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In an era increasingly driven by the transformative power 
of data, the significance of data and data modeling cannot 
be overstated. This book explores these pivotal topics in 
the context of data science and education, highlighting 
their critical role in advancing our understanding of 
complex phenomena to meet diverse educational needs in 
the big data era.

It is with immense pleasure that I present this scholarly 
volume, a collaborative effort that brings together young 
and experienced scientists from different disciplines to 
facilitate an interdisciplinary discourse. The contributors 
to this compilation actively participated in our 2022 
Minerva School “An Interdisciplinary Exploration of 
Future Data Pedagogies and Digital Tools to Nurture 
Citizens’ Reasoning with Models and Modeling in the 
Big Data Era” held in Paderborn, Germany. This Minerva 
School brought together a range of expertise from 
different subject domains, theoretical perspectives, and 
methodological approaches.

The chapters in this volume emanate from the presen-
tations and enriching discussions that characterized the 
Minerva School. This ambitious undertaking wouldn’t 
have been possible without the support of the Minerva 
Foundation, whose financial backing not only materi-
alized this publication but also facilitated the seamless 
execution of the conference.

My heartfelt gratitude extends to all of the attendees of 
the conference, who generously shared their research and 
actively participated in the interdisciplinary dialogues. 
Your invaluable contributions have enriched the Minerva 
School and reflect the collaborative spirit that defines our 
scientific community.

To the authors who have generously contributed to 
this volume, my profound thanks. Your commitment to 
expanding the boundaries of knowledge and sharing your 
expertise has undeniably shaped the essence of this book, 
illuminating new trajectories for the future. The variety 
of perspectives and the depth of insight provided by each 
contributor have made this collection a valuable and 
informative resource.

I extend my deepest appreciation to my co-editors and 
co-organizers Michal Dvir, Daniel Frischemeier and Dani 
Ben-Zvi. Your steadfast commitment and collaborative 
efforts have been instrumental in bringing this project to 
fruition, and for that, I am profoundly grateful. You are 
the very best! 

Special commendation is reserved for Tim Erickson for 
his outstanding contributions to the editing, formatting, 
layout, and presentation of this book. His meticulous 
attention to detail has significantly enhanced its read-
ability and overall quality. It has been both a pleasure and 
a privilege working alongside you. (And I’m a little proud 
that you learned a new word from me).

To all those involved in realizing this endeavor, I extend 
my sincere appreciation, and I earnestly hope that readers 
discover in this collection a valuable resource for explora-
tion and discovery.

Susanne Podworny 
February 2024, Paderborn University
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The multidimensional pedagogical potential 
of data modeling

Michal Dvir, Susanne Podworny, Dani Ben-Zvi, and Daniel Frischemeier

Data have permeated our everyday lives and has become 
an indispensable commodity. New forms of data, data 
visualization, and human interaction with data are 
changing radically and rapidly. As a result, what it means 
to be data literate is also changing. Industrial processes, 
marketing processes, economic processes, and moni-
toring processes in politics are all based on data and 
statistics (Gould, 2017; Engel, 2017). The internet as well 
as sensors and apps have made large and messy datasets 
available to the public, allowing easy access to meaningful 
explorations in these domains. However, unscrupulous 
data manipulation and biased reports have also become 
a staple of today’s reality, empowering a self-selected few 
to dangerously influence public opinion and policy. To 
counter these dangers in the big data era, people should 
not simply be passive recipients of data-based reports, 
but rather become active data explorers who can plan 
for, acquire, manage, analyze, model, and infer from data 
to make informed data-based decisions and judgments. 
The latter necessitate developing data related skills such 
as understanding how data can be used to describe and 
model the world, and critically evaluate the use of data 
analysis, modeling, and visualization.

This current data-era reality has encouraged educators 
across various fields to address these new demands. A 
shared trend has been to move away from the traditional 
focus on procedures relevant to a discipline (be it math-
ematics, science, computer science, etc.) and focus more 
on engaging learners in practices that are authentic to 
that discipline, to facilitate learning through experience 
(Garfield & Ben-Zvi, 2008). Even though disciplines 
differ in their practices, one key practice—modeling—
appears to be a shared focus (Pfannkuch, Ben-Zvi, & 
Budgett, 2018). Examining its pedagogical potential is 
becoming central across various disciplines, resulting in 
innovative, albeit local, insights. In light of this, the goal of 
the German-Israeli Minerva School held in August 2022 
at Paderborn, Germany, was to facilitate a cross-disci-
plinary discussion to coalesce these local understandings 
into one encompassing framework that is deeper and 
more comprehensive than its individual current strands. 

This collection of contributions introduces various 
perspectives of the Minerva School 2022 participants on 
the theme of the School: “An interdisciplinary exploration 
of future data pedagogies and digital tools to nurture 
citizens’ reasoning with models and modeling in the big 
data era.”

This preliminary chapter will introduce some of the 
perspectives on data models and modeling that arose in 
this interdisciplinary discussion as represented by the 
subsequent chapters. We then offer an initial first-pass 
multidimensional framework derived from the discussion, 
describing the pedagogical potential of data modeling. 
Finally, we will use that framework to introduce the 
chapters themselves.

Data models and modeling: 
objects, practices, and pedagogies
In this section we provide background for the key terms 
this book focuses on: data models, the practice or process 
of data modeling, and data modeling pedagogies. We start 
by explaining the definitions of data models and modeling 
that were adopted in this book. These definitions bridge 
different disciplinary discourses and showcase the multi-
faceted or multidimensional nature of data modeling. 
We then provide some background about data modeling 
pedagogies, adding an additional dimension to account 
for the pedagogical potential of data modeling.

Data models and data modeling
Modeling is an inseparable aspect of data handling, 
understanding, and skills. The term “model” fundamen-
tally means a representation, an analogy, with a descrip-
tive, explanatory, or predictive purpose (Hesse, 1962). 
The model is typically a simplification of a more complex 
phenomenon, consisting of a representation of specific 
elements and possible relations between them (Lesh & 
Doerr, 2003). As a representation may be found to be 
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ill-suited for its intended purpose, the model should be 
constantly evaluated and refined (Hesse, 1962). Modeling 
refers to the process of model creation, evaluation, and 
refinement. 

Using this broad view, we define a “data model” as 
a purposeful representation using data. According 
to this view, because data are a simplified represen-
tation of a real-world phenomenon, the data values 
themselves can serve as models (e.g., Podworny & 
Frischemeier, p 15). Building on that foundation, 
we can think of “public-friendly” visual or verbal data 
representations as data models (e.g., Binder, p 23; 
Bielik, p 33; Büscher, p 49; Engel, p 101; 
Gafny & Ben-Zvi, p 69; Gal, p 91); as well as more 
formal models typically represented mathematically (e.g., 
Gould 2024 p 81; Hagenkötter et al., p 41).

If data are models, the process of collecting data and 
analyzing them is a modeling process. This is what many 
have considered to be “data modeling” (e.g., Hancock, 
Kaput, & Goldsmith, 1992; Lehrer & Romberg, 1996; 
Lehrer & Schauble, 2000). Following our definition of 
data model, the data modeling process should include the 
original choices made (such as what attributes should be 
collected); subsequent refinements such as changing or 
adding new attributes (Manor & Ben-Zvi, 2015); cleaning 
the data or tinkering with the data structure (Erickson 
et al., 2019); constructing data representations; and 
producing summaries of patterns and variation observed 
in these representations (Dvir & Ben-Zvi, 2023; Binder 
2024, p 23). This broad definition includes more 
obvious and restricted examples of data modeling such 
as fitting a least-squares line to data or asserting that two 
variables are independent.

As you will see shortly, the breadth of this definition 
helps us develop our framework within a deeper and 
more comprehensive interdisciplinary discussion. We will 
create a set of what we call dimensions in our framework, 
offering a structure and a common ground for talking 
about reasoning with data models and modeling. For 
example, putting data at the center of both the object 
(the model) and the practice (modeling) highlights that 
reasoning with data and data knowledge (e.g., creating 
useful data representations) plays an important role—and 
can prove to be a significant hindrance—when engaging 
in data modeling (Konold & Higgins, 2003). The 
emphasis on representations highlights an additional 
dimension of reasoning with data models and modeling 
relating to the subject that is being represented, the 
phenomenon, or the context, that is key in evaluating 
the usefulness of the data model (Wild & Pfannkuch, 
1999) and interpreting its meaning. The latter can be 
particularly challenging when the modeler or data analyst 
has limited disciplinary (e.g., scientific) knowledge about 
the modeled phenomenon (Finzer, 2013). An additional 

important dimension of reasoning with data models and 
modeling relates to more general modeling skills such as 
fitting a model and evaluating the extent of the explana-
tion, description, or prediction, that a specific data model 
provides for a given data set. The latter is an important 
driver of the data modeling process, as it determines 
whether the current model is sufficient (Dvir & Ben-Zvi, 
2018), alongside additional general modeling drivers 
such as the purpose of the model (Hesse, 1962) and an 
initial conjecture that is often formulated prior to the data 
modeling process (Budgett & Pfannkuch, 2018).

As with other cross-disciplinary practices (such as 
forming data-based conclusions), beyond these three 
dimensions of data-related knowledge, contextual 
knowledge, and modeling drivers, an additional facet that 
is intrinsically related to engaging in data modeling is 
adopting supportive habits of mind, e.g., seeking explana-
tion, a critical stance toward data-based claims, flexibility, 
and creativity (Makar, Bakker, & Ben-Zvi, 2011), as 
well as adopting modeling related norms, e.g., basing 
models on data (Dvir & Ben-Zvi, 2018), or enhancing or 
balancing explanatory and predictive potential (Sainani, 
2014). This multifaceted and multidimensional nature of 
data modeling suggests some of the pedagogical benefits 
of engaging in data modeling activities, inspired and 
informed by various modeling-centered pedagogies.

Designing pedagogies centered on data modeling
Modeling-centered pedagogies are a shared interest across 
various data-related fields. In mathematics education, 
for example, modeling has been prominent in the last 
decades (e.g., Stillman et al., 2013), and has been at the 
forefront of pedagogy improvement and implementation 
discussions. These include examining young modelers’ 
experiences and mathematical insights (e.g., Gravemeijer, 
1999), and aspects of modeling-centered activity design 
(e.g., model eliciting activities: Lesh, Hoover, & Kelly, 
1992). In science education, modeling is considered 
both a key scientific and engineering practice as well as 
a crosscutting concept that should be integrated into 
standards of curriculum, instruction, and assessment, to 
support students’ meaningful learning (National Research 
Council, 2012). In particular, “data modeling” has been 
described in a manner that is closely connected to the 
process of scientific inquiry, involving iterative cycles 
of posing questions, generating and selecting attributes 
that can be measured, constructing measures and data 
representations, and making inferences (Lehrer & 
Romberg, 1996).

Wild and Pfannkuch (1999) describe a similar inves-
tigative cycle as one of the main dimensions of expert 
statistical reasoning, and they describe modeling as one 
of the general thinking types expert statisticians employ. 
The pedagogical potential of modeling has gradually 
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become the focus of the statistics education community 
as a means to enculturate learners into statistical practice 
(Pfannkuch et al., 2018). Engaging in modeling-based 
activities can support developing learners’ statistical 
reasoning with informal statistical inference, uncertainty, 
context, data and distribution, and variability (Garfield & 
Ben-Zvi, 2008). In many cases the modeling-based task 
centers on representing data (Pfannkuch et al., 2018), 
thus can be considered as a data modeling activity. This 
can happen in a number of ways. For example, Ben-Zvi, 
Gravemeijer, and Ainley (2018) advocate for the use 
of real or realistic data as part of the task design and 
suggest that we design the task to center on big ideas, 
incorporating assessment aligned with this focus and a 
supportive, often digital tool. The growing availability of 
authentic, large datasets and innovative digital tools can 
further facilitate students’ engagement in modeling tasks 
and provide educators and activity designers with a wider 
array of modeling-centered pedagogical opportunities.

Advancements and higher accessibility of new digital 
tools support innovative data modeling task designs 
(Biehler et al., 2013), helping learners and designers place 
more emphasis on key concepts and deep understanding 
of data-related notions, rather than on procedures and 
technical calculations (Cobb, 2007). Dynamic visual-
izations further support reasoning and modeling as they 
help students examine the underlying mechanisms of 
phenomena and the models representing them (Rubin 
& Hammerman, 2006). Furthermore, current digital 
educational tools (e.g., CODAP, iNZight, TinkerPlots) 
can be specifically tailored to meet young learners’ needs 
and support their gradual construction of data and 
modeling concepts previously considered too compli-
cated or out of their reach. Applets and web applications 
can also facilitate data explorations, providing easy access 
for interested citizens and instructional designers. More 
professional tools like R or programming environments 
like Jupyter notebooks offer more features to explore big 
data, but may require more support to engage users. The 
abundance and diversity of digital tools therefore requires 
an understanding of each tool’s unique affordances and 
limitations, to fruitfully engage learners in activities that 
will foster their reasoning with data modeling.

While the task itself and the choice of technological tools 
are important elements of the activity design, additional 
design aspects also warrant consideration to nurture 
a productive classroom culture (Ben-Zvi et al., 2018). 
These include fostering collaboration or discussion norms 
as well as considering the role of the teacher and the scaf-
folding they provide, e.g., prompts and questions (Makar 
et al., 2011). Together, all these aspects of design form 
add to the multidimensional nature of data modeling 
pedagogies.

The multidimensional nature of data 
modeling-centered pedagogies
The definition of data model, as well as the character-
istics of data modeling, can vary both within a single 
discipline (e.g., Schulte, p 61) and across disciplines 
(e.g., Hagenkötter et al., p 41, and Gafny and Ben-Zvi, 
p 69). Put together, these different views highlight the 
multidimensional nature of the data modeling practice, 
and even more so, of the pedagogies it can inspire. Based 
on and inspired by Makar et al.’s (2011) framework 
describing the different elements that support reasoning 
with informal inference, we offer an initial framework 
(Table 1) that describes dimensions that characterize, 
mediate, and foster learners’ reasoning with data models 
and modeling. We hope it can be used to classify various 
data-modeling-centered pedagogies and related research.

Makar et al. (2011) describe five categories in their 
framework: Statistical knowledge, Contextual knowledge, 
Norms and habits, Inquiry drivers, and Design elements. 
We adapted these to the context of data modeling; our 
framework describes five different dimensions of data 
modeling pedagogies. Specifically, the Statistical knowl-
edge category became the Data knowledge dimension and 
the Inquiry drivers category became the Modeling drivers 
dimension. We use the term dimension rather than category 
to advocate for their concurrent consideration, despite the 
distinctions between them. We also adapted some of the 
elements detailed within each category, e.g., substituting 
the Belief element of the category Inquiry drivers, with 
Purpose as an element of the Modeling drivers dimension. 
Two considerations guided this adaptation, relating to (1) 
prior literature on data models, data modeling, and data 
modeling-centered pedagogies; and (2) the key character-
istics of the new contributions introduced in each chapter 
of this book. Thus, the resulting framework (Table 1) is 
not necessarily an exhaustive one, but it lets us highlight 
the multidimensional nature of the pedagogical potential 
of data modeling, as well as introduce and classify the 
work presented in each of the book’s chapters. The result 
of the classification is also noted in Table 1, and will be 
elaborated in the next subsection.
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Dimension Elements 
included in the 

dimension

Examples Chapters that relate to the 
element (explicit/implicit)

Data 
Knowledge

Data related 
concepts

Data, variation, distribution, 
signal and noise, models

Podworny & Frischemeier p 7
Binder p 23, Gould p 81, 
Gal p 91

Data practices Data collection, data cleaning, data moves 
(Erickson et al., 2019), data visualizations 
& representations (e.g., plots, graphs, tables, 
trees), model fitting, testing, and training

Podworny & Frischemeier p 7
Binder p 23,  Bielik p 33
Hagenkötter et al. p 41
Gafny & Ben-Zvi p 69
Engel p 101

Contextual 
(disciplinary) 
knowledge

Knowledge 
about the 
problem 
context

Familiarity with aspects of the investigated 
phenomenon, awareness of possible 
relationships between elements of the 
phenomenon 

Bielik p 33
Hagenkötter et al. p 41
Büscher p 49, Schulte p 61

Disciplinary 
practices

Disciplinary-specific practices and the 
values, purpose and endorsed narratives 
that guide their implementation 

Bielik p 33
Hagenkötter et al. p 41
Schulte p 61
Gal p 91

Norms 
and habits

Modeling 
norms

Basing models on data, balancing explana-
tory and predictive potential

Hagenkötter et al. p 41
Büscher p 49

Habits of mind Seeking explanations, critical stance toward 
data-based claims, flexibility and creativity

Podworny & Frischemeier p 7
Büscher p 49
Gal p 91
Engel p 101

Modeling 
drivers

Purpose Explanatory, descriptive, or predictive Podworny & Frischemeier p 7
Büscher p 49, Schulte p 61
Gafny & Ben-Zvi p 69
Gould p 81, Gal p 91
Engel p 101

Conjectures Assumptions based on disciplinary knowl-
edge and prior data

Gal p 91
Engel p 101

Model fit Assessing the explanatory potential of the 
model

Büscher p 49, Schulte p 61
Engel p 101

Design 
elements

Task Real or realistic data, focus on central ideas, 
assessment to monitor and evaluate

Podworny & Frischemeier p 7, 
Bielik p 33, Büscher p 49
Gafny & Ben-Zvi p 69
Gould p 81

Tool CODAP, TinkerPlots, SageModeler

purpose-built: cli.math

Bielik p 33
Büscher p 49

Classroom 
culture

Role of the teacher, collaboration and 
discussion norms

Bielik p 33

Table 1: The multidimensional framework of data modeling
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Using the multidimensional framework 
to introduce the book’s chapters
Before introducing each of the book’s chapters, we first 
note that the work presented in many of the chapters 
relates to multiple dimensions of this framework, either 
explicitly or more implicitly. In this introduction, we will 
limit our descriptions to the elements that each chapter 
particularly highlights, so that the depiction is concise 
and the relations and distinctions between each chapter 
are clearly noticeable. Table 1 provides a summary of the 
elements identified to be reflected in each of the chapters, 
along with a distinction between the elements that were 
more explicit (in blue) and those that were implied (in 
green).

The first chapter, by Susanne Podworny and Daniel 
Frischemeier (p 15), describes a study of young 
learners’ perspectives on the concept of data as a model, 
specifically asking sixth grade students the questions: 
what are data? And what are data for? In terms of the 
framework, the chapter particularly relates to Data related 
concepts (the concept of data and its meaning), an element 
of the Data knowledge dimension; and the Purpose of 
models (what are data, as a model, used for) an element 
of the Modeling drivers dimension. This chapter also 
provides a detailed account of the Task (an element of the 
Design dimension) that the students engaged with prior to 
being asked these two questions, and illustrates that the 
meaning of even the most basic data related concept, data, 
might need to be intentionally nurtured, particularly as it 
can deeply influence learners Habits of mind (an element 
of the Norms and habits dimension) when engaging with 
data and data models

The following chapter, by Karin Binder (p 23), extends 
the discussion on the need to nurture novices’ under-
standing of Data related concepts (the Data knowledge 
dimension) by considering more complex concepts 
such as conditional probabilities. Binder also refers to 
Data related practices as she explores the pedagogical 
affordances of different visualizations to support novices’ 
(tenth grade students and university students) intro-
duction to this concept. Binder describes the types of 
reasoning each visualization can mediate, as well as the 
unique challenges associated with each tool.

While Binder discusses a variety of static, pre-made 
representations, the chapter by Tom Bielik (p 33), 
focuses on a digital tool (SageModeler) that allows 
learners to construct their own dynamic representations. 
The chapter discusses how the digital Tool can support 
students’ modeling and Data practices, and also highlights 
additional design elements such as the Task itself as well 
as the Classroom culture (e.g., students’ collaboration). 
The chapter also highlights the Contextual (disciplinary) 
knowledge dimension. That is, the modeling task relies 

heavily on (and can nurture) scientific Knowledge about 
the problem context, and the purpose of the intervention 
is to develop scientific knowledge as well as scientific 
Disciplinary practices (e.g., computational practices and 
thinking).

While Bielik focuses on a digital tool, the chapter by 
Ramona Hagenkötter, Valentina Nachtigall, Katrin Rolka 
and Nikol Rummel (p 41) extends the discussion on 
the pedagogical potential of data modeling to introduce 
novices to Disciplinary practices, using hands-on exper-
imentation. In contrast to other chapters, the focus is 
not on the pedagogical potential of data modeling in 
developing data modeling skills, but rather on mathe-
matical modeling with data. As is the case in Bielik, the 
pedagogy that is introduced (mathematical hands-on 
experimentation) underscores elements associated with 
the Contextual (disciplinary) knowledge dimension. The 
basis of the modeling task is mathematical Knowledge 
about the problem context and the main purpose of the 
intervention is to develop a wider, more mature, view of 
mathematical Disciplinary practices, complemented by 
some Data practices. Moreover, the goal is also to extend 
tenth grade students’ naïve views of mathematics as a 
schematic-algorithmic application of procedures, and to 
introduce them to more mature mathematical Norms (the 
Norms and habits dimension).

The Norms and habits dimension is also highlighted in 
the chapter by Christian Büscher (p 49). As in the 
chapter by Hagenkötter et al., this chapter introduces and 
examines a data-modeling centered pedagogy, with the 
purpose of nurturing additional (not necessarily data) 
practices (e.g., argumentation). The activity focuses on 
the consumption (as opposed to construction) of visual 
and textual data representations. The activities that 
the students engage in are intended to gradually foster 
argumentation norms as well as data-related Habits of 
mind, e.g., a critical stance toward data-based claims. 
The contextual (disciplinary) knowledge is an additional 
dimension that the chapter highlights, explicitly 
discussing the importance of authentic Problem contexts. 
The latter is a key Design element as well, inspiring both 
the Task and the choice of supportive Tools. The Modeling 
Drivers dimension is also highlighted in the chapter, 
as the learners are guided by an authentic Purpose of 
constructing a data-supported argument, based on Fitting 
a Model to given data.

The aspect of the user’s purpose as an element in the 
Modeling drivers dimension is also highlighted in the 
chapter by Carsten Schulte (p 61). The chapter 
introduces the traditional view of data models in 
computer science and computer science education, 
centering on their representational purpose. The creation 
of the model and its implementation through software 
highlight the need for contextual (disciplinary) knowledge, 
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including both knowledge about the problem context as 
well as familiarity with disciplinary practices. The chapter 
then suggests some limitations associated with this view, 
as the Disciplinary practices of implementing the model 
through generating and then running the software change 
the reality that the model had originally represented, 
hindering the Model’s fit to the transformed reality. The 
chapter concludes with a call to extend the classical 
view of data modeling in computer science education to 
include an additional transformative Purpose.

The fact that models might have different purposes has 
implications explored in the next chapter, by Ronit Gafny 
and Dani Ben-Zvi (p 69). Like the discussion in the 
previous chapter, this one also distinguishes between 
classical data modeling purposes and more modern big 
data or non-traditional data modeling-centered Purposes. 
The authors explain how the different purpose is often 
accompanied by different Data practices. While the 
chapter highlights the modeling drivers and data knowledge 
dimensions, it also closely relates to the Design dimension, 
as the main product that the chapter offers is an innova-
tive pedagogical approach, illustrated by a sequence of 
Tasks bridging classical and non-traditional Data practices, 
making both more accessible to novices.

The pedagogical potential of classical or “traditional” data 
modeling to introducing novices to new data practices 
is also related to the following chapter, by Robert Gould 
(p 81). Focusing on the disciplines of statistics and 
data science as well, the chapter discusses the properties 
and pedagogical potential of “traditional” models (Data 
related concepts) as opposed to the focus on data practices 
in Gafny & Ben-Zvi. The chapter provides many examples 
of formal traditional models and Tasks and explains how 
they can be used (and may be vital) to introduce novices 
to important aspects at the core of data science.

The chapter by Iddo Gal (p 91) also discusses the 
question of what data models (and other Data related 
concepts) should be taught. Gal also asks an additional 
question: taught to whom? This chapter examines 
these questions in relation to everyday data consumers 
(rather than Gould’s focus on novice data analysts). The 
chapter suggests distinguishing three different types of 
consumers, and identifies relevant models for each type 
(Data related concepts), in accordance with the different 
modeling Purposes each type of consumer typically has. 
The chapter also highlights the need to develop awareness 
of the Purpose of the model and the model’s creator, as 
well as to the assumptions made (Conjectures) when 
generating the model, as part of the modeling drivers. The 
chapter also advocates nurturing the public’s habits of 
mind (e.g., developing a critical stance towards data and 
data representations) to develop and support the latter 
awareness.

While Gal considers the specific Data related concepts that 
different types of data consumers should be empowered 
with, the last chapter in the book, by Joachim Engel 
(p 101), extends the discussion on the need for all 
data consumers to develop a critical stance as part of the 
Habits of mind, and critical awareness to the purposes of 
the model creator (e.g., potential biases), their underlying 
conjectures, and the type and nature of the data that 
is modeled (and the Fit between them). This chapter 
provides a more holistic discussion of this need, reified by 
the current and changing information ecosystem char-
acterizing modern life. The chapter identifies key ques-
tions that data and data models’ consumers should be 
supported to raise, and concludes by suggesting key ways 
to nurture their critical appreciation of data and models.

The ten chapters of this book vary in many ways. They 
reflect different views and insights on data-modeling-cen-
tered pedagogies from different disciplinary fields; 
they consider different types of learners—young, more 
mature, data professionals, and everyday data consumers; 
some focus on specific pedagogical implementations or 
educational data tools, others provide more generalizable 
blueprints for future data modeling pedagogies, and 
others provide more holistic perspectives and sugges-
tions; some highlight the need to develop data knowledge 
and its pedagogical role, others highlight contextual 
(or disciplinary-specific) considerations, or the need to 
nurture more data savvy habits and norms; many discuss 
the role of modeling drivers while others highlight 
supportive design elements. Put together, this variation 
provides the reader a rather comprehensive appreciation 
of the multidimensional pedagogical potential of data 
modeling centered pedagogies, that can be implemented 
to attend to the variety of educational needs character-
izing the big data era. Though extensive, the account of 
this multidimensional phenomenon is not an exhaustive 
one, and we urge readers to further extend and build on 
the research depicted in the following pages.
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Addressing data as a model and promoting a deeper under-
standing can provide a solid foundation for future modeling 
activities and enhance comprehension of data-based AI 
methods. Data—viewed not just as raw information but as 
a model—simplify complex aspects of the world and serve 
various purposes. A series of lessons taught 6th-grade students 
the AI method of decision trees using nutritional data. After 
the series of lessons, students answered a questionnaire and 
offered their perspective on data. The answers were analyzed 
using qualitative content analysis. Several students recognized 
data as a representation with context and understood its 
purpose for decision-making. However, some perspectives were 
incomplete, indicating a need for more explicit discussions 
about data as a model in the classroom. 

Introduction
Our everyday life requires constant engagement with 
models based on data as indicated by current trends 
in statistics education (Burrill & Pfannkuch, 2023). 
Diagrams, studies, AI algorithms, predictive models, all 
of these can be found in our daily lives and can shape 
the statistical thinking and reasoning of young learners. 
The bases for all of these are data. However, data do not 
simply exist, but rather are themselves already models of 
reality (Konold et al., 2017). Good data is an important 
prerequisite for good models that improve our daily 
lives instead of, for example, fomenting prejudice (see, 
e.g., nasty algorithm as in Zweig, 2022). Data are being 
accumulated en masse nowadays, for example when using 
smartphones, while in the household, or in traffic. In addi-
tion, data are collected or generated specifically to pursue 
certain interests, such as being able to place targeted 
advertisements in a news feed. AI systems operate in the 
background for this purpose, recognizing patterns in data 
and making predictions or suggesting decisions. To gain 
some understanding of these processes, there has been a 
recommendation to teach Data Science and AI in school 
(Biehler & Schulte, 2018; Ridgway, 2016). To build 
appropriate understanding about how such AI systems 

work, students must see into the “engine room” and 
behind the black box of AI and the accompanying data 
exploitation. 

The recently published German Data Literacy Charter 
(Schüller et al., 2021) emphasizes the importance 
of bringing the topics of data literacy and data-based 
decision-making into schools:

“In concrete terms, this requires the inclusion of data 
literacy in the curricular and educational standards 
of schools, teacher training, and higher education. 
Learners should not only be addressed as passive 
consumers of data. We rather enable them to actively 
shape data-related insights and decision-making.” 
(Schüller et al., 2021, p. 3)

For schools, appropriately simplified subject content 
and suitable examples are necessary that can be used to 
foster data literacy. A prerequisite for data literacy is the 
concept of data and understanding its nature. Learning 
concepts is more than learning a definition; there is a 
need to perform operations and observations in a learning 
situation (Gagné, 1965). So learning about the concept 
of data includes coping with, using, analyzing, and 
recognizing data. 

Nutritional information in form of nutritional variables 
like calories, fat, sugar, etc. and the corresponding values 
for a food item can be seen as a model for food. These 
data models for several food products can serve as exam-
ples of an accessible use of data to support young students 
to develop a procedure (itself a model) that, similarly to 
formal AI algorithms, makes decisions about whether a 
food should be recommended or not. This served as the 
inspiration for a series of lessons in the ProDaBi project 
(www.prodabi.de/en) that was developed and imple-
mented in several classes, to teach 6th grade students 
to use the AI method of decision trees with nutritional 
data (Podworny et al., 2021). As data are the basis for AI 
models and students are situated in a nutritional context 
in this case, students’ notions of the concept of data are 
important and it is important what can and cannot be 
done with data. 

Young learners’ perspectives on the 
concept of data as a model: what are data 

and what are they used for?
Susanne Podworny and Daniel Frischemeier

Paderborn University, University of Münster   
podworny@math.upb.de, dfrische@uni-muenster.de
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Background

Data 
“Data” is the first fundamental idea in statistics as 
described by Burrill & Biehler (2011). This includes 
aspects such as types of data, ways of collecting data, and 
measurement. More than 20 years ago, Cobb & Moore, 
(1997, p. 801) defined “data are not just numbers, they 
are numbers with a context” (emphasis in original) and 
this is still true today. Cobb & Moore give an example, 
a sequence of numbers (3, 5, 23, 37, 6, 8, 20, 22, 1, 3), 
which in itself is not very informative, and it is difficult to 
ascribe meaning to it. However, knowing that these are 
monthly numbers of people accused of witchcraft in Essex 
County, Massachusetts, from February 1692 onwards, 
reveals two waves of witch hunts in the USA colonial 
period. When we know the context of the witch hunts, 
the non-informative number sequence tells a story. This 
understanding about data is a prerequisite for modeling 
the world through data, for example, by displaying the 
data in a diagram like the one in Figure 1. The caption 
gives the diagram a meaning beyond the pure numbers.

Figure 1.	 Number of people accused of witchcraft in 1692 in 
one village

Thus the context of any data is particularly relevant 
for getting information from the data, and integrating 
statistical and contextual information is a crucial part of 
statistical reasoning: 

“Context determines how and what data to collect, 
as well as how to analyze the data and interpret the 
results. This results in a constant interplay between 
considering a statistical problem and the context of 
the problem” (Weiland, 2019, p. 19). 

This is stated by Wild & Pfannkuch (1999, p. 225) as well: 
“the ultimate goal of statistical investigation is learning in 
the context sphere” (emphasis in original).  This view of 
what data are facilitates connecting what data are with an 
additional central entity in statistics: models.

Data as model
A model is used “to represent aspects of the world for 
various purposes” (Giere, 2004, p. 747). Applying this 
definition to data, we see that data essentially contain two 
features. First, data represent some aspects of the world, 
including the context of the data (Weiland, 2019; Wild 
& Pfannkuch, 1999); and second, data serve a purpose 
(Ainley, 2012). One way for using a model to represent 
aspects of the world is to exploit similarities between 
the model and the aspect of the world it represents.  As a 
result, data fulfill two important characteristics of models: 
they are simplified representations of a more complex 
world (i.e., the context), and they serve various purposes 
as indicated in the definitions of a model by Ainley 
(2012) and Giere (2004).

To emphasize how data are also models, one is tempted 
to use a phrase such as “data models”—which would be a 
pleonasm—in order to emphasize that role. That would 
cause some problems here, however, for two reasons: 
first, other authors (e.g., Gafny & Ben-Zvi 2024, in this 
volume on page 69) use that phrase to mean other 
things. Second, as we will see shortly, there is another 
layer of modeling essential to the discussion, and using 
the word “model” to represent both layers would be 
confusing. We therefore ask the reader to remember 
throughout this chapter that we are investigating student 
conceptions of the model-nature of data—both context 
and purpose.

Models based on data: the next layer
While data values by themselves offer one representation 
of a phenomenon, the detailed nature of data and the 
variation that characterize it might render it not useful 
enough for the purpose for which the data were collected. 
To extract additional meaning, additional models that 
are more summative or aggregate in nature are often 
necessary. Thus, we use the data (as model) as the basis 
for these additional models, so that they become models 
of models. With the help of statistical thinking and 
reasoning (Burrill & Biehler, 2011), sometimes more 
information can be extracted from data when additional 
models are created based on it.  

For example, for a food item modeled by all its nutritional 
data, it is hard to decide whether it should be “recom-
mended” or not by just looking at individual values. A 
decision tree, as one model of machine learning based on 
data, can be prepared to jointly consider the data. Here, 
for example, the method of machine learning decision 
trees can help to create a model based on the data models 
and make predictions whether a new food item is more 
recommendable or not. Looking at the field of AI and 
machine learning, all models created there are data-driven 
(Hastie et al., 2009). Therefore, data play a fundamental 



Susanne Podworny and Daniel Frischemeier	 17 
Young learners’ perspectives on the concept of data as a model—what are data and what are they used for?	

role in this process. A decision tree—a model of a deci-
sion algorithm—is a hierarchical structure created from 
data (Breiman et al., 1998). The data, in turn, are models 
for individual cases of food items. If the tree structure is 
not too large, then it is a well-suited model for teaching 
(Martignon et al., 2003) because it is transparent and easy 
to interpret. Still, the data are foundational, so there is a 
need for students to acknowledge that the whole process 
is based on the data. 

Young students’ perceptions of data as model
How young learners perceive data and their under-
standing of the concept of data is a topic that is not 
explicitly addressed in most research (English, 2014). 
It is much more often about how students interact with 
data in various aspects. For example, there are studies on 
the challenges young learners face in representing data 
(Harradine & Konold, 2006) or how they intuitively orga-
nize data (Konold et al., 2017). There is also research on 
what young learners use data for in different learning envi-
ronments, e.g., for modeling a randomization test (Biehler 
et al., 2015) or making decisions (Engel et al., 2018) or 
how they understand concepts of data-based machine 
learning (Hitron et al., 2019). Viewing data as models 
(Lehrer & Schauble, 2007) is an underlying concept in 
most of this research but seldom a research topic in itself. 
Because conceptual learning is essential and involves the 
ability to construct commonalities and differences in 
order to build structured knowledge (Zeithamova et al., 
2019), it is worth examining the student’s concept of data.

Research questions
This study examines students’ perspectives on data (as 
models) and models based on data after they engaged in a 
teaching sequence about data modeling using the example 
of decision trees. 

Therefore, in this chapter, we pose the research question, 
“What are young learners’ perceptions of data?” As stated 
above, data are models that have two characteristics: they 
represent the world by simplification and they have one 
or more specific purposes, e.g., to offer a classification 
prediction. To answer the research question, we explore 
these two aspects in two sub-questions. 

1.	 What ideas do young learners express about what 
data are after a teaching unit on decision trees 
on food data?

2.	 What ideas do young learners express about what data 
are used for after a teaching unit on decision trees on 
food data?

Method

The teaching sequence and its implementation
To provide young learners (in this study, grade 6, 
ages 11–12) with a meaningful engagement with data 
modeling that can potentially allow them to experience 
data as models, we designed a series of lessons on 
creating, applying, and using decision trees. The principal 
question of the series of lessons was: How can we use 
nutrition information to predict food as “recommended” 
or not? Data of food items were chosen as the basis 
for a model that combines that information to predict 
“recommendation.” Data-based decision trees were built 
manually in class for the prediction to develop the notion 
that a decision tree is a model based on data. 

The foundation for the lesson is a set of data cards like 
the one in Figure 2, left, that we regard as a model of 
a case, which here is a food product (an apple in this 
instance). Several of these cases together can be the data 
that form the basis for deciding whether a food item 
is recommended or not. A decision model based on 
these data can be a tree that predicts recommendations 
for new food items, such as the two-level decision tree 
in Figure 2, right.  

For implementation in class, approximately 30 of these 
cards were labeled by the students with green or red paper 
clips to indicate if the item was recommended or not as 
the first modeling activity as suggested by Hitron et al. 
(2019). Students then used the dataset to create two-level 
decision tree models to decide, for new foods, whether 
they were more likely to be recommended. By the end, 
students were able to create decision tree models like the 
one in Figure 2 (right) using data, test them, and apply 
them to new data. In total, the lesson series included eight 
lessons of 45 minutes each. Several cycles of the teaching 
series have taken place since May 2021. 
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Study design and data collection
The data that model food items, from which the decision 
trees were created, were a fundamental element of the 
lesson series. However, the concept of data-as-model was 
not explicitly discussed. Therefore, it was necessary to 
investigate what perspectives the students revealed on 
data after the series of lessons.

As part of the research on the series of lessons, a question-
naire was developed for the students and administered 
after the last lesson. The questionnaire included a variety 
of questions, one of which is the focus of this chapter: 
“What are data and what do you need data for?” 208 of 
263 learners who answered the questionnaire gave an 
answer towards this question. The students’ answers were 
evaluated as part of the research report in the present 
chapter. The questionnaire was implemented online on a 
server of the University of Paderborn and all answers of 
the students were available digitally.

Participants
Since the start of the series of lessons in May 2021, 263 
students have completed the questionnaire, of which 149 
are female, 113 are male and one has no indication. The 
participants were all sixth-grade students, ages 11–12, 
from different secondary schools in Germany and all of 
them had participated in the teaching series. The students 
had no previous knowledge of computer science or statis-
tics before the series of lessons; one class had previously 
studied the topic of nutrition in biology lessons. 

