesserung von 1,23 %
wurde für die bench4 Benchmark-Schaltung erzielt bei einer Kompaktierungsrate von
16. Mit 12,31 % konnte die größte Verbesserung für die Schaltung bench1 bei einer
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Kompaktierungsrate von 32 erreicht werden. Bei einer Verwendung von individuellen
Steuerungsvektoren pro Taktzyklus kann die Fehlerdurchlässigkeit sogar bis zu 23,01 %
verbessert werden.

In der Abbildung 4.27 ist eine graphische Repräsentation der Ergebnisse bei einer Kom-
paktierungsrate von 16 zu finden. Auf der Y-Achse ist die Fehlerdurchlässigkeit (FD)
in % aufgetragen, während auf der X-Achse die Benchmark-Schaltungen aufgeführt
sind.
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Abbildung 4.27: Stochastische Kompaktierung vs. hybride Kompaktierung - Vergleich
der Fehlerdurchlässigkeit (FD) bei einem Kompaktierungsrate (KR)
von 16 und 32.

In einem weiteren Experiment wurde der Einfluss der Testmusteranzahl, in der determi-
nistischen Phase, auf die Fehlerdurchlässigkeit untersucht. Hierzu wurde das vorherige
Experiment für eine variierende Anzahl an kritischen Testmustern wiederholt. Die An-
zahl der Testmuster wurde zwischen 1 % und 10 % der ursprünglichen Testmustermenge
variiert. In der Abbildung 4.28 sind beispielhaft die Ergebnisse für die Schaltung bench1
bei einer Kompaktierungsrate von 16 gezeigt. Es zeigt sich, dass mit steigender Anzahl
zusätzlicher Testmuster auch die Fehlerdurchlässigkeit steigt. Auffällig ist außerdem,
dass die Fehlerdurchlässigkeit zunächst stark ansteigt, bevor sie asymptotisch auf ein
Maximum zuläuft. Dies lässt sich durch die Anzahl der verlorenen Fehler pro Testmus-
ter erklären. Wie in Abbildung 4.23 zu sehen ist, gibt es nur wenige Testmuster, die
viele verlorene Testmuster tragen. Diese werden in dem vorgestellten Ansatz als kritisch
angesehen und werden daher als erstes verwendet.

Als nächstes wurde der X-Reduktionsfaktor (XRF) untersucht. Durch die Wiederver-
wendung von Testmustern kann es dazu kommen, dass zusätzliche X-Werte verarbeitet
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Abbildung 4.28: Entwicklung der Fehlerdurchlässigkeit bei steigender Anzahl der wie-
derverwendeten Testmuster [Maaz2019a].

werden müssen. Dies beeinflusst den X-Reduktionsfaktor. Wie in Tabelle 4.9 gezeigt,
kann sich der X-Reduktionsfaktor (XRF) bei der Verwendung eines Steuerungsvektors
pro Testmuster verringern, während bei der Verwendung von individuellen Steuerungs-
vektoren pro Takt keine X-Werte den Kompaktierer verlassen und somit der X-Reduk-
tionsfaktor erhalten bleibt. Der Aufbau der Tabelle 4.9 ist analog zur Tabelle 4.8. Eine
graphische Repräsentation der Ergebnisse für eine Kompaktierungsrate von 16 ist in
Abbildung 4.29 dargestellt.

Tabelle 4.9: X-Reduktionsfaktor für KR = 16 und KR = 32 bei der Wiederverwendung
von 10 % der Testmuster [Maaz2019a]

Kompaktierungsrate 16 Kompaktierungsrate 32
CUT Stochastisch Hybrid Hybrid Stochastisch Hybrid Hybrid

pro Takt pro Takt

b18_1 2,38 1,75 2,38 4,78 3,02 4,78
bench1 8,38 8,38 8,38 16,99 14,38 16,99
bench2 4,11 3,29 4,11 8,24 6,46 8,24
bench3 1,67 1,38 1,67 3,34 2,55 3,34
bench4 2,00 1,70 2,00 3,98 3,18 3,98
bench5 12,41 9,27 12,41 24,87 19,17 24,87

Für einen besseren Überblick ist in Tabelle 4.10 die absolute Anzahl der X-Werte in
derselben Weise wie in den vorherigen beiden Tabellen dargestellt.
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Abbildung 4.29: Stochastische Kompaktierung vs. hybride Kompaktierung - Vergleich
des XRFs bei einer Kompaktierungsrate von 16 und 32.

Tabelle 4.10: Anzahl der X-Werte an den Ausgängen des Kompaktierers bei KR = 16
und KR = 32 bei der Wiederverwendung von 10 % der Testmuster
[Maaz2019a]

Kompaktierungsrate 16 Kompaktierungsrate 32
CUT Stochastisch Hybrid ∆x Stochastisch Hybrid ∆x

b18_1 68 706 93 685 24 979 34 200 54 137 19 937
bench1 79 799 79 799 0 39 362 46 513 7151
bench2 255 287 318 710 63 423 127 420 162 505 35 085
bench3 305 456 370 616 65 160 152 850 200 604 47 754
bench4 170 271 200 307 30 036 85 272 106 958 21 686
bench5 54 964 73 565 18 601 27 427 35 577 8150
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Es zeigt sich, dass durch die hybride Kompaktierung der X-Reduktionsfaktor (XRF) im
Vergleich zur stochastischen Kompaktierung leicht verringert wird, da wie bereits erklärt
durch die Wiederverwendung der kritischen Testmuster zusätzliche X-Werte verarbeitet
werden müssen. Zur Bewertung der Qualität des Gruppierungsalgorithmus wurde als
nächstes nur der X-Reduktionsfaktor während der deterministischen Phase untersucht,
ohne die vorangegangenen stochastischen Phase zu berücksichtigen. Der X-Reduktions-
faktor für die deterministische Phase ist in Tabelle 4.11 dargestellt. In der ersten Spalte
sind wieder die Bezeichnungen der Schaltungen zu finden, während in der zweiten und
dritten Spalte der X-Reduktionsfaktor der deterministischen Phase bei einer Kompak-
tierungsrate von 16 und 32 dargestellt ist.

Tabelle 4.11: X-Reduktionsfaktor (XRF) während der deterministischen Phase für
KR = 16 und KR = 32 bei einer Wiederanwendung von 10 % der Test-
muster [Maaz2019a]

CUT Kompaktierungsrate 16 Kompaktierungsrate 32

b18_1 2,19 3,00
bench1 3,24 3,58
bench2 3,69 5,66
bench3 2,16 2,95
bench4 1,00 3,47
bench5 7,45 8,08

Die erreichten X-Reduktionsfaktoren sind niedriger als die der stochastischen Phase. Dies
ist anhand der verwendeten Ähnlichkeits-Werte zu erklären, die versuchen die Fehler-
durchlässigkeit zu erhöhen. Durch die Anpassung des Ähnlichkeits-Wertes in der Definiti-
on 4.2 lässt sich der Gruppierungsalgorithmus an weitere Optimierungsziele anpassen.

Zuletzt wurde der benötigte Hardwareaufwand für die deterministische Phase der hy-
briden Kompaktierung untersucht. Hierzu wurde der Speicheraufwand für die Steue-
rungsvektoren pro Testmuster und pro Taktzyklus untersucht und die Ergebnisse in der
Tabelle 4.12 dargestellt. In der ersten Spalte sind die Bezeichnungen der Schaltungen
aufgeführt. Die zweite und dritte, sowie die vierte und fünfte Spalte zeigen den benö-
tigten Speicheraufwand pro Testmuster und pro Takt bei einer Kompaktierungsrate von
16 und 32 in kbit.

Wie erwartet, ist der benötigte Speicheraufwand des feingranularen Gruppierungsalgo-
rithmus (pro Takt) deutlich höher als der Speicheraufwand des grobgranularen Grup-
pierungsalgorithmus (pro Testmuster). Die benötigte Speichergröße ist bei dem feingra-
nularen Algorithmus bis zu zwei Größenordnungen größer. In Abbildung 4.30 sind die
Speichergrößen auf einer logarithmischen Skala aufgeführt.
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Tabelle 4.12: Speichergröße für KR = 16 und KR = 32 bei der Wiederverwendung von
10 % der Testmuster (kbit) [Maaz2019a]

Kompaktierungsrate 16 Kompaktierungsrate 32
CUT Hybrid Hybrid Hybrid Hybrid

pro Takt pro Takt

b18_1 25,90 1055,52 25,90 1055,52
bench1 26,57 895,70 26,57 895,70
bench2 26,20 1366,50 26,20 1366,50
bench3 49,55 2941,05 49,55 2941,05
bench4 75,59 3132,09 75,59 3132,09
bench5 6,58 310,50 6,58 310,5

Da die Fehlerdurchlässigkeit nicht im gleichen Ausmaß gesteigert werden kann, ist es
in der Praxis in der Regel nicht vertretbar die großen Kosten für den feingranularen
Gruppierungsalgorithmus aufzubringen. Ein guter Kompromiss könnte jedoch sein, den
feingranularen Gruppierungsalgorithmus für einige wenige kritische Testmuster anzu-
wenden, um so eine hohe Fehlerdurchlässigkeit bei einem vertretbaren Speicheraufwand
zu erhalten.
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Abbildung 4.30: Speicheraufwand bei einer Kompaktierungsrate (KR) von 16 und 32.

4.3.3 Fazit

Mithilfe des gezeigten hybriden Kompaktierungsverfahrens wird die flexible Architek-
tur des stochastischen Kompaktierers effizient genutzt, um die Fehlerdurchlässigkeit des
stochastischen Kompaktierungsverfahrens zu steigern. Hierzu wird in einer deterministi-
schen Phase eine begrenzte Anzahl an Testmustern ein weiteres Mal an die zu testende
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Schaltung angelegt und die zugehörigen Testantworten mithilfe von deterministischen
Kompaktormatrizen kompaktiert. Die durchgeführten Experimente haben gezeigt, dass
die Fehlerdurchlässigkeit durch die deterministische Phase gesteigert werden konnte,
wobei der X-Reduktionsfaktor nur geringfügig verringert wurde. Durch die Verwendung
eines feingranularen Gruppierungsalgorithmus kann die Fehlerdurchlässigkeit auf Kos-
ten des benötigten Speicheraufwands weiter gesteigert werden. Außerdem können alle
X-Werte der deterministischen Phase bei der Verwendung eines Steuervektors pro Takt
maskiert werden. Somit erreichen keine weiteren X-Werte die folgende zeitliche Kompak-
tierung und es müssen keine zusätzlichen Zwischensignaturen des X-Canceling MISRs
gespeichert werden [Touba2007]. Durch die Variation der Anzahl der verwendeten Test-
muster während der deterministischen Phase kann ein Kompromiss zwischen Fehler-
durchlässigkeit und Speicheraufwand gefunden werden. Zusätzlich zur deterministischen
Phase mithilfe der grobgranularen Gruppierungsmethode ist es außerdem möglich, ei-
ne zweite deterministische Phase für einige wenige essenzielle D-Bits mit feingranularen
Steuerungsvektoren durchzuführen.





