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Zusammenfassung

In dieser Arbeit wird die nichtlineareWechselwirkung von Licht undMaterie in Halbleitern
und Halbleiter-Nanostrukturen anhand der Halbleiter-Bloch Gleichungen beschrieben. Im
Rahmen eines Zwei-Band-Modells wird gezeigt, dass Intrabandströme beim Vier-Wellen-
Mischen mit nicht-resonanten Lichtpulsen maßgeblich zum nichtlinearen Signal beitragen.
Diese Ströme werden durch eine feld-induzierte Beschleunigung von Elektronen und
Löchern in den jeweiligen Bändern erzeugt. Am Beispiel von MgO wird die Bewegung
der Ladungsträger und deren Einfluss auf die Erzeugung hoher Harmonischen untersucht.
Die Kollisionsdynamik im Material beeinflusst den Rekombinationsprozess zwischen Elek-
tronen und Löchern und ist für die Anisotropie, d.h. die Abhängigkeit der Erzeugung
hoher Harmonischer von der Polarisationsrichtung verantwortlich. Des Weiteren wird der
Einfluss von exzitonischen Effekten auf die Erzeugung hoher Harmonischer demonstriert.
Sofern ein ungerades Vielfaches der Pulsfrequenz mit der Energie des 1s-Exzitons übere-
instimmt, tritt eine verstärkte Erzeugung von hohen Harmonischen auf. Zum Abschluss
wird der Einfluss von Vielteilchen Coulomb-Korrelationen bei optischen Anregungen
in der Nähe der Bandlücke in räumlich-direkten Typ-I und indirekten Typ-II Halbleiter-
Nanostrukturen untersucht. Die räumliche Inhomogenität in Typ-II Systemen äußert sich
insbesondere in einer unterschiedlich starken Coulomb-Wechselwirkung. Dies führt in der
zeitabhängigen Hartree-Fock Näherung zu zusätzlichen Beiträgen zur optischen Antwort.
Unsere Ergebnisse unter Berücksichtigung von biexzitonischen Vielteilchen-Korrelationen
ermöglichen eine physikalische Interpretation der Messdaten von Anrege-Abfrage Experi-
menten, in denen Typ-II Halbleiter-Nanostrukturen untersucht wurden.
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Summary

In this work we describe the nonlinear interaction between light and matter in semi-
conductors and semiconductor nanostructures using the semiconductor Bloch equations.
Within a two-band model it is shown that intraband currents contribute significantly to
the nonlinear four-wave-mixing signal excited by nonresonant light pulses. These currents
are generated by the field-induced acceleration of electrons and holes in their respective
bands. The motion of charge carriers and their influence on the generation of higher har-
monics in solids is investigated for the case of MgO. The collision dynamics in the material
influences the recombination process between electrons and holes and is responsible for
the anisotropy, i.e., the polarization-direction dependence of high harmonic generation in
solids. Additionally, the influence of excitonic effects on the generation of higher harmonics
is analyzed. When an odd multiple of the pulse frequency coincides with the energy of the
1s exciton, an enhanced generation of higher harmonics is obtained. Finally, the influence
of many-body Coulomb correlations for optical excitations near the band gap is investi-
gated in spatially-direct type-I and spatially-indirect type-II semiconductor nanostructures.
The spatial inhomogeneity of type-II systems manifests itself, in particular, in a modified
strength of the Coulomb interaction. This leads to additional contributions to the optical
response in the time-dependent Hartree-Fock approximation. Our findings which include
biexcitonic many-body correlations allow a physical interpretation of measured data from
pump-probe experiments performed on type-II semiconductor quantum wells.
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Introduction 1
In the past decades, advancements in the understanding of the electronic properties of
semiconductors have enabled the production of increasingly powerful semiconductor chips.
Today, the focus remains on the development of downsizing electronic devices, driving
current research towards developing microscopic models for the study of these materials
and systems [1]. Semiconductors exhibit a remarkable sensitivity to the addition of carriers.
These carriers can be introduced into the semiconductor crystal through various methods,
such as doping, electronic injection, or optical excitation. The electronic properties of
semiconductors primarily arise from excitation within a single energy band, known as
intraband acceleration. These excitations describe the motion of carriers in real space, i.e.
their transport characteristics [2]. The quantum mechanical description of electrons in a
periodic lattice under the influence of an electric field was already introduced by Bloch and
Zener in 1929 and 1934, respectively [3, 4]. In contrast, the optical properties of semiconduc-
tors are associated with transitions between the valence bands and the conduction bands,
which are known as interband transitions. These transitions occur when an electron is
excited from the valence band, which represents the energy levels that in the ground state
are occupied by electrons, to the conduction band. Interband transitions are responsible
for phenomena such as absorption, emission, and scattering of light in semiconductors [2].
Although a clear distinction is often made between intraband and interband transitions
due to their distinct roles, it is important to note that a strict separation between these
two types of transitions is not always possible. The electronic and optical properties of
semiconductors arise from a complex interplay between these transitions, making the
study and understanding of their behavior a fascinating and multifaceted field of research.

In 1961, with the development of intense lasers, Franken et al. were able to measure
the emission of a second harmonic which represents a nonlinear optical process [5, 6]. The
use of laser pulses has enabled the study of ultrafast processes, occurring within the pico-
(10−12 B) and femtosecond (10−15 B) range [7, 8]. To investigate the electron dynamics in
solids, ultrafast spectroscopy has become a powerful method, utilizing, e.g., pump-probe
(PP) experiments or four-wave-mixing (FWM) spectroscopy [9–12]. Both setups are still
popular methods to study the ultrafast quantum mechanical processes in photoexcited
semiconductors including both intraband and interband transitions [13–30]. In FWM
spectroscopy the so-called self-diffraction geometry is a widely used approach. Here, two
pulses which are delayed temporally excite the sample and lead to a nonlinear signal of at
least third order. This nonlinear signal is emitted into a background-free direction [31].
It is possible to study dephasing times in semiconductor nanostructures even if they are
inhomogeneously broadened [14, 21, 22, 24, 32]. In PP measurements an optical pump pulse
firstly excites or perturbs the system, while a temporally delayed probe pulse measures the
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1 Introduction

resulting changes in the material. Thereby, the dynamics of charge carriers, i.e., electron
and occupations, in semiconductors can be investigated [33]. For instance, by varying the
time delay between the pump and probe pulse, it is possible to study relaxation dynamics
(population lifetime of excited states) [8]. Overall, these ultrafast spectroscopy techniques
are able to reveal the dynamical processes in semiconductors with a very high temporal
resolution.

When investigations into even shorter time scales, on the order of attoseconds (10−18 B), be-
come necessary, the demand for alternative approaches becomes apparent. High harmonic
generation (HHG) can be used to generate intense attosecond pulses of electromagnetic
radiation. These can, in turn, be used to measure ultrafast electronic processes [34, 35].
The emitted radiation from a system excited by very intense radiation may exhibit many
integer multiples of the excitation frequencies. Higher harmonics with a large number
of orders can be generated in atomic systems [36–46]. The observation of HHG in solids
started only in the last decade [47–51]. Along with this, the properties of solid-state sys-
tems and the control, especially the enhancement of the higher harmonics, have been
investigated in more detail [52, 53]. Only recently the influence of excitonic effects on
HHG was investigated [54, 55].

Typically, the interaction of electrons in photoexcited semiconductors significantly modi-
fier the nonlinear response [56]. For instance, in the case of low-dimensional semiconductor
structures, such as quantum wells (QW) or quantum dots (QD), due to the confinement of
electrons many-body interactions are enhanced. Consequently, it is necessary to include
such interactions within a microscopic description. The influence of the Coulomb inter-
action has been studied by microscopic theories [57–63] and was observed by ultrafast
spectroscopy [64–75].

In this thesis, we investigate various aspects of extreme nonlinear processes appearing in
wave-mixing experiments and HHG. Chapter 2 covers the fundamental concepts required
to describe the interaction between classical light and semiconductor nanostructures. We
introduce the multi-band semiconductor Bloch equations (SBE) in the length gauge, which
includes both inter- and intraband excitations and the many-body Coulomb interaction
within the time-dependent Hartree-Fock approximation (TDHF). The first part of our work
focuses on high-field effects associated with strong, often Terahertz (THz), laser pulses.
In addition to interband transitions, we investigate intraband excitations that arise from
the acceleration of charge carriers. In Chapter 3, we investigate a strongly nonresonant
FWM experiment using the SBE within a two-band model, highlighting the importance of
the intraband motion. In Chapter 4 we analyze the anisotropic behavior of the interband
HHG in MgO using the SBE, along with a semiclassical trajectory theory that directly
links the electron/hole motion to harmonic emission in both real and momentum space.
We clarify that certain scattering processes are responsible for the anisotropic interband
HHG observed in MgO.

The second part of the thesis extends our theoretical treatment by considering the many-

2



1 Introduction

body Coulomb interaction. In chapter 5 a theoretical analysis of the influence of excitonic
effects on HHG is shown. Here, the Coulomb interaction is treated in the TDHF approxi-
mation. By a proper choice of laser frequencies depending on the excitonic resonances
it is possible that selective harmonics can be enhanced significantly. In Chapter 6 we go
beyond the TDHF approximation by considering high-order correlation effects, including
the excitation of biexcitons. Within the coherent j (3) -limit a decoupling scheme can be
applied to truncate the many-body hierarchy, which results in a closed set of equations
describing both single- and two-exciton coherences. We compare the nonlinear response
of spatially-direct type-I QW structures and the spatially-indirect type-II QW structures.
In properly designed type-II QW structures so-called charge transfer excitons represent
the energetically-lowest interband transitions. The theoretical treatment of such material
systems reveals that additional contributions to the nonlinear optical response appear
due to the spatial inhomogeneity, which is confirmed by comparing with optical-pump
optical-probe (OPOP) experiments. In the end we give a summary of the results obtained
in this thesis.
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Fundamentals 2
In this chapter, we present the fundamental concepts to understand the background
underlying the numerical simulations discussed in chapters 3-5 of this thesis. We introduce
a microscopic description of the light-matter interaction in semiconductors. The described
methodologies and models are based on the concepts of Refs. [2, 76, 77]. Here, we restrict
the treatment of the Coulomb interaction to the TDHF approximation. Overall, we follow a
semiclassical approach, where electronic excitations are treated quantummechanically and
the light field is a classical electromagnetic wave. We start by introducing the Hamiltonian
of the system. Subsequently, we derive the dynamical equations of motion and introduce
physical quantities that describe the response to the light-matter interaction. In the end
of this chapter we introduce the concept of investigating nonlinear optical experiments
considering FWM and PP setups theoretically. In the second part of this thesis, i.e., chapter
6, we introduce a theoretical model to analyze the nonlinear response including additionally
higher-order biexcitonic Coulomb correlation effects.

2.1 Semiclassical description of the light-matter interaction
in semiconductors

The microscopic treatment of the material system is provided in second quantization by the
Hamiltonian in the Bloch basis [2, 76]. Therefore, we introduce creation and annihilation
operators 0̂†

_,k and 0̂_,k for the electronic system, respectively. They create or destroy
an electron in the corresponding band _ with crystal momentum ℏk. The multi-band
Hamiltonian describing optical and intraband excitations reads

�̂ = �̂0 + �̂!−" + �̂� . (2.1)

The first term �̂0 =
∑

_k Y
_
k0̂

†
_,k0̂_,k of the Hamiltonian in eq. (2.1) describes the energy

of electrons within the material system. The light-matter interaction �̂!−" includes two
different processes in length gauge (x·E picture [78, 79]). Neglecting the so called non-
Abelian Berry connections [80] it is given by:

�̂!−" = −E(C) ·
∑
_,_′,k
_≠_′

-__′

k 0̂
†
_,k0̂_,k + 84E(C) ·

∑
_,k

0̂
†
_,k∇k0̂_,k. (2.2)
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2 Fundamentals

The transition dipole matrix element -__′

k = 4 〈_,k| r̂ |_′,k〉 defines the strength of an
interband excitation of an electron from band _ to _′ due to an electric field. The ∇k term
in eq. (2.2) leads to intraband currents [79, 81] which are induced by the acceleration
of electrons in their respective bands _ according to the classical acceleration theorem
[82]. So, within the length gauge it is possible to distinguish between inter- and intraband
currents [83, 84]. We can associate them with the corresponding intraband acceleration and
the interband transition processes. Here, we neglect any kind of scattering mechanisms
on the carrier motion. The intraband currents play an important role when exciting
semiconductors far below the bandgap energy, e.g., in THz spectroscopy or HHG [78, 79,
83, 85–92]. The Coulomb interaction �̂� describes the interaction between the electrons
in bands _ and _′ exchanging the momentum ℏq, and is given by

�̂� =
1
2

∑
_,_′

k,k’q≠0

+ __′
q 0̂

†
_,k+q0̂

†
_′,k′−q0̂_′,k

′0̂_,k. (2.3)

The Coulomb matrix element + __′
q depends on the considered material system. Further

many-body interactions as electron-phonon interactions which may lead to the formation
of quasi-particles and dephasing and relaxation are not considered here. These kind of
interactions are only treated on a phenomenological approach by introducing effective
parameters.

2.2 The SBE in TDHF approximation

By considering the system Hamiltonian from the previous chapter and the Heisenberg
equation it is possible to describe the dynamics of any arbitrary physical observable $̂ [2,
93]

〈 3
3C
$̂〉 = 8

ℏ
〈
[
$̂, �̂

]
〉. (2.4)

Here, we indicate that the relevant physical quantities to describe a photoexcited semicon-
ductor are the microscopic polarizations ?__′k = 〈0̂†

_,k0̂_′,k〉 (_ ≠ _′) and the populations
=_k = 〈0̂†

_,k0̂_,k〉. By inserting these quantities into the Heisenberg equation (2.4) it is possi-
ble to obtain their time evolution. However, the commutation with the specified Coulomb
Hamiltonian (2.3) leads to an hierarchy problem. The relevant quantities ?__′k and =_k couple
to higher order products of the electronic operators 0̂†_k and 0̂_k including two creation and
two annihilation operators. Subsequently, it is necessary to derive the equation of motion
governing these quantities, which exhibit coupling with six operators. This coupling gives
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2 Fundamentals

rise to an infinite set of equations, which can be represented symbolically as follows: [56]

m

mC
〈# 〉 = ) [〈# 〉] ++ [〈# + 1〉] (2.5)

Here, the product of # creation and # annihilation operators is defined by 〈# 〉. The free
particle evolution is given by the functional ) and the interacting many-body part by
+ , respectively. To determine the dynamics of the considered system it is necessary to
truncate the infinite hierarchy to obtain a closed set of equations of motion. A widely used
approach to truncate the hierarchy problem is the cluster expansion [76, 94–96]. It provides
a closed set of equations for analyzing many-body Coulomb correlation effects [97–103].
The singlet level of the cluster expansion is equal to the case of the TDHF approximation.
Latter treats the Coulomb interaction in first order and neglects many-body correlations.
In principle, every N-particle quantity 〈# 〉 includes both single-particle contributions as
well as many-body correlations. Applying the so-called Hartree-Fock (HF) factorization
according to [2], a two-particle cluster is factorized into products of singlets

〈0̂†1 0̂
†
20̂30̂4〉

��︷︸︸︷
≈ 〈0̂†1 0̂4〉〈0̂

†
20̂3〉 − 〈0̂†1 0̂3〉〈0̂

†
20̂4〉. (2.6)

Within the TDHF approximation the dynamics of the expectation value of a four-point
operator is determined by the dynamics of two-point operator expectation values. After
utilizing the HF factorization the difference between the full and the HF terms describes
the scattering part (truly correlated pairs of charge carriers) which can be written as

mC 〈$̂〉 = mC 〈$̂〉�� + mC 〈$̂〉|B20CC . (2.7)

Due to the typically relatively small number of electrons excited from the valence band E
to the conduction band 2 compared to the total number of electrons occupying the filled
valence band, it is advantageous to transform to the electron-hole picture. This approach
involves focusing only on the few missing electrons in the valence band, known as holes
ℎ. Here, we introduce the creation operators for electrons 2†k and holes 3†k, respectively by
defining:

2̂
†
k ≡ 0̂

†
2,k and 3̂†−k ≡ 0̂E,k (2.8)

For simplicity, we consider one valence band and one conduction band. It should be
noted, that in the following we take only Coulomb interaction processes into account
that conserve the particle number within each band. Specifically, we do not consider
interband Coulomb processes that involve the annihilation of one electron and one hole,
resulting in the creation of two electrons or holes, respectively. We neglect terms that

7



2 Fundamentals

characterize interband Auger transitions because they are not important for the material
systems and excitation conditions considered here. This approximation can be justified
by the substantial energy gap, that exists between the two bands which exceeds typical
Coulomb energy scales, e.g., the exciton binding energy. Furthermore, by inserting the
definitions (2.8) into the Hamiltonian (2.1) and restoring normal ordering, one obtains
constant terms which we omit because they do not affect the dynamics of the system [2].
The Hamiltonian in the electron-hole picture in two-band approximation reads

�̂ =
∑
k

(
Y4k2̂

†
k2̂k + Yℎk3̂

†
−k3̂−k

)
−
∑
k

E(C) ·
(
`4ℎk 2̂

†
k3̂

†
−k + h.c

)
+ 84

∑
k

E(C) ·
(
2̂
†
k∇k2k − 3̂

†
−k∇k3̂−k

)
+ 1
2

∑
k,k′,q≠0

+@

(
2̂
†
k+q2̂

†
k′−q2̂k

′2̂k + 3̂†k+q3̂
†
k′−q3̂k

′3̂k − 22̂†k+q3̂
†
k′−q3̂k

′2̂k

)
. (2.9)

The Hamiltonian (2.9) contains the single particle energies

Y4k = Y2k (2.10)

and

Yℎk = −YEk +
∑
q≠0

+@, (2.11)

where the kinetic energy of the holes includes the Coulomb exchange energy of −∑
+@ .

Inserting the microscopic polarization ?ℎ4k = 〈3̂ℎ−k2̂
4
k〉 and the carrier density of electrons

(holes) =4 = 〈2̂†k2̂k〉 (=
ℎ = 〈3̂†−k3̂−k〉) into the Heisenberg eq. (2.4) with the electron-hole

Hamiltonian (2.9) their dynamics can be determined. Within the TDHF approximation
(singlet-level), a closed set of equations of motion including only two-point quantities can
be derived. The SBE for a two-band model read [2]

8ℏ
m

mC
?ℎ4k =

(
Ỹ4k + Ỹℎk + 84E(C) · ∇k

)
?ℎ4k − ℏΩℎ4

k

(
1 − =4k − =ℎk

)
+ Γℎ4k ,

ℏ
m

mC
=_k = −2Im

[
ℏΩℎ4

k

(
?ℎ4k

)∗]
+ 4E(C) · ∇k=

_
k + Γ_k with _ ∈ 4, ℎ. (2.12)

The scattering processes are approximated using effective dephasing constants denoted as
Γℎ4k = −8 ℏ

)2
?ℎ4k for the polarizations. The relaxation of occupations is given by Γ_k = − 1

)1
=_k.

1

1Usually, we use infinite lifetimes for the populations.
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2 Fundamentals

The Coulomb interaction leads to a renormalization of the band energies according to

Ỹ_k = Y_k −
∑
q≠k

+k-q=
_
q with _ ∈ 4, ℎ. (2.13)

The generalized Rabi energy which contain the product between the electric field E(C) and
the dipole matrix element `4ℎk is included via

ℏΩℎ4
k =

(
-4ℎ
k

)∗
· E(C) +

∑
q≠k

+ℎ4
k-q?

ℎ4
q . (2.14)

By considering several valence bands _ = ℎ8 and/or conduction bands _′ = 4 9 provides a
more realistic representation of the electronic structure and enables a more precise descrip-
tion of absorption, emission, and other optical processes of photoexcited semiconductors.
The coherences between these bands also contribute to the optical response [104]. Here,
the polarization ?

ℎ84 9

k describes the interband transition between a valence band ℎ8 and a
conduction band 4 9 . Furthermore, coherences ?ℎ8ℎ 9

k and ?484 9k between two different valence
bands ℎ8 ≠ ℎ 9 and conduction bands 48 ≠ 4 9 appear. On the singlet level which treats the
Coulomb interaction in the TDHF approximation the equations of motion provided for a
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multi-band system read [2, 104]

8ℏ
m

mC
?
ℎ84 9

k =

(
Ỹ
4 9

k + Ỹ
ℎ8
k + 84E(C) · ∇k

)
?
ℎ84 9

k − ℏΩ
ℎ84 9

k

(
1 − =

4 9

k − =
ℎ8
k

)
+ Γ

ℎ84 9

k

+
∑
4_≠4 9

[
ℏΩℎ84_

k ?
4_4 9

k − ℏΩ
4_4 9

k ?
4_4 9

k

]
+

∑
ℎ_≠ℎ8

[
ℏΩℎ8ℎ_

k ?
ℎ_4 9

k − ℏΩ
ℎ_4 9

k ?
ℎ8ℎ_
k

]
,

8ℏ
m

mC
?
484 9

k =

(
Ỹ
4 9

k − Ỹ
48
k + 84E(C) · ∇k

)
?
484 9

k − ℏΩ
484 9

k

(
=
4 9

k − =
48
k

)
+ Γ

484 9

k

+
∑

4_≠48 ,4 9

[
ℏΩ484_

k ?
4_4 9

k − ℏΩ
4_4 9

k ?
484_
k

]
+
∑
ℎ_

[
ℏ

(
Ωℎ_48
k

)∗
?
ℎ_4 9

k − ℏΩ
ℎ_4 9

k

(
?
ℎ_48
k

)∗]
with 48 ≠ 4 9 ,

8ℏ
m

mC
?
ℎ8ℎ 9

k =

(
Ỹ
ℎ 9

k − Ỹ
ℎ8
k + 84E(C) · ∇k

)
?
ℎ8ℎ 9

k − ℏΩ
ℎ8ℎ 9

k

(
=
ℎ 9

k − =
ℎ8
k

)
+ Γ

ℎ8ℎ 9

k

+
∑

ℎ_≠ℎ8 ,ℎ 9

[
ℏΩℎ8ℎ_

k ?
ℎ_ℎ 9

k − ℏΩ
ℎ_ℎ 9

k ?
ℎ8ℎ_
k

]
+
∑
4_

[
ℏ

(
Ω4_ℎ8
k

)∗
?
4_ℎ 9

k − ℏΩ
4_ℎ 9

k

(
?
4_ℎ8
k

)∗]
with ℎ8 ≠ ℎ 9 . (2.15)

Here, additional couplings between all microscopic polarizations due to the generalized
Rabi energy exist and is given by [2, 104].

