
Received 24 June 2023, accepted 19 July 2023, date of publication 1 August 2023, date of current version 15 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3300694

NELLIE: Never-Ending Linking for
Linked Open Data
ABDULLAH FATHI AHMED , MOHAMED AHMED SHERIF ,
AND AXEL-CYRILLE NGONGA NGOMO
Data Science Group, Department of Computer Science, Paderborn University, 33098 Paderborn, Germany
Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany

Corresponding author: Abdullah Fathi Ahmed (afaahmed@mail.upb.de)

This work was supported in part by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) Within Project
SPEAKER under Grant 01MK20011A, in part by the German Federal Ministry of Education and Research (BMBF) Within Project
PORQUE under Grant 01QE2056C, in part by the German Research Foundation (DFG) Within the Project INGRID under Grant NG
105/7-3, in part by the Ministry of Culture and Science of North Rhine-Westphalia (MKW NRW) Within the Project SAIL under Grant
NW21-059D, and in part by the European Union’s Horizon Europe Research and Innovation Program Within Project ENEXA under
Grant 101070305.

ABSTRACT Knowledge graphs (KGs) that follow the Linked Data principles are created daily. However,
there are no holistic models for the Linked Open Data (LOD). Building these models(i.e., engineering a
pipeline system) is still a big challenge in order to make the LOD vision comes true. In this paper, we address
this challenge by presenting NELLIE, a pipeline architecture to build a chain of modules, in which each of
our modules addresses one data augmentation challenge. The ultimate goal of the proposed architecture is to
build a single fused knowledge graph out of the LOD. NELLIE starts by crawling the available knowledge
graphs in the LOD cloud. It then finds a set ofmatchingKGpairs. NELLIE uses a two-phase linking approach
for each pair (first an ontology matching phase, then an instance matching phase). Based on the ontology
and instance matching, NELLIE fuses each pair of knowledge graphs into a single knowledge graph. The
resulting fused KG is then an ideal data source for knowledge-driven applications such as search engines,
question answering, digital assistants and drug discovery. Our evaluation shows an improved Hit@1 score
of the link prediction task on the resulting fused knowledge graph by NELLIE in up to 94.44% of the cases.
Our evaluation also shows a runtime improvement by several orders of magnitude when comparing our
two-phases linking approach with the estimated runtime of linking using a naïve approach.

INDEX TERMS Knowledge graphs, linked data, semantic web, data augmentation, link discovery, data
fusion, data integration, link prediction, LOD.

I. INTRODUCTION
The number of heterogeneous knowledge graphs that obey
the principles of linked data rises steadily. These KGs are
broadly used in data-driven applications, including informa-
tion retrieval, Natural Language Processing (NLP), recom-
mendation systems, search engines, conversational agents,
e-commerce solutions, and drug discovery. Currently, there
are no holistic models for the LOD to build a single fused
knowledge graph out of the LOD (i.e., the development of a

The associate editor coordinating the review of this manuscript and
approving it for publication was Mehedi Masud.

24/7 solution (similar to the Never Ending Language Learner)
for fusing knowledge graphs on the LOD).

For LOD to have such a complete model, the instances
and ontologies in each KG must be linked. Currently, only
a small number of such KGs are linked. In particular, the
current statistic1 of LOD2 shows that there are 1564KGswith
395.121 billion triples and only 2.72 billion links (0.07%)
among them. Therefore, discovering links among these KGs

1Accessed 10.03.2022 https://lod-cloud.net/#about, retrieved using
https://github.com/lod-cloud/lod-cloud-draw/blob/master/scripts/count-
data.py

2https://lod-cloud.net/

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 84957

https://orcid.org/0000-0002-0668-0735
https://orcid.org/0000-0002-9927-2203
https://orcid.org/0000-0001-7112-3516

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

is a major challenge for achieving the vision behind the
LOD.3

Establishing links is a tedious process when performed
manually, especially in giant KGs such as DBpedia,4 Linked
Geo Data (LGD),5 Bio2RDF,6 KEGG [1] and Wikidata.7

In addition to the ever-increasing number of published KGs,
the size of individual KGs increases with each new edi-
tion. For example, DBpedia has grown from 103 million
triples (DBpedia 2.0), representing 1.95 million entities, to
10.094 billion triples representing more than 8.85 million
entities in 2022.8 Moreover, as the number of independent
data providers grows, the simultaneous publication of KGs
with the same information is more likely to take place. For
instance, DBLP have been published by several bodies,9

leading to duplicate content in the Data Web. Furthermore,
different KGs contain different facets concerning the same
data. For example, the drug data within the DrugBank10

KG are mainly describe the drugs’ interactions, pharmacol-
ogy, chemical structures, targets and metabolism, while The
Sider11 dataset contains data concerning the drugs’ side
effects. As a result of such huge data expansion as well as
multifaceted data publishing, there is a growing demand for
the data augmentation tasks such as ontology and instance
linking as well as data fusion.

Many frameworks have been developed to address differ-
ent data augmentation challenges. Prior to fusing KGs, such
systems mainly identify semantically equivalent entities in
different KGs, where they try to achieve both high effec-
tiveness and efficiency in the linking process. For instance,
LogMap [2] and Codi [3] use structural matching based on
the ontology structure to discover links between ontologies.
Nentwig et al. [4] list many data augmentation systems that
have been developed in the last two decades. For exam-
ple, LIMES [5], [6] and SILK [7] apply matching strate-
gies on instance level for computing the property values.
Nentwig et al. [4] address many challenges and aspects of
the current link discovery frameworks. In a more recent sur-
vey [8], Mountantonakis and Tzitzikas presented some linked
data integration approaches, including link discovery and KG
fusion. For fusing data, the linked data quality assessment
and fusion Sieve [9] is proposed, which is integrated into the
linked data integration framework (LDIF) [10]. DEER [11]
is another data augmentation framework that is capable
of performing both links discovery and fusion to produce
enriched data.

3https://www.w3.org/DesignIssues/LinkedData.html
4https://wiki.DBpedia.org/
5http://linkedgeodata.org/About
6https://download.bio2rdf.org/release/4
7https://www.wikidata.org/
8Accessed in 10.03.2022 fromhttps://DBpedia.org/sparql
9http://dblp.l3s.de/, http://datahub.io/dataset/fu-berlin-dblp and

http://dblp.rkbexplorer.com/.
10https://go.drugbank.com/
11http://sideeffects.embl.de/

In this work, we propose NELLIE, a pipeline architecture
to build a chain of modules, in which each of our modules
addresses one data augmentation challenge. NELLIE first
addresses the problem of finding relevant KGs to be inte-
grated. Thereafter, NELLIE tackles the KG data integration
task on both the ontology and instance levels. NELLIE then
fuses the matched classes and instances to generate a fused
KG. Finally, NELLIE carries out KG embedding of the result-
ing fused KG. The ultimate goal of the proposed architecture
is to build a single fused knowledge graph out of the LOD
(i.e., the development of a 24/7 solution (similar to the Never
Ending Language Learner) for fusing knowledge graphs on
the LOD), especially since such a graph does not exist yet.

Our proposed architecture consists of three layers: the core
layer, the application layer, and the publication layer. In this
paper, we pay more attention to the core layer as it con-
tains the main components and modules of our architecture.
In particular, we address the following challenges in our
paper: 1) KGs matching (i.e., matching KGs based on their
content); 2) KGs linking, including ontology and instance
matching; 3) KGs fusion and 4) KGs embedding. Note that,
all these challenges are implemented in our core layer. In the
application layer, we address the link prediction challenge to
evaluate the impact of our KGs fusion on the link prediction
task. Figure 1 shows theNELLIE architecture.We summarize
our contributions as follows:

• We develop a pipeline modular architecture as a mile-
stone toward the 24/7 linking and fusing the LOD.

• We propose the two-phases linking strategy starting with
ontology matching, then instance matching.

• In the KG matching stage, we implemented the three
presented methods ourselves.

• In the ontology matching stage, we implemented the
content-based class matching ourselves and integrated
two state-of-the-art systems.

• For the instance matching stage, we base our implemen-
tation on the state-of-the art link discovery framework
LIMES [6], where we modified the way of training
the WOMBAT [12] to generate link specifications.
We then integrated LIMES into NELLIE as listed in
Algorithm 1in the paper.

• In the KG fusion stage, we implemented the additive
fusion operator with many different fusion strategies.
Finally, We study the impact of KGs fusion on the link
prediction task.

