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Abstract

Let k/Q be a number field, ℘ a fixed finite prime place of k and A the ring of adèles of k.
Let further (ρ, σ) be a pair of cuspidal automorphic representation of GLn+1(A)×GLn(A)
unramified at ℘ and let χ be a quasicharacter of k×

∖
A× whose conductor is a power of

℘. The automorphic L-function L (s, ρ× (σ ⊗ χ)) attached to ρ × σ under the twist of χ
has its special value at s = 1/2. We will study the ℘-adic interpolation of this special value
of L (s, ρ× (σ ⊗ χ)). We state a conjecture for the value of the ℘-adic L-function at χ for
general n under the assumption that χ is trivial at ℘. We will prove the conjecture in the
cases n = 1, 2.



Zusammenfassung

Es seien k/Q ein Zahlkörper, ℘ eine feste endliche Primstelle von k und A der Ring der
Adele von k. Es seien ferner (ρ, σ) ein paar von kuspidalen automorphen Darstellungen
von GLn+1(A)×GLn(A), beide unverzweigt bei ℘, und χ ein Quasicharakter von k×

∖
A× ,

dessen Führer eine p-Potenz ist. Die automorphe L-Funktion L (s, ρ× (σ ⊗ χ)) von ρ × σ
unter Twists von χ hat ihren speziellen Wert bei s = 1/2. Wir werden die ℘-adische
Interpolation dieses speziellen Wertes s = 1/2 von L (s, ρ× (σ ⊗ χ)) untersuchen. Wir
werden eine Vermutung über den Wert der ℘-adischen L-Funktion für allgemeines n unter
der Annahme aufstellen, dass χ trivial bei ℘ ist. Diese Vermutung beweisen wir in den
Fällen n = 1, 2.
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0. Preface
The aim of this writing lies in the ℘-adic interpolation of the special value s = 1/2 of
the L-function L(s, ρ × (σ ⊗ χ)) attached to a pair of cuspidal representations (ρ, σ) of
GLn+1(A)×GLn(A) under the twist of an adelic quasicharacter whose conductor is a power
of ℘. It readily follows the works of Kazhdan-Mazur-Schmidt ([KMS00]) and Januszewski
([Jan09]). The latter constructs a ℘-adic distribution with the interpolation property for
χ that is ramified at ℘. The author also formulates precise conditions on when the ℘-adic
distribution is a (pseudo-)measure. We will show that the ℘-adic distribution constructed
by Januszewski satisfies the relation predicted by Coates in [Coa89] for trivial χ in the
case n = 1, 2 as well. The crucial part of the construction lies in the modification of
L(s, ρ× (σ ⊗ χ)) at ℘.
Chapter 1 is preliminary in its nature: we define the necessary objects to work with.
Chapter 2 is devoted to the development of both, the automorphic and local repre-
sentation theory. In addition to general definitions, we will focus on the development
of non-Archimedean Whittaker functions right invariant under the Iwahori group Jn.
Iwahori-invariant Whittaker functions have been studied by Brubaker-Buciumas-Bump-
Gustafsson in [BBBG19] and Brubaker-Bump-Licata in [BBL18]. After the development
of the representation theory, Chapter 3 will serve to construct the automorphic L-function
attached to ρ× σ by the method of Rankin-Selberg.
Chapter 4 is intended to talk about the connection between motives and cuspidal rep-
resentations as predicted by Clozel in Conjecture 4.5. of [Clo88]. Coates describes in
[Coa89] the construction of a ℘-adic measure that interpolates the special values of a
motivic L-function. His description serves us as guidance on what we expect to obtain on
the automorphic side.
In Chapter 5 we mimic Coates’ modification at ℘ for motives on the automorphic side.
This is the central part of our work. We think that the correct modification of L(s, ρ×σ)
at ℘ is mirrored in the appearance of a modified local zeta integral of the form∫

Un(k℘)\GLn(k℘)

W(
(
g

1

)
hn+1

(
wnπ

f·tn

1

)
) · W ′(gπf·tn) · χ (g) |det(g)|s−1/2 d×g. (1)

Here χ is a character of GLn(k℘) and the functionsW ,W ′ are Iwahori-invariant Whittaker
functions attached to GLn+1×GLn and are chosen to be eigenvectors of parabolic Hecke
operators. The element wn denotes the long Weyl element of GLn with respect to the
diagonal torus. The matrix hn+1 as well as the parameters f and tn are further fixed values
to match the modification predicted by Coates in [Coa89]. The closed form of this integral
is for ramified χ known due to the work of Januszewski; see Section 1.1 in [Jan09]. We
conjecture for the case when χ unramified the following:
Conjecture A. If χ is unramified, then the integral (1) has the closed form

vol(Jn, d×g) · q
(n−1)·n

2 · (1− q−1)
(n−1)·n

2

·
(
δ

1/2
n+1 ⊗ λwn+1

)((πtn

1

))f

·
(
δ1/2
n ⊗ µwn

) (
πtn
)f
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·
∏

i+j>n+1

(
q

q − 1 ·
1− (λi ⊗ µj)(π)−1 · qs−1

1− (λi ⊗ µj)(π) · q−s

)
,

where λi(π) and µj(π) are the Satake parameters of ρ and σ at ℘, respectively, and q the
cardinality of the residue field of k℘.

The main result of our work consists in the following:

Theorem A. The Conjecture A holds for n = 1, 2.

Finally, in Chapter 6 we recall the construction of the ℘-adic distribution of Kazhdan-
Mazur-Schmidt ([KMS00]) and Januszewski ([Jan09]), respectively. We modify the L-
function L(s, ρ × (σ ⊗ χ)) by inserting the modified local zeta integral from Chapter 5.
We then show that, under the stated Conjecture, it satisfies the interpolation property
for χ unramified at ℘ as well, as was predicted by Coates. More precisely, by the work of
Januszewski, and assuming the Conjecture A to be true, we have the following result:

Theorem B. If (ρ, σ) are in addition algebraic, regular, ordinary at ℘ (this implies
that their respective ℘-components are spherical) and cohomological, then the ℘-adic
distribution µ℘ on Ck(℘∞) constructed by Januszewski is a measure, that satisfies∫

Ck(℘∞)
χAdµ℘ = κf · P (1/2,W∞,W ′∞) · L(ρ× (σ ⊗ χA,1/2)) · vol(Jn, d×g)

· q
(n−1)·n

2 · (1− q−1)
(n−1)·n

2 ·
(

q
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)n(n+1)
2

·
(
δ

1/2
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)((πtn
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))f

·
(
δ1/2
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) (
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·
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(
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1− q1/2
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)
.
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0.1. Historical Development and Motivation
The following subsection is intended to give a brief introduction into the historical de-
velopment of L-functions and their connection to number theory. We will also try to
motivate here the aim of this work. It can be skipped by the expert.

0.1.1. Classical approach to L-functions

The Riemann zeta function. The study of classical L-functions dates back to Riemann.
Riemann introduced in [Rie59] the famous zeta function bearing his name

ζ(s) Df.=
∞∑
n=1

1
ns
.

f This function is a priori defined in the right complex half-plane <(s) > 1. It can be
expanded as the infinite product of Euler factors

∞∑
n=1

1
ns

=
∏

p prime

1
1− p−s , (2)

which was for natural exponents already known to Euler. If we analyze this equality, we
find on the left hand side an object from complex analysis, and on the right hand side we
see that it encapsulates all the prime numbers, the building blocks of number theory. This
was the first established connection between these two areas. The Riemann zeta function
is a new tool that can be used to investigate asymptotic behaviour of prime numbers by
means of analytic methods.
Riemann could show in two different ways that ζ(s) extends meromorphically to the
whole C and has a simple pole at s = 1. One such argument goes as follows: by a
clever mainpulation of the sum ζ(s), one can extend it meromorphically to <(s) > 0.
Subsequently, the function

Λ(s) := π−s/2 · ζ(s) · Γ(s/2),

which is called the complete zeta function1, is a meromorphic function on whole C with
simple poles in {0, 1}, and it satisfies the functional equation

Λ(s) = Λ(1− s). (3)

Complex functions of the nature of ζ(s), that

1In [Rie59] we find Γ(s/2 − 1). This is not a mistake, just the slight difference in the definition of the
Γ-function in times of Riemann, which was shifted by 1 to the right.
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• are defined on some right half place,

• have an Euler Product similar to (2),

• satisfy a functional equation similar to (3),

• and (consequently) possess a meromorphic continuation to whole C,

are often referred to as L-functions2. As such, the Riemann zeta function ζ(s) is the first
of its kind.

Generalizations of ζ(s). Since its discovery, the Riemann zeta function ζ(s) went through
a series of generalizations:

1. The key to the first generalization consisted in considering the Riemann zeta func-
tion ζ(s) as the L-function corresponding the trivial character 1 of the trivial group.
Dirichlet introduced the function

L(s, χ) =
∞∑
n=1

χ(n)
ns

(<(s) > 1),

where χ is the extension of a finite character of (Z/mZ)× to a multiplicative func-
tion on Z. This function is called the Dirichlet L-function and finite characters of
(Z/mZ)× for some m ∈ N are called Dirichlet characters. It possesses the Euler
product

L(s, χ) =
∏

p prime

1
1− χ(p) · p−s

and satisfies a function equation similar to (3).

2. Further generalization consisted in understanding the ζ-function as the ζ-function
attached to the prime number field Q. This led to the definition of the Dedekind
zeta function

ζk(s) =
∑

06=a/Ok

1
N(a)s (<(s) > 1)

where k/Q is an algebraic number field and Ok its ring of integers. Here a runs over
the non-zero ideals of Ok. The Euler product of ζk(s) is

ζk(s) =
∏

p max.ideal

1
(1−N(p)−s) .

It also satisfies a function equation similar to (3).

2Although a formal definition is still missing.
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3. Ultimately, Hecke ([Hec18], [Hec19]) unified these two generalizations as follows: he
generalized Dirichlet’s characters to so-called Hecke’s Grössencharakter and studied
the functions

Lk(s, χ) =
∑

06=a⊂Ok
(a,m)=1

χ(a)
N(a)s (<(s) > 1)

where χ is a Hecke’s Größencharakter of modulus m. The Euler product of Lk(s, χ)
is given by

Lk(s, χ) =
∏

p prime ideal
p/∈m

1
(1− χ(p) ·N(p)−s) .

The complete L-function

Λk(s, χ) := γ(χ) · Γk(s, χ) · As · L(s, χ), (4)

where A is a constant and the gamma factor Γk depends only on the infinite places
of k and is entire in s ∈ C for every non-trivial character χ. Furthermore, it satisfies
the functional equation

Λk(1− s, χ−1) = W (χ−1) · Λk(s, χ), (5)

where W (χ) is known as the root number of χ.

These functions belong to the class of classical L-functions.

Remarks.

a) We would like to point out the importance of the study of L-functions in number
theory. It is intuitive to use analytic tools in order to investigate the asymptotic
behaviour of prime numbers. Indeed, for many statements, there is no elementary
proof3 known or is much harder to derive without analytic tools and often unintuitive.
One such prominent example is the Dirichlet’s Prime Number Theorem:
1.) In any arithmetic progression a + b, a + 2b, a + 3b with a, b coprime, there exist

infinitely many prime numbers.
Dirichlet went even further and showed that the prime numbers are equidistributed
with respect to b in the following sense:
2.) Every prime number (except maybe the prime divisors of b) lies inside the class

a+
(
Z/bZ

)×
with probability 1

ϕ(b) .
It took a long time to discover an elementary proof of the Dirichlet’s Prime Number
Theorem. It was done by Selberg in [Sel49], and he only proved the first statement.
The proof itself is tedious and does not reveal anything new.

3This is a proof that does not require analytic methods.

5



b) Hecke also introduced in [Hec37a], [Hec37b] a new type of L-functions. These are
attached to modular forms with respect to SL2(Z) or its congruences subgroups. These
are called Hecke’s modular L-functions and also belong to the class of classical L-
functions.

c) L-functions (or zeta functions) can also be attached to many different objects ; for
instance to elliptic curves, or more generally to algebraic varieties. These are known
as Hasse-Weil zeta functions.

0.1.2. Adelic approach to L-functions: The paradigm of Tate

L-functions on GL1(Ak). Although Hecke’s proof of his functional equation (5) (using
theory of generalized theta functions) represented a great achievement so far, it did not
lay bare the nature of the gamma factors Γ(s, χ) or of the root numberW (χ). In fact, this
was only possible by the work of Tate in the 1950’s. Tate, a student of Artin, applied in
his doctoral Thesis [Tat50] methods of (abelian) Fourier Theory to the ring of adèles Ak

of a number field k/Q and, consequently, was able to transfer the classical L-functions to
the adelic environment. In this setting, Dirichlet’s characters correspond to characters of
the idèle class group Q×

∖
A×Q with finite image and in general, Hecke’s Grössencharakters

for a fixed number field k/Q correspond to characters of the idèle class group k×
∖
A×k

(without the assumption on finite image).

Tate studied adelic (or global) zeta functions of the form

Z(s,Φ, χ) Df.=
∫
A×
k

Φ(x)χ(x) ‖x‖s d×x, (6)

where Φ is an adelic Schwartz-Bruhat-function, χ is some Hecke’s Grössencharakter and
‖ · ‖ denotes the adelic norm. These functions are convergent in the right half-plane
<(s) > 1. Any Hecke’s Grössencharakter χ is of the form

χ(x) =
∏
ν

χν(xν),

where ν runs over the prime places of k and the χν are characters of the completions kν ,
unramified at almost all places ν. Since the space of adelic Schwartz-Bruhat-functions
S(Ak) is by definition the restricted product ∏S(Oν)

ν S(kν), the function Φ is a linear
combination of products of the form ∏

ν Φν and hence, Φ can be further assumed to be
already such a pure product. In this case, the global zeta function decomposes as an
infinite product

Z(s,Φ, χ) =
∏
ν

Zν(s,Φν , χν),

where Zν is the local zeta function defined by

Zν(s,Φν , χν) =
∫
k×

Φν(xν)χν(xν) |xν |sν d
×xν . (7)
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Tate proved that (6), in fact, possesses an analytic continuation to the whole C with a
possible pole and moreover satisfies the functional equation

Z(s,Φ, χ) = Z(1− s, Φ̂, χ−1),

where Φ̂ is the Fourier transform of Φ.
Now, the local zeta functions Zν(s,Φν , χν) for finite primes ν, where χν is unramified,
correspond (for a special choice of the Schwartz-Bruhat-functions Φν) to the Euler factors
of Hecke’s L-functions and thus, the product over the finite places (where χ is not ramified)
is in the right half-plane exactly Hecke’s classical L-function. The appearance of the
Gamma function Γk(s, χ) in the functional equation (4) now arises naturally as the product
of the local zeta functions at infinity. The root number W (χ−1) comes to existence also
in a very natural way; as the product of so-called local epsilon factors (modulo a small
variation) appearing in the functional equation of the local zeta function Zν(s,Φν , χν).
At last, the global zeta function corresponds to the complete L-function Λk(s, χ) modulo
some minor corrections factors at the (finite) set of so-called bad primes of χ.

L-functions on GL2(Ak)×GL1(Ak). The adelic approach opened the possibility of fur-
ther generalization of automorphic L-functions to L-functions over GLn(Ak), since A× =
GL1(Ak). The first generalization to GL2(Ak) (or more precisely to GL2(Ak)×GL1(Ak))
was carried out by Jacquet and Langlands in [JL70].
Jacquet and Langlands embedded classical modular/cuspidal forms on the upper half-
plane H ⊂ C attached to congruence subgroups of SL2(R) naturally into the set of
so-called automorphic/cusp forms on GL2(Ak) and consequently, were able to transfer
Hecke’s modular L-functions to automorphic L-functions on GL2(Ak). Their adelic con-
struction of the zeta functions, attached to such automorphic forms, followed techniques
of Hecke but was, of course, largely influenced by Tate’s work on GL1(Ak).
Roughly speaking, automorphic forms (or more specially, cuspidal forms) on GLn(Ak)
are just elements of automorphic representations on GLn(Ak) satisfying certain proper-
ties. In this context, Hecke’s Grössencharacters are just (cuspidal) automorphic forms on
GL1(Ak). This is why we refer to this theory as the theory of automorphic (rather than
adelic) L-functions on GL2(Ak)×GL1(Ak). Following both Hecke and Jacquet-Langlands,
one defines the global zeta function by

Z(s, ϕ, χ) Df.=
∫

k×\A×
k

ϕ(
(
x

1

)
)χ(x) ‖x‖s−

1
2 d×x, (8)

where ϕ is a cuspidal form coming from an irreducible cuspidal automorphic representation
(π, V ) of GL2(Ak). The functions defined by (8) are entire on C and satisfy the functional
equation

Z(s, ϕ, χ) = Z(1− s, ϕ̃, χ−1),
where ϕ̃ ∈ (π̃, Ṽ ) (the contragredient representation of (π, V )) is the dual automorphic
form of ϕ defined by ϕ̃(g) := ϕ(tg−1).
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One may consider now the Fourier expansion of ϕ, which is, since ϕ is cuspidal, given for
g ∈ GL2(Ak) by

ϕ(g) =
∑
y∈k×

Wϕ

((
y

1

)
g

)
,

with absolute and uniform convergence guaranteed on compact subsets of GL2(Ak). The
functions Wϕ are called global Whittaker functions. They are the Fourier coefficients of ϕ
and depend on a fixed additive character on k

∖
Ak . Substituting this in (8), one obtains

Z(s, ϕ, χ) =
∫

k×\A×
k

∑
y∈k×

Wϕ(
(
yx

1

)
)χ(x) ‖x‖s−

1
2 d×x

=
∫
A×
k

Wϕ(
(
x

1

)
)χ(x) ‖x‖s−

1
2 d×x.

One should take care here, because after the unfolding of ϕ, this expression only converges
for <(s) > 1.
There also exists the notion local Whittaker functions for both Archimedean and non-
Archimedean places. By the works of Gelfand-Kazhdan ([GK75]) and Shalika ([Sha74]) on
the uniqueness of the local Whittaker functions, the global Whittaker function decomposes
into a product of local Whittaker functions as

Wϕ(g) =
∏
ν

Wϕν (gν).

We also have similarly a well-known decomposition ‖x‖ = ∏
ν ‖xν‖ν for the adelic norm.

At last, by the Flath Decomposition Theorem, [Fla79], Th.3, (π, V ) decomposes as a
restricted tensor product π ∼=

⊗′
ν πν , and thus if ϕ corresponds to such a pure infinite

tensor, then
Z(s, ϕ, χ) =

∏
ν

Z(s, ϕν , χν),

where Zν(s,Wϕν , χν) is the local zeta function given by

Z(s,Wϕν , χν) =
∫
k×ν

Wϕν (
(
xν

1

)
)χν(xν) ‖xν‖s−

1
2 d×x,

a priori only convergent for <(s) > 1.

L-functions on GLn(Ak)×GLm(Ak). The work of Jacquet and Langlands on GL2(Ak)×
GL1(Ak) ([JL70]) was further extended by Jacquet in [Jac71] to automorphic L-functions
on GL2(Ak)×GL2(Ak).
The generalization of the theory of automorphic L-functions to GLn(Ak) and to GLn(Ak)×
GLm(Ak) was subsequently achieved in a long series of papers due to Jacquet, Piatetski-
Shapiro and Shalika ([PS71], [PS79], [Sha74], [JS76], [JPSS79a], [JPSS81b], [JPSS81a],
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[JS81], [JPSS83], [JS85], [JS90]). For a brief introduction to automorphic L-functions see
also [Cog00] or [Cog03].
We have already spent some words on zeta functions, but did not really mention automor-
phic L-functions. So what are these and what are their connections to the zeta integrals?
For n = 1, these terms are the same. But for general n they differ. We shall cover this in
detail in Chapter 3, but to have a vague idea, one can imagine automorphic L-functions as
functions generated by all global zeta-integrals when varying over the possible Whittaker
functions.

We will study in this work an L-function on GLn+1(Ak)×GLn(Ak).

0.1.3. From geometry to number theory

We briefly mentioned modular forms in the introduction, which are objects from complex
analysis and important in number theory. Its geometric counterpart are the elliptic curves.
What do we mean by this? By the Eichler-Shiumura construction, if f is a classical
newform of weight 2 and level N whose q-expansion has integer coefficients, one can
attach to it an elliptic curve Ef of conductor N . This attachment is interpreted by means
of number theory: one can define the L-function for both, f and Ef and the attachment
f 7→ Ef satisfies

L(f, s) = L(Ef , s).
By Taniyama-Shimura, this was actually a conjectural correspondence, i.e. the attachment
would go into the other direction as well.
The final proof of this conjecture, today known as the Modularity Theorem, was given by
Wiles [Wil95] and Taylor-Wiles [TW95] for semi-stable curves and generalized by Breuil-
Conrad-Diamond-Taylor [BCDT01] to the full Modularity Theorem.
The Modularity Theorem had a nice side-effect. As a corollary, the famous Fermat’s Last
Theorem was now known to be true: the only possible integer solutions to the equation

aN + bN = cN

for N ≥ 3 are only the trivial ones, i.e. those with abc = 0.

The Modularity Theorem finds a vast generalization in the Langlands Program. Clozel
postulates in Conjecture 4.5 of [Clo88] such a generalization. On the one hand, one has
motives, objects from algebraic geometry, that first appeared in 1964 in a letter correspon-
dence between Grothendieck and Serre. On the other hand, one has automorphic (more
precisely cuspidal) representations, which are objects studied in representation theory.
Their connection is given by means of number theory; indeed one can attach L-functions
to motives as well, and ifMΣ is a motive, that is conjecturally attached to an automorphic
representation Σ, then their L-functions are the same (modulo a shift).

However, we would like to stress, that the correspondence is in both directions highly
conjectural, as one does not really know yet, how to correctly define a motive. There are
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only very basic examples of this correspondence constructed. We will focus on this part
in Chapter 4.

0.1.4. p-adic Interpolation

Recall that a classical L-function, for instance the Riemann zeta function, is an analytic
function ζ:C → C (with a simple pole in s = 1). It has nice analytic properties and
takes rational values at non-positive integers. Since Z lies in both C and Zp ⊂ Cp, and is
further dense in Zp, one can question, whether there exists an analytic function

ζp:Zp → Cp

in the p-adic sense, that ’at least’ coincides with ζ at the non-positive integers. We mean
such that

ζ(1− n) = (∗) · ζp(1− n)
at every n ∈ N0. We would say in this case, that ζp is the p-adic L-function attached to
ζ, or that it p-adically interpolates the values of ζ.
Historically, the first prototype of a p-adic L-function was formally introduced by Kubota
and Leopoldt in 1964 (see [KL64]), although its contruction (or rather the continuity of the
constructed function) relied on the Kummer congruences concerning Bernoulli numbers,
which were known for the past 100 years. This function interpolates the special values
{. . . ,−2,−1, 0} of the Riemann zeta function ζ(s) divided by its Euler factor at p. In
other words, the p-adic L-function is a continous function ζp:Zp → Cp, such that

ζp(1− n) = (1− p−k) · ζ(1− n)

for all n ∈ N. And this is the best one can do: There cannot exist a p-adic continuous
function interpolating all the non-positive values of ζ(s). Kubota and Leopoldt went a
little further and constructed a p-adic L-function, that interpolated simultaneously the
non-positive special values of the different Dirichlet L-functions simultaneously. For a
nice introduction, see the (yet) unpublished lecture notes of J.R.Jacinto and C.Williams
[JW17].

