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Abstract

Let k/Q be a number field, p a fixed finite prime place of k and A the ring of adeles of k.
Let further (p, o) be a pair of cuspidal automorphic representation of GL,11(A) x GL,,(A)

unramified at o and let x be a quasicharacter of fx \AX whose conductor is a power of

p. The automorphic L-function L (s,p X (0 ® x)) attached to p X o under the twist of x
has its special value at s = 1/2. We will study the p-adic interpolation of this special value
of L(s,px (0 ®x)). We state a conjecture for the value of the p-adic L-function at x for
general n under the assumption that x is trivial at p. We will prove the conjecture in the
cases n =1, 2.



Zusammenfassung

Es seien k/Q ein Zahlkorper, p eine feste endliche Primstelle von k& und A der Ring der
Adele von k. Es seien ferner (p,o) ein paar von kuspidalen automorphen Darstellungen

von GLy,41(A) x GL,,(A), beide unverzweigt bei p, und x ein Quasicharakter von fx \AX ,
dessen Fiihrer eine p-Potenz ist. Die automorphe L-Funktion L (s,p X (0 ® x)) von p X o
unter Twists von x hat ihren speziellen Wert bei s = 1/2. Wir werden die p-adische
Interpolation dieses speziellen Wertes s = 1/2 von L (s,p X (0 ® x)) untersuchen. Wir
werden eine Vermutung iiber den Wert der gp-adischen L-Funktion fiir allgemeines n unter
der Annahme aufstellen, dass y trivial bei p ist. Diese Vermutung beweisen wir in den

Féllen n =1, 2.
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0. Preface

The aim of this writing lies in the p-adic interpolation of the special value s = 1/2 of
the L-function L(s,p X (0 ® x)) attached to a pair of cuspidal representations (p, o) of
GL,41(A)xGL, (A) under the twist of an adelic quasicharacter whose conductor is a power
of p. It readily follows the works of Kazhdan-Mazur-Schmidt (JKMS00]) and Januszewski
([Jan09]). The latter constructs a p-adic distribution with the interpolation property for
x that is ramified at @. The author also formulates precise conditions on when the gp-adic
distribution is a (pseudo-)measure. We will show that the p-adic distribution constructed
by Januszewski satisfies the relation predicted by Coates in [Coa89] for trivial x in the
case n = 1,2 as well. The crucial part of the construction lies in the modification of
L(s,px (6 ®x)) at p.

Chapter (1] is preliminary in its nature: we define the necessary objects to work with.
Chapter [2| is devoted to the development of both, the automorphic and local repre-
sentation theory. In addition to general definitions, we will focus on the development
of non-Archimedean Whittaker functions right invariant under the Iwahori group J,.
Iwahori-invariant Whittaker functions have been studied by Brubaker-Buciumas-Bump-
Gustafsson in [BBBG19] and Brubaker-Bump-Licata in [BBL1§|. After the development
of the representation theory, Chapter|3|will serve to construct the automorphic L-function
attached to p x o by the method of Rankin-Selberg.

Chapter [4 is intended to talk about the connection between motives and cuspidal rep-
resentations as predicted by Clozel in Conjecture 4.5. of [Clo88]. Coates describes in
[Coal9] the construction of a p-adic measure that interpolates the special values of a
motivic L-function. His description serves us as guidance on what we expect to obtain on
the automorphic side.

In Chapter [5| we mimic Coates’ modification at p for motives on the automorphic side.
This is the central part of our work. We think that the correct modification of L(s, p x o)
at p is mirrored in the appearance of a modified local zeta integral of the form

wn ftn , . . y
W<<g 1) h"+1< ' 1>)'W(QWM)’X(QHdet(QH Parg. (1)
Un o)\ Gl ()

Here x is a character of GL,,(k,,) and the functions W, W' are Iwahori-invariant Whittaker
functions attached to GL, 1 x GL, and are chosen to be eigenvectors of parabolic Hecke
operators. The element w, denotes the long Weyl element of GL,, with respect to the
diagonal torus. The matrix h,; as well as the parameters f and t,, are further fixed values
to match the modification predicted by Coates in [Coa89]. The closed form of this integral
is for ramified x known due to the work of Januszewski; see Section 1.1 in [Jan09]. We
conjecture for the case when y unramified the following:

Conjecture A. If x is unramified, then the integral has the closed form

(n—1)n
2

vol(Jp, d¥g) - ¢~ 2 - (1 — ¢ 1)
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where \;(7) and p;(7) are the Satake parameters of p and o at p, respectively, and ¢ the
cardinality of the residue field of k.

The main result of our work consists in the following:

Theorem A. The Conjecture [A] holds for n =1, 2.

Finally, in Chapter [0 we recall the construction of the p-adic distribution of Kazhdan-
Mazur-Schmidt ([KMS00]) and Januszewski (JJan09]), respectively. We modify the L-
function L(s,p x (o ® x)) by inserting the modified local zeta integral from Chapter [5
We then show that, under the stated Conjecture, it satisfies the interpolation property
for y unramified at p as well, as was predicted by Coates. More precisely, by the work of
Januszewski, and assuming the Conjecture [A] to be true, we have the following result:

Theorem B. If (p,0) are in addition algebraic, regular, ordinary at @ (this implies
that their respective p-components are spherical) and cohomological, then the p-adic
distribution g, on Ci(p*>°) constructed by Januszewski is a measure, that satisfies

Ly Xl = g P2 W W) - Llp x (0@ xia2)) - vol(J, d*g)
k(9>
n(n+1)

(n—1)n -1 (n—1)-n q 2
. 2 - (1 — 2 o —
q (1-q) < = 1)

e () - o) ()
I (-258) (- adm)

i+j<n+1 i+g>n+1 i @ ;) (m)

Acknowledgments At last, I would like to use the opportunity to express my gratitude:
firstly and mostly I would like to thank Prof. Dr. Frank Herrlich for his unconditional
support in both personal life and mathematics. I also thank my colleague PD. Dr. Hans
Franzen for his friendship, his suggestions and illustrative conversations, specially in ge-
ometry. Furthermore, my special thank goes to Assoc. Prof. Dr. Chris Williams. I
personally profited a lot from his helpful e-mails and his great expertise in topics of p-adic
analysis. I would also like to thank him for accepting to be my examiner. In addition, I
would like to thank PD. Dr. Job Kuit for discussions on measure theory and real reductive
groups.

My further thanks goes to my colleagues Dr. Aleksandre Maksoud for enlightening talks,
to Dr. Ali Suri and Dr. Raphael Miiller for the nice working environment at the UPB, to
my office colleague Daniel Perniok for his suggestions and corrections on Chapter 2 and
to Dr. Stepan Maximov for his suggestions and corrections on this Preface.

Aside from the university environment, I would like to thank my girlfriend Erioneide Fer-
reira da Silva for her support and for the special person she is in my life. My further



thanks goes to Ana Karla Garcia Peréz for her great friendship and her legacy, and to
Ariane Mensato for her constant support.
My last thank is dedicated to my family and further friends who play a role in my life.

0.1. Historical Development and Motivation

The following subsection is intended to give a brief introduction into the historical de-
velopment of L-functions and their connection to number theory. We will also try to
motivate here the aim of this work. It can be skipped by the expert.

0.1.1. Classical approach to L-functions

The Riemann zeta function. The study of classical L-functions dates back to Riemann.
Riemann introduced in [Rie59] the famous zeta function bearing his name

o
b 1

((s) =

5"
n:ln

f This function is a priori defined in the right complex half-plane R(s) > 1. It can be
expanded as the infinite product of Euler factors

- 10

—p=s’
p prime p

2 (2)
which was for natural exponents already known to Euler. If we analyze this equality, we
find on the left hand side an object from complex analysis, and on the right hand side we
see that it encapsulates all the prime numbers, the building blocks of number theory. This
was the first established connection between these two areas. The Riemann zeta function
is a new tool that can be used to investigate asymptotic behaviour of prime numbers by
means of analytic methods.

Riemann could show in two different ways that ((s) extends meromorphically to the
whole C and has a simple pole at s = 1. One such argument goes as follows: by a
clever mainpulation of the sum ((s), one can extend it meromorphically to R(s) > 0.
Subsequently, the function

A(s) = a2 ((s) - T(s/2),

which is called the complete zeta functio:ﬂ is a meromorphic function on whole C with
simple poles in {0, 1}, and it satisfies the functional equation

A(s) = A(1 —s). (3)

Complex functions of the nature of {(s), that

n [Rie59] we find T'(s/2 — 1). This is not a mistake, just the slight difference in the definition of the
[-function in times of Riemann, which was shifted by 1 to the right.



are defined on some right half place,

have an Euler Product similar to ({2),

satisfy a functional equation similar to (3)),

and (consequently) possess a meromorphic continuation to whole C,

are often referred to as L—function:ﬂ As such, the Riemann zeta function ((s) is the first
of its kind.

Generalizations of ((s). Since its discovery, the Riemann zeta function {(s) went through
a series of generalizations:

1. The key to the first generalization consisted in considering the Riemann zeta func-
tion ((s) as the L-function corresponding the trivial character 1 of the trivial group.
Dirichlet introduced the function

L) = XA (R > 1),

where y is the extension of a finite character of (Z/mZ)™ to a multiplicative func-
tion on Z. This function is called the Dirichlet L-function and finite characters of
(Z/mZ)™ for some m € N are called Dirichlet characters. It possesses the Euler
product

L= I !

o prime 1 — X(P) - p*

and satisfies a function equation similar to ({3)).

2. Further generalization consisted in understanding the (-function as the (-function
attached to the prime number field Q. This led to the definition of the Dedekind

zeta function ]
Gls)= . ;
0£ad0y N(a)

where k/Q is an algebraic number field and Oy, its ring of integers. Here a runs over
the non-zero ideals of Of. The Euler product of (x(s) is

(R(s) > 1)

1
“o= 1 GT—mm

It also satisfies a function equation similar to ({3).

2Although a formal definition is still missing.



3. Ultimately, Hecke ([Hec18|, [Hec19]) unified these two generalizations as follows: he
generalized Dirichlet’s characters to so-called Hecke’s Grossencharakter and studied
the functions (@

x(a
Li(s,x) = > (R(s) > 1)

0#£aC Oy, N(a)®
(a,m)=1

where x is a Hecke’s GroBlencharakter of modulus m. The Euler product of L(s, x)
is given by

Lk<37 X) B p prirlr;[ideal (1 B X<p) ' m(p)_S) |

pgm

The complete L-function

Ai(s,x) = 7(x) - Ti(s,x) - A° - L(s, x), (4)

where A is a constant and the gamma factor I'y, depends only on the infinite places
of k and is entire in s € C for every non-trivial character y. Furthermore, it satisfies
the functional equation

Ar(L=s,x7) = W) - Ax(s,x), (5)
where W(x) is known as the root number of x.

These functions belong to the class of classical L-functions.

Remarks.

a) We would like to point out the importance of the study of L-functions in number
theory. It is intuitive to use analytic tools in order to investigate the asymptotic
behaviour of prime numbers. Indeed, for many statements, there is no elementary
prooff| known or is much harder to derive without analytic tools and often unintuitive.
One such prominent example is the Dirichlet’s Prime Number Theorem:

1.) In any arithmetic progression a + b, a + 2b,a + 3b with a,b coprime, there exist
infinitely many prime numbers.

Dirichlet went even further and showed that the prime numbers are equidistributed
with respect to b in the following sense:

2.) Every prime number (except maybe the prime divisors of b) lies inside the class

a+ (Z/ bZ) * with probability ﬁ.
It took a long time to discover an elementary proof of the Dirichlet’s Prime Number
Theorem. It was done by Selberg in [Sel49], and he only proved the first statement.

The proof itself is tedious and does not reveal anything new.

3This is a proof that does not require analytic methods.



b) Hecke also introduced in [Hec37a], [Hec37h] a new type of L-functions. These are
attached to modular forms with respect to SLo(Z) or its congruences subgroups. These
are called Hecke’s modular L-functions and also belong to the class of classical L-
functions.

c) L-functions (or zeta functions) can also be attached to many different objects ; for
instance to elliptic curves, or more generally to algebraic varieties. These are known
as Hasse-Weil zeta functions.

0.1.2. Adelic approach to L-functions: The paradigm of Tate

L-functions on GL;(A;). Although Hecke’s proof of his functional equation ({5)) (using
theory of generalized theta functions) represented a great achievement so far, it did not
lay bare the nature of the gamma factors I'(s, x) or of the root number W(x). In fact, this
was only possible by the work of Tate in the 1950’s. Tate, a student of Artin, applied in
his doctoral Thesis [Tat50] methods of (abelian) Fourier Theory to the ring of adeles Ay
of a number field k£/Q and, consequently, was able to transfer the classical L-functions to
the adelic environment. In this setting, Dirichlet’s characters correspond to characters of
the idele class group Qx \Aé with finite image and in general, Hecke’s Grossencharakters

for a fixed number field k£/Q correspond to characters of the idele class group fx \A;
(without the assumption on finite image).

Tate studied adelic (or global) zeta functions of the form

25,20 2 [ @@x(@) |lz|] d*, (6)

X
Ak

where ® is an adelic Schwartz-Bruhat-function, y is some Hecke’s Grossencharakter and
| - || denotes the adelic norm. These functions are convergent in the right half-plane
R(s) > 1. Any Hecke’s Grossencharakter x is of the form

x(x) = [ xw(xv),

where v runs over the prime places of k and the y, are characters of the completions k,,
unramified at almost all places v. Since the space of adelic Schwartz-Bruhat-functions
S(Ay) is by definition the restricted product [15©”) S(k,), the function ® is a linear
combination of products of the form [], ®, and hence, ® can be further assumed to be
already such a pure product. In this case, the global zeta function decomposes as an
infinite product

Z(S, @, X) — H Zy<57 (DZM XV)?

where 7, is the local zeta function defined by

Z(5, 0, x0) = / B, () xw (@) |2,]° d*z,. (7)
kX



Tate proved that @, in fact, possesses an analytic continuation to the whole C with a
possible pole and moreover satisfies the functional equation

Z(s,®,x)=2Z(1— S,Cf,xfl),

where ® is the Fourier transform of ®.

Now, the local zeta functions Z,(s,®,,x,) for finite primes v, where x, is unramified,
correspond (for a special choice of the Schwartz-Bruhat-functions ®,) to the Euler factors
of Hecke’s L-functions and thus, the product over the finite places (where y is not ramified)
is in the right half-plane exactly Hecke’s classical L-function. The appearance of the
Gamma function I'x(s, x) in the functional equation (4]) now arises naturally as the product
of the local zeta functions at infinity. The root number W (x~!) comes to existence also
in a very natural way; as the product of so-called local epsilon factors (modulo a small
variation) appearing in the functional equation of the local zeta function Z,(s,®,, x,).
At last, the global zeta function corresponds to the complete L-function Ag(s, x) modulo
some minor corrections factors at the (finite) set of so-called bad primes of .

L-functions on GLy(Aj) x GLi(Ag). The adelic approach opened the possibility of fur-
ther generalization of automorphic L-functions to L-functions over GL, (Ay), since A* =
GL1(Ay). The first generalization to GL2(Aj) (or more precisely to GLa(Ay) x GL;1(Ay))
was carried out by Jacquet and Langlands in [JL70].

Jacquet and Langlands embedded classical modular/cuspidal forms on the upper half-
plane H C C attached to congruence subgroups of SLy(R) naturally into the set of
so-called automorphic/cusp forms on GLy(Ay) and consequently, were able to transfer
Hecke’s modular L-functions to automorphic L-functions on GLy(Ay). Their adelic con-
struction of the zeta functions, attached to such automorphic forms, followed techniques
of Hecke but was, of course, largely influenced by Tate’s work on GL;(Ayg).

Roughly speaking, automorphic forms (or more specially, cuspidal forms) on GL,(Ay)
are just elements of automorphic representations on GL, (A) satisfying certain proper-
ties. In this context, Hecke’s Grossencharacters are just (cuspidal) automorphic forms on
GL;(Ag). This is why we refer to this theory as the theory of automorphic (rather than
adelic) L-functions on GLy(Ay) x GL;(Ag). Following both Hecke and Jacquet-Langlands,
one defines the global zeta function by

2600 [ o @l ®)

kX \AX

where ¢ is a cuspidal form coming from an irreducible cuspidal automorphic representation
(m, V) of GLa(Ag). The functions defined by ({8]) are entire on C and satisfy the functional
equation

Z(‘S? 12 X) = Z(l -5 957 X_l)a

where ¢ € (7, V) (the contragredient representation of (m,V)) is the dual automorphic
form of ¢ defined by p(g) := ¢(‘g™1).



One may consider now the Fourier expansion of ¢, which is, since ¢ is cuspidal, given for

g € GLy(A) by
wlg) = ygx W, ((‘y 1) 9) :

with absolute and uniform convergence guaranteed on compact subsets of GLg(Ay). The
functions W, are called global Whittaker functions. They are the Fourier coefficients of ¢

and depend on a fixed additive character on f \Ak. Substituting this in , one obtains

Zse) = [ ¥ vV¢<(yx 1)>x<x>nxn5%dXz

One should take care here, because after the unfolding of ¢, this expression only converges
for R(s) > 1.

There also exists the notion local Whittaker functions for both Archimedean and non-
Archimedean places. By the works of Gelfand-Kazhdan ([GK75]) and Shalika ([Sha74]) on
the uniqueness of the local Whittaker functions, the global Whittaker function decomposes
into a product of local Whittaker functions as

Welg) =TT We. (90)-

We also have similarly a well-known decomposition ||z|| =[], ||z.||, for the adelic norm.
At last, by the Flath Decomposition Theorem, [Fla79], Th.3, (7,V) decomposes as a
restricted tensor product 7@ = @', 7, and thus if ¢ corresponds to such a pure infinite
tensor, then

Z(s,0,x) =1 Z(s, 0. x0),

where Z,(s, W,,, Xx») is the local zeta function given by

'Tl/ 5_l X
26 W) = [ Wl (™) Pute) ) v

ke

a priori only convergent for R(s) > 1.

L-functions on GL,,(A;) x GL,,(Ag). The work of Jacquet and Langlands on GLy(Ay) %
GL1(Ay) ([JL70]) was further extended by Jacquet in [Jac71] to automorphic L-functions
on GLQ(Ak) X GLQ(Ak)

The generalization of the theory of automorphic L-functions to GL,(Aj) and to GL,, (A) x

GL,,(Ay) was subsequently achieved in a long series of papers due to Jacquet, Piatetski-
Shapiro and Shalika ([PS71], [PS79], [Sha74], [JS76], [JPSS79a], [JPSS81b], [JPSS81a],



[JS8&1], [JPSS8&3|, [JS85], [JS90]). For a brief introduction to automorphic L-functions see
also [Cog00] or [Cog03].

