
On the Membership and Correctness
Problem for State Serializability and

Value Opacity
Dissertation

vorlegt von

Jürgen König, M.Sc.

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

an der
Fakultät für Elektrotechnik, Informatik und Mathematik

der

Universität Paderborn

Paderborn, Mai 2023

Thesis advisor: Professor Dr. Heike Wehrheim Jürgen König

On the Membership and Correctness Problem for State
Serializability and Value Opacity

Abstract

Transactional memory is a concept of concurrency control managing the ac-
cesses of multiple threads to shared memory. Similar to databases, threads issue
transactions that can read from and write to the shared memory. Each trans-
action is supposed to look to the outside as being executed as an atomic block.
However, a transactional memory implementation may execute transactions con-
currently to optimize runtime as long as to the outside the execution appears to
be correct. There are multiple definitions formalizing what exactly “appears to
be correct” means. These are called correctness conditions. While numerous ap-
proaches for checking if single executions or complete implementations fulfil these
conditions have been proposed, the underlying theoretical problems have received
less attention. These are the membership problem (checking whether a single
execution is correct) and the correctness problem (checking whether all possible
executions of an implementation are correct). In this thesis we give a detailed
overview over the complexity results for each of these problems and present two
results of our own for each of them. The correctness conditions we focussed on
were strict state serializability - a version of serializability - and value opacity,
which is a correctness condition similar to serializability but specifically designed
for transactional memory. We show that the membership problem for value opac-
ity is NP-complete by reduction from state serializability, a less strict version of
strict state serializability. Additionally, we give assumptions under which the
membership problem for value opacity is equivalent to the membership problem
for a variant of opacity called conflict opacity that is easier to solve. For the
correctness problem we investigate its decidability for strict state serializability
and value opacity under assumptions. We show that the correctness problems for
both conditions are decidable under these assumptions.

iii

Thesis advisor: Professor Dr. Heike Wehrheim Jürgen König

On the Membership and Correctness Problem for State
Serializability and Value Opacity

Zusammenfassung

Transaktionaler Speicher (TS) ist ein Konzept zur Kontrolle von Nebenläu-
figkeit, das die Zugriffe von mehreren Threads auf geteilten Speicher verwaltet.
Ähnlich wie bei Datenbanken, können Threads Transaktionen ausführen, die vom
Speicher lesen und auf ihn schreiben können. Jede Transaktion soll nach außen so
aussehen, als ob sie in einem atomaren Block ausgeführt wurde. Trotzdem kann
eine TS Implementation mehrere Transaktionen nebenläufig ausführen, um die
Laufzeit zu verbessern, solange nach außen hin die Ausführung korrekt erscheint.
Es gibt mehrere Definitionen, die formalisieren was genau “nach außen hin korrekt
erscheinen” bedeutet. Diese Definitionen nennt man Korrektheitsbedingungen.
Obwohl schon zahlreiche Ansätze für das Überprüfen, ob einzelne Ausführungen
oder ganze Implementationen von TSs diesen Korrektheitsbedingungen genügen,
vorgestellt wurden, ist den zugrundeliegenden theoretischen Problemen weniger
Aufmerksamkeit zuteilgeworden. Diese sind das Membershipproblem (überprüfen,
ob eine einzelne Ausführung korrekt ist) und das Correctnessproblem (überprüfen
ob alle Ausführungen einer Implementation korrekt sind). In dieser Arbeit geben
wir einen detaillierten Überblick über die bereits existierenden Ergebnisse zur
Komplexität dieser Probleme und präsentieren zwei eigene Ergebnisse für jedes
dieser Probleme. Die Korrektheitsbedingungen, auf die wir uns in dieser Disserta-
tion konzentriert haben, sind Strict State Serializability und Value Opacity. Wir
zeigen durch eine Reduktion von State Serializability, eine weniger strenge Version
von Strict State Serializability, dass das Membershipproblem für Value Opacity
NP-vollständig ist. Außerdem, präsentieren wir Annahmen, unter denen das Mem-
bershipproblem für Value Opacity äquivalent zu dem für Conflict Opacity, eine
simplere Variante von Value Opacity, ist. In Bezug auf das Correctnessproblem
untersuchen wir seine Entscheidbarkeit für Strict State Serializability und Value
Opacity unter einschränkenden Annahmen. Wir zeigen, dass die Correctnessprob-
leme für beide Bedingungen entscheidbar sind unter diesen Annahmen.

iv

Contents

1 Introduction 1

2 Basics of STMs and Correctness Conditions 15
2.1 Transactional Memory . 15
2.2 Correctness Conditions . 19
2.3 Basic Notation and Terms . 37

3 Membership Problem 55
3.1 Related Work . 55
3.2 The Membership Problem for Value Opacity is NP-Complete . . . 65
3.3 Comparison of Conflict Opacity and Value Opacity 75

4 Correctness Problem 85
4.1 Related Work . 85
4.2 The Correctness Problem for SSR− Is Decidable 88
4.3 The Correctness Problem for OP− Is Decidable 113

5 Discussion + Conclusion 143
5.1 Summary . 143
5.2 Discussion and Future Work . 147

A Proofs for Section 3.2 169

B Proofs for Section 4.2 177

C Proofs for Section 4.3 221

v

vi

Listing of Figures

1.1 Account class running example 3
1.2 Sequential execution of doubleBalance 4
1.3 Interleaved execution of doubleBalance 4
1.4 Coarse-grained locking applied to doubleBalance 6
1.5 Fine-grained locking applied to doubleBalance 7
1.6 Example histories . 9
1.7 Implementation of doubleBalance using an STM 9

2.1 Example history visualisation . 20
2.2 Sequential consistency examples 23
2.3 Linearizability examples . 23
2.4 View serializability examples . 25
2.5 State serializability examples . 26
2.6 Conflict serializability examples 27
2.7 Strict serializability examples . 28
2.8 Causal serializability examples . 29
2.9 Snapshot isolation examples . 30
2.10 Value opacity examples . 31
2.11 Conflict opacity examples . 32
2.12 Example conflict graphs for conflict opacity example 33
2.13 DU-Opacity examples . 33
2.14 Virtual world consistency examples 34
2.15 TMS 1 examples . 35
2.16 TMS 2 examples . 36
2.17 Transaction examples . 40
2.18 Example for g-histories . 41

vii

2.19 Example histories for value opacity 43
2.20 Conflicts in conflict opacity . 47
2.21 Example g-history conversion from implicit to explicit begin events 47
2.22 Example histories for conflict opacity 48
2.23 Example conflict graphs for conflict opacity 49
2.24 Example p-histories . 50

3.1 Example of a conflict graph and corresponding history 57
3.2 Overview of comparison results of Papadimitriou [73] 58
3.3 Overview of comparison results of Dziuma et al. [31] 59
3.4 Examples for differences between state and view serializability . . 60
3.5 A history that is view/state serializable but not conflict serializable. 60
3.6 A history that is causal serializable but not view serializable. . . . 61
3.7 A history that is prefix-closed value opaque but not DU-opaque. . 63
3.8 A history that is virtual world consistent but not value opaque. . 64
3.9 A history that is correct under TMS1 but not value opaque. . . . 64
3.10 A history that is value opaque but not correct under TMS2. . . . 65
3.11 Examples illustrating the reduction function 66
3.12 Example showing reads-from ambiguity in OP 69
3.13 Examples showing conflict opacity and value opacity are incompa-

rable . 76
3.14 Realistic g-history example for values deciding value opacity of a

history . 77
3.15 CO does not imply OP under assumptions. 80
3.16 Examples for read-before-update assumption. 80

4.1 Implementation automaton example 89
4.2 Excerpt of state space of example implementation automaton . . 90
4.3 Example of the supersequence property for candidate sets. 93
4.4 A p-history and its candidates extended with a write event 95
4.5 A p-history and its candidates extended with a read event. 95
4.6 Example showing fixed and interruptible rf-elements 100
4.7 Example for equivalence class grouping. 105

viii

4.8 SSR−-automaton of example implementation automaton 112
4.9 Example for the necessity of the third cond. of the RR-assumpt. . 114
4.10 Example of the supersequence property for candidate sets 117
4.11 A g-history and its candidates extended with a write event 119
4.12 A g-history and its candidates extended with a begin event 119
4.13 Examples of candidates and minimal completions 121
4.14 Example showing interruptible and abortable rf-elements 130

5.1 Issues with solving the correctness problem for value opacity . . . 150

ix

x

Acknowledgments

I would like to thank my advisor Heike Wehrheim who supported me in conduct-
ing more theoretical research and whose feedback helped me a lot in presenting
my thoughts in a digestible manner. I also want to thank the other members of
my committee, Dr. habil. Stephan Merz, Prof. Dr. Stefan Böttcher, Prof. Dr.
Christian Scheideler and Dr. Ulf-Peter Schroeder for their time and efforts reading
and reviewing this thesis. Additionally, I want to thank my (former) colleagues:
Marie-Christine Jakobs, Steffen Beringer, Manuel Töws, Julia Krämer, Cedric
Richter, Felix Pauck, Jan Haltermann, Arnab Sharma and Elisabeth Schlatt. I
enjoyed my time with them. On a more personal note, I would like to thank my
friends and my parents Christa and Franz-Josef for keeping me sane and being
great supporters during my time writing this thesis.

xi

xii

1
Introduction

Multicore processors are as of now present in almost every computer system. They
allow for a high degree of concurrency in computing and enable large increases
in processing speed. For a program to fully take advantage of these processors,
it must execute multiple concurrent operations as else only a single core is being
utilized. The most prevalent way of handling and implementing such concurrency
is via the thread model. In this model several threads execute at once and have
access to a shared memory. Designing such programs is harder than designing
programs having only a single thread as the actions of different threads may be
interleaved with each other in a non-deterministic manner. These interleavings
may cause computation results that would not be possible in a traditional single
core system.

To address these issues, concepts were developed to simplify implementing such
programs. The most common approaches are based on locking. Locking is the
concept of making incorrect interleavings impossible by blocking threads from
proceeding into certain sections of code until it is safe to do so. Examples of
concepts employing locking are critical sections, monitors and barriers. They
guarantee that threads are blocked until certain conditions hold. For example,
a thread may only enter a critical section when no other thread is in a critical

1

section and a barrier blocks a thread from proceeding past a certain point of code
until all threads have reached that barrier in their execution.

The main issue with such concepts is that the burden is on the programmer to
use these concepts in a manner that allows for enough concurrency to effectively
use the given computational power, but prevents incorrect interleavings from oc-
curring. At the same time the programmer also needs to avoid the typical issues
with locks, such as deadlocks, priority inversion and convoying. All of this com-
bined is a very challenging task even for seasoned programmers. This sentiment
is also echoed in an article about the concurrency revolution by Larus et al. “[…]
humans are quickly overwhelmed by concurrency, and find it much more difficult
to reason about concurrent than sequential code.” [95]. These issues lead to a
higher frequency of bugs in concurrent programs involving synchronisation with
locks.

The consequences of such bugs range from slight inconveniences to major dam-
age and human causalities. Two examples of the latter case are the Therac 25 and
the northeast blackout of 2003. The Therac 25 was a machine used for radiation
therapy, which was controlled by a computer. A concurrency error in the software
led to it administering about 100 times of the actually needed radiation dose to
a narrower area than intended, which caused the deaths of 3 people [65, 64]. In
2003, a race condition contributed to a blackout over parts of the USA and On-
tario. It affected millions of people, and it was said to contribute to the death
of almost 100 people [76, 77, 55]. The manager of the company responsible for
the system stated “We had in excess of three million online operational hours in
which nothing had ever exercised that bug. I’m not sure that more testing would
have revealed it.” [77].

Given the higher rate of bugs, how well hidden they can be and their possible
consequences, verification of such programs is needed. Verification is very costly
and is also specific to the program at hand. So in summary concurrent programs
are hard to write and also hard to verify, a very inconvenient combination of
problems.

We will illustrate and discuss these issues along a running example shown in
Figure 1.1. The class Account implements an account with a balance. It has a

2

getter (getBal) and a setter (setBal) method for its balance and a method to
double it (doubleBalance). Each instance of Account starts with a balance of 10.
We assume the system consists of two threads accessing one instance of Account.
In the example executions (Figures 1.2 and 1.3) both threads call doubleBalance
once.

1 public class Account{
2 int balance;
3

4 public Account(){
5 balance = 10;
6 }
7

8 public void setBal(int bal){
9 balance = bal;

10 }
11

12 public int getBal(){
13 return balance;
14 }
15

16 public void doubleBalance(){
17 int x;
18 x = getBal();
19 x = x * 2;
20 setBal(x);
21 }
22 }

Figure 1.1: Account class running example

Typically, issues with concurrent programs occur whenever in an execution two
concurrent threads access the same (shared) object and one of them modifies the
object. Two examples of executions illustrating the problem of such conflicting
accesses are shown in Figures 1.2 and 1.3. In Figure 1.2, a sequential execution is
shown, meaning one method call executes after the other without any concurrency

3

taking place. While in actuality doubleBalance is being called by both threads,
here we only show the calls to getBal and setBal as they are the ones causing
potential conflicts. As one can see, the execution of thread one sets the balance to
20 and the subsequent execution of thread two then sets it to 40. Such sequential
behaviour and its respective result is what a programmer usually assumes their
code to have. But as shown in Figure 1.3, this assumption may prove wrong
whenever the method calls of both threads interleave. In this example, thread
one first reads the balance and thread two reads it afterwards. Now both do their
internal computations on the value, which results in 20 for both. Then thread one
sets the balance to 20 and thread two sets it to 20 as well afterwards. Thus, the
resulting balance of the account is 20. This behaviour does not match a sequen-
tial execution and is not intended by the programmer. Considering all possible
interleavings during programming code of non-trivial complexity is an impossible
task. So, as discussed above, the common approach is to limit concurrency in
some fashion via locking. Besides the type of approach used, the implementation
of locks can be characterized by its granularity, which is on a scale in between
coarse and fine.

Thread 1 Account Thread 2

getBal()

10

setBal(20)

getBal()

20

setBal(40)

Figure 1.2: Sequential execution of
doubleBalance

Thread 1 Account Thread 2

getBal()

10

setBal(20)

getBal()

10

setBal(20)

Figure 1.3: Interleaved execution of
doubleBalance

Coarse-grained locking uses only a small number of locks, and puts them around

4

large sections of code. The result of applying this concept to our running exam-
ple is shown in Figure 1.4. Here the complete Account class is equipped with
one static lock, so whenever any thread tries to modify one instance of Account,
no other thread may modify any instance of Account. This ensures a correct
execution of a program with only calls to doubleBalance, but is also fairly in-
efficient as no concurrency takes place in the doubleBalance method and even
non-conflicting accesses to different Account instances cannot be concurrent. So,
in summary, this style of locking reduces the overall concurrency, and thus the
speed of the computations of the program. On the other hand the locking oper-
ations themselves cause only a small computational overhead, and it is easy to
program with coarse-grained locking.

Fine-grained locking includes the use of potentially multiple locks, and tries to
minimize the amount of sections protected by locks. It tries to put locks only
around sections, which actually can cause conflicts. In Figure 1.5 one can see the
application of fine-grained locking to our running example. Instead of a static
lock for the whole class, the critical sections are protected by a “synchronized”
statement specific to the instance of Account. This prevents other threads from
accessing this section when calling the method for the same object. Also, the read
and the write accesses are protected separately. This means during the internal
computations the account can be accessed by other threads. This is advantageous
whenever the internal computations take a lot of time, and thus the read would be
blocked for a long time. This may cause issues when the value has changed during
the computations. Thus, before actually writing to the account, a check whether
the value has changed is necessary. If it has changed, the method does not write
to the account and signals it has failed. Else it proceeds with writing and signals
it was successful. As one can see, the complexity of programming, even in a toy
example, went up significantly. Also, locking twice per method instead of once
carries overhead with it. On the other hand, concurrent readers can access the
account while the method is doing its internal computations.

As seen by this in example, fine-grained locking allows for potentially faster
computations. On the other hand, it increases the overhead caused by locking
and unlocking and the overall complexity of the program, making it more prone

5

to errors. So overall, locks either have the problem of reduced performance or
steeply increased complexity.

Also, one can see that the implementation of the locks depends on the code at
hand, and would look very different given other use cases, which illustrates the
verification issues mentioned above.

1 static Lock userLock = new Lock();
2 public void doubleBalance(){
3 try{
4 userLock.lock();
5 int x;
6 x = getBal();
7 x = x * 2;
8 setBal(x);
9 }

10 finally{
11 userLock.unlock();
12 }
13 }

Figure 1.4: Coarse-grained locking applied to doubleBalance

Transactional memory Transactional memory (TM) is a solution to these
problems. It shifts the complexity of implementing concurrency away from the
programmer to a separate algorithm by giving the programmer access to a num-
ber of operations to access shared memory. This algorithm then can be verified
separately as it is its own entity. It was proposed by Herlihy and Moss in 1993 as a
multiprocessor architecture [50]. This approach employed novel processor instruc-
tions built into the architecture. TMs employing such an approach are also called
hardware transactional memory (HTM). In 1997 Shavit and Toitou proposed a
similar approach, which was software based, called software transactional mem-
ory (STM) [90]. STM implements the properties of TM using standard processor
instructions. There have been several approaches (e.g. [27, 22, 47]) proposed,
some of them combining HTM and STM into so-called hybrid TMs [23, 59]. In its

6

1 public boolean doubleBalance(){
2 int x,y;
3 synchronized{this}{
4 x = getBal();
5 y = x;
6 }
7 x = x * 2;
8 synchronized{this}{
9 if(y == getBal()){

10 setBal(x);
11 return true;
12 }
13 else return false;
14 }
15 }

Figure 1.5: Fine-grained locking applied to doubleBalance

original form TM was completely lock-free, which completely sidestepped any of
the known issues with locks (deadlocks, priority inversion and convoying). Later
on, the usefulness of lock free TMs was questioned [34, 26] and approaches using
locks were proposed [27, 82, 2]. An example of how a programmer could use an
STM is shown in Figure 1.7. As one can see, a block of code is marked to be
executed atomically as a transaction.

Transactions are a concept taken from databases. A transaction is a block of in-
structions meant to follow the ACID (atomicity, consistency, isolation, durability)
principle. In short these conditions require that transactions execute completely
or not all (atomicity), leave the system in a valid state (consistency), to the out-
side look as if executed sequentially (isolation), and if completed successfully stay
so in the face of crashes (durability).

A transaction starts with a begin and ends either in a commit or abort. In
between, read and write instructions take place. These instructions form a set
of reads from the shared memory and tentative changes to this memory. On an
abort, the tentative changes do not become visible. On the other hand, on a

7

commit, all tentative changes are visible to other transactions. A transaction in
the context of TMs may also include internal computations.

The actual details of the implementation are up to the TM. For example, a
TM may not wait for the commit and already write during each write instruc-
tion (direct update) instead of writing at commit time (deferred update). Also,
transactions may be concurrent to improve performance. But no matter which
exact implementation strategy is chosen, it is important that a TM functions as
intended, seemingly executing all transactions sequentially. This makes the verifi-
cation of TMs an important topic in this research field with the main fields being
testing, model checking and deductive verification. To use these methods, it is
important to know what constitutes correct behaviour for a TM.

Correctness conditions Such behaviour is formalized in correctness defini-
tions, that resemble the informal notion of correctness we discussed. Such defini-
tions are called correctness conditions.

Correctness conditions are languages defined on words called histories, which
are logs of the instruction calls (begin, write, read, commit, abort) during the
execution of a TM. A short example showing two transactions can be found in
Figure 1.6. It corresponds to the executions of Figures 1.2 and 1.3 with the red
actions belonging to thread 1 and the green actions belonging to thread 2. The
exact meaning and definitions of histories are explained later in Chapter 2.

Correctness conditions are mainly divided in two categories: conflict-based and
value-based. In the first case, definitions are based upon conflicts between different
actions, and do not take into account the actual values written and read. For
example, a write and a read on the same variable are considered to be in conflict.
In the second case, values, are taken into account, requiring that either the end
state, or all transactions view values of the shared memory corresponding to a
sequential execution of previous transactions.

Up until now several correctness conditions have been proposed, earlier ones
such as linearizability [51], view serializability [97], state serializability, strict state
serializability and conflict serializability [72] were taken from related fields. Se-
rializability definitions usually do not consider aborted transactions, which with

8

their original context being databases makes sense as a transaction without ef-
fect can read any inconsistent state without issue. But for actual programs, the
values read by aborted transaction can matter as inconsistent values may cause
errors such as infinite loops to occur. Thus, later on, correctness conditions were
designed with TMs in mind, such as (value) opacity, conflict opacity and virtual
world consistency [42, 46, 53]. These conditions require aborted transaction to
read values that could have been caused by a sequential execution.

Bt1
Rt1

(bal ., 10)Wt1
(bal ., 20)Ct1

Bt2
Rt2

(bal ., 20)Wt2
(bal ., 40)Ct2

Bt1
Rt1

(bal ., 10)Bt2
Rt2

(bal ., 10)Wt1
(bal ., 20)Wt2

(bal ., 40)Ct1
Ct2

Figure 1.6: Example histories, B (Begin), W (Write), R (Read), C (Commit), bal. is short for
balance.

1 public boolean doubleBalance(){
2 int x;
3 atomic{
4 x = getBal();
5 x = x * 2;
6 setBal(x);
7 }
8 }

Figure 1.7: Implementation of doubleBalance using an STM

The complexity of the verification of TM correctness conditions
A theoretical question - with practical implications - is how complex verification
is for these different correctness conditions. There are two main problems that
have been formalized with regard to this:

1. the membership problem

2. and the correctness problem.

9

The membership problem is the problem of verifying whether a single history is
correct under such a correctness condition, meaning it is a member of the language
defined by the condition. It is a formalization of the problem of testing single
executions for their correctness.

The correctness problem or alternatively the model checking problem is the
problem of verifying whether a TM is correct under a correctness condition. A TM
is called correct under a correctness condition whenever all the histories it produces
are correct under this condition. It formalizes the verification of the correctness
claims of a TM. The correctness problem is always equally hard or harder than the
membership problem for any correctness condition. This is because the correctness
of a single history is equivalent to checking a TM that only outputs one history
for correctness.

Besides being a result of a theoretical question, such complexity results also have
practical implications. When designing verification approaches, it is very helpful
to know what is achievable in the best case. If for example the correctness problem
for a certain condition is undecidable, then a model checking approach would need
to take this into account, for example by requiring certain properties for the TM to
reduce the complexity of the problem. Also, the proofs of complexity sometimes
can be inspiration for verification approaches, e.g. showing that a problem is
NP -complete can involve giving an algorithm or a reduction to another problem,
which can be used for practical approaches.

Existing works are concerned with the membership problem for linearizability
[40], conflict serializability and serializability [73] and the correctness problem
for conflict serializability [3, 37], sequential consistency and linearizability [3] and
conflict opacity [42]. Specifically for the membership problem for opacity and for
the correctness problem of serializability and opacity, there are still gaps in the
existing literature.

Contributions The main goal of this thesis is to close these gaps by giving the
complexity/decidability of each of these problems. Additionally, we provide an
overview of already existing results with regard to the complexity of the member-
ship and correctness problem for different conditions and compare these results.

10

We provide the following contributions:

1. we prove that the membership problem for opacity is NP -complete,

2. we compare conflict opacity and value opacity and show that they coincide
under three assumptions,

3. we prove that the correctness problem for strict state serializability is decid-
able under assumptions

4. and we prove that the correctness problem for opacity is decidable under
assumptions.

The first two contributions are concerned with the membership problem, which
as mentioned previously has some transference to the correctness problem. Our
complexity result for the membership problem for opacity is done via a reduction
from state serializability. This reduction shows that the problem for value is at
most as complex as the problem for state serializability. We show how the proper-
ties of state serializability map to the properties of opacity, offering deeper insights
into how these conditions compare. Additionally, the results give a baseline for
the runtime of any algorithm testing single executions for opacity.

The comparison between conflict opacity and opacity shows differences in the
two conditions. Conflict opacity is a stricter condition than value opacity and is
thus easier to verify for membership and correctness. Our results imply that under
reasonable assumptions checking for conflict opacity is sufficient to also determine
value opacity.

The last two contributions are concerned with the correctness problem and both
show that the problem in question is decidable. In both cases we consider the
correctness problem with the TM being deterministic and having a finite amount
of variables, threads and possible values. This is an assumption also made in
related literature [3].

We show that the correctness problem for strict state serializability is decid-
able under the assumption that the given TM terminates without any pending
transactions, and each transaction is transitively influencing the end state. The
result is proven by giving an algorithm solving the problem. The intuition of the

11

algorithm is to explore the state space of all possible executions, and determine
whether all executions the TM terminates in are serializable. As this state space
is infinite, the algorithm employs a state space reduction technique that groups
similar histories into equivalence classes. We prove that this makes the state space
finite, and thus our algorithm can explore it in finite time. Beside the result itself,
this state space reduction technique can also be used in actual model checking
approaches for TMs.

Lastly, we show that the correctness problem for value opacity is decidable for
implementations where each read is justifiable by a write of a previous transaction,
and it is possible to identify the writer for each read unambiguously. These as-
sumptions require all implementations to finish each transaction in a finite amount
of steps. We modify the solution for serializability to opacity by accounting for
additional constraints, and the possibility of aborts in opacity, which state serial-
izability does not have. Again, this technique could be used to design an actual
model checking approach for a TM.

All results of this thesis are formally proven.

Structure This thesis is structured as follows. In Chapter 2, we present a more
in-depth overview of TMs and their correctness conditions, and we introduce the
formal notation and definitions of correctness conditions needed for the remainder
of this thesis. The main part of this thesis is grouped into two chapters. In
Chapter 3, we are concerned with the membership problem. First, we give an
overview of the related work in this field, then we present our complexity results
for value opacity and finally the comparison between conflict opacity and opacity
under different assumptions.

In Chapter 4, we are concerned with the correctness problem. After giving an
overview of the related work, we first present our results for strict state serializ-
ability and then our results for value opacity.

In Chapter 5, we end our thesis with a conclusion and an outlook into possible
future work.

The appendixes contain all proofs that were left out of their respective sections
for space purposes. The proofs left out of Chapter 3 can be found in Appendix A.

12

The proofs left out of Chapter 4 can be found in Appendix B for the correct-
ness problem for strict state serializability and in Appendix C for the correctness
problem for value opacity.

13

14

2
Basics of STMs and Correctness

Conditions

In this chapter, we will first give further context and information about TMs and
their correctness criteria, and then present the notation and definitions needed
for this thesis. In Section 2.1, we will expand upon the introduction and give
a short overview of the mechanisms and functions of TMs. In Section 2.2, we
will give an overview of different correctness conditions and illustrate them with
examples. The complexity of these conditions and how they compare to each other
is discussed in the respective related work sections of Chapters 3 and 4. Finally,
in Section 2.3, we introduce the notation and definitions used for the rest of the
thesis.

2.1 Transactional Memory

As discussed in the introduction, TMs are a mechanism to aid a programmer in
managing accesses to shared memory. We also discussed the general history of
TMs in the introduction. As we are mostly concerned with the complexity of
correctness conditions, which is mostly independent of the inner workings of TMs,

15

we will only give a limited overview of the design of TMs. The interested reader
can find further information in the following articles [69, 48]. The main three
fields where TMs can be differentiated are:

1. data versioning,

2. contention management

3. and synchronisation strategy.

Data versioning Data versioning refers to how a TM handles writes of trans-
actions. As the changes made by a transaction are supposed to be either visible
completely or not at all, there are two strategies that are typically used [48, 41]:

• Direct (eager) update: Whenever a transaction writes to a variable, it di-
rectly updates it.

• Deferred (lazy) update: All the writes of a transaction are saved locally and
written to the shared memory whenever the transaction commits.

As a transaction may abort in transactional memory, it is necessary to somehow
ensure that its writes can be undone. For direct update TMs, this is typically
realized with an undo log for each transaction. This log stores the old value of a
variable in a memory location whenever the transaction the log belongs to writes
to that variable. On an abort, the previous values are taken from the undo log and
restored to their variables[48, 41]. For deferred update data versioning, typically
a buffered update is used. The writes of a transaction writes are stored in this
buffer during its execution. On commit, the writes are written to the memory, on
abort they are simply discarded [48, 41].

In comparison, the direct update approach has the advantage that commits
are significantly less complicated and thus faster [41, 14]. This is because all the
values are already written to the memory and so reads always read the newest
written value [82]. Aborts may become slower as old values need to be restored
to memory from the undo log [41, 14].

16

The deferred update approach offers the advantage that synchronisation is sig-
nificantly easier as all synchronisation related to acquiring the right to write can
be done at one point during the commit. For locks, deadlocks can then be pre-
vented as they can be acquired in some fixed order. Additionally, they are held for
a shorter time as the locks are acquired only at the end of a transaction. Aborts
can then be executed faster compared to direct update as the memory remains
unchanged. Dice and Shavit argue that deferred update offers more scalability
[26]. A disadvantage is that commits may take longer as values may need to
be written to memory [41, 14], and that acquiring the value that has been most
recently written to a variable requires more computation as it is stored in write
buffers [82].

Synchronisation strategy There are two main categories with regard to
the synchronisation strategies employed by transactional memories:

• blocking

• and non-blocking.

A blocking implementation may block a process/transaction from proceeding.
For example, this may happen in the case of conflicts. These implementations
usually use locks. A non-blocking implementation, on the other hand, never blocks
a process/transaction from proceeding, which may mean that it gets aborted.
Transactional memory in its original design was supposed to be non-blocking [50],
although later on multiple blocking implementations were developed [27, 82, 2].

Saha et al. discuss the trade-offs concerning this choice in a paper published
2006 [82]. A blocking implementation reduces the number of aborts as threads
may be blocked and continue later instead of being aborted. Blocking synchro-
nisation also simplifies memory management and allows for optimization because
it is often known beforehand if a transaction will commit. On the flipside, a
blocking implementation needs to address priority inversion, deadlock, convoying
and lock contention [39]. Also, for blocking synchronisation composing operations
is difficult [39]. While non-blocking implementations do not suffer from these

17

issues, Ennals argues that non-blocking synchronisation (specifically referring to
obstruction-freedom and lock-freedom) hinders performance of transactional mem-
ory [34]. His findings are supported by Dice and Shavit [26].

Contention management Contention management is the process of detect-
ing conflicts and resolving them. There are two overarching categories of TMs
with regard to contention management:

• optimistic

• and pessimistic.

A pessimistic TM has synchronisation strategies in place that avoid conflicts
and subsequent aborts from occurring. The synchronisation mechanisms for pes-
simistic TMs involve blocking code threads during execution. Pessimistic TMs
have been shown to have superior performance compared to optimistic TMs in
some contexts [2].
An optimistic TM lets transactions run freely, and when a conflict between two
transactions is detected the TM manages the conflict. This is usually done by
aborting one of them and restarting it later or by halting one of the conflicting
transactions [2, 91]. To this end, such TMs need procedures to handle detecting a
conflict and deciding which of the conflicting transactions may proceed. These pro-
cedures are discussed below. Pessimistic and optimistic are not distinct features,
there are also TMs in which certain transactions are pessimistic (never abort) and
others are optimistic [74, 6].

The detection of conflicts then can be categorized either as

• lazy

• or eager.

A lazy conflict detection detects conflicts as transactions try to commit. An
eager conflict detection does so during operations that can cause conflicts. In
general, lazy conflict detection offers the advantage of less false positives and the
option to batch conflict checking. Eager conflict detection may reduce the time an

18

eventually aborted transaction is running and how much of it must potentially be
undone. Additionally, eager conflict detection makes halting transactions in favour
of aborting them easier [41, 14]. There is a limited amount of work with regard
to studying and evaluating different conflict detection strategies [93, 14, 94, 86]

Given such a conflict, its handling is determined by contention managers. The
goal of a contention manager is to ensure progress, i.e. that transactions at some
point commit successfully. Its goal is not to ensure correctness of the TM [45].
There is a significant amount of contention managers ranging from fairly simple
algorithms to elaborate schemes [44, 43, 45, 52, 85, 39, 30, 75, 92, 67].

2.2 Correctness Conditions

The correctness goals of TMs were originally derived from the already mentioned
ACID principle used in the context of databases. This principle stands for the
following properties:

• Atomicity: The transactions are supposed to execute in one step or not at all.
(Note that atomicity in TM research is often used to mean both atomicity
and isolation [87].)

• Consistency: The transactions are supposed to preserve the correctness re-
quirements of the database.

• Isolation: The internal computations of transactions are supposed to be
invisible to other transactions.

• Durability: If transactions commit, their effects are supposed to survive
system crashes.

In the context of TMs transactions are meant to make small critical sections
of code, which are specifiable by the programmer, execute atomically [50]. Usu-
ally durability is not a design goal [87], although in recent time there also has
been research into handling crashes [11, 79, 21]. Over time different correctness
conditions evolved from the ACID principle. Here we will give an overview of rele-
vant correctness conditions for TMs. Correctness conditions are defined by which
executions they deem correct and which not. Such executions are modelled by

19

histories. First, we will introduce how histories are visualized in this section and
describe the three ways how reads-from relationships are handled in the correct-
ness conditions. Finally, we will present the correctness conditions used for TMs,
first conditions taken from other fields and then correctness conditions designed
for TMs.

Histories A history consists of a number of transactions executed by a number
of threads. As mentioned in the previous section, we are interested in TMs with
read/write objects. In this case, the actions of a transaction typically consist of
five operations:

1. begin: starts a transaction,

2. read: reads the value of a variable from memory,

3. write: (possibly tentatively) writes a value to a variable in memory,

4. abort: undoes all writes made up to this point by the transaction and stops
it

5. and commit: tentative writes are written to memory if necessary and the
transaction is finished.

These operations begin with an invoke and end with a response. A number of
operations or parts of them may be abstracted away if they are implicitly clear
or not needed for a specific correctness condition. This is often done by omitting
begin, commit and abort operations, or by contracting the invoke and response of
operations into a single event.

An example of our visualisation of histories is shown in Figure 2.1.

t1

t2
B(1)

B(2)

W(x, 1)

R(x, 1)

C(1)

C(2)

Figure 2.1: Example history visualisation

20

Each row represents a different thread, denoted by t with an index. Each line
represents an operation where the first dot indicates the invoke event and the
second dot indicates the response event. For the examples in this section, we map
the following abbreviations to each operation:

1. begin of transaction tr → B(tr),

2. read of value val from variable x → R(x, val),

3. write of value val on variable x →W(x, val),

4. commit of transaction tr → C(tr)

5. and abort of transaction tr → A(tr).

Note that values may be left out in certain notations. Here, we assume the initial
state of all variables is 0.

We will shortly introduce specific serial histories called witnesses, in which trans-
actions execute after one another. Almost all correctness conditions deem a history
as correct if a witness fulfilling certain requirements exists. The exact requirements
for a witness are specific for each condition. But typically witnesses contain a sub-
set of or all events of the original history. If there exists a reads-from relation in
the original history, the witness must match it completely or partly, depending
on the correctness condition.

Handling of reads-from relations One of the main distinguishing factors
of different conditions is how they model the reads-from relation of a history.
There are three main types of reads-from relations in the context of TM correctness
conditions.

In the first it is assumed a read on a variable reads from the most recent write
on that variable. We will call this a most-recent reads-from relation. For this to
be an unambiguous relation for each history, we need to assume an atomic point
where writes and reads take place. We assume deferred update semantics, and
thus we assume each write of a transaction takes place at the response event of its

21

commit and each read takes place at its response. When this type of reads-from
relation is used, histories typically do not contain explicit values.