ℏΩ__′

k =

(
-__′

k

)∗
· E(C) +

∑
q≠k

+ __′

k-q?
__′
q . (2.16)
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2 Fundamentals

The occupation dynamics in the valence (ℎ8 ) and the conduction (4 9 ) bands in a multi-band
system read [2, 104]

m

mC
=
48
k = −2Im


∑
4_≠48

Ω4_48
k

(
?
4_48
k

)∗
+
∑
ℎ_

Ωℎ_48
k

(
?
ℎ_48
k

)∗ +
4

ℏ
E(C) · ∇k=

48
k + Γ48k ,

m

mC
=
ℎ8
k = −2Im


∑
ℎ_≠E8

Ωℎ8ℎ_
k

(
?
ℎ84_
k

)∗
+
∑
4_

Ωℎ84_
k

(
?
ℎ84_
k

)∗ +
4

ℏ
E(C) · ∇k=

ℎ8
k + Γℎ8k .

(2.17)

The closed set of equations in (2.15) and (2.17) is known as the multi-band SBE [2, 104].
The interband polarization P(C) is fully determined by the eqs. (2.15) and (2.17). Only the
microscopic polarizations ?__′k between dipole-coupled bands _ and _′ contribute to the
total interband polarization P(C) which is given by

P(C) =
∑
_,_′,k

-__′

k ?__
′

k . (2.18)

The intraband current is given by

J(C) =
∑
_,k

v_k=
_
k =

∑
_,k

4

ℏ
∇kY

_
k=

_
k. (2.19)

The derivative of band dispersion defines the current matrix element E_k = 4
ℏ
∇kY

_
k. When

considering symmetric band structures in k-space, the intraband current only exists for
non-symmetric carrier distributions.
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2 Fundamentals

2.3 Nonlinear optical signals

Figure 2.1: Schematical illustration of a PP setup and a FWM experiment in the self-diffraction
geometry induced by two laser pulses which are delayed by g .

In the following we describe nonlinear optical experiments considering FWM and PP
setups for near-gap excitations, i.e., near resonant excitations. Here, the nonlinear response
is determined by the macroscopic polarization P. In chapter 3, we additionally show how
to include intraband contributions to the nonlinear optical response. The nonlinear optical
experiments like PP and FWM considered in this thesis are always performed with two
excitation pulses that propagate into the directions k1 and k2, respectively. The total
electric field within the rotating wave approximation (RWA) is given by [105, 106]

E(C) = e1�1(C)48 (k1 ·r−l1C ) + e2�2(C)48 (k2 ·r−l2C )

with �1(C) ∝ 4
−
(
C+g
ΔC1

)2
and �2(C) ∝ 4

−
(

C
ΔC2

)2
(2.20)

The electric field polarization vectors are given by e1 and e2, whereas the pulse frequencies
are given by l1 and l2, respectively. The temporal envelopes �1,2(C) are described by
Gaussian functions. The delay between them is given by the time g , see Fig. 2.1. The second
pulse �2(C) is centered at the time C = 0 and the first pulse �1(C) excites the system either
before pulse �2(C) corresponding to a positive delay time or afterwards with a negative
delay time. In the scope of this work the theoretical analysis of the nonlinear signals
concerning FWM or PP is restricted up to the third-order of the considered electric fields.
In addition, a Fourier decomposition with respect to the propagation directions k1 and k2
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2 Fundamentals

of the relevant physical quantities is necessary [31]. For instance, the first order consists
of two linear interband coherences ? (1) (1 |0) and ? (1) (0 |1) induced by the corresponding
laser pulses. The superscript (;) (= |<) indicates the order ; in the electric field and the
kinematic direction 48 (=k1+<k2 ) ·r [56]. At this point, it should be noted that the relevant
quantities in second order are either carrier densities or, as we will discuss later in this
work, two-exciton coherences (see. A.1.1). The time-resolved FWM (TR-FWM) signal from
the self-diffraction geometry, (see Fig. 2.1), is radiated in the direction 2k2 − k1 and is
theoretically described by [56]

PFWM(C, g) =
∑
_,_′,k

-__′

k

(
?__

′

k

) (3) (−1 |2)
(C, g). (2.21)

The absolute value squared of the TR-FWM signal polarization provides its intensity which
is proportional to what is measured in TR-FWM experiments from optically thin samples
and is given by [56]

(FWM(C, g) = |PFWM(C, g) |2 (2.22)

and the time-integrated signal is given by [56]

�FWM(g) =
∫ ∞

−∞
|PFWM(C, g) |23C (2.23)

In PP experiments one usually excites the material system with an optical pump pulse
which corresponds in our theoretical treatment to pulse E1(C). Afterwards one is often
interested in the pump-induced absorption changes from the radiated field into the probe
pulse (pulse E2(C)) direction (0|1), compare with Fig. 2.1. The pump-induced absorption
change XU is determined by the differential polarization XP. Here, the optical pump pulse
(E1(C)) enters twice and the probe pulse (E2(C)) linearly to the differential polarization XP.
In case of an spectral broad probe spectrum the pump induced absorption spectrum is
given by the Fourier transform of the time-dependent differential polarization [56]

XU (l, g) ∝ Im
[∫

(e2)∗ · XP(C, g)48lC3C
]
. (2.24)
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Strongly nonresonant
four-wave mixing in
semiconductors 3

In this chapter, we investigate a FWM experiment that utilizes strongly nonresonant laser
pulses in self-diffraction geometry. Previous studies of FWM spectroscopy using excitations
near the bandgap energy have successfully analyzed dephasing times [2, 14, 21, 22, 24,
31, 32, 56] as the interplay between different electronic states [18, 20, 107, 108], including
excitonic [2, 16, 17, 24, 56, 109] and higher-order correlation effects such as biexcitons [2, 23,
29, 32, 56, 61, 62, 110–119]. Additionally, two-dimensional Fourier-transform spectroscopy
has been employed in such studies [120, 121]. However, only a few FWM experiments have
been conducted using nonresonant laser pulses [122–125]. In these cases, the FWM signals
exhibit spectral broadening and shifts that have not been thoroughly analyzed using a
microscopic theory.

Our approach is based on solving the SBE, which take into account inter- and intra-
band excitations within a two-band model. Previous studies have demonstrated that the
generation of high harmonics with nonresonant excitations in the THz regime arises
from both the inter- and intraband current [47, 49, 50, 81, 104]. To illustrate the impact
of intraband excitations on the FWM signal, we compare our results with a simplified
two-level model and a spectrally resolved FWM experiment on a bulk CdTe sample. The
following results can be found in [126].
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3 Strongly nonresonant four-wave mixing in semiconductors

3.1 Two-level model

Figure 3.1: In (a) a schematic of a simple two-level system is shown providing only an interband
excitation between a ground state 6 and an excited state =. The transition frequency is
given by ℏl2E . In (b) the k-dependent dispersion ℏl: is schematically shown. The total
polarization is determined by the sum of all microscopic polarizations ?: . The electrons
and holes move within their respective bands due to the field-induced acceleration.

For atomic systems described by a simple two-level system, see. Fig. 3.1(a), the well known
optical Bloch equations (OBE) [2, 56] read

m

mC
? = −8l2E? + 8

ℏ
- · E(C) (1 − 2=) − ?

)2
,

m

mC
= =

8

ℏ
- · E(C) (?∗ − ?) − =

)1
, (3.1)

where ? is the microscopic polarization and = the carrier density of the upper level. The
occupation of the ground level is given by (1 − =). The transition frequency between the
two states is given by l2E . The electric fields have the same pulse duration and central
frequencies l! . Their temporal envelope corresponds to Gaussian pulses, see eq. (2.20). As
mentioned in chapter 2.3 the third order interband polarization %

(3) (−1 |2)
FWM determines the

radiated signal into the direction 2k2 − k1. Within an expansion in powers of the electric
fields, the interaction between the linear polarizations ? (1) due to �1 and �2 leads to the
formation of a density grating = (2) in second order. At the same time the laser pulse �2
interacts twice and is diffracted and leads to a third-order coherence ? (3) . Considering the
Maxwell-Bloch equations to describe a region in space with multiple two-level systems,
it is observed that in the self-diffraction geometry, two laser pulses generate a density
grating. The second pulse is diffracted in the 2k2 − k1 direction, see Fig. 3.2. The latter
originates from Pauli blocking which is the only nonlinearity considering the OBE (3.1):
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3 Strongly nonresonant four-wave mixing in semiconductors

Figure 3.2: In (a) the density grating in second order Δ= (2) excited by two-pulse configuration
with k1,2 is shown at C = 10 fs. The medium in space is described by many two-level
system considering the OBE (3.1) with |3 | = 0.624 e nm. The bandgap energy is about
l2E = 1.6 eV and the laser frequencies correspond to l! = 0.6l2E with a pulse duration
of about 55 fs. Their maximum magnitude at C = 0 occurs at G = 0.385 `m. In (b) the
radiated FWM signal (red arrow) which originates from the third-order polarization at
C = 200 fs is shown. The propagation distance is about 60 µm at this time point. Taken
from [126].

In principle, these steps still remain applicable for far off-resonant excitation with a de-
tuning corresponding to Δ = l2E − l! . In contrast to a resonant excitation the dynamics
depends on the temporal envelope (adiabatic regime) of the considered laser pulses [2,
127]. Consequently, the coherence induced by the pulses vanished immediately if the
electric fields are gone. Therefore, we only analyze the setup in which both laser pulses
simultaneously impinge on the sample. The perturbative treatment to analyze the FWM
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3 Strongly nonresonant four-wave mixing in semiconductors

signal suggests that the amplitude scales as Δ−3 and the dynamics proceed faster because
three excitations are leading to %

(3)
FWM.

Figure 3.3: In (a) TR-FWM signal based on numerical solutions of the OBE (3.1) is shown for
l! = 0.8 eV (_! = 1550 nm). The black solid and dashed lines show the square of
the pulse envelope, i.e., [� (C)]2, and its third power [� (C)]6, respectively. In (b) the
FWM signal spectra depending on ℏl! (thick colored lines) are shown. Like in (a) the
black solid and dashed lines display the squared Fourier transforms of � (C) and [� (C)]3,
respectively. The pulse duration corresponds to 50 fs and ℏl2E = 1.5 eV (close to the
band gap of bulk GaAs) in both (a) and (b). Taken from [126].

Our theoretical results based on numerical solutions of the OBE (3.1) up to third-order show
clearly in Fig. 3.3 that our predictions are valid. The TR-FWM intensity �FWM(C) ∝ |% (3)

FWM |
2
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3 Strongly nonresonant four-wave mixing in semiconductors

mostly overlaps with [� (C)]6 within the coherent limit ()2 = 2)1). Usually, in solid-state
systems, the relaxation times )1 are much longer than the corresponding dephasing times
)2. Assuming an infinite lifetime of the carrier densities the FWM signal exhibit a small
temporal retardation when the dephasing time is shorter than the pulse duration. Here, the
FWM intensity spectra � (3)FWM(l) ∝ |l2%

(3)
FWM(l) |

2 are spectrally already broader than the
widths of laser pulses |� (l) |2, see Fig. 3.3(b). As predicted for an off-resonant excitation the
theoretical results provide an overall scaling of the FWM intensity that is nearly l4

!
Δ−6.

3.2 Two-band model

Besides the interband excitation (∝ - · E), the acceleration of electron and holes (∝ E · ∇k)
induced by the electric fields is crucial to describe adequately solid-state systems when
considering strong nonresonant pulses. We consider the SBEwithout Coulomb interactions,
however including a k-dependent energy dispersion ℏlk, see Fig. 3.1(b),

m

mC
?k = −8lk?k +

8

ℏ
- · E(C) (1 − 2=k) +

4

ℏ
E(C) · ∇k?k −

?k

)2
,

m

mC
=k =

8

ℏ
- · E(C)

(
?∗k − ?k

)
+ 4

ℏ
E(C) · ∇k −

=k

)1
. (3.2)

Now the nonlinear signal depends on the time derivative of the total current J(C) =

J? (C) + J= (C):

J? (C) =
m

mC
P(C) with P(C) =

∫
3k-

(
?k + ?∗k

)
,

J= (C) = −4
∫

3k=k∇klk. (3.3)

As mentioned in chapter 2.2 the intraband current �= (C) is only finite for a symmetric
band dispersion (derivative is an antisymmetric function in respect to k) when the carrier
density =k contains contributions that are asymmetric in momentum space. Besides a
small dependence on the different transition energies ℏlk the linear optical response
corresponds to the case for a two-level model considering an unexcited solid-state system
(? (0)

k = =
(0)
k = 0). But due to the acceleration of carriers additional contributions which are

absent within the two-level model can arise. For instance, in second order the coherence
?
(2)
k is provided1 by intraband excitations [128–130]. Even more pathways are needed to

be considered in third order. The microscopic polarization ?
(3)
k can be generated by an

interband excitation of = (2)
k like in the two-level model and additionally by an intraband

1The band dispersion lk is a symmetric function which leads to an antisymmetric function of ? (2)k with
respect to k. Then a macroscopic polarization in second order vanished due to the summation over k.
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3 Strongly nonresonant four-wave mixing in semiconductors

excitation from ?
(2)
k . Similarly, a carrier density =

(3)
k arise due an interband (intraband)

excitation from ?
(2)
k (= (2)

k ). Consequently, the total nonlinear response also depend on
these new excitation pathways [128].

Figure 3.4: In (a) the total TR-FWM intensity signal |�? (C)+ �= (C) |2 with its separate contributions is
shown. In (b) the real part of the intraband current �= which depends on two excitation
pathways �=,? (2) and �=,= (2) is presented. The currents �=,? (2) and �=,= (2) are also shown.
In (b) the black solid and dashed lines correspond to � (C) and [� (C)]3, respectively. In
(a) their squared envelopes are shown with the same line types. The laser frequency is
l! = 0.8 eV (_! = 1550 nm) and the pulse duration corresponds to 55 fs. The dephasing
time is )2 = 150 fs and )1 = ∞. The material parameters are close to bulk GaAs with
ℏlk=0 = 1.58 eV,<∗

4 = 0.1<0,<∗
ℎ
= 0.5<0 and |` | = 0.3e nm. Taken from [126].

The theoretical results in Fig. 3.4 based on numerical solutions of the SBE (3.2) consider-
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3 Strongly nonresonant four-wave mixing in semiconductors

ing an infinite lifetime )1 and a dephasing time is 150 fs. The total FWM signal strongly
depends on the contribution arising from intraband excitations. Within the present model
the interband current |�? (C) |2 shows a very similar behavior with its Gaussian lineshape
around C ≈ 0 such as in the two-level model. Its notable that its magnitude is even smaller
than from the density current |�= (C) |2 highlighting the importance of the intraband current.
Since the total signal |�? + �= (C) |2 depends on the summation of both currents an interfer-
ence term (�? (C) � ∗= (C) + � ∗? (C) �= (C)) arises. A close look to Fig. 3.4 show some sign changes
appearing around 20 fs due to the interference term. The global minimum of the total
current is provided in this case near the maximum destructive interference between �? (C)
and �= (C). The reason for these sign changes can be physically understood by considering
the intraband current in more detail. The intraband current originates from two excitation
pathways ? (2)

k and =
(2)
k providing a phase change in time domain. The dynamics of the

interband excitation follows the temporal behavior of the electric fields whereas a temporal
shift is observed from the contribution provided by the source term =

(2)
k . This temporal

shift vanishes by considering the coherent limit which is an unrealistic treatment for
semiconductors. Both source terms leading to contributions that differ by the phase c .

Our theoretical findings can be confirmed by additional analytical considerations of �= (C).
The source term ?

(2)
k leads to �=,? (2) ∝

[
8
(
lk−2l!

)
+ (1/)2)

]−1. Consequently two-photon
absorption in ?

(2)
k would appear when twice of the laser frequency (2ℏl!) surpasses the

transition frequency. In the present model, the sign of �= (C) originating from the excitation
pathway ?

(2)
k strongly depends on the chosen laser frequency and whether it is smaller or

larger than the band gap energy at certain k points. The transition frequencies lk consid-
ered in Fig. 3.4 are all almost larger than 2ℏl! providing an opposite sign of �=,? (2) and
�=,= (2) which is shown in Fig. 3.4(b). Considering slightly higher laser frequencies reduce
this effect, resulting in a phase shift that does not exactly correspond to c . Consequently,
the minimum of the intraband current |�= (C) |2 and the TR-FWM intensity signal does
not reach zero. Overall, the double-peak structure originates from the different temporal
behavior of the source terms ? (2)

k and = (2)
k . Firstly �=,? (2) (C) dominates and at later times

�=,= (2) (C) is exceeding. This leads to to the two peaks in �= (C) and explains the occurrence
of destructive and constructive interference.
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3 Strongly nonresonant four-wave mixing in semiconductors

Figure 3.5: FWM intensity spectrum |l�? (l) + l�= (l) |2. The solid and dashed black lines show
the squared intensity spectra of the electric fields |� (l) |2 and |� (l) |6, respectively.
In (a) the FWM signal with _! = 1550 nm and its individual contributions are shown.
Other parameters are chosen as in Fig. 3.4. On the right side in (b) the same spectrum as
in (a) is presented but we use an excitation wavelength _! = 1400 nm. Latter provides
the excitation conditions from the experiment shown in Fig. 3.6. Taken from [126].

In Fig. 3.4 the phase shift in time domain corresponds to c which leads to the minimum of
the FWM intensity spectrum close to the laser frequency l! . The double-peak structure
appearing in frequency domain also arise due the TR-FWM signal which provides two
peaks. Furthermore, the FWM intensity spectrum exhibits a more broadened spectrum
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than of the incident pulses |� (l) |6 since specific spectral components are diminished.
Additionally in Fig. 3.5(b) theoretical results are shown considering excitation conditions
(_! = 1400 nm) close to the FWM experiment, see. Fig. 3.6. Since the laser frequency is
larger the destructive interference is reduced leading to a spectrum providing only one
certain peak. Nevertheless, it is still possible to obtain some red shifted and blue shifted
components. At this point, it is noteworthy that the agreement between our theoretical
findings and the measurements can be further improved by considering shorter dephasing
times )2. However, in this work our goal is mainly to show the importance and influence
of several excitation pathways arise from the intraband acceleration especially for strongly
nonresonant excitation conditions.

Figure 3.6: Measurements of self-diffracted FWM on CdTe and GaAs samples at a temperature
of 10 K. The dotted lines show the transmitted pulses and represent the spectrum of
the respective excitation pulses, whereas the FWM signals (solid lines) show a distinct
spectral broadening. Taken from [126].

3.3 Conclusions

In this section, we identify intraband excitations as the primary source for the appearance of
new signatures in the FWM signal for off-resonant excitation conditions. These excitations
occur due to the acceleration of electrons induced by an electric field. We demonstrate
that these new signatures appear when strongly nonresonant pulses with below half the
interband transition frequency are applied.

A straightforward approach using a two-level model has already demonstrated the spectral
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broadening of FWM signals under nonresonant excitation conditions. However, when
considering the existence of different excitation pathways including an energy dispersion,
constructive or destructive interference can occur. This leads to the emergence of complex
signatures in the time and frequency domain of the FWM signal.

Our theoretical findings, based on numerical solutions of the SBE, are in good qualitative
agreement with experimental results. This approach can be easily extended, for example,
by considering a realistic band structure obtained from density functional theory or by
including excitonic effects.

Overall, this approach offers many possibilities to investigate the dynamics of optical
nonlinearities, even in higher orders than the present model. We can explore electronic
couplings and many-body effects using strongly nonresonant excitations.
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Collision dynamics in
solid-state high harmonic
generation 4

Over the past few decades, the most common method for generating attosecond lasers has
been atomic HHG [35, 131], as well as in molecules, e.g., $2, #2 [132], and �$2 [133]. The
relevant microscopic processes in such systems are well understood within a three-step
collision model [134]. This model involves a field induced tunneling process, which leads
to the liberation of an electron into the continuum. During the recombination process with
its parent ion, high-order harmonics are emitted, which generate photons in the attosecond
regime. These harmonics provide the possibility to investigate the ultrafast dynamics in
such systems [135–140].

Since the first observation in ZnO in 2011 [47], HHG has been heavily investigated in
many different solid-state systems [48, 81, 104, 141–149]. The theoretical treatment of
the recombination process has also been applied to solid-state systems, indicating it as
the main origin for interband HHG [47, 49, 51–53, 150–153]. In this case, the periodic
arrangement of atoms gives rise to collision and scattering processes with neighboring
atoms, leading to a much more complex behavior for the movement of the electron and its
left-behind hole.

Therefore, the aim of this chapter is to establish a unified real and momentum space
collision picture of HHG in solids, providing a direct mapping with the band structure of
the considered material. Our theoretical findings suggest that the anisotropy in solid-state
systems originates from backward/forward scattering processes between the particles with
neighboring atoms and can be found in [154]. We will start by introducing and deriving the
corresponding equations to describe the trajectories of electrons in solids using classical
methods.
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4 Collision dynamics in solid-state high harmonic generation

4.1 Semiclassical three-step recollision model in solids

Figure 4.1: Schematic of three-step recollision model for solids.

It is possible to derive the three-step recollision model, which is illustrated in Fig. 4.1, from
the general multi-band SBE. For our derivation we only consider one valence and one
conduction band. The intraband acceleration of electrons and holes within their respective
bands is described by the ∇k term. The ∇k term can be taken into account by defining a
time-dependent crystal momentum which fulfills Bloch’s acceleration theorem [3, 56]

k(C) = k0 −
4

ℏ

∫ C

−∞
E(C ′)3C ′︸          ︷︷          ︸
G(C )

. (4.1)

Consequently the SBE within a two-band model read

m

mC
? (k(C)) = − 8

ℏ
YE2 (k(C))? (k(C)) +

8

ℏ
(- (k(C)))∗ · E(C) (1 − 2=(k(C))) − ? (k(C))

)2
,

m

mC
=(k(C)) = − 8

ℏ
(- (k(C)))∗ · E(C)? (k(C)) + 2.2 .

(4.2)
Considering strongly nonresonant excitations within the low excitation regime no sig-
nificant occupation in the conduction band occurs =2 (=E ≈ 1 and =2 ≈ 0) justifying to
use the Keldysh-Lewenstein approximation [155, 156] to decouple the eqs. (4.2). A formal
integration of the polarization provide an insight of the HHG processes in solid-state
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systems:

? (k, C) = 4G?

(
− 8

ℏ

∫ C

−∞
3C ′

[
YE2 (k +G(C) − A’(C)) − 1

)2

] )
×
∫ C

−∞
3C ′

[
8

ℏ
-∗(k +G(C) − A’(C)) · E(C ′)4G?