We have already spent some words on zeta functions, but did not really mention automor-
phic L-functions. So what are these and what are their connections to the zeta integrals?
For n = 1, these terms are the same. But for general n they differ. We shall cover this in
detail in Chapter [3 but to have a vague idea, one can imagine automorphic L-functions as
functions generated by all global zeta-integrals when varying over the possible Whittaker
functions.

We will study in this work an L-function on GL,,1(A;) X GL, (Ag).

0.1.3. From geometry to number theory

We briefly mentioned modular forms in the introduction, which are objects from complex
analysis and important in number theory. Its geometric counterpart are the elliptic curves.
What do we mean by this? By the Eichler-Shiumura construction, if f is a classical
newform of weight 2 and level N whose ¢-expansion has integer coefficients, one can
attach to it an elliptic curve E; of conductor N. This attachment is interpreted by means
of number theory: one can define the L-function for both, f and E; and the attachment
f — Ly satisfies
L(f,s) = L(Ey,s).

By Taniyama-Shimura, this was actually a conjectural correspondence, i.e. the attachment
would go into the other direction as well.

The final proof of this conjecture, today known as the Modularity Theorem, was given by
Wiles [Wil95] and Taylor-Wiles [TW95] for semi-stable curves and generalized by Breuil-
Conrad-Diamond-Taylor [BCDTO01] to the full Modularity Theorem.

The Modularity Theorem had a nice side-effect. As a corollary, the famous Fermat’s Last
Theorem was now known to be true: the only possible integer solutions to the equation

avV 4+ =N
for N > 3 are only the trivial ones, i.e. those with abc = 0.

The Modularity Theorem finds a vast generalization in the Langlands Program. Clozel
postulates in Conjecture 4.5 of [Clo88] such a generalization. On the one hand, one has
motives, objects from algebraic geometry, that first appeared in 1964 in a letter correspon-
dence between Grothendieck and Serre. On the other hand, one has automorphic (more
precisely cuspidal) representations, which are objects studied in representation theory.
Their connection is given by means of number theory; indeed one can attach L-functions
to motives as well, and if My, is a motive, that is conjecturally attached to an automorphic
representation ¥, then their L-functions are the same (modulo a shift).

However, we would like to stress, that the correspondence is in both directions highly
conjectural, as one does not really know yet, how to correctly define a motive. There are



only very basic examples of this correspondence constructed. We will focus on this part
in Chapter [4]

0.1.4. p-adic Interpolation

Recall that a classical L-function, for instance the Riemann zeta function, is an analytic
function (:C — C (with a simple pole in s = 1). It has nice analytic properties and
takes rational values at non-positive integers. Since Z lies in both C and Z, C C,, and is
further dense in Z,, one can question, whether there exists an analytic function

Cp:Zy — C,

in the p-adic sense, that 'at least’ coincides with ¢ at the non-positive integers. We mean
such that

C(1=n) = (x)-G(l—n)

at every n € Ny. We would say in this case, that ¢, is the p-adic L-function attached to
¢, or that it p-adically interpolates the values of (.

Historically, the first prototype of a p-adic L-function was formally introduced by Kubota
and Leopoldt in 1964 (see [KL64]), although its contruction (or rather the continuity of the
constructed function) relied on the Kummer congruences concerning Bernoulli numbers,
which were known for the past 100 years. This function interpolates the special values
{...,—=2,—1,0} of the Riemann zeta function ((s) divided by its Euler factor at p. In
other words, the p-adic L-function is a continous function (,:Z, — C,, such that

Gl=n)=1-p")-C(1-n)

for all n € N. And this is the best one can do: There cannot exist a p-adic continuous
function interpolating all the non-positive values of ((s). Kubota and Leopoldt went a
little further and constructed a p-adic L-function, that interpolated simultaneously the
non-positive special values of the different Dirichlet L-functions simultaneously. For a
nice introduction, see the (yet) unpublished lecture notes of J.R.Jacinto and C.Williams
[JW17].

We are interested in gp-adic interpolation of automorphic L-functions. By this analogy,
we expect that there must occur a modification the automorphic L-function at p as well.
Coates-Perrin-Riou (J[CPR89]) and Coates ([Coa89]) describe, how one could potentially
p-adically interpolate the L-function attached to a motive and also describes the modifica-
tion at p. We shall follow his method: in Chapter |5/ we will modify the local zeta integral
at . Using the description given by Coates ([Coa89]) with the conjectural correspon-
dence between motives and automorphic representations, we will p-adically interpolatie
the L-function of a pair of cuspidal representations p x ¢ of GL,,11(Ax) x GL,,(Ag). This
is covered in Chapter [6]

10



1. Preliminaries

1.1. Relevant algebraic structures

We fix a number field £/Q and denote by Oy its ring of integers. The letter v shall
be reserved for a variable place of k. This can be either Archimedean (infinite) or non-
Archimedean (finite). We will denote by k, the completion of k with respect to v. Every
k, is a locally compact Hausdorff field when equipped with its standard topology induced
by the place v. If v is further non-Archimedean, we shall denote by

O, its ring of integers,

m, € O, a fixed uniformizer of k,,

p, = 1,0, its maximal ideal,

o K(v):= Ol//py its residue field, and by

¢, the cardinality of the residue field k(v).
Recall also, that for non-Archimedean v there exists an isomorphism of topological groups
kX = Or xrl. (9)

This is for example in Chapter IL1.5., Satz 5.3. of [Neu92).

If v on the other hand is Archimedean, we shall set

v C* v complex ~

0% { R.y ,v real

If v is now again any place (finite or infinite), we will denote by |- |, the absolute value
on k,, which is

o for non-Archimedean v normalized by
-1
|7TV‘11 =qy,

o for v real just usual absolute value on R, i.e. |-| = |- |,

« and for v complex the square of the usual complex absolute value on C, ie. |-|, =
2
|-l
We denote further by A := Ag, X A, the ring of adéles of k, where Ag, = Hfgoo k,
is the restricted product of the finite adeles and Ay, = [, k., denotes the adeles at
infinity. The adeles form a locally compact Hausdorff ring. In addition, Ag, is also totally
disconnected. We will interpret k via the diagonal embedding as a topological subring of

A. Thus, k is equipped with the discrete topology.
By A* we shall denote the multiplicative group of A with the initial topology with respect
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to the embedding A* — A x A, a — (a, %) Then A* itself, called the group of idéles,
becomes a locally compact Hausdorff topological group. We can also embed k* C A~
diagonally, and k* inherits the discrete topology as well. Moreover, we have the well-
defined norm map

Il A = Roo, (@0)ully = 111201, .
which is continuous and multiplicative. We will denote by A! its kernel. By the well-
known Product formula of Artin, £* C A'. Moreover, fx \Al is compact and

AT = (7 \AY) xRy (10)
as topological groups; see Chapter IV.4., Theorem 6 of [Wei70)] for reference.

We shall reserve the letter R for a commutative locally compact topological Hausdorft
ring of characteristic 0, but unless stated otherwise, it will only play the role of A, k, or
any of its completions k,,.

The letter p shall stand for a fixed non-Archimedean place of k. Posteriorly, we will define
cuspidal representations and an additive character and demand all to be unramified at g;
see Hypothesis |1 We will further denote by F' := k, the p-adic completion, and we shall
drop the superscript (-),, from any of its attached objects. In other words, we just write
O for O, and so on.

Of course most results that we will show for F’ will also hold for any non-Archimedean k,,,
but with this convention, we would like to emphasize which setting will be needed only
for the special places p dividing p, and also get rid of unnecessary indexing.

Let us now fix a natural number n. We shall denote by GL,, the general linear group as an
affine smooth group scheme (over Z). Unfortunately, we will need to carry the index since
we will work with the product GL,,.1 X GL,. In GL, we find the following distinguished
subgroups:

o T, C GL,, the maximal split torus of GL,, consisting of diagonal matrices.
« B, C GL,, the standard Borel subgroup consisting of upper triangular matrices,

o U, C GL,, the unipotent radical of B,; these are upper triangular matrices with
1’s on the diagonal.

e On occasion, we shall denote by B, and U, the counterpart of B,, and U, respec-
tively, consisting of lower triangular matrices.

It is well-known that B,(R) = T,(R)U,(R) and that U,(R) is a normal subgroup of
B,(R). We will further denote by

« X*(T,) = Hom(T,,GL;) the group of algebraic characters of T},, and dually by

« X,(T,) = Hom(GLy, T,) the group of algebraic cocharacters of Tj,.

12



Recall that if a and o' are an algebraic character and an algebraic cocharacter of T,
respectively, then the map ¢ — (a0 a/)(t) is a character of GL; and hence of the form
tl2) for some integer (o, o’). By Lemma 3.2.11. [Spr98], the induced map

(«,): X*(T,) x Xi(T})) = Z

is a perfect pairing. We take A,, = {a;;}iz; C X*(T,,) = Hom(T,,, GL1) to be the standard
root system, which is explicitly given by

~+

7

Qg T, — GLl, diag(tl, A ,tn> —

~

J
In addition, we fix the Bruhat order in the standard way, i.e. such that A, = At UA7,
where

Ay = {aij}ic, A, = {ajtis;.
If « € A, we will denote by s, its corresponding reflection. We will further denote by
Y, ={a;|i=1,...,n — 1} the set of simple roots, where we compactly write ; := ; ;1.
We also simply set s; := s,, for the reflections corresponding to simple roots. We will

denote by A the dual root system of A,. The coroots are explicitly given by

t =1,
o GLy = T,,, t — diag(ty);-, =< t1 j=1,
1

, otherwise

If X is any locally compact topological Hausdorft space, specially any of the R-rational
points of the algebraic groups mentioned above, we will denote by C.(X) the set of
continuous and compactly supported complex functions on X.

For m € N we will denote by 1,, the identity matrix of GL,,(R) (independent on the
choice of R). If further m < n, we understand GL,,(R) C GL,(R) via the embedding

g (g 1nm> : (11)

We shall also use the same identification for any of the subgroups of GL, mentioned
above.

Let us assume again that v is non-Archimedean. Since T, is k,-split, there is the isomor-
phism

X*(Tn)(ku) — Tn(k’/)/(Tn(kV) N GLn(Oy)) - Tn(ky)/Tn(Oy) y € e(ﬂ-ll)Tn(Ou)'

The latter is by @D isomorphic to Z"™. Furthermore, our computations will be invariant
under 7,,(0,) (so in particular invariant under the choice of the uniformizer ,). Thus,
if e =(ey,...,en) € Xi(T})(k,) = Z" is a rational cocharacter of T),(k,), we will simply
write
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for the image of the uniformizer e(m,), and drop the modulo 7,(0,) notation. Finally,
we call e dominant, iff for every simple (and hence for every positive) root «

(o, e) > 0.
In the identification as e € Z", this just means

e1 > e > ... > e, (12)

1.2. Relevant characters

A quasicharacter of a locally compact Hausdorff group G is a continuous homomorphism
G — C*. Under a character of G we mean a quasicharacter with image in S'. If x1, x2
are two quasi-characters of GG, we denote by x; ® x2 its product in the sense that

(1 ®@x2)(9) = x1(9) - x2(9) (9 €G).

We shall use 1 for the trivial character (of any group G).

1.2.1. Additive characters

We fix now a non-trivial additive quasicharacter of the adeles ©4: A — C*, that is trivial
on k. Thus, ¥, factors through the compact group k\A and thus, its image is already

in S!. We shall denote by 1, the composition k, < A Y4 S The character 1, then
decomposes as ¥, = ®,1, in the sense that for a := (z,), € A we have

Ya(a) = [ v (a),

and the product is actually finite, i.e. on almost all places v we have ¥, (z,) = 1. In-
deed, almost all non-Archimedean local additive characters v, satisfy O, C Kern(v,) but
7, 'O, ¢ Kern(¢,). Non-Archimedean additive characters with this property are called
unramified (see Cor.1 of Chapter IV.2. in [Weit()]).

Recall that we assume 1, to be unramified at p.

An additive character of U,. In the general case, any additive character
Y: R — S,

induces the character on U, (R) given by

1w * ... *
1 uggs . : .
U,(R) — C*, * =TT (i), (13)
. o i=1
1

which, by abuse of notation, will also be denoted by .
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1.2.2. Multiplicative quasicharacters

Let us now consider a multiplicative quasicharacter ys:A* — C*, that is trivial on
k*. Unlike v, we shall not fix it but keep it variable. In any case, x4 s factors through

kX \AX . This is not compact as in the additive case, but due to , Xa,s is of the form

Xas = Xa ® |- [|57"

for some s € C (unique in the real part) and some character xa: fx \Ax — S'. The
choice of the shift —1/2 in the exponent of || - ||, will be explained later. From now on, we
will denote by x, s the character at v induced by x4 s (in a similar manner as the additive
character v, was induced by 1,). Then again,

XA,s = ®XV,87 (14>

and it is well-known, that in this decomposition, almost all x, s are unramified. We shall
now recall some basics on the local components of this decomposition. We have the
following cases on v:

v non-Archimedean. Every non-Archimedean y, , itself is due to @ of the form

Xos () = (0 % |- 57 (4, - 78) = X (ty) - el

for the unique decomposition z,, = t,-7¢ € OX-7Z and for a unique character y,: OX — St.
We define further by ¢(x,) the conductor of x,. This is the smallest integer ¢(y,) > 0
with Kern(y,) = 1 + p) (see [Wei70], VIL3, Definition 7). If ¢(x,) > 0, we say that
Xv.s is ramified. In the case ¢(x,) = 0, we understand Kern(y,) = 1+ p% := O as usual
and say that x,, is unramified. Alternatively, we might also call y, to be ramified or

unramified. If x, is unramified, this just means that y, is trivial. that call 1 4 p¢>) the
conductor of x,.

The local characters at infinity are described in Prop.9 of Chapter VII.3 in [Wei70]:

v real. The local real characters Y, s are of the form
XV,S<J7V) = sgn(w,)” - |x1j|l/ )

for some ¢, € {0,1}, and we call it unramified, if ¢, = 0, and ramified otherwise.

v complex. The local complex characters Y, , are of the form

ly
xl/ s—1/2
xu,sm):( ) a2,

‘xv’c

with a unique [, € Z. We call x, ; unramified, it [, = 0, and ramified otherwise. Be aware
of the relation |z, |, = |z,[3.
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Multiplicative quasicharacters of GL,. Since the topological abelianization of GL,,(R)

idff]

(GL(R))™ = GLo(B)/[GL, (R), GL.(R)] = CLalB) /5L, (R) = R,

there is a (1: 1)-correspondence between the quasicharacters of R* and quasicharacters of
GL,(R); more precisely, any quasicharacter of GL,,(R) is of the form

GL,(R) 2% R — €,

where the latter is a quasicharacter of R*. Thus, if x is a quasicharacter of R*, we will
denote the corresponding quasicharacter of GL, (R) by abuse of notation

x(g) := x(det(g)),

where g € GL,,(R), and there is no restriction in assuming a quasicharacter of GL,(R)
to be of this form. By the same principle, the adelic norm extends (uniquely) to the
multiplicative map

|1l : GLn(A) = Roo, [lgll, == ldet(g)ll, -

Same of course applies for the absolute value of each local completion k,, but we will
write

lgvl, = [det(g)],
for g, € GL,(k,).

1.2.3. The local Gauss sum

We focus now on F' = k. For x = x,, ¥ = 9, and for e € Z, we define the e-twisted
local Gauss-sum by

Gle, x) == G(e, xp) = /OX X(t) - (7t) d*t.

For e = 0, this coincides with the definition of [RD91] in Section 7.1. The definition does
depend on 9 as well, but 1 is fixed while x is variable. The local Gauss sum satisfies the
following:

Lemma 1.1.

a) If y is unramified, i.e. x = 1, then

0 ,e< =2
G(e, 1) = %_q e = —
1 ,e>0

In this case, we drop 1 from the notation and write just &(e).

4Warning! This is in general not true, but it does hold for A or fields of characteristic 0.
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b) If x is ramified (i.e. ¢(x) > 0) and e # —c(x), we have
&(e,x) =0.

Hence, in this case, we drop e from the notation and write &(x) = &(—c(x), x)
instead.

This is proven in the Appendix [A]

1.2.4. Modular character of the local Borel subgroup

We continue with F' = k. Recall that B, (F') is for n > 2 not unimodular. We will denote
by 0, its modular quasicharacter. It is defined as follows: if u is any left invariant Haar
measure on B,(F) and b € B,(F), then du®(A) := u(b='Ab) = u(Ab) is again a left

invariant Haar measure and 6, (b) := %, where A is any non-zero Borel set in B, (F).
0y, is explicitly given by
- n+1-23 n—1 n—3 1-n
On(b) = 0n(tu) = [ [:"" 7 =0 [" - [ " - [l
i=1

for b = tu € T,,(F)U,(F) and thus, is indeed a quasicharacter of B, (F).

Let us now suppose that we are given m < n. The following will only be the case for
F = k,. We interpret T,,,(F) C T,(F) by means of the embedding (II)). A straight-

forward computation shows that

n—m

2() - 632 = (1107 @ 6, ) (). (15)

This little formula will be useful in Chapter 5]

1.3. The Weyl Group
We still continue with F' = k,. We will denote by

Wi = Wa(GLo(F), T (F)) = Neva)(T(F)) /ey o (T0(F))

the Weyl-Group of the pair (GL,(F),T,(F")), where Ngr, (r)(Tn(F)) is the normalizer
of T,,(F) in GL,(F), and Cqr, (r)(Tn(F)) = T,,(F) its centralizer. It is well-known that
W, is generated by the simple reflections {s; |i=1,...,n — 1} and that W,, = S, (the
standard symmetric group on n elements). We shall use different representations of W,
but most frequently we will understand its elements as permutations of {1,...,n}, or
as permutation matrices in GL,(O). As mentioned before, there is no danger for our
computations in chosing another representative in GL,,(O). We will consider three diferent
actions of the Weyl group:

a) W, acts naturally (from the left) on the character group X*(7,,)(F) via

(w- x)(t) == x(w tw),
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b) Via the isomorphism W, = S, the Weyl group W,, acts naturally (from the left) on
Zr = X, (T,)(F) via

w- (e, ... e) = (Cw1(1),- - Cu1(n))-

c) W, acts (from the right) on the set of C-valued unramified complex-valued characters
7: T, (F) — C*, i.e. continuous homomorphisms with Kern(7) = 7,,(O). For this, we
take any representative of w in GL,(Q), which we will also denote by w, and define

(T)(t) := T(wtw_l) = (7,...,m)"(t) = (wal(l), . ,qu(n))(t).
This is well-defined as 7 is unramified.

