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Abstract

The aim of this thesis is to contribute to the spectral geometry of higher rank locally
symmetric spaces. The theory for rank one spaces is well developed but in the higher
rank case much less is known. Therefore, the main interest is the higher rank case.

There are two different sets of operators that we are considering: First, the algebra
of invariant differential operators on the locally symmetric space. This is the proper
replacement for the Laplace operator in the higher rank setting and encodes the quantum
mechanics of the manifold. Secondly, the classical dynamics are described by the geodesic
flow in the rank one case. In higher rank this is replaced by the Weyl chamber flow.

We prove a quantum-classical correspondence between the spectra of these two sets of
operators for compact locally symmetric space. This is used to determine the location
of the classical Ruelle-Taylor resonances and to prove a Weyl law as well as a spectral
gap.

In the non-compact setting we concentrate on the quantum spectrum. We prove that
there are no principal L2-eigenvalues under some dynamical condition, i.e. that there
are no tempered spherical representations occurring discretely in L2(Γ\G).

Concerning the non-tempered part of the spectrum, we relate its extent to the growth
rate of the fundamental group in the case where the universal cover is a product of rank
one symmetric spaces. In particular, we obtain that the space is tempered if the growth
rate is small enough.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Erweiterung der Spektralgeometrie von lokal symmetrischen
Räumen. Die Theorie für Räume vom Rang eins ist gut entwickelt, aber im Fall höheren
Rangs ist deutlich weniger bekannt. Daher gilt das Hauptinteresse dem Fall höheren
Rangs.

Es gibt zwei verschiedene Gruppen von Operatoren, die wir hier betrachten: Erstens,
die Algebra der invarianten Differentialoperatoren auf dem lokal symmetrischen Raum.
Dies ist der geeignete Ersatz für den Laplace-Operator im höheren Rang und kodiert die
Quantenmechanik der Mannigfaltigkeit. Zweitens wird die klassische Dynamik im Rang
eins durch den geodätischen Fluss beschrieben. In höherem Rang wird dieser durch den
Weyl-Kammer-Fluss ersetzt.

Wir beweisen eine Quanten-Klassische-Korrespondenz zwischen den Spektren dieser bei-
den Gruppen von Operatoren für kompakte lokal symmetrische Räume. Dies wird ver-
wendet, um die Lage der klassischen Ruelle-Taylor-Resonanzen zu bestimmen und ein
Weyl-Gesetz sowie eine spektrale Lücke zu beweisen.

Im nicht-kompakten Fall konzentrieren wir uns auf das Quantenspektrum. Wir beweisen,
dass es unter bestimmten dynamischen Bedingungen keine temperierten L2-Eigenwerte
gibt, d.h. es gibt keine temperierten sphärischen Darstellungen, die diskret in L2(Γ\G)
auftreten.

Was den nicht temperierten Teil des Spektrums betrifft, setzen wir seine Ausdehnung mit
der Wachstumsrate der Fundamentalgruppe in Beziehung. Diesen Zusammenhang erhal-
ten wir in dem Fall, dass die universelle Überlagerung ein Produkt von symmetrischen
Räumen vom Rang eins ist. Insbesondere erhalten wir, dass der Raum temperiert ist,
wenn die Wachstumsrate niedrig genug ist.
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Unterstützung in schwierigen Phasen war für mich unersetzlich und hat mir geholfen,
neue Motivation zu finden.
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unerwünschte Ablenkung hat mir geholfen, mich auf das Wesentliche zu konzentrieren.
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1. Introduction

The mathematical field of spectral geometry concerns the interplay between the geom-
etry of a manifold and spectra of differential operators defined by the structure of this
manifold. The most prominent example of such an operator is the Laplace-Beltrami
operator on a Riemannian manifold. A classical occurrence of the relation between the
geometry and the spectrum is that the spectrum of the Laplace-Beltrami operator on a
compact manifold is discrete, i.e. it consists of a discrete set of eigenvalues with finite
multiplicities. Even more is true: The asymptotics of the number N(T ) of eigenvalues
less than T is precisely described by the Weyl law:

lim
T→∞

N(T )

T d/2
=

ωd
(2π)d

vol(M),

where ωd is the volume of the unit ball in Rd and d is the dimension of the manifold M .

Another important example of a differential operator that is of a different flavor is the
geodesic flow ϕt respectively its generator the geodesic vector field X. It is defined as
follows: If (x, v) is a vector in the unit tangent bundle SM of the Riemannian manifold
M , then there is a unique geodesic γv : (−ε, ε)→M such that γv(0) = x and γ̇v(0) = v.
Then ϕt(x, v) = (γv(t), γ̇v(t)). If M has negative sectional curvature, then the spectrum
of X on L2(SM) is equal to iR. Nevertheless one can associate a discrete spectrum to
the geodesic vector field by continuing the resolvent of X meromorphically on suitable
Hilbert spaces. This leads to the notion of Ruelle resonances. The goal of the present
thesis was to study the spectra of generalized versions of the Laplacian and the geodesic
vector field on certain types of manifolds M with lots of symmetries.

One class of examples is given by hyperbolic surfaces with finite topology, i.e. geomet-
rically finite surfaces of constant curvature −1. This example is the simplest case and
serves as motivation for the questions dealt with in this thesis. Let us first describe the
two different kinds of spectra in this case.

1.1. Ruelle resonances

On the dynamical side we have the Ruelle resonances of the geodesic flow. These can
be defined as follows. For λ ∈ C we first define the space of resonant states

Res(λ) := {u ∈ D′
E∗

u
(SM) | (X + λ)u = 0},

1



1. Introduction

where D′
E∗

u
(SM) are the distributions on SM with wavefront set contained in the un-

stable bundle E∗
u. Then the set of Ruelle resonances can be defined as

σRue(X) := {λ ∈ C | Res(λ) ̸= 0}.

Note that this definition is only valid for compact hyperbolic surfaces but there are
different approaches that can be extended to non-compact settings (see [BW22]).

For the location of the resonances we have the following theorem.

Theorem 1.1 (see [DFG15]). σRue(X) is discrete and if λ ∈ σRue(X) then either Imλ =
0 or Reλ ∈ −1

2 − N0.

In particular, the theorem establishes a band structure with bands at the lines where
the real part is −1

2 − N0. Moreover, the discreteness together with the band structure
imply the existence of a spectral gap: There is ε > 0 such that

σRue(X) ∩ {Re > −ε} = {0}.

The existence of a spectral gap is strongly related to mixing properties of the geodesic
flow such as decay of correlations. On hyperbolic surfaces exponential decay of corre-
lations has been shown by Moore [Moo87] which by its own means provides a spectral
gap. For Weyl chamber flows, which are the higher rank analogues of geodesic flows, the
interplay between a spectral gap and exponential decay of correlations is more subtle.
Exponential decay of correlations has been shown by Katok and Spatzier [KS94]. How-
ever the existence of a spectral gap does not follow immediately due to the definition
of the resonances in the higher rank setting [BGHW20]. We will prove the existence of
a spectral gap in this more general setting and also give a precise resonance-free region
(see Theorem I.5.1).

1.2. Laplace spectrum

The Laplace spectrum on a hyperbolic surfaceM of finite topology highly depends on the
geometry of M . If we stick to the setting of compact surfaces, the spectrum is discrete
and satisfies a Weyl law as described above. However, the Laplace spectrum can be
studied on a general hyperbolic surface. In the non-compact setting it is more elaborate:
If M is non-compact and geometrically finite, the interval [1/4,∞[ is always contained
in the spectrum and the spectrum below 1/4 consists of finitely many eigenvalues (see
[Bor16] for an overview).

In the special case of the modular surface SL2(Z)\H the only eigenvalue below 1/4 is 0
corresponding to the constant functions. However there are infinitely many eigenvalues
embedded in the continuous spectrum [1/4,∞[ satisfying a Weyl asymptotic. These
Maass wave forms are studied in the theory of automorphic forms and are of fundamental
importance in number theory.
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1.3. Quantum-classical correspondence

For a general finite area geometrically finite hyperbolic surface the situation of embed-
ded eigenvalues is not understood completely. There is a conjecture by Phillips and
Sarnak that embedded eigenvalues do not exist for a generic surface. Furthermore, it
is conjectured that there are infinitely many embedded eigenvalues if and only if the
fundamental group is arithmetic (see [PS85]).

If we proceed to infinite area surfaces, then the aspect of embedded eigenvalues becomes
clearer. Here we have the following classical theorem.

Theorem 1.2 (see [Pat75]). For a geometrically finite hyperbolic surface of infinite area
there are no L2-eigenvalues for the Laplace-Beltrami operator in the continuous spectrum
[1/4,∞[.

This theorem will be generalized in Project II to higher rank locally symmetric spaces.

On the other side of the spectrum one is interested in the first eigenvalue or more
precisely in the bottom λ0 of the Laplace spectrum. Clearly, if M has finite area, then
λ0 = 0 as the constant functions are harmonic L2-functions. If M has infinite area, λ0
is related to the growth rate of the fundamental group as follows: The universal cover
of the hyperbolic surface is the hyperbolic plane H on which the fundamental group
Γ ≤ PSL2(R) acts freely. The critical exponent δ of Γ is defined by

δ := lim sup
R→∞

1

R
log#{γ ∈ Γ | d(γx0, x0) < R}, x0 ∈ H arbitrary,

which is also equal to the Hausdorff dimension of the limit set of Γ. It is related to the
bottom of the Laplace spectrum λ0 by the following theorem.

Theorem 1.3 (see [Els73, Pat76]).

λ0 =

{
1/4 : δ ≤ 1/2

δ(1− δ) : δ ≥ 1/2
.

In particular, if δ ≤ 1/2 the spectrum of ∆ equals [1/4,∞[ and is therefore equal to
the Laplace spectrum on the universal cover H. In this case we call M tempered as all
PSL2(R)-representations occurring in L2(Γ\PSL2(R)) are then tempered. In Project III
we give criteria for temperedness of manifolds which have a product of rank one spaces
as universal cover.

1.3. Quantum-classical correspondence

In physics there is a general principle that states that the large scale behavior of a system
described by quantum mechanics has to agree with the classical description. In our
setting this means that there should be a strong relation between the Laplace operator

3



1. Introduction

(quantum side) and the geodesic flow (classical side). A manifestation of this principle
is the Selberg trace formula which holds for finite area hyperbolic surfaces [Sel56]. Using
this formula McKean [McK72] and Müller [Mül92] showed that the Laplace spectrum
and the length spectrum (i.e. the length of primitive closed geodesics on M) determine
each other in the compact case and in the finite area case, respectively. (The compact
case is originally due to Huber [Hub59] by a different method.) With this theorem in
mind one also expects a correspondence between the Laplace spectrum and the Ruelle
resonance spectrum in the case where both spectra are defined. In particular in the case
of compact hyperbolic surfaces we have the following theorem.

Theorem 1.4 (see [DFG15, GHW18]). For a compact hyperbolic surface M the Ruelle
resonances for the geodesic flow on SM are

(i) λ = s−1−m, m ∈ N0,Re s ∈ [0, 1], s ̸= 0, 1, with multiplicity dimker(∆−s(1−s))
if s ̸= 1/2 and 2 dimker(∆−1/4) if s = 1/2. Moreover, there is an explicit relation
between Ruelle resonant states and eigenfunctions of the Laplacian.

(ii) −n, n ∈ N0, with multiplicity 1 if n = 0 and n2|χ(M)|+2 if n ̸= 0 where χ(M) is
the Euler characteristic of M .

Note that Theorem 1.1 is achieved by this quantum-classical correspondence in combi-
nation with the positivity of ∆. We will follow the same strategy in Section I.6 and
establish a generalization of such a quantum-classical correspondence on higher rank
locally symmetric spaces in Project I.

1.4. Locally symmetric spaces

The previous descriptions of the different spectra on hyperbolic surfaces are well-known
for some time. Clearly there are generalizations of many results to more general set-
tings. For example one could take a look at manifolds of higher dimension or relaxing
the condition of hyperbolicity. The direction we are taking is the following. By the uni-
formization theorem the universal cover of a hyperbolic surface is the hyperbolic plane
H. The group of Deck transformations Γ is isomorphic to the fundamental group of the
hyperbolic surface. Γ is a discrete torsion-free subgroup of the orientation-preserving
isometries on H and the hyperbolic surface is Γ\H. The group of orientation-preserving
isometries on H is PSL2(R) which acts transitively on H with stabilizer of a base point
conjugated to PSO(2). Hence, the hyperbolic surface is isomorphic to the biquotient
Γ\PSL2(R)/PSO(2). The way we want to generalize the above mentioned results is to
extend our knowledge to manifolds with a symmetric space G/K as a universal cover,
i.e. to biquotients Γ\G/K for other real semisimple Lie groups G of finite center with
maximal compact subgroup K and discrete torsion-free subgroups Γ ≤ G. The resulting
manifolds Γ\G/K are called locally symmetric spaces and are the main objects of our
study.

4



1.5. Quantum and classical operators

1.5. Quantum and classical operators

The two operators – the Laplacian and the geodesic flow – that define the two spectra are
defined on a locally symmetric space merely by the property that they are Riemannian
manifolds. However, one observes that the corresponding operators on the symmetric
space G/K are invariant by the action of G. Indeed, they are defined by means of the
metric and (the identity component of) G is the isometry group of G/K. Hence, they de-
scend to the locally symmetric space Γ\G/K and there they coincide with the operators
directly defined by the metric. Not only these operators descend to their local versions
but so do any G-invariant ones. In particular, each element of the algebra D(G/K) of
G-invariant differential operators on G/K descends to Γ\G/K. This algebra is central in
all three projects contained in this thesis so that we included a preliminary discussion of
its properties in Chapter 3. The algebra D(G/K) always contains the Laplace-Beltrami
operator, but in general it is generated by multiple algebraically independent operators
with the number of generators equal to the rank of the symmetric space. For a better
understanding of the relation between spectra and geometry it is more fruitful to con-
sider a joint spectrum of D(G/K) instead of ∆ alone (see Proposition III.3.6 for multiple
equivalent definitions).

For the geodesic flow the construction is a little bit more involved. Recall that it is defined
on the sphere bundle of the manifold which is given by Γ\PSL2(R) = Γ\SL2(R)/{±1}
for a hyperbolic surface Γ\SL2(R)/SO(2). The geodesic flow is then obtained by right
multiplication by at = diag(et/2, e−t/2). Note that the set {at | t ∈ R} is precisely the
group A in the Iwasawa decomposition

SL2(R) =
(
1 ∗
0 1

)
{at | t ∈ R}SO(2) = NAK

and {±1} is precisely the subgroup M of K = SO(2) commuting with all at. This leads
to the following definition generalizing the dynamical action.

Definition 1.5. The right action of A on Γ\G/M is called Weyl chamber action where
G = NAK is an Iwasawa decomposition and M is the centralizer of A in K.

[BGHW20] provides a resonance spectrum for this action for compact locally symmetric
spaces (see Section I.2.1 and I.3). This spectrum is then called Ruelle-Taylor resonance
spectrum as it is defined using the notion of the Taylor spectrum for commuting opera-
tors.

This thesis is concerned with these spectra and their connection to each other as well as
the relation to the geometry especially in the case of higher rank, i.e. if dimA ≥ 2. We
will summarize the results in the next chapter.
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2. Summary of the publications

In this chapter we will summarize the results of the three projects.

Project I: Quantum-classical correspondence

In this project we determine the location of certain Ruelle-Taylor resonances for the
Weyl chamber action, i.e. we generalize Theorem 1.4 to the higher rank setting. As in
the surface case this is achieved by proving a quantum-classical correspondence, i.e. a
1:1-correspondence between horocycle invariant Ruelle-Taylor resonant states and joint
eigenfunctions of the algebra of invariant differential operators on G/K. The description
of the quantum spectrum is due to [DKV79] in this case and leads to a Weyl-lower bound
on an appropriate counting function for the Ruelle-Taylor resonances. Furthermore, we
establish a spectral gap which is uniform in Γ if G/K is irreducible of higher rank. In
contrast to the rank one case this does not follow from the discreteness of the spectrum.
We rather have to use Kazdhan’s Property (T) to prove its existence. The size of the
gap is made explicit by Lp-bounds for elementary spherical functions.

In addition to the published article, we give an alternative proof for the obstructions on
the location of the resonances that avoids the abstract theory of unitary representations
connected to spherical functions (Section I.6). This line of arguments is more in the
spirit of the rank one case where one obtains the location of the resonances from the
positivity of the Laplacian together with the quantum-classical correspondence. We also
added an alternative proof for the uniform spectral gap that does not use an explicit
description of Kazhdan’s Property (T) (Section I.7).

Project II: Absence of principal eigenvalues

As described above (see Theorem 1.2) given a geometrically finite hyperbolic surface of
infinite volume it is a classical result of Patterson that the positive Laplace-Beltrami
operator has no L2-eigenvalues ≥ 1/4. In this project we prove a generalization of this
result for the joint L2-eigenvalues of the algebra of commuting differential operators
on Riemannian locally symmetric spaces Γ\G/K of higher rank. We derive dynamical
assumptions on the Γ-action on the geodesic and the Satake compactifications of the
globally symmetric space G/K which imply the absence of the corresponding principal

7



2. Summary of the publications

eigenvalues. A large class of examples fulfilling these assumptions are the non-compact
quotients by Anosov subgroups. To get a more complete picture of the compactifications
we included a preliminary discussion of the geodesic and the Satake compactifications
(Sections II.2 and II.3).

Project III: Temperedness of local product spaces

Theorem 1.3 establishes a connection between the growth rate of the fundamental group
Γ and the bottom of the Laplace spectrum as well as the temperedness of the surface.
The growth rate of Γ is measured by the translation distance in the universal cover
G/K which equals the size of the A-component in the KA+K-decomposition of the
isometry group G. In the higher rank setting where dimA ≥ 2 there are different ways
to measure this size. For example if G is a product G1 ×G2 then one can measure the
growth in the two directions determined by the factors. In this project we show that
the quantum spectrum is related to the growth rate of Γ in the two directions similar
to Theorem 1.3 precisely in the case where G/K is a product of rank one spaces. We
also obtain a condition for the temperedness of the space and we can show that this
condition is satisfied for a large class of Γ.

8



3. Preliminaries

Let us shortly fix the notation for this preliminary discussion of the algebra of invariant
differential operators. G is a real semisimple non-compact Lie group with finite center
and K is a maximal compact subgroup. There is a Cartan involution θ on G such that K
is the set of fixed points of θ. The Lie algebra g splits into the ±1-eigenspaces of θ. The
+1-eigenspace is the Lie algebra k of K and we call the −1-eigenspace p so that g = k⊕p.
In p we choose a maximal abelian subalgebra a. The action on g of this algebra splits
into joint eigenspaces gα := {X ∈ g | [H,X] = α(H)X ∀H ∈ a} where α ∈ a∗. The set
of roots Σ is the collection of α ∈ a∗ \ {0} such that gα ̸= 0. We choose a positive set of
roots Σ+ ⊆ Σ and define n :=

⊕
α∈Σ+ gα as well as ρ := 1

2

∑
α∈Σ+ dim(gα) · α. We then

have the Iwasawa decomposition g = k⊕ a⊕ n which also holds on the group level with
the maximal compact subgroup K and the corresponding analytic subgroups A and N .
The group W acting on a∗ generated by the reflections along the roots α ∈ Σ is called
Weyl group.

3.1. Invariant differential operators

In this section we introduce one of the main objects of this thesis, namely the al-
gebra D(G/K) of G-invariant differential operators on G/K, i.e. differential oper-
ators commuting with the left regular representation Lg for elements g ∈ G where
Lgf(x) := f(g−1x). This algebra can be identified with a set of polynomials by the
following theorem.

Theorem 3.1.1 (Harish-Chandra isomorphism, see [Hel84, II-Thm. 5.17]). There is an
algebra isomorphism

HC: D(G/K)→ Poly(a∗C)
W

from the G-invariant differential operators D(G/K) to the Weyl group invariant polyno-
mials on a∗C. We write χλ(D) instead of HC(D)(λ).

The construction is as follows: We represent a differential operator D in D(G/K) as
an element X in U(g)K , the K-invariant elements in the universal enveloping algebra
of g. The element X is unique modulo U(g)K ∩ U(g)kC. We consider the Iwasawa

9



3. Preliminaries

decomposition g = n ⊕ a ⊕ k. Using the Poincaré-Birkhoff-Witt theorem we can define
the projection

δ : U(g)K ⊆ U(g)→ U(a)

with kernel nCU(g) + U(g)kC. Furthermore we define the algebra isomorphism

η : U(a)→ U(a) by a ∋ X 7→ X + ρ(X).

Then

HC(D) := (η ◦ δ)(X),

where we identify Poly(a∗C)
W with the Weyl group invariants in the symmetric algebra

S(a) = U(a). To see that HC is a homomorphism we only need to see that δ is a
homomorphism. For X,Y ∈ U(g)K we have

XY − δ(X)δ(Y ) = δ(X)(Y − δ(Y )) + (X − δ(X))Y.

By definition of δ,

X − δ(X), Y − δ(Y ) ∈ nCU(g) + U(g)kC.

Since Y is K-invariant we infer (X − δ(X))Y ∈ ker δ and since a normalizes n we also
have δ(X)(Y − δ(Y )) ∈ ker δ. Hence, HC is a homomorphism.

To see that its image consists of W -invariant polynomials we consider the function

eλ,kM (gK) := e−(λ+ρ)H(g−1k), λ ∈ a∗C, kM ∈ K/M, g ∈ G,

where H : G→ a is defined by g ∈ KeH(g)N . Clearly, eλ,eM is a left N -invariant function
on G/K. Hence by construction,

Deλ,eM = δ(X)(λ+ ρ)eλ,eM = η(δ(X))(λ)eλ,eM = χλ(D)eλ,eM .

As eλ,kM = Lkeλ,eM the same is true if we replace eM by kM . In particular the
elementary spherical function

ϕλ(g) :=

∫
K
eλ,kM (gK) dk =

∫
K
e−(λ+ρ)H(g−1k) dk

satisfies Dϕλ = χλ(D)ϕλ. It follows from [Hel84, Ch. II Thm. 5.16] (which is essentially
an application of several integral formulas) that ϕλ = ϕwλ for all w ∈ W . This shows
that HC(D) is W -invariant. Note that if we choose two different positive systems Σ+ in
Σ, the resulting HC differ by the action of a Weyl group element. By the W -invariance
we get that HC does not depend on this choice.

In order to prove injectivity and surjectivity we use the following symmetrization map:

λ : S(g)→ U(g), X1 · · ·Xn 7→
1

n!

∑
σ∈Sn

Xσ(1) · · ·Xσ(n).

10



3.1. Invariant differential operators

By construction this is well defined and Ad(G)-invariant. Bijectivity follows from the
following observation which is easily derived from commutator relations in the universal
enveloping algebra:

λ(X1 · · ·Xn)−X1 · · ·Xn ∈ Un−1(g), Xi ∈ g, (3.1)

where the latter X1 · · ·Xn is understood as an element of U(g) and Uk(g) is the subspace
of U(g) of elements of degree ≤ k.

Now injectivity of λ follows easily. Let X ∈ U(g) of degree n (i.e. X ∈ Un(g) \ Un−1(g))
with λ(X) = 0. Then by (3.1) X ∈ Un−1(g) contradicting the choice of X.

To prove surjectivity of λ we proceed by induction. Without loss of generality let

X ∈ X1 · · ·Xn + Un−1(g) ⊆ U(g).

Then by (3.1) X−λ(X1 · · ·Xn) ∈ Un−1(g) and by induction we can find X ′ ∈ S(g) such
that λ(X ′) = X − λ(X1 · · ·Xn). Hence, X is contained in the image of λ.

Since λ is Ad(G)-invariant it is clear that every differential operator D ∈ D(G/K) can
be represented as an image of S(g)K under λ. The following lemma shows that elements
from S(p)K are sufficient. The proof is similar to the above.

Lemma 3.1.2 ([Hel84, Ch. II Cor. 4.8]).

U(g)K = (U(g)K ∩ U(g)kC)⊕ λ(S(p)K)

In particular, λ : S(p)K → D(G/K) is a bijection that preserves the degree.

As before we identify S(a)W with the space of Weyl group invariant polynomials on a∗C.
Similarly, we identify S(p)K with K-invariant polynomials on p∗C. In addition let us
identify a∗C with aC and p∗C with pC with respect to the Killing form. Then we have a
map Poly(pC) → Poly(aC) by restriction. On the level of symmetric algebras it is the
projection on S(a) with respect to the decomposition S(p) = S(a)⊕S(p)q where q is the
orthogonal complement of a in p. This map is injective when we restrict it to K-invariant
polynomials on pC since Ad(K)a = p and its image is contained in Poly(aC)

W . To see
that it is also surjective let p ∈ Poly(aC). By the injectivity there is only one possible
way to define the preimage p̃. Namely, for X ∈ p we must have p̃(X) = p̃(Ad(k)X) for
every k ∈ K. But since p = Ad(K)a this already defines p̃ : pC → C. (p̃ is well-defined
by [Kna02, Lemma 7.38].) The following lemma completes the proof of the surjectivity.

Lemma 3.1.3. p̃ is a polynomial on pC of the same degree as p.

Proof. See [Hel84, Ch. II Thm. 5.8] for smoothness. Then decompose p into homogeneous
summands and conclude by using the fact that a smooth homogeneous function is a
polynomial.

11



3. Preliminaries

The last step for the proof of the surjectivity in Theorem 3.1.1 follows a similar strategy
as the proof of the bijectivity of the symmetrization mapping λ including the following
statement that is similar to (3.1).

Lemma 3.1.4. For q ∈ S(p)K we have deg(η(δ(λ(q)))−q) ≤ deg(q)−1 where q denotes
the restriction of q to aC.

Proof. Without loss of generality we can assume that q is homogeneous of degree d > 0.
For X ∈ q we find Z ∈ n such that

X = Z − θZ = 2Z − (Z + θZ) ∈ n⊕ k.

Therefore, q−q ∈ nSd−1(g)+Sd−1(g)k (where Sd−1(g) is the subspace of S(g) of elements
of degree ≤ d− 1) and also λ(q)− q ∈ nCUd−1(g) +Ud−1(g)kC+ terms of lower order. It
follows that δ(λ(q))− q has degree < d and therefore the same holds for η(δ(λ(q)))− q
as η does not change the highest order term.

Now we can prove the injectivity of HC. Let D ∈ D(G/K) be represented by X ∈
U(g)K with η(δ(X)) = 0. By Lemma 3.1.2 X = λ(p) + Y with p ∈ S(p)K and Y ∈
U(g)K ∩U(g)kC. But this decomposition implies that η(δ(λ(p))) = 0 so by Lemma 3.1.4
deg p ≤ deg p− 1. This is a contradiction unless deg(p) = −∞, i.e. p = 0.

For the surjectivity we define the pseudo inverse

Op: S(a)W → D(G/K), p 7→ λ(p̃).

By Lemma 3.1.2 and 3.1.3 this is well-defined and bijective. It is not the inverse of
HC but by Lemma 3.1.4 it satisfies that p − HC(Op(p)) is of lower degree than p for
p ∈ S(a)W . Using this we can easily prove by induction that HC is surjective: By the
induction hypothesis there is D ∈ D(G/K) such that HC(D) = p − HC(Op(p)). Then
HC(D +Op(p)) = p. This completes the proof of Theorem 3.1.1.

Remark 3.1.5. Note that by [Hel84, Ch. II Thm. 4.9] Op(p) can be expressed as a
differential operator as follows. Let X1, . . . , Xr be a basis of p so that p̃ =

∑
α aαX

α for
some aα ∈ C. For f ∈ C∞(G/K) and g ∈ G we then have

λ(p̃)f(gK) =

(∑
α

aα∂
α

)
f

(
g exp

(
r∑
i=1

tiXi

)
K

)∣∣∣∣∣
ti=0

.

If X ′
1, . . . , X

′
r is the dual basis of X1, . . . , Xr, then p̃(t1X

′
1 + · · · + trX

′
r) =

∑
α aαt

α.
Therefore,

λ(p̃)f(gK) =

(
p̃

(
∂

∂t1
X ′

1 + · · ·+
∂

∂tr
X ′
r

))
f

(
g exp

(
r∑
i=1

tiXi

)
K

)∣∣∣∣∣
ti=0

.

This construction is carried out for the case of SLn(R) in the next section.
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3.2. Invariant differential operators for SLn(R)

In this section we want to take a look at the invariant differential operators in the special
case of G = SLn(R). We choose a = {diag(λ1, . . . , λn) |

∑
λi = 0} and identify a∗ with a

via ⟨X,Y ⟩ = Tr(X ·Y ). The root system of restricted roots Σ is given by {εi−εj | i ̸= j}
where εi(diag(λ1, . . . , λn)) = λi. The Weyl groupW is the symmetric group Sn and acts
on a and a∗ by permuting the diagonal entries. This root system is of type An−1 and it
is well known that the algebra of W -invariant polynomials is generated by the following
homogeneous algebraically independent polynomials (see [Hum90, Section 3.12]):

pi(diag(λ1, . . . , λn)) = λi1 + · · ·+ λin, i = 2, 3, . . . n.

In order to find the invariant differential operators for SLn(R)/SO(n) we use the sur-
jective map Op as defined in Section 3.1. First we need to extend the polynomials pi to
K-invariant polynomials p̃i on p = {X ∈ sln(R) | XT = X,Tr(X) = 0}. As described
in Section 3.1 p̃i is determined by p̃i(kHk

−1) = p̃i(Ad(k)H) = pi(H) for H ∈ a. We
observe that pi(H) = Tr(H i) for H ∈ a. This description allows us to extend pi easily:

p̃i(kHk
−1) = Tr(H i) = Tr(kH ik−1) = Tr((kHk−1)i).

Hence, p̃i(X) = Tr(Xi) for X ∈ p.

Example 3.2.1. For n = 3 let X =

a x z
x b y
z y c

 ∈ p. Then we have

p̃2(X) = a2 + b2 + c2 + 2x2 + 2y2 + 2z2

and

p̃3(X) = a3 + b3 + c3 − 3cx2 − 3ay2 − 3bz2 + 6xyz.

The next step is to express p̃i with respect to a basis, i.e. as an element of S(p)K via
the isomorphism S(p) ≃ Poly(p∗). We introduce the following matrices.

H1 =

1 0 0
0 −1 0
0 0 0

 , H2 =

0 0 0
0 1 0
0 0 −1


E1 =

0 1 0
1 0 0
0 0 0

 , E2 =

0 0 0
0 0 1
0 1 0

 , E3 =

0 0 1
0 0 0
1 0 0

 .

Then clearly

⟨X,H1⟩ = a− b, ⟨X,E1⟩ = 2x,

⟨X,H2⟩ = b− c ⟨X,E2⟩ = 2y,

= a+ 2b, ⟨X,E3⟩ = 2z.
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3. Preliminaries

Hence,

a =
1

3
(2H1 +H2) x =

1

2
E1

b =
1

3
(−H1 +H2) y =

1

2
E2

c =
1

3
(−H1 − 2H2) z =

1

2
E3.

We obtain

p̃2 =
2

3
(H2

1 +H1H2 +H2
2 ) +

1

2
(E2

1 + E2
2 + E2

3)

and

p̃3 =
1

9
(2H3

1 + 3H2
1H2 − 3H1H

2
2 − 2H3

2 )

+
1

4
(E2

1(H1 + 2H2) + E2
2(−2H1 −H2) + E2

3(H1 −H2)) +
3

4
E1E2E3.

Let us now determine the operators Op(p̃i) acting on f ∈ C∞(SLn(R)/SO(n)). The
greatest obstacle is that there is no nice orthonormal basis and hence either the basis
or the dual basis is hard to work with. Therefore we simply choose the basis coming
from the simple roots, i.e. let Hi = diag(0, . . . , 0, 1,−1, 0, . . . , 0), i = 1, . . . , n− 1, where
the 1 is the i-th diagonal entry. Then one calculates that the dual basis is given by
H ′
i = diag(1, . . . , 1, 0, . . . , 0)− i

nI. By Remark 3.1.5

Op(p̃k)f(gSO(n)) = Tr

((
∂

∂X

)k)
f (g exp(X)SO(n))

∣∣∣∣∣
ti=xij=0

where

X =


t1 x12 x13 · · · x1n
x12 t2 − t1 x23 · · · x2n
x13 x23 t3 − t2 · · · x3n

...
. . .

...
x1n x2n x3n · · · −tn−1


and

∂

∂X
=


∑n−1

i=1 ∂ti −
∑n−1

i=1
i
n∂ti

1
2∂x12 · · · 1

2∂x1n
1
2∂x12

∑n−1
i=2 ∂ti −

∑n−1
i=1

i
n∂ti

...
...

. . .
1
2∂x1n · · · −

∑n−1
i=1

i
n∂ti

 .
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3.2. Invariant differential operators for SLn(R)

Since this expression is quite cumbersome one can also take the detour over GLn(R)
where one has a nice orthonormal basis. This is done in [BCH21]. They obtain a
different generating set of invariant differential operators given by the Maass-Selberg
operators δi which are defined for f ∈ C∞(SLn(R)/SO(n)) by

δif(gSO(n)) = Tr

((
∂

∂X

)i)∣∣∣∣∣
X=0

f

(
g exp

(
X − 1

n
Tr(X)In

)
SO(n)

)
,

where

X =

x11 · · · x1n
...

. . .
...

x1n · · · xnn

 and
∂

∂X
=


∂

∂x11
· · · ∂

2∂x1n
...

. . .
...

∂
2∂x1n

· · · ∂
∂xnn

 .

Example 3.2.2. Let us calculate the image of Op(pk) under HC for G = SL3(R). We
already know from Example 3.2.1 how p̃k looks like as an element in S(p). Let us begin
with p2. From the expression p̃2 =

2
3(H

2
1 +H1H2 +H2

2 ) +
1
2(E

2
1 +E2

2 +E2
3) we see that

λ(p̃2) = p̃2. We also observe that this is the Laplace operator in D(SL3(R)/SO(3)) since
it coincides with the Casimir operator up to an element in U(g)K ∩ U(g)k. Hence we
expect HC(Op(p2)) = p2 − ∥ρ∥2 = p2 − 2. Let us calculate this explicitly.

Let

N1 =

0 1 0
0 0 0
0 0 0

 , N2 =

0 0 0
0 0 1
0 0 0

 , N3 =

0 0 1
0 0 0
0 0 0

 .

and Ki = Ni − NT
i ∈ k. Then Ei = 2Ni − Ki and hence we calculate in U(g) mod

nCU(g)⊕ U(g)kC:

E2
i = −2KiNi = −2NiKi + [−Ki, 2Ni] = 2[NT

i , Ni] = −2Hi

where H3 = H1 +H2. By the definition of δ in Section 3.1 we have

δ(Op(p2)) =
2

3
(H2

1 +H1H2 +H2
2 )− 2H1 − 2H2.