5 Verbindungstest in Logik-
Schaltungen

Wie in der Einleitung eingeführt wurde, ist der gesamte Lebenszyklus einer hochinte-
grierten Schaltung von Unsicherheiten geprägt. Im vorherigen Kapitel wurde zunächst
angenommen, dass Fehler innerhalb der Gatter einer Logik-Schaltung auftreten. Durch
Übersprechen kommt es jedoch auch auf Verbindungsleitungen innerhalb der Logik-
Schaltung, zu Unsicherheiten, welche sich als kleine Verzögerungsfehler manifestieren.
Um die komplette Logik-Schaltung auf Unsicherheiten überprüfen zu können, werden
in diesem Kapitel zusätzlich die Verbindungsleitungen innerhalb der Logik-Schaltung
berücksichtigt.

Wie in Kapitel 2.2.2 gezeigt wurde, kommt es bei hochintegrierten Schaltungen, die in
immer kleiner werdenden Strukturgrößen gefertigt werden, immer häufiger zu Überspre-
chen zwischen Verbindungsleitungen. Dieses Übersprechen kann unter anderem, wie in
Kapitel 2.3.4 gezeigt, als Verzögerung am Ausgang der Schaltung sichtbar werden. Aber
auch Prozessvariationen, wie z. B. die Variation der Gatelänge eines Transistors, können
zu Verzögerungen des Signalverlaufs am Ausgang der Schaltung führen.

Wie in Abbildung 5.1 gezeigt wird, ist es jedoch schwer, am Ausgang der Schaltung
zwischen den Ursachen einer Verzögerung zu unterscheiden. In der Abbildung 5.1 ist ein
Histogramm der Verzögerungen der ISCAS’89 Benchmark-Schaltung s27 [Brglez1989] zu
sehen. Für dieses Histogramm wurden zwei Zufallsexperimente mit über 7000 Wiederho-
lungen durchgeführt. Im ersten Experiment wurde das Zeitverhalten fehlerfreier Instan-
zen der Schaltung unter Prozessvariation simuliert. Hierzu wurde die Prozessvariation als
globale Veränderung der Transistor-Gatelänge modelliert. Die Gatelänge wurde hierzu
als normalverteilte Zufallsvariable modelliert mit einem Mittelwert µ = Lnom und einer
Standardabweichung σ = 0,2 ·Lnom/3, wobei Lnom der nominellen Gatelänge entspricht.
In 99,73 % der Fälle liegt die Gatelänge somit im Intervall [0,8 ·Lnom, 1,2 ·Lnom] ∈ R. Die
Abweichung von der nominellen Gatelänge entspricht somit 3σ. Die simulierten Verzö-
gerungen wurden in der Abbildung 5.1 als grüne Balken dargestellt. Im zweiten Experi-
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ment wurde das Zeitverhalten fehlerhafter Schaltungen simuliert. Hierzu wurden zufällig
Koppelkapazitäten zwischen die Verbindungsleitungen innerhalb der Logik-Schaltungen
injiziert. Die Größe der Kapazität wurde dabei durch eine gleichverteilte Zufallsvariable
im Intervall [0 fF, 100 fF] ∈ R modelliert. Die Verzögerungen sind als blaue Balken in
dem Histogramm aufgetragen.

Histogramm (95°C, 0,85V)
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Abbildung 5.1: Verteilung der Laufzeitverzögerungen für Schaltungen bei denen Prozess-
variation und Übersprechen auftritt [Sprenger2020].

In der Abbildung 5.1 ist deutlich eine Überlappung der Verzögerungen von fehlerfrei-
en und fehlerhaften Schaltungsinstanzen zu erkennen. Üblicherweise wird ein Verzöge-
rungstest anhand eines Schwellwertes durchgeführt. Liegt die Verzögerung oberhalb des
Schwellwertes wird die Schaltung als fehlerhaft betrachtet, liegt sie darunter als fehlerfrei.
Aufgrund der Überlappung der Verzögerungszeiten kann dies zu zwei Problemen führen.
Einerseits können fehlerhafte Schaltungen als fehlerfrei klassifiziert werden, da sie sich
genauso verhalten wie fehlerfreie Schaltungen und somit, wie in Kapitel 2.2.2 erläutert
wurde, zu einem Zuverlässigkeitsproblem führen. Anderseits können bei einem aggressi-
veren Test mit geringerem Schwellwert fehlerfreie Schaltungen als fehlerhaft klassifiziert
werden, was zu einer geringeren Ausbeute führt. Daher ist eine Methode zur Unter-
scheidung von Prozessvariation und Übersprechen notwendig, welche in diesem Kapitel
vorgestellt wird.

Zunächst wird in Kapitel 5.1 der Stand der Technik eingeführt, bevor in Kapitel 5.2 das
Verhalten von Verzögerungsfehlern aufgrund von Übersprechen und Prozessvariation in
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unterschiedlichen Arbeitspunkten untersucht wird. In Kapitel 5.3 und 5.4 wird darauf-
hin eine Methode zur Unterscheidung der Ursachen von Verzögerungsfehlern mithilfe
von künstlichen neuronalen Netzen beschrieben. Experimentelle Ergebnisse werden in
Kapitel 5.5 vorgestellt, bevor in Kapitel 5.6 ein Fazit gezogen wird.

5.1 Stand der Technik

Die Detektion von kleinen Verzögerungsfehlern unter der Berücksichtigung von Prozess-
variationen oder die Unterscheidung zwischen Verzögerungen, die durch Prozessvariation
hervorgerufen wurden und Verzögerungen, die durch Logikdefekte hervorgerufen wurden,
ist bereits seit einiger Zeit Teil von Forschungsarbeiten. Oft werden hierzu die Verzöge-
rungen der zu testenden Schaltung in unterschiedlichen Arbeitspunkten oder zusätzliche
Eigenschaften der Schaltung untersucht. So wurde z. B. in [Qian2010] und [Qian2012] das
Verzögerungsverhalten der Schaltung bei unterschiedlichen Versorgungsspannungen aus-
gewertet, um dieses Problem zu lösen. In [Najafi-Haghi2020] wurden, auf der Ebene von
Logikzellen, Verfahren des maschinellen Lernens zur Lösung dieser Problemstellung an-
gewandt. In eine Menge von NAND-Gatterinstanzen mit Prozessvariation wurden hierzu
resistive Defekte in die Gatterinstanzen injiziert und das Zeitverhalten für unterschied-
liche Versorgungsspannungen simuliert. Durch den so generierten Datensatz konnten
mit dem Verfahren der k-nächsten-Nachbarn (engl. k-nearest-neighbor), einer Support-
Vektor-Maschine (engl. support vector machine) und einem mehrschichtigen Perzeptron
(MLP) drei Verfahren des überwachten Lernens erfolgreich angewandt werden, um zwi-
schen fehlerhaften und fehlerfreien Gatterinstanzen zu unterscheiden.

Wie in [Najafi-Haghi2020] wurden in vielen bisherigen Arbeiten nur interne Defekte von
Logikzellen berücksichtigt, wie z. B. Gateoxiddefekte, die zu resistiven Defekten führen.
So wurde in [Aitken2008] z. B. gezeigt, dass sich die Leckströme, welche aufgrund von
Prozessvariation entstehen, anders verhalten als die Leckströme, die von resistiven De-
fekten hervorgerufen werden. Somit kann das Beobachten der Leckströme dabei helfen,
zwischen resistiven Defekten und Prozessvariation zu unterscheiden. In [Moreno2016]
wurde gezeigt, dass die Effekte von Defekten, die zu unterbrochenen Leitungen füh-
ren bei niedrigen Versorgungsspannungen größer ausgeprägt sind als bei normalen Ver-
sorgungsspannungen. Für den Test von kleinen Verzögerungsdefekten ist es notwendig,
hochwertige Testmuster zu verwenden, die auch unter Prozessvariation die entsprechen-
den Verzögerungsfehler aktivieren. In [Peng2013] werden hierzu statistische Informatio-
nen über die Prozessvariationen und weitere Unsicherheiten (wie Übersprechen) genutzt,
um robuste Testmuster zu erzeugen.
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Neue Testqualitätsmetriken, wie in [Hasib2019] vorgestellt, nehmen ebenfalls Rücksicht
auf die Prozessvariation, indem mehrere Prozess-, Spannungs- und Temperatur- (engl.
Process, Voltage, Temperature (PVT)) Arbeitspunkte berücksichtigt werden.

Verbindungsleitungen auf System-Ebene sind in der Regel leicht zugänglich und können
daher relativ einfach auf Übersprechen getestet werden [Chen1998]. Innerhalb der kom-
binatorischen Logik der Schaltung sind die Verbindungsleitungen jedoch oft nur schwer
steuerbar und beobachtbar, wodurch die Fehler nur schwer aktiviert und zu einem Aus-
gang propagiert werden können. Außerdem ist es wichtig, dass die Flanken auf den beiden
Signalleitungen des Fehlerortes, möglichst zeitnah erscheinen, um ein möglichst großes
Fehlverhalten zu erzeugen [Tehranipoor2011]. Zur Aktivierung von Übersprechen gibt es
bereits eine Vielzahl an Testmustererzeugungsalgorithmen in der Literatur [Chen1999;
Eggersglüß2010; Bai2003; Chun2009; Ganeshpure2010; Asokan2015], die in dieser Arbeit
nicht erneut eingeführt werden.

Wie zuvor erwähnt wurde, versuchen die oben genannten Methoden Prozessvariationen
von Defekten innerhalb der Logik zu unterscheiden, die als kleine Verzögerungsfehler
modelliert werden können, wohingegen das in diesem Kapitel vorgestellte Verfahren zur
Unterscheidung von kleinen Verzögerungsfehlern aufgrund von Übersprechen und Pro-
zessvariation dient. Hierzu wird ein künstliches neuronales Netz verwendet. Künstliche
Intelligenz und Methoden des maschinellen Lernens werden jedoch nicht nur im Test
und der Diagnose eingesetzt, sondern finden in nahezu allen Phasen des computerge-
stützten Entwurfs von digitalen Schaltungen Anwendung. Ein ausführlicher Überblick
ist in [Amuru2022] zu finden.