Furthermore, we denote by
Wy, = € GL,(0)

the long Weyl-element in W,,. This is an involution, which permutes the positive and
negative roots, i.e. w,A* = AT,

At last, we will denote by [(w) the length of w € W, in the usual manner; [(w) is
the minimal number r of simple reflections s;,,...,s; , such that w=s;, -...-s;

e

1.4. The lwahori subgroup

Let us now consider the canonical map
0—-0 / p =F,,
which by functoriality of GL,, induces the canonical map
pr: GL,(O) — GL, (F,).

The Iwahori subgroup of GL,(QO) is defined to be

o o ... O

_ O* :
Jo=pr ' (B, (F))=| " °

: .. @)

p ... p OF

Let us take now any Weyl element w € W,. By Lemma 7 in [Bum8&7|, the length I(w)
of w can be expressed as the number of negative roots o € A~, that satisfy wa € A*.
Thus,

¢ = [U,(0): U, (O) NwJ,w]. (16)
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1.5. On space decompositions

Recall the well-known decompositions in the p-adic setting:

o the (already mentioned) Iwasawa-decomposition

GL,(F) = B,(F)GL,(0), (17)

« the Bruhat-decomposition of GL, (O) ([Cas80], Chapter 1) as

GL,(0) = [[ Jawd,, (18)

weWn,

e and the Iwahori-decomposition

Jn = (Jo VUL (0)(Jn N To(0))(Jn N UL(O)) = U, (p) - T(O) - Un(O)  (19)

n

where U, (0) = w,U,(O)w, is the group of lower-diagonal (n x n)-matrices with
1’s on the diagonal.

o More specifically, one can refine the Iwahori-decomposition as follows: if w € W,,,

then

wlw "t = (whaw tNU; (0))-T,(0) - (wyw ' NU,(0)). (20)
It is important to mention, that the factors in both and can be written in
any order.

Combining the first three decompositions , and together, we obtain the
generalized Bruhat-decomposition (Chapter I of |Cas80] or alternatively, [MI65] Prop.
2.33.)

GL,(F) = H B.(F)wdJ,. (21)

weWy,

Furthermore, we can split B, (F') as U,(F)T,(F) and thus, using the fact that T,,(F) =
72" . T,(O) and that T,(O) C J,, we obtain the finer decomposition

GL,(F)= [] Un(F) -7 -w- Jy, (22)

ecz™
’wEWn

to which we will also simply refer to as the generalized Bruhat-decomposition.

1.6. On measures

If Y is any space with a measure dy, and K C Y a measurable set, we shall denote by
vol(K, dy)

its volume with respect to dy.

Let us now come back to the general case of an arbitrary completion k,. We know that
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k, is self-dual; the non-trivial additive character 1,:k, — S! induced by 14 defines the
isomorphism of topological groups

(kuv +) = k;\ll7 Ty ¢V(xu : _)a (23)
where £, := Homgont (K, S') is the character group of &, equipped with the compact-open

topoology. This is Theorem 3 in Chapter I1.5 of [Wei70)].

We shall denote by dzx, the unique additive Haar measure on (k,, +), which is self—dua]ﬂ
with respect to the isomorphism induced by 1,,. The absolute value |- |, was chosen
precisely such that the transformation x, — y,x, multiplies dz, with |y, |,. We shall
further denote by d*z, the multiplicative Haar measure on k,° normalized as follows:

dx,, 1 ,v Archimedean

C— ith = -1
|z, A My { (1 — q%) , v non-Archimedean

(24)

X
d*z, =m,

This fixation has the following advantage: if v, is unramified at a non-Archimedean place
v, then

vol(O,,dx,) =1 =vol(O,,d*x,). (25)
Since we will usually denote by t, elements in O (or in general t, = (t,1,...,t,,n) €
T,.(0,)), we shall use d*t, for the restriction of d*x, to O}.

For a := (z,), € A we set da := [], dz,,. This implies that da is self-dual as well. For the
multiplicative Haar measure on A* we simply set d*a := T[], d*x,.

The 1-dimensional additive Haar measure on k, gives rise to the Haar measure on U, (k,):
For u, := (u¥); ; we set (symbolically)
du, =] du'?
i<j
where each du? is the additive measure on k,. This automatically implies, that if v is a
finite place where 1), is unramified, then
vol(U,(0,), du,) = 1. (26)

Let us further fix a Haar measure d* g, on GL,(k,). We could demand a similar condition
as in , but we just shall normalize the measure at the non-Archimedean v where 1,
is unramified by

vol(GL,(0,),d*g,) = 1. (27)

We do not really care about the remaining places.

We will denote by du and d*g the Haar measures on U, (A) and GL,(A), respectively,
both defined in the same manner as in the 1-dimensional case: for u := (u,), € U,(A)
and g := (g,), € GL,(A) we set

du::Hdu,, and ng::Hng,,

for their respective measures.

5This means, that f(z) = f(—2z) under the Fourier Inversion Formula (which depends on dz,), where
k

femegmL%yf
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1.6.1. Remarks on the lwahori Group

We return now to the case I’ = k,, again.

a)

The Iwahori-group J,, sits open inside GL,(O) and thus has positive volume w.r.t.
the Haar measure d*g. Hence, the Haar measure d*j on .J,, coincides up to a positive
constant with the restriction of d*g on J,. Although we will write d*j instead of
d* g to emphasize the difference of the underlying group that we are integrating over,
informally said, we keep the normalization of GL,(Q) having volume 1, i.e. we want
to have d*j = d*g on J,. Now since

I = pr_l (Bn (Fq)) ) GL,(0) = pr_l (GL, (Fq)) )

which implies

XN X\ 1 = L
vol(J,, d*j) = vol(J,,d*g) = [GL.(O): J,]  [GL, (F,): B, (F,)]’

we derive that

( _ 1)71 (n—21)n
vol(J,, d*j) = 4L "1 (28)
[ -4
=0
Throughout the text we will encounter the groups
U™ = J, Nw U, (O)w, (29)

where w € W,,. We will choose the Haar measure du® on these as the push-forward
of the Haar measure du on U, (F') via the map

U.(O)Nwlyw™ — J, Nw U, (O)w, v w tuw.
In particular we have
vol(U™), du™) = vol(U,(O) NwJw™?, du) = ¢~'®) (30)

by (16).

1.6.2. On measure decomposition

In general, we will encounter integrals over quotient spaces of the form U\G, where
G is a locally compact Hausdorff group, U C G a closed subgroup, and the respective
Haar measures on both G and U have previously been fixed. We shall use the example
of U,(R) \GLn(R) for R a local field or A in order to show, how to choose a suitable

measure on the quotient space.

The Haar measures on U, (R) and GL,(R) have been already defined. On {7, (R) \GLn(R)
we choose the (up to a positive scalar) unique right GL,,(R)-invariant Radon measure, as
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described in Section 1.5.3 of [Deild]. In order to distinguish the quotient measure from
the Haar measure on GL,(R) for now, we will write d* gy for the first one. The measure
d* gy is then uniquely given by the condition

[ | fwgdudig (31)

GLn(R) Upn(R)\GLn (R) Un(R)

for any f € C.(GL,(R)), and thus, we symbolically write d*g = dud* gy. From now on,
we will denote this quotient measure, by abuse of notation, by the same symbol as the
Haar measure on GL,(R); in this case d*gy = d*g.

In Chapter , we will need to compute an integral over U, (F) \GLn(F ) for F = k.

Let us thus see now, how to decompose the integral in this case further:

The Iwasawa-Decomposition gives us, due to [Deil4], Prop.1.5.6., the Haar measure
decomposition of d* ¢ into Haar measures on B, (F') and GL,(O). But the Haar measure
on GL,(O) is just the restriction of d*g. We will denote it by d*h. Then, one has for
any f € Cu(GL, (F))

/f(g)dxg: / /f(bh)dLbdXh (32)
GL, (F) GL,(O) Bn(F)

for a suitable Haar Measure dpb on B,(F'). The groups GL,(F') and GL,(O) are both
unimodular, but B, (F') is not, and therefore one needs to take d;b to be the left invariant
Haar measure on B,,(F'), as pointed out in 4.1. of [Car79]. This decomposition forces dpb
to be normalized, such that

vol(By(0), dib) = / dpb = / dib = 1.
Bn(0) Bn(F)NGLy, (0)
Since db is left invariant, loc.cit. gives us a further decomposition with respect to dpb as

/f Vb = ot / /futdudx

B, (F) Tn(F) Un(F

for a suitable Haar measure d*t on T,,(F") and for any f € C.(B,(F)). The quasimodular
character 4, '(¢) is just the Jacobian of the transformation u +— tut~'. Since dpb and du
have already been fixed, this implies that the Haar measure d*t on T,,(F') is fixed by the
normalization vol(T,(0),d*t) = 1. Thus, equation can be rewritten as

/f(g)dxgzégl(t) / / /f(uth)dudxtdxh
GLn(F) GL7 (O) Ty (F) Un (F)

for any f € C.(GL,(F)). Since T,,(O) C GL,(O) and vol(T,,(O),d*t) = 1, the latter can

be rewritten as

/ flg)d g= "> 61 (r°) / /f(m%)dudXh.

GLn(F) eeL™ GLn (0) Un (F)
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This implies, that for every f € C.(U,(F)\GL,(F)) one has

fod*ge = 3 0.1 [ Jamah. (33)
)

Un (F)\GLy, (F) e€Ln GL, (O

We now go one step further: Let us fix a Weyl element w € W,,. By [MI65], Prop.3.2., we
know that #(J,wJ,/J,) = ¢ ™). Thus, the generalized Bruhat decomposition tells

us that
fodw =3 3 6@ [ faw))a;
Up (F)\GLy (F) e€L" wEWn In
where d* j is the restriction of d*h = d* g,q1,,(0) to J, as explained in m Furthermore,
since f is left U, (F')-invariant, we have
f(mwg) = f(mw)

for all j € U™). The Quotient Integral Formula 1.5.3. in [Deil4] together with tells
us thus, that we can decompose this further as

. . . . . w B jw . . .
[tawpai= [ [ prwi)dd d g, @ @ [ ) d e,
Jn

U NI U U\

where d* j,, once again denotes the right .J,-invariant Radon measure on U(")\ J, as given
by loc.cit.

When there is no danger of ambiguity, we will denote this measure also by d*j instead of
d* j,. This said, if we put everything together, we obtain the following...

Proposition 1.1. For any integrable function f on the quotient {7, (F) \GLn(F ) we have

fodw =¥ 6w ¥ [ fawi)d . (34)

Up (F)\GLy (F) ecz” wEWn @y g,

Proof. We have seen so far that is an equality that holds for every compactly sup-
ported and continuous function with respect to Radon measures. Together with the Riesz
Integration Theorem ([Rud87], Prop. 2.14), it follows that indeed holds for every

integrable function f on the quotient U, (F) \GLn(F ). O

1.7. On conjugations

We make a last little remark on conjugations, that will simplify our computations. Let
g =1(6i;)ij € GL,(F) be arbitrary. If w € W,, is a Weyl element, then

W gw = (Gu(iw())ig = (9w @)1 0)- (35)

23



Similarly, for a diagonal element d := diag(dy,...,d,) € T,,(F) C GL,(F), we have
d;
dgd_l == ( . gi,j) . (36)
a4 ")
Specially, if e = (e1,...,e,) € Z", we have with the previous identity

e

mlgn ¢ = (w479 - g; ). (37)
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2. Automorphic Representation Theory

In this chapter we shall recall some basic notions of automorphic representation theory.

2.1. Representations of /-groups

Let us assume for a moment that G is an ¢-group in the sense of Bernstein-Zelevinsky (see
1.1. in [BZ76]). This means that G is a locally compact, totally disconnected, Hausdorff

group.
Example 1. Important examples of /-groups for us are:
a) GL,(k,), where v is any non-Archimedean place of k,
b) GL,(Agy), as restricted products of ¢-groups are ¢-groups.

A linear representation (p, V') of G is called smooth, if
pGxV =V

is continuous, when V' is equipped with the discrete topology. This is equivalent to
Stabg(v) C G

being open for every v € V. Smooth representations possess a 'primary decomposition’:
Fix any open compact subgroup K C G. Then (as K-representations),

V= @ V<Oé)v

aek

where K denotes the set of equivalence classes of irreducible finite-dimensional represen-
tations of K. Furthermore, we call a smooth representation (p, V') admissible, if every iso-
typic component V («) is of finite dimension. This condition is equivalent to dim VE < oo,
and is independent of the choice of K.

2.1.1. Hecke algebras

Recall that the representation theory of GG is encoded in the Hecke algebra attached to G.
To be more precise, let us first define what a Hecke algebra is. If K is any open compact
subgroup of an ¢-group G, we define the Hecke algebra attached to the pair (G, K) as

H(G, K) = Co(K\G/K), (38)

with the convolution product given by

(e )W) = [ A faay)dr,
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where dz is any (left invariant) Haar measure on G. To keep computations easier, dx
is usually normalized by the condition vol(K,dx) = 1. The convolution integral is well-
defined as it is (as a function of ) locally constant and compactly supported. With this
product, H (G, K) becomes an associative and unital C-algebra; see Section 1.3. of [Car79]
for more on Hecke algebras. Moreover, there is an equivalence of categories

Repi™(G)* = H(G, K)-mod
(0, V) = (V)

between K-invariant complex representations of G (this automatically implies smooth-
ness) and complex vector spaces with a H(G, K)-module structure, where p arises by
integral extension as follows:

(3(9)) (v) = [ g(a)- ple)(v)da. (39)

Due to this equivalence, we call the elements of a Hecke algebra Hecke operators. More-
over, every Hecke operator is a finite C-linear combination of pure Hecke operators, which
are characteristic functions of some double coset of the form KgK with g € G. We will
adopt this notation for the Hecke operators - as finite C-linear combinations of double
cosets of the form K ¢gK. Furthemore, any such pure Hecke operator possesses a finite left
coset, decomposition

KgK =[] g:K. (40)

7

A priori, the integral in is a Bochner integral, but due to the decomposition , the
action of the Hecke algebra as in is actually a finite sum: for a pure Hecke operator
KgK with decomposition as given in , we have

(p(9)) (v) = >_ p(g:)(v)- (41)

2.1.2. Non-Archimedean generic representations

Let us fix a non-Archimedean place v of k and consider the ¢-group GL,(k,). A very
important family of representations of GL,,(k,) are the generic representations: The non-
trivial additive character v, of k, induces a generic character on U,(k,) as explained in
. We define the ,- Whittaker space to be the smoothly induced space

W(e,) = Indg 55 (1,).

Its elements are called 1,- Whittaker functions, but if there is no danger of ambiguity, we
refer to these just as Whittaker functions. Hence, a Whittaker function is a function

W:GL,(k,) — C,

such that
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a) for every u € Uy(k,), g € GL,(k,)
W(ug) = 1, (u) - W(g), (42)
and
b) W is smooth, i.e. there exists an open compact subgroup K C GL,(k,), such that
W(gz) =W(g) (43)

for every ¢ € GL,(k,) and every x € K. Whittaker functions with this property
are called K-spherical. If K = GL,(0,) is the maximal open compact subgroup of
GL,(k,), we will call the correspondent Whittaker functions just spherical.

We call an irreducible admissible representation (p,, V,) of GL,,(k,) to be generic, if there
exists an embedding of representations

W (py, Vi) = W(ey).

By the Local Multiplicity One-Theorem of Gelfand-Kazhdan [GKT75|, every irreducible
admissible representation of GL,(k,) appears inside 20(1),,) with multiplicity at most one.
In this case, the image 2 (p,, 1) := W ((py, V,)) inside W(s,) is called the Whittaker-
model of (p,, V).

Remark 1. In fact, there is a classification of generic representations of GL,,(k,) due to
Zelevinsky, see Theorem 9.7. of [Zel80] and Theorem 9.3 of [PR0O0|, respectively.

2.1.3. Non-Archimedean unramified representations

We continue with GL,(k,) for some non-Archimedean place v of k. The family of un-
ramified representations (at finite places) plays a central role in the study of automorphic
representations. An irreducible admissible representation (p,,V,) of GL,(k,) is called
unramified, if VG%(O) £ (0. In this case, dimc (VVGL"(OV)) =1, since (GL,(k,), GL,(O,))
is a Gelfand-pair. The unramified representations arise as follows:

Consider an unramified character of the torus
7= (11,...,7) : Th(k,) — C*.

7 being unramified means that 77,0y = 1. This character inflates to a character of
B,,(k,) acting trivially on U, (k,) and we define

1(7) = Ind3 35 (7)
= { £:6Lu(k) 2S5 € (b, g) € Bu(k) x GLu(k): f(b) = (352 0 7) D)f(9)}.

Representations of the type I(7), i.e. those parabolically induced from a Borel subgroup,
are called principal series representations of GL, (k,). Such a representation has a unique
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irreducible quotient, which we denote by Q(7). By Theorem 9.10 of [PR0O0], if we assumd|
that 7; 2 7, ® |- | for 1 <i < j < n, then Q(7) is unramified, and on the contrary, any
unramified irreducible admissible representation of GL,,(k,) is isomorphic to such a Q(7)
with the stated property.

It is due to Theorem 4.2. in [BZ77], that the unramified /(7) is irreducible, iff 7; 22 7; @] - |
for all (i,7). This is exactly the case, when I(7) is generic, see Theorem 9.7. of loc.cit.
and Theorem 9.3. of [PRO0], respectively.

Remark 2. If we relax the condition 7; 22 7, @ || for 1 < i < j < n, then Q(7) is
K-spherical for K = J,, C GL,(0O,) the local Iwahori subgroup.

Example 2. a) The trivial representation 1 appears as the unique irreducible quotient

(k‘ ) n—1 n—3 _n—1

GLn(kv) | %52 n-1
Indg Gy (-2 o112 ool F) =1 —=0.
It is unramified, but not generic/|

b) On the other hand, the Steinberg representation St,, is the unique irreducible quotient

GLn(ky) /| —n=l | _n=3 et
Indg o5 (1 1772 77 L 77) = Sty — 0,

It is not unramified, but it is generic. It is K-spherical for K = J, C GL,(0O,) the
Iwahori subgroup as mentioned in Remark 2]

2.1.4. Iwahori-spherical representations

We will only require the following in the case when F' = k. Let us consider again an
unramified and regular character of the torus

T=(1,...,7): T, (F) — C~.