((
8

ℏ

∫ C ′

−∞
3C ′′

[
YE2 (k +G(C) − A’(C)) + 1

)2

] ))]
Using +g = k +G(C) −G(g) we get

? (k, C) = 4−
8
ℏ

∫ C

−∞ YE2 (+g )3g
∫ C

−∞
3C ′

8

ℏ
-∗(+C ′) · E(C ′)4

8
ℏ

∫ C ′
−∞ YE2 (+g )3g− (C−C ′ )

)2 .

Introducing the classical action

( (k, C ′, C) = − 8

ℏ

∫ C

−∞
YE2 (+g )3g +

8

ℏ

∫ C ′

−∞
YE2 (+g )3g =

∫ C ′

C

YE2 (+g )3g,

the polarization can be rewritten as

? (k, C) =
∫ C

−∞
3C ′

8

ℏ
-∗(+C ′) · E(C ′)4

8
ℏ
( (k,C ′,C )− (C−C ′ )

)2 .

Similarly one can also derive an analytical relation for the occupation = within the Keldysh
approximation:

=(k, C) = − 1
ℏ2

∫ C

−∞
3C ′-∗(+C ′) · E(C ′)

∫ C ′

−∞
3C ′′-∗(+C ′′) · E(C ′′)4

8
ℏ
( (k,C ′′,C ′ )− C ′−C ′′

)2 + 2.2 .

The emitted signal in frequency domain during the recombination process from a pho-
toexcited semiconductor depends on the macroscopic interband �? and the intraband �=
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currents [157] and read within the present model

J? (l) = l

∫ ∞

−∞
3C4−8lC

∫
BZ

33k-∗(k)

×
∫ C

−∞
3C ′

8

ℏ
-∗(+C ′) · E(C ′)4

8
ℏ
( (k,C ′,C )− (C−C ′ )

)2 + 2.2 .,

J= (l) =
∑
<=E,2

− 1
ℏ

∫ ∞

−∞
3C4−8lC

∫
BZ

33k4v< (k)
∫ C

−∞
3C ′- (+C ′) · E(C ′)

×
∫ C ′

−∞
3C ′′-∗(+C ′′) · E(C ′′)4

8
ℏ
( (k,t”,t’)− (C ′−C ′′ )

)2 + 2.2, (4.3)

whereas the group velocity is defined by v< . Two oscillatory terms are occurring in eq.
(4.3) which depend on the electric field E(C) and on the band structure. Considering THz
excitation conditions the laser frequencies l! � l2E oscillate much slower. Using the so
called saddle point method it is possible to derive equations approximating the integrals
in (4.3) where the phase 8Φ = 8

ℏ
( (k, C ′, C) − 8lC − C−C ′

)2
is stationary [151, 157, 158]:

3Φ

3C ′
=

1
ℏ
YE2 (k −G(C ′) +G(C)) − 8

)2
= 0,

∇kΦ =

∫ C ′

C

∇kYE2 (k −G(g) +G(C))3g = 0,

3Φ

3C
=

1
ℏ
YE2 (k) − l + 8

)2
= 0. (4.4)

The derivative ∇kYE2 (k) = E2 − EE defines the difference of the group velocities of the
particles within their respective bands. A physical picture of electron-hole recollision can
be established based on saddle-point equations (4.4).

The first condition YE2 (k −G(C ′) +G(C)) = 0 describes the interband excitation due to a
strong electric field creating an electron-hole pair [158]. Within a two-band model the
following relation is provided:

YE2 ≥ Ygap + ℎ(k) with ℎ(k) ≥ 0

Since YE2 ≥ Ygap ≥ 0 the first condition can only be fulfilled for a ionization time C ′ which is
complex. Recently, analogous to the atomic case [4, 159, 160], the influence of the dynamics
of the tunneling process in solid-state HHG was revealed by considering an imaginary of
ionization time [161]. It is demonstrated that the properties of electrons at the tunneling
exit as a result of the motion in the classically forbidden region are crucial for predicting
the subsequent dynamics, especially the emission time [161]. However, here the dynamics
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of the tunneling process has been ignored by zeroing the band gap energy in the first
equation of (4.4) because we use the electron-hole recollision model proposed in [154]
which provides intuitive insights into the dynamics of solid-state HHG. While the saddle-
point approach given in Ref. [157] is less accurate in predicting subcycle dynamics, it
remains suitable for interpreting the anisotropy of high-harmonic generation (HHG) in
MgO [147]. Therefore, in the following analysis, we examine the orientation dependence
of HHG without resorting to complex solutions of equation (4.4), utilizing the saddle-point
approach as presented in Ref. [157].

The second condition ∇kΦ = Δx2 − ΔxE = 0 in (4.4) describes the re-encounter process of
an electron with its respective hole. The classical trajectory is obtained by the propagation
distance Δx_ =

∫ C

C ′
v_3g = x_ (C) − x_ (C ′) after creating an electron-hole pair.

The third condition in eq. (4.4) determines the photon energy during the recombination
between the electron with its corresponding hole. It depends on the bandgap energy at the
associated k position in momentum space. The maximum difference between conduction
and valence band energies determines the so called cutoff energy (highest harmonic energy).
In the following work we assume a creation of an electron-hole pair at the Γ point (k = 0)
to calculate the classical trajectories because they contribute strongly to the interband
emission.

The nonlinear HHG spectra in the presence of a strong optical attosecond pulse that are
presented and analyzed here for solid MgO are obtained by numerical solutions of the SBE
including interband transitions and intraband acceleration within a two-band model in
the time domain and by subsequent Fourier/wavelet transforms [81, 83, 151]. The classical
trajectories of electrons and holes are calculated by solving the saddle point equations in
the classical approximations [151, 152].

4.2 Orientation-dependent high harmonic generation

Our theoretical investigation starts with the crystal-orientation-dependent HHG observed
in MgO to unravel the sub-cycle collision dynamics. The considered solid-state system is
driven by an intense linearly-polarized optical attosecond pulse with a wavelength of 1.3
µm and a peak field amplitude of 12 V/nm. The temporal envelope of the electric field are
described by aGaussian function (2.20) with a full-width at half-maximum (FWHM) equal to
half the optical cycle)0. Consequently, we restrict our analysis of all excitations within one
laser cycle (see blue dashed line in Fig. 4.3). To control electrons in solids and monitor the
nonlinear response of bound electrons, similar laser pulses have been successfully employed
in a range of spectral regions including THz, mid-infrared, visible, and nearby wavelengths
[162–164].1 Consequently, it becomes possible to track the complete dynamics of electron-
hole collisions, thereby providing a means to test the existing collision models.

1A complete confinement of the energy to a half wave cycle is a property of an optical attosecond pulse
[163].
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4 Collision dynamics in solid-state high harmonic generation

In our theoretical treatment the angle Θ between the polarization direction of the incident
pulses and the bonding of Mg and O atoms of the material is defined as in [147]. Using the
density functional theory (DFT) software package from ELK [165] the energy dispersion of
the highest valence band and the first conduction band is obtained. Applying the twisted
parallel transport gauge on the calculated eigenfunctions smooth transition dipole matrix
elements in momentum space are obtained [166–168]. In the case of bulk MgO the dipole
matrix elements are purely imaginary quantities (the real parts are almost zero) which
imply the non-broken symmetry of lattice structure of MgO. The relative phases are either
zero or c leading to a non existing Berry phase which is also demonstrated in [168].

Figure 4.2: The experimental data (left half of the circle) are obtained from [147]. The calculated
HHG based on the numerical solutions of the SBE are also shown for MgO (right half
of the circle). Taken from [154].
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In Fig. 4.2 a comparison between an experiment [147] and our theoretical findings of
the HHG emission for MgO is shown. In this case the calculated interband polarization
based on full quantum simulations solving the SBE, see eq. (4.2). The results show clearly
a four-fold symmetry of the obtained HHG with both enhanced as well as diminished
emission depending on the polarization direction of the incident pulses. This kind of
anisotropy confirms the fact that the dynamics is probably connected within the subcycle
time scale.

In the following, we explicitly investigate the origin of high-harmonic generation (HHG)
observed in the plateau region. Firstly, we analyze the time-dependent interband current,
which constitutes the dominant contribution within the spectral region of interest for
HHG in MgO. We accomplish this by applying a wavelet transformation [169]. The time-
frequency analysis for Θ = 0◦, Θ = 27◦, and Θ = 45◦ is shown in Fig. 4.3(a)-(c), respectively.
Along the nearest-neighbor direction 〈100〉 (Mg-O) corresponding to Θ = 0◦ two emission
bursts occur. One of them is located at the high energy part around the maximum energy
gap (denoted by “1”) and the other one is located at lower energy part (denoted by “2”).
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4 Collision dynamics in solid-state high harmonic generation

Figure 4.3: In (a)-(c) the time-frequency analysis of interband HHG based on the numerical solu-
tions of SBE (4.2) is shown. In (d)-(f) we show the corresponding results based on the
semiclassical recollision model considering only electron trajectories excited around
the Γ-point. Moreover the solid lines denote the recombination of emitted harmonic
energy depending when the ionization occurs (dashed lines). The magnitudes are
shown on a logarithmic scale. In (b) and (e) the temporal envelope of the electric field
is shown displayed by the blue dashed lines. Taken from [154].

For Θ = 27◦, see Fig. 4.3(b), the emission burst “1”completely disappears. Along the nearest
neighbor direction 〈110〉 between two Mg atoms Θ = 45◦ (see Fig. 4.3(c)), the emission
burst “1” still remains visible but is much weaker than for Θ = 0◦. In contrast, the strength
of emission “2” does not change at all for these cases. These theoretical findings show
the dependence on the polarization angle and exhibit a good qualitative agreement with
the experimental data presented in Fig. 4.2 and discussed in [147, 170]. The experimental
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observations reveal that the high-energy portions of the harmonics are strongest along
Θ = 0◦, slightly weaker along Θ = 45◦, and significantly weaker around Θ = 27◦. In
contrast, the lower energy harmonics exhibit comparable intensities for Θ = 0◦ and
Θ = 45◦. In [147] the anisotropy of the interband HHG has been related to whether the
electron trajectory connects or avoid neighboring atomic sites. However, we demonstrate
that the re-encounter between the electron with its left-behind hole is crucial for an
enhanced or diminished HHG emission.

Using the same excitation conditions as in the full quantum simulations we analyze the
trajectories of electrons and holes obtained from the semiclassical re-collision model. In
Figs. 4.3(d)-(f) the emitted photon energy (solid lines) which correspond to the energy
difference of the electron-hole pair at the momentum where they re-encounter with each
other is shown. The re-encounter depends when the ionization (dashed lines) has happened.
Similarly, there are two possible electron-hole recombination trajectories obtained for
Θ = 0◦, see Fig. 4.3(d). The emission “1” is originated when the ionization starts before the
maximum field crest. The other emission burst corresponds to the case when the electron-
hole pair is created after the maximum peak of the electric field. The short trajectory
branch reproduces well the emission “2” from the full quantum calculation, see Fig. 4.3(a).
Due to )2 = )0/4 longer trajectories at larger times are not possible [152]. This agreement
between the quantum and classical simulations justifies the validity of the recombination
model of an electron with its associated hole and not with another one which is not related
[147, 171].

The Figs. 4.4-4.6 depict the propagation of the electron in real and momentum space at
three different time points after the creation of an electron-hole pair.
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Figure 4.4: The electron-hole pair is created at the Γ-point. The electron and its parent hole are
accelerated within a small region of the Brillouin zone. Due to a sign change of the
electric field the direction of carrier motion in momentum space is reversed. Taken
from [154].

Figure 4.5: When the electron and the hole passes the Γ-point their direction in real space is
immediately reversed. Taken from [154].
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Figure 4.6: The re-encounter between the electron and its corresponding hole occurs when they
meet each other in real space. Taken from [154].

Although several atomic sites appear no scattering processes occur for emission “1”. Both
the electron and its associated hole are driven back when the laser field changes its sign, see
Fig. 4.4. Due to this fact the electron and the hole passes the critical point at Γ providing a
reversal of the propagation direction in real space, see Fig. 4.5. Consequently, a re-encounter
between the two particles appears before the electric field changes its sign again (see. Fig.
4.6). This entire process describes exactly the case in atomic HHG. For the considered
excitation conditions one can indicate that the electron-hole pair is only propagating within
a small region around the Γ-point. This provides a small wave number of the electron
which is the main reason that scattering processes with neighboring atoms are absent [172].
The above described process is predominately responsible for the atomic-like behavior
of HHG in ZnO [49]. Here, we find that it also exists in solid MgO and explains the very
weak orientation dependence of the low energy part of HHG, see Figs. 4.3(a)-(c).

4.3 Collision-assisted electron-hole recombination

When the electron-hole pair is generated before the field maximum and the electric field
is strong enough such that the electron can be driven far away from the Γ-point, the
wave number of the electron may get large enough that scattering with other atomic sites
becomes relevant [172]. The possible scattering mechanisms are schematically shown in
Fig. 4.7.
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Figure 4.7: In (a) the usual recombination process known from atomic HHG is shown. It describes
a reversal of the propagation direction due to a sign change of the laser pulse. In
(b) backward scattering processes with other atoms due to a larger wave number is
shown. In (c) forward scattering processes for oblique angle are shown. The atoms
are displayed as blue spheres for oxygen and magenta spheres for magnesium atoms,
respectively. The different wave numbers are indicated with different colors increasing
from red to blue. Taken from [54].

The propagation of electrons and holes depends on the band structure which includes
the periodic potential and thus contains the information of electron/hole collisions with
neighboring atoms. For the considered energy dispersion some critical points where
∇kY2,E (k) = 0 (indicated by the black dots) and critical lines (indicated by grey/yellow
solid lines) where the gradient along only one direction vanishes, i.e, ∇:G Y2,E (k) = 0 or
∇:~Y2,E (k) = 0, exist, as shown in Fig. 4.8(a) for the lowest conduction band. We observe
that the collision and scattering information of electrons with other atomic sites can be
directly extracted from the dynamics in momentum space, particularly when the electrons
or holes traverse these critical points and lines.

36



4 Collision dynamics in solid-state high harmonic generation

Figure 4.8: Mapping between the real space trajectories and the movement of the electrons/holes
in momentum space. In (a) and (b) the considered valence band and conduction band
of MgO are shown, respectively. Here, the critical points are indicated as black dots
and the critical lines as yellow/grey solid lines. In (c)–(e) we consider the case when
ionization appears before the field crest at C = −0, 13)0 for Θ = 0◦, Θ = 27◦ and Θ = 45◦.
The related propagation distances are shown as deep pink (Θ = 0◦), green (Θ = 27◦),
and blue (Θ = 45◦) dashed arrow lines in (a) and (b). Taken from [154].

In Fig. 4.8(c) the time-dependent position of an electron-hole pair born at C0 = −0, 13)0 for
Θ = 0◦ is shown. Here, the direction reversal of the electron-hole pair occurs at C = 0, 08)0
whereas the sign change of the electric field occurs at C = 0, 25)0. The direction reversal
takes place when in momentum space the electron reaches the critical point “P1” at the
boundary of the Brillouin zone. Then it jumps to the point “P1” on the opposite side, see Fig.
4.8(a). Therefore, the Bragg scattering is responsible for the recombination of the electron
and its associated hole (indicated by the arrow denoted with “R” in Fig. 4.8(c)). We denote
this HHG emission mechanism as “collision-assisted electron-hole recombination”.

Unlike forΘ = 0◦ orientation, there are two critical points in the conduction band along the
Θ = 45◦ orientation which are denoted as “%2′” and “%3′” in Fig. 4.8(a). The electron-hole
pair is created before the maximum field crest of the electric field. Therefor, the electron
would experience several head-on collisions with the nearest (located at −0, 500 along
x direction) and second-nearest O atoms (located at −00 along x direction) before it re-
encounters with its associated hole, see Fig. 4.8(e). Each head-on collision in real space
corresponds to the passage of the electron through one of the critical points in momentum
space. This can be observed by referring to the blue dashed line in Fig. 4.8(a) and the
instances indicated by the blue arrows in Fig. 4.8(e). Due to multiple scatterings, the time
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delay between the ionization and recombination is larger than that for Θ = 0◦ orientation.
Moreover, the emission mainly occurs at the high energy part located between these two
critical points (describing the ionization and emission curves from “1” in Fig. 4.3(f)). Within
the classical simulation dephasing is not included, whereas rapid dephasing is present in
quantum simulation. Hence, very long returning trajectories of the classical calculations
do not contribute to HHG since the electron would be attenuated before re-encounter,
which explains the weaker HHG signal along Θ = 45◦ orientation than that along Θ = 0◦
in the quantum calculation, see Figs. 4.3(a) and 4.3(c). In the valence band, there are also
two critical points, as shown in Fig. 4.8(b). Therefore, multiple scattering events also occur
for the hole. The electron and its associated hole meet near the atomic site where they
were initially created, as depicted by the point “R” in Fig. 4.8(e).

4.4 Control of high harmonic generation by two-color
excitation

The connection of different ionization times with different recombination mechanisms
contributing to HHG greatly facilitates the all-optical control of the collision dynamics. In
Fig. 4.9 the time-frequency analysis of HHG driven by two-color electric fields with different
relative phases is shown. The two-color laser field consists of two parallel-polarized fields,
namely the fundamental field and its second harmonic field. The duration of the second
harmonic field is also equal to half the optical cycle )0 of the harmonic field. The relative
phase between these two components is defined as the carrier-envelope phase of the
second harmonic field. The two-color field used in the calculations presented in Fig. 4.9
can be expressed as follows:

� (C) = [�1 cos(l1C) + �2 cos(l2C + i)] 5 (C) (4.5)

Here, �1 and �2 are the electric field amplitudes and i is the relative phase of the two-color
fields. The single-color field corresponds to the case when �2 = 0 and was applied in Fig.
4.3(a). The envelope 5 (C) is describe by a Gaussian function (2.20) with a FWHM equal to
half the optical cycle. For the two-color field we use a rather weak amplitude �2 = 0, 25�1.
By choosing particular relative phases we can control the waveform of the electric field and
selectively enhance the field amplitude before or after the peak of single color field, see Figs.
4.9(c) and (d). Consequently, the two emission channels can be selectively enhanced, see
Figs. 4.9(a) and (b). Thus, one can clearly control whether or not the electron collides with
other atomic sites in the periodic potential within sub-cycle timescales which provides a
novel path for designing extreme ultrafast photoelectric devices.
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Figure 4.9: The time-energy distribution of HHG (a)-(b) and the corresponding driving electric
field (c)-(d) for two-color fields with i = 0, 5c and with i = −0, 5c that are polarized
in the Θ = 45◦ direction (dashed line). The waveform of the single-color field is also
shown by the solid line in (c) and (d) for comparison. Taken from [54].

4.5 Conclusions

In this chapter, we present a comprehensive approach to understand the interband HHG
in solid-state systems. The approach establishes a connection between the scattering
processes occurring in real space and the band structure of the system. Specifically, when
an electric field induces the creation of liberated electrons and they move within a small
fraction of the Brillouin zone near the Γ-point, no scattering with neighboring atoms occur.
In such cases, the behavior is similar to atomic HHG, where the direction of particles
changes when the electric field changes its sign, resulting in a weak anisotropy of the
interband HHG.

However, when the electron and its associated hole can reach larger k-points in momentum
space, their wavelengths correspond to the order of the lattice constant. This provides the
possibility of collisions with neighboring atoms of the considered crystal in real space.
The proposed approach establishes how these collision processes can be indicated in the
corresponding band structures. Head-on collisions occur on van-Hove singularities in
momentum space ∇k(Y2,E (k)) = 0, which are responsible for possible backward scattering
mechanisms that reverse the direction of the particles during their propagation. Conse-
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quently, the recombination between an electron with its associated hole is provided without
a sign change from the laser field. This mechanism is a new physical interpretation that
explains the difference between solid HHG and atomic HHG. Besides critical points, side
collisions occur when the particles move through critical lines where only the derivative
along one direction ∇:G Y (k) = 0 or ∇:~Y (k) = 0 is zero.

Overall, the presented theoretical model and the resulting findings provide a new insight
into HHG in solid-state systems, which have been previously investigated in experiments
and by other theoretical approaches [49, 147, 170, 173].
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High harmonic generation
with excitons 5

So far, we have focused on nonlinear processes without considering many-body interac-
tions. In this chapter, we solve the SBE within a one-dimensional (1D) two-band tight-
binding model. However, we extend the SBE by considering purely excitonic effects [54].
The Coulomb interaction will be treated in the TDHF approximation, as derived in chapter
2.2. By doing so, we demonstrate that the intensity of the higher harmonics originating
from the interband current can be significantly enhanced by a specific choice of excitation
pulses. Our theoretical results, presented in this chapter, were published in [54]. These the-
oretical findings highlights the importance of excitonic effects of HHG and their potential
for enhancing the efficiency of nonlinear optical processes in semiconductors.

5.1 Enhancement of HHG by excitonic resonances

The many-body Coulomb interaction including excitonic effects is treated in the TDHF
approximation. Considering eq. (2.12) the SBE in one dimension read [2, 85, 174]

3
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ℏ
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with the generalized Rabi frequency
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whereas the transition energy Y2E
:

considering a tight-binding model reads

Y2E
:

= ℏlgap +
Δ

2
(1 − cos(:0)) , (5.4)

with ℏlgap as the band gap energy. The total bandwidth of the energy dispersion is given
by Δ. In first-order : ·? theory the dipole matrix elements in momentum space read [85]

`: = `0
lgap

Y2E
:

. (5.5)

Here, our 1D model is applied to a quantum wire configuration with length scale ' which
defines the strength of the parabolic confinement. Thus, the Coulomb matrix elements +@
are given by [175]

+@ =
c

!

√
1

2|@ |'4
−|@ | 4

c
' . (5.6)

For the numerical solutions of (5.1) we consider Gaussian shaped electric fields

� (C) = �04
− 2;= (2)C2

g2 cos(l!C) with g = 10 2c
l!

as the pulse duration including 10 laser cycles
and l! as the laser frequency. We use material parameters which are close to GaAs [83,
85], i.e., ℏlgap = 1.43 eV, Δ = 1 eV, 0 = 0.565 nm, `0 = 0.3 nm, and the dephasing time
)2 = 50 fs.

