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Abstract

The aim of this thesis is to contribute to the spectral geometry of higher rank locally
symmetric spaces. The theory for rank one spaces is well developed but in the higher
rank case much less is known. Therefore, the main interest is the higher rank case.

There are two different sets of operators that we are considering: First, the algebra
of invariant differential operators on the locally symmetric space. This is the proper
replacement for the Laplace operator in the higher rank setting and encodes the quantum
mechanics of the manifold. Secondly, the classical dynamics are described by the geodesic
flow in the rank one case. In higher rank this is replaced by the Weyl chamber flow.

We prove a quantum-classical correspondence between the spectra of these two sets of
operators for compact locally symmetric space. This is used to determine the location
of the classical Ruelle-Taylor resonances and to prove a Weyl law as well as a spectral

gap.
In the non-compact setting we concentrate on the quantum spectrum. We prove that

there are no principal L?-eigenvalues under some dynamical condition, i.e. that there
are no tempered spherical representations occurring discretely in L2(T'\G).

Concerning the non-tempered part of the spectrum, we relate its extent to the growth
rate of the fundamental group in the case where the universal cover is a product of rank
one symmetric spaces. In particular, we obtain that the space is tempered if the growth
rate is small enough.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Erweiterung der Spektralgeometrie von lokal symmetrischen
Raumen. Die Theorie fiir Raume vom Rang eins ist gut entwickelt, aber im Fall hoheren
Rangs ist deutlich weniger bekannt. Daher gilt das Hauptinteresse dem Fall hoheren
Rangs.

Es gibt zwei verschiedene Gruppen von Operatoren, die wir hier betrachten: Erstens,
die Algebra der invarianten Differentialoperatoren auf dem lokal symmetrischen Raum.
Dies ist der geeignete Ersatz flir den Laplace-Operator im hoheren Rang und kodiert die
Quantenmechanik der Mannigfaltigkeit. Zweitens wird die klassische Dynamik im Rang
eins durch den geodatischen Fluss beschrieben. In hoherem Rang wird dieser durch den
Weyl-Kammer-Fluss ersetzt.

Wir beweisen eine Quanten-Klassische-Korrespondenz zwischen den Spektren dieser bei-
den Gruppen von Operatoren fiir kompakte lokal symmetrische Rdume. Dies wird ver-
wendet, um die Lage der klassischen Ruelle-Taylor-Resonanzen zu bestimmen und ein
Weyl-Gesetz sowie eine spektrale Liicke zu beweisen.

Im nicht-kompakten Fall konzentrieren wir uns auf das Quantenspektrum. Wir beweisen,
dass es unter bestimmten dynamischen Bedingungen keine temperierten L?-Eigenwerte
gibt, d.h. es gibt keine temperierten sphirischen Darstellungen, die diskret in L?(T'\G)
auftreten.

Was den nicht temperierten Teil des Spektrums betrifft, setzen wir seine Ausdehnung mit
der Wachstumsrate der Fundamentalgruppe in Beziehung. Diesen Zusammenhang erhal-
ten wir in dem Fall, dass die universelle Uberlagerung ein Produkt von symmetrischen
Raumen vom Rang eins ist. Insbesondere erhalten wir, dass der Raum temperiert ist,
wenn die Wachstumsrate niedrig genug ist.
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1. Introduction

The mathematical field of spectral geometry concerns the interplay between the geom-
etry of a manifold and spectra of differential operators defined by the structure of this
manifold. The most prominent example of such an operator is the Laplace-Beltrami
operator on a Riemannian manifold. A classical occurrence of the relation between the
geometry and the spectrum is that the spectrum of the Laplace-Beltrami operator on a
compact manifold is discrete, i.e. it consists of a discrete set of eigenvalues with finite
multiplicities. Even more is true: The asymptotics of the number N(T') of eigenvalues
less than T is precisely described by the Weyl law:
N(T) Wy

li = (M
A T = gy VO,

where wy is the volume of the unit ball in R? and d is the dimension of the manifold M.

Another important example of a differential operator that is of a different flavor is the
geodesic flow ¢; respectively its generator the geodesic vector field X. It is defined as
follows: If (z,v) is a vector in the unit tangent bundle SM of the Riemannian manifold
M, then there is a unique geodesic 7, : (—¢,e) — M such that +,(0) = z and 4,(0) = v.
Then ¢ (x,v) = (1 (t), 30 (t)). If M has negative sectional curvature, then the spectrum
of X on L?(SM) is equal to iR. Nevertheless one can associate a discrete spectrum to
the geodesic vector field by continuing the resolvent of X meromorphically on suitable
Hilbert spaces. This leads to the notion of Ruelle resonances. The goal of the present
thesis was to study the spectra of generalized versions of the Laplacian and the geodesic
vector field on certain types of manifolds M with lots of symmetries.

One class of examples is given by hyperbolic surfaces with finite topology, i.e. geomet-
rically finite surfaces of constant curvature —1. This example is the simplest case and
serves as motivation for the questions dealt with in this thesis. Let us first describe the
two different kinds of spectra in this case.

1.1. Ruelle resonances

On the dynamical side we have the Ruelle resonances of the geodesic flow. These can
be defined as follows. For A € C we first define the space of resonant states

Res(A) i= {u € Dp.(SM) | (X + Nu = 0},
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where D'..(SM) are the distributions on SM with wavefront set contained in the un-
stable bundle E;,. Then the set of Ruelle resonances can be defined as

oRue(X) == {\ € C| Res(\) # 0}.

Note that this definition is only valid for compact hyperbolic surfaces but there are
different approaches that can be extended to non-compact settings (see [BW22]).

For the location of the resonances we have the following theorem.

Theorem 1.1 (see [DEGI15]). oryue(X) is discrete and if X € oRue(X) then either Im A =
0 or Re) € —% — Np.

In particular, the theorem establishes a band structure with bands at the lines where
the real part is —% — Np. Moreover, the discreteness together with the band structure
imply the existence of a spectral gap: There is € > 0 such that

0Rue(X) N {Re > —¢} = {0}.

The existence of a spectral gap is strongly related to mixing properties of the geodesic
flow such as decay of correlations. On hyperbolic surfaces exponential decay of corre-
lations has been shown by Moore [Moo87| which by its own means provides a spectral
gap. For Weyl chamber flows, which are the higher rank analogues of geodesic flows, the
interplay between a spectral gap and exponential decay of correlations is more subtle.
Exponential decay of correlations has been shown by Katok and Spatzier [KS94]. How-
ever the existence of a spectral gap does not follow immediately due to the definition
of the resonances in the higher rank setting [BGHW20]. We will prove the existence of
a spectral gap in this more general setting and also give a precise resonance-free region

(see Theorem [[.5.1]).

1.2. Laplace spectrum

The Laplace spectrum on a hyperbolic surface M of finite topology highly depends on the
geometry of M. If we stick to the setting of compact surfaces, the spectrum is discrete
and satisfies a Weyl law as described above. However, the Laplace spectrum can be
studied on a general hyperbolic surface. In the non-compact setting it is more elaborate:
If M is non-compact and geometrically finite, the interval [1/4, co[ is always contained
in the spectrum and the spectrum below 1/4 consists of finitely many eigenvalues (see
[Bor16] for an overview).

In the special case of the modular surface SL9(Z)\H the only eigenvalue below 1/4 is 0
corresponding to the constant functions. However there are infinitely many eigenvalues
embedded in the continuous spectrum [1/4, 00| satisfying a Weyl asymptotic. These
Maass wave forms are studied in the theory of automorphic forms and are of fundamental
importance in number theory.



1.3. Quantum-classical correspondence

For a general finite area geometrically finite hyperbolic surface the situation of embed-
ded eigenvalues is not understood completely. There is a conjecture by Phillips and
Sarnak that embedded eigenvalues do not exist for a generic surface. Furthermore, it
is conjectured that there are infinitely many embedded eigenvalues if and only if the
fundamental group is arithmetic (see [PS85]).

If we proceed to infinite area surfaces, then the aspect of embedded eigenvalues becomes
clearer. Here we have the following classical theorem.

Theorem 1.2 (see [Pat75h]). For a geometrically finite hyperbolic surface of infinite area
there are no L?-eigenvalues for the Laplace-Beltrami operator in the continuous spectrum
[1/4, 00].

This theorem will be generalized in Project [Ll] to higher rank locally symmetric spaces.

On the other side of the spectrum one is interested in the first eigenvalue or more
precisely in the bottom Ag of the Laplace spectrum. Clearly, if M has finite area, then
Ao = 0 as the constant functions are harmonic L?-functions. If M has infinite area, \g
is related to the growth rate of the fundamental group as follows: The universal cover
of the hyperbolic surface is the hyperbolic plane H on which the fundamental group
I' < PSLy(R) acts freely. The critical exponent § of I' is defined by

1
0 := limsup = log#{y € T' | d(yzo,x0) < R}, ¢ € H arbitrary,
R—o0

which is also equal to the Hausdorff dimension of the limit set of I'. It is related to the
bottom of the Laplace spectrum Ay by the following theorem.

Theorem 1.3 (see [Els73| [Pat70]).

{1/4 L 5<1/2
Ao = .
S(1—6) :6>1/2

In particular, if § < 1/2 the spectrum of A equals [1/4,00] and is therefore equal to
the Laplace spectrum on the universal cover H. In this case we call M tempered as all
PSLy(R)-representations occurring in L?(I'\ PSLy(R)) are then tempered. In Project
we give criteria for temperedness of manifolds which have a product of rank one spaces
as universal cover.

1.3. Quantum-classical correspondence

In physics there is a general principle that states that the large scale behavior of a system
described by quantum mechanics has to agree with the classical description. In our
setting this means that there should be a strong relation between the Laplace operator
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(quantum side) and the geodesic flow (classical side). A manifestation of this principle
is the Selberg trace formula which holds for finite area hyperbolic surfaces [Sel56]. Using
this formula McKean [McK72] and Miller [Miil92] showed that the Laplace spectrum
and the length spectrum (i.e. the length of primitive closed geodesics on M) determine
each other in the compact case and in the finite area case, respectively. (The compact
case is originally due to Huber [Hub59] by a different method.) With this theorem in
mind one also expects a correspondence between the Laplace spectrum and the Ruelle
resonance spectrum in the case where both spectra are defined. In particular in the case
of compact hyperbolic surfaces we have the following theorem.

Theorem 1.4 (see [DFG15, I(GHW18]). For a compact hyperbolic surface M the Ruelle
resonances for the geodesic flow on SM are

(i) A=s—1—m, m € Ng,Res € [0,1], s # 0,1, with multiplicity dim ker(A—s(1—s))
if s #1/2 and 2dimker(A—1/4) if s = 1/2. Moreover, there is an explicit relation
between Ruelle resonant states and eigenfunctions of the Laplacian.

(ii) —n, n € Ny, with multiplicity 1 if n = 0 and n?|x(M)| +2 if n # 0 where x(M) is
the Fuler characteristic of M.

Note that Theorem is achieved by this quantum-classical correspondence in combi-
nation with the positivity of A. We will follow the same strategy in Section and
establish a generalization of such a quantum-classical correspondence on higher rank
locally symmetric spaces in Project [}

1.4. Locally symmetric spaces

The previous descriptions of the different spectra on hyperbolic surfaces are well-known
for some time. Clearly there are generalizations of many results to more general set-
tings. For example one could take a look at manifolds of higher dimension or relaxing
the condition of hyperbolicity. The direction we are taking is the following. By the uni-
formization theorem the universal cover of a hyperbolic surface is the hyperbolic plane
H. The group of Deck transformations I' is isomorphic to the fundamental group of the
hyperbolic surface. I' is a discrete torsion-free subgroup of the orientation-preserving
isometries on H and the hyperbolic surface is I'\H. The group of orientation-preserving
isometries on H is PSL2(R) which acts transitively on H with stabilizer of a base point
conjugated to PSO(2). Hence, the hyperbolic surface is isomorphic to the biquotient
M\PSLy(R)/PSO(2). The way we want to generalize the above mentioned results is to
extend our knowledge to manifolds with a symmetric space G/K as a universal cover,
i.e. to biquotients I'\G/K for other real semisimple Lie groups G of finite center with
maximal compact subgroup K and discrete torsion-free subgroups I' < G. The resulting
manifolds T\G/K are called locally symmetric spaces and are the main objects of our
study.
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1.5. Quantum and classical operators

The two operators — the Laplacian and the geodesic flow — that define the two spectra are
defined on a locally symmetric space merely by the property that they are Riemannian
manifolds. However, one observes that the corresponding operators on the symmetric
space G/K are invariant by the action of G. Indeed, they are defined by means of the
metric and (the identity component of) G is the isometry group of G/K. Hence, they de-
scend to the locally symmetric space I'\G/K and there they coincide with the operators
directly defined by the metric. Not only these operators descend to their local versions
but so do any G-invariant ones. In particular, each element of the algebra D(G/K) of
G-invariant differential operators on G/K descends to I'\G/K. This algebra is central in
all three projects contained in this thesis so that we included a preliminary discussion of
its properties in Chapter [3 The algebra D(G/K) always contains the Laplace-Beltrami
operator, but in general it is generated by multiple algebraically independent operators
with the number of generators equal to the rank of the symmetric space. For a better
understanding of the relation between spectra and geometry it is more fruitful to con-
sider a joint spectrum of D(G/K) instead of A alone (see Proposition for multiple
equivalent definitions).

For the geodesic flow the construction is a little bit more involved. Recall that it is defined
on the sphere bundle of the manifold which is given by I'\ PSLy(R) = T\SLy(R)/{£1}
for a hyperbolic surface I'\SL2(R)/SO(2). The geodesic flow is then obtained by right
multiplication by a; = diag(e’/2,e~%/2). Note that the set {a; | t € R} is precisely the
group A in the Iwasawa decomposition

SLy(R) = <(1) 1‘) {a; | t € R}SO(2) = NAK

and {£1} is precisely the subgroup M of K = SO(2) commuting with all a;. This leads
to the following definition generalizing the dynamical action.

Definition 1.5. The right action of A on I'\G/M is called Weyl chamber action where
G = NAK is an Iwasawa decomposition and M is the centralizer of A in K.

[BGHW20] provides a resonance spectrum for this action for compact locally symmetric
spaces (see Section and [[.3). This spectrum is then called Ruelle-Taylor resonance
spectrum as it is defined using the notion of the Taylor spectrum for commuting opera-
tors.

This thesis is concerned with these spectra and their connection to each other as well as
the relation to the geometry especially in the case of higher rank, i.e. if dim A > 2. We
will summarize the results in the next chapter.






2. Summary of the publications

In this chapter we will summarize the results of the three projects.

Project [I[: Quantum-classical correspondence

In this project we determine the location of certain Ruelle-Taylor resonances for the
Weyl chamber action, i.e. we generalize Theorem to the higher rank setting. As in
the surface case this is achieved by proving a quantum-classical correspondence, i.e. a
1:1-correspondence between horocycle invariant Ruelle-Taylor resonant states and joint
eigenfunctions of the algebra of invariant differential operators on G/K. The description
of the quantum spectrum is due to [DKV79] in this case and leads to a Weyl-lower bound
on an appropriate counting function for the Ruelle-Taylor resonances. Furthermore, we
establish a spectral gap which is uniform in I" if G/K is irreducible of higher rank. In
contrast to the rank one case this does not follow from the discreteness of the spectrum.
We rather have to use Kazdhan’s Property (T) to prove its existence. The size of the
gap is made explicit by LP-bounds for elementary spherical functions.

In addition to the published article, we give an alternative proof for the obstructions on
the location of the resonances that avoids the abstract theory of unitary representations
connected to spherical functions (Section . This line of arguments is more in the
spirit of the rank one case where one obtains the location of the resonances from the
positivity of the Laplacian together with the quantum-classical correspondence. We also
added an alternative proof for the uniform spectral gap that does not use an explicit
description of Kazhdan’s Property (T) (Section [L.7)).

Project [II: Absence of principal eigenvalues

As described above (see Theorem given a geometrically finite hyperbolic surface of
infinite volume it is a classical result of Patterson that the positive Laplace-Beltrami
operator has no L?-eigenvalues > 1/4. In this project we prove a generalization of this
result for the joint L?-eigenvalues of the algebra of commuting differential operators
on Riemannian locally symmetric spaces I'\G/K of higher rank. We derive dynamical
assumptions on the I'-action on the geodesic and the Satake compactifications of the
globally symmetric space G/K which imply the absence of the corresponding principal
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eigenvalues. A large class of examples fulfilling these assumptions are the non-compact
quotients by Anosov subgroups. To get a more complete picture of the compactifications
we included a preliminary discussion of the geodesic and the Satake compactifications

(Sections and [IL.3)).

Project Il Temperedness of local product spaces

Theorem establishes a connection between the growth rate of the fundamental group
I" and the bottom of the Laplace spectrum as well as the temperedness of the surface.
The growth rate of I' is measured by the translation distance in the universal cover
G/K which equals the size of the A-component in the KA+ K-decomposition of the
isometry group G. In the higher rank setting where dim A > 2 there are different ways
to measure this size. For example if G is a product G; X G2 then one can measure the
growth in the two directions determined by the factors. In this project we show that
the quantum spectrum is related to the growth rate of I' in the two directions similar
to Theorem precisely in the case where G/K is a product of rank one spaces. We
also obtain a condition for the temperedness of the space and we can show that this
condition is satisfied for a large class of I'.



3. Preliminaries

Let us shortly fix the notation for this preliminary discussion of the algebra of invariant
differential operators. G is a real semisimple non-compact Lie group with finite center
and K is a maximal compact subgroup. There is a Cartan involution # on G such that K
is the set of fixed points of #. The Lie algebra g splits into the +1-eigenspaces of 6. The
+1-eigenspace is the Lie algebra ¢ of K and we call the —1-eigenspace p so that g = ¢®p.
In p we choose a maximal abelian subalgebra a. The action on g of this algebra splits
into joint eigenspaces go = {X € g | [H, X] = a(H)X VH € a} where a € a*. The set
of roots 3 is the collection of a € a*\ {0} such that g, # 0. We choose a positive set of
roots X+ C ¥ and define n = @ 5+ 9o as well as p == %Zaez+ dim(g,) - @. We then
have the Iwasawa decomposition g = €@ a & n which also holds on the group level with
the maximal compact subgroup K and the corresponding analytic subgroups A and N.
The group W acting on a* generated by the reflections along the roots o € X is called
Weyl group.

3.1. Invariant differential operators

In this section we introduce one of the main objects of this thesis, namely the al-
gebra D(G/K) of G-invariant differential operators on G/K, i.e. differential oper-
ators commuting with the left regular representation L, for elements g € G where
Lyf(z) = f(g~'z). This algebra can be identified with a set of polynomials by the
following theorem.

Theorem 3.1.1 (Harish-Chandra isomorphism, see [Hel84, II-Thm. 5.17]). There is an
algebra isomorphism

HC: D(G/K) — Poly(at)"

from the G-invariant differential operators D(G/K) to the Weyl group invariant polyno-
mials on ai.. We write xz(D) instead of HC(D)(\).

The construction is as follows: We represent a differential operator D in D(G/K) as
an element X in U(g)¥, the K-invariant elements in the universal enveloping algebra
of g. The element X is unique modulo U(g)® N U(g)tc. We consider the Iwasawa
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decomposition g = n @ a § €. Using the Poincaré-Birkhoff-Witt theorem we can define
the projection

5: U(g)™ CU(g) - Ula)
with kernel nclf(g) + U(g)tc. Furthermore we define the algebra isomorphism
n:U(a) =>U(a) by a3 X +— X+ p(X).
Then

HC(D) = (n o 8)(X),

where we identify Poly(aE)W with the Weyl group invariants in the symmetric algebra

S(a) = U(a). To see that HC is a homomorphism we only need to see that ¢ is a
homomorphism. For X,Y € U(g)®X we have

XY —0(X)o(Y) =6(X)(Y = 6(Y)) + (X — 6(X))Y.
By definition of 4,
X —90(X),Y =4(Y) € ncld(g) + U(g)tc.

Since Y is K-invariant we infer (X — §(X))Y € kerd and since a normalizes n we also
have §(X)(Y —0(Y)) € kerd. Hence, HC is a homomorphism.

To see that its image consists of W-invariant polynomials we consider the function
exrem(9K) = e~ AT HTIR) o\ ¢ ac, kM € K/M,g € G,

where H: G — a is defined by g € KeTWN. Clearly, e AeM is a left N-invariant function
on G/K. Hence by construction,

Deyenr = 6(X)(A+plexen = n(6(X))(Nexenmr = Xa(D)exenm-

As expm = Lpexenm the same is true if we replace eM by kM. In particular the
elementary spherical function

¢)\(9) ::/ e)x,k:M(gK) dk :/ ef()‘er)H(gflk) dk
K K

satisfies Doy = xa (D). It follows from [Hel84, Ch. IT Thm. 5.16] (which is essentially
an application of several integral formulas) that ¢y = ¢y, for all w € W. This shows
that HC(D) is W-invariant. Note that if we choose two different positive systems 3T in
3., the resulting HC differ by the action of a Weyl group element. By the W-invariance
we get that HC does not depend on this choice.

In order to prove injectivity and surjectivity we use the following symmetrization map:

1
A S(g) o Ulg), Xioo Xy ZS: Xo(1)  Ko(n)-
oESy

10
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By construction this is well defined and Ad(G)-invariant. Bijectivity follows from the
following observation which is easily derived from commutator relations in the universal
enveloping algebra:

MX- X)) = X1 X, eU" Hg), Xieg, (3.1)

where the latter X; - -- X,, is understood as an element of U(g) and U*(g) is the subspace
of U(g) of elements of degree < k.

Now injectivity of \ follows easily. Let X € U(g) of degree n (i.e. X € U™(g) \U"(g))
with A(X) = 0. Then by (3.1) X € U™ (g) contradicting the choice of X.

To prove surjectivity of A we proceed by induction. Without loss of generality let
X €Xi--Xp+U""H(g) CU(9).

Then by (3.1) X — A\(X7--- X,,) € U"!(g) and by induction we can find X’ € S(g) such
that A(X") = X — AM(X1--- X,,). Hence, X is contained in the image of A.

Since A is Ad(G)-invariant it is clear that every differential operator D € D(G/K) can
be represented as an image of S(g)® under A. The following lemma shows that elements
from S(p)¥ are sufficient. The proof is similar to the above.

Lemma 3.1.2 ([Hel84, Ch. II Cor. 4.8]).
U(g)" = Ue)" NU(g)tc) & A(S(p)™)

In particular, X: S(p)* — D(G/K) is a bijection that preserves the degree.

As before we identify S(a)"V with the space of Weyl group invariant polynomials on ag.
Similarly, we identify S(p)X with K-invariant polynomials on p%. In addition let us
identify af with ac and pg with pc with respect to the Killing form. Then we have a
map Poly(pc) — Poly(ac) by restriction. On the level of symmetric algebras it is the
projection on S(a) with respect to the decomposition S(p) = S(a)® S(p)q where q is the
orthogonal complement of a in p. This map is injective when we restrict it to K-invariant
polynomials on pc since Ad(K)a = p and its image is contained in Poly(ac)"V. To see
that it is also surjective let p € Poly(ac). By the injectivity there is only one possible
way to define the preimage p. Namely, for X € p we must have p(X) = p(Ad(k)X) for
every k € K. But since p = Ad(K)a this already defines p: pc — C. (p is well-defined
by [Kna02, Lemma 7.38].) The following lemma completes the proof of the surjectivity.

Lemma 3.1.3. p is a polynomial on pc of the same degree as p.

Proof. See [Hel84, Ch. II Thm. 5.8] for smoothness. Then decompose p into homogeneous
summands and conclude by using the fact that a smooth homogeneous function is a
polynomial. O

11



3. Preliminaries

The last step for the proof of the surjectivity in Theorem follows a similar strategy
as the proof of the bijectivity of the symmetrization mapping A including the following
statement that is similar to (3.1)).

Lemma 3.1.4. For q € S(p)® we have deg(n(5(\(q))) —q) < deg(q) — 1 where G denotes
the restriction of q to ac.

Proof. Without loss of generality we can assume that ¢ is homogeneous of degree d > 0.
For X € q we find Z € n such that

X=7-02=22—(Z+0Z)cndt.

Therefore, g—q € nS%'(g)+59~1(g)¢ (where S?1(g) is the subspace of S(g) of elements
of degree < d — 1) and also \(¢) —q € ncUU?1(g) + U1 (g)tc+ terms of lower order. It
follows that 0(A(¢)) — ¢ has degree < d and therefore the same holds for n(d6(A(¢))) — ¢
as n does not change the highest order term. O

Now we can prove the injectivity of HC. Let D € D(G/K) be represented by X €
U(g)X with n(6(X)) = 0. By Lemma X = Xp) +Y withp € S(p)X and Y €
U(g)% NU(g)tc. But this decomposition implies that n(§(A(p))) = 0 so by Lemma
degp < degp — 1. This is a contradiction unless deg(p) = —o0, i.e. p=0.

For the surjectivity we define the pseudo inverse
Op: S(a)V = D(G/K), p— AD).

By Lemma [3.1.2] and [3.1.3] this is well-defined and bijective. It is not the inverse of
HC but by Lemma it satisfies that p — HC(Op(p)) is of lower degree than p for
p € S(a)W. Using this we can easily prove by induction that HC is surjective: By the
induction hypothesis there is D € D(G/K) such that HC(D) = p — HC(Op(p)). Then
HC(D + Op(p)) = p. This completes the proof of Theorem

Remark 3.1.5. Note that by [Hel84, Ch. IT Thm. 4.9] Op(p) can be expressed as a
differential operator as follows. Let Xi,..., X, be a basis of p so that p =" a,X“ for
some a, € C. For f € C*°(G/K) and g € G we then have

AD)f(gK) = (Z aoﬁ“) (9 exp (Z tiXi) K)
=1 t;=0

is the dual basis of X1,...,X,, then p(t1X] + -+ + t,X]) = >, aat®.

If X7,...,X]
Therefore,

Aok = (5 (g x4+ o x) ) o <gexp (@x) K)

This construction is carried out for the case of SL,(R) in the next section.

t;=0

12



3.2. Invariant differential operators for SL,(R)

3.2. Invariant differential operators for S, (R)

In this section we want to take a look at the invariant differential operators in the special
case of G = SL,(R). We choose a = {diag(A1,...,An) | > Ai = 0} and identify a* with a
via (X,Y) = Tr(X-Y). The root system of restricted roots X is given by {e; —¢; | i # j}
where ¢;(diag(A1,...,Ay)) = Ai. The Weyl group W is the symmetric group S, and acts
on a and a* by permuting the diagonal entries. This root system is of type A, _1 and it
is well known that the algebra of W-invariant polynomials is generated by the following
homogeneous algebraically independent polynomials (see [Hum90, Section 3.12]):

pi(diag( A, ..., ) =X+ AL =123 .n.

In order to find the invariant differential operators for SL,(R)/SO(n) we use the sur-
jective map Op as defined in Section First we need to extend the polynomials p; to
K-invariant polynomials f; on p = {X € s[,(R) | X7 = X, Tr(X) = 0}. As described
in Section p; is determined by p;(kHE™') = p;(Ad(k)H) = p;(H) for H € a. We
observe that p;(H) = Tr(H*) for H € a. This description allows us to extend p; easily:

pi(kHE™Y) = Tr(HY) = Te(kH'k ™) = Te((kHE™1)Y).
Hence, p;(X) = Tr(X?) for X € p.

Example 3.2.1. Forn =3 let X = € p. Then we have

N K] 2
< o R
[ ISR

P2(X) = a® + 0% + 2 + 222 + 2y* + 222
and

p3(X) = a® + b3 + & — 3ca? — 3ay® — 3b2° + 6zyz.

The next step is to express p; with respect to a basis, i.e. as an element of S(p)¥ via
the isomorphism S(p) ~ Poly(p*). We introduce the following matrices.

1 0 0 0 0 O

H=(0 -1 0),H;=(0 1 0

0 0 O 0 0 -1
010 0 00 0 01
Fir=|1 0 0],Ee=({0 0 1],E35=10 0 O
0 00 010 100

Then clearly

<X,H1>:a—b, <X,E1>:2$,
<X7H2>:b_c <X7E2>:2y7
=a+ 2b, (X, E3) = 2z.

13



3. Preliminaries

Hence,
— Lom + m) g
@=3 1 2 =5
b= 1( Hy + H>) = 1E
- 3 1 2 Yy = 2 2
L CH, - 2my) g
c= —(— — z = —Fj3.
3 1 2 2 3
We obtain
2 1
P2 = g(Hf+H1H2+H22)+§(E12+E§+E§)
and
|
P3 = §(2H§” +3H?Hy — 3H,H3 — 2H3)
1 3
+ Z(Ef(Hl +2Hy) + E3(—2H; — Hy) + E3(Hy — Ho)) + ZElEgEg,. O

Let us now determine the operators Op(p;) acting on f € C*°(SL,(R)/SO(n)). The
greatest obstacle is that there is no nice orthonormal basis and hence either the basis
or the dual basis is hard to work with. Therefore we simply choose the basis coming
from the simple roots, i.e. let H; = diag(0,...,0,1,—1,0,...,0),¢=1,...,n— 1, where
the 1 is the i-th diagonal entry. Then one calculates that the dual basis is given by
H! = diag(1,...,1,0,...,0) — £I. By Remark 3.1.5

o k
Op(i) F(gSO(m) = Tr ((aX) ) f (gesp(X)S0(n)

ti=x;;=0
where
3] T12 T3 o Xin
Ti2 to—1t1  ®xoz - Xoy
X = | T3 x93 tz3—ta -+ I3y
Tin Ton T3n cee —tp—1
and
Srto, — St i) 19 e 15
i=1 Y i=1 nY 2Vz12 5Yz1n
1 n—1 n—1 4 :
9 _ 589612 Zz‘:Q ati - Zi:1 ﬁati
0X : .
1 n—1 4
anm T - Zi:l Eati

14



3.2. Invariant differential operators for SL,(R)

Since this expression is quite cumbersome one can also take the detour over GL,(R)
where one has a nice orthonormal basis. This is done in [BCH2I]. They obtain a
different generating set of invariant differential operators given by the Maass-Selberg
operators §; which are defined for f € C*(SL,(R)/SO(n)) by

5./(9SO(m)) = Tr ((({;))

f <g exp <X - :LTr(X)In> SO(n)> ,

X=0

where 5 5
a’;‘ll P xln 6'1111 PR m

0 . .