Regularity means that 7% 2 7 for all w € W,,. As mentioned previously, the representation
I(7) is known to be generic and Iwahori-spherical. The intertwiner into its Whittaker
model

W (1) — W(r,¢) C W(Y),
is (up to a constant) explicitly given as follows: we set 207(f) := W}, where

W) = | Fuug) - lu)du (14

whenever it converges. Moreover, if we impose the condition on 7, that |7 (¥ (7)) < 1
for every simple root «, which means that

|71 (m)] < |me(m)| < ... <|m(m)|, (45)

6This is the ’does not precede condition’ in [PROQ].
"Indeed, no one-dimensional representation can be generic.
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then the integral converges for every g € GL,,(F) by [JS83], Chapter 3, and thus, is
a well-defined function GL,(F') — C. Without the condition (45]), one would have con-
vergence only for a subset of functions on I(7), and would need to extend the intertwiner

analyticallyff| to whole (7).

Moreover, the image W} for such an f € I(7) is indeed inside 25(1), since for v’ € U, (F)
we have

Wi(u'g) = /U " fwpun'g) - p(u)du

n

=v() [ Flwanle) D0y
= (W)W (g).

At last, W™ is non-zero, as will be shown in (49).

The intertwiner 20 should be thought of as the (non-abelian) analogue of the Fourier
transform.

As mentioned, I(7) is Iwahori-spherical, i.e. I(7)’" # 0, and, in fact, by [Cas95], Th.6.3.5,
its semi-simplification is given by

I =Y aler,

weWn,,

the sum being direct in this case, since it is equivalent to 7 being regular. Recall now the
generalized Bruhat decomposition . This tells us that in fact, the functions {¢], }wew,
given on GL,(F') = [1yew, BawJ, by

1/2 o/
o (bw'f) = (B2er)0), w=uv :
0, w#u

span I(7)’. These functions induce (via the Fourier transform) the Whittaker functions
in 0(7,) given by

Wile) = Wi ()= [ el(waug) - 0w (46)

n

Our primary focus lies on the special Whittaker function Wy, = corresponding to the large
Bruhat cell B,w,J,. But in order to evaluate this function, we will need some information
about W[ for every w € W,,.

2.1.5. Evaluation of Whittaker functions

Langlands’ paradigm and spherical Whittaker functions. Langlands conjectured that
Whittaker functions on a reductive group G are related to characters of the connected

8The group of unramified characters 7: T),(F) — C* is naturally isomorphic to (C*)", which allows us
to talk about analytic extension.

29



Langlands dual’] group “G?, which in our case G = GL,(k,) for v non-Archimedean is
just YG® = GL,(C). The first in obtaining an explicit formula for spherica Whit-
taker functions on GL,(k,) was Shintani ([Shi76]), followed independently by Kato for
spherical Whittaker functions on Chevalley groups (|[Kat78]). Casselman and Shalika
([Cas80], [CS80]) further extended the result to spherical Whittaker functions on un-
ramified connected reductive groups using intertwining operators. Indeed, the space of
spherical Whittaker functions on GL,,(k,) is 1-dimensional, i.e. 20(7, %) = (W) for some
WO, The Iwasawa decomposition tells us that W? is uniquely determined by its

values on Tn(ky) / T,(0,) = Z" and Shintani showed that under WO(1,) = 1, one has

§Y2(7¢) - xe (A;), e dominant
0 e\ __ e T)
W) = { 0, otherwise

Y

where . is the character of the irreducible (finite-dimensional) representation of GL,(C)
with highest weight e, and

()
A = . € GL,(C) (47)

Tn(”)

the corresponding Satake parameter of 7.

Iwahori Whittaker Functions. We again stick to the special case I' = k,. Recall
that 1) = 1, is unramified. The evaluation of Iwahori-spherical Whittaker functions
was worked out by Brubaker-Bump-Licata in [BBLI1§| and by Brubaker-Buciumas-Bump-
Gustafsson in [BBBG19| relying on previous works of Casselman [Cas80] and Casselman-
Shalika [CS80]. We will state some of the results which are of interest to us.

Let us first suppose, that W is any Iwahori-spherical Whittaker function. Due to the right
Iwahori-invariance of W and due to the property (42), it is sufficient to determine
the values of W(m°w') for e € Z™ and w' € W,,. We will first investigate, when such a
Whittaker function vanishes. In order to distinguish those e and w, for which W(7w') =
0, we introduce the following notion:

Definition 1. Let w € W, be fixed. We say that a cocharacter e = (ey,...,e,) €
X.(T,) = Z™ is w-almost dominant, if for every simple root o € X

0, wlaeA*
(o,¢) > { ot (45)

Observe that:

« In our setting, the condition (o, e) > j means e; — e;+; > j (for j € {0, —1}).

9Tf G is a reductive group attached to the root datum (X*,®, X,,®"), the connected Langlands dual
group is the complex group GV (C) where GV is the reductive group attached to the dual root datum
(X,, 0V, X*, ).

10This means GL,, (O, )-spherical.
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o wla; € AT translates as w (i) < w™l(i 4+ 1).

Example 3. a) The cocharacter e = (e,...,e,) € Z" being w-almost dominant for
w = 1 means, e only satisfies the condition e; > ey > ... > ¢,, since the second case
in never occurs. Thus, this is just the usual dominance condition .

1

1

b) For n =4 and the permutation w = (1342) = , we have w™! = (1243)

1
1

and thus the cocharacter e = (0 01 1) is w-almost dominant; since w™'(2) = 4 >

w™1(3) = 1, we are allowed to have one step 'upwards’ in the vector e from e; = 0 to
e3 = 1. But otherwise, it needs to fulfill the non-increasing condition.

c) If w = w, the long Weyl-element, e is allowed to have single steps 'upwards’ on every

position. Thus, for example, the vector e = (0,1,...,n — 1) is w,-almost dominant,
since the first case in (48) never occurs. This is also the 'most extreme’ case that can
occur.

The following is Proposition 6 of [BBL1S]:

Lemma 2.1. Let W be an Iwahori-invariant Whittaker function. Let further be e € Z"
and w € W,,. Then
W(rw) = 0,

unless e is w-almost dominant.

Proof. Since 1 is unramified, 1o = 1, but there is a ¢ € O*, such that (¢t -7~ ') # 1.
Pick an i € {1,2,...,n — 1} and consider the matrix

1

consisting of 1’s on its principal diagonal and of 71t at the position (7,7 + 1) to which in
this proof we just refer to as the 'non-zero entry’. The remaining entries are assumed to

be 0. Then, by definition, ¥ (u) # 1 and
Y(u) - W(rw) = W(u - m°w) = W(rw - w ' n " urw).

Consider now the conjugate of u

1

7 i=w T ‘urtw.

This matrix consists (again) of 1’s on its principal diagonal, has 0 everywhere except the
non-zero entry, whose value is now ¢ - 7¢+1~¢~1 by , and which by was moved to
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the position (w™(i),w™(i + 1)). Hence, j is in U,(F), iff w™a; € AT, and in U, (F)
otherwise. Thus,

geniei~l ¢ O wla; € AT

] ¢ Jn <~ { ﬂ_e,H,l*ei*l ¢ p) w*lai e A*

€ir1 — € — 1< -1, wjaz c AJ:
€i+1_6i_1§0a w OéieA

€, — €i+1 Z 0, wjoz, S Aj
€ — €1 Z —1, w oy € A

By varying ¢, the last condition is exactly the condition on e being w-almost dominant.
Otherwise, j € J, and

Y(u) - W(rw) = W(u - mw) = W(rw - j) = W(rw),

which implies W(mw) = 0 as claimed, since 9 (u) # 1. O

The case W], (7°). We start by computing W}, (7°w) in the simple case when w = 1.

Lemma 2.2. For e = (ey,...,¢e,) € Z" and our fixed Whittaker function W;, defined
previously we have

((5,1/2@)7'“’") (m¢) Je1>ex>...>e,

. (49)
0 , otherwise

W) |

Proof. The case when e is not dominant was covered in Lemma [2.1]
Hence assume now that e is dominant. By (37)), 7°U, (O)7~¢ is a subgroup of U,(O) and
thus ¢}, (bw,m “um®) vanishes unless u € U, (O)7~¢. Thus,

Wi, () = [ e, (wn) - Glu)du
= / or (7w, - mCun®) - (u)du
Un(F)

B / P () w0y - w) - (meum =) du
weUn(O)m—e "

o, () - vol(7°U, (O)7™¢, du)
= P, (TE) - 0 ()

= () (),

where in the last equality we have used that §%/2(7%=¢) = §-1/2(x°). O

The case W] , (7°w). Slightly more generally, if we take a Whittaker function of
the form W’ . the simplest evaluation turns out to be in the argument 7¢w:

Wn W
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Lemma 2.3. For e = (ey,...,e,) € Z" and w € W,,, we have

T —
W w

_l(w) . 1/2 Wn, e : _ .
(mew) = { q (5n T ) (7€) , e is w-almost dominant . (50)

0 , otherwise

Proof. This is done in Proposition 3.6. of [BBBGI9], but since the authors use a slightly
different notation and definitions, we shall include the proof for our setting:

As in the case of Lemma {49 we can assume that e is already w-almost dominant. By
[Car79], 4.1., the change of variable u — 7 “un® on U, (F') produces the measure defect
by 0,1 (m7¢) = 0 (m):

Wialmw) = [ ¢l lwunw) - ol
= ) [ el PO
= ) [ Pln ) TG

Let us now suppose that the element 7w, uw sits inside B,w,wJ,. Thus, 7% “w,uw =
bw,wj for some b € B, (F),j € J,. But this is equivalent to

u € w, By (Fw, -wl,w = B,

o (F) - wdlyw™,
By the (generalized) Iwahori decomposition (20)), wJ,w™! decomposes as
wlw™ = (wlw™ MU (0)) - Tu(0) - (wlyw™ NUL(0)),
but since (wJ,w™* N U, (0)) - T,(0) C B, (F), we have that
u € B, (F)(wJ,w ' NU,(0)),

and since B, (F) N (wJ,w ' NU,(O)) = {1}, we have indeed that u € wJ,w ! NU,(O).
But since v € wJ,w™' N U,(O), the fact that e is w-almost dominant tells us that
Y (m—eune) = 1. Thus, by ,
Wulmtw) = 6, [ (T ) - Y ur) du
" wIpw=INUL(O) "
= () - (5,1/2 ® 7') (mme) - g
— q_l(w) . (5}/2 ® Twn) (71'6)

as claimed. 0

The general case W], (1°w)

Example 4. As a starting example, we shall compute W] (7°w;) in the case n = 2: In
our case wy = s; is (the unique) simple reflection. We assume first that e is sj-almost
dominant, which means that e; > e5 — 1. We have

Wirun) = [ ol (wsurus) - Glu)du
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— T /U)Q'e. . —e e. . d .
/U2(F)90w2(77 wy - U - ws) - Y (u)du

Let us now focus on the term wy - 7 %un® - wy. We have

e e 1
Wo + T "UTT Wo = <U7T_(61_62) 1) .

Furthermore, the subset {0} C F' has measure zero, and thus

wetww) = (" ) (e 1)) P
S R Y G | P R R T

where in the last equality we have already performed change of measure from du to d*u

1 1) for u € '™ still lies in the

e1—e2)

as in (24). Now it turns out, that the matrix <u7r_(
large bruhat cell By(F)waUs(F):

1 _(—ulpee 1 1 ulrer—e
G um—(e1—ea) | 027 1 '

=:b =:J

Once again using the Iwahori decomposition , one can easily see that this lies in
BQ(F)'UJQJQ, lffj € UQ(O) ThUS,

N . . e _t—lﬂ.q—eg—i 1
)/sz<7r w2) = Z/OX SOUJQ(( 7T61> ) ( tﬂ-—(a—ez)-&-i) T W2

€L
—1,.e1—e2—1 ,
(M) - e

d*t

= (-¢) PenE) 3 (TMY [ o e

- - @PenE)- 3 el (20

P 7i(m)
e;—ea+1
1_ g-1n@ (=)™ 2t
(50 1y s1/2 e q 4 7 1(m)
= (1—q¢ Y- (6"?@7)(r°) - q—l.( [ )_ 1 _ 2@
71(7) 71 ()
e;—ea+1
1—q’1:1(:) :2(:) 1z
(51/2 ®7_)(ﬂ_e) . 7-2(72|-§ ) _ (1 . q—l)( 1( )>‘,-2(7T)
L - 71 () 1 - 71 ()

Using that 7(7¢) = 7%2(7¢) - (Tl (r) )el_@, we shall rewrite this little formula as

1— q_l X q_l ‘ (%)62761+2 _ (7—1(7r))62761+1

W, (mfws) = (612 @ 7)(n) - (51)
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The full description of the formula for WJ (rw) with w € W,, arbitrary was worked out
by Brubaker, Bump and Licata in [BBL18| by means of intertwiners between principal
series representations I(7) — I(7*), based mainly on works of Casselman [Cas80] and
Casselman-Shalika [Cas95]. Prop.10 in loc.cit. tells us: if s; is any simple reflection
corresponding to a simple root «;, such that s;w < w, which in our setting w = w, is
always the case, then

W;w =TW,,

where 7/, called a (modified) Demazure-Lusztig operator, applied to W (g) is given ex-
plicitly as

@) (9) = (1 - g7 (Y (7)) (WM Gl i<g>) W

7

These operators satisfy the braid relations (Prop.12 in loc.cit.)
LI, =LL,I; (52)
and the quadratic relations (Prop.13 in loc.cit.)
() ="~ +q" (53)
The latter implies that the Z;’s are invertible with inverse
L= (1) ' =q(Z— (¢ - 1)), (54)
which is explicitly given by

@0 @) =0 (1= 077 (ot - (LTI i) s

7

If w= s, -... sk is now any Weyl element written as reduced product of simple
reflections, then

Wi, =L - L WV, .
This is independent of the choice of the reduced product due to the braid relations (52).

Example 5. Let us now see how this applies to our case g = 7°s;, where e is s;-almost
dominant. Using the fact that in the GL,-case we have w,s; = sy, ()Wn = Sp—iwy, as well

as together with , we have

Wi (ns;) = (Iwn(i)WT )(Wesz‘)

Wn Swp, (i) Wn

— (an(i)W;nsJ (wesi)

Y Wi, s (T80) = 7 (i) ) Wi (m°sq)
N e

n—i
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e;—e; +1
. 1— (in—i(ﬂ) ) +1
— 51/2 Wn, e 1 — -1 Tn—l(’n) Tn—it1(T) -1
(" ®T >(7T> L ) 1_ Tn_i(7(r)) q
Tn—i+1 (T

For n = 2 and ¢« = 1 we easily recover the special case .

We will also use the following identity in the computation for the case n = 2 in Chapter

Bk
Lemma 2.4. If e, f € Z™ with s; @ f = f, then

Wy (7t s;) = ((571/2 ® 7'“’") (w!) - WL (7°s;). (56)

2.2. (g, K)-modules

Let G be a real reductive Lie group. We shall denote by g its Lie algebra, by K C G a
fixed maximal compact subgroup and by € the Lie algebra of K.

Example 6. Important examples of (g, K)-modules for us arise as follows:

a) GL,(k,), where v is any Archimedean place of k, has the structure of a real reductive
Lie group. For its maximal compact subgroup we then usually take K € {O(n),U(n)}
depending on whether v is real or complex.

b) GL,(Ax) = 11, |00 GLA (k) has the structure of a real reductive Lie group as well.
A (g, K)-module in the sense of Lepowsky is a C-vector space V', that is simultaneously
» a Lie algebra representation of g,
« and a linear representation of K (we disregard for instance the topology on K),
such that
1. forallveVike K, X eg:

k(X -0) = Ad(R)(X) - (k- v),

2. V is K-finite, i.e. for any vy € V, the subspace
K vy :=(z-v|z € K)

is of finite dimension, such that the action of K on any K - vy is continuous,
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3. forallv e VandY € ¢,

d
(dt exp (tY) - v) . =Y .

We want to stress that a (g, K)-module is a purely algebraic concept, and therefore we
do not speak about ’smooth’ (g, K')-modules. But in analogy with the non-Archimedean
case, we can understand the second condition as 'smoothness’; indeed, it implies, that we
have an algebraic direct sum decomposition

V=@ Vi

aek

see for instance Lemma 3.3.3. in [Wal8§|. Here, K, as in the non-Archimedean case,
denotes the set of equivalence classes of irreducible finite-dimensional representations of
K. In analogy with the non-Archimedean case, we will call a (g, K)-module V' admissible,
if every V(a) is of finite dimension.

Remark 3. Another reason for the 'smoothness’ arises via the Casselman-Wallach’s Glob-
alization Theorem (see [Cas89] as well as the recent paper [KB14]): given a (g, K )-module
V', there exists a (unique) smooth representation (of moderate growth) W of G, whose
subspace of K-finite vectors Wi is isomorphic to V as a (g, K moduleE]

2.2.1. Archimedean Generic Representations

There is a similar notion of generic Archimedean representations for (g, K)-modules, see
Chapter 8 of [JPSS79b]. However, we shall not be interested in this case for now. The
only fact important to us is the Multiplicity One-Theorem of Shalika [Sha74], Theorem
3.1., which is the analogue statement of Gelfand-Kajdan, but for Archimedean places,
and the fact that we can talk about Archimedean Whittaker functions.

2.3. Automorphic representations

Automorphic representations should be thought of as spaces of automorphic forms. We
thus start by recalling the notion of an automorphic form, see Chapter 3.3. in Bump’s
[Bum96]. Recall that GL,, (A) possesses the standard maximal compact subgroup K.y 1=
K Koo, where

=[] GL.(O,) and K. := [] On)x [ U(n).

v<oo v real v complex

Definition 2. a) A function ¢: GL,(A) — C is called an automorphic form on GL,(A)
with central character w: |.x \AX — St if the following hold:

« »(v9) = p(g) for v € GL,(k), g € GL,(A),

' More precisely, the Casselman-Wallach functor defines an equivalence of the corresponding categories.

37



o ¢(z9) =w(2)p(g) for z € A*, center of GL,(A),
e  is smooth of moderate growth,
o is K ax-finite,
o o is Z-finitd™]
If w is character of fx \AX, we shall denote by A(GL,(k)\GL,(A),w) the set of

automorphic forms with central character w.

b) Moreover, we call an automorphic form ¢ on GL,(A) to be cuspidal, if

p(ng)dn =0, (57)
nEN(K)\N(A)

where N C GL, is any (standard maximal) unipotent subgroup. The subspace of
cuspidal forms with central character w will be denoted by Ay(GL,,(k)\GL,(A),w).