Im folgenden Abschnitt wird das Zeitverhalten von Logik-Schaltungen in unterschiedli-
chen Arbeitspunkten untersucht.

5.2 Verhalten von Übersprechen und Prozessvariation
unter Berücksichtigung des Arbeitspunktes

Wie in Kapitel 2.3.4 gezeigt wurde, kann es aufgrund von parasitären Koppelkapazitäten,
-induktivitäten und -widerständen zu Übersprechen kommen, das durch veränderte Si-
gnalverläufe auf der Opfer-Leitung modelliert wird. Um zwischen den Ursachen für klei-
ne Verzögerungsfehler (Übersprechen und Prozessvariation) unterscheiden zu können,
wird das Verhalten der hochintegrierten Schaltung in unterschiedlichen Arbeitspunk-
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ten op ∈ OP := T × U untersucht, wobei T der Menge der Betriebstemperaturen
entspricht und U der Menge der Versorgungsspannungen. Zur Analyse des Zeitverhal-
tens wurden Experimente unter Prozessvariation und Übersprechen durchgeführt. Hier-
zu wurde die Benchmark-Schaltung s27 aus der ISCAS’89 Benchmark-Suite [Brglez1989]
in der FreePDK45 Generic Open Cell Library Technology [SII2023] synthetisiert. Zur
Aktivierung der Übersprecheffekte wurde ein hausinterner Testmustererzeugungsalgo-
rithmus verwendet, der auf dem Booleschen Erfüllbarkeitsproblem basiert [Reimer2019].
Der Testmustererzeugungsalgorithmus arbeitet mit einer diskreten Repräsentation der
Signalkurven, wie in [Sauer2012] vorgestellt wurde. Die Größe der Verzögerung auf-
grund des Übersprechens hängt von der Differenz zwischen den beiden Ankunftszeiten
der Flanken auf der Angreifer-Leitung und der Opfer-Leitung ab [Tehranipoor2011].
Hierzu wurden die Ankunftszeiten ähnlich wie in [Chun2009] in das Boolesche Erfüll-
barkeitsproblem kodiert. Zur Simulation des Zeitverhaltens wurden SPICE-Simulationen
durchgeführt.

Eine Herausforderung des Verbindungstests in Logik-Schaltungen ist die hohe Anzahl
an möglichen Fehlerorten, an denen eine parasitäre Koppelkapazität auftreten kann.
Als Fehlerort wird dabei eine Kombination aus einer Angreifer-Leitung und Opfer-Lei-
tung bezeichnet, zwischen denen eine parasitäre Koppelkapazität φCC ∈ R auftreten
kann. Die Menge der möglichen Fehlerorte bilden dabei alle möglichen Kombinationen
an Verbindungsleitungen der Logik-Schaltung. Für eine realistische Reduktion der in-
frage kommenden Fehlerorte können, mithilfe einer Layout-Analyse, die Fehlerorte so
ausgewählt werden, dass die Distanz zwischen der Opfer-Leitung und Angreifer-Leitung
klein genug ist [Piel2021]. Aufgrund der geringen Größe der verwendeten Schaltung wur-
den, in dem hier gezeigten Experiment, alle Kombinationen an Verbindungsleitungen in
der aktuellen topologischen Nachbarschaft als mögliche Fehlerorte ausgewählt. In der
aktuellen topologischen Nachbarschaft befinden sich alle Verbindungsleitungen, die mit
einem Logik-Gatter verbunden sind, das sich auf derselben Logikebene oder auf einer der
angrenzenden Logikebenen wie das aktuell betrachtete Logik-Gatter befindet. Für große
Schaltungen kann durch diese Annahme die Anzahl der Fehlerorte überschätzt werden.
Ein Beispiel für einen möglichen Fehlerort ist in der Abbildung 5.2 zu sehen. Die be-
trachtete Verbindungsleitung ist mit einem Gatter auf der Logikebene n verbunden. In
der aktuellen topologischen Nachbarschaft befinden sich somit alle Verbindungsleitun-
gen, die mit einem Logik-Gatter auf den Logikebenen n − 1, n, oder n + 1 verbunden
sind. Zur Analyse des Zeitverhaltens wurden drei zufällige Fehlerorte ausgewählt. An
jedem der zufällig ausgewählten Fehlerorte wurde ein slow-to-rise und slow-to-fall Feh-
ler angenommen, wobei die Größe der Koppelkapazität φCC im halboffenen Intervall
(0 fF, 100 fF] variiert wurde [Peng2013].



100 5 Verbindungstest in Logik-Schaltungen

Opfer

Angreifer

Ebene 𝑛Ebene 𝑛 − 1 Ebene 𝑛 + 1… …

&

≥1

Abbildung 5.2: Beispiel eines Fehlerortes für mögliches Übersprechen.

Neben den Übersprecheffekten wurde außerdem die Prozessvariation modelliert, indem
eine veränderliche Gatelänge der Transistoren innerhalb der Logikelemente angenommen
wurde. Hierzu wurde eine prozentuale Änderung padd der nominellen Gatelänge Lnom

zwischen −20 % und 20 % angenommen. Mit padd ∈ [−0,2, 0,2] ⊂ R ergibt sich die
variierte Gatelänge Lvar zu Lvar = (1 + padd) · Lnom. Für die Variation der Gatelänge
wurde eine globale Prozessvariation angenommen. Das heißt, dass alle Transistoren der
zu testenden Schaltung dieselbe Variation der Gatelänge erfahren.

Für die Auswertung des Zeitverhaltens wurde die relative Veränderung der Verzögerung
∆(o, op, φCC , padd) verwendet, die, wie in (5.1) gezeigt, definiert ist.

∆(o, op, φCC , padd) := dpd(o, op, φCC , padd)
dpd(o, op) (5.1)

∆(o, op, φCC , padd) gibt dabei die Veränderung der Laufzeitverzögerung (engl. propaga-
tion delay) dpd(o, op, φCC , padd)) am Ausgang o ∈ A im Arbeitspunkt op ∈ OP bei
der Koppelkapazität φCC ∈ R und der prozentualen Änderung der Gatelänge padd ∈
[−0,2, 0,2] normalisiert auf die Laufzeitverzögerung dpd(o, op) im fehlerfreien Fall und
mit nomineller Gatelänge an.

Zur Analyse der Laufzeitverzögerung aufgrund von Übersprechen wurde zunächst ein
Experiment durchgeführt, in dem nur die parasitäre Koppelkapazität φCC an den zufällig
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ausgewählten Fehlerorten variiert wurde. Die Größe der Koppelkapazität wurde dabei
durch φCC ∈ {10 fF, 30 fF, 50 fF, 70 fF, 90 fF} definiert. Während des Experiments
wurden Simulationen des Zeitverhaltens für alle Arbeitspunkte op ∈ OP := T × U

durchgeführt. Die Betriebstemperatur T wurde zwischen 45 ◦C und 125 ◦C mit einer
Schrittweite von 10 ◦C variiert und die Versorgungsspannung UDD zwischen 0,6 V und
1,6 V mit einer Schrittweite von 0,025 V, wobei die nominelle Versorgungsspannung bei
Unom = 1,1 V liegt. Die Ergebnisse für den Ausgang o = o0 der Benchmark-Schaltung
s27 aus der Benchmark-Suite ISCAS’89 [Brglez1989] sind in der Abbildung 5.3 zu sehen.
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Abbildung 5.3: Veränderung der Laufzeitverzögerungen aufgrund von Übersprechen
[Sprenger2020].

In einem zweiten Experiment wurde der fehlerfreie Fall betrachtet und nur die Ga-
telänge variiert. Für dieselben Arbeitspunkte wie im ersten Experiment wurde hier-
zu die Laufzeitverzögerung bei unterschiedlichen Gatelängen Lvar simuliert. In Abbil-
dung 5.4 sind die Ergebnisse für eine prozentuale Änderung der nominellen Gatelänge
von padd ∈ {−20 %, −12 %, −4 %, 4 %, 12 %, 20 %} dargestellt.

Bei dem Vergleich der Abbildung 5.3 mit der Abbildung 5.4 fällt auf, dass sich die rela-
tive Änderung der Laufzeitverzögerung ∆(o, op, φCC , Lnom) bei Prozessvariation anders
verhält als beim Auftreten von Übersprechen. So ist unter anderem in Abbildung 5.3 zu
sehen, dass die Laufzeitverzögerung im fehlerhaften Fall bei steigender Versorgungsspan-
nung stärker steigt als im fehlerfreien Fall. Außerdem ist zu sehen, dass dieser Effekt sich
mit steigender Kapazitätsgröße weiter verstärkt. Bei der Betrachtung der Prozessvariati-
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Abbildung 5.4: Veränderung der Laufzeitverzögerungen aufgrund von Prozessvariatio-
nen [Sprenger2020].

on in Abbildung 5.4 zeigt sich, dass die Änderung der Laufzeitverzögerung aufgrund von
positiver Prozessvariation bei steigender Versorgungsspannung sinkt. Bei Verringerung
der Gatelänge kehrt sich dieser Effekt um.

In realen Systemen treten die beiden Effekte simultan auf. Daher wurde in einem dritten
Experiment die relative Änderung der Laufzeitverzögerung bei gleichzeitigem Auftreten
von Übersprechen und Prozessvariation untersucht. Abbildung 5.5 zeigt die Verzöge-
rungssteigerung ∆(o, op, φCC , padd),∀op ∈ OP bei einer Koppelkapazität φCC von 100 fF
und variierender prozentualer Änderung der nominellen Gatelänge
padd ∈ {−20 %, −12 %, −4 %, 4 %, 12 %, 20 %}. In der Abbildung 5.5 ist zu sehen,
dass für niedrige Versorgungsspannungen (≈ 0,6 V bis ≈ 0,8 V) die Effekte der Pro-
zessvariation dominieren, während für Versorgungsspannungen über ≈ 0,8 V die Effekte
aufgrund von Übersprechen dominieren.