X = and _— = . .. .

aX . .
Tip - T 9o ... _0_
n nn 20x1n OTnn

Example 3.2.2. Let us calculate the image of Op(py) under HC for G = SL3(R). We
already know from Example how py looks like as an element in S(p). Let us begin
with pg. From the expression p, = 3(H} + H1Hy + H3) + 3(E} + E3 + E3) we see that
A(p2) = p2. We also observe that this is the Laplace operator in D(SL3(R)/SO(3)) since
it coincides with the Casimir operator up to an element in U(g)® NU(g)t. Hence we
expect HC(Op(p2)) = p2 — ||p||> = p2 — 2. Let us calculate this explicitly.

Let
010 0 0 0
Ny=|00 0],No=[{0 0 1],N3=
000 0 00
and K; = N; — NiT € t. Then E; = 2N; — K; and hence we calculate in U(g) mod
ncld(g) ® U(g)tc:
E? = 2K;N; = —2N;K; + [~ K;,2N;] = 2[N], N;] = —2H;
where Hs = Hy + Hs. By the definition of ¢ in Section [3.1] we have

9
§(Op(p2)) = g(Hf + HH, + H2) — 2H, — 2H,.

To obtain HC(Op(p2)) we have to apply 7, i.e. we have to replace H; by H; + p(H;) =
H; +1,i=1,2. This results in

HC(Op(p2)) = ;((Hl +1)% + (Hy + 1)(Ha + 1) + (Ho +1)?) = 2(Hy + 1) — 2(Ha + 1)
=p2 — 2

as expected.

For ps the calculations become more involved since we are now dealing with elements of
degree 3. Recall that

1

p3 = —(2H? + 3H?Hy — 3H H3 — 2H3)

9
1 3
+ Z(E%(Hl + 2Hy) + E3(—2H; — Hy) + E3(H, — Hy)) + ZElEgEg.

15



3. Preliminaries

First of all observe that applying A to p3 only affects the last part EiFEsFs3 since E;
commutes with the attached linear combination HZL of Hy and Hy. This is due to the
fact that F; is an element of the direct sum go, ® g—n, where o; = (H;,-) € X7 and
H; 1 Hi. Again we calculate in U(g) mod ncld(g) ® U(g)kc:

E;H E; = (2N; — K;)Hi-(2N; — K;) = —K;H;*2N; = —K;2N;H;-

= —2N;K;H;i- — 2[K;, Nj|Hi = 2[N}', N;|H* = —2H; H;-.

Hence,
1 L3
O(Op(ps)) =ps =5 D HiH + J6(\(E1BaEy))
=1,2,3
3
= ps — Hi + Hj + 15(>\(E1E2E3))-

For the last part we observe that 6 (E;E;Ey) = 6(E;EE;) since the commutator bracket
of two elements in p is contained in . Now,

E,E\E; — E\E:E; + [Es, E\JE; = EvEE; + Ej|E,, Ey] + [Es, B, Ej|
and therefore
S(EEVEj) = §(EAEiEj)+6([[Ei, Brl, Ejl) = 0(EAEj E)+6(Er By, Ej)+6([[E4, Erl, Ejl).
We conclude that
S(N(E1EsEs)) = %5(E1E2E3) + %5(E2E1E3) + %5(E3E1E2)
= BBV B2 ) + 30(((F2, B, Bul) + 50((1Bs, B, Fal)

= BBV Eo ) + 301 Ko, B + 50(— Kz, Ea)
2

2
- 5(E1E2E3) - gHg - §H2

We are left with computing 6(E1 EoF3):

E1EyE3 = —K1(2Ny — K3)(2N3) = [ K1,2N3](2N3) + (— K1) [— K2, 2N3]
= [[-K1,2N3],2N3] + [- K1, [—K2,2N3]] = [-2N3,2N3] + [— K1, —2Nq]
=2H; mod ncld(g) ®U(g)tc.

All in all,

3 2 2
8(O(ps)) = ps — HE + H3 + <2H1 2, - 3H3>

1

5 (2H} + 3H?Hy — 3HH2 — 2H3) — H? + H + H, — H>.

16



3.2. Invariant differential operators for SL,(R)

As we did for ps we apply 7 to obtain the image under HC:

HC(Op(ps)) = %(2(111 +1)° + 3(Hy + 1)*(Hy + 1) — 3(Hy + 1) (H2 + 1)> — 2(H2 + 1)%)
— (Hi 4+ 12+ (Hy +1)* 4+ (H + 1) — (Hy + 1)

= %(2}1% +3H}H, — 3H,H2 — 2H3) + H? — H3 + H; — Hy
— H? + H — 2H, + 2H,
+ Hy — H,

= P3-

Actually, this computation could have been avoided by Proposition [[.6.5] Namely,
HC(Op(p3)) = p3 + lower order terms where the degree of the lower order terms are
odd as well. Hence, HC(Op(p3)) — p3 € S(a)"V is homogeneous of degree one and there-
fore vanishes since there is no W-invariant element in a except O. O
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Published Paper

Abstract

For a compact Riemannian locally symmetric space I'\G/K of arbitrary rank we deter-
mine the location of certain Ruelle-Taylor resonances for the Weyl chamber action. We
provide a Weyl-lower bound on an appropriate counting function for the Ruelle-Taylor
resonances and establish a spectral gap which is uniform in I' if G/K is irreducible of
higher rank. This is achieved by proving a quantum-classical correspondence, i.e. a
1:1-correspondence between horocyclically invariant Ruelle-Taylor resonant states and
joint eigenfunctions of the algebra of invariant differential operators on G/K.

1.1. Introduction

Ruelle resonances for an Anosov flow provide a fundamental spectral invariant that does
not only reflect many important dynamical properties of the flow but also geometric and
topological properties of the underlying manifold. Very recently the concept of reso-
nances was extended to higher rank R™-Anosov actions and led to the notion of Ruelle-
TaylmE] resonances which were shown to be a discrete subset ogr C C" [BGHW20).
It was furthermore shown in [BGHW20] that the leading resonances (i.e. those with
vanishing real part) are related to mixing properties of the considered Anosov action.
In particular, it was shown that if the action is weakly mixing in an arbitrary direction
of the abelian group R"”, then 0 € C" is the only leading resonance. Furthermore, the
resonant states at zero give rise to equilibrium measures that share properties of SRB
measures of Anosov flows.

Apart from the leading resonances the spectrum of Ruelle-Taylor resonances has so far
not been studied if n > 2. In particular, when n > 2, it was not known whether there are
other resonances than the resonance at zero. Neither was it known whether there is a
spectral gap, i.e. whether the real parts of the resonances are bounded away from zero.
In this article we shed some light on these questions by examining the Ruelle-Taylor
resonances for the class of Weyl chamber flows via harmonic analysis.

Let us briefly introduce the setting: Let G be a real connected non-compact semisimple
Lie group with finite center and Iwasawa decomposition G = KAN. Let a be the Lie

!They were named Ruelle-Taylor resonances because the notion of the Taylor spectrum for commuting
operators is a crucial ingredient of their definition.
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1. Quantum-classical correspondence

algebra of A and M the centralizer of A in K. Then A is isomorphic to R where n is
the real rank of G and acts on G/M from the right. Hence A also acts on the compact
manifold M :=T'\G/M, where I' < G is a cocompact torsion-free lattice. It can be easily
seen that this action is an Anosov action with hyperbolic splitting TM = Ey ® E; & E,
which can be described explicitly in terms of associated vector bundles (see Section
for a general definition of Anosov actions and Proposition for the description of
the hyperbolic splitting for Weyl chamber flows). Furthermore, if ¥ C a* is the set of
restricted roots with simple system II and positive system X then the positive Weyl
chamber is given by a; = {H € a | o(H) > 0Va € II}.

The Ruelle-Taylor resonances of this Anosov action are defined as follows: For H € a
let X be the vector field on M defined by the right A-action. Then

orr = {\ € af | u € Dip. (M) \ {0}: (Xgr + A(H))u = 0VH € a},

where D (M) is the set of distributions with wavefront set contained in the annihilator
Ef C T*M of Ey @ E,. The distributions u € D/ .« (M) satisfying (X + A(H))u =0
for all H € a are called resonant states of A and the dimension of the space of all such
distributions is called the multiplicity m(A) of the resonance A. It has been shown in
[BGHW20] that ogrr C ag. is discrete and that all resonances have finite multiplicity. It
also follows from that work that the real part of the resonances are located in a certain
cone _a* C a* which is the negative dual cone of the positive Weyl chamber a; (see
Section for a precise definition).

In this article we will prove that there is a bijection between a certain subset of the
Ruelle-Taylor resonant states and certain joint eigenfunctions of the invariant differential
operators on the locally symmetric space I'\G /K. Before explaining this correspondence
in more detail we state two results on the spectrum of Ruelle-Taylor resonances that we
can conclude from the correspondence.

The first result says that for any Weyl chamber flow there exist infinitely many Ruelle-
Taylor resonances by providing a Weyl-lower bound on an appropriate counting function.

Theorem 1.1.1. Let p be the half sum of the positive restricted roots, W the Weyl group
(see Section[[.2.9 for a precise definition), and for t > 0 let

N(t) = > m(A).
Aeorr Re(A)=—p| Im()[<t

Then for d := dim(G/K)

N(t) > [WIVol(T\G/K) (2v/7 Vdm

More generally, let Q@ C a* be open and bounded such that O has finite (n — 1)-
dimensional Hausdorff measure. Then

t1 4 O,

> m(\) > [W|Vol(D\G/K) (2r) % Vol(Ad(K)Q)t? + Ot?1).
Xeogrr,Re(A)=—p,Im(N) €t
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1.1. Introduction

The second result guarantees a uniform spectral gap.

Theorem 1.1.2. Let G be a real semisimple Lie group with finite center, then for any
cocompact torsion-free discrete subgroup I' C G there is a neighborhood G C a* of 0 such
that

ORT N (g X z'a*) = {0}

If G furthermore has Kazhdan’s property (T) (e.g. if G is simple of higher rank), then
the spectral gap G can be taken uniformly in I' and only depends on the group G.

Let us now explain in some detail the spectral correspondence that is the key to the
above results:

We define the space of first band resonant states as those resonant states that are in
addition horocyclically invariant

Res (A) = {u € D (M): (X + MH))u =0 and Xu=0VH € a,X € C*(M, E,)}

and we call a Ruelle-Taylor resonance a first band resonance iff Resg(()\) # 0. By working
with horocycle operators and vector valued Ruelle-Taylor resonances we will be able to
show that all resonances with real part in a certain neighborhood of zero in a* are always
first band resonances (see Proposition . As the Weyl chamber flow is generated by
mutually commuting Hamilton flows, we consider the set of Ruelle-Taylor resonances as
a classical spectrum.

Let us briefly describe the quantum side: In the rank one case the quantization of
the geodesic flow is given by the Laplacian on G/K. In the higher rank case we have
to consider the algebra of G-invariant differential operators on G/K which we denote
by D(G/K). As an abstract algebra this is a polynomial algebra with n algebraically
independent operators, among them the Laplace operator. These operators descend to
I'\G/K and we can define the joint eigenspace

"Ex={f € C*(I\G/K) | Df =xA(D)f VD eD(G/K)}

where x is a character of D(G/K) parametrized by A € ai./W with the Weyl group
W. Here x,, is the trivial character (see Section [[.2.4). Let o denote the corresponding
quantum spectrum {\ € ai | VEy # {0}}.

We have the following correspondence between the classical first band resonant states
and the joint quantum eigenspace:

Theorem 1.1.3. Let A € af. be outside the exceptional set A := {\ € af. | % €

—Nsg for some a € X7}, Then there is a bijection between the finite dimensional vector

spaces
T Resk(\) = TE_y_,

where . is the push-forward of distributions along the canonical projection 7 : T\G /M —
NG/K.
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1. Quantum-classical correspondence

Using this 1:1-correspondence we can then use results about the the quantum spectrum
to obtain obstructions and existence results on the Ruelle-Taylor resonances. Notably
we use results of Duistermaat-Kolk-Varadarajan [DKV79] on the spectrum og but we
also deduce refined information on the quantum spectrum. Here we use LP-bounds for
spherical functions obtained from asymptotic expansions [vdBS87] and LP-bounds for
matrix coefficients based on work by Cowling and Oh [Cow79, [Oh02]. Theorem [[.1.1]and
Theorem as stated above give only a rough version of the information on the Ruelle-
Taylor resonances that we can actually obtain. As the full results require some further
notation we refrain from stating them in the introduction and refer to Theorem [[.5.1]
We also refer to Figure [[.6] for a visualization of the structure of first band resonances
for the case of G = SL(3,R).

Methods and related results:

The key ingredient to the quantum-classical correspondence is that we can in a first step
relate the horocyclically invariant first band resonant states with distributional vectors
in some principal series representations. Then we can apply the Poisson transform of
[KKM™78] to get a bijection onto the quantum eigenspace 'p_ A—p- The prototype of
such a quantum-classical correspondence has been first established by Dyatlov, Faure
and Guillarmou [DEFGI5] in the case of manifolds of constant curvature or in other
words for the rank one group G = SO(n,1). Certain central ideas have however al-
ready been present for G = SO(2,1) in the works of Flaminio-Forni and Cosentino
[FEF03, [Cos05]. In the rank one setting there exist several generalizations of the quan-
tum classical correspondence of [DFGI5] e.g. to convex cocompact manifolds of con-
stant curvature [GHW18|, [Had20], general compact locally symmetric spaces of rank one
[GHW21] and vector bundles [KW20, KW21].

Besides the correspondence between the classical Ruelle resonant states and the quantum
Laplace eigenvalues there are several other approaches in the literature establishing exact
relations between the Laplace spectrum and the geodesic flow. One approach is to relate
the Laplace spectrum to divisors of zeta functions. Such relations have been obtained
for rank one locally symmetric spaces on various levels of generality by Bunke, Olbrich,
Patterson and Perry (G = SO(n, 1), I convex cocompact: [BO9T7, BO99, [PP01], G real
rank one, I' cocompact [BO95]).

A third approach to an exact quantum-classical correspondence is to relate the Laplace
spectrum to a transfer operator which represents a time discretized dynamics of the
geodesic flow. This type of correspondence was notably studied for hyperbolic surfaces
with cusps (see [LZ01, BLZ15, BP23] for results for G = SL(2,R) and I' discrete sub-
groups of increasing generality). We refer in particular to the expository article [PZ20]
and the introduction of [BP23| for a current state of the art of these techniques. A
very first step towards generalizations of this approach to higher rank has been recently
achieved in [Poh20] for the Weyl chamber flow on products of Schottky surfaces by the
construction of symbolic dynamics and transfer operators.

Note that in [DFGI5] not only the first band of Ruelle resonances was related to the
Laplace spectrum but a complete band structure has been established and the higher
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bands could be related to the Laplace spectrum on divergence free symmetric tensors.
In the present article we do not study the higher bands. This will presumably be a
very hard question for general semisimple groups G (note that in [DFG15] it was crucial
at several points that for G = SO(n,1), N = R""! is abelian). However it might be
tractable for some concrete groups with simple enough root spaces such as G = SL(3,R).
For geodesic flows the phenomenon of such a band structure is quite universal and known
in the case of compact locally symmetric spaces of rank one [KW21] but also for geodesic
flows on manifolds of pinched negative curvature [FT13| [(GC21l [FT21].

As mentioned above an important application of Ruelle resonances for Anosov flows
are mixing results. More precisely, the existence of a spectral gap in addition with
resolvent estimates imply mixing of the flow. For Weyl chamber flows this relation of
gaps and mixing rates is not yet established but conjectured to be true. From this
perspective Theorem is related to the work of Katok and Spatzier [KS94] who
showed exponential mixing for the Weyl chamber action in every direction of the closure
of the positive Weyl chamber if G has Property (T). However it is not known whether
their result remains true if the Property (T) assumption is dropped. Our result above
(Theorem ensures a ['-dependent gap in any case but as mentioned above the
precise relation to mixing rates is not yet established.

Finally, Weyl laws for Ruelle resonances of geodesic flows can also be established in
variable curvature (or more generally contact Anosov flows) in various settings [FS11)
DDZ14, [ET17]. In particular, in the very recent article [F'T21] by Faure and Tsujii the
Weyl law also follows because a “first band” of resonances can be related to a quantum
operator. The methods in their work are however completely different and are based on
microlocal analysis rather then global harmonic analysis.
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Noether group “Microlocal Methods for Hyperbolic Dynamics”).
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1.2.1. Ruelle-Taylor resonances for higher rank Anosov actions

In this section we recall the main properties of Ruelle-Taylor resonances for higher rank
Anosov actions from [BGHW20|. Let M be a compact Riemannian manifold, A ~ R"
be an abelian group and let 7: A — Diffeo(M) be a smooth locally free group action. If
a := Lie(A) we define the generating map

d
X:a—=CPWM,TM), Hw— Xg:= s T(exp(tH)).
t=0
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Note that [Xg,, Xz, = 0 for H; € a. For H € a we denote by ;"7 the flow of the
vector field Xgy. The action is called Anosov if there exists H € a and a continuous
cthH -invariant splitting

TM=FEy® FE, ® Es,

where Ey := span{Xy: H € a} is of dimension n because the action is locally free and
there exist C' > 0, v > 0 such that for each x € M

Yw € By(2),t 20 |lde} (2wl < Ce™||w]),

Yw € By(2),t <0: [|dgy " (x)w] < Ce™M|juw],

where the norm on T M is given by the Riemannian metric on M. Such an H € a is
called transversally hyperbolic. We call the set

W :={H' € a| H' is transversally hyperbolic with the same splitting as H}

the positive Weyl chamber containing H.

Let £ — M be the complexification of a Euclidean bundle over M and denote by
Diff}(M, E) the set of first order differential operators with smooth coefficients acting
on sections of E. Then a linear map X: a — Diffl(/\/l, E) such that Xy, Xp, = X, Xm,
for all H; € a is called an admissible lift of the generic map X if

Xu(fs)=(Xuf)s+ fXpus (I.1)

for s € C*°(M, E), f € C*°(M), and H € a.

For a fixed positive Weyl chamber W the set of Ruelle-Taylor resonances can be defined
as
orr(X) ={\ € at | Ju e D] ;(M,E) \{0}: (Xg + AN(H))u=0VH € a},

where D/, (M, E) is the set of distributional sections of the bundle E with wavefront
set contained in E;. Here E is defined as the annihilator of Ey @ E, in T*M. The
vector space of Ruelle-Taylor resonant states for a resonance A € ogrp(X) is defined by

Resx (M) = {u € D (M, E) | (X + A(H))u = 0YH € a}.

Remark I.2.1. The original definition of Ruelle-Taylor resonances and resonant states
is stated via Koszul complexes (see [BGHW20, Section 3]). More precisely, A is a reso-
nance iff the corresponding Koszul complex is not exact and the resonant states are the
cohomologies of this complex. The space of resonant states that we are considering is
just the Oth cohomology. However, it turns out that the Koszul complex is not exact
iff the Oth cohomology is non-vanishing, i.e. the two notions coincide (see [BGHW20,
Theorem 4]).

It is known that the resonances have the following properties.
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Proposition 1.2.2 (see [BGHW20, Theorems 1 and 4]). orrp(X) is a discrete subset of
agc contained in

(N e as | Re(A(H)) < Cpz(H) VH € W}

with Cp2(H) = inf{C > 0| ||e7X# || 12,72 < et ¥Vt > 0} where e X8 : L2(M, E) —
L?*(M, E) is the semigroup with generator —Xy. Moreover, for each A € orr(X) the
space Resx (A) of resonant states is finite dimensional.

1.2.2. Semisimple Lie groups

In this section we fix the notation for the present article. Let G be a real semisimple
connected non-compact Lie group with finite center and Iwasawa decomposition G =
KAN. Furthermore, let M := Zi(A) be the centralizer of A in K and G = KAN_
the opposite Iwasawa decomposition. We denote by g,a,n,n_, ¢ m the corresponding
Lie algebras. For g € G let H(g) be the logarithm of the A-component in the Iwasawa
decomposition. We have a K-invariant inner product on g that is induced by the Killing
form and the Cartan involution. We have the orthogonal Bruhat decomposition g =
a®m® P, s ga into root spaces g, with respect to the a-action via the adjoint action
ad. Here ¥ C a* is the set of restricted roots. Denote by W the Weyl group of the
root system of restricted roots. Let n be the real rank of G and II = {aq,...,an}
(resp. 1) the simple (resp. positive) system in ¥ determined by the choice of the
Iwasawa decomposition. Let m, = dimg g, and p = %Eaegwnaa. Denote by wg the
longest Weyl group element, i.e. the unique element in W mapping II to —II. Let
ar ={H € a|a(H) > 0Va € II} the positive Weyl chamber and a* the corresponding
cone in a* via the identification a <+ a* through the Killing form (-, -) restricted to a.
We denote by ya* the dual cone {A € a* | A(H) > 0VH € ay \ {0}} and by ja* its
closure {\ € a* | A(H) > 0VH € ay} = R>oll. Hence, if w; is the dual basis of a; then
;0 = {Xea* | (\wj) >0Vj =1,...,n}. Furthermore, we denote _a* := — a*. If
At = exp(ay), then we have the Cartan decomposition G = KATK.

Example 1.2.3. If G = SL,(R), then we choose K = SO(n), A as the set of diagonal
matrices of positive entries with determinant 1, and N as the set of upper triangular
matrices with 1’s on the diagonal. a is the abelian Lie algebra of diagonal matrices
and the set of restricted roots is ¥ = {e; — ¢; | i # j} where ¢;(\) is the i-th diagonal
entry of X. The positive system corresponding to the Iwasawa decomposition is X7 =
{ei—¢€; | i < j} with simple system II = {a; = €; —€;41}. The positive Weyl chamber is
ay = {diag(A1,..., A\n) | A1 > -+ > Ay} and the dual cone is Ta = {diag(A1,...,\n) €
al A+ -+ X > 0Vk}. The Weyl group is the symmetric group S, acting by
permutation of the diagonal entries.

1.2.3. Principal series representations

The concept of a principal series representation is an important tool in representation
theory of semisimple Lie groups. It can be described using different pictures. We start
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a1 o +az=p

(65]

Figure I.1.: The root system for the special case G = SL3(R): There are three positive
roots X = {ag,a2,a1 + as}. As all root spaces are one dimensional the
special element p = %Eaegunaa equals a; + as.

with the induced picture: Pick A € af. and (7, V;) an irreducible unitary representation
of M. We define

S . flgman) = e=OFe)losar(m)=1 f(g)
V= {f' G = Vr cont.: foralge GGme M,a€ A,ne N

endowed with the norm | f||* = [, || f(k)||*dk where dk is the normalized Haar measure
on K. Recall that p is the half sum of positive roots. The group G acts on V™ by
the left regular representation. The completion H™* of V™ with respect to the norm is
called induced picture of the (non-unitary) principal series representation with respect
to (7,A). We also write 7, 5 for this representation. If 7 is the trivial representation then
we write H» and 7y and call it the spherical principal series with respect to A. Note that
for equivalent irreducible unitary representations 71, 75 of M the corresponding principal
series representations are equivalent as representations as well. In particular, the Weyl
group W acts on the unitary dual of M by wr(m) = 7(w™'mw) where w € W is given
by a representative in the normalizer of A in K and therefore H»"7 is well-defined up
to equivalence.

A different way to view the principal series representation is the so-called compact picture.
Although we don’t need this description we want to introduce it in order to give a larger
overview of these representation. It is given by restricting the function f: G — V; to
K, i.e. a dense subspace is given by

{f: K = V; cont. | f(km) =7(m)"Lf(k),k € K,m € M}
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with the same norm as above. In this picture the G-action is given by
Tea(g) f(k) = e IR f ey (g7'R)), g€ Gk € K,

where kg an is the K-component in the Iwasawa decomposition G = KAN. Further-
more, recall from section that H(g) € a was defined as the logarithm of the Iwasawa
A component.

For the example G = PSLs(R) the compact picture allows us to describe this repre-
sentation explicitly without using the Iwasawa decomposition: Since K = PSO(2) ~
S' C R? the representation H'A* = HA X\ € C, is given by L?(S!) with the action
) f (W) = g~ wl| A (g7 w/ g~ wlD.

1.2.4. Invariant differential operators

Let D(G/K) be the algebra of G-invariant differential operators on G/K, i.e. differen-
tial operators commuting with the left translation by elements g € G. Then we have
an algebra isomorphism HC: D(G/K) — Poly(a*)" from D(G/K) to the W-invariant
complex polynomials on a* which is called Harish-Chandra homomorphism (see [Hel84,
Ch. II Theorem 5.18]). For A € af let x) be the character of D(G/K) defined by
XA(D) == HC(D)(A). Obviously, xx = xwx for w € W. Furthermore, the x, exhaust all
characters of D(G/K) (see [Hel84, Ch. III Lemma 3.11]). We define the space of joint
eigenfunctions

Ey={feC*(G/K)|Df =xx(D)f VD eD(G/K)}.
We will only work with the subspace of functions of moderate growth
Ef ={feE\|JceR:|f(kaK)| < Celsal vk e K a e A}.

Note that I\ and E} are G-invariant.

1.2.5. Poisson transform

The representation of G on E3 can be described via the Poisson transform: If (H™)~>
denotes the distributional vectors in the principal series, then the Poisson transform P
maps (H~*)~> into EY G-equivariantly. It is given by

Prf(zK) = / (k) OHAHETR) g,
K
if f is a sufficiently regular function in the compact picture of the principal series. If
[ is given in the induced picture, then Py f(xK) simply is [, f(zk)dk. Since K/M

can be seen as the boundary of G/K at infinity, the Poisson transform produces a joint
eigenfunction for a given boundary value (see [vdBS87] for more details).
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It is important to know for which values of A € af, the Poisson transform is a bijection.
By [vdBS87, Theorem 12.2] we have that Py: (H~*)™> — Ef is a bijection if

2(\, a)
(o, @)

In particular, P, is a bijection if Re A € E.

¢Nso forall aecX™. (1.2)

1.2.6. LP-bounds for elementary spherical functions

One can show that in each joint eigenspace F) there is a unique left K-invariant function
which has the value 1 at the identity (see [Hel84, Ch. IV Corollary 2.3]). We denote
the corresponding bi-K-invariant function on G by ¢, and call it elementary spherical
function. Therefore, ¢\ = ¢, iff A = wu for some w € W. It is given by the Poisson

transform of the constant function with value 1 in the compact picture, i.e. ¢)(g) =
[ e~ A+ H(g7 k) k.

The aim of this section is to establish the following proposition (see Figure for a
visualization) that will be needed to obtain a spectral gap in Theorem [[.4.10

Proposition 1.2.4. Let p € [2,00[. Then the elementary spherical function ¢y is in
LPTE(G) (where the LP-space is defined via a Haar measure on G) for every e > 0 iff
Re) € (1 —2p~1) conv(Wp) where conv(Wp) is the convex hull of the finite set Wp.

Proof. First of all note that we only have to consider Re A € E since ¢\ = ¢, iff
A = wy for some w € W. In this case ReXA € (1 — 2p~1) conv(Wp) is equivalent to
Re) € (1 —2p~1)p+ —a* (see [Hel84, Ch. IV Lemma 8.3]).

With this remark, one implication of the proposition is a straight forward consequence
of standard estimates for elementary spherical functions: Suppose that Re A € ﬁ and
Rel € (1 —2p~!Y)p+ “a*. Then we have the following bound on ¢, (see [Kna86, Ch.
VII Prop. 7.15)):

|6a(a)] < Ce@eA=nBa) (] 4 plloga))?, aec A

where C' and d are constants > 0. By the integral formula for G = KATK (see [Hel84,
Ch. I Theorem 5.8]) and the bi-K-invariance of ¢ we have

/G a(g)PHedg = / or(ep P T sinba() =i

aeXt

S/ (Ce(Re)\—p)H(l+p(H))d)p+562p(H)dH
at

for a suitable Lebesgue measure on a. Because of Re A € (1 —2p~1)p + _a* we have

(p+e)ReA = p)(H) < —(2+ 2ep™")p(H).
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conv(Wp)

e+ (1-2pYp

Figure 1.2.: Visualization of the regions appearing in Proposition for the case G =
SL3(R): The green dashed region is the boundary of (1 — 2p~!) conv(Wp).
Its intersection with the positive Weyl chamber a* (blue cone) equals (1 —
2p~1)p + _a* intersected with a’.

Hence,
[ 1otaptedg < e [ (1 ptayioe i iy
G o
and we see that the latter is indeed finite by coordinizing a4 by x; < «;(H) with 2; > 0.
Then dH is a multiple of dz and p(H) = Y x;p; with p; > 0. Therefore ¢ € LPT(G).