In the second type of reads-from relation, it is assumed that each value is only
written once for each variable. Then if transaction tr 1 writes a value to a variable
and transaction tr 2 reads that value on the same variable, then tr 2 reads that
variable from tr 1. This is called an unambiguous value-based reads-from relation.
One could also just assume this relation to be given explicitly as an additional
input instead of being coded into a history via values.

The third way is to not have an explicit reads-from relation. Transactions
write and read arbitrary values from variables without any defined relation. For
a witness it is then required that the value of each read matches the value from
the most recent write on that variable. For a witness this is well-defined as it is
sequential and there are no concurrent transactions. This is called an ambiguous
value-based reads-from relation.

Note that most conditions employing a reads-from relation any of the three
ways to derive the reads-from relation can be used. In the case of changing the
reads-from relation of a correctness condition to an ambiguous value-based reads-
from relation the requirements for a witness must be altered slightly to reflect that
the writer to a read can be one out of multiple transactions.

We will describe correctness conditions with the reads-from relation the original
authors used. For some conditions it does not make sense to use a different way
than the originally intended one, because of their unique properties.

Derived correctness conditions In this paragraph, we will discuss correct-
ness conditions borrowed from other fields.

Sequential consistency was introduced in 1979 by Lamport [60]. It does not
include the concept of transactions. A history fulfils sequential consistency when-
ever the behaviour of each thread matches the behaviour of a legal witness. The
witness includes all events of the history. Originally, this was defined for arbitrary
objects. In our case of read/write objects, this means each read reads the most
recent write on its variable. We assume an ambiguous value-based reads-from
relation for our examples as it is the most natural for read/write objects. Each

22

witness of a history must be a permutation of the original history derived by
repeatedly swapping adjacent events of different threads. Examples illustrating
sequential consistency can be found in Figure 2.2.

t1

t2

t1

t2
W(x, 1)

R(x, 2)

W(x, 2)

W(x, 1)W(x, 2) R(x, 1)

Figure 2.2: Sequential consistency examples, left correct, right incorrect

The left example is correct as both threads match the behaviour of a legal witness
where thread 2 executes first and then thread 1. But if we take the prefix until
the read of thread 1, this history is not sequentially consistent as there is no write
of 2 on x. The right example is incorrect. There is no legal witness matching the
event order of thread 1.
Linearizability was introduced by Herlihy and Wing in 1990 and is a correctness
condition for concurrent data structures such as locks and arrays [51]. Lineariz-
ability does not use the notion of transactions. Intuitively, it requires that the
operations of each object can be assigned a single point in time (linearization
point) at which they seemingly took place. These linearization points must lie
within the execution time of the operation. For each object a subsequence of the
witness containing only events of that object is considered. Each of these subse-
quences must be legal with regard to the specification of their respective objects.
Again, we assume read/write objects and an ambiguous value-based reads-from
relation.

Examples illustrating linearizability can be found in Figure 2.3.

t1

t2

t1

t2

W(x, 3)

W(x, 2)

R(x, 3)W(x, 3)

W(x, 2)

R(x, 3)

Figure 2.3: Linearizability examples, left correct, right incorrect

In the left example the linearization point of the operation of thread 2 can be

23

before the linearization point of the operation of thread 1, resulting in a legal
witness. The right example is incorrect as the linearization point of the operation
of thread 2 must be in between the linearization points of the operations of thread
1.
Serializability is a correctness condition originally meant for databases, which also
has been adopted for TMs. There are several versions and notations used for
serializability [73, 35, 37]. It is mostly defined for transactions containing read
and write events. Versions of serializability are view serializability [97], state
serializability, strict serializability [73], conflict serializability [73, 35] and causal
serializability [80]. In all of these versions of serializability aborted transactions
are not part of witnesses.

View serializability was published by Yannakakis in 1984. The idea is that in
a concurrent history transactions should read values that they would also read in
some serial history. A history is thus view serializable if there is an equivalent
witness. Here equivalency means for each transaction each read reads from the
same transaction in the history and the witness. In the original definition the most-
recent reads-from relation is used. Additionally, the most recent writer for each
variable before the end of the original history must also be the most recent writer
for that variable in the witness. For other definitions it is sometimes explicitly
required. Note that there are definitions of view serializability using value-based
reads-from relations.

Two example histories to illustrate view serializability can be found in Figure 2.4.
We omit concrete values as they are not relevant for the definition.
The top example is correct. Consider the witness with transaction order 1, 2, 3.
As in the original history, transaction 1 reads from the initial state and the most
recent write on x and y at the end of the history is from transaction 3. This
example also shows that view serializability is not prefix-closed. Consider the
prefix containing transactions 1 and 2, both possible witnesses do not fulfil the
requirements. The witness with transaction order 1, 2 has different last writers
than the original history, and in the one with transaction order 2, 1 transaction
1 reads x and y from transaction 2. The bottom example is not correct as no
matter how transactions 2 and 3 are ordered any witness has either transaction

24

t1

t2

t1

t2

B(1) R(x, y) W(x, y) C(1)

B(2) W(x, y) C(2) B(3) W(x, y) C(3)

B(1) W(x, y) C(1)

B(3) R(x, y) W(y) C(3)

B(2) R(x, y) W(x) C(2)

Figure 2.4: View serializability examples, top correct, bottom incorrect

2 reading y from transaction 3 or transaction 3 reading x from transaction 2. In
both of these cases this differs from the original history where each read is from
transaction 1.

State serializability was introduced by Papadimtriou in 1979. A history intu-
itively is state serializable whenever there exists a witness with an identical end
state. As with the view serializability definition, it uses the most-recent reads-
from relation. For the end state to be identical in a witness, the reads of any
transaction influencing the end state must read from the same transaction as in
the original history. Influencing the end state means that either a transaction is
the most recent writer on a variable before the end of the history/witness, or it
gets read by a transaction that influences the end state. Any transaction that
does not influence the end state is called dead. All of its read are not considered
for determining state serializability.

Two examples can be found in Figure 2.5.
Note that the original definition of histories made by Papadimitriou contracted
certain history events together. We will discuss this in further detail in the nota-
tion section. However, we will use our general history format here, but we omit
values. The top history is correct as neither transaction 1 nor transaction 2 in-
fluence the end state. This is because they are overwritten by transaction 3. So
while in any witness either transaction 1 or transaction 2 reads x from a different
writer compared to the original history, it does not matter for correctness. So,
for example, the witness with transaction order 1, 2, 3 is a serial history with an

25

t1

t2

t1

t2

B(1)

B(2) W(x)

R(x) W(x)

C(2)

C(1)

B(1)

B(2) R(x) W(x)

R(x) W(x)

C(2)

C(1) B(3) W(x) C(3)

Figure 2.5: State serializability examples, top correct, bottom incorrect

identical end state to the original history. The prefix of this history containing
only transactions 1 and 2 is not state serializable as both possible witnesses are
not state serializable. In the witness with transaction order 1, 2, transaction 2

reads x from transaction 1 instead of the initial state, and for the witness with
transaction order 2, 1 it is the other way around. The bottom history is incorrect.
Consider both possible witnesses, which are transaction 1 and then transaction 2

or the other way around. In the first case, transaction 2 is read by the end state
which it is not in the original history. In the second case, transaction 1 is the last
writer before the end state on x, which is correct, but it reads x from transaction
2 which it does not in the original history.

Conflict serializability is a variation of state serializability which is more effi-
ciently recognizable. It was also introduced by Papadimitriou in 1979 [73]. It does
not explicitly use the concept of a reads-from relation. Values are not taken into
account for this type of serializability. Instead, it requires that witnesses preserve
the order of conflicting events. Events are conflicting whenever one of them is a
write on a variable, and the other is either a write on that variable or a read of that
variable. This order also implies an order of transaction. A witness preserving the
transaction order must exists, meaning it must be acyclic. Conflict serializability
is prefix-closed. There cannot be a prefix of a history such that the conflict graph
of the history is acyclic and the conflict graph of the witness is cyclic. This is
because adding events to a history does not remove edges from the conflict graph
[9].

26

Note that conflict serializability requires that there are atomic points where
read and write events take place. For these examples, since we assume deferred
update semantics, all writes of a transaction will take place during the commit
operation. Here, we assume the point at which reads and commit take effect to
be the response event of the respective operations.

In Figure 2.6 two examples illustrating conflict serializability are shown.

t1

t2

t1

t2

B(1) R(x) W(y) C(1)

B(2) R(x) W(x) C(2)

B(1) W(y) W(x) C(1)

B(2) R(y) W(x) C(2)

Figure 2.6: Conflict serializability examples, top correct, bottom incorrect

The top example is correct. This is proven by the witness with transaction order
1, 2. This witness is possible as the read of transaction 1 on x happened before the
commit of transaction 2. The bottom example is incorrect as in any correct witness
transaction 1 must happen before transaction 2 as both write to x. However,
transaction 1 must also happen after transaction 2 as transaction 1 writes to y

and transaction 2 reads from y. Both cannot be the case at the same time in a
serial history. Thus, a correct witness does not exist.

Strict (state) serializability, also introduced by Papadimitriou in 1979, is an
expansion of state serializability [73]. A history is strictly serializable if in addi-
tion to the requirements of state serializability the witness preserves the order of
non overlapping transactions (called real-time order). It also uses the most-recent
reads-from relation. By the same argument as for state serializability, strict state
serializability is not prefix-closed. The requirement to preserve the real-time order
can also be added to view serializability, which is then called strict view serializ-
ability.

Two examples illustrating strict state serializability can be found in Figure 2.7.

27

t1

t2

t3

t1

t2

t3

B(1) R(y) W(x) C(1)

B(2) W(x) C(2)

B(3) W(y) C(3)

B(1) R(y) W(x) C(1)

B(2) W(y) C(2)

B(3) W(x) C(3)

Figure 2.7: Strict serializability examples, top correct, bottom incorrect

The top example is correct as the witness with transaction order 2, 1, 3 has an
identical end state to the original history and preserves the real-time order between
transaction 2 and transaction 3. The bottom example is incorrect. A witness
with an identical end state must have transaction 2 happen after transaction 1,
so transaction 1 still reads y from the initial state. But also transaction 3 must
happen before transaction 1 so 1 is still the most recent writer on x before the
end state. Additionally, transaction 2 must happen before transaction 3 as they
are real-time ordered. Thus, any witness must have the transaction order 3, 1, 2, 3,
which is not possible in a serial history. So there does not exist a witness with the
same end state as the original history.

Causal serializability is a value-based definition published a notable amount
later (1997) than the definitions above [80]. It uses the unambiguous value-based
reads-from relation. Its main feature is that it is only required for each thread
to have its own witness. This means different threads do not have to agree on
a witness. Also, in a witness for a thread, only transactions of that thread are
required to read from the same transactions as in the original history. In addition
to this, for each variable all witnesses must agree on a total order of transactions
writing to this variable.

28

We illustrate this in Figure 2.8.

t1

t2

t1

t2

B(1) W(x, 1) C(1)

B(2) W(y, 1) C(2)

B(3) R(x, 1) R(y, 0) C(3)

B(4) R(x, 0) R(y, 1) C(4)

B(1) W(x, 1)W(z, 1) C(1)

B(2) W(y, 1)W(z, 2) C(2)

B(3) R(x, 1) R(y, 0) C(3)

B(4) R(x, 0) R(y, 1) C(4)

Figure 2.8: Causal serializability examples, top correct, bottom incorrect

The top history is correct as for thread 1 in the witness with transaction order
1, 3, 2, 4 each read made in thread 1 is legal. The same holds for thread 2 for the
witness with transaction order 2, 4, 1, 3. The bottom history, on the other hand,
is incorrect as now transactions 1 and 2 write on z. This means they must have
the same order in the witness for each thread, which makes finding witnesses for
both threads impossible.

Snapshot isolation is also a database correctness condition [8], which has been
used for TMs [81]. As the name suggests, each transaction is supposed to take a
snapshot of the memory, usually at the start of its execution. During its execution
it only reads from this snapshot. So the only two reads-from relations compatible
with snapshot isolation are the unambiguous value-based reads-from relation and
the ambiguous value-based reads-from relation as one of the ideas of snapshot
isolation is that a transaction is not necessarily reading the most recent values.

If a transaction t has written to variables, to which another already committed
transaction concurrent to t also wrote to, then if t tries to commit it must abort.
This is called the first-committer wins principle. As witnesses are not useful
to model snapshot isolation, we will discuss the examples for snapshot isolation,
shown in Figure 2.9, without referring to them.
The top example is correct as both transactions see a snapshot of the memory
where x = 0 and y = 0. They are concurrent, but do not write on the same
variables; thus no transaction needs to abort. The bottom example is incorrect

29

t1

t2

t1

t2

B(1) R(x, 0) W(y, 1) C(1)

B(2) R(y, 0) W(x, 1) C(2)

B(1) R(x, 1) R(y, 0) C(1)

B(2) W(x, 1) C(2)

Figure 2.9: Snapshot isolation examples, top correct, bottom incorrect

as transaction 1 sees the value written by transaction 2, which is concurrent to it,
and thus cannot be from a snapshot at the start of transaction 1.

Correctness conditions specifically designed for TMs The next step
in the formalization of correctness conditions for TMs was considering that they
are not used for databases but for programs. Guerraoui and Kapalka observed
that even reads of aborted transactions matter in this context [46].

The issue is that if an aborted transaction has seen unexpected inconsistent
values, then exceptions, infinite loops or similar might occur. They proposed a
view based property (value) opacity that was meant to improve upon previous
correctness conditions with regard to this. Opacity has 3 defining characteristics
stated by the authors. First, all committed and under circumstances even commit
pending transactions appear to happen atomically. Second, all aborted transac-
tions are not read by other transactions. And third, each transaction no matter if
aborted, live or committed sees a consistent state of the shared memory. For the
witness that means it contains all transactions of the original history and each
live and not commit pending transaction is completed to an aborted transaction.
Commit pending transactions may either be completed to committed transactions
or to aborted transactions. This is supposed to mirror that it is not known at
which point during the commit operation a transaction becomes visible to other
transactions. The witness must also preserve the real-time order of the original
history. Value opacity explicitly uses an ambiguous value-based reads-from rela-

30

tion, meaning in this witness the reads of each transaction must be legal and not
be from aborted transactions.

Two examples can be found in Figure 2.10.

t1

t2

t3

t1

t2

t3

B(1) R(x, 1) W(x, 2) C(1)

B(2) W(x, 1) C(2)

B(3) R(x, 1) A(3)

B(1) W(y, 1)W(x, 1) C(1)

B(2) R(x, 1) R(y, 1)

B(3) R(x, 0) R(y, 0)

Figure 2.10: (Value) opacity examples, top correct, bottom incorrect

In the first example the witness with transaction order 2, 3, 1 proves the opacity
of the example. Note that this also shows that the original version of opacity is
not prefix-closed. Because of this, works using opacity usually explicitly define it
to be prefix-closed. In the second example transaction 3 is real-time ordered after
transaction 2, so they have to be ordered this way in a witness as well. The only
witness where the read of transaction 2 can be legal is one with transaction order
1, 2, 3. However, in that case the reads of transaction 3 are not legal. Thus, no
witness does exist for this history and it is not opaque.

Conflict opacity, presented by Guerraoui et al. in 2010, is a variation of value
opacity [42]. Its relationship to value opacity is similar to the relationship of
conflict serializability to view serializability. In the original work the authors
referred to it as opacity, but it is not identical to value opacity. We discuss this
in more detail in Section 3.3. As with conflict serializability, it does not take
values into account and conflicting actions are defined identically. But witnesses
now also must include aborted transactions. However, aborted transactions are

31

treated as having no writes for the calculation of conflicts. Conflict opacity also
takes the real-time order of histories into account.

Two examples are shown in Figure 2.11. The corresponding conflict graphs can
be found in Figure 2.12.

t1

t2

t1

t2

t3

B(1) R(x) W(x) A(1)

B(2) W(x) C(2)

B(1) R(x) W(y) C(1)

B(2) W(x) C(2)

B(3) R(x, 0) R(y, 0)

Figure 2.11: Conflict opacity examples, top correct, bottom incorrect

Note that again we assume each operation to take place at its response event and
each commit to execute the writes of a transaction. The first example is correct
as in a witness transaction 2 must be ordered after transaction 1 since the former
writes to x after the latter reads from x. Because transaction 1 is aborted, its
write on x causes no conflicts. Thus, the witness with the transaction order 1, 2

proves the conflict opacity of the original history. The second example is not
conflict opaque. In a correct witness transaction 2 is ordered after transaction
1 since it writes to x after transaction 1 reads x. Transaction 3 is ordered after
transaction 2 since it reads x after 2 writes to x. By transitivity, it is then also
ordered after transaction 1. But transaction 3 is also ordered before transaction 1

since it reads y before transaction 1 writes to y. Thus, any correct witness must
have transaction order 3, 1, 2, 3. This is a cyclic ordering for which there exists no
witness, so the history is not conflict opaque.

Deferred-update opacity (DU-opacity), introduced by Attiya et al., is a variant
of opacity that requires each transaction to read values from transactions that are
either committed or commit pending at the point of the read [5]. This represents

32

1 2 1 2 3

Figure 2.12: Conflict graphs for histories(top on the left, bottom on the right) of Fig. 2.11

the behaviour of deferred-update TMs where it is not correct for values of non
committing or not committed transactions to be visible to other transactions.
This variant is prefix-closed. Witnesses have the same constraints as for opacity
and an ambiguous value-based reads-from relation is used. Additionally, each
read must be legal when only considering transactions that are commit pending
or committed at the point of the response of the read in the original history.

Two examples can be found in Figure 2.13.

t1

t2

t1

t2

B(1) R(x, 1) R(y, 0)

B(2) W(x, 1) C(2)

B(1) R(x, 1) C(1)

B(2) W(x, 1) C(2)

Figure 2.13: DU-Opacity examples, top correct, bottom incorrect

The top example is correct as can be seen by considering the witness with trans-
action order 1, 2. Both reads are legal in this witness. Transaction 1 is considered
for them as it started committing before the end of both reads. The bottom ex-
ample is not correct. Although the witness with transaction order 2, 1 seems to be
correct, when checking the read of transaction 1 for legality transaction 2 is not
considered as it has not started committing in the original history when the read
ended. Thus, the read is not legal and no valid witness exists for this history.

In 2012 Imbs and Raynal presented a relaxation of value opacity called virtual
world consistency (VWC) [53]. It is defined on histories that only contain aborted
or committed transactions. While opacity assumes that the complete execution

33

of all transactions must be equivalent to a sequential execution, VWC only re-
quires this for committed transactions. This is because aborted transactions do
not need to see a system state that agrees with the sequential execution in the
overall witness as they have no effect on the shared memory. They only have
to see some consistent values that could have been produced by the transactions
before them to avoid errors. So instead of only having one witness, there is one
witness for all committed transactions and one witness for each aborted transac-
tion. The witness for the committed transaction has the same constraints as with
opacity with the exception that an unambiguous value-based reads-from relation
is used. The witness must be legal, which is easy to determine as it only contains
committed transactions. The witness for each aborted transaction only contains
its causal past, i.e. committed transactions of the same thread ordered before it,
(committed) transactions it reads from and any committed transactions ordered
to transactions in the causal past by the previous two ways. Note that these wit-
nesses do not need to agree on a transaction order. These witnesses then must be
legal. Notably, VWC does not require witnesses to preserve the real-time order
of transactions.

Two examples can be found in Figure 2.14.

t1

t2

t1

t2

B(1) W(x, 1) C(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1) C(3)

B(4) R(x, 2) A(4)

B(1) W(x, 1) C(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1) C(3)

B(4) R(x, 2) C(4)

Figure 2.14: VWC examples, top correct, bottom incorrect

The top example is correct. The witness for all committed transactions has the
transaction order 1, 2, 4. For the aborted transaction 4 its witness has transaction
order 2, 3, 4 as there are no other transactions in its causal past. The bottom

34

example is incorrect as now transaction 4 is committed as well; thus there trivially
is no legal witness for all committed transactions.

In 2013 Doherty et al. presented Transactional Memory Specification (TMS) 1
and 2. Notably it is defined as an I/O automaton which is atypical for correctness
conditions. The idea behind this was to enable easier proofs of correctness for TMs,
for example via forward simulation. This also makes it prefix-closed by design. It is
also defined for general specifications and operations, not only read/write objects.
However, as before, we will describe it in this context. Also, both do not require
unique values for each write to a variable. The design of TMS 1 was overlapping
with the design of VWC and had similar goals, especially allowing for individual
witnesses to justify the reads of aborted transactions. Overall, it requires that
there is at least one serialization consisting of all committed transactions at any
point of an execution. Additionally, for each live or aborted transaction there must
be one serialization including the transaction itself, a number of transactions that
were at some point commit invoked, and all transactions that are committed and
real-time ordered before any transaction in the former two. This serialization may
contain aborted transactions that commit invoked at some point. The intuition
behind allowing this is that if an aborted transaction was allowed to invoke a
commit in the first place then its values when written to the shared memory do
not cause inconsistencies (except if the program itself was bugged). As long as
the reading transaction does not commit, the overall execution stays correct.

Figure 2.15 shows two examples.

t1

t2

t1

t2

B(1) W(x, 1) A(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1)

B(1) W(x, 1) A(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1) C(3)

Figure 2.15: TMS 1 examples, top correct, bottom incorrect

35

The top example is correct, there is trivially a witness containing all committed
transactions. For the aborted transaction 1 there exists a legal witness only con-
taining itself. For the live transaction 3 consider the witness with transaction
order 1, 3. Transaction 2 does not need to be contained as it is not real-time
ordered before transaction 1 or transaction 3. This witness is legal as transaction
3 reads transaction 1. The bottom example is incorrect as there is no witness con-
taining all committed transactions. This is because in this example transaction 3

is committed. Thus, the overall witness must contain it, and it does not contain
transaction 1; thus overall it is not legal.

TMS 2 is a stronger version of TMS 1 designed to be close to typical deferred
update implementations of TMs. The I/O automaton is designed to correspond
to the operations usually used by TMs. Notably, any transaction being read by
another transaction must be committed or commit later on, and aborted trans-
actions may not be read. We will not use witnesses to describe TMS 2 as it is
far easier to understand by explaining it as a specification of behaviour. It is
assumed implicitly that at each point there is a fixed memory state. A writing
transaction updates variables somewhere in its commit operation, after which the
transaction always commits. A transaction must read from a memory state that
existed during its execution. This means that aborted transactions cannot justify
a read of a live or aborted transactions. If a transaction is a writer, all of its reads
must be the current memory state when it commits.

Two examples can be found in Figure 2.16.

t1

t2

t1

t2

B(1) W(x, 1) C(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1) C(3)

B(1) W(x, 1) C(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1) C(3)

Figure 2.16: TMS 2 examples, top correct, bottom incorrect

36

The top example is correct as transaction 2 may have updated the memory before
transaction 1 as both commits overlap. Thus, transaction 3 may read from trans-
action 1. In the second example the commit of transaction 2 does not overlap
the commit of transaction 1, and happens later in the history. Thus, transaction
3 may not read from transaction 1 as during its execution the value of x was 2

without ambiguity.

2.3 Basic Notation and Terms

In this section, we will introduce the formal notation and the definitions needed
for the remainder of the thesis. We will first present a block of general definitions,
then all opacity related definitions and finally all serializability related definitions.

2.3.1 General Definitions

These definitions are the building blocks for any other definition and include events
and transactions.

Events We will first define events, which represent operations inside a transac-
tional system. Operations consist of an invoke event and a return event.
Operations are executed by threads and can operate on variables by reading and
writing values. Sequences of events of the same thread may be grouped into trans-
actions (see Section 2.3.1). An overview of the IDs of these sets, variable naming
conventions of their elements and instances of them used in examples is shown in
Table 2.1.

All sets except the set of transactions are assumed to be finite in this thesis.
Assuming the transaction set to be infinite is necessary to make modeling im-
plementations feasible. If the transaction set is finite, for any instance of the
correctness problem the number of transactions in any execution produced by the
given automaton is finite. This is not a desirable property as such an automaton
is supposed to model a TM and an upper bound to the number of transactions
is not a typical property of implementations. But this assumption also makes
it necessary to not formally include transaction identifiers in events. Otherwise,

37

Name Set ID Variable IDs Instances
Threads T t , t1, . . . t , t1,
Transactions Tr tr , tr 1, . . . 11, 12, . . . , 21, 22, . . .
Variables Var var , var 1, . . . , x, y, z . . . x, y, z . . .
Values Val val , val1, . . . 1, 2, 3 . . .

Table 2.1: Set IDs and variable IDs for basic sets

TMs producing histories with arbitrarily many transactions cannot be modeled
by finite automata, as the events of different transactions must be produced by
different transitions. This is an issue as such an automaton being finite is a re-
quirement for the definitions of correctness problems later in this section. As
we will see later, for any given history (see Section 2.3.2) there is only one way
excluding isomorphisms of grouping of events into transactions. We still include
transaction identifiers as a superscript if helpful.
There are two types of operations, transaction related operations and object re-
lated operations. Transaction related operations are beginning, committing and
aborting a transaction. As we are concerned with read/write objects, object re-
lated operations are reading from a variable and writing to a variable. For all
operations the transactional memory returns one of the following responses:

• a success,

• an abort

• or a success and a value (if the operation is a read).

An abort signals that the operation failed and in addition the overall transaction
has been aborted, while a success indicates that the corresponding operation has
succeeded. See Table 2.2 for an overview of the invoke response event notation. As
discussed, events do not need to explicitly have their transaction as an index; thus,
in Table 2.3 the transaction identifiers are marked red. If it is not appropriate or
helpful, we will omit the transaction identifier, e.g. Invt(B) instead of Invtr

t (B).
For some definitions operations are contracted into a single event without an
invoke and a response [46, 42], if it is not relevant for the correctness condition.

38

Invocations Possible matching responses
Invtr

t (B) Resptr
t (B),Atr

t

Invtr
t (R(var)) Resptr

t (R(var , val)),Atr
t

Invtr
t (W(var , val)) Resptr

t (W(var)),Atr
t

Invtr
t (C) Resptr

t (C),Atr
t

Invtr
t (A) Atr

t

Table 2.2: Events of TM algorithms

Original Sequence Abbreviation
Invtr

t (B)Resptr
t (B) Btr

t

Invtr
t (R(var))Resptr

t (R(var , val)) Rtr
t (var , val)/R

tr
t (var)

Invtr
t (W(var , val))Resptr

t (W(var)) Wtr
t (var , val)/W

tr
t (var)

Invtr
t (C)Resptr

t (C) Ctr
t

Invtr
t (B)Atr

t ϵ
(Any Invoke except Invtr

t (B))Atr
t Atr

t

Table 2.3: Event abbreviations

Each operation with a positive response is abbreviated into a single event of that
operation. An aborted begin operation is abbreviated with the empty word ϵ

as it is not relevant for the correctness conditions discussed in this thesis. Each
operation with an abort response is abbreviated into an abort. For conflict-based
conditions values are usually omitted as they are not of relevance. See Table 2.3
for an overview of these abbreviations. We denote the set of all events by Ev

members of this set are denoted ev , ev ′, ev 1, ev 2 If an event ev is executed by
thread t , we write t(ev) = t .

Syntax of transactions A transaction is a sequence of events which obeys
a specific format. A transaction can only belong to one thread. In a transaction
each invoke must be followed by an appropriate response as the next event. We
thus use the shortened event notation for the following definitions. A finished
transaction starts with a begin, executes an arbitrary number of writes and reads
and then either tries successfully to commit or aborts/gets aborted. Any prefix

39

tr 1 = Btr1
t1 Wtr1

t1 (x , 1)

tr 2 = Btr2
t1 Wtr2

t1 (y , 2)Atr2
t1

tr 3 = Btr3
t1 Rtr3

t1 (x , 1)Wtr3
t1 (z , 5)Wtr3

t1 (y , 2)Rtr3
t1 (w , 3)Ctr3

t1

Figure 2.17: Transaction examples

of a finished transaction is an unfinished transaction.

Definition 1 (Transaction). A sequence of events is a transaction of thread t iff
it is a prefix of a word generated by the following regular expression:

Bt(Wt(var , val) | Rt(var , val))
∗(At | Ct),

where var and val represent the choice between any element of Var and Val ,

respectively.

Figure 2.17 shows three different example transactions. Transactions tr2 and tr3

are finished and transaction tr1 is unfinished.
A transaction is called committed when it ends with a commit, respectively,

aborted when ending with an abort. Transaction tr 2 is aborted, transaction tr 3 is
committed.

As we are concerned with deferred update semantics, we assume that each
transaction only writes once to each variable as at the end only one value can be
written.

Assumption 1. No transaction ever writes to the same variable twice.

2.3.2 Opacity Related Definitions

We introduce the opacity related definitions by starting with general-histories (g-
histories), the history type used for opacity definitions and similar definitions, and
then the definitions of conflict opacity and value opacity. Then we will present
the definitions related to value opacity including the membership and correctness
problem for it, and then do the same for conflict opacity.

40

h1 = Invt1
(B)Respt1

(B)Invt1
(W(x , 2))Invt2

(B)Respt1
(W(x))Respt2

(B)Invt1
(R(x))Respt1

(R(x , 2))
h2 = Invt1

(C)Invt1
(B)Invt1

(W(x , 2))Invt1
(B)

h3 = Bt1
Rt1

(x , 2)Bt2
Wt2

(y , 1)Ct2
Ct1

h4 = B11
t1
R11

t1
(x , 2)B21

t2
W21

t2
(y , 1)C21

t2
C11

t1

h5 = B11
t1
W11

t1
(y , 1)R11

t1
(x , 2)B21

t2
W21

t2
(x , 3)C21

t2
C11

t1
B12

t1
R12

t1
(y , 1)C12

t1

Figure 2.18: Example for g-histories

General Histories A general-history (g-history) is a sequence of operations
of different threads, in which the operations are grouped into transactions. In the
context of opacity, the invokes and responses for begins, writes, reads and aborts
are treated as happening atomically one after another. For commits, on the other
hand, responses are not treated as being atomic. This means the Inv(C) invoke
and its possible responses A and Resp(C) are used. For begin, write, read and
abort invokes and responses, the abbreviations shown in Table 2.3 are used. For
simplicity, in the context of opacity, we call the set of these events also Ev .

Definition 2 (G-History). A g-history is a sequence of events ev0 . . . evn, where
for all i, 0 ≤ i ≤ n, it holds that ev i ∈ Ev .

Figure 2.18 shows multiple g-histories, for most of them the abbreviated version
of events is used for brevity.

For such a sequence of events indexed by threads, up to isomorphism there is
not more than one way to assign transactions identifiers to events, whenever the
g-history is well-formed.

In a well-formed g-history the projection of the g-history onto each thread forms
a sequence of transactions, where only the last transaction may be unfinished. This
avoids nonsense g-histories where for example two begins of the same thread follow
each other, or a transaction commits twice. The set of all well-formed g-histories
is denoted H. In the example h1 is well-formed while h2 is not. In the examples
in Figure 2.18, each color represents a transaction in all well-formed g-histories.
Given an event ev , its transaction in a g-history h is denoted trh(ev).

We also need to ensure that the naming of transactions over multiple g-histories
is consistent to make sure g-histories are comparable. If the projection upon one
thread is identical for both g-histories, then two transactions are named identically

41

if they are at the same posirpjrption in the projection. This significantly simplifies
comparing histories in the context of this thesis. Thus, in this thesis, transactions
are identified by two arguments: their thread and the current count of transactions
of that thread.

Our examples never contain more than 9 transactions per thread or 9 threads,
so we use a two digit simplified notation. The first digit denotes the thread and
the second one the transaction. In the example h4 shows the assignment of these
simplified thread identifiers to h3. We can now define the g-history independent
function thr : tr → t which maps each transaction onto its thread. For example,
thr(11) returns t1.

For a transaction tr and g-history h, we denote the case that tr is unfinished as
unfinh(tr). The set of all unfinished transactions in g-history h is denoted unfin(h).
If a transaction tr in a g-history h ends on a commit, we call it committed and
denote it coh(tr). If a transaction tr in a g-history h ends on an abort, we
call it aborted and denote it abh(tr). If it ends on a commit invoke, we call it
commit pending and denote it comPh(tr). If a transaction is finished, we denote
it finph(tr).

Two important notions for transactions in the context of a g-history are the
write set and the read set. The write set of transaction tr in a g-history h is
denoted WSh(tr) ⊆ Var × Val . It is the set of all variable and value pairs such
that the transaction contains a corresponding write event for each of them. The
read set RS h(tr) is defined similarly. If the values are not relevant, both are
simply a set of variables and are denoted WS vo

h (tr) and RS vo
h (tr) (vo stands for

variable-only), respectively. The write set for transaction 21 in h4 is WSh4 (21) =

{(y, 1)}, and its write set without values is WS vo
h4

(21) = {var 2}. The read set for
transaction 11 in h4 is RS h4(11) = {(var , val)}, and its write set without values
is RS vo

h4
(11) = {var}.

The set of all transactions of a g-history h is tr(h), and we write tr ∈ h if a
transaction tr occurs in h. For h4 it holds that tr(h4) = {11, 21} and also 11 ∈ h4.
Given a event ev in g-history h, trh(ev) denotes the transaction of event ev in h.
In the example, it holds that trh4 (B

11
t) = 11. If an event occurs in a g-history h,

we write ev ∈ h. For example, B11
t ∈ h4 holds. The set of events occuring in a

42

h1 = B11
t1
W11

t1
(var , val2)C

11
t1
B12

t1
B21

t2
W21

t2
(var , val)R12

t1
(var , val)Inv21

t2
(C)

h2 = B11
t1
W11

t1
(var , val2)C

11
t1
B12

t1
B21

t2
W21

t2
(var , val)R12

t1
(var , val)

h3 = B11
t1
W11

t1
(var , val2)C

11
t1
B12

t1
W12

t2
(var , val1)C

12
t1
B21

t2
R21

t2
(var , val2)C

21
t2

h1,c = B11
t1
W11

t1
(var , val2)C

11
t1
B12

t1
B21

t2
W21

t2
(var , val)R12

t1
(var , val)Inv21

t2
(C)Resp21

t2
(C)A12

t1

h2,c = B11
t1
W11

t1
(var , val2)C

11
t1
B12

t1
B21

t2
W21

t2
(var , val)R12

t1
(var , val)A12

t1
Inv21

t2
(C)A21

t2

h1,s = B11
t1
W11

t1
(var , val2)C

11
t1
B21

t2
W21

t2
(var , val)C21

t2
B12

t1
R12

t1
(var , val)A12

t1

Figure 2.19: Example histories for value opacity

g-history h is denoted Ev(h). If the event ev is ordered before another event ev ′

in g-history h, we write ev <h ev ′. In the example, B11
t1

<h4 B
21
t2

is true.
Given two g-histories h and h ′, the concatenation of both is denoted h · h ′. To

simplifiy notation when given multiple g-histories as a set H′ = {h0, . . . , hn}, we
use • analogue to a sum symbol for concatenation, for example •

h∈H′
h or •

0≤k≤n
hk.

Also, for two g-histories we write h ≼ h ′ if h is a prefix of h ′, and h ⊑ h ′ if h is
a subsequence of h ′. In the example h4 = B11

t1
R11

t1
(x , 2) · B21

t2
W21

t2
(y , 1)C21

t2
C11

t1
,

B11
t1
R11

t1
(var , val) ≼ h4, and B11

t1
W21

t2
(y , 1) ⊑ h4 hold.