We are interested in ℘-adic interpolation of automorphic L-functions. By this analogy,
we expect that there must occur a modification the automorphic L-function at ℘ as well.
Coates-Perrin-Riou ([CPR89]) and Coates ([Coa89]) describe, how one could potentially
℘-adically interpolate the L-function attached to a motive and also describes the modifica-
tion at ℘. We shall follow his method: in Chapter 5 we will modify the local zeta integral
at ℘. Using the description given by Coates ([Coa89]) with the conjectural correspon-
dence between motives and automorphic representations, we will ℘-adically interpolatie
the L-function of a pair of cuspidal representations ρ× σ of GLn+1(Ak)×GLn(Ak). This
is covered in Chapter 6.
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1. Preliminaries
1.1. Relevant algebraic structures
We fix a number field k/Q and denote by Ok its ring of integers. The letter ν shall
be reserved for a variable place of k. This can be either Archimedean (infinite) or non-
Archimedean (finite). We will denote by kν the completion of k with respect to ν. Every
kν is a locally compact Hausdorff field when equipped with its standard topology induced
by the place ν. If ν is further non-Archimedean, we shall denote by

• Oν its ring of integers,

• πν ∈ Oν a fixed uniformizer of kν ,

• pν = πνOν its maximal ideal,

• κ(ν) := Oν
/
pν its residue field, and by

• qν the cardinality of the residue field κ(ν).

Recall also, that for non-Archimedean ν there exists an isomorphism of topological groups

k×ν
∼= O×ν × πZ

ν . (9)

This is for example in Chapter II.5., Satz 5.3. of [Neu92].
If ν on the other hand is Archimedean, we shall set

O×ν :=
{

R>0 , ν real
C× , ν complex .

If ν is now again any place (finite or infinite), we will denote by | · |ν the absolute value
on kν , which is

• for non-Archimedean ν normalized by

|πν |ν := q−1
ν ,

• for ν real just usual absolute value on R, i.e. | · |ν = | · |R,

• and for ν complex the square of the usual complex absolute value on C, i.e. | · |ν =
| · |2C.

We denote further by A := Afin × A∞ the ring of adèles of k, where Afin = ∏Oν
ν<∞ kν

is the restricted product of the finite adèles and A∞ = ∏
ν |∞ kν denotes the adèles at

infinity. The adèles form a locally compact Hausdorff ring. In addition, Afin is also totally
disconnected. We will interpret k via the diagonal embedding as a topological subring of
A. Thus, k is equipped with the discrete topology.
By A× we shall denote the multiplicative group of A with the initial topology with respect

11



to the embedding A× → A × A, a 7→ (a, 1
a
). Then A× itself, called the group of idèles,

becomes a locally compact Hausdorff topological group. We can also embed k× ⊂ A×
diagonally, and k× inherits the discrete topology as well. Moreover, we have the well-
defined norm map

‖ · ‖A :A× → R>0, ‖(xν)ν‖A :=
∏
ν

|xν |ν ,

which is continuous and multiplicative. We will denote by A1 its kernel. By the well-
known Product formula of Artin, k× ⊂ A1. Moreover, k×

∖
A1 is compact and

k×
∖
A× ∼=

(
k×
∖
A1)× R>0 (10)

as topological groups; see Chapter IV.4., Theorem 6 of [Wei70] for reference.

We shall reserve the letter R for a commutative locally compact topological Hausdorff
ring of characteristic 0, but unless stated otherwise, it will only play the role of A, k, or
any of its completions kν .
The letter ℘ shall stand for a fixed non-Archimedean place of k. Posteriorly, we will define
cuspidal representations and an additive character and demand all to be unramified at ℘;
see Hypothesis 1. We will further denote by F := k℘ the ℘-adic completion, and we shall
drop the superscript (·)℘ from any of its attached objects. In other words, we just write
O for O℘, and so on.
Of course most results that we will show for F will also hold for any non-Archimedean kν ,
but with this convention, we would like to emphasize which setting will be needed only
for the special places ℘ dividing p, and also get rid of unnecessary indexing.
Let us now fix a natural number n. We shall denote by GLn the general linear group as an
affine smooth group scheme (over Z). Unfortunately, we will need to carry the index since
we will work with the product GLn+1×GLn. In GLn we find the following distinguished
subgroups:

• Tn ⊂ GLn, the maximal split torus of GLn consisting of diagonal matrices.

• Bn ⊂ GLn, the standard Borel subgroup consisting of upper triangular matrices,

• Un ⊂ GLn, the unipotent radical of Bn; these are upper triangular matrices with
1’s on the diagonal.

• On occasion, we shall denote by B−n and U−n the counterpart of Bn and Un, respec-
tively, consisting of lower triangular matrices.

It is well-known that Bn(R) = Tn(R)Un(R) and that Un(R) is a normal subgroup of
Bn(R). We will further denote by

• X∗(Tn) Df.= Hom(Tn,GL1) the group of algebraic characters of Tn, and dually by

• X∗(Tn) Df.= Hom(GL1, Tn) the group of algebraic cocharacters of Tn.
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Recall that if α and α′ are an algebraic character and an algebraic cocharacter of Tn,
respectively, then the map t 7→ (α ◦ α′)(t) is a character of GL1 and hence of the form
t〈α,α

′〉 for some integer 〈α, α′〉. By Lemma 3.2.11. [Spr98], the induced map

〈·, ·〉 :X∗(Tn)×X∗(Tn)→ Z

is a perfect pairing. We take ∆n = {αij}i 6=j ⊂ X∗(Tn) = Hom(Tn,GL1) to be the standard
root system, which is explicitly given by

αij :Tn → GL1, diag(t1, . . . , tn) 7→ ti
tj
.

In addition, we fix the Bruhat order in the standard way, i.e. such that ∆n = ∆+
n t∆−n ,

where
∆+
n = {αij}i<j, ∆−n = {αij}i>j.

If α ∈ ∆n, we will denote by sα its corresponding reflection. We will further denote by
Σn = {αi | i = 1, . . . , n− 1} the set of simple roots, where we compactly write αi := αi,i+1.
We also simply set si := sαi for the reflections corresponding to simple roots. We will
denote by ∆∨n the dual root system of ∆n. The coroots are explicitly given by

α∨ij: GL1 → Tn, t 7→ diag(tl)nl=1, tl =


t , i = l,
t−1 , j = l,
1 , otherwise

.

If X is any locally compact topological Hausdorff space, specially any of the R-rational
points of the algebraic groups mentioned above, we will denote by Cc(X) the set of
continuous and compactly supported complex functions on X.
For m ∈ N we will denote by 1m the identity matrix of GLm(R) (independent on the
choice of R). If further m < n, we understand GLm(R) ⊂ GLn(R) via the embedding

g 7→
(
g

1n−m

)
. (11)

We shall also use the same identification for any of the subgroups of GLn mentioned
above.

Let us assume again that ν is non-Archimedean. Since Tn is kν-split, there is the isomor-
phism

X∗(Tn)(kν) ∼−→ Tn(kν)
/

(Tn(kν) ∩GLn(Oν)) = Tn(kν)
/
Tn(Oν) , e 7→ e(πν)Tn(Oν).

The latter is by (9) isomorphic to Zn. Furthermore, our computations will be invariant
under Tn(Oν) (so in particular invariant under the choice of the uniformizer πν). Thus,
if e = (e1, . . . , en) ∈ X∗(Tn)(kν) ∼= Zn is a rational cocharacter of Tn(kν), we will simply
write

πeν =


πe1
ν

. . .
πenν

 ∈ Tn(kν)
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for the image of the uniformizer e(πν), and drop the modulo Tn(Oν) notation. Finally,
we call e dominant, iff for every simple (and hence for every positive) root α

〈α, e〉 ≥ 0.

In the identification as e ∈ Zn, this just means

e1 ≥ e2 ≥ . . . ≥ en. (12)

1.2. Relevant characters
A quasicharacter of a locally compact Hausdorff group G is a continuous homomorphism
G → C×. Under a character of G we mean a quasicharacter with image in S1. If χ1, χ2
are two quasi-characters of G, we denote by χ1 ⊗ χ2 its product in the sense that

(χ1 ⊗ χ2)(g) := χ1(g) · χ2(g) (g ∈ G).

We shall use 1 for the trivial character (of any group G).

1.2.1. Additive characters

We fix now a non-trivial additive quasicharacter of the adèles ψA:A→ C×, that is trivial
on k. Thus, ψA factors through the compact group k

∖
A and thus, its image is already

in S1. We shall denote by ψν the composition kν ↪→ A ψA−→ S1. The character ψA then
decomposes as ψA = ⊗νψν in the sense that for a := (xν)ν ∈ A we have

ψA(a) =
∏
ν

ψν(xν),

and the product is actually finite, i.e. on almost all places ν we have ψν(xν) = 1. In-
deed, almost all non-Archimedean local additive characters ψν satisfy Oν ⊂ Kern(ψν) but
π−1
ν Oν 6⊂ Kern(ψν). Non-Archimedean additive characters with this property are called

unramified (see Cor.1 of Chapter IV.2. in [Wei70]).
Recall that we assume ψA to be unramified at ℘.

An additive character of Un. In the general case, any additive character

ψ:R −→ S1,

induces the character on Un(R) given by

Un(R) −→ C×,



1 u1,2 ∗ . . . ∗
1 u2,3

. . . ...
. . . . . . ∗

. . . un−1,n
1


7→

n−1∏
i=1

ψ(ui,i+1), (13)

which, by abuse of notation, will also be denoted by ψ.
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1.2.2. Multiplicative quasicharacters

Let us now consider a multiplicative quasicharacter χA,s:A× → C×, that is trivial on
k×. Unlike ψ, we shall not fix it but keep it variable. In any case, χA,s factors through
k×
∖
A× . This is not compact as in the additive case, but due to (10), χA,s is of the form

χA,s = χA ⊗ ‖ · ‖s−1/2
A

for some s ∈ C (unique in the real part) and some character χA: k×
∖
A× → S1. The

choice of the shift −1/2 in the exponent of ‖ · ‖A will be explained later. From now on, we
will denote by χν,s the character at ν induced by χA,s (in a similar manner as the additive
character ψν was induced by ψA). Then again,

χA,s ∼=
⊗
ν

χν,s, (14)

and it is well-known, that in this decomposition, almost all χν,s are unramified. We shall
now recall some basics on the local components of this decomposition. We have the
following cases on ν:

ν non-Archimedean. Every non-Archimedean χν,s itself is due to (9) of the form

χν,s(xν) = (χν × | · |s−1/2
ν )(tν · πeν) := χν(tν) · |πeν |

s−1/2
ν

for the unique decomposition xν = tν ·πeν ∈ O×ν ·πZ
ν and for a unique character χν :O×ν → S1.

We define further by c(χν) the conductor of χν . This is the smallest integer c(χν) ≥ 0
with Kern(χν) = 1 + pc(χν)

ν (see [Wei70], VII.3, Definition 7). If c(χν) > 0, we say that
χν,s is ramified. In the case c(χν) = 0, we understand Kern(χν) = 1 + p0

ν := O×ν as usual
and say that χν,s is unramified. Alternatively, we might also call χν to be ramified or
unramified. If χν is unramified, this just means that χν is trivial. that call 1 + pc(χν)

ν the
conductor of χν .

The local characters at infinity are described in Prop.9 of Chapter VII.3 in [Wei70]:

ν real. The local real characters χν,s are of the form

χν,s(xν) = sgn(xν)εν · |xν |s−1/2
ν ,

for some εν ∈ {0, 1}, and we call it unramified, if εν = 0, and ramified otherwise.

ν complex. The local complex characters χν,s are of the form

χν,s(xν) =
(

xν
|xν |C

)lν
· |xν |s−1/2

ν ,

with a unique lν ∈ Z. We call χν,s unramified, if lν = 0, and ramified otherwise. Be aware
of the relation |xν |ν = |xν |2C.
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Multiplicative quasicharacters of GLn. Since the topological abelianization of GLn(R)
is4

(GLn(R))ab = GLn(R)
/

[GLn(R),GLn(R)] = GLn(R)
/

SLn(R) ∼= R×,

there is a (1: 1)-correspondence between the quasicharacters of R× and quasicharacters of
GLn(R); more precisely, any quasicharacter of GLn(R) is of the form

GLn(R) det−→ R× → C×,

where the latter is a quasicharacter of R×. Thus, if χ is a quasicharacter of R×, we will
denote the corresponding quasicharacter of GLn(R) by abuse of notation

χ(g) := χ(det(g)),

where g ∈ GLn(R), and there is no restriction in assuming a quasicharacter of GLn(R)
to be of this form. By the same principle, the adelic norm extends (uniquely) to the
multiplicative map

‖ · ‖A : GLn(A)→ R>0, ‖ g ‖A := ‖det(g)‖A .

Same of course applies for the absolute value of each local completion kν , but we will
write

‖gν‖ν := |det(gν)|ν
for gν ∈ GLn(kν).

1.2.3. The local Gauss sum

We focus now on F = k℘. For χ = χ℘, ψ = ψ℘ and for e ∈ Z, we define the e-twisted
local Gauss-sum by

G(e, χ) := G℘(e, χ℘) :=
∫
O×

χ(t) · ψ(πet) d×t.

For e = 0, this coincides with the definition of [RD91] in Section 7.1. The definition does
depend on ψ as well, but ψ is fixed while χ is variable. The local Gauss sum satisfies the
following:

Lemma 1.1.

a) If χ is unramified, i.e. χ = 1, then

G(e,1) =


0 , e ≤ −2

1
1−q , e = −1

1 , e ≥ 0
.

In this case, we drop 1 from the notation and write just G(e).
4Warning! This is in general not true, but it does hold for A or fields of characteristic 0.
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b) If χ is ramified (i.e. c(χ) > 0) and e 6= −c(χ), we have

G(e, χ) = 0.

Hence, in this case, we drop e from the notation and write G(χ) := G(−c(χ), χ)
instead.

This is proven in the Appendix A.

1.2.4. Modular character of the local Borel subgroup

We continue with F = k℘. Recall that Bn(F ) is for n ≥ 2 not unimodular. We will denote
by δn its modular quasicharacter. It is defined as follows: if µ is any left invariant Haar
measure on Bn(F ) and b ∈ Bn(F ), then dµ(b)(A) := µ(b−1Ab) = µ(Ab) is again a left
invariant Haar measure and δn(b) := µ(A)

µ(Ab) , where A is any non-zero Borel set in Bn(F ).
δn is explicitly given by

δn(b) = δn(tu) =
n∏
i=1
|ti|n+1−2i = |t1|n−1 · |t1|n−3 · . . . · |tn|1−n

for b = tu ∈ Tn(F )Un(F ) and thus, is indeed a quasicharacter of Bn(F ).
Let us now suppose that we are given m ≤ n. The following will only be the case for
F = k℘. We interpret Tm(F ) ⊂ Tn(F ) by means of the embedding (11). A straight-
forward computation shows that

δ1/2
n (πe) · δ1/2

m (πe) =
(
‖ · ‖(

n−m
2 ) ⊗ δm

)
(πe) . (15)

This little formula will be useful in Chapter 5.

1.3. The Weyl Group
We still continue with F = k℘. We will denote by

Wn := Wn(GLn(F ), Tn(F )) := NGLn(F )(Tn(F ))
/
CGLn(F )(Tn(F ))

the Weyl-Group of the pair (GLn(F ), Tn(F )), where NGLn(F )(Tn(F )) is the normalizer
of Tn(F ) in GLn(F ), and CGLn(F )(Tn(F )) = Tn(F ) its centralizer. It is well-known that
Wn is generated by the simple reflections {si | i = 1, . . . , n− 1} and that Wn

∼= Sn (the
standard symmetric group on n elements). We shall use different representations of Wn,
but most frequently we will understand its elements as permutations of {1, . . . , n}, or
as permutation matrices in GLn(O). As mentioned before, there is no danger for our
computations in chosing another representative in GLn(O). We will consider three diferent
actions of the Weyl group:

a) Wn acts naturally (from the left) on the character group X∗(Tn)(F ) via

(w · χ)(t) := χ(w−1tw),
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b) Via the isomorphism Wn
∼= Sn, the Weyl group Wn acts naturally (from the left) on

Zn ∼= X∗(Tn)(F ) via

w · (e1, . . . , en) := (ew−1(1), . . . , ew−1(n)).

c) Wn acts (from the right) on the set of C-valued unramified complex-valued characters
τ :Tn(F ) → C×, i.e. continuous homomorphisms with Kern(τ) = Tn(O). For this, we
take any representative of w in GLn(O), which we will also denote by w, and define

(τw)(t) := τ(wtw−1) = (τ1, . . . , τn)w(t) = (τw−1(1), . . . , τw−1(n))(t).

This is well-defined as τ is unramified.

Furthermore, we denote by

wn :=


1

...
1

 ∈ GLn(O)

the long Weyl-element in Wn. This is an involution, which permutes the positive and
negative roots, i.e. wn∆± = ∆∓.

At last, we will denote by l(w) the length of w ∈ Wn in the usual manner; l(w) is
the minimal number r of simple reflections si1 , . . . , sir , such that w = si1 · . . . · sir .

1.4. The Iwahori subgroup
Let us now consider the canonical map

O → O
/
p = Fq,

which by functoriality of GLn induces the canonical map

pr: GLn(O)→ GLn (Fq) .

The Iwahori subgroup of GLn(O) is defined to be

Jn := pr−1 (Bn (Fq)) =


O× O . . . O
p O× . . . ...
... . . . . . . O
p . . . p O×

 .

Let us take now any Weyl element w ∈ Wn. By Lemma 7 in [Bum87], the length l(w)
of w can be expressed as the number of negative roots α ∈ ∆−, that satisfy wα ∈ ∆+.
Thus,

ql(w) = [Un(O):Un(O) ∩ wJnw−1]. (16)
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1.5. On space decompositions
Recall the well-known decompositions in the ℘-adic setting:

• the (already mentioned) Iwasawa-decomposition

GLn(F ) = Bn(F ) GLn(O), (17)

• the Bruhat-decomposition of GLn(O) ([Cas80], Chapter 1) as

GLn(O) =
∐

w∈Wn

JnwJn, (18)

• and the Iwahori-decomposition

Jn = (Jn ∩ U−n (O))(Jn ∩ Tn(O))(Jn ∩ Un(O)) = U−n (p) · Tn(O) · Un(O) (19)

where U−n (O) = wnUn(O)wn is the group of lower-diagonal (n × n)-matrices with
1’s on the diagonal.

• More specifically, one can refine the Iwahori-decomposition as follows: if w ∈ Wn,
then

wJnw
−1 = (wJnw−1 ∩ U−n (O)) · Tn(O) · (wJnw−1 ∩ Un(O)). (20)

It is important to mention, that the factors in both (19) and (20) can be written in
any order.

Combining the first three decompositions (17), (18) and (19) together, we obtain the
generalized Bruhat-decomposition (Chapter I of [Cas80] or alternatively, [MI65] Prop.
2.33.)

GLn(F ) =
∐

w∈Wn

Bn(F )wJn. (21)

Furthermore, we can split Bn(F ) as Un(F )Tn(F ) and thus, using the fact that Tn(F ) =
πZn · Tn(O) and that Tn(O) ⊂ Jn, we obtain the finer decomposition

GLn(F ) =
∐
e∈Zn
w∈Wn

Un(F ) · πe · w · Jn, (22)

to which we will also simply refer to as the generalized Bruhat-decomposition.

1.6. On measures
If Y is any space with a measure dy, and K ⊂ Y a measurable set, we shall denote by

vol(K, dy)

its volume with respect to dy.
Let us now come back to the general case of an arbitrary completion kν . We know that
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kν is self-dual; the non-trivial additive character ψν : kν → S1 induced by ψA defines the
isomorphism of topological groups

(kν ,+) ∼= k̂ν , xν 7→ ψν(xν · −), (23)

where k̂ν := HomCont(kν ,S1) is the character group of kν equipped with the compact-open
topoology. This is Theorem 3 in Chapter II.5 of [Wei70].
We shall denote by dxν the unique additive Haar measure on (kν ,+), which is self-dual5
with respect to the isomorphism (23) induced by ψν . The absolute value | · |ν was chosen
precisely such that the transformation xν 7→ yνxν multiplies dxν with | yν |ν . We shall
further denote by d×xν the multiplicative Haar measure on k×ν normalized as follows:

d×xν = mν ·
dxν
|xν |ν

with mν =
 1 , ν Archimedean(

1− 1
qν

)−1
, ν non-Archimedean (24)

This fixation has the following advantage: if ψν is unramified at a non-Archimedean place
ν, then

vol(Oν , dxν) = 1 = vol(O×ν , d×xν). (25)
Since we will usually denote by tν elements in O×ν (or in general tν = (tν,1, . . . , tν,n) ∈
Tn(Oν)), we shall use d×tν for the restriction of d×xν to O×ν .
For a := (xν)ν ∈ A we set da := ∏

ν dxν . This implies that da is self-dual as well. For the
multiplicative Haar measure on A× we simply set d×a := ∏

ν d
×xν .

The 1-dimensional additive Haar measure on kν gives rise to the Haar measure on Un(kν):
For uν := (uijν )i,j we set (symbolically)

duν :=
∏
i<j

duijν ,

where each duijν is the additive measure on kν . This automatically implies, that if ν is a
finite place where ψν is unramified, then

vol(Un(Oν), duν) = 1. (26)
Let us further fix a Haar measure d×gν on GLn(kν). We could demand a similar condition
as in (24), but we just shall normalize the measure at the non-Archimedean ν where ψν
is unramified by

vol(GLn(Oν), d×gν) = 1. (27)
We do not really care about the remaining places.