The opposite implication will be proved by combining the proof of [Kna86, Theorem
8.48] with [vdBS87]: According to [vdBS87, Corollary 16.2] the elementary spherical
function ¢y has a converging expansion

oa(expH) = Y pe\H)EH), Heay, (1.3)
gEX(N)

where X(A) = {wA —p—p | w e W,u € NolI} and the pe(A,-) are polynomials of
degree < |W|. The series converges absolutely on a; and uniformly on each subchamber
{H € a; | i(H) > &; > 0}. The main ingredient of the proof of Proposition is the
fact that (see [vdBS87, Theorem 10.1])

Pa-p(A, ) # 0. (L.4)
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Now, if ¢ € LPT¢(G), the proof of [Kna86, Theorem 8.48] shows that Re(\ — (1 —2(p+
€)"1)p,w;j) < 0. Hence Re A — (1 —2p~1)p € _a*. O

1.2.7. Positive definite functions and unitary representations

In this section we recall the correspondence between positive semidefinite elementary
spherical functions and irreducible unitary spherical representations. Recall first that a
continuous function f: G — C is called positive semidefinite if the matrix (f(z; '2;))i
for all z1,...,zp € G is positive semidefinite. If f is positive semidefinite, then f
is bounded by f(1) and one has f(z~!) = f(z). Moreover, we can define a unitary
representation 7y associated to f in the following way: If R denotes the right regular
representation of G, then 7 is the completion of the space spanned by R(x) f with respect
to the inner product defined by (R(z)f, R(y)f) = f(y~'x) which is positive definite. G
acts unitarily on this space by the right regular representation. If f(g) = (mw(g)v,v) is a
matrix coefficient of a unitary representation 7, then f is positive semidefinite and 7y is
contained in .

Secondly, recall that a unitary representation is called spherical if it contains a non-zero
K-invariant vector. Denote by @Sph the subset of the unitary dual consisting of spher-
ical representations. We then have a 1:1-correspondence between positive semidefinite
elementary spherical functions and @Sph given by ¢y +— 7y, (see [Hel84, Ch. IV The-
orem 3.7]). The preimage of an irreducible unitary spherical representation 7 with
normalized K-invariant vector vk is given by g — (7(g)vk,v). If the set @Sph is en-
dowed with the Fell topology (see [BAIHVO08, Appendix F.2]) and we use the topology
of convergence on compact sets on the set of elementary spherical functions, then the
above correspondence is a homeomorphism as is easily seen from the definitions.

1.2.8. Associated vector bundles

In order to define the Weyl chamber flow not only on the base manifold but also on vector
bundles we recall the definition of the associated vector bundle V; over a homogeneous
space G/M for a unitary finite dimensional representation (7, V) of M. Its total space
is given by V, = G X, V; = (G x V;)/~ where (gm,v) ~ (g, 7(m)v) with g € G, m € M
and v € V;. The equivalence classes are denoted by [g,v] and the projection to G/M
is [g,v] = gM. A section s of this bundle can be identified with a function 5: G — V;
satisfying 5(gm) = 7(m)~'5(g). We will use this identification throughout this article.
We also have a G-action on V; defined by g[g’,v] := [g¢’,v]. Therefore, we also have the
left regular action on smooth sections of V;:

(95)(g'M) = g(s(g™'g'M)), s € C®(G/M,Vy).
Identifying s with 5 this actions reads g5(¢’) = 3(g~'¢’).

A special case of an associated vector bundle is the tangent bundle T'(G/M). Namely,
T(G/M) =G xpq|,, (a@n®n_). Hence, vector fields X can be identified with smooth
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functions X: G — a ® n @ n_ satisfying X(gm) = Ad(m)~1X(g). Therefore, we have a
canonical connection V on V; given by

Vailo) = | sloes(iE(e)),

where s is a smooth section identified with a 5: G — V; and X is a vector field of G/M
identified with X as above. This connection will be used to lift the Weyl chamber flow
to Vr.

1.3. Ruelle-Taylor resonances for the Weyl chamber action

We keep the notation from Section Let T" be a discrete, torsion-free, cocompact
subgroup of G. Then the biquotient M = I'\G/M is a smooth compact Riemannian
manifold where the Riemannian structure is induced by the inner product on g. More
precisely, the tangent bundle T M of M is given by quotient I'\(G X pq|,, (a®n@n_))
and the norm of some I'[g,Y],g € G,Y € a®ndn_ is given by the norm of Y € g. We
have a well-defined right A-action on M:

(TgM)a :=TgaM, a€A,g€QqG.

Therefore we have an a-action by smooth vector fields

rX:a— C®WM,TM), rXgf(lgM)= % f(Tgett M)
t=0

which we call Weyl chamber action.

For later use we denote by X : a — Diff'(G/M) the corresponding action on G/M.
Proposition 1.3.1. The A-action on M is Anosov. More precisely, each H € a4 is
transversally hyperbolic with the splitting Eg = T'\(G X aq),, @), Es = T\(G X aq|,, 1), and

By = T\(G Xaq),, n-)). Moreover, for fived Hy € ay the dynamically defined positive
Weyl chamber

W ={H € a| H is transversally hyperbolic with the same splitting as Hy}
equals ay.. Hence the two notions of positive Weyl chambers agree.

Proof. Pick T'[g, Xo] € T\(G X3 a @ n @ n_) and assume that X, is in the root space
go- Then we calculate

d d
dpi ™ (CgM)Tlg, Xo] = —| @] *"(TgeXoM) = | TeXeetM =
S1s=0 $1s=0
d -
= | TgelfletAeTXens = plget™, Ad(em) Xo] = Tge!™ e X,
Sls=0

Hence we have exponential decay if & € 3" and exponential growth if o € —X*. The
general statement is obtained from the observation that g, L gg L a for a # 8 # 0 in
3. O
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1.3.1. Lifted Weyl chamber action

In order to define horocycle operators we generalize the Weyl chamber action to asso-
ciated vector bundles. Let (7,V;) be a finite-dimensional unitary representation of M,
that is a complexification of an orthogonal representation. Then we have defined the
associated vector bundle V; = G x; V; over G/M (see Section .

The quotient bundle I'\V; is the complexification of a Euclidean vector bundle over M,
where the Euclidean structure is induced by the inner product on V.. We identify smooth
sections s of this bundle with smooth functions 3: G — V; with 5(ygm) = 7(m~1)3(g)
forally eI, g€ G, and m € M.

The canonical connection V descends to a connection
rV: C(M,T\V;) = C°(M,T\V,  T*M)

and we have the following formula:

rVs(X)(g) =rVxs(g) = % . 5(g exp(tX(g)), (L5)

where s is a smooth section identified as above and X is a vector field of M identified with
a smooth function X: G — a® n@ n_ which is left I'-invariant and right M-equivariant.

Definition 1.3.2. The lifted Weyl chamber action is defined as
rX7:a— Diff (M, T\V,), 1X} =rVx,,

where X is the vector field identified with the constant mapping G - aCa®ndn_,
g— H.

The fact that pV is a covariant derivative implies that X7 is an admissible lift of the
Weyl chamber action in the sense of Equation (I.1).
For later use we denote by X7: a — Diff'(G/M,V;) the corresponding action on G/M.

We can find a non-trivial tube domain in ai. which is independent of 7 and contains all
Ruelle-Taylor resonances for the lifted Weyl chamber action.

Proposition 1.3.3. The set of Ruelle-Taylor resonances ogr(rXT") is contained in _a*+

*

1a*.
Proof. By Proposition we have
orr(rX") C{A € ag | Re(AN(H)) < C[2(H) VH €ay}.

Hence, it remains to show that C7,(H) = inf{C > 0 | e "X |22 < " Vit >
0} =0 for all H € ay. We show the stronger statement that e~"X% is unitary.
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Since M commutes with A we have a well defined action of A on T'\V;. It is given by
(I'[g,v])a = T'[ga,v]. This action gives rise to an A-action on sections of the bundle
T\V; defined via (af)(z) = f(xa)a™! with f € C®°(M,T\V;), 2z € M and a € A. If we
identify f with a equivariant function f: G — V;, then (af)(g) = f(ga). Let dT'g be the
normalized right G-invariant Radon measure on I'\G. Then the L?-norm of f is given by
1113, = fF\G 1£(9)lI}, dTg and it follows that the A-action continued to L*(M,T\V;)

is unitary. By definition e "Xk f = exp(—tH)f for f € L?(M,T\V;) and therefore
e v Xk is unitary. O

1.3.2. First band resonances and horocycle operators

In analogy to the rank one setting we make the following definition (see [KW21l, Defini-
tion 2.11] and [GHW2I] Definition 3.1] in the scalar case).

Definition I.3.4. We call A € orr(rX7) a first band resonance and write A € o5y (rX7)
if the vector space

Res’x-(A) = {u € Res x-(\) | rVxu = 0VX € C®°(M, E,)}

of first band resonant states is non-trivial.

The goal of this section is to prove that in a certain neighborhood of 0 in ag, each Ruelle-
Taylor resonance is a first band resonance and Res’x-(A) = Res.x-(A). This will be
done by introducing so called horocycle operators as follows.

Recall that TM = T'\(G X pq|,, a®n@n_) and the bundle I'\(G X pq),, n) decomposes as
Docs+ I\(G X ad|y 9a), and similarly for n_. Therefore, the cotangent bundle T*M is
the Whitney sum I'\(G X pg~ |,, ") D 4ex [\(G X ad~ |, 85)- Let us denote the coadjoint
action of M on the complexification of g}, by 7,. Note that 7, is unitary with respect to
the inner product induced by the Killing form and the Cartan involution. We can now

define
pro: (T"M)c — I'\V;,

by fiber-wise restriction to the subbundle I'\(G' X oq|,, 8a)- This induces a map

pry: CC(M,T\V; @ (T*M)c) = C®°(M,T\V;gr, ).

Definition 1.3.5. If 1 VC: C®°(M,T\V;) = C®°(M,T\V, ® (T*M)c) denotes the com-
plexification of the canonical connection vV, then the horocycle operator U, for a € X
is defined as the composition

Us = P, 0 1VC: CF(M, T\V;) = C®(M,T\Vrsr, ).
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1. Quantum-classical correspondence

Note that we have the explicit formula

dsto)) = |

S(gexp(tY)), se€ CO(M,T\V;),Y € ga, (1.6)
if we again use the identification of sections of some associated vector bundle with
left T'-invariant and right M-equivariant functions indicated by - and the identification
V: ® g, ~ Hom(ga, V7).

We should point out that the space of first band resonant states can be rewritten with
the horocycle operators as

ResVx-(A) = {u € Res,x+(A) | U_qu =0 Va € 1} (L.7)

Note that in the case of constant curvature manifolds (i.e. the real hyperbolic case
G = PSO(n,1) of rank 1) there is only one positive root and our definition reduces to
the original one due to Dyatlov and Zworski (see [DEGI15, p. 931]). Furthermore, our
definition extends the definition of the horocycle operators for arbitrary G of rank one
(see [KW21]).

The horocycle operators fulfill the following important commutation relation.

Lemma 1.3.6.
VH € a:  r XUy — UarXGy = a(H)Us,.

Proof. Using the formulas and we obtain

(rX5 ™ Ua — UarX7)s(9)(Y) =

d d
— — S(gexp(t1H) exp(t2Y)) —3(gexp(t1Y) exp(toH))
dtl t1=0 dt2 ta=0
and the latter equals
d
7| Slgexpt[H.Y])).
t=0
Since [H,Y] = a(H)Y for Y € g, the claim follows. O

We can now prove the main result of this section.

Proposition 1.3.7. The horocycle operators can be extended continuously as linear op-
erators to distributional sections, i.e.

Uy: D'(M,T\V;) = D' (M, T\Vrgr,)-
Moreover, for A € orr(rXT) the horocycle operator U_,, maps
Res,x-(A) into  Res xror o(A+a).

In particular, each X € orp(rX7™) with ReXA € (e —0* \ (—a* — a) is a first band
resonance and Res . x+(\) = RengT (A\) holds.
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L.3. Ruelle-Taylor resonances for the Weyl chamber action

Figure 1.3.: For G = SL3(R) the green region depicts the real part of the region where
every resonance is a first band resonance (see Proposition .

Proof. Since the horocycle operators are differential operators, we obtain a continuation
to distributional sections and Lemma m still holds. Let u € Res.x-(}), i.e. u €
D'(M,T'\V;) with WF(u) C E} and rX5;u = —A(H)u. Since differential operators do
not increase the wavefront set, we have WF(U_,u) C E¥. Furthermore,

PXGET U qu = —a(H)U-qu+ U Xu = —(A+ ) (H)U_qu

by Lemma m Hence U_qu € Res_yror o (A +a).

For the ‘in particular’ part recall that ResFXT/()\’ ) = 0 for each unitary representation
7/ of M and Re(\) ¢ _a* (see Proposition [.3.3) and Res'x-(A) = {u € Res.x-(}) |
U qu=0VYaeXt} O

Note that (e -0 \ (—a* — @) = _a* N (ya* — Xg), where A\g = > oy . Indeed, let
A= genCa € a*. Then A € _a* iff ¢ <O foralla €I, A € _a* —aiff ¢o < —1
and c¢g <0 for all B € IT\ {a}, and A € La* iff ¢, > 0 for all & € II. Combining these
statements implies the claim.
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1. Quantum-classical correspondence

1.3.3. First band resonant states and principal series representation

In this section we identify first band resonances states with certain I'-invariant vectors in
a corresponding principal series representation. The proof follows the line of arguments
given in [KW21 Section 2] in the rank one case. This will allow us to apply the Poisson
transform and obtain a quantum-classical correspondence.

By analogy to [KW21| Definition 2.1] we define

_ , (X7, +AH)s=0 VHea
R()\> = {SGD(G/M;VT) vx78:0 v:{_ ECOO(G/M,GXAth n_) .

The following lemma allows us to first study the representation of G’ in R()\) and take
I-invariants afterwards.

Lemma 1.3.8. The space ReSSXT (N\) is isomorphic to the space of I'-invariants of R(\),
where the isomorphism is defined by considering I'-invariant sections as sections of the
bundle I'\V;.

Proof. The only part to observe is that each s € R(A) automatically has WF(s) C
G X ad|y, 0. This holds because G' X pg+|,, " is the joint characteristic set of X7 and
X_ (see [KW21, Lemma 2.5] for details). O

We will now show that the smooth sections in R(\) correspond to smooth vectors in the
principal series representation for the opposite Iwasawa decomposition.

Lemma 1.3.9. The smooth sections R(A\) N C*°(G/M,V;) in R(\) can be identified
G-equivariantly with

W = {5: G = V,smooth | 5(gman_) = e 8% (m)~'5(g),m € M,a € A,n_ e N_}.

The identification is obtained by considering sections in s € R(A) as right M -equivariant
functions s: G — V.

Proof. The M-equivariance is clear so it remains to show the transformation proper-
ties under A and N_. The property (X7 + A(H))s = 0 amounts to %|t:0 3(get?) =
—\(H)3(g) for every g € G and H € a. Hence, the function o(t) = 5(ge'!) satisfies

d

= S| elgertety = A(H)s(ge™) = ~AH)o(0).
t=0

©'(r)

Therefore, 5(getf) = ¢(t) = e=**H)5(g). This proves the right A-equivariance.

For the N_-invariance, let Y € n_ and consider ¢(t) = 5(ge'¥). For r € R let g, =
ge'Y € G. Since [g,,Y] € G X Ad [y, M- is in the fiber over g.M € G /M, there is a smooth
section X, € C%°(G/M,G X aq),, n-) such that X,(g.M) = [g,,Y]. In particular, the
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L.3. Ruelle-Taylor resonances for the Weyl chamber action

corresponding right M-equivariant function X,: G — n_ satisfies X,(¢g,,) = Y. It follows
that

tfr(gr)) _ d rYetY)

0= Vx,s(g) = S(gre == S(ge = ¢'(r).
t=0

dt| g

Hence, ¢ is constant. This completes the proof. ]

Note that the space W from Lemma is already very close to the definition of
the induced picture of the principal series representation (see Section . The only
difference is that in W we have a right invariance w.r.t. N_ instead of V. This can be
easily fixed using a conjugation with the longest Weyl group element and leads to the
main result of this section:

Proposition 1.3.10. With the longest Weyl group element wo (see Section we
have an isomorphism
Resgxf()\) — F(]'17“’(’7’”(’()‘+p))7OO

where U'(HWomwoA+2)) =20 denotes the I'-invariant distributional vectors in the principal
series representation Ty,  wo(A+p)-

Proof. Pick kg € K normalizing a such that the action of Ad(ko) on a is the longest
Weyl group element wy. We consider the map I5(g) := 5(gko). Then I commutes with
the left action by G and one calculates that

I5(gman) = e~ (WM 08 (7Y (m) " 5(g), geG,me M,aec AneN.

Hence, we have an intertwiner between W and smooth vectors in H®0™wo(A0) which
extends to distributional sections. By Lemma we conclude that

RO = (Freomnten)

as G-representations. Taking ['-invariants and using Lemma completes the proof.
O

1.3.4. Quantum-classical correspondence

In the previous section we identified the first band resonant states Res?XT (A\) with I'-
invariant distributional vectors in the principal series (H®w0Tw0(A+r))= " If we restrict
ourselves to the scalar case 7 = 1, then the Poisson transform P_,,(\4,) defines a
map from U'(H wo()‘“’))_oo to T E_ (0 tp)> @S P_y(r4p) Provides a G-equivariant map
(HwoA+p))=o0 ¢ E_wo(rtp) (se€ Section. Hence, we can identify eigendistributions
of the classical motion with quantum states and we call this identification quantum-

classical correspondence. More precisely, we have the following result, which immediately
gives Theorem [[.1.3]
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1. Quantum-classical correspondence

Proposition 1.3.11. If A\ € ai satisfies W ¢ —Nsq for all a € ¥, then we have
a bijection
Resx (A) = " E_uy(rtp) = E-(rtp):

In particular, A € U%T(FX) if and only if FE_(,\+p) % 0. Furthermore, the isomor-
phism is given by the push-forward mw, of distributions along the canonical projection
rm: I\G/M — T'\G/K.

Proof. In view of Section the Poisson transform is a bijection from (HwoX+r))=o0
E*,_ . Restricted to I'-invariant distributional vectors it is still injective with image

FE_,\_p since I' is cocompact and therefore FE_)\_p = FEj)\ip.

It remains to show that the isomorphism is the push-forward along the canonical projec-
tion. To this end let s € R(A) be smooth and 7: G/M — G/K the canonical projection.
Then the isomorphism R(\) — (H@0OX+P)=% carries s to 5: G — C,3(g) = s(gko)
where kg € K is as in the proof of Proposition It follows that

P_wO(M_p)é(gK):/ §(gk)dk:AS(gkko)dk:/KS(gk)dkz

K

since K is unimodular. On the other hand, for f € C°(G/K) we have

(mes)(f) = s(fom) = / M) (oK) dgM = | ( /K s(ng)dkM) FgK)dgK

G/M /M

if we normalize the Haar measure on M and choose compatible invariant measures on
G/K and K/M. Hence, m.s = P_y (a1p)S for s € R(A) N C°(G/M). Using the density
of smooth compactly supported functions in R(A) [KW21), Corollary 2.9] we obtain the
equality for the whole space R(\). As before we now restrict to I'-invariant distributions
identified with distributions on I'\G/M and I'\G/K to complete the proof. O

1.4. Quantum spectrum

In this section we analyze the quantum spectrum of the locally symmetric space I'\G/ K.
Recall the definition of the joint eigenspace

Ex={feC™(G/K)|Df =xx(D)f VDeDG/K)}

for A € af.. For the definition of x see Section[[.2.2] Since D € D(G/K) is G-invariant,
it descends to a differential operator D on the locally symmetric space I'\G/K. There-
fore, the left T-invariant functions of E) (denoted by 'Ej) can be identified with joint
eigenfunctions on I'\G/K for each rD:

"Ex={f € C*("\G/K) |rDf =xa(D)f VD e€D(G/K)}.

This leads to the following definition.

46



I.4. Quantum spectrum

Definition I.4.1. The quantum spectrum of T'\G/K is defined as

00 = 0g(T\G/K) = {\ € & | "By # 0}.

Using the quantum-classical correspondence and the Weyl law from [DKV79] we can
now prove Theorem [.1.1]

Proof of Theorem [[.1.1. From [DKVT9, Theorem 8.9] we have for each set  C a* as in
Theorem [ 1]

> dim("Ey) WA = Vol(D\G/K) (2r) " Vol(Ad(K)Q)t? + O(t4),
A€ognia*Im A&t

where Vol(I'\G/K) is the volume of the compact Riemannian manifold I'\G/K with
Riemannian structure induced by the Killing form and Vol(Ad(K)S) is the volume of
the set Ad(K)Q C Ad(K)a with respect to the Killing form restricted to Ad(K)a = p.
Replacing Q by Q\ U, s+ @ we deduce Z)\GUQWQ*Jm)\gQﬂU oL dim(PEy) = O(d1)
since Vol(Ad(K)at) = 0. Therefore,

> dim("Ey) = [W[Vol(I\G/K) (2r) "¢ Vol(Ad(K)Q)t? + Ot )
A€ognia*Im Aetf2

since W acts freely on the Weyl chambers. To complete the proof we observe that
orr(rX) 2 0% (rX) and m(A) > dim(Res%x (A)) = dim("E_,_,) for A € ia*. O

As xx = Xwn for w € W it is obvious that og is W-invariant. The following properties
of o were derived by Duistermaat-Kolk-Varadarajan [DKV79]. We include the proof
for the convenience of the reader.

Proposition 1.4.2 (see [DKV79, Prop. 2.4, Prop. 3.4, Cor. 3.5]). If A € 0g, then the
corresponding spherical function ¢y is positive semidefinite. Moreover, there is some
w € W such that w\ = —X\ and Re A € conv(Wp). In particular, (Re \,Im \) = 0 and
[Re Al < [lo]l-

Proof. Pick u € 'E}, regarded as a right K-invariant element of L?(I'\G), normalized
such that (u,u)r2r\g) = 1. With the right regular representation R on L*(I'\G) define
®(g) = (R(g9)u, u). Being a matrix coefficient the function ® is positive semidefinite. We
will show that ® is the elementary spherical function ¢y. By right K-invariance of u and
unitarity of R we get that ® is K-biinvariant. ®(1) =1 is obvious. Smoothness follows
from the fact that u is smooth. Furthermore, D®(g) = (R(g)Du,u) = xx(D)®(g) by
left invariance of D. We conclude that ® is the elementary spherical function for y, i.e.
B = by
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1. Quantum-classical correspondence

Since ¢, is positive semidefinite we have ¢)(g) = ¢a(¢g~1) by definition of positive
definiteness and ¢(971) = ¢_x(g) by the integral representation (see Section .
Therefore ¢) = ¢_5 implying that wA = —\ for some w € W. It easily follows that

(ReA,Im ) = (wReA,wImA) = (—Re A, Im\) = 0.

Moreover, ¢, is bounded which holds iff Re A € conv(Wp) (see [Hel84, Ch. IV Theo-
rem 8.1]). Since {u € a* | ||u|| < ||p||} is convex and contains Wp, the last assertion
follows. O

Remark 1.4.3. In the rank one case Proposition implies for A € o¢g that A € a*
with [[A]] < [[p|]| or A € ia*. In this particular case, this can be obtained not only
from Proposition but also from the positivity of the Laplacian on I'\G/K. In
the higher rank setting the algebra D(G/K) contains more operators, more precisely
it is a polynomial algebra in n variables. Using the properties of the Harish-Chandra
isomorphism HC one can obtain that —\ € W from the self/skew-adjointness of the
operators in D(G/K).

Remark I.4.4. Proposition implies the following obstructions for A € af. to be in
0Q-
(i) If Re A = 0, then we get no obstructions on Im \ since wA = —\ is satisfied with
w = 1.

(ii) If ReX # 0, then Im X is singular, i.e. ImA € o for some o € %, since Tm X
non-singular implies w = 1 as W acts simply transitively on open Weyl chambers.

(iii) If Re X is regular, i.e. (Re A, a) # 0 for all a € 3, we denote by wg the unique Weyl
group element mapping the Weyl chamber containing Re A to its negative. Then
we have A € Eig_; () +14Eig_ (W) C af where Eig,, denotes the eigenspace for
+1. If —1 is contained in W, then Im A = 0. In particular, this is true in the rank
one case but need not hold in general as is seen below.

Let us calculate dim Eig,,(wo) = dimEig, (@) in order to control the amount of
freedom for Im A. Let dy = dim Eig,(wp). Then n = d; + d_ and Tr(wo) = d4 — d_.
Choosing the basis II we observe Tr(wg) = —#{a € II | woa = —a} < 0. Thus,

dy = 5(n =+ Tr(wp)) so that d; < Z. We obtain the following traces and dimensions for
the irreducible root systems from the classification.
Type | An,neven A, ,nodd B, C, Dy neven Dy nodd Es E; Eg Fy Gy

— Tr(wo) 0 1 n n n n—2 2 7 8 4 2
ds n/2 (h—-1)/2 0 0 0 1 2 0 0 0 0

Example 1.4.5. For G = SL,(R) an element A € a* ~ a is regular iff the diagonal
entries are pairwise distinct. For A = diag(A1,...,\,) € og with Re\ € Z satisfies
ReAr = —ReApp1; and Im Ay = Im A4 1 for all k& since the longest Weyl group
element is the permutation (1 <> n)(2<>n—1)---.
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Q2

Figure 1.4.: Situation for SL3(R) as obtained from Remark If X\ € 0g then Re ) is
either equal to zero (blue dot in the left picture) or lies on one of the purple,
orange or brown lines depicted on the left. Furthermore Im A has to lie in
the respective region depicted on the right, i.e. if ReA = 0, Im X\ can take
any value (blue shaded plane), if Re A lies on the orange line, then Im A has
to lie on the orange line and so on.

More specifically, for G = SL3(R) the only Weyl group elements with eigenvalue —1
are the reflections at hyperplanes perpendicular to the roots. Hence, A € og implies
Re) € [-1,1]a and Im X € o for some a € ¥ or A € ia*. The obstructions on A to be
in 0 described by Remark [[.4.4] are less concrete and are visualized in Figure [[.4]

Let us formulate the condition that ¢, is positive semidefinite in a different way.

Proposition 1.4.6. ¢, is positive semidefinite if and only if the subrepresentation gener-
ated by the K-invariant vector in the principal series representation H™ is unitarizable
and irreducible for some w € W. FEquivalently, H="* has a unitarizable irreducible
spherical quotient.

Proof. By Casselman’s embedding theorem 74, is a subrepresentation of H™ for some
reMandve ag. (see e.g. [Kna86, Theorem 8.37]). More precisely, the (g, K)-module
of K-finite vectors are equivalent. Since the only principal series representations con-
taining K -invariant vectors are the spherical ones, we obtain 7 = 1. Since infinitesimally
equivalent admissible representations of G have the same set of K-finite matrix coeffi-
cients (see [Kna86, Corollary 8.8]), we conclude ¢y = ¢, i.e. wA = v.

Conversely assume that the subrepresentation generated by the K-invariant vector in the
principal series representation H"? is unitarizable and irreducible. Again by [Kna86,
Corollary 8.8] the matrix coefficient ¢,y = ¢ of H¥* is a matrix coefficient of the
unitary representation obtained by the unitary structure as well. Hence, ¢, is positive
semidefinite. Transition to the dual representation implies the second equivalence. [
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1. Quantum-classical correspondence

Remark 1.4.7. Although the unitary dual is classified for many groups, it is difficult
to deduce which elementary spherical functions are positive semidefinite. This is due to
the fact that most classifications are not obtained in terms of quotients of the spherical
principal series but use different descriptions of admissible representations. However,
for rank one groups everything is classified (see [Hel84, p.484]): If o denotes the unique
reduced root in X7, then ¢ is positive semidefinite iff A € ia* or A\ € a* and [(\, a)| <
(p,a) for 2ac ¢ ¥ (i.e. in the real hyperbolic case) and [(A, a)| < (ma/2 + 1){a, a) for
2ac € ¥ or A = £p.

* ar>C -

a a

a* a

_p P:%erzu _p 77;(\+1 p

Figure 1.5.: Spherical dual in the rank one case. The picture on the left describes the real
and complex hyperbolic case mo, < 1. The picture on the right describes
the quaternionic case mao, > 2. In the latter case note that there is a spectral
gap separating p.

1.4.1. Property (T)

In this section we review some facts about Kazhdan’s Property (T) which will lead to
a more precise description of the location of og. Recall that a locally compact group
has Property (T) iff the trivial representation is an isolated point in the unitary dual of
the group with respect to the Fell topology (see [BAIHVO0S] for a general reference). It
is well known that each real simple Lie group of real rank > 2 has Property (T) (see
[BAIHVO0S, Theorem 1.6.1]). Since the mapping A — ¢, is continuous and the corre-
spondence between positive semidefinite elementary spherical functions and irreducible
unitary spherical representations is a homeomorphism (see Section , we obtain that
in some neighbourhood of p no elementary spherical function is positive semidefinite. We
will use a more quantitative description introduced by Oh [Oh02, Section 7.1]. Therefore,
we denote by px(G) the smallest real number such that the K-finite matrix coefficients
of 7 are in LY(G) for any ¢ > px(G) and nontrivial 7 € G.

Remark L1.4.8. (i) Since cach matrix coefficient of 7 € G is bounded, it is contained
in LY for each ¢ > p if it is in LP. Hence,

p(G) = inf{p | all K-finite matrix coefficients of 7 are in LP(G) Vr € G\ {1}}.
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(i) pr(G) > 2.
(iii) By |[CowT79] together with [Oh02] we have px(G) < oo iff G has Property (T).

In many examples one knows the number px (G) explicitly or at least upper bounds.

Example 1.4.9 (see [Oh02, Section 7]). (i) px(SLny(k)) = 2(n — 1) for n > 3 and
k=R,C.

(ii) pr(Span(R)) = 2n for n > 2.

(iii) px(G) is bounded above by an explicit value for split classical groups of higher
rank.

We can now prove the following theorems.

Theorem 1.4.10. Let G be a non-compact real semisimple Lie group with finite center
and I' < G a discrete, cocompact, torsion-free subgroup. Then

Reog(T\G/K) C (1 — 2px(G)™") conv(Wp) U Wp.