Für die weitere Analyse werden die in den Abbildungen 5.3, 5.4 und 5.5 dreidimensio-
nal dargestellten Oberflächen als zweidimensionale Verzögerungskarten dargestellt. Im
zweidimensionalen Raum der Arbeitspunkte wird hierzu die relative Änderung der Lauf-
zeitverzögerung ∆(o, op, φCC , padd) durch die Intensität des entsprechenden Pixels in der
Verzögerungskarte dargestellt. Die Abbildung 5.6 zeigt ein Beispiel einer Verzögerungs-
karte für den Ausgang o = o0, für eine prozentuale Änderung der nominellen Gatelänge
von padd = 6 % und einer Koppelkapazität φCC von 20,00 fF.
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Abbildung 5.5: Veränderungen der Laufzeitverzögerungen aufgrund von Prozessvariatio-
nen bei einer Koppelkapazität von 100 fF [Sprenger2020].
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Mithilfe dieser Verzögerungskarten kann das Problem der Unterscheidung zwischen Pro-
zessvariation und Übersprechen als Bildklassifizierungsproblem angesehen werden, für
welches bereits erfolgreich künstliche neuronale Netze eingesetzt wurden [Bhatnagar2017].
So konnten z. B. mehrschichtige Perzeptren erfolgreich verwendet werden, um handge-
schriebene Zahlen mit einer Genauigkeit von bis zu 99,65 % zu erkennen [Cireşan2010;
LeCun1998].

Im folgenden Kapitel wird näher darauf eingegangen, wie mithilfe eines künstlichen
neuronalen Netzes in Form des in Kapitel 3 eingeführten mehrschichtigen Perzeptrons
(engl. Multi-Layer Perceptrons, MLPs) die erzeugten Verzögerungskarten in fehlerfreie
und fehlerhafte Verzögerungskarten eingeteilt werden können.

5.3 Konfiguration des künstlichen neuronalen Netzes

Es gibt eine Vielzahl von künstlichen neuronalen Netzen, die sich anhand ihrer Archi-
tektur unterscheiden lassen. So werden unter anderem gedächtnislose und gedächtnisbe-
haftete neuronale Netze unterschieden. Die Klasse der gedächtnislosen künstlichen neu-
ronalen Netze zeichnet sich dadurch aus, dass die Struktur nur einen Datenfluss von den
Eingängen zu den Ausgängen zulässt und somit das neuronale Netz keine Information
von bereits verarbeiteten Daten speichern kann. Bei gedächtnisbehafteten neuronalen
Netzen hingegen ist auch eine Kommunikation in Richtung der Eingänge des Netzes
möglich, wodurch Informationen von früheren Daten gespeichert werden können. In die-
ser Arbeit wurde, wie in Kapitel 3 eingeführt, ein mehrschichtiges Perzeptron (MLP)
verwendet, bei dem es sich um ein gedächtnisfreies künstliches neuronales Netz han-
delt. Abbildung 5.7 zeigt ein mehrschichtiges Perzeptron mit einer Eingangsebene, einer
Ausgangsebene und zwei versteckten Ebenen.

Um die Architektur eines künstlichen neuronalen Netzes festzulegen, müssen eine Viel-
zahl von Parametern festgelegt werden, wie z. B. die Anzahl an versteckten Ebenen,
die Anzahl der Neuronen pro Ebene und die Aktivierungsfunktion der Neuronen. Diese
Parameter werden auch Hyperparameter genannt und müssen vom Benutzer festgelegt
werden, bevor mit dem Training des neuronalen Netzes begonnen werden kann.

Die Anzahl der Neuronen in der Eingangsebene wird durch die Dimension des Ein-
gangsvektors (engl. feature vector) festgelegt. In unserer Anwendung besteht der Ein-
gangsvektor aus den 189 Pixeln der Verzögerungskarte, welche die 189 Arbeitspunkte
(21 Versorgungsspannungen und neun Betriebstemperaturen), in denen der Verzöge-
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Abbildung 5.7: Konfiguration des künstlichen neuronalen Netzes.

rungstest durchgeführt wurde, repräsentieren. Entsprechend besteht die Eingangsebene
aus 189 Neuronen. Die Anzahl der Neuronen der Ausgangsebene wird ebenfalls durch die
Anwendung des neuronalen Netzes festgelegt. Die Verzögerungskarten werden in zwei
Klassen, fehlerfrei und fehlerhaft, eingeteilt. Daher werden zwei Neuronen in der Aus-
gangsebene verwendet. Als Aktivierungsfunktion wird in den versteckten Ebenen die in
(3.5) definierte Rectified Linear Unit (ReLU) Funktion relu(x) [Nair2010] verwendet.
In der Ausgangsebene wird die softmax Funktion [Bishop2016], wie in (3.8) definiert,
verwendet. Wie in Kapitel 3 erläutert wurde, wird mithilfe der softmax Funktion der
K-dimensionale Ausgangsvektor des künstlichen neuronalen Netzes auf einen K-dimen-
sionalen Vektor abgebildet, dessen Elemente sich zu 1 summieren. So ermöglicht die
softmax Funktion die Interpretation der Ausgabe des neuronalen Netzes als Konfidenz
für die Vorhersage, dass sich die Eingabe tatsächlich in der vorhergesagten Klasse befin-
det.

Die Anzahl der verwendeten versteckten Ebenen L und die Anzahl der Neuronen pro
Ebene nl wurde mithilfe einer Suche im Hyperparameterraum durchgeführt. Dieser Hy-
perparameterraum wurde dabei eingeschränkt, indem als Anzahl versteckter Ebenen
L ∈ {1, 2, 3} und als Anzahl Neuronen pro Ebene nl ∈ {32, 64, 128, 256} zugelassen wur-
den. Innerhalb dieses Suchraums wurden zwei Suchmethoden zur Festlegung der Hy-
perparameter der Software-Bibliothek scikit-learn [Pedregosa2011] verwendet. Bei der
ersten Methode GridSearchCV handelt es sich um eine vollständige Suche innerhalb
des Suchraums. Die zweite Methode RandomizedSearchCV hingegen führt eine zufällige
Suche innerhalb des spezifizierten Suchraums durch.
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5.4 Merkmalsextraktion

In der Praxis ist es nur schwer möglich einen Verzögerungstest in 189 Arbeitspunk-
ten durchzuführen. Daher ist es notwendig, die Anzahl der benötigten Arbeitspunkte
zu reduzieren. Im Bereich des maschinellen Lernens ist dieses Problem auch als Merk-
malextraktion (engl. feature extraction) oder Merkmalauswahl (engl. feature selection)
bekannt. Für Standardmethoden der Merkmalauswahl, wie z. B. die in Kapitel 3.1.1 vor-
gestellte Hauptkomponentenanalyse, müssen zunächst alle Merkmale bestimmt werden,
bevor diese anhand einer Metrik reduziert oder mathematisch in neue Merkmale trans-
formiert werden können. In dieser Arbeit wurde die Interpretation der Merkmale als
Arbeitspunkte ausgenutzt, um eine Merkmalauswahl durchzuführen, die im Folgenden
näher erläutert wird.

In modernen hochintegrierten Schaltungen werden oft Methoden wie die adaptive An-
passung der Versorgungsspannung und der Taktfrequenz (engl. Adaptive Voltage and
Frequency Scaling, AVFS) [Borkar2011] zur Reduktion der Leistungsaufnahme verwen-
det. Durch den Einsatz dieser Methoden während des Verzögerungstests ist es daher
einfach möglich, die Versorgungsspannung während des Verzögerungstests zu steuern.
Im Vergleich dazu ist es schwierig, die Betriebstemperatur der hochintegrierten Schal-
tung zu kontrollieren, da diese unter anderem von der Umgebungstemperatur und dem
bisherigen Arbeitsaufwand der Schaltung abhängt.

Eine an den praktischen Einschränkungen orientierte Methode zur Reduktion der be-
nötigten Merkmale ist die Verwendung aller Versorgungsspannungen bei der kältesten
und der wärmsten Betriebstemperatur. Die Versorgungsspannungen können mithilfe des
AVFS-Moduls konfiguriert werden. Zur Einstellung der Temperatur werden zwei Test-
läufe durchgeführt. Während des ersten Testlaufs kann die Betriebstemperatur als kalt
angesehen werden, da noch keine Tests durchgeführt wurden. Im zweiten Testlauf befin-
det sich die zu testende Schaltung bereits auf hoher Betriebstemperatur und kann daher
als warm angesehen werden. Alternativ kann mit fortgeschrittenen Methoden zum Tes-
tablauf die Betriebstemperatur kontrolliert werden, indem die Schaltung gezielt mit der
Anwendung von Testmustern erhitzt wird [Aghaee2014]. Bei dem gezeigten Merkmal-
raum mit 21·9 = 189 Merkmalen kann mithilfe dieser Methode die Anzahl der benötigten
Arbeitspunkte bereits um 78 % auf 42 Arbeitspunkte reduziert werden.

Die Durchführung eines Verzögerungstests in 42 Arbeitspunkten verursacht jedoch im-
mer noch erheblich Kosten während des Tests. Eine weitere Reduktion der Arbeitspunk-
te ist daher notwendig. Zur Reduktion der verwendeten Versorgungsspannungen wer-
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den daher zufällig drei Teilmengen mit k Versorgungsspannugen aus den 21 möglichen
Versorgungsspannungen je Temperatur ausgewählt. Für jede Teilmenge wird daraufhin
ein mehrschichtiges Perzeptron trainiert und anschließend der beste Klassifizierer aus-
gewählt. Wie in Abbildung 5.8 gezeigt wird, reduziert sich die Anzahl der benötigten
Merkmale pro Teilmenge somit auf 2 · k. Hier konnte die Anzahl der Merkmale mit
k = 3 auf sechs Merkmale pro Teilmenge reduziert werden. Bei der Verwendung aller
drei Teilmengen, werden noch 18 Merkmale benötigt, was einer zusätzlichen Reduktion
von 57,7 % entspricht. Im Vergleich zu der Ausgangssituation mit 189 Arbeitspunkten,
konnte die Anzahl der benötigten Arbeitspunkte somit um 90,5 % reduziert werden.
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Abbildung 5.8: Merkmalreduktion mithilfe von Feature Bagging.

Durch die Reduktion der Anzahl der benötigten Merkmale kann sich die Qualität der
Klassifizierer reduzieren. Um diesem Problem entgegenzuwirken, können die Vorhersagen
der drei Klassifizierer, die auf den einzelnen Teilmengen trainiert wurden, ähnlich wie in
der in Kapitel 3.2 gezeigten Ensemble-Methode der Bagging Predictors [Breiman1996],
mithilfe eines gewichteten Mehrheitsentscheids ausgewertet werden. Die Methode wird
als Feature Bagging bezeichnet.