Recall that GL,, (A« ) has the structure of a real (reductive) Lie group. We shall denote
by g its Lie algebra. Now the space of automorphic forms A(GL, (k)\GL,(A),w) with
a central character w is not necessarily a representation of GL,(A), where GL,(A) acts
via right translation in the argument g - p(z) := p(xg), but it is a

« smooth representation of GL, (Agy),
e and a (geo, Ko )-module,

such that the two actions commute. By abuse of notation, we will write p for any of these
actions.

Definition 3. 1. An automorphic representation (p, V') is any irreducible subquotient
V of A(GL,(k)\GL,(A),w) for some central character w.

2. An admissible representation is an automorphic representation (p, V'), if it is admis-
sible for both parts: as representation of GL, (Ag,) and as (goo, Koo )-module.

3. At last, a cuspidal representation (p, V') of GL,,(A) is any (automorphic) admissible
representation, that is realizable as subquotient of some Ag(GL, (k)\GL,(A),w).

Thus, for us, automorphic representations are always irreducible. Suppose now, we
are given an (irreducible) admissible (not necessarily cuspidal) representation (p, V') of
GL,(Ay). Then, by the Flath-Decomposition Theorem 2 and Theorem 3 in [Fla79], p
decomposes as a restricted tensor product into local components

P= R0 ®Q o,

v<oo I/\oo

where p, is

12 Z stands for the center of the universal enveloping algebra of the complexification of the infinity part
Lie algebra goo,c-
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« an irreducible admissible representation of GL,(k,) for finite v,
 and an irreducible admissible (g,, K, )-module at v|oc.

Furthermore, by loc.cit., this decomposition is K-compatible in the following sense: if
K =TI, Ky<oo C GL,(Agy,) is any open compact subgroup, then

K
/ !/
<® pu> = Q"
v<oo v<oo

But due to the topology on GL,(A), we have K, = GL,(O,) on almost all finite places
v. In addition, due to the K-finiteness of p itself and the structure of K, we thus have
on almost all finite places dimg(pSt#(©)) = 1. In other words, we have an irreducible

unramified representation of GL,(k,) at almost all finite places v of k.

2.3.1. Remarks on Cuspidal Representations

Cuspidal representations have nice properties:

e One important future of cuspidal representations is that they are generic{T_gL Gener-
icity for automorphic representations is defined analogously as in the local cases
(see [PST9]). As a consequence of the local Multiplicity One-Theorems, one has
the global Multiplicity One-Theorem (very first Theorem of loc.cit.), and indeed, if
W =W, 4, is a global Whittaker function attached to some cuspidal form ¢ € (p, V')
and the global additive character 14, such that ¢ corresponds under the Flath De-
composition to a pure tensor of the form ¢ = ®,¢,, then every constituent p, is
generic and

W(Q) - HWSOV7¢U(9V)7 (58)

where W,,, 4, are local Whittaker functions attached to the local component ¢,
realized in the Whittaker space 20(¢,) and g = (g,), € GL,(A). As we have seen
above, we have the irreducible principal series representation p, = I(7,) for an
unramified character 7, of T, (k,) on almost all finite places v.

o A consequence of genericity is that one can attach an L-function to a cuspidal rep-
resentation and the L-function has desirable properties (functional equation, mero-
morphic continuation). Indeed, we shall explain in the next chapter, how to attach
an L-function to a pair of cuspidal representations by means of Rankin-Selberg
convolutions.

13 At least over GL,,(A). This may be in general not true, as there exist for example cuspidal non-generic
representations for the spin groups; the holomorphic Siegel modular forms do not have a Whittaker
model.
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3. Automorphic L-Functions

Let us fix a pair of (irreducible) cuspidal representations (p, o) of GLj,11(Ag) X GL, (A).
As we have seen in Chapter [2| both representations decompose as restricted tensor prod-
ucts into local components

pg®:/pw Og®:/0—1/-

Let us set
Seo := {v | v arch.prime place of k}

and
Sram = {V | ¥ non-arch.prime place of k, s.t. p,, 0, or ¥, ramify}.

Both sets are finite and so is
S = S U Siam-

We already mentioned that we want ¢, to be unramified at . From now on we impose
the stronger condition:

Hypothesis 1. p ¢ S.

For now, we assume that Y, , is unramified at every place, i.e. xas = |- ||° "% The
global (complete) L-function attached to the pair (p, o) under the twist of x4 s is defined
formally as the Euler product of local L-functions

L(p X (U ® XA,S)) = HL(/OV X (U,, ® XV,S))

with v ranging over all prime places of k. The local L-functions are described below. We
would like to point out, that in general, for cuspidal representations of GL,, x GL,, one

uses the shift ||- ||~ 2, which explains our choice of the exponent in this case.
Recall that p and o are generic for any place v (finite or infinite). We define the local

zeta integral (attached to a pair of local Whittaker functions of (p,,,) x W(a,,1,))
by

Z(Wm W,l,a Xu,s) = / Wl/( (gl/ 1)) ' W{;(QV) " Xv,s (gu) ngV' (59)
Un (kv )\GLn (kv)

We shall now explain the Euler factors (these are the local L-functions) at every place v
and their connection to the local zeta integrals:

e v non-archimedean:
Here we follow Chapter 2 of [JPSS83]. For every pair of Whittaker functions
W,, W) € W(p,, 1) x W(o,,1,), the local Zeta integral is a rational function
in ¢, and thus converges absolutely for sufficiently large R(s). Moreover, the fam-
ily of these integrals

{ZW0, W) x0s) | W0, W) € W(py, 1) x W, 6,) }
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span a (principal) fractional ideal of C[g=*] inside its fraction field C(g; *), which is
independent of v, and any generator is of the form -1+ for some P(X) € C[X]

P(g,®)
with P(0) # 0. We define

L(py X (0, ® Xu,s))
to be the generator P normalized by P(0) = 1. This is all included in Theorem 2.7
of loc.cit.

Furthermore, if v ¢ S, i.e. both representations p, and o,, as well as 1, are unrami-
fied, then p, = I(\,), 0, = (1), and the corresponding local L-function is actually
of the form for the unique pair of spherical Whittaker functions (W,, W/)
normalized by the condition W, (1) =1 = W), (1). In this case,

1
det(1- Ay, @A, q°)

L(p,, X (O’,, ® XV,S))

where A, and A, are the respective Satake parameters of I(\,) and I(u,) as
defined in 47} The proof of this can be found in Chapter 7 in the lecture notes of
Cogdell [Cog03]. In general, the local non-archimedean L-factor is only a finite sum
of such local non-archimedean zeta integrals.

Remark 4. If v ¢ S, but x, is ramified at v, then

L(p,, X (0, ® XV,S)) =1

by definition.

o v archimedean: In this case, the local zeta integrals converge for sufficiently large
R(s) and can be extended meromorphically to the whole plane C. Moreover, by
the local archimedean Langlands-correspondence, there corresponds to every (pair
of) local component(s) p, X g, a pair of ((n + 1), n)-dimensional semi-simple repre-

sentations (pl‘,NR, UZ\/)VR) of the Weil-group W}, (for a reference, see Theorem 2 and

Theorem 5 of [Kna79]), and one defines

L(py, X (0, ® Xus) == L(s, p) ¥ @ 0)'™)

in the sense of Artin (we will always have x, = 1 at infinite places, so x,s =
|- °""/%). Moreover, every archimedean local zeta integral Z(W,, W), x..s) at v is
a holomorphic multiple of L(p, x (0, ® x,.s), and this L-factor is essentially just a

product of gamma factors.

To sum up, there exists a holomorphic function P(s, Wy, WY.) in s depending only on the
pair of families of Whittaker functions at infinity Wee = W,)1 |00 and W, = (W,)u |,
such that the global L-function satisfies

P(s, W, W) - L(p X (0 @ xa)) = S J[ZOWVY WY X0
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for some finite number of pairs of families of local Whittaker functions (W®, W'") .=
(WS), W,L(L)). Here, for every v ¢ S we choose W and W) to be the normalized spher-

ical vector, respectively. Thus, if (¢,, ) are the cuspidal forms associated to (W®, W' (L)),
then together with , we have the integral representation

PeWa W Lipxeu) =% [ al? | )el) v ©
" GLn(k)\GLn(A)

42



4. Motives

By Clozel, Conjecture 4.5. in [Clo88]|, one expects a correspondence between cuspidal
representations on the automorphic side and motives on the geometric side. More pre-
cisely, if ¥ is a algebraic automorphic (and isobaric) cuspidal representation of GL,(Ay)
with purity WeightE] w and values in some number field F/Q, then there should exist
attached to ¥ an irreducible n-dimensional pure motive My, of weight w, defined over k
with coefficients in some number field extension E’/FE, such that (up to a shift), their
L-functions coincide. To be more specific, such that

1 _
L, (2, s+ 2”) = L,(Ms, s)

holds. One expects this correspondence to be functorial by means of their L-functions. As
an example of functoriality which is of importance for us, let us take our pair of cuspidal
representations (p = ®'p,,0 = ®'0,). If M, and M, are their conjectural motives, one
expects that

1—n(n+1)

Ll/ VX vy
(p 0,,8 + 5

) =L,(M,® M,,s)
at every place v in k, where the left hand side is the local Euler factor at v as described
in Chapter 3| But let us start from the beginning. What is a (pure) motive?

Fix for a moment a projective non-singular variety X over Q and an integer m > 0. The
theory of algebraic and analytic geometry provides X with three different cohomology
groups:

 The singular or Betti cohomology H}}'(X (C)) with rational coefficients of the com-
plex manifold X (C).

o The de Rham cohomology HJ;(X) of the algebraic variety X.

« For every prime /¢ the f-adic cohomology H;"(X) of the algebraic variety X over the
algebraic closure Q of Q with coefficients in Q.

As it turns out, these cohomology groups have a wide interplay with each other. For our
number-theoretic needs, we just abstract these properties and adopt it as the definition in
a naive sense. Hence, we define a motive by its 'realization’. A definition of such realiza-
tions over Q can be found in [Coa89], Section 3, as well as in [CPR&9], Section 2. Deligne
defines (realizations of) motives over a general number field with coefficients in possibly
another number field in [Del79]. Nevertheless, we shall also follow the unpublished paper
[Pan90] of Panchishkin.

4We did not define it here, nor will we do so, since we do not really need it, but it is a technical
assumption. For a definition see for example [Clo88].
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Definition 4. A pure motive M (or just motive) over the number field k/Q with coeffi-
cients in (possibly another) number field E/Q is a collection of the form

M= ((HB’B(M>>55]€‘—>C ) HdR(M)’ (HZ(M))Z fin.prime in E) )
together with two constants
d:=d(M) e Ny, and w:=w(M) € Z

called the dimension and the weight of M, respectively. Here, § runs over the different
field embeddings k — C and ¢ over the different finite prime places of E. The collection
consists of free modules of the same rank d as follows:

» ecach Hp (M) is a d-dimensional vector space over E,
o Hyr(M) is a free module of rank d over the ring (£ ®q k),
o each H,(M) is a d-dimensional vector space over Fj,

that satisfy the following properties:

i) Each Hp (M), where 5: k < R is a real embedding, admits an E-rational involution

PB,3: HBWg(M) — HB”Q(M).

ii) For each embedding S: k < C there is a Hodge-Decomposition

Hpp(M)©@oC= @ HE'(M) (61)

pHg=w

into (F ® C)-modules. Futhermore, we demand (pp ® 1C)(Hé’j(M)) = HéZ(M) for
any pair (7, j) with ¢ + j = w, provided g is real.

iii) There is a decreasing filtration {F™ Hyr(M)}mez of (not necessarily free) (E ®q k)-
modules on Hyr(M), i.e.

Hyp(M) = |J F"Hgg(M) 2 ... D F"Hyg(M) D F*"" " Hyr(M) D ... .

MEZ

iv) There is a continuous group action of the absolute galois group Gal(k/k) of k on each
Hy(M), such that system of (-adic representations

is compatible.

v) For each finite prime ¢ of £ and each embedding 3:k < C there is a comparison
isomorphism of E,-vector spaces

Yy Hi(M) — Hp (M) @ E;.
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vi) For each embedding f:k < C there is a comparison isomorphism (at infinity) of
(E ®g C)-modules

@Dooﬁi HdR(M) ®k”g (C L> HB”g(M) ®Q (C

such that for each m € Z and each embedding : k — C we have

Ul (@ oy’ (M)) = F"Hyp(M) @45 C.

i>m

4.1. Complex L-functions attached to motives

Let us now suppose that M is a motive. One can attach to M the L-function L(M,s)
defined as follows:

Let us fix some non-Archimedean prime place v of k. Let us further denote by D, the
(absolute) decomposition subgroup of some prime 7 in k lying above v and [, its inertia
subgroup. Then we have a short exact sequence of groups

1—1,— D, — Gal (M/n(u)) — 1.

The arithemetic Frobenius Frob,, is the element of Dy / I, that acts on the algebraic closure

k(v) by the automorphism x — x%. If ¢ is any non-Archimedean place coprime to v (in
the sense that ¢ and v do not lie over the same prime of Q), we define the polynomial in

X
1

det (1 — 7y (Frob;l)

LY (M, X) =

: X)
|Ho (M)
Observe that we did not use ¢ on the left hand side. We justify this by imposing yet
another standard hypothesis on M:

Hypothesis 2. LV (M, X) is a rational polynomial with coefficients in £ and indepen-
dent of the choice of non-Archimedean ¢ coprime to v.

Under this hypothesis, if y: E < C is any field embedding, we can consider L) (M, X)
by acting via v on each coefficient of L(Y (M, X).
With this, we define

Ly(M,s) = (L (M.q;°)) € [1C:(a) = (E ®a C) ().

where ~ runs through the embeddings £ < C. Finally, we define the corresponding
L-function via
L(M,s):= [] L.(M,s).

rv<oo

15The subscript in the tensorproduct ®j g means a tensorproduct ®j twisted by 3 as follows: for any
x € k one has x @ — = — ® B(x).
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Remark 5. a) One can extend L(M, s) to the complete L-function A(M, s) defined as
A(M,s) = Loo(M,s) - L(M,s),

where L. (M, s) is the I'-factor (at infinity). The complete L-function should conjec-
turally satisfy a functional equation ’as usual’ in the language of L-functions (mero-
morphic extension and functional equation). The infinity part is defined for k = Q in
[Coa89]. In the case of a general number field k/Q, the restriction Resy g M is a pure
motive over Q (with coefficients in E), whose f-adic representations are obtained by
induction from Gal(k/k) to Gal(Q/Q). It satisfies the identity

LV(M, 8) = Ly(Resk/Q M, S).
at every place v (finite or infinite).

b) We would like to remark that we can also restrict the coefficient field E| by regarding
the realization of M as vector spaces over a smaller subfield. In other words, we have
two different 'restriction functors’.

4.2. p-adic L-functions attached to motives

Let us restrict now to the case k = F = Q. Coates and Perrin-Riou defined in Section
4 of [CPR89] the notion of a p-ordinary motive. For sake of completeness, we shall give
the definition here. We fix a prime p and as before let P to be any prime in Q with p|p.
Moreover we denote by

Op: Dy = Gal(Qy/Qp) — Z;)
the cyclotomic character at p.
Definition 5. We say M is ordinary['¥ at p, if the following two conditions are satisfied:
i) I, acts trivially on H,(M) for any prime ¢ # p.
ii) There exists a D,-stable filtration of Q,-subspaces of H,(M)
Hy(M) = Wo(M) 2 Wi(M) 2 ... 2 Wiy(M) =0

with some ¢t € N, such that [, acts on every quotient Wi (M )/ Wi (M) by some

power of ¢, call it ¢, eilM) for 1 < 4 < t, and such that these integers satisfy the
domination condition

er(M)>...>e(M).
With acting by some power —e;(M) of ¢,, we mean that for g € I, and w € W;(M),

g (w+Wi(M)) = ¢, <M (g) - w+ W;(M).

p

6By modern standards we would call it ordinary and unramified at p.
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The first condition of ordinarity at p implies that the (inverse of the) Euler factor at p
has exactly degree d, let us say

1
(I—ayX) ..o (1 —agX)

L,(M,X)=

with some a; € @,\{0}. We assume that the «; are ordered in such a way that
ol < . < (62)

where |- | denotes here (by abuse of notation) the natural extension of the absolute value
E |p on Q, to the decomposition field Q,(cy, ..., a,). Conjecture 4.2 of loc.cit. states the
connection between the integers €;(AM) and the |ay],.

Remark 6. Due to Clozel’s conjectural correspondence, we expect to have the notion of
p-ordinarity for our cuspidal representations as well. We will come back to p-ordinarity
for cuspidal representations in Chapter [6]

4.3. Tensor product of motives

There are several operations on motives. We already introduced the two different restric-
tions, and briefly mentioned the tensor product. Let us write down what we precisely
mean by the latter: given two pure motives M and M’ (both defined over & with coefhi-
cients in F) of dimensions d(M) and d(M'), respectively, we define M @ M’ "tensor-wise’
in every realization. More precisely;

« its Betti-realization is for every embedding 3: k — C given as

Hpp(M @ M') := Hp (M) ®p Hp zg(M')

 its de Rham realization is just

HdR(M X M’) = HdR(M) Re HdR(M/)

« its f-adic realization is given in a similar manner as
Hg(M X M/) = Hg(M) ®Ee Hg(M/)
at every prime place ¢.

Its dimension is obviously d(M ® M') = d(M)-d(M'). In a similar manner, we obtain the
corresponding de Rham filtration, the Hodge decomposition, as well as the corresponding
comparison morphisms and each E-rational involution just by 'point-wise’ tensoring.

Moreover, let us suppose M and M’ are both ordinary at p: since I, acts trivially on both
Hy(M) and H,(M'"), it does so on their tensor product Hy(M & M') for ¢ # p. Moreover,
we have p-adic cohomology filtrations

Hy(M) = Wo(M) 2 Wi(M)2 ... 2 Wy(M) =0

=
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Hy(M') = Wo(M') 2 Wy(M')D...2 W, (M) =0,

{
1

as in the definition of p-ordinarity, with
€1 (M)
€1<M

vV v

We impose now the following

Hypothesis 3. For any m € {2,3,...,t + u} and any i,j > 1 with i + j = m, we have
that
em(M @ M') == e;(M) + e;(M') (63)

is constant (i.e. invariant of the choice of i, j).

Under this hypothesis, we can construct a p-adic cohomology filtration of H,(M ® M’)
according to p-ordinarity as follows:

Hy (Mo M) = Wo(M)@Wo(M') D Wo(M) @ Wy (M) + W, (M) @ Wy(M') 2D ...
S WiM)@W;(M') 2 ... 2 Wiy (M) ®@ Wy (M) 20,

=

1\

i+j=m

and we have
eo(M@M) >es(M@M)>...> e (M M).