Two transactions tr 1, tr 2 are real-time ordered in a g-history h, denoted tr 1 ≺h

tr 2, when the commit or abort event of tr 1 occurs before the begin event of tr 2.
The real-time order of h, h.RT ⊆ Tr × Tr , contains all pairs (tr 1, tr 2) where
tr 1 ≺h tr 2. These pairs are also called real-time elements or in short rt-elements.
For example, in h5 it holds that 11 ≺h5 12. A g-history is called serial if all events
of a transaction directly follow each other.

Value opacity A general description of value opacity was given in Section 2.2.
Here we will only give the definitions needed to formalise it and the definition of
its membership and correctness problem.

To define opacity we first need to define the notion of legality for a serial history,
equivalence and the completion of a g-history. Then we will define opacity and
explain it along the examples shown in Figure 2.19. A serial g-history where each
transaction except the last one is committed and the last transaction can either
be committed or aborted is legal whenever each object adheres to its specification.
For read/write objects, adhering to their specification means that for each variable
the most recently written value is read by a read on that variable. For the case

43

that no most recent write exists, an arbitrary initialization value is read. This
value must be consistent for all reads with no most recent writer and not be
written to any variable by any transaction. A transaction is legal in a serial g-
history whenever the subhistory consisting of itself and all preceding committed
transactions is legal. Lastly, let h|t be the projection of h onto all events of thread
t . Two g-histories are equivalent whenever they contain the same events and each
thread executes the same transactions in the same order.

Definition 3 (Equivalence). Two g-histories h1 and h2 are equivalent whenever

tr(h1) = tr(h2) and ∀t ∈ T : h1|t = h2|t .

Given two g-histories h1, h2 that are equivalent, we say that h1 preserves the real-
time order of h2 whenever h2.RT ⊆ h1.RT .

A completion of a g-history h is a g-history where each unfinished transaction of
h is aborted by inserting an abort event, unless it is commit pending. In this case
it is either aborted or committed by inserting the corresponding response event.
All the new events in the completion are inserted at some point after the last event
of their respective transactions. The set of completions for a given g-history h is
denoted compl(h). In the example, two possible completions of h1 are h1,c and h2,c

Definition 4 (OP [46]). A g-history h is opaque whenever there exists a serial
g-history hs such that

1. hs is equivalent to a g-history in compl(h),

2. each transaction in hs is legal in the subhistory of hs containing all committed
transactions before the transaction

3. and hs preserves the real-time order of h.

For simplicity, we also refer to the second condition as hs being legal.
A serial g-history hs meeting the requirements of the above definition for a g-

history h is called an OP -witness of h. In Figure 2.19 history h1 is opaque as h1,s is

44

an OP -witness. Note that transaction 12 reads a value from 21. This is permitted
as the latter has issued a commit invoke event. For g-history h2 no such witness
exists as transaction 21 is not commit pending, and thus will be aborted in any
completed g-history. This means the read of transaction 12 cannot be justified in
any witness. Also, for h3 no such witness exists as transaction 21 reads a value from
transaction 11. This is not permitted as this value is overwritten by transaction
12 which is real-time ordered after transaction 11 and before transaction 21. Let
OW (h) be the set of all OP -witnesses for a g-history h. As mentioned previously,
the definition is not prefix-closed. The original authors argued that since STM
histories are generated progressively each subhistory must be opaque for the STM
to be opaque [46]. While this is a reasonable argument for the correctness problem,
for the membership problem where we are given arbitrary g-histories this is not
a reasonable assumption. For the membership problem we can prove our results
also for the original not prefix-closed version of value opacity.

Going forward, we also assume that, in the context of value opacity, the same
value is not read twice or more from the same variable by a single transaction,
if a history contains values. This comes w.l.o.g. as we argue next. Consider a
g-history h with a transaction having two reads from the same variable reading
the same value (for short duplicate reads). Let hs be a witness for it, it is easily
provable that hs with one of the duplicate reads removed is a witness for h with
this read also removed. This is because the witness is equivalent to a completion
of the new history (one read was removed for both), the real-time order is still
preserved (removing reads does not change the real-time order) and any legal
transaction is still legal (witness unchanged except for the removal of a read).
On the other hand, assume a g-history h and a witness hs for it. If we add a
duplicate read to a transaction in h, then hs with this read inserted in the same
transaction at the same position is a witness for the new g-history. It is trivially
equivalent to a completion of the new g-history and preserves its real-time order.
Each transaction is still legal as if the original read is legal, then its duplication
is as well.

We will define the membership and correctness problem for value opacity next.
The membership problem is the question whether a single history is opaque.

45

Problem 1 (Membership problem for OP). Given a g-history h, is h opaque?

The correctness problem is the question whether a given implementation DFA I

does only produce opaque histories.

Problem 2 (Correctness problem for OP). Given an implementation I, are all
g-histories produced by I opaque?

Conflict opacity Conflict Opacity (CO) was first defined by Guerraoui et
al. [42]. It employs the notion of conflicts between transactions. Such conflicts
determine an order of transactions called conflict order. Whenever this order is
acyclic, it defines one or multiple serial histories. These are deemed equivalent
in behaviour to the original history. So a history is conflict opaque whenever its
conflict order is acyclic.

We will first present which conflicts can occur in a g-history. Let var be an
arbitrary variable. Two transactions tr 1, tr 2 are in conflict whenever either

• tr 1 and tr 2 both write on var and commit, (W/W conflict)

• tr 1 writes on var and commits and tr 2 reads from var , (W/R conflict)

• tr 1 reads from var and tr 2 writes on var and commits (R/W conflict)

• or tr 1 is real-time ordered before tr 2. (RT conflict)

The order of the conflicting events also determines the resulting conflict order. As
Guerraoui et al., we assume deferred update semantics, meaning writes occur at
the commit event and reads occur at the read event. Figure 2.20 shows examples
for conflicts and the conflict order they induce. Note that, as in the work of
Guerraoui et al., we use valueless single events instead of invoke response notation.
The simplified notation is shown in Table 2.3.

We differ in notation from Guerraoui et al. in that we use explicit begin events
for overall consistency with other g-histories. In the original notation a transaction
has no begin statement and implicitly begins with its first event. Both notation
styles are equivalent as they can be converted into histories of the other style
without changing their conflict order. Given a g-history in explicit begin notation,

46

h1 = B11
t1
W11

t1
(var)C11

t1
B12

t1
W12

t1
(var ′)

h2 = B11
t1
W11

t1
(var)B21

t2
C11

t1
W21

t2
(var)C21

t2

h4 = B11
t1
W11

t1
(var)B21

t2
C11

t1
R21

t2
(var)C21

t2

h3 = B11
t1
R11

t1
(var)B21

t2
C11

t1
W21

t2
(var)C21

t2

RT

W/W

W/R

R/W
Figure 2.20: Conflicts in conflict opacity

hi =R11
t1
(var) W21

t ′1
(var ′) W11

t1
(var)C11

t1
W21

t ′1
(var ′)C21

t2

he =B11
t1
R11

t1
(var)B21

t2
W21

t2
(var ′)W11

t1
(var)C11

t1
W21

t2
(var ′)C21

t2

he =B11
t1

B21
t2

W11
t1
(var)C11

t1
W21

t2
(var ′)C21

t2

hi =R11
t1
(vardum)R

21
t2
(vardum) W11

t1
(var)C11

t1
W21

t ′1
(var ′)C21

t2

Figure 2.21: Example g-history conversion from implicit to explicit begin events

the conversion removes the begin statement for each transaction and replaces it
with a read of that transaction on a dummy variable. This dummy variable must
be never written to in the original history, so it causes no additional R/W or W/R
conflicts. By nature of being a read, it causes no W/W conflicts. It also causes
no new RT conflicts as each transaction keeps their starting index in the history.
Given a g-history in implicit begin notation, we add a begin event directly before
the otherwise first event of each transaction. Figure 2.21 shows examples of these
conversions. We are now ready to formally define the conflict order of a history
and then conflict opacity itself.

Definition 5 (Conflict order). The conflict order of a g-history h, written as <CO
h ,

47

h1 = B11
t1
R11

t1
(var ′)W11

t1
(var)B21

t2
W21

t2
(var)C21

t2
C11

t1
B12

t1
R12

t1
(var)B22

t2
W22

t2
(var ′)C12

t1

h1,s = B21
t2
W21

t2
(var)C21

t2
B11

t1
R11

t1
(var ′)W11

t1
(var)C11

t1
B22

t2
W22

t2
(var ′)B12

t1
R12

t1
(var)C12

t1

h2 = B11
t1
R11

t1
(var ′)W11

t1
(var)B21

t2
W21

t2
(var ′)W21

t2
(var ′′)C21

t2
B22

t2
R22

t2
(var ′′)W22

t2
(var)C22

t2
C11

t1

Figure 2.22: Example histories for conflict opacity

is the union of the following orders:

1. R/W order:
{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈ RS vo

h (tr1) ∩WS vo
h (tr2),R

tr1
thr(tr1)

(var) <h

Ctr2
thr(tr2)

},

2. W/R order:
{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈ RS vo

h (tr2) ∩ WS vo
h (tr1),C

tr1
thr(tr1)

<h

Rtr2
thr(tr2)

(var)},

3. W/W order:
{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈ WS vo

h (tr1) ∩ WS vo
h (tr2),C

tr1
thr(tr1)

<h

Ctr2
thr(tr2)

}

4. and RT order: h.RT .

A conflict order can be visualized as a directed graph, called conflict graph. Note
that we do not include edges that are already implied by transitivity. The conflict
graph of a g-history h is denoted CG(h). Each node in the graph corresponds to
a transaction and each conflict (tr 1, tr 2) with tr 1, tr 2 ∈ Tr is represented as an
edge from tr 1 to tr 2. Conflict opacity is then defined as follows.

Definition 6 (CO). A g-history h is opaque under CO (alternatively conflict
opaque), whenever <CO

h is acyclic.

We will explain both definitions along the example. The conflict order of g-history
h1 in Figure 2.22 is:

<CO
h1

= ∅ ∪ {(11, 12), (21, 12)} (R/W), (W/R)
∪ {(21, 11)} ∪ {(11, 12), (11, 22), (21, 12), (21, 22)} (W/W), (RT)

48

1121

22

12

11 21 22

Figure 2.23: Conflict graphs for h1 (left) and h2 (right) of Fig. 2.22

Which overall is the conflict set:

{(11, 12), (11, 22), (21, 11), (21, 12), (21, 22)}.

Alternatively, its conflict graph CG(h1) is shown in Figure 2.23.
This conflict order is acyclic and g-history is conflict opaque. A serial history

with the same order is h1,s. On the other hand, the conflict order of g-history h2

is:

<CO
h2

= {(11, 21)} ∪ {(21, 22)} (R/W), (W/R)
∪ {(22, 11)} ∪ {(21, 22)}. (W/W), (RT)

Which overall is the set:

{(11, 21), (21, 22), (22, 11)}.

It is easy to see that this order is cyclical. Its conflict graph CG(h2) is shown in
Figure 2.23.

We can now define the membership and correctness problem for conflict opacity:

Problem 3 (Membership Problem for conflict opacity). Given a g-history h, is
h conflict opaque?

Problem 4 (Correctness problem for conflict opacity). Given an implementation
I, are all g-histories produced by I conflict opaque?

49

phe = R11
t1
[y]R21

t2
[x]W21

t2
[x]W11

t1
[x , y]R12

t1
[x]W12

t1
[z]

phe =TwR
11
t1
[y]R21

t2
[x]W21

t2
[x]W11

t1
[x , y]R12

t1
[x]W12

t1
[z]Tr

phs = R21
t2
[x]W21

t2
[x]R11

t1
[y]W11

t1
[x , y]R12

t1
[x]W12

t1
[z]

Figure 2.24: Example p-histories

2.3.3 Serializability Related Definitions

Here we start by presenting p-histories (p for Papadimitriou), a subset of g-
histories used by Papadimitriou for his serializability definitions. The subset con-
tains all g-histories where transactions atomically execute their begin and read
events in one atomic block and at some point later their write and commit events
in one atomic block. No transactions abort in this subset. We will then define
the membership and correctness problems for version of state serializability (SR+)
and strict state serializability (SSR+), adopted to support histories with threads
and transactions.

P-Histories As before, a history is a sequence of events, of which in this case
there are only two types: reads and writes. We call such a history p-history and
the type of event p-event. Each read and write operates on a set of variables. We
again use the general sets T ,Var and Tr .

Definition 7 (Set of p-events). The set of p-events is defined as

PEv = {Wt [V],Rt [V] | t ∈ T ,V ∈ 2Var}.

This set is partitioned into read events PEvRd and write events PEvWr . In a
history these events can be grouped into transactions. A transaction consists
either of a single read event, if it is unfinished, or of a read event followed by a
write event of the same thread, if it is finished. Then a history is a sequence of
these events, which are indexed by their threads and have their set of accessed
variables as parameters.

50

Note that all definitions for events, transactions and similar that are not explicitly
mentioned here are defined analogous to the ones in the previous sections.

Definition 8 (P-History). A p-history is a sequence of p-events pev 0 . . . pevn,
where for all i, 0 ≤ i ≤ n, pev i ∈ PEv .

Let PH be the set of all p-histories as defined above. As with the previous
definition of a g-history, transaction identifiers are not mentioned as in a well-
formed history there is up to isomorphism exactly one way to map transaction
identifiers to events. A p-history is well-formed iff its projection on each thread is
a sequence of transactions where the last one is either unfinished or finished and
all others are finished. In Figure 2.24 history he (top) shows such a well-formed
p-history. We assume each p-history to be well-formed in the remainder of this
thesis.

State serializability For serializability we furthermore need to define Pa-
padimitriou’s version of equivalence of p-histories, which we call p-equivalence.
To define this notion and finally state serializability, we furthermore need to de-
fine

• the reads-from relation of a p-history,

• the augmentation of a p-history

• and liveness of transactions.

As mentioned before, state serializability - as defined by Papadimitriou - uses a
most-recent reads-from relation. So transaction tr1 reads v ∈ Var from transaction
tr 2 in ph whenever there exists a write event pev = Wtr2

t [V] and a read event
pev ′ = Rtr1

t ′ [V ′] (t, t′ ∈ T , V, V ′ ⊆ Var) in h and var ∈ V ∩V ′ such that pev <ph

pev ′ and no other p-event writing to var exists in between pev and pev ′.
We will denote the reads-from relation of an arbitrary p-history ph as ph.RF ,

and it holds that ph.RF ⊆ Tr × Tr × Var . For tr , tr ′ ∈ tr(ph) and var ∈
Var , (tr , tr ′, var) ∈ ph.RF means that tr ′ reads var from tr in ph. If a transaction
tr occurs in such an element rf i.e. it is either the first or second member of

51

the triple, we say tr ∈ rf . In Figure 2.24 we have (11, 12, x) ∈ phe.RF and
(21, 12, x) /∈ phe.RF . For simplicity, we call members of this relation rf-elements
from now on.

To ensure that all transactions have a write they read from and all last writes
are read at the end, p-histories are augmented with additional transactions. The
augmented p-history ph for a p-history ph is the p-history where two transactions
are added: trw at the start and tr r at the end of the p-history. The transaction trw

reads no variable and writes to all, while tr r from all variables and writes to none
of them. See the augmentation phe of history phe in Figure 2.24 (additional trans-
actions in blue) for an example. We call trw, tr r augmented transactions. All other
transactions are called non-augmented transactions. The non-augmented transac-
tions for a p-history ph are denoted by tr−(ph). The transactions trw and tr r will
only be shown in examples when needed, we will abbreviate them with Tw and
Tr. Despite our usual colouring marking single transactions both of them will be
coloured in cyan in examples throughout this thesis. Please note that all concepts
regarding concatenation, prefixes and similar do not take augmented transactions
into account. For example, TwR

tr1
t1 [x]Tr is a prefix of TwR

tr1
t1 [x]Wtr1

t1 [x]Tr con-
cerning p-histories. One can think of this as trw and tr r being added to p-histories
only when considering reads-from relations and liveness.

A transaction is live in a non-augmented p-history ph if it is live in its augmented
version ph. It is live in the augmented version iff tr r or another live transaction
reads a variable from it. In p-history phe transaction 21 is not live since the only
variable x it writes to is never read in phe. This term is different from the term
of transaction liveness in software transactional memory.

Now we will define p-equivalence∗.

Definition 9. Two p-histories ph, ph ′ ∈ PH are p-equivalent (ph ≡ ph ′) iff
• they have the same set of transactions, and

• for any live tr ∈ ph and any tr ′ ∈ ph, (tr ′, tr , var) ∈ ph.RF ⇔
(tr ′, tr , var) ∈ ph ′.RF .

∗Note that in the original paper of Papadimitriou there is a discrepancy between formal
definition of equivalence and their stated intention. Given the intention of state serializability
and the definition of state serializability by Bernstein et al. [10], we chose to stick to the latter.

52

In the example we have phe ≡ phs. Similar to Bernstein et al. [10] we will assume
for the remainder of the thesis that each ph is augmented.

As noted by Papadimitriou [73], it is actually required that both p-histories have
the same set of live transactions, but w.l.o.g. this is equivalent to assuming their
transactions overall are identical. A history is serial whenever each read event
either belongs to an unfinished transaction or is directly followed by the write of
its transaction. We let PHS be the set of serial p-histories. In Figure 2.24 history
phs is serial.

Definition 10 (SR+). A p-history ph is called serializable under SR+ or (state)
serializable iff there exists a serial p-history phs such that

• ph ≡ phs (p-history p-equivalence)

• and for all p-events pev , pev ′ ∈ ph such that t(pev) = t(pev ′) : pev <ph

pev ′ ⇔ pev <phs
pev ′ (thread order preservation).

A serial p-history phs meeting the requirements of the above definition for a p-
history ph is called an SR-witness of ph. We now define the membership and
correctness problem for state serializability.

Problem 5 (Membership problem for state serializability). Given a p-history ph,

is ph serializable under SR+?

Problem 6 (Correctness problem for state serializability). Given an implemen-
tation I, are all p-histories produced by I serializable under SR+?

If the answer to the problem question is yes, then we also say I is serializable
under SR+ or simply I is (state) serializable.

Strict state serializability State serializability can be strengthened as to
also require preservation of the real-time order of transactions.

Definition 11 (SSR+). A p-history ph is called serializable under SSR+ (or
strictly (state) serializable) iff there exists a serial p-history phs such that

53

• ph ≡ phs (history equivalence)

• and ph.RT ⊆ phs.RT (real-time order preservation).

Note that real-time order is defined analogous to the definition for g-histories and
it implies thread order preservation. The term of an SSR-witness is defined analo-
gous to the SR-witness definition above. We can now define the membership and
the correctness problems for both, again with the implementation being modeled
as an DFA.

Problem 7 (Membership problem for strict serializability). Given a p-history ph,

is ph serializable under SSR+?

Problem 8 (Correctness problem for strict serializability). Given an implemen-
tation I, are all p-histories produced by I serializable under SSR+?

54

3
Membership Problem

This chapter focusses on the membership problem and is divided into three parts.
First, we present the related work concerned with the complexity of the member-
ship problems of TM correctness conditions and how these different correctness
conditions compare to each other in terms of what histories are correct under them.
Then we present a contribution to both of these fields by (a) showing that the
membership problem for value opacity is NP-complete and (b) comparing value
opacity and conflict opacity under multiple assumptions, which include a set of
assumptions under which both correctness conditions are equivalent. The latter
contribution is based on previous work of us [56].

3.1 Related Work

We will start by presenting the related work regarding the complexity of the
membership problem for the correctness conditions, and then discuss the body of
work comparing them. If it is appropriate, we will give examples illustrating the
differences between conditions.

55

Condition Complexity of membership problem
Sequential consistency NP-complete [40]
Linearizability NP-complete [96, 40]
View serializability NP-complete [97]
State serializability NP-complete [73]
Strict state serializability NP-complete [88]
Conflict serializability P [73]
Causal serializability Unknown
Snapshot isolation NP-complete [13]
Value Opacity NP-complete (Section 3.2)
Conflict opacity P (Discussed in this section.)
DU opacity Unknown
TMS 1 Unknown
TMS 2 Unknown
VWC Unknown

Table 3.1: Complexity of the membership problems for different correctness conditions. Results
presented in this thesis in green color

3.1.1 Complexity of the Membership Problem

An overview of the published contributions to this field can be found in Table 3.1.
We will present the results in the order the corresponding correctness conditions
were introduced in Section 2.2. As in that section, we will divide conditions into
derived conditions and conditions designed specifically for TMs.

3.1.2 Derived Correctness Conditions

The membership problems for sequential consistency [40] and linearizability [96,
40] are NP-complete. To check a history for the original definition of view seri-
alizability has been proven to be NP-complete [97]. This is because the problem
can be polynomially reduced to the membership problem for state serializability,
which also was proven to be NP-complete by Papadimitriou [73]. The proof by
Papadimitriou involves a reduction of the non-circular SAT problem to the mem-
bership problem of state serializability. For conflict serializability the member-
ship problem is decidable in polynomial time [73]. In practice, algorithms solving

56

31 11 21 32 22 12

R11
1 [y]R21

2 []W21
2 [y]R31

3 [x]W31
3 [x]W11

1 [x]R12
1 []R22

2 [x]R32
3 []W32

3 [x , y]W22
2 [x , z]W12

1 [x]

Figure 3.1: Example of a conflict graph and corresponding history

this problem for specific histories employ a conflict graph (also called precedence
graph). This graph models the conflicts of a history. An example of such a graph
can be seen in Figure 3.1.
This graph can then be checked for cycles, for example via depth-first-search.
Strict state serializability was shown to be NP-complete [88]. It was shown by
Kelter that if every value in a history is being read by a live transaction, meaning
it contributes to the end state, then the problem is solvable in polynomial time
[54]. For causal serializability no result is known. The membership problem for
the related condition causal consistency has been recently shown to be in P [13].
In the same work it was shown that checking histories for snapshot isolation is
NP-complete.

Correctness conditions specifically designed for TMs To our best
knowledge, there are no other works concerned with the complexity of the mem-
bership problem for these correctness conditions. Opacity is NP-complete as we
show in Section 3.2. The membership problem for conflict opacity is trivially
solvable in polynomial time. This is done via constructing a conflict graph (by
comparing each event with one another), and then checking (for example with
DFS) if this graph is acyclic. As of now, there are no complexity results known
for VWC and TMS 1 and 2.

3.1.3 Relation between Different Correctness Conditions

In this section, we will present the related work with regard to how correctness
conditions relate to each other, and give illustrating examples. We will order these
results analogue to the order in which we presented the correctness conditions in

57

SR SSR CSR
SR = ⊇ ⊆
SSR = ̸=
CSR =

Figure 3.2: Overview of comparison results of Papadimitriou [73].
SR= state serializability, SSR = strict state serializability, CSR = conflict serializability.

Section 2.2. For each result the condition that was introduced earlier determines
its place in the order with the second condition being the tiebreaker. While we
will mostly describe the related work where it is applicable, there are two sources
cited for multiple conditions, which we will present beforehand.

The paper, presenting state serializability, also contained an extensive compar-
ison of various database correctness conditions [73]. In the paper p-histories and
a most-recent reads-from relation were used for all definitions. An overview of
the results that are relevant to us can be found in Figure 3.2. Each cell in the
figure shows the relation between the set of histories fulfilling the conditions of
the correctness condition of its row to the correctness conditions of its column.

In their comprehensive overview of correctness conditions, Dziuma et al. defined
correctness conditions in a uniform manner and compared them. Note that their
view serializability and strict view serializability definitions are different from ours
and do not use the most-recent reads-from relation but the ambiguous value-based
reads-from relation. Additionally, two versions of each correctness condition were
used, one for deferred update and one for eager update. We will discuss the results
for the deferred update correctness conditions which we presented in Section 2.2.
See Figure 3.3 for an overview of these results.

3.1.4 Derived Correctness Conditions

In the paper that presented linearizability, it is argued that sequential consis-
tency is weaker than linearizability as it has the same requirements without the
requirement to preserve the order between non overlapping operations [51]. Also,
if we assume a history where each transaction consists of a single write or read,
then sequential consistency is equal to view serializability with an unambiguous

58

VSR VSSR CASR SI VOP VWC
VSR = ⊇ ⊆ ̸= ⊇ ̸=
VSSR = ⊆ ⊆ ⊇ ̸=
CASR = ̸= ⊇ ⊇
SI = ⊇ ̸=
VOP = ⊆
VWC =

Figure 3.3: Overview of comparison results of Dziuma et al. [31].
VSR = view serializability , VSSR = strict view serializability, CASR = causal serializability, SI =
snapshot isolation, VOP = value opacity , VWC = virtual world consistency

value-based read-from relation [80].
Under the same assumptions, linearizability is equal to strict view serializability

[51] because the real-time order between operations of linearizability then maps
to the real-time order between transactions that strict view serializability uses.

In the paper defining view serializability, it is stated that state serializability
is a weaker condition than view serializability [97]. This is because in view se-
rializability there are no dead transactions whose reads are not considered for
witnesses. This can be seen in Figure 3.4. The top history is state serializable
but not view serializable as the reads of dead transactions 1 and 2 do not matter
for the witness. Yannakakis also claims that if each read-only transaction were to
be made live by writing to a unique variable, then state serializability is equal to
view serializability [97]. As shown by the top history in Figure 3.4, this does not
hold. But if every dead (writing transactions can also be dead, see the top exam-
ple) transaction were made to be live, then one can prove that the corresponding
history is state serializable iff it is view serializable. The bottom example in Fig-
ure 3.4 shows this transformation. Now the reads of all transactions matter for
a witness as they are all live. Thus, this history is not state serializable and not
view serializable.

It is well known that conflict serializability is a stronger correctness condition
than view serializability [97, 73, 9]. This is because if two writes from a transaction
are not read at all in a history, their order in a witness is irrelevant for its view
equivalency to the history in question, but for conflict serializability their order is

59

t1

t2

t1

t2

B(1) R(x) W(x) C(1)

B(2) W(x) C(2)

B(3) W(x) C(3)

B(1) R(x) W(x, z1) C(1)

B(2) W(x, z2) C(2)

B(3) W(x, z3) C(3)

Figure 3.4: From top to bottom: state serializable but not view serializable, not state serializable
and not view serializable.

part of the conflict order anyway.

t1

t2

B(1) R(z) W(x) C(1)

B(2) W(x, z) C(2)

B(3) R(z) W(x) C(3)

Figure 3.5: A history that is view/state serializable but not conflict serializable.

For an illustration see the history in Figure 3.5. The conflict order contains
the cycle 2, 1, 2, but the witness with transaction order 1, 2, 3 proves the view
serializability of the history.

Dziuma et al. stated that view serializability is a stronger condition than causal
serializability. This was also stated in the paper presenting the original definition
of causal serializability [31, 80]. It is easy to see that if there is a witness where
each transaction is legal, then for each thread there exists a witness where the
reads of its transactions are legal. For an example of a history that is causal
serializable but not view serializable, consider Figure 3.6.
This history is trivially not view serializable as in any transaction order of a
witness one of the reading transactions would only be legal if it reads the value
1 for both variables. It is causally serializable as in the witness with transaction
order 1, 3, 2, 4 each read of thread 1 is legal and in the witness with transaction
order 2, 4, 1, 3 each read of thread 2 is legal.

60

t1

t2

B(1) W(x, 1) C(1)

B(2) W(y, 1) C(2)

B(3) R(x, 1) R(y, 0) C(3)

B(4) R(x, 0) R(y, 1) C(4)

Figure 3.6: A history that is causal serializable but not view serializable.

It is well known that snapshot isolation does not imply (view) serializability,
this fact was already discussed in the paper defining snapshot isolation [8]. Ad-
ditionally, efforts were made to define conditions under which snapshot isolation
does imply serializability [38, 84, 32]. View serializability is incomparable to snap-
shot isolation under ambiguous value-based reads-from relations [31]. The same
holds under the most-recent reads-from relation [70].

The most-recent reads-from relation version of view serializability is not compa-
rable to the original definition of opacity [46]. But given an ambiguous value-based
reads-from relation, Dziuma et al. showed that view serializability is weaker than
value opacity [31]. The proof involved showing that strict view serializability is
weaker than value opacity, which we will discuss later. Basically, if all transactions
are committed, view serializability is opacity without a real-time order.

Also, view serializability with an ambiguous value-based reads-from relation
is weaker than virtual world consistency [31]. This is based on the fact that the
additional requirements virtual world consistency has for aborted transactions are
not relevant for view serializability. It does not consider aborted transactions in
its definition, and the other requirements are identical to VWC.

Papadimitriou compared state serializability to conflict serializability and strict
state serializability, as noted before using a most-recent reads-from relation and
p-histories [73]. He showed that state serializability is a weaker condition than
conflict serializability. The argument is analogue to the one presented for view
serializability and conflict serializability. For an example of a history that is
state serializable but not conflict serializable, see Figure 3.5. He also showed
that if the write set of each transaction is a subset of its read set, then state
serializability and conflict serializability are identical, later we call this the read-
before-update assumption. State serializability is a weaker condition than strict

61

state serializability as it has the same requirements plus the extra requirement
that each witness must preserve the real-time order of its history [73]. Any strictly
state serializable history is also state serializable as all its requirements for the
history are fulfilled by it being strictly state serializable.

A variant of state serializability with histories closer to g-histories was shown
to be incomparable to snapshot isolation, and the same result holds for conflict
serializability and snapshot isolation [70].

Snapshot isolation in the survey of Dziuma et al. has been proven to be weaker
than value opacity as snapshot isolation is weaker than view serializability which
in turn a weaker condition than value opacity [31]. It is incomparable to virtual
world consistency and causal serializability [31].

Causal serializability in the survey of Dziuma et al. has been proven to be weaker
than value opacity as causal serializability is weaker than view serializability which
in turn is weaker than value opacity [31].

3.1.5 Correctness Conditions Specifically Designed for TMs

In a result published by us the relationship between value opacity and conflict
opacity was discussed [56]. We present this result and expand on it in Section 3.3.

The authors of the paper presenting DU-opacity discussed its differences to
a prefix-closed version of value opacity. This version is explicitly defined to be
prefix-closed by requiring each prefix of a history to be value opaque [5]. For
an ambiguous value-based reads-from relation DU-opacity is a stronger condition
than this version of value opacity. The intuition that DU-opacity was meant to
be a prefix-closed version of value opacity, and thus both definitions should be
identical, does not hold. The issue lies in the fact that even in this explicit prefix-
closed value opacity a read may be justified by different transactions in different
prefixes of the same history. Figure 3.7 illustrates the issue.
Each prefix of the history is value opaque because until the abort of transaction 1

the read of transaction 2 can be legal in a witness as a commit pending transaction
can be completed as committed. When transaction 1 aborts, transaction 3 can
justify the read of transaction 2 in a witness as it is commit pending with a write

62

t1

t2

t3

B(1) W(x, 1) C(4) A

B(2) R(x, 1) C(2)

B(3) W(x, 1) C(3)

Figure 3.7: A history that is prefix-closed value opaque but not DU-opaque.

of value 1 on x. This history is not DU-opaque since transaction 3 is not commit
pending or committed during the read of transaction 2.

The authors of the paper presenting VWC claim it is weaker than value opac-
ity [53]. While intuitively true, they do not provide a formal definition of value
opacity and their informal definition does not consider live transactions at all. Ad-
ditionally, it is unclear which reads-from relation is used. In an example showing
that there are non value opaque histories which are virtual world consistent, they
implicitly employ a most-recent reads-from relation for value opacity and VWC.
However, the original definition of value opacity uses an ambiguous value-based
reads-from relation, and for VWC an unambiguous value-based reads-from rela-
tion seems to be used. So it is not exactly clear which definitions are compared.
In the survey of Dziuma et al. the definitions of value opacity and VWC both
use an ambiguous value-based reads-from relation, and both definitions consider
live transactions. It presents the same conclusion [31]. Any value opaque history
is also virtual world consistent as the overall witness implies that there exists a
witness containing all committed transactions and one witness for each aborted
transaction. An example history which is virtual world consistent but not value
opaque can be seen in Figure 3.8.
Overall, there is no serialization that makes both reads legal, but there is a witness
containing both committed transactions and a witness for each reading transaction
as each reading transaction has only the transaction it reads from in its causal
past.

In the paper presenting TMS 1 and 2 Doherty et al. stated that they believe but
have not proven that TMS 1 implies the explicitly prefix-closed version of value

63

t1

t2

t3

t4

B(1) W(x, 1) C(1)

B(2) W(x, 2) C(2)

B(3) R(x, 1) A(3)

B(4) R(x, 2) A(4)

Figure 3.8: A history that is virtual world consistent but not value opaque.

opacity [29]. They give an example history that is correct under TMS 1, but not
value opaque. This history is shown in Figure 3.9.

t1

t2

t3

B(1) R(x, 0) W(y, 1) C(1)

B(2) W(x, 2) C(2)

B(3) R(y, 0) R(x, 2) C(3) A

Figure 3.9: A history that is correct under TMS1 but not value opaque.

It is not value opaque as for a potential witness transactions 1 and 2 must be
ordered as 1, 2, and additionally 3 must be ordered after transaction 2. Then the
only potential transaction order is 1, 2, 3 which is not a legal history. Thus, no
witness exists. Under TMS 1 this execution is correct as if transaction 1 would
have aborted, transaction 3 would be legal. At a later time, Lesani et al. showed
that a prefix-closed version of value opacity modelled as an automaton implies
TMS1 [62].

Value opacity is implied by TMS2 [61], but value opacity does not imply TMS
2. Doherty et al. showed the latter via an example history [29] which can be seen
in Figure 3.10.
At the commit of transaction 2, its read no longer matches the current memory
state; thus, this execution is not correct under TMS 1, but the witness with
transaction order 2, 1 proves its value opacity.

64

t1

t2

B(1) R(x, 0) W(x, 1) C(1)

B(2) R(x, 0) W(y, 1) C(2)

Figure 3.10: A history that is value opaque but not correct under TMS2.

TMS 1 has been shown to be weaker than TMS 2 via a mechanical proof [29].
Additionally, it is incomparable to VWC. The witnesses for aborted transactions
in VWC do not need to preserve the real-time order of transactions, and thus
they can ignore committed transactions real-time ordered before it, which TMS 1
does not allow. TMS 1, on the other hand, allows transactions to read from other
commit invoked transactions which VWC does not.

3.2 The Membership Problem for Value Opacity is NP-Complete

We prove the NP-completeness of the membership problem for opacity by reducing
the membership problem for SR (see Section 2.3.3) to it and showing that given a
g-history it can be determined in polynomial time if it is an OP -witness for another
g-history. The first step proves the problem to be NP-hard and the second step
proves it to be a member of NP, showing that it is NP-complete overall. We
will first discuss the reduction function in length. The second step is then briefly
discussed in the description of Lemma 5 at the end of this section as it is.

As proven by Papadimtriou [72, 73], the membership problem is NP-complete
even if no transactions are dead. A history of SR can trivially be reduced to an
instance of the membership problem of SR+ where each thread contains exactly
one transaction. Then there is no internal thread order imposed on transactions,
which is the only meaningful difference to SR. Also, the solution of an instance of a
membership problem for SR+ can be checked in polynomial time as p-equivalence
can be checked in polynomial time [73] and thread order preservation trivially can
as well. To avoid unnecessary introduction of new notation, we will reduce to the
SR+ problem under the above assumption.