Data and methods of data analysis
In order to find out what the learners’ ideas about data 
were, the answers to the question “What are data and 
what do you need data for?” were evaluated using quali-
tative content analysis (Mayring, 2015). The aim of this 
systematic and rule-guided evaluation was to identify 
structures in the answers and to draw conclusions about 
the learners’ ideas about data. The statements were coded 
independently by the two authors of this paper. In case of 
unequal coding, discussions were held until agreement 
was reached.

The responses were coded in two steps. In the first step, 
we coded aspects of the written answers that addressed 
the questions what are data (code 1), and aspects that 
addressed the question what do you need data for 
(code 2). Answers that addressed neither were also coded 
(code 3). In the second step, the partial answers to the 
two questions were analyzed individually.

First, we looked at all (partial) sentences that we coded in 
the first step as “what,” indicating students’ view of data 
as a representation. We deductively defined the codes 1-1 
and 1-3 and added 1-2 and 1-4 inductively. See Table 1.

In the same way we looked at everything we coded in 
the first step as “what for” to categorize learners’ answers 
for “What do you need data for?” This showed students’ 
perspectives on the purpose of data. We deductively 
defined codes 2-1 and 2-2 in Table 2. Inductively, we 
added codes 2-3, 2-4 and 2-5 in Table 2.

	

Figure 2. Example for a data card (left) and a decision tree model based on food data (right)
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Code Definition Example

1-1  
Data as representation 
by numbers with context

Learners describe data as numbers 
with context or give specific 
examples of numbers with context 
(Cobb & Moore, 1997).

“Data are for example how much 
fat a strawberry contains.” (student 
231)

1-2  
Data as representation by 
numbers

Learners describe data 
as numbers only.

“Data are numerical values” 
(student 68)

1-3  
Data as representation 
by statistical characteristics

Learners describe data using 
statistical terms but more than just 
“numbers.”

“For example, in the case of a food 
product, data are the attributes and 
the values.” (student 35)

1-4  
Data as information

Learners generally describe data 
as information without further 
explanation.

“Data are important information” 
(student 85)

Table 1. Coding manual for “What are data?”

Code Definition Example

2-1  
Purpose: specific information 

Learners describe the use of data 
to have (more) information about 
specific aspects of the world, e.g. 
about a person, a food item, etc. 
(Wild & Pfannkuch, 1999)

“You need data to know how much 
of the attribute the food has in it.” 
(student 131)

2-2  
Purpose: Decision

Learners describe the use of data 
as the basis for a decision, classifi-
cation, or an artificial intelligence. 
(Breiman et al., 1998)

“You need the data to decide 
whether the food is healthy or 
unhealthy.” (student 234)

2-3  
Purpose: general information

Learners describe the abstract use 
of data to have (more) general 
information. 

“With the help of data, you can 
figure things out.” (student 108)

2-4  
Computer need data

Learners describe the use of data 
with exclusive reference to the 
computer.

“Data is needed, for example, to 
save things [in the computer].” 
(student 159)

2-5 
Other

Learners describe the use of data in 
none of the other categories.

“You need data, because you 
can’t do without them (I think).” 
(student 140)

Table 2. Coding manual for “What do you need data for?”
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Results 
Out of the 208 learners who answered the question, 51 
made a statement only concerning the aspect of “what” 
are data, 88 only for “what for” and 69 learners answered 
both. In sum there were 120 statements for “what” 
and 157 for “what for.” Those were analyzed separately 
according to the manual. We introduce the detailed 
findings in the next sections.

Results for Subquestion 1
The categorization of answers for the question “What are 
data?” is shown in Figure 3. 

Figure 3.	 Proportion of students (out of N = 120) in each code 
for “What is data?”

Answers that could be assigned to the category “data as 
representation by numbers with context” (1-1) occurred 
most frequently. A total of 51 students (43% of 120) 
described data in this way. The responses often included 
a reference to the food topic of the lesson series. Here it 
could be interpreted that the students attributed a certain 
model character to data. In addition, there were another 
eight students (7% of 120) who described data only as 
“data as representation by numbers” without any refer-
ence. These descriptions were possibly influenced by the 
series of lessons, which only involved numerical data. 

A different perspective was taken by students who 
described data in terms of their statistical properties 
(code 1-3), such as the terms “variables,” “attributes,” or in 
circular reasoning as “data are data.” These responses did 
not attribute a model nature to the data. Finally, there was 
a large group of students (37% out of 120) who described 
data abstractly as “information.” One explanation for 
these expressions might lie in the fact that the teaching 
occurred in a computer science lesson, and this perspec-
tive may originate from the computer science standpoint. 
At least in Germany, “data and information” are often 
mentioned in the same breath in computer science 
education. It is unclear again if these responses reflect 
attributing a model nature to the data or not. 

All statements of learners regarding what data are oper-
ated on different levels. Some were extremely general, so 
that it was difficult to confidently identify an underlying 
perception; others were specifically related to the content 
of the lesson series and mentioned the variables and 
values dealt with there as representations. Neither the 
word model nor representation appeared in any answer. 
The majority of the learners understood data in the sense 
of Cobb & Moore (1997), as information or belonging to 
a certain context. 

Results for Subquestion 2
Figure 4 reflects the results of the evaluation of the 
answers to “What do you need data for?” to identify 
students’ perspective on the purpose of data.

 

Figure 4.	 Proportion of students (out of N = 157) in each code 
for “What do you need data for?”

Prominent in Figure 4 is that 53% of the students who 
gave an answer to this part of the question reported 
the decision-making nature as the purpose for data. 
This subsumed responses that mentioned “deciding,” 
“classifying,” or creating an AI with these goals in mind. 
This perspective on the use of data seemed to have been 
inspired by the series of lessons where the goal was to 
create decision trees as a method of AI based on data. It 
can be interpreted that the perspective prevailing here was 
that data’s purpose is to create an AI model.

The responses categorized in (2-1) took the use of data as 
a model into consideration, so they fit more with Cobb 
and Moore’s (1997) view and added the purpose of data 
in contrast to category (1-1).

Again, there were students who took a very general 
perspective and generally described the use of data as “to 
figure something out” without specific reference to any 
context (code 2-3, 17% of 157). However, meaningful 
figuring out only exists with a purpose, so that here too, 
with caution, a model perspective could be interpreted 
from the answers. 
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Students who saw the use of data in the fact that some-
thing can be “stored digitally” (student 218) or that “an 
application can be programmed” (student 26) (code 
2-4) seemed to see a high connection between data and 
computers or a digital representation. This might be a 
more limited view, neglecting any context or purpose. 

The answers that were categorized as “other” (2-5) were 
a low proportion of all answers with 4% of the total. A 
relationship to data models could hardly be ascribed to 
these answers.

Combined results concerning the research question
The overall research question was “What are young 
learners’ perceptions of data?” Considering the perspec-
tive of data models that have a representational charac-
teristic (subquestion 1) and a purpose (subquestion 2), 
there was a need to look at both characteristics at once in 
the answers. 

Of the students, 38 (18% of 208 students who gave any 
response at all) gave a response that described both 
the representational role and the purpose of data. This 
included all answers that were categorized as code 1-1, 1-2 
or 1-3 and with 2-1, 2-2, 2-3, i.e., all answers that in some 
way described a representational character and a purpose 
character to data. This left a different 38 students (18% of 
208) who only considered the representational nature of 
data and 95 students (46% of 208) who only addressed 
the purpose of data. All other students were categorized 
either as 1-4 (data as information) or 2-4 (data are needed 
for the computer) or 2-5 (other).

Discussion
Data are available nearly everywhere and used for nearly 
everything, so there is a need to critically reflect on what 
data are as is explained in detail by Engel (2024, in this 
volume on page 101). 

Even despite the students’ experience during the lesson 
series, many of them still expressed naïve views on data. 
Students have a notion of what data are and what they 
are used for. In the learning sequence that the students 
completed, data were used constantly to create decision 
trees. The perspective of data as models in the sense 
defined above was not explicitly addressed, as is probably 
the case in many learning sequences. This is one main 
motivation to investigate what perspectives on the 
concept of data these students had and what purpose 
students attributed to data at the end of an intervention 
that meaningfully, however implicitly, engaged them with 
data models (Stillman & Brown, 2023).

The model aspect was not explicitly addressed in class, 
but subliminally plays an important role in the students’ 
ideas of what data are and what they are needed for. In 
fact, a large proportion of the students made statements 
that implicitly addressed some aspect of data as models. 
However, the analyses show that more than 80% of the 
students, although being frequently exposed to data in 
their everyday lives, have a rather incomplete picture of 
data as models. Their concept of data as models is quite 
oversimplified, as one might expect for the beginning of 
conceptual learning (Feldman, 2003).

It is also important to consider the 55 students who 
did not answer the question at all. This is 21% of all 
263 students who either would not or could not give 
an answer. Since all the students had completed other 
answers in the questionnaire, it could be concluded that 
this fifth of the students chose not to answer this question. 
This and the other findings advocate supplementing the 
students’ experience with more explicit discussions about 
the nature of data. In order for this perspective by Cobb 
and Moore (1997) and also basic perspective by Wild and 
Pfannkuch (1999) to be taken for modeling in statistics, 
it should be more explicitly addressed in the classroom. 
In this way, incomplete or inconsistent views can also be 
countered, as they also emerged in the analysis. 

The implication is that it may be useful to talk explicitly 
about the fact that data are already models in every 
subject where data are used. Data are representations 
that represent certain aspects of the world, but not all, 
and have a purpose. The use of data as described by Giere 
(2004) is not predetermined by the data model, but 
by the person who uses data as a model for something 
specific (Stillman & Brown, 2023). And this should be 
communicated transparently to students to overcome 
their sometimes naïve view (Dvir & Ben-Zvi, 2021).

Data form the basis of all further models and a mature 
understanding of the nature of data is thus necessary 
for modeling activities, as was also investigated by 
Büscher (2024, in this volume on page 49). Gafny 
and Ben-Zvi (2024, in this volume on page 69) 
have designed a framework that can support young 
learners to gain a deeper understanding of data models 
and modeling. If a good foundation is laid in terms of 
students’ understanding of the concept of data, it is likely 
that this can be better built upon later. Emphasizing 
the concept of data as models, and including statistical 
concepts such as signal and noise (Burrill & Biehler, 
2011; Gould 2024, in this volume on page 81), would 
certainly also promote a more mature view of the concept 
of data and an understanding of data-based AI methods.
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Situations with two binary events can be modeled with the 
help of different graphical models, like tree diagrams, double 
trees, 2×2 tables, or net diagrams. Previous studies have 
shown that not all types of graphical models are equally 
helpful to learners. Furthermore, with tree diagrams and 
double trees, the conditional probabilities tend to dominate, 
while with 2×2 tables, joint probabilities come into focus. 
This chapter presents a relatively new graphical model 
that shows conditional probabilities and joint probabilities 
simultaneously: the net diagram. We will then see empirical 
results from two different studies that investigated—with 
the help of paper-and-pencil-tests in a quasi-experimental 
design—whether the net diagram, as a comprehensive graph-
ical model, overloads participants in solving tasks regarding 
conditional probabilities, and how typical errors in so-called 
Bayesian tasks depend on 1) the information format, and 
2) the visualization used. Although the net diagram shows 
a large amount of information, it does not seem to overload 
learners cognitively any more than a frequency double tree. 
Furthermore, the typical errors in Bayesian tasks depend 
not only on the information format (natural frequencies vs. 
probabilities, e.g., “80 out of 100 women are ill” compared 
to “the probability of a woman being ill is 80%”), but also 
strongly on the visualization used. In summary, reasoning 
with models in Bayesian situations depends on the graphical 
model chosen. Knowing which errors are common “traps” 
could help students engaged in modeling distinguish correct 
from incorrect solutions. Based on the findings that joint prob-
abilities, conditional probabilities, and inverted conditional 
probabilities are often confused with each other, the chapter 
concludes with an idea on how this student difficulty could be 
addressed using data cards. 

Introduction
Gal (2024) emphasized that “people have to understand 
models and the results of modeling when reading or 
watching the news, broadly viewed, including newspa-
pers and print media, websites of news organizations, 
Facebook, blogs, etc.” (in this volume on page 91). 
Unfortunately, many people in society today are not yet 
able to understand such models, as shown by numerous 
examples in the COVID pandemic (Martignon et al., 
2023). The pandemic clearly demonstrated the impor-
tance of modeling situations with two dichotomous 
characteristics, e.g., rapid test results (positive vs. 
negative) and the status of potential COVID infection 
(infected vs. uninfected; see also Martignon et al., 2023). 
Incorrectly interpreting statistical information in the 
real world can lead to overdiagnosis or overtreatment in 
medicine (Wegwarth & Gigerenzer 2013), or even suicide 
in the worst case, if too much trust is placed in a positive 
test result indicating a serious illness (Stine, 1996). In the 
field of law, incorrect modeling of statistical information 
even sometimes leads to false convictions (Fenton, 2011). 
Particularly difficult in this context are so-called “Bayesian 
situations,” in which conditional probabilities have to 
be computed. These have been intensively researched, 
especially in cognitive psychology (e.g., Gigerenzer & 
Hoffrage, 1995; McDowell & Jacobs, 2017).

However, fortunately, there are strategies in Bayesian 
situations to help understanding the statistical infor-
mation. In the following, two studies are presented that 
focus (1) on different graphical models for situations 
with two dichotomous characteristics (including one 
relatively new graphical model), and (2) the effect of 
presenting frequencies instead of probabilities. Here, the 
data to be modeled is already available in aggregated form, 
and these aggregate values must be combined to form 
conditional probabilities. Therefore, both studies focused 
on graphical models for the visualization of conditional 
probabilities. Finally, a more data-driven approach will be 
discussed that could improve Bayesian reasoning beyond 
graphical models.

Modeling situations with two binary events 
and different visualizations
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Theoretical Background
Table 1 shows a typical Bayesian situation in the format of 
probabilities (left) and in the format of natural frequen-
cies (right) for the context “COVID.” These situations 
are represented in a later step with different graphical 
models that focus on different statistical information (e.g., 
conditional probabilities or joint probabilities, see Figures 
2 and 3). Numerous empirical studies, and the meta-anal-
ysis from McDowell and Jacobs (2017), show the natural 
frequency effect, which means: Natural frequency 
versions of Bayesian reasoning problems (see right side of 
Table 1) are more often solved correctly than probability 
versions of the task (see left side of Table 1). While only 
about 5% of participants were able to solve the probability 
version of those tasks, about 25% of participants were 
able to solve the natural frequency version (McDowell 
& Jacobs, 2017). Therefore, learning environments that 
foster learners’ reasoning skills in situations with two 
dichotomous events should refer to an imaginary sample 
and enable thinking in natural frequencies. Furthermore, 
there is evidence that the occurrence of typical wrong 
answers (e.g., in Table 1, the joint occurrence error: 
“480 out of 10,000 persons” instead of “480 out of 670 
persons”) also depend on the information format (i.e., 
probabilities vs. natural frequencies; Gigerenzer & 
Hoffrage, 2015; for an overview see Binder et al., 2020).

Bayesian tasks—like the COVID task in Table 1—can be 
understood as modeling tasks in the sense of Blum et al. 
(2007), as described by Eichler and Vogel (2015); their 
data modeling cycle appears as Figure 1. Referring to that 

figure, the real problem situation and the stated question 
must first be properly understood. In real-life situations, 
it is often even necessary to laboriously collect the 
information at first, and to be able to recognize whether 
individual pieces of information are still missing. The next 
step would be to extract the relevant information in the 
text (i.e., prevalence, sensitivity, specificity) and to build a 
real model by relating the given parameters to each other. 
Then the real-world information can be transformed into 
the mathematical world. In this translation process, graph-
ical models can be used, such as 2×2 tables, tree diagrams, 
or double trees (Batanero & Sanchez, 2013; Khan et al. 
2015; Böcherer-Linder & Eichler, 2019, Binder, Krauss 
& Wiesner 2020). Next, the model helps with obtaining 
mathematical results, such as conditional probabilities. 

Probabilities Natural frequencies

Statistics on persons who have likewise just returned from a high incidence area with symptoms of a cold (such a 
person is referred to as “a person” in the following) and then use the COVID self-test reveal:

•	 There is a 5% probability that a person is infected 
with COVID.

•	 If a person is infected with COVID, then the proba-
bility is 96% that this person tests positive.

•	 If a person is not infected with COVID, then the 
probability is 2% that this person tests positive 
nevertheless.

•	 500 out of 10,000 persons are infected with COVID.
•	 Out of 500 persons that are infected with COVID, 480 

receive a positive test result.
•	 Out of 9,500 persons, that are not infected with 

COVID, 190 will nevertheless receive a positive test 
result.

Question: If a person tests positive, then what is the 
probability that the person is infected with COVID?

Question:  How many persons test positive, and how 
many of those are actually infected with COVID?

Answer: 71.6% Answer: 480 out of 670 persons

Table 1: Probability and natural frequency versions of a Bayesian reasoning task regarding COVID

Figure 1: Data modeling cycle from Eichler & Vogel (2015)



Karin Binder • Modeling situations with two binary events and different visualizations	 25

Finally, the meaning of the mathematical result for the 
real world must be grasped. For example: What does the 
calculated value of 71.6% mean? Why is it so surprisingly 
low? What is the actual difference in the proportion 
of infected persons among those who test positive and the 
proportion of those who test positive among those who are 
infected? Which of the two pieces of information is more 
important for me?

In the following, I will focus on the mathematical model 
and situations, in which aggregate data is already available. 
Therefore, the given numbers and corresponding expla-
nations in Table 1 can be seen as the real model, whereas 
the different visualization templates can be seen as the 

mathematical models. Depending on which graphical 
model is used for mathematical processing, certain 
aspects tend to come to the fore and other aspects tend to 
fade into the background. Numerous studies have shown 
that at least some types of visualization can promote 
Bayesian reasoning (Binder, Krauss & Bruckmaier, 2015; 
Pfannkuch & Budgett, 2017; McDowell & Jacobs, 2017), 
including in school teaching (see e.g., Wassner, Martignon 
& Biehler, 2004). 

In teaching statistics at school and university, two visual-
izations are primarily used in modeling when situations 
with two dichotomous characteristics of a real model 
have to be converted into a mathematical model: 2×2 

Figure 2:	 2×2 table, tree diagram and double tree diagram as graphical model with probabilities (left) or natural frequencies (right) 
for the COVID problem.
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tables and (double) tree diagrams. These visualizations 
can be depicted with probabilities or with frequencies. 
Figure 2 illustrates the COVID problem with the help of 
2×2 tables, tree diagrams, and double tree diagrams in 
the probability version (left) and the natural frequency 
version (right).

Visualizations with frequencies have been shown to help 
students significantly better than probability visualiza-
tions (Binder, Krauss & Bruckmaier, 2015). That study 
compared the effectiveness of (1) natural frequencies 
and (2) visualization (e.g., tree diagrams, 2×2 tables) in 
helping people understand conditional probabilities in 
Bayesian tasks. 259 school students (11th grade) solved 
Bayesian tasks, which were presented either without any 
visualization, with 2×2 tables, or with tree diagrams. The 
data in each case were presented as either probabilities 

or natural frequencies. The result was that a maximum of 
10% students were able to correctly solve a Bayesian task 
if the task was presented with probabilities, despite the 
fact that 2×2 tables with probabilities, and tree diagrams 
with probabilities at the branches, are a focus of stochas-
tics teaching in school. Natural frequency trees (which are 
mostly unknown in German schools), on the other hand, 
were able to support students much better in solving the 
problem (correct solution rate 45%).

Because tree diagrams or double trees are node-branch 
structures, these two visualizations (compared to the 
2×2 table) can even display probabilities on branches, 
and frequencies in nodes, simultaneously. This is an 
educational advantage, as it allows the frequency concept 
to be used to better understand probabilities. However, 
2×2 tables and (double) trees each have a decisive 

Figure 3:	 Net diagram as graphical model with probabilities (above), or frequencies (below).
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disadvantage in the probability representation: In 2×2 
tables, joint probabilities (e.g., P(A∩B)) are represented, 
but no conditional probabilities (e.g., P(A|B)). It is 
exactly the other way around with (double) trees. The 
two—2×2 tables and (double) trees—are therefore 
particularly suitable for modeling only very specific 
starting situations.

Therefore, for modeling situations with two dichoto-
mous events, a visualization is desirable which is equally 
suitable for the representation of joint probabilities and 
conditional probabilities. Figure 3 shows a relatively new 
visualization (also a node-branch structure), in which all 
absolute frequencies and all probabilities can be depicted 
at a glance: The frequency net. With the help of this 
visualization, all starting situations for two dichotomous 
events can be modeled. No matter which parameters are 
given in the real situation (marginal probabilities, joint 
probabilities, conditional probabilities)—they all can be 
represented within the frequency net in the modeling 
process during the transformation of a real model into a 
mathematical model.

In the following, two studies are described which exam-
ined the effectiveness of the frequency net as a graphical 
model in Bayesian reasoning situations in comparison 
with other visualizations. Study 1 (Binder, Steib & Krauss, 
2022) focused on node-branch structures and investi-
gated the question whether showing too much informa-
tion negatively influences the solution process. Starting 
from a tree, proceeding to a double tree, and finally to a 
frequency net, successively more information is shown. 
On the one hand, this can help because more information 
can be read directly. On the other hand, the cognitive load 
may increase due to the increasing amount of information 
presented. Study 2 (Binder, Krauss & Wiesner, 2020) 
focused on typical errors and compared the frequency net 
with double trees and 2×2 tables.

Study 1—Too much information: 
Curse or blessing?
Considering the many options for graphical models in 
situations with two dichotomous features the question 
arises: Which of the many possible graphical models 
should be used in learning environments to model the 
data of the two features? As described above, the net 
diagram represents all relevant information in situations 
with two features: Four marginal probabilities, four joint 
probabilities and eight conditional probabilities. This 
multitude of information could be a blessing, but also a 
curse. The study outlined below explores this question. 

The study (Binder, Steib & Krauss, 2022) focused only 
on node-branch structures—tree diagrams, double trees, 
and frequency nets—as graphical models for situations 
with two binary events. Each of these three visualizations 
can be seen as an extension of the previous visualization: 
A double tree involves all of the statistical information 
already presented in a tree diagram and supplements 
it with the inverted conditional probabilities and the 
missing marginal probabilities of the second event. 
Similarly, net diagrams involve all of the information 
represented in a double tree and supplements it with 
joint probabilities. This successive extension from a tree 
diagram to a double tree and then to a net diagram leads 
to a presentation of more and more information, which 
can have positive but also negative sides. Consider a 
typical Bayesian task in which a positive predictive value 
is calculated from three given parameters, as in Table 1. A 
probability tree displays the three given parameters (prev-
alence, sensitivity and false-positive rate); using those 
values, a student can calculate the positive predictive 
value (probability of being infected, if the test is positive) 
with the help of the addition rule and the multiplication 
rule. However, by extending the tree diagram to a double 
tree, the positive predictive value is already depicted 
within the double tree. So, there is more information 
provided—the very information we are interested in. By 
extending the double tree to a net diagram, joint probabil-
ities are also shown. To show these four additional prob-
abilities might be irritating and could confuse learners; 
especially since Study 2 will show that the confusion of 
P(A∩B) with P(A|B) is one of the common mistakes in 
Bayesian reasoning problems. 

Therefore, two different aspects should be distinguished: 
By extending the node-branch structure, the inference 
degree (i.e. the number of mental steps required) 
decreases. However, the complexity of the representation 
increases because additional, possibly irrelevant informa-
tion is presented.
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To explore this issue, this first study focused on the node-
branch structures—tree diagram, double tree, and net 
diagram—first using natural frequencies, and afterwards 
using probabilities. With the successive extension of the 
typical tree diagram to the double tree and finally to the 
net diagram, the inference degree for questions about 
conditional probabilities decreases (i.e., fewer mental steps 
are required), however, at the same time the complexity of 
the representation increases and thus maybe the extrinsic 
cognitive load. The study examined which of these two 
effects predominates.

Method
In a paper-and-pencil-study (Binder, Steib & Krauss, 
2022), 269 school students (grade 10) had to answer 
questions about conditional probabilities in typical 
Bayesian reasoning tasks. Each student received three 
questions, the first two in “natural-frequency format” 
(like the right side of Table 1), the third in “probability 
format” (like the left side). The questions were presented 
using text only, or using one of three visualizations—tree 
diagrams, double trees, or net diagrams. Any visualiza-
tions were already completely filled in with absolute 
frequencies or probabilities.

Results
When students used natural frequencies, the successive 
extension of the node-branch structures positively 
affected performance (see Figure 4A). Although double 
trees and nets were entirely unfamiliar to the students, 
these visualizations—which were already completely 
worked out—provided the best support to the students in 
completing the tasks.

In the probability format (see Figure 4B), participants 
performed best with the help of the completely filled 
double tree. However, the solution rate of 31% is low, 
especially considering that the correct solution actually 
appears in the visualization. Extending the double tree 
to a probability net reduced participants’ performance 
to 23%. 

  

Figure 4:	 A: Percentages of correct inferences using the different visualizations in the natural-frequency format.  
B: Percentages of correct inferences using the different visualizations in the probability format.



Karin Binder • Modeling situations with two binary events and different visualizations	 29

Study 2—Performance and typical 
errors with different visualizations

The second study (Binder, Krauss & Wiesner, 
2020) focused on the effects of information 
format (probabilities vs. frequencies) and 
various graphical models (text only vs. 2×2 
table vs. double tree vs. net diagram) on the 
ability of participants to solve a conditional 
probability task and a joint probability task. 
The study also examined the effect of the three 
visualizations (again depending on informa-
tion format) on specific student errors.

Method
In a paper-and-pencil study, 249 university 
students answered questions about conditional probabil-
ities and joint probabilities in typical Bayesian reasoning 
tasks. The visualizations (2×2 tables, double trees, or net 
diagrams) were already completely filled in, either in the 
probability format or in the natural-frequency format. 
The 16 different versions implemented in the study are 
described in Table 2.

Results
As can be seen in Figure 5A—results from the conditional 
probability problem—students performed better overall 
with natural frequencies (58% correct inferences across 
visualizations) than with probabilities (23% correct infer-
ences across visualizations). Those participants who used 
the natural-frequency format performed similarly well 
with the net (61% correct responses) as with a double 
tree (60% correct responses)—when asked to work with 
a visualization that was already fully completed. However, 
they performed best with the help of a completely filled 
2×2 table (78% correct responses). Text-only versions 
yielded the lowest performance.

Type of 
question

Conditional 
probability

Joint 
probability

Inf
or

m
ati

on
 fo

rm
at

Probabilities •	 Bayesian text
•	 2×2 table
•	 double tree
•	 net diagram

•	 Bayesian text
•	 2×2 table
•	 double tree
•	 net diagram

Natural 
frequencies

•	 Bayesian text
•	 2×2 table
•	 double tree
•	 net diagram

•	 Bayesian text
•	 2×2 table
•	 double tree
•	 net diagram

Table 2:	 Design of the 16 versions implemented in the study. Each student 
worked on two questions: a conditional probability question and 
a joint probability question, in the same format (probability 
or natural frequency). 

Figure 5:	 A: Percentages of correct inferences when asking for a conditional probability.   
B: Percentages of correct inferences when asking for a joint probability.
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Figure 5B shows the study results for the joint probability 
question (e.g., the probability of testing positive and 
having the disease). Interestingly, even though the natu-
ral-frequency format has shown consistent advantages 
in numerous studies about conditional probabilities, this 
study showed no obvious systematic advantage to using 
natural frequencies for questions about joint probabilities. 
All three visualizations in the natural-frequency format 
yielded similar performance rates. However, using the 
probability format, the completely filled net diagram 
(59% correct inferences) and the completely filled 2×2 
table (78% correct inferences) supported participants 
better in their decision making processes.

An analysis of specific student errors showed interesting 
shifts between the different information formats, and 
between the different visualizations. The joint occurrence 
error (confusion of P(A|B) with P(A∩B), e.g., the 
confusion of the probability of being infected, if the test is 
positive with the probability of being infected and testing 
positive) predominantly occurred in the probability 2×2 
table and the probability net, whereas the Fisherian 
error (confusion of P(A|B) with P(B|A)) predominantly 
occurred in the Bayesian text versions, which might be 
due to an “observability heuristic,” possibly meaning that 
participants tend to use a number they see directly in 
the visualization as a solution instead of calculating the 
correct number (Tversky & Kahneman, 1973). A detailed 
error analysis can be found in Binder et al. (2020). At 
the end of the chapter, we discuss how these errors can 
possibly be avoided by not only focusing on different 
visualizations as graphic models, but also illuminating the 
data modeling aspect.

Conclusion: Comparison of 
the results of both studies
The two studies presented indicate that the frequency net 
might be used effectively as a graphical model in the class-
room and should be investigated in more detail in future 
studies. Despite the fact that the net diagram showed 
more information that was irrelevant to the question, 
participants answered conditional probability questions 
equally well as with the double tree. In the probability 
format, both studies showed superiority of the double 
tree and net diagram over the text variant (and also that 
double tree and net diagram outperform the tree and 
2×2 table). The natural-frequency format also showed, in 
both studies, that participants performed similarly well 
with double tree and net diagram. However, in Binder 
et al. (2020) the frequency 2×2 table outperformed 
these two graphical models in questions for conditional 
probabilities.

Overall, it can be stated that reasoning with models in 
Bayesian situations also depends on the graphical model 
chosen. While certain graphical models tend to empha-
size joint probabilities, other graphical models tend to 
emphasize conditional probabilities. This also explains the 
completely different results in Binder et al. (2020) when 
asked about joint probabilities (instead of conditional 
probabilities).

In the classroom, therefore, mathematics teachers should 
be aware of which elements a graphical model highlights 
in each case and which potential student errors in 
answering certain questions can be provoked with which 
specific visualizations. In a productive discussion about 
the confusion of different probabilities, the frequency net 
could—from a theoretical point of view—offer a special 
opportunity, because all probabilities (and thus all typical 
candidates for confusion) are presented here.

Further ideas from the Minerva School: 
from graphical models to data modeling
The results of the studies show that different graphical 
models support students differently. Especially the results 
on errors from the second study suggest that the main 
problem is the confusion of different probabilities (i.e. 
P(A|B), P(B|A) and P(A∩B)). These errors could also 
be reduced in the classroom by integrating data modeling 
more strongly. Similar to Podworny & Frischemeier 
(2024, in this volume on page 15) or Podworny et 
al. (2021), who used data cards for creating decision 
trees, data cards (physical or software-based) could help 
learners to better identify the set and the subset, which are 
necessary to come to the correct conditional probability. 
Binder, Krauss & Wiesner (2020) showed that many of 
the common mistakes in Bayesian reasoning tasks are 
due to incorrectly identifying the underlying set, whereas 
most participants in our study were able to identify the 
correct subset. Therefore, a data-driven approach might be 
helpful to support learners in identifying the correct set. 
In the following, a data modeling approach via physical 
data cards is described to support finding the correct set 
and subset in questions for conditional probabilities.
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Data cards (see Figure 6) for exploring conditional prob-
abilities can show all features of the person on one side of 
the data cards (also compare Podworny & Frischemeier, 
2024 in this volume on page 15). Learners could 
work with the data cards by arranging the cards in a kind 
of 2×2-table. 

Figure 6:	 Data cards for conditional probabilities exploration. 
Both features are visible at the same time.

Addressing several questions regarding different (partial 
inverted) conditional probabilities should help the 
learners to distinguish the different linguistic formula-
tions. Lessons on conditional probabilities are always 
language lessons (Post & Prediger, 2022). This aspect is 
very important to correctly identify the set and subset. 
The process of identifying the relevant set and subset can 
be supported by natural frequencies and therefore also by 
data cards. If the question is “How many of the persons 
who are tested positive actually are ill?” do I have to look 
at all ill persons in the first step or do I have to look at 
all the people who tested positive? What is the concrete 
subset here? The natural-frequency format question, but 
also the process of physically sorting the data cards, might 
help learners identify the right sets. Future research could 
explore whether such a sorting process of data cards is 
helpful to students. 

Alternatively, data cards can be structured differently, 
showing only one feature per side of the card, thereby 
emphasizing the sorting process in a different way. 
This type of data card is recommended by Fiedler et al. 
(2000), who suggested a sampling approach to biases in 
Bayesian reasoning, and compared criterion sampling 
with predictor sampling (see also Gavanski & Hui, 1992 
and Wason, 1966). According to this approach there 
are basically two ways of sorting the deck of cards (see 
Figure 7): Structuring the set by infected vs. no infected 
(see Figure 7A) or structuring the set by test positive 
vs. test negative (see Figure 7B). Should one choose the 
data cards on the left side, look at all infected persons and 
check, which proportion of them is positive tested? Or is 
it better to choose the data cards on the right side, look at 
all persons tested positive and check, which proportion 
of them is infected? This enactive approach, with the 
manual sorting of the data cards and the conscious choice 
of one of the two sets of data cards, could be a data-based 
modeling process that might prevent confusion between 
conditional probabilities.

 

Figure 7:	 Data cards for conditional probabilities exploration. 
Only one of the features is directly visible. The other 
feature is on the back of the data card.

The question that needs to be answered is: How can we 
enable learners to choose the correct one of the two sets 
of cards to answer the question “What is the proportion 
of those who are infected among those who test positive?” 
These data-based sorting operations might be helpful 
before finally drawing a graphical model (e.g., a tree 
diagram or net diagram).
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Modeling is a key scientific and engineering practice. Scien-
tists develop and use models to communicate and critique 
their ideas. Students are expected to engage in the modeling 
practices of developing, using , and revising their models in 
science classroom, together with data practices of collecting , 
analyzing, and communicating data. Supporting students’ 
modeling and data practices can advance their systems and 
computational thinking skills when solving problems and 
making sense of complex phenomena. However, students lack 
opportunities to meaningfully engage in modeling and data 
practices in science classrooms. In this chapter, I focus on the 
affordances, opportunities, and challenges students face when 
engaging with SageModeler, a computational modeling tool, 
as reflected from four studies in recent years and in relation to 
the system modeling practices theoretical framework presented 
in the literature review below (Bielik et al., 2019). Findings 
suggest that engaging with the computational modeling 
tool can be challenging for students, but these activities can 
develop their modeling and data practices, complex systems 
understanding, and metamodeling knowledge. I discuss 
these findings in connection to other chapters in this book 
and conclude with several recommendations for researchers, 
educators, and curriculum designers.

Introduction

Preparing students to be scientifically literate 21st century 
citizens is a major educational challenge, especially when 
facing today’s increasing need for critical and creative 
thinking in the technology-rich job market (OECD, 
2018). A Framework for K–12 Science Education (NRC, 
2012) calls for shifting the focus from learning about 
scientific principles to making sense of phenomena and 
problem-solving by engaging students with scientific and 
engineering practices and crosscutting concepts, such as 
modeling and systems models. This call is enhanced in 
face of global challenges in recent years such as climate 
change and COVID-19 pandemic.

Providing students with meaningful opportunities to 
engage with authentic scientific practices can improve 

their learning achievements and interest in science 
(NRC, 2012). Modeling is a key science and engineering 
practice, serving as an epistemic tool employed by 
scientists to represent their ideas, to engage in scientific 
inquiry, and to communicate their ideas (Harrison & 
Treagust, 2000; Louce & Zacharia, 2012). It can also 
support the development of students’ metamodeling 
knowledge, which refers to knowledge about the nature, 
purpose and process of scientific modeling (Göhner et al., 
2022; Schwarz et al., 2009). Models are constructed and 
tested using data, either collected by the students them-
selves or provided to them as secondary sources. Using 
data requires students to develop data practices, such as 
organizing, sorting, and analyzing data (Pfannkuch et al., 
2018). Therefore, students are expected to construct, use, 
test, and revise models while collecting, analyzing, and 
representing data in classroom. However, most students 
do not have meaningful opportunities to develop their 
modeling practices (Schwarz et al., 2009).

This chapter includes a summary of results from four 
empirical studies carried out by our research group and 
discusses how these studies relate to the system modeling 
practices theoretical framework presented by Bielik, 
Stephens, Damelin, and Krajcik (2019). These studies 
present the implementation of middle- and high-school 
curricular units using SageModeler, a computational 
modeling tool. Bielik, Opitz, and Novak (2018) focus 
on the implementation of a 7th grade unit about water 
quality in a local watershed. Bielik, Damelin, and Krajcik 
(2019) focus on the enactment of a 7th grade unit about 
ocean acidification, which included real-world big data 
analysis. Bielik, Fonio, Feinerman, Golan Duncan, and 
Levy (2020) focus on the implementation of a 9th grade 
unit about ant behavior, in which several modeling tools 
were incorporated. Finally, Bielik, Stephens, McIntyre, 
Damelin, and Krajcik (2021) provides results from 
enactment of a 10th grade chemistry unit about the ideal 
gas law. In the discussion, I reflect on the affordances 
and challenges students face when developing and using 
digital modeling tools such as SageModeler and present 
recommendations for advancing students’ engagement 
with computational modeling tools. 

Supporting students’ modeling and data practices 
by engaging with digital tools

Tom Bielik
Beit Berl College, Israel  

tom.bielik@beitberl.ac.il
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Literature review

Models and modeling in science education
Scientific modeling (hereafter referred to as “modeling”) 
is a key scientific and engineering practice emphasized 
in the latest science education science standards (NRC, 
2012), in which students are expected to develop, use, and 
revise their models in the science classroom (Harrison 
& Treagust, 2000; Nersessian, 2002; Passmore et al., 
2014). Scientific models are broadly defined as epistemic 
tools that are used to explain and predict phenomena, 
composed of system components and the relationships 
between them. Engaging students in modeling should 
build their cognitive and epistemic scientific knowledge 
and understanding (Schwarz et al., 2009). 

The goal of modeling is to test ideas by representing 
systems of connected processes and evaluating them 
with real-world data (Passmore et al., 2014; Windschitl 
et al., 2008). Students who are provided with meaningful 
opportunities to engage in modeling develop their epis-
temic understanding about scientific models (i.e., meta-
modeling knowledge), which includes understanding that 
models serve as a tool for thinking about systems rather 
than object description, that models are never complete, 
and that they represent the current consensus under-
standing based on known empirical evidence (Göhner 
et al., 2022). Students can best learn about models and 
modeling when provided with activities that build on 
their prior knowledge. However, students require substan-
tial support—including through social negotiation, see 
Harrison & Treagust, 2000—and repeated experiences to 
fully develop their modeling practices.