In Fig. 5.1(a) we show the comparison of the linear absorption spectrum considering the
cases without Coulomb interaction and including excitons. Without the consideration
of excitonic effects an absorption peak firstly arises as expected around the band gap
energy at 1.43 eV. Due to the dephasing this van Hove peak is broadened. The linear
absorption ends (not shown here) with a second van Hove peak around 2.43 eV. In contrast
to free carriers, a strong 1s exciton absorption peak appears at approximately 1.15 eV when
including the Coulomb interaction. Moreover, more exciton transition peaks are obtained
below the band gap whereas the absorption above it is much reduced. The strength of
the Coulomb interaction is chosen in such a way that the resulting binding energy of the
1s exciton corresponds to 280 meV. Such a large binding energy energy exceeds clearly
what can be observed in GaAs-based bulk semiconductors. However, such energies are
realized in two-dimensional materials like transition metal dichalcogenides (TMDC). Only
recently the theoretical analysis of the Coulomb enhancement of HHG in such materials
has been provided [55]. The Coulomb enhancement of the HHG is shown in Fig. 5.1(b) and
(c). Firstly, we choose a central laser frequency of about 385 meV which corresponds to a
third of the 1s exciton resonance. In this case the third order harmonic is mainly enhanced
by several orders. Similarly, for l! = 165 meV a strong enhancement is determined for the
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Figure 5.1: In (a) the linear absorption spectrum without (dotted black) and with excitonic transi-
tion peaks (solid blue) is shown. The obtained binding energy from the 1s exciton is
about 280 meV. In (b)-(c) we show the Coulomb enhancement of HHG considering laser
frequencies corresponding to l! = 385 meV (b) and l! = 165 meV (c), respectively.
The maximal electric field strength is 1 MV/cm. Taken from [54].

seventh harmonic as can be seen in Fig. 5.1(c). In principle, we can summarize that the
enhancement of certain harmonics can be controlled by choosing the laser frequency of the
incident fields to an odd multi-photon energy corresponding to the 1s exciton resonance.
This kind of enhancement can be physically understood by taking into account that the
excitonic transition peaks provide more interband excitation pathways for HHG. These
kind of polarization couplings have been also investigated in [176] whereas additional
transitions between valence bands also lead to enhancements of HHG.

5.2 Conclusions

Over the past decade, there have been significant theoretical investigations into the in-
fluence of many-body Coulomb interactions. In these investigations, researchers have
primarily applied optical fields with high intensities, which provide Rabi frequencies that
exceed the binding energy of typical III-V semiconductors [78]. However, such semicon-
ductor nanostructures have only binding energies around a few meV, i.e., due to screening.
Furthermore, complete ionization of the exciton induced by such strong pulses has no
significant influence on the nonlinear response originating from Coulomb interactions.
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In contrast, TDMCs exhibit strong excitonic resonances with binding energies correspond-
ing to several hundreds of meV [55, 177, 178]. In this chapter, we have demonstrated
the importance of excitonic effects when the Rabi frequency is in the order or below the
binding energy of excitons by considering weak nonresonant laser pulses.

Within our 1D tight-binding model, we were able to provide a direct connection between
the excitonic resonances and the applied laser pulses. By selecting suitable laser frequencies
depending on the binding energy of the considered material system, precisely selected
harmonics can be enhanced.

These theoretical findings, presented in the reference [54], were likely the reason for further
theoretical investigations in this research area [55]. It is important to continue studying
the influence of many-body Coulomb interaction on the nonlinear response of various
material systems under different excitation conditions to advance our understanding of
this phenomenon.
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Coulomb correlations in the
excitonic nonlinear optical
response 6

The optical response of near-bandgap semiconductors is influenced by the interaction be-
tween light and the resonant or near-resonant material polarization. This interaction leads
to the excitation of carriers, such as electron-hole pairs, and the emergence of transient
coherent nonlinearities. To understand these effects at a microscopic level, it is necessary
to analyze the relevant quasiparticles and their interactions. In this chapter, we specifically
focus on the interactions between carriers, namely the many-body Coulomb correlations,
and how they influence the optical nonlinearities of semiconductor nanostructures. Many
experimental observations and comparisons with theoretical investigations on the nonlin-
ear response of excitons (X) in spatially-homogeneous type-I QW nanostructures have
been performed in the past [57, 58, 60–63, 73, 179–184]. As mentioned in chapter 2.2 a
hierarchy problem appears when deriving the equations of motion for the microscopic
polarization ? when the many-body Coulomb interaction is taken into account. Here, ?
indicates the single-exciton amplitude as shown schematically in Fig. 6.1.

Figure 6.1: Schematic of the interband coherence between holes and electrons induced by a laser
field.
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6 Analysis of many-body Coulomb correlations…

An exact theoretical treatment of this many-body problem is only achievable for very small
systems with only a few sites [185–187]. In our case it is necessary to derive an approximate
closed set of equations. One possibility is the TDHF approximation. Here, a factorization as
described in chapter 2.2 of all a four-point operators into products of two-point operators
is performed [2, 109] which provides a theoretical description of the interband coherences
and the populations. The TDHF approximation is already able to describe some many-body
features, i.e., finite FWM signals for negative delay times [16, 17, 73, 182, 183, 188] which
are absent if Pauli-Blocking is the only considered nonlinearity. Over time, due to better
experimental techniques the sample quality of semiconductor nanostructures has been
improved. At the same time, theoretical descriptions of many-body Coulomb correlation
effects on a microscopic level have also evolved. In ultrafast spectroscopy experiments
performed with certain polarization directions and for low intensities it was demonstrated
that higher-order correlations such as excitation-induced dephasing [58, 113, 189–191] and
the existence of bound biexciton resonances [33, 57, 63, 116–118, 192–203] have a major
impact on the nonlinear optical response.

In our theoretical approach we restrict the appearing higher-order correlation functions
up to a certain order in the optical field. Regarding FWM and PP experiments it is at
least necessary to analyze the nonlinear optical response up to the third order in the
electric field (j (3) ). In the coherent j (3) -limit it is possible to derive dynamic equations
for the single-exciton amplitude ? and the two-exciton amplitude � which fully describe
the interactions of the photoexcited electron-hole pairs [61, 62, 179]. Due to the fact that
numerical evaluations of considering many-body correlations are quite demanding we
use an one-dimensional (1D) model which in many cases provides qualitatively similar
results in the vicinity of the exciton resonance as two-dimensional models systems, e.g.,
QWs [57, 186]. As mentioned before our theoretical approach was widely used in the past
to describe spatially-direct type-I QW structures as shown in Fig. 6.2 (left). We extend
our theoretical treatment in order describe so-called charge transfer excitons (CTX). The
CTX may appear in spatially-indirect type-II QW structures which have been investigated
recently, see. Fig. 6.2 (right), experimentally [204–206].
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Figure 6.2: Comparison between a spatially-direct type-I QW and a spatially-indirect type-II QW
structure. The reference sample (left) consists of 50 individual (Ga,In)As quantum wells
surrounded by GaAs barriers. It provides a spatially direct transition (solid arrow)
within the (Ga,In)As quantum wells. The type-II heterostructure (right) consists of
50 consecutive quantum well units. These are composed from two different quantum
wells, which are spatially separated from each other by thin GaAs layers from each
other. Due to this fact and the attraction between spatially separated electrons and
holes a so-called CTX exist describing the lowest interband transition in such type-II
heterostructures. Taken from [206]

6.1 Experimental setup to study the excitonic nonlinear
response of type-I/II quantum wells

In the following the experimental setup of a PP experiment performed on spatially-direct
type-I and especially on spatially-indirect type-II QW structures is introduced. The exci-
tonic nonlinear response is measured for co-circularly and for counter-circularly polarized
excitation conditions.

The type-I QW structure which is shown in Fig. 6.2 (left) consists of multiple QWs with 50
separate Ga0.942In0.058As layers. Every single 7.7 nm thick quantum layer is surrounded by
GaAs barrier layers. During the epitaxial waxing and because of different lattice constants
of the individual materials epitaxial strain occurs. Consequently, energy shifts of the
valence and conduction bands induced by lattice mismatches exist. This influence on the
band structure of electrons and holes is directly reflected in effective masses [207] and
also affect the exciton binding energy [208]. The degeneracy of light holes (lh) and heavy
holes (hh) at the Γ-point is absent [209] providing two separate 1s lh- and hh-exciton
resonances, i.e., in the linear absorption spectrum. For our theoretical investigations we
only consider hh-excitons since the laser pulses are tuned to the hh-excitons or slightly
below in the experiments and the absorption at the lh-exciton resonance is reduced due to
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6 Analysis of many-body Coulomb correlations…

smaller oscillator strength. Furthermore, oppositely strained Ga(As,P)-barriers between the
quantum layers are used in order to reduce strain-induced defects in the QW structure.

The spatially-indirect type-II QW sample illustrated in Fig. 6.2 (right) is also based of 50
multiple thin QWs of 7.7 nm thick Ga0.942In0.058As and 7.5 nm GaAs0.93Sb0.07 layers. Be-
tween them a 1 nm wide GaAs interlayer is located providing spatial separation. Similarly
as for the type-I sample the multiple QWs are surrounded by GaAs and Ga(As,P) layers
in order to provide strain compensation [210]. The consequence of such a QW structure
is, that the maximum of the valence band and the minimum of the conduction band are
located on spatially separated QWs. Due to the attraction between the spatially separated
electrons and holes a CTX exists. So, the energetically lowest transition is spatially indirect.
A minimal overlap of the corresponding wave functions of the electrons corresponding
to (GaIn)As and the spatially separated holes from Ga(As,Sb) is still provided [211]. The
reason for this is, that the CTX is characterized by a spatially extended wave function that
spans both QWs. The comparison of the nonlinear response between the spatially-direct
type-I and spatially-indirect type-II excitons is the main subject of this chapter.

Figure 6.3: Experimental setup to study the pump-induced differential absorption change consid-
ering a PP setup. Taken from [212]

A regenerative amplifier system operating at a repetition rate of 5 kHz generates ultrashort
pulses with a duration of 50 fs centered around 800 nm. These pulses have a pulse energy of
1.6 mJ. Roughly 30 percent of the amplifier output is utilized to generate a broad spectrum
of light known as a white-light supercontinuum. This process occurs in a 6 mm thick
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sapphire crystal. The remaining 70 percent of the amplifier output is directed towards an
optical parametric amplifier (OPA).

The primary output of the OPA produces short pulses with a tunable central wavelength.
These pulses are then shaped by a pulse shaper, see. Fig. 6.3, resulting in a spectral FWHM
of approximately 2.71 meV and a duration of 2 ps. The excitation beam is focused onto the
sample, forming a spot size of 300 µm. The sample is cooled to liquid helium temperatures
using a cryostat with a cold-finger mechanism.

Within the white-light beam path, a wedge beamsplitter is employed to split the light into
two separate beams. One beam, focused to 200 µm, interacts with the sample to probe
any absorption changes induced by the excitation. The other beam serves as a reference
pulse. After passing through the sample, both the white-light supercontinuum and the
reference pulse undergo spectral analysis. This analysis is performed using an imaging
spectrometer equipped with a 600 lines/mm grating and a scientific complementary metal-
oxide semiconductor (sCMOS) camera.

The sCMOS camera consists of 2160 individual lines that can be read out independently or
combined into a region of interest (ROI). By directing the white-light pulse transmitted
through the sample and the reference pulse onto different regions of the camera, their
spectra can be simultaneously and independently captured. This enables a comparison
between the two pulses, leading to the calculation of a transfer function )5 . The transfer
function converts the spectrum of the reference pulse )A4 5 into the spectrum of the pulse
transmitted through the unexcited sample.

Through this setup, we can obtain both the transmission through the excited sample )%
and the transmission through the unexcited sample)0 simultaneously. In order to calculate
the differential absorption at each time step, we first measure the photoluminescence
background )?; and the scattered light background )16 in both paths at the beginning of
the measurement. Then, using the following equation, one experimentally obtains the
differential absorption ΔU!:

ΔU! = −;=
(
()P −)Pl)/()f()ref −)Bg))

)
(6.1)

Moreover, we use this approach to obtain the linear absorption of the sample. To achieve
this, we exclude the sample from the beam path and compute the transfer function that
converts the reference signal into the spectrum of the pulse transmitted through the
sample holder. Subsequently, we reintroduce the sample into the beam path, enabling
us to measure the transmission through the unexcited sample and determine its linear
absorption properties.

The OPOP experiment show clearly new signatures in the vicinity of the 1s exciton reso-
nance of spatially-indirect type-II QW structure in contrast to the well-investigated type-I
excitons. In Fig. 6.4 we see the differential absorption spectrum for an OPOP performed
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with co- and counter-circularly polarized laser fields on the type-II QW structure from Fig.
6.2.

Figure 6.4: Differential absorption signal (ΔU!) for a series of pump pulse intensities in co-circular
polarization geometry (left) and counter-circular polarization geometry (right). The
black line represents the linear absorption of the sample, and the orange shaded area
indicates the pump pulse, which is tuned energetically below the CTX resonance.
At the CTX resonance at 1.452 eV, both polarization configurations exhibit a blue
shift. Conversely, for the regular exciton of the (Ga,In)As QWs (1.467 eV), co-circular
polarization demonstrates a blue shift, while counter-circular polarization displays
a red shift. These measurements were performed in the group of Sangam Chatterjee
(University of Giessen).

For co- and counter-circular excitation conditions and pumping below the CTX resonance,
the characteristic optical Stark effects are observed. Specifically, a blue shift (on the left
in Fig. 6.4) and red shift (on the right in Fig. 6.4) in the differential absorption near the X
resonance at 1.467 eV is observed [57]. A closer look at the CTX resonance at about 1.452
eV of the type-II heterostructure yields a somewhat different picture. In contrast to the
type-I 1s exciton appearing at 1.467 eV the CTX shows mainly a blue shift signature for
co-circular polarization and a much weaker signature for counter-circular polarization
corresponding to an unexpected blue shift instead of a red shift such as at the X resonance.
In order to understand the origin of the blue shift at the CTX for counter-circular excitation
condition, we introduce in the following our theoretical approach to describe the excitonic
nonlinear response including many-body Coulomb correlations.

6.2 Theoretical model and approach

In the following we introduce the coherent j (3) -limit to derive a closed set of equations
describing the appearing electron-hole pair coherences and biexciton many-body corre-
lations. Thereupon, we present the 1D tight-binding model. In our numerical evaluation
we firstly start by showing a comparison between type-I QW excitons and type-II QW
excitons. The major differences in their nonlinear response by analyzing the differential

50



6 Analysis of many-body Coulomb correlations…

absorption spectrum within a pump probe configuration is demonstrated. Moreover, we
also compare our theoretical findings with the measurements presented in Fig. 6.4 which
have been performed on the type-II QW structure, see Fig. 6.2 (right).

6.2.1 The SBE in the coherent j (3)-limit

Similarly as in chapter 2.1 we start with the following Hamiltonian describing the nonlinear
dynamics in photoexcited semiconductors [2, 56]:

�̂ = �̂0 + �̂!−" + �̂� (6.2)

Here, the single-particle energies are included via �̂0. In second quantization working in
the electron-hole picture the single particle Hamiltonian in real space reads [56]

�̂0 =
∑
8 92

) 2
8 9 2̂

2†
8
2̂29 +

∑
8 92

) E
8 93̂

E†
8
3̂E9 . (6.3)

The creation of an electron (hole) at site 8 in band c (v) is given by 2̂
2†
8

(3̂E†
8
). And 2̂28 (3̂E8 )

destroys an electron (hole) at site 8 in band 2 (E). The electronic coupling is used in the
nearest-neighbor approximation which is included in the matrices) 2,E

8, 9
. The diagonal terms

of the matrices T contain the electronic site energies and the couplings between the sites
are given by the off-diagonal matrix elements. The Hamiltonian describing the light-matter
interaction is described by [56]

�̂!−" = −E(C) · P̂,

with P̂ =
∑
8 9E2

(
-E2
8 9 3̂

E
8 2̂

2
9 +

(
-E2
8 9

)∗
2̂
2†
9
3̂
E†
8

)
. (6.4)

The polarization direction plays a crucial role when analyzing PP or FWM signals. There-
fore, it is necessary to consider the vector character of the dipole matrix element -, the
electric field E, and the total optical polarization P which is defined by the summation of
all microscopic polarization -E2

8 9 3̂
E
8 2̂

2
9 . The Hamiltonian describing the many-body Coulomb

interaction reads [56]

�̂� =
1
2

∑
8 9

∑
aa ′

(
2̂
a†
8
2̂a8 − 3̂

a†
8
3̂a8

)
+ aa ′
8 9

(
2̂
a ′†
9
2̂a

′
9 − 3̂

a ′†
9

3̂a
′

9

)
. (6.5)
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Here, the superscripts a and a ′ label the relevant valence and conduction bands. The
many-body Coulomb interactions are approximated by a monopole-monopole interaction
[213]. �� includes the repulsion between electrons and between holes, respectively, as
well as the attraction between electrons and holes, which gives rise to the formation of
bound electron-hole complexes, for instance excitons and biexcitons.

The equation of motion for the single exciton amplitude containing all contributions of
�̂ = �̂0 + �̂;< + �̂� is described by 3

3C
?
E122
12 = 8

ℏ
〈[�̂, 3̂

E1
1 2̂

22
2 ]〉1 and reads [56, 60, 62]

−8ℏ 3
3C

?
E122
12 = −

∑
92

) 2
29?

E12
19 −

∑
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) E
81?

E22
82 ++ E122

12 ?
E122
12

+ E(C) ·
[ (
-E122
12
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-E12
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)∗
=
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-E22
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EE1
81
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+
∑
0E0
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E0†
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E0
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E0†
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020
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0 〉. (6.6)

In eq. (6.6) we introduced the electron and hole coherences as =22′
9 9 ′ = 〈2̂2†

9
2̂2

′
9 ′〉 and =EE

′
88′ =

〈3̂E†
8
3̂E

′
8′ 〉. Moreover, the first step of the hierarchy problem due to four-point operators

appearing in eq. (6.6) arises. Since we consider only weak excitation a perturbative analysis
with respect to electric fields can be performed. Furthermore, no interactions with other
quasiparticles are included. Under these considerations the coherent j (3) -limit can be con-
sidered. In this sense, the intraband coherences can be described only via the polarization
? [60–62]

=
2122
12 =

∑
0E0

?
E022
02

(
?
E021
01

)∗ and =E1E212 =
∑
020

(
?
E120
10

)∗
?
E220
20 . (6.7)

The factorization in eq. (6.7) results from the dynamics-controlled truncation (DCT). This
approach can also be applied to the four-point operators appearing in eq. (6.6) which leads
to [60–62]

〈3̂E0†0 3̂
E1
1 3̂

E0
0 2̂

22
2 〉 =

∑
121

〈3̂E11 2̂
21
1
3̂E00 2̂

22
2 〉〈2̂

21†
1

3̂E0†0 〉 (6.8)

Only two physical quantities, ? = 〈32〉 and � = 〈3232〉, remain to describe the optical
response in the coherent j (3) -limit. They are schematically illustrated in Fig. 6.5.

1Here, the site indices are denoted by 1 and 2, while E1 and 22 describe the respective bands.
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Figure 6.5: Schematical drawing of the main quantities ? = 〈32〉 and � = 〈3232〉 appearing in the
coherent j (3) -limit.

The single-exciton amplitude ?E12212 describes one electron-hole pair coherences, whereas
the two-exciton coherence is expressed by �

E12E22
1324 = 〈3̂E11 2̂233̂E22̂

22
4 〉. Furthermore, we define

the following:

�
E12E22
1324 = �

E12E22
1324 + ?

E122
14 ?E223 − ?

E12
13 ?

E22
24 (6.9)

Using the definition (6.9), it becomes possible to analyze pure correlation effects that go
beyond the scope of the TDHF approximation [214]. Overall, we obtain a closed set of
equations describing the dynamics of the coherence between the ground and the single-
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exciton state ?E212 or a two-exciton state �
E′2′E2
1012 [56, 60, 62]:
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]
(6.10)

The time derivative of the single-exciton amplitude (6.10) contains the on site energies,
electronic couplings, and the electron-hole attraction+ E2

12 within the first line. Furthermore,
three nonlinearities including the linear absorption are provided. The PB term (E(C) ·-?∗?)
is also known from the OBE [2, 127, 215]. The linear source term is given by E(C) ·-. Due to
the Coulomb interaction two inhomogeneities known as the first order Coulomb interaction
��1BC ∝ ?∗?? and the correlation term ��2>AA ∝ +?∗� [63, 181] exist. The latter describes
the contribution originating from two-exciton coherences. So, it is possible to analyze the
contributions that arise from the three nonlinear inhomogeneities separately. Without the
correlation term, these equations are equivalent considering the TDHF approximation.
The equation of motion for the two-exciton coherence �

E′2′E2
1012 reads [56, 60, 62]
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Again, the first line of eq. (6.11) contains the electronic energies and couplings. Furthermore,
four attraction and two repulsion interaction terms between the two electrons and holes
exist. The two-exciton amplitude �

E′2′E2
1012 includes exciton to bound biexciton as well as

to unbound continuum states transitions. The nonlinearities that are contained in �
E′2′E2
1012

are contributions which depend on the many-body interaction (+??). Similarly as in
momentum space (see eq. (2.18)) the nonlinear response is fully described by eqs. (6.10)-
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(6.11) and is given by the total polarization P:

P =
∑
8 9E2

-E2
8 9 ?

E2
8 9 (6.12)

6.2.2 One-dimensional tight-binding model

Due to the fact that the numerical evaluation considering higher-order Coulomb correlation
terms is quite demanding, the theoretical findings in the following are obtained by an
1D model. Such a model is still able to provide results which are in good agreement with
several experimental observations in QW systems[57–59, 63]. The electronic coupling is
used in the tight-binding approximation and is included via the matrices ) E,2

8 9
. The site on

energies of electrons and holes are given by the diagonal terms in the matrices ) E,2
88

= Y
E,2
8

.
The electron couplings in the nearest neighbor approximation ) E,2

8 9
= �E,2 with |i-j|=1 are

described by the off-diagonal matrix elements of ) . Furthermore, we consider periodic
boundary conditions in such a way that site # +8 is equivalent to 8 . This provides a coupling
�E,2 between the now nearest neighbors # and 1 because site # + 1 is identical to site 1.
Neglecting any kind of disorder effects, the energy of a band does not depend on the sites.
Thus, we can shift them in such a way that the 1s hh-exciton resonance appears at zero
energy. The Coulomb matrix elements are given by following equation

+ aa ′
8 9 = *0

3

3 |8 − 9 | + 0aa
′

0
, (6.13)

where the strength of interaction is given by *0. For + aa ′
8 9

∝ −|8 − 9 |−1 the attractive
electron-hole Coulomb interaction leads in one dimension to a diverging ground-state
energy. We add a regularization parameter 0aa ′0 in the denominator which is on the order
of the effective site distance constant 3 [56]. Here, we have slightly extended the 1D
model to describe spatially-indirect QW systems. The Coulomb matrix elements + aa ′

8 9
that

describe the attraction between an electron and a hole located in the same QW (both in
(Ga,In)As) are larger than when the hole is located in the spatially separated QW (electron
in (Ga,In)As and hole in Ga(As,Sb)). This is schematically shown in Fig. 6.6. To describe
this accordingly, we can adjust the spatial variation 3

0aa
′

0
of the electron-hole attraction.

