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Abstract

Decision making significantly determines the success or failure of a business. This motivates
decision makers to rely on decision support systems for assistance in identifying high-quality
decisions using data simulation, optimization, and visualization. However, for optimal
assistance, a decision support system (DSS) must align with the decision-making process
of a decision maker, which is characterized by available data, optimization goals, personal
preferences, and other influences. Unfortunately, the increasing complexity and volatility of
business environments prevent DSS developers to anticipate all potential decision-making
processes during DSS design, and consequently, to provide decision makers with sufficient
customization options. Commissioning a DSS that is tailored to a decision-making process is a
cost- and time-intensive undertaking due to limited developer availability or misunderstandings
between developers and decision makers. As a result, decision makers may settle for an
off-the-shelf DSS that does not fully align with their decision-making process and potentially
results in suboptimal decisions, thereby impairing business success.

This thesis proposes an approach that enables decision makers to create tailored decision
support systems themselves, thereby avoiding the aforementioned misalignment between
provided and required decision support. The approach expects DSS developers to provide
partial DSS functionality in the form of reusable software services. Using a low-code
approach, non-programmers can then compose these services into a holistic DSS by modeling
a decision-making process with the help of an assistance system. The contribution of the
thesis is fourfold: First, the thesis explains how to design a service repository to capture
available decision support services for the encompassing application domain. Second, the
thesis introduces the concept of a process-driven DSS as an executable composition of decision
support services that is tailored to the decision-making process of an individual decision maker.
Third, the thesis proposes an assistance system that validates the composed DSS with respect
to functional, informational, and operational characteristics. Fourth, the thesis describes how
to aggregate these concepts into a decision support ecosystem with a platform for decision
makers, DSS developers, and other domain experts to promote services, requirements for
decision support, and knowledge to advance the development of tailored decision support
systems. The applicability and technical feasibility of the concepts are demonstrated in the
domain of energy distribution network planning.
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Zusammenfassung

Erfolg und Misserfolg eines Unternehmens werden maßgeblich durch getroffene Entscheidun-
gen beeinflusst. Daher verlassen sich Entscheider oft auf Entscheidungsunterstützungssysteme,
die durch Datensimulation, -optimierung und -visualisierung bei der Identifizierung von
geeigneten Entscheidungen unterstützen. Für eine optimale Unterstützung muss ein Entschei-
dungsunterstützungssystem (EUS) jedoch auf den Entscheidungsprozess eines Entscheiders
abgestimmt sein und verfügbare Daten, Optimierungsziele, persönliche Präferenzen sowie weit-
ere Einflussfaktoren berücksichtigen. EUS-Entwickler können aufgrund der Komplexität und
Volatilität von Geschäftsumgebungen allerdings nicht alle potenziellen Entscheidungsprozesse
während des Entwurfs eines EUS vorhersehen, wodurch ein EUS einem Entscheider häufig nur
unzureichende Anpassungsmöglichkeiten an den individuellen Entscheidungsprozess bietet.
Die Einzelanfertigung eines EUS, das auf einen Entscheidungsprozess zugeschnitten ist, ist
ein kosten- und zeitintensives Unterfangen aufgrund der begrenzten Verfügbarkeit von Softwa-
reentwicklern oder Missverständnissen zwischen Entwicklern und Entscheidern während der
Entwicklung. Daher geben sich Entscheider möglicherweise mit einem handelsüblichen EUS
zufrieden, das nicht vollständig mit ihrem Entscheidungsprozess übereinstimmt, suboptimale
Entscheidungen begünstigt und so den Unternehmenserfolg negativ beeinflusst.

In dieser Arbeit wird ein Ansatz vorgeschlagen, der es Entscheidern ermöglicht, selbst
maßgeschneiderte Entscheidungsunterstützungssysteme zu entwickeln und so die Diskrepanz
zwischen benötigter und tatsächlicher Entscheidungsunterstützung zu vermeiden. Dazu stellen
EUS-Entwickler einen Teil der EUS-Funktionalität als wiederverwendbare Software-Dienste
bereit. Nicht-Programmierer können diese Dienste dann mit einem Low-Code-Ansatz zu
einem ganzheitlichen EUS kombinieren, indem sie einen Entscheidungsprozess mit Hilfe
eines Assistenzsystems modellieren. Dabei ist der Beitrag dieser Arbeit viererlei: Erstens
wird erklärt, wie verfügbare Dienste für die Entscheidungsunterstützung in einer Anwendungs-
domäne erfasst werden können. Zweitens wird das Konzept eines prozessgesteuerten EUS als
eine maßgeschneiderte, ausführbare Komposition von Entscheidungsunterstützungsdiensten
vorgestellt. Drittens wird ein Assistenzsystem präsentiert, welches das komponierte EUS im
Hinblick auf funktionale, informationelle und operative Eigenschaften validiert. Viertens
wird in der Arbeit beschrieben, wie diese Konzepte zu einem Ökosystem für die Entschei-
dungsunterstützung zusammengeführt werden können, das eine Plattform für Entscheider,
EUS-Entwickler und andere Domänenexperten bietet, um Dienste, Anforderungen an die
Entscheidungsunterstützung und Wissen zu verbreiten und die Entwicklung maßgeschneiderter
Entscheidungsunterstützungssysteme voranzutreiben. Die Anwendbarkeit und technische
Machbarkeit der Konzepte wird beispielhaft für Energieverteilnetzplanung demonstriert.
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CHAPTER 1
Introduction

Decision making is among the most important activities in a business and relies on assistance
in the form of digital decision support systems (cf. Section 1.1). Although the steps performed
to obtain a decision – and consequently the requirements for decision support – are very
individual between different decision makers (cf. Section 1.2), the creation of a tailored
decision support system that optimally addresses the individual requirements of a decision
maker is still challenging (cf. Section 1.3). This chapter presents research objectives for
the effective and efficient creation of tailored decision support systems (cf. Section 1.4).
Furthermore, the research approach applied throughout the thesis is described (cf. Section 1.5),
and an overview of the resulting contributions and associated publications is given (cf.
Section 1.6). Lastly, the subsequent structure of the thesis is presented (cf. Section 1.7).

1.1 Context: The Need for Decision Support

Good business decisions help a business to thrive and to increase or maintain its competitive
advantage over other businesses [BL18; MBD20]. Bad decisions result in a significant loss of
economic value [SWM16]. Given these significant impacts, decision making is considered to
be among the most important activities in a business [Cor80; Har96; Rol21].

The number of employees in decision-intensive occupations is currently rising [Dem21].
Hundreds to thousands of business decisions are made within a business daily [BL18].
However, most businesses do not (only) make good decisions [SWM16]. Some experts
estimate that “half of the decisions made in organizations fail” [Nut02]. To some extent, this

3
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can be attributed to the fact that decision making is becoming increasingly difficult [Pow09],
in part due to the growing volatility, uncertainty, complexity and ambiguity (VUCA) in
business environments [KQ08; BL14; Mac+16]. In short, decision makers in VUCA business
environments must consider many unpredictable and frequently changing influencing factors
with unknown cause-effect relationships when identifying an optimal decision alternative.

Due to the increasing difficulty of decision making in VUCA business environments,
decision makers rely on decision support systems to assist them in their decision-making
process [SWM16]. A decision support system (DSS) is an “interactive computer-based system
[...] designed to help decision makers” [PI18] by “improving decision-making effectiveness and
efficiency” [Pow09] using software-based simulation, optimization, and other data processing
capabilities [SBM11]. In doing so, a DSS helps to address the challenges of VUCA business
environments by providing decision makers with means for experimentation to quickly obtain
decision recommendations while abstracting away a significant amount of complexity.

The previous arguments could suggest that the use of a DSS already addresses all challenges
of decision making in VUCA business environments. Certainly, the use of a DSS is likely very
beneficial – in fact, evidence accumulated from research and case studies actually shows the
potential of an appropriate and well-designed DSS to improve decision quality [Pow09]. Yet,
the explicit mention of the characteristics “appropriate” and “well-designed” in the statement
suggests the existence of inappropriate systems with design flaws that have no positive impact
on decision making. The next subsection explains why a DSS could be inappropriate or
ill-designed, and what consequences the use of such a DSS might have on decision quality.

1.2 Motivation: Inappropriate Decision Support

For a DSS to be appropriate and well-designed, the decision support provided by the DSS
must align with the requirements for decision support of a decision maker. However, different
decision makers follow different decision-making processes for the same type of decision due
to differences in goals, regulatory constraints, or access to resources such as data. As a result,
they have varying requirements for decision support. This is demonstrated with the abstract
example illustrated in Fig. 1.1, which is subsequently discussed in more detail.

Example of Misalignments in Required and Provided Decision Support

In Fig. 1.1, four decision makers of different companies want to plan the same type of
infrastructure investments to meet future demands. However, they have slightly varying
requirements: While the first and third decision maker require the infrastructure to be
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Figure 1.1: Visualization of potential misalignments in required and provided decision support

redundant to account for technical failures, the second and fourth decision maker want to
avoid redundancy. Furthermore, the first and fourth decision makers also require their DSS
to create a forecast for infrastructure demands, which the second and third decision maker
already obtained beforehand from an external agency and want to provide as an input to their
DSS. All decision makers can choose between two off-the-shelf decision support systems that
are shown at the bottom of Fig. 1.1: The first DSS implements a two-stage decision-making
process where first a forecast for future infrastructure demands is created, and subsequently,
the cost-minimizing infrastructure expansions are computed to meet these demands with
consideration of redundancy. The second DSS does not calculate a forecast but instead
requests it as input from the decision maker before infrastructure investments are computed
without consideration of redundancy. Consequently, both the first and second decision maker
find a DSS that immediately aligns with their requirements for decision support as the first
decision maker can use the first DSS, and the second decision maker can use the second
DSS. Unfortunately, neither the third nor the fourth decision maker find a DSS that addresses
all of their requirements for decision support. The second decision maker would prefer the
optimization of the first DSS as it provides the necessary redundancy, but the forecast already
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available to the decision maker cannot be used with the first DSS as it does not support any
user inputs. Using the forecast would be possible with the second DSS, however, this DSS
does not guarantee the required redundancy. Analogously for the fourth decision maker, the
second DSS fits the non-redundancy requirement, but does not compute the missing forecast
like the first DSS, which however does not optimize with consideration for redundancy. As
indicated by the lock symbol next to the name of the DSS, each DSS is provided by a different
developer and therefore the DSS modules are not freely interchangeable. Due to a tight
coupling between DSS modules, the fourth decision maker is also unable to compute only the
forecast using the first DSS to subsequently use the forecast with the second DSS.

The illustrated circumstance of potential misalignments between required and provided
decision support raises the question regarding the consequences of using an inappropriate DSS
during decision making, since the implemented decision-making process has a significant
influence on the outcome and success of a decision (cf. [DS96; EC07; Zar13]).

Consequences of Using an Inappropriate DSS: Inefficiency and Ineffectiveness

In general, a misalignment in the desired decision-making process of a decision maker and the
process supported by a DSS can result in suboptimal or delayed decisions. “Suboptimal” refers
to the fact that a different optimal decision provides more value to the decision maker and the
associated business. Often, this value corresponds to a monetary benefit [SWM16], whereby
optimal solutions amount to a maximization of economic value, and suboptimal decisions
to unrealized economic value. In the example previously illustrated in Fig. 1.1, the fourth
decision maker might choose the first DSS because it computes the forecast for infrastructure
demands that the decision maker is missing. However, the first DSS also subsequently designs
and plans the infrastructure in a redundant way contrary to the requirements of the decision
maker. The resulting investment recommendations are therefore likely more costly than those
that do not account for redundancy, leading to a loss of economic value.

The second potential effect of misalignments between required and supported decision-
making processes is a delayed decision. A delay of multiple days can be introduced by
executing activities that are not needed or unnecessarily complex. A delayed decision can have
two effects: First, a delayed decision can result in decreased competitiveness of the business.
Especially due to the aforementioned volatility in VUCA business environments, it is crucial
to make decisions fast to gain or maintain a competitive advantage over other businesses.
Second, a delayed decision can turn into a suboptimal solution. This is also supported by a
study of de Smet, Jost, and Weiss from McKinsey, who surveyed 1,200 managers of global
companies and found “a strong correlation between quick decisions and good ones” [dSJW19].
This risk of delay affecting decision quality is especially high when the decision-making



1.3. Problem Statement: Tailored DSS Unavailability 7

process is altered to make up for lost time. In the example previously illustrated in Fig. 1.1,
the importance of a redundant network infrastructure might force the third decision maker to
use the first DSS, although it includes the computation of an unneeded demand forecast as the
decision maker already has access to such a forecast. As a result, the decision maker might use
a trial-and-error approach to get the forecasting module to produce the same (already available)
forecast. Given a tight deadline, the delay caused by this trial-and-error execution might lose
so much time that the subsequent optimization does not have enough time to identify the most
optimal investment plan, thereby turning an otherwise delayed into a suboptimal decision.

In summary, an inappropriate DSS with a misalignment between desired and supported
decision-making process is either ineffective (because suboptimal solutions are recommended)
or inefficient (because a delay in decision making is introduced). This contradicts the purpose
of a DSS, which was defined at the beginning of this chapter as “to help decision makers by
improving decision-making effectiveness and efficiency” (cf. page 4). Consequently, there is a
need for decision support systems whose support is tailored to the individual decision-making
process of a decision maker. For example, concerning the previous example shown in Fig. 1.1,
a tailored DSS for the fourth decision maker would consist of the forecasting module from the
first DSS and the optimization module of the second DSS to fully address all the decision
maker’s requirements for decision support. However, there is a lack of such composability.

1.3 Problem Statement: Tailored DSS Unavailability

A tailored DSS is a DSS that is custom-made to address the individual requirements for
decision support of a specific decision maker. In other words, the decision-making process
supported by a tailored DSS fully aligns with the preferred decision-making process of a
decision maker. A tailored DSS thereby allows for efficient and effective decision making
with timely recommendations of optimal decisions and increases the competitive advantage of
a business. Unfortunately, experience from the recent research project FlexiEnergy1 indicates
that providing each decision maker with such a tailored DSS still presents a challenge for three
reasons, which are summarized in Fig. 1.2 and subsequently explained in more detail.

Challenge 1 – Lack of Customization: The holistic approach to DSS development
limits the adaption and recombination of decision support functionality

As observed throughout the FlexiEnergy research project for decision support in energy
distribution network planning, decision makers usually turn to established DSS developers

1 Project website: https://flexi-energy.de

https://flexi-energy.de
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Figure 1.2: Visualization of challenges for the mass availability of tailored DSSs

to obtain an “off-the-shelf” DSS. Such an off-the-shelf DSS is available for purchase to all
customers without any additional development effort by the DSS developer to adapt the DSS
to the customer. It is holistic as it is a complete but closed system without the possibility
for anyone besides the DSS developer to exchange parts of the DSS. This implies that all
customizations required by the decision maker for an alignment between the preferred and
supported decision-making process must already be provided by the DSS by some form
of configuration. Consequently, any customization needs must be anticipated by the DSS
developer during the design and development of the DSS, which is difficult given the previously
discussed complexity in business environments and the individuality of decision making.

When a DSS lacks the required customization capabilities, some decision makers try
to mimic a tailored DSS by using functionality from multiple decision support systems for
assistance with different activities of their decision-making process. While this can work in
principle, it comes with three disadvantages: First, the data exported from one DSS is not
necessarily compatible with another DSS. The necessary data conversion is an overhead that
is exceptionally inefficient and error-prone when data must be converted manually. Second, a
decision maker must adapt to the characteristics of each used DSS such as keyboard shortcuts
or user interface layout. This adds additional cognitive load and therefore inefficiency during
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decision making. Third, decision makers must ensure the “functional compatibility” between
each used DSS. For example, they must validate that the assumptions of one DSS align with
the other, e.g., a second DSS continues the redundant infrastructure planning from a first DSS
instead of undoing previous efforts. Otherwise, the decision support can be ineffective with
the previously discussed consequences of suboptimal and/or delayed decisions.

Challenge 2 – Lack of Independence: Relying on DSS developers is unavoidable
and can result in inefficient and ineffective DSS development

If no suitable off-the-shelf DSS is available, a decision maker can commission a DSS developer
to develop a tailored DSS. This can either be approached as a development from scratch, or
more time- and cost-efficient, as a modification of an existing off-the-shelf DSS that already
addresses most of the decision maker’s requirements for decision support. Regardless of
the chosen approach, the development of a tailored DSS has two fundamental prerequisites,
namely the availability of DSS developers and successful communication between developers
and decision maker. As subsequently explained, these prerequisites are not necessarily given.

The communication between a decision maker and a DSS developer is important as
decision makers must first elaborate their requirements for decision support and subsequently
give feedback on how the adaptations or extensions implemented by the DSS developer address
these requirements. In between, the DSS developer may need to ask questions about the
business environment of the decision maker for a better understanding of the requirements or
for improving the design of the DSS. At any time, there is a risk of misunderstanding, e.g.,
due to the lack of a common understanding and consequently using the same or similar names
for different domain concepts (cf. [Lie+18]). If not caught, these misunderstandings can lead
to quality issues [BWR11], e.g., an undesired behavior of the DSS during usage. Furthermore,
ineffective communication likely leads to “waste”, i.e., “any activity that produces no value
for the customer or user” [SRP17]. Unfortunately, as Khankaew and Riddle [KR14] show for
software development in small and medium enterprises, effective communication between
developers and customers is often lacking. Consequently, the availability of a DSS and
therefore decision making itself is delayed, resulting in an inefficiency during decision making.

Even when assuming effective communication between decision makers and DSS devel-
opers, there is still a need for trained programmers to implement the requirements of the
decision maker. However, the availability of software developers is sparse [dOli+21]. This
sparsity is even expected to rise in the short term due to the increased demand for digitization
as a consequence of the COVID-19 pandemic [BM21]. Again, this either leads to a delay in
DSS availability or a cost increase which may render the customizations of an off-the-shelf
financially impossible for a decision maker. Developer availability also limits the scalability
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of DSS development, i.e., providing each decision maker with a tailored DSS is unrealistic.
In summary, the dependency on DSS developers introduces the risk of miscommunication

and developer unavailability. Both have been established as factors in general software devel-
opment that lead to rework or even cancellation of projects if not properly managed [MGM19].
In other words with a focus on decision support, the dependency on DSS developers bears the
risk of a DSS not being available in time, or not being properly aligned with the preferred
decision-making process, thereby also leading to ineffective and inefficient decision making.

Challenge 3 – Lack of Coordination: There is no coordinated and continuous ex-
change between stakeholders regarding requirements, service offerings, and best
practices for decision support

Although the role of a decision maker is pivotal in decision making, decision support also
requires the aid of other stakeholders. In particular, the previous challenges already explained
the role of a DSS developer who designs, implements, and distributes a DSS. As evident
from the example for the individuality of decision-making processes in Section 1.2, there
is also the role of a consultant (cf. “external agency”) who provides additional input data
or other (non-software) services for decision making. Furthermore, domain experts such as
researchers continuously develop new approaches to decision support, which are subsequently
refined and included in a DSS by developers (in case of technical advancements) or adopted by
decision makers (in case of procedural advancements). These roles must exchange information,
knowledge, or artifacts among each other as summarized in Fig. 1.2.

As already elaborated for the previous challenge, the absence of a common terminology is
one barrier to the efficient and effective communication and coordination between stakeholders.
Another barrier is the absence of a central platform that allows stakeholders to advertise
requirements for decision support, decision support systems, and technological and procedural
innovations. For example, even if a DSS exists that optimally addresses the requirements
for decision support of a decision maker, the absence of a central repository that documents
available decision support systems makes it difficult for the decision maker to discover the
DSS in the first place. This introduces the risk of settling on a suboptimal DSS recommending
suboptimal decisions. Similarly, the lack of coordination between DSS developers requires
each developer to implement the same fundamental decision support functionality instead of
only focusing on supporting novel requirements that are not yet addressed (cf. “coopetition”
instead of “competition” [Bou+15]). This results in inefficient DSS development. Furthermore,
when DSS developers and domain experts only know about the requirements for decision
support of a handful of selected decision makers, it is difficult for them to identify changing
trends in the business environment and to develop and innovate accordingly.
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1.4 Objective: Assisted DSS Creation by Decision Makers

The previous sections show that decision makers have very individual requirements for decision
support that can often only be partially addressed by an off-the-shelf DSS. This observation
can be attributed to a lack of DSS customization and interoperability without relying on DSS
developers, and a general lack of coordination between decision makers, DSS developers, and
other involved stakeholders. The result is likely inefficiency in decision making due to delayed
availability of decision recommendations, ineffective decision making due to suboptimal
decision recommendations, or both. Such decision making ultimately results in a competitive
disadvantage for the decision maker’s company and should be avoided.

This thesis aims to address the aforementioned challenges in tailored DSS development
using concepts from software engineering. There are two current trends in software engineering
that – at first glance – may provide a solution to the observed challenges in providing each
decision maker with a tailored DSS. The first potential trend is the use of a service-oriented
architecture (SOA), which has received increased attention over the last years [Nik+20]. In
a SOA, multiple smaller, interoperable software services can be combined into a holistic
software application. Transferring this approach to the domain of decision support, a selection
of multiple decision support services with reusable decision support functionality could be
composed into a tailored DSS that optimally addresses the requirements for decision support
of an individual decision maker. However, although existing approaches fundamentally show
the technical feasibility of service-oriented DSS development, a SOA is nevertheless targeted
at DSS developers and not at non-programmers, and therefore does not resolve the dependency
on DSS developers (cf. second challenge in previous Section 1.3). Although some approaches
exist to automatically select and compose services into a software application to reduce the
required amount of human effort, the currently ongoing research in the Collaborative Research
Centre 901 – “On-The-Fly Computing”2 shows that this is a non-trivial technical challenge
that also comes with other potential disadvantages such as limited trust in the automatically
assembled DSS. Furthermore, a SOA per se does not facilitate multi-stakeholder coordination
across multiple enterprises as described throughout the third challenge in Section 1.3.

The second potentially applicable software engineering trend is the use of a low-code
development platform to reduce the dependency on software developers. Such a platform
combines the ideas of model-driven software engineering with rapid application design
and automated (cloud) deployment to enable the development of software applications by
non-programmers [Sah+20]. Many platforms furthermore include a marketplace that provides
reusable functionality for developing the business logic of an application by recombination. In

2 Project website: https://sfb901.uni-paderborn.de/

https://sfb901.uni-paderborn.de/
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doing so, low-code can potentially reduce developer dependency by enabling the customization
(and perhaps even the complete development) of a tailored DSS by non-programmers and
decision makers in particular, thereby addressing the first and second challenge of the previous
Section 1.3. However, the application model representing a tailored DSS must be of high
quality, i.e., model elements must not only address the requirements for decision support of a
decision maker, but must also be interoperable and consider best practices for decision making
in an application domain for effective and efficient decision support. Therefore, decision
makers should be assisted during low-code development of a tailored DSS to ensure the
correctness of the resulting DSS. Unfortunately, this assistance often needs to be specific to
decision making in the concrete application domain of the decision maker and is therefore
lacking in most development platforms, which focus on the development of general-purpose
applications with limited assistance in general. The required exchange between stakeholders
can also seldom be fulfilled by a marketplace alone (cf. third challenge in Section 1.3).

In summary, while both service-oriented and low-code development has the potential
to address the overall challenge of providing each decision maker with a tailored DSS,
both concepts have individual downsides that prevent them from completely solving this
challenge. Nevertheless, combining the strengths of both concepts could potentially enable the
development of a tailored DSS for (and by) each decision maker. However, the applicability
and technical feasibility of aggregating the two concepts in the context of DSS development has
not yet been assessed. The uncertainty regarding the applicability and technical feasibility of
merging SOA and low-code for tailored DSS development in light of the previously described
challenges motivates the following overall research question:

RQ𝑂: How can an assisted model-driven approach be applied to DSS development
so that decision makers and other non-programmers can compose a tailored
DSS from reusable decision support services in a multi-stakeholder context?

The answer to this research question should be an IT-based solution that makes the flexibility of
a SOA accessible to non-programmers (with a focus on decision makers) by using appropriate
model-based abstractions as employed by low-code, but focusing on the development of
decision support systems instead of general-purpose applications. With a reference to “multi-
stakeholder context”, the research question furthermore acknowledges the need for cooperation
and consequently coordination between decision makers, DSS developers, and other service
providers and domain experts. For additional conciseness, the overall research question RQ𝑂

of this thesis can be further subdivided into four smaller, enabling research questions:

RQ1: What characteristics of provided and required decision support should be
documented to enable effective service composition in an application domain?
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A description of the decision support provided by a decision support service is required to
document the prerequisites and effects of service invocation, which determine the compatibility
between services during service composition. At the same time, decision makers need to
document their requirements for decision support for assisted service selection or stakeholder
coordination. The application of service orientation to DSS development requires the
documentation of decision support characteristics that are not considered by traditional service
description languages, e.g., optimization goals, which may be specific to a concrete application
domain. In addition to identifying decision support characteristics that need documentation,
the answer to this research question should also describe how to document these characteristics.

RQ2: Which modeling approach is a suitable abstraction that enables the composition
of decision support services by decision makers and other non-programmers
as well as the generation of a tailored DSS?

A suitable modeling approach is necessary to abstract from the technical details of service
composition in a SOA, thereby enabling DSS development by decision makers and other
non-programmers during design time. At the same time, the abstraction must be chosen such
that it is still possible to generate a DSS from the model that invokes the selected services
during execution time when the DSS is being used by a decision maker.

RQ3: How can decision makers and other non-programmers be assisted during the
composition of decision support services during DSS development?

As elaborated before, misalignments in required and provided decision support or fundamental
flaws in the service composition representing a DSS can result in delayed or suboptimal
decision recommendations and consequently must be avoided. Potential mistakes in the
service composition should therefore be detected at design time to avoid any runtime errors at
execution time. Such assistance can furthermore ensure the implementation of best practices
and other innovations contributed by domain experts.

RQ4: How can the coordination and continuous exchange between stakeholders be
supported from a technical perspective?

As previously explained, DSS development requires the involvement of multiple stakeholders,
particularly decision makers, DSS developers, and domain experts. Consequently, there should
be a low-barrier solution that facilitates coordination between stakeholders. This includes
making stakeholders’ offerings and knowledge available to decision makers, while at the
same time reflecting the requirements of decision makers for future innovations. Supporting
information exchange from a technical perspective is a prerequisite before discussing additional
cultural and organizational approaches to encourage stakeholder coordination.
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1.5 Research Approach: Design Science

The overall goal of the thesis is to identify and design IT-based solution concepts that address
the previously described challenges in providing decision makers with tailored decision
support systems. In alignment with this goal, the research underlying the thesis was conducted
using a design science research (DSR) approach. DSR focuses on the creation and evaluation
of IT artifacts that are intended to provide utility by supporting the design and implementation
of information systems that solve organizational problems [Hev+04]. These IT artifacts can
address the organizational problem either in a “unique or innovative” or a “more effective or
efficient” way compared to existing approaches (if any exist) [Hev+04].

At the core of DSR is the design process as “a sequence of expert activities that produces
an innovative product (i.e., the design artifact)” [Hev+04]. The design process used for this
thesis aligns with the design science research methodology for information systems research
by Peffers et al. [Pef+07], which consists of the following six phases:

• Phase 1 – Identify Problem & Motivate: The problem is defined and justified by
describing its importance and the value of a solution.

• Phase 2 – Define Objectives of a Solution: Quantitative and/or qualitative objectives
of a solution to the problem are inferred from the previous problem definition and
knowledge of currently existing solutions (if any exist).

• Phase 3 – Design & Development: Design research artifacts are (conceptually) designed
and subsequently created as “any designed object in which a research contribution is
embedded in the design” [Pef+07].

• Phase 4 – Demonstration: Artifacts are used in solving one or more instances of the
problem to demonstrate the fundamental applicability of the artifact.

• Phase 5 – Evaluation: The results of the previous demonstration are compared with
the solution objectives established in the second phase to decide how well the artifact
addresses the problem. Depending on the results of the evaluation, researchers may
iterate back to improve the design of the artifact.

• Phase 6 – Communication: Lastly, the problem and the designed artifact(s) as a
solution to the problem are communicated.

Of the multiple entry points into this process described by Peffers et al. [Pef+07], this
thesis uses the problem-centered initiation, i.e., it starts with problem identification. Hevner
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et al. note that the “build-and-evaluate loop [from phase 3 to 5 and back to 3] is typically
iterated a number of times before the final design artifact is generated” [Hev+04]. This thesis
nevertheless describes the insights gathered throughout a single iteration only as finding the
most optimal solution can never be guaranteed in a given time frame assuming a sufficiently
complex solution space (cf. [Hev+04]). However, a single iteration is not a limitation per se,
as Hevner et al. [Hev+04] note that a “design artifact is complete and effective when it satisfies
the requirements and constraints of the problem it was meant to solve”. This is fundamentally
achievable within the first iteration of the design process. As Peffers et al. [Pef+07] point out,
further improvements may be left to subsequent projects.

1.6 Research Overview: Contributions and Publications

Following the design science research approach, multiple intertwined concepts were derived
to address the motivated challenge of providing each decision maker with a tailored DSS.

Contribution 1: Decision Support Ecosystems

The first and fundamental contribution of this thesis is the concept of a decision support
ecosystem (DSE) to enforce and facilitate exchange between stakeholders, i.e., decision makers,
DSS developers, domain experts and other service providers. For this purpose, a DSE provides
a central platform where these stakeholders can interact to create a tailored DSS for each
decision maker. A high-level overview of a DSE is shown in Fig. 1.3: Instead of developing a
DSS as a tightly coupled and holistic application, a DSS developer makes multiple reusable and
interoperable decision support services available via a service repository. Selected services
from the repository are then assembled into a holistic tailored DSS by a decision maker based
on their individual requirements for decision support using the DSS composition application.
Knowledge of domain experts is used to provide feedback to the decision maker regarding
potential improvements of the service composition. After the tailored DSS is generated from
the service composition, the decision maker can interact with it like with a traditional DSS,
i.e., by providing input data and receiving output data containing decision recommendations.

With respect to the overall DSE concept, the contribution of this thesis lies in the definition
of the DSE concept in relation to existing ecosystem concepts, and furthermore, in the design
of a reference architecture for a technical platform that enables the implementation of a DSE for
a specific application domain. The DSE concept and associated platform architecture primarily
address RQ4 regarding the technical facilitation of stakeholder coordination. Additionally,
the DSE concept provides the frame in which the other contributions are embedded. The
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Figure 1.3: Overview of the Decision Support Ecosystem concept

DSE concept is primarily described in [Kir21; KWE22a]. The latter paper motivated the
EURO Working Group on Decision Support Systems (EWG-DSS) to award the author with the
“EWG-DSS 2022 Young Researcher of the Year” award.

Contribution 2: Description Language for Decision Support

The thesis contributes a description language for decision support that serves two purposes:
First, the language enables domain experts to capture decision support characteristics of an
application domain to ensure the portability of the overall solution design across domains.
Second, the language enables service providers to document the decision support functionality
provided by their decision support services (cf. “Service Repository” in Fig. 1.3) and decision
makers to document their requirements for decision support. The created documentations serve
as a foundation for the subsequent service composition. Besides functional characteristics, the
language also supports capturing non-functional characteristics such as resource consumption
or service quality. Documentations are machine-readable for automated processing across the
DSE. The description language addresses RQ1 and is primarily described in [KWE22b].

Contribution 3: Process-Driven Decision Support Systems

From a technical perspective, the success of the previously introduced DSE concept largely
depends on the availability of a suitable service composition format that can be used by
decision makers and other non-programmers to describe a tailored DSS. For this purposes, the
thesis contributes the concept of a process-driven decision support system (PD-DSS), which
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uses a process model to describe a tailored DSS as a service composition (cf. Fig. 1.4).
On the one hand, a process model is suitable for this purpose as it can generally be

used by non-programmers without extensive upfront training. On the other hand, a process
model documents the conditional execution of software-based activities and the data exchange
between them, which enables automated execution of the process model. As a result, after the
process model was created by the decision maker via the DSS composition application, the
execution of the model can be delegated to a process engine to automatically orchestrate the
invocation and data exchange between the selected services in the background. This happens
transparently for decision makers, i.e., they are prompted for input data and are provided
with output data that passes through a generic graphical user interface that decision makers
perceive as the tailored DSS. Decision makers however do not need to care about which parts
of the data are processed and generated by which services in the service composition.

With the PD-DSS concept, the thesis contributes a modeling notation for the description
of a tailored DSS as a composition of software services by decision makers, thereby primarily
addressing RQ2. The contribution is outlined in [KGE22; KWE22b].
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Figure 1.4: Overview of the Process-Driven DSS concept

Contribution 4: PD-DSS Modeling Assistance

As indicated by the explanation of the DSE concept, domain experts can guide decision makers
in the creation of a tailored DSS by providing feedback regarding a service composition, either
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to eliminate accidental mistakes or to include (novel) best practices that were previously not
considered by the decision maker. However, manual supervision comes with the downside of
creating a dependency on domain experts, thereby limiting the scalability of the ecosystem.
As a countermeasure, the thesis describes an assistance system that automatically enforces
the domain knowledge of domain experts, thereby allowing domain experts to focus on the
identification of novel best practices for future innovations (cf. Fig. 1.5).

The thesis contributes multiple validation approaches for process models representing a
tailored DSS to improve the quality of the associated service composition. The validation
approaches check the process model for improvements regarding functionality, data exchange,
or service selections. The assistance system thereby supports decision makers during the
process-based creation of a tailored DSS and therefore primarily addresses RQ3. The
contribution is foremost described in [KGE22; KE22].
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Figure 1.5: Overview of the DSS Modeling Assistance concept

Additional Contributions

Figure 1.6 summarizes the previously described contributions and associated publications.
Additional contributions are made within the following publications:

[Kir+21] describes the fundamental functionality required for a DSS to assist decision
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Figure 1.6: Overview of contributions and associated publications

makers in regional energy distribution network planning. As an outlook, the publication
motivates the need to provide network planners with tailored decision support systems.
Throughout this thesis, knowledge of the distribution network planning domain is used
to derive requirements for the previously described contributions and to demonstrate the
application of the contributions in a concrete domain.

[Kir+22] describes a development method for low-code applications considering the
situational execution of development activities based on application requirements, features
of the development platform, and skills of the development team. Throughout this thesis,
the knowledge gathered as part of the publication is used to showcase the opportunities and
challenges of current low-code development platforms for tailored DSS development.

[WKE20] describes a documentation-driven approach to create web-accessible services
for command-line applications. The approach itself can be classified as low-code and enables
the potential to quickly make existing DSS functionality available as a web service, thereby
ensuring an extensive service repository and consequently a flourishing ecosystem with
enough alternative services to provide each decision maker with a tailored DSS.
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[GKE21] describes an approach to support business model developers with expert
knowledge that was previously formalized by domain experts. This thesis generalizes some of
the presented concepts for business modeling to decision support for arbitrary domains.

1.7 Thesis Structure

The thesis is structured into three parts that are closely aligned with the phases of the design
science research approach previously described in Section 1.5.

Part I: Problem Identification and Solution Objectives

The first part of the thesis focuses on the identification, definition, and illustration of the
research problem addressed in the thesis. The insights presented in the current Chapter 1 are
extended in Chapter 2, which provides additional details and background knowledge regarding
the individuality of decision making. Chapter 3 then transforms these insights into concrete
requirements for a solution artifact that solves the challenges of tailored DSS development and
discusses existing state-of-the-art and other related work with respect to these requirements.

Part II: Solution Design and Development

The second part of the thesis focuses on the design, development and initial demonstration of
artifacts to address the previously determined solution objectives. Each previously described
contribution is described in its own chapter, i.e., the decision support ecosystem concept in
Chapter 4, the description language for decision support in Chapter 5, the process-driven
development of decision support systems in Chapter 6, and the assistance system for service
composition in Chapter 7. Each chapter can be viewed as a nested application of the design
science research approach, i.e., each chapter explains the partial problem addressed as well as
more fine-grained requirements before presenting the design, development, demonstration,
and evaluation of the associated contribution.

Part III: Solution Discussion

The third part of the thesis describes the evaluation of the solution design in Chapter 8 based on
the application of the solution design in a case study derived from practical insights gathered
throughout the FlexiEnergy research project. Finally, Chapter 9 summarizes the thesis with
respect to the initially defined research question(s) and gives an outlook on future work.



CHAPTER 2
Individuality of Decision Making

This chapter discusses the individuality of decision making that creates a demand for tailored
decision support systems. For this purpose, Section 2.1 first gives an overview of the domain
of energy distribution network planning, which is used throughout the thesis for illustrative
purposes. Next, Section 2.2 introduces fundamental concepts of decision making with a focus
on decision processes. Section 2.3 presents situational factors to which decision makers are
exposed, thereby influencing the composition of their decision processes and introducing
variance that must be accounted for when providing decision support. Lastly, Section 2.4
describes the persistent influence of VUCA business environments on the previously described
situational factors and the need for (tailored) decision support. Section 2.5 summarizes the
key insights presented throughout the chapter.

2.1 Context: Energy Distribution Network Planning

The decision making that is required as part of energy distribution network planning illustrates
the necessity of tailored decision support systems. This section introduces fundamental
concepts of energy distribution networks, in particular their characteristics and maintenance,
as a foundation for illustrative examples used throughout the remainder of the thesis. The
section summarizes insights from published literature that were corroborated and extended by
domain experts throughout FlexiEnergy, a transdisciplinary research project with partners
from academia and industry for the design and development of a DSS to assist decision makers
in energy distribution network planning (cf. project overview in [Kir+21]).

21



22 Chapter 2. Individuality of Decision Making

Role and Characteristics of Energy Distribution Networks

An energy system comprises “all components related to the production, conversion, delivery
and use of energy” [All+14]. Energy distribution networks are essential for energy delivery,
i.e., the transportation of energy from one location to another. For simplicity, the following
explanations focus on electricity as an energy carrier, but analogous concepts fundamentally
apply to gas and heat as well. Figure 2.1 shows a (simplified) schematic view of an energy
system with a focus on electricity delivery. It is subsequently explained in more detail.

Electricity delivery is implemented using two kinds of networks. Long-range transportation
of electricity is handled by transmission networks that operate using high-voltage. These
transmission networks are used to transport the electricity generated by power plants closer
to more industrial or residential areas where the electricity is consumed. Substations then
connect the transmission network to the regional distribution network by transforming the
electricity from high-voltage to medium-voltage (represented by the overlapping rings in
Fig. 2.1). The distribution network – sometimes also referred to as distribution grid – is
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Figure 2.1: Simplified schematic visualization of an energy system with a focus on electricity
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responsible for delivering the electricity to the final consumers. On the medium-voltage
level are large-scale consumers such as industrial plants or large trade buildings. The final
transportation of electricity to residential consumers happens after another transformation
from the medium- to the low-voltage level, again using substations. [SAL18, Sect. 1.1]

The power flow describes how electricity travels through the interconnected networks.
Traditionally, electricity delivery is designed for the unidirectional power flow described in
the previous paragraph, i.e., generated electricity is fed into the network at the highest voltage
level, and energy consumers are connected to the network at the lower voltage levels. However,
this situation is increasingly changing as part of the energy transition towards renewable
energy sources. Now, energy generation also occurs at low-voltage levels with PV systems that
end consumers install on their houses. This leads to a bidirectional power flow in distribution
networks, which often requires the adaptation of existing networks since these were almost
exclusively designed for a unidirectional power flow. An alternative to network redesign is the
use of flexibility measures to cope with the variable electricity generation from renewable
energy sources. Such flexibility may be provided in the form of electricity storage for the
(local) intake and release of electricity, demand side management (DSM) to encourage or defer
the electricity demand of consumers to weaken peak demands, or sector coupling, i.e., the
transformation from one type of energy to another using technologies such as Power-to-Gas
(P2G) or Power-to-Heat (P2H), or Gas-To-Power (G2P). [ASL18, Ch. 1]

Maintenance of Distribution Networks

Regular network upgrades are necessary to ensure that a distribution network is sufficiently
equipped to sustain the demand that is put on the network by energy producers and energy
consumers at any given point in time. This is especially difficult for electricity distribution
networks as the network itself cannot store any electricity and therefore cannot absorb
any excess electricity generation or consumption. Although the aforementioned flexibility
measures can be utilized for meeting consumer demands, the underlying technologies are
mostly still in an early stage of development. The correct functioning of the distribution
network is therefore primarily ensured by outfitting the network with properly dimensioned
assets. A network asset is any technical component of the network such as a transformer in a
substation or cables connecting electricity producers, substations, and electricity consumers.
The composition of a network from network assets is referred to as the network topology.

A distribution network operator (DNO), i.e., the company responsible for maintaining
a distribution network, must decide on the network’s design to meet consumer demands.
Based on the aforementioned explanations, this is mostly equivalent to deciding when,
where, and how to (re)place each network asset. This decision making is referred to as
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the investment/reinforcement/expansion planning of distribution networks, or distribution
network planning (DNP) for short. This long-term planning of the distribution network’s
design (considering the next 20–40 years due to the lifespan of network assets [Sil16, p. 47])
is in contrast to the short-term planning of its operation, which for example considers the
ad-hoc deactivation of a wind turbine if the network is temporarily overloaded. However,
since the aforementioned flexibility measures are effective during network operation but need
to be considered during the planning of network investments, the lines between planning the
investments and operations of distribution networks are blurring (cf. [Xia+16]).

The upcoming Section 2.2 provides additional details of distribution network planning by
using it as an illustrative example for fundamental definitions from the domain of decision
making. The subsequent Section 2.3 provides an example that illustrates the individuality in
distribution network planning processes among different distribution network operators.

2.2 Decision Making Foundations

This thesis understands decision making as the “process of evaluating and choosing courses of
action” [BL18, p. 3]. The remainder of this subsection explains the decision making entities
shown in Fig. 2.2 using examples from energy distribution network planning.

2.2.1 Decision Problems

A decision problem describes the need for decision making. It can be formulated as a
question. For the example of energy distribution network planning, the decision problem
could be characterized by the question “When, where, and how do network assets need to
be (re)placed?”. The need for decision making arises from the fact that there are multiple
decision alternatives, which are potentially a solution to the decision problem [Jes20, p. 62].
The alternatives are mutually exclusive [Sàn22]. For distribution network planning, decision
alternatives correspond to different investment plans that describe the (re)placement of network
assets (potentially in combination with the selection of flexibility measures to cope with
electricity generation from renewable energy sources) [Sil16, p. 133]. A decision then
corresponds to the decision alternative that is selected by the decision maker, e.g., the planning
engineer of the distribution network operator [Sil16, p. 133].

It is possible to identify different types of decision problems. This thesis summarizes
the classifications discussed by Sànchez-Marrè [Sàn22] as shown in Fig. 2.3: An opera-
tional/programmed decision problem is a repetitive, frequently occurring issue with limited
complexity that can be supported using best practices identified from experience. Decision
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Figure 2.2: Decision making entities visualized as a UML class diagram (default multiplicity: 1)

problems of this type may occur daily. For distribution network planning, an example of such
a decision problem may be how to connect a new residential consumer to the network. On the
contrary, a strategic/non-programmed decision problem is a novel and unique issue with high
complexity that only occurs very rarely in a company’s lifespan. As a result, it is often not
possible to identify reusable decision support. In distribution network planning, an example
of such a decision problem is the decision whether to transform the distribution network into
a smart grid for increased data collection and better demand side management to deal with
peak demands. Operational/programmed and strategic/non-programmed decision problems
can be understood as the respective ends of a continuous scale. A tactical/semi-programmed
decision problem between the ends of the scale is a decision problem that this thesis assumes
to happen somewhat frequently with medium complexity that it warrants the development of a
reusable decision support system, yet so infrequently that it is necessary to regularly update the
decision support according to interim changes in the business environment. These decision
problems can be assumed to occur most frequently, as the lines between decision problem
categories are blurring [Rol21], which is also corroborated by the combined investment
and operational planning of distribution networks described in the previous Section 2.1. In
distribution network planning, an example of a tactical/semi-programmed decision problem is
the aforementioned identification of an investment plan for larger parts of the network. While
this happens regularly, e.g., every year, the uncertainty due to the long foresight requires
updating the planning procedure to account for interim changes in the business environment
such as the previously described bidirectional power flow or the emergence of novel approaches
such as flexibility measures to offset peak demands. [Sàn22]
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2.2.2 Decision Quality

Each decision problem is subject to one or multiple decision criteria used to evaluate decision
alternatives, thereby restricting the pool of decision alternatives available for selection as a
decision [Jes20, p. 65]. One can differentiate between decision objectives that seek to minimize
or maximize a certain characteristic of a decision alternative, and decision constraints that
restrict a certain characteristic to a range of acceptable values. In distribution network planning,
examples of optimization objectives are the goal to minimize the one-time investment costs
(CAPEX) and/or recurring operational costs (OPEX) [Xia+16]. An example of a constraint is
(n-1)-reliability to ensure that any given network asset of a type, e.g., a transformer, may fail
without affecting the functionality of the network (cf. [Sil16, p. 69 & Fig. 5.4]).

The existence of decision criteria allows the definition of decision validity and decision
optimality. A valid decision is a decision that meets all constraints, while an invalid decision
fails at least one constraint. An optimal decision implies that no other decision alternative from
the pool of available decision alternatives can be selected as the decision without negatively
impacting the characteristic affected by an objective. Analogously, a suboptimal decision
implies that deciding on another decision alternative would improve the characteristic affected
by an optimization objective. Unless stated otherwise, this thesis assumes an optimal decision
to also be valid, and an invalid decision to be suboptimal.

The evaluation of decision alternatives generally happens under uncertainty, i.e., the
evaluation is based on the knowledge available at the time of decision making. However, due
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to uncertain future developments, a seemingly optimal decision at the time of decision making
may lead to an unwanted outcome or effect after the decision is implemented. Analogously, a
seemingly bad decision might lead to the desired outcome or effect. However, it is generally
assumed that “consistently making good decisions will lead to more good outcomes than
otherwise” [Par+13, p. 3]. This is also referred to as decision rationality. [Sàn22]

2.2.3 Decision Process

The decision process describes the sequence of activities performed during decision making
to identify, assess and select decision alternatives. It is primarily a “process of information
transformation” [Zar13, p. 1] which consumes human and material resources [Zar13, p. 37]
while being supported by tools [SWM16, p. 26]. The decision process followed by a decision
maker significantly influences the selection of a decision alternative and consequently the
quality of a decision (cf. [DS96; Zar13, p. 12; SWM16, p. 27; EC07; Jes20, p. 137]).

Roles in Decision Making

Multiple roles participate in the enactment of a decision process. Parnell et al. [Par+13]
specifically describe the four roles of decision maker, stakeholder, subject matter expert, and
decision analyst. The decision maker is the person with the “responsibility and authority to
make organizational decisions” [Par+13, p. 20]. Decision makers define the decision problem
and ultimately select a decision alternative at the end of the decision process. In distribution
network planning, the decision maker is the leading planning engineer of the distribution
network operator [Sil16, p. 133]. A decision analyst supports decision makers by providing
them with “credible, understandable, and timely insights” (cf. [Par+13, pp. 2, 19]). For this
purpose, they use social skills to extract “credible substantive knowledge” [Par+13, p. 90]
related to the decision from subject matter experts and subsequently transform and extend the
knowledge using technical skills such as data analysis. For this reason, the decision process
can be viewed as a socio-technical process [Par+13, p. 3]. In distribution network planning,
an example of a decision analyst is a data scientist who produces forecasts for future consumer
demands. An example of a subject matter expert is a manufacturer of PV systems who may
provide useful insights regarding the future market share and capabilities of these systems.
A stakeholder in the context of decision making is “an individual or organization with a
significant interest in a decision under consideration” [Par+13, p. 20].

Stakeholders are not further considered throughout the thesis as they either initiate decision
making (e.g., the CEO of a distribution network operator) or are affected by the resulting
decision (e.g., energy consumers), but are not directly participating in the decision process
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themselves. For simplicity, the thesis furthermore assumes that decision makers are sufficiently
technically adept to operate a provided DSS themselves, which implies that every decision
maker is also a data analyst. Additionally, decision makers must have some subject matter
knowledge in order to properly define the decision problem and the associated decision
objectives. Nevertheless, additional data analysts and subject matter experts can be involved
to support the decision process. The roles of data analyst and subject matter expert are
subsequently aggregated into the role of a domain expert when it is irrelevant whether a
person contributes subject matter knowledge or data analysis skills. All described roles
are non-exclusive, i.e., an individual can assume multiple roles. Although the previous
explanations use singular forms to refer to the roles, each role can be assumed by multiple
individuals. However, for simplicity, the subsequent explanations assume the involvement of
only a single decision maker in the decision process, otherwise additional consensus building
between multiple decision makers is needed when deciding on a decision alternative.

Fundamental Phases of Decision Making

Various multi-phase blueprints for decision processes have been suggested in the literature
with varying levels of detail (cf. [Sàn22]). Although the remainder of this thesis usually
discusses decision processes on the most detailed activity level, an overview of fundamental
decision process phases is given below to establish the need for certain activities described in
later parts of the thesis. The decision process structure of Mintzberg, Raisinghani, and Theoret
[MRT76] is used for this illustrative purpose since it represents a compromise between detail
and brevity. It is visualized in Fig. 2.4 and subsequently explained. Although the shown
process is sequential, it is possible to execute parts of the process iteratively, or even jump
pack to a previous (sub-)phase [Sàn22].
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Figure 2.4: Decision process structure according to [MRT76]
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Identification During the identification phase, the context for decision making is established.
First, the need for decision making is identified throughout decision recognition. The need for
decision making can be triggered by influences originating from the business environment, or
after the completion of a time interval (e.g., in the case of yearly distribution network planning).
Next, the decision problem including decision objectives is characterized throughout diagnosis.
This includes gathering information and knowledge of the business environment that is also
used throughout subsequent phases. [MRT76]

Development During the development phase, potential decision alternatives are collected.
Already existing and potentially reusable decision alternatives are identified throughout an ini-
tial search. Additional decision alternatives are constructed during design, either from scratch
or by modification of existing alternatives uncovered throughout the search. The development
phase consumes the most resources throughout (strategic) decision making. [MRT76]

Selection During the selection phase, the final decision alternative is selected. If a large
quantity of decision alternatives was identified throughout the development phase preventing a
detailed evaluation of each alternative, a first superficial evaluation is conducted as part of an
initial screen. The remaining alternatives are evaluated throughout evaluation-choice, usually
using analytical approaches, with one alternative ultimately being selected as the decision. In
case the process is mostly performed by a designated decision analyst, the agreement of the
decision maker is obtained throughout authorization. [MRT76]

2.2.4 The Meta-Level of Decision Making

Although the previous subsection provides a fundamental structure for decision processes, each
explained (sub-)phase still needs to be broken down into one or multiple concrete activities to
describe the steps required to implement the phase. Each decision activity is a unit of work
that produces an artifact supporting the identification, development, or selection phase of
the decision process – either by constituting the final output of the phase or by consumption
in a subsequent activity of the phase. In distribution network planning, an example of an
activity may be producing a forecast for the future development of electric vehicle market
shares subsequently used for forecasting consumer demands that the distribution network must
sustain. Technically, the activity of “producing a forecast” can be broken down further, e.g.,
into collecting sources forecasting the development of market shares, extracting the data, and
documenting it in a machine-readable format.

In many cases, multiple (sequences of) activities are possible to obtain a desired artifact.
This can for example be attributed to the availability of multiple approaches and software tools
to produce the artifact [BL18, pp. 174–175]. For example, Burmeister and Schryen [BS23]
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list multiple approaches to optimize the topology of an energy distribution network. The
existence of activity alternatives gives rise to the concept of “meta decision making” which
is considered with deciding on the composition of a decision process, i.e., which activities
to execute and which tools to use for assistance during activity execution. Meta decision
making is often conducted experimentally by exploring and comparing multiple variations
of a decision process [MKP21]. The upcoming section presents the different factors that
influence decision makers to choose some activities and tools over others.

2.3 Situational Factors of Decision Making

The previous section emphasizes the importance of the decision process on decision quality. In
this context, the meta-level of decision making focuses on selecting or defining an appropriate
decision process for the decision problem at hand. This is necessary since decision makers are
subject to different decision situations with differences in for example decision alternatives
and decision criteria [Jes20, p. 62]. These differences originate from characteristics of the
company, e.g., company size, or the surrounding business environment, e.g., due to political,
economic, social, technical, ecological, or legal influences (cf. [Jes20, pp. 23, 28, 155]).
This section presents multiple situational factors that influence the constitution of a decision
maker’s decision process. Since the factors are illustrated using the example of distribution
network planning, the section first provides some additional details on the distribution network
planning process before subsequently introducing and explaining the available factors.

Context: The Distribution Network Planning Process

Sillaber describes an iterative planning process for distribution network planning (cf. [Sil16,
Fig. 4.1]) that can be loosely mapped to the fundamental decision process phases presented in
the previous section. During the Identification phase, the necessary information for distribution
network planning is produced. This includes information about the current structure and
components of the network, but also demand forecasting, i.e., the generation of multiple
estimates for how the demands of energy producers and consumers will/could progress over the
next years to account for uncertainty (cf. [Yan+18]). During the Development phase, different
alternative investment plans are generated and subsequently evaluated during the Selection
phase until a final decision on an investment plan is made. Due to the increasing importance of
IT assistance during distribution network planning, design and choice of decision alternatives
are often combined in the form of an optimization that simultaneously generates and evaluates
investment plans in search of an optimal decision alternative (cf. [Sil16, p. 162; EY19]).
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Six Situational Factors for Decision Process Design

Six situational factors that influence the composition of a decision process can be derived from
the fundamental decision-making entities previously presented in Fig. 2.2. Factors include
the availability of domain experts or other resources such as data, the availability of decision
alternatives as well as methods and criteria for their evaluation, and the preferences and skills
of a decision maker. Each factor is subsequently explained with respect to the two decision
processes shown in Fig. 2.5. Both processes aim to identify cost-minimizing distribution
network asset investments. The processes are documented using the Business Process Model
and Notation (BPMN) [Obj13]. Although the processes in Fig. 2.5 (deliberately) look very
similar at first glance, they contain significant differences as highlighted by the yellow markup
in Fig. 2.5b. Each activity in the process represents the effects of one situational factor.

develop demand
scenarios

identify robust
investments

simulate
network using
Newton-Raphson

identify
asset util.
above 110%

minimize
investments

using exact opt.

for each scenario

determine
degree of DSM
application

A1

A2 A3 A4 A5

A6

(a) First decision process

identify robust
asset strategy

minimize
investments

using heur. opt.

identify
asset util.
above 100%

simulate
network using
Gauß-Seidel

for each scenario

A2 A3 A4 A5

A6
retrieve
demand

scenarios

A1

(b) Second decision process

Figure 2.5: Comparison of two similar decision processes for distribution network planning
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• Availability of Domain Experts – Activity A1

The availability of domain experts to support the decision process may affect the
composition of the process. For example, some activities can only be executed with
the direct involvement of experts, e.g., an interview to determine the future technical
developments of network assets. Other activities may require data produced by experts.
An example of this factor is illustrated with activity A1 in Fig. 2.5. In both processes,
the first activity is concerned with the production of multiple demand scenarios. Each
scenario describes a potential future development for consumer demands. In Fig. 2.5a,
these demand scenarios are developed as part of multiple activities that are aggregated
into a subprocess. In Fig. 2.5b, the decision maker already has access to the demand
scenarios and just needs to retrieve them, e.g., because an external agency was previously
commissioned with scenario development before the planning started.

• Availability of Decision Alternative Prerequisites – Activity A2

Decision alternatives potentially have prerequisites before being available for selection
as a decision. These prerequisites are not fulfilled for every decision maker. For the
example of energy distribution network planning, demand side management (DSM)
to reduce peaks in customer demands can only be used in active distribution networks
where the DNO can monitor and control consumer demands in real time. Therefore,
determining the degree of DSM application is only included in Fig. 2.5a, as the DNO
associated with the process of Fig. 2.5b does not meet the prerequisites for DSM.

• Methods for Evaluating Decision Alternatives – Activity A3

The business environment may require the decision maker to use certain methods for
the assessment of decision alternatives, e.g., due to regulatory constraints. Throughout
distribution network planning, it is often necessary to compute the power flow throughout
a network, which is also referred to as network simulation. This computation can be done
with a variety of algorithms encapsulating different physical models or mathematical
approaches. In activity A3 of Fig. 2.5a, the network simulation is performed using
the Newton-Raphson algorithm. However, another DNO may be subject to different
technical regulations and therefore use the Gauß-Seidel algorithm instead in Fig. 2.5b.

• Underlying Decision Criteria – Activity A4

Decision makers can prioritize and parametrize decision criteria differently based on the
environment they (or their company) operate in. A parametrization is primarily relevant
for constraints to define a threshold that a characteristic of a decision alternative cannot
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exceed or fall below. In the exemplary distribution network planning process of Fig. 2.5,
this affects activity A4 where network assets are identified that require a replacement.
For this purpose, a capacity-to-load ratio prescribes the maximum worst-case utilization
threshold for assets (cf. [Yan+18]). The threshold amounts to 110% in Fig. 2.5a and to
100% in Fig. 2.5b, e.g., due to a different risk tolerance.

• Availability of Resources – Activity A5

Decision makers have different access to resources consumed throughout the enactment
of the decision process. A lack of resources may prevent decision makers to include
activities in the decision process, i.e., either leaving them out completely or substituting
them with alternative activities when approximate results are better than leaving out
the activity entirely. An example of the latter is shown in Fig. 2.5. Cost-minimizing
network asset replacements are identified throughout activity A5. For this purpose, the
first decision maker uses an exact optimization in Fig. 2.5a which is based on integer
linear programming. While this approach guarantees optimal results, it is also very
complex and time-consuming (cf. [Sil16, p. 161]). Due to time constraints, the second
decision maker instead uses a heuristic optimization in Fig. 2.5b, which is faster to
execute but cannot necessarily guarantee to find an optimal solution.

• Preferences and Skills of the Decision Maker – Activity A6

Decision processes of different decision makers do not only vary because of influences
in the business environment but also due to different preferences and skills of decision
makers themselves. A lack of skills may prevent a decision maker from including
a certain activity in the decision process, e.g., because the activity requires specific
data analysis knowledge that the decision maker does not have. The preferences of an
individual decision maker result in the decision maker either favoring or avoiding a
certain activity. In the examples shown in Fig. 2.5, the trust of a decision maker in the
software tools used for activity implementation influences activity A6 for identifying a
robust decision among the multiple evaluated scenarios. In Fig. 2.5a, the first DNO
might have sufficient trust in the quality of the previous activities and accepts a detailed
investment plan that describes when, where, and how to replace individual network assets.
On the contrary in Fig. 2.5b, the DNO may doubt the quality of the recommendations
computed by the heuristic optimization and prefer the recommendation of a robust asset
strategy that provides more generic guidelines regarding asset replacement.

The explanations of the factors “Availability of Domain Experts” and “Availability of Resources”
indicate that a strict differentiation between factors is not always possible. For example, the



34 Chapter 2. Individuality of Decision Making

lack of expert availability (which requires the generation of demand scenarios by the decision
maker in Fig. 2.5b) can be interpreted as a lack of resources when data is viewed as a resource
consumed during process enactment. Similarly, the availability of resources can influence the
selection of methods for identification and assessment of decision alternatives, as the heuristic
optimization is selected as part of Fig. 2.5b due to a lack of time which would be needed for
utilizing an exact optimization. Despite this potential overlap in the example, the description
of each factor’s origin in the previous explanations illustrates the necessity of each factor.

Combinatorial Diversity and Implications for Decision Support

The two exemplary processes shown in Fig. 2.5 showcase rather “opposite” decision processes
with a difference in each activity for illustrative purposes. In practice, other decision makers
would likely prefer combinations of these processes. For example, among the approximately
850 DNOs in Germany alone [Sta22], a decision maker could generally prefer the first process
from activities A2 to A6, but may want to execute it with already available demand scenarios
as considered by A1 of the second process. The vast possibility of combinations from the
shown (and otherwise imaginable) activities illustrate the nearly impossible challenge of DSS
developers in Chapter 1 to anticipate all customization options that are necessary for a decision
maker to adapt the DSS to the individual decision process. Unfortunately, this is a prerequisite
for creating a tailored DSS when following a holistic approach to DSS development.

Furthermore, the examples processes show that a simple parametrization of activities is
not always sufficient to implement the required customization. While it is arguably possible to
use the same software functionality to support activity A4 with a value of 110% and 100%
respectively, this does not work for activities A1 or A6 as they would require a replacement of
more complex subprocesses.

2.4 VUCA and Its Effect on Situational Decision Making

This section defines the VUCA concept introduced in Chapter 1 with respect to decision
making and explains its reinforcing effect on the situational factors for decision processes
presented in the previous section, thereby driving decision making individuality.

The Effects of VUCA on Decision Making Individuality

Chapter 1 already briefly introduced VUCA as an acronym for volatility, uncertainty, com-
plexity, and ambiguity. The subsequent VUCA explanations are based on the understanding
of a business environment as a collection of interdependent influencing factors whose future
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developments determine the optimality of decision alternatives [MBD20]. For example,
energy distribution network investments are highly dependent on the demands of consumers
and producers, with demands depending (among others) on the market share of electric
vehicles, which in turn depends on factors such as incentives for purchasing an electric vehicle.

Volatility refers to instability in the business environment due to frequent change [BL14].
This can lead to the emergence of new influencing factors or interdependencies between
them, e.g., less replacement of network assets during distribution network planning due
to emerging demand side management. Considering the previously described situational
factors, the changes in the business environment introduced by volatility may introduce novel
methods for the identification and evaluation of decision alternatives. However, since not
every decision maker’s business environment is necessarily impacted by the changes at the
same rate, volatility increases decision making individuality.

Uncertainty is the lack of predictability for the development of future influencing factor
values. This can be attributed to a lack of knowledge [BL14] or to the constant change induced
by volatility that prevents the applicability of forecasting based on historical values [Law13].
Uncertainty is often addressed by considering more information throughout the decision
process. This requires additional expert input or (data) resources that must be approximated in
case they are not immediately available, thereby further driving decision making individuality.

Complexity refers to the vast number of influencing factors and their interdependencies
that must be considered during decision making [BL14; Mac+16] (cf. the initial influencing
factors example). The complexity in business environments inevitably also leads to an
increased complexity of decision processes to properly portray the characteristics of the
business environment. As a result, the probability to encounter the aforementioned situational
factors and therefore individuality in decision processes is significantly increased.

Ambiguity implies that the cause-effect relationships between influencing factors are
not fully understood [BL14]. For example, financial incentives are expected to increase the
market share of electric vehicles, but it is unclear by which percentage. Analogous to the
aforementioned explanations for complexity, the increasing ambiguity requires more com-
prehensive decision processes, which implies a higher probability to encounter individuality
due to the situational factors. Furthermore, ambiguity also promotes the necessity of meta
decision making, as potentially multiple decision process variants must be defined and tested to
determine which variant most closely captures the characteristics of the business environment.

The Necessity of Decision Support in VUCA Environments

The increasing reliance on a DSS can be attributed to the fact that these systems are well-
suited to address the characteristics of VUCA business environments. The data-driven and
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simulation-based approach of a DSS creates an environment for experimentation where the
implications of different algorithms and future developments can be contrasted to account
for uncertainty and ambiguity [KQ08; Kow17]. Given enough computational resources and
appropriate user interfaces for data input and output, the encapsulated algorithms can be
arbitrarily complex without overextending the information processing capabilities of decision
makers. Lastly, there is a continuous influx of new DSS research and development to ensure
the availability of up-to-date decision support functionality to account for volatility in business
environments – for example, the number of yearly publications on decision support systems
indexed by Web of Science has nearly doubled in the last 10 years (922 results in 2011 vs.
1,763 results in 2021 when searching all fields for “decision support system”).

Nevertheless, these advantages of using a DSS only become accessible if the DSS is
appropriate, i.e., the decision process supported by the DSS accounts for the situational factors
the decision maker using the DSS is exposed to. In particular, the DSS must have inherent
flexibility to provide the necessary means for experimentation, meta decision making, and for
the integration of novel decision support approaches.

2.5 Key Takeaways

Decision makers follow a decision process to identify decision alternatives, evaluate them
based on various decision criteria, and ultimately select an optimal decision. The composition
of a decision process depends on the individual decision situation of a decision maker, which
is characterized by six situational factors. In particular, decision makers are influenced
by characteristics of the decision problem, available resources, and individual skills and
preferences to choose certain decision activities over others when developing their decision
processes. Furthermore, VUCA drives decision-making individuality across all domains and
increases the demand for tailored decision support.

The quality of a decision is determined by the appropriateness of the underlying decision
process. In the context of the aforementioned situational factors, anticipating an appropriate
decision process for all decision makers is close to impossible for DSS developers when
designing a DSS. Consequently, existing customization options of off-the-shelf decision support
systems are often insufficient for effective and efficient decision making. This observation
raises the question of which requirements must be fulfilled to enable the development of
decision support systems that are tailored to the individual decision situations of decision
makers. The next part of the thesis presents such requirements for tailored DSS development
and the advantages and shortcomings of existing approaches with respect to these requirements.



CHAPTER 3
Requirements and Related Work

This chapter presents requirements for an approach to provide each decision maker with a
tailored decision support system (Section 3.1). The potential benefits of service-oriented com-
puting and low-code development in addressing the requirements are discussed (Section 3.2)
and related work is evaluated with respect to the established requirements (Section 3.3). The
evaluation results are subsequently summarized, and a research gap is highlighted (Section 3.4),
which is addressed with the solution design presented in the next part of the thesis.

3.1 Requirements

The requirements Rx for an approach to develop tailored decision support systems presented
in this section are derived from the explanations provided throughout the previous Chapters 1
and 2. By extension, the requirements are derived from insights gathered throughout
the research project FlexiEnergy (cf. [Kir+21]), supplemented with additional knowledge
published in academic literature. The goal of the requirements is to ensure the effectiveness
and efficiency of each tailored DSS and the associated development approach itself.

Requirement R1 – Situativity
The fundamental motivation behind the development of a tailored DSS is the alignment of the
decision support functionality provided by the DSS with the requirements for decision support
of an individual decision maker. In this context, six situational factors that influence the
constitution of a decision process (and consequently the required decision support functionality)

37
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are presented in Section 2.3. These factors must also be supported by an approach for tailored
DSS development to ensure DSS effectiveness. The factors are subsequently summarized as:

Requirement R1.1 – Situational Decision Problems
The constitution of the decision problem influences the required decision support
functionality. This includes the characterizing problem question, decision criteria, i.e.,
optimization objectives or constraints, and prerequisites of decision alternatives.

Requirement R1.2 – Situational Resources
The availability of resources influences the decision process and consequently the
required decision support functionality. Resources include data, execution infrastructure
(or funds to rent them), input from subject matter experts, and available computation
time to identify a decision recommendation.

Requirement R1.3 – Situational Competences
In addition to regulatory requirements, preferences may influence the required decision
support functionality. This includes preferences of a decision maker’s organization,
e.g., concerning service level agreements, or preferences and skills of decision makers
themselves, e.g., for data visualization.

Requirement R2 – Process-Orientation
As evident from Chapter 2, decision making is a complex process consisting of multiple
activities, each potentially requiring the use of a different software artifact providing the
necessary decision support functionality. This process perspective of decision making should
also be represented in the approach for tailored DSS development to support the mapping
from decision making activities to decision support artifacts (i.e., software and data). This
approach aligns with the mental model of decision makers and can increase development
efficiency. In this context, the following sub-requirements can be derived:

Requirement R2.1 – Modularity
Decision support artifacts should be provided in a modular way such that they can be
assigned to individual activities of the decision process, capturing and assisting the
process as effectively as possible. This requires loose coupling and interoperability to
ensure that different decision support artifacts work together.

Requirement R2.2 – Navigation
The resulting tailored DSS should support the decision maker in navigating throughout
an agreed decision process, e.g., by evaluating conditions and choosing the appropriate
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decision activities and associated decision support functionality. This reduces the
cognitive burden of decision makers during decision making and increases decision-
making efficiency. A predefined decision process aligns with (semi-)structured decision
problems where a specific decision process is executed repeatedly (cf. Section 2.2).

Requirement R2.3 – Unified Execution Environment
The integration of multiple decision support artifacts in alignment with an individual
decision process should be hidden from decision makers using the tailored DSS. In other
words, decision makers should be under the impression that they are interacting with a
traditional, holistic DSS instead of requiring them to switch between different software
systems. This avoids context-switching and increases decision-making efficiency.

Requirement R3 – Variety
Creating a tailored DSS requires a sufficiently sized pool of modular decision support artifacts
with software and data to choose from to effectively align the provided and required decision
support. This results in the following sub-requirements:

Requirement R3.1 – Reusability
A large quantity of decision support functionality and data is already available. Encour-
aging the reuse of these existing artifacts for tailored DSS development can significantly
increase the variety of decision support and thereby increase the chance of optimally
addressing the requirements of an individual decision maker. Reusing existing decision
support artifacts also improves development efficiency. Since the existing decision
support functionality is likely implemented using heterogeneous software platforms,
platform independence is advised to enable low-barrier reusability.

Requirement R3.2 – Extensibility
A lot of decision support functionality has already been implemented, but a lot of
additional functionality will also be implemented in the next years (cf. the research trend
discussed in Section 2.4). In view of the ongoing volatility in business environments, an
approach for tailored DSS development must be extensible to account for advancements
in decision support functionality to ensure future effectiveness.

Requirement R3.3 – Discoverability
When selecting decision support artifacts that effectively support an individual decision
process, it is not only important that multiple decision support alternatives are available
for selection, but the existence of alternatives must also be documented. Otherwise, a
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lack of knowledge about alternatives might result in the suboptimal selection of decision
support functionality, or an exhaustive discovery phase is needed that prevents the timely
availability of a tailored DSS.

Requirement R4 – Suitability for Non-Programmers
As elaborated throughout Chapter 1, the dependency on DSS developers for extensive DSS
customization is neither efficient nor effective due to limited developer availability and potential
miscommunications. However, a lack of programming skills usually prevents decision makers
from integrating available decision support artifacts on their own. To address this shortcoming,
an approach for tailored DSS development should address the following sub-requirements:

Requirement R4.1 – Abstraction
Like any software application, a DSS is based on procedural code to obtain an executable
software artifact. Since decision makers and other domain experts do not have the
required programming skills, an abstraction is needed that maps the goal-based DSS
specification usable by these non-programmers to executable application code.

Requirement R4.2 – Learnability
The approach for tailored DSS development should be easy to learn for non-programmers.
Otherwise, if the approach were to require extensive upfront training, decision makers
and domain experts could arguably be trained in software development instead.

Requirement R4.3 – Error Prevention
The detection of errors during DSS development is desirable regardless of whether
the approach for tailored DSS development targets professional or non-programmers.
However, error detection is especially critical when decision makers develop a tailored
DSS themselves as the feedback loop between developers and decision makers is
eliminated that would potentially have uncovered any errors before productively using
the DSS. Errors can lead to ineffectiveness when the wrong decision support artifacts
are selected and combined, or to inefficiency if the DSS specification is incomplete and
must be fixed since the resulting DSS cannot be properly executed.

Requirement R5 – Collaboration
The increasing complexity of business environments requires cooperation between stakeholders
since decision processes are often no longer constrained to decision support artifacts from a
single organization. While the cooperation between directly competing companies is likely
limited (although not unrealistic, see “coopetition” in Section 1.3), many companies have
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suppliers or otherwise interact with other organizations and might benefit from using their
decision support artifacts and experience during decision making. In this context, the following
sub-requirements are relevant:

Requirement R5.1 – Common Terminology
For a successful exchange of decision support functionality, data, experiences and other
insights between organizations, a common understanding of the application domain is
necessary. Otherwise, misunderstandings can reduce efficiency and/or effectiveness
during tailored DSS development.

Requirement R5.2 – Artifact Sharing
Organizations exchange decision support artifacts, i.e., decision support functionality or
data, but potentially also other resources such as computing infrastructure. An approach
for tailored DSS development should support the integration of these contributions
across organizational boundaries, which likely implies a distributed environment.

Requirement R5.3 – Experience Sharing
In addition to “material” decision support artifacts that are potentially exchanged
between organizations, it is also possible to share “immaterial” insights regarding the
use of these artifacts such as best practices established through experience. Furthermore,
experience sharing not only works from the solution perspective but also from the
problem perspective as decision makers can communicate their requirements for decision
support that may not yet be addressed by existing decision support artifacts.

Requirement R5.4 – Organizational Scalability
Depending on the complexity of the application domain, a sophisticated decision process
may require the incorporation of decision support artifacts and experiences from a
multitude of organizations. A collaborative approach to tailored DSS development
should therefore consider organizational scalability such that many organizations can
contribute to increasing the efficiency and effectiveness of decision making.

Requirement R6 – Compliance
Decision makers are subject to external influencing factors during decision making. This
specifically includes regulatory constraints that may require decision makers to use particular
decision support functionality over another. An approach for tailored DSS development should
ensure that compliance with these influencing factors is given. This implies:
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Requirement R6.1 – Transparency
A decision maker should be informed about the decision support functionality included
in a tailored DSS. This is not only relevant for compliance, but can also increase trust in
the recommendations computed by the DSS, which is desirable since decision makers
often largely base their decisions on these recommendations.

Requirement R6.2 – Determinism
Given the same requirements for decision support, the development approach should
result in the use of the same decision support artifacts. In addition to compliance,
this is additionally motivated by the fact that a tailored DSS is specifically suited for
semi-structured decision problems (cf. Section 2.2) where the effort invested to create a
tailored DSS is justified by repeatedly using the tailored DSS afterwards.

Requirement R7 – Domain-Portability
Although requirements elicitation and solution design throughout this thesis primarily focus
on insights from the domain of energy distribution network planning, an approach for tailored
DSS development should apply to multiple application domains. Following requirement R4
– Suitability for Non-Programmers, configuration for supporting a new application domain
should be favored over an instantiation or extension of its underlying architecture.

3.2 Related Trends in Software Development

Chapter 1 already presented service-oriented computing and low-code development as two
(ongoing) trends in software development. Each trend exhibits characteristics that can
potentially support tailored DSS development, but in its current state is not sufficient to
address the lack of tailored decision support systems on its own. This section provides
additional background information on service-oriented computing (Section 3.2.1) and low-
code development (Section 3.2.1) and briefly discusses their potential benefits with respect to
the requirements for tailored DSS development established in the preceding Section 3.1. The
information furthermore supports the understanding of the subsequent discussion of related
approaches in Section 3.3 and the explanation of the solution design in Part II.

3.2.1 Service-Oriented Computing

Papazoglou et al. define service-oriented computing as “the idea of assembling applica-
tion components into a network of services that can be loosely coupled to create flexible,
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dynamic business processes and agile applications that span organizations and computing plat-
forms” [Pap+07]. Service-oriented computing requires a concrete service-oriented software
architecture to implement the service-orientation “idea” for a concrete software application.

Service-Oriented Architectures

Historically, the output of a software development project is a monolith [JC19], i.e., a single
executable artifact [Dra+17]. Monoliths come with disadvantages as described by Joseph
and Chandrasekaran [JC19] and Dragoni et al. [Dra+17]. For a DSS, the most obstructive
disadvantages include a lack of agility and evolvability preventing the adaptation of the DSS
to the business environment, technology lock-in preventing the integration of the most suitable
decision support functionality concerning a decision maker’s requirements for decision support,
and a lack of reusability since partial functionality cannot be executed independently.

The concept of a service-oriented architecture emerged in the early to mid-nineties as a
countermeasure to these and other disadvantages of monolithic applications [LL09] and is
still an ongoing trend for software system modernization [Nik+20]. Laskey and Laskey define
a service-oriented architecture (SOA) as “a paradigm for organizing and packaging units
of functionality as distinct services, making them available across a network to be invoked
via defined interfaces, and combining them into solutions to business problems” [LL09].
Additional definitions are summarized by Niknejad et al. [Nik+20]. Based on the definitions,
the authors conclude that a SOA “promotes loose coupling, reusability, interoperability,
agility, [and] efficiency” [Nik+20]. These benefits, in addition to the fact that network-based
communication via interfaces enables services to be platform-independent [CDT17], address
the challenges of monolithic (DSS) applications discussed in the previous paragraph, i.e., lack
of agility, reusability, and technological openness. The benefits can be attributed to the fact
that the concept of a SOA provides standardized mechanisms for the discovery and interaction
between services [LL09], which are subsequently described in more detail.

Service Interfaces and Service Discovery A service interface documents the syntax and
semantics of information exchange with a service [LL09]. This includes invocable functions
with input and output formats of function parameters, constraints such as pre- or post-conditions
that describe the (necessary) state of the environment before or after function invocation, and
supported communication protocols (cf. [LL09]). Interfaces introduce a transparency similar
to a black box [Nik+20], i.e., the implementation is decoupled from the interface [Dra+17] and
unknown to the service consumer. This creates a loose coupling that allows service providers
and service consumers to evolve independently [Val+09] and promotes technical diversity,
i.e., allows them to use different technologies, languages, and platforms [Nik+20].
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A SOA is ultimately only effective if it can match the needs of service consumers with
the offerings of service providers (cf. [LL09]). Service descriptions consisting of service
interfaces and additional non-functional metadata are therefore usually published in a service
registry to achieve service visibility [LL09], i.e., to ensure that a provided service can be
found by potential service consumers. This relation is summarized by the “publish-find-bind”-
triangle [Sch+05] shown in Fig. 3.1: Service providers first publish a description of their
offered service in the service registry. Service consumers specify their service requirements
in a query to the service registry. Upon a successful match, the registry returns a suitable
service description, which is then used by the service consumer to bind to the service provider
and interact with its service.

Service Composition The implementation of a business process addressing a business
problem usually requires the cooperation of multiple services. For example, an online shop
may use three services to ship an order to a customer: a service for order management (to fetch
the list of items to ship), a service for customer management (to obtain a shipping address), and
a service for triggering the physical shipping. The “process of aggregating multiple services
[...] to perform more complex functions” is referred to as service composition [She+14]. This
activity can potentially be automated. The term “service composition” is also used to refer to
the result of the aggregation activity, i.e., an artifact describing the cooperation of multiple
services. A service composition is often described using a process model [CDT17; PL03].
The fact that a business process is implemented using multiple services is usually transparent
to the stakeholders involved in the business process (cf. [LL09]).

Service Coordination Based on the previous explanations, the enactment of a business
process requires the invocation of cooperating services as defined by a service composition

Service
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Figure 3.1: SOA Publish-Find-Bind triangle (adapted from [Sch+05])
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(cf. [Dra+17]). Two fundamental approaches to service coordination have emerged, which are
contrasted in Fig. 3.2. In the case of service orchestration shown in Fig. 3.2a, only a central
Orchestrator service knows about the service composition implementing the business
process (indicated in red). The Orchestrator service invokes other services and passes
their response data to subsequent services as specified in the service composition. In the
case of service choreography shown in Fig. 3.2b, there is no central entity coordinating the
invocation of services. Instead, each service is responsible for acquiring the data needed for
its execution, as indicated by its partial knowledge of a service composition. A service relying
on and coordinating the functionality of other services is also referred to as a higher-level
service [Dra+17], while a service without any dependencies to other services is referred to as
an atomic service [MM18]. Message exchange between services is often based on HTTP.

In summary, the execution of a service composition is centralized for service orchestration
and decentralized for service choreography [CDT17]. Service orchestration is therefore also
summarized as “simple services and smart pipes” [CDT17], whereas service choreography
corresponds to “smart services and simple pipes” (cf. [VKG17]). Here, “smart” and “simple”
only refer to service coordination and not to the encapsulated business functionality.
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Figure 3.2: The two fundamental approaches to service coordination

SOA Implementation

In practice, web services and microservices have emerged as the two primary approaches to
implementing a SOA. Both approaches are briefly introduced and compared below with a focus
on characteristics that are referenced in the remainder of the thesis. A more comprehensive
comparison is provided as Table 1 in the paper of Cerny, Donahoo, and Trnka [CDT17].
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Origin and Adoption The technological standards underpinning web services emerged
around the year 2000 to establish a global, enterprise-wide governance to improve the reuse of
business functionality [CDT17]. Microservices emerged around the year 2012 throughout the
industry to divide the IT landscape of a business into multiple single-purpose services with a
bounded context, thereby improving the development and delivery of business functionality in
cloud environments [JC19; AAE16; Dra+17]. Web services and microservices can be viewed
as two subsequent iterations of SOA [Dra+17]. Nowadays, microservices are the dominant
SOA implementation and experience massive adoption with many companies migrating from
web services to microservices [Li+19; AAE16; CDT17].

Service Coordination Web services favor service orchestration over service choreogra-
phy [CDT17]. For this purpose, services are often connected to a enterprise service bus
(ESB), which enables service discovery and assumes the orchestrator role shown in Fig. 3.2a,
potentially converting between multiple heterogeneous communication formats [Sch+05].
Microservices favor service choreography [CDT17]. Sometimes a service mesh is used to
establish communication channels between services [Li+19].

Communication Web services use a specific technology stack for SOA implementation,
which is subsequently also referred to as the WS-* technology stack. It primarily includes the
Web Service Description Language (WSDL) [W3C07b] for describing service functionality and
SOAP [W3C07a] for message exchange between services. Universal Description Discovery
& Integration (UDDI) [OAS04] can be used as a service registry, albeit a service registry
is omitted by most organizations [Val+09]. Although the aforementioned technology stack
provides a technically homogenous approach for service integration, it is often perceived as
complex [CDT17]. Microservices use comparatively more lightweight communication mech-
anisms based on HTTP-APIs [JC19] such as Representational State Transfer (REST) [Fie00].
The use of service description languages such as OpenAPI [Ope21] is optional.

Independence Web services employ a “share-as-much-as-possible” concept to foster service
reuse. This requires global, enterprise-wide governance. For example, web services may
even share the same database, which emphasizes the need for a canonical data model to
standardize exchanged business objects. A user interface to invoke service functionality is
implemented as a holistic layer on top of the ESB. On the contrary, microservices strive for a
“share-as-little-as-possible” concept (which usually leads to them being smaller [Dra+17]).
Each microservice has its own data model and manages its own database. Microservices
can even encapsulate their own user interface to form a self-contained system with complete
governance over a part of the business domain. [CDT17]
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3.2.2 Low-Code Development

Low-code development is another trend in software development that can potentially support
tailored DSS development. This section introduces fundamental low-code terminology,
compares low-code development to related approaches such as model-driven development or
end-user programming, and describes the components of low-code development environments.

Low-Code Terminology

Defining low-code development is challenging since neither academia nor industry has agreed
on a definition so far [Luo+21]. This can be attributed to the fact that publications on low-code
only appeared fairly recently, with industry publications starting in 2014, and academic
publications starting in 2018 [BF21]1. This thesis defines low-code development based on its
goals. In the following, low-code development (LCD) is therefore understood as an approach
to enable non-programmers to develop and operate ”complex software applications with little
to no code” [Di +22] in order to increase productivity [BF21], i.e., to provide higher quality
applications in a shorter amount of time (cf. [Mar+20]).

In the definition of low-code development, “code” can refer to the source code of a program-
ming language [BF21], but also to more simple conditional expressions or algorithms [Let21].
The term no-code development can be used to distinguish approaches that require no code
from those which require little code to create and deploy an application [Cab20]. Based on
the above definition of low-code development, this thesis includes no-code development with
low-code development unless explicitly stated otherwise. For uniformity, development using
traditional programming languages is sometimes referred to as high-code development.

Low-code developers without programming background are also referred to as citizen
developers [Sah+20]. This role is often assumed by domain experts who have sophisticated
knowledge of the business issue which the developed application should address, but lack
the programming skills of trained software engineers to implement such an application using
traditional programming frameworks (cf. [FJF21]).

Low-Code Benefits and Related Approaches

The benefits of low-code development (i.e., providing higher-quality applications in a shorter
time) come mainly from its relation to end-user development and model-driven development.

End-User Development By supporting the development of software applications by non-
programmers, low-code development is similar to end-user development (EUD), also referred

1 Waszkowski [Was19] claims the low-code idea was introduced in 2011, but does not specify a source.
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to as end-user programming (EUP) [Al +21], which provides “a set of methods, techniques,
and tools that allow users of software systems, who are acting as non-professional software
developers, at some point to create, modify, or extend a software artifact” [Lie+06]. However,
although low-code developers can be end users of the developed application, they can also be
domain experts (i.e., citizen developers) without the intention to use the application themselves.

Enabling software development/adaptation by end users and domain experts comes with
the advantage of “closing the gap” between stakeholders with knowledge about domain
requirements and software developers who implement these requirements (cf. [Al +21]).
This improves the alignment between business requirements and IT support [BF21] and
results in applications with higher quality, i.e., applications that address business requirements
more effectively. Additionally, the dependency on software developers is reduced, which
could otherwise impose a “major obstacle” for digital transformation due to their limited
availability [BF21]. By reducing the dependency on other stakeholders and communication
overhead, low-code development also increases development efficiency [Kir+22].

Lieberman et al. [Lie+06] summarize three approaches with increasing complexity for
EUD which can also be translated to low-code development, namely (1) parametrization of
existing software components, (2) composition of multiple existing software components,
and (3) programming of novel software components. Throughout low-code development,
approaches (2) and (3) are primarily implemented using model-driven development [Sah+20].

Model-Driven Development Low-code development often utilizes abstractions and declara-
tive programming to make software development accessible to non-programmers by applying
(principles of) model-driven development [Sah+20]. Model-driven development (MDD) is “a
software- engineering approach consisting of the application of models and model technologies
to raise the level of abstraction at which developers create and evolve software, with the goal
of both simplifying (making easier) and formalizing (standardizing, so that automation is
possible) the various activities and tasks that comprise the software life cycle” [HT06]. In
particular, models, i.e., “abstraction[s] over some (part of a) software product” [HT06], can
be used for the specification, verification, and generation of software code [Di +22], all of
which contributes to effective and efficient software development. In a low-code context,
models are usually specified graphically and are used for code generation [Sah+20] and the
automation of routine tasks [BF21], e.g., to provision cloud infrastructure as an execution
environment for the application [Sah+20]. This allows low-code developers to focus more
on the specification of the application’s business logic [Sah+20]. The automation can also
increase agility throughout the development process [Al +21], which strikes an additional
resemblance to rapid application development (RAD) [Di +22].
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Novelty of Low-Code Development The previously described similarities between low-code
development and existing approaches – MDD in particular – result in an (ongoing) academic
debate regarding the novelty of the low-code concept. Some researchers such as Bock and
Frank [BF21] and Cabot [Cab20] see limited technical contributions in the low-code concept,
either going as far as denying the approach its eligibility as a scientific concept [BF21] or
viewing it as a synonym for MDD [Cab20]. This critique is supported by the fact that many
software tools, which nowadays market themselves as a platform for low-code development,
already existed for multiple years before the low-code term was coined in 2014 [BF21].

On the contrary, researchers such as Sahay et al. [Sah+20] and Al Alamin et al. [Al +21]
view MDD simply as a conceptual predecessor of low-code, or low-code as an embodiment
of EUD . Di Ruscio et al. [Di +22] describe MDD and low-code development as separate
concepts and highlight differences in development tools (platform- and cloud-based for LCD
vs. Eclipse-based for MDD), target users (citizen developers for LCD vs. professional
software developers for MDD), and target domains (business applications for LCD vs. systems
engineering for MDD). Although the author of this thesis agrees that low-code development
cannot simply be equated to MDD or EUD, the explanations throughout the remainder of
the thesis often reference one of these paradigms or associated techniques due to their more
precise definition compared to the fairly novel concept of low-code development.

Characteristics of Low-Code Development Platforms

A low-code development platform (LCDP) – sometimes also referred to as low-code application
platform or simply low-code platform [BF21] – is an environment for the development
of a low-code application, which is a software application developed using a low-code
approach (cf. [Di +22]). LCDPs are often provided using a cloud-based platform-as-a-
service (PaaS) approach [Sah+20]. This section describes characteristic features of LCDPs
that can also be found in the solution presented throughout the remainder of the thesis.
The subsequent descriptions are based on the LCDP components identified by Bock and
Frank [BF21] and associated with the architectural layers described by Sahay et al. [Sah+20],
both filtered and adapted based on the author’s personal experience from LCDP workshops
conducted throughout the Pro-LowCode research project (cf. [Kir+22]). An overview of
LCDP architecture is given in Fig. 3.3, which is subsequently explained in more detail.

Application Layer The application layer provides all components that citizen developers
directly interact with during the (graphical) specification of the software application [Sah+20].

• The Data Modeling component is used to define entities and their relations relevant to
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Figure 3.3: Fundamental architecture of LCDPs

the developed application as data structures. These data structures are the foundation
for the other components in the layer and can support the automated generation of stubs.

• The GUI Design component is used to define (parts of) the application’s user interface.
This is usually achieved using what-you-see-is-what-you-get (WYSIWYG) by placing
reusable UI widgets via drag&drop.

• The Business Logic Specification of LCDPs is used for the (often process-based)
definition of the application’s business logic. Business logic can be triggered by UI
interactions, data manipulation events, or temporal triggers.

Integration Layer The integration layer provides connectors to establish information
exchange between the low-code application and external applications similar to a SOA.

• The Data Integration component is used to define dependencies to external data sources
such as hosted spreadsheets or a database management system (DBMS). Most LCDPs
reduce the need to integrate external data sources due to the existence of an automatically
configured internal DBMS. The developed application can read from and/or write to
connected data sources.
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• The Service Integration component is used to define dependencies to external services
that provide functionality for the specification of business logic not provided by the
LCDP out-of-the-box.

Collaboration Layer The cross-cutting collaboration layer provides artifacts that support
activities in the application and integration layer. These artifacts are usually made available
via a central marketplace populated by the LCDP vendor as well as third-party developers.

• The Template component provides templates to bootstrap activities in the application
layer, i.e., data modeling, GUI design, or business logic specification. It enables citizen
developers to adapt (partially) complete applications to their individual needs.

• The Connector component provides integration adapters for data sources or services.

Deployment Layer The deployment layer is responsible for making the developed application
available in the execution environment. Activities in these steps usually happen transparently
to the citizen developer after triggering the deployment from the GUI of the LCDP.

• The Code Generation component is responsible for generating executable artifacts from
the application specified in the application layer, considering the integrations specified
throughout the integration layer.

• The Deployment component provisions the (usually cloud-based) execution environment
and moves the previously generated executable artifacts into the environment. Some
LCDPs support multiple execution environments, e.g., for production and testing.

3.3 Related Work

This section discusses related work and evaluates it with respect to the previously established
requirements for providing decision makers with tailored decision support systems. The first
three subsections discuss approaches that can be classified as an adaptive DSS (Section 3.3.1),
a DSS generator (Section 3.3.2), or a service-oriented DSS (Section 3.3.3) as these concepts
were previously identified to align most with the goal of this thesis. The presented approaches
were identified as part of individual searches using the search engine Web of Science with
the search string ("adaptive decision support system*" OR "adaptive DSS*")
AND ("architecture" OR "design" OR "development" OR "framework") – using
analogous search strings for the other concepts. The second part of the search string was
added to ensure sufficient details for evaluation with respect to the previously established
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requirements, to identify general-purpose approaches applicable to multiple domains, and
to filter out approaches where the use of the paper’s contributions as part of a DSS are only
mentioned for future work. Web of Science was chosen over Google Scholar due to the possible
limitation of the search on title, keywords, and abstract. The results were cross-checked with
Google Scholar to account for papers not indexed by Web of Science albeit having a high
amount of citations. Section 3.3.4 briefly discusses only distantly related research areas.

3.3.1 Adaptive Decision Support Systems

An adaptive decision support system (ADSS) is “a DSS that is able to automatically or manually
modify some aspects of its structure, functionality, or interface to meet different needs in its
users” [CY98]. An ADSS is characterized by some form of “activeness”, i.e., the system
partially operates without user direction [Hol+08]. This also aligns with the use of “adaptive”
over “adaptable” in its name, suggesting that changes are happening automatically due to
internal state transitions instead of explicit user requests [Lie+06].

The primary motivation for using an ADSS is to increase decision-making effective-
ness [FPV97; Hol+08] in volatile business environments [Hol+08; PS09] where stale or
incomplete decision-making knowledge can result in suboptimal and consequently costly
decisions [PS09]. Additionally, Holsapple et al. [Hol+08] also mention the complexity of
business environments and the necessity to increase decision-making efficiency as motivation.

Detailed Evaluation of ADSS Approaches

This subsection explains the evaluation results for ADSS approaches summarized in Table 3.1
with respect to the requirements Rx presented in Section 3.1.

Holsapple et al. [Hol+08] present an ADSS concept that uses unsupervised learning
to extend decision support knowledge. A suitable heuristic is initially selected based on
the decision maker’s objectives and the specified input data. This partially addresses R1.1 –
Situational Decision Problems and R1.2 – Situational Resources, but without consideration
of decision alternatives or other resources. Subsequently, the heuristic is updated or new
heuristics are added to the decision support knowledge base using insights learned throughout
the computation of a decision recommendation. This corresponds to an extension in the
sense of R3.2 – Extensibility, however, manual extensibility is not explicitly mentioned. R3.1
– Reusability is only possible as long as the existing decision support functionality can be
expressed as a heuristic that can be executed by one of the available search algorithms. The
automated selection among available heuristics addresses R3.3 – Discoverability. The authors
explicitly mention a lack of determinism and transparency introduced by utilizing learning



3.3. Related Work 53

which fails to address R6 – Compliance. On the upside, this comes with the advantage
of providing adaptivity without requiring additional input from the decision maker, which
fulfills R4 – Suitability for Non-Programmers, albeit without a complete mechanism for error
prevention as erroneous heuristic selections can only be identified over time via learning.
The proposed ADSS concept is generic such that it can be instantiated in various application
domains, however, the case study described in the paper suggests that architectural components
must be specifically developed for the application domain. Consequently, R7 – Domain-
Portability is partially fulfilled. No information is provided that suggests the fulfillment of
requirement R2 – Process Orientation or R5 – Collaboration.

Chuang and Yadav [CY98] also present an ADSS using unsupervised learning to
update decision support knowledge that is consumed as part of heuristic search algorithms to
determine decision recommendations. For this reason, it is largely evaluated like the approach
by Holsapple et al. [Hol+08] with the following differences: The approach by Chuang and
Yadav [CY98] explicitly mentions the consideration of user preferences, but does not consider
different decision objectives. Consequently, it fulfills R1.3 – Situational Competences, but
not R1.1 – Situational Decision Problems. Furthermore, the approach can provide decision
support for multiple activities, thereby addressing R2.1 – Modularity, but without any guidance
between tasks as part of R2.2 – Navigation. While a documentation of the followed decision
process in the sense of R6.1 – Transparency is not explicitly mentioned, the approach has the
potential to do so due to its additional focus on adaptivity in the user interface of the ADSS.
The fulfillment of R7 – Domain-Portability is suggested with a problem-domain component
but is not demonstrated to confirm this with certainty.

Fazlollahi, Parikh, and Verma [FPV97] describe an ADSS using a rule-based approach
to select models based on characteristics of decision makers (particularly considering their
skills and previous use of the DSS) and characteristics of input data. The approach thereby
addresses R1.3 – Situational Competences and R1.2 – Situational Resources, however, the
latter only with respect to data and without considering the availability of other resources.
The authors highlight the ability of the ADSS to adapt to and influence the decision process
of a decision maker. However, the decision makers are responsible to navigate through the
decision process themselves on a task-by-task basis, which does not fulfill requirements R2.2
– Navigation and R6.2 – Determinism (and R6.1 – Transparency as the followed process
seems to be documented, but not presented to the user). Since the DSS selects the suitable
decision support model for each task without additional input from decision makers, R4 –
Suitability for Non-Programmers is fulfilled except for R4.3 – Error Prevention, which is only
partially fulfilled due to a lacking feedback mechanism for correcting potential mistakes in the
lookup tables. The automated selection among the available models furthermore supports R3
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– Variety, although the support for R3.1 – Reusability and R3.2 – Extensibility is not explicitly
mentioned. The described prototype provides limited reusability as the models are written
in a proprietary rule-based environment. Collaboration as part of R5 – Collaboration is not
mentioned. The approach supports R7 – Domain-Portability.

High-Level Evaluation of ADSS Approaches

Some ADSS approaches identified throughout the literature review were excluded from the
detailed evaluation as they significantly differ from the goal of this thesis, or because they
do not provide sufficient explanations for an adequate evaluation concerning the previously
established requirements. These approaches are subsequently summarized for completeness.

The ADSS framework proposed by Piramuthu and Shaw [PS09] uses unsupervised
learning to update the knowledge base of the DSS utilized for the identification of decision
recommendations. Decision support knowledge is updated using training examples generated
by a simulation component based on a sampling of an observable system or historical input
data. Thus, the system is “adaptive” in the sense that the decision support knowledge is updated
over time to reflect changes in the business environment. However, at a given point in time, the
system does not support multiple alternatives for decision support functionality and therefore
does not provide “situational” support in the sense of requirement R1 – Situativity. Similarly,
the approach by Mollá, Heavin, and Rabasa [MHR22] adapts a single decision-making
algorithm based on insights gathered from a continuous data stream.

Al-Qaed and Sutcliffe [AS06] describe an ADSS that utilizes different decision support
tools to assist decision makers in selecting among multiple available products. However, the
proposed ADSS is designed to support product selection as part of business-to-customer
e-commerce scenario and therefore does not align with the semi-structured business decision
problems considered throughout this thesis.

Chen, Zhou, and Hu [CZH02] describe a generator for group DSSs. Each generated
DSS has an adaptive component that decomposes a decision problem into sub-problems and
selects among multiple solvers to identify/assemble an optimal decision recommendation.
However, the inputs and inner workings of the adaptive component are not described.

Karkanitsa [Kar20] describe an approach for decomposing a decision making problem
into subproblems which are subsequently distributed as tasks among actors. However, the
adaptivity of the system with respect to decision support functionality remained unclear.

Considering the distinction between “adaptable” and “adaptive” at the beginning of this
section, the ADSS described by Holm et al. [Hol+14] is an adaptable DSS. It is therefore
considered as part of the upcoming Section 3.3.2 discussing DSS generators. This also applies
to the approach by Paranagama, Burstein, and Arnott [PBA98] and Weller et al. [Wel+15].
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Table 3.1: Summary of ADSS approaches with respect to the requirements of Section 3.1

Requirement [Hol+08] [CY98] [FPV97]

R1 – Situativity
R1.1 – Situational Decision Problems
R1.2 – Situational Resources
R1.3 – Situational Competences

R2 – Process Orientation
R2.1 – Modularity
R2.2 – Navigation
R2.3 – Unified Execution Environment

R3 – Variety
R3.1 – Reusability
R3.2 – Extensibility
R3.3 – Discoverability

R4 – Suitability for Non-Programmers
R4.1 – Abstraction
R4.2 – Learnability
R4.3 – Error Prevention

R5 – Collaboration
R5.1 – Common Terminology
R5.2 – Artifact Sharing
R5.3 – Experience Sharing
R5.4 – Organizational Scalability

R6 – Compliance
R6.1 – Transparency
R6.2 – Determinism

R7 – Domain-Portability

: addressed, : partially addressed, : not addressed

3.3.2 DSS Generators

A decision support system generator (DSSG) is an environment consisting of tools to develop
decision support systems that are customized to a decision maker’s requirements for decision
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support (cf. [BSH99]). A DSSG relies on the flexible combination of reusable software
modules [DN03]. As shown in Fig. 3.4, a DSS specification describing the combination of
software modules is first created by a DSS Implementor (in alignment with the terminology
used by Maturana, Ferrer, and Barañao [MFB04]), usually utilizing a (visual) editor. Next,
the DSS specification is either forwarded to a code generator that generates the DSS as
a standalone application (Fig. 3.4a) or – more widespread [BSH99] – the specification is
interpreted as part of the DSSG environment (Fig. 3.4b). Some approaches require the DSS
implementor to exhibit certain skills, while other approaches also enable decision makers to
assume the role of the DSS implementor.

Among the benefits of DSSG usage are the reduced effort [MFB04] and complexity [Fie99;
SBM11] of procedural DSS development, which decrease DSS maintainability [Fie99] and
prevent the involvement and autonomy of DSS customization by decision makers (cf. [Fie99;
SBM11]). In addition, the absence of a generally accepted model [DN03] or limited
DSS generalizability [Ric+97] is mentioned, e.g., due to the variety of data [Fie99] or the
subjective perception of user-friendliness [SK86]. Lastly, there is also an economic benefit to
implementing multiple decision support systems in the same execution environment [PBA98].

DSSDSS Generator

   Editor    Code Generator

  Software Modules
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Implementor 

DSS User

Knowledge

Problem Processing
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(a) DSSG with Code Generation
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(b) DSSG with Interpretation

Figure 3.4: Possible approaches to implement a DSS generator
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Detailed Evaluation of DSS Generator Approaches

This subsection explains the evaluation results for DSSG approaches summarized in Table 3.2
with respect to the requirements Rx of Section 3.1. In general, R1 – Situativity is addressed
since a DSS generator is used by a human implementor who can consider the situational
factors of a decision maker. For this reason, R1 – Situativity and its sub-requirements are not
repeated throughout the textual explanations of evaluation results.

Ahmed, Sundaram, and Piramuthu [ASP10] describe a DSS generator with a focus on
assisting in scenario-based decision making. The generator supports the component-based
integration of decision support functionality from repositories of available models, solvers,
and data. While R2 – Process Orientation is fundamentally addressed, the activities of the
decision process can only be addressed on a task-by-task basis, i.e., there is no automation
as part of R2.2 – Navigation. R3 – Variety is given, although R3.1 – Reusability is limited
due to the focus on a model-solver pattern. A graphical user interface with validation for
component integration addresses R4 – Suitability for Non-Programmers. R5 – Collaboration
is not considered. R6 – Compliance is ensured by requiring decision makers to support their
decision process on a task-by-task basis. R7 – Domain-Portability is addressed.

Derigs and Nickel [DN03] describe a DSS generator for financial portfolio management
and optimization. The generator provides a rule base fundamentally addressing R3 – Variety
where decision makers can select rules and search strategies for meta-heuristics according
to their decision objectives, suggesting a focus on R1.1 – Situational Decision Problems
and limited R3.1 – Reusability and R3.2 – Extensibility due to the focus on heuristic search
algorithms. The generated DSS only supports a single task, i.e., selection of portfolio assets to
buy/sell, consequently R2 – Process Orientation is not supported, but R6.2 – Determinism is.
Requirement R4 – Suitability for Non-Programmers is partially addressed with a SQL-based
notation for rule selection via a GUI. This explicit selection of a rule also addresses R6.1
– Transparency. No R5 – Collaboration is considered. The approach is only applicable to
portfolio management and does not address R7 – Domain-Portability.

Dong and Loo [DL01] describe an agent-based DSS generator for the development of
web-based decision support systems. A DSS is assembled by composing a pipeline of multiple
decision support components consisting of data, models, and solvers. In some cases, users of
the DSS generator can be supported by software agents in component selection and integration
as well as composition validation. This addresses R4 – Suitability for Non-Programmers only
partially, since the integration of models and solvers requires programming knowledge in
cases where agent support is unavailable, i.e., for tightly coupled component bindings. The
involvement of agents furthermore potentially prevents R6.2 – Determinism. The interaction
with the DSS generator happens task-/component-based, consequently, an upfront model of
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the decision process cannot be used for R2.2 – Navigation. Only after a process has been
followed it can be documented in retrospect for R6.1 – Transparency. The focus on the
model-solver pattern limits R3 – Variety. Requirement R5 – Collaboration is not addressed. No
domain restrictions are evident from the descriptions, which suggests R7 – Domain-Portability.
However, the technical feasibility of the approach (by instantiation in a concrete application
domain) is not demonstrated throughout the paper.

Fierbinteanu [Fie99] describe a visual DSS generator where users can assemble a DSS for
constrained search problems from building blocks that encapsulate decision logic expressed
using constrained logic programming. The explicit documentation of a building block
composition using the graphical editor enables R2 – Process Orientation, R6 – Compliance,
and R3.3 – Discoverability. Furthermore, the visual approach addresses R4 – Suitability for
Non-Programmers, however, a proprietary visual notation is used that may decrease R4.2 –
Learnability. With respect to R4.3 – Error Prevention, the approach supports validation of a
building block composition, but only on a syntactical level. R3.1 – Reusability is not addressed
since the building blocks are implemented using Prolog-like rules. There is no explicit mention
of R3.2 – Extensibility, but it should be possible using the approach. The approach makes use
of an ontology which would enable R5.1 – Common Terminology, however, there is otherwise
no discussion of features addressing R5 – Collaboration. The approach can be applied in
multiple domains, thereby addressing R7 – Domain-Portability.

Holm et al. [Hol+14] describe an approach that enables shop-floor managers to adapt the
decision logic of the DSS as a (sequential) composition of “function blocks” with predetermined
inputs and outputs. The explicit documentation of decision logic as a composition of function
blocks addresses R2 – Process Orientation, R5 – Collaboration, and R4.1 – Abstraction.
However, the description of the function block format by Wang [Wan08] suggests a limited
R4.2 – Learnability by non-programmers due to the resemblance of function blocks to gates
in electrical engineering and a proprietary syntax for implementing function block behavior
decreasing R3.1 – Reusability. Also, R4.3 – Error Prevention is not provided. Derivation
of function blocks following an existing standard fulfills R5.1 – Common Terminology
and R5.3 – Experience Sharing to some extent, but only concerning domain-independent
terminology and expectedly slow propagation of experience as updating a standard takes time.
Cross-organizational sharing of function blocks to address R5.2 – Artifact Sharing is not
discussed. The approach is only applicable to the domain of shop-floor management, thereby
not addressing R7 – Domain-Portability.

Maturana, Ferrer, and Barañao [MFB04] describe a DSS generator that automatically
generates an optimization-based DSS consisting of a database, solver and GUI from a model
specification. As evident from the differentiation between the roles of “implementor” for the
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person using the DSS generator and “user” for the person using the DSS, the DSS generator is
not targeted towards decision makers but decision analysts who are familiar with SML [Geo92],
a language to describe structured models in the domain of operations research used for DSS
generation. Consequently, the approach only partially fulfills requirement R4 – Suitability for
Non-Programmers. Error prevention in the form of validation is provided, but it is unclear
whether the validation also considers the semantic correctness of the SML specification or only
syntactical correctness. Requirement R3 – Variety is not fulfilled as there is no repository for
models and/or solvers. Since the approach only supports a single decision-making task, R2 –
Process Orientation and R6 – Compliance are not addressed. Requirement R5 – Collaboration
is not mentioned, but R7 – Domain-Portability is fulfilled.

Paranagama, Burstein, and Arnott [PBA98] describe a framework to implement DSS
generators for senior managers and its prototypical implementation ADAPTOR. The approach
is specifically designed to support multiple users and maintains user profiles for them to supply
criteria preferences for future model selections from a model base. In doing so, it is one of
the few reviewed approaches that support R5.3 – Experience Sharing, albeit only partially as
sharing novel decision support requirements is not explicitly supported. Other aspects of R5 –
Collaboration are not considered. Since only a single model is selected and configured from the
model base, R2.2 – Navigation and R6 – Compliance are not addressed. The model base only
supports models for multi-criteria decision making, which limits R3.1 – Reusability and R3.2 –
Extensibility. The approach fundamentally addresses R4 – Suitability for Non-Programmers
due to model selection and configuration via a graphical user interface. The user profiles allow
warnings in case of (assumed) model misconfiguration, but the wrong model selection is not
considered, therefore only partially implementing R4.3 – Error Prevention. The approach can
be applied in multiple domains, consequently R7 – Domain-Portability is provided.

Savić, Bicik, and Morley [SBM11] describe a DSS generator based on Microsoft Excel
spreadsheets to encourage the participation of decision makers during (prototypical) DSS
development to improve DSS adoption and performance. Since each spreadsheet only supports
a single decision support task, R2 – Process Orientation and R6 – Compliance are not
supported. Although multiple spreadsheets can be defined, thereby partially addressing R2.1 –
Modularity, each spreadsheet results in a separate DSS contrary to R2.3 – Unified Execution
Environment. The spreadsheet-based user interface of the approach fulfills R4 – Suitability
for Non-Programmers, but R4.3 – Error Prevention is not described in the paper. A repository
supporting R3.3 – Discoverability for available spreadsheets is not discussed, but (existing)
decision support functionality can be integrated via Visual Basic scripts for R3.1 – Reusability
and R3.2 – Extensibility. Requirement R5 – Collaboration is not addressed. The approach is
advertised as “general purpose” which fulfills R7 – Domain-Portability.
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Weller et al. [Wel+15] describe a DSS generator that composes decision support function-
ality (encapsulated in so-called “cognitive apps” with RESTful APIs) into a single medical
decision support system. A composition of multiple cognitive apps is referred to as a “use
case app” that is utilized by decision makers for corresponding the decision making tasks. The
composition of cognitive apps into use case apps addresses R2 – Process Orientation and R3.2
– Extensibility. The composition of cognitive apps is based on Data-Fu [Sta+13], a declarative,
rule-based execution language based on linked data and state transitions of resources. This
addresses R4.1 – Abstraction, although Data-Fu is targeted at programmers who are able
to express linked data using the Resource Description Framework (RDF), therefore R4.2 –
Learnability is not given. R4.3 – Error Prevention is neither mentioned for Data-Fu nor the
overall approach. The RESTful APIs of cognitive apps support R3.1 – Reusability, assuming a
wrapper that converts the linked data provided to the cognitive app into a format suitable for the
encapsulated legacy application is possible. A repository listing all available cognitive apps is
not mentioned, which hinders R3.3 – Discoverability. The use of linked data establishes R5.1
– Common Terminology, although further collaboration aspects are not mentioned. The use
case apps address R6.2 – Determinism, however, there is no indication that the underlying
composition of cognitive apps is communicated to the user to address R6.1 – Transparency.
The approach furthermore does not fulfill R7 – Domain-Portability as it is targeted towards
the development of medical DSS (cf. the authors’ explanation of the data tier).

High-Level Evaluation of DSS Generator Approaches

Some DSSG approaches identified throughout the literature review were excluded from the
detailed evaluation as they significantly differ from the goal of this thesis, or because they
do not provide sufficient explanations for an adequate evaluation concerning the previously
established requirements. These approaches are subsequently summarized for completeness.

Bhargava, Sridhar, and Herrick [BSH99] evaluate eleven DSS generators and conclude
that all DSS generators are meant to be used by DSS developers and not decision makers.
This is in contradiction with the second challenge described throughout the problem statement
in Section 1.3. Consequently, the mentioned approaches were not further considered.

Janson, Douglas Smith, and Dattero [JDD90] similarly draw a clear distinction between
the roles of DSS builders and DSS users in the context of DSS generators. They present insights
to improve the communication between those roles to increase the success of requirements
elicitation for and implementation of a DSS.

Chen, Zhou, and Hu [CZH02] describe a DSS generator for group decision support
systems that was already partially discussed in the previous section due to the adaptive com-
ponent of the generated DSSs. The generator itself only seems to consider different consensus
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Table 3.2: Evaluation of DSS generator approaches with respect to the requirements of Section 3.1

Requirement [A
SP10

]

[D
N03

]

[D
L01

]

[Fie9
9]

[H
ol+

14
]

[M
FB04

]

[PBA98
]

[SBM11
]

[W
el+

15
]

R1 – Situativity ( : addressed by all approaches, see explanations )
R2 – Process Orientation

R2.1 – Modularity
R2.2 – Navigation
R2.3 – Unified Exec. Env.

R3 – Variety
R3.1 – Reusability
R3.2 – Extensibility
R3.3 – Discoverability

R4 – Suitability
R4.1 – Abstraction
R4.2 – Learnability
R4.3 – Error Prevention

R5 – Collaboration
R5.1 – Common Terminology
R5.2 – Artifact Sharing
R5.3 – Experience Sharing
R5.4 – Organizational Scalability

R6 – Compliance
R6.1 – Transparency
R6.2 – Determinism

R7 – Domain-Portability

: addressed, : partially addressed, : not addressed

mechanisms (cf. “Group Appraisement Method Base (GAMB)”) without consideration of
selecting other decision support functionality.

Liang and Jia [LJ14] present a DSS generator framework with a focus on real-time
decision making in a big data context. As their explanations are very focused on the technical
implementation aspects of the approach, a detailed evaluation of the approach cannot be
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performed without significant uncertainty. Nevertheless, the authors highlight the advantages
of using a DSS Generator over manual DSS development throughout their demonstration.

Rico et al. [Ric+97] describe the concept for a DSS generator that provides the basis for
the generator’s modules described by Ramos et al. [Ram+98], Castro et al. [Cas+98], Rossi
et al. [Ros+98], and Caliusco et al. [Cal+98]. However, the explanations largely focus on the
domain-specific aspects of the approach for industrial companies and do not support sufficient
technical depth to evaluate the approach with respect to the established requirements.

Saxena and Kaul [SK86] conceptually describe a DSS generator, albeit a short description
of a prototypical implementation using the concept is also provided. However, due to the
brevity of the prototype’s description and the outdated technologies, an in-depth evaluation of
the approach with respect to the established requirements is not possible.

Yeo and Nah [YN92] develop their DSS generator in the context of a computerized
management game contrary to this thesis, which aims to improve real-world decision making.

3.3.3 Service-Oriented DSS

A service-oriented DSS (SO-DSS) is any DSS that utilizes a service-oriented architecture (cf.
Section 3.2.1). Reusable decision support artifacts are provided in the form of loosely-coupled
services that can be composed to provide decision support for a specific decision-making task.

A motivation for using a service-oriented DSS mentioned is the flexibility provided by com-
posing services for adapting to dynamic business environments (cf. [DD13a; DS13; MKP21]).
Service composition furthermore has the potential to reduce development complexity, which
in the case of automated service composition can even enable decision makers to develop a
DSS (cf. [MKP21]). In a distributed SOA, additional benefits are multi-enterprise integration
of data and decision support functionality [DS13; YSL08], high-availability [YSL08] and
efficient use of computational resources in a big data context [DD13b].

Detailed Evaluation of Service-Oriented DSSs

This subsection explains the evaluation results for SO-DSS approaches summarized in Table 3.3
with respect to the requirements Rx presented in Section 3.1.

Becker et al. [Bec+08] describe Plato, a service-oriented DSS for preservation planning.
Based on requirements entered via a web interface, a preservation planning process is
automatically assembled from loosely coupled services. The requirements capture R1.1 –
Situational Decision Problems with respect to decision objectives, but not R1.2 – Situational
Resources or R1.3 – Situational Competences. The automated composition enables R4.1 –
Abstraction and R4.2 – Learnability, but R4.3 – Error Prevention is only partially addressed
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since the automated composition will likely prevent errors, but potential errors cannot be
corrected manually. The composition is executed with a BPEL-based workflow engine in
alignment with R2 – Process Orientation, albeit some external tools are executed outside
the DSS, thus only partially addressing R2.3 – Unified Execution Environment. Service-
Orientation enables R3 – Variety. Recurring planning situations are supported with reusable
patterns and templates stored in a knowledge base to support R5.3 – Experience Sharing.
The approach partially addresses R6 – Compliance since compositions are documented for
R6.1 – Transparency and can be saved for future use, which supports R6.2 – Determinism,
but only at the end of the process. R5 – Collaboration across organizational boundaries is
not mentioned. The approach is only applicable for preservation planning, consequently R7 –
Domain-Portability is not provided.

Dong and Srinivasan [DS13] provide an adaptation of a previous approach (Dong and
Loo [DL01] discussed as part of Section 3.3.2) with an additional focus on composing
distributed decision components to address decision makers’ individual requirements for
decision support. The approach describes a service-oriented environment where distributed
decision components (models, solvers, visualizations, and data) are coordinated using software
agents. The authors improve on the previous version of their approach in the following ways:
R4 – Suitability for Non-Programmers is improved by providing a graphical user interface for
service composition for R4.1 – Abstraction and R4.2 – Learnability. However, the explicit
mention of validation responsible for R4.3 – Error Prevention in the previous approach is
missing. Manual composition enables R6 – Compliance. R5 – Collaboration is improved by
providing an ontology to enable R5.1 – Common Terminology and a distributed, agent-based
computation model enables R5.4 – Organizational Scalability.

Shafiei, Sundaram, and Piramuthu [SSP12] describe a multi-enterprise collaborative
DSS that corresponds to a service-oriented DSS since DSS functionality is composed of
multiple web services across organizational boundaries. The approach uses BPEL [OAS07]
for invoking the different services, thereby addressing R2 – Process Orientation and R6 –
Compliance. A BPEL process is specified via a GUI that addresses R4.1 – Abstraction and
R4.2 – Learnability, but not R4.3 – Error Prevention as no validation is mentioned. The
manual composition of services addresses R1 – Situativity. R3 – Variety is addressed and
platform independence for services is specifically mentioned for R3.1 – Reusability, but
services still must fit the model-solver pattern. Albeit utilizing decision support functionality
from multiple organizations, R5.1 – Common Terminology is not considered. Also R5.3
– Experience Sharing is not supported for sharing decision support requirements and best
practices. The approach addresses R7 – Domain-Portability.

Axelsson et al. [Axe+17] describe a software ecosystem that provides decision support for
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system component selection. Using an ecosystem specifically focuses on R3 – Variety and R5
– Collaboration, fully addressing all of its sub-requirements except R5.3 – Experience Sharing
since previous decision cases can be shared among participants, but novel decision support
requirements cannot be shared. R4.3 – Error Prevention is also only performed for checking
the interoperability of newly added services with existing services, but not as part of service
composition. The approach supports the composition of multiple ecosystem services into
decision processes, thereby addressing R2 – Process Orientation, but there is no indication
that service composition can be done by decision makers or other domain experts to address
R4 – Suitability for Non-Programmers. There seems to be some recommendation for service
selection, but it only considers R1.1 – Situational Decision Problems. Decision processes
provide R6.2 – Determinism, but a sufficient explanation of decision processes to decision
makers for R6.1 – Transparency is not mentioned. R7 – Domain-Portability is not addressed
since the approach exclusively focuses on decision support for system component selection.

High-Level Evaluation of Service-Oriented DSSs

Some SO-DSS approaches identified throughout the literature review were excluded from the
detailed evaluation as they significantly differ from the goal of this thesis, or because they do
not provide sufficient explanations for an adequate evaluation with respect to the previously
established requirements. These approaches are subsequently summarized for completeness.

Demirkan and Delen [DD13b] motivate the need and requirements for SO-DSS, describe
the conceptual architecture of a SO-DSS, and define the concepts of data-as-a-service,
information-as-a-service, and analytics-as-a-service in combination with future research
directions. Since the authors focus on conceptual explanations, the paper does not provide
enough technical detail for an evaluation with respect to the requirements established in
Section 3.1. The authors provide additional (conceptual) background information in [DD13a].

Yang and Calmet [YC06] describe a service-oriented DSS that is built upon an ontology-
driven uncertainty model. While the explanation of the approach has certain characteristics
that align with the requirements established for this thesis, e.g., platform independence for
services providing decision support functionality, the provided information is ultimately too
superficial for a detailed evaluation with respect to the solution requirements, in particular
regarding R4 – Suitability for Non-Programmers and R6 – Compliance.

Ye, Song, and Li [YSL08] describe the service-oriented architecture of a DSS for crisis
management and its implementation using the WS-* technologies discussed in Section 3.2.1.
However, since the authors’ motivation for choosing a SOA is primarily influenced by high
availability of decision support functionality during a crisis, the adaptivity of the system is
limited for non-developers (or at least not sufficiently discussed throughout the publication).
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Table 3.3: Evaluation of SO-DSS approaches with respect to the requirements of Section 3.1

Requirement [B
ec+

08
]

[D
S13

]

[M
KP21

]

[SSP12
]

[A
xe+

17
]

R1 – Situativity
R1.1 – Situational Decision Problems
R1.2 – Situational Resources
R1.3 – Situational Competences

R2 – Process Orientation
R2.1 – Modularity
R2.2 – Navigation
R2.3 – Unified Execution Environment

R3 – Variety
R3.1 – Reusability
R3.2 – Extensibility
R3.3 – Discoverability

R4 – Suitability for Non-Programmers
R4.1 – Abstraction
R4.2 – Learnability
R4.3 – Error Prevention

R5 – Collaboration
R5.1 – Common Terminology
R5.2 – Artifact Sharing
R5.3 – Experience Sharing
R5.4 – Organizational Scalability

R6 – Compliance
R6.1 – Transparency
R6.2 – Determinism

R7 – Domain-Portability

: addressed, : partially addressed, : not addressed

Stănescu, Ştefan, and Filip [SŞF15] describe a DSS for renewable energy providers
where decision makers can integrate additional data sources not considered by developers at
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design time. However, the paper does not indicate if and how decision support functionality
can be customized by end users, therefore R1 – Situativity is assumed to be unfulfilled.

3.3.4 Distantly Related Research Areas and Approaches

This section explains additional research areas that initially seem related to the goal of
providing decision makers with tailored decision support systems. However, upon closer
examination, these research areas do not sufficiently address the challenges of Section 1.3.

Collaborative and Group Decision Support Systems A collaborative DSS assists with
collaborative decision making where multiple participants must agree on a decision despite
having potentially conflicting objectives (cf. [Zar13]). The focus of a collaborative DSS is
therefore on establishing a consensus between participants of the decision process and not
a recombination of distributed decision support functionality or an advancement thereof.
This fundamentally also holds for a group DSS, despite the focus potentially being more on
cooperation compared to competition in the context of a collaborative DSS [Gra87; Zar13].

Intelligent and Web-Based Decision Support Systems An intelligent DSS (IDSS) is a DSS
that utilizes some form of artificial intelligence technique during the computation of a decision
recommendation (cf. [Phi13]). Holsapple et al. [Hol+08] point out that not every intelligent
DSS is able to adapt to the requirements for decision support of an individual decision maker.
Since the research of IDSS approaches is rather broad and the discussion of adaptive decision
support systems in Section 3.3.1 already includes multiple approaches that use AI to address
certain situational factors in decision making, no further IDSS approaches are evaluated.

Similarly, web-based decision support systems are not further evaluated. A web-based DSS
is accessible to decision makers via a web browser (cf. [DL01]). However, similar to the use
of AI in an intelligent DSS, using is a technical choice to implement (part of) a DSS and does
not guarantee adaptivity to account for different decision support requirements of decision
makers. Instead, a web-based DSS is primarily used to reach a wider audience [ZSJ08].

Model Management Systems A model management system (MMS) is part of a (model-
driven) DSS to store and manipulate decision-making models. These models are subsequently
instantiated with data for a concrete decision-making task and provided to a solver to obtain a
decision recommendation (cf. [ED13]). Some approaches such as those proposed by El-Gayar
and Deokar [ED13] and Stapel [Sta16] consider ontology-based concepts to enable distributed
model management across organizational boundaries or model recombination. However, since
an MMS is only part of a DSS and requires additional components for data management,
solvers, and visualization that may also be subject to the situational factors of decision making,
standalone MMS approaches are not evaluated.
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Business Intelligence and Analytics Business intelligence and/or business analytics (re-
ferred to as BIA in combination) refer to methods and their software implementations that
enable the collection, integration, transformation, and analysis of data [LCC13]. Delen and
Demirkan [DD13a] present a taxonomy of business analytics that categorizes BIA approaches
from descriptive (“What happened?”) over predictive (“What will happen?”) to prescriptive
(“What should be done?”). Since decision support ultimately only aligns with the last level of
prescriptive analytics and the explanations of Lim, Chen, and Chen [LCC13] suggest a focus
of BIA on analyzing existing data (as opposed to the generation of new data that may also be
part of a DSS, e.g., as part of a simulation for energy distribution network planning), BIA
approaches are not extensively evaluated.

Decision Model and Notation (DMN) The Decision Model and Notation (DMN) aims to
“provide the constructs that are needed to model decisions” [Obj21]. DMN is often used in
conjunction with the Business Process Model and Notation (BPMN) [Obj13] to describe how
decision tasks within a business process are implemented. Decision logic is specified such
that it can be automatically executed, either based on a structured description of business
rules or using decision services that are equivalent to the execution of a function with decision
logic as provided by a web service. However, as previously described, decision support is not
only characterized by decision logic but also by data generation in the form of simulation or
visualization-based data analysis. Although this could in theory be implemented outside DMN
with other business process tasks, the limitations of general-purpose process modeling for the
development of tailored decision support systems have already been discussed in Section 1.4
in the context of low-code development.

Situational Method Engineering Similar to decision processes, the effectiveness and
efficiency of software development processes are influenced by situational factors originating
from the context of a specific development project or the encompassing organization. The
goal of situational method engineering (SME) is the creation of situation-specific software
development processes, potentially by assembling existing fragments with accompanying
tools support from a repository [FE16]. However, SME focuses on the design of software
development processes and not decision (support) processes. Only recently, Gottschalk [Got22]
applied SME concepts to decision support for business model development.

3.4 Key Takeaways

The requirements presented in Section 3.1 call for an approach to tailored DSS development
that considers the situational factors of decision making using a modular, process-oriented
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approach suitable for non-programmers. A prerequisite for a tailored DSS is a sufficient
variety of reusable decision support functionality that is potentially obtained and extended
across multiple organizations in a collaborative fashion utilizing shared experience. Although
assistance during the development of a tailored DSS is desirable for error prevention, the
development approach must still be transparent and deterministic for compliance and should
work across multiple application domains. The subsequent evaluation of approaches presented
in Section 3.3 with a focus on adaptive and service-oriented decision support systems as well
as DSS generators shows that existing work only partially addresses these requirements.

As evident from Table 3.1, all ADSS approaches only consider a subset of situational
factors as part of R1 – Situativity. Their automated adaptivity is often an advantage for
unstructured decision problems (cf. Section 2.2) where the decision process is not completely
known upfront and is discovered with the help of the ADSS. However, this dynamism fails
to address R2.2 – Navigation and R6 – Compliance in particular. Furthermore, none of the
reviewed ADSS approaches consider R5 – Collaboration, which may in part be attributed to
the comparatively early publication date of the papers.

The evaluation of DSS generators summarized in Table 3.2 significantly deviates from the
ADSS approaches since R1 – Situativity is addressed for every approach. This is assumed
since there is a human implementor using the DSSG who should be able to interpret the
situational factors of the decision maker the DSS is generated for. However, not every approach
considers the implementor’s role to be assumed by decision makers and instead requires a
specific data analysis or technical skillset, thus R4 – Suitability for Non-Programmers is not
always addressed. Furthermore, R5 – Collaboration is only very sparsely addressed.

As indicated by Table 3.3, SO-DSS approaches usually address most of the requirements
of Section 3.1. Compared to the previous two research areas, they can significantly improve
with respect to R5 – Collaboration and R3 – Variety. Nevertheless, the approaches either target
developers and do not address R4 – Suitability for Non-Programmers, or they use automated
service composition with shortcomings regarding R6 – Compliance. Furthermore, they
(partially) fail to address R4.3 – Error Prevention and sub-requirements of R1 – Situativity.

In conclusion, there is a research gap for an approach that addresses all established
requirements for tailored DSS development. The previous summary suggests the use of a
service-oriented DSS generator to combine the respective benefits regarding R1 – Situativity,
R3 – Variety, and R5 – Collaboration with the potential to address R4 – Suitability for
Non-Programmers. In addition to addressing all other requirements, a special focus should
be given to R4.3 – Error Prevention, R5.3 – Experience Sharing, and R6.1 – Transparency,
which is often not or only partially addressed.
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CHAPTER 4
Decision Support Ecosystems

This chapter introduces the concept of a decision support ecosystem to address the previously
presented requirements and research gap for tailored DSS development. The chapter discusses
the benefits of the concept for providing each decision maker with a tailored DSS and
focuses on initial design recommendations to guide the implementation of a decision support
ecosystem. The presented insights extend the paper “Decision Support Ecosystems: Definition
and Platform Architecture” by Kirchhoff, Weskamp, and Engels [KWE22a].

The chapter first introduces the related concept of a digital business ecosystem (Section 4.1).
It serves as a foundation for the subsequent definition of a decision support ecosystem and the
discussion of its expected benefits in addressing the challenges of tailored DSS development
(Section 4.2). Next, five design principles are presented to guide implementors during the
realization of a decision support ecosystem for a specific application domain (Section 4.3).
The design principles are refined into characteristics of a decision support ecosystem such
as actor roles and lifecycle activities (Section 4.4), which are ultimately aggregated into a
reference architecture for the shared platform of a decision support ecosystem (Section 4.5).
The insights presented in the chapter are correlated to the upcoming chapters explaining one
approach for the technical implementation of the reference architecture (Section 4.6).

4.1 Background: Digital Business Ecosystems

This section describes the concept of a digital business ecosystem as a foundation for the
introduction of the decision support ecosystem concept in the upcoming section. The (digital
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business) ecosystem concept is defined (Section 4.1.1) and its primary characteristics are
discussed (Section 4.1.2). Two sub-categories of digital business ecosystems are presented
(Section 4.1.3) and the benefits of digital business ecosystem are summarized (Section 4.1.4).

4.1.1 Definition of Digital Business Ecosystems

Inspired by biological ecosystems, the ecosystem metaphor refers to “multiple and varying
interrelationships between many actors and infrastructure that contribute to [the creation of] a
resource (e.g., business, service or software)” [OL18]. The ecosystem metaphor has been used
in different disciplines, for example, to describe business and digital ecosystems [SLE19], or
human, social, and commercial ecosystems [Bos09]. The remainder of this section focuses
on the concept of a digital business ecosystem since it is the most common ecosystem
variant [LBB12], has been applied in many disciplines on practical as well as academic
level [SLE19], and aligns with the overall focus of the thesis. Based on a literature review,
Senyo, Liu, and Effah define a digital business ecosystem (DBE) as “a socio-technical
environment of individuals, organisations and digital technologies with collaborative and
competitive relationships to co-create value through shared digital platforms” [SLE19]. In the
definition, value refers to any “financial or non-financial benefit” [SLE19], e.g., a service fee
or need satisfaction respectively [Man16].

4.1.2 Characteristics of Digital Business Ecosystems

Oliveira and Lóscio [OL18] and Senyo, Liu, and Effah [SLE19] describe similar characteristics
for digital business ecosystems that expand on the concept’s definition in the previous
Section 4.1.1. The characteristics are visually summarized in Fig. 4.1 and subsequently
explained in more detail.

Symbiosis of Networked Actors

A digital business ecosystem contains multiple actors, i.e., individuals and organizations,
with cooperative and competing relationships across organizational boundaries [SLE19]. As
indicated by Fig. 4.1, these actors can be grouped into roles where each actor can potentially
assume multiple roles [Man16]. The roles chosen in the figure are based on the descriptions
of Karl et al. [Kar+20] and Schwichtenberg and Engels [SE20]. The platform provider
contributes and maintains the shared digital platform where a service provider publishes
available ecosystem services. These ecosystem services can range from reusable software
components [Bos09] to activities that are not supported by software [OL18], e.g, consulting
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Figure 4.1: Overview of a digital business ecosystem

services1. A subset of available services is then recombined by a service broker into a
product, i.e., a material good or an immaterial (software-unrelated) service offering, to meet
the demands of an end user. This separation of concerns between roles creates a network of
(implicit) dependencies between actors [SLE19], e.g., the end user depends on the service
broker for demand satisfaction, and the service broker depends on the services contributed by
service providers for product development. Service providers and service brokers in particular
depend on the shared digital platform of the platform provider. All actors participating
in an ecosystem can provide technical and non-technical contributions [Man16], e.g., the
platform provider can contribute infrastructure for the shared digital platform as well as human
resources for platform governance. It is assumed that the sum of actors’ contributions creates
greater value than what would be achievable for a single organization on its own [SLE19].

Shared Digital Platform

The shared digital platform of a digital business ecosystem is the technical infrastructure to
find and connect ecosystem services [LBB12] via supported information and communication
technologies [SLE19]. While the shared digital platform exhibits parallels to the concept of
a service-oriented architecture discussed in Section 3.2.1, the platform supersedes a SOA
by supporting software-unrelated service offerings and by putting a special emphasis on the
cross-organizational relationships between ecosystem participants [LBB12]. In other words,

1 The meaning of “service” in the context of a digital business ecosystem that also includes software-unrelated
service offerings can vary from the meaning of “service” in a service-oriented architecture (cf. Section 3.2.1),
which always refers to a software artifact. For this reason, the term “ecosystem service” will be used to
include all types of service offerings in contrast to a “software service” of a SOA.
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the shared digital platform consists of tools and service offerings that actors participating in a
digital business ecosystem can use to collaboratively create value (cf. [SLE19]).

Self-Organized (Co-)Evolution

Changes within the surrounding business environment as well as changes within the digital
business ecosystem, e.g., changing relationships between ecosystem participants, can lead
to new business opportunities or business threats [SLE19; OL18]. These changes require
ecosystem participants to adapt and evolve. This evolution occurs mostly self-organized as the
aforementioned symbiosis between ecosystem participants and the associated dependency
network between actors result in the adaptation of one actor triggering the adaptation of
dependent actors [SLE19]. For example, when a service provider changes an ecosystem
service, all end users who use a product that integrates this service are affected by this change.
This results in co-evolution, i.e., the collective and virtually simultaneous evolution of all
ecosystem participants [SLE19]. Self-organization is further promoted by enabling interaction
or feedback between ecosystem participants through the shared digital platform [OL18].

4.1.3 Types of Digital Business Ecosystems

Oliveira and Lóscio [OL18] summarize different types of digital business ecosystems that can
be distinguished based on the types of ecosystem services exchanged via the shared digital
platform and the types of products that are developed from these ecosystem services and
provided to end users. Figure 4.2 shows popular variants of digital business ecosystems that
are subsequently explained in more detail.

Software Ecosystem In a software ecosystem, the main contributions of ecosystem
participants are software components or software services to support business activities.
Bosch [Bos09] describes a software ecosystem as an advancement of a software product line
that spans across organizational boundaries to further address the mass-customization need of

Digital Business Ecosystems

Software
Ecosystems

Data
Ecosystems

Figure 4.2: Types of Digital Business Ecosystems
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end users, potentially using end-user development. The Salesforce platform2 is an example of
a cloud-based software ecosystem for customer relationship management. [Bos09]

Data Ecosystem In a data ecosystem, the main contribution of ecosystem participants is
data, but ecosystem services can furthermore encompass related technologies such as software
services or infrastructure. The goal of a data ecosystem is the delivery of intelligence to
industry, academia, and governments. An example of a data ecosystem is GovData3, the open
data portal of Germany. [OL18]

Hybrid Ecosystems As explained by Oliveira and Lóscio [OL18] and indicated in Fig. 4.2,
a clear distinction between ecosystem variants is not always possible. As evident from the
previous introduction of data ecosystems, a data ecosystem can also include the exchange of
data-related software, thereby potentially encompassing a software ecosystem. Analogously, a
software ecosystem does not necessarily exclude the exchange of related data to be consumed
with exchanged software components and services. As a result, hybrid ecosystems that
cover multiple variants of digital business ecosystems are possible. However, due to the
heterogeneity of potential contributions by ecosystem participants, the complexity in the
design and development of such hybrid ecosystems increases.

4.1.4 Benefits of Digital Business Ecosystems

The previously presented ecosystem characteristics support the explanation of three benefits
associated with ecosystem usage that are published in academic literature.

Mass Customization [Bos09] A digital business ecosystem can enable mass customization.
Ecosystem services provided by additional actors outside of an organization provide service
brokers with more alternatives to address the product requirements of end users. The promotion
and discovery of alternatives are furthermore facilitated via the shared digital platform of
the ecosystem. Thus, digital business ecosystems support the development of effective
applications. Depending on the design of the ecosystem, end users can potentially develop
customized products themselves using an end-user development approach (cf. Section 3.2.2).

Efficient Development [SLE19] The utilization and recombination of existing ecosystem
services contributed by service providers via the shared digital platform enable service brokers
to achieve lower development costs and faster time-to-market (cf. [MP14]). This increases
development efficiency considering development time and spending. Efficient development is
also an enabler of the aforementioned mass customization. Analogous to previous explanations,

2 Website: https://www.salesforce.com/eu/
3 Website: https://www.govdata.de/

https://www.salesforce.com/eu/
https://www.govdata.de/
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efficiency is maximized when the ecosystem (or more specifically, the underlying shared
digital platform) supports end-user development.

Accelerated Innovation [OL18; Bos09] An ecosystem achieves accelerated innovation in
multiple ways: First, innovators among actors participating in a network contribute novel
ecosystem services or ideas for service integration. Due to the symbiosis and network
character of ecosystems enabled by the shared digital platform, these innovations spread
across ecosystem participants. The accompanying co-evolution furthermore ensures that
all ecosystem participants benefit from innovations. The collaboration between ecosystem
participants also enables a shared cost of innovation, which in turn achieves the retention of
funds that can be spent on research and development of further innovations.

4.2 Towards Decision Support Ecosystems

This section translates the characteristics and benefits of digital business ecosystems presented
in the previous section to the domain of tailored DSS development. For this purpose, the
section provides an initial definition for a decision support ecosystem (Section 4.2.1), explains
how a decision support ecosystem can potentially address the challenges for tailored DSS
development motivated at the beginning of the thesis (Section 4.2.2), and presents a challenge
that prevents the immediate implementation of a decision support ecosystem (Section 4.2.3).

4.2.1 Definition and Categorization of a DSE

The definition of a digital business ecosystem in Section 4.1.1 referred to the co-creation of
value as the central goal of a digital business ecosystem. As motivated in Chapter 1, this thesis
focuses primarily on the value of efficiently developing a tailored DSS to effectively address
the individual requirements for decision support of a decision maker. Thus, in consideration of
the previous definition of digital business ecosystems and the discussion of their characteristics
and benefits, an initial definition for the decision support ecosystem is formulated as follows:

Decision Support Ecosystem – Conceptual Definition

A decision support ecosystem (DSE) is an evolving socio-technical network of
individuals and organizations with collaborative and competitive relationships
who provide technical and non-technical contributions for the efficient and effective
co-development of tailored decision support systems via a shared digital platform.

In alignment with previous ecosystem definitions and characteristics, the above definition
of a decision support ecosystem provides a conceptual view of the DSE concept, hence it is
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labeled as a “conceptual definition”. A refined definition based on subsequently explained
design choices for the implementation of a DSE will be discussed at the end of the chapter.

The technical contributions of DSE participants can already be summarized as software
for data analysis (i.e., for data transformation, simulation, optimization, and visualization),
data to run analyses with, and infrastructure to run analyses on. Considering the variants of
digital business ecosystems discussed in Section 4.1.3, i.e., software ecosystems and data
ecosystems, a decision support ecosystem can therefore be classified as a hybrid ecosystem in
the overlapping space between software and data ecosystems (cf. Fig. 4.3).

Digital Business Ecosystems

Software
Ecosystems

Data
Ecosystems

Decision
Support

Ecosystems

Figure 4.3: Categorization of Decision Support Ecosystems

4.2.2 Relation to the Challenges of Tailored DSS Development

The motivation behind the use of an ecosystem approach for tailored DSS development lies in
the alignment of previously presented ecosystem characteristics and benefits with the three
challenges for tailored DSS development presented in Section 1.3. By closely aligning the
definition of a decision support ecosystem with the definition of a digital business ecosystem
in the previous subsection, a DSE can be expected to address the challenges of tailored DSS
development with similar characteristics and benefits:

Challenge 1 – Lack of Customization is immediately addressed with the mass customization
benefit of (digital business) ecosystems. By establishing a cross-organizational network of
actors, the availability of decision analysis functionality and other artifacts available for
integration into a tailored DSS is increased. The shared digital platform furthermore facilitates
the discovery of decision support functionality and artifacts. As a result, the number of
decision processes and associated individual requirements for decision support that can be
supported with a tailored DSS is significantly increased, and consequently, the efficiency and
effectiveness of decision making is increased as well.

Challenge 2 – Lack of Independency is (partially) addressed by the introduction of
the service broker as an intermediate role between service providers (e.g., traditional DSS
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developers who develop decision analysis functionality), and end users (e.g., decision makers
who utilize the decision support functionality). This introduces a separation of concerns that
allows developers to focus on the development of decision support functionality while the
dedicated service brokers can focus on the interaction with decision makers and composition
of ecosystem services, thereby potentially improving the communication between stakeholders
and consequently efficiency and effectiveness of tailored DSS development. However, to
fully address Challenge 2 – Lack of Independency and the associated shortage of trained
programmers, the composition of services should be possible without programming skills,
potentially even by decision makers themselves in the sense of end-user development. The
support for such a development by non-programmers largely depends on the technical
implementation of the shared digital platform.

Challenge 3 – Lack of Coordination is addressed by the socio-technical network that
is established between ecosystem participants based on the shared digital platform. The
platform allows ecosystem participants to interact and exchange feedback, e.g., regarding
provided decision support functionality or data, which results in improvements of ecosystem
services and consequently accelerated innovation. As a result, decision makers profit from
the integration of proven as well as innovative ecosystem services in their tailored DSS.
The socio-technical network between ecosystem participants and associated symbiosis also
enables a self-organizing co-evolution such that ecosystem participants can profit from regular
updates to their tailored DSS in case of available innovations to guarantee decision-making
effectiveness and efficiency over time.

4.2.3 Complexity of DSE Implementation

The previous subsection explains the potential of an ecosystem approach to address the
challenges of tailored DSS development presented in Chapter 1. Throughout the discussion
of (expected) ecosystem benefits, the shared digital platform in particular has emerged as
a fundamental necessity to address all three challenges of tailored DSS development as it
enables the integration of ecosystem services and facilitates the symbiosis of ecosystem
participants. However, the conceptual explanations so far provide only limited guidance for
implementors to establish a decision support ecosystem by implementing its shared digital
platform. In addition to an absence of technical implementation details, the DSE definition
leaves antecedent questions unanswered that influence platform design, e.g., Which stakeholder
roles participate in a decision support ecosystem, and what are (potential) relationships
between roles?, Which activities are performed by stakeholder roles?, and What kind of
services and other contributions are brought into the ecosystem by stakeholders?.
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Because the shared digital platform is essential to the success of any ecosystem, there
is a danger of being unable to achieve the previously discussed benefits for tailored DSS
development with a decision support ecosystem due to poor design decisions when developing
the shared DSE platform. Implementors working on the realization of a DSE should therefore
be provided with guidelines that assist them in the implementation of a DSE platform.
Unfortunately, such validated guidelines, e.g., in the form of a reference architecture, are even
largely unavailable for the older and more established concept of digital business ecosystems
(cf. [SLE19; LBB12; OBF19]). Therefore, the remainder of this chapter and subsequent
chapters provide conceptual and practical insights on the implementation of the shared digital
platform of a decision support ecosystem.

4.3 DSE Design Principles

Design principles describe “fundamental propositions that aid designers in achieving a
successful transfer of requirements to design” [MGO20]. Consequently, DSE design principles
provide implementors with guidelines to implement the shared digital platform of a decision
support ecosystem and subsequently achieve the benefits of the DSE concept for tailored
DSS development discussed in the previous section. Since design principles are fundamental
design propositions, the five design principles presented in this section can be viewed as a
conceptual framework for more detailed (architectural and technical) explanations throughout
the upcoming sections and chapters. Considering the approaches for design principle derivation
summarized by Möller, Guggenberger, and Otto [MGO20], the subsequently presented design
principles are derived as a response to the solution requirements for tailored DSS development
motivated in Section 3.1 while considering the advantages and disadvantages of related
approaches discussed in Section 3.3.

Table 4.1 documents the relationship between the subsequently explained design principles
and the requirements for tailored DSS development of Section 3.1. In the table, a filled
circle represents the expected fulfillment of a requirement by a design principle, while a
partially filled circle represents that a design principle is expected to support the fulfillment
of a requirement but cannot fully address it on its own. An empty circle represents that the
influence of a design principle is dependent on a specific technical implementation and cannot
be determined on a conceptual level. The last column indicates that the aggregation of all
design principles into the holistic DSE concept is expected to address all solution requirements.
Nevertheless, the subsequent explanation of relations between design principles and solution
requirements is only argumentative at this point and details as well as the feasibility of the
design principles still need to be developed and validated throughout the thesis.
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Coverage

R1 – Situativity
R1.1 – Situational Decision Problems
R1.2 – Situational Resources
R1.3 – Situational Competences

R2 – Process Orientation
R2.1 – Modularity
R2.2 – Navigation
R2.3 – Unified Execution Environment

R3 – Variety
R3.1 – Reusability
R3.2 – Extensibility
R3.3 – Discoverability

R4 – Suitability for Non-Programmers
R4.1 – Abstraction
R4.2 – Learnability
R4.3 – Error Prevention

R5 – Collaboration
R5.1 – Common Terminology
R5.2 – Artifact Sharing
R5.3 – Experience Sharing
R5.4 – Organizational Scalability

R6 – Compliance
R6.1 – Transparency
R6.2 – Determinism

R7 – Domain-Portability

: addresses requirement, : supports addressing of requirement, : no contribution

Table 4.1: Mapping between design principles and requirements of Section 3.1
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Design Principle DP1 – Generation
The evaluation of existing approaches in Section 3.3 shows that DSS generators can consider
all situational factors summarized in R1 – Situativity. This is due to the fact that the selection
and composition of decision support artifacts are done by a human implementor who can
consider the holistic decision situation of a decision maker. On the contrary, automated
adaptation or composition of decision support artifacts is often limited to a subset of situational
factors. A DSS generator also addresses R2 – Process Orientation since it combines multiple
decision support artifacts (R2.1 – Modularity) into a holistic DSS (R2.3 – Unified Execution
Environment) that invokes and utilizes the artifacts in alignment with the decision process
of a decision maker (R2.2 – Navigation). The combination of decision support artifacts also
supports R5.2 – Artifact Sharing, but not necessarily across organizational boundaries. Aside
from innovations, the implementor using the DSS generator can also be expected to select the
same decision support artifacts for the same decision support requirements, thereby addressing
R6.2 – Determinism. The selections and reasons for selection can also be documented for
R6.1 – Transparency, however, potentially separate from the DSS itself.

Design Principle DP2 – Service-Orientation
The introduction of service-oriented architectures in Section 3.2.1 and evaluation of service-
oriented DSS approaches in Section 3.3 highlight the strength of these approaches to address
R3 – Variety. Potentially platform-dependent implementation details are hidden behind
public interfaces and accessed via platform-independent communication protocols based on
HTTP, thereby supporting the integration of already existing decision support artifacts (R3.1 –
Reusability). Service registries collecting descriptions of all available services support the
discovery of existing services (R3.3 – Discoverability) and the addition of new services (R3.2
– Extensibility). Since multiple interoperable services are usually combined into an executable
composition to achieve the desired functionality for a business process, service orientation
provides the foundation for R2.1 – Modularity and R2.2 – Navigation. With the goal to
promote reusability, service orientation (and specifically service registries) furthermore can
address R5.2 – Artifact Sharing and R5.4 – Organizational Scalability, although – as discussed
during Section 4.1.2 – the latter requires additional requirements such as R5.1 – Common
Terminology to be addressed for cross-organizational collaboration.

Design Principle DP3 – Model-Driven Development
Although not every model-driven approach is able to address R4 – Suitability for Non-
Programmers, the discussion of low-code development in Section 3.2.2 shows that it is
fundamentally possible to design model-driven approaches suitable for software development
of tailored applications by non-programmers. In particular, a suitable modeling approach is
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both human-readable for specifying DSS functionality (R4.2 – Learnability) and machine-
readable for generating an executable DSS software artifact (R4.1 – Abstraction). Learnability
is further increased by using a (familiar) graphical modeling notation. R4.3 – Error Prevention
can be partially addressed by validating models against the associated meta-model and by
using validated model-to-code transformations to guarantee the syntactical correctness of the
generated program code, but additional model verification on a semantic level usually requires
the separate implementation of model checking. Models can also serve as documentation
to address the shortcoming of DP1 – Generation for R6.1 – Transparency. This advantage
is even increased when model-driven development is combined with end-user development
since decision makers know the models they created and why. The underlying meta-model
for a specified model can provide a foundation for standardized information exchange (R5.1 –
Common Terminology), but not necessarily for domain-specific entities.

Design Principle DP4 – Assistance System
In the context of a DSS generator where multiple decision support artifacts are composed
together, a human implementor may accidentally introduce errors such as selecting artifacts
that are incompatible with each other or with the requirements for decision support of a
decision maker. An assistance system can support a human implementor in identifying and
avoiding such errors during DSS design, thereby improving effectiveness and efficiency during
DSS development (R4.3 – Error Prevention). By identifying and potentially even providing
corrections for syntactic and semantic errors, the assistance system may teach decision makers
how to avoid certain errors in the future, thereby improving R4.2 – Learnability. Since DP2 –
Service-Orientation suggests the existence of a service registry that documents all available
decision support artifacts, the assistance system could even simplify R3.3 – Discoverability
by highlighting those artifacts that best align with the requirements for decision support of a
decision maker. Lastly, the assistance system can also facilitate R5.3 – Experience Sharing if
the feedback provided by decision makers and other stakeholders can be incorporated into the
computation of suggestions by the assistance.

Design Principle DP5 – Knowledge Base
By documenting fundamental application domain knowledge in a knowledge base accessible
to all ecosystem participants, a shared understanding of the application domain entities, their
relations, and associated decision-making tasks is established (R5.1 – Common Terminology,
R5.4 – Organizational Scalability). In addition to this fundamental application domain knowl-
edge, participants can also contribute experience from previous tailored DSS development
projects to the knowledge base (R5.3 – Experience Sharing). This knowledge can be manually
accessed by DSS implementors, or as already discussed throughout DP4 – Assistance System,
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potentially be enforced automatically by the assistance system to avoid errors in the DSS design
(R4.3 – Error Prevention). By exchanging the knowledge base for other application domains,
it is possible to apply the DSE concept in multiple domains (R7 – Domain-Portability).

4.4 DSE Constituents

The remainder of this chapter focuses on the refinement of the previously presented design
principles into a reference architecture for the shared DSE platform to further assist stakeholders
in the implementation of a DSE. Before the reference architecture is presented in the next
section, this section provides background information to support the upcoming explanations
of the reference architecture. In particular, this section describes potential ecosystem services
provided within a DSE (Section 4.4.1), roles and their interactions within a DSE (Section 4.4.2),
and a lifecycle of activities throughout a DSE (Section 4.4.3).

4.4.1 Types of Decision Support Services

Based on the DSE definition in Section 4.2.1, participants of a DSE can provide any technical
and non-technical contribution that supports tailored DSS development. Consequently, an
ecosystem service in the context of a DSE is fundamentally any artifact or human activity
that supports the decision process of a decision maker. Certain types of ecosystem services
can be identified as visualized in Fig. 4.4. Fundamentally, a decision support service can
be a functional service providing any decision support functionality for the implementation
of an activity in the decision process using an input-processing-output (IPO) pattern, or a
data service providing data that is consumed by a functional service for the implementation
of a decision support activity. Functional services can further be refined into automated
services that require no further input from the decision maker to provide decision support,
and interactive services that require active involvement of the decision maker.

Examples of automated services for energy distribution network planning include a
power flow analysis algorithm or an optimization model for network topologies. These are
examples of a software-based service, which combines a software artifact and the associated
execution infrastructure. The combination is done in alignment with the reusability concept of
service-oriented architectures (cf. Section 3.2.1 and DP2 – Service-Orientation) as it makes
the combined service platform-independent and improves integration with other services.
Another example of an automated service is the offering of an agency to create multiple
scenarios forecasting the energy demands of consumers as an example for a delegated service.
Although the agency may internally require human effort to realize the offering, the service is
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Figure 4.4: Types of decision support services in a DSE

nevertheless automated from a decision maker’s point of view if no further input from the
decision maker is required during the execution of the activity.

An example of an interactive service is a service associated with a user interface where
decision makers can input their own assumptions about the development of customers’ energy
demands. This is an example for an integrated service, as the user interface should be included
in the tailored DSS. To account for decision support functionality provided by software
applications that are not yet available as an integrated service, the uncontrolled service is
provided as a fallback that describes how decision makers can use external tools for supporting
an activity in the decision process.

4.4.2 DSE Roles

This section describes six roles that participate in a DSE and are assumed by human actors.
The automated assistance system providing recommendations for the composition of decision
support services can also be viewed as an interactive actor. However, it does not contribute
novel artifacts or knowledge into the DSE but instead improves the quality of a tailored DSS
by enforcing existing knowledge. It is therefore not considered as an additional role. The
contributions of the human-actor roles in the context of a DSE as well as the relationships
between the roles are summarized in Fig. 4.5 and subsequently explained in detail.

Six DSE Roles

Since the responsibility of a platform provider, i.e., maintaining the ecosystem’s shared
digital platform, is virtually identical between a decision support ecosystem and a digital
business ecosystem (cf. Section 4.1), the role of the platform provider is not explained again.
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Figure 4.5: Overview of DSE roles and their interactions

For simplification, it is separated from the other roles in Fig. 4.5 to indicate that the role must
exchange artifacts, knowledge, and feedback with all other roles.

Decision Maker A decision maker is a person for whom a tailored DSS is developed. Each
decision maker has (partially) individual requirements for decision support that are influenced
by the decision situation of the decision maker and introduce the need for the development of a
tailored DSS. After using a specific tailored DSS, decision makers can evaluate the suitability
of the DSS with respect to their situational requirements for decision support and provide
corresponding feedback to other DSE participants.

Domain Expert A domain expert is a person with substantial knowledge of decision making
in a concrete application domain where a DSE is employed. This knowledge includes entities
of the application domain with their attributes and relationships as well as knowledge about
decision-making tasks including prerequisites of decision alternatives and decision criteria
with their susceptibility to influences of situational factors (cf. Section 2.2). The domain
knowledge of domain experts is fundamentally important for all other roles, however, Fig. 4.5
focuses on the most important interactions of domain experts with decision makers and service
providers for better clarity. The domain knowledge of domain experts helps decision makers
to identify and specify their requirements for decision support. Domain experts also need
to be informed about novel requirements of decision makers to account for changes in the
business environment. Analogously, the domain knowledge of domain experts helps service
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providers to specify the contributions of their existing decision support services and to identify
the demand for novel decision support services. Simultaneously, they need to inform domain
experts about novel services due to changes in the business environment.

Service Provider A decision support service provider (subsequently referred to as service
provider for brevity) contributes one or multiple decision support services encapsulating any
artifact or activity to support part of a (tailored) decision process. Considering the types
of decision support services discussed in the previous Section 4.4.1, the role of the service
provider could be further refined into data provider, software provider, infrastructure provider
etc., however, this distinction is not used throughout this thesis. While most services will be
used by the subsequently explained DSS engineer, service providers may also advertise data
services to decision makers. A service provider either identifies services based on existing
decision support capabilities or designs and develops services from scratch. The latter is
important to address novel requirements for decision support of decision makers due to changes
in the business environment. Identification of such changes requires a service provider to
monitor the application domain captured in the form of domain knowledge by domain experts.
The domain knowledge also facilitates the documentation of service characteristics in the form
of a service description to make the service accessible for composition into a tailored DSS.

DSS Engineer A DSS engineer models the composition of decision support services
contributed by service providers into a tailored DSS that is subsequently used by a decision
maker. In the case of end-user development, the role of the DSS engineer is assumed by the
decision maker and would not warrant a separate role. However, the role of the DSS engineer
could also be assumed by a data analyst or subject matter expert (cf. Section 2.2) without
programming skills but with an interest to provide a decision maker with a tailored DSS. For
the development of a tailored DSS, the DSS engineer needs to know about the requirements
for decision support of a decision maker, the available decision support services contributed
by service providers (with a focus on functional services), and ideally also recommendations
on how to select and compose these services for different decision situations.

Composition Expert A composition expert aggregates experiences with tailored DSS
development and usage into composition knowledge that is used by the DSS engineer to
improve future compositions of decision support services. The composition expert receives
feedback from decision makers regarding their experiences with a tailored DSS. This feedback
is specified for (and therefore includes) the decision maker’s requirements for decision support
that motivated the need for tailored DSS development. Additionally, composition experts
need the associated DSS model created by the DSS engineer describing the composition of
decision support services used for the generation of the tailored DSS, and the descriptions of
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decision support services themselves. The resulting composition knowledge extracted by the
composition expert is then provided to the DSS engineer, most likely via the assistance system
supporting the DSS engineer during service composition.

Remarks on DSE Roles

The previous explanations often use the singular form when referring to a role. Nevertheless, a
role can (and should) be assumed by multiple actors to benefit from heterogeneous requirements
and offerings for decision support contributed by decision makers and service providers as
well as improved knowledge gathering by multiple experts.

In addition to this one-to-many relationship between a role and actors assuming the role,
there is also a converse many-to-one relationship, i.e., the roles are non-exclusive and one actor
can assume multiple roles. As already suggested during DP3 – Model-Driven Development
and repeated during the explanation of the DSS engineer, it may even be desirable that the
responsibilities of the DSS engineer are assumed by the decision maker. Decision makers and
service providers are likely also good domain experts as their requirements and offerings for
decision support shape the application domain with respect to decision making. Nevertheless,
a strict separation between roles may be desirable to ensure scalability as the ecosystem grows
with respect to the participating organizations and individuals.

The roles of domain expert and composition expert fundamentally serve a similar purpose,
i.e., to improve the quality of ecosystem activities and to enable ecosystem evolution. However,
the roles have different perspectives: While the domain expert focuses on evolution triggered
by changes in the surrounding business environment, the composition expert focuses on
evolution triggered by interactions within the ecosystem itself.

4.4.3 DSE Lifecycle

This subsection expands on the role descriptions of DSE participants by describing a lifecycle
that establishes an order on participants’ activities to fulfill the aforementioned responsibilities.
The lifecycle is summarized in Fig. 4.6 and subsequently explained in more detail.

Foundation The goal of the foundation phase is to provide the basis for the subsequent
activities of the lifecycle. Throughout domain documentation, domain experts collect
application domain knowledge, either based on their own perspective of the application
domain or based on interactions with other DSE participants. The documented domain
knowledge is then available for service providers to describe their decision support services
with respect to characteristics of the application domain during service registration, thereby
making the services available to other DSE participants.
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Figure 4.6: Overview of the continuous DSE lifecycle with involved actors and produced outputs

Design The goal of the design phase is to model a tailored DSS that addresses the individual
decision support requirements of a decision maker. For this purpose, decision makers first
document their requirements for decision support with respect to the previously formalized
characteristics of the application domain throughout requirements elicitation to establish
a common understanding between with DSS engineers. Next, during service composition,
a DSS engineer selects a subset of available decision support services and models their
integration into a holistic tailored DSS. During composition, the DSS engineer can utilize
best practices documented in the form of composition knowledge.
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Enactment The goal of the enactment phase is to provide decision makers with effective
decision recommendations in alignment with their individual decision processes. The first
activity of the phase is DSS generation where the tailored DSS is automatically generated
from decision support services as prescribed by the previously created DSS model. Generation
is the prerequisite for the subsequent DSS usage where the decision maker interacts with the
generated DSS and provides as well as receives data.

Improvement The goal of the improvement phase is to gather experience that can improve
efficiency and effectiveness during future tailored DSS development. For this purpose, decision
makers first capture feedback regarding the tailored DSS during feedback documentation.
This feedback, in addition to the associated DSS model created by a DSS engineer, is then
analyzed by the composition expert throughout knowledge extraction and documented as
composition knowledge to be considered during the design of future service compositions.

Although the previous explanations suggest a waterfall-like enactment of the lifecycle,
this at most applies immediately after the initiation of the DSE when the problem and solution
space have not yet been described and ecosystem participants have not yet gathered experience
from which composition knowledge can be extracted. Afterwards, the enactment of lifecycle
phases and activities likely happens continuously and in parallel as indicated in Fig. 4.6.
For example, the experiences of decision makers may trigger both the extraction of new
composition knowledge and an update of the domain documentation if changes in the business
environment cannot be mapped to existing DSE capabilities.

4.5 Reference Architecture for a DSE Platform

This section aggregates the explanations of previous sections into a reference architecture for a
shared DSE platform to further assist the implementation of a DSE. The reference architecture
is depicted in Fig. 4.7 and closely aligned with the lifecycle explained in Section 4.4.3, i.e.,
every lifecycle phase is an architectural layer and every activity is often directly translated
into an interactive software component within the architecture. Given these commonalities
and to avoid redundancy, the explanations in this section primarily focus on the exchange of
artifacts throughout DSE components. The explanations furthermore map the architectural
components to the design principles introduced in Section 4.3.

Foundation Layer

The entry point into the architecture is the Domain Documentation component where domain
experts characterize decision making in the application domain. The structured domain
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knowledge is stored in the Domain Knowledge Base where it is subsequently used for
the structured documentation of decision makers’ requirements for decision support and
service characteristics. Since the structured documentation of requirements and services
depends on the structured domain knowledge, domain experts must initially rely on informal
documentation of requirements and service characteristics during the documentation of the
application domain. The domain knowledge base partially addresses DP5 – Knowledge Base
with a focus on requirements R5.1 – Common Terminology and R7 – Domain-Portability.

Service providers make their decision support services available within the DSE using the
Service Registration component. During registration, they describe the characteristics of their
services based on the structured application domain knowledge. This results in a structured
service description that is published in the Service Registry to facilitate service discovery. The
service registry primarily addresses DP2 – Service-Orientation with a focus on requirements
R2.1 – Modularity, R3.1 – Reusability, R3.2 – Extensibility, R3.3 – Discoverability, R5.2 –
Artifact Sharing, and R5.4 – Organizational Scalability.

Design Layer

Decision makers use the Requirements Elicitation component for structured documentation of
their situational requirements for decision support based on the structured domain knowledge
documentation. A structured documentation of requirements is a prerequisite for future
processing of the requirements, both to enable a common understanding with other ecosystem
participants and also for automated processing throughout later components.

Such automated processing happens as part of the DSS Editor component where the DSS
engineer composes decision support services with the support of an assistance to address the
situational requirements for decision support of a decision maker. The output of the DSS Editor
is the DSS Model describing the tailored DSS for the given decision support requirements.
The DSS model can be stored in the Model Repository for future reuse. The DSS editor in
combination with the assistance primarily addresses DP3 – Model-Driven Development and
DP4 – Assistance System with a focus on requirement R4 – Suitability for Non-Programmers,
and also R6.1 – Transparency when the role of the DSS engineer is assumed by the decision
maker in the context of end-user development. The DSS editor furthermore partially addresses
DP1 – Generation with a focus on requirements R1 – Situativity and R2.1 – Modularity.

Enactment Layer

The DSS Generator receives the DSS model previously designed by the DSS engineer and
generates the tailored DSS from the described service composition. Although the tailored DSS
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is shown as a separate application in Fig. 4.7, the DSS specification could be processed either
by a code generator or an interpreter similar to the approaches discussed in Section 3.3.2. The
tailored DSS is subsequently available to the decision maker who can interact with the DSS
and select additional data services from the service registry. The DSS Generator partially
addresses DP1 – Generation with a focus on requirement R2 – Process Orientation.

Improvement Layer

The Composition Knowledge Extraction component is used by the composition expert to extract
and document composition knowledge. The component relies on previously designed DSS
models stored in the Model Repository and the descriptions of utilized services. In addition to
the identification of frequently occurring patterns within models throughout the repository, the
composition expert can also consider feedback for specific compositions provided by decision
makers. The structured composition knowledge is stored in the Composition Knowledge Base
where it is accessed by the automated Assistance to support the DSS engineer during DSS
design with the DSS editor. The knowledge base partially addresses DP5 – Knowledge Base
with a focus on requirements R5.3 – Experience Sharing and R4.3 – Error Prevention.

Relation to Low-Code Development Platforms

The previous description of the DSE platform reference architecture shows similarities to the
fundamental architecture of low-code development platforms (LCDPs) previously presented
in Section 3.2.2. The relation between components is summarized in Table 4.2.

The Domain Documentation and Domain Knowledge Base components of a DSE platform
correspond to the Domain Modeling component of LCDPs, with the difference that domain
experts define reusable data structures for the whole DSE and not just for a single application in
the case of LCDPs. While the DSE platform has no component for the assembly of graphical
user interfaces from primitives such as buttons or text input fields similar to the GUI Design
component of LCDPs, the user interface of a DSS is nevertheless influenced by selecting
among (alternative) interactive decision support services when specifying the DSS using the
DSS Editor component. The selection and composition of decision support services using the
editor also corresponds to the Business Logic Specification component of LCDPs.

The Data Integration and Service Integration components of LCDPs are implemented in
cooperation between a DSE platform’s Service Registry and DSS Editor components, which
support the integration of functional and data decision support services.

The Model Repository of the DSE platform providing reusable DSS models can be
compared to the Application Templates component of LCDPs. The Service Registry of a DSE
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platform corresponds to the Connector Marketplace of an LCPD as it enables and promotes
the reuse of (external) services.

The DSS Generator of a DSE platform corresponds to the Code Generation component
of an LCDP. In the DSE platform, the functionality of the LCDP Deployment component is
assumed to be contained in the DSS Generator component. This is due to the DSE concept not
explicitly requiring the execution of the DSS in a cloud environment – the DSS Generator could
generate and deploy web applications or native desktop applications (although a web-based
deployment is potentially more beneficial for low-barrier DSE adoption).

The reference architecture for a DSE platform furthermore defines components without a
counterpart in the fundamental LCDP architecture. These components include the Require-
ments Documentation component and experience exchange using the Composition Knowledge
Capture and Composition Knowledge Base components. Furthermore, although the Assistance
is not an application that DSE participants directly interact with, it is nevertheless an automated
application triggered by other components (similar to code generation).

The comparison demonstrates that a DSE platform can be viewed as a low-code development
platform with some extensions to the fundamental LCDP architecture as well as a dedicated
focus on the development of tailored decision support systems.

Table 4.2: Comparison between LCDP and DSE platform components

LCDP Component DSE Platform Component

Data Modeling Domain Documentation and Domain Knowledge Base
GUI Design DSS Editor *
Business Logic Specification DSS Editor

Data Integration Service Registry and DSS Editor
Service Integration Service Registry and DSS Editor

Application Templates Model Repository
Connector Marketplace Service Registry

Code Generation DSS Generator
Deployment DSS Generator *

- Requirements Elicitation
- Composition Knowledge Capture and Knowledge Base
- Assistance

* : closest mapping, see textual explanations for details
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4.6 Key Takeaways

A decision support ecosystem is a variant of a digital business ecosystem in which ecosystem
participants collaborate to provide each decision maker with a tailored DSS for effective and
efficient decision making. A key enabler of a DSE is its shared digital platform, which is
used by ecosystem participants to publish and integrate various decision support services into
a tailored DSS. Although the shared digital platform is essential to address the challenges
of tailored DSS development presented in Chapter 1, there is a lack of design knowledge
that guides implementors during the realization of a DSE and its platform. For this reason,
the chapter presented five fundamental design principles to define a conceptual framework
for the development of a DSE platform. Furthermore, the chapter presented the types of
decision support services contributed to a DSE, the six roles of actors participating in a DSE,
and a lifecycle that describes the activities of ecosystem participants. In summary, domain
experts and service providers characterize the problem and solution space for decision support
in an application domain, DSS engineers model a tailored DSS as a service composition
with support from an assistance system, and decision makers use the generated DSS and
subsequently provide feedback to composition experts who extract best practices for future
DSS development. These presented insights were subsequently aggregated into a reference
architecture to further guide the implementation of a DSE platform. Based on the design
recommendations, the conceptual definition of a DSE provided in Section 4.2.1 can be refined
into the following design definition:

Decision Support Ecosystem – Design Definition

A decision support ecosystem (DSE) is an evolving socio-technical network
with collaboration between decision makers, service providers, DSS engineers,
and experts who contribute requirements, decision support services (including
software, data, computing infrastructure, and other offerings), and best practices
for decision support via a shared digital platform that enables the assisted
low-code development of tailored decision support systems.

Despite the reference architecture, there is still a lack of conceptual and technical details
regarding the implementation of architecture components or the format of artifacts exchanged
between DSE participants. The subsequent chapters address this knowledge gap by explaining
how to capture required and provided decision support for a concrete application domain
(Chapter 5), how to model and generate a tailored DSS (Chapter 6), and how to describe and
enforce composition knowledge during DSS design with an assistance system (Chapter 7).



CHAPTER 5
Description of Decision Support Services

This chapter presents an approach for the structured description of decision support artifacts
(i.e., data and functionality for data transformation, simulation, optimization, and visualization)
to document both required and provided decision support services for automated processing in
subsequent DSE lifecycle activities. The presented insights extend the paper “Requirements-
Based Composition of Tailored Decision Support Systems” by Kirchhoff, Weskamp, and Engels
[KWE22b] using modeling concepts introduced in the paper “Detecting Data Incompatibilities
in Process-Driven Decision Support Systems” by Kirchhoff, Gottschalk, and Engels [KGE22].

As shown in Fig. 5.1, the insights presented in this chapter support the first three activities
of the DSE lifecycle, i.e., domain documentation, service registration, and requirements
elicitation. For this purpose, the chapter contributes: (1) a meta-model that describes the
necessary concepts for the documentation of required and provided decision support in an
application domain, and (2) recommendations for the development of a software application
that supports the form-based instantiation of meta-model elements by DSE participants.

Foundations

Domain
Documentation

Service
Registration

Design

Requirements
Elicitation

Service
Composition

Enactment

DSS
Generation

DSS Usage

Improvement

Feedback
Documentation

Knowledge
Extraction

Figure 5.1: Focus of Chapter 5 with respect to the DSE lifecycle
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After a presentation of upfront design considerations (Section 5.1), the chapter introduces
requirements for a structured documentation of required and provided decision support
(Section 5.2) and discusses existing decision support ontologies and service description
languages with respect to these requirements (Section 5.3). Next, a meta-model for describing
the characteristics of the application domain and associated decision support is introduced
and illustrated with examples (Section 5.4). The chapter also presents a concrete syntax
and prototypical implementation for the representation and form-based manipulation of
meta-model instantiations (Section 5.5). The insights are discussed with respect to the initially
presented requirements for the description format (Section 5.6) and summarized (Section 5.7).

5.1 Context and Upfront Considerations

Section 4.4.1 associates a functional decision support service with the input-processing-output
(IPO) principle, i.e., the service receives input data from the decision maker or a previously
executed service, processes it, and returns output data (unless the service solely focuses
on interactive data visualization). The same IPO principle can also be observed for the
overall decision support system, albeit it only operates on data provided by the decision
maker. With respect to the black-box view assumed by the IPO principle, a (tailored) DSS
can therefore be viewed as a single fictional/required decision support service. Consequently,
a decision maker should be able to document required decision support functionality very
similar to service providers documenting provided decision support functionality. This is
reflected in the upcoming explanations as well as the architectural overview in Fig. 5.2, where
cross-cutting concepts are defined in the Domain Registry and reused in the Service Registry
and Requirements Elicitation applications to address the additional needs of service providers
and decision makers for the documentation of provided and required decision support.

Domain
Registry

Service
Registry

Requirements
Elicitation

Domain
Documentation

Service
Descriptions

Require-
ments

Figure 5.2: Applications for the “Foundation” lifecycle phase as a UML component diagram
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5.2 Description Requirements

This section introduces requirements DRx for the structured description of required and
provided decision support functionality and data. The requirements are primarily derived
from the characteristics of (situational) decision making discussed in Chapter 2 and illustrated
using examples from the domain of energy distribution network planning.

Domain Perspective

The domain perspective aggregates the requirements of domain experts to provide fundamental
information about the application domain as a basis for further descriptions.

Description Requirement DR1 – Types of Domain Data
The description approach must support the documentation of fundamental types of domain
data including available serialization formats to describe what kind of data can be processed
throughout a decision process, i.e., provided to or by decision support services. Examples in
the domain of energy distribution network planning are “network topology” or “consumer
demands” with associated (generic) data formats such as XML, JSON, or CSV.

Description Requirement DR2 – Characteristics of Domain Data
The description approach must support the documentation of characteristic attributes for data
types in the application domain to enable the specification of additional information regarding
decision making for these entities. For example, without knowing that a network topology
is associated with operational costs and can be designed in an (n-1)-reliable way, it is not
possible to capture that decision makers may want to minimize operational costs without
sacrificing a certain level of reliability. Such characteristics can also be useful to describe data
constraints of services, e.g., to document that a service only supports network topologies up to
a certain size. As suggested by the example, it is sufficient to capture characteristic metadata
to reduce the effort and complexity of documentation, i.e., the size of the network topology as
an integer instead of each network asset included in a topology.

Functional Perspective

The functional perspective aggregates the requirements of decision makers and service
providers to describe their required/provided decision support functionality.

Description Requirement DR3 – Computation Approach
The description approach must support the documentation of the computation approach
that is used to implement decision support functionality. A computation approach can be
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characterized by its overall goal, e.g., power flow simulation for a network topology, which
can be achieved using multiple algorithms, e.g., Newton-Raphson or Gauss-Seidel, each
potentially requiring different input data.

Description Requirement DR4 – Optimization Goals
For provided/required optimization functionality, the description approach must support
the documentation of optimization goals defining the validity and optimality of a decision
recommendation (cf. decision criteria in Section 2.2). Otherwise, there is a risk of
recommending and implementing suboptimal decisions. Optimization goals should be
documented with respect to the previously defined data characteristics, e.g., minimizing
investment costs of a network topology while ensuring that it is (n-1)-reliable.

Description Requirement DR5 – Decision Alternative Generation
Since decision alternatives are determined throughout the decision process, usually as part
of an optimization model, the description approach must support the documentation of the
supported/utilized types of decision alternatives. Otherwise, there is a risk of recommending
decisions that a decision maker cannot implement, e.g., placing battery storage systems
although a DNO is prohibited from operating them.

Non-Functional Perspective

The non-functional perspective focuses on characteristics other than required/provided
functionality that can influence whether a decision support service can be utilized or not.

Description Requirement DR6 – Resources
The description approach must document the resources consumed by decision support services
as resources are only available to decision makers to a limited extent, and an overextension of
available resources must be avoided. For functional services, resource consumption at least
includes the execution time of a service. Additionally, and also relevant for data services, a
service fee may be charged or a license may be required. Resource consumption may depend
on the characteristic of an input provided to the service, e.g., the runtime of an energy network
optimization service may be exponential in the size of the network topology.

Description Requirement DR7 – Data Constraints
The description approach must support the documentation of additional constraints on inputs
and/or outputs of a functional decision support service to ensure the compatibility of a service
with the data provided by the decision maker when using the resulting tailored DSS. These
constraints can be interpreted as data requirements for inputs and data guarantees on outputs.
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For example, a network optimization service may only support topologies up to a certain
amount of assets, or a network reduction service may guarantee a certain aggregation of assets
as a percentage of the provided input topology’s size.

Description Requirement DR8 – Service Level Objectives
The description approach must support the documentation of service quality in the form
of service level objectives that describe permissible value ranges on quantitative service
characteristics, i.e., service level indicators, such as availability or response time [Bey+16,
Ch. 4]. In the context of decision support where potentially sensitive data is processed, these
characteristics can also include qualitative aspects of the execution environment. For example,
it may be desirable to prioritize an in-house service over other services.

Description Requirement DR9 – Usage Information
The description approach must support documentation of how to invoke a decision support
service. Additionally, it should be possible to document exceptions that can occur during
service execution and may prevent the service from producing the promised output. For
example, a power flow simulation service may find that a network topology is invalid due to
unconnected assets. Documentation of possible exceptions enables the definition of reactions
to these exceptions during service composition such as automated fixes or restarts.

Description Requirement DR10 – Access Control
Although collaboration between ecosystem participants is a key benefit of any digital business
ecosystem (cf. Section 4.1), some service providers may refrain from making their services
available to all ecosystem participants. This may even be required by law for data services, for
example, historical energy demands of consumers are subject to data protection regulations.
Consequently, it must be possible to restrict service discovery and access.

Integration Perspective

While the previous requirements focus on the expressiveness of the description approach,
additional requirements can be derived from the need to integrate the approach into the holistic
concept of a decision support ecosystem introduced in the previous Chapter 4.

Description Requirement DR11 – Machine-Readability
The described required/provided decision support services must be documented in a machine-
readable way such that the descriptions can be further processed throughout later activities of
the DSE lifecycle, e.g., by the composition assistance to validate a service composition.
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Description Requirement DR12 – Tool Support
The documentation of required/provided decision support services should be possible using
software tools with graphical user interfaces. Compared to exclusively textual service
descriptions, a GUI can provide an abstraction that enables more domain experts, service
providers, and decision makers to participate in the ecosystem, thereby facilitating its adoption.
Tool support can also ensure data integrity by restricting user input to valid values.

Description Requirement DR13 – Human-Readibility
Although the previous requirement for tool support suggests that service descriptions do not
need to be modeled by hand, a description should still be human-readable to support the
development of software tools for subsequent DSE lifecycle activities (e.g., the assistance
system for service composition), for example, to assist in debugging.

5.3 Background and Related Work

This section discusses existing approaches for the description of reusable (decision support)
functionality to assess their suitability with respect to the previously presented description re-
quirements. Discussed approaches are classified as decision support ontologies (Section 5.3.1)
and general-purpose service description languages (Section 5.3.2)

5.3.1 Decision Support Ontologies

An ontology documents the vocabulary of an application domain by defining basic concepts
and their relationships among each other as well as axioms constraining their interpretation and
enabling the derivation of new knowledge [KV11]. Concepts and relationships can be defined
on a type-level (T-Box, e.g., a person can be married to another person) and instance-level
(A-Box, e.g., person A is married to person B) [RS13]. Thus, an ontology could potentially
include both the concepts that are needed to describe required and provided decision support
services as well as descriptions of services and requirements themselves. Considering the
description requirements established in the previous section, the subsequent discussion of
decision support ontologies focuses on approaches that use an ontology to describe decision
support functionality and associated data and does not include approaches that use an ontology
to encode data and decision support functionality itself (e.g., [MGK07]).

Rockwell et al. [Roc+09] describe a decision support ontology (DSO) for collaborative
product design. The DSO concepts largely align with the decision-making entities introduced
in Section 2.2. However, the DSO is primarily designed to capture past product design
decisions with respect to associated product requirements, design alternatives, and their
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evaluation results. It does not capture (reusable) decision process activities describing how the
evaluation results are derived and therefore does not address DR3 – Computation Approach in
particular as well as any requirement from the “non-functional perspective”.

Rospocher and Serafini [RS13] describe an ontology to capture the decision support
request of a user and the data processed and produced by a DSS. The ontology consists of
a problem component describing all aspects of decision support problems that users can
submit to the DSS, a data component describing the data consumed by the DSS, and a
conclusions component describing the data produced by the DSS. However, these components
only influence the construction of a decision support ontology for a specific application domain
as demonstrated in the paper. This does not align with the reusability of the description
approach across domains as suggested by R7 – Domain-Portability.

Chai and Liu [CL10] describe an ontology-based approach to decompose a decision
problem into tasks that are executed by human actors during group decision making. The
vaguely described approach lacks consideration for the software-based execution of tasks, which
is specifically considered by the “non-functional perspective” of the previously introduced
description requirements. Similarly, Bennani et al. [Ben+18] describe a (high-level) meta-
model (comparable to an ontology without knowledge derivation) for describing collaborative
group decision making without software support.

Bhrammanee and Wuwongse [BW08] describe an ontology to document optimization
models for the model base of a DSS. While this ontology addresses most of the requirements
documented under the “functional perspective” in the previous section, it only addresses
one requirement from the “non-functional perspective” by enabling the documentation of
consumed resources. Similar restrictions can be observed for semantic model management
systems discussed in Section 3.3.4 or the approach by Deokar and El-Gayar [DE13].

Zagorulko and Zagorulko [ZZ10] present an approach to provide decision support for
reducing power consumption of oil-and-gas production enterprises. Their approach uses a
subject domain ontology to capture entities of the application domain, and a task ontology
to describe the functionality of decision support modules. In addition to only addressing
requirements from the “functional perspective”, the ontology is domain-specific and uses the
model-solver pattern already criticized during the discussion of related work in Section 3.3.

Blomqvist [Blo14] describe the results of a literature survey and expert interviews to
identify the potential benefits of using (ontology-based) semantic web technologies for
DSS development. However, the summary of expert interviews only mentions the usage of
ontologies to capture reusable decision support artifacts as a future outlook.

In summary, none of the discussed decision support ontologies is comprehensive enough
to address the description requirements presented in the previous section.
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5.3.2 General-Purpose Service Description Languages

While some of the previously described decision support ontologies (partially) address
requirements from the “functional perspective” of the description requirements, they especially
lack the expressiveness to also address requirements from the “non-functional perspective”.
Given this observation, the subsequent discussion focuses on the suitability of existing service
description languages to address the description requirements, which traditionally support
both perspectives, albeit without a focus on decision support.

A service description language supports the documentation of a software service’s charac-
teristics to enable its use in the context of a service-oriented architecture (cf. Section 3.2.1).
Nawaz, Mohsin, and Janjua [NMJ19] conducted a systematic review of service description
languages and classified them into languages for documenting service deployment and provi-
sioning, modeling and composition, discovery and selection, and service level agreements.
However, all listed service description languages are general-purpose languages that address
most of the introduced description requirements from the non-functional perspective, but not
from the functional perspective with a focus on decision support. The missing support for
describing decision support goals also applies to the OpenAPI Specification (OAS) [Ope21],
which defines a programming-language agnostic standard for describing HTTP APIs. Although
not listed in the review by Nawaz, Mohsin, and Janjua [NMJ19] – perhaps due to the poor
representation of the OAS in academic publications – it is the service description language with
the most practical adoption based on the author’s personal experience. However, reusing the
OAS for the description of decision support services would require the semantic redefinition
of language elements as well as comprehensive language extensions for the documentation of
decision support functionality. For example, the specification supports the description of data
types with their attributes, which aligns with DR2 – Characteristics of Domain Data at first
glance but would result in a semantic misalignment since the OAS expects service providers
to describe the actual structure of data. On the contrary, DR2 – Characteristics of Domain
Data only focuses on the documentation of metadata characteristics (which may not even be
explicitly contained within the actual data). Because of these potential misalignments and/or
comprehensive extension efforts, the OAS is not further considered.

Of the service-oriented DSS approaches reviewed in Section 3.3.3, Mustafin, Kopylov,
and Ponomarev [MKP21] use OWL-S [W3C04], an application of the OWL Web Ontology
Language [W3C12] for the semantic description of web services. Their approach relies on two
other ontologies: an application domain ontology to define domain concepts and properties,
and a DSS functional blocks ontology to categorize and describe characteristics of services
for visualization, data management, model management, and solvers. Unfortunately, the
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DSS functional blocks perspective, which corresponds to the functional perspective of the
description requirements, is not described in detail. Furthermore, the model-solver approach
was already criticized during the evaluation of the overall approach in Section 3.3.3 as it
does not consider simulation, statistical computations, or utility functionality such as data
conversion. This also holds for the approach by Shafiei, Sundaram, and Piramuthu [SSP12]
using the “outdated” WSDL (cf. Section 3.2.1) and Dong and Srinivasan [DS13] without
details regarding service description. Explanations of the service description format are also
missing from the approaches described by Becker et al. [Bec+08] (which is based on Java
Beans), Stănescu, Ştefan, and Filip [SŞF15] (which uses SOAP and REST for communication,
but does not specify a standard for service description) and Axelsson et al. [Axe+17] (whose
prototypical implementation suggests that only a service category, name, and URL are stored
in the discovery service). Initial experiments within this thesis to utilize the extensibility of
OWL-S to address the description requirements showed limitations for automated processing
and particularly DR13 – Human-Readability due to the verbosity of the underlying Resource
Description Framework (RDF) [W3C14], which uses a subject-predicate-object structure
to describe data and requires specialized databases (“triple stores”) for data storage and
specialized query languages for data retrieval and manipulation. These disadvantages are
often accepted due to the associated advantage of knowledge inference from RDF data using a
reasoner. However, there is no indication that such knowledge inference capabilities would
benefit the implementation of later DSE components.

In summary, none of the reviewed service description languages are suitable to address
the description requirements introduced in the previous section.

5.4 A Meta-Model for Decision Support Services

The previous section shows that existing decision support ontologies and (software) service
description languages are only partially suitable to describe required and provided decision
support. This section introduces a meta-model as an abstract syntax of a decision support
description language to address the description requirements of Section 5.2. The concepts
defined by the meta-model aim to strike a balance between a goal-oriented description of
decision support suitable for decision makers and DSS engineers, and a solution-oriented
description suitable for service providers to highlight unique features of their services.

The meta-model is visualized as a UML class diagram [OMG17] and each class is textually
described. Classes are aggregated into the packages shown in Fig. 5.3. The class diagram for
each package is accompanied by a UML object diagram to illustrate how these classes would
be instantiated in the context of energy distribution network planning.
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Meta Model
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(Sect. 5.4.1)
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(Sect. 5.4.2)
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(Sect. 5.4.3)
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Services
(Sect. 5.4.5)

DSS Requirements
(Sect. 5.4.6)

Figure 5.3: Overview of meta-model packages

The class diagrams are subject to the following conventions: Each class has attributes for a
human-readable name and description, which are omitted in the diagram for comprehensibility.
The default cardinality for the start of an association is 0..*, for an aggregation 0..1,
and for a composition 1. A composition indicates that instances of the associated class
cannot exist without the composing instance. An aggregation indicates that instances of the
associated class can temporarily exist without an aggregating instance. This differentiation is
primarily done for the subsequent explanations of the prototypical implementation. Previously
discussed packages, classes, and objects are shown transparently to distinguish them from
newly introduced concepts. For compactness, class names in object diagrams are sometimes
abbreviated and not all associated classes are instantiated in the illustrating object diagrams.

5.4.1 Package “Data”

The class diagram for the package Data is shown in Fig. 5.4 with the associated object
diagram showing an example instantiation in Fig. 5.5. The goal of the package is to
capture the characteristics of data that is utilized throughout a decision process. For this
purpose, data is associated with a DataType such as network topology. A data type can
be stored using one or multiple available DataFormats, which may refer to a specific
version. For example, a network topology can be expressed in the JSON-based PNET format
developed throughout the FlexiEnergy project, or the Pickle-format defined by the PandaPower
application1. Characteristics of a data type are captured by its MetadataAttributes. As
suggested by the name, the attributes of a data type do not fully describe the data, but only
selected characteristics that are relevant for the formalization of decision support functionality.
For example, while a network topology describes multiple network assets, the size of the

1 Tool website: https://www.pandapower.org/

https://www.pandapower.org/
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Figure 5.4: Overview of the meta-model package Data

topology with respect to the number of assets is sufficient to filter services that are unable
to process the topology due to its size. Or the fact that a network can be (n-1)-reliable
with respect to different asset types such transformers, cables, etc., can be used to specify
that a certain level of reliability should be achieved when optimizing network investments.
These examples for attributes showcase the difference between a quantitative and qualitative
attribute. An Attribute can have a minimum and maximum cardinality to represent lists.
A QuantitativeAttribute can specify a measurement unit from the list of available
(SI-)Units, and a QualitativeAttribute can specify a range of admissible values.

availableFormat attribute

attributeavailableFormat

NetworkTopology
:DataType

PPow-Pickle
:DataFormat

(n-1)-reliability 
:MetaDataAttr.

maxCardinality = 5
range = ["cables", ...]

size :MetaDataAttr.

description =
  "no. of transformers"

PNET
:DataFormat

Figure 5.5: Example instantiation of the meta-model package Data
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5.4.2 Package “Computation”

The class diagram for the package Computation is shown in Fig. 5.6 with the associated
object diagram showing an example instantiation in Fig. 5.7. The goal of the Computation
package is to describe different approaches to process the previously documented data types.
The ComputationMethod class captures such a computation approach and the MethodData
it consumes and produces (as indicated by the MethodDataKind enumeration). An example
of a method is a mathematical exact optimization of network assets, which receives a network
topology, consumer demands and asset types available for replacement as input, and computes
a list of investments that describes when, where and how to replace assets. Methods can also
have multiple outputs, e.g., a network reduction to reduce the size of a network topology
produces the reduced topology as well as information on how to undo the reduction. While
output method data describes intended outputs, a ComputationException defines a potential
error that may occur during the execution of the computation and is optionally accompanied
by a payload with additional error information, e.g., because a topology is incomplete.

Computation methods with different inputs but a similar goal can be grouped into
a ComputationGoal, e.g., mathematical exact and heuristic asset optimization can be
associated with the asset optimization goal. Alternatively, information about (technical) details
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Figure 5.6: Overview of the meta-model package Computation
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goal
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data
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kind = Input
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assetLibrary
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   "brownfield"]

:ComputationException

code = "TopoIncomplete" payload

topoErrorList
:DataType

Figure 5.7: Example instantiation of the meta-model package Computation

of the computation method can be defined as a MethodCharacteristic. For the example
of network asset optimization, some methods may only be suitable for designing networks
from scratch (“greenfield”), while others also support the re-design of existing networks
(“brownfield”). The CharacteristicAssignment class will later be used to assign values
to method characteristics based on the type of the Attribute (i.e., quantitative or qualitative).
Definitions for method data, characteristics, and exceptions may be reused across methods.

5.4.3 Package “Optimization”

The class diagram for the package Optimization is depicted in Fig. 5.8 with the associated
object diagram showing an example instantiation in Fig. 5.9. The goal of the optimization
package is to enable the description of optimization characteristics for required and provided
optimization-based decision support services. These characteristics are later described at
service-level and not at method-level since a service implementing a method often only
supports a subset of theoretically possible optimization characteristics.

An OptimizationProblem is characterized by one or multiple Objectives to minimize
or maximize quantitative data characteristics, and an arbitrary amount of Constraints on data
characteristics to restrict the set of valid optimization solutions. In the example instantiation, the
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Figure 5.8: Overview of the meta-model package Optimization

attribute

capexOpt :Objective

goal = Minimize

CAPEX :MetaDataAttr.

unit = Euro (€)

attribute

reliability :Constraint

 condition = Equals (=)
value = ["transformers"]

(n-1)-reliability
:MetadataAttr.

assetReplacement
:DecAltGen

objective constraint

:SingleObjective
OptProblem

Figure 5.9: Example instantiation of the meta-model package Optimization

investment costs (CAPEX) of a network topology are minimized while ensuring that the network
is (n-1)-reliable in its transformers. If multiple opposite objectives are optimized, they can be
prioritized by a weight, which can for example be implemented by services using scalarization
or weighted goal programming [CD20]. The DecisionAlternativeGeneration class
specifies approaches for the generation of decision alternatives during optimization, e.g.,
traditional asset replacement or placement of battery storage systems.
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5.4.4 Package “Resources”

The class diagram for the package Resources is depicted in Fig. 5.10 with the associated
object diagram showing an example instantiation in Fig. 5.11. The goal of the package
is to enable the documentation of resources available/required for consumption during
the execution of decision support services. The Resource class is used to describe any
consumable resource such as time or money with an associated unit. In the simplest case,
an AbsoluteResourceQuantity specifies an absolute value for the available or consumed
resource quantity. For example, a service invocation may always incur a monetary fee of 10
Euros. A ReferenceResourceQuantity can only be used for functional decision support
services implementing a computation method. In this case, the resource consumption can
be specified with respect to an input prescribed by the method. The relation between the
quantitative input data attribute and the resource quantity is described by a GrowthFunction.
For example, the execution time of a network optimization provided by a service may be
exponential in the size of the provided network topology. Other considered growth functions
are Linear and Polynomial, which can be parametrized accordingly.
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Figure 5.10: Overview of the meta-model package Resources
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Figure 5.11: Example instantiation of the meta-model package Resources

5.4.5 Package “Services”

The class diagram for the package Services is split into Figures 5.12 and 5.13 with the
associated object diagram showing a (partial) example instantiation in Fig. 5.14. Unlike
the previous packages, whose concepts support both the description of provided as well as
required decision support functionality, the concepts of the Services package are intended
for the description of existing decision support services only.
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Figure 5.12: Overview of the meta-model package Services (Part 1)
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A service can either provide a dataset (DataService) or implement a computation method
(FunctionalService). Each service is assumed to be available as a microservice at a URL
documented as location, documents the service Provider, and is associated with multiple
AccessGroups permitted to use the service. The description of service providers and the
association of ecosystem participants to access groups is not part of the meta-model as it
covered with existing description languages such as the OpenAPI Specification [Ope21].
Services are associated with ServiceLevelObjectives that specify an upper or a lower
bound on a ServiceLevelIndicator, e.g., to guarantee that a service has an availability of
99% or higher. For a data service, resource consumption can only be specified absolutely, while
a functional service can also specify resource consumption with respect to input parameters
of the implemented computation method as illustrated in the previous Section 5.4.4.
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Figure 5.13: Overview of the meta-model package Services (Part 2)
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A DataService only specifies the data type and the data format of provided data via
associations, and its metadata via the MetadataAssignment class. The type of a metadata
value depends on whether the metadata attribute is of quantitative or qualitative nature. For
example, a network topology for a fictitious city with a size of 394 network assets described
using the PNET data format may be published globally within the DSE for testing purposes.

A FunctionalService is characterized by the computation method it implements. The
example used for illustration purposes is the PowOpt algorithm developed throughout the
FlexiEnergy project, which implements a mathematically exact optimization of network
assets given future consumer demands (cf. Section 5.4.2). Each input or output data of the
method results in a DataSlot for the service, although only the one for the input topology
is shown in Fig. 5.14 for clarity. In addition to the method data a data slot represents,
a data slot furthermore documents supported data formats and potential Assertions on
the data, e.g., to ensure that the provided network topology has a size below 1000 nodes.
For such absolute assertions, the Constraint class from the Optimization package is
reused. Although not demonstrated in the object diagram, the value of an assertion can
also be specified as a ReferenceAssertion to an input method data, e.g., to express for a
consumer demand simulation service that both load profiles and market shares of consumer
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Figure 5.14: Example instantiation of the meta-model package Services
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technologies must have the same temporal resolution. A DataSlot can furthermore specify
tags that must be present on provided data or will be added to the produced data as metadata
to document that data has been processed by a specific service. A functional service providing
optimization functionality can document the addressed optimization problem as described
in Section 5.4.3. A CharacteristicAssignment assigns a value to a characteristic of the
computation method, e.g., to express that the PowOpt service works for brownfield networks.

5.4.6 Package “DSS Requirements”

The class diagram for the package DSS Requirements is shown in Fig. 5.15. The goal of
the package is to enable the structured documentation of a decision maker’s requirements for
decision support for subsequent processing by DSS engineers or the composition assistance
system. An object diagram with example instantiations is not provided to avoid redundancy as
the package primarily describes relationships to classes introduced in previous packages.

Following the upfront design considerations of Section 5.1 discussing the similari-
ties between describing provided and required decision support functionality, the central
DssRequirements class inherits from the FunctionalService class described in Sec-
tion 5.4.5 to reuse the existing concepts for describing available resources for consumption,
available access groups, and desired service level objectives. Additional requirements can be
specified with respect to concepts from previously described packages (via DataRequirement,
OptimizationRequirement, MethodRequirement and GoalRequirement). The motiva-
tion for using these “intermediate classes” instead of completely defining DSS requirements
as a FunctionalService is the support of RequirementLevels to control the (mandatory)
inclusion/exclusion of functionality using the vocabulary defined in RFC 2119 [IET97].
Requirement levels allow contradictions, e.g., a decision maker could declare a computation
method as MUST be included in one method requirement and as MUST NOT be included
in another. Naturally, the meta-model also does not guarantee that a DSS addressing the
documented requirements can be composed from the available decision support services.

A DataRequirement extends a DataSlot to document that a certain input or output
should (not) be provided by or to the decision maker in a specific data format with certain
metadata. The reference of method data is optional as it does provide additional semantic
meaning regarding the provided/computed data, but also comes with the risk that the data
requirement cannot be exactly fulfilled due to some pre-/post-processing. For example, a
decision maker may reference the optimized network topology computed by a computation
method for asset optimization, but this method may be succeeded by a reversal of a previously
executed network reduction that actually provides the final optimized network topology.
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Figure 5.15: Overview of the meta-model package Requirements

A GoalRequirement documents the use of a specific computation approach throughout
the supported decision process. It can be further refined using a MethodRequirement to
restrict functionality to computation methods with certain characteristics. The order of goal
and method requirements can be used to determine their desired execution sequence. For
optimization functionality, the optimization characteristics can be further constrained using
an OptimizationRequirement. Instead of reusing the OptimizationProblem class, the
requirement uses the associated classes to support requirements levels for individual parts,
e.g., to express that (n-1)-reliability should be achieved but is not mandatory.

A subset of requirement classes may be used based on the knowledge level of a decision
maker. For example, a decision maker who already has a (planned) decision process may be
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able to specify a sequence of computation methods to execute with restrictions on their defined
characteristics, while another decision maker may only specify the (desired) decision process
on a high-level using the GoalRequirement class. Even more high-level, a decision maker
could simply specify the input and output that should be produced via DataRequirements,
essentially describing a fictitious computation method with additional information on the
available data formats. Although these distinctive approaches to requirement documentation
are imaginable, they can be arbitrarily combined to support the documentation of requirements
as precisely as possible. Requirements for the usage of specific services are not supported
due to the assumption that a decision maker with such technical knowledge can immediately
assume the role of the DSS engineer.

5.5 Prototypical Implementation

This section demonstrates how the previously described meta-model supports the implemen-
tation of the Domain Registry, Service Registry and Requirements Elicitation applications
introduced in Section 5.1. The subsequently presented prototypical implementation uses a
headless content management system (CMS). A headless CMS enables content creators to
create entities using forms. Unlike a traditional CMS, a headless CMS does not transform
the entered data into static webpages to be viewed in a web browser. Instead, the created
entities are made available via an API for further processing by other applications. This
combines the advantages of using forms to enable ecosystem participants to define instances
of meta-model elements with the flexibility of arbitrarily accessing and processing these
elements in subsequent DSE components. Additionally, using an existing headless CMS
framework reduces implementation effort during (prototypical) implementation.

The headless CMS framework Payload2 was chosen for the prototypical implementation
since the previously described meta-model can be translated into a Payload configuration. This
configuration is then used by the framework to provision the form-based admin user interface
accessible via a web browser for data manipulation (cf. Fig. 5.16), the API server for data
access via REST [Fie00] or GraphQL3, and the database for data storage (cf. Fig. 5.17). The
configuration is provided as supplementary material with the thesis (cf. Appendix B). The data
format of API requests and responses also provides a concrete syntax for the representation of
meta-model instances based on the JavaScript Object Notation (JSON) [Ecm17].

The Payload configuration is derived from the previously described meta-model as follows:
Each meta-model class that is not tied to another class by composition is mapped to a Payload

2 Payload website: https://payloadcms.com/
3 GraphQL website: https://graphql.org/

https://payloadcms.com/
https://graphql.org/
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Figure 5.16: Screenshot of the admin UI of the prototypical implementation

collection that can store multiple instances of the meta-model class. Each instance is stored as
a JSON object (referred to as a document) with a (nested) key-value structure as prescribed
by the field definitions of the encompassing collection. Based on the field definition, the
value for the field can either be specified as an absolute value (which is used to document
attribute values), an ID-based reference to a document in another collection (which is used for
associations and aggregations starting from the class), and nested fields (which correspond
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Figure 5.17: Overview of using the CMS Payload for the prototypical implementation



5.6. Discussion 117

to a class that is related to the represented class by composition). Example excerpts for
the Payload configuration and meta-model instances are shown in Listings 5.1 and 5.2 to
document functional services with their service level objectives (cf. Fig. 5.12).

Listing 5.1: Partial Payload config (JavaScript)
// "functional -service" collection:

{ fields: [

// ...

{ name: "quality",

type: "array",

fields: [

{ name: "indicator",

type: "relationship",

relationTo: "indicators" },

{ name: "min", type: "number" },

{ name: "max", type: "number" },

],

},

] }

Listing 5.2: Partial instances (JSON)
// in "f.-s." collection:

{ "id": "some-service",

// ...

"quality": [ {

"indicator":

"sli-availability",

"min": 0.95,

"max": 1

} ]

}

// in "indicators" collection:

{ "id": "sli-availability",

"name": "Service Availability" }

5.6 Discussion

The object diagrams throughout Section 5.4 demonstrate the sufficient expressiveness of the
meta-model to capture (required and provided) decision support services and characteristics
of the application domain for energy distribution network planning. Furthermore, the
explanations of Section 5.5 demonstrate the technical feasibility of transforming the meta-
model into software for the form-based documentation of domain and service characteristics.
Cross-cutting threats that also potentially affect the validity of these demonstrations are
discussed in Chapter 8. The remainder of this section summarizes the relationship between
the presented insights and the requirements for describing provided and required decision
support functionality and data established in Section 5.2.

Domain Perspective The domain perspective consists of requirements DR1 – Types of
Domain Data and DR2 – Characteristics of Domain Data. These requirements map directly to
the Data package, in particular the DataType and MetadataAttribute classes respectively.

Functional Perspective Requirement DR3 – Computation Approach primarily maps to the
Computation package, which allows the definition of ComputationGoals and associated
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ComputationMethods with their inputs, outputs, and additional characteristics. The require-
ment also affects the Service package by associating each FunctionalService with the
computation method it implements and service-specific characteristics. The meta-model
explicitly does not support the documentation of services that implement multiple methods as
this would run counter to the DSE goal of fostering reusability.

Requirements DR4 – Optimization Goals and DR5 – Decision Alternative Generation
directly map to the Optimization package with classes Objective and Constraint
addressing DR4 – Optimization Goals, and DecisionAlternativeGeneration addressing
DR5 – Decision Alternative Generation. Again, these classes are referenced by a Functional-
Service to specify the optimization capabilities of the service (if relevant). A previously
published version of the meta-model in [KWE22b] also considered the specification of a
percentage of the theoretical optimum that can be achieved with an optimization method. This
was extended to the more comprehensive MethodCharacteristics.

Non-Functional Perspective Requirement DR6 – Resources primarily maps to theResources
package for the specification of Resources and ResourceQuantitys. These classes are then
referenced during the definition of a Service to document resource consumption for data- and
functionality-based decision support services or available resources for DssRequirements.

Requirements DR7 – Data Constraints, DR8 – Service Level Objectives, DR9 – Us-
age Information, and DR10 – Access Control map to the Services package. Data con-
straints are defined as Assertions for a FunctionalService, but the specification of
MetadataAssignment of a DataService also supports the later evaluation of whether
a data service meets the constraints of functional service. Similar to DR6 – Resources,
the specification of ServiceLevelObjectives and AccessGroups can be interpreted as
“required” for a functional service, and as “provided” for a required DSS. Requirement DR8 –
Service Level Objectives could be extended to cover complete service level agreements and
also include the specification of penalties if SLOs are not met. However, since this is not
specific to the domain of decision support, existing approaches may be reused (cf. [NMJ19]).

DR10 – Access Control must be enforced during service invocation, but could also be
already considered during service discovery. For example, some service providers may prefer
their services not to be advertised to users with missing access rights, while other service
providers may prefer an advertisement to motivate potential consumers to obtain access
rights if this is associated with the payment of a fee. This behavior could be toggled with
an additional Service attribute. Furthermore, a hierarchical relation between access groups
may be desirable in practice to reduce the effort of multi-group assignments.

The parameterization of functional services is not explicitly considered in the meta-
model (except for potentially supporting configurable weights for optimization targets). For
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example, a service’s considered level of (n-1)-reliability may be configured as part of a service
composition. However, this is not a shortcoming of the meta-model as different configurations
of a service would simply be represented as different functional services. Nevertheless, this
lack of service configuration might lead to more complex data management in practice to
account for potential updates in all service descriptions.

Integration Perspective Requirements from the integration perspective are addressed by
the design choices described in Section 5.5. Using a JSON-based format to document
models instantiated from the meta-model addresses both requirements DR11 – Machine-
Readability and DR13 – Human-Readability, although the latter should ideally be confirmed by
a user/developer study. Requirement DR12 – Tool Support is addressed using the form-based
instantiation of meta-model elements based on a headless CMS.

5.7 Key Takeaways

Existing service description languages and decision support ontologies only partially address
the thirteen established requirements for documenting provided and required decision support
in the context of a decision support ecosystem. The meta-model proposed throughout this
chapter addresses this shortcoming by defining the concepts required for modeling provided
and required decision support services. The meta-model consists of six packages for the
description of (1) data provided to and by services, (2) decision support functionality in the
form of computation methods, (3) optimization characteristics, (4) resources to be consumed
by services, (5) the data- and functionality-based decision support services themselves, and
(6) decision support requirements. Illustrative examples provided during explanations of the
meta-model demonstrate its sufficient expressiveness for the example application domain
of energy distribution network planning. A prototypical demonstration shows how the
instantiation and distribution of meta-model elements can be realized with form-based data
manipulation using a headless content management system to support the DSE lifecycle
activities domain documentation, service registration, and requirements elicitation.

The presented description approach only supports the discovery of provided decision
support services and requirements elicitation for desired decision support. However, as
established in Chapter 4, a tailored DSS requires the integration of multiple decision support
services to address a decision process from start to finish. Since the proposed meta-model
does not support the description of such service integrations, the next chapter presents an
approach to describe a tailored DSS as a composition of decision support services.
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CHAPTER 6
Process-Driven Decision Support Systems

The previous chapter introduces a description format for decision support services to document
software functionality and data that is available to support individual activities of a decision
process. Holistic support of a decision process from start to finish by a tailored DSS still
requires the composition of multiple decision support services, i.e., a description of the
(conditional) execution sequence of functional services and the data exchange between them.
As indicated in Fig. 6.1 for the overall DSE lifecycle, this chapter fills this gap by contributing
a process-driven approach for the composition of decision support services by DSS engineers,
including conceptual and technical explanations of how a tailored DSS can be generated
from the service composition and how decision makers interact with the generated DSS.
The insights presented in this chapter are coarsely outlined in the paper “Detecting Data
Incompatibilities in Process-Driven Decision Support Systems” by Kirchhoff, Gottschalk,
and Engels [KGE22] and “Requirements-Based Composition of Tailored Decision Support
Systems” by Kirchhoff, Weskamp, and Engels [KWE22b].
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Figure 6.1: Focus of Chapter 6 with respect to the DSE lifecycle
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Section 6.1 introduces fundamental requirements for the composition of decision support
services into a tailored DSS. Next, Section 6.2 discusses existing approaches to service
composition with respect to these requirements to assess their reusability in the DSE context.
After an architectural overview of the composition approach in Section 6.3, the mapping from
DSE concepts onto the BPMN standard is explained in Section 6.4 and demonstrated using
examples from energy distribution network planning. Section 6.5 elaborates the technical
feasibility of the composition approach. The presented insights are discussed in Section 6.6
with respect to the composition requirements, and the chapter is summarized in Section 6.7.

6.1 Composition Requirements

This section presents composition requirements CRx for an approach to compose decision
support services into a tailored DSS supporting the holistic decision process of a decision maker.
The requirements are based on the insights presented in the previous chapters, in particular, the
fundamental characteristics of decision-making processes presented in Section 2.2, the overall
requirements for tailored DSS development and associated DSE design principles discussed
in Sections 3.1 and 4.3 respectively, and the description of provided and required decision
support services introduced in Chapter 5. The requirements are categorized and illustrated
based on realistic examples from the domain of energy distribution network planning.

Process Category

The process category aggregates requirements that are derived from the fact that decision
making is a process with each process activity being supported by a decision support service.

Composition Requirement CR1 – Functional Perspective
The composition approach must capture the functional perspective of a decision process
documenting the activities performed throughout the process (cf. [Sun+06]). Consequently, the
functional perspective of a decision process documents the computation goals and computation
methods such as “(Newton-Raphson) power flow simulation” (cf. Chapter 5).

Composition Requirement CR2 – Operational Perspective
The composition approach must capture the operational perspective of a decision process
describing the software application used for the enactment of an activity (cf. [Sun+06]). In the
DSE context, the operational perspective documents the functional decision support service
that is used to implement a computation method associated with an activity in the decision
process. For example, the “Newton-Raphson power flow simulation” method is implemented
by the PandaPower application that can be made available as a software-based service.
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Composition Requirement CR3 – Behavioral Perspective
The composition approach must capture the behavioral perspective of a decision process
describing the execution sequence of activities, optionally with conditions when to execute or
skip certain activities (cf. [Sun+06]). An example of such a conditional execution is the use of
a network reduction technique to lower the size of a network topology if it were otherwise
too large for processing by a network optimization approach. In addition to such a proactive
conditional execution, the composition approach should also consider runtime exceptions that
may occur during the execution of a service, e.g., to handle an erroneous network topology.

Composition Requirement CR4 – Informational Perspective
The composition approach must capture the informational perspective of a decision process
describing the data consumed and produced by each activity in the process (cf. [Sun+06]).
Since the description of a decision support service already includes the definition of input and
output method data via the associated computation method, it is primarily important to capture
the data flow, i.e., how output data from one service is used as input data of a subsequent
service (e.g., the results of power flow simulation are used to identify the necessary network
investments during a subsequent asset optimization). Additionally, the composition approach
must document which data is provided by/to decision makers as input/output of the decision
process (e.g., the network topology to analyze/optimize).

Enactment Category

The enactment category aggregates requirements regarding the application of the decision
(support) process for a concrete decision problem. This requires transforming a composition
of decision support services into an executable DSS.

Composition Requirement CR5 – Instantiation
As previously discussed, a tailored DSS primarily benefits semi-structured decision problems
where the same decision process is applied to multiple instances of a decision problem (cf.
Section 2.2). For example, the same decision process for identifying cost-optimal network
investments can be applied to different regional distribution networks. In this example, the
network topology must initially be provided as input to the decision process by the decision
maker. The composition approach should consequently differ between the reusable design of
a decision process and the enactment of a process instance with concrete data.

Composition Requirement CR6 – Orchestration
The enactment of a decision support service composition should include the automated
(conditional) invocation of the selected decision support services with the necessary data. By
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eliminating the need for decision makers to navigate through the decision process themselves,
the cognitive load of decision makers can be reduced and efficiency can be increased.

Composition Requirement CR7 – Service Types
The enactment of a decision support service composition must consider the different types of
functional decision support services (cf. Section 4.4.1). For example, while an automated
decision support service such as a power flow simulation can be invoked via an HTTP request,
an interactive decision support service (e.g., for manually fixing errors in the network topology)
requires the active participation of the decision maker and therefore must be integrated into
the user interface of the tailored DSS.

Design Category

The design category aggregates requirements that support the needs of a DSS engineer who
designs a tailored DSS as a service composition.

Composition Requirement CR8 – Visual Programming
The composition approach should be accessible for DSS engineers without potentially any
programming education to facilitate participation in a decision support ecosystem. In
modern low-code development platforms, visual (model-driven) development has been proven
successful for this purpose (cf. Section 3.2.2). This requires the transformation of a visual
composition of decision support services into an executable DSS.

Composition Requirement CR9 – Learnability
The composition approach should require limited upfront training to reduce learning effort for
DSS engineers and thereby increase the adoption of the DSE approach. The need for upfront
training is significantly reduced by using a widespread notation for the documentation of a
service composition that is likely already familiar to DSS engineers.

Integration Category

The integration category aggregates requirements for the integration of the composition
approach into the overall DSE concept introduced in Chapter 4.

Composition Requirement CR10 – Service Discovery
The service composition approach must interact with the DSE service registry introduced
in Chapter 5 to inform a DSS engineer about available decision support services for an
application domain. A decision maker must also know about available data services in the
service registry during the instantiation of the decision process when using the tailored DSS.
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Composition Requirement CR11 – Model Repository
The service composition approach should be integrated into a model repository that documents
the relationship between the requirements for decision support previously specified by a
decision maker and the associated service composition created by a DSS engineer. Such a
model repository provides a foundation for future DSE lifecycle activities, i.e., to identify best
practices in addressing decision makers’ requirements for decision support.

Composition Requirement CR12 – Machine Readability
A produced service composition must be documented in a machine-readable format for the
orchestration of decision support services (cf. CR6 – Orchestration) and any (subsequent)
automated processing, e.g., by the composition assistance envisioned by the DSE concept.

6.2 Background and Related Work

This section discusses existing service composition and orchestration approaches to assess
their reusability for the development of tailored decision support systems considering the
previously presented composition requirements.

Approaches Using OWL-S, BPEL, or Custom-Made Notations

A variety of approaches for service composition already exists, as summarized by the
taxonomy of Lemos, Daniel, and Benatallah [LDB16], the literature review on RESTful
service composition by Garriga et al. [Gar+16], or the discussion of semantic web service
composition by Alwasouf and Kumar [AK19]. The classification of approaches within these
papers suggest that most service composition approaches use some (business) process-based
or workflow-based description of a service composition. This observation also aligns with the
service-oriented DSS approaches previously reviewed in Chapter 3: Becker et al. [Bec+08]
and Shafiei, Sundaram, and Piramuthu [SSP12] use the Business Process Execution Language
(BPEL) [OAS07] for describing an executable service composition. Mustafin, Kopylov, and
Ponomarev [MKP21] use OWL-S, which was previously introduced in Section 5.3. Dong
and Srinivasan [DS13] and Axelsson et al. [Axe+17] use a custom-made format to describe a
service composition without providing further details on the description format itself.

All mentioned approaches have limitations in terms of the composition requirements
introduced in the previous section. The custom-made formats do not benefit from the
documentation and examples available for existing notations, which limits CR9 – Learnability.
OWL-S, in addition to the disadvantages already discussed in Chapter 5, does not have any
tool support for the execution of a service composition other than the proof-of-concept work
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by Paolucci et al. [Pao+03] (who refer to OWL-S by its previous name DAML-S [W3C04]).
Consequently, OWL-S cannot address CR6 – Orchestration without extensive implementation
effort. BPEL does not natively support human activities [Len+18] or a visual notation [Ley10]
and therefore does not address CR7 – Service Types and CR8 – Visual Programming. It is also
tightly coupled to the web-service implementation of SOA and is thus decreasing in importance
due to the recent focus on microservices (cf. Section 3.2 and [Len16]). Although there are
some approaches to address these disadvantages of BPEL such as WS-HumanTask [OAS10]
or BPEL4REST [Pau08], a more comprehensive alternative to BPEL with a visual notation is
the Business Process Model and Notation (BPMN) [Obj13], which is discussed next.

Approaches using BPMN

BPMN is a superset of BPEL that also supports human tasks and comes with a graphical
notation [Ley10]. It is popular among domain experts due to its comprehensibility [LN12],
which also makes it easy to learn without extensive upfront training for both business and IT
professionals [Rec08]. It furthermore supports the business process lifecycle from process
modeling to process execution via a process engine [Sch+21a]. These advantages make
BPMN the “de-facto standard” of business process modeling [ADL10; BL17].

The fundamental applicability of BPMN for service composition in the context of a
service-oriented architecture is already shown in existing work. For example, Stiehl [Sti14]
describes how BPMN can be used to define a process-driven application (PDA) where a
process model describes an executable sequence of services to invoke. However, the approach
is not immediately applicable to the DSE context as it heavily relies on the (outdated) WS-*
technologies, which do not align with the more lightweight communication approach of
decision support services (cf. CR7 – Service Types and Chapter 5). The description of
the prototypical implementation suggests that the technical information required for service
invocation must be provided by a programmer and cannot be done by a domain expert
without programming skills, consequently not addressing CR8 – Visual Programming. This
disadvantage also holds for the extension of the PDA concept to support RESTful web services
described by Schäffer et al. [Sch+21a]. The approach by Valderas, Torres, and Pelechano
[VTP20] divides a BPMN model into fragments consisting of multiple activities, with each
fragment being executed by a single microservice. This mapping from multiple activities to a
single microservice does not align with the previous definition of a decision support service as
an aid for a single activity in the decision process (cf. CR2 – Operational Perspective). The
approach by Gutiérrez–Fernández, Resinas, and Ruiz–Cortés [GRR17] primarily focuses on
using a BPMN process engine for the development of individual microservices, but not for the
orchestration of services. Their approach furthermore requires the manual development of a
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graphical user interface for a microservice, which is either not in alignment with CR8 – Visual
Programming, or prevents the support of interactive decision support services as required by
CR7 – Service Types. Larrinaga et al. [Lar+22] use BPMN for the composition of services
provided by hardware components. This does not align with software- and human-based
decision support services summarized in CR7 – Service Types. Amiri [Ami18], Blal et al.
[Bla+18], and Zafar et al. [Zaf+19] describe approaches that support the design of new
microservices based on a BPMN process model. This is the opposite of the goal pursued in
this chapter, i.e., to use a process model to compose existing decision support services.

Summary of Existing Service Composition Approaches

The initially provided description of BPMN lists multiple characteristics that show its potential
to address many of the previously established composition requirements. These characteristics
particularly include its widespread visual notation to describe process models (potentially
addressing the requirements from the “Process” category as well as CR8 – Visual Programming
and CR9 – Learnability), its (repeated) executability with a process engine based on an XML
representation (potentially addressing CR5 – Instantiation, CR6 – Orchestration and CR12
– Machine Readability), and its potential support for different kinds of decision support
services (CR7 – Service Types). Thus, based on the previous discussion of existing service
composition approaches, BPMN is inherently more suitable for describing a composition of
decision support services than alternative notations such as OWL-S, BPEL, or custom-made
notations. Nevertheless, all previously discussed approaches based on BPMN do not address
all composition requirements established in the previous section. However, their limitations
seem to be originating from how BPMN is utilized within the approach and not from the
fundamental characteristics of BPMN itself. Therefore, the remainder of this chapter focuses
on conceptual and technical descriptions of how BPMN can be applied in the DSE context to
describe a tailored DSS as a composition of decision support services.

6.3 Architectural Considerations

The discussion of related work throughout the preceding Section 6.2 suggests the use of a
BPMN process model to describe a composition of decision support services representing a
tailored DSS that is subsequently enacted by a BPMN process engine. Such a (tailored) DSS
is referred to as a process-driven DSS (PD-DSS) due to its relation to the more generic concept
of a process-driven application. The realization of the PD-DSS concept has two prerequisites:
First, a refinement of the DSE reference architecture introduced in Section 4.5 is needed to
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determine if and how a BPMN-based composition approach can be integrated into the DSE
platform. Second, given a suitable architectural framework, the expressiveness of BPMN must
be evaluated to determine if and how DSE concepts can be represented using BPMN while
addressing the previously established composition requirements. This section focuses on the
architectural integration of a BPMN-based composition approach into the DSE platform by
(partially) refining the reference architecture for the DSE platform as shown in Fig. 6.2.

The PD-DSS Repository application corresponds to the Model Repository of the DSE
platform reference architecture. It acts as a central hub where DSS engineers receive the
requirements for decision support previously documented by a decision maker using the
Requirements Elicitation application. For a selected requirements documentation, a DSS
engineer uses the PD-DSS Design application to create a BPMN process model that describes
a composition of decision support service addressing the requirements. Thus, the PD-DSS
Design application corresponds to the DSS Editor of the DSE platform reference architecture,
and the PD-DSS Process Model corresponds to the DSS Model. Information about available
decision support services is obtained from the Service Registry.

The designed process model is then stored in the PD-DSS Repository application until
a decision maker wants to use the resulting PD-DSS. In that case, a decision maker uses
the PD-DSS Enactment application, particularly its Interaction component, to instantiate
the process model with data that should be used throughout the decision process. This
parametrization with data enables the reuse of the PD-DSS for similar decision problems. The
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Figure 6.2: Overview of the architecture as a UML component diagram
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invocation of decision support services is then coordinated using an (off-the-shelf) BPMN
Process Engine, which either directly invokes automated decision support services as described
in the instantiated process model, or provides a list of tasks that require manual input from the
decision maker via the Interaction module for interactive decision support services. Thus, the
PD-DSS Enactment application corresponds to both the DSS Generator and Tailored DSS of
the DSE platform reference architecture, albeit the DSS is realized by interpreting a process
model instead of a generated standalone application. Data exchanged between services is
temporarily stored in the Data Store, while the computed decision recommendations and other
output data are saved in the PD-DSS Repository for future reference.

6.4 Composition of Decision Support Services with BPMN

Although the preceding Section 6.3 shows how a BPMN-based composition approach can be
integrated into a DSE platform, it is still necessary to determine if and how the concepts defined
by the BPMN specification can be utilized to describe a tailored PD-DSS as a composition of
decision support services to address the composition requirements previously established in
Section 6.1. Based on the BPMN meta-model and its associated semantics described in the
BPMN specification ([Obj13]), this section presents a mapping from DSE concepts to BPMN
concepts to enable the reuse of existing BPMN editors and process engines in an environment
for the design and enactment of process-driven decision support systems. Furthermore, the
section presents the responsibilities of DSS engineers, decision makers, and the process engine
during the design and enactment of a BPMN-based PD-DSS. The subsequent explanations
are structured according to the process modeling perspectives introduced in Section 6.1,
i.e., the functional and operational perspective (Section 6.4.1), the informational perspective
(Section 6.4.2), and the behavioral perspective (Section 6.4.3) of a PD-DSS.

6.4.1 Functional & Operational Perspective: Tasks and Subprocesses

A PD-DSS process model must contain information about the work the PD-DSS should
perform to support the decision process of a decision maker. Consequently, a PD-DSS process
model must document the activities contained in the targeted decision process (= functional
perspective) and how each activity is supported by a functional decision support service (=
operational perspective). In BPMN, the functional and operational perspective are captured
using concepts associated with an Activity, which represents any “work that is performed
within a business process” [Obj13]. A Task is a special activity describing work which
“cannot be broken down to a finer level of detail” [Obj13] – contrary to a SubProcess, an
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activity which itself consists of multiple other activities. The excerpt of the BPMN meta-model
for activities depicted in Fig. 6.3 shows entities that are relevant for the discussion on how
to represent the functional and operational perspective of a PD-DSS in BPMN to enable the
reuse of existing BPMN process engines for PD-DSS enactment. Transparent entities are
relevant to the discussion, but not specified by DSS engineers during the design of a PD-DSS.
Refined cardinalities are highlighted. The excerpt is subsequently discussed in more detail.
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Figure 6.3: Annotated excerpt of the BPMN meta-model for the functional and operational
perspective of a PD-DSS (based on [Obj13])

Mapping Decision Support Services to BPMN Tasks

In the DSE context, the invocation of a single functional decision support service corresponds
to the atomic work represented by a BPMN task. Section 4.4.1 describes different types
of functional decision support services, i.e., automated services that do not require any
participation from the decision maker and can be provided by a software application deployed
on associated infrastructure (software-based service) or by a third-party agency (delegated
service), and interactive services that require the active participation of the decision maker
(or an appointed employee), usually via a GUI, and should be integrated into the generated
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PD-DSS (integrated service) or must be executed separately (uncontrolled service). As
indicated by the excerpt of the BPMN meta-model shown in Fig. 6.3, the BPMN specification
defines different types of tasks with different characteristics, which are differently well suited
to represent certain types of decision support services as subsequently discussed.

Service Tasks for Automated Decision Support Services A ServiceTask uses a web
service or an automated application to implement the work represented by the task. A service
task references the implementing service Operation documented in a service Interface.
The operation defines the Message-based communication with the service. In the DSE
context, each decision support service only provides a single operation characterized by the
associated computation method. Consequently, each decision support service can be modeled
as an Operation of a single Interface representing the DSE service registry. The input
message of each operation includes (references to) the data required by the decision support
service, and the output message includes (references to) the data produced by the decision
support service. The structure of these messages can be automatically derived from the
descriptions of decision support services stored in the DSE service registry, particularly from
the associated computation method (cf. Chapter 5). As a result, a DSS engineer only needs to
select the operation representing the desired decision support service for a service task during
PD-DSS design. Since the selection of a decision support service is mandatory to support an
activity in the decision process, the cardinality of operationRef is updated from 0..1 to 1.

The automated request-response interaction of service tasks naturally aligns with a
software-based decision support service provided as a software application on the associated
infrastructure. However, a service task can also represent a delegated decision support service
since the black-box characteristic of services makes it indistinguishable whether the assignee
implements the service using (unpublished) software, manual work, or a combination of
both. Thus, from a decision maker’s point of view, a delegated decision support service also
seems “automated” in the sense of the definition provided for a BPMN service task: A request
(message) with input data is provided to the service implementor, and a response (message)
with output data is returned to the decision maker.

User Tasks for Interactive Decision Support Services Contrary to an automated Service-
Task, a UserTask or ManualTask represents work that requires active human involvement.
However, the start and completion of a manual task are not tracked by the business process
engine during process enactment. Consequently, a manual task is not suitable for the
composition of decision support services as subsequent services would be executed by the
process engine without the results computed during the manual task.

A UserTask is more suitable to represent an interactive decision support service since
not only the start and completion of a user task are tracked by a process engine, but the
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BPMN specification furthermore envisions the process engine to assist the human performer
during the enactment of a user task. This assistance includes the display of a graphical user
interface during task enactment as specified in a Rendering associated with the user task.
A rendering can be automatically generated for each interactive decision support service
considering the technical capabilities of the selected business process engine. Consequently,
the DSS engineer can document the implementing interactive decision support service for a
user task by selecting its corresponding rendering during the design of the PD-DSS. Since
the selection of a decision support service is mandatory to support an activity in the decision
process, the cardinality of renderings is updated from * to 1.

The technical capabilities of a process engine selected for the implementation of the
PD-DSS Enactment application are likely limited to specific types of renderings such as
forms and may be insufficient to integrate for example interactive decision support services
provided as web applications. In this scenario, the task manager of the process engine, which
continuously publishes outstanding user tasks, can be used to display interactive decision
support services outside the process engine. From an architectural point of view, this is
already considered in the component diagram of Fig. 6.2 where the Interaction component
prompts the decision maker for input based on the tasklist received from the process engine.

Repeated Service Invocation

When processing a data collection of multiple data instances, e.g., multiple demand scenarios
for energy distribution network planning, it may be necessary to repeatedly invoke a decision
support service (or a sequence thereof) for each data instance in the collection. For this
purpose, an Activity can document MultiInstanceLoopCharacteristics for sequential
or parallel execution as visualized by three lines at the bottom of the activity. In case a
sequence of decision support services is executed in each loop, the corresponding tasks should
be aggregated into a SubProcess that is associated with the loop characteristics.

Implications for the Design of a PD-DSS

In a BPMN-based PD-DSS Design application, the previously described considerations require
a DSS engineer and the application to perform the following actions:

1. The DSS engineer places a “generic” task on the modeling canvas and specifies a
human-readable name (and optional description) for the task.

2. The DSS engineer selects the implementing decision support service for the task. Based
on the description of the selected service in the registry, the PD-DSS Design application
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transforms the task into a service task with the selected operation for automated services,
or into a user task with the selected rendering for interactive services.

3. The DSS engineer identifies tasks that are executed multiple times for different data
instances of a data collection. For a single affected task, the DSS engineer specifies
whether task instances are executed in parallel or sequentially. For multiple consecutive
tasks, the DSS engineer wraps them in a subprocess with the desired loop characteristics.

Figure 6.4 shows the functional and operational perspective of an exemplary PD-DSS model.
The gray circles indicate examples of the previously described actions. The IDs of services
selected by a DSS engineer are visualized as BPMN comments. First, the creation of multiple
potential scenarios describing the future energy demands of consumers is implemented using
an (integrated) interactive decision support service. Each scenario is subsequently evaluated
in parallel without decision maker intervention by computing the effects on asset loads and
determining optimal network investments with respective (software-based) automated decision
support services. Lastly, robust investments are identified by the decision maker as part of an
(uncontrolled) interactive user task.
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Figure 6.4: Functional and operational perspective of an exemplary PD-DSS process model

Implications for the Enactment of a PD-DSS

Since the different types of decision support services can be mapped to BPMN tasks, the
BPMN engine of the PD-DSS Enactment application can simply execute the tasks as prescribed
by the BPMN specification. Thus, an automated decision support service represented as
a service task can be invoked using an HTTP request. For an interactive decision support
service represented as a user task, the process engine halts execution and notifies the decision
maker about required input such that the decision maker is not required to actively wait
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in front of the PD-DSS during the enactment of non-interactive automated services. If a
user task is implemented by an integrated decision support service, the UI of the service is
either directly shown by the process engine via the associated rendering, or it is shown in
cooperation with the Interaction component of the PD-DSS Enactment application. This
requires each integrated decision support service to provide a button in its user interface that a
decision maker can use to signal the completion of the task so that the engine can continue the
enactment of other tasks. If a user task is implemented by an uncontrolled decision support
service that is implemented outside of the PD-DSS, the engine simply shows the decision
maker the task description and a UI to indicate the completeness of the task, including a form
to submit the data that was generated throughout the task.

6.4.2 Informational Perspective: Data and Data Associations

The decision support services associated with BPMN tasks follow the IPO principle, i.e., they
require input data and produce output data. Input data for a service can either be provided by
the decision maker as input to the overall decision process, or by a previously executed service.
This informational process perspective – also referred to as data flow – can be captured with
the excerpt of the BPMN meta-model shown in Fig. 6.5. As before, entities that can be
automatically generated are shown transparent, and updated cardinalities are highlighted.

Mapping of Computation Methods to Input/Output Specifications

Modeling the data exchange in BPMN requires each Activity (cf. Fig. 6.3) to have an
InputOutputSpecification, which documents the data required for the execution of
the activity as DataInputs, and the data produced during the execution of the activity as
DataOutputs. These data inputs and outputs align with the input and output method data of
the computation method implemented by a decision support service. Consequently, after a
decision support service has been selected by the DSS engineer for the implementation of a
task, the associated I/O specification can be generated from the service description stored in
the service registry (cf. Chapter 5). Multiple InputSets can be defined to specify that only
a subset of DataInputs may be required for the execution of the activity, each potentially
producing only a subset of DataOutputs as specified by an OutputSet. This can be used to
model the optional input and output method data of computation methods.

Data Exchange

Once the data inputs and outputs of an activity have been defined, data exchange can be
modeled by specifying the origin of a data input and the target of a data output using
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a DataAssociation. In particular, a DataInputAssociation describes how data is
provided to a data input of an activity, and a DataOutputAssociation describes how a data
output is utilized. Data is copied from sourceRef to targetRef as documented by each
DataAssociation. For simplicity, data can only be obtained from one source.

Data associations can directly specify the data input of an activity as the target and the data
output of an activity as the source. However, since data inputs and outputs are only visualized
for the overall process and not for individual activities, output data is instead copied into an
intermediate DataObject that is shown in a process model as a visual representation of a
process variable. Afterwards, the data can be copied from the data object into the designated
data input of an activity with a second data association. As a result, the source of a data
input association can be a data object or a process data input, and the target of a data output
association can be a data object or a process data output. During the enactment of the PD-DSS,
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process data inputs must be provided by the decision maker and process data outputs are
provided to the decision maker. For configuration data of a service, which is neither provided
by the decision maker nor generated by another decision support service, a DSS engineer can
also specify the ID of a data service that should be copied into a data object during PD-DSS
enactment. The corresponding Service-class uses the extension mechanism of BPMN.

A data object/input/output can be a collection of multiple data instances as indicated by the
boolean isCollection flag, which results in the addition of three vertical lines at the bottom
of the document representing the data. If the data-receiving activity documents multi-instance
loop characteristics, the activity is executed once for each data instance in the collection. The
output of repeated subprocess execution is also aggregated into a data collection.

Data Format Conversion

Data provided by a decision maker or generated by a decision support service may use a data
format that is incompatible with the supported data formats of a subsequent service. While
it is possible to simply add tasks for data format conversion to the process model, repeated
use of conversion tasks potentially adds visual clutter to the graphical representation process
model. Therefore, the transformation attribute of a data association can be used to specify
the ID of a functional service that provides the necessary data conversion.

Implications for the Design of a PD-DSS

In a BPMN-based PD-DSS Design application, the previously described considerations require
a DSS engineer and the application to perform the following actions:

1. When a DSS engineer selects a decision support service for the implementation of a
task, the application automatically creates the I/O specification for the task based on the
description of the selected decision support service in the DSE service registry.

2. The DSS engineer adds process data inputs and outputs for data that is provided by or to
the decision maker before and at the end of PD-DSS enactment.

3. The DSS engineer adds data objects for data that is exchanged between activities or for
static data that is provided by a fixed data service selected during design time.

4. The DSS engineer declares data objects/inputs/outputs as data collections where
applicable. This may be done automatically by the PD-DSS Design application based
on the description of the selected decision support service.
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5. The DSS engineer connects data objects/inputs/outputs and activities with data associa-
tions. For a data (output) association from an activity to a data object or process data
output, the DSS engineer specifies the name of the output method data to copy into the
target data object/output as the source. For a data (input) association from a data object
or process data input to an activity, the DSS engineer specifies the name of the input
method data to copy the data into as the target. The DSS engineer selects a service for
data format transformation if necessary.

Figure 6.6 shows the informational perspective of an exemplary PD-DSS process model excerpt
for energy distribution network planning. The tasks themselves are shown transparently as
they originate from the previously discussed functional perspective. The gray circles indicate
examples of the previously described actions. A demand scenario provided by the decision
maker is used as the demands input of the service simulating asset loads. The asset loads
produced by the service under the output loads are used for the subsequent optimization
service as input with (coincidentally) the same name. The available asset types are selected by
the DSS engineer during the design of the PD-DSS via the Service property. The investment
plan produced by the optimization service as output invPlan is returned to the decision
maker as it constitutes the output of the process. It is previously transformed from CSV to
PDF format using the specified decision support service.

Implications for the Enactment of a PD-DSS

Before a composition of decision support services can be enacted, the PD-DSS Enactment
application must first prompt the decision maker for process data inputs via its Interaction
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Figure 6.6: Informational perspective of an exemplary PD-DSS process model
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component. For this purpose, the decision maker selects data services from the DSE service
registry. Temporary data services can be created ad-hoc from uploads if the data will not be
reused in the future. The selected data is then made available to the BPMN process engine for
the enactment of the PD-DSS process model, which coordinates the data exchange between
activities. The results of the enactment, i.e., process data outputs, are made available to the
decision maker as a download in the model repository (cf. Fig. 6.2).

Data Exchange per Service Type For service tasks implemented by an automated decision
support service, the required data is included in the HTTP request to invoke the service. For
user tasks implemented by an integrated decision support service, the input data must be
provided to the integrated software module, and the module must forward the data to the engine
once the decision maker indicates the completion of the task. For user tasks implemented by
an uncontrolled decision support service, the data must be provided to the decision maker for
manual processing, e.g., for import into an external software application. The decision maker
must furthermore be able to provide the engine with the data produced during task execution.

Reference-Based Data Exchange The explanations of the informational perspective provided
so far suggest that data objects (including process data inputs and outputs) hold the complete
data that is provided to or produced by a decision support service implementing a task.
However, the BPMN process engine would potentially receive large payloads in response to a
service invocation, just to subsequently include the payload in a request to (one or multiple)
other services. Also, for data services that specify a URL to the data set as part of their
service description, the engine would need to initially download the data before immediately
forwarding it to the relevant services. This data passing with the engine as a “middleman” is an
unnecessary back and forth that can be avoided by providing a central data store where services
can download the data required for their invocation and upload the data produced during their
execution. As a result, invocation of services corresponds to a single message with key-value
data, where each key represents an input method data of the computation method implemented
by the decision support service, and the associated value is a URI [IET05] pointing to the data.
The response of a service has the same key-value structure, except that the keys correspond to
output method data. Although this reference-based data exchange introduces a minor overhead
for service providers as they have to implement initial data fetching for each of their services
(which could potentially be simplified using generic adapters), it comes with two significant
advantages: First, assuming proper versioning, services can cache data instances of data
services and do not need to download them again. Second, if decision support services and the
data store for (temporary) data generated during service execution are placed in the same data
center, data exchange is significantly faster compared to the initially described “middleman
engine”. However, this advantage can result in a cloud vendor lock-in.
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Consideration of Metadata The previously discussed reference-based data exchange also
comes with a disadvantage: When the BPMN process engine no longer receives any provided
or produced data, it cannot evaluate the data to decide on the conditional invocation of
decision support services as documented in the upcoming behavioral perspective. However,
as indicated during the explanations of the language for describing decision support services
in the previous Chapter 5, access to the complete data is not necessary to specify constraints
of decision support services that may influence their conditional execution. Instead, metadata
such as the size of a network topology is sufficient. Thus, data objects (and, consequently,
the information passed to a decision support service during invocation) should not only store
references to the required data but also the associated metadata. Similarly, the metadata for
each method data should be returned in the response of a decision support service.

6.4.3 Behavioral Perspective: Sequence Flows, Gateways & Events

The functionality of a PD-DSS is not only characterized by the activities of the supported
decision process and their implementation with decision support services, but also whether
these activities are enacted in sequence or in parallel, or only under certain conditions. So far,
the order of activity enactment has only been documented implicitly, e.g., with the left-to-right
placement of activities in Fig. 6.4 or the data dependencies in Fig. 6.6. The behavioral
perspective of a PD-DSS provides explicit documentation for the order of activity and service
enactment. The relevant excerpt of the BPMN meta-model is shown in Fig. 6.7. The sequential
execution of model elements is made explicit by connecting them with a SequenceFlow.

Gateways

A BPMN Gateway is used to control “how Sequence Flows interact as they converge and
diverge within a Process” [Obj13]. Thus, a gateway can be used to describe the nonsequential
invocation of decision support services. For this purpose, three types of gateways are relevant:

Parallel Execution of Decision Support Services A ParallelGateway initially splits
an incoming sequence flow into multiple sequence flows that are subsequently executed in
parallel. This can be used for the parallel execution of decision support services without data
dependencies between each other for increased efficiency. The parallel sequence flows are
later joined with another parallel gateway to ensure all parallel flows are completed before
subsequent activities are executed.

Conditional Execution of Decision Support Services An ExclusiveGateway also has
multiple outgoing sequence flows, but each flow is associated with a FormalExpression that
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Figure 6.7: Annotated excerpt of the BPMN meta-model for the behavioral perspective of a
PD-DSS process model (based on [Obj13])

uses a predefined expression language to formally document a condition that must evaluate
to true in order to proceed with the sequence flow. During process execution, only the first
sequence flow whose condition evaluates to true is selected. A human-readable form of the
condition is written over the arrow representing the sequence flow. In the DSE context, an
expression can be defined with respect to the metadata of a provided/produced data object.
For example, the “size” attribute of a network topology can be evaluated to decide whether
the network can still be optimized using a mathematical exact optimization approach, or
whether a heuristic approach should be used to reduce execution time. For the documentation
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of a condition as a formal expression, the Friendly Enough Expression Language (FEEL)
of the BPMN-related standard Decision Model and Notation (DMN) is used [Obj21]. The
relevant excerpt of the language grammar in extended Backus-Naur form (EBNF) is shown
in Listing 6.1. The excerpt additionally introduces the clauses object holding all valid
names of data objects of the BPMN process model, and attribute to reference a metadata
attribute defined by the data type associated with the data stored in the data object. For
example, the choice of using a mathematical exact optimization approach can be expressed
as NetworkTopology.Size < 1000. In addition to data objects, a qualifier can also refer
to a resource to support the execution of different activities based on resources available to
the decision maker, e.g., to execute a heuristic optimization instead of a mathematical exact
optimization if Resources.Time < ‘1h’.

Combined Conditional and Parallel Execution of Services An InclusiveGateway
combines an exclusive and parallel gateway: All conditions of outgoing sequence flows are
evaluated and potentially executed in parallel if multiple conditions evaluate to “true”.

Events

A BPMN Event describes something that can happen during process execution and requires
or allows for a reaction, thus impacting the execution of tasks (cf. [Obj13]). Although
BPMN defines multiple types of events (based on EventDefinition), the most relevant
event for a composition of decision support services is an error event. An ErrorEvent
as a BoundaryEvent is associated with an Activity and has an outgoing sequence flow

Listing 6.1: EBNF for expressing conditions based on FEEL [Obj21]

qualifier = ( object, ".", attribute ) | resource ;

operator = "=" | "!=" | "<" | "<=" | ">" | ">=" ;

literal = string | integer | boolean | datetime ;

unarycomparison = qualifier , operator, (literal | qualifier) ;

list = "[", ( (string, {",", string }) |

(integer, {",", integer}) ), "]";

listcomparison = (qualifier | list), " in ", (qualifier | list) ;

comparison = unarycomparison | listcomparison ;

conjunction = "(", condition , " and ", condition , ")" ;

disjunction = "(", condition , " or ", condition , ")" ;

condition = comparison | conjunction | disjunction ;
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that is executed instead of the regular sequence flow attached to the activity if an error is
caught. The error event only catches instances of the specified Error if referenced, otherwise,
the alternative sequence flow is executed for all errors. This aligns with the exceptions
that can potentially occur during the execution of a decision support service implementing
a computation method (cf. Chapter 5). For example, a service task “mathematical exact
optimization” for a network topology could throw an exception that the network topology is
incomplete, which would trigger a user task to fix the topology and later restart the optimization.
A boundary error event can potentially throw data that can be stored in a data object using
a data association. Other relevant events include the StartEvent and EndEvent, which
document the start and end of a process respectively.

Implications for the Design of a PD-DSS

In a BPMN-based PD-DSS Design application, the previously described considerations require
a DSS engineer and the application to perform the following actions:

1. When creating a new process model, the PD-DSS Design application automatically
adds a start event and end event for documenting the start and end of the process.

2. The DSS engineer places gateways before and after (sequences of) tasks that are
conditionally executed or executed in parallel.

3. The DSS engineer adds boundary error events to activities that can throw an error and
optionally specifies an error code unless all potentially thrown errors should be caught
and handled in the same way. If data is associated with the error that is subsequently
processed, the DSS engineer adds a data object representing error data and connects it
to a subsequent activity with a data association.

4. The DSS engineer connects tasks, subprocesses, gateways, and events with sequence
flows to document the order of their execution.

5. The DSS engineer adds conditions to sequence flows from gateways to activities by
defining a FEEL-expression and (optionally) a human-readable label.

Figure 6.8 shows the behavioral perspective of an exemplary PD-DSS process model for energy
distribution network planning. Again, process model elements from previously discussed
perspectives are shown transparently. Based on the size of the network topology provided by
the decision maker, either a mathematically exact or a heuristic optimization is performed. In
case of an error related to the topology, the topology is fixed manually by the decision maker



6.4. Composition of Decision Support Services with BPMN 143

based on the information provided with the error. If fixing the topology fails for any reason,
the enactment of the process/composition is stopped.

Use
mathematical
exact opt.small topology

large topology

Network Topology

...

Use
heuristic

optimization

Fix 
network
topology

Condition:
Network_Topology.Size < 1000

Condition:
Network_Topology.Size >= 1000

...

Error Code:
"TopoError"

back to
gateway
(retry)

Error Info

Error Code:
(none)

...

...

1 2 3

4

5

1

4

Figure 6.8: Behavioral perspective of an exemplary PD-DSS process model

Implications for the Enactment of a PD-DSS

The previously described concepts have no implications on the PD-DSS Enactment application
other than the underlying BPMN process engine being required to support the FEEL expression
language for the interpretation of conditions assigned to sequence flows. If the utilized BPMN
process engine only supports a different expression language with similar expressiveness,
FEEL-expressions can be converted to the supported expression language or the expression
language can be used directly in the PD-DSS process model.

Since the BPMN process engine encapsulated in the PD-DSS Enactment application
coordinates the invocation of decision support services, the perspective does not require any
additional effort from decision makers during the enactment of the PD-DSS process model.

Decision support services should explicitly indicate in their response whether their
execution was successful or not, as this implies whether the response should be interpreted as
the regular output of the associated computation method or an error payload. For this purpose,
the existence of the error code in the response is sufficient to indicate that an error occurred.
Similar to a regular response, the error payload is returned as a reference to an item in the data
store, and only associated metadata is included in the response.
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6.5 Prototypical Implementation

This section provides technical insights to discuss the potential reusability of existing BPMN
editors and process engines for the implementation of the previously described concept of
using BPMN to model a tailored PD-DSS as a composition of decision support services. Due
to this emphasis on reusability, the remainder of this section focuses on the implementation
of the PD-DSS Design application (Section 6.5.1) and the PD-DSS Enactment application
(Section 6.5.2). The PD-DSS Management application works fundamentally similar to a
content management system and could therefore be built upon the headless CMS Payload that
was already used for the prototypical implementation in Chapter 5. Nevertheless, a mockup
showing a skeleton for the potential user interface of the PD-DSS Management application is
shown in Fig. 6.9. The figure depicts the view for editing a single PD-DSS with references
to the requirements for decision support that motivate the development of the PD-DSS, a
preview of the PD-DSS process model with a button to edit the model using the PD-DSS
Design application, and the results of previous PD-DSS enactments with a button to start a
new enactment using the PD-DSS Enactment application.

New Enactment

PD-DSS Repository

<Process Model Preview> Edit

Process Model:

Enactment Results:

<PD-DSS Name> View Requirements

<Date>

<PD-DSS Description>

Figure 6.9: Mockup of the PD-DSS Repository application
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6.5.1 Implementation of the PD-DSS Design Application

The bpmn-js1 library was evaluated for the visual editing of a BPMN process model within the
PD-DSS Design application. As shown in the screenshot depicted in Fig. 6.10, the application
consists of the modeling canvas where the DSS engineer assembles the PD-DSS process
model from the elements shown in the left toolbox, and a property editor on the right where
the currently selected element is configured (shown as comments in Figs. 6.4, 6.6 and 6.8).

The prototypical implementation demonstrates the potential reusability of the bpmn-js
library for the implementation of the PD-DSS Design application. However, for simplicity,
the property editor saves properties as BPMN extension elements instead of manipulating the
native BPMN entities. For example, the editor saves the ID of a selected decision support
service using a service extension instead of creating/linking to an instance of Operation
or Rendering respectively. This is because a conversion of the process model is necessary
anyway due to limitations of existing BPMN process engines as explained during the upcoming
discussion of the PD-DSS Enactment application, and implementing the property editor based
on extension elements increases code reusability and thereby reduces implementation effort.

Figure 6.10: Screenshot of the PD-DSS Design application

6.5.2 Implementation of the PD-DSS Enactment Application

The core of the PD-DSS Enactment application is the BPMN process engine. It invokes
decision support services as specified in the PD-DSS process model. The most practically

1 Library website: https://bpmn.io/toolkit/bpmn-js/

https://bpmn.io/toolkit/bpmn-js/
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relevant BPMN process engines include Activiti2, Camunda3, and jBPM4 [Len16; Len+18].
However, all engines are subject to two challenges that require a workaround to enable their
reuse for the implementation of the PD-DSS Enactment application:

Challenge 1: Different Implementations of the BPMN Specification

Although subject to the same BPMN specification, BPMN process engines have different
capabilities. According to Lenhard et al. [Len+18], this can be attributed to inconsistencies
and ambiguities in the BPMN specification, process engines deviating from the specification
or only implementing parts of it, and the overall absence of a certification process that
guarantees the compatibility of a process engine with the BPMN specification. For example,
all described engines use an engine-specific custom extension for the invocation of external
services via HTTP instead of relying on the message-based communication approach included
in the BPMN specification. The Camunda engine even uses an engine-specific approach to
document the data exchange between activities [Cam22]. Attempts to define a compatibility
layer across engines in the form of BPMN-I [Sil11, Ch. 18] have not been successful so far.

The previously described observation implies that a PD-DSS process model created with
the PD-DSS Design application must first be converted into an engine-specific process model
before it can be enacted. The PD-DSS Enactment application can transparently perform
this conversion after instantiation, i.e., after the decision maker has selected the input data
for enactment (cf. Fig. 6.11). The prototypical evaluation demonstrates the fundamental
feasibility of such a conversion for the Camunda engine, which was selected due to its
accessible documentation and support for FEEL-expressions.

Challenge 2: Interactive User Tasks

A second challenge that affects all three previously listed BPMN process engines is the
representation of interactive decision support services as user tasks. Both Camunda and
Activiti only support the display of forms associated with a user task, which does not
support the integration of arbitrary (web-based) user interfaces as required for an integrated
interactive decision support service. The jBPM engine supports the WS-HumanTask [OAS10]
specification, which – similar to the BPMN specification – does not include concrete details
on how to define user interface renderings for user tasks.

As a workaround, the selected Camunda process engine includes the Tasklist application5,

2 Website: https://www.activiti.org/
3 Website: https://camunda.com/
4 Website: https://www.jbpm.org/
5 TaskList documentation: https://docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/

https://www.activiti.org/
https://camunda.com/
https://www.jbpm.org/
https://docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/
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PD-DSS Enactment

Instantiation

Data Service File Upload

<Process Data Input Name>

Select the data inputs for “<PD-DSS Name>”.

Data Service Selection

...

Figure 6.11: Mockup of the PD-DSS Enactment application for initial data selection

which provides an API to list and complete user tasks. This API can be used by the Interaction
component of the PD-DSS Enactment application to query open user tasks, display the
associated interactive decision support services to the decision maker, and return the results
of the interaction to the process engine to continue enactment of the service composition
(cf. UI Container in Fig. 6.12, which gets replaced by the user interface of the currently
executed integrated decision support service, a generic user interface for the download and
upload of data required for or produced by an uncontrolled decision support service, or a
placeholder indicating the execution of an automated decision support service). Since the
implementation of alternative web-based frontends for the Tasklist application have already
been discussed in the Camunda blog [Mue18], they were not considered throughout the
prototypical implementation.

6.6 Discussion

This section discusses the presented conceptual and technical insights with respect to the
composition requirements introduced in Section 6.1. Since the requirements of the “Process”
category directly map to the subsections of Section 6.4 (i.e., CR1 – Functional Perspective
and CR2 – Operational Perspective to Section 6.4.1, CR4 – Informational Perspective to
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Figure 6.12: Mockup of the PD-DSS Enactment application during process model execution

Section 6.4.2, and CR3 – Behavioral Perspective to Section 6.4.3), the associated insights
are not repeated here to avoid redundancy. The fundamental applicability of the described
concepts was demonstrated with the excerpts of exemplary PD-DSS process models in the
domain of energy distribution network planning. In this context, it is important to note
that the strict separation of perspectives and design actions among sections was chosen for
presentation purposes. In a real-world situation, a DSS engineer will likely iteratively refine a
process model for all perspectives, e.g., add two tasks, connect them with a sequence flow and
document their data exchange before adding additional activities.

The reusability of a designed PD-DSS, which is required as part of CR5 – Instantiation, is
achieved with process-level data inputs during the design of the PD-DSS for which the decision
maker must select (temporary) data services when instantiating the PD-DSS process model
before its enactment. The reuse of an existing BPMN process engine for the enactment of the
process model furthermore addresses CR6 – Orchestration. Both the design and enactment of
a PD-DSS process model support (web-based) automated and interactive decision support
services, which addresses CR7 – Service Types. In particular, the option to integrate custom
user interface elements into the PD-DSS differentiates the approach from other tools for the
definition of data engineering pipelines such as Apache Airflow6. A feature that is prominent in
BPMN but not considered so far is the assignment of different user tasks to different workers.

The visual notation provided by BPMN, in addition to the fact that BPMN is widespread
and applicable for domain experts without extensive upfront training, addresses both CR8 –
Visual Programming and CR9 – Learnability. Learnability is further increased by transforming
a PD-DSS process-model created using the PD-DSS Design application into a representation

6 Website: https://airflow.apache.org/

https://airflow.apache.org/
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that is specific to the utilized BPMN process engine, allowing DSS engineers to focus on
the visual specification of the PD-DSS process model without considering its technical
implementation. The scalability of the notation, i.e., its suitability to represent extensive
process models, should be further evaluated, especially for the informational perspective as
many data objects and associations may become too “visually verbose”. However, potential
scalability issues can be addressed by using subprocesses as those can be collapsed within a
single process model, LinkEvents to add additional layout flexibility, or a CallActivity to
invoke a (sub)process specified in a different process model. The latter can also foster the
reusability of partial PD-DSS process models.

As evident from the architectural overview given in Section 6.3, the composition approach
integrates with other DSE applications. In particular, the integration includes interfacing
with the DSE service registry to obtain information about available decision support services
(CR10 – Service Discovery) and the PD-DSS Management application integrates with the
Requirements Elicitation application to document the requirements for decision support that
motivated the development of a tailored PD-DSS (CR11 – Model Repository). However,
the traceability between requirements and design currently is only provided textually with
the description of the PD-DSS and could be transformed into a structured representation for
further (automated) processing. Lastly, the XML representation of a BPMN process model
addresses CR12 – Machine Readability.

6.7 Key Takeaways

A tailored DSS can be represented as a BPMN process model that describes a composition
of decision support services. Such a DSS is referred to as a process-driven decision support
system (PD-DSS). A BPMN process model is especially suitable for composing decision
support services due to its ability to capture the functional, operational, informational, and
behavioral aspects of a DSS. Although a subset of the BPMN specification is sufficient to
model a tailored PD-DSS, the prototypical implementation of the PD-DSS concept indicates
that the reuse of an existing BPMN process engine to support the enactment of a PD-DSS
requires model transformation to address the limitations of available engines. The final
architecture of the implementation consists of three applications for the design, enactment,
and management of PD-DSS process models.

The upcoming chapter describes a composition assistance that integrates with the PD-
DSS Design application to support DSS engineers in designing the functional, operational,
informational, and behavioral characteristics of a PD-DSS.
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CHAPTER 7
Composition Assistance

The process-driven approach to DSS development presented in Chapter 6 already enables
DSS engineers to provide each decision maker with a tailored (PD-)DSS as a composition
of decision support services. Nevertheless, the overall DSE design proposed in Chapter 4
recommends an additional assistance system that supports DSS engineers during service
composition by automatically suggesting improvements to the efficiency and effectiveness of
a PD-DSS service composition. The composition knowledge propagated by the composition
assistance is gathered throughout the last DSE lifecycle phase, for example, from feedback
provided by decision makers after using a PD-DSS (cf. Fig. 7.1).

This chapter contributes a design for such a supporting composition assistance based on
the papers “Detecting Data Incompatibilities in Process-Driven Decision Support Systems”
by Kirchhoff, Gottschalk, and Engels [KGE22] and “Anti-pattern Detection in Process-Driven
Decision Support Systems” by Kirchhoff and Engels [KE22]. In addition to composition
knowledge manually contributed by composition experts, the assistance can also automatically
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Figure 7.1: Focus of Chapter 7 with respect to the DSE lifecycle
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derive composition knowledge from the documentation of the application domain and its
decision support services. The proposed assistance design integrates with the PD-DSS Design
application used by DSS engineers and continuously provides feedback to improve functional,
behavioral, informational, and operational characteristics of a PD-DSS process model.

The chapter first discusses some fundamental design considerations for the composition
assistance, including its architectural integration into the PD-DSS development environment
described in Chapter 6 and a documentation format that is used throughout subsequent
sections (Section 7.1). The insights of the discussion are then transformed into fundamental
requirements for the composition assistance (Section 7.2). The design of the composition
assistance consists of three individual assistance implementations, which focus on the validation
of different perspectives in a PD-DSS process model documenting the composition of decision
support services, i.e., the operational (Section 7.3), informational (Section 7.4) and functional
and behavioral perspective (Section 7.5). Each subsection for an individual assistance defines
additional requirements, includes a discussion of related approaches, and describes the design
and demonstration of the assistance, including the provision of composition knowledge. Lastly,
the insights over all assistance approaches are summarized (Section 7.6).

7.1 Upfront Design Considerations

This section first discusses multiple fundamental approaches to the implementation of a
composition assistance and presents a validation-based composition assistance as the most
impactful approach when establishing a DSE (Section 7.1.1). Afterwards, the architectural
integration of a validation-based assistance into the PD-DSS development environment of
Chapter 6 is explained (Section 7.1.2) and the description format for validation rules is
presented as a foundation for subsequent sections (Section 7.1.3).

7.1.1 Approaches to Composition Assistance

The composition assistance can be any approach that integrates with the PD-DSS Design
application used by DSS engineers to support them in the design of an effective and efficient
PD-DSS. Providing a detailed solution design for all imaginable assistance approaches is out
of the scope of this thesis. Therefore, this section discusses the advantages and disadvantages
of fundamental composition assistance approaches and selects an approach that is most
beneficial for the implementation of a DSE. Approaches are subsequently classified into
recommendation-based and validation-based composition assistance.
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Recommendation-Based Composition Assistance

The goal of recommendation-based assistance is to proactively enforce the design of service
compositions that effectively and efficiently address the requirements for decision support of a
decision maker. For this purpose, the assistance restricts or suggests changes to the process-
based composition of decision support services. This thesis considers three (non-exclusive)
approaches to the implementation of a recommendation-based assistance:

Pattern-based Composition Assistance provides DSS engineers with patterns as
blueprints for service compositions that can be instantiated and potentially nested, but
not extended from within the PD-DSS Design application. Thus, patterns constrain service
compositions that can be designed to those that are demonstrably effective and efficient. A
pattern essentially defines the activities of a (partial) decision process and their execution
sequence. As a result, a DSS engineer only needs to select decision support services for
the implementation of these activities and define the dataflow between them. For energy
distribution network planning, a DSS engineer may for example first select a generic process
pattern for the optimization of a network topology that consists of the phases “scenario
creation”, “load forecasting”, “topology optimization”, and “investment plan identification”.
Next, the DSS engineer refines each phase by selecting a nested pattern, e.g., a topology
optimization that already includes the conditional execution of a network topology reduction
on the condition that the network topology exceeds a certain size. Finally, the DSS engineer
selects the implementing decision support services for activities. The described approach
is very similar to the approach implemented by Gottschalk et al. [Got+23] for situational
business model development. In the DSE context, patterns can be extracted by composition
experts based on the service compositions stored in the PD-DSS Repository application.

Arguably, a lightweight variant of the pattern-based composition approach is already
contained in the PD-DSS development environment described in Chapter 6: A DSS engineer
can obtain an existing composition of decision support services from the PD-DSS Repository
application and replace the contained decision support services without having to change
the dataflow between activities if both the previously selected services and the newly chosen
services implement the same computation method. While this approach does not support
pattern nesting out-of-the-box, it still provides DSS engineers with an option to build their
composition of decision support services based on established practices. However, this
approach would still allow DSS engineers to edit the resulting composition of decision support
services. Since mistakes can be introduced during these manual edits, there is still a need to
validate the designed service composition afterwards. This validation need can be avoided
by preventing any manual edits, however, this may restrict a DSS engineer in effectively
addressing a decision maker’s requirements for decision support if the use case of the decision
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maker is not yet covered by existing compositions. This disadvantage also holds for the
originally described pattern-based composition approach if no pattern combination aligns
with the use case or requirements of the decision maker. Furthermore, it is still possible to nest
and combine patterns that are incompatible or do not address the requirements for decision
support documented by a decision maker. Therefore, validation of a PD-DSS process model
is also required when using a pattern-based composition approach.

Usage-based Composition Assistance uses historical usage data to provide a DSS
engineer with recommendations for decision activities and implementing decision support
services to use for the development of a PD-DSS. These recommendations can be described
as a conditional probability, i.e., given the defined decision process so far, what activity with
which computation method and decision support service will most likely come next? For
example, in the domain of energy distribution network planning, the assistance might suggest
starting the process with an activity for simulating consumer demands, which is implemented
by a decision support service that extrapolates historical consumer demands. The conditional
probabilities for computation methods and services can be determined based on their usage in
the compositions stored in the PD-DSS Repository application described in Chapter 6.

Two variants of this approach are imaginable: The first variant presents multiple rec-
ommendations for the next activity to the DSS engineer, who is responsible for the final
selection. The second variant iteratively combines the most probable recommendation to
complete the whole decision process, thus reducing the involvement of the DSS engineer to
the correction of mistakes and restarting the recommendation-based generation from that
point onwards. Both variants come with the risk of “error propagation”, i.e., mistakes that
are frequently included in existing compositions are most likely also recommended for new
compositions. There are consequently high expectations on DSS engineers to catch such
mistakes as well as misalignments of the recommendations with the requirements for decision
support documented by a decision maker. The workload of DSS engineers can be reduced by
introducing an additional validation of the proposed service compositions.

Automation-based Composition Assistance utilizes automated service composition to
provide a DSS engineer with a complete composition to address all individual requirements
for decision support of a decision maker. This approach is similar to the iterative variant of the
previous usage-based composition assistance, however, deterministic approaches for service
selection based on domain knowledge and the underlying requirements for decision support are
applied, e.g., similar to the service-oriented DSS approaches discussed in Section 3.3.3. The
responsibilities of a DSS engineer thus reduce to either selecting the most suitable composition
if multiple compositions are presented, or adapting a single recommended composition in
case it addresses most but not all documented requirements for decision support.
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Although the previous explanations of the automation-based composition assistance
suggest that the involvement of the DSS engineer can be reduced and therefore the efficiency
during PD-DSS development can be increased, this is not necessarily the case for multiple
reasons: First, it is hard to estimate how many compositions are possible to address a specific
set of decision support requirements. Especially when the automated composition algorithm
has no semantic understanding of the decision support activities in an application domain, the
DSS engineer must potentially browse through many unsuitable compositions before finding
one which is efficient and effective with respect to the considered requirements for decision
support. This also requires the DSS engineer to validate each proposed service composition
manually. If only one composition is proposed, or a “close-enough” composition is identified
and manually refined by the DSS engineer, the DSS engineer can still introduce mistakes into
the service composition. Thus, this approach would also profit from an additional validation
of the proposed/refined composition of decision support services.

Validation-Based Composition Assistance

A validation-based composition assistance improves the quality of a decision support service
composition by reporting any flaws contained in the composition to the DSS engineer via
the PD-DSS Design application. A service composition can either be statically validated
during its design or dynamically validated based on test cases that are executed against the
generated PD-DSS. Furthermore, validation can be performed manually or automatically.
However, manual validation of the composition by a composition expert is expected to result
in inefficient PD-DSS development due to the DSS engineer having to wait for feedback from
the composition expert. Instead, a validation-based composition assistance should provide
automated feedback. During design, this can for example be achieved via a mapping to formal
verification approaches that can be executed before the PD-DSS is generated from the service
composition and used by the decision maker. Assuming that validation results can be computed
in (near-)real-time such that the DSS engineer can immediately address any identified issues,
an automated validation-based assistance counts as constructive quality assurance since the
quality of the derived artifact (PD-DSS) is enforced during its construction [Hof08, Ch. 3].

Implications for the Design of the DSE Composition Assistance

Since any variant of the recommendation-based composition assistance should be accompanied
by a validation of the proposed service composition, this thesis subsequently focuses on the
design of an automated validation-based composition assistance that continuously evaluates a
service composition during its design. A PD-DSS process model can be validated regarding its
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completeness with respect to the modeling conventions of Chapter 6 and its compliance with
respect to the requirements for decision support documented by a decision maker captured
using the description approach of Chapter 5. Since the validation rules for process model
completeness can be directly derived from the explanations of Section 6.4 and require limited
explanations, they are only provided as supplementary material in Appendix A.

7.1.2 Integration into the DSE Platform

Figure 7.2 shows the architectural integration of the validation-based composition assistance
into the DSE platform. The assistance receives the requirements for decision support specified
by the decision maker and the associated (intermediate) PD-DSS process model created by
the DSS engineer via the PD-DSS Design application. In turn, the composition assistance
provides feedback regarding the PD-DSS process model, which can be displayed to the DSS
engineer either as a list or within the modeling canvas next to the affected elements of the
PD-DSS process model. The composition assistance partially derives composition knowledge
from the documentation of the application domain and its decision support services.
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Figure 7.2: Integration of the composition assistance into the DSE platform

The remainder of this chapter describes three complementary approaches to the imple-
mentation of the composition assistance with a focus on the validation of the operational
perspective (Section 7.3), the informational perspective (Section 7.4), and the functional and
behavioral perspective (Section 7.5) with additional architectural considerations to include
composition knowledge of composition experts.
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7.1.3 Documentation of Validation Rules

Any non-conformity of a designed PD-DSS process model with the PD-DSS modeling
conventions and the requirements for decision support of a decision maker is reported to the
DSS engineer as a violation, i.e., a flaw that must or should be addressed by updating the
PD-DSS process model. The explanations of the assistance throughout the remainder of this
chapter (and Appendix A) use a tabular format to provide instructions for the detection and
communication of a violation (referred to as “violation rule”). An example is given with the
Missing Service Violation to subsequently explain the structure of the documentation format.

Missing Service Violation Severity: Error

Element: Task Phase: Design
Condition: No decision support service is selected for a task in the process model.

Message: “No decision support service is specified for decision activity [...].”

Title The title (“Missing Service Violation”) is a concise label that is presented to the DSS
engineer upon detection of a violation. The title is also referenced in textual explanations.

Severity Level Violations define a severity level of error or warning. A composition error
indicates a flaw in the PD-DSS process model that would prevent or interrupt its subsequent
enactment, e.g., because no decision support service is documented for the enactment of an
activity in case of the Missing Service Violation example, or because there is a significant
deviation in the requirements for decision support documented by the decision maker, e.g.,
the use of a prohibited computation method. A composition warning is used for violations
that do not prevent the enactment of a PD-DSS but are an indicator for a “bad smell”, e.g., the
generation of unused data or the use of a computation method that should be avoided.

Element and Condition The element and condition properties of a violation rule describe
what process model elements need to be analyzed to detect the violation and what condition
must hold for the violation to be present. For the Missing Service Violation, each task of the
process model must be analyzed to check if a decision support service has been selected for
the implementation of the task.

Phase The phase of a violation rule documents when the violation is checked for: during the
design of the PD-DSS process model or during instantiation, i.e., after the decision maker has
selected data for the data inputs of the process, but before any decision support service has
been invoked. For the Missing Service Violation, the presence of a service selection can be
analyzed during the design of the PD-DSS process model.



158 Chapter 7. Composition Assistance

Message The message, in addition to the title and the severity level, is returned to the
PD-DSS Design application for display to the DSS engineer. An ellipsis ([...]) in a message
is a parameter that includes the name or property of affected elements that motivate the
reporting of the violation. For the Missing Service Violation, an example for a message is

“No decision support service is specified for decision activity [Optimize network topology]”,
where “Optimize network topology” is the label of the task for which no decision support
service was selected. It is assumed that DSS engineers can click on a parameter value in the
PD-DSS Design application to jump to the affected element for efficient bug fixing.

7.2 Cross-Cutting Requirements

The validation-based assistance approaches described in the next three sections focus on the
detection of violations in different PD-DSS process model perspectives, i.e., the operational,
informational, and functional/behavioral perspective. Although each perspective has individual
design requirements, the previous considerations imply several cross-cutting assistance
requirements ARCx that affect all perspectives and are summarized here to avoid redundancy.

Assistance Requirement ARC1 – Static Validation
The approaches for composition assistance should validate the effectiveness and efficiency of
the designed service composition before the resulting PD-DSS is used by decision makers
during the enactment of their decision process. This upfront validation ensures that the
decision process can be enacted without requiring interruptions to implement fixes in the
service composition as this could potentially invalidate any progress made so far. This implies
that violations should preferably be detected during the design phase whenever possible.

Assistance Requirement ARC2 – Traceable Feedback
The feedback provided to a DSS engineer should be traceable such that affected process model
elements can be quickly identified and corrected. This implies the use of parameters in the
message of a violation rule whenever possible.

Assistance Requirement ARC3 – Comprehensive Feedback
The feedback provided to a DSS engineer should be comprehensive, i.e., explain the reason for
a violation so that a DSS engineer knows how to correct the flaw in the service composition.

Assistance Requirement ARC4 – Continuous Feedback
A DSS engineer should receive continuous feedback during service composition and not only
at the end of the composition activity. This ensures that flaws are detected early and can be
addressed before completing the composition on a defective foundation.
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7.3 Operational Composition Assistance

The operational composition assistance validates the operational perspective of a PD-DSS
process model, which documents the functional decision support services selected by a DSS
engineer for the implementation of activities within the decision process (cf. Chapter 6).
This section first discusses the potential benefits of the operational composition assistance in
the context of a motivational scenario (Section 7.3.1). Based on the discussion, additional
requirements specific to the operational composition assistance are defined (Section 7.3.2) and
a brief overview of related approaches is given (Section 7.3.3). A solution design is proposed
and demonstrated for the example of energy distribution network planning (Section 7.3.4).
The section concludes with a discussion of the presented solution design with respect to the
requirements for the (operational) composition assistance and an outlook of how it can be
used for the implementation of a recommender system (Section 7.3.5).

7.3.1 Motivational Scenario

Ineffectiveness and inefficiency in the operational perspective of a PD-DSS process model
can either be introduced due to the selection of an unsuitable decision support service or
due to no service being selected at all. Since a missing selection is already detected with
the completeness check described in Appendix A.1.1, the subsequent explanations focus on
the selection of unsuitable services, i.e., services that do not align with the requirements
for decision support of a decision maker. This misalignment may be due to functional
characteristics, e.g., because the decision maker wants to minimize the investment costs of an
electricity distribution network during its redesign, but the selected decision support service
is ineffective as it only supports the minimization of operational costs. Alternatively, the
misalignment may also stem from non-functional characteristics, e.g., a decision support
service consuming too many resources so that the decision maker is unable to complete the
decision process with the PD-DSS. While a PD-DSS that is unable to support the complete
decision process is arguably ineffective, the PD-DSS is also inefficient with respect to the
resources available to the decision maker. Furthermore, the development of the PD-DSS itself
is inefficient when it must be redesigned to account for the lack of resources.

7.3.2 Requirements

In addition to the cross-cutting requirements for composition assistance introduced in Sec-
tion 7.2, the following requirements AROx for the operational composition assistance can be
derived from the meta-model for describing decision support requirements (cf. Section 5.4.6).
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Assistance Requirement ARO1 – Optimization Characteristics
A computation method can be implemented using multiple decision support services that
solve different optimization problems. The alignment of the optimization problem between
selected decision support services and specified requirements for decision support should be
validated by the operational composition assistance.

Assistance Requirement ARO2 – Non-Functional Characteristics
The descriptions of decision support services also document non-functional characteristics,
particularly the resources that are consumed during service execution and quality guarantees
in the form of service level objectives. The alignment between provided non-functional
characteristics of the selected decision support services and the documented requirements for
decision support should be validated by the operational composition assistance.

7.3.3 Background and Related Work

This section discusses existing approaches for the operational validation of business processes
to assess their reusability for PD-DSS development. The discussion includes approaches for
validating process-driven applications as well as business process models in general.

Schneid et al. [Sch+19] describe an approach for the static analysis of BPMN process
models for process-driven applications (PDAs). With respect to the operational perspective,
the approach validates that a service (operation) specified for the execution of a service task
exists and implements a specific interface potentially required by the utilized BPMN for
the enactment of the process model. With respect to the requirements for the operational
composition assistance established in Section 7.3.2, this approach neither addresses ARO1 –
Optimization Characteristics nor ARO2 – Non-Functional Characteristics as it solely validates
the correctness of the PDA’s operational perspective on a technical implementation level.

Schneid et al. [Sch+21c] describe how process analysts can specify regression tests for a
PDA by documenting input data combined with an expected process path and output data.
These tests can validate the correctness of all process perspectives since they are executed
against the derived PDA. However, the operational perspective is essentially excluded if
the invoked services are replaced by mocks as suggested in the description of the approach.
Furthermore, the derivation of the PDA for test execution requires the process model to be
complete before the tests can be executed, which limits ARC4 – Continuous Feedback.

In the context of process model validation in general, Awad et al. [Awa+09] extend the
BPMN meta-model to capture resource allocation constraints using the Object Constraint Lan-
gage (OCL). However, they solely focus on the assignment of human resources, which excludes
many of the material resources bundled under ARO2 – Non-Functional Characteristics.
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7.3.4 Design and Demonstration

Since the previously discussed related approaches address the requirements for the opera-
tional composition assistance only partially at most, this section presents a design for the
operational composition assistance to validate optimization characteristics and non-functional
characteristics of a PD-DSS process model.

Validation of Optimization Characteristics

The optimization characteristics of an existing decision support service are characterized by
optimization objectives, optimization constraints, and the approach to generating decision alter-
natives (cf. Section 5.4.3). The documentation of a decision maker’s requirements for decision
support also makes use of these optimization characteristics (cf. OptimizationRequirement
in Section 5.4.6), but with the addition of a requirement level (e.g., MUST, MUST NOT, etc.).

Initial violations can be defined with respect to the MUST and MUST NOT requirement levels,
which require the (non-)existence of a service with the specified optimization characteristics
(cf. MUST Optimization Violation and MUST NOT Optimization Violation). Analogously,
violations can be defined for the requirement levels SHOULD and SHOULD NOT. However, the
severity level is changed to a warning since SHOULD (NOT) allows DSS engineers to disregard
a requirement, although they are discouraged to do so (cf. definition of requirement levels in
Section 5.4.6). This results in two additional violations (SHOULD Optimization Violation and
SHOULD NOT Optimization Violation). The requirement level MAY has no impact on validation
due to its optionality.

MUST Optimization Violation Severity: Error

Element: Task Phase: Design
Condition: For a given optimization requirement with requirement level MUST, no task

in the process model is implemented by a decision support service with the
optimization characteristics specified by the optimization requirement.

Message: “No decision activity addresses optimization characteristic [...].”

Validation of Non-Functional Characteristics

As described in Section 5.4.4, the invocation of a functional decision support service may
consume resources. For each resource, the sum of consumed resource quantities over all
selected services cannot exceed the available resource quantity documented by the decision
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MUST NOT Optimization Violation Severity: Error

Element: Task Phase: Design
Condition: For a given optimization requirement with requirement level MUST NOT, a

task in the process model is implemented by a decision support service with
the optimization characteristics specified by the optimization requirement.

Message: “Service [...] selected for decision activity [...] has disallowed optimization
characteristic [...].”

SHOULD Optimization Violation Severity: Warning

Similar to: “MUST Optimization Violation”, but with SHOULD requirement level

SHOULD NOT Optimization Violation Severity: Warning

Similar to: “MUST NOT Optimization Violation”, but with SHOULD NOT req. level
Message: “Service [...] selected for decision activity [...] has discouraged optimization

characteristic [...].”

maker as part of the requirements for decision support. This is checked as part of the Resource
Violation. Whether this violation can be checked during the design or instantiation of the
composition depends on how resource consumption is specified by selected decision support
services. Services can either specify the quantity of consumed resources as an absolute value,
or relative to a characteristic of the input data. However, the characteristics of input data
are only available after the process model representing the service composition has been
instantiated by the decision maker. Thus, this violation is only checked during the design of
the decision support service composition for a given resource if all decision support services
specify resource consumption for this resource as absolute quantities. If one or more decision
support services specify resource consumption as a relative quantity, a violation for the affected
resource can only be checked during instantiation.

A service level objective (SLO) defines a provided or desired lower boundary for a quality
characteristic of a decision support service, e.g., its availability. The alignment between
provided and required SLOs is checked as part of the SLO Violation.

Demonstration

A demonstration of the previously described concepts is given with the (partial) case study for
energy distribution network planning shown in Fig. 7.3. The top of the figure shows a partial
BPMN process model describing the composition of decision support services. Since the
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Resource Violation Severity: Error

Element: Task Phase: Design, Instantiation
Condition: For a given resource, the sum of resource quantities consumed by decision

support services exceeds the consumable resource quantities defined in the
decision support requirements.

Message: “The sum of consumed quantities ([...]) exceeds the available quantity ([...])
for resource [...].”

SLO Violation Severity: Error

Element: Task Phase: Design
Condition: For a given service level indicator, a selected decision support service

guarantees a lower/upper bound that is below/above the threshold specified
in the requirements for decision support.

Message: “The service for decision activity [...] guarantees a [lower/upper] bound
of [...] for SLI [...], but required is a [lower/upper] threshold of [...] or
[higher/lower].”

first user task has no associated decision support service, the completeness check discussed
in Appendix A.1.1 reports a Missing Service Selection Violation (E1). Characteristics of
the functional decision support service selected for the mathematical exact optimization are
shown on the right side of the object diagram. The shown information is an excerpt of the
service description in the service registry (cf. Chapter 5). Since the service references an
optimization target that is disallowed by the required service capturing the decision maker’s
requirements for decision support shown on the left side of the object diagram, a MUST NOT
Optimization Violation is reported (E2). A Resource Violation (E3) can be reported during the
design of the PD-DSS process model as the resource consumption of the service is specified
absolutely and exceeds the available resource quantity. Furthermore, a SLO Violation (E4) is
reported since the guaranteed availability of the service does not meet the requirements.

7.3.5 Discussion

The demonstration included with the previously presented design of the operational composition
assistance demonstrates the fundamental applicability and usefulness of the assistance. This
section explains the relation between the presented concepts and the individual and cross-
cutting requirements for the operational composition assistance.
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Figure 7.3: Example for selected violations reported by the operational composition assistance
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Relation to the Perspective-Specific Requirements

The (partial) case study used for the demonstration includes examples that show the fundamental
implementation of requirements for the operational assistance, i.e., ARO1 – Optimization
Characteristics and ARO2 – Non-Functional Characteristics. Nevertheless, the design of the
case study revealed some scenarios where assistance is limited.

Regarding ARO1 – Optimization Characteristics, a MUST or SHOULD optimization violation
is not detected as long as at least one other service selected for a different task addresses the
requirement. For example as shown in Fig. 7.3, the process model could contain multiple
tasks for the same purpose (e.g., network optimization) that are conditionally executed.
Although not explicitly shown in the excerpt of the object diagram due to space constraints,
the decision maker intends to minimize investment costs. However, it may be possible that the
service selected for one task addresses the requirement (e.g., heuristic optimization minimizes
investment costs) while another does not (e.g., mathematical exact optimization minimizes
operational costs). Without the depicted MUST NOT requirement, this misalignment with
requirements would go unnoticed since the condition of the MUST optimization violation
only evaluates to true if no service in the service composition exhibits the optimization
requirement. In addition to the shown workaround, i.e., explicitly disallowing unwanted
optimization characteristics, the shortcoming can be addressed by adapting the description
format of Chapter 5 to document all potentially available optimization characteristics for each
computation method. It is then possible to adapt the condition of a MUST and SHOULD violation
to apply when a selected service does not support the optimization characteristic although it
theoretically could support the characteristic based on the associated computation method
(e.g., the mathematical exact optimization minimizes operational costs although it could
theoretically also minimize investment costs according to the associated “asset optimization”
computation method, therefore a violation is present).

Regarding ARO2 – Non-Functional Characteristics, the explanation of the resource
violation already described how the exceeding of a resource cannot always be detected during
the design of a service composition, but may only become obvious when a decision maker
selects input data during the instantiation of the underlying process model due to services
describing their resource consumption relative to some metadata characteristic of the input
data. This may introduce an inefficiency during PD-DSS development if the decision maker
must inform the DSS engineer about the limitations of the designed PD-DSS for the selected
data, essentially requiring the DSS engineer to partially redesign the service composition.
This can be avoided by defining maximum values for affected metadata in the documented
requirements for decision support, thus enabling the validation to catch these violations solely
during the design of the service composition. This also applies to metadata for data generated
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during PD-DSS enactment, e.g., “Define options for asset replacement” in Fig. 7.3. Here, DSS
engineers can use their domain expertise to estimate the resources consumed by these tasks.

Also related to ARO2 – Non-Functional Characteristics, the specification of service quality
requirements based on service level objectives could be extended to also support requirement
levels (both in the meta-model and the composition assistance).

Relation to the Cross-Cutting Requirements

Regarding the cross-cutting assistance requirements (Section 7.2), all violations can be detected
during process design (ARC1 – Static Validation) except for some resource violations that
can only be detected during instantiation. However, the identification of resource violations
can also be moved solely to the design phase as previously discussed. For violations of
optimization characteristics or service level objectives, violation messages specify the activity
in the decision process where the violation occurs and information on why a violation
occurs, thus addressing ARC2 – Traceable Feedback and ARC3 – Comprehensive Feedback.
Traceability is however limited for resource violations as often no single activity can be
identified as a sole reason for exceeding resource constraints. This could potentially be
improved by presenting a list of services included in the PD-DSS process model sorted by their
resource consumption to support DSS engineers in identifying services whose replacement
enables the largest resource savings. Due to the simplicity of violation conditions combined
with the potential to use caching, ARC4 – Continuous Feedback is addressed since even
without caching every task only needs to be evaluated once.

Transition to Recommender System

The operational composition assistance can be transformed into a recommender system that
supports DSS engineers in the selection of decision support services for the implementation
of an activity in the decision process. For this purpose, the recommender system can simply
check for each decision support service listed in the service registry if using the service for
the implementation of the task last added to the process model would result in a violation.
All services that do not result in a violation can be recommended to the DSS engineer
(potentially with some secondary sorting, i.e., frequency of service usage) while all other
services causing a violation can be proactively discarded. The feasibility of this approach
concerning computation time is however highly dependent on the number of decision support
services documented in the service registry. The number of alternatives could be reduced by
adding a filter in the form of a preceding selection of the computation method such that only
decision support services implementing this computation method are considered.
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7.4 Informational Composition Assistance

The informational composition assistance validates the data exchange with and throughout the
tailored PD-DSS. This specifically includes a compatibility assessment for data provided by a
decision maker before the enactment of the decision process and its subsequent processing by
decision support services. This section first describes the potential benefits of the informational
composition assistance in supporting a DSS engineer during the design of a PD-DSS process
model (Section 7.4.1). Afterwards, requirements for the informational composition assistance
are derived (Section 7.4.2) and used to identify shortcomings of existing approaches for
the validation of a (PD-DSS) process model’s informational perspective (Section 7.4.3).
A design for the informational composition assistance is proposed, and its applicability is
demonstrated for energy distribution network planning (Section 7.4.4). Insights from a
prototypical implementation regarding the technical feasibility of the design are presented
(Section 7.4.5) and the design and implementation of the informational composition assistance
with respect to the initially defined requirements are discussed (Section 7.4.6).

7.4.1 Motivational Scenario

The benefits of the informational composition assistance are best explained with an illustrative
example. Figure 7.4 shows an excerpt from a simulated case study in the domain of energy
distribution network planning. The excerpt focuses on the three tasks implemented with
automated decision support services, i.e., the simulation of consumer demands across a
time interval, which are then used to determine loads of network assets. These loads are
subsequently used together with topological information about the network to identify an
investment plan that documents cost-minimizing topology investments.

Mistakes in the informational perspective of the decision support service composition
can result in ineffectiveness or inefficiency of the derived tailored PD-DSS. An example of
an inefficiency is the scenario where a decision support service rejects the provided data
during runtime or throws an error due to data incompatibilities. For example, the asset loads
computed during “Simulate asset loads” may have a daily resolution, i.e., specify a maximum
value for the asset load per day, but the decision support service selected for “Minimize
investments” may only support a yearly resolution. If this incompatibility is not caught, the
optimization service likely rejects the provided data during runtime and the whole decision
process must be restarted after the error is fixed. Even worse, the decision support service
may not be able to determine the resolution based on the data format and compute wrong
results based on the assumption of a different resolution.
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Figure 7.4: Foundation of running example for the informational composition assistance

Since data is not only produced by decision support services but can also be provided by
decision makers as input to the decision process, the previously described inefficiency can
also occur when a decision maker selects incompatible data during the instantiation of the
PD-DSS process model. For example, the network topology selected by the decision maker
may be incompatible with the decision support service selected for the “Minimize investments”
task if it only supports network topologies up to 1,000 assets.

The informational perspective of a decision support service composition can also provide
hints regarding the effectiveness of the resulting PD-DSS. For example, the result of the
“Minimize investments” task is a detailed investment plan, but the decision maker may be only
interested in some aggregated statistics, e.g., the overall investment costs, which indicates that
a task is missing for the computation of these statistics.

7.4.2 Requirements

In addition to the cross-cutting requirements for composition assistance introduced in Sec-
tion 7.2, this section presents additional requirements ARIx for the informational composition
assistance based on the data requirements of decision support services captured by the service
description format presented in Chapter 5.

Assistance Requirement ARI1 – Process Output
The informational composition assistance should validate that the process model output(s)
returned to the decision maker after using the tailored PD-DSS align with the documented
requirements for decision support to ensure the effectiveness of the PD-DSS.
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Assistance Requirement ARI2 – Input Type
In the DSE context, data is associated with a data type that describes the structure of the data.
The informational composition assistance should consequently validate that the data type of
the data provided as input to a decision support service matches the data type documented in
the description of the decision support service.

Assistance Requirement ARI3 – Input Quantity
An arbitrary minimum and maximum cardinality can be specified for input data of a decision
support service. The informational composition assistance should consequently validate that
the quantity of the provided data aligns with the quantity required by the decision support
service. This includes validation that all required inputs are provided.

Assistance Requirement ARI4 – Input Format
Data of a specific data type can be expressed using different data formats with each decision
support service usually only supporting a subset of the available data formats. The informational
composition assistance should consequently validate that the data format of the provided data
aligns with the data format required by the decision support service.

Assistance Requirement ARI5 – Input Metadata
Decision support services can document constraints on metadata characteristics of input data
in the form of assertions, e.g., to describe that the service only supports network topologies
with a size below 1000 nodes. The informational composition assistance should consequently
validate that the characteristics of the provided input data align with the asserted constraints
of the decision support service defined with respect to metadata attributes.

Assistance Requirement ARI6 – Selected Data
The informational composition assistance should apply the previously described input data
validations (ARI2 – ARI5) to all data that is obtained from a data service. A data service may
either be statically selected during the design of the overall service composition, or more
frequently, is selected by the decision maker during the instantiation of the process model –
either explicitly by selecting a data service from the service registry, or implicitly by making
their own data available to the DSS, e.g., in the form of an upload.

Assistance Requirement ARI7 – Processed Data
The informational composition assistance should apply the previously described input data
validations (ARI2 – ARI5) to the data that is obtained from a previously executed functional
service. This ensures that the data generation or processing of a previous service does not
produce data that is incompatible with a subsequent decision support service.
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7.4.3 Background and Related Work

Since a composition of decision support services representing a tailored PD-DSS is described
as a process model (cf. Chapter 6), the validation of a service composition with respect to
its informational perspective (also referred to as dataflow validation) could potentially reuse
existing approaches that validate the informational correctness of a process model. This
subsection discusses such existing approaches with respect to the requirements previously
established for the informational composition assistance.

Fundamental Dataflow Errors

Both Sadiq et al. [Sad+04] and Trčka, van der Aalst, and Sidorova [TvS09] define multiple
fundamental dataflow errors for process models that can be summarized as follows:

Redundant Data Data is redundant if it is produced (i.e., provided as a process input or
generated by an activity) but not consumed. This error is detected as part of the completeness
checks described in Appendix A.1.2.

Lost Data Data is lost if it is overwritten before it is consumed, e.g., if two activities are
executed in parallel and write to the same data object. The completeness checks described in
Appendix A.1.2 issue a warning if data is potentially lost due to writes from multiple activities.

Missing Data Data is missing if it is required for the execution of an activity but not provided.
This error is detected as part of ARI3 – Input Quantity.

Inconsistent Data Data is inconsistent if it is modified externally after it was produced and
before it is consumed. This error is not relevant in the context of a PD-DSS since data is
immutable, i.e., services only create new data and do not update existing data (cf. Chapter 6).

In addition to these four errors which are shared between the two publications, Sadiq et al.
[Sad+04] furthermore define the following dataflow errors:

Mismatched Data Data provided to an activity has a different data structure than required
for the execution of the activity. If both data structures can store the same information, this
error is detected as part of ARI4 – Input Format, otherwise as part of ARI2 – Input Type.

Misdirected Data Data is misdirected if the data-consuming activity is executed before
the data-producing activity. This is not covered by a requirement since it also requires
consideration of the behavioral perspective.

Insufficient Data Data is insufficient if it does not contain enough information to execute
the activity. This error is detected as part of ARI5 – Input Metadata.
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Trčka, van der Aalst, and Sidorova [TvS09] furthermore define dataflow errors that consider
the deletion of data throughout the enactment of a process model. However, from a modeling
perspective, data deletion is an engine-specific characteristic of certain BPMN engines
(cf. [Sch+21b]) and therefore not further considered throughout this section. Furthermore,
intermediate data produced during PD-DSS usage that is not returned to the decision maker is
deleted after the enactment of the decision process has completed.

Although the presented dataflow errors largely align with the requirements for the
informational composition assistance, there is still a need for an algorithmic approach to
detecting the errors in a given process model. Unfortunately, Sadiq et al. [Sad+04] do not
provide an implementation for the detection of their described dataflow errors. Trčka, van
der Aalst, and Sidorova [TvS09] provide an implementation based on temporal logic. Their
implementation is not coupled to BPMN, but an application to BPMN was later contributed by
von Stackelberg et al. [vSta+14]. However, as evident from the above enumeration of dataflow
errors, the list by Trčka, van der Aalst, and Sidorova [TvS09] is missing errors that are relevant
to address all requirements of the informational composition assistance. Similarly, Rachdi,
En-Nouaary, and Dahchour [RED17] describe an approach that can only detect a subset of the
defined dataflow errors (i.e., Missing Data, Inconsistent Data, Redundant Data and Lost Data)
in BPMN process models. Thus, the described approaches are not immediately applicable to
address all requirements for the informational composition assistance.

Dataflow Validation for Process-Driven Applications

Another attempt to simplify the implementation of the informational composition assistance is
to reuse existing approaches for validating the dataflow of process-driven applications (PDAs),
i.e., the concept that motivated the definition of the PD-DSS concept in Chapter 6.

Schneid et al. [Sch+19; Sch+21b] describe an approach for detecting data anomalies in the
BPMN process model of a PDA. The authors describe three types of anomalies: undefined
read (data is read without previously being written), never used (data is written but never read
before it is overwritten or deleted), and invalid deletion (data is deleted, although it was never
written). In addition to only covering a small subset of the previously discussed fundamental
dataflow errors, the approach also relies on an analysis of the source code that is used for the
implementation of service tasks. This is not feasible in the DSE context due to the black box
characteristic of decision support services (cf. Chapter 4).

Schneid et al. [Sch+21c] describe an approach for process analysts without programming
skills to define regression tests for PDAs. Since this approach can fundamentally validate all
perspectives of a PDA, it was already discussed in Section 7.3.3. The limitation concerning
ARC4 – Continuous Feedback also applies to the informational perspective.



172 Chapter 7. Composition Assistance

Schiffner, Rothschädl, and Meyer [SRM14] describe the necessity to automatically validate
the message exchange between services that are utilized for the implementation of a business
process. However, they do not provide details on how this validation should work. In addition,
they use Subject-Oriented Business Process Management, which does not utilize BPMN.

Dataflow Validation for Process Models

Due to the limitations of existing approaches for PDA dataflow validation, the discussion
is broadened to dataflow validation of BPMN process models without the generation of an
executable application. The subsequently discussed approaches specifically focus on the
documentation of data constraints for process tasks similar to ARI5 – Input Metadata.

Awad, Decker, and Lohmann [ADL10] and Weber, Hoffmann, and Mendling [WHM10]
describe how the state that can be associated with a BPMN data object can be used to define
pre- and postconditions for activities. A precondition ensures that input data has a specific
state, and a postcondition documents that output data will be in a specific state. However,
since the state corresponds to a label, i.e., a single value from an enumeration, it is not suited
to specify more complex assertions on metadata as required by ARI5 – Input Metadata.

Borrego et al. [Bor+13] describe a similar approach that also utilizes pre- and postconditions
to validate the compatibility of data exchanged between activities. However, conditions are
not defined with respect to a single label/state, but with respect to quantitative data objects.
A condition is defined as a triple of a data object identifier, comparison operator, and value.
These condition triples can furthermore be combined using logical AND and OR operators.
While this approach does partially address ARI5 – Input Metadata, it lacks support for
qualitative metadata and data types (ARI2 – Input Type). It also does not account for many of
the fundamental dataflow errors defined at the beginning of this subsection.

Summary of Related Work

The review of existing approaches for validating the dataflow (i.e., informational perspective)
of BPMN process models shows that all approaches only address a subset of the requirements
for the informational composition assistance presented in Section 7.4.2. In addition to the
previously presented limitations that are specific to each approach, all discussed approaches
furthermore focus only on dataflow validation throughout the design of the process model and
the data exchange between activities (cf. ARI7 – Processed Data), but no approach explicitly
considers validation during data selection when the process model is instantiated (cf. ARI6 –
Selected Data). Consequently, there is still a need for an approach to implement the introduced
requirements for the informational composition assistance.
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7.4.4 Design and Demonstration

This subsection presents the design of the informational composition assistance to validate the
effectiveness and efficiency of the data exchange of and with a tailored PD-DSS before it is
used during the enactment of a decision process. Described violations are demonstrated using
the example from energy distribution network planning presented in Section 7.4.1.

Validation of Output Data

Validation of output data ensures that decision makers are provided with their desired decision
recommendations. In particular, each decision process – and consequently each composition
of decision support services – should always return some output data since decision support
services are free of side effects and do not modify existing data. Therefore, a Redundant
Process Violation is reported if no output is returned to the decision maker.

Redundant Process Violation Severity: Error

Element: Process: Set of all Data Outputs Phase: Design
Condition: The set of all process data outputs is empty.

Message: “The process does not return any output data to the decision maker.”

If output data is returned to the decision maker, it must align with the documented
requirements for decision support. As described in Section 5.4.6, the decision maker can
specify requirements for output data with respect to the output of a computation method and
the associated data format. This implies a Missing Output Violation and an Output Format
Violation. Support for different requirement levels works analogous to the presentation of the
operational composition assistance and is omitted here to avoid redundancy.

Additionally, a warning in the form of a Redundant Output Violation is issued in case an
output is returned that is not documented in the requirements for decision support, as this may
be an indicator of a redundant activity in the decision process.

Demonstration In the example shown in Fig. 7.5, a Missing Output Violation (E1) is reported
because the decision support requirements expect an investment summary to be returned.
Since this output is not provided by the “Minimize investments” activity, an additional activity
is required. This is an indicator of how the informational validation can also uncover deficits
in the functional perspective of the decision support service composition as a side effect. An
Output Format Violation (E2) is reported since the investment plan computed throughout
the “Minimize investments” task is described in JSON format, but a PDF format should be
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Missing Output Violation Severity: Error

Element: Process: Set of all Data Outputs Phase: Design
Condition: Every process output is assigned data from an output data slot that is not

associated with the method data specified in the decision support requirements.
Message: “No process output returns required service output [...].”

Output Format Violation Severity: Error

Element: (Process) Data Output Phase: Design
Message: “Process output [...] provided by activity [...] has data format [...], but

required data format is [...].”

Redundant Output Violation Severity: Warning

Element: (Process) Data Output Phase: Design
Condition: The process output is assigned data from an output data slot that is not

documented in the decision support requirements.
Message: “The process output [...] returns data that is not documented in the require-

ments for decision support.”

used according to the requirements for decision support of the decision maker. A Redundant
Process Violation would be reported if the “Investment Plan” process data output were missing
in the documented requirements for decision support.

Validation of Input Data

Validation of input data ensures that the data provided as input to a decision support service
meets the data requirements of the service for the targeted data slot. The requirements for
the informational composition assistance in Section 7.4.2 already hint at four properties that
characterize an input data slot of a decision support service: data type and data quantity are
defined for the associated computation method, and data format and metadata are specifically
defined for the data slot. The violations that can be defined for these data characteristics
depend on whether the input data is obtained from a data service selected by a decision maker
or a previously executed functional decision support service.

Input Data from a Data Service In the simplest case, the previously listed input data
characteristics can be directly obtained from the description of a data service that was selected
by the decision maker for a process data input during the instantiation of the PD-DSS process
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Figure 7.5: Demonstration of informational violations with respect to output data

model. Then, the data type, format and quantity of the data service can be compared to the
required data characteristics of the input data slot where the data is consumed, and violations
can be reported in case of differences. This is captured with the Data Format Violation, Data
Type Violation, and Data Quantity Violation. The Data Quantity Violation can also identify
missing data since a cardinality of 0 would be below the minimum cardinality of 1 or greater.

The identification of metadata violations exceeds a simple equality check, since the
metadata values documented in the data service description must be checked against the
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Data Format Violation Severity: Error

Element: (Task) Data Input Phase: Design, Instantiation
Condition: The input data slot represented by the data input of a task has a different data

format than the data assigned by a data association.
Message: “Data [...] provided to activity [...] for input [...] has data format [...], but

the required data format is [...].”

Data Type Violation Severity: Error

Similar to: Data Format Violation
Message: “Data [...] provided to activity [...] for input [...] has data type [...], but

required is data type [...].”

Data Quantity Violation Severity: Error

Similar to: Data Format Violation
Message: “Data [...] provided to activity [...] for input [...] has a cardinality of [...],

which is below the minimum cardinality of [...].”
– analogous: “above the maximum cardinality”

metadata constraints of the data slot. For example in Fig. 7.4, if the service selected
for “Minimize investments” requires topology.size < 1000, it must be checked if this
constraint is fulfilled by the data service selected for the “Network Topology” input that is
assigned to the topology data slot. Despite this more complicated check, the corresponding
Metadata Violation can be defined similarly to the previously described violations.

Metadata Violation (Instantiation) Severity: Error

Element: Task: Data Input Phase: Instantiation
Condition: The input data slot represented by the data input defines assertions on the

metadata that are not fulfilled by the associated data.
Message: “Data [...] provided to activity [...] for input [...] does not pass constraint

[...] because metadata attribute [...] has value [...].”

Input Data from a Functional Service During the design of a PD-DSS process model by
a DSS engineer, no data services have yet been selected by a decision maker from which
the input data characteristics can be obtained. In this case, the data characteristics of input
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data objects must be derived from the associated output data slots of producing decision
support services, and the data characteristics of process data inputs must be derived from the
associated input data slots. For the example shown in Fig. 7.4, the data format of the “Network
Topology” input can be derived from the data format required by data slots of the decision
support services implementing the “Simulate asset loads” and “Minimize investments” task, or
the data type of the “Consumer Demands” output is derived from the “Simulate demands” task.
Based on these derived data characteristics, the previously defined Data Format Violation,
Data Type Violation, and Data Quantity Violation can be identified analogously during design.

Metadata violations again must be handled differently, as only metadata assertions can
be derived from an associated service, but no concrete metadata values. Consequently, it
is necessary to check if all data that would pass the metadata assertions of the producing
decision support service would also pass the assertions of the consuming data service. For
example, all network topologies that pass a size < 500 assertion also pass a size < 1000
assertion. This results in the Metadata Violation (Design) with an updated message to reflect
the comparison of metadata assertions.

Metadata Violation (Design) Severity: Error

Element: Task: Data Input Phase: Design
Condition: The input data slot represented by the data input defines metadata assertions

that are incompatible with assertions derived for the associated data.
Message: “Metadata incompatibility inferred for data [...]: Output [...] of [...] asserts

[...], but input [...] of [...] requires [...].”

In the context of these metadata violations, it is important to consider that services may
define metadata assertions in relation to the metadata of an input data slot. For example in
Fig. 7.4, the service implementing “Simulate asset loads” could assert that the resolution of
the “Asset Loads” forecast is equal to the resolution of the provided “Consumer Demands”
forecast. Thus, whether the resolution of “Asset Loads” meets the resolution requirement of
the service implementing the “Minimize investments” task depends on the asserted resolution
of the service selected for the “Simulate demands” task.

Lastly, process data inputs can be reused for multiple data slots as indicated in Fig. 7.4 with
the “Network Topology” input. Data characteristics of reused input data cannot be uniquely
inferred if the associated tasks specify conflicting data characteristics, e.g., if the simulation
supports a different data format for the network topology than the optimization. Although this
would technically be reported by the previously presented violations, this error is explicitly
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checked for to improve traceability. This results in four additional violations in the form of the
Multiple Data Formats Violation, Multiple Data Types Violation, Multiple Data Quantities
Violation, and Multiple Metadata Violation. Only the definition for the Multiple Data Formats
Violation is provided to avoid redundancy as the other violations can be defined analogously.

Multiple Data Formats Violation Severity: Error

Element: (Process) Data Input, Data Object Phase: Design
Condition: A process data input is associated with multiple input data slots or a data

object is associated with multiple output data slots, but not all data slots have
the same data format.

Message: “Data [...] cannot have multiple data formats ([input/output] [...] of activity
[...] has data format [...], ... < repeats for all affected data slots >).”

Demonstration Examples for discussed violations are given in Fig. 7.6. Due to space
constraints, the relevant excerpts of the associated service descriptions are shown as tables
instead of object diagrams, and task labels are used instead of service IDs for easier lookup.
The “Network Topology” process data input is supposed to provide both data for the market
shares that are required for simulating consumer demands and the network topology that
is needed for the simulation of asset loads and network optimization. Since data cannot
simultaneously describe market shares and a network topology, conflicting data types are
reported in a Multiple Data Types Violation (E1). The service for “Simulate demands” requires
the historical consumer demands for the computation of a forecast, but no such data is provided,
resulting in a Data Quantity Violation (E2). Since the service selected for the “Simulate
asset loads” always has a daily resolution but the “Minimize investments” requires a yearly
resolution, a Metadata Violation can be reported during design time (E3).

Two other errors are only detected during PD-DSS instantiation when a decision maker
selects the data service with the “Paderborn” network topology: First, the topology is provided
in a .csv format, which is incompatible with the .pnet format required by the service and
results in a Data Format Violation (E4). Second, the topology has a size of 2345 which
exceeds the allowed size of 1000 defined by the decision support service selected for the
“Minimize investments” task, which results in another Metadata Violation (E5).

7.4.5 Prototypical Implementation

Many of the previously defined violations considering the informational perspective of a
PD-DSS process model can be detected with a simple equality check. However, the detection
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of metadata violations is more challenging when the compatibility of assertions on metadata
attributes must be validated. This challenge is further increased if assertions on output
data are defined relative to input data, thereby forming a chain of interdependent assertions
across multiple tasks. This section therefore describes a prototypical implementation of the
informational composition assistance with a focus on the detection of metadata violations due
to the summarized complexity potentially presenting a technical challenge for the realization
of the composition assistance. The remainder of this subsection first provides background on
JSON Schema, a data validation standard used by the prototypical implementation. Afterwards,
the insights gathered from the prototypical implementation are summarized.

Background: JSON Schema

The JSON Schema specification [IET22] defines an approach to describe the structure of
JSON data [Ecm17]. A JSON Schema document is itself a JSON document. An example of
a JSON document describing the metadata of a network topology and the associated JSON
schema of a consuming service are shown in Listings 7.1 and 7.2 respectively. The schema
requires each compatible topology to have a name of type string and size below 1000. The
instance represents a topology with the name “Paderborn” and a size of 2345, which exceeds
the upper bound of 1000 and is therefore not compatible with the schema/service.

Listing 7.1: Topology JSON
{

/ / ” $schema ” : −>
"name": "Paderborn",

"size": 2345 / / �

}

Listing 7.2: Topology JSON Schema for Service
{

"type": "object", "properties": {

"name": { "type": "string" },

"size": { "type": "int", "maximum": 1000 }

}

}

As evident from the previous example, the key-value structure of JSON naturally aligns
with the concept of metadata in the DSE context, and JSON Schema aligns with the assertions
on metadata attributes specified by decision support services. Thus, it is easy to determine
whether a data instance with concrete metadata passes the metadata assertions of the decision
support service where it should be processed. In addition to this conceptual alignment, the
decision to use JSON Schema for the prototypical implementation is largely motivated by its
vast ecosystem and tool support. In particular, there are validators such as AJV 1 to validate
a JSON document against a JSON Schema, thereby supporting primarily decision makers

1 Validator website: https://ajv.js.org/

https://ajv.js.org/
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in selecting appropriate data services during the instantiation of a decision support service
composition. Furthermore, the is-json-schema-subset library2 can determine whether one
JSON Schema is a subset of another JSON Schema, i.e., if documents validating against one
schema would also validate against the other. This analysis can be used to determine whether
the output of one service is compatible to the input of another service by checking if the output
schema of the producing service is a subset of the input schema of the consuming service.

Insights from the Prototypical Implementation

The prototypical implementation demonstrates the validity of the previously described
preliminary considerations. In particular, the concepts of metadata and assertions included in
the description of decision support services (cf. Chapter 5) can be mapped to JSON Schema
and JSON documents. The technical details of this mapping are documented in the paper
“Detecting Data Incompatibilities in Process-Driven Decision Support Systems” [KGE22] and
Appendix B. The prototypical implementation furthermore shows that existing tooling can in
fact be reused for checking the compatibility between data services and functional decision
support services. The tooling always completed validation in 100ms on commodity hardware
with comprehensive messages stating the source of the validation error.

Nevertheless, the use of JSON Schema for the prototypical implementation exhibits one
shortcoming: While it is possible to reference metadata assertions of an input schema from
an output schema, the definition of assertions of an input with respect to another input is
not supported, e.g., to express that two provided forecasts must have the same resolution.
This suggests an approach that directly supports service descriptions without an intermediate
translation to JSON (Schema) for a productive DSE implementation.

7.4.6 Discussion

The demonstrations presented throughout the explanations of the informational composition
assistance’s solution design (Section 7.4.4) already show the capabilities of the assistance
to detect fundamental errors in the informational perspective of a decision support service
composition. The prototypical implementation furthermore shows that the most complex
validation performed by the informational composition assistance, i.e., the detection of
metadata violations throughout the design and instantiation of a decision support service
composition, is technically feasible. This section briefly discusses the presented insights
with respect to the requirements initially defined for the informational composition assistance

2 Library website: https://www.npmjs.com/package/is-json-schema-subset

https://www.npmjs.com/package/is-json-schema-subset
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(Section 7.4.2) with a focus on the cross-cutting assistance requirements (Section 7.2) to ensure
that all requirements are sufficiently addressed and to potentially identify future extensions.

Requirements Specific to the Informational Composition Assistance

The requirements defined for the informational composition assistance map to corresponding
subsections in Section 7.4.4. In particular, ARI1 – Process Output is addressed in the first
subsection, and ARI2 – Input Type to ARI7 – Processed Data are addressed in the subsequent
subsection. Details of the design are not repeated here to avoid redundancy.

The discussion of related work includes definitions for fundamental dataflow errors
in process models. These errors mostly represent a subset of the requirements for the
informational composition assistance defined in Section 7.4.2. This suggests two conclusions,
namely that the requirements for the informational composition assistance are largely complete,
and that all fundamental dataflow errors can be detected by the informational composition
assistance since it addresses all requirements. The only dataflow error that cannot be mapped
to a requirement is misdirected data, i.e., when the data-consuming activity is executed before
the data-producing activity. Detection of this error requires an integrated view of the PD-DSS
process model including the behavioral perspective. Detection of this dataflow error could
be supported by computing all possible process paths and checking if a path exists where a
decision support service depending on data of another decision support service is executed
first. However, the absence of this automated detection may not be significant, as misdirected
data can be spotted in the process model. This differs from the previously described violations,
which are dependent on information that is stored in the associated service descriptions and
not depicted in the process model.

Cross-Cutting Requirements for Composition Assistance

As obvious from the “Phase” property in the violation definitions, all violations can be detected
during the design or instantiation of the decision support service composition (ARC1 – Static
Validation). However, meaningful validation requires the descriptions of decision support
services to include as many metadata assertions as possible. This is especially important for
interactive decision support services where the metadata of the produced data may depend on
the decision maker’s interactions with the service when using the tailored DSS. In some cases,
these assertions may be dependent on the use case of the tailored DSS. Since specific use cases
cannot be foreseen by the service provider who creates the description of the decision support
services, the approach for the informational composition assistance might need to be extended
such that DSS engineers can add additional metadata assertions based on the usage of the



7.4. Informational Composition Assistance 183

service within a service composition. Additionally, the requirements for decision support
specified by a decision maker could include representative data services. This provides a
DSS engineer with additional information for the design of the service composition and could
move the detection of some errors from instantiation to design.

The messages in violation templates address requirements ARC2 – Traceable Feedback and
ARC3 – Comprehensive Feedback. Since most violations correspond to simple equality checks
that can be done in constant time, the informational composition assistance is suitable for ARC4
– Continuous Feedback. Even the detection of metadata violations, which are significantly
more complex than the other defined violations, can be detected within milliseconds as
demonstrated by the (unoptimized) prototypical implementation. Based on the quantity of data
services, it is also possible to precompute the compatibility of data services and functional
decision support services to reduce runtime during instantiation.

Threats to Validity

In addition to the global threats to validity discussed in Section 8.6, two additional threats
specifically apply to the informational composition assistance. First, the partial case study
selected for the demonstration of the solution design in Section 7.3.4 only includes BPMN
tasks for activities, but not repeatedly executed subprocesses. Since the quantity of the data
provided to the subprocess is reduced to a single data instance within the subprocess, but all
other data characteristics are retained, the previously defined violations should nevertheless
be immediately applicable to the dataflow to/within/from a subprocess. Second, the described
design and selected case study do not consider conditionality. However, the metadata assertions
implied by conditions associated with sequence flows from gateways must be considered when
checking the compatibility of provided data. For example, assuming a gateway exists that
only invokes a mathematical exact optimization service if the size of the network topology is
below 1,000 nodes and a heuristic optimization service otherwise, then the assertion of the
size implied by the gateway condition must be considered when determining its compatibility
with the mathematical exact optimization service. This can be implemented by adding the
gateway conditions as assertions to the data objects/inputs.

Transition to Recommender System

Similar to the operational composition assistance, the informational composition assistance
can be used for the implementation of a recommender system to suggest suitable decision
support services to a DSS engineer. In particular, the recommender system can suggest
functional decision support services that are compatible with data objects or process data
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inputs that currently have no outgoing data association, since this data would otherwise be
reported as redundant. Furthermore, the validation can be used to proactively restrict the list
of available data services presented to decision makers when selecting process data inputs
during PD-DSS instantiation, thus ensuring that only compatible data services can be selected.

7.5 Functional and Behavioral Composition Assistance

This section presents an approach for a composition assistance that validates the functional
and behavioral perspective of a PD-DSS process model. The section first describes the
benefits of such composition assistance and introduces a running example (Section 7.5.1).
The cross-cutting assistance requirements are extended with requirements specific to the
functional-behavioral composition assistance (Section 7.5.2) and subsequently used to evaluate
the reusability of existing validation approaches (Section 7.5.3). Afterwards, the design of
the composition assistance for the functional and behavioral perspective is presented and
demonstrated for energy distribution network planning (Section 7.5.4). Insights from a
prototypical implementation are presented (Section 7.5.5), and lastly, the insights are discussed
with respect to the assistance requirements (Section 7.5.6).

7.5.1 Motivational Scenario

The goal of the functional and behavioral composition assistance is to ensure that a tailored
PD-DSS generated from a composition of decision support services provides the decision
support functionality required by a decision maker. The validation of the functional and
behavioral perspective is aggregated into a single functional-behavioral composition assistance
since DSS functionality is not only characterized by what is done (= functional perspective),
but also under what conditions it is done (= behavioral perspective). The benefits of such a
functional-behavioral composition assistance are best explained using an example.

Running Example

The running example used to demonstrate the proposed design of the functional-behavioral
composition assistance is visualized in Fig. 7.7. The (partial) example assumes that a decision
maker wants to minimize network investments using a mathematical exact optimization
approach. A network reduction is performed before the optimization if the size of the provided
network topology exceeds 1000 assets to ensure that the optimization completes in a reasonable
amount of time. When the network optimization encounters an error in the network topology,
the topology must be fixed manually by the decision maker. If a network reduction was
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Figure 7.7: Foundation for the running example

performed due to the size of the provided input topology, the reduction is reversed after the
optimization such that the investment plan computed by the network optimization is actually
applicable to the original network.

Benefits of a Functional-Behavioral Composition Assistance

The functional-behavioral composition assistance ensures the effectiveness of a PD-DSS
process model with respect to the requirements for decision support documented by a decision
maker by validating that all documented decision activities are supported by the PD-DSS
service composition. For example in the context of Fig. 7.7, the decision maker could have
specified the desire to obtain a graphical visualization of the computed investment plan after
the optimization, which is missing in the depicted process model.

The functional-behavioral composition assistance ensures the efficiency of a PD-DSS
process model by validating that no unnecessary functionality is included in the service
composition and that all potential runtime errors are caught and properly handled, to avoid
interruptions throughout the enactment of the decision process. For example, if the correction
of topology errors would not be included in the example shown in Fig. 7.7, the enactment
of the decision process would need to be restarted with the fixed topology, thus invalidating
any results computed so far. The efficient enactment of a PD-DSS is furthermore ensured
by validating the completeness of the PD-DSS process model with respect to the modeling
conventions of Chapter 6 as described in Appendix A.1.3.

Similar to the previously discussed operational and informational composition assistance,
many defects can be detected based on the existing structured documentation of the application
domain, decision support services, and requirements for decision support (cf. Chapter 5).
However, the detection of some defects may require additional, domain-specific (composition)
knowledge. For example, the DSS engineer may forget to reverse the previously performed
network reduction, thereby rendering the computed investment plan essentially useless since
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the contained recommendations are not immediately applicable to the initially provided
network topology. This domain-specific defect is also an example of a defect that can only be
detected when reviewing the process path from the initial application of the network reduction
to the end of the decision process, thereby demonstrating the usefulness of considering the
functional and behavioral assistance simultaneously.

7.5.2 Requirements

This section transforms the previous considerations into explicit requirements ARFx for the
design of the functional-behavioral composition assistance. The requirements extend the
cross-cutting requirements for composition assistance introduced in Section 7.2. and can be
grouped into two categories:

Domain-Parametrized Assistance Functionality

This category aggregates requirements for assistance functionality that can be parametrized
based on the domain documentation and service registry described in Chapter 5.

Assistance Requirement ARF1 – Completeness
The functional-behavioral composition assistance should validate that a decision support
service composition includes the functionality documented in a decision maker’s requirements
for decision support to ensure the effectiveness of the resulting tailored PD-DSS.

Assistance Requirement ARF2 – Robustness
The functional-behavioral composition assistance should validate that potential errors docu-
mented in the descriptions of decision support services are handled throughout the service
composition to ensure efficiency during usage of the resulting tailored PD-DSS.

Domain-Specific Assistance Functionality

This category aggregates requirements for assistance functionality that detects functional and
behavioral flaws defined by composition experts specifically for a concrete application domain.

Assistance Requirement ARF3 – Expert Definition
The approach must consider that flaws specific to an application domain are defined by
composition experts who are familiar with the characteristics of the application domain but
have no programming skills. Furthermore, the definition of benefits should be possible without
extensive upfront training in a specific documentation format to encourage the participation of
composition experts, thereby increasing the extent of the assistance.
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Assistance Requirement ARF4 – Missing Functionality
The functional-behavioral composition assistance should enable composition experts to define
flaws based on missing functionality (given the other elements of the decision support service
composition). For example, in the context of the motivational scenario of Section 7.5.1, an
example of missing functionality would be a missing reversal of network reduction.

Assistance Requirement ARF5 – Unwanted Functionality
The functional-behavioral composition assistance should enable composition experts to define
flaws based on unwanted functionality that is either redundant or unwarranted. An example for
unwanted funtionality in the context of the motivational scenario of Section 7.5.1 would be a
second, consecutive execution of the network optimization although subsequent optimization
runs cannot improve the results of a previously executed optimization.

Assistance Requirement ARF6 – Missing Branching
The functional-behavioral composition assistance should enable composition experts to define
flaws based on a lack of control flow branching introduced by conditionality or parallelism.
For the motivational scenario of Section 7.5.1, an example of missing conditionality would be
a missing check whether the provided network topology must be handled differently due to its
size, or a lack of parallelism for the generation of visual reports for the decision maker.

Assistance Requirement ARF7 – Unwanted Branching
The functional-behavioral composition assistance should enable composition experts to define
flaws based on unwanted control flow branching that is either redundant or unwarranted. For
example, the parallel execution of a network reduction and network optimization suggests that
the optimization will run without the results of the network reduction.

Assistance Requirement ARF8 – Generalization
The functional-behavioral composition assistance should support the generalization of defined
flaws such that they can be identified in multiple similar but slightly deviating scenarios. For
example, the previously described defect of repeated consecutive network optimization could
also apply to other tasks, e.g., network simulation. The reuse enabled by generalization reduces
effort during the definition of flaws. Generalization particularly includes the identification of
flaws independent of the natural language label assigned to tasks in the process model since
these are chosen based on the personal preference of the DSS engineer. Furthermore, it must
be possible to define flaws concerning non-consecutive process elements. For example, the
previously provided example of a missing network reduction should not only be detected for a
single intermediate network optimization as shown in Fig. 7.7, but also for an intermediate
network simulation followed by a network optimization, etc.
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7.5.3 Background and Related Work

This subsection discusses existing approaches for the functional and behavioral validation of
process models to assess their reusability considering the previously established requirements
for a functional-behavioral composition assistance. The discussion includes validation
approaches specific to process-driven applications and business process models in general.

Functional and Behavioral Validation of Process-Driven Applications

Existing work in the context of process-driven applications (PDAs) is sparse. Again, the
approach by Schneid et al. [Sch+21c], which was already discussed for the operational
and informational perspective, can also be used to validate the functional and behavioral
perspective of a PD-DSS by running regression tests against the derived PD-DSS that were
documented using user interface wizards. The previously discussed limitations, in particular
considering ARC4 – Continuous Feedback, still apply.

The approach described by Schiffner, Rothschädl, and Meyer [SRM14] considers the
validation of a process model representing a PDA for multiple process perspectives as a key
requirement for a PDA development environment. However, their approach only considers the
automated validation of the informational perspective. The validation of other perspectives,
particularly the functional and behavioral perspective, are only addressed with (collaborative)
manual validation, which is too inefficient for ARC4 – Continuous Feedback.

Functional and Behavioral Validation of Process Models

Due to a lack of approaches for the functional and behavioral validation of PDAs, the discussion
of related work is extended to the functional and behavioral validation of process models in
general without the intention to derive an executable artifact from the process model.

A survey by Morimoto [Mor08] indicates that many approaches for process model
validation utilize formal verification, e.g., based on automata, petri-nets, or process algebras.
Validation rules must consequently be defined with respect to these formalizations. This
requires extensive upfront training and therefore violates ARF3 – Expert Definition. A
workaround to this limitation can be achieved by providing an abstraction over the formal
verification approach, e.g., a user-friendly visual notation that is transparently mapped to the
suitable formal representation. This approach is used by Förster et al. [För+07] in which a
business process and associated constraints specified similar to a UML activity diagram are
internally mapped to a labeled transition system and temporal logic. This mapping enables a
model checker to verify that a business process upholds all constraints. While the approach
fundamentally aligns with the requirements introduced in Section 7.5.2 for the domain-specific
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composition assistance, it also has limitations: First, a violation of a constraint is reported
as a single textual counterexample that is not mapped to elements in the original business
process, thus preventing ARC2 – Traceable Feedback. Second, the explanations mention
the need to map natural language labels to common identifiers that are shared between the
business process and the constraints but do not explicitly describe how to obtain these common
identifiers. Furthermore, the approach does not consider the reuse of constraints for similar
types of violations, e.g., to express that the same activity should not be repeated consecutively.
Thus, the approach is limited in addressing ARF8 – Generalization.

The approach of mapping an abstract, human-readable and -writable artifact to a formal
representation is also often applied in the context of process anti-patterns or process weakness
patterns, which “represent typical problems a process may have together with ideas of
how to address them” [Bec+12]. Koschmider, Laue, and Fellmann [KLF19] reviewed 48
papers describing process validation approaches based on anti-patterns. The authors find
that existing approaches are capable to detect defects in process models for their syntax,
control flow, understandability, composition, dataflow, business rules, or overall business
process model. The categories “rule-related defects” and the subcategories “need for process
improvements” and “compliance” of “process-related defects” are closely related to the goal
of the functional-behavioral composition assistance introduced in this section. However, many
of the papers in these categories do not focus on the functional and/or behavioral perspective,
but instead consider flaws in the data exchange across organizational boundaries [EEB16;
KGL13], data security [Ram+18], ambiguity in natural language labels [LKG16], process
inefficiencies with respect to complexity or resource consumption [BWW11], or anomalies
in process adaptation rules [DH12]. Other approaches require anti-pattern authors to learn
and apply query languages such as the Structured Query Language (SQL) [Bec+12] or the
Generic Model Query Language (GMQL) [Ber+15; DH15; Del+15], which does not align
with ARF3 – Expert Definition. Even other approaches require manual identification of
anti-patterns [HB09], which is too inefficient to address ARC4 – Continuous Feedback, or do
not provide sufficient details for the automated detection of anti-patterns [Bec+10]. Other
papers listed by Koschmider, Laue, and Fellmann for the selected categories present collections
of anti-patterns but do not discuss their (automated) detection ([KV07; GL07; HD15]).

Summary of Related Work

The discussion of related approaches shows that no approach can immediately address all
previously established requirements for the functional-behavioral composition assistance.
Nevertheless, the anti-pattern approach used by many contributions demonstrates how process
model flaws can be specified in an “expert-friendly” way and subsequently be mapped to
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an internal representation that supports the automated detection of flaws. Anti-patterns also
conceptually align with the purpose of the functional-behavioral composition assistance, i.e.,
detect deficits in a process model and provide instructions on how to address them. For this
reason, the subsequent design of the functional-behavioral composition assistance is also
based on an anti-pattern based approach for the domain-specific part of the assistance, while
additional checks are implemented for the domain-parametrized functionality of the assistance
using the established violation rule templates.

7.5.4 Design and Demonstration

This section presents a design for the functional-behavioral composition assistance based on
the detection of violations and anti-patterns in PD-DSS process models. The first half of this
subsection focuses on the design of the domain-parametrized assistance functionality, while
the second half focuses on the design of the domain-specific assistance functionality. The
applicability of each proposed design is demonstrated using the example introduced in the
motivational scenario of Section 7.5.1.

Domain-Parametrized Assistance

The design of the domain-parametrized functionality of the functional-behavioral composition
assistance uses violation rule templates as those have already proven useful in the context of
the previously discussed operational and informational composition assistance.

Completeness A completeness violation indicates that the PD-DSS process model does not
address the functional requirements for decision support documented by a decision maker.
The corresponding validation essentially works analogous to the operational composition
assistance described in Section 7.3: For each goal requirement and method requirement
documented by the decision maker (cf. Section 5.4.6), the validation checks if an activity
with a decision support service implementing the affected computation method/goal is (not)
included in the PD-DSS process model as prescribed by the associated requirement level.
In case of a method requirement, this check includes the characteristics of the computation
method. Due to the similarity of the resulting violation rule templates with the operational
composition assistance, the explicit violations are not repeated here to avoid redundancy.

Robustness Robustness violations detect a lack of error handling in the derived PD-DSS.
Lack of error handling can be detected with the Uncaught Error Violation based on the
description of decision support services, which include a list of potentially occurring errors
via the associated computation method. As usual, the severity level is reduced to a warning
since the enactment of the decision process is fundamentally possible if no errors occur.
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Uncaught Error Violation Severity: Warning

Element: Task Phase: Design
Condition: The computation method implemented by the decision support service

selected for the task specifies an error for which no error boundary event is
attached to the task.

Message: “Potential error [...] of task [...] is not handled.”

Demonstration Selected examples for the discussed violations are shown in Fig. 7.8 for a
variation of the running example introduced in Section 7.5.1. Errors E1 – E3 are reported by
the completeness checks described in Appendix A.1.3. A missing sequence flow between
the “Minimize network investments” task and the subsequent exclusive gateway results in
an Unreachable Element Violation (E1) reported for the gateway and a Dead End Violation
(E2) reported for the task. Since exclusive gateways have no explicit label, they are printed
as “Exclusive Gateway” in the error messages. However, the corresponding element can still
be identified in the process model due to internally assigned IDs. This also applies to other
unlabeled process model elements, e.g., the end event referenced in the Missing Condition
Violation (E3). An example of a completeness violation is given in the form of a SHOULD
Functionality Violation (W1) as the decision maker requested a visualization of the computed
investment plan that is not part of the process model. An Uncaught Error Violation (W2) is
reported since the topology error that is potentially thrown by the PowOpt service selected for
the Minimize network investments activity is not caught with an error boundary event.

Domain-Specific Assistance

The detection of the previously described violations automatically adapts to a concrete
application domain based on the description of the domain and contained decision support
services. As discussed throughout the requirements for the functional-behavioral composition
assistance, the assistance must also detect flaws that are specific to a concrete application domain.
For this purpose, the functional-behavioral composition assistance requires composition
knowledge contributed by composition experts. Based on the discussion of related approaches
in Section 7.5.3, anti-patterns provide an abstraction that is suitable for composition experts
to document their knowledge and can be mapped to automated approaches for anti-pattern
detection. The subsequently described design for the domain-specific functionality of the
functional-behavioral composition assistance first describes its architecture, the constituents of
an anti-pattern, and an anti-pattern representation that strikes a compromise between human-
and machine-readability.
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E1 Error - Unreachable Element Violation [Completeness Check]
Gateway [Exclusive Gateway] will never be executed because it has no incoming
sequence flow.
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Figure 7.8: Demonstration of selected domain-agnostic and domain-parametrized violations

Architecture of the Domain-Specific Functional-Behavioral Composition Assistance
The architecture of the domain-specific functional-behavioral composition assistance is shown
in Fig. 7.9. The Anti-Pattern Definition & Repository application stores the anti-patterns
defined by composition experts. Composition experts are provided with two sources for
anti-pattern derivation: First, they can define anti-patterns based on the structured description
of decision support services and associated computation methods and goals using their
knowledge of the application domain. The descriptions are provided by the Domain Registry
and Service Registry respectively (cf. Chapter 5). Second, composition experts can also
monitor PD-DSS service compositions created by DSS engineers to identify anti-patterns
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Figure 7.9: Architectural overview of the functional-behavioral composition assistance

based on their practical relevance. For hints regarding which service compositions performed
exceptionally well or poorly and are therefore especially suitable for anti-pattern derivation,
composition experts can utilize feedback for service compositions provided by decision
makers after using the derived tailored PD-DSS. This feedback is subsequently referred to
as a (PD-DSS) review to avoid confusion with the feedback provided to DSS engineers by a
composition assistance. Decision makers should provide reviews at the PD-DSS Repository
application due to its aggregating nature (cf. Chapter 6).

The functional-behavioral composition assistance then obtains the anti-patterns and
integrates with the PD-DSS Design application described in Chapter 6 to provide DSS
engineers with feedback on the designed PD-DSS process model similar to the messages of
violation rule templates. Optionally, a DSS engineer can restrict and configure the detection
of anti-patterns using the Anti-Pattern Selection & Configuration application.

PD-DSS Reviews Reviews of a PD-DSS process model should be provided by decision
makers as a quantitative rating in combination with a natural language explanation. The
quantitative rating enables composition experts to quickly identify PD-DSS service com-
positions that implement the associated requirements for decision support particularly well
or poorly. On the other hand, the natural language explanations support an arbitrary level
of detail and enable composition experts to gain a more thorough understanding of the
advantages and disadvantages of individual service compositions. Reviews should assess
both the effectiveness and efficiency of the PD-DSS derived from the process-based service
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composition. Effectiveness and efficiency can be rated considering the overall requirements
for decision support or for each contained “sub-requirement” regarding specific functional,
non-functional or data requirements (cf. Section 5.4.6). Feedback can be quantified using a
Likert scale where decision makers rate their agreement with the statements “The PD-DSS
efficiently addresses my requirements for decision support” and “The PD-DSS effectively
addresses my requirements for decision support” from strongly disagree (1) over disagree
(2), neither agree nor disagree (3), agree (4) to strongly agree (5). Alternatively, the scale
from employee performance reviews may be reused due to offering more expressive labels for
response options ranging from unsatisfactory performance (1) over improvement desired (2),
meets expectations (3), exceeds expectations (4) to outstanding performance (5) [SDA20].

Anti-Pattern Constituents Based on a literature review, Koschmider, Laue, and Fellmann
[KLF19] identify three properties that should be documented for an anti-pattern: (1) a
descriptive name, (2) a textual, graphical, or formal definition (or a combination thereof), and
(3) a description that documents why the anti-pattern is unfavorable (“problem”) and how and
why the anti-pattern should be avoided (“improvement”). An anti-pattern documentation for
the functional-behavioral composition assistance furthermore includes (4) a severity level, i.e.,
error or warning, to distinguish the effects on PD-DSS enactment (cf. Section 7.1.3).

Composition experts can specify a name, a severity level, and a textual description for the
problem and improvement of an anti-pattern regardless of their training since these properties
only require a textual specification. For the definition of the anti-pattern itself, only a graphical
definition remains as an option since a textual definition does not support automated detection
of the anti-pattern (cf. ARC4 – Continuous Feedback) and a formal definition cannot be
expected from composition experts (cf. ARF3 – Expert Definition). However, it is unclear if
and how a graphical anti-pattern definition approach can be designed that is both readable and
writable for composition experts, and also has a machine-readable representation suitable for
automated anti-pattern detection.

Graphical Anti-Pattern Definition The necessity to find a compromise between a notation
that is both human-readable and machine-readable already emerged during the definition of a
PD-DSS representation in Chapter 6 where BPMN was ultimately selected for the description
of a PD-DSS as an executable process model. The selection was motivated by the fact that
BPMN is widely known and usable without extensive upfront training while also defining a
serialization format for the visual notation, thereby enabling automated processing.

Given BPMN’s advantages, the obvious idea of reusing BPMN for the definition of
anti-patterns is not unreasonable: Anti-pattern detection is essentially a form of matching
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where a subset of process model elements is identified within a PD-DSS process model that
meets the prerequisites of the anti-pattern. In a naive approach, composition experts can
simply define an anti-pattern as a partial BPMN process model. When the partial anti-pattern
process model can be found in the designed PD-DSS process model, the DSS engineer can
be informed about the presence of the anti-pattern, its associated problem and improvement
descriptions, and affected model elements. Unfortunately, this naive approach fails to address
many requirements for the domain-specific assistance described in Section 7.5.2. For example,
the approach can only detect the existence of elements associated with ARF5 – Unwanted
Functionality and ARF7 – Unwanted Branching, but the nonexistence of elements needed for
ARF4 – Missing Functionality and ARF6 – Missing Branching cannot be detected. Another
shortcoming is that the heterogeneity of task labels and the support for non-consecutive
process elements are not addressed (cf. ARF8 – Generalization).

The restrictions show that additional selectors and placeholders are needed to control the
specificity and fuzziness of the matching. Such control is provided by BPMN-Q, an extension
of BPMN that supports visual queries against BPMN process models [Awa07]. Although
BPMN-Q was originally introduced to retrieve process models from a model repository that
satisfy certain constraints [Awa07], it has also been successfully applied for the detection of
anti-patterns in the work by Ramadan et al. [Ram+18] and Laue and Awad [LA10], albeit
with a focus on security-related concerns or domain-agnostic anti-patterns respectively. As a
result, it still has to be shown if and how BPMN-Q can be applied in the PD-DSS context.

BPMN-Q Elements and Extensions Table 7.1 shows an overview of BPMN-Q elements
with minor extensions to enable their application to PD-DSS process models. Since BPMN-Q
extends BPMN, an anti-pattern definition based on BPMN-Q can fundamentally include any
BPMN element. A collection of elements relevant in the context of a PD-DSS is shown under
the standard elements group. A BPMN task is not contained in the list of standard elements
since tasks are matched via a task selector to support the matching of tasks independent of
the chosen natural language label. Instead, a task selector interprets the task label as an ID
referring to a computation goal, a computation method, or a concrete decision support service
as indicated by the preceding prefix. The standard BPMN elements in combination with task
selectors support the definition of simple anti-patterns, e.g., Redundant Network Reduction.

A placeholder can be used instead of a concrete task ID for “fuzzy” matching. A named
placeholder corresponds to BPMN-Q variable, and an anonymous placeholder is added for
scenarios where the ID is irrelevant as it is not matched across multiple process model elements.
The decoration of a placeholder is changed from a preceding @-sign to angle brackets for
better readability. An example is provided with the Redundant Activity anti-pattern.
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Table 7.1: (Extended) BPMN-Q elements for the graphical definition of anti-patterns

Standard Elements: An anti-pattern definition can in-
clude any process model element defined by the BPMN
specification, including start, end, and error boundary
events, parallel and exclusive gateways, and sequence flows.

 Goal: 
...

 Method: 
...

 Service: 
...

Task Selectors: A task selector matches a BPMN (ser-
vice/user) task with the associated computation goal, com-
putation method, or decision support service of the specified
ID as described on the task label.

 Method: 
<A>

 Service: 
<>

Placeholders: A placeholder matches an arbitrary ID
for a computation goal, computation method or decision
support service. A named placeholder (<A>) matches the
same ID across multiple tasks.

X Nonexistent Flow: A nonexistent flow specifies the lack
of a sequence flow between two process model elements.

/ l..u / Nonsequential Flow: A nonsequential flow specifies
that the second process model element must eventually
(but not necessarily immediately) follow the first element.
Optionally, a lower and upper cardinality for intermediate
elements can be defined (default: 0..*).

X / l..u / Nonexistent Nonsequential Flow: A nonexistent nonse-
quential flow combines the characteristics of a nonexistent
flow and a nonsequential flow.

condition
//

condition

X
condition

X //
condition

Conditional Flows: A condition can be used to augment
a flow. For nonsequential flows, this means the condition
must be present on some sequence flow between elements.

A placeholder only supports fuzziness for a single task, but not for intermediate process
model elements. For this purpose, a nonsequential flow documents that multiple elements
can be contained between two connected tasks. Both the sequential and nonsequential flow



7.5. Functional and Behavioral Composition Assistance 197

Redundant Network Reduction Severity: Warning

Definition:  Goal: 
Network Reduction

 Goal: 
Network Reduction Reversal

Problem: A network reduction is redundant because it is immediately reversed, thus
introducing inefficiency with an unnecessary computation.

Improvement: Remove the network reduction and its reversal or add activities in between.

Redundant Activity Severity: Warning

Definition:  Method: 
<A>

 Method: 
<A>

Problem: The same computation method is executed twice in direct succession.
Improvement: Remove one of the duplicate executions.

have a counterpart in the nonexistent flow and nonexistent nonsequential flow to describe the
lack of a flow between tasks. A lack of flow between tasks especially includes the situation
where the task specified as the target of the nonexistent flow is not included in the process
model. For example, the anti-pattern Missing Reversal of Network Reduction is detected when
a network reduction is performed in the designed PD-DSS process model, but either no task
for the reversal of the process model is included in the process model, or at least one scenario
exists where the reversal is not performed, e.g., due to conditional execution.

Missing Reversal of Network Reduction Severity: Error

Definition:  Goal: 
Network Reduction

 Goal: 
Network Reduction Reversal

X //

Problem: A network reduction is performed but never reversed. Results computed
after the network reduction do not apply to the original topology.

Improvement: Add an activity for the reversal of the network reduction.

Like task selectors, conditional flows are an extension to BPMN-Q. For a conditional
sequence flow or a conditional nonexistent flow, it is sufficient to check whether the associated
condition is present on a flow in the designed PD-DSS process model. For a nonsequential
flow, the condition must exist among some sequence flow contained between the first and
second task connected by the nonsequential flow without being reset by a merging exclusive
gateway. An example of a conditional flow is included in the Potential Redundant Network
Optimization anti-pattern, which documents that the necessity of a network optimization
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should be checked based on the results of the power flow analysis. The condition exhibits
two characteristics that deviate from the default format of conditions introduced throughout
the explanation of the behavioral PD-DSS perspective in Chapter 6: First, the left part of the
condition cannot refer to a concrete data object or process data input as their names can be
arbitrarily chosen by DSS engineers for the PD-DSS process model. Instead, the condition
refers to the input of the optimization task by referring to the ID of the computation method
(Asset Optimization) and the method data (loads) separated by a colon. This assumes that
input method data and output method data have unique identifiers among a computation
method to avoid confusion about whether the method data refers to input or output method
data. The reference to method data implies that conditions cannot be defined for computation
goals as these do not specify concrete input and output data. The second derivation is the
right side of the condition referring to a (constant) parameter as indicated by the use of curly
braces in the definition and the corresponding row in the tabular anti-pattern documentation.
The parameter defines the maximum acceptable asset load, which may be specific to the
concrete decision situation of a decision maker. The DSS engineer must specify a value for
the parameter, e.g., 110%, before the anti-pattern can be detected in the designed PD-DSS
process model. This is done with the Anti-Pattern Selection & Configuration application of
Fig. 7.9, where DSS engineers can furthermore overwrite the severity level of anti-patterns.

Potential Redundant Network Optimization Severity: Warning

Definition:  Method: 
Asset Optimization

X //
Asset_Optimization:loads

.maxLoad > {t}

 Goal: 
Power Flow Simulation

Problem: A network optimization is performed without checking if the asset loads
computed as part of a power flow analysis actually exceed permitted
thresholds. This can introduce an inefficiency due to an unnecessary
instantiation of the optimization model.

Improvement: Add an exclusive gateway that only invokes the network optimization if
the maximum load of an asset exceeds the permitted threshold.

Parameters: {t}: Accepted upper threshold for asset loads

Demonstration The detection of three out of the four previously defined exemplary anti-
patterns is shown in Fig. 7.10. Unlike the previously reported violations, an anti-pattern
does not include a parametrized message. As a result, the process model elements that
are part of the detected anti-pattern are listed instead, and an information icon provides a
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Figure 7.10: Demonstration of selected domain-specific anti-patterns

reference to the complete anti-pattern documentation, including the description of the problem
and improvement hints. Since anti-patterns affect multiple process model elements, it is
recommended to highlight the affected process model elements only when the DSS engineer
specifically requests it, e.g., by clicking on or hovering over the error message.

The example furthermore highlights the importance of task selectors: Although the tasks
“Minimize network investments” and “Optimize network topology” use different natural
language labels as well as different decision support services, the redundancy of a duplicate
optimization can still be detected as part of the Redundant Activity anti-pattern due to the

“Method:” selector prefix used in the anti-pattern. For warning W2, the list of affected elements
includes the “Asset Loads” data object as it matches the Asset Optimization:loads
identifier of the Potential Redundant Network Optimization anti-pattern.

7.5.5 Prototypical Implementation

The implementation of the proposed anti-pattern design for the domain-specific functional-
behavioral composition assistance is challenged by the unavailability of a reusable and
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extensible tool for the execution of BPMN-Q queries. As a result, the technical feasibility
of the proposed design is demonstrated with an implementation based on graph matching as
visualized in Fig. 7.11. The intermediate PD-DSS process model designed by a DSS engineer
using the PD-DSS Design application is first transformed into a graph representation and stored
in a graph database. Afterwards, the (configured) anti-patterns are converted into queries
that are run against the database. If a non-empty result is returned, the anti-pattern is present
in the process model and the result is transformed into the established format for assistance
feedback such that it can be displayed to the DSS engineer via the PD-DSS Design application.
The remainder of this subsection briefly summarizes the necessary transformations and the
insights gathered throughout the prototypical implementation.

Transformation Approach

The transformation approach utilizes the fact that a process model already corresponds to
a graph: Activities, gateways, and events correspond to vertices that are connected via
sequence flows corresponding to edges. Furthermore, label functions can be used to capture
additional properties, e.g., the type of a task, the associated computation method, or the
condition specified for a sequence flow. Thus, the converter module and matcher module of the
functional-behavioral composition assistance only need to transform the BPMN representation
of the process model into the representation supported by the selected graph database for graph
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Figure 7.11: Internal architecture of the functional-behavioral composition assistance
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storage and querying. For the prototypical implementation, the graph database Neo4j3 was
chosen. The technical details of the transformation of BPMN process models and BPMN-Q
anti-patterns are described in the paper “Anti-pattern Detection in Process-Driven Decision
Support Systems” [KE22] with a minor correction and extension published in Appendix A.2.
The implementation is furthermore provided as supplementary material (cf. Appendix B).

Insights from the Prototypical Implementation

Using the prototypical implementation with exemplary anti-patterns and process models for
energy distribution network planning demonstrated the fundamental applicability and technical
feasibility of the anti-pattern approach to provide the domain-specific functionality of the
functional-behavioral composition assistance. The application furthermore provided insights
regarding the performance of the approach. The first execution of a query took rather long
on a 2018 commodity laptop, i.e., even for comparatively simple patterns with a complexity
similar to the Redundant Network Reduction or Redundant Activity anti-patterns, the first
query completed between 50ms and 100ms. A query for an anti-pattern with a nonexistent
nonsequential flow such as the Missing Reversal of Network Reduction anti-pattern could even
require up to 200ms for the first query. These execution times would only support checking
a handful of anti-patterns before the DSS engineer would no longer perceive the feedback
as real-time. Fortunately, subsequent executions of a previously executed anti-pattern query
were completed significantly faster in 3ms or less, even when the underlying process model
graph changed in between. This is due to the fact how Neo4j utilizes caching and transforming
queries into an optimized representation referred to as an execution plan (cf. [Veg18] for
additional technical details). These execution times suggest that even a comprehensive catalog
of anti-patterns can be detected using the approach in perceived real-time.

7.5.6 Discussion

The fundamental capabilities of the functional-behavioral composition assistance are demon-
strated with the examples provided for illustrative purposes throughout the explanation of
its design. The technical feasibility of the domain-specific part of the functional-behavioral
composition assistance is fundamentally demonstrated with the prototypical implementation.
Therefore, the subsequent discussion focuses on the relation between the proposed design
concepts and the requirements for the functional-behavioral composition assistance as well as
the cross-cutting requirements for the composition assistance established in Section 7.2.

3 Neo4j website: https://neo4j.com/

https://neo4j.com/
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Requirements Specific to the Functional-Behavioral Composition Assistance

Requirements specific to the functional-behavioral composition assistance established in
Section 7.5.2 are grouped into two categories for the domain-parametrized and domain-specific
functionality of the assistance. These categories are represented as subsections of Section 7.5.4
detailing the design of the assistance. The design explanations of the domain-parametrized
functionality are further structured to provide an immediate mapping to ARF1 – Completeness
and ARF2 – Robustness and are not repeated here to avoid redundancy.

The requirements for the domain-specific part of the functional-behavioral composition
assistance are largely addressed by the expressiveness of BPMN-Q. The graphical anti-
pattern definition approach enabled by BPMN-Q (with minor extensions for the DSE context)
significantly contributes towards ARF3 – Expert Definition. In particular, the reuse of BPMN
standard elements including gateways and sequence flows supports the definition of ARF5 –
Unwanted Functionality and ARF7 – Unwanted Branching. The use of nonexistent flows in a
BPMN-Q anti-pattern definition supports ARF4 – Missing Functionality and ARF6 – Missing
Branching. The selectors, placeholders, and actual parametrization that can be used in an
anti-pattern definition address ARF8 – Generalization, although the use of a graph database
for the detection of anti-patterns shows the potential of using filters that could be specified for
placeholders to restrict computation methods, goals and services that can be affected by the
anti-pattern. Filtered placeholders could also be useful outside of tasks, e.g., as shown in the
Network Reduction Condition Mismatch anti-pattern for conditions.

Network Reduction Condition Mismatch Severity: Error

Definition: // Goal: 
Network Reduct.

<c2><c1>  Goal: 
Network Reduct. Reversal

Filter: c1 != c2

Problem: The condition that determines the execution of a network reduction
is different from the condition which determines whether the network
reduction is reversed. This can result in a mismatch where a reduction is
not reversed, or the reversal of a never executed reduction is attempted.

Improvement: Unify the conditions before the network reduction and its reversal.

Cross-Cutting Requirements for the Composition Assistance

In addition to the requirements specific to the functional-behavioral composition assistance,
the assistance also addresses the cross-cutting requirements established in Section 7.2.
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Requirement ARC1 – Static Validation is addressed since all (anti-pattern) violations can
be detected during the design of the decision support service composition. For the domain-
parametrized functionality of the functional-behavioral composition assistance, requirements
ARC2 – Traceable Feedback and ARC3 – Comprehensive Feedback are addressed by using
the proven violation rule templates. For the domain-specific assistance functionality, these
requirements are addressed by reporting affected process model elements and the description
of an identified anti-pattern. In theory, the anti-pattern problem description could be further
customized to the process model under consideration by numbering the elements in the
BPMN-Q anti-pattern definition such that they can be referenced in the problem description,
e.g., for the Redundant Activity anti-pattern the error message could be parametrized as

“Activity [#1] and activity [#2] are redundant since they use the same computation method
[<A>]” (where #1 and #2 get replaced by the natural language labels of the matched tasks, and
<A> gets replaced by the name of the computation method). However, fortifying the messages
with references adds some complexity to the definition of anti-patterns and may discourage
some potential composition experts from contributing their composition knowledge. The
prototypical implementation demonstrated that the approach of anti-pattern detection using a
graph database is fast enough for ARC4 – Continuous Feedback.

Threats to Validity

In addition to the cross-cutting threats to validity discussed in Section 8.6, the proposed design
for the functional-behavioral composition assistance has not explicitly been evaluated with
subprocesses. Although their inclusion in a BPMN-Q anti-pattern definition is trivial, they
essentially correspond to a sub-graph in the process model that has not been considered for
the transformation of a process model into a graph representation. The examples furthermore
do not consider the parallel execution of tasks that can be included in a BPMN-Q anti-pattern
definition. In case of dependencies between tasks of different parallel flows it might be
necessary to transform the process model into a labeled transition system before inserting it
into the graph database (similar to the approach by Förster et al. [För+07]).

The prototypical implementation furthermore focuses on the transformation of the process
model and anti-pattern definitions. The anti-pattern definition application was not explicitly
implemented, although this is a minor limitation since its modeling capabilities are fundamen-
tally similar to the PD-DSS Design application whose technical feasibility was demonstrated
in Chapter 6. The prototypical implementation also does not support task selectors, but they
can be easily implemented by adding properties for the IDs of computation method/goal and
decision support service to the nodes in the graph representing BPMN tasks.
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Transition to Recommender System

The functional-behavioral composition assistance can be used to implement a recommender
system that utilizes composition knowledge for proactive error prevention. In particular,
whenever the DSS engineer adds an element to a process model that is the source of a
nonexistent (nonsequential) flow, the recommender system could automatically add the
process element that is the target of the flow if it is not already included in the PD-DSS process
model. For example, whenever a network reduction is added to the process model, a task
for the reversal of the network reduction could be automatically added due to the Missing
Reversal of Network Reduction anti-pattern. This proactively prevents DSS engineers to
create PD-DSS process models containing the anti-pattern. Furthermore, the description of
anti-pattern improvements could be switched from the current textual to a more structured
definition to support the automated correction of flaws. For example, a redundant task could
be automatically removed for the Redundant Activity anti-pattern. This transformation could
potentially be described as a graph transformation to enable its automated application.

7.6 Key Takeways

The proposed composition assistance can support DSS engineers in composing decision
support services into PD-DSS process models that effectively and efficiently address a decision
maker’s requirements for decision support. The composition assistance is integrated into the
PD-DSS Design application used by the DSS engineer and continuously provides actionable
feedback for the designed composition regarding its operational, informational, functional,
and behavioral perspective. The assistance automatically derives composition knowledge
from the documentation of the application domain and the contained decision support services.
In addition to this domain-parametrized support, the assistance can furthermore provide
domain-specific support for designing the functional and behavioral perspective of a PD-DSS
service composition by detecting anti-patterns contributed by composition experts based
on feedback provided by decision makers and DSS engineers. Although the assistance is
primarily intended to validate a designed PD-DSS process model, it can also support the
implementation of a recommender system that actively proposes extensions to a PD-DSS
process model to reduce the workload of DSS engineers.

The composition assistance concludes the series of contributions that together support
all phases and activities of the DSE lifecycle. The remainder of the thesis focuses on the
discussion of the proposed solution designs with respect to the requirements for tailored DSS
development established in Chapter 3 and the research questions established in Chapter 1.
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CHAPTER 8
Case-Study Evaluation

By combining the partial solution designs proposed through Chapters 5 to 7, all phases
of the DSE lifecycle are addressed (cf. Fig. 8.1). Each chapter already demonstrates the
fundamental applicability and technical feasibility of its described solution design in isolation
considering its individual design requirements derived from the DSE concept introduced in
Chapter 4. This chapter provides a coherent evaluation of the partial solution designs – and,
by extension, an evaluation of the overall DSE concept – with respect to the requirements
for tailored DSS development established in Chapter 3. For this purpose, the DSE lifecycle
activities of Fig. 8.1 are enacted based on practical insights from a research project with
industry partners to demonstrate the applicability of the DSE concept. The results of this case
study are subsequently used to show that the DSE concept addresses all previously established
requirements for providing each decision maker with a tailored DSS.

Foundations   Design Enactment  Improvement  

Ch. 5

Ch. 5

Ch. 5

Ch. 6,7 Ch. 6

Ch. 6 Ch. 7

Ch. 7

Domain
Documentation

Service
Registration

Requirements
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Service
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DSS
Generation

DSS Usage

Feedback
Documentation

Knowledge
Extraction

Figure 8.1: All phases of the DSE lifecycle are addressed with the presented solution design

207



208 Chapter 8. Case-Study Evaluation

After an overview of the research project that serves as a foundation for the case study
(Section 8.1), case study insights from enacting the DSE lifecycle phases are described for
the Foundation phase (Section 8.2), the Design phase (Section 8.3), the Enactment phase
(Section 8.4), and the Improvement phase (Section 8.5). Each section also describes the
contributions of the associated solution design (which is visually summarized in advance with
the refinement of the DSE platform reference architecture in Fig. 8.2) towards the requirements
for tailored DSS development. Lastly, threats to validity that could impede the generalization
of the solution design and evaluation results are presented (Section 8.6) and the case study
insights are summarized (Section 8.7).

8.1 Context: Research Project “FlexiEnergy”

The subsequently described case study is based on practical insights that were gathered
throughout the author’s participation in the FlexiEnergy research project1 from September
2018 to December 2021. The German research project received funding from the European
Union to design and develop a decision support system for energy distribution network
planning under uncertainty across multiple energy sectors. Nine partners from academia
and industry collaborated in the research project, including two local distribution network
operators and an agency specialized in energy distribution network planning.

Throughout the research project, multiple alternative activities for the fundamental
decision process phases of energy distribution network planning presented in Section 2.3
were documented for selection based on different situational factors. While the duration
of the project limited implementation efforts to a few selected activities, other alternative
activities were nevertheless defined on a conceptual level, thus providing a sufficient amount of
selection alternatives for a DSE case study. However, the focus on a conceptual specification
of decision activities in combination with the confidentiality of some contributions made by
project partners requires the subsequent case study to be “simulated”, i.e., it is closely based
on real-world experience gathered throughout the research project, but it does not describe
actual project contributions. Furthermore, due to the extent of real-world planning processes,
the subsequently presented case study only focuses on the initial forecasting phase during
which one or multiple forecasts are created to anticipate customers’ energy demands. Since
the previous chapters already demonstrated the solution design on a fine-grained (technical)
level, the subsequent demonstration in the context of the coherent case study focuses on a
textual description of integrating the partial solution designs across the DSE lifecycle phases.

1 Project website: https://www.flexi-energy.de/en/

https://www.flexi-energy.de/en/
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8.2 Phase 1 – Foundation

This section describes the artifacts produced during the enactment of the DSE lifecycle
phase Foundation in the context of the FlexiEnergy case study. During the initial Domain
Documentation lifecycle activity, domain experts use the Domain Registry application to
create a documentation of decision making in an application domain. For better readability,
the explanation of this domain documentation is subsequently split into data characteristics
(Section 8.2.1) and computation methods (Section 8.2.2). During the subsequent Service
Registration lifecycle activity, service providers use the Service Registry to describe functional
and data decision support services (Section 8.2.3). Based on the case study insights, the
contributions of the Foundation phase towards the requirements for tailored DSS development
established in Section 3.1 are discussed (Section 8.2.4).

8.2.1 Domain Documentation: Data Types and Metadata Attributes

The data type that is most relevant for forecasting the demands of energy customers connected
to an energy distribution network is Customer Demands. This data type corresponds to a list of
quadruples describing which customer (identified by an ID) at what point in time (documented
as an ISO-string) consumes or produces how much energy (in kW) of what energy type,
e.g., (‘#1234’, ‘2023-01-01T01:00:00Z’, 0.345, ‘electricity’). This structure
can be used to describe historical, current, and expected future energy demands with an
arbitrary temporal resolution for multiple energy sectors. This suggests metadata attributes
Start and End to document the first and last timestamp for which data is provided respectively.
Furthermore, a Resolution attribute indicates whether the data contains “hourly”, “daily”,
“weekly”, “monthly”, or “yearly” values. The Sectors attribute indicates whether the data
describes “electricity”, “gas” or “heat” demand for one or multiple of the listed sectors (i.e.,
the Sectors attribute has a minimum cardinality of one and a maximum cardinality of three).
All metadata attributes may be relevant to determine whether the demand data is compatible
with a service, e.g., if it is within a certain time interval, has the correct temporal resolution,
or includes (only) the supported energy sector(s). The Customer Demands data type can be
represented using a data format suitable for storing a list of quadruples. Naturally, this can be
the tabular CSV format, or JSON, either as an array of arrays (JSON-Array) or as an array of
JSON objects (JSON-Objects). Additional proprietary data formats are possible.

The Customer Demands data type illustrates that the definition of data types and metadata
attributes may depend on the personal preference and requirements of domain experts and
other ecosystem participants. For example, instead of defining the Resolution attribute as a
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qualitative attribute with a set of selected values determining its range, it could also be defined
as a quantitative attribute that specifies an arbitrary number of minutes between timestamps.
This supports more resolutions than the qualitative variant presented before, but in direct
comparison, a “yearly” resolution is easier to grasp than 525,600 minutes. An additional
example for situational modeling is the size of a dataset, which can be computed based on the
attribute values specified for Start, End, and Resolution. However, ecosystem participants
might require an explicit Size attribute to define service constraints or conditions on sequence
flows in the BPMN process model. Additional data types and metadata attributes are briefly
explained when needed throughout the remainder of this section to avoid repetitiveness.

8.2.2 Domain Documentation: Computation Methods

This section presents multiple computation methods available for generating forecasts of
customers’ energy demands that were conceptualized during the FlexiEnergy research project
and are part of the domain documentation created by domain experts. The methods are
grouped under their associated computation goal.

Immedidate Demand Forecasting

The Immediate Demand Forecasting goal aggregates computation methods that compute the
expected energy demands of customers within a single activity in the decision process.

The Demand Extrapolation computation method uses a statistical approach to project
the future energy demands of individual customers based on their historical energy demands.
The method requires the historical energy demands of customers as input and produces the
extrapolated energy demands as output. Thus, it only utilizes the previously described Customer
Demands data type. An overview of potentially applicable approaches to implement this
computation method is presented by Ghalehkhondabi et al. [Gha+17]. Method characteristics
can be used to document details of the chosen approach, e.g., whether the extrapolation is
performed using regression or a neural network.

The Demand Scaling computation method scales the current energy demands of individual
customers by multiplying them with a scaling factor. This method requires two inputs, the
current energy demands of customers and the scaling factors to apply, and produces the scaled
expected future energy demands as output. The Scaling Factors data type documents the
scaling factor as a list of triples consisting of the energy sector, the scaling factor (relative to
the first documented energy demand of customers), and the time after which the scaling factor
should be applied, e.g., (’electricity’, ’2025-01-01’, 1.1). Scaling factors can be
provided as input to the decision process by decision makers. Otherwise, they are determined
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throughout a preceding activity of the decision process, either manually via user selection or
automatically based on statistical analysis (with both approaches corresponding to individual
computation methods of a Scaling Factor Specification goal).

Technology Adoption Simulation

The Technology Adoption Simulation goal is the first part of a two-stage demand forecasting
approach where the adoption of consumer technologies such as electric vehicles or heat pumps
by customers is first simulated and the energy demands of customers are subsequently updated
based on the simulation results.

The Strategy-Based Technology Adoption Simulation computation method assigns
technologies to customers based on some pre-defined internal strategy. Naive strategies
include a geographically uniform or random assignment of technologies to customers. More
advanced strategies compute the best- or worst-case assignment of technologies with respect
to the effects on network asset loads. A method characteristic enables associated decision
support services to document the implemented strategy. The computation method requires the
expected development of consumer technology market shares and the network topology with
customer locations as input and produces the simulated technology adoptions of customers as
output. Market shares of consumer technologies are captured with the Technology Market
Shares data type. It consists of triples documenting the consumer technology, the date, and
the expected market share, e.g., (’BEV’, ’2023-01-01’, 0.04). The simulation results
are captured with the Technology Assignment data type consisting of events in the form of
quadruples that document the ID of the customer, the date, the consumer technology, and
whether the technology was adopted or disposed of in case of outdated technology, e.g.
(’C-1234’, ’2023-06-03’, ’BEV’, ’adoption’).

The Rule-Based Technology Adoption Simulation computation method works similarly
to the previously described Strategy-Based Technology Adoption Simulation method. However,
instead of following a pre-defined strategy for the assignment of technologies to customers,
this method can be parametrized with assignment rules to define the circumstances that favor
or hinder customers from adopting or disposing of certain technologies. Assignment rules
are defined based on characteristics of customers. For example, customers in prosperous
neighborhoods are currently more inclined to adopt a PV system. Compared to the Strategy-
Based Technology Adoption Simulation, the Rule-Based Technology Adoption Simulation
requires two additional inputs, i.e., the characteristics of customers and the assignment rules.
The assignment rules are optional under the assumption that implementing decision support
services use sensible default rules otherwise. Details regarding the associated data types
Customer Characteristics and Assignment Rules are available in FlexiEnergy publications.
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Energy Demand Updating

The Energy Demand Updating computation goal is the second part of the two-stage demand
forecasting approach that calculates the effects of the previously simulated consumer technology
adoptions on the energy demands of customers.

The Peak-Based Energy Demand Updating computation method directly updates the
demands of customers based on the assigned consumer technologies. For this purpose,
the computation method requires the current energy demands of customers, the computed
technology assignments, and a mapping from each consumer technology and time step of
the planning interval to the peak load (in kW) caused by the technology. The latter mapping
is documented using the Peak Technology Loads data type, e.g., (’BEV’, ’2023-01-01’,
11). The computation method outputs the updated (i.e., expected) energy demands of
customers. Depending on whether a technology was adopted or disposed of at a given point
in time, the peak energy demands of the affected technology are simply added or subtracted
from the current energy demands of customers.

The Profile-Based Energy Demand Updating computation method works similarly to
the Peak-Load Energy Demand Updating method. However, instead of working with the
peak demand of each consumer technology, this method utilizes individual load profiles per
technology and customer. As a result, the method supports a more fine-grained description of
technology demands that may be influenced by demand side management (DSM) where the
distribution network operator actively controls the energy demand of consumer technologies
based on the available network capacity. The effects of DSM must be computed outside the
Profile-Based Energy Demand Updating method. For example, the Managed EV Charging
Simulation computation method was considered throughout the FlexiEnergy research project
to simulate DSM influences on the charging behavior of electric vehicles. The method was
intended to minimize network loads while achieving a certain level of battery charge for each
vehicle. However, under the interface prescribed by the computation method, it is also possible
to implement an algorithm that aims for a different optimization target under the same (or
additional) constraints, e.g., to optimize electric vehicle charging such that consumer costs are
minimized (cf. [TDA16]). While the latter optimization target is less useful for distribution
network planners, it can benefit municipal energy suppliers in setting energy prices.

Peak Shaving

In addition to the previously discussed demand side management applied during energy
demand updating, the Peak Shaving computation goal bundles additional approaches that
can reduce peaks in customers’ energy demands. The computation methods associated with
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this goal can be fundamentally applied to each customer demand forecast, but require a high
temporal resolution to compute reliable results.

The Sector Coupling Offset computation method reduces energy peaks in one energy
sector by using sector coupling technologies to transform energy from one energy sector to
another, e.g., via a Power-to-Gas or Power-to-Heat conversion. For this purpose, the method
requires the energy demands of customers and the network topologies for all energy sectors
as input and returns the attenuated energy demands as output. This peak-shaving alternative
is only available if the distribution network operator has access to distribution networks for
multiple energy sectors in the same region and sector coupling technology already exists.

The Network Traffic Light Simulation computation method is another peak-shaving
approach that was discussed throughout the FlexiEnergy research project but was only partially
conceptualized. The approach tries to influence customers’ energy demands by using financial
incentives based on the current network load (i.e., increase network fees when the load is high
and reduce network fees if the load is low).

8.2.3 Descriptions of Decision Support Services

This section discusses exemplary functional and data decision support services in the context
of the FlexiEnergy case study to demonstrate what and why different implementations for the
previously described computation methods are available.

Functional Services

Many of the previously documented computation methods can be implemented by decision
support services built on existing research or commercially available software. For example,
the Demand Extrapolation computation method can essentially be implemented using any of
the approaches summarized by Ghalehkhondabi et al. [Gha+17]. Similarly, Theodoropoulos,
Damousis, and Amditis [TDA16] summarize multiple approaches that can be used for the
implementation of Managed EV Charging Simulation. Since an exhaustive list of potential
decision support services provides limited benefits, the following explanations focus on
examples that illustrate the motivations behind the development of multiple services for the
implementation of the same computation method.

Effectiveness One decision support service may be more effective than another service. For
example, for the Strategy-Based Technology Adoption Simulation computation method, one
decision support service may be more effective in identifying network bottlenecks than another
service when computing a worst-case geographic distribution of consumer technologies. Such
a difference likely only becomes obvious when using the two services on the same data
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and comparing results, or by relying on feedback provided for the services in the service
registry. Alternatively, the effectiveness of a service can be derived from value assignments
for method characteristics documented by the service. For example, approaches for Demand
Extrapolation using a neural network have been trained on energy demand data of customers
specific to a single country or region. Consequently, including the origin of training data in
the description of decision support services indicates whether the service is applicable in
another region based on the similarity of distribution networks between regions.

Efficiency One decision support service may be more efficient than another. For example,
two implementations for the Rule-Based Technology Adoption Simulation computation method
were developed throughout the FlexiEnergy research project. The first implementation does not
use parallelization while the second does. The sequential implementation has a linear runtime
in the number of customers to consider while the parallel implementation has a fraction of the
runtime (depending on the degree of parallelization). The parallel implementation achieves
the speedup by using multiple cores of a virtual machine, but additional parallelization can be
achieved by hosting the service on a cluster of multiple virtual machines. However, benchmarks
indicated that the coordination of parallelization adds some management overhead. Thus,
there is an intersection point when plotting the runtime of the implementations concerning the
number of customers to assign consumer technologies for. The sequential implementation is
more efficient up to this intersection point, i.e., the number of customers to consider, afterwards
the parallel implementation is more efficient. The intersection point can be used to define
data assertions, i.e., that the sequential service should only be used up to a certain number of
customers, and the parallel service should only be used after exceeding a certain number.

Other Qualities For reasons discussed in Section 4.4.1, automated functional decision
support services are tightly coupled to the infrastructure they are executed on. Thus, it
may also be desirable to host services on different infrastructure to improve service quality
such as performance or availability (e.g., switch to a more powerful virtual machine with
more cores to improve the performance of the parallel implementation of the Rule-Based
Technology Adoption Simulation computation method). These quality advantages (and
potentially also increased effectiveness and efficiency) are likely accompanied by increased
usage fees. Consequently, alternative services also enable DSS engineers to allocate resources
to the most important activities in the decision process.

Data Services

In the previously described context of forecasting the energy demands of customers, all
data that is independent of a concrete distribution network is fundamentally suitable for the
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establishment of a reusable data service. For example, throughout the FlexiEnergy research
project, multiple publicly available studies were analyzed for expected future developments
regarding overall energy demands and consumer technology characteristics. The gathered
insights can be used to define one or multiple reusable datasets with scaling factors or market
shares that can be used with the Demand Scaling and Demand Simulation computation
methods, respectively. While this research work provides a starting ground for the decision
support ecosystem, authors of (future) studies can directly make their insights available as a
data service using the same format, while potentially charging an additional fee.

The aforementioned examples describe data services that are publicly accessible, either
immediately or after paying a usage fee. Additionally, other data services are also fundamentally
reusable, but cannot be publicly shared due to privacy concerns. For example, the historical
energy demands of customers should be available to every distribution network planner within
a single company, but not to planners outside the company. This can be achieved using the
access controls associated with decision support services.

8.2.4 Relation to Requirements for Tailored DSS Development

This section relates the demonstrated solution design associated with the Foundation lifecycle
phase to the requirements for tailored DSS development established in Section 3.1.

The decision support services documented at the service registry provide DSS engineers
with alternative decision support functionality to select and combine into a tailored DSS
to address the situational requirements for decision support of a decision maker. Thus, the
Foundation lifecycle phase contributes towards requirement R1 – Situativity by providing the
basis for service composition throughout the subsequent Design lifecycle phase. Furthermore,
the documentation of decision making in an application domain created during the Foundation
lifecycle phase provides a basis for decision makers to document their situational requirements
for decision support, which is also integral to address R1 – Situativity. Additionally, the
composability of computation methods and decision support services documented throughout
the Foundation lifecycle phase addresses requirement R2.1 – Modularity.

The computation methods identified and described during the Foundation lifecycle
phase define interfaces that can be implemented differently by individual decision support
services, e.g., as indicated with the references to the literature for the Demand Extrapolation
and Managed EV Charging computation methods during the description of the case study.
Furthermore, the proposed HTTP-based data exchange between services enables each decision
support service to be developed using arbitrary technologies on an arbitrary platform. This
addresses requirement R3.1 – Reusability by supporting the reuse of existing implementations.
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Tool support for the development of wrappers to make existing applications available with
a different communication protocol has already been proposed by Wolters, Kirchhoff, and
Engels [WKE20] and can also be applied in the DSE context to increase service variety.

Since the Foundation phase – like any DSE lifecycle phase – is executed continuously, the
domain description and service descriptions can always be extended by domain experts and
service providers using the associated content management system. Consequently, considering
service advancements such as the parallelized implementation of the Rule-Based Technology
Adoption Simulation method mentioned throughout the case study is not a challenge. This also
applies to data types and data formats as well as computation goals and computation methods,
thus addressing requirement R3.2 – Extensibility. The domain documentation and service
registry also implement R3.3 – Discoverability for decision support functionality concerning
interfaces (i.e., computation methods) and concrete implementations (i.e., decision support
services). For example, a DSS engineer may not have known about all available approaches to
forecasting the energy demands of customers without the corresponding documentation.

Since the service descriptions are later analyzed by the composition assistance to identify
flaws in a PD-DSS process model, the Foundation phase also contributes towards addressing
requirement R4.3 – Error Prevention. This was demonstrated in the FlexiEnergy case study
with data assertions to document the tradeoff between parallelized and non-parallelized
implementations of the Rule-Based Technology Adoption Simulation computation method, or
the documentation of optimization characteristics for decision support services implementing
the Managed EV Charging Simulation computation method to later prevent functional errors.

The domain documentation addresses requirement R5.1 – Common Terminology by
assigning names to and defining the structure of data types and computation methods provided
by DSE participants. The Foundation lifecycle phase also supports addressing requirement
R5.2 – Artifact Sharing since it enables the advertisement of shared decision support services
across organizational boundaries (subject to access restrictions). The Foundation lifecycle
phase also contributes to addressing requirement R5.3 – Experience Sharing since the service
registry supports reviews for decision support services based on feedback provided by decision
makers and DSS engineers during the later Improvement lifecycle phase. The Foundation
phase furthermore addresses requirement R5.4 – Organizational Scalability since the domain
and service descriptions can be extended and added by any DSE participant.

The service descriptions contribute towards addressing requirement R6.1 – Transparency
when decision makers want to obtain additional information about the modules that comprise
their tailored PD-DSS. Lastly, the Foundation phase has the most impact on requirement R7 –
Domain-Portability since it enables domain experts to capture decision-making characteristics
of the application domain as a foundation for all other lifecycle phases.



218 Chapter 8. Case-Study Evaluation

8.3 Phase 2 – Design

This section describes the artifacts produced during the enactment of the DSE lifecycle phase
Design in the context of the FlexiEnergy case study. During the initial Requirements Docu-
mentation lifecycle activity, decision makers use the Requirements Elicitation application to
document their requirements for decision support. During the subsequent Service Composition
activity, DSS engineers use the PD-DSS Design application to describe a tailored DSS as
a BPMN process model. The requirements and PD-DSS process models are stored in the
PD-DSS Repository for further processing in subsequent lifecycle phases.

This section discusses three PD-DSS process models and underlying situational require-
ments for decision support for cross-sector distribution network planning (Section 8.3.1),
electricity distribution network planning with demand side management (Section 8.3.2), and
meta decision making (Section 8.3.3). Based on the case study insights, the contributions of
the Design lifecycle phase towards the requirements for tailored DSS development established
in Section 3.1 are discussed (Section 8.3.4).

8.3.1 Cross-Sector Distribution Network Planning

The first case study example assumes that a distribution network planner works for a distribution
network operator that manages distribution networks for each energy sector in a given region.
The partial process model describing the composition of decision support services for
forecasting customers’ energy demands within the tailored PD-DSS is shown in Fig. 8.3.

Scale
energy demands
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scaling factors

Offset
loads using

sector coupling

Scaling Factors

Current Demands

Scaled Demands Expected Demands

Electricity
Topology

Heat
Topology

Gas
Topology

Figure 8.3: Process model excerpt for a PD-DSS supporting sector coupling



8.3. Phase 2 – Design 219

The region under consideration includes a large share of industrial customers and trade
buildings. Therefore, the forecasting is built around the Demand Scaling computation method
instead of Technology Adoption Simulation and Energy Demand Updating, as those methods
are more suitable for regions with primarily residential customers. Since the distribution
network planner does not have access to scaling factors (or does not want to use published
ones), the scaling factors are defined during the “Define scaling factors” task instead of being
provided as another data input to the process. In the third task, peaks in energy demands are
attenuated by using the Sector Coupling Offset computation method. This method can be
utilized by the distribution network planner since the distribution network operator manages
the energy distribution networks for all energy sectors in the region.

8.3.2 Electricity Distribution Network Planning with DSM

The second example assumes that a distribution network operator manages only the electricity
distribution network for a region, which is equipped with demand side management (DSM)
for electric vehicle charging. The partial process model of the tailored PD-DSS for demand
forecasting is shown in Fig. 8.4.

The region under consideration includes a large share of residential customers. As a result,
demand forecasting is built around the combination of methods associated with the Technology
Adoption Simulation and Energy Demand Updating computation goals. Since the distribution
network planner can only utilize DSM to influence electric vehicle charging, the PD-DSS
process model is split into two parallelly executed flows: The top flow computes the energy
demands accrued by electric vehicles, and the bottom flow computes the energy demands
accrued by other consumer technologies. Both flows utilize the Rule-Based Technology
Adoption Simulation computation method (without the optional assignment rules) for the
simulation of technology adoptions. The top flow subsequently uses the Managed EV Charging
Simulation and Profile-Based Energy Demand Updating computation methods to account for
DSM. The bottom flow instead uses the Peak-Based Energy Demand Updating computation
method as it is more resource-efficient while computing results that are closely as effective as
the Profile-Based Energy Demand Updating with default load profiles. After both flows have
been executed, the computed energy demands for the assigned technologies are added to the
current energy demands of customers to obtain their expected future energy demands.

8.3.3 DSM Benchmarking / Meta Decision Making

The previous two examples show the demand forecasting functionality of two tailored PD-DSS
with the intent to further process the created demand forecast, e.g., to compute an investment
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Figure 8.4: Process model excerpt of a PD-DSS supporting electricity networks with DSM

plan describing a replacement strategy for network assets given the expected energy demands
of customers. The process model shown in Fig. 8.5 can be used for two different purposes,
which are discussed after the fundamental explanation of the depicted process model.

The process model shown in Fig. 8.5 first computes a worst-case distribution of electric
vehicles among an electricity distribution network using the Strategy-Based Technology
Adoption Simulation computation method. Similar to the process model discussed in the
previous subsection, the effects of the technology adoptions subsequently are once simulated
using the Profile-Based Energy Demand Updating computation method to compute the
demands of electric vehicle charging with demand side management (DSM), and once using
the Peak-Based Energy Demand Updating computation method to compute the demands of
electric vehicle charging without DSM. Afterwards, the computed demands are manually
compared using an appropriate user interface.

The decision support provided by the presented process model can serve two purposes.
First, the gathered insights on the effects of DSM during electric vehicle charging can support
a decision maker in the decision of whether an energy distribution network should be upgraded
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Figure 8.5: Process model excerpt for benchmarking the effects of DSM for vehicle charging

with DSM technology or not. Consequently, the process model demonstrates how the decision
support functionality described in the previous Section 8.2 can be used for different decision
problems (i.e., investment planning for traditional network assets such as transformers and
cables, and DSM investment planning). Second, assuming a distribution network operator
has already made the DSM investment, a DSS engineer can use the comparison to decide
whether the added complexity, runtime, and other resource consumption required for DSM
simulation is reasonable when doing long-term investment planning, which is usually based
on a temporal resolution where DSM effects are not as obvious. Thus, the process model can
be used for meta decision making, i.e., deciding on the constitution of the decision process
that is supported by the tailored PD-DSS (cf. Section 2.2.4).

8.3.4 Relation to Requirements for Tailored DSS Development

This section relates the demonstrated solution design associated with the Design lifecycle
phase to the requirements for tailored DSS development established in Section 3.1.

By enabling decision makers to document their situational requirements for decision
support and by enabling DSS engineers to design a tailored DSS as a process-based composition
of decision support services, the Design lifecycle phase addresses reqiurement R1 – Situativity.
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For example, concerning R1.1 – Situational Decision Problems, decision makers can require
and DSS engineers can select as well as compose computation methods and implementing
decision support services with different optimization characteristics as well as different
approaches to the computation of decision recommendations. In the previously described
case study, different optimization characteristics can for example be defined for the Managed
EV Charging Simulation computation method, which furthermore can only be used in the
decision process if the distribution network operator can actively control the charging behavior
of electric vehicles. Adapting the decision support to the resources available to the decision
maker as required by R1.2 – Situational Resources can also be considered. This is for example
demonstrated by the “Define scaling factors” task in Fig. 8.3 where the otherwise missing
scaling factors required for the subsequent scaling of energy demands are created, or the
alternative FlexiEnergy implementations of the Rule-Based Technology Adoption Simulation
computation method that should be chosen based on the extent of the provided input data due
to different runtime characteristics. The lack of scaling factors can also be seen as an example
for R1.3 – Situational Competences if scaling factors are already published as data services,
but the decision maker does not agree with the developments implied by the scaling factors.

Although requirement R2.1 – Modularity is primarily addressed by the Foundation lifecycle
phase, the Design lifecycle phase nevertheless contributes to this requirement by ensuring
the modular decision support services can be assembled into a holistic DSS. Similarly, the
behavioral perspective of the process-based service composition representing a DSS enables
the foundation for addressing requirement R2.2 – Navigation, although the implementation of
this navigation is ultimately up to the subsequent Enactment lifecycle phase.

By supporting the design of service compositions that mimic an existing off-the-shelf
DSS and by advertising these service compositions via the PD-DSS Repository, the Design
lifecycle phase also contributes to addressing requirements R3.1 – Reusability and R3.3 –
Discoverability. In particular, rebuilding existing off-the-shelf systems enables a gradual
adoption of the DSE. The discovery of complete PD-DSS service compositions is also
beneficial for benchmarking or meta decision making as discussed in Section 8.3.3.

The Design lifecycle phase is essential to addressing requirement R4 – Suitability for
Non-Programmers. Concerning the associated requirement R4.1 – Abstraction, the designed
process model describes the functional, behavioral, informational, and operational perspective
of the PD-DSS using a visual notation. DSS engineers do not need to consider the technical
implementation of these perspectives. For example in Fig. 8.4, parallel execution is achieved
by simply adding a parallel gateway and the data exchange between decision support services
is described by the data associations in the process model. BPMN, which is used to specify
the process model representing a PD-DSS, was chosen during solution design because it is
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widespread and usable without extensive upfront training, thus addressing requirement R4.2
– Learnability. The composition assistance integrated into the PD-DSS Design application
can also support learnability by highlighting syntactical and semantic mistakes such that they
can be avoided in the future. The composition assistance furthermore addresses requirement
R4.3 – Error Prevention by reporting flaws in any of the process model perspectives. For
example, the composition assistance can issue a warning if the parallel implementation of
the Rule-Based Technology Adoption Simulation computation method is used, although the
number of customers is below the intersection point where the performance of the decision
support service with the parallel implementation outperforms the sequential implementation.

The Design lifecycle phase furthermore supports addressing requirement R5.2 – Artifact
Sharing since the cross-organizational use of decision support artifacts simply requires the
selection of decision support services from different service providers during the design of the
PD-DSS process model. For example, a decision support service for the Profile-Based Energy
Demand Updating computation method developed during the FlexiEnergy research project can
be combined with previously published approaches for the Managed EV Charging Simulation
computation method during the design of the PD-DSS. In addition to the experience-based
suggestions of the composition assistance during the design of a PD-DSS, the sharing of
designed (best-practice) PD-DSS process models via the PD-DSS Repository application also
contributes to requirement R5.3 – Experience Sharing.

The previously discussed learnability of BPMN also enables decision makers to use the
process model to understand the inner workings of the tailored PD-DSS. Thus, the PD-DSS
process model works as a means of documentation, thereby addressing reuqirement R6.1 –
Transparency. Contrary to some automated service composition approaches, the manual
service composition by DSS engineers ensures the similarity of PD-DSS designs given the
same and sufficiently precise documentation of a decision maker’s situational requirements for
decision support, thereby addressing requirement R6.2 – Determinism. The domain-agnostic
nature of the Design lifecycle phase contributes towards R7 – Domain-Portability.

8.4 Phase 3 – Enactment

This section describes the artifacts produced during the application of the DSE lifecycle phase
Enactment in the context of the FlexiEnergy case study. During the initial DSS Generation
lifecycle activity, a designed PD-DSS process model is automatically transformed for usage
with an existing BPMN engine. Since this activity happens transparent to DSE participants,
this section focuses on the DSS Usage lifecycle activity where decision makers instantiate
(Section 8.4.1) and interact (Section 8.4.2) with a PD-DSS using the PD-DSS Enactment
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application. For conciseness, the case study description focuses on the enactment of the
“Cross-Sector Distribution Network Planning” PD-DSS presented in Section 8.3.1. Based on
the case study insights, the contributions of the Enactment phase towards the requirements for
tailored DSS development established in Section 3.1 are discussed (Section 8.4.3).

8.4.1 PD-DSS Instantiation

As indicated in Fig. 8.2, the instantiation of a PD-DSS process model is triggered via the
PD-DSS Repository application, which forwards the selected process model to the PD-DSS
Enactment application. During the instantiation of the PD-DSS process model, the decision
maker selects data for each data input provided to the decision process. In the “Cross-Sector
Distribution Network Planning” example process introduced in Section 8.3.1, the inputs
consist of Current Demands, Electricity Topology, Gas Topology, and Heat Topology.

For each process data input, the decision maker can either select a data service from the
service registry or create a (temporary) data service by selecting a local file. In case the
decision maker selects data that is incompatible with a decision support service selected for the
implementation of a decision activity, a corresponding error is reported by the informational
composition assistance. In the example shown in Fig. 8.6, the decision maker has chosen a
private data service that holds the energy demand data of customers in a specific city. Since
the chosen demand data has a yearly temporal resolution, the informational composition
assistance reports an incompatibility to the daily resolution required by the decision support
service selected for the implementation of the Sector Coupling Offset computation method
associated with the “Offset demands using sector coupling” task. Once all data selection errors
are addressed, the decision maker can trigger the enactment of the PD-DSS and potentially
interact with it as demonstrated throughout the next subsection.

8.4.2 PD-DSS Usage

Figure 8.7 showcases the enactment of the “Define scaling factors” task as highlighted in
the progress indicator on the left. Since the task is implemented by an integrated interactive
decision support service and requires input from the decision maker, the right side of the
user interface is defined by the implementing decision support service. Here, the decision
maker can interact with the graphs to define the development of scaling factors over time
for the different energy sectors. The chosen decision support service requires the decision
maker to directly manipulate the development of the electricity, gas, and heat demand over
time. A different decision support service could instead require the decision maker to define
the expected demand developments of individual consumer technologies, which are then
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Figure 8.6: Mockup of PD-DSS instantiation in the case study context

internally added by the service to determine the scaling factor per energy sector. After the
decision maker confirms the completion of scaling factor definition via the “Next” button,
the scaling factors are transparently forwarded to the subsequent “Scale energy demands”
task. Since this task and the final task are implemented using automated decision support
services, no further interaction from the decision maker is required. For these tasks, the UI of
the PD-DSS Enactment application merely acts as a progress indicator that shows the current
state of process enactment. After the tasks have been executed, the overall process output (not
depicted in the process model excerpt of Fig. 8.3) is stored at the PD-DSS Repository.

8.4.3 Relation to Requirements for Tailored DSS Development

This section relates the demonstrated solution design associated with the Enactment lifecycle
phase to the requirements for tailored DSS development established in Section 3.1.

The Enactment lifecycle phase has limited contribution towards R1 – Situativity as it only
implements the situational design decisions made during the Design lifecycle phase. Never-
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theless, the Enactment phase contributes towards addressing requirement R1.2 – Situational
Resources as the use of conditional sequence flows in the process model can result in the
invocation of different decision support services during enactment based on the characteristics
of data provided by the decision maker during instantiation or generated by preceding decision
support services. For example, a process model can conditionally execute the sequential and
parallel FlexiEnergy implementations of the Rule-Based Technology Adoption Simulation
computation method depending on the number of customers connected to the distribution
network that was selected by the decision maker during instantiation.

Similar to the Design lifecycle phase, the Enactment lifecycle phase supports addressing
requirement R2.1 – Modularity by supporting the assembly of individual decision support
artifacts into a holistic DSS. However, the focus of the Enactment phase lies on the implemen-
tation of requirement R2.2 – Navigation by invoking decision support services according to the
(conditional) sequence flow defined during the Design phase. For the previously demonstrated
example, the decision maker is prompted for input during the enactment of an interactive task,
and the subsequent automated tasks are orchestrated by the PD-DSS Enactment application
without requiring any further input from the decision maker. By embedding the user interfaces
of manual tasks into the PD-DSS Enactment application and potentially interleaving them
with automated tasks, the Enactment phase does not require decision makers to jump between
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different applications, thus addressing requirement R2.3 – Unified Execution Environment.
The Enactment lifecycle phase also contributes towards addressing requirement R4 –

Suitability for Non-Programmers. Without its transformation of a PD-DSS process model into
an artifact suitable for the execution with an existing BPMN engine it would not be possible
to visually model a tailored PD-DSS during the Design phase to address requirements R4.1
– Abstraction and R4.2 – Learnability. The integration of the informational composition
assistance during the instantiation of a PD-DSS process model furthermore contributes towards
addressing requirement R4.3 – Error Prevention as demonstrated by reporting the selection
of an unsuitable data service in Fig. 8.6.

By orchestrating the invocation of functional decision support services across organizational
boundaries during the enactment of the PD-DSS process model, the Enactment phase primarily
addresses R5.2 – Artifact Sharing and contributes to R5.4 – Organizational Scalability.

Since the PD-DSS Enactment application informs decision makers about the status of
process enactment as shown in Fig. 8.7, and optionally also about the underlying process model,
the Enactment lifecycle phase contributes towards addressing requirement R6.1 – Transparency.
The repeated instantiation of a PD-DSS process model to apply the same decision process
to different data inputs furthermore contributes towards addressing requirement R6.2 –
Determinism. Similar to the Design lifecycle phase, the domain-agnostic design of the
Enactment lifecycle phase contributes to addressing reuqirement R7 – Domain-Portability.

8.5 Phase 4 – Improvement

This section describes the artifacts produced during the enactment of the DSE lifecycle
phase Improvement in the context of the FlexiEnergy case study. During the initial Feedback
Documentation lifecycle activity, decision makers and DSS engineers use the PD-DSS
Repository and Service Registry applications to provide reviews for PD-DSS process models
and decision support services (Section 8.5.1). During the subsequent Knowledge Extraction
lifecycle activity, composition experts use the Anti-Pattern Definition application to capture
composition knowledge based on the feedback of other DSE participants (Section 8.5.2). Based
on the case study insights, the contributions of the Improvement phase towards the requirements
for tailored DSS development established in Section 3.1 are discussed (Section 8.5.3).

8.5.1 Feedback: PD-DSS and Service Reviews

A decision maker primarily provides feedback for a PD-DSS if there is a discrepancy between
the required and provided decision support functionality. If this discrepancy can be attributed
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to an ambiguity in the requirements for decision support documented at the beginning of the
Design lifecycle phase, the decision maker can usually update the requirements to be more
specific. For example, the case-study description of the previous enactment phase discusses
two alternative decision support services for the interactive definition of scaling factors, i.e.,
definition per energy sector or per consumer technology. If the decision maker had preferred
the alternative decision support service for the implementation of the task, the decision maker
can update the requirements to include the corresponding method characteristic. If no such
method characteristic is available, this feedback can be added as a PD-DSS review via the
PD-DSS Repository application. This also allows domain experts, who monitor the repository,
to update the domain documentation accordingly. Furthermore, if no such decision support
service has been implemented yet, service providers are alerted to the demand for such a
service. Furthermore, the violation of promised service quality levels can be sanctioned by
DSS engineers by leaving corresponding reviews for the service at the service registry.

Another example that demonstrates the usefulness of PD-DSS reviews outside of extensi-
bility can be found in the context of the “benchmark” process model described in Section 8.3.3.
Here, decision makers can point out that the benchmark is actually an apples-to-oranges
comparison since DSM is not evaluated in isolation, but instead, a comparison between the
profile-based and peak-based energy demand updating computation methods is performed.
For a more expressive comparison, an activity for the Profile-Based Energy Demand Updating
computation method should be added that uses default load profiles for electric vehicle charg-
ing. Furthermore, decision makers can use the feedback mechanism for benchmark processes
to document the (anonymized) benchmark results for energy distribution networks under their
management to provide composition experts with insights that supports the derivation of new
composition knowledge as described in the next subsection.

8.5.2 Composition Knowledge: Anti-Patterns

The composition assistance largely relies on composition knowledge that can be derived
from the artifacts created throughout the Foundation lifecycle phase. Nevertheless, the
functional-behavioral features of the assistance also consider domain-specific composition
knowledge that is contributed by composition experts in the form of anti-patterns. One source
for these anti-patterns is the general domain expertise of composition experts. For example, the
Demand Scaling computation method should not be executed after a Peak Shaving computation
since the peak demand offsets are specific to the energy demands provided as an input and
cannot be arbitrarily generalized, which is assumed by a subsequent scaling. This may result
in the definition of an “Demand Scaling after Peak Shaving” anti-pattern.
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The PD-DSS reviews of decision makers are another source for anti-pattern derivation. For
example, for the “benchmarking” PD-DSS introduced in Section 8.3.3, composition experts
can analyze the benchmark results reported by decision makers and may find that the use
of demand side management during charging of electric vehicles does not yield a benefit
proportionate to the (runtime) complexity added during the enactment of the decision process.
Or a “Profile-Based Energy Demand Updating without DSM” anti-pattern may warn DSS
engineers during the design of a PD-DSS process model that the use of the Profile-Based
Energy Demand Updating computation method has no benefits without individual load profiles
computed by a preceding Managed EV Charging Simulation.

8.5.3 Relation to Requirements for Tailored DSS Development

This section relates the demonstrated solution design associated with the Improvement lifecycle
phase to the requirements for tailored DSS development established in Section 3.1.

As demonstrated in the context of the previously described case study with different
decision support services for the implementation of the “Define scaling factors” task, the
feedback provided by decision makers and DSS engineers can alert service providers to
missing decision support services, or alert domain experts to a lack of precision in the domain
documentation. Thus, the Improvement phase encourages the continuous development of
novel decision support artifacts, thereby contributing to requirement R3.2 – Extensibility.

The comprehensive and traceable validation results reported by the composition assistance
may prevent repeated errors and thereby improve the learnability of the modeling approach.
Since the composition assistance also utilizes anti-patterns for validation, e.g., the “Demand
Scaling after Peak Shaving” anti-pattern, the Improvement phase also contributes towards
addressing requirement R4.2 – Learnability. The composition knowledge is also used by the
composition assistance to implement requirement R4.3 – Error Prevention.

The Improvement lifecycle phase addresses requirement R5.3 – Experience Sharing by en-
abling composition experts to define anti-patterns that enforce best practices regarding specific
partial decision support service compositions, e.g., disregarding demand side management
during long-term energy demand forecasting. Best practices can be extracted from experiences
documented by decision makers for PD-DSS process models at the PD-DSS Repository or by
DSS engineers for individual decision support services at the Service Registry.

The best practices established throughout the Improvement lifecycle phase can also
contribute towards addressing R6.2 – Determinism by ensuring similar compositions for
the same requirements for decision support. However, the similarity between compositions
ultimately depends on the choices made by a DSS engineer during service composition.
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Lastly, the anti-patterns enable domain-specific composition assistance, and thus, the
Improvement phase contributes towards addressing requirement R7 – Domain-Portability.

8.6 Threats to Validity

Each previous chapter already discussed threats that could potentially affect the validity of
the proposed partial solution design and its evaluation if applicable. This section discusses
cross-cutting threats to validity for the overall solution design and research approach.

Single Application Domain All examples used for (partial) requirement elicitation and
solution design demonstration throughout the thesis are taken from the domain of energy
distribution planning due to the author’s involvement in the FlexiEnergy research project.
While the use of a single application domain establishes connections between solution
requirements and solution design, it also results in a lack of heterogeneity that would be
introduced by considering multiple application domains. This heterogeneity could potentially
add additional diversification to requirements, and by extension, solution design, which is
recommended considering requirement R7 – Domain-Portability. Thus, the focus on a single
application domain potentially limits the external validity of the solution design, i.e., its
generalizability (cf. [RH09]). However, the author’s anecdotal experience indicates that
the proposed solution design should be applicable to decision support for business model
development as well (cf. [GKE21]). Furthermore, many of the requirements for tailored DSS
development can also be found in published literature and other domains as evident from the
discussion of related work in Section 3.3, which suggests a sufficient variety.

Simulated Demonstration Although insights from the FlexiEnergy research project mo-
tivated this thesis and were used to demonstrate the proposed solution design, the research
project ended before the solution concepts could be applied within the project. Thus, all
applications of solution concepts in the domain of energy distribution network planning were
simulated by the thesis author. In particular, for the coherent case-study evaluation presented
in previous sections, the author assumed all roles of DSE participants, i.e., the role of a domain
expert, service provider, DSS engineer, and composition expert. Different researchers and
stakeholders without the FlexiEnergy experience or familiarity with BPMN could potentially
arrive at different conclusions, which limits the reliability of the evaluation (cf. [RH09]).

Isolated Implementations Each partial solution design proposed in Part II of the thesis is
accompanied by a prototypical implementation to fundamentally demonstrate the technical
feasibility of the solution design. However, contrary to the DSE reference architecture proposed
in Section 4.5, the implementations themselves are not integrated into a single prototypical
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implementation for a holistic DSE since they only focus on technically challenging aspects of
the solution design. Thus, a prototypical implementation for a holistic DSE to demonstrate the
technical feasibility of the proposed reference architecture remains to be shown. Nevertheless,
integrating the individual implementations should be straightforward due to the described
contractual interfaces and user interface mockups presented throughout the thesis.

8.7 Key Takeaways

The solution design presented in Part II of the thesis can be applied to forecasting the energy
demands of customers during (cross-sectoral) energy distribution network planning. This
insight is based on a coherent (simulated) case study derived from practical experience
gathered throughout the FlexiEnergy research project with industry partners. The case-study
findings in combination with informed arguments indicate that the solution design addresses
all requirements for tailored DSS development established in Section 3.1.

The contributions of each DSE lifecycle phase towards the requirements for tailored
DSS development are visually summarized in Table 8.1. A filled circle symbolizes that
a requirement is primarily addressed by the solution concepts associated with a lifecycle
phase. A half-filled circle symbolizes that the solution design associated with a lifecycle
phase supports the addressing of a requirement, but is not as pivotal as the lifecycle phase that
addresses the requirement. An outlined circle is used when a phase does not contribute to
addressing a requirement, or the contribution is too limited to warrant an explicit mention.

As evident from the tabular representation of contributions and the final “Coverage”
column, each requirement for tailored DSS development is addressed by a phase of the DSE
lifecycle. In fact, each requirement is usually implemented with contributions from multiple
DSE lifecycle phases. The tabular summary also shows that the Improvement lifecycle phase
has the least amount of contributions to tailored DSS development. While this does not
make the phase redundant as it provides many contributions that enable the addressing of
requirements in other lifecycle phases, the observation nevertheless suggests that the realization
of the Improvement can be postponed when implementing a decision support ecosystem.

Although it can be concluded from the explanations of previous sections and the summary
in Table 8.1 that all established requirements for tailored DSS development are addressed
by the proposed DSE solution design, the discussed threats to validity as well as previous
discussions of partial solution designs present some indicators for future work. These are
discussed in the next chapter after a summary of thesis contributions with respect to the
initially formulated research questions.
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R1.1 – Situational Decision Problems
R1.2 – Situational Resources
R1.3 – Situational Competences

R2 – Process Orientation
R2.1 – Modularity
R2.2 – Navigation
R2.3 – Unified Execution Environment

R3 – Variety
R3.1 – Reusability
R3.2 – Extensibility
R3.3 – Discoverability

R4 – Suitability for Non-Programmers
R4.1 – Abstraction
R4.2 – Learnability
R4.3 – Error Prevention

R5 – Collaboration
R5.1 – Common Terminology
R5.2 – Artifact Sharing
R5.3 – Experience Sharing
R5.4 – Organizational Scalability

R6 – Compliance
R6.1 – Transparency
R6.2 – Determinism

R7 – Domain-Portability

: phase addresses requirement, : phase supports addressing of requirement, : no contribution

Table 8.1: Contribution of DSE lifecycle phases towards requirements of Section 3.1



CHAPTER 9
Summary and Future Work

This thesis introduces the concept of a decision support ecosystem as a collaborative low-code
environment for the assisted process-driven development of tailored decision support systems
to address the individual requirements for decision support of decision makers, thus enabling
efficient and effective decision making. This chapter summarizes the contributions of the
thesis with respect to the initially formulated research questions (Section 9.1) and presents
suggestions for future work (Section 9.2).

9.1 Summary of Contributions

Decision making is among the most important but also among the most complex activities in a
business. As a result, decision makers often rely on decision support systems to assist them in
their decision-making process. However, to optimally assist an individual decision maker, the
decision-making process supported by a DSS must align with the decision-making process
followed by the decision maker. The limited customization capabilities of existing off-the-shelf
decision support systems are often insufficient for an optimal alignment with a decision
maker’s individual decision-making process. This introduces the danger of recommending and
implementing suboptimal decisions. After presenting this motivation as well as foundations
and requirements for tailored DSS development in Chapters 1 to 3, this thesis describes multiple
contributions to enable the development of tailored decision support systems that address
the individual decision support requirements of each decision maker. The contributions are
subsequently summarized for the research questions defined in Section 1.4.

233
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Contribution 1: Concept of a Decision Support Ecosystem

Chapter 4 introduces the concept of a decision support ecosystem (DSE) to address the
requirements for tailored DSS development previously established in Chapter 3. A DSE is a
network of individuals and organizations providing technical and non-technical contributions
for the efficient and effective co-development of tailored decision support systems via a
shared digital platform. The DSE concept can be viewed as an extension of modern low-code
development platforms with a specific focus on DSS development. DSS development in a
DSE is based on the composition of reusable decision support services using model-driven
development supported by an assistance system and domain knowledge. To support the
implementation of a DSE, Chapter 4 describes a lifecycle for DSS development within a DSE,
presents a reference architecture for the shared digital platform of a DSE, and describes the
roles and responsibilities of DSE participants. A high-level overview of these contributions is
given in Fig. 9.1. The visualization shows the four DSE lifecycle phases Foundation, Design,
Enactment, and Improvement, the associated software applications that were conceptualized
in subsequent chapters as a reference architecture for a DSE platform (cf. Fig. 8.2), and the
roles that primarily use an application. Each software application and role is subsequently
explained in the context of the other thesis contributions. Nevertheless, it can already be
concluded that the DSE concept presented in Chapter 4 with its shared digital platform uniting
heterogeneous DSE participants addresses research question RQ4 on how the coordination
and continuous exchange between stakeholders can be supported from a technical perspective.

Contribution 2: Decision Support Description Language

Chapter 5 introduces a description language to capture decision-making characteristics in a
given application domain. The description language is initially used by domain experts via
the Domain Registry application to document data characteristics and interfaces for decision
support functionality with associated optimization characteristics. Based on the domain
documentation, service providers create descriptions for their offered decision support services
using the Service Registry application. Descriptions can be created for functional decision
support services as well as data decision support services and include additional non-functional
characteristics regarding service quality or resource consumption. Furthermore, each service
description points to an internet address where the service is made available. While the
service descriptions provided by service providers describe existing decision support artifacts,
the description language can also be used by decision makers to describe desired decision
support artifacts via the Requirements Elicitation application. Thus, the description language
introduced in Chapter 5 answers RQ1 regarding the description of decision support services.
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Figure 9.1: Overview of thesis contributions (cf. Fig. 8.2 for data exchange)

Contribution 3: Concept of a Process-Driven Decision Support System

Chapter 6 introduces the concept of a process-driven decision support system (PD-DSS),
which corresponds to a holistic (tailored) DSS composed of decision support services to
address the individual requirements for decision support documented by a decision maker.
For PD-DSS development, a DSS engineer uses the PD-DSS Design application to create a
BPMN process model documenting the activities within the assisted decision process and
their (conditional) execution sequence, the decision support services used for the manual
or automated realization of a process activity, and the data exchange between activities.
The process model is subsequently forwarded to the PD-DSS Enactment application where
the invocation of decision support services is coordinated using a BPMN engine. The
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application prompts the decision maker for input data and interaction with interactive decision
support services, and otherwise invokes automated decision support services with provided or
generated data as prescribed by the process model. BPMN was selected as a notation due to
being widespread and applicable without extensive upfront training. Consequently, the role of
the DSS engineer does not require any programming skills and can essentially be assumed by
any domain expert, including decision makers themselves. The PD-DSS concept introduced
in Chapter 6 thus answers RQ2 regarding a suitable modeling approach for the composition of
a tailored DSS by non-programmers.

Contribution 4: Composition Assistance

Chapter 7 describes a composition assistance that supports DSS engineers during the creation
of a PD-DSS by automatically validating the alignment of the designed PD-DSS process model
with the requirements for decision support of a decision maker, decision-making best practices,
and modeling conventions. Errors are detected in real-time and reported to DSS engineers in
the PD-DSS Design application so that they can be addressed immediately during process
model design. The assistance detects flaws in the selection of activities or implementing
decision support services, the order of their execution, and the data exchange between them.
While most of the composition knowledge applied by the composition assistance can be
derived from the description of the application domain and its decision support services,
composition experts can also provide domain-specific composition knowledge in the form of
anti-patterns using the Anti-Pattern Definition application. Composition experts themselves
obtain the composition knowledge from feedback provided by decision makers for a PD-DSS
at the PD-DSS Repository application, or feedback provided by DSS engineers for individual
decision support services at the Service Registry. Thus, the composition assistance described
in Chapter 7 answers RQ3 regarding the assistance of non-programmers during the composition
of decision support services into a tailored DSS.

Demonstration of Applicability and Technical Feasibility

Following a design science research approach, the applicability of each previous contribution
was demonstrated and discussed in the context of energy distribution network planning, using
isolated examples as well as a coherent case study based on insights gathered during a research
project with industry partners. The insights from the case study demonstration in Chapter 8
support the implementation of the DSE concept in other application domains. In addition to
applicability, the technical feasibility of the contributions was fundamentally demonstrated
with the prototypical implementation provided for each contribution. Thus, by aggregating
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contributions 1 to 4 and considering their applicability as well as technical feasibility, the
thesis consequently answers the initially formulated overall research question RQ𝑂 regarding
the feasibility of an assisted model-driven approach to DSS development by decision makers
and other non-programmers using service orientation in a multi-stakeholder context.

9.2 Future Work

The research presented in this thesis is complete and self-contained as it answers the initially
formulated research questions, and the proposed solution design addresses the established
requirements for tailored DSS development. Nevertheless, some minor improvements were
already presented throughout the discussion of the solution design that can be implemented
throughout subsequent cycles of design science research. The solution design also enables
additional research questions as a basis for future research projects, potentially using a different
research approach. This section briefly describes potential future research questions.

Practical Assessment of Generalizability

The discussion in Section 8.6 presented the focus on a single application domain and a
simulated case study as a potential threat to the generalizability of the solution design and
evaluation results. Consequently, the research question “Are there domain characteristics that
limit the generalization of the solution approach?” should be evaluated through multiple
real-world field studies in other application domains. In particular, the application of the
solution design in a big data could reveal additional requirements that result in extensions to
the solution design. Additional requirements likely can be derived by translating the approach
to automated decision making where decisions are automatically implemented without any
further input from decision makers. The prototypical implementation of the DSE concept
should also be further advanced to answer the research question “How do DSE participants
assess the usability and learnability of the approach?” in the context of the field studies.

Improving the Efficiency of Manual Service Composition

Since the process-based composition of decision support services does not require programming
skills, the DSE concept increases efficiency during tailored DSS development by removing
the dependency on trained software developers. Nevertheless, the efficiency during service
composition could be further increased, for example, by allowing the composition assistance
to suggest modifications or actively edit the composition of decision support services
implementing a PD-DSS. In this context, the fundamental approaches discussed in Chapter 7
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provide a starting ground to answer the research question “How can a recommendation-
based composition assistance be implemented to reduce the manual work performed by DSS
engineers?”. Furthermore, as demonstrated in the context of low-code development in general,
domain experts may still require some additional procedural guidance to ensure the effective
and efficient development of software applications in the form of a software development
method [Kir+22]. This implies the research question “Does a development method as an
extension of the DSE lifecycle provide a procedural framework that further increases the
efficiency and effectiveness of DSS engineers during service composition?”.

Automated Service Composition with Dialog-Based Artificial Intelligence

Another approach to potentially improve the efficiency during DSS development is to avoid
the role of the DSS engineer completely. This implies an automated system that composes
decision support services according to the requirements for decision support specified by a
decision maker. The existing approaches using automated service composition discussed in
Chapter 3 have severe limitations with respect to the established requirements for tailored
DSS development. Most importantly, it is hard to implement multiple iterations in which
the system improves the suggested composition based on feedback provided by the decision
maker. However, recent innovations in the domain of large language models (LLMs) show
that this form of artificial intelligence (AI) is capable of engaging in a stateful dialog to reason
about generated artifacts and to adapt them based on human feedback. This is for example
demonstrated in academic work by Austin et al. [Aus+21], or more recently on a commercial
level by services such as ChatGPT 1. As discussed in Section 7.1, the prediction-based
approach of LLMs aligns with the sequential creation of process models. Thus, decision
makers could initially specify their requirements for decision support in natural language. The
AI could clarify ambiguities in the requirements and propose an initial service composition.
The proposed service composition can then be improved based on natural language feedback
provided by the decision maker. This concept results in the research question “How can a
stateful, dialog-based composition of decision support services using natural language be
implemented using artificial intelligence?”.

DSE Governance and Health

After the fundamental derivation of the decision support ecosystem concept, the thesis focused
on advancing the (architectural) design of the shared DSE platform as the primary enabler of a
DSE. However, the long-term success of a DSE not only depends on its technical capabilities

1 ChatGPT website: https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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but also on the quantity of DSE participants and the quality of their contributions. The value of
a DSE can be expected to increase exponentially with more users contributing (compositions
of) decision support services and domain expertise (cf. [JC12]). Maintaining ecosystem health,
i.e., “its overall performance and sustainable well-functioning” [SE20], requires governance
tools for DSE participants and the DSE platform provider in particular [JC12; SE20]. These
governance tools include “procedures and processes by which a company controls, changes
or maintains its current and future position” in the ecosystem [BJ12]. In particular, future
work may consider the research questions “What metrics characterize the health of a decision
support ecosystem?” and “What governance tools are required to ensure the health of a
decision support ecosystem?”. The answers to both research questions likely can build upon
the existing research for maintaining the health of digital business ecosystems, in particular
software ecosystems and data ecosystems. In this context, it may also be worthwhile to
consider the research question “How can a decision support ecosystem be established?”,
referring to organizational changes or financial incentives that are required to transition
from the current status quo with off-the-shelf decision support systems to a DSE for tailored
DSS development. A starting ground for answering this research question is the work by
Bosch [Bos09] in the context of software ecosystems.
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in Inter-process Relationships in Business Process Ecosystems”. In: Service-
Oriented Computing - ICSOC Workshops 2012. LNCS 7759. Springer, Berlin,
Heidelberg, 2013, pp. 332–343.

[Kir+21] Jonas Kirchhoff, Sascha Christian Burmeister, Christoph Weskamp, and Gre-
gor Engels. “Towards a Decision Support System for Cross-Sectoral Energy
Distribution Network Planning”. In: Energy Informatics and Electro Mobility
ICT. BIS-Verlag, 2021, pp. 40–46.

[Kir+22] Jonas Kirchhoff, Nils Weidmann, Stefan Sauer, and Gregor Engels. “Situational
Development of Low-Code Applications in Manufacturing Companies”. In:
Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. ACM, 2022, pp. 816–825.

[Kir21] Jonas Kirchhoff. “Providing Decision Makers with Tailored Decision Support
Systems”. In: The 1st Early Career Researchers Workshop Colocated with ECSS
2021. Informatics Europe, 2021.

[KLF19] Agnes Koschmider, Ralf Laue, and Michael Fellmann. “Business Process
Model Anti-Patterns: A Bibliography and Taxonomy of Published Work”. In:
Proceedings of the 27th European Conference on Information Systems (ECIS).
2019.

[Kow17] Martin Kowalczyk. “Introduction”. In: The Support of Decision Processes
with Business Intelligence and Analytics. Springer Vieweg, Wiesbaden, 2017,
pp. 1–14.



References 251

[KQ08] Mustafa Karakul and Hassan Qudrat-Ullah. “How to Improve Dynamic Decision
Making? Practice and Promise”. In: Complex Decision Making. Springer, Berlin,
Heidelberg, 2008, pp. 3–24.

[KR14] Supha Khankaew and Stephen Riddle. “A review of practice and problems
in requirements engineering in small and medium software enterprises in
Thailand”. In: 2014 IEEE 4th International Workshop on Empirical Requirements
Engineering (EmpiRE). IEEE, 2014, pp. 1–8.

[KV07] Jana Koehler and Jussi Vanhatalo. Process Anti-Patterns: How to Avoid the
Common Traps of Business Process Modeling. 2007. url: https://dominoweb.
draco.res.ibm.com/reports/rz3678.pdf (visited on May 16, 2023).

[KV11] Diana Kalibatiene and Olegas Vasilecas. “Survey on Ontology Languages”. In:
Perspectives in Business Informatics Research. Springer, Berlin, Heidelberg,
2011, pp. 124–141.

[KWE22a] Jonas Kirchhoff, Christoph Weskamp, and Gregor Engels. “Decision Support
Ecosystems: Definition and Platform Architecture”. In: Decision Support Systems
XII: Decision Support Addressing Modern Industry, Business, and Societal
Needs. LNBIP 447. Springer, Cham, 2022, pp. 97–110.

[KWE22b] Jonas Kirchhoff, Christoph Weskamp, and Gregor Engels. “Requirements-Based
Composition of Tailored Decision Support Systems”. In: Human-Centered
Software Engineering. LNCS 13482. Springer, Cham, 2022, pp. 150–162.

[LA10] Ralf Laue and Ahmed Awad. “Visualization of Business Process Modeling Anti
Patterns”. In: Electronic Communications of the EASST 25 (2010).

[Lar+22] Felix Larrinaga, William Ochoa, Alain Perez, Javier Cuenca, Jon Legaristi,
and Miren Illarramendi. “Node-RED Workflow Manager for Edge Service
Orchestration”. In: NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2022, pp. 1–6.

[Law13] Kirk Lawrence. Developing Leaders in a VUCA environment. 2013. url:
https://emergingrnleader.com/wp- content/uploads/2013/02/

developing-leaders-in-a-vuca-environment.pdf (visited on Septem-
ber 8, 2022).

[LBB12] Wenbin Li, Youakim Badr, and Frédérique Biennier. “Digital ecosystems”.
In: Proceedings of the International Conference on Management of Emergent
Digital EcoSystems. ACM, 2012, pp. 117–122.

https://dominoweb.draco.res.ibm.com/reports/rz3678.pdf
https://dominoweb.draco.res.ibm.com/reports/rz3678.pdf
https://emergingrnleader.com/wp-content/uploads/2013/02/developing-leaders-in-a-vuca-environment.pdf
https://emergingrnleader.com/wp-content/uploads/2013/02/developing-leaders-in-a-vuca-environment.pdf


252 References

[LCC13] Ee-Peng Lim, Hsinchun Chen, and Guoqing Chen. “Business Intelligence and
Analytics”. In: ACM Transactions on Management Information Systems 3.4
(2013), pp. 1–10.

[LDB16] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. “Web Service
Composition”. In: ACM Computing Surveys 48.3 (2016), pp. 1–41.

[Len+18] Jörg Lenhard, Vincenzo Ferme, Simon Harrer, Matthias Geiger, and Cesare
Pautasso. “Lessons Learned from Evaluating Workflow Management Systems”.
In: Service-Oriented Computing – ICSOC 2017 Workshops. LNCS 10797.
Springer, Cham, 2018, pp. 215–227.

[Len16] Jörg Lenhard. “Portability of Process-Aware and Service-Oriented Software:
Evidence and Metrics”. PhD thesis. University of Bamberg Press, 2016.

[Let21] Timothy C. Lethbridge. “Low-Code Is Often High-Code, So We Must Design
Low-Code Platforms to Enable Proper Software Engineering”. In: Leveraging
Applications of Formal Methods, Verification and Validation. LNCS 13036.
Springer, Cham, 2021, pp. 202–212.

[Ley10] Frank Leymann. “BPEL vs. BPMN 2.0: Should You Care?” In: Business Process
Modeling Notation: Second International Workshop. LNBIP 67. Springer, Berlin,
Heidelberg, 2010, pp. 8–13.

[Li+19] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. “Service
Mesh: Challenges, State of the Art, and Future Research Opportunities”. In:
13th IEEE International Conference on Service-Oriented System Engineering.
IEEE, 2019, pp. 122–1225.
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“Uncovering data-flow anomalies in BPMN-based process-driven applications”.
In: Proceedings of the 36th Annual ACM Symposium on Applied Computing.
ACM Digital Library. ACM, 2021, pp. 1504–1512.

[Sch+21c] Konrad Schneid, Leon Stapper, Sebastian Thöne, and Herbert Kuchen. “Auto-
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[SŞF15] Ioana Andreea Stănescu, Antoniu Ştefan, and Florin Gheorghe Filip. “Cloud-
Based Decision Support Ecosystem for Renewable Energy Providers”. In:
Technological Innovation for Cloud-Based Engineering Systems. Springer, Cham,
2015, pp. 405–412.

[SSP12] Farzad Shafiei, David Sundaram, and Selwyn Piramuthu. “Multi-enterprise
collaborative decision support system”. In: Expert Systems with Applications
39.9 (2012), pp. 7637–7651.

[Sta+13] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi Studer. “Data-
Fu: A Language and an Interpreter for Interaction with Read/Write Linked Data”.
In: Proceedings of the 22nd international conference on World Wide Web. ACM,
2013, pp. 1225–1236.

[Sta16] Florian Stapel. “Ontology-based representation of abstract optimization models
for model formulation and system generation”. PhD thesis. 2016.

[Sta22] Statista. Anzahl der Stromnetzbetreiber in Deutschland in den Jahren 2012
bis 2022. 2022. url: https://de.statista.com/statistik/daten/
studie / 152937 / umfrage / anzahl - der - stromnetzbetreiber - in -

deutschland-seit-2006/ (visited on January 7, 2023).

[Sti14] Volker Stiehl. Process-driven applications with BPMN. Springer, Cham, 2014.

[Sun+06] Sherry X. Sun, J. Leon Zhao, Jay F. Nunamaker, and Olivia R. Liu Sheng.
“Formulating the Data-Flow Perspective for Business Process Management”. In:
Information Systems Research 17.4 (2006), pp. 374–391.

https://de.statista.com/statistik/daten/studie/152937/umfrage/anzahl-der-stromnetzbetreiber-in-deutschland-seit-2006/
https://de.statista.com/statistik/daten/studie/152937/umfrage/anzahl-der-stromnetzbetreiber-in-deutschland-seit-2006/
https://de.statista.com/statistik/daten/studie/152937/umfrage/anzahl-der-stromnetzbetreiber-in-deutschland-seit-2006/


260 References

[SWM16] Carl Spetzler, Hannah Winter, and Jennifer Meyer. Decision Quality: Value
Creation from Better Business Decisions. 1st edition. John Wiley & Sons, 2016.

[TDA16] Theodoros V. Theodoropoulos, Ioannis G. Damousis, and Angelos J. Amditis.
“Demand-Side Management ICT for Dynamic Wireless EV Charging”. In: IEEE
Transactions on Industrial Electronics 63.10 (2016), pp. 6623–6630.
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APPENDIX A
Composition Assistance Supplement

This appendix describes two extensions to the composition assistance of Chapter 7. Section A.1
explains how a PD-DSS process model can be validated for completeness to ensure that
it specifies all information needed for its subsequent enactment. Section A.2 presents two
changes to the transformation of a BPMN-Q anti-pattern to a graph database query.

A.1 Completeness Validation of PD-DSS Process Models

The design of the operational, informational, and functional-behavioral composition assistance
in Sections 7.3 to 7.5 focuses on validating the effectiveness and efficiency of a PD-DSS
model with respect to the requirements for decision support documented by a decision maker.
A PD-DSS process model can additionally be validated to check if it contains all information
required for its subsequent enactment, i.e., if it adheres to the PD-DSS modeling conventions
established in Chapter 6. For example, validating that an implementing decision support
service is selected for each activity in the PD-DSS process model ensures that the enactment
of the PD-DSS is not interrupted because the underlying process engine does not know which
decision support service to invoke next. This validation is referred to as the completeness
validation of a PD-DSS process model.

The upcoming subsections explain potential completeness violations, which are docu-
mented using the tabular documentation format for violation rules introduced in Section 7.1.3.
The explanations are grouped according to the perspective of the underlying process model
which they affect, i.e., Section A.1.1 describes checks for the operational perspective, Sec-
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tion A.1.2 for the informational perspective, and Section A.1.3 for the functional and behavioral
perspective. A demonstration of the described checks is included with the demonstration of
the composition assistance described in Chapter 7.

A.1.1 Completeness of the Operational Perspective

The operational perspective of a PD-DSS process model is incomplete if no decision support
service is selected for the implementation of a task. Although this mistake can easily occur due
to negligence, e.g., because the whole decision process is first defined with respect to the other
process perspectives, it would nevertheless prevent the BPMN engine from properly enacting
the PD-DSS process model. In particular, if the mistake is only caught during runtime, it
could potentially render all work performed so far useless if the fixed decision process must be
restarted from the first activity. This results in the definition of the Missing Service Violation.

Missing Service Violation Severity: Error

Element: Task Phase: Design
Condition: No decision support service is selected for a task in the process model.

Message: “No decision support service is specified for decision activity [...].”

This violation can also be defined analogously for the case where a service ID is documented
for the implementation of a task, but no associated service description is listed in the Service
Repository. This violation is not further elaborated here, as the PD-DSS Design application is
expected to proactively prevent such a mistake, e.g., by implementing service selection as a
dropdown control instead of a free text input where the service ID is entered.

A.1.2 Completeness of the Informational Perspective

Validating the completeness of a PD-DSS process model with respect to its informational
perspective includes checking that all data associations specify a valid source and target
where data is copied from/to. Otherwise, the BPMN engine will not be able to facilitate the
data exchange between services. These violations are not further elaborated here as they
can be avoided if the PD-DSS Design application proactively prevents the specification of
invalid source/target method data IDs, e.g., by using a dropdown instead of free text input.
Furthermore, checking that each data association is connected to one task and one data object
may be omitted if this is already prevented by the implementation of the visual modeling
editor used by the PD-DSS Design application.
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A data object or (process) data input without an outgoing data association is redundant
since its value is never used. Although this redundancy does not impact the executability of
the process model, it is nevertheless reported as a warning since it could be an indication of
another issue, e.g., a data object which should be marked as a data output of the process.

Redundant Data Violation Severity: Warning

Element: Data Object, Data Input Phase: Design
Condition: (see “Message”)

Message: “Data [...] is redundant (has no outgoing data association).”

Data objects and process data outputs can be written from multiple tasks to simplify the
visual appearance of the process model (cf. reuse of the “Error Info” data object in Fig. 6.8).
This can result in data loss if the tasks are executed in parallel. Since the reuse of data
objects only has a cosmetic benefit but no additional semantic meaning, the informational
composition assistance reports data object reuse as an error to avoid consideration of the
behavioral perspective in order to determine the possible parallel execution of tasks, which
results in increased validation performance.

Potential Data Loss Violation Severity: Error

Element: Data Object, (Process) Data Output Phase: Design
Condition: A data object or a process data output has multiple incoming data input

associations.
Message: “Data [...] is written from multiple tasks ([..., ...]), which can lead to data

loss when tasks are executed in parallel.”

A.1.3 Completeness of the Functional and Behavioral Perspectives

With respect to the behavioral perspective, multiple domain-agnostic completeness violations
can be defined based on missing sequence flows, i.e., the Unreachable Element Violation for
missing incoming sequence flows and the Dead End Violation for missing outgoing sequence
flows. These violations also require the process model to include explicit start and end events.

To ensure that the first activity to execute is unambiguous, the Start Event Violation is
defined. It does not apply to start events used within a subprocess. Multiple end events do not
negatively impact process enactment and are therefore allowed.
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Unreachable Element Violation Severity: Error

Element: Activity, Gateway Phase: Design
Condition: (see “Message”)

Message: “{Activity / Gateway} [...] will never be executed because it has no incoming
sequence flow.”

Dead End Violation Severity: Error

Element: Activity, Gateway Phase: Design
Condition: (see “Message”)

Message: “Process will get stuck in {Activity / Gateway} [...] because it has no
outgoing sequence flow.”

Start Event Violation Severity: Error

Element: Process Phase: Design
Condition: (see “Message”)

Message: “A process must have exactly one start event.”

For exclusive gateways controlling the conditional flow through the process, the existence
of outgoing sequence flows on its own is not sufficient. Instead, these sequence flows must be
associated with proper conditions to indicate when this sequence flow is taken. The existence
of a condition is checked as part of the Missing Condition Violation. If not proactively
prevented by the PD-DSS Design application, the well-formedness of the condition should
be validated, e.g., whether it contains a valid data object and metadata attribute identifier.
Additionally, it is possible to specify a comparison value that has the wrong data type (e.g.,
"1000" instead of 1000 when comparing the size of a network topology) or an incompatible
comparison operator, (e.g., includes for a single-value quantitative attribute).

Missing Condition Violation Severity: Error

Element: Sequence Flow Phase: Design
Condition: (see “Message”)

Message: “Sequence flow from [...] to [...] specifies no condition.”

Gateways with a single outgoing sequence flow are redundant, which could be explicitly
detected by a violation with a severity level of “warning”. However, since the evaluation
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of a condition is assumed to take constant time and therefore does not introduce significant
inefficiency, such a violation is not explicitly documented here. Another potential extension is
validating that the conditions specified for outgoing sequence flows of an exclusive gateway are
mutually exclusive. However, such a check is expectedly complex and resource-consuming due
to the potential concatenation of conditions with logical AND and OR operations. Therefore,
it is not further described here.

A.2 Transformation Changes

The transformation of BPMN process models and BPMN-Q anti-patterns into graph database
queries is already described in [KE22]. This section describes two limitations of the described
transformations and explains how these limitations can be addressed.

A.2.1 Nonexistent Flows

The transformation of a nonexistent flow in [KE22] does not consider the conditional execution
of a task. This is demonstrated for the Missing Reversal of Network Reduction anti-pattern
introduced on page 197 with the example shown in Fig. A.1. Here, a path from the “Perform
network reduction” task to the “Reverse network reduction” task exists for the top path in
the process model, therefore no violation is reported. However, due to the conditionality
introduced by the exclusive gateway, the “Reverse network reduction” task is not executed if
the bottom path through the process model is taken. Therefore, the anti-pattern should be
reported. This can be achieved by changing the partial Cypher query for nonexistent flows to
NONE (v IN nodes(p) WHERE v=m).

Perform
network
reduction

Reverse
network
reduction

...C1

C2
...

...

Figure A.1: Exemplary process model with Missing Reversal of Network Reduction anti-pattern

The target of a nonexistent flow could also not be included in the process model at all.
In the prototypical implementation associated with [KE22], this was accounted for with an
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OPTIONAL MATCH for the target node as the graph database would otherwise report an error
when trying to match a missing node. However, the overall nonexistence of the target in
the process model already indicates the presence of the anti-pattern. For this reason, the
prototypical implementation was updated to run two graph database queries for a nonexistent
flow. The first query checks if all target nodes of nonexistent flows are present in the process
model and the presence of the anti-pattern is reported if a node is missing. Only if the first
query identifies the presence of all affected nodes, the second query checks if a path exists
where the target node of the nonexistent flow does not follow the source node.

Both issues are corrected in the prototypical implementation described in Appendix B.
They are partially responsible for the performance differences reported in Section 7.5.5 and
the original paper ([KE22]).

A.2.2 Conditions on Nonsequential Flows

The (extended) BPMN-Q elements for anti-pattern definition summarized in Table 7.1 support
the definition of conditions for nonsequential flows. The underlying paper ([KE22]) only
considered conditions for singular sequence flows.

To support conditions for nonsequential flows, it is not sufficient to check if a singular
sequence flow along the path from the source to the target node specifies the condition or
not, as the conditional path could already have been ended by a merging exclusive gateway.
This is also demonstrated with the example shown in Fig. A.1 if the task before the end event
should only be executed if the C1 condition holds. Since the conditional paths are merged
with the exclusive gateway in front of the last task, the condition no longer holds and the
anti-pattern should be reported. However, since a path exists from the start of the process to
the last task that is annotated with the C1 condition, the anti-pattern would not be reported
using the previously described naive check. This issue can be fixed by annotating the active
conditions for all sequence flows when transforming the process model into a graph. It is then
possible to check whether all sequence flows across all paths from the source node to the
target node of a nonsequential flow specify the condition or not.



APPENDIX B
Prototypical Implementation

Each chapter of the solution design in Part II of the thesis describes insights from a (partial)
prototypical implementation to demonstrate the technical feasibility of the solution design.
While the prototypical implementation of Chapters 5 and 6 has not been published before,
the prototypical implementation of Chapter 7 has already been fundamentally described and
published in the referenced papers ([KGE22; KE22]). For central access, all implementations
are aggregated into a single code repository, which is available at:

https://github.com/krchf/dse-poc

The central README.md file describes the structure of the repository and how to execute the
software artifacts, including the documentation of any required software prerequisites.
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