In traditional science classrooms, students usually do not 
have meaningful opportunities to engage in modeling, 
and both teachers and students often lack understanding 
of modeling practices (Schwarz, 2009; Windschitl et 
al. 2008). Often, teachers fail to stress the limitations of 
models and assume students understand that models are 
always tested and revised. Most students view scientific 
models as realistic algorithmic representations that could 
be used to memorize the correct answer, rather than as 
epistemic explanatory and inquiry tools for sharing and 
critiquing ideas (Harrison & Treagust, 2000). 

Data modeling and digital tools 
Data plays a key role in modeling, as discussed by 
Susanne Podworny and Daniel Frischemeier’s chapter 
(in this volume on page 15). Data modeling is an 
essential part of the modeling process, where students 
are expected to engage with self-produced or secondary 
data to develop and test their models (Berland et al., 
2016; Chinn & Brewer, 2001; Weintrop et al., 2016). This 

requires them to develop data practices, such as sorting, 
organizing, and analyzing data to be used in the model, 
together with statistical thinking (Pfannkuch et al., 2018). 

Digital tools can support students’ modeling and data 
practices by providing them with opportunities to build 
computational models, run simulations of their data, and 
use data to test, evaluate and revise their models (NRC, 
2012; Weintrop et al., 2016). As discussed in the chapter 
of Christian Büscher (in this volume on page 49), 
digital tools can also support students’ statistical literacy. 
Computational modeling tools can be particularly 
effective in supporting students, as they give students an 
opportunity to explore complex dynamic relationships 
between components in the model and to visualize 
abstract concepts (Crawford and Cullin, 2004; Louca and 
Zacharia, 2012; Shin et al., 2022). Computational models 
are also useful when analyzing, abstracting, and recog-
nizing patterns in big data (Grover & Pea, 2018; Weintrop 
et al., 2016; Wing, 2014). Integrating digital tools in 
learning environments requires addressing systemic issues 
such as usability, scalability, and sustainability of the 
tool to make their use widespread in science classrooms 
(Fishman et al., 2004), and more research is needed to 
explore students’ learning with and about models and to 
investigate the possible effect of model-based teaching on 
students’ conceptual understanding and development of 
their metamodeling knowledge. 

Bielik, Stephens, Damelin, and Krajcik (2019) presented 
a theoretical framework that included four aspects of 
systems modeling practices. These aspects focus on the 
core elements that are essential for modeling when using 
computational models to make sense of phenomena. It 
is based on the core modeling practices of constructing, 
testing, revising, and using models (Schwarz et al., 2009).   
The four aspects are:

1.	 defining the boundaries of the system by including 
components in the model that are relevant to the 
phenomenon under investigation;

2.	 determining appropriate relationships between 
components in the model;

3.	 using evidence and reasoning to construct, use, 
evaluate, and revise the model; and

4.	 interpreting the behavior of the model to determine 
its usefulness in explaining and making predictions 
about phenomena.

In the studies presented below, I present the main findings 
from our studies considering the system modeling 
practices framework presented above. I discuss the affor-
dances and challenges students face when engaging with 
digital computational modeling tools in school-science 
curricular units. 
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Methodology

Context: the SageModeler 
computational modeling tool
The computational modeling tool, SageModeler, was 
designed to support students in constructing and using 
models to explain phenomena and design solutions using 
a range of visual representations such as images, text, 
labels, tables, and graphs (Damelin et al., 2017). Using 
the tool, students create models portraying relationships 
between variables and run simulations to explain and 
predict phenomena. The variables, represented by 
student-selected images and labels, are connected by 
arrows. The causal relationships between the variables 
are defined using semi-quantitative descriptions. The 
modeler chooses the direction of the relationship (e.g., 
“increase”, or “decrease”) and the magnitude of the 
relationship (e.g., linear relationship as “about the same” 
or “a lot” or logarithmic relationship as “more and more”). 
The choice of relationship magnitude is accompanied by 
a graphical illustration, which provides students with an 
opportunity to visualize the mathematical relationship. 
Figure 1 presents an example of a SageModeler model 
about photosynthesis which includes the model variables 
and relationships, relationship definition box, and output 
graph and table. 

SageModeler models can be designed as “static equilib-
rium simulations”, which consist of a set of variables and 
relationships without representing change over time. This 
allows the modeler, for example, to develop experimental 
models that show the effect of different independent 
variables on the dependent variable. Another option is to 
design a “dynamic time-based simulation” model, which 
allows the modeler to simulate accumulation or transfer 
of components over time. In these “stocks and flows” type 
of models, the modeler can simulate complex phenomena 
such as energy transfer in physical systems or flows of 
matter in ecosystems (Eidin et al., 2023). Examples of 
both type of simulations can be found in SageModeler 
settings.

After setting up the variables and defining relationships, 
students can run quantitative simulations in which they 
manipulate the independent variables to receive output as 
graphs or tables. Students can test and revise their models 
while working with empirical data from different sources, 
such as classroom experiments or secondary authentic 
research data. The tool was developed to support 
students’ modeling practices, based on learning progres-
sions described in A Framework for K–12 Science Educa-
tion and empirical research (NRC, 2012), and designed to 
be easy to use, intuitive, interactive, and visually engaging. 
SageModeler is integrated into the Common Online Data 
Analysis Platform (CODAP), a graphing and data analysis 
platform that takes the outputs generated by the model 
and any other data source to combine them into a single 

analytic environment (Finzer & Damelin, 
2016). Importing authentic experimental 
data into CODAP allows students to 
compare, evaluate, and revise their model 
to better fit real-world evidence. Students 
can create multiple graphs from these 
data sources and use them to test the 
validity of their models.

Tools and methods
In the four studies presented in this 
paper, both qualitative and quantitative 
methods were used in a design-based 
research approach that examined the 
implementation of curricular units 
that included computational modeling 
tools in secondary science classrooms. 
Collected data included students’ 
produced models and artifacts, video, 
audio, and screencast recordings of 
the implemented lessons, pre- and 
post-questionnaires evaluating students’ 
content learning and metamodeling 
knowledge, and interviews with teachers 
and students.

Figure 1. An example of a SageModeler dynamic time-based simulation model showing 
variables that affect the photosynthesis rate in plants. The model itself is 
located at the top left, the relationship definition box is at the top right, and 
the output graph and table are at the bottom.
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Results
This section includes brief descriptions of the most salient 
results from four separate studies, condensed to focus on 
this chapter’s topic. For additional details, please refer to 
the source papers for each study.

Students’ engagement with the modeling practices
In Bielik, Opitz, and Novak (2018), we investigated how 
modeling practices, i.e., constructing, using, evaluating, 
and revising models, were integrated into a middle 
school curricular unit about water quality that included 
using SageModeler. This was a design-based study that 
included a qualitative analysis of classroom observations, 
video recordings, teacher reflection notes, and pre- and 
post-enactment modeling surveys. The study focused on 
three student groups as case studies to track the develop-
ment of students’ modeling practices and metamodeling 
knowledge across the unit. Students constructed, used, 
evaluated, and revised their models based on data they 
collected and analyzed from a local watershed system of 
connected water ponds in their school and connected 
it with scientific concepts they learned during the unit 
related to watersheds and water quality. Results indicated 
that most students succeeded in constructing appropriate 
complex models of the water quality in the local water-
shed using the modeling tool by adding and specifying 
variables and relationships to their models. We also saw 
development of basic metamodeling concepts regarding 
the representational properties of models. Classroom 
observations and recordings showed that most students 
engaged, to some extent, with all four aspects of system 
modeling practices: when choosing the relevant variables 
to include in their models (aspect 1), when determining 
the direction and magnitude of relationships between the 
variables (aspect 2), when integrating evidence and data 
from their performed experiments to construct, evaluate 
and revise their models (aspect 3), and when running 
their models to simulate and explain the investigated 
water quality phenomenon in whole class presentations 
(aspect 4).

 In all case studies examined in this study, students’ 
models progressed in their complexity by integrating 
additional variables at each modeling cycle to improve 
the model’s explanatory and predictive power and to 
fully address the driving question of the unit. Students’ 
models also progressed in their quality, though to a lesser 
extent compared to the progress in its complexity. This 
indicated that students focused more on adding vari-
ables and relationships to their models in each revision 
cycle, rather than in re-examining the correctness of the 
existing variables and relationships based on the data 
they collected. These findings pointed towards progress 
in the performance of students’ modeling practices. Less 

progress was found in students’ metamodeling knowl-
edge. Results also suggested that students faced several 
challenges when using the computational modeling tool 
and developing their modeling practices, mostly when 
evaluating and revising their models. Some student 
groups were not able to identify and correct mistakes 
in their models, as they mostly focused on adding new 
variables when revising their models. These mistakes 
included undefined relationships between variables in 
the model, inaccurate relationships between variables in 
terms of directionality or magnitude, missing variables, 
and more. Our results suggested that using a modeling 
tool can support students’ modeling practices and that 
repeated opportunities for students to evaluate and revise 
their computational models can improve their complexity 
and quality.

Students’ engagement with data modeling
In Bielik, Damelin, and Krajcik (2019), we investigated 
the integration of the modeling tool in a 7th grade middle 
school unit focusing on ocean acidification. The unit 
included research using a big data set on the environ-
mental conditions at the Aloha Station in Hawaii. This 
was a design-based study that included analysis of models 
students produced, student and teacher interviews, 
pre- and post-enactment surveys, and students’ responses 
to “question-at-the-door” surveys at the end of lessons. 
Students developed static equilibrium simulation models 
based on data they collected in a set of experiments they 
performed, information they collected online, and a big 
data set they were provided. Students had the oppor-
tunity to explore the big data set and to create graphs 
that show trends found in the data. We investigated the 
advantages and challenges experienced by students and 
teachers while engaging in the unit and while using the 
modeling tool. Results indicated that integrating the 
modeling tool in the unit facilitated students’ interest 
and engagement, developed their sense of environmental 
responsibility, and focused their attention toward human 
involvement and impact on the environment. Students 
successfully engaged with the big data set as secondary 
data. They used the data to produce graphical represen-
tations and to test their models. Students perceived the 
modeling tool and the curricular unit to be relevant to 
their lives and important in promoting their content 
learning and modeling practices. In this enactment, as in 
the study described above, most students had successful 
engagement with all aspects of system modeling practices.

Students and teachers also reported facing several 
challenges, mostly related to the complexity of using the 
modeling tool, working with big data, and producing the 
graphs and charts. Students were provided with oppor-
tunities to engage with all the modeling practices while 
developing their models in an iterative process. They 
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continuously developed and revised their models as they 
broadened their understanding about ocean acidification 
during the investigations carried out in the lessons. Our 
findings suggested that the process of iteratively engaging 
with computational models can contribute to students’ 
affective, cognitive, and behavioral engagement, as 
reported by the teachers and students in this study and 
as was found in the artifacts of the unit. However, the 
constraints and limitations mentioned by the teachers and 
students should be considered when designing curricular 
units that include computational modeling tools. 

Students’ engagement with different modeling 
approaches
In Bielik, Fonio, Feinerman, Golan Duncan, and Levy 
(2020), we described the design principles used to 
develop and implement a 9th grade curricular unit about 
ants’ collective behavior that integrates three modeling 
approaches: 

•	 	Conceptual “drawn” models, i.e., diagrams on paper.

•	 	Agent-based computational models (ABM) that focus 
on the aggregate macro-level behavior emerging from 
the micro-level behavior of the agents in the model 
(Thompson & Reimann, 2010). Here, students used a 
NetLogo simulation of the ants.

•	 	System dynamics computational models (SD), 
focusing on the complex non-linear, and feed-
back-loop characteristics of phenomena (Russ et 
al., 2008). In this study, this is the student work in 
SageModeler. 

This was a qualitative study that included analysis of 
models students produced, lesson recordings and obser-
vations, pre- and post-enactment questionnaires, and a 
teacher interview. Students were provided with a partially 
developed dynamic time-based SageModeler model that 
included some of the factors affecting the ants’ rate of 
food transfer from the environment to the nest. They were 
directed to complete the model based on their investi-
gation using the agent-based computational simulation. 
The three modeling approaches (conceptual models, 
ABM, and SD) provided students with opportunities to 
share their ideas about ants’ collective behavior and to 
investigate the factors that influence the efficiency of ant 
food foraging. Students’ knowledge about ants’ behavior 
developed following learning the unit. Some gains were 
also found in students’ metamodeling knowledge about 
models as tools for investigating phenomena. However, 
no significant changes were found in students’ percep-
tion of models as tools for explaining and predicting 
phenomena. 

The collaborative nature of the activities in the ant-be-
havior unit was an important factor that pushed students 

to fully engage with the modeling tools, since in all lessons 
students worked in small groups to develop, test, and use 
their models and to share their models with their peers to 
receive feedback. However, students required technical 
and conceptual support when using the computational 
modeling tools, since this was a new practice for them, 
and they did not have many opportunities to use such 
digital tools in school prior to the intervention. In this 
enactment, students had somewhat limited engagement 
with the first two aspects of system modeling practices 
(constructing and using models) since they were provided 
with partially built computational models and defined 
only some of the relationships in the SageModeler model. 
However, they showed high engagement with the other 
two aspects, as they used evidence obtained from the 
agent-based modeling tool to test the relationships in 
the SageModeler model and used the simulation results 
to explain the phenomenon of ant communication and 
collaboration when foraging for food.

Students’ engagement with the four aspects of 
systems modelling practices
Finally, in Bielik, Stephens, McIntyre, Damelin, and 
Krajcik (2021), we studied the enactment of a system 
modeling chemistry unit focusing on the emergent 
properties of gases. We examined evidence of 10th grade 
students’ engagement with the four aspects of systems 
modeling practices in depth. This was a design-based 
study that included analysis of students’ model reflection 
questions integrated in the online activities, students’ 
produced models, and student interviews. Students 
developed dynamic time-based simulation models 
showing the factors that caused a real-life phenomenon of 
a large tank implosion, based on a set of experiments and 
investigations they performed. We explored the choices 
students made when constructing their models, whether 
they described evidence and reasoning for those choices, 
and whether they examined the behavior of their models 
in connection with model usefulness in explaining and 
making predictions about the phenomena of interest. 

In this study, we found that students’ engagement with 
system models mostly increased near the end of the unit 
when this information helped them evaluate and revise 
their models. In addition, students required different 
kinds of scaffolding support in how to use real world data 
to help them improve their models. Students progressed 
in their ability to choose appropriate variables, determine 
relevant relationships, and clarify causal mechanisms to 
make the relationships in their models more elaborated. 
Less progress was observed in respect to using data and 
evidence to support model design and explicitly linking 
the overall behavior of the model to the driving question 
about the phenomenon under investigation. Students 
experienced several challenges with causal reasoning, 
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including providing evidence and reasoning for their 
chosen variables and relationships in the models, and 
explaining how their models addressed the driving 
question of the unit.

Discussion
The results described above indicate that using digital 
modeling tools and big data, alongside supportive 
curricular materials that focus on the development of 
students’ modeling and data practices, can support 
students’ engagement, conceptual learning, and meta-
modeling knowledge in school science lessons. In the 
lessons, students developed and revised their models and 
used them to run simulations and make predictions of the 
investigated phenomena. These studies provide insights 
into how students engage in modeling and data practices 
in science classrooms using a computational modeling 
tool. These studies also highlight the main characteristics 
and learning achievements of students when reasoning 
with models and using big data in digital tools, and 
suggest practical approaches in which modeling and data 
practices can be used for scientific inquiry and reasoning. 

In the studies presented in this chapter, students required 
technical and cognitive supports when using computa-
tional modeling tools, as the modeling and data practices 
were unfamiliar to them, and they did not have many 
opportunities to use such digital tools in school prior 
to the interventions. Sufficient time to meaningfully 
engage with the models and data was one of the main 
limiting factors during the implemented lessons, resulting 
in few opportunities to engage students in broader 
discussions about the affordances and constraints of 
the modeling process and the nature of models. These 
findings also align with the challenges students face when 
engaging with mathematical modeling and hands-on 
experiments, as discussed by Ramona Hagenkötter 
and her colleagues (in this volume on page 41). It 
is believed that integrating several different modeling 
approaches holds a strong promise to promote science 
students’ learning, provided they are given appropriate 
scaffolds and sufficient time to engage with each of the 
modeling approaches and to discuss the affordances and 
limitations of each. Selecting the appropriate pedagogies 
for supporting students in developing data-based models 
is a major challenge for 21st-century citizens literacy, as 
discussed in Iddo Gal’s chapter (in this volume on page 
91). On top of that, as discussed by Robert Gould (in 
this volume on page 81), the modeling approach and 
tool must match the purpose of the model. SageModeler, 
like any other computational modeling tool, should be 
used for the appropriate purpose and learning goal. A 
curriculum that integrates modeling tools should be 

carefully designed to account for students’ cognitive level 
and content knowledge, and facilitate their modeling and 
data practices. Classroom implementation results suggest 
that identifying appropriate curricular activities and 
teacher supports are key for learning and the development 
of students’ modeling and data practices. 

Implications and contribution
The findings described in this chapter align with the 
2022 Minerva school theme, mostly in the aspects of 
learning environments that foster reasoning with data 
models and designing modeling-centered pedagogies. 
It holds the potential to support researchers, educators, 
and curriculum designers interested in integrating digital 
tools to support students’ modeling and data practices. 
My experiences at the 2022 Minerva school provided 
me with more insightful ideas and research directions to 
integrate modeling and data practices in school science 
activities that can further support students’ engagement 
and learning. 

As indicated in the studies presented in this chapter 
and in the literature, supporting the development of 
students’ modeling and data practices using digital tools 
requires continued feedback and interactions between the 
students and the teacher with scaffolding supports from 
the curricular materials. Modeling tools such as SageMod-
eler can support the students in the modeling process, 
while making it more interactive, dynamic, and engaging.  

Based on the results from the studies described above and 
in alignment with the four aspects of the system modeling 
practices framework, the following recommendations are 
suggested for science educators and curriculum designers 
interested in developing and supporting students’ 
modeling and data practices using computational 
modeling tools:

1.	 Focus on using data and evidence to support 
critical evaluation of model components and the 
relationships between them. Running simulations 
to evaluate the outcome of a model in comparison 
with real-life data is an important feature when using 
digital modeling tools. As seen in Bielik, Opitz, and 
Novak (2018), some students face difficulties when 
addressing problems in their models during model 
revision activities. This is a crucial checkpoint in the 
modeling process, and teachers should direct students 
to carefully test their models throughout the model 
development process. In addition, as found in Bielik, 
Stephens, McIntyre, Damelin, and Krajcik (2021), 
students require different scaffolds from the teachers 
and curricular materials to support them in using data 
to evaluate their models.
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2.	 Evaluate models in whole-class and small-group 
discussions. All studies presented in this chapter were 
designed as collaborative inquiry units that include 
many opportunities for students to discuss and 
present their ideas using the computational modeling 
tools. This was mostly emphasized in Bielik, Fonio, 
Feinerman, Golan Duncan, and Levy (2020), where 
students had repeated opportunities to share and 
discuss their models throughout the lessons. Getting 
students to talk through their models can be helpful 
in identifying inconsistencies in their models and 
inappropriate model behavior. Student-centered 
discussions are powerful tools for sharing ideas related 
to the phenomena being modeled and for engaging 
students in activities that support growth in metamod-
eling knowledge. These discussions can include peer 
review, gallery walks, presentations, and collaborative 
evaluation of student models.

3.	 Frequently revisit the overarching phenomenon 
and the goal that the model is intended to achieve. 
Students can easily lose the big picture of what they 
are modeling and why they analyze the data, especially 
when using cognitively demanding digital tools, as 
observed in Bielik, Damelin, and Krajcik (2019). 
Teachers should frequently emphasize and revisit the 
goal of model development and respond to student 
questions and comments related to it. It is also 
suggested that the metamodeling knowledge about the 
purpose of modeling should be consistently visible for 
the students while they develop and use their model.
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In the big data era, people need to become active data 
explorers who understand how data can be used to describe 
and model the world. Therefore, students should acquire key 
data literacy competencies already in school. Against this 
background, the present chapter introduces mathematical 
modeling with hands-on experimentation as one potentially 
promising approach to engage students in authentic modeling 
with real data, and thereby, promote their data literacy as 
well as their conceptions about mathematics. As findings of 
our interview study suggest, students often do not associate 
mathematics with processes of active data exploration but 
instead with mere schematic-algorithmic application of 
predefined steps. Moreover, insights into students’ mathemat-
ical modeling with real data from mathematical hands-on 
experimentation suggest that students need to learn to 
mathematically model real-world phenomena and, espe-
cially, to deal with real data. Building on these findings, the 
present chapter calls for the implementation of mathematical 
modeling with hands-on experimentation in mathematics 
education to provide students with more opportunities to deal 
with real data and to become active data explorers.

Introduction
It is important in the big data era that people are not simply 
passive recipients of data-based reports. Rather, they 
need to become active data explorers who can “identify, 
collect, evaluate, analyze, interpret, present, and protect 
data” (Oceans of Data Institute, 2015, p. 4). Therefore, 
every citizen needs to further develop data-related skills 
which are referred to as data literacy. According to Risdale 
et al. (2015, p. 8), data literacy is “the ability to collect, 
manage, evaluate, and apply data, in a critical manner” 
and is essentially required in the global knowledge-based 
economy. In addition, Wolff et al. (2015, p. 23) analyzed 
different perspectives on data literacy and surveyed existing 
approaches to teaching data literacy in practice. Based on 
their findings, they describe data literacy as “the ability to 
ask and answer real-world questions from larger and small 
data sets through an inquiry process, with consideration of 
ethical use of data.” Moreover, Wolff et al. (2015) argue that 
the foundation for a data literate society begins by acquiring 
key data literacy competencies in school. Therefore, 
mathematics classes can be considered as one opportunity 
to foster such data literacy competencies. However, as 
indicated by our own research (Hagenkötter et al., 2022) 
as well as previous studies on students’ conceptions about 
mathematics in general (e.g., Schoenfeld, 1992), students 
in mathematics classes are often only passive consumers 
of others’ mathematics, and thus do not associate mathe-
matics with processes of active exploration. If students do 
not associate what they have learned in mathematics classes 
with these processes, they are not likely to apply what they 
have learned in class to engage in active data exploration 
inside and outside the classroom. Consequently, there is a 
need to provide opportunities for students to experience 
mathematical activities as processes of active inquiry 
that can also help them to develop data-related skills. 
Against this background, the present chapter introduces 
mathematical modeling with hands-on experimentation 
as one potentially promising approach to engage students 
in authentic modeling with real data and, thereby, to 
promote (more) adequate conceptions about mathematics 
as well as data literacy.

Mathematical hands-on experimentation 
as a possibility to engage students 

in authentic modeling with real data
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Mathematical modeling with real 
data gained through hands-on 
experimentation
Consistent with the aforementioned definition of data 
literacy by Wolff et al. (2015), mathematical modeling 
provides students with the opportunity to deal with a 
real-world problem. Specifically, mathematical modeling 
refers to “the entire process leading from the original real 
problem situation to a mathematical model” (Blum & 
Niss, 1991, p. 39). According to, for example, Blum and 
Niss (1991) as well as the modeling cycle developed by 
Blum and Leiß (2007), mathematical modeling starts with 
a real problem situation which first has to be understood, 
simplified, and structured. This leads to a real model of 
the original situation that still contains essential features 
of the original situation, but is also schematized to an 
extent that it allows a mathematically driven approach. 
The real model has then to be mathematized by, for 
instance, translating its data and relations into math-
ematics, resulting in a mathematical model of the real 
situation. The mathematical model essentially consists of 
certain mathematical objects and their relations, which 
correspond to the core elements and the interaction of 
these elements of the original real situation or the real 
model. The mathematical model then allows one to, for 
instance, draw conclusions, make calculations, apply 
known mathematical methods, and finally obtain certain 
mathematical results. These mathematical results have to 
be re-translated into the real world by interpreting them in 
relation to the original real situation. The model is thereby 
also validated, which means that the appropriateness of 
the results is checked against the background of the real 
problem situation.

In summary, mathematical modeling enables students 
to deal with a real-world problem and to move between 
reality and mathematics. However, when comparing 
mathematical and statistical modeling, it is apparent 
that statistical models not only have a deterministic 
component which may be represented by a mathematical 
function, but also a stochastic component which provides 
information about how actual observations deviate from 
the deterministic component (e.g., Dvir & Ben-Zvi, 
2023; chapter by Gould in this volume on page 81). 
Therefore, it seems to be necessary to engage students in 
mathematical modeling with real data that also includes 
a stochastic component, and thus may foster students’ 
data literacy. Dealing with real, authentic data can engage 
students in a broader range of science practices and 
improve their critical thinking (e.g., Kerlin et al., 2010; 
Holmes et al., 2015), especially through analyzing and 
interpreting data, using mathematics and computational 
thinking, and reasoning based on evidence (e.g., National 
Research Council, 2012). In contrast, inauthentic data, 

such as simplified textbook data without noise, are often 
generated to demonstrate a particular pattern or result 
from manipulation of data to force a specific result or 
interpretation (e.g., Kjelvik & Schultheis, 2019) and, thus, 
often already fit an intended model (e.g., Engel, 2010). 

One promising approach to integrate real data in the 
modeling process, which is focused on in this chapter, 
is to combine mathematical modeling tasks with data 
that students gather through mathematical hands-on 
experimentation (see, e.g., Geisler, 2021a, 2021b; Zell 
& Beckmann, 2009). In contrast to inner-mathematical 
experimentation, which asks students to experiment 
with mathematical objects in the world of symbols (e.g., 
to examine divisibility rules), mathematical hands-on 
experimentation provides students with a real-world 
question which they have to investigate through a physical 
experiment with real objects. They then use mathematics 
to analyze and evaluate their observations (e.g., Barzel et 
al., 2007). Thus, mathematical hands-on experimentation 
can serve as a suitable starting point for mathematical 
modeling because “experiments related to mathematics 
find their natural place in the framework of modeling […] 
[as] they represent the ‘rest of the world’ for which math-
ematical models are built” (Halverscheid, 2008, p. 226). 
Moreover, as every experiment contains idealizations, the 
experiment itself can be considered a real model (Geisler, 
2021b). During mathematical modeling with hands-on 
experimentation, students have to make assumptions, 
plan and conduct an experiment, excerpt a mathematical 
model from the real world (e.g., by noting the measured 
values and transferring them to a coordinate system), 
answer mathematical questions within this mathematical 
model, interpret the mathematical results in the real situ-
ation, validate the solution, and reflect on their approach 
(see the integrated model of modeling with experiments 
by Geiser, 2021b; see also Figure 1). 

The steps of mathematical modeling with hands-on 
experimentation are comparable to the approach used in 
statistical modeling. Specifically, the steps of mathemat-
ical modeling with hands-on experimentation correspond 
to the PPDAC cycle which describes how to abstract 
and solve a statistical problem grounded in a larger real 
problem (e.g., Wild & Pfannkuch, 1999). Following 
the PPDAC cycle, the problem is first understood and 
defined (Problem). Then, among other things, the 
measurement system and sampling design are planned 
(Plan). Afterwards, data are collected, managed, and 
cleaned (Data). Subsequently, data are explored, and 
planned as well as unplanned analyses are performed 
(Analysis). Interpretation, conclusions, and new ideas for 
future analysis follow (Conclusions).

Through the integration of hands-on experimentation 
into mathematical modeling, students connect the data 
they gather, analyze, and interpret to their everyday lives. 
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Thus, it becomes likely to demonstrate the real-world 
relevance of learning activities focusing on data literacy to 
students and to trigger their natural curiosity about their 
world (e.g., Doering & Veletsianos, 2007). Furthermore, 
when students collect data on their own, they gain a 
deeper understanding of the data-collection process and 
its possible limitations (e.g., Hug & McNeill, 2008) and, 
thus, can take this into account when making their inter-
pretations (e.g., Roth, 1996). Against this background, 
Kjelvik and Schultheis (2019), for example, argue that 
students should be given the opportunity to engage in 
quantitative reasoning and data science while exploring 
authentic data sets from scientific research in order to gain 
strong learning experiences surrounding data literacy.

However, the use of complex authentic data, for instance, 
in terms of scope, selection, curation, size, or messiness, 
can be challenging for students, especially for novices 
who have little experience in data exploration or research 
more generally. For example, Pols et al. (2021) investi-
gated students’ ability to analyze experimental data in 
secondary physics education. Their results indicate that 
students’ performance in interpreting data in terms of the 
investigated phenomenon or situation was weak. They 
observed that students were often unable to identify the 
crucial features of a given graph and conclusions based on 
the data were often tautological or superficial. In addition, 
they found that students were not able to infer impli-
cations from the data, to interpret data at a higher level 
of abstraction, or to specify limitations on the validity 
of the analysis or conclusion. Similar findings were also 
found in a study by Kanari and Millar (2004) on students’ 
reasoning from data. Against this background, Kjelvik and 
Schultheis (2019) recommend that students should not 
start with the exploration of complex data and that the use 

of simple data sets constitutes a more appropriate starting 
point. Simple data sets are characterized, for example, by 
a narrow scope (i.e., are limited to appropriate data) and 
a small size (i.e., can be explored using pencil and paper 
and contain few variables and data points). In addition 
to the potential to promote students’ data literacy, using 
real data for mathematical modeling may also reinforce 
the importance of mathematics for answering questions 
and foster students’ interest and active engagement in 
both mathematics and science (e.g., Schultheis & Kjelvik, 
2015; Šorgo, 2010).

In summary, mathematical modeling with real data 
gained through hands-on experimentation seems to be 
a promising approach to promote students’ data literacy, 
as students are asked to answer a real-world question by 
using real data they gained through an inquiry process, 
which corresponds to the definition of data literacy by 
Wolff et al. (2015). Furthermore, mathematical modeling 
with hands-on experimentation may also foster (more) 
adequate conceptions about mathematics in students. 
However, in light of the findings on students’ difficulties 
in analyzing and interpreting data in science education 
(e.g., Kanari & Millar, 2004; Pols et al., 2021), it is 
unclear whether students are able to successfully use real 
data from mathematical hands-on experimentation to 
model real-world phenomena mathematically. Therefore, 
the present chapter provides insights into students’ 
mathematical modeling with real data from hands-on 
experimentation. Before presenting these findings, we 
briefly describe the research setting of our study that led 
to these results.

Figure 1.	 Integrated model of modeling with experiments (adapted from Geisler, 2021b, p. 205)
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Research setting
Our data collection took place during a day-long project 
on mathematical growth and decay processes in an 
out-of-school lab at a large German university as part of a 
quasi-experimental field study. Participants were 74 ninth 
and tenth graders (Mage = 14.81, SD = 0.80, 55% male, 
42% female, 3% divers) from three German secondary 
school classes who visited the out-of-school lab as whole 
classes with their mathematics teachers to attend our 
day-long project. During the project, the students worked 
on different mathematical modeling tasks with hands-on 
experimentation to investigate and model various 
everyday growth and decay processes.

In the present chapter, we focus on the first learning phase 
of the day-long project, in which the students had a total 
of 55 minutes to work in groups of three on a mathemat-
ical modeling task with hands-on experimentation on 
beer foam decay. This context is likely to be motivating 
and familiar to students from their everyday lives, as beer 
is interesting and has a positive connotation for many 
students of this age in Germany (e.g., Wilhelm & Ossau, 
2009). Furthermore, this context fulfills the recom-
mendations of Zell and Beckmann (2009, p. 2218f.) 
for using hands-on experimentation in mathematics 
lessons. According to their first recommendation, the 
experiments should be simple—done with few materials 
and performed quickly—so that students can concentrate 
more on the mathematics. Moreover, the physical terms 
used during experimentation should be familiar to the 
students. As the students were asked to conduct an 
experiment by measuring the height of foam from poured 
alcohol-free beer, the experiment was done with few 
materials (i.e., alcohol-free beer, a measuring cylinder, a 
ruler, and a stopwatch), took only a few minutes, and the 
physical terms used (i.e., time and height) were familiar 
to the students. Because the participating students were 
not yet familiar with exponential processes, they were not 
asked to model the beer foam decay as a function. Rather, 
the beer foam experiment served as an exploration of 
exponential processes.

While working on the beer foam decay task, the students 
used a printed lab booklet that contained both the 
assignments for the subsequent activities and space for 
students’ notes. According to the integrated model of 
modeling with experiments (see Figure 1), the students 
first had to individually make assumptions about how 

the beer foam might decay as well as to draw a sketch of 
the predicted decay and then discuss their hypotheses 
with their peers. Afterwards, they were asked to plan an 
experiment together to investigate the beer foam decay 
as well as to think about what materials they would need 
to do so. Before carrying out their planned experiment, 
the students were asked to think about how to note their 
measurements. Then they carried out their planned 
experiment, noting their measured values. Subsequently, 
in order to support the students in analyzing and inter-
preting their results as well as to facilitate comparison 
with their initial assumptions and sketches, the students 
were asked to first consider how to plot their findings 
into an appropriate coordinate system and then graph 
their measured values into their coordinate system. The 
students had to use their graph to analyze and interpret 
their results as well as to compare their findings with 
their initial predictions and sketches. Finally, the students 
reflected together on their procedure. For this purpose, 
the students were asked to imagine that they would inves-
tigate how beer foam decays a second time and consider 
what they would do differently and whether they would 
get the same results and on what conditions the results 
would depend.

To gain insights into students’ mathematical modeling 
in this task, we analyzed the notes that the students 
took in their lab booklets. For this purpose, we first 
examined the notes of the 74 students of all eight steps 
of the process mentioned above (see also Figure 1) to 
obtain an overview of the different ways the students 
worked on the task. In light of the findings on students’ 
difficulties in analyzing and interpreting data in science 
education (e.g., Kanari & Millar, 2004; Pols et al., 2021), 
we then focused especially on the phases in which the 
students were asked to analyze and interpret their results 
and to compare them with their initial assumptions and 
sketches. In particular, we explored whether students who 
subjectively confirmed their initial assumptions tended 
to (mis)interpret their collected data in line with their 
initial assumptions (see also Hagenkötter et al., 2023). 
We jointly selected specific examples to illustrate both the 
possibilities and difficulties of integrating real data gained 
through mathematical hands-on experimentation into 
mathematical modeling. 
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Insights into students’ mathematical 
modeling with real data gained through 
hands-on experimentation
We found evidence in the students’ notes that mathemat-
ical modeling with real data gained through hands-on 
experimentation can enable students to answer a real-
world question from a smaller data set through an inquiry 
process, which Wolff et al. (2017) describe as part of data 
literacy. One group of students, for example, assumed 
at the beginning that “the beer foam dissolves linearly” 
and drew a corresponding sketch (see Figure 2, A). They 
chose suitable materials to investigate the decay of beer 
foam and decided to measure the foam height every 20 
seconds. Although the students did not use a table, they 
systematically noted their measured values, albeit in a 
mathematically questionable form (see Figure 2, B). They 
plotted them into a suitable coordinate system, albeit 
without labeling axes, and their graph represented an 
approximate exponential decay (see Figure 2, C). The 
students described the beer foam decay using their graph 
as follows: “The foam decays much faster at the beginning 
than at the end.” Consequently, they concluded: “The 
foam did not decay as expected. We thought that it would 
decay evenly, but it decays quickly first and then more and 
more slowly at the end.” Finally, the students reflected 
that “the experiment was good as it was.” They correctly 
did not expect other results, i.e., no other process of 
decay, to occur when they investigate the beer foam decay 
a second time, but “there could be discrepancies in the 
measurements, of course.” Moreover, one student of the 
group referred, albeit in a more general and less specific 
way, to possible conditions that might have influenced the 
process of decay: “I do not think that other results will 
occur, because we are in the same room with the same 
conditions.”

However, we also observed that dealing with real data 
gained through mathematical hands-on experimentation 
can be challenging for students. With regard to the 
students who subjectively confirmed their initial assump-
tions during mathematical modeling with hands-on 
experimentation (see also Hagenkötter et al., 2023), 
our results show that many students tended to interpret 
their results in a biased way and, consequently, falsely 
confirmed their initial assumptions. One group, for 
example, incorrectly confirmed their initial assumption 
by focusing their interpretation on very general aspects 
of their results that were consistent with their initial 
assumption. The students initially assumed that “the foam 
decreases proportionally” and drew a corresponding 
sketch (see Figure 3, A). They also chose suitable mate-
rials to investigate the decay of beer foam and decided to 
measure the foam height every five seconds. The students 
again did not use a table, but they systematically noted 
their measured values (see Figure 3, B). They plotted 
them into a coordinate system, but reversed the indepen-
dent and dependent variables (see Figure 3, C). Never-
theless, the results of their experiment clearly showed no 
linear decay, but instead an approximately exponential 
decay. Although the students were asked to describe the 
beer foam decay using their graph, the students did not 
describe the actually observed beer foam decay, but only 
their graph in a very general way as follows: “We have 
noticed that the graph has decreased.” The students did 
not describe the decay process in more detail and, thus, 
ignored that the decay process did not correspond with 
their initial assumption of a linear decay. Finally, they 
erroneously concluded that the results of their experiment 
support their initial assumption: “assumption confirmed 
through experiment!”

Figure 2.	 Sketch of the initial assumption that beer foam dissolves linearly (A), measured values of the students (B), and graph with the 
collected data that represents an approximate exponential decay (C)
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Discussion and conclusion
During mathematical modeling with hands-on experi-
mentation, students usually do not work with large data 
sets, but they nevertheless answer real-world questions 
using real data that they collected on their own. By iden-
tifying, collecting, analyzing, interpreting, and evaluating 
data, students are taking first steps towards becoming 
active data explorers (see Oceans of Data Institute, 2015) 
and, thus, get the opportunity to develop data literacy 
competencies (see, e.g., Wolff et al., 2015). As the findings 
we presented in this chapter show, students can success-
fully use their collected data to mathematically model 
real-world phenomena such as the decay of beer foam. 
Moreover, collecting their own data enabled students to 
reflect more strongly on the circumstances when inter-
preting the data. In addition, mathematical modeling with 
hands-on experimentation has the potential to reinforce 
the importance of mathematics for answering questions 
and, thus, to promote (more) adequate conceptions 
about mathematics like the following quote of a student 
after working on various mathematical modeling tasks 
with hands-on experimentation shows: “It was easy to 
recognize and understand the connection between math 
and reality.”