At last let us explain why we need p-ordinarity. Assume that M is a p-ordinary motive.
Coates predicts in [Coa89] the existence of a unique p-adic (pseudo-)measure, that inter-
polates the special values of the motivic L-function of M. For a more precise statement,
see Conjecture 6 of his paper. In Chapter [6] we will assume p and o to be gp-ordinary,
and thus, under an invariance condition as in but on the automorphic side, we will
p-adically interpolate the special value s = 1/2 of L(p x 0, s) as described by Coates.
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5. Moadification at

Given a motive M over Q with coefficients in Q, and a prime number p, Coates describes in
Chapter 5 of [Coa89], how the Euler factor L,(M, s) at p should be modified in order to p-
adically interpolate the values of L(M, s). We mimic this modification on the automorphic
side over the number field k£ at our fixed non-Archimedean place @:

5.1. The modified setting

Recall that we denoted by I’ = k, the corresponding local field at . In order to inter-
polate the L-function attached to p x o at p, we shall modify the Euler factor at o as
follows:

Fix a natural number § = f, > max{c(x),1}. The number § plays the role of the congru-
ence level in the p-adic interpolation. By our choice,

1+ 7 - O C Kern(y).

Moreover, let

1 1
n—1 N
t, = : €z , hn+1 = | € Un-‘rl(F)'
: 1 1
1 1

Let us fix a pair of unramified and regular C-valued characters (A, p) of 1,11 (F) x T,,(F)
that satisfy the condition and such that I(\), I(u) are principal series representations.
Let us further take the pair (W, W') := (W, Wi ) of (Iwahori-spherical) (4, ")-

Whittaker functions on GL,41(F) x GL,(F'), each one supported on the large Bruhat
cell, as defined in (46)). We define the modified local zeta integral

zvwo = [ ow(* e (T ) W) @ e o)

Un (F)\GL, (F)

where s € C. This integral converges for (s) > 0. Recall that x; = x x || - Hs_% for some
multiplicative character x on GL,(O).

5.2. Thecase n =1

We start by the computation of Z(W, W', x,) for GLy x GL;. In this case we have pu =
(u1) so we just denote it by p. We further have Uy (F) = {1} = Wi, and GLy(F) = F* is
abelian. Also, §; = 1. Moreover, J; = O, and since t; = 1, we obtain

Z(W7W,7Xs) = /W(<g 1) (1 1) <7Tf 1)) ’ W/(gﬂ—f) " Xs (g) dxg
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[ D)7 ) we o
- [@w(g)-w((g'“f 1)>-W'<g-wf>-xs<g>dxg

= 3 [otwn w0 1)> Wty (1) e e

€L
_ e%q—ew—éxw(ceﬁ 1) W () / X (1) - b(rot)dt
_ gqe(sé) _ W((Weﬁ 1)) W (76T - B (e, x)
S o) (B or)( (WM 1>> (1% @ ) ()T - g7
eEZ
= 51/2(< i 1)) (Ao ® p)(m %6 e.X) (e @m)(m)-q7)".
=

5.2.1. x ramified

If x is ramified, all factors from the local zeta integral vanish by Lemma [1.1}b) unless
e = —c(x), and hence

ZOW W, xe) =g Qo @ p)(m) - &(x) - (A2 @ p) () - q_s)w)

for all s € C.

5.2.2. x unramified

If x, is unramified, our local zeta integral results to be

2V W) = a7 e (- (A e

by virtue of for all s € C with R(s) sufficiently large. This expression then meromor-
phically extends Z(W, W', xs) to the whole C.

5.3. A general recursion

How should one approach the resolution for a general n € N7 Recall the matrix
1 1
hpg1 = - | € Uni1(F)

11
1
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sitting inside W. If we set

one can interpret h,.1 as the element (1,,b,) in the affine linear group GL, (F) x F™.
Thus, for g = (¢,0) € GL,(F') x F™, one has

(9,0) - (1n, ) = (g, 9bn) = (10,9 - bs) - (g,0)

(=) ()

which means

Thus,
W(<g 1) hsr %) = [ ¥(gni) - W(<g 1) *)- (65)
i=1
If we define for a vector a := (ay,...,a,) € Ny
%(9) = H lp(gmwai)a (66)
i=1
the equation can be restated as
(7)) = o) wi (7)) 9. (67)
Thus,
~ ftn 1
Zvowo = [ @ (T w7 ).
Un (F)\GLy (F)

By , this can be rewritten as
~ s—1 e
ZWW . x) = X (67 @7F) ) X x(w)

eczn UJEWn

S
/ W<<7T Wi - Wy T 1)) W (mwg - 7Y <o, (Tw ) x (5) d7 5.

U\ T,
Let us set
€ ) . ftn
10w,e) = | W((” e 1)) (w7 - (nwi)x () d*5 - (68)
UL\ T,
for a € Nj. Then
~ S—l e
ZOWW . xs) = Y. (5;1 ® [|-]] 2) () - x(w) - I (w,e). (69)
ecZ™
wEWn

o1



Decomposition of U(")\ J,. The space U{")\ J, can be interpreted as an upper-triangular
matrix group conjugated by an Weyl element (such that below the diagonal appears p
instead of O): It has exactly one ’full’ row in the sense that every other row has at least
one ( inside:

O* x % * * * * *

* * * * *

U(w)\Jn ~ | o* x  O* % * *
n

P p O O O

* * ok * * O % *

* * % * * * x*  OX

The highlighted row is the w™(n)-th row. Due to the appearance of 1, (mwj) inside
I\ (w, ), which is just a product running over the w=!(n)-th row of j, it makes sense to
integrate I\® (w, e) row-wise: starting by its w™!(n)-th row.

A further observation we can make is that the subset of U{*)\ J,,, which has at least one 0
in its w™!(n)-th row, is a nullset w.r.t. d*j. We shall now decompose U(*)\ J,, such that
we can perform the integration row-wise:

« We denote by (U{)\J,)" the subset of U\ J, that results by fixing its w™!(n)-th
row to be (0y-1()-1,1,0p—w-1()). Thus, it is of the form

OX % %  x %k k% %

* * % % *
(Uéw)\c]n)/ ~ | x O x % *
0 ... 01 0 ... 0
* * * * % OX % *
* * *
* * x O~

e We define .
A = NI 10y N,

w

and for a € A™ set

1

a0 plelo-1r ] gl gl

1
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With this definitions we have the following decomposition:

UMNT, = ] U\ - 7o - T,(O) U {nullset} (70)
aEAS‘,m

Thus, inside the integration over j € U®)\.J,, we can assume j to be of the form

1

j=j" 1 b€ (UPNT) -1 - To(O)

a0 gplel;-r 1 gl gl
1

for some a € A

Measure decomposition. By the decomposition (70, we have for any f € C.(U\.J,)

[ rhai= Y 0. / ('ra - ) dtd*

(n )
U”(;”)\Jn CLEA (“)\J / T

where d*j' is some Radon measure on (U)\.J,)". In order to determine d*j' we do the
following:

If we apply conjugation by w™' to the refined Iwahori decomposition (20]), we have the
decomposition
S = U - U™ - T,,(0).

Together with the Product Integral Theorem in [Deild], prop.1.5.6, we obtain that for
any f € C.(U®\J,), one has

[ ssmr [ [ sanaae

U\ ) Tu(O)

where ¢(w) > 0 is a suitable constant. This is due to the fact, that now all the appearing
measures have already been fixed. If we choose f to be the characteristic function on
U\ J,,, the constant results to be the quotient

vol(Jp, d*j) 1 1 vol(Jp,,d*j)

 vol(US), dut)) Vol(U(w"w) du(wnw)) vol(T,,(0), d*t) =

Y

which is w-invariant, and thus we set ¢ := c(w).

Observe also, that the order of u(*»®) and ¢ in the argument is not relevant since all the
groups are compact and hence unimodular. We furthermore know the structure of these
measures:
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e The measure on 7,(0) is just the n-fold product measure of the multiplicative
measure on O, ie. d*t=d*t; ... -d*t,.

 Since the measure on U, (O) is given by du = [li<; dusj, the du;; being the additive
measure on O, we also know the form of the pullback measure du(“»*) on U{wn®):
it also a product of additive measures on O.

+ And of course, the measure d*j on U\ J, is just the product of these two (up to
the constant c).

Thus, we define now d*j' on (U{*)\ J,,)" as the product measure of the d*t and du*"*) but
leaving out all the measures that were corresponding to elements lying in the w=!(n)-th
row of j. In order to fill it up to the measure d*j, we thus need to add an (n — 1)-
fold additive measure on O and 1 multiplicative measure on O* (corresponding to the
w~(n)-th row of j). But due to (70), we convert the n — 1 additive measures on O into
its multiplicative counterparts and thus obtain by informally

dj=c- ||7TaH (1 _ q_1>n—1 d*td* ',
This should be understood as follows; one has
. . — n_l a . .
[ otia@i=c (=g S el [ [ pGrenaasy ()
U7(1,w)\Jn aGAu; (U’ﬁb’w)\Jn)/ Tn((’))

for any f € C.(U\J,).
Now observe that r, can be decomposed into a ’left part’ réL) and a 'right part’ TC(LR) as

1 1
- 1 1
a al a,,—1 _ a, —1 a )
T AU o COR S | 1 gtwtm+r 0 gln
1 1
1 1
::r,(lL) ::7"((,‘R>

and that r(Fr(B) = p(B)p(L)  Thus, we obtain:
Lemma 5.1. For any w € W,, and e € Z" we have
n(n—1)

n—1 n
I (w,e) = ¢" = vol(J, dj) - (1=q7)" - 30 [l - TT 6 (en + aix)
i=1

a€Ay,

eqpil (L) Ftn
[T e 1))-W’(wewj’-réR)wf't")-x(j’)dxj’.
U\
(72)

o4



Proof. From , a straight-forward computation shows

](0")(10 &) = ¢ (1 _ q—l)n—l _ Z 7] - / / <7T w(j'rqt) A, 1))

a€ Ay
(Uﬁ”\Jn) o
’ W/(Wew(j/rat)ﬂf.tn) : 77ZJ0n (Wew(jlrat)) "X (jlrat) d*t dxj/

= ¢ (1 _ q—1>”‘1 L / W(<7rewj’ (D), e 1))

(lE.Aw

(U5 \ T’
W (rwj’ - r(Bgftn) / Yo, (7w (j'ret)) - x (£) &<t d”§'
T,(0)
—1\" ! a mew;j’ - vl it
= (=) X e [ o )
a€Ay (U(w>\Jn)’
X () - W 7wy’ - i) (H/ﬂ’ () X (ti>dxti) d*j'
OX
- c-(l—q_> S - HQSen+a,,
acAy
) ftn
mewj’ - ri) - w,m N g%
/ W(( s 1>) W (mwj" - el - x (5) d*5'
(UL Tn)
The statement follows using ¢ = ¢ . -vol(J,, d* 7). O

Remark 7. At last, we would need to extract the T(L) and 7" ) from W and W, respec-
tively.

If we would perform the general extraction, we would need additional notation, but we
would eventually decrease the integration and get a recursive formula of the form

10 (w,e) =3 (%) - I (%, %),
(%)

where in [75*_)1(*, %) appears the integration over (U{*)\.J,)". We would perform the same
strategy but now on the w=*(n — 1)-th row of (U{"\J,).

We would eventually end up with a sum of the form

10 (w,e) =3 (x) - I (x, %),
(%)

where Il(*)(*, *) consists of a product of the form W(x) - W'(x) - x(x). Thus, the problem
of computing the modified local zeta integral Z(W, W', x,) is of combinatorial nature.
Unfortunately, no identity, that would help us to handle the formula, is at the present
known to us, nor could we think of any other strategy for the evaluation of such a sum.
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Nevertheless, if we believe Langlands paradigm (see Section [2.1.5)), then it should be
possible to interpret the Whittaker functions by means of representation theory, and thus
there might exist some new Cauchy-type identity that would permit us to obtain a closed

formula for Z(W, W', x,).

We shall now compute by hand the case n = 2. This shall underline the combinatorial
problem we face, as well as give an insight on the general recursion in this special case.

5.4. The case n =2
Let us assume that n = 2. Then Wy = {1, ws} and vol(Jy,d*j) = qJ%l. By and 1@}

we have

ZWW,x) = X (117 @d ) () X x(w) - I (w,e),

e€Z? weWs

where
e . TeWwj - womh 2 e : : ;
12 (w,e) = [ wc)z(mj)-w(( o 1>>-W’<wwj-wfb)-x(j)dﬁ-
U(w)\JQ
2

A priori we take s € C with R(s) > 0. The expressions ]éoz’)(w, e):

We now compute the expression [2(02)(11}, e) for each w € Wy:

w=1id: In thls case US") = U = U,(0) and Ai(j) = N x {0} and hence, the decompo-
sition is simply given by

i ~ o~

SO (T o) (O o)

aE.Ai(d2

L) ) ) )
(o)

Moreover, © o) = T5(0) has measure 0 w.r.t. d*j on y7{*) \J2 and hence we

can restrict the integration to the first set. The matrix r, decomposes as

()

(L) (R

=ry
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At last, the measure d*j' on (U2(id) \JQ)/ =

(Haar) measure on O* normalized by .
thus, by (72),

>

1
IGd e =g —— . (1—¢1).
2 (176) q q+1 ( q )

a=(a1,a2)ENx{0}

(e

~

OX
( 1) is just the multiplicative

We write j' = (t ) with ¢t € O and

1

2
|7 - H &(es + a;, x)

=1

>>'vvwwif~r§”w“ﬂ

1
(U N\ Jo)’
X (") d*5'
q—1 mer 2t = _a
S -(’5(62,x)'W’(< peatt )‘;q - O(es +a, x)
7'{'6 t . 1 W .ﬂ-f't2
-/W( 1) g 1) w2 ) x (1) d*t.
Ox 1

We now proceed to extract the matrix r(*) from W(-). If a € {1,...,f — 1}, then

W(

()l
()L

P ) W

Plre ) W

U ) W

Otherwise if a > §, then we simply have

W((”e <t 1) (Wl

o7

—T

> Swsy - it
1 )
1)

Plugging this back into the equation of ]2(02)

) Cwy -
1 )
1)

1a> <7r1“ 1) g 1))

() ) )
e (t 1) (WQH 7Tf+a> (Wf—a

el +2f—a
7T62+f+a )
1

—1

))

7r61+f
w<(< ) )>.
1

(id, e), we obtain



q

-1 7r61+2f*ll
: ( ®(ez + a, X) -W(( reatite )) g
1

©2) . B q—l ,ﬂ.el+2f
Iy?(id,e) = Hﬁ(ez,x%W’(( ot )

a=1

[ e

T1(0)

=6(e1—e2—a,x)

. t)d*t
/t€T1((9) X( )
=6(0;x)
_ 49— 1 / reta
= i1l &(e2, X) W(( et )

f—1
'<Z®<62+G7X) ’ 6(el — € —a, X

)-q "
a=1
el +2f—a
. W( ( qeatita ) )
1

7T61+f
+@5(0;X)-W(( met? ) “ws) - Y B(ex+a,x) g >
1

a=f

w = wy: We will use exactly the same strategy as in the w = id case. In this case

Uit = Uy (p), as well as Ai(? = {0} x Ny and hence, the decomposition is here

= (T g) =l o) () o) (" o)

— ’
(5%

Moreover, the r, decomposes as

B 1 7@ _ 1 _ 1 =
Ta = 1]~ 1 1]
P @

28



Again, we only need to integrate over the first set. We write j' = (1 t) and with
(72)) we have
(02) 1 ) -
IQQ(wQaB)ZQ'ﬁ'(l_q_)' > 7 - TT ®(e2 + ai, x)
q a=(a1,a2)€{0} xNo =1
€ano il . (L) . f-t2
/ W( TWw2) T s W2T 1>) ) W’(ﬂeng' . TL(lR)Wf-tg)
(U N\ T2
X (7)) d*j'
1 7T61+2f .
q— e —a
= ——®(e2,x) - W( et ) g B(es +a,x)
q+1 1/ a=0

L () 0 5) e

Now, again, if a € {0,...,f — 1}, then

W’(We-wg- (1 t) . (1 7r1‘1> .7Tf't2>
/e 1 1 1 1 = "
= Wim w2< t) <7r—a 1) (—w—a 1) ( 1) )
_ 77b—l(ﬂ_el—eg—a t) . W (7T ws < ) ( 71 71'“) X 7-[-f~t2)
= o (U (T L) e
- ¢1(7T61ezat)-W/(<7Tel+2fa 7T62+f+a>>'

Otherwise if a > §, then we simply have

(1 17\ . (et
wisw (") (1) = (T ) e

Plugging this back into 12(02)(102, e), we obtain

7T€1 +2f

[(02) _ . . ea—+f
o) = el | e )

f—1 , 7T61+2f7a
) <Z 6(62 +a, X) W (( 7T62+f+a>) ’ qia

a=0
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ety @ d
Ox

= —a / 7T61+f X
+Zq '®(€2+G7X)'W( 7T62+2f w2)/X(t)d t].
a=f Ox

The resulting integrals are now again (local) Gauss sums but with respect to 1.
But since 1) is unitary, using the fact that ¢¥=*(u) = ¢(—u) for any u € F, we can
multiply the local Gauss sums by x(—1) = x(ws) in order to convert them to Gauss
sums with respect to 1. Obviously x(ws)? = 1, and thus,
7Te1+2f
K wse) = ylwn)- L5 @(ean) - W wet )
q+1 1

-((’5(62, X) - G(er — ez, x) - W’(<7T61+2f 7T62+f>)

f—1

+ZQ§(€2+&,X)'Q5(€1—62—CL,X)

a=1
7T61+2f—a a
W/(< 7Teg+f+a ) - q “

; 7T61+f e —a
+®(O§X)'W(< 7T62+2f> 'w2)'Z®(62+a’X)'q )
a=f
-1

Observe that we have split the case a = 0 from the sum ).
a=0

Back to the Zeta Integral:
We now return to the zeta integral. With what we now computed we have

ZW. W' x.)