5.5 Experimente

Für das Training des künstlichen neuronalen Netzes wurde eine Menge von insgesamt
95 880 Verzögerungskarten für die Benchmark-Schaltung s27 der ISCAS’89 Benchmark-
Suite [Brglez1989] erzeugt. Für den Datensatz wurden, wie in Kapitel 5.2 erläutert, zwi-
schen sechs Verbindungsleiterpaaren parasitäre Koppelkapazitäten injiziert und mit den
zugehörigen Testmustern aktiviert. Die Größe der Koppelkapazität und die Prozessva-
riation wurden hierzu durch zwei Zufallsvariablen modelliert. Um die Koppelkapazität
φCC zu modellieren, wurde die Zufallsvariable X verwendet, wobei X eine gleichverteilte
Zufallsvariable im Intervall [10 fF, 100 fF] ∈ R ist. Die Variation der Gatelänge wurde
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mithilfe der normalverteilten Zufallsvariable Y modelliert, wobei die Verteilung durch
einen Mittelwert µ = 0 und einer Standardabweichung 3σ = 0,2 definiert ist. Die zusätz-
liche Gatelänge Ladd ergibt sich somit mithilfe der Zufallsvariable Y zu Ladd = Y ·Lnom,
wobei Lnom die nominelle Länge des Gates des verwendeten Transistors angibt. Die
verwendete Gatelänge ergibt sich somit zu LGate = (1 + Y ) · Lnom.

Um den Datensatz zu generieren wurden zunächst 1198 fehlerfreie Schaltungsinstanzen
unter Berücksichtigung von globaler Variation der Gatelänge LGate erzeugt. Zusätzlich
wurde eine fehlerfreie Schaltungsinstanz ohne Prozessvariation erzeugt. Jede dieser feh-
lerfreien Schaltungsinstanzen wurde unter Verwendung der sechs Testmuster, mit de-
nen das Übersprechen aktiviert werden kann, in allen Arbeitspunkten simuliert, was
(1198 + 1) · 6 = 7194 Konfigurationen ergibt. Zur Erzeugung der fehlerhaften Schaltun-
gen, wurde für jede der sechs Koppelkapazitäten eine zufällige Kapazitätsgröße in die
zuvor erzeugten 1198 Schaltungsinstanzen injiziert. Die 7188 fehlerhaften Schaltungsin-
stanzen wurden ebenfalls in allen 189 Arbeitspunkten simuliert. Für jeden Ausgang, an
dem eine Veränderung der Verzögerung sichtbar ist, wurde daraufhin eine Verzögerungs-
karte erzeugt. Falls ein Fehler oder eine Prozessvariation an verschiedenen Ausgängen
erkennbar ist, wurde für jeden Ausgang, an dem die Verzögerung sichtbar ist, eine Verzö-
gerungskarte erzeugt. Im Mittel waren die Verzögerungen an 6,67 Ausgängen zu sehen,
wodurch sich die Gesamtzahl von (7194 + 7188) · 6,67 = 95 880 Verzögerungskarten er-
gibt. Wie in Tabelle 5.1 gezeigt wird, wurde der Datensatz anschließend zufällig in einen
Trainingsdatensatz und einen Testdatensatz aufgeteilt. 90 % der Daten wurden hierbei
für den Trainingsdatensatz verwendet und 10 % für den Testdatensatz, wobei darauf ge-
achtet wurde, dass ≈ 50 % der Daten den fehlerfreien Fall repräsentieren. Anschließend
wurde der Trainingsdatensatz zum Training der künstlichen neuronalen Netze verwendet
und der Testdatensatz zur Bestimmung der Qualität der trainierten Klassifizierer.

Tabelle 5.1: Datensatzaufteilung [Sprenger2020]
Gesamt Fehlerhaft Fehlerfrei

Datensatz 95 880 47 960 47 920
100 % 50,02 % 49,98 %

Trainingsdaten 86 292 43 190 43 102
90 % 50,05 % 49,95 %

Testdaten 9588 4770 4818
10 % 49,75 % 50,25 %
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Wie bereits in Kapitel 5.3 erläutert wurde, wurde für die Konfiguration der künstlichen
neuronalen Netze eine vollständige und eine zufällige Hyperparametersuche durchge-
führt. Die mehrschichtigen Perzeptronen wurden hierzu mithilfe der Methode der 5-
fachen Kreuzvalidierung (engl. 5-fold-cross-validation) [Bishop2016] trainiert. In jeder
Epoche werden dazu zufällig 10 % des Trainingsdatensatzes ausgewählt und zur Vali-
dierung der Trainingsepoche verwendet. Als Trainingsalgorithmus wurde der adam Al-
gorithmus mit der sparse_categorical_crossentropy als Kostenfunktion [Kingma2015]
verwendet. Die Qualität der Klassifizierer wurde anschließend anhand des Testdatensat-
zes bewertet und das beste künstliche neuronale Netz verwendet. Die Ergebnisse sind
anhand von Konfusionsmatrizen [Sammut2017] in den Tabellen 5.2 und 5.3 gezeigt. Die
Zeilen der Tabelle repräsentieren dabei die tatsächlichen Klassen der Verzögerungskar-
ten, wobei die Spalten die Vorhersagen des Klassifizierers repräsentieren.

Tabelle 5.2: Konfusionsmatrix GridSearchCV [Sprenger2020]
Klassifizierung Fehlerfrei Fehlerhaft

Reale Klasse Negativ Positiv

Fehlerfrei Negativ 4770 (RN) 0 (FP)
Fehlerhaft Positiv 125 (FN) 4693 (RP)

Tabelle 5.3: Konfusionsmatrix RandomizedSearchCV [Sprenger2020]
Klassifizierung Fehlerfrei Fehlerhaft

Reale Klasse Negativ Positiv

Fehlerfrei Negativ 4770 (RN) 0 (FP)
Fehlerhaft Positiv 133 (FN) 4685 (RP)

In dieser Arbeit wurde die Einteilung einer Verzögerungskarte in die fehlerhafte Klasse
als positiv und die Einteilung in die fehlerfreie Klasse als negativ interpretiert. Die in Ta-
belle 5.2 und Tabelle 5.3 gezeigten Konfusionsmatrizen zeigen die richtig negativen (RN),
falsch positiven (FP), falsch negativen (FN ) und die richtig positiven (RP) Vorhersagen.
Bei den richtig positiven Vorhersagen handelt es sich z. B. um die richtig als positiv ein-
geschätzten Verzögerungskarten, also Verzögerungskarten, die mithilfe einer fehlerhaften
Schaltungsinstanz erzeugt wurden und auch als fehlerhaft klassifiziert wurden. Mithilfe
dieser Einteilung lässt sich die Qualität des Klassifizierers mithilfe verschiedener Me-
triken bewerten. Hierzu wurden die Metriken Genauigkeit, Relevanz (engl. precision),
Sensitivität (engl. recall), F1-Score, Spezifität und der negative Vorhersagewert (NVW)
verwendet, die wie folgt definiert sind [Sammut2017; Géron2020].
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Genauigkeit = |RN |+ |RP |
|RN |+ |FP |+ |FN |+ |RP |

= # richtig klassifiziert
# Verzögerungskarten

(5.2)

Spezifität = |RN |
|RN |+ |FP |

= # richtig fehlerfrei klassifiziert
# fehlerfreie Verzögerungskarten

(5.3)

NVW = |RN |
|RN |+ |FN |

= # richtig fehlerfrei klassifiziert
# fehlerfrei klassifiziert

(5.4)

Relevanz = |RP |
|FP |+ |RP |

= # richtig fehlerhaft klassifiziert
# fehlerhaft klassifiziert

(5.5)

Sensitivität = |RP |
|FN |+ |RP |

= # richtig fehlerhaft klassifiziert
# fehlerhafte Verzögerungskarten

(5.6)

F1-Score = 2 · Relevanz · Sensitivität
Relevanz + Sensitivität

(5.7)

Alle als fehlerfrei klassifizierten Schaltungen (RN + FN) werden nach dem Test aus-
geliefert, während die als fehlerhaft klassifizierten (FP + RP ) vernichtet werden. Für
den Test ist es daher wichtig, eine hohe Spezifität und Relevanz zu erreichen, damit
möglichst wenig fehlerfreie Schaltungen aussortiert werden, obwohl sie ausgeliefert wer-
den könnten, um so Ausbeuteverluste zu vermeiden. Außerdem sollen möglichst wenig
defekte Schaltungen ausgeliefert werden, um eine hohe Produktqualität zu erreichen.
Hierzu muss der Klassifizierer einen hohen negativen Vorhersagewert (NVW) und eine
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hohe Sensitivität aufweisen. Der F1-Score kann dabei als Maß dafür verwendet werden,
wie gut beide Ziele mithilfe des Klassifizierers erreicht werden.

In Tabelle 5.4 sind die Metriken für die vollständige Hyperparametersuche in der Zeile
vollständig und der zufälligen Hyperparametersuche in der Zeile zufällig wie folgt aufge-
führt: Die zweite Spalte der Tabelle zeigt die Genauigkeit (5.2), die dritte die Spezifität
(5.3), die vierte den negativen Vorhersagewert (5.4), die fünfte die Relevanz (5.5), die
sechste Spalte die Sensitivität (5.6) und die letzte Spalte den F1-Score (5.7). Da die Er-
gebnisse für die vollständige GridSearchCV Suche nur leichte Verbesserungen gegenüber
der zufälligen RandomizedSearchCV aufweist, wurde für die weiteren Experimente auf
eine vollständige Hyperparametersuche verzichtet.