However, although we used a simple data set, our results 
show that the use of real data can be challenging for 
students (see, Kjelvik & Schultheis, 2019). Besides 
typical mistakes of students in dealing with functions, 
such as reversing the dependent and independent variable 
(see, e.g., Hofmann & Roth, 2021), we observed that the 
students often had problems interpreting their graphs 
in light of the real-world situation. As demonstrated 
by the second example we provided, the students 
planned and carried out a suitable experiment and first 
systematically noted and then transferred their measured 
values to a coordinate system, but they provided a naïve 

interpretation of their experimental results. We explicitly 
asked the students to compare their findings with their 
initial assumptions and sketches, which has been shown 
to support students’ dealing with statistical models and 
modeling in the context of informal statistical inference 
(e.g., Dvir & Ben-Zvi, 2018). Nevertheless, the example 
presented and additional solutions by other students 
indicate that the students often described the decay 
process in very general terms, tending to confirm their 
initial assumptions. Thus, our findings are in line with 
the results of previous studies on students’ difficulties 
in analyzing and interpreting data in science education 
(e.g., Kanari & Millar, 2004; Pols et al., 2021), which also 
indicate that students’ conclusions based on data are often 
tautological or superficial. Based on the discussions about 
the unique affordances of digital data visualization and 
modeling tools at Minerva School, it seems promising 
to additionally support students through the use of tools 
such as CODAP (Finzer, 2019) or TinkerPlots (Konold 
& Miller, 2005). This may also enable students to first 
collect and interpret their own data set and then combine 
their data with other students’ data sets as well as with 
larger, professionally collected data sets that encompass 
and extend beyond the circumstances of their self-col-
lected data (see, e.g., nested data set strategy by Kastens et 
al., 2015, p. 28).

To conclude, our insights and, in particular, students’ 
difficulties in mathematical modeling with hands-on 
experimentation suggest that students first need to learn 
to mathematically model real-world phenomena and, 
especially, to deal with real data. Therefore, it seems 
necessary to explicitly discuss with students how to deal 
with real data and practice it repeatedly from the begin-
ning of their school education. Even though mathematics 
classes are particularly suitable for fostering data literacy 
in students, the use of real data can and should also be 
promoted in other subjects and contexts such as biology 

Figure 3.	 Sketch of the initial assumption that beer foam decreases proportionally (A), measured values of the students (B), and graph with 
the collected data that represents an approximate exponential decay (C)
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(see, e.g., Bar, 2022), computer science (see, e.g., the 
chapter by Podworny & Frischemeier in this volume 
on page 15), or machine learning (see, e.g., Fleischer, 
2022). Furthermore, it seems useful to teach data literacy 
together with other closely related competence areas, 
such as computational thinking or logical reasoning (see, 
e.g., Labusch, 2022), or in an interdisciplinary way in 
order to contextualize the concepts and methods and, 
thereby, to promote transferable skills
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The development of statistical literacy is a key challenge to 
teachers in the 21st century, but little guidance for designing 
learning environments for the development of statistical 
literacy can be found in literature. This chapter reports on a 
design research project developing a digital learning environ-
ment that implements three design principles: build context 
knowledge, focus on models as evidence for claims, and elicit 
and scaffold reflections of argumentation. Central to the 
learning environment is the investigation of a critical climate 
change context, the Arctic sea ice decline. Results of 12 design 
experiments conducted with 24 Grade 5 students provide 
insights into the mechanisms of the design principles and into 
students’ learning processes for developing statistical literacy.

Introduction
Statistical literacy is a fundamental skill that is required 
of all citizens in the 21st century (Wild, 2017). Recent 
years have impressively demonstrated this fact, as global 
crises of climate change and the COVID pandemic have 
been matched by an increasing amount of fake news and 
manipulative posting on social media. For statistics educa-
tion research, this is not a newly discovered fact, as for 
years, researchers have highlighted the importance of civic 
statistics for citizens to engage in public discourse (Engel, 
this volume; 2017). The media reporting concerning 
the recent COVID pandemic has inspired researchers to 
uncover the high critical demands that media items pose 
on readers, as a solid statistical, mathematical, and critical 
knowledge base is required to understand and possibly 
criticize such media items (Gal & Geiger, 2022).

In statistics education research, such demands are 
discussed under the construct of statistical literacy (Gal, 
2002). However, while solid theoretical foundations 
for statistical literacy exist, only few theoretically and 
empirically grounded concrete approaches for developing 
statistical literacy can be found in literature (Büscher, 
2022), a finding that has led to calls for researchers to 
investigate such approaches (Ben-Zvi et al., 2018). A 
notable recent contribution to this call is provided by 

Gal (2024, in this volume on page 91), who outlined 
general recommendations for including statistical discus-
sions on societal problems in the teaching of statistics. 
This chapter continues this work and provides a further 
specification of concrete activities and tasks by reporting 
on a design research study that investigates approaches for 
developing statistical literacy in middle school mathe-
matics classrooms. Design research can provide a useful 
methodological framework for identifying useful design 
principles that can inform the design of learning environ-
ments. The aim of this chapter is to illustrate the working 
mechanisms of three identified design principles by inves-
tigating the learning processes of students working in a 
digital learning environment that implements these three 
design principles. The theoretical framework presents a 
perspective on statistical literacy that pays attention to the 
role of models for reflecting on statistical argumentation 
and provides the theoretical grounds for three identified 
design principles. The following section outlines a 
concrete implementation of the design principles to serve 
as guidance for future designers of learning environments. 
The empirical section then provides insights into the 
initiated learning processes and the working mechanisms 
of the identified design principles.

Theoretical framework

A modeling perspective on critical statistical literacy
Gal (2002) defined statistical literacy as the ability to 
understand and to evaluate statistical information as well 
as to communicate one’s reactions towards this informa-
tion. Weiland (2017) proposed to extend the notion of 
statistical literacy to critical statistical literacy to include 
an important observation about statistical arguments 
in society: 

“Statistical arguments are not made from an 
objective independent reality. They are made by 
individuals from a multitude of subjectivities. In this 
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sense statistical arguments can serve to perpetuate 
discourses.” (Weiland, 2017, p. 42). 

This means that statistical arguments cannot be evalu-
ated solely based on fit to an objective reality. Instead, 
statistical arguments are made by individuals who are 
situated in a social context to participate in a discourse 
that comprises social, political, economic, ecological, and 
other factors. A similar point is also made by Gal (2024, 
in this volume on page 91) who calls for statistics 
education to adopt an “external view” on statistical 
models that also takes into account the role of models 
in different contexts such as media contexts, service 
consumption contexts and workplace contexts. Jablonka 
and Bergsten (2021) also take an external view on models 
by illustrating the argumentative strategies in which 
models are used by policy makers in public discourse, 
which would not be described sufficiently using an 
“internal view” of models. These authors show that statis-
tical literacy does not only refer to the need for citizens 
to be able to understand the diagrams and measures 
used in the statistical argument at hand, but also to the 
need to understand the way the model-based argument 
shapes, and is shaped by, the discourse in which it takes 
place. Such a critical statistical literacy can then be a tool 
for challenging the power structures observed in society 
which are coded into statistical data and arguments, and 
which are reported through media items or government 
reports.

Such statistical arguments do not simply list data, but 
instead build on models to emphasize the relationships 
in data. To understand the role of models and modeling 
for critical statistical literacy, it is helpful to draw on ideas 
proposed by Skovsmose (1994), who builds on a central 
observation regarding models:

“Thus, any modeling process presupposes that certain 
simplifications are established. This means paying 
attention to certain aspects of  ‘reality’ and neglecting 
others.” (Skovsmose, 1994, p. 199). 

For Skovsmose (1998), citizens confronted with a 
model that pays attention to certain aspects of reality 
while neglecting others need to be able to engage in 

reflection under four different orientations: mathemat-
ics-oriented reflection regarding the correctness of 
calculations and formal characteristics; model-oriented 
reflection regarding the fit of an employed model to 
a larger phenomenon; context-oriented reflection on 
the possible consequences the use of mathematics has 
on the phenomenon; and lifeworld-oriented reflection 
relating to the subjective meaning of mathematics 
for the reflecting citizen. 

To highlight the role of data and models for reflection, 
this study adapts the four ideas relating different orien-
tations of reflection for critical statistical literacy using 
a theoretical model that conceptualizes the demands of 
critical statistical literacy for an individual confronted 
with a statistical argument (Figure 1, adapted from 
Büscher, 2022). In this theoretical model, statistical 
arguments consist of elements taken from four different 
domains of argumentation: 

•	 Phenomena about which the arguments aim to estab-
lish certain claims or to justify certain actions;

•	 Data which provide the quantitative basis of the claim 
about the phenomenon;

•	 Models that abstract from the data to describe a 
specific relationship found in the data; and 

•	 Text that provides illustrations and is composed 
in a certain style of rhetoric. ‘Text’ is here taken 
in a general way, meaning not only written words 
but also illustrations, graphs, and other forms of 
representation. 

This conceptualization builds on a broad understanding 
of models as “purposeful mathematical descriptions 
of situations, embedded within particular systems 
of practice that feature an epistemology of model fit 
and revision” (Lesh & Lehrer, 2003, p. 109). They are 
distinguished from the data in that data provide encoded 
representations of the “facts” of situations, while models 
represent the mathematical relationships that can be 
found within the data. 

Figure1	 Critical statistical literacy as analysis and reflection of statistical arguments in four domains of argumentation
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In argumentation, these domains are always intercon-
nected: phenomena are described via data, data form the 
background of models, models are illustrated through 
text, and text provides information on phenomena, data, 
and models. Yet each domain of argumentation comes 
with its own set of criteria for evaluating a statistical 
argument. Confronted with an argument, a reader or 
listener has to engage in analysis to disentangle the web 
of interconnected domains of argumentation. An analysis 
in the domain of the phenomenon can consist of asking 
questions like: what natural or social phenomenon is the 
argument about? Which aspect of this phenomenon does 
the argument focus on here? What is the interpretation 
of the results provided in the argument? In contrast, an 
analysis in the domain of the data asks: how were the data 
obtained? What types of variables are given? What were 
the methods of sampling? Building on this, an analysis in 
the domain of the model can be structured along ques-
tions like: Which statistical indicators were used? What 
type of regression was applied? And finally, an analysis 
in the domain of the text asks questions concerning the 
presentation of the other domains: what kind of rhetoric 
is used? How is the model illustrated? Which arguments 
are made explicit? 

Because models are purposeful representations of 
situations, they are not neutral, but encode a certain 
subjectivity (Weiland, 2017). Critical statistical literacy 
highlights the need for not only analyzing and under-
standing an argument, but also to uncover any possibly 
hidden agenda that influenced its creation. Therefore, a 
reader needs to engage in reflection. Instead of organizing 
different types of reflections along different orientations 
(Skovsmose, 1998), again the domains of argumentation 
are used here. A reflection in the domain of the phenom-
enon might ask: What is known about the phenomenon 
that does not appear in the argument? What might be the 
agenda of someone arguing in this way? A reflection in the 
domain of the data might consist of questions like: which 
data were not taken into account? Could other sampling 
methods have produced other data? A reflection in the 
domain of the model might ask: would a different type of 
regression or a different measure of center have produced 
a different result? Was there any information missing that 
would have been important for interpreting the model? 
And finally, a reflection in the domain of the text asks 
questions such as: would a different visualization lead 
to a different interpretation? Would a different rhetoric 
be more appropriate? This specification of reflection 
highlights that the model-oriented reflection proposed 
by Skovsmose (1998) touches on very different domains 
of argumentation, as the question of fit between model 
and situation needs to touch on alternatives regarding 
phenomenon, data, and model. Thus, it shows that 
models play a central role in reflection about arguments.

In this way, analysis and reflection engage with argumen-
tation using the same domains of argumentation, but in 
different ways: the analysis of an argument identifies and 
explicates the internal information used in the argument 
along the different domains of argumentation, whereas 
reflection uncovers missing information that is external 
to the argument at hand. This shows the high demands 
faced by learners in developing critical statistical literacy. 
Equally, it shows the high demands faced by educators for 
supporting learners in navigating this complex interplay 
of internal and external relations between phenomena, 
data, model, and text. One approach to help educators is 
to specify design principles that can inform the design of 
learning environments and teaching units, which will be 
presented in the following section.

Design principles for developing 
critical statistical literacy
Design principles that provide guidance for future 
designers of learning environments are one of the major 
outcomes of design research (van den Akker, 1999; 
Prediger et al., 2015). While elaborated design principles 
arise from empirical design and research work, they 
also need to be grounded in theory (van den Akker, 
1999). Although there are not many explicit design 
principles mentioned in the literature on statistical 
literacy (Büscher, 2022), some general advice on how 
to construct a learning environment fostering statistical 
literacy can still be found throughout various studies. 
For example, Gal and colleagues (2023) recommended 
promoting engagement with societal issues, using 
socially relevant data and text, using technologies that 
enable rich visualizations and developing skills of critical 
interpretation. In the following, these ideas are subsumed 
under three core design principles which build on the 
theoretical specification sketched earlier.Build critical 
context knowledge. In his conceptualization of statistical 
literacy, Gal (2002) already specified context knowledge 
as a central knowledge element of statistical literacy. 
Weiland (2017) observed that for many critical statistical 
literacy tasks, critical contexts surrounding issues of 
race, gender, or climate change need to be addressed in 
classrooms. This presents a challenge to many educators, 
as such contexts are often not part of teacher training, 
and teachers might not feel comfortable integrating such 
issues into their teaching. The role of context knowledge 
was also observed by Stephan and colleagues (2021), 
who found that it is easier for students to show a critical 
consciousness of mathematics in contexts that they 
have direct experiences with. This shows that in order to 
develop critical statistical literacy, learning environments 
not only have to use data from critical contexts, but also 
have to actively build the students’ context knowledge. 
This could mean providing not only facts but also 
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opinions, viewpoints, and ideas surrounding a phenom-
enon, so that the data can be embedded in a rich network 
of contextual meaning.

Focus on models as evidence for claims. The role of 
evidence for argumentation has long been discussed in 
statistics education research, for example regarding the 
constructs of Informal Statistical Inference (Makar & 
Rubin, 2009) and Informal Inferential Reasoning (Zieffler 
et al., 2008). Makar and Rubin (2009) considered using 
data as evidence as a central pillar of Informal Statistical 
Inference and found that young students struggle to 
see data as useful evidence for their claims. Regarding 
Informal Inferential Reasoning, the notion of evidence 
is closely linked to the concept of sampling (Zieffler et 
al., 2008). Here, stronger evidence is conceptualized 
as arising mostly from larger or better samples. While 
these considerations surrounding data as evidence are 
important, the modeling perspective on statistical literacy 
employed in this chapter highlights a different perspective 
on evidence. Since models are abstracted from data and 
show only selected relationships within the data, different 
models can be used as evidence for different claims, even 
within the same dataset. The question whether a claim 
is backed by evidence cannot be answered solely on the 
basis of how the data were sampled. Evidence for a claim 
needs to refer to a specific relationship found in the data 
i.e., a model, and the act of constructing a model is always 
a creative act of selecting the subjectively relevant aspects 
to be modeled, informed by context knowledge. Thus, a 
learning environment for developing statistical literacy 
should provide learning opportunities for students to 
understand the way models act as mediators between data 
and claim about a phenomenon.

Elicit and support reflection on argumentation. Most 
design principles found in statistics education research 
are focused on engaging students in rich inquiry activities 
and data exploration. For example, the framework of the 
Statistical Reasoning Learning Environment (Garfield & 
Ben-Zvi, 2008) outlines a learning environment in which 
students use technological tools in activities eliciting 
statistical reasoning in real and motivating contexts. The 
goal is to develop students’ central statistical concepts 
like distribution or variability. However, the goal of a 
learning environment for developing statistical literacy 
is not to develop statistical concepts like center, but to 
develop insights into the role of models in producing 
evidence, which requires a different kind of knowledge 
and different type of learning activity. This point is made 
by Büscher and Prediger (2019), who conceptualized 
insights into the nature of models as “reflective concepts” 
like the concept of perspectivity: the idea that models 
always create a certain perspective on a phenomenon 
which highlights specific aspects while simultaneously 
obscuring others. They proposed that the development 
of reflective concepts requires students to engage in 

“reflective activities” like explicating the uses and limits of 
a statistical measure. Regarding critical statistical literacy, 
this means that students need to engage in activities of 
reflecting on argumentation. 

These three design principles might serve as general guid-
ance for designing learning environments for developing 
critical statistical literacy. Yet research and practice require 
more than general outlines, and recent calls have surfaced 
for researchers to report on the development of learning 
environments (Ben-Zvi et al., 2018). Design principles 
are not only theoretical considerations, but their working 
mechanisms need to be elaborated by empirically identi-
fying their effects. The remainder of this chapter therefore 
empirically investigates the three design principles by 
engaging with the following research question:

Research question: How do the three design principles 
support the development of students’ ability to analyze 
and reflect on statistical arguments? 

Methodological framework
This design research study was carried out with a focus 
on students’ learning processes (Prediger et al., 2015). 
The overarching cli.math project aims to develop and to 
investigate a digital learning environment that employs 
climate contexts for developing students’ critical statis-
tical literacy and to uncover typical learning pathways and 
possible obstacles. 

Participants and data collection
In June 2022, 12 design experiments (Gravemeijer & 
Cobb, 2006) were carried out. Each design experiment 
consisted of one pair of students who worked with the 
cli.math digital learning environment (see below) using 
a supplied laptop under supervision of the author, who 
acted as interviewer and teacher during the experiments. 
All 24 students were taken from the same mathematics 
class, a German Grade 5 mathematics class from a 
school in a German low-income metropolitan area. The 
students all volunteered for the design experiments, 
and all students who volunteered were included in 
the experiments. Each design experiment lasted for 
about 40 minutes. Video data was captured from each 
whole design experiment, resulting in approximately 
480 minutes of video data. The design experiments are 
subject to an ongoing analysis of transcribed video data 
combining deductive and inductive steps of analysis and 
category generation in the style of open and axial coding 
(Corbin & Strauss, 1990). The analysis reconstructed 
the students’ references to phenomena, data, model, and 
text and identified them as internal (i.e., referencing an 
element of the learning environment) or external (i.e., 
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referencing an element taken from a different source 
such as subjective knowledge). This made it possible to 
identify the students’ processes of analyzing or reflecting 
on arguments which were either provided by the learning 
environment or constructed by the students themselves. 
Afterwards, these references were compared to the design 
principles to illustrate the effect the design principles had 
on the students’ learning processes.

The cli.math digital learning environment
The cli.math digital learning environment is a brows-
er-based learning environment that was fully coded by 
the author using php and javascript as well as the chart.js 
and konva libraries. In the learning environment, students’ 
progress through three “worlds”: (1) the story world, 
which focuses on the design principle of building context 
knowledge and in which students discover varied infor-
mation and claims about a phenomenon; (2) the data 
world, in which students engage in statistical investigation 
themselves and which focuses on the design principles 
of using models as evidence for claims; and (3) the 
argument world, which focuses on the design principle 
of eliciting and scaffolding reflection of argumenta-
tion by letting students evaluate claims and evidence 
produced by others.

The story world
The story world is the first world students encounter in 
the cli.math digital learning environment (Figure 2). 
The goal of this stage of the activity is to build a context 
knowledge base. The central design element here is 

the mechanism of collecting info cards and claim cards. 
Info cards represent known, undisputed facts about the 
phenomenon, while claim cards represent claims that 
can be investigated via the data provided by the learning 
environment (Figure 3). Although the information on 
the info cards could also be disputed, they are presented 
as facts in order to provide the students with a firm basis 
for interpreting the data which is later provided to them. 
For example, one info card states that the Arctic sea ice is 
naturally influenced by summer and winter months. This 
is a fact that is important to adequately interpret Arctic 
sea ice data, yet is not a well-known fact to students in 
Grade 5.

The cards already collected by the students are placed in 
the card bar at the top of the page (Figure 2, ❶). At any 
time, the students can click on a card image to view the 
collected card. To collect new cards, the students engage 
with different stories (Figure 2, ❷). These stories are first 
presented via a thumbnail picture, which the students 
can choose to investigate. In this implementation, stories 
come in text form, and provide articles (here: a fictional 
wiki-like article on the Arctic), interviews (here: a 
fictional interview with a polar researcher about Arctic sea 
ice during summer and winter), or tweet-like social media 
posts (here: fictional tweets about Arctic sea-ice decline 
as well as misinformation or debatable claims). Video and 
audio entries are planned, but not yet implemented.

In this example, a tweet is being investigated that claims 
that Arctic sea ice will rise again and thus there is no 
need to worry (Figure 2, ❸). Although this is a fictitious 
example, similar tweets are easily found in social media, 
and students are familiar with the need not to take all 
social media posts at face value. After reading this tweet, 

Figure 2:	 The cli.math story world
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students can collect a claim card about not 
needing to worry, which like all claim cards 
is marked as in need of verification. After 
collecting all 5 cards, the students are asked 
to continue to the data world. 

The data world
In the data world (Figure 4), students inves-
tigate the claim cards collected throughout 
the story world. In the card bar, the students 
can view info cards and choose a claim card 
to be investigated (Figure 4, ❶). For this, 
they can choose from different datasets 
(Figure 4, ❷), not all of which are useful for investigating 
the claim card. In this example, the students can choose 
between data on Arctic temperatures and Arctic sea ice 
extent in two different time frames. Here, the students 
have chosen the dataset on Arctic sea ice extent during 
the five “decade” years from 1980 to 2020. After choosing 
a dataset, the students can view the data through different 
representations: a table, a bar chart and a line graph 
(Figure 4, ❸), with the table view being the default repre-
sentation that is displayed after choosing a dataset. Here, 
the students have opted to view the line chart (Figure 4, 
❹). In the next step, the students have various tools for 
dealing with the graph (Figure 4, ❺). One important tool 
here is the box tool for highlighting areas of importance 
within the data (see Figure 5). Other possibilities include 
the calculation of statistical measures like mean, mode, 
and range. More complex representations like dynamic 
hat plots are planned, but not yet implemented.

When the students are satisfied with their representation, 
they can take a data snapshot (Figure 4, ❻). This creation 
of data snapshots is the central design element of the 
data world. Here, they connect the claim card with their 
representation and are asked to provide an explanation 

(Figure 5). In this case, they have chosen the box tool and 
have created a red box highlighting the summer months 
in the graph. In this way, the students are scaffolded in 
creating arguments that connect phenomenon, data, 
and model. Afterwards, the students can progress to the 
argument world.

The argument world
The argument world focuses on the design principle of 
eliciting and scaffolding reflection on arguments (Figure 
6). Here, the students can choose between different data 
snapshots created by fictitious students (Figure 6, ❶). 
In this case, the argument of “Mei” has been chosen, and 
a claim card, an annotated bar chart and an argument 
is provided (Figure 6, ❷). This argument has been 
constructed in a way that it is correct, given this chosen 
data. To criticize this argument, students have to draw 
on knowledge about the phenomenon, data, or models 
external to the argument at hand, that is, they have to 
reflect on the given argument. This reflection is scaffolded 
by criteria that are provided to the students which they 
are asked to use to rate Mei’s argument (Figure 6, ❸). 
The exact formulations of the criteria are tentative, and 

Figure 3:	 Info card (left) and a claim card (right) provide the context knowledge 
base of the learning environment

Figure 4:	 The cli.math data world
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subject to change during the design research project. In 
this iteration, criteria like “argument and data snapshot 
are fair” are supposed to initiate reflections about data and 
models. Building on these ratings, the students are asked 
to provide a final opinion on the provided argumentation 
(Figure 6, ❹). Here, they have the option to use provided 
sentence fragments (Figure 6, ❺; Figure 7) as scaffolds 
for formulating a critique of an argument. As before, these 
scaffolds are a first attempt at providing useful scaffolds, 
and the design research project investigates whether, and 
how, such scaffolds can be useful.

Empirical insights
The empirical part of this chapter illustrates the mecha-
nisms of the design principles by showing the activities 
of one pair of students, Cedrik (C) and Dominik (D), 
during the whole experiment. The pair was chosen as 
they worked on all worlds in the learning environment 
and showed rich engagement with the design principles, 
although not all pairs profited as much from the design 
principles as Cedrik and Dominik.

Figure 5:	 Creating a data snapshot

Figure 6:	 The cli.math argument world
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Story world
At the very beginning, before starting the work on 
the learning environment, the interviewer (I) asks the 
students whether the phenomenon of Arctic sea ice is 
familiar to them.

	 I	 Did you already talk about Arctic sea ice in school? 
About the Arctic, about Arctic sea ice, or some-
thing like that?

	 C	 A bit in geography class.

	 D	 Yea, in geography.

	 I	 And what do you know about it?

	 C	 Well, it’s a bit critical, what we are doing wrong 
with things like flying.

	 I	 What do you mean?

	 C	 That so much ice is melting at the polar caps. And 
with all those animals.

This excerpt can illustrate the starting point of the design 
experiment. Both students show some familiarity with 
the phenomenon of Arctic sea ice decline, but in a very 
rough way: the melting ice is not specified further, 
and links between melting ice, flying, and animals are 
not made explicit.

The story world aims to build on these foundations to 
establish a more robust context knowledge that can 
be later used for investigating data and reflecting on 
argumentation. As their first story, the students read the 
fictional interview with a polar researcher. In this inter-
view, the researcher provides information about the Arctic 
seasons, in particular that temperatures vary between 
the seasons, and that ice melts during the summer. In the 
following excerpt, the students describe their reaction 
towards the interview.

	 D	 Well, it said that during the summer the ice melts, 
but it didn’t say anything about the ice growing 
again in winter. And they talked about eternal ice, 
but…

	 C	 But it doesn’t always stay the same […] well, but 
minus 30 degrees in the winter, it could well be 
possible that ice is created.

	 I	 Mhm.

	 C	 It’s like, far below freezing.

Here, the design principle of building context knowl-
edge first takes effect. Whereas in the very beginning, 
the students formulated an idea concerning a general 
“melting” of polar ice, this idea becomes differentiated 
through the ideas of summer and winter. Dominik shows 
that this is a new idea that is not easily understood: the 
interview does not explicitly state that ice regrows in 
winter. Only after some seconds of thinking, Cedrik 
comes to the conclusion that a regrowing ice could be 
explained by the low winter temperatures. This shows 
that building context knowledge is an active effort by 
the students, initiated through the design element of the 
interview story.

Data world
After engaging with additional stories, the students 
continue to the data world. Before they choose a dataset, 
the interviewer asks the students how one could inves-
tigate the claim that Arctic sea ice is declining. In their 
answer, the students describe a procedure of taking 
photos of Arctic sea ice at different times and to compare 
them. Afterwards, Cedrik chooses the larger dataset with 
data from 1980 to 2020 for a closer exploration.

	 I	 Okay, and why are you choosing this one [points to 
the larger 1980 to 2020 dataset]?

	 C	 Because you can make better evaluations with a 
larger time span. If you only have something like a 
few months, then you cannot see a big change.

	 I	 Why? Why is it that you cannot see it?

	 C	 Because for one, one photo could have been taken 
in winter, and the other in summer.

In this excerpt, it is notable that the students do not 
justify the use of a larger dataset through theoretical 
considerations, for example about sampling, but through 
using their contextual knowledge. Because they know 
through the story world that the Arctic is influenced by 
summer and winter, they hold that a larger time span has 
to be observed, so that no unfair comparisons between 
summer and winter are made. This idea is not directly 

Figure 7:	 Scaffolds for formulating critique of arguments
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related to the actual dataset at hand. After all, the dataset 
comprises data from 1980 to 2020, which would include 
multiple summers and winters. Nevertheless, the students 
draw on their context knowledge to justify the need for a 
larger dataset. In this way, the design principle of building 
context knowledge can influence not only the students’ 
knowledge of the phenomenon, but also their approaches 
to dealing with data.

Afterwards, the students investigate the data in a table. 
This is a challenging activity, as the table contains an entry 
for the minimum ice area for each month for the years 
1980, 1990, 2000, 2010, and 2020, and it cannot all be 
displayed simultaneously.

	 D	 Now I see that 2010 it’s a lot less ice, but 2020 it 
balanced out again. There were some numbers 
more.

	 I	 Please explain again. Which numbers do you 
mean? There are different numbers for 2010 and 
2020.

	 D	 Well, most of the time, at the last places, there was 
only like, point six or something. And here then 
there was a bit more.

	 C	 Yeah. From January 2010 to 2020, I think there was 
13.5 and then 2020 it was 13.6

[…]

	 C	 But when you look at May, it sank a bit. It’s 
different.

	 D	 Yes, also in August, 5.5 [points to 2010] and 5 
[points to 2020].

In this excerpt, the students have difficulties expressing 
a change in the Arctic sea ice. Dominik actually observes 
that after a brief decline in 2010, the ice recovered in 
2020 (it “balanced out again”), which Cedrik explains 
through a rise that could statistically be considered 
negligible (2010 “there was 13.5 and then 2020 it was 
13.6”). Still, to the students, this seems to be a relevant 

difference. At the same time, they observe a decline of 
Arctic sea ice in specific months like August from 5.5 to 
5. These two rivaling observations remain unconnected 
in the students’ reasoning. One possible reason could be 
the missing contextual considerations. The students are 
fully submerged in the investigation of data (navigating 
the table) and models (absolute differences between two 
specific months). At this point in their investigation, ideas 
relating to the phenomenon of Arctic sea ice, for example 
summer and winter months, are not articulated.

Afterwards, the students investigate the line graph. 

	 C	 Now you see really clearly how it changed.

	 I	 What do you see?

	 C	 That 2020 it’s low, like, in the direction of August 
or September it’s very low.

	 D	 Yes.

	 I	 And where do you see it? Because in 2020, it’s also 
around 14. That seems quite high.

	 C	 […] Well, in the time frame between June and 
December, there it deviated from 2010.

The line graph seems to allow the students to use models 
of higher complexity. While investigating the table, the 
students used models of absolute difference between 
two specific months (e.g. May 2010 and May 2020), 
they now use a model that compares whole time frames 
(“between June and December, there it deviated from 
2010”). As before, these observations are still grounded 
in the language of data and models, and the phenomenon 
is missing. However, when creating their data snapshot, 
the context knowledge resurfaces (Figure 8). Here, they 
use a box as a model to signify the summer months in 
which the decline of Arctic sea ice becomes apparent—
knowledge which they first gained from an info card 
(Figure 3). Thus, they combine model with knowledge of 
the phenomenon.

Figure 8:	 Cedrik and Dominik’s data snapshot explicates the links between claim, model, and phenomenon
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Argument world
In the argument world, the students engage with Mei’s 
fictitious argument (Figure 6) that uses the data from two 
years to claim that Arctic sea ice recovers each time, and 
thus there is no need to worry.C	 When I look at the 
diagram, I wouldn’t say that it’s correct, that argument

	 I	 Why?

	 C	 Because you can clearly see that, in January, it 
really is a little bit higher than in May 2020 […]

In their first reaction, Cedrik clearly rejects Mei’s argu-
ment. He does so by observing that, although Mei claims 
that the ice is not decreasing, in her model, you can see 
that there actually is a decrease from January to May. 
In this way, Cedrik focuses on the internal coherence 
between Mei’s model and the text of her argument. 
Therefore, this does not yet constitute a true reflection on 
her argumentation, as no relation to external aspects of 
the phenomenon, data, model, or text are provided. 

This changes as the pair utilizes the provided scaffolds for 
reflection:

	 C	 Well, ‘the data snapshot fits the argument.’ I mean, 
if you look at the short time span, then it fits, but 
it still is wrong somehow. I don’t know how to 
express it. The argument basically fits the diagram. 
But if you would have used a different one, with a 
larger time span, then it definitely wouldn’t fit.

The reflection scaffold “the data snapshot fits the argu-
ment” prompts a differentiated reflection for Cedrik. 
Contrary to earlier, he observes that the internal fit 
between model and text is appropriate (“the argument 
basically fits the diagram”), but that the argumentation 
is limited because of its short time frame. His statement 
that additional data would reveal that the Arctic sea ice 
is actually declining (“with a larger time span, then it 
definitely wouldn’t fit”) can be considered a reflection 
on Mei’s argumentation, as knowledge of external data is 
related to the argument at hand.

A different reflection scaffold then prompts a different 
kind of reflection:

	 C	 ‘Data snapshot and argument are convincing.’ No, 
no, I don’t even have to think about this one [rates 
the item as 1 – strongly disagree].

	 I	 [laughs] Okay, you mentioned this already.

	 D	 Yeah, no [agreeing].

	 C	 [hesitating] Well, but think again. Basically, it’s a 
scam, but it’s not fake. […] I mean, it feels like a 
scam. Because if you would give it to a ‘relatively 
uneducated person’ [makes air quotes], then they 
would even believe it.

The differentiation that Cedrik undertakes in this 
excerpt can be interpreted as Cedrik holding that Mei’s 
argument is grounded in data, and thus “not fake,” but 
still normatively an argument that should not be made 
(“a scam”). He grounds this consideration in a different 
type of context knowledge: by drawing on knowledge 
of how knowledge is distributed in society (there are 
“relatively uneducated persons”) and how argumentation 
can convince people even of harmful ideas, he draws on 
external knowledge of social phenomena. Thus, this again 
presents a reflection of Mei’s argumentation, but this time 
using external knowledge of the phenomenon instead of 
external knowledge of data.

Summary
In Cedrik and Dominik’s progress through the three 
worlds, the design principles fundamentally influenced 
the students’ learning processes (see overview in Table 1). 
The design principle of building context knowledge 
could be considered the most fundamental design 
principle, as it influenced all three worlds. In the story 
world, the students could build on their existing context 
knowledge, which provided a strong motivation. In the 
data world, context knowledge of Arctic summer and 
winter helped the students to grasp the complex patterns 
observed in the sea ice data. And in the argument world, 
context knowledge of social phenomena provided a lens 
for reflection on argumentation. In the data world, the 
students were supported by the tools available to them 
for creating models as evidence for a claim, which was 
specified through the claim cards. This provided a goal for 
the investigation of the data, and the box tool allowed the 
students to create a model for capturing their individual 
perspectives on the observed summer and winter patterns. 
Finally, the scaffolds provided for the design principle 
of eliciting and supporting reflections on argumentation 
helped the students use external aspects for reflecting 
on the argument at hand, thus creating more mature 
reflections. These reflections on an argument utilizing a 
quite small dataset were aided by their own experiences 
with the larger data set: because they observed Arctic sea 
ice decline in a larger data set, they had knowledge of data 
and models that were external to Mei’s argument relying 
on just two years of data, which allowed the students to 
articulate reflections on data and models.
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Discussion and conclusion
The statistical and mathematical contents of modern 
media pose high critical demands on readers (Gal & 
Geiger, 2022). This creates a demand for developing 
statistical literacy, but research discourse in statistics 
education has provided few guidelines for designing 
learning environments that are suited to this task 
(Büscher, 2022). This chapter has reported on a design 
research study that identified three theoretically and 
empirically grounded design principles for developing 
statistical literacy: build context knowledge, focus on 
models as evidence for claims, and elicit and scaffold 
reflection on argumentation. The empirical insights into 
the learning processes of two students working with a 
digital learning environment that implements the three 
design principles show how the students’ construction of 
models and their reflection on argumentation is enhanced 
by these three design principles. 

These observations of the working mechanisms of the 
design principles can provide some additional insights 
into the points on models and modeling raised by 
other researchers. Podworny and Frischemeier (in this 
volume on page 15) show how students’ conceptions 
of data as models revolve around data as information 

and description. In light of this study, the role of data 
and models as domains of argumentation which are 
constructed in a purposeful effort to communicate 
viewpoints and to convince others seems to be unfamiliar 
to young students. However, as Gal (in this volume on 
page 91) shows, citizens need to react not only to 
simple descriptions, but to statistical information that is 
“already digested” and is provided to support a specific 
viewpoint or policy decision. The two design principles 
of focusing on models as evidence for claims and eliciting 
and supporting reflections on argumentation aim to 
support students in dealing with this demand of analyzing 
and reflecting “digested information.” One way to support 
this ability is to pay attention to context knowledge. 
Bielik (2024, in this volume on page 33) sketches an 
approach in which students use rich technological tools 
to create models, and highlights that during the process 
of refining models, it is important to frequently revisit 
the phenomenon to evaluate the model fit. The design 
principle of building context knowledge supports this 
revisiting of the phenomenon by providing the knowl-
edge needed to analyze and reflect model fit regarding the 
phenomenon. Future studies could build on these identi-
fied design principles to investigate learning environments 
for different grades, topics, and contexts.

Design principle Effects on analysis and reflection

Build context knowledge Motivation due to connection to students’ individual knowledge

Provide aspects of phenomena for interpreting data

Support students’ creation of models by providing possible meanings 
for observed patterns in data

Support students’ reflections by providing possible aspects of 
phenomena that are external to an argument

Focus on models as evidence for 
claims

Strengthen students’ arguments by explicitly linking model to text

Using tools like boxes to highlight individually perceived relevant 
patterns without access to formal models

Elicit and support reflections on 
argumentation

Change perspectives from considerations on internal relations of an 
argument towards reflection on external domains.

Increased differentiation in the evaluation of argumentation

Table 1:	 Summary of effects of design principles
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Models simplify the world; they make a complicated reality 
more tractable. Models can reduce a rich, multifaceted 
phenomenon to a set of data, an intricate relationship to a 
function, or murky uncertainty to a sequence of stochastic 
results we can simulate. In this chapter, we consider the role of 
modeling in software development, and the impact modeling 
should have in computer science education. The most 
straightforward use of models in this field is that we often 
create software to represent something in the real world, that 
is, software acts as a model for a real-world event or process. 
This is analogous to the way a statistics or data-science 
educator might think about modeling , where models represent 
the objects of our investigation. In this chapter we consider a 
representational view of modeling in computer science, but 
also what I will call a transformative view: that implementing 
and using a piece of software changes our understanding 
of the task, what is possible, and what is important. While 
the former view is closely connected to data and algorithms, 
this latter view is more closely tied to software design. In 
this chapter, therefore, we will describe the representational 
view of modeling in more detail, and see why including the 
transformative view is so important. This leads us, in turn, to 
intriguing implications for education in software development 
and design.