We evaluated our two-phase linking by computing a
pseudo-F-Measure. We also evaluated our approach on the
link prediction task and studied the impact of KG fusion on
this task. We used different KGs and different link predic-
tion models. Evaluating the efficiency and dependability of
NELLIE as a whole is worthy of consideration but is cur-
rently too resource-intensive to implement. We used existing
benchmarks for the sake of comparability. However, we do
agree that the benchmarks we have now are made for specific
subtasks like link prediction, ontologymatching, and instance
matching.

84958 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

FIGURE 1. The modular pipeline architecture of NELLIE.

FIGURE 2. Example of linking the DBpedia resource dbr:Mount-Juliet with the LinkedGeoData resource lgdt:node153471134 using LIMES
link discovery framework.

The rest of this paper is structured as follows: Section II
introduces the preamble and context of this work. Then,
we give an overview of our approach in Section III. We then
evaluate and discuss the results of our system in Section IV.
After a brief review of related work in Section V, we con-
clude our work with some final remarks and future work in
Section VI. Our source code is available on.12

II. PRELIMINARY
In this section, we present the core of the formalization and
notation necessary to implement NELLIE.

12https://github.com/dice-group/NELLIE

A. KNOWLEDGE GRAPH
AKnowledge Graph (KG)G is a set of triples (s, p, o) ∈ (R∪

B) × P × (R ∪ L ∪ B), where R is the set of all resources,
B is the set of all blank nodes, P is the set of all predicates,
and L the set of all literals.

B. KNOWLEDGE GRAPHS MATCHING
Given a source KG G and a set of target KGs T =

{G1 · · ·Gn}. The goal of KG matching is to rank all KGs
within T based on their likelihood of containing entities that
have the potential to be linked to entities in G [13].

VOLUME 11, 2023 84959

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

C. LINK SPECIFICATIONS
Our linking is based on the link discovery framework
LIMES [6]. LIMES uses link specifications (LSs) to express
the conditions necessary for linking resources in input KGs.
A LS consists of two types of atomic components: similarity
measures m and operators op.
Similarity measures m is used to compare the property val-

ues of input instances. A thresholded similarity measure is an
atomic link specification. The operators op allow combining
link specifications to create complex specifications. In detail,
a similarity measure m is defined as a function m : Gs ×

Gt → [0, 1]. A LS is called atomic when it only contains one
similarity measure, while a complex specification (complex
LS) can be obtained by gluing two specifications L1 and
L2 through an operator op that combines the results of two
LSs L1 and L2. Here, we use the operators ⊓, ⊔ and \ as they
are complete and frequently used to define LS [12]. A LS is
also called linkage rule in the literature [7]. Note that a LS can
be generated manually or automatically. In NELLIE, we use
the state-of-the-art algorithm WOMBAT [12] to automati-
cally generate LS.WOMBAT learns link specifications based
on the concept of generalisation in quasi-ordered spaces.
We use the unsupervised version of WOMBAT. WOMBAT
is integrated to LIMES.

D. ONTOLOGY MATCHING
Given two sets of classes Cs and Ct and a relation r
(e.g., owl:equivalentClass), the goal of ontology
matching is to find all pairs (ci, cj) ∈ Cs × Ct such that
r(ci, cj) holds [2] (e.g., owl:equivalentClass(City,
Town).

E. INSTANCE MATCHING
The instance matching problem can be expressed as follows:
Given two sets of resources Gs and Gt and a relation r
(e.g., owl:sameAs), the goal of the instance matching is
to find all pairs (s, t) ∈ Gs × Gt such that r(s, t) holds
(e.g., owl:sameAs(Munich, München). The result is
produced as a set of links called amapping:M = {(s, r, t)|s ∈

Gs, t ∈ Gt }. Optionally, a similarity score (sim ∈ [0, 1])
calculated by the instance matching approach can be added to
the entries of mappings to express the approach’s confidence
in the computed links [6].

F. KNOWLEDGE GRAPHS FUSION
Let Gs be a finite source KG and Gt be a finite target KG.
The aim of KG fusion is to find a consolidated KG Gs⊕t
that contains a fused version of both related entities from
Gs and Gt . We assume that we have a mapping Mmerge that
contains a set of pairs of similar entities among Gs and Gt .
A KG fusion approach fuses each pair of similar entities
into a single entity applying some predefined fusion strategy
operator ⊕.

G. LINK PREDICTION
Given a subset of all true triples, the goal of link predic-
tion is to learn a scoring function φ for each possible triple
(es, r, eo), where es is the subject entity eo is the object entity
and r is a relation. In the case of linear models such as
TuckER [14], ComplEx [15], and DistMult [16], the scoring
function is a specific form of tensor factorization, while in
non-linear models, the scoring function is a more complex
(deep) neural network architecture. For a particular triple,
a score is either positive in case a true fact is predicted by
the model or negative for a false one. Furthermore, logistic
sigmoid function is typically applied to the score to return a
corresponding probability prediction p = σ (s) ∈ [0, 1] as
to if a certain fact is true. Table 1 lists the score functions of
three state-of-the-art link prediction models we selected for
our experiments. All three models are linear.

III. APPROACH
NELLIE is a modular pipeline architecture consists of three
layers: the core layer, the publication layer and the application
layer. TheNELLIE architecture is depicted in Figure 1. In this
paper, we focus on building the core layer as it is the backbone
of our system. In the following, we explain the core layer
components which are KG matching, linking, fusion, and
embedding. Given a set of KGs {G1, . . . ,Gn} as input for
our system, which are available either from the web of Data
(LOD13) or stored in a local storage (Pool of Data).

A. KNOWLEDGE GRAPHS MATCHING
For the current version of NELLIE, we implemented three
methods for KGs matching:

• Metadata-Based KGsMatching. In this method, we first
collect KGs’metadata from the LODCloud.14 TheKGs’
metadata include various features of each KG such as
links to other KGs, website, SPARQL endpoint, key-
words and domain. We then configure the link discovery
framework LIMES [6] to match KGs using the exact
match string similarity among both keywords and
domain features. We provide the full LIMES config-
uration file in Listing 3.

• Content-Based KGsMatching. For each KG, we retrieve
all the text within the literal objects using the SPARQL
query in Listing 1. We then concatenate all the literals
contained in each KG in order to generate a content doc-
ument for each input KG. Afterward, we carry out a pre-
processing of each KG content document by applying:

1) Tokenization. We perform word tokenization by
breaking a raw text intowords (tokens) usingWhite
Space Tokenization15

13https://lod-cloud.net/
14https://lod-cloud.net/lod-data.json
15https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/

WhitespaceTokenizer.html

84960 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 1. Scoring functions for three state-of-the-artÂ link prediction models, together with the dimensionality of their relation parameters and major
terms of their space complexity. eo ∈ Cde is the complex conjugate of eo, es, wr ∈ Rdw ×dh denote a 2D reshaping of es and wr respectively,
hes , tes ∈ Rde are the head and tail entity embedding of entity es, and wr−1 ∈ Rdr is the embedding of relation r−1 (which is the inverse of relation r).
⟨·⟩ denotes the dot product and ×n denotes the tensor product along the n-th mode, and W ∈ Rde×de×dr is the core tensor of a Tucker decomposition.

LISTING. 1. SPARQL query to retrieve literal objects.

2) Stop words removal: We remove all stop words
such as {a, an, the, in, · · ·} to increase
the performance during string similarity measure.

3) Text Normalization. We use Normalization
Form KC (NFKC)16 Next, we clean the text
from numbers and special symbol using regular
expressions.

To this end, we store the set of tokens from the source
KG as the first document A = {a1 . . . an} and the set
of tokens from the target KG as the second document
B = {b1 . . . bn}. To calculate the similarity between
A and B, we use the following similarities Jaccard,
Cosine with TF-IDF document vectors, weighted
Jaccard, Dice, and BERT [17].
Given A = {a1 . . . an} a set of tokens as a first document
and B = {b1 . . . bn} a set of tokens as a second doc-
ument,17 we can compute the weighted Jaccard
similarity between the two preprocessed content docu-
ments using the formula:

Jw =

∑n
i min(ai, bi)∑n
i max(ai, bi)

,

where ai is a token in A and bi is a token in B.
For Cosine with TF-IDF document vectors, we used
the framework18 developed by DKPro, where we start
by calculating the TF-IDF document vectors for each
document, then, applying cosine similarity.

• Manual KGs Matching. In order to evaluate the
performance of NELLIE within a small set of
KGs, we manually select some KGs that belong to
the biology domain: Kegg, Drugbank, Sider,
Omim, Sgd. We also select to match the two KGs
LGD and DBpedia. Although LGD belongs to geo-
graphic domain and DBpedia belong to general
domain, they still have potential to be linked since

16https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html
17We trim the longer document to n tokens as the shorter one.
18https://github.com/dkpro/dkpro-similarity

LISTING. 2. SPARQL query for finding leaf classes.

they have many classes in common (e.g., organiza-
tion, place, location and city) with many instances
that refer to the same physical facts. For instance,
:Mount_Juliet,_Tennessee is a city located
in western Wilson County, Tennessee as described in
DBpedia and :node153471134 refers to the same
city in LGD, which we used as our running example (See
Figure 2).