Our reduction is based on a function f that maps a p-history ph to a g-history

65

phSR = TwR
11
t1
[]R21

t2
[]W11

t1
[var , var ′′]W21

t2
[var]R31

t3
[var]W31

t3
[var]R41

t4 [var
′]W41

t4 [var
′]Tr

phSR
s1 = TwR

11
t1
[]W11

t1
[var , var ′′]R21

t2
[]W21

t2
[var]R31

t3
[var]W31

t3
[var]R41

t4 [var
′]W41

t4 [var
′]Tr

phSR
s2 = TwR

41
t4 [var

′]W41
t4 [var

′]R11
t1
[]W11

t1
[var , var ′′]R21

t2
[]W21

t2
[var]R31

t3
[var]W31

t3
[var]Tr

f(phSR) = TwB
11
t1
B21

t2
B31

t3
B41

t4 W
11
t1
(var , 11)W11

t1
(var ′′, 11)W21

t2
(var , 21)

R31
t3
(var , 21)W31

t3
(var , 31)R41

t4 (var
′, trw)W

41
t4 (var

′, 41)C11
t1
C21

t2
C31

t3
C41

t4 Tr

f(phSR
s2) = TwB

41
t4 R

41
t4 (var

′, trw)W
41
t4 (var

′, 41)C41
t4 B

11
t1
W11

t1
(var , 11)W11

t1
(var ′′, 11)C11

t1

B21
t2
W21

t2
(var , 21)C21

t2
B31

t3
R31

t3
(var , 21)W31

t3
(var , 31)C31

t3
Tr

Figure 3.11: Examples illustrating the reduction function

f(ph) such that f(ph) is opaque under OP iff ph is serializable under SR. Both
problems are about deciding whether for a given history a serial history (witness)
exists fulfilling certain constraints. A serial history can be viewed as a total order
on the transactions of the original history. Whether it is a witness or not is then
determined by if this total order adheres to the constraints. In both problems
the constraints are solely based on the original history. In the remainder of this
section, we call the constraints SR-constraints or OP -constraints depending on
the problem. The reduction function tries to carry over the constraints for ph to
f(ph) by ensuring three properties:

1. There is a one-to-one mapping of transactions between ph and f(ph),

2. the OP -constraints on the transactions of f(ph) must contain the SR con-
straints on the corresponding transactions of ph (preservation of SR con-
straints)

3. and no other OP -constrains exists in f(ph) (preventing additional OP con-
straints).

In the further, we will describe how f realizes each of the above properties. This
will be explained in an incremental manner where each step provides the input
for the next. As f is a function, its definition will execute these steps as one,
not being incremental but yielding the same result. For better clarity, phSR from
Figure 3.11 will be used as an example. Note that Tw and Tr share the same
colour for both being augmented transactions despite not being one transaction.

66

One-to-One mapping of transactions The first goal is achieved by a syn-
tactical replacement of symbols, which keeps the write and read sets for each
transaction identical. This is done by the following replacements:

Rtr
t [var0 , . . . , varn]→ Btr

t R
tr
t (var0 , ?) . . .R

tr
t (varn , ?)

Wtr
t [var0 , . . . , varn]→Wtr

t (var0 , ?) . . .W
tr
t (varn , ?)C

tr
t

The resulting sequences are not interleaved with other transactions keeping the
atomicity of each read and write event in a p-history. The write set and read
set is kept identical for each transaction. Additionally, a begin or, respectively,
commit is added to conform to the transaction standards of a g-history. Note
that instead of values we used a question mark as the replacement of values will
be explained in the next step. The replacement of trw and tr r yields a transaction
writing to all variables and a transaction reading from all variables, respectively.
Their notation (Tw,Tr) in the examples remains identical even after the change
to avoid obfuscating our notation. For our example, this syntactical replacement
yields the following result:

TwR
11
t1
[]R21

t2
[]W11

t1
[var , var ′′]W21

t2
[var]

R31
t3
[var]W31

t3
[var]R41

t4 [var
′]W41

t4 [var
′]Tr

→
TwB

11
t1
B21

t2
W11

t1
(var , ?)W11

t1
(var ′′, ?)C11

t1
W21

t2
(var , ?)C21

t2

B31
t3
R31

t3
(var , ?)W31

t3
(var , ?)C31

t3
B41

t4 R
41
t4 (var

′, ?)W41
t4 (var

′, ?)C41
t4 Tr.

The colors represent the different transactions. As one can see, each transaction
still consists of two atomic parts and has the same read and write sets (only
considering variables) under both definitions.

Preservation of SR constraints Now given that syntactical conversion,
we explain how the constraints for SR-witnesses can be preserved. The SR defi-
nition imposes two sets of constraints:

67

• constraints regarding the augmented transactions

• and the reads-from constraints.

The first set of constraints requires trw to happen before all other transactions
and tr r to happen after all other transactions. Given the previous step, these
constraints are already preserved as in the resulting g-history trw is real-time
ordered before all other transactions and tr r after all other transactions.

The second set of constraints requires that the reads-from relation is identical
for the (augmentations) of a p-history and its SR-witnesses. In our example p-
history phSR, transaction 31 reads var from transaction 21. Let phs be an arbitrary
SR-witness of phSR. As a reads-from relation between two transactions is only
given when the writing transaction’s write is the last write before the reading
transaction’s read, this imposes two constraints on the SR-witness:

1. a before constraint, the writing transaction must come before the reading
transaction, for the example this is 21 ≺phs

31

2. and a not-in-between constraint, any transaction that would interrupt
the read cannot be ordered in between, for the example this is ¬(21 ≺phs

11 ≺phs
31).

For the OP -problem a reads-from relation does not exist, but in an OP -witness
each transaction must be legal. This means that for any read on a variable the
value that was read must be the last written value to that variable at the point
of the read. One may think this is equivalent to the reads-from relation as a read
reads the same value in a g-history and its OP -witness, and thus in both also
reads from the same transaction writing that value. But there is a difference: In
a g-history multiple transactions can write the same value. If that value is read;
in the absence of other constraints; there is no clearly defined writer to the read.
Any of these writing transactions may be the last writer before the read in the
serial g-history.

68

hop =B11
t1
W11

t1
(var , val)B21

t2
W21

t2
(var , val)C21

t2
C11

t1
B12

t1
R12

t1
(var , val)A12

t1

hop
s1 =B11

t1
W11

t1
(var , val)C11

t1
B21

t2
W21

t2
(var , val)C21

t2
B12

t1
R12

t1
(var , val)A12

t1

hop
s2 =B21

t2
W21

t2
(var , val)C21

t2
B11

t1
W11

t1
(var , val)C11

t1
B12

t1
R12

t1
(var , val)A12

t1

Figure 3.12: Example showing reads-from ambiguity in OP

The g-history hOP in Figure 3.12 with its OP -witnesses hop
s1 and hop

s2 illustrate both
properties. It is not clear whether transaction 12 reads from 11 or 21. Thus, in
hop
s1 , 21 is read by 12, and in hop

s2 11 is being read by 12.
This ambiguity is avoided by f by making each value written to a variable

unique with regard to other values written to that variable. For writes we chose
the transaction ID of the writer as the written value as threads have at most one
transaction in SR and write at most once to a variable. Then, for a read on a
variable, the read value is set to the transaction ID of the transaction it reads that
variable from in the original p-history. As we have a transaction at the beginning
initializing all variables, this is well-defined. For the augmented transactions we
again keep the Tw and Tr symbols after the modifications. Still, all changes
discussed above apply to these transactions. We show how the values are inserted
in our example, continuing with the result of the first step:

TwB
11
t1
B21

t2
W11

t1
(var , ?)W11

t1
(var ′′, ?)C11

t1
W21

t2
(var , ?)C21

t2

B31
t3
R31

t3
(var , ?)W31

t3
(var , ?)C31

t3
B41

t4 R
41
t4 (var

′, ?)W41
t4 (var

′, ?)C41
t4 Tr

→
TwB

11
t1
B21

t2
W11

t1
(var , 11)W11

t1
(var ′′, 11)C11

t1
W21

t2
(var , 21)C21

t2

B31
t3
R31

t3
(var , 21)W31

t3
(var , 31)C31

t3
B41

t4 R
41
t4 (var

′, trw)W
41
t4 (var

′, 41)C41
t4 Tr.

Under this construction each transaction in an OP -witness is legal iff it reads each
variable from the same transaction as in the original p-history. This preserves the
constraints of SR.

69

Preventing additional OP-constraints Next, we address how to prevent
additional OP -constraints to occur in the generated g-history. Opacity imposes a
real-time order constraint on the OP -witnesses of a g-history, meaning if transac-
tions have no overlap in a g-history then its OP -witnesses must preserve the order
of these transactions. We discussed in the previous step that the real-time order
ensures the constraints regarding trw and tr r. On the other hand, for every other
transaction SR-constraints do not include anything resembling a real-time order.
Histories hop and phSR in the example illustrate this issue. In hop transactions
11 and 12 have no overlap and are thus real-time ordered. Therefore, in the OP -
witnesses hop

s1 and hop
s2 they keep their order. In contrast, in phSR transaction 41 is

“real-time ordered” (if that concept would exist in SR) after any other transaction
in that p-history. But in the example SR-witness phSR

s2 , transaction 41 is ordered
before any other transaction.

Thus, for the real-time order to impose no additional constraints on the g-
history, each non-augmented transaction must be concurrent. The augmented
transactions are kept at the start or at the end of the history, respectively. For
the non-augmented transactions the begin event is put directly after trw and
the commit event (aborts do not exist in g-histories generated by the reduction
function) right before tr r. We show this along our example:

TwB
11
t1
B21

t2
W11

t1
(var , 11)W11

t1
(var ′′, 11)C11

t1
W21

t2
(var , 21)C21

t2

B31
t3
R31

t3
(var , 21)W31

t3
(var , 31)C31

t3
B41

t4 R
41
t4 (var

′, trw)W
41
t4 (var

′, 41)C41
t4 Tr

→
Tw

B11
t1
B21

t2
B31

t3
B41

t4

W11
t1
(var , 11)W11

t1
(var ′′, 11)W21

t2
(var , 21)

R31
t3
(var , 21)W31

t3
(var , 31)R41

t4 (var
′, trw)W

41
t4 (var

′, 41)

C11
t1
C21

t2
C31

t3
C41

t4

Tr.

Overall the reduction function thus preserves the constraints of SR while avoiding

70

additional constraints imposed by OP . This means if a OP -witness exists, that
same order of transactions also is a SR-witness for the original. For our example
the transaction order for the OP -witness f(phSR

s2) is also the transaction order of
the SR-witness phSR

s2 .

Defining f We are now ready to formally define f . As noted previously, it
does not follow the incremental structure of the description above, but the result
is identical. It consists of two parts:

• It places all transactional events (begin and commits). At the beginning of
the g-history the transactional events of trw are placed, at the end the ones
of tr r and in between them first all other begins and then all other commits.

• For each p-event in the input p-history it inserts the corresponding non-
transactional events between the begin and commit of its transaction.

These steps relate as follows to the properties f needs to achieve: The first step
prevents additional constraints and preserves the constraints related to the aug-
mented transactions, the second preserves the reads-from constraints and both
steps together establish the one-to-one mapping of transactions. While the first
step is a simple matter of definition, the second step is realized via a subfunction
r.

The subfunction is parametrized by a p-history ph and takes a p-event pev as
input and returns a sequence of events.

• If pev is a write to a variable set, r returns a sequence of writes; one to each
variable in the set; writing trph(pev) as its value. We illustrate this along
our example:

r(phSR,W11
t1
[var , var ′]) = W11

t1
(var , 11)W11

t1
(var ′′, 11).

• If pev is a read from transaction tr on a variable set, r returns a sequence
of reads ; one from each variable var in the set. The value read by each
read depends on the reads-from relation of ph. It is the transaction ID of
the transaction that transaction tr read var from in the augmentation of
ph. Using the augmentation serves the purpose that transactions reading

71

from the initial state also have a defined value. We illustrate this along our
example:

r(phSR,R31
t3
[var]) = R31

t3
(var , 21).

Let rfph(tr 1, var) return the transaction tr 2 s.t. (tr 2, tr 1, var) ∈ ph.RF . Then the
definition of r is as follows.

Definition 12 (Subfunction r). Let ph be a p-history and pev a p-event in ph.
Let Var ′ be the set of variables pev writes to/reads from. Let tr be the transaction
of pev and t be its thread. Then r is defined as follows:

rph(pev) =


•

var∈Var ′
Wtr

t (var , tr), if pev ∈ PEvWr

•
var∈Var ′

Rtr
t (var , rfph(tr , var)), if pev ∈ PEvRd .

Now we can define f . As discussed, f starts with the converted trw, then places a
begin for each non-augmented transaction, inserts the event sequences determined
by r afterwards, places a commit for each non-augmented transaction and then
ends with the converted tr r. Note that the first and last event of a history are
an empty read and an empty write, respectively, belonging to trw and tr r. As
the application of r to them would result in no events, they are discarded when
computing f . Let Var(ph) be the set of all variables occuring in ph.

Definition 13 (Reduction function f). Given a p-history ph = pev 0 . . . pevn, the
reduction function f is defined as follows:

f(ph) = Btrw
thr(trw) · rph(pev 1) · Ctrw

thr(trw) | (trw)

·
(

•
tr∈tr−(ph)

Btr
thr(tr)

)
· •

2≤k≤n−2
rph(pevk) ·

(
•

tr∈tr−(ph)
Ctr

thr(tr)

)
| (Non-aug. T.)

· Btrr
thr(trr)

· rph(pevn−1) · Ctrr
thr(trr)

| (tr r.)

We will now use this reduction function to prove the NP-completeness of the
membership problem for OP .

72

Proving NP-completeness The proof of the following lemmas and the con-
cluding Theorem 1 can be found in Appendix A. We will summarize the proof
structure here and present the lemmas used in the proof resulting in Theorem 1.
Overall the proof consists of two steps:

• Show that f is a polynomial reduction function from the membership prob-
lem of SR to the membership problem of OP .

• Show that is possible to determine in polynomial time whether one g-history
is an OP -witness of another g-history.

Lemmas 1 to 4 are concerned with the first point, Lemma 1 stating the claim and
lemmas 2 to 4 being building blocks to its proof. Lemma 5 is concerned with the
second point.

Lemma 1. Given an arbitrary p-history ph, it holds that

1.
f(ph) is opaque under OP

↔

ph is serializable under SR

2. and f is computable in polynomial time.

The second statement will only be discussed in the appendix as its correctness is
straightforward to see. The proof of the first part of the lemma is based on three
sub-lemmas, which reflect the design goals of the reduction function discussed
at the beginning of this section. First off, there must be a one-to-one mapping
between transactions, meaning the transaction sets of both histories are identical.

Lemma 2 (One-to-One mapping of transactions). For an arbitrary p-history ph,

it holds that
tr(ph) = tr(f(ph)) (transaction sets identical) .

73

The correctness of the lemma follows directly from the definition of f .
Secondly, the constraints from the original p-history must be preserved. This

includes the reads-from constraints and the constraints for the augmented trans-
actions. For the reads-from relations we require that each write and read in the
g-history has a corresponding p-event in the input p-history. This is not a one-to-
one relation as one p-event possibly spawns multiple events in the output g-history.
Each write must write to its transaction’s ID, and each read must read the transac-
tion ID of the last writer on its variable in the input p-history. Also, no other event
may exist. For the constraints involving the augmented transactions, we require
that after applying f each non-augmented transaction of the original p-history is
ordered after trw and before tr r. In the lemma, these requirements are split into
the requirements for writes, the requirements for reads and the requirements for
the augmented transactions

Lemma 3 (Preservation of SR-constraints). For an arbitrary p-history ph, it
holds that

Wtr1
thr(tr1)

(var , val) ∈ f(ph)→ val = tr 1 ∧ var ∈WS vo
ph (tr1)

Rtr1
thr(tr1)

(var , val) ∈ f(ph)→ ∃tr2 ∈ Tr : (tr 2, tr 1, var) ∈ ph.RF ∧ val = tr 2

∀tr ∈ tr−(ph) : trw ≺f(ph) tr ∧ tr ≺f(ph) tr r.

The correctness of this lemma mainly follows from the definition of r.
Lastly f should not introduce new constraints that are not present in the input

p-history. This boils down to the real-time order not introducing new constraints
as there are no other constraints that can be introduced. That means no non-
augmented transactions should be real-time ordered.

Lemma 4 (Preventing additional OP -constraints). For an arbitrary p-history ph,

it holds that

∀tr , tr ′ ∈ tr−(ph) : ¬(tr ′ ≺f(ph) tr ∨ tr ≺f(ph) tr
′).

74

By definition of f, all transactions of its output g-history besides trw and tr r are
concurrent; thus they are not real-time ordered with regard to each other.

Combining lemmas 2 to 4, we can deduce that any OP -witness of the g-history
must fulfil the same constraints with regard to transaction order as an SR-witness
of the input p-history. Thus, it can only exist iff an SR-witness for the input exists
proving Lemma 1 correct. While this proves the NP-hardness of the membership
problem for OP , we need to prove that OP is in NP as well. We show this by
proving that we can given a g-history and a witness (in the complexity sense, which
in this case is also the witness in the value opacity sense) verify in polynomial time
whether the g-history is opaque under OP . This is sufficient to show that OP is
in NP as an NTM can guess the correct witness (it has the same length as the
g-history) if it exists, and then verify it in polynomial time.

Lemma 5. Given two g-histories h and hs, it is determinable in polynomial time
whether hs is an OP-witness of h or not.

This proof is trivial as it is doable in polynomial time one needs to check for each
read whether the last committed write on it has a matching value and compare
the real-time orders of the g-histories. Combining Lemma 1 and Lemma 5, proves
the NP-completeness of the membership problem for OP .

Theorem 1 (Complexity of the membership problem for OP). The membership
problem for OP is NP-complete.

3.3 Comparison of Conflict Opacity and Value Opacity

In this section, we will be comparing the g-histories accepted by the membership
problem for CO and for OP and give assumptions under which OP is equivalent
to CO . This is based and expands on previous work of us [56]. In general,
both value opacity and conflict opacity are incomparable because of very specific
cases that are not necessarily relevant in actual TMs. We try to obtain more
meaningful results by making assumptions over the set of g-histories to exclude

75

h1 = B31
3 W31

3 (x , 1)W31
3 (y , 1)C31

3 B11
1 W11

1 (x , 2)W11
1 (y , 2)B21

2 R21
2 (x , 1)Inv11

1 (C)R21
2 (y , 2)C21

2

h2 = B11
1 W11

1 (x , 1)C11
1 B21

2 R21
2 (x , 2)C21

2

h3 = B11
1 B21

2 W11
1 (x , 1)W21

2 (x , 1)B31
3 W11

1 (y , 2)W21
2 (y , 3)C11

1 R31
3 (x , 1)C21

2 R31
3 (y , 3)C31

3

h3,s = B11
1 W11

1 (x , 1)W11
1 (y , 2)C11

1 B21
2 W21

2 (x , 1)W21
2 (y , 3)C21

2 B31
3 R31

3 (x , 1)R31
3 (y , 3)C31

3

31h1 11

21

11h2 21

11h3 31 21

Figure 3.13: G-Histories showing that CO does not imply OP (h1, h2) and OP does not imply
CO (h3 with its OP -witness h3,s) and their respective conflict graphs.

the cases where the issues occur. We will first compare the conditions under no
assumptions and then under two increasingly stricter sets of assumptions. The
first set of assumptions establishes a most-recent reads-from relation for value
opacity, and the second set is a restriction on write and read sets. This restriction
is that all transactions must read each variable they write to. Under the first set
of assumptions, we show that CO implies OP but not vice versa and under the
second we show that OP is equal to CO . The latter is a new result that is not
contained in our previous work.

No assumptions Without any assumptions value opacity and conflict opacity
have an intersection, but they are not subsets of each other. We will illustrate
this relation by giving an example g-history (shown in Figure 3.13) for each type
of g-history that is correct under only one of the conditions.

One can easily see CO does not imply OP because of two issues. For one, CO
does not consider commit invokes to be a conflicting event, but OP allows for
commit invoked transactions to be considered committed and thus their writes
to be readable. OP , on the other hand, allows transactions to read the values of
commit invoked transactions.

76

B31
3 W31

3 (x , 1)W31
3 (y , 1)C31

3 B11
1 W11

1 (x , 2)W11
1 (y , 2)B21

2 R21
2 (x , 1)C11

1 R21
2 (y , 1)C21

2

Figure 3.14: Realistic g-history example for values deciding value opacity of a history

An example of this is h1 which is obviously not value opaque, but it would be
conflict opaque as the invoke does not cause any conflicts.

Second, CO does not factor in values as can be seen in its definition of conflicts.
An example of this is h2 in Figure 3.13. As one can see, its conflict graph is
acyclic, but the only possible OP -witness is the g-history itself, which is obviously
not legal. This leads to the following observation:

Observation 1. If a g-history is conflict opaque, it is not necessarily value opaque.

So summarizing, the main issue lies in that CO does not include values in its def-
inition and does not consider commit invoked transactions to be readable. While
the above g-histories are not overly realistic, a g-history similar to the one shown
in Figure 3.14 can be generated by snapshot based TMs, such as the one presented
by Riegel et al. [81]. In this g-history it is relevant what value of y is read to
determine whether the g-history is value opaque or not. However, conflict opacity
considers it not opaque in any case. In general, for a g-history its conflict order is
not necessarily the same as the order of transactions in its OP -witnesses.

For the other direction, OP also does not imply CO without further assump-
tions. An example of this is h3 in Figure 3.13. This g-history is opaque as can
be seen by looking at g-history h3,s. Its conflict graph is cyclic as 21 writes on x

and y and commits in between a read of x and y from transaction 31. From this
follows the observation.

Observation 2. If a g-history is value opaque, it is not necessarily conflict opaque.

Here the main culprit lies in the fact that value opacity does not factor in where
values originated from. While in CO the assumption is made that it is always
clear which transaction is being read, in value opacity an ambiguous value-based
reads-from relation is used. In h3 in Figure 3.13 transaction 11 writes 1 to x and
transaction 21 does the same. If these values were not the same, h3,s would not
be legal.

77

First set of assumptions In our previous work, we made two assumptions to
avoid these fairly specific issues: The unique writers assumption and the no-out-of-
thin-air reads assumption. The first requires each written value to be unique and
the second requires that only values from the most recent writer on a variable are
being read. Both together establish a most-recent reads-from relation for opacity.

The no-out-of-thin-air reads assumption requires that the values read by a trans-
action are the values from the most recent writer to the respective variables. That
means if a transaction reads on x, it reads the value written by the transaction
that most recently committed before the read event and wrote to x. This is the
implicit assumption behind the conflict order of CO .

Assumption 2 (No Out-Of-Thin-Air Reads). A g-history has no out-of-thin-air
reads when the value read by a read is always the value of the transaction which
committed most recently before the read and wrote to the variable of the read.

We define the most recent committed transaction for a read event as follows:

Definition 14. We define the last committed writer for a read event Rtr
t (var , val)

in g-history h, denoted as LWCh(R
tr
t (var , val)), as the transaction tr ′ s.t.

1. x ∈WS vo
h (tr ′),

2. coh(tr
′),

3. Ctr ′

thr(tr ′) <h Rtr
t (var , val)

4. and ¬(∃tr ′′ ∈ h : x ∈WS vo
h (tr ′′) ∧Ctr ′

thr(tr ′) <h Ctr ′′

thr(tr ′′) <h Rtr
t (var , val)).

Note that as mentioned in Chapter 2, we assume one transaction to not read the
same value multiple time from the same variable. Thus, the above definition is
well-defined for a given g-event and g-history. For example, the following g-history
falls under the assumption:

B31
3 B11

1 W11
1 (x , 2)W31

3 (x , 1)C31
3 C11

1 B21
2 R21

2 (x , 2).

78

If transaction 21 were to read 1 for variable x, it would no longer fall under this
assumption.
The unique writer assumption assumes that there are no duplicate values. This
leaves no ambiguity to which write is read by a read. This is a reasonable assump-
tion when for instance timestamps are used.

Assumption 3 (Unique Writers). A g-history has unique writers whenever the
value written by each of its writes is pairwise different to the values written by
each other write of the g-history.

Given these assumptions, we can show that conflict opacity implies value opacity.

Lemma 6. Conflict opacity does imply value opacity under the assumption of
unique writers and no-out-of-thin-air-reads.

Proof. A more formal proof was done in our previous work [56]. We will present a
proof sketch here. If a g-history h is conflict opaque, a conflict order corresponding
to a serial g-history hs, in which each unfinished transaction is aborted, exists for
it. This g-history is obviously equivalent to a g-history in compl(h), preserves the
real-time order of h and is serial. So it is left to show it is legal. We show that by
proving LWCh(R

tr
t (var , val)) = LWChs (R

tr
t (var , val)). This in combination with

the no-out-of-thin-air-reads assumption proves our point. This claim follows from
the fact that for a variable the commits of all transactions writing on it and all
reads on that variable are ordered in the conflict order as they are in h. Thus, if
in h a transaction is the most recent writer on a variable before a read on that
variable, it is also in hs. By the no-out-of-thin-air-reads assumption, this also
means that their values match; thus, hs is legal.

Even under these assumptions OP does not imply CO .

Lemma 7. Value opacity does not imply conflict opacity even under the assump-
tion of unique writers and no-out-of-thin-air-reads.

Proof. See the g-history in Figure 3.15. Its conflict graph is trivially cyclic. But
there exists an OP -witness with the serial order 31 21 11.

For OP to imply CO , we need to make further assumptions which we do in the
form of the read-before-update assumption.

79

B11
1 B31

3 B21
2 W31

3 (x , 1)W11
1 (x , 2)C31

3 R21
2 (x , 1)C11

1 W21
2 (x , 3)C21

2

Figure 3.15: CO does not imply OP under assumptions.

h1 = B11
1 B21

2 W11
1 (x , 1)R21

2 (x , 0)C11
1 W21

2 (x , 2)C21
2

h2 = B11
1 B21

2 W11
1 (x , 1)R11

1 (x , 0)C11
1 R21

2 (x , 1)W21
2 (x , 2)C21

2

h3 = B11
1 B21

2 R21
2 (x , 0)R11

1 (x , 0)C11
1 W21

2 (x , 2)C21
2

Figure 3.16: Examples for read-before-update assumption.

Read-before-update-assumption This assumption - as with SSR and SR

- leads to OP and CO being equivalent. We will first state the assumption and
then discuss what properties it establishes for the OP -witness of g-histories.

Assumption 4. A g-history h fulfils the read-before-update assumption whenever
for each completed transaction tr it holds that

RS vo
h (tr) ⊇WS vo

h (tr).

In Figure 3.16, three examples are shown, h1 does not fulfil the assumption, h2
and h3, on the other hand, do. In the following we will show that for a g-history
under the no-out-of-thin-air, unique writers and read-before-update assumptions
the real-time order of any OP -witness of it is a superset of the conflict order of it.
We will do this by showing that two things hold for an arbitrary g-history:

1. The real-time order of any of its OP -witness is a superset of the conflict
order of all write/write conflicts of it.

2. The real-time order of any of its OP -witness is a superset of the conflict
order of all read/write and write/read conflicts of it.

We start by showing that for an arbitrary g-history two committed transactions
writing to at least one shared variable are ordered the same in itself and any OP -
witness. First, we look at why this is not the case without the read-before-update

80

assumption. The following g-history is an example of this:

B11
1 B31

3 B21
2 W31

3 (x , 1)C31
3 R21

2 (x , 1)W11
1 (x , 2)C11

1 W21
2 (x , 3)C21

2 .

The write of transaction 11 is never read, and thus in an OP -witness it can be
put in the beginning of an OP -witness as in:

B11
1 W11

1 (x , 2)C11
1 B31

3 W31
3 (x , 1)C31

3 B21
2 R21

2 (x , 1)W21
2 (x , 3)C21

2 .

But when the read-before-update assumption is introduced, this is no longer pos-
sible. This is because for each transaction that writes on a variable x this write is
always being read in any OP -witness, except if the commit of the transaction is
the last commit of all transactions writing to x. Modifying the previous g-history,
one of the possible results is this g-history:

B11
1 B31

3 B21
2 R31

3 (x , 0)W31
3 (x , 1)C31

3 R21
2 (x , 1)R11

1 (x , 1)W11
1 (x , 2)C11

1 W21
2 (x , 3)C21

2 .

As every write is read in a witness except the last one, this g-history cannot be
equivalent to any witness as two of its writes are not read. The next lemma states
that the write/write part of the conflict order of a g-history is a subset of the
real-time order of any of its OP -witnesses under our assumptions.

Lemma 8. Given a g-history h fulfilling the no-out-of-thin-air-reads, unique writ-
ers and read-before-update assumptions, for any OP-witness hs of it, it holds that

{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈WS vo
h (tr1) ∩WS vo

h (tr2),C
tr1
thr(tr1)

<h Ctr2
thr(tr2)

} ⊆ hs.RT

Proof Sketch. We show this by first showing that h can only be opaque if for each
committed transaction tr writing to a variable x there exists another transaction
tr ′ that reads x from tr . The only exception to this is if tr is the transaction
writing to x and committing last in h. We denote it tr lx here. Assume this is not
the case, for an OP -witness to be legal tr must be the last transaction writing to
x and committing in hs else it is read by the next transaction writing to x and

81

committing by the read-before-update assumption. But then the write on x by
tr lx is being read in hs as there is at least one transaction ordered after it writing
to x and thus also reading from it.

Now we show that for each variable x, if two transactions writing on it are
adjacent (meaning there is no other commit of a transaction writing on x in
between), then they are also adjacent in hs. For adjacent transactions tr 1 and
tr 2 with tr 1 committing first it must hold that tr 2 reads x from tr 1 in hs by our
assumptions. Thus, they must also be adjacent in hs else it is not legal by the
unique writers assumption. This means that the order of commits of transactions
writing on x is also their order in hs. From this the lemma follows.

Now we show the second claim made above. In the conflict order of conflict
opacity, a read on a variable is totally ordered with each commit of transactions
writing to its variable. For value opacity without the read-before-update assump-
tion, an OP -witness for a g-history does not necessarily follow that constraint.
An example of this is the following g-history:

B11
1 B31

3 B21
2 W31

3 (x , 1)W11
1 (x , 2)C11

1 C31
3 R21

2 (x , 1)C21
2 .

For which the following g-history is an OP -witness:

B31
3 W31

3 (x , 1)C31
3 B21

2 R21
2 (x , 1)C21

2 B11
1 W11

1 (x , 2)C11
1 .

As one may note from the example, not only is the commit of transaction 11

ordered oppositely with the read on x but also the commit of transaction 31. The
next g-history is one of the possible results of adding read events to the previous
g-history so that the result fulfils the read-before-update assumption:

B11
1 B31

3 B21
2 W31

3 (x , 1)R11
1 (x , 0)W11

1 (x , 2)C11
1 R31

3 (x , 2)C31
3 R21

2 (x , 1)C21
2 .

For this g-history the only OP -witness is:

B11
1 R11

1 (x , 0)W11
1 (x , 2)C11

1 B31
3 R31

3 (x , 2)W31
3 (x , 1)C31

3 B21
2 R21

2 (x , 1)C21
2 .

82

As by the properties discussed in the previous paragraph, an OP -witness with
transaction 11 placed at the end is no longer possible. For a given variable the
write/write conflicts order all transactions writing to that variable. For an OP -
witness to be legal, each read of that variable must read from the transaction that
wrote to its variable and committed most recently to it in the g-history (because
of the no-out-of-thin-air and unique writer assumptions). This means it must be
ordered directly after it, which means it is ordered after each other writer on its
variable that came before it in the g-history, and it is also ordered before each
other writer on its variable that came after it in the g-history. Thus, we can state
the following lemma, saying that the real-time order of any OP -witness for a given
g-history contains the union of the R/W and W/R conflicts.

Lemma 9. Given a g-history h fulfilling the no-out-of-thin-air-reads, unique writ-
ers and read-before-update assumptions, for any OP-witness hs of it, it holds that

{(tr 2, tr 1) | tr 1, tr 2 ∈ h, ∃var ∈ RS vo
h (tr1) ∩WS vo

h (tr2),C
tr2
thr(tr2)

<h Rtr1
thr(tr1)

(var)}
∪

{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈WS vo
h (tr1) ∩ RS vo

h (tr2),R
tr1
thr(tr1)

(var) <h Ctr2
thr(tr2)

}
⊆

hs.RT .

Proof Sketch. Let h be a g-history fulfilling the no-out-of-thin-air, unique writers
and read-before-update assumptions. Let hs be an arbitrary OP -witness of it.
Let ev r = Rtr

thr(tr)(var , val) be an arbitrary read in h. Let ev c = Ctr ′

thr(tr ′) be a
commit of a transaction writing to var . If tr ′ is the transaction ev r reads from,
then tr is ordered after tr ′ in hs, with no other writer on var in between. Else
hs would not be legal. Let tr ′′ be another writer on var . If its commit is ordered
before ev c is in h, then by Lemma 8 it is ordered before tr ′ and in hs and thus
also before tr . If its commit is ordered after ev c, then by the facts that there is
no other writer on var in between tr ′ and tr , and that tr ′′ must be ordered after
tr ′ by Lemma 8 it is ordered after tr .

Combining both lemmas, we can state the following lemma:

83

Lemma 10. Given a g-history h fulfilling the no-out-of-thin-air-reads and read-
before-update assumptions, for any OP-witness hs of it, it holds that

{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈WS vo
h (tr1) ∩WS vo

h (tr2),C
tr1
thr(tr1)

<h Ctr2
thr(tr2)

}
∪

{(tr 2, tr 1) | tr 1, tr 2 ∈ h, ∃var ∈ RS vo
h (tr1) ∩WS vo

h (tr2),C
tr2
thr(tr2)

<h Rtr1
thr(tr1)

(var)}
∪

{(tr 1, tr 2) | tr 1, tr 2 ∈ h, ∃var ∈WS vo
h (tr1) ∩ RS vo

h (tr2),R
tr1
thr(tr1)

(var) <h Ctr2
thr(tr2)

}
⊆

hs.RT .

This together with the previous paragraph leads to the following theorem:

Theorem 2. Under the unique writers, no-out-of-thin-air-reads and read-before-
update assumptions a g-history is opaque iff it is conflict opaque.

84

4
Correctness Problem

In this chapter, we will present our results regarding the correctness problem for
strict state serializability and value opacity. The result for strict state serializ-
ability is based on previous work of us [58], while the result for value opacity is a
new contribution. We will first present the related work, then the result for state
serializability and finally the result for value opacity.

4.1 Related Work

In this section, we will discuss the related work regarding the correctness prob-
lem. As in the previous chapter, we will divide the related work into publications
regarding derived correctness conditions and publications regarding correctness
conditions specifically designed for TMs. Overall, the related work is a lot more
sparse in terms of theoretical results compared to the membership problem for
the same conditions. Still, there has been a good number of model checking
approaches presented for TMs.

Derived correctness conditions The correctness problem for sequential
consistency for arbitrary implementations is undecidable [1]. Alur et al. showed

85

Condition Complexity of correctness problem
Sequential consistency Undecidable [3]
Linearizability EXPSPACE [3]
View serializability Unknown
Strict view serializability Unknown
State serializability Unknown
Strict state serializability Decidable a (Section 4.2)
Conflict serializability PSPACE [37]
Causal serializability Unknown
Snapshot isolation Unknown
Opacity Decidable b (Section 4.3)
Conflict opacity PSPACE (reduction to conflict serializability)
DU opacity Unknown
TMS 1 Unknown
TMS 2 Unknown
VWC Unknown

aUnder assumptions, see Section 4.2
bUnder assumptions, see Section 4.3

Table 4.1: Complexity of the correctness problems for different correctness conditions

that the problem is still undecidable under the assumption of read/write objects
and more than 3 threads [3]. There are several works showing that under specific
assumptions for the implementation, system, number of threads, variables and
values and similar aspects sequential consistency is decidable [49, 78, 20, 17, 12].