The term “modeling” can be interpreted in numerous 
ways. While this variety is reflected in the broader 
computer science education discourse (e.g., Caspersen, 
2022; Grgurina, 2021), in practice there is one prevalent 
understanding of the term, which is strongly associated 
with problem solving, algorithmic thinking, and computa-
tional thinking.1 In the following, I first discuss the typical 
notion of modeling that is predominant in computer 
science education, where modeling is closely associated 
with the development process of software programs 
and algorithms. I then complement this understanding 
with a wider perspective on system design and conclude 
that, today, the concept of modeling should be extended 
towards a wider view related to design.

As a starting point for discussion, I briefly reflect on how 
modeling is typically understood in computer science 
education. While there are several branches of computer 
science dealing with models and modeling with quite 
a variety of connotations, computer science education 
mostly focuses on modeling in the context of program-
ming and software development. As developing software 
is a highly complex and interwoven task, software projects 
involve many people who cooperate with the goal of 
producing a working piece of software. Many important 
educational aspects are involved: the ability to plan, to be 
persistent in constructing something, to learn to coop-
erate with others, and many more so-called “soft skills.” 
In this context, the term model is often used as the visual 
representation of a plan and hence is tightly connected 
to aspects of the process of software development. In 
the first phases of software development, the focus is on 
understanding the problem and analyzing it. Therefore, 
the initial modeling stage is creating a model of the 
problem. In later stages, this model becomes a blueprint 
for the software to be built. The latter implies that the 
model must be adapted, because additional technical 
details of the implementation must be considered 

1	 One can also see problem-solving in the context of computa-
tional thinking as a form of modeling. For instance, Kallia et 
al. (2021) relate computational thinking in computer science 
education to modeling in math education.
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(beyond the initial representation of the problem), which 
include properties of the computer system on which the 
software is to be executed. Therefore, one can differentiate 
between the two products of the initial and subsequent 
modeling stages in the following way: The initial product 
can be seen as a model of the problem, and the later 
product as a model for the software. 

The goal of this paper is to argue that there are different 
implicit connotations behind these models of the problem 
and models for the software, which should be made more 
explicit. The first one I will label as the representational 
view of models and modeling—as opposed to a view that 
I will call transformative. 

The representational view relates to the first phase of 
software development: the analysis of the problem. 
An explicit focus on this view became quite popular 
in computer science education research in the work of 
Hubwieser and many others (e.g. Hubwieser, Broy & 
Brauer, 1997; Breier and Hubwieser 2002). It aligned 
with the typical view in the sciences, where models 
are mostly construed as representations of the world. 
While such an interpretation is indeed an interesting and 
important perspective, the representational view has its 
limitations: in computer science education, the contexts 
of use, the societal contexts, and the ethical questions 
which arise when using the software should be taken into 
account, as well.

In the representational sense, a model is an image of the 
world, and software is an implementation of the model. 
However, when the software is ultimately used, it has an 
influence on the world. For example, word processors 
generally allow additional digital features not possible 
before. Prior to the implementation of such software, 
text had to be either written down using analog means 
by hand or by using a typewriter. The result was a fixed 
product, and altering its format necessitated re-creating 
the entire text. Digital word processors, on the other 
hand, allow the formatting of text to be manipulated after 
it has been written. When templates or styles are used, 
the digital potential goes even further, as they define the 
look of certain types of text, independent of where they 
are in the document. One could, for example, change the 
look of all headings at the same time. In analog media, 
changing the look of all headings would be a very tedious 
and time-consuming operation including cutting the text 
into pieces and partially rewriting it. Such features cannot 
be designed based on a model that merely represented 
the reality the preceded the software development (i.e., 
based on a representational model of a typewriter, see 
Winkelnkemper and Schulte (2023) for an extended 
discussion).

As a result, the world which the model was supposed to 
represent changes due to the use of that very product 
that the model served as the basis of. This means that the 
model immediately became invalid as soon as it became 
effective. To deal with this discrepancy—and that is the 
argument of this paper—modeling should not only be 
seen as the creation of a static or fixed representation (a 
model of), but also as something which has a transfor-
mative character (a model for). In the next section I will 
discuss the representational view in more detail, before 
supplementing it with a transformative view on modeling.

The representational perspective on 
modeling in computer science education
In computer science education, modeling is classically 
seen as an integral phase of the process of constructing 
and developing software, as it encompasses a systematic 
initial analysis of a task or problem. Software develop-
ment in turn has played a major role in the debate on 
establishing computer science as a proper school subject 
in many countries (e.g., Hubwieser et al., 2015). In this 
context, the focus in computer science education has 
shifted from mere coding towards developing thinking 
skills, specifically for problem-solving through algo-
rithmic thinking (e.g., Gal-Ezer et al., 1995). Nowadays, 
these thinking skills are often referred to as computational 
thinking. The focus has turned to those phases of the 
software development process where problem-solving 
and related thinking skills are prominently featured. 

Breier and Hubwieser (2002) and Breier (2005) argue 
that computer science is concerned less with computers 
(in the sense of engineering) than with information, and 
hence should rather be called “informatics” or “infor-
mation science” to better express the central role of the 
subject in education. In my interpretation, this alignment 
with the sciences is supposed to stress that informatics, 
and hence informatics education is not concerned with 
technology, but rather with understanding the world. 
While in other sciences, experiments are the core method 
of gaining new scientific insights, in informatics modeling 
is at the core. Informatics therefore becomes the science 
of producing models which represent the important 
features of the real world. In consequence, the scientific 
progress that characterizes computer science is the 
constant development of new, often graphical representa-
tions of models (e.g., Hubwieser, Broy, & Brauer, 1997).

According to Breier and Hubwieser (2002), the central 
activity and learning goal for students, hence is to 
“evaluate software as an informatics model developed 
following analysis of a problem as a reduced image of 
reality.” (p. 36). Following these notions, the act of 
modeling is a process that feeds and thereby enhances 
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thinking abilities, while also representing the nature of 
the discipline, and hence implicitly, of the school subject. 
In this view, it is important for students to understand 
that computer science is not about computers, but rather 
about viewing the world through the lens of information, 
and that this lens produces representations of reality on a 
par with models developed by other sciences. 

The perception of computer science as informatics 
therefor similarly reflects the representational view of 
modeling, mentioned before when discussing its link to 
software (and algorithm) development. Here too, the 
focus is usually put on the initial steps, where a model is 
developed as a representation of the problem, and how 
the model is then implemented is deemed far less inter-
esting. Hubwieser even explicitly warns against focusing 
on the implementational stages. While coding may 
increase the motivation of learners, according to him, it 
is of no inherent value and hence should only be allowed 
as an implementation of a previously developed model 
(Hubwieser et al., 1997, p. 116ff).

Overall, this perspective and conceptualization of 
modeling in computer science education forms a 
coherent world view: The focus is on analyzing a given 
real-world problem, where “real world” typically refers to 
an initially nondigital situation of which core aspects are 
analyzed and subsequently digitized in the form of data 
structures and algorithms in a graphical notation, such as 
the Unified Modeling Language (UML), by determining 
and depicting its structure in a class diagram, or its inner 
processes as sequence diagrams.2 The actual implementa-
tion only follows as an optional step of filling in technical 
details to transform the graphical model into actual 
running source code.

Discussion and criticism 
of the representational modeling view
At first glance  the representational understanding of 
modeling and the associated role of models and graphical 
model languages are a sound basis for the school subject 
of computer science. At a second look, however, they are 
peculiarly limited in their scope. They strongly focus on 
the initial phases of idea generation and (problem) anal-
ysis, while contributing relatively little to the evaluation 
and reflection of the outcome. 

In the typical science view that models are mainly a tool 
to understand the real world by creating reduced images 
of it, models exist mostly to represent reality. In that view, 

2	 The Unified Modeling Language can be seen as de facto 
standard for object-oriented modeling in the academy and 
also in K–12 education as it provides a connected family of 
graphical models to describe different facets of a system.

the quality criteria must be whether this image is true or 
distorted. A good image therefore tends to be construed 
as objective, neutral and value free. However, the software 
that is based on such an assumed neutral and objective 
process has the potential to change the world we live in 
and have an impact on almost anything and anybody 
(Magenheim & Schulte, 2006; Rahwan et al., 2019). 

For example, Magenheim and Schulte (2006) argue 
that software development should be understood as 
developing socio-technical information systems (SIS), 
including the idea that developing a socio-technical 
system has to include not only the initial modeling, 
but also predicting and designing future interactions of 
humans with the technical system; associated changes in 
interactions between humans and the technology; and 
interactions between humans and humans in such an 
SIS. Therefore, the effects of a technical system cannot 
be described in isolation but only when also taking its 
social context into account. They present some general 
implications and effects of socio-technical informatics 
systems considering the abstract contexts of production, 
distribution, education, health care, entertainment and 
leisure, research, military, and e-democracy (Magenheim 
& Schulte, 2006). While Magenheim and Schulte focus 
on traditional software development and products, 
Rahwan et al (2019) highlight that modern systems based 
on machine learning have an even more profound effect 
on the social contexts they are used in, but they neverthe-
less refer to these systems as algorithms. They provide a 
summary of examples from the literature on the impact 
and influence in several areas, which include: 

“…influence the information seen by citizens. […] 
shape the cost of products differentially across 
consumers […] shape the dispatch and spatial 
patterns of local policing […] affect time served in 
the penal system […] shape romantic matches for 
online dating services. […] increasingly substitute for 
humans in the raising of our young and the care for 
our old. […] increasingly likely to affect collective 
behaviors, from group-wide coordination to sharing. 
Furthermore […] machines could determine who 
lives and who dies in armed conflicts…” (Rahwan et 
al., 2019, p. 478).

Modeling as described above is blind to these impacts.

The limits of the narrow representational view of 
modeling described above have been discussed in 
computer science itself. A prominent example of this is 
the identification and classification of object-oriented 
software design patterns. The book by Gamma and 
colleagues (1995) was (and is) probably the most promi-
nent voice of the idea of general architectural patterns. In 
the introductory chapters to their collection of patterns, 
the authors state that “strict modeling of the real world 
leads to a system that reflects today’s realities but not 
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necessarily tomorrow’s. The abstractions that emerge 
during design are keys to making a design flexible.” 
(Gamma et al., 1995, p. 24). 

Since Gamma and colleagues published their catalog of 
patterns in the 1990s, several trends in software engi-
neering have emerged that highlight and advocate for 
the continuous, flexible, and adaptive nature of software 
development. Evidence of these can be seen in popular 
buzzwords like agile software development, continuous 
integration, or DevOps. A more theoretical view and 
underpinning of why ongoing changes are often needed 
and are successful can be found in Lehman (1980) or 
Wegner (1997). Their argument basically is that software 
is embedded in a context of use, so the inputs or interac-
tions of human users with the system lead to unforesee-
able changes which create a need to align the old, original 
model with new affordances based on these interactions. 
A change in the context of a software system hence often 
induces the need to adapt that system. 

In addition to these arguments, one can also argue that, as 
a software system is designed to have some effect (making 
something more efficient, more precise, or allowing for 
something genuinely new), the use of the system influ-
ences how things are done. In other words, the model 
that has been implemented was based on a world that 
no longer exists when the system is put in use. Software 
which is used is, so to speak, always outdated and hence 
probably needs to be updated continuously. In practical 
terms, this means that ideas which seemed useful may 
not be so useful in practice, and that experiences gained 
when using the system lead to new ideas. In consequence, 
the system is likely to be changed—but then again, when 
the changed system is being introduced, it again creates 
a world that is different, triggering the onset of another 
round of new wishes or demands that the software needs 
to be refined to attend to. This situation of an ongoing 
need to adapt leads to high interrelations between a 
software system and the world it is part of—and therefore 
calls for ideas like agile processes and gives rise to new 
approaches which see the development and the operation 
of a system as an integrated endeavor. In this view, it 
simply does not make sense to try to build a well-defined 
definite “solution.” It is instead more useful to follow a 
flexible and agile approach to produce small increments in 
rather short interactions and use the feedback of users for 
the next development steps (Beck 2001). 

A new perspective on modeling 
as a form of design
Based on the insights in the field of software development 
and consequently in the field of computer science, I will 
now suggest a new perspective or a widened picture on 
modeling and its role in computer science education. I 
will start with a discussion of ideas from the discipline of 
science, and afterwards offer implications for computer 
science education in schools. For this scientific debate, 
I draw almost exclusively on the work of the theoretical 
computer scientist Bernd Mahr. From a computer science 
perspective, Mahr has extensively explored the concepts 
of models and modeling (e.g., Mahr, 2009; 20113), 
along with their respective functions. One of Mahr’s key 
insights is that being a model is not an inherent property 
of some artifact but a form of purposeful ascription and 
use. Practically any form of representation, object, or even 
a person in this sense can serve as a model. Mahr intro-
duces the concept of ‘cargo’ to provide a better under-
standing of what it means when something is used as a 
model: the objective of a model is to transfer information 
or insight—the cargo—from the original (A) to a destina-
tion (B) through the model. This objective may involve 
making certain aspects explicitly visible in the model that 
are not immediately evident in the original and, in the 
process, learning from the original or transferring some-
thing from it so that the model and hence the derived 
product acquires a specific property or quality. One 
notable property of this understanding of models which 
makes it distinct from the models we discussed before is 
that models in Mahr’s sense serve as an intermediary step 
or a means of communication within the development 
process, rather than being its ultimate goal.

Intriguing for computer science education is the fact 
that something being a model is a flexible decision. In 
his work, Mahr discusses common properties of models, 
sometimes by redefining them. He includes classical prop-
erties like, for instance, models as abstracted, simplified, 
rescaled, or scaled-down representations of reality. In 
other cases, he goes way beyond that, which means 
that models may even possess additional properties, 
thereby expanding rather than reducing the original.4 
This particular idea, that a model adds something to the 
original, applies to virtually all computer science models 
related to software development. In computer science 
education, modeling is often referred to as breaking down 
or operationalizing the problem into calculable individual 
steps. However, from Mahr’s perspective, it can be said 

3	 See also Upmeier Zu Belzen, Krüger and Van Driel (2019) for 
a discussion of the work of Mahr.

4	 See also Lehrer, R., & Schauble, L. (2006) who discuss 
a similar view on modeling from a science education 
perspective.
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that the model acquires additional properties, for example 
those of an algorithm, which the (possibly nondigital, 
vague, non-automated) original lacks. When processes are 
automated, their formalization is not just a digital version 
of what was there before, but something genuinely new. 
Hence, in computer science, models are not meant to 
simply mirror reality but to transform it. In line with 
Mahr, modeling can be portrayed differently from an 
algorithmic or computational thinking perspective: its 
goal is not just representing and solving a given problem 
objectively but to expand and shape a new world.

Possible future directions—
from a representational 
to a transformative view of modeling
Today, the classic characterization of a model as a neutral 
representation of aspects of the real world might still be 
predominant in computer science education. With the 
focus on AI and machine learning systems, however, this 
might change, as what is typically targeted with such 
systems often cannot be “modeled” in the classical sense. 
Rahwan et al. (2019), for example, argue that there is 
the need for a new discipline that aims to understand the 
behavior of such systems (which they call machines), as 
during their development no one can foresee their impact. 
This study of machine behavior, they suggest, could study 
one individual machine, one type of machines, or even 
complex ecosystems of humans and machines in their 
intertwinedness. The authors suggest that evolution 
is a useful concept to describe the dynamic process of 
new software systems. They claim that while humans 
are shaping these systems, they are also being shaped by 
those systems at the same time. Even when not particu-
larly focusing on machine behavior, this concurrency of 
shaping and being shaped should probably be one—or 
maybe even the most important—aspect of modeling for 
computer science education (Schulte & Budde, 2018). 
This thought leads to a conceptualization of modeling not 
only as representing a reduced version of the real world, 
but as a process that aims at transformation of the world, 
the users, and, in turn, technology itself.

In the above, I have claimed that models play an 
important role in the development of software design 
processes. Similarly to how traditional algorithmic 
systems are developed, machine learning (ML) systems 
also go through software design processes. Comparing 
these different design processes helps us better grasp 
and explain the different problem-solving and modeling 
approaches, as well as the systems and models they 
produce. Considering and understanding these different 
modeling approaches makes it easier to think about and 
reflect upon what modeling in computer science is all 
about.

Knowing different modeling approaches becomes even 
more important in a world of AI and ML systems (Tedre, 
Denning & Toivonen, 2021). In the development of 
algorithmic systems, solving the problem necessitates a 
thorough understanding of the problem itself. Rules are 
discerned to govern how the problem should be solved, 
and these rules are then implemented as the solution 
to the problem in the form of an algorithm. In the case 
of machine learning, this analytical understanding is 
mostly absent. The rules of processing are not explicitly 
fed into the system by humans and, consequently, are not 
explicitly designed by humans either. Instead of humans, 
the digital system itself gradually develops these rules, 
akin to a statistical pattern, based on the provided data. 
This process is often referred to as “learning” in Artificial 
intelligence (AI) jargon. During this process, traditional 
algorithms or code play a relatively small role (Sculley et 
al., 2015).5

When explaining ML systems, the typical explanatory 
approach and models of explanation used in traditional 
computer science education can no longer be applied. 
In the traditional representational approach, one would 
focus on “modeling” the ML system itself, emphasizing 
the algorithmic basis and the fundamental operating 
principles of neural networks and similar technologies to 
understand the workings of AI from the ground up. This 
approach would, however, fail to grasp many important 
aspects of the behavior of existing ML systems. While 
the algorithmic basis of ML systems is an important part, 
its functionality depends on many other factors. A large 
language model like ChatGPT, for example, cannot be 
explained by describing the underlying algorithm alone as 
this would neglect the role of training and data selection 
which is happening on a large scale. Innovations like these 
necessitate the development of new explanatory models 
and potentially new pedagogical approaches that expand 
or even largely replace the classical approach, especially 
in the context of AI and ML. The resulting explanatory 
models are much closer to the role of models in science.

5	 See also Tedre, Denning, and Toivonen (2021) for a compar-
ison of traditional rule-driven programming and data-driven 
developments of ML systems.
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In a recent literature summary, Sentence and Waite 
(2022) suggest using the SEAME-model to map the 
different teaching approaches for AI and ML that exist so 
far. SEAME addresses the following levels:

	 SE	 The level of social and ethical considerations. 

	 A	 The applications level, where we might use, 
modify, or create applications that have some AI or 
ML component. 

	 M	 The models level, where we train the model 
with data. Models output recommendations and 
predictions for use in applications. 

	 E	 The engines level, including neural networks, 
generative algorithms, data structures, etc. This 
is the most hidden level, which we are not aware 
of when we use an application with an ML 
component. 

SEAME overall suggests that for understanding an 
ML system, different perspectives, including probably 
different perspectives on models, are needed for a holistic 
and coherent understanding. Let’s take a closer look at the 
last two levels: The engines level can be seen as focusing 
on algorithms, whereas the models level focuses on data. 
Considering the discussions above, could one level be 
characterized by the transformational view, while the 
other one related to the representational interpretation 
of models and modeling? Shouldn’t the data models be a 
representative image of the underlying overall situation? 
For example, in order to make a sensible recommendation 
for a movie, the associated data model should accurately 
represent the types of movies available, as well as the 
taste of the customer. Any transformation induced by 
such a model would seem to be problematic. This may 
be even more troubling when we consider ML systems 
used in medicine or related to matters of employment, for 
example, in the hiring process. 

These thoughts show that there still is a need for the 
representational view on models and modeling. But even 
in these cases, at a second glance, such models could and 
should also be scrutinized under the perspective of the 
transformative view. The reasons for this are outlined by 
Matzner (2016), who, with a focus on data, distinguishes 
between representational and performative data. To give a 
simple example: When systems to predict job success are 
being trained on data from the past, that data often show 
that men are generally more successful than women.6 The 
reason for this result, however, is not a reflection of actual 
capabilities, but of the data itself. To be both useful and 
fair, in this case the data needs to be transformed (a devel-
oper would probably say: cleaned) so that the under-rep-
resentation of female success stories is remediated, and 

6	 See O’Neil, C. (2017) for a discussion of such examples 
(chapter: Ineligible to serve. Getting a job)

the system does not reject applications merely based on 
gender. This transformation, which might be framed as 
cleaning, removing outliers, or un-biasing data, clearly 
does not align with the idea of an objective (fixed) 
representation. It is instead a purposefully-made attempt 
to remedy something that is considered unjustified and 
unjust, to transform an aspect of the use context, or 
maybe even society in general, that deserves to be made 
explicit and questioned. The transformation puts the 
focus on the issue itself: How and why does the misrep-
resentation occur—and maybe even more importantly, 
why does it sometimes go unnoticed? In these latter cases, 
one should definitely not be satisfied when the answer 
is simply that any model must be a true representation 
of reality, and hence any intervention is not feasible, or 
ethically valid.

In summary, the discussion on representational versus 
transformative views on the modeling process in the 
context of software development, regardless whether the 
system is based on traditional algorithms or on machine 
learning, is intended to point out how each can serve 
different, complementary educational purposes: the 
representational view of modeling can be educationally 
useful to focus on the role of data and models and their 
inherent link to the “real world” as being a representa-
tion—a model of the world. Important qualities like fair-
ness, trustworthiness, or the lack of bias can be discussed 
from this point of view. The transformative approach can 
then supplement this view as it can help to focus on the 
usefulness of the model, on its chosen goals and hence 
on the possible emancipatory potential (or on associated 
opportunities and threats), and, in consequence, how to 
cope with them. 
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The extensive use of big data is fundamentally transforming 
various sectors, governance structures, and societal norms, 
leading to significant shifts in our perception and engagement 
with the world. This chapter concentrates on exploring 
data models and modeling as educational activities in the 
intersection of classical statistical education and the domain 
of data science education. The chapter centers on data models 
and their diverse applications, spanning from description 
and explanation to prediction, and encompasses different 
types of data, both traditional and non-traditional. The 
primary objective of the chapter is to introduce a Hypothetical 
Integrated Data Modeling Learning Trajectory (HIDMLT), 
which constitutes an initial phase within a broader design 
research initiative. This initiative aims at studying students’ 
reasoning with data models and modeling in both classical 
statistics and data science. The HIDMLT is based on the 
application of the Variability, Data, and Phenomenon (VDP) 
framework (Gafny & Ben-Zvi, 2023).

This chapter begins by outlining the theoretical underpinnings 
that influenced the creation of the HIDMLT, highlighting 
distinctions between data science and classical statistics. The 
key elements, Informal Statistical Models (ISMs) and the 
VDP framework are introduced. The chapter then presents 
the complete HIDMLT. The chapter concludes by sharing 
preliminary insights gleaned from initial implementations 
of the HIDMLT, shedding light on its potential to enhance 
pedagogical aspects related to data models and modeling.

Introduction
In recent years, a large part of the world’s population has 
lived in a digital environment embedded in countless 
applications based on data science and its subfield of 
machine learning. These applications shape the way we 
perceive the world around us and even ourselves. There 
are many ethical, legal, educational, and social questions 
raised by the impact of data science on our daily lives 
(Zuboff & Schwandt, 2019). Due to this proliferation of 
data and computing infrastructure, data science has only 
recently matured as a research area (Desai et al., 2022). 
As a relatively young field, it has raised several challenging 
educational questions, such as: What are the “big ideas” 
of data science? How do people (experts vs. novices) 
reason with data science? What are the epistemological 
foundations on which it relies? What do citizens need to 
know about how data science works? Such questions can 
help us identify the skills, knowledge, values, and atti-
tudes necessary for citizens and professionals to develop 
their ability to use data science products responsibly and 
effectively.

In the realm of data analysis, both statistics and data 
science share a fundamental bond as they revolve around 
drawing inferences and prediction based on data. This 
intrinsic connection between the two disciplines under-
scores their close relationship and complementary nature. 
As a result of this close relationship, educational research 
in these disciplines should also be closely related. A solid 
foundation for data science education can be found in 
building on the already established field of statistics 
education. Existing results from statistical education 
research have the potential to inspire innovative methods 
for teaching data science and identify areas where further 
research and development are needed to improve data 
science education. As part of our research, we aim to 
apply the knowledge and understanding gained in 
statistics education on informal statistical reasoning to big 
data and data science settings. In this chapter, we offer a 
Hypothetical Integrated Data Modeling Learning Trajec-
tory (HIDMLT) which relies on the implementation 
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of a theoretical framework—the Variability, Data, and 
Phenomenon (VDP) framework (Gafny & Ben-Zvi, 
2023). The VDP framework provides a useful lens to 
consider various aspects of uncertainty that arise when 
working with nontraditional data (Noll et al., 2023).

This chapter begins with the theoretical background 
that inspired the development of the HIDMLT, focusing 
on the differences between data science and classical 
statistics regarding data, data models, data modeling, and 
uncertainty related to both disciplines. An overview of 
informal statistical models (ISMs) and the VDP frame-
work are provided as key building blocks of the HIDMLT. 
The second part of the chapter presents the full HIDMLT, 
including background, a pilot study, the data employed in 
the pilot study, and a thorough depiction of the suggested 
learning trajectory. The concluding part focuses on initial 
findings regarding the HIDMLT and discusses them.

Theoretical Background
The first part of this theoretical section focuses on how 
classical statistics relates to data science in the educational 
context. We explain the relationship between the two 
disciplines and provide an overview of the types of data 
that each discipline employs. We include a definition of 
data models and explain the different modeling cultures 
of the two disciplines and the importance of uncertainty 
in both of them. We follow with a discussion of informal 
statistical models (ISMs) (Dvir & Ben-Zvi, 2023) and the 
VDP framework (Gafny & Ben-Zvi, 2023).

The relationship between 
classical statistics and data science
Statistics and data science are closely related as they both 
involve using data to gain knowledge or wisdom (Rowly, 
2007). In general, data science emerged from the field of 
statistics and computer science and gradually developed 
into a field of its own. Inferences based on statistics, 
encompassing mathematics, empirical science, and 
philosophy, have been studied since 1763. A significant 
increase in computational power and accessibility was 
witnessed during the “computer age” in statistics, which 
started in the 1950s, leading to increased use of predictive 
algorithms. With the advent of big data and technolog-
ical advancements, data scientists can now collect and 
analyze large amounts of data. This allows them to extract 
valuable insights, further cementing data science’s role as 
a separate field from statistics (Efron & Hastie, 2016).

Statistics is defined by the American Statistical Asso-
ciation as “the science of learning from data and of 
measuring, controlling, and communicating uncertainty” 
(Wild, Utts, & Horton, 2018). In contrast to statistics, 
data science as a relatively newly developed field, has 
various definitions (Lee et al., 2022). All the proposed 
definitions include statistics as an essential element. Desai 
(2022) describes data science as the study of information 
systems (natural or artificial) using probabilistic reasoning 
(e.g., inference and prediction) implemented through 
computational tools (e.g., databases and algorithms). 
In other words, data science is an interdisciplinary field 
combining statistical methods, computer science, and 
domain expertise to develop insights from data. Today’s 
emerging consensus is that data science includes statistics 
as a subset (Donoho, 2017), and statistics is at the core of 
data science and provides the foundation for many of its 
methods.

Since statistics is an integral part and is even considered 
to be the basis of data science, it is possible to develop a 
world of research pertaining to data science education by 
building upon the already well-established world of statis-
tics education (Ben-Zvi, Makar, & Garfield, 2018). To 
do that, we must be aware of the differences between 
the disciplines. We begin exploring the differences by 
considering traditional data and big data, data models and 
modeling, and the role of uncertainty in both disciplines.

Traditional data versus big data
Classical statistical analysis assumes that data is collected 
using a well-designed sampling scheme, relying on reliable 
measurements of high quality to provide evidence for a 
well-defined research problem. In classical probability 
theory and hypothesis testing, Euclidean data—data that 
can be easily represented as coordinates—is often applied 
(Zhang, Liu, & Xiong, 2022). In contrast, modern 
real-world data is derived from various sources, such as 
natural language processing, translation, speech recogni-
tion, mathematical formulas, computer programs, social 
networks, transportation networks, sensor networks 
and automation, as well as biomedical and biomolecular 
measurements. Many times, this data may not adhere 
to the Euclidean data models typically used in classical 
statistics (Zhang, Liu, & Xiong, 2022). Furthermore, in 
many cases, data are opportunistic data, collected inciden-
tally or as a byproduct of some other activity, rather 
than being collected intentionally for a specific purpose 
following a well-designed sampling plan, for example, 
data collected through sensors, mobile devices, or social 
media platforms. Even though these data may not have 
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been collected with a specific purpose, they can still 
contain valuable information. For instance, data generated 
from social networks can be unreliable, unsafe, and even 
false (Holmes, 2017), but can provide valuable insights to 
medicine, psychology, education, etc.

In the 1990s, technology companies specializing in data 
analysis introduced the term “big data.” Doug Leney 
(2001) wrote a report for Mata (now Gartner, https://
www.gartner.com/) that introduced the concept of big 
data. This report laid the foundation for defining “big 
data” without using the term. The report outlined three 
main dimensions of data management: volume, velocity, 
and variety. Generally, volume refers to the amount of 
data accumulated, velocity refers to the speed at which 
data is generated and collected, and variety refers to the 
diversity of data types. The evolution of big data has led to 
the development of new and more advanced data science 
techniques, as classical statistics had difficulties handling 
them (Breiman, 2001).

Data models and modeling
In general, models can be viewed as analogies and 
representational systems, offering a simplified description 
of a real-world situation (Hesse, 1962). In a sense, models 
simplify the complex systems or phenomena they seek to 
represent. Data models differ from other models in that 
they involve data. Data models can be viewed as methods 
for organizing, analyzing, manipulating, and explicitly 
representing data to capture phenomena and specific 
aspects of the world (Leonelli, 2019), for example, 
stochastic models. It is important to note that data itself 
can also act as a model (see Podworny & Frischemeier, 
in this volume on page 16), especially during explor-
atory data analysis, when researchers and analysts often 
start by directly examining the raw data to gain insights 
and identify patterns, trends, and relationships. Modeling 
is a comprehensive concept that covers the entirety 
of the process involving the conception, design, and 
creation of models allowing us to bridge the gap between 
raw data and the underlying phenomena they seek to 
represent. Data models can serve various purposes, such 
as forecasting and explanations (Leonelli, 2019). In a 
similar vein, the work of Dvir and Ben-Zvi (2018) shows 
that statistical models might be utilized for descriptive, 
explanatory, or predictive purposes. 

According to the landmark work of Breiman (2001), 
there are two distinct cultures when it comes to using 
models to reach conclusions from data. One assumes 
that a given stochastic data model generates the data. 
The other uses algorithmic models and treats the data 
mechanism as unknown. The latter algorithmic approach 
strongly influences today’s data science.

The implications of these cultural differences between 
classical statistics and data science can be seen in various 
aspects. The classical modeling approach begins with 
choosing a simple model (such as the Gaussian model) 
based on intuition about the mechanism by which the 
data is generated, and a strong emphasis is placed on the 
model’s interpretability and validity. These models are 
usually developed to enable a particular type of analysis, 
namely, generalization from small samples to large 
populations under rigid data collection protocols (Gould, 
2024 in this volume on page 81).

On the other hand, algorithmic modeling begins with 
selecting the model with the highest predictive validation 
accuracy (such as a random forest), with no regard for the 
model’s explainability at all (Koehrsen, 2019). According 
to Gould (again, in this volume on page 81), these 
predictive algorithmic models consist of collections of 
many algorithms that each “votes” on a prediction, and 
the prediction receiving the most votes is declared the 
winner. Breiman (2001) argues that algorithmic models 
are far more flexible, scalable, and accurate for complex 
big data problems.

It can be observed that classical statistics, with its descrip-
tive, explanatory, or predictive capabilities, is less effective 
in predicting from big data. Conversely, data science 
tends to excel in prediction but is relatively less focused 
on explanation. In examining data science education, it 
is important to consider the implications of the above 
differences in the purposes and techniques of data models 
and modeling.

A key distinction between stochastic data models and 
algorithmic models is the way they approach uncertainty 
and patterns in the data, which we discuss next. Stochastic 
data models use probability distributions to account 
for randomness in the data, while algorithmic models 
learn patterns directly from data using computational 
techniques.
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Uncertainty in the realms 
of statistics and data science
In statistics education, one of the key challenges is 
teaching students how to deal intelligently with uncer-
tainty (Manor, Ben-Zvi, & Aridor, 2013). Despite its 
importance in statistics, uncertainty is not sufficiently 
emphasized in school curricula, and students of all 
ages have difficulty analyzing uncertainty (Moore, 
1990). Uncertainty is a key aspect of statistics, typically 
accounted for using probability and is no less central in 
the world of data science. Uncertainty is related to “data” 
and “chance” as treated by statistics and probability, 
respectively (Moore, 1990). Statistics tend to focus on 
randomness-related uncertainty, while probability allows 
measurement of the level of uncertainty that characterizes 
the phenomenon itself. There are two types of uncertainty 
when dealing with classical statistics: statistical and 
contextual. Statistical uncertainty makes it difficult to 
infer a population from a random sample because two 
opposing ideas must be reconciled. On the one hand, 
a sample can represent a population, and the other is 
sampling variability, which means that even samples of 
similar size can provide different perspectives on the 
same phenomenon (Manor & Ben-Zvi, 2015). Contextual 
uncertainty results from conflicts between students’ 
contextual knowledge, specifically regarding what they 
reflect about the investigated phenomenon and what the 
data tell them (Manor et al., 2013).

The uncertainty inherent in data science and big data is 
no less fundamental. The large volume and diverse nature 
of this type of data often lead to inherent uncertainties. 
These uncertainties can stem from various sources, such 
as data inconsistencies, category ambiguity, randomness, 
partiality, omissions, and structural and organizational 
issues (Hariri, Fredericks, & Bowers, 2019). The way data 
is modeled and used can also contribute to other develop-
ments of uncertainties.

In data science, it is common to distinguish between 
aleatory and epistemic uncertainty when discussing 
models. Aleatory uncertainty pertains to the concept of 
randomness, meaning the variability in data caused by 
random factors. On the other hand, epistemic uncertainty 
arises from a lack of knowledge or understanding of the 
situation, also known as a decision-maker’s ignorance of 
the situation (Hüllermeier & Waegeman, 2021).

In conclusion, classical statistics and data science are 
closely related disciplines that share many similarities but 
also have distinct differences. One major difference is the 
type of data each field uses. Classical statistics often focus 
on smaller datasets. Data science, on the other hand, 
deals with much larger and more complex datasets in a 
variety of forms (text, numbers, sound, videos, pictures, 
etc.). Another difference is the type of models each field 
prefers. Classical statistics typically rely on parametric 
models, which require assumptions about the underlying 
distribution of the data. In contrast, data science often 
employs non-parametric models and complex algorithms, 
allowing for more flexibility in handling a wider range of 
data distributions and structures. Overall, while classical 
statistics and data science share many similarities, the 
differences in the types of data and models used, as 
well as the different perspectives on uncertainty, make 
them distinct disciplines with different applications and 
use cases.

Informal statistical models
Informal statistical models (ISMs) form the basis for the 
data exploration activities that are part of this study and 
provide inspiration for developing the informal predictive 
big data model-building activity. As defined by Dvir and 
Ben-Zvi (2023), an ISM is a purposeful representation 
that accounts for how the observed variability in data was 
generated. This representation includes (1) an informal 
deterministic component, which models some sources 
of the patterns in the variability observed in the data; and 
(2) an informal stochastic component, which models 
some sources of the noise—the observed variability—in 
the data. The process of informal statistical modeling, 
which encompasses the creation, development, evalua-
tion, and refinement of ISMs, may result in the generation 
of preliminary or incomplete versions. These versions 
might consist of purely deterministic models or models 
that acknowledge observed variability without addressing 
its sources. 
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The VDP framework
The Variability, Data, and Phenomenon (VDP) 
framework has been developed to assist in analyzing, 
describing, and understanding students’ articulations of 
uncertainty during data exploration activities (Gafny & 
Ben-Zvi, 2023). The VDP is based on two distinct bodies 
of research: statistical reasoning and data science. As 
mentioned earlier, two types of uncertainty are associ-
ated with data explorations in the traditional statistical 
reasoning literature: statistical uncertainty and contextual 
uncertainty. Statistical uncertainty results from variability 
in data, while contextual uncertainty results from the 
phenomenon that is being explored. The conventional 
classification of variability in data science is different. In 
predictive models, data science distinguishes between 
aleatory and epistemic uncertainty. Knowledge is at the 
heart of this distinction. Aleatory uncertainty arises 
from natural, unpredictable, and irreducible variability, 
whereas epistemic uncertainty arises due to a lack of 
knowledge concerning the studied phenomenon and the 
data behavior.

The VDP framework takes these four types of uncertainty 
and classifies them according to the sources of the uncer-
tainty, as shown in Figure 1. 

The result is a three-category model: 

1.	 Variability is a common source of statistical uncer-
tainty and aleatory uncertainty; 

2.	 (lack of) knowledge regarding the Data is a common 
source of epistemic uncertainty and might be consid-
ered (in a broader sense) part of statistical uncer-
tainty; and 

3.	 (lack of) knowledge regarding the Phenomenon is 
a common source of contextual uncertainty and 
epistemic uncertainty. 

As illustrated in Figure 1, the building block of aleatory 
uncertainty is variability (Gafny & Ben-Zvi, 2023). The 
building blocks of epistemic uncertainty are knowledge 
of the data and the phenomenon. The building block 
of contextual uncertainty is knowledge regarding the 
phenomenon. One building block of statistical uncer-
tainty is variability, and we can also consider knowledge 
regarding the data.

The VDP framework can be a useful tool for analyzing, 
understanding, and promoting students’ reasoning with 
uncertainty in big data. It proposes a new classification of 
types and sub-types of uncertainty. We utilize the VDP 
framework as a bridge that enables the exploration of 
classical statistics and data science practices. This is due to 
the central role of uncertainty in constructing data models 
in classical statistics and in data science. Utilizing this 
framework may enhance the understanding of beginners 
regarding the different types of variability that data 
models encompass. Our proposal is to apply the uniform 
VDP framework to help students identify uncertainties 
that may result during data exploration and modeling. 
Students can enhance their comprehension of the data 
model by contemplating the elements of uncertainty 
present in the exploration process and in its resulting data 
models.