B. LINKING
For each pair of matched KGs, we carry out our two-phases
linking process. In particular, we first perform ontology
matching followed by instance matching. In the following,
we explain these two linking phases in details.

1) CLASS MATCHING
Based on our formal definition of ontology matching in
Section II-D, we implemented Content-Based Class Match-
ing ourselves and integrated two state-of-the-art systems:

• Content-Based ClassMatching. Wematch classes based
on the assumption that similar classes describe similar
things. Therefore, we measure class similarity based on
the overall similarity of the literal objects within those
classes.
We start our class matching process by extracting all
classes Cs and Ct from source KG Gs and target KG
Gt , respectively. As shown in Listing 2, we query only
for the most specific classes (i.e., the leaf classes) of
each KG. However, a more specific list of classes can be
provided by the user if necessary.We then rank the prop-
erties for each class by calculating their coverage and
pick up only the properties with a coverage that exceed a
certain propriety-coverage threshold β ∈ [0, 1] defined
by the user. The goal of the ranking of properties is to
make sure that only the most important properties have
been retrieved. For instance, properties such (label,
name, title) have a high coverage which lead to
the retrieval of more information. Formally, we query for

VOLUME 11, 2023 84961

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

proprieties with coverage(p) ≥ β), where the coverage
is defined as

coverage(p) =
|{s : (s, p, o) ∈ ci}|

|{s : ∃q (s, q, o) ∈ ci}|
, (1)

where ci ∈ Cs. β is a user defined value between [0, 1].
For the target KG, we replace ci by cj in Equation 1.
After extracting all classes and ranking properties,
we retrieve only the objects with literal values using
SPARQL queries. The retrieved data (i.e., the literals)
require to be pre-processed before it can be used for the
class matching task. We used the same preprocessing
steps as in the case of content-based KG matching (see
Section III for more details). Accordingly, we store the
set of the distinct tokens (i.e., words) that belong to each
class ci ∈ Gs as Li = {l1 · · · ln}. Formally, (key =

ci, value = Li). We repeat the same procedures for
each target class cj ∈ Gt . Now, the classes together
with their cleaned lateral objects values are ready for
matching. Our content-based class matching is formally
defined as ClassMatching(ci,Li, cj,Lj), where ci ∈ Gs,
cj ∈ Gt , Gs is the source KG and Gt is the target KG.
We define the class similarity threshold τ ∈ [0, 1].
In case the StringSimilarity(Li,Li) ≥ τ , then ci is equiv-
alent to cj. These equivalent pairs of class are stored
in a list of equivalentClasses(ci, cj). By default, we use
the Jaccard string similarity to measure the similarity
betweenLi andLj. Still, the user can configure NELLIE
to use other string similarities.

• Class matching using LogMap. LogMap [2] is a highly
scalable ontology matching system with built-in reason-
ing and diagnostic mechanisms capabilities. LogMap
uses highly optimized data structures to index the input
ontologies lexically and structurally. LogMap starts by
generating an initial set of anchormappings (with almost
exact lexical correspondences) and give each of them
a confidence score. The main part of LogMap is an
iterative process that starts with the initial anchors and
alternates between mapping repair and mapping discov-
ery. LogMap offers a sound and highly scalable (but
potentially incomplete) ontology reasoner as well as a
greedy diagnosis method to find and correct unsatis-
fiable classes on the fly during the matching process.
Given the ability of LogMap to successfully match
semantically rich ontologies of classes as well as its
scalability, we embedded LogMap into NELLIE as an
external library.

• Class matching using FCA-Map. FCA-Map [18] is
based on formal concept analysis to find and evalu-
ate mappings across ontologies, including one-to-one
mappings, complicated mappings and correspondences
between object characteristics. It generates lexical map-
pings from class names and labels, as well as mappings
based on ontology structures. FCA-Map generates three
types of formal contexts before extracting mappings
from the resultant lattices. To begin, the token-based

formal context illustrates how class names, labels, and
synonyms all share lexical tokens, leading to lexical
mappings (anchors) between ontologies. Second, the
relation-based formal context specifies how classes are
connected to anchors in taxonomic, partonomic, and
disjoint ways, yielding positive and negative structural
evidence for lexical matching validation. Third, the pos-
itive relation-based context may be leveraged to find
more structural mappings once incoherence has been
rectified [19]. Thus, we can use FCA-Map to extract
lexical and structural mappings of matched classes,
objects, and data attributes. As in the case of LogMap,
we embedded FCA-Map into NELLIE as an external
library.

Note that, this class matching phase reduces the runtime
needed for the instance matching phase (our second link-
ing phase) as we only perform instance matching among
instances of the matched pairs of classes.

2) INSTANCE MATCHING
Based on our formal definition of instance matching in
Section II-E, we focus only on the owl:sameAs as the
relation r between s and t . We rely on LIMES [6] as it is
a state-of-the-art declarative link discovery framework with
open source implementation that can be easily adopted and
extended in NELLIE. The Algorithm 1 shows the procedures
we follow to establish the linking among the instances of the
source KG Gs and target KG Gt . Computing the mapping M
among all source and target KGs’ instances in a trivial way
would result on a quadratic complexity (i.e., O(|Gs| × |Gt |)).
Therefore, we compute the approximate mapping M ′

=

{(s, t) ∈ Gs × Gt owl:sameAs(s,t) ≥ θ}, where θ is a
threshold between [0, 1] to filter out all pairs with similarity
measures less than θ .

While Lines 1-11 in Algorithm 1 describe the configu-
ration and preparation for instance matching using LIMES,
Lines 12-18 describe the preparation of caches to trainWOM-
BAT. The goal of the procedures stated in (Lines 12-18) is
to reduce the training time in case there is a large KG. For
instance, the idea in Line 12 is to filter out any cache that has
a small number of instances (i.e., less than 100). Accordingly,
we define the parameter the minimum cache size mcs for
both source and target caches. For example, setting mcs to
100 means that the caches must contain at least 100 instances.
We also define the parameter minimum sample size mss. The
large size of cache increases the training time of WOMBAT.
Therefore, the parameter mss plays an important role in such
a case (i.e., cache size > mss) by only training WOMBAT
on a sample of the cached data. For example, in case we have
a source cache of size of 10000 instances, target cache of
size 5000 instances and mss with the value of 4000, we then
select a sample of size 4000 instances from the smaller cache
which is the target cache in our example here. By taking the
sample from the smaller cache, we have a better potential
to find matches, if such a matches exists. As we can see

84962 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

Algorithm 1 Linking of Knowledge Graphs
input : EQ = {(cs1 , ct1) . . . (csn , ctn)} is list of

equivalent classes
input : mcs is the minimum cache size
input : mss is the minimum saple size
output : approximate mapping:M ′

= {(s, t) ∈

Gs × Gt : sameAs(s, t) ≥ θ}

1 foreach (csi , cti) ∈ EQ do
2 psi=GetPropertiesWitAtLeast

Covering(csi , β);
3 pti=GetPropertiesWitAtLeast

Covering(cti , β);
// Configure LIMES

4 LIMES.sourceKG(Gs);
5 LIMES.sourceKGRestriction(csi);
6 LIMES.sourceKGProperties(psi);
7 souceCache =

LIMES.fillSourceCache();
8 LIMES.targetKG(Gt);
9 LIMES.targetKGRestriction(cti);
10 LIMES.targetKGProperties(pti);
11 targetCache =

LIMES.fillTargetCache();
12 if souceCache.size() > mcs &

targetCache.size() > mcs then
13 if souceCache.size() > mss &

targetCache.size() > mss then
14 sourceTrainingCache =

Max(souceCache, targetCache);
15 targetTrainingCache =

Sample(Min(souceCache, targetCache));

16 else
17 sourceTrainingCache = souceCache;
18 targetTrainingCache = targetCache;

19 BestLS =
LIMES.runUnsupervisedWombat(
sourceTrainingCache, targetTrainingCache);

20 M ′
=

LIMES(sourceCache, targetCache,BestLS);

21 returnM ′

in (Lines 13-16) in Algorithm 1. We train WOMBAT then
by the source and target training caches from previous step
in (Line 19) to generate the best link specification. Using
LIMES, we generate the mapping among the instances of the
pair of the input classes in (Line 20) by applying the best link
specification to the original KG.

