XCS FOR SELF-AWARENESS IN AUTONOMOUS
COMPUTING SYSTEMS

DISSERTATION

A thesis submitted to the
FACULTY FOR COMPUTER SCIENCE, ELECTRICAL ENGINEERING AND
MATHEMATICS
of
PADERBORN UNIVERSITY
in partial fulfillment of the requirements
for the degree of Dr. rer. nat.

by

TIM HANSMEIER

Paderborn, Germany
Date of submission: June 2023



SUPERVISORS:
Prof. Dr. Marco Platzner

REVIEWERS:

Prof. Dr. Marco Platzner
Prof. Dr. David Andrews
Prof. Dr. Sybille Hellebrand

ORAL EXAMINATION COMMITTEE:
Prof. Dr. Marco Platzner

Prof. Dr. David Andrews

Prof. Dr. Sybille Hellebrand
Jun.-Prof. Dr. Sebastian Peitz

Dr. Heinrich Riebler

DATE OF SUBMISSION:
June 2023

Tim Hansmeier: XCS for Self-awareness in Autonomous Computing Systems,
Dr. rer. nat., © June 2023



Never confuse education with intelligence,
you can have a PhD and still be an idiot.

— Richard P. Feynman

ACKNOWLEDGMENTS

First and foremost, I want to express my gratitude to Marco for all the
support, guidance, and opportunities he has provided to me — not only
during my time as a PhD student but also during my (under-)graduate
studies. It is unlikely that I would have started a PhD project with
someone else. Further, I want to thank Prof. Dr. David Andrews and
Prof. Dr. Sybille Hellebrand for their effort in reviewing this thesis, and
Prof. Dr. Sebastian Peitz and Dr. Heinrich Riebler for taking the time to
participate in the committee.

Doing research is not a one person’s job. As such, I acknowledge
the support of Mathis Brede, who has developed an XCS library in his
Bachelor’s thesis and extended it during his time as a student research
assistant. His work contributed significantly to smooth experimental
evaluations and allowed me to focus on more fundamental research
aspects. Also, I want to thank all members of the computer engineering
group that I have met over the years for providing a productive and
pleasant working atmosphere. Specifically, I want to mention Christian
Lienen and Linus Witschen, with whom I spent coffee and tea breaks that
really deserved to be called breaks. They have been entirely unrelated to
research and totally unproductive (the breaks, not Christian and Linus).
Outside of our research group, I want to thank the entire food services
department of the Studierendenwerk Paderborn for flawlessly feeding
me lunch since 2014.

Finally, I want to thank my parents, who have (literally) supported me
my entire life and enabled me to cope on my own, i.e., autonomously,
with both academia and the real world. As argued by the thesis at hand,
this is a skill I can be most grateful for.

iii






ABSTRACT

The design paradigm of computational self-awareness tackles the increas-
ing complexity in modern computing systems by moving design-time
decisions to the runtime and into the system’s responsibility. The re-
quired autonomous and adaptive behavior is often implemented by
online learning techniques. Frequently proposed is the use of learning
classifier systems, most notably their popular variant XCS. It combines re-
inforcement learning with a genetic algorithm to evolve an interpretable
population of rules (termed classifiers). However, XCS has rarely been
applied in real-world applications, and research is lacking on how XCS
can be successfully applied to implement autonomy and adaptivity in
practical application scenarios. This thesis makes a step toward bridging
this gap in research. It presents the first experimental comparison of
explore/exploit strategies for XCS, which allow XCS to autonomously
decide if new knowledge about the environment needs to be gathered
or if the existing knowledge can be exploited. An automated parameter
optimization equips system designers planning to employ XCS with a set
of useful hyperparameter configurations for each strategy. To fulfill safety
guarantees, this thesis introduces the concept of forbidden classifiers.
These special classifiers are hand-crafted, utilizing the interpretability of
XCS’s rule base, and prevent the selection of actions that violate safety
requirements. The experimental evaluation shows that forbidden classi-
fiers enable XCS to find a problem solution in a shorter time, with fewer
classifiers, and with a lower computational burden when compared to
XCS with an external safety shield. Finally, as an example of a practical
application scenario, a case study investigates using XCS to control a
CPU’s frequency. While XCS consistently achieves better results than
tabular Q-learning, it depicts a learning behavior that vastly differs from
the behavior observed in the artificial problem environments commonly
used in XCS research. As such, the case study highlights the need to
develop mechanisms that enable XCS to automatically detect environ-
mental characteristics that prevent it from deriving an optimal solution
and take appropriate countermeasures, e.g., through hyperparameter
self-configuration.






ZUSAMMENFASSUNG

Das Entwurfsparadigma der Computer-Selbstwahrnehmung (Computa-
tional Self-Awareness) begegnet der zunehmenden Komplexitdt moder-
ner Computersysteme, indem es Entscheidungen zur Entwurfszeit in
die Laufzeit und in die Verantwortung des Systems selbst verlagert.
Das benétigte autonome und adaptive Verhalten wird haufig durch
Online-Lerntechniken realisiert. Haufig wird der Einsatz von lernenden
Klassifizierersystemen (Learning Classifier Systems) vorgeschlagen, insbe-
sondere deren populédrste Variante XCS. Es kombiniert Techniken des
bestarkenden Lernens mit einem genetischen Algorithmus, um eine inter-
pretierbare Population von Regeln (sogenannte Classifiers) zu entwickeln.
Allerdings wurde XCS bisher nur selten in realen Anwendungen einge-
setzt, und es fehlt an Forschung dariiber, wie XCS erfolgreich verwendet
werden kann, um Autonomie und Adaptivitdt in praktischen Anwen-
dungsszenarien zu realisieren. Diese Dissertation macht einen Schritt
hin zur Schlieffung dieser Forschungsliicke. Sie prasentiert den ersten
experimentellen Vergleich von Explore/Exploit-Strategien fiir XCS, welche
es XCS erlauben, autonom zu entscheiden, ob neues Wissen tiber die
Umgebung gesammelt werden muss oder ob das vorhandene Wissen
genutzt werden kann. Eine automatisierte Parameteroptimierung gibt
Systemdesignern, die den Einsatz von XCS planen, fiir jede Strategie eine
Reihe von niitzlichen Hyperparameterkonfigurationen an die Hand. Um
Sicherheitsgarantien zu erfiillen, fiihrt diese Dissertation das Konzept
der verbotenen Klassifizierer (Forbidden Classifiers) ein. Diese speziellen
Klassifizierer werden von Hand erstellt, wobei die Interpretierbarkeit der
XCS-Regelbasis genutzt wird, und verhindern die Auswahl von Aktio-
nen, die gegen Sicherheitsanforderungen verstoflen. Die experimentelle
Auswertung zeigt, dass XCS mit verbotenen Klassifizierern eine Pro-
blemlosung in kiirzerer Zeit, mit weniger Klassifizierern, und mit einem
geringeren Rechenaufwand finden kann als XCS mit einem externen Si-
cherheitsschild. Schliefslich wird in einer Fallstudie der Einsatz von XCS
zur Steuerung der CPU-Frequenz untersucht. Wahrend XCS durchgingig
bessere Ergebnisse als tabellarisches Q-Learning erzielt, zeigt es ein Lern-
verhalten, das sich stark von dem Verhalten unterscheidet, das in den
kiinstlichen Problemumgebungen beobachtet wird, welche iiblicherweise
in der XCS-Forschung verwendet werden. Die Fallstudie unterstreicht
die Notwendigkeit, Mechanismen fiir XCS zu entwickeln, mit denen es
automatisch solche Umgebungsmerkmale erkennen kann, welche die
Ableitung einer optimalen Losung verhindern. XCS kann dann entspre-
chende Gegenmafinahmen ergreifen, z.B. durch Selbstkonfiguration der
Hyperparameter.

vii






AUTHOR’S PUBLICATIONS

[1]

(2]

3]

[4]

[5]

[6]

[7]

[8]

Mathis Brede, Tim Hansmeier, and Marco Platzner. “XCS on
Embedded Systems: An Analysis of Execution Profiles and Accel-
erated Classifier Deletion.” In: Proceedings of the 2022 Genetic and
Evolutionary Computation Conference Companion (GECCO’22). ACM,
2022, pp. 2071-2079. por: 10.1145/3520304.3533977

Tim Hansmeier. “Self-Aware Operation of Heterogeneous Com-
pute Nodes Using the Learning Classifier System XCS.” In: Pro-
ceedings of the 11th International Symposium on Highly Efficient Ac-
celerators and Reconfigurable Technologies (HEART'21). ACM, 2021,
pp. 1-2. por: 10.1145/3468044 . 3468055.

Tim Hansmeier, Mathis Brede, and Marco Platzner. “Safe Learn-
ing with XCS via the Injection of Forbidden Classifiers.” In: SN
Computer Science (tbd). Invited submission. Currently under re-
view.

Tim Hansmeier, Paul Kaufmann, and Marco Platzner. “An Adap-
tion Mechanism for the Error Threshold of XCSE.” In: Proceedings
of the 2020 Genetic and Evolutionary Computation Conference Com-
panion (GECCO’20). ACM, 2020, pp. 1756-1764. por: 10 . 1145/
3377929.3398106.

Tim Hansmeier, Paul Kaufmann, and Marco Platzner. “Enabling
XCSF to Cope with Dynamic Environments via an Adaptive Error
Threshold.” In: Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference Companion (GECCO’20). ACM, 2020, pp. 125-
126. por: 10.1145/3377929.3389968.

Tim Hansmeier and Marco Platzner. “An experimental compari-
son of explore/exploit strategies for the learning classifier system
XCS.” In: Proceedings of the 2021 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO’21). ACM, 2021, pp. 1639-1647.
DOI: 10.1145/3449726.3463159.

Tim Hansmeier and Marco Platzner. “Integrating Safety Guaran-
tees into the Learning Classifier System XCS.” In: Applications of
Evolutionary Computation (EvoApplications 2022). Nominated for
Best Paper Award. Springer, 2022, pp. 386—401. por1: 10.1007/978-
3-031-02462-7_25.

Tim Hansmeier and Marco Platzner. “Autonomous Explore /Ex-
ploit Strategies for XCS: An Experimental Comparison.” In: Soft
Computing (tbd). Currently under review.

ix


https://doi.org/10.1145/3520304.3533977
https://doi.org/10.1145/3468044.3468055
https://doi.org/10.1145/3377929.3398106
https://doi.org/10.1145/3377929.3398106
https://doi.org/10.1145/3377929.3389968
https://doi.org/10.1145/3449726.3463159
https://doi.org/10.1007/978-3-031-02462-7_25
https://doi.org/10.1007/978-3-031-02462-7_25

[9]

[10]

Tim Hansmeier, Marco Platzner, and David Andrews. “An
FPGA /HMC-Based Accelerator for Resolution Proof Checking.”
In: International Symposium on Applied Reconfigurable Computing
(ARC 2018). Received Best Paper Award. Springer, 2018, pp. 153—
165. por: 10.1007/978-3-319-78890-6_13

Tim Hansmeier, Marco Platzner, Md Jubaer Hossain Pantho, and
David Andrews. “An Accelerator for Resolution Proof Checking
based on FPGA and Hybrid Memory Cube Technology.” In: Jour-
nal of Signal Processing Systems 91.11 (2019), pp. 1259-1272. por:
10.1007/511265-018-1435-y.


https://doi.org/10.1007/978-3-319-78890-6_13
https://doi.org/10.1007/s11265-018-1435-y

CONTENTS

Introduction

1.1 Thesis Contributions . . . ... ... ... ..........
1.2 Thesis Organization. . . . . ... ...............
Computational Self-Awareness

21 KeyConcepts . . ... ....... . ... ... ... ...
2.2 Reference Architecture . . . .. ... ... .. ..... ...
23 Related Concepts . . ... ... ... ... ..........
2.4 Applications of Self-* Computing . . . . . ... ... ....
The Learning Classifier System XCS

3.1 Algorithmic Descriptionof XCS. . . . ... ... ... ...
3.2 The Working Mechanism of XCS . . . . ... ........
33 XCSExtensions . ................ . .......
3.4 XCS for Computational Self-Awareness . . . .. ... ...

Experimental Comparison of Autonomous Explore/Exploit Strate-

gies

4.1 Explore/Exploit Strategies . . . . ... ... ... ... ...
42 ExperimentalSetup . . . .. ... ... ... .. oL
4.3 Single-Environment Evaluation . . . . ... ... .. ... ..
44 Multi-Environment Evaluation . .. ... ... ... ....
4.5 Dynamic Environment Evaluation . . .. ... .. ... ..
4.6 Summary and Deployment Guidelines . . ... ... ...
47 Conclusion and Future Work . . . ... ... ... .....
Safety Guarantees through Forbidden Classifiers

51 Related Work . ... ... .. ... ... ... ... .....
5.2 Forbidden Classifiers . . . . .. .. ... ... ........
53 Experimental Setup . . . . ... ... ... ... .. ...
5.4 Experimental Evaluation: 6-Multiplexer . . . . . ... ...
5.5 Experimental Evaluation: Maze . . . . .. ... ... ....
5.6 Experimental Evaluation: Classification . . . ... ... ..
5.7 Conclusion and Future Work . . ... ... ... ......
Case Study: XCS for Frequency Control

6.1 Related Work . ... .. ... ... ... ... ... .....
6.2 Application Scenario . . . ... ... ... L
6.3 Experimental Setup . . . ... ... .. .. ... .......
6.4 Experimental Results . . . . ... ...............
6.5 Environmental Characteristics and Behavior of XCS . . . .
6.6 Conclusion and Future Work . . ... ... ... ......
Conclusion and Future Work

71 FutureWork . . . .. .. .. ... ...

Bibliography

O O\ U1 = N =

101
102
104
109
112
126
129
130

133

X1



LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

xii

Reference architecture for self-aware computing
systems [22,64]. . . .. ... oL 10
Structure of an autonomic element [5, 49]. The
managed element is controlled by an autonomic

manager with a MAPE-Kloop. . . ... ...... 13
Observer /Controller architecture controlling a System
under Observation and Control (SuOC) [72]. ... 15

Observe-Decide-Act (ODA) loop of the SEEC frame-
work with decoupled roles of application and sys-

tem developers [43].. . . . ... ... ... ... 16
Information Processing Factory (IPF) organization

for the execution of mixed-critical workloads [84]. 18
The interaction of XCS with the problem environ-
ment. . .. ... 26
Ilustration of XCS, taken from [112], with a 4-bit
input, available actions a € {00,01,10,11} and the
minimum number of actions 0,,,,; set to 2. The
environment provides the sensory input 0011, and

XCS selects action 01 for execution. Within single-

step environments, the discounting mechanism

and the previous action set [A].; are not necessary,

as the Genetic Algorithm (GA) and the parameter
update take place on the current action set [A]

using the immediate reward r. . . ... ... ... 27
Classifier accuracy « in relation to the classifier’s
prediction error €. Figure adapted from [20]. . . . 29

Interaction of the different evolutionary pressures
in XCS. The set pressure pushes the classifier pop-
ulation towards maximal generality, while muta-
tion pressure pushes towards a fixed generality
of 0.5. Subsumption pressure is only applied to
accurate classifiers and increases their generality.
The fitness pressure applies to inaccurate classi-
fiers and decreases their generality to make them
more accurate. The deletion pressure is included
in the set and the fitness pressure. Figure adapted
from [20]. . . . . . ... 35
The Maze4 environment. Empty fields are de-
noted by dots, while obstacles are represented by
rocks ('R’). The target field is the food ('F’) in the
upper right corner. . . ... ... ... ... ... 55



Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 5.1
Figure 5.2

Figure 5.3

LIST OF FIGURES

The Woods14 environment. The target field is the

food ('F’) in the lower left corner. . . . .. ... .. 55
Experimental results obtained on the 11-Multiplexer
problem. Results are averages of 50 trials and
shown as moving average over 400 iterations. . . . 61
Experimental results obtained on the 20-Multiplexer
problem. Results are averages of 50 trials and
shown as moving average over 400 iterations. . . . 62
Experimental results obtained in the Maze4 en-
vironment. Results are averages of 50 trials and
shown as moving average over 50 runs. The dashed

line shows the length of the shortest path and the
exploration rate is defined as the percentage of
exploration stepsinarun. . .. ... ........ 63
Experimental results obtained in the Mazel4 en-
vironment. Results are averages of 50 trials and
shown as moving average over 50 runs. The dashed

line shows the length of the shortest path and the
exploration rate is defined as the percentage of
exploration stepsinarun. . . ... ... ... ... 64
The dynamic Maze4 environment. After 3,000
runs, the position of the target field ("F’) changes

and the experiment continues for another 1,500 runs. 68
The dynamic Woods14 environment. After 4,000
runs, the position of the target field ('F’) changes

and the experiment continues for another 2,000 runs. 69
Experimental results obtained on the dynamic 11-
Multiplexer problem. Results are averages of 50
trials and shown as a moving average over 400
iterations. . . . .. ... 72
Experimental results obtained in the dynamic Maze4
environment. Results are averages of 50 trials and
shown as a moving average over 50 runs. The
dashed line shows the length of the shortest path

and the exploration rate is defined as the percent-

age of exploration stepsinarun. . ... ... ... 73
Shielded reinforcement learner [3]. . . . . ... .. 79
The same situation as already shown in Figure 3.2,

but with a forbidden classifier (marked red) that

is preventing the selection of the action 01. 6,

is still set to 2, so a new classifier is created via
covering for one of the actions that have not yet
beenpartof PA. . . . ... ... ... ... ... .. 80
Experimental results obtained on the 6-Multiplexer
problem. Results are averages over 100 trials and
shown as a moving average over 200 samples. The

error bars visualize the observed standard deviation. 85

xiii



Xiv

LIST OF FIGURES

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 6.1

Figure 6.2

Excerpt of an exemplary classifier population that
has been evolved by the end of a trial. The clas-
sifiers are sorted according to their numerosity
n in descending order. Forbidden classifiers are

markedred. . . ... ... ... ... 86
Overview of the three different maze environ-
ments used for the experimental evaluation. . .. 87

Experimental results obtained in the Woods1 envi-
ronment. Results are averages over 100 trials and
shown as a moving average over 100 runs. The er-
ror bars visualize the observed standard deviation
and the dashed line the length of the shortest path. 88
Experimental results obtained in the Maze4 envi-
ronment. Results are averages over 100 trials and
shown as a moving average over 100 runs. The er-
ror bars visualize the observed standard deviation
and the dashed line the length of the shortest path. 89
Experimental results obtained in the Woods14 en-
vironment. Results are averages over 100 trials
and shown as a moving average over 100 runs.
The error bars visualize the observed standard
deviation and the dashed line the length of the
shortestpath. . . ... .. ... ... .. .. .... 90
Experimental results obtained in the Maze4 envi-
ronment with deactivated specify operator. Re-
sults are averages over 100 trials and shown as
a moving average over 100 runs. The error bars
visualize the observed standard deviation and the
dashed line the length of the shortest path. . . .. 92
Experimental results obtained in the Woods14 en-
vironment with deactivated specify operator. Re-
sults are averages over 100 trials and shown as
a moving average over 100 runs. The error bars
visualize the observed standard deviation and the
dashed line the length of the shortest path. . . . . 93
Experimental results obtained on the car evalua-
tion dataset. Results are averages over 100 trials
and shown as a moving average over 1000 sam-
ples. The error bars visualize the observed stan-

dard deviation. . . ... ... ... . ... ..., . 96
XCS controlling the CPU frequency to reach a
target [PSrate. . . .. ... ... ... ... ... 103

IPS rate of PARSEC benchmark applications when
executed with the simsmall input and a CPU fre-
quency of IGHz. . ... ... ... ... .. .... 106



Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

LIST OF FIGURES

IPS shortfall and power consumption when exe-
cuting Canneal with the simmedium workload. Re-
sults are averages of 10 repetitions with the error
bars depicting the standard deviation. . . . . . . .
IPS shortfall and power consumption when exe-
cuting Ferret with the simsmall workload. Results
are averages of 10 repetitions with the error bars
depicting the standard deviation. XCS achieves
the lowest IPS shortfall, but Q-learning with 10
bins partly hides its graph. . . . . . ... ... ...
IPS shortfall and power consumption when ex-
ecuting Freqmine with the simsmall workload.
Results are averages of 10 repetitions with the
error bars depicting the standard deviation. . . . .
Population and match set statistics of XCS when
trained with the Canneal training set. Results are
visualized as a moving average over 30 samples.
The match set statistics are shown only for the
end of the training process. The vertical grey lines
denote the start of a new execution of Canneal. . .
Population and match set statistics of XCS when
trained with the Ferret training set. Results are
visualized as a moving average over 30 samples.
The match set statistics are shown only for the
end of the training process. The vertical grey lines
denote the start of a new execution of Ferret. . . .
Population and match set statistics of XCS when
trained with the Freqmine training set. Results are
visualized as a moving average over 30 samples.
The match set statistics are shown only for the
end of the training process. The vertical grey lines
denote the start of a new execution of Freqmine. .
Prediction error and the number of activations of
the Q-table with 50 bins when trained with the
Canneal training set. Results are visualized as a
moving average over 30 samples. Shown is only
the end of the training process. The vertical grey

112

114

115

116

lines denote the start of a new execution of Canneal.117

Prediction error and the number of activations of
the Q-table with 50 bins when trained with the
Ferret training set. Results are visualized as a
moving average over 30 samples. Shown is only
the end of the training process. The vertical grey

lines denote the start of a new execution of Ferret.

118

XV



Xvi

LIST OF FIGURES

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Prediction error of the Q-table with 10 bins when
trained on the Ferret training set. Results are vi-
sualized as a moving average over 30 samples.
Shown is only the end of the training process.
The vertical grey lines denote the start of a new
execution of Ferret. . . ... ... ... ... ...
Prediction error and the number of activations of
the Q-table with 50 bins when trained with the
Freqmine training set. Results are visualized as a
moving average over 30 samples. Shown is only
the end of the training process. The vertical grey

lines denote the start of a new execution of Freqmine.120

Population and match set statistics of XCS with
B = 0.01 when trained with the Canneal train-
ing set. Results are visualized as a moving aver-
age over 30 samples. The match set statistics are
shown only for the end of the training process.
The vertical grey lines denote the start of a new
execution of Canneal. . . . .. ... .. ... ...,
Population and match set statistics of XCS with
B = 0.01 and 054 = 200 when trained with the
Canneal training set. Results are visualized as a
moving average over 30 samples. The match set
statistics are shown only for the end of the training
process. The vertical grey lines denote the start of
a new execution of Canneal. . . . . ... ... ...
Population and match set statistics of XCS with
B = 0.01 and ¢y = 0.05 when trained with the
Canneal training set. Results are visualized as a
moving average over 30 samples. The match set
statistics are shown only for the end of the training
process. The vertical grey lines denote the start of
a new execution of Canneal. . . . . ... ... ...



LIST OF TABLES

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 5.1
Table 5.2

Table 5.3

Overview of XCS” hyperparameters and common
default values. . . . . ... ... ... .. ...... 31
Biased reward function of an environment with
two states S and S, and two available actions A;
and As. . .. 38
Value ranges used in the parameter optimization. 58
Parameterization of the strategies when optimized
for each environment separately. . ... ... ... 59
Average optimization metrics achieved with the
parameters optimized for each environment sepa-
rately. Bold font marks the best results, an asterisk
a statistically significant difference to the best result. 60
Parameterization of the strategies when optimized
for all environments concurrently. . ... ... .. 66
Average optimization metrics achieved with the
parameterization optimized for all environments
concurrently. Bold font marks the best results,
an asterisk a statistically significant difference to
the best result. The values in the brackets show
the difference to the metrics achieved with the
single-environment optimization. . . . . . ... .. 67
Parameterization of the strategies when optimized
for each dynamic environment separately. Given
in brackets is the difference to the parameters op-
timized for the static environments. . . ... ... 70
Average optimization metrics achieved with the
parameterization optimized for each dynamic en-
vironment separately. Bold font marks the best
results, an asterisk a statistically significant differ-
ence to the best result. The values in the brackets
show the difference to the metrics achieved in the
static environments. . . . ... ... L 71
Average CPU times of a single experimental trial. 90
Smallest maximum population sizes N at which
XCS is able to solve each environment.. . . . . . . 91
Overview of the input and output attributes of the
car evaluation dataset from the UCI repository. . . 94

Xvii






ACRONYMS

AC
ACS
CPS
DVEFES
E/E
EC
EP1CS
FPGA
GA
IPF
IPS
LCS
LCT
MAPE-K
MIPS
oC
ODA
QoS
RBML
RL
SEEC
SuOC

Autonomic Computing

Anticipatory Learning Classifier System
Cyber-Physical System

Dynamic Voltage and Frequency Scaling
Explore/Exploit

Evolutionary Computation

Engineering Proprioception in Computing Systems
Field Programmable Gate Array

Genetic Algorithm

Information Processing Factory
Instructions per Second

Learning Classifier System

Learning Classifier Table

Monitor-Analyze-Plan-Execute loop with Knowledge

Million Instructions per Second
Organic Computing
Observe-Decide-Act

Quality of Service

Rule-based Machine Learning
Reinforcement Learning
SElf-awarE Computing

System under Observation and Control

XiX






INTRODUCTION

Modern computing systems continue to become ubiquitous, with appli-
cation domains ranging from large-scale data centers to tiny embedded
computing systems. The different types of computing systems must of-
ten communicate with each other, e.g., in edge-fog-cloud networks [2],
leading to complex interactions and a high degree of heterogeneity. Man-
aging this complexity becomes increasingly challenging, especially with
varying requirements and optimization goals, such as a variable avail-
ability and cost of electrical energy. In addition, computing systems
employed in Cyber-Physical Systems (CPSs) deal with physical environ-
ments that can, at most, be partially specified at design-time and even
change during operation. Hence, computing systems must be enabled
to cope autonomously with uncertainties and adapt to environmental
changes. This goal is inherent to several design paradigms [43, 74, 79],
among them the concept of computational self-awareness [66]. The no-
tion of self-awareness draws inspiration from psychology, as humans are
considered to have the highest and most versatile level of autonomy and
adaptivity. This is achieved by continuously reasoning about subjective
experiences made in the past and translating them into decision strategies
that are used in the future. The same approach is followed in the concept
of computational self-awareness, where static design-time decisions are
moved to the runtime and into the system’s responsibility. This allows
technical systems to cope autonomously with increasing complexities,
unforeseen situations, and environmental changes.

Learning Classifier Systems (LCSs) [106] are frequently proposed for
use in the design paradigm of computational self-awareness and related
approaches [73, 104]. With the combination of Reinforcement Learn-
ing (RL) [99] and Evolutionary Computation (EC) [7], LCSs follow two
lifelike learning mechanisms that promise high adaptivity. The most com-
mon LCS is XCS! [110], an online Rule-based Machine Learning (RBML)
technique that relies on a dynamic population of rules, which are called
classifiers. Each rule in the population proposes an action for the situa-
tions it matches. The usefulness of the rules is determined via RL, i.e.,
through interactions with the operational environment, while new rules
are generated by a Genetic Algorithm (GA) that aims at generalizing the

Some researchers have backronymed XCS to stand for eXtended Classifier System. This
thesis, however, sticks to the original meaning and does not treat XCS as an acronym.



INTRODUCTION

rules such that they apply in as many situations as possible. Through
the combination of reinforcement learning with a genetic algorithm, XCS
is able to evolve a rule population of a minimal size that can determine
the best-suited action for each encountered situation. Furthermore, since
XCS is an online learning algorithm, it can adjust to the specifics of a
deployment environment and environmental changes during operation.
Therefore, XCS can be applied to implement autonomous and adaptive
behavior in technical systems. In addition, its evolved rule base depicts a
high degree of interpretability, allowing human operators to analyze and
validate the behavior that an autonomous system has learned.

However, even though XCS seems to be a natural fit to implement
autonomy and adaptivity in self-aware systemes, it is rarely applied for
such use cases. Instead, XCS is commonly developed and evaluated in
artificial toy problem environments only, while descendants of XCS are
primarily applied for supervised classification tasks [41, 80]. The rarity
of works that employ XCS in autonomous systems to tackle practical
application scenarios is related to a lack of research on how XCS can
be applied in autonomous and adaptive real-world systems. This thesis
aims at bridging the research gap by improving the amenability of XCS
for use in autonomous systems and investigating the behavior of XCS in
a real-world problem environment.

1.1 THESIS CONTRIBUTIONS

This thesis makes three key contributions that improve XCS’s ability to
be successfully deployed in self-aware computing systems that tackle
practical application scenarios. It does so by investigating and improving
the learning behavior of XCS and revealing characteristics of real-world
application environments that must be considered before deployment.
Explore/Exploit Dilemma (Chapter 4). As every reinforcement learner,
XCS faces the Explore/Exploit (E/E) dilemma [111] when deciding which
action should be executed. On the one hand, XCS learns by trying various
actions in the encountered situations to observe which is the best-suited
action for a given situation (exploration). On the other hand, it should
maximize the operational performance by always selecting the best action
(exploitation). If the learner focuses too much on exploitation, it cannot
reliably determine the best action, and the operational performance stays
below its maximum. On the other hand, if the focus is primarily on
exploration, non-optimal actions are deliberately chosen, and operational
performance is also negatively impacted. Hence, the E/E decision must
be taken based on the current learning progress. For XCS, very few E/E
strategies that autonomously decide which way to pursue have been pro-
posed in the existing research literature, even though such strategies are
a requirement for employing XCS in autonomous and adaptive systems.
In addition, the proposed E/E strategies have been evaluated in different
problem environments and have never been compared to each other.



1.1 THESIS CONTRIBUTIONS

This thesis presents the first experimental comparison of four E/E
strategies proposed in the research literature. The comparison takes place
on several problem environments and also considers environmental dy-
namics, which make the E/E dilemma complex to solve. In addition, we
employ an offline automated hyperparameter optimization to determine
suitable hyperparameter configurations for each strategy. As such, the
experimental study provides directions for future work on autonomous
E/E strategies for XCS and equips XCS practitioners with guidelines on
how to employ E/E strategies successfully.

Safety Guarantees (Chapter 5). Especially when used in CPSs, XCS
must fulfill safety requirements during operation. However, due to its RL
paradigm, it is prone to select safety-violating actions, most apparently
during exploration. Traditional approaches for preventing safety viola-
tions add an external shield to the learner that constantly monitors the
environmental states and actions. If a violation of safety requirements is
detected, the shield steps in and sanitizes the action that would impact
safety.

To directly equip XCS’s rule base with safety guarantees, we developed
the concept of forbidden classifiers. Such classifiers prevent the selection of
specific actions in safety-critical situations. They are hand-crafted based
on safety requirements and injected into the classifier population before
deployment. To the best of our knowledge, this work is among the first
to leverage XCS’s rule-interpretability by systematically injecting domain
knowledge. Our experimental evaluation shows that forbidden classifiers
can implement safety guarantees just as an external shield but enable XCS
to solve the evaluated problem environments more quickly, with fewer
classifiers, and a lower computational burden. In contrast to XCS with an
external shield, forbidden classifiers directly internalize the safety-critical
knowledge and spare XCS from learning the same knowledge through
interactions with the shield. This is also why forbidden classifiers can be
used to inject domain knowledge and accelerate XCS’s learning progress
even when no safety requirements must be met.

Learning Behavior in Real-world Environments (Chapter 6). The
majority of research works develop and evaluate XCS only in artificial
toy problem environments. These well-controllable environments depict
properties that allow XCS to evolve a minimally sized classifier popula-
tion with accurate payoff predictions, making such environments ideal
for studying and extending the learning mechanism of XCS. However,
real-world environments often do not depict such ideal conditions, and
so far, XCS has rarely been applied in practical application scenarios. One
of the few domains where LCSs have turned out to be successful is the
Dynamic Voltage and Frequency Scaling (DVES) in CPUs [26, 98, 117].

In a case study, we also apply XCS for DVFS to study its behavior in a
real-world problem environment that is known to be amenable to LCSs.
We confirm the related works” observation that XCS uses its dynamic
classifier generalization to outperform tabular Q-learning [98]. In addi-
tion, we provide the first extensive study of XCS’s learning behavior in



INTRODUCTION

this application scenario and find several differences against the behav-
ior observed in common toy problem environments, such as an uneven
allocation of classifiers to environmental niches. The characteristics of
the evaluated application domain prevent XCS from evolving properly
generalized classifiers, thereby limiting its capability to solve more com-
plex problems. A manual hyperparameter tailoring based on theoretical
insights on XCS leads to only minor improvements, highlighting the
need to develop robust hyperparameter self-configuration mechanisms
in future work.

1.2 THESIS ORGANIZATION

The remainder of this thesis is structured into six chapters and continues
as follows:

¢ Chapter 2 presents the design paradigm of computational self-
awareness, along with other concepts that aim at making technical
systems more autonomous and adaptive. To fill the approaches with
life, selected research works that equip systems with self-awareness
capabilities are shortly presented.

¢ Chapter 3 provides extensive background on XCS, enabling readers
unfamiliar with XCS to follow the thesis. In addition to an algo-
rithmic description of XCS, interested readers can find a discussion
of its internal interactions and working mechanisms. Finally, it is
motivated why XCS is a promising candidate for deployment in
self-aware systems.

¢ Chapter 4 experimentally compares four E/E strategies for XCS.
The strategies are evaluated in static and dynamic problem envi-
ronments, and an automated parameter optimization is conducted
for each environment.

¢ Chapter 5 introduces the concept of forbidden classifiers. The use
of forbidden classifiers is not only evaluated in the context of safety
guarantees but also in the context of manual knowledge injection
for bootstrapping the classifier population.

¢ Chapter 6 presents the case study in which XCS performs DVFS. In
addition to the frequency control behavior, the learning behavior of
XCS is extensively investigated.

¢ Chapter 7 concludes the thesis and outlines future work.



COMPUTATIONAL SELF-AWARENESS

Designing and operating modern computing systems is becoming an
increasingly challenging task. For instance, the heterogeneity and paral-
lelism found in modern state-of-the-art compute nodes might increase
the potential to reach the best cost-per-performance ratio but also re-
quire more complex operation strategies. In addition, environmental
dynamics, such as changes in the network topology of large distributed
systems, must be accounted for while application requirements also
become more diverse, with non-functional execution properties, most
prominently energy consumption, gaining importance. Common static
approaches typically cannot tackle such heterogeneous, complex, and
uncertain environments. As one possible outcome, the design paradigm
of self-aware computing has been proposed [66]. Computational self-
awareness describes the property of a computing system to proactively
gather information and knowledge about its internal state and environ-
ment to make adequate decisions. As such, self-aware computing systems
can cope autonomously with dynamic or uncertain environments.

The concept of computational self-awareness draws inspiration from
psychology, as humans are commonly considered to depict the most
versatile level of autonomy and adaptivity. However, transferring the
psychological notion of self-awareness into the domain of computing
systems is not straightforward, which is why the term self-awareness is
used ambiguously in computer science. This thesis sticks to the defini-
tion of computational self-awareness as developed in the Engineering
Proprioception in Computing Systems (EP1CS) project [66]. It refines
the core concepts from psychology, builds a design principle accessible
to engineers and system designers, and aids a structured engineering
process for adaptive systems. In addition, the architecture for self-aware
computing systems can be used to systematically analyze and compare
existing systems’ self-awareness capabilities.

The chapter continues by presenting the core concepts of computational
self-awareness in Section 2.1. Afterward, a reference architecture for self-
aware computing systems is described in Section 2.2. Next, other concepts
that are closely related to the notion of computational self-awareness
are discussed in Section 2.3. Lastly, Section 2.4 fills the concepts with
life and gives an overview of selected applications where aspects of
computational self-awareness have been applied.



COMPUTATIONAL SELF-AWARENESS

2.1 KEY CONCEPTS

The notion of computational self-awareness developed in the EP1CS
project is inspired by psychology and includes three key concepts that
are frequently observed when discussing self-awareness in humans [65]:

e Self-awareness can be directed toward the inside of the individual
or to the external environment. This results in the distinction of
private and public self-awareness as outlined in Subsection 2.1.1.

* Self-awareness is a spectrum with a versatile range of capabilities.
Subsection 2.1.2 describes five different layers of computational self-
awareness inspired by Neisser [76], a psychologist who investigated
the different self-awareness capabilities present in living beings.

* Self-awareness is a property not restricted to individual systems but
can also be exhibited by collective systems. As described by Subsec-
tion 2.1.3, self-awareness can even emerge through the interaction
of non-self-aware subsystems.

All aspects of self-awareness considered in this section only concern
knowledge generation. Appropriate decision-making must make use
of the obtained knowledge to take reasoned actions. In the framework
developed in the EP1CS project, self-expression is the behavior resulting
from the knowledge acquired through self-awareness. The separation
between self-awareness and self-expression, i.e., knowledge generation
and decision-making, can aid the systematic analysis of self-aware com-
puting systems, even though both aspects are often treated together.
Self-expression is discussed in more detail in Section 2.2 in the context of
a reference architecture for computational self-awareness.

2.1.1 Private and Public Self-Awareness

Psychology often distinguishes two forms of self-awareness, where one
is directed primarily to the inside of the individual, while the other is
directed to its surroundings. Lewis et al. [65] apply this distinction to the
engineering domain and define the concept of private and public self-
awareness. Private self-awareness is the ability to observe phenomena
that are internal to the system, which means that they are typically
externally unobservable and can only be perceived by the system itself,
e.g., the battery level of a mobile system. The knowledge derived from
these observations is thus private to the system and cannot be accessed
from the outside except the system explicitly communicates it. Sensing
internal phenomena requires internal sensors, an explicit building block
of the reference architecture described in Section 2.2.

Public self-awareness is concerned with generating knowledge from
phenomena external to the system. It is therefore based on the (subjective)
perception of the environment by the system. It can include simple



2.1 XEY CONCEPTS

aspects, such as the current physical state of the environment, but also
more complex derived knowledge, such as the relationship to other
systems or models of the own interaction with the environment. As such,
the knowledge created through public self-awareness results from the
experiences with the system’s environment.

The distinction between private and public self-awareness highlights
the need for systems to consider not only knowledge of their internal
state but also of the current state of the environment and the interaction
with it [64]. In the end, a self-aware system should dynamically and
autonomously adapt to unforeseen circumstances, which is only possible
if it considers both the external environment and the internal state.
Furthermore, separating public and private self-awareness should allow
system designers to reason about the cost and benefits associated with
different types of knowledge generation in a more structured way [65].

2.1.2 Levels of Computational Self-Awareness

The capability of self-awareness is typically not considered an all-or-
nothing phenomenon but a spectrum with different degrees of self-
awareness. To capture this systematically, Neisser [76] has described five
levels of self-awareness that can be observed in living beings. However,
these levels do not straightforwardly transfer from psychology to comput-
ing, as they include notions of thoughts or feelings, which are undefined
for technical systems. In addition, the levels build on each other, which
is overly restrictive for the engineering and analysis of computing sys-
tems. In living beings, the different levels of self-awareness have emerged
through evolution and are in line with the degree of “sophistication”
associated with the being. In technical systems, however, different self-
awareness capabilities can exist independently of each other, just as it
seems fit by the system designers. To this end, Lewis et al. [65] have taken
Neisser’s levels of self-awareness and adapted them to be more suited to
the domain of computing systems. These different levels of computational
self-awareness are outlined below.

Stimulus-awareness. A stimulus-aware computing system can gen-
erate and act on knowledge based on current stimuli. However, the
system has no knowledge of past or future stimuli and thus is restricted
to reactive behavior. Stimulus-awareness is the most basic form of self-
awareness. It is the only capability present in all self-aware computing
systems, as sensing current stimuli is a necessary requirement for all other
layers. Since stimuli can come from the inside and outside of a system,
stimulus-awareness can be a form of private and public self-awareness.

Interaction-awareness. With interaction-awareness, a system is aware
that other systems operate in the same environment and that its own
actions and those of the other systems constitute interactions — both with
each other and with the environment. Without interaction-awareness, a
computing system can still perceive stimuli from other systems via its
stimulus-awareness, but cannot distinguish it from the other environmen-



COMPUTATIONAL SELF-AWARENESS

tal stimuli received. Consequently, the presence of other systems cannot
be considered in the own decision-making. With interaction-awareness,
stimulus received from other systems can be incorporated explicitly into
the own knowledge base. A simple form of interaction-awareness could
be that a system is considering the actions taken by other systems in its
decision-making process, while more advanced forms can lead to explicit
cooperation. Typically, interaction-awareness is considered a part of pub-
lic self-awareness, as the interacting systems are situated in the shared
external environment. However, it is also thinkable that a system interacts
with itself, in which case it forms a type of private self-awareness.

Time-awareness. Adding a notion of time to a system makes it time-
aware and enables it to reason about both the past and the future. With
time-awareness, a system can have explicit knowledge of historical events
and can use this knowledge to make predictions of phenomena that will
likely occur in the future. With such anticipation, a self-aware system can
proactively adapt or employ complex lookahead planning. This applies
to the internals of a system and its external environment, making time-
awareness a part of private and public self-awareness.

Goal-awareness. If a system can obtain knowledge about current goals,
desired states, or constraints, it is said to be goal-aware. However, it
must be noted that goal-awareness requires that the system is explicitly
aware of its goals and can reason about its goals or even adapt them.
Goals implicitly designed into the system do not fulfill the requirements
for goal-awareness. Since every system is designed with a purpose in
mind, every technical system could be considered goal-aware otherwise.
When coupled with time-awareness, goal-awareness allows reasoning
about likely future goals and permits considering them in the current
decision-making. With interaction-awareness, a goal-aware system can
reason about its own goals in relation to those of the other systems and
unveil common or opposing goals. As such, goal-awareness can be both
private and public self-awareness.

Meta-self-awareness. With meta-self-awareness, a system is aware
of its own self-awareness and how the different levels are currently
instantiated. The system can then reason about the cost and benefits
associated with its current self-awareness capabilities. For instance, it can
adapt how a layer is instantiated by switching to a different algorithm or
deciding to (temporarily) disable a self-awareness layer completely. Meta-
self-awareness is concerned only with the self-awareness capabilities of
the system, which are inherently internal. Hence, meta-self-awareness is
the only layer that can only be a form of private self-awareness.

All described layers of self-awareness can be instantiated independently,
except for stimulus-awareness, which forms the fundamental layer of self-
awareness. Despite the separation into different layers, the overarching
criterion for computational self-awareness remains that the system can
“obtain knowledge on an ongoing bases” [65]. Hence, a system with
a fixed, implicit goal or hard-coded interactions with other systems is
typically not considered goal- or interaction-aware, respectively.



2.2 REFERENCE ARCHITECTURE

2.1.3 Collective Self-awareness

The third key aspect of computational self-awareness acknowledges
that self-awareness is not restricted to a singular system but can also
be emanated by a collective of systems — even if it does not have a
central point at which knowledge is located. In such a case, information
about the global state is distributed, but the collective acts like it has a
sense of its own state. However, a distributed self-aware system can still
have a central point of control. With a centralized knowledge base, the
interactions within a collective can likely be orchestrated more efficiently,
while distributed knowledge that is stored at the points in the collective
where it is needed likely results in a higher degree of robustness. However,
the decision between a centralized and decentralized approach can be
considered an architectural one and conceptually does not prevent any
of the self-awareness capabilities from occurring [65].