Figure 1:	 The VDP framework synthesized from different literature distinctions.
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The Hypothetical Integrated Data 
Modeling Learning Trajectory (HIDMLT)

Background
Deepening students’ understanding of variability, data 
and phenomenon can support their reasoning with the 
different uncertainties they encounter in the big data 
context (Gafny & Ben-Zvi, 2023). This study also demon-
strates the pedagogical potential of integrating traditional 
data and big data investigations into a single sequence. 
The initial HIDMLT was developed as part of a follow-up 
study to delve deeper into understanding students’ 
reasoning processes during activities that incorporate big 
data in conjunction with traditional data analysis. The 
primary focus is on examining how students approach 
modeling activities in both disciplines.

The current pilot study
The proposed HIDMLT is the basis for pilot research 
involving a pair of 16 years old female students from 
Haifa, Israel. The pilot was conducted as part of the 
Connections (https://connections.edtech.haifa.ac.il) 
longitudinal design and research project (began in 2005) 
aiming at promoting young learners’ statistical reasoning 
in a technology-enhanced and inquiry-based learning 
environment (Ben-Zvi, Gravemeijer, & Ainley, 2018). 
The pilot case study was based on an extended learning 
sequence developed for the Citizen Science project 
“Sleep: One-Third of Our Life” (the Sleep Project), part 
of the Taking Citizen Science to School (TCSS, https://
www.tcss.center) research center. The project deals with 
teenagers’ sleep habits in Israel.

Upon concluding and analyzing the pilot phase, the 
suggested HIDMLT will be further employed in an 
upcoming larger-scale study centered on data models and 
modeling within the realms of classical statistics and data 
science. This forthcoming study will target a group of 
around 20 tenth grade data science students.

The data that was used implementing the HIDMLT in 
the pilot study had been collected as part of the citizen 
science Sleep Project. About a thousand students were 
asked to maintain a 14-day sleep diary that encompassed 
a selection of 20 attributes specifically chosen by the 
project’s researchers. Additionally, each class had the 
flexibility to augment the data collection by incorporating 
supplementary attributes alongside the ones initially 
selected by the researchers.

The pair used two kinds of data sets. The traditional 
“small” dataset comprised data they collected over a 
14-day period through their sleep diaries, encompassing 
30 attributes. The “big data” dataset involved 63 attri-
butes. While 20 attributes were uniformly recorded by 
all students, the remaining attributes exhibited variable 
completion rates among participants, since each class 
had chosen its preferred additional attributes to explore. 
This comprehensive dataset resulted from consolidating 
contributions from multiple classes engaged in the 
project, culminating in a dataset containing 16,000 cases 
(each of them represent one night), collectively repre-
senting the contributions of over 1,000 students and 38 
classes.

The design methodology
The research methodology used in this study is design 
research. Design research involves several stages, 
including preliminary research, prototyping, and 
assessment. The preliminary research phase begins with 
analyzing needs and context, a literature review, and 
developing a theoretical framework. In the prototyping 
phase, an iterative design process consists of macrocycles 
of research aimed at refining the intervention through 
formative evaluation. The assessment phase involves 
summative evaluation to determine whether the solution 
or intervention meets the predetermined specifications. 
This phase often results in recommendations for interven-
tion improvement (Plomp, 2013).

This chapter focuses only on the preliminary design phase 
and includes a preliminary hypothetical learning trajec-
tory design that was tested on a pair of students during 
May–June 2023. Simon (1995) introduced the concept 
of a hypothetical learning trajectory (HLT), which 
outlines essential components for designing lessons. This 
trajectory encompasses the desired learning outcomes for 
students, the activities aimed at facilitating their learning, 
and conjectures about how the students will learn (Simon 
& Tzur, 2014). In other words, HLT consists of learning 
goals, a set of learning tasks, and hypothesized learning 
process (Apriyanti, Suweken, & Suparta, 2019).

http://connections.edtech.haifa.ac.il/
https://www.tcss.center/home-en
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The HIDMLT structure
Figure 2 is a high-level description of the proposed 
HIDMLT. The HIDMLT consists of three parts: a 
classic data activity, a simulation of big data activity, and 
a comparison of models. All three activities involve the 
VDP framework considerations.

The classic data activity. The main goal of this activity 
is to build a classic data ISM. To achieve this goal, the 
students are required first to understand the context, 
perform self-gathering of data, organize the data, and 
perform Exploratory Data Analysis (EDA, Tukey 1977) 
with TinkerPlots (Konold & Miller, 2015). During the 
informal data modeling phase, students are prompted to 
explore questions that interest them within the dataset. 
They then proceed to develop a model using the Tinker-
Plots Sampler tool, which helps them assess the feasi-
bility of extrapolating their findings from the collected 
data to the broader population. This process involves 
constructing ISMs (Dvir & Ben Zvi, 2023).

Big data activity. The goal of this activity is to build an 
informal big data predictive model. To achieve this goal, 
the students are asked first to clean and prepare the data, 
perform EDA, and identify patterns and relationships in 
the data. In this big data activity, during the informal data 
modeling phase, students are guided to delve into inqui-
ries that interest them in the dataset. Subsequently, they 
utilize TinkerPlots’ sampler tool to create a model. The 
aim here is to construct a model capable of predicting the 
behavior of a specific group within the data. To facilitate 
this, the data is divided into “train” and “test” datasets. 
Importantly, since students do not employ algorithms or 
formal predictive models, the models they are crafting are 
informal in nature.

The model comparison activity. The goal is for students 
to assess the models’ quality. To achieve the goal, the 
students first assess each model separately and then 
compare the models they created, their level of certainty 
in the models, and the different exploration processes that 
led them to the model. 

Figure 2: High-level description of the proposed HIDMLT.
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The detailed HIDMLT
In Table 1, we provide a comprehensive list of activities, 
sub-activities, pedagogical goals, and students’ learning 
process hypotheses that form the suggested HLT (Simon, 
1995). Each sub-task has its own learning objective that 
emulates an authentic formal practice and serves as a step-
pingstone to the subsequent sub-activity. Additionally, the 
Table includes a recommendation as to how many lessons 
should be assigned to each activity.

Some of the considerations of uncertainty will arise 
naturally from the designed assignments. For example, 
while cleaning the data, considerations regarding the 
quality of the data and the level of confidence may arise. 
In other places, or if the considerations do not arise, ques-
tions related to the level of confidence during the data 
exploration and modeling process can help the student 
to reason with uncertainty. The performance of the 
activities described above (Table 1) should therefore be 
scaffolded by a facilitator who is attentive to the students’ 
expressions of uncertainty to guide them through various 
questions that can expand the resonance of the VDP 
considerations. Facilitators should be therefore familiar 
with different types and examples of uncertainty within 
the VDP framework, including variability uncertainty, 
data uncertainty and phenomenon uncertainty (Gafny & 
Ben-Zvi, 2023). 

The HIDMLT: Preliminary insights 
and future directions
The initial pilot case study, although not yet extensively 
analyzed, has already uncovered some noteworthy 
findings. Firstly, the active engagement of students in 
data collection holds considerable importance. Designing 
the learning trajectory so that students collected their 
own data that was subsequently integrated into the 
comprehensive dataset led to a much smoother elicitation 
of variability, data, and phenomenon (VDP) consider-
ations when dealing with the secondary big dataset, in 
comparison to the previous study (Gafny & Ben-Zvi, 
2023). Additionally, the process of constructing the ISMs 
posed challenges for the students, suggesting a potential 
need for a more comprehensive grounding in knowledge 
related to stochastic data models. Moreover, the shift from 
exploring “small” data to delving into the realm of “big 
data” on the same subject seems to ease the transition 
between these somewhat distinct domains. However, 
it also introduces specific intricacies and subtleties that 
merit further examination and deliberation.

The pilot phase serves as preparation for the upcoming 
study, which will scale up the HIDMLT approach and 
conduct further research. This larger study aims to 
enhance the understanding of how students interact with 
and interpret different data models (including stochastic 
and real-world models) that serve different purposes, 
ranging from descriptive and explanatory to predictive, 
and encompass different types of data (traditional and 
non-traditional).

The introduction of the HIDMLT serves as a practical 
example that illustrates the integration of data science and 
classical statistics in data modeling and related activities. 
It therefore carries valuable insights for both educators 
and researchers in terms of the pedagogical integration of 
various dataset types, the two disciplines’ cultures, and 
diverse data models.

The Minerva Conference 2022 provided a platform for 
attendees to expand their knowledge of data models. 
We gained a deeper understanding of what data models 
are, the various types of models, and the different defini-
tions of the term. Furthermore, the conference allowed 
for extensive engagement with predictive models in 
data science, which offered a valuable opportunity to 
understand the differences between reasoning within 
data science and classical statistics. This increased 
understanding and exposure to different perspectives and 
approaches have opened new avenues for exploring data 
models and their applications.
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Stages Learning Goal and 
the authentic practice 

that the activity reflects

Learning Activity Hypothesized 
learning process

Classic data 
exploration.
(Two lessons, 

90 minutes each)

Data collection—
learning about the 
context of the project 
and the importance of 
data quality.

Self-collection of data 
by students.

Self-data collection will 
connect students to the 
subject matter and serve as 
a basis for creating curiosity. 
After collecting self-data, 
the students would be able 
to compare it with the data 
of their peers. 

Data organizing—
developing an initial 
dataset. Learn about 
data structures, 
databases, and data 
management tools.

The students gather data from 
the entire class and consolidate 
it into a single dataset, which 
they organize and manage.

The data’s organization and 
consolidation will allow 
comparison and search for 
connections. When the 
data is organized, anom-
alies and deficiencies will 
naturally show.

Data cleaning—
learning how to 
manage and organize 
data which involves 
identifying errors, 
inconsistencies, and 
outliers and applying 
appropriate techniques 
to correct or remove 
them. 

Cleaning the data by identifying 
and correcting errors, removing 
missing or duplicate values, and 
addressing outliers or inconsis-
tencies in the data. 

By cleaning the data, 
students ensure that the 
analysis is based on reliable 
and valid data, which can 
lead to VDP considerations 

EDA—gaining a 
deeper understanding 
of the data, identifying 
potential patterns and 
relationships, and 
developing hypotheses 
about the relationships 
and patterns in the 
data.

Creating visual representations 
of the data, such as histograms, 
scatterplots, or boxplots, to 
identify patterns, trends, and 
relationships. Calculating 
summary statistics. Examining 
the data for unusual or unex-
pected patterns, such as outliers 
or missing values, and investi-
gating potential sources of these 
patterns.

Students will be able 
to identify interesting 
connections and build a 
hypothesis. Developing the 
hypothesis may raise gener-
alization questions that will 
lead to VDP considerations, 
especially around sample 
size.

Table 1	 The HIDMLT includes a list of activities, sub-activities, pedagogical goals, and students’ learning process hypotheses.
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Stages Learning Goal and 
the authentic practice 

that the activity reflects

Learning Activity Hypothesized 
learning process

ISM building
(Two lessons, 

90 minutes each)

Informal statistical 
model—developing 
the ability to develop a 
statistical model.

Building an informal conjecture 
model about the population. 

Students will raise 
considerations regarding 
sample size.

Model evaluation—
cultivating an awareness 
of thinking and under-
standing of uncertainty in 
data models.

Investigating random simulated 
data samples, growing sample 
sizes, and inventing methods to 
compare between samples. 

The model evaluation 
may lead to VDP consid-
erations and questions 
about how to cope 
with different types of 
uncertainty.

Big data 
exploration

(Two lessons, 
90 minutes each)

Data—Gaining first-hand 
exposure to the vastness 
and intricacy of big data.

Familiarizing with the data. The students may feel 
overwhelmed by the 
amount of data and 
driven to the next activity 
to “calm” the awash-in-
data feeling (Erickson, 
2020).

Data cleaning—devel-
oping an understanding 
of data quality and how 
to improve it. 

Removing errors, inconsisten-
cies, and duplicates. Handling 
missing data by imputing values 
or removing records with missing 
values. Resolving discrepancies 
between different data sources.

Clearing and arranging 
the data may raise VDP 
considerations regarding 
data quality. 

EDA—Gaining a deeper 
understanding of the 
data, identifying potential 
patterns and relation-
ships, and developing 
hypotheses about the 
relationships and patterns 
in the data.

Creating visual representations 
of the data, such as histograms, 
scatterplots, or boxplots, identifies 
patterns, trends, and relationships. 
Calculating summary statistics. 
Examining the data for unusual 
or unexpected patterns, such as 
outliers or missing values, and 
investigating potential sources 
of these patterns.

Students will be able 
to identify interesting 
connections. The data 
exploration may raise 
VDP considerations.

Splitting data will allow 
students to evaluate the 
performance of the future 
model they will build in 
the next stage.

Splitting the data into training and 
testing datasets.



Ronit Gafny and Dani Ben-Zvi • Reimagining data education: Bridging between classical statistics and data science	 79

Stages Learning Goal and 
the authentic practice 

that the activity reflects

Learning Activity Hypothesized 
learning process

Predictive big data 
model building

(Two lessons, 
90 minutes each)

Pattern recognition—
developing an ability to 
identify associations and 
patterns.

Deepen the exploration 
of interesting associations 
or patterns that would be 
a base for model building.

Once an association has 
been identified, the ques-
tion may arise whether 
predicting behavior 
through this relationship 
is possible.

Predictive model 
building—developing 
the ability to understand 
how to produce data 
models and what are 
their strengths and 
weaknesses.

Students develop a model 
for informal forecasting.

Students will raise 
considerations regarding 
the model’s ability to 
predict.

Model evaluation—
cultivating an awareness 
of thinking and under-
standing of uncertainty in 
big data models.

Through the application 
of the model to test data, 
students will be asked to 
assess the quality of the 
model’s prediction.

Students will be able to 
determine whether they 
can rely on the model and 
at what level. Consider-
ations related to VDP 
may arise.

Comparison and reflec-
tion on the data models 

and the modeling process
(One lesson of 90 

minutes)

Comparing models 
and reflecting on the 
modeling process—
cultivate an awareness 
of thinking and under-
standing of uncertainty 
in both types of models 
and deepen the under-
standing regarding 
data models and their 
different objectives.

Comparing the data 
models produced in 
the former activities 
and reflecting on the 
similarities and differ-
ences between the two 
modeling processes and 
their objectives.

Students might enhance 
their understanding of 
the differences between 
big data and classic 
data and deepen their 
understanding of data 
models and the uncer-
tainties involved in the 
exploration and modeling 
process.
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This paper outlines the role of “traditional” statistical models 
and modeling in K–12 data science education, and compares 
traditional statistical models with predictive models. I explain 
why traditional models, with their emphasis on inference 
within a narrow context, might seem inapplicable to the 
demands of a modern data science classroom. Nonetheless, 
these models provide important lessons necessary for students 
to understand fundamental data science concepts.

Introduction
With the acknowledgement of the importance of data 
in everyday life comes a growing recognition by many 
educators for the need to strengthen students’ data 
literacy so that they can work, vote and understand their 
data-driven world. For example, Lee et al. (2022) describe 
a growing list of frameworks and guidelines to support 
high school data literacy in general and data science in 
particular. Data science courses at the school level (K–12) 
are one means of teaching important approaches for 
understanding data. 

Data science courses, at least at the K–12 level, may share 
many of the characteristics of statistics courses, since 
both fields prepare students to learn about the world 
through analyzing data. However, data science in the 
schools differs from statistics in that it exposes students 
to a greater variety of data and so must require different 
tools in order to extract meaning from “messy” data. For 
example, Wise (2020) defines the role of a data scientist 
as a builder of bridges between unstructured, messy 
data and interesting although potentially vaguely-posed 
research questions. Building these bridges requires 
understanding just how much support a particular data 
set can provide in addressing a particular question or 
issue. Erickson suggests that a data science course should 
make students feel “awash” in data (https://concord.org/
awash-in-data/) and should teach “data moves”—strategic 
approaches and technical procedures such as filtering 
data—to cope with this sensation (Erickson et al., 2019). 
This is in contrast to a traditional statistics course, which 

might provide students with data that include only one 
or two variables, or only the variables needed to answer 
a particular problem. A data science course, on the other 
hand, exposes students to data sets with many variables, 
some possibly redundant or unnecessary or unexplained. 
The values of these data are not necessarily numerical (as 
they tend to be in statistics courses), but might also be 
text, images, or sounds. The student must also interrogate 
the data to understand its origin and how it came to sit on 
the student’s computer, and to understand whether the 
data is capable of answering the student’s (or teacher’s) 
questions.

Teaching students to engage with complex data within the 
mathematics curriculum is challenging, since few mathe-
matics teachers, at least in the United States, have formal 
preparation in data analysis or computer programming. 
However, data science rests firmly on a foundation of 
statistical science, which in turn is supported by mathe-
matics with which teachers may be familiar. The Minerva 
School invited participants to reflect on the role of data 
models and modeling in education. Mathematical teachers 
are likely familiar with mathematical modeling. This paper 
provides insight into the process of statistical models 
and modeling, shows the relationship to mathematical 
models, and explains how statistical models support 
sound reasoning when awash with data.

Because many readers might not be familiar with the role 
of modeling in statistics, following a brief background 
to explain the author’s interest in this subject, the paper 
introduces the notion of a “traditional” statistical model 
as a mathematical model that describes the random 
variation in observed data. An important take-away of 
this section is that traditional models require strong 
constraints on the data that can be modeled, and these 
restrictions might, at first glance, lead us to believe that 
traditional models do not belong in a data science course, 
where one expects students to be exposed to data that do 
not fit these neat constraints. This is followed by a section 
that describes the modeling process with these traditional 
models, and the next section contrasts these traditional 
approaches with “non traditional” predictive modeling. 

Traditional statistical models in a sea of data: 
teaching introductory data science
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The final section explains why, in the author’s view, 
traditional models are important for preparing students 
for predictive modeling and other techniques that they 
should learn in a data science course.

Background
This paper is motivated from the author’s experience in 
working on a team that included data scientists, teachers 
and educational administrators to develop and imple-
ment a high school data science course. The author is a 
statistician and was the principal investigator in a project 
that culminated in a course called Introduction to Data 
Science (IDS) (see https://introdatascience.org/). IDS 
was first taught in 2014 in the Los Angeles Unified School 
District. IDS is currently taught in 107 districts across the 
United States and, in the last ten years, has taught over 
42,000 students. 

IDS was designed with the philosophy that all students 
need preparation for these engagements with data, and 
that this preparation may prevent students from being 
harmed by data while at the same time facilitate their 
career success. For instance, data can harm us through a 
loss of privacy that may occur when data sets are linked 
together and personal facts revealed, or may harm a 
student’s sense of agency or identity, if algorithms classify 
students in ways that conflict with their cultural or 
personal identities. The IDS curriculum was developed 
on the notion that the bedrock of data science education 
is statistical reasoning. The primary influences on the 
curriculum were the American Statistical Association’s 
GAISE K–12 report (Franklin et al., 2005) and the U.S. 
Common Core standards for mathematics (CCSSI 2010), 
with some influence from the CSTA principles (Seehorn 
et al., 2011). IDS extends the traditional statistics course 
in several ways. First, it goes beyond situations in which 
data have been collected solely for the purposes of 
statistical inference and includes data collected through 
sensors and a paradigm called participatory sensing, in 
which students use mobile devices to collect a rich set of 
multivariate data. Second, IDS includes a wider variety 
of data types than traditionally encountered in a statistics 
classroom. These include text, images, times and dates, 
and locations. Third, it relies strongly on computing to 
assist preparing the data for analysis and the analysis itself. 
Finally, it includes predictive modeling, a methodology 
that is not included in statistics curricula at the school 
level (at least not formally).

An important goal in the design of IDS was to prepare 
students to reason with and learn from the types of data 
that they were likely to encounter in their everyday lives, 
and not the “classroom” data that many statistics classes 
provide. These “everyday” data include data from open 
data portals, sensors, and mobile devices. The goal is that 

students learn to pose their own investigatory questions 
on topics of interest to them, and to evaluate whether 
available data is suitable to answer their questions. At a 
more detailed level, though, what, precisely, do students 
learn in a data science course?

Traditional statistical models 
and mathematical models
IDS focuses on a modeling process called the “Data 
Cycle”. The Data Cycle is indirectly based on the 
“Problem, Plan, Data, Analysis, Conclusion” Cycle, or 
PPDAC, (Wild & Pfannkuch 1999) and directly on the 
GAISE statistical investigation process. Consistent with 
Schulte (2024, in this volume on page 61), this cycle 
might also be described as a problem-solving process. 
This cycle contains four stages: Ask Questions, Consider 
Data, Analyze Data, and Interpret Data. Students need 
experience and practice in all four phases. For example, 
the “question” phase is tackled early in IDS, since 
experience has shown that posing productive statistical 
investigative questions is challenging for both students 
and teachers (Gould, Bargagliotti, and Johnson 2017; 
Frischemeier and Biehler 2017; Frischemeier and Leavy 
2020; Bar 2022).

The Data Cycle and the PPDAC share many similari-
ties with descriptions of mathematical modeling. For 
example, the Common Core Mathematical standards (a 
set of standards adopted, with or without modifications, 
by many of the states in the U.S.) describe a mathematical 
modeling cycle with four phases. The cycle starts with a 
formulation of a problem (similar to “Ask Questions”), 
moves to computations (“Analyze data”), then to inter-
pretations (“Interpret Data”), and then to validation 
(some of which is done in the “Consider Data” step). At 
that point, depending on the outcome of the validation 
procedure, the modeler either re-formulates the problem 
or reports their findings (CCSSI, 2010). Given these simi-
larities, what is gained by carving out a distinction from 
mathematical models for statistical models and modeling? 
In a word: uncertainty.

 A statistical model, in its most traditional sense, consists 
of two components: signal and noise. (For example, see 
Chatfield 1995). Or, if you prefer, trend and variation, or 
a deterministic component and a stochastic component. 
That second component, the variation component, 
describes uncertainty and distinguishes a statistical model 
from a mathematical model. The “signal” component 
by itself is represented by a mathematical function that 
describes a general relation, typically between the mean 
value of our response variable and observable character-
istics (i.e., input). For example, the relationship between 
the mean salary paid to an institution’s employees might 

https://introdatascience.org/
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be a linear combination of their rank, years of experience, 
the year they began employment, and their sex. The trend 
component should consist of all factors that contribute 
causally to the response variable. 

The noise component tells us how actual observations 
vary about the signal. This is an important feature of 
statistical models and the feature that distinguishes them 
from mathematical models. A physicist might derive a 
mathematical model that predicts the precise distance 
traveled by a tennis ball hit at a particular angle with a 
given force, but only when the model includes random 
deviations from that predicted distance is it statistical. 
Bielik (2024, in this volume on page 33) describes 
tools to help students to use data to develop and inves-
tigate the trend component within the context of ocean 
acidification. While this exploration is data-driven and 
complex, the trend component alone is not a statis-
tical model, but can be made statistical by including a 
stochastic component. 

The stochastic component specifies the probability 
distribution from which these deviations arise, and also 
specifies whether observations are associated or indepen-
dent of each other. It is because of the stochastic compo-
nent that statisticians caution that when we view the 
world through data, we do not see the world as it actually 
is, but instead through the distortions of this noise (Wild, 
et al., 2011). Put differently, the stochastic component 
tells us that our data collection could have turned out 
differently, and reminds us that we see just one of many 
possible outcomes. Without the stochastic component, a 
model of data may communicate a misleading degree of 
certainty and precision.

Statisticians sometimes speak of statistical models as 
modeling the “data generating process.” In this view, a 
successful statistical model can be viewed as an algorithm 
that can generate a simulated data set that is indistin-
guishable, in all important characteristics, from the actual 
data. For this reason, these traditional statistical models 
can be viewed as data models: abstract descriptions of 
how the data came into existence. For example, Buja et al. 
(2009) describe hypothesis testing procedures in which 
a proposed statistical model is used to generate multiple 
versions of the data. Each of these versions is summarized 
with an appropriate graphic which can then be compared 
to the same graphical summary of the original data. If the 
original graph is distinguishable from the graphs gener-
ated by the model, then the model of the data generation 
process is wrong.

Statistical models are traditionally communicated using 
mathematical notation. Consider a model of reality 
proposed by Vitruvius, the ancient Roman architect. 
He proposed that a person’s arm span (the distance 
from finger tip of the longest finger of the left hand to 
the longest finger of the right when arms are held out 

horizontal to the ground) was equal to their height (a 
model famously visualized by Leonardo da Vinci as the 
Vitruvian Man). This model can be stated as a linear 
model:

This is a mathematical model, and while it might have 
been motivated by observation, it is not based on data. 
Suppose we were to collect data on a sample of humans 
and plot their arm span lengths against their heights. This 
model predicts we will see a perfect line with intercept 0 
and slope 1. Instead, we see something like Figure 1: 

Figure 1:	 Armspans and heights (in inches) as reported by 
students at the University of California, Los Angeles.

Rather than a line, we see a trend which is generally linear 
but with great variation about the trend. The variation 
may have several sources: environmental, measurement 
errors, etc. A statistical model for this relationship 
includes this variation about the trend. One possibility is:

The subscripts i denote the individuals in the data set. 
More generally:

where 

The trend component of the model is  . The beta 
parameters represent numbers that are unknown and will 
be estimated from the data. The x variable represents an 
independent attribute that is purportedly related to the 
attribute represented by the y variable. The stochastic part 
is represented by the  (epsilon) term and the description 
of its probability density. This model tells us that devi-
ations from the trend (which are represented by ) are 
random as determined by a Gaussian distribution with 
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mean 0 and standard deviation  (sigma). The parameter 
 is a number which is unknown but can be estimated 

from the data. The letters “iid” stand for “independent and 
identically distributed,” which tells us that each deviation 
is independent of all of the others, and each of them 
is a random value drawn from the same (Gaussian or 
“Normal”) distribution. This claim about the distribution 
is an assumption of the model and not derived from an 
examination of the data. However, it is an assumption 
which can be verified (or refuted) through considering 
the data.

The trend component, a mathematical model, tells us 
something about the fundamental relationship between 
x and y. If Vitruvius is correct, then our intercept will 
equal 0 and the slope 1. The trend component with the 
stochastic component tells us what our data actually look 
like. The stochastic component also implicitly situates the 
data in a context in which these observed data are just one 
of infinitely many possible manifestations of data sets we 
might have seen. The analysis phase of the modeling cycle 
will attempt to infer the trend from the cloud of points in 
Figure 1 so that we can evaluate Vitruvius’s theory. 

Other traditional statistical models include, to name a 
few, time-series models (which often specify a correlation 
between observations close in time), hierarchical linear 
models (sometimes called nested models or mixed 
models, which specify correlations between observations 
within the same level), spatial models (which specify 
correlations between observations nearby in space), 
survival models, and logistic models. 

Having clarified our definition of a traditional statistical 
model, we now consider the process through which a 
model is fit to the data.

Modeling with traditional models
Once a traditional model is proposed as a candidate for 
the data description process and also as a potentially 
useful model for addressing posed investigative questions, 
the analyst then engages in a process in which diagnostic 
tools are applied to investigate and to minimize, by 
adjusting the model, the gap between the model and 
the data. Ideally, this process is carried out on several 
candidate models and the results compared (a principle 
D’Agostino McGowan, Peng and Hicks (2022) refer to 
as “exhaustiveness”). In many statistics classrooms this 
iteration between a class of models and data might be 
identified as the “modeling process.” The IDS curriculum 
prefers to more expansively define the modeling process 
as part of the Data Cycle, which includes this traditional 
process as an activity within the “analyze” phase.

Ideally, this analysis process is guided by some knowledge 
of the context, which tells the analyst which variables 
are viable components of the trend and which are not, 
and what, precisely, the functional relationship might 
be. Without this contextual knowledge—if, for example, 
the variables were provided to the analysts with non-de-
scriptive names such as x1, x2, and y—then discovering 
the “true” model can be considerably challenging, if not 
impossible.

For a toy example that nonetheless uses real data (the 
trees data in the datasets package in R, (R Core Team 
2022), consider this analysis in which we ask whether we 
can model the volume of a tree as a function of its height 
and diameter. A linear regression model is a reasonable 
place to begin:1

 

V represents volume, D diameter and H height. The “hat,” 
or carat, over the parameters and variables indicates 
that this is a value estimated from the data. Guided by 
the application of various diagnostic tools (for example, 
examining residual plots), a reasonable modeling process 
that considers different forms for the trend leads to this 
model:

Distressingly, this model provides a 95% confidence 
interval for the intercept as (–41, –14); in real life, we 
would expect trees with 0 height and diameter to also 
have 0 volume. Clearly this model falls short (and it falls 
short according to other diagnostic methods as well).

We can make much better progress armed with a crude 
theory: trees are like cylinders. The volume of a cylinder 
is given by

That is, volume is related to a product of diameter and 
height terms rather than a sum. We therefore recast that 
volume formula to one that finds the log of the volume:

Fitting this model produces relatively clean diagnostics 
and a more believable final model:

Confidence intervals for the slopes are in agreement with 
our cylinder theory, although the model is mathematically 

1	 The models here omit the subscripts that were present in 
the models in the previous section. The reason is that the 
models discussed in this section are models of the general 
trend component whereas the previous section’s models 
described individual observations with their included random 
variability.
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silent on the issues of trees with 0 diameter and height 
(which is also an improvement over the previous 
models). 

Note that we focused on the trend component of the 
model to estimate the parameters. The modeling process 
also produces estimates of the variability about the 
estimated trend. The estimated variability is needed in 
order to perform inference, such as estimating confidence 
intervals for the slopes and intercept.

In the above example, the system being modeled was 
fairly simple in that there was no need to understand 
causal relations between the predictor and response vari-
ables. Other situations include causal questions: why are 
crime rates changing? What affect do certain behaviors 
have on the risk of catching COVID-19? In these situa-
tions, particularly when the data are not from designed 
and controlled experiments, we often cannot be sure 
whether we have all of the necessary explanatory variables 
in the model. Kronmal (1993) provides an entertaining 
artificial example in which the association between the 
number of storks in a town and the number of babies 
born is strong and positive, but disappears entirely when 
the number of women is included (Snow 2020). Real-life, 
complex systems may include hundreds of variables and 
these variables might not be included in a model (or even 
known). These situations are particularly dangerous for 
modelers, since omitting important variables from models 
can lead to substantial bias; associations may be reported 
as positive when they are actually negative (or vice versa) 
or are in truth unrelated. On the other hand, including 
unimportant variables can lead to overfitting (which can 
lead to large prediction error or other unreliable descrip-
tions of phenomena). 

Four things to note:

1.	 Traditional statistical models are focused on under-
standing real-world phenomena, and designed to 
allow for the statistical inference needed to distinguish 
“true” patterns from random ones. 

2.	 The restrictions required to achieve sound inference 
are strict and require heavy oversight during data 
collection or, at the very least, detailed knowledge 
of the data collection procedure. As a result, data are 
best collected by experts in the substantive field who 
collaborate with the data analyst. 

3.	 The data are assumed to be clean and appropriately 
organized for the intended analysis. In other words, no 
more data moves are required.

4.	 The modeler relies on context to shape the model and 
to understand which variables must be considered 
and which need not be considered. But there is no 
guarantee that all necessary variables will be included 
(e.g., there is no guarantee that the model is free from 
bias) or that some unrelated variables will be included 
(resulting in an inability to properly generalize). 

Traditional statistical models 
and introductory data science
Do traditional statistical models and modeling belong 
in a high school data science course? How do they help 
students build bridges between research questions and 
messy, unstructured data? How do they prepare students 
for studying machine learning, a common type of 
modeling in data science? To begin, let’s examine predic-
tive modeling, a core data science activity.

Predictive models and modeling
I’ve taken care to use the adjective “traditional” in this 
discussion, because in the last few decades, another class 
of models have risen in importance. These traditional 
models we’ve described so far might be considered 
“inferential” in that we’re using the model to infer a broad, 
general pattern based on our sample. For example, we 
wish to know the relation between arm span and height 
for all humans, not just those in this particular data set, 
and we wish to confirm whether this slope is equal to 1 
were we to see all humans’ data. But there’s another class 
of problems for which data are modeled and which are 
of great importance to data science, namely, predictive 
problems. A simple, but perhaps uninteresting, example 
of a predictive model might be that if I’m told a person’s 
height, I want to be able to predict their arm span with a 
useful level of precision. More interesting examples occur 
in the contexts of online shopping (predicting the amount 
a customer will spend or perhaps specifically which items 
the customer will seek), medical diagnosis, and weather 
and climate forecasting. The field of machine learning is 
essentially the study of predictive modeling. 

In 2001, statistician Leo Breiman famously described a 
culture clash between inferential models and predictive 
models, claiming, with good reason, that the predominant 
statistics culture wasn’t paying sufficient attention to the 
important area of predictive modeling (Breiman 2001). 
These predictive models differ from the traditional 
models in that they are not always communicated via 
mathematical notation; instead, they may be algorithmic, 
or consist of ensembles of algorithms that each “vote” on 
a prediction with the prediction receiving the most votes 
declared the winner. These ensembles are complex and 
not transparent; it can be difficult to explain precisely 
which factors were relevant in the models’ output. 

An example of an algorithmic predictive model that 
is accessible to high school students is a decision tree. 
Podworny and Frischemeier (in this volume on page 
15) describe the use of decision trees in K–12 data 
science education, and the IDS curriculum also includes a 
unit on decision trees. These trees, which Breiman formal-
ized as Classification and Regression Trees (CART) 
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(Breiman 1984), are perhaps the foundational example 
of predictive modeling. As Podworny and Frischemeier 
show, trees provide a way for students to understand 
misclassification rates, overfitting and other fundamental 
concepts. They are essential for understanding more 
advanced approaches that consist of ensembles of algo-
rithms, such as random forests and boosting and bagging 
techniques. 

Figure 2 provides an example of a decision tree based on 
data used in IDS. In an introductory exercise in classifi-
cation, students are asked to determine rules for sorting 
athletes into two groups: soccer (“football” in most of 
the world) or (American) football. The data provides the 
athletes’ age, weight and height. The decision tree shown 
is produced algorithmically using the rpart package 
provided in R (Therneau & Atkinson 2022). For example, 
this model tells us that athletes that weigh less than 200 
pounds should be classified as soccer players (US Men’s 
National Team, USMNT), that 38% of the sample were 
classified this way for this reason, and that there was 100% 
success rate. On the other hand, if an athlete weighs 213 
or more pounds, then they should be classified as an 
American football (NFL) player. 56% of the sample was 
so classified, with a 96% success rate.

 
Figure 2:	 Tree for classifying athletes as soccer players 

(USMNT) or American football players (NFL). The 
bottom line lists the proportion of the sample assigned 
to that node. The middle line in each box shows the 
proportion of players in that node from the NFL and 
USMNT groups. The top line indicates which type of 
player is in the majority.

Traditional models support data science
Given that predictive models are of central importance 
to data science, and that data science courses prepare 
students to work with data that may not conform to the 
constraints required of traditional statistical models, why 
should data science study traditional statistical models? 
The reason traditional models are still relevant is that the 
lessons learned from traditional models and modeling 
inform almost every aspect of data science, particularly 
data description, data visualization, and predictive 
modeling.

Let’s begin with data description. Data description is an 
important analytic skill, particularly in contexts in which 
the data lack a describable data-generating mechanism 
or when the data are multi-dimensional and require a 
high level summary. For example, IDS students collect 
data on their daily routines using their mobile devices. 
One such data collection campaign tracks “snacks”: food 
eaten between meals. The resulting data are not randomly 
sampled (data are collected every single time a student 
snacks, over the course of a few days) and may have strong 
measurement biases, and so determining the stochastic 
component of a traditional model as described above 
is not possible, despite the presence of variability. The 
data are highly multivariate and include text data (names 
of foods), categorical values (health ratings, reasons for 
eating), time, date, location, and numerical values (how 
many people were you with when eating?) Given these 
conditions, it might not be possible to develop a useful 
inferential model; a more useful approach to these data is 
to provide a thorough description of important features of 
the data.

Measures of center and spread are the primary tools 
for univariate descriptions. The notion of the mean is 
complex and abstract (for examples, see Garfield 2007). 
When taking a mean, we make a tacit assumption that 
the observations come from the same population or, 
more informally, the same group. One could calculate the 
mean circumference of apples and oranges, but one really 
should calculate these means separately so as not to merge 
two distinct groups. The mean is a useful summary when 
the data generating model is this traditional statistical 
model: 

 

where the random deviations, represented by epsilon, 
come from some symmetrically-shaped probability 
distribution. The implication of this model is that the data 
are drawn from the same population and are different 
measurements of something whose true value is repre-
sented by µ. As noted above, a traditional statistical model 
sits at the heart of the notion of a mean. It turns out that 
our simple calculation of a mean of a variable comes laden 
with assumptions.
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Introductory students needn’t learn about this math-
ematical model explicitly. But they should know that 
this simple act of calculating a mean is actually an act of 
fitting a model and, like all models, the fit may be useful 
or useless. When calculating a mean, the model assumes 
that the observations belong together; they come from 
the same population. This simple model is of fundamental 
importance today, as the role of aggregation, which was 
controversial when Quetelet proposed it, is still debated, 
perhaps particularly so in the context of diversity, equity 
and inclusion.2  For example, Zelnick (2021) discusses 
the issues surrounding the inclusion of a racial variable 
in models to predict eligibility for kidney transplants. 
Including the racial variable results in a model in which 
calculations do not aggregate across race. Yet excluding the 
variable means we ignore racial categories (as recorded in 
the data). Kaufman and Cooper (2001) discuss the use of 
racial variables in epidemiological work, and Thornton et 
al. (2022) discuss the challenges of using gender and sex 
as categories. 

When engaging in descriptive data practices, students 
might naturally focus on small differences in means 
between groups. The lesson that “what we see is not 
exactly the way the world is” is the first step in developing 
caution about the stories one tells from data, and, if 
handled carefully, begins to develop what Makar and 
Rubin (2009) define as “informal statistical inference.” 
Gafny and Ben-Zvi (in this volume on page 69) study 
how students—graduate students in this case—express 
uncertainty when exploring “big data” and describe 
how this can be used to develop this form of inferential 
reasoning. Developing students’ informal inferential 
reasoning is important, because when the data generating 
process does not conform to that required by traditional 
models, it may be the only form of inferential reasoning 
available. Even when traditional models might be 
potentially applicable, Kreuter (2017) reminds us that 
much that happens in the data-generating process is not 
captured by traditional models. For example, “…people 
get sick, are on vacation, or don’t want to participate” in 
your randomly sampled survey (p. 420). 