C. KNOWLEDGE GRAPH FUSION
In order to perform the KGs fusion, we merge all the map-
pingsMset = {M1 . . .Mn} of the matched instances (from the

previous linking step) into one universal mapping Mmerge =

M1 · · · ∪ Mn. Accordingly, the KG fusion task uses Mmerge
to fuse Gs and Gt . In the following, we present our fusion
operator and strategies implemented so far in NELLIE.

1) ADDITIVE FUSION OPERATOR
Based on the mapping Mmerge that contains the linked
resources from Gs and Gt , we implement our additive fusion
operator to combine all resources from Gs and Gt . In par-
ticular, our additive fusion operator starts by adding all
triples from the source KG Gs to the fused KG Gs⊕t . There-
after, it combines all similar triples from the target KG Gt
(i.e., triples which subjects contained in Mmerge) with the
similar triples fromGs. Note that, all the subjects of the fused
triples are from Gs. We present our additive fusion operator
formally in Algorithm 2. Figure 3 shows an example of
fusing one DBpedia resource with one LinkedGeoData
resource using our additive fusion operator. Note that, our
operator is additive in the sense that is keep all triples of
source KG Gs, even the ones with no similar triples in Gt
(See Figure 4 for an example).

Algorithm 2 KGs Additive Fusion Algorithm
input : Source KG Gs,

Target KG Gt ,
MappingMmerg = {(x, y)|x ∈ Gs, y ∈ Gt }

output: Fused KG Gs⊕t
/* Add every triple in Gs to Gs⊕t */

1 foreach triple(⟨s, p, o⟩) ∈ Gs do
2 Gs⊕t = Gs⊕t .addTriple(⟨s, p, o⟩)

/* Fuse only similar triples in Gt
into Gs⊕t */

3 foreachMapping pair (x, y) ∈ Mmerg do
4 foreach triple(⟨y, p, o⟩) ∈ Gt do
5 Gs⊕t = Gs⊕t .addTriple(⟨x, p, o⟩)

6 return Gs⊕t

2) FUSION STRATEGIES
After applying our additive fusion operator, we define a
number of type-based strategies for fusing the literal objects
of the same subject and predicate. For example, in our exam-
ple in Figure 3, we have the triple from DBpedia <dbr:
Mount_Juliet, rdfs:label, "Mount Juliet,
Tennessee"@en> and the triple from LinkedGeoData
<lgdt:node153471134, rdfs:label, "Mount
Juliet">. For the two lateral objects "Mount Juliet,
Tennessee"@en and "Mount Juliet", we need to
decide to keep either one of them, both of them or to combine
them somehow. Formally, for any two triples ⟨s, p, λ1⟩ and
⟨s, p, λ2⟩, we implement the following type-based fusion
strategies:

• KEEPBOTH strategy: We add the two triples ⟨s, p, λ1⟩
and ⟨s, p, λ2⟩ to the fused KG.

VOLUME 11, 2023 84963

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

FIGURE 3. Example of fusing the DBpedia resource dbr:Mount-Juliet with the LinkedGeoData resource lgdt:node153471134 using our
additive fusion operator from Algorithm 2.

FIGURE 4. An example of fusing knowledge graphs using our additive
fusion operator ⊕.

• PREFERSOURCE strategy: We add only the triples
⟨s, p, λ1⟩ from the source KG to the fused KG.

• PREFERTARGET strategy: We add only the triples
⟨s, p, λ2⟩ from the target KG to the fused KG.

• MAXIMUM strategy: We define the Maximum strategy
for all numeric object literals such as xsd:integer19

and xsd:decimal as well as dates (e.g., xsd:date),
where we add the triple ⟨s, p,max(λ1, λ2)⟩ to the result
fused KG. For object string literals, the Maximum strat-
egy selects the longest string. Formally, add the triple
⟨s, p, argmax(|λ1|, |λ2|)⟩ to the result fused KG, where
|λ1| is the string length of the string λ1. For literal objects
of type xsd:boolean, the triple ⟨s, p, λ1||λ2⟩ is added
the the fused KG, where || is the logical OR operator.

19xsd=<http://www.w3.org/2001/XMLSchema#>

• MINIMUM strategy: Flowing the same manner of
the Maximum strategy, we define the Minimum strat-
egy for numeric and date literals literal objects, where
we add the triple ⟨s, p,min(λ1, λ2)⟩ to the result
fused KG. For object string literals, the Minimum
strategy selects the shortest string. i.e., add the
triple ⟨s, p, argmin(|λ1|, |λ2|)⟩ to the result fused
KG. For xsd:boolean object literals, the triple
⟨s, p, λ1&&λ2⟩ is added the the fused KG, where &&
is the logical AND operator.

• AVERAGE strategy: We define the Average strat-
egy for numeric and date object literals, where we add
the triple ⟨s, p, 1

2 (λ1 + λ2)⟩ to the result fused KG.
For string object literals, the Average strategy is not
defined. For xsd:boolean object literals, the triple
⟨s, p, λ1&&λ2⟩ is added the the fused KG.

• UNION strategy: We define the Union strategy for the
object literals of type xsd:boolean, where we add
the triple ⟨s, p, λ1&&λ2⟩ to the result fused KG. For
object string literals, the Union strategy is the string
concatenation operator. i.e., the triple ⟨s, p, λ1 + λ2⟩ to
the result fused KG,, where+ is the string concatenation
operator. Union strategy is not defined for numerical
and date data types.

Table 2 lists all the type-based fusion strategies we have
implemented so far. For our experiments, we apply the
KeepBoth strategy.

D. KG EMBEDDING & LINK PREDICTION
Although there are dozens of embedding models that can be
used to perform our link prediction task, we deploy the three

84964 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 2. Fusion strategies for fusing the two triples ⟨s, p, λ1⟩ and ⟨s, p, λ2⟩.

embedding models TuckER [14], ComplEx [15] and Dist-
Mult [16] for embedding in our link prediction task. We use
these models as they are state-of-the-art linear models for
link prediction on knowledge graphs. Based on the NELLIE
architecture, any other embedding model could be easily
added to it.

• TuckER. TuckER is based on Tucker decomposi-
tion [20] that factorizes a tensor into a set of matrices
and a smaller core tensor. In a three-mode case, given
the original tensor X ∈ RI×J×K , Tucker decomposition
produces a tensor Z ∈ RP×Q×R and three matrices
A ∈ RI×P, B ∈ RJ×Q, C ∈ RK×R:

X ≈ Z ×1 A ×2 B ×3 C, (2)

And, The score function of TuckER model:

φ(es, r, eo) = W ×1 es ×2 wr ×3 eo, (3)

For link prediction on a KG’s binary tensor represen-
tation, TuckER model uses Tucker decomposition by
constructing entity embedding matrix E that is equal for
subject and object entities, i.e., E = A = C ∈ Rne×de

and relation embedding matrix R = B ∈ Rnr×dr , where
ne and nr denote the number of entities and relations
and de and dr the dimensionality of entity and relation
embedding vectors. TuckER architecture can be seen
in Figure 5, where es, eo ∈ Rde are the rows of E
representing the subject and object entity embedding
vectors,wr ∈ Rdr the rows ofR representing the relation
embedding vector andW ∈ Rde×dr×de is the core tensor.

• DistMult. The scoring function of DistMult in Table 1
can be regarded as equivalent to the scoring function
of TuckER in Equation 2. The scoring function consists
of a core tensor Z ∈ RP×Q×R, P = Q = R = de.
The superdiagonal of Z is with 1s (i.e. all elements zpqr
with p = q = r are 1 and all the other elements are 0).
InDistMult, subject and object entity embedding vectors
es, eo ∈ Rde are represented by rows of E = A = C ∈

Rne×de and rows of R = B ∈ Rnr×de represent relation
embedding vectorswr ∈ Rde . Given that matricesA and
C are identical, the TuckER interpretation of the Dist-
Mult scoring function can alternatively be interpreted
as a special case of CP decomposition [21]. DistMult
belongs to the family of bilinear models.

FIGURE 5. TuckER architecture [14].

• ComplEx. The scoring function of ComplEx in 1 can
also be viewed as equivalent to the scoring function of
TuckER in Equation 2. The core tensor Z ∈ RP×Q×R,
P = Q = R = 2de in which 3de elements on different
tensor diagonals are set to 1 and de elements on one
tensor diagonal are set to -1 while all other elements are
set to 0. [22] explained that ComplEx can be regarded
a bilinear model with the real and imaginary part of
an embedding for each entity concatenated in a single
vector.