Proof. Let A € 0g(I'\G/K). By Proposition ¢ is positive semidefinite so that
the irreducible unitary representation my, is defined (see Section . ¢y is a matrix
coefficient of this representation. By the definition of px (G) we have ¢y € LPx(G)+¢(@q)
for all € > 0 or my, is the trivial representation. By Proposition we get Re) €
(1 — 2pg (G)~Y) conv(Wp) in the first case. The latter case occurs iff ¢y = 1, i.e.
A e Wp. 0

Theorem 1.4.11. Let G be a non-compact real semisimple Lie group with finite center
and I' < G a discrete, cocompact, torsion-free subgroup. Then there is a neighborhood G
of p in a* such that

oQ(MG/K)N(G xia”) = {p}.

Proof. Without loss of generality we assume that G has trivial center, otherwise replace
G by G/Z(@G). Then G is a product of simple Lie groups G4, . .., G; such that Gy, . .., G,
k <1, are of rank one. With the obvious notation let A = (A1,..., ;) € (a1)5®---®(a)¢
be in 0g. By Proposition we have w\ = —\ for some w € W. Since the Weyl
group W is the product of the Weyl groups A; € a] are real for i < k if Re A\; # 0. The
elementary spherical function ¢ is the product of elementary spherical functions gbf?'
for the factors GG;. Again by Proposition we know that ¢ is positive semidefinite
and therefore each qﬁf? is positive semidefinite. The same line of arguments as in the
proof of Theorem imply that Re \; € (1 —2pg(G;)™1) conv(W;p;) UW;p; for i > k.
Since G;, i > k, have Property (T) we conclude that there is a neighborhood U of p in
a* such that
oQN (U xia*) Caj x---xap X {pgp1} x - x {p}.

Discreteness of o implies the theorem. O
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1. Quantum-classical correspondence
.5. Main Theorem

In this section we present the main theorem of the article and deduce Theorem [.1.2]
from it.

Theorem 1.5.1. Let G be a non-compact real semisimple Lie group with finite center

andI' < G a discrete, cocompact, torsion-free subgroup. Define A == {\ € af. | % €

—Nsg for some a € &7}, B:={\ € al. | wA = —\ for some w € W}, and F = {\ €
a* | A+ a ¢ _a* for all « € I1}. Then we have the following inclusions

orr(rX) N (F x ia*) C o2 (rX)
and
or(rX) N (ag \ A) € —0g(N\G/K) —p

C BN (1 =2px(G)™Y) conv(Wp) UWp) + ia*) — p.

Proof. This is immediate from Propositions [[.3.7] [.3.11] and [[.4.2] and Theorem
]

Proof of Theorem[I.1.3. Tt follows from Theorem that the neighborhood can be
chosen as (a} — p) N F N (=G — p) where G is obtained by Theorem If G has
Property (T), then px(G) is finite and G can be replaced by the complement of the
I-independent set (1 — 2px (G)~1) conv(Wp). O

52



1.5. Main Theorem

N\

Figure 1.6.: Visualization of the real part of af for G = SL3(R): The pink region is
the region where Ruelle-Taylor resonances can a priori be located in view
of the results of [BGHW20]. The red points and lines depict the region
(BN L conv(Wp) UWp) — p, i.e. the region where first band resonances can
occur. The green shaded region illustrates the real parts in which only first
band resonances can occur. Further first band resonances might occur inside
the exceptional set A depicted by the black lines.
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Supplementary Material

1.6. Alternative proof of Proposition [I.4.2]

In this section we give an alternative proof of Proposition that does not use the
abstract theory of spherical functions and representations. It is inspired by the rank
one case where the positivity of the Laplacian gives an exact characterization for the
location of the spectrum. Let us recall that fact: If A € og then there exists f €
C>*(I'\G/K) such that rDf = xx(D)f for all D € D(G/K). In particular, A € D(G/K)
since the action of G on G/K is by isometries. The Laplace operator is a positive
self-adjoint operator on L?(I'\G/K) and therefore it has non-negative eigenvalues. As
C®(I'\G/K) C L*(T'\G/K) for cocompact I' we find that y,(A) > 0. By [Hel84, Ch. IT
Cor. 5.20] we have

XA (A) = —[|Re A|? + [ Tm AlI* + [|p]|* — 2i(Re A, Im A).

In the rank one case where dimg a = 1 the fact that x,(A) is real implies Re A = 0 or
Im A = 0. Additionally, the positivity implies || Re || < p where equality is attained for
A = +p and the eigenfunctions are the constant functions.

* Y
ia* ac~C

Ma

_p P:7+m20

Figure I.7.: 0 in the rank one case

In order to prove Proposition and in particular that —\ € W for \ € og we need
the following lemma.
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1. Quantum-classical correspondence

Lemma 1.6.1 (see [Hel84, Lemma I11-3.11]). The algebra of Weyl group invariant poly-
nomials Poly(az)V separates the points of af./W, i.e. for \,u € ag.

p(\) =p(p) Vp € Poly(ap)V <= Jw e W: wh = p.

Proof. Pick A and p in af such that p(A) = p(u) for all p € Poly(ax)" and assume
A & W-p. Since W is finite we can pick 0 < f € C(ag) such that f(\) =1and f(wp) =0
for all w € W. Define f = [W[™1Y pw- f. Then f € C(a%) is W-invariant with
f(A) > 1 and f(u) = 0. We use the Weierstrass approximation theorem to uniformly
approximate f by polynomials p, € Poly(ag) on some compact set containing W -\ and
W - p. By construction

FO) =W fwA) = WY pa(wd) =Lim W]~ ) (w - pa) ().

weWw weW weW

Due to the fact that |[W|™'3 i w - pn is W-invariant we infer that f(\) = f(u)
contradicting 1 < f(A\) = f(u) = 0. O

Let us first prove the special case where —1 € W. This is the case if the root system is
of type By, Cy, Dy, (n even), Er, Eg, Fy, or G.

Proposition 1.6.2. Assume —1 € W. Then for A\ € oq there is w € W such that
wA = —A. If Re X\ is reqular then we have Im A = 0.

Proof. Let p1,...,pn be algebraically independent homogeneous generators of S(a)"
with real coefficients if p; is represented by a basis of a. Assume that deg(p;) < deg(p;)
for i < j and define d; == deg(p;). Since —1 € W we have p;(\) = p;(—)) = (—1)%ip;(\)
and therefore d; is even for all i. Let Op be the composition of the extension map
S(@)" — S(p)X C S(g)X and the symmetrization \: S(g)% — U(g)X as defined in Sec-
tion By construction we have HC(Op(p;)) =t p; = p; + lower order terms where
by construction the lower order terms have real coefficients as well (see Section .
We also have Op(p;)* = (—1)% Op(p;) denoting the L?-adjoint by *. Indeed, to obtain
Op(p;)* we have to take X € U(g)¥ representing Op(p;) and take its adjoint as an oper-
ator on G and let it act on G/K. But every element in g is skew-adjoint acting on L?(G)
so that we have to reverse the order of X and multiply by (—1)%. The construction of
Op includes summing over all permutations and hence Op(p;)* = (—1)% Op(p;) follows.
We already observed that d; is even for every i. Therefore Op(p;) is symmetric.

Now we can use the argument as in the rank one case. For A € og there is f €
C*(I'\G/K) such that Df = x\(D)f for every D € D(G/K). In particular, f is
an eigenfunction for Op(p;) in L?(I'\G/K). Since Op(p;) is symmetric we must have
xA(Op(pi)) = pi(\) € R. Hence, p;(A\) = p;(\). The former equals 5;()\) since p; has real
coefficients. Since the p; and hence also p; generate Poly(a)" we deduce p(\) = p(})
for all p € Poly(at)"V. By Lemma there is w € W such that wA = X. Note that
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L1.6. Alternative proof of Proposition

in the present setting where —1 € W this is equivalent to saying wA = —\ for some w
which is the general statement we obtained.

If in addition Re A is regular then w = 1 as the Weyl group acts freely on the open Weyl
chambers. In this case we clearly have Im A = 0 since wIm A = —Im A. ]

In the previous proposition we were able to use the assumption that —1 € W to conclude
that all operators considered are symmetric. For the general case we need the following
lemma to deal with the non-symmetric operators.

Lemma 1.6.3 (see [Hel84, II-Lemma 5.21]). If we identify Poly(af)"V ~ S(a)V with
the set of invariant differential operators D(A) on A, then HC is a x-homomorphism,
i.e.

HC(D*) =HC(D)* VD eD(G/K),

where -* denotes the adjoint with respect to the corresponding invariant measures.

Proof. Let D be represented by X € U(g)®X and f € C°(G/K) be real valued and left
K-invariant. We consider the integral transform

Fy(g) = "™ /fngK

By observing that the map n: U(a) — U(a), X — X + p(X) corresponds to the auto-
morphism D — e ?Def of D(A) it follows from the definitions that

HC(D)Ff(a) = Fpy(a) (1.8)

as ep(H('fl))Ff is left N-invariant and right K-invariant.

Recall that we defined the elementary spherical function
or(g) :/ (AP H (g7 k) g1
K
which satisfies D¢y = x»(D)dx. Using this we calculate
IO [ e fK)dg = [ (D000 1K) da = [ ox@/D)6K) do
= [ [ e ak (D ar) dy
= [ eromer / (DF)(kgK) dk dg
G K
= [ D ) dg
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1. Quantum-classical correspondence

The integral formula for the Iwasawa decomposition (see [Hel84, I-Prop. 5.1]) allows us
to reduce to an integral over A:

| PRy dg= [ [ [ A0 D) ke 2 di da dn
G NJAJK

:/e)‘logaFDf(a) da.
A

By (L.8]) this equals

/ MO8 HC(D) Fy(a) da = / (HC(D)*e*°%%) Fy(a) da
A A

= HC(D)*(\) /A Mt Fy(a) da.

In the last line HC(D)* € ID(A) is again seen as a polynomial on ap.. Now the same
calculation as above (with D = 1) shows

[ errsa) do= [ x) (o) do.
A G
This shows that HC(D*) = HC(D)*. O

Remark 1.6.4. Let us explain the meaning of HC(D)* as a polynomial on ag.. To do
solet p=aH;---H, € U(a) = S(a) ~ D(A) be a monomial where a € C and H; € a.
Since the H; are skew symmetric, (aH; --- H,)* = (—Hy)--- (=Hy)a=a(—1)"Hy --- Hy,.
Evaluating this polynomial at A we get

P*(\) = a(=A(H1)) -+ (=A(Hn)) = a(=A(H1)) -+ (=A(Hn)) = p(=A).

In particular, yx(D*) = HC(D*)(A) = HC(D)*(A) = HC(D)(—X) = x_5 (D).

Proposition 1.6.5. Let p € S(a)"V be homogeneous with real coefficients if p is repre-
sented by a basis of a. Let d .= deg(p) and Op as defined in Section m Then

X-A(0p(p)) = (=1)*xA(Op(p)).-

In particular, HC(Op(p)) = p + lower order terms where the degree of the lower order
terms have the same parity as d.

Proof. By construction we have HC(Op(p)) = p = p+ lower order terms where by
construction the lower order terms have real coefficients as well (see Section . Asin
the proof of Proposition we also have Op(p)* = (—1)?Op(p) denoting the adjoint
by *. Therefore Op(p;) is symmetric if d is even and skew-symmetric if d is odd.

Applying Lemma, to this relation gives

B(=A) = (=) = x_x(0p(p)) = x2(Op(p)*) = x2((—=1)*Op(p)) = (-1)%p()). O
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1.7. Alternative proof of Theorem |[.4.11

With these preliminaries we can now prove the general version of Proposition It
follows the same line of arguments except that not all operators are symmetric. To deal
with this we use Proposition

Proposition 1.6.6. Let A\ € 0. Then there is w € W such that w\ = —\.

%

Proof. Let pi,...,p, be algebraically independent homogeneous generators of S(a)
with real coefficients if p; is represented by a basis of a. Assume that deg(p;) < deg(p;
for i < j and define d; = deg(p;). Applying Proposition yields x_x(Op(p;)) =
(=1)%xx(Op(pi)).

Now we can use the same argument as in Proposition For A € oq there is f €
C*(I'\G/K) such that Df = x\(D)f for every D € D(G/K). In particular, f is
an eigenfunction for Op(p;) in L?(I'\G/K). Since Op(p;) is Symmetric (resp skew-

symmetric) we must have xx(Op(p;)) = pi(A) € i“R. Hence, pi(X) = (=1)%p;(A) =
pi(—A). Since the p; and hence also ; generate Poly(af)" we deduce p()\) ( A) for
all p € Poly(az)". By Lemma-there is w € W such that wA = —\. O

1.7. Alternative proof of Theorem [.4.17]

In this section we will give an alternative proof of Theorem This proof will not
give an explicit description of the spectral gap as in Theorem since it merely
uses the definition of Kazdhan’s Property (T) instead of the LP-bounds for the matrix
coefficients. Let us begin with a review of the Fell topology.

Definition 1.7.1 (see [BAIHVO0S8, Definition F.2.1 and Proposition F.2.4]). The Fell
topology on the unitary dual G of G is given as follows: A basis for the family of

neighbourhoods of 7 € G is given by the sets W(m,v1,...,0n,Q,¢) for v; € Hy, ||vi|| =1,
@ C G compact, and € > 0 where

W (m,v1,... 00, Q,€) == {o € G| Jw;, |Jwil| = 1: |{7(x)vs, v:i)—(o(x)wi, w;)| < eV € Q).

Note that in [BAIHV0§| they do not work with unit vectors. However, a short calculation
shows that the topologies coincide.

Example 1.7.2. (i) If G = A is abelian then A are the characters x: A — S! and the
matrix coefficients are the characters as well. As one easily sees, the Fell topology
is then the topology of uniform convergence on compact sets. More specifically,
for A =R the map R — R ,& = €' is a homeomorphsim.

(ii) If G = K is compact then K is discrete. Indeed, if 7 € K and (mj)jes is a net
converging to m and ¢; (resp. ¢) are diagonal matrix coefficients of 7; (resp. )
then ¢; — ¢ uniform on K. This implies that [, ¢(z)¢;(x) dz — [} |p(2)|* dz #
0. Therefore, [ ¢(z)¢;(x)dx # 0 for all j > jo for some jo € J. By Schur
orthogonality we infer m ~ m;, j > jo, so that K is discrete.
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1. Quantum-classical correspondence

In many examples where the unitary dual is parametrized by some topological space the
Fell topology turns this parametrization into a homeomorphism. For example if G is a
compact linear connected semisimple Lie group, by the theorem of the highest weight
the unitary dual is parametrized by dominant analytically integral functionals A on h¢
where § is a Cartan subalgebra of g (see [Kna86, Thm. 4.28]). This set is a lattice in
be, in particular it is discrete. Hence by the above example the parametrization is a
homeomorphism.

A second example where this principle holds is the following. If G is a nilpotent connected
simply connected Lie group, then the orbit method by Kirillov [Kir62] yields a bijection
between G and the set of coadjoint orbits. It turns out that this bijection turns into
a homeomorphism if we endow G with the Fell topology and g*/G with the quotient
topology.

Let us prove a similar result for Gpp, in our usual setting.

Proposition 1.7.3. If we use the induced topology on @Sph (also called Fell topology) and
the topology of uniform convergence on compact sets on the set B of positive semidefinite
spherical functions, then the correspondence Ty — ¢ (see Section m) is @ homeomor-
phism.

Proof. Let ¢, — ¢ € P converge uniformly on compact sets. We have to show that
T, € W(mg,v1,...,0m,Q,€) for n large enough. By density it suffices to consider
v; € spanR(G)¢. Let v; = >, ;jR(gij)¢ and define wj' = > a;;R(gij)¢n. Then
we have (mg(g)vi,vi) = 3 |aij[*6(g;; 99i5) and (mg, (g)wp, wft) = 3 |aij*én(g;;' 99i5)-
Since ¢, converges uniformly on the compact set |, j ginggij we get that

T, € W(Tg,v1,...,0m, Q,€)
for almost every n.

For the opposite direction suppose 7y, — 74 in the Fell topology. We have to show
that ¢, — ¢ on an arbitrary compact set (). Let vg be a K-invariant unit vector for
my. By definition of the Fell topology there exists w"™ € Hg, with norm 1 such that
Ty (x)vKc, Vi) — (T, (x)w™, w™)| < e forallz e QUK.

We define w™ := [, my, (k)w"dk and calculate
17, (k)w" = w"||* = 2(1 = Re(mg, (z)w", w")) < 2e.

Hence [[o" — w"|| < v/2¢ and @w" # 0 for e < 3. It follows that % is a K-invariant

unit vector for my, and therefore ¢, (z) = (7, (x)w™, w") |@"||*. Now we can estimate

for z € Q:
|6(x) = ()| = [(mg(x) 0K, Vi) = (g, ()", W) [0 |
< &+ [(mg, (@)w", w") = (mg, (w)0", W") [0 |

—nn2 — — — —
<e+ @71 =@ [+ [[w" — w[ w"|| + [[@" — w™|[ "]
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1.7. Alternative proof of Theorem |[.4.11

This completes the proof since |[w™ — w”|| < v/2¢ and therefore |1 — ||[@"|| < v2e. O

The following definition will be used to deduce a weaker form of Theorem We
will only obtain a neighborhood of Wp where no quantum spectrum is present instead
of explicit structure of the spectral gap.

Definition 1.7.4 (see [BAIHVO08, Theorem 1.2.5]). A locally compact group has Kazh-
dan’s Property (T) if the trivial representation is an isolated point in the unitary dual
of the group with respect to the Fell topology.

Example 1.7.5. (i) Each compact group has Property (T) since G is discrete.
(ii) R™,Z™, SL2(R),SO(n,1),SU(n,1) do not have Property (T).

(iii) Every real connected simple Lie group with real rank > 2 has Property (T) (see
[BAIHVOS, Thm. 1.6.1))

(iv) The rank one groups Sp(n,1) and Fy have Property (T).

Recall that by Proposition if A € 0g(I'\G/K) then ¢, is positive semidefinite.
Hence, the representation 7y, € Ggpp is defined. Therefore if G has Property (T) then
by Proposition [[.7.3 and since A — ¢, is continuous there is a neighborhood U of p in

ag such that
00(T\G/K)NU = {p}.

However, a priori the quantum spectrum could contain spectral parameters A with real
parts arbitrarily close to p. This is possible since the imaginary parts can be big such
that \ ¢ U.

In order to rule out this behavior we use the reduction to real infinitesimal character (see
[Kna86, Thm. 16.10]). This requires us to identify the representation 74, as a quotient
of the principal series representation. We will assume that G is a linear connected
semisimple group for the rest of this section.

Theorem 1.7.6 (Casselman embedding theorem, see [Kna86, Theorem 8.37]). Let 7
be an irreducible unitary representation of G. Then  is infinitesimally equivalent to a
subrepresentation of some nonunitary principal series representation H™Y, 7 € M,v €
ac. More precisely, if v—p is a leading exponent of w, then  is infinitesimally equivalent

to a subrepresentation of HYO™" for some 7 € M.

Let us recall the definition of a leading exponent. Let m be an irreducible unitary
representation and FE7, F» orthogonal projections onto two K-types Uy, Us of w. Then
the spherical function F(x) = Eym(x)Ey has values in Hom(Us, Uy), is an eigenfunction
of the center of the universal enveloping algebra, and hence has an expansion of the form

F(expH) = Z F,_,(expH)
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1. Quantum-classical correspondence

with
Fyp(exp H) = e 5™ gy (H) - o ()0,
lal<qo
Here, IT = {a1,...,a,} is the simple system, v € af, and ¢ is a multiindex. v — p is

called an exponent of F'if F),_, # 0. v — p is called exponent of 7 if v — p is an exponent
of F' for some K-types Uy, Us. An exponent v — p is called leading exponent if the only
exponent of the form v — p + > ccaa with ¢ € Ng is v — p. The set of leading
exponents is finite and non-empty. Moreover, if v — p is an exponent, then there is a
leading exponent of the form v — p + > o cacr (see [Kna86, Ch. VIL8] for details).

Let us return to the representation g4, where ¢y is positive semidefinite. Since ¢y = @y
for w € W we can assume Re A € af .

By Theorem T4, is infinitesimally equivalent to a subrepresentation of H™woT*o¥
where v — p is a leading exponent of my,. By definition of the principal series the
restriction to K is equivalent to Ind{; 7. With the Frobenius reciprocity theorem (see
[IKna86, Theorem 1.14]) we observe that the trivial representation of K is contained in
Hwomwov iff 1 is the trivial representation on M. Since g, is a spherical representation
we obtain that 7y, is infinitesimally equivalent to the irreducible subrepresentation of
H™o" containing the K-trivial representation.

We now determine v. The elementary spherical function ¢ is the matrix coefficient
for the K-invariant vector and by [Kna86, Cor. 8.8] this is also the K-invariant matrix
coefficient of H"°”. By definition of the principal series representation H"Y°” its K-
invariant matrix coefficient is ¢, = ¢,. Therefore, wA = v for some w € W. On
the other hand, the elementary spherical function ¢, is the spherical function of 7y,
for the trivial K-type. By Equation we find that A — p is an exponent of ¢, and
therefore also of 7y, . Hence, the leading exponent v — p can be assumed to be of the
form X —p+ > cr cat, ca € No.

We obtain wA = X\ + ) cqa. This is only possible if wA = X and ¢, = 0. Indeed,
Re(A — wA, p) = Re(\, p — wp) > 0 since Re A € a*. Therefore, (3" car,p) < 0 and
hence ¢, = 0 for all a.

We summarize the above discussion in the following proposition.

Proposition 1.7.7. Let Re )\ € E and suppose that ¢y is positive semidefinite. Then
g, 15 infinitesimally equivalent to the subrepresentation of H woX that is generated by
the K-invariant vector.

If one considers dual representations we get that 7y, is an irreducible unitary spherical
quotient of the dual representation of H@0A i.e. of H~ %o,

Since we are interested in the neighborhood of p let us restrict to Re A € a’ . In this case,
woA = —\ by Remark In particular, 7y, is an irreducible quotient of H A. But by
[Kna86l, Thm. 7.24 on p.214] there is a unique irreducible quotient of H AMif Re ) € a’y
which is called J*. As Tg, 1S unitary, J A is infinitesimally unitary. On the other hand
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1.7. Alternative proof of Theorem |[.4.11

if J* is infinitesimally unitary, the diagonal matrix coefficients are positive semidefinite.
In particular, ¢y is positive semidefinite, 74, is defined and infinitesimally equivalent to
J.

We will now describe how to reduce the question whether J* is infinitesimally unitary
to the case where A is real.

Let A € af be non-real with ReX € a* and wol = —A. Set F :={a € £ | o L ImA}.
We have ) C F C ¥t by Chevalley’s lemma (see [Hum90, Thm. 1.12]) and Im A # 0.
Define ¥t = {a € £ | (a,Im \) > 0} U F. Then Xt is a positive system in ¥. Indeed,
StU-Yt =Y andif o, € Xt with a4+ 3 € ¥ then a4+ 3 € X1 if (at least) one root
is not in F. If both roots o and 3 are contained in F, then o + 3 € F since X7 is a
positive system.

The positive system X1 defines a different minimal parabolic subgroup P = M AN. It is
contained in a (non-minimal) parabolic subgroup P; = Mj;A; N with the property that
Im A restricted to the a-part aps, of M vanishes, i.e. )| ay, isreal. Here, M; is generated
by M and g, with o € &£F, A; is the analytic subgroup of a; = () cpkera, and Ny
is the analytic subgroup of n; = ®aei+\ 7 8a. The Lie algebra my of M is given by
m; = m@af@@aeﬂ go. Note that P # P since g_q is not in the Lie algebra of P but in
Py fora € F. Let Ay, = ANM; = expa{* and Ny, = NNM; = exp P cp 8o = NNM;.
Then we have Py, = PNM,=MA a, Nas, and Py, is the minimal parabolic subgroup
for the positive system for (M1, Apr,) given by F'. Then we have indeed Im Alq,,, = 0. In
fact, if we identify a and a* by the Killing form of G, then ay;, = ai is identified with (F)
which by definition is orthogonal to Im A (see Example for the case G = SL3(R)).

We want to show that ReAlq,,, is contained in the positive Weyl chamber for F' as a
positive system in (Mj, Ay, ). Here we have to use the Killing form B; of M; to identify
apr, with its dual and to measure angles. Let o € F' and define & = a\aMl and Ag € apy
by B1(H,Ag) = a(H), H € apy,. Similarly define A, € a by B(A4y, H) = a(H), H € a,
where B is the Killing form of G. By [Kna02, Proposition 6.52] we have

[Xa,0Xa] = B(Xa,0X0)A0 = B1(Xa,0X,)Aa
for X, € go, o € F. Therefore, Ag = co Ao with ¢, > 0. Now we can calculate

Bi(Re Mgy, » @) = ReA(Ag) = ca ReA(Aq) = caB(Re A, a) > 0.

We conclude that Re Alq,,, is in the positive Weyl chamber. Therefore Jheean g 5
representation of M; is defined and we have the following theorem.

Theorem 1.7.8 (Reduction to real character, [Kna86, Theorem 16.10]). J?* is infinites-

imally unitary if and only if JReNaas g infinitesimally unitary.

Remark 1.7.9. The theorem implies that only the direction of Im A is important for
J* to be infinitesimally unitary. More precisely, JReAImA ig infinitesimally unitary
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if and only if JReATeiImA i infinitesimally unitary for every ¢ > 0. Moreover, JR¢ is
infinitesimally unitary in this case. Indeed, J* being infinitesimally unitary is equivalent
to saying that ¢, is positive semidefinite. \ — ¢, is continuous and positive semidef-
initeness is closed in the topology of convergence on compact sets. Therefore, letting
¢ — 0 implies the claim.

We obtain the following theorem on the quantum spectrum.

Theorem 1.7.10. Suppose G has Property (T). Then there is a neighbourhood U of p
in a* (independent of T') such that

0o(T\G/K) N (U x ia") = {p},

Proof. We already observed that for A € og(I'\G/K) with Re A € a* the quotient J*
is infinitesimally unitary and that there is a neighborhood U of p in af such that no
quotient J* for A\ € U is infinitesimally unitary. But now Theorem shows that this
is also the case if A € U 4+ ia*. Projecting U onto the real part completes the proof. [

Remark 1.7.11. Note that the spectral gap obtained by Theorem is only com-
ing from the definition of Kazhdan’s Property (T) where only the existence of some
neighborhood is required. Hence we do not have control about its size or its shape. In
contrast to that Theorem gives an explicit region where the spectrum is located
and the size of this region is controlled by the LP-boundedness of matrix coefficients of
irreducible unitary representations.

Let us carry out the reduction to real characters in the example of SL3(R).

Example 1.7.12. Let G = SL(3,R) and A = ¢p + id(ayq — a2) with ¢,d > 0. Then
F = {a1 + a} and nt o= {an,01 + ag,—az}. We have a; = Rdiag(1,—2,1) and
ar, = Rdiag(1,0,—1). Furthermore p = oy and par, = 3 3 pcp Moy, = %p|aMl. We
have plq,, (diag(1,0,—1)) =1 = pay, (diag(1,0, —1)) so that par, = fpla,,, - For the convex
hulls we get conv(Wp)la,,, = 2conv(Was,par,). By Theorem m J is infinitesimally

unitary iff J ReMary g infinitesimally unitary. Hence the a priori bound given by Re A €
conv(Wp) (i.e. ¢ < 1) is improved to Re Ay, € conv(Was par,) = %conv(VVp)hM1 (i.e.
¢ < 3)if d > 0 (see Figure [L.§| for a visualization).
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ang,

p=a;+ayeF

conv(Wp)

ﬂ‘a,‘,l = Py

1
=3 P\u,‘\,,

(€5}

conXWas,p,)

b

Figure 1.8.: Visualization of the reduction to real character for G = SL3(R).
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Preliminary Material

Before we delve into the paper, let us first discuss some fundamental concepts of com-
pactifications that will play a central role later on.

I1.1. Introduction to compactifications

For a topological Hausdorff space X it is often useful to know how it can be compactified.
Let us first define the notion of a compactification.

Definition II.1.1. For a topological Hausdorff space X a compactification of X is a
compact Hausdorff space X together with a topological embedding ¢: X — X with open
dense image.

Clearly, if X is already a compact Hausdorff space, and ¢: X — X is a compactification,
then (X)) is also compact and therefore closed. By assumption ¢(X) is dense so that
t(X) = X and thus X and X are homeomorphic. Hence, it is only interesting to speak
about compactifications if X is non-compact.

Example I1.1.2. If X is locally compact non-compact Hausdorff space, then one can
always construct the Alezandroff or one-point compactification as follows. Let co be any
element not contained in X and set X = X* := X U {oo}. We define the topology on
X* by taking the open sets of X as open sets in X* as well as all subsets of X* which
are complements in X* of compact sets of X. This indeed defines a topology on X*.
Obviously, ) and X* are open. Intersections of two open sets in X* are again open, since
UNX*\K =UnNX\ K is open where U C X is open and K C X is compact and
hence closed and (X*\ K1) N (X*\ K9) = X*\ (K; UK>) is a complement of a compact
set where K; C X are compact. If K; C X is compact and U; C X is open then

Ux\kyulJu; =x"\ | (K nX\|JU;
: . ) -

¢ J

is the complement of a compact subset hence open. Therefore, arbitrary unions of open
sets are again open. We conclude that X™* is a topological space.

Moreover, X — X* is a topological embedding, X is open in X*, and as X is non-
compact it has dense image.
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1I. Absence of principal eigenvalues

In order to see that X* is Hausdorfl we have to show that a point x € X and oo are
separated by open sets. Since we assumed X to be locally compact there is a compact
neighborhood K of z. Let U C K open with € U. Then U and X*\ K are open and
disjoint sets containing x and oo respectively proving the Hausdorff property.

Furthermore, X* is compact. For an open cover (U;); of X* there is ig such that co € Uj,
and therefore U;; = X*\ K for a compact set K C X. Then K is covered by (U;NX);,
and hence there is a finite subcover of K which together with X* \ K covers all of X*.
This shows compactness.