The correctness problem for linearizability is in EXPSPACE as shown by Alur
et al. [3]. Bouajjani et al. showed that for an unbounded number of threads this
problem is undecidable [15]. However, it is EXPSPACE-complete whenever the
linearization point of each operation is known beforehand. As with sequential con-
sistency, there are several works showing that, even for an unbounded number of
threads, the problem is decidable for specific types of programs/implementations
[16, 89, 7, 68, 18, 66].

For view serializability there is no work regarding the general correctness prob-
lem or subclasses of it. As Farzan et al. put it, the correctness problem for view
serializability is hard, and the condition itself is not “well-behaved” [36] as it for

86

example is not monotonic (if a history is correct each projection on a subset of
transactions must also be correct).

We have shown strict state serializability to be decidable under assumptions
in previous work [58], for which we present an improved version in this thesis in
Section 4.2 following this section. As with view serializability there is no work
with regard to other subclasses of this problem.

The most studied serializability criterion with regard to the correctness problem
is conflict serializability. Model checking a DFA with a bounded number of threads
for conflict serializability is in PSPACE. This was shown by Farzan et al. who fixed
the errors of an earlier proof published by Alur et al. [37, 3]. Boujjani et al. showed
that the variant of the correctness problem with an unbounded number of threads
is EXPSPACE-complete [15]. Guerraoui et al. gave a reduction theorem making
it possible to verify conflict serializability with a real-time order on TMs that fulfil
certain properties [42]. There is some work that is more practical with regard to
verifying serializability variants for TMs [71, 19, 33].

There is no work for the correctness problem of causal serializability and snap-
shot isolation or the verification of these conditions for TMs.

Correctness conditions specifically designed for TMs For value
opacity we present a proof that value opacity with an unambiguous value-based
reads-from relation is decidable under assumptions in Section 4.3. There is no
further work with regard to this specific problem. There has been work about
making value opacity easier to verify for TMs. Armstrong et al. developed a
method where opacity verification was simplified by using existing results for
linearizability [4]. They showed that to verify the value opacity of an implemen-
tation it is sufficient to show that it linearizes to a value opaque abstraction.
Lesani and Palsberg presented a condition called markability, which is equivalent
to explicitly prefix-closed value opacity, but breaks it down into 3 subconditions.
These conditions, according to the authors, are easier to prove for TM algorithms
as they are closer to the design intuitions of TMs compared to value opacity
[63]. We have published research about the application of data independence for
checking value opacity [57]. There also have been several proofs of opacity for

87

specific TM implementations [25, 28, 83, 63, 24].
With regard to conflict opacity, there is no work for the correctness problem

definition we use in this thesis. The results of Farzan et al. and Bouajjani et
al. for conflict serializability can be used here [37, 15] as conflict opacity can be
reduced to conflict serializability by transforming each aborted transaction into
a read only committed transaction. Guerraoui et al. gave a reduction theorem
making it possible to verify conflict opacity on TMs fulfilling certain properties
[42].

There is no work for the theoretical correctness problem for DU-Opacity, VWC
and TMS 1 and 2. TMS 2 was proven for specific TMs [28, 24, 83], mostly as a
means to prove their value opacity.

4.2 The Correctness Problem for SSR− Is Decidable

In this section, we show decidability for SSR−, a subclass of SSR+. In SSR− we
are restricted to p-histories in which all transactions are live or unfinished. Note
that with the definition of the correctness problem used in this thesis the number
of threads and variables used in each implementation is finite, as implementations
are modeled as DFAs.

The decidability of the correctness problem follows from the fact that we can
construct (approximations of) equivalence classes of p-histories. The equivalence
classes capture the strict state serializability of p-histories and their extensions.
Then we can reduce the given implementation automaton to a finite automaton
whose states contain these equivalence classes. The language of this automaton
is empty if and only if all p-histories generated by the implementation automaton
are strictly serializable. The assumption of all transactions being live or unfin-
ished limits the information that characterizes the states of the equivalence class
automaton.
In the following we assume (1) all p-histories to contain live or unfinished transac-
tions only and (2) an implementation automaton to only accept words (p-histories)
in which all transactions are finished. We can therefore employ a notion of equiv-
alence of two p-histories meaning both share (a) the same set of transactions and

88

q0 q1 q2 q3 q4
Rt1 [x]

Rt2 [x, y]

Wt2 [x, y]
Wt2 [x, y] Wt1 [x]

Figure 4.1: Implementation automaton example: Iex.

(b) same reads-from relation (for all transactions, not just live ones). The notion
of SSR−-witness used in the sequel is based on this adapted equivalence definition.

4.2.1 Compact Representation

We start by looking at a naive approach for generating all p-histories of an im-
plementation automaton and explain how to compress these infinitely many p-
histories to some finite structure. In this section, we use the example implemen-
tation automaton Iex which can be seen in Figure 4.1. It accepts the language

L(Iex) = TwRt1
[x]
(
Rt2

[x , y]Wt2
[x , y]

)+
Wt1

[x]Tr,

where an entire transaction of the form Rj
ti [x]W

j
ti [x] is for brevity denoted as

Tj
ti [x]. As one can easily see, no p-history it produces is serializable. Given an

arbitrary p-history produced by it, in any SSR−-witness of this history either all
transactions of t2 must happen before or after the transaction of t1 as else the
transactions of t2 do not read x from each other. Let tr 1 be the first transaction
of t1 and tr 2 be the last transaction of t2. In the first case, tr 1 does not read x

from trw but from tr 2. In the second case, tr r does not read x from tr 1 but from
tr 2. Thus, there can be no SSR−-witness for any p-history in L(Iex).

Given such an implementation automaton, a naive approach would be to simply
explore the entire state space of the implementation, i.e. to generate all of its p-
histories and check them for strict serializability. An excerpt of the state space
(shown as a graph) of the implementation automaton Iex can be seen in Figure 4.2.
The upper half of each node shows the current state of the automaton. The lower
half shows the p-history of the p-events executed so far and the set of SSR−-
witnesses for that p-history. In this example, all transactions are not coloured, we

89

q0(
ϵ
∅

)

q1(
R11

t1
[x]{

R11
t1
[x]
})

q2(
R11

t1
[x]R21

t2
[x , y]{

R11
t1
[x]R21

t2
[x , y],R21

t2
[x , y]R11

t1
[x]
})

q3(
R11

t1
[x]T21

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]

})

q1(
R11

t1
[x]T21

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]

})

q2(
R11

t1
[x]T21

t2
[x , y]R22

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]R22

t2
[x , y]

})

q4(
R11

t1
[x]T21

t2
[x , y]W11

t1
[x]

∅

)

q3(
R11

t1
[x]T21

t2
[x , y]T22

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]T22

t2
[x , y]

})

q1(
R11

t1
[x]T21

t2
[x , y]T22

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]T22

t2
[x , y]

})

q2(
R11

t1
[x]T21

t2
[x , y]T22

t2
[x , y]R23

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]T22

t2
[x , y]R23

t2
[x , y]

})
q3(

R11
t1
[x]T21

t2
[x , y]T22

t2
[x , y]T23

t2
[x , y]{

R11
t1
[x]T21

t2
[x , y]T22

t2
[x , y]T23

t2
[x , y]

})

q4(
R11

t1
[x]T21

t2
[x , y]T22

t2
[x , y]W11

t1
[x]

∅

)

q4(
R11

t1
[x]T21

t2
[x , y]T22

t2
[x , y]T23

t2
[x , y]W11

t1
[x]

∅

)

Wt2
[x , y]

Wt1
[x]

Wt2
[x , y]

Wt1
[x]

Rt1
[x]

Rt2
[x , y]

Wt2
[x , y]

Wt2
[x , y]

Wt1
[x]

Rt2
[x , y]

Wt2
[x , y]

Rt2
[x , y]

Wt2
[x , y]

Figure 4.2: Excerpt of state space of Iex (Figure 4.1) (augmented transactions not shown)

90

also left out trw and tr r for brevity.
The problem with this approach is easy to see. The state space of implemen-

tations can be infinite as there are infinitely many p-histories. So our approach
is to reduce the state space by merging nodes which behave similarly. In the
graph in Figure 4.2, these are marked with the same color. For example, con-
sider the green states (first column, third, fifth and seventh state). Whenever
we execute Wt2

[x , y]Wt1
[x] from a green node, we end up in a node with imple-

mentation state q4 and an empty SSR−-witness, i.e. the current p-history is not
strictly serializable. Whenever we execute Wt2

[x , y], we either end up in a node
with implementation state q3 or q1. In both cases the corresponding p-history is
strictly serializable. So summarizing, we consider two nodes as behaving similarly
whenever:

• they contain the same implementation automaton state

• and when after appending identical p-events to their respective histories,
the resulting histories are both strictly serializable or are both not.

Merging two such nodes into one does not change the accepted language of the
automaton. We show our main result by proving that such a graph with merged
nodes has (a) a finite number of nodes (and thus is representable as a finite
automaton) and (b) this automaton is effectively constructable.

We start by formalizing the above similarity on p-histories. Recall that the con-
catenation of two histories does not include their augmented transactions. Instead,
their non-augmented transactions are concatenated, and then the new history is
assumed to be augmented again.

Definition 15 (SSR-extension equivalence). Two p-histories ph, ph ′ ∈ PH are
SSR−-extension equivalent (ph ≡ext ph ′) iff ∀n ∈ N, ∀pev 0 . . . pevn ∈ PEvn+1

either:

• ph · pev 0 . . . pevn and ph ′ · pev 0 . . . pevn are both strictly serializable

• or ph · pev 0 . . . pevn and ph ′ · pev 0 . . . pevn are both not strictly serializable.

91

The question is how to determine whether two p-histories are SSR−-extension
equivalent. The general idea is to reduce a p-history to the essential information
needed to determine whether appending p-events keeps the p-history strictly se-
rializable or not. We call this information SSR−-data. Whenever two p-histories
have the same SSR−-data, they are SSR−-extension equivalent. Below, we will
show that there are only finitely many different (valid) SSR−-data for a given
number of threads and variables. This is key to our decidability result.

The remainder of this section is structured as follows. We first present candidate
sets - sets of potential SSR−-witnesses - which are an explicit representation of
the implicit data needed to compute the strict serializability of a p-history. Based
on this concept, we present a compression method for pairs of p-histories and
candidates which compresses them into equivalence classes. Then we show how
this method can be used to compress complete candidate sets and their p-histories
to SSR−-data. Finally, using SSR−-data we present the automata reduction con-
struction which proves the decidability of SSR−.

Candidate set The (witness) candidate set is a summarization of the implicit
information in a p-history that is needed to compute its serializability. Candidate
sets possess a property called the supersequence property, which enables their com-
pression and is discussed later on. In this paragraph, we will define candidate sets
and introduce the supersequence property and its implications for the extension
of candidate sets for p-histories. This will lead to the compression presented in
the next paragraph.

The candidate set of a p-history overapproximates the set of its SSR−-witnesses
and is defined as follows.

Definition 16 (Candidate set). The candidate set of a p-history ph, Cph is defined
as the set of all p-histories, which

• contain the same events as ph,

• are serial

• and preserve the real-time order of ph.

92

ph ′
e = T11

t1
[y]R21

t2
[x , y]R12

t1
[x] → phe = T11

t1
[y]R21

t2
[x]

Cph ′
e
=

{
T11

t1
[y]R21

t2
[x , y]R12

t1
[x]

T11
t1
[y]R12

t1
[x]R21

t2
[x , y]

}
→ Cphe

=
{
T11

t1
[y]R21

t2
[x , y]

}
Figure 4.3: Example of the supersequence property for candidate sets.

So basically the candidate set of ph is the set of p-histories that fulfil every con-
dition to be an SSR−-witness of ph, except having an equal reads-from relation.
Candidate sets possess the supersequence property. This property expresses that
given a history and an extension of it, each candidate of the extended p-history
is a supersequence of a candidate of the unextended p-history.

Proposition 1 (Supersequence property). Given a p-history ph and an arbitrary
extension ph ′ of it, it holds that

∀ph ′
c ∈ Cph ′ , ∃phc ∈ Cph : phc ⊑ ph ′

c.

Note that the supersequence and subsequence definitions do not include aug-
mented transactions. We disregard augmented transactions completely for this
paragraph as their order in each p-history is completely identical and given by
definition. Also, note that the additional events of ph ′

c in the definition are ex-
actly the events by which ph is extended.

We will argue why the supersequence property holds for the extension by one
p-event pev , which by induction implies the property for arbitrary extensions. For
this explanation let ph be a p-history and ph ′ be an extension of it. We use the
example from Figure 4.3 to illustrate the argument. First, note that the real-time
order of ph ′ consists of the real-time order of ph united with the set containing all
rt-elements involving pev , denoted RTpev , which is formalized as follows

ph ′.RT = ph.RT ∪RTpev .

The set RTpev is non-empty iff pev is a read, and both sets are obviously disjoint.

93

In Figure 4.3, ph ′
e has the real-time order of phe plus the rt-elements involving 12.

In this case, there is only one rt-element (11, 12). By definition, any candidate of
ph ′, denoted ph ′

c, preserves its real-time order:

ph.RT ∪RTpev ⊆ ph ′
c.RT .

Now, if we remove pev , all rt-elements involving it are removed as well which
results in

ph.RT ⊆ ph ′
c.RT\RTpev .

Let ph ′
c− be ph ′

c with pev removed, then it holds that

ph.RT ⊆ ph ′
c−.RT .

As ph ′
c− is trivially serial, it is a candidate for ph. In the example, for the candidate

T11
t1
[y]R12

t1
[x]R21

t2
[x , y] becomes T11

t1
[y]R21

t2
[x , y], which is a candidate of phe.

This property allows us to define a function for the extension of candidate sets
that models how a candidate set changes when its p-history is extended. We will
do this for extensions of one event. This can inductively be expanded to extensions
by multiple events. Assume we have a p-history ph that is extended to ph ′ by
pev . Each candidate phc of ph can spawn a number of candidates for ph ′, which
are its supersequence. All of its supersequences can be generated by inserting
pev at arbitrary points in the p-history, but not all of them are candidates. In
the following, we define which insertion points lead to candidates. We distinguish
between the case where pev is a write and where it is a read. First, the extension
by a write event will be covered, and then the extension by a read event will be
covered.

For a write there is only one insertion point that results in a candidate for
the extended p-history. It must be inserted directly after the last read of its
transaction, otherwise the resulting p-history is not serial. If it is inserted that
way, new rt-elements can be added to the real-time order of the candidate but
none are removed. This preserves the real-time order of ph ′ because the real-time
order of ph ′ is equal to the real-time order of ph. An example of the extension of

94

phe = R21
t2
[z]R11

t1
[]W21

t2
[x]

phe,c = R11
t1
[]R21

t2
[z]W21

t2
[x]

ph ′
e = R21

t2
[z]R11

t1
[]W21

t2
[x]W11

t1
[z]

ph ′
e,c1

= R11
t1
[]W11

t1
[z]R21

t2
[z]W21

t2
[x]

ph ′
e,c2

= R11
t1
[]R21

t2
[z]W21

t2
[x]W11

t1
[z]

Wt1
[z]

insert W11
t1
[z]

insert W11
t1
[z]

Figure 4.4: A p-history and its candidates extended with a write event

ph = R11
t1
[]R21

t2
[]W21

t2
[x , y]W11

t1
[x]R12

t1
[y] ph ′ = R11

t1
[]R21

t2
[]W21

t2
[x , y]W11

t1
[x]R12

t1
[y]R22

t2
[x]

phs,c = R21
t2
[]W21

t2
[x , y]R11

t1
[]W11

t1
[x]R12

t1
[y]

ph ′
s,c1

= R21
t2
[]W21

t2
[x , y]R11

t1
[]W11

t1
[x]R12

t1
[y]R22

t2
[x]

ph ′
s,c2

= R21
t2
[]W21

t2
[x , y]R11

t1
[]W11

t1
[x]R22

t2
[x]R12

t1
[y]

ph ′
s,c3

= R21
t2
[]W21

t2
[x , y]R22

t2
[x]R11

t1
[]W11

t1
[x]R12

t1
[y]

Rt2
[x]

insert Rt2
[x]

insert Rt2
[x]

insert Rt2
[x]

Figure 4.5: A p-history and its candidates extended with a read event.

the candidates by a write is shown in Figure 4.4. There is only one valid insertion
point of Wt1

[z] in phe,c, which is behind the last read of transaction 11, resulting
in phe,c1 . The real-time orders of phe and ph ′

e are equal as a write is appended
at the end. In ph ′

e,c1
transaction 11 is now real-time ordered before 21, which it

is not in phe,c. It preserves the real-time order of ph ′
e, which is empty (excluding

the augmented transactions). Any other insertion point does not yield a serial
p-history, as exemplarily shown in phe,c2 .

When appending a read to ph, the transaction of the read is real-time ordered
after every other finished transaction in ph ′. Thus, to preserve the real-time order
of ph ′, the read must be inserted after the last write in phc. Adding a read at that
point always results in a serial p-history. In the example in Figure 4.5, ph ′

s,c1
and

ph ′
s,c2

show such insertions for phs,c. The insertion for ph ′
s,c3

shows an example

95

of an insertion not following the rules described above. In that case, it does not
preserve the real-time order of ph ′

s.

Next, we define the insertion function which upon input of a candidate and a
p-event returns a set containing all valid insertions following the above rules. We
define an insertion function ins for writes and reads separately and combine them.
Before that, we introduce some notation that is needed in the further text.

Definition 17 (Notation). Let ph be an arbitrary p-history and tr be an arbitrary
transaction of it, then let

• st(ph) be the subsequence of ph that starts at the first p-event of ph and
ends at the last write of ph,

• en(ph) be the subsequence of ph which includes all p-events after the last
write,

• add(ph, pev , n) be ph with pev inserted at index n,

• pev tr,rd
ph be the read event of tr in ph,

• pev tr,wr
ph be the write event of tr in ph, if it exists

• and lsInd(ph) be the last index of ph.

Given this notation, we can define the insertion function for a read, a write and
the overall insertion function.

Definition 18 (Insertion function read). The insertion function for reads is de-
noted insr : PH × PEv → 2PH. On input of a serial p-history phc and a read
p-event pev , it returns the set

{st(phc) · add(en(phc), pev , n) | 0 ≤ n ≤ lsInd(en(phc))}.

Definition 19 (Insertion function write). The insertion function for writes is
denoted insw : PH × PEv → 2PH. On input of a serial p-history phc =

96

pev 0 . . . pev
tr,rd
phc

. . . pevn and a write p-event pev of transaction tr , it returns the
set

{pev 0 . . . pev
tr,rd
phc

pev . . . pevn}.

Definition 20 (Insertion function). The insertion function is denoted ins : PH×
PEv → 2PH. On input of a serial p-history phc and a p-event pev , it returns a set
of p-histories PHc which is either

1. insw(phc, pev), if pev is a write,

2. or insr(phc, pev), if pev is a read.

We also extend ins to arbitrary p-event sequences by first applying it to the input
p-history and the first p-event of the sequence, then applying it to every element
of the resulting set of the first application and the second event of the sequence
and so on.

As we have stated above, inserting a p-event in such a way into a candidate of a
p-history yields a candidate of this p-history extended by that p-event. We show
that given an arbitrary p-history ph and its extension ph ′ by an arbitrary p-event
pev , applying the insertion function with pev to each candidate of ph yields a
number of candidate sets whose union is equal to the candidate set of ph ′.

Proposition 2 (Generation of candidates by insertion function). Given a p-
history ph and a p-event pev , it holds that∪

phc∈Cph

ins(phc, pev) = Cph·pev .

The proof of this proposition can be found in Appendix B.

History candidate pairs The next question is then how to compress a p-
history and its candidate set to SSR−-data in such a way that if this SSR−-data
is identical for two p-histories, they are SSR−-extension equivalent. The first step

97

towards this is to look at single candidates with their respective p-history instead
of looking at complete candidate sets with their respective p-history. A p-history
ph and its candidate phc are treated as a pair (ph, phc) called hc-pair (history
candidate pair). An extension of an hc-pair refers to the extension of both its
members. An hc-pair is called consistent iff its members are p-equivalent. We
group multiple hc-pairs into an equivalence class if they share a broken down
notion of extension equivalence. The notion is defined as follows.

Definition 21 (Extension equivalence for hc-pairs). Given two p-histories ph, ph ′

and candidates phc ∈ Cph and ph ′
c ∈ Cph ′ , the hc-pair (ph, phc) is extension

equivalent to the hc-pair (ph ′, ph ′
c), denoted as (ph, phc) ≡ext (ph

′, ph ′
c) iff for any

arbitrary p-event sequence seq it holds that

∃phc,ins ∈ ins(phc, seq) : ph · seq ≡ phc,ins ↔ ∃ph ′
c,ins ∈ ins(ph ′

c, seq) : ph
′ · seq ≡ ph ′

c,ins.

We can approximate the equivalence classes for this notion. Our approximation
uses the fact that we can divide all rf-elements not involving tr r in a reads-from
relation of any p-history into two categories: fixed rf-elements and interruptible
rf-elements. A fixed rf-element is in the reads-from relation of any extension of
the p-history or the candidate. On the other hand, for an interruptible rf-element
there exists an extension of the p-history or the candidate where a (new or already
existing) transaction has a write in between the writing and reading transaction
of the rf-element and is now read by the reading transaction instead. We exclude
rf-elements involving tr r from the second category as then any interruption of
an rf-element in an hc-pair results in it being not consistent. As we will see
later on, interruptible elements then only exist in candidates. Thus, we will not
define them for p-histories. We will first define fixed rf-elements for p-histories
and candidates, then define interruptible rf-elements for candidates and then give
conditions of when rf-elements belong to one of these categories. We formally
define fixed elements and related notation.

Definition 22 (Fixed reads-from elements for p-histories). Given a p-history ph,

98

an rf-element (tr , tr ′, x) ∈ ph.RF is called fixed iff

∀seq ∈ PEv ∗ : (tr , tr ′, x) ∈ (ph · seq).RF .

Definition 23 (Fixed reads-from elements for candidates). Given a serial p-
history phc, an rf-element (tr , tr ′, x) ∈ ph.RF is called fixed iff

∀seq ∈ PEv ∗, ∀phc,ins ∈ ins(phc, seq) : (tr , tr
′, x) ∈ phc,ins.RF .

In the second case, such fixed elements exist because of the supersequence property.
If an rf-element rf = (tr , tr ′, x) is element of ph.RF fix for an arbitrary p-history
(or candidate) ph, we say fixph(rf). Let ph.RF fix be the set of fixed rf-elements
of an arbitrary p-history ph. Next we formally define interruptible elements in
candidates and introduce additional notation related to this definition.

Definition 24 (Interruptible rf-element). Given a candidate phc, an rf-element
(tr , tr ′, x) ∈ phc.RF with tr ′ ̸= tr r is called interruptible iff

∃seq ∈ PEv ∗, ∃phc,ins ∈ ins(phc, seq), ∃tr ′′ ∈ Tr : (tr ′′, tr ′, x) ∈ phc,ins.RF ∧ tr ′′ ̸= tr .

Note that all rf-elements involving tr r are not fixed and not interruptible by the
above definitions. If an rf-element rf = (tr , tr ′, x) is interruptible in candidate
phc, this is denoted intphc

(rf). An unfinished transaction tr ′′ is called interrupt-
ing for an interruptible rf in the context of a candidate whenever its read is in
between the write of tr and the read of tr ′. This is denoted intphc

(tr ′′, rf). For
an unfinished transaction tr ′′, a variable x is called an interrupting write when-
ever there exists an rf-element (tr , tr ′, x) s.t. tr ′′ is interrupting for this element.
This is denoted intphc

(tr ′′, x). The interrupting write set of an unfinished trans-
action in a candidate is the set of all interrupting writes of it. We define this
formally. Note that the set of all unfinished transactions of a p-history/candidate
phc (unfin(phc)) is bounded in size by |T |.

Definition 25 (Interrupting write set). Given a candidate phc and a transaction

99

phe = TwR
11
t1
[x]R21

t2
[]W11

t1
[y , z]R12

t1
[x , z]W12

t1
[x]R31

t3
[x]Tr

phce = TwR
21
t2
[]R11

t1
[x]W11

t1
[y , z]R12

t1
[x , z]W12

t1
[x]R31

t3
[x]Tr

Figure 4.6: Example showing fixed and interruptible rf-elements

tr ∈ unfin(phc), its interrupting write set is defined as

IWS phc
(tr) = {x ∈ Var | intphc

(tr , x)}.

For an arbitrary candidate phc, the mapping of unfinished transactions to their
respective interrupting write set is denoted IWS phc

. Next, we will discuss when
rf-elements are fixed or interruptible and then how we can use these conditions
to construct the equivalence classes. We start by giving the conditions for fixed
rf-elements in p-histories and then the conditions for interruptible and fixed rf-
elements in candidates.
See Figure 4.6 for the example we will use to illustrate the conditions. The reads-
from relation of phe (and phce) is

{(trw, 11, x), (trw, 12, x), (11, 12, z), (12, 31, x), (11, tr r, y), (11, tr r, z), (12, tr r, x)}.

In a p-history rf-elements are fixed whenever they do not involve tr r. The reason-
ing is that any extension appends p-events at the end. These new p-events are
not located before any read except the one of tr r. Thus, existing rf-elements are
not “interrupted”. The augmented transaction tr r does not follow this condition
as new p-events are placed before it.

Lemma 11 (Conditions for fixed rf-elements in p-histories). Given a p-history
ph, two arbitrary transactions tr , tr ′ and an arbitrary variable x, it holds for all
(tr , tr ′, x) ∈ ph.RF that

(tr , tr ′, x) ∈ ph.RF fix ↔ tr ′ ̸= tr r.

100

The proof of this lemma can be found in Appendix B. In Figure 4.6 (trw, 11, x),
(trw, 12, x), (11, 12, z), and (21, 31, x) are fixed rf-elements. As every element
that does not involve tr r is fixed in any p-history, there exists no interruptible
rf-elements in p-histories.

RF-elements in a candidate are fixed iff they do not involve tr r and the rf-
element is not interruptible. Trivially, if both conditions hold, the rf-element is
fixed. Now if an rf-element is fixed, it cannot be interruptible by definition, and
also if it involves tr r, it cannot be fixed as a write at the end of the candidate can
overwrite the writer of the rf-element before tr r.

Lemma 12 (Conditions for fixed rf-elements in candidates). Given a serial p-
history phc, two arbitrary transactions tr , tr ′ and an arbitrary variable x, it holds
for all rf = (tr , tr ′, x) s.t. rf ∈ phc.RF :

(tr , tr ′, x) ∈ phc.RF fix

↔
¬intphc

(rf) ∧ tr ′ ̸= tr r.

The proof of this lemma can be found in Appendix B. In the example in Figure 4.6,
if 21 wrote to x, (trw, 11, x) would be interrupted by the inserted write and be
replaced with (21, 11, x) in the extended candidate. Also, (11, 12, z) is the only
fixed rf-element in phce.

Next, we give conditions for interruptible rf-elements in candidates. Assume an
arbitrary p-history, a candidate of it, and an arbitrary rf-element (tr , tr ′, x) of the
candidate. An rf-element is interruptible iff one of the following two conditions
holds:

1. there is an unfinished transaction in between tr and tr ′

2. or there exists a thread without an event after the read of tr ′ and in addition
there exists no write after the read of tr ′.

Assume the candidate is extended by an arbitrary sequence seq. If the first condi-
tion holds and seq is a write of the unfinished transaction on x, then the rf-element

101

is interrupted. If the second condition holds and seq contains an arbitrary read of
the thread that has no event after the read of tr ′, then the first condition holds in
the extension, and the rf-element is interruptible in it and the original candidate.
Assume both conditions are untrue, meaning there is no unfinished transaction
in between tr and tr ′, and either there does not exist a thread without an event
after the read of tr ′ or there is a write after the read of tr ′. These conditions
stay the same in any extension of the candidate as all p-events in the candidate
are present in any extension of it and keep their relative order. Then, a write
cannot be directly inserted in between both transactions as there is no unfinished
transaction in between them. Additionally, a read cannot be inserted in between
them, which would enable inserting a write, because either all threads have an
event after tr ′, meaning the new read is inserted after, or there is a write after the
read of tr ′, meaning the new read is inserted after it. Thus, the rf-element is not
interruptible. Let pev t ,ls

phc
be the last event of t in phc.

Lemma 13 (Conditions for interruptible rf-elements in candidates). Given a can-
didate phc, an rf-element (tr , tr ′, x) ∈ phc.RF with tr ′ ̸= tr r is interruptible iff

∃tr ′′ ∈ Tr : unfinphc
(tr ′′) ∧ pev tr,wr

phc
<phc

pev tr ′′,rd
phc

<phc
pev tr′,rd

phc

∨ ¬(∃tr
′′ ∈ Tr : finphc

(tr ′′) ∧ pev tr ′,rd
phc

<phc
pev tr′′,wr

phc
)

∧
∃t ∈ T : pev t ,ls

phc
<phc

pev tr ′,rd
phc

 .

The proof of this lemma can be found in Appendix B. In Figure 4.6 in phce,

the first case applies to (trw, 11, x) because if 21 writes to x this write is inserted
directly after its read event and interrupts the rf-element. The second case applies
to (12, 31, x), if ph were to be extended by the p-event Rt1

[x] then one of the
possible extensions of the candidate would be

ph ′
ce = TwR

21
t2
[]R11

t1
[x]W11

t1
[y , z]R12

t1
[x , z]W12

t1
[x]R13

t1
[x]R31

t3
[x]Tr

where the first case applies to (12, 31, x) and a further addition of a write event

102

on x of transaction 13 would interrupt the rf-element. But if in the original
candidate there is a write after R31

t3
[x] or all other threads had an p-event after it,

then R13
t1
[x] cannot be inserted before it, making the rf-element not interruptible.

Compression In the following, we will explain how hc-pairs are grouped into
equivalence classes. An equivalence class is uniquely identified by a triple of the
format PH × PH× (Tr → 2Var) or a special symbol DM. The triple contains a
(compressed) p-history, a (compressed) candidate and all interrupting write sets
of all unfinished transactions in the candidate of the hc-pair. The special symbol
DM summarizes all hc-pairs that are non-consistent and for which each extension
is also non-consistent. We will give an algorithmic description of how to derive
the equivalence class of an hc-pair. Afterwards, we give the formal definitions,
which are not algorithmic but produce an equivalent result.

To explain the compression, we need to introduce the notion of mutually exclu-
sive rf-elements. We call two arbitrary rf-elements (tr , tr ′, x), (tr ′′, tr ′, x) mutually
exclusive iff tr ̸= tr ′′. For rf-elements rf and rf ′ we denote this mutex(rf , rf ′).
This means they cannot coexist in the same reads-from relation as a transaction
cannot read a variable from multiple transactions. The compression of an hc-pair
(ph, phc) is done in 3 steps.

1. Check whether one fixed rf-element in ph and one fixed element in phc are
mutually exclusive or one fixed rf-element of the p-history and one inter-
ruptible rf-element of its candidate are mutually exclusive. If yes, put the
hc-pair into the DM equivalence class. Skip the remaining steps.

2. Determine and save the interrupting write set for each unfinished transac-
tion.

3. Remove all transactions for which in the p-history all rf-elements are fixed
and in the candidate all rf-elements are fixed or interruptible. For each
read in the p-history and the candidate, if it reads a set of variables from a
removed transaction, remove all these variables from the read.

For the first step, we argue why these hc-pairs can be classified as DM. The first
case where both rf-elements are fixed is trivial. For the second case, we shortly

103

argue why even a change in the mutually exclusive rf-element by interruption
yields an rf-element that is mutually exclusive to the rf-element in the p-history.
Assume (tr , tr ′, x) is the fixed read in the p-history and (tr ′′, tr ′, x) the interrupt-
ible read in the candidate. If now the p-history and candidate are extended by a
write of transaction tr i which interrupts the rf-element in the candidate, the candi-
date then contains (tr i, tr

′, x) and the p-history contains (tr , tr ′, x) with tr ̸= tr i.
Thus, the rf-elements are mutually exclusive. If this read is interruptible itself,
the above argument holds again, so the hc-pair is doomed. Consider the following
example:

phe = TwR
31
t3
[x , z]R11

t1
[x]R21

t2
[]W11

t1
[y , z]W31

t3
[x]Tr

phce = TwR
31
t3
[x , z]W31

t3
[x]R21

t2
[]R11

t1
[x]W11

t1
[y , z]Tr.

The reads-from relation of phe contains the fixed rf-element (trw, 11, x). The
reads-from relation of phce contains the interruptible rf-element (31, 11, x). If the
write on x of 21 occurs, then the old rf-element is replaced by (21, 11, x), which is
still mutually exclusive to (trw, 11, x). Also, it is fixed since no more unfinished
transactions are in between the reading and writing transaction. So, in both cases,
the hc-pair will stay non-consistent for any extension no matter if 21 interrupts
the rf-element or not. This means the hc-pair belongs to the DM equivalence
class.

In the second step, all interruptible rf-elements in the candidate are taken into
account. As the hc-pair is not in DM, all of these have an identical rf-element in
the p-history of the hc-pair. Whenever a transaction can interrupt an arbitrary
rf-element (tr , tr ′, x), x is added to the interrupting write set of the transaction,
if it is not already present. All extensions of the hc-pair where the transaction
writes to x are not consistent. This is because the interrupting write set of a
transaction is identical, no matter whether a transaction potentially can interrupt
one or multiple rf-elements containing the same variable.
We use the hc-pair of Figure 4.7 as an example. Its candidate has the following

104

phe = TwR
11
t1
[x]R21

t2
[]W11

t1
[z]T31

t3
[z]R12

t1
[x , z]W12

t1
[x]Tr

phce = TwR
21
t2
[]R11

t1
[x]W11

t1
[z]T31

t3
[z]R12

t1
[x , z]W12

t1
[x]Tr

Figure 4.7: Example for equivalence class grouping.

two interruptible rf-elements:

(trw, 11, x) and (trw, 12, x).

Thus, the interrupting write set of 21 is {x}. There are no other interruptible
reads in the example. All interrupting write sets are saved.

In the third step, we first compare the fixed rf-elements of the p-history with
the fixed and interruptible rf-elements of the candidate. If there exists a non-
augmented transaction for which all rf-elements it occurs in are fixed in the p-
history and fixed or interruptible in the candidate, we delete it in both. We
also modify each read that reads a variable from such a transaction to no longer
read from this variable. This effectively removes all rf-elements the transaction
was occurring in. The rf-elements of such a transaction do not change in any
extension of the hc-pair and thus this part of the reads-from relation is identical
between the candidate and the p-history in any extension. If an rf-element is
interruptible in the candidate but fixed in the p-history, we can assume it to
be fixed under the condition it is not interrupted. In this case, the interrupting
write set already contains this information. Because of these facts, transactions
for which all rf-elements involving them are fixed in the p-history and fixed or
interruptible in the candidate can be forgotten. In the example of Figure 4.7,

{(trw, 11, x), (trw, 12, x), (11, 31, z), (31, 12, z), (31, tr r, z), (12, tr r, x)}

is the reads-from order for the p-history and the candidate. For the p-history the
following rf-elements are fixed:

(trw, 11, x), (trw, 12, x), (11, 31, z), (31, 12, z),

105

for the candidate the fixed rf-elements are

(11, 31, z), (31, 12, z)

and the interruptible rf-elements are

(trw, 11, x), (trw, 12, x).

Thus, we can remove the transaction 11. The end result would then be the tuple TwR
21
t2
[]R31

t3
[]W31

t3
[z]R11

t1
[x , z]W11

t1
[x]Tr,

TwR
21
t2
[]R31

t3
[]W31

t3
[z]R11

t1
[x , z]W11

t1
[x]Tr,

21→ {x}.