IV. EVALUATION & DISCUSSION
In this section, we evaluate each of the NELLIE components,
i.e., KG matching, linking, fusion, and embedding, where
we performed a set of experiments to evaluate the different
techniques we implemented for each component.

A. KNOWLEDGE GRAPHS MATCHING EVALUATION
1) METADATA-BASED KGS MATCHING
We start by retrieving the global metadata of all knowledge
graphs available on the LOD.20 In total, we get the metadata
of 1118 knowledge graphs. We convert the metadata into
RDF format.21 We then use the link discovery framework
LIMES for matching KGs based on their metadata. The
LIMES configuration file we used to match the KGs’ meta-
data is presented in Listing 3, also publically available from

20https://lod-cloud.net/lod-data.json, accessed in October 2022
21https://git.cs.uni-paderborn.de/kgfusionpg/kgfusion/-/blob/main/

lod_metadata_11_2022.ttl

VOLUME 11, 2023 84965

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 3. Manually annotation results of our KGs matching. A1 to A3 are our 3 annotators, MA is the mutual agreement.

the project web site.22 In particular, we configure LIMES
to compute the exact match string similarity between the
keywords anddomain properties.With this configuration,
LIMES generated 186452 links.

2) CONTENT-BASED KGS MATCHING
To the best of our knowledge, there is no benchmark for
the KGs matching task, therefore we had to create our own
benchmark. In particular, we chose a list of 8 KGs and
manually annotated them by three annotators into either
matched (✓) or not matched (✗). We then computed the
mutual agreement (MA) of our three annotators as listed in
Table 3. To this end, we applied our content-based KGs
matching as described in Section III-A. We set the threshold
of similarity between the generated documents of KGs to
be ≥ 0.1. Using the mutual agreement among our annota-
tors (MA) as the ground truth, we compute precision, recall
and F-Measure among the KG content documents using
the Cosine, Jaccard, Weighted Jaccard, Dice
and BERT similarity measures. The results are listed in
Table 4. In particular, we achieve an F-Measure of 1.0 using
Jaccard similarity and 0.95 using Cosine-TF-IDF sim-
ilarity. On the other hand, using the BERT similarity resulted
in an F-Measure of only 0.88. However, the document
similarity scores resulted using the BERT similarity is in
general higher than the other similarity measures such as
Jaccard. The reason is that BERT is an advanced language

22https://git.cs.uni-paderborn.de/kgfusionpg/kgfusion/-/blob/main/
LIMESConfig.xml

TABLE 4. Content-based KGs matching.

TABLE 5. Evaluation KGs characteristics.

model that takes into account semantic, contextual and rela-
tion between words in its word representation vectors. For
computing Dice similarity, we used the open-source Java
library SimMetrics.23 We use the pre-trained BERT from
HuggingFace24 for the embedding of the preprocessed
documents, where we calculate the similarity of vectors using
the cosine similarity.

3) MANUAL KGS MATCHING
For Manual KGs matching, we select the following
KGs from the biological domain: Kegg, Drugbank,

23https://github.com/Simmetrics/simmetrics
24https://huggingface.co/sentence-transformers/all-mpnet-base-v2

84966 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

LISTING. 3. LIMES configuration for metadata-based KGs matching.

Sider, Omim and Sgd. We manually match these KGs
to ensure the best matching of them, as we used them to
evaluate all the next components of NELLIE (i.e., ontology
matching, instance matching, fusion and link predication).
Table 5 provides the characteristics of these KGs.

B. LINKING EVALUATION
1) SETUP
For the linking task, we set the configuration of NELLIE
as follows: We set the propriety-coverage threshold β to
0.5 and the minimum threshold for string similarities when
computing equivalent classes τ to 0.2. We also configured
the parameter of Wombat as follows: We set the string
similarity measures to {jaccard, cosine, qgrams,
levenshtein}, the maximum iteration number to 10, the

maximum execution time to 200 minutes and minimum the
properties coverage to 0.9.

2) CONTENT-BASED CLASS MATCHING
In Table 6, we present the results of applying the content-
based class matching to the classes within the manually
matched KGs from our previous step. In particular, we com-
puted the Jaccard string similarity between the cleaned
laterals of class pairs within each pair of KGs as described
in Section III-B1. Accordingly, a pair of classes is matched if
the similarity between their respective cleaned laterals ≥0.2.
In the next step, we run LIMES on each pair of matched
classes to link the instances with these classes following the
procedures defined in Algorithm 1. In Table 6, we list the
pairs of matched classes for each of the manually matched
KGs (from Section 5). Algorithm 1 then runs LIMES on each
pair of the matched classes. We also calculate the Pseudo-F-
Measure F [23] for the instances with each paired of classes.
The basic assumption behind the pseudo-F-Measure is that
symmetrical one-to-one links exist between the resources
in source and target datasets. For example, F = 0.89 for
the matched classes (Settlement, Place) ofDBpedia
and LGD. We used unsupervised version of the WOMBAT
algorithm [12] to calculate F . We also computed average
macro Pseudo-F-Measure in case there is more than one pair
of matched classes such as (DBpedia, LGD), (Kegg,
Omim), (Kegg, Drugbank) and (Kegg, Sgd). The
average macro Pseudo-F-Measure is also listed in Table 6
with bold font. We also report the time required to link the
instances with in each pair of matched classes.

3) LogMap & FCA BASED CLASS MATCHING
We embed the ontology matching components of LogMap
and FCA into the NELLIE ontology matching phase as exter-
nal libraries. For the evaluation of each of the two systems,
please refer to the original papers of the systems [18], [24].

4) PERFORMANCE GAIN USING OUR TWO-PHASE LINKING
By applying the ontologymatching phase prior to the instance
matching phase, we aim to reduce the overall runtime of the
linking procedure. In particular, when to apply a single phase
linking of all-against-all instances directly, we would need(

n∑
i=1

|Ci|
)(

n∑
j=1

|Dj|

)
comparisons between the instances of

the leaf classes Ci of the source KGGs and the leaf classesDj
of the target KGGt . Note that, we assume that bothGs andGt
have the same number of classes n without loss of generality.
W.l.o.g, we will also assume that the classes are ordered in
such asmanner that the first k ≤ n classesmatch. On the other
side, using our two-phases linking, we need n2 comparisons
for the first linking phase (i.e., class matching). Note that,
in general, the average class in a knowledge graph has a mag-
nitude larger than the total number of classes. Hence, n ≪
n∑
i=1

(
|Ci|
n

)
. The analog holds for Gt . For the second linking

VOLUME 11, 2023 84967

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 6. Class matching results. |c| is the number of instances of a class c . Time is in milliseconds. F is Pseudo-F-Measure.

phase (i.e., instance matching), we need
k∑
i=1

|Ci||Di| for the k

pairs of the matched leaf classes from Gs and Gt . This gives

us a total cost of
(

k∑
i=1

|Ci||Di| + n2
)

comparisons of our

2-phase linking. Our gain is then the difference between the
number of comparisons of all-against-all instance linking and

our 2-phase linking. Given that n ≪

n∑
i=1

(
|Ci|
n

)
, the expected

value of this difference is positive for k < n.
Empirically, we can compute the speedup achieved by

our two-phase linking as the number of comparisons using
all-against-all instance linking divided by the number of
comparisons of our two-phase linking. For example, if we
carry out the all-against-all for the KGs Drugbank and
Sgd, we get 0.421 × 106 × 0.991 × 106 = 41.211 × 1010

comparisons. On the other hand, the number of comparisons
using our two-phases linking needs only 1819×3488+n2 =

6.3446×106+8330 given that k = 1, where |C1| = 1819 and
|D1| = 3488, and n2 is 8330. Accordingly, our the speedup
here is

41.211 × 1010

6.3446 × 106 + 8330
= 6.48695 × 104

which is 4 orders of magnitude.

C. THE FUSION OF KNOWLEDGE GRAPHS & LINK
PREDICTION TASK
In the third task of our evaluation, we study the impact of
fusion on the link prediction task. Since the cost of computing
and resources allocation of the link prediction task on KGs
that contain millions of triples is very high, we made two data

TABLE 7. Hyper-parameter values for TuckER, DistMult, and ComplEx
across all datasets, where lr denotes learning rate, dr decay rate, ls label
smoothing.

augmentation scenarios for conducting experiments on data
fusion and link prediction tasks:

• Scenario A: The idea of this scenario is to study the
impact of fused KG on the quality of the link predic-
tion task. Thus, we used augmented versions of the
source KG Gs and target KG Gt by only filtering them
to the entities within the mapping: M = {(s, t)|s ∈

Gs, t ∈ Gt }. Formally, we augmented our data as
follows: Given the mapping M , we retrieve the sub-
KG G′

s = {⟨s, r, o⟩ ⊆ Gs∀s ∈ M} and the sub-KG
G′
t = {⟨t, r, o⟩ ⊆ Gt∀t ∈ M}. To this end, we run

Algorithm 2 to fuse the triples of G′
s and G

′
t into the

fused KG Gs⊕t . For evaluating the link prediction task,
we compute Hit@1, Hit@3, Hit@10 and MRR for the
source KGs G′

s and fused KGs Gs⊕t The results are in
Tables 8, 9, 10, 11, 12, and 13

• Scenario B: The idea of this scenario is similar to the
one of Scenario A. However, we modify Scenario A by
adding a random subset X of resources from Gs, which
are not included within the mappingM , to G′

s. The goal
here is to perform the link prediction task on KGs that

84968 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 8. Link Prediction for Drugbank, Omim and the fused data in
Scenario A.