To obtain HC(Op(p2)) we have to apply η, i.e. we have to replace Hi by Hi + ρ(Hi) =
Hi + 1, i = 1, 2. This results in

HC(Op(p2)) =
2

3
((H1 + 1)2 + (H1 + 1)(H2 + 1) + (H2 + 1)2)− 2(H1 + 1)− 2(H2 + 1)

= p2 − 2

as expected.

For p3 the calculations become more involved since we are now dealing with elements of
degree 3. Recall that

p̃3 =
1

9
(2H3

1 + 3H2
1H2 − 3H1H

2
2 − 2H3

2 )

+
1

4
(E2

1(H1 + 2H2) + E2
2(−2H1 −H2) + E2

3(H1 −H2)) +
3

4
E1E2E3.
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First of all observe that applying λ to p̃3 only affects the last part E1E2E3 since Ei
commutes with the attached linear combination H⊥

i of H1 and H2. This is due to the
fact that Ei is an element of the direct sum gαi ⊕ g−αi where αi = ⟨Hi, ·⟩ ∈ Σ+ and
Hi ⊥ H⊥

i . Again we calculate in U(g) mod nCU(g)⊕ U(g)kC:

EiH
⊥
i Ei = (2Ni −Ki)H

⊥
i (2Ni −Ki) = −KiH

⊥
i 2Ni = −Ki2NiH

⊥
i

= −2NiKiH
⊥
i − 2[Ki, Ni]H

⊥
i = 2[NT

i , Ni]H
⊥
i = −2HiH

⊥
i .

Hence,

δ(Op(p3)) = p3 −
1

2

∑
i=1,2,3

HiH
⊥
i +

3

4
δ(λ(E1E2E3))

= p3 −H2
1 +H2

2 +
3

4
δ(λ(E1E2E3)).

For the last part we observe that δ(EiEjEk) = δ(EiEkEj) since the commutator bracket
of two elements in p is contained in k. Now,

EiE1Ej = E1EiEj + [Ei, E1]Ej = E1EiEj + Ej [Ei, E1] + [[Ei, E1], Ej ]

and therefore

δ(EiE1Ej) = δ(E1EiEj)+δ([[Ei, E1], Ej ]) = δ(E1EjEi)+δ(E1[Ei, Ej ])+δ([[Ei, E1], Ej ]).

We conclude that

δ(λ(E1E2E3)) =
1

3
δ(E1E2E3) +

1

3
δ(E2E1E3) +

1

3
δ(E3E1E2)

= δ(E1E2E3) +
1

3
δ([[E2, E1], E3]) +

1

3
δ([[E3, E1], E2])

= δ(E1E2E3) +
1

3
δ([−K3, E3]) +

1

3
δ([−K2, E2])

= δ(E1E2E3)−
2

3
H3 −

2

3
H2.

We are left with computing δ(E1E2E3):

E1E2E3 = −K1(2N2 −K2)(2N3) = [−K1, 2N2](2N3) + (−K1)[−K2, 2N3]

= [[−K1, 2N2], 2N3] + [−K1, [−K2, 2N3]] = [−2N3, 2N3] + [−K1,−2N1]

= 2H1 mod nCU(g)⊕ U(g)kC.

All in all,

δ(Op(p3)) = p3 −H2
1 +H2

2 +
3

4

(
2H1 −

2

3
H2 −

2

3
H3

)
=

1

9
(2H3

1 + 3H2
1H2 − 3H1H

2
2 − 2H3

2 )−H2
1 +H2

2 +H1 −H2.
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As we did for p2 we apply η to obtain the image under HC:

HC(Op(p3)) =
1

9
(2(H1 + 1)3 + 3(H1 + 1)2(H2 + 1)− 3(H1 + 1)(H2 + 1)2 − 2(H2 + 1)3)

− (H1 + 1)2 + (H2 + 1)2 + (H1 + 1)− (H2 + 1)

=
1

9
(2H3

1 + 3H2
1H2 − 3H1H

2
2 − 2H3

2 ) +H2
1 −H2

2 +H1 −H2

−H2
1 +H2

2 − 2H1 + 2H2

+H1 −H2

= p3.

Actually, this computation could have been avoided by Proposition I.6.5. Namely,
HC(Op(p3)) = p3 + lower order terms where the degree of the lower order terms are
odd as well. Hence, HC(Op(p3))− p3 ∈ S(a)W is homogeneous of degree one and there-
fore vanishes since there is no W -invariant element in a except 0.
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Abstract

For a compact Riemannian locally symmetric space Γ\G/K of arbitrary rank we deter-
mine the location of certain Ruelle-Taylor resonances for the Weyl chamber action. We
provide a Weyl-lower bound on an appropriate counting function for the Ruelle-Taylor
resonances and establish a spectral gap which is uniform in Γ if G/K is irreducible of
higher rank. This is achieved by proving a quantum-classical correspondence, i.e. a
1:1-correspondence between horocyclically invariant Ruelle-Taylor resonant states and
joint eigenfunctions of the algebra of invariant differential operators on G/K.

I.1. Introduction

Ruelle resonances for an Anosov flow provide a fundamental spectral invariant that does
not only reflect many important dynamical properties of the flow but also geometric and
topological properties of the underlying manifold. Very recently the concept of reso-
nances was extended to higher rank Rn-Anosov actions and led to the notion of Ruelle-
Taylor1 resonances which were shown to be a discrete subset σRT ⊂ Cn [BGHW20].
It was furthermore shown in [BGHW20] that the leading resonances (i.e. those with
vanishing real part) are related to mixing properties of the considered Anosov action.
In particular, it was shown that if the action is weakly mixing in an arbitrary direction
of the abelian group Rn, then 0 ∈ Cn is the only leading resonance. Furthermore, the
resonant states at zero give rise to equilibrium measures that share properties of SRB
measures of Anosov flows.

Apart from the leading resonances the spectrum of Ruelle-Taylor resonances has so far
not been studied if n ≥ 2. In particular, when n ≥ 2, it was not known whether there are
other resonances than the resonance at zero. Neither was it known whether there is a
spectral gap, i.e. whether the real parts of the resonances are bounded away from zero.
In this article we shed some light on these questions by examining the Ruelle-Taylor
resonances for the class of Weyl chamber flows via harmonic analysis.

Let us briefly introduce the setting: Let G be a real connected non-compact semisimple
Lie group with finite center and Iwasawa decomposition G = KAN . Let a be the Lie

1They were named Ruelle-Taylor resonances because the notion of the Taylor spectrum for commuting
operators is a crucial ingredient of their definition.
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algebra of A and M the centralizer of A in K. Then A is isomorphic to Rn where n is
the real rank of G and acts on G/M from the right. Hence A also acts on the compact
manifoldM := Γ\G/M , where Γ ≤ G is a cocompact torsion-free lattice. It can be easily
seen that this action is an Anosov action with hyperbolic splitting TM = E0⊕Es⊕Eu
which can be described explicitly in terms of associated vector bundles (see Section I.2.1
for a general definition of Anosov actions and Proposition I.3.1 for the description of
the hyperbolic splitting for Weyl chamber flows). Furthermore, if Σ ⊆ a∗ is the set of
restricted roots with simple system Π and positive system Σ+ then the positive Weyl
chamber is given by a+ = {H ∈ a | α(H) > 0 ∀α ∈ Π}.
The Ruelle-Taylor resonances of this Anosov action are defined as follows: For H ∈ a
let XH be the vector field onM defined by the right A-action. Then

σRT := {λ ∈ a∗C | ∃u ∈ D′
E∗

u
(M) \ {0} : (XH + λ(H))u = 0∀H ∈ a},

where D′
E∗

u
(M) is the set of distributions with wavefront set contained in the annihilator

E∗
u ⊆ T ∗M of E0 ⊕ Eu. The distributions u ∈ D′

E∗
u
(M) satisfying (XH + λ(H))u = 0

for all H ∈ a are called resonant states of λ and the dimension of the space of all such
distributions is called the multiplicity m(λ) of the resonance λ. It has been shown in
[BGHW20] that σRT ⊂ a∗C is discrete and that all resonances have finite multiplicity. It
also follows from that work that the real part of the resonances are located in a certain
cone −a∗ ⊂ a∗ which is the negative dual cone of the positive Weyl chamber a+ (see
Section I.2.2 for a precise definition).

In this article we will prove that there is a bijection between a certain subset of the
Ruelle-Taylor resonant states and certain joint eigenfunctions of the invariant differential
operators on the locally symmetric space Γ\G/K. Before explaining this correspondence
in more detail we state two results on the spectrum of Ruelle-Taylor resonances that we
can conclude from the correspondence.

The first result says that for any Weyl chamber flow there exist infinitely many Ruelle-
Taylor resonances by providing a Weyl-lower bound on an appropriate counting function.

Theorem I.1.1. Let ρ be the half sum of the positive restricted roots, W the Weyl group
(see Section I.2.2 for a precise definition), and for t > 0 let

N(t) :=
∑

λ∈σRT,Re(λ)=−ρ,∥ Im(λ)∥≤t

m(λ).

Then for d := dim(G/K)

N(t) ≥ |W |Vol(Γ\G/K)
(
2
√
π
)−d 1

Γ(d/2 + 1)
td +O(td−1).

More generally, let Ω ⊆ a∗ be open and bounded such that ∂Ω has finite (n − 1)-
dimensional Hausdorff measure. Then∑

λ∈σRT,Re(λ)=−ρ,Im(λ)∈tΩ

m(λ) ≥ |W |Vol(Γ\G/K) (2π)−dVol(Ad(K)Ω)td +O(td−1).
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The second result guarantees a uniform spectral gap.

Theorem I.1.2. Let G be a real semisimple Lie group with finite center, then for any
cocompact torsion-free discrete subgroup Γ ⊂ G there is a neighborhood G ⊂ a∗ of 0 such
that

σRT ∩ (G × ia∗) = {0}.

If G furthermore has Kazhdan’s property (T) (e.g. if G is simple of higher rank), then
the spectral gap G can be taken uniformly in Γ and only depends on the group G.

Let us now explain in some detail the spectral correspondence that is the key to the
above results:

We define the space of first band resonant states as those resonant states that are in
addition horocyclically invariant

Res0X(λ) := {u ∈ D′
E∗

u
(M) : (XH + λ(H))u = 0 and Xu = 0 ∀H ∈ a,X ∈ C∞(M, Eu)}

and we call a Ruelle-Taylor resonance a first band resonance iff Res0X(λ) ̸= 0. By working
with horocycle operators and vector valued Ruelle-Taylor resonances we will be able to
show that all resonances with real part in a certain neighborhood of zero in a∗ are always
first band resonances (see Proposition I.3.7). As the Weyl chamber flow is generated by
mutually commuting Hamilton flows, we consider the set of Ruelle-Taylor resonances as
a classical spectrum.

Let us briefly describe the quantum side: In the rank one case the quantization of
the geodesic flow is given by the Laplacian on G/K. In the higher rank case we have
to consider the algebra of G-invariant differential operators on G/K which we denote
by D(G/K). As an abstract algebra this is a polynomial algebra with n algebraically
independent operators, among them the Laplace operator. These operators descend to
Γ\G/K and we can define the joint eigenspace

ΓEλ = {f ∈ C∞(Γ\G/K) | Df = χλ(D)f ∀D ∈ D(G/K)}

where χλ is a character of D(G/K) parametrized by λ ∈ a∗C/W with the Weyl group
W . Here χρ is the trivial character (see Section I.2.4). Let σQ denote the corresponding
quantum spectrum {λ ∈ a∗C | ΓEλ ̸= {0}}.

We have the following correspondence between the classical first band resonant states
and the joint quantum eigenspace:

Theorem I.1.3. Let λ ∈ a∗C be outside the exceptional set A := {λ ∈ a∗C |
2⟨λ+ρ,α⟩
⟨α,α⟩ ∈

−N>0 for some α ∈ Σ+}. Then there is a bijection between the finite dimensional vector
spaces

π∗ : Res
0
X(λ)→ ΓE−λ−ρ

where π∗ is the push-forward of distributions along the canonical projection π : Γ\G/M →
Γ\G/K.
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Using this 1:1-correspondence we can then use results about the the quantum spectrum
to obtain obstructions and existence results on the Ruelle-Taylor resonances. Notably
we use results of Duistermaat-Kolk-Varadarajan [DKV79] on the spectrum σQ but we
also deduce refined information on the quantum spectrum. Here we use Lp-bounds for
spherical functions obtained from asymptotic expansions [vdBS87] and Lp-bounds for
matrix coefficients based on work by Cowling and Oh [Cow79, Oh02]. Theorem I.1.1 and
Theorem I.1.2 as stated above give only a rough version of the information on the Ruelle-
Taylor resonances that we can actually obtain. As the full results require some further
notation we refrain from stating them in the introduction and refer to Theorem I.5.1.
We also refer to Figure I.6 for a visualization of the structure of first band resonances
for the case of G = SL(3,R).

Methods and related results:

The key ingredient to the quantum-classical correspondence is that we can in a first step
relate the horocyclically invariant first band resonant states with distributional vectors
in some principal series representations. Then we can apply the Poisson transform of
[KKM+78] to get a bijection onto the quantum eigenspace ΓE−λ−ρ. The prototype of
such a quantum-classical correspondence has been first established by Dyatlov, Faure
and Guillarmou [DFG15] in the case of manifolds of constant curvature or in other
words for the rank one group G = SO(n, 1). Certain central ideas have however al-
ready been present for G = SO(2, 1) in the works of Flaminio-Forni and Cosentino
[FF03, Cos05]. In the rank one setting there exist several generalizations of the quan-
tum classical correspondence of [DFG15] e.g. to convex cocompact manifolds of con-
stant curvature [GHW18, Had20], general compact locally symmetric spaces of rank one
[GHW21] and vector bundles [KW20, KW21].

Besides the correspondence between the classical Ruelle resonant states and the quantum
Laplace eigenvalues there are several other approaches in the literature establishing exact
relations between the Laplace spectrum and the geodesic flow. One approach is to relate
the Laplace spectrum to divisors of zeta functions. Such relations have been obtained
for rank one locally symmetric spaces on various levels of generality by Bunke, Olbrich,
Patterson and Perry (G = SO(n, 1), Γ convex cocompact: [BO97, BO99, PP01], G real
rank one, Γ cocompact [BO95]).

A third approach to an exact quantum-classical correspondence is to relate the Laplace
spectrum to a transfer operator which represents a time discretized dynamics of the
geodesic flow. This type of correspondence was notably studied for hyperbolic surfaces
with cusps (see [LZ01, BLZ15, BP23] for results for G = SL(2,R) and Γ discrete sub-
groups of increasing generality). We refer in particular to the expository article [PZ20]
and the introduction of [BP23] for a current state of the art of these techniques. A
very first step towards generalizations of this approach to higher rank has been recently
achieved in [Poh20] for the Weyl chamber flow on products of Schottky surfaces by the
construction of symbolic dynamics and transfer operators.

Note that in [DFG15] not only the first band of Ruelle resonances was related to the
Laplace spectrum but a complete band structure has been established and the higher

30



I.2. Preliminaries

bands could be related to the Laplace spectrum on divergence free symmetric tensors.
In the present article we do not study the higher bands. This will presumably be a
very hard question for general semisimple groups G (note that in [DFG15] it was crucial
at several points that for G = SO(n, 1), N ∼= Rn−1 is abelian). However it might be
tractable for some concrete groups with simple enough root spaces such as G = SL(3,R).
For geodesic flows the phenomenon of such a band structure is quite universal and known
in the case of compact locally symmetric spaces of rank one [KW21] but also for geodesic
flows on manifolds of pinched negative curvature [FT13, GC21, FT21].

As mentioned above an important application of Ruelle resonances for Anosov flows
are mixing results. More precisely, the existence of a spectral gap in addition with
resolvent estimates imply mixing of the flow. For Weyl chamber flows this relation of
gaps and mixing rates is not yet established but conjectured to be true. From this
perspective Theorem I.1.2 is related to the work of Katok and Spatzier [KS94] who
showed exponential mixing for the Weyl chamber action in every direction of the closure
of the positive Weyl chamber if G has Property (T). However it is not known whether
their result remains true if the Property (T) assumption is dropped. Our result above
(Theorem I.1.2) ensures a Γ-dependent gap in any case but as mentioned above the
precise relation to mixing rates is not yet established.

Finally, Weyl laws for Ruelle resonances of geodesic flows can also be established in
variable curvature (or more generally contact Anosov flows) in various settings [FS11,
DDZ14, FT17]. In particular, in the very recent article [FT21] by Faure and Tsujii the
Weyl law also follows because a “first band” of resonances can be related to a quantum
operator. The methods in their work are however completely different and are based on
microlocal analysis rather then global harmonic analysis.
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Erik van den Ban for explanations regarding expansions of spherical functions, Benjamin
Küster for valuable feedback on the manuscript and the anonymous referees for their
constructive feedback that helped to improve the article. This project has received
funding from Deutsche Forschungsgemeinschaft (DFG) (Grant No. WE 6173/1-1 Emmy
Noether group “Microlocal Methods for Hyperbolic Dynamics”).
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I.2.1. Ruelle-Taylor resonances for higher rank Anosov actions

In this section we recall the main properties of Ruelle-Taylor resonances for higher rank
Anosov actions from [BGHW20]. Let M be a compact Riemannian manifold, A ≃ Rn
be an abelian group and let τ : A→ Diffeo(M) be a smooth locally free group action. If
a := Lie(A) we define the generating map

X : a→ C∞(M, TM), H 7→ XH :=
d

dt

∣∣∣∣
t=0

τ(exp(tH)).
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Note that [XH1 , XH2 ] = 0 for Hi ∈ a. For H ∈ a we denote by φXH
t the flow of the

vector field XH . The action is called Anosov if there exists H ∈ a and a continuous
φXH
t -invariant splitting

TM = E0 ⊕ Eu ⊕ Es,

where E0 := span{XH : H ∈ a} is of dimension n because the action is locally free and
there exist C > 0, ν > 0 such that for each x ∈M

∀w ∈ Es(x), t ≥ 0 : ∥dφXH
t (x)w∥ ≤ Ce−νt∥w∥,

∀w ∈ Eu(x), t ≤ 0 : ∥dφXH
t (x)w∥ ≤ Ce−ν|t|∥w∥,

where the norm on TM is given by the Riemannian metric on M. Such an H ∈ a is
called transversally hyperbolic. We call the set

W := {H ′ ∈ a | H ′ is transversally hyperbolic with the same splitting as H}

the positive Weyl chamber containing H.

Let E → M be the complexification of a Euclidean bundle over M and denote by
Diff1(M, E) the set of first order differential operators with smooth coefficients acting
on sections of E. Then a linear map X : a→ Diff1(M, E) such that XH1XH2 = XH2XH1

for all Hi ∈ a is called an admissible lift of the generic map X if

XH(fs) = (XHf)s+ fXHs (I.1)

for s ∈ C∞(M, E), f ∈ C∞(M), and H ∈ a.

For a fixed positive Weyl chamberW the set of Ruelle-Taylor resonances can be defined
as

σRT(X) := {λ ∈ a∗C | ∃u ∈ D′
E∗

u
(M, E) \ {0} : (XH + λ(H))u = 0∀H ∈ a},

where D′
E∗

u
(M, E) is the set of distributional sections of the bundle E with wavefront

set contained in E∗
u. Here E∗

u is defined as the annihilator of E0 ⊕ Eu in T ∗M. The
vector space of Ruelle-Taylor resonant states for a resonance λ ∈ σRT(X) is defined by

ResX(λ) := {u ∈ D′
E∗

u
(M, E) | (XH + λ(H))u = 0∀H ∈ a}.

Remark I.2.1. The original definition of Ruelle-Taylor resonances and resonant states
is stated via Koszul complexes (see [BGHW20, Section 3]). More precisely, λ is a reso-
nance iff the corresponding Koszul complex is not exact and the resonant states are the
cohomologies of this complex. The space of resonant states that we are considering is
just the 0th cohomology. However, it turns out that the Koszul complex is not exact
iff the 0th cohomology is non-vanishing, i.e. the two notions coincide (see [BGHW20,
Theorem 4]).

It is known that the resonances have the following properties.
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Proposition I.2.2 (see [BGHW20, Theorems 1 and 4]). σRT(X) is a discrete subset of
a∗C contained in

{λ ∈ a∗C | Re(λ(H)) ≤ CL2(H) ∀H ∈ W}
with CL2(H) = inf{C > 0 | ∥e−tXH∥L2→L2 ≤ eCt ∀t > 0} where e−tXH : L2(M, E) →
L2(M, E) is the semigroup with generator −XH . Moreover, for each λ ∈ σRT(X) the
space ResX(λ) of resonant states is finite dimensional.

I.2.2. Semisimple Lie groups

In this section we fix the notation for the present article. Let G be a real semisimple
connected non-compact Lie group with finite center and Iwasawa decomposition G =
KAN . Furthermore, let M := ZK(A) be the centralizer of A in K and G = KAN−
the opposite Iwasawa decomposition. We denote by g, a, n, n−, k,m the corresponding
Lie algebras. For g ∈ G let H(g) be the logarithm of the A-component in the Iwasawa
decomposition. We have a K-invariant inner product on g that is induced by the Killing
form and the Cartan involution. We have the orthogonal Bruhat decomposition g =
a⊕m⊕

⊕
α∈Σ gα into root spaces gα with respect to the a-action via the adjoint action

ad. Here Σ ⊆ a∗ is the set of restricted roots. Denote by W the Weyl group of the
root system of restricted roots. Let n be the real rank of G and Π = {α1, . . . , αn}
(resp. Σ+) the simple (resp. positive) system in Σ determined by the choice of the
Iwasawa decomposition. Let mα := dimR gα and ρ := 1

2Σα∈Σ+mαα. Denote by w0 the
longest Weyl group element, i.e. the unique element in W mapping Π to −Π. Let
a+ := {H ∈ a | α(H) > 0 ∀α ∈ Π} the positive Weyl chamber and a∗+ the corresponding
cone in a∗ via the identification a ↔ a∗ through the Killing form ⟨·, ·⟩ restricted to a.
We denote by +a

∗ the dual cone {λ ∈ a∗ | λ(H) > 0 ∀H ∈ a+ \ {0}} and by +a∗ its
closure {λ ∈ a∗ | λ(H) ≥ 0∀H ∈ a+} = R≥0Π. Hence, if ωj is the dual basis of αj then

+a∗ = {λ ∈ a∗ | ⟨λ, ωj⟩ ≥ 0 ∀j = 1, . . . , n}. Furthermore, we denote −a∗ := −+a∗. If
A+ := exp(a+), then we have the Cartan decomposition G = KA+K.

Example I.2.3. If G = SLn(R), then we choose K = SO(n), A as the set of diagonal
matrices of positive entries with determinant 1, and N as the set of upper triangular
matrices with 1’s on the diagonal. a is the abelian Lie algebra of diagonal matrices
and the set of restricted roots is Σ = {εi − εj | i ̸= j} where εi(λ) is the i-th diagonal
entry of λ. The positive system corresponding to the Iwasawa decomposition is Σ+ =
{εi− εj | i < j} with simple system Π = {αi = εi− εi+1}. The positive Weyl chamber is
a+ = {diag(λ1, . . . , λn) | λ1 > · · · > λn} and the dual cone is +a = {diag(λ1, . . . , λn) ∈
a | λ1 + · · · + λk ≥ 0 ∀k}. The Weyl group is the symmetric group Sn acting by
permutation of the diagonal entries.

I.2.3. Principal series representations

The concept of a principal series representation is an important tool in representation
theory of semisimple Lie groups. It can be described using different pictures. We start
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Figure I.1.: The root system for the special case G = SL3(R): There are three positive
roots Σ+ = {α1, α2, α1 + α2}. As all root spaces are one dimensional the
special element ρ = 1

2Σα∈Σ+mαα equals α1 + α2.

with the induced picture: Pick λ ∈ a∗C and (τ, Vτ ) an irreducible unitary representation
of M . We define

V τ,λ :=

{
f : G→ Vτ cont. :

f(gman) = e−(λ+ρ) log aτ(m)−1f(g)
for all g ∈ G,m ∈M,a ∈ A,n ∈ N

}
endowed with the norm ∥f∥2 =

∫
K ∥f(k)∥

2dk where dk is the normalized Haar measure
on K. Recall that ρ is the half sum of positive roots. The group G acts on V τ,λ by
the left regular representation. The completion Hτ,λ of V τ,λ with respect to the norm is
called induced picture of the (non-unitary) principal series representation with respect
to (τ, λ). We also write πτ,λ for this representation. If τ is the trivial representation then
we write Hλ and πλ and call it the spherical principal series with respect to λ. Note that
for equivalent irreducible unitary representations τ1, τ2 ofM the corresponding principal
series representations are equivalent as representations as well. In particular, the Weyl
group W acts on the unitary dual of M by wτ(m) = τ(w−1mw) where w ∈ W is given
by a representative in the normalizer of A in K and therefore Hλ,wτ is well-defined up
to equivalence.

A different way to view the principal series representation is the so-called compact picture.
Although we don’t need this description we want to introduce it in order to give a larger
overview of these representation. It is given by restricting the function f : G → Vτ to
K, i.e. a dense subspace is given by

{f : K → Vτ cont. | f(km) = τ(m)−1f(k), k ∈ K,m ∈M}
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with the same norm as above. In this picture the G-action is given by

πτ,λ(g)f(k) = e−(λ+ρ)H(g−1k)f(kKAN (g
−1k)), g ∈ G, k ∈ K,

where kKAN is the K-component in the Iwasawa decomposition G = KAN . Further-
more, recall from section I.2.2 that H(g) ∈ a was defined as the logarithm of the Iwasawa
A component.

For the example G = PSL2(R) the compact picture allows us to describe this repre-
sentation explicitly without using the Iwasawa decomposition: Since K = PSO(2) ≃
S1 ⊆ R2 the representation H1,λα = Hλα, λ ∈ C, is given by L2(S1) with the action
πλ(g)f(ω) = ∥g−1ω∥−2λ−1f(g−1ω/∥g−1ω∥).

I.2.4. Invariant differential operators

Let D(G/K) be the algebra of G-invariant differential operators on G/K, i.e. differen-
tial operators commuting with the left translation by elements g ∈ G. Then we have
an algebra isomorphism HC: D(G/K) → Poly(a∗)W from D(G/K) to the W -invariant
complex polynomials on a∗ which is called Harish-Chandra homomorphism (see [Hel84,
Ch. II Theorem 5.18]). For λ ∈ a∗C let χλ be the character of D(G/K) defined by
χλ(D) := HC(D)(λ). Obviously, χλ = χwλ for w ∈W . Furthermore, the χλ exhaust all
characters of D(G/K) (see [Hel84, Ch. III Lemma 3.11]). We define the space of joint
eigenfunctions

Eλ := {f ∈ C∞(G/K) | Df = χλ(D)f ∀D ∈ D(G/K)}.

We will only work with the subspace of functions of moderate growth

E∗
λ := {f ∈ Eλ | ∃c ∈ R : |f(kaK)| ≤ Cec∥ log a∥ ∀k ∈ K, a ∈ A}.

Note that Eλ and E∗
λ are G-invariant.

I.2.5. Poisson transform

The representation of G on E∗
λ can be described via the Poisson transform: If (Hτ,λ)−∞

denotes the distributional vectors in the principal series, then the Poisson transform Pλ
maps (H−λ)−∞ into E∗

λ G-equivariantly. It is given by

Pλf(xK) =

∫
K
f(k)e−(λ+ρ)H(x−1k)dk

if f is a sufficiently regular function in the compact picture of the principal series. If
f is given in the induced picture, then Pλf(xK) simply is

∫
K f(xk)dk. Since K/M

can be seen as the boundary of G/K at infinity, the Poisson transform produces a joint
eigenfunction for a given boundary value (see [vdBS87] for more details).
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It is important to know for which values of λ ∈ a∗C the Poisson transform is a bijection.
By [vdBS87, Theorem 12.2] we have that Pλ : (H−λ)−∞ → E∗

λ is a bijection if

−2⟨λ, α⟩
⟨α, α⟩

̸∈ N>0 for all α ∈ Σ+. (I.2)

In particular, Pλ is a bijection if Reλ ∈ a∗+.

I.2.6. Lp-bounds for elementary spherical functions

One can show that in each joint eigenspace Eλ there is a unique left K-invariant function
which has the value 1 at the identity (see [Hel84, Ch. IV Corollary 2.3]). We denote
the corresponding bi-K-invariant function on G by ϕλ and call it elementary spherical
function. Therefore, ϕλ = ϕµ iff λ = wµ for some w ∈ W . It is given by the Poisson
transform of the constant function with value 1 in the compact picture, i.e. ϕλ(g) =∫
K e

−(λ+ρ)H(g−1k)dk.

The aim of this section is to establish the following proposition (see Figure I.2 for a
visualization) that will be needed to obtain a spectral gap in Theorem I.4.10.

Proposition I.2.4. Let p ∈ [2,∞[. Then the elementary spherical function ϕλ is in
Lp+ε(G) (where the Lp-space is defined via a Haar measure on G) for every ε > 0 iff
Reλ ∈ (1− 2p−1) conv(Wρ) where conv(Wρ) is the convex hull of the finite set Wρ.

Proof. First of all note that we only have to consider Reλ ∈ a∗+ since ϕλ = ϕµ iff
λ = wµ for some w ∈ W . In this case Reλ ∈ (1 − 2p−1) conv(Wρ) is equivalent to
Reλ ∈ (1− 2p−1)ρ+ −a∗ (see [Hel84, Ch. IV Lemma 8.3]).

With this remark, one implication of the proposition is a straight forward consequence
of standard estimates for elementary spherical functions: Suppose that Reλ ∈ a∗+ and
Reλ ∈ (1 − 2p−1)ρ + −a∗. Then we have the following bound on ϕλ (see [Kna86, Ch.
VII Prop. 7.15]):

|ϕλ(a)| ≤ Ce(Reλ−ρ)(log a)(1 + ρ(log a))d, a ∈ A+

where C and d are constants ≥ 0. By the integral formula for G = KA+K (see [Hel84,
Ch. I Theorem 5.8]) and the bi-K-invariance of ϕλ we have∫

G
|ϕλ(g)|p+εdg =

∫
a+

|ϕλ(expH)|p+ε
∏
α∈Σ+

sinh(α(H))mαdH

≤
∫
a+

(Ce(Reλ−ρ)H(1 + ρ(H))d)p+εe2ρ(H)dH

for a suitable Lebesgue measure on a. Because of Reλ ∈ (1− 2p−1)ρ+ −a∗ we have

(p+ ε)(Reλ− ρ)(H) ≤ −(2 + 2εp−1)ρ(H).

36



I.2. Preliminaries

Figure I.2.: Visualization of the regions appearing in Proposition I.2.4 for the case G =
SL3(R): The green dashed region is the boundary of (1− 2p−1) conv(Wρ).
Its intersection with the positive Weyl chamber a∗+ (blue cone) equals (1 −
2p−1)ρ+ −a∗ intersected with a∗+.

Hence, ∫
G
|ϕλ(g)|p+εdg ≤ Cp+ε

∫
a+

(1 + ρ(H))d(p+ε)e−2εp−1ρ(H)dH

and we see that the latter is indeed finite by coordinizing a+ by xj ↔ αj(H) with xj > 0.
Then dH is a multiple of dx and ρ(H) =

∑
xjρj with ρj > 0. Therefore ϕλ ∈ Lp+ε(G).

The opposite implication will be proved by combining the proof of [Kna86, Theorem
8.48] with [vdBS87]: According to [vdBS87, Corollary 16.2] the elementary spherical
function ϕλ has a converging expansion

ϕλ(expH) =
∑

ξ∈X(λ)

pξ(λ,H)eξ(H), H ∈ a+, (I.3)

where X(λ) = {wλ − ρ − µ | w ∈ W,µ ∈ N0Π} and the pξ(λ, ·) are polynomials of
degree ≤ |W |. The series converges absolutely on a+ and uniformly on each subchamber
{H ∈ a+ | αi(H) ≥ εi > 0}. The main ingredient of the proof of Proposition I.2.4 is the
fact that (see [vdBS87, Theorem 10.1])

pλ−ρ(λ, ·) ̸= 0. (I.4)
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I. Quantum-classical correspondence

Now, if ϕλ ∈ Lp+ϵ(G), the proof of [Kna86, Theorem 8.48] shows that Re⟨λ− (1− 2(p+
ϵ)−1)ρ, ωj⟩ < 0. Hence Reλ− (1− 2p−1)ρ ∈ −a∗.

I.2.7. Positive definite functions and unitary representations

In this section we recall the correspondence between positive semidefinite elementary
spherical functions and irreducible unitary spherical representations. Recall first that a
continuous function f : G→ C is called positive semidefinite if the matrix (f(x−1

i xj))i,j
for all x1, . . . , xk ∈ G is positive semidefinite. If f is positive semidefinite, then f
is bounded by f(1) and one has f(x−1) = f(x). Moreover, we can define a unitary
representation πf associated to f in the following way: If R denotes the right regular
representation ofG, then πf is the completion of the space spanned byR(x)f with respect
to the inner product defined by ⟨R(x)f,R(y)f⟩ := f(y−1x) which is positive definite. G
acts unitarily on this space by the right regular representation. If f(g) = ⟨π(g)v, v⟩ is a
matrix coefficient of a unitary representation π, then f is positive semidefinite and πf is
contained in π.

Secondly, recall that a unitary representation is called spherical if it contains a non-zero
K-invariant vector. Denote by Ĝsph the subset of the unitary dual consisting of spher-
ical representations. We then have a 1:1-correspondence between positive semidefinite
elementary spherical functions and Ĝsph given by ϕλ 7→ πϕλ (see [Hel84, Ch. IV The-
orem 3.7]). The preimage of an irreducible unitary spherical representation π with
normalized K-invariant vector vK is given by g 7→ ⟨π(g)vK , vK⟩. If the set Ĝsph is en-
dowed with the Fell topology (see [BdlHV08, Appendix F.2]) and we use the topology
of convergence on compact sets on the set of elementary spherical functions, then the
above correspondence is a homeomorphism as is easily seen from the definitions.

I.2.8. Associated vector bundles

In order to define the Weyl chamber flow not only on the base manifold but also on vector
bundles we recall the definition of the associated vector bundle Vτ over a homogeneous
space G/M for a unitary finite dimensional representation (τ, Vτ ) of M . Its total space
is given by Vτ = G×τ Vτ = (G× Vτ )/∼ where (gm, v) ∼ (g, τ(m)v) with g ∈ G, m ∈M
and v ∈ Vτ . The equivalence classes are denoted by [g, v] and the projection to G/M
is [g, v] 7→ gM . A section s of this bundle can be identified with a function s : G → Vτ
satisfying s(gm) = τ(m)−1s(g). We will use this identification throughout this article.
We also have a G-action on Vτ defined by g[g′, v] := [gg′, v]. Therefore, we also have the
left regular action on smooth sections of Vτ :

(gs)(g′M) := g(s(g−1g′M)), s ∈ C∞(G/M,Vτ ).