Note that the naming of the transaction is “changed” as the deletion of other
transactions has changed their relative place. This only is done in examples.
Identifiers such as tr are kept consistent in formal notation. Another hc-pair that
is a member of this equivalence class for example is(

TwR
11
t1
[x]R21

t2
[]W11

t1
[z]T31

t3
[z]R32

t3
[x , z]W32

t3
[z]R12

t1
[x , z]W12

t1
[x]Tr,

TwR
21
t2
[]R11

t1
[x]W11

t1
[z]T31

t3
[z]R32

t3
[x , z]W32

t3
[z]R12

t1
[x , z]W12

t1
[x]Tr

)
.

We are now going to formally define this compression and then discuss how to
apply it to complete candidate sets. For the compression function we need a
definition of the transaction set that is to be removed, a definition of a removal
function for transactions and the overall compression.

Definition 26 (Fixed transactions). The set of fixed transactions in an hc-pair
hc = (ph, phc) is defined as

fix(hc) = {tr ∈ Tr | finph(tr), ∀rf ∈ ph.RF : tr ∈ rf → fixph(rf),

∀rf ∈ phc.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf)}.

Definition 27 (Removal of transactions). The transaction removal of a set of

106

transactions Tr− for a p-history (or candidate) ph = pev 0 . . . pevn is defined as

ph\Tr− = pev ′
0 . . . pev

′
n, s.t. for 0 ≤ i ≤ n :

pev ′
i =


ϵ if trph(pev) ∈ Tr−

Rtr
t [V

′] if pev i = Rtr
t [V], V ′ = V \{x | ∃tr ′ ∈ Tr− : (tr ′, tr , x) ∈ ph.RF}

pev i else.

To avoid convoluted index modifications, some p-events are defined as the empty
word ϵ. These p-events are treated as non-existent in the resulting p-history
or candidate. An important property of this removal function is that on input
of a p-history and a set of transactions it removes all rf-elements involving any
transaction of that set.

Lemma 14 (Removal function correctness). Given a p-history or candidate ph

and a set of transactions Tr−, it holds that

(ph\Tr−).RF = ph.RF\{rf ∈ ph | ∃tr ∈ Tr− : tr ∈ rf }.

The proof of this lemma can be found in Appendix B. For the compression let
doomed(ph, phc) be true iff

∃rf ∈ ph.RF , ∃rf ′ ∈ phc.RF : mutex(rf , rf ′) ∧ fixph(rf) ∧ (fixphc
(rf ′) ∨ intphc

(rf ′)).

Then we can define the compression of hc-pairs.

Definition 28 (Compression of hc-pairs). The compressed hc-pair representation
of an hc-pair hc = (ph, phc) is denoted cmp(hc) or cmp(ph, phc) s.t

cmp(ph, phc) =

DM iff doomed(hc)

(ph\fix(hc), phc\fix(hc), IWS phc
) else.

107

We call such a compression consistent whenever it is not DM and its p-history
and candidate compression are equivalent.

Lemma 15 (Upper limit of hc-pairs). The number of compressed hc-pairs for a
given Var and T is finite.

The proof of this lemma can be found in Appendix B. In the next lemma, we
formalize that hc-pairs that are compressed into an equal representation are ex-
tension equivalent.

Lemma 16 (Compression represents an equivalence class). Given two arbitrary
hc-pairs (ph, phc) and (ph ′, ph ′

c), it holds that

cmp(ph, phc) = cmp(ph ′, ph ′
c)→ (ph, phc) ≡ext (ph

′, ph ′
c).

The proof of this lemma can be found in Appendix B. Its reasoning is that given
an hc-pair we can divide the reads-from relation of the p-history and the candidate
into two parts, the fixed part and the non-fixed part. The fixed part is the same
in all extensions of the hc-pair for both. So if one fixed rf-element of the p-history
and one fixed rf-element of the candidate are mutually exclusive, they stay so
in all extensions, and the hc-pair is and remains non-consistent. Assume the
overlap of the fixed rf-elements of both members of the hc-pair is identical. Then
for extensions only the remaining rf-elements that are not fixed are relevant for
computing equivalence. Note that a transaction which is involved only in fixed
rf-elements cannot be read by new transactions in an extension neither in the
p-history nor the candidate. Else it would be read by tr r which would imply the
existence of a non-fixed rf-element. So all transactions with only fixed rf-elements
in a p-history and candidate do not define the equivalence class for extension
equivalence when the hc-pair is not doomed.

Interruptible rf-elements are behaving as fixed if they are not interrupted, and
if they are interrupted, the hc-pair is doomed. The restricted write sets cover this
distinction. Thus, interruptible rf-elements can be treated as fixed for the purpose
of extension equivalence.

108

Compressing candidate sets We extend this notion to candidate sets by
representing a p-history and its candidate set by a set of hc-pairs, one for each
candidate. Then we apply the previous compression for each hc-pair in the set.
The result is the SSR−-data of a p-history. The extension equivalence notion
for hc-pairs can be used to determine SSR−-extension equivalence between two
p-histories. Two p-histories ph, ph ′ are extension equivalent iff for each candidate
phc in Cph there exists an candidate ph ′

c in Cph ′ such that (ph, phc) is extension
equivalent to (ph ′, ph ′

c). We formulate this in Lemma 17. Its proof can be found
in Appendix B. Let HCph be the set of hc-pairs of a p-history and its candidate
set.

Lemma 17. Two p-histories ph, ph ′ are SSR−-extension equivalent iff the follow-
ing two conditions hold:

1. ∀(ph, phc) ∈ HCph , ∃(ph ′, ph ′
c) ∈ HCph ′ : (ph, phc) ≡ext (ph

′, ph ′
c),

2. and ∀(ph ′, ph ′
c) ∈ HCph ′ , ∃(ph, phc) ∈ HCph : (ph ′, ph ′

c) ≡ext (ph, phc).

We define SSR−-data.

Definition 29 (SSR−-data). The SSR−-data for an arbitrary p-history ph is
defined as

ssr(ph) = {cmp(hc) | hc ∈ HCph}.

If the SSR−-data for two p-histories is identical, then conditions 1 and 2 of
Lemma 17 are true for these p-histories. Thus, the two p-histories are SSR−-
extension equivalent.

Lemma 18. Two p-histories ph, ph ′ are SSR−-extension equivalent if ssr(ph) =
ssr(ph ′).

The proof of this lemma can be found in Appendix B. Additionally, the number
of SSR−-data is finite for a given Var and T . Then the number of sets containing
these classes is also finite when given these parameters as there is only a finite
number of equivalence classes for hc-pairs in this case.

109

Automaton construction Finally, we give the automaton construction. To
formalize it, we let SSR−

T ,Var be the set of all SSR−-data with thread identifiers
from T and variables from Var . We furthermore let SSR−

∅ T ,Var
be the set of all

SSR−-data containing only non-consistent compressed hc-pairs (which includes
the DM class).

Definition 30. Let I = (Q, δ, q0, F) be an implementation automaton. The SSR−-
automaton of I (E(I)) is the automaton (QE, δE, q0,E, FE) such that

• QE = Q× SSR−
∅ T ,Var

,

• q0,E = (q0, (ssr(ϵ))),

• FE = F × SSR−
∅ T ,Var

and ((q, ssr), pev , (q′, ssr′)) ∈ δE iff
(q, pev , q′) ∈ δ and ∃ph ∈ PH : ssr(ph) = ssr ∧ ssr(ph · pev) = ssr′.

Algorithm 1 Algorithm to construct automaton
1: procedure AutConstr(I = (Q,Σ, δ, q0, F))
2: Init Compressed Automaton (Q × SSR−

T ,Var , δE = ∅, (q0, ssr(ϵ)), F ×
SSR−

∅ T ,Var
)

3: Init Queue P with ((q0, ϵ), (q0, ssr(ϵ)))
4: visited = ∅
5: while P is not empty do
6: ((q, ph), qE) = POP (P)
7: for q′ s.t. (q, pev , q′) ∈ δ do
8: δE = δE ∪ {(qE, pev , (q′, ssr(ph · pev))}
9: if (q′, ssr(ph · pev)) /∈ visited then

10: visited = visited ∪ (q′, ssr(ph · pev))
11: Add ((q′, ph · pev), (q′, ssr(ph · pev))) to P

12: return (QE, δE, q0,E, FE)

The constructed automaton is a finite automaton since we only have finitely many
different SSR−-data.

We can derive strict serializability of the implementation automaton from the
language of the SSR−-automaton.

110

Theorem 3. Let I be an implementation automaton. Then I only produces
strictly serializable p-histories iff L(E(I)) = ∅.

The proof can be found in Appendix B. For decidability of the overall problem
it is required that this automaton is constructable. This can be done using Al-
gorithm 1. As all possible states of the compressed automaton (and thus also all
final states) are known in advance for a given input because of Lemma 15, the
algorithm only needs to add all edges. It does so by performing a modified BFS

on the naive state space using a queue containing pairs of naive states and their
corresponding compressed automaton states. The queue is initialized with a pair
containing the starting states of the naive state space and the compressed automa-
ton, respectively. When a pair of naive and compressed state is taken from the
queue, each successor of the naive state is iterated through. In each iteration, first,
an edge between the compression of the naive state taken from the queue and the
compression of its successor state is added to the compressed automaton. Second,
the pair containing the successor state and its compression is added to the queue
if the compression was not part of any pair that was already in the queue. This
condition ensures that the algorithm terminates. This is because Q × SSR−

T ,Var

is finite. This means Line 11 is executed a finite number of times. This in turn
makes the while loop in Line 5 terminate after a finite number of steps. That
the algorithm generates all edges can be shown by applying the following lemma,
which follows from a part of the proof of Lemma 16.

Lemma 19. Given two arbitrary p-histories ph and ph ′, it holds that

∀seq ∈ PEv ∗ : ssr(ph) = ssr(ph ′)→ ssr(ph · seq) = ssr(ph ′ · seq).

The proof for this lemma can be found in Appendix B. It shows that the extensions
of two p-histories with identical SSR−-data again have identical SSR−-data; thus,
the algorithm only needs to explore the successor states of one of them.
This finally gives us the decidability of SSR−.

111

q0
 ϵ

ϵ
−

start

q1
 R11

t1
[x],

R11
t1
[x],
∅



q2

 R11
t1
[x]R21

t2
[x , y],

R11
t1
[x]R21

t2
[x , y],

{x, y}, ∅

 R11
t1
[x]R21

t2
[x , y],

R21
t2
[x , y]R11

t1
[x],

∅, {x}





q1
 R11

t1
[x]T21

t2
[x , y],

R11
t1
[x]T21

t2
[x , y],

{x, y}


DM



q2
 R11

t1
[x]T21

t2
[x , y]R22

t2
[x , y],

R11
t1
[x]T21

t2
[x , y]R22

t2
[x , y],

{x, y}, ∅


DM



q1
 R11

t1
[x]R21

t2
[]W21

t2
[x , y],

R11
t1
[x]R21

t2
[]W21

t2
[x , y],

{x, y}


DM



q2
 R11

t1
[x]R21

t2
[]W21

t2
[x , y]R22

t2
[x , y],

R11
t1
[x]R21

t2
[]W21

t2
[x , y]R22

t2
[x , y],

{x, y}, ∅


DM



q3
 R11

t1
[x]T21

t2
[x , y],

R11
t1
[x]T21

t2
[x , y],

{x, y}


DM



q4

{DM}

q3
 R11

t1
[x]R21

t2
[],W21

t2
[x , y],

R11
t1
[x]R21

t2
[],W21

t2
[x , y],

{x, y}


DM



Rt1
[x]

Rt2
[x , y]

Wt2
[x , y]

Wt2
[x , y]

Wt1
[x]

Wt1
[x]

Rt2
[x , y]

Wt2
[x , y]

Wt2
[x , y]

Wt2
[x , y]

Rt2
[x , y]

Wt2
[x , y]

Figure 4.8: SSR−-automaton of Iex (of Figure 4.1), augmented transactions not shown, RWS
ordered by transaction ID

Theorem 4 (Decidability of the correctness problem for SSR−). The correctness
problem for SSR− is decidable.

Figure 4.8 shows the result of the construction for our running example. The
diagram only depicts the reachable states. Note that the standardized naming of
transactions can lead to a “renaming” of transactions, and it does so for transac-
tion 3 in one case. We see that the language of the SSR−-automaton is non-empty
(the red state is accepting), and hence not all p-histories of the implementation
automaton are strictly serializable. We also see that equivalence of SSR−-data

112

only implies SSR−-extension equivalence. There are still two green and two yel-
low states which are SSR−-extension equivalent but have different SSR−-data,
and thus could not be compacted to a single state.

4.3 The Correctness Problem for OP− Is Decidable

In this section, we prove the decidability of a restricted version of the correctness
problem for OP . In this version, for each implementation each read is justifiable
by a write of a previous transaction, and it is possible to identify the writer for each
read unambiguously (similar to an unambiguous value-based reads-from relation).
We realize the first point with the reasonable read assumption and the second point
with the timeout assumption and the thread ID values assumption. We describe
and define these assumptions here, a discussion of why these assumptions were
chosen can be found in Section 5.2.

The reasonable read assumption restricts reads to only read values from writing
transactions which have not been overwritten by another writing transaction in
between the read and the original writing transaction.

Assumption 5 (Reasonable read assumption (RR-assumption)). A read on vari-
able x by transaction tr ′ may only read a value val s.t.

• there exists a transaction tr with a write event, writing val to x,

• the transaction tr is either committed or commit pending and the commit
invoke has happened before the read event

• and there is no other committed transaction real-time ordered in between tr
and tr ′ writing on x.

This assumption ensures that no values from the “future” can be read by the
implementation. When only considering the subset of histories generated by an
implementation with this restriction, value opacity is prefix-closed. This is because
otherwise a scenario such as shown in Figure 4.9 is possible.
This g-history is opaque and adheres to constraint 1 and 2 of the RR-assumption.
Consider the prefix of this g-history where transaction 4 is not committed. This

113

t1

t2

B(1) W(x, 1) C(1) B(2) W(x, 2) C(2)

B(3) R(x, 1)

B(4)W(x, 1)C(4)

Figure 4.9: Example for the necessity of the third condition of the RR-assumption

prefix also adheres to constraint 1 and 2 of the RR-assumption, but it is not value
opaque. So the third condition is necessary to prevent reads being justified by a
future write.

Next we describe the assumptions necessary for enabling identifying the writer
for each read unambiguously. The timeout assumption is that there is an upper
bound to the length of all transactions.

Assumption 6 (Timeout assumption). There is a fixed upper bound of steps in
which a transaction is finished.

This also implies there is a fixed number of transactions of one thread that can
be concurrent to any transaction. Let this number be to. Now we can make a
timestamp assumption only using finitely many values.

Assumption 7 (Thread ID values assumption (TIV-assumption)). For each write
to a variable var of a transaction tr of thread t the value val consists of three fields
containing the following information:

• the actual content to be written,

• t

• and a timestamp equal to the number of committed transactions of t writing
to var up until tr taken mod to + 1.

The combination of these two assumptions ensures that there are only finitely
many transactions that any read can possibly read from. This means each con-
current history has a well-defined reads-from relation where each read has one
corresponding write.

114

In the following, we also exclude the case |T | = 1 because it would require
several case distinctions in the proofs for this section. If this holds, each imple-
mentation is trivially correct because every g-history is serial and legal. Thus, the
answer to the correctness problem is always “yes”. Under all previous assumptions,
we call OP OP−. The structure of the proof and thus also this section is similar
to the structure for the SSR− problem. (Section 4.2)

Compact representation As in Section 4.2, we try to compress the naive
state space of the given implementation by merging nodes which

• contain the same implementation automaton state

• and contain g-histories s.t. after appending identical g-events to both, either
both resulting g-histories are opaque or both are not.

We start by formalizing the above similarity on g-histories. As before, we define
extension equivalence for OP−.

Definition 31 (OP−-extension equivalence). Two g-histories h, h ′ ∈ H are OP−-
extension equivalent (h ≡ext h

′) iff ∀seq ∈ Ev ∗ either

• h · seq and h ′ · seq are both value opaque under OP−

• or h · seq and h ′ · seq are both not value opaque under OP−.

Then, as before, using the equivalence classes implied by this notion, we are able
to reduce naive state space automata. To determine whether two g-histories are
OP−-extension equivalent, we use a similar concept as with SSR−. We reduce a
g-history to the necessary information to determine whether appending g-events
keeps the g-history value opaque or not. We call this information OP−-data. If
this data is identical for two g-histories, they are OP−-extension equivalent. The
remainder of this section is structured similar to Section 4.2. We first adopt the
notion of candidates for value opacity, and then present how to determine the
value opacity of a g-history from its candidates. Then we show how to use this
notion for compressing g-histories and their candidate sets to OP−-data. Using
this data, we finally present the automata reduction construction.

115

Candidate set The candidates for an input g-history are all serial g-histories
that are equivalent to it and preserve its real-time order. Note that these can-
didates, unlike their SSR− counterparts, are not potential OP−-witnesses. They
are subsequences of OP−-witnesses containing only the events of the original (not
completed) g-history. As we will later see, each such subsequence of an OP−-
witness is also a candidate. We can use this to determine whether a g-history is
value opaque by checking the candidate set. But as with SSR−, we first present
candidates, discuss the supersequence property and give an insertion function to
derive the candidates for an extension of a g-history. We start with the definition
of candidate sets.

Definition 32 (Candidate set). The candidate set for a given input g-history h

of OP−, Ch , is the set of all serial g-histories hc which

• are equivalent to h

• and preserve its real-time order.

Similar to SSR−, these candidate sets have a supersequence property.

Proposition 3 (Supersequence property). Given a g-history h and an arbitrary
extension h ′ of it, it holds that

∀h ′
c ∈ Ch ′ , ∃hc ∈ Ch : hc ⊑ h ′

c.

The reason of why this property holds is similar to the one for SSR−. We will
argue why this is the case for the extension by one g-event ev . This implies the
property for arbitrary extensions by induction. For this explanation, let h be an
arbitrary g-history, and h ′ be an extension of it. Let Ttr

t (var , val , val
′) denote a

committed transaction tr of thread t writing val to var and reading val ′ from the
same variable. We use the example from Figure 4.10 to illustrate the argument.

116

h ′
e = T11

t1
(y , 0 , 1)B21

t2
B12

t1
→ he = T11

t1
(y , 0 , 1)B21

t2

Ch ′
e
=

{
T11

t1
(y , 0 , 1)B21

t2
B12

t1

T11
t1
(y , 0 , 1)B12

t1
B21

t2

}
→ Che =

{
T11

t1
(y , 0 , 1)B21

t2

}
Figure 4.10: Example of the supersequence property for candidate sets

First, note that the real-time order of h ′ consists of the real-time order of h unified
with the set containing all rt-elements induced by ev in h ′, denoted RT h ′(ev). This
is formalized as

h ′.RT = h.RT ∪ RT h ′(ev).

The set RT h ′(ev) is non-empty iff ev is a begin. In the example, h ′
e has the real-

time order of he plus the rt-elements involving 12, namely (11, 12). By definition,
any arbitrary candidate of h ′, denoted h ′

c, preserves its real-time order:

h.RT ∪ RT h ′(ev) ⊆ h ′
c.RT .

Let h ′
c− be h ′

c with ev removed. Its real-time order is the one of h ′
c with all

rt-elements induced by ev in h ′
c, denoted RT h ′

c
(ev), removed:

h.RT ∪ RT h ′(ev) ⊆ h ′
c−.RT ∪ RT h ′

c
(ev).

Any rt-element in RT h ′
c
(ev) is either in RT h ′(ev) or not contained in h ′.RT (and

thus also not in h.RT) at all as in both g-histories all transactions share the same
events and event order. Thus, it holds that

h.RT ⊆ h ′
c−.RT .

As h ′
c− is trivially serial, it is a candidate for h. In the example, for the candidate

T11
t1
[y]B12

t1
B21

t2
becomes T11

t1
[y]B21

t2
which is a candidate of he.

Next, we define the insertion function which shows how the extension of candi-
dates is derived. Before that, we need to briefly define additional needed notation.

Definition 33 (Notation). Let h be an arbitrary g-history. In the following we

117

define additional notation.

• Let st(h) be the subsequence of h starting at its first g-event, and ending at
the last g-event that is either a commit or abort.

• Let en(h) be the subsequence of h including all g-events after the last g-event
that is either a commit or abort.

• Let add(h, ev , n) return h with ev inserted at the end of h, if n is its last
index, or in between indices n and n+ 1, if not.

• Let ev tr,ls
h be the last event of tr in h.

• Let TrI h be the set of all indices in h at which the last g-event of a transaction
is located.

Then the insertion function is a combination of two functions, one for the insertion
of a begin event and one for the insertion of any other event.

Definition 34 (Insertion function begin). The insertion function for begin events
is denoted insb : H × Ev → 2H. On input of a serial g-history hc and a begin
g-event ev , it returns the set

{st(hc) · add(en(hc), ev , n) | n ∈ TrI en(hc)}.

Definition 35 (Insertion function write/read/commit/abort). The insertion
function for write, abort, read and commit events is denoted inswarc : H×Ev → 2H.
On input of a serial g-history hc = ev 0 . . . ev

tr ,ls
hc

. . . evn and a write, abort, read,
or commit g-event ev of transaction tr , it returns the set

{ev 0 . . . ev
tr ,ls
hc

ev . . . evn}.

Definition 36 (Insertion function). The insertion function is denoted ins : H×
Ev → 2H. On input of a serial g-history hc and a g-event ev , it returns a set of
g-histories which is either

118

he = B21
t2
B11

t1
W21

t2
(x , 5)

he,c = B11
t1
B21

t2
W21

t2
(x , 5)

h ′
e = B21

t2
B11

t1
W21

t2
(x , 5)W11

t1
(z , 1)

h ′
e,c1

= B11
t1
W11

t1
(z , 1)B21

t2
W21

t2
(x , 5)

h ′
e,c2

= B11
t1
B21

t2
W21

t2
(x , 5)W11

t1
(z , 1)

W11
t1
(z , 1)

insert W11
t1
(z , 1)

insert W11
t1
(z , 1)

Figure 4.11: A g-history and its candidates extended with a write event

h = B11
t1
B21

t2
W21

t2
(x , 5)W11

t1
(x , 3)B12

t1
h ′ = B11

t1
B21

t2
W21

t2
(x , 5)W11

t1
(x , 3)B12

t1
B22

t2

hs = B21
t2
W21

t2
(x , 5)B11

t1
W11

t1
(x , 3)B12

t1

h ′
s1
= B21

t2
W21

t2
(x , 5)B11

t1
W11

t1
(x , 3)B12

t1
B22

t2

h ′
s2
= B21

t2
W21

t2
(x , 5)B11

t1
W11

t1
(x , 3)B22

t2
B12

t1

h ′
s3
= B21

t2
W21

t2
(x , 5)B22

t2
B11

t1
W11

t1
(x , 3)B12

t1

B22
t2

insert B22
t2

insert B22
t2

insert B22
t2

Figure 4.12: A g-history and its candidates extended with a begin event

1. insb(hc, ev) , if ev is a begin

2. or inswarc(hc, ev) , else.

This function conceptually is identical to the one for SSR− (see Definition 20).
Any event that does not start a new transaction must be appended directly at the
end of its transaction, or else the resulting g-history is not serial. Any starting
event of a transaction (a begin in this case) must be appended after the last
(finishing) event (a commit or abort in this case) of a transaction to preserve the
real-time order of the extended concurrent g-history. The two cases are shown in
figures 4.11 and 4.12.

119

As we have stated above, inserting a g-event in such a way into a candidate of a
g-history yields a candidate of this g-history extended by that g-event. Thus, the
insertion function returns a subset of the candidate set of the extended g-history.

Proposition 4 (Generation of candidates by insertion function). Given a g-
history h and a g-event ev , it holds that∪

hc∈Ch

ins(hc, ev) = Ch·ev .

The proof of this proposition can be found in Appendix C. We also extend ins

to arbitrary g-event sequences by applying the function for the first event to the
input candidate, then apply the function to each candidate in the resulting set,
then merge the resulting sets and repeat the last two steps for the remaining
g-events of the sequence.

Determining value opacity from candidates In this section, we will
discuss how we can use the candidates of a g-history to check whether a legal
OP−-witness for it exists. We show that iff the set of all serial completions (com-
pletions that are a serial g-history) of all candidates for a g-history contains a
legal g-history, then there exists an OP−-witness for this g-history. We present
a method to efficiently determine whether a legal serial completion exists by (a)
giving a simplified method for determining the legality of a serial completion and
(b) showing that for determining the existence of a legal minimal completion it
also suffices to check a certain serial completion (called minimal completion) of
each candidate for legality.

We start by showing that if there exists an OP−-witness for a g-history, then
the set of all serial completions of all candidates for a g-history contains a legal g-
history. For a set of g-histories H ′, let SC (H ′) be the set of all serial completions
of g-histories in H ′.

Lemma 20. Given a g-history h, it holds that

∃hs ∈ H : hs ∈ OW (h)→ ∃hc,comp ∈ H : hc,comp ∈ SC (Ch) ∧ hc,comp is legal.

120

Concurrent history:
h1 = B11

t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)R21

t2
(x , val)

Completions:
h2 = B11

t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)A11

t1
R21

t2
(x , val)A21

t2

h3 = B11
t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)Resp11

t1
(C)R21

t2
(x , val)A21

t2

h4 = B11
t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)R21

t2
(x , val)A11

t1
A21

t2

h5 = B11
t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)R21

t2
(x , val)A21

t2
A11

t1

h6 = B11
t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)R21

t2
(x , val)Resp11

t1
(C)A21

t2

h7 = B11
t1
B21

t2
W11

t1
(x , val)Inv11

t1
(C)R21

t2
(x , val)A21

t2
Resp11

t1
(C)

Equivalent serial g-histories
hs,1 = B11

t1
W11

t1
(x , val)Inv11

t1
(C)Resp11

t1
(C)B21

t2
R21

t2
(x , val)A21

t2

hs,2 = B21
t2
R21

t2
(x , val)A21

t2
B11

t1
W11

t1
(x , val)Inv11

t1
(C)Resp11

t1
(C)

hs,3 = B11
t1
W11

t1
(x , val)Inv11

t1
(C)A11

t1
B21

t2
R21

t2
(x , val)A21

t2

hs,4 = B21
t2
R21

t2
(x , val)A21

t2
B11

t1
W11

t1
(x , val)Inv11

t1
(C)A11

t1

Candidates:
hc,1 = B11

t1
W11

t1
(x , val)Inv11

t1
(C)B21

t2
R21

t2
(x , val)

hc,2 = B21
t2
R21

t2
(x , val)B11

t1
W11

t1
(x , val)Inv11

t1
(C)

Minimal completions:
hmc,1 = B11

t1
W11

t1
(x , val)Inv11

t1
(C)Resp11

t1
(C)B21

t2
R21

t2
(x , val)A21

t2

hmc,2 = B21
t2
R21

t2
(x , val)A21

t2
B11

t1
W11

t1
(x , val)Inv11

t1
(C)Resp11

t1
(C)

Figure 4.13: Example histories with corresponding completions, equivalent histories, candidates
and minimal completions for value opacity

The proof can be found in Appendix C. We explain intuitively why this is the
case, given a g-history h and one of its witnesses hs. Consider a g-history hc

which is hs without all g-events not occurring in h. We show it is a candidate for
h. A candidate must be equivalent to h and preserve its real-time order. For it
to be equivalent to h, it must contain the same transactions and the view of the
history for each thread must be identical to h. The g-history hc contains the same
elements as h; thus, it also contains the same transactions. Also, hs has the same
order as h for all events in the same thread that are contained in both:

∀ev , ev ′ ∈ h : thr(trh(ev)) = thr(trh(ev
′))→ (ev <hs ev

′ ↔ ev <h ev ′).

As hc has the same order for all events in the same thread as hs for all events
contained in h, it has the same order for all events in the same thread as h :

∀ev , ev ′ ∈ h : thr(trh(ev)) = thr(trh(ev
′))→ (ev <h ev ′ ↔ ev <hc ev

′).

121

Thus, the view of the history for each thread is identical to h. Because of this,
it is equivalent to h. Secondly, a candidate must preserve the real-time order of
h. It is given that hs preserves the real-time order of h meaning h.RT ⊆ hs.RT .
Thus, if two given transactions tr and tr ′ are real-time ordered in h, they are as
well in hs. As hc and hs have the same order for all g-events and the commit or
abort event of tr and the begin event of tr ′ are present in h, this implies tr ′ ≺hc tr

as well:
∀tr , tr ′ ∈ Tr : tr ′ ≺h tr → tr ′ ≺hs tr → tr ′ ≺hc tr .

Note that by construction, hs is one of the serial completions of hc.
As hs is legal, this then means that itself is legal serial completion of hc and

thus of a candidate of h, proving the lemma. That means any OP−-witness
of a g-history is thus the result of a serial completion of one of its candidates.
Consider the example shown in Figure 4.13. The subsequence of the only witness
hs,1 just containing the elements of h1 is the candidate hc,1. Thus, hs,1 is the serial
completion of hc,1.

We show the other direction. If the set of all serial completions of all candidates
for a g-history contains a legal g-history, then there exists an OP−-witness for this
g-history.

Lemma 21. Given a g-history h, it holds that

∃hc,comp ∈ H : hc,comp ∈ SC (Ch) ∧ hc,comp is legal → ∃hs ∈ H : hs ∈ OW (h).

The proof of this lemma can be found in Appendix C. We give an intuitive de-
scription here. Given a candidate hc and a completion hc,comp of it, if we can show
hc,comp is equivalent to one completion of h and preserves the real-time order of h,
the lemma is proven as in combination with its legality hc,comp is then a witness
of h. Consider the completion hcomp of h where all transactions are completed by
the same events as they are in hc,comp. We first show that hcomp and hc,comp are
equivalent. They trivially contain the same events as they contain all events of
h plus the same finishing events. Thus, they also contain the same transactions.

122

The order of events for each thread is identical as it is identical to h for all events
occurring in h, and all finishing events are at the end of their transactions/thread.
We show that hc,comp preserves the real-time order of h. This holds because hc al-
ready preserves the real-time order of h. By adding additional commits or aborts,
only new rt-elements are generated. Thus, the serial completion preserves the
real-time order of h as well. This proves the lemma.

Using both lemmas, we can state that an OP−-witness only exists for a g-history
iff a serial completion of one of its candidates is legal.

Lemma 22. Given a g-history h, it holds that

∃hs ∈ H : hs ∈ OW (h)↔ ∃hc ∈ H : hc ∈ SC (Ch) ∧ hc is legal.

This follows directly from lemmas 20 and 21.
Next, we give an efficient method for determining the legality of a serial com-

pletion. This method employs a reads-from relation for the completion similar to
SR/SSR . This reads-from relation is compared with the reads-from relation im-
plied by the values of the g-history. We can determine this relation unambiguously
because of the assumptions made for OP−. To ensure each read has a correspond-
ing write, we add trw to the transaction pool which is an initial transaction writing
each initial value on each variable. W.l.o.g. we assume each g-history to contain
this transaction and that it is real-time ordered before all other transactions. It is
not shown in examples. We first define the conflict reads-from relation for serial
g-histories, and then the value reads-from relation for concurrent g-histories.

Definition 37 (Conflict reads-from relation). The conflict reads-from relation for
a serial g-history hs, where all transactions are finished, is defined as h.RF c ⊆
Tr × Tr × Var . A tuple (tr , tr ′, var) is in hs.RF c iff

• var ∈WS vo
h (tr),

• var ∈ RS vo
h (tr ′),

• tr ≺hs tr
′,

123

• cohs(tr)

• and ¬(∃tr ′′ ∈ Tr : var ∈WS vo
hs

(tr ′′) ∧ cohs(tr
′′) ∧ tr ≺hs tr

′′ ≺hs tr
′).

In Figure 4.13 the conflict reads-from relation of witness hs,1 has one element,
namely (11, 21, x). Next we define the value reads-from relation.

Definition 38 (Value reads-from relation). The value reads-from relation for a
g-history h is defined as h.RF val ⊆ Tr × Tr × Var . A tuple (tr , tr ′, var) is in
h.RF val iff there exists val ∈ Val s.t.

• (var , val) ∈WSh(tr),

• (var , val) ∈ RS h(tr
′),

• Invtr
thr(tr)(C) <h Rtr ′

thr(tr ′)(var , val)

• and ¬(∃tr ′′ ∈ Tr : var ∈WS vo
h (tr ′′) ∧ coh(tr

′′) ∧ tr ≺h tr ′′ ≺h tr ′).

In the example, the value reads-from relation of h has one element, namely
(11, 21, x).

A serially completed candidate is an OP−-witness for a g-history whenever its
conflict reads-from relation is identical to the value reads-from relation of the
g-history.

Lemma 23 (Legal). Given a g-history h and a serial completion hs of one of its
candidates, it holds that

hs is legal ↔ hs.RF c = h.RF val.

This lemma follows from the original definition of legality and three assumptions
made at the beginning of this section. The proof can be found in Appendix C. In
the example, hmc,1 is legal as its conflict reads-from relation is identical to the value
reads-from relation of h. It is thus an OP−-witness for h. This can be seen by the

124

fact it is identical to hs,1. There exists an rf-element for every read in both relations
because of the existence of trw. Thus, the reads-from relations for a g-history and
a candidate are identical iff there exists no two mutually exclusive rf-elements in
them. We call two arbitrary rf-elements (tr , tr ′, x), (tr ′′, tr ′, x) mutually exclusive
iff tr ̸= tr ′′. For rf-elements rf and rf ′, we denote this mutex(rf , rf ′).

Now having an efficient way to check for legality, we give a method to determine
whether a legal serial completion exists for a candidate without checking all serial
completions of that candidate. We can reduce the number of completions of can-
didates that need to be checked by checking only one completion, called minimal
completion. A candidate has a legal completion iff its minimal completion is legal.
We prove this fact below. Before that, we describe how minimal completions are
defined and argue why this property holds.

We first need to define the visibility of a transaction in a g-history. Visibility
expresses that a transaction has been read by another transaction, and thus it
must be committed in any witness justifying the opacity of the original g-history.

Definition 39 (Visibility of a transaction). We say tr is visible in a g-history h,

denoted vish(tr), iff there exists tr ′ ∈ Tr and var ∈ Var s.t.

(tr , tr ′, var) ∈ h.RF val.

In the example in Figure 4.13, transaction 11 is visible in h1. Now we can define the
minimal completion of a candidate. It only exists in the context of the g-history
it is a candidate of. In a minimal completion all commit pending transactions
that are visible in its g-history are committed, and all other commit pending
transactions are aborted.

Definition 40 (Minimal completion). The minimal completion of a candidate hc

of g-history h, denoted mClh(hc), is the serial g-history hmc s.t.

• hmc ∈ compl(hc),

• comPhc(tr) ∧ vish(tr)→ cohmc(tr),

• and comPhc(tr) ∧ ¬(vish(tr))→ abhmc(tr).

125

If it is clear which g-history h a candidate hc belongs to, mClh(hc) is shortened to
mCl(hc). In the example, hmc,1 and hmc,2 are minimal completions of candidates
hc,1 and hc,2, respectively. As we will only talk about the conflict reads-from
relation of a serial completion of a candidate and its own reads-from relation is
not relevant, from now on we will instead simply refer to it as the conflict reads-
from relation of the candidate. Thus, for a candidate hc of a g-history h, we denote
mCl(hc).RF c by hc.RF c if it is clear that hc is a candidate of h from context.