TABLE 9. Link Prediction for Kegg, Drugbank and the fused data in
Scenario A.

contains some enriched entities and some non-enriched
ones. Formally, X = {⟨s, r, o⟩ ⊆ Gs ∀s ∈ Gs∧s /∈ M}

and |X | = |M |. Note that, we limit the size ofX to the the
size of M to keep the balance between the enriched and
non-enriched resources. This results inG′

s = {⟨s, r, o⟩ ⊆

Gs ∀s ∈ M ∪X}. To this end, we repeat the procedures
done in Scenario A. See the results in Tables 14, 15, 16,
17, 18, and 19

1) SETUP
We set the hyper-parameters as listed in the Table 7. We fol-
lowed the same setting, training and evaluation procedures
introduced in the TuckER model [14] and the codebase25 for
TuckER, ComplEx and DistMult.

2) RESULTS
We calculate the improvement percentage of each source
KG and its fused KG using the formula: (Hit@kfusedKG −

Hit@ksourceKG) ∗ 100. ForMRR, we apply a similar formula.
For example, The improvement of fused KG between KEGG
andOmim in Table 12 forHit@1 is (0.5008−0.3808)∗100 =

12.0% using DistMulti model. By repeating this procedure,
we calculate all values for all KGs. In particular, we found
that the fused KG shows improvement ofHit@1 compared to
the Hit@1 of source KG. To the best of our knowledge, there

25https://github.com/ibalazevic/TuckER

TABLE 10. Link Prediction for Drugbank, Sider and the fused data in
Scenario A.

TABLE 11. Link Prediction for Kegg, Sgd and the fused data in Scenario A.

is no scientific evidence about the impact of KG alignment
or KG fusion on link prediction task. However, the results
show improvement in all metrics Hit@1, Hit@3, Hit@10,
and (MRR). For example, in Scenario A KG fusion improved
10 Hit@1 out of 18 Hit@1 which is 55.55% of cases.
While in Scenario B KG fusion improved 17 Hit@1 out of
18 Hit@1 which is 94.44% of cases.

The results of Scenario A for the KGKEGG andKGOmim
(Table 12) shows that KG fusion improves Hit@1, Hit@3,
Hit@10 and (MRR) by up to 12%, 8.31%, 7.66% and 10.10%
respectively. Hence, we could see that KG fusion plays an
important role in improving the link prediction task.

In Scenario B, using TuckER embedding for the KGDrug-
bank and Omim (Table 16), the results show the improvement
inHit@1,Hit@3,Hit@10, and (MRR) by up to 1.7%, 1.49%,
2.22% and 1.79%, respectively. Another example is the KGs
Kegg and Sgd (Scenario B) using TuckER, the improvement
is up to 9.34%, 8.94%, 7.05%, and 8.77% forHit@1,Hit@3,
Hit@10, and (MRR), respectively (see, Table 15).

From the results, we also can see in some cases that KG
fusion reduces the performance of link prediction task. For
instance, KG Drugbank and KG Omim in Scenario A using
TuckER. See Table 8. However, because of the absence of a
benchmark KGs for such task (i.e. the impact of KGs fusion
on the quality of the link prediction task), it is difficult to say
that this improvement is caused by the models used or the
KGs. Fundamentally, the performance of TuckER, DistMulti,

VOLUME 11, 2023 84969

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 12. Link Prediction for Kegg, Omim and the fused data in
Scenario A.

TABLE 13. Link Prediction for DBpedia, LinkedGeoData and the fused
data in Scenario A.

and ComplEx in litterateur is evaluated on a benchmark KGs
(see, [14]). These benchmark KGs are tailored to evaluate
KGE. DistMulti is limited to symmetric relations, while
ComplEx is able to capture antisymmetric relations. Thus,
if a KG contains many antisymmetric relations, DistMulti
may perform poorly. ComplEx can handle antisymmetric
relations, but its parameter number grows quadratically with
the number of relations, which frequently leads to overfitting,
especially for connections with a limited number of train-
ing triples. TuckER gets around this problem by modeling
relations as vectors wr , so the number of parameters scales
linearly with the number of relations. Another reason that
can affect the results and the performance is the selection
of hyper-parameters. In our current experiments, we did not
conduct any sort of hyper-parameters optimizations. We used
hyper-parameters from [14]. Based on these observations, the
impact of KGs fusion on the quality of the link prediction
task is still an open question and it needs thorough inves-
tigation from benchmarking KGs to the hyper-parameters
optimization.

V. RELATED WORK
To the best of our knowledge, there are no previous attempts
to carry out the 24/7 never ending linking over RDF KG to
enable building a holistic model for the LOD. Accordingly
the related work comes from four different research area:
knowledge graphmatching, ontology/instancematching, data

TABLE 14. Link Prediction for Drugbank, Sider and the fused data in
Scenario B.

TABLE 15. Link Prediction for Kegg, Sgd and the fused data in Scenario B.

fusion and Knowledge graph embedding, therefore we brief
some related works for each research area.

A. KNOWLEDGE GRAPHS MATCHING
The use of topic-modeling-based document similarities is
well recognized and has been extensively researched in ear-
lier papers, such as [25]. Topic modelling has been utilized
for texts with natural language, particularly for applications
involving information retrieval. To return documents that are
thematically linked to a particular query, Buntime et al. [26]
created an information retrieval system based on a hierar-
chical topic modelling method. In NELLIE, we adopted KG
matching techniques based on document similarity, where
we generated one document per KG. Sleeman et al. [27]
developed a method for using topic modeling with RDF data.
This method produces a separate document for each entity
described in a KG, whereas our method generates documents
that describe an entire KG. Tapioca [13] is based on Latent
dirichlet allocation (LDA) [28] to identify the topics of RDF
KGs.

B. ONTOLOGY AND INSTANCE MATCHING
1) ONTOLOGY MATCHING
Knowledge integration depends heavily on ontology align-
ment, which has been the subject of extensive research
in recent years. We list here some state-of-the-art sys-
tems. LogMap [2] is a highly scalable ontology matching
system that provides reasoning and diagnosis capabilities.

84970 VOLUME 11, 2023

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

TABLE 16. Link Prediction for Drugbank, Omim and the fused data in
Scenario B.

TABLE 17. Link Prediction for Kegg, Omim and the fused data in
Scenario B.

Codi [3] is another ontology matching framework rely-
ing on Markov logic. The system defines the syntax and
semantics and formalizes the ontology matching problem.
Chen et al. [24] introduced a machine learning algorithm
that makes advantage of distant supervision and semantic
embedding to improve the conventional ontology alignment
systems. To put it simply, it first generates high precision
seed mappings using the original ontology alignment sys-
tem and class disjointness constraints (as heuristic rules),
it then uses these mappings to train a Siamese Neural Net-
work (SiamNN) for predicting cross-ontology classmappings
via semantic embeddings in OWL2Vec [29]. VeeAlign [30],
a deep learning-based model, employs a new dual-attention
technique to compute the contextualized representation of a
notion, which is then utilized to find alignments. By doing
this, VeeAlign is able to take advantage of the syntactic and
semantic data embedded in the ontologies. OntoConnect [31]
is a recent domain-independent, non-human intervention
ontology alignment approach that uses graph embedding with
negative sampling.

2) INSTANCE MATCHING
Declarative link discovery frameworks build complex link
specifications to specify the conditions necessary for linking
resources between RDF knowledge graphs. The SILK [7]
and LIMES [5], [6] frameworks, for instance, employ a

TABLE 18. Link Prediction for Kegg, Drugbank and the fused data in
Scenario B.