Next, consider data visualization, which is perhaps the 
first analysis tool that students learn in statistics and 
data science. Indeed, entire data science lessons are built 
around interpreting visualizations. The New York Times 
provides the resource What’s Going on in This Graph 
(WGOITG) (https://www.nytimes.com/column/whats-
going-on-in-this-graph) to help students critically analyze 
multi-dimensional data displays. Although perhaps best 
suited for beginners, WGOITG offers useful lessons for 

2	 Raper (2017) provides an historical overview that illustrates 
the conceptual challenge of using the mean as a summary 
statistic. Gigerenzer, et al. (1989) Chapter 2 provides an 
overview of Quetelt’s l’homme moyen and arguments for and 
against this concept.

more advanced students as well (Arnold et al., 2022). For 
example, the graphic for January 11, 2023 showed, for 
three-plus flu seasons starting with the 2019–20 year and 
ending a few months into the 2022–23 season, time-lines 
for the percent of weekly doctor and hospital visits for 
respiratory illness by day of the year. Three variables are 
displayed: year, percent, and day of the year. A “pre-pan-
demic average” line is also provided. The prompt asks 
“What do you notice and wonder about the intensity, 
peak and duration of respiratory illnesses in the U.S.?” 
One might notice, for example, that in the past, respira-
tory illnesses peaked in January; but for the 2022–23 flu 
season the number of illnesses is higher than in the past 
and the increasing trend line is considerably steeper than 
in the past.

Traditional statistical modeling teaches us of the dangers 
of omitting important variables from our model. Data 
visualizations are limited by the print media to a small 
number of variables (often 2 or 3), and so are particularly 
susceptible to this form of bias. Students must therefore 
learn that when they interpret data visualizations, they 
must also think about what is missing from the graphic. 
The WGOITG visualization invites us to conclude 
that the 2022–23 season is remarkable, with respect to 
respiratory illnesses. Yet the graph shows only three vari-
ables and surely there are omitted variables. Traditional 
modeling forces us to wonder what could be missing 
that might alter the story. The total number of visits? 
Age? Climate variables? The inclusion of years prior to 
2019–20? (The pre-pandemic average line shows us the 
general trend for earlier years, but not the variability in 
that trend.)

Finally, we return to predictive modeling, which provides 
an interesting contrast with traditional statistical 
modeling as described above. Traditional modeling is 
challenging because the goal is to discover the “truth,” 
and truth is famously elusive. In predictive modeling, 
however, the model that best predicts future observations 
is the best. There is no need to worry about whether or 
not the model is true as long as its predictions are usefully 
precise. If our decision tree usefully classifies visitors to 
our shopping website as “buyers” or “non-buyers,” that 
may be all we need, and we may not be concerned with 
which variables played a role in this classification.

Despite such differences, modeling with traditional 
models provides important lessons for predictive models. 
The apparent simplicity of a decision tree hides uncer-
tainty and variation and so, at first glance, a decision 
tree might not seem to be a statistical model, as defined 
in this paper. And yet, decision trees are the product of 
uncertainty and variation; other manifestations of data 
drawn from the same population may produce slightly 
(or even radically) different trees. Students experienced 
with traditional models will know that, where data are 

https://www.nytimes.com/column/whats-going-on-in-this-graph
https://www.nytimes.com/column/whats-going-on-in-this-graph
https://www.nytimes.com/2023/01/05/learning/whats-going-on-in-this-graph-jan-11-2023.html


88	 Minerva School 2022 • Reasoning with data models and modeling in the big data era

concerned, what we see is not exactly the way the world is. 
The misclassification rates provided at the terminal nodes 
of the tree are estimates of misclassification probabilities, 
and students with experience in traditional models should 
understand that, as estimates, they model uncertainty. 

Traditional statistical models provide an explicit account 
of variation and so are accessible to those with math-
ematical (but not statistical) backgrounds. But these 
traditional statistical models also provide an important 
conceptual bridge to the predictive models used in data 
science, where the uncertainty may be implicit, but is 
always present.

Conclusion
The 2022 Minerva School invited us to consider the role 
of data models and modeling in data science education. 
As a statistics educator who has been involved in high 
school data science education, the importance of building 
data science learning on a strong foundation of statistical 
reasoning cannot be underestimated (Gould 2021). This 
paper has provided a description of traditional statis-
tical models as consisting of a trend component and a 
stochastic component. The latter component is viewed as 
a model of the randomness inherent in the data-collection 
process and is necessary for quantifying uncertainty in 
generalizations beyond the data at hand. This stochastic 
component can be viewed as a set of conditions required 
for inference; as such, it is quite restrictive. Because of 
this restrictiveness, one might believe that traditional 
modeling is irrelevant in a data science classroom in 
which students consider data from non-random samples 
or that violate these strict conditions in other ways. 

The last section of this paper was intended to convince 
the reader that, in fact, traditional models belong in the 
data science classroom. The lessons learned from studying 
traditional models—that context matters, that what we 
learn about the world when viewed through data is not 
exactly the way the world actually is, and that variability 
and therefore uncertainty are an inherent part of data 
analysis—influence common data-science-classroom 
lessons involving data description, data visualization, and 
predictive modeling. 

It’s true that traditional models were developed to enable 
a very particular type of analysis, namely generalization 
from small samples to large populations under very rigid 
data collection protocols. While this type of analysis is 
extremely powerful and propels much of scientific prog-
ress, given the wide variety of data that now surrounds 
us, this approach can seem quite limited, particularly to 
younger students for whom data collected for scientific 
studies might feel quite remote. Still, the fact that the data 
did not come from a random sample or a well-designed 

experiment does not give license to plow forward at full 
speed. If anything, particular caution is warranted. These 
“traditional” models show us what caution looks like.

A final benefit of statistical traditional models is that they 
provide a familiar bridge to teachers of mathematics. Both 
the trend component and the stochastic component are 
mathematical objects, but the struggle to use these mathe-
matical objects to model real-world phenomena as viewed 
through the rippled glass of data is a core statistical prac-
tice. Mathematics teachers might find statistical modeling 
with traditional models more familiar than algorithmic/
predictive modeling approaches. The core practices and 
concepts applied in traditional modeling can then provide 
a bridge towards algorithmic modeling, which does not 
always result in a closed-form mathematical expression. 

The papers presented at the Minerva School illustrate the 
variety of approaches and conceptions, as well as desired 
learning outcomes, situated around data models and 
modeling. This variability is no doubt induced, in part, 
by the still-emergent nature of the field of data science 
itself. This paper has attempted to describe a vision of data 
science that places emphasis on analyzing and modeling 
data. In this vision, traditional statistical models, no 
matter how limiting they may appear when viewed 
through the demands of modern data, provide important 
lessons we must consider when designing curricula to 
support data science education. 
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This chapter aims to contribute to the improvement of peda-
gogies and teaching that can promote learners’ ability to act 
as critical consumers of model-based statistical messages in 
the real world. The chapter advocates for the need to employ 
pedagogies that can maximize skill transfer and hence adopt 
an external view on the real-world demands for model-related 
knowledge in different life contexts. The chapter focuses on 
three such contexts, involving media interpretation, service 
consumption by service users, and workplace environments. It 
sketches an innovative framework that involves three general 
families or types of models that citizens and workers have 
to deal with, i.e., aggregation models, prediction models, 
and simulation models, as well as three frameworks that all 
these models usually include, encompassing a conceptual 
framework, methodological framework, and computational 
and reporting framework. The chapter discusses implications 
of these ideas for needed pedagogies that improve learners’ 
ability to act in a critical way when encountering data-based 
models in real-world contexts, and for future instructional 
approaches and research directions. 

Introduction
This conceptual chapter is inspired by the general aim 
of the book, which continues the goals of the Minerva 
School held in 2022, to broaden the perspectives on 
teaching data modeling and enable learners to become 
functional and productive citizens of tomorrow. Specif-
ically, the chapter aims to contribute towards the third 
of the three big themes that motivate this book: “What 
theories and pedagogies are needed to promote and study 
reasoning with data models and data modeling?”

The chapter presents general ideas about real-world 
statistical models and teaching about data-based models 
that can promote learners’ ability to act as critical 
consumers of model-based statistical messages in the real 
world (Gal, 2002; GAISE, 2016). The proposed ideas are 
relevant both to educators working in school systems, 
especially at the high-school and middle school levels 
(where statistics is usually subsumed within mathematics 

education), and to lecturers working in academic institu-
tions (where statistics is usually taught as an independent 
subject across a wide range of academic departments 
and subjects, at times in association with the teaching of 
research methods). In both of these learning contexts, 
the interest in students’ modeling abilities is of growing 
interest (e.g., Cevikbas et al., 2022). That said, this chapter 
may be of relevance for educators working in other areas 
as well, since teaching about data-based models is also 
addressed in several STEM domains, e.g., in computer 
science or information technology, environmental 
science, and biology.

The chapter is organized in four key sections. “Perspec-
tives on teaching about models and modeling, and 
skill transfer” on page 92 points to the need to worry 
about the connection between how models are intro-
duced in class and the real-world demands for knowledge 
about models, and about skill transfer in this regard. 
“About real-world contexts for data-based models” 
on page 93 distinguishes three separate but related life 
contexts in which model-related knowledge is needed: 
media interpretation, service consumption, and work-
place processes. “Characteristics of statistical models 
in the real world” on page 94 aims to advance the 
understanding of key issues that should be addressed in 
instruction about data-based models by presenting three 
general families of models that citizens (and workers) 
have to deal with, classified in terms of their use or 
purpose, followed by three frameworks that all models 
arguably include and that learners should be made aware 
of. “Discussion: implementation, critical thinking, 
research directions” on page 97 discusses implica-
tions of these ideas for learners’ ability to act in a critical 
way when encountering data-based models in real-world 
contexts, and for curriculum design and future research.

What do citizens need to know about real-world 
statistical models and the teaching of data modeling
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Perspectives on teaching about 
models and modeling, and skill transfer

Modeling in mathematics education 
vs. statistics education 
In general, a model is a representation (but also simpli-
fication) of reality, which aims to capture and reflect 
key elements in that reality, as well as the relationships 
or influences between them (Doerr & English, 2003). 
In mathematics education (K–12 level), the need to 
lead students through the well-known “mathematical 
modeling cycle” (Blum & Borromeo Ferri, 2009) is 
taken as an axiom, and this cycle includes a discussion 
of (mathematical) models. Illustrating this line of 
thinking is the established and influential line of work 
on “model-eliciting tasks” by Lesh and colleagues (e.g., 
Lesh and Lehrer, 2003). Gravemeijer & Doorman (1999) 
have argued that the use of models from a mathematics 
education perspective aims, among other things, to shift 
learners from viewing a model of a situated activity to 
a model that is for mathematical reasoning. A recent 
systematic literature review confirmed the emphasis on 
mathematical modeling competencies and on students’ 
ability to mathematize and create relevant models within 
given situations (Cevikbas et al., 2021). 

Thus, the prevailing thinking in mathematics education 
appears to be driven by an internal view of “models-for-
modeling,” i.e., it reflects a desire to engage learners with 
the conceptual building blocks and tools provided by 
the discipline (mathematics), and to help them see how 
these tools can be useful for solving real-world problems. 
It is important to emphasize that that the mathematical 
modeling cycle aims to enable students to engage with 
solving any type of problem via a transfer between an 
everyday reality and a mathematical analysis. This means 
that students may analyze any type of quantitative 
information that pertains to a “real” situation, yet such 
information is neither limited to statistical models nor to 
“data” in the statistical sense (see Doerr & English, 2003), 
which is the focus of this book and of this chapter. 

When it comes to teaching for understanding statistical 
models, things become more complex, both for teachers 
and learners alike, and learning goals have to be recon-
sidered and expanded. As Gould argues (2024, in this 
volume on page 81), a traditional statistical model 
involves two components: signal and noise (or trend 
and variation, or deterministic and stochastic compo-
nents). According to Gould, the signal is a component 
consisting of all the factors that contribute causally to the 
response variable, and is represented by a mathematical 
function that describes the general relation between 
the mean value of our response variable and observable 

characteristics. The noise component is the distinguishing 
feature of statistical models, as it tells us how actual 
observations vary randomly about the signal. 

Additional ideas are associated with the differentiation 
between mathematical and statistical models, for 
example:

•	 Shmueli (2010) and other scholars in statistics 
education (e.g., Garfield et al., 2008) explain that 
statistical modeling employs data, which may change 
over time and differ in terms of its nature (e.g., how it 
was collected, what kinds of instruments or definitions 
were used), measurement properties, volume or 
amount, or completeness. 

•	 From an educational perspective, learning about seem-
ingly simple statistical models (e.g., average) or more 
advanced ones (correlation or regression), requires 
understanding of how variability in the data can be 
modelled by a statistic (Lehrer & English, 2018). 

•	 Moreover, the above implies that learners who engage 
with statistical models have to grapple with new or 
more complex ideas that also require the critical eval-
uation of models, such as regarding goodness of fit of 
models to data, or with the degree of error (or variance 
explained) inherent in any model, or in a prediction 
based on the results of a model. 

•	 Finally, numerous scholars have emphasized the 
centrality of the context from which data emerge, 
and its importance for making sense of results of 
a modeling process, as a distinguishing feature of 
statistical modeling (e.g., Pfannkuch et al, 2018). 

Accordingly, scholars in statistics education have high-
lighted the importance of acknowledging and focusing 
on the statistical modeling cycle, which differs in some 
key aspects from the mathematical modeling cycle, and 
has specific educational implications (e.g., Wild and 
Pfannkuch, 1999; Son et al., 2021; Zieffler et al., 2021). 
In the teaching of statistics within school mathematics, 
modeling is usually approached by having learners 
analyze some raw data (as is illustrated by some of the 
other chapters in this book). The same holds for college 
level instruction in introductory statistics, as evident in 
the recommendations in the influential GAISE report 
(2016), which emphasizes the importance of having 
students analyze “real data.” Indeed, learning to analyze 
and model data with statistical tools can accomplish key 
curricular goals set for college and high-school. 

However, this arguably has only partial connection to 
the nature of the statistical models that citizens actually 
encounter in central life contexts, as discussed in subse-
quent sections. Further, as Gal (2002) argues when 
discussing the conceptualization of statistical literacy, in 
key real-world contexts, regular citizens virtually never 
analyze any raw data (nor build models!), but rather have 
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to act as “smart consumers” of already digested infor-
mation. This includes messages about statistical models 
and data-based modeling. Before discussing these issues 
in more detail, we have to acknowledge some concerns 
about skill transfer, discussed below.

The need to think of skill transfer, 
and seek an “external” lens onto models  
The approaches to models and modeling in mathematics 
and statistics education sketched above may seem to 
have self-evident rationales. Yet, I argue that they are 
insufficient, and carry hidden shortcomings, given the 
desire for skill transfer that underlies curricular guidelines 
worldwide in mathematics and statistics education, that 
is, the desire that education will contribute to effective 
life as adults. If our goal is to prepare future citizens and 
workers, we must examine the real-world demands on 
adults as they engage with models, so that we know what 
to prepare our graduates for—and design instruction 
from that basis, not just based on an internal lens as 
described earlier. 

The issue of skill transfer has been recognized and 
researched over several decades in the fields of cognitive 
psychology and workplace training. From a cognitive 
psychology perspective, Perkins & Salomon (1992) argue 
that transfer includes “near transfer” (to closely related 
contexts or performances) as well as “far transfer” (to 
quite different contexts or performances); They further 
emphasize that research shows that often transfer—espe-
cially far transfer—does not occur. 

The challenges of far transfer should bother scholars and 
educational systems (i.e., both schools and academic 
departments) interested in enhancing their graduates’ 
understanding of models and modeling in the real world. 
The transfer literature argues that the tasks used during 
instruction should embody key elements that characterize 
the real-world tasks onto which transfer is expected. In 
contrast, the way models and data-based modeling are 
portrayed to the public in the media often differ from how 
it is experienced in the mathematics or statistics class-
room. For example:

•	 Gal et al. (2022a) report on analyses of media mate-
rials conducted as part of the ProCivicStat project 
(see http://iase-web.org/islp/pcs) which suggest that 
Civic Statistics (including models) reported to the 
public are based in part on dynamic and multivariate 
data which are different than the one-shot (e.g., 
survey-based) statistics or simple datasets often used 
by teachers. 

•	 Gal & Geiger (2022) present new findings regarding 
the cognitive demands of media items related to the 
COVID-19 (Corona) pandemic, based on a content 
analysis of 300 media items from four countries. They 

point to the fuzzy nature of some of the wording used 
in the media to describe models and the results of 
modeling; and also to “embedded criticality,” that is, 
ways the media publishes critical views of data (e.g., 
by showing interviews with experts who disagree or 
by publishing different estimates of some value). As a 
result, readers need to understand the statistical basis 
of these disagreements and uncertainties and witness 
good and bad examples of how to be critical of data 
and models.  These observations and others attest to 
the centrality of text comprehension and other capaci-
ties when interpreting information about models.

•	 The media makes extensive reference to statistical 
indicators, which are standard tools in official statistics 
and heavily reported by official statistics agencies (Gal, 
2003) and often picked up by the media for further 
reporting to the public. Yet statistical indicators are 
seldom covered in introductory statistics courses 
(Pfeffermann, 2015). Such indicators are further 
discussed below.

The analyses above imply that teaching about statistical 
models that is based on an internal view of models and 
modeling cannot lay a sufficiently robust foundation for 
skill transfer. This chapter argues that as part of the search 
for ways to improve the pedagogy of teaching data-based 
models, there is a need to (also) adopt an external view of 
models and understanding of what is statistical modeling, 
and make sure learners are exposed in class to models and 
to the results of using modeling as they are used in the 
real world. An external view necessitates that we further 
examine the contexts within which data-based models 
arise in the real world, and their demand characteristics.

About real-world contexts 
for data-based models
As educators, we hope that what we have taught our 
learners will help them function effectively in multiple 
life contexts outside the classroom. However, as Gal 
(2023) argues, “context” is far from being a simple notion, 
because context is not automatically present in the 
classroom or lecture hall; educators need to bring it in. 
Going beyond the familiar adage that data are numbers in 
a context, it is essential to emphasize that understanding 
the context is mandatory when teaching statistical ideas, 
since it is the source for the “need to know” of different 
actors (e.g., governments, business organizations) which 
cause data to be collected in the first place and then 
analyzed. Further, the context informs the decisions 
about the methods (including models!) used to analyze 
the data, and without the context we cannot know what to 
analyze or how to interpret any emerging results, imbue 
them with meaning, or connect them to societal and 

http://iase-web.org/islp/pcs
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policy issues, which are the heart of Civic Statistics (Gal 
et al., 2022a).

However, when thinking about teaching that aims to 
enhance understanding of real-life statistical models, there 
is a need to focus on contexts that may either be familiar 
to and motivating for students, or of value in terms for 
preparing learners for their life roles as engaged citizens, 
smart consumers, and productive workers. In short, we 
need to make wise choices about which contexts to use. 
Here I sketch in broad strokes three separate rich func-
tional contexts that may be useful in this regard. (Note: 
each has nuances that are not discussed due to space 
constraints):

A.	 	Models in media interpretation contexts.  People have 
to understand models and the results of modeling 
when reading or watching the news, broadly viewed, 
including newspapers and print media, websites 
of news organizations, posts on Facebook and X 
(Twitter), blogs, etc. Such channels routinely commu-
nicate statistical and mathematical products (StaMPs; 
see Gal & Geiger, 2022) that refer to models and the 
results of modeling, among other things. Model-re-
lated information is generated and shared by many 
actors: official statistics producers, public agencies, 
or researchers whose results are of interest to the 
media, such as regarding the progress of COVID-19, 
global warming, crime, health, equity, and other topics 
subsumed under Civic Statistics (Gal et al., 2022a). 

B.	 Models in service consumption contexts. People 
(including young adults) encounter the results of 
models-in-use in diverse service contexts, when they 
act as customers of both commercial and public 
services. Examples are when people engage with an 
online shopping website or a social networks, where 
they encounter advertisements affected by algo-
rithm-based technologies powered by various types 
of statistical models, or when they wait in telephone 
queues (e.g., when calling a call center). Service 
recipients normally have no access to the underlying 
data and system logic, and may not even be aware that 
models and modeling are operating “under the hood,” 
but are heavily affected by the decisions and actions 
informed by such models. 

C.	 Models in workplace or employment contexts. Employees 
in entry-level jobs or line managers (i.e., what school 
graduates may reach in the first few years) encounter 
results of models and statistical modeling in many 
work-related situations. Examples are when workers 
and managers are presented with and have to address 
KPIs (key performance indicators or metrics) in 
service centers (e.g., average wait time), in marketing 
(e.g., sales per hour, customer value, customer churn), 
or in operations (e.g., safety metrics). In addition, 
workers and managers may face many kinds of 
statistical predictions, such as regarding anticipated 

sales or production levels within a given number of 
months, breakdown or product failure forecasts, and 
the like. Such models are central in many organiza-
tions, since they are used to monitor performance and 
productivity of workers or departments, or inform 
e-recruitment and worker selection processes (Smythe 
et al., 2021).

These three contexts have some overlap, in part because 
the media reaches out and covers a wide range of topics, 
including those related to services and labor market 
issues. For example, the media may publish an article 
about the validity or fairness of employment acceptance 
decisions or discuss discriminatory effects on some social 
groups due to “algorithmic bias” (Barocas & Selbst, 2016) 
when human resources departments or employment 
agencies use algorithmic models to screen CVs, LinkedIn 
profiles, or online applications.

Characteristics of statistical models 
in the real world

An overview and pedagogical focus
Models and the results of modeling are present, in explicit 
or implicit ways, in the three central life contexts listed 
above (media interpretation, service consumption, work-
place environments), yet these contexts seldom come 
into view in professional literature and teaching resources 
in statistics education on the teaching of models, even 
when educators claim to be concerned about skill transfer 
(Son et al., 2021). As noted earlier, extant pedagogies 
for teaching about data-based models and modeling 
focus mainly on analyzing raw data or on the mastery of 
computational routines related to statistical modeling 
(Zieffler et al, 2021). 

Indeed, the majority of the chapters in this book, which 
are based in papers presented at the Minerva School 
2022, demonstrate that extant approaches to teaching 
revolve around having students analyze raw data, 
whether “real” data in the sense of being authentic data, 
or cleaned or pre-fabricated datasets created to help the 
teaching/learning process. Certainly, engaging students 
with the statistical modeling cycle has its own logic and 
educational benefits, yet it does not eliminate the need 
to continue and be concerned about skill transfer as 
discussed above. 

A core question that is therefore raised here asks: What 
should students know about the nature of the statistical 
models used in the key contexts listed earlier, with which they 
will have to engage as adults, i.e., media interpretation, service 
consumption, and the workplace? 
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Of course, this is a very broad question, whose full 
treatment goes beyond the scope of a single chapter. As 
a starting step, and to help plan effective pedagogical 
strategies in this regard, it is necessary to be selective, and 
to identify and focus on a few basic but high-level ideas 
that can fit multiple instructional settings, and serve to 
prepare citizens of the future. We must take into account 
the existence of time and space constraints in a statistics 
classroom, which usually aspires to cover many topics 
and is already packed; hence adding new elements that 
teachers need to introduce must be planned with overall 
balance in mind. 

To provide a deeper focus for instruction that can 
increase the chance for skill transfer to real-life contexts 
as sketched above, I believe that it is necessary to refer 
to a few principled components of real world models. 
The ideas below reflect insights that have grown out of 
my cumulative work and prior and ongoing analyses of 
the demands of real world statistical and mathematical 
messages. Examples include analyses of the characteristics 
of products of official statistics agencies (e.g., Gal, 2003), 
the cognitive demands that serve as building blocks of 
“official statistics literacy” (Gal & Ograjenšek, 2017), the 
facets and tools needed to understand diverse types of 
Civic Statistics (Gal et al., 2022a, 2022b); and the nature 
of statistical and mathematical products communicated to 
the public regarding the COVID-19 pandemic (e.g., Gal 
& Geiger, 2022), and other efforts that have encompassed 
statistical models.

Three basic uses of statistical models
A key question being asked here is, what are the key 
families of models that citizens and workers are actually 
exposed to? The notion of “family” relates to the purpose 
that the model fulfills, to why we need it, not to the 
underlying method of computation. Of course, this issue 
has received ample discussions within the statistical 
community, such as regarding predictive models, infer-
ential models, and other kinds of models (Gould, 2024, 
in this volume on page 81). Statistics textbooks 
mention many types of models when discussing specific 
statistical methods or techniques. However, the plethora 
of technical terminologies in this regard can be daunting 
for educators, and teaching time for seemingly new topics 
is limited. Educators have to carefully choose what to 
focus on in class, and also work in ways that take into 
account students’ negative attitudes about the difficulty 
of statistics or a sentiment that it is irrelevant to their lives 
(Schau, 1995).

Thus, this chapter is based on the operating assumption 
that there is a need to simplify the terrain with which 
teachers have to deal with, and offer a simple view of 
models in terms of their usage or purposes, one that 
students can (more) easily relate to and feel is accessible. 

For simplicity, and to reflect the types of models that 
citizens and workers arguably encounter in diverse 
contexts based on the background work described earlier, 
below I sketch three basic1 families of models which often 
appear in the media or in organizational work contexts, 
and which are proposed as a focus for basic instruction on 
real-world statistical models.   

A.	 Aggregation models — used as tools to describe the status 
of key social or organizational phenomena.  This is argu-
ably the most prevalent use of models. Think of any 
statistical indicator used by official statistics agencies 
(e.g., infant mortality, Gini coefficient, high-school 
graduation rate, R-rate or positivity rate for COVID) 
or of workplace or business metrics (e.g., average 
waiting time for incoming calls; worker productivity). 
There are hundreds of these indicators, each based 
on a combination of some raw variables, using a set 
of rules for computation that yield a single value — a 
percentage, ratio, or number on an arbitrary scale 
that can vary up or down. Each indicator or metric 
is a bona fide statistical model because it simplifies 
a complex reality; it reflects the status of a key target 
phenomenon of interest to policy makers or managers 
(and often to the general public); and it is statistical 
because it uses data, and the data varies (i.e., the indi-
cator is never fixed, but can and should be recalculated 
time and again, as data changes or varies). 

B.	 Prediction models — used as to anticipate the future 
status of key social or organizational phenomena.  This 
is a traditional and well-known aspect of the use 
of statistical models. Researchers in diverse fields 
(e.g., economics, medicine, science), organizational 
analysts, and official statistics producers use correla-
tional procedures and a range of regression and related 
multivariate models. The aim of such procedures, in 
its simple form, is to examine relationships between 
variables, determine to what extent certain target 
phenomena can be predicted (i.e., modeled) by 
selected predictor variables, and determine the 
strength and shape of that relationship. For example, 
in commercial service contexts, which were noted 
earlier, models may be used, among other things, 
to predict customer purchases (who buys more?), 
customer attrition (who will stop using our services?), 
customer behavior while waiting in queues, or levels 
of supply and demand. Overall, prediction models 
provide information and predictions that can aid 
decisions and policy-setting in critical areas.       

1	 There are of course additional types of models that serve 
other purposes and may be employed in more specialized 
circumstances, such as models for classification or clustering, 
for optimization, etc. These are intentionally excluded in 
this chapter, since the goal is to focus on a few selected types 
of models at different levels of simplification, which can fit 
diverse types of learners and teachers, and teaching contexts.
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C.	 Simulation models — used to forecast (related to 
prediction, but different), to generate scenarios, and to 
estimate risk levels.  Simulation models are usually more 
complex than regression models; they may involve 
many underlying assumptions; they may not neces-
sarily be based on real data but on “realistic” data; the 
data may be complex (e.g., global warming simu-
lations use historical records, dozens of variables); 
analytic methods may be very diverse, including 
data-mining or other complex statistical techniques. 
Further, the data may be manipulated intentionally 
(i.e., researchers run different scenarios) to test how 
different conditions affect the results of “what-if ” 
situations. (e.g., “if all people keep social distancing 
of at least 2 meters as regulations require, and wear 
face masks, then what are the chances of infection, 
compared to…”).

It can be claimed that these three families of models (in 
terms of their function) go up in their sophistication, 
i.e., from aggregation which is seemingly the simplest, to 
prediction models and then to simulation models which 
are the more demanding. However, this is somewhat 
deceiving, because aggregation models can (and do) 
sometimes serve the same purpose as prediction models! 
by tracking the rise or fall of indicators over time, we can 
predict where things may be heading. Further, aggrega-
tion models are not trivial at all. Aggregation models deal 
with topics of much importance in civic, economic, and 
organizational contexts, hence could be of much interest 
to learners and teachers alike. Since they are simpler than 
the other types of models, aggregation models may be 
prime starting points for planning future pedagogies and 
starting points to teaching about real-world models.

The three frameworks that underlie all models 
The three families of models discussed above, i.e., aggre-
gation models, prediction models, and simulation models, 
all share three underlying building blocks or “frame-
works.” These frameworks are central for understanding 
any type of model, and thinking critically about models 
and results of modeling reported in the media and in 
workplace contexts:

A.	 The conceptual framework. This framework describes 
and requires conceptual decisions about the nature 
(or components or definition) of the target phenom-
enon, that is, the social, economic, organizational, 
environmental, or other topic of interest that has to 
be modeled (i.e., described, predicted or simulated). 
Then, the conceptual framework also describes (more 
decisions!) assumptions about the variables that 
matter and have to be included in the model, as well 
as why they should be included, and measured in the 
way planned. This framework also involves decisions 
on whether data will be needed on other variables, 

which will not be included in the model, but serve 
as correlates, otherwise the model cannot be linked 
to other variables, and any related results cannot be 
properly interpreted. For instance, when the Ministry 
of Education plans to survey “violence in schools” 
(or students’ attitudes towards mathematics, and so 
forth), the first step is to define (conceptualize) the 
target phenomenon. For example: What is “violence 
in school”? Does this include physical violence? 
Digital violence? Verbal abuse or bullying? Any other 
type of violence? Only after decisions are made in this 
regard, which are conceptual or qualitative decisions, 
not statistical decisions (Ograjenšek & Gal, 2016), can 
a measurement methodology be planned. 

B.	 The measurement framework. This framework involves 
decisions on how to collect the needed data, and 
why. This covers the topics normally included in the 
methodology of a study, including data sources and 
methods, measurement instruments, etc. Most but not 
necessarily all of these topics are covered in a standard 
introductory statistics course or textbook, hence no 
reference is provided here. But note that the “data” 
is a broad term, which may encompass “objective” 
sources (e.g., administrative records) or survey-based 
“subjective” data, or even “big data.” as well as textual 
data that can be categorized and quantified (as in texts 
of customer queries or complaints that is recorded 
on a company website). As an example, think of the 
difference between two well-known economic indica-
tors: “consumer spending” vs. “consumer confidence,” 
which are used to model and predict key economic 
trends and inflation. One of these is seemingly objec-
tive, the other one subjective, hence each requires a 
very different measurement methodology. 

C.	 The computational and reporting framework.  This 
framework involves two related but separate aspects: 
how to combine/integrate the different elements 
(variables) in the model, and how to report them 
to target audiences in a way that enables to derive 
meaning and insights from the results of the modeling 
effort. For example, the result of a model related to 
income may be measured and computed on a contin-
uous scale (e.g., in terms of total net income, or gross 
income before taxes), but then related to “poverty” via 
a dichotomy of what percentage of the population falls 
above or below a “poverty line” (Note: the poverty 
line itself is a separate theoretical or simulation-based 
model of a critical social phenomenon). Many 
examples for computational and reporting frameworks 
can be found in press releases and reports by official 
statistics agencies (see Gal, 2003) which are then 
picked up by the media and reported to the public. 

The construction of any model requires all the three 
frameworks described above. Hence, all of them must 
be addressed in instruction regarding data-based models 
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used in real-world contexts. However, the conceptual 
framework is the most critical! As Ograjenšek and Gal 
(2016) argue, any data collection effort has a qualitative 
core, shaped by the actors that initiate and decide what 
needs to be modeled, and why. This, in turn, determines 
the methods deemed acceptable and useful for reaching 
these goals. For example, in developing a prediction 
model, the most important decision is understanding 
what is the nature of the phenomena to be predicted, 
and why we want to predict it, and then, determine what 
variables to include in the model (or exclude). These are 
essential, so that we are able to connect the results to the 
social meaning and implications, a point emphasized by 
the ProCivicStat project (Gal et al., 2022a). The adequacy 
of the conceptual framework is also an important basis 
for interpreting the outcomes of the model and evaluating 
its credibility, well beyond “statistical” aspects included 
in the other frameworks. Such issues regarding the three 
frameworks listed above will be illustrated at the work-
shop in reference to “gender pay gap” and other key topics 
in the news media.

Discussion: implementation, 
critical thinking, research directions
This chapter has argued that a discussion about devel-
oping relevant pedagogies for understanding models and 
the results of modeling must adopt an external lens and 
consider the characteristics of the actual information 
about and characteristics of models and modeling with 
which citizens and workers have to engage out there in 
the real world. Good statistical thinking, and effective 
statistical literacy habits, which are among the key goals of 
statistics (and mathematics) education, can be developed 
not just by having students analyze raw data. The chapter 
innovates by sketching three types of models and three 
specific conceptual frameworks that, taken together, can 
define a stand-alone learning outcome, and can serve as a 
basis for designing curricula and instructional sequences 
that fit diverse teaching contexts.

The Minerva School 2022 was instrumental for me in 
developing and validating my core ideas, by providing 
access to papers and presentations about current efforts 
to conceptualize and teach about data-related models 
in a wide range of teaching/learning environments, 
within mathematics, statistics, and science education 
contexts. Through reflective discussions in small and 
large groups, the School’s work format made it possible 
for me to compare my own views against those of others, 
and realize that the vast majority of current approaches 
revolve around having students analyze raw data (whether 
authentic or cleaned datasets). In contrast, the ideas 
sketched in this chapter point to the need to engage 

students with meaningful and authentic texts and contexts 
(Gal, 2023), with an emphasis on examples for models 
reported in the media and in service and workplace 
contexts. Specifically, the chapter argues that educators 
should focus on introducing learners to the existence of 
aggregation models, prediction models, and simulation 
models, and that they learn that underlying each of these 
types of models are a conceptual framework, a method-
ological framework, and a computational and reporting 
framework. These ideas go well beyond extant conceptu-
alizations of modeling and its connections to citizenship 
roles (Maass et al., 2023).

The ideas presented in this chapter have to be viewed 
with caution, given that teaching at the high-school (or 
upper middle school levels) may involve quite different 
constraints and realities compared to university-level 
introductory statistics courses. Paradoxically, the school 
environment may offer teachers relatively more flexibility, 
since instruction on model-related issues can be part of 
instructional sequence that stretch across multiple school 
years, and connect with information about models and 
modeling presented in multiple school subjects. It may 
be possible to start with seemingly simple descriptive or 
aggregation models that involve only two variables, where 
the computation of the model itself may be simple and 
accessible to most students, and explain how tracking 
them over time may enable predictions into the future, 
an approach that can introduce students to the idea of 
prediction without using any complicated computations. 
In contrast, at the college level, adding instruction on 
real-world models to an already crowded introductory 
statistics class may be a challenge, time-wise, meaning 
that instructors may be forced to select only one or 
two carefully selected examples. For example, it may 
be possible to superimpose the conceptual frameworks 
introduced in this chapter (e.g., a conceptual framework, 
a methodological framework, and a computational and 
reporting framework) on existing content that pertains to 
the use of measures of central tendency (when learning 
about averages) or regression, and connect them to the 
use of real-world models for aggregation and prediction 
taken from media and official statistics sources.

Regardless of the teaching context and students’ age and 
mathematical background, the ideas sketched in this 
paper can equip students to become statistically literate 
and critical consumers of data-based statements (Gal, 
2002; GAISE, 2016). This involves, among other things, 
understanding and critical interpretation of messages 
about models and model-based results in a range of 
realistic contexts. There is room to further develop this 
area, which is also addressed by Büscher (2024, in this 
volume on page 49), for instance by more specificity 
regarding relevant “worry questions” (Gal, 2002; Wild 
and Pfannkuch, 1999) that pertain to all the three types 
of models and three frameworks underlying all models. 
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In sum, we must help all citizens develop their ability to 
evaluate models critically regarding these ideas and more:

•	 the conceptual framework that underlies the model, 

•	 the adequacy of the assumptions made about 
the variables and the data (e.g., about linearity of 
relationships), 

•	 the quality of the data used and its completeness, 

•	 biases caused by the reporting framework, and related 
issues (Bailey and McCulloch, 2023).

Looking ahead, we still have to rethink how the frame-
works described in this chapter can fit into and enrich 
extant curricular sequences, so that teaching about 
models can enable skill transfer and prepare learners for 
life roles as citizens and workers. Such curriculum design 
decisions will differ for high-school and for college-level 
introductory statistics courses, since each involves a 
different operational environment, yet have to expose 
students to meaningful contexts, texts, and questions 
about real-world statistical models (Gal, 2023). Educators 
should seek ways to merge traditional instruction that 
exposes students to the statistical modeling cycle and 
to existing computational methods (e.g., linear regres-
sion) with the principled ideas sketched in this chapter. 
However, further research in this regard is needed, 
perhaps involving a “research design” approach, in order 
to determine how to weave a regular teaching sequence 
in statistics with one that emphasizes conceptual under-
standing of real world models. In addition, the ideas 
introduced in this chapter can serve learners as thinking 
tools that help critical evaluation of information about 
models across a range of real-world contexts. Yet, there 
is a need to further study how learners grow and develop 
their ability to think critically about model-related infor-
mation taken from the media or from reports by statistics 
producers, and their level of critical stance (Gal, 2002), 
i.e., preparation for and comfort with taking an actively 
critical role regarding model-based messages.
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The information landscape is changing dramatically in the 
digital age due to the increasing availability of information 
through the internet and the widespread use of digital 
technologies. With the abundance of data and the ease of 
access to data analysis tools, individuals (students, citizens, 
…) need to be aware of the limitations and potential biases of 
the data, as well as the limitations and potential errors of the 
statistical models and methods being used. It has never been 
more important than today to be able to judge the credibility 
of information and its sources. To increase our students’ resil-
ience against misinformation, manipulation and outright fake 
news we need to design our teaching in a way that supports 
critical and well-founded reasoning with data and models.