= L (I esT) @) ¥ xw) ¥ (we)
e€Z? weWs

= > (117 e5) ()
ecZ?

q—1

q+1
j—1
Z (e2+a,x) - Gler—ex—a,x)-q°

: [X(ld) 6(627 X) W,( <W61+2f 7T62+f> )

gl +2f—a

. W( e2 +i+a )
1

e1+f
+&(0; x) - W( ( 7T€2+2f> ) Y6 tay) g >
1) o
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1 7T61+2f
+x(w2) - x(w2) - ZH - B(ea, x) - W(( et 1))

.(@(62, X) - B(er — e, ) - W’((We1+2f 7T62+f>)

f—1

+ZQ§(62+G,X)'Q5(€1—€2—G,X)

a=1
7Te1+2ffa a
W/( ( 7r62+f+‘1)) "q

+6(0; y) - W'(<W61H 7re2+2f> R Y qaﬂ

a=f
_ a1 3 (H : HH/Q@&”) (7°) - ez, x)

q+1 e€Z?

7T61+2f e1+2
'lﬁ(%x) - B(er — €2, X) - W(( ol 1)) ‘W,(<7T o 7762+f>)

f—1
+ZQ§(62+@,X) - &(e; —ea —a,x)

a=1
7T61+2f7a / 7r€1+2f
) W( 7Te2+f+a 1 ) w ( < ﬂ.ez-i-f) )

qeit2f 9
e2+f / L @
+ W( ™ ) W ( ﬂ.ez—i-f-i-a ) q
1

ﬂ.el-‘rf ) o
e w T
e2t2f 2 ) ) . W’(( 7T62+f>)
1

7T€1+2f e1+f
/ ™ !
+W( 7T€2+f ) . W (( 7T62+2f> w2)>
1

'iﬁ(ez +a,x)- qa]

a=f

+6(0, ) - <W((

Performing a change of variable on e = (e, e5) € Z? by e; — €; + €3, we obtain that

ZW, W', x.)
= L (e (T ) et

q+1 e€Z?
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7T€1+62+2f
, 7-[-61+62+2f
'l®<€2>X) '6(617X) W(( meat )) W(< 7T82+f>)
1

f—1

+ZQ§(62 +a,x) - &(e; —a, x)

a=1
7T61+62+2f_a , 7Te1+62+2f
. W( 7T€2+f+0« ) W ( ( 7T62+f> )
7T61+62+2f 7_‘_el+62+2f7a
-+ W( 7T62+f ) : WI(( ,ﬂ.eg+f+a>) ' qia
1
qeiteztf > e tertof
o w T 1T€2
B(0.0)- (w<(( et | 2 1)) w( i)

et +ea+2f eati
. reites
+W(( mexty )) : W/(< 7re2+2f> w2)>
1

-i@(ez +a,x)-q_“].

a=f

1

5.4.1. x ramified

If x is ramified, the Gauss sums vanish unless eo = ¢; = —c¢(x) by Lemma [I.1]b), and
what remains is

~ , g1 s—1/2 _1 7200 3
Zv W) = (e (T ) et

2(f—c
2(f=e(x)) o - (2=<00)
W( T ) W =) ).
1

Using together with , we obtain

> / q_l w3 E w2 2
ZOVW x) = 600 (5 @) )((” 1))*-(65/2®u ) (x)

—(x)
‘ ( 11 (Ai®uj)(7r)-qs)

i+5>3

We will explain in section [5.5], why we put the result in this form.
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5.4.2. x unramified

If x is unramified, the zeta-integral vanishes unless —1 < ey, e5 due to .a). Recall that
we omit now x in the notation of the Gauss sums &(-). Thus, again using together
with 1) as well as Example |5/ and Lemma , ZW, W' xs) equals

[e.9]

-1 (H.HS—”Q@(SQl)((ﬁﬁez 7T62>)'(’5(62)

q +1 e1=—1
. 7r61+62+2f
T 2+f )) : Wl(( ,ﬂ,eg—i-f )
1

eo=—1
e1+e2+2f

.[w@).@(ﬁ).m(”

j-1
+> &(ea+a) B(er —a)

a=1

7T61+€2+2f_a e2+i+a / 7T61+€2+2f
: W( T )W< 7T62+f )
7T61+62+2f ﬂ_el+62+2f7a
o[ e (7))
1
,/T81-l-€2—|-)t o1 tertof
+(w ( ) I C—]
1
qreitea+2f et _
e , ﬂ-el €2 q
(T e Y o)
1
1 m i
q— w3 wo m
_ =l glen ><( wf ))-Ww (™ )
1
>

qg+1
(W@ ﬂeg) S-@(e»-»”g((?rm e 1)>-W2<(7T62 m))

> (e (7))

e1=—1

- ®<e2>-®<el>-w<(ﬂelﬁ ! 1)>-W’<(”el+f )

1

[e.9]
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+w<(ﬂel+f ! 1)>-W’<(”“”a Wa)>) =
+(w<(<ﬂel wf>'w2 1)>-W'<(”el+f 1)>
et 2]

7T62+f

In the last equation we have extracted the factor w2t from W(x) and the
1

7T62+f

factor from W' (x). This is possible due to (55). Now observe that the last

et
summand inside the [-]|-brackets disappear unless e; > § — 1, which is equivalent to the

fact that (7?61 vl 1) is wy-almost dominant, and thus we further make a distinction on
whether e; < §— 2. Thus,

Z(W7 Wlu XS)

el
= “-<5§/Q®Aws><( al )>-<5§/Z®w><(ﬁ ﬁ))
1

qg+1
G Sm(ez)-w(ﬁ = 1))-#”2(<7T62 )

7Te1+f 7T61+f—a
el o (T )|
1

£y (e (M)

e1=f—1
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'(®<ez>'@<el>-w<(w 1 1)>~W'<(”“” )
+§1(W((WM ) 1))'W(<W€1+f )
. (f 1 1))‘W,(<WM W@))).qa
S Y )
(o )]

We shall keep tracking the term &(e;) in the sum when e; € {f — 1,§,f+ 1,...}, even
though its value is 1.

Evaluation of the inner factors:
Observe now that we are in the situation where none of the factors is zero anymore (i.e.
no Gauss sum and no Whittaker function) and thus, we can substitute the Whittaker

e1+1
functions for their respective values. Let us first focus on the interior sum-term of
a=1
-1
and >, respectively. Observe that the first term is 0 for e; = —1. Otherwise we have
a=1

+1 rerti-a o
e o < o)
7T61+f e tia
+w<( 1 )>-W'<(” Wa)>)q“
1

merts 1t e1+1
= <6§/2®A“’3><( 1 1))-(6%”%”)((” | 1)>'21®(e1—a)

-((6§/Q®A“’3)<( m ))+(65/2®uw2>(<ﬁa Wa)>>qa
1

7T61+f
= (& e L@ e w7
( ><( 1)) @ (™)
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qertf T
e1
arre1—a (51/2 ® )\”LUS ( ) 1/2 (<7T 1>)
1

We will denote by
As(w)>1 <A3<w>>“
EF(\e) = . . —1
%) ( -1 ( (q () ()
the first factor in the brackets, and by

e () (-2 ) (2) ).

N MI(W

the second one. Thus, if e; > 0, the first interior sum can be written as

e1+1 rerti—e e tf
> 6(er—a)- | W( m >'W’(< 1))
a=1 1

€1+f 7Te1+f—a
+ W( 1 ) W o)
[ )
— (@)1 <<ﬁm 1>> s ® pa) (1) (Fver) + F'(ps 1))

Analogously for the second interior sum, we have

le(w((ﬂ'el—l-fa . 1)).W/(<ﬂ_e1+f 1))

a=1
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+ W( 1)
1
e1+
1/2 e 1/2 mertt
= (657 @ A")( 1 ) (057 @ p?)( 1 )
1
Aa(m) Aa(w)f pa(r) _ (m(ﬂ))f
Az(m) Az () + p2(m) pe(m)
1 — 22(m) 1 — (T
A3 () pa(m)
1/2 T e
= (Bel-1")( 1)) (ha @ i) ()T (GON) + G/ ().
where we have set
8- (i) - (o2
. 3T 3(m 1 _pe(w 2 (m
G(A) T 1— Ao () ’ G (’u) - 1 — pa(m) ’
Az () p2(m)

Evaluation of Whittaker Functions with w, in its argument:

By the example [5] since wy = s,

et ' 7
w(\ A = @Pex) A )
1 1
_(Ja@\atid
(1 EpSY A2(77)) 1 A3<7;))( )
As(7) ~ Ra(m
and
ﬂ-el - 1/2 wo 7'('61
W(( ﬂf) ) = (e )<< Wf)>
pa () \ 11T
1—q L. pi () 1- (u;(ﬂ)>
pi2(T) 1 —
p2(m)
If we set +1-f
A2(m) e1ri—
Loxe@) (1 (25) -
H(Ael)::<1—q1 ) 3/\ —q
’ 2(m)
As(m) L= %@
and g
pa(m) \ T
/ o 1 () 1- (uz(ﬂ)) -1
Himer) = (1 1 Mﬂ) 1 — il e
o (7
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Plugging back:

7T€1+f
If we plug everything back into Z (W, W', xs), and this time extract ( 1 ) from
1
e+t
W(x) and 1 from W' (x), we get

ZOW, W', xs)

el
_ 411.<5§/2®AWS>(( . 1))'((5%/2(§§)W)(<Ff ﬂf>)

<7T62 WQ) - B(ey) - )\w3(( €2 1)) -,uw2(<71'62 7T62>)

1/2 Trf 1/2 ﬂ-f
@1 hraree(” )
1

)l
)
™)
)

| ((;zg;)fmm N H«u,eg)]

g ¢—1 w3 2 w2 2
= ﬁ'@;ﬁ@)\ )((7r 1>)f'(5§/2®ﬂ )(72)!

e e

>

ea=—1

o

>

e1=—1

f—2
+ 2

e1=0

- G(e2) - G(er) - (A3 @ p2) ()
(A3 @ p2) (1) - (F(A e1) + F'(p, 1))

s

(A3 @ p2) (1) - (G(A) + G (p, e1))

o0

+ 2

e1=f—1

s

+ (A3 @ pig) (m)"

e1=f—1

1—q!
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o0

>

eo=—1

(”Q ﬂm) S~@@a>-»%<(W@ e 1)>~MW<<”@ ﬂ@)>

[oor 2 (245205-5)

()] oeo @ F e+ e
(™ )] e @+ G e
(™)) we
(i) e () rses) |
Evaluation of further interior sums:
Let us from now on write

f—2
+ 2
e1=0
+ 2
e1=f—1
+ >

e1=f—1

i = (N @ ) () - q .

For the sums with the expressions F' and F’ we have
()
e1=0 1
et - . - . 1 J— . . rel _ rel

1- iig:g ( _(q - 1> ( (q Ao(T) elz—:o - elz—:o %
1 T P RO A B S o B ™y
— 7)\(7‘_ . — . — q . . — — — ,

_ )\z(ﬂ) qg—1 Ao(T) I —ro 1 —rs

T ’ 1
( J g @ ) (1) - F(p,e1)
1 <q> 1( mm>11—@1 1!
e PR — . —|q- . — ,
1—%:; q—1 pa () I —rs 1 —rs
respectively. For the sums with the expressions H and H' we have

)

e1=f—1
_ -1 de(m) 0o f—1 _ g1, 2@ 0o
_ ((1 T " Na(r ) _ q—l) Y - <A3(7)> ‘ (1 q >\3(7T)> . e
o Ao (m 32 Ao (m 22
1 - )\zgﬂ-i e1=f—1 >\2 (W) 1- #Eﬂ-g e1=f—1
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(A3 ® p2) (m)™ - F(A 1)

—

—_

and

(A3 @ pa) (M) H(A €1)

~




—1 . Aa(m) _ — -1 A2(m) _
B ((1—6] -Ai(w)) _q_1> ' < rly! ) B ()\3(7r)>f 1. (1—(1 1-A§(ﬂ)) . < it )
- Ao () o A2 () -

1— /\g(w) 1 —r3 Ao () 1— Ai(w) 1 —ry

_ _ 1 Aa(m) —

_ 1 — q 1 ) < 7’;21 ) . <>\3<7T)>f 1 - q 3(71—) ) ( TéQl )
1— iig; 1 =173 Ao(T) 1-— :\\583 1 —17rg
f _

and
Z ( >| (A3 ® p2) (m)™ H' (1, €1)
() o0 f—1 _ g1 @ 0o
— G )) 1) &1 (MW)) (1 TG c
= (,r) q Sy TR - : () DI
( L= Zi(ﬂ) Sl () IO
1 () _ 1/ -1 ) -
_ (1 q ui(w)) _q—l)_< riy! )_(m(ﬂ)f '(1 a uim)_( rh )
o _ ma(m) — _ ma(m) —
1 - 1 —rs pia () 1= L —rs
[ 1—=q! ) . < ! ) - (MQ(W)y—l' (1—q1.Z;E:§> ' ( it )
o _ pa(m) — _ pa(m) —
1 u;(w) L —rs pa () 1 M;(ﬂ—) L —rs
- _ -1 (m)
_ rly! (1—(1 1_1_‘1 Z;(w))
o pa () — —
(1 — ui(ﬂ) I =73 I —rs

respectively.
Putting back II:
If we plug everything back once again, using that 1_;_1 = —ﬁ which we will use for

y € {“2 :g, iz ,q}, the zeta integral becomes

~<W W, XS)
= e )6 e
>

qg+1
T2
eo=—1 7T62

_ 1 Xo(m) — (de@\ @ (@)
B(ey) - . (1 — (q732) l) + < rh > | 2 (/\3( )) i u;(ﬂ) <u;(ﬂ)>
) g e

! g A3<7r>>‘1 1—rly' | 1=l
—+ . 1= . . — +
1_%83 ([(q—l) ( <q () L —ro I —rs3
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g (1—(qrs2)”"
| .
[ (62> q — ]. ( 1 — T32
Ly () (e
_ ~ e® )
L =g L we 11— nm
1 () B pa(m)\ 7t
_< 1 ) . ( iz () ) 1= (¢-28)
1— _ pa(m) 1—g-1
731 1 2 () q
Aa(7) (o Aam\ T
_ ( ! ) . (m> 1- (¢ 23)
_ Ao () _ -1
I — 7o 1— /\j(ﬁ) 1—g¢q

00 s T
= (wez Wez) - B(ea) - AW re2 ),Mw2(<7r62 7T62>)
ea=—1 1
Joen 25 (52200
et (7)) ()
q—1 1—;\\28; L — 1732 1T —rg
'<1—T22—q1+q17’22—1+7”32+q1‘/\2(7r)—q17”22)
()
q ( e )( Ly ()
q—1 1—/‘2%2 1T —rz I —rs

-<1—r31—q_1+q_17‘31 —14rg+q "
A3 ()

q—1 w3 K w2 (,ta
C @) @ e ety

i (W” W@) S.@(eg).W( ' 7o )-u”((ﬁez W@))

ea=—1

'[ﬁ(eﬁ'q—l' 1~ ras
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t

g1 (62 )\wg)(<7r2 1>)f (63 @ ) (m2) - q (1 - (q7‘32)1>

q—l 1—7”32

s-eﬁ@a)- Aw3<(ﬂ_2 e 1>> '“wz(<ﬂ£2 we2>)
| [6(62) " izgi e (1 —17"22> " Z:E:; e <1 _17‘31)1

=q_y@¥®x%(ﬁ J%w¥®wﬂww.q <P4Ww*)

q_|-1 q—l 1—7’32
) i Te2 5.6(6)'>\w3( T2 e )',Uwz( Te2 )
e ez 2 1 ez

'{05(62)—1-( ! )( ! )(7”22'(1—7“31)4—7”31'(1—7“22)}

1—7”22 1—7”31

B q_i T )\wg)(<7r‘2 1>)f 0V @ ey (o) L (1 — (%2)1)

q-+ qg—1 1 —rs
T
T

s-es(eQ)-w((WeQ e 1))#”2((”62 W@))

‘{6(62)4—( ! )( ! )(7“22+7"31—2'7”22'7“31)]'

1—T22 1—T31
s e
.)\w3( 71'62 ).
1

just (ra1 - r22)®. Thus, using (80), we finally obtain that

o0

o>

eo=—1

=

€2
One can observe that the term H <7T W@)

(T

— / q—1 1/2 w w2 1/2 w ¢ q 1 - (qT32)_1
Z e P (5 2)(7)f -
Wi = S e e e ey (0
Y B(eg) - (710 72)
ea=—1
1 1
'|:®(€2)+<1_T22> (1_T31>(7'22"‘7“31—2'7"22'7'31):|
_ E 1/2 w3 i Posl/2 way (i 4 1-— (qr32)_1
= b e L (R

: [(7’31 r2) =14 (1-q)?
(1 _Q)2 1—7‘31'7"22)
(131 To) ' =14 (1 —¢)! 1 1
(1—Q)1(1—T31'7“22) .<1—T22> <1—T31>
(rog + 1731 — 2199 - 131)]

+
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Thus,

Z(W>W/7Xs) = VOI(JQ) “q B (1 - q_l)

L (51/2®Aw3)(<”t2 1)) 6V @ ) (). 2 .<1—(QT32)1>

q—l ].—7"32

( (1—q) ) 1—7; m) ' (1—1r22> (1—17’31).

[ 31 Te2) '+ ¢ 2CI) (1 —=1792)(1 —1r3)

((rsy - ?"22) Q)(l—CI)(7“22+7“31—2'722'7’31)}

2. <51/2®Aw3><<7rt2 1>> (@ o ) ’<1_(QT32>_1>

qg+1 qg—1 1 —r3
1 1 1
(1—q ) 1—173 - 7’2)'(1—7“22) (1—7“31).
{ 31" T22) —QQ) (1 —rog — 131 + 792 - 131)
((rs1 - 7"22) —q)

(rog 4+ 131 — 2 T9g - T31 — qrog — qr31 + 2 - oo - T31))]

ik WL A“)((Wu 1>) (51/2®”w2>(7rt2)f'q31’(1_(qr32)1>

qg+1 1 — 139
‘ ((1 _1(1)2) ' <1 _Til '7“22> ' <1 —17°22) (1 —17°31) '

' [((7"31 ra2) T =g =y 1
+¢¢ = Pro—Pra+¢* - rn T
—2q + 2qrao + 2qr31 — 2qrag - T31)
+ (7"3_11 + 7"2_21 —2- 97“3_11 - qr2_21 +2q

—qrag — qr31 +2q - To9 - T31 + @PTan + P31 — 2% - a9 - 7’31)}

=1 172 oy [T P2 oy 4 (1= (grs) !
@™ ey L (L

| ((1 —1q)2> . (1 —r;-m) ' (1 —1r22) (1 —1r31) '

' [((7"31 o) =gy — @ ¢ 1+t qras — @7 e 7"31)}

=1 (@ A““><<7Tt2 1>> (51/2®”w2)(7t2>f'q31'(1_(qr32>1>

qg+1 1 —r39
‘ ((1 —IQ)2> ' (1 —Til '7“22> ' (1 —1r22> (1 —17’31) .