TABLE 19. Link Prediction for DBpedia, LinkedGeoData and the fused
data in Scenario B.

property-based methods for the computation of links between
instances. Such link specifications can be generated using
various machine learning approaches such as Wombat [12]
and Eagle [32]. Serimi [33] is an automatic interlinking
method and matches instances between a source and a tar-
get knowledge bases. Niu et al. [34] introduce a a semi-
supervised learning algorithm for automatically discovering
dataset-specific instance matching rules. Slint [35] uses an
approach for schema-independent interlinking. In particular,
Slint starts by automatically selecting important RDF predi-
cates using the coverage and discriminability, then it uses the
weighted co-occurrence and adaptive filtering for carrying
out the instance matching.

C. DATA FUSION
Data fusion is one of the key goals of data integration.
Data fusion increases the conciseness through fusing dupli-
cate entries and merging common attributes together. The
work [36] defines the goals of data fusion as to achieve more
data completeness and conciseness. The main challenges of
data fusion are uncertainty due to conflicting data values.
In [36], the authors survey different ways of fusing data
and present several methods. In the systematic survey [37],
the authors introduce the challenges of the knowledge graph
fusion, where they discuss advanced techniques for handling
knowledge graph fusion. The linked data quality assessment

VOLUME 11, 2023 84971

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

and fusion framework Sieve [9] is based on the linked data
integration framework (LDIF) [10]. LDIF is an open-source
framework that provides data translation and identity resolu-
tion while keeping track of data provenance.

D. KNOWLEDGE GRAPH EMBEDDING
In recent years, dozens of Knowledge graph embedding
(KGE) techniques have been developed to address tasks such
as graph completion, question answering, and link prediction
([15], [38], [39], [40], [41]. For instance, RESCAL [41]
computes a three-way factorization of an adjacency tensor
representing the input KG. The adjacency tensor is decom-
posed into a product of a core tensor and embedding matri-
ces. HolE [40] uses circular correlation as its compositional
operator. On the another hand, TransE [42] is an energy-
based KGE model in which a relation r between entities h
and t corresponds to a translation of their embeddings, i.e.,
h+r ≈ t provided that (h, r, t) exists in the KG. More details
can concerning knowledge graph embedding approaches and
applications can be found in [43].

VI. CONCLUSION & FUTURE WORK
We introduce NELLIE, a pipeline architecture to create a
series of modules, each of which handles a different prob-
lem involving data augmentation. NELLIE starts by dealing
with the problem of identifying relevant KGs for integra-
tion. NELLIE then takes over the KG data integration effort
at both the ontology and instance levels. Then, NELLIE
fuses the matching classes and instances to make a fused
KG. The last step is NELLIE’s KG embedding of the fused
KG.The ultimate goal of the proposed architecture is to create
a single fused knowledge graph from the LOD (i.e., the
development of a 24/7 solution for fusing knowledge graphs
on the LOD, akin to the Never Ending Language Learner).
In the KG matching stage, we implemented the three pre-
sented methods ourselves. In the ontology matching stage,
we implemented the content-based class matching ourselves
and integrated two state-of-the-art systems. For the instance
matching stage, we base our implementation on the state-
of-the-art link discovery framework LIMES [6], where we
modified the way of training the WOMBAT [12] to generate
link specifications. We then integrated LIMES into NELLIE
as listed in Algorithm 1 in the paper. In the KG fusion stage,
we implemented the additive fusion operator with many dif-
ferent fusion strategies. Finally, we studied the impact of KGs
fusion on the link prediction task. In the paper, an ultimate
goal would make it more comprehensive when we run it
24/7 efficiently, reliably, and fully automatically. However,
in this paper, we present the architecture as a milestone
toward this ultimate goal. Before that, we need a benchmark
to test the efficiency and dependability of NELLIE as a
whole, since the benchmarks we have now are made for
specific subtasks like link prediction, ontology matching, and
instance matching. In future work, we plan to apply more
approaches for each task. For instance, we aim to apply auto-
matic KGsmatching approaches such as Tapioca [13] in order
to make NELLIE fully automated 24/7 never ending linking

framework. In addition, We plan to integrate fact checking to
NELLIE. In the future, we aim to implement a benchmark for
evaluating the efficiency and dependability of NELLIE as a
whole.

REFERENCES
[1] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima,

‘‘KEGG: New perspectives on genomes, pathways, diseases and drugs,’’
Nucleic Acids Res., vol. 45, no. D1, pp. D353–D361, Nov. 2017, doi:
10.1093/nar/gkw1092.

[2] E. Jiménez-Ruiz and B. C. Grau, ‘‘LogMap: Logic-based and
scalable ontology matching,’’ in The Semantic Web—ISWC 2011,
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal,
N. Noy, and E. Blomqvist, Eds. Berlin, Germany: Springer, 2011,
pp. 273–288.

[3] M. Niepert, C. Meilicke, and H. Stuckenschmidt, ‘‘A probabilistic-
logical framework for ontology matching,’’ in Proc. AAAI, 2010,
pp. 1413–1418.

[4] M. Nentwig,M. Hartung, A.-C. N. Ngomo, and E. Rahm, ‘‘A survey of cur-
rent link discovery frameworks,’’ Semantic Web, vol. 8, no. 3, pp. 419–436,
Dec. 2016.

[5] A. N. Ngomo and S. Auer, ‘‘LIMES—A time-efficient approach for large-
scale link discovery on theweb of data,’’ inProc. 22nd Int. Joint Conf. Artif.
Intell. (IJCAI), Barcelona, Spain, T. Walsh, Ed., Jul. 2011, pp. 2312–2317,
doi: 10.5591/978-1-57735-516-8/IJCAI11-385.

[6] A.-C. N. Ngomo, M. A. Sherif, K. Georgala, M. M. Hassan, K. Dreßler,
K. Lyko, D. Obraczka, and T. Soru, ‘‘LIMES: A framework for link discov-
ery on the semantic web,’’ Künstliche Intell., vol. 35, no. 3, pp. 413–423,
2021, doi: 10.1007/s13218-021-00713-x.

[7] R. Isele, A. Jentzsch, and C. Bizer, ‘‘Efficient multidimensional blocking
for link discovery without losing recall,’’ in Proc. WebDB, 2011.

[8] M. Mountantonakis and Y. Tzitzikas, ‘‘Large-scale semantic integration
of linked data: A survey,’’ ACM Comput. Surv., vol. 52, no. 5, pp. 1–40,
Sep. 2019, doi: 10.1145/3345551.

[9] P. N. Mendes, H. Mühleisen, and C. Bizer, ‘‘Sieve: Linked data quality
assessment and fusion,’’ in Proc. Joint EDBT/ICDTWorkshops. NewYork,
NY, USA: Association for Computing Machinery, 2012, pp. 116–123, doi:
10.1145/2320765.2320803.

[10] A. Schultz, A. Matteini, R. Isele, C. Bizer, and C. Becker, ‘‘LDIF—Linked
data integration framework,’’ in Proc. 2nd Int. Conf. Consuming Linked
Data, vol. 782, 2011, pp. 125–130.

[11] M. A. Sherif, A. N. Ngomo, and J. Lehmann, ‘‘Automating RDF dataset
transformation and enrichment,’’ in Proc. 12th Eur. Semantic Web Conf.
(ESWC), in Lecture Notes in Computer Science, Portoroz, Slovenia,
vol. 9088, F. Gandon, M. Sabou, H. Sack, C. d’Amato, P. Cudré-Mauroux,
and A. Zimmermann, Eds. Cham, Switzerland: Springer, May/Jun. 2015,
pp. 371–387, doi: 10.1007/978-3-319-18818-8_23.

[12] M. A. Sherif, A. C. N. Ngomo, and J. Lehmann, ‘‘WOMBAT—A gen-
eralization approach for automatic link discovery,’’ in Proc. 14th Int.
Semantic Web Conf. (ESWC), in Lecture Notes in Computer Science,
Portorož, Slovenia, vol. 10249, E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler, and O. Hartig, Eds., May/Jun. 2017, pp. 103–119,
doi: 10.1007/978-3-319-58068-5_7.

[13] M. Röder, A.-C. N. Ngomo, I. Ermilov, and A. Both, ‘‘Detecting simi-
lar linked datasets using topic modelling,’’ in The Semantic Web. Latest
Advances and New Domains, H. Sack, E. Blomqvist, M. d’Aquin, C. Ghi-
dini, S. P. Ponzetto, and C. Lange, Eds. Cham, Switzerland: Springer, 2016,
pp. 3–19.

[14] I. Balazevic, C. Allen, and T. Hospedales, ‘‘TuckER: Tensor fac-
torization for knowledge graph completion,’’ in Proc. Conf. Empir-
ical Methods Natural Lang. Process., 9th Int. Joint Conf. Natural
Lang. Process. (EMNLP-IJCNLP). Hong Kong: Association for Com-
putational Linguistics, Nov. 2019, pp. 5185–5194. [Online]. Available:
https://aclanthology.org/D19-1522

[15] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, ‘‘Complex
embeddings for simple link prediction,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2071–2080.