The example of the one-point compactification is a very basic construction of a com-
pactification. In general there are many different compactifications of a locally compact
space. To compare different compactifications we make the following definition.

Definition I1.1.3. We say that a compactification ¢1: X — X1 dominates a compacti-
fication t5: X — X if there is a continuous map f: X1 — X such that 15 = fo;.

Note that the map f is unique since ¢1(X) is dense in X and surjective since

f(X) = £ (0(0) 2 (X)) = uX) = X,.

Proposition I1.1.4. Let X be a locally compact non-compact Hausdorff space. Then
every compactification X of X dominates the one-point compactification X*.

Proof. Define f: X — X* by f(«(z)) =2, x € X, and f(x) = 0o if ¢ 1(X). It remains
to show that f is continuous. If U C X is open, then f~1(U) = +(U) is open in +(X) as
L is a topological embedding and therefore open in X as ¢(X) is open in X. If K C X is
compact then f~1(X*\ K) = X\ ¢(K) which is open since +(K) is compact and therefore
closed. This proves that f is continuous. O

The previous proposition shows that X* is a final object in the category of compactifica-
tions of X. There also exists a initial object in this category which is called Stone-Cech
compactification 5X.
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11.2. Geodesic compactification

Proposition II.1.5 (see [Wal74]). Let X be a locally compact Hausdorff space. Then
there is a compactification BX of X with the following universal property: For every
compact Hausdorff space K and every continuous map f: X — K there is a unique
continuous map Bf: X — K with f = Sfov. In particular, X dominates every other
compactification of X.

While the one-point compactification is too small to resemble the different ways to di-
verge to infinity, the Stone-Cech compactification is too unwieldy to work with. There-
fore we introduce two compactifications suitable for our setting of symmetric spaces.

11.2. Geodesic compactification

Let X be an n-dimensional Hadamard manifold, i.e. a complete simply connected and
non-positively curved Riemannian manifold. For these manifolds we have the famous
Cartan-Hadamard theorem.

Theorem II.2.1 (see [BC64]). X is diffeomorphic to the Fuclidean plane R™. More
precisely, at any point p € X the exponential mapping exp,: T,X — X is a diffeomor-
phism.

This theorem allows us to define a compactification of X by compactifying R"™.

Definition I1.2.2. The geodesic compactification X U X (c0) of X is the Hausdorff space
{v e T,X | ||v|| <1} together with the embedding

exp, ! (z)
1+ | exp, ' (@)

t: X - XUX(c0), =~

Clearly, ¢ is an embedding with open dense image since v m is a diffeomorphism

between T, X and the unit disc in 7, X. Hence, X U X (00) is a compactification of X.

To see that this compactification is independent of the base point p, i.e. different choices
of p give rise to compactifications that dominate each other, we make the following
definition.

Definition I1.2.3 (see [BJ0G, Section 1.2.2]). Two (unit speed) geodesics 71,72 are
equivalent if limsup,_, . d(71(¢),72(t)) < oc.
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1I. Absence of principal eigenvalues

Proposition I1.2.4 (see [BJ0G, Prop. 1.2.3]). The factor space {all geodesics}/ ~ can
be canonically identified with the unit sphere in the tangent space T, X at any base point

p-

Proof. For any unit vector v € T,X there is a unique geodesic v with v(0) = p and
4(0) = v. Hence, the set of all geodesics through p can be identified with the unit
sphere in 7, X. This yields an injective map from the unit sphere in 7, X to the set
of all geodesics modulo equivalence by [BC64, Ch. 9.5. Cor. 2]. For a geodesic v let
Zn = 7y(n). Define 7, to be the unique geodesic with v,(0) = p and v,(t,) = =, for
some t, > 0. Since the unit sphere in 7, X is compact, there is a subsequence such that
An,, (0) converges. Therefore, 7, converges to a geodesic Yoo With 700 (0) = p uniformly
for ¢ in compact subsets of R. Let t > 0. Since t,, = d(p,zy) and n = d(x,,7(0)) we
have by the reverse triangle inequality |t, — n| < d(p,¥(0)). In particular, ¢, — oc.
Pick n large such that t < ¢,. Then by convexity of the function ¢ — d(y,(t),v(t)) (see
IBO6Y) ):
Am(t), 1(8)) < max(d(p,4(0)), d(n(tn), ¥ (tn))).

We also have d(y,(tn),¥(tn)) = d(v(n),v(tn)) = |tn — n| < d(p,7(0)) and therefore

v
A3 (£),1(1)) < d(p,1(0)). Letting n — oo it follows d(7(t), 7(t)) < d(p,7(0)). Hence,
~v and v are equivalent. This completes the proof. O

The proposition shows that the boundary X (oo) = {all geodesics}/ ~ is independent of
the base point p. Also the convergence of an unbounded sequence (), is independent
of the base point p. To see this let v be a geodesic with v(0) = p. Then z,, — [7] (in the
compactification associated with p) if and only if exp, ! (zy) /(14| exp, ! (zn)]) = 5(0).

||eXP51(rn)||) so that x, — [y] if

and only if v, — 7 uniformly on compact sets. For a different base point p’ let 7/, be
the geodesic starting in p’ through x,, and 7/ the geodesic with 7/(0) = p’ and v/ € [v].
Let us show that 4/, — 7/: Let ¢ > 0 and R > 0. Then there is N € N such that
d(vn(t/e),v(t/e)) < 1 for all n > N and t < R. By enlarging N we can assume that
d(xn,p’) > R/e for n > N. Then by convexity

d(, (1),7(t)) < ed(v,(t/e), 7 (t/e))
< e(d(y,(t/e), yn(t/e)) + d(m(t/e),~(t/€)) + d(v(t/e), 7 (t/e))).

Again by convexity the first part is bounded by max{d(+},(0)), v.(0)), d(v.,(t)), v (t,))}
where ¢}, = d(zp,p’). As in the proof of Proposition this is bounded by d(p, p’).
The last part is bounded since v and +" are equivalent. All in all, d(~/,(t),'(t)) < Ce for
alln > N and ¢t < R with a constant C' independent of € and R. This shows that v, — v
if and only if 7/, — + and therefore also the topology of X U X (c0) is independent of
the base point.

The geodesic starting in p through z, is v,(t) = exp, <t

Let us finish the discussion about the topology by giving a fundamental system of neigh-
borhoods. In the closed unit disc of 7),X a neighborhood of a point v, on the boundary
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11.2. Geodesic compactification

contains a set of the form
freT, X |r<|v] <1,<v,vx) <€}

where r 1 and € N\ 0. Therefore the intersection with the interior X of X U X (c0) of
a fundamental system of neighborhoods of [y] with v(0) = p is given by

{3(t) € X | 4 geodesic with 7(0) = p,t > R, <(5(0)),7(0)) < £}

with R oo and € \ 0.

For a compactification it is an important question which continuous maps can be ex-
tended to the compactification. Recall that for the Stone-Cech compactification every
continuous map into a compact space can be continued whereas only the functions with
a unique limit can be continued to the one-point compactiﬁcatiorﬂ For the geodesic
compactification we have the following proposition.

Proposition I1.2.5. Every isometry ¢: X — X eatends (uniquely) to a homeomor-
phism X U X (00) = X U X (00).

Proof. We define ¢([y]) = [¢ o~] and have to check continuity. Since X C X U X (c0) is
open and dense it is sufficient to show that ¢(z,) — ¢(z) for z, — x with z,, € X and
x =[] € X(0c0). We already observed that x,, — [vy] if and only if v, — 7 (uniformly
on compact sets) where 7, is the geodesic from p to z,. But clearly ¢ o, — ¢ o~ and
@ o is a geodesic from the base point ¢(p) to ¢(x,). Hence ¢(x,) — [¢ o ~]. O

Let us return to the setting where X is a symmetric space G/K. Then X is a Hadamard
manifold with canonical base point g = eK and therefore the geodesic compactification
is defined. The tangent space T, X at xo can be identified with p and the Riemannian ex-
ponential map exp,, at xo coincides with the exponential map p — G/K,Y + exp(Y)K.
In particular, a fundamental system of neighborhoods of [y] where v(t) = exp(tYp) for a
unit vector Yy € p is given by

{exp(tY)K |t > R,Y € p normalized, <(Y,Y)) < ¢}

with R oo and € \ 0.

Since G acts on G/K by isometries, Proposition [II.2.5( shows that this action extends
to an action on G/K U (G/K)(c0). Hence, the geodesic compactification is a so-called
G-compactification.

More precisely, for ¢: X — Y in order to be continuously extendable to X* there has to exist yo € Y’
such that for every neighborhood U of yo the set o~ *(Y \ U) is compact.
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1I. Absence of principal eigenvalues

11.3. Satake compactifications

While the one-point compactification and the Stone-Cech compactification can be con-
structed for any locally compact Hausdorff space, the geodesic compactification is only
defined for Hadamard manifolds. However the definition of none of the three compact-
ifications is specifically designed for Riemannian symmetric spaces. There are many
different compactifiactions for symmetric spaces, each of them having other properties.
The Satake compactifications are the most useful compactifications for us as they match
up with the asymptotic expansions for the eigenfunctions of D(G/K) that we will use in
the paper. We introduce these compactifications in this section.

The definition uses irreducible faithful projective representations, hence let 7 be such a
representation of G, i.e. 7: G — PSL(n,C) is a homomorphism that is injective and
there are no proper invariant projective subspaces. Note that an irreducible representa-
tion of g on some C" lifts to an irreducible linear representation of the universal cover
G. If Z is a central subgroup of G, then by Schur’s lemma Z acts as scalar operators.
Hence we obtain a projective representation of G /Z and thus of G. On the other hand,
if 7 is an irreducible projective representation of G, then the derived representation
dr: g — sl,C is also irreducible. Thus we have a correspondence of irreducible represen-
tations of g and irreducible projective representations of G. This correspondence also
preserves faithfulness if the center of G is trivial (see [GJT9S8, Prop. 4.6]).

For an irreducible projective representation 7 by Weyl’s unitary trick there is an inner
product on C" such that 7(6(g)) = (7(g)~1)* where 0 is the Cartan involution. In
particular, 7(H) is Hermitian for H € a and therefore C" = @+ Vi, with V), = {v |
T(H)v = p(H)v VH € a}. p € a* is called weight if V,, # 0. The choice of the positive
system Y7 defines a highest weight s, in the sense that every other weight is of the form
Hr = Y ger Ca With cq € No.

Remark I1.3.1. The irreducible finite dimensional representations of g (and therefore
also the irreducible faithful projective representations of G) are parametrized by the
integral dominant functionals on a Cartan subalgebra of g by the theorem of the highest
weight [Hum72l Ch. VI]. In particular, there are infinitely many of them.

Using the irreducible faithful representation 7 we can define a corresponding Satake
compactification.

Definition I1.3.2. Let H,, be the real vector space of Hermitian n x n matrices and
P(H,,) the associated projective space. The Satake compactification X ; associated to an
irreducible faithful representation 7 is the closure of the range of the map

ir: G/K = P(Hy,), gK — [7(9)7(g)"].

Note that i, is well-defined since we assumed that 7(0(g)) = (7(g)~1)* and thus 7(K) C
PSU(n). This implies 7(k)7(k)* =1 € PSL,(C).
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11.3. Satake compactifications

The projective space P(H,,) is compact and hence X, is also compact. In order to see
that X, is a compactification we have to show that i, is an embedding with open image.
The space PSL,(C)/PSU(n) can be identified with positive definite Hermitian matrices
of determinant one via gPSU (n) — gg*. Because of the restriction on the determinant
PSL,(C)/PSU(n) — P(H,,) is injective and clearly an embedding with open image.

For H € p it holds 7(exp H)7(exp H)* = exp(27(H)). Since the derivative 7: g — sl,(C)
is injective we infer that i, is an embedding.

X, is also a G-compactification: The action of G extends to an action on X, and even
on P(Hy) by g.[A] = [7(9)AT(9)"].

Let us analyze the convergence of sequences in X,. Since G = KA+tK and K is com-
pact we first take a look at sequences z; = exp(H;)K € X with H; € ay. As de-
scribed above the representation space C" decomposes into weight spaces V,, for the
weights p. Choosing a basis according to the weight spaces 7(e!?) is a diagonal matrix
diag(er1 () emn(H)) where 1, ..., jin are the weights listed with multiplicity. Then
ir (e K) = [diag(e?1 () .. e2mn(H))] For the sequence H; € @y there are different
ways to diverge to co. More precisely, H; can drift away from all walls of the Weyl
chamber or has a bounded distance from some walls. The walls a; are given by subsets
I € I where ar = (,c; kera. Let J = {a € I | limsup, a(H;) < oo}. By extracting a
subsequence we can assume that lim o(H;) exists and is finite for o € J and o(H;) — oo
for o ¢ J. Recall that p; = pir — > cyq Ca,i and assume that p1 = pr-. Then

ir (e ) = [diag(1, 2l 2n—nn)lly)
= [diag(1, e 22 Co2elHy) | e=2 2 canalty))]

Y

It now depends on the ¢, ; whether the entries converge to 0 or not.

To order the weights in a useful way we define the support supp(u;) of the weight u; as
supp(pi) = {a € II | ¢4,; > 0}. With this definition a weight y; satisfies supp(u;) € J
iff e 22 caic(H;) 5 (. Let us order the weights such that for ¢ = 1,...,k we have
supp(p;) € J. Note that supp(p1) = 0 so that this does not contradict the assumption
p1 = pr. Then we have

iT(@Hj K) = [Cha,g(l7 672 ZQESupp(Mg) Ca’2a(Hj) 6_2 Z(xEsupp(un) Cayna(Hj))]

e ey

— [diag(1, 8_220‘55‘1PP<M2) Car,2 lim a(Hj), ceey 6_2 2 aesupp(uy) Cok lim; a(Hj), 0,...,0)].
Note that the limit only depends on lim; a(Hj) for @ € Ugypp(uicy SuPP(pi) = 1 € J
and not on the limits for a € J \ 1.

We now want to characterize the limit. Recall that a; =) ¢ ker . We define al to be
the orthogonal complement of a; in a (see Figure for a visualization). By elementary
linear algebra I is a basis of (a)* and thus there is Ho € af with a(He) = lim; o(H;)
for all « € I. We conclude

ir (e K) — [diag(1, ¢~ 2 Lacsupp(na) Ca@O‘(HOO), ceey ¢~ 2 Zaesupp(ny) C‘l’ka(Hoo), 0,...,0)].
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In particular, we have a map

irrol ={Head |a(H)>0Vaecl} X,
H — [diag(1, e 2 Zaesuwn(uy) ca2H) =22 aesuppuy) CakeH) g )],

By [BJ06, Lemma 1.4.21/22] i is an embedding and the images of i; for different I are
disjoint.

To identify the different subsets I that can occur here we define the following notion.

Definition I1.3.3. A subset I C Il is called p,-connected if I U{p,} cannot be decom-
posed into to non-empty orthogonal subsets.

The following proposition connects the support of a weight with the notion of -
connectedness.

Proposition I1.3.4 (see [Sat60, Lemma 5]). The p,-connected subsets are precisely the
supports of the weights of T.

Clearly, the union of pr-connected subsets is p--connected and therefore for J C II the
set I = Ugupp(us)cs SUPP(ki) is the largest pr-connected subset contained in J.

Let us summarize the results in the following proposition.

Proposition 11.3.5 (see [BJ06, Prop. 1.4.23]). A sequence ei K € G/K for an un-
bounded sequence H; € ay converges in X, iff for a p.-connected subset I the limit
lim; a(H;) exists and is finite for all « € I and for every larger pi.-connected sub-

set I' there is o € I' \ I such that a(Hj) — oo. If Ho € al is the element with
a(Hoo) = limj a(H;) for all o € I then i (e K) — i;(Hw). Hence,

(€ K) = ir (T K) U U ir (Z) .

ICIT pur-connected

Example I1.3.6. Let G = PSL,(C) and 7 = id be the defining representation. a is
the set of diagonal matrices with real entries and trace 0. The representation space
V' = C" has the weight space decomposition V' = @ V,,, where p;(diag(A1,...,A\n)) =N
and V), = Ce;. The usual choice of positivity gives the simple roots Il = {o; = p; —
ti+1 | @ = 1,...,n — 1}. This choice determines the highest weight to be p; and
supp(p;) = {au1,...,;—1}. For J CII the set I C J defined above is {aq,...,a;} such
that a1 ¢ J. If H = diag(A1,...,\n) € ax then Ay > A9 > --- > \,,. Hence for a
sequence H; € ay let k be the biggest index such that ;i ; — A1 j stays bounded for
J — 00. Such an index k exists since ), \; ; = 0 for all j. In particular, we can assume
that \j; —A1j; =+ d;jfor j - occandi < k+1and \;j — A\ j -+ —ocofori>Fk+1. It
follows that
ir(eiPSU(n)) — [diag(1,e?®,...,e2%+1,0,...,0)].

80



11.3. Satake compactifications

In this example I = {a1,...,ax} but it could be the case that I C J, i.e. limsup; \; j —
Ait1,j < oo for some 7 >k + 1.

The boundary components of i,(e%+ K) are parametrized by the jj-connected subsets

I:{al,...,ak}, k‘:l,...,n—l. Here aI:{diag()\l,...,)\n) €a|)\1 :"':)‘k—i-l}
and al = {diag(\1,...,\n) € a| Agy2 = --- = A\, = 0}. The embedding i; is given by
ir(diag(A, ... Aig1,0,...,0)) = [diag(e®, ..., e2M+1.0,...,0)]. O

Let us describe the orbit structure of X,. Denote by x; the image of 0 under the
embedding i; for a pr-connected subset I C II. Then we have the following statement.

Proposition I1.3.7 (see [BJ06, Prop. 1.4.27]). The G-orbits in X, are parametrized by
the p--connected subsets I C 1I. More precisely,

X, =XU U Or (IL.1)
ICII pr-connected
where Oy is the orbit Gz through x.

In order to determine the orbits in X, as homogeneous spaces we have to introduce
parabolic subgroups (see Section [II.5.4] for an example).

Definition II.3.8. For I C II recall that a; = [ ,c;kera and al is the orthogonal
complement of a;y in a. We further define n; = @a€2+\<l> go and my = m @ al @
®ae<1) go- We define the corresponding subgroups A; = expaj, Ny = expn; and
M; = M(expmy). Then the subgroup Pr = M;A;Ny is the standard parabolic subgroup
for the subset I.

We also need the notion of the p, -saturation.

Definition I1.3.9. For a subset I C II we define the p,-saturation of I as the union of
I and the simple roots orthogonal to I U {x,}.

Now we can identify the orbits O; as homogeneous spaces.

Proposition I1.3.10 (see [BJ06, Prop. 1.4.40]). Let I C II be pr-connected and J its
wr-saturation. Then the stabilizer of x1 is NyA;My (K N My). In particular, the orbit
Oy is the homogeneous space

G/(NJAJMJ\[(KQM[)). (H.2)

Example I1.3.11. For G = PSL,C and 7 = id we have the p,-connected subsets
I, = {a,...,a}. Clearly, the p,-saturation of I is

Jp ={a1,.. ., U{agyo, .. an1} = I\ {agyr )
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1I. Absence of principal eigenvalues

Therefore,

| €sl,C: AN ERY,
A’Zdn—<k:+1>> }

> €sl,C: B e M(k+1)><(n—(k+1))(c)}a

=
o~
Il
— — =
7 N A~ N 7 N
o O
=Hw|

D> € sl,C: Tr A €iR, D = diag(izkt2,...,02n),2j € ]R} , and

[N/ {(A D) €sl,C: TrD € iR, A = diag(iz1,...,92541), 25 € ]R},

Thus on the group level

_ )\idk-&-l . I
A = {( A,idn(k+1)> € PSL,C: A, X" > 0},

idg+1 B ,
NJk = {( 0 idn_(k+1)) € PSL,C: B e M(k+1)><(n—(k+1))(c)} R

My, = {(A D> € PSL,C: D = diag(&k+2,...,&n), | det A| = |§;| = 1} , and
A .
MJk\[k = {( D) S PSLn(C A= dlag({l,.. . 7£7€+1)7 ]detD\ = ’5]‘ = 1}

A B

Since K = PSU(n) we have Stab(x;) = {<O D

) € PSL,C: A eRU(k+1)}.

This can be seen by direct calculation, too. zy, is the element [diag(l,...,1,0,...,0)]
in P(H,). Hence,

e (E B )& - )

for g = 4 B € PSL,C. Thus, g € Stab(zy, ) if and only if AA* =a-idkiq, a € R,
C D K +

and C'= 0.

To determine the orbits as subsets of P(,,) note that g.x;, is the line through a positive
semidefinite Hermitian matrix of (complex) rank k + 1. On the other hand, if A is a
rank k + 1 positive semidefinite Hermitian matrix, then A can be unitarily diagonalized,
i.e. there is U € SU(n) such that U*AU is a diagonal matrix with £+ 1 positive entries.
Taking the square root of the entries and normalizing the determinant shows that

O1, = PSLa(C).ap, = {[A] € P(H,) | A> 0,1k A=k +1}.

Now it is clear by taking the image of A that this orbit is a fiber bundle over the
Grassmannian Gry41(C") = {V C C" | V is a subspace of dimension k + 1}. Note that
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11.3. Satake compactifications
Gry41(C™) is the homogeneous space PSL,C/Pj, where

Py, = {(fg g) € PSL,C: A € GLy1(C),D € GLn(kH)((C)} .

Let us determine the fiber over the canonical base point CF1 x {0}~ (+1) je. let
(é g) € H,, with image CF+1 x {0}*~(*+1)_ It follows easily that C' = D = 0 and by
Hermiticity also B = 0. Hence the fiber is

A
{ [(0 8)} eEP(Hy): A> O} ~ {[A] € P(Hp41) | A >0} ~ PSLg1(C)/PSU(k+ 1)
the space of positive definite matrices of size k + 1 and determinant 1. Note that this
can also be described by the parabolic subgroups. Indeed,

PSLkJrl((C)/PSU(k—I-l)ZM[k/(M[kﬂPSU(n)) ]

Similar statements for the orbit structure can be made in the general case as well. Recall
that O ~ G/(NjA; My (K N My)) for a p,-connected subset I with p--saturation .J.
Clearly we have M, C My, for I} C I5. It follows that M ;. ;(K N My) is contained in
M and hence Stab(z;) € N;jA;M; = P;. We infer that Oy is a fiber bundle over the
flag variety G/P; with fiber

Py/(NjA;My (KN M) ~M;/(My o (MNK))~M;/(M;NK)

(see [BJOG, Cor. 1.4.41] for details).

We now deal with the comparison of X, for different representations 7. Note that the
orbit structure , and the related notions of u,-connectedness and p.--saturation
does not depend on the actual representation 7 but rather on . and more precisely only
on 0, = {a €Il| (o, ur) # 0}. This leads to the following proposition.

Proposition I1.3.12 (see [BJ06, Prop. 1.4.35]). There are only finitely many non-
homeomorphic Satake compactifications. Two Satake compactifications X, and X+ are
homeomorphic if and only if 0, = 0.

Furthermore, if 0. C 0, then X, dominates X ,. In particular if ju, € ay, e 0, =1I,
then X dominates every other Satake compactification and therefore this compactifica-
tion is called maximal Satake compactification X .

Let us describe the neighborhoods for the maximal Satake compactification and compare
them with non-maximal ones. We first observe that every subset I C II is pr-connected.
Hence, X" = XU UIg;H O;. For Hy, € afr an unbounded sequence eiK € X
with H; € ai converges to exp(H )z if and only if a(H;) — oo for a ¢ I and
a(Hj) = a(Hy) for a e 1.
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1I. Absence of principal eigenvalues

If we consider a sequence kjeHJ’K € X with k; € K then this converges to ket gz if and
only if additionally k; — k mod My N K since Stab(xz;) N K = M; N K. In particular,
(the intersection with the interior X of X of) a fundamental system of neighborhoods
of keMoezp in X is given by

V(KN Mp)exp{H € a; | |a(H) —a(Hx)| <c,a€ l,a(H) > R,a ¢ I} K,

where V is a fundamental system of neighborhoods of k in K, ¢ \, 0, R " oc.

——
H

Ufay) Uayy

i .
Ea ¥

Figure II.1.: The intersection of e+ K with a fundamental system of neighborhoods in

Xiq (left) and X (right) for G = PSL3C.

Let us conclude the section by comparing the geodesic and the maximal Satake com-
pactification.

Proposition I1.3.13. Let X be a G-compactification of X that is dominated by the
geodesic compactification X U X (00) and by the maximal Satake compactification X
If the rank of X is bigger than 1, then X is the one-point compactification X*.

Proof. Let i1: X — X and ig: X UX (00) — X be the continuous maps realizing
the domination. Recall that X (co) can be identified with the unit sphere p in p. Let
H € a normalized and k € K. Then ke™ K € X converges to Ad(k)H in X U X (c0).
On the other hand ke™? K converges to kxg in X if H € a,. Therefore, i1(kzg) =
i2(Ad(k)H) for H € a4 normalized. By continuity, this also holds for normalized vectors
H € a;. Now for I C II let H, € a; be a sequence such that e/’ K converges to z;.
Then we have
i1(kzp) = lim kefln K = iy (Ad(k)H) = iy (kxg)

for some H € a; normalized. Note that if & € K N M; then is(Ad(k)H) = i1(kxzy) =
i1(kxr) = i1(xr) = i1(xg). By the assumption of higher rank the different K N My for
I C II generate K. Hence i1(kzr) = i2(Ad(k)H) for every k € K, I C II, and H € a;
normalized. This completes the proof. O
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Abstract

Given a geometrically finite hyperbolic surface of infinite volume it is a classical result
of Patterson that the positive Laplace-Beltrami operator has no L?-eigenvalues > 1/4.
In this article we prove a generalization of this result for the joint L?-eigenvalues of
the algebra of commuting differential operators on Riemannian locally symmetric spaces
I'\G/K of higher rank. We derive dynamical assumptions on the I-action on the geodesic
and the Satake compactifications which imply the absence of the corresponding principal
eigenvalues. A large class of examples fulfilling these assumptions are the non-compact
quotients by Anosov subgroups.

11.4. Introduction

Let H = SL(2,R)/SO(2) be the hyperbolic plane equipped with the Riemannian metric
of constant negative curvature and I' C SL(2,R) a discrete torsion-free subgroup. Then
I'\H is a Riemannian surface of constant negative curvature and the relations between
the geometry of I'\H, the group theoretic properties of I', the dynamical properties of
the I'-action on H or its compactification, and the spectrum of the positive Laplace-
Beltrami operator A have been intensively studied over several decades. Let us focus
on the discrete L?-spectrum of the Laplace-Beltrami operator, i.e. those u € R such
that (A — u)f = 0 for some f € L2(T\H), f # 0. If ' ¢ SL(2,R) is cocompact, then
o = 0 is always an eigenvalue corresponding to the constant function and Weyl’s law
for the elliptic selfadjoint operator A implies that there is a discrete set of infinitely
many eigenvalues 0 = pg < p1 < ... of finite multiplicity. From a representation
theoretic perspective there is a clear distinction between u; €10, 1/4[ and p; > 1/4. The
former correspond to complementary series representations and the latter to principal
series representations occurring in L2(T'\SL(2,R)). We call the eigenvalues accordingly
principal eigenvalues (if p; > 1/4) and complementary or exceptional eigenvalues (if
wi €]0,1/4]). Merely by discreteness of the spectrum we know that there are at most
finitely many complementary eigenvalues and infinitely many principal eigenvalues.

If we pass to non-compact I'\H, the situation becomes more intricate: For the modular
surface SL(2,7)\H, which is non-compact but of finite volume, it is well known that there
are no complementary eigenvalues but still infinitely many principal eigenvalues obeying
a Weyl asymptotic. In general the question of existence of principal eigenvalues on finite
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1I. Absence of principal eigenvalues

volume hyperbolic surfaces is wide open. A long standing conjecture by Phillips and
Sarnak [PS85| states that for a generic lattice I' € SL(2,R) there should be no principal
eigenvalues.

If we pass to hyperbolic surfaces of infinite volume the situation is much better un-
derstood. A classical theorem by Patterson [Pat75h] states that if vol(I'\H) = oo and
I' ¢ SL(2,R) is geometrically finite, then there are no principal eigenvalues. The re-
sult has later been generalized to real hyperbolic spaces of higher dimensions by Lax
and Phillips [LP82]. Even if we are not aware of a reference, it seems folklore that the
statement holds for general rank one locally symmetric spaces.

In this article we are interested in a generalization of Patterson’s theorem to higher rank
locally symmetric spaces:

Let us brieﬂyﬂ introduce the setting: Let X = G/K be a Riemannian symmetric space
of non-compact type and I' C G a discrete torsion-free subgroup. We will be interested
in the L?-spectrum of the locally symmetric space I'\X. As for hyperbolic surfaces the
Laplace-Beltrami operator is a canonical geometric differential operator whose spectral
theory can be studied. If the symmetric space is of higher rank, there are however further
G-invariant differential operators on X that descend to differential operators on I'\ X.
It is from many perspectives more desirable to study the spectral theory of the whole
algebra of invariant differential operators D(G/K) instead of just the spectrum of the
Laplacian. In order to introduce the definition of the joint spectrum of D(G/K) we recall
that D(G/K) is a commutative algebra generated by r > 1 algebraically independent
differential operators and r equals the rank of the symmetric space X. After a choice
of generating differential operators a joint eigenvalue of these commuting differential
operators would be given by an element in C". A more intrinsic way of defining the
spectrum which does not require to choose any generators, is provided by the Harish-
Chandra isomorphism. This is an algebra isomorphism HC : D(G/K) — Poly(a*)V
between the invariant differential operators and the complex-valued Weyl group invariant
polynomials on the dual of a = Lie(A), where A is the abelian subgroup of G in the
Iwasawa decomposition G = KAN. If we fix A € a* = a ® C and compose the Harish-
Chandra isomorphism with the evaluation of the polynomial at A we obtain a character
X :=evyoHC : D(G/K) — C. With this notation we call A € af. a joint L?-eigenvalue
on I'\ X if there exists f € L?(I'\X) such that for all D € D(G/K):

Df =xx(D)f.