We will denote by du and d×g the Haar measures on Un(A) and GLn(A), respectively,
both defined in the same manner as in the 1-dimensional case: for u := (uν)ν ∈ Un(A)
and g := (gν)ν ∈ GLn(A) we set

du :=
∏
ν

duν and d×g :=
∏
ν

d×gν

for their respective measures.
5This means, that ˆ̂

f(x) = f(−x) under the Fourier Inversion Formula (which depends on dxν), where
f ∈ L1(kν) ∩ L2(kν).
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1.6.1. Remarks on the Iwahori Group

We return now to the case F = k℘ again.

a) The Iwahori-group Jn sits open inside GLn(O) and thus has positive volume w.r.t.
the Haar measure d×g. Hence, the Haar measure d×j on Jn coincides up to a positive
constant with the restriction of d×g on Jn. Although we will write d×j instead of
d×g to emphasize the difference of the underlying group that we are integrating over,
informally said, we keep the normalization of GLn(O) having volume 1, i.e. we want
to have d×j = d×g on Jn. Now since

Jn = pr−1 (Bn (Fq)) , GLn(O) = pr−1 (GLn (Fq)) ,

which implies

vol(Jn, d×j) = vol(Jn, d×g) = 1
[GLn(O): Jn] = 1

[GLn (Fq) :Bn (Fq)]
,

we derive that

vol(Jn, d×j) = (q − 1)n · q
(n−1)n

2

n−1∏
i=0

qn − qi
. (28)

b) Throughout the text we will encounter the groups

U (w)
n := Jn ∩ w−1Un(O)w, (29)

where w ∈ Wn. We will choose the Haar measure du(w) on these as the push-forward
of the Haar measure du on Un(F ) via the map

Un(O) ∩ wJnw−1 −→ Jn ∩ w−1Un(O)w, u 7→ w−1uw.

In particular we have

vol(U (w)
n , du(w)) = vol(Un(O) ∩ wJnw−1, du) = q−l(w) (30)

by (16).

1.6.2. On measure decomposition

In general, we will encounter integrals over quotient spaces of the form U
∖
G , where

G is a locally compact Hausdorff group, U ⊂ G a closed subgroup, and the respective
Haar measures on both G and U have previously been fixed. We shall use the example
of Un(R)

∖
GLn(R) for R a local field or A in order to show, how to choose a suitable

measure on the quotient space.
The Haar measures on Un(R) and GLn(R) have been already defined. On Un(R)

∖
GLn(R)

we choose the (up to a positive scalar) unique right GLn(R)-invariant Radon measure, as
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described in Section 1.5.3 of [Dei14]. In order to distinguish the quotient measure from
the Haar measure on GLn(R) for now, we will write d×gU for the first one. The measure
d×gU is then uniquely given by the condition∫

GLn(R)

f(g)d×g =
∫

Un(R)\GLn(R)

∫
Un(R)

f(ugU)du d×gU (31)

for any f ∈ Cc(GLn(R)), and thus, we symbolically write d×g = du d×gU . From now on,
we will denote this quotient measure, by abuse of notation, by the same symbol as the
Haar measure on GLn(R); in this case d×gU = d×g.

In Chapter 5, we will need to compute an integral over Un(F )
∖

GLn(F ) for F = k℘.
Let us thus see now, how to decompose the integral (31) in this case further:
The Iwasawa-Decomposition (17) gives us, due to [Dei14], Prop.1.5.6., the Haar measure
decomposition of d×g into Haar measures on Bn(F ) and GLn(O). But the Haar measure
on GLn(O) is just the restriction of d×g. We will denote it by d×h. Then, one has for
any f ∈ Cc(GLn(F )) ∫

GLn(F )

f(g)d×g =
∫

GLn(O)

∫
Bn(F )

f(bh)dLb d×h (32)

for a suitable Haar Measure dLb on Bn(F ). The groups GLn(F ) and GLn(O) are both
unimodular, but Bn(F ) is not, and therefore one needs to take dLb to be the left invariant
Haar measure on Bn(F ), as pointed out in 4.1. of [Car79]. This decomposition forces dLb
to be normalized, such that

vol(Bn(O), dLb) =
∫

Bn(O)

dLb =
∫

Bn(F )∩GLn(O)

dLb = 1.

Since dLb is left invariant, loc.cit. gives us a further decomposition with respect to dLb as∫
Bn(F )

f(b)dLb = δ−1
n (t) ·

∫
Tn(F )

∫
Un(F )

f(ut)du d×t

for a suitable Haar measure d×t on Tn(F ) and for any f ∈ Cc(Bn(F )). The quasimodular
character δ−1

n (t) is just the Jacobian of the transformation u 7→ tut−1. Since dLb and du
have already been fixed, this implies that the Haar measure d×t on Tn(F ) is fixed by the
normalization vol(Tn(O), d×t) = 1. Thus, equation (32) can be rewritten as∫

GLn(F )

f(g)d×g = δ−1
n (t)

∫
GLn(O)

∫
Tn(F )

∫
Un(F )

f(uth)du d×t d×h

for any f ∈ Cc(GLn(F )). Since Tn(O) ⊂ GLn(O) and vol(Tn(O), d×t) = 1, the latter can
be rewritten as ∫

GLn(F )

f(g)d×g =
∑
e∈Zn

δ−1
n (πe)

∫
GLn(O)

∫
Un(F )

f(uπeh)du d×h.
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This implies, that for every f ∈ Cc(Un(F )\GLn(F )) one has∫
Un(F )\GLn(F )

f(g)d×gU =
∑
e∈Zn

δ−1
n (πe)

∫
GLn(O)

f(πeh)d×h. (33)

We now go one step further: Let us fix a Weyl element w ∈ Wn. By [MI65], Prop.3.2., we
know that #(JnwJn/Jn) = ql(w). Thus, the generalized Bruhat decomposition (22) tells
us that ∫

Un(F )\GLn(F )

f(g)d×gU =
∑
e∈Zn

∑
w∈Wn

δ−1
n (πe) · ql(w) ·

∫
Jn

f(πewj)d×j,

where d×j is the restriction of d×h = d×g|GLn(O) to Jn as explained in 1.6.1. Furthermore,
since f is left Un(F )-invariant, we have

f(πewj) = f(πew)

for all j ∈ U (w)
n . The Quotient Integral Formula 1.5.3. in [Dei14] together with (30) tells

us thus, that we can decompose this further as∫
Jn

f(πewj)d×j =
∫

U
(w)
n \Jn

∫
U

(w)
n

f(πewjw)du(w) d×jw
(30)= q−l(w) ·

∫
U

(w)
n \Jn

f(πewjw)d×jw,

where d×jw once again denotes the right Jn-invariant Radon measure on U (w)
n \Jn as given

by loc.cit.
When there is no danger of ambiguity, we will denote this measure also by d×j instead of
d×jw. This said, if we put everything together, we obtain the following...

Proposition 1.1. For any integrable function f on the quotient Un(F )
∖

GLn(F ) we have
∫

Un(F )\GLn(F )

f(g)d×gU =
∑
e∈Zn

δ−1
n (πe) ·

∑
w∈Wn

∫
U

(w)
n \Jn

f(πewj)d×j. (34)

Proof. We have seen so far that (34) is an equality that holds for every compactly sup-
ported and continuous function with respect to Radon measures. Together with the Riesz
Integration Theorem ([Rud87], Prop. 2.14), it follows that (34) indeed holds for every
integrable function f on the quotient Un(F )

∖
GLn(F ) .

1.7. On conjugations
We make a last little remark on conjugations, that will simplify our computations. Let
g = (gi,j)i,j ∈ GLn(F ) be arbitrary. If w ∈ Wn is a Weyl element, then

w−1gw = (gw(i),w(j))i,j = (gi,j)w−1(i),w−1(j). (35)
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Similarly, for a diagonal element d := diag(d1, . . . , dn) ∈ Tn(F ) ⊂ GLn(F ), we have

dgd−1 =
(
di
dj
· gi,j

)
i,j

. (36)

Specially, if e = (e1, . . . , en) ∈ Zn, we have with the previous identity (36)

πegπ−e = (πei−ej · gi,j). (37)
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2. Automorphic Representation Theory
In this chapter we shall recall some basic notions of automorphic representation theory.

2.1. Representations of `-groups
Let us assume for a moment that G is an `-group in the sense of Bernstein-Zelevinsky (see
1.1. in [BZ76]). This means that G is a locally compact, totally disconnected, Hausdorff
group.

Example 1. Important examples of `-groups for us are:

a) GLn(kν), where ν is any non-Archimedean place of k,

b) GLn(Afin), as restricted products of `-groups are `-groups.

A linear representation (ρ, V ) of G is called smooth, if

ρ:G× V → V

is continuous, when V is equipped with the discrete topology. This is equivalent to

StabG(v) ⊂ G

being open for every v ∈ V . Smooth representations possess a ’primary decomposition’:
Fix any open compact subgroup K ⊂ G. Then (as K-representations),

V =
⊕
α∈K̂

V (α),

where K̂ denotes the set of equivalence classes of irreducible finite-dimensional represen-
tations of K. Furthermore, we call a smooth representation (ρ, V ) admissible, if every iso-
typic component V (α) is of finite dimension. This condition is equivalent to dim V K <∞,
and is independent of the choice of K.

2.1.1. Hecke algebras

Recall that the representation theory of G is encoded in the Hecke algebra attached to G.
To be more precise, let us first define what a Hecke algebra is. If K is any open compact
subgroup of an `-group G, we define the Hecke algebra attached to the pair (G,K) as

H(G,K) := Cc(K\G/K), (38)

with the convolution product given by

(f1 ∗ f2)(y) :=
∫
K
f1(x)f2(x−1y)dx,
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where dx is any (left invariant) Haar measure on G. To keep computations easier, dx
is usually normalized by the condition vol(K, dx) = 1. The convolution integral is well-
defined as it is (as a function of x) locally constant and compactly supported. With this
product, H(G,K) becomes an associative and unital C-algebra; see Section 1.3. of [Car79]
for more on Hecke algebras. Moreover, there is an equivalence of categories

RepsmC (G)K ∼= H(G,K)-mod
(ρ, V ) 7→ (ρ̃, V )

between K-invariant complex representations of G (this automatically implies smooth-
ness) and complex vector spaces with a H(G,K)-module structure, where ρ̃ arises by
integral extension as follows:

(ρ̃(g)) (v) :=
∫
G
g(x) · ρ(x)(v)dx. (39)

Due to this equivalence, we call the elements of a Hecke algebra Hecke operators. More-
over, every Hecke operator is a finite C-linear combination of pure Hecke operators, which
are characteristic functions of some double coset of the form KgK with g ∈ G. We will
adopt this notation for the Hecke operators - as finite C-linear combinations of double
cosets of the form KgK. Furthemore, any such pure Hecke operator possesses a finite left
coset decomposition

KgK =
∐
i

giK. (40)

A priori, the integral in (39) is a Bochner integral, but due to the decomposition (40), the
action of the Hecke algebra as in (39) is actually a finite sum: for a pure Hecke operator
KgK with decomposition as given in (40), we have

(ρ̃(g)) (v) =
∑
i

ρ(gi)(v). (41)

2.1.2. Non-Archimedean generic representations

Let us fix a non-Archimedean place ν of k and consider the `-group GLn(kν). A very
important family of representations of GLn(kν) are the generic representations: The non-
trivial additive character ψν of kν induces a generic character on Un(kν) as explained in
(13). We define the ψν-Whittaker space to be the smoothly induced space

W(ψν) := IndGLn(kν)
Un(kν) (ψν).

Its elements are called ψν-Whittaker functions, but if there is no danger of ambiguity, we
refer to these just as Whittaker functions. Hence, a Whittaker function is a function

W : GLn(kν)→ C,

such that
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a) for every u ∈ Un(kν), g ∈ GLn(kν)

W(ug) = ψν(u) · W(g), (42)

and

b) W is smooth, i.e. there exists an open compact subgroup K ⊂ GLn(kν), such that

W(gx) =W(g) (43)

for every g ∈ GLn(kν) and every x ∈ K. Whittaker functions with this property
are called K-spherical. If K = GLn(Oν) is the maximal open compact subgroup of
GLn(kν), we will call the correspondent Whittaker functions just spherical.

We call an irreducible admissible representation (ρν , Vν) of GLn(kν) to be generic, if there
exists an embedding of representations

W: (ρν , Vν) ↪→W(ψν).

By the Local Multiplicity One-Theorem of Gelfand-Kazhdan [GK75], every irreducible
admissible representation of GLn(kν) appears inside W(ψν) with multiplicity at most one.
In this case, the image W(ρν , ψν) := W ((ρν , Vν)) inside W(ψν) is called the Whittaker-
model of (ρν , Vν).

Remark 1. In fact, there is a classification of generic representations of GLn(kν) due to
Zelevinsky, see Theorem 9.7. of [Zel80] and Theorem 9.3 of [PR00], respectively.

2.1.3. Non-Archimedean unramified representations

We continue with GLn(kν) for some non-Archimedean place ν of k. The family of un-
ramified representations (at finite places) plays a central role in the study of automorphic
representations. An irreducible admissible representation (ρν , Vν) of GLn(kν) is called
unramified, if V GLn(Oν)

ν 6= 0. In this case, dimC

(
V GLn(Oν)
ν

)
= 1, since (GLn(kν),GLn(Oν))

is a Gelfand-pair. The unramified representations arise as follows:

Consider an unramified character of the torus

τ := (τ1, . . . , τn) :Tn(kν)→ C×.

τ being unramified means that τ|Tn(O) ≡ 1. This character inflates to a character of
Bn(kν) acting trivially on Un(kν) and we define

I(τ) = IndGLn(kν)
Bn(kν) (τ)

=
{
f : GLn(kν) loc.cst.−−−−→ C | ∀(b, g) ∈ Bn(kν)×GLn(kν): f(bg) =

(
δ1/2
n ⊗ τ

)
(b)f(g)

}
.

Representations of the type I(τ), i.e. those parabolically induced from a Borel subgroup,
are called principal series representations of GLn(kν). Such a representation has a unique
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irreducible quotient, which we denote by Q(τ). By Theorem 9.10 of [PR00], if we assume6
that τj 6∼= τi ⊗ | · | for 1 ≤ i < j ≤ n, then Q(τ) is unramified, and on the contrary, any
unramified irreducible admissible representation of GLn(kν) is isomorphic to such a Q(τ)
with the stated property.

It is due to Theorem 4.2. in [BZ77], that the unramified I(τ) is irreducible, iff τi 6∼= τj⊗| · |
for all (i, j). This is exactly the case, when I(τ) is generic, see Theorem 9.7. of loc.cit.
and Theorem 9.3. of [PR00], respectively.

Remark 2. If we relax the condition τj 6∼= τi ⊗ | · | for 1 ≤ i < j ≤ n, then Q(τ) is
K-spherical for K = Jn ⊂ GLn(Oν) the local Iwahori subgroup.

Example 2. a) The trivial representation 1 appears as the unique irreducible quotient

IndGLn(kν)
Bn(kν) (| · |

n−1
2 , | · |

n−3
2 , . . . , | · |−

n−1
2 )→ 1→ 0.

It is unramified, but not generic.7

b) On the other hand, the Steinberg representation Stn is the unique irreducible quotient

IndGLn(kν)
Bn(kν) (| · |−

n−1
2 , | · |−

n−3
2 , . . . , | · |

n−1
2 )→ Stn → 0.

It is not unramified, but it is generic. It is K-spherical for K = Jn ⊂ GLn(Oν) the
Iwahori subgroup as mentioned in Remark 2.

2.1.4. Iwahori-spherical representations

We will only require the following in the case when F = k℘. Let us consider again an
unramified and regular character of the torus

τ = (τ1, . . . , τn) :Tn(F )→ C×.

Regularity means that τw 6∼= τ for all w ∈ Wn. As mentioned previously, the representation
I(τ) is known to be generic and Iwahori-spherical. The intertwiner into its Whittaker
model

Wτ : I(τ) ∼−→W(τ, ψ) ⊂W(ψ),
is (up to a constant) explicitly given as follows: we set Wτ (f) :=Wτ

f , where

Wτ
f (g) Df.=

∫
Un(F )

f(wnug) · ψ(u)du, (44)

whenever it converges. Moreover, if we impose the condition on τ , that |τ (α∨(π))| < 1
for every simple root α, which means that

|τ1(π)| < |τ2(π)| < . . . < |τn(π)| , (45)
6This is the ’does not precede condition’ in [PR00].
7Indeed, no one-dimensional representation can be generic.
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then the integral (44) converges for every g ∈ GLn(F ) by [JS83], Chapter 3, and thus, is
a well-defined function GLn(F ) → C. Without the condition (45), one would have con-
vergence only for a subset of functions on I(τ), and would need to extend the intertwiner
analytically8 to whole I(τ).

Moreover, the imageWτ
f for such an f ∈ I(τ) is indeed inside W(ψ), since for u′ ∈ Un(F )

we have
Wτ

f (u′g) =
∫
Un(F )

f(wnuu′g) · ψ(u)du

= ψ(u′)
∫
Un(F )

f(wnuu′g) · ψ(u′u)du

= ψ(u′)Wτ
f (g).

At last, Wτ is non-zero, as will be shown in (49).

The intertwiner W should be thought of as the (non-abelian) analogue of the Fourier
transform.
As mentioned, I(τ) is Iwahori-spherical, i.e. I(τ)Jn 6= 0, and, in fact, by [Cas95], Th.6.3.5,
its semi-simplification is given by

I(τ)Jnss =
∑
w∈Wn

δ1/2
n ⊗ τw,

the sum being direct in this case, since it is equivalent to τ being regular. Recall now the
generalized Bruhat decomposition (21). This tells us that in fact, the functions {ϕτw}w∈Wn

given on GLn(F ) = ∐
w∈Wn

BnwJn by

ϕτw(bw′j) =
{ (

δ1/2
n ⊗ τ

)
(b), w = w′

0, w 6= w′
,

span I(τ)Jn . These functions induce (via the Fourier transform) the Whittaker functions
in W(τ, ψ) given by

Wτ
w(g) :=Wτ

ϕτw
(g) =

∫
Un(F )

ϕτw(wnug) · ψ(u)du. (46)

Our primary focus lies on the special Whittaker function Wτ
wn corresponding to the large

Bruhat cell BnwnJn. But in order to evaluate this function, we will need some information
about Wτ

w for every w ∈ Wn.

2.1.5. Evaluation of Whittaker functions

Langlands’ paradigm and spherical Whittaker functions. Langlands conjectured that
Whittaker functions on a reductive group G are related to characters of the connected

8The group of unramified characters τ :Tn(F )→ C× is naturally isomorphic to (C×)n, which allows us
to talk about analytic extension.
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Langlands dual9 group LG0, which in our case G = GLn(kν) for ν non-Archimedean is
just LG0 = GLn(C). The first in obtaining an explicit formula for spherical10 Whit-
taker functions on GLn(kν) was Shintani ([Shi76]), followed independently by Kato for
spherical Whittaker functions on Chevalley groups ([Kat78]). Casselman and Shalika
([Cas80], [CS80]) further extended the result to spherical Whittaker functions on un-
ramified connected reductive groups using intertwining operators. Indeed, the space of
spherical Whittaker functions on GLn(kν) is 1-dimensional, i.e. W(τ, ψ) = 〈W0〉 for some
W0. The Iwasawa decomposition (17) tells us that W0 is uniquely determined by its
values on Tn(kν)

/
Tn(Oν) ∼= Zn and Shintani showed that under W0(1n) = 1, one has

W0(πe) =
{
δ1/2(πe) · χe (Aτ ) , e dominant

0, otherwise ,

where χe is the character of the irreducible (finite-dimensional) representation of GLn(C)
with highest weight e, and

Aτ =


τ1(π)

. . .
τn(π)

 ∈ GLn(C) (47)

the corresponding Satake parameter of τ .

Iwahori Whittaker Functions. We again stick to the special case F = k℘. Recall
that ψ = ψ℘ is unramified. The evaluation of Iwahori-spherical Whittaker functions
was worked out by Brubaker-Bump-Licata in [BBL18] and by Brubaker-Buciumas-Bump-
Gustafsson in [BBBG19] relying on previous works of Casselman [Cas80] and Casselman-
Shalika [CS80]. We will state some of the results which are of interest to us.
Let us first suppose, thatW is any Iwahori-spherical Whittaker function. Due to the right
Iwahori-invariance (43) of W and due to the property (42), it is sufficient to determine
the values of W(πew′) for e ∈ Zn and w′ ∈ Wn. We will first investigate, when such a
Whittaker function vanishes. In order to distinguish those e and w, for whichW(πew′) =
0, we introduce the following notion:

Definition 1. Let w ∈ Wn be fixed. We say that a cocharacter e = (e1, . . . , en) ∈
X∗(Tn) ∼= Zn is w-almost dominant, if for every simple root α ∈ Σ

〈α, e〉 ≥
{

0, w−1α ∈ ∆+

−1, w−1α ∈ ∆− . (48)

Observe that:

• In our setting, the condition 〈αi, e〉 ≥ j means ei − ei+1 ≥ j (for j ∈ {0,−1}).
9If G is a reductive group attached to the root datum (X∗,Φ, X∗,Φ∨), the connected Langlands dual
group is the complex group G∨(C) where G∨ is the reductive group attached to the dual root datum
(X∗,Φ∨, X∗,Φ).

10This means GLn(Oν)-spherical.
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• w−1αi ∈ ∆+ translates as w−1(i) < w−1(i+ 1).

Example 3. a) The cocharacter e = (e1, . . . , en) ∈ Zn being w-almost dominant for
w = 1 means, e only satisfies the condition e1 ≥ e2 ≥ . . . ≥ en, since the second case
in (48) never occurs. Thus, this is just the usual dominance condition (12).

b) For n = 4 and the permutation w = (1 3 4 2) =


1

1
1

1

, we have w−1 = (1 2 4 3)

and thus the cocharacter e =
(
0 0 1 1

)
is w-almost dominant; since w−1(2) = 4 >

w−1(3) = 1, we are allowed to have one step ’upwards’ in the vector e from e2 = 0 to
e3 = 1. But otherwise, it needs to fulfill the non-increasing condition.

c) If w = wn the long Weyl-element, e is allowed to have single steps ’upwards’ on every
position. Thus, for example, the vector e = (0, 1, . . . , n − 1) is wn-almost dominant,
since the first case in (48) never occurs. This is also the ’most extreme’ case that can
occur.

The following is Proposition 6 of [BBL18]:

Lemma 2.1. Let W be an Iwahori-invariant Whittaker function. Let further be e ∈ Zn
and w ∈ Wn. Then

W(πew) = 0,
unless e is w-almost dominant.

Proof. Since ψ is unramified, ψ|O ≡ 1, but there is a t ∈ O×, such that ψ(t · π−1) 6= 1.
Pick an i ∈ {1, 2, . . . , n− 1} and consider the matrix

u =



1
. . . t · π−1

. . .
. . .

1


∈ Un(F )

consisting of 1’s on its principal diagonal and of π−1t at the position (i, i+ 1) to which in
this proof we just refer to as the ’non-zero entry’. The remaining entries are assumed to
be 0. Then, by definition, ψ(u) 6= 1 and

ψ(u) · W(πew) =W(u · πew) =W(πew · w−1π−euπew).