Now to determine opacity using minimal completions we proceed as follows.
Instead of checking each completion, we check for each candidate whether its min-
imal completion is legal. We prove that iff the minimal completion of a candidate
of a g-history is legal, then there exists a legal completion for that candidate.
This combined with Lemma 22 then leads to the fact that a g-history has an
OP−-witness iff one of its candidates has a legal minimal completion. We start
with the first claim.

Lemma 24 (Minimal completion legal iff legal completion exists). Given a g-
history h and a candidate hc, a legal serial completion for hc exists iff mCl(hc) is
legal.

The proof can be found in Appendix C. Let h be an arbitrary g-history and hc be
an arbitrary candidate of it. It is obvious that a legal minimal completion of hc
implies a legal serial completion (the minimal completion itself) exists for hc. For
the other direction, we argue that if a serial completion hc,comp of hc that is not the
minimal completion is legal, then mCl(hc) is also legal. We do this by showing that
each rf-element is identical between the serial completion and minimal completion.
Assume a transaction tr reads the value val from x from another transaction tr ′

in the serial completion. The transaction tr must be committed in hc,comp as else
the rf-element would not exist. As the completion is legal, tr must be visible in
h. Thus, tr must be committed in mCl(hc). In hc,comp there cannot exist another
committed transaction tr ′′ writing on x in between tr and tr ′. In the case there
simply exists no transaction with x in its write set in between tr and tr ′, this is
clearly also the case in mCl(hc). In the case there exists an aborted transaction
with x in its write set in between tr and tr ′, this transaction cannot be visible as

126

else hc,comp would not be legal. Thus, this transaction is also aborted in mCl(hc).
Consider this simple example of a serial completion in which hc is a candidate, hsc
is a serial completion of the candidate and hmc is the minimal completion.

hc = B11
t1
W11

t1
(x , 1)Inv11

t1
(C)B21

t2
W21

t2
(x , 2)C21

t2
B22

t2
R22

t2
(x , 2)

hsc = B11
t1
W11

t1
(x , 1)C11

t1
B21

t2
W21

t2
(x , 2)C21

t2
B22

t2
R22

t2
(x , 2)

hmc = B11
t1
W11

t1
(x , 1)A11

t1
B21

t2
W21

t2
(x , 2)C21

t2
B22

t2
R22

t2
(x , 2).

It is easy to see that whether 11 is committed or aborted is irrelevant for the
legality of any serial completion. If a legal minimal completion exists for any
candidate of a g-history, then an OP−-witness exists for that g-history, too. This
is formalized by the following lemma.

Lemma 25. Given an input g-history h of OP−, an OP−-witness for h exists iff
there exists candidate hc of h s.t. mCl(hc) is legal.

The proof can be found in Appendix C. Conceptually this holds because of two
facts. As implied by Lemma 20, each witness is a serial completion of a candi-
date. Secondly, as implied by Lemma 24, for a single candidate a legal minimal
completion exists iff there is a legal serial completion. These legal completions are
OP−witnesses. Thus, there exists such a minimal completion for one candidate iff
it exists for the g-history.

Compression We use a similar strategy as before in Section 4.2. It again
utilizes hc-pairs. In comparison, this approach has slight differences in when
transactions can be forgotten, and thus also by what data an equivalence class
is characterized. An extension of an hc-pair means the extension of both its
members. An hc-pair is called consistent iff its candidate’s minimal completion is
legal. We group multiple hc-pairs into an equivalence class if they share a broken
down notion of extension equivalence. This notion is defined as follows.

Definition 41 (Extension equivalence for hc-pairs). Given g-histories h, h ′ and
candidates hc ∈ Ch and h ′

c ∈ Ch ′ , the hc-pair (h, hc) is extension equivalent to

127

hc-pair (h ′, h ′
c), denoted as (h, hc) ≡ext (h

′, h ′
c), iff for all g-event sequences seq

∃hc2 ∈ ins(hc, seq) : mCl(hc2) is legal↔ ∃h ′
c2 ∈ ins(h ′

c, seq) : mCl(h ′
c2) is legal.

We can approximate the equivalence classes for this notion. Our approximation
uses the fact that certain rf-elements of certain transactions in an hc-pair are fixed
in the value reads-from relation of the concurrent g-history and in the conflict
reads-from relation of the minimal completion of the candidate, respectively, for
any extension of the hc-pair. We first define fixed rf-elements for a concurrent
g-history and their candidates.

Definition 42 (Fixed rf-elements for g-histories). An rf-element (tr , tr ′, x) ∈
h.RF val in a g-history h is called fixed iff

∀seq ∈ Ev ∗ : (tr , tr ′, x) ∈ (h · seq).RF val.

For a candidate this is defined as follows.

Definition 43 (Fixed rf-elements for candidates). Given a candidate hc of g-
history h, an rf-element (tr , tr ′, x) ∈ h.RF c is called fixed iff

∀seq ∈ Ev ∗∀h ′
c ∈ ins(hc, seq) : (tr , tr

′, x) ∈ h ′
c.RF c.

Let h.RF fix
val/h.RF

fix
c be the set of fixed rf-elements for the value reads-from rela-

tion of a g-history or the conflict reads-from relation of a minimal completion of
a candidate, respectively.

A major difference to the relations for SSR is that there is no all reading trans-
action at the end of a g-history in OP−. Thus, rf-elements are always fixed in the
concurrent g-history, leading to the following lemma.

Lemma 26 (Conditions for fixed rf-elements in g-histories). Given a g-history h,

it holds that h.RF fix
val = h.RF val.

128

The proof for this can be found in Appendix C. The proof follows straightforward
from the definition of the value reads-from relation and our assumptions for OP−.

To give conditions for fixed rf-elements in candidates, one additional definition
is needed. But first note that defining interruptible rf-elements as in the SSR

construction is pointless. This is because each rf-element is interruptible iff it is
not fixed and not abortable (the concept is explained below) as there is no all
reading transaction. We still need a definition of an interrupting write set for
the compression. In this chapter, we will give that definition right before the
compression construction.

The new necessary definition for the conditions is the abortable read. An
abortable read in a candidate is an rf-element for which the writing transaction
is commit pending and may abort in extensions of the candidate, removing the
rf-element. Thus, if in an extension the writing transactions aborts, the rf-element
is not present in the conflict reads-from relation anymore.

Definition 44 (Abortable read). Given a candidate hc of g-history h, an rf-
element
(tr , tr ′, x) ∈ hc.RF c with tr ′ ̸= tr r is called abortable iff comPhc(tr) holds.

Given this definition, we can give the conditions for fixed rf-elements in candi-
dates. There are four cases in which an rf-element (tr , tr ′, x) can be removed in
an extension of a candidate. First, tr can be commit pending and then abort
in the extension. Second, there can be an unfinished transaction, which is not
commit pending, in between tr and tr ′, and in an extension it can write to x

and commit. Third, there can be a commit pending transaction, having x in its
write set, which commits or becomes visible by being read by a later transaction.
Fourth, there can be a thread without an event after the last event of tr ′, and
neither tr ′ nor any other transaction after it has finished. Then this thread can
start a transaction inserted between tr and tr ′ making the previous 2 conditions
possible. Now if all of these conditions do not hold, then

1. no new transaction can be inserted in between tr and tr ′, no existing trans-
action can write to x in between tr and tr ′,

129

2. no commit pending transaction that intends to write to x can become visible
or commit as it does not exist

3. and tr cannot abort.

This makes the rf-element fixed. All of these conditions do not change in any
extension as no events are removed and their relative order stays identical. Let
ev rd,rf

hc
be the read event belonging to the rf-element rf . Let ev ls,t

hc
be the last event

of t in hc.

Lemma 27 (Conditions for fixed rf-elements in candidates). Given a candidate
hc of g-history h and an arbitrary rf-element rf ∈ hc.RF with rf = (tr , tr ′, var),

rf is in hc.RF
fix
c iff

1. rf is not abortable,

2. ¬(∃tr ′′ ∈ Tr : unfinhc(tr
′′) ∧ ¬(comPhc(tr

′′)) ∧ tr ≺hc tr
′′ ∧ ¬(tr ′ ≺hc tr

′′)),

3. ¬(∃tr ′′ ∈ Tr : comPhc(tr
′′) ∧ x ∈WShc(tr) ∧ tr ≺hc tr

′′ ∧ ¬(tr ′ ≺hc tr
′′))

4. and (∃tr ′′ : finhc(tr
′′) ∧ ev rd,rf

hc
<hc ev

tr′′,ls
hc

) ∨ (∀t : ev rd,rf
hc

<hc ev
ls,t
hc

).

The proof for this can be found in Appendix C.

h = B11
t1
W11

t1
(x , 1)C11

t1
B12

t1
B21

t2
W12

t1
(x , 3)Inv12

t1
(C)R21

t2
(x , 1)W21

t2
(z , 1)Inv21

t2
(C)B13

t1
R13

t1
(z , 1)W13

t1
(x , 4)C13

t1

hc = B11
t1
W11

t1
(x , 1)C11

t1
B12

t1
W12

t1
(x , 3)Inv12

t1
(C)B21

t2
R21

t2
(x , 1)W21

t2
(z , 1)Inv21

t2
(C)B13

t1
R13

t1
(z , 1)W13

t1
(x , 4)C13

t1

hmc = B11
t1
W11

t1
(x , 1)C11

t1
B12

t1
W12

t1
(x , 3)A12

t1
B21

t2
R21

t2
(x , 1)W21

t2
(z , 1)C21

t2
B13

t1
R13

t1
(z , 1)W13

t1
(x , 4)C13

t1

Figure 4.14: Example showing interruptible and abortable rf-elements

We will use a running example shown in Figure 4.14 to demonstrate the above
lemma and the following definitions. In the minimal completion of candidate hc

there is only the fixed rf-element (11, 21, x). For example, (21, 13, z) is not fixed
as 12 is abortable.

Before giving the description of the reduction construction for OP−, we will
give descriptions and definitions for the interrupting write set of a transaction
and for a must-commit transaction. Consider an hc-pair (h, hc). A variable x is
called an interrupting write for an unfinished transaction tr ′′ whenever there exists

130

an rf-element (tr , tr ′, x) in hc.RF c s.t. tr ′′ is real-time ordered in between tr and
tr ′ in mCl(hc), aborted in mCl(hc) and is either not commit pending or commit
pending and has var in its write set. This is denoted inthc(tr

′′, x). We also call tr ′′

interrupting for rf in the above case. Similar as with SSR−, the interrupting write
set of a transaction is the set of the variables such that if a transaction were to
write on one or more of them, and then commit, it would interrupt an rf-element.

Definition 45 (Interrupting write set). Given a candidate hc of g-history h and
a transaction tr ∈ unfin(hc), which is not committed in mCl(hc), its interrupting
write set is defined as

IWS hc(tr) = {x ∈ Var | inthc(tr , x)}.

If a transaction tr is the writing transaction of an abortable rf-element in a can-
didate hc, we say it is a must-commit transaction and denote it mchc(tr).

Definition 46 (Must-Commit transactions). Given a candidate hc of g-history h,

its must-commit transactions are the following set

MC hc = {tr ∈ Tr | mchc(tr)}.

In Figure 4.14, the must-commit transactions for hc are MC hc = {21} as this
transaction is part of one abortable rf-element. In the following, we will explain
how hc-pairs are grouped into equivalence classes. An equivalence class is uniquely
identified by a quadruple of the format H ×H × (Tr → 2Var) × 2Tr or a special
symbol DM. The former contains a compressed g-history, a compressed candidate,
all interrupting write sets of all unfinished transactions of the candidate and all
must-commit transactions of the candidate. The special symbol DM summarizes
all hc-pairs that are non-consistent. This also implies that each extension is also
non-consistent.

Now we will give the algorithmic description of how to derive the equivalence
class of an hc-pair. Afterwards, we give the formal definitions. These are not
algorithmic, but produce an equivalent result. The compression of an hc-pair
(h, hc) is done in 4 steps:

131

1. Check whether there are two rf-elements - one in the value reads-from re-
lation of the g-history and one in the conflict reads-from relation - that
are mutually exclusive. If this is the case, put the hc-pair into the DM
equivalence class.

2. Determine and save the interrupting write set for each unfinished transaction
in the candidate.

3. Determine and save the must-commit transactions for the candidate.

4. Do the following for all transactions which are not the last finished trans-
action in the candidate: Remove all aborted transactions. Remove all com-
mitted transactions and every read event reading them for which two things
hold:

(a) In the g-history and the candidate, all variables of their write set have
been overwritten by committed transactions, which are real-time or-
dered after them

(b) and none of these transactions is the most recent write on a variable in
the candidate for an unfinished transaction that is not abort pending
or commit pending.

We explain these steps for an arbitrary hc-pair (h, hc). If a candidate is not legal
in the first step, then no extension of the hc-pair can be consistent. We will argue
why.

If the candidate is not legal, there exist two mutually exclusive rf-elements
rf = (tr ′, tr , x) and rfc = (tr ′′, tr , x) s.t. x ∈ Var and tr ′ ̸= tr ′′. It holds that rf

is in the reads-from relation of the g-history and rfc is in the reads-from relation
of the candidate. The rf-element rf is fixed as shown in Lemma 26. We do a case
distinction over rfc. If rfc is also fixed, the hc-pair is obviously not consistent when
extended by any g-event sequence. We will now argue if rfc is an interruptible
or abortable rf-element, the same fact holds. If it is interruptible, it can only be
interrupted by a commit of a transaction that is not tr ′. This is because tr ′ is
already finished in the minimal completion of the candidate as it is visible in the
g-history. In an extension where it is interrupted, there will be a new rf-element

132

which is mutually exclusive to rf . Thus, in an extension, the hc-pair stays non-
consistent. If the new rf-element is also interruptible, by the same argument
the hc-pair is non-consistent in extensions. If in an extension all interrupting
transactions are finished, rfc becomes fixed. This also makes such an extension
non-consistent. If rfc is abortable and mutually exclusive to rf , we must first note
that tr ′′ is also read by another transaction than tr in h because else it would be
aborted in the minimal completion of hc. Thus, there exists another rf-element
(tr ′′, tr ′′′, z) ∈ h.RF val. Then if tr ′′ aborts, (tr ′′, tr ′′′, z) /∈ hc.RF c, and also it is
not in any extension of hc as the transaction is finished. This makes any extension
of the hc-pair non-consistent.

In the second step, the interrupting write set for each unfinished transaction
is saved. One transaction can potentially interrupt an arbitrary number of rf-
elements with a committed write to one variable. But as soon as one of them is
interrupted in the extension of a legal candidate, this extension and any extension
of it is not legal. This can be used for compression. For an example of that,
consider two given candidates for a given history and a transaction present in both.
If in both candidates there exists at least one interruptible rf-element which the
transaction interrupts with a committed write on one variable, these candidates
both are not legal for any extension where the transaction writes to that variable
and commits. In Figure 4.14, there is one interruptible rf-element in hc, namely
(11, 21, x). Thus, the only non-empty interrupting write set is the one of 21 which
is {x}.

In the third step, each commit pending transaction that is a must-commit
transaction is saved. A commit pending transaction may be read by arbitrarily
many transactions. If there is at least 1 such transaction, and the commit pending
transaction aborts in an extension of the candidate, this extension is not legal
and in the DM equivalence class. This can be used for compression as given two
candidates with an identical transaction that is a must-commit transaction, both
of them are not legal in any extension in which that transaction is aborted. In
Figure 4.14, hc has 1 abortable rf-element namely (21, 13, z). The must-commit
transaction set thus is the set {21}.

In the last step, certain transactions and g-events are removed. All transactions

133

that cannot be read in the g-history (given the assumptions of OP−), and which
cannot be read in the candidate by new read events anymore, are removed. Also,
all read events reading from these transactions are removed in the g-history and
candidate. The only exception is the last finished transaction of the candidate,
even if it cannot be read (if it is aborted or has an empty write set), as its placement
is relevant for the insertion of new begin events in the candidate. In any extension
of the hc-pair, there can be no new rf-elements involving the removed transactions.
If the hc-pair is consistent, these rf-element stay identical between g-history and
candidate for any extension of the hc-pair. Thus, these extensions are legal iff the
new rf-elements are also identical between the reads-from relations of g-history
and candidate. If the candidate is not legal, the hc-pair has already been put into
the DM equivalence class in step 1.

In Figure 4.14, transaction 11 has the transaction 13 real-time ordered after
it in h. Both only write to x and commit. The same holds in the candidate
hc. Additionally, all unfinished transactions are commit pending, and thus they
cannot read transaction 11. It is thus removed, and the tuple characterizing the
equivalence class of the hc-pair of the example is as follows:

B12
t1
B21

t2
W12

t1
(x , 3)Inv12

t1
(C)R21

t2
(x , 1)W21

t2
(z , 1)Inv21

t2
(C)B13

t1
R13

t1
(z , 1)W13

t1
(x , 4)C13

t1
,

B12
t1
W12

t1
(x , 3)Inv12

t1
(C)B21

t2
R21

t2
(x , 1)W21

t2
(z , 1)Inv21

t2
(C)B13

t1
R13

t1
(z , 1)W13

t1
(x , 4)C13

t1
,

{x}
{21}

 .

Note that the color of the interrupting write set indicates which transaction it is
of. Another member of this equivalence class would be the hc-pair:
(

B11
t1
W11

t1
(x , 1)C11

t1
B12

t1
B21

t2
W12

t1
(x , 3)Inv12

t1
(C)R21

t2
(x , 1)W21

t2
(z , 1)Inv21

t2
(C)B13

t1
R13

t1
(x , 1)A13

t1
B14

t1 R
14
t1 (z , 1)W

14
t1 (x , 4)C

14
t1 ,

B11
t1
W11

t1
(x , 1)C11

t1
B12

t1
W12

t1
(x , 3)Inv12

t1
(C)B21

t2
R21

t2
(x , 1)W21

t2
(z , 1)Inv21

t2
(C)B13

t1
R13

t1
(x , 1)A13

t1
B14

t1 R
14
t1 (z , 1)W

14
t1 (x , 4)C

14
t1

)
,

where the aborted transaction 13 is also removed. Also, here there are two in-
terruptible rf-elements (11, 21, x) and (11, 13, x) in the candidate. Despite this,
the interrupting write sets stay identical as transaction 12 would interrupt both
rf-elements with a committed write on x.

We are now going to formally define this compression, and then discuss how to
apply it to complete candidate sets. First, we need to define unreadable transac-
tions for g-histories and for candidates. In a g-history or a candidate, a transaction

134

is unreadable whenever any new read event in any arbitrary extension of the g-
history cannot read any variable from that transaction. If a transaction tr occurs
in an rf-element rf , i.e. it is either the first or second member of the triple, we
say tr ∈ rf . So for a g-history an unreadable transaction is defined as follows:

Definition 47 (Unreadable transactions in a g-history). For a g-history h a
finished transaction tr ∈ h is unreadable denoted tr ∈ ur(h) iff there exist no
sequence seq in which there exists a read Rtr ′

thr(tr ′)(var , val) s.t.

(tr , tr ′, var) ∈ (h · seq).RF val.

Next we give conditions such that a transaction is unreadable iff these conditions
are given in a g-history.

Lemma 28 (Conditions for unreadable transactions in a g-history). For a g-
history h, a finished transaction tr ∈ h is unreadable iff

1. abh(tr)

2. or ∀var ∈WS vo
h (tr), ∃tr ′ ∈ Tr : coh(tr

′) ∧ var ∈WS vo
h (tr ′) ∧ tr ≺h tr ′.

The proof can be found in Appendix C. It is trivial to see that if a transaction
is aborted, it cannot be read. If for a transaction each variable of its write set is
“overwritten” by some other committed transaction real-time ordered after it, it
cannot be read any more by new reads appended at the end given the assumptions
of OP−.

Now, for candidates the definition of unreadable is basically identical except
that the insertion function is used instead of appending the event sequence and
the value reads-from relation is replaced by its conflict counterpart.

Definition 48 (Unreadable transactions in a candidate). For a g-history hc, a
finished transaction tr ∈ hc is unreadable denoted tr ∈ ur(hc) iff there exist no
sequence seq in which there exists a read Rtr ′

thr(tr ′)(var , val) s.t.

∀h ′
c ∈ ins(hc, seq) : (tr , tr

′, var) /∈ h ′
c.RF c.

135

We again give conditions such that a transaction is unreadable iff these conditions
are given in a candidate.

Lemma 29 (Conditions for unreadable transactions in a candidate). Given a
finished transaction tr occurring in candidate hc of g-history h, tr is unreadable
iff

1. abhc(tr) (Aborted)

2. or cohc(tr) and:

• ∀var ∈WS vo
hc

(tr), ∃tr ′ ∈ Tr :
cohc(tr

′) ∧ var ∈WS vo
hc

(tr ′) ∧ tr ≺hc tr
′ (Overwritten before end)

• and for all unfinished and not commit pending or abort pending trans-
actions tr ′ in hc:
(a) ¬(tr ≺hc tr

′) (Ordered after unfin. tr.)
(b) or ∀var ∈WS vo

hc
(tr), ∃tr ′′ ∈ Tr :

cohc(tr
′′) ∧ var ∈ WS vo

hc
(tr ′′) ∧ tr ≺hc tr ′′ ≺hc tr ′ (Overwr. bef.

unfin. tr.).

The proof of this lemma can be found in Appendix C. While these conditions
look much more complicated than the conditions for unreadable transactions in g-
histories, the concept is similar. A transaction cannot be read when it is aborted.
Additionally, each committed transaction must be overwritten before the point
at which new g-events may be inserted. In this case, this point is not only the
end of the candidate but at the end (or the start as a candidate is serial) of each
unfinished transaction as well. This means, given an unreadable transaction and
an unfinished transaction, the unreadable transaction must either be overwritten
before the unfinished transaction or it must be ordered afterwards.

The following lemma is the key to the compression being able to remove unread-
able transactions and to model their effects on the g-history with the interrupting
write sets and must-commit transaction set.

136

Lemma 30. Given an unreadable transaction tr in a candidate hc in an hc-pair
(h, hc) and an arbitrary extension of it (h · seq, h ′

c) by a sequence seq, the following
property holds:

{rf ∈ hc.RF c | tr ∈ rf } ̸= {rf ∈ h ′
c.RF c | tr ∈ rf }

→ ∀seq′ ∈ Ev ∗, ∀h ′′
c ∈ ins(h ′

c, seq
′) : (h · seq · seq′, h ′′

c .RF c) is not consistent.

The proof can be found in Appendix C. Now we can define the set of unreadable
transactions for an hc-pair. It is the intersection of the unreadable transactions
of its members. We take the intersection instead of the union as we still need
to detect whenever a new transaction reads differently in the g-history and the
candidate. We also define the last finished transaction in the candidate hc as
tr lf (hc), and remove it from the intersection for the reasons discussed previously.

Lemma 31 (Unreadable transaction set of an hc-pair). The set of unreadable
transactions of an hc-pair hc = (h, hc) is defined as

ur(hc) = (ur(h) ∩ ur(hc))\tr lf (hc).

Definition 49 (Removal of transactions). The transaction removal of a set of
transactions Tr− for a g-history (or candidate) h = ev 0 . . . evn is defined as

h\Tr− = ev ′
0 . . . ev

′
n, s.t. for 0 ≤ i ≤ n :

ev ′
i =


ϵ if trh(ev) ∈ Tr−

ϵ if ev i = Rtr
t (x , val), ∃tr ′ ∈ Tr− : (tr ′, tr , x) ∈ h.RF val/c

ev i else.

For this definition, RF val/c denotes that according to whether h is a history or
candidate the respective reads-from relation is used. To avoid convoluted index

137

modifications, some g-events are defined as the empty word ϵ. These p-events
are treated as non-existent in the resulting g-history or candidate. An important
property of this removal function is that when applied to both members of an
hc-pair with a set of transactions, it removes all rf-elements from the g-history
and candidate in which any transaction of the transaction set is involved in.

Lemma 32 (Removal function correctness hc-pairs). Given an hc-pair (h, hc) and
a set of transactions Tr−, it holds for (h\Tr−, hc\Tr−) that

1. (h\Tr−).RF val = h.RF val\{rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf }

2. and (hc\Tr−).RF c = h.RF c\{rf ∈ hc.RF c | ∃tr ∈ Tr− : tr ∈ rf }.

The proof can be found in Appendix C. Using this, we can define the compression
of hc-pairs. The compression removes all unreadable transactions and read events
reading them, except the last finished transaction, and stores the relevant informa-
tion of them in the interrupting write sets and the set of must-commit transactions.
For this definition, we need to define the set containing all interrupting write sets
of a candidate hc, which is

IWS hc = {IWS hc(tr) | tr ∈ hc}.

Definition 50 (Compression of hc-pairs). The compressed hc-pair representation
of an hc-pair hc = (h, hc), denoted cmp(h, hc), is defined as

cmp(h, hc) =

DM iffhc.RF c ̸= h.RF val

(h\ur(hc), hc\ur(hc), IWS hc ,MC hc) else.

Lemma 33 (Finite number of hc-pairs). The number of compressed hc-pairs is
finite for a given T , Var and Val .

The proof can be found in the appendix in Appendix C. The next lemma formal-
izes that hc-pairs that are compressed into an equal representation are extension
equivalent.

138

Lemma 34 (Compression represents an equivalence class). Given two arbitrary
hc-pairs (h, hc) and (h ′, h ′

c), it holds that

cmp(h, hc) = cmp(h ′, h ′
c)→ (h, hc) ≡ext (h

′, h ′
c).

The proof can be found in Appendix C. Its reasoning is that given an hc-pair we
can divide the reads-from relation of the g-history and the candidate into two parts,
the fixed part and the non-fixed part. The fixed part is the same in all extensions
of the hc-pair for both. Now whenever the candidate is non-legal, meaning there is
a difference in reads-from relations, the hc-pair is in DM as we have discussed in
the description above. This is a difference to the SSR− construction as in it there
can be mutually exclusive rf-elements involving tr r in an hc-pair, but extensions
of it can still be consistent. If the overlap of the fixed rf-elements of both members
of the hc-pair is identical, then for extensions only the remaining rf-elements that
are not fixed are relevant for computing equivalence. Note that a transaction
is only removed iff it cannot be read in any extension of the hc-pair, neither in
the g-history nor in the candidate. So, all transactions only involved in fixed
rf-elements in a g-history and candidate do not define the equivalence class for
extension equivalence when the hc-pair is not doomed. Interruptible rf-elements
are behaving as fixed if they are not interrupted and if they are interrupted the hc-
pair is doomed. The restricted write sets cover this distinction; thus interruptible
rf-elements can be treated as fixed for the purpose of extension equivalence. The
same can be applied for abortable rf-elements.

Compressing candidate sets We extend this notion to candidate sets by
representing a g-history and its candidate set by a set of hc-pairs, one for each
candidate. Then we apply the previous compression for each hc-pair in the set.
The result of this is the OP−-data of a g-history. The extension equivalence
notion for hc-pairs can be used to determine OP−-extension equivalence between
two g-histories. Two g-histories h, h ′ are OP−-extension equivalent iff for each
candidate hc in Ch there exists a candidate h ′

c in Ch ′ such that (h, hc) is extension

139

equivalent to (h ′, h ′
c). We formulate this in Lemma 35. Let HCh be the set of

hc-pairs of a g-history and its candidate set.

Lemma 35. Two g-histories h, h ′ are OP−-extension equivalent iff the following
two conditions hold:

1. ∀(h, hc) ∈ HCh , ∃(h ′, h ′
c) ∈ HCh ′ : (h, hc) ≡ext (h

′, h ′
c),

2. ∀(h ′, h ′
c) ∈ HCh ′ , ∃(h, hc) ∈ HCh : (h ′, h ′

c) ≡ext (h, hc).

The proof of this lemma can be found in Appendix C. We define OP−-data.

Definition 51 (OP−-data). The OP−-data for an arbitrary g-history h is defined
as

op(h) = {cmp(hc) | hc ∈ HCh}.

If the OP−-data for two g-histories is identical, then conditions 1 and 2 of
Lemma 35 are true for these g-histories. Thus, the two g-histories are OP−-
extension equivalent.

Lemma 36. Two g-histories h, h ′ are OP−-extension equivalent if op(h) = op(h ′).

The proof can be found in Appendix C.

Automaton construction Finally, we give the automaton construction. To
formalize it, we let OP−

T ,Var be the set of all OP−-data with thread identifiers
from T and variables from Var . We furthermore let OP−

∅ T ,Var
be the set of all

OP−-data of the format {DM}.

Definition 52. Let I = (Q, δ, q0, F) be an implementation automaton. Then the
OP−-automaton of I (E(I)) is the automaton (QE, δE, q0,E, FE) such that

• QE = Q×OP−
T ,Var ,

140

• q0,E = (q0, (ϵ, ∅)),

• FE = F ×OP−
∅ T ,Var

and ((q, op), ev , (q′, op′)) ∈ δE iff
(q, ev , q′) ∈ δ and ∃h ∈ H : cmp(h) = op ∧ cmp(h · ev) = op′.

Algorithm 2 Algorithm to construct automaton
1: procedure AutConstr(I = (Q,Σ, δ, q0, F))
2: Init Compressed Automaton (Q × OP−

T ,Var , δE = ∅, (q0, op(ϵ)), F ×
OP−

∅ T ,Var
)

3: Init Queue P with ((q0, ϵ), (q0, op(ϵ)))
4: visited = ∅
5: while P is not empty do
6: ((q, h), qE) = POP (P)
7: for q′ s.t. (q, ev , q′) ∈ δ do
8: δE = δE ∪ {(qE, ev , (q′, op(h · ev))}
9: if (q′, op(h · ev)) /∈ visited then

10: visited = visited ∪ (q′, op(h · ev))
11: Add ((q′, h · ev), (q′, op(h · ev))) to P

12: return (QE, δE, q0,E, FE)

The automaton is a finite automaton since we only have finitely many different
valid OP−-data. We can derive opacity of the implementation automaton from
the language of the OP−-automaton.

Theorem 5. Let I be an implementation automaton. Then I only produces g-
histories opaque under OP− iff L(E(I)) = ∅.

The proof can be found in Appendix C. For the decidability of the overall problem,
it is required that this automaton is constructable. This is possible via the algo-
rithm shown in Algorithm 2. As all possible states of the compressed automaton
(and thus also all final states) are known in advance for a given input because of
Lemma 33, the algorithm only needs to add all edges. It does so by performing
a modified BFS on the naive automaton using a queue containing pairs of naive

141

states and their corresponding compressed automaton states. The queue is initial-
ized with a pair containing the starting states of the naive and the compressed
automaton, respectively. When a pair of naive and compressed state is taken from
the queue, each successor of the naive state is iterated through. In each iteration,
first, an edge between the compression of the naive state taken from the queue
and the compression of its successor state is added to the compressed automaton.
Second, the pair containing the successor state and its compression is added to
the queue if the compression was not part of any pair that was already in the
queue. This condition ensures that the algorithm terminates. This is because
Q × OP−

T ,Var is finite, which means Line 11 is executed a finite number of times,
which in turn makes the while loop in Line 5 terminate after a finite number
of steps. That the algorithm generates all edges can be shown by applying the
following lemma which follows from a part of the proof of Lemma 34.

Lemma 37. Given two arbitrary g-histories h and h ′, it holds that

∀seq ∈ Ev ∗ : op(h) = op(h ′)→ op(h · seq) = op(h ′ · seq).

The proof for this lemma can be found in Appendix C. It implies that the exten-
sions of two p-histories with identical OP−-data again have identical OP−-data;
thus, the algorithm only needs to explore the successor states of one of them. This
finally gives us the decidability of OP−.

Theorem 6 (Decidability of the correctness problem for OP−). The correctness
problem for OP− is decidable.

142

5
Discussion + Conclusion

In this chapter, we will first give a summary of the results of this thesis, dis-
cuss these results in detail (including future work) and then give our concluding
thoughts.

5.1 Summary

The main goal of this thesis was to fill gaps in the existing literature with regard
to the complexity of the membership and correctness problem for correctness con-
ditions used in the context of TMs. Additionally, we aimed to provide an overview
of the existing results. The thesis is divided into two parts: one concerning the
membership problem and one concerning the correctness problem.

In the first part of the thesis, we gave an overview of the existing results (see
Table 5.1) and presented results for two questions in this field. We showed that
the membership problem for value opacity is NP -complete, and we compared the
languages of conflict opacity and value opacity under two sets of assumptions.

For the first result (Section 3.2) we showed that the membership problem for
value opacity is at least as hard as the membership problem for state serializability
(which is NP -complete) by using a reduction from the latter problem to the former

143

Condition Complexity of membership problem
Sequential consistency NP-complete [40]
Linearizability NP-complete [96, 40]
View serializability NP-complete [97]
State serializability NP-complete [73]
Strict state serializability NP-complete [88]
Conflict serializability P [73]
Causal serializability Unknown
Snapshot isolation NP-complete [13]
Value Opacity NP-complete (Section 3.2)
Conflict opacity P
DU opacity Unknown
TMS 1 Unknown
TMS 2 Unknown
VWC Unknown

Table 5.1: Complexity of the membership problems for different correctness conditions. Our con-
tribution shown in green

problem. Then, we showed that the membership problem for value opacity belongs
to the NP complexity class. The reduction converts a history that adheres to the
syntax of histories state serializability is defined upon onto a history of the syntax
of histories value opacity is defined upon. This was done in such a way that the
constraints of state serializability are equivalently modelled by the constraints of
value opacity in the converted history. Then we showed the membership problem
for value opacity is in the NP complexity class by showing that it is possible to
determine whether a serial history is a witness for another history in polynomial
time. From this the overall result followed.
For the second result (Section 3.3), we compared the languages of conflict opacity
and value opacity under two sets of assumptions. The first set of assumptions
restricted the histories considered to those for which value opacity implicitly has
a most-recent reads-from relation. Still, under this assumption, both conditions
differ in how they handle unread writes. In conflict opacity such writes cause con-
flicts, and thus they restrict the ordering of a potential witness. In value opacity
such an ordering restriction does not exist, and if the write is still unread in the

144

witness the position of its transaction is only restricted according to the real-time
order of the history it is part of. So, under this assumption conflict opacity implies
value opacity, but the reverse claim does not hold. The second set of assumptions
contained the first set of assumptions and in addition the read-before-update as-
sumption. The latter assumption restricts histories to only contain transactions
that read the values they write to beforehand. This assumption removes the dif-
ference in how unread writes are handled. Under the second set of assumptions,
the languages of conflict opacity and value opacity are identical.

Condition Complexity of correctness problem
Sequential consistency Undecidable [3]
Linearizability EXPSPACE [3]
View serializability Unknown
Strict view serializability Unknown
State serializability Unknown
Strict state serializability a Decidable (Section 4.2)
Conflict serializability PSPACE [37]
Causal serializability Unknown
Snapshot isolation Unknown
Value Opacityb Decidable (Section 4.3)
Conflict opacity PSPACE (reduction to conflict serializability)
DU opacity Unknown
TMS 1 Unknown
TMS 2 Unknown
VWC Unknown

aUnder assumptions, see Section 4.2
bUnder assumptions, see Section 4.3

Table 5.2: Complexity of the correctness problems for different correctness conditions, our contri-
bution shown in green

In the second part of the thesis concerned with the correctness problem, we
first gave an overview of the existing results (see Table 5.2) and then presented
results for two questions in this field. We determined that the respective correct-
ness problem for (a) strict state serializability and (b) value opacity is decidable
under assumptions. For strict state serializability (Section 4.2) we made the as-

145

sumptions that implementations generate no dead transactions (transactions not
affecting the end state) and only terminate if all transactions are finished. Our
decidability proof consisted of an approach making it possible to decide the strict
state serializability of any implementation under these assumptions. This ap-
proach involved exploring the naive state space of the given implementation in
which each state consisted of the internal state of the implementation automaton
and the history generated by the path from its start to the current state. We
presented a compression of such a naive state space into equivalence classes. Two
states are equivalent whenever the implementation is in the same internal state in
both, and after any two given runs of the implementation starting in this state ei-
ther the resulting extended histories are both serializable or both are not. Notably,
there is an equivalence class DM, which contains all histories which are not state
serializable and cannot become state serializable in any extension. We showed
that there are only finitely many of these equivalence classes. This is the case
because only a finite number of transactions can be read by future transactions.
Then, we gave an algorithm exploring the naive state space of an implementa-
tion and constructing an equivalent state space using the equivalence classes as
its states. This algorithm terminates because for a given problem instance there
can only be a finite number of transitions and the number of possible equivalence
classes is finite.