The information ecosystem 
and its pollutants
Digital media and the availability of data of almost unlim-
ited scale are radically changing our access to information. 
New sources of data are providing new kinds of evidence, 
provoking new kinds of questions, enabling new kinds of 
answers, and shaping the way evidence is used to inform 
decision making in private, professional, and public 
life. The access to a wider range of information from a 
variety of sources, an increased efficiency, and enhanced 
connectivity facilitating people to cooperate regardless 
of geographic location promises to improve the quality 
of life. However, the overload of free and unchecked 
information also presents specific challenges to demo-
cratic and open societies. The ease of creating and sharing 
information has led to an increase in the spread of false 
or misleading information. The information ecosystem is 
a helpful metaphor in referring to the complex network 
of actors, technologies, and processes involved in the 
creation, distribution, consumption, and management of 
information. It encompasses a wide range of sources, from 
traditional media outlets and government institutions 

to social media platforms and individual users. Ridgway 
and Ridgway (2022) give a detailed account of the 
range of actors in the information ecosystem and the 
role they play, their access to evidence, and how they 
influence consumers with their messages. The informa-
tion ecosystem is changing rapidly due to advances in 
technology and changes in the way people consume and 
interact with information.

Some elements in the information ecosystem hold great 
promise to create new knowledge and to help with 
making better decisions to improve quality of life, e.g., in 
medicine, education, or the economy. However, as in any 
ecosystem, there is an alarming level of pollution—toxic 
elements—that must be kept within bounds for any 
ecosystem to survive. In the information ecosystem, 
polluters are entities that spread false, misleading, 
or biased information, often with the intention of 
manipulating public opinion or achieving a specific 
outcome. Disinformation, fake news, alternative facts, 
and conspiracy theories are on the rise. While acting 
under freedom-of-speech laws, these polluters can have a 
significant impact and are a serious threat in democratic 
societies. For democracy to work, citizens must have a 
critical understanding of empirical evidence on important 
issues of social and economic well-being and human 
rights. Sound evidence-based decision making in both 
private and public life requires quantitative reasoning 
skills and (equally important) a positive attitude toward 
engaging with data. Implementing difficult decisions on 
controversial societal issues (such as migration, climate 
change, pandemics) or forcing behaviors that have 
profound effects on people’s lifestyles (e.g., policies to 
curb the spread of disease) depends significantly on the 
consent and support of citizens. The ProCivicStat Project 
(Ridgway 2022, Engel 2017) provides a detailed frame-
work for analyzing the demands on citizens in democratic 
societies to understand statistics about society, including 
guidelines for instruction and concrete materials 
for teaching.

Some reflections on the role of data and models 
in a changing information ecosystem
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In an increasingly data-driven world, social, societal, 
and technological change requires new competencies. 
In addition to the obvious technical ICT skills and basic 
statistical knowledge, this includes the ability to evaluate 
the suitability and credibility of data-based arguments 
and to reflect on the societal impact of technological 
solutions in an ethical way. It also includes the capacity to 
distinguish reliable data from fake news. This expansion 
of competencies affects not only the professional world, 
but all of us. Innovation, social progress, and the well-
being of our civil society require that people in science, 
business, politics, and society know how to evaluate and 
make sense of data to develop a sound understanding of 
our world and address pressing societal challenges with 
empirical insights and sound data-driven arguments. At 
the same time, Big Data, with its possibilities for surveil-
lance, manipulation, and control, raises serious problems 
for democracy and freedom (see, e.g., Helbing et al. 
2017). Algorithms that draw on data are used to profile 
members of society and make important decisions that 
disproportionately impact those with less privilege and 
resources (O Neill 2016).

There are two factors that determine survival in a polluted 
ecosystem: the extent of the pollution and the resilience 
of the species. It has never been more important than 
today to be able to judge the credibility of information 
and its sources and to understand the role of data in 
creating new knowledge. As Ridgway & Ridgway (2022) 
state, “students need to be aware of the web of creation 
and destruction that underpins knowledge building.” 
Two key ingredients in creating new knowledge are data 
and models. As educators, we need to look for ways to 
develop students’ resilience—in particular, to make them 
more resistant to polluting elements in the evidence 
ecosystem. Resilience against false information requires 
a critical stance towards data and an awareness about the 
role of data and models in creating new knowledge. Key 
elements are a critical appreciation of data, their source, 
reliability, and appropriateness to address the issue under 
consideration. Equally important is a reflective apprecia-
tion and understanding of the role of models underlying 
any conclusions that were drawn from the data. Before 
discussing how to include an appropriate critical stance 
on data and models in our teaching, we consider three 
cautionary examples, and then look at the processes 
involved in transforming data and evidence into knowl-
edge and new wisdom. 

Three examples for poor data 
and misleading models
The following examples highlight flaws caused by uncrit-
ical (or intentional mis-) use of data and models resulting 
in misleading and wrong conclusions. They are intended 
to illustrate the importance of being on guard against 
misinterpretation. 

1.	 Poor data in predicting election results: To predict 
the outcome of the 1936 American presidential 
election over 10 million people were asked by the 
Literary Digest magazine to mail in their preference 
between the two candidates, Alf Landon and Franklin 
D. Roosevelt.  Based on this survey, a clear victory 
of 54% of the votes was predicted for the challenger 
Landon over Roosevelt, whom the poll gave only 
a 41% share of the vote. The actual election results 
turned out to be just the opposite, a clear victory for 
the incumbent, with 60% of the vote for Roosevelt 
and 37% for Landon.

2.	 Misleading operationalization of variables; The 
website of the Australian-based news portal news.com.
au reported on Feb 11, 2017 that the Vatican, with 
1.5 crimes per person per year, is the country with 
the highest crime rate in the world. Similar statistical 
measures identify Frankfurt as most dangerous city in 
Germany (albeit by far not quite as “dangerous” as the 
Vatican).

3.	 Inappropriate model: Following a recent study 
by Kuhbandner and Reizner (2023) about excess 
mortality and vaccination campaigns, the Online 
Portal “Die Achse des Guten” (translated: “the axis of 
the good”) concluded that the only factor explaining 
the excess mortality was the vaccination campaign. 
The report24.news channel reported about this study 
under the headline “The number of deaths exploded 
in direct temporal correlation to the vaccination 
campaigns,” and suggested a causal relationship in the 
sense of vaccinations being responsible for the excess 
death rates.

A detailed account of these examples is discussed in the 
appendix.

http://news.com.au
http://news.com.au
https://www.news.com.au/travel/destinations/europe/14-odd-facts-about-vatican-city/news-story/6d6f5d0652461955f7c849a101f60785
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
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The hierarchy of knowledge
A useful model for understanding the process of 
transforming data into information and ultimately into 
knowledge and wisdom is the so-called DIKW hierarchy 
(see, e.g., Frické, 2018). It describes the progression of 
knowledge from raw data to wisdom (Figure 1). DIKW 
stands for Data, Information, Knowledge, and Wisdom. 

 

Figure 1: The knowledge pyramid or hierarchy of knowledge

Data are the foundational elements in the hierarchy of 
knowledge. They are viewed here as a representation 
of facts in a raw, unorganized fashion. Data values by 
themselves lack meaning and context. As Nate Silver’s 
famous quote goes: “The numbers have no way to speak 
for themselves. We speak for them. We imbue them with 
meaning” (Silver, 2012). 

The transition from data to information involves a process 
of organizing and processing raw data to make it mean-
ingful and relevant. Through the identification of patterns, 
trends, and relationships, data become information. This 
process is enabled by abstracting from some irrelevant 
details in order to discern general structures and relation-
ships in the data. It may include summarizing or reorga-
nizing the data in an accessible and comprehensible way, 
creating a graphical representation of the data, or defining 
a new variable by operationalizing a concept. All of these 
actions require modeling activities.  By interpreting and 
transforming information into a form that is useful for 
understanding, we create new knowledge. 

The transition from information to knowledge involves 
a cognitive process where humans interpret and under-
stand the organized information to form a coherent and 
meaningful representation of the phenomena under 
consideration. It requires individuals to process infor-
mation in the context of their previous experience and 
integrate the information into existing knowledge. They 
connect the new information with what they already 
know and identify relationships and patterns between 

the new information and existing knowledge. This step 
of interpreting information to derive meaning and draw 
conclusions requires critical thinking and reasoning. It 
is influenced by our sense of finding and constructing 
meaning in the data-generated information and involves 
interpreting and understanding the relationship between 
different pieces of information. It also includes grasping 
underlying principles, concepts, and theories that govern 
the knowledge. 

Finally, the transition from knowledge to wisdom 
represents a higher level of understanding and the applica-
tion of knowledge in a thoughtful, ethical manner. It is 
reached by combining knowledge with experience, reflec-
tion, and judgment to arrive at a deep understanding of an 
issue or a situation.  While knowledge involves under-
standing facts and information, wisdom goes beyond that 
to encompass judgement, discernment, and the ability to 
make sound decisions that promote well-being and posi-
tive outcomes. Wisdom also includes a critical reflection 
on one’s own knowledge and experiences. 

Notice, however, that the various steps in the hierarchy 
of wisdom do not follow a strictly linear order but are 
interdependent. It requires knowledge to draw valuable 
information from the data, i.e., which patterns to look for 
or which type of graph to draw as the most informative 
one, and it requires experience, judgment, and wisdom 
(the highest level in the hierarchy of wisdom) to support 
the interpretation of the information in a way that gener-
ates new knowledge. 

The DIKW hierarchy is a model that highlights the 
importance of transforming data into useful information, 
and of combining knowledge with experience and judg-
ment to arrive at a deeper understanding of a subject. By 
understanding the DIKW hierarchy, individuals can better 
manage the process of transforming data into knowledge 
and wisdom, and hence can make better decisions.  

Notice the subjective element involved in each step of the 
knowledge pyramid. 

Data—the raw material of statistics
Data—the empirical basis for evidence-informed deci-
sions and knowledge creation—are certainly preferable 
to anecdotes, wishful thinking, superstition, prejudice, 
or ideology. Yet data themselves are neither facts nor 
truth. Some authors consider data as models of reality 
(Podworny & Frischemeier, in this volume on page 
15). Data do not provide objective representations 
of the world. They might arise opportunistically, or as a 
result of conscious decisions someone made to research a 
particular topic. Data usually have been collected at costly 
expense, for a particular purpose and with a specifically 
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chosen research design. They measure manifest variables 
in a particular way. They are the basis for constructing 
latent variables based on some kind of model with a 
specific concept in mind. At a more complex level, one 
can ask why particular measures have been chosen, by 
whom, and for what purposes. Measurement is always 
linked to some theory of the phenomenon being studied. 
In the example of physical sciences, mass, length, and 
time were not chosen as measures because they are 
“obvious,” but rather because when they are measured, 
precise predictions can be made and used about the phys-
ical world. The well-being of nations had been measured 
by the GDP per person until this monolithic measure was 
challenged by Amartya Sen; many people wish GDP were 
replaced by the more comprehensive Human Develop-
ment Index.

Collecting data is not a leisure activity but is laborious, 
sometimes tedious work that usually requires a lot of 
effort and financial resources. It serves someone’s interest, 
and it is legitimate to question whose interest this is. 
Why have these data been collected? The data collected 
implicitly tell a story. Whose story is this? And whose 
story is this not? 

Critical or reflective questions about the methods used in 
surveys might include (but are not limited to):

•	 Are the measures (e.g., a questionnaire) well defined? 
Are the measures robust and appropriate for the 
purposes for which they are being used? 

•	 Are metadata (i.e., detailed explanations of how 
variables were defined, sample characteristics etc.) 
available? 

•	 Were the sampling procedures appropriate? Who is 
missing from the collected data? (e.g., measuring how 
citizens feel about a certain topic by analyzing social 
media streams fails to sample non-users).

Many studies in the social sciences are concerned with 
theories of causality; causality is associated with difficult 
philosophical challenges that go well beyond simple 
mantras such as “correlation does not imply causation.” 
However, when data come from observational studies, 
surveys, or archive data, and not from experimental 
studies, a reliable identification of cause-and-effect 
relationships can be difficult to determine. 

Beyond technical knowledge about processes of data 
generation, it is important that individuals are able to 
ask critical questions to assess the credibility and validity 
of any data, finding, or conclusion they encounter, both 
on technical and logical grounds—even data or reports 
from presumably credible sources such as official statis-
tics agencies. It is important to examine, from a critical 
perspective, narratives and interpretations of  data, and 
the conclusions drawn from them, for example:

•	 What is the quality of the evidence presented in a 
media article or a claim to support assertions about 
needed policy or actions (e.g., regarding recycling 
laws, wage equality, or vaccination)?

•	 How reasonable are the projections and how 
appropriate are the underlying statistical models 
and assumptions that have been applied to analyze 
data on key issues (e.g., on the progression of global 
warming or the rate of spread of infections such as the 
COVID-19 coronavirus pandemic)? 

•	 When assertions are made about a correlation 
between variables (e.g., smoking and risk of death), 
are relationships assumed to be linear, and are they 
really so (or perhaps curvilinear)? More important, if 
causal processes or cause-and-effect relationships are 
assumed, are there plausible rival accounts, covariates, 
or unexplored intervening factors which could affect 
the findings? 

•	 Are the conclusions consistent with other available 
evidence? When proposals are made for social policy, 
one can ask if the problem identification has been 
done adequately and whether relevant data have been 
used. 

Fact-checking organizations are helpful in assessing the 
trustworthiness of data-related reports in the news (for a 
comprehensive list, see  https://en.wikipedia.org/wiki/
List_of_fact-checking_websites).  The UK-based organi-
zation Full-Fact provides a toolkit to spot bad information 
(https://fullfact.org/toolkit/)  and recommends asking 
questions such as

1.	 Where is it from? A trusted source is your safest 
option. If there’s no source, search for one. If it doesn’t 
look right, be careful.

2.	 What is missing? Get the whole story, not just the 
headline. Images and videos can be faked. Check what 
other people say. 

3.	 How do you feel? People who make false news try 
to manipulate your feelings. If it looks too good to 
be true, it probably isn’t true. Don’t be the one who 
doesn’t spot the joke.

Everyone needs to adopt a questioning attitude, and to 
know what questions to ask about the nature, limita-
tions, or credibility of different data sources, statistical 
messages, and conclusions. But a critical stance when 
assessing evidence does not mean simply “blind” criti-
cizing. Rather, criticism is about adopting the attitude 
of a fair skeptic who is ready to accept an account, but 
has to be convinced by evidence. In situations where 
data are presented in a misleading way, students should 
be encouraged to re-present them in more appropriate 
ways; in situations where data are dubious (or fabricated) 
students should be encouraged to find relevant data from 
authoritative sources. 

https://en.wikipedia.org/wiki/List_of_fact-checking_websites
https://en.wikipedia.org/wiki/List_of_fact-checking_websites
https://fullfact.org/toolkit/
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Models—all wrong, but potentially useful
The core field of statistics is the application of models 
to represent situations of interest, e.g., to estimate the 
magnitude of a particular phenomenon or to forecast its 
evolution over time. Recent examples that have preoccu-
pied the public discourse are the attempts to predict the 
progression of diseases during the COVID-19 pandemic 
or to forecast the pace of global warming or climate 
change. Such predictions are important to inform national 
policy decisions in this area. Modeling activities permeate 
the entire hierarchy of wisdom. Konold, Finzer, and Kree-
tong (2017) consider data as models (of reality). Moving 
upwards in the knowledge pyramid implies modeling 
at various stages. Information and new knowledge from 
data often involve building models to represent patterns 
and relationships in the data. Models help integrate 
information and knowledge from different sources and 
disciplines. They allow us to synthesize complex data and 
theories into a coherent framework. 

Models reflect the perspective and interest of the model-
building individual. The modeling process includes 
many subjective elements. For example, an economist 
and a sociologist might have quite different theories and 
methods for defining and studying poverty in society, and 
they may create different indicators to sum up different 
components that describe or predict poverty. Their 
models of the causes of, and remediation for, poverty 
might be quite different. Models do not represent an 
“objective independent reality” but only certain aspects 
while neglecting others, Therefore, following  Büscher 
(in this volume on page 49), the reader of a statistical 
argument needs to interpret how the construction of the 
argument has been influenced by subjective perspectives 
of the contender. 

The goal of statistical models is to extract insights and 
knowledge from the data to support decision-making, 
forecasting, and problem-solving. Traditional statistical 
models are used for deeper understanding to explain 
the phenomena observed while more recent models 
of machine learning focus on optimal prediction while 
ignoring the data generating process (Breiman 2001, 
Gould, in this volume on page 81). Models, by their 
nature, are not the real thing, but a simplification of the 
complexity and disorder that reality throws at us. 

To simplify reality, models sacrifice details. Hence, 
discrepancies between the model and reality—the 
residuals—are not necessarily an indication of the 
model being inappropriate or useless. The analysis of the 
residuals provides information on whether the model can 
be held onto, i.e., whether it has proven itself, or whether 
the model is unsuitable. They are often a key to obtaining 
a deeper understanding of the phenomenon under 
investigation and perhaps to developing an improved 

model. For an appropriate model, the residuals should 
appear “reasonably irregular” (Tukey, 1977, p 549). 
Otherwise, the model can be improved iteratively by 
“adding” structure to the model in the residuals. This 
concept pervades all classical statistics, from univariate, 
bivariate, and multivariate data analysis, to data of all scale 
levels, independent (iid) data, or dependent (e.g., time 
series) data. 

An example for inadequate modeling is presented by the 
Mackinac Center for Public Policy.  “For most people, 
Coronavirus presents similar risks as car accidents”, they 
claimed. In 2020, more people in Michigan died in a 
car crash than from COVID-19, they continued their 
reasoning, ignoring simple facts about infectious diseases. 
A virus spreads through human contact; therefore, all 
other things being equal—in particular, the absence of 
any intervention policy—the number of infected people 
will grow exponentially over time, unlike the number of 
traffic casualties.

Students need to acquire the ability to identify and under-
stand the use of models, and to be able to challenge the 
fundamental assumptions made by any model. Overall, 
data and models are interconnected and synergistic 
components in the hierarchy of knowledge. Data provide 
the raw material from which information is derived, and 
models help organize, interpret, and extend that informa-
tion into a deeper understanding of the world around us. 
Both data and models are essential tools for advancing 
our knowledge and making informed decisions in various 
fields of study and practice.

Conclusion 
Citizens need to be empowered, and have skills in 
critiquing and interpreting evidence. Awareness of the 
role of data and models in knowledge generation plays a 
crucial role in the information ecosystem, as it helps indi-
viduals critically evaluate and interpret the information 
they encounter. Resilience requires critical thinking and 
rationality. Some key ways in which a critical appreciation 
of data and models can contribute to a more resilient 
information ecosystem include:

•	 Understanding the sources of data—to better equip 
learners to evaluate the credibility and reliability of 
data sources, and to identify sources that may be 
biased or misleading;

•	 Interpreting data—to enable individuals to interpret 
data and statistical analyses correctly, and to avoid 
common misconceptions and fallacies;

•	 Detecting misinformation—to help individuals detect 
false or misleading information that is presented using 
data or statistical analysis;

https://www.mackinac.org/for-most-people-coronavirus-presents-similar-risks-as-car-accidents
https://www.mackinac.org/for-most-people-coronavirus-presents-similar-risks-as-car-accidents
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•	 Questioning the validity of model assumptions—to 
check if they are reasonable and if there are alternative 
assumptions;

•	 Validating the model—to test if based on new data 
or tough simulations the model leads to similar 
conclusions;

•	 Promoting transparency—to promote transparency 
in data analysis by advocating for the use of open data 
sources, clear methodology, and replicable results.

The evidence ecosystem will never be without some 
pollution. Keeping the level of pollution in the informa-
tion ecosystem in check (while preserving democratic 
freedoms such as freedom of expression) is a challenge 
for society as a whole, not least for its legal and political 
system. Our task as educators is to enhance our students’ 
ability to recognize and appreciate the broad context in 
which evidence emerges, and to strengthen their resil-
ience to false information and misleading conclusions.
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Appendix
Some more background information to the examples 
above

Poor data in predicting election results: 
A historic example for using poor data refers to polls 
preceding the 1936 American presidential election 
(Lusinchi, D., 2012). To predict the election outcome, 
the magazine “The Literary Digest” sent out 10 million 
questionnaires to its subscribers. Based on the survey, 
a clear victory of 54% of the votes was predicted for the 
challenger Alf Landon over Franklin D. Roosevelt, whom 
the poll gave only a 41% share of the vote. The actual 
election results were a clear victory for the incumbent, 
with 60% of the vote for Roosevelt and 37% for Landon. 
Possible causes for this serious miscalculation were 
the so-called “selection bias” (Who reads The Literary 
Digest? Are subscribers representative of all voters?) and 
“non-response bias.” Of the 10 million questionnaires, 
only 2.4 million were returned. Aren’t the dissatisfied 
more likely to respond? A good quality survey must make 
every effort to keep the response rate as high as possible. 
Today, professional surveys to explore political behavior 
(elections, political opinions, party preferences) usually 
ask only about 1,000 to 1,500 eligible voters (Kish, 1965). 
Nevertheless, very precise results are usually achieved. 
Mathematically, it can be shown that with a simple 
random sample, as few as 1067 respondents are sufficient 
to determine with 95% certainty the true proportion 
within the population, with a margin of error of 3%. This 
is true if the true (but unknown) proportion is 50%. If 
this proportion is different from 50%, smaller samples 
are sufficient to achieve the same level of precision. In 
the Literary Digest survey, we succumbed to the miscon-
ception, which is also common among many students, 
that the most important thing is to have a lot of data. In 
contrast, it is better to have less good data than a lot of 
bad data. The random error due to small samples can be 
estimated and controlled, while systematic errors can 
hardly be corrected afterwards.

Misleading operationalization of variables
Several German newspapers reported that the most 
dangerous city in Germany is Frankfurt (see Binder et 
al., 2019). With 14,864 reported crimes per 100,000 
inhabitants, this city led the German crime statistics in 
2017. But is it really so dangerous? about 300,000 people 
commute to work in Frankfurt every day, and about 60 
million passengers arrived at or departed from Frankfurt 
Airport in 2017. All the crimes committed by or suffered 
at the hands of these people are the responsibility of the 
city of Frankfurt. In Munich, by contrast, the airport 

belongs to the districts of Erding and Freising. For a 
meaningful comparison of crime across municipalities 
or countries, it would be better to relate the number of 
crimes to the number of potential victims and perpetra-
tors rather than to the number of reported inhabitants. 

The Vatican City State—apparently the most criminal 
country in the world—shows what absurd results crime 
statistics based on population figures can lead to. As 
“Radio Vatican” reports, there were a total of 640 civil and 
226 criminal cases there in 2011—significantly more than 
one per Vatican citizen (492). But in 99 percent of the 
cases, not these, but one of the approximately 18 million 
visitors annually were involved as victims or perpetrators. 
Petty crime is greatly increased in the Vatican, just as it is 
in most of the world’s tourist hotspots; the only difference 
is that the other tourist hotspots are not a state in their 
own right.

Wrong model connecting 
COVID vaccinations and excess mortality
A recent study by Kuhbandner and Reizner (2023) found 
higher excess mortality in the second and third years of 
the pandemic than in 2020 in Germany, with the increase 
correlating with the start of the vaccination. In contrast 
to the previous year, a high number of excess deaths was 
also observed in the months with a high number of first, 
second and third vaccinations. The temporal relation-
ship between vaccination histories and excess deaths 
is particularly pronounced for the third vaccination. In 
September and October 2021, the initial small increase 
in the number of third vaccinations was accompanied 
by a comparatively small increase in excess deaths. In 
November and December 2021, the number of third 
vaccinations increased sharply, accompanied by a compar-
atively large increase in excess deaths. The report24.news 
channel reported about this study under the headline 
“The number of deaths exploded in direct temporal 
correlation to the vaccination campaigns,” and suggested 
a causal relationship in the sense of vaccinations being 
responsible for the excess death rates. Another online 
Portal, “Die Achse des Guten” (translated “the axis of the 
good”) explicitly concludes that the only factor explaining 
the excess mortality is the vaccination campaign. 

The central problem of this analysis has been known in 
statistics for almost 100 years: the problem of so-called 
“Spurious Correlations” or nonsense correlations. This is 
based on the insight that when comparing two so-called 
non-stationary time series (i.e. time series with a trend), 
as Kuhbandner also did, high correlations are obtained 
even if there is no correlation between these time series.

https://www.fr.de/panorama/frankfurt-kriminalitaetsstatistik-vorne-10973895.html
https://www.fr.de/panorama/frankfurt-kriminalitaetsstatistik-vorne-10973895.html
https://www.rwi-essen.de/presse/wissenschaftskommunikation/unstatistik/archiv/2021/detail/xaxax
https://report24.news/explosive-studie-zur-uebersterblichkeit-in-deutschland-wissenschaftler-attestiert-politisches-versagen/
https://report24.news/explosive-studie-zur-uebersterblichkeit-in-deutschland-wissenschaftler-attestiert-politisches-versagen/
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
https://www.achgut.com/artikel/uebersterblichkeit_und_impfkampagne_in_deutschland
https://www.tylervigen.com/spurious-correlations




This afterword is a personal reflection about data modeling 
and about modeling in general, inspired by the work in this 
book. I’m going to focus on an issue that has been bothering 
me for a number of years: we use the words “model” and 
“modeling” for many different concepts, and I worry that this 
can be confusing for the people we most want to help: students 
and teachers. We will journey together through several 
varieties of modeling in order to demonstrate the variety 
of meanings, and then I will make a few observations and 
suggestions.

I love modeling. 

In the introduction to this volume, following Mary 
Hesse (1962), we define a model as “a representation, 
an analogy, with a descriptive, explanatory, or predictive 
purpose.” (page 7). We also assert that models 
frequently involve simplification, and that they are subject 
to review and revision. 

For me personally, the most exciting part of that defini-
tion is simplification—purposeful simpification. A model 
airplane, made of plastic, is not the real airplane. The real 
plane is too complicated, heavy, and expensive. But my 
purpose is to have an affordable object with some salient 
attributes: the shape of the wings, the color and decora-
tion—basically, the overall “look.” I don’t mind that it 
does not have ailerons or a working altimeter, or that it 
can’t fly on its own, because this simplified plane fits my 
purposes. 

If you had asked me for an example of mathematical 
modeling in 2010, I would immediately have picked a 
curve or a line on a scatter plot, a function to approximate 
the pattern in a set of bivariate data, like in Figure 1. The 
line simplifies the relationship, focusing on the signal at 
the expense of the noise. It smooths over any variability. 
We use that functional relationship to make predictions 
and develop insight into the phenomenon that produced 
the data. We can (and should) assess our models by 
comparing their results with reality, thinking carefully 

about the importance of un-modeled factors, the condi-
tions under which our models work reasonably well, and 
the possibility that the signal we see actually arose from 
chance alone. 

As a description of the dataset, the line in Figure 1 
captures the negative trend, smoothing over the vari-
ability. The line simplifies the data, giving us an elegant 
summary. Certainly this points-and-function activity is an 
example of data modeling.

Joachim Engel and I (Engel 2010; Erickson 2016) have 
independently produced collections of problems and 
activities focused on exactly this kind of modeling. The 
chapters in this book do not dwell on it, because data 
modeling is a lot more than functions on scatter plots, and 
the purpose of this book is partly to expand our under-
standing of what data modeling includes. 

Now, if data modeling were the only kind of modeling, 
this book could be the definitive statement on the subject. 
But in fact, we use the words “model” and “modeling” 
in many ways, even within our limited scope as data and 
stochastics educators. As we continue our brief journey 
around the modeling landscape, I hope you will enjoy 
the variety we will see; but I hope you will also sense the 
“semantic peril” that I do.

Afterword: what we mean when we say “modeling”
Tim Erickson

Epistemoligical Engineering  
eepsmedia@gmail.com

Figure 1:	 A least-squares linear model for the heights of 
56 adult women as a function of age. Data from 
NHANES, display in CODAP.
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Probability models
Let’s start close to home. In the stochastics education 
world, we often talk about probability models. One web 
site (Yale, 1998) defines a probability model to be “a 
mathematical representation of a random phenomenon. 
It is defined by its sample space, events within the sample 
space, and probabilities associated with each event.”

You can see how this definition leads to the familiar 
probability rules, using both theoretical and empirical 
approaches. But unless we squeeze that definition and 
twist it into shape, it’s not “a representation, an analogy…” 
and so forth, but rather an intellectual paradigm for 
defining probability and making suitable calculations. 
There is nothing wrong with calling that a model—it’s just 
something different.

For us, however, when we say “probability modeling,” I 
think we usually mean something that does fit that earlier 
definition. It builds on sample spaces and all that, but it’s 
more practical. Consider this tentative description: 

A probability model is a process, a set of connected 
stochastic events designed to produce results whose 
distribution and behavior mirror some other, possibly 
real-world phenomenon. 

That is, we are making a model of something or for some-
thing. We use these models to calculate probabilities and 
to simulate data. Such a model simplifies a rich, uncertain 
process, and we would look at its results to see if they 
really work—for example, whether the simulated data 
make sense and resemble reality.

So if we had a problem about rolling dice and needed a 
probabiity, we could construct a probability model—
either theoretical or empirical—to compute that value. 
Similarly, we talk about binomial models and Normal 
models as shortcut terms for certain distributions and 
procedures. We could talk about randomization proce-
dures as using probability models, perhaps as a synthesis 
with data modeling. After all, when we use a bootstrap, 
say, we are using data within a stochastic process we 
have designed ourselves in order to produce a sampling 
distribution. 

But there is also another, subtler “probability model.” 
Suppose we flip a coin ten times and count the number of 
heads. We could use a binomial model with a probability 
of 0.5. But why use 0.5? In reality, there is no such thing 
as a fair coin. No coin has a P(heads) of exactly 0.500. So 
we simplify things and accept 0.5 as good enough. This 
observation suggests that any time we assign a probability, 
we’re modeling. This is very much like the audacious 
suggestion in this book (Podworny & Frischemeier 2024, 
page 16) that data values themselves are models.

More kinds of modeling
Now let’s think about numerical models. When we need to 
understand a complicated system—a system of differen-
tial equations, say, governing the motion of a spacecraft, 
or the relationships of forces in a truss, or the ebb and 
flow of temperature and humidity in the atmosphere—we 
often solve the underlying equations numerically because 
we don’t know how to solve them analytically. The 
“numerical” part of the label is partly about the solution 
technique, and partly to signal that the answers and 
procedures are approximate; we are hoping the precision 
is good enough. They are models for that reason, and also 
because they result from choices we make about what to 
include in the system and at what precision: we decide 
what to model, simplifying reality.

Let’s switch gears now and talk 
about what I’ll call a geometrical 
model. Suppose we have data 
about some hexnuts, and we 
want to calculate the density of 
the metal. We have the mass, 
so we need the nut’s volume. 
We have its dimensions, so we 
model its shape as a hexagonal 
prism with a circular hole. This is not exactly the shape of 
the nut, but rather a simplified shape: it doesn’t account 
for easing of the edges or the threads in the hole. Like so 
many models, however, it captures the overall pattern, 
the relationship of the dimensions to the volume, so that 
we can make a good—but not perfect—calculation of 
the density. This kind of modeling shows up all the time 
in science and engineering. Rob Gould uses geometrical 
approximations like these when he talks about the volume 
of trees (page 84).

Even when we’re not talking about data, however, we 
often use geometrical models to help with instruction 
or even our own understanding. Figure 2 shows a 

...
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n

Figure 2:	 Area model to help explain a formula for triangular 
numbers. The large, light brown triangle is the n2/2; 
the blue “teeth” are the n/2.
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diagram—an area model—that helps explain a formula 
for triangle numbers. Note that this kind of modeling is 
not about simplification at all. There is no glossing, no 
approximation. The model includes everything from the 
context, yet it is still a model. 

We use “pure math” models in stochastics as well, for 
example, if we use an area model to visualize conditional 
probabilities and Bayesian situations (e.g., Erickson 
2017). Indeed, Karin Binder might have used such an 
area model (private communication), but the small sizes 
of some of the probabilities involved make her trees 
(page 25) or her net diagrams (page 26) more 
practical in her work. 

We would probably all agree that both kinds of geometric 
modeling require important skills that we would like our 
students to have. (And that our students do not yet have 
these skills...) We’d also probably agree that this modeling 
is different in character from most of the modeling we 
have written about in this book. It “smells different.”

Let’s go farther afield. Tom Bielik (page 33) showed 
us a tool—Sage Modeler—for doing systems modeling. 
Internally, it’s an example of a numerical model, but I 
want to shed light on it because we also use the term 
systems model to mean something more like the diagram—
the boxes and arrows—and what they represent. Can a 
diagram be a model, even if it doesn’t have quantitative 
information? Certainly! It’s a representation of a complex 
process, made understandable and useful—in this case, 
through simplification. Implementing it in Sage Modeler 
makes it quantitative, and comparing those results to 
reality lets us evaluate and update the model. 

Stepping even farther away from data modeling, let’s look 
at another nodes-and-arrows model for a process: the 
PPDAC cycle (Figure 3).

Not only is this not quantitative, it’s not even designed 
to help us analyze data from a real-world phenomenon. 
Instead, it’s kind of a meta-model, helping us recognize 
the thinking and processes  we go through when doing 
such an investigation. Is it actually a model according 
to the definition in the introduction? (page 7) Of 
course it is. It simplifies the investigatory journey, glossing 
over the dead ends, the backtracking, the flights of 
inspiration, the seeing what we will need three steps from 
now. A real path among the nodes in the diagram looks 
much more chaotic—but this simplified, circular diagram 
shows us the overall flow of the work and thinking. It’s a 
kind of best-fit, optimized route, ignoring the variability, 
serendipity, and surprise. 

Reflection
I have mentioned six kinds of modeling: data modeling, 
probability modeling, numerical modeling, geometrical 
modeling, systems modeling, and finally a kind of concep-
tual modeling. There are more. 

Whatever kind of modeling you’re using, it’s useful. It’s 
exciting. And it connects dry math techniques to the 
practical real world. It is not a surprise that education 
leaders and organizations are calling for more modeling in 
all sorts of quantitative fields. 

And yet the terms model and modeling mean many 
different, important things. In our roles as teacher 
educators and educational advocates, we want to promote 
modeling—but I guarantee that teachers will be justifi-
ably confused about what we mean by the term. Imagine, 
for example, a workshop where we talk about trees as 
data models (e.g., Gould, page 86), and in the next 
session talk about the PPDAC model for investigations 
(Hagenkötter et al, page 43). Or where we explain 
how to use a net diagram as a model for conditional 
probability (Binder, page 26), but also try to explain 
that any measurement, recorded as data, is also a model 
(Podworny & Frischemeier, page 16). And it should 
not be lost on us that Gafny and Ben-Zvi (page 69) 
created what looks like a model of...data modeling 
pedagogy. Instructing teachers explicitly in the various 
distinctions and definitions that we discuss among 
ourselves may not help matters.

I don’t have clear or comprehensive advice about this, 
but here is a suggestion: We ought to develop a variety of 
strategies for talking about modeling with regular people 
(such as teachers): people who have not had week-long 
discussions on the topic with an international group of 
thoughtful experts. 

Conclusions Problem

PlanAnalysis

Data

Figure 3:	 The bones of the PPDAC cycle, from Wild and 
Pfannkuch, 1999.
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Here are some suggestions for things we should be 
thinking about:

•	 Teachers will be able to internalize the broad picture 
of what we often mean by a model: a representation 
of some system, subject to revision, and often (but 
not always) involving simplification. Teachers can 
understand that:

•	 We use models because it’s often easier to solve 
a problem in the model than in in the context 
directly. 

•	 Modeling happens when we recast a context or 
a problem in a mathematical way, that is, when 
we mathematize. In a student investigation, this 
often begins when they get data, and may undergo 
several layers of modeling as we do deeper and 
deeper analysis. 

•	 Later in the process, students must de-model when 
they reinterpret the results of an analysis and make 
sense of it in the original context.

•	 Being willing to revise a model in response to that 
interpretation is an essential part of modeling. 

•	 There are parts of a good investigation that are not 
modeling, and we should agree on what they could 
be. Otherwise, we might start to see everything as 
modeling, and that’s not useful. One possible model-
ing-free zone happens between the modeling and 
de-modeling, when any computational analysis takes 
place. Note that a traditional curriculum spends much 
of its time there. 

•	 We need to be patient and flexible. Modeling in 
schools will take many forms, at different levels of 
engagement. They are all legitimate. Some classrooms 
will only be able to incorporate a single activity with 
modeling; others whole units; others entire curricula 
where modeling takes center stage. 

•	 The multidimensional framework from our introduc-
tion (in this volume on page 10) might be a bit 
much for teachers to digest (and keep separate in their 
minds from other flavors of modeling). But we need it, 
and so do other curriculum developers. It can become 
a powerful tool for thinking about data modeling in 
education. When we develop activities or think about 
learning trajectories, we should refer to it, to see what 
ideas we are incorporating, what we are setting aside, 
and what we might inadvertently be missing.

Let me close this personal reflection with a personal note 
of gratitude. I attended the Minerva School in 2022. After 
the event, I was asked to do some (mostly) gentle editing 
and to lay out this document. It has been an honor and a 
pleasure to do so, and I could not have wished for a more 
thoughtful, generous, and responsive group of authors, 
collaborators, and trusted friends.
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Postscript: Language Note

As you read in the introduction, the Minerva School is 
a joint Israeli-German project. What language should 
it operate in? English. Of course. As a native speaker, I 
benefit from the cultural hegemony my language enjoys; 
and I marvel at the depth and quality of the English of 
my colleagues when, of course, I would be baffled if the 
meeting were held in German or Hebrew.

This was brought brutally to my attention when I was 
editing the chapter by Susanne Podworny and Daniel 
Frischemeier. On page 16, Susanne was saying that 
the term data model would be a pleonasm—and I had 
never heard the word! I had to look it up. Where did she 
learn it? She explained that the word was in an advanced 
English course and she thought it the mot juste. 

D’accord. But since this book is about data, I did a 
survey. I wrote to a few dozen of my most literate friends 
across the former British Empire, and none admitted to 
having a clue. One wag, after looking it up, wrote that he 
would rather have a pleonasm than a neoplasm. 

For the record: a pleonasm is a word or phrase which is 
redundant or repetitive, though it can also be used for 
emphasis: e.g., “he was consumed by the burning fire of 
love”; or, perhaps, “data model.” A neoplasm is a tumor or 
other abnormal and excessive growth of tissue.
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