Consider now the conjugate of u

j := w−1π−euπew.

This matrix consists (again) of 1’s on its principal diagonal, has 0 everywhere except the
non-zero entry, whose value is now t · πei+1−ei−1 by (36), and which by (35) was moved to
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the position (w−1(i), w−1(i + 1)). Hence, j is in Un(F ), iff w−1αi ∈ ∆+, and in U−n (F )
otherwise. Thus,

j /∈ Jn ⇐⇒
{
πei+1−ei−1 /∈ O, w−1αi ∈ ∆+

πei+1−ei−1 /∈ p, w−1αi ∈ ∆−

⇐⇒
{
ei+1 − ei − 1 ≤ −1, w−1αi ∈ ∆+

ei+1 − ei − 1 ≤ 0, w−1αi ∈ ∆−

⇐⇒
{

ei − ei+1 ≥ 0, w−1αi ∈ ∆+

ei − ei+1 ≥ −1, w−1αi ∈ ∆− .

By varying i, the last condition is exactly the condition on e being w-almost dominant.
Otherwise, j ∈ Jn and

ψ(u) · W(πew) =W(u · πew) =W(πew · j) =W(πew),

which implies W(πew) = 0 as claimed, since ψ(u) 6= 1.

The caseWτ
wn (πe). We start by computingWτ

wn(πew) in the simple case when w = 1.

Lemma 2.2. For e = (e1, . . . , en) ∈ Zn and our fixed Whittaker function Wτ
wn defined

previously we have

Wτ
wn(πe) =

{ (
δ1/2
n ⊗ τwn

)
(πe) , e1 ≥ e2 ≥ . . . ≥ en

0 , otherwise
(49)

Proof. The case when e is not dominant was covered in Lemma 2.1.
Hence assume now that e is dominant. By (37), πeUn(O)π−e is a subgroup of Un(O) and
thus ϕτwn(bwnπ−euπe) vanishes unless u ∈ πeUn(O)π−e. Thus,

Wτ
wn(πe) =

∫
Un(F )

ϕτwn(wnuπe) · ψ(u)du

=
∫
Un(F )

ϕτwn(πwn(e) · wn · π−euπe) · ψ(u)du

=
∫
πeUn(O)π−e

ϕτwn(πwn(e) · wn · u) · ψ(πeuπ−e)du

= ϕτwn(πwn·e) · vol(πeUn(O)π−e, du)
= ϕτwn(πwn·e) · δn(πe)
= δ1/2

n (πe) · τ(πwn·e),

where in the last equality we have used that δ1/2
n (πwne) = δ−1/2

n (πe).

The case Wτ
wnw (πew). Slightly more generally, if we take a Whittaker function of

the form Wτ
wnw, the simplest evaluation turns out to be in the argument πew:
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Lemma 2.3. For e = (e1, . . . , en) ∈ Zn and w ∈ Wn, we have

Wτ
wnw(πew) =

{
q−l(w) ·

(
δ1/2
n ⊗ τwn

)
(πe) , e is w-almost dominant

0 , otherwise
. (50)

Proof. This is done in Proposition 3.6. of [BBBG19], but since the authors use a slightly
different notation and definitions, we shall include the proof for our setting:
As in the case of Lemma 49, we can assume that e is already w-almost dominant. By
[Car79], 4.1., the change of variable u 7→ π−euπe on Un(F ) produces the measure defect
by δ−1

n (π−e) = δn(πe):

Wτ
wnw(πew) =

∫
Un(F )

ϕτwnw(wnuπew) · ψ(u)du

= δn(πe) ·
∫
Un(F )

ϕτwnw(wnπeuw) · ψ(π−euπe)du

= δn(πe) ·
∫
Un(F )

ϕτwnw(πwn·ewnuw) · ψ(π−euπe)du.

Let us now suppose that the element πwn·ewnuw sits inside BnwnwJn. Thus, πwn·ewnuw =
bwnwj for some b ∈ Bn(F ), j ∈ Jn. But this is equivalent to

u ∈ wnBn(F )wn · wJnw−1 = B−n (F ) · wJnw−1.

By the (generalized) Iwahori decomposition (20), wJnw−1 decomposes as

wJnw
−1 = (wJnw−1 ∩ U−n (O)) · Tn(O) · (wJnw−1 ∩ Un(O)),

but since (wJnw−1 ∩ U−n (O)) · Tn(O) ⊂ B−n (F ), we have that

u ∈ B−n (F )(wJnw−1 ∩ Un(O)),

and since B−n (F ) ∩ (wJnw−1 ∩ Un(O)) = {1}, we have indeed that u ∈ wJnw−1 ∩ Un(O).
But since u ∈ wJnw

−1 ∩ Un(O), the fact that e is w-almost dominant tells us that
ψ (π−euπe) = 1. Thus, by (30),

Wτ
wnw(πew) = δn(πe) ·

∫
wJnw−1∩Un(O)

ϕτwnw(πwn·ewnuw) · ψ(π−euπe)du

= δn(πe) ·
(
δ1/2
n ⊗ τ

)
(πwn·e) · q−l(w)

= q−l(w) ·
(
δ1/2
n ⊗ τwn

)
(πe)

as claimed.

The general case Wτ
wn(πew)

Example 4. As a starting example, we shall compute Wτ
w2(πew2) in the case n = 2: In

our case w2 = s1 is (the unique) simple reflection. We assume first that e is s1-almost
dominant, which means that e1 ≥ e2 − 1. We have

Wτ
w2(πew2) =

∫
U2(F )

ϕτw2(w2uπ
ew2) · ψ(u)du
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=
∫
U2(F )

ϕτw2(πw2·e · w2 · π−euπe · w2) · ψ(u)du.

Let us now focus on the term w2 · π−euπe · w2. We have

w2 · π−euπew2 =
(

1
uπ−(e1−e2) 1

)
.

Furthermore, the subset {0} ⊂ F has measure zero, and thus

Wτ
w2(πew2) =

∫
F
ϕτw2(

(
πe2

πe1

)
·
(

1
uπ−(e1−e2) 1

)
) · ψ(u)du

=
∫
F×

ϕτw2(
(
πe2

πe1

)
·
(

1
uπ−(e1−e2) 1

)
) · ψ(u) · (1− q−1) |u| d×u,

where in the last equality we have already performed change of measure from du to d×u

as in (24). Now it turns out, that the matrix
(

1
uπ−(e1−e2) 1

)
for u ∈ F× still lies in the

large bruhat cell B2(F )w2U2(F ):(
1

uπ−(e1−e2) 1

)
=
(
−u−1πe1−e2 1

uπ−(e1−e2)

)
︸ ︷︷ ︸

=:b

·w2 ·
(

1 u−1πe1−e2

1

)
︸ ︷︷ ︸

=:j

.

Once again using the Iwahori decomposition (19), one can easily see that this lies in
B2(F )w2J2, iff j ∈ U2(O). Thus,

Wτ
w2(πew2) =

∑
i∈Z

∫
O×

ϕτw2(
(
πe2

πe1

)
·
(
−t−1πe1−e2−i 1

tπ−(e1−e2)+i

)
· w2

·
(

1 t−1πe1−e2−i

1

)
) · ψ(tπi) · (1− q−1)

∣∣∣tπi∣∣∣ d×t
= (1− q−1) · (δ1/2 ⊗ τ)(πe) ·

e1−e2∑
i=−∞

(
τ2(π)
τ1(π)

)i
·
∫
O×

ψ(tπi) d×t

= (1− q−1) · (δ1/2 ⊗ τ)(πe) ·
e1−e2∑
i=−∞

G(i) ·
(
τ2(π)
τ1(π)

)i

(80)= (1− q−1) · (δ1/2 ⊗ τ)(πe) ·

 q

q − 1 ·
1− q−1 τ1(π)

τ2(π)

1− τ2(π)
τ1(π)

−
(
τ2(π)
τ1(π)

)e1−e2+1

1− τ2(π)
τ1(π)


= (δ1/2 ⊗ τ)(πe) ·


1− q−1 τ1(π)

τ2(π)

1− τ2(π)
τ1(π)

− (1− q−1)

(
τ2(π)
τ1(π)

)e1−e2+1

1− τ2(π)
τ1(π)

 .
Using that τ(πe) = τw2(πe) ·

(
τ1(π)
τ2(π)

)e1−e2 , we shall rewrite this little formula as

Wτ
w2(πew2) = (δ1/2 ⊗ τw2)(πe) ·

1− q−1 + q−1 ·
(
τ1(π)
τ2(π)

)e2−e1+2
−
(
τ1(π)
τ2(π)

)e2−e1+1

1− τ1(π)
τ2(π)

 . (51)
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The full description of the formula for Wτ
wn(πw) with w ∈ Wn arbitrary was worked out

by Brubaker, Bump and Licata in [BBL18] by means of intertwiners between principal
series representations I(τ) → I(τw), based mainly on works of Casselman [Cas80] and
Casselman-Shalika [Cas95]. Prop.10 in loc.cit. tells us: if si is any simple reflection
corresponding to a simple root αi, such that siw < w, which in our setting w = wn is
always the case, then

Wτ
siw

= I ′iWτ
w,

where I ′i, called a (modified) Demazure-Lusztig operator, applied to Wτ
w(g) is given ex-

plicitly as

(I ′iWτ
w) (g) :=

(
1− q−1τ (α∨i (π))

)
·
(
Wτ

w(g)− τ (α∨i (π))Wτsi
w (g)

1− τ (α∨i (π))

)
−Wτ

w(g).

These operators satisfy the braid relations (Prop.12 in loc.cit.)

I ′i+1I ′iI ′i+1 = I ′iI ′i+1I ′i (52)

and the quadratic relations (Prop.13 in loc.cit.)

(I ′i)
2 = (q−1 − 1)I ′i + q−1. (53)

The latter implies that the I ′i’s are invertible with inverse

Ii := (I ′i)
−1 = q

(
I ′i − (q−1 − 1)

)
, (54)

which is explicitly given by

(IiWτ
w) (g) = q ·

(
1− q−1τ (α∨i (π))

)
·
(
Wτ

w(g)− τ (α∨i (π))Wτsi
w (g)

1− τ (α∨i (π))

)
−Wτ

w(g). (55)

If w = skn · . . . · sk1 is now any Weyl element written as reduced product of simple
reflections, then

Wτ
wwn = I ′kn . . . I

′
k1W

τ
wn .

This is independent of the choice of the reduced product due to the braid relations (52).

Example 5. Let us now see how this applies to our case g = πesi, where e is si-almost
dominant. Using the fact that in the GLn-case we have wnsi = swn(i)wn = sn−iwn, as well
as (55) together with (50), we have

Wτ
wn (πesi) =

(
Iwn(i)Wτ

swn(i)wn

)
(πesi)

=
(
Iwn(i)Wτ

wnsi

)
(πesi)

= q ·
(
1− q−1τ

(
α∨n−i(π)

))
·

Wτ
wnsi

(πesi)− τ
(
α∨n−i(π)

)
Wτsn−1

wnsi
(πesi)

1− τ (α∨n−i(π))


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−Wτ
wnsi

(πesi)

=
(
1− q−1τ

(
α∨n−i(π)

))
·


(
δ1/2
n ⊗ τwn

)
(πe)− τ

(
α∨n−i(π)

) (
δ1/2
n ⊗ τ sn−iwn

)
(πe)

1− τ (α∨n−i(π))


−q−1 ·

(
δ1/2
n ⊗ τwn

)
(πe)

=
(
δ1/2
n ⊗ τwn

)
(πe)

(1− q−1 τn−i(π)
τn−i+1(π)

)1−
(

τn−i(π)
τn−i+1(π)

)ei−ei+1+1

1− τn−i(π)
τn−i+1(π)

− q−1

 .
For n = 2 and i = 1 we easily recover the special case (51).

We will also use the following identity in the computation for the case n = 2 in Chapter
5:

Lemma 2.4. If e, f ∈ Zn with si • f = f , then

Wτ
wn(πe+fsi) =

(
δ1/2
n ⊗ τwn

)
(πf ) · Wτ

wn(πesi). (56)

2.2. (g, K)-modules
Let G be a real reductive Lie group. We shall denote by g its Lie algebra, by K ⊂ G a
fixed maximal compact subgroup and by k the Lie algebra of K.

Example 6. Important examples of (g, K)-modules for us arise as follows:

a) GLn(kν), where ν is any Archimedean place of k, has the structure of a real reductive
Lie group. For its maximal compact subgroup we then usually take K ∈ {O(n), U(n)}
depending on whether ν is real or complex.

b) GLn(A∞) ∼=
∏
ν |∞GLn(kν) has the structure of a real reductive Lie group as well.

A (g, K)-module in the sense of Lepowsky is a C-vector space V , that is simultaneously

• a Lie algebra representation of g,

• and a linear representation of K (we disregard for instance the topology on K),

such that

1. for all v ∈ V, k ∈ K,X ∈ g:

k · (X · v) = Ad(k)(X) · (k · v),

2. V is K-finite, i.e. for any v0 ∈ V , the subspace

K · v0 := 〈x · v0 |x ∈ K〉

is of finite dimension, such that the action of K on any K · v0 is continuous,
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3. for all v ∈ V and Y ∈ k, (
d

dt
exp (tY ) · v

)
|t=0

= Y · v.

We want to stress that a (g, K)-module is a purely algebraic concept, and therefore we
do not speak about ’smooth’ (g, K)-modules. But in analogy with the non-Archimedean
case, we can understand the second condition as ’smoothness’; indeed, it implies, that we
have an algebraic direct sum decomposition

V =
⊕
α∈K̂

V (α),

see for instance Lemma 3.3.3. in [Wal88]. Here, K̂, as in the non-Archimedean case,
denotes the set of equivalence classes of irreducible finite-dimensional representations of
K. In analogy with the non-Archimedean case, we will call a (g, K)-module V admissible,
if every V (α) is of finite dimension.

Remark 3. Another reason for the ’smoothness’ arises via the Casselman-Wallach’sGlob-
alization Theorem (see [Cas89] as well as the recent paper [KB14]): given a (g, K)-module
V , there exists a (unique) smooth representation (of moderate growth) W of G, whose
subspace of K-finite vectors WK is isomorphic to V as a (g, K)-module11.

2.2.1. Archimedean Generic Representations

There is a similar notion of generic Archimedean representations for (g, K)-modules, see
Chapter 8 of [JPSS79b]. However, we shall not be interested in this case for now. The
only fact important to us is the Multiplicity One-Theorem of Shalika [Sha74], Theorem
3.1., which is the analogue statement of Gelfand-Kajdan, but for Archimedean places,
and the fact that we can talk about Archimedean Whittaker functions.

2.3. Automorphic representations
Automorphic representations should be thought of as spaces of automorphic forms. We
thus start by recalling the notion of an automorphic form, see Chapter 3.3. in Bump’s
[Bum96]. Recall that GLn(A) possesses the standard maximal compact subgroup Kmax :=
KfinK∞, where

Kfin :=
∏
ν<∞

GLn(Oν) and K∞ :=
∏
ν real

O(n)×
∏

ν complex
U(n).

Definition 2. a) A function ϕ: GLn(A) → C is called an automorphic form on GLn(A)
with central character ω: k×

∖
A× → S1, if the following hold:

• ϕ(γg) = ϕ(g) for γ ∈ GLn(k), g ∈ GLn(A),
11More precisely, the Casselman-Wallach functor defines an equivalence of the corresponding categories.
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• ϕ(zg) = ω(z)ϕ(g) for z ∈ A×, center of GLn(A),
• ϕ is smooth of moderate growth,
• ϕ is Kmax-finite,
• ϕ is Z-finite12,

If ω is character of k×
∖
A× , we shall denote by A(GLn(k)\GLn(A), ω) the set of

automorphic forms with central character ω.

b) Moreover, we call an automorphic form ϕ on GLn(A) to be cuspidal, if∫
n∈N(k)\N(A)

ϕ(ng)dn = 0, (57)

where N ⊂ GLn is any (standard maximal) unipotent subgroup. The subspace of
cuspidal forms with central character ω will be denoted by A0(GLn(k)\GLn(A), ω).

Recall that GLn (A∞) has the structure of a real (reductive) Lie group. We shall denote
by g∞ its Lie algebra. Now the space of automorphic forms A(GLn(k)\GLn(A), ω) with
a central character ω is not necessarily a representation of GLn(A), where GLn(A) acts
via right translation in the argument g · ϕ(x) := ϕ(xg), but it is a

• smooth representation of GLn(Afin),

• and a (g∞, K∞)-module,

such that the two actions commute. By abuse of notation, we will write ρ for any of these
actions.

Definition 3. 1. An automorphic representation (ρ, V ) is any irreducible subquotient
V of A(GLn(k)\GLn(A), ω) for some central character ω.

2. An admissible representation is an automorphic representation (ρ, V ), if it is admis-
sible for both parts: as representation of GLn(Afin) and as (g∞, K∞)-module.

3. At last, a cuspidal representation (ρ, V ) of GLn(A) is any (automorphic) admissible
representation, that is realizable as subquotient of some A0(GLn(k)\GLn(A), ω).

Thus, for us, automorphic representations are always irreducible. Suppose now, we
are given an (irreducible) admissible (not necessarily cuspidal) representation (ρ, V ) of
GLn(Ak). Then, by the Flath-Decomposition Theorem 2 and Theorem 3 in [Fla79], ρ
decomposes as a restricted tensor product into local components

ρ ∼=
⊗
ν<∞

′
ρν ⊗

⊗
ν |∞

ρν ,

where ρν is
12Z stands for the center of the universal enveloping algebra of the complexification of the infinity part

Lie algebra g∞,C.
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• an irreducible admissible representation of GLn(kν) for finite ν,

• and an irreducible admissible (gν , Kν)-module at ν |∞.

Furthermore, by loc.cit., this decomposition is K-compatible in the following sense: if
K = ∏

ν Kν<∞ ⊂ GLn(Afin) is any open compact subgroup, then
(⊗
ν<∞

′
ρν

)K
∼=
⊗
ν<∞

′
ρKνν

But due to the topology on GLn(A), we have Kν = GLn(Oν) on almost all finite places
ν. In addition, due to the K-finiteness of ρ itself and the structure of K, we thus have
on almost all finite places dimC(ρGLn(Oν)

ν ) = 1. In other words, we have an irreducible
unramified representation of GLn(kν) at almost all finite places ν of k.

2.3.1. Remarks on Cuspidal Representations

Cuspidal representations have nice properties:

• One important future of cuspidal representations is that they are generic13. Gener-
icity for automorphic representations is defined analogously as in the local cases
(see [PS79]). As a consequence of the local Multiplicity One-Theorems, one has
the global Multiplicity One-Theorem (very first Theorem of loc.cit.), and indeed, if
W =Wϕ,ψA is a global Whittaker function attached to some cuspidal form ϕ ∈ (ρ, V )
and the global additive character ψA, such that ϕ corresponds under the Flath De-
composition to a pure tensor of the form ϕ = ⊗νϕν , then every constituent ρν is
generic and

W(g) =
∏
ν

Wϕν ,ψν (gν), (58)

where Wϕν ,ψν are local Whittaker functions attached to the local component ϕν
realized in the Whittaker space W(ψν) and g = (gν)ν ∈ GLn(A). As we have seen
above, we have the irreducible principal series representation ρν = I(τν) for an
unramified character τν of Tn(kν) on almost all finite places ν.

• A consequence of genericity is that one can attach an L-function to a cuspidal rep-
resentation and the L-function has desirable properties (functional equation, mero-
morphic continuation). Indeed, we shall explain in the next chapter, how to attach
an L-function to a pair of cuspidal representations by means of Rankin-Selberg
convolutions.

13At least over GLn(A). This may be in general not true, as there exist for example cuspidal non-generic
representations for the spin groups; the holomorphic Siegel modular forms do not have a Whittaker
model.
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3. Automorphic L-Functions
Let us fix a pair of (irreducible) cuspidal representations (ρ, σ) of GLn+1(Ak)×GLn(Ak).
As we have seen in Chapter 2, both representations decompose as restricted tensor prod-
ucts into local components

ρ ∼=
⊗′
ν ρν , σ ∼=

⊗′
ν σν .

Let us set
S∞ := {ν | ν arch.prime place of k}

and
Sram := {ν | ν non-arch.prime place of k, s.t. ρν , σν or ψν ramify} .

Both sets are finite and so is
S := S∞ ∪ Sram.

We already mentioned that we want ψA to be unramified at ℘. From now on we impose
the stronger condition:

Hypothesis 1. ℘ /∈ S.

For now, we assume that χA,s is unramified at every place, i.e. χA,s = ‖ · ‖s−1/2. The
global (complete) L-function attached to the pair (ρ, σ) under the twist of χA,s is defined
formally as the Euler product of local L-functions

L(ρ× (σ ⊗ χA,s)) :=
∏
ν

L(ρν × (σν ⊗ χν,s))

with ν ranging over all prime places of k. The local L-functions are described below. We
would like to point out, that in general, for cuspidal representations of GLn×GLm one
uses the shift ‖ · ‖s−

n−m
2 , which explains our choice of the exponent in this case.

Recall that ρ and σ are generic for any place ν (finite or infinite). We define the local
zeta integral (attached to a pair of local Whittaker functions of W(ρν , ψν) ×W(σν , ψν))
by

(59)Z(Wν ,W ′ν , χν,s) =
∫

Un(kν)\GLn(kν)

Wν(
(
gν

1

)
) · W ′ν(gν) · χν,s (gν) d×gν .

We shall now explain the Euler factors (these are the local L-functions) at every place ν
and their connection to the local zeta integrals:

• ν non-archimedean:
Here we follow Chapter 2 of [JPSS83]. For every pair of Whittaker functions
(Wν ,W ′ν) ∈ W(ρν , ψν) ×W(σν , ψν), the local Zeta integral is a rational function
in q−sν and thus converges absolutely for sufficiently large <(s). Moreover, the fam-
ily of these integrals{

Z(Wν ,W ′ν , χν,s) | (Wν ,W ′ν) ∈W(ρν , ψν)×W(σν , ψν)
}
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span a (principal) fractional ideal of C[q±sν ] inside its fraction field C(q−sν ), which is
independent of ψν and any generator is of the form 1

P (q−sν ) for some P (X) ∈ C[X]
with P (0) 6= 0. We define

L(ρν × (σν ⊗ χν,s))
to be the generator P normalized by P (0) = 1. This is all included in Theorem 2.7
of loc.cit.
Furthermore, if ν /∈ S, i.e. both representations ρν and σν , as well as ψν are unrami-
fied, then ρν ∼= I(λν), σν ∼= I(µν), and the corresponding local L-function is actually
of the form (59) for the unique pair of spherical Whittaker functions (Wν ,W ′ν)
normalized by the condition Wν(1) = 1 =W ′ν(1). In this case,

L(ρν × (σν ⊗ χν,s)) = 1
det(1− Aλν ⊗ Aµν · q−s)

,

where Aλν and Aµν are the respective Satake parameters of I(λν) and I(µν) as
defined in 47. The proof of this can be found in Chapter 7 in the lecture notes of
Cogdell [Cog03]. In general, the local non-archimedean L-factor is only a finite sum
of such local non-archimedean zeta integrals.