For our second result (Section 4.3) we employed a set of assumptions establish-
ing an unambiguous value-based reads-from relation which notably limits all im-
plementations to finish each transaction in a finite number of steps. This approach
is analogue to the above approach, but it had to deal with value opacity allow-
ing reads from commit invoked transactions which then later can be aborted. In
the approach, this property was included in the equivalence classes. Additionally,
as value opacity uses a different reads-from relation we derived new conditions
of when transactions are readable or not. Given these changes, the remaining
approach was identical to the approach for strict state serializability.

146

5.2 Discussion and Future Work

We will discuss the limitations, contributions and possible future work for each of
the above results on its own in the following.

The membership problem for value opacity is NP-complete Value
opacity as proposed by Guerraoui and Kapalka in 2008 ([46]) was the obvious
choice for a gap to fill for the membership problem in the context of TMs as it
was the first occurrence of opacity and also the definition of it that is most referred
to. We did not choose the conflict-based variant of opacity since its differences to
conflict serializability which is well studied are very little. The result itself was
interesting given as it showed that while state serializability has a most-recent
reads-from relation and value opacity an ambiguous value-based reads-from rela-
tion they still belong to the same complexity class. This contribution closes a gap
in the literature regarding the membership problems of TM correctness conditions.
It allows for realistic expectations for the run time of testing approaches. For fu-
ture work it would be interesting to see if other conditions closely related to value
opacity such as DU opacity, TMS 1, TMS 2 and VWC are also NP -complete or
if some of the differences between these conditions and value opacity are signif-
icant enough to yield a higher or lower complexity. If not, the structure of the
presented reduction of state serializability to value opacity could potentially serve
as a blueprint for reduction of state serializability to these conditions.

Comparison of conflict opacity and value opacity The question of
how these conditions compare to each other and under which assumptions they
are equal, came up as conflict opacity was named opacity in the paper introducing
it [42]. We discuss each of the three assumptions made and how applicable they
may be to histories generated by actual TMs. The no-out-of-thin-air assumption
(each read from a location reads the value written by the transaction that wrote to
that location and committed most recently) is the most limiting assumption out of
the three as it depends on the implementation of the TM and the memory model of
the machine it runs. The assumption is not applicable for weaker memory models,

147

where values read may not necessarily be those which were written most recently.
Still, in stronger memory models or in implementations enforcing the assumption
it is applicable. The unique writers assumptions (value are pairwise different)
can be implemented using time stamps or a similar concept and the read-before
update assumption (transactions also read each location they intend to write
to) is very reasonable for many applications of TMs. The read-before-update
assumption was adopted from the comparison of different serializability variants
made by Papadimitriou in the paper presenting state serializability [73]. Often,
reading values before modifying them is even necessary, for example for arithmetic
operations. For future work, these assumptions can be used for a testing approach
for an actual TM. Given they hold, it is possible to reduce checking the value
opacity of a history to checking its conflict opacity. Additionally, it would be
interesting to see how conflict opacity compares to other variants of opacity such
as DU opacity, TMS 1, TMS 2 and VWC.

The correctness problem for SSR− is decidable Besides the contribu-
tion of the result itself, we chose strict state serializability as a stepping stone
towards determining the complexity of the correctness problem for value opacity.
It was similar to value opacity in the sense that its constraints include a real-
time order and do not constrain the order on a potential witness using conflicts
as for example conflict serializability does. However, its most-recent reads-from
relation made obtaining a result easier. To obtain the result for SSR, we made
two assumptions. First, we assumed the implementation only terminates when all
transactions are finished. This assumption allowed a simplified notion of equiva-
lence where the reads of live transactions were also considered as they are expected
to terminate. If one removes this assumption, the reads of live transactions are
not relevant for the strict state serializability of a history, but they become so
whenever the transaction finishes. Removing this assumption would imply the
need for a potential new approach, if possible, to refine the equivalence classes -
specifically the DM class - as now live transactions whose reads cannot be jus-
tified by any witness do not make a history permanently non-serializable except
if they commit. As the number of threads and thus the number of live transac-

148

tions in an instance of the problem is finite, and they can only read from a finite
number of other transactions, it is likely that this would still lead to a finite num-
ber of equivalence classes. If this is the case, then the problem would likely still
be decidable. Second, we assumed any implementation does not produce dead
transactions. The issue with allowing dead transactions is that then state serial-
izability is not prefix-closed. The reads of dead transactions are not considered
for determining whether a history is strictly state serializable or not. Also, at any
point, any previously not dead transaction may become dead. This leads to the
problem that the DM equivalence class does not exist any more and any previ-
ously non strictly state serializable history may become strictly state serializable
later on. Removing this assumption could lead to the problem being undecidable.
A property which may still make this problem decidable is that the dead property
propagates backwards. So if newer transactions become dead, older transactions
whose liveness depends on these newer transactions also die. So, given a history
which contains unreadable transactions which make the overall history not strictly
state serializable, it may be possible to save which readable transactions need to
become dead for the unreadable transaction to also become dead and make the
history serializable again. If this is possible, unreadable transaction can still be
forgotten. Still, even with its limitations this result is a significant step towards
filling up the gaps in the related work. The approach also uses a reduction of histo-
ries into an equivalence classes which could be useful in other contexts if adapted
accordingly. Future work could involve lifting the assumptions made, specifically
by exploring if the previous approaches are feasible.

The correctness problem for OP− is decidable This result was obtain-
ing using the result for strict state serializability as a stepping stone. Compared
to strict state serializability, the histories value opacity is defined upon can con-
tain commit invoked transactions which can either be treated as committed or
aborted in a witness. Also, a read does not necessarily read from the writer that
most recently committed before it as is the case for strict state serializability. It
can even read from writers that commit after it. Also, for a single read there
can exist arbitrary many transactions of which each one can justify that read in

149

a witness. This causes two issues for transferring the approach we used for strict
state serializability to value opacity.

First, the possibility to read values from transactions that commit invoked after
the read means value opacity in its original version is - as strict state serializability
- not prefix-closed. This property causes a steep increase in complexity in any
verification approach - if such an approach exists - thus often value opacity is
defined as explicitly prefix-closed. Second, for one read there can be an arbitrary
high number of potential writes justifying it. For an example of this issue, see
Figure 5.1. Transaction 1 may read from any of the transactions of thread 2 if it
invokes a read on x reading the value 1.

t1

t2

B(1)

B(2) W(x, 1) C(2) B(3) W(x, 1) C(3) B(4) . . .

Figure 5.1: Issues with solving the correctness problem for value opacity

The problem with such a scenario is that an arbitrary high number of transactions
can be read in the future, and thus cannot be forgotten in our approach. We first
discuss our approach to addressing these issues, and then discuss possible other
approaches for future work.

In this thesis, we opted for proving decidability of the correctness problem for
implementations not producing histories containing such cases. We addressed the
first issue by requiring that if a run of an implementation produces a non-opaque
history, any extension of that run does as well. We did so via the reasonable-
read constraint, which requires each read to read a value written by a previous
committed or commit invoked transaction which can be the most recent writer on
the respective variable before the read in a witness. This constraint as a side effect
also excludes implementations in which values that no transaction can ever write
in the implementation can be read. This is a fringe case which can also trivially
be checked for in any implementation given as a DFA.

The second issue was harder to address. A first intuition would be to require
that each history produced by an implementation has pairwise different values

150

for each write, similar to the unique values assumption made in the comparison
between value and conflict opacity. The issue with this is that a DFA implementa-
tion can only produce a finite number of write events with pairwise different values.
Thus, this assumption would only include implementations that each have an up-
per bound to the number of writing committed transactions they can produce in
a run. Every other transaction such an implementation could produce would be
read-only which would limit the complexity of such histories given that read-only
transactions can be forgotten in the style of approach we use. Because of this, we
did not restrict the correctness problem to such implementations. Instead, we re-
quired each transaction to commit or abort in a fixed amount of time which made
it possible to identify each writer for a read with a finite number of timestamps
which we assumed to be the case. These assumptions still allow for arbitrary
many writing transactions that are committed. Also, these assumptions keep the
properties mentioned at the beginning of this paragraph mostly intact.

For future work, there are several interesting avenues. An obvious one would
be to lift the constraints to determine the decidability of the correctness prob-
lem for value opacity for all possible implementations. If our approach were to
be adopted to implementations without the reasonable-read constraint, it would
mean that only histories in which a read cannot be justified by future writers in
an extension of that history would belong to the DM equivalence class. Other
non-opaque histories would belong to different equivalence classes. If the other
constraints are still in place, the duration of each transaction is upper bounded
by a fixed number and the number of concurrent transactions to one transaction
is also upper bounded by a fixed number. This implies that after at most a fixed
number of events the reading transaction is finished and each transaction con-
current to it as well, meaning its read cannot be justified by future writers in
an extension anymore. This makes it very likely that the overall problem would
still be decidable with only the RR-constraint lifted. Lifting the other two con-
straints restricting the duration of transactions and requiring timestamps would
be challenging. It might very well make the problem undecidable given the issue
presented in Figure 5.1. If it were to still be decidable, a promising avenue would
be to group transactions into equivalence classes. The only way a transaction in

151

an opaque history can contain arbitrary many events is if it repeatedly reads the
same value from a location as multiple writes to the same location are not permit-
ted. Reading different values from one location in the same transaction always
means the history is not value opaque. Given these two facts, such a grouping into
equivalence classes may be possible. Then these classes could be used to forget
transactions in scenarios such as shown in Figure 5.1, if there is another transac-
tion in the same equivalence class such that both fulfil conditions that imply they
are interchangeable.

Besides lifting these constraints, it would also be interesting to conduct further
research into different opacity variants and see if this approach is adaptable in
some manner to these variants.

Concluding thoughts In this thesis, we have provided several results for the
decidability of problems related to correctness conditions for TMs. The correctness
of these results is supported by extensive proofs in this thesis. The results fill
gaps in the existing results, and they can also be used as inspiration for practical
approaches for verifying histories or TMs. Promising avenues for future work are
expanding upon these results by removing their limitations and adapting them to
different variants of the correctness conditions.

152

References

[1] IJsbrand Jan Aalbersberg and Hendrik Jan Hoogeboom. Characterizations
of the decidability of some problems for regular trace languages. Mathemat-
ical Systems Theory, 22(1):1–19, 1989.

[2] Yehuda Afek, Alexander Matveev, and Nir Shavit. Pessimistic software
lock-elision. In Marcos K. Aguilera, editor, Distributed Computing - 26th In-
ternational Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012.
Proceedings, volume 7611 of Lecture Notes in Computer Science, pages 297–
311. Springer, 2012.

[3] Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. Model-checking of
correctness conditions for concurrent objects. Information and Computation,
160(1-2):167–188, 2000.

[4] Alasdair Armstrong, Brijesh Dongol, and Simon Doherty. Proving opacity
via linearizability: A sound and complete method. In Ahmed Bouajjani and
Alexandra Silva, editors, FORTE 2017, volume 10321 of Lecture Notes in
Computer Science, pages 50–66. Springer, 2017.

[5] Hagit Attiya, Sandeep Hans, Petr Kuznetsov, and Srivatsan Ravi. Safety of
deferred update in transactional memory. In Mukaddim Pathan and Guiyi
Wei, editors, IEEE 33rd International Conference on Distributed Computing
Systems, ICDCS 2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA,
pages 601–610. IEEE Computer Society, 2013.

[6] Hagit Attiya and Eshcar Hillel. Single-version stms can be multi-version
permissive (extended abstract). In Marcos Kawazoe Aguilera, Haifeng Yu,
Nitin H. Vaidya, Vikram Srinivasan, and Romit Roy Choudhury, editors,
Distributed Computing and Networking - 12th International Conference,

153

ICDCN 2011, Bangalore, India, January 2-5, 2011. Proceedings, volume
6522 of Lecture Notes in Computer Science, pages 83–94. Springer, 2011.

[7] Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel
Sagiv. Thread quantification for concurrent shape analysis. In Aarti Gupta
and Sharad Malik, editors, Computer Aided Verification, 20th International
Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings,
volume 5123 of Lecture Notes in Computer Science, pages 399–413. Springer,
2008.

[8] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL isolation levels.
In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data, San
Jose, California, USA, May 22-25, 1995, pages 1–10. ACM Press, 1995.

[9] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[10] Philip A. Bernstein, David W. Shipman, and Wing S. Wong. Formal aspects
of serializability in database concurrency control. IEEE Transactions on
Software Engineering, 5(3):203–216, 1979.

[11] Eleni Bila, Simon Doherty, Brijesh Dongol, John Derrick, Gerhard Schell-
horn, and Heike Wehrheim. Defining and verifying durable opacity: Correct-
ness for persistent software transactional memory. In Alexey Gotsman and
Ana Sokolova, editors, Formal Techniques for Distributed Objects, Compo-
nents, and Systems - 40th IFIP WG 6.1 International Conference, FORTE
2020, Held as Part of the 15th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-
19, 2020, Proceedings, volume 12136 of Lecture Notes in Computer Science,
pages 39–58. Springer, 2020.

[12] Jesse D. Bingham, Anne Condon, Alan J. Hu, Shaz Qadeer, and Zhichuan
Zhang. Automatic verification of sequential consistency for unbounded ad-

154

dresses and data values. In Rajeev Alur and Doron A. Peled, editors, Com-
puter Aided Verification, 16th International Conference, CAV 2004, Boston,
MA, USA, July 13-17, 2004, Proceedings, volume 3114 of Lecture Notes in
Computer Science, pages 427–439. Springer, 2004.

[13] Ranadeep Biswas and Constantin Enea. On the complexity of checking
transactional consistency. Proceedings of the ACM on Programming Lan-
guages, 3(OOPSLA):165:1–165:28, 2019.

[14] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,
Michael M. Swift, and David A. Wood. Performance pathologies in hardware
transactional memory. In Dean M. Tullsen and Brad Calder, editors, 34th
International Symposium on Computer Architecture (ISCA 2007), June 9-
13, 2007, San Diego, California, USA, pages 81–91. ACM, 2007.

[15] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Ver-
ifying concurrent programs against sequential specifications. In Matthias
Felleisen and Philippa Gardner, editors, Programming Languages and Sys-
tems - 22nd European Symposium on Programming, ESOP 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of
Lecture Notes in Computer Science, pages 290–309. Springer, 2013.

[16] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On
reducing linearizability to state reachability. Information and Computation,
261:383–400, 2018.

[17] Tim Braun, Anne Condon, Alan J. Hu, Kai S. Juse, Marius Laza, Michael
Leslie, and Rita Sharma. Proving sequential consistency by model checking.
In Proceedings of the Sixth IEEE International High-Level Design Validation
and Test Workshop 2001, Monterey, California, USA, November 7-9, 2001,
pages 103–108. IEEE Computer Society, 2001.

[18] Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri,
and Rajeev Alur. Model checking of linearizability of concurrent list imple-

155

mentations. In Tayssir Touili, Byron Cook, and Paul B. Jackson, editors,
Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes
in Computer Science, pages 465–479. Springer, 2010.

[19] Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D.
Zuck. Verifying correctness of transactional memories. In Formal Methods
in Computer-Aided Design, 7th International Conference, FMCAD 2007,
Austin, Texas, USA, November 11-14, 2007, Proceedings, pages 37–44. IEEE
Computer Society, 2007.

[20] Anne Condon and Alan J. Hu. Automatable verification of sequential con-
sistency. In Arnold L. Rosenberg, editor, Proceedings of the Thirteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
2001, Heraklion, Crete Island, Greece, July 4-6, 2001, pages 113–121. ACM,
2001.

[21] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient
algorithms for persistent transactional memory. In Christian Scheideler and
Jeremy T. Fineman, editors, Proceedings of the 30th on Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July
16-18, 2018, pages 271–282. ACM, 2018.

[22] Luke Dalessandro, David Dice, Michael L. Scott, Nir Shavit, and Michael F.
Spear. Transactional mutex locks. In Pasqua D’Ambra, Mario Rosario Guar-
racino, and Domenico Talia, editors, Euro-Par 2010 - Parallel Processing,
16th International Euro-Par Conference, Ischia, Italy, August 31 - Septem-
ber 3, 2010, Proceedings, Part II, volume 6272 of Lecture Notes in Computer
Science, pages 2–13. Springer, 2010.

[23] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark
Moir, and Daniel Nussbaum. Hybrid transactional memory. In John Paul
Shen and Margaret Martonosi, editors, Proceedings of the 12th International

156

Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006,
pages 336–346. ACM, 2006.

[24] John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, Oleg
Travkin, and Heike Wehrheim. Mechanized proofs of opacity: a comparison
of two techniques. Formal Aspects of Computing, 30(5):597–625, 2018.

[25] John Derrick, Brijesh Dongol, Gerhard Schellhorn, Oleg Travkin, and Heike
Wehrheim. Verifying opacity of a transactional mutex lock. In Nikolaj
Bjørner and Frank S. de Boer, editors, FM 2015: Formal Methods - 20th
International Symposium, Oslo, Norway, June 24-26, 2015, Proceedings,
volume 9109 of Lecture Notes in Computer Science, pages 161–177. Springer,
2015.

[26] Dave Dice and Nir Shavit. What really makes transactions fast? In ACM
Workshop, 2006.

[27] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Shlomi
Dolev, editor, Distributed Computing, 20th International Symposium, DISC
2006, Stockholm, Sweden, September 18-20, 2006, Proceedings, volume 4167
of Lecture Notes in Computer Science, pages 194–208. Springer, 2006.

[28] Simon Doherty, Brijesh Dongol, John Derrick, Gerhard Schellhorn, and
Heike Wehrheim. Proving opacity of a pessimistic STM. In Panagiota Fa-
tourou, Ernesto Jiménez, and Fernando Pedone, editors, 20th International
Conference on Principles of Distributed Systems, OPODIS 2016, December
13-16, 2016, Madrid, Spain, volume 70 of LIPIcs, pages 35:1–35:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[29] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. To-
wards formally specifying and verifying transactional memory. Formal As-
pects of Computing, 25(5):769–799, 2013.

157

[30] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. Stretching
transactional memory. In Michael Hind and Amer Diwan, editors, Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009,
pages 155–165. ACM, 2009.

[31] Dmytro Dziuma, Panagiota Fatourou, and Eleni Kanellou. Consistency for
transactional memory computing. In Rachid Guerraoui and Paolo Romano,
editors, Transactional Memory. Foundations, Algorithms, Tools, and Appli-
cations - COST Action Euro-TM IC1001, volume 8913 of Lecture Notes in
Computer Science, pages 3–31. Springer, 2015.

[32] Sameh Elnikety, Fernando Pedone, and Willy Zwaenepoel. Generalized
snapshot isolation and a prefix-consistent implementation. Technical report,
EPFL, 2004.

[33] Michael Emmi, Rupak Majumdar, and Roman Manevich. Parameterized
verification of transactional memories. In Benjamin G. Zorn and Alexan-
der Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2010, Toronto,
Ontario, Canada, June 5-10, 2010, pages 134–145. ACM, 2010.

[34] Robert Ennals. Software transactional memory should not be obstruction-
free. In Technical Report IRC-TR-06-052, Intel Research Cambridge Tech
Report, 2006.

[35] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger.
The notions of consistency and predicate locks in a database system. Com-
munications of the ACM, 19(11):624–633, 1976.

[36] Azadeh Farzan and P Madhusudan. Algorithms for atomicity. Unpublished,
2007.

[37] Azadeh Farzan and P. Madhusudan. Monitoring atomicity in concurrent
programs. In Aarti Gupta and Sharad Malik, editors, Computer Aided

158

Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA,
July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer
Science, pages 52–65. Springer, 2008.

[38] Alan D. Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil,
and Dennis E. Shasha. Making snapshot isolation serializable. ACM Trans-
actions on Database Systems, 30(2):492–528, 2005.

[39] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM
Transactions on Computer Systems, 25(2):5, 2007.

[40] Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM
Journal on Computing, 26(4):1208–1244, 1997.

[41] Håkan Grahn. Transactional memory. Journal of Parallel and Distributed
Computing, 70(10):993–1008, 2010. Transactional Memory.

[42] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model checking
transactional memories. Distributed Computing, 22(3):129–145, 2010.

[43] Rachid Guerraoui, Maurice Herlihy, Michal Kapalka, and Bastian Pochon.
Robust contention management in software transactional memory. In Pro-
ceedings of the OOPSLA 2005 Workshop on Synchronization and Concur-
rency in Object-Oriented Languages (SCOOL’05), 2005.

[44] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic con-
tention management. In Pierre Fraigniaud, editor, Distributed Computing,
19th International Conference, DISC 2005, Cracow, Poland, September 26-
29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer Science,
pages 303–323. Springer, 2005.

[45] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of
transactional contention managers. In Marcos Kawazoe Aguilera and James
Aspnes, editors, Proceedings of the Twenty-Fourth Annual ACM Symposium
on Principles of Distributed Computing, PODC 2005, Las Vegas, NV, USA,
July 17-20, 2005, pages 258–264. ACM, 2005.

159

[46] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional
memory. In Siddhartha Chatterjee and Michael L. Scott, editors, Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2008, Salt Lake City, UT, USA, February
20-23, 2008, pages 175–184. ACM, 2008.

[47] Lance Hammond, Vicky Wong, Michael K. Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Chris-
tos Kozyrakis, and Kunle Olukotun. Transactional memory coherence and
consistency. In 31st International Symposium on Computer Architecture
(ISCA 2004), 19-23 June 2004, Munich, Germany, pages 102–113. IEEE
Computer Society, 2004.

[48] Tim Harris, Adrián Cristal, Osman S. Unsal, Eduard Ayguadé, Fabrizio
Gagliardi, Burton Smith, and Mateo Valero. Transactional memory: An
overview. IEEE Micro, 27(3):8–29, 2007.

[49] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Verifying se-
quential consistency on shared-memory multiprocessor systems. In Nicolas
Halbwachs and Doron A. Peled, editors, Computer Aided Verification, 11th
International Conference, CAV ’99, Trento, Italy, July 6-10, 1999, Proceed-
ings, volume 1633 of Lecture Notes in Computer Science, pages 301–315.
Springer, 1999.

[50] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Alan Jay Smith, editor, Proceedings
of the 20th Annual International Symposium on Computer Architecture, San
Diego, CA, USA, May 1993, pages 289–300. ACM, 1993.

[51] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems, 12(3):463–492, 1990.

[52] William N. Scherer III and Michael L. Scott. Advanced contention man-
agement for dynamic software transactional memory. In Marcos Kawazoe

160

Aguilera and James Aspnes, editors, Proceedings of the Twenty-Fourth An-
nual ACM Symposium on Principles of Distributed Computing, PODC 2005,
Las Vegas, NV, USA, July 17-20, 2005, pages 240–248. ACM, 2005.

[53] Damien Imbs and Michel Raynal. Virtual world consistency: A condition
for STM systems (with a versatile protocol with invisible read operations).
Theoretical Computer Science, 444:113–127, 2012.

[54] Udo Kelter. The complexity of strict serializability revisited. Information
Processing Letters, 25(6):407–412, 1987.

[55] Elaine Lies Kerry Grens. Spike in deaths blamed on 2003
new york blackout. https://www.reuters.com/article/
us-blackout-newyork-idUSTRE80Q07G20120127. Accessed: 2023-05-
27.

[56] Jürgen König and Heike Wehrheim. Value-based or conflict-based? opacity
definitions for stms. In Dang Van Hung and Deepak Kapur, editors, Theo-
retical Aspects of Computing - ICTAC 2017 - 14th International Colloquium,
Hanoi, Vietnam, October 23-27, 2017, Proceedings, volume 10580 of Lecture
Notes in Computer Science, pages 118–135. Springer, 2017.

[57] Jürgen König and Heike Wehrheim. Data independence for software trans-
actional memory. In Julia M. Badger and Kristin Yvonne Rozier, editors,
NASA Formal Methods - 11th International Symposium, NFM 2019, Hous-
ton, TX, USA, May 7-9, 2019, Proceedings, volume 11460 of Lecture Notes
in Computer Science, pages 263–279. Springer, 2019.

[58] Jürgen König and Heike Wehrheim. On the correctness problem for serial-
izability. In Antonio Cerone and Peter Csaba Ölveczky, editors, Theoret-
ical Aspects of Computing - ICTAC 2021 - 18th International Colloquium,
Virtual Event, Nur-Sultan, Kazakhstan, September 8-10, 2021, Proceedings,
volume 12819 of Lecture Notes in Computer Science, pages 47–64. Springer,
2021.

161

https://www.reuters.com/article/us-blackout-newyork-idUSTRE80Q07G20120127
https://www.reuters.com/article/us-blackout-newyork-idUSTRE80Q07G20120127

[59] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and
Anthony D. Nguyen. Hybrid transactional memory. In Josep Torrellas and
Siddhartha Chatterjee, editors, Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPOPP 2006,
New York, New York, USA, March 29-31, 2006, pages 209–220. ACM, 2006.

[60] Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, 28(9):690–
691, 1979.

[61] Mohsen Lesani, Victor Luchangco, and Mark Moir. Putting opacity in its
place. In Workshop on the theory of transactional memory, pages 137–151,
2012.

[62] Mohsen Lesani and Jens Palsberg. Proving non-opacity. In Yehuda Afek,
editor, Distributed Computing - 27th International Symposium, DISC 2013,
Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture
Notes in Computer Science, pages 106–120. Springer, 2013.

[63] Mohsen Lesani and Jens Palsberg. Decomposing opacity. In Fabian Kuhn,
editor, Distributed Computing - 28th International Symposium, DISC 2014,
Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture
Notes in Computer Science, pages 391–405. Springer, 2014.

[64] Nancy Leveson et al. Medical devices: The therac-25. Appendix of: Safe-
ware: System Safety and Computers, 1995.

[65] Nancy G Leveson and Clark S Turner. An investigation of the therac-25
accidents. Computer, 26(7):18–41, 1993.

[66] Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. Model checking lineariz-
ability via refinement. In Ana Cavalcanti and Dennis Dams, editors, FM
2009: Formal Methods, Second World Congress, Eindhoven, The Nether-
lands, November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in
Computer Science, pages 321–337. Springer, 2009.

162

[67] Walther Maldonado, Patrick Marlier, Pascal Felber, Adi Suissa, Danny
Hendler, Alexandra Fedorova, Julia L. Lawall, and Gilles Muller. Scheduling
support for transactional memory contention management. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’10, page 79–90, New York, NY, USA, 2010.
Association for Computing Machinery.

[68] Roman Manevich, Tal Lev-Ami, Mooly Sagiv, Ganesan Ramalingam, and
Josh Berdine. Heap decomposition for concurrent shape analysis. In María
Alpuente and Germán Vidal, editors, Static Analysis, 15th International
Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceedings, vol-
ume 5079 of Lecture Notes in Computer Science, pages 363–377. Springer,
2008.

[69] Virendra Marathe and Michael Scott. A qualitative survey of modern soft-
ware transactional memory systems. Technical Report TR 839, Dept. of
Computer Science, Univ. of Rochester, 2004.

[70] Ragnar Normann and Lene T. Østby. A theoretical study of ’snapshot isola-
tion’. In Luc Segoufin, editor, Database Theory - ICDT 2010, 13th Interna-
tional Conference, Lausanne, Switzerland, March 23-25, 2010, Proceedings,
ACM International Conference Proceeding Series, pages 44–49. ACM, 2010.

[71] John W. O’Leary, Bratin Saha, and Mark R. Tuttle. Model checking trans-
actional memory with spin. In 29th IEEE International Conference on
Distributed Computing Systems (ICDCS 2009), 22-26 June 2009, Montreal,
Québec, Canada, pages 335–342. IEEE Computer Society, 2009.

[72] Christos H Papadimitriou. Some computational problems related to
database concurrency control. In Proceedings of the Conference on Theoret-
ical Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
1977, 1977.

[73] Christos H. Papadimitriou. The serializability of concurrent database up-
dates. Journal of the ACM, 26(4):631–653, 1979.

163

[74] Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple ver-
sions in STM. In Andréa W. Richa and Rachid Guerraoui, editors, Pro-
ceedings of the 29th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 16–
25. ACM, 2010.

[75] Miroslav Popovic, Branislav Kordic, and Ilija Basicevic. Transaction schedul-
ing for software transactional memory. In 2017 IEEE 2nd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pages
191–195. IEEE, 2017.

[76] Kevin Poulsen. Software bug contributed to blackout. https:
//www.theregister.com/2004/02/12/software_bug_contributed_
to_blackout/. Accessed: 2023-05-27.

[77] Kevin Poulsen. Tracking the blackout bug. https://www.theregister.
com/2004/04/08/blackout_bug_report/. Accessed: 2023-05-27.

[78] Shaz Qadeer. Verifying sequential consistency on shared-memory multipro-
cessors by model checking. IEEE Transactions on Parallel and Distributed
Systems, 14(8):730–741, 2003.

[79] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen.
Onefile: A wait-free persistent transactional memory. In 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2019, Portland, OR, USA, June 24-27, 2019, pages 151–163. IEEE,
2019.

[80] Michel Raynal, Gérard Thia-Kime, and Mustaque Ahamad. From serial-
izable to causal transactions for collaborative applications. In 23rd EU-
ROMICRO Conference ’97, New Frontiers of Information Technology, 1-4
September 1997, Budapest, Hungary, page 314. IEEE Computer Society,
1997.

164

https://www.theregister.com/2004/02/12/software_bug_contributed_to_blackout/
https://www.theregister.com/2004/02/12/software_bug_contributed_to_blackout/
https://www.theregister.com/2004/02/12/software_bug_contributed_to_blackout/
https://www.theregister.com/2004/04/08/blackout_bug_report/
https://www.theregister.com/2004/04/08/blackout_bug_report/

[81] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot Isolation for
Software Transactional Memory. In First ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional Comput-
ing (TRANSACT’06), pages 1–10. Association for Computing Machinery
(ACM), 2006.

[82] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh,
and Ben Hertzberg. Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime. In Josep Torrellas and Siddhartha
Chatterjee, editors, Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPOPP 2006, New York, New
York, USA, March 29-31, 2006, pages 187–197. ACM, 2006.

[83] Gerhard Schellhorn, Monika Wedel, Oleg Travkin, Jürgen König, and Heike
Wehrheim. Fastlane is opaque - a case study in mechanized proofs of opacity.
In Einar Broch Johnsen and Ina Schaefer, editors, Software Engineering and
Formal Methods - 16th International Conference, SEFM 2018, Held as Part
of STAF 2018, Toulouse, France, June 27-29, 2018, Proceedings, volume
10886 of Lecture Notes in Computer Science, pages 105–120. Springer, 2018.

[84] Ralf Schenkel and Gerhard Weikum. Integrating snapshot isolation into
transactional federations. In International Conference on Cooperative In-
formation Systems, pages 90–101. Springer, 2000.

[85] William N Scherer III and Michael L Scott. Randomization in stm con-
tention management (poster paper). In Proceedings of the 24th ACM Sym-
posium on Principles of Distributed Computing, Las Vegas, NV, volume 10,
2005.

[86] Michael Scott. Sequential specification of transactional memory semantics.
In Workshop on Languages, Compilers, and Hardware Support for Transac-
tional Computing, 2006.

[87] Michael L. Scott. Shared-Memory Synchronization. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2013.

165

[88] Ravi Sethi. Useless actions make a difference: Strict serializability of
database updates. Journal of the ACM, 29(2):394–403, 1982.

[89] Ohad Shacham, Eran Yahav, Guy Golan-Gueta, Alex Aiken, Nathan Grasso
Bronson, Mooly Sagiv, and Martin T. Vechev. Verifying atomicity via data
independence. In Corina S. Pasareanu and Darko Marinov, editors, Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’14, San Jose,
CA, USA - July 21 - 26, 2014, pages 26–36. ACM, 2014.

[90] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[91] Konrad Siek and Pawel T. Wojciechowski. Atomic RMI: A distributed trans-
actional memory framework. International Journal of Parallel Programming,
44(3):598–619, 2016.

[92] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L.
Scott. A comprehensive strategy for contention management in software
transactional memory. In Daniel A. Reed and Vivek Sarkar, editors, Pro-
ceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2009, Raleigh, NC, USA, February 14-18,
2009, pages 141–150. ACM, 2009.

[93] Michael F. Spear, Virendra J. Marathe, William N. Scherer III, and
Michael L. Scott. Conflict detection and validation strategies for software
transactional memory. In Shlomi Dolev, editor, Distributed Computing, 20th
International Symposium, DISC 2006, Stockholm, Sweden, September 18-20,
2006, Proceedings, volume 4167 of Lecture Notes in Computer Science, pages
179–193. Springer, 2006.

[94] Michael F. Spear, Maged M. Michael, and Christoph von Praun. Ringstm:
scalable transactions with a single atomic instruction. In Friedhelm Meyer
auf der Heide and Nir Shavit, editors, SPAA 2008: Proceedings of the 20th
Annual ACM Symposium on Parallelism in Algorithms and Architectures,
Munich, Germany, June 14-16, 2008, pages 275–284. ACM, 2008.

166

[95] Herb Sutter and James Larus. Software and the concurrency revolution:
Leveraging the full power of multicore processors demands new tools and
new thinking from the software industry. Queue, 3(7):54–62, sep 2005.

[96] Jeannette M. Wing and Chun Gong. Testing and verifying concurrent ob-
jects. Journal of Parallel and Distributed Computing, 17(1-2):164–182, 1993.

[97] Mihalis Yannakakis. Serializability by locking. Journal of the ACM,
31(2):227–244, 1984.

167

168

A
Proofs for Section 3.2

In this appendix, we are going to prove lemmas 2, 3, 4 and 1 in this order. With
these given we will prove Theorem 1.

Lemma 2 (One-to-One mapping of transactions). For an arbitrary p-history ph,

it holds that
tr(ph) = tr(f(ph)) (transaction sets identical) .

Proof. Take an arbitrary p-history ph. Applying the reduction function f to it
generates a complete transaction for each transaction in ph, it generates no other
transactions. The claim holds.

Lemma 3 (Preservation of SR-constraints). For an arbitrary p-history ph, it
holds that

Wtr1
thr(tr1)

(var , val) ∈ f(ph)→ val = tr 1 ∧ var ∈WS vo
ph (tr1)

Rtr1
thr(tr1)

(var , val) ∈ f(ph)→ ∃tr2 ∈ Tr : (tr 2, tr 1, var) ∈ ph.RF ∧ val = tr 2

∀tr ∈ tr−(ph) : trw ≺f(ph) tr ∧ tr ≺f(ph) tr r

Proof. Take an arbitrary p-history ph.

169

First equation Given an arbitrary write event Wtr1
thr(tr1)

(var , val) ∈ f(ph), by
construction of f it must be the result of r applied to a write event of ph. There
are no other write events generated by other means by f . Let Wtr ′

thr(tr ′)[Var
′] be

this event. The following sequence is the result of r on input of this event:

rph(W
tr ′

thr(tr ′)