Tabelle 5.4: Evaluierung der Hyperparametersuche [Sprenger2020]
Algorithmus Genauigkeit Spezifität NVW Relevanz Sensitivität F1
vollständig 0,987 1 0,974 1 0,974 0,987
zufällig 0,986 1 0,973 1 0,972 0,986

5.5.1 Reduktion der Arbeitspunkte

In diesem Kapitel werden die in Kapitel 5.4 erläuterten Methoden zur Merkmalaus-
wahl und somit zur Reduktion der Arbeitspunkte untersucht. In der Tabelle 5.5 sind die
Ergebnisse der Merkmalauswahl zusammengefasst. In den Zeilen der Tabelle sind die
Werte für die richtig negativen (RN), falsch positiven (FP), falsch negativen (FN ) und
die richtig positiven (RP) Vorhersagen, sowie für die in (5.2) - (5.7) eingeführten Metri-
ken aufgeführt. In der vorletzten Zeile sind die ausgewählten Hyperparameter in Form
eines Vektors (n1, ..., nl) angegeben. Dabei gibt n1, ..., nl die Anzahl Neuronen in der je-
weiligen versteckten Ebene l an. In der letzten Zeile sind die ausgewählten Arbeitspunkte
angegeben. In der zweiten Spalte sind die Ergebnisse für das Kalt-Warm-Test Verfahren
angegeben, in dem alle Versorgungsspannungen bei der kältesten und bei der wärmsten
Temperatur ausgewählt wurden. In den Spalten drei bis vier sind die Ergebnisse für
die drei Klassifizierer aufgeführt, die jeweils mit einem Datensatz trainiert wurden, der
nur eine Teilmenge von k = 3 Versorgungsspannungen je wärmster und kältester Tem-
peratur verwendet. Die letzte Spalte zeigt die Ergebnisse, wenn die drei Klassifizierer,
der vorherigen drei Spalten mithilfe der Methode des gewichteten Mehrheitsentscheids
zusammengefasst werden. Die Ergebnisse für die Benchmark-Schaltung der Benchmark-
Suite ISCAS’89 sind in der Tabelle 5.6 zu finden.
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Es zeigt sich, dass wenn alle Versorgungsspannungen bei nur zwei Temperaturen verwen-
det werden, was einer Reduktion des Merkmalraums um 78 % entspricht, die Qualität des
Klassifizierers vergleichbar mit dem ursprünglichen Klassifizierer ist. Bei einer weiteren
Reduktion des Merkmalraums durch die Auswahl von Teilmengen der Versorgungsspan-
nungen steigt die Anzahl der falsch negativen und der falsch positiven Vorhersagen,
was darauf hindeutet, dass eine Klassifizierung mithilfe des reduzierten Merkmalraums
anspruchsvoller wird. Jedoch ist die Qualität des mehrschichtigen Perzeptrons immer
noch gut. Dabei weist das mehrschichtige Perzeptron der Teilmenge 0 die beste Quali-
tät auf, da es für die höchste Produktqualität (NVW, Sensitivität) und den geringsten
Ausbeuteverlust (Spezifität, Relevanz) sorgt.

Je nach Anwendung können aber auch anderer Klassifizierer eine bessere Wahl sein. Für
eine Anwendung, in der die Ausbeute eine größere Rolle spielt als die Produktquali-
tät, wäre z. B. der Klassifizierer, der mithilfe der Teilmenge 2 trainiert wurde, ebenfalls
interessant, da dieser mit 100 % die beste Ausbeute erreicht. Für sicherheitskritische
Anwendungen hingegen ist es erstrebenswert, einen negativen Vorhersagewert und eine
Sensitivität von 100 % zu erreichen.

Durch das Feature Bagging, das einen neuen Klassifizierer durch den gewichteten Mehr-
heitsentscheid aus den drei Klassifizierern erzeugt, die mithilfe der drei Teilmengen der
Versorgungsspannungen trainiert wurden, kann die Qualität des schlechtesten Teilmen-
gen-Klassifizierers zwar gesteigert werden, jedoch gibt es auch einen Teilmengenklassi-
fizierer (Teilmenge 0), der eine bessere Qualität als der Feature Bagging Klassifizierer
aufweist. Um den besten Klassifizierer zu verwenden, sollten daher immer alle Einzeler-
gebnisse berücksichtigt werden.

Das Experiment wurde für die ISCAS’89 Benchmark-Schaltung s298 wiederholt. Die
Ergebnisse sind in der Tabelle 5.6 äquivalent zur Tabelle 5.5 aufgeführt. Im Vergleich
der Ergebnisse in Abbildung 5.9 fällt auf, dass der negative Vorhersagewert und die
Sensitivität im Vergleich zur Schaltung s27 geringer ausfällt und somit die Produktqua-
lität nicht so stark verbessert werden kann. Die Ausbeute hingegen kann auch für die
Schaltung s298 gesteigert werden, was an der hohen Spezifität und Relevanz erkennbar
ist. Aufgrund der Größe der Schaltung ist es schwieriger zwischen Übersprechen und
Prozessvariation zu unterscheiden.
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Tabelle 5.5: Klassifizierungsergebnisse nach der Merkmalauswahl für die Benchmark-
Schaltung s27 [Sprenger2020]

Kalt-Warm-
Test

Kalt-Warm-Test - Teilmengen und Bagging
(3 Teilmengen)

42 (2 x alle
Spannungen)

6 (2 x 3 Spannungen)

Teilmenge 0 Teilmenge 1 Teilmenge 2 Bagging

RN 4789 4782 4783 4796 4787
FP 7 14 13 0 9
FN 119 99 104 203 115
RP 4673 4693 4688 4589 4677
Spezifität 0,999 0,997 0,997 1,000 0,998
NVW 0,976 0,980 0,979 0,959 0,977
Genauigkeit 0,987 0,988 0,988 0,979 0,987
Relevanz 0,999 0,997 0,997 1,000 0,998
Sensitivität 0,975 0,979 0,978 0,958 0,976
F1-Score 0,987 0,988 0,988 0,978 0,987
Hyperparameter (128, 256) (64, 32, 32) (128, 32, 32) (128, 32, 32)
Merkmalauswahl
(T, U)

2 Temperatu-
ren mit allen
Spannungen

((45 ◦C,1,0 V),
(45 ◦C,0,8 V),
(45 ◦C,0,95 V),
(125 ◦C,1,0 V),
(125 ◦C,0,8 V),
(125 ◦C,0,95 V))

((45 ◦C,0,6 V),
(45 ◦C,0,7 V),
(45 ◦C,0,65 V),
(125 ◦C,0,6 V),
(125 ◦C,0,7 V),
(125 ◦C,0,65 V))

((45 ◦C,0,7 V),
(45 ◦C,0,65 V),
(45 ◦C,0,6 V),
(125 ◦C,0,7 V),
(125 ◦C,0,65 V),
(125 ◦C,0,6 V))

Tabelle 5.6: Klassifizierungsergebnisse nach der Merkmalauswahl für die Benchmark-
Schaltung s298

Kalt-Warm-
Test

Kalt-Warm-Test - Teilmengen und Bagging
(3 Teilmengen)

42 (2 x alle
Spannungen)

6 (2 x 3 Spannungen)

Teilmenge 0 Teilmenge 1 Teilmenge 2 Bagging

RN 20 091 20 116 18 737 20 156 20 150
FP 84 59 1438 19 25
FN 6686 6971 9797 8274 8100
RP 13 410 13 125 10 299 11 822 11 996
Spezifität 0,996 0,997 0,929 0,999 0,999
NVW 0,750 0,743 0,657 0,709 0,713
Genauigkeit 0,832 0,825 0,721 0,794 0,798
Relevanz 0,994 0,996 0,877 0,998 0,998
Sensitivität 0,667 0,653 0,512 0,588 0,597
F1-Score 0,798 0,789 0,647 0,740 0,747
Hyperparameter (256, 128, 64) (256, 128) (256, 256, 64) (32, 256)
Merkmalauswahl
(T, U)

2 Temperatu-
ren mit allen
Spannungen

((45 ◦C,0,9 V),
(45 ◦C,1,1 V),
(45 ◦C,1,3 V),
(125 ◦C,0,9 V),
(125 ◦C,1,1 V),
(125 ◦C,1,3 V))

((45 ◦C,0,6 V),
(45 ◦C,0,7 V),
(45 ◦C,0,65 V),
(125 ◦C,0,6 V),
(125 ◦C,0,7 V),
(125 ◦C,0,65 V))

((45 ◦C,0,65 V),
(45 ◦C,0,6 V),
(45 ◦C,0,7 V),
(125 ◦C,0,65 V),
(125 ◦C,0,6 V),
(125 ◦C,0,7 V))
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Abbildung 5.9: Klassifizierungsergebnisse.

5.6 Fazit

Übersprechen innerhalb der Logik-Schaltungen von hochintegrierten Schaltungen, kann
zur Verringerung der Signalqualität führen. Durch die erhöhte Stromaufnahme kann dies,
wie in Kapitel 2.2.2 erläutert wurde, zusätzlich zu vermehrter Elektromigration und
zu einem Zuverlässigkeitsproblem führen. Dabei kann die Elektromigration ihrerseits
wiederum zu vermehrtem Übersprechen führen. Während der gesamten Lebensdauer
einer hochintegrierten Schaltung ist es daher notwendig, einen Test auf Übersprechen
durchzuführen. In diesem Kapitel wurde gezeigt, dass eine große Herausforderung für
den Test das Unterscheiden von Verzögerungen aufgrund von Übersprechen und von
Prozessvariationen ist. Des Weiteren wurde anhand einer Fallstudie gezeigt, dass dieses
Problem mithilfe von künstlichen neuronalen Netzen gelöst werden kann.

Je nach Anwendung kann die Klassifizierung auf unterschiedliche Ziele angepasst werden.
Für Anwendungen mit hohen Anforderungen an die Zuverlässigkeit ist ein Klassifizierer
mit einem hohen negativen Vorhersagewert (NVW) und einer hohen Sensitivtät not-
wendig, um zu verhindern, dass fehlerhafte Schaltungen fälschlicherweise als fehlerfrei
klassifiziert werden und so zu einem Zuverlässigkeitsproblem führen. Eine Garantie zur
korrekten Klassifizierung gibt es bei der Verwendung von künstlichen neuronalen Net-
zen jedoch nicht. Auch bei einer Sensitivität von 100 % kann es dazu kommen, dass
eine Schaltung, die nicht zum Trainieren des künstlichen neuronalen Netzes verwendet
wurde, fälschlicherweise als fehlerhaft oder im kritischeren Fall als fehlerfrei klassifiziert
wird.
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Für das Training der neuronalen Netze ist es nötig, aufwendige und zeitintensive Simu-
lationen für die Erzeugung der Verzögerungskarten durchzuführen. Für weiterführende
Arbeiten ist es daher notwendig, hybride Simulationstechniken auf Gatter- und Transis-
torebene durchzuführen.
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Neue Halbleitertechnologien mit minimalen Strukturgrößen von bis zu 3 nm [TSMC2023]
und immer weiter steigende Anforderungen an die Leistungsfähigkeit von hochintegrier-
ten Schaltungen erfordern es, immer komplexere Systeme auf einem Chip zu integrieren.
Gleichzeitig wachsen die Anforderungen an den Test und die Diagnose von hochinte-
grierten Schaltungen. Neben dem steigenden Aufwand aufgrund immer weiter steigender
Schaltungsgrößen müssen der Test und die Diagnose von hochintegrierten Schaltungen
immer mehr Unsicherheiten berücksichtigen, die sich im Zeitverhalten der zu testenden
Schaltung bemerkbar machen. Um diesen Anforderungen gerecht zu werden, ist es not-
wendig Instrumente zur Beobachtung oder Steuerung der hochintegrierten Schaltungen
auf dem Chip zu integrieren. So werden z. B. Testinstrumente in die Schaltung integriert,
um einen Test mit ausreichender Fehlerabdeckung zu erreichen oder um die Funktions-
fähigkeit während der gesamten Lebenszeit der Schaltung zu überwachen. Daten, die
während des gesamten Lebenszyklus einer hochintegrierten Schaltung gesammelt wer-
den, können im Rahmen des Silicon Lifecycle Managements analysiert werden, um so
z. B. die Zuverlässigkeit einer Schaltung zu erhöhen, einen katastrophalen Ausfall wäh-
rend des Betriebs zu verhindern oder die Alterung der Schaltung zu erkennen.