In fact, a collective’s subsystems do not need to be self-aware by
themselves. In such a case, the self-awareness properties of the collective
emerge solely through the interactions of its subsystems. It can also be
the case that the subsystems are self-aware but that the collective shows a
higher degree of self-awareness than the individual subsystems. As such,
the concept of computational self-awareness can be applied both to the
individuals of a collective and to the collective itself, i.e., the boundaries
of the “self” can be arbitrarily chosen as it seems best for analysis or
system design.

2.2 REFERENCE ARCHITECTURE

Based on the outlined notion of computational self-awareness, Chandra
et al. [22, 64] have devised a reference architecture for self-aware systems.
The architecture provides a common ground for system designers to
engineer and compare systems with different self-awareness capabilities.
When comparing or analyzing existing systems, the reference architecture
can be used as a template for identifying common patterns. In the engi-
neering process, the architecture facilitates a structured design process
based on the psychological foundations of self-awareness. The reference
architecture is based on the three key concepts of self-awareness and sepa-
rates the processes associated with knowledge generation (self-awareness)
from decision-making (self-expression). This distinction allows for a fine-
grained analysis of systems and encourages engineers to try different
implementations for the different components.

The reference architecture is shown in Figure 2.1 and comprises internal
and external sensors and actuators, a (meta-)self-awareness engine, and
a self-expression engine.

Sensors. To reason about itself and its environment, a system re-
quires continuous observations of its internal state and the environment.
Through its sensors, a self-aware system perceives both internal and
external phenomena. In line with the distinction of private and public



10

COMPUTATIONAL SELF-AWARENESS

Self-awareness engine 1
Internal External

Sensors Private Public sensors
{ 1 \.
L Stimulus awareness [

_(Interaction awareness) _

( i ).
»( Time awareness )«

External
environment

Design and run “( Goal awareness )~

1
i
1
i
1
i
1
i
1
i
time goals E
2 Learnt !
i

1

1

i

1

i

1

i

1

i

1

A
models

A
A

Meta-self-
awareness

A\
A 4

Internal . . _ | External
Self-expression engine >
actuators actuators
T

— Data flow

A
A

N e e e 7 ———» Control

Figure 2.1: Reference architecture for self-aware computing systems [22, 64].

self-awareness, the internal sensors gather information related to the
system’s internal state and supply the self-awareness engine’s private
side. The external sensors collect data about the external environment
and supply the public side of the self-awareness engine. The combination
of both information flows allows a self-aware system to build models of
itself and the environment according to its levels of self-awareness.

Actuators. The internal and external actuators are how a system can
actively influence its environment or internal state, i.e., they form the
“knobs” that the system can turn. Without actuators, a self-aware system
cannot leverage its knowledge to achieve anything useful. With external
actuators, actions that impact the external environment can be taken,
including interactions with other systems. The internal actuators change
the internal functionality of the system and can thereby pose interac-
tions with itself. Reasoning about interactions via interaction-awareness
requires considering own actions that are taken. The explicit data flow
between the actuators and the interaction-awareness layer denotes this.
However, the actions’ results must be observed via the system’s sensors.

Self-awareness. The core of the reference architecture is the self-
awareness engine that encapsulates the processes which realize the
different layers of computational self-awareness. Naturally, all layers
of self-awareness rely on the sensory observation of the system. The
reference architecture emphasizes that computational self-awareness is
a process of knowledge generation and that static design-time knowl-
edge is insufficient to qualify as self-aware. Hence, the current state of
knowledge, i.e., the learned models, is separated from the processes of
knowledge generation, i.e., the layers of self-awareness.



2.2 REFERENCE ARCHITECTURE

The goal-awareness layer uses design- and run-time goals to incorpo-
rate them into the knowledge base explicitly. Design-time goals can be
high-level and directly related to the purpose of the system, e.g., com-
pleting a search-and-rescue mission in the case of a self-aware drone. The
run-time goals, however, could change during the operation depending
on the current internal state and the environment. For example, in the
case of the self-aware drone, this could mean identifying regions of high
interest, stabilizing flight if the weather is rough, or saving energy if the
battery level is low. The meta-self-awareness engine can aid the system
in identifying the costs and benefits of the different run-time goals and
reasoning about the tradeoff they impose. Also, the meta-self-awareness
engine can control the self-awareness capabilities of the system in consid-
eration of the current run-time goals, e.g., by algorithm selection.

Self-expression. The self-expression engine uses the knowledge gener-
ated by the self-awareness engine to decide which actions to take. Since
the self-expression engine controls internal and external actuators, ac-
tions can both modify the internal state or aim at impacting the external
environment. The decision-making can range from simple static rules
to complex decision processes dynamically generated with online learn-
ing. Naturally, the self-expression and self-awareness engines are tightly
coupled, as the self-expression engine can only utilize the knowledge
made available by the self-awareness engine. Furthermore, vice versa, the
knowledge generation process of the self-awareness engine is affected by
the exercised actions, as they influence the observed internal and external
states. However, it can make sense to clearly distinguish between knowl-
edge generation (self-awareness) and decision-making (self-expression)
processes since it encourages system designers to evaluate different al-
gorithms for self-awareness and self-expression independently of each
other.

The reference architecture does not impose any restrictions on the way
self-awareness and self-expression capabilities are implemented. Many
different computational processes can implement such capabilities, but in
many cases, online learning will be applied [109]. Also, not all reference
architecture components must be present in a system to qualify as self-
aware. As already mentioned, the levels of self-awareness can be used
independently of each other, except for stimulus-awareness, which is
always required. An overview of typical combinations of layers, termed
patterns, is given by Chen et al. [23]. A system could also be equipped
with internal sensors and actuators only. In such a case, the self-awareness
and self-expression capabilities of the system are directed only toward its
inside. This flexibility allows the boundaries of the reference architecture
to be set as desired for the engineering or analysis task. In most cases,
the boundaries of the architecture will encompass a single computing
system with self-awareness and self-expression capabilities. However,
the architecture can also encompass a collective, where the individuals
of the collective have different sensors, actuators, or self-awareness and
self-expression capabilities than the collective as a whole.

11



12

COMPUTATIONAL SELF-AWARENESS

The main aim of the reference architecture is to encourage engineers
to design self-aware systems in a structured way. For instance, the archi-
tecture can be used to describe and extend the degree of self-awareness
already present in an existing system. All internal and external sen-
sors and actuators would be collected, along with an analysis of the
self-awareness and self-expression capabilities. This might reveal op-
portunities to add self-awareness or self-expression functionalities with
minimal effort, e.g., because existing sensors or actuators can be re-used
or useful knowledge is already being collected in the system. Also, the
reference architecture provides a structured overview of what is missing
and must be added to the system, e.g., virtual or physical sensors, or
computational processes for knowledge generation.

2.3 RELATED CONCEPTS

This section presents four related concepts with objectives and design
principles similar to the computational self-awareness paradigm devel-
oped in the EP1CS project. Not all explicitly include a notion of self-
awareness, but self-* properties such as self-adaptivity or self-configu-
ration still play an important role. In all cases, the common goal is to
tackle the complexity of technical systems by moving design-time deci-
sions to the runtime and into the systems’ responsibility. Presented are
the concepts of Autonomic Computing (AC), Organic Computing (OC),
and the SElf-awarE Computing (SEEC) framework, of which all three
represent established approaches. As a younger design paradigm that is
still under active development, the Information Processing Factory (IPF)
is considered.

2.3.1 Autonomic Computing

Sparked by IBM in 2001, the Autonomic Computing (AC) initiative tack-
les the “software complexity crisis” [49]. Due to the large number of
computing systems, which is increasing at an accelerated rate, increasing
levels of heterogeneity and interconnectivity, and more demanding appli-
cations, the management of IT systems becomes more challenging. The
software for managing the computing systems thus needs to be more
complex, requiring more and better-skilled staff for operation. One of the
main driving forces for IBM’s AC initiative was the fear that the rise of
computing systems would come to a halt simply because there are not
enough IT operators available [25]. As an outcome, AC is proposed to
enable self-management in computing systems.

Even though AC has a clear focus on the management of IT systems, it
still draws inspiration from nature [49]. The autonomic nervous system of
humans and other animals controls the heart rate, respiratory frequency,
and body temperature without explicit control from the higher cognitive
functions of the individual. The conscious brain is thereby relieved from



2.3 RELATED CONCEPTS

Autonomic Element

Y Autonomic Manager \

Change
Request

Managed Element

Figure 2.2: Structure of an autonomic element [5, 49]. The managed element is
controlled by an autonomic manager with a MAPE-K loop.

such low-level control tasks and can focus on tasks more suited to its
capabilities, such as complex reasoning on how to reach long-term goals.
To enable self-management, the concept of AC includes four key capabil-
ities, which traditionally are, or have been, the responsibilities of human
operators.

¢ Self-configuration: The system determines its own configuration
during runtime according to high-level policies. The policies define
what behavior is desired but do not specify with which configura-
tions this can be achieved.

* Self-optimization: The system continuously tunes its operating
parameters to perform optimally.

¢ Self-healing: The system autonomously detects problems, e.g., soft-
ware bugs or hardware failures, localizes them, and takes counter-
measures for repair.

¢ Self-protection: The system can protect against malicious attacks
or failures that the self-healing mechanisms cannot repair. Self-
protection also includes anticipatory actions to protect against likely
future incidents.

Even though not explicitly part of the four key capabilities, self-
awareness is considered a requirement for self-management [79]. How-
ever, self-awareness is defined only as awareness of the own state and
behavior, thereby representing the notion of private self-awareness devel-
oped in the EPICS project. The environmental awareness of a system is
termed context awareness, which loosely corresponds to the notion of
public self-awareness.

13



14

COMPUTATIONAL SELF-AWARENESS

The main architectural primitive is an autonomic element, as shown
in Figure 2.2. An autonomic element consists of one or more managed
elements, equivalent to the non-autonomic elements found in traditional
IT systems, and a single autonomic manager. For control, the autonomic
manager applies a loop consisting of a monitor, analyze, plan, and ex-
ecute phase (MAPE) [5]. The monitor function collects information on
the status of the managed element, e.g., its configuration, throughput,
or available capacity. The information is then aggregated, filtered, and
searched for symptoms that need to be reported because they potentially
require management actions. As such, the monitor phase encompasses
more functionalities than just plain data measurements. The analyze func-
tion takes the information the monitor function provides and determines
if changes need to be made. In this stage, complex information process-
ing, such as forecasting, can be applied. The plan function takes the
change request from the analyze phase and generates a change plan that
encompasses the actions needed to achieve a set of goals. Finally, during
the execute phase, the planned actions are executed, thereby changing
the behavior of the managed element in the desired direction. All four
functions have access to a shared knowledge base containing relevant
symptoms to search for, behavioral policies, or goals. The knowledge can
be inserted manually during design-time, retrieved and updated from
an external source during run-time, e.g., from a central configuration
server, or obtained by the autonomic system itself through online learning
capabilities. Together with the knowledge base, the control loop of the
autonomic element is often referred to as Monitor-Analyze-Plan-Execute
loop with Knowledge (MAPE-K) [54].

The whole autonomic system typically consists of a collection of many
autonomic elements. The system designers can set the abstraction that
defines an element’s boundary as it sees fit. For instance, an element
can be a single CPU or software resource but also a large application
service [49]. As such, the control exercised by the autonomic managers in
each element can depict different granularities and functionalities. Also,
it is possible to implement hierarchical control, where one orchestrating
autonomic element manages not just itself but also exercises some degree
of control over other elements [5].

2.3.2  Organic Computing

Another approach devised to tackle the increasing complexity in technical
systems is Organic Computing (OC) [74]. The main concepts have been
developed within the priority program SPP 1183 “Organic Computing”
funded by the German Research Foundation (DFG). In contrast to AC, it
does not focus on IT systems but on technical systems under computer
control in general. The OC approach is also inspired by nature, where
biological systems are inherently self-organized, and global objectives
are pursued even without centralized global knowledge. Consequently,
OC focuses on aspects of self-organization, even though the aim is not to



2.3 RELATED CONCEPTS

[ ]
System Monitoring ]
— Tah
Goals w
/ Organic Computing System l \ Users

( Selects Observation Model]
Observer P Controller
Reports
A
Observations Control
& o &
Input O @ SuOC a @ ‘ Output

Figure 2.3: Observer/Controller architecture controlling a System under Obser-
vation and Control (SuOC) [72].

create fully autonomous systems. Instead, controlled self-organization is
investigated, which allows the system to adapt to changing environments,
goals, and constraints. At the same time, the system should not depict
undesired behavior [89].

The main primitive employed in the OC concept is the observer/con-
troller architecture shown in Figure 2.3. The System under Observation
and Control (SuOC) is a productive (sub-)system that is, in principle,
capable of functioning independently. Corrective actions are only taken
when a deviation from the desired behavior is observed. The observer
senses the system’s state according to an observation model that is set
by the controller and specifies which aspects are measured [72]. The
gathered data is analyzed to generate a description of the current system
state, which is then passed to the controller.

The controller generates an adequate reaction to the observed state
and executes the control actions in the SUOC. Also, it can apply learning
mechanisms to update its repertoire of behavioral strategies and send
status information to higher-level systems or human operators. To achieve
controlled self-organization, a human operator can update goals or even
inject manual control actions.

Depicted in Figure 2.3 is a central observer/controller architecture, with
one controller for the whole system. However, it is also possible to build
decentralized and distributed architectures, where each subsystem is
controlled by its own observer/controller architecture, and all subsystems
cooperate. Another possibility are multi-level hierarchical architectures,
where low-level controllers report to controllers on higher levels and
receive their goals from them. This is a commonality with the approach
of AC, as well as the control-loop pattern of the MAPE-K loop. However,
in a MAPE-K loop, the knowledge is shared among all four functions.
In contrast, in the observer/controller architecture, the knowledge is
split into the observed information about the environment located in the
observer and the procedural knowledge of the controller [72]. This loosely

15



16 COMPUTATIONAL SELF-AWARENESS

[ ] [ ]
w Observe Act ﬂ
N

Application / System
Developers Developers

Decide

SEEC Runtime Engine

Figure 2.4: Observe-Decide-Act (ODA) loop of the SEEC framework with de-
coupled roles of application and system developers [43].

resembles the division between self-awareness and self-expression found
in the notion of computational self-awareness of the EP1CS project.

2.3.3 Self-aware Computing Framework

The SElf-awarE Computing (SEEC) framework proposed by Hoffmann
et al. [43] has been specifically developed to manage the execution of
applications on computing systems. During runtime, computing systems
must often balance competing goals with different priorities, such as
maximizing application performance, minimizing energy consumption,
or adhering to performance or power constraints. SEEC aims to relieve
application and system developers from fully understanding the complex
interactions that arise when (multiple) applications are executed on a
computing system with potentially competing objectives and interfer-
ences. SEEC achieves this by separating the concerns of both application
and system developers. The application developers specify the applica-
tion’s goals and the feedback mechanism for measuring progress toward
the goals. Optionally, application-level actions that affect the application
performance can be specified. On the other hand, the system developers
specify what system-level actions are available in the system’s hard- and
software and how they impact application performance. The SEEC engine
then schedules actions at runtime to meet the specified goals efficiently
while also considering environmental interferences.

The core of the SEEC framework is a decoupled ODA loop, as shown
in Figure 2.4. The decoupling results in three distinct roles: Application
developers, system developers, and SEEC runtime decision engine. In
the observe step, the applications” current performance levels, progress
toward their goals, and current system status are measured. The ap-
plication developer’s task is to specify the goals and how application
performance is measured. Further, they must provide an implementation
of the performance measurement that is accessible by the SEEC runtime
engine. On the other side of the ODA loop, the system developer specifies
what actions can be taken by the system. In addition, they must provide
the estimated costs, e.g., the increase in power consumption, and benefits,
e.g., expected speedups, associated with the actions. Also, it must be



2.3 RELATED CONCEPTS

specified for each action whether it affects only single applications or
all applications running on the system and if conflicting actions exist.
Even though the roles of application and system developers are distinct,
as depicted in Figure 2.4, an application developer can also provide
application-level actions to the act step, and a system developer can add
system-level measurements to the observe step. However, the application
developer does not need to consider the actions available in a specific
system, while the system developer does not need to be aware of the
runtime characteristics of the executed applications.

The arbitration between the running applications and the computing
system is orchestrated by the SEEC runtime engine in the decide step,
where appropriate actions are selected to optimize the execution of the
applications in accordance with the specified goals. To achieve this, the
decision engine of SEEC is designed with multiple layers of adaptation.
An adaptive control system first determines the current gap or margin
toward achieving the goals. The adaptive action scheduling engine then
translates the gap or margin into a set of scheduled actions that meet
the goals and minimize the costs. For this, the benefits and costs asso-
ciated with each action are utilized. However, if the developers have
specified them incorrectly, the control and action scheduling will show
non-optimal behavior. To correct this, SEEC applies online learning to
gather a more reliable estimate of the costs and benefits associated with
each action. As such, the decision engine of SEEC employs a combina-
tion of adaptive control and machine learning. Overall, this reduces the
effort for designing and managing computing systems, as application
and system developers only specify aspects in their area of competence,
while SEEC manages the system at runtime.

2.3.4 Information Processing Factory

The Information Processing Factory (IPF) project [29] is a collaboration
between the UC Irvine (United States) and the TU Munich and TU Braun-
schweig (both located in Germany). As such, it is funded by both the
National Science Foundation (NSF) and the German Research Foundation
(DFG). The main aim of the IPF paradigm is to apply principles of com-
putational self-awareness to the management of Multiprocessor System-
on-Chips (MPSoCs), with the ultimate goal of reaching autonomous
self-management. This is achieved through (i) self-reflection, which is
defined as awareness of the MPSoC’s own architecture, (ii) prediction of
dynamic changes, and (iii) self-adaptation to both the predicted changes
and unexpected situations [91].

The IPF design approach is inspired by the hierarchical organization of
modern factories. Figure 2.5 shows the IPF organization for a hardware
and software system that executes mixed-critical workloads [84]. The IPF
consists of five layers:

17



18

COMPUTATIONAL SELF-AWARENESS

Enterprise Resource Planning
@ Manufacturing Execution Control

/ @ \ Supervisory Process Control
/ \Process Support

oﬁ Resources {0} SC BE Production Line
@ Workload Workload

Figure 2.5: Information Processing Factory (IPF) organization for the execution

of mixed-critical workloads [84].

* The lowest layer is the production line, which comprises the sys-

tem’s resources and executes the workload. The mixed-critical work-
load consists of best-effort tasks and safety-critical tasks, for which
the compute resources must have a safety-critical mode with mini-
mum performance guarantees. On the other hand, the configurable
resources can enable their complete feature set when processing
best-effort tasks that do not require deterministic performance lev-
els.

The second layer is the process support and consists of (real-time)
Operating Systems (OSs) that support the workload execution by
providing the execution environment.

The computational self-awareness capabilities are added mostly
in the third layer, termed the supervisory process control. The
Trace Abstraction Layer (TAL) monitors the system for errors, while
Learning Classifier Tables (LCTs) adjust the system configuration to
optimize the workload execution, e.g., to minimize power consump-
tion. An LCT is a variant of a Learning Classifier System (LCS) and
is described in more detail in the case study in Chapter 6.

As the fourth layer, the manufacturing execution control defines the
operational region within the third layer can apply optimizations.
The operational region for the best-effort tasks is determined by
the Best-Effort Controller (BEC), while the System Controller (SyC)
defines the safety-critical part of the operational region.

In the fifth layer, the enterprise resource planning performs the long-
term planning of the system. It determines a set of possible future
operating regions, taking into account aspects such as the system’s
history, goals, constraints, and observed system degradation.



2.3 RELATED CONCEPTS

While the first version of the IPF aimed primarily at building depend-
able and autonomous MPSoCs, the second version [91] is proposed to
expand the concept toward distributed systems of autonomous MPSoCs
that can be applied in various application domains. One prominent
application domain planned to be further investigated in the future is au-
tonomous driving, where the MPSoCs in different cars form a distributed
system.

2.3.5 Relation to Computational Self-Awareness

All presented approaches have in common that they tackle the increasing
complexity of computing systems. The systems are better equipped to
cope with unknown situations or interference during runtime by intro-
ducing adaptivity. This also lifts the burden on system designers and
developers, as many design-time decisions are moved to the runtime.
Since the runtime decisions are under the system’s purview, system
operators are also relieved. As such, the presented approaches mainly
differ in which of these aspects the focus lies on. OC is the most general
concept, as it is designed to apply to all technical systems under any
form of computer control. Also, it encompasses any behavior that results
in increased self-organization, which allows for various implementation
opportunities. The AC initiative is focused on the management of large-
scale IT systems and thus has a narrower field of envisioned application.
Increasing the level of autonomy of IT systems is not primarily motivated
by unforeseen situations that might arise or complex operational envi-
ronments but by the increasing demand of system operators, which can
slow down the growing dissemination of computing systems. SEEC is
even more specific and focuses on managing a single computing platform
that executes applications provided by developers. It lifts the burden on
developers by decoupling the roles of application and system developers.
Both application and system developers only specify aspects in their area
of competence, and the SEEC runtime engine then manages the execution
at runtime. Similar to SEEC, the IPF project focuses on managing com-
puting systems, specifically MPSoCs. However, it has a broader range
of envisioned application domains due to the explicit consideration of
distributed systems.

The concept of computational self-awareness, as developed in the
EPICS project, is similarly general as OC and can also be applied to
general technical systems under computer control. In fact, computa-
tional self-awareness even applies to a larger number of systems, as
basic stimulus-awareness is sufficient to qualify as self-aware and self-
expressive behavior is not necessarily required. However, even if stimulus-
awareness is used to implement simple reactive behavior, this does not
have to represent a control loop, as it is the case for a MAPE-K loop, an
observer/controller architecture, or an ODA loop. Still, to realize more
complex adaptive behavior, the interactions of a self-aware system will
often represent a control loop. The control loops defined by MAPE-K, the

19



20

COMPUTATIONAL SELF-AWARENESS

observer/controller architecture, and ODA are very similar and mainly
differ in the granularity with which the functionality is split. A similar
approach can be seen in the reference architecture for computational
self-awareness, where self-awareness and self-expression are split. Within
the self-awareness engine, capabilities are grouped into different layers
according to the type of knowledge and information processing. In terms
of knowledge processing, the other presented concepts are less detailed.

The reference architecture for self-aware computing systems can in-
corporate self-awareness capabilities inherently present in the system
by design, such as existing knowledge and information processing. In
contrast, the control loops of AC and OC are added on top of a system.
As such, the concept of computational self-awareness assumes that an
existing system is internally modified to depict (improved) self-awareness
capabilities, while the other concepts mainly intend to extend the sys-
tem externally. The last significant difference concerns the focus of the
concepts. The reference architecture for computational self-awareness ex-
tensively categorizes all processes associated with knowledge gathering
by distinguishing private and public self-awareness, different layers of
self-awareness capabilities, and even the explicit consideration of meta-
self-awareness. On the other hand, the outlined related concepts focus
more on the resulting behavior of the system. Overall, computational self-
awareness is concerned mainly with how knowledge is generated, while
the other approaches have a clear focus on behavioral capabilities, such as
self-configuration or self-adaptation. However, systems that are designed
in the realm of one of the presented concepts can, in many cases, also
be categorized in one of the other concepts. Therefore, research on com-
puting systems that depict some form of adaptive behavior is often not
associated with precisely one of the presented concepts but is conducted
under umbrella terms such as self-* properties, which is a term that
consolidates all kinds of self-directed behaviors, e.g., self-organization,
self-healing, or self-configuration.

24 APPLICATIONS OF SELF-* COMPUTING

To show that computational self-awareness and related concepts are
not purely theoretical but can be filled with life, this section presents
a selection of research works that have investigated systems with self-*
properties . Naturally, this overview constitutes just a small insight into
existing research, as whole conferences and journals are focusing on de-
sign methodologies and case studies of autonomous computing systems.
Interested readers are therefore referred to the international conference
on Autonomic Computing and Self-Organizing Systems (ACSOS), its
predecessors, i.e., the International Conference on Autonomic Comput-
ing (ICAC) and the international conference on Self-Adaptive and Self-
Organizing Systems (SASO), or related venues. However, in many cases,
examples of self-* systems can be found in other publications venues as
well, even if the venues do not have a clear focus on such topics. Three



2.4 APPLICATIONS OF SELF-* COMPUTING

works on self-aware computing platforms have been selected for this
overview, along with a case study on a self-aware camera network as an
example of collective self-awareness. In addition, two approaches focus-
ing on traffic management are presented to highlight that computational
self-awareness is not restricted to bare computing systems.

Agne et al. [1] use the reference architecture for computational self-
awareness to build a self-aware heterogeneous compute node. The node
comprises a CPU and a programmable logic fabric, i.e., a Field Pro-
grammable Gate Array (FPGA). The tasks responsible for implementing
the self-awareness capabilities run on the CPU, while the compute tasks
are executed on the FPGA. Using partial reconfiguration, the system can
decide which portion of the FPGA is allocated to which task, i.e., how
many threads are allocated to each task. Thereby, it can control how
much workload per unit time is processed by each task. The system is
experimentally evaluated using two applications with different priorities.
One application has the highest priority and should not miss any input
packets, which can happen if its input FIFO overflows. The second appli-
cation is considered less critical but is assumed to have an infinite stream
of inputs and should maximize the amount of processed data. Two static
allocation strategies are compared alongside a meta-strategy that, at run-
time, decides which of the two strategies is appropriate. This results in a
more adaptive behavior than with any of the static strategies alone. Since
the meta-strategy does algorithm selection, it can be considered a form of
meta-self-awareness. Overall, this example of a self-aware compute node
shows that implementing capabilities of computational self-awareness
does not necessarily require online learning.

To specifically support the SEEC framework, Hoffmann et al. [44] have
designed the Angstrom processor. The observe step of the ODA loop is
supported by the processor with several new sensors, e.g., for perfor-
mance counters, temperature, battery level, and energy consumption.
Unlike in traditional processors, the sensors are designed to be read
efficiently at a large scale. The act step of the ODA loop is extended with
actions commonly not present in off-the-shelf processors, e.g., frequency
and voltage scaling for every core and runtime reconfiguration of caches
to optimize power by disabling unnecessary parts of the cache. Inter-core
adaptations are available as well to tailor the on-chip network and the
used cache coherence protocols to the executed applications. A simulation
environment is used to evaluate the Angstrom processor. Using the heart-
beat API [42], applications register a desired level of performance. The
SEEC runtime engine then tries to reach the performance level with min-
imal energy consumption by employing adaptive control and machine
learning. As such, the Angstrom processor depicts no self-* properties
by itself but supports the design of self-* systems by supporting more
observations and actions. This enables the runtime engine to make more
informed decisions that are better suited to the current situation.

Burger et al. [16] design self-aware sensor nodes that can distribute the
computations in the sensor network. Each sensor node has a resource-

21



22

COMPUTATIONAL SELF-AWARENESS

constrained System-on-Chip (S0C) containing a CPU and an FPGA to
process sensor information. When an information-processing task arrives,
each node can process it locally or offload it to another node. When
processing a task locally, the current FPGA configuration might not
match the task. Since the reconfiguration of the FPGA can impose a
significant overhead, the node can decide to place the task in a local
queue. When processing the tasks from the queue in a batched manner,
unnecessary reconfigurations can be avoided if tasks of the same type are
processed sequentially. The decision of which action is selected is based
on the current battery level of the node, the number of batched jobs, and
the current FPGA configuration. The decision-making is done via tabular
Q-learning, a Reinforcement Learning (RL) technique. The goal is to
process as many jobs as possible in the sensor network without depleting
the batteries. In a simulation, it is shown that Q-learning indeed learns
desirable node behavior and can adapt to network failures.

Explicit cooperation in a network is employed by Rinner et al. [86],
who propose the design of a self-aware smart camera network for object
tracking. The capabilities of the smart cameras can be categorized into
the self-awareness layers of the reference architecture. The object tracking
itself falls into the category of stimulus-awareness, as it is based solely on
the current camera feed. The handover of an object to a different camera
occurs when the object has left the camera’s point of view or when the
object has moved and another camera has a better angle. The handover
decision is made via an auctioning approach. To avoid that the handover
auction always needs to be broadcasted to all cameras in the network,
each camera locally learns the network topology to identify neighboring
cameras. Since cameras can join or leave the network at runtime, each
camera must have a notion of the past to identify outdated network
topologies, which is why topology learning classifies as time-awareness.
Each camera can follow different strategies for object handover that
determine when a handover should take place and which cameras can
participate in the auction. Online learning, i.e., a multi-armed bandit
problem solver, is employed to select the most appropriate strategy at
runtime. This strategy selection constitutes a form of meta-self-awareness.

As part of the OC initiative, Prothmann et al. [82] have employed the
observer/controller architecture for traffic control. The SuOC is a stan-
dard traffic light controller with configurable parameters that controls the
traffic lights in an intersection. Instead of the original observer/controller
architecture, a layered approach is employed. The first layer is responsible
for selecting the parameters of the traffic light controller. The observer
component monitors the current traffic flows into the intersection and
summarizes this into a vector representing the current traffic situation.
The vector is then fed into a LCS, which acts as controller component.
The LCS searches its rulebase and selects a parameterization of the traf-
fic light controller that is appropriate for the current situation. Since
rule generation through evolutionary learning is a stochastic process
that frequently generates inadequate rules, the generation of rules does



2.4 APPLICATIONS OF SELF-* COMPUTING

not occur directly in the LCS. Instead, new rules are generated in the
second layer of the hierarchy. New rules are still generated with evolu-
tionary learning but validated in a simulation afterward. Only if a rule
performs sufficiently well in the simulation it is inserted into the LCS.
This approach assures that all rules in the LCS are helpful or at least do
not have a considerable detrimental impact, thereby assuring that the
operational performance of the traffic light controller is not negatively
impacted during runtime. Thus, this approach is an example of controlled
self-organization — the prevalent feature of OC. Simulation results show
that the intersection achieves better average delay times under the control
of the layered observer/controller architecture than with static control
strategies.

Also in the field of traffic control, Lesch et al. [63] investigated a
situation-aware selection of platooning strategies and their parameteriza-
tion. A platoon encompasses multiple vehicles driving behind each other
at low distances to save fuel and better utilize the road infrastructure. The
control approach is layered, as on the first layer the platooning strategy is
managing the platoon, while the layer above employs a meta-optimization
strategy to select the platooning strategy and tailor its configuration pa-
rameters. As in some of the other examples, this algorithm selection
represents a form of meta-self-awareness. The meta-optimization layer is
designed as a MAPE-K loop, where the monitor phase gathers necessary
information, such as the number and properties of the platoon vehicles.
The analyze phase calculates the current performance with respect to
the current objectives. In the plan phase, it is determined if the current
platooning strategy should be switched and the configuration parameters
are optimized, even if the strategy remains unchanged. For optimization
of the parameters, several learning techniques are compared, among them
a Genetic Algorithm (GA) and simulated annealing. The execute phase
then changes the platooning strategy or the configuration parameters
accordingly. Relevant statistics are stored in the knowledge component
to improve decision-making in the future. A simulation shows that the
different platooning strategies are suited for different objectives and that
the optimal parameter configuration of each strategy depends on the cur-
rent traffic scenario, highlighting the need for a situation-aware selection
of strategy and parameterization.

23






THE LEARNING CLASSIFIER SYSTEM XCS

Learning Classifier Systems (LCSs) are a class of techniques from the
domain of Rule-based Machine Learning (RBML) that aim at learning
a ruleset consisting of several if-then rules. Together, the rules cover
the whole input space and propose for each possible input the correct
action or class [106]. The ruleset is learned via means of Evolutionary
Computation (EC), typically with a Genetic Algorithm (GA). In Michigan-
style LCSs, the GA operates on individual rules (“classifiers”) with an
incremental learning scheme, i.e., sample by sample. In contrast, the
GA in Pittsburgh-style LCSs operates on whole rulesets and employs
batch learning. As such, Michigan-style LCSs are often employed for
Reinforcement Learning (RL) applications because they are considered
to be more flexible, and Pittsburg-style LCSs are being predominantly
used for supervised learning [106].

Most popular nowadays is XCS [110], which is a Michigan-style LCS
that interacts with the problem environment according to the RL
paradigm as shown in Figure 3.1. XCS senses the current state of the en-
vironment and uses the resulting sensory input to search its ruleset, also
termed classifier population, for matching rules. The rules then determine
the action that is executed in the environment. As feedback, the envi-
ronment returns a reward value, with large rewards indicating desirable
outcomes and low rewards indicating undesirable effects. In single-step
problems, environmental inputs are independent of each other, and the
reward solely depends on the current state of the environment and the
action taken. This is not the case in multi-step environments, where a
series of actions is required to solve a problem instance and maximize
the overall reward. The goal in single-step environments is to maximize
the immediate reward, while in multi-step environments, the rewards
received in future states must also be considered. A reinforcement learner,
such as XCS, is then said to maximize the long-term value, also termed
payoff, of the observed state [99].

The distinguishing feature of XCS is that its internal learning mecha-
nism aims to accurately predict the reward that will be received instead
of simply maximizing it. To this end, the fitness that is associated with
each rule and guides the steady-state niche GA of XCS is based on the
accuracy of the reward prediction. The fitness cannot be computed di-
rectly, as it is done in standalone GAs, but is iteratively learned via RL.

25



26

THE LEARNING CLASSIFIER SYSTEM XCS

Environment

@ Input | Action Reward @

XCS

Figure 3.1: The interaction of XCS with the problem environment.

In contrast to traditional applications of GAs, XCS employs the GA not
to maximize a function but to generalize its rules adequately.

Since its initial development, several different variants of XCS with
various, sometimes subtle, implementational differences have been pro-
posed. Hence, the standard XCS does not exist. The chapter continues
with Section 3.1 by presenting the algorithmic details of the most com-
mon version of XCS as described in [17], which forms the basis of most
experimental evaluations discussed in this thesis. Based on its algorithmic
structure, Section 3.2 discusses the working mechanisms of XCS and how
it evolves a ruleset that covers all environmental states with as few but
maximally generalized rules. Section 3.3 then gives a short overview
of some of the most popular extensions that have been proposed to
XCS to make it applicable to a broader range of problem environments.
Lastly, Section 3.4 discusses why XCS can be considered a good fit for
implementing computational self-awareness.

3.1 ALGORITHMIC DESCRIPTION OF XCS

The main components of XCS are shown in Figure 3.2. When interacting
with the environment, XCS receives a sensory input o(t) € {0,1}' en-
coded as a bitstring of length L, decides for an action a(t) € {ay,...,a,}
and receives a scalar reward r from the environment after a(¢) has been ex-
ecuted. The reward is then used to guide the learning process inside XCS.
The core of XCS is a population [P] of classifiers, which can be interpreted
as if-then rules. Each classifier ¢! consists of a condition C € {0, 1,#}L,
which defines for which inputs the classifier applies. The don’t cares
‘# allow XCS to generalize and create classifiers that match multiple
inputs. Each classifier proposes exactly one action a € {ay,...,a,} for
all situations that match its condition. In addition, the classifier keeps
an estimate of the payoff (or reward) p that is expected to be received
when the classifier matches a situation and a is executed. The parameter
€ represents an estimate of the prediction error associated with the payoff
prediction and is used to calculate the fitness F, which guides the GA to
evolve accurate and general classifiers. Further, each classifier has an ex-
perience exp, denoting how often the classifier matched a situation and its
action was executed, an estimation of the average action set size as, and a



3.1 ALGORITHMIC DESCRIPTION OF XCS 27

’ 0011 Environment

Population | C a p € F

[Pl #011:01 43 .01 .99
11#: 00 32 .13 .09
#OM## 11 14 .05 .52

001#: 01 27 .24 .03 Action reward
#0#1: 11 18 .02 .92 01 r
1#01: 10 24 .17 .15
Parameter
Matching . delay = 1
Prediction Array AC“Z“ Set clay Updates
MatchSet | ¢ a« p e F PA 4]
[M] #011: 01 43 .01 .99 C a p & F

HOBE: 11 14 .05 52 ) ACtion 0001 10 11 > #011:01 43 01 .99

+> P | Previous Action
001#: 01 27 24 .03 Pred. null 42.5 null 166 | 0o | 001%: 01 27 24 03 Set [4].
FHO#L: 11 18 .02 .92 \ /sezection
max discount @

Figure 3.2: Illustration of XCS, taken from [112], with a 4-bit input, available
actions a € {00,01,10,11} and the minimum number of actions 0,,,,
set to 2. The environment provides the sensory input 0011, and XCS
selects action 01 for execution. Within single-step environments, the
discounting mechanism and the previous action set [A].; are not
necessary, as the GA and the parameter update take place on the
current action set [A] using the immediate reward r.

I

numerosity n. For reasons of computational efficiency, identical classifiers
do not occur multiple times in the population but are summarized to
one classifier with n > 1. The numerosity plays an important role during
learning, as the population [P] has a maximum size N, specified by the
system designer, such that } ;¢ pj cl.n < N is always fulfilled. Typically,
the number of distinct classifiers in the population is well below N, as
most classifiers have a numerosity n higher than one, especially once
XCS has learned adequate generalizations.
Upon receiving an input o(t), XCS executes four steps:

1. Identification of matching classifiers to form the match set [M].
2. Action selection to form the action set [A].

3. Execution of the action. The received reward is used to update the
parameters of all classifiers in [A] ([A].; in multi-step problems).

4. Applying the GA to [A] ([A].1 in multi-step problems).

Steps 1 and 2 are often termed the performance component of XCS, while
steps 3 and 4 form the reinforcement component and discovery component,
respectively [20]. Overall, XCS aims to evolve a population of classifiers
that are accurate and maximally general, i.e., have the maximal number
of don’t cares in their conditions while still exhibiting a low prediction
error €. If successful, this leads to a population of a minimal size that can
predict for every situation the best-suited action. The goal of evolving
such a population is inherent to each of the four steps.

1) Creation of the Match Set. The whole population is searched for
classifiers whose condition C matches the current input o (t). Matching



28

THE LEARNING CLASSIFIER SYSTEM XCS

classifiers are added to the match set [M]. By default, it is required that all
available actions are present in [M], but this can be changed by setting the
configurable hyperparameter 6,,,,, which specifies the minimum number
of different actions that must be present in [M]. In case not enough
actions are present, a new matching classifier is randomly created via
a covering procedure: The condition C is selected to match the current
input o(t), with don’t cares introduced according to the configurable
probability Py. As action a, one of the actions not yet present in [M] is
randomly selected, and the remaining parameters are initialized with
default values. This covering procedure repeats until the match set [M]
contains at least 0,,,,, different actions.

2) Action Selection. Once all matching classifiers have been identified,
one of their actions must be selected for execution. To choose actions that
maximize the payoff, XCS builds the prediction array PA, which holds for
every action the fitness-weighted average of the payoff predictions of all
classifiers in [M] that propose this action. Since the fitness of a classifier
is based on its prediction accuracy, more accurate payoff predictions
are weighted higher. Several action selection strategies are possible, but
the most commonly used is an e-greedy strategy, in which either pure
exploitation, i.e., selecting the action with the highest prediction, or pure
exploration, i.e., random selection, is conducted. After an action has
been selected, the action set [A] is formed with all classifiers of [M] that
propose the selected action.

3) Parameter Update. After the action has been executed in the envi-
ronment, the parameters of the classifiers in [A] are updated. First, the
experience exp of each classifier is incremented by one, followed by the
updates of the payoff estimate p and the prediction error €. In single-step
environments, XCS uses the immediate reward r as the payoff to update
the classifiers in [A], i.e., P = r. In multi-step environments, the update
takes place on the previous action set [A].; and calculates the payoff P as
the sum of the previous immediate reward and the discounted maximum
of the current prediction array, i.e., P = r_j + 7 - max(PA). This ensures
that immediate rewards received at later points in time are propagated to
preceding classifiers, which have paved the way for receiving this reward.

The prediction p and error estimate € of each classifier c/ are updated
according to the Widrow-Hoff delta rule, as shown in Equation 3.1 and
Equation 3.2, respectively. The average action set size as is updated in the
same manner as shown in Equation 3.3.

P—cl. .
o= cl.p+ Cl.ecx; if cl.exp < % (3.1)
cp+pB-(P—clp) else
P—cl.p|—cl. .
e cl.e + % if cl.exp < % (3.2)

cle+pB-(|P—clp|—e) else



3.1 ALGORITHMIC DESCRIPTION OF XCS

Accuracy K

0 >
0 & Prediction Error €

Figure 3.3: Classifier accuracy « in relation to the classifier’s prediction error e.
Figure adapted from [20].

Yce[a c-n—cl.as
cl.exp

cl.as+ B - (ZCQA] c.n— cl.as) else

cl.as + if cl.exp < %

cl.as = (3.3)

The configurable learning rate  has a value between 0 and 1 and
controls the magnitude of the parameter change. For a quicker initial con-
version, B is exchanged with - 5 as long as the classifier is considered
inexperienced.

To update the fitness F, two steps are required. First, the accuracy x
of each classifier ¢! € [A] is determined according to Equation 3.4. If the
estimated prediction error € lies below the configurable error threshold €,
the accuracy is assigned the highest value of 1. Otherwise, the accuracy
decreases exponentially, with the hyperparameters « € [0,1] and v > 1
controlling the behavior of the decrease, as visualized in Figure 3.3. The
fitness F represents the relative accuracy and is calculated as the accuracy
of the classifier in relation to the sum of the accuracies of all classifiers in
[A], as shown in Equation 3.5. This fitness sharing, in which the fitness
of the environmental niche is distributed among all matching classifiers,
is one force pushing the evolutionary process in XCS towards an even
allocation of classifiers to different environmental niches [106].

1 if cl.e <
k(cl) = neese (34)

-V
o - (Cé—oe) else

CL.F =cl.F+p- ( k(e -cln cl.F> (3.5)

Yeepak(c) e

After all parameters have been updated, action set subsumption takes
place if enabled by the system designer. Subsumption aims to remove
overly specific classifiers in favor of more general classifiers representing

29



30

THE LEARNING CLASSIFIER SYSTEM XCS

the same knowledge. This condenses the classifier population and enables
XCS to solve the problem with a smaller population. The action set [A]
is searched for the most general classifier clgperq1, i-€., the classifier with
most don’t cares in its condition, that is sufficiently experienced and
accurate. A classifier is considered sufficiently experienced and accurate
if its experience exp is higher than the configurable hyperparameter 6,
and its prediction error estimate € is below €. All classifiers in [A] that
cover only a subset of the space covered by the condition of cleeeral
are removed from the classifier population [P], and their numerosity is
added to the numerosity of clgperqr- Action set subsumption is a strong
subsumption mechanism that can quickly reduce the population size [20].
However, in practice, it often turns out to be too powerful, which is why
it is typically not enabled.

4) Genetic Algorithm. During exploration iterations, new classifiers
are generated by the GA. The GA is executed on [A], or on [A].; in
multi-step environments, if the average time period since the classifiers
in the action set participated in the GA is greater than the configurable
threshold 6¢ 4. If so, two classifiers are selected from [A] via a roulette-
wheel selection based on the fitness F. In this roulette-wheel selection,
a classifier is randomly selected with a probability proportional to its
titness — akin to spinning a roulette-wheel with all classifiers from [A]
on it, where the size of each classifier’s pocket is proportional to its
fitness. Hence, classifiers with high fitness, corresponding to a high level
of accuracy, are more likely to be selected for reproduction. To create two
offspring from the selected classifiers, two-point crossover is applied to
the classifiers” conditions with a probability x. In two-point crossover,
two cutpoints in the condition are randomly chosen, and the offspring’s
conditions are formed by recombination of the resulting sections of
the parents” conditions. Afterward, each entry of the condition of the
offspring is mutated with probability y, while ensuring that the condition
still matches the current input (). Further, the action a is mutated with
probability u as well. If enabled by the system designer, GA subsumption
takes place before inserting both offspring into the population. When the
parent classifiers are sufficiently experienced and accurate, as determined
by the thresholds 6;,, and €y, and the offspring covers only a subset of
one of its parents’ conditions and proposes the same action, the parent is
said to subsume its offspring. Then, it is not inserted into the population,
as it does not represent new knowledge. Instead, the numerosity # of the
respective parent is incremented by one.

Whenever a new classifier is added to the population and the maximum
population size N is exceeded, a classifier is selected for deletion from
the population [P] with a roulette-wheel selection. The deletion vote of
each classifier is calculated according to Equation 3.6 and is proportional
to its action set size estimate as and numerosity n. If it has sufficient
experience, as determined by 0, and a fitness F lower than a fraction
0 of the average fitness of the classifier population, its deletion vote is
further increased inversely with its fitness. Hence, classifiers are favored



3.1 ALGORITHMIC DESCRIPTION OF XCS

Table 3.1: Overview of XCS” hyperparameters and common default values.

Parameter Description Common value

N Maximum population size Problem-dependent
Orna Min. number of actions in [M]  All possible actions
Py Covering don’t care probability 0.3 — 0.7

12} Initial prediction of classifier 1% of reward range
€] Initial prediction error 0

Fr Initial fitness 0.01

0% Discount factor (multi-step) 0.7 — 0.95

B Learning rate 0.2

€0 Error threshold 1% of reward range
« Shape of accuracy function 0.1

v Shape of accuracy function 5

[A] subs. Enable action set subsumption  False

Osub Subsumption threshold 20

Oca GA activation threshold 25

X Crossover probability 0.8

U Mutation probability 0.04

GA subs.  Enable GA subsumption True

001 Experience threshold deletion 20

) Fitness threshold deletion 0.1

for deletion if they have low fitness, high numerosity, and frequently
occur in large action sets. The aim is not only to remove inaccurate
classifiers with low fitness but also to balance the classifier population
towards covering each environmental niche equally, which is achieved by
considering the action set size as. If a classifier with a numerosity n > 1
is selected for deletion, the classifier is not removed from the population,
but its numerosity is decremented by one.

clas « cl.n« 85 if cl.exp > 6, and
Er
vote(cl) = dF o 5. augFit (3.6)
cl.as x cl.n else

Throughout all described steps, the behavior of XCS is affected by
a plethora of configurable hyperparameters, which are summarized
in Table 3.1 along with common default values. Each hyperparameter
can, and sometimes must, be tailored to the problem environment. The
given values merely represent a starting point often used in the research
literature.

31



32

THE LEARNING CLASSIFIER SYSTEM XCS

3.2 THE WORKING MECHANISM OF XCS

While the previous section has described how XCS works algorithmically,
it is still open why it works and learns to solve a problem with a popu-
lation of generalized classifiers. When XCS was proposed and became
the most popular LCS shortly after, the interactions between the different
components inside XCS have not been investigated systematically and
were not fully understood. Instead, discussions of XCS research have
been based primarily on intuition — and still are nowadays. For instance,
Wilson’s generalization hypothesis that “[...] it appeared that the interac-
tion of accuracy-based fitness and the use of a niche GA could result in
evolutionary pressure toward classifiers that would be not only accurate,
but both accurate and maximally general” [110] remained a hypothesis
for several years that was based on intuition and backed up only by
loose experimental results. This is astonishing, as the characteristics of
the classifier population evolved by XCS are the most vital aspect of XCS’
learning mechanism.

The goal of this section is not to give an exhaustive overview of existing
theoretical research on the working mechanism of XCS. Instead, it aims
to foster the understanding of XCS beyond its algorithmic properties.
As such, this section is especially suited for readers who still need to
become familiar with XCS, as fully understanding its inner mechanics
takes considerable personal experience and reviews of research litera-
ture. First, Wilson’s generalization hypothesis is revisited, and theoretical
insights on the generalization behavior of XCS are summarized. After-
ward, strength-based and accuracy-based fitness is compared. The main
difference between XCS and preceding LCSs is that XCS uses predic-
tion accuracy as the basis for classifier fitness. A comparison between
strength- and accuracy-based fitness in LCSs not only justifies why XCS
became the most popular LCS but also gives insights into the strengths
and weaknesses of XCS.

3.2.1 Generalization Pressure in XCS

Even though XCS was invented in 1995, it took until 2004 that Butz et
al. [20] presented the first extensive theoretical analysis of the learning
mechanism of XCS and investigated the cause for its tendency to evolve
accurate classifiers that are maximally general. The generality of a classi-
fier describes how many input states a classifier matches to and is defined
as the fraction of don’t care symbols # in the classifier condition. A high
generality is favorable, as it allows XCS to cover the whole observation
space of the environment with a smaller classifier population. The basis
of the theoretical analysis is formed by different evolutionary pressures
in XCS that influence the generality of the evolved classifiers [20].

Set Pressure. The set pressure is the basis for Wilson’s generaliza-
tion hypothesis and results from how classifiers in the population are
reproduced and deleted. The creation of new classifiers takes place by



3.2 THE WORKING MECHANISM OF XCS

applying the niche-based GA in the action set [A], which implies that off-
spring classifiers also match the current environmental input. Classifier
deletion, on the other hand, takes place globally on the whole classifier
population [P]. Since more general classifiers will match more frequently
to the observed inputs, they will also occur more frequently in the ac-
tion set [A]. They will thus have more opportunities for reproduction.
As a result, the offspring created from those classifiers will likely also
be generalized above average. Once the offspring classifiers have been
generated, classifier deletion takes place to make room in the population
for the newly created classifiers. The global deletion acts on the whole
population [P] and does not consider the generality of classifiers. Hence,
more general classifiers have a higher chance of reproduction but the
same probability of getting deleted. This results in a tendency of XCS to
evolve a population of maximally generalized classifiers. The described
intuitive line of argumentation has been formally confirmed in [20]. For
randomly initialized populations, they show that the generality of the
classifiers in the action set is, on average, higher than those of the whole
population.

Mutation Pressure. As part of the GA, mutation also influences the
generality of the offspring classifiers. During the niche mutation typically
employed in XCS, each don’t care symbol # in the classifier’s condition is
mutated with probability u to the specified value matching to the input,
while each specified entry of the condition is mutated with probability u
to a don’t care symbol #. As such, niche mutation pushes toward an equal
distribution of don’t care and specified symbols in the classifier condition,
i.e.,, toward a generality of 0.5. However, the strength of the mutation
pressure depends on the mutation probability y, which is typically set to
a low value, e.g., 0.04, and the frequency with which the GA is applied,
which is influenced by the parameter 654 and the sampling distribution
of the environmental inputs.

Deletion Pressure. Classifier deletion acts on the whole population. It
has, neglecting the influence of classifier fitness, the tendency to delete
classifiers frequently occurring in larger action sets, pushing the popu-
lation toward an even allocation of classifiers to environmental niches.
As such, the deletion pressure is independent of classifier generality, and
classifiers selected for deletion will have, on average, the same generality
as the population average. However, the effects of deletion on classifier
generality must be considered if alternative deletion schemes are used [13,
50].

Subsumption Pressure. Even though their application is optional in
XCS, both the GA subsumption and the action set subsumption mecha-
nisms are likely the most apparent pressures toward general classifiers.
After the GA has created offspring classifiers, it is checked if the offspring
are subsumed by one of their parents, i.e., have a condition that is less
general than that of a parent and is completely covered by it. In such a
case, the offspring is not inserted into the population, but the numerosity
of the more general parent is incremented. Action set subsumption acts

33



34

THE LEARNING CLASSIFIER SYSTEM XCS

on the action set and is typically considered the stronger subsumption
mechanism, as a general classifier can subsume multiple classifiers at
once. However, a subsuming classifier must be sufficiently experienced
and accurate for both subsumption mechanisms to act, as determined
by 8s,, and €9. Hence, subsumption only acts once accurate classifiers
have evolved and stops when classifiers become inaccurate. As such,
subsumption pressure represents a pressure that pushes XCS to evolve
maximally general classifiers that are still accurate. As noted by Butz et
al. [20], classifier subsumption is not necessary for XCS to evolve accurate
and maximally general classifiers but can lead to a substantial decrease
in the population size once it kicks in during later stages of learning.

Fitness Pressure. So far, the influence of classifier fitness has not been
considered, or, in the case of the subsumption pressure, only indirectly
via the accuracy requirement on the subsuming classifier. In general,
the fitness pressure pushes classifiers toward a high accuracy of the
payoff prediction since classifiers with a high prediction accuracy get
assigned a higher fitness. Typically, an inaccurate payoff prediction results
from wrong generalization, which means that the fitness pressure pushes
toward less generality as long as a classifier is inaccurate. During classifier
deletion, experienced classifiers with a low fitness have a higher chance
of being deleted, which means that wrongly generalized classifiers are
driven out of the population. In addition, the GA uses the fitness value
as the selection criterion, which means that classifiers with a high fitness
value get more reproduction opportunities. Therefore, the fitness pressure
can be seen as the counteracting force of the set pressure. Due to the
set pressure, the classifiers in the action set have, on average, a higher
generality than the other classifiers in the population. Nevertheless, due
to the fitness pressure, the classifiers with high fitness that are not overly
generalized are selected by the GA for reproduction.

Figure 3.4 shows the interaction of the different pressures. The set pres-
sure pushes the classifier population toward maximum generality, while
the mutation pressure pushes it to a fixed generality of 0.5. Classifier
subsumption acts only on classifiers considered accurate and increases
their generality. From the other direction, the fitness pressure reduces
the generality of overly generalized classifiers with inaccurate payoff
predictions. The deletion pressure is included both in the set pressure, as
it operates on the whole population [P], and the fitness pressure, since
unfit classifiers have a higher chance of being deleted. Overall, these
interactions result in XCS evolving a population of accurate but maxi-
mally generalized classifiers. Figure 3.4 also shows why the subsumption
mechanisms are optional in XCS. The set pressure tends to increase the
generality of the evolved classifiers, while the fitness pressure pushes
against this, but only as long as the classifiers are considered inaccu-
rate. This interaction alone should result in accurate and maximally
generalized classifiers, but the convergence speed may be improved by
subsumption. However, while the existence of the set pressure can be
formally derived from the algorithmic properties of XCS rather easily,



3.2 THE WORKING MECHANISM OF XCS

Set Pressure

4 Mutation Pressure [ Mutation Pressure
T
Subsumption Pressure

Fitness Pressure

Accuracy

v

0 f
0 0.5 1

Generality

Figure 3.4: Interaction of the different evolutionary pressures in XCS. The set
pressure pushes the classifier population towards maximal generality,
while mutation pressure pushes towards a fixed generality of 0.5.
Subsumption pressure is only applied to accurate classifiers and
increases their generality. The fitness pressure applies to inaccurate
classifiers and decreases their generality to make them more accurate.
The deletion pressure is included in the set and the fitness pressure.
Figure adapted from [20].

this is not the case for the fitness pressure which depends highly on the
considered problem environment.

As general and problem-independent requirements for the fitness
pressure to act, Butz et al. [20] have identified two conditions, termed
challenges. The covering challenge states that the classifier fitness on which
the GA acts must be meaningful, while the schema challenge ensures that
the GA results in an effective pressure toward accurate classifiers with
high fitness.

The covering challenge is concerned with setting the parameter config-
uration of XCS in a way that the GA acts on meaningful fitness values.
Since classifier fitness in XCS is determined by interaction with the en-
vironment and cannot be computed as in standalone GAs, classifiers
must be applied in the environment multiple times until their fitness
values become meaningful. Initially, the classifier population is empty,
and classifiers are randomly generated via covering to match the inserted
inputs. After further iterations, the GA will begin to act in the action
sets. At this point, the classifiers must be sufficiently experienced so that
the GA operates on meaningful fitness values. Typically, covering only
acts at the beginning of learning until the randomly created classifier
population covers the whole input space of the environment. After this,
the GA refines the classifiers based on their fitness. It can be the case,
however, that XCS never stops covering because the classifier population
has reached its maximum size but still does not cover the whole input
space. In such a case, covering is forced to create additional classifiers for
so-far unseen inputs but cannot insert them into the population without

35



36

THE LEARNING CLASSIFIER SYSTEM XCS

deleting classifiers. Since the classifiers in the population are still inexpe-
rienced and their parameters, such as the prediction error and the action
set size, are rather meaningless, deletion will essentially be random. XCS
is stuck in a cover-delete cycle, and classifiers never get the chance to
become experienced enough that their fitness values become meaningful.
As a result, the GA operates on classifiers with meaningless fitness, and
fitness pressure is not emerging. The covering challenge can be overcome
by setting the don’t care probability P; of the covering operator and the
maximum population size N to appropriate values. A larger population
accommodates more classifiers and thus increases the chance that the
population covers a sufficiently large amount of the input space. In con-
trast, a higher value of Py increases the generality of classifiers created by
covering, meaning each classifier covers a larger area of the input space.

When the covering challenge is met, it is ensured that the classifiers in
the population sufficiently cover the input space and have been evaluated
often enough that the fitness values are representative of the classifier
accuracy. As the second requirement for the emergence of fitness pressure,
the schema challenge must be met. This assures that the GA has enough
sufficiently accurate classifiers to work with. Only then can it evolve
offspring classifiers with even higher accuracy, resulting in pressure
toward higher fitness. This can be achieved by setting Py to a small
enough value to ensure that classifiers in the population have enough
specified bits to avoid being inaccurate due to overgeneralization. For
instance, consider the case that XCS has met the covering challenge by
having a higher value of Py. The initial population will consist of highly
generalized classifiers that cover large areas of the input space due to the
high number of don’t cares in their conditions. Because of this, they will
likely be too generalized and have inaccurate payoff predictions.! If all
classifiers are similarly inaccurate, they will have similar fitness values,
and the GA will essentially select random classifiers for reproduction.
This makes the classifier evolution inside XCS undirected, preventing the
emergence of fitness pressure toward more accurate classifiers.

Meeting both the covering and the schema challenge are requirements
for the existence of the fitness pressure but do not guarantee the latter.
Overall, the covering challenge can be met by setting the don’t care prob-
ability Py of the covering operator and the maximum population size N
to sufficiently large values. In contrast, the schema challenge requires
sufficiently small values of Py. What is “sufficient” is highly problem-
dependent, as is the fitness pressure as a whole. For instance, adequate
parameter configurations for meeting the covering and the schema chal-
lenges depend on the sampling distribution of input states, the reward
function, and the number of generalization opportunities offered by the
problem environment. Butz et al. [20] have experimentally validated the
existence of both challenges in several Boolean multiplexer environments

The appropriate degree of generalization that still leads to accurate payoff predictions is
highly problem-dependent, but every non-trivial problem environment can suffer from
too much generalization at some point.



3.2 THE WORKING MECHANISM OF XCS

and have formally derived suitable parameter values. However, since their
approach of determining suitable parameter values requires knowing
the condition structure of the accurate and maximally general classifiers
apriori, it is not applicable to non-artificial and complex learning prob-
lems. In practice, parameters are typically set to common default values,
e.g., P+ = 0.5, or are determined based on intuition and trial-and-error
experiments.

3.2.2 Classifier Fitness: Strength vs. Accuracy

The early classifier systems based the fitness of a classifier on its strength,
i.e., the magnitude of its payoff prediction. Hence, classifiers that lead to
a higher payoff get assigned a higher fitness, which seems like a natural
choice to maximize the reward received in an environment. XCS was the
first LCS that used the accuracy of the payoff prediction as the basis for
classifier fitness, which is why it is commonly referred to as an accuracy-
based classifier system. Shortly after the concept of accuracy-based fitness
was proposed, the LCS research community turned its focus more and
more toward XCS, and strength-based L.CSs received a decreasing amount
of attention. XCS, and other variants of accuracy-based classifier systems
derived from it, are still the most popular type of LCSs nowadays [41,
80]. This subsection outlines differences between strength-based classifier
systems and XCS to highlight the reasons for the success of accuracy-
based classifier systems and foster the understanding of the strengths and
weaknesses of XCS. Even though the fitness evaluation is a fundamental
aspect of an LCS, where the differences between strength and accuracy
as fitness metric can be discussed and evaluated to the extent of a whole
PhD thesis [53], this subsection restricts the discussion to the core ideas
as presented by Kovacs in [51].

Classifier Allocation. In strength-based LCSs, classifier creation is
greedy since the GA favors the classifiers for reproduction that lead to
the highest rewards. If the environment has a biased reward function,
which means that selecting the best action in different states leads to
rewards of different magnitudes, the input space of the environment
may be unevenly covered by a strength-based LCS. The states where
even the best actions lead to relatively low rewards have a high risk
of not being sufficiently covered by the classifier population since all
classifiers matching to such states have low fitness, associated with fewer
reproduction opportunities and a higher chance of being deleted. In XCS,
classifier fitness is based on the payoff prediction’s accuracy. An accurate
classifier matching to low-rewarding states can have the same fitness
as an accurate classifier matching to high-rewarding states. In essence,
strength-based LCSs allocate classifiers primarily to states where a high
reward can be obtained, while XCS allocates classifier evenly over the
input space.

Generalization. Strength-based LCSs aim at generalizing the classifiers
over all states in which they propose the best action, i.e., the action that

37



38

THE LEARNING CLASSIFIER SYSTEM XCS

A A,

Sy 1,000 0
S, 0 100

Table 3.2: Biased reward function of an environment with two states S; and S,
and two available actions A; and Aj.

leads to the highest payoff. In contrast, XCS generalizes its classifiers over
all states where the action results in a similar payoff. In this sense, it seems
that strength-based LCSs have a more problem-solving-oriented classifier
generalization, as the goal of every reinforcement learner is to take the
best action in each input state. However, there are no barriers in strength-
based LCSs that prevent strong classifiers with high payoff predictions
from generalizing into environmental niches for which they do not
propose the best-suited action. This problem is termed overgeneralization
and is most distinct in environments with a biased reward function.

As a minimal demonstrative example, consider a single-step environ-
ment with only two states S; and S;, two actions A; and A», and the
reward function shown in Table 3.2. In state S;, the action A; is correct
and leads to a reward of 1,000, while the selection of A; is incorrect and
yields a reward of 0. In state S,, action A, is correct, resulting in a reward
of only 100, while the wrong action A; also leads to a reward of 0. In
a strength-based LCS, a classifier that matches only to S; and proposes
the action A; will have a fitness equal to its payoff prediction of 1,000.
A classifier that matches S, and proposes action A, will have a fitness
of 100. Both classifiers are correct in the sense that they propose the
best action for each environmental state, and no further generalization
is possible. However, a classifier that is generalized and matches to both
S1 and Sy and proposes action A; will have, on average, a fitness of 500,
as it is in 50 % of the cases proposing the correct action in S, while it is
proposing the wrong action in S; in the other cases. Even though it is not
proposing the correct action in Sy, it still has a fitness considerably higher
than the classifier that proposes the correct action in S,. Consequently, if
Sy is encountered, the wrongly generalized classifier will dominate the
action selection, and action A; will be selected. Even worse, the correct
classifier matching S, has a low chance of being reproduced by the GA
and a high chance of getting deleted from the population due to its low
fitness. In strength-based LCSs, the best action is unlikely to be consis-
tently selected in low-rewarding niches, as overgeneralized classifiers
from high-rewarding niches often dominate the classifiers proposing the
best actions.

In XCS, this does not happen, as the magnitude of the received payoff
is not influencing classifier fitness. Instead, both classifiers that only
match one state and propose the correct actions are assigned a high
fitness because the rewards received can be accurately predicted. The
overgeneralized classifier has low fitness since the reward it receives is



3.2 THE WORKING MECHANISM OF XCS

not consistent and thus cannot be predicted accurately. The degree to
which XCS accepts varying rewards can be controlled with its parameter
configuration, most prominently by the error threshold €p. Therefore,
XCS can also be faced with overgeneralization, especially if wrongly
parameterized, but the problem is far less distinct than in strength-
based LCSs. On the other hand, environments with stochastic rewards
pose a significant challenge to XCS, as it is impossible to predict the
reward that will be received accurately. Whether fitness pressure can still
emerge depends on the environment and its amount of generalization
opportunities, the stochasticity and shape of the reward function, and
the parameter configuration of XCS. Hence, strength-based LCSs are, in
general, more robust when faced with stochasticity since the varying
payoff predictions of its classifiers have not much effect on classifier
titness as long as “good” and “bad” actions can still be distinguished
based on the magnitude of the prediction.

Input/Action Mapping. Strength-based LCSs focus on classifiers with
the highest payoff predictions, which is why they tend toward evolving
classifier populations that represent best-action maps, i.e., populations
that store only the classifiers which propose the best action for each input
state. Classifiers that propose non-optimal actions have lower fitness and
will be deleted from the population. XCS, on the other hand, evolves
populations that represent complete state/action maps. This means that
the population can accurately predict the reward for each possible pair of
input state and action, as classifiers that propose non-optimal actions are
kept in the population as long as their payoff prediction is accurate. The
difference between the evolved input/action maps has two significant
implications.

First, strength-based LCSs tend to evolve smaller classifier populations.
Since mainly the classifiers that propose the best actions are kept in the
population, this can lead to a minimally sized population that can still
select the best action in each state. In addition, strength-based classifier
systems can generalize over all states where the action is optimal, while
XCS only generalizes over states if the received reward is sufficiently
similar. Thus, strength-based classifier systems can have more generaliza-
tion opportunities, leading to more generalized classifiers and smaller
populations. However, as outlined above, the stronger generalization in
strength-based classifier systems can lead to overgeneralization more
easily.

The second implication concerns the adaptivity of the LCS. While
the additional classifiers with non-optimal actions that XCS stores may
not add to the optimal solution itself, they can have beneficial effects
regarding adaptivity and exploration control. The complete state/action
mapping of XCS ensures that even for non-optimal actions proper gener-
alizations have been evolved, which can improve the speed with which a
classifier system adapts to environmental changes. In [40], XCS has been
compared to a strength-based LCS on a binary classification problem
that, after some time, underwent an abrupt change that flipped all classes.

39



40

THE LEARNING CLASSIFIER SYSTEM XCS

XCS adapted quickly, while the strength-based LCS took considerably
longer. Since the change in the environment did not affect the way gen-
eralizations can be applied in the environment, XCS made use of its
complete input/action mapping and only updated the payoff predictions
of existing classifiers. The population of the strength-based classifier
system did not have classifiers available that proposed the previously
wrong actions. Due to this, it had to create entirely new classifiers via
its GA. However, the evolutionary search for new classifiers that are
properly generalized takes considerably longer than merely updating the
parameters of existing classifiers.

The control of exploration is linked to the Explore/Exploit (E/E)
dilemma in reinforcement learning, which is investigated in the con-
text of XCS more detailed in Chapter 4. For a reinforcement learner
to learn the best actions via interaction with the environment, it must
explore all available actions to determine which one is the best suited
in a given state. Trying out actions other than the apparently best will
likely harm operational performance in the short term. However, it might
generate new knowledge, which can improve the overall solution in the
long term. Hence, a reinforcement learner must perform both exploration
and exploitation, which is known as the E/E dilemma. Typically, a desir-
able behavior is that the learner performs exploration at the beginning
of learning and transitions to exploitation once the optimal solution is
found. As argued by Kovacs [51], strength-based LCS are less suited for
such exploration control because their classifier populations focus only
on classifiers with the (apparently) best actions. However, it can never
be determined with certainty whether the current classifiers propose the
best actions or if there might exist even better actions for some states,
which are not included in the population because they have not yet been
explored. Hence, a strength-based classifier system cannot determine
when exploration should be stopped in favor of exploitation — at least not
based solely on the status of its classifier population. In XCS, however, a
complete input/action mapping is evolved. Once the whole input space is
covered for all actions with classifiers having accurate payoff predictions,
it can be determined with certainty that the optimal solution is found
and exploration can be stopped.?

Multi-step Environments. Due to the reward discounting mechanism,
multi-step environments have an inherently biased payoff function. As
outlined above, this will often lead to overgeneralization in strength-
based LCSs, while XCS copes better. In addition, the complete input/ac-
tion mapping of XCS is also favorable for multi-step environments. Even
though the optimal strategy requires always selecting the action that leads
to the largest payoff, which can also be achieved with a strength-based
LCS, learning the optimal strategy will frequently require selecting appar-
ently non-optimal actions to discover the best path toward the goal state.
In strength-based LCSs, classifiers proposing (apparently) non-optimal ac-

An exception are dynamic environments, which are discussed in Chapter 4 in the context
of the E/E dilemma.



3.3 XCS EXTENSIONS

tions are not preserved in the population for a long time, which prevents
finding the best strategy in the long term. Overall, strength-based LCSs
are considered to be incapable of solving even simple multi-step problems.
XCS is coping considerably better with multi-step environments, even
though it can also be affected by effects such as overgeneralization [58].

3.3 XCS EXTENSIONS

One popular point of view on LCSs is to see each classifier system as
a combination of different building blocks such as condition structure,
GA, and classifier parameters [94]. With the proper selection of building
blocks, LCSs can be tailored to various problem environments. Since
this not only applies to LCSs in general but also to XCS in specific, the
flexibility of XCS is one of its main postulated strengths. Throughout the
past decades, many modifications and extensions have been proposed
to the original version of XCS as presented in Section 3.1. This section
gives a non-exhaustive overview of XCS research, focusing on extensions
that enable XCS to solve additional types of problem environments or
improve its behavior when faced with challenges typically associated
with environments that benefit from self-* properties.

Condition Structure. One significant restriction of XCS is its binary con-
dition structure. When faced with an environment emitting real-valued
inputs, the inputs must be discretized, e.g., with a binning approach, to
be converted into a bitstring. A high resolution leads to a long bitstring,
which increases the required population size and the number of samples
XCS needs until the optimal population is evolved. On the other hand, a
discretization into a few bins risks that the input is discretized too coarse-
grained to evolve a sufficiently good solution. Hence, several attempts
have been made to enable XCS to cope natively with real-valued inputs.
The resulting classifier system is commonly referred to as XCSR. The
most widespread approach is to use conditions with an interval defined
for each real-valued number of the input [97, 113]. Only if all numbers of
the input lie in the intervals defined by the condition does the classifier
match. The ordered bound representation, as discussed in [97], is the
most popular representation for real-valued inputs in XCS and is also
used in the case study presented in Chapter 6. For each real-valued num-
ber x; of the N-dimensional input, the classifier condition has an interval
predicate [I;, u;], where I; is the lower bound and u; is the upper bound.
If all input numbers x; lie inside the respective intervals, i.e., [; < x; < u;,
the classifier is said to match. This way, each classifier covers a hyper-
rectangular subspace of the N-dimensional input space. The system
designer must specify the minimal and maximal values that can occur
at the input. Typically, all inputs are normalized to the range between
0 and 1. Upon creating a new classifier via covering, the intervals are
randomly determined around the current inputs with [; = x; — U[0, sg]
and u; = x; + U|0,sp], where U is a uniform probability distribution
that chooses a value between 0 and sy, which is a configurable hyperpa-

41



42

THE LEARNING CLASSIFIER SYSTEM XCS

rameter. Crossover works the same as with binary conditions and can
occur within and between an interval predicate. If mutation is applied, a
random amount £U|0, my] is added to one of the interval bounds, where
my is another configurable hyperparameter.

To cover non-linear subspaces, ellipsoidal conditions have been em-
ployed [19], with promising results in environments where the niche
boundaries are not linear. To discern complex non-linear subspaces, neu-
ral networks have been proposed to determine if a classifier matches [15].
In such a Neuro-XCS, each classifier has a feed-forward neural network
instead of a condition. The input is fed into the neural network, and its
output determines whether the classifier matches. While this allows clas-
sifiers to cover nearly arbitrarily complex subspaces, it also increases the
learning effort required to evolve the population, as the GA is also evolv-
ing the weights of the neural networks. In addition, the rules evolved by
Neuro-XCS are no longer human-interpretable.

Stochastic Environments. Since classifier fitness in XCS is based on the
accuracy of the payoff prediction, environments with non-deterministic
rewards can pose a challenge. A stochastic reward cannot be predicted
accurately, which inevitably negatively influences classifier fitness. Even
though there is experimental evidence that XCS can cope with small
variations of the reward [60], larger uncertainty prevents XCS from evolv-
ing any reasonable solution. With large, unpredictable reward variations,
the prediction accuracy drops considerably. However, XCS is not able to
distinguish between inaccuracy that is caused by stochasticity and inaccu-
racy that is caused by wrongly generalized classifiers. Essentially, fitness
pressure in XCS is no longer pushing towards accurate and maximally
generalized classifiers but becomes undirected. Lanzi and Colombetti [60]
have been the first to investigate this challenge and proposed an approach
that separates the observed prediction error into €,,,, which is the er-
ror induced by the stochastic environment, and €4, which is the error
induced by wrong generalizations. They introduce a new parameter
i, which serves as an estimate for the prediction error caused by the
stochasticity of the environment and is determined based on the mini-
mum prediction error of all classifiers in the current match set.> When
updating the prediction error €, y is subtracted from the observed predic-
tion error, such that the remainder should mainly consist of the prediction
error caused by incorrect generalizations.

More recently, Tatsumi et al. [100-103] have proposed a series of mod-
ifications to deal with different kinds of stochasticity in the problem
environment. In [100], each classifier has a variable error threshold ¢
that is adjusted based on the standard deviation of the received rewards.
This way, the inherent variations of the reward are accounted for when
determining classifier accuracy. The standard deviation of the reward is
estimated for every single state/action pair individually, and only after
the standard deviation meets a convergence criterion, €y is updated. To
avoid recording the standard deviation for all state/action pairs, [102]

3 Not to be confused with the hyperparameter y, which denotes the mutation probability.



3.3 XCS EXTENSIONS

uses the standard deviation recorded for each classifier as the basis for
its fitness. Additionally, a subsumption mechanism is introduced that
determines accuracy based on the range of rewards a classifier received
in the past. To tackle stochasticity in environments with discrete reward
levels, XCS-CR [101, 103] uses classifiers that count how often each possi-
ble reward has been received. Together with a variable value of ¢, that is
unique to each classifier, the accuracy of a classifier is determined based
on the difference between its average reward received and the reward
value that has been received most frequently.

However, all presented approaches have so far been evaluated only
on simple toy problems with idealized assumptions. Moreover, many
approaches have relatively restrictive requirements, e.g., a discrete reward
function [101] or a complete sampling of the state/action space [100],
while others negatively impact the learning mechanism in XCS, e.g., by
fostering overgeneralization [60, 101]. Hence, a more widely applicable
mechanism to enable XCS to cope with stochastic environments remains
an open topic for future work.

Non-Markovian Environments. Multi-step environments are catego-
rized into being either Markovian or non-Markovian. In Markovian
environments, the current state can be determined solely based on the
current sensory input. A non-Markovian environment, on the other hand,
has at least two aliased states, which lead to the same input to the learner
even though they are different states. The environment is said to be only
partially observable, and the learner is affected by perceptual aliasing,
as its perceived input alone is not sufficient to determine the current
state and the appropriate action reliably. Since XCS uses only the current
sensory input to determine the action to be executed, it can solve Marko-
vian environments. However, it will generally fail to evolve an optimal
solution for non-Markovian environments. All modifications that attempt
to tackle this restriction include adding memory to XCS, such that it can
“remember” from which state(s) it has entered the current state. This
awareness of the past then enables XCS to distinguish between aliased
states. The first approach that has been proposed consists of adding an
internal register with a configurable number of bits to XCS and extending
each classifier with an internal condition and an internal action [55, 57,
59]. The internal action is used to modify the internal register. XCS can
then evolve classifiers that, when entering aliased states, set the internal
register to different values depending on which aliased state is entered.
The classifiers matching to aliased states then use the internal condition
to discern between the different aliased states. A more straightforward
way to tackle the problem of perceptual aliasing is to extend the input of
XCS with the sensory input perceived in previous states [81]. This way,
information about the past is explicitly added to the input of XCS, and
previously aliased states are now distinguishable based on the current
input. However, this increases the size of the condition for all classifiers
in the population, even if they match only to non-aliased states. To cir-

43



44

THE LEARNING CLASSIFIER SYSTEM XCS

cumvent this drawback, [115] proposes an approach where only a subset
of all classifiers has memory-extended conditions.

Naturally, all outlined approaches have specific (dis-)advantages. For
instance, XCS with an internal register can carry the memory over an
unrestricted number of steps, but the learning process can be unreliable,
as it requires two classifiers to cooperate in distinguishing aliased states,
i.e., one classifier that sets the internal register when entering an aliased
state and one classifier that matches to the aliased state and the appro-
priate value of the internal register. On the other hand, extending the
classifier’s condition with previous inputs is a straightforward approach
that does not require extensive modifications of XCS but dramatically
increases the input space, which often requires a larger population and
more samples to evolve the optimal solution. Overall, all outlined ap-
proaches can solve simple non-Markovian environments with few aliased
states but quickly reach their boundaries in more complex environments.
For such cases, Anticipatory Learning Classifier Systems (ACSs) [18]
are typically employed, which are another class of LCSs and not direct
descendants of XCS. In ACSs, each classifier anticipates the next state,
allowing for look-ahead path planning in more complex non-Markovian
environments.

Function Approximation. Besides being used as an RL agent in en-
vironments requiring action selection or classification, XCS can also
approximate functions. XCSF [114] uses classifiers with the real-valued
conditions of XCSR but has only one dummy action available. Instead of
the action, the payoff predicted for the current input is outputted as an ap-
proximation of the function. Since each classifier has a payoff prediction
that is invariable over the input space it matches, the resulting function
approximation of the whole classifier population can be relatively in-
accurate. To overcome this, the prediction of a classifier is computed
based on the current input. Each classifier is extended with an (N+1)-
dimensional weight vector w that is multiplied with the N-dimensional
input augmented by a constant. That way, each classifier forms a linear
approximation of the input subspace it covers, and the resulting approxi-
mation of the whole classifier population is piecewise-linear. The weight
vector w is learned at runtime with a gradient technique, i.e., a modified
delta-rule. Extensions to XCSF have been focused mainly on achieving
non-linear approximations, e.g., with polynomial approximations [62] or
feed-forward neural networks [61], and non-linear condition spaces, e.g.,
with ellipsoidal conditions [21]. If more than a single dummy action is
used, XCSF can also be used for its original purpose to learn an optimal
strategy in an RL environment. It can outperform XCSR, as the computed
predictions that vary over the input space can be more accurate than
the constant predictions of XCSR. However, the weight vectors used to
compute the prediction must be learned in addition to evolving classifiers
with properly generalized conditions. This poses an additional burden
that can increase the time until the optimal solution is learned.



3.4 XCS FOR COMPUTATIONAL SELF-AWARENESS

Self-aware Computing Systems. As XCS is frequently proposed to be
employed in autonomous and self-adaptive systems, an existing body
of research has proposed extensions to improve the applicability of
XCS in such application scenarios, e.g., in the context of Organic Com-
puting (OC). Since the primary goal of self-adaptivity is to adjust to
unforeseen or changing environmental conditions, most works focus
on improving the online learning behavior of XCS. One widespread
characteristic of real-world problem environments is a non-uniform sam-
pling of the input space, i.e., some states frequently occur while others
are observed rarely. However, XCS is expected to perform well even in
unknown environmental conditions that rarely occur. To achieve this,
Stein et al. proposed the concept of classifier interpolation [95]. When
faced with a situation where not enough matching classifiers are present
in the population, e.g., because the observed state has never been en-
countered before, classifiers are not generated randomly based on the
standard covering procedure. Instead, existing classifiers with conditions
similar to the current input are used to determine the parameters of the
newly generated classifier. Assuming that environmental niches with
similar sensory inputs share enough commonalities, XCS can perform
adequately even when faced with unknown situations. With a similar
goal, an experience replay mechanism [93] has been proposed that stores
past inputs and the received reward to feed it into XCS again at a later
time. This way, classifiers matching to an infrequently observed state can
be further optimized before the state is encountered again.

The concept of active learning is introduced into XCS in [92]. With
active learning, XCS is made “curios” and can query an external oracle
for guidance in environmental niches where it has insufficient experience.
Thus, XCS can learn appropriate behavior even before the situation is
encountered. The oracle can be, for instance, a heuristic, an environmental
simulation, or a human-in-the-loop. The use of domain knowledge to
bootstrap the classifier population is considered by Feist et al. [30], who
propose a rule language that system designers can use to specify a ruleset
and that is more intuitive than manually specifying classifiers. After the
specification, the ruleset is automatically converted into rules compatible
with an LCS.

34 XCS FOR COMPUTATIONAL SELF-AWARENESS

The concept of computational self-awareness encompasses a high de-
gree of autonomy and adaptability to adjust to unknown circumstances
without external help. Such properties are commonly associated with
“systems” from nature, most distinctively with animals. In concepts such
as Organic Computing (OC), the inspiration from nature to create life-
like adaptive systems is even explicitly considered in the terminology.
XCS combines Evolutionary Computation (EC) and Reinforcement Learn-
ing (RL), where EC is inspired by Darwinian evolution, while RL de-
scribes the concept of learning through interaction with the environment,

45



46

THE LEARNING CLASSIFIER SYSTEM XCS

which is employed by nearly all living beings that are considered to be
at least remotely intelligent. Since both learning approaches mimic how
learning and optimization occur in nature, XCS seems to be well suited
for implementing self-awareness — even at first glance and without more
profound knowledge of the algorithmic details of XCS, its strengths, or
weaknesses.

The RL mechanism of XCS is based on Q-learning, a tabular RL tech-
nique. All state/action pairs are enumerated in Q-learning, and the
so-called Q-value is estimated for each pair. In single-step problems, the
immediate reward is estimated, while in multi-step problems, the payoff
is estimated, i.e., the sum of the immediate reward and discounted future
reward. Since XCS uses classifiers covering whole input subspaces, it is
essentially a generalizing Q-learner. While evolving proper generaliza-
tions through the GA can be a time-consuming process, XCS also lifts
some disadvantages of Q-learning, as it can alleviate the Q-table’s expo-
nential growth in the input size. Further, XCS can identify environmental
patterns and learn the optimal policy for the environment even if it has
not yet seen all possible states. This capability is an important property
for self-aware systems, as XCS can, in principle, propose optimal, or at
least suitable, actions even in so far unknown situations, which is un-
achievable with Q-learning. Naturally, there is no guarantee that XCS will
act appropriately in unknown situations, but this is true for all learning
algorithms and is achievable only through the use of domain knowledge.

In contrast to many other machine learning techniques, the ruleset
evolved by XCS is, to a high degree, human-interpretable, which gives
XCS a high level of explainability by design. Even though it cannot be
explained why the stochastic evolutionary process of the GA has evolved
the rules the way they are, it is still possible to analyze the popula-
tion for patterns, identify knowledge gaps, or manually inject domain
knowledge via hand-crafted classifiers. This can be especially useful for
self-aware Cyber-Physical Systems (CPSs) [9], which do not operate in
virtual environments but have a possibly harmful impact in the real
world. Leveraging the interpretability of XCS’s rules, Chapter 5 proposes
the concept of forbidden classifiers, which are a special type of hand-
crafted classifiers that prevent the selection of actions that are considered
to be a safety violation in the current situation. If specified appropriately,
they guarantee that XCS is not violating any safety requirements even
in the face of so far unseen situations — regardless of whether the action
selection of XCS has been based on exploration or exploitation.

As described in Section 3.2, XCS is said to be well-suited to han-
dle exploration, which is required for highly autonomous RL agents.
The complete state/action map that is evolved and the corresponding
prediction errors give an overview of how well XCS has learned the
characteristics of the environment. Since each classifier forms a local
solution that matches only to a subspace of the input space, it is possible
to determine how well XCS has covered different environmental niches
and where further exploration is required. This enables XCS to emit a



3.4 XCS FOR COMPUTATIONAL SELF-AWARENESS

highly adaptive learning behavior. If the environment is non-stationary
and only a part of it is affected by a change, a scenario investigated in
Chapter 4, exploration can be applied in the affected niches only. The GA
in XCS is a steady-state niche GA, which means that it acts continuously
as long as exploration is enabled and evolves classifiers that match to the
environmental niches that changed. This leaves classifiers of unchanged
niches mostly unaffected, which preserves the operational performance
in these regions of the environment.

The extensions and modifications of XCS outlined in Section 3.3 enable
XCS to tackle a wide variety of different problem environments. This
flexibility is not only observed for XCS but also for other LCSs, which
has led to the assertion that the learning technique LCS is “a jack of
all trades, but master of none” [106]. Indeed there has not yet emerged
a distinct “killer application” where XCS, or any other LCS, achieves
results distinctly superior over all other learning approaches, except for
toy problems such as the 135-Multiplexer [107]. However, this does not

pose to be a dealbreaker for the use in self-aware computing systems.

Finding the optimal learning algorithm for a given task often requires
extensive (empirical) analysis, potentially with lots of expert domain
knowledge or large datasets. In the application domains envisioned for
self-aware systems, this is typically infeasible. Hence, a learning technique
that applies to a wide range of application environments and achieves
good but not necessarily optimal results will generally be preferred over
a diverse set of highly specialized techniques.

Overall, XCS seems like a natural fit for deployment in self-aware
systems due to its (1) adaptivity, (2) interpretability, and (3) flexibility
which allows its deployment in a wide range of applications. This is
also why it is already considered frequently in related domains such as
Organic Computing (OC). This includes both the incorporation of XCS
and other LCSs into the design frameworks [73, 104], and the use in
applications, e.g., for traffic control [83], test case prioritization [87], or
smart camera management [96].

47






EXPERIMENTAL COMPARISON OF AUTONOMOUS
EXPLORE/EXPLOIT STRATEGIES

Computational self-awareness and related design paradigms aim to move
design-time decisions to the runtime and into the system’s responsibil-
ity, enabling a technical system to cope with changing environments
and unforeseen situations on its own. To achieve this, a system needs
to be both autonomous and adaptive, as it must be able to make de-
cisions on its own (autonomy) and also adapt its decision-making to
changes in the operational environment (adaptivity). However, when
XCS is employed as an adaptive decision-making engine, it is affected
by the Explore/Exploit (E/E) dilemma, like every other reinforcement
learner [99]. During operation, a reinforcement learner is constantly faced
with deciding whether to exploit the existing knowledge by taking the
most promising action or to deliberately select an action that is not the
apparently best to potentially gain additional knowledge. Hence, the
E/E decision is concerned with the action selection and resides in the
self-expression engine of the reference architecture for computational
self-awareness.

The E/E decision constitutes a dilemma since obtaining new knowl-
edge through exploration incurs a short-term performance loss, while
too much exploitation of the already learned knowledge risks staying
on an unnecessarily low level of performance in the long term. In static
application domains, a fixed schedule that, over time, decreases explo-
ration in favor of exploitation might be sufficient. However, in the face of
environmental dynamics, previously obtained knowledge can become ob-
solete, requiring frequent shifts from exploitation back to exploration to
preserve adaptivity. To reach full autonomy and adaptivity, autonomous
E/E strategies are required to let reinforcement learners decide on their
own what to pursue, depending on the current state of the environment
and their learning progress

For XCS, its inventor Wilson formulated a high-level overview of
ten different E/E strategies [111] about 25 years ago. The most crucial
distinction between the strategies is whether they are global, i.e., based on
global metrics of the whole classifier population, or local, i.e., determine
the E/E decision for each situational input individually. Even though
the importance of reliable E/E strategies for XCS was identified more
than two decades ago, not much research has been conducted in this
direction since then. Instead, an e-greedy strategy with a fixed exploration

49



50

EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

probability of 0.5 is commonly used, which is entirely sufficient for
conducting research on the learning mechanisms of XCS. The frequent
exploitation cycles allow for monitoring the development of its learning
progress online, and comparability to other works is preserved. For
implementing autonomous agents, however, such a static approach is
infeasible. Still, the e-greedy is frequently employed even in research on
autonomous systems, e.g., in the domain of Organic Computing (OC) [96],
by neglecting exploration cycles during the performance evaluation — an
approach clearly infeasible for the practical deployment of self-aware
systems.

Among the few autonomous E/E strategies that have been developed,
the majority have mostly been evaluated in a single scenario only and
without comparison to other strategies. Further, their parameterization is
often discussed on a qualitative level only, giving practitioners no guide-
lines on how to apply the strategies to other learning problems. This
experimental study aims to narrow the gap in research on autonomous
E/E strategies for XCS by experimentally comparing one local and three
global E/E strategies proposed in the literature. The evaluation takes
place on learning problems well known in the Learning Classifier Sys-
tem (LCS) community, i.e.,, multiplexer and maze environments. An
automated parameter optimization for identifying suitable parameter
configurations is a substantial part of this evaluation. The optimization
takes place not only on each environment separately but also over all
environments simultaneously to identify possible “one-fits-all” configura-
tions. Further, we evaluate the behavior of the strategies in the presence
of environmental dynamics. This chapter is, in slightly modified form,
currently under review by the Soft Computing journal [39] and represents
a substantially enhanced and extended version of our paper published
at the International Workshop on Learning Classifier Systems (IWLCS
2021) [37]. In summary, this chapter makes the following contributions to
the existing body of research:

* We present the first experimental comparison of E/E strategies for
XCS. The results have been gathered in different problem envi-
ronments and show that the strategies depict vastly different E/E
behaviors, both in static and dynamic environments.

¢ To find suitable hyperparameters for each E/E strategy, an auto-
mated parameter optimization has been conducted. We find that no
strategy has a “one-fits-all” configuration that is optimal for each
evaluated scenario. However, even though our study employed only
artificial problems common in LCS research, we suppose that XCS
practitioners planning to use an E/E strategy can still benefit from
the found hyperparameter sets by relating the characteristics of the
application domain to the scenarios evaluated in our study.

¢ The experimental evaluation shows that the local error-based strat-
egy seems most suitable for use in self-aware systems, as it depicts



4.1 EXPLORE/EXPLOIT STRATEGIES

a robust E/E behavior, reacts adequately to environmental changes,
and is the easiest to parameterize. However, it is unsuited for multi-
step environments with sparse rewards.

This chapter continues in Section 4.1 by describing the methodology
of the literature study and the selected E/E strategies. Our experimental
setup is outlined in Section 4.2, while Section 4.3 discusses the experi-
mental results gathered with parameters optimized for each environment
separately. The sensitivity to non-optimal parameters is discussed in
Section 4.4, where an attempt toward a “one-fits-all” parameterization
has been made and evaluated. In Section 4.5, the performance of each
strategy is investigated in the face of environmental dynamics. Finally,
Section 4.6 summarizes the main findings and guidelines for successfully
employing an E/E strategy, while Section 4.7 concludes the paper and
outlines future work.

4] EXPLORE/EXPLOIT STRATEGIES

The study focuses on E/E strategies that enable autonomy and determine
when exploration is called for and not how the exploration should take
place. Consequently, we focus on schemes that decide between employing
pure exploitation, i.e., taking the action with the highest payoff prediction,
or pure exploration, i.e., choosing a random action. Directed or biased
exploration, e.g., by selecting actions that promise the largest gain in
knowledge, is not part of this study, and an investigation of directed
exploration is left for future work. Nevertheless, with most directed
exploration techniques, the question of when exploration is called for
must also be answered. In addition, we restrict the study to E/E strategies
specifically designed for XCS, as we deem strategies tailored to its unique
learning mechanism as most useful.

41.1 Literature Study

The primary tool for searching published works on E/E strategies for
XCS was Google scholar, and the results represent the state as of 7th
September 2022. We have employed three different search terms, namely
XCS “exploration exploitation” (141 result entries), XCS “exploration strategy”
(68 entries) and XCS “explore exploit” (169 entries). The terms in quotation
marks must match exactly but can still encompass special characters, e.g.,
“explore exploit” matches the phrase “explore/exploit”. Further, we have
considered all publications that, according to Google scholar, cite the
seminal paper of Wilson [111]. Overall, this resulted in two E/E strategies
that match our criteria, i.e., the HECS strategy of McMahon et al. [71]
and the meta-rules strategy of Rejeb et al. [85]. Further, we have searched
all publications that reference these publications or are cited by them,
but with no additional results. In addition to the HECS and Meta-rules
strategies, we have selected one global and one local error-based strategy

51



52

EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

from Wilson [111], which have also served as a baseline for comparison
in [85].

Not considered due to the selection criteria has been the work of
Bagnall and Smith [8], who propose a strategy that not only determines
when to explore but combines it with directed exploration through
temperature-based Boltzman weighting. Also not considered has been
the E/E strategy based on a fuzzy system proposed by Hamzeh and
Rahmani [34] since it requires knowing the system’s lifetime, represented
by the number of total XCS iterations. For truly autonomous systems, we
assume this information to be unknown or at least associated with a high
degree of uncertainty. The strategy used by Liu et al. [67] continuously
decreases exploration without any feedback related to the current state
of learning, thereby making it unsuitable for implementing autonomy.

412 Selected E/E Strategies

Meta-rules [85]. Exploration and exploitation are balanced by executing
repeated cycles of n exploration runs, followed by m exploitation runs.
After each such cycle, the performance during the exploration and ex-
ploitation runs, denoted by Perf ., and Perf,,,;,, respectively, is used
to increase or decrease the number of exploitation runs m. This is done
by the following two meta-rules, where ¢, is termed the exploration rate:

m-(1—e;) if Perf
m-(1+e,) if Perf

> Perf
< Perf

explore

exploit ( 41)

exploit

m =

explore

The meta-rules balance exploration and exploitation by adapting the
ratio of exploration to exploitation runs while maintaining a minimum
amount of exploration by keeping 1 constant. To ensure that the intervals
between exploration periods are not growing too large, a maximum value
of m can be specified. In multi-step environments, n and m represent the
numbers of complete runs and are unaffected by the number of steps
done in each run. Overall, the strategy is parameterized by three values:
The number of exploration runs 7, the initial value of exploitation runs
m, and the exploration rate e,, ranging from 0 to 1, which controls the
change of m.

Global Error [111]. At the beginning of a run, it is decided if an
exploration run is conducted according to the exploration probability
Pexplore- AAS opposed to the common e-greedy strategy, the exploration
probability is not fixed but determined as

Pexplore = min(L G- Eglobal) (4.2)

where Egp, is the moving average of the global prediction error and
G a configurable gain factor. The global prediction error is the absolute
difference between the predicted and received payoff. In our implemen-
tation, we use the values in the prediction array as the predicted payoff.



4.1 EXPLORE/EXPLOIT STRATEGIES

The strategy is parameterized by two parameters, namely the gain factor
G and the moving average’s windows size W. To make gain factors be-
tween environments with different reward schemes comparable, Egjop
is normalized to the range of payoffs. In multi-step environments, the
prediction errors during a run, based on the internal payoffs and not
the immediate rewards, are averaged and inserted into the window as
a single value to avoid that runs have a different impact on the global
prediction error just because they are shorter or longer. If a multi-step
environment does not consist of distinguishable runs after which the
problem is solved but instead continues endlessly, this scheme needs to
be modified, e.g., by inserting the prediction error of each step.

Local Error [111]. Since it is a local strategy, the exploration probability
Pexplore s determined individually for each received input. For each action
in the match set, the numerosity-weighted average of the prediction
errors € is calculated. The average over the actions’ error estimates is then
used to set the exploration probability as

Pexplore = min(l, G- Elocal) (43)

where Ej,; is the average over the actions’ error estimates, and G the
gain factor, which is the only configurable parameter of this strategy.
Again, Ej,, is normalized to the range of payoffs.

HECS [71]. The HECS strategy was developed specifically for multi-
step problems and distinguishes between two different exploration levels.
The accuracy-induced exploration level E 4 ranges between -1 and +1, with
an initialization of 0, and is updated every step with

2 .
AEp = AEpu - F - <1_EMM : (e‘os‘ Mpa _ 1) + 1) (4.4)

where AE,;y is the maximum possible change, F the fitness of the pre-
diction, O; the payoff over-/undershoot (positive/negative prediction
error) scaled to the maximum range of payoffs, and Mps a parameter
that defines the tolerance to perfect accuracy. The exploration probability
that is used to decide if an exploration run is conducted is determined as

Lexploz‘t : EA) 4.5)

pexplore = <0~5 - >

where Lyt takes a value between 0 and 1 and, for values below one,
assures a minimum level of exploration. As fitness of the prediction, we
take the numerosity-weighted average of the classifiers’ fitnesses in the
action set.

In multi-step problems, a second, reward-induced explorer level Eg is
used to escape from unsuccessful exploit trials. First, the maximum num-

ber of steps required to reach a reward is estimated as 71,;0c = l0gy (M)

PWIﬂX
where Py, and Py, are the minimum and maximum predictions present
in the population and v the discount factor of XCS. In case P, is neg-

ative or zero, 1,y must be sanitized to a meaningful value. After 1,

53



54

EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

steps have passed, the reward-induced explorer level Eg, initialized as 1,
begins to change according to

1 . .
AER = AEng - g -sign(Rs) - (g‘RS‘ Mgs _ 1) (4.6)

where Rg is the immediate reward that is received scaled to the maximum
reward and Mgg is a scaling factor that affects the sensitivity of AER to the
magnitude of Rs. Hence, a positive reward increases Er, while negative
rewards (punishments) decrease Eg. During an exploitation run, HECS
switches to exploration mode with a probability Psyiicnmoexpr = 1 — Eg-
Hence, a series of exploitation steps without positive reward increases
the probability of switching to exploration. Overall, the HECS strategy is
parameterized by four values: AEyax, Lexpioit, Mpa and Mgs.

42 EXPERIMENTAL SETUP

The experimental comparison of the E/E strategies takes place in two
static scenarios, i.e., as evaluation and optimization in each environment
separately and over multiple environments. Further, we investigate a dy-
namic scenario in which the environments change during the experiment.
Common to all scenarios are the benchmark environments described in
Subsection 4.2.1 and the parameter optimization procedure outlined in
Subsection 4.2.2. The methodology of gathering the experimental results
for comparing the strategies is presented in Subsection 4.2.3.

421 Benchmark Environments

11-Multiplexer. The 11-Multiplexer is a single-step problem in which
XCS receives 11 input bits, of which the first three are index bits that
point to one of the remaining eight bits that XCS has to predict. If XCS
outputs the correct bit value, it receives a reward of 1,000 and, otherwise,
a reward of 0. With the employed 30,000 iterations, it represents a rather
simple problem, as XCS with the common e-greedy strategy and a fixed
exploration probability of 0.5 can fully solve the problem in its exploit
trials after roughly 10,000 iterations. Hence, a well-suited E/E strategy is
expected to do some exploration at the beginning and then switch to full
exploitation once XCS can solve the problem completely.
20-Multiplexer. The 20-Multiplexer is similar to the 11-Multiplexer
problem but more complex to solve due to the larger input space, as XCS
receives an input of 20 bits containing four index bits. With the same
number of 30,000 iterations, XCS with the common e-greedy strategy
is not able to derive a complete solution. Instead, it achieves a classifi-
cation accuracy of roughly 85% at the end. Hence, the 20-Multiplexer
represents a case in which XCS cannot derive a complete solution and
tests the ability of the E/E strategies to carefully balance exploration and
exploitation during the whole time to maximize overall performance.



4.2 EXPERIMENTAL SETUP

RRRRRR R R
R..R..®R
RR..R. .R

R.. ... R
RR . R R
R....R.R

RRRRRR RR

Figure 4.1: The Maze4 environment. Empty fields are denoted by dots, while
obstacles are represented by rocks ('R’). The target field is the food
('F’) in the upper right corner.

RRRRRRRRRRRRRR
RR...RRRR.RR.R
R.RRR.RR.R.R.R
R.RRR.R.RRR.RR
RERRR.RR.RRRRR
RRRRRR..RRRRRR
RRRRRRRRRRRRRR

Figure 4.2: The Woods14 environment. The target field is the food ('F’) in the
lower left corner.

Even though XCS can solve large multiplexer problems, such as the 135-
Multiplexer [75], we have stuck with the smaller variants, as we expect
that all multiplexer problems depict a similar E/E behavior. For solving
large multiplexers, XCS requires specifically tailored configurations and
substantially longer execution times, which would have impeded the
automatic parameter optimization of the E/E strategies.

Maze4. Maze environments are multi-step problems in which XCS
navigates a robot through a maze to reach a target, denoted as food.
Shown in Figure 4.1 is the Maze4 environment. As input, XCS receives
the types of the eight surrounding fields (empty, rock, or food) and then
has to make a step in one of the eight directions. If a step is made towards
a rock, the position of the robot does not change. At the beginning of
each run, the robot is placed randomly on an empty field, and the goal
of XCS is to learn the shortest path to the food from each field on the
map. Upon reaching the food, XCS receives a reward of 1,000, and for
every other step a reward of zero. In Maze4, the average length of the
shortest path is 3.5 steps. It is calculated by determining the shortest path
length for each empty field in Maze4 and then averaging over all fields,
as each is chosen as starting position with equal probability. XCS finds
the shortest path with the e-greedy strategy after roughly 500 runs, with
a run ending after the food is reached or 30 steps have passed. However,
we have noticed that some E/E strategies require considerably longer to
reach a viable solution, so we have employed 3,000 runs.

55



56

EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

Woods14. Another maze environment is the Woods14 environment
shown in Figure 4.2. In contrast to Maze4, it offers only a single path to
the target field. However, this path is considerably longer, as the shortest
path consists of up to 18 steps if the robot starts on the empty field in the
upper right corner. Therefore, the shortest path has an average length of
9.5 steps. With the e-greedy strategy, this is reached after roughly 2,000
runs, with each run being prematurely stopped after 100 steps if the
food has not yet been reached. In our experiments, we have extended the
length to 4,000 runs to account for different characteristics of the E/E
strategies.

Overall, the four environments evaluate different aspects of the E/E
strategies. The 11-Multiplexer environment investigates the capability of
a strategy to determine when the classifier population fully solves the
problem, and exploration should be stopped in favor of performance-
maximizing exploitation. On the other hand, the 20-Multiplexer environ-
ment tests how well a strategy can balance exploration and exploitation
if the problem cannot be fully solved and neither full exploration nor
full exploitation is called for at any time. The Maze4 environment as a
multi-step environment should reveal any general behavioral differences
in the strategies for multi-step problems. The Woods14 environment
represents a multi-step corner case, requiring XCS to learn a long chain
of actions to receive a positive reward.

We have used the Python implementation scikit-XCS [118] for all our
experiments. We have kept the default parameter settings of scikit-XCS!
and used a discount factor v of 0.71 for Maze4 and 0.9 for Woods14. For
the 11-Multiplexer and Maze4 problems, a maximum population size
N of 800 has been used, while a larger population of 2,000 classifiers
has been employed for the more complex 20-Multiplexer problem. The
Woods14 environment made use of a population size of 1,500 classifiers.
Since the multi-step environments, i.e., Maze4 and Woods14, are suscep-
tible to the problem of overgeneralization, we have employed the specify
operator [56]: If the classifiers in the action set [A] have been updated at
least 15, = 20 times and have an average prediction error that is at least
twice the average error of the population, a classifier is selected from
[A]. Each don’t care of its condition is specified to match the current
input with a probability of ps, = 0.5 for Maze4 and 0.8 for Woods14.
As an alternative for tackling overgeneralization, the gradient descent
technique for parameter updates [19] could have been used. However, we
do not expect substantial differences in both approaches’ E/E behavior.

All benchmark problems have been implemented as randomized
Reinforcement Learning (RL) environments, i.e., the problem instances
are randomly generated and not drawn from a data set. It is important
to note that we always consider and report the overall performance of

Thatis =02, a =01, v=5 1 =004, 6 =01, p; =10, e, =0, f; =0.01, P4 =0.5,
€0 =10, x =08, 0ga =25, 05y =20, 04, =20, v =0.71, DoGaSubsumption = True,
DoActionSetSubsumption = False



4.2 EXPERIMENTAL SETUP

XCS, i.e., both explore and exploit runs, as opposed to most works in the
field that only report performance during exploit runs.

4.2.2 Parameter Study

Since the selected E/E strategies do not have any obvious well-suited
or even optimal parameter values, we have conducted an automated
parameter optimization of the strategies with the tool irace [69]. Table 4.1
summarizes the applied range of allowed parameter values. The parame-
ter m of the meta-rules strategy only represents its initial value since it is
adapted at run-time by the strategy. The maximum possible value for m
has been excluded from the parameter study and instead has been set to
10% of the total number of iterations. The parameter Mgs of the HECS
strategy has not been considered in this parameter study, either, as it only
applies to multi-step environments. However, in the maze environments,
only two possible rewards exist, where the reward of 0 can be considered
as punishment. Hence, the value of Rg in Equation 4.6 is either -1 or +1,
and Mpgs does not affect the change of the explorer level. Further, we
have set 1,4, to 15 steps for Maze4 and to 50 steps for Woods14, i.e., 50%
of the maximum number of steps, in case P,,;, is zero.

As problem instances, 15 different seeds have been used to initialize
the random number generators inside the benchmark environments. An
important aspect is defining the target metric that irace is optimizing, as
no obvious choice exists for assessing the quality of the E/E strategies.
In general, it depends on the application of how the performance of XCS
is quantified. For instance, in some environments, the performance at the
beginning can be close to irrelevant, e.g., if the system has an initial setup
period. However, in other cases, the performance is equally important
over the whole runtime. We have opted for a tradeoff between these two
cases by taking all iterations into account for calculating the optimization
metric but assigning earlier iterations a smaller weight, as shown in
Equation 4.7. The performance during the first quarter of all iterations N
is assigned a weight of 7%, the second quarter a weight of %, the third
quarter a weight of -t and the last quarter the highest weight of . Our
choice is motivated by the assumption that even though the performance
of an autonomous system is relevant during the whole runtime, it is still
expected, and consequently accounted for by the system designer, that
an untrained system will initially yield suboptimal performance.

. 1 2
Opt.Metric =15 -Perfm:%N) + G -Perf[%N:%N) + )

4 8
15 Perfienan t 15 Perfan

To obtain valid results quickly, irace has been executed in a parallelized
fashion on the nodes of the PC2 compute cluster located at Paderborn

57



58 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

Table 4.1: Value ranges used in the parameter optimization.

Strategy Parameter Datatype Range

Lower  Upper

n integer 1 1000

Meta-rules m integer 1 1000
ey real 0.01 0.99

Global Error G real 0.01 10

W integer 1 1000

Local Error G real 0.01 10

AE 0% real 0.01 1

HECS Mpy real —10 10

Lexploit real 0.5 1

University?. The computational budget assigned to each run of irace
depends on both the benchmark environment and the evaluated scenario,
which is why the budgets are reported in the corresponding sections.

4.2.3 Experimental Comparison

After the optimized parameters have been determined, they have been
applied in the benchmark environments to evaluate the performance and
behavior of the different strategies. In each environment, 50 repetitions
(trials) with different seeds have been conducted. To obtain meaningful
results, the seeds differed from those employed in the parameter study.
The evaluation was two-fold: First, the optimization metric, as used in
the parameter study, has been calculated for each trial and averaged over
all repetitions to condense the behavior of each strategy into a single
quantity characterizing its performance. The comparison then takes place
on a per-environment basis. The methodology outlined by Demsar [24]
has been employed to test for statistical significance. First, a Friedman
test [31] is applied to identify whether there is a statistically significant
difference between the strategies. If this is the case, Holm’s step-down
procedure [45] is used as post-hoc test with the strategy achieving the
best optimization metric as reference. Both tests determine statistical
significance at a level of a = 0.05.

After the evaluation of the achieved optimization metrics, the behavior
of the strategies is inspected visually with graphs showing the develop-
ment of the performance throughout the experiment. Even when two
strategies achieve similar optimization metrics, they might depict behav-
iors drastically differently. For instance, while one strategy continuously

2 https://pc2.uni-paderborn.de/hpc-services/available-systems/noctual, accessed
29th March 2023


https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua1

4.3 SINGLE-ENVIRONMENT EVALUATION

Table 4.2: Parameterization of the strategies when optimized for each environ-
ment separately.

59

Meta-rules Global Error Local Error HECS
nom er G W G AEmax  Mpa  Lexpioit
11-Multipl. 112 17 0.151 6.907 248 2.992 0.013 -8336 0.988
20-Multipl. 467 36 0.227 0.655 115 0.684 0.380 -2.187 0.935
Maze4 3 1 0234 1.453 134 7.992 0.800 -9.977 0.999
Woods14 18 1 0.558 9.268 99 9.221 0.527 -0.387 1.000

improves, another could employ pure exploration for a longer time and
then swiftly shift to pure exploitation. Even though it cannot be said
which behavior is superior, knowing how each strategy behaves is still
helpful.

4.3 SINGLE-ENVIRONMENT EVALUATION

This section presents and discusses the experimental results gathered
when the parameterization of the strategies is optimized for each en-
vironment separately. This evaluation scenario aims at identifying the
suitability of the E/E strategies for different problem environments. First,
the optimized parameterization of the strategies is discussed in Subsec-
tion 4.3.1, followed by the evaluation of the performance of each strategy
in each of the four benchmark environments in Subsection 4.3.2.

43.1 Parameter Study

For the 11-Multiplexer environment, irace has been given a computing
budget of 150,000 CPU seconds. Due to the higher problem complexity,
the 20-Multiplexer and the Maze4 environment have been optimized
with a budget of 600,000 CPU seconds. The highest computing budget of
1,800,000 CPU seconds has been assigned to the Woods14 environment,
as it has a larger classifier population and more steps per run than the
Maze4 environment.

The parameter configurations resulting from irace’s optimization are
shown in Table 4.2, where notable differences between the different envi-
ronments can be observed. For the 20-Multiplexer, the constant number
n of exploration runs used in the meta-rules strategy is more than four
times higher than for the 11-Multiplexer, indicating the higher complexity
of the 20-Multiplexer problem. In the Maze4 and Woods14 environments,
n and m are considerably smaller, as the environment employs fewer
runs than the two multiplexer environments. The exploration rate e, of
the Woods14 environment is the highest, resulting in a more aggressive
adaptation of m. This could be related to the fact that in this multi-step



60 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

Table 4.3: Average optimization metrics achieved with the parameters optimized
for each environment separately. Bold font marks the best results, an
asterisk a statistically significant difference to the best result.

Strategy 11-Multiplexer ~20-Multiplexer Maze4 Woods14
Meta-rules 0.944x 0.677 4.30 19.67
Global Error 0.962x 0.653* 4.78% 14.85
Local Error 0.972 0.639% 7.02% 81.61*
HECS 0.969+ 0.691 4.25 14.62

problem, each run consists of up to 100 iterations, allowing XCS to gain
more knowledge during a single run.

For the global error strategy, the gain factor G, representing the sensi-
tivity of the exploration probability to the prediction error, is ten times
smaller for the 20-Multiplexer than for the 11-Multiplexer. Since we nor-
malize the prediction error to the maximum range of payoffs, the gain
factor of 0.655 also represents the upper bound of the exploration proba-
bility. For the Woods14 environment with its long action chain, the gain
factor of 9.268 is considerably larger than that of 1.453 determined for
Maze4. These observations hold roughly for the gain factor of the local
error strategy, too, with the only exception that the gain factor for the
Maze4 environment is considerably larger, with a value of 7.992.

That the optimal sensitivity of the exploration probability to the pre-
diction error differs between the benchmark environments can also be
observed for the HECS strategy, where the Mp, parameter is smaller for
the 11-Multiplexer than for the 20-Multiplexer. The smaller the value of
Mpy, is, the more sensitive is the accuracy-induced explorer level to the
prediction error. Interestingly, the Maze4 environment has the smallest
value of Mpy and the Woods14 environment the largest, even though it
requires a considerably longer chain of actions with small payoff predic-
tions (and errors) in fields distant to the food. One explanation could
be that with Woods14, the reward-induced explorer level Eg, which is
used to escape unsuccessful exploit trials, plays a more important role
than the accuracy-induced explorer level E 4. The maximum change of
the explorer level AE,,;4y is very small and close to zero in the case of the
11-Multiplexer, leading to small changes in the explorer level. For the
other three environments, AE,y is considerably larger. Ley it is close to
one for all environments, leading to a low level of minimum exploration
and potentially enabling HECS to reach close to optimal performance in
all cases.

4.3.2 Experimental Comparison

With the optimized parameter configurations applied, the average op-
timization metrics, as shown in Table 4.3, have been achieved. On the
11-Multiplexer, all strategies achieved values close to 1, showing that



4.3 SINGLE-ENVIRONMENT EVALUATION 61
1.0 4 .
10 =@— Meta-rules
i o) == Global error
0.9 z 08 Local error
% o - e —e— HECS
g E 0.6
E] g=
3 0.7 1 204
< —@— Meta-rules —g
0.6 —— Global error % 09 A
Local error MU
0.5 —@&— HECS
.5 0.0
r T T T T T r T T T T T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iteration Iteration
(a) Classification accuracy (b) Exploration rate

Figure 4.3: Experimental results obtained on the 11-Multiplexer problem. Results
are averages of 50 trials and shown as moving average over 400
iterations.

they have been able to emphasize exploitation once the solution to the
problem has been learned. The local error strategy achieved statistically
significantly better results than the other strategies, even though the
magnitude of the differences is small.

On the 20-Multiplexer, the optimization metrics are considerably small-
er, as the problem cannot be solved with the given number of iterations.
Here, the HECS strategy takes the lead, but its result is not statistically
distinguishable from that of the meta-rules strategy.

In the Maze4 environment, the HECS strategy again achieves the best
results and is statistically indistinguishable from the meta-rules strategy.
The local error strategy requires considerably more steps, which is also
observable in the Woods14 environment. Since the achieved performance
metric of approximately 82 steps is close to the maximum of 100 steps,
the local error strategy seems to be entirely infeasible for environments
with long action chains. HECS needs the fewest steps, followed by the
global error strategy with a statistically insignificant difference.

In the second part of the evaluation, we compare how the different
strategies behave throughout the experiment, i.e., how the classification
accuracy and taken steps, respectively, and the applied rate of exploration
develop over time.

11-Multiplexer. Figure 4.3a shows the development of the classification
accuracy for all E/E strategies on the 11-Multiplexer. The meta-rules
strategy shows a distinct pattern related to the alternating periods of
exploration and exploitation. Since the number of explore iterations
is not adapted, exploration is applied even when perfect accuracy is
achieved during exploitation. The accuracy of the local error strategy is
continuously improving until perfect accuracy is reached. On the other
hand, both the global error and HECS strategies achieve a very low
accuracy at the beginning that suddenly increases after around 5,000
iterations, with the increase of HECS being considerably steeper.

Figure 4.3b shows the corresponding development of the exploration
rate. The graph mirrors the development of the accuracy, as the ex-



62 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

1.0
0.8 1" —@— Meta-rules =@— Meta-rules
== Global error 2 0.8 == Global error
Local error =V Local error
> 0.7 4 ECS ~ —e— HECS
g g 0.6
1 8
g 5
o -4
< 0.6 1 g 04
= 0.2 A 0' 'lv \V ‘U
0.5 0.0 1
r T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iteration Iteration
(a) Classification accuracy (b) Exploration rate

Figure 4.4: Experimental results obtained on the 20-Multiplexer problem. Results
are averages of 50 trials and shown as moving average over 400
iterations.

ploration rate of the local error strategy is continuously decreasing. In
contrast, the global error strategy first maintains an exploration rate of
1 which suddenly decreases and eventually falls to 0. The HECS strat-
egy behaves similarly, but its exploration rate drops even more quickly.
Overall, it seems that the HECS strategy is well suited to determine
the turning point when exploitation is called for, while the local error
strategy emphasizes a continuous increase in performance.

20-Multiplexer. Figure 4.4a shows the development of the classification
accuracy on the more complex 20-Multiplexer. This time, both the global
and the local error strategies achieve a continuous increase. The meta-
rules strategy is first achieving a worse accuracy but then catches up and
outperforms the error-based strategies — at least during its exploitation
periods. The HECS strategy depicts a similar behavior than with the 11-
Multiplexer problem. At first, the accuracy is not improving, but towards
the end, there is a steep increase, eventually leading to the best accuracy
in the field.

The development of the exploration rate shown in Figure 4.4b differs
from those observed for the 11-Multiplexer. Both error-based strategies
start with relatively low exploration rates of 0.2 to 0.3 — a consequence
of the small gain factors, which make them more insensitive to high
prediction errors. In addition, their exploration rates decrease very slowly.
The HECS strategy first applies an exploration rate of 1, which after
approximately 15,000 iterations begins decreasing to reach a value close
to 0 at the end, mirroring the development of the classification accuracy
quite well. However, the 20-Multiplexer is still incompletely solved at the
end of the experiment and requires additional exploration afterward to
generate a complete solution. In case the operation period of the system
is extended, HECS would not apply this and settle on a non-optimal
classification accuracy. Hence, the HECS strategy seems overfitted to the
specific scenario and the target metric used in the parameter optimization.

Maze4. The development of the steps required to reach the food is
shown in Figure 4.5a. The HECS and the meta-rules strategies reach



Steps

17.5 1.0 9
—@— Meta-rules b —@— Meta-rules
15.0 1 == Global error 2 0.8 - —l— Global error
Local error T Local error
12.5 - s —e— HECS
g 0.6
10.0 -2
‘ £ 04
7.5 —‘%
m 0.2
5.0
25 T T T T T 1 00 ] T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500
Run Run
(a) Number of Steps (b) Exploration rate

4.3 SINGLE-ENVIRONMENT EVALUATION

63

Figure 4.5: Experimental results obtained in the Maze4 environment. Results are
averages of 50 trials and shown as moving average over 50 runs. The
dashed line shows the length of the shortest path and the exploration
rate is defined as the percentage of exploration steps in a run.

a close to optimal solution very quickly and show a nearly identical
behavior, which aligns with the achieved optimization metrics. An os-
cillating development cannot be observed for the meta-rules strategy
in this visualization, as only n = 3 consecutive exploration runs are
employed, which are smoothed out by the moving average. The global
error strategy requires more runs to reach the optimal solution, while
the local error strategy has not achieved this even after 3,000 runs. An
inspection of the exploration rates in Figure 4.5b reveals that the HECS
and meta-rules strategy both apply a large amount of exploration at the
beginning and then quickly reduce it once a (close to) optimal solution
is reached. In contrast, the global error strategy reduces the exploration
rate immediately to a small amount, which prevents XCS from quickly
learning the solution. The bad performance of the local error strategy can
be explained similarly by its slow increase in the exploration rate.

We presume that this behavior is related to the specific multi-step
characteristics of the maze environment, which makes it challenging for
error-based strategies to assess the current capability of the classifier
population to solve the problem. In a maze environment, a positive
reward is obtained only once at the end of a run and only in case the
food is reached. On all other steps, an immediate reward of zero is
received. To learn the shortest paths to the food, the reward received
upon reaching the food is backpropagated to the preceding classifiers
with the Q-learning-like internal reinforcement mechanism of XCS using
the discount factor . For classifiers early in the path, i.e., those matching
positions distant from the food, the path must be repeatedly taken until
a small portion of the reward arrives at the classifier. Until then, these
classifiers keep a perfectly accurate payoff prediction of zero. However, if
most classifiers in the population have a prediction error of zero, the error-
based strategies are lured into believing that XCS solves the problem
quite well and therefore apply a low exploration rate.

3000



64 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

’ 1.0 4
=@— Meta-rules
80 A 2 08 == Global error
§ : Local error
. 60 —8— Meta-rules = 0.6 - —#— HECS
2 == Global error e
& Local error b
40 —e— HECS 5 0.4
=
.2
20 |0
—————————————— 0.0 i 4
T T T T T T T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Run Run
(@) Number of Steps (b) Exploration rate

Figure 4.6: Experimental results obtained in the Mazel4 environment. Results
are averages of 50 trials and shown as moving average over 50
runs. The dashed line shows the length of the shortest path and the
exploration rate is defined as the percentage of exploration steps in
a run.

Woods14. The steps taken in the Woods14 environment, as shown in
Figure 4.6a, and the corresponding exploration rates in Figure 4.6b depict
this multi-step phenomenon even more distinctly. The HECS strategy
and the global error strategy can derive a close-to-optimal solution.
Despite showing visible learning progress, the meta-rules strategy cannot
achieve a comparable result. On the other hand, the local error strategy
is incapable of evolving any viable solution, as it applies close to no
exploration. The low prediction error of fields distant from the food leads
to a self-reinforcing cycle of non-exploration: Initially, the prediction
error is zero, and no exploration is applied when the animat is placed
on such fields. However, at an early stage of learning, exploitation will
rarely lead to reaching the food, which means that the prediction error
for such fields remains low. The global error strategy seems more robust
to this problem, as the E/E decision before a run is also affected by the
more meaningful prediction errors of classifiers matching to fields close
to the food. When combined with the high gain factor determined in
the parameter optimization, the global error strategy seems sufficiently
sensitive to the global prediction error to apply an adequate amount of
exploration.

43.3 Interim Summary

The HECS strategy, with its accuracy-based exploration level and mecha-
nism to escape unsuccessful multi-step exploitation runs, achieved the
best, or close to the best, results in all environments in terms of the
optimization metric. However, the development of the exploration rate
always depicted a distinct turning point at which the exploration was
considerably reduced. This could indicate that its good performance
is related mainly to the tailored parameterization and not to the gen-
eral characteristics of the HECS strategy. The meta-rules strategy also



44 MULTI-ENVIRONMENT EVALUATION

achieved competitive results in most environments, but since its param-
eters n and m represent numbers of iterations, their parameterization
differs considerably between the environments. The global and local error
strategies struggle in our multi-step environments with sparse rewards.
However, the global error strategy can compensate for this with a high
gain factor G, increasing its sensitivity to the prediction error.

44 MULTI-ENVIRONMENT EVALUATION

To test if the performance of the strategies is solely related to their
parameters being tailored to each environment individually, we have
conducted an experiment in which the parameters of the strategies are
not optimized for each environment separately but for all at the same
time. Hence, the aim is to determine a “one-fits-all” parameterization of
each strategy that is suited to a wide range of different environments.

4.4.1 Parameter Study

In order to use irace for optimizing the parameters over all four envi-
ronments, an optimization metric is required that is comparable over all
environments. For the single-step environments, we left the calculation
of the target metric (according to Equation 4.7) unchanged. This is not
possible for the multi-step maze environments, as they have different
value ranges. To normalize them to the same value range used for the
single-step environments, we have divided the optimal value of the opti-
mization metric, i.e., 3.5 and 9.5 for Maze4 and Woods14, respectively, by
the achieved optimization metric calculated according to Equation 4.7.
With that, the target metric for the multi-step problems also lies in the
range of 0 to 1, with larger values being favorable. As computational
budget, irace has been given 3,150,000 CPU seconds, i.e., the sum of the
budgets used in the single-environment optimization.

The resulting parameter configurations are shown in Table 4.4. The
meta-rules strategy has very small values of n and m, while the global
error strategy has a high gain factor G. This is similar to the parameters
observed for the multi-step environments in the single-environment
optimization. However, the global error strategy’s window size W is
larger than in all cases of the single-environment optimization. The local
error and HECS strategy have mid-range parameter values compared to
the single-environment optimization.

4.4.2 Experimental Comparison

The basic behavior of the strategies, e.g., when and how quickly explo-
ration is decreased, has been very similar to the scenario with single-
environment parameter optimization, which is why we refrain from a
detailed discussion of graphs showing the development of the accuracy

65



66

EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

Table 4.4: Parameterization of the strategies when optimized for all environ-
ments concurrently.

Meta-rules Global Error Local Error HECS
n m ey G 144 G AEmax Mpy Lexploit
7 2 0.167 9541 263 2.156 0599 -2.347 0.984

or exploration. Instead, we restrict our evaluation to the achieved values
of the optimization metrics, which are shown in Table 4.5. On the 11-
Multiplexer, the local error strategy again achieved the best result, which
is only slightly worse than with the single-environment configuration.
The same holds for the global error strategy, which achieved the second-
best result. The HECS strategy previously achieved the second-best result
but now experienced a considerable drop in performance. Again, the
exploration rate had a distinct turning point when it switched to exploita-
tion, but in this case, it is too early, so XCS can no longer fully solve
this simple benchmark problem. Similarly, the meta-rules strategy also
reduces exploration too early. This is likely related to the small number
of exploration cycles n and the increase of exploitation once it performs
better than during exploration, which is overly optimistic.

On the 20-Multiplexer, the HECS strategy achieves the best optimiza-
tion metric, and overall the results look similar to the single-environment
case, just with reduced values. One exception is the global error strategy,
which achieves a value of approximately 0.5, which is the same value that
would result from random guessing. Due to its high gain factor G, it is
very sensitive to the global prediction error and applies pure exploration
the entire time. Hence, this parameterization of the global error strategy
seems unsuited to problems that are not completely solvable, as it applies
exploitation only once XCS has generated confident payoff predictions.

The relation of the strategies to each other remains unchanged in the
Maze4 environment as well. The HECS and meta-rules strategies achieve
the best and the second best results at a statistically indistinguishable
level, even though the meta-rules strategy maintains a higher explo-
ration rate than in the single-environment case. The optimization metrics
achieved by both error-based strategies are more than one step larger,
but for opposite reasons. The global error strategy applies exploration
for a longer time than in the single-environment case. In contrast, the
exploration rate of the local error strategy is close to zero the whole time.

In the Woods14 environment, the behavior of the strategies did not
change substantially compared to the single-environment optimization,
except that the difference between the results of the meta-rules strategy
and the HECS strategy is no longer statistically significant.



45 DYNAMIC ENVIRONMENT EVALUATION

Table 4.5: Average optimization metrics achieved with the parameterization
optimized for all environments concurrently. Bold font marks the
best results, an asterisk a statistically significant difference to the best
result. The values in the brackets show the difference to the metrics
achieved with the single-environment optimization.

Strategy 11-Multiplexer ~20-Multiplexer Maze4 Woods14
Meta-rules 0.795% 0.625% 4.62 21.37
(—0.149) (—0.052) (+0.32)  (+1.70)
Global Error 0.961x 0.503x 5.91x 16.50
(—0.001) (—0.150) (+1.13)  (+1.65)
Local Error 0.970 0.608x 8.67* 86.71x
(—0.002) (—0.031) (+1.65)  (+5.10)
HECS 0.892 0.679 4.44 15.66
(—0.077) (—0.012) (+0.19)  (+1.04)

4.4.3 Interim Summary

Even though the pattern that the HECS strategy seems to perform best
also holds in the multi-environment optimization at first glance, our re-
sults indicate that no “one-fits-all” parameter configuration exists for any
of the strategies. The HECS strategy still achieved the best result in three
environments, but it could no longer solve the simple 11-Multiplexer, as it
stopped exploration too early. The meta-rules strategy suffered from the
same problem but even more distinctively. This is likely related to its pa-
rameters n and m, representing numbers of iterations whose magnitudes
differ considerably between our single- and multi-step environments.
The same holds for the windows size W of the global error strategy.
Further, its high gain factor G made the global error strategy infeasible
for environments where the complete solution cannot be derived. In both
single-step environments, the local error strategy has been affected by
only a slight decrease in performance, indicating that it could potentially
be the most generally applicable E/E strategy if it would not fail in
multi-step environments with sparse rewards.

45 DYNAMIC ENVIRONMENT EVALUATION

For true autonomy and adaptivity, E/E strategies must be able to react
to environmental changes by applying more exploration to update the
evolved solution. So far, all considered environments have been static,
and the strategies could start with a high level of exploration and then
continuously decrease it. In the scenarios evaluated in this section, the
environments undergo a distinct change during the experiment, which
forces the strategies to increase exploration to update the classifier popu-
lation. The parameters are optimized for each environment separately to

67



68 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

RRRRRRRR RRRRRR RR
R..R..®R R..R...R
RR. . R. . R RR. .R. . R
RR.R R R RR.R.R R
R. .. .. R R. .. .. R
RR.R.. .R — RR.R.. .R
R....R.R R....R®R
RRRRRR RR RRRRRR RR
3,000 runs 1,500 runs

Figure 4.7: The dynamic Maze4 environment. After 3,000 runs, the position
of the target field ('F’) changes and the experiment continues for
another 1,500 runs.

test whether the strategies are, in principle, capable of tackling environ-
mental dynamics. This also allows for a comparison with the parameters
found in the single-environment optimization to identify the parameter
changes that make a strategy more adaptive.

4.5.1 Environmental Changes

To facilitate a comparison with the single-benchmark optimization sce-
nario, the first part of each experiment is identical to the single-benchmark
case, followed by a distinct change in the environment and additional iter-
ations to investigate if XCS can react to the change. For both multiplexers,
this means that after the initial 30,000 iterations, the two leftmost index
bits switch their value for the index calculation. If both bits have the
same value, this does not represent a change, but if they have different
values, the classifiers that previously matched are no longer accurate.
Since the multiplexer bitstrings are randomly sampled with a uniform
distribution, 50% of XCS’ rule base becomes obsolete after the change,
assuming it had previously derived the optimal solution. Therefore, we
have increased the number of iterations per experiment by 50%, so each
experiment ends after 45,000 iterations.

In the Maze4 environment, the food has been moved from the upper
right to the lower right corner, as shown in Figure 4.7. In addition, the
rock on the right side has been moved one position to the left to avoid
aliasing states, i.e., different fields that lead to the same sensory input
making them indistinguishable for XCS. After the change, the average
length of the shortest path to the food is approximately 3.58 steps and
thus close to the original length of 3.5 steps. In the Woods14 environment,
the food has been moved to the other end of the path as shown in
Figure 4.8, and the original field of the food, which became empty, has
been switched with a neighboring rock to avoid aliasing. In both multi-
step environments, the length of the experiments has been extended by
50 % as well since XCS does not have to derive a completely new solution.



45 DYNAMIC ENVIRONMENT EVALUATION

RRRRRRRRRRRRRRR
RRR .. .RRRR.RR.R
RR.RRR.RR.R.R.R
RR . RRR.R.RRR . RR 4,000 runs
RRERRR.RR.RRRRR
RRRRRRR..RRRRRR
RRRRRRRRRRRRRRR

!

RRRRRRRRRRRRR R R
RRR. . .RRRR.RR®R
RR.RRR.RR.R.R . R
RR.RRR.R.RRR . R R 2,000 runs
R.RRRR.RR.RRRRR
RRRRRRR..RRRRRR
RRRRRRRRRRRRR R R

Figure 4.8: The dynamic Woods14 environment. After 4,000 runs, the position
of the target field ('F’) changes and the experiment continues for
another 2,000 runs.

4.5.2  Parameter Study

For calculating the optimization metric, the periods before and after the
environmental change have been assigned equal weight, i.e., the metric
is calculated separately for both periods according to Equation 4.7, and
the average of both values represents the final value of the optimiza-
tion metric. Since the length of the experiments has been extended by
50 %, the computational budget of irace has been increased by the same
amount, such that 225,000 CPU seconds have been accounted for the
11-Multiplexer, 900,000 CPU seconds for the 20-Multiplexer and Maze4,
and 2,700,000 CPU seconds for Woods14.

The results of the parameter optimization are shown in Table 4.6
along with the parameter changes when compared to the static single-
environment optimization. For the meta-rules strategy, the fixed number
of exploration runs # is increased in all cases, which seems like an intu-
itive approach to cope with environmental dynamics. The initial number
of exploitation runs m is also increased, but in most cases not as much as
the number of exploration runs. The exploration rate e, is substantially
increased for the 11-Multiplexer and the Maze4 environment, nearly un-
changed for the 20-Multiplexer, and reduced for Woods14. A reduction of
e seems counterintuitive for dynamic environments, as large changes to
m are necessary to quickly increase the level of exploration, even though
this could be offset by the higher number of exploration cycles n.

To make the global error strategy more sensitive to environmental
changes, the gain factor G could be increased to make it more sensitive
to the prediction error, and the window size W could be reduced to

69



70 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

Table 4.6: Parameterization of the strategies when optimized for each dynamic
environment separately. Given in brackets is the difference to the

parameters optimized for the static environments.

Meta-rules Global Error Local Error HECS

n m er G %% G AEmax  Mpa  Lexpioit

11-Multipl. 395 18  0.647 5.044 196 2.982 0.289 —9.995 0.985
(4283) (+1)(+0.496) (—1.863) (—52) (—0.010) (+40.276)(—1.659) (—0.003)
20-Multipl. 618 84  0.196 2122 150 3.850 0.770 —3.885 0.970
(+151) (+48) (—0.031) (+1.467) (+35) (+3.166) (40.390)(—1.698) (—0.035)

Maze4 21 29  0.790 1.113 53 7.524 0916 —6.400 0.993
(+18) (+28) (+0.556) (—0.340) (—81) (—0.468) (+0.116)(+3.577) (—0.006)

Woods14 22 1 0338 9.673 31 9.619 0220 4413  1.000
(+4) (£0)(—0.220) (4+0.405) (—68) (4+0.398) (—0.307)(+4.800) (£0.000)

make the estimate of the prediction error react more quickly. Of all four
environments, only the Woods14 environment shows such parameter
changes. In the 11-Multiplexer and the Maze4 environment, W is reduced
while, at the same time, G is decreased. The opposite happens for the
20-Multiplexer, where both G and W are increased.

Since the E/E decision of the local error strategy solely depends on
the prediction errors of the classifiers matching the current input, it
is the only strategy with no internal state or momentum. As such, it
has the potential to cope with environmental dynamics with the same
parameterization as in the static case. And indeed, in the 11-Multiplexer,
virtually no change of the gain factor G is observed, and in the Maze4
and Woods14 environment only small changes. On the other hand, a
rather drastic increase is seen on the 20-Multiplexer, where the gain
factor for the static case has been relatively small. This is likely related to
the inability to derive a complete solution for the 20-Multiplexer, which,
in combination with the chosen optimization metric, forced the local
error strategy to apply only a small amount of exploration in the static
environment, which no longer seems to be optimal for the dynamic case
with its additional iterations.

The intuitive approaches to make the HECS strategy more suitable
for dynamic environments encompass a reduction of Lyt to increase
the minimum base amount of exploration, a reduction of Mpy to in-
crease the sensitivity to the prediction error, and an increase of AE,;;
to increase the magnitude of changes to the explorer level and react to
environmental changes more forcefully. In all four environments, Leyp1oit
is nearly unchanged, showing that it is still possible to reach close to
pure exploitation. For both multiplexers, Mpy is reduced, and AE,,;y is
increased. The latter is also the case for the Maze4 environment, but Mpy
is increased here. For the Woods14 environment, AE,,;» and Mp,4 devel-
oped in the opposite direction as predicted. One possible explanation
for this is that the primary source of exploration in such a multi-step



45 DYNAMIC ENVIRONMENT EVALUATION

Table 4.7: Average optimization metrics achieved with the parameterization
optimized for each dynamic environment separately. Bold font marks
the best results, an asterisk a statistically significant difference to the
best result. The values in the brackets show the difference to the
metrics achieved in the static environments.

Strategy 11-Multiplexer ~20-Multiplexer Maze4 Woods14
Meta-rules 0.940% 0.716% 5.15% 16.72x
(—0.004) (40.039) (+0.85) (—2.95)
Global Error 0.961x 0.696x 5.33x% 15.70
(—0.001) (40.043) (+0.55)  (+0.85)
Local Error 0.975 0.680% 6.46% 85.10%
(40.003) (40.041) (—0.56) (+3.49)
HECS 0.956x 0.741 4.42 13.60
(—0.013) (40.050) (+0.17)  (-1.02)

environment with a long chain of actions is not the accuracy-induced but
the reward-induced explorer level, which is used to escape unsuccessful
exploitation trials and is not influenced by the optimized parameters.

4.5.3 Experimental Comparison

The achieved optimization metrics are shown in Table 4.7, along with
the difference to the results achieved in the static single-environment
optimization case. Even though the metrics achieved in the static environ-
ments are not directly comparable to those of the dynamic environments,
the observed difference still allows for assessing which strategies cope
better with dynamics. Overall, the results show a pattern similar to the
static case, as the local error strategy performs best on the 11-Multiplexer
and HECS on the other benchmarks. Further, no strategy has been af-
fected by a considerable drop in the optimization metric, indicating that
all strategies are, in principle, able to sustain their performance when
faced with environmental dynamics — at least with optimized param-
eters. On the 11-Multiplexer, all strategies observed a (slight) decrease
in the target metric, except for the local error strategy, which improved
its achieved optimization metric even further. On the 20-Multiplexer, all
strategies improved when compared to the static case, which can be ex-
plained by the inability to fully solve the benchmark in the static scenario
and the additional iterations of the dynamic scenario providing further
learning opportunities. In the Maze4 environment, the performance of
all strategies decreased except for the local error strategy. In the Woods14
environment, results are mixed, as the Meta-rules and HECS strategy
showed improvements over the static case. In contrast, both error-based
strategies have been affected by a decrease in the optimization metric.

71



72 EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXI’LOIT STRATEGIES

1.0 1.0
- 9 -
0.9 gg 0.8
% 0.8 —@— Meta-rules = 0.6 —@— Meta-rules
£ =l— Global error S =—ll— Global error
5 0.7 - =%— Local error = =%— Local error
i —e— HECS 5 047
)
0.6 [ — & 0.2
0.5 0.0 F
T T T T T T T T T
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Iteration Iteration
(a) Classification accuracy (b) Exploration rate

Figure 4.9: Experimental results obtained on the dynamic 11-Multiplexer prob-
lem. Results are averages of 50 trials and shown as a moving average
over 400 iterations.

While the results of the Meta-rules and HECS strategy are mixed,
the global and local error strategies show a more distinct pattern in
the presence of environmental dynamics. The global error strategy has
improved its performance only on the 20-Multiplexer, while it showed
decreasing or close to constant performance in all other environments.
On the other hand, the local error strategy improved in all environments
except Woods14, where it still not yields reasonable results. On the 11-
Multiplexer and Maze4, it even was the only strategy to accomplish
an improvement. Overall, the comparison between the local and global
error strategy could indicate that local E/E decisions are better suited to
cope with environmental dynamics, presumably because only with local
decisions is it possible to distinguish between environmental niches that
changed and those that did not and thus do not require exploration.

This can be well observed in Figures 4.9 and 4.10, showing the de-
velopment of the experiments for the 11-Multiplexer and the Maze4
environment, respectively. After the change of the 11-Multiplexer at it-
eration 30,000, the local error strategy increases the exploration rate to
a value just above 0.5, corresponding to the fraction of environmental
niches that undergo a change and require new rules. All other strate-
gies have applied a higher exploration rate. This is also reflected in the
classification accuracy, where the local error strategy experienced the
smallest drop in accuracy after the change. In the Maze4 environment,
the global error strategy requires considerably fewer steps than the local
error strategy before the food is moved at run 3,000. However, after this
point, both strategies achieve very similar results, showing that, relative
to the local error strategy, the global error strategy struggles to incorpo-
rate the environmental change. Detailed results of the 20-Multiplexer and
Woods14 environments are not shown, as all strategies show a behavior
very similar to the static environment scenario — both before and after
the change.



Steps

4.6 SUMMARY AND DEPLOYMENT GUIDELINES

73

—@— Meta-rules 1.0 —@— Meta-rules
== Global error © —l— Global error
=¥ Local error = 0.8 =%— Local error
—e— HECS ~ —&— HECS

S

g

<

g

<

2,

"

[€a]

T T T T T T
1000 2000 3000 4000 0 1000 2000 3000 4000

Run Run
(a) Number of Steps (b) Exploration rate

Figure 4.10: Experimental results obtained in the dynamic Maze4 environment.
Results are averages of 50 trials and shown as a moving average
over 50 runs. The dashed line shows the length of the shortest path
and the exploration rate is defined as the percentage of exploration
steps in a run.

454 Interim Summary

Our evaluation in environments that undergo a distinct change revealed
that all strategies are able to cope with such environmental changes,
at least when their parameters are specifically optimized for such a
case. Intuitively, all strategies except the local error strategy have several
parameters which could be adjusted to increase adaptivity. However, our
parameter optimization revealed that not all parameters always develop
in the predicted direction, which could indicate that manually setting
parameters for dynamic environments can be challenging.

Further, our evaluation results indicate that local E/E strategies can
have an advantage over global approaches when not all niches of the
environment are affected by changes simultaneously. With local decisions,
exploration can be specifically applied to niches for which the classifiers
must be updated, while exploitation can be kept in unchanged niches,
which preserves operational performance.

46 SUMMARY AND DEPLOYMENT GUIDELINES

We have evaluated four different E/E strategies. The HECS strategy, with
its non-linear and accuracy-based working mechanism, has achieved
the best results in most cases, at least according to the target metric
employed during parameter optimization. However, it often achieved
this with a distinct turning point at which a sudden switch from full
exploration to exploitation is made. In the case of a non-optimal param-
eter configuration, it was observed that this could lead to XCS settling
on an unnecessarily low level of performance, even in a simple learning
environment. Overall, the HECS strategy seems to be rather sensitive
to non-optimal parameters. The same holds for the meta-rules strategy,
whose main parameters heavily depend on the number of iterations



74

EXPERIMENTAL COMPARISON OF AUTONOMOUS EXPLORE/EXPLOIT STRATEGIES

that XCS performs in the problem environment. Its oscillating behavior
is a result of a fixed number of exploration iterations. The shift from
exploration to exploitation, once the latter achieves better performance,
can be overly optimistic if parameterized inappropriately.

Both the global and local error-based strategies are based on the error of
the payoff predictions of the classifiers in XCS, which results in a tendency
of decreasing exploration more steadily than the HECS and meta-rules
strategies, especially in the case of the local error strategy. However,
taking the error as the decision criterion reaches its limitation in multi-
step environments with sparse rewards. While the global error strategy
can compensate for this with an appropriate parameterization, the local
error strategy cannot evolve any feasible solution in an environment that
requires learning a long chain of actions. In the face of environmental
dynamics, on the other hand, the local error strategy demonstrated that
it applies exploration only in states that have changed — an ability unique
to local E/E approaches.

Even though our instrumental study has investigated only artificial
learning problems commonly used in LCS research, it is still possible to
derive preliminary guidelines for deploying E/E strategies in real-world
problem environments. The key findings relevant for XCS practitioners
concern the strategy selection and which factors must be accounted for
when configuring the strategies” parameters.

Parameterization. In terms of the parameterization of the strategies, a
system designer seems to need to consider three major factors, namely
(a) if XCS is, in principle, able to solve the problem environment in
the envisioned time frame completely, (b) if the environment is static
or undergoes changes, and (c) if the environment is a single-step or a
multi-step environment.

Strategy Selection. Overall, we deem the local error-based strategy
most promising for XCS practitioners. It results in a steady shift from
exploration to exploitation and is, at least in single-step environments,
resistant to the problem of stopping exploration too early, as it is the case
for the HECS strategy. Furthermore, of all evaluated strategies, it is the
easiest to parameterize, as the sensitivity to the prediction error is the
only parameter and can be the same for static and dynamic environments.
Further, local E/E strategies have the ability to apply exploration only
in states where it is necessary, which is beneficial especially in dynamic
environments. This property could also be helpful in environments with
state imbalances [77], where exploration in frequently occurring states
can be reduced earlier. However, all advantages mentioned above only
apply to single-step problems. The local error-based strategy is not suited
for multi-step environments with sparse rewards, where the prediction
error in states distant from the target state is initially not representative
of the learning progress of XCS.



4.7 CONCLUSION AND FUTURE WORK

4.7 CONCLUSION AND FUTURE WORK

This chapter presented an experimental evaluation of four different E/E
strategies for XCS both in single- and multi-step environments. A com-
parison of a local error-based strategy with three global approaches has
yielded distinct differences in their behavior and operational performance
in different environments, thereby providing new insights for the de-
velopment of E/E strategies that are necessary to make XCS suited for
deployment in autonomous self-aware systems. In addition, a systematic
automated parameter optimization has been conducted both in static and
dynamic environments to find reasonable parameter configurations and
investigate the parameter sensitivity of the evaluated strategies. Even
though we have focused on XCS, our findings could also be represen-
tative of other variants of Michigan-style LCSs as long as they use an
accuracy-based fitness evaluation.

Since we deem the local error-based strategy as the most promis-
ing, future work could try to equip it with escape mechanisms tailored
specifically to multi-step environments with sparse rewards, akin to the
approach used in the HECS strategy. For instance, the local error-based
E/E decision could be considered only in states where the prediction
error already has a representative meaning. In terms of improving the
universality and reliability of all evaluated strategies, their parameter
sensitivity could be reduced by adapting the parameters at run-time to
suitable values, e.g., by deriving them from performance or population
state metrics [52]. Further, our evaluation has not considered the action
selection during exploration, as all evaluated strategies rely on random
action selection. However, a directed action selection could improve ex-
ploration efficiency and, therefore, needs to be investigated by future
work.

75






SAFETY GUARANTEES THROUGH FORBIDDEN
CLASSIFIERS

Concepts of computational self-awareness are increasingly being applied
when designing self-adaptive Cyber-Physical Systems (CPSs). Such sys-
tems depict several distinct challenges, of which many have yet to be
addressed [9]. One of the most important ones is to design CPSs that
depict a high degree of autonomy and adaptivity but still exhibit safety
guarantees to prevent catastrophes during operation. Since a CPS has
a real-world impact, it can permanently harm itself, its environment,
or living beings in its surrounding. However, as online learning mecha-
nisms are inherently explorative, a self-aware CPS might execute such
harmful actions purely out of curiosity. Proper means to prevent such
safety-critical events are part of current research in the field of machine
learning and artificial intelligence [4].

When XCS and other Reinforcement Learning (RL) techniques are
used to implement self-* properties, they operate without supervision, as
continuous runtime monitoring is infeasible or at least undesired. Since
detailed apriori knowledge of the operational environment is lacking,
the learning techniques must be inherently adaptive to adjust to the
environmental characteristics. In the RL paradigm, the system learns
which behavior is beneficial by trying different actions and observing
the feedback from the environment. As such, RL techniques are prone
to violate safety requirements during operation since adapting to the
environment encompasses an exploration of the action space. Especially
when Explore/Exploit (E/E) strategies with a minimum amount of explo-
ration are employed, such as meta-rules (cf. Chapter 4), safety violations
during the system’s operation are inevitable.

Existing work in the field of safe RL often relies on an additional
subsystem external to the learning algorithm. The subsystem is equipped
with pre-defined knowledge and constantly monitors the situation and
the learner’s behavior to intervene whenever harmful actions are about to
be executed [32]. In this chapter, we focus specifically on XCS and propose
an approach in which the safety-critical knowledge is directly embedded
into its knowledge base, making an external monitor superfluous. To
achieve this, we use the interpretability of the rules inside XCS and
introduce the concept of forbidden classifiers, which are rules that do
not propose an action but prevent it from being executed in safety-
critical situations. So far, the introduction of safety guarantees has rarely

77



78

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

been discussed in the context of Learning Classifier Systems (LCSs) or
XCS specifically. To the best of our knowledge, this work is among the
first to leverage the interpretability of XCS’ rule base by systematically
introducing hand-crafted classifiers.

Parts of this chapter originally appeared at the EvoApplications confer-
ence 2022 [38] and received a best paper award nomination. An invited
extension is currently under review by the Springer Nature Computer
Science journal [35]. During his time as a student research assistant,
Mathis Brede contributed to this work by extending the C++ XCS library
developed in his Bachelor’s thesis with forbidden classifiers and imple-
menting the experimental setup. In summary, this chapter contributes to
the existing body of research in the following aspects:

¢ Forbidden classifiers integrate safety-critical domain knowledge
directly into the classifier population and spare XCS from learning
this knowledge through interactions with an external shield. To the
best of our knowledge, the proposed concept of forbidden classifiers
is among the first to systematically insert domain knowledge into
XCS’s classifier population.

* We experimentally quantify the advantage of forbidden classifiers
over a safety monitor external to XCS. It is shown that XCS with
forbidden classifiers can evolve a problem solution in a shorter time,
with a smaller classifier population and a lower computational
burden.

¢ In addition, a supervised classification task is evaluated, demon-
strating that, even in the absence of safety requirements, XCS ben-
efits from domain knowledge that is manually injected through
forbidden classifiers.

The chapter continues with Section 5.1 by outlining related work in
the field of safe RL. The algorithmic modifications necessary for imple-
menting forbidden classifiers in XCS are presented in Section 5.2. Sec-
tion 5.3 describes our experimental setup. The first results are discussed
in Section 5.4, where the impact of forbidden classifiers on the learning
mechanism of XCS is investigated for a simple but well-interpretable
multiplexer problem. The main experiment is presented and discussed
in Section 5.5, comparing the use of forbidden classifiers to XCS with
an external safety monitor in three different maze navigation environ-
ments. As last experiment, the potential benefits forbidden classifiers
offer in classifying a dataset from the UCI repository are investigated in
Section 5.6. Finally, Section 5.7 concludes the article and outlines future
work.

51 RELATED WORK

According to a survey by Garcia and Ferndndez [32], the approaches to in-
troduce safety constraints into RL techniques can be categorized either as



5.1 RELATED WORK

reward _
) » Reinforcement
Environment <
— Learner
¥ observation
action
A\ 4
_ > Shield
safe action |

Figure 5.1: Shielded reinforcement learner [3].

a modification of the optimization criterion or of the exploration process.
Techniques from the first category do not solely focus on maximizing the
payoff received from the environment, as most standard RL algorithms
do, but also take into account some measure of risk, e.g., the variance
of the received payoff. However, these approaches are often overly pes-
simistic, leading to non-optimal problem solutions. Further, they only
improve the safety level if reaching a catastrophic state increases the risk
measure, which is not necessarily the case for arbitrary problem domains.
Further, such approaches only reduce the probability of the occurrence
of risky situations but do not give any strict guarantees.

Entirely avoiding catastrophic states from the beginning of operation is
only possible if external knowledge is used. Otherwise, the only way for a
learning system to identify harmful actions is to try them out at least once.
Techniques that belong to the second category of safe RL approaches and
modify the exploration process make use of this. The external knowledge
can either be inserted into the system via (1) a pre-deployment learning
phase with manually created samples and policies or (2) through teacher
advice at runtime. The first approach does not require an additional
subsystem to be deployed in the final system. However, it cannot give
strict guarantees because the exploratory nature of online learning can
still lead to catastrophic states during operation. On the other hand, a
constantly active teacher can give such strict guarantees, at least if the
teacher-learner relationship is designed such that safety-critical advice is
mandatory for the learner. The teacher can either be formally specified
by the system designer, a human in the loop, or even a learner by itself
that was trained to imitate human intervention [88].

Closely related to the concept of teacher-advised RL is the approach of
shielded learning, as proposed by Alshiekh et al. [3] and shown in Fig-
ure 5.1. The shield constantly monitors the state of the environment and
the action that the learner is proposing. Whenever an action is proposed
that is considered harmful in the current state of the environment, the
shield overrides the action to prevent catastrophic consequences. In [3],
a formal method with proven correctness and minimal interference is
presented to synthesize a shield for Markovian Decision Problems (MDP)
based on safety requirements given as temporal logic specification. Exper-

79



80

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

C @ p & F Prediction Array
#011 —-01 43 .01 .99 PA
#o##—11 14 .05 .52
001#—01 27 24 .03 pm=ppi
#0#l —11 18 .02 .92
0##1—-01 - - -
00#1—00 01 .01 .01

Match Set
[M]

Covering

Figure 5.2: The same situation as already shown in Figure 3.2, but with a for-
bidden classifier (marked red) that is preventing the selection of
the action 01. 0,,;, is still set to 2, so a new classifier is created via
covering for one of the actions that have not yet been part of PA.

Action 00 01 10 11
Pred. 1.0 null null 16.6

imental results indicate that a shield not only provides safety guarantees
but also improves the speed of learning.

For XCS specifically, Tomforde et al. [104] proposed a teacher-like
approach in which newly created classifiers must pass a safety check in a
simulation environment before being inserted into the population. The
functionality of XCS is split into two layers. The first layer is responsible
for selecting an action based on the current situation and the classifiers
present in the population. It only performs parameter updates and no
generation of new classifiers. This does not only imply the absence
of a Genetic Algorithm (GA) but also of a covering mechanism. If no
classifiers match the current situation, a classifier is not randomly created
via covering. Instead, the action of a classifier whose condition is similar
to the current input is selected. The similarity between a condition and
the input is measured with a configurable distance metric. The generation
of new rules occurs in the second layer, where the classifiers generated
by a GA are evaluated in a simulation before being inserted into the
population. Since the simulated environment is assumed to be sufficiently
accurate, it is possible to detect classifiers that violate safety requirements
and discard them before inserting them into the population.

In contrast to the described approaches, our method differs in how
the safety-critical knowledge integrates into the system. While both
teacher and shielding approaches require an additional subsystem that is
external to the learning algorithm and constantly monitors it, we insert
the knowledge directly into the learning base of XCS with manually
created rules and ensure the safety guarantees through minor algorithmic
modifications without the need to learn from interactions with an external
subsystem.

5.2 FORBIDDEN CLASSIFIERS

To prevent XCS from taking catastrophic actions, we leverage the inter-
pretability of the classifiers given by their condition—action rule structure
and propose the use of rules that forbid an action in certain situations
instead of proposing it. Consequently, we term this kind of XCS rules



5.2 FORBIDDEN CLASSIFIERS

forbidden classifiers. Such classifiers model situations where a specific
action is harmful or has catastrophic consequences and should not be
executed. In order to extend XCS with the ability to exhibit safety guaran-
tees via the integration of forbidden classifiers, the following algorithmic
modifications have been employed:

1. Forbidden classifiers are inserted into the classifier population
[P] upon initialization of XCS. The numerosity n of a forbidden
classifier is set to the constant value of 1, representing the minimal
value that the numerosity can take. The remaining parameters of a
forbidden classifier, e.g., the payoff prediction p, are of no further
relevance due to the prohibitive nature of the classifier.

2. Whenever a forbidden classifier is part of the match set [M], the
action that it forbids is excluded from the prediction array PA,
regardless of other classifiers in [M] that might propose it. This
assures that in safety-critical situations, the action of a forbidden
classifier is never considered during action selection. If less than
Omna actions are present in the prediction array PA, covering is
applied until either 0,,,, actions are part of PA, as shown in the
example given in Figure 5.2, or no additional actions are available.

3. Forbidden classifiers do not participate in the GA. Considering that
their sole purpose is to prevent the execution of harmful actions,
there exists no need to evolve new classifiers from them. In the
most common variant of XCS, participation in the GA is prevented
by design, as the GA works on the action set [A] that forbidden
classifiers are never part of.

4. XCS keeps a list of all forbidden classifiers to check if an offspring
classifier generated by the GA is subsumed by one of the forbid-
den classifiers. If this is the case, it is not inserted into [P]. This
additional subsumption mechanism is necessary because the exist-
ing subsumption mechanisms work solely on the action set [A], in
which a classifier that is subsumed by a forbidden classifier will
never be present. This subsumption must be checked only when the
GA has mutated the action of the offspring. The GA operates on the
action set, in which all classifiers have the same non-forbidden ac-
tion. It assures that the generated offspring still matches the current
input, which guarantees that the offspring always matches at least
one non-forbidden state/action pair as long as its action remains
unchanged.

It is noteworthy that this subsumption mechanism is not able to
detect if a combination of multiple forbidden classifiers overlays
an offspring classifier. Possible solutions to this problem, such as
an enumeration of all matching states of the offspring classifier
followed by a comparison with the matching states of all forbidden
classifiers, are potentially compute-intensive. Hence, we refrained

81



82

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

from their usage. If an offspring is inserted into the classifier pop-
ulation that is entirely overlaid by forbidden classifiers, its action
is never chosen for execution and eventually gets deleted. Since
its experience exp stays at zero, its deletion vote will remain low,
meaning it might take some time to get deleted. During this time,
it occupies space in the classifier population, which could instead
be used for classifiers that could contribute to the problem solution.
As such, the unnecessary insertion of offspring classifiers that are
fully overlaid by forbidden classifiers does not have any direct
detrimental effects, but it could make the learning mechanism of
XCS less efficient.

5. Forbidden classifiers are made transparent to the deletion mecha-
nism, i.e., they do not give a deletion vote during the roulette-wheel
selection. Due to their non-participation in the selection, forbidden
classifiers are never deleted from the population, preserving the
safety guarantees they represent.

Overall, forbidden classifiers can be characterized as static and passive,
as they are never deleted, do not participate in the GA, and their action is
never selected for execution. As such, the concept of forbidden classifiers
can be incorporated not only into XCS but into all learning classifier
systems that depict a condition—action structure, e.g., into XCSR with
its interval-based real-valued conditions [97] or XCS with code-fragment
based conditions [47]. The classifiers required to fulfill given safety guar-
antees can either be created manually by the system designer using
domain knowledge or even automatically, e.g., using the approach for
shield synthesis proposed in [3]. However, the latter approach requires
an MDP model of the environment, which for some environments is not
necessary, as the required forbidden classifiers can easily be handcrafted.
In any case, it must be assured that no forbidden classifier is entered
incorrectly and that in all situations, at least one action remains for XCS
to execute.

Even though using static rules based on domain knowledge to prevent
harmful actions from being executed is relatively straightforward and
closely related to the concept of an external shield, we still argue that it
is favorable to internalize such knowledge into the learning mechanism.
With an external shield, the safety-critical knowledge embedded into
it must still be internalized through learning, potentially wasting time
and computing resources. By manually inserting correctly generalized
forbidden classifiers, XCS is relieved from the burden of finding adequate
generalizations, at least in the safety-critical niches. If adequate gener-
alizations of the forbidden states are straightforwardly derived from
the safety requirements, the forbidden classifiers can be easily specified
by hand. However, the problem of determining the minimal number of
forbidden classifiers that cover all forbidden states is equivalent to the
minimization of two-level Boolean logic minimization, which is generally
an NP-complete task [105]. If proper generalizations cannot be derived



5.3 EXPERIMENTAL SETUP

by hand, one of the well-researched optimization heuristics, e.g., from
the ESPRESSO family [12], could be employed to find close to a minimal
number of forbidden classifiers in a reasonable amount of time. Thus,
forbidden classifiers promise to incorporate the safety guarantees into
the classifier population minimally intrusively without “distracting” XCS
from the actual problem-solving.

5.3 EXPERIMENTAL SETUP

In order to investigate if forbidden classifiers can hold this promise, our
experimental evaluation is mainly guided by two questions:

1. How do forbidden classifiers impact the learning process of XCS,
especially that of the GA?

2. Compared to the shielding approach, does the insertion of forbid-
den classifiers provide XCS with any advantage?

Tackling question (1), we first consider the 6-Multiplexer problem in
Section 5.4. The 6-Multiplexer is a trivial binary classification problem
that does not require any safety guarantees. However, it allows for inves-
tigating the effects of forbidden classifiers on the learning mechanisms
inside XCS, as the classifier population can easily be interpreted and eval-
uated because of the small input and action space of the 6-Multiplexer.

The main part of our experimental evaluation concerns question (2)
and takes place in Section 5.5, where the use of forbidden classifiers
is evaluated in three different maze environments, in which XCS is
navigating a robot to find a target field with a minimal number of steps.
As part of such robot navigation tasks, it must, under all circumstances,
be avoided that the robot crashes into an obstacle to avoid damage to
itself and its environment. We guarantee this by inserting appropriate
forbidden classifiers and compare our approach to XCS with an external
shield.

The shielding approach presented in [3] assumes the learner can up-
date multiple policies in parallel. Since no straightforward way exists
to implement this for XCS, different approaches to realizing an external
shield are thinkable. While parameter updates on multiple action sets in
parallel are possible, it is unclear whether the GA executed on one action
set should insert its offspring classifiers into the other action sets in case
they match. If so, the order in which the GA is executed on the different
action sets might affect the learning progress. In addition to such open
questions, a required modification of XCS eradicates the main advantage
of an external shield, which is its agnosticism to the learning algorithm.
Hence, we opted for a simpler shield that provides the smallest, or most
negative, reward possible in the environment every time XCS chooses
an unsafe action. Afterward, XCS is called again until a valid action is
chosen, i.e., all parameter updates are fully sequential, and the shield
cannot force XCS to select a particular action. Since parameter updates

83



84

—_

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

occur both during exploration and exploitation, it is guaranteed that,
eventually, a valid action is selected by XCS on its own. With the addi-
tional XCS invocations imposed by the shield, XCS is given additional
learning opportunities to internalize the knowledge embedded in the
shield without requiring any modifications to XCS.

As an additional use case outside of safety-critical RL applications, we
investigate the classification of a dataset from the UCI repository [28]
in Section 5.6. In this case, the injected forbidden classifiers do not
implement safety guarantees but represent human knowledge inserted to
bootstrap the classifier population and improve its (initial) classification
accuracy.

For our experiments, we have employed our C++ implementation’
of XCS, which follows the algorithmic specification given in [17]. Just
as in Chapter 4, the specify operator of Lanzi [56] has been employed
in the maze environments to tackle overgeneralization. The maximum
population sizes N, the discount factor -y, and the specify parameters
nsp and ps, have been tailored to each environment. Apart from that, a
common parameter configuration of XCS has been used.? Explore and
exploit trials have been strictly alternating. Since the operating perfor-
mance during exploration is not allowing any conclusions about the state
of learning, only the performance during exploitation trials is reported.
To obtain meaningful results, each experiment has been repeated 100
times with different random seeds, with the problem environments and
XCS using separate random number generators. Execution times have
been measured with the std: :clock utility and performance and pop-
ulation tracking disabled. All experiments have been conducted on an
off-the-shelf desktop computer with an Intel i7-7700K CPU, 16 GiB RAM,
and Debian Linux 11. When measuring execution times, no other user
programs have been running in parallel.

54 EXPERIMENTAL EVALUATION: 6-MULTIPLEXER

The 6-Multiplexer is the smallest and simplest representative of the mul-
tiplexer problem environments, which have been described in Section 4.2.
Its simplicity allows for an effortless inspection of the evolved classifier
populations. For the 6-Multiplexer, the optimal population consists of
16 classifiers, each with three bits specified — the two index bits and the
one they point to. Overall, this results in eight classifiers that propose the
correct action and eight classifiers proposing the wrong action, which
must also be present in the population since XCS learns to predict the
reward for all state/action pairs accurately.

To investigate the effect of forbidden classifiers on the learning mecha-
nism of XCS, we have initialized the population with the two forbidden

https://git.uni-paderborn.de/xcs/xcs-safety, accessed 31.03.2023

That is =02 a=01 v=5 u=004 6=01 p;=10, ¢, =0, f;y=0.01,
Py =05, ¢g=10, x =0.8, 054 =25, 05,5 =20, 0, =20, DoGaSubsumption = True,
DoActionSetSubsumption = False.


https://git.uni-paderborn.de/xcs/xcs-safety

Accuracy

5.4 EXPERIMENTAL EVALUATION: 6-MULTIPLEXER

85

120
1.0 ) & XCS
0o g 1% —§— XCS w/ Forb. CL.
’ @80
=1
0.8 2 60
=
0.7 1 & 40
0.6 —— XCs [y
: —$— XCS w/ Forb. CL 20 1
0.5 T T T T T T 0 T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration
(a) Classification accuracy (b) Population size

Figure 5.3: Experimental results obtained on the 6-Multiplexer problem. Results
are averages over 100 trials and shown as a moving average over 200
samples. The error bars visualize the observed standard deviation.

classifiers 001###H#—0 and 10##1#—0, which represent the case that either
the first or the third bit is indexed and has the value 1, but action 0
is selected. Since forbidding the wrong action in a binary classification
problem inevitably leads to selecting the correct action, these two forbid-
den classifiers already provide the classifier population with 25% of the
problem solution. Therefore, with random guessing as the baseline, it can
be expected that XCS with forbidden classifiers achieves a classification
accuracy of about 12.5 percent points better than XCS alone.

Figure 5.3a shows the development of the classification accuracy both
for the standard XCS and XCS with added forbidden classifiers. The
maximum population size N has been set to 200, and 10,000 iterations
have been performed overall. At the beginning of the experiment, the
advantage of XCS with the two forbidden classifiers is indeed around
12.5 percent points but is reducing quickly in the following iterations
as the standard XCS is learning the knowledge represented by the for-
bidden classifiers as well. At the end of the experiment, both variants
of XCS reliably achieve perfect classification accuracy. The size of the
macro-classifier population, i.e., the number of distinct classifiers in the
population not considering their numerosities 1, develops as shown in
Figure 5.3b. With forbidden classifiers, the population is smaller, indi-
cating better generalization since the problem can be solved with fewer
classifiers. Both population sizes seem to converge towards the end of
the experiment, showing that a solution of similar quality can be evolved
without forbidden classifiers as long as enough learning iterations are
applied.

The reason for the improved generalization capabilities becomes ap-
parent when manually inspecting the evolved classifier populations. Fig-
ure 5.4 shows an excerpt of a population that has been evolved through
one of the trials. Most distinctly, the classifier #0###—0 is among the
classifiers with the highest numerosity n and predicts the correct pay-
off of 1,000 with a prediction error € of 0, i.e., with perfect accuracy.
Normally, it would be considered overgeneralized since classifiers that



86

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

C x n p € F
#O##HH# — 0 19 1000 0 0.825
O1#1## — 0 19 0 0 0999
1#HH##0 — 0 19 1000 0 0.925
10##1# — 1 17 1000 0 0.942
O##0## — 0 17 1000 0 0.812
001### — 1 15 1000 0O 0.965
001### — 0 1 - - -

10##1# — 0O 1 - - -

Figure 5.4: Excerpt of an exemplary classifier population that has been evolved
by the end of a trial. The classifiers are sorted according to their
numerosity 7 in descending order. Forbidden classifiers are marked
red.

predict the correct payoff in the 6-Multiplexer problem can, at maximum,
be generalized to have 3 bits specified. The only specified bit is the second
index bit, meaning that in matching situations, the bit to predict is either
the first or third bit of the remaining bits. However, if one of these bits is
indexed and has the value 1, one of the forbidden classifiers matches, and
choosing the action 0 is prevented. Hence, whenever the wrong action is
proposed, the forbidden classifiers become active and prevent its action
from being selected. This also applies to all other accurate classifiers
with less than three specified bits. The mechanism of forbidding actions
in specific niches of the environment thus enables XCS to generalize
classifiers into the niches of forbidden classifiers, potentially reducing the
population size. Hence, the introduction of forbidden classifiers not only
acts as a filter for the action selection but can aid XCS’ learning process
by opening generalization possibilities that normally do not exist.

5.5 EXPERIMENTAL EVALUATION: MAZE

Maze environments require XCS to use its multi-step learning capabili-
ties and have already been presented in Section 4.2. The three different
environments employed for the experimental evaluation of forbidden
classifiers are shown in Figure 5.5. They depict different complexities, as
they differ not only in the number of empty fields and rocks but also in
the length of the shortest path to the food. The Woods1 environment is
the simplest maze, and its shortest path has, on average, a length of 1.7
steps. If the map is left, the robot re-enters on the opposite side of the
map. The Maze4 environment is larger and requires, on average, 3.5 steps
to reach the food. The Woods14 environment is a corner case to test the
multi-step capabilities of XCS, as it requires learning a long path of up
to 18 steps toward the food, with the average shortest path requiring 9.5



5.5 EXPERIMENTAL EVALUATION: MAZE

RRRRRR R R
R..R..®R RRRRRRRRRRRRRR

RR. .R. . R RR...RRRR.RR.R
RR.R. . RR R.RRR.RR.R.R.R
.RR®. R.. ... . R R. RRR.R.RRR.RR
.RRR. RR.R.. .R RERRR.RR.RRRRR
.RR R . R....R.R RRRRRR..RRRRRR
Ce e RRRRRR R R RRRRRRRRRRRRRR
(a) Woodsl (b) Maze4 (c) Woods14

Figure 5.5: Overview of the three different maze environments used for the
experimental evaluation.

steps. Therefore, a higher discount factor v of 0.9 is employed, while the
other environments use a discount factor of 0.71. The specify operator is
also parameterized the same as in Chapter 4 with the threshold ns, = 20
and specify probability ps; = 0.5 in Woods1 and Maze4, and ps, = 0.8 in
Woodsl4. As it is common practice for such learning problems, a maxi-
mum number of steps per run has been defined to escape unsuccessful
runs, e.g., if the robot is stuck in a loop. The run is prematurely stopped
if the food has not been reached in the Woods1 and Maze4 environments
after 30 steps. For the Woods14 environment, a larger step limit of 100
has been employed.

To avoid crashing into obstacles, which could damage the robot or its
surroundings in a real-world environment, we have introduced eight
forbidden classifiers into the population. Due to the generalized condi-
tions of the classifiers, eight forbidden classifiers are entirely sufficient, as
each classifier is responsible for preventing a crash in one direction, e.g.,
one forbidden classifier has a condition that matches whenever a rock is
northern of the robot and then prevents the action “move north”. Since
the three environments have different complexities and layouts, it can
be expected that the introduction of forbidden classifiers has a different
impact. In the Woods1 environment, 16 empty fields exist, and for each
tield, XCS must determine the correct payoff prediction for the eight
different actions, i.e., XCS must learn the predictions of 128 state/action
pairs. Due to the forbidden classifiers, 27 pairs are already excluded from
action selection, meaning that XCS’ search space is reduced by approx-
imately 21 %. In the Maze4 environment, roughly 45 % of the solution
is already given through the forbidden classifiers, and in the Woods14
environment about 76 %.

For comparison, we have employed our shielded version of XCS, where
the additional learning iterations that take place when the shield rejects
an action do not number among the maximum step limit. This gives the
shielded XCS additional learning opportunities to internalize the safety-
critical knowledge embedded in the shield — at least in theory. While
in the Woods1 and Maze4 environments, the additional iterations help
XCS to find the shortest path more quickly, the behavior in the Woods14

87



88 SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

10 400
—#— XCS w/ Shield —#— XCS w/ Shield
81 — = Invocations w/ Shield g 300 4 —$— XCS w/ Forb. CL
I 1 —$— XCS w/ Forb. Cl. &
2 £ 200 -
& =
=
9
A, 100

fes}

T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Run Run

(a) Steps (b) Population size

Figure 5.6: Experimental results obtained in the Woodsl environment. Results
are averages over 100 trials and shown as a moving average over 100
runs. The error bars visualize the observed standard deviation and
the dashed line the length of the shortest path.

environment, with its larger step limit and longer paths, becomes more
unstable when the interactions with the shield do not count towards the
maximum step limit. This is why the limit of 100 steps in the Woods14
environment also includes the steps the shield rejected. Overall, the
successful deployment of an external shield is not as straightforward as
it seems and can still require some tailoring to the environment.

For the Woodsl1 environment, we have employed 1,000 runs; for Maze4
2,000; and for Woods14 with its longer paths 4,000 runs. For computa-
tional efficiency, it is generally favorable to employ XCS with the smallest
possible population size N, because the most runtime-consuming func-
tions of XCS operate on the whole population [13]. Hence, we have
systematically determined the smallest maximum population size N for
each environment at which the shielded XCS can still solve the problem.
We have considered an environment fully solved if the average number
of steps during the last 10 % of runs is smaller than the length of the
shortest path plus a margin of 5 %. The margin is introduced because,
in each run, the starting position is determined randomly, and it is thus
not always possible to achieve the shortest path. We have started with
a large population size N of 2,000 and then gradually decreased it by
50. For each size, we have run ten trials and determined if the envi-
ronment was solved on average. As soon as this was not the case, the
procedure has been stopped, and the previous size has been selected as
the maximum population size for our experiments. This resulted in a
maximum population size N of 300 for Woods1, 650 for Maze4, and 1,750
for Woods14.

Figure 5.6 shows the experimental results in terms of taken steps and
macro-population size determined in the Woods1 environment. Until run
200, XCS with forbidden classifiers takes slightly fewer steps and requires
fewer invocations of XCS due to the absence of interactions with the
shield. Afterward, it seems that XCS with a shield has internalized the
knowledge embedded in the shield, as it shows nearly identical behavior



Steps

20

5.5 EXPERIMENTAL EVALUATION: MAZE

15 A

89

\‘ —#— XCS w/ Shield 600 —#— XCS w/ Shield
\ == Invocations w/ Shield g —$— XCS w/ Forb. ClL
\ —$— XCS w/ Forb. Cl @
§ 400
=
e
S 200

T T T
500 1000 1500 2000 0 500 1000 1500

Run Run
(a) Steps (b) Population size

Figure 5.7: Experimental results obtained in the Maze4 environment. Results
are averages over 100 trials and shown as a moving average over 100
runs. The error bars visualize the observed standard deviation and
the dashed line the length of the shortest path.

to XCS with forbidden classifiers. In terms of population size, identical
behavior can be observed as well. In the Maze4 environment, both ver-
sions of XCS require the same number of steps, as shown in Figure 5.7.
However, the shielded version of XCS needs more invocations to achieve
this. The population is initially smaller with forbidden classifiers, but
after around 500 runs, the difference vanishes.

In the Woods14 environment, a more distinct advantage of forbidden
classifiers can be observed, as seen in Figure 5.8. Since the number of
invocations of the shielded XCS is limited to 100 in Woods14, a run can
be prematurely stopped because the invocation limit is reached, but very
few actual steps have been taken because the shield frequently stepped
in. To denote that the food has not been reached in such runs, we have
set the number of steps to the maximum of 100 once a run is prematurely
stopped. This is not an issue with forbidden classifiers, as the number
of actual steps and invocations is always equal. The shortest path is
reliably found with forbidden classifiers after relatively few runs, as
indicated by the small standard deviation. It takes considerably longer
until the shortest path is found with the external shield, and the learning
progress seems to be more unstable since the standard deviation is high.
The classifier population with forbidden classifiers has only half the
size of the population that is evolved when an external shield is used.
Hence, when forbidden classifiers are used, the optimal solution is found
considerably faster with a smaller population.

5.5.1 Execution Time

In the Woodsl and Maze4 environments, both XCS with a shield and
with forbidden classifiers showed similar behavior in terms of taken
steps and population size, thereby providing no clear indicator that the
injection of forbidden classifiers is advantageous over an external shield.
However, it has been observed that the shielded XCS is invoked more

T
2000



90

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

\ —#— XCS w/ Shield 1500
== Invocations w/ Shield ° 1250
\ —$— XCS w/ Forb. Cl. & 1000 4
=]
z 750
& 500
T ~ —#— XCS w/ Shield
250 1 —F— XCS w/ Forb. CL.
T T T T 0 T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Run Run
(a) Steps (b) Population size

Figure 5.8: Experimental results obtained in the Woods14 environment. Results
are averages over 100 trials and shown as a moving average over 100
runs. The error bars visualize the observed standard deviation and
the dashed line the length of the shortest path.

Table 5.1: Average CPU times of a single experimental trial.

Woodsl Mazed Woodsl4

External Shield 0.156s 1.15s 10.67 s
Forb. Classifiers 0.126s 0.67s 4.15s
Time Saving 192%  41.7% 61.1%

often to learn the knowledge that is embedded in the shield. This can
increase the computational demand required for the execution of XCS.
To quantify this, we have measured the CPU time that the execution
of an experimental trial takes up on average. Table 5.1 compares the
average CPU time of both employed XCS versions and shows that in the
Woodsl environment, about 19 % of execution time can be saved through
the use of forbidden classifiers. In comparison, the saving in the Maze4
environment is even larger with about 42 %. As seen in Figures 5.6a and
5.7a, additional invocations of XCS occur mainly at the beginning of
a trial and rarely once the shielded XCS has incorporated the shield’s
knowledge. However, during the exploration runs, which are not included
in the figures, XCS takes random actions and will thus continue to interact
with the shield regardless of the current progress in finding the shortest
path. The latter effect dominates the runtime savings achieved with the
forbidden classifiers. Overall, the runtime savings are similar to the search
space reductions of the forbidden classifiers (21 % in Woodsl and 45 % in
Maze4).

The interactions with the external shield number among the maximum
step limit in the Woods14 environment, which is why the effect of ad-
ditional invocations of the shielded XCS is less distinct. However, since
the forbidden classifiers massively reduce the search space of XCS, i.e.,
by 76 %, the observed runtime savings of about 61 % are still the largest
among the evaluated environments. In addition to fewer invocations of



5.5 EXPERIMENTAL EVALUATION: MAZE

Table 5.2: Smallest maximum population sizes N at which XCS is able to solve
each environment.

Woodsl Mazed Woodsl4

External Shield 300 650 1,750
Forb. Classifiers 250 400 250
Reduction 16.7%  38.5% 85.7 %

XCS due to the absence of the external shield, the forbidden classifiers
enable XCS to find the shortest path more quickly with a smaller classifier
population, which both reduces the execution time.

5.5.2  Population Size

The maximum population size N employed in the experiments has been
determined such that the shielded XCS is just able to solve each environ-
ment fully. As shown by the previous evaluation of the 6-Multiplexer, the
presence of forbidden classifiers can lead to smaller classifier populations,
which has also been observed in the Woods14 environment. While the
observed populations in the Woods1 and Maze4 environments have been
of similar size to the shielded XCS, it is still of interest if the maximum
population size N could have been decreased in case forbidden classi-
fiers are used. To investigate this, we have repeated our methodology of
determining the maximum population size N, i.e., decreasing the size
until the environment is not fully solved in the last 10 % of the runs, but
with XCS with forbidden classifiers instead of a shield. The results are
shown in Table 5.2. The maximum population size N can be reduced in
all environments when forbidden classifiers are employed. Again, the
reduction of the population size depends on the reduction of the search
space through the forbidden classifiers, as N can be reduced the least in
Woodsl1 with about 17 % and by far the most in the Woods14 environment,
where it can be reduced by approximately 86 %. A smaller maximum
population size N not necessarily leads to a smaller computational effort
required to execute XCS, as identical classifiers are summarized into a
macro-classifier with a numerosity n > 1. Therefore, the computational
effort depends on the number of macro-classifiers in the population,
which is only in the worst case equal to the maximum population size N,
but typically well below. However, our results show that added forbidden
classifiers can aid XCS in finding the optimal solution if the configured
maximum population size N is insufficient to solve the problem, which
may be the case if a problem domain is more complex than expected by
the system designers.

91



92

Steps

20

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

15 A

1 .
1 —#— XCS w/ Shield 600 4 —— XCS w/ Shield
\\ == Invocations w/ Shield 8 —$— XCS w/ Forb. CL
N —$— XCS w/ Forb. CL %
§ 400
=
=
S 200
T T T T T O T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000
Run Run
(a) Steps (b) Population size

Figure 5.9: Experimental results obtained in the Maze4 environment with de-
activated specify operator. Results are averages over 100 trials and
shown as a moving average over 100 runs. The error bars visualize
the observed standard deviation and the dashed line the length of
the shortest path.

5.5.3 OQuergeneralization

In some environments, XCS is affected by overgeneralization. This means
that overgeneralized classifiers that do not always predict the correct pay-
off dominate the population because XCS cannot reliably determine them
as inaccurate. Hence, they are not assigned a low fitness which would
eventually lead to the deletion from the population [58]. For our evalu-
ation environments, this is the case especially for Maze4 and Woods14,
where the use of the specify operator has prevented overgeneralization.
However, the evaluation of forbidden classifiers on the 6-Multiplexer
has revealed that a classifier can sometimes safely generalize into the
niches covered by forbidden classifiers. Such a classifier would normally
be considered overgeneralized. However, since the forbidden classifiers
prevent selecting the classifier’s action for a part of its input space, it can
still generate accurate payoff predictions. Therefore, it seems possible that
forbidden classifiers can sanitize the adverse effects of overgeneralized
classifiers. To test our hypothesis, we have repeated the experiments for
the Maze4 and Woods14 environment but turned the specify operator
off, which means that XCS is now affected by overgeneralization.

Figure 5.9 shows the results achieved in the Maze4 environment with
a disabled specify operator. With forbidden classifiers, XCS can still find
the shortest path reliably, which is no longer true with an external shield.
The shortest path is, on average, not reached at the end of the experiment.
Further, it requires many additional invocations of XCS through the
interactions with the shield, meaning that it has not been able to learn
the knowledge embedded in the shield. In terms of population size, both
variants behave similarly.

The results obtained in the Woods14 environment are shown in Fig-
ure 5.8. Again, the steps taken by the shielded XCS have been set to 100
if a run is prematurely stopped because the maximum of 100 invocations



Steps

100

5.5 EXPERIMENTAL EVALUATION: MAZE

80 1

60

40 1

20 A

93

1500

X 1250 —#— XCS w/ Shield
o —§— XCS w/ Forb. CL
& 1000
g
£ 750 o

—#— XCS w/ Shield § 500 -

== Invocations w/ Shield o~

| =~ XCS w/ Forb. Cl. | = __ 1] 250 1
T T T T T 0 T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Run Run
(a) Steps (b) Population size

Figure 5.10: Experimental results obtained in the Woods14 environment with
deactivated specify operator. Results are averages over 100 trials and
shown as a moving average over 100 runs. The error bars visualize
the observed standard deviation and the dashed line the length of
the shortest path.

has been reached. The number of steps taken by the shielded XCS stays
very high and close to the maximum throughout the entire experiment,
which indicates close to no learning progress and demonstrates the se-
vere effects that overgeneralization can have. On the other hand, XCS
with forbidden classifiers can decrease the number of required steps
more consistently, even though the improvement is accompanied by a
high standard deviation and is still far from reaching the shortest path
with 9.5 steps. Overall, forbidden classifiers seem to be able to prevent
overgeneralization in the Maze4 environment and at least alleviate it in
the Woods14 environment.

5.5.4 Interim Summary

Our experimental comparison with a straightforward implementation
of an external shield has confirmed the observations made on the 6-
Multiplexer and revealed manifold advantages of forbidden classifiers.
They can considerably improve learning speed, especially in environ-
ments such as Woods14, where they notably reduce the search space.
Because of fewer invocations of XCS, smaller classifier populations, and
more restricted exploration, the use of forbidden classifiers also leads to
shorter execution times, reducing the computational burden that the exe-
cution of XCS imposes on the computing platform. A smaller maximum
population size N can be employed when using forbidden classifiers
instead of an external shield, thereby allowing XCS to solve the problem
with fewer classifiers or tackle more complex problems with the same
number of classifiers. In addition, forbidden classifiers can partly sanitize
the adverse effects of overgeneralization.



94

SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

Table 5.3: Overview of the input and output attributes of the car evaluation
dataset from the UCI repository.

Input

Attribute Values
Buying Price vhigh, high, medium, low
Maintenance Cost vhigh, high, medium, low
Number of Doors 2,3,4,5+
Persons Capacity 2,4, 5+
Size of Trunk small, medium, big
Safety low, medium, high

Output
Car Evaluation unacc., acceptable, good, vgood

5.6 EXPERIMENTAL EVALUATION: CLASSIFICATION

Forbidden classifiers cannot only be seen as a mechanism to inject safety
guarantees into an online learning system but, more generally, as a way
to insert human knowledge into the classifier population of XCS. In this
section, we use the car evaluation dataset from the UCI repository [28]>
to investigate the effect that forbidden classifiers can have on the classifi-
cation accuracy of XCS. Even though XCS is not explicitly designed for
supervised classification tasks — unlike other learning classifier systems
such as BioHEL [6] or ExSTraCS [107] — a preliminary investigation of
the usefulness of forbidden classifiers in classification tasks is called for
to determine if it is worthwhile to implement the concept of forbidden
classifiers in LCSs tailored for classification.

The car evaluation dataset from the UCI repository represents the
customer evaluation of a car based on six attributes summarized in
Table 5.3, i.e., the buying price, maintenance cost, number of doors,
person capacity, trunk size, and the car’s safety. Each attribute has three
or four possible values, meaning that each input attribute can be encoded
with two bits, resulting in an overall input to XCS of 12 bits. Each
sample must be categorized into one of four classes, i.e., if the car is
unacceptable, acceptable, good, or very good. The dataset consists of 1728
samples and has considerable class imbalances, as the class unacceptable
makes up 70 % of all samples, acceptable 22 %, and good and very good
each 4 %. We have selected this dataset because its input attributes and
output classes are interpretable by a broad audience, which makes it
possible to derive suitable forbidden classifiers by relating the input
attributes to the classes with human intuition. This contrasts with other

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation, accessed 25th August
2022


https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

5.6 EXPERIMENTAL EVALUATION: CLASSIFICATION

popular classification datasets that require expert knowledge, e.g., from
the medical domain.

Overall, we have added five forbidden classifiers. It is reasonable to
assume that the safety property of a car is among the most important
aspects of a car’s evaluation and that an unsafe car will be seen as
unacceptable. Hence, three forbidden classifiers have been added that
prevent selecting the classes very good, good, and acceptable in case the
car’s safety is low. In addition, an evaluation as very high is prevented
in case the car’s safety is only medium. Since the binary encoding of
the values low and medium of the input attribute safety differ by only
one bit, no additional forbidden classifier was necessary. Instead, the
existing forbidden classifier that prevents an evaluation of very good
in case of low safety has been generalized further with an additional
don’t care to cover both low and medium safety. Another factor that
prevents a favorable assessment by a car customer is the financial aspect,
i.e., the buying price and the maintenance cost. Since a high buying price
can be compensated by low maintenance cost — and vice versa — we
exclude an evaluation of good and very good if the buying price and the
maintenance cost are both at least high. Since the encodings of high and
very high differ in only one bit, this has been achieved by adding two
forbidden classifiers.

In contrast to common classification practices, we have kept the online
learning nature of XCS. In each iteration, a sample from the dataset is
drawn with replacement, and a reward of 1,000 is provided for correct
classification and a reward of 0 in case of misclassification. While this
does not allow for detecting effects like overfitting, it is more suited to
the learning mechanism of XCS. In addition, this experiment aims to
investigate the effect of manual knowledge injection with forbidden clas-
sifiers rather than to demonstrate the overall classification capabilities of
XCS. When classifying a dataset, the expediency of the crafted forbidden
classifiers can be verified by searching the dataset for samples that will
inevitably be misclassified in the presence of the forbidden classifiers.
This is not the case for the car evaluation dataset and the selected forbid-
den classifiers. However, this might be unavoidable to some extent for
larger and more complex datasets, especially in the presence of noise.

In each of the 100 trials, we have employed 200,000 iterations with a
maximum population size N of 6,000. As shown in Figure 5.11a, XCS
achieves a classification accuracy of around 80 % rather quickly, regard-
less of the presence of forbidden classifiers. Considering that it is a
classification problem with four classes, this can be considered as quick
learning progress and indicates that XCS evolved a rough solution in
relatively few iterations. Afterward, it seems that XCS is refining its
population, and its classification accuracy increases only gradually. In
this second phase, XCS with forbidden classifiers consistently achieves
better results, with close to optimal accuracy at the end of the experiment.
However, as seen in Figure 5.11b, using forbidden classifiers leads to
larger classifier populations. This is a new and surprising observation, as

95



96 SAFETY GUARANTEES THROUGH FORBIDDEN CLASSIFIERS

Accuracy

3000
- XCs
2500
g —$— XCS w/ Forb. CL
& 2000
=]
=]
= 1500 A
=
& 1000
- XCS ¥
0.6 - 500
—$— XCS w/ Forb. CL
05 T T T T T 0 T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Iteration Iteration
(a) Classification accuracy (b) Population size

Figure 5.11: Experimental results obtained on the car evaluation dataset. Re-
sults are averages over 100 trials and shown as a moving average
over 1000 samples. The error bars visualize the observed standard
deviation.

in all previous experiments, the use of forbidden classifiers led to similar
or smaller population sizes. An inspection of the classifier populations
of XCS without forbidden classifiers revealed that several classifiers had
evolved, which are similar or identical to the forbidden classifiers but
have high numerosities n of more than 200. This reduces the remaining
space left in the population for other classifiers. Since the inserted for-
bidden classifiers constantly have the minimal numerosity of 1, a larger
fraction of the population can focus on the other niches when forbidden
classifiers are present in the population. Apparently, the larger available
space in the population is used to create more distinct classifiers, e.g.,
to cover specific corner samples that occur infrequently. This could also
explain why the use of forbidden classifiers leads to a higher classification
accuracy in the refinement phase and not in the initial phase, where the
accuracy steeply increases.

Overall, our results indicate that forbidden classifiers created with do-
main knowledge can aid XCS when performing supervised classification
of a dataset. It, therefore, seems worthwhile to investigate the concept
of forbidden classifiers in other types of learning classifier systems to
leverage the interpretability of their rules for manual knowledge injection.

5.7 CONCLUSION AND FUTURE WORK

We have proposed a concept to integrate safety guarantees into the learn-
ing classifier system XCS by injecting domain knowledge in the form of
forbidden classifiers, thereby leveraging the unique interpretability of XCS’
rule base. In contrast to related work, which implements safety guaran-
tees by deploying an external shield or teacher that constantly monitors
the behavior of the RL algorithm, our implementation embeds the safety
guarantees directly into the classifier population of XCS. Apart from
showing that their introduction requires only minor algorithmic mod-



5.7 CONCLUSION AND FUTURE WORK

ifications to XCS, our experimental evaluation revealed that forbidden
classifiers

* open generalization opportunities not present with an external
shield, overall leading to smaller classifier populations,

¢ relieve XCS from the computational burden of internalizing the
safety-critical knowledge embedded in an external shield, thereby
leading to shorter execution times, and

* can considerably improve the operating performance when XCS
struggles to find the optimal solution, e.g., when it is affected by
overgeneralization or the maximum population size is not large
enough.

The last observation might be relevant primarily for real-world en-
vironments, where it can often be the case that XCS cannot derive a
perfectly accurate payoff estimation for each state/action pair. Therefore,
evaluating forbidden classifiers in practical application settings is relevant
future work, along with implementing forbidden classifiers in classifier
systems suited for classification. Our evaluation on a dataset from the
UCI repository has shown that forbidden classifiers can be used not only
to implement safety guarantees but also to inject domain knowledge and
aid XCS in supervised classification tasks.

In a similar line of work, it could be promising to systematically inves-
tigate how knowledge in general could be manually added into XCS, not
only by strictly preventing specific actions from being taken but instead
by providing XCS with knowledge about recommended actions. For in-
stance, the population could be bootstrapped with classifiers representing
a suitable but not necessarily optimal heuristic. In contrast to the injection
of forbidden classifiers, the algorithmic modifications necessary for such
an approach are not intuitive, as such manually created classifiers should
provide strong guidance to XCS at the beginning, but not restrict it from
finding a better solution in the long term.

97






CASE STUDY: XCS FOR FREQUENCY CONTROL

So far in this thesis, XCS has been applied primarily to toy problems com-
mon in Learning Classifier System (LCS) research, i.e., multiplexer and
maze environments. These environments allow for comparability to other
research works and well-controllable experiments with adjustable com-
plexity. Further, they meet all requirements necessary for XCS to evolve
an optimal problem solution. This includes, for instance, that the input
provided to XCS describes an individual state without state aliasing, de-
terministic behavior of the problem environment, and a reward function
that can be precisely predicted based on the current input and chosen
action. However, the use of Explore/Exploit (E/E) strategies (Chapter 4)
and forbidden classifiers (Chapter 5) does not aim at deployment in such
well-controllable and deterministic simulation environments. Instead,
they facilitate the deployment of XCS in self-aware systems, which are
used in problem environments with a high degree of uncertainty for
which little apriori knowledge exists when designing the system. These
environments often depict characteristics that sharply contrast those of
artificial toy problem environments. Therefore, an evaluation of XCS in
more practical, real-world application scenarios is called for.

This case study employs XCS for processor frequency control. Dynamic
Voltage and Frequency Scaling (DVES) is used in modern CPUs to control
the computational capacity offered to running applications, the chip’s
power consumption, and its temperature. A system with computational
self-awareness capabilities can use DVFS to balance application perfor-
mance and the costs incurred by the computations while adhering to
system constraints and adapting to changes in the execution environment.
For example, a system could execute multiple user applications with dif-
ferent performance goals specified using diverse Quality of Service (Q0S)
metrics. At the same time, the system’s power consumption should be
minimized (minimization of costs), while the system’s temperature must
not exceed a specified threshold (system constraint). During operation,
user applications leave and enter the system, requiring updates of the
DVES strategy (adaptation to changes). Traditional DVFS mechanisms,
such as static heuristics and control theoretic approaches, often require
extensive apriori knowledge, such as accurate system models, or cannot
adapt to changes.

As an outcome, LCS variants have been successfully employed to
implement autonomous and adaptive DVFS mechanisms [26, 70, 98, 117].

99



100

CASE STUDY: XCS FOR FREQUENCY CONTROL

In this case study, we employ XCS for controlling a CPU’s frequency
to achieve an Instructions per Second (IPS) target of a user application
while minimizing power consumption. As such, the resulting system is
stimulus- and time-aware since it explicitly learns from past experiences
to make more informed decisions in the future. The application scenario
shares similarities with related work [26], but we apply XCS instead of
a lightweight LCS with a static ruleset. In addition, we employ a CPU
simulation to analyze XCS’s learning behavior extensively and do not
focus on a practical deployment in hardware. Hence, this case study does
not primarily aim to demonstrate that XCS can evolve a superior DVFS
strategy. Instead, it should confirm the observations of related work and
investigate how XCS behaves in problem environments that are known
to be amenable to XCS but do not depict the ideal properties of artificial
toy problems. Based on the derived insights, future work can be laid out
to make XCS more suitable for real-world problem environments.

Mathis Brede’s C++ XCS implementation is employed in this case
study, which he has extended with real-valued conditions for use in this
work. In summary, the case study adds three key observations to the
existing body of XCS research:

¢ Even though we have employed a different LCS, i.e., XCS, and
executed different benchmark applications on a different CPU,
we have been able to confirm the results of related work. LCSs,
with their dynamic classifier generalization, outperform tabular
Q-learning with fixed generalizations when performing DVES.

¢ The reward that will be received is not accurately predictable, hin-
dering XCS from successfully generalizing classifiers and prevent-
ing the use of error-based E/E strategies. The reward’s predictabil-
ity differs between the evaluated benchmark applications as well as
between different execution phases of an application.

¢ To a varying degree, all benchmark applications depict an unbal-
anced sampling of the input state space. XCS requires a large
classifier population to adequately cover infrequently occurring
states, even though the number of actually occurring states is rela-
tively small. Approaches derived from XCS theory to counteract the
adverse effects of the unbalanced state sampling can only limitedly
alleviate the problem.

This chapter continues by providing an overview of related work
in Section 6.1. Next, the overall application scenario is presented in
Section 6.2, while Section 6.3 describes the employed experimental setup.
The experimental results investigating the frequency control behavior of
XCS are given in Section 6.4, and Section 6.5 extensively evaluates the
learning behavior of XCS. Finally, section 6.6 concludes the chapter and
outlines future work.



6.1 RELATED WORK

6.1 RELATED WORK

Reinforcement Learning (RL) techniques, especially Q-learning approach-
es, are frequently employed for CPU management, as seen in the survey
of Pagani et al. [78]. For instance, Shen et al. [90] use tabular Q-learning
to optimize the energy consumption, compute performance, and chip
temperature of a CPU. All three objectives are summarized into a single
reward function using linear weighting. The input is the current clock
frequency, temperature, IPS rate, and CPU utilization, while the action
is the clock frequency applied in the next sampling period. However,
tabular Q-learning enumerates all states, and the Q-table requires an
entry for each possible state/action pair, which can lead to unfeasibly
high memory requirements. Further, many learning cycles are needed to
determine the expected payoff of each table entry reliably. To alleviate
this, Iranfar et al. [48] employ a restricted form of tabular Q-learning, in
which not all actions are available in all states. The objective is to reduce
the thermal stress of the chip by controlling the frequency and migrating
tasks. However, available for selection are only the actions that do not
violate the constraints on power consumption and thermal gradient. This
not only prevents violations of the constraints but also decreases the size
of the Q-table.

Another alternative to tabular Q-learning is the approximation of the
payoff prediction (“Q-value”) with function approximation techniques.
Lu et al. [68] also investigate the minimization of thermal stress. The
input consists of temperature readings from several sensors distributed
over the many-core CPU, while the actions allocate newly arriving tasks
to cores. This results in a large state/action space, preventing the use
of a tabular approach. Instead, the Q-value is approximated by a linear
combination of basis functions, whose parameters are updated using a
gradient descent technique. Gupta et al. [33] approximate the Q-values
with a deep neural network, resulting in a deep Q-network (DQN). The
input consists of continuous state variables, among them performance
counters of the CPU, while the action determines the frequency and
number of active cores. Optimized is the performance per watt of the
executed application. On an Odroid-XU3 platform, the DQN achieved
results similar to an omniscient oracle.

In LCSs, the drawbacks of large Q-tables are alleviated by employing
generalized classifiers. Frequently employed for processor management
are Learning Classifier Tables (LCTs) [116]. An LCT is similar to XCS but
uses a pre-populated classifier population and does not evolve new classi-
fiers at runtime. Further, it does not use the prediction accuracy as fitness
metric but instead the magnitude of the payoff prediction, i.e., an LCT
is a strength-based LCS. These modifications allow for resource-efficient
LCT hardware implementations that depict low latencies. In [117], LCTs
are deployed to control the CPU frequency and migrate tasks. The ob-
jective combines achieving a low CPU frequency, high utilization, and
a homogeneous workload distribution among cores. A CPU with three

101



102

CASE STUDY: XCS FOR FREQUENCY CONTROL

cores is evaluated in a simulation in which each core is managed by an
LCT. The results show that LCTs are competitive with traditional DVFS
strategies.

A similar setup is investigated in [26]. The LCTs either optimize an
[PS-oriented objective function, i.e., reaching a target IPS rate while
minimizing power, or a power-oriented objective function, i.e., following
a reference IPS rate while adhering to a power constraint. The comparison
with a control-theoretic approach yielded competitive results, even in
the presence of environmental dynamics. Following a reference IPS rate
through frequency control while adhering to a power constraint is also
the objective pursued in [70]. Violations of the power constraint are
prevented by an external supervisor that detects imminent violations
and forces the system to reverse to the best configuration that has been
observed so far.

GAE-LCT [98] equips LCTs with a Genetic Algorithm (GA) to evolve
classifiers at runtime. GAE-LCT is more similar to XCS than the original
LCT, as a classifier’s fitness equals the classifier’s prediction accuracy.
However, in contrast to XCS, no fitness sharing is applied. The classifier
conditions are interval-based, as in XCSR [97], but with discretized values.
The LCT is implemented in hardware, while the GA generates new
classifiers in software. During classifier generation, a validity check is
performed, and classifiers are discarded if they match solely to input
states that, due to physical boundaries, never occur. A local error-based
E/E strategy is employed to achieve autonomy.

The input to GAE-LCT is the current CPU utilization, frequency, and
IPS rate. All input values are discretized using a binning approach.
To fulfill the goal of following an IPS reference while not violating a
power constraint, the CPU frequency can either be increased or decreased
by a unit step. Using a soft-core CPU on a Field Programmable Gate
Array (FPGA), it is shown that GAE-LCT outperforms tabular Q-learning,
both in terms of following the IPS reference and avoiding violations of
the power budget. Further, it is shown that GAE-LCT can autonomously
adapt to varying IPS references and power constraints.

Our evaluation scenario shares many similarities with GAE-LCT in
that it aims at controlling the IPS rate while also considering the power
consumption and evolving new classifiers with a GA. However, our eval-
uation revolves primarily around the LCS learning mechanism. Instead
of an LCT, we apply the standard XCS(R) with a larger number of inputs
and actions, thereby increasing the size of the input and action space
and overall learning complexity. Further, we do not focus on an efficient
hardware implementation with low latencies, as is the case for GAE-LCT,
but conduct an extensive evaluation of the learning behavior of XCS.

6.2 APPLICATION SCENARIO

We employ XCS for frequency control to balance application performance
and power consumption. XCS controls the CPU frequency while a user



6.2 APPLICATION SCENARIO

(User ApplicatimD
CPU frequency CPU
IPS

Power Inout Action: R d
intIPS py CPU frequency ewar
Cache miss rate h 4 A 4
Branch pred. miss rate XCS

Figure 6.1: XCS controlling the CPU frequency to reach a target IPS rate.

application is executed on the CPU. The application should reach a
target performance level, which is measured in terms of a QoS metric.
Exceeding the desired QoS level is assumed to provide no additional
benefit. Instead, XCS should minimize the power consumption of the
CPU to save energy. Hence, the objective of XCS is to control the CPU
frequency such that the target QoS level is reached while the power
consumption is minimized.

Typically, QoS metrics are highly application-specific and diverse.
For instance, the frame rate can be a relevant QoS metric for a video-
processing application, while a web server could use the average response
time. Using such application-specific QoS metrics for our evaluation
would be somewhat cumbersome, as each user application would need
to be modified to measure the relevant QoS metrics, e.g., with the heart-
beat API [42]. Further, the inputs of XCS would need to be tailored
to each application and its QoS metric. To facilitate a hassle-free eval-
uation of multiple user applications, we have used the IPS rate as a
general representative for QoS metrics, as it is frequently done in related
work [26, 70, 98]. The IPS rate can be measured for all applications in
the same way. However, it can still show a dynamic behavior during
application execution, allowing for a thorough evaluation of frequency
control strategies.

The overall application scenario is depicted in Figure 6.1. XCS must
be provided with sufficient and relevant input information to control the
application’s IPS rate and minimize the CPU’s power consumption. The
input encompasses the current CPU frequency, power consumption, and
IPS rate. In addition, the cache miss rate is provided as an indicator of
the current memory-boundness of the application, along with the branch
prediction miss rate, which has been shown to be a suitable measure
for the compute-boundness of an application [27]. The current rate of
integer Instructions Per Second (intIPS) provides information about the
current instruction mix, which also influences the overall IPS rate. All
inputs are periodically sampled and supplied to XCS, which then decides
the CPU frequency applied during the next interval. Since the CPU
frequency employed during the previous interval is part of XCS’s input,

103



104

CASE STUDY: XCS FOR FREQUENCY CONTROL

the intervals can be treated independently. Therefore, XCS is used in
single-step mode.

IPS .
if IPS < IPS;areet
reward = { s e (6.1)
ower
1+ (1 — pgwerm> else

The reward function given in Equation 6.1 is employed to guide XCS
into evolving a control strategy that is directed toward the objective
of reaching the IPS target while minimizing power consumption. The
reward is calculated and provided to XCS at the end of each sampling
period, i.e., after the effects of the frequency set at the beginning of the
period can be evaluated. As long as the IPS target is not reached, the
reward increases linearly with the current IPS rate up to a maximum of
1. Once the IPS target is reached, XCS gets a constant reward of 1 for
fulfilling the IPS target plus an additional fraction that depends on the
current power consumption. The additional fraction takes values between
0 and 1 and linearly increases with reductions in power consumption.
Hence, the overall reward function provides rewards from 0 to 2. In line
with the specified objective, the reward is maximized if the IPS target is
reached with minimal power consumption.

Since all inputs of XCS are real-valued, XCSR [97] with its real-valued
interval conditions, as described in Section 3.3, is used. In contrast to
GAE-LCT [98], the inputs are not discretized but supplied to XCS as real-
valued inputs after normalization to the value range of 0 to 1. Together
with the larger input and action space of XCS, this emphasizes that our
evaluation is focused more on the learning characteristics of the LCS than
GAE-LCT, which laid the primary focus on the hardware implementation
of the LCS to achieve efficient execution and low latencies.

6.3 EXPERIMENTAL SETUP

The experimental setup used in our evaluation consists of multiple as-
pects. First, Subsection 6.3.1 outlines the execution platform employed to
run the experiments and gather performance statistics. The benchmark ap-
plications whose execution is controlled are presented in Subsection 6.3.2,
while Subsection 6.3.3 describes the parameterization of XCS, along with
tabular Q-learning and a static control strategy that are employed as
reference strategies. Finally, Subsection 6.3.4 details our methodology for
generating training data.

6.3.1 Execution Platform

We conduct our experiments using the gem5 CPU simulator [11] in
full-system mode, which allows for gathering all required inputs and
evaluation statistics at customizable intervals. The employed CPU config-
uration resembles an ARM big.LITTLE architecture comprising of ARM



6.3 EXPERIMENTAL SETUP

Cortex-A15 (“big”) and Cortex-A7 (“little”) cores. The instantiated CPU
consists of one Cortex-A15 and one Cortex-A7 core. The user application
is executed on the Cortex-A15 core, which is isolated with the isolcpus
kernel option. This way, the core processes only the user application
and basic kernel functions, and the core’s simulation statistics, e.g., the
current IPS rate, can be directly used to generate XCS’s input. The smaller
Cortex-A7 core is responsible only for executing the operating system
functions. Consequently, only the Cortex-A15 core is under the control of
XCS.

Our C++ implementation of XCS with real-valued conditions! is exe-
cuted outside the simulation and thereby resembles a latency-free virtual
hardware module. The power consumption of the core executing the user
application is modeled using the power model of the ARM big.LITTLE
architecture of Walker et al. [108]. It periodically samples selected CPU
performance counters and calculates the average power consumption
during the sampling periods based on coefficients that have been deter-
mined empirically on a physical hardware platform. The power model
specifies four different CPU frequencies, i.e., 600 MHz, 1 GHz, 1.4 GHz,
and 1.8 GHz. The power calculations explicitly consider the voltage that
is set by the CPU’s internal DVFS mechanism for each frequency. Con-
sequently, XCS is restricted to choosing from the four specified CPU
frequencies. XCS updates the CPU frequency every 10ms, as shorter
sampling periods result in noisy power values obtained from the power
model.

6.3.2 Benchmark Applications

As user applications, we have employed benchmarks from the PARSEC
benchmark suite [10], which have been cross-compiled to run on the gem5
ARM CPU using the ARM gemb5 research starter kit>. The focus laid on
benchmark applications that, according to the description given in [10],
depict some form of memory-boundness during execution. It is expected
that memory-bound applications result in a more diverse behavior in
terms of their IPS rate, allowing for a more thorough evaluation of
frequency control strategies. The applications have then been executed on
the simulated ARM CPU with a static frequency of 1 GHz to characterize
their runtime behavior and decide on a subset of benchmark applications
suited for the experimental evaluation.

After excluding applications that either depict execution times infeasi-
ble for full-system simulations or a static behavior in terms of IPS rate,
three PARSEC applications remained: Canneal, Ferret, and Freqmine.
Canneal is a simulated annealing algorithm that minimizes a chip’s rout-
ing costs. When executed with the simsmall workload of the PARSEC
suite and a sampling interval of 10 ms, its IPS rate develops as shown
in Figure 6.2a. The IPS rate shows a stable behavior, and different com-

1 https://git.uni-paderborn.de/xcs/xcs-real, accessed 24.03.23
2 https://github.com/arm-university/arm-gem5- rsk, accessed 10.03.2023

105


https://git.uni-paderborn.de/xcs/xcs-real
https://github.com/arm-university/arm-gem5-rsk

1PS

106

1.0

0.5

CASE STUDY: XCS FOR FREQUENCY CONTROL

x10° %109 x 107

1.0 1.5

wn wn

& &

— 0.8 1.0

0.0 05 1.0 15 20 0.0 0.5 1.0 1.5 2.0 0.0 05 10 15 20
Time (s) Time (s) Time (s)
(a) Canneal (b) Ferret (c) Freqmine

Figure 6.2: IPS rate of PARSEC benchmark applications when executed with the
simsmall input and a CPU frequency of 1 GHz.

putational phases of Canneal can be clearly distinguished. In contrast,
Ferret, which performs a similarity search, results in an erratic IPS rate
that becomes more consistent during the second phase of the applica-
tion’s execution, as shown in Figure 6.2b. Freqmine is a data mining
application that first undergoes two phases with constant IPS rates and
then transitions into a phase of varying IPS rates, as shown in Figure 6.2c.
Since all three applications depict different characteristics and behavior
of their IPS rates, they can test different aspects of frequency control
strategies. Hence, Canneal, Ferret, and Freqmine have all been selected
as benchmark applications for the experimental evaluation.

6.3.3 Control Strategies

XCS is compared to a static control strategy consisting of handmade
decision rules and tabular Q-learning, which is an RL technique. XCS
has employed a population with a maximum size N of 4,000 classifiers
and a common parameterization.® Exceptions are the learning rate B,
which has been decreased to 0.1, and the coefficient « of the accuracy
function, which has been set to 0.8. Both modifications aim at making
XCS more robust to noisy or unpredictable rewards. The lower learning
rate decreases the impact of single rewards on the error estimate €, and
the higher « leads to a less drastic decrease in classifier accuracy if €
is exceeded. Preliminary test runs have shown that XCS achieves better
results with a relatively low degree of generalization, which is why the
covering range sp and the mutation range 1y have been set to 0.1. Since
the current frequency can take only four distinct values, it is not fed into
XCS as a real-valued input but as a binary input encoded with two bits.
Such mixed conditions that only use real-valued inputs where necessary
have already been successfully applied in the XCS implementation scikit-
XCS [118].

That is =01 =08 v=5 u=004 6=01, p;=05 e =0 f;=001,
P# = 03, €0 — 002, X = 08, GGA = 25, GSub = 20, Gdel = 20, S0 — 0.1, my = 0.1,
DoGaSubsumption = True, DoActionSetSubsumption = False.



6.3 EXPERIMENTAL SETUP

Algorithm 1 Static frequency control strategy

setLowestFrequency()
changed <— True
decreased < False
loop
wait 10 ms
if changed then
IPSref < IPScurrent
changed <— False
end if

if IPS . rent < IPSmget then
increaseFrequency()
changed < True
decreased <— False

else if IPScyprent > (1 + x) % IPS,,¢ then
decreaseFrequency()
changed < True
decreased < True

else if decreased then
decreaseFrequency()
changed < True
decreased < True

end if

end loop

Tabular Q-learning is an RL technique that holds for each state/action
pair the expected reward. The entries in the Q-table that contain the
reward prediction p are updated similarly than in XCS, i.e., with the
update equation p = p+ - (R — p), where R is the received reward
and B the learning rate that has also been set to 0.1. The real-valued
inputs must be discretized since Q-learning requires enumerable states.
A straight-forward binning approach is applied, and Q-learning with 10,
20, and 50 bins per real-valued input has been evaluated. The expectation
is that Q-learning with fewer bins initially learns more quickly, while
the more fine-grained binning is superior in the long term once more
learning samples have been observed.

The pseudo-code of the employed static strategy is depicted in Algo-
rithm 1. Initially, the CPU frequency is set to the lowest possible value.
If the current IPS rate is below the target IPS, the CPU frequency is
increased by one step. To identify the potential for frequency reductions,
the IPS rate achieved directly after a frequency change is stored as IPS,,¢.
When the IPS rate increases and an IPS rate higher than (1 + x) - IPS,, 1 is
observed, the frequency is decreased by one step, as it could be the case
that the target IPS can now be achieved with a lower frequency. If this
reduction has been too eager and the IP’S rate drops below the target rate,

107



108

CASE STUDY: XCS FOR FREQUENCY CONTROL

the frequency will be increased again in the following period. Otherwise,
the CPU frequency decreases further in the subsequent sampling periods
until the IPS rate drops below the target rate. Thereby, the static strategy
“probes” for the lowest possible CPU frequency that achieves the IPS
target. The static strategy is parameterized by the parameter x, whose
optimal value depends on the characteristics of the user application and
cannot be determined a priori. In this experimental evaluation, x has
been set to 0.05.

6.3.4 Training Sets

The training of XCS and Q-learning potentially requires many learn-
ing iterations, translating into multiple executions of the benchmark
applications in the simulator. However, full-system simulations in the
single-threaded gem5 simulator depict long execution times. Therefore,
training XCS and Q-learning online by running a sequence of benchmark
applications in the simulator is infeasible.

An offline learning procedure has been employed to gather statisti-
cally meaningful results in a reasonable time frame. Every benchmark
application is executed multiple times in a gem5 simulation to gather
training data. Every 10 ms, the relevant inputs such as IPS rate and power
consumption are collected, and a random frequency is chosen for the
next sampling period. Since XCS learns primarily in its exploration cycles,
in which a random action, i.e., frequency, is chosen, the training sets re-
semble application executions that would have resulted if XCS controlled
the frequency in exploration mode. The training data can then be used to
train XCS in exploration mode by enforcing the selection of the action
specified by the training sample instead of letting XCS select the action.
This way, XCS can be trained solely with the gathered training data
and without the need to perform full-system simulations. Only after the
training procedure a single evaluation run in exploitation mode is con-
ducted in the simulator to evaluate the behavior of the trained classifier
population. The same training procedure is applied to Q-learning.

Each benchmark application of PARSEC has three different input
workloads suited for CPU simulations. Overall, training data resulting
from 20 executions with the simsmall workload, 15 executions with
the simmedium workload, and 10 executions with the simlarge workload
have been collected for each benchmark application. All collected training
inputs are normalized to lie in the range between 0 and 1. In order to
investigate how XCS and Q-learning behave with an increasing number
of training samples, six different training sets have been defined:

(1) 3x simsmall, 2x simmedium, 1x simlarge
(2) 7x simsmall, 5x simmedium, 3x simlarge
(3) 14x simsmall, 10x simmedium, 6x simlarge

(4) 20x simsmall, 15x simmedium, 10x simlarge



6.4 EXPERIMENTAL RESULTS

(5) 2x (20x simsmall, 15x simmedium, 10x simlarge)
(6) 10x (20x simsmall, 15x simmedium, 10x simlarge)

The training sets (1), (2), and (3) are created by randomly drawing sub-
sets from the recorded executions each time a training run is conducted.
Training sets (5) and (6) are compiled by using training data multiple
times in randomized order. The training set (6) aims at investigating
the behavior of XCS and Q-learning after many learning iterations, even
though this imposes the risk of overfitting to the training data, as the
same executions are part of the training set multiple times.

6.4 EXPERIMENTAL RESULTS

In order to compare and evaluate the behavior of the frequency control
strategies, they are trained on the different training sets, and then their
performance is evaluated in a gem5 simulation. During the simulation,
both XCS and Q-learning are put into exploit mode. To evaluate the
capability of managing the IPS rate, a measure must be used to quantify
the extent to which the IPS rate has reached the IPS target throughout the
application’s execution. For this purpose, the integral of the gap between
the IPS rate and the IPS target is calculated over the sampling periods
where the IPS rate stayed below the IPS target. The integral is then nor-
malized to the application’s execution time to obtain a measure that we
term average IPS shortfall. The normalization is necessary since different
control strategies can lead to different execution times and thereby to
more (or less) opportunities for not reaching the IPS target. Without nor-
malization, strategies leading to IPS rates considerably higher than the
target would depict shorter execution times and would have an inherent
advantage. However, in our application scenario, IPS rates higher than
the target are said to provide no benefit. The second evaluation metric
is the average power consumption during the application’s execution.
According to the applied reward function, minimizing the IPS shortfall
should be the control strategies’ first priority, while minimizing the power
consumption is the second priority.

Due to the long runtimes of full-system simulations, evaluating the
control strategies on all combinations of benchmark applications and in-
put workloads is infeasible. Hence, the evaluation of Canneal is restricted
to the simmedium workload, while Ferret and Freqmine use the simsmall
workload. The IPS target has been set to 1,000 Million Instructions per
Second (MIPS). According to Figure 6.2, this IPS target can, in some
phases, be reached easily with a CPU frequency of 1 GHz, while other
phases of the applications” executions require higher frequencies. Hence,
a target of 1,000 MIPS demands frequent frequency adaptations from the
control strategies. For each training set and benchmark application, ten
repetitions have been conducted.

The IPS shortfall and power consumption achieved when executing
Canneal with the simmedium workload are shown in Figure 6.3a and 6.3b,

109



110 CASE STUDY: XCS FOR FREQUENCY CONTROL

Avg. IPS Shortfall

2.6 710" 0.80
—$— XCS —+- XCs
2.5 4 —#— Q-learning 10 bins 0.75 —#— Q-learning 10 bins
Q-learning 20 bins — Q-learning 20 bins
2.4 4 —4— Q-learning 50 bins E 0.70 4 —4#— Q-learning 50 bins
Static strategy E Static strategy
£ 0.65 1 J\L
p - Al
< 0.60 i 3
0 i .
0.55
T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Training Set Training Set
(a) IPS shortfall (b) Power consumption

Figure 6.3: IPS shortfall and power consumption when executing Canneal with
the simmedium workload. Results are averages of 10 repetitions with
the error bars depicting the standard deviation.

respectively. The static strategy consistently achieves the best results,
both in terms of minimizing the IPS shortfall and power consumption. Q-
learning shows an improvement in IPS shortfall with increasing training
set size, indicating that its learning mechanism benefits from additional
learning opportunities. The power consumption as the secondary objec-
tive is not improved, however. Considering that the discretization with
10 bins is relatively coarse-grained, Q-learning with 10 bins performs sur-
prisingly well, especially on the smaller training sets. The discretization
with 20 bins achieves the best results on larger training sets. Employing
50 bins seems to be a too fine-grained discretization for the given number
of training samples. In terms of minimizing IPS shortfall, XCS, with its
variable degree of generalization, is consistently better than all evaluated
Q-learning variants. The achieved power consumption is also lower than
with Q-learning, even though this observation is less distinct.

The execution characteristics of Canneal could explain the superiority
of the static strategy. As depicted by Figure 6.2a, Canneal has a very
steady development of its IPS rate with few but clearly distinguishable
phases. This enables the static strategy to reliably determine the most
suitable frequency at the beginning of each phase, which can then be
kept unchanged until the next phase is entered or the IPS rate drops
below the target.

When controlling the execution of Ferret on the simsmall workload,
XCS achieves the lowest IPS shortfall as seen in Figure 6.4a. The low
shortfall is achieved even when trained with the smallest training set,
and larger sets lead to no improvement. Q-learning with 10 bins achieves
very similar results while Q-learning with 20 bins requires larger training
sets to reach the same level of performance. A discretization with 50 bins
leads to results considerably worse. The static strategy does not perform
well, either, considering that XCS and Q-learning with 10 and 20 bins



Avg. IPS Shortfall

6.4 EXPERIMENTAL RESULTS
107
- 0.9
—3— XCS —#- XCs
—5— Q-learning 10 bins —#— Q-learning 10 bins
Q-learning 20 bins _ 087 - Q-learning 20 bins
—$— Q-learning 50 bins E —+ Q-learning 50 bins
Static strategy %g 0.7 4 I Static strategy
S
. -h_ N
7 00 ﬁﬂ;jz—iﬁ»\‘u?r
<
e o imijm i i
= o = = <
T 1 T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Training Set Training Set
(a) IPS shortfall (b) Power consumption

Figure 6.4: IPS shortfall and power consumption when executing Ferret with the
simsmall workload. Results are averages of 10 repetitions with the
error bars depicting the standard deviation. XCS achieves the lowest
IPS shortfall, but Q-learning with 10 bins partly hides its graph.

achieve an IPS shortfall of close to zero. Apparently, the erratic behavior
of Ferret’s IPS rate makes the static strategy decrease the CPU frequency
unnecessarily often. This also results in the lowest power consumption,
as seen in Figure 6.4b. However, due to large standard deviations, no
definitive conclusions can be drawn from the power consumption mea-
surements.

When controlling the execution of Freqmine on the simsmall workload,
XCS again achieves the lowest IPS shortfall, as depicted in Figure 6.5a. In
terms of power consumption, it achieves the second best results and is
only excelled by the static strategy as seen in Figure 6.5a. It again seems
to be the case that the erratic behavior of the application’s IPS rate makes
the static strategy decrease the frequency unnecessarily often, which
leads to the lowest power consumption at the price of a considerable
IPS shortfall. Q-learning works best with 10 bins and achieves an IPS
shortfall between XCS and the static strategy. With more fine-grained
discretizations, however, the IPS shortfall increases.

Summary. Overall, our experimental results confirm the observations
from related work, i.e., GAE-LCT [98]. XCS outperforms Q-learning when
controlling the CPU frequency to achieve the desired IPS rate. In contrast
to GAE-LCT, our experimental evaluation used the standard XCS(R) and
different benchmark applications, inputs, actions, and objectives. Hence,
there seems to be a general tendency that XCS and other LCSs are supe-
rior to Q-learning when controlling the CPU frequency. The performance
of Q-learning depends on the granularity of the discretization of real-
valued inputs, i.e., the number of bins. However, our results indicate that
the optimal granularity depends on the executed user application. This
could be one reason why XCS outperforms Q-learning, as the classifier
conditions in XCS are dynamically generalized during runtime by the GA.

111



112

Avg. IPS Shortfall

CASE STUDY: XCS FOR FREQUENCY CONTROL

le7
—$— XCs 0.8 —4— XCs
6 —— Q-learning 10 bins _ —§— Q-learning 10 bins
Q-learning 20 bins % 0.7 - Q-learning 20 bins
—4— Q-learning 50 bins s —4— Q-learning 50 bins
41 Static strategy 2 Static strategy
S 0.6-
4
2 < 0.5 A
0 T =I-A T T T T 0 4 L T T T T T
1 2 3 4 5 6 1 2 3 4 5
Training Set Training Set
(a) IPS shortfall (b) Power consumption

Figure 6.5: IPS shortfall and power consumption when executing Freqmine with
the simsmall workload. Results are averages of 10 repetitions with
the error bars depicting the standard deviation.

In addition to XCS and Q-learning, a static strategy has been evaluated
and achieved decent results. The static strategy can even outperform all
evaluated learning approaches for user applications that depict a steady
behavior in terms of IP’S rate.

6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS

The experimental results show that XCS can adequately control the CPU
frequency to fulfill a non-trivial objective. However, such real-world appli-
cation domains can depict different characteristics than the toy problem
environments used in Chapters 4 and 5 and in the majority of LCS re-
search literature. Therefore, a closer investigation of the learning behavior
of XCS can reveal different characteristics of the problem environments,
how they impact the learning mechanism of XCS, and what aspects must
be considered when employing XCS in real-world application domains.

Even though the evaluation in Section 6.4 did not investigate the
internal learning behavior of XCS and focused only on statistics relevant
to the application domain, it still provides initial indicators that XCS
behaves differently than in toy problem environments. For instance, the
preliminary parameter optimization based on a few test runs showed
that small covering and mutation ranges sy and m yield the best results.
Typically, XCS requires larger ranges to first cover the whole input state
space and then refine the generalizations with its GA.

When controlling the execution of Freqmine and Ferret, the perfor-
mance of XCS does not improve considerably with additional training
samples, as the best results are already achieved with the smallest train-
ing set. On the other hand, when controlling the execution of Canneal,
XCS improves with larger training sets. However, even when trained



6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS

with the largest training set, it cannot reach the performance of the static
strategy. Overall, this indicates that the controlled user application has a
considerable impact on XCS’s behavior and speed of learning.

The investigation of XCS’s learning behavior is structured into three
steps: First, the learning behavior of XCS is investigated in Subsec-
tion 6.5.1 by evaluating a selection of XCS’s internal statistics during
the training process. The results indicate that the benchmark applications
have different characteristics, and some do not align well with XCS’s
learning mechanism. However, this deduction is inconclusive, as it can
result from both the benchmark applications and XCS’s dynamic general-
ization. To this end, Subsection 6.5.2 investigates the training procedure
with Q-learning. With its fixed generalization, it allows for pinpoint-
ing the different characteristics of the benchmark applications. With the
insights about these characteristics, an attempt toward tailoring XCS’s
hyperparameters to the application domain is made in Subsection 6.5.3.
Finally, Subsection 6.5.4 discusses the implications of the gathered results.

6.5.1 Learning Behavior of XCS

In order to study how XCS learns to control the CPU frequency, the
training set 6 has been employed, i.e., the largest training set in which
each recorded execution of the benchmark applications occurs ten times.
Throughout the training, relevant internal statistics of XCS are collected.
The statistics include the size of the classifier population, which describes
the generalization behavior, and the average prediction error of all clas-
sifiers in the population, representing the general prediction accuracy
of the population. In addition to population statistics, the properties of
the match set have also been investigated to reveal differences between
environmental niches. Specifically, the average prediction error of the
classifiers in the match set has been collected to investigate the prediction
accuracy across different niches and the size of the match sets to observe
the allocation of classifiers over the input state space. When determining
the match set size, classifiers are counted with their numerosity n. The
match set statistics have been evaluated only for the end of the training
process, i.e., for a trained classifier population, to focus on underlying
patterns and exclude inferences of the stochastic learning process at the
beginning of training. The order in which the application executions
occur in the training set is fixed over all experiments. Only the result of a
single training run is shown, as averaging over multiple runs can hide
relevant observations. However, the general trend of the results has been
confirmed by performing additional runs.

Figure 6.6a shows the population size and the average prediction error
of the population over the course of the training process for Canneal.
The population size does not decrease throughout training. It is also
not considerably below the maximum size of 4,000, indicating that few
classifiers in the population have a numerosity n of more than one and
that the classifiers depict a low degree of generalization. Otherwise,

113



114 CASE STUDY: XCS FOR FREQUENCY CONTROL

008 4000 ~ 0.20
= 0.06 L3000 . £ 015
o N =
~ N =
5004 F2000 5 0.10 1
£ 0.02 1000~ & 0.05
b b
= ~

0.00 T T T T 0 0.00 -

0 50000 100000 150000 200000 230000 232000 234000 236000 238000
Sample Sample
(a) Population (b) Match set

Figure 6.6: Population and match set statistics of XCS when trained with the
Canneal training set. Results are visualized as a moving average over
30 samples. The match set statistics are shown only for the end of
the training process. The vertical grey lines denote the start of a new
execution of Canneal.

the population size would have decreased with an increasing number
of training samples, as classifier subsumption uses general classifiers to
delete more specific classifiers. The prediction error oscillates and is above
the error threshold €y of 0.02. Although the visualized moving average is
computed over 30 samples, which is a relatively small window compared
to the number of overall samples, the degree of oscillation is relatively
high. Depicted is the average error of the classifier population, but only a
subset of classifiers is updated in each iteration, which should inherently
constrain oscillation. In addition, the prediction error is initially not
visibly higher than at the end of training. Typically, the error is high at the
beginning of training and decreases as XCS learns proper generalizations.
The observed behavior could result from the small covering and mutation
ranges sop and mg, which initially lead to the creation of specialized
classifiers with a low degree of generalization but accurate predictions.
The average prediction error of the match sets is shown in Figure 6.6b.
It differs considerably throughout the execution of Canneal. Most distinc-
tively is a surge in prediction error approximately in the middle of the
long-running executions with the simlarge workload. The moving aver-
age even hides the surge’s true magnitude. The surge in prediction error
corresponds to the sudden drop in IPS rate, as seen in Figure 6.2a, which
decreases the reward. The sudden decrease in the received reward seems
to be unpredictable for XCS. After the prediction error has increased, it
gradually approaches zero, which means that either more accurate classi-
fiers are beginning to match or that the prediction of already matching
classifiers decreases. Since it is a steady and repeatedly observed pattern,
it is likely that the same classifiers match but that their prediction error
decreases. This can be the case when the same input state and reward
are repeatedly observed, which drives the prediction error of matching
classifiers to zero, regardless of whether they are adequately generalized

'S
ot
=}

Match Set Size

—
ot
(=]



6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS 115

Avg. Pred. Error Population

0.08 4000 - 0.08 1200
0.06 F3000 . 2 0.06 L 900
N = N
g 8 B
0.04 F2000 S 50041 - 600
0.02 1000 A 0.02 4 L300
o0
: =
0.00 -+ . . —L0 0.00 . . . . L0
0 100000 200000 300000 314000 316000 318000 320000 322000
Sample Sample
(a) Population (b) Match set

Figure 6.7: Population and match set statistics of XCS when trained with the
Ferret training set. Results are visualized as a moving average over
30 samples. The match set statistics are shown only for the end of
the training process. The vertical grey lines denote the start of a new
execution of Ferret.

or not. Since Canneal enters a phase with steady behavior after the IPS
rate has dropped, this likely explains the observed behavior.

The size of the match set is small at the beginning of an execution
of Canneal but increases afterward. After the drop in IPS rate, the size
of the match sets increases continuously, which can result from more
classifiers beginning to match or the GA generating additional classifiers,
which match the current input state. The different match sets have sizes
considerably different, indicating an uneven allocation of classifiers to
environmental niches. This can result from an unbalanced sampling
of the input state space, which poses a reasonable explanation since
repeated observations of the same input state can explain the behavior
observed for the match set’s prediction error.

When trained on the Ferret dataset, the average prediction error of
the population oscillates even more than with Canneal, as shown by
Figure 6.7a. The population size decreases neither and is even slightly
larger than with Canneal. Figure 6.7b shows the size of the match sets,
which do not vary as much as for the execution of Canneal. However, the
match sets are roughly twice as large, which means that the population’s
classifiers are more generalized or that the executions of Ferret result in
fewer distinct input states that are observed, allowing XCS to hold more
classifiers per state. Similarly, the prediction error of the match set is also
more consistent than for Canneal, even though it is still higher than the
error threshold €p of 0.02 most of the time. This could explain the large
classifier population, as it prevents classifier subsumption. Overall, the
unbalanced sampling of the input state space seems less distinct than
for Canneal, but the oscillating prediction error still prevents successful
generalization.

As seen in Figure 6.8a, training on the Freqmine dataset also results in
an oscillating prediction error of the population. The prediction error is



116 CASE STUDY: XCS FOR FREQUENCY CONTROL

012 4000 L, 020

= 0.09 3000 . < 0.15 1

o N =

~ N =

= 006 20002 5 0.10

£ 0.03 1000~ & 0.05

b b

= ~

0.00 . . . 0 0.00 — T .
0 100000 200000 300000 355000 360000 365000
Sample Sample
(a) Population (b) Match set

Figure 6.8: Population and match set statistics of XCS when trained with the
Freqmine training set. Results are visualized as a moving average
over 30 samples. The match set statistics are shown only for the end
of the training process. The vertical grey lines denote the start of a
new execution of Freqmine.

even higher than for the other two benchmark applications. The popula-
tion size does not decrease and shows no sign of successful generalization.
The size of the match sets is shown in Figure 6.8b and depicts an irregular
pattern. At the beginning of Freqmine’s execution, the match sets are
small, indicating that the classifier population sparsely covers them. In
contrast, the following execution phases are extensively covered by large
match sets. Even though the input states of these phases appear to occur
rather often, the prediction error of the corresponding match sets remains
relatively high, with a value of around 0.05, indicating that the reward
cannot be accurately predicted in these phases. In addition, the order in
which Fregmine’s executions occur in the training set makes a visible
difference. The majority of Figure 6.8b consists of a sequence of four
long-running executions with the simlarge workload, and an increase in
the size of the match sets can be observed across the different executions.
The sequence of long-running executions is then interrupted by three
shorter-running executions with the simsmall and simmedium workloads.
The last execution with the simlarge workload then depicts match sets
considerably smaller than in the previous long-running executions. It
could be the case that classifiers can only be reused limitedly across
different workloads of Freqmine and that classifiers created during runs
with the simsmall or simmedium workload do not match in runs with the
simlarge workload.

Interim Summary. On all three benchmark applications, XCS behaves
differently than on the toy problems commonly used in LCS research. In
no case proper generalization in the form of a decrease in population
size has been observed. The experimental results indicate that this can be
due to an unbalanced sampling of the input state space, reward variance
preventing accurate predictions, or, as a consequence of both effects, an
inadequate parameterization of XCS. However, observing the match set

Do wW
j==l ==l
(=} (=}

Match Set Size

—
f=)
(=)



6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS 117

> 0.20
£ &
Q
= & 12500
= 0.15 <
E = 10000
< &
« 0.10 % 7500 1
- wn
2 & 5000
= 0.05 =
. 2 2500 4
g =
A 0.00 0 - T T T T
230000 232000 234000 236000 238000 230000 232000 234000 236000 238000
Sample Sample
(a) Prediction error (b) Activations per row

Figure 6.9: Prediction error and the number of activations of the Q-table with
50 bins when trained with the Canneal training set. Results are
visualized as a moving average over 30 samples. Shown is only the
end of the training process. The vertical grey lines denote the start of
a new execution of Canneal.

size and prediction error of XCS does not allow for drawing definitive
conclusions on the characteristics of the problem environment. Therefore,
the following subsection studies the characteristics of the benchmark
applications by applying tabular Q-learning and eliminating the effect of
dynamic generalization.

6.5.2 Application Characteristics

When using XCS, the dynamic evolution of generalized classifiers pre-
vents precisely pinpointing the causes for the observed irregular learning
behavior. For instance, an oscillating prediction error can result from both
reward variance that makes the reward unpredictable and inadequate
classifier generalization. To isolate the effects of the problem environment,
i.e., of the different benchmark applications, Q-learning instead of XCS
has been applied in the training process. With the binning of the real-
valued inputs, Q-learning applies fixed generalizations, which allows
for studying the properties of the benchmark applications without the
interference of dynamic classifier generalization. Employed has been Q-
learning with 50 bins, as it applies the least amount of generalization and
allows for the most fine-grained evaluation of application characteristics.

In analogy to the evaluation presented in the previous subsection, the
prediction error and the sampling of the input state space have been
investigated. For this, each entry of the Q-table has been extended with
the estimated prediction error that is updated in the same way as in XCS.
In addition, to investigate the frequency with which the different input
states occur, each row of the Q-table, which includes the entries of all
actions for a given input state, has been equipped with a counter that



118 CASE STUDY: XCS FOR FREQUENCY CONTROL

g0

314000 316000 318000 320000 322000 314000 316000 318000 320000 322000
Sample Sample

e e

— o

=8 S
1

0.10

Pred. Error of Q-table Entry

Activations of Q-table Row

e o

o =

S S
1

(a) Prediction error (b) Activations per row

Figure 6.10: Prediction error and the number of activations of the Q-table with 50
bins when trained with the Ferret training set. Results are visualized
as a moving average over 30 samples. Shown is only the end of the
training process. The vertical grey lines denote the start of a new
execution of Ferret.

holds how often the row was activated because the corresponding input
state occurred.

When the Q-table with 50 bins is trained on the Canneal dataset, the
achieved prediction errors, shown in Figure 6.9a, are lower than the errors
achieved with XCS. Hence, the prediction accuracy of XCS seems to be
negatively affected by its classifier generalization. However, especially
at the beginning of an execution of Canneal, the prediction error is
relatively high, indicating that the reward is largely unpredictable in these
states. A straightforward way to tackle reward variance is quantizing the
reward, e.g., by rounding the received reward to discrete levels. We have
applied different levels of rounding precision, i.e., 0.02, 0.05, and 0.1, but
observed no visible difference in the prediction errors. This indicates that
the reward’s unpredictability is likely not related to a small amount of
random noise but inherent to the application. The cumulated number of
activations per row is shown in Figure 6.9b and confirms that the input
state space suffers from unbalanced sampling, as some states occur more
frequently than others.

The experimental results obtained with Q-learning and the Ferret
dataset are shown in Figure 6.10. The matching entries depict a high
prediction error, and rounding the reward did not reduce the prediction
error, either. Again, state imbalances can be observed, with the states
corresponding to the beginning of an execution occurring less frequently
than other states.

A noteworthy observation can be made if the experiment is conducted
with Q-learning and 10 instead of 50 bins. As shown in Figure 6.11, the
prediction error of the matching entries is considerably lower, which
could explain why Q-learning with 50 bins did not yield good results
in controlling the IPS rate (cf. Figure 6.4a). However, this observation
seems to be counterintuitive. With fewer bins, Q-learning summarizes



6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS

< o
— [N
[ [e=]
1

0.10

Pred. Error of Q-table Entry

I o

o =}

S S
1

Pk AP

T T T T T
314000 316000 318000 320000 322000
Sample

Figure 6.11: Prediction error of the Q-table with 10 bins when trained on the
Ferret training set. Results are visualized as a moving average over
30 samples. Shown is only the end of the training process. The
vertical grey lines denote the start of a new execution of Ferret.

more input states with different rewards in a single entry, which should
increase the prediction error of the entries instead of decreasing it. A
possible explanation could be that the different executions of Ferret
depict different characteristics, such that the same states lead to different
rewards across the different executions. With fewer bins, the entries of the
Q-table are updated more frequently during a single execution, allowing
it to adapt its prediction to the individual execution gradually. Even
though the exact reasons for this phenomenon remain unclear, it shows
that XCS, with its dynamic classifier generalization, can be superior
to approaches with fixed generalization, as it can adjust the degree of
generalization to minimize the prediction error.

As shown in Figure 6.12a, the Freqmine training set leads to a high
prediction error. At the beginning of an execution, the error is close to
zero, followed by a short spike with a very high prediction error. Most
of the time, the error is above 0.05 and thus in a similar range than with
XCS. Again, rounding the received rewards did not result in a visible
improvement. Figure 6.12b shows that the input state space is sampled
unevenly. Especially at the beginning and the end of an execution, some
states are observed very infrequently, which could explain the high
prediction errors in these states.

Interim Summary. With tabular Q-learning, it has been confirmed
that all three benchmark applications lead to an unbalanced sampling
of input states, even though the extent differs between the applications.
When executing Canneal, the reward can be predicted with relatively
high accuracy in most states. In contrast, the prediction accuracy during
the execution of Ferret depends heavily on the granularity of the general-
ization. Even though it is counter-intuitive that a discretization with more
bins leads to higher prediction errors, this can explain why XCS, with
its evolved generalizations, outperforms Q-learning. On Freqmine, the
prediction error is also relatively high but differs considerably between
different states. Rounding the received rewards has been investigated as
a straightforward way to make the reward more predictable and decrease

119



120 CASE STUDY: XCS FOR FREQUENCY CONTROL

» 0.20
=] z
5 2 20000
< 0.15 1 2
Q0
k! & 15000 ‘
g 0.10 1 g
S S 10000 |
:
= 0.05 £ 5000
3 £
&~ 0.00 4 . < 0 |
355000 360000 365000 355000 360000 365000
Sample Sample
(a) Prediction error (b) Activations per row

Figure 6.12: Prediction error and the number of activations of the Q-table with
50 bins when trained with the Freqmine training set. Results are
visualized as a moving average over 30 samples. Shown is only the
end of the training process. The vertical grey lines denote the start
of a new execution of Freqmine.

the prediction errors, but with no success. This could indicate that the
unpredictability of the reward is not related to small amounts of random
noise but that the reward is inherently unpredictable, e.g., because the
inputs provided to Q-learning and XCS at the beginning of a sampling
period are insufficient to predict the state of the application execution at
the end of the sampling period when the reward is determined.

6.5.3 Hyperparameter Tailoring of XCS

With the gained insights into the problem environment, an attempt
toward tailoring the hyperparameters of XCS has been made. With opti-
mized hyperparameters, XCS might counteract some of the irregularities
observed during training. Tackled first is the unbalanced sampling of in-
put states, which has already been investigated for XCS by Orriols-Puig et
al. [77]. The primary risk in such environments is that classifiers matching
to frequently occurring input states receive more reproductive opportuni-
ties in the GA, making them prone to overgeneralize into infrequently
occurring niches. The theoretical analysis presented in [77] analytically
derives hyperparameter values. However, this requires detailed informa-
tion on the problem environment that cannot be determined for most
real-world environments, such as the imbalance ratio or the number of
environmental niches. Nevertheless, the derived guidelines for setting
XCS’s hyperparameters can still be applied to alleviate the effects of the
unbalanced state sampling. They suggest using

¢ a small learning rate §,
¢ alow GA frequency, i.e., high g4,

¢ and a sharp distinction between fit and unfit classifiers.



0.08

6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS

Avg. Pred. Error Population
=}
(=]
=
1

4000 L, 020 600

L3000 . £ 0151 - 450
8 2

F 2000 E _E 0.10 4 300

L1000 = & 0.05 150
o0
=

T T T T O 00 T T T T T
0 50000 100000 150000 200000 230000 232000 234000 236000 238000
Sample Sample
(a) Population (b) Match set

Figure 6.13: Population and match set statistics of XCS with g = 0.01 when
trained with the Canneal training set. Results are visualized as a
moving average over 30 samples. The match set statistics are shown
only for the end of the training process. The vertical grey lines
denote the start of a new execution of Canneal.

A small learning rate 3 leads to lower oscillation in classifier parame-
ters and allows for identifying overgeneral classifiers more reliably. On
the downside, it can reduce learning speed and adaptivity in the face
of environmental dynamics. Increasing 64 reduces the overall number
of genetic events but distributes them more evenly across the environ-
mental niches if they occur unbalancedly. Since the GA is activated less
frequently, higher values of 04 can also slow down the learning process.
Similar to a reduced learning rate, the sharp distinction between fit and
unfit classifiers aims to identify overgeneral classifiers more reliably. It
can be achieved by modifying the accuracy function via v and « to as-
sign classifiers a low accuracy once the prediction error € is above the
error threshold €p. However, all evaluated benchmark applications have
depicted rewards that are not entirely predictable, leading to oscillating
prediction errors. This oscillation increases the risk that an adequately
generalized and accurate classifier is occasionally considered inaccurate,
i.e., unfit, which means its likelihood of deletion increases if the accuracy
function sharply distinguishes between accurate and inaccurate classi-
tiers. Therefore, the parameter tailoring aiming at the unbalanced input
state sampling is restricted to the learning rate  and the GA threshold
9G A-

As the first step, the learning rate p has been reduced from 0.1 to
0.01. As seen in Figure 6.13a, the size of the population is reduced from
approximately 3,000 to now 2,500 classifiers when trained for Canneal.
However, no tendency for generalization and a corresponding decrease
in population size can still be observed. Due to the reduced learning rate,
the prediction error of the population oscillates less, and it is observable
that the prediction error is higher at the beginning of training than at
the end. The classifiers are still unevenly allocated to the environmental
niches, as seen in Figure 6.13b. However, the largest match sets that have

121

Match Set Size



122

CASE STUDY: XCS FOR FREQUENCY CONTROL

008 4000 B 0.20 600
= 0.06 1 F3000 o = 0157 - 450
g =

= 0.041 L2000 = 5 0.10 - 300
K =S

£ 0.02 L1000 = = 0,051 I “ l ‘ " L 150
o0 1Y

= =

0.00 ; ; ; ; 0 0.00 L+ ; ; ; ; 0
0 50000 100000 150000 200000 230000 232000 234000 236000 238000
Sample Sample
(a) Population (b) Match set

Figure 6.14: Population and match set statistics of XCS with f = 0.01 and
8ca = 200 when trained with the Canneal training set. Results are
visualized as a moving average over 30 samples. The match set
statistics are shown only for the end of the training process. The
vertical grey lines denote the start of a new execution of Canneal.

been observed with the initial learning rate of 0.1 contained more than
500 classifiers, while the maximum size is reduced to slightly above 400
with the lower learning rate. This indicates at least mild positive effects
of the reduced learning rate toward an even classifier allocation in the
population. The curve depicting the prediction error of the match sets is
smoothed due to the smaller parameter updates, but the primary charac-
teristics of the execution of Canneal are still visible. At the beginning of
an execution, a small spike can be observed, indicating an unpredictable
reward in this phase of execution. During long-running executions with
the simlarge workload, a phase of continuously decreasing prediction
errors is observable, even though it does not reach an error of zero due to
the smaller parameter updates. The results obtained on the training sets
of Ferret and Freqmine are not shown, as they depict no visible difference
to the results obtained with f = 0.1 except for the smoothing of error
curves.

In addition to the reduced learning rate, the GA threshold 64 has
been increased from 25 to 200 to achieve a lower GA activation frequency.
When trained on the Canneal training set, the population size remains
unchanged, as seen in Figure 6.14a. However, the prediction error of the
population decreases continuously but, in the end, reaches a value similar
to the original GA threshold 64 of 25. Therefore, it seems that a more
frequently activated GA has a beneficial impact on prediction accuracy.

The prediction error of the match sets at the end of the training pro-
cess is unaffected by the reduced GA activation frequency, as seen in
Figure 6.14b. However, the size of the match sets is reduced considerably.
Considering that the overall size of the classifier population remained
unchanged, this implies that the population’s classifiers occur in fewer
match sets, i.e., they are less generalized. Overall, a more frequent ap-
plication of the GA seems to improve the average prediction accuracy

Match Set Size

q



6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS

0.08 4000 L, 020
2 006 F3000 . = 0151
g o=
5 004 - 2000 E 5 0.10 1
£ 0.02 1000 = & 0.05
D & WA
4 =

0.00 + T T r r 0 0.00 L+ . ; ; ;

0 50000 100000 150000 200000 230000 232000 234000 236000 233000
Sample Sample
(a) Population (b) Match set

Figure 6.15: Population and match set statistics of XCS with § = 0.01 and
€9 = 0.05 when trained with the Canneal training set. Results are
visualized as a moving average over 30 samples. The match set
statistics are shown only for the end of the training process. The
vertical grey lines denote the start of a new execution of Canneal.

of the population and leads to more generalized classifiers, which is
precisely the intended behavior of the GA. This contrasts with the other
experimental results discussed so far, as they indicated that the GA plays
a relatively unimportant role due to a lack of generalization behavior.
The GA, in principle, seems to function as intended, but it hits a bound-
ary preventing it from reducing the overall population size. The same
applies to reducing the prediction error, which still has the potential to be
reduced further, as can be seen in the evaluation with Q-learning (cf. Fig-
ure 6.9a). The reasons for this behavior are unclear. One possibility could
be that only a small fraction of the input state space is sampled and that
the classifiers are generalized into the never-occurring state space. This
generalization does not impact the classifier’s prediction accuracy but
can hamper the use of classifier subsumption to reduce the population
size.

On both the Ferret and Freqmine training sets, a decrease in the match
set size can also be observed. Still, the size of the classifier population
remains unchanged in both cases. Further, neither the prediction error of
the population nor of the match set shows a visible difference to the case
with a GA threshold 654 of 25.

The reduction of the learning rate f showed mild improvements toward
an even classifier allocation of XCS by partly counteracting the adverse
effects of the unbalanced input state sampling. In contrast, lowering the
GA activation frequency did not yield positive outcomes and slowed the
learning process. Hence, the parameter optimization has been continued
with the reduced learning rate B of 0.01 and the initial GA activation
threshold 654 of 25.

The last aspect considered in optimizing XCS’s parameters is the non-
zero prediction error due to reward variance. The prediction accuracy
is the guiding criterion for the learning mechanism of XCS. Hence, a

600

450

300

150

123

Match Set Size



124

CASE STUDY: XCS FOR FREQUENCY CONTROL

reward function that is unpredictable to a certain extent might not be
able to provide sufficient guidance to the GA. Quantizing the received
reward through rounding with different granularities did not improve
the prediction accuracy of Q-learning, as seen in Subsection 6.5.2. Hence,
it is not expected to provide any benefits to the prediction accuracy of
XCS, either. Instead, we investigate an increase of the error threshold ey of
0.02 to 0.05. Since €g determines up to which prediction error a classifier
is considered fully accurate, this opens more generalization opportunities
and, consequently, the potential for smaller classifier populations. On the
downside, higher prediction errors are considered acceptable, which can
lead to the more frequent selection of non-optimal actions and a decrease
in operational performance, e.g., in terms of IPS shortfall. However, if
XCS cannot accurately cover the entire input state space with the initial
error threshold, a higher threshold can also lead to decreased prediction
errors. Whether the benefits of a higher error threshold exceed the adverse
side effects depends on the problem environment. In our case, positive
effects can be expected especially for the benchmark application Freqmine
which depicts prediction errors considerably higher than €y = 0.02 (cf.
Figure 6.8b).

When trained on the Canneal training set, a very weak tendency to
decrease the size of the classifier population can be seen in Figure 6.15a.
However, the error threshold of 0.05 also leads to an increase in the
overall prediction error, indicating that the additional generalization
opportunities are exploited at the cost of prediction accuracy. This is also
observed in Figure 6.15b, where the larger value for ¢ results in larger
match sets, indicating more generalization, and higher prediction errors
in the match sets. Increased prediction errors and larger match sets have
also been observed on the Ferret training set (not shown) but not with an
accompanied decrease in population size. The same observations have
been made for the Freqmine training set, indicating that no apparent
benefits result from a higher error threshold. This is contrary to our
expectation that Freqmine would benefit the most due to its inability to
reach prediction errors close to the initial €y of 0.02.

Interim Summary. Although a prior analysis of the characteristics of
the benchmark applications has been conducted, optimizing the hyper-
parameters of XCS to the application domain seems challenging. A lower
learning rate and GA activation frequency have been employed to tackle
the undesired side effects associated with the unbalanced sampling of the
input state space. Both approaches have been developed based on XCS
theory and have proven successful on toy problems [77]. In our case, the
reduced learning rate showed mild improvements toward a more even
allocation of classifiers to environmental niches. In contrast, the reduced
GA activation frequency only slowed down the learning process of XCS.
The reward variance present for all benchmark applications can prevent
XCS from deriving adequate generalizations, and rounding the received
reward to discrete levels does not alleviate the variance. Instead, we have
increased the error threshold €. According to the internal mechanics of



6.5 ENVIRONMENTAL CHARACTERISTICS AND BEHAVIOR OF XCS

XCS, this should trade prediction accuracy for generalization, leading to
smaller classifier populations. However, while we have observed larger
prediction errors for all benchmark applications, a mild reduction in
population size has been observed for only one application. Overall, this
shows that tailoring XCS’s hyperparameters toward the characteristics of
a real-world application domain that does not depict the same character-
istics as toy problems commonly used in research is quite challenging
and, if possible, likely requires an exhaustive analysis of the problem
environment.

6.5.4 Implications

Section 6.4 demonstrated that XCS performs well when controlling the
CPU frequency during the execution of the three selected benchmark
applications. It outperformed Q-learning and was superior to the static
strategy in two out of three cases. Naturally, the question can be raised
why the observed irregularities of XCS’s learning behavior are of any
importance if the operational performance in the application domain,
i.e., frequency control, is sufficiently good. And indeed, the implications
derived from the presented investigations of XCS’s learning behavior do
not primarily concern the specific investigated application scenario but
other potential application domains that are more challenging for XCS
but depict similar characteristics.

The employed classifier population with a maximum size N of 4,000
seems to be rather large, considering that GAE-LCT [98] used a popu-
lation with a maximum of 128 classifiers to tackle a similar application
scenario, albeit with a different LCS. In our case, smaller maximum popu-
lation sizes resulted in visible drops in the performance of the frequency
control. However, employing large classifier populations can increase the
execution time of XCS substantially [13]. This is especially problematic
when managing a CPU, as the computational overhead imposed by XCS
risks cannibalizing its benefits. Therefore, hardware implementations
with low latencies are favorable [116], but larger classifier populations
will require more memory resources and bound the latency.

That such a large population is required is striking, as the application
scenario can be considered relatively simple. Even a straightforward static
strategy achieved good results and sometimes even outperformed XCS.
Further, only a tiny fraction of the input state space is actually sampled
in the training sets. Using Q-learning with 10 bins, it has been observed
that at maximum 0.04 % of the Q-table’s entries received an update,
i.e., have been activated because a matching input state was observed.
Therefore, smaller classifier populations should also be able to cover all
occurring input states. However, the unbalanced sampling of input states
results in an uneven allocation of classifiers to environmental niches,
which prevents the successful use of smaller populations. As seen in
the previous subsection, all benchmark applications have some sparsely
covered phases with few classifiers in the match set. If the population size

125



126

CASE STUDY: XCS FOR FREQUENCY CONTROL

is reduced, these phases might no longer be covered adequately, resulting
in random actions. The same effect could be observed if the problem
environment becomes more complex and a larger number of different
input states is observed, e.g., because user applications are controlled that
depict more distinct computational phases than the evaluated benchmark
applications. In such cases, the maximum size of the classifier population
must be increased, potentially up to the point where the computational
overhead of XCS becomes unfeasibly large.

The most severe restriction for employing XCS in autonomous, self-
aware systems is likely the non-zero prediction error of XCS. A consider-
able and oscillating prediction error has been observed for all benchmark
applications, both in the overall population and the match set. This pre-
vents the successful use of the error-based E/E strategies investigated in
Chapter 4. Due to the creation of specialized classifiers via covering, the
prediction error at the beginning of the training process is already close
to the minimum achieved by XCS. Hence, the prediction error does not
decrease considerably during the learning process, which makes it impos-
sible for error-based E/E strategies to initially apply exploration and then
shift toward exploitation. Furthermore, since the error oscillates and can
differ considerably between environmental niches, which is best observed
for Freqmine in Figure 6.8b, there exists no straight-forward modifica-
tion for error-based E/E strategies that would still allow their successful
deployment. At least the intuitive approach of determining the expected
prediction error depicted by a trained population and subtracting it from
the observed prediction error is likely infeasible. Hence, autonomous
E/E strategies must be employed that do not rely on the prediction error
of XCS but instead on performance metrics of the problem environment,
e.g., the IPS shortfall in the case of CPU frequency control. Naturally,
such strategies must always be tailored to the application domain by the
system designers. However, it is noteworthy that even minor differences
in the problem environment can impact the behavior of XCS’s prediction
error, as GAE-LCT [98] successfully employed a local error-based E/E
strategy for controlling the CPU frequency, albeit with a different user
application.

6.6 CONCLUSION AND FUTURE WORK

In this case study, we have employed XCS for controlling a CPU'’s fre-
quency to reach a user application’s IPS target and minimize power
consumption. Our experimental evaluation showed that XCS achieves the
best results for two out of three user applications. For one application,
it is surpassed by a static heuristic. However, XCS outperforms tabular
Q-learning in all experiments. Thereby, we can confirm the observations
of related work that LCSs with their dynamic classifier generalization
are more suited for performing DVFS than tabular Q-learning with fixed
generalizations.



6.6 CONCLUSION AND FUTURE WORK

Our investigation of XCS’s learning behavior revealed that it behaves
differently than in the toy problems commonly used in LCS research.
Throughout the experiments, (1) the size of the classifier population does
not decrease, indicating the absence of successful classifier generalization,
(2) the population’s classifiers are not evenly allocated to the environ-
mental niches, and (3) the classifiers” prediction errors do not approach
zero. These observed phenomena prevent the successful use of XCS in
more complex application environments.

As an investigation of the user applications” execution characteristics
showed, the reward is inherently unpredictable to a certain extent, and the
input state space is sampled unbalancedly. A temporal pattern has been
observed in some cases, where similar states are repeatedly sampled
in a sequence. Using theoretical insights on XCS for hyperparameter
tailoring, which aims at counteracting some of the adverse effects of the
environments’ characteristics, has resulted in only minor improvements
in learning behavior. In addition, some of the considered approaches,
such as a decreased learning rate 5 or low GA activation frequency, have a
detrimental impact on XCS’s ability to adapt in the face of environmental
dynamics, which have not been considered in this case study.

However, even if a suitable hyperparameter configuration had been
found, it would likely apply to only a single user application, as all eval-
uated applications depict different characteristics. Determining suitable
hyperparameters for each individual application scenario by hand is
cumbersome and likely infeasible for system designers unfamiliar with
XCS - regardless of whether XCS is applied for DVFS or in other applica-
tion domains. The most promising solution are mechanisms that allow
XCS to self-configure its hyperparameters. While some self-configuration
approaches already exist, e.g., for the mutation and learning rate [46]
or the error threshold [36], they have been mostly designed in isolation
and evaluated on toy problem environments only. When developing new
hyperparameter self-configuration mechanisms for XCS, future work
must (1) investigate characteristics of additional real-world application
environments, (2) identify relevant hyperparameters, and (3) design and
evaluate the self-configuration mechanisms for multiple hyperparameters
in combination to account for possible interactions.

Aside from the hyperparameter configuration, the components of XCS
could also be modified. Comparing our case study with GAE-LCT [98]
yields indicators that XCS with conditions using discretized intervals
can be more robust than XCS with the real-valued intervals that we have
employed. With discretized intervals, a classifier is more likely to be
subsumed or identified as identical to an existing classifier, resulting
in a smaller and more generalized classifier population. Further, in the
presence of reward variance, precise condition boundaries likely offer
only limited benefits for improving prediction accuracy. Lastly, the use of
XCS for environments with a reward function that is largely unpredictable
can be questioned in general. Due to the classifier fitness being based on
prediction accuracy, XCS will never be able to reliably evolve classifiers

127



128 CASE STUDY: XCS FOR FREQUENCY CONTROL

with high fitness, which limits the generalization capability of the GA.
Hence, strength-based LCSs could be revisited for use in real-world
applications with strong reward variance.



CONCLUSION AND FUTURE WORK

Computational self-awareness is a design paradigm for enabling tech-
nical systems to autonomously adapt to the specifics of the operational
environment and occurring changes, thereby moving design time de-
cisions to the runtime and into the system’s responsibility. Learning
Classifier Systems (LCSs), especially their most common variant XCS,
are frequently proposed for implementing autonomous and adaptive
behavior in self-aware systems. However, XCS has been developed and
evaluated primarily in artificial toy problem environments, as research on
how XCS can be applied in more practical, real-world application envi-
ronments is lacking. To close the gap in research, this thesis investigated
how XCS can be made more amenable for deployment in autonomous
and adaptive systems that tackle practical application scenarios. The
contributions of this work are threefold:

¢ Existing autonomous Explore/Exploit (E/E) strategies for XCS from
research literature have never been compared to each other, nor
has their E/E behavior been extensively investigated. This makes
it challenging for XCS practitioners to successfully apply an E/E
strategy, which is a necessity for achieving adaptivity. This thesis
is the first to experimentally compare four E/E strategies for XCS,
revealing that different strategies depict vastly different E/E behav-
iors. The comparison took place not only in static environments
but also in dynamic environments that change during runtime. A
local error-based E/E strategy turned out to be most suited for
use in self-aware systems, as it depicts a robust E/E behavior, re-
acts adequately to environmental changes, and is the easiest to
parameterize. However, it is unsuited for multi-step environments
with sparse rewards. The parameterization has been systematically
determined by an automated parameter optimization. Since the
optimization also targeted a “one-fits-all” parameterization, XCS
practitioners are now equipped with a set of useful strategy param-
eter configurations.

* Forbidden classifiers have been proposed to equip XCS with safety
guarantees, which is especially relevant in the context of Cyber-
Physical Systems (CPSs). Forbidden classifiers are manually created
and injected into XCS’s population before deployment. During op-
eration, they prevent the selection of actions that violate safety

129



130

CONCLUSION AND FUTURE WORK

requirements. As such, the concept of forbidden classifiers is, to the
best of our knowledge, among the first use cases that systematically
leverage the interpretability of XCS’s rules to inject domain knowl-
edge into the classifier population. Compared to ensuring the safety
requirements with an external shield, using forbidden classifiers
enables XCS to evolve a solution more quickly, with a smaller clas-
sifier population, and reduced computational burden. In addition,
adverse effects of overgeneralization are reduced. Thus, forbid-
den classifiers successfully leverage the classifiers” interpretability
to improve the applicability of XCS in application environments
requiring safety guarantees.

* In a case study, XCS has been employed to perform Dynamic Volt-
age and Frequency Scaling (DVFS) and manage the execution of a
user application on a CPU. In contrast to the common toy problem
environments, this represents a practical, real-world application do-
main. Even though LCSs have already been applied frequently for
DVFS, their learning behavior during operation has, at most, been
investigated superficially. This thesis has confirmed the observa-
tions of related work that XCS is well-suited for performing DVFS
and has also extensively studied the learning behavior of XCS. It
was revealed that XCS is adversely affected by an unbalanced sam-
pling of input states and a reward function that is not accurately
predictable. Both effects hinder the evolution of adequately gen-
eralized classifiers and prevent the successful deployment of XCS
in more complex application environments. As a countermeasure,
an attempt toward hyperparameter tailoring has been conducted.
However, even though the parameterization followed guidelines of
existing theoretical works on XCS, it resulted in only mild improve-
ments in XCS’s learning behavior. Hence, our case study showed
that some of the benefits promised by XCS, such as the evolution of
a minimally sized classifier population, might be observable in arti-
ficial toy problem environments but not necessarily in real-world
application domains.

7.1 FUTURE WORK

Even though this thesis has made significant steps toward making XCS
amenable for deployment in autonomous and adaptive systems that
tackle practical application scenarios, several open challenges remain. As
such, each chapter points to possible future research directions.

¢ The evaluation of E/E strategies has revealed that the local error-
based strategy is most promising but incapable of solving multi-
step problems. Thus, it requires modifications to apply to a broader
range of problem environments. In addition, our case study has
revealed that real-world problem environments can depict unpre-
dictable rewards, which prevents the evolution of accurate classi-



7.1 FUTURE WORK

fiers. This highlights the need to develop application-specific E/E
strategies that are independent of XCS’s prediction error.

For an effortless use of forbidden classifiers, approaches could be
devised that take formalized safety requirements and automatically
derive a corresponding, minimal set of forbidden classifiers.

The use of hand-crafted classifiers to manually inject domain
knowledge could be expanded beyond the scope of forbidden clas-
sifiers. Instead of preventing the selection of specific actions, the
interpretability of classifiers could be leveraged by initializing the
population with a set of classifiers representing a known heuristic.
However, it is unclear how such classifiers should be treated in the
Genetic Algorithm (GA) and during action selection. Initially, they
should dominate the behavior of XCS to enforce the heuristic, but
at later stages of learning, they have to allow the evolution of a
better solution.

Future work must investigate mechanisms that automatically detect
an unbalanced sampling of the input state space or other adverse
phenomena and take appropriate countermeasures. This includes
hyperparameter self-configuration approaches, which would also
facilitate the use of XCS by system designers that are unfamiliar
with XCS and cannot optimize hyperparameters by hand.

XCS must be made more robust against reward variance for de-
ployment in real-world environments, as existing approaches are
often applicable to artificial toy problem environments only (cf. Sec-
tion 3.3). That the degree of reward variance differs between states
could pose a significant challenge to the development of such ap-
proaches. An outcome could be the use of hybrid fitness functions
that consider both the accuracy and magnitude of the payoff pre-
diction. An early attempt at using such a hybrid fitness function
has been made in [14]. However, in the presence of strong reward
variance, it can be argued that accuracy-based fitness, as used in
XCS, is inherently unsuited. Hence, the use of strength-based LCSs
could be revisited, potentially with extensions that alleviate their
disadvantages, which have been discussed in Section 3.2.

131






BIBLIOGRAPHY

[1]

(2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Andreas Agne, Markus Happe, Achim Losch, Christian Plessl,
and Marco Platzner. “Self-Awareness as a Model for Designing
and Operating Heterogeneous Multicores.” In: ACM Transactions
on Reconfigurable Technology and Systems (TRETS) 7.2 (2014), pp. 1-
18. por: 10.1145/2617596.

Adam A. Alli and Muhammad Mahbub Alam. “The fog cloud of
things: A survey on concepts, architecture, standards, tools, and
applications.” In: Internet of Things 9 (2020). por: 10.1016/J.I0T.
2020.100177

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina
Konighofer, Scott Niekum, and Ufuk Topcu. “Safe Reinforcement
Learning via Shielding.” In: Proceedings of the AAAI Conference on
Artificial Intelligence. 2018, pp. 2669-2678.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano,
John Schulman, and Dan Mané. “Concrete Problems in Al Safety.”
In: CoRR abs/1606.06565 (2016). arXiv: 1606.06565.

An architectural blueprint for autonomic computing. Tech. rep. IBM,
2005. URL: https://www-03.ibm. com/autonomic/pdfs/AC%
20Blueprint%20White%20Papers20V7.pdf.

Jaume Bacardit, Edmund K Burke, and Natalio Krasnogor. “Im-
proving the scalability of rule-based evolutionary learning.” In:
Memetic Computing 1.1 (2009), pp. 55-67. por: 10.1007 /512293 -
008-0005-4.

Thomas Back and Hans-Paul Schwefel. “Evolutionary computa-
tion: an overview.” In: Proceedings of IEEE International Conference
on Evolutionary Computation. 1996, pp. 20-29. por: 10.1109/ICEC.
1996.5423209.

Anthony J. Bagnall and George D. Smith. “A multiagent model
of the UK market in electricity generation.” In: IEEE Transactions
on Evolutionary Computation 9.5 (2005), pp. 522-536. por: 10.1109/
TEVC.2005.850264.

K. Bellman et al. “Self-aware Cyber-Physical Systems.” In: ACM
Transactions on Cyber-Physical Systems 4.4 (2020), pp. 1-26. por:
10.1145/3375716.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
“The PARSEC benchmark suite: Characterization and architectural
implications.” In: Parallel Architectures and Compilation Techniques
- Conference Proceedings, PACT (2008), pp. 72-81. por: 10.1145/
1454115.1454128.

133


https://doi.org/10.1145/2617596
https://doi.org/10.1016/J.IOT.2020.100177
https://doi.org/10.1016/J.IOT.2020.100177
https://arxiv.org/abs/1606.06565
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://doi.org/10.1007/s12293-008-0005-4
https://doi.org/10.1007/s12293-008-0005-4
https://doi.org/10.1109/ICEC.1996.542329
https://doi.org/10.1109/ICEC.1996.542329
https://doi.org/10.1109/TEVC.2005.850264
https://doi.org/10.1109/TEVC.2005.850264
https://doi.org/10.1145/3375716
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128

134

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Nathan Binkert et al. “The gem5 simulator.” In: ACM SIGARCH
Computer Architecture News 39.2 (2011), pp. 1-7. por: 10. 1145/
2024716.2024718.

Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and
Alberto L. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Springer, 1984. 1sBN: 978-1-4612-9784-0. por:
10.1007/978-1-4613-2821-6.

Mathis Brede, Tim Hansmeier, and Marco Platzner. “XCS on em-
bedded systems: an analysis of execution profiles and accelerated
classifier deletion.” In: Proceedings of the 2022 Genetic and Evolution-
ary Computation Conference Companion (GECCO "22). ACM, 2022,
pp. 2071-2079. poT: 10.1145/3520304.3533977.

William Browne. “The Development of an Industrial Learning
Classifier System for Data-Mining in a Steel Hop Strip Mill.” In:
Applications of Learning Classifier Systems. Springer Berlin Heidel-
berg, 2004, pp. 223-259. 1sBN: 978-3-540-39925-4. por: 10.1007/
978-3-540-39925-4_10.

Larry Bull and Toby O’Hara. “Accuracy-Based Neuro and Neuro-
Fuzzy Classifier Systems.” In: Proceedings of the 2002 Conference on
Genetic and Evolutionary Computation (GECCO '02). 2002, pp. 905-
911.

Alwyn Burger, David W. King, and Gregor Schiele. “Reconfig-
urable embedded devices using reinforcement learning to develop
action-policies.” In: Proceedings of the IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS 2020).
2020, pp. 232-241. por: 10.1109/ACS0549614.2020.00046.

M. V. Butz and S. W. Wilson. “An algorithmic description of
XCS.” In: Soft Computing 6.3-4 (2002), pp. 144-153. por: 10.1007/
s005000100111.

Martin V Butz. Anticipatory learning classifier systems. Springer New
York, 2002. 1sBN: 978-0-7923-7630-9. po1: 10.1007/978-1-4615 -
0891-5.

Martin V. Butz. “Ellipsoidal conditions in the real-valued XCS
classifier system.” In: Proceedings of the 2005 Genetic and Evolution-
ary Computation Conference (GECCO '05). 2005, pp. 1835-1842. por:
10.1145/1068009.1068320.

Martin V. Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W.
Wilson. “Toward a Theory of Generalization and Learning in
XCS.” In: IEEE Transactions on Evolutionary Computation 8.1 (2004),
pp- 28-46. por: 10.1109/TEVC.2003.818194.


https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1145/3520304.3533977
https://doi.org/10.1007/978-3-540-39925-4_10
https://doi.org/10.1007/978-3-540-39925-4_10
https://doi.org/10.1109/ACSOS49614.2020.00046
https://doi.org/10.1007/s005000100111
https://doi.org/10.1007/s005000100111
https://doi.org/10.1007/978-1-4615-0891-5
https://doi.org/10.1007/978-1-4615-0891-5
https://doi.org/10.1145/1068009.1068320
https://doi.org/10.1109/TEVC.2003.818194

[22]

[23]

BIBLIOGRAPHY

Martin V. Butz, Pier Luca Lanzi, and Stewart W. Wilson. “Function
approximation with XCS: Hyperellipsoidal conditions, recursive
least squares, and compaction.” In: IEEE Transactions on Evolution-
ary Computation 12.3 (2008), pp. 355-376. po1: 10.1109/TEVC.2007.
903551.

Arjun Chandra, Peter R. Lewis, Kyrre Glette, and Stephan C. Stilk-
erich. “Reference Architecture for Self-aware and Self-expressive
Computing Systems.” In: Self-aware Computing Systems: An Engi-
neering Approach. Springer International Publishing, 2016, pp. 37—
49. 1sBN: 978-3-319-39675-0. por: 10.1007/978-3-319-39675-0_4.

Tao Chen, Funmilade Faniyi, and Rami Bahsoon. “Design pat-
terns and primitives: Introduction of components and patterns
for SACS.” In: Self-aware Computing Systems: An Engineering Ap-
proach. Springer International Publishing, 2016, pp. 53-78. por:
10.1007/978-3-319-39675-0_5.

Janez Demsar. “Statistical Comparisons of Classifiers over Mul-
tiple Data Sets.” In: Journal of Machine Learning Research 7 (2006),
pp- 1-30.

Simon Dobson, Roy Sterritt, Paddy Nixon, and Mike Hinchey.
“Fulfilling the vision of autonomic computing.” In: Computer 43.1
(2010), pp. 35-41. por: 10.1109/MC.2010. 14,

Bryan Donyanavard, Tiago Muck, Amir M. Rahmani, Nikil Dutt,
Armin Sadighi, Florian Maurer, and Andreas Herkersdorf. “SOSA:
Self-optimizing learning with self-adaptive control for hierarchi-
cal system-on-chip management.” In: Proceedings of the Annual
International Symposium on Microarchitecture (MICRO °52). 2019,
pp- 685-698. po1: 10.1145/3352460.3358312.

Bryan Donyanavard, Tiago Miick, Santanu Sarma, and Nikil Dutt.
“SPARTA: Runtime Task Allocation for Energy Efficient Heteroge-
neous Many-cores.” In: Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES '16). 2016. por: 10.1145/2968456.2968459.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository.
2019. urL: http://archive.ics.uci.edu/ml.

Nikil Dutt, Fadi J. Kurdahi, Rolf Ernst, and Andreas Herkersdorf.
“Conquering MPSoC complexity with principles of a self-aware
information processing factory.” In: International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS16).
2016, pp. 1-4.

Melanie Feist, Martin Breitbach, Heiko Trotsch, Christian Becker,
and Christian Krupitzer. “Rango: An Intuitive Rule Language
for Learning Classifier Systems in Cyber-Physical Systems.” In:
Proceedings of the 2022 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS 2022). 2022, pp. 31—
40. 1sBN: 9781665471374. por: 10.1109/ACS0S55765.2022.00021.

135


https://doi.org/10.1109/TEVC.2007.903551
https://doi.org/10.1109/TEVC.2007.903551
https://doi.org/10.1007/978-3-319-39675-0_4
https://doi.org/10.1007/978-3-319-39675-0_5
https://doi.org/10.1109/MC.2010.14
https://doi.org/10.1145/3352460.3358312
https://doi.org/10.1145/2968456.2968459
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/ACSOS55765.2022.00021

136 BIBLIOGRAPHY

[31] Milton Friedman. “The Use of Ranks to Avoid the Assumption
of Normality Implicit in the Analysis of Variance.” In: Journal of
the American Statistical Association 32.200 (1937), pp. 675-701. por:
10.1080/01621459.1937.10503522.

[32] Javier Garcia and Fernando Fernandez. “A Comprehensive Survey
on Safe Reinforcement Learning.” In: Journal of Machine Learning
Research 16.42 (2015), pp. 1437-1480.

[33] Ujjwal Gupta, Sumit K. Mandal, Manqging Mao, Chaitali Chakrabarti,
and Umit Y. Ogras. “A Deep Q-Learning Approach for Dynamic
Management of Heterogeneous Processors.” In: IEEE Computer
Architecture Letters 18.1 (2019), pp. 14-17. por: 10.1109/LCA.2019.
2892151.

[34] Ali Hamzeh and Adel Rahmani. “A Fuzzy System to Control
Exploration Rate in XCS.” In: International Workshop on Learning
Classifier Systems (IWLCS 2003-2005). 2005, pp. 115-127. por: 10.
1007/978-3-540-71231-2_9.

[35] Tim Hansmeier, Mathis Brede, and Marco Platzner. “Safe Learn-
ing with XCS via the Injection of Forbidden Classifiers.” In: SN
Computer Science (tbd). Currently under review.

[36] Tim Hansmeier, Paul Kaufmann, and Marco Platzner. “An Adap-
tion Mechanism for the Error Threshold of XCSF.” In: Proceedings
of the 2020 Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’20). 2020, pp. 1756-1764. por1: 10.1145/3377929.
3398106.

[37] Tim Hansmeier and Marco Platzner. “An experimental compari-
son of explore/exploit strategies for the learning classifier system
XCS.” In: Proceedings of the 2021 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO '21). 2021, pp. 1639-1647. 1SBN:
9781450383516. por: 10.1145/3449726.3463159.

[38] Tim Hansmeier and Marco Platzner. “Integrating Safety Guaran-
tees into the Learning Classifier System XCS.” In: Applications of
Evolutionary Computation (EvoApplications 2022). Springer, 2022,
pp- 386—401. por: 10.1007/978-3-031-02462-7_25.

[39] Tim Hansmeier and Marco Platzner. “Autonomous Explore/Ex-
ploit Strategies for XCS: An Experimental Comparison.” In: Soft
Computing (tbd). Currently under review.

[40] Adrian R. Hartley. “Accuracy-based fitness allows similar per-
formance to humans in static and dynamic classification envi-
ronments.” In: Proceedings of the 1999 Genetic and Evolutionary
Computation Conference (GECCO '99). 1999, pp. 266-273.


https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1109/LCA.2019.2892151
https://doi.org/10.1109/LCA.2019.2892151
https://doi.org/10.1007/978-3-540-71231-2_9
https://doi.org/10.1007/978-3-540-71231-2_9
https://doi.org/10.1145/3377929.3398106
https://doi.org/10.1145/3377929.3398106
https://doi.org/10.1145/3449726.3463159
https://doi.org/10.1007/978-3-031-02462-7_25

BIBLIOGRAPHY

Michael Heider, David Pétzel, and Alexander R.M. Wagner. “An
overview of LCS research from 2021 to 2022.” In: Proceedings of
the 2022 Genetic and Evolutionary Computation Conference Compan-
ion (GECCO '22). 2022, pp. 2086-2094. DOI: 10 . 1145 /3520304 .
3533985.

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Ja-
son E. Miller, and Anant Agarwal. “Application heartbeats: A
generic interface for specifying program performance and goals in
autonomous computing environments.” In: Proceedings of the 7th
International Conference on Autonomic Computing (ICAC "10) and Co-
located Workshops. 2010, pp. 79-88. por: 10.1145/1809049.1809065.

Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Al-
berto Leva, and Anant Agarwal. SEEC: A General and Extensible
Framework for Self-Aware Computing. Tech. rep. MIT-CSAIL-TR-
2011-046. 2011. UrRL: http://hdl.handle.net/1721.1/67020.

Henry Hoffmann et al. “Self-aware computing in the Angstrom
processor.” In: Proceedings of the Design Automation Conference (DAC
"12) (2012), pp. 259-264. por: 10.1145/2228360.2228409.

Sture Holm. “A Simple Sequentially Rejective Multiple Test Pro-
cedure.” In: Scandinavian Journal of Statistics 6.2 (1979), pp. 65—
70.

Jacob Hurst and Larry Bull. “A self-adaptive XCS.” In: International
Workshop on Learning Classifier Systems (IWLCS 2001). 2002, pp. 57—
73. DOI: 10.1007/3-540-48104-4_5.

Muhammad Igbal, Will N. Browne, and Mengjie Zhang. “Reusing
Building Blocks of Extracted Knowledge to Solve Complex, Large-
Scale Boolean Problems.” In: IEEE Transactions on Evolutionary
Computation 18.4 (2014), pp. 465—480. por: 10.1109/TEVC.2013.
2281537.

Arman Iranfar, Soheil Nazar Shahsavani, Mehdi Kamal, and Ali
Afzali-Kusha. “A heuristic machine learning-based algorithm for
power and thermal management of heterogeneous MPSoCs.” In:
Proceedings of the International Symposium on Low Power Electron-
ics and Design. 2015, pp. 291-296. por: 10 . 1109/ ISLPED . 2015.
72735209.

Jeffrey O. Kephart and David M. Chess. “The vision of autonomic
computing.” In: Computer 36.1 (2003), pp. 41-50. por: 10.1109/MC.
2003.1160055.

Tim Kovacs. “Deletion Schemes for Classifier Systems.” In: Proceed-
ings of the 1999 Conference on Genetic and Evolutionary Computation
(GECCO "99). 1999, pp. 329-336.

137


https://doi.org/10.1145/3520304.3533985
https://doi.org/10.1145/3520304.3533985
https://doi.org/10.1145/1809049.1809065
http://hdl.handle.net/1721.1/67020
https://doi.org/10.1145/2228360.2228409
https://doi.org/10.1007/3-540-48104-4_5
https://doi.org/10.1109/TEVC.2013.2281537
https://doi.org/10.1109/TEVC.2013.2281537
https://doi.org/10.1109/ISLPED.2015.7273529
https://doi.org/10.1109/ISLPED.2015.7273529
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055

138

BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Tim Kovacs. “Strength or Accuracy? Fitness Calculation in Learn-
ing Classifier Systems.” In: International Workshop on Learning
Classifier Systems (IWLCS 1999). Springer Berlin Heidelberg, 1999,
pp. 143-160. poT: 10.1007/3-540-45027-0 7.

Tim Kovacs. “Performance and population state metrics for rule-
based learning systems.” In: Proceedings of the 2002 Congress on
Evolutionary Computation (CEC '02). 2002, pp. 1781-1786. por: 10.
1109/CEC.2002.1004512.

Tim Kovacs. “Strength or accuracy: credit assignment in learning
classifier systems.” PhD thesis. Bristol, Univ., 2004. 1sBN: 1-85233-
770-2.

Philippe Lalanda, Julie A McCann, and Ada Diaconescu. Auto-
nomic Computing - Principles, Design and Implementation. Springer,
2013. 1sBN: 978-1-4471-5006-0. po1: 10.1007/978-1-4471-5007-7.

P. L. Lanzi and S. W. Wilson. “Toward Optimal Classifier System
Performance in Non-Markov Environments.” In: Evolutionary Com-
putation 8.4 (2000), pp- 393-418. por1: 10.1162/106365600568239.

Pier Luca Lanzi. “A Study of the Generalization Capabilities of
XCS.” In: Proceedings of the 7th International Conference on Genetic
Algorithms. 1997, pp. 418-425.

Pier Luca Lanzi. “Adding memory to XCS.” In: Proceedings of the
IEEE Conference on Evolutionary Computation (ICEC) (1998), pp. 609-
614. por: 10.1109/ICEC.1998.700098.

Pier Luca Lanzi. “An Analysis of Generalization in the XCS Clas-
sifier System.” In: Evolutionary Computation 7.2 (1999), pp. 125-149.
DOI: 10.1162/evc0.1999.7.2.125.

Pier Luca Lanzi. “An Analysis of the Memory Mechanism of
XCSM.” In: Genetic Programming 98. 1999, pp. 643-651.

Pier Luca Lanzi and Marco Colombetti. “An Extension to the
XCS Classifier System for Stochastic Environments.” In: Proceed-
ings of the 1999 Conference on Genetic and Evolutionary Computation
(GECCO "99). 1999, pp. 353-360.

Pier Luca Lanzi and Daniele Loiacono. “XCSF with neural pre-
diction.” In: Proceedings of the 2006 Congress on Evolutionary Com-
putation (CEC “06). 2006, pp. 2270-2276. por: 10.1109/CEC.2006.
1688588.

Pier Luca Lanzi, Daniele Loiacono, Siewart W. Wilson, and David
E. Goldberg. “Extending XCSF Beyond Linear Approximation.”
In: Proceedings of the 2005 Genetic and Evolutionary Computation Con-
ference (GECCO ’05). 2005, pp. 1827-1834. por1: 16.1145/1068009.
1068319.


https://doi.org/10.1007/3-540-45027-0_7
https://doi.org/10.1109/CEC.2002.1004512
https://doi.org/10.1109/CEC.2002.1004512
https://doi.org/10.1007/978-1-4471-5007-7
https://doi.org/10.1162/106365600568239
https://doi.org/10.1109/ICEC.1998.700098
https://doi.org/10.1162/evco.1999.7.2.125
https://doi.org/10.1109/CEC.2006.1688588
https://doi.org/10.1109/CEC.2006.1688588
https://doi.org/10.1145/1068009.1068319
https://doi.org/10.1145/1068009.1068319

[67]

[69]

[70]

BIBLIOGRAPHY 139

Veronika Lesch, Tanja Noack, Johannes Hefter, Samuel Kounev,
and Christian Krupitzer. “Towards Situation-Aware Meta-Op-
timization of Adaptation Planning Strategies.” In: Proceedings
of the IEEE International Conference on Autonomic Computing and
Self-Organizing Systems (ACSOS 2021). 2021, pp. 177-187. por:
10.1109/ACS0S52086.2021.00042

Peter R. Lewis, Arjun Chandra, Funmilade Faniyi, Kyrre Glette,
Tao Chen, Rami Bahsoon, Jim Torresen, and Xin Yao. “Architec-
tural aspects of self-Aware and self-expressive computing systems:
From psychology to engineering.” In: Computer 48.8 (2015), pp. 62—
70. po1: 10.1109/MC.2015.235.

Peter R. Lewis, Arjun Chandra, and Kyrre Glette. “Self-awareness
and Self-expression: Inspiration from Psychology.” In: Self-aware
Computing Systems: An Engineering Approach. Springer Interna-
tional Publishing, 2016, pp. 9-21. 1sBN: 978-3-319-39675-0. pOTI:
10.1007/978-3-319-39675-0_2.

Peter R. Lewis, Marco Platzner, Bernhard Rinner, Jim Torresen,
and Xin Yao, eds. Self-aware Computing Systems: An Engineering
Approach. Springer International Publishing, 2016. 1sBN: 978-2-319-
39675-0. por: 10.1007/978-3-319-39675-0.

Lei Liu, Stefan Thanheiser, and Hartmut Schmeck. “Assessing
the impact of inherent SOA system properties on complexity.”
In: Proceedings of the 4th International Conference on Internet and
Web Applications and Services (ICIW 2009). 2009, pp. 429-434. por:
10.1109/ICIW.2009.70.

Shiting Lu, Russell Tessier, and Wayne Burleson. “Reinforcement
learning for thermal-aware many-core task allocation.” In: Proceed-
ings of the ACM Great Lakes Symposium on VLSI (GLSVLSI 2015).
2015, pp. 379-384. por: 10.1145/2742060.2742078.

Manuel Lopez-Ibéfiez, Jérémie Dubois-Lacoste, Leslie Pérez Céceres,
Thomas Stiitzle, and Mauro Birattari. “The irace package: Iterated
Racing for Automatic Algorithm Configuration.” In: Operations
Research Perspectives 3 (2016), pp. 43-58. por: 10.1016/j.0rp.2016.
09.002.

Florian Maurer, Bryan Donyanavard, Amir M. Rahmani, Nikil
Dutt, and Andreas Herkersdorf. “Emergent Control of MPSoC
Operation by a Hierarchical Supervisor / Reinforcement Learning
Approach.” In: Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE 2020). 2020, pp. 1562-1567.
DOI: 10.23919/DATE48585.2020.9116574.

Alex McMahon, Dan Scott, and Will Browne. “An Autonomous
Explore/Exploit Strategy.” In: Proceedings of the 7th Annual Work-
shop on Genetic and Evolutionary Computation (@ GECCO ’05). 2005,
pp. 103-108. por: 10.1145/1102256.1102280.


https://doi.org/10.1109/ACSOS52086.2021.00042
https://doi.org/10.1109/MC.2015.235
https://doi.org/10.1007/978-3-319-39675-0_2
https://doi.org/10.1007/978-3-319-39675-0
https://doi.org/10.1109/ICIW.2009.70
https://doi.org/10.1145/2742060.2742078
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.23919/DATE48585.2020.9116574
https://doi.org/10.1145/1102256.1102280

140

BIBLIOGRAPHY

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Christian Miiller-Schloer and Sven Tomforde. “Building Organic
Computing Systems.” In: Organic Computing — Technical Systems
for Survival in the Real World. Birkhduser, 2017, pp. 171-258. por:
10.1007/978-3-319-68477-2_5.

Christian Miiller-Schloer and Sven Tomforde. Organic Computing
— Technical Systems for Survival in the Real World. Birkhauser, 2017.
ISBN: 978-3-319-68476-5. por: 10.1007/978-3-319-68477-2.

Christian Miiller-Schloer, Hartmut Schmeck, and Theo Ungerer,
eds. Organic Computing — A Paradigm Shift for Complex Systems.
Birkhiuser, 2011. 1sBN: 978-3-0348-0129-4. por: 10.1007/978-3-
0348-0130-0.

Masaya Nakata and Will N. Browne. “Learning optimality theory
for accuracy-based learning classifier systems.” In: IEEE Trans-
actions on Evolutionary Computation 25.1 (2021), pp. 61-74. por:
10.1109/TEVC.2020.2994314.

Ulric Neisser. “The Roots of Self-Knowledge: Perceiving Self, It,
and Thou.” In: Annals of the New York Academy of Sciences 818.1
(1997), pp. 19-33. por: 10.1111/3.1749-6632.1997.TB48243.X.

Albert Orriols-Puig, Ester Bernad6-Mansilla, David E. Goldberg,
Kumara Sastry, and Pier Luca Lanzi. “Facetwise analysis of XCS
for problems with class imbalances.” In: IEEE Transactions on
Evolutionary Computation 13.5 (2009), pp. 1093-1119. por: 16.1109/
TEVC.2009.2019829.

Santiago Pagani, P. D.Sai Manoj, Axel Jantsch, and Jorg Henkel.
“Machine Learning for Power, Energy, and Thermal Manage-
ment on Multicore Processors: A Survey.” In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39.1 (2020),
pp. 101-116. por: 16.1169/TCAD.2018.2878168.

Manish Parashar and Salim Hariri. “Autonomic computing: An
overview.” In: International Workshop on Unconventional Program-
ming Paradigms (UPP 2004). Springer Verlag, 2005, pp. 257-269.
DOI: 10.1007/11527800_20.

David Pétzel, Michael Heider, and Alexander R. M. Wagner. “An
Overview of LCS Research from 2020 to 2021.” In: Proceedings
of the 2021 Genetic and Evolutionary Computation Conference Com-
panion (GECCO "21). 2021, pp. 1648-1656. Dor: 10.1145/3449726.
3463173.

Tom Pickering and Tim Kovacs. “TP-XCS: An XCS classifier sys-
tem with fixed-length memory for reinforcement learning.” In:
Proceedings of the 2015 Congress on Evolutionary Computation (CEC
'15). 2015, pp. 3020-3025. por: 10.1109/CEC.2015.7257265.


https://doi.org/10.1007/978-3-319-68477-2_5
https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1109/TEVC.2020.2994314
https://doi.org/10.1111/J.1749-6632.1997.TB48243.X
https://doi.org/10.1109/TEVC.2009.2019829
https://doi.org/10.1109/TEVC.2009.2019829
https://doi.org/10.1109/TCAD.2018.2878168
https://doi.org/10.1007/11527800_20
https://doi.org/10.1145/3449726.3463173
https://doi.org/10.1145/3449726.3463173
https://doi.org/10.1109/CEC.2015.7257265

[84]

[89]

[90]

BIBLIOGRAPHY

Holger Prothmann, Jiirgen Branke, Hartmut Schmeck, Sven Tom-
forde, Fabian Rochner, Jorg Hahner, and Christian Miiller-Schloer.
“Organic traffic light control for urban road networks.” In: Interna-
tional Journal of Autonomous and Adaptive Communications Systems
2.3 (2009), pp- 203-225. por: 10.1504/IJAACS.2009.026783.

Holger Prothmann, Sven Tomforde, Jiirgen Branke, Jorg Hahner,
Christian Miiller-Schloer, and Hartmut Schmeck. “Organic Traffic
Control.” In: Organic Computing — A Paradigm Shift for Complex
Systems. Birkhduser, 2011, pp. 431-446. 1sBN: 978-3-0348-0129-4.
DOI: 10.1007/978-3-0348-0130-0_28.

Eberle A. Rambo et al. “The Self-Aware Information Processing
Factory Paradigm for Mixed-Critical Multiprocessing.” In: IEEE
Transactions on Emerging Topics in Computing 10.1 (2022), pp. 250-
266. por: 10.1109/TETC.2020.3011663.

Lilia Rejeb, Zahia Guessoum, and Rym M’'Hallah. “An Adaptive
Approach for the Exploration-Exploitation Dilemma and Its Ap-
plication to Economic Systems.” In: First International Workshop on
Learning and Adaption in Multi-Agent Systems (LAMAS 2005). 2005,
pp- 165-176. por: 10.1007/11691839_10.

Bernhard Rinner, Lukas Esterle, Jennifer Simonjan, Georg Nebe-
hay, Roman Pflugfelder, Gustavo Fernandez Dominguez, and Pe-
ter R. Lewis. “Self-Aware and Self-Expressive camera networks.”
In: Computer 48.7 (2015), pp. 21-28. por: 10.1109/MC.2015.209.

Lukas Rosenbauer, David Paitzel, Anthony Stein, and Jorg Hahner.
“A Learning Classifier System for Automated Test Case Prioritiza-
tion and Selection.” In: SN Computer Science 3.5 (2022), pp. 1-24.
DOI: 10.1007/542979-022-01255-1.

William Saunders, Andreas Stuhlmidiller, Girish Sastry, and Owain
Evans. “Trial without error: Towards safe reinforcement learning
via human intervention.” In: Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2018). 2018, pp. 2067-2069. arXiv: 1707.05173.

Hartmut Schmeck, Christian Miiller-Schloer, Emre Cakar, Moez
Mnif, and Urban Richter. “Adaptivity and Self-organisation in Or-
ganic Computing Systems.” In: Organic Computing — A Paradigm
Shift for Complex Systems. Birkhauser, 2011, pp. 5-37. 1sBN: 978-3-
0348-0129-4. por: 10.1007/978-3-0348-0130-0_1.

Hao Shen, Jun Lu, and Qinru Qiu. “Learning based DVFS for si-
multaneous temperature, performance and energy management.”
In: Proceedings of the 2012 International Symposium on Quality Elec-
tronic Design (ISQED 2012). 2012, pp. 747-754. po1: 10.1109/ISQED.
2012.6187575.

141


https://doi.org/10.1504/IJAACS.2009.026783
https://doi.org/10.1007/978-3-0348-0130-0_28
https://doi.org/10.1109/TETC.2020.3011663
https://doi.org/10.1007/11691839_10
https://doi.org/10.1109/MC.2015.209
https://doi.org/10.1007/S42979-022-01255-1
https://arxiv.org/abs/1707.05173
https://doi.org/10.1007/978-3-0348-0130-0_1
https://doi.org/10.1109/ISQED.2012.6187575
https://doi.org/10.1109/ISQED.2012.6187575

142 BIBLIOGRAPHY

[91] Nora Sperling et al. “Information Processing Factory 2.0 - Self-
awareness for Autonomous Collaborative Systems.” In: Design,
Automation & Test in Europe Conference & Exhibition (DATE 2023).
2023. por: 10.23919/DATE56975.2023.10137006.

[92] Anthony Stein, Roland Maier, and Jorg Hahner. “Toward curious
learning classifier systems: Combining XCS with active learning
concepts.” In: Proceedings of the 2017 Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’17). 2017, pp. 1349-1356.
DOI: 10.1145/3067695.3082488.

[93] Anthony Stein, Roland Maier, Lukas Rosenbauer, and Jorg Hahner.
“XCS classifier system with experience replay.” In: Proceedings of
the 2020 Genetic and Evolutionary Computation Conference (GECCO
'20). 2020, pp. 404-413. por1: 10.1145/3377930.3390249.

[94] Anthony Stein and Masaya Nakata. “Learning classifier systems:
From principles to modern systems.” In: Proceedings of the 2021 Ge-
netic and Evolutionary Computation Conference Companion (GECCO
'21). 2021, pp. 498-527. por: 10.1145/3449726.3461414.

[95] Anthony Stein, Dominik Rauh, Sven Tomforde, and Jorg Hahner.
“Interpolation in the eXtended Classifier System: An architectural
perspective.” In: Journal of Systems Architecture 75 (2017), pp. 79-94.
DOI: 10.1016/J.SYSARC.2017.01.010.

[96] Anthony Stein, Stefan Rudolph, Sven Tomforde, and Jorg Hahner.
“Self-learning smart cameras harnessing the generalization capa-
bility of XCS.” In: Proceedings of the 9th International Joint Conference
on Computational Intelligence (IJCCI 2017). 2017, pp. 129-140. por:
10.5220/0006512101290140.

[97] Christopher Stone and Larry Bull. “For Real! XCS with Continuous-
Valued Inputs.” In: Evolutionary Computation 11.3 (2003), pp. 299-
336. por: 10.1162/106365603322365315.

[98] Anmol Surhonne, Nguyen Anh Vu Doan, Florian Maurer, Thomas
Wild, and Andreas Herkersdorf. “GAE-LCT: A Run-Time GA-
Based Classifier Evolution Method for Hardware LCT Controlled
SoC Performance-Power Optimization.” In: Proceedings of the 2022
International Conference on Architecture of Computing Systems (ARCS
2022). 2022, pp- 271-285. por: 10.1007/978-3-031-21867-5_18.

[99] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introdcution (2nd ed.) MIT Press, 2018. 1sBN: 978-0262039246.

[100] Takato Tatsumi, Takahiro Komine, Hiroyuki Sato, and Keiki Takadama.
“Handling different level of unstable reward environment through
an estimation of reward distribution in XCS.” In: Proceedings of
the 2015 Congress on Evolutionary Computation (CEC '15). 2015,
pp. 2973-2980. por: 10.1109/CEC.2015.72572509.


https://doi.org/10.23919/DATE56975.2023.10137006
https://doi.org/10.1145/3067695.3082488
https://doi.org/10.1145/3377930.3390249
https://doi.org/10.1145/3449726.3461414
https://doi.org/10.1016/J.SYSARC.2017.01.010
https://doi.org/10.5220/0006512101290140
https://doi.org/10.1162/106365603322365315
https://doi.org/10.1007/978-3-031-21867-5_18
https://doi.org/10.1109/CEC.2015.7257259

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

BIBLIOGRAPHY

Takato Tatsumi, Tim Kovacs, and Keiki Takadama. “XCS-CR: De-
termining accuracy of classifier by its collective reward in ac-
tion set toward environment with action noise.” In: Proceedings
of the 2018 Genetic and Evolutionary Computation Conference Com-
panion (GECCO '18). 2018, pp. 1457-1464. por: 10.1145/3205651.
3208271.

Takato Tatsumi, Hiroyuki Sato, and Keiki Takadama. “Automatic
adjustment of selection pressure based on range of reward in
learning classifier system.” In: Proceedings of the 2017 Genetic and
Evolutionary Computation Conference (GECCO '17). 2017, pp. 505—
512. por: 10.1145/3071178.3080531.

Takato Tatsumi and Keiki Takadama. “XCS-CR for handling input,
output, and reward noise.” In: Proceedings of the 2019 Genetic and
Evolutionary Computation Conference Companion (GECCO '19). 2019,
pp- 1303-1311. por: 10.1145/3319619.3326863.

Sven Tomforde, Andreas Brameshuber, J6rg Hahner, and Chris-
tian Miiller-Schloer. “Restricted on-line learning in real-world
systems.” In: Proceedings of the 2011 Congress on Evolutionary Com-
putation (CEC "11). 2011, pp. 1628-1635. por: 10.1109/CEC.2011.
5949810.

Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-
Vincentelli. “Complexity of two-level logic minimization.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25.7 (2006), pp. 1230-1246. por: 10 . 1109/ TCAD . 2005 .
855944,

Ryan J. Urbanowicz and Will N. Browne. Introduction to Learning
Classifier Systems. Springer Berlin Heidelberg, 2017. 1sBN: 978-3-
662-55006-9. por: 10.1007/978-3-662-55007 - 6.

Ryan ]. Urbanowicz and Jason H. Moore. “ExSTraCS 2.0: Descrip-
tion and Evaluation of a Scalable Learning Classifier System.”
In: Evolutionary intelligence 8.2 (2015), pp. 89-116. por: 10.16007/
$12065-015-0128-8.

Matthew Walker, Sascha Bischoff, S. Diestelhorst, Geoff Merrett,
and Bashir Al-Hashimi. “Hardware-Validated CPU Performance
and Energy Modelling.” In: Proceedings of the 2018 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS 2018). 2018, pp. 44-53. por1: 10.1109/ISPASS.2018.00013.

Shuo Wang, Georg Nebehay, Lukas Esterle, Kristian Nymoen, and
Leandro L. Minku. “Common techniques for self-awareness and
self-expression.” In: Self-aware Computing Systems: An Engineering
Approach. Springer International Publishing, 2016, pp. 113-142.
ISBN: 978-3-319-39675-0. por: 10.1007/978-3-319-39675-0_7.

Stewart W. Wilson. “Classifier Fitness Based on Accuracy.” In:
Evolutionary Computation 3.2 (1995), pp. 149-175. por: 10.1162/
evco.1995.3.2.149.

143


https://doi.org/10.1145/3205651.3208271
https://doi.org/10.1145/3205651.3208271
https://doi.org/10.1145/3071178.3080531
https://doi.org/10.1145/3319619.3326863
https://doi.org/10.1109/CEC.2011.5949810
https://doi.org/10.1109/CEC.2011.5949810
https://doi.org/10.1109/TCAD.2005.855944
https://doi.org/10.1109/TCAD.2005.855944
https://doi.org/10.1007/978-3-662-55007-6
https://doi.org/10.1007/s12065-015-0128-8
https://doi.org/10.1007/s12065-015-0128-8
https://doi.org/10.1109/ISPASS.2018.00013
https://doi.org/10.1007/978-3-319-39675-0_7
https://doi.org/10.1162/evco.1995.3.2.149
https://doi.org/10.1162/evco.1995.3.2.149

144

BIBLIOGRAPHY

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Stewart W. Wilson. “Explore/Exploit Strategies in Autonomy.”
In: Proceedings of the 4th International Conference on Simulation of
Adaptive Behavior. 1996, pp. 325-332. por: 10.7551/mitpress/3118.
003.0040.

Stewart W. Wilson. “Generalization in the XCS Classifier System.”
In: Proceedings of the Third Annual Genetic Programming Conference.
1998, pp. 665-674.

Stewart W Wilson. “Get Real! XCS with Continuous-Valued In-
puts.” In: International Workshop on Learning Classifier Systems
(IWLCS 2000). 2000, pp. 209-219.

Stewart W. Wilson. “Classifiers that approximate functions.” In:
Natural Computing 1.2 (2002), pp. 211-234. por: 10 . 1023 /A :
1016535925043.

Zhaoxiang Zang, Dehua Li, and Junying Wang. “Learning classi-
fier systems with memory condition to solve non-Markov prob-
lems.” In: Soft Computing 19.6 (2015), pp. 1679-1699. por: 10.1007/
S00500-014-1357-Y.

] Zeppenfeld, A Bouajila, W Stechele, and A Herkersdorf. “Learn-
ing Classifier Tables for Autonomic Systems on Chip.” In: IN-
FORMATIK 2008. Beherrschbare Systeme - dank Informatik. Band 2.
Gesellschaft fiir Informatik e. V., 2008, pp. 771-778.

Johannes Zeppenfeld and Andreas Herkersdorf. “Applying Auto-
nomic Principles for Workload Management in Multi-Core Sys-
tems on Chip.” In: Proceedings of the 8th International Conference on
Autonomic Computing (ICAC 2011). 2011, pp. 3-10. por: 10.1145/
1998582.1998586.

Robert F Zhang and Ryan ] Urbanowicz. “A Scikit-learn Compati-
ble Learning Classifier System.” In: Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion (GECCO ’20).
2020. por: 10.1145/3377929.3398097.


https://doi.org/10.7551/mitpress/3118.003.0040
https://doi.org/10.7551/mitpress/3118.003.0040
https://doi.org/10.1023/A:1016535925043
https://doi.org/10.1023/A:1016535925043
https://doi.org/10.1007/S00500-014-1357-Y
https://doi.org/10.1007/S00500-014-1357-Y
https://doi.org/10.1145/1998582.1998586
https://doi.org/10.1145/1998582.1998586
https://doi.org/10.1145/3377929.3398097

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosi¢. The style was inspired

by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both KTEX and LyX:

https://bitbucket.org/amiede/classicthesis/


https://bitbucket.org/amiede/classicthesis/

	Acknowledgments
	Abstract
	Zusammenfassung
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Organization

	2 Computational Self-Awareness
	2.1 Key Concepts
	2.2 Reference Architecture
	2.3 Related Concepts
	2.4 Applications of Self-* Computing

	3 The Learning Classifier System XCS
	3.1 Algorithmic Description of XCS
	3.2 The Working Mechanism of XCS
	3.3 XCS Extensions
	3.4 XCS for Computational Self-Awareness

	4 Experimental Comparison of Autonomous Explore/Exploit Strategies
	4.1 Explore/Exploit Strategies
	4.2 Experimental Setup
	4.3 Single-Environment Evaluation
	4.4 Multi-Environment Evaluation
	4.5 Dynamic Environment Evaluation
	4.6 Summary and Deployment Guidelines
	4.7 Conclusion and Future Work

	5 Safety Guarantees through Forbidden Classifiers
	5.1 Related Work
	5.2 Forbidden Classifiers
	5.3 Experimental Setup
	5.4 Experimental Evaluation: 6-Multiplexer
	5.5 Experimental Evaluation: Maze
	5.6 Experimental Evaluation: Classification
	5.7 Conclusion and Future Work

	6 Case Study: XCS for Frequency Control
	6.1 Related Work
	6.2 Application Scenario
	6.3 Experimental Setup
	6.4 Experimental Results
	6.5 Environmental Characteristics and Behavior of XCS
	6.6 Conclusion and Future Work

	7 Conclusion and Future Work
	7.1 Future Work

	 Bibliography
	Colophon