[16] B. Yang, W. Yih, X. He, J. Gao, and L. Deng, ‘‘Embedding entities and
relations for learning and inference in knowledge bases,’’ in Proc. 3rd
Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, Y. Bengio and
Y. LeCun, Eds., May 2015.

84972 VOLUME 11, 2023

http://dx.doi.org/10.1093/nar/gkw1092
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
http://dx.doi.org/10.1007/s13218-021-00713-x
http://dx.doi.org/10.1145/3345551
http://dx.doi.org/10.1145/2320765.2320803
http://dx.doi.org/10.1007/978-3-319-18818-8_23
http://dx.doi.org/10.1007/978-3-319-58068-5_7

A. F. Ahmed et al.: NELLIE: Never-Ending Linking for Linked Open Data

[17] J. Devlin, M. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol. (NAACL-HLT), Minneapolis, MN, USA, vol. 1, J. Burstein,
C. Doran, and T. Solorio, Eds. Stroudsburg, PA, USA: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186, doi: 10.18653/v1/
n19-1423.

[18] M. Zhao, S. Zhang, W. Li, and G. Chen, ‘‘Matching biomedical ontologies
based on formal concept analysis,’’ J. Biomed. Semantics, vol. 9, no. 1,
pp. 1–27, Dec. 2018.

[19] M. Zhao and S. Zhang, ‘‘Identifying and validating ontology map-
pings by formal concept analysis,’’ in Proc. OM@ ISWC, 2016,
pp. 61–72.

[20] L. R. Tucker, ‘‘The extension of factor analysis to three-dimensional
matrices,’’ Contrib. Math. Psychol., vol. 110119, 1964.

[21] F. L. Hitchcock, ‘‘The expression of a tensor or a polyadic as a
sum of products,’’ J. Math. Phys., vol. 6, nos. 1–4, pp. 164–189,
Apr. 1927.

[22] S. M. Kazemi and D. Poole, ‘‘Simple embedding for link
prediction in knowledge graphs,’’ in Proc. Annu. Conf. Neural
Inf. Process. Syst. (NIPS), Montréal, QC, Canada, S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., Dec. 2018, pp. 4289–4300. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b519
20306046ce5-Abstract.html

[23] A.-C. N. Ngomo and K. Lyko, ‘‘Unsupervised learning of link speci-
fications: deterministic vs. non-deterministic,’’ in Proc. 8th Int. Work-
shop Ontol. Matching Co-Located 12th Int. Semantic Web Conf. (ISWC),
CEUR Workshop, vol. 1111, P. Shvaiko, J. Euzenat, K. Srinivas, M. Mao,
and E. Jiménez-Ruiz, Eds. Sydney, NSW, Australia: CEUR-WS.org,
Oct. 2013, pp. 25–36. [Online]. Available: https://ceur-ws.org/Vol-
1111/om2013_Tpaper3.pdf

[24] J. Chen, E. Jiménez-Ruiz, I. Horrocks, D. Antonyrajah,
A. Hadian, and J. Lee, ‘‘Augmenting ontology alignment
by semantic embedding and distant supervision,’’ in Proc.
Eur. Semantic Web Conf. Cham, Switzerland: Springer, 2021,
pp. 392–408.

[25] M. Steyvers and T. Griffiths, ‘‘Probabilistic topic models,’’ in
Latent Semantic Analysis: A Road to Meaning, T. Landauer,
S. D. McNamara, and W. Kintsch, Eds. Laurence Erlbaum,
2007.

[26] W. Buntine, J. Lofstrom, J. Perkio, S. Perttu, V. Poroshin, T. Silander,
H. Tirri, A. Tuominen, and V. Tuulos, ‘‘A scalable topic-based open source
search engine,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI),
Sep. 2004, pp. 228–234.

[27] J. Sleeman, T. Finin, and A. Joshi, ‘‘Topic modeling for RDF graphs,’’ in
Proc. 3rd Int. Workshop Linked Data Inf. Extraction, 14th Int. Semantic
Web Conf., vol. 1267, 2015, pp. 48–62.

[28] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[29] J. Chen, P. Hu, E. Jimenez-Ruiz, O. M. Holter, D. Antonyrajah,
and I. Horrocks, ‘‘OWL2Vec∗: Embedding of OWL ontologies,’’ Mach.
Learn., vol. 110, no. 7, pp. 1813–1845, 2021.

[30] V. Iyer, A. Agarwal, and H. Kumar, ‘‘VeeAlign: Multifaceted
context representation using dual attention for ontology alignment,’’
in Proc. Conf. Empirical Methods Natural Lang. Process., Punta
Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 10780–10792. [Online]. Available:
https://aclanthology.org/2021.emnlp-main.842

[31] J. Chakraborty, H. M. Zahera, M. A. Sherif, and S. K. Bansal, ‘‘ONTO-
CONNECT: Domain-agnostic ontology alignment using graph embedding
with negative sampling,’’ in Proc. 20th IEEE Int. Conf. Mach. Learn. Appl.
(ICMLA), Dec. 2021, pp. 942–945.

[32] A.-C. N. Ngomo and K. Lyko, ‘‘Eagle: Efficient active learning of link
specifications using genetic programming,’’ in Proc. Extended Semantic
Web Conf. Berlin, Germany: Springer, 2012.

[33] S. Araujo, J. Hidders, D. Schwabe, and A. P. de Vries, ‘‘SERIMI–resource
description similarity, RDF instance matching and interlinking,’’ 2011,
arXiv:1107.1104.

[34] X. Niu, S. Rong, H. Wang, and Y. Yu, ‘‘An effective rule miner for instance
matching in a web of data,’’ in Proc. 21st ACM Int. Conf. Inf. Knowl. Man-
age. (CIKM). NewYork, NY, USA: Association for ComputingMachinery,
2012, pp. 1085–1094, doi: 10.1145/2396761.2398406.

[35] K. Nguyen, R. Ichise, and B. Le, ‘‘SLINT: A schema-independent linked
data interlinking system,’’ in Proc. 7th Int. Conf. OntologyMatching (OM),
vol. 946. Aachen, Germany: CEUR-WS.org, 2012, pp. 1–12.

[36] J. Bleiholder and F. Naumann, ‘‘Data fusion,’’ ACMComput. Surv., vol. 41,
no. 1, pp. 1–41, Jan. 2009, doi: 10.1145/1456650.1456651.

[37] H. L. Nguyen, D. T. Vu, and J. J. Jung, ‘‘Knowledge graph fusion
for smart systems: A survey,’’ Inf. Fusion, vol. 61, pp. 56–70,
Sep. 2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1566253519307729

[38] X. Huang, J. Zhang, D. Li, and P. Li, ‘‘Knowledge graph embedding based
question answering,’’ in Proc. 12th ACM Int. Conf. Web Search Data Min-
ing (WSDM), J. S. Culpepper, A. Moffat, P. N. Bennett, and K. Lerman,
Eds. Melbourne, VIC, Australia: ACM, Feb. 2019, pp. 105–113, doi:
10.1145/3289600.3290956.

[39] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, ‘‘Learning entity and
relation embeddings for knowledge graph completion,’’ in Proc. 29th
AAAI Conf. Artif. Intell., B. Bonet and S. Koenig, Eds. Austin, TX,
USA: AAAI Press, Jan. 2015, pp. 2181–2187. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571

[40] M. Nickel, L. Rosasco, and T. Poggio, ‘‘Holographic embeddings of
knowledge graphs,’’ in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 1955–1961.

[41] M. Nickel, V. Tresp, and H.-P. Kriegel, ‘‘A three-way model for col-
lective learning on multi-relational data,’’ in Proc. 28th Int. Conf.
Mach. Learn. (ICML), L. Getoor and T. Scheffer, Eds. Bellevue, WA,
USA: Omnipress, Jun./Jul. 2011, pp. 809–816. [Online]. Available:
https://icml.cc/2011/papers/438_icmlpaper.pdf

[42] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
‘‘Translating embeddings for modeling multi-relational data,’’ in Advances
in Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates, 2013.

[43] Q. Wang, Z. Mao, B. Wang, and L. Guo, ‘‘Knowledge graph embedding:
A survey of approaches and applications,’’ IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 12, pp. 2724–2743, Dec. 2017.

VOLUME 11, 2023 84973

http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.1145/2396761.2398406
http://dx.doi.org/10.1145/1456650.1456651
http://dx.doi.org/10.1145/3289600.3290956