Identifying s with s this actions reads gs(g′) = s(g−1g′).

A special case of an associated vector bundle is the tangent bundle T (G/M). Namely,
T (G/M) = G×Ad |M (a⊕ n⊕ n−). Hence, vector fields X can be identified with smooth
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I.3. Ruelle-Taylor resonances for the Weyl chamber action

functions X : G → a ⊕ n ⊕ n− satisfying X(gm) = Ad(m)−1X(g). Therefore, we have a
canonical connection ∇ on Vτ given by

∇Xs(g) =
d

dt

∣∣∣∣
t=0

s(g exp(tX(g)),

where s is a smooth section identified with a s : G→ Vτ and X is a vector field of G/M
identified with X as above. This connection will be used to lift the Weyl chamber flow
to Vτ .

I.3. Ruelle-Taylor resonances for the Weyl chamber action

We keep the notation from Section I.2.2. Let Γ be a discrete, torsion-free, cocompact
subgroup of G. Then the biquotient M = Γ\G/M is a smooth compact Riemannian
manifold where the Riemannian structure is induced by the inner product on g. More
precisely, the tangent bundle TM ofM is given by quotient Γ\(G×Ad |M (a⊕ n⊕ n−))
and the norm of some Γ[g, Y ], g ∈ G, Y ∈ a⊕ n⊕ n− is given by the norm of Y ∈ g. We
have a well-defined right A-action onM:

(ΓgM)a := ΓgaM, a ∈ A, g ∈ G.

Therefore we have an a-action by smooth vector fields

ΓX : a→ C∞(M, TM), ΓXHf(ΓgM) =
d

dt

∣∣∣∣
t=0

f(ΓgetHM)

which we call Weyl chamber action.

For later use we denote by X : a→ Diff1(G/M) the corresponding action on G/M .

Proposition I.3.1. The A-action on M is Anosov. More precisely, each H ∈ a+ is
transversally hyperbolic with the splitting E0 = Γ\(G×Ad |M a), Es = Γ\(G×Ad |M n), and
Eu = Γ\(G ×Ad |M n−)). Moreover, for fixed H0 ∈ a+ the dynamically defined positive
Weyl chamber

W = {H ∈ a | H is transversally hyperbolic with the same splitting as H0}

equals a+. Hence the two notions of positive Weyl chambers agree.

Proof. Pick Γ[g,Xα] ∈ Γ\(G ×M a ⊕ n ⊕ n−) and assume that Xα is in the root space
gα. Then we calculate

dφΓXH
t (ΓgM)Γ[g,Xα] =

d

ds

∣∣∣∣
s=0

φΓXH
t (ΓgesXαM) =

d

ds

∣∣∣∣
s=0

ΓesXαetHM =

=
d

ds

∣∣∣∣
s=0

ΓgetHesAd(e−tH)XαM = Γ[getH ,Ad(e−tH)Xα] = Γ[getH , e−tα(H)Xα]

Hence we have exponential decay if α ∈ Σ+ and exponential growth if α ∈ −Σ+. The
general statement is obtained from the observation that gα ⊥ gβ ⊥ a for α ̸= β ̸= 0 in
Σ.
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I. Quantum-classical correspondence

I.3.1. Lifted Weyl chamber action

In order to define horocycle operators we generalize the Weyl chamber action to asso-
ciated vector bundles. Let (τ, Vτ ) be a finite-dimensional unitary representation of M ,
that is a complexification of an orthogonal representation. Then we have defined the
associated vector bundle Vτ = G×τ Vτ over G/M (see Section I.2.8).

The quotient bundle Γ\Vτ is the complexification of a Euclidean vector bundle overM,
where the Euclidean structure is induced by the inner product on Vτ . We identify smooth
sections s of this bundle with smooth functions s : G → Vτ with s(γgm) = τ(m−1)s(g)
for all γ ∈ Γ, g ∈ G, and m ∈M .

The canonical connection ∇ descends to a connection

Γ∇ : C∞(M,Γ\Vτ )→ C∞(M,Γ\Vτ ⊗ T ∗M)

and we have the following formula:

Γ∇s(X)(g) := Γ∇Xs(g) =
d

dt

∣∣∣∣
t=0

s(g exp(tX(g)), (I.5)

where s is a smooth section identified as above and X is a vector field ofM identified with
a smooth function X : G→ a⊕ n⊕ n− which is left Γ-invariant and right M -equivariant.

Definition I.3.2. The lifted Weyl chamber action is defined as

ΓX
τ : a→ Diff1(M,Γ\Vτ ), ΓX

τ
H := Γ∇XH

,

where XH is the vector field identified with the constant mapping G→ a ⊆ a⊕ n⊕ n−,
g 7→ H.

The fact that Γ∇ is a covariant derivative implies that ΓX
τ is an admissible lift of the

Weyl chamber action in the sense of Equation (I.1).

For later use we denote by Xτ : a→ Diff1(G/M,Vτ ) the corresponding action on G/M .

We can find a non-trivial tube domain in a∗C which is independent of τ and contains all
Ruelle-Taylor resonances for the lifted Weyl chamber action.

Proposition I.3.3. The set of Ruelle-Taylor resonances σRT(ΓX
τ ) is contained in −a∗+

ia∗.

Proof. By Proposition I.2.2 we have

σRT(ΓX
τ ) ⊆ {λ ∈ a∗C | Re(λ(H)) ≤ CτL2(H) ∀H ∈ a+}.

Hence, it remains to show that CτL2(H) := inf{C > 0 | ∥e−tΓXτ
H∥L2→L2 ≤ eCt ∀t >

0} = 0 for all H ∈ a+. We show the stronger statement that e−tΓX
τ
H is unitary.
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I.3. Ruelle-Taylor resonances for the Weyl chamber action

Since M commutes with A we have a well defined action of A on Γ\Vτ . It is given by
(Γ[g, v])a = Γ[ga, v]. This action gives rise to an A-action on sections of the bundle
Γ\Vτ defined via (af)(x) = f(xa)a−1 with f ∈ C∞(M,Γ\Vτ ), x ∈M and a ∈ A. If we
identify f with a equivariant function f : G→ Vτ , then (af)(g) = f(ga). Let dΓg be the
normalized right G-invariant Radon measure on Γ\G. Then the L2-norm of f is given by
∥f∥2L2 =

∫
Γ\G ∥f(g)∥

2
Vτ
dΓg and it follows that the A-action continued to L2(M,Γ\Vτ )

is unitary. By definition e−tΓX
τ
Hf = exp(−tH)f for f ∈ L2(M,Γ\Vτ ) and therefore

e−tΓX
τ
H is unitary.

I.3.2. First band resonances and horocycle operators

In analogy to the rank one setting we make the following definition (see [KW21, Defini-
tion 2.11] and [GHW21, Definition 3.1] in the scalar case).

Definition I.3.4. We call λ ∈ σRT(ΓXτ ) a first band resonance and write λ ∈ σ0RT(ΓXτ )
if the vector space

Res0
ΓXτ (λ) = {u ∈ Res

ΓXτ (λ) | Γ∇Xu = 0∀X ∈ C∞(M, Eu)}

of first band resonant states is non-trivial.

The goal of this section is to prove that in a certain neighborhood of 0 in a∗C each Ruelle-
Taylor resonance is a first band resonance and Res0

ΓXτ (λ) = Res
ΓXτ (λ). This will be

done by introducing so called horocycle operators as follows.

Recall that TM = Γ\(G×Ad |M a⊕n⊕n−) and the bundle Γ\(G×Ad |M n) decomposes as⊕
α∈Σ+ Γ\(G×Ad |M gα), and similarly for n−. Therefore, the cotangent bundle T ∗M is

the Whitney sum Γ\(G×Ad∗ |M a∗)⊕
⊕

α∈Σ Γ\(G×Ad∗ |M g∗α). Let us denote the coadjoint
action of M on the complexification of g∗α by τα. Note that τα is unitary with respect to
the inner product induced by the Killing form and the Cartan involution. We can now
define

prα : (T
∗M)C → Γ\Vτα

by fiber-wise restriction to the subbundle Γ\(G×Ad |M gα). This induces a map

p̃rα : C
∞(M,Γ\Vτ ⊗ (T ∗M)C)→ C∞(M,Γ\Vτ⊗τα).

Definition I.3.5. If Γ∇C : C∞(M,Γ\Vτ )→ C∞(M,Γ\Vτ ⊗(T ∗M)C) denotes the com-
plexification of the canonical connection Γ∇, then the horocycle operator Uα for α ∈ Σ
is defined as the composition

Uα := p̃rα ◦ Γ∇C : C∞(M,Γ\Vτ )→ C∞(M,Γ\Vτ⊗τα).
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I. Quantum-classical correspondence

Note that we have the explicit formula

Uαs(g)(Y ) =
d

dt

∣∣∣∣
t=0

s(g exp(tY )), s ∈ C∞(M,Γ\Vτ ), Y ∈ gα, (I.6)

if we again use the identification of sections of some associated vector bundle with
left Γ-invariant and right M -equivariant functions indicated by · and the identification
Vτ ⊗ g∗α ≃ Hom(gα, Vτ ).

We should point out that the space of first band resonant states can be rewritten with
the horocycle operators as

Res0
ΓXτ (λ) = {u ∈ Res

ΓXτ (λ) | U−αu = 0 ∀α ∈ Σ+}. (I.7)

Note that in the case of constant curvature manifolds (i.e. the real hyperbolic case
G = PSO(n, 1) of rank 1) there is only one positive root and our definition reduces to
the original one due to Dyatlov and Zworski (see [DFG15, p. 931]). Furthermore, our
definition extends the definition of the horocycle operators for arbitrary G of rank one
(see [KW21]).

The horocycle operators fulfill the following important commutation relation.

Lemma I.3.6.
∀H ∈ a : ΓX

τ⊗τα
H Uα − UαΓXτ

H = α(H)Uα.

Proof. Using the formulas (I.5) and (I.6) we obtain

(ΓX
τ⊗τα
H Uα − UαΓXτ

H)s(g)(Y ) =

d

dt1

∣∣∣∣
t1=0

d

dt2

∣∣∣∣
t2=0

s(g exp(t1H) exp(t2Y ))− s(g exp(t1Y ) exp(t2H))

and the latter equals
d

dt

∣∣∣∣
t=0

s(g exp(t[H,Y ])).

Since [H,Y ] = α(H)Y for Y ∈ gα the claim follows.

We can now prove the main result of this section.

Proposition I.3.7. The horocycle operators can be extended continuously as linear op-
erators to distributional sections, i.e.

Uα : D′(M,Γ\Vτ )→ D′(M,Γ\Vτ⊗τα).

Moreover, for λ ∈ σRT(ΓXτ ) the horocycle operator U−α maps

Res
ΓXτ (λ) into Res

ΓX
τ⊗τ−α (λ+ α).

In particular, each λ ∈ σRT(ΓX
τ ) with Reλ ∈

⋂
α∈Π −a∗ \ (−a∗ − α) is a first band

resonance and Res
ΓXτ (λ) = Res0

ΓXτ (λ) holds.
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I.3. Ruelle-Taylor resonances for the Weyl chamber action

ee

c'c'

c'c'11

e'e'11

Figure I.3.: For G = SL3(R) the green region depicts the real part of the region where
every resonance is a first band resonance (see Proposition I.3.7).

Proof. Since the horocycle operators are differential operators, we obtain a continuation
to distributional sections and Lemma I.3.6 still holds. Let u ∈ Res

ΓXτ (λ), i.e. u ∈
D′(M,Γ\Vτ ) with WF(u) ⊆ E∗

u and ΓX
τ
Hu = −λ(H)u. Since differential operators do

not increase the wavefront set, we have WF(U−αu) ⊆ E∗
u. Furthermore,

ΓX
τ⊗τ−α

H U−αu = −α(H)U−αu+ U−αΓXτ
Hu = −(λ+ α)(H)U−αu

by Lemma I.3.6. Hence U−αu ∈ Res
ΓX

τ⊗τ−α (λ+ α).

For the ‘in particular’ part recall that Res
ΓXτ ′ (λ′) = 0 for each unitary representation

τ ′ of M and Re(λ′) ̸∈ −a∗ (see Proposition I.3.3) and Res0
ΓXτ (λ) = {u ∈ Res

ΓXτ (λ) |
U−αu = 0 ∀α ∈ Σ+}.

Note that
⋂
α∈Π −a∗ \ (−a∗ − α) = −a∗ ∩ (+a

∗ − λ0), where λ0 =
∑

α∈Π α. Indeed, let
λ =

∑
α∈Π cαα ∈ a∗. Then λ ∈ −a∗ iff cα ≤ 0 for all α ∈ Π, λ ∈ −a∗ − α iff cα ≤ −1

and cβ ≤ 0 for all β ∈ Π \ {α}, and λ ∈ +a
∗ iff cα > 0 for all α ∈ Π. Combining these

statements implies the claim.
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I. Quantum-classical correspondence

I.3.3. First band resonant states and principal series representation

In this section we identify first band resonances states with certain Γ-invariant vectors in
a corresponding principal series representation. The proof follows the line of arguments
given in [KW21, Section 2] in the rank one case. This will allow us to apply the Poisson
transform and obtain a quantum-classical correspondence.

By analogy to [KW21, Definition 2.1] we define

R(λ) :=
{
s ∈ D′(G/M,Vτ ) :

(Xτ
H + λ(H))s = 0 ∀H ∈ a

∇X−s = 0 ∀X− ∈ C∞(G/M,G×Ad |M n−)

}
.

The following lemma allows us to first study the representation of G in R(λ) and take
Γ-invariants afterwards.

Lemma I.3.8. The space Res0
ΓXτ (λ) is isomorphic to the space of Γ-invariants of R(λ),

where the isomorphism is defined by considering Γ-invariant sections as sections of the
bundle Γ\Vτ .

Proof. The only part to observe is that each s ∈ R(λ) automatically has WF(s) ⊆
G ×Ad |M n∗. This holds because G ×Ad∗ |M n∗ is the joint characteristic set of Xτ

H and
X− (see [KW21, Lemma 2.5] for details).

We will now show that the smooth sections in R(λ) correspond to smooth vectors in the
principal series representation for the opposite Iwasawa decomposition.

Lemma I.3.9. The smooth sections R(λ) ∩ C∞(G/M,Vτ ) in R(λ) can be identified
G-equivariantly with

W = {s : G→ Vτ smooth | s(gman−) = e−λ log aτ(m)−1s(g),m ∈M,a ∈ A,n− ∈ N−}.

The identification is obtained by considering sections in s ∈ R(λ) as right M -equivariant
functions s : G→ Vτ .

Proof. The M -equivariance is clear so it remains to show the transformation proper-
ties under A and N−. The property (Xτ

H + λ(H))s = 0 amounts to d
dt

∣∣
t=0

s(getH) =

−λ(H)s(g) for every g ∈ G and H ∈ a. Hence, the function φ(t) = s(getH) satisfies

φ′(r) =
d

dt

∣∣∣∣
t=0

φ(gerHetH) = −λ(H)s(gerH) = −λ(H)φ(r).

Therefore, s(getH) = φ(t) = e−tλ(H)s(g). This proves the right A-equivariance.

For the N−-invariance, let Y ∈ n− and consider φ(t) = s(getY ). For r ∈ R let gr =
gerY ∈ G. Since [gr, Y ] ∈ G×Ad |M n− is in the fiber over grM ∈ G/M , there is a smooth
section Xr ∈ C∞(G/M,G ×Ad |M n−) such that Xr(grM) = [gr, Y ]. In particular, the
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I.3. Ruelle-Taylor resonances for the Weyl chamber action

corresponding right M -equivariant function Xr : G→ n− satisfies Xr(gr) = Y . It follows
that

0 = ∇Xrs(gr) =
d

dt

∣∣∣∣
t=0

s(gre
tXr(gr)) =

d

dt

∣∣∣∣
t=0

s(gerY etY ) = φ′(r).

Hence, φ is constant. This completes the proof.

Note that the space W from Lemma I.3.9 is already very close to the definition of
the induced picture of the principal series representation (see Section I.2.3). The only
difference is that in W we have a right invariance w.r.t. N− instead of N . This can be
easily fixed using a conjugation with the longest Weyl group element and leads to the
main result of this section:

Proposition I.3.10. With the longest Weyl group element w0 (see Section I.2.2) we
have an isomorphism

Res0
ΓXτ (λ)→ Γ(Hw0τ,w0(λ+ρ))−∞

where Γ(Hw0τ,w0(λ+ρ))−∞ denotes the Γ-invariant distributional vectors in the principal
series representation πw0τ,w0(λ+ρ).

Proof. Pick k0 ∈ K normalizing a such that the action of Ad(k0) on a is the longest
Weyl group element w0. We consider the map Is(g) := s(gk0). Then I commutes with
the left action by G and one calculates that

Is(gman) = e−(w0λ) log a(w0τ)(m)−1Is(g), g ∈ G,m ∈M,a ∈ A,n ∈ N.

Hence, we have an intertwiner between W and smooth vectors in Hw0τ,w0(λ+ρ) which
extends to distributional sections. By Lemma I.3.9 we conclude that

R(λ) ≃
(
Hw0τ,w0(λ+ρ)

)−∞

as G-representations. Taking Γ-invariants and using Lemma I.3.8 completes the proof.

I.3.4. Quantum-classical correspondence

In the previous section we identified the first band resonant states Res0
ΓXτ (λ) with Γ-

invariant distributional vectors in the principal series (Hw0τ,w0(λ+ρ))−∞. If we restrict
ourselves to the scalar case τ = 1, then the Poisson transform P−w0(λ+ρ) defines a

map from Γ(Hw0(λ+ρ))−∞ to ΓE−w0(λ+ρ), as P−w0(λ+ρ) provides a G-equivariant map

(Hw0(λ+ρ))−∞ to E−w0(λ+ρ) (see Section I.2.5). Hence, we can identify eigendistributions
of the classical motion with quantum states and we call this identification quantum-
classical correspondence. More precisely, we have the following result, which immediately
gives Theorem I.1.3.
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I. Quantum-classical correspondence

Proposition I.3.11. If λ ∈ a∗C satisfies 2⟨λ+ρ,α⟩
⟨α,α⟩ ̸∈ −N>0 for all α ∈ Σ+, then we have

a bijection
Res0

ΓX
(λ)→ ΓE−w0(λ+ρ) =

ΓE−(λ+ρ).

In particular, λ ∈ σ0RT(ΓX) if and only if ΓE−(λ+ρ) ̸= 0. Furthermore, the isomor-
phism is given by the push-forward π∗ of distributions along the canonical projection

Γπ : Γ\G/M → Γ\G/K.

Proof. In view of Section I.2.5 the Poisson transform is a bijection from (Hw0(λ+ρ))−∞ →
E∗

−λ−ρ. Restricted to Γ-invariant distributional vectors it is still injective with image
ΓE−λ−ρ since Γ is cocompact and therefore ΓE−λ−ρ =

ΓE∗
−λ−ρ.

It remains to show that the isomorphism is the push-forward along the canonical projec-
tion. To this end let s ∈ R(λ) be smooth and π : G/M → G/K the canonical projection.
Then the isomorphism R(λ) → (Hw0(λ+ρ))−∞ carries s to s̃ : G → C, s̃(g) = s(gk0)
where k0 ∈ K is as in the proof of Proposition I.3.10. It follows that

P−w0(λ+ρ)s̃(gK) =

∫
K
s̃(gk)dk =

∫
K
s(gkk0)dk =

∫
K
s(gk)dk

since K is unimodular. On the other hand, for f ∈ C∞
c (G/K) we have

(π∗s)(f) = s(f ◦π) =
∫
G/M

s(gM)f(gK)dgM =

∫
G/K

(∫
K/M

s(gkM)dkM

)
f(gK)dgK

if we normalize the Haar measure on M and choose compatible invariant measures on
G/K and K/M . Hence, π∗s = P−w0(λ+ρ)s̃ for s ∈ R(λ)∩C∞(G/M). Using the density
of smooth compactly supported functions in R(λ) [KW21, Corollary 2.9] we obtain the
equality for the whole space R(λ). As before we now restrict to Γ-invariant distributions
identified with distributions on Γ\G/M and Γ\G/K to complete the proof.

I.4. Quantum spectrum

In this section we analyze the quantum spectrum of the locally symmetric space Γ\G/K.
Recall the definition of the joint eigenspace

Eλ = {f ∈ C∞(G/K) | Df = χλ(D)f ∀D ∈ D(G/K)}

for λ ∈ a∗C. For the definition of χλ see Section I.2.2. Since D ∈ D(G/K) is G-invariant,
it descends to a differential operator ΓD on the locally symmetric space Γ\G/K. There-
fore, the left Γ-invariant functions of Eλ (denoted by ΓEλ) can be identified with joint
eigenfunctions on Γ\G/K for each ΓD:

ΓEλ = {f ∈ C∞(Γ\G/K) | ΓDf = χλ(D)f ∀D ∈ D(G/K)}.

This leads to the following definition.
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Definition I.4.1. The quantum spectrum of Γ\G/K is defined as

σQ := σQ(Γ\G/K) := {λ ∈ a∗C | ΓEλ ̸= 0}.

Using the quantum-classical correspondence and the Weyl law from [DKV79] we can
now prove Theorem I.1.1.

Proof of Theorem I.1.1. From [DKV79, Theorem 8.9] we have for each set Ω ⊂ a∗ as in
Theorem I.1.1∑

λ∈σQ∩ia∗,Imλ∈tΩ
dim(ΓEλ)|Wλ|−1 = Vol(Γ\G/K) (2π)−dVol(Ad(K)Ω)td +O(td−1),

where Vol(Γ\G/K) is the volume of the compact Riemannian manifold Γ\G/K with
Riemannian structure induced by the Killing form and Vol(Ad(K)Ω) is the volume of
the set Ad(K)Ω ⊆ Ad(K)a with respect to the Killing form restricted to Ad(K)a = p.
Replacing Ω by Ω \

⋃
α∈Σ+ α⊥ we deduce

∑
λ∈σQ∩ia∗,Imλ∈tΩ∩

⋃
α⊥ dim(ΓEλ) = O(td−1)

since Vol(Ad(K)α⊥) = 0. Therefore,∑
λ∈σQ∩ia∗,Imλ∈tΩ

dim(ΓEλ) = |W |Vol(Γ\G/K) (2π)−dVol(Ad(K)Ω)td +O(td−1)

since W acts freely on the Weyl chambers. To complete the proof we observe that
σRT(ΓX) ⊇ σ0RT(ΓX) and m(λ) ≥ dim(Res0

ΓX
(λ)) = dim(ΓE−λ−ρ) for λ ∈ ia∗.

As χλ = χwλ for w ∈ W it is obvious that σQ is W -invariant. The following properties
of σQ were derived by Duistermaat-Kolk-Varadarajan [DKV79]. We include the proof
for the convenience of the reader.

Proposition I.4.2 (see [DKV79, Prop. 2.4, Prop. 3.4, Cor. 3.5]). If λ ∈ σQ, then the
corresponding spherical function ϕλ is positive semidefinite. Moreover, there is some
w ∈ W such that wλ = −λ and Reλ ∈ conv(Wρ). In particular, ⟨Reλ, Imλ⟩ = 0 and
∥Reλ∥ ≤ ∥ρ∥.

Proof. Pick u ∈ ΓEλ, regarded as a right K-invariant element of L2(Γ\G), normalized
such that ⟨u, u⟩L2(Γ\G) = 1. With the right regular representation R on L2(Γ\G) define
Φ(g) := ⟨R(g)u, u⟩. Being a matrix coefficient the function Φ is positive semidefinite. We
will show that Φ is the elementary spherical function ϕλ. By right K-invariance of u and
unitarity of R we get that Φ is K-biinvariant. Φ(1) = 1 is obvious. Smoothness follows
from the fact that u is smooth. Furthermore, DΦ(g) = ⟨R(g)Du, u⟩ = χλ(D)Φ(g) by
left invariance of D. We conclude that Φ is the elementary spherical function for χλ, i.e.
Φ = ϕλ.
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I. Quantum-classical correspondence

Since ϕλ is positive semidefinite we have ϕλ(g) = ϕλ(g−1) by definition of positive
definiteness and ϕλ(g−1) = ϕ−λ(g) by the integral representation (see Section I.2.7).

Therefore ϕλ = ϕ−λ implying that wλ = −λ for some w ∈W . It easily follows that

⟨Reλ, Imλ⟩ = ⟨wReλ,w Imλ⟩ = ⟨−Reλ, Imλ⟩ = 0.

Moreover, ϕλ is bounded which holds iff Reλ ∈ conv(Wρ) (see [Hel84, Ch. IV Theo-
rem 8.1]). Since {µ ∈ a∗ | ∥µ∥ ≤ ∥ρ∥} is convex and contains Wρ, the last assertion
follows.

Remark I.4.3. In the rank one case Proposition I.4.2 implies for λ ∈ σQ that λ ∈ a∗

with ∥λ∥ ≤ ∥ρ∥ or λ ∈ ia∗. In this particular case, this can be obtained not only
from Proposition I.4.2 but also from the positivity of the Laplacian on Γ\G/K. In
the higher rank setting the algebra D(G/K) contains more operators, more precisely
it is a polynomial algebra in n variables. Using the properties of the Harish-Chandra
isomorphism HC one can obtain that −λ ∈ Wλ from the self/skew-adjointness of the
operators in D(G/K).

Remark I.4.4. Proposition I.4.2 implies the following obstructions for λ ∈ a∗C to be in
σQ.

(i) If Reλ = 0, then we get no obstructions on Imλ since wλ = −λ is satisfied with
w = 1.

(ii) If Reλ ̸= 0, then Imλ is singular, i.e. Imλ ∈ α⊥ for some α ∈ Σ, since Imλ
non-singular implies w = 1 as W acts simply transitively on open Weyl chambers.

(iii) If Reλ is regular, i.e. ⟨Reλ, α⟩ ≠ 0 for all α ∈ Σ, we denote by w̃0 the unique Weyl
group element mapping the Weyl chamber containing Reλ to its negative. Then
we have λ ∈ Eig−1(w̃0)+ iEig+1(w̃0) ⊆ a∗C where Eig±1 denotes the eigenspace for
±1. If −1 is contained in W , then Imλ = 0. In particular, this is true in the rank
one case but need not hold in general as is seen below.

Let us calculate dimEig+1(w0) = dimEig+1(w̃0) in order to control the amount of
freedom for Imλ. Let d± := dimEig±1(w0). Then n = d+ + d− and Tr(w0) = d+ − d−.
Choosing the basis Π we observe Tr(w0) = −#{α ∈ Π | w0α = −α} ≤ 0. Thus,
d± = 1

2(n±Tr(w0)) so that d+ ≤ n
2 . We obtain the following traces and dimensions for

the irreducible root systems from the classification.

Type An, n even An, n odd Bn Cn Dn, n even Dn, n odd E6 E7 E8 F4 G2

−Tr(w0) 0 1 n n n n− 2 2 7 8 4 2
d+ n/2 (n− 1)/2 0 0 0 1 2 0 0 0 0

Example I.4.5. For G = SLn(R) an element λ ∈ a∗ ≃ a is regular iff the diagonal
entries are pairwise distinct. For λ = diag(λ1, . . . , λn) ∈ σQ with Reλ ∈ a∗+ satisfies
Reλk = −Reλn+1−k and Imλk = Imλn+1−k for all k since the longest Weyl group
element is the permutation (1↔ n)(2↔ n− 1) · · · .
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I.4. Quantum spectrum

Figure I.4.: Situation for SL3(R) as obtained from Remark I.4.4: If λ ∈ σQ then Reλ is
either equal to zero (blue dot in the left picture) or lies on one of the purple,
orange or brown lines depicted on the left. Furthermore Imλ has to lie in
the respective region depicted on the right, i.e. if Reλ = 0, Imλ can take
any value (blue shaded plane), if Reλ lies on the orange line, then Imλ has
to lie on the orange line and so on.

More specifically, for G = SL3(R) the only Weyl group elements with eigenvalue −1
are the reflections at hyperplanes perpendicular to the roots. Hence, λ ∈ σQ implies
Reλ ∈ [−1, 1]α and Imλ ∈ α⊥ for some α ∈ Σ or λ ∈ ia∗. The obstructions on λ to be
in σQ described by Remark I.4.4 are less concrete and are visualized in Figure I.4.

Let us formulate the condition that ϕλ is positive semidefinite in a different way.

Proposition I.4.6. ϕλ is positive semidefinite if and only if the subrepresentation gener-
ated by the K-invariant vector in the principal series representation Hwλ is unitarizable
and irreducible for some w ∈ W . Equivalently, H−wλ has a unitarizable irreducible
spherical quotient.

Proof. By Casselman’s embedding theorem πϕλ is a subrepresentation of Hτ,ν for some

τ ∈ M̂ and ν ∈ a∗C (see e.g. [Kna86, Theorem 8.37]). More precisely, the (g,K)-module
of K-finite vectors are equivalent. Since the only principal series representations con-
taining K-invariant vectors are the spherical ones, we obtain τ = 1. Since infinitesimally
equivalent admissible representations of G have the same set of K-finite matrix coeffi-
cients (see [Kna86, Corollary 8.8]), we conclude ϕλ = ϕν , i.e. wλ = ν.

Conversely assume that the subrepresentation generated by theK-invariant vector in the
principal series representation Hwλ is unitarizable and irreducible. Again by [Kna86,
Corollary 8.8] the matrix coefficient ϕwλ = ϕλ of Hwλ is a matrix coefficient of the
unitary representation obtained by the unitary structure as well. Hence, ϕλ is positive
semidefinite. Transition to the dual representation implies the second equivalence.
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I. Quantum-classical correspondence

Remark I.4.7. Although the unitary dual is classified for many groups, it is difficult
to deduce which elementary spherical functions are positive semidefinite. This is due to
the fact that most classifications are not obtained in terms of quotients of the spherical
principal series but use different descriptions of admissible representations. However,
for rank one groups everything is classified (see [Hel84, p.484]): If α denotes the unique
reduced root in Σ+, then ϕλ is positive semidefinite iff λ ∈ ia∗ or λ ∈ a∗ and |⟨λ, α⟩| ≤
⟨ρ, α⟩ for 2α ̸∈ Σ (i.e. in the real hyperbolic case) and |⟨λ, α⟩| ≤ (mα/2 + 1)⟨α, α⟩ for
2α ∈ Σ or λ = ±ρ.

Figure I.5.: Spherical dual in the rank one case. The picture on the left describes the real
and complex hyperbolic case m2α ≤ 1. The picture on the right describes
the quaternionic casem2α ≥ 2. In the latter case note that there is a spectral
gap separating ρ.

I.4.1. Property (T)

In this section we review some facts about Kazhdan’s Property (T) which will lead to
a more precise description of the location of σQ. Recall that a locally compact group
has Property (T) iff the trivial representation is an isolated point in the unitary dual of
the group with respect to the Fell topology (see [BdlHV08] for a general reference). It
is well known that each real simple Lie group of real rank ≥ 2 has Property (T) (see
[BdlHV08, Theorem 1.6.1]). Since the mapping λ 7→ ϕλ is continuous and the corre-
spondence between positive semidefinite elementary spherical functions and irreducible
unitary spherical representations is a homeomorphism (see Section I.2.7), we obtain that
in some neighbourhood of ρ no elementary spherical function is positive semidefinite. We
will use a more quantitative description introduced by Oh [Oh02, Section 7.1]. Therefore,
we denote by pK(G) the smallest real number such that the K-finite matrix coefficients
of π are in Lq(G) for any q > pK(G) and nontrivial π ∈ Ĝ.

Remark I.4.8. (i) Since each matrix coefficient of π ∈ Ĝ is bounded, it is contained
in Lq for each q > p if it is in Lp. Hence,

pK(G) = inf{p | all K-finite matrix coefficients of π are in Lp(G) ∀π ∈ Ĝ \ {1}}.
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I.4. Quantum spectrum

(ii) pK(G) ≥ 2.

(iii) By [Cow79] together with [Oh02] we have pK(G) <∞ iff G has Property (T).

In many examples one knows the number pK(G) explicitly or at least upper bounds.

Example I.4.9 (see [Oh02, Section 7]). (i) pK(SLn(k)) = 2(n − 1) for n ≥ 3 and
k = R,C.

(ii) pK(Sp2n(R)) = 2n for n ≥ 2.

(iii) pK(G) is bounded above by an explicit value for split classical groups of higher
rank.

We can now prove the following theorems.

Theorem I.4.10. Let G be a non-compact real semisimple Lie group with finite center
and Γ ≤ G a discrete, cocompact, torsion-free subgroup. Then

ReσQ(Γ\G/K) ⊆ (1− 2pK(G)−1) conv(Wρ) ∪Wρ.

Proof. Let λ ∈ σQ(Γ\G/K). By Proposition I.4.2 ϕλ is positive semidefinite so that
the irreducible unitary representation πϕλ is defined (see Section I.2.7). ϕλ is a matrix
coefficient of this representation. By the definition of pK(G) we have ϕλ ∈ LpK(G)+ϵ(G)
for all ϵ > 0 or πϕλ is the trivial representation. By Proposition I.2.4 we get Reλ ∈
(1 − 2pK(G)−1) conv(Wρ) in the first case. The latter case occurs iff ϕλ ≡ 1, i.e.
λ ∈Wρ.

Theorem I.4.11. Let G be a non-compact real semisimple Lie group with finite center
and Γ ≤ G a discrete, cocompact, torsion-free subgroup. Then there is a neighborhood G
of ρ in a∗ such that

σQ(Γ\G/K) ∩ (G × ia∗) = {ρ}.

Proof. Without loss of generality we assume that G has trivial center, otherwise replace
G by G/Z(G). Then G is a product of simple Lie groups G1, . . . , Gl such that G1, . . . , Gk,
k ≤ l, are of rank one. With the obvious notation let λ = (λ1, . . . , λl) ∈ (a1)

∗
C⊕· · ·⊕(al)∗C

be in σQ. By Proposition I.4.2 we have wλ = −λ for some w ∈ W . Since the Weyl
group W is the product of the Weyl groups λi ∈ a∗i are real for i ≤ k if Reλi ̸= 0. The
elementary spherical function ϕλ is the product of elementary spherical functions ϕGi

λi
for the factors Gi. Again by Proposition I.4.2 we know that ϕλ is positive semidefinite
and therefore each ϕGi

λi
is positive semidefinite. The same line of arguments as in the

proof of Theorem I.4.10 imply that Reλi ∈ (1−2pK(Gi)
−1) conv(Wiρi)∪Wiρi for i > k.