For homogeneous spatially-direct QW structures, it is not necessary to consider that the
regularization parameter 0aa ′0 depends on the band indices because the attraction and
repulsion between the particles are similar. The differential absorption spectrum XU (l) is
determined by the differential polarization XP and can be calculated by using eq. (2.24).
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Figure 6.6: Here, we present an overview of our description of the type-II heterostructure. Above
the type-II QW structure is shown (taken from [206]). Additionally, we provide an
illustration of the 1D tight-binding model that describes this system. The model focuses
on the hh valence bands of two QWs, specifically (GaIn)As and Ga(As,Sb). In the 1D
model, the single-exciton amplitude is given by ?8 9 , the Coulomb interaction between
particles at sites 8 and 9 within the same QW is denoted by a solid blue line. The
Coulomb interaction between QWs that are spatially separated is depicted in red. The
direction of the sites within the 1D model reflects the in-plane orientation (~) of the
QWs.

The dipole matrix elements are given by `E28 9 with the band indices E and 2 . For type-I QW
systems we consider two valence (E1,2) (heavy-hole) and conduction bands (21,2) which
are described by the degenerate states |±3/2hh〉 and |±1/2e〉, respectively. The optical
transitions are described by the well-known selection rules for zinc blende materials and
describe circularly-polarized transitions. For the case of type-II QW structures we include
two additional valence bands (E3,4) which represent the spatially-separated states in the
other QW of the type-II system with the same dipole selection rules as shown in Fig. 6.7.
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Figure 6.7: Illustration of the optical interband transitions considering a type-II QW system. The
selection rules correpond to zinc blende materials, i.e., GaAs based semiconductor
nanostructures.

The dipole matrix elements within the one-dimensional model read
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Here, `Type−I,Type−II denotes the strength of the interband transition. We always consider
the case `Type−I ≥ `Type−II. Due to the tight-binding description optical excitations are
only possible at same sites of electron-hole complexes. In this thesis, we always consider
as many sites as it requires to obtain converged results for the signatures of the excitonic
optical response. We use phenomenological dephasing times 1

W?
and W

�
= 2W? .

Since we only take hh excitations into account, the linear response is fully described
by ?11 and ?22 for spatially-direct type-I QWs. Additionally, the coherences ?31 and ?42

contribute if a spatially-indirect QW structure is considered. Two-exciton coherences only
appear in second order in respect to the electric fields. Here, either bound or unbound
two-exciton states can be induced by a proper choice of the polarization direction of the
incident laser fields. For co-circular excitation conditions (f+f+) only unbound continuum
states are excited. Bound biexcitons will contribute for instance in the case of counter-
circularly polarized laser fields (f+f−) within a PP setup. Due to the antisymmmetry of
the two-exciton amplitude �

E′2′E2
1012 it is sufficient to calculate only �

1122
1012 since we can use

�
2211
1012 = −�1122

1210 . Similarly, it is possible to excite a so called charge transfer biexciton (CTB)
if a type-II QW structure is described. Because of the selection rules, the total nonlinear
response in third order within the coherent j (3) -limit only depends on ?11 (X), ?22 (X),
?31(CTX) and ?42(CTX).
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6.2.3 Numerical results for type-I and type-II excitons
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Figure 6.8: The model parameters are presented in Table A.1 (HH-I). The spatially-direct exciton
(X) is excited resonantly considering a time delay g = 2 ps. In (a) and (c) we show the
total pump-induced differential absorption XU (l) for co-circular (f+f+) as well as for
counter-circular (f+f−) excitation conditions, respectively. The different nonlinearities
XUPB, XUCI1st , and XUCIcorr which contribute to the signals in (a) and (c) are demonstrated
in (b) and (d), respectively. Taken from [216]

Firstly, we show the excitonic nonlinear response for a spatially-homogeneous type-I QW
structure. In Fig. 6.8(a) the pump-induced differential absorption XU (l) for co-circularly
polarized pump and probe pulses is shown. The optical-pump pulse is tuned to the X
resonance. The response in the vicinity of the direct X mainly corresponds to pump-
induced bleaching. Fig. 6.8(b) displays the individual contributions originating from Pauli
blocking (PB), first-order Coulomb interaction (��1st), and higher-order correlation effects
(��corr).

Comparing to the Coulomb-induced contributions, PB is relatively weak and exhibits pure
bleaching at the exciton resonance. The ��1st contribution is larger and shows a dispersive
lineshape, corresponding to a blue shift, which is the dominant feature within the TDHF
approximation. On the other hand, the ��corr contribution provides a red shift. As a result,
there are strong cancellations between the two Coulomb contributions. Additionally,
the ��corr term exhibits weak induced absorption peaks above the exciton that describe
transitions from the exciton to unbound two-exciton resonances.

When counter-circularly polarized excitation conditions are applied to type-I QW systems,
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the only contribution to the differential absorption spectrum originates from ��corr. The
reason for this is that PB does not couple the two spin subspaces due to the selection rules.
In contrast, the ��1st contribution can play a role under specific conditions that depend on
the system itself. Upon closer examination of the ��1st contribution reveals that the term
∝ ?E

′2′∗
10

?E
′2′

10
?E212 leads to a coupling between the coherences of the spin subspaces. But this

contribution is only finite for spatially-inhomogeneous systems. This is not the case for a
spatially-direct type-I QW structure. When we only consider the individual coherences for
f+f− excitation conditions, the corresponding microscopic polarization that determines
the excitonic nonlinear response reads

mC?
E2
12 ∝

∑
01E′2′

(
+ 2′2
02 −+ 2′E

01 −+ E′2
12 ++ E′E

11

)
(?E′2′

10
)∗

(
?E

′2′

10
?E212

)
. (6.16)

For homogeneous systems the entire term in eq. (6.16) vanishes. This can be easily un-
derstood by the fact that the relation ?E2

10
= ?E2

01
is fulfilled in a homogeneous system. The

product between the coherences in eq. (6.16) is a symmetric function 6(0,1) = 6(1, 0) =
(?E′2′

10
)∗?E′2′

10
?E212 = (?E′2′

01
)∗?E′2′

01
?E212 with respect to interchanging a and b. However, the pref-

actor 5 (0,1) =
(
+ 2′2
02 −+ 2′E

01 −+ E′2
12 ++ E′E

11

)
changes its sign when 0 and 1 are interchanged.

Consequently, the sum over the sites 0 and 1 appearing in eq. (6.16) vanishes and a ��1st
contribution does not exist in a homogeneous system. This is demonstrated in Fig. 6.8(d).

Besides the induced absorption peaks above the exciton resonance the higher-order
Coulomb interaction term ��corr also shows induced absorption due to a bound biex-
citon (BX) below the X which is clearly seen in Fig. 6.8(c). The corresponding binding
energy corresponds to an energy of about 2.6 meV.
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Figure 6.9: The model parameters are presented in Table A.1 (HH-II). The spatially-indirect CTX
is excited resonantly considering a time delay g = 2 ps. In (a) and (c) we show the
total pump-induced differential absorption XU (l) for co-circular (f+f+) as well as for
counter-circular (f+f−) excitation conditions, respectively. The different nonlinearities
XUPB, XUCI1st , and XUCIcorr which contribute to the signals in (a) and (c) are demonstrated
in (b) and (d), respectively. Taken from [216]

For a direct comparison with a spatially-indirect QW structure we show in Fig. 6.9 the
nonlinear response when a CTX is excited under same conditions. The CTX has a lower
binding energy due to a weaker attraction between electrons and holes located at spatially
separated QWs. This results in a reduced binding energy which is about 2 meV smaller than
that of the direct exciton in the homogeneous system. When comparing the Figs. 6.9(a)
and 6.8(a) for co-circular polarized excitation conditions with each other, the signatures
appearing in the vicinity of the direct X and the CTX originating from the nonlinearities
are mainly the same leading in both cases to a similar behavior of the total differential
absorption spectrum XU (l).

However, the pump-induced differential absorption shows some differences when we look
more closely to the case of counter-circularly polarized laser pulses. In contrast to the
spatially-direct type-I QW structure the appearance of the induced absorption due to a
bound charge transfer biexciton (CTB) below the CTX is much closer to the CTX resonance.
This significant reduction of the binding energy to about 1.9 meV depends sensitively on
the Coulomb interactions occurring between the particles in the same QW (we denote
them as interwell Coulomb interaction) or located in spatially separated QWs (we denote
them as intrawell Coulomb interaction) as is the case for spatially-indirect type-II QW
structures. Regarding the two-exciton coherences, see. eq. (6.11), two intrawell Coulomb
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interactions (repulsion between two holes and two electrons, respectively) arise which are
stronger than the four interwell interactions between electrons and holes (attraction) at
spatially separated QWs and are the main reason for the reduced binding energy.

Regarding the nonlinearities which contribute to the total differential absorption spectrum
we see in Fig. 6.9(d) a strong contribution arises from the ��1st term which is absent in
homogeneous systems and is provided in inhomogeneous systems (for instance disordered
systems [32, 217]). In disordered systems, the interband coherence does not only depend
on the relative spatial coordinate anymore because the band gap energy at different sites is
not equal. In type-II QW structures, however, the interband coherence still only depend on
the relative spatial coordinate. Instead, the inhomogeneity arises due to different Coulomb
interactions. We have to distinguish between interwell and intrawell Coulomb interactions.
Similarly as in the case of the type-I QW structure we can indicate the origin of ��1BC by
considering the main contribution of the corresponding coherence by looking closely to
the��1BC term. Here, the corresponding hole and electron correspond to spatially separated
QWs with E = 4 and 2 = 2, respectively. Due to the fact that the repulsion and attraction
between the considered particles is not the same, the prefactor 5 (0,1) does not change its
sign anymore by swapping its arguments 0 and 1 leading to a finite ��1st contribution. In
total, we still obtain a pump-induced bleaching signature in the vicinity of the CTX due to
the cancellation with the ��corr term, see Fig. 6.9(c).

Concerning the OPOP experiment introduced in chapter 6.1 we can also analyze the
general behavior of the excitonic nonlinear response when we excite below the CTX
resonance considering different optical detunings Δ. Since there is a finite first order
Coulomb interaction for counter-circularly polarized laser pulses, we can also analyze the
pump induced absorption change in dependence on the spatial inhomogeneity at the same
time.
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Figure 6.10: The model parameters are presented in Table A.1 (HH-III and HH-IV providing the
two different binding energies of �)-18= = 6.7 meV and �)-18= = 6.1 meV, respec-
tively). The spatially-indirect charge transfer exciton (CTX) is excited off-resonantly
considering zero time delay and different optical detunings Δ. In (a) and (c) we show
the total pump-induced differential absorption XU (l) for counter-circular (f+f−)
excitation conditions considering two different binding energies of the CTX corre-
sponding to �)-18= = 6.7 meV and �)-18= = 6.1 meV, respectively. In both cases the
binding energy of the X remains the same-18= = 7 meV (intrawell interaction remains
the same). The different nonlinearities XUPB, XUCI1st , and XUCIcorr which contribute to
the signals from (a) and (c) for an optical detuning Δ = −8 meV are displayed in (b)
and (d), respectively.

Firstly, we see in all the cases in Fig. 6.10(a) that a red shift is originating from the ��corr
term which is dominating, see Fig. 6.10(b). The spatial inhomogeneity is weak in this case.
If the attraction between electron and holes (interwell Coulomb interaction) located at
different sites is further decreased, we can obtain unexpected signatures at the CTX. An
optical detuning Δ = −8 meV leads to a blue shift originating from ��1BC . Applying an
optical detuning of Δ = −4 meV, we mostly obtain a bleaching signature, although we
still excite below the CTX resonance. This arise due to cancellation of the ��1BC and the
Coulomb correlation ��2>AA contribution. This is an unexpected result which so far not
have been investigated and observed. For even smaller detuning resonant contributions as
the excitation of a bound CTB is provided and is slightly visible. If the intrawell interaction
is much stronger than the interwell interaction a blue shift is mostly provided because
the ��1BC term is dominating. This kind of behavior for nonresonant excitations becomes
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important if we investigate the optical Stark shifts which are measured and shown in
chapter 6.1.

6.3 Comparison with optical-pump optical-probe experiment

Here, we theoretically investigate OPOP experiments considering our theoretical model
presented in section 6.2.2. Likewise to an ensemble of quantum dots a QW structure exhibit
inhomogeneous broadening due to variations in their thickness and alloy composition
across the well structure. These variations result in a distribution of energy levels within
the ensemble of quantum wells that is related to a distribution function 6(�̃) that indicate
the respective weight of the corresponding transition frequency �̃. The inhomogeneous
broadening typically dominates over the homogeneous linewidth. This is also the case for
the considered QW structures illustrated in Fig. 6.2. In the case of spatially-indirect type-II
QW structures, the direct X and the CTX are broadened to different extents. In order to
consider this, we apply correlated inhomogeneous broadening of the two valence bands
for the type-II QW system in our 1D tight-binding model. Therefore, we solve the single
exciton amplitude ?E212 and the two-exciton coherence �E′2′E2

1012 for many different transition
frequencies �̃. This is shown schematically below by considering only the tight-binding
part of eqs. (6.10) and (6.11).
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In our theoretical model we consider overall four valence bands where E = 1, 2 indicate
the QW (Ga,In)As and E = 3, 4 correspond to �0(�B, (1), see Fig. 6.2. The energy shift
�E
O�set depends on the considered valence band providing the possibility to apply different

inhomogeneous broadenings for the direct X and the CTX, i.e., �3,4O�set = U�
1,2
O�set. A positive

value U>0 describes the case of correlated inhomogeneous broadening and provide a larger
broadened linewidth for the CTX resonance which is the case in the considered type-II
QW structure. The inhomogeneous macroscopic polarization is defined by the following
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relation considering the distribution function 6(�̃) of different transition frequencies.

P =
∑
8 9E2

∫
3�̃-E2

8 9 ?
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8 9 (�̃)6(�̃) with 6(�̃) =
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f
√
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4
−
(

�̃√
2f

)2
(6.19)

The width of the inhomogeneous broadening is determined by f . From the experimental
measurements it is known that the inhomogeneous broadening of the direct X is about
1.5 meV whereas for the type-II exciton resonance it is of about 3 meV. Therefore, we use
U = 1.6 which provides a qualitative good agreement between experiment and theory
especially for pump-induced differential absorption spectra shown in Fig. 6.12 and Fig.
6.13. The chosen parameters to reproduce the experimental results can be found in the
appendix A.2. Firstly, we compare the linear absorption spectrum between experiment and
theory which is shown in Fig. 6.11. Therefore, it is only necessary to solve eq. (6.10) in first
order. We always consider a probe pulse with a pulse duration of 10 fs. For the comparison,
we shift the 1s type-I exciton resonance to zero on the energy scale. The site energies of
the valence bands E = 3, 4 are adjusted in such way that the energetic position corresponds
to the one measured in the experiment. The Coulomb interaction between particles from
the same QW is stronger than between spatially separated particles leading to a larger
exciton binding energy for the X (-18= = 7meV) than for the CTX (�)-18= = 4.6meV). Such
binding energies were also observed in measurements for these kind of QW structures.
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Figure 6.11: Linear absorption spectrum measured for the spatially-indirect type-II QW structure
shown in Fig. 6.2 and theoretically calculated by solving the eq. (6.10) in first order.
The model parameters are presented in Table A.1 (HH-V).
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Besides the absence of the CTX resonance the linear absorption spectrum for the spatially-
direct type-I QW structure (not shown here) would look in principle similar to the case
of the type-II heterostructure. The behavior of the nonlinear response of spatially-direct
excitons can thus be investigated directly by considering type-II QW systems only. The
main difference between spatially-direct excitons for type-II QW structure is the much
more rapid dephasing [218]. In Figs. 6.12 and 6.13 a comparison between experimental
and theoretical results of the pump-induced differential absorption change is shown. The
measurements were performed with co-circularly and counter-circularly polarized laser
fields, while pumping 5 meV (18 meV) below the CTX (X) in a type-II heterostructure.
Using the approach mentioned above to include inhomogeneous broadening (U = 1.6 and
the FWHM of the 6(�̃) corresponds to 1.5 meV) the theoretical spectra qualitatively fit
well the measurements.
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Figure 6.12: Measured and numerically calculated pump-induced differential absorption change
XU for off-resonant excitation 5 meV below the spatially-indirect 1s heavy-hole CTX
for co-circular excitation conditions. The model parameters are presented in Table
A.1 (HH-V). The measurements were performed in the group of Sangam Chatterjee
(University of Giessen).

The comparison between the measurement and theoretical result shows a good agreement.
The obtained pump induced absorption change shows the expected optical Stark shifts on
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the X resonance corresponding to a blue shift. Even the signatures appearing at the CTX
shows a good agreement and thus can describe the new signatures observed at the CTX.
For co-circularly polarized pulses the measured differential absorption appearing at the
CTX show a slightly asymmetric blue shift. It corresponds a little more to pump-induced
bleaching. Besides this fact the excitonic nonlinear response at the CTX is quite similar to
the that of X. More significant differences occur for the case of counter-circular polarization
conditions.
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Figure 6.13: Measured and numerically calculated pump-induced differential absorption change XU
for off-resonant excitation 5 meV below the spatially-indirect 1s heavy-hole CTX for
counter-circular excitation conditions. The model parameters are presented in Table
A.1 (HH-V). The measurements were performed in the group of Sangam Chatterjee
(University of Giessen).

For counter-circularly excitation conditions, a red shift due to the presence of bound
biexcitons occurs at the X. However, due to the first order Coulomb interaction, which
is absent in type-I heterostructures, as mentioned and demonstrated in chapter 6.1.3, a
blue shift is obtained at the CTX originating from ��1BC describing qualitatively well the
unexpected signature at the CTX from the OPOP experiment.

In addition, our theoretical framework goes beyond the analysis of spectral characteristics
and encompasses dynamic predictions within the coherent j (3) -limit. Fig. 6.14 compares
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the temporal behavior of observed optical Stark shifts between experiment and theory.
Interestingly, our theory not only precisely captures the spectral properties when the
pump and probe pulses perfectly overlap in time but also accurately describes the temporal
evolution of the optical Stark shifts. Specifically, for pulses with co-circular polarization, see.
Figs. 6.14(a) and (b), there is a good agreement between the experimental and theoretical
dynamics of the optical Stark shift for both charge transfer excitons and direct excitons.
Similarly, for pulses with counter-circular polarization, see. Fig. 6.14(c) and (d), we obtain
a good agreement, especially in the dynamics of the CTX. However, in the case of direct
excitons, this polarization configuration exhibits a delayed appearance of the red shift in
the experimental results compared to the blue shift observed in the CTX resonance. It
is important to note that this delayed occurrence of the red shift is not reflected in our
theoretical predictions. When operating within the coherent j (3) -limit in a PP setup, the
excitonic nonlinear response at large delay times (g) between the pump and probe pulses
can not accordingly described. In particular, when investigating pump-induced differential
absorption changes, positive delay times correspond to the probe pulse arriving after the
pump pulse has already excited the system. At these positive delay times, the optical
response is primarily governed by the excited states and population dynamics induced
by the pump pulse. However, in the coherent j (3) -limit, the description of pump-induced
differential absorption changes becomes inadequate because the nonlinear response relies
on the phase relationship between the pump and probe pulses. As the delay between the
pulses increases, the coherence between the pump-induced excited states and the probe
pulse diminishes. Consequently, the interaction between the pump-induced population
changes and the probe pulse becomes intricate and incoherent. This loss of coherence
hinders the accurate description of pump-induced differential absorption changes for
positive delay times within the framework of the coherent j (3) -limit model.
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Figure 6.14: The differential absorption ΔU spectrum in dependence of the time delay g is shown.
In (a) and (c) the measurement for co- and counter-circularly polarized laser pulses
is displayed, respectively. The corresponding theoretical findings are shown in (b)
and (d), respectively. The energy areas of the CTX (lower energies) and X (higher
energies) are divided into two areas, indicated by a black line at 1.4581 eV for clarity.
The model parameters are presented in Table A.1 (HH-V). Taken from [212].

6.4 Conclusions

In this chapter, we theoretically treat the Coulomb interaction beyond the TDHF approxi-
mation. We take into account many-body correlation effects, including the consideration
of two-exciton coherences, to gain a more comprehensive understanding of the excitonic
nonlinear optical response of spatially-direct type-I and spatially-indirect type-II excitons.
In contrast to the previous chapters, we consider laser pulses that are either resonant or
only slightly detuned from the excitonic resonances. Consequently, contributions originat-
ing from intraband excitations are negligible and are not taken into account, in contrast to
the dominant high-order correlation effects.

We provide a theoretical analysis to reveal the new characteristic signatures appearing
in an OPOP experiment for excitations below the CTX resonance, which only exists in
type-II QW structures. We demonstrate the significant differences that occurs in the
computed differential absorption spectrum depending on the polarization of the incident
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laser pulses. Our results show that the nonlinear optical response for counter-circular
excitation conditions exhibits additional contributions already on the Hartree-Fock level
which can be well understood by our theoretical approach. The ��1BC interaction term,
which introduces a coupling between the two spin subspaces, and only exists for spatially-
inhomogeneous systems, is responsible for this feature. This finite contribution can be
easily identified analytically by considering the corresponding equation of motion.
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Summary 7
In this thesis, we provide and establish microscopic descriptions to theoretically investigate
the light-matter interaction in photoexcited semiconductors. In the first part of this work
we focus on the nonlinear response when strong nonresonant laser pulses are used to
excite the system. The second part of this thesis is dedicated to the influence of excitonic
and many-body Coulomb correlation effects to the optical response of semiconductor
nanostructures.

In our first theoretical investigation when we consider a four-wave mixing experiment
performed with strongly nonresonant laser pulses. The interband current dominates the
nonlinear response when solid-state systems are optically excited nearly resonant to the
band gap energy of the material system. By comparing our theoretical findings between a
simple two-level model and a two-band model, we clearly show that the interplay between
interband and intraband excitations plays a crucial role in transient four-wave mixing
when semiconductors are optically excited nonresonantly by electric fields with low
frequencies. Our microscopic approach to include nonresonant excitations is based on the
semiconductor Bloch equations. The intraband excitation is responsible for an acceleration
of electrons and holes within their respective bands. The consideration of the latter creates
additional excitation pathways leading to both destructive and constructive interferences
between different contributions to the nonlinear response. Depending sensitively on the
laser frequencies the four-wave mixing intensity spectrum exhibits a spectral broadening
and additional complex signatures. Overall, our theoretical findings agree qualitatively
well with the significant broadening observed in measured four-wave-mixing spectra of
bulk semiconductors.