Für den wiederkehrenden Test auf versteckte kleine Verzögerungsfehler ist ein einge-
bauter Hochgeschwindigkeitstest notwendig. Während des eingebauten Hochgeschwin-
digkeitstests wird die hochintegrierte Schaltung mit unterschiedlichen Taktfrequenzen
übertaktet, um versteckte kleine Verzögerungsfehler sichtbar zu machen. Aufgrund der
erhöhten Taktfrequenz kommt es zu hohen und variierenden X-Raten. Die X-Raten va-
riieren sowohl beim Wechsel der Taktfrequenz, als auch während des Tests mit einer
Taktfrequenz. Um den Hochgeschwindigkeitstest als eingebauten Selbsttest zu realisie-
ren, ist ein effizientes X-tolerantes Kompaktierungsverfahren für variierende X-Raten
notwendig.

Neben kleinen Verzögerungsfehlern, die in Gattern von Logik-Schaltungen auftreten,
können auch Verbindungsleitungen in Logik-Schaltungen Opfer von Veränderungen des
Zeitverhaltens werden. Durch die immer weiter schrumpfenden Strukturgrößen und der
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steigenden Komplexität hochintegrierter Schaltungen, rücken Verbindungsleitungen in
der Logik-Schaltung immer näher zusammen, wodurch es zu unerwünschten parasitären
Kopplungen zwischen den Verbindungsleitungen kommen kann. Aufgrund der parasi-
tären Kopplung kommt es zu Übersprechen zwischen den Verbindungsleitungen einer
Logik-Schaltung, was einerseits einen kleinen Verzögerungsfehler hervorrufen kann und
andererseits zu einem erhöhten Stromfluss in den Verbindungsleitungen führt und Al-
terungseffekte wie Elektromigration begünstigt. Die verstärkte Elektromigration kann
wiederum zu erhöhter parasitärer Kopplung führen. Gleichzeitig werden die Verzöge-
rungen aufgrund von Übersprechen von Verzögerungen aufgrund von Prozessvariation
überlagert. Ein Verfahren zur Unterscheidung der Verzögerungen aufgrund von Über-
sprechen und Prozessvariation ist daher notwendig.

Mit dieser Arbeit wurde ein Beitrag geleistet, den Test für das Auftreten der beschriebe-
nen Unsicherheiten zu optimieren. Mit der in Kapitel 4 vorgestellten modularen Kompak-
tierung wurde ein räumliches Kompaktierungsverfahren vorgestellt, das flexibel an vari-
ierende X-Raten angepasst werden kann. Mithilfe des Verfahrens ist es möglich, hohe und
variierende X-Raten während der Testantwortkompaktierung im eingebauten Selbsttest
zu verarbeiten. Um auf die variierenden X-Raten bei unterschiedlichen Testfrequenzen
reagieren zu können, wurde die flexible Struktur der stochastischen Kompaktierung aus-
genutzt. Indem der Parameter p, der zur Bildung der Kompaktormatrix genutzt wird, je
Testfrequenz angepasst wird, kann der Kompaktierer auf die aktuelle X-Rate eingestellt
werden. Durch die Gruppierung der Prüfpfade in Prüfgruppen und die Aufteilung auf
mehrere kleine stochastische Kompaktierer, kann die Variation der X-Rate während ei-
ner Testfrequenz reduziert werden. So konnte eine X-Reduktion erzielt werden, während
die Fehlerdurchlässigkeit des Kompaktierungsverfahrens im Vergleich zur stochastischen
Kompaktierung aufrecht erhalten werden konnte. Durch die Erweiterung des vorgestell-
ten Verfahrens zur hybriden Kompaktierung ist es außerdem möglich, die Fehlerdurch-
lässigkeit weiter zu erhöhen und zu garantieren, dass essenzielle Fehlerinformation nicht
verloren geht. Hierzu wird die flexible Struktur der stochastischen Kompaktierung ein
weiteres Mal ausgenutzt. Nach der stochastischen Phase der Kompaktierung werden auf
dem Chip gespeicherte deterministische Steuerungsvektoren genutzt, um gezielt verlo-
rengegangene Fehlerinformation wiederzuerlangen. Durch das erneute Anlegen von 10 %
der Testmuster konnte eine Steigerung der Fehlerdurchlässigkeit von bis zu 12,31 % im
Vergleich zur stochastischen Kompaktierung erreicht werden.

Mithilfe des in Kapitel 5 gezeigten Verfahrens zur Unterscheidung von Übersprechen auf
Verbindungsleitungen in Logik-Schaltungen und Prozessvariation ist es möglich die Zu-
verlässigkeit einer Schaltung zu gewährleisten, ohne gleichzeitig einen Ausbeuteverlust
hinnehmen zu müssen. Hierzu wurde ein künstliches neuronales Netz trainiert, um Schal-
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tungen anhand von Verzögerungskarten in Schaltungen mit Übersprechen (fehlerhaft)
und ohne Übersprechen (fehlerfrei) einzuteilen. Eine Verzögerungskarte repräsentiert
dabei das Zeitverhalten eines Ausgangs der zu testenden Schaltung in unterschiedlichen
Arbeitspunkten, welche durch die Umgebungstemperatur und die Versorgungsspannung
der Schaltung definiert werden. Die Anzahl der benötigten Arbeitspunkte konnte durch
eine praxisorientierte Merkmalsextraktion auf sechs Arbeitspunkte reduziert werden. In
einer Fallstudie für die ISCAS’89 Benchmark-Schaltung s27 konnte gezeigt werden, dass
bei der Verwendung dieser sechs Arbeitspunkte ein mehrschichtiges Perzeptron mit ei-
ner Genauigkeit von 98,8 %, einer Spezifität von 99,7 % und einer Sensitivität von 97,9 %
trainiert werden kann. Die Sensitivität kann dabei als Maß für die Produktqualität und
die Spezifität für die Ausbeute interpretiert werden.

Durch die in dieser Arbeit gezeigten Beiträge zu Bewältigung von Unsicherheiten in
aktuellen Halbleitertechnologien wurde ein großer Beitrag zum Silicon Lifecycle Mana-
gement von komplexen hochintegrierten Schaltungen geleistet und somit zur Zuverlässig-
keit moderner System-on-Chips und ihren anspruchsvollen Anwendungen in Bereichen
des autonomen Fahrens, in der Medizintechnik, im Bereich der künstlichen Intelligenz
oder im Bereich großer Rechenzentren.
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Wie im vorherigen Kapitel erwähnt wurde, stellen die in dieser Arbeit vorgestellten
Verfahren einen Beitrag zur Bewältigung von Unsicherheiten während des Lebenszyklus
einer hochintegrierten Schaltung durch die Detektion von kleinen Verzögerungsfehlern
dar. Durchaus sind aber auch Erweiterungen der vorgestellten Verfahren oder Anpas-
sungen zur Verwendung im Silicon Lifecycle Management denkbar.

Die Verwendung der Fehlerberichte aus dem Hochgeschwindigkeitstest ermöglicht die in
[Holst2020] vorgestellte Hochgeschwindigkeitsdiagnose. Mithilfe der Hochgeschwindig-
keitsdiagnose ist es durch die Verwendung eines zweistufigen Verfahrens möglich, mit
einer Erfolgsrate von 94 % den Verursacher eines Fehlverhaltens zu identifizieren. Hierzu
wird in der ersten Phase der Diagnose die Anzahl der möglichen Verursacher durch eine
Rückverfolgung des Fehlerverhaltens reduziert, um anschließend, in der zweiten Phase
der Diagnose, durch eine effiziente GPU-unterstützte Simulation des Zeitverhaltens der
fehlerhaften Schaltungen den Verursacher zu identifizieren. Durch die Verwendung der
Hochgeschwindigkeitsdiagnose während des Fertigungstests ist es möglich, frühzeitig auf
kleine Verzögerungsfehler in der gefertigten Schaltung zu reagieren, um so die fehlerhaf-
ten Teile pro Million (engl. Defective Parts Per Million, DPPM) zu verringern und den
Ramp-up Prozess zu beschleunigen.

Eine wichtige Erweiterung für den Verbindungstest in Logik-Schaltungen ist es, die Klas-
sifizierung anhand von typischen Testdaten durchzuführen. So ist es sowohl während des
Fertigungstests also auch während eines periodischen Tests in der Regel nicht möglich
die Laufzeitverzögerungen der Schaltungsausgänge zu messen, die für die Klassifizierung
im vorgestellten Verbindungstest notwendig sind. Ein vielversprechender Ansatz ist es
die Laufzeitverzögerungen mithilfe eines eingebauten Hochgeschwindigkeitstests zu be-
stimmen. Durch den Test bei unterschiedlichen Testfrequenzen lässt sich die Pass/Fail
Information des Tests als Abtastung der Ausgangssignale der zu testenden Schaltung
interpretieren. Mithilfe der so abgeschätzten Signalverläufe lassen sich wieder Verzöge-
rungskarten generieren, die als Eingangsdaten für das mehrlagige Perzeptron verwendet
werden können.
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Neben der Unterscheidung von Übersprechen und Prozessvariation ist es, wie in [Sadeghi-
Kohan2021] dargestellt, notwendig, Schaltungen periodisch auf Alterungseffekte wie Elek-
tromigration zu testen, um so die Alterung der Schaltung zu überwachen. Ähnlich wie
bei der Unterscheidung von Übersprechen und Prozessvariation kann das Zeitverhalten
der Schaltungen mithilfe von Verfahren des maschinellen Lernens untersucht werden, um
Schaltungsinstanzen zu identifizieren, bei denen Elektromigration aufgetreten ist. Durch
die Anwendung des eingebauten Hochgeschwindigkeitstests auf den Verbindungstest in
Logik-Schaltungen kann das Zeitverhalten der hochintegrierten Schaltung periodisch ab-
getastet werden, um aktuelle Verzögerungskarten zu erstellen. Hierbei stellt der Einfluss
der Abtastung auf das Ergebnis der Klassifizierung eine interessante Forschungsfrage
dar.