Remark 4. If ν /∈ S, but χν is ramified at ν, then

L(ρν × (σν ⊗ χν,s)) = 1

by definition.

• ν archimedean: In this case, the local zeta integrals converge for sufficiently large
<(s) and can be extended meromorphically to the whole plane C. Moreover, by
the local archimedean Langlands-correspondence, there corresponds to every (pair
of) local component(s) ρν × σν a pair of ((n+ 1), n)-dimensional semi-simple repre-
sentations

(
ρWR
ν , σWR

ν

)
of the Weil-group Wkν (for a reference, see Theorem 2 and

Theorem 5 of [Kna79]), and one defines

L(ρν × (σν ⊗ χν,s) := L(s, ρWR
ν ⊗ σWR

ν )

in the sense of Artin (we will always have χν = 1 at infinite places, so χν,s =
‖ · ‖s−1/2). Moreover, every archimedean local zeta integral Z(Wν ,W ′ν , χν,s) at ν is
a holomorphic multiple of L(ρν × (σν ⊗ χν,s), and this L-factor is essentially just a
product of gamma factors.

To sum up, there exists a holomorphic function P (s,W∞,W ′∞) in s depending only on the
pair of families of Whittaker functions at infinity W∞ = (Wν)ν |∞ and W ′∞ = (W ′ν)ν |∞,
such that the global L-function satisfies

P (s,W∞,W ′∞) · L(ρ× (σ ⊗ χA,s)) =
∑
ι

∏
ν

Z(W(ι)
ν ,W ′ν

(ι)
, χν,s)
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for some finite number of pairs of families of local Whittaker functions (W(ι),W ′(ι)) :=(
W(ι)

ν ,W ′ν
(ι)
)
. Here, for every ν /∈ S we chooseW(ι)

ν andW ′ν
(ι) to be the normalized spher-

ical vector, respectively. Thus, if (ϕι, ϕ′ι) are the cuspidal forms associated to (W(ι),W ′(ι)),
then together with (58), we have the integral representation

P (s,W∞,W ′∞) ·L(ρ× (σ⊗χA,s)) =
∑
ι

∫
GLn(k)\GLn(A)

ϕι(
(
g

1

)
) ·ϕι(g) ·χA,s(g)d×g. (60)
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4. Motives
By Clozel, Conjecture 4.5. in [Clo88], one expects a correspondence between cuspidal
representations on the automorphic side and motives on the geometric side. More pre-
cisely, if Σ is a algebraic automorphic (and isobaric) cuspidal representation of GLn(Ak)
with purity weight14 w and values in some number field E/Q, then there should exist
attached to Σ an irreducible n-dimensional pure motive MΣ of weight w, defined over k
with coefficients in some number field extension E ′/E, such that (up to a shift), their
L-functions coincide. To be more specific, such that

Lν

(
Σ, s+ 1− n

2

)
= Lν(MΣ, s)

holds. One expects this correspondence to be functorial by means of their L-functions. As
an example of functoriality which is of importance for us, let us take our pair of cuspidal
representations (ρ ∼= ⊗′ρν , σ ∼= ⊗′σν). If Mρ and Mσ are their conjectural motives, one
expects that

Lν

(
ρν × σν , s+ 1− n(n+ 1)

2

)
= Lν(Mρ ⊗Mσ, s)

at every place ν in k, where the left hand side is the local Euler factor at ν as described
in Chapter 3. But let us start from the beginning. What is a (pure) motive?
Fix for a moment a projective non-singular variety X over Q and an integer m ≥ 0. The
theory of algebraic and analytic geometry provides X with three different cohomology
groups:

• The singular or Betti cohomology Hm
B (X(C)) with rational coefficients of the com-

plex manifold X(C).

• The de Rham cohomology Hm
dR(X) of the algebraic variety X.

• For every prime ` the `-adic cohomology Hm
` (X) of the algebraic variety X over the

algebraic closure Q of Q with coefficients in Q`.

As it turns out, these cohomology groups have a wide interplay with each other. For our
number-theoretic needs, we just abstract these properties and adopt it as the definition in
a naive sense. Hence, we define a motive by its ’realization’. A definition of such realiza-
tions over Q can be found in [Coa89], Section 3, as well as in [CPR89], Section 2. Deligne
defines (realizations of) motives over a general number field with coefficients in possibly
another number field in [Del79]. Nevertheless, we shall also follow the unpublished paper
[Pan90] of Panchishkin.

14We did not define it here, nor will we do so, since we do not really need it, but it is a technical
assumption. For a definition see for example [Clo88].
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Definition 4. A pure motive M (or just motive) over the number field k/Q with coeffi-
cients in (possibly another) number field E/Q is a collection of the form

M :=
(
(HB,β(M))β:k↪→C , HdR(M), (H`(M))` fin.prime in E

)
,

together with two constants

d := d(M) ∈ N0, and w := w(M) ∈ Z

called the dimension and the weight of M , respectively. Here, β runs over the different
field embeddings k ↪→ C and ` over the different finite prime places of E. The collection
consists of free modules of the same rank d as follows:

• each HB,β(M) is a d-dimensional vector space over E,

• HdR(M) is a free module of rank d over the ring (E ⊗Q k),

• each H`(M) is a d-dimensional vector space over E`,

that satisfy the following properties:

i) Each HB,β(M), where β: k ↪→ R is a real embedding, admits an E-rational involution

ρB,β:HB,β(M)→ HB,β(M).

ii) For each embedding β: k ↪→ C there is a Hodge-Decomposition

HB,β(M)⊗Q C =
⊕

p+q=w
Hp,q
β (M) (61)

into (E ⊗ C)-modules. Futhermore, we demand (ρB ⊗ 1C)(H i,j
β (M)) = Hj,i

β (M) for
any pair (i, j) with i+ j = w, provided β is real.

iii) There is a decreasing filtration {FmHdR(M)}m∈Z of (not necessarily free) (E ⊗Q k)-
modules on HdR(M), i.e.

HdR(M) =
⋃
m∈Z

FmHdR(M) ⊇ . . . ⊇ F nHdR(M) ⊇ F n+1HdR(M) ⊇ . . . .

iv) There is a continuous group action of the absolute galois group Gal(k/k) of k on each
H`(M), such that system of `-adic representations

r`: Gal(k/k)→ GL (H`(M))

is compatible.

v) For each finite prime ` of E and each embedding β: k ↪→ C there is a comparison
isomorphism of E`-vector spaces

ψ`,β:H`(M) ∼−→ HB,β(M)⊗E E`.
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vi) For each embedding β: k ↪→ C there is a comparison isomorphism (at infinity) of
(E ⊗Q C)-modules

ψ∞,β:HdR(M)⊗k,β C ∼−→ HB,β(M)⊗Q C, 15

such that for each m ∈ Z and each embedding β: k ↪→ C we have

ψ−1
∞,β

⊕
i≥m

H i,j
β (M)

 = FmHdR(M)⊗k,β C.

4.1. Complex L-functions attached to motives
Let us now suppose that M is a motive. One can attach to M the L-function L(M, s)
defined as follows:
Let us fix some non-Archimedean prime place ν of k. Let us further denote by Dν the
(absolute) decomposition subgroup of some prime ν in k lying above ν and Iν its inertia
subgroup. Then we have a short exact sequence of groups

1→ Iν → Dν → Gal
(
κ(ν)/κ(ν)

)
→ 1.

The arithemetic Frobenius Frobν is the element ofDν

/
Iν that acts on the algebraic closure

κ(ν) by the automorphism x 7→ xqν . If ` is any non-Archimedean place coprime to ν (in
the sense that ` and ν do not lie over the same prime of Q), we define the polynomial in
X

L(1)
ν (M,X) := 1

det
(

1− r`
(
Frob−1

ν

)
|H`(M)Iν

·X
) .

Observe that we did not use ` on the left hand side. We justify this by imposing yet
another standard hypothesis on M :

Hypothesis 2. L(1)
ν (M,X) is a rational polynomial with coefficients in E and indepen-

dent of the choice of non-Archimedean ` coprime to ν.

Under this hypothesis, if γ:E ↪→ C is any field embedding, we can consider L(γ)
ν (M,X)

by acting via γ on each coefficient of L(1)
ν (M,X).

With this, we define

Lν(M, s) :=
(
L(γ)
ν

(
M, q−sν

))
γ
∈
∏
γ

Cγ(qsν) = (E ⊗Q C) (qsν),

where γ runs through the embeddings E ↪→ C. Finally, we define the corresponding
L-function via

L(M, s) :=
∏
ν<∞

Lν(M, s).

15The subscript in the tensorproduct ⊗k,β means a tensorproduct ⊗k twisted by β as follows: for any
x ∈ k one has x⊗− = −⊗ β(x).
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Remark 5. a) One can extend L(M, s) to the complete L-function Λ(M, s) defined as

Λ(M, s) = L∞(M, s) · L(M, s),

where L∞(M, s) is the Γ-factor (at infinity). The complete L-function should conjec-
turally satisfy a functional equation ’as usual’ in the language of L-functions (mero-
morphic extension and functional equation). The infinity part is defined for k = Q in
[Coa89]. In the case of a general number field k/Q, the restriction Resk/QM is a pure
motive over Q (with coefficients in E), whose `-adic representations are obtained by
induction from Gal(k/k) to Gal(Q/Q). It satisfies the identity

Lν(M, s) = Lν(Resk/QM, s).

at every place ν (finite or infinite).

b) We would like to remark that we can also restrict the coefficient field E, by regarding
the realization of M as vector spaces over a smaller subfield. In other words, we have
two different ’restriction functors’.

4.2. p-adic L-functions attached to motives
Let us restrict now to the case k = E = Q. Coates and Perrin-Riou defined in Section
4 of [CPR89] the notion of a p-ordinary motive. For sake of completeness, we shall give
the definition here. We fix a prime p and as before let p to be any prime in Q with p|p.
Moreover we denote by

φp:Dp = Gal(Qp/Qp)→ Z×p
the cyclotomic character at p.

Definition 5. We say M is ordinary16 at p, if the following two conditions are satisfied:

i) Ip acts trivially on H`(M) for any prime ` 6= p.

ii) There exists a Dp-stable filtration of Qp-subspaces of Hp(M)

Hp(M) = W0(M) ) W1(M) ) . . . ) Wt(M) = 0

with some t ∈ N, such that Ip acts on every quotient Wi−1(M)
/
Wi(M) by some

power of φp, call it φ−ei(M)
p for 1 ≤ i ≤ t, and such that these integers satisfy the

domination condition
e1(M) ≥ . . . ≥ et(M).

With acting by some power −ei(M) of φp, we mean that for g ∈ Ip and w ∈ Wi(M),

g · (w +Wi(M)) = φ−ei(M)
p (g) · w +Wi(M).

16By modern standards we would call it ordinary and unramified at p.
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The first condition of ordinarity at p implies that the (inverse of the) Euler factor at p
has exactly degree d, let us say

Lp(M,X) = 1
(1− α1X) · . . . · (1− αdX)

with some αi ∈ Qp\{0}. We assume that the αi are ordered in such a way that

|α1|p ≤ . . . ≤ |αw|p , (62)

where | · |p denotes here (by abuse of notation) the natural extension of the absolute value
| · |p on Qp to the decomposition field Qp(α1, . . . , αw). Conjecture 4.2 of loc.cit. states the
connection between the integers ei(M) and the |αj|p.

Remark 6. Due to Clozel’s conjectural correspondence, we expect to have the notion of
p-ordinarity for our cuspidal representations as well. We will come back to p-ordinarity
for cuspidal representations in Chapter 6.

4.3. Tensor product of motives
There are several operations on motives. We already introduced the two different restric-
tions, and briefly mentioned the tensor product. Let us write down what we precisely
mean by the latter: given two pure motives M and M ′ (both defined over k with coeffi-
cients in E) of dimensions d(M) and d(M ′), respectively, we define M ⊗M ′ ’tensor-wise’
in every realization. More precisely;

• its Betti-realization is for every embedding β: k ↪→ C given as

HB,β(M ⊗M ′) := HB,β(M)⊗E HB,β(M ′)

• its de Rham realization is just

HdR(M ⊗M ′) := HdR(M)⊗E HdR(M ′)

• its `-adic realization is given in a similar manner as

H`(M ⊗M ′) := H`(M)⊗E` H`(M ′)

at every prime place `.

Its dimension is obviously d(M ⊗M ′) = d(M) ·d(M ′). In a similar manner, we obtain the
corresponding de Rham filtration, the Hodge decomposition, as well as the corresponding
comparison morphisms and each E-rational involution just by ’point-wise’ tensoring.

Moreover, let us supposeM andM ′ are both ordinary at p: since Ip acts trivially on both
H`(M) and H`(M ′), it does so on their tensor product H`(M ⊗M ′) for ` 6= p. Moreover,
we have p-adic cohomology filtrations

Hp(M) = W0(M) ) W1(M) ) . . . ) Wt(M) = 0
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Hp(M ′) = W0(M ′) ) W1(M ′) ) . . . ) Wu(M ′) = 0,

as in the definition of p-ordinarity, with

e1(M) ≥ . . . ≥ et(M),
e1(M) ≥ . . . ≥ es(M).

We impose now the following

Hypothesis 3. For any m ∈ {2, 3, . . . , t + u} and any i, j ≥ 1 with i + j = m, we have
that

em(M ⊗M ′) := ei(M) + ej(M ′) (63)
is constant (i.e. invariant of the choice of i, j).

Under this hypothesis, we can construct a p-adic cohomology filtration of Hp(M ⊗M ′)
according to p-ordinarity as follows:

Hp(M ⊗M ′) = W0(M)⊗W0(M ′) ) W0(M)⊗W1(M ′) +W1(M)⊗W0(M ′) ) . . .

)
∑

i+j=m
Wi(M)⊗Wj(M ′) ) . . . ) Wt−1(M)⊗Wu−1(M) ) 0,

and we have
e2(M ⊗M ′) ≥ e3(M ⊗M ′) ≥ . . . ≥ et+u(M ⊗M ′).

At last let us explain why we need p-ordinarity. Assume that M is a p-ordinary motive.
Coates predicts in [Coa89] the existence of a unique p-adic (pseudo-)measure, that inter-
polates the special values of the motivic L-function of M . For a more precise statement,
see Conjecture 6 of his paper. In Chapter 6 we will assume ρ and σ to be ℘-ordinary,
and thus, under an invariance condition as in (63) but on the automorphic side, we will
℘-adically interpolate the special value s = 1/2 of L(ρ× σ, s) as described by Coates.
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5. Modification at ℘
Given a motiveM overQ with coefficients inQ, and a prime number p, Coates describes in
Chapter 5 of [Coa89], how the Euler factor Lp(M, s) at p should be modified in order to p-
adically interpolate the values of L(M, s). We mimic this modification on the automorphic
side over the number field k at our fixed non-Archimedean place ℘:

5.1. The modified setting
Recall that we denoted by F = k℘ the corresponding local field at ℘. In order to inter-
polate the L-function attached to ρ × σ at ℘, we shall modify the Euler factor at ℘ as
follows:
Fix a natural number f = f℘ ≥ max{c(χ), 1}. The number f plays the role of the congru-
ence level in the ℘-adic interpolation. By our choice,

1 + πf · O ⊂ Kern(χ).

Moreover, let

tn :=


n

n− 1
...
1

 ∈ Zn, hn+1 :=



1 1
1 1

. . . ...
1 1

1

 ∈ Un+1(F ).

Let us fix a pair of unramified and regular C-valued characters (λ, µ) of Tn+1(F )× Tn(F )
that satisfy the condition (45) and such that I(λ), I(µ) are principal series representations.
Let us further take the pair (W ,W ′) := (Wλ

wn+1 ,W
µ
wn) of (Iwahori-spherical) (ψ, ψ−1)-

Whittaker functions on GLn+1(F ) × GLn(F ), each one supported on the large Bruhat
cell, as defined in (46). We define the modified local zeta integral

(64)Z̃(W ,W ′, χs) =
∫

Un(F )\GLn(F )

W(
(
g

1

)
hn+1

(
wnπ

f·tn

1

)
) · W ′(gπf·tn) · χs (g) d×g,

where s ∈ C. This integral converges for <(s)� 0. Recall that χs = χ×‖ · ‖s−
1
2 for some

multiplicative character χ on GLn(O).

5.2. The case n = 1
We start by the computation of Z̃(W ,W ′, χs) for GL2×GL1. In this case we have µ =
(µ1) so we just denote it by µ. We further have U1(F ) = {1} = W1, and GL1(F ) = F× is
abelian. Also, δ1 = 1. Moreover, J1 = O×, and since t1 = 1, we obtain

Z̃(W ,W ′, χs) =
∫
F×

W(
(
g

1

)(
1 1

1

)(
πf

1

)
) · W ′(gπf) · χs (g) d×g
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=
∫
F×

W(
(

1 g
1

)(
g

1

)(
πf

1

)
) · W ′(gπf) · χs (g) d×g

=
∫
F×

ψ(g) · W(
(
g · πf

1

)
) · W ′(g · πf) · χs (g) d×g

=
∑
e∈Z

∫
O×

ψ(πet) · W(
(
πet · πf

1

)
) · W ′(πet · πf) · χ (t) · |πe|s−

1
2 d×t

=
∑
e∈Z

q−e(s−
1
2 ) · W(

(
πe+f

1

)
) · W ′(πe+f) ·

∫
O×

χ (t) · ψ(πet)d×t

=
∑
e∈Z

q−e(s−
1
2 ) · W(

(
πe+f

1

)
) · W ′(πe+f) ·G(e, χ)

(49)=
∑
e∈Z

G(e, χ) ·
(
δ

1/2
2 ⊗ λw2

)
(
(
πe+f

1

)
) · (δ1/2

1 ⊗ µ1)(π)e+f · q−e(s−
1
2 )

= δ
1/2
2 (

(
πf

1

)
) · (λ2 ⊗ µ)(π)f ·

∑
e∈Z

G(e, χ) ·
(
(λ2 ⊗ µ1)(π) · q−s

)e
.

5.2.1. χ ramified

If χ is ramified, all factors from the local zeta integral vanish by Lemma 1.1.b) unless
e = −c(χ), and hence

Z̃(W ,W ′, χs) = q−f/2 · (λ2 ⊗ µ)(π)f ·G(χ) ·
(
(λ2 ⊗ µ)(π) · q−s

)−c(χ)

for all s ∈ C.

5.2.2. χ unramified

If χs is unramified, our local zeta integral results to be

Z̃(W ,W ′, χs) = q−f/2 · (λ2 ⊗ µ)(π)f ·
(

q

q − 1 ·
1− (λ2 ⊗ µ)(π)−1 · qs−1

1− (λ2 ⊗ µ)(π) · q−s

)

by virtue of (81) for all s ∈ C with <(s) sufficiently large. This expression then meromor-
phically extends Z̃(W ,W ′, χs) to the whole C.

5.3. A general recursion
How should one approach the resolution for a general n ∈ N? Recall the matrix

hn+1 =


1 1

. . . ...
1 1

1

 ∈ Un+1(F )
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sitting inside W . If we set

bn :=


1
...
1

 ∈ F n,

one can interpret hn+1 as the element (1n, bn) in the affine linear group GLn(F ) n F n.
Thus, for g = (g, 0) ∈ GLn(F ) n F n, one has

(g, 0) · (1n, bn) = (g, gbn) = (1n, g · bn) · (g, 0)

which means (
g

1

)
hn+1 =

(
1n g · bn

1

)(
g

1

)
.

Thus,

W(
(
g

1

)
hn+1 ∗) =

n∏
i=1

ψ(gni) · W(
(
g

1

)
∗). (65)

If we define for a vector a := (a1, . . . , an) ∈ N0

ψa(g) :=
n∏
i=1

ψ(gniπai), (66)

the equation (65) can be restated as

W(
(
g

1

)
hn+1 ∗) = ψ0n(g) · W(

(
g

1

)
∗). (67)

Thus,

Z̃(W ,W ′, χs) =
∫

Un(F )\GLn(F )

ψ0n(g)W(
(
gwnπ

f·tn

1

)
) · W ′(gπf·tn) ·

(
χ× ‖·‖s−

1
2
)

(g) d×g.

By (34), this can be rewritten as

Z̃(W ,W ′, χs) =
∑
e∈Zn

(
δ−1
n ⊗ ‖·‖

s− 1
2
)

(πe) ·
∑
w∈Wn

χ(w)

·
∫

U
(w)
n \Jn

W(
(
πewj · wnπf·tn

1

)
) · W ′(πewj · πf·tn) · ψ0n(πewj)χ (j) d×j.

Let us set

I(a)
n (w, e) :=

∫
U

(w)
n \Jn

W(
(
πewj · wnπf·tn

1

)
) · W ′(πewj · πf·tn) · ψa(πewj)χ (j) d×j (68)

for a ∈ Nn
0 . Then

Z̃(W ,W ′, χs) =
∑
e∈Zn
w∈Wn

(
δ−1
n ⊗ ‖·‖

s− 1
2
)

(πe) · χ(w) · I(0n)
n (w, e). (69)
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Decomposition of U (w)
n \Jn. The space U (w)

n \Jn can be interpreted as an upper-triangular
matrix group conjugated by an Weyl element (such that below the diagonal appears p
instead of O): It has exactly one ’full’ row in the sense that every other row has at least
one 0 inside:

U (w)
n \Jn ∼=



O× ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ . . . ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ . . . ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ O× ∗ ∗ ∗ ∗
p . . . . . . p O× O . . . O
∗ ∗ ∗ ∗ ∗ O× ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ . . . ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ O×


.

The highlighted row is the w−1(n)-th row. Due to the appearance of ψa(πewj) inside
I(a)
n (w, e), which is just a product running over the w−1(n)-th row of j, it makes sense to
integrate I(a)

n (w, e) row-wise: starting by its w−1(n)-th row.
A further observation we can make is that the subset of U (w)

n \Jn, which has at least one 0
in its w−1(n)-th row, is a nullset w.r.t. d×j. We shall now decompose U (w)

n \Jn such that
we can perform the integration row-wise:

• We denote by (U (w)
n \Jn)′ the subset of U (w)

n \Jn that results by fixing its w−1(n)-th
row to be (0w−1(n)−1, 1, 0n−w−1(n)). Thus, it is of the form

(
U (w)
n \Jn

)′ ∼=



O× ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ . . . ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ . . . ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ O× ∗ ∗ ∗ ∗
0 . . . . . . 0 1 0 . . . 0
∗ ∗ ∗ ∗ ∗ O× ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ . . . ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ O×


.