In our next topic, we focus on the collision dynamics between electrons and holes and their
influence to the anisotropy of interband high-harmonic generation which for instance
appears in many recently investigated solid-state systems like MgO. We are able to provide
an unified real- and momentum-space picture which reveals the microscopic processes
behind the scattering processes of electrons and holes with other atoms in solids. We
demonstrate how the sub-cycle real space collision dynamics can be read out from the
dynamics in momentum space and the band structure of the considered material system.
Within our developed collision model, we provide a relation between the various scattering
processes to van Hove singularities appearing at critical lines in the energy dispersion.
Depending crucially on the polarization direction of the incident pulses forward or back-
ward scattering processes give rise to an enhancing or a diminishing of the high harmonic
emission. In addition, we demonstrate how the dynamics in solid high harmonic generation
can be adjusted by accurately designed two-color pulses. Overall, our approach explains
and provides theoretical predictions for several experiments like the anisotropic high

71



7 Summary

harmonic generation in MgO and the atomic-like recombination process in solid-state
systems within a transparent picture.

In the context of high harmonic generation, we extend the semiconductor Bloch equation by
including excitonic effects within a two-band model. In this case, the Coulomb interaction
is treated in the time-dependent Hartree-Fock approximation. From previous theoretical
investigations it is known that excitonic effects play only a minor role when extremely
intense optical pulses are applied in the range of the band gap energy. As in the chapters
before we again consider here laser pulses which are nonresonant with respect to the band
gap energy. We explicitly apply incident electric fields in such way that an odd multiple of
the laser frequencies correspond to the 1s exciton resonance energy. Consequently, we
demonstrate that for such excitation conditions the high harmonic emission intensity is
strongly enhanced in comparison to the case of non-interacting particles.

In the end of this thesis we treat the Coulomb interaction beyond the time-dependent
Hartree-Fock approximation. In other words, we include many-body correlation effects,
i.e., we consider two-exciton coherences. In contrast to the previous chapters, we apply
laser pulses which are resonant or only slightly detuned with respect to the excitonic
resonances. In this case, contributions originating from intraband excitations are negligible
and do not need to be considered. We explicitly investigate the nonlinear optical response
of spatially-direct type-I and spatially-indirect type-II quantum well excitons. We provide
a theoretical study for an optical-pump optical-probe setup and demonstrate major differ-
ences occurring in the computed pump-induced differential absorption spectrum between
such semiconductor nanostructures in dependence on the polarization directions of the
incident laser fields. The numerical simulations clearly show that in type-II structures the
nonlinear optical response for counter-circular excitation conditions is finite already on
the Hartree-Fock level. The reason for this is the first-order Coulomb interaction term,
which introduces a coupling between the two spin subspaces exits only for spatially-
inhomogeneous systems. This finite contribution can be easily understood analytically
considering the respective equations of motion. Measurements of optical-pump optical-
probe spectra show characteristic signatures for excitations below the charge transfer
exciton resonance in a type-II quantum well structure which are in agreement with our
theory. In summary, our study demonstrates the crucial influence of many-body Coulomb
correlations in the excitonic nonlinear response of semiconductor nanostructures and we
highlight crucial differences between type-I and type-II systems.

The present work demonstrates promising results and provides impetus for further physical
investigations in the aforementioned areas. The theoretical findings provided in this thesis
shine light on various aspects of the light-matter interaction in photoexcited solid-state
systems. Building upon the results described here, future studies in the following areas
hold great potential for expanding our knowledge further. The insights gained from these
future researches have the potential to pave the way for practical applications. For example,
the development of compact solid-state light sources, based on the principles investigated
here may be possible. Additionally, a deeper understanding of band structure imaging can
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7 Summary

open new avenues for material characterization techniques, enabling advancements in
areas such as materials science, device engineering, and nanotechnology.
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Appendix A
A.1 Perturbative expansion with directional information

In this section, we present the process of extracting directional information for the relevant
quantities for the PP setup. To illustrate this, we utilize the SBE. In the case of weak
excitation intensities, the observables denoted as $ can be expanded with respect to the
power ; in the electric field. When 9 pulses are applied, the decomposition takes the
following structure:

$ =

∞∑
;=0

$ (; ) , with $ (; ) =
9∏

8=1
�
;8
8

and
9∑

8=1
;8 = ; (A.1)

An optical pulse propagating into the direction k8 can be described by

�8 = �̃84
−8k8 ·r + �̃∗8 4

8k8 ·r. (A.2)

In this thesis we consider up to two laser pulses. Inserting eq. (A.2) into eq. (A.1) we get
the following expansion:

$ =

∞∑
;=0

∑
|= |+|< | ≤;

$ (; ) (= |<) , where $ (; ) (= |<) ∝ 48 (=k1+<k2 ) ·r (A.3)

In principle, we can decompose the quantities in terms of their k-vectors and solve them
in separate equations. When applying this expansion, one can select the desired order
and direction of interest, and then formulate all the necessary equations to compute the
dynamics.

A.1.1 Analysis of PP in third order

In chapter 6 for the case of PP experiments the nonlinear signal up to third order j (3)

depends sensitively on the polarization directions of the applied laser pulses. The pump-
induced absorption is measured into the direction of the probe pulse k2. We consider two
incident pulses (k1 and k2) and use the rotating-wave approximation. Each pulse induces
an interband coherence in the first order due to the linear source term E8 (C) · -∗. The linear
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equations of motion are

−8ℏ 3
3C

?
E2 (1) (1 |0)
12 = −

∑
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) 2
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19 −
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) E
81?

E2 (1) (1 |0)
82 ++ E2

12 ?
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(
-E2
12
)∗
,

−8ℏ 3
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E2 (1) (0 |1)
12 = −
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9

) 2
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E2 (1) (0 |1)
19 −
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E2 (1) (0 |1)
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12
)∗
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(A.4)

The only relevant quantity in second order is the two-exciton coherence �. Due to the fact
that the PP signal within a third-order treatment is obtained into the direction (0|1) it is
only necessary to calculate the biexciton amplitude �

(2) (1 |1)
:

− 8ℏ
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The differential single exciton amplitude (∝ |�2 |2�1) in third-order into the direction k2 is
provided by considering all lower-order source contributions.
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The closed set of equations (A.1)-(A.3) are numerically solved in order to calculate the
pump-induced absorption which is determined by the differential polarization X?

E2 (3) (0 |1)
12 .

The latter contains three nonlinearities including Pauli blocking (PB), the first (��1BC ) and
higher-order (��2>AA ) Coulomb interaction terms. They can separately be analyzed by the
equations:
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A.2 Model parameters for the numerical solutions of the SBE
in the coherent j (3)−limit

Parameter HH-I HH-II HH-III HH-IV HH-V

#Sites 10 10 16 16 16
`Type−I 1 1 1 1 1
`Type−II - 0.5 0.5 0.5 0.4

� 4 15 meV 15 meV 14 meV 14 meV 14 meV
�ℎℎ 1.5 meV 1.5 meV 0.7 meV 0.7 meV 0.7 meV
*0 15 meV 15 meV 8.3 meV 8.3 meV 8.3 meV

0-0 /3 0.5 0.5 0.5 0.5 0.5

0�)-0 /3 - 0.56 0.52 0.56 0.72

)-
? 3 ps 3 ps 3 ps 3 ps 0.8 ps

)�)-
? - 3 ps 3 ps 3 ps 4 ps

Table A.1: The parameters of the one-dimensional tight binding model are shown which are used
to calculate the differential polarization X? (3) (0 |1) in chapter 6. The electronic couplings
are given by � E and �2 for the heavy-holes and the electrons, respectively. The relative
strength of the optical dipole matrix element is described by `Type−I/Type−II. The number
of sites is given by #Sites. The strength of the Coulomb interaction is indicated by*0,
where the spatial regularization is given by 0E20 /3 . The dephasing times of the excitons
X and CTX is given by )-

? and )�)-
? , respectively. Here, the dephasing of the biexciton

)� is given by )� =
)?

2 .

78



Bibliography B
[1] H. Wong and H. Iwai, The road to miniaturization, Phys. World 18, 40 (2005).

[2] H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of
Semiconductors, 5th ed. (World Scientific, Singapore, 2009).

[3] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys. 52,
555 (1929).

[4] C. Zener, A Theory of the Electrical Breakdown of Solid Dielectrics, Proc. Roy. Soc.
A 145, 523 (1934).

[5] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical
harmonics, Phys. Rev. Lett. 7, 118 (1961).

[6] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, 2008).

[7] A. H. Zewail, Laser femtochemistry, Science 242, 1645 (1988).

[8] D. S. Chemla and J. Shah, Many-body and correlation effects in semiconductors,
Nature 411, 549 (2001).

[9] S. Neppl, R. Ernstorfer, A. L. Cavalieri, C. Lemell, G. Wachter, E. Magerl, E. M. Both-
schafter, M. Jobst, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, J. Burgdörfer,
P. Feulner, F. Krausz, and R. Kienberger, Direct observation of electron propagation
and dielectric screening on the atomic length scale, Nature 517, 342 (2015).

[10] L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F.
Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A.
Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Pépin, Time-resolved
observation of ultrahigh intensity laser-produced electron jets propagating through
transparent solid targets, Phys. Rev. Lett. 83, 5015 (1999).

[11] W. Sha, T. B. Norris, W. J. Schaff, and K. E. Meyer, Time-resolved ballistic acceleration
of electrons in a GaAs quantum-well structure, Phys. Rev. Lett. 67, 2553 (1991).

[12] E. A. Shaner and S. A. Lyon, Picosecond time-resolved two-dimensional ballistic
electron transport, Phys. Rev. Lett. 93, 037402 (2004).

79

https://doi.org/10.1088/2058-7058/18/9/31
https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
https://doi.org/10.1098/rspa.1934.0116
https://doi.org/10.1098/rspa.1934.0116
https://doi.org/10.1103/PhysRevLett.7.118
https://doi.org/10.1126/science.242.4886.1645
https://doi.org/10.1038/35079000
https://doi.org/10.1038/nature14094
https://doi.org/10.1103/PhysRevLett.83.5015
https://doi.org/10.1103/PhysRevLett.67.2553
https://doi.org/10.1103/PhysRevLett.93.037402


B Bibliography

[13] L. Schultheis, M. D. Sturge, and J. Hegarty, Photon echoes from two‐dimensional
excitons in GaAs‐AlGaAs quantum wells, Appl. Phys. Lett. 47, 995 (1985).

[14] L. Schultheis, J. Kuhl, A. Honold, and C. W. Tu, Ultrafast phase relaxation of excitons
via exciton-exciton and exciton-electron collisions, Phys. Rev. Lett. 57, 1635 (1986).

[15] E. O. Göbel, K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller,
and K. Köhler, Quantum beats of excitons in quantum wells, Phys. Rev. Lett. 64,
1801 (1990).

[16] M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W. Schäfer, Line shape of time-
resolved four-wave mixing, Phys. Rev. A 42, 5675 (1990).

[17] M. Lindberg, R. Binder, and S. W. Koch, Theory of the semiconductor photon echo,
Phys. Rev. A 45, 1865 (1992).

[18] M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, Quantum
beats versus polarization interference: An experimental distinction, Phys. Rev. Lett.
69, 3631 (1992).

[19] K. Leo, J. Shah, T. Damen, A. Schulze, T. Meier, S. Schmitt-Rink, P. Thomas, E. Gobel,
S. Chuang, M. Luo, W. Schafer, K. Kohler, and P. Ganser, Dissipative dynamics of an
electronic wavepacket in a semiconductor double well potential, IEEE J. of Quantum
Electron 28, 2498 (1992).

[20] K.-H. Pantke, P. Schillak, B. S. Razbirin, V. G. Lyssenko, and J. M. Hvam, Nonlinear
quantum beats of propagating polaritons, Phys. Rev. Lett. 70, 327 (1993).

[21] R. Hellmann, M. Koch, J. Feldmann, S. T. Cundiff, E. O. Göbel, D. R. Yakovlev, A.
Waag, and G. Landwehr, Homogeneous linewidth of excitons in semimagnetic
CdTe/Cd1−xMnxTe multiple quantum wells, Phys. Rev. B 48, 2847 (1993).

[22] A. Lohner, K. Rick, P. Leisching, A. Leitenstorfer, T. Elsaesser, T. Kuhn, F. Rossi,
and W. Stolz, Coherent optical polarization of bulk GaAs studied by femtosecond
photon-echo spectroscopy, Phys. Rev. Lett. 71, 77 (1993).

[23] D. S. Kim, J. Shah, T. C. Damen, L. N. Pfeiffer, and W. Schäfer, Femtosecond time-
resolved four-wave mixing from biexcitons in GaAs quantum wells: dominance of
the interaction-induced signal, Phys. Rev. B 50, 5775 (1994).

[24] F. Jahnke, M. Koch, T. Meier, J. Feldmann, W. Schäfer, P. Thomas, S. W. Koch, E.
Göbel, and H. Nickel, Simultaneous influence of disorder and Coulomb interaction
on photon echoes in semiconductors, Phys. Rev. B 50, 8114 (1994).

80

https://doi.org/10.1063/1.95955
https://doi.org/10.1103/PhysRevLett.57.1635
https://doi.org/10.1103/PhysRevLett.64.1801
https://doi.org/10.1103/PhysRevLett.64.1801
https://doi.org/10.1103/PhysRevA.42.5675
https://doi.org/10.1103/PhysRevA.45.1865
https://doi.org/10.1103/PhysRevLett.69.3631
https://doi.org/10.1103/PhysRevLett.69.3631
https://doi.org/10.1109/3.159556
https://doi.org/10.1109/3.159556
https://doi.org/10.1103/PhysRevLett.70.327
https://doi.org/10.1103/PhysRevB.48.2847
https://doi.org/10.1103/PhysRevLett.71.77
https://doi.org/10.1103/PhysRevB.50.5775
https://doi.org/10.1103/PhysRevB.50.8114


B Bibliography

[25] S. T. Cundiff, M. Koch, W. H. Knox, J. Shah, and W. Stolz, Optical coherence in
semiconductors: Strong emission mediated by nondegenerate interactions, Phys.
Rev. Lett. 77, 1107 (1996).

[26] M. Koch, J. Shah, and T. Meier, Coupled absorber-cavity system: Observation of a
characteristic nonlinear response, Phys. Rev. B 57, R2049 (1998).

[27] R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn,
A. Hase, and H. Künzel, Ultrafast dephasing of coherent intersubband polarizations
in a quasi-two-dimensional electron plasma, Phys. Rev. Lett. 80, 3575 (1998).

[28] P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D.
Bimberg, Dephasing in InAs/GaAs quantum dots, Phys. Rev. B 60, 7784 (1999).

[29] M. Buck, L. Wischmeier, S. Schumacher, G. Czycholl, F. Jahnke, T. Voss, I. Rück-
mann, and J. Gutowski, Light-polarization and intensity dependence of higher-order
nonlinearities in excitonic FWM signals, Eur. Phys. J. B 42, 175 (2004).

[30] M. Stein, C. Lammers, P.-H. Richter, C. Fuchs, W. Stolz, M. Koch, O. Vänskä, M. J.
Weseloh, M. Kira, and S. W. Koch, Dynamics of charge-transfer excitons in type-ii
semiconductor heterostructures, Phys. Rev. B 97, 125306 (2018).

[31] T. Yajima and Y. Taira, Spatial Optical Parametric Coupling of Picosecond Light
Pulses and Transverse Relaxation Effect in Resonant Media, J. Phys. Soc. Jpn. 47,
1620 (1979).

[32] S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W.
Rühle, P. Thomas, and S. W. Koch, Disorder-induced dephasing in semiconductors,
Phys. Rev. B 61, 13088 (2000).

[33] P. Kner, W. Schäfer, R. Lövenich, and D. S. Chemla, Coherence of four-particle
correlations in semiconductors, Phys. Rev. Lett. 81, 5386 (1998).

[34] K. J. Schafer and K. C. Kulander, High harmonic generation from ultrafast pump
lasers, Phys. Rev. Lett. 78, 638 (1997).

[35] P. B. Corkum and F. Krausz, Attosecond science, Nat. Phys. 3, 381 (2007).

[36] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and
C. K. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in
the rare gases, J. Opt. Soc. Am. B 4, 595 (1987).

[37] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, Multiple-
harmonic conversion of 1064 nm radiation in rare gases, J. Phys. B 21, L31 (1988).

81

https://doi.org/10.1103/PhysRevLett.77.1107
https://doi.org/10.1103/PhysRevLett.77.1107
https://doi.org/10.1103/PhysRevB.57.R2049
https://doi.org/10.1103/PhysRevLett.80.3575
https://doi.org/10.1103/PhysRevB.60.7784
https://doi.org/10.1140/epjb/e2004-00369-4
https://doi.org/10.1103/PhysRevB.97.125306
https://doi.org/10.1143/JPSJ.47.1620
https://doi.org/10.1143/JPSJ.47.1620
https://doi.org/10.1103/PhysRevB.61.13088
https://doi.org/10.1103/PhysRevLett.81.5386
https://doi.org/10.1103/PhysRevLett.78.638
https://doi.org/10.1038/nphys620
https://doi.org/10.1364/JOSAB.4.000595
https://doi.org/10.1088/0953-4075/21/3/001


B Bibliography

[38] X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, Multiple-harmonic
generation in rare gases at high laser intensity, Phys. Rev. A 39, 5751 (1989).

[39] N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M. Watanabe, and S. Watanabe, Coherent
soft-x-ray generation by the harmonics of an ultrahigh-power KrF laser, Phys. Rev.
A 43, 1669 (1991).

[40] J. K. Crane, M. D. Perry, S. Herman, and R.W. Falcone, High-field harmonic generation
in helium, Opt. Lett. 17, 1256 (1992).

[41] K. Miyazaki and H. Sakai, High-order harmonic generation in rare gases with intense
subpicosecond dye laser pulses, J. Phys. B 25, L83 (1992).

[42] C. M. Heyl, J. Güdde, A. L’Huillier, and U. Höfer, High-order harmonic generation
with μj laser pulses at high repetition rates, J. Phys. B 45, 074020 (2012).

[43] J. J. Macklin, J. D. Kmetec, and C. L. Gordon, High-order harmonic generation using
intense femtosecond pulses, Phys. Rev. Lett. 70, 766 (1993).

[44] A. L’Huillier and P. Balcou, High-order harmonic generation in rare gases with a
1-ps 1053-nm laser, Phys. Rev. Lett. 70, 774 (1993).

[45] Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, Generation of
coherent soft X rays at 2.7 nm using high harmonics, Phys. Rev. Lett. 79, 2967 (1997).

[46] M. Schnürer, C. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K.
Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, Coherent 0.5-keV x-ray
emission from helium driven by a sub-10-fs laser, Phys. Rev. Lett. 80, 3236 (1998).

[47] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis,
Observation of high-order harmonic generation in a bulk crystal, Nat. Phys. 7, 138
(2011).

[48] S. Ghimire, G. Ndabashimiye, A. D. DiChiara, E. Sistrunk, M. I. Stockman, P. Agostini,
L. F. DiMauro, and D. A. Reis, Strong-field and attosecond physics in solids, J. Phys.
B 47, 204030 (2014).

[49] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, C. R. McDonald, T.
Brabec, and P. B. Corkum, Linking high harmonics from gases and solids, Nature
522, 462 (2015).

[50] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis,
Extreme ultraviolet high-harmonic spectroscopy of solids, Nature 521, 498 (2015).

82

https://doi.org/10.1103/PhysRevA.39.5751
https://doi.org/10.1103/PhysRevA.43.1669
https://doi.org/10.1103/PhysRevA.43.1669
https://doi.org/10.1364/OL.17.001256
https://doi.org/10.1088/0953-4075/25/3/006
https://doi.org/10.1088/0953-4075/45/7/074020
https://doi.org/10.1103/PhysRevLett.70.766
https://doi.org/10.1103/PhysRevLett.70.774
https://doi.org/10.1103/PhysRevLett.79.2967
https://doi.org/10.1103/PhysRevLett.80.3236
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1088/0953-4075/47/20/204030
https://doi.org/10.1088/0953-4075/47/20/204030
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14456


B Bibliography

[51] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J. Schafer, M. B. Gaarde, and
D. A. Reis, Solid-state harmonics beyond the atomic limit, Nature 534, 520 (2016).

[52] X. Song, S. Yang, R. Zuo, T. Meier, and W. Yang, Enhanced high-order harmonic
generation in semiconductors by excitation with multicolor pulses, Phys. Rev. A 101,
033410 (2020).

[53] X. Song, R. Zuo, S. Yang, P. Li, T. Meier, and W. Yang, Attosecond temporal confine-
ment of interband excitation by intraband motion, Opt. Express 27, 2225 (2019).

[54] A. Trautmann, R. Zuo, G. Wang, W.-R. Hannes, S. Yang, L. H. Thong, C. Ngo, J. T.
Steiner, M. Ciappina, M. Reichelt, H. T. Duc, X. Song, W. Yang, and T. Meier, Micro-
scopic simulations of high harmonic generation from semiconductors, Proc. SPIE
11999, 1199909 (2022).

[55] J. Hader, J. Neuhaus, J. V. Moloney, and S. W. Koch, Coulomb enhancement of high
harmonic generation in monolayer transition metal dichalcogenides, Opt. Lett. 48,
2094 (2023).

[56] T. Meier, P. Thomas, and S. W. Koch, Coherent Semiconductor Optics: From Basic
Concepts to Nanostructure Applications (Springer, New York, 2007).

[57] C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas,
G. Khitrova, and H. M. Gibbs, Coulomb memory signatures in the excitonic optical
Stark effect, Phys. Rev. Lett. 82, 3112 (1999).

[58] H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Transient
nonlinear optical response from excitation induced dephasing in GaAs, Phys. Rev.
Lett. 71, 1261 (1993).

[59] C. Gros and R. Valentí, Cluster expansion for the self-energy: A simple many-body
method for interpreting the photoemission spectra of correlated Fermi systems, Phys.
Rev. B 48, 418 (1993).

[60] V. M. Axt and A. Stahl, A dynamics-controlled truncation scheme for the hierarchy
of density matrices in semiconductor optics, Z. Phys. 93, 195 (1994).

[61] V. M. Axt and A. Stahl, The role of the biexciton in a dynamic density matrix theory
of the semiconductor band edge, Z. Phys. 93, 205 (1994).

[62] M. Lindberg, Y. Z. Hu, R. Binder, and S. W. Koch, j (3) Formalism in optically excited
semiconductors and its applications in four-wave-mixing spectroscopy, Phys. Rev. B
50, 18060 (1994).