Eine Herausforderung für diese Erweiterung und den Verbindungstest in Logik-Schaltun-
gen selbst ist die zeitaufwendige Simulation des Zeitverhaltens der Trainingsinstanzen
auf Transistorebene. Daher ist die Entwicklung von effizienten Schaltungssimulatoren,
die das Zeitverhalten von fehlerhaften Schaltungsinstanzen unter Prozessvariation für
moderne Halbleitertechnologien ermöglichen, essenziell. Die Verwendung von GPU-un-
terstützten Schaltungssimulatoren auf Schalter-Ebene, wie in [Schneider2020; Schnei-
der2019] vorgestellt, ist vielversprechend, um diese Herausforderung zu meistern.

Im vorgestellten Verbindungstest wird immer eine Verzögerungskarte eines Ausgangs für
die Klassifizierung der Schaltung verwendet. Da ein Fehler jedoch an mehrere Ausgänge
propagiert werden kann, ist es außerdem interessant, zu untersuchen, wie die Verzöge-
rungskarten aller Ausgänge kombiniert werden können, um die Klassifizierungsergebnisse
zu verbessern.

Eine weitere vielversprechende Erweiterung der vorgestellten Arbeit ist die Wiederver-
wendung von eingebauten Testinstrumenten wie die Testantwortkompaktierung von un-
terschiedlichen Modulen eines System-on-Chips. Im Stand der Technik wird für jedes
Modul eines System-on-Chips ein eigener eingebauter Selbsttest entwickelt und in jedes
Modul einzeln integriert. Durch die Verwendung von flexiblen Testantwortkompaktie-
rungsverfahren, wie dem modularen Kompaktierer, ist es möglich, die Testantwortkom-
paktierung auf einem SoC zu zentralisieren. Im Sinne des Silicon Lifecycle Managements
ist es möglich, die nötigen Informationen zwischen den Modulen auszutauschen. Durch
Verwendung eines zentralen Kompaktierungs-Moduls wäre es möglich, redundante Test-
hardware zu vermeiden, um so die benötigte Chipfläche zu verringern. Alternativ kann
die gewonnene Chipfläche genutzt werden, um anspruchsvolle Algorithmen für die Tes-
tantwortkompaktierung zu implementieren.
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Dies sind nur einige Ansätze zur Bewältigung von Unsicherheiten in modernen Halblei-
tertechnologien, die eine weitere Erforschung von Testinstrumenten und Methoden zur
Testdatenanalyse für das Silicon Lifecycle Mangagement notwendig machen.





Symbolverzeichnis

(aij) Matrix A mit den Elementen aij

(x, y] Linksoffenes Intervall zwischen x und y

[x, y] Geschlossenes Intervall zwischen x und y

0 Nullvektor
x̄ Mittelwert des Trainingdatensatzes
A Matrix A

Csub Untermatrix der Kompaktormatrix C

C Kompaktormatrix
KV Kovarianzmatrix eines Trainingdatensatzes
l Labelmatrix eines künstlichen neuronalen Netzes
R Zustandsübergangsmatrix des MISRs
S Matrixdarstellung der Testsignaturen
T Matrixdarstellung der Testantworten
T [i] i-te Spalte der Testantwortmatrix
w Vektordarstellung der Gewichte eines künstlichen Neurons
x Eingangsvektor eines künstlichen Neurons
xT Transponierter Eingangsvektor eines künstlichen Neurons
y Ausgabematrix eines künstlichen neuronalen Netzes
Z(t) Zustandsvektor der den Zustand des MISRs zum Zeitpunkt t be-

schreibt
δ Fehlergröße eines kleinen Verzögerungsfehlers
∆(o, op, φCC , padd) Relative Veränderung der Verzögerung
∅ Leere Menge
η(ti, ti′) Ähnlichkeits-Index der Prüfpfadbelegungen ti und ti′

γ X-Kapazität eines Behälters in der Bin-Packing Prüfgruppeneintei-
lung
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Γ(i) Menge aller Prüfgruppen, welche den i-ten Prüfpfad enthalten
R Menge der reellen Zahlen
Rm m-dimensionaler reeller Raum
A Menge der Ausgänge der zu testenden Schaltung
F Fehlermenge eines gegebenen Fehlermodells
F (T ) Fehlermenge, welche mit der Testanwortmatrix T erkannt werden

kann
F (tij) Fehlermenge des j-ten Prüfpfadbits des i-ten Prüfpfades
G Menge der Prüfgruppen
Gi Die i-te Prüfgruppe
GT otal Prüfgruppe mit allen Prüfpfaden
M Menge an Zeilen einer Kompaktormatrix
N C Menge der nicht gruppierten Prüfpfade
N Y C Menge der noch nicht eingruppierten Prüfpfade während der vari-

anzorientierten Prüfgruppeneinteilung
OP Menge der verwendeten Arbeitspunkte
S Menge der Prüfpfade in der zu testenden Schaltung
T Menge der verwendeten Temperaturen
TM Testmustermenge
U Menge der verwendeten Versorgungsspannungen
µ Mittelwert
⊕ XOR-Operator
O O-Notation
ϕ(z) Aktivierungsfunktion eines künstlichen Neurons
Ψ Transformationsfunktion eines Kompaktierers
σ Standardabweichung
σ2 Varianz
σ2(XCount(GT otal)) Varianz des Vektors XCount(GT otal)
φ1, φ2, . . . Fehler in einer hochintegrierten Schaltung
φCC Größe einer parasitären Koppelkapazität
A Materialkonstante
b Bias-Term eines künstlichen Neurons
c Aktueller Takt
C1, C2, . . . Kapazitäten
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cij Element der Kompaktormatrix C

dpd(o, op, φCC , padd) Laufzeitverzögerung
E(w) Fehlerfunktion eines künstlichen neuronalen Netzes für die Gewichte

w

ex Exponentialfunktion
f Anzahl Frequenzen während des Hochgeschwindigkeitstests
f(X) Charakteristische Polynom
fCLK Taktfrequenz der hochintegrierten Schaltung
fF AST Taktfrequenz im Hochgeschwindigkeitstest
fnom Nominelle Taktfrequenz
GND Massepotential der hochintegrierten Schaltung
h1, h2, . . . Koeffizienten im charakteristischen Polynom eines MISRs, die die

lineare Rückkopplung repräsentieren
hw(x) Ausgabe eines künstlichen Neurons mit den Gewichten w für den

Eingangsvektor x

i, j, k, l, ... Laufindex
i1, i2, . . . Eingänge einer hochintegrierten Schaltung
J Stromdichte
k1 Anzahl der sichtbaren Fehlverhalten an den Eingängen eines linea-

ren Kompaktierers
k2 Anzahl der X-Werte an den Eingängen eines linearen Kompaktierers
kB Boltzmann-Konstante
kx Anzahl X-Werte am Eingang des stochastischen Kompaktierers
KR Kompaktierungsrate eines Testantwortkompaktierers
L Anzahl der versteckten Ebenen
L1, L2, . . . Induktivitäten
LGate Gatelänge eines Transistors
Lnom Nominelle Gatelänge
Lvar Gatelänge mit Prozessvariation
M Benötigter Speicherplatz für die modulare Kompkatierung
m, n, p, q Matrix-Dimensionen
max(x, y) Maximumfunktion
n Modellparameter
nc Grad des charakteristischen Polynoms
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ng Anzahl der Gatter
nl Anzahl der Neuronen auf Ebene l

ns Anzahl der Signalleitungen
nz Anzahl nötiger Zwischensignaturen eines X-Canceling MISRs
numRuns Parameter der varianzorientierten Prüfgruppeneinteilung
o1, o2, . . . Ausgänge einer hochintegrierten Schaltung
op Arbeitspunkt
padd Prozentuale Änderung der nominellen Gatelänge
pij Wahrscheinlichkeit, dass der Eintrag cij in der Kompaktormatrix 1

ist
Q Aktivierungsenergie
R1, R2, . . . Widerstände
relu(x) ReLU-Funktion
si i-te Prüfpfad
sij Element der Signaturmatrix S

sig(x) Sigmoidfunktion
softmax(xj) Softmax-Funktion für den Eingangsvektor x am Ausgang j eines

künstlichen Neuronalen Netzes mit K Ausgängen
step(x) Stufenfunktion
T Umgebungstemperatur
t0 Startzeitpunkt
ts Beobachtungszeitpunkt
tT Schaltzeitpunkt
TCLK Taktperiode
TF AST Taktperiode im Hochgeschwindigkeitstest
tij Element der Testantwortmatrix T

Tnom Nominelle Taktperiode einer Schaltung
tnom Nominelle Beobachtungszeit
tanh(x) Tangens hyperbolicus
UDD Versorgungsspannung der hochintegrierten Schaltung
Unom Nominelle Versorgungsspannung
UT H Schwellenspannung
w Anzahl Wahrscheinlichkeiten des WPRPG
wi i-te Gewicht des i-ten Eingangs eines künstlichen Neurons
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X Zufallsvariable zur Beschreibung der Koppelkapazitätsgröße
xi i-te Element im Eingangsvektor eines künstlichen Neurons
xj Binäre Variable zur Repräsentation der Prüfgruppenauswahl
XCount(GT otal) Vektor der X-Verteilung pro Takt in der Prüfgruppe GT otal

XCount(si) Vektor der X-Verteilung pro Takt des aktuellen Prüfpfades si

Xnew
Count(Gj) Vektor der X-Verteilung pro Takt nach dem Hinzufügen des aktu-

ellen Prüfpfades
Xold

Count(Gj) Vektor der X-Verteilung pro Takt vor dem Hinzufügen des aktuellen
Prüfpfades

XT otal Anzahl der X-Werte in allen Testantworten
XT otal(Gj) Anzahl der X-Werte in allen Testantworten der Prüfgruppe Gj

Y Zufallsvariable zur Beschreibung der Prozessvariation
z Gewichtete Summe der Eingänge eines künstlichen Neurons
xi i-te Eingangsvektor ein Trainingsdatensatzes
FN Anzahl der falsch negativen Vorhersagen
FP Anzahl der falsch positiven Vorhersagen
RN Anzahl der richtig negativen Vorhersagen
RP Anzahl der richtig positiven Vorhersagen
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