• We define
A(n)
w := Nw−1(n)−1 × {0} × Nn−w−1(n)

0 .

and for a ∈ A(n)
w set

ra :=



1
. . .

. . .
1

πa1 . . . . . . πaw−1(n)−1 1 πaw−1(n)+1 . . . πan

1
. . .

1


.
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With this definitions we have the following decomposition:

U (w)
n \Jn =

∐
a∈A(n)

w

(U (w)
n \Jn)′ · ra · Tn(O) t {nullset} (70)

Thus, inside the integration over j ∈ U (w)
n \Jn, we can assume j to be of the form

j = j′ ·



1
. . .

. . .
1

πa1 . . . . . . πaw−1(n)−1 1 πaw−1(n)+1 . . . πan

1
. . .

1


· t ∈ (U (w)

n \Jn)′ · ra · Tn(O)

for some a ∈ A(n)
w .

Measure decomposition. By the decomposition (70), we have for any f ∈ Cc(U (w)
n \Jn)∫

U
(w)
n \Jn

f(j) d×j =
∑

a∈A(n)
w

(∗) ·
∫

(U(w)
n \Jn)′

∫
Tn(O)

f(j′ra · t) d×t d×j′

where d×j′ is some Radon measure on (U (w)
n \Jn)′. In order to determine d×j′ we do the

following:
If we apply conjugation by w−1 to the refined Iwahori decomposition (20), we have the
decomposition

Jn = U (w)
n · U (wnw)

n · Tn(O).
Together with the Product Integral Theorem in [Dei14], prop.1.5.6, we obtain that for
any f ∈ Cc(U (w)

n \Jn), one has∫
U

(w)
n \Jn

f(j)d×j = c(w) ·
∫

U
(wnw)
n

∫
Tn(O)

f(u(wnw)t) d×t du(wnw)

where c(w) > 0 is a suitable constant. This is due to the fact, that now all the appearing
measures have already been fixed. If we choose f to be the characteristic function on
U (w)
n \Jn, the constant results to be the quotient

c(w) = vol(Jn, d×j)
vol(U (w)

n , du(w))
· 1

vol(U (wnw)
n , du(wnw))

· 1
vol(Tn(O), d×t) = vol(Jn, d×j)

q−
(n−1)n

2
,

which is w-invariant, and thus we set c := c(w).
Observe also, that the order of u(wnw) and t in the argument is not relevant since all the
groups are compact and hence unimodular. We furthermore know the structure of these
measures:
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• The measure on Tn(O) is just the n-fold product measure of the multiplicative
measure on O×, i.e. d×t = d×t1 · . . . · d×tn.

• Since the measure on Un(O) is given by du = ∏
i<j duij, the duij being the additive

measure on O, we also know the form of the pullback measure du(wnw) on U (wnw)
n :

it also a product of additive measures on O.

• And of course, the measure d×j on U (w)
n \Jn is just the product of these two (up to

the constant c).

Thus, we define now d×j′ on (U (w)
n \Jn)′ as the product measure of the d×t and du(wnw) but

leaving out all the measures that were corresponding to elements lying in the w−1(n)-th
row of j. In order to fill it up to the measure d×j, we thus need to add an (n − 1)-
fold additive measure on O and 1 multiplicative measure on O× (corresponding to the
w−1(n)-th row of j). But due to (70), we convert the n− 1 additive measures on O into
its multiplicative counterparts and thus obtain by (24) informally

d×j = c · ‖πa‖
(
1− q−1

)n−1
d×t d×j′,

This should be understood as follows; one has∫
U

(w)
n \Jn

f(j) d×j = c ·
(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
∫

(U(w)
n \Jn)′

∫
Tn(O)

f(j′ra · t) d×t d×j′ (71)

for any f ∈ Cc(U (w)
n \Jn).

Now observe that ra can be decomposed into a ’left part’ r(L)
a and a ’right part’ r(R)

a as

ra =



1
. . .

. . .
1

πa1 . . . . . . πaw−1(n)−1 1
1

. . .
1


︸ ︷︷ ︸

=:r(L)
a



1
. . .

. . .
1

1 πaw−1(n)+1 . . . πan

1
. . .

1


︸ ︷︷ ︸

=:r(R)
a

,

and that r(L)
a r(R)

a = r(R)
a r(L)

a . Thus, we obtain:

Lemma 5.1. For any w ∈ Wn and e ∈ Zn we have

I(0n)
n (w, e) = q

n(n−1)
2 · vol(Jn, d×j) ·

(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
n∏
i=1

G(en + ai, χ)

·
∫

(U(w)
n \Jn)′

W(
(
πewj′ · r(L)

a · wnπf·tn

1

)
) · W ′(πewj′ · r(R)

a πf·tn) · χ (j′) d×j′.

(72)
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Proof. From (71), a straight-forward computation shows

I(0n)
n (w, e) = c ·

(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
∫

(
U

(w)
n \Jn

)′
∫

Tn(O)

W(
(
πew(j′rat) · wnπf·tn

1

)
)

·W ′(πew(j′rat)πf·tn) · ψ0n (πew(j′rat)) · χ (j′rat) d×t d×j′

= c ·
(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
∫

(U(w)
n \Jn)′

W(
(
πewj′ · r(L)

a · wnπf·tn

1

)
) ·

·W ′(πewj′ · r(R)
a πf·tn) ·

∫
Tn(O)

ψ0n (πew(j′rat)) · χ (t) d×t d×j′

= c ·
(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
∫

(U(w)
n \Jn)′

W(
(
πewj′ · r(L)

a · wnπf·tn

1

)
)

·χ (j′) · W ′(πewj′ · r(R)
a πf·tn) ·

 n∏
i=1

∫
O×

ψ(πen+aiti)χ (ti) d×ti

 d×j′

= c ·
(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
n∏
i=1

G(en + ai, χ)

·
∫

(U(w)
n \Jn)′

W(
(
πewj′ · r(L)

a · wnπf·tn

1

)
) · W ′(πewj′ · r(R)

a πf·tn) · χ (j′) d×j′.

The statement follows using c = q
n(n−1)

2 · vol(Jn, d×j).

Remark 7. At last, we would need to extract the r(L)
a and r(R)

a from W and W ′, respec-
tively.
If we would perform the general extraction, we would need additional notation, but we
would eventually decrease the integration and get a recursive formula of the form

I(0n)
n (w, e) =

∑
(∗)

(∗) · I(∗)
n−1(∗, ∗),

where in I(∗)
n−1(∗, ∗) appears the integration over (U (w)

n \Jn)′. We would perform the same
strategy but now on the w−1(n− 1)-th row of (U (w)

n \Jn)′.
We would eventually end up with a sum of the form

I(0n)
n (w, e) =

∑
(∗)

(∗) · I(∗)
1 (∗, ∗),

where I(∗)
1 (∗, ∗) consists of a product of the form W(∗) · W ′(∗) · χ(∗). Thus, the problem

of computing the modified local zeta integral Z̃(W ,W ′, χs) is of combinatorial nature.
Unfortunately, no identity, that would help us to handle the formula, is at the present
known to us, nor could we think of any other strategy for the evaluation of such a sum.
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Nevertheless, if we believe Langlands paradigm (see Section 2.1.5), then it should be
possible to interpret the Whittaker functions by means of representation theory, and thus
there might exist some new Cauchy-type identity that would permit us to obtain a closed
formula for Z̃(W ,W ′, χs).
We shall now compute by hand the case n = 2. This shall underline the combinatorial
problem we face, as well as give an insight on the general recursion in this special case.

5.4. The case n = 2
Let us assume that n = 2. Then W2 = {1, w2} and vol(J2, d

×j) = 1
q+1 . By (68) and (69)

we have

Z̃(W ,W ′, χs) =
∑
e∈Z2

(
‖ · ‖s−1/2 ⊗ δ−1

)
(πe) ·

∑
w∈W2

χ(w) · I(02)
2 (w, e),

where

I
(02)
2 (w, e) =

∫
U

(w)
2 \J2

ψ02(πewj) · W(
(
πewj · w2π

f·t2

1

)
) · W ′(πewj · πf·t2) · χ(j) d×j.

A priori we take s ∈ C with <(s)� 0. The expressions I(02)
2 (w, e):

We now compute the expression I(02)
2 (w, e) for each w ∈ W2:

w = id: In this case U (w)
2 = U

(id)
2 = U2(O) and A(2)

id = N× {0} and hence, the decompo-
sition (70) is simply given by

U
(id)
2

∖
J2 ∼=

(
O×
p O×

)

=
∞∐

a∈A(2)
id

(
O×

1

)
· ra ·

(
O×

O×
)
t
(
O×

O×
)

=
∞∐
a=1

(
O×

1

)
︸ ︷︷ ︸
∼=
(
U

(id)
2

∖
J2
)′
·
(

1
πa 1

)
·
(
O×

O×
)
t
(
O×

O×
)
.

Moreover,
(
O×

O×
)

= T2(O) has measure 0 w.r.t. d×j on U (w)
2

∖
J2 and hence we

can restrict the integration to the first set. The matrix ra decomposes as

ra =
(

1
πa 1

)
=
(

1
πa 1

)
︸ ︷︷ ︸

= r
(L)
a

·
(

1
1

)
︸ ︷︷ ︸

= r
(R)
a

.
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At last, the measure d×j′ on
(
U

(id)
2

∖
J2
)′ ∼= (

O×
1

)
is just the multiplicative

(Haar) measure on O× normalized by (25). We write j′ =
(
t

1

)
with t ∈ O× and

thus, by (72),

I
(02)
2 (id, e) = q · 1

q + 1 ·
(
1− q−1

)
·

∑
a=(a1,a2)∈N×{0}

‖πa‖ ·
2∏
i=1

G(e2 + ai, χ)

·
∫

(U(w)
2 \J2)′

W(
(
πej′ · r(L)

a · w2 · πf·t2

1

)
) · W ′(πej′ · r(R)

a πf·t2)

· χ (j′) d×j′

= q − 1
q + 1 ·G(e2, χ) · W ′(

(
πe1+2f

πe2+f

)
) ·
∞∑
a=1

q−a ·G(e2 + a, χ)

·
∫
O×
W(

πe
(
t

1

)
·
(

1
πa 1

)
· w2 · πf·t2

1

) · χ (t) d×t.

We now proceed to extract the matrix r(L)
a from W(·). If a ∈ {1, . . . , f− 1}, then

W(

πe
(
t

1

)(
1
πa 1

)
· w2 · πf·t2

1

)

= W(

πe
(
t

1

)(
1 π−a

1

)(
1 −π−a

1

)(
1
πa 1

)
· w2 · πf·t2

1

)

= ψ(πe1−e2−a t) · W(

πe
(
t

1

)(
−π−a

1 πa

)
· πf·t2

1

)

= ψ(πe1−e2−a t) · W(

πe
(
t

1

)(
π2f−a

πf+a

)(
−1
πf−a 1

)
1

)

= ψ(πe1−e2−a t) · W(

π
e1+2f−a

πe2+f+a

1

).

Otherwise if a ≥ f, then we simply have

W(

πe
(
t

1

)(
1
πa 1

)
· w2 · πf·t2

1

) =W(


(
πe1+f

πe2+2f

)
· w2

1

).

Plugging this back into the equation of I(02)
2 (id, e), we obtain
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I
(02)
2 (id, e) = q − 1

q + 1G(e2, χ) · W ′(
(
πe1+2f

πe2+f

)
)

·

 f−1∑
a=1

G(e2 + a, χ) · W(

π
e1+2f−a

πe2+f+a

1

) · q−a

·
∫

T1(O)

ψ(πe1−e2−a t) · χ(t)d×t

︸ ︷︷ ︸
=G(e1−e2−a,χ)

+
∞∑
a=f

G(e2 + a, χ) · W(

π
e1+f

πe2+2f

1

 · w2) · q−a

·
∫
t∈T1(O)

χ(t) d×t︸ ︷︷ ︸
=G(0;χ)


= q − 1

q + 1 ·G(e2, χ) · W ′(
(
πe1+2f

πe2+f

)
)

·
( f−1∑
a=1

G(e2 + a, χ) ·G(e1 − e2 − a, χ) · q−a

·W(

π
e1+2f−a

πe2+f+a

1

)

+G(0;χ) · W(

π
e1+f

πe2+2f

1

 · w2) ·
∞∑
a=f

G(e2 + a, χ) · q−a
)
.

w = w2: We will use exactly the same strategy as in the w = id case. In this case
U

(w2)
2 = U−2 (p), as well as A(2)

id = {0}×N0 and hence, the decomposition (70) is here

U
(w)
2

∖
J2 ∼=

(
O× O

O×
)

=
∐
a=0

(
1
O×

)
︸ ︷︷ ︸

∼=
(
U

(w2)
2

∖
J2
)′
(

1 πa

1

)(
O×

O×
)
t
(
O×

O×
)
.

Moreover, the ra decomposes as

ra =
(

1 πa

1

)
=
(

1
1

)
︸ ︷︷ ︸

= r
(L)
a

·
(

1 πa

1

)
︸ ︷︷ ︸

= r
(R)
a

.
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Again, we only need to integrate over the first set. We write j′ =
(

1
t

)
and with

(72) we have

I
(02)
2 (w2, e) = q · 1

q + 1 ·
(
1− q−1

)
·

∑
a=(a1,a2)∈{0}×N0

‖πa‖ ·
2∏
i=1

G(e2 + ai, χ)

·
∫

(U(w)
2 \J2)′

W(
(
πew2j

′ · r(L)
a · w2π

f·t2

1

)
) · W ′(πew2j

′ · r(R)
a πf·t2)

· χ (j′) d×j′

= q − 1
q + 1 ·G(e2, χ) · W(

π
e1+2f

πe2+f

1

) ·
∞∑
a=0

q−a ·G(e2 + a, χ)

·
∫
O×
W ′(πe · w2 ·

(
1

t

)
·
(

1 πa

1

)
· πf·t2) · χ (t) d×t.

Now, again, if a ∈ {0, . . . , f− 1}, then

W ′(πe · w2 ·
(

1
t

)
·
(

1 πa

1

)
· πf·t2)

= W ′(πew2

(
1

t

)(
1
π−a 1

)(
1
−π−a 1

)(
1 πa

1

)
· πf·t2)

= ψ−1(πe1−e2−a t) · W ′(πew2

(
1

t

)(
1 πa

−π−a
)
· πf·t2)

= ψ−1(πe1−e2−a t) · W ′(πe
(
t

1

)(
−π−a

1 πa

)
· πf·t2)

= ψ−1(πe1−e2−a t) · W ′(
(
πe1+2f−a

πe2+f+a

)
).

Otherwise if a ≥ f, then we simply have

W ′(πew2

(
1

t

)(
1 πa

1

)
· πf·t2) =W ′(

(
πe1+f

πe2+2f

)
· w2).

Plugging this back into I(02)
2 (w2, e), we obtain

I
(02)
2 (w2, e) = q − 1

q + 1 ·G(e2, χ) · W(

π
e1+2f

πe2+f

1

)

·
( f−1∑
a=0

G(e2 + a, χ) · W ′(
(
πe1+2f−a

πe2+f+a

)
) · q−a
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·
∫
O×

ψ−1(πe1−e2−a t) · χ (t) d×t

+
∞∑
a=f

q−a ·G(e2 + a, χ) · W ′(
(
πe1+f

πe2+2f

)
· w2) ·

∫
O×

χ (t) d×t
)
.

The resulting integrals are now again (local) Gauss sums but with respect to ψ−1.
But since ψ is unitary, using the fact that ψ−1(u) = ψ(−u) for any u ∈ F , we can
multiply the local Gauss sums by χ(−1) = χ(w2) in order to convert them to Gauss
sums with respect to ψ. Obviously χ(w2)2 = 1, and thus,

I
(02)
2 (w2, e) = χ(w2) · q − 1

q + 1 ·G(e2, χ) · W(

π
e1+2f

πe2+f

1

)

·
(
G(e2, χ) ·G(e1 − e2, χ) · W ′(

(
πe1+2f

πe2+f

)
)

+
f−1∑
a=1

G(e2 + a, χ) ·G(e1 − e2 − a, χ)

·W ′(
(
πe1+2f−a

πe2+f+a

)
) · q−a

+G(0;χ) · W ′(
(
πe1+f

πe2+2f

)
· w2) ·

∞∑
a=f

G(e2 + a, χ) · q−a
)
.

Observe that we have split the case a = 0 from the sum
f−1∑
a=0

.

Back to the Zeta Integral:
We now return to the zeta integral. With what we now computed we have

Z̃(W ,W ′, χs)
=

∑
e∈Z2

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(πe) ·

∑
w∈W2

χ(w) · I(02)
2 (w, e)

=
∑
e∈Z2

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(πe)

·
[
χ(id) · q − 1

q + 1 ·G(e2, χ) · W ′(
(
πe1+2f

πe2+f

)
)

·
( f−1∑
a=1

G(e2 + a, χ) ·G(e1 − e2 − a, χ) · q−a

·W(

π
e1+2f−a

πe2+f+a

1

)

+G(0;χ) · W(


(
πe1+f

πe2+2f

)
· w2

1

) ·
∞∑
a=f

G(e2 + a, χ) · q−a
)
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+χ(w2) · χ(w2) · q − 1
q + 1 ·G(e2, χ) · W(

π
e1+2f

πe2+f

1

)

·
(
G(e2, χ) ·G(e1 − e2, χ) · W ′(

(
πe1+2f

πe2+f

)
)

+
f−1∑
a=1

G(e2 + a, χ) ·G(e1 − e2 − a, χ)

·W ′(
(
πe1+2f−a

πe2+f+a

)
) · q−a

+G(0;χ) · W ′(
(
πe1+f

πe2+2f

)
· w2) ·

∞∑
a=f

G(e2 + a, χ) · q−a
)]

= q − 1
q + 1 ·

∑
e∈Z2

(
‖ · ‖s−1/2 ⊗ δ−1

)
(πe) ·G(e2, χ)

·
[
G(e2, χ) ·G(e1 − e2, χ) · W(

π
e1+2f

πe2+f

1

) · W ′(
(
πe1+2f

πe2+f

)
)

+
f−1∑
a=1

G(e2 + a, χ) ·G(e1 − e2 − a, χ)

·

W(

π
e1+2f−a

πe2+f+a

1

)W ′(
(
πe1+2f

πe2+f

)
)

+W(

π
e1+2f

πe2+f

1

) · W ′(
(
πe1+2f−a

πe2+f+a

)
)

 · q−a

+G(0, χ) ·
(
W(


(
πe1+f

πe2+2f

)
w2

1

) · W ′(
(
πe1+2f

πe2+f

)
)

+W(

π
e1+2f

πe2+f

1

) · W ′(
(
πe1+f

πe2+2f

)
w2)

)

·
∞∑
a=f

G(e2 + a, χ) · q−a
]
.

Performing a change of variable on e = (e1, e2) ∈ Z2 by e1 7→ e1 + e2, we obtain that

Z̃(W ,W ′, χs)

= q − 1
q + 1 ·

∑
e∈Z2

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(
(
πe1+e2

πe2

)
) ·G(e2, χ)

61



·
[
G(e2, χ) ·G(e1, χ) · W(

π
e1+e2+2f

πe2+f

1

) · W ′(
(
πe1+e2+2f

πe2+f

)
)

+
f−1∑
a=1

G(e2 + a, χ) ·G(e1 − a, χ)

·

W(

π
e1+e2+2f−a

πe2+f+a

1

)W ′(
(
πe1+e2+2f

πe2+f

)
)

+W(

π
e1+e2+2f

πe2+f

1

) · W ′(
(
πe1+e2+2f−a

πe2+f+a

)
)

 · q−a

G(0, χ) ·
(
W(


(
πe1+e2+f

πe2+2f

)
w2

1

) · W ′(
(
πe1+e2+2f

πe2+f

)
)

+W(

π
e1+e2+2f

πe2+f

1

) · W ′(
(
πe1+e2+f

πe2+2f

)
w2)

)

·
∞∑
a=f

G(e2 + a, χ) · q−a
]
.

5.4.1. χ ramified

If χ is ramified, the Gauss sums vanish unless e2 = e1 = −c(χ) by Lemma 1.1.b), and
what remains is

Z̃(W ,W ′, χs) = q − 1
q + 1 ·

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(
(
π−2c(χ)

π−c(χ)

)
) ·G(χ)3

·W(

π
2(f−c(χ))

πf−c(χ)

1

) · W ′(
(
π2(f−c(χ))

πf−c(χ)

)
).

Using (49) together with (15), we obtain

Z̃(W ,W ′, χs) = q − 1
q + 1 ·G(χ)3 ·

(
δ

1/2
3 ⊗ λw3

)
(
(
πt2

1

)
)f ·

(
δ

1/2
2 ⊗ µw2

)
(πt2)f

·

 ∏
i+j>3

(λi ⊗ µj)(π) · q−s
−c(χ)

We will explain in section 5.5, why we put the result in this form.
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5.4.2. χ unramified

If χ is unramified, the zeta-integral vanishes unless −1 ≤ e1, e2 due to 1.1.a). Recall that
we omit now χ in the notation of the Gauss sums G(·). Thus, again using (49) together
with (15), as well as Example 5 and Lemma 56, Z̃(W ,W ′, χs) equals

q − 1
q + 1 ·

∞∑
e1=−1
e2=−1

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(
(
πe1+e2

πe2

)
) ·G(e2)

·
[
G(e2) ·G(e1) · W(

π
e1+e2+2f

πe2+f

1

) · W ′(
(
πe1+e2+2f

πe2+f

)
)

+
f−1∑
a=1

G(e2 + a) ·G(e1 − a)

·

W(

π
e1+e2+2f−a

πe2+f+a

1

)W ′(
(
πe1+e2+2f

πe2+f

)
)

+W(

π
e1+e2+2f

πe2+f

1

) · W ′(
(
πe1+e2+2f−a

πe2+f+a

)
)

 · q−a

+
(
W(


(
πe1+e2+f

πe2+2f

)
w2

1

) · W ′(
(
πe1+e2+2f

πe2+f

)
)

+W(

π
e1+e2+2f

πe2+f

1

) · W ′(
(
πe1+e2+f

πe2+2f

)
w2)

)
· q−f

1− q−1

]

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

π
f

πf

1

) · (δ1/2
2 ⊗ µw2)(

(
πf

πf

)
)

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
∞∑

e1=−1

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(
(
πe1

1

)
)

·

G(e2) ·G(e1) · W(

π
e1+f

1
1

) · W ′(
(
πe1+f

1

)
)

+
f−1∑
a=1

G(e1 − a) ·

W(

π
e1+f−a

πa

1

) · W ′(
(
πe1+f

1

)
)
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+W(

π
e1+f

1
1

) · W ′(
(
πe1+f−a

πa

)
)

 q−a

+

W(


(
πe1

πf

)
· w2

1

) · W ′(
(
πe1+f

1

)
)

+ W(

π
e1+f

1
1

) · W ′(
(
πe1

πf

)
· w2)

 · q−f

1− q−1

 .