83

https://doi.org/10.1038/nature17660
https://doi.org/10.1103/PhysRevA.101.033410
https://doi.org/10.1103/PhysRevA.101.033410
https://doi.org/10.1364/oe.27.002225
https://doi.org/10.1117/12.2607447
https://doi.org/10.1117/12.2607447
https://doi.org/10.1364/OL.485551
https://doi.org/10.1364/OL.485551
https://doi.org/10.1103/PhysRevLett.82.3112
https://doi.org/10.1103/PhysRevLett.71.1261
https://doi.org/10.1103/PhysRevLett.71.1261
https://doi.org/10.1103/PhysRevB.48.418
https://doi.org/10.1103/PhysRevB.48.418
https://doi.org/10.1007/BF01316963
https://doi.org/10.1007/BF01316964
https://doi.org/10.1103/PhysRevB.50.18060
https://doi.org/10.1103/PhysRevB.50.18060


B Bibliography

[63] W. Schäfer, D. S. Kim, J. Shah, T. C. Damen, J. E. Cunningham, K. W. Goossen,
L. N. Pfeiffer, and K. Köhler, Femtosecond coherent fields induced by many-particle
correlations in transient four-wave mixing, Phys. Rev. B 53, 16429 (1996).

[64] L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C. W. Tu, Optical dephasing of
homogeneously broadened two-dimensional exciton transitions in GaAs quantum
wells, Phys. Rev. B 34, 9027 (1986).

[65] E. O. Göbel, K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller,
and K. Köhler, Quantum beats of excitons in quantum wells, Phys. Rev. Lett. 64,
1801 (1990).

[66] D.-S. Kim, J. Shah, J. E. Cunningham, T. C. Damen, W. Schäfer, M. Hartmann, and
S. Schmitt-Rink, Giant excitonic resonance in time-resolved four-wave mixing in
quantum wells, Phys. Rev. Lett. 68, 1006 (1992).

[67] S. Schmitt-Rink and D. S. Chemla, Collective excitations and the dynamical Stark
effect in a coherently driven exciton system, Phys. Rev. Lett. 57, 2752 (1986).

[68] D. Fröhlich, A. Nöthe, and K. Reimann, Observation of the resonant Optical Stark
effect in a semiconductor, Phys. Rev. Lett. 55, 1335 (1985).

[69] A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morko ç,
“dressed excitons” in a multiple-quantum-well structure: Evidence for an Optical
Stark effect with femtosecond response time, Phys. Rev. Lett. 56, 2748 (1986).

[70] A. V. Lehmen, D. S. Chemla, J. E. Zucker, and J. P. Heritage, Optical Stark effect on
excitons in GaAs quantum wells, Opt. Lett. 11, 609 (1986).

[71] B. Fluegel, N. Peyghambarian, G. Olbright, M. Lindberg, S. W. Koch, M. Joffre, D.
Hulin, A. Migus, and A. Antonetti, Femtosecond studies of coherent transients in
semiconductors, Phys. Rev. Lett. 59, 2588 (1987).

[72] G. Noll, U. Siegner, S. G. Shevel, and E. O. Göbel, Picosecond stimulated photon echo
due to intrinsic excitations in semiconductor mixed crystals, Phys. Rev. Lett. 64, 792
(1990).

[73] K. Leo, M. Wegener, J. Shah, D. S. Chemla, E. O. Göbel, T. C. Damen, S. Schmitt-
Rink, and W. Schäfer, Effects of coherent polarization interactions on time-resolved
degenerate four-wave mixing, Phys. Rev. Lett. 65, 1340 (1990).

[74] M. D. Webb, S. T. Cundiff, and D. G. Steel, Stimulated-picosecond-photon-echo
studies of localized exciton relaxation and dephasing in GaAs/AlxGa1−xAs multiple
quantum wells, Phys. Rev. B 43, 12658 (1991).

84

https://doi.org/10.1103/PhysRevB.53.16429
https://doi.org/10.1103/PhysRevB.34.9027
https://doi.org/10.1103/PhysRevLett.64.1801
https://doi.org/10.1103/PhysRevLett.64.1801
https://doi.org/10.1103/PhysRevLett.68.1006
https://doi.org/10.1103/PhysRevLett.57.2752
https://doi.org/10.1103/PhysRevLett.55.1335
https://doi.org/10.1103/PhysRevLett.56.2748
https://doi.org/10.1364/OL.11.000609
https://doi.org/10.1103/PhysRevLett.59.2588
https://doi.org/10.1103/PhysRevLett.64.792
https://doi.org/10.1103/PhysRevLett.64.792
https://doi.org/10.1103/PhysRevLett.65.1340
https://doi.org/10.1103/PhysRevB.43.12658


B Bibliography

[75] S. T. Cundiff, H. Wang, and D. G. Steel, Polarization-dependent picosecond excitonic
nonlinearities and the complexities of disorder, Phys. Rev. B 46, 7248 (1992).

[76] M. Kira and S. W. Koch, Many-body correlations and excitonic effects in semicon-
ductor spectroscopy, Prog. Quantum. Electron. 30, 155 (2006).

[77] M. Kira and S. W. Koch, Semiconductor quantum optics (Cambridge University Press,
Cambridge, 2012).

[78] D. Golde, Microscopic investigations of the terahertz and the extreme nonlinear
optical response of semiconductors, Philipps-Universität Marburg, PhD Dissertation
(2010).

[79] U. Huttner, Theoretical analysis of ultrafast strong terahertz-field effects in semicon-
ductors, Philipps-Universität Marburg, PhD Dissertation (2016).

[80] H. T. Duc, C. Ngo, and T. Meier, Ballistic photocurrents in semiconductor quantum
wells caused by the excitation of asymmetric excitons, Phys. Rev. B 100, 045308
(2019).

[81] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde,
T. Meier, M. Kira, S. W. Koch, and R. Huber, Sub-cycle control of terahertz high-
harmonic generation by dynamical Bloch oscillations, Nat. Photonics 8, 119 (2014).

[82] C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).

[83] D. Golde, T. Meier, and S. W. Koch, High harmonics generated in semiconductor
nanostructures by the coupled dynamics of optical inter- and intraband excitations,
Phys. Rev. B 77, 075330 (2008).

[84] D. Golde, M. Kira, T. Meier, and S. W. Koch, Microscopic theory of the extremely
nonlinear terahertz response of semiconductors, Phys. Status Solidi B 248, 863 (2011).

[85] D. Golde, T. Meier, and S. W. Koch, Microscopic analysis of extreme nonlinear optics
in semiconductor nanostructures, J. Opt. Soc. Am. B 23, 2559 (2006).

[86] D. Golde, T. Meier, and S. W. Koch, “Modeling of the extreme nonlinear optical
response of semiconductor nanostructures”, in Ultrafast phenomena xv, edited by
P. Corkum, D. M. Jonas, R. J. D. Miller, and A. M. Weiner (2007), p. 689.

[87] D. Golde, T. Meier, and S. W. Koch, Microscopic analysis of high-harmonic generation
in semiconductor nanostructures, Phys. Status Solidi C 6, 420 (2009).

[88] D. Golde, M. Kira, and S. W. Koch, Terahertz response of a two-dimensional electron
gas, Proc. SPIE 6892, 68921F (2008).

85

https://doi.org/10.1103/PhysRevB.46.7248
https://doi.org/https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1103/PhysRevB.100.045308
https://doi.org/10.1103/PhysRevB.100.045308
https://doi.org/10.1038/nphoton.2013.349
https://doi.org/10.1103/PhysRevB.77.075330
https://doi.org/https://doi.org/10.1002/pssb.201000840
https://doi.org/10.1364/JOSAB.23.002559
https://doi.org/https://doi.org/10.1002/pssc.200880309


B Bibliography

[89] S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch,
Thz measurements of the optical response in a two-dimensional electron gas, Phys.
Status Solidi C 6, 453 (2009).

[90] D. Golde, M. Wagner, D. Stehr, H. Schneider, M. Helm, A. M. Andrews, T. Roch, G.
Strasser, M. Kira, and S. W. Koch, Fano signatures in the intersubband terahertz
response of optically excited semiconductor quantum wells, Phys. Rev. Lett. 102,
127403 (2009).

[91] M. Wagner, D. Golde, D. Stehr, H. Schneider, M. Helm, A. Andrews, T. Roch, G.
Strasser, M. Kira, and S. W. Koch, Fano profile in the intersubband terahertz response
of photoexcited GaAs/AlGaAs quantum wells, J. Phys. Conf. Ser. 193, 012073 (2009).

[92] D. Golde, M. Kira, and S. W. Koch, Ultrafast terahertz response of optically excited
semiconductor heterostructures, Proc. SPIE 7600, 76000F (2010).

[93] F. Schwabl, Quantenmechanik (QM I): Eine Einführung, 7th ed. (Springer, Berlin,
2007).

[94] H. W. Wyld and B. D. Fried, Quantum mechanical kinetic equations, Ann. Phys. 23,
374 (1963).

[95] J. Fricke, Transport equations including many-particle correlations for an arbitrary
quantum system: A general formalism, Ann. Phys. 252, 479 (1996).

[96] M. Kira, F. Jahnke, and S. W. Koch, Microscopic theory of excitonic signatures in
semiconductor photoluminescence, Phys. Rev. Lett. 81, 3263 (1998).

[97] M. Kira,W. Hoyer, T. Stroucken, and S.W. Koch, Exciton formation in semiconductors
and the influence of a photonic environment, Phys. Rev. Lett. 87, 176401 (2001).

[98] G. D. Purvis and R. J. Bartlett, A full coupled‐cluster singles and doubles model: The
inclusion of disconnected triples, J. Chem. Phys. 76, 1910 (1982).

[99] W. Hoyer, M. Kira, and S. W. Koch, Influence of coulomb and phonon interaction on
the exciton formation dynamics in semiconductor heterostructures, Phys. Rev. B 67,
155113 (2003).

[100] M. Kira, W. Hoyer, and S. W. Koch, Terahertz signatures of the exciton formation
dynamics in non-resonantly excited semiconductors, Solid State Commun. 129, 733
(2004).

[101] M. Kira and S. W. Koch, Exciton-population inversion and terahertz gain in semicon-
ductors excited to resonance, Phys. Rev. Lett. 93, 076402 (2004).

86

https://doi.org/10.1002/pssc.200880337
https://doi.org/10.1002/pssc.200880337
https://doi.org/10.1103/PhysRevLett.102.127403
https://doi.org/10.1103/PhysRevLett.102.127403
https://doi.org/10.1088/1742-6596/193/1/012073
https://doi.org/10.1117/12.839460
https://doi.org/https://doi.org/10.1006/aphy.1996.0142
https://doi.org/10.1103/PhysRevLett.81.3263
https://doi.org/10.1103/PhysRevLett.87.176401
https://doi.org/10.1103/PhysRevB.67.155113
https://doi.org/10.1103/PhysRevB.67.155113
https://doi.org/https://doi.org/10.1016/j.ssc.2003.12.015
https://doi.org/https://doi.org/10.1016/j.ssc.2003.12.015
https://doi.org/10.1103/PhysRevLett.93.076402


B Bibliography

[102] M. Kira and S. W. Koch, Quantum-optical spectroscopy of semiconductors, Phys.
Rev. A 73, 013813 (2006).

[103] M. Kira and S. W. Koch, Cluster-expansion representation in quantum optics, Phys.
Rev. A 78, 022102 (2008).

[104] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira,
and R. Huber, Real-time observation of interfering crystal electrons in high-harmonic
generation, Nature 523, 572 (2015).

[105] A. Brown, W. J. Meath, and P. Tran, Rotating-wave approximation for the interaction
of a pulsed laser with a two-level system possessing permanent dipole moments,
Phys. Rev. A 63, 013403 (2000).

[106] M. J. Lighthill and H. S. Holdgrün, Einführung in die Theorie der Fourieranalysis und
der verallgemeinerten Funktionen (Bibliogr. Inst., Mannheim, 1966).

[107] S. T. Cundiff, Coherent spectroscopy of semiconductors, Opt. Express 16, 4639
(2008).

[108] B. L. Wilmer, F. Passmann, M. Gehl, G. Khitrova, and A. D. Bristow, Multidimensional
coherent spectroscopy of a semiconductor microcavity, Phys. Rev. B 91, 201304
(2015).

[109] M. Lindberg and S. W. Koch, Effective Bloch equations for semiconductors, Phys.
Rev. B 38, 3342 (1988).

[110] B. F. Feuerbacher, J. Kuhl, and K. Ploog, Biexcitonic contribution to the degenerate-
four-wave-mixing signal from a GaAs/AlxGa1−xAs quantum well, Phys. Rev. B 43,
2439 (1991).

[111] S. Bar-Ad and I. Bar-Joseph, Exciton spin dynamics in GaAs heterostructures, Phys.
Rev. Lett. 68, 349 (1992).

[112] D. J. Lovering, R. T. Phillips, G. J. Denton, and G. W. Smith, Resonant generation of
biexcitons in a GaAs quantum well, Phys. Rev. Lett. 68, 1880 (1992).

[113] K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith,
R. Eccleston, J. Kuhl, and K. Ploog, Influence of exciton-exciton interactions on the
coherent optical response in GaAs quantum wells, Phys. Rev. B 48, 17418 (1993).

[114] J.-Y. Bigot, A. Daunois, J. Oberlé, and J.-C. Merle, Femtosecond dephasing in
CdSxSe1−x mixed crystals: The role of localized biexcitons, Phys. Rev. Lett. 71,
1820 (1993).

87

https://doi.org/10.1103/PhysRevA.73.013813
https://doi.org/10.1103/PhysRevA.73.013813
https://doi.org/10.1103/PhysRevA.78.022102
https://doi.org/10.1103/PhysRevA.78.022102
https://doi.org/10.1038/nature14652
https://doi.org/10.1103/PhysRevA.63.013403
https://doi.org/10.1364/OE.16.004639
https://doi.org/10.1364/OE.16.004639
https://doi.org/10.1103/PhysRevB.91.201304
https://doi.org/10.1103/PhysRevB.91.201304
https://doi.org/10.1103/PhysRevB.38.3342
https://doi.org/10.1103/PhysRevB.38.3342
https://doi.org/10.1103/PhysRevB.43.2439
https://doi.org/10.1103/PhysRevB.43.2439
https://doi.org/10.1103/PhysRevLett.68.349
https://doi.org/10.1103/PhysRevLett.68.349
https://doi.org/10.1103/PhysRevLett.68.1880
https://doi.org/10.1103/PhysRevB.48.17418
https://doi.org/10.1103/PhysRevLett.71.1820
https://doi.org/10.1103/PhysRevLett.71.1820


B Bibliography

[115] K.-H. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, Coherent
generation and interference of excitons and biexcitons in GaAs/AlxGa1−xAs quantum
wells, Phys. Rev. B 47, 2413 (1993).

[116] E. Mayer, G. Smith, V. Heuckeroth, J. Kuhl, K. Bott, A. Schulze, T. Meier, D. Bennhardt,
S. W. Koch, P. Thomas, R. Hey, and K. Ploog, Evidence of biexcitonic contributions
to four-wave mixing in GaAs quantum wells, Phys. Rev. B 50, 14730 (1994).

[117] E. J. Mayer, G. O. Smith, V. Heuckeroth, J. Kuhl, K. Bott, A. Schulze, T. Meier, S. W.
Koch, P. Thomas, R. Hey, and K. Ploog, Polarization dependence of beating phenom-
ena at the energetically lowest exciton transition in GaAs quantum wells, Phys. Rev.
B 51, 10909 (1995).

[118] T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W.
Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, Disorder mediated biexcitonic beats
in semiconductor quantum wells, Phys. Rev. B 54, 4436 (1996).

[119] W. Langbein, T. Meier, S. W. Koch, and J. M. Hvam, Spectral signatures of j (5)

processes in four-wave mixing of homogeneously broadened excitons, J. Opt. Soc.
Am. B 18, 1318 (2001).

[120] C. N. Borca, T. Zhang, X. Li, and S. T. Cundiff, Optical two-dimensional Fourier
transform spectroscopy of semiconductors, Chem. Phys. Lett. 416, 311 (2005).

[121] T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff,
Polarization-dependent optical 2d Fourier transform spectroscopy of semiconductors,
Proc. Natl. Acad. Sci. 104, 14227 (2007).

[122] D. B. Turner and K. A. Nelson, Coherent measurements of high-order electronic
correlations in quantum wells, Nature 466, 1089 (2010).

[123] J. Reif, R. P. Schmid, and T. Schneider, Femtosecond third-harmonic generation: Self-
phase matching through a transient. Kerr grating and the way to ultrafast computing,
Appl. Phys. B 74, 745 (2002).

[124] K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, Third-order
nonlinear optical response in transparent solids using ultrashort laser pulses, Appl.
Phys. B 107, 703 (2012).

[125] J. A. Dharmadhikari, K. Dota, D. Mathur, and A. K. Dharmadhikari, Spectral broad-
ening in lithium niobate in a self-diffraction geometry using ultrashort pulses, Appl.
Phys. B 122, 140 (2016).

88

https://doi.org/10.1103/PhysRevB.47.2413
https://doi.org/10.1103/PhysRevB.50.14730
https://doi.org/10.1103/PhysRevB.51.10909
https://doi.org/10.1103/PhysRevB.51.10909
https://doi.org/10.1103/PhysRevB.54.4436
https://doi.org/10.1364/JOSAB.18.001318
https://doi.org/10.1364/JOSAB.18.001318
https://doi.org/https://doi.org/10.1016/j.cplett.2005.09.090
https://doi.org/10.1073/pnas.0701273104
https://doi.org/10.1038/nature09286
https://doi.org/10.1007/s003400200847
https://doi.org/10.1007/s00340-012-4935-7
https://doi.org/10.1007/s00340-012-4935-7
https://doi.org/10.1007/s00340-016-6423-y
https://doi.org/10.1007/s00340-016-6423-y


B Bibliography

[126] W.-R. Hannes, A. Trautmann, M. Stein, F. Schäfer, M. Koch, and T. Meier, Strongly
nonresonant four-wave mixing in semiconductors, Phys. Rev. B 101, 075203 (2020).

[127] L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York,
1975).

[128] W.-R. Hannes and T.Meier, Higher-order contributions and nonperturbative effects in
the nondegenerate nonlinear optical absorption of semiconductors using a two-band
model, Phys. Rev. B 99, 125301 (2019).

[129] H. T. Duc, T. Meier, and S. W. Koch, Microscopic analysis of the coherent optical gen-
eration and the decay of charge and spin currents in semiconductor heterostructures,
Phys. Rev. Lett. 95, 086606 (2005).

[130] H. T. Duc, Q. T. Vu, T. Meier, H. Haug, and S. W. Koch, Temporal decay of coherently
optically injected charge and spin currents due to carrier–lo-phonon and carrier-
carrier scattering, Phys. Rev. B 74, 165328 (2006).

[131] F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys. 81, 163 (2009).

[132] B. Shan, S. Ghimire, and Z. Chang, Effect of orbital symmetry on high-order harmonic
generation from molecules, Phys. Rev. A 69, 021404 (2004).

[133] C. Vozzi, F. Calegari, E. Benedetti, J.-P. Caumes, G. Sansone, S. Stagira, M. Nisoli, R.
Torres, E. Heesel, N. Kajumba, J. P. Marangos, C. Altucci, and R. Velotta, Controlling
two-center interference in molecular high harmonic generation, Phys. Rev. Lett. 95,
153902 (2005).

[134] P. B. Corkum, Plasma perspective on strong field multiphoton ionization, Phys. Rev.
Lett. 71, 1994 (1993).

[135] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum,
and D. M. Villeneuve, Tomographic imaging of molecular orbitals, Nature 432, 867
(2004).

[136] R. Torres, N. Kajumba, J. G. Underwood, J. S. Robinson, S. Baker, J. W. G. Tisch, R. de
Nalda, W. A. Bryan, R. Velotta, C. Altucci, I. C. E. Turcu, and J. P. Marangos, Probing
orbital structure of polyatomic molecules by high-order harmonic generation, Phys.
Rev. Lett. 98, 203007 (2007).

[137] W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H. C. Kapteyn, andM. M. Murnane,
Time-resolved dynamics in #2$4 probed using high harmonic generation, Science
322, 1207 (2008).

89

https://doi.org/10.1103/PhysRevB.101.075203
https://doi.org/10.1103/PhysRevB.99.125301
https://doi.org/10.1103/PhysRevLett.95.086606
https://doi.org/10.1103/PhysRevB.74.165328
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/PhysRevA.69.021404
https://doi.org/10.1103/PhysRevLett.95.153902
https://doi.org/10.1103/PhysRevLett.95.153902
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1103/PhysRevLett.98.203007
https://doi.org/10.1103/PhysRevLett.98.203007
https://doi.org/10.1126/science.1163077
https://doi.org/10.1126/science.1163077


B Bibliography

[138] C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira,
Generalized molecular orbital tomography, Nat. Phys. 7, 822 (2011).

[139] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M. Y. Ivanov,
O. Smirnova, and N. Dudovich, Resolving the time when an electron exits a tunnelling
barrier, Nature 485, 343 (2012).

[140] H. G. Kurz, M. Kretschmar, T. Binhammer, T. Nagy, D. Ristau, M. Lein, U. Morgner, and
M. Kova, Revealing the microscopic real-space excursion of a laser-driven electron,
Phys. Rev. X 6, 031029 (2016).

[141] S. Ghimire, A. D. DiChiara, E. Sistrunk, G. Ndabashimiye, U. B. Szafruga, A. Mo-
hammad, P. Agostini, L. F. DiMauro, and D. A. Reis, Generation and propagation of
high-order harmonics in crystals, Phys. Rev. A 85, 043836 (2012).

[142] S. Gholam-Mirzaei, J. E. Beetar, and M. Chini, High harmonic generation in ZnO
with a high-power mid-IR OPA, Appl. Phys. Lett. 110, 061101 (2017).

[143] Z. Wang, H. Park, Y. H. Lai, J. Xu, C. I. Blaga, F. Yang, P. Agostini, and L. F. Di-
Mauro, The roles of photo-carrier doping and driving wavelength in high harmonic
generation from a semiconductor, Nat. Commun. 8, 1686 (2017).

[144] S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and
C. D. Lin, Crystal symmetry and polarization of high-order harmonics in ZnO, J.
Phys. B 52 (2019).

[145] O. D. Mücke, Isolated high-order harmonics pulse from two-color-driven Bloch
oscillations in bulk semiconductors, Phys. Rev. B 84, 081202 (2011).

[146] T. T. Luu and H. J. Wörner, High-order harmonic generation in solids: A unifying
approach, Phys. Rev. B 94, 115164 (2016).

[147] Y. S. You, D. A. Reis, and S. Ghimire, Anisotropic high-harmonic generation in
bulk crystals, Nat. Phys. 13, 345 (2017).