- (L=ra ) - (1= (gra2) ™) - (1= (grs) ™) -
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2

1 §/2®Aw3)(< 1>>f~<5§/2®u“’2)<7rt2)f
¢ 1-Nouw)m) " ¢!
z‘+j>H2+1 (CI -1 1=\ ®u)(r)-q* ) .

As in the case when y is ramified, we will explain in Section [5.5] why we put the result
in this form.

5.5. The case n arbitrary

Let us for a moment assume that p and o are ordinary at @, see Subsection [6.3, Then
all \;(m) and g;(7) lie in a number field E/k. Under a fixed embedding of E into Q,
with p|p in Q, we can further assume that exactly half of the Satake parameters satisfy
|(Ai © p)(m)],, < ¢~ */*, namely those with i+j > n+1. These correspond to the different
a in Lemma 7 of [Coa89]. The remaining Satake parameteres for i + j < n + 1 satisfy

(X @ py) ()|, > a2

5.5.1. x ramified

Let us supose that y is ramified. This case has been worked out by Januszewski in Chapter

1 of [Jan09]. If one takes a look at the formula

n—1L)n ’I’L—l n
109 (w,e) = ¢ ol ) - (1=g7')" - 30 |l T] Slen + i x)
=1

aEAw

ernal . a(L) . ftn
/ W(<7T wy' Ty W 1)) W (rewj’ - rBrf) oy (5 d* 5,
(U \Tn)!

Lemma , 2b) forces only those w € W,, and those a € A, to survive, for which the
product [TiL; &(e,+a;, x) does not vanish. But since a,,-1(,y = 0, this forces a = (0, ..., 0),
which can only occur for w™'(n) = 1 and for e, = —c(x). After the extraction of r,,
the pattern would repeat: one would inductively generate in every step k£ a factor of
&(x)"*, and force the condition w™'(n + 1 — k) = k as well as e,,1_ = —k - c(x).
In other words, there is no combinatorics involved; the I{°")(w, e) as well as the whole
modified integral is just one factor. The only factor that survives is

(n—1)n n(n+1)

Z(valvxs) = VOI(deXg) g (1 - qil) ®(X) 2
- f
. (5%31 ® )\Wn+1) << 1)) . (52/2 ® an) (th)f
—(x)
( 11 (>\i®uj)(7f)~qs) :

i+j>nt1

(n—1)n
2

In this case it is easy to see that the zeta integral is entire (holomorphic for all s € C). As
pointed out in Remark in this case L(py, X (0,®@xp.s) = 1. Thus, Z(W, W', x,) coincides
(up to a non-zero constant in £*) with the prediction of Coates stated in Lemma 7 of

[Coa89].
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5.5.2. x unramified

If x is unramified, the value of the local zeta integral remains unknown for general n.
Nevertheless, based on the results for n = 1,2, based on its structure in the ramified case
together with Coates prediction in Lemma 7 of loc.cit., we conjecture the following:

Conjecture 1. If x is unramified, then

(n—1)n

Z(W,W',XS) = vol(J,,d*g)-q =z -(1— q_l)
tn f
(85 @A) ((” 1)) (52 @ ) (a)
¢ 1—Nep)(r) "¢t
1l (q -1 ) '

i+j>n+1 I-(h® Mj)(ﬂ) “q’

(n—1)-n
2

As we could observe in the computations for n = 1,2, we also expect that a priori
the integral converges only for R(s) > 0, and the conjectured result is actually the
meromorphic continuation of the local zeta integral to whole C with the obvious poles.
In this case we have further

L(pp x (00 ® Xo.5)) = 11 (1- Ai(w)1® i q*)

and the quotient N
ZW, W' xs)
L(py X (0o ® Xp.s))

coincides with the statement of Lemma 7 of |[Coa89] for motives, modulo a non-zero
constant in .
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6. p-adic L-function attached to GL,. x GL,

6.1. The modified automorphic L-function

Recall the equation involving the global L-function L(p X (0 ® xa.s)). We modify the
integral expression as follows: set hy i1 = (hupt1), € GLpii(A) and hy, = (h,), €

GL,(A) where
Wy, fo-tn
hn+1 ° ( m 1> , V= p?

1,41, otherwise

hu,n—f—l -

and

h o ﬂ'f@'t’ﬂ7 UV = p
v 1,, otherwise ’

respectively, according to the setting in We further modify the cuspidal forms ¢;
and ¢} as follows: we interchange its component at p by the factor that corresponds to
the local Iwahori-invariant Whittaker functions as described in loc.cit., and call this new
cuspidal forms ¢; and @} respectively. We obtain a modified VersionE] of as

> @((9 1>-hA,n+1)-¢1(g-hA,n>

Y GLy (k)\GLn (A) (73)

ZWeo, W., Xes)
Xas(9)d g = P(s, W, W) - L(p % (0 @ Xas)) S
) ) - L(p x ( ) Ll % (00 © Xu))

From now on, we shall follow Chapter 4 of [KMS00] and Chapter 2 of [Jan09].

6.2. The spherical and parabolic Hecke algebra
Since p ¢ S, the Hecke algebra of interest at o is the spherical Hecke algebra

H := H(GLy(F), GL,(0)) = Co(GL, (O)\GLn (F)/GL,(O)).

Moreover, this Hecke algebra is commutative as we have the Satake isomorphism of C-
algebras
H = CIXL(T)(F)"™,

see Theorem 4.1. of Cartier. We define in H the standard Hecke operators
m=c© (" oo (7)

for i € {0,1,...,n}.
Let us now set H' := H(B,(F), B,(O)). This Hecke algebra is called parabolic. It is

1"Kazhdan-Mazur-Schmidt in Chapter 3.2 of [KMS00] and Januszewski in Chapter 1.2 of [Jan09] call
this (under a mild modification) a generalized global Birch Lemma.
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easily seen to satisfy the properties of the Lemma on Embeddings{T_g] of [Gri92], and thus,
we have a natural ring embedding

H—H, [~ fiB.F)-
Moreover, by Theorem 2 of loc.cit., the Hecke polynomial
n (i—1)i

HX)=> (1) ¢z -T-X""€HX]

1=0

decomposes over ‘H' into linear factors as

n

HX)=][[X -U) =X -U) ... (X -U) € H[X],

j=1
where
1j—1
U; = B,(0) T B,.(0) e H' (75)
L
for j € {1,...,n}. One should be careful as H’ itself is not commutative, and neither are
the operators {U;}7_,. However, if we now define for j € {0,...,n}
Vj = q7<j721)j . Z/{l .. .Z/{j S Hl, (76)

then there operators commute pairwise by [Gri92]. In addition, there is another interesting
fact about these operators.

Recall from Linear Algebra, that a well-known feature of pairwise commuting (linear)
operators of a vector space (over C) is that they possess a simultaneous eigenvector. A
prototype example in number theory is the family of classical Hecke operators for modular
forms.

The natural H’-module, where the different V; operate is the C-vector space M’ :=
Ce(Bn(F)/B,(0)). The H'-module structure on M is as described in ({#I). In this case,
it is explicitly given by

H x M’ — M

(]ijgz-an),n) o Yul-ea) ()

We now state a preparatory Lemma, which is used to find a simultaneous eigenvector of
the different V;:

Lemma 6.1. Let z € C be arbitrary. Then we have the decomposition

—1n n—1 n ]
T IV HE) =TT (2 d V- V). (78)
j=0 =

j=1

18Gritsenko calls it Lemma on Imbeddings.

78



We now state a criterion on how to find a simultaneous eigenvector of the different V;:

Lemma 6.2. Let A\ := (\y,..., A1) € C" ! and 0§ € M satisfying
H()\) 0 =0
for any j € {1,...,n — 1}. Then the function

n—1 n

or:=|TITI (N a7V = V) | @0

i=1 j=1
J#i

is a simultaneous eigenvector of V; with corresponding eigenvalue
e
_G=1)j
cji=q 2 - H A
i=1

where j =1,...,n— 1.

Proof. This is Lemma 2.2.3 of [Jan09). O

6.3. The p-adic distribution

At this point, we will assume that p and o are both ordinary at p. By this, we mean that

 both p, and o,, are defined over a number field. Thus, there is a (common) number
field F/Q, such that the zeroes

M), An(T), Apra (), and g (m), ..., ()

of the corresponding Hecke polynomials of p, and o, respectively, are all in £, and

« with respect to a fixed embedding £ C £ = Q C E,, we have

|)\1<7T)|p = 1, |>\2(7T)‘p = qil’ cee ‘)\n<ﬂ.)’p — qf(n*l)7 |)\n+1(ﬂ'>|p _ q,n
and
[ (m)l, =1, [pa(m)], = gt ..., |pn ()], = )
We do not really need to demand |)\n+1(7r)|p = ¢ " and ‘N/n(ﬂ-)‘p — ¢~ but under

this condition, the powers of ¢ satisfy the condition 62| If we assume that M, and M,
are the motives conjecturally attached to p and o, respectively, then the powers e;(M,)
and e;(M,) of the cyclotomic character as in the definition , are exactly the g-powers
of [Ai(m)|, and [p;(m)| , respectively. We can thus assume that M, and M, are ordinary
at p. Since M, and M, further satisfy the Hypothesis [3| their tensor product M, ® M,,
provided it exists, would be ordinary at @ as well.
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Remark 8. Observe that exactly half of the mixed roots satisfy

(i ® ) (M), <a7% - (¥)

up to a shift (x), namely exactly those with ¢ + 7 > n + 1. This is the same condition we
mentioned in section and Coates stated in Lemma 7 of [Coa89], respectively.

Kazhdan-Mazur-Schmidt construct in Chapter 4 of [KMS00] a p-adic distribution, that
interpolates the special value s = % of the modified L-function over Q, under the assump-
tions that y, is trivial everywhere except p, and the conductors of all x4, x2,..., x4 ' are
the same power of p. Januszewski generalizes this construction in Section 2.3 of [Jan09]
to a number field k/Q, where x4 is unramified everywhere except at . He also shows
that the interpolation condition holds without the conductor assumption on the powers
of xa. The construction of the distribution is as follows: (we understand that dy = 1)

Let us set
kx = (7)1 () (D= = G,y (nt 1) H 1y

Then both k) and x, are p-adic units. We further set

i = <6n+1(7rtn+1) . 571(7,5”));.

Rx Ry

We set now

—kX\A Q@kX\AX/(1+Wf)-HO§
Vo f v

to be the ray class group of level co at p. Consider for an a € A* the set

O(a) := k:\k a- 1107 /1 ox gnmw\’fx -a~1}05/(1+7rf)- 11 Ox.
vEp §

This is a compact open subset of Cy(p>). As the double quotient k* A~ / [1O) is

14
naturally isomorphic to the ideal class group of k, which has say h elements, there exist
ideles aq,...,ap € A* such that

Cr(p™) = O(ar) U...LUO(ap).

We can assume w.l.o.g. assume that all a; are 1 at the place p. Let us now decompose
the space GL,(k)\GL,(A*). Let us set for the a; € A~

Cig = det™! (kX \k (1+ Wf) I1 Oyyﬁp) C GL,(k) \GLn<A)

For x € OF we set further €, := (€z), € GL,(A) with

e (1) -

1,, ,otherwise
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Then .
k) \GLn(A) = H H Cz‘,f c €, (79)
i=1 =
where x runs over a representative system of O /(14n'). For the different idéles a; € A*,
Januszewski defines in Section 2.3 of [Jan09] the p-adic distribution on O(a;) as

~ 61' ~/ X
ﬂai(z + pf) = Ry Z /C @L((g 1) : hA,n—H) : SOL(g c€x ot h/A,n)d q
L f

and shows that it is indeed a p-adic distribution under the assumption that we modify the
local Whittaker functions at  of both @] and @, according to Lemma [6.2 But our choice
of Iwahori Whittaker functions is already a simultaneous eigenvector of the different V;’s
(see Corollary 5.5. of [Har98] and Proposition 1.3. of [Janl§]), and thus a scalar multiple
of the modification as stated in Lemma [6.2] so there is no need for modification in our
case.

The different g4, , . . ., ftq, sum up to a p-adic distribution g, on C(p>) and for the trivial
adelic character y, = 1 it satisfies

h

h
Xadp, = / dite, = fha, (x4
/ck(m i ; O(as) 2 ( )

i:l z€0 /(1+T)

53 >/

1 :ve(’);/(l—&—wf) L i,f

. g 1) € hani1) PG € han)d g

(79) g ~/ X
— B, hgmit) - han)d
Ki - Z/GLn (E\GL(A) (( 1) A, +1) - P, (g A, )d*g

(73) / (WpawéaXp,1/2)
= 1/2, Weo, W oRX

P(1/ ) L{p X (0 ®xa1/2)) - Loy % (00 ® Yo 2))

P(1/2, Wse, W) - L(p X (0 ® XA, 1/2)) vol(Jy,,d*g)

n(n+1
(n-1)n
q (1—q! (
) f

(e (( ) o) ()

LA (=) AL (o)

Januszewski [Jan09] treats the question when the p-adic distribution is a measure. By
his work,

Theorem 6.1. If (p,0) are in algebraic, regular, automorphic cuspidal representations
of GL,4+1(Ag) x GL,(Ay), that are ordinary at g (this implies that their respective -
components are spherical) and cohomologicallﬂ7 then the p-adic distribution s, on Cy(p™)

9For a precise definition of cohomological representation, see [Jan09)].
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constructed by Januszewski is a measure, that satisfies for y, unramified at p

/C ( )XAd,up = K- P(1/2,Ws,W.) - L(p X (0 ® Xa,1/2)) - vol(Jy, d*g)
k(0>
n(n+1)

(n=1)n 1 (n—1)n q 2
. 2 (1 — 2 o —
q (1-q) (q - 1)

(657 @ A ((W‘n 1>>f, (62 & i) (n)'
I <1_W>' 1T (1—@‘11/2)

i+j<n+1 i+j>n+1 i @ ;) ()
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A. Local Gauss sums

For x = xp, ¥ = ¢, (recall that ¢ is unramified at p) as introduced in Section , and
for e € Z, we defined the e-twisted local Gauss-sum by

Bex) = [ () v(rt) d*t.

OX
It satisfies the following:
Lemma A.1.

a) Is y unramified, i.e. x = 1, we have

0 ,e< =2
Gle 1) =4 1 ,e=—1.
1 ,e>0

In this case, we drop 1 from the notation and write just &(e).

b) Is x ramified, i.e. ¢(x) > 0 and e # —c(x), we have
&(e,x) =0.

Hence, in this case, we drop e from the notation and write &(x) = &(—c(x), x)
instead.

Proof. a) Since O* = O\rO and using the measure comparision given in (24)), we obtain

B(e,1) = /Xn(t)w(wet)m

. 1 du

- 1—1(]_1 (/Ow(ﬂ'eu)du—/pw(ﬂeu)du>
_ ! ( /O () du — /O w(we(ﬁu))d(ﬂu)>

1—q!
_ 1 (/(9¢(7T€U>du . ql/OQ/J<7T6+1U)dU> _

1—q!

Hence:

e For e < —2 we have

Gle, 1) =

1 —1q_1 (/(9 Y(ru)du — ¢ /Oz/J(ﬂeHu)du) =0,

since both ¢ (7¢ - —) and (7™ - —) are non-trivial on O.
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e In the case e = —1 we have

1 1 1
L L ~1 _—1/ ST B
O(e,1) = 1= | [,o wdu—g [wtde | = —— et = o
=0 =1
since (7! - —) is non-trivial on O, but ¢(—) is trivial on O.
o At last for e > 0 we get
1 1
1) = e _71/ e+1 ): 1— 71:1'
&) = == ( [ wrudu— g [ vt ujdu) = ;= (17"

Here, both ¢(7¢ - —) and ¥ (7! - —) are trivial on O.

b) Now let x be ramified.

« First we consider the case e < —c(x). Here we have 1+p) C O*. Moreover
since O* and 1 4 p™ are unimodular, by the quotient integral formula 1.5.3 in
[Deild] there exists a O*-invariant Radon measure d*h on the quotient space

s / 1 + pc®), such that we can split the integration of the full space O™ into the

product integration of the subspace 1+p‘® and the quotient space O™ / 1+ p,
and hence

&(e, x) =/

Ox

vt nat = |

x e.T dxxdx .
O% /(14pc(x)) /1+p‘(><) X( y)w(ﬂ' y) y

But since y is trivial on 1 + p*™) | we can rewrite the interior integral as
| ey =x) [ uEtey)de.
1+p¢(9() 1+p¢(x)

Moreover since ¢(y) < —e, and hence the character ¢)(7¢y - —) is non-trivial on
1 + p™)_ we obtain

/ Y(rlry)d*x =0,
14pcx)

since we can again split the integration over 14p™) by the subspace 1+p~¢ C 1+
pX and use the same argument, that 1 (m®y - —) is non-trivial on the finite group

1+ p / 1 + p—¢, and the integration over this (discrete) finite group happens to
be the same as over the additive group pc) / pe.

« Now we consider the case e > —c(x). If we suppose that e > 0, then obviously

&(e, x) =/

X

X()b(ret)d t = / X(H)d*t = 0.

X

Otherwise if 0 < —e < ¢(), we consider the closed subgroup

O*D1+p°
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As previously, we can express the Gauss sum as follows:

B(e, x) :/@x X(t)@/)(ﬁet)dxt:/

T ¢ deL’dX ‘
OX/(1+p°<X>)/1+p—e X( y)@b( y) y

By looking at the interior integral, we see that € 1 4+ p~© means = 1 + 2/ for
some 7’ € p~¢, but for those 2/ we have ¥ (m*2’y) = 1, and thus

| xapu@ayds = x@Ey) [ x@da=o,
14p=e

1+p—e

since x is again non-trivial on 1 4 p~¢ because of the assumption —e < ¢().
O

Remark 9. Let us fix an r € N. If z € C\{1,0}, N > —1 an integer and if x is
unramified, then

i@()r 6_2—1_1+<1_q)r_zN+1
et A ) Gy R

since with help of the previous lemma, [1.1

(80)

S Gy = > 6l (1 -2)

1—=2

e=—00 e=—1
B(—1)"(z7t—1) +1— 2N
1—2z
Z_l -1 + (1 _ q)r ZN-H
(1-—qr(l—2 1-z

Specially in the case when |z| < 1 and r = 1, taking N — oo this simplifies further as

DT PG A el (2 (81)

) qg—1 1—2

We will need this little computation in Chapter [5
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