In the last equation we have extracted the factor

π
e2+f

πe2+f

1

 from W(∗) and the

factor
(
πe2+f

πe2+f

)
fromW ′(∗). This is possible due to (55). Now observe that the last

summand inside the [ · ]-brackets disappear unless e1 ≥ f − 1, which is equivalent to the
fact that

(
πe1 πf 1

)
is w2-almost dominant, and thus we further make a distinction on

whether e1 ≤ f− 2. Thus,

Z̃(W ,W ′, χs)

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

π
f

πf

1

) · (δ1/2
2 ⊗ µw2)(

(
πf

πf

)
)

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·

 f−2∑
e1=−1

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(
(
πe1

1

)
)

·

G(e2) ·G(e1) · W(

π
e1+f

1
1

) · W ′(
(
πe1+f

1

)
)

+
e1+1∑
a=1

G(e1 − a) ·

W(

π
e1+f−a

πa

1

) · W ′(
(
πe1+f

1

)
)

+ W(

π
e1+f

1
1

) · W ′(
(
πe1+f−a

πa

)
)

 · q−a


+
∞∑

e1=f−1

(
‖ · ‖s−1/2 ⊗ δ−1

2

)
(
(
πe1

1

)
)
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·

G(e2) ·G(e1) · W(

π
e1+f

1
1

) · W ′(
(
πe1+f

1

)
)

+
f−1∑
a=1

W(

π
e1+f−a

πa

1

) · W ′(
(
πe1+f

1

)
)

+W(

π
e1+f

1
1

) · W ′(
(
πe1+f−a

πa

)
)

 · q−a

+

W(


(
πe1

πf

)
· w2

1

) · W ′(
(
πe1+f

1

)
)

+ W(

π
e1+f

1
1

) · W ′(
(
πe1

πf

)
· w2)

 · q−f

1− q−1


 .

We shall keep tracking the term G(e1) in the sum when e1 ∈ {f − 1, f, f + 1, . . .}, even
though its value is 1.
Evaluation of the inner factors:
Observe now that we are in the situation where none of the factors is zero anymore (i.e.
no Gauss sum and no Whittaker function) and thus, we can substitute the Whittaker
functions for their respective values. Let us first focus on the interior sum-term of

e1+1∑
a=1

and
f−1∑
a=1

, respectively. Observe that the first term is 0 for e1 = −1. Otherwise we have

e1+1∑
a=1

G(e1 − a) ·

W(

π
e1+f−a

πa

1

) · W ′(
(
πe1+f

1

)
)

+W(

π
e1+f

1
1

) · W ′(
(
πe1+f−a

πa

)
)

 q−a

= (δ1/2
3 ⊗ λw3)(

π
e1+f

1
1

) · (δ1/2
2 ⊗ µw2)(

(
πe1+f

1

)
) ·

e1+1∑
a=1

G(e1 − a)

·

(δ1/2
3 ⊗ λw3)(

π
−a

πa

1

) + (δ1/2
2 ⊗ µw2)(

(
π−a

πa

)
)

 q−a

= (δ1/2
3 ⊗ λw3)(

π
e1+f

1
1

) · (δ1/2
2 ⊗ µw2)(

(
πe1+f

1

)
)
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e1+1∑
a=1

G(e1 − a) ·

λw3(

π
−1

π
1

)a + µw2(
(
π−1

π

)
)a


a 7→e1−a= (δ1/2
3 ⊗ λw3)(

π
e1+f

1
1

) · (δ1/2
2 ⊗ µw2)(

(
πe1+f

1

)
)

e1−1∑
a=−1

G(a) ·
(λ3(π)

λ2(π)

)a−e1

+
(
µ2(π)
µ1(π)

)a−e1


= (δ1/2
3 ⊗ λw3)(

π
e1+f

1
1

) · (δ1/2
2 ⊗ µw2)(

(
πe1+f

1

)
)

(λ3(π)
λ2(π)

)−e1

·

( q

q − 1

)
·

1−
(
q · λ3(π)

λ2(π)

)−1

1− λ3(π)
λ2(π)

−
(
λ3(π)
λ2(π)

)e1

1− λ3(π)
λ2(π)

+

(
µ2(π)
µ1(π)

)−e1

·

( q

q − 1

)
·

1−
(
q · µ2(π)

µ1(π)

)−1

1− µ2(π)
µ1(π)

−
(
µ2(π)
µ1(π)

)e1

1− µ2(π)
µ1(π)

+

 .
We will denote by

F (λ, e1) := 1
1− λ3(π)

λ2(π)

·

( q

q − 1

)
·

1−
(
q · λ3(π)

λ2(π)

)−1
 · (λ3(π)

λ2(π)

)−e1

− 1


the first factor in the brackets, and by

F ′(µ, e1) := 1
1− µ2(π)

µ1(π)

·

( q

q − 1

)
·

1−
(
q · µ2(π)

µ1(π)

)−1
 · (µ2(π)

µ1(π)

)−e1

− 1
 ,

the second one. Thus, if e1 ≥ 0, the first interior sum can be written as

e1+1∑
a=1

G(e1 − a) ·

W(

π
e1+f−a

πa

1

) · W ′(
(
πe1+f

1

)
)

+W(

π
e1+f

1
1

) · W ′(
(
πe1+f−a

πa

)
)

 q−a
=

(
δ2 ⊗ ‖ · ‖1/2

)
(
(
πe1+f

1

)
) · (λ3 ⊗ µ2) (π)e1+f · (F (λ, e1) + F ′(µ, e1)) .

Analogously for the second interior sum, we have

f−1∑
a=1

W(

π
e1+f−a

πa

1

) · W ′(
(
πe1+f

1

)
)
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+ W(

π
e1+f

1
1

) · W ′(
(
πe1+f−a

πa

)
)

 q−a


= (δ1/2
3 ⊗ λw3)(

π
e1+f

1
1

) · (δ1/2
2 ⊗ µw2)(

(
πe1+f

1

)
)

·

 λ2(π)
λ3(π) −

(
λ2(π)
λ3(π)

)f
1− λ2(π)

λ3(π)

+
µ1(π)
µ2(π) −

(
µ1(π)
µ2(π)

)f
1− µ1(π)

µ2(π)


=

(
δ2 ⊗ ‖ · ‖1/2

)
(
(
πe1+f

1

)
) · (λ3 ⊗ µ2) (π)e1+f · (G(λ) +G′(µ)) ,

where we have set

G(λ) :=
λ2(π)
λ3(π) −

(
λ2(π)
λ3(π)

)f
1− λ2(π)

λ3(π)

, G′(µ) :=
µ1(π)
µ2(π) −

(
µ1(π)
µ2(π)

)f
1− µ1(π)

µ2(π)

.

Evaluation of Whittaker Functions with w2 in its argument:
By the example 5, since w2 = s1,

W(


(
πe1

πf

)
· w2

1

) =
(
δ

1/2
3 ⊗ λw3

)
(

π
e1

πf

1

)

·

(1− q−1 · λ2(π)
λ3(π)

)1−
(
λ2(π)
λ3(π)

)e1+1−f

1− λ2(π)
λ3(π)

− q−1


and

W ′(
(
πe1

πf

)
· w2) =

(
δ

1/2
2 ⊗ µw2

)
(
(
πe1

πf

)
)

·

(1− q−1 · µ1(π)
µ2(π)

)1−
(
µ1(π)
µ2(π)

)e1+1−f

1− µ1(π)
µ2(π)

− q−1

 .
If we set

H(λ, e1) :=
(

1− q−1 · λ2(π)
λ3(π)

)1−
(
λ2(π)
λ3(π)

)e1+1−f

1− λ2(π)
λ3(π)

− q−1

and

H ′(µ, e1) :=
(

1− q−1 · µ1(π)
µ2(π)

)1−
(
µ1(π)
µ2(π)

)e1+1−f

1− µ1(π)
µ2(π)

− q−1,

67



then

W(


(
πe1

πf

)
· w2

1

) =
(
δ

1/2
3 ⊗ λw3

)
(

π
e1+f

1
1

) ·
(
λ2(π)
λ3(π)

)f

· qf ·H(λ, e1),

and similarly

W ′(
(
πe1

πf

)
· w2) =

(
δ

1/2
2 ⊗ µw2

)
(
(
πe1+f

1

)
) ·
(
µ1(π)
µ2(π)

)f

· qf ·H ′(µ, e1).

Plugging back:

If we plug everything back into Z̃(W ,W ′, χs), and this time extract

π
e1+f

1
1

 from

W(∗) and
(
πe2+f

1

)
from W ′(∗), we get

Z̃(W ,W ′, χs)

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

π
f

πf

1

) · (δ1/2
2 ⊗ µw2)(

(
πf

πf

)
)

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·(δ1/2
3 ⊗ λw3)(

π
f

1
1

) · (δ1/2
2 ⊗ µw2)(

(
πf

1

)
)

·

 ∞∑
e1=−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

·G(e2) ·G(e1) · (λ3 ⊗ µ2) (π)e1

+
f−2∑
e1=0

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · (F (λ, e1) + F ′(µ, e1))

+
∞∑

e1=f−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · (G(λ) +G′(µ, e1))

+
∞∑

e1=f−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · 1
1− q−1

·

(λ2(π)
λ3(π)

)f

H(λ, e1) +
(
µ1(π)
µ2(π)

)f

·H ′(µ, e1)


81= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f
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·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
[
G(e2) · q

q − 1 ·
(

1− (λ3 ⊗ µ2)(π)−1 · qs−1

1− (λ3 ⊗ µ2)(π) · q−s

)

+
f−2∑
e1=0

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · (F (λ, e1) + F ′(µ, e1))

+
∞∑

e1=f−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · (G(λ) +G′(µ, e1))

+
∞∑

e1=f−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 ·

·

(λ2(π)
λ3(π)

)f

H(λ, e1) +
(
µ1(π)
µ2(π)

)f

·H ′(µ, e1)
 .

Evaluation of further interior sums:
Let us from now on write

rij := (λi ⊗ µj) (π) · q−s.
For the sums with the expressions F and F ′ we have

f−2∑
e1=0

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · F (λ, e1)

= 1
1− λ3(π)

λ2(π)

·

( q

q − 1

)
·

1−
(
q · λ3(π)

λ2(π)

)−1
 · f−2∑

e1=0
re1

22

− f−2∑
e1=0

re1
32


= 1

1− λ3(π)
λ2(π)

·

( q

q − 1

)
·

1−
(
q · λ3(π)

λ2(π)

)−1
 · 1− rf−1

22
1− r22

− 1− rf−1
32

1− r32

 ,
and

f−2∑
e1=0

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 · F ′(µ, e1)

= 1
1− µ2(π)

µ1(π)

·

( q

q − 1

)
·

1−
(
q · µ2(π)

µ1(π)

)−1
 · 1− rf−1

31
1− r31

− 1− rf−1
32

1− r32

 ,
respectively. For the sums with the expressions H and H ′ we have

∞∑
e1=f−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 H(λ, e1)

=
1− q−1 · λ2(π)

λ3(π)

1− λ2(π)
λ3(π)

− q−1

 · ∞∑
e1=f−1

re1
32 −

(
λ3(π)
λ2(π)

)f−1

·

1− q−1 · λ2(π)
λ3(π)

1− λ2(π)
λ3(π)

 · ∞∑
e1=f−1

re1
22
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=
1− q−1 · λ2(π)

λ3(π)

1− λ2(π)
λ3(π)

− q−1

 · ( rf−1
32

1− r32

)
−
(
λ3(π)
λ2(π)

)f−1

·

1− q−1 · λ2(π)
λ3(π)

1− λ2(π)
λ3(π)

 · ( rf−1
22

1− r22

)

=
 1− q−1

1− λ2(π)
λ3(π)

 · ( rf−1
32

1− r32

)
−
(
λ3(π)
λ2(π)

)f−1

·

1− q−1 · λ2(π)
λ3(π)

1− λ2(π)
λ3(π)

 · ( rf−1
22

1− r22

)

= rf−1
32(

1− λ2(π)
λ3(π)

) ·
1− q−1

1− r32
−

1− q−1 · λ2(π)
λ3(π)

1− r22

 ,
and

∞∑
e1=f−1

∥∥∥∥∥
(
πe1

1

)∥∥∥∥∥
s

· (λ3 ⊗ µ2) (π)e1 H ′(µ, e1)

=
1− q−1 · µ1(π)

µ2(π)

1− µ1(π)
µ2(π)

− q−1

 · ∞∑
e1=f−1

re1
32 −

(
µ2(π)
µ1(π)

)f−1

·

1− q−1 · µ1(π)
µ2(π)

1− µ1(π)
µ2(π)

 · ∞∑
e1=f−1

re1
31

=
1− q−1 · µ1(π)

µ2(π)

1− µ1(π)
µ2(π)

− q−1

 · ( rf−1
32

1− r32

)
−
(
µ2(π)
µ1(π)

)f−1

·

1− q−1 · µ1(π)
µ2(π)

1− µ1(π)
µ2(π)

 · ( rf−1
31

1− r31

)

=
 1− q−1

1− µ1(π)
µ2(π)

 · ( rf−1
32

1− r32

)
−
(
µ2(π)
µ1(π)

)f−1

·

1− q−1 · µ1(π)
µ2(π)

1− µ1(π)
µ2(π)

 · ( rf−1
31

1− r31

)

= rf−1
32(

1− µ1(π)
µ2(π)

) ·
1− q−1

1− r32
−

1− q−1 · µ1(π)
µ2(π)

1− r31

 ,
respectively.
Putting back II:
If we plug everything back once again, using that 1

1−y−1 = − y
1−y which we will use for

y ∈ {µ2(π)
µ1(π) ,

λ3(π)
λ2(π) , q}, the zeta integral becomes

Z̃(W ,W ′, χs)

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·

G(e2) · q

q − 1 ·
(

1− (qr32)−1

1− r32

)
+
(

rf−1
32

1− r32

)
·

 λ2(π)
λ3(π) −

(
λ2(π)
λ3(π)

)f
1− λ2(π)

λ3(π)

+
µ1(π)
µ2(π) −

(
µ1(π)
µ2(π)

)f
1− µ1(π)

µ2(π)

+

+ 1
1− λ3(π)

λ2(π)

·

( q

q − 1

)
·

1−
(
q · λ3(π)

λ2(π)

)−1
 · 1− rf−1

22
1− r22

− 1− rf−1
32

1− r32

+
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+ 1
1− µ2(π)

µ1(π)

·

( q

q − 1

)
·

1−
(
q · µ2(π)

µ1(π)

)−1
 · 1− rf−1

31
1− r31

− 1− rf−1
32

1− r32

+

+ 1
1− q−1 ·

(
λ2(π)
λ3(π)

)f

· rf−1
32(

1− λ2(π)
λ3(π)

) ·
1− q−1

1− r32
−

1− q−1 · λ2(π)
λ3(π)

1− r22


+ 1

1− q−1 ·
(
µ1(π)
µ2(π)

)f

· rf−1
32(

1− µ1(π)
µ2(π)

) ·
1− q−1

1− r32
−

1− q−1 · µ1(π)
µ2(π)

1− r31


= q − 1

q + 1 · (δ
1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

[
G(e2) · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

+
( 1

1− r32

)
·

 1
1− λ2(π)

λ3(π)

 ·
rf−1

32 ·

λ2(π)
λ3(π) −

(
λ2(π)
λ3(π)

)f
+ λ2(π)

λ3(π) ·
(
1− rf−1

32

)

+rf−1
32 ·

(
λ2(π)
λ3(π)

)f
+

+
 1

1− µ1(π)
µ2(π)

 ·
rf−1

32 ·

µ1(π)
µ2(π) −

(
µ1(π)
µ2(π)

)f
+ µ1(π)

µ2(π) ·
(
1− rf−1

32

)

+rf−1
32 ·

(
µ1(π)
µ2(π)

)f


+
( 1

1− r31

)
·

 1
1− µ1(π)

µ2(π)

 ·
− 1

1− q−1 ·
(
µ1(π)
µ2(π)

)f

· rf−1
32 ·

(
1− q−1 · µ1(π)

µ2(π)

)
+

−µ1(π)
µ2(π) ·

(
q

q − 1

)
·

1−
(
q · µ2(π)

µ1(π)

)−1
 · (1− rf−1

31 )


+
( 1

1− r22

)
·

 1
1− λ2(π)

λ3(π)

 ·
− 1

1− q−1 ·
(
λ2(π)
λ3(π)

)f

· rf−1
32 ·

(
1− q−1 · µ1(π)

µ2(π)

)
+

−λ2(π)
λ3(π) ·

(
q

q − 1

)
·

1−
(
q · λ3(π)

λ2(π)

)−1
 · (1− rf−1

22 )


= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)
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·
[
G(e2) · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

+
( 1

1− r32

)
·

 λ2(π)
λ3(π)

1− λ2(π)
λ3(π)

+
 µ1(π)

µ2(π)

1− µ1(π)
µ2(π)



−
( 1

1− r31

)
·

 µ1(π)
µ2(π)

1− µ1(π)
µ2(π)

 ·
1−

(
q · µ2(π)

µ1(π)

)−1

1− q−1


−
( 1

1− r22

)
·

 λ2(π)
λ3(π)

1− λ2(π)
λ3(π)

 ·
1−

(
q · λ3(π)

λ2(π)

)−1

1− q−1




= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
[
G(e2) · q

q − 1 ·
(

1− (qr32)−1

1− r32

)
+

+ q

q − 1 ·
 λ2(π)

λ3(π)

1− λ2(π)
λ3(π)

 · ( 1
1− r32

)
·
( 1

1− r22

)

·
(

1− r22 − q−1 + q−1r22 − 1 + r32 + q−1 · λ2(π)
λ3(π) − q

−1r22

)

+ q

q − 1 ·
 µ1(π)

µ2(π)

1− µ1(π)
µ2(π)

 · ( 1
1− r32

)
·
( 1

1− r31

)

·
(

1− r31 − q−1 + q−1r31 − 1 + r32 + q−1 · λ2(π)
λ3(π) − q

−1r31

)]

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
[
G(e2) · q

q − 1 ·
(

1− (qr32)−1

1− r32

)
+

+ q

q − 1 ·
 λ2(π)

λ3(π)

1− λ2(π)
λ3(π)

 · ( 1
1− r32

)
·
( 1

1− r22

)
· (r32 − r22) ·

(
1− (qr32)−1

)

+ q

q − 1 ·
 µ1(π)

µ2(π)

1− µ1(π)
µ2(π)

 · ( 1
1− r32

)
·
( 1

1− r31

)
· (r32 − r31) ·

(
1− (qr32)−1

)
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= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
[
G(e2) + λ2(π)

λ3(π) · r32 ·
( 1

1− r22

)
+ µ1(π)
µ2(π) · r32 ·

( 1
1− r31

)]

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
[
G(e2) +

( 1
1− r22

)( 1
1− r31

)
(r22 · (1− r31) + r31 · (1− r22)

]
= q − 1

q + 1 · (δ
1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
∞∑

e2=−1

∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

·G(e2) · λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
)

·
[
G(e2) +

( 1
1− r22

)( 1
1− r31

)
(r22 + r31 − 2 · r22 · r31)

]
.

One can observe that the term
∥∥∥∥∥
(
πe2

πe2

)∥∥∥∥∥
s

· λw3(

π
e2

πe2

1

) · µw2(
(
πe2

πe2

)
) is

just (r31 · r22)e2 . Thus, using (80), we finally obtain that

Z̃(W ,W ′, χs) = q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
∞∑

e2=−1
G(e2) · (r31 · r22)e2

·
[
G(e2) +

( 1
1− r22

)( 1
1− r31

)
(r22 + r31 − 2 · r22 · r31)

]
= q − 1

q + 1 · (δ
1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
[

(r31 · r22)−1 − 1 + (1− q)2

(1− q)2(1− r31 · r22)

+ (r31 · r22)−1 − 1 + (1− q)1

(1− q)1(1− r31 · r22) ·
( 1

1− r22

)( 1
1− r31

)
· (r22 + r31 − 2 · r22 · r31)]
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= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
(

1
(1− q)2

)
·
( 1

1− r31 · r22

)
·
( 1

1− r22

)( 1
1− r31

)
·

·
[(

(r31 · r22)−1 + q2 − 2q
)

(1− r22)(1− r31)

+ ((r31 · r22)−1 − q)(1− q)(r22 + r31 − 2 · r22 · r31)
]

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
(

1
(1− q)2

)
·
( 1

1− r31 · r22

)
·
( 1

1− r22

)( 1
1− r31

)
·

·
[(

(r31 · r22)−1 + q2 − 2q
)

(1− r22 − r31 + r22 · r31)
+ ((r31 · r22)−1 − q)

· (r22 + r31 − 2 · r22 · r31 − qr22 − qr31 + 2q · r22 · r31)]

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
(

1
(1− q)2

)
·
( 1

1− r31 · r22

)
·
( 1

1− r22

)( 1
1− r31

)
·

·
[
((r31 · r22)−1 − r−1

31 − r−1
22 + 1

+ q2 − q2r22 − q2r31 + q2 · r22 · r31

− 2q + 2qr22 + 2qr31 − 2qr22 · r31)
+ (r−1

31 + r−1
22 − 2− qr−1

31 − qr−1
22 + 2q

− qr22 − qr31 + 2q · r22 · r31 + q2r22 + q2r31 − 2q2 · r22 · r31)
]

= q − 1
q + 1 · (δ

1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
(

1
(1− q)2

)
·
( 1

1− r31 · r22

)
·
( 1

1− r22

)( 1
1− r31

)
·

·
[
((r31 · r22)−1 − qr−1

31 − qr−1
22 + q2 − 1 + qr31 + qr22 − q2 · r22 · r31)

]
= q − 1

q + 1 · (δ
1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f · q

q − 1 ·
(

1− (qr32)−1

1− r32

)

·
(

1
(1− q)2

)
·
( 1

1− r31 · r22

)
·
( 1

1− r22

)( 1
1− r31

)
·

·q2 · (1− r22 · r31) ·
(
1− (qr22)−1

)
·
(
1− (qr31)−1

)
.

Thus,

Z̃(W ,W ′, χs) = vol(J2) · q
(2−1)·2

2 · (1− q−1)
(2−1)·2

2
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· (δ1/2
3 ⊗ λw3)(

(
πt2

1

)
)f · (δ1/2

2 ⊗ µw2)(πt2)f

·
∏

i+j>2+1

(
q

q − 1 ·
1− (λj ⊗ µj)(π)−1 · qs−1

1− (λj ⊗ µj)(π) · q−s

)
.

As in the case when χ is ramified, we will explain in Section 5.5, why we put the result
in this form.

5.5. The case n arbitrary
Let us for a moment assume that ρ and σ are ordinary at ℘, see Subsection 6.3. Then
all λi(π) and µj(π) lie in a number field E/k. Under a fixed embedding of E into Qp

with ℘|p in Q, we can further assume that exactly half of the Satake parameters satisfy
|(λi ⊗ µj)(π)|℘ < q−1/2, namely those with i+j > n+1. These correspond to the different
α in Lemma 7 of [Coa89]. The remaining Satake parameteres for i + j ≤ n + 1 satisfy
|(λi ⊗ µj)(π)|℘ > q−1/2.

5.5.1. χ ramified

Let us supose that χ is ramified. This case has been worked out by Januszewski in Chapter
1 of [Jan09]. If one takes a look at the formula (72)

I(0n)
n (w, e) = q

(n−1)n
2 · vol(Jn, d×j) ·

(
1− q−1

)n−1
·
∑
a∈Aw

‖πa‖ ·
n∏
i=1

G(en + ai, χ)

·
∫

(U(w)
n \Jn)′

W(
(
πewj′ · r(L)

a · wnπf·tn

1

)
) · W ′(πewj′ · r(R)

a πf·tn) · χ (j′) d×j′,

Lemma 1.1t, 2b) forces only those w ∈ Wn and those a ∈ Aw to survive, for which the
product∏n

i=1 G(en+ai, χ) does not vanish. But since aw−1(n) = 0, this forces a = (0, . . . , 0),
which can only occur for w−1(n) = 1 and for en = −c(χ). After the extraction of ra,
the pattern would repeat: one would inductively generate in every step k a factor of
G(χ)n+1−k, and force the condition w−1(n + 1 − k) = k as well as en+1−k = −k · c(χ).
In other words, there is no combinatorics involved; the I(0n)

n (w, e) as well as the whole
modified integral is just one factor. The only factor that survives is

Z̃(W ,W ′, χs) = vol(Jn, d×g) · q
(n−1)n

2 · (1− q−1)
(n−1)·n

2 ·G(χ)
n(n+1)

2

·
(
δ

1/2
n+1 ⊗ λwn+1

)((πtn

1

))f

·
(
δ1/2
n ⊗ µwn

) (
πtn
)f

·

 ∏
i+j>n+1

(λi ⊗ µj)(π) · q−s
−c(χ)

.

In this case it is easy to see that the zeta integral is entire (holomorphic for all s ∈ C). As
pointed out in Remark 4, in this case L(ρ℘×(σ℘⊗χ℘,s) = 1. Thus, Z̃(W ,W ′, χs) coincides
(up to a non-zero constant in E×) with the prediction of Coates stated in Lemma 7 of
[Coa89].
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5.5.2. χ unramified

If χ is unramified, the value of the local zeta integral remains unknown for general n.
Nevertheless, based on the results for n = 1, 2, based on its structure in the ramified case
together with Coates prediction in Lemma 7 of loc.cit., we conjecture the following:

Conjecture 1. If χ is unramified, then

Z̃(W ,W ′, χs) = vol(Jn, d×g) · q
(n−1)·n

2 · (1− q−1)
(n−1)·n

2

·
(
δ

1/2
n+1 ⊗ λwn+1

)((πtn

1

))f

·
(
δ1/2
n ⊗ µwn

) (
πtn
)f

·
∏

i+j>n+1

(
q

q − 1 ·
1− (λi ⊗ µj)(π)−1 · qs−1

1− (λi ⊗ µj)(π) · q−s

)
.

As we could observe in the computations for n = 1, 2, we also expect that a priori
the integral converges only for <(s) � 0, and the conjectured result is actually the
meromorphic continuation of the local zeta integral to whole C with the obvious poles.
In this case we have further

L(ρ℘ × (σ℘ ⊗ χ℘,s)) =
∏
i,j

1
(1− λi(π)⊗ µj · q−s)

.

and the quotient
Z̃(W ,W ′, χs)

L(ρ℘ × (σ℘ ⊗ χ℘,s))
coincides with the statement of Lemma 7 of [Coa89] for motives, modulo a non-zero
constant in E×.
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6. p-adic L-function attached to GLn+1 ×GLn
6.1. The modified automorphic L-function
Recall the equation (60) involving the global L-function L(ρ× (σ⊗χA,s)). We modify the
integral expression as follows: set hA,n+1 := (hν,n+1)ν ∈ GLn+1(A) and hA,n := (hν,n)ν ∈
GLn(A) where

hν,n+1 =

 hn+1 ·
(
wnπ

f℘·tn

1

)
, ν = ℘,

1n+1, otherwise
and

hν,n =
{
πf℘·tn , ν = ℘

1n, otherwise ,

respectively, according to the setting in 5.1. We further modify the cuspidal forms ϕi
and ϕ′i as follows: we interchange its component at ℘ by the factor that corresponds to
the local Iwahori-invariant Whittaker functions as described in loc.cit., and call this new
cuspidal forms ϕ̃i and ϕ̃′i respectively. We obtain a modified version17 of (60) as

(73)

∑
ι

∫
GLn(k)\GLn(A)

ϕ̃ι(
(
g

1

)
· hA,n+1) · ϕ̃′ι(g · hA,n)

· χA,s(g)d×g = P (s,W∞,W ′∞) · L(ρ× (σ ⊗ χA,s)) ·
Z̃(W℘,W ′℘, χ℘,s)

L(ρ℘ × (σ℘ ⊗ χ℘,s))

From now on, we shall follow Chapter 4 of [KMS00] and Chapter 2 of [Jan09].

6.2. The spherical and parabolic Hecke algebra
Since ℘ /∈ S, the Hecke algebra of interest at ℘ is the spherical Hecke algebra

H := H(GLn(F ),GLn(O)) = Cc(GLn(O)\GLn(F )/GLn(O)).

Moreover, this Hecke algebra is commutative as we have the Satake isomorphism of C-
algebras

H ∼→ C[X∗(T )(F )]Wn ,

see Theorem 4.1. of Cartier. We define in H the standard Hecke operators

Ti := GLn(O)
(

1i
π · 1n−i

)
GLn(O) (74)

for i ∈ {0, 1, . . . , n}.
Let us now set H′ := H(Bn(F ), Bn(O)). This Hecke algebra is called parabolic. It is
17Kazhdan-Mazur-Schmidt in Chapter 3.2 of [KMS00] and Januszewski in Chapter 1.2 of [Jan09] call

this (under a mild modification) a generalized global Birch Lemma.
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easily seen to satisfy the properties of the Lemma on Embeddings18 of [Gri92], and thus,
we have a natural ring embedding

H ↪→ H′, f 7→ f|Bn(F ) .

Moreover, by Theorem 2 of loc.cit., the Hecke polynomial

H(X) :=
n∑
i=0

(−1)i · q
(i−1)i

2 · Ti ·Xn−i ∈ H[X]

decomposes over H′ into linear factors as

H(X) =
n∏
j=1

(X − Uj) = (X − U1) · . . . · (X − Un) ∈ H′[X],

where

Uj := Bn(O)

1j−1
π

1n−j

Bn(O) ∈ H′ (75)

for j ∈ {1, . . . , n}. One should be careful as H′ itself is not commutative, and neither are
the operators {Uj}nj=1. However, if we now define for j ∈ {0, . . . , n}

Vj := q−
(j−1)j

2 · U1 . . .Uj ∈ H′, (76)

then there operators commute pairwise by [Gri92]. In addition, there is another interesting
fact about these operators.
Recall from Linear Algebra, that a well-known feature of pairwise commuting (linear)
operators of a vector space (over C) is that they possess a simultaneous eigenvector. A
prototype example in number theory is the family of classical Hecke operators for modular
forms.
The natural H′-module, where the different Vj operate is the C-vector space M′ :=
Cc(Bn(F )/Bn(O)). The H′-module structure onM′ is as described in (41). In this case,
it is explicitly given by

•:


H′ ×M′ → M′,(∐

i

giBn(O), η
)
7→

∑
i

η(− · gi).
(77)

We now state a preparatory Lemma, which is used to find a simultaneous eigenvector of
the different Vj:

Lemma 6.1. Let z ∈ C be arbitrary. Then we have the decomposition

q−
(n−1)n

2 ·
n−1∏
j=0
Vj ·H(z) =

n∏
j=1

(
z · q1−jVj−1 − Vj

)
. (78)

18Gritsenko calls it Lemma on Imbeddings.
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We now state a criterion on how to find a simultaneous eigenvector of the different Vj:

Lemma 6.2. Let λ := (λ1, . . . , λn−1) ∈ Cn−1 and θ ∈M satisfying

H(λj) • θ = 0

for any j ∈ {1, . . . , n− 1}. Then the function

θλ :=

n−1∏
i=1

n∏
j=1
j 6=i

(
λi · q1−jVj−1 − Vj

) • θ
is a simultaneous eigenvector of Vj with corresponding eigenvalue

cj := q−
(j−1)j

2 ·
j∏
i=1

λi.

where j = 1, . . . , n− 1.

Proof. This is Lemma 2.2.3 of [Jan09].

6.3. The ℘-adic distribution
At this point, we will assume that ρ and σ are both ordinary at ℘. By this, we mean that

• both ρ℘ and σ℘ are defined over a number field. Thus, there is a (common) number
field E/Q, such that the zeroes

λ1(π), . . . , λn(π), λn+1(π), and µ1(π), . . . , µn(π)

of the corresponding Hecke polynomials of ρ℘ and σ℘, respectively, are all in E, and

• with respect to a fixed embedding E ⊂ E = Q ⊂ E℘ we have

|λ1(π)|℘ = 1, |λ2(π)|℘ = q−1, . . . , |λn(π)|℘ = q−(n−1), |λn+1(π)|℘ = q−n

and
|µ1(π)|℘ = 1, |µ2(π)|℘ = q−1, . . . , |µn(π)|℘ = q−(n−1).

We do not really need to demand |λn+1(π)|℘ = q−n and |µn(π)|℘ = q−(n−1), but under
this condition, the powers of q satisfy the condition 62. If we assume that Mρ and Mσ

are the motives conjecturally attached to ρ and σ, respectively, then the powers ei(Mρ)
and ej(Mσ) of the cyclotomic character as in the definition 5, are exactly the q-powers
of |λi(π)|℘ and |µj(π)|℘, respectively. We can thus assume that Mρ and Mσ are ordinary
at ℘. Since Mρ and Mσ further satisfy the Hypothesis 3, their tensor product Mρ ⊗Mσ,
provided it exists, would be ordinary at ℘ as well.
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Remark 8. Observe that exactly half of the mixed roots satisfy

|(λi ⊗ µj)(π)|℘ < q−1/2 · (∗)

up to a shift (∗), namely exactly those with i+ j > n+ 1. This is the same condition we
mentioned in section 5.5 and Coates stated in Lemma 7 of [Coa89], respectively.

Kazhdan-Mazur-Schmidt construct in Chapter 4 of [KMS00] a p-adic distribution, that
interpolates the special value s = 1

2 of the modified L-function over Q, under the assump-
tions that χA is trivial everywhere except p, and the conductors of all χA, χ

2
A, . . . , χ

n−1
A are

the same power of p. Januszewski generalizes this construction in Section 2.3 of [Jan09]
to a number field k/Q, where χA is unramified everywhere except at ℘. He also shows
that the interpolation condition holds without the conductor assumption on the powers
of χA. The construction of the distribution is as follows: (we understand that δ0 = 1)
Let us set

κλ := δn(πtn) ·
n∏
i=1

λi(π)(n+1)−i, κµ := δn−1(πtn−1) ·
n−1∏
i=1

µi(π)n−i.

Then both κλ and κµ are ℘-adic units. We further set

κf :=
(
δn+1(πtn+1) · δn(πtn)

κλ · κµ

)f

.

We set now

Ck(℘∞) := k×
∖
A×

/ ∏
ν 6=℘
O×ν ∼= lim←−

f

k×
∖
A×

/
(1 + πf) · ∏

ν 6=℘
O×ν

to be the ray class group of level ∞ at ℘. Consider for an a ∈ A× the set

Θ(a) := k×
∖
k× · a ·∏

ν
O×ν

/ ∏
ν 6=℘
O×ν ∼= lim←−

f

k×
∖
k× · a ·∏

ν
O×ν

/
(1 + πf) · ∏

ν 6=℘
O×ν .

This is a compact open subset of Ck(℘∞). As the double quotient k×
∖
A×

/∏
ν
O×ν is

naturally isomorphic to the ideal class group of k, which has say h elements, there exist
idèles a1, . . . , ah ∈ A× such that

Ck(℘∞) = Θ(a1) t . . . tΘ(ah).

We can assume w.l.o.g. assume that all ai are 1 at the place ℘. Let us now decompose
the space GLn(k)\GLn(A×). Let us set for the ai ∈ A×

Ci,f := det−1
(
k×
∖
k× · ai · (1 + πf)∏

ν
O×ν 6=℘

)
⊂ GLn(k)

∖
GLn(A) .

For x ∈ O×℘ we set further εx := (εx,ν)ν ∈ GLn(A) with

εx,ν :=


(
x

1n−1

)
, ν = ℘

1n , otherwise
.
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Then

GLn(k)
∖

GLn(A) =
h∐
i=1

∐
x

Ci,f · εx, (79)

where x runs over a representative system of O×℘ /(1+πf). For the different idèles ai ∈ A×,
Januszewski defines in Section 2.3 of [Jan09] the ℘-adic distribution on Θ(ai) as

µai(x+ ℘f) := κf ·
∑
ι

∫
Ci,f

ϕ̃ι(
(
gεx

1

)
· hA,n+1) · ϕ̃′ι(g · εx · hA,n)d×g

and shows that it is indeed a ℘-adic distribution under the assumption that we modify the
local Whittaker functions at ℘ of both ϕ̃′ι and ϕ̃ι according to Lemma 6.2. But our choice
of Iwahori Whittaker functions is already a simultaneous eigenvector of the different Vj’s
(see Corollary 5.5. of [Har98] and Proposition 1.3. of [Jan18]), and thus a scalar multiple
of the modification as stated in Lemma 6.2, so there is no need for modification in our
case.
The different µa1 , . . . , µah sum up to a ℘-adic distribution µ℘ on Ck(℘∞) and for the trivial
adelic character χA = 1 it satisfies∫
Ck(℘∞)

χAdµ℘ =
h∑
i=1

∫
Θ(ai)

dµai =
h∑
i=1

∑
x∈O×℘ /(1+πf)

µai(x+ πf)

= κf ·
h∑
i=1

∑
x∈O×℘ /(1+πf)

∑
ι

∫
Ci,f

ϕ̃ι(
(
g

1

)
· εx · hA,n+1) · ϕ̃′ι(g · εx · hA,n)d×g

(79)= κf ·
∑
ι

∫
GLn(k)\GLn(A)

ϕ̃ι(
(
g

1

)
· hA,n+1) · ϕ̃′ι(g · hA,n)d×g

(73)= κf · P (1/2,W∞,W ′∞) · L(ρ× (σ ⊗ χA,1/2)) ·
Z̃(W℘,W ′℘, χ℘,1/2)

L(ρ℘ × (σ℘ ⊗ χ℘,1/2))
= κf · P (1/2,W∞,W ′∞) · L(ρ× (σ ⊗ χA,1/2)) · vol(Jn, d×g)

· q
(n−1)·n

2 · (1− q−1)
(n−1)·n

2 ·
(

q

q − 1

)n(n+1)
2

·
(
δ

1/2
n+1 ⊗ λwn+1

)((πtn

1

))f

·
(
δ1/2
n ⊗ µwn

) (
πtn
)f

·
∏

i+j≤n+1

(
1− (λi ⊗ µj)(π)

q1/2

)
·

∏
i+j>n+1

(
1− q1/2

(λi ⊗ µj)(π)

)
.

Januszewski [Jan09] treats the question when the ℘-adic distribution is a measure. By
his work,

Theorem 6.1. If (ρ, σ) are in algebraic, regular, automorphic cuspidal representations
of GLn+1(Ak) × GLn(Ak), that are ordinary at ℘ (this implies that their respective ℘-
components are spherical) and cohomological19, then the ℘-adic distribution µ℘ on Ck(℘∞)
19For a precise definition of cohomological representation, see [Jan09].
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constructed by Januszewski is a measure, that satisfies for χA unramified at ℘∫
Ck(℘∞)

χAdµ℘ = κf · P (1/2,W∞,W ′∞) · L(ρ× (σ ⊗ χA,1/2)) · vol(Jn, d×g)

· q
(n−1)·n

2 · (1− q−1)
(n−1)·n

2 ·
(

q

q − 1

)n(n+1)
2

·
(
δ

1/2
n+1 ⊗ λwn+1

)((πtn

1

))f

·
(
δ1/2
n ⊗ µwn

) (
πtn
)f

·
∏

i+j≤n+1

(
1− (λi ⊗ µj)(π)

q1/2

)
·

∏
i+j>n+1

(
1− q1/2

(λi ⊗ µj)(π)

)
.
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A. Local Gauss sums
For χ = χ℘, ψ = ψ℘ (recall that ψ is unramified at ℘) as introduced in Section 1.2, and
for e ∈ Z, we defined the e-twisted local Gauss-sum by

G(e, χ) =
∫
O×

χ(t) · ψ(πet) d×t.

It satisfies the following:

Lemma A.1.

a) Is χ unramified, i.e. χ = 1, we have

G(e,1) =


0 , e ≤ −2

1
1−q , e = −1

1 , e ≥ 0
.

In this case, we drop 1 from the notation and write just G(e).

b) Is χ ramified, i.e. c(χ) > 0 and e 6= −c(χ), we have

G(e, χ) = 0.

Hence, in this case, we drop e from the notation and write G(χ) := G(−c(χ), χ)
instead.

Proof. a) Since O× = O\πO and using the measure comparision given in (24), we obtain

G(e,1) =
∫
O×

1(t)ψ(πet)d×t

=
∫
O×

ψ(πeu) 1
1− q−1 ·

du

|u|

= 1
1− q−1

(∫
O
ψ(πeu)du−

∫
p
ψ(πeu)du

)
= 1

1− q−1

(∫
O
ψ(πeu)du−

∫
O
ψ(πe(πu))d(πu)

)
= 1

1− q−1

(∫
O
ψ(πeu)du− q−1

∫
O
ψ(πe+1u)du

)
.

Hence:
• For e ≤ −2 we have

G(e,1) = 1
1− q−1

(∫
O
ψ(πeu)du− q−1

∫
O
ψ(πe+1u)du

)
= 0,

since both ψ(πe · −) and ψ(πe+1 · −) are non-trivial on O.
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• In the case e = −1 we have

G(e,1) = 1
1− q−1


∫
O
ψ(π−1u)du︸ ︷︷ ︸

=0

−q−1
∫
O
ψ(u)du︸ ︷︷ ︸

=1

 = − 1
1− q−1 q

−1 = 1
1− q ,

since ψ(π−1 · −) is non-trivial on O, but ψ(−) is trivial on O.
• At last for e ≥ 0 we get

G(e,1) = 1
1− q−1

(∫
O
ψ(πeu)du− q−1

∫
O
ψ(πe+1u)du

)
= 1

1− q−1 (1− q−1) = 1.

Here, both ψ(πe · −) and ψ(πe+1 · −) are trivial on O.

b) Now let χ be ramified.
• First we consider the case e < −c(χ). Here we have 1+pc(χ) ( O×. Moreover
since O× and 1 + pc(χ) are unimodular, by the quotient integral formula 1.5.3 in
[Dei14] there exists a O×-invariant Radon measure d×h on the quotient space
O×

/
1 + pc(χ) , such that we can split the integration of the full space O× into the

product integration of the subspace 1+pc(χ) and the quotient space O×
/

1 + pc(χ) ,
and hence

G(e, χ) =
∫
O×

χ(t)ψ(πet)d×t =
∫
O×/(1+pc(χ))

∫
1+pc(χ)

χ(xy)ψ(πexy) d×x d×y.

But since χ is trivial on 1 + pc(χ), we can rewrite the interior integral as∫
1+pc(χ)

χ(xy)ψ(πexy)d×x = χ(y)
∫

1+pc(χ)
ψ(πexy)d×x.

Moreover since c(χ) < −e, and hence the character ψ(πey · −) is non-trivial on
1 + pc(χ), we obtain ∫

1+pc(χ)
ψ(πexy)d×x = 0,

since we can again split the integration over 1+pc(χ) by the subspace 1+p−e ( 1+
pc(χ), and use the same argument, that ψ(πey ·−) is non-trivial on the finite group
1 + pc(χ)/

1 + p−e , and the integration over this (discrete) finite group happens to
be the same as over the additive group pc(χ)/

p−e .
• Now we consider the case e > −c(χ). If we suppose that e ≥ 0, then obviously

G(e, χ) =
∫
O×

χ(t)ψ(πet)d×t =
∫
O×

χ(t)d×t = 0.

Otherwise if 0 < −e < c(χ), we consider the closed subgroup

O× ⊇ 1 + p−e,
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As previously, we can express the Gauss sum as follows:

G(e, χ) =
∫
O×

χ(t)ψ(πet)d×t =
∫
O×/(1+pc(χ))

∫
1+p−e

χ(xy)ψ(πexy) d×x d×y.

By looking at the interior integral, we see that x ∈ 1 + p−e means x = 1 + x′ for
some x′ ∈ p−e, but for those x′ we have ψ(πkx′y) = 1, and thus∫

1+p−e
χ(xy)ψ(πexy)d×x = χ(y)ψ(πey)

∫
1+p−e

χ(x)d×x = 0,

since χ is again non-trivial on 1 + p−e because of the assumption −e < c(χ).

Remark 9. Let us fix an r ∈ N. If z ∈ C\{1, 0}, N ≥ −1 an integer and if χ is
unramified, then

N∑
e=−∞

G(e)r · ze = z−1 − 1 + (1− q)r
(1− q)r(1− z) − zN+1

1− z , (80)

since with help of the previous lemma 1.1

N∑
e=−∞

G(e)r · ze = 1
1− z

N∑
e=−1

G(e)r · ze(1− z)

= G(−1)r(z−1 − 1) + 1− zN+1

1− z

= z−1 − 1 + (1− q)r
(1− q)r(1− z) − zN+1

1− z

Specially in the case when |z| < 1 and r = 1, taking N →∞ this simplifies further as

∑
e∈Z

G(e) · ze = q

q − 1 ·
1− (qz)−1

1− z . (81)

We will need this little computation in Chapter 5.
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