[148] Y. S. You, Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang, S. Gholam-Mirzaei, M. Chini,
Z. Chang, and S. Ghimire, High-harmonic generation in amorphous solids, Nat.
Commun. 8, 724 (2017).

[149] F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, Symmetry-
controlled temporal structure of high-harmonic carrier fields from a bulk crystal,
Nat. Photonics 11, 227 (2017).

[150] B. Zaks, R. B. Liu, and M. S. Sherwin, Experimental observation of electron–hole
recollisions, Nature 483, 580 (2012).

90

https://doi.org/10.1038/nphys2029
https://doi.org/10.1103/PhysRevX.6.031029
https://doi.org/10.1103/PhysRevA.85.043836
https://doi.org/10.1038/s41467-017-01899-1
https://doi.org/10.1103/PhysRevB.84.081202
https://doi.org/10.1103/PhysRevB.94.115164
https://doi.org/10.1038/nphys3955
https://doi.org/10.1038/s41467-017-00989-4
https://doi.org/10.1038/s41467-017-00989-4
https://doi.org/10.1038/nphoton.2017.29
https://doi.org/10.1038/nature10864


B Bibliography

[151] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec,
Theoretical analysis of high-harmonic generation in solids, Phys. Rev. Lett. 113,
073901 (2014).

[152] G. Vampa, C. R. McDonald, G. Orlando, P. B. Corkum, and T. Brabec, Semiclassical
analysis of high harmonic generation in bulk crystals, Phys. Rev. B 91, 064302 (2015).

[153] F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller,
M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber, Lightwave-
driven quasiparticle collisions on a subcycle timescale, Nature 533, 225 (2016).

[154] R. Zuo, A. Trautmann, G.Wang,W.-R. Hannes, S. Yang, X. Song, T. Meier, M. Ciappina,
H. T. Duc, and W. Yang, Neighboring atom collisions in solid-state high harmonic
generation, Ultrafast Science 2021, 9861923 (2021).

[155] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Theory
of high-harmonic generation by low-frequency laser fields, Phys. Rev. A 49, 2117
(1994).

[156] L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys.
JETP 20, 1307 (1965).

[157] C. R. McDonald, G. Vampa, P. B. Corkum, and T. Brabec, Interband Bloch oscillation
mechanism for high-harmonic generation in semiconductor crystals, Phys. Rev. A
92, 033845 (2015).

[158] G. Vampa and T. Brabec, Merge of high harmonic generation from gases and solids
and its implications for attosecond science, J. Phys. B 50, 083001 (2017).

[159] E. Kane, Zener tunneling in semiconductors, J. Phys. Chem. Solids 12, 181 (1960).

[160] W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Terahertz-
induced interband tunneling of electrons in GaAs, Phys. Rev. B 82, 075204 (2010).

[161] R. Zuo, X. Song, S. Ben, T. Meier, and W. Yang, Revealing the nonadiabatic tunneling
dynamics in solid-state high harmonic generation, Phys. Rev. Res. 5, L022040 (2023).

[162] X. Chai, X. Ropagnol, S. M. Raeis-Zadeh, M. Reid, S. Safavi-Naeini, and T. Ozaki,
Subcycle terahertz nonlinear optics, Phys. Rev. Lett. 121, 143901 (2018).

[163] M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N.
Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, Optical
attosecond pulses and tracking the nonlinear response of bound electrons, Nature
530, 66 (2016).

91

https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevB.91.064302
https://doi.org/10.1038/nature17958
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://www.osti.gov/biblio/4662394
https://www.osti.gov/biblio/4662394
https://doi.org/10.1103/PhysRevA.92.033845
https://doi.org/10.1103/PhysRevA.92.033845
https://doi.org/10.1088/1361-6455/aa528d
https://doi.org/https://doi.org/10.1016/0022-3697(60)90035-4
https://doi.org/10.1103/PhysRevB.82.075204
https://doi.org/10.1103/PhysRevResearch.5.L022040
https://doi.org/10.1103/PhysRevLett.121.143901
https://doi.org/10.1038/nature16528
https://doi.org/10.1038/nature16528


B Bibliography

[164] H. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses,
L. F. DiMauro, F. X. Kärtner, and K.-H. Hong, High-energy mid-infrared sub-cycle
pulse synthesis from a parametric amplifier, Nat. Commun. 8, 141 (2017).

[165] Software package elk ver. 6.8.4, https://elk.sourceforge.io/.

[166] L. Yue and M. B. Gaarde, Structure gauges and laser gauges for the semiconductor
Bloch equations in high-order harmonic generation in solids, Phys. Rev. A 101,
053411 (2020).

[167] D. Vanderbilt, Berry phases in electronic structure theory: electric polarization, orbital
magnetization and topological insulators (Cambridge University Press, Cambridge,
2018).

[168] S. Jiang, H. Wei, J. Chen, C. Yu, R. Lu, and C. D. Lin, Effect of transition dipole
phase on high-order-harmonic generation in solid materials, Phys. Rev. A 96, 053850
(2017).

[169] W. C. Lang and K. Forinash, Time-frequency analysis with the continuous wavelet
transform, Am. J. Phys. 66, 794 (1998).

[170] A. J. Uzan, G. Orenstein, Á. Jiménez-Galán, C. McDonald, R. E. F. Silva, B. D. Bruner,
N. D. Klimkin, V. Blanchet, T. Arusi-Parpar, M. Krüger, A. N. Rubtsov, O. Smirnova,
M. Ivanov, B. Yan, T. Brabec, and N. Dudovich, Attosecond spectral singularities in
solid-state high-harmonic generation, Nat. Photonics 14, 183 (2020).

[171] S. Ghimire and D. A. Reis, High-harmonic generation from solids, Nat. Phys. 15, 10
(2019).

[172] A. Beiser, Concepts of modern physics, 6th ed. (McGrawHill, New York, 2003).

[173] E. N. Osika, A. Chacón, L. Ortmann, N. Suárez, J. A. Pérez-Hernández, B. Szafran,
M. F. Ciappina, F. Sols, A. S. Landsman, and M. Lewenstein, Wannier-Bloch approach
to localization in high-harmonics generation in solids, Phys. Rev. X 7, 021017 (2017).

[174] T. Meier, G. von Plessen, P. Thomas, and S. W. Koch, Coherent electric-field effects
in semiconductors, Phys. Rev. Lett. 73, 902 (1994).

[175] W. Hoyer, Quantentheorie zu Exzitonbildung und Photolumineszenz in Halbleitern,
Philipps-Universität Marburg, PhD Dissertation (2002).

[176] U. Huttner, M. Kira, and S. W. Koch, Ultrahigh off‐resonant field effects in semicon-
ductors, Laser Photonics Rev. 11 (2017).

92

https://doi.org/10.1038/s41467-017-00193-4
https://elk.sourceforge.io/
https://doi.org/10.1103/PhysRevA.101.053411
https://doi.org/10.1103/PhysRevA.101.053411
https://doi.org/10.1103/PhysRevA.96.053850
https://doi.org/10.1103/PhysRevA.96.053850
https://doi.org/10.1119/1.18959
https://doi.org/10.1038/s41566-019-0574-4
https://doi.org/10.1038/s41567-018-0315-5
https://doi.org/10.1038/s41567-018-0315-5
https://doi.org/10.1103/PhysRevX.7.021017
https://doi.org/10.1103/PhysRevLett.73.902


B Bibliography

[177] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan, D. R. Reichman,
M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic rydberg
series in monolayer WS2, Phys. Rev. Lett. 113, 076802 (2014).

[178] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly bound
excitons in monolayer WSe2, Phys Rev Lett 113, 026803 (2014).

[179] T. Östreich, K. Schönhammer, and L. J. Sham, Exciton-exciton correlation in the
nonlinear optical regime, Phys. Rev. Lett. 74, 4698 (1995).

[180] F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson Jr., D. V.
Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, Excitonic nonlinearities of
semiconductor microcavities in the nonperturbative regime, Phys. Rev. Lett. 77, 5257
(1996).

[181] C. Sieh, T. Meier, A. Knorr, F. Jahnke, P. Thomas, and S. W. Koch, Influence of carrier
correlations on the excitonic optical response including disorder and microcavity
effects, Eur. Phys. J. B 11, 407 (1999).

[182] S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D. S. Chemla, Collective
effects in excitonic free induction decay: Do semiconductors and atoms emit coherent
light in different ways?, Phys. Rev. Lett. 69, 2685 (1992).

[183] W. Schäfer, F. Jahnke, and S. Schmitt-Rink, Many-particle effects on transient four-
wave-mixing signals in semiconductors, Phys. Rev. B 47, 1217 (1993).

[184] D. S. Kim, J. Shah, J. E. Cunningham, T. C. Damen, W. Schäfer, M. Hartmann, and
S. Schmitt-Rink, Giant excitonic resonance in time-resolved four-wave mixing in
quantum wells, Phys. Rev. Lett. 68, 1006 (1992).

[185] Z. G. Soos, S. Ramasesha, D. S. Galvão, and S. Etemad, Excitation and relaxation
energies of trans-stilbene: Confined singlet, triplet, and charged bipolarons, Phys.
Rev. B 47, 1742 (1993).

[186] F. Guo, M. Chandross, and S. Mazumdar, Stable biexcitons in conjugated polymers,
Phys. Rev. Lett. 74, 2086 (1995).

[187] S. Sauter-Fischer, E. Runge, and R. Zimmermann, Partial dephasing in interacting
many-particle systems and current echo, Phys. Rev. B 57, 4299 (1998).

[188] D. S. Kim, J. Shah, T. C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler,
Unusually slow temporal evolution of femtosecond four-wave-mixing signals in
intrinsic GaAs quantum wells: direct evidence for the dominance of interaction
effects, Phys. Rev. Lett. 69, 2725 (1992).

93

https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRevLett.74.4698
https://doi.org/10.1103/PhysRevLett.77.5257
https://doi.org/10.1103/PhysRevLett.77.5257
https://doi.org/10.1007/BF03219177
https://doi.org/10.1103/PhysRevLett.69.2685
https://doi.org/10.1103/PhysRevB.47.1217
https://doi.org/10.1103/PhysRevB.47.1742
https://doi.org/10.1103/PhysRevB.47.1742
https://doi.org/10.1103/PhysRevLett.74.2086
https://doi.org/10.1103/PhysRevB.57.4299


B Bibliography

[189] H. Wang, K. B. Ferrio, D. G. Steel, P. R. Berman, Y. Z. Hu, R. Binder, and S. W. Koch,
Transient four-wave-mixing line shapes: Effects of excitation-induced dephasing,
Phys. Rev. A 49, R1551 (1994).

[190] Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, Excitation
and polarization effects in semiconductor four-wave-mixing spectroscopy, Phys. Rev.
B 49, 14382 (1994).

[191] T. Rappen, U. Peter, G. Mohs, W. Schäfer, and M. Wegener, Coherent dynamics of
continuum and bound states in germanium, Semicond. Sci. Technol. 9, 422 (1994).

[192] B. F. Feuerbacher, J. Kuhl, and K. Ploog, Biexcitonic contribution to the degenerate-
four-wave-mixing signal from a GaAs/AlxGa1−xAs quantum well, Phys. Rev. B 43,
2439 (1991).

[193] S. Bar-Ad and I. Bar-Joseph, Exciton spin dynamics in GaAs heterostructures, Phys.
Rev. Lett. 68, 349 (1992).

[194] D. J. Lovering, R. T. Phillips, G. J. Denton, and G. W. Smith, Resonant generation of
biexcitons in a GaAs quantum well, Phys. Rev. Lett. 68, 1880 (1992).

[195] J.-Y. Bigot, A. Daunois, J. Oberlé, and J.-C. Merle, Femtosecond dephasing in
CdSxSe1−x mixed crystals: The role of localized biexcitons, Phys. Rev. Lett. 71,
1820 (1993).

[196] K.-H. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, Coherent
generation and interference of excitons and biexcitons in GaAs/AlxGa1−xAs quantum
wells, Phys. Rev. B 47, 2413 (1993).

[197] D. Hulin and M. Joffre, Excitonic optical Stark redshift: The biexciton signature,
Phys. Rev. Lett. 65, 3425 (1990).

[198] G. O. Smith, E. J. Mayer, J. Kuhl, and K. H. Ploog, Pump-probe investigations of
biexcitons in GaAs quantum wells, Solid State Commun. 92, 325 (1994).

[199] G. Smith, E. Mayer, V. Heuckeroth, J. Kuhl, K. Bott, T. Meier, A. Schulze, D. Bennhardt,
S. W. Koch, P. Thomas, R. Hey, and K. Ploog, Polarization selection rules for quantum
beating between light- and heavy-hole excitons in GaAs quantum wells, Solid State
Commun. 94, 373 (1995).

[200] G. Bartels, V. M. Axt, K. Victor, A. Stahl, P. Leisching, and K. Köhler, j (5) Signature
in the four-wave-mixing signal from a GaAs/Al0.3Ga0.7As superlattice, Phys. Rev. B
51, 11217 (1995).

94

https://doi.org/10.1103/PhysRevA.49.R1551
https://doi.org/10.1103/PhysRevB.49.14382
https://doi.org/10.1103/PhysRevB.49.14382
https://doi.org/10.1103/PhysRevB.43.2439
https://doi.org/10.1103/PhysRevB.43.2439
https://doi.org/10.1103/PhysRevLett.68.349
https://doi.org/10.1103/PhysRevLett.68.349
https://doi.org/10.1103/PhysRevLett.68.1880
https://doi.org/10.1103/PhysRevLett.71.1820
https://doi.org/10.1103/PhysRevLett.71.1820
https://doi.org/10.1103/PhysRevB.47.2413
https://doi.org/10.1103/PhysRevLett.65.3425
https://doi.org/10.1103/PhysRevB.51.11217
https://doi.org/10.1103/PhysRevB.51.11217


B Bibliography

[201] K. Bott, E. J. Mayer, G. O. Smith, V. Heuckeroth, M. Hübner, J. Kuhl, T. Meier, A.
Schulze, M. Lindberg, S. W. Koch, P. Thomas, R. Hey, and K. Ploog, Dephasing of
interacting heavy-hole and light-hole excitons in GaAs quantum wells, J. Opt. Soc.
Am. B 13, 1026 (1996).

[202] W. Langbein, J. M. Hvam, M. Umlauff, H. Kalt, B. Jobst, and D. Hommel, Binding-
energy distribution and dephasing of localized biexcitons, Phys. Rev. B 55, R7383
(1997).

[203] P. Kner, S. Bar-Ad, M. V. Marquezini, D. S. Chemla, and W. Schäfer, Magnetically
enhanced exciton-exciton correlations in semiconductors, Phys. Rev. Lett. 78, 1319
(1997).

[204] M. Stein, C. Fuchs, W. Stolz, D. M. Mittleman, and M. Koch, Direct probe of room-
temperature quantum-tunneling processes in type-II heterostructures using terahertz
emission spectroscopy, Phys. Rev. Appl. 13, 054073 (2020).

[205] M. Stein, C. Lammers, P.-H. Richter, C. Fuchs, W. Stolz, M. Koch, O. Vänskä, M. J.
Weseloh, M. Kira, and S. W. Koch, Dynamics of charge-transfer excitons in type-II
semiconductor heterostructures, Phys. Rev. B 97, 125306 (2018).

[206] M. Fey, Kohärente Dynamik und Diffusionsprozesse von Charge-Transfer-Exzitonen,
Universität Gießen, PhD Dissertation (2021).

[207] G. Fuchs, J. Hörer, A. Hangleiter, V. Härle, F. Scholz, R. W. Glew, and L. Goldstein,
Intervalence band absorption in strained and unstrained InGaAs multiple quantum
well structures, Appl. Phys. Lett. 60, 231 (1992).

[208] K. J. Moore, G. Duggan, K. Woodbridge, and C. Roberts, Observations and calcu-
lations of the exciton binding energy in (In,Ga)As/GaAs strained-quantum-well
heterostructures, Phys. Rev. B 41, 1090 (1990).

[209] M. Schlierkamp, R. Wille, K. Greipel, U. Rössler, W. Schlapp, and G. Weimann,
Quantum-well states under biaxial compression and tension, Phys. Rev. B 40, 3077
(1989).

[210] J. Matthews and A. Blakeslee, Defects in epitaxial multilayers: Misfit dislocations, J.
Cryst. Growth 27, 118 (1974).

[211] C. Lammers, Über die Dynamik des Charge-Transfer-Exzitons, Philipps-Universität
Marburg, PhD Dissertation (2017).

95

https://doi.org/10.1364/JOSAB.13.001026
https://doi.org/10.1364/JOSAB.13.001026
https://doi.org/10.1103/PhysRevB.55.R7383
https://doi.org/10.1103/PhysRevB.55.R7383
https://doi.org/10.1103/PhysRevLett.78.1319
https://doi.org/10.1103/PhysRevLett.78.1319
https://doi.org/10.1103/PhysRevApplied.13.054073
https://doi.org/10.1103/PhysRevB.97.125306
https://doi.org/10.1063/1.106973
https://doi.org/10.1103/PhysRevB.41.1090
https://doi.org/10.1103/PhysRevB.40.3077
https://doi.org/10.1103/PhysRevB.40.3077
https://doi.org/https://doi.org/10.1016/S0022-0248(74)80055-2
https://doi.org/https://doi.org/10.1016/S0022-0248(74)80055-2


B Bibliography

[212] F. Schäfer, A. Trautmann, C. Ngo, J. T. Steiner, M. Stein, C. Fuchs, K. Volz, F. Dobener,
T. Meier, and S. Chatterjee, Optical Stark effect in type-II heterostructures, in prepa-
ration, (2023).

[213] W. Huhn and A. Stahl, Self-consistent field theory applied to the semiconductor
band edge, Phys. Status Solidi B 124, 167 (1984).

[214] V. M. Axt, K. Victor, and A. Stahl, Influence of a phonon bath on the hierarchy of
electronic densities in an optically excited semiconductor, Phys. Rev. B 53, 7244
(1996).

[215] J. E. Sipe and E. Ghahramani, Nonlinear optical response of semiconductors in the
independent-particle approximation, Phys. Rev. B 48, 11705 (1993).

[216] A. Trautmann, M. Stein, F. Schäfer, D. Anders, C. Ngo, J. T. Steiner, M. Reichelt,
S. Chatterjee, and T. Meier, Analysis of the nonlinear optical response of excitons
in type-I and type-II quantum wells including many-body correlations, Proc. SPIE
12419, 124190A (2023).

[217] T. Meier, P. Thomas, and S. W. Koch, Linear and nonlinear optical properties of
semiconductor nanorings with magnetic field and disorder - Influence on excitons
and biexcitons, Eur. Phys. J. B 22, 249 (2001).

[218] M. Fey, M. Stein, C. Fuchs, W. Stolz, K. Volz, and S. Chatterjee, Phase relaxation
control in heterostructures featuring charge-transfer excitons, Phys. Rev. B 106,
165303 (2022).

96

https://doi.org/https://doi.org/10.1002/pssb.2221240118
https://doi.org/10.1103/PhysRevB.53.7244
https://doi.org/10.1103/PhysRevB.53.7244
https://doi.org/10.1103/PhysRevB.48.11705
https://doi.org/10.1117/12.2650169
https://doi.org/10.1117/12.2650169
https://doi.org/10.1007/s100510170133
https://doi.org/10.1103/PhysRevB.106.165303
https://doi.org/10.1103/PhysRevB.106.165303


Danksagung

Im Rahmenmeiner Arbeitsstätigkeit in der Arbeitsgruppe von Prof. Dr. Torsten hatte ich die
Möglichkeit an vielen spannenden nationalen sowie internationalen Forschungssprojekten
teilzunehmen. Durch die Teilnahme an Physikkonferenzen sowie diversen Workshops
konnte ich in Austausch mit interessanten Forschern treten sowie neue Orte entdecken.
Dabei bin ich nun schon insgesamt seit mehr als 8 Jahren Teil dieser Arbeitsgruppe und
habe meine Abschlussarbeiten allesamt in diesem Lehrstuhl angefertigt. Seither stand Prof.
Dr. Torsten Meier mir immer als Ansprechpartner zur Verfügung und unterstützte mich
bei der Bearbeitung diverser physikalischer Problemstellungen. Trotz der Umstellung auf
Home-Office bedingt durch die Corona Pandemie wurde stets ein ausgiebiger Austausch
von ihm gewährleistet und ermöglicht. Insbesondere dieMöglichkeit zur Anfertigung dieser
Forschungsarbeit im Rahmen meiner Doktorandenstelle sowie dem Vertrauen und der
mehrjährigen Unterstützung möchte ich mich an dieser Stelle ganz herzlich bedanken.

Zu Beginn meiner Tätigkeit als Doktorand wurde ich außerdem von Dr. Wolf-Rüdiger
Hannes betreut. Mit ihm konnte ich mich stets austauschen, wenn es Unklarheiten beim
Verständnis aber auch der Programmierung komplizierter physikalischer Problemstellun-
gen ging. Auch ihm gilt mein Dank für diese Unterstützung. Des Weiteren bedanke ich
mich bei Ruixin Zuo für die gemeinsamen Kooperationsprojekte. Außerdem bedanke ich
bei meinen langjährigen Mitarbeiter Dr. Hendrik Rose und Dr. Matthias Reichelt, die mit
ihren Ideen und Ratschlägen meine Forschungsarbeiten bereichert haben.

Zum Schluss bedanke ich mich bei meinen Eltern, die mich fortwährend motiviert und
stets Zuspruch gegeben haben.

97


	Introduction
	Fundamentals
	Semiclassical description of the light-matter interaction in semiconductors
	The SBE in TDHF approximation
	Nonlinear optical signals

	Strongly nonresonant four-wave mixing in semiconductors
	Two-level model
	Two-band model
	Conclusions

	Collision dynamics in solid-state high harmonic generation
	Semiclassical three-step recollision model in solids
	Orientation-dependent high harmonic generation
	Collision-assisted electron-hole recombination
	Control of high harmonic generation by two-color excitation
	Conclusions

	High harmonic generation with excitons
	Enhancement of HHG by excitonic resonances
	Conclusions

	Analysis of many-body Coulomb correlations in the excitonic nonlinear optical response 
	Experimental setup to study the excitonic nonlinear response of type-I/II quantum wells
	Theoretical model and approach
	The SBE in the coherent (3)-limit
	One-dimensional tight-binding model
	Numerical results for type-I and type-II excitons

	Comparison with optical-pump optical-probe experiment
	Conclusions

	Summary
	Appendix
	Perturbative expansion with directional information
	Analysis of PP in third order

	Model parameters for the numerical solutions of the SBE in the coherent (3)-limit

	Bibliography