Since Gi, i > k, have Property (T) we conclude that there is a neighborhood U of ρ in
a∗ such that

σQ ∩ (U × ia∗) ⊆ a∗1 × · · · × a∗k × {ρk+1} × · · · × {ρl}.

Discreteness of σQ implies the theorem.
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I. Quantum-classical correspondence

I.5. Main Theorem

In this section we present the main theorem of the article and deduce Theorem I.1.2
from it.

Theorem I.5.1. Let G be a non-compact real semisimple Lie group with finite center
and Γ ≤ G a discrete, cocompact, torsion-free subgroup. Define A := {λ ∈ a∗C |

2⟨λ+ρ,α⟩
⟨α,α⟩ ∈

−N>0 for some α ∈ Σ+}, B := {λ ∈ a∗C | wλ = −λ for some w ∈ W}, and F := {λ ∈
a∗ | λ+ α ̸∈ −a∗ for all α ∈ Π}. Then we have the following inclusions

σRT(ΓX) ∩ (F × ia∗) ⊆ σ0RT(ΓX)

and

σ0RT(ΓX) ∩ (a∗C \ A) ⊆ −σQ(Γ\G/K)− ρ
⊆ B ∩ (((1− 2pK(G)−1) conv(Wρ) ∪Wρ) + ia∗)− ρ.

Proof. This is immediate from Propositions I.3.7, I.3.11, and I.4.2 and Theorem I.4.10.

Proof of Theorem I.1.2. It follows from Theorem I.5.1 that the neighborhood can be
chosen as (a∗+ − ρ) ∩ F ∩ (−G − ρ) where G is obtained by Theorem I.4.11. If G has
Property (T), then pK(G) is finite and G can be replaced by the complement of the
Γ-independent set (1− 2pK(G)−1) conv(Wρ).
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I.5. Main Theorem

c'c'

Figure I.6.: Visualization of the real part of a∗C for G = SL3(R): The pink region is
the region where Ruelle-Taylor resonances can a priori be located in view
of the results of [BGHW20]. The red points and lines depict the region
(B ∩ 1

2 conv(Wρ) ∪Wρ)− ρ, i.e. the region where first band resonances can
occur. The green shaded region illustrates the real parts in which only first
band resonances can occur. Further first band resonances might occur inside
the exceptional set A depicted by the black lines.
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Supplementary Material

I.6. Alternative proof of Proposition I.4.2

In this section we give an alternative proof of Proposition I.4.2 that does not use the
abstract theory of spherical functions and representations. It is inspired by the rank
one case where the positivity of the Laplacian gives an exact characterization for the
location of the spectrum. Let us recall that fact: If λ ∈ σQ then there exists f ∈
C∞(Γ\G/K) such that ΓDf = χλ(D)f for all D ∈ D(G/K). In particular, ∆ ∈ D(G/K)
since the action of G on G/K is by isometries. The Laplace operator is a positive
self-adjoint operator on L2(Γ\G/K) and therefore it has non-negative eigenvalues. As
C∞(Γ\G/K) ⊆ L2(Γ\G/K) for cocompact Γ we find that χλ(∆) ≥ 0. By [Hel84, Ch. II
Cor. 5.20] we have

χλ(∆) = −∥Reλ∥2 + ∥ Imλ∥2 + ∥ρ∥2 − 2i⟨Reλ, Imλ⟩.

In the rank one case where dimR a = 1 the fact that χλ(∆) is real implies Reλ = 0 or
Imλ = 0. Additionally, the positivity implies ∥Reλ∥ ≤ ρ where equality is attained for
λ = ±ρ and the eigenfunctions are the constant functions.

Figure I.7.: σQ in the rank one case

In order to prove Proposition I.4.2 and in particular that −λ ∈Wλ for λ ∈ σQ we need
the following lemma.
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I. Quantum-classical correspondence

Lemma I.6.1 (see [Hel84, Lemma III-3.11]). The algebra of Weyl group invariant poly-
nomials Poly(a∗C)

W separates the points of a∗C/W , i.e. for λ, µ ∈ a∗C

p(λ) = p(µ) ∀ p ∈ Poly(a∗C)W ⇐⇒ ∃w ∈W : wλ = µ.

Proof. Pick λ and µ in a∗C such that p(λ) = p(µ) for all p ∈ Poly(a∗C)
W and assume

λ ̸∈W ·µ. SinceW is finite we can pick 0 ≤ f̃ ∈ C(a∗C) such that f̃(λ) = 1 and f̃(wµ) = 0
for all w ∈ W . Define f = |W |−1

∑
w∈W w · f̃ . Then f ∈ C(a∗C) is W -invariant with

f(λ) ≥ 1 and f(µ) = 0. We use the Weierstrass approximation theorem to uniformly
approximate f by polynomials pn ∈ Poly(a∗C) on some compact set containing W ·λ and
W · µ. By construction

f(λ) = |W |−1
∑
w∈W

f(wλ) = lim
n
|W |−1

∑
w∈W

pn(wλ) = lim
n
|W |−1

∑
w∈W

(w · pn)(λ).

Due to the fact that |W |−1
∑

w∈W w · pn is W -invariant we infer that f(λ) = f(µ)
contradicting 1 ≤ f(λ) = f(µ) = 0.

Let us first prove the special case where −1 ∈ W . This is the case if the root system is
of type Bn, Cn, Dn(n even), E7, E8, F4, or G2.

Proposition I.6.2. Assume −1 ∈ W . Then for λ ∈ σQ there is w ∈ W such that
wλ = −λ. If Reλ is regular then we have Imλ = 0.

Proof. Let p1, . . . , pn be algebraically independent homogeneous generators of S(a)W

with real coefficients if pi is represented by a basis of a. Assume that deg(pi) ≤ deg(pj)
for i ≤ j and define di := deg(pi). Since −1 ∈W we have pi(λ) = pi(−λ) = (−1)dipi(λ)
and therefore di is even for all i. Let Op be the composition of the extension map
S(a)W → S(p)K ⊆ S(g)K and the symmetrization λ : S(g)K → U(g)K as defined in Sec-
tion I.2.4. By construction we have HC(Op(pi)) =: p̃i = pi+ lower order terms where
by construction the lower order terms have real coefficients as well (see Section I.2.4).
We also have Op(pi)

∗ = (−1)di Op(pi) denoting the L2-adjoint by ∗. Indeed, to obtain
Op(pi)

∗ we have to take X ∈ U(g)K representing Op(pi) and take its adjoint as an oper-
ator on G and let it act on G/K. But every element in g is skew-adjoint acting on L2(G)
so that we have to reverse the order of X and multiply by (−1)di . The construction of
Op includes summing over all permutations and hence Op(pi)

∗ = (−1)di Op(pi) follows.
We already observed that di is even for every i. Therefore Op(pi) is symmetric.

Now we can use the argument as in the rank one case. For λ ∈ σQ there is f ∈
C∞(Γ\G/K) such that Df = χλ(D)f for every D ∈ D(G/K). In particular, f is
an eigenfunction for Op(pi) in L2(Γ\G/K). Since Op(pi) is symmetric we must have
χλ(Op(pi)) = p̃i(λ) ∈ R. Hence, p̃i(λ) = p̃i(λ). The former equals p̃i(λ) since p̃i has real
coefficients. Since the pi and hence also p̃i generate Poly(a

∗
C)
W we deduce p(λ) = p(λ)

for all p ∈ Poly(a∗C)W . By Lemma I.6.1 there is w ∈ W such that wλ = λ. Note that
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I.6. Alternative proof of Proposition I.4.2

in the present setting where −1 ∈ W this is equivalent to saying wλ = −λ for some w
which is the general statement we obtained.

If in addition Reλ is regular then w = 1 as the Weyl group acts freely on the open Weyl
chambers. In this case we clearly have Imλ = 0 since w Imλ = − Imλ.

In the previous proposition we were able to use the assumption that −1 ∈W to conclude
that all operators considered are symmetric. For the general case we need the following
lemma to deal with the non-symmetric operators.

Lemma I.6.3 (see [Hel84, II-Lemma 5.21]). If we identify Poly(a∗C)
W ≃ S(a)W with

the set of invariant differential operators D(A) on A, then HC is a ∗-homomorphism,
i.e.

HC(D∗) = HC(D)∗ ∀D ∈ D(G/K),

where ·∗ denotes the adjoint with respect to the corresponding invariant measures.

Proof. Let D be represented by X ∈ U(g)K and f ∈ C∞
c (G/K) be real valued and left

K-invariant. We consider the integral transform

Ff (g) = eρ(H(g−1))

∫
N
f(ngK) dn.

By observing that the map η : U(a) → U(a), X 7→ X + ρ(X) corresponds to the auto-
morphism D 7→ e−ρDeρ of D(A) it follows from the definitions that

HC(D)Ff (a) = FDf (a) (I.8)

as eρ(H( ·−1))Ff is left N -invariant and right K-invariant.

Recall that we defined the elementary spherical function

ϕλ(g) =

∫
K
e(−λ−ρ)H(g−1k) dk

which satisfies Dϕλ = χλ(D)ϕλ. Using this we calculate

HC(D∗)(λ)

∫
G
ϕλ(g)f(gK) dg =

∫
G
(D∗ϕλ)(g)f(gK) dg =

∫
G
ϕλ(g)(Df)(gK) dg

=

∫
G

∫
K
e(−λ−ρ)H(g−1k) dk(Df)(gK) dg

=

∫
G
e(−λ−ρ)H(g−1)

∫
K
(Df)(kgK) dk dg

=

∫
G
e(−λ−ρ)H(g−1)(Df)(gK) dg.
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The integral formula for the Iwasawa decomposition (see [Hel84, I-Prop. 5.1]) allows us
to reduce to an integral over A:∫

G
e(−λ−ρ)H(g−1)(Df)(gK) dg =

∫
N

∫
A

∫
K
e(−λ−ρ)H(a−1)(Df)(naK)e−2ρ(log a) dk da dn

=

∫
A
eλ log aFDf (a) da.

By (I.8) this equals∫
A
eλ log aHC(D)Ff (a) da =

∫
A
(HC(D)∗eλ log a)Ff (a) da

= HC(D)∗(λ)

∫
A
eλ log aFf (a) da.

In the last line HC(D)∗ ∈ D(A) is again seen as a polynomial on a∗C. Now the same
calculation as above (with D = 1) shows∫

A
eλ log aFf (a) da =

∫
G
ϕλ(g)f(gK) dg.

This shows that HC(D∗) = HC(D)∗.

Remark I.6.4. Let us explain the meaning of HC(D)∗ as a polynomial on a∗C. To do
so let p = aH1 · · ·Hn ∈ U(a) = S(a) ≃ D(A) be a monomial where a ∈ C and Hi ∈ a.
Since theHi are skew symmetric, (aH1 · · ·Hn)

∗ = (−Hn) · · · (−H1)a = a(−1)nH1 · · ·Hn.
Evaluating this polynomial at λ we get

p∗(λ) = a(−λ(H1)) · · · (−λ(Hn)) = a(−λ(H1)) · · · (−λ(Hn)) = p(−λ).

In particular, χλ(D
∗) = HC(D∗)(λ) = HC(D)∗(λ) = HC(D)(−λ) = χ−λ(D).

Proposition I.6.5. Let p ∈ S(a)W be homogeneous with real coefficients if p is repre-
sented by a basis of a. Let d := deg(p) and Op as defined in Section I.2.4. Then

χ−λ(Op(p)) = (−1)dχλ(Op(p)).

In particular, HC(Op(p)) = p + lower order terms where the degree of the lower order
terms have the same parity as d.

Proof. By construction we have HC(Op(p)) =: p̃ = p+ lower order terms where by
construction the lower order terms have real coefficients as well (see Section I.2.4). As in
the proof of Proposition I.6.2 we also have Op(p)∗ = (−1)dOp(p) denoting the adjoint
by ∗. Therefore Op(pi) is symmetric if d is even and skew-symmetric if d is odd.

Applying Lemma I.6.3 to this relation gives

p̃(−λ) = p̃(−λ) = χ−λ(Op(p)) = χλ(Op(p)∗) = χλ((−1)dOp(p)) = (−1)dp̃(λ).
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With these preliminaries we can now prove the general version of Proposition I.6.2. It
follows the same line of arguments except that not all operators are symmetric. To deal
with this we use Proposition I.6.5.

Proposition I.6.6. Let λ ∈ σQ. Then there is w ∈W such that wλ = −λ.

Proof. Let p1, . . . , pn be algebraically independent homogeneous generators of S(a)W

with real coefficients if pi is represented by a basis of a. Assume that deg(pi) ≤ deg(pj)
for i ≤ j and define di := deg(pi). Applying Proposition I.6.5 yields χ−λ(Op(pi)) =
(−1)diχλ(Op(pi)).

Now we can use the same argument as in Proposition I.6.2. For λ ∈ σQ there is f ∈
C∞(Γ\G/K) such that Df = χλ(D)f for every D ∈ D(G/K). In particular, f is
an eigenfunction for Op(pi) in L2(Γ\G/K). Since Op(pi) is symmetric (resp. skew-
symmetric) we must have χλ(Op(pi)) =: p̃i(λ) ∈ idiR. Hence, p̃i(λ) = (−1)di p̃i(λ) =
p̃i(−λ). Since the pi and hence also p̃i generate Poly(a

∗
C)
W we deduce p(λ) = p(−λ) for

all p ∈ Poly(a∗C)W . By Lemma I.6.1 there is w ∈W such that wλ = −λ.

I.7. Alternative proof of Theorem I.4.11

In this section we will give an alternative proof of Theorem I.4.11. This proof will not
give an explicit description of the spectral gap as in Theorem I.4.10 since it merely
uses the definition of Kazdhan’s Property (T) instead of the Lp-bounds for the matrix
coefficients. Let us begin with a review of the Fell topology.

Definition I.7.1 (see [BdlHV08, Definition F.2.1 and Proposition F.2.4]). The Fell
topology on the unitary dual Ĝ of G is given as follows: A basis for the family of
neighbourhoods of π ∈ Ĝ is given by the setsW (π, v1, . . . , vn, Q, ε) for vi ∈ Hπ, ∥vi∥ = 1,
Q ⊆ G compact, and ε > 0 where

W (π, v1, . . . , vn, Q, ε) := {σ ∈ Ĝ | ∃wi, ∥wi∥ = 1: |⟨π(x)vi, vi⟩−⟨σ(x)wi, wi⟩| ≤ ε∀x ∈ Q}.

Note that in [BdlHV08] they do not work with unit vectors. However, a short calculation
shows that the topologies coincide.

Example I.7.2. (i) If G = A is abelian then Â are the characters χ : A→ S1 and the
matrix coefficients are the characters as well. As one easily sees, the Fell topology
is then the topology of uniform convergence on compact sets. More specifically,
for A = R the map R→ R̂, ξ → eiξ· is a homeomorphsim.

(ii) If G = K is compact then K̂ is discrete. Indeed, if π ∈ K̂ and (πj)j∈J is a net
converging to π and ϕj (resp. ϕ) are diagonal matrix coefficients of πj (resp. π)

then ϕj → ϕ uniform on K. This implies that
∫
K ϕ(x)ϕj(x) dx→

∫
K |ϕ(x)|

2 dx ̸=
0. Therefore,

∫
K ϕ(x)ϕj(x) dx ̸= 0 for all j ≥ j0 for some j0 ∈ J . By Schur

orthogonality we infer π ≃ πj , j ≥ j0, so that K̂ is discrete.
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In many examples where the unitary dual is parametrized by some topological space the
Fell topology turns this parametrization into a homeomorphism. For example if G is a
compact linear connected semisimple Lie group, by the theorem of the highest weight
the unitary dual is parametrized by dominant analytically integral functionals λ on hC
where h is a Cartan subalgebra of g (see [Kna86, Thm. 4.28]). This set is a lattice in
h∗C, in particular it is discrete. Hence by the above example the parametrization is a
homeomorphism.

A second example where this principle holds is the following. IfG is a nilpotent connected
simply connected Lie group, then the orbit method by Kirillov [Kir62] yields a bijection
between Ĝ and the set of coadjoint orbits. It turns out that this bijection turns into
a homeomorphism if we endow Ĝ with the Fell topology and g∗/G with the quotient
topology.

Let us prove a similar result for Ĝsph in our usual setting.

Proposition I.7.3. If we use the induced topology on Ĝsph (also called Fell topology) and
the topology of uniform convergence on compact sets on the set P of positive semidefinite
spherical functions, then the correspondence πϕ 7→ ϕ (see Section I.2.7) is a homeomor-
phism.

Proof. Let ϕn → ϕ ∈ P converge uniformly on compact sets. We have to show that
πϕn ∈ W (πϕ, v1, . . . , vm, Q, ε) for n large enough. By density it suffices to consider
vi ∈ spanR(G)ϕ. Let vi =

∑
j αijR(gij)ϕ and define wni :=

∑
αijR(gij)ϕn. Then

we have ⟨πϕ(g)vi, vi⟩ =
∑
|αij |2ϕ(g−1

ij ggij) and ⟨πϕn(g)wni , wni ⟩ =
∑
|αij |2ϕn(g−1

ij ggij).

Since ϕn converges uniformly on the compact set
⋃
i,j g

−1
ij Qgij we get that

πϕn ∈W (πϕ, v1, . . . , vm, Q, ε)

for almost every n.

For the opposite direction suppose πϕn → πϕ in the Fell topology. We have to show
that ϕn → ϕ on an arbitrary compact set Q. Let vK be a K-invariant unit vector for
πϕ. By definition of the Fell topology there exists wn ∈ Hϕn with norm 1 such that
|⟨πϕ(x)vK , vK⟩ − ⟨πϕn(x)wn, wn⟩| ≤ ε for all x ∈ Q ∪K.

We define wn :=
∫
k πϕn(k)w

ndk and calculate

∥πϕn(k)wn − wn∥
2 = 2(1− Re⟨πϕn(x)wn, wn⟩) ≤ 2ε.

Hence ∥wn − wn∥ ≤
√
2ε and wn ̸= 0 for ε < 1

2 . It follows that wn

∥wn∥ is a K-invariant

unit vector for πϕn and therefore ϕn(x) = ⟨πϕn(x)wn, wn⟩ ∥wn∥
2. Now we can estimate

for x ∈ Q:

|ϕ(x)− ϕn(x)| = |⟨πϕ(x)vK , vK⟩ − ⟨πϕn(x)wn, wn⟩ ∥wn∥
2 |

≤ ε+ |⟨πϕn(x)wn, wn⟩ − ⟨πϕn(x)wn, wn⟩ ∥wn∥
2 |

≤ ε+ ∥wn∥2 |1− ∥wn∥ |+ ∥wn − wn∥ ∥wn∥+ ∥wn − wn∥ ∥wn∥ .
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This completes the proof since ∥wn − wn∥ ≤
√
2ε and therefore |1− ∥wn∥ | ≤

√
2ε.

The following definition will be used to deduce a weaker form of Theorem I.4.10. We
will only obtain a neighborhood of Wρ where no quantum spectrum is present instead
of explicit structure of the spectral gap.

Definition I.7.4 (see [BdlHV08, Theorem 1.2.5]). A locally compact group has Kazh-
dan’s Property (T) if the trivial representation is an isolated point in the unitary dual
of the group with respect to the Fell topology.

Example I.7.5. (i) Each compact group has Property (T) since Ĝ is discrete.

(ii) Rn,Zn, SL2(R), SO(n, 1), SU(n, 1) do not have Property (T).

(iii) Every real connected simple Lie group with real rank ≥ 2 has Property (T) (see
[BdlHV08, Thm. 1.6.1])

(iv) The rank one groups Sp(n, 1) and F4 have Property (T).

Recall that by Proposition I.4.2 if λ ∈ σQ(Γ\G/K) then ϕλ is positive semidefinite.

Hence, the representation πϕλ ∈ Ĝsph is defined. Therefore if G has Property (T) then
by Proposition I.7.3 and since λ 7→ ϕλ is continuous there is a neighborhood U of ρ in
a∗C such that

σQ(Γ\G/K) ∩ U = {ρ}.

However, a priori the quantum spectrum could contain spectral parameters λ with real
parts arbitrarily close to ρ. This is possible since the imaginary parts can be big such
that λ /∈ U .

In order to rule out this behavior we use the reduction to real infinitesimal character (see
[Kna86, Thm. 16.10]). This requires us to identify the representation πϕλ as a quotient
of the principal series representation. We will assume that G is a linear connected
semisimple group for the rest of this section.

Theorem I.7.6 (Casselman embedding theorem, see [Kna86, Theorem 8.37]). Let π
be an irreducible unitary representation of G. Then π is infinitesimally equivalent to a
subrepresentation of some nonunitary principal series representation Hτ,ν , τ ∈ M̂, ν ∈
a∗C. More precisely, if ν−ρ is a leading exponent of π, then π is infinitesimally equivalent

to a subrepresentation of Hw0τ,w0ν for some τ ∈ M̂ .

Let us recall the definition of a leading exponent. Let π be an irreducible unitary
representation and E1, E2 orthogonal projections onto two K-types U1, U2 of π. Then
the spherical function F (x) = E1π(x)E2 has values in Hom(U2, U1), is an eigenfunction
of the center of the universal enveloping algebra, and hence has an expansion of the form

F (expH) =
∑
ν

Fν−ρ(expH)
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I. Quantum-classical correspondence

with
Fν−ρ(expH) = e−ρ(H)

∑
|q|≤q0

cν,qα1(H)q1 · · ·αn(H)qneν(H).

Here, Π = {α1, . . . , αn} is the simple system, ν ∈ a∗C, and q is a multiindex. ν − ρ is
called an exponent of F if Fν−ρ ̸= 0. ν− ρ is called exponent of π if ν− ρ is an exponent
of F for some K-types U1, U2. An exponent ν − ρ is called leading exponent if the only
exponent of the form ν − ρ +

∑
α∈Π cαα with cα ∈ N0 is ν − ρ. The set of leading

exponents is finite and non-empty. Moreover, if ν − ρ is an exponent, then there is a
leading exponent of the form ν − ρ+

∑
α∈Π cαα (see [Kna86, Ch. VII.8] for details).

Let us return to the representation πϕλ where ϕλ is positive semidefinite. Since ϕλ = ϕwλ
for w ∈W we can assume Reλ ∈ a∗+.

By Theorem I.7.6 πϕλ is infinitesimally equivalent to a subrepresentation of Hw0τ,w0ν

where ν − ρ is a leading exponent of πϕλ . By definition of the principal series the
restriction to K is equivalent to IndKM τ . With the Frobenius reciprocity theorem (see
[Kna86, Theorem 1.14]) we observe that the trivial representation of K is contained in
Hw0τ,w0ν iff τ is the trivial representation on M . Since πϕλ is a spherical representation
we obtain that πϕλ is infinitesimally equivalent to the irreducible subrepresentation of
Hw0ν containing the K-trivial representation.

We now determine ν. The elementary spherical function ϕλ is the matrix coefficient
for the K-invariant vector and by [Kna86, Cor. 8.8] this is also the K-invariant matrix
coefficient of Hw0ν . By definition of the principal series representation Hw0ν its K-
invariant matrix coefficient is ϕw0ν = ϕν . Therefore, wλ = ν for some w ∈ W . On
the other hand, the elementary spherical function ϕλ is the spherical function of πϕλ
for the trivial K-type. By Equation (I.4) we find that λ − ρ is an exponent of ϕλ and
therefore also of πϕλ . Hence, the leading exponent ν − ρ can be assumed to be of the
form λ− ρ+

∑
α∈Π cαα, cα ∈ N0.

We obtain wλ = λ +
∑
cαα. This is only possible if wλ = λ and cα = 0. Indeed,

Re⟨λ − wλ, ρ⟩ = Re⟨λ, ρ − wρ⟩ ≥ 0 since Reλ ∈ a∗+. Therefore, ⟨
∑

α cαα, ρ⟩ ≤ 0 and
hence cα = 0 for all α.

We summarize the above discussion in the following proposition.

Proposition I.7.7. Let Reλ ∈ a∗+ and suppose that ϕλ is positive semidefinite. Then
πϕλ is infinitesimally equivalent to the subrepresentation of Hw0λ that is generated by
the K-invariant vector.

If one considers dual representations we get that πϕλ is an irreducible unitary spherical

quotient of the dual representation of Hw0λ, i.e. of H−w0λ.

Since we are interested in the neighborhood of ρ let us restrict to Reλ ∈ a∗+. In this case,
w0λ = −λ by Remark I.4.4. In particular, πϕλ is an irreducible quotient of Hλ. But by
[Kna86, Thm. 7.24 on p.214] there is a unique irreducible quotient of Hλ if Reλ ∈ a∗+
which is called Jλ. As πϕλ is unitary, Jλ is infinitesimally unitary. On the other hand
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I.7. Alternative proof of Theorem I.4.11

if Jλ is infinitesimally unitary, the diagonal matrix coefficients are positive semidefinite.
In particular, ϕλ is positive semidefinite, πϕλ is defined and infinitesimally equivalent to
Jλ.

We will now describe how to reduce the question whether Jλ is infinitesimally unitary
to the case where λ is real.

Let λ ∈ a∗C be non-real with Reλ ∈ a∗+ and w0λ = −λ. Set F := {α ∈ Σ+ | α ⊥ Imλ}.
We have ∅ ⊊ F ⊊ Σ+ by Chevalley’s lemma (see [Hum90, Thm. 1.12]) and Imλ ̸= 0.
Define Σ̃+ := {α ∈ Σ | ⟨α, Imλ⟩ > 0} ∪ F . Then Σ̃+ is a positive system in Σ. Indeed,
Σ̃+ ∪ −Σ̃+ = Σ and if α, β ∈ Σ̃+ with α+ β ∈ Σ then α+ β ∈ Σ̃+ if (at least) one root
is not in F . If both roots α and β are contained in F , then α + β ∈ F since Σ+ is a
positive system.

The positive system Σ̃+ defines a different minimal parabolic subgroup P̃ =MAÑ . It is
contained in a (non-minimal) parabolic subgroup P1 =M1A1N1 with the property that
Imλ restricted to the a-part aM1 ofM1 vanishes, i.e. λ|aM1

is real. Here,M1 is generated
by M and gα with α ∈ ±F , A1 is the analytic subgroup of a1 =

⋂
α∈F kerα, and N1

is the analytic subgroup of n1 =
⊕

α∈Σ̃+\F gα. The Lie algebra m1 of M1 is given by

m1 = m⊕a⊥1 ⊕
⊕

α∈±F gα. Note that P̃ ̸= P1 since g−α is not in the Lie algebra of P̃ but in

P1 for α ∈ F . Let AM1 = A∩M1 = exp a⊥1 andNM1 = Ñ∩M1 = exp
⊕

α∈F gα = N∩M1.

Then we have PM1
:= P̃ ∩M1 =MAM1NM1 and PM1 is the minimal parabolic subgroup

for the positive system for (M1, AM1) given by F . Then we have indeed Imλ|aM1
= 0. In

fact, if we identify a and a∗ by the Killing form of G, then aM1 = a⊥1 is identified with ⟨F ⟩
which by definition is orthogonal to Imλ (see Example I.7.12 for the case G = SL3(R)).

We want to show that Reλ|aM1
is contained in the positive Weyl chamber for F as a

positive system in (M1, AM1). Here we have to use the Killing form B1 of M1 to identify
aM1 with its dual and to measure angles. Let α ∈ F and define α = α|aM1

and Aα ∈ aM1

by B1(H,Aα) = α(H), H ∈ aM1 . Similarly define Aα ∈ a by B(Aα, H) = α(H), H ∈ a,
where B is the Killing form of G. By [Kna02, Proposition 6.52] we have

[Xα, θXα] = B(Xα, θXα)Aα = B1(Xα, θXα)Aα

for Xα ∈ gα, α ∈ F . Therefore, Aα = cαAα with cα > 0. Now we can calculate

B1(Reλ|aM1
, α) = Reλ(Aα) = cαReλ(Aα) = cαB(Reλ, α) > 0.

We conclude that Reλ|aM1
is in the positive Weyl chamber. Therefore J

Reλ|aM1 as a
representation of M1 is defined and we have the following theorem.

Theorem I.7.8 (Reduction to real character, [Kna86, Theorem 16.10]). Jλ is infinites-

imally unitary if and only if J
Reλ|aM1 is infinitesimally unitary.

Remark I.7.9. The theorem implies that only the direction of Imλ is important for
Jλ to be infinitesimally unitary. More precisely, JReλ+i Imλ is infinitesimally unitary
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if and only if JReλ+ci Imλ is infinitesimally unitary for every c > 0. Moreover, JReλ is
infinitesimally unitary in this case. Indeed, Jλ being infinitesimally unitary is equivalent
to saying that ϕλ is positive semidefinite. λ 7→ ϕλ is continuous and positive semidef-
initeness is closed in the topology of convergence on compact sets. Therefore, letting
c→ 0 implies the claim.

We obtain the following theorem on the quantum spectrum.

Theorem I.7.10. Suppose G has Property (T). Then there is a neighbourhood U of ρ
in a∗ (independent of Γ) such that

σQ(Γ\G/K) ∩ (U × ia∗) = {ρ}.

Proof. We already observed that for λ ∈ σQ(Γ\G/K) with Reλ ∈ a∗+ the quotient Jλ

is infinitesimally unitary and that there is a neighborhood U of ρ in a∗C such that no
quotient Jλ for λ ∈ U is infinitesimally unitary. But now Theorem I.7.8 shows that this
is also the case if λ ∈ U + ia∗. Projecting U onto the real part completes the proof.

Remark I.7.11. Note that the spectral gap obtained by Theorem I.7.10 is only com-
ing from the definition of Kazhdan’s Property (T) where only the existence of some
neighborhood is required. Hence we do not have control about its size or its shape. In
contrast to that Theorem I.4.10 gives an explicit region where the spectrum is located
and the size of this region is controlled by the Lp-boundedness of matrix coefficients of
irreducible unitary representations.

Let us carry out the reduction to real characters in the example of SL3(R).

Example I.7.12. Let G = SL(3,R) and λ = cρ + id(α1 − α2) with c, d > 0. Then
F = {α1 + α2} and Σ̃+ = {α1, α1 + α2,−α2}. We have a1 = R diag(1,−2, 1) and
aM1 = R diag(1, 0,−1). Furthermore ρ̃ = α1 and ρM1 = 1

2

∑
α∈F mαα|aM1

= 1
2ρ|aM1

. We
have ρ̃|aM1

(diag(1, 0,−1)) = 1 = ρM1(diag(1, 0,−1)) so that ρM1 = ρ̃|aM1
. For the convex

hulls we get conv(Wρ)|aM1
= 2 conv(WM1ρM1). By Theorem I.7.8 Jλ is infinitesimally

unitary iff J
Reλ|aM1 is infinitesimally unitary. Hence the a priori bound given by Reλ ∈

conv(Wρ) (i.e. c ≤ 1) is improved to Reλ|aM1
∈ conv(WM1ρM1) =

1
2 conv(Wρ)|aM1

(i.e.

c ≤ 1
2) if d > 0 (see Figure I.8 for a visualization).
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Figure I.8.: Visualization of the reduction to real character for G = SL3(R).
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Preliminary Material

Before we delve into the paper, let us first discuss some fundamental concepts of com-
pactifications that will play a central role later on.

II.1. Introduction to compactifications

For a topological Hausdorff space X it is often useful to know how it can be compactified.
Let us first define the notion of a compactification.

Definition II.1.1. For a topological Hausdorff space X a compactification of X is a
compact Hausdorff space X together with a topological embedding ι : X → X with open
dense image.

Clearly, if X is already a compact Hausdorff space, and ι : X → X is a compactification,
then ι(X) is also compact and therefore closed. By assumption ι(X) is dense so that
ι(X) = X and thus X and X are homeomorphic. Hence, it is only interesting to speak
about compactifications if X is non-compact.

Example II.1.2. If X is locally compact non-compact Hausdorff space, then one can
always construct the Alexandroff or one-point compactification as follows. Let∞ be any
element not contained in X and set X := X∗ := X ∪ {∞}. We define the topology on
X∗ by taking the open sets of X as open sets in X∗ as well as all subsets of X∗ which
are complements in X∗ of compact sets of X. This indeed defines a topology on X∗.
Obviously, ∅ and X∗ are open. Intersections of two open sets in X∗ are again open, since
U ∩ X∗ \ K = U ∩ X \ K is open where U ⊆ X is open and K ⊆ X is compact and
hence closed and (X∗ \K1)∩ (X∗ \K2) = X∗ \ (K1 ∪K2) is a complement of a compact
set where Ki ⊆ X are compact. If Ki ⊆ X is compact and Uj ⊆ X is open then

⋃
i

(X∗ \Ki) ∪
⋃
j

Uj = X∗ \

⋂
i

Ki ∩X \
⋃
j

Uj


is the complement of a compact subset hence open. Therefore, arbitrary unions of open
sets are again open. We conclude that X∗ is a topological space.

Moreover, X → X∗ is a topological embedding, X is open in X∗, and as X is non-
compact it has dense image.
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II. Absence of principal eigenvalues

In order to see that X∗ is Hausdorff we have to show that a point x ∈ X and ∞ are
separated by open sets. Since we assumed X to be locally compact there is a compact
neighborhood K of x. Let U ⊆ K open with x ∈ U . Then U and X∗ \K are open and
disjoint sets containing x and ∞ respectively proving the Hausdorff property.

Furthermore, X∗ is compact. For an open cover (Ui)i of X
∗ there is i0 such that∞ ∈ Ui0

and therefore Ui0 = X∗ \K for a compact set K ⊆ X. Then K is covered by (Ui∩X)i ̸=i0
and hence there is a finite subcover of K which together with X∗ \K covers all of X∗.
This shows compactness.

The example of the one-point compactification is a very basic construction of a com-
pactification. In general there are many different compactifications of a locally compact
space. To compare different compactifications we make the following definition.

Definition II.1.3. We say that a compactification ι1 : X → X1 dominates a compacti-
fication ι2 : X → X2 if there is a continuous map f : X1 → X2 such that ι2 = f ◦ ι1.

X1

∃f

��

X

ι1
>>

ι2

  

X2

Note that the map f is unique since ι1(X) is dense in X1 and surjective since

f
(
X1

)
= f

(
ι1(X)

)
⊇ f(ι1(X)) = ι2(X) = X2.

Proposition II.1.4. Let X be a locally compact non-compact Hausdorff space. Then
every compactification X of X dominates the one-point compactification X∗.

Proof. Define f : X → X∗ by f(ι(x)) = x, x ∈ X, and f(x) =∞ if x /∈ ι(X). It remains
to show that f is continuous. If U ⊆ X is open, then f−1(U) = ι(U) is open in ι(X) as
ι is a topological embedding and therefore open in X as ι(X) is open in X. If K ⊆ X is
compact then f−1(X∗\K) = X \ι(K) which is open since ι(K) is compact and therefore
closed. This proves that f is continuous.

The previous proposition shows that X∗ is a final object in the category of compactifica-
tions of X. There also exists a initial object in this category which is called Stone-Čech
compactification βX.
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II.2. Geodesic compactification

Proposition II.1.5 (see [Wal74]). Let X be a locally compact Hausdorff space. Then
there is a compactification βX of X with the following universal property: For every
compact Hausdorff space K and every continuous map f : X → K there is a unique
continuous map βf : βX → K with f = βf ◦ ι. In particular, βX dominates every other
compactification of X.

βX

∃! βf

��

X

ι
==

f

!!

K

While the one-point compactification is too small to resemble the different ways to di-
verge to infinity, the Stone-Čech compactification is too unwieldy to work with. There-
fore we introduce two compactifications suitable for our setting of symmetric spaces.

II.2. Geodesic compactification

Let X be an n-dimensional Hadamard manifold, i.e. a complete simply connected and
non-positively curved Riemannian manifold. For these manifolds we have the famous
Cartan-Hadamard theorem.

Theorem II.2.1 (see [BC64]). X is diffeomorphic to the Euclidean plane Rn. More
precisely, at any point p ∈ X the exponential mapping expp : TpX → X is a diffeomor-
phism.

This theorem allows us to define a compactification of X by compactifying Rn.

Definition II.2.2. The geodesic compactification X∪X(∞) of X is the Hausdorff space
{v ∈ TpX | ∥v∥ ≤ 1} together with the embedding

ι : X → X ∪X(∞), x 7→
exp−1

p (x)

1 + ∥ exp−1
p (x)∥

.

Clearly, ι is an embedding with open dense image since v 7→ v
1+∥v∥ is a diffeomorphism

between TpX and the unit disc in TpX. Hence, X ∪X(∞) is a compactification of X.

To see that this compactification is independent of the base point p, i.e. different choices
of p give rise to compactifications that dominate each other, we make the following
definition.

Definition II.2.3 (see [BJ06, Section I.2.2]). Two (unit speed) geodesics γ1, γ2 are
equivalent if lim supt→∞ d(γ1(t), γ2(t)) <∞.
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II. Absence of principal eigenvalues

Proposition II.2.4 (see [BJ06, Prop. I.2.3]). The factor space {all geodesics}/ ∼ can
be canonically identified with the unit sphere in the tangent space TpX at any base point
p.

Proof. For any unit vector v ∈ TpX there is a unique geodesic γ with γ(0) = p and
γ̇(0) = v. Hence, the set of all geodesics through p can be identified with the unit
sphere in TpX. This yields an injective map from the unit sphere in TpX to the set
of all geodesics modulo equivalence by [BC64, Ch. 9.5. Cor. 2]. For a geodesic γ let
xn := γ(n). Define γn to be the unique geodesic with γn(0) = p and γn(tn) = xn for
some tn ≥ 0. Since the unit sphere in TpX is compact, there is a subsequence such that
γ̇nk

(0) converges. Therefore, γnk
converges to a geodesic γ∞ with γ∞(0) = p uniformly

for t in compact subsets of R. Let t ≥ 0. Since tn = d(p, xn) and n = d(xn, γ(0)) we
have by the reverse triangle inequality |tn − n| ≤ d(p, γ(0)). In particular, tn → ∞.
Pick n large such that t ≤ tn. Then by convexity of the function t 7→ d(γn(t), γ(t)) (see
[BO69]):

d(γn(t), γ(t)) ≤ max(d(p, γ(0)), d(γn(tn), γ(tn))).

We also have d(γn(tn), γ(tn)) = d(γ(n), γ(tn)) = |tn − n| ≤ d(p, γ(0)) and therefore
d(γn(t), γ(t)) ≤ d(p, γ(0)). Letting n→∞ it follows d(γ∞(t), γ(t)) ≤ d(p, γ(0)). Hence,
γ and γ∞ are equivalent. This completes the proof.

The proposition shows that the boundary X(∞) = {all geodesics}/ ∼ is independent of
the base point p. Also the convergence of an unbounded sequence (xn)n is independent
of the base point p. To see this let γ be a geodesic with γ(0) = p. Then xn → [γ] (in the
compactification associated with p) if and only if exp−1

p (xn)/(1+ ∥ exp−1
p (xn)∥)→ γ̇(0).

The geodesic starting in p through xn is γn(t) = expp

(
t

exp−1
p (xn)

∥ exp−1
p (xn)∥

)
so that xn → [γ] if

and only if γn → γ uniformly on compact sets. For a different base point p′ let γ′n be
the geodesic starting in p′ through xn and γ′ the geodesic with γ′(0) = p′ and γ′ ∈ [γ].
Let us show that γ′n → γ′: Let ε > 0 and R > 0. Then there is N ∈ N such that
d(γn(t/ε), γ(t/ε)) < 1 for all n ≥ N and t ≤ R. By enlarging N we can assume that
d(xn, p

′) ≥ R/ε for n ≥ N . Then by convexity

d(γ′n(t), γ(t)) ≤ εd(γ′n(t/ε), γ′(t/ε))
≤ ε(d(γ′n(t/ε), γn(t/ε)) + d(γn(t/ε), γ(t/ε)) + d(γ(t/ε), γ′(t/ε))).

Again by convexity the first part is bounded by max{d(γ′n(0)), γn(0)), d(γ′n(t′n), γn(t′n))}
where t′n = d(xn, p

′). As in the proof of Proposition II.2.4 this is bounded by d(p, p′).
The last part is bounded since γ and γ′ are equivalent. All in all, d(γ′n(t), γ

′(t)) ≤ Cε for
all n ≥ N and t ≤ R with a constant C independent of ε and R. This shows that γn → γ
if and only if γ′n → γ′ and therefore also the topology of X ∪ X(∞) is independent of
the base point.

Let us finish the discussion about the topology by giving a fundamental system of neigh-
borhoods. In the closed unit disc of TpX a neighborhood of a point v∞ on the boundary

76



II.2. Geodesic compactification

contains a set of the form

{v ∈ TpX | r < ∥v∥ ≤ 1,∢(v, v∞) < ε}

where r ↗ 1 and ε↘ 0. Therefore the intersection with the interior X of X ∪X(∞) of
a fundamental system of neighborhoods of [γ] with γ(0) = p is given by

{γ̃(t) ∈ X | γ̃ geodesic with γ̃(0) = p, t > R,∢(γ̇(0)), ˙̃γ(0)) < ε}

with R↗∞ and ε↘ 0.

For a compactification it is an important question which continuous maps can be ex-
tended to the compactification. Recall that for the Stone-Čech compactification every
continuous map into a compact space can be continued whereas only the functions with
a unique limit can be continued to the one-point compactification1. For the geodesic
compactification we have the following proposition.

Proposition II.2.5. Every isometry φ : X → X extends (uniquely) to a homeomor-
phism X ∪X(∞)→ X ∪X(∞).

Proof. We define φ([γ]) = [φ ◦ γ] and have to check continuity. Since X ⊆ X ∪X(∞) is
open and dense it is sufficient to show that φ(xn)→ φ(x) for xn → x with xn ∈ X and
x = [γ] ∈ X(∞). We already observed that xn → [γ] if and only if γn → γ (uniformly
on compact sets) where γn is the geodesic from p to xn. But clearly φ ◦ γn → φ ◦ γ and
φ ◦ γ is a geodesic from the base point φ(p) to φ(xn). Hence φ(xn)→ [φ ◦ γ].

Let us return to the setting where X is a symmetric space G/K. Then X is a Hadamard
manifold with canonical base point x0 = eK and therefore the geodesic compactification
is defined. The tangent space Tx0X at x0 can be identified with p and the Riemannian ex-
ponential map expx0 at x0 coincides with the exponential map p→ G/K, Y 7→ exp(Y )K.
In particular, a fundamental system of neighborhoods of [γ] where γ(t) = exp(tY0) for a
unit vector Y0 ∈ p is given by

{exp(tY )K | t > R, Y ∈ p normalized,∢(Y, Y0) < ε}

with R↗∞ and ε↘ 0.

Since G acts on G/K by isometries, Proposition II.2.5 shows that this action extends
to an action on G/K ∪ (G/K)(∞). Hence, the geodesic compactification is a so-called
G-compactification.

1More precisely, for φ : X → Y in order to be continuously extendable to X∗ there has to exist y0 ∈ Y
such that for every neighborhood U of y0 the set φ−1(Y \ U) is compact.
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II. Absence of principal eigenvalues

II.3. Satake compactifications

While the one-point compactification and the Stone-Čech compactification can be con-
structed for any locally compact Hausdorff space, the geodesic compactification is only
defined for Hadamard manifolds. However the definition of none of the three compact-
ifications is specifically designed for Riemannian symmetric spaces. There are many
different compactifiactions for symmetric spaces, each of them having other properties.
The Satake compactifications are the most useful compactifications for us as they match
up with the asymptotic expansions for the eigenfunctions of D(G/K) that we will use in
the paper. We introduce these compactifications in this section.

The definition uses irreducible faithful projective representations, hence let τ be such a
representation of G, i.e. τ : G → PSL(n,C) is a homomorphism that is injective and
there are no proper invariant projective subspaces. Note that an irreducible representa-
tion of g on some Cn lifts to an irreducible linear representation of the universal cover
G̃. If Z is a central subgroup of G̃, then by Schur’s lemma Z acts as scalar operators.
Hence we obtain a projective representation of G̃/Z and thus of G. On the other hand,
if τ is an irreducible projective representation of G, then the derived representation
dτ : g→ slnC is also irreducible. Thus we have a correspondence of irreducible represen-
tations of g and irreducible projective representations of G. This correspondence also
preserves faithfulness if the center of G is trivial (see [GJT98, Prop. 4.6]).

For an irreducible projective representation τ by Weyl’s unitary trick there is an inner
product on Cn such that τ(θ(g)) = (τ(g)−1)∗ where θ is the Cartan involution. In
particular, τ(H) is Hermitian for H ∈ a and therefore Cn =

⊕
µ∈a∗ Vµ with Vµ = {v |

τ(H)v = µ(H)v ∀H ∈ a}. µ ∈ a∗ is called weight if Vµ ̸= 0. The choice of the positive
system Σ+ defines a highest weight µτ in the sense that every other weight is of the form
µτ −

∑
α∈Π cαα with cα ∈ N0.

Remark II.3.1. The irreducible finite dimensional representations of g (and therefore
also the irreducible faithful projective representations of G) are parametrized by the
integral dominant functionals on a Cartan subalgebra of g by the theorem of the highest
weight [Hum72, Ch. VI]. In particular, there are infinitely many of them.

Using the irreducible faithful representation τ we can define a corresponding Satake
compactification.

Definition II.3.2. Let Hn be the real vector space of Hermitian n × n matrices and
P(Hn) the associated projective space. The Satake compactification Xτ associated to an
irreducible faithful representation τ is the closure of the range of the map

iτ : G/K → P(Hn), gK 7→ [τ(g)τ(g)∗].

Note that iτ is well-defined since we assumed that τ(θ(g)) = (τ(g)−1)∗ and thus τ(K) ⊆
PSU(n). This implies τ(k)τ(k)∗ = 1 ∈ PSLn(C).
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The projective space P(Hn) is compact and hence Xτ is also compact. In order to see
that Xτ is a compactification we have to show that iτ is an embedding with open image.
The space PSLn(C)/PSU(n) can be identified with positive definite Hermitian matrices
of determinant one via gPSU(n) 7→ gg∗. Because of the restriction on the determinant
PSLn(C)/PSU(n)→ P(Hn) is injective and clearly an embedding with open image.

For H ∈ p it holds τ(expH)τ(expH)∗ = exp(2τ(H)). Since the derivative τ : g→ sln(C)
is injective we infer that iτ is an embedding.

Xτ is also a G-compactification: The action of G extends to an action on Xτ and even
on P(Hn) by g.[A] = [τ(g)Aτ(g)∗].

Let us analyze the convergence of sequences in Xτ . Since G = KA+K and K is com-
pact we first take a look at sequences xj = exp(Hj)K ∈ X with Hj ∈ a+. As de-
scribed above the representation space Cn decomposes into weight spaces Vµ for the
weights µ. Choosing a basis according to the weight spaces τ(eH) is a diagonal matrix
diag(eµ1(H), . . . , eµn(H)) where µ1, . . . , µn are the weights listed with multiplicity. Then
iτ (e

HK) = [diag(e2µ1(H), . . . , e2µn(H))]. For the sequence Hj ∈ a+ there are different
ways to diverge to ∞. More precisely, Hj can drift away from all walls of the Weyl
chamber or has a bounded distance from some walls. The walls aI are given by subsets
I ⊊ Π where aI =

⋂
α∈I kerα. Let J = {α ∈ Π | lim supj α(Hj) <∞}. By extracting a

subsequence we can assume that limα(Hj) exists and is finite for α ∈ J and α(Hj)→∞
for α /∈ J . Recall that µi = µτ −

∑
α∈Π cα,iα and assume that µ1 = µτ . Then

iτ (e
HjK) = [diag(1, e2(µ2−µτ )Hj , . . . , e2(µn−µτ )Hj )]

= [diag(1, e−2
∑
cα,2α(Hj), . . . , e−2

∑
cα,nα(Hj))].

It now depends on the cα,i whether the entries converge to 0 or not.

To order the weights in a useful way we define the support supp(µi) of the weight µi as
supp(µi) = {α ∈ Π | cα,i > 0}. With this definition a weight µi satisfies supp(µi) ̸⊆ J
iff e−2

∑
cα,iα(Hj) → 0. Let us order the weights such that for i = 1, . . . , k we have

supp(µi) ⊆ J . Note that supp(µ1) = ∅ so that this does not contradict the assumption
µ1 = µτ . Then we have

iτ (e
HjK) = [diag(1, e

−2
∑

α∈supp(µ2)
cα,2α(Hj), . . . , e−2

∑
α∈supp(µn) cα,nα(Hj))]

→ [diag(1, e
−2

∑
α∈supp(µ2)

cα,2 limj α(Hj), . . . , e
−2

∑
α∈supp(µk) cα,k limj α(Hj), 0, . . . , 0)].

Note that the limit only depends on limj α(Hj) for α ∈
⋃

supp(µi)⊆J supp(µi) =: I ⊆ J
and not on the limits for α ∈ J ∖ I.

We now want to characterize the limit. Recall that aI =
⋂
α∈I kerα. We define aI to be

the orthogonal complement of aI in a (see Figure II.3 for a visualization). By elementary
linear algebra I is a basis of (aI)∗ and thus there is H∞ ∈ aI with α(H∞) = limj α(Hj)
for all α ∈ I. We conclude

iτ (e
HjK)→ [diag(1, e

−2
∑

α∈supp(µ2)
cα,2α(H∞)

, . . . , e
−2

∑
α∈supp(µk) cα,kα(H∞)

, 0, . . . , 0)].
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II. Absence of principal eigenvalues

In particular, we have a map

iI : aI+ = {H ∈ aI | α(H) ≥ 0 ∀α ∈ I} → Xτ

H 7→ [diag(1, e
−2

∑
α∈supp(µ2)

cα,2α(H)
, . . . , e

−2
∑

α∈supp(µk) cα,kα(H)
, 0, . . . , 0)].

By [BJ06, Lemma I.4.21/22] iI is an embedding and the images of iI for different I are
disjoint.

To identify the different subsets I that can occur here we define the following notion.

Definition II.3.3. A subset I ⊆ Π is called µτ -connected if I ∪ {µτ} cannot be decom-
posed into to non-empty orthogonal subsets.

The following proposition connects the support of a weight with the notion of µτ -
connectedness.

Proposition II.3.4 (see [Sat60, Lemma 5]). The µτ -connected subsets are precisely the
supports of the weights of τ .

Clearly, the union of µτ -connected subsets is µτ -connected and therefore for J ⊊ Π the
set I =

⋃
supp(µi)⊆J supp(µi) is the largest µτ -connected subset contained in J .

Let us summarize the results in the following proposition.

Proposition II.3.5 (see [BJ06, Prop. I.4.23]). A sequence eHjK ∈ G/K for an un-
bounded sequence Hj ∈ a+ converges in Xτ iff for a µτ -connected subset I the limit
limj α(Hj) exists and is finite for all α ∈ I and for every larger µτ -connected sub-

set I ′ there is α ∈ I ′ ∖ I such that α(Hj) → ∞. If H∞ ∈ aI+ is the element with
α(H∞) = limj α(Hj) for all α ∈ I then iτ (e

HjK)→ iI(H∞). Hence,

iτ (ea+K) = iτ (e
a+K) ∪

⋃
I⊊Π µτ -connected

iI

(
aI+

)
.

Example II.3.6. Let G = PSLn(C) and τ = id be the defining representation. a is
the set of diagonal matrices with real entries and trace 0. The representation space
V = Cn has the weight space decomposition V =

⊕
Vµi where µi(diag(λ1, . . . , λn)) = λi

and Vµi = Cei. The usual choice of positivity gives the simple roots Π = {αi = µi −
µi+1 | i = 1, . . . , n − 1}. This choice determines the highest weight to be µ1 and
supp(µi) = {α1, . . . , αi−1}. For J ⊆ Π the set I ⊆ J defined above is {α1, . . . , αi} such
that αi+1 /∈ J . If H = diag(λ1, . . . , λn) ∈ a+ then λ1 ≥ λ2 ≥ · · · ≥ λn. Hence for a
sequence Hj ∈ a+ let k be the biggest index such that λk+1,j − λ1,j stays bounded for
j →∞. Such an index k exists since

∑
i λi,j = 0 for all j. In particular, we can assume

that λi,j − λ1,j → di for j → ∞ and i ≤ k + 1 and λi,j − λ1,j → −∞ for i > k + 1. It
follows that

iτ (e
HjPSU(n))→ [diag(1, e2d2 , . . . , e2dk+1 , 0, . . . , 0)].
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In this example I = {α1, . . . , αk} but it could be the case that I ⊊ J , i.e. lim supj λi,j −
λi+1,j <∞ for some i > k + 1.

The boundary components of iτ (e
a+K) are parametrized by the µ1-connected subsets

I = {α1, . . . , αk}, k = 1, . . . , n − 1. Here aI = {diag(λ1, . . . , λn) ∈ a | λ1 = · · · = λk+1}
and aI = {diag(λ1, . . . , λn) ∈ a | λk+2 = · · · = λn = 0}. The embedding iI is given by

iI(diag(λ1, . . . , λk+1, 0, . . . , 0)) = [diag(e2λ1 , . . . , e2λk+1 , 0, . . . , 0)].

Let us describe the orbit structure of Xτ . Denote by xI the image of 0 under the
embedding iI for a µτ -connected subset I ⊊ Π. Then we have the following statement.

Proposition II.3.7 (see [BJ06, Prop. I.4.27]). The G-orbits in Xτ are parametrized by
the µτ -connected subsets I ⊊ Π. More precisely,

Xτ = X ∪
⋃

I⊊Π µτ -connected

OI (II.1)

where OI is the orbit GxI through xI .

In order to determine the orbits in Xτ as homogeneous spaces we have to introduce
parabolic subgroups (see Section II.5.4 for an example).

Definition II.3.8. For I ⊆ Π recall that aI =
⋂
α∈I kerα and aI is the orthogonal

complement of aI in a. We further define nI =
⊕

α∈Σ+∖⟨I⟩ gα and mI = m ⊕ aI ⊕⊕
α∈⟨I⟩ gα. We define the corresponding subgroups AI = exp aI , NI = exp nI and

MI =M⟨expmI⟩. Then the subgroup PI =MIAINI is the standard parabolic subgroup
for the subset I.

We also need the notion of the µτ -saturation.

Definition II.3.9. For a subset I ⊊ Π we define the µτ -saturation of I as the union of
I and the simple roots orthogonal to I ∪ {µτ}.

Now we can identify the orbits OI as homogeneous spaces.

Proposition II.3.10 (see [BJ06, Prop. I.4.40]). Let I ⊊ Π be µτ -connected and J its
µτ -saturation. Then the stabilizer of xI is NJAJMJ∖I(K ∩MI). In particular, the orbit
OI is the homogeneous space

G/(NJAJMJ∖I(K ∩MI)). (II.2)

Example II.3.11. For G = PSLnC and τ = id we have the µτ -connected subsets
Ik = {α1, . . . , αk}. Clearly, the µτ -saturation of Ik is

Jk = {α1, . . . , αk} ∪ {αk+2, . . . , αn−1} = Π∖ {αk+1}.
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II. Absence of principal eigenvalues

Therefore,

aJk =

{(
λidk+1

λ′idn−(k+1)

)
∈ slnC : λ, λ′ ∈ R

}
,

nJk =

{(
0 B
0 0

)
∈ slnC : B ∈M(k+1)×(n−(k+1))(C)

}
,

mIk =

{(
A

D

)
∈ slnC : TrA ∈ iR, D = diag(izk+2, . . . , izn), zj ∈ R

}
, and

mJk∖Ik =

{(
A

D

)
∈ slnC : TrD ∈ iR, A = diag(iz1, . . . , izk+1), zj ∈ R

}
.

Thus on the group level

AJk =

{(
λidk+1

λ′idn−(k+1)

)
∈ PSLnC : λ, λ′ > 0

}
,

NJk =

{(
idk+1 B
0 idn−(k+1)

)
∈ PSLnC : B ∈M(k+1)×(n−(k+1))(C)

}
,

MIk =

{(
A

D

)
∈ PSLnC : D = diag(ξk+2, . . . , ξn), |detA| = |ξj | = 1

}
, and

MJk∖Ik =

{(
A

D

)
∈ PSLnC : A = diag(ξ1, . . . , ξk+1), |detD| = |ξj | = 1

}
.

Since K = PSU(n) we have Stab(xI) =

{(
A B
0 D

)
∈ PSLnC : A ∈ RU(k + 1)

}
.

This can be seen by direct calculation, too. xIk is the element [diag(1, . . . , 1, 0, . . . , 0)]
in P(Hn). Hence,

g.xIk =

[(
A B
C D

)(
idk+1

0

)(
A∗ C∗

B∗ D∗

)]
=

[(
AA∗ AC∗

CA∗ CC∗

)]

for g =

(
A B
C D

)
∈ PSLnC. Thus, g ∈ Stab(xIk) if and only if AA∗ = a · idk+1, a ∈ R,

and C = 0.

To determine the orbits as subsets of P(Hn) note that g.xIk is the line through a positive
semidefinite Hermitian matrix of (complex) rank k + 1. On the other hand, if A is a
rank k+1 positive semidefinite Hermitian matrix, then A can be unitarily diagonalized,
i.e. there is U ∈ SU(n) such that U∗AU is a diagonal matrix with k+1 positive entries.
Taking the square root of the entries and normalizing the determinant shows that

OIk = PSLn(C).xIk = {[A] ∈ P(Hn) | A ≥ 0, rkA = k + 1}.

Now it is clear by taking the image of A that this orbit is a fiber bundle over the
Grassmannian Grk+1(Cn) = {V ⊆ Cn | V is a subspace of dimension k + 1}. Note that
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Grk+1(Cn) is the homogeneous space PSLnC/PJk where

PJk =

{(
A B
0 D

)
∈ PSLnC : A ∈ GLk+1(C), D ∈ GLn−(k+1)(C)

}
.

Let us determine the fiber over the canonical base point Ck+1 × {0}n−(k+1), i.e. let(
A B
C D

)
∈ Hn with image Ck+1 × {0}n−(k+1). It follows easily that C = D = 0 and by

Hermiticity also B = 0. Hence the fiber is{[(
A 0
0 0

)]
∈ P(Hn) : A > 0

}
≃ {[A] ∈ P(Hk+1) | A > 0} ≃ PSLk+1(C)/PSU(k + 1)

the space of positive definite matrices of size k + 1 and determinant 1. Note that this
can also be described by the parabolic subgroups. Indeed,

PSLk+1(C)/PSU(k + 1) ≃MIk/(MIk ∩ PSU(n)).

Similar statements for the orbit structure can be made in the general case as well. Recall
that OI ≃ G/(NJAJMJ∖I(K ∩MI)) for a µτ -connected subset I with µτ -saturation J .
Clearly we have MI1 ⊆ MI2 for I1 ⊆ I2. It follows that MJ∖I(K ∩MI) is contained in
MJ and hence Stab(xI) ⊆ NJAJMJ = PJ . We infer that OI is a fiber bundle over the
flag variety G/PJ with fiber

PJ/(NJAJMJ∖I(K ∩MI)) ≃MJ/(MJ∖I(MI ∩K)) ≃MI/(MI ∩K)

(see [BJ06, Cor. I.4.41] for details).

We now deal with the comparison of Xτ for different representations τ . Note that the
orbit structure (II.1),(II.2) and the related notions of µτ -connectedness and µτ -saturation
does not depend on the actual representation τ but rather on µτ and more precisely only
on θτ = {α ∈ Π | ⟨α, µτ ⟩ ≠ 0}. This leads to the following proposition.

Proposition II.3.12 (see [BJ06, Prop. I.4.35]). There are only finitely many non-
homeomorphic Satake compactifications. Two Satake compactifications Xτ and Xτ ′ are
homeomorphic if and only if θτ = θτ ′.

Furthermore, if θτ ⊆ θτ ′ then Xτ ′ dominates Xτ . In particular if µτ ∈ a∗+, i.e. θτ = Π,
then Xτ dominates every other Satake compactification and therefore this compactifica-
tion is called maximal Satake compactification X

max
.

Let us describe the neighborhoods for the maximal Satake compactification and compare
them with non-maximal ones. We first observe that every subset I ⊊ Π is µτ -connected.
Hence, X

max
= X ∪

⋃
I⊊ΠOI . For H∞ ∈ aI+ an unbounded sequence eHjK ∈ X

with Hj ∈ a+ converges to exp(H∞)xI if and only if α(Hj) → ∞ for α /∈ I and
α(Hj)→ α(H∞) for α ∈ I.
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II. Absence of principal eigenvalues

If we consider a sequence kje
HjK ∈ X with kj ∈ K then this converges to keH∞xI if and

only if additionally kj → k mod MI ∩K since Stab(xI) ∩K = MI ∩K. In particular,
(the intersection with the interior X of X

max
of) a fundamental system of neighborhoods

of keH∞xI in X
max

is given by

V (K ∩MI) exp{H ∈ a+ | |α(H)− α(H∞)| < ε, α ∈ I, α(H) > R,α ̸∈ I}K,

where V is a fundamental system of neighborhoods of k in K, ε↘ 0, R↗∞.

Figure II.1.: The intersection of ea+K with a fundamental system of neighborhoods in

Xid (left) and X
max

(right) for G = PSL3C.

Let us conclude the section by comparing the geodesic and the maximal Satake com-
pactification.

Proposition II.3.13. Let X be a G-compactification of X that is dominated by the
geodesic compactification X ∪X(∞) and by the maximal Satake compactification X

max
.

If the rank of X is bigger than 1, then X is the one-point compactification X∗.

Proof. Let i1 : X
max → X and i2 : X ∪ X(∞) → X be the continuous maps realizing

the domination. Recall that X(∞) can be identified with the unit sphere p∞ in p. Let
H ∈ a normalized and k ∈ K. Then kenHK ∈ X converges to Ad(k)H in X ∪X(∞).
On the other hand kenHK converges to kx∅ in X

max
if H ∈ a+. Therefore, i1(kx∅) =

i2(Ad(k)H) for H ∈ a+ normalized. By continuity, this also holds for normalized vectors
H ∈ a+. Now for I ⊊ Π let Hn ∈ a+ be a sequence such that eHnK converges to xI .
Then we have

i1(kxI) = lim
n
keHnK = i2(Ad(k)H) = i1(kx∅)

for some H ∈ a+ normalized. Note that if k ∈ K ∩MI then i2(Ad(k)H) = i1(kx∅) =
i1(kxI) = i1(xI) = i1(x∅). By the assumption of higher rank the different K ∩MI for
I ⊊ Π generate K. Hence i1(kxI) = i2(Ad(k)H) for every k ∈ K, I ⊊ Π, and H ∈ a+
normalized. This completes the proof.
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Abstract

Given a geometrically finite hyperbolic surface of infinite volume it is a classical result
of Patterson that the positive Laplace-Beltrami operator has no L2-eigenvalues ≥ 1/4.
In this article we prove a generalization of this result for the joint L2-eigenvalues of
the algebra of commuting differential operators on Riemannian locally symmetric spaces
Γ\G/K of higher rank. We derive dynamical assumptions on the Γ-action on the geodesic
and the Satake compactifications which imply the absence of the corresponding principal
eigenvalues. A large class of examples fulfilling these assumptions are the non-compact
quotients by Anosov subgroups.

II.4. Introduction

Let H = SL(2,R)/SO(2) be the hyperbolic plane equipped with the Riemannian metric
of constant negative curvature and Γ ⊂ SL(2,R) a discrete torsion-free subgroup. Then
Γ\H is a Riemannian surface of constant negative curvature and the relations between
the geometry of Γ\H, the group theoretic properties of Γ, the dynamical properties of
the Γ-action on H or its compactification, and the spectrum of the positive Laplace-
Beltrami operator ∆ have been intensively studied over several decades. Let us focus
on the discrete L2-spectrum of the Laplace-Beltrami operator, i.e. those µ ∈ R such
that (∆ − µ)f = 0 for some f ∈ L2(Γ\H), f ̸= 0. If Γ ⊂ SL(2,R) is cocompact, then
µ0 = 0 is always an eigenvalue corresponding to the constant function and Weyl’s law
for the elliptic selfadjoint operator ∆ implies that there is a discrete set of infinitely
many eigenvalues 0 = µ0 < µ1 ≤ . . . of finite multiplicity. From a representation
theoretic perspective there is a clear distinction between µi ∈ ]0, 1/4[ and µi ≥ 1/4. The
former correspond to complementary series representations and the latter to principal
series representations occurring in L2(Γ\SL(2,R)). We call the eigenvalues accordingly
principal eigenvalues (if µi ≥ 1/4) and complementary or exceptional eigenvalues (if
µi ∈]0, 1/4[). Merely by discreteness of the spectrum we know that there are at most
finitely many complementary eigenvalues and infinitely many principal eigenvalues.

If we pass to non-compact Γ\H, the situation becomes more intricate: For the modular
surface SL(2,Z)\H, which is non-compact but of finite volume, it is well known that there
are no complementary eigenvalues but still infinitely many principal eigenvalues obeying
a Weyl asymptotic. In general the question of existence of principal eigenvalues on finite
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II. Absence of principal eigenvalues

volume hyperbolic surfaces is wide open. A long standing conjecture by Phillips and
Sarnak [PS85] states that for a generic lattice Γ ⊂ SL(2,R) there should be no principal
eigenvalues.

If we pass to hyperbolic surfaces of infinite volume the situation is much better un-
derstood. A classical theorem by Patterson [Pat75] states that if vol(Γ\H) = ∞ and
Γ ⊂ SL(2,R) is geometrically finite, then there are no principal eigenvalues. The re-
sult has later been generalized to real hyperbolic spaces of higher dimensions by Lax
and Phillips [LP82]. Even if we are not aware of a reference, it seems folklore that the
statement holds for general rank one locally symmetric spaces.

In this article we are interested in a generalization of Patterson’s theorem to higher rank
locally symmetric spaces:

Let us briefly2 introduce the setting: Let X = G/K be a Riemannian symmetric space
of non-compact type and Γ ⊂ G a discrete torsion-free subgroup. We will be interested
in the L2-spectrum of the locally symmetric space Γ\X. As for hyperbolic surfaces the
Laplace-Beltrami operator is a canonical geometric differential operator whose spectral
theory can be studied. If the symmetric space is of higher rank, there are however further
G-invariant differential operators on X that descend to differential operators on Γ\X.
It is from many perspectives more desirable to study the spectral theory of the whole
algebra of invariant differential operators D(G/K) instead of just the spectrum of the
Laplacian. In order to introduce the definition of the joint spectrum of D(G/K) we recall
that D(G/K) is a commutative algebra generated by r ≥ 1 algebraically independent
differential operators and r equals the rank of the symmetric space X. After a choice
of generating differential operators a joint eigenvalue of these commuting differential
operators would be given by an element in Cr. A more intrinsic way of defining the
spectrum which does not require to choose any generators, is provided by the Harish-
Chandra isomorphism. This is an algebra isomorphism HC : D(G/K) → Poly(a∗)W

between the invariant differential operators and the complex-valued Weyl group invariant
polynomials on the dual of a = Lie(A), where A is the abelian subgroup of G in the
Iwasawa decomposition G = KAN . If we fix λ ∈ a∗ = a ⊗ C and compose the Harish-
Chandra isomorphism with the evaluation of the polynomial at λ we obtain a character
χλ := evλ ◦HC : D(G/K)→ C. With this notation we call λ ∈ a∗C a joint L2-eigenvalue
on Γ\X if there exists f ∈ L2(Γ\X) such that for all D ∈ D(G/K):

Df = χλ(D)f.

As for the hyperbolic surfaces we can distinguish two kinds of L2-eigenvalues: The
purely imaginary joint eigenvalues λ ∈ ia∗ correspond to principal series representations
and we call them principal joint L2-eigenvalues. The remaining eigenvalues are called
complementary or exceptional eigenvalues. These two kind of eigenvalues are not only
distinguished by representation theory, but they also behave differently from the point
of view of spectral theory: In their seminal paper [DKV79], Duistermaat, Kolk and
Varadarajan consider the case of cocompact discrete subgroups Γ ⊂ G. They prove that

2A more detailed description of the setting will be provided in Section II.5.1.
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there exist infinitely many principal joint eigenvalues and their asymptotic growth is
precisely described by a Weyl law with a remainder term. They furthermore prove an
upper bound on the number of complementary eigenvalues whose growth rate is strictly
inferior than the Weyl asymptotic of the principal eigenvalues. There are thus much less
complementary than principal eigenvalues.

The most prominent non-compact higher rank locally symmetric space is without doubt
Γ\X = SL(n,Z)\SL(n,R)/SO(n). By [Mül07] (and in a more general setting by [LV07])
it is known that there are infinitely many joint L2-eigenvalues. Assuming the generalized
Ramanujan conjecture which implies the absence of complementary eigenvalues (see e.g.
[BB13]), we would get infinitely many principal joint L2-eigenvalues. If one replaces
the full modular group by a congruence subgroup Γ(n) of level n ≥ 3, the existence
of infinitely many principal joint L2-eigenvalues has been shown by Lapid and Müller
[LM09]. More precisely, there is a Weyl law for the principal joint eigenvalues and the
number of complementary eigenvalues are shown to be bounded by a function of lower
order growth.

In the recent article [EO22] Edwards and Oh give examples and conditions on the dis-
crete subgroup Γ which imply that the complementary eigenvalues are not only of lower
quantity but that they are indeed absent. The main example are selfjoinings of convex-
cocompact subgroups in PSO(n, 1), but they conjecture that this holds for every Anosov
subgroup.

In this article we are interested in conditions on the group Γ which imply the absence
of principal eigenvalues. In order to state our main theorem, recall the definition of a
wandering point: If Γ acts continuously on a topological space T , then a point t ∈ T is
called wandering, if there exists a neighborhood U ⊂ T of t such that {γ ∈ Γ : γU ∩U ̸=
∅} is finite. The collection of all wandering points is called the wandering set w(Γ, T ).

We can now state our main theorem.

Theorem II.4.1. Let X = G/K be a Riemannian symmetric space of non-compact
type and Γ ⊂ G a discrete torsion-free subgroup. Let X be the geodesic or the maximal
Satake compactification (see Sections II.5.3 and II.5.4) and let w(Γ, X) be the wandering
set for the action of Γ on X. If w(Γ, X) ∩ ∂X ̸= ∅, then there are no principal joint
L2-eigenvalues on Γ\X.

Let us compare our theorem to the classical result of Patterson: First of all, for H
the geodesic compactification and the Satake compactification coincide. Furthermore,
if Γ ⊂ SL(2,R) is geometrically finite, then it is well known that the following are
equivalent:

(i) vol(Γ\H) =∞.

(ii) The limit set of Γ is not the whole boundary Λ(Γ) ̸= ∂H.

(iii) There is a non-empty open set of discontinuity Ω(Γ) ⊂ ∂H on which Γ acts properly
discontinuously.
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The last point immediately implies the existence of a wandering point of the Γ action
on H. In this sense our theorem boils down to the classical result of Patterson. Also
the higher dimensional result of Lax-Phillips on Hn is easily recovered from our main
theorem: If Γ ⊂ PSO(1, n) is geometrically finite and Γ\Hn of infinite volume, then
at least one non-compact end has to be a funnel or a cusp of non-maximal rank, and
the existence of such a non-compact end directly implies the wandering condition of
Theorem II.4.1.

As discrete subgroups on higher rank semisimple Lie groups are known to be constrained
by strong rigidity results, it is a valid question whether there are interesting examples
in higher rank which fulfill the wandering condition of Theorem II.4.1. We address this
question in Section II.8 and we will see that all images of Anosov representations fulfill
our condition. This is a consequence of recent results on compactifications of Anosov
symmetric spaces [KL18, GKW15] that are modeled on the Satake compactification.

A further natural question is, whether one can also in the higher rank setting obtain the
result by the assumption of infinite volume of the locally symmetric spaces instead of
the dynamical assumption on the group action used in our theorem. We do not know
a definitive answer. However, it should be noted, that there is so far no good notion
of a geometrically finite group Γ in higher rank. Without the assumption of geometric
finiteness, to our best knowledge even for SL(2,R) it is unknown if infinite volume
implies the absence of principal eigenvalues.

Outline of the proof and the article. Let f ∈ C∞(X) be the Γ-invariant lift of a joint
eigenfunction for D(X) that is in L2(Γ\X). The proof of Theorem II.4.1 relies on the
analysis of the asymptotic behavior of f towards the boundary of the compactifica-
tion at infinity. For the result on the geodesic compactification it suffices to study the
asymptotics of f into the regular directions. In order to obtain the result on the Satake
compactification we are required to also analyze the behavior in singular directions along
the different boundary strata of the Weyl chambers.

In a first step we show that f satisfies a certain growth condition called moderate growth.
This is done by elliptic regularity combined with coarse estimates on the injectivity radius
(see Section II.6).

The knowledge of moderate growth then allows us (see Section II.7) to use asymptotic
expansion results for f by van den Ban-Schlichtkrull [vdBS87, vdBS89]. For the asymp-
totics into the regular directions, i.e. in the interior of the positive Weyl chamber a+ ⊂ a,
it follows from [vdBS87] that the leading term for the expansion of f(k exp(tH)K) with
k ∈ K and H ∈ a+ is ∑

w∈W
pw(k)e

(wλ−ρ)(tH) as t→∞,

where W is the Weyl group, ρ the usual half sum of roots and λ ∈ ia∗ a regular spectral
parameter (for singular spectral parameters the formula becomes slightly more com-
plicated but is still tractable). The wandering condition of Γ acting on the geodesic
compactification X ∪ X(∞) yields a neighborhood U in X ∪ X(∞) of some point in
X(∞) such that f ∈ L2(U ∩X). Combining this with the expansion and the description

88



II.5. Preliminaries

of such neighborhoods U implies that all the boundary values pw vanish on an open
subset of K. This implies, again by [vdBS87], that f = 0.

The result for the Satake compactification follows the same strategy but involves more
complicated expansions from [vdBS89] that describe the asymptotic behavior into the
singular directions along the different boundary strata of the Weyl chamber (see Sec-
tion II.7.2).

Finally, in Section II.8 we provide some examples of higher rank locally symmetric spaces
that fulfill the wandering condition of Theorem II.4.1. In particular, we show that all
quotients by Anosov subgroups fulfill the assumption.
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II.5. Preliminaries

II.5.1. Symmetric spaces

In this section we fix the notation for the present article. Let G be a real semisimple
non-compact Lie group with finite center and with Iwasawa decomposition G = KAN .
Furthermore, letM := ZK(A) be the centralizer of A in K. We denote by g, a, n, k,m the
corresponding Lie algebras. We have a K-invariant inner product on g that is induced
by the Killing form and the Cartan involution. We further have the orthogonal Bruhat
decomposition g = a ⊕ m ⊕

⊕
α∈Σ gα into root spaces gα with respect to the a-action

via the adjoint action ad, i.e. gα = {Y ∈ g | [H,Y ] = α(H)Y ∀H ∈ a}. Here Σ = {α ∈
a∗ | gα ̸= 0} ⊆ a∗ is the set of restricted roots. Denote by W the Weyl group of the root
system of restricted roots. Let n be the real rank of G and Π (resp. Σ+) the simple
(resp. positive) system in Σ determined by the choice of the Iwasawa decomposition.
Let mα := dimR gα and ρ := 1

2Σα∈Σ+mαα. Let a+ := {H ∈ a | α(H) > 0∀α ∈ Π} denote
the positive Weyl chamber. If A+ := exp(a+), then we have the Cartan decomposition
G = KA+K. The main object of our study is the symmetric space X = G/K of
non-compact type. On X with a natural G-invariant measure dx we have the integral
formula ∫

X
f(x)dx =

∫
K

∫
a+

f(k exp(H))
∏
α∈Σ+

sinh(α(H))mαdHdk. (II.3)

(see [Hel84, Ch. I Theorem 5.8]).
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Example II.5.1. If G = SLn(R), then we choose K = SO(n), A as the set of diagonal
matrices of positive entries with determinant 1, and N as the set of upper triangular
matrices with 1’s on the diagonal. a is the abelian Lie algebra of diagonal matrices
and the set of restricted roots is Σ = {εi − εj | i ̸= j} where εi(λ) is the i-th diagonal
entry of λ. The positive system corresponding to the Iwasawa decomposition is Σ+ =
{εi − εj | i < j} with simple system Π = {αi = εi − εi+1}. The positive Weyl chamber
is a+ = {diag(λ1, . . . , λn) | λ1 > · · · > λn} and the Weyl group is the symmetric group
Sn acting by permutation of the diagonal entries.

rr11

ss11

Figure II.2.: The root system for the special case G = SL3(R): There are three positive
roots Σ+ = {α1, α2, α1 + α2}. As all root spaces are one dimensional the
special element ρ = 1

2Σα∈Σ+mαα equals α1 + α2.

II.5.2. Invariant differential operators

Let D(G/K) be the algebra of G-invariant differential operators on G/K, i.e. differen-
tial operators commuting with the left translation by elements g ∈ G. Then we have an
algebra isomorphism HC: D(G/K)→ Poly(a∗)W from D(G/K) to theW -invariant com-
plex polynomials on a∗ which is called the Harish-Chandra homomorphism (see [Hel84,
Ch. II Theorem 5.18]). For λ ∈ a∗C let χλ be the character of D(G/K) defined by
χλ(D) := HC(D)(λ). Obviously, χλ = χwλ for w ∈W . Furthermore, the χλ exhaust all
characters of D(G/K) (see [Hel84, Ch. III Lemma 3.11]). We define the space of joint
eigenfunctions

Eλ := {f ∈ C∞(G/K) | Df = χλ(D)f ∀D ∈ D(G/K)}.

Note that Eλ is G-invariant.

Example II.5.2. For G = SLn(R) the algebra Poly(a∗C)W is generated by n−1 elements
p2, . . . , pn. Let us identify aC and a∗C via λ↔ Tr(λ ·). Then pi(λ) = λi1+· · ·+λin = Tr(λi)
where λ = diag(λ1, . . . , λn) ∈ aC. Clearly, these polynomials are invariant under
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permutations of the diagonal entries and it can be shown that they are algebraically
independent and generate Poly(a∗C)

W (see [Hum90]). D(G/K) is then generated by
the preimages of pi under HC. Up to lower order terms the resulting invariant dif-
ferential operators are given by the Maass-Selberg operators δi which are defined for
f ∈ C∞(G/K) = C∞(SLn(R)/SO(n)) by

δif(gK) = Tr

((
∂

∂X

)i)∣∣∣∣∣
X=0

f

(
g exp

(
X − 1

n
Tr(X)In

)
K

)
,

where

X =

x11 · · · x1n
...

. . .
...

x1n · · · xnn

 and
∂

∂X
=


∂

∂x11
· · · ∂

2∂x1n
...

. . .
...

∂
2∂x1n

· · · ∂
∂xnn


(see [BCH21]).

Now, let Γ ≤ G be a torsion-free discrete subgroup. Since D ∈ D(G/K) is G-invariant,
it descends to a differential operator ΓD on the locally symmetric space Γ\G/K. There-
fore, the left Γ-invariant functions of Eλ (denoted by ΓEλ) can be identified with joint
eigenfunctions on Γ\G/K for each ΓD:

ΓEλ = {f ∈ C∞(Γ\G/K) | ΓDf = χλ(D)f ∀D ∈ D(G/K)}.

The goal is to show that L2(Γ\G/K) ∩ ΓEλ = {0} for λ ∈ ia∗ and certain discrete
subgroups Γ. Then

σ(Γ\X) := {λ ∈ a∗C | L2(Γ\G/K) ∩ ΓEλ ̸= {0}}

has the property that the set of principal eigenvalues σ(Γ\X) ∩ ia∗ is empty.

II.5.3. Geodesic compactification

In this section we recall the notion of the geodesic compactification of a simply connected
and non-positively curved Riemannian manifold X. A classical reference for this topic
is [Ebe96]. In the sequel also the Satake compactification will be crucial thus we provide
detailed references to [BJ06] which treats both types of compactifications.

Definition II.5.3 ([BJ06, Section I.2.2]). Two (unit speed) geodesics γ1, γ2 are equiv-
alent if lim supt→∞ d(γ1(t), γ2(t)) < ∞. The space X(∞) is the factor space of all
geodesics modulo this equivalence relation. The union X ∪ X(∞) is called geodesic
compactification. The topology on X ∪ X(∞) is given as follows: For [γ] ∈ X(∞) the
intersection with X of a fundamental system of neighborhoods is given by C(γ, ε,R) =
C(γ, ε)∖B(R) where

C(γ, ϵ) = {x ∈ X | the angle between γ and the geodesic from x0 to x is less than ε}

and B(R) is the ball of radius R centered at some base point x0 ∈ X. This topology is
Hausdorff and compact.
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The space X(∞) can be canonically identified with the unit sphere in the tangent space
at the base point x0 ∈ X. If exp: Tx0X → X is the (Riemannian) exponential map at
x0, then a representative of the equivalence class of geodesics corresponding to a unit
vector Y ∈ Tx0X is given by the geodesic t 7→ exp(tY ). This identification yields the
neighborhoods C(Y0, ε, R) = {exp tY | t > R, ∥Y ∥ = 1, | cos−1(⟨Y, Y0⟩)| < ε} where Y0 ∈
Tx0X is normalized. More precisely, if γ is the geodesic t 7→ exp(tY0) then C(γ, ε,R) =
C(Y0, ε, R).

Let us return to the setting where X = G/K is a symmetric space of non-compact type,
then X is simply connected and non-positively curved. Hence, the geodesic compactifi-
cation of X is defined and we have the following proposition.

Proposition II.5.4 ([BJ06, Proposition I.2.5]). The action of G on X extends to a
continuous action on X ∪X(∞).

II.5.4. Maximal Satake compactification

In this section we introduce a different compactification for a Riemannian symmetric
space X = G/K the so called maximal Satake compactification. Before entering the
technicalities let us give some heuristics: Recall that the Cartan decomposition allows
to write G = Kexp a+K and since K is compact the “way” in which a point in G/K
tends to infinity can be described in a+. Recall that the particular simplicity of a rank
one locally symmetric space stems from the fact that a+ is just a half line (geometrically
it corresponds to the distance from the origin of the symmetric space) and there is only
one “way” to tend towards infinity. In the higher rank case a+ is a higher dimensional
simplicial cone bounded by the hyperplanes kerα ⊂ a for α ∈ Π and the Satake compact-
ifications will “detect” if a sequence tends to infinity inside the cone, while staying at
bounded distance to a certain number of chamber walls kerα for some subset α ∈ I ⊊ Π.

In order to describe the precise structure of the Satake compactification we need to
introduce the following notion of standard parabolic subgroups:

For I ⊊ Π let aI :=
⋂
α∈I kerα, a

I := a⊥I , nI :=
⊕

α∈Σ+∖⟨I⟩ gα and mI := m ⊕ aI ⊕⊕
α∈⟨I⟩ gα. Define the subgroups AI := exp aI , NI := exp nI and MI := M⟨expmI⟩.

Then PI := MIAINI is the standard parabolic subgroup for the subset I. We further-
more introduce the notation aI+ := {H ∈ aI | α(H) > 0 ∀α ∈ I} and aI,+ := {H ∈ aI |
α(H) > 0 ∀α ∈ Π∖ I}.

Example II.5.5. For G = SLn(R) the set of simple roots is Π = {αi = εi − εi+1 | 1 ≤
i ≤ n−1}. Let I = {αi1 , . . . , αik} be a proper subset of Π. Then aI = {diag(λ1, . . . , λn) |
λij = λij+1} and aI =

⊕
j{diag(0, . . . , λij ,−λij+1, . . . , 0)}. Note that aI = spanαij if

one identifies a and a∗ (see Figure II.3 for an illustration). Hence, aI consists of blocks
where a single block is a copy of the a-part of SLm(R). Each block corresponds to a
root in Π ∖ I. More precisely, if αi ∈ Π ∖ I then a block ends in row i. Note that the
mi can very well be equal to 1. In this case there is simply a zero at this point on the
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Figure II.3.: The various cones and subspaces in a corresponding to subsets of Π for

G = SLn(R). a∅ is all of a and a∅ is the origin.

diagonal. mI adds the corresponding root spaces, so mI is isomorphic to direct sum of
different slm(R).

mI =

slm1(R)
. . .

slmn−1−k
(R)



where the bottom rows of the blocks correspond to the index of the roots in Π∖ I. nI is
the Lie algebra that contains of the upper-triangular matrices with non-zero entries in the
positions that are not in the blocks of mI . On the group level AI = {diag(λ1, . . . , λn) ∈
A | λij = λij+1} and NI is the same as nI but with 1’s on the diagonal. For MI one has
to multiply by M = {diag(±1, . . . ,±1)} so that MI consists of block diagonal matrices
where each block has determinant ±1 under the condition that the whole matrix has
determinant 1. It follows that the standard parabolic subgroups PI are the sets of block
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upper-triangular matrices:

∗ ∗
∗

. . .

0 ∗




The maximal Satake compactification X

max
is the G-compactification of X (i.e. a com-

pact Hausdorff space containing X as an open dense subset such that the G-action
extends continuously from X to the compactification) with the orbit structure X

max
=

X ∪
⋃
I⊊ΠOI . For the orbit OI we can choose a base point xI ∈ OI with Stab(xI) =

NIAI(MI ∩ K). The topology can be described as follows: Since G = KA+K and
K is compact, it suffices to consider sequences expHn, Hn ∈ a+. Such a sequence by
definition converges iff α(Hn) converges in R ∪ {∞} for all α ∈ Π. If this is the case,

to determine the limit, let I = {α ∈ Π | limα(Hn) < ∞} and H∞ ∈ aI+ such that
α(H∞) = limα(Hn) for α ∈ I. Then expHn → exp(H∞)xI .

The intersection with X of a fundamental system of neighborhoods of k exp(H∞)xI with

k ∈ K,H∞ ∈ aI+ is given by

V (K ∩MI) exp{H ∈ a+ | |α(H)− α(H∞)| < ε, α ∈ I, α(H) > R,α ̸∈ I}x0,

where V is a fundamental system of neighborhoods of k in K, ε↘ 0, R↗∞.

Note that usually one defines the Satake compactification in a different way (see e.g.
[BJ06, Ch. I.4]). Namely, let τ : G → PSL(n,C) be an irreducible faithful projective
representation such that τ(K) ⊆ PSU(n). The closure in the projective space of Hermi-
tian matrices of the image of the embedding of X given by gK 7→ R(τ(g)τ(g)∗) is then
called Satake compactification. It only depends on the highest weight χτ of τ . If χτ
is contained in the interior of the Weyl chamber, then this compactification is isomor-
phic to the maximal Satake compactification defined above. It is maximal in the sense

that it dominates every other Satake compactification X
S
(i.e. there is a continuous

G-equivariant map X
max → X

S
). Since we only need the description of neighborhoods

and the orbit structure we chose to introduce X
max

this way.

II.6. Moderate growth

In this section we show that on a locally symmetric space each joint eigenfunction which
is L2 satisfies a growth condition in the following sense.

Definition II.6.1. (i) A function f : X → C is called function of moderate growth if
there exist r ∈ R, C > 0 such that

|f(x)| ≤ Cerd(x,x0)
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Figure II.4.: The compactification of a+ for G = SL3(R) is obtained by gluing

a
{α1}
+ , a

{α2}
+ and a∅+ to the boundary of a+. The sets UI for I = {α1}, {α2}, ∅

are the intersection of a+ with a fundamental neighborhood of exp(H∞)xI .

for all x ∈ X.

(ii) For λ ∈ a∗C the space E∗
λ is the space of joint eigenfunction with moderate growth,

i.e.

E∗
λ = {f ∈ Eλ | f has moderate growth}.

Let Γ ≤ G be a torsion-free discrete subgroup.

Theorem II.6.2. Let f ∈ ΓEλ ∩ L2(Γ\G/K). Then f (considered as a Γ-invariant
function on X) has moderate growth.

The proof uses Sobolev embedding and the following estimate on the injectivity radius.
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Proposition II.6.3 (see [CGT82, Thm. 4.3]). Let (M, g) be a complete Riemannian
manifold such that the sectional curvature KM satisfies KM ≤ K for constant K ∈ R.
Let 0 < r < π/4

√
K if K > 0 and r ∈ (0,∞) if K ≤ 0. Then the injectivity radius inj(p)

at p satisfies

inj(p) ≥ rVol(BM (p, r))

Vol(BM (p, r)) + VolTpM (BTpM (0, 2r))
,

where VolTpM (BTpM (0, 2r)) denotes the volume of the ball of radius 2r in TpM , where
both the volume and the distance function are defined using the metric g∗ := exp∗pg, i.e.
the pull-back of the metric g to TpM via the exponential map.

For M = Γ\G/K we obtain that the injectivity radius decreases at most exponentially.

Proposition II.6.4. There are constants C, s > 0 such that

injΓ\G/K(Γx) ≥ C−1e−sd(x,eK)

for every x ∈ G/K.

Proof. Since Γ\G/K is of non-positive curvature we can apply the above proposition
for every r > 0. Note that exp: TpM → M is the universal cover of M and therefore
VolTΓxM (BTΓxM (0, 2r)) = VolG/K(BG/K(x, 2r)) = VolG/K(BG/K(x0, 2r)) ≤ Cesr for
some constants C, s independent of x, where x0 is the base point eK of G/K. Hence,

inj(Γx) ≥ r(1 + VolTΓxM (BTΓxM (0, 2r))/Vol(BM (Γx, r)))−1

≥ r(1 + Cesr/Vol(BM (Γx, r)))−1.

For r = 1 + d(x, x0) we have BM (Γx, r) ⊇ BM (Γx0, 1) and therefore

inj(Γx) ≥ (1 + d(x, x0))(1 + Ces(1+d(x,x0))/Vol(BM (Γx0, 1))
−1 ≥ (1 + C ′esd(x,x0))−1.

This finishes the proof.

Note that this estimate isn’t sharp. Indeed, the growth rate s that we obtain in the
proof is independent of Γ and only depends on the volume growth in G/K.

Let m = dimX. We need the following well-known lemma on the geodesic balls in G/K.

Lemma II.6.5. Fix r > 0. There is a constant C such that for every x ∈ G/K and
ε > 0 there is a finite set A ⊆ B(x, r) such that

⋃
a∈AB(a, ε) ⊇ B(x, r) and #A ≤ Cε−m.

Proof. Let a1 = x and choose inductively ai+1 ∈ B(x, r) ∖
⋃i
j=0B(aj , ε) if the latter

is non-empty. This yields a finite set A = {a1, . . . , aN} (since B(x, r) is compact) such
that B(x, r + ε) ⊇

⋃N
j=0B(aj , ε) ⊇ B(x, r) and B(aj , ε/2) are pairwise disjoint. It

follows that Vol(B(x, r + ε)) ≥
∑

iVol(B(ai, ε/2) = #A · Vol(B(x, ε/2)) and therefore
#A ≤ C

Vol(B(x,ε/2)) . The lemma follows from the fact that the volume is independent
from the center and decreases like εm as ε→ 0.
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We can now combine Proposition II.6.4 with Sobolev embedding to prove Theorem II.6.2.

Proof of Theorem II.6.2. Since B(x0, 1) is relatively compact, there exists a constant C
such that

sup
x∈B(x0,1)

|f(x)| ≤ C∥(∆ + 1)m/4+εf∥L2(B(x0,1)) = C(χλ(∆) + 1)m/4+ε∥f∥L2(B(x0,1))

by ellipticity of the Laplace operator ∆ on G/K and the Sobolev embedding

Hm/2+ε(B(x0, 1)) ↪→ C(B(x0, 1)).

By G-invariance of ∆ and d the same holds true for x0 replaced by an arbitrary point
x ∈ X. In particular,

|f(x)| ≤ C(λ)∥f∥L2(B(x,1)).

By Proposition II.6.4 there are constants C, s > 0 independent of x such that

injΓ\G/K(Γy) ≥ C−1e−sd(x,eK)

for every y ∈ B(x, 1). Let ε(x) := 1
C e

−sd(x,eK). Then there is a finite set A(x) ⊆ B(x, 1)
such that

⋃
a∈A(x)B(a, ε(x)) covers B(x, 1) and #A(x) ≤ C ′ε(x)−m by Lemma II.6.5.

Hence,

∥f∥2L2(B(x,1)) ≤
∑

a∈A(x)

∥f∥2L2(B(a,ε(x)))

Since injΓ\G/K(Γa) ≥ ε(x) we have ∥f∥L2(B(a,ε(x))) ≤ ∥f∥L2(Γ\G/K) for a ∈ A(x). There-
fore,

|f(x)| ≤ C(λ)∥f∥L2(Γ\G/K)

√
#A(x)

≤ C(λ)∥f∥L2(Γ\G/K)C
′1/2ε(x)−m/2

= C(λ)∥f∥L2(Γ\G/K)C
′1/2Cm/2emsd(x,x0)/2.

Remark II.6.6. In the case of locally symmetric spaces of finite volume there is a
different argument showing Theorem II.6.2: If we lift f to a function on G which we also
call f , then there is smooth compactly supported function α on G such that f = f ∗ α
(see [HC66, Theorem 1]). Then one easily shows that |f(Γx)| ≤ C∥f∥L1(Γ\G/K)e

sd(x,x0)

using simple estimates for lattice point counting. Since L2 ⊆ L1 for spaces of finite
volume, we can deduce moderate growth for f . Unfortunately, this argument does not
work for infinite volume locally symmetric spaces since a pointwise bound including the
L2-norm of f would need much better counting estimates.
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II.7. Absence of imaginary values in the L2-spectrum

We introduce the space of smooth vectors in Eλ. It is precisely the space of joint
eigenfunctions with smooth boundary values (see [vdBS87]).

Definition II.7.1.

E∞
λ = {f ∈ Eλ | ∃ r ∀u ∈ U(g) ∃Cu > 0: |(uf)(x)| ≤ Cuerd(x,x0)}

II.7.1. Geodesic compactification

In this section we want to prove the following theorem.

Theorem II.7.2. Let f ∈ E∗
λ, λ ∈ ia∗, such that f is square-integrable on C(Y0, ε, R)

for some ε,R, Y0 (see Section II.5.3). Then f = 0.

Let X(λ) := {wλ − ρ − µ | w ∈ W,µ ∈ N0Π} (see Figure II.5 for a visualization in
example of SL(3,R)). We will use the following asymptotic expansion for functions in
E∞
λ .

Theorem II.7.3 ([vdBS87, Thm 3.5]). For each f ∈ E∞
λ , g ∈ G, and ξ ∈ X(λ) there

is a unique polynomial pλ,ξ(f, g) on a which is smooth in g such that

f(g exp(tH)) ∼
∑

ξ∈X(λ)

pλ,ξ(f, g, tH)etξ(H), t→∞,

at every H0 ∈ a+, i.e. for every N there exist a neighborhood U of H0 in a+, a neigh-
borhood V of g in G, ε > 0, C > 0 such that∣∣∣∣∣∣f(y exp(tH))−

∑
Re ξ(H0)≥−N

pλ,ξ(f, y, tH)etξ(H)

∣∣∣∣∣∣ ≤ Ce(−N−ε)t

for all y ∈ V,H ∈ U , t ≥ 0.

Remark II.7.4. The uniformity in x is not stated in [vdBS87] but it follows from (6.18)
therein.

Example II.7.5. In the case where G/K is the upper half plane H a simplified version
of this theorem can be stated as follows. Suppose f ∈ E∞

s−1/2, i.e. f ∈ C∞(H) with

∆f = s(1 − s)f and the derivatives of f satisfy some uniform pointwise exponential
bounds. We lift f to a function (also called f) on the sphere bundle SH which is
constant on the fibers. Denote by ϕt the geodesic flow. Then if s /∈ 1

2Z

(ϕt)∗f(x) ∼ e−ts
( ∞∑
n=0

p+n (x)e
−nt

)
+ e−t(1−s)

( ∞∑
n=0

p−n (x)e
−nt

)
with p±n being smooth. If s ∈ 1

2Z the functions p±n can be polynomials of degree one in
t.
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Figure II.5.: Real part of the exponents of the asymptotic expansion in Theorem II.7.3
for G = SL(3,R).

Proof of Theorem II.7.2. First, we will consider the case f ∈ E∞
λ . By continuity there

is a unit vector H0 ∈ a+, a neighborhood U of H0 in the unit sphere of a, and an open
set V in K such that

Ω =

{
k exp(H) : k ∈ V, H

∥H∥
∈ U, ∥H∥ > R

}
⊆ C(Y0, ε, R).

Let N = ρ(H0) such that without loss of generality

|f(k exp(H))−
∑
w∈W

pλ,wλ−ρ(f, k,H)e(wλ−ρ)(H)| ≤ Ce(−ρ(H0)−ε)∥H∥ (II.4)

for all k ∈ V, H
∥H∥ ∈ U .

We use the integral formula (II.3) and observe that∫
(R,∞)U

e−2(ρ(H0)+ε)∥H∥
∏
α∈Σ+

sinh(α(H))mαdH

≤
∫
(R,∞)U

e−2(ρ(H0)+ε)∥H∥e2ρ(H)dH ≤
∫
(R,∞)U

e
2(ρ( H

∥H∥−H0)−ε)∥H∥
dH

which is finite after shrinking U such that ρ( H
∥H∥−H0) < ε for H ∈ U . Consequently, the

right hand side of (II.4) and therefore also the left hand side of (II.4) is square integrable
on Ω.

Since f is L2 and the approximation (II.4) holds,∣∣∣∣∣∑
w∈W

pλ,wλ−ρ(f, k,H)e(wλ−ρ)(H)

∣∣∣∣∣
2 ∏
α∈Σ+

sinh(α(H))mα

is integrable on V × (R,∞)U . Hence,∣∣∣∣∣∑
w∈W

pλ,wλ−ρ(f, k,H)e(wλ−ρ)(H)

∣∣∣∣∣
2 ∏
α∈Σ+

sinh(α(H))mα
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is integrable on (R,∞)U for almost every k ∈ V . Since sinh(x) ≥ ex/4 for x ≥ 1
2 log 2,∣∣∣∣∣∑

w∈W
pλ,wλ−ρ(f, k,H)e(wλ−ρ)(H)

∣∣∣∣∣
2

e2ρ(H) =

∣∣∣∣∣∑
w∈W

pλ,wλ−ρ(f, k,H)ewλ(H)

∣∣∣∣∣
2

is integrable on (R,∞)U for R large enough. This is only possible if pλ,wλ−ρ(f, k)
vanishes on a for every w ∈ W by [Kna86, Lemma 8.50]. Since pλ,wλ−ρ(f, •) is smooth
it vanishes identically on V .

We now show that it also vanishes on V AN . For n ∈ N [vdBS87, Lemma 8.7] states for
f ∈ E∞

λ

pλ,ξ(f, n) =
∑

µ∈N0Π,ξ+µ∈X(λ)

pλ,ξ+µ(fµ, e), ξ ∈ X(λ),

where fµ ∈ L(U(g))f (where L is the left regular representation) are specific joint eigen-
functions obtained by the Taylor expansion of f in the direction of n and f0 = f . For
ξ = wλ−ρ the only summand comes from µ = 0 since λ ∈ ia∗ and X(λ) = {wλ−ρ−µ |
w ∈W,µ ∈ N0Π}. In particular, pλ,wλ−ρ(f, n) = pλ,wλ−ρ(f, e).

To deal with a ∈ A we use [vdBS87, Lemma 8.5]:

pλ,ξ(f, a,H) = aξpλ,ξ(f, e,H + log a), f ∈ E∞
λ , ξ ∈ X(λ), H ∈ a,

where as usual aξ = eξ(log a).

Let us return to the situation that we achieved earlier, where pλ,wλ−ρ(f, k,H) = 0 for
every k ∈ V and H ∈ a. But then

pλ,wλ−ρ(f, kan,H) = pλ,wλ−ρ(L(ka)−1f, n,H) = pλ,wλ−ρ(L(ka)−1f, e,H)

= pλ,wλ−ρ(Lk−1f, a,H) = awλ−ρpλ,wλ−ρ(Lk−1f, e,H)

= awλ−ρpλ,wλ−ρ(f, k,H) = 0

for every k ∈ V, a ∈ A,n ∈ N and w ∈ W . Hence, pλ,wλ−ρ(f, x) = 0 if x is contained
in the open set V AN . This is exactly the assumption of [vdBS89, Theorem 4.1] in the
case I = Iλ, i.e. f is an eigenfunction for the whole algebra D(G/K) and is not only
annihilated by an ideal of finite codimension. Note that in this case X(I) = X(λ). We
infer f = 0.

It remains to show that the statement also holds for f ∈ E∗
λ.

Since C(Y0, ε, R) is a fundamental system of neighborhoods of Y0 in the geodesic com-
pactification and G acts continuously on X ∪X(∞), there is a neighborhood V of e in G
and ε′, R′ such that V −1C(Y0, ε

′, R′) ⊆ C(Y0, ε, R). Let φn be an approximate identity
on G with suppφn ⊆ V , i.e. φn ∈ C∞

c (G) is non-negative with
∫
G φn(g)dg = 1 and

supp(φn) shrinks to {e}. We consider (φn ∗ f)(x) =
∫
G φn(g)f(g

−1x)dg. Obviously,
φn ∗ f ∈ E∞

λ since LxRy(φn ∗ f) = (Lxφn) ∗ (Ryf), x, y ∈ G.

Combining the already established case f ∈ E∞
λ with Lemma II.7.6 below we infer that

φn ∗ f = 0 for all n and therefore f = 0. This completes the proof.
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Lemma II.7.6. φn ∗ f is square-integrable on C(Y0, ε
′, R′).

Proof of Lemma II.7.6. Abbreviate C ′ = C(Y0, ε
′, R′) and C = C(Y0, ε

′, R′). It suffices
to show that ∣∣∣∣∫

C′
h(x)(φn ∗ f)(x)dx

∣∣∣∣ ≤ B∥h∥L2(C′)

for h ∈ Cc(C ′) with a constant B independent of h.

Let us write |h(x)φn(g)f(g−1x)| = (|h|2(x)φn(g))1/2(|f |2(g−1x)φn(g))
1/2 and use the

Cauchy-Schwarz inequality of L2(V × C ′) to obtain∣∣∣∣∫
C′
h(x)(φn ∗ f)(x)dx

∣∣∣∣ ≤ ∫
V

∫
C′
|h(x)φn(g)f(g−1x)|dxdg

≤
(∫

V

∫
C′
|h|2(x)φn(g)dxdg

∫
V

∫
C′
|f |2(g−1x)φn(g)dxdg

)1/2

≤ ∥h∥L2(C′)

(∫
V

∫
C
|f |2(x)φn(g)dxdg

)1/2

= ∥h∥L2(C′)∥f∥L2(C)

where we used V −1C ′ ⊆ C in the last inequality. This finishes the proof.

II.7.2. Maximal Satake compactification

In this section we prove a statement analogous to Theorem II.7.2 for the maximal Satake
compactification. First of all we remark that each neighborhood of an element in the
orbit Gx∅ ⊆ X

max
contains a neighborhood C(Y0, ε, R). Hence, we have the following

proposition.

Proposition II.7.7. Let f ∈ E∗
λ, λ ∈ ia∗, such that f is square-integrable in some

neighborhood of an element in Gx∅ ⊆ X
max

. Then f = 0.

The goal is to prove this statement for general neighborhoods in X
max

.

Theorem II.7.8. Let f ∈ E∗
λ, λ ∈ ia∗, such that f is square-integrable in some neigh-

borhood of an element x∞ ∈ ∂Xmax. Then f = 0.

Proof. By the same reasoning as in the proof of Theorem II.7.2 we can assume f ∈ E∞
λ .

Moreover, we can assume that x∞ = k exp(H∞)xI with k ∈ K and H∞ ∈ aI+ (instead of

H∞ ∈ aI+) since every neighborhood of k exp(H∞)xI contains an element k′ exp(H ′
∞)xI

with H ′
∞ ∈ aI+.
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Figure II.6.: Decomposition of U for G = SL(3,R) and I = {α1}.

Let Ω = V exp(U)x0 ⊆ X with a k-neighborhood V in K and

U := {H ∈ a+ | |α(H)− α(H∞)| < ε, α ∈ I, α(H) > R,α ̸∈ I},

so that Ω is contained in the intersection of a neighborhood of x∞ with the interior of
X

max
. Define U I := {HI ∈ aI | |α(HI)− α(H∞)| < ε, α ∈ I} which is a bounded open

set in aI since the set of linear forms I restricted to aI is linear independent. Without
loss of generality U I ⊆ aI+ has positive distance to the boundaries. Let UI := {HI ∈ aI |
α(HI) > C,α ∈ Π∖ I} ⊆ aI,+ so that UI + U I ⊆ U for C large enough.

As in Theorem II.7.2 we use the integral formula (II.3) to obtain∫
U⊆a+

|f |2(k exp(H))
∏

sinh(α(H))mαdH <∞

for almost every k ∈ V . Therefore,∫
UI⊆aI,+

|f |2(k exp(HI) exp(HI))
∏

sinh(α(HI +HI))mαdHI <∞

for almost every k ∈ V and HI ∈ U I ⊆ aI (with suitable Lebesgue measures on aI and
aI).

The property that U I ⊆ aI+ has positive distance to the boundaries implies that α(HI +
HI) > ε and hence∏

α∈Σ+

sinh(α(HI +HI))mα ≥ Ce2ρ(HI), HI ∈ UI , HI ∈ U I .
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Therefore, |f |2(k exp(HI) exp(HI))e
2ρ(HI) is integrable on UI .

Similarly to the proof of Theorem II.7.2 we use an asymptotic expansion for f , but this
time we have to consider asymptotics along the boundary of the positive Weyl chamber
instead of regular directions.

Theorem II.7.9 ([vdBS89, Thm 1.5]). There exists a finite set S(λ, I) ⊆ a∗I such that
for each f ∈ E∞

λ , g ∈ G, and ξ ∈ X(λ, I) = S(λ, I)−N0Π|aI there is a unique polynomial
pI,ξ(f, g) on aI which is smooth in g such that

f(g exp(tH0)) ∼
∑

ξ∈X(λ,I)

pI,ξ(f, g, tH0)e
tξ(H0), t→∞,

at every H0 ∈ aI,+, i.e. for every N there exist a neighborhood U of H0 in aI,+, a
neighborhood V of g in G, ε > 0, C > 0 such that∣∣∣∣∣∣f(y exp(tH))−

∑
Re ξ(H0)≥−N

pI,ξ(f, y, tH)etξ(H)

∣∣∣∣∣∣ ≤ Ce(−N−ε)t

for all y ∈ V,H ∈ U , t ≥ 0.

Remark II.7.10. The uniformity in x is not stated in [vdBS89] but it follows from
Proposition 1.3 therein.

Let H0 ∈ aI,+, ∥H0∥ = 1. After shrinking we can assume that∣∣∣∣∣∣f(k exp(HI) exp(HI))−
∑

Re ξ(H0)≥−ρ(H0)

pI,ξ(f, k exp(H
I), HI)e

ξ(HI)

∣∣∣∣∣∣ ≤ Ce(−ρ(H0)−ε)∥HI∥

for all k ∈ V,HI ∈ U I , and HI
∥HI∥ in some neighborhood ŨI of H0 in aI,+ such that

(R′,∞)ŨI ⊆ UI .

The error term e(−ρ(H0)−ε)∥HI∥ satisfies

e2(−ρ(H0)−ε)∥HI∥e2ρ(HI) = e
2(ρ(−H0+

HI
∥HI∥

)−ε)∥HI∥ ≤ e−ε∥HI∥

if ŨI is sufficiently small. Since e−ε∥HI∥ is integrable on (R′,∞)ŨI the same is true for∣∣∣∣∣∣
∑

Re ξ(H0)≥−ρ(H0)

pI,ξ(f, k exp(H
I), HI)e

(ξ+ρ)(HI)

∣∣∣∣∣∣
2

.

Using [Kna86, Lemma 8.50] we obtain that pI,ξ(f, k exp(H
I), HI) = 0 if Re(ξ+ρ)(HI) ≥

0 for almost every k ∈ V and HI ∈ U I . Since pI,ξ(f, •, HI) is smooth, this holds for
every k ∈ V and HI ∈ U I .
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II. Absence of principal eigenvalues

By [vdBS89, Corollary 2.5] the mapping MI ∋ m 7→ pI,ξ(f, xm,HI), x ∈ G, is real
analytic. Therefore, aI ∋ HI 7→ pI,ξ(f, k expH

I , HI) is real analytic as well and vanishes
on the open set U I for k ∈ V , Re(ξ + ρ)(HI) ≥ 0. Hence it vanishes on aI identically.

In a last step of the proof we show that the vanishing of pI,ξ(f, k) for Re(ξ+ ρ)(HI) ≥ 0
implies that the expansion coefficients pλ,η(f, k) from Theorem II.7.3 vanish for all η ∈
Wλ− ρ and k ∈ V . For this purpose we use the following expansion for the polynomial
pI,ξ.

Proposition II.7.11 ([vdBS89, Theorem 3.1]). Let f ∈ E∞
λ , g ∈ G, and ξ ∈ X(I, λ).

(i) For every HI ∈ aI,+ and HI ∈ aI+ the following asymptotic expansion holds:

pI,ξ(f, g exp(tH
I), HI) ∼

∑
η∈wλ−ρ−N0Π,η|aI=ξ

pλ,η(f, g,HI + tHI)etη(H
I).

(ii) For all η = wλ− ρ− N0Π with η|aI ̸∈ X(λ, I) we have pλ,η(f, g) = 0.

Let η = wλ − ρ, w ∈ W , and k ∈ V,HI ∈ UI . If η|aI ̸∈ X(I, λ), then pλ,η(f, k) =
0. If η|aI = ξ ∈ X(I, λ), then Re(ξ + ρ)(HI) = Rewλ(HI) = 0 ≥ 0. Therefore,
pI,ξ(f, k expH

I , HI) = 0 for all HI ∈ aI by the previous paragraph. It follows that
the asymptotic expansion has every coefficient vanishing (see [vdBS87, Lemma 3.2]), in
particular pλ,η(f, k,HI + tHI) = 0, HI ∈ UI , HI ∈ aI . Since pλ,η(f, k) is a polynomial,
this implies pλ,η(f, k) = 0. Hence in both cases pλ,wλ−ρ(f, k) = 0 for k ∈ V . The
remainder of the proof proceeds the same way as the proof of Theorem II.7.2.

II.7.3. Proof of Theorem II.4.1

Let X be one of the compactifications X ∪X(∞) or X
max

.

Recall that the wandering set w(Γ, X) is defined to be the points x ∈ X for which there
is a neighborhood U of x such that γU ∩U ̸= ∅ for at most finitely many γ ∈ Γ. Clearly,
w(Γ, X) is open, Γ-invariant and contains X. Theorem II.4.1 is a simple consequence of
Theorem II.6.2 combined with Theorem II.7.2, respectively II.7.8.

Proof of Theorem II.4.1. Let x ∈ w(Γ, X) ∩ ∂X. Hence, there is an open subset U of
X containing x such that {γ | γU ∩ U ̸= ∅} contains N ∈ N elements. Let λ ∈ ia∗

and f ∈ L2(Γ\X) a joint eigenfunction of D(X) for the character χλ. Let f ∈ Eλ be
Γ-invariant lift of f to X. Then

∥f∥2L2(U) =

∫
U
|f |2 =

∫
Γ\X

∑
γ∈Γ

1U (γy)|f |2(γy)d(Γy) =
∫
Γ\X

#{γ | γy ∈ U}|f |2(Γy)d(Γy)

≤ N∥f∥2L2(Γ\X) <∞.

Hence, f is L2 on U and f is of moderate growth by Theorem II.6.2. Using Theorem II.7.2
or II.7.8 finishes the proof.
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II.8. Examples

In this section we discuss three classes of examples that satisfy the wandering condi-
tion of Theorem II.4.1. As mentioned in the introduction the condition is satisfied for
geometrically finite discrete subgroups of PSO(n, 1) of infinite covolume.

Products

The most basic example is the case of products. Let X = X1 × X2 be the product of
two symmetric spaces of non-compact type where Xi = Gi/Ki. Let Γ ≤ G1 × G2 be a
discrete torsion-free subgroup that is the product of two discrete torsion-free subgroups
Γi ≤ Gi. Then it is clear that the spectral theory of Γ\X is completely determined by the
spectral theory of the two factors. In particular, since the algebra D(G/K) is generated
by D(Gi/Ki), i = 1, 2, there are no principal joint eigenvalues if the same holds for one of
the factors. The same statement can be obtained by Theorem II.4.1 using the maximal
Satake compactification. Indeed, by [BJ06, Prop. I.4.35] it holds that the maximal
Satake compactification of X is the product of the maximal Satake compactifications of
Xi, i.e. X

max
= X1

max ×X2
max

. Then it is clear from the definition of the wandering
set that w(Γ, X

max
) = w(Γ1, X1

max
) × w(Γ2, X2

max
). Hence, the wandering condition

w(Γ, X
max

) ∩ ∂Xmax ̸= ∅ is fulfilled if and only if it is fulfilled for one of the actions
Γi ↷ Xi

max
.

Selfjoinings

A more interesting class of examples is given by selfjoinings of locally symmetric spaces.
These are given as follows. As above let X = X1×X2 be the product of two symmetric
spaces of non-compact type where Xi = Gi/Ki. Now, let Υ be a discrete group and
ρi : Υ → Gi, i = 1, 2, two representations into real semisimple non-compact Lie groups
with finite center. We assume that ρ1 has finite kernel and discrete image. We want
to consider the subgroup Γ of G1 × G2 given by Γ = {(ρ1(σ), ρ2(σ)) : σ ∈ Υ} which
is discrete. We assume that Γ is torsion-free (e.g. if Υ is torsion-free). In contrast to
the previous example the locally symmetric space Γ\X is not a product of two locally
symmetric spaces anymore, so also the spectral theory cannot be reduced to some lower
rank factors. However, we can exploit that the globally symmetric space is still a product
and consider the maximal Satake compactification which is given by X

max
= X1

max ×
X2

max
. Since ρ1(Υ) is discrete, it acts properly discontinuously on X1. Hence every

point of X1 is wandering for the action of ρ1(Υ). It follows easily that X1 × X2
max

is
contained in the wandering set w(Γ, X

max
) of the action Γ ↷ X

max
. Therefore, the

wandering condition is fulfilled. Indeed, w(Γ, X
max

) ∩ ∂Xmax ⊇ X1 × ∂X2
max ̸= ∅.
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II. Absence of principal eigenvalues

Anosov subgroups

The result of Lax and Phillips [LP82] is in particular true if we consider a (non-
cocompact) convex-cocompact subgroup of PSO(n, 1). Anosov subgroups as introduced
by Labourie [Lab06] for surface groups and generalized to arbitrary word hyperbolic
groups by Guichard and Wienhard [GW12] generalize convex-cocompact subgroups to
higher rank symmetric spaces. For such Γ we have the following proposition.

Proposition II.8.1. Let Γ be a torsion-free Anosov subgroup that is not a cocompact
lattice in a rank one Lie group. Then the wandering condition w(Γ, X

max
)∩ ∂Xmax ̸= ∅

is fulfilled.

Proof. By [KL18] (and [GKW15] for a specific maximal parabolic subgroup) every locally
symmetric space arising from an Anosov subgroup admits a compactification modeled on
the maximal Satake compactification X

max
, i.e. there is X ⊆ Ω ⊆ Xmax

open such that
Γ acts properly discontinuously and cocompactly on Ω. Since Γ does not act cocompactly
on X, we have Ω ∩ ∂Xmax ̸= ∅. As every point in a region of discontinuity is wandering
by definition we have Ω ⊆ w(Γ, X

max
), and in particular the wandering condition is

fulfilled.

Combining the above proposition with Theorem II.4.1 we obtain the following corollary.

Corollary II.8.2. Let Γ be a torsion-free Anosov subgroup that is not a cocompact lattice
in a rank one Lie group. Then there are no principal joint L2-eigenvalues on Γ\X.

It is worth mentioning that selfjoinings of two representations into PSO(n, 1) yield
Anosov subgroups if and only if one of the images of the representations is convex-
cocompact. One can thus easily construct non-trivial examples which are not Anosov
subgroups but fulfill the wandering condition of Theorem II.4.1. This is again parallel to
Patterson’s result that holds beyond the convex-cocompact case for hyperbolic surfaces
admitting cusps and at least one funnel.
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Abstract

Let X = X1 ×X2 be a product of two rank one symmetric spaces of non-compact type
and Γ a torsion-free discrete subgroup in G1 ×G2. We show that the spectrum of Γ\X
is related to the asymptotic growth of Γ in the two directions defined by the two factors.
We obtain that L2(Γ\G) is tempered for a large class of Γ.

III.1. Introduction

If one considers a geometrically finite hyperbolic surface M = Γ\H it is a very classical
theorem that the smallest eigenvalue of the Laplace-Beltrami operator ∆ is related to
the growth rate of Γ. More precisely,

inf σ(∆) =

{
1/4 : δΓ < 1/2

1/4− (δΓ − 1/2)2 : δΓ ≥ 1/2,

where δΓ is the critical exponent of the discrete subgroup Γ ⊆ SL2(R)

δΓ := inf

s ∈ R :
∑
γ∈Γ

e−sd(γx0,x0) <∞

 , x0 ∈ H.

This theorem is due to Elstrodt [Els73a, Els73b, Els74] and Patterson [Pat76].

A decade later it has been extended to real hyperbolic manifolds of arbitrary dimension
by Sullivan [Sul87] and then to general locally symmetric spaces of rank one by Corlette
[Cor90].

We are interested in analog statements for higher rank locally symmetric spaces. To
state the theorems let us shortly introduce the setting (see Section III.2.1). Let X be
a symmetric space of non-compact type, i.e. X = G/K where G is a real connected
semisimple non-compact Lie group with finite center and K is a maximal compact sub-
group. G admits a Cartan decomposition G = K exp(a+)K. Hence for every g ∈ G
there is µ+(g) ∈ a+ such that g ∈ K exp(µ+(g))K. µ(g) can be thought of a higher
dimensional distance d(gK, eK).

In this setting the bottom of the spectrum of the Laplace-Beltrami operator ∆ can
be estimated using δΓ as well [Web08, Leu04]. Note that in the definition of δΓ the
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term d(γK, eK) is ∥µ+(γ)∥. Hence, one only considers the norm of µ+(γ) but there are
different ways to measure the growth rate of γ or µ+(γ). This is exploited by Anker and
Zhang [AZ22] to determine inf σ(∆) to an exact value.

However, the spectral theory of Γ\G/K is more involved than in the rank one case and
is not completely determined by ∆: There is a whole algebra of natural differential
operators on Γ\G/K that come from the algebra of G-invariant differential operators
D(G/K) on G/K. In the easiest higher rank example G/K = (G1 ×G2)/(K1 ×K2) =
(G1/K1)× (G2/K2) of two rank one symmetric spaces this algebra is generated by the
two Laplacians acting on the respective factors. In this case we could just consider
the Laplace operators on the two factors G1/K1 and G2/K2 which generate D((G1 ×
G2)/(K1 × K2)). However, in general there are no canonical generators for D(G/K).
This is the reason why in the higher rank setting it is more natural to work with the
whole algebra instead of a generating set.

The importance of this algebra can be seen by considering the representation L2(Γ\G)
whereG acts by right translation. In the rank one case (where D(G/K) = C[∆]) L2(Γ\G)
is tempered (see Definition III.3.9) if σ(∆) ⊆ [∥ρ∥2,∞[. In the higher rank case this is
not true anymore but an analogous statement can be formulated in terms of D(G/K) (see
Proposition III.3.10). This requires to define a joint spectrum σ̃(Γ\G/K) for D(G/K) on
L2(Γ\G/K). There are different ways to define this spectrum: On the one hand we can
use the representation theoretical decomposition of L2(Γ\G) and consider the support
of the corresponding measure (see Section III.3.1). On the other hand we can define
a joint spectrum for a finite generating set of D(G/K) using approximate eigenvectors
(see Section III.3.2). This definition is more in the spirit of usual spectral theory. In
fact both definitions coincide and it holds:

σ̃(Γ\G/K) = {λ ∈ a∗C | χλ(D) ∈ σ(ΓD) ∀D ∈ D(G/K)} (III.1)

where χλ are the characters of D(G/K) parametrized by λ ∈ a∗C (see Proposition III.3.6).

As a first result we prove that
ia∗ ⊆ σ̃(Γ\G/K) (III.2)

if Γ\G/K has infinite injectivity radius (see Proposition III.3.7).

The above mentioned connection between this spectrum and temperedness of L2(Γ\G)
is given by the following fact.

Fact III.1.1 (Proposition III.3.10). If σ̃(Γ\G/K) ⊆ ia∗ then L2(Γ\G) is tempered.

Until recently, it was completely unknown which conditions on Γ (similar to δΓ ≤ ∥ρ∥)
imply temperedness of L2(Γ\G) even for the example of G = G1 × G2 with Gi of rank
one. Then Edwards and Oh [EO22] showed temperedness for Anosov subgroups if the
growth indicator function ψΓ is bounded by ρ (see Section III.4.4 for the definition).
This statement is in the same spirit as the original theorems by Patterson, Sullivan,
and Corlette, but it only holds for Anosov subgroups for minimal parabolics which are
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a higher rank analog of convex cocompact subgroups and its proof uses rather different
methods including estimates on mixing rates from [ELO20]. The main example where
they verify the condition ψΓ ≤ ρ is precisely the product situation G = G1 × G2 with
Gi of rank one and Γ is an Anosov subgroup.

In this work we present a different proof for the temperedness of L2(Γ\(G1 ×G2)) that
is closer to the original proofs in the rank one case and does not use any mixing results.
Moreover, we need not to assume that Γ is Anosov.

Theorem (Theorem III.4.9). Let G1 and G2 be of rank one and Γ ≤ G1 ×G2 discrete
and torsion-free. Let

δ1 = sup
R>0

inf

s ∈ R :
∑

γ∈Γ,∥µ+(γ2)∥≤R

e−s∥µ+(γ1)∥ <∞


and define δ2 in the same way. Then

σ̃(Γ\(G1 ×G2)/(K1 ×K2)) ⊆ {λ ∈ a∗C | ∥Re(λi)∥ ≤ max(0, δi − ∥ρi∥)}.

Figure III.1.: σ̃(Γ\(G1 ×G2)/(K1 ×K2)) for two rank one groups Gi

For the proof we consider the Laplace operators on the two factors and use (III.1) to
bound σ̃. For these operators the proof is similar to the proofs of Patterson and Corlette,
i.e. we obtain information about the spectrum by considering the resolvent kernel on the
globally symmetric space G/K and get the local version by averaging over Γ. Analyzing
the region of convergence of this averaging process leads to the theorem.

We obtain the following corollary.
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Corollary (Corollary III.4.10). If δ1 ≤ ∥ρ1∥ and δ2 ≤ ∥ρ2∥ then L2(Γ\(G1 × G2)) is
tempered.

An important example is a selfjoining: Let πi : G1 × G2 → Gi be the projection on
one factor. Suppose that πi|Γ, i = 1, 2, both have finite kernel and discrete image.
Then δ1 = δ2 = −∞ and hence L2(Γ\(G1 × G2)) is tempered. Any Anosov subgroup
with respect to the minimal parabolic subgroup in G1 × G2 satisfies this assumption,
but also satisfies additional assumptions, e.g. Γ is word hyperbolic and ∥µ+(πi(γ))∥ is
comparable to the word length of γ ∈ Γ [Lab06, GW12]. Therefore we generalize this
part of [EO22]. In contrast, [EO22] also provide statements on the connection between
temperedness and growth behavior of the Anosov subgroup Γ for more general (globally)
symmetric spaces G/K which are not products of rank one symmetric spaces. To extend
our work to this more general setting one needs growth estimates for the kernel of the
resolvent for suitable generators of the algebra D(G/K) which so far only seem to be
known for the Laplace operator (see [AJ99]).

Outline of the article

In Section III.2 we recall some preliminaries about the symmetric space, spherical func-
tions, the spherical dual, and the Fourier-Helgason transform. After that we define the
Plancherel spectrum (see Section III.3.1) and the joint spectrum (see Section III.3.2)
and show that they coincide (see Proposition III.3.6). We also prove (III.2) in Propo-
sition III.3.7. In Section III.3.4 we show the connection between σ̃(Γ\G/K) and the
temperedness of L2(Γ\G). We suppose that the statements might be considered as
folklore among experts in spectral theory of higher rank symmetric spaces, but as the
literature on spectral theory of locally symmetric spaces of higher rank and infinite vol-
ume is very sparse we provide precise statements with complete proofs in this section. In
Section III.4 we prove Corollary III.4.10. To do so we first recall the averaging procedure
(see Lemma III.4.2) and reprove the rank one result by [Cor90] in a form that we need
later (see Lemma III.4.8). We conclude this article by comparing the quantities δi with
the growth indicator function ψΓ (see Section III.4.4).

Acknowledgements. We thank Valentin Blomer for his suggestion to study this ques-
tion and for numerous stimulating discussions. This work has received funding from
the Deutsche Forschungsgemeinschaft (DFG) Grant No. WE 6173/1-1 (Emmy Noether
group “Microlocal Methods for Hyperbolic Dynamics”) as well as SFB-TRR 358/1 2023
— 491392403 (CRC “Integral Structures in Geometry and Representation Theory”).

III.2. Preliminaries

III.2.1. Setting

In this section we introduce the notation in the general higher rank setting and only
restrict to product spaces once it becomes necessary in order to emphasize clearly what
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the missing knowledge for the general higher rank setting is. Let G be a real connected
semisimple non-compact Lie group with finite center and with Iwasawa decomposition
G = KAN . We denote by g, a, n, k the corresponding Lie algebras. For g ∈ G let H(g)
be the logarithm of the A-component in the Iwasawa decomposition KAN . We have
a K-invariant inner product on g that is induced by the Killing form and the Cartan
involution. We further have the orthogonal Bruhat decomposition g = a⊕m⊕

⊕
α∈Σ gα

into root spaces gα with respect to the a-action via the adjoint action ad. Here Σ ⊆ a∗ is
the set of restricted roots. Denote by W the Weyl group of the root system of restricted
roots. Let n be the real rank of G and Π (resp. Σ+) the simple (resp. positive) system
in Σ determined by the choice of the Iwasawa decomposition. Let mα := dimR gα and
ρ := 1

2Σα∈Σ+mαα. Let a+ := {H ∈ a | α(H) > 0∀α ∈ Π} denote the positive Weyl
chamber and a∗+ the corresponding cone in a∗ via the identification a ↔ a∗ through

the Killing form ⟨·, ·⟩ restricted to a. If A+ := exp(a+), then we have the Cartan
decomposition G = KA+K. For g ∈ G we define µ+(g) ∈ a+ by g ∈ K exp(µ+(g))K.
The main object of our study is the symmetric space X = G/K of non-compact type.

Let D(G/K) be the algebra of G-invariant differential operators on G/K, i.e. differen-
tial operators commuting with the left translation by elements g ∈ G. Then we have
an algebra isomorphism HC: D(G/K) → Poly(a∗)W from D(G/K) to the W -invariant
complex polynomials on a∗ which is called the Harish-Chandra homomorphism (see
[Hel84, Ch. II Thm. 5.18]). For λ ∈ a∗C let χλ be the character of D(G/K) defined by
χλ(D) := HC(D)(λ). Obviously, χλ = χwλ for w ∈W . Furthermore, the χλ exhaust all
characters of D(G/K) (see [Hel84, Ch. III Lemma 3.11]). We define the space of joint
eigenfunctions

Eλ := {f ∈ C∞(G/K) | Df = χλ(D)f ∀D ∈ D(G/K)}.

Note that Eλ is G-invariant.

For example the (positive) Laplace operator ∆ is contained in D(G/K) and χλ(∆) =
−⟨λ, λ⟩+ ⟨ρ, ρ⟩.

III.2.2. Spherical functions

One can show that in each joint eigenspace Eλ there is a unique left K-invariant function
which has the value 1 at the identity (see [Hel84, Ch. IV Corollary 2.3]). We denote
the corresponding bi-K-invariant function on G by ϕλ and call it elementary spherical
function. Therefore, ϕλ = ϕµ iff λ = wµ for some w ∈ W . It is given by ϕλ(g) =∫
K e

−(λ+ρ)H(g−1k)dk. Note that we differ from the notation in [Hel84] by a factor of i:
ϕHel
λ = ϕiλ.

III.2.3. Functions of positive type and unitary representations

In this section we recall the correspondence between elementary spherical functions
of positive type and irreducible unitary spherical representations. Recall first that a
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continuous function f : G → C is called of positive type if the matrix (f(x−1
i xj))i,j

for all x1, . . . , xk ∈ G is positive semidefinite. If f is of positive type, then one has
f(x−1) = f(x) and |f(g)| ≤ f(1). Moreover, we can define a unitary representation πf
associated to f in the following way: If R denotes the right regular representation of G,
then πf is the completion of the space spanned by R(x)f with respect to the inner prod-
uct defined by ⟨R(x)f,R(y)f⟩ := f(y−1x) which is positive definite. G acts unitarily on
this space by the right regular representation. If f(g) = ⟨π(g)v, v⟩ is a matrix coefficient
of a unitary representation π, then f is of positive type and πf is contained in π.

Secondly, recall that a unitary representation is called spherical if it contains a non-zero
K-invariant vector. Denote by Ĝsph the subset of the unitary dual consisting of spher-
ical representations. We then have a 1:1-correspondence between elementary spherical
functions of positive type and Ĝsph given by ϕλ 7→ πϕλ (see [Hel84, Ch. IV Thm. 3.7]).
The preimage of an irreducible unitary spherical representation π with normalized K-
invariant vector vK is given by g 7→ ⟨π(g)vK , vK⟩.

III.2.4. Harish-Chandra’s c-Function

Definition III.2.1. We define the Harish-Chandra c-function for λ ∈ a∗C with Reλ ∈ a∗+
as the absolutely convergent integral

c(λ) =

∫
N
e−(λ+ρ)H(n)dn,

where dn is normalized such that c(ρ) = 1. It is given by the product formula

c(λ) = c0
∏
α∈Σ+

0

2−⟨λ,α0⟩Γ(⟨λ, α0⟩)
Γ(14mα + 1

2 + 1
2⟨λ, α0⟩)Γ(14mα + 1

2m2α + 1
2⟨λ, α0⟩)

where Σ+
0 = Σ+ \ 1

2Σ
+, α0 = α/⟨α, α⟩, and the constant c0 is determined by c(ρ) = 1.

III.2.5. The Fourier-Helgason transform

For a sufficiently nice function f : G/K → C we define the Fourier-Helgason transform
of f by

Ff(λ, kM) =

∫
G/K

f(gK)e(λ−ρ)H(g−1k)d(gK).

Let eλ,kM (gK) = e−(λ+ρ)H(g−1k). Then we have Deλ,kM = χλ(D)eλ,kM by [Hel84, Ch. II
Lemma 5.15] for every D ∈ D(G/K), λ ∈ a∗C, k ∈ K, and g ∈ G. Therefore,

F(Df)(λ, kM) =

∫
G/K

Df(gK)e−λ,kM (gK)d(gK) =

∫
G/K

f(gK)D∗e−λ,kM (gK)d(gK)

=

∫
G/K

f(gK)χ−λ(D
∗)e−λ,kM (gK) d(gK) = χ−λ(D

∗)Ff(λ, kM).
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By [Hel84, Lemma 5.21 and Cor. 5.3] χλ(D
∗) = χ−λ(D) so that we have the following

lemma.

Lemma III.2.2. The Fourier-Helgason transform satisfies

F(Df)(λ, kM) = χλ(D)Ff(λ, kM)

for every D ∈ D(G/K).

Theorem III.2.3 ([Hel89, Ch. III Thm. 1.5]). The Fourier-Helgason transform is an
isometry between L2(G/K) and L2(ia∗+ ×K/M, |c(λ)|−2dλd(kM)). Moreover,

⟨f, g⟩L2(G/K) = |W |−1

∫
ia∗×K/M

Ff(λ, kM)Fg(λ, kM)|c(λ)|−2dλd(kM)

In particular, Lemma III.3.2 implies that σ(D) = essran[ia∗+ → C, λ 7→ χλ(D)] with
respect to the measure |c(λ)|−2dλd(kM). Since χλ(D) is polynomial and |c(λ)|−2 > 0
for λ ∈ ia∗+ we find that the spectrum of D is the closure of {χλ(D) | λ ∈ ia∗+}. As
χλ(D) is W -invariant this coincides with the closure of {χλ(D) | λ ∈ ia∗}.

III.3. Spectra for locally symmetric spaces

In this section we recall different types of spectra for the algebra D(G/K) on a locally
symmetric space.

Let Γ ≤ G be a torsion-free discrete subgroup.

III.3.1. Plancherel spectrum

We want establish a spectrum for the algebra D(G/K) of G-invariant differential oper-
ators. Let us start with the spectrum that is obtained from decomposing the represen-
tation L2(Γ\G).

Theorem III.3.1 (see e.g. [BdlHV08, Thm. F.5.3]). Let π be a unitary representation
of G. Then there exists a standard Borel space Z, a probability measure µ on Z, and a
measurable field of irreducible unitary representations (πz,Hz) such that π is unitarily
equivalent to the direct integral

∫ ⊕
Z πzdµ(z).

According to the previous theorem let L2(Γ\G) be the direct integral
∫ ⊕
Z πzdµ(z).

We denote by Zsph the subset {z ∈ Z | πz is spherical} of Z where spherical means
that the representation has a non-zero K-invariant vector. We note that projection
P : L2(Γ\G)→ L2(Γ\G)K onto the K-invariant vectors is given by

∫
K R(k)dk where R

is the representation of G on L2(Γ\G). Hence, there is a measurable vector field z 7→ vKz

119



III. Temperedness of local product symmetric spaces

such that vKz ∈ HKz is of norm 1 if HKz ̸= 0. In particular, Zsph is measurable. For
z ∈ Zsph the representation πz is unitary, irreducible, and spherical. By Section III.2.3
πz ≃ πϕλz for some λz ∈ a∗C such that ϕλz is of positive type.

Recall the definition of the essential range for a measurable function f : (Z, µ)→ Y from
a probability space into a second countable topological space Y :

essran f := {y ∈ Y | ∀U ⊆ Y open, y ∈ U : µ(f−1(U)) > 0}.

By definition essran f equals the support of the pushforward measure f∗µ and for A ⊆ Y
closed essran f ⊆ A if and only if f(z) ∈ A for µ-a.e. z ∈ Z which we can see as follows:
Clearly, if µ({f(z) /∈ A}) = 0, then essran f∩Y \A = ∅. Hence, essran f ⊆ A. Conversely,
if essran f ∩ Y \ A = ∅ then for every a ∈ Y \ A we find an open neighborhood Na of a
with µ(f−1(Na)) = 0. Since Y is second countable Y \ A can be covered by countably
many Na. Thus µ(f−1(Y \ A)) ≤

∑
µ(f−1(Na)) = 0. Therefore, f(z) ∈ A for µ-a.e.

z ∈ Z.

The following lemma motivates the definition of the Plancherel spectrum.

Lemma III.3.2. Let H =
∫ ⊕
Z Hzdµ(z) be the direct integral of the field (Hz)z∈Z of

Hilbert spaces over the σ-finite measure space (Z, µ). Let T =
∫ ⊕
Z Tzdµ(z) be the direct

integral of the field of operators (Tz)z∈Z such that T (z) = f(z)idHz for a measurable
function f where the domain of T is {

∫ ⊕
Z yz dµ(z) ∈ H |

∫ ⊕
Z |f(z)|

2∥yz∥2 dµ(z) < ∞}.
Then

σ(T ) = essran f = {y ∈ C | ∀ ε > 0: µ(f−1(Bε(y))) > 0}.

Proof. If λ /∈ essran f then there is ε > 0 such that |f(z)−λ| ≥ ε for a.e. z ∈ Z. Hence,∫
Z

1
f(z)−λ idHzdµ(z) is bounded operator with operator norm ≤ 1/ε inverting T − λ.

Therefore, λ /∈ σ(T ).

Conversely, let λ ∈ essran f and ε > 0. Then Aε := {z ∈ Z | |f(z)− λ| < ε} has positive
measure and there is a unit vector yε =

∫ ⊕
Z yε,zdµ(z) ∈ H such that yε,z = 0 for z /∈ Aε.

It follows that

∥(T − λ)yε∥2 =
∥∥∥∥∫ ⊕

Z
(f(z)− λ)yε,zdµ(z)

∥∥∥∥2 = ∫
Aε

|f(z)− λ|2∥yε,z∥2dµ(z) ≤ ε2.

Consequently, T − λ cannot be invertible.

For a locally symmetric space Γ\G/K we define

σ̃(Γ\G/K) := essran[z 7→ λz] ⊆ a∗C/W.

Note that σ̃(Γ\G/K) ⊆ {λ ∈ a∗C/W | ϕλ is of positive type}. In particular, since
functions of positive type are bounded σ̃(Γ\G/K) ⊆ conv(Wρ) (see [Hel84, Ch. IV
Thm. 8.1]). Furthermore, ϕλ = ϕ−λ so that σ̃(Γ\G/K) ⊆ {λ ∈ a∗C/W | −λ ∈ Wλ} (see
e.g. [HWW21, Sec. 4]).
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III.3.2. The joint spectrum

In this section we describe a different kind of spectrum for D(G/K) that takes the action
of the operators into account instead of the representation theoretical decomposition (see
[Sch12, Ch. 5.2.2]).

Definition III.3.3 (see [Sch12, Prop. 5.27]). Let T1 and T2 be (not necessarily bounded)
normal operators on a Hilbert space H. We say that T1 and T2 strongly commute if their
spectral measures ET1 and ET2 commute.

For strongly commuting normal operators we can define the following joint spectrum.

Definition III.3.4 (see [Sch12, Prop. 5.24]). Let T = {T1, . . . , Tn} be a family of
pairwise strongly commuting operators on a Hilbert space H. We define σj(T ) to be the
set of all s ∈ Cn such that there is a sequence (xk)k∈N of unit vectors in

⋂n
i=1 dom(Ti) ⊆ H

satisfying

lim
k→∞

(Ti − si)xk = 0

for all i = 1, . . . , n. We call the sequence (xk) joint approximate eigenvector.

Clearly, every joint approximate eigenvector is an approximate eigenvector for Ti. Hence,
si ∈ σ(Ti) for s ∈ σj(Ti) and (see [Sch12, Prop. 5.24(ii)]):

σj(T ) ⊆ σ(T1)× · · · × σ(Tn).

Let us come back to the invariant differential operators on a locally symmetric space.
By definition D ∈ D(G/K) is G-invariant and therefore it maps Γ-invariant elements in
C∞(G/K) into itself. Since ΓC∞(G/K) ≃ C∞(Γ\G/K) we obtain a differential operator

ΓD on Γ\G/K. Using the direct integral decomposition it is easy to see that ΓD is a
normal operator on L2(Γ\G/K) for D ∈ D(G/K) (with domain {f ∈ L2(Γ\G/K) |
ΓDf ∈ L2(Γ\G/K)}). Furthermore, the spectral measure is given by

E
ΓD(M)

∫ ⊕

Zsph

fz dµ(z) =

∫ ⊕

{z|χλz (D)∈M}
fz dµ(z).

We obtain that ΓD1 and ΓD2 strongly commute for D1, D2 ∈ D(G/K) and hence we can
define the joint spectrum for any finite family {ΓD1, . . . , ΓDn}.

III.3.3. Comparison of spectra

In this section we want to see that the Plancherel spectrum and the joint spectrum
coincide. In order to achieve this we need the following lemma.
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Lemma III.3.5. Let p1, . . . , pn ∈ Poly(a∗C)W be non-constant complex Weyl group in-
variant homogeneous polynomials of degree di on a∗C that separate the points on a∗C/W .
Then a∗C/W → Cn, λ mod W 7→ (p1(λ), . . . , pn(λ)) is a topological embedding.

Proof. By definition the mapping Φ: λ mod W 7→ (p1(λ), . . . , pn(λ)) is injective and
continuous. It remains to show that Φ−1 is continuous, i.e. for λn ∈ a∗C with Φ(λn) →
Φ(λ0) we have λn mod W → λ0 mod W . Since the polynomials pi are homogeneous
it is clear that Φ(0) = 0 and 0 is not contained in Φ({λ ∈ a∗C | ∥λ∥ = 1}/W ). By
compactness

∥Φ({λ ∈ a∗C | ∥λ∥ = 1}/W )∥∞ ≥ c > 0

where we use the maximum norm on Cn. Now for ∥λ∥ ≥ 1:

∥Φ(λ mod W )∥∞ = max |pi(λ)| = max ∥λ∥di |pi(λ/∥λ∥)|
≥ ∥λ∥min di max |pi(λ/∥λ∥)| ≥ c∥λ∥2.

For Φ(λn) → Φ(λ0) it follows that ∥λn∥ is bounded: Indeed if lim sup ∥λn∥ = ∞ then
∞ = lim sup c∥λn∥2 ≤ lim sup ∥Φ(λn)∥∞ ≤ ∥Φ(λ0)∥∞ + 1. Therefore, λn is contained in
the bounded set B = {λ ∈ a∗C | ∥λ∥ ≤ r}. But now Φ|B/W : B/W → Cn is injective and
continuous and since B/W is compact it is a topological embedding. As λn, λ0 ∈ B we
infer λn mod W → λ0 mod W and the lemma is proved.

As before let L2(Γ\G) =
∫ ⊕
Z πzdµ(z). It is clear that L2(Γ\G/K) = L2(Γ\G)K =∫ ⊕

Zsph
HKz dµ(z). For z ∈ Zsph the representation πz is unitary, irreducible, and spherical.

By Section III.2.3 πz ≃ πϕλz for some λz ∈ a∗C/W such that ϕλz is of positive type. This
reflects that σ̃(Γ\G/K) is the set of spectral parameters λ occurring in L2(Γ\G/K). By
definition of πϕλz the differential operator D ∈ D(G/K) acts by χλz(D) on HKz .

We now aim to show the following proposition.

Proposition III.3.6. Let D1, . . . , Dn be a generating set for D(G/K) consisting of sym-
metric operators such that their Harish-Chandra polynomials HC(Di) are homogeneous.
Then the following sets coincide:

(i) σ̃(Γ\G/K)

(ii) {λ | ∀D ∈ D(G/K) : χλ(D) ∈ σ(ΓD)}

(iii) {λ | ∀ p ∈ Poly(a∗C)W : p(λ) ∈ essran[z 7→ p(λz)]}

(iv) {λ | ∀ p ∈ C[x1, . . . , xn] : p(χλ(D1), . . . , χλ(Dn)) ∈ σ(Γp(D1, . . . , Dn))}

(v) {λ | (χλ(D1), . . . , χλ(Dn)) ∈ σj(ΓD1, . . . , ΓDn)}

(vi) {λ | Γ
∑n

i=1(Di − χλ(Di))
∗(Di − χλ(Di)) is not invertible}
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Proof. (ii),(iii) and (iv) coincide by the Harish-Chandra isomorphism and Lemma III.3.2
and contain σ̃(Γ\G/K) by continuity of the polynomials p ∈ Poly(a∗C)W . Taking p =∑n

i=1(xi−χλ(Di))(xi−χλ(Di)) we see that (iv) is contained in (vi). To see that (vi) is
contained in (v) we observe that an approximate eigenvector for the spectral value 0 for

Γ
∑n

i=1(Di − χλ(Di))
∗(Di − χλ(Di)) is an joint approximate eigenvector for all the ΓDi

as
n∑
i=1

∥(ΓDi − χλ(Di))f∥2 = ⟨Γ
n∑
i=1

(Di − χλ(Di))
∗(Di − χλ(Di))f, f⟩.

It remains to show that (v) is contained in σ̃(Γ\G/K). Let fn =
∫ ⊕
Zsph

fn,zdµ(z) be a joint

approximate eigenvector for ΓD1, . . . ,ΓDn and Aε := {z |
∑n

i=1 |χλz(Di)−χλ(Di)|2 < ε}.
Then

0←
∑
∥(ΓDi − χλ(Di))fn∥2 =

∫
Zsph

n∑
i=1

|χλz(Di)− χλ(Di)|2∥fn,z∥2 dµ(z)

≥
∫
Zsph\Aε

ε∥fn,z∥2 dµ(z)

but the last expression equals ε if µ(Aε) = 0. Hence, Aε has positive measure for all
ε > 0. By Lemma III.3.5 the preimage of a neighborhood in a∗C/W of λ under z 7→ λz
contains Aε for some ε > 0 and therefore has positive measure as well. It follows
λ ∈ σ̃(Γ\G/K). This completes the proof.

We now prove that σ̃(Γ\G/K) contains ia∗ if the injectivity radius is infinite.

Proposition III.3.7. Suppose that the injectivity radius of Γ\G/K is infinite, i.e. for
every compact set C ⊆ G/K there is g ∈ G such that G/K → Γ\G/K restricted to gC
is injective. Then ia∗ ⊆ σ̃(Γ\G/K). In particular, [∥ρ∥2,∞[⊆ σ(Γ∆).

Proof. The proof follows the same idea as [EO22, Prop. 8.4]. Let λ ∈ ia∗ = σ̃(G/K).
We choose a generating set D1, . . . , Dn for D(G/K) consisting of symmetric operators
such that HC(Di) are homogeneous. Let Dn+1 = (∆− ∥ρ∥2)k for k large such that the
order of Dn+1 is bigger than all the orders of D1, . . . , Dn. Denote the elliptic operator∑n+1

i=1 (Di − χλ(Di))
∗(Di − χλ(Di)) by D. By Proposition III.3.6 there exists (fn)n ⊂

L2(G/K) with ∥fn∥L2(G/K) = 1 and Dfn → 0. Since D is elliptic and positive it is
essentially self-adjoint on C∞

c (G/K). In particular, we can assume that fn ∈ C∞
c (G/K).

We can now find gn ∈ G such that gn supp fn injects into Γ\G/K. Define f̃n(Γx) =
fn(g

−1
n x) for x ∈ gnKn and f̃n(Γx) = 0 else. By construction this is well-defined and

∥f̃n∥L2(Γ\G/K) = ∥fn∥L2(G/K). Moreover, ∥ΓDf̃n∥L2(Γ\G/K) = ∥Dfn∥L2(G/K) → 0. This
shows λ ∈ σ̃(Γ\G/K). The ’in particular’ part follows from Proposition III.3.6 (ii) and
χλ(∆) = −⟨λ, λ⟩+ ∥ρ∥2.

Remark III.3.8. The assumption in Proposition III.3.7 is satisfied for the following
examples:

123



III. Temperedness of local product symmetric spaces

(i) If G = SL2(R) and Γ is geometrically finite, then infinite injectivity radius is
equivalent to infinite volume which is again equivalent to saying that Γ\H has at
least one funnel.

(ii) If G is simple of real rank at least 2, then a discrete subgroup Γ\G/K has infinite
injectivity radius iff Γ has infinite covolume by [FG23].

(iii) If Γ ≤ G is an Anosov subgroup, then Γ\G/K has infinite injectivity radius [EO22,
Proposition 8.3].

III.3.4. Temperedness of L2(Γ\G)

We want to obtain a connection between the spectrum and temperedness of L2(Γ\G).
Let us recall the definition of a tempered representation.

Definition III.3.9 (see e.g. [CHH88]). A unitary representation (π,Hπ) is called tem-
pered if one of the following equivalent conditions is satisfied:

(i) π is weakly contained in L2(G), i.e. any diagonal matrix coefficients of π can
be approximated, uniformly on compact sets, by convex combinations of diagonal
matrix coefficients of L2(G).

(ii) for any ε > 0 the representation π is strongly L2+ε where π is called strongly Lp

if there is a dense subspace D of Hπ so that for any vectors v, w ∈ D the matrix
coefficient g 7→ ⟨π(g)v, w⟩ lies in Lp(G).

To characterize temperedness of L2(Γ\G) we will use the direct integral decomposition
(see Section III.3.1).

We will prove the following statement.

Proposition III.3.10. Suppose that Re σ̃(Γ\G/K) ⊆ p−2
p conv(Wρ) for some p ∈

[2,∞[. Then L2(Γ\G) is strongly Lp+ε. In particular, if σ̃(Γ\G/K) ⊆ ia∗/W then
L2(Γ\G) is tempered.

Proof. Let ε > 0 and f1, f2 ∈ Cc(Γ\G) non-negative. We have to show that∫
G
|⟨R(g)f1, f2⟩|p+εdg

is finite. Obviously, ⟨R(g)f1, f2⟩ =
∫
Γ\G f1(Γhg)f2(Γh)dΓh is bounded by ⟨R(g)F1, F2⟩

where Fi(Γh) = maxk∈K |fi(Γhk)|. Hence, it is sufficent to show
∫
G |⟨R(g)f1, f2⟩|

2+εdg <
∞ for K-invariant f1, f2. We decompose fi in the direct integral decomposition as
fi =

∫ ⊕
Z fi,zdµ(z). Since we assumed fi to be K-invariant we know that fi,z ∈ HKz for

µ-a.e. z ∈ Z. It follows that we have to integrate only over Zsph.
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For z ∈ Zsph the representation πz is unitary, irreducible, and spherical. By Sec-
tion III.2.3 πz ≃ πϕλz for some λz ∈ a∗C such that ϕλz is of positive type. We also

have ⟨πz(g)f1,z, f2,z⟩ = ϕλz(g) · ⟨f1,z, f2,z⟩. By assumption, λz ∈ p−2
p conv(Wρ) for

a.e. z ∈ Zsph. This implies that ϕλz ∈ Lp+ε(G) by [HWW21, Prop. 2.4] and even∫
G |ϕλz |

p+ε dg ≤ Cε,p for µ-a.e. z ∈ Zsph with Cε,p independent of z.

Now we estimate∫
G
|⟨R(g)f1, f2⟩|p+εdg ≤

∫
G

(∫
Zsph

|⟨πz(g)f1,z, f2,z⟩|dµ(z)

)p+ε
dg

=

∫
G

(∫
Zsph

|ϕλz(g)⟨f1,z, f2,z⟩|dµ(z)

)p+ε
dg.

Using Hölder’s inequality we find that∫
Zsph

|ϕλz(g)⟨f1,z, f2,z⟩|dµ(z) =
∫
Zsph

|ϕλz(g)||⟨f1,z, f2,z⟩|
1

p+ε |⟨f1,z, f2,z⟩|1/qdµ(z)

≤

(∫
Zsph

|ϕλz(g)|p+ε|⟨f1,z, f2,z⟩|dµ(z)

) 1
p+ε

·

(∫
Zsph

|⟨f1,z, f2,z⟩|dµ(z)

)1/q

.

where 1
p+ε +

1
q = 1.

Therefore,∫
G
|⟨R(g)f1, f2⟩|p+εdg ≤

∫
G

∫
Zsph

|ϕλz(g)|p+ε|⟨f1,z, f2,z⟩|dµ(z)

·

(∫
Zsph

|⟨f1,z, f2,z⟩|dµ(z)

) p+ε
q

dg.

Using
∫
G |ϕλz |

p+ε dg ≤ Cε,p it follows

∫
G
|⟨R(g)f1, f2⟩|p+εdg ≤ Cε,p

∫
Zsph

|⟨f1,z, f2,z⟩|dµ(z) ·

(∫
Zsph

|⟨f1,z, f2,z⟩|dµ(z)

) p+ε
q

≤ Cε,p

(∫
Zsph

|⟨f1,z, f2,z⟩|dµ(z)

)p+ε

≤ Cε,p

(∫
Zsph

∥f1,z∥2dµ(z)
∫
Zsph

∥f2,z∥2dµ(z)

)p+ε/2
≤ Cε,p∥f1∥p+εL2(Γ\G)

∥f2∥p+εL2(Γ\G)
<∞.

This completes the proof.
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III. Temperedness of local product symmetric spaces

III.4. The spectrum for quotients of products of rank one space

III.4.1. The resolvent kernel on a locally symmetric space

In this subsection we determine the Schwartz kernel of the resolvent on a locally sym-
metric space in terms of its Schwartz kernel on the global space G/K. To do this we
need the following well-known lemma.

Lemma III.4.1. The averaging map α : C∞
c (G/K)→ C∞

c (Γ\G/K) defined by

αf(Γx) =
∑
γ∈Γ

f(γx), x ∈ G/K,

is surjective.

Let us recall that for D ∈ D(G/K) we defined the differential operator ΓD acting on
L2(Γ\G/K). The following lemma tells us how the Schwartz kernel of ΓD

−1 can be
expressed provided D is invertible.

Lemma III.4.2. Let D ∈ D(G/K) and suppose that D is invertible as an unbounded
operator L2(G/K) → L2(G/K). Let KD−1 ∈ D′(G/K × G/K) be the Schwartz kernel
of D−1. Suppose further that ΓD : L2(Γ\G/K) → L2(Γ\G/K) is invertible. Then the
Schwartz kernel K

ΓD−1 ∈ D′(Γ\G/K × Γ\G/K) of ΓD
−1 is given by

K
ΓD−1(φ⊗ ψ) =

∑
γ∈Γ

KD−1(Lγφ̃⊗ ψ̃),

where φ̃ (and ψ̃) are preimages of φ (resp. ψ) under the surjective map α : C∞
c (G/K)→

C∞
c (Γ\G/K). By slight abuse of notation we write

K
ΓD−1(Γx,Γy) =

∑
γ∈Γ

KD−1(x, γy).

Proof. First of all note that D and therefore D−1 is G-invariant, hence KD(φ̃ ⊗ ψ̃) =
KD(Lgφ̃ ⊗ Lgψ̃) for all g ∈ G and φ̃, ψ̃ ∈ C∞

c (G/K). Let φ = αφ̃, ψ = αψ̃ ∈
C∞
c (Γ\G/K). By definition of K

ΓD−1 we have

K
ΓD−1((ΓDφ)⊗ ψ) =

∫
Γ\G/K

φ(Γx)ψ(Γx) dΓx.

On the other hand ΓDφ = α(Dφ̃) by G-invariance of D so that we can choose Dφ̃ as

Γ̃Dϕ. Therefore we have to show∑
γ∈Γ

KD−1(LγDφ̃⊗ ψ̃) =
∫
Γ\G/K

φ(Γx)ψ(Γx) dΓx.
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III.4. The spectrum for quotients of products of rank one space

The left hand side equals∑
γ∈Γ

KD−1(DLγφ̃⊗ ψ̃) =
∑
γ∈Γ

∫
G/K

Lγφ̃(x)ψ̃(x) dx

again by G-invariance of D and the definition of KD−1 . Now we can use the definition
of the measure of Γ\G/K to conclude∑
γ∈Γ

∫
G/K

Lγφ̃(x)ψ̃(x) dx =
∑
γ∈Γ

∫
Γ\G/K

∑
γ′∈Γ

φ̃(γx)ψ̃(γ′x) dΓx =

∫
Γ\G/K

φ(Γx)ψ(Γx) dΓx.

This shows the lemma.

III.4.2. Spectrum of the Laplacian in a general locally symmetric space of
rank one

In this section we recall the connection between the bottom of the Laplace spectrum on
the locally symmetric space Γ\G/K of rank one and the critical exponent of Γ which is
due to Elstrodt [Els73a, Els73b, Els74] and Patterson [Pat76] for G = SL2(R), Sullivan
[Sul87] for G = SO0(n, 1), and Corlette [Cor90] for general G of rank one. In the higher
rank setting this was generalized by Leuzinger [Leu04], Weber [Web08], and Anker and
Zhang [AZ22].

Definition III.4.3. We define the abscissa of convergence/critical exponent for Γ as

δΓ := inf

s ∈ R :
∑
γ∈Γ

e−s∥µ+(γ)∥ <∞

 .

Let us recall the theorem for the bottom of the spectrum on a locally symmetric space
of rank one and its proof as we will use it later in the proof of Theorem III.4.9.

Proposition III.4.4. Let G/K be a symmetric space of rank one and Γ a torsion-free
discrete subgroup. Then

σ(Γ∆) ⊆

{
[∥ρ∥2,∞[ : δΓ < ∥ρ∥
[∥ρ∥2 − (δΓ − ∥ρ∥)2,∞[ : δΓ ≥ ∥ρ∥.

The main ingredient for the proof of Proposition III.4.4 is the Green function which is
the resolvent kernel K(∆−z)−1 for the Laplacian ∆. It is well-known that K(∆−z)−1

is a smooth function away from the diagonal. By the G-invariance of ∆ we have
K(∆−z)−1(gx, gy) = K(∆−z)−1(x, y) and therefore K(∆−z)−1(x, y) only depends on the
value µ+(x

−1y) ∈ a. This allows us to see K(∆−z)−1 as a function on A which has the
following global bounds:
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III. Temperedness of local product symmetric spaces

Theorem III.4.5 ([AJ99, Thm. 4.2.2]).

(i) For every z < b < ∥ρ∥2 there is a constant Cz,b > 0 such that

K(∆−z)−1(eH) ≤ Cz,be−(
√

∥ρ∥2−b+∥ρ∥)∥H∥

for all H ∈ a away from the origin.

(ii) For every z < ∥ρ∥2 there is a constant Cz such that

K(∆−z)−1(eH) ≤ Cz

{
∥H∥2−dim(G/K) : dim(G/K) > 2

log(1/∥H∥) : dim(G/K) = 2

for all H ∈ a near the origin.

Remark III.4.6. In addition to the bounds on K(∆−z)−1 from Theorem III.4.5 we will
use the following general estimates:

|K(∆−z)−1 | ≤ K(∆−Re z)−1

which is positive. Moreover,

K(∆−z)−1 ≤ K(∆−z′)−1 for z ≤ z′ < ∥ρ∥2.

These estimates can been seen e.g. by writing (∆− z)−1 in terms of the Laplace trans-
form.

We use Stone’s formula in order to decide whether the kernel given by the averaging
construction of Lemma III.4.2 defines a bounded inverse on L2(Γ\G/K).

Proposition III.4.7 (see e.g. [Sch12, Prop. 5.14]). Let A be a self-adjoint operator and
PI the spectral projector of A for a Borel subset I ⊆ R. Then

1

2
(P[a,b] + P]a,b[) = lim

ε→0

1

2πi

∫ b

a
(A− (z + iε))−1 − (A− (z − iε))−1dz.

Here the limit as ε→ 0 is understood as a strong limit.

The advantage of Stone’s formula is that the occurring inverted operators are well-defined
by the self-adjointness of A. Hence we can merely consider the Schwartz kernel without
having to wonder whether this kernel defines a bounded operator on L2.

Proof of Prop. III.4.4. According to Proposition III.4.7 we have to determine for which
b < ∥ρ∥2: ∫ b

0
(Γ∆− (z + iε))−1 − (Γ∆− (z − iε))−1 dz → 0 (III.3)
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in the strong sense as ε → 0. As in Lemma III.4.2 denote the Schwartz kernel of
(ΓD − (z ± iε))−1 by K(ΓD−(z±iε))−1 . Then we need to see that

∫ b

0
(K(Γ∆−(z+iε))−1 −K(Γ∆−(z−iε))−1)(φ⊗ ψ)dz → 0 (III.4)

as ε → 0 for every φ,ψ ∈ C∞
c (Γ\G/K) for certain b < ∥ρ∥2. Let φ̃ (resp. ψ̃) be a

preimage of φ (resp. ψ) under the map α. Then the expression in (III.4) equals

∫ b

0

∑
γ∈Γ

(K(∆−(z+iε))−1 −K(∆−(z−iε))−1)(Lγφ̃⊗ ψ̃) dz (III.5)

by Lemma III.4.2 since ∆ is symmetric and therefore Γ∆− (z ± iε) is invertible.

The following slightly more general lemma shows that (III.3) holds for b < ∥ρ∥2 −
(max{0, δΓ − ∥ρ∥})2 and hence σ(Γ∆) ∩ (−∞, ∥ρ∥2 − (max{0, δΓ − ∥ρ∥})2) = ∅.

Lemma III.4.8. Let D be a multiset whose underlying set is a discrete subset of a rank
one Lie group G and

δD := inf

s ∈ R :
∑
γ∈D

e−s∥µ+(γ)∥ <∞

 .

For b < ∥ρ∥2 − (max{0, δD − ∥ρ∥})2 it holds that

∫ b

0

∑
γ∈D

(K(∆−(z+iε))−1 −K(∆−(z−iε))−1)(Lγφ̃⊗ ψ̃) dz → 0

as ε→ 0 for every φ̃, ψ̃ ∈ C∞
c (G/K).

Proof. Since the supports of φ̃ and ψ̃ are compact there are only finitely many γ ∈ Γ
such that supp(Lγφ̃⊗ψ) intersects the diagonal in G/K ×G/K non-trivially. For these
finitely many γ ∈ Γ the term converges to 0 as ∆ − z is invertible on L2(G/K) for
z < ∥ρ∥2 and therefore (∆− (z ± iε))−1 → (∆− z)−1.

For the other γ we use that K(∆−z)−1 is a smooth function away from the diagonal and
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III. Temperedness of local product symmetric spaces

the estimates from Remark III.4.6.∣∣∣∣∣
∫ b

0

∑
γ

(K(∆−(z+iε))−1 −K(∆−(z−iε))−1)(Lγφ̃⊗ ψ̃) dz

∣∣∣∣∣
≤ sup

0≤z≤b
b
∑
γ

∣∣∣(K(∆−(z+iε))−1 −K(∆−(z−iε))−1)(Lγφ̃⊗ ψ̃)
∣∣∣

≤ sup
0≤z≤b

b
∑
γ

∫
G/K

∫
G/K

∣∣∣(K(∆−(z+iε))−1(x, y)−K(∆−(z−iε))−1(x, y))(φ̃(γ−1x)ψ̃(y))
∣∣∣ dx dy

≤ sup
0≤z≤b

2b
∑
γ

∫
G/K

∫
G/K

∣∣∣K(∆−z)−1(γx, y)φ̃(x)ψ̃(y)
∣∣∣ dx dy

≤ 2b
∑
γ

∫
G/K

∫
G/K

∣∣∣K(∆−b)−1(γx, y)φ̃(x)ψ̃(y)
∣∣∣ dx dy

Since the Green function only depends on µ+(y
−1γx) this can be estimated by a constant

times
sup
x,y∈C

∑
γ

|K(∆−b)−1(eµ+(y−1γx))|

where C ⊆ G is compact. Now we use Theorem III.4.5 to see that this is bounded for
any ν > 0 by

Cν sup
x,y∈C

∑
γ

e−(
√

∥ρ∥2−b+∥ρ∥−ν)∥µ+(y−1γx)∥. (III.6)

By the triangle inequality

∥µ+(γ)∥ ≤ ∥µ+(y)∥+ ∥µ+(x)∥+ ∥µ+(x−1γy)∥

so that (III.6) is bounded by

Cν sup
x,y∈C

e(
√

∥ρ∥2−b+∥ρ∥−ν)(∥µ+(y)∥+∥µ+(x)∥)
∑
γ

e−(
√

∥ρ∥2−b+∥ρ∥−ν)∥µ+(γ)∥.

This is finite (for small ν) if
√
∥ρ∥2 − b+ ∥ρ∥ > δΓ, i.e. b < ∥ρ∥2− (max{0, δD −∥ρ∥})2.

This estimate allows us to use Lebesgue’s dominated convergence theorem to conclude
the lemma.

Note that in Lemma III.4.8 D is not assumed to be a group. We will use this general
statement in the proof of Proposition III.4.9.

III.4.3. Product of rank one spaces

Let X = X1 ×X2 = (G1 × G2)/(K1 ×K2) be the product of two rank one symmetric
spaces and Γ ⊆ G1 × G2 discrete and torsion-free. In order to determine σ̃(Γ\G/K)
in this case we bound the spectrum of the Laplacian acting on one factor and then use
Proposition III.3.6.

130



III.4. The spectrum for quotients of products of rank one space

Theorem III.4.9. Let ∆1 be the Laplacian ∆⊗ id on L2(X1×X2) = L2(X1)⊗L2(X2)
acting on the first factor. Let

δ1 = sup
R>0

inf

s ∈ R :
∑

γ∈Γ,∥µ+(γ2)∥≤R

e−s∥µ+(γ1)∥ <∞

 .

Then

σ̃(Γ∆1) := {λ ∈ a∗C/W | χλ(∆1) ∈ σ(Γ∆1)}
⊆ {λ ∈ a∗C/W | ∥Re(λ1)∥ ≤ max(0, δ1 − ∥ρ1∥)}.

Proof. Since the Schwartz kernel of the identity is the Dirac distribution δx2=y2 on the
diagonal in X2 ×X2, the Schwartz kernel of (∆1 − z)−1 is

K(∆1−z)−1((x1, x2), (y1, y2)) = K(∆−z)−1(x1, y1)δx2=y2(x2, y2)

for z /∈ [∥ρ1∥2,∞[. Therefore, if (Γ∆1 − z) is invertible the kernel of (Γ∆1 − z)−1 is

K(Γ∆1−z)−1(Γ(x1, x2),Γ(y1, y2)) =
∑
γ∈Γ

K(∆−z)−1(γ1x1, y1)δx2=y2(γ2x2, y2)

by Lemma III.4.2. According to Proposition III.4.7 we have to determine for which
b < ∥ρ1∥2: ∫ b

0
(Γ∆1 − (z + iε))−1 − (Γ∆1 − (z − iε))−1 dz → 0

in the strong sense as ε → 0. As in Lemma III.4.2 denote the Schwartz kernel of
(ΓD − z)−1 by K(ΓD−z)−1 . Then we need to see for which b < ∥ρ1∥2∫ b

0
(K(Γ∆1−(z+iε))−1 −K(Γ∆1−(z−iε))−1)(φ⊗ ψ)dz → 0 (III.7)

as ε → 0 for every φ,ψ ∈ C∞
c (Γ\G/K). Let φ̃ (resp. ψ̃) be a preimage of φ (resp. ψ)

under the map α. Then the expression in (III.7) equals∫ b

0

∑
γ∈Γ

(K(∆1−(z+iε))−1 −K(∆1−(z−iε))−1)(Lγφ̃⊗ ψ̃) dz

by Lemma III.4.2. Without loss of generality we can assume that φ̃ = φ̃1 ⊗ φ̃2 ∈
C∞
c (X1)⊗C∞

c (X2) ⊆ C∞
c (X1×X2) and in the same way for ψ̃. Then (III.7) reduces to∫ b

0

∑
γ∈Γ

(
K(∆−(z+iε))−1 −K(∆−(z−iε))−1)(Lγ1φ̃1 ⊗ ψ̃1)

)
(δx2=y2(Lγ2φ̃2 ⊗ ψ̃2)) dz
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The latter part of the integrand is
∫
X2
φ̃2(γ

−1
2 x)ψ̃2(x) dx which vanishes if γ2 is large

depending on φ̃2 and ψ̃2. More precisely, this is the case if

∥µ+(γ2)∥ > 2 max
x∈supp φ̃2

d(x, eK2) + max
x∈supp φ̃2

y∈supp ψ̃2

d(x, y) =: R.

Indeed, d(x, γ−1
2 x) ≥ d(γ2K2, eK2) − 2d(x, eK2) > maxx∈supp φ̃2

y∈supp ψ̃2

d(x, y) so that x ∈

supp ψ̃2 excludes γ−1
2 x ∈ supp φ̃2.

Let ΓR := {γ ∈ Γ | ∥µ+(γ2)∥ ≤ R}. It follows that (III.7) is bounded by a constant
times ∫ b

0

∑
γ∈ΓR

(K(∆−(z+iε))−1 −K(∆−(z−iε))−1)(Lγ1φ̃1 ⊗ ψ̃1) dz

Now Lemma III.4.8 yields that this vanishes as ε→ 0 as long as

b < ∥ρ1∥2 − (max{0, δpr1(ΓR) − ∥ρ1∥})2

where pr1(ΓR) is the multiset of γ1 ∈ G with multiplicity #{(γ′1, γ′2) ∈ ΓR | γ1 = γ′1}. In
order to get (III.7) for every φ,ψ the above condition on b has to hold for every R > 0,
i.e. b < ∥ρ1∥2 − (max{0, δ1 − ∥ρ1∥})2. We infer that

σ(Γ∆1) ⊆

{
[∥ρ1∥2,∞[ : δ1 ≤ ∥ρ1∥
[∥ρ1∥2 − (δ1 − ∥ρ1∥)2,∞[ : δ1 ≥ ∥ρ1∥.

Reformulating this statement in terms of σ̃ we obtain the stated result.

Obviously, Theorem III.4.9 is also true if we consider the Laplacian on the second factor
with the critical exponent

δ2 = sup
R>0

inf

s ∈ R :
∑

γ∈Γ,∥µ+(γ1)∥≤R

e−s∥µ+(γ2)∥ <∞

 .

Using this, Proposition III.3.6, and Proposition III.3.10 we obtain the following corollary
giving us temperedness of L2(Γ\G) in dependence of δ1 and δ2.

Corollary III.4.10. If δ1 ≤ ∥ρ1∥ and δ2 ≤ ∥ρ2∥, then L2(Γ\G) is tempered.

Example III.4.11. (i) Let Γ be a product Γ1 × Γ2 where each Γi ≤ Gi is discrete
and torsion-free. Then it is clear that δi = δΓi . Hence, we obtain the expected
results in this product situation.

(ii) Let Γ be a selfjoining: both projections πi : G1 × G2 → Gi onto one factor re-
stricted to Γ have finite kernel and discrete image. Then the set of γ ∈ Γ where
∥µ+(πi(γ))∥ ≤ R is finite. Therefore δi = −∞ and L2(Γ\G) is tempered.

(iii) Let Γ ≤ G1×G2 be an Anosov subgroup with respect to the minimal parabolic sub-
group, i.e. Γ is a selfjoining such that πi|Γ are convex-cocompact representations.
In particular, L2(Γ\G) is tempered.
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III.4.4. Growth indicator function

In this section we will take a look at the limit cone and the growth indicator function
ψΓ introduced by Quint [Qui02] and compare it with δ1.

Definition III.4.12. The limit cone LΓ of Γ is defined as the asymptotic cone of µ+(Γ),
i.e.

LΓ = {lim tnµ+(γn) | tn → 0, γn ∈ Γ}.

For Γ Zariski dense, LΓ is a convex cone with non-empty interior [Ben97]. From this
definition we obtain the following proposition.

Proposition III.4.13. Let Γ be a torsion-free discrete subgroup of G = G1 ×G2 where
Gi are of real rank one. If LΓ ⊆ a+ ∪ {0}, then L2(Γ\G) is tempered.

Proof. In view of Corollary III.4.10 it is sufficient to show that δi = −∞. Suppose there
are infinitely many γn ∈ Γ pairwise distinct such that ∥µ+(γn,2)∥ ≤ R. By discreteness
∥µ+(γn,1)∥ → ∞. Hence we can choose tn := 1/∥µ+(γn,1)∥. Then tnµ+(γn) converges
to (H1, 0) where H1 ∈ a1,+ is normalized contradicting LΓ ⊆ a+ ∪ {0}. Therefore, there
are only finitely many γ ∈ Γ with bounded second component and hence δ1 = −∞. The
same argument works for δ2.

For Γ ≤ G discrete and Zariski dense let ψΓ : a→ R ∪ {−∞} be defined by

ψΓ(H) := ∥H∥ inf
H∈C

inf{s ∈ R |
∑

γ∈Γ,µ+(γ)∈C

e−s∥µ+(γ)∥ <∞}

where the infimum runs over all open cones C containing H and ∥ · ∥ is a Weyl group
invariant norm on a. For H = 0 let ψΓ(0) = 0. Note that ψΓ is positive homogeneous
of degree 1. In general we have the upper bound ψΓ ≤ 2ρ. By [Qui02] we know that
ψΓ ≥ 0 on LΓ, ψΓ > 0 on the interior of LΓ and ψΓ = −∞ outside LΓ. Moreover, ψΓ is
concave and upper-semicontinuous.

Let us compare δ1 to ψΓ in the situation G = G1×G2 where Gi is of real rank one. Let
Hi ∈ ai,+ of norm 1 and consider the maximum norm on a = a1 × a2. In this situation
it is clear that δ1 ≤ ψΓ(H1, 0) since every cone C containing (H1, 0) contains the strip
a1,+ × {H ∈ a2,+ | ∥H∥ ≤ R} outside a large enough compact set.

Note that if ψΓ ≤ ρ then by the above comparison this condition implies δi ≤ ∥ρi∥ which
is enough to obtain:

Corollary III.4.14. Let X = X1 ×X2 = (G1 × G2)/(K1 ×K2) be the product of two
rank one symmetric spaces and Γ ≤ G1 × G2 discrete and torsion-free. If ψΓ ≤ ρ then
L2(Γ\G) is tempered.

Note that this is precisely the result of [EO22] without the assumption that Γ is the
image of an Anosov representation with respect to a minimal parabolic subgroup.
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