As for the hyperbolic surfaces we can distinguish two kinds of L?-eigenvalues: The
purely imaginary joint eigenvalues A € ia* correspond to principal series representations
and we call them principal joint L?-eigenvalues. The remaining eigenvalues are called
complementary or exceptional eigenvalues. These two kind of eigenvalues are not only
distinguished by representation theory, but they also behave differently from the point
of view of spectral theory: In their seminal paper [DKV79], Duistermaat, Kolk and
Varadarajan consider the case of cocompact discrete subgroups I' C G. They prove that

2A more detailed description of the setting will be provided in Section [[1.5.1
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there exist infinitely many principal joint eigenvalues and their asymptotic growth is
precisely described by a Weyl law with a remainder term. They furthermore prove an
upper bound on the number of complementary eigenvalues whose growth rate is strictly
inferior than the Weyl asymptotic of the principal eigenvalues. There are thus much less
complementary than principal eigenvalues.

The most prominent non-compact higher rank locally symmetric space is without doubt
MX = SL(n,Z)\SL(n,R)/SO(n). By [Miil07] (and in a more general setting by [LV07])
it is known that there are infinitely many joint L?-eigenvalues. Assuming the generalized
Ramanujan conjecture which implies the absence of complementary eigenvalues (see e.g.
[BB13]), we would get infinitely many principal joint L?-eigenvalues. If one replaces
the full modular group by a congruence subgroup I'(n) of level n > 3, the existence
of infinitely many principal joint L2-eigenvalues has been shown by Lapid and Miiller
[LMO09]. More precisely, there is a Weyl law for the principal joint eigenvalues and the
number of complementary eigenvalues are shown to be bounded by a function of lower
order growth.

In the recent article [EO22] Edwards and Oh give examples and conditions on the dis-
crete subgroup I' which imply that the complementary eigenvalues are not only of lower
quantity but that they are indeed absent. The main example are selfjoinings of convex-
cocompact subgroups in PSO(n, 1), but they conjecture that this holds for every Anosov
subgroup.

In this article we are interested in conditions on the group I' which imply the absence
of principal eigenvalues. In order to state our main theorem, recall the definition of a
wandering point: If I' acts continuously on a topological space T', then a point t € T is
called wandering, if there exists a neighborhood U C T of ¢ such that {y € T : Ay UNU #
(0} is finite. The collection of all wandering points is called the wandering set w(I",T).

We can now state our main theorem.

Theorem I1.4.1. Let X = G/K be a Riemannian symmetric space of non-compact
type and I' C G a discrete torsion-free subgroup. Let X be the geodesic or the mazimal
Satake compactification (see Sections|IL.5.5 and|I1.5.4) and let w(T', X) be the wandering
set for the action of T' on X. If w(I', X)NOX # 0, then there are no principal joint
L?-eigenvalues on T\ X .

Let us compare our theorem to the classical result of Patterson: First of all, for H
the geodesic compactification and the Satake compactification coincide. Furthermore,
if ' ¢ SL(2,R) is geometrically finite, then it is well known that the following are
equivalent:

(i) vol(I"\H) = oo.
(ii) The limit set of ' is not the whole boundary A(T") # JH.

(iii) There is a non-empty open set of discontinuity Q(I"') C OH on which I" acts properly
discontinuously.
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1I. Absence of principal eigenvalues

The last point immediately implies the existence of a wandering point of the I' action
on H. In this sense our theorem boils down to the classical result of Patterson. Also
the higher dimensional result of Lax-Phillips on H" is easily recovered from our main
theorem: If I' C PSO(1,n) is geometrically finite and I"'\H" of infinite volume, then
at least one non-compact end has to be a funnel or a cusp of non-maximal rank, and
the existence of such a non-compact end directly implies the wandering condition of

Theorem [L4.1l

As discrete subgroups on higher rank semisimple Lie groups are known to be constrained
by strong rigidity results, it is a valid question whether there are interesting examples
in higher rank which fulfill the wandering condition of Theorem [[I.4.T, We address this
question in Section and we will see that all images of Anosov representations fulfill
our condition. This is a consequence of recent results on compactifications of Anosov
symmetric spaces [KLI18| [GKWTI5|] that are modeled on the Satake compactification.

A further natural question is, whether one can also in the higher rank setting obtain the
result by the assumption of infinite volume of the locally symmetric spaces instead of
the dynamical assumption on the group action used in our theorem. We do not know
a definitive answer. However, it should be noted, that there is so far no good notion
of a geometrically finite group I' in higher rank. Without the assumption of geometric
finiteness, to our best knowledge even for SL(2,R) it is unknown if infinite volume
implies the absence of principal eigenvalues.

Outline of the proof and the article. Let f € C*°(X) be the I'-invariant lift of a joint
eigenfunction for D(X) that is in L?(I'\X). The proof of Theorem relies on the
analysis of the asymptotic behavior of f towards the boundary of the compactifica-
tion at infinity. For the result on the geodesic compactification it suffices to study the
asymptotics of f into the regular directions. In order to obtain the result on the Satake
compactification we are required to also analyze the behavior in singular directions along
the different boundary strata of the Weyl chambers.

In a first step we show that f satisfies a certain growth condition called moderate growth.
This is done by elliptic regularity combined with coarse estimates on the injectivity radius

(see Section [LL.6).

The knowledge of moderate growth then allows us (see Section to use asymptotic
expansion results for f by van den Ban-Schlichtkrull [vdBS87, vdBS89]. For the asymp-
totics into the regular directions, i.e. in the interior of the positive Weyl chamber a™ C a,
it follows from [vdBS87] that the leading term for the expansion of f(kexp(tH)K) with
ke Kand H €at is

Z puw(k)eWAP ) ag 5 o0,

weW
where W is the Weyl group, p the usual half sum of roots and A\ € ia* a regular spectral
parameter (for singular spectral parameters the formula becomes slightly more com-
plicated but is still tractable). The wandering condition of I' acting on the geodesic
compactification X U X (oo) yields a neighborhood U in X U X (c0) of some point in
X (00) such that f € L?(UNX). Combining this with the expansion and the description

88



I1.5. Preliminaries

of such neighborhoods U implies that all the boundary values p,, vanish on an open
subset of K. This implies, again by [vdBS87|, that f = 0.

The result for the Satake compactification follows the same strategy but involves more
complicated expansions from [vdBS89] that describe the asymptotic behavior into the
singular directions along the different boundary strata of the Weyl chamber (see Sec-

tion [I1.7.2)).

Finally, in Section we provide some examples of higher rank locally symmetric spaces
that fulfill the wandering condition of Theorem [[I.4.1] In particular, we show that all
quotients by Anosov subgroups fulfill the assumption.
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11.5. Preliminaries

1.6.1. Symmetric spaces

In this section we fix the notation for the present article. Let G be a real semisimple
non-compact Lie group with finite center and with Iwasawa decomposition G = KAN.
Furthermore, let M := Z (A) be the centralizer of A in K. We denote by g,a,n, ¢, m the
corresponding Lie algebras. We have a K-invariant inner product on g that is induced
by the Killing form and the Cartan involution. We further have the orthogonal Bruhat
decomposition g = a ® m @ @ 5, ga into root spaces g, with respect to the a-action
via the adjoint action ad, i.e. go ={Y € g | [H,Y] =a(H)Y VH € a}. Here ¥ = {a €
a* | go # 0} C a* is the set of restricted roots. Denote by W the Weyl group of the root
system of restricted roots. Let n be the real rank of G and II (resp. X7) the simple
(resp. positive) system in ¥ determined by the choice of the Iwasawa decomposition.
Let mq = dimpg go and p = 35 ,cs+mqa. Let ay = {H € a | a(H) > 0Va € 1T} denote
the positive Weyl chamber. If AT := exp(ay), then we have the Cartan decomposition
G = KA*YK. The main object of our study is the symmetric space X = G/K of
non-compact type. On X with a natural G-invariant measure dx we have the integral
formula

/X f(z)dz = /K . fkexp(H)) [ sinh(a(H))™dHdk. (IL.3)

aext

(see [Hel84, Ch. I Theorem 5.8]).
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1I. Absence of principal eigenvalues

Example I1.5.1. If G = SL,(R), then we choose K = SO(n), A as the set of diagonal
matrices of positive entries with determinant 1, and N as the set of upper triangular
matrices with 1’s on the diagonal. a is the abelian Lie algebra of diagonal matrices
and the set of restricted roots is ¥ = {g; —¢; | i # j} where ¢;(\) is the i-th diagonal
entry of X. The positive system corresponding to the Iwasawa decomposition is ¥ =
{ei —¢; | i < j} with simple system II = {a; = €; — €i41}. The positive Weyl chamber
is ay = {diag(A1,...,An) | A1 > -+~ > A\, } and the Weyl group is the symmetric group
Sy acting by permutation of the diagonal entries.

(631

Figure I1.2.: The root system for the special case G = SL3(R): There are three positive
roots X7 = {a1, a2, a1 + az}. As all root spaces are one dimensional the
special element p = %Zaeg+maa equals a1 + ag.

11.5.2. Invariant differential operators

Let D(G/K) be the algebra of G-invariant differential operators on G/K, i.e. differen-
tial operators commuting with the left translation by elements g € G. Then we have an
algebra isomorphism HC: D(G/K) — Poly(a*)" from D(G/K) to the W-invariant com-
plex polynomials on a* which is called the Harish-Chandra homomorphism (see [Hel84)
Ch. II Theorem 5.18]). For A € af let x) be the character of D(G/K) defined by
XA(D) == HC(D)(X). Obviously, xn» = xwx for w € W. Furthermore, the x, exhaust all
characters of D(G/K) (see [Hel84, Ch. IIT Lemma 3.11]). We define the space of joint
eigenfunctions

Ex:={feC®(G/K)|Df =xx(D)f VD eD(G/K)}.
Note that E) is G-invariant.
Example I1.5.2. For G = SL,(R) the algebra Poly(a%)" is generated by n—1 elements

P2, ..., Pn. Let us identify ac and af via A > Tr(X ). Then p;(A) = X+ -+ X,, = Tr(\Y)
where A = diag(A1,...,A\,) € ac. Clearly, these polynomials are invariant under
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permutations of the diagonal entries and it can be shown that they are algebraically
independent and generate Poly(af)"' (see [Hum90]). D(G/K) is then generated by
the preimages of p; under HC. Up to lower order terms the resulting invariant dif-
ferential operators are given by the Maass-Selberg operators §; which are defined for
feC>®(G/K)=C>(SL,(R)/SO(n)) by

5 f(gK) = Tr ((;))

f (g exp (X - ;Tr(X)In> K> ,

X=0
where 5 5
wll e a:’ln 8$11 “ e m
. . 9 . .
X = . . . and _— = . .. .
. . 8X . .
1n nn 20x1n OTnn

(see [BCH21]).

Now, let I' < G be a torsion-free discrete subgroup. Since D € D(G/K) is G-invariant,
it descends to a differential operator D on the locally symmetric space I'\G/K. There-
fore, the left I'-invariant functions of Ey (denoted by 'E)\) can be identified with joint
eigenfunctions on I'\G/K for each rD:

"Ey={f € C*("\G/K) | rDf = xa(D)f VD e D(G/K)}.

The goal is to show that L*(T\G/K) NTE\ = {0} for A\ € ia* and certain discrete
subgroups I'. Then

o(P\X) = {x € ag | L*(T\G/K) N" By # {0}}
has the property that the set of principal eigenvalues o(I'\ X)) Nia* is empty.

11.5.3. Geodesic compactification

In this section we recall the notion of the geodesic compactification of a simply connected
and non-positively curved Riemannian manifold X. A classical reference for this topic
is [Ebe96]. In the sequel also the Satake compactification will be crucial thus we provide
detailed references to [BJ06] which treats both types of compactifications.

Definition II1.5.3 ([BJ06l Section 1.2.2]). Two (unit speed) geodesics 71, v2 are equiv-
alent if limsup,_,. d(71(t),72(t)) < oo. The space X(oco0) is the factor space of all
geodesics modulo this equivalence relation. The union X U X (00) is called geodesic
compactification. The topology on X U X (c0) is given as follows: For [y] € X (c0) the
intersection with X of a fundamental system of neighborhoods is given by C(v, ¢, R) =
C(v,¢) ~ B(R) where

C(v,€) = {z € X | the angle between 7 and the geodesic from z( to x is less than ¢}

and B(R) is the ball of radius R centered at some base point o € X. This topology is
Hausdorff and compact.
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The space X (00) can be canonically identified with the unit sphere in the tangent space
at the base point o9 € X. If exp: T, X — X is the (Riemannian) exponential map at
xo, then a representative of the equivalence class of geodesics corresponding to a unit
vector Y € T,,X is given by the geodesic ¢t — exp(tY’). This identification yields the
neighborhoods C(Yp, e, R) = {exptY |t > R, ||Y|| = 1,|cos7L({Y, Yp))| < £} where Yj €
T, X is normalized. More precisely, if v is the geodesic ¢ — exp(tYp) then C(v,e, R) =
C (Yo, e, R).

Let us return to the setting where X = G/K is a symmetric space of non-compact type,
then X is simply connected and non-positively curved. Hence, the geodesic compactifi-
cation of X is defined and we have the following proposition.

Proposition I1.5.4 ([BJ06, Proposition 1.2.5]). The action of G on X extends to a
continuous action on X U X (00).

11.5.4. Maximal Satake compactification

In this section we introduce a different compactification for a Riemannian symmetric
space X = G/K the so called maximal Satake compactification. Before entering the
technicalities let us give some heuristics: Recall that the Cartan decomposition allows
to write G = Kexpa; K and since K is compact the “way” in which a point in G/K
tends to infinity can be described in ay. Recall that the particular simplicity of a rank
one locally symmetric space stems from the fact that a; is just a half line (geometrically
it corresponds to the distance from the origin of the symmetric space) and there is only
one “way” to tend towards infinity. In the higher rank case ay is a higher dimensional
simplicial cone bounded by the hyperplanes ker o C a for o € II and the Satake compact-
ifications will “detect” if a sequence tends to infinity inside the cone, while staying at
bounded distance to a certain number of chamber walls ker a for some subset o € I C II.

In order to describe the precise structure of the Satake compactification we need to
introduce the following notion of standard parabolic subgroups:

For I C II let a; == (s kera, al = a}, ny = ®a62+\(1> go and m; = m @ al @
®ae<1) go. Define the subgroups Ay := expay, Ny = expny and My := M {expmy).
Then P; :== MjA;Ny is the standard parabolic subgroup for the subset I. We further-
more introduce the notation af = {H € a! | a(H) > 0Va € I} and a4 == {H € af |

a(H)>0Va eI\ I}.

Example I1.5.5. For G = SL,(R) the set of simple roots is Il = {a; = &; — ;41 | 1 <
i <n—1}. Let I = {cy,,...,q; } be aproper subset of II. Then a; = {diag(A1,...,\n) |
Ai; = Aij+1} and of = @D, {diag(0, ..., Ai;, —Ai;41,...,0)}. Note that al = spanay; if
one identifies a and a* (see Figure for an illustration). Hence, a! consists of blocks
where a single block is a copy of the a-part of SL,,(R). Each block corresponds to a
root in IT \ I. More precisely, if «; € II \ I then a block ends in row i. Note that the

m; can very well be equal to 1. In this case there is simply a zero at this point on the
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I1.5. Preliminaries

Figure I1.3.: The various cones and subspaces in a corresponding to subsets of II for
G = SL,(R). ap is all of a and a’ is the origin.

diagonal. m; adds the corresponding root spaces, so my is isomorphic to direct sum of
different sl,,,(R).

5[”nn—l—k (R)

where the bottom rows of the blocks correspond to the index of the roots in II \ I. ny is
the Lie algebra that contains of the upper-triangular matrices with non-zero entries in the
positions that are not in the blocks of m;. On the group level A; = {diag(A1,...,\n) €
A )\ij = )\ij+1} and Ny is the same as n; but with 1’s on the diagonal. For M; one has
to multiply by M = {diag(+£1,...,£1)} so that M7 consists of block diagonal matrices
where each block has determinant +1 under the condition that the whole matrix has
determinant 1. It follows that the standard parabolic subgroups P are the sets of block
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1I. Absence of principal eigenvalues

upper-triangular matrices:

0

The maximal Satake compactification X is the G-compactification of X (i.e. a com-
pact Hausdorff space containing X as an open dense subset such that the G-action
extends continuously from X to the compactification) with the orbit structure D G
XU Ulgn Oj. For the orbit O; we can choose a base point x; € O with Stab(zy) =
N;A;(M; N K). The topology can be described as follows: Since G = KATK and
K is compact, it suffices to consider sequences exp H,, H, € a;. Such a sequence by
definition converges iff a(H,,) converges in R U {oo} for all a € II. If this is the case,
to determine the limit, let I = {o € II | lima(H,) < oo} and Hx € al such that
a(Hy) = lima(H,) for a € I. Then exp H,, = exp(Hoo)x].

The intersection with X of a fundamental system of neighborhoods of k exp(Hoo )2y With
k € K,H € al_is given by

V(KN Mp)exp{H € a; | |a(H) —a(Hx)| <c,a € l,a(H) > R,a ¢ I}z,
where V' is a fundamental system of neighborhoods of k in K, € \ 0, R 7 cc.

Note that usually one defines the Satake compactification in a different way (see e.g.
[BJO6, Ch. I.4]). Namely, let 7: G — PSL(n,C) be an irreducible faithful projective
representation such that 7(K) C PSU(n). The closure in the projective space of Hermi-
tian matrices of the image of the embedding of X given by gK — R(7(g)7(g)*) is then
called Satake compactification. It only depends on the highest weight x, of 7. If x,
is contained in the interior of the Weyl chamber, then this compactification is isomor-
phic to the maximal Satake compactification defined above. It is maximal in the sense
that it dominates every other Satake compactification x° (i.e. there is a continuous
G-equivariant map X — YS). Since we only need the description of neighborhoods
and the orbit structure we chose to introduce X this way.

11.6. Moderate growth
In this section we show that on a locally symmetric space each joint eigenfunction which
is L? satisfies a growth condition in the following sense.

Definition II.6.1. (i) A function f: X — C is called function of moderate growth if
there exist » € R, C > 0 such that

1f(z)] < Cerdl@:o)
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Ho. ol

a{m}

U} /

U{ﬂz}

as > R
{ag}

ag > R

W

aq

Figure I1.4.: The compactification of ay for G = SL3(R) is obtained by gluing

aial}, aiaQ} and E to the boundary of ay.. The sets U for I = {a1}, {2}, 0
are the intersection of ay with a fundamental neighborhood of exp(Hxo )2 7.

for all x € X.
(i) For X € af. the space EY is the space of joint eigenfunction with moderate growth,
ie.
EY ={f € E\| f has moderate growth}.

Let I' < G be a torsion-free discrete subgroup.

Theorem 11.6.2. Let f € VE\ N L2(T\G/K). Then f (considered as a T-invariant
function on X ) has moderate growth.

The proof uses Sobolev embedding and the following estimate on the injectivity radius.

95



1I. Absence of principal eigenvalues

Proposition I1.6.3 (see [CGT82, Thm. 4.3]). Let (M,g) be a complete Riemannian
manifold such that the sectional curvature Ky satisfies Ky < K for constant K € R.
Let 0 < r < 7/4VK if K > 0 and r € (0,00) if K < 0. Then the injectivity radius inj(p)
at p satisfies

S rVol(Bas(p,r))

B VO](BM(p, T)) + VOITPM(BTPM(O, 27“)) ’

where Volr, v (Br,0(0,2r)) denotes the volume of the ball of radius 2r in T,M, where
both the volume and the distance function are defined using the metric g* := exp,g, i.e.
the pull-back of the metric g to T, M wvia the exponential map.

inj(p)

For M =T'\G/K we obtain that the injectivity radius decreases at most exponentially.

Proposition 11.6.4. There are constants C,s > 0 such that
injF\G/K(F:U) > C—le—sd(x,eK)

for every x € G/K.

Proof. Since I'\G/K is of non-positive curvature we can apply the above proposition
for every r > 0. Note that exp: T,M — M is the universal cover of M and therefore
VOITMM(BTF;CM(OvQT)) = VOle/K(Bg/K(SU,Q’F)) = Volg/K(BGv/K(l‘o,Q’l”)) < Ce*" for
some constants C, s independent of x, where ¢ is the base point eK of G/K. Hence,

inj(Tx) > r(1 + Volz., a1 (Bry, ar(0,27)) /Vol(Bps (T, 7))t
> r(1 4+ Ce* /Vol(By (Tz, r))) L.
For r =1+ d(x,z¢) we have By (I'z,r) O Bps(I'zg, 1) and therefore
inj(Tz) > (1 + d(z, 20)) (1 4 CesHd@20)) /ol By (Do, 1))~ > (1 + C'esd@m0)) =1,

This finishes the proof. O

Note that this estimate isn’t sharp. Indeed, the growth rate s that we obtain in the
proof is independent of I" and only depends on the volume growth in G/K.

Let m = dim X. We need the following well-known lemma on the geodesic balls in G/ K.

Lemma I1.6.5. Fiz r > 0. There is a constant C such that for every x € G/K and
€ > 0 there is a finite set A C B(x,r) such that J,c 4, B(a,€) 2 B(z,r) and #A < Ce™™.

Proof. Let a; = x and choose inductively a;11 € B(z,7) U;ZOB(aj,e) if the latter

is non-empty. This yields a finite set A = {a1,...,an} (since B(z,r) is compact) such
that B(z,r +¢) 2 U;V:OB(aj,e) O B(z,r) and B(aj,e/2) are pairwise disjoint. It
follows that Vol(B(z,r +¢€)) > >, Vol(B(a;,/2) = #A - Vol(B(x,¢/2)) and therefore
H#A < m. The lemma follows from the fact that the volume is independent
from the center and decreases like €™ as € — 0. O
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11.6. Moderate growth

We can now combine Proposition [[T.6.4 with Sobolev embedding to prove Theorem [[1.6.2]

Proof of Theorem [I.6.3 Since B(x,1) is relatively compact, there exists a constant C
such that

1831(11) ) 1F(@)] < CIA +1)™*= fll r2(Brae.ay) = CONA) + D™ =) 1l 12(Bzo.1))
rxeB(x0,

by ellipticity of the Laplace operator A on G/K and the Sobolev embedding
H™?*(B(x0,1)) < C(B(xo,1)).

By G-invariance of A and d the same holds true for zy replaced by an arbitrary point
x € X. In particular,

|f (@) < C)Nfl2(B(z1))-

By Proposition there are constants C, s > 0 independent of z such that
injp\ gy (Ty) > C~ e

for every y € B(x,1). Let e(z) == £e *¥@¢K) Then there is a finite set A(z) C B(x,1)
such that J,ea(,) B(a,e(x)) covers B(z,1) and #A(z) < C'e(z)™™ by Lemma [I1.6.5
Hence,

£ 3281y < D 1 I22s@e@))
ac€A(x)

Since injp g/ x (Fa) > e(x) we have || f[|12(B(ae(2))) < I fllz2m\a/k) for a € A(x). There-

fore,

If (@) < C)fllLema/r) vV #A(T)

C
C()‘)Hf||L2(F\G/K)C/1/25(x)_m/2
C Cll/2Cm/2emsd(a:,mo)/2. 0

IA

M lle2marr)

Remark II.6.6. In the case of locally symmetric spaces of finite volume there is a
different argument showing Theorem If we lift f to a function on G’ which we also
call f, then there is smooth compactly supported function a on G such that f = f x «
(see [HC66l, Theorem 1]). Then one easily shows that |f(I'z)| < C|’fHL1(F\G/K)€Sd(I’xO)
using simple estimates for lattice point counting. Since L? C L' for spaces of finite
volume, we can deduce moderate growth for f. Unfortunately, this argument does not
work for infinite volume locally symmetric spaces since a pointwise bound including the
L?-norm of f would need much better counting estimates.
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1I. Absence of principal eigenvalues

11.7. Absence of imaginary values in the L?*-spectrum

We introduce the space of smooth vectors in E). It is precisely the space of joint
eigenfunctions with smooth boundary values (see [vdBS87]).

Definition I1.7.1.
E ={feBy|3rYuecl(g) IC, > 0: |(uf)(x)| < Cyue @0}

11.7.1. Geodesic compactification

In this section we want to prove the following theorem.

Theorem I1.7.2. Let f € EX, X\ € ia*, such that f is square-integrable on C(Yp, e, R)
for some €, R, Y} (see Section . Then f =0.

Let X(\) == {wA —p—pn| we W,u e Noll} (see Figure for a visualization in
example of SL(3,R)). We will use the following asymptotic expansion for functions in
B,

Theorem I1.7.3 ([vdBS87, Thm 3.5]). For each f € ES°, g € G, and £ € X(\) there

is a unique polynomial py¢(f,g) on a which is smooth in g such that
Flgexp(tH)) ~ Y pae(f, g, tH)e" ™, — oo,
£eX ()

at every Hy € ay, i.e. for every N there exist a neighborhood U of Hy in ay, a neigh-
borhood V' of g in G, € > 0, C' > 0 such that

flyexp(tH)) — > page(foy tH)eSH | < CelN=2)
Re&(Ho)>—N

forallye V,H €U, t>0.

Remark I1.7.4. The uniformity in x is not stated in [vdBS87] but it follows from (6.18)
therein.

Example I1.7.5. In the case where G/K is the upper half plane H a simplified version
of this theorem can be stated as follows. Suppose f € E;il/? ie. f € C*(H) with

Af = s(1 — s)f and the derivatives of f satisfy some uniform pointwise exponential
bounds. We lift f to a function (also called f) on the sphere bundle SH which is
constant on the fibers. Denote by ¢; the geodesic flow. Then if s ¢ %Z

(de)of () ~e™™ <ZPI($)€_M> +et079) <ZPZ($)€_M>
n=0 n=0

with p¥ being smooth. If s € %Z the functions p can be polynomials of degree one in
t.
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I1.7. Absence of imaginary values in the L?-spectrum

Figure I1.5.: Real part of the exponents of the asymptotic expansion in Theorem [[1.7.3
for G = SL(3,R).

Proof of Theorem [II.7.2, First, we will consider the case f € E5°. By continuity there
is a unit vector Hy € a4, a neighborhood U of Hy in the unit sphere of a, and an open
set V in K such that

Q:{kexp( )i keV,—— U, |H| >R} C C(Yo, e, R).

H
(1]
Let N = p(Hy) such that without loss of generality

|f(kexp(H)) — Z p)\’w/\fp(fjkjH)e(wkfp)(H)’ < Cel=rHo)—o)lH] (IL.4)
weW
for aukev,ﬁ eU.
We use the integral formula (II.3) and observe that
/ e~ 2o+ T sinh(a(H))™ dH
(R,00)U

aext

</ 6—2(0(H0)+€)|H||629(H)dH</ 62( (%*HO) €)HH”dH
- J(Roo)U ~ J(Roeo)U

which is finite after shrinking U such that p(ﬁ —Hy) < e for H € U. Consequently, the

right hand side of (II.4) and therefore also the left hand side of (II.4)) is square integrable
on €.

Since f is L? and the approximation (I1.4) holds,

> prunp(f b, H)et =) H)
weW

H sinh(« Ma

aext

is integrable on V' x (R, 00)U. Hence,

Z p,\,w,\fp(f,k,H)e(W—p)(H)
weWw
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1I. Absence of principal eigenvalues

is integrable on (R,c0)U for almost every k € V. Since sinh(z) > e /4 for z > 3 log?2,

2
e2r(H) —

2

Z p/\,w)\—p(f7 k, H)ewA(H)
weWw

S prursp(f b, H)er =00
weW

is integrable on (R,oc0)U for R large enough. This is only possible if py ,a—,(f, k)
vanishes on a for every w € W by [Kna86, Lemma 8.50]. Since px wr—p(f,*) is smooth
it vanishes identically on V.

We now show that it also vanishes on VAN. For n € N [vdBS87, Lemma 8.7] states for
feEy
p)\,f(f? n) = Z p)\,§+ll(fu7e)7 5 € X()‘)v
pENILE+pEX (V)

where f, € L(U(g))f (where L is the left regular representation) are specific joint eigen-
functions obtained by the Taylor expansion of f in the direction of n and fy = f. For
& = wA — p the only summand comes from p = 0 since A € ia* and X (A) = {fwA—p—p |
w € W, € NoIT}. In particular, px wa—p(f;n) = Prwr—p(f,€).

To deal with a € A we use [vdBS87, Lemma 8.5]:

pre(fra, H) = a*pre(f,e, H +loga), fe€EF &€ X(\),HEa,

where as usual aé = ¢6(0ga),

Let us return to the situation that we achieved earlier, where py wa—,(f,k, H) = 0 for
every k € V and H € a. But then

p)\,w)\*p(fa kan? H) = p)\,w)\fp(L(ka)fl f7 n, H) = p)\,wz\fp(L(ka)*lfa €, H)
= pA,w/\—p(Lk—l fa a, H) = awA_pp)\,w/\—p(Lk—l fa €, H)
- a/w)\_pp)\,’w)\*p(f7 kv H) =0

for every k € V,a € A;n € N and w € W. Hence, p)wr—,(f,z) = 0 if = is contained
in the open set VAN. This is exactly the assumption of [vdBS89, Theorem 4.1] in the
case [ = I, i.e. f is an eigenfunction for the whole algebra D(G/K) and is not only
annihilated by an ideal of finite codimension. Note that in this case X(I) = X(\). We
infer f = 0.

It remains to show that the statement also holds for f € EY.

Since C(Yp, €, R) is a fundamental system of neighborhoods of Y in the geodesic com-
pactification and G acts continuously on X UX (c0), there is a neighborhood V of e in G
and ¢/, R’ such that V=1C(Yy, e/, R') € C(Yy,e,R). Let ¢, be an approximate identity
on G with suppy, C V, ie. ¢, € CZ(G) is non-negative with [ ¢n(g)dg = 1 and
supp(yy,) shrinks to {e}. We consider (¢, * f)(z) = [ ¢n(9)f(g~ x)dg. Obviously,
o * f € ES° since LyRy(on * ) = (Lan) * (Ryf),z,y € G.

Combining the already established case f € EY® with Lemma below we infer that
pn * f =0 for all n and therefore f = 0. This completes the proof. O
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I1.7. Absence of imaginary values in the L?-spectrum
Lemma I1.7.6. ¢, * [ is square-integrable on C(Yy,e', R').

Proof of Lemma[IL.7.6. Abbreviate C' = C(Yp,e', R') and C = C(Yp,¢', R'). It suffices
to show that

< Bl z2(cry

[ n@)en = £) (@)

for h € C.(C") with a constant B independent of h.

Let us write [h(z)pn(9)/ (g~ 2)] = (AP (@)on(9) (12" 2)pn(9))V? and use the
Cauchy-Schwarz inequality of L?(V x C”) to obtain

[ r@)on i

< [ [ b@onto) o™ )l dady

< </V/ |h|2($)80n(9)dxdg/v/01 |f2(gla:)<pn(g)da:dg)1/2

< |l 2(cr) </V/C|f!2(w)s0n(g)dfcdg>l/2

= 1Al 2cnll fll 2 e

where we used V~!C’ C C in the last inequality. This finishes the proof. O

11.7.2. Maximal Satake compactification

In this section we prove a statement analogous to Theorem for the maximal Satake
compactification. First of all we remark that each neighborhood of an element in the
orbit Gzg C XM contains a neighborhood C (Yo, e, R). Hence, we have the following
proposition.

Proposition IL.7.7. Let f € EY, A € ia*, such that f is square-integrable in some
neighborhood of an element in Gxy C X" Then f = 0.

The goal is to prove this statement for general neighborhoods in X .

Theorem I1.7.8. Let f € EY, A € ia*, such that f is square-integrable in some neigh-
borhood of an element xoo € IX™?*. Then f = 0.

Proof. By the same reasoning as in the proof of Theorem we can assume f € ES°.
Moreover, we can assume that zo, = kexp(Hoo)xr with k € K and Hy, € afr (instead of

Hy € Z) since every neighborhood of kexp(H )z contains an element k' exp(H. )xr
with H. € al .
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['/+UI

as > R

Q2

Figure I1.6.: Decomposition of U for G = SL(3,R) and I = {ay }.

Let Q = Vexp(U)zg C X with a k-neighborhood V' in K and
U={Hecay||a(H)—a(H)|<e,acl,a(H) > R,a &I},

so that 2 is contained in the intersection of a neighborhood of x,, with the interior of
~-max

X Define U = {H! ¢ a! | |a(H!") — a(Hy)| < €, € I'} which is a bounded open
set in a since the set of linear forms I restricted to a’ is linear independent. Without
loss of generality Ul c afr has positive distance to the boundaries. Let Uy := {H € ay |
a(Hp) > C,a € NI} Cayy so that Ur + UL C U for C large enough.

As in Theorem [II.7.2| we use the integral formula (II.3) to obtain
/ |f1?(kexp(H)) | [ sinh(a(H))™ dH < oo
UCayq
for almost every k € V. Therefore,

[ ArPresst!yexp(t) [ sinb(a(H, + HD)" )y < oc
UrCar,+

for almost every k € V and H! € U! C a! (with suitable Lebesgue measures on a; and
I
al).

The property that U! C afr has positive distance to the boundaries implies that o(Hy +
H') > £ and hence

I sinh(e(H; + HY))™e > Ce®H), H e U, H € U,
aext
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I1.7. Absence of imaginary values in the L?-spectrum

Therefore, | f|?(kexp(H') exp(Hy))e2*H1) is integrable on Uj.

Similarly to the proof of Theorem we use an asymptotic expansion for f, but this
time we have to consider asymptotics along the boundary of the positive Weyl chamber
instead of regular directions.

Theorem I1.7.9 ([vdBS89, Thm 1.5]). There exists a finite set S(\,I) C a} such that
foreach f € E, g€ G, and& € X(\,I) = S(\, I)—Noll|y, there is a unique polynomial
pre(f,g) on ar which is smooth in g such that

flgexp(tHo)) ~ > pre(f,g,tHo)e ™) ¢ — oo,
€EX(MI)

at every Hy € a7y, i.e. for every N there exist a neighborhood U of Hy in ar 4, a
neighborhood V of g in G, ¢ > 0, C > 0 such that

flyexp(tH)) — > pre(f oy, tH)e*| < cel=N—)
Re&(Ho)>—N

forallye V,H e U, t>0.

Remark II.7.10. The uniformity in x is not stated in [vdBS89] but it follows from
Proposition 1.3 therein.

Let Hy € ar 4, ||Ho|| = 1. After shrinking we can assume that

f(kexp(H") exp(Hr)) — S prelf kexp(ET), Hp)efUD| < Celrto) -l
Re&(Ho)>—p(Ho)

for all k € V,H! € U', and Hg—ﬁu in some neighborhood 01 of Hy in a7 4 such that
(R, OO)U[ cUj.
The error term e(~PHO)=HrIl gatisfies

H
e2(—p(Ho)=e) | H1ll 2p(Hr) _ 2p(=Hotprm)=o)lHill - —el|Hy |

if Uy is sufficiently small. Since eIl is integrable on (R, 00)U; the same is true for

2

Z pre(f, kexp(HY), Hy)el P HD
Re&(Ho)>—p(Ho)

Using [Kna86, Lemma 8.50] we obtain that pr ¢(f, kexp(HT), Hr) = 0 if Re(+p)(Hp) >
0 for almost every k € V and H! € U!. Since pre(f,+ Hr) is smooth, this holds for
every k € V and H! e U'.
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1I. Absence of principal eigenvalues

By [vdBS89, Corollary 2.5] the mapping M; > m — pre(f,am, Hr), v € G, is real
analytic. Therefore, al 5 H! — p re(f,kexp H I Hy) is real analytic as well and vanishes
on the open set U’ for k € V, Re(¢ + p)(Hy) > 0. Hence it vanishes on a’ identically.

In a last step of the proof we show that the vanishing of p;¢(f, k) for Re({+p)(Hy) >0
implies that the expansion coefficients py ,(f, k) from Theorem [II.7.3| vanish for all n €
WX —pand k € V. For this purpose we use the following expansion for the polynomial

Pre.

Proposition II.7.11 ([vdBS89, Theorem 3.1]). Let f € E°,g € G, and § € X (I, \).

(i) For every H; € ar+ and H' ¢ afr the following asymptotic expansion holds:

I
pre(f,gexp(tH"), Hr) ~ > pan(frg, Hy + tHD)enH),
nE€wA—p—Noll,n|a, =€

(ii) For all n = w\ — p — NoIl with n|a, € X (X, I) we have px,(f,g) = 0.

Let n = wA —p, w e W, and k € V,Hr € Ur. If n|a, € X(I,N), then py,(f. k) =
0. If nlg, = € € X(I,)), then Re(§ + p)(H;) = RewA(H;) = 0 > 0. Therefore,
pre(f, kexp H' Hp) = 0 for all H' € a! by the previous paragraph. It follows that
the asymptotic expansion has every coefficient vanishing (see [vdBS87, Lemma 3.2]), in
particular py ,(f, k, Hr + tH') =0, Hy € Uy, H' € a!. Since Pan(f, k) is a polynomial,
this implies py,(f,k) = 0. Hence in both cases pxwxr—,(f,k) = 0 for k € V. The
remainder of the proof proceeds the same way as the proof of Theorem O

11.7.3. Proof of Theorem [I.4.1]

~-max

Let X be one of the compactifications X U X (c0) or X .

Recall that the wandering set w(I', X) is defined to be the points x € X for which there
is a neighborhood U of x such that YU NU # () for at most finitely many v € I'. Clearly,
w(T', X) is open, I-invariant and contains X. Theorem [[I.4.1|is a simple consequence of

Theorem combined with Theorem respectively

Proof of Theorem[I].1. Let z € w(I', X) N dX. Hence, there is an open subset U of
X containing x such that {y | yU NU # (0} contains N € N elements. Let A € ia*
and f € L?*(I'\X) a joint eigenfunction of D(X) for the character yx. Let f € E\ be
I-invariant lift of f to X. Then

11220 = /U 7= [ Ty = / O eV PTaTy)

yel
< N[ £ 72y x) < o

Hence, fis L? on U and f is of moderate growth by Theorem|[[1.6.2l Using Theorem [[1.7.2
or finishes the proof. O
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11.8. Examples

In this section we discuss three classes of examples that satisfy the wandering condi-
tion of Theorem [L4.Il As mentioned in the introduction the condition is satisfied for
geometrically finite discrete subgroups of PSO(n, 1) of infinite covolume.

Products

The most basic example is the case of products. Let X = X7 x X5 be the product of
two symmetric spaces of non-compact type where X; = G;/K;. Let I' < G; x G2 be a
discrete torsion-free subgroup that is the product of two discrete torsion-free subgroups
I'; < G;. Then it is clear that the spectral theory of I'\ X is completely determined by the
spectral theory of the two factors. In particular, since the algebra D(G/K) is generated
by D(G;/K;), i = 1,2, there are no principal joint eigenvalues if the same holds for one of
the factors. The same statement can be obtained by Theorem using the maximal
Satake compactification. Indeed, by [BJ06, Prop. 1.4.35] it holds that the maximal
Satake compactification of X is the product of the maximal Satake compactifications of
X;, ie. X = Ylmax X ngax. Then it is clear from the definition of the wandering
set that w(I, X" ) = w(l', X1 ) x w([g, Xg ). Hence, the wandering condition
w(l, X ") N oX ™™ # 0§ is fulfilled if and only if it is fulfilled for one of the actions

~- max

Selfjoinings

A more interesting class of examples is given by selfjoinings of locally symmetric spaces.
These are given as follows. As above let X = X; x X5 be the product of two symmetric
spaces of non-compact type where X; = G;/K;. Now, let T be a discrete group and
pi: ¥ — Gy, i = 1,2, two representations into real semisimple non-compact Lie groups
with finite center. We assume that p; has finite kernel and discrete image. We want
to consider the subgroup I' of Gy x G2 given by I' = {(p1(0),p2(c)): ¢ € T} which
is discrete. We assume that I' is torsion-free (e.g. if T is torsion-free). In contrast to
the previous example the locally symmetric space I'\ X is not a product of two locally
symmetric spaces anymore, so also the spectral theory cannot be reduced to some lower
rank factors. However, we can exploit that the globally symmetric space is still a product
and consider the maximal Satake compactification which is given by X = X;
X5, Since py(T) is discrete, it acts properly discontinuously on X;. Hence every
point of X; is wandering for the action of pi(Y). It follows easily that X7 x ngax is
contained in the wandering set w(I', X ) of the action I' ~ X . Therefore, the

wandering condition is fulfilled. Indeed, w(I', X ) NdX = D X1 x Xy #0.
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Anosov subgroups

The result of Lax and Phillips [LP82] is in particular true if we consider a (non-
cocompact) convex-cocompact subgroup of PSO(n,1). Anosov subgroups as introduced
by Labourie [Lab06] for surface groups and generalized to arbitrary word hyperbolic
groups by Guichard and Wienhard [GW12] generalize convex-cocompact subgroups to
higher rank symmetric spaces. For such I' we have the following proposition.

Proposition I1.8.1. Let I' be a torsion-free Anosov subgroup that is mot a cocompact
~-max —~-1ax

lattice in a rank one Lie group. Then the wandering condition w(I', X ) NoX # )
is fulfilled.

Proof. By [KL18] (and [GKW15] for a specific maximal parabolic subgroup) every locally
symmetric space arising from an Anosov subgroup admits a compactification modeled on
the maximal Satake compactification X, i.e. there is X C Q C X open such that
I" acts properly discontinuously and cocompactly on 2. Since I' does not act cocompactly
on X, we have QNaX " % (). As every point in a region of discontinuity is wandering
by definition we have 2 C W(F,Ymax), and in particular the wandering condition is

fulfilled. ]
Combining the above proposition with Theorem we obtain the following corollary.

Corollary I1.8.2. LetI" be a torsion-free Anosov subgroup that is not a cocompact lattice
in a rank one Lie group. Then there are no principal joint L?-eigenvalues on T\ X .

It is worth mentioning that selfjoinings of two representations into PSO(n,1) yield
Anosov subgroups if and only if one of the images of the representations is convex-
cocompact. One can thus easily construct non-trivial examples which are not Anosov
subgroups but fulfill the wandering condition of Theorem This is again parallel to
Patterson’s result that holds beyond the convex-cocompact case for hyperbolic surfaces
admitting cusps and at least one funnel.
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Abstract

Let X = X1 x X5 be a product of two rank one symmetric spaces of non-compact type
and I' a torsion-free discrete subgroup in G x G3. We show that the spectrum of I'\ X
is related to the asymptotic growth of I' in the two directions defined by the two factors.
We obtain that L?(T'\G) is tempered for a large class of T.

111.1. Introduction

If one considers a geometrically finite hyperbolic surface M = I'\H it is a very classical
theorem that the smallest eigenvalue of the Laplace-Beltrami operator A is related to
the growth rate of I'. More precisely,

1/4 L op < 1/2

infU(A):{1/4_(5F_1/2)2 :5F21/27

where dr is the critical exponent of the discrete subgroup I' C SLy(R)

or =inf{ s € R: Ze_s‘i(wo’xo) <oop, xo€H.
~yel'

This theorem is due to Elstrodt [Els73al [Els73bl [Els74] and Patterson [Pat76].

A decade later it has been extended to real hyperbolic manifolds of arbitrary dimension
by Sullivan [Sul87] and then to general locally symmetric spaces of rank one by Corlette
[Cor90).

We are interested in analog statements for higher rank locally symmetric spaces. To
state the theorems let us shortly introduce the setting (see Section [[IL.2.1]). Let X be
a symmetric space of non-compact type, i.e. X = G/K where G is a real connected
semisimple non-compact Lie group with finite center and K is a maximal compact sub-
group. G admits a Cartan decomposition G = K exp(at)K. Hence for every g € G
there is py(g) € ay such that g € Kexp(uy(g))K. u(g) can be thought of a higher
dimensional distance d(gK,eK).

In this setting the bottom of the spectrum of the Laplace-Beltrami operator A can
be estimated using or as well [Web08, [Leu04]. Note that in the definition of ép the
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III. Temperedness of local product symmetric spaces

term d(vK,eK) is ||p+(7)|. Hence, one only considers the norm of p () but there are
different ways to measure the growth rate of  or py (). This is exploited by Anker and
Zhang [AZ22] to determine inf o(A) to an exact value.

However, the spectral theory of I'\G/K is more involved than in the rank one case and
is not completely determined by A: There is a whole algebra of natural differential
operators on I'\G/K that come from the algebra of G-invariant differential operators
D(G/K) on G/K. In the easiest higher rank example G/K = (G1 x G2)/(K; x K3) =
(G1/K1) x (G2/K3) of two rank one symmetric spaces this algebra is generated by the
two Laplacians acting on the respective factors. In this case we could just consider
the Laplace operators on the two factors G1/K; and Ga/Ks which generate D((G; x
G2)/(K; x K3)). However, in general there are no canonical generators for D(G/K).
This is the reason why in the higher rank setting it is more natural to work with the
whole algebra instead of a generating set.

The importance of this algebra can be seen by considering the representation L?(I'\G)
where G acts by right translation. In the rank one case (where D(G/K) = C[A]) L2(T'\G)
is tempered (see Definition if o(A) C [||p||?, 00]. In the higher rank case this is
not true anymore but an analogous statement can be formulated in terms of D(G/K) (see
Proposition[[IL.3.10)). This requires to define a joint spectrum &(I'\G/K) for D(G/K) on
L*(T\G/K). There are different ways to define this spectrum: On the one hand we can
use the representation theoretical decomposition of L?(I'\G) and consider the support
of the corresponding measure (see Section . On the other hand we can define
a joint spectrum for a finite generating set of D(G/K) using approximate eigenvectors
(see Section . This definition is more in the spirit of usual spectral theory. In
fact both definitions coincide and it holds:

F(T\G/K) = {\ € ai | xa(D) € o(rD) VD € D(G/K)} (IIL.1)

where x are the characters of D(G//K) parametrized by A € af (see Proposition [[11.3.6)).

As a first result we prove that
ia* Co(I\G/K) (I11.2)

if '\G/K has infinite injectivity radius (see Proposition [III.3.7]).

The above mentioned connection between this spectrum and temperedness of L?(T'\G)
is given by the following fact.

Fact I11.1.1 (Proposition [[11.3.10). If (T'\G/K) C ia* then L?*(T'\G) is tempered.

Until recently, it was completely unknown which conditions on I' (similar to ér < ||p||)
imply temperedness of L?(I'\G) even for the example of G = G x Gy with G; of rank
one. Then Edwards and Oh [EOQ22] showed temperedness for Anosov subgroups if the
growth indicator function ¢r is bounded by p (see Section for the definition).
This statement is in the same spirit as the original theorems by Patterson, Sullivan,
and Corlette, but it only holds for Anosov subgroups for minimal parabolics which are
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III.1. Introduction

a higher rank analog of convex cocompact subgroups and its proof uses rather different
methods including estimates on mixing rates from [ELO20]. The main example where
they verify the condition ¢r < p is precisely the product situation G = G1 x G5 with
G; of rank one and T" is an Anosov subgroup.

In this work we present a different proof for the temperedness of L?(I'\(G; x G2)) that
is closer to the original proofs in the rank one case and does not use any mixing results.
Moreover, we need not to assume that I is Anosov.

Theorem (Theorem [I11.4.9)). Let G; and G2 be of rank one and I' < G x G2 discrete
and torsion-free. Let

01 = supinf { s € R: Z e sle+ (Ml «
f=0 el it (v2) |<R

and define 9 in the same way. Then

a(I'\(G1 x Ga) /(K1 x K2)) € {A € ag | [|Re(A:)]| < max(0,6; — [[pi]])}-

ay Re(ag) >~ a* ~ a] X a;
P2
(p1, p2)
do — po
o(P\G[K)
01— P o

Figure IIL.1.: (I'\(G1 x G2)/(K; x K3)) for two rank one groups G;

For the proof we consider the Laplace operators on the two factors and use (III.1)) to
bound . For these operators the proof is similar to the proofs of Patterson and Corlette,
i.e. we obtain information about the spectrum by considering the resolvent kernel on the
globally symmetric space G/K and get the local version by averaging over I'. Analyzing
the region of convergence of this averaging process leads to the theorem.

We obtain the following corollary.
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III. Temperedness of local product symmetric spaces

Corollary (Corollary [[IL.4.10). If §; < |p1]| and d2 < ||p2|| then L2(T\(G; x G3)) is

tempered.

An important example is a selfjoining: Let m;: G1 x Go — G; be the projection on
one factor. Suppose that m;|pr, @ = 1,2, both have finite kernel and discrete image.
Then §; = 6 = —o0o and hence L?(I'\(G; x G3)) is tempered. Any Anosov subgroup
with respect to the minimal parabolic subgroup in G; x G2 satisfies this assumption,
but also satisfies additional assumptions, e.g. I" is word hyperbolic and ||p(m;(7))]| is
comparable to the word length of v € I' [Lab06, (GW12]. Therefore we generalize this
part of [EO22]. In contrast, [EO22] also provide statements on the connection between
temperedness and growth behavior of the Anosov subgroup I' for more general (globally)
symmetric spaces G /K which are not products of rank one symmetric spaces. To extend
our work to this more general setting one needs growth estimates for the kernel of the
resolvent for suitable generators of the algebra D(G/K) which so far only seem to be
known for the Laplace operator (see [AJ99]).

Outline of the article

In Section [[TI.2] we recall some preliminaries about the symmetric space, spherical func-
tions, the spherical dual, and the Fourier-Helgason transform. After that we define the
Plancherel spectrum (see Section and the joint spectrum (see Section
and show that they coincide (see Proposition . We also prove in Propo-
sition In Section we show the connection between ¢(I'\G/K) and the
temperedness of L?(T'\G). We suppose that the statements might be considered as
folklore among experts in spectral theory of higher rank symmetric spaces, but as the
literature on spectral theory of locally symmetric spaces of higher rank and infinite vol-
ume is very sparse we provide precise statements with complete proofs in this section. In
Section [[TT.4) we prove Corollary [[I.4.10} To do so we first recall the averaging procedure
(see Lemma and reprove the rank one result by [Cor90] in a form that we need
later (see Lemma . We conclude this article by comparing the quantities d; with
the growth indicator function ¢r (see Section .

Acknowledgements. We thank Valentin Blomer for his suggestion to study this ques-
tion and for numerous stimulating discussions. This work has received funding from
the Deutsche Forschungsgemeinschaft (DFG) Grant No. WE 6173/1-1 (Emmy Noether
group “Microlocal Methods for Hyperbolic Dynamics”) as well as SEB-TRR 358/1 2023
— 491392403 (CRC “Integral Structures in Geometry and Representation Theory”).

111.2. Preliminaries

111.2.1. Setting

In this section we introduce the notation in the general higher rank setting and only
restrict to product spaces once it becomes necessary in order to emphasize clearly what
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the missing knowledge for the general higher rank setting is. Let G be a real connected
semisimple non-compact Lie group with finite center and with Iwasawa decomposition
G = KAN. We denote by g, a,n, £ the corresponding Lie algebras. For g € G let H(g)
be the logarithm of the A-component in the Iwasawa decomposition K AN. We have
a K-invariant inner product on g that is induced by the Killing form and the Cartan
involution. We further have the orthogonal Bruhat decomposition g = a®m® @, 5, 9a
into root spaces g, with respect to the a-action via the adjoint action ad. Here > C a* is
the set of restricted roots. Denote by W the Weyl group of the root system of restricted
roots. Let n be the real rank of G and II (resp. ¥ 1) the simple (resp. positive) system
in ¥ determined by the choice of the Iwasawa decomposition. Let m, = dimg g, and
p = 1Y esimaa. Let ay = {H € a | a(H) > 0Va € II} denote the positive Weyl
chamber and a’ the corresponding cone in a* via the identification a <+ a* through
the Killing form (-,-) restricted to a. If AT = exp(ay), then we have the Cartan
decomposition G = KATK. For g € G we define i, (g) € @y by g € Kexp(pui(9))K.
The main object of our study is the symmetric space X = G/K of non-compact type.

Let D(G/K) be the algebra of G-invariant differential operators on G/K, i.e. differen-
tial operators commuting with the left translation by elements ¢ € G. Then we have
an algebra isomorphism HC: D(G/K) — Poly(a*)"V from D(G/K) to the W-invariant
complex polynomials on a* which is called the Harish-Chandra homomorphism (see
[Hel84, Ch. II Thm. 5.18]). For A € af let x be the character of D(G/K) defined by
XA(D) == HC(D)(X). Obviously, xn = xwx for w € W. Furthermore, the x, exhaust all
characters of D(G/K) (see [Hel84, Ch. III Lemma 3.11]). We define the space of joint
eigenfunctions

Ex={feC™(G/K)|Df=xx(D)f VDeD(G/K)}.
Note that F) is G-invariant.

For example the (positive) Laplace operator A is contained in D(G/K) and x\(A) =
—(AA) +{p, p)-

111.2.2. Spherical functions

One can show that in each joint eigenspace F there is a unique left K-invariant function
which has the value 1 at the identity (see |[Hel84, Ch. IV Corollary 2.3]). We denote
the corresponding bi- K-invariant function on G by ¢, and call it elementary spherical
function. Therefore, ¢ = ¢, iff A = wp for some w € W. It is given by ¢r(g9) =
[ e=OFPH R g Note that we differ from the notation in [Hel84] by a factor of i:

PR = din.

111.2.3. Functions of positive type and unitary representations

In this section we recall the correspondence between elementary spherical functions
of positive type and irreducible unitary spherical representations. Recall first that a
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continuous function f: G — C is called of positive type if the matrix (f(z; '2;))i;
for all z1,...,z; € G is positive semidefinite. If f is of positive type, then one has
f(z™) = f(z) and |f(g)] < f(1). Moreover, we can define a unitary representation s
associated to f in the following way: If R denotes the right regular representation of G,
then 7 is the completion of the space spanned by R(x)f with respect to the inner prod-
uct defined by (R(z)f, R(y)f) = f(y~'x) which is positive definite. G acts unitarily on
this space by the right regular representation. If f(g) = (7(g)v,v) is a matrix coefficient
of a unitary representation 7, then f is of positive type and 7y is contained in 7.

Secondly, recall that a unitary representation is called spherical if it contains a non-zero
K-invariant vector. Denote by ésph the subset of the unitary dual consisting of spher-
ical representations. We then have a 1:1-correspondence between elementary spherical
functions of positive type and @sph given by ¢y — 74, (see [Hel84, Ch. IV Thm. 3.7]).
The preimage of an irreducible unitary spherical representation m with normalized K-
invariant vector vk is given by g — (m(g)vr, vk).

111.2.4. Harish-Chandra’s c-Function

Definition ITI.2.1. We define the Harish-Chandra c-function for A € af with Re A € a’
as the absolutely convergent integral

c()\):/ e~ AP H[) gy

N
where dn is normalized such that c(p) = 1. It is given by the product formula

2~ a0 (X, ag))

c(A\) =c
(W) =co g+ F(%moﬁ—%+%<)\,ao>)r(ima+%m2a+%<>\70¢0>)
acg

where ¢ = X7\ X%, ag = a/(, a), and the constant ¢y is determined by c(p) = 1.

111.2.5. The Fourier-Helgason transform

For a sufficiently nice function f: G/K — C we define the Fourier-Helgason transform
of f by

FFOERM) = [ fgi)eP= e Py (gc).
G/K

Let ey par(9K) = e~(A+)H(g™'k)  Then we have Dey kar = xa(D)ex g by [Hel84, Ch. IT
Lemma 5.15] for every D € D(G/K), A € a, k € K, and g € G. Therefore,

F(Df)A kM) = o Df(gK)e_x i (9K)d(gK) = o F(gK)D*e_5 jp (9K)d(gK)

= Jox fgK)x _5x(D*)e_5 1 (9K) d(gK) = x_5(D*)F f(A, kM).
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By [Hel84, Lemma 5.21 and Cor. 5.3] xx(D*) = x_x(D) so that we have the following
lemma.

Lemma II1.2.2. The Fourier-Helgason transform satisfies
F(DF)A kM) = xA(D)F f(A kM)

for every D € D(G/K).

Theorem II1.2.3 ([Hel89, Ch. III Thm. 1.5]). The Fourier-Helgason transform is an
isometry between L*(G/K) and L*(ia®, x K/M,|c(\)|"2d\d(kM)). Moreover,

(£ 9) L2610 = W] / ey TORMF GO DI dNd(kM)

In particular, Lemma implies that o(D) = essran[ia} — C, A — xx(D)] with
respect to the measure |c(\)|~2dAd(kM). Since x,(D) is polynomial and |c(A\)|~2 > 0
for A € ia’ we find that the spectrum of D is the closure of {xA(D) | A € ia’ }. As
XA(D) is W-invariant this coincides with the closure of {x,(D) | A € ia*}.

111.3. Spectra for locally symmetric spaces

In this section we recall different types of spectra for the algebra D(G/K) on a locally
symmetric space.

Let I' < G be a torsion-free discrete subgroup.

111.3.1. Plancherel spectrum

We want establish a spectrum for the algebra D(G/K) of G-invariant differential oper-
ators. Let us start with the spectrum that is obtained from decomposing the represen-
tation L2(T\G).

Theorem II1.3.1 (see e.g. [BAIHVO8, Thm. F.5.3]). Let m be a unitary representation
of G. Then there exists a standard Borel space Z, a probability measure p on Z, and a
measurable field of irreducible unitary representations (7., H,) such that 7 is unitarily
equivalent to the direct integral fge modu(z).

According to the previous theorem let L?*(I'\G) be the direct integral |, ZEB Tdp(z).
We denote by Zg,, the subset {z € Z | 7. is spherical} of Z where spherical means
that the representation has a non-zero K-invariant vector. We note that projection
P: L*(T\G) — L*(I'\G)¥ onto the K-invariant vectors is given by [, R(k)dk where R
is the representation of G on L?(T'\G). Hence, there is a measurable vector field z + v
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such that v € HE is of norm 1 if HX # 0. In particular, Zsph is measurable. For
2 € Zspn the representation 7, is unitary, irreducible, and spherical. By Section
T, ~ 7y, for some A, € ag such that ¢, is of positive type.

Recall the definition of the essential range for a measurable function f: (Z,u) — Y from
a probability space into a second countable topological space Y:

esstan f = {y €Y | YU CY open,y € U: u(f~1(U)) > 0}.

By definition essran f equals the support of the pushforward measure f,p and for A CY
closed essran f C A if and only if f(z) € A for p-a.e. z € Z which we can see as follows:
Clearly, if u({f(z) ¢ A}) =0, then essran fNY'\ A = (). Hence, essran f C A. Conversely,
if essran f NY \ A = () then for every a € Y \ A we find an open neighborhood N, of a
with u(f~1(N,)) = 0. Since Y is second countable Y \ A can be covered by countably
many N,. Thus p(f~1(Y \ 4)) < S u(f~1(N,)) = 0. Therefore, f(z) € A for p-a.e.
z € Z.

The following lemma motivates the definition of the Plancherel spectrum.

Lemma II11.3.2. Let H = fZ@ H.du(z) be the direct integral of the field (H,).cz of
Hilbert spaces over the o-finite measure space (Z, ). Let T = fée T.du(z) be the direct
integral of the field of operators (T, )zEZ such that T(z) = f( )qu.[Z for a measurable
function f where the domain of T is {fZ Y, du(z) € H | fZ |£(2)|?|Jy2]1? du(z) < oo}
Then

o(T) =esstan f = {y € C | Ve > 0: u(f H(B:(y))) > 0}.

Proof If X ¢ essran f then there is € > 0 such that |f(z) — A| > ¢ for a.e. z € Z. Hence,
I f(z yidy. dp(z) is bounded operator with operator norm < 1/e inverting 7' — .
Therefore, \ ¢ o(T).

Conversely, let A € essran f and € > 0. Then A, :={z € Z | |f(2) — A| < €} has positive
measure and there is a unit vector y. = f? Ye,2dp(z) € H such that y. . =0 for z ¢ A..
It follows that

2

1T~ Ayl = H [ ) = ez

= [ 1) = APl () < €2
Consequently, T' — A cannot be invertible. O

For a locally symmetric space I'\G/K we define
o(I\G/K) := essran[z — ;| C ag/W.

Note that o(I'\G/K) C {X € ai/W | ¢y is of positive type}. In particular, since

functions of positive type are bounded o(I'\G/K) C conv(Wp) (see [Hel84, Ch. IV

Thm. 8.1]). Furthermore, ¢\ = ¢_5 so that o(I'\G/K) C {\ € al./W | =X € WA} (see
g. [HWW21| Sec. 4]).
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1I1.3. Spectra for locally symmetric spaces

111.3.2. The joint spectrum

In this section we describe a different kind of spectrum for D(G/K) that takes the action

of the operators into account instead of the representation theoretical decomposition (see
[Sch12, Ch. 5.2.2]).

Definition ITI.3.3 (see [Sch12, Prop. 5.27]). Let T} and T5 be (not necessarily bounded)
normal operators on a Hilbert space H. We say that 17 and T» strongly commute if their
spectral measures Er, and Ep, commute.

For strongly commuting normal operators we can define the following joint spectrum.

Definition II1.3.4 (see [Schl2, Prop. 5.24]). Let T' = {T1,...,T,} be a family of
pairwise strongly commuting operators on a Hilbert space H. We define o;(T") to be the
set of all s € C™ such that there is a sequence (z)ken of unit vectors in ();_; dom(7;) C H
satisfying

lim (7; — s;)x, =0

k—00

for all i =1,...,n. We call the sequence (zj) joint approximate eigenvector.

Clearly, every joint approximate eigenvector is an approximate eigenvector for T;. Hence,
s; € o(T;) for s € 0j(T;) and (see [Sch12, Prop. 5.24(ii)]):

o;i(T) Co(Th) x - x o(Ty).

Let us come back to the invariant differential operators on a locally symmetric space.
By definition D € D(G/K) is G-invariant and therefore it maps I'-invariant elements in
C>*(G/K) into itself. Since 'C>(G/K) ~ C=(I'\G/K) we obtain a differential operator
rD on I'N\G/K. Using the direct integral decomposition it is easy to see that rD is a
normal operator on L?(I'\G/K) for D € D(G/K) (with domain {f € L*(I'\G/K) |
rDf € L*(IT'\G/K)}). Furthermore, the spectral measure is given by

D D
EpM) [ fdp(z) = /{ £+ du(z).

zlxx; (D)eM}

We obtain that pD; and pDs strongly commute for Dy, Dy € D(G/K) and hence we can
define the joint spectrum for any finite family {rD1,...,rDy}.

111.3.3. Comparison of spectra

In this section we want to see that the Plancherel spectrum and the joint spectrum
coincide. In order to achieve this we need the following lemma.
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III. Temperedness of local product symmetric spaces

Lemma I11.3.5. Let pq,...,pn € Poly(ag(":)W be non-constant complex Weyl group in-
variant homogeneous polynomials of degree d; on af. that separate the points on ai/W.
Then at./W — C", A mod W — (p1(N),...,pn(N)) is a topological embedding.

Proof. By definition the mapping ®: A mod W +— (p1(N),...,pp(N)) is injective and
continuous. It remains to show that ®~! is continuous, i.e. for A, € af with ®(\,) —
®(\g) we have \, mod W — Xy mod W. Since the polynomials p; are homogeneous
it is clear that ®(0) = 0 and 0 is not contained in ®({\ € af | [[A|| = 1}/W). By
compactness

1P € ag | IA] = 13/W)leo = ¢ >0
where we use the maximum norm on C". Now for [|A]| > 1:

I2(A  mod W)l = max |pi(A)] = max A% [pi(A/|IAI])]
> (Al maxc [ps (A/[IA])] > el Al

For ®(\,) — ®(Ng) it follows that ||\,|| is bounded: Indeed if limsup ||A,|| = oo then
oo = limsup c|| Ay [|? < limsup || ®(An)]|oo < [|®(Xo) |l + 1. Therefore, A, is contained in
the bounded set B = {\ € ag. | [[A[| < r}. But now ®|g/y: B/W — C" is injective and
continuous and since B/W is compact it is a topological embedding. As \,, \g € B we
infer A\, mod W — XAy mod W and the lemma is proved. ]

As before let L2(T\G) = [ m.du(z). It is clear that L*(T\G/K) = L*(T\G)X =
| 2 o Hf dp(z). For z € Zg,), the representation 7, is unitary, irreducible, and spherical.

By Section [lI1.2.3| 7, ~ 7y, for some A, € ag./W such that ¢, is of positive type. This
reflects that o(T\G/K) is the set of spectral parameters \ occurring in L?(I'\G/K). By
definition of 7y, the differential operator D € D(G/K) acts by xx, (D) on HE.

We now aim to show the following proposition.

Proposition I11.3.6. Let D1, ..., D, be a generating set for D(G/K) consisting of sym-
metric operators such that their Harish-Chandra polynomials HC(D;) are homogeneous.
Then the following sets coincide:

(i) o(T\G/K)

(ii) {\| VD € D(G/K): xa(D) € o(rD)}

(iii) {\| Vp € Poly(az)" : p(\) € essran[z = p(X;)]}

(i) {X| Vp € Clar,...,xn]: pXa(D1), ..., XA(Dn)) € o(rp(D1, ..., Dy))}
(v) {N| (xA(D1), ..., xA(Dn)) € 0(rD1,...,1Dp)}

(vi) {N| 1Yo (Di — xa(Di))*(Di — xa(Dy)) is not invertible}
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1I1.3. Spectra for locally symmetric spaces

Proof. |(i1)}f(iii){and coincide by the Harish-Chandra isomorphism and Lemma

and contain o(I'\G/K) by continuity of the polynomials p € Poly(az)". Taking p =

oy (@i — xa(Di)) (xi — xa(D;)) we see that |(iv)|is contained in To see that is

contained in we observe that an approximate eigenvector for the spectral value 0 for

r 21 (Di — xa(Di)*(Di — xa(D;)) is an joint approximate eigenvector for all the pD;
s

a
n n

(e Di = XA (D)) = (1 Y (Di = xa (D))" (Di = xa(Di) £ f).

i=1 1=1
It remains to show that |(v)|is contained in ¢(I'\G/K). Let f, = fge . fn,zdp(z) be a joint
sp

approximate eigenvector for r D1, ...,r Dy and Ac = {z | o1, |xa. (Di) —xa(D:)|* < €}
Then

N

0> (eDi = xa(Di) ful® = g > o (D)) = XA (Do) Pl fuzl1? du(2)

sph ;=1

> / el fux? dp(2)

Zsph AE

but the last expression equals € if u(A:) = 0. Hence, Ac has positive measure for all
€ > 0. By Lemma the preimage of a neighborhood in af./W of X under z — X,
contains A, for some £ > 0 and therefore has positive measure as well. It follows
A € 0(I'\G/K). This completes the proof. O

We now prove that o(I'\G/K) contains ia* if the injectivity radius is infinite.

Proposition II1.3.7. Suppose that the injectivity radius of T\G/K is infinite, i.e. for
every compact set C C G/K there is g € G such that G/K — I'\G/K restricted to gC
is injective. Then ia* C 6(I\G/K). In particular, [||p||?,o0[ C o(rA).

Proof. The proof follows the same idea as [EO22, Prop. 8.4]. Let A € ia* = ¢(G/K).
We choose a generating set D1, ..., D, for D(G/K) consisting of symmetric operators
such that HC(D;) are homogeneous. Let D, 11 = (A — ||p||?)* for k large such that the
order of D, 1 is bigger than all the orders of Dy,..., D,. Denote the elliptic operator
S HU(D; — xa(Di))*(D; — xa(Dy)) by D. By Proposition there exists (fn)n C
L*(G/K) with || fullz2(/x) = 1 and Df, — 0. Since D is elliptic and positive it is
essentially self-adjoint on C2°(G/K). In particular, we can assume that f,, € C2°(G/K).
We can now find g, € G such that g, supp f, injects into I'\G/K. Define f,(T'z) =
Jn(gn 1) for 2 € g, K, and ﬁl(F:c) = 0 else. By construction this is well-defined and
[fnllL2e/ry = 1 fnllz2e/x)- Moreover, |lpD fullz2\e/x) = 1D fall2(qyx) — 0. This
shows A € 6(I'\G/K). The ’in particular’ part follows from Proposition and
YA(A) = (0 ) + 2 0

Remark II1.3.8. The assumption in Proposition is satisfied for the following
examples:

123



III. Temperedness of local product symmetric spaces

(i) If G = SLy(R) and T" is geometrically finite, then infinite injectivity radius is
equivalent to infinite volume which is again equivalent to saying that I'\H has at
least one funnel.

(ii) If G is simple of real rank at least 2, then a discrete subgroup I'\G/K has infinite
injectivity radius iff " has infinite covolume by [FG23].

(iii) If I" < G is an Anosov subgroup, then I'\G/K has infinite injectivity radius [EO22],
Proposition 8.3].

111.3.4. Temperedness of L?(I'\G)

We want to obtain a connection between the spectrum and temperedness of L?(I'\G).
Let us recall the definition of a tempered representation.

Definition ITI.3.9 (see e.g. [CHH88]). A unitary representation (7, H,) is called tem-
pered if one of the following equivalent conditions is satisfied:

(i) 7 is weakly contained in L?(G), i.e. any diagonal matrix coefficients of 7 can
be approximated, uniformly on compact sets, by convex combinations of diagonal
matrix coefficients of L?(G).

(i) for any & > 0 the representation 7 is strongly L2 where 7 is called strongly LP
if there is a dense subspace D of H, so that for any vectors v,w € D the matrix
coefficient g — (m(g)v,w) lies in LP(G).

To characterize temperedness of L?(I'\G) we will use the direct integral decomposition

(see Section [II1.3.1)).

We will prove the following statement.

Proposition II1.3.10. Suppose that Rec(I'\G/K) C I%Qconv(Wp) for some p €
[2,00[. Then L*(T\G) is strongly LPT¢. In particular, if c(T\G/K) C ia*/W then
L*(T\G) is tempered.

Proof. Let € > 0 and f1, fa € C.(I'\G) non-negative. We have to show that

/ (R(g) fu, fo)P*dg
G

is finite. Obviously, (R(g)f1, f2) = fF\G f1(Thg) f2(Th)dTh is bounded by (R(g)F1, F»)

where F;(I'h) = maxgek | fi(Thk)|. Hence, it is sufficent to show [, [(R(g) f1, f2)|*t5dg <
oo for K-invariant fi, fo. We decompose f; in the direct integral decomposition as
fi= fge fi-dp(z). Since we assumed f; to be K-invariant we know that f; . € HE for
p-a.e. z € Z. It follows that we have to integrate only over Zgpy.
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1I1.3. Spectra for locally symmetric spaces

For z € Zg, the representation . is unitary, irreducible, and spherical. By Sec-
tion [II1.2.3 m, ~ 7y, for some A, € ag such that ¢y, is of positive type. We also

have (m.(9) f1.z, f2.2) = o (9) - (f1,2, f2,2). By assumption, A, € pp%zconv(Wp) for
a.e. z € Zgpn. This implies that ¢y, € LPTS(G) by [HWW2I, Prop. 2.4] and even
Joloa.Pte dg < Cc ) for prae. z € Zgy, with C. ), independent of .

Now we estimate

p+e
/| Aﬁww<4<é|m@mﬁamw)(w
pte
=/</ wummﬁﬁmww) dg.
G Zsph

Using Holder’s inequality we find that

J.

(62, (9) (1,20 f2.2)|dn(2) = j/ (63 (@) {120 Fo.o)| 7 (e, fo.2)| YV 9d(2)

ph ngh

s(é W&@Wﬂ%mhﬁmm0p5</

sph Zsph

1/q
[(f1.25 fz,z>\du(z)> :

where ﬁ —|— = =1.

Therefore,

/| ﬁﬁww<//|m (O Frns fo.0)dia(2)

pte

~ (J/ Kfiz,jb¢>ldu(Z)> " dg.
Zsph

Using [, |¢x. [P dg < C. it follows

/| 9)f1, f2) |p+€dg<csp/ [(f1,2, f2,2)|dp(2) - </Z

sph

pte
< Cep (/Z [(f1,2, f2,z>|d,u(z)>
SC@(L If1.cPdute) [

sph

+ +
< Cepl Al e I el ) < oo

pte
q

[(f1,2, fa,2) Idu(2)>

p+e/2
du(z)>

This completes the proof. O
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III. Temperedness of local product symmetric spaces
111.4. The spectrum for quotients of products of rank one space

111.4.1. The resolvent kernel on a locally symmetric space

In this subsection we determine the Schwartz kernel of the resolvent on a locally sym-
metric space in terms of its Schwartz kernel on the global space G/K. To do this we
need the following well-known lemma.

Lemma II1.4.1. The averaging map a: CX(G/K) — C*(T'\G/K) defined by

z) =Y f(yz), z€G/K,

vel’

18 surjective.

Let us recall that for D € D(G/K) we defined the differential operator rD acting on
L*(T\G/K). The following lemma tells us how the Schwartz kernel of rD~! can be
expressed provided D is invertible.

Lemma I11.4.2. Let D € D(G/K) and suppose that D is invertible as an unbounded
operator L*(G/K) — L*(G/K). Let Kp-1 € D'(G/K x G/K) be the Schwartz kernel
of D~'. Suppose further that rD: L*(T\G/K) — L*>(I'\G/K) is invertible. Then the
Schwartz kernel K .p-1 € D'(I\G/K x '\G/K) of rD™! is given by

K.pi(p@¢) = Kp-1(L,¢ @),
el

where ¢ (and 1p) are preimages of @ (resp. ) under the surjective map o: C°(G/K) —
C*(I'\G/K). By slight abuse of notation we write

K.p-1(Tz,Ty) =) Kp-i(z,
vel’

Proof. First of all note that D and therefore D! is G-invariant, hence Kp(@ ®
Kp(Lyp ® Ly) for all ¢ € G and @,9p € CP(G/K). Let ¢ = ap,ih =
C(I'\G/K). By definition of K p-1 we have

-):
ayp €

Keps((eDy) @) = [ o PATT) Tz

On the other hand rDy¢ = a(D@) by G-invariance of D so that we can choose D@ as
rD¢. Therefore we have to show

Y Kp-1(LyD @) = /F\G/K o(Tz)y(Cz) dlx.

yerl
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II1.4. The spectrum for quotients of products of rank one space
The left hand side equals

S Kpa(DLged) =Y /G P de

vel’ yerl’

again by G-invariance of D and the definition of Kp-1. Now we can use the definition
of the measure of I'\G/K to conclude

> [ Lpeie =3 p)i(/a) dts = [ p(Ta)i(Cs) dra,

~vel NG/K

This shows the lemma. O

111.4.2. Spectrum of the Laplacian in a general locally symmetric space of
rank one

In this section we recall the connection between the bottom of the Laplace spectrum on
the locally symmetric space I'\G/K of rank one and the critical exponent of I" which is
due to Elstrodt [Els73al, [EIs73Db, [Els74] and Patterson [Pat76] for G = SLy(R), Sullivan
[Sul87] for G = SOy(n, 1), and Corlette [Cor90] for general G of rank one. In the higher
rank setting this was generalized by Leuzinger [Leu04], Weber [Web08§|, and Anker and
Zhang [AZ22].

Definition IIT1.4.3. We define the abscissa of convergence/critical exponent for I' as

or =inf < s € R: Ze_SH“+(7)|| < 00
~vel

Let us recall the theorem for the bottom of the spectrum on a locally symmetric space
of rank one and its proof as we will use it later in the proof of Theorem [[11.4.9

Proposition I11.4.4. Let G/K be a symmetric space of rank one and T a torsion-free
discrete subgroup. Then

lol% o < Il
o(rA
“)Q{WW—wrwwﬂm[:&>mw

The main ingredient for the proof of Proposition is the Green function which is
the resolvent kernel K(a_,)-1 for the Laplacian A. It is well-known that Ka_)-1
is a smooth function away from the diagonal. By the G-invariance of A we have
Ka—2-1(97,9y) = Ka—z)-1(z,y) and therefore K(a_)-1(z,y) only depends on the
value pi4 (x71y) € a. This allows us to see K(a—z)-1 as a function on A which has the
following global bounds:
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III. Temperedness of local product symmetric spaces

Theorem II1.4.5 ([AJ99, Thm. 4.2.2]).

1) For every z < b < 2 there is a constant C,p > 0 such that
() Yy P z,b
Ka_z1(e) < C, pem Wl =blpDIH]

for all H € a away from the origin.

(i) For every z < ||p||? there is a constant C, such that

| H|2~d(E/K) s dim(G/K) > 2

H
K(Afz)_l(e )< C: {1og(1/||HD : dim(G/K) =2

for all H € a near the origin.

Remark IT1.4.6. In addition to the bounds on K(s_,y-1 from Theorem we will
use the following general estimates:

[K(a—z)-1] £ K(A_Rez)—
which is positive. Moreover,
K(A_Z)—l < K(A—z/)—l for z < 7 < Hp”2

These estimates can been seen e.g. by writing (A — 2)~! in terms of the Laplace trans-
form.

We use Stone’s formula in order to decide whether the kernel given by the averaging
construction of Lemma [[11.4.2| defines a bounded inverse on L?(T'\G/K).

Proposition IT1.4.7 (sec e.g. [Sch12, Prop. 5.14)). Let A be a self-adjoint operator and
Py the spectral projector of A for a Borel subset I CR. Then

1 1 [
5 (Plag) + Fop) = lim / (A= (z4i2) "L — (A— (2 — ie))Ldz.

e—0 271
Here the limit as € — 0 is understood as a strong limit.
The advantage of Stone’s formula is that the occurring inverted operators are well-defined

by the self-adjointness of A. Hence we can merely consider the Schwartz kernel without
having to wonder whether this kernel defines a bounded operator on L?.

Proof of Prop. [III.{.7] According to Proposition [[I[.4.7] we have to determine for which
b < lpl*

/b (PA — (2 +ig)) ™t — (A — (2 —ie)) L dz — 0 (IIL3)
0
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II1.4. The spectrum for quotients of products of rank one space

in the strong sense as ¢ — 0. As in Lemma denote the Schwartz kernel of
(rD — (z £ig))~ ! by K (.D—(z+ie))-1- Then we need to see that

b
/O (K(ra—(ztie-t = Kpa—(z—ie))-1) (¢ @ ¥)dz — 0 (IIL.4)

as € — 0 for every ¢,1p € C®(I'\G/K) for certain b < ||p||>. Let ¢ (resp. %) be a
preimage of ¢ (resp. ¢) under the map «. Then the expression in (III.4) equals

b ~
/0 > (B a—rien-1 = KA (omiey-1) (Ly@ @) dz (IIL5)
vyel

by Lemma [[II1.4.2| since A is symmetric and therefore pA — (z £ i¢) is invertible.

The following slightly more general lemma shows that ([IL3]) holds for b < |[|p||? —
(max{0, dr — [|pll})* and hence o(rA) N (=00, [|pl* — (max{0, or — [|pll})?) = 0. O

Lemma I11.4.8. Let D be a multiset whose underlying set is a discrete subset of a rank
one Lie group G and

op =inf{ seR: Z e8Il <« oo
yeD

For b < ||pl|? — (max{0,8p — ||p||})? it holds that

b ~
/ > (KA (otio))-1 — K(a—(smiey-1)(Ly@ ® ¥) dz = 0
0 YyeD

as e — 0 for every ¢, € C*(G/K).

Proof. Since the supports of ¢ and 1/; are compact there are only finitely many v € T’
such that supp (L@ ® 1) intersects the diagonal in G/K x G /K non-trivially. For these
finitely many v € T’ the term converges to 0 as A — z is invertible on L?(G/K) for
z < ||pl|? and therefore (A — (z £ i)™t — (A — 2)~L

For the other v we use that Ka_,)-1 is a smooth function away from the diagonal and
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III. Temperedness of local product symmetric spaces

the estimates from Remark [11.4.6]

b
/ Z(K(A—(z—i-ia))—l — K(A—(z—ie))-1)(Lyp @ 9) dz

< sup bZ‘ (A—(z+ie)~t — K(a (zfis))—l)(L'y@@J})‘

< sup bz/G/K/G/K‘(K(A—(z—i-ia))—l(x)y)_K(A—(z—ia))—l(l')y))(@('y1$)d~}(y)) dz dy

0<z<b

0<z<b

<2b2/

G/K

< s, 23 L L [ @i aray
[ K1 Ga)e@)i)] dody
G/K

Since the Green function only depends on z (y~!~yx) this can be estimated by a constant
times

sup Z|K(A b (et vw))‘
z,yeC

where C' C G is compact. Now we use Theorem to see that this is bounded for
any v > 0 by

C, sup Z lll12=b+llpll =)+ (v~ )| (I11.6)

z,yeC
By the triangle inequality
i+ < Mt W+ N @)+ (2=l
so that (II1.6)) is bounded by

C, sup eWIlelP=btloll=) (- ()l + It (2 II)Ze llol2=b+llpll =)+ (NI

z,yeC

This is finite (for small v) if \/||p[|2 — b+ ||p|| > or, i.e. b < ||p||? — (max{0,6p — ||p||})2.

This estimate allows us to use Lebesgue’s dominated convergence theorem to conclude
the lemma. O

Note that in Lemma [[II.4.8] D is not assumed to be a group. We will use this general
statement in the proof of Proposition

111.4.3. Product of rank one spaces

Let X = X1 x Xy = (G1 x G2)/(K1 x K3) be the product of two rank one symmetric
spaces and I' € G; x Gy discrete and torsion-free. In order to determine ¢(I'\G/K)
in this case we bound the spectrum of the Laplacian acting on one factor and then use
Proposition
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Theorem I11.4.9. Let Ay be the Laplacian A ®id on L?(X; x X3) = L*(X1) ® L*(X2)
acting on the first factor. Let

01 = supinf ¢ s € R: Z e sl « o0
fi=0 VET s (12) <R

Then

5(FA1> = {)\ S CLEE/W ’ X)\(Al) € J(FAl)}
C{A € ag/W | [Re(A)]| < max(0,d1 — [|p1]])}-

Proof. Since the Schwartz kernel of the identity is the Dirac distribution d,,—,, on the
diagonal in X5 x Xs, the Schwartz kernel of (A; — 2)71 is

Ky (1, 22), (Y1, 92)) = K(a—2)—1 (21, Y1)0ay =y, (T2, Y2)

for z ¢ [||p1]?, oo[. Therefore, if (rA; — 2) is invertible the kernel of (rA; — 2)7! is

K(pay—n-1 (T, 22), T(y1,52)) = Y Ka—a)-1 (1121, 41)8s—y, (Y222, 42)
yer

by Lemma According to Proposition we have to determine for which
b < lp1]*

b
/0 (rA1 — (z+1ie)) ™t — (rA1 — (2 —ie)) "t dz = 0

in the strong sense as ¢ — 0. As in Lemma denote the Schwartz kernel of
(rD —z)~! by K(.p—.)-1. Then we need to see for which b < llp1I?

b
/O (K(ea—(z+ie)) -t — Kpa,—(z—ie)-1)(p @)dz — 0 (ITL.7)

as e — 0 for every p,9 € C®°(I'\G/K). Let ¢ (resp. 1)) be a preimage of ¢ (resp. 1))
under the map «. Then the expression in ([I1.7) equals

b
/ D (K(ay—(stie))1 — K(ar—(emiey-1) (L1 @ ¥) dz
0 ~yel’

by Lemma Without loss of generality we can assume that ¢ = @1 ® @ €
C(X1)®@CP(X2) C CX(X1 x X2) and in the same way for 1. Then (I11.7) reduces to

b ~ ~
/0 > (K(A—(z—&-ia))*l — K(A—(z—ie))y-1) (L 1 ® 1/11)) (Ozo=ys (Lrp P2 ® 1p2)) dz
vyel
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III. Temperedness of local product symmetric spaces

The latter part of the integrand is [ X P2(7y 1x)1/~12(w) dx which vanishes if v, is large
depending on @9 and 1;2. More precisely, this is the case if

lp+(v2)|l >2 max_ d(z,eK2)+ max_d(z,y) = R.

TESUPP P2 :L“Esupp«ég
yEsupp 2
Indeed, d(x,7v, 'z) > d(yaK2,eKs) — 2d(z,eK2) > maxXgesuppg, d(,y) so that x €
yEsupp P2

supp s excludes Yo Ly e supp @o.

Let ' == {y € T' | |u+(72)|| < R}. It follows that (III.7]) is bounded by a constant
times

b ~
/ > (K- rien-1 — K(a(omiey—1) Ly &1 @ 1) dz
0 Y€l'R

Now Lemma yields that this vanishes as ¢ — 0 as long as

b < [lpall* = (max{0, 6y, () — llp1l})?

where pr; (') is the multiset of 41 € G with multiplicity #{(7{,7,) € Tr |71 =71} In
order to get (IIL.7)) for every ¢, the above condition on b has to hold for every R > 0,
ie. b< |pil|2 = (max{0,8; — ||p1]|})2. We infer that

oy < J ol ool 01 < o]
= Weal? = @ = a2 o0l 5 61> il

Reformulating this statement in terms of ¢ we obtain the stated result. O

Obviously, Theorem is also true if we consider the Laplacian on the second factor
with the critical exponent

09 = supinf ¢ s € R: Z e sl o9
fi=0 VeT s (1) lI<R

Using this, Proposition [[T1.3.6] and Proposition [[II.3.10| we obtain the following corollary
giving us temperedness of L?(I'\G) in dependence of §; and ds.

Corollary I11.4.10. If 6, < ||p1|| and 52 < ||p2]|, then L*(T\G) is tempered.

Example IT1.4.11. (i) Let I" be a product I';y x I'y where each I'; < Gj is discrete
and torsion-free. Then it is clear that §; = dr,. Hence, we obtain the expected
results in this product situation.

(ii) Let T' be a selfjoining: both projections m;: G1 x Go — G; onto one factor re-
stricted to I' have finite kernel and discrete image. Then the set of v € T' where
|1+ (m:(7))|| < R is finite. Therefore §; = —oo and L?(I'\G) is tempered.

(iii) Let I' < G1x G2 be an Anosov subgroup with respect to the minimal parabolic sub-
group, i.e. I' is a selfjoining such that m;|r are convex-cocompact representations.
In particular, L?(T'\G) is tempered.
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II1.4. The spectrum for quotients of products of rank one space

111.4.4. Growth indicator function

In this section we will take a look at the limit cone and the growth indicator function
¢r introduced by Quint [Qui02] and compare it with d;.

Definition I11.4.12. The limit cone Lr of I' is defined as the asymptotic cone of p4 ("),
ie.

Lr = {limt,py (vn) [ tn — 0,7, € T}

For T' Zariski dense, Lr is a convex cone with non-empty interior [Ben97]. From this
definition we obtain the following proposition.

Proposition IT1.4.13. Let I' be a torsion-free discrete subgroup of G = Gy X Go where
G are of real rank one. If Lr C ay U {0}, then L*(T'\G) is tempered.

Proof. In view of Corollary it is sufficient to show that §; = —oco. Suppose there
are infinitely many ~, € I' pairwise distinct such that ||p4(vn2)|| < R. By discreteness
|t (Ym,1)|| — oo. Hence we can choose t,, == 1/||pt4(vn,1)||. Then t, 14 (7,) converges
to (Hy,0) where H; € aj 4 is normalized contradicting Lr C ay U {0}. Therefore, there
are only finitely many ~ € I" with bounded second component and hence §; = —co. The
same argument works for ds. O

For I' < G discrete and Zariski dense let ¢r: a — R U {—o00} be defined by

Yr(H) = || H|| glréfc inf{s € R | Z el < 50}
vel,u4(v)EC

where the infimum runs over all open cones C containing H and || - || is a Weyl group
invariant norm on a. For H = 0 let ¢r(0) = 0. Note that ¢p is positive homogeneous
of degree 1. In general we have the upper bound ¢r < 2p. By [Qui02] we know that
Yr > 0 on Lp, ¥r > 0 on the interior of L1 and ¥r = —oo outside Lp. Moreover, ¥ is
concave and upper-semicontinuous.

Let us compare 91 to ¥r in the situation G = G X G5 where G; is of real rank one. Let
H; € a; + of norm 1 and consider the maximum norm on a = a; X az. In this situation
it is clear that 0; < ¢r(H;,0) since every cone C containing (Hp,0) contains the strip
a1+ X {H € ag 4 | [|[H|| < R} outside a large enough compact set.

Note that if ¥)p < p then by the above comparison this condition implies d; < ||p;|| which

is enough to obtain:

Corollary I11.4.14. Let X = X; x Xy = (G1 X G2)/(K1 x Ka3) be the product of two
rank one symmetric spaces and I' < G1 X Go discrete and torsion-free. If ¥r < p then
L?*(T\QG) is tempered.

Note that this is precisely the result of [EO22] without the assumption that I' is the
image of an Anosov representation with respect to a minimal parabolic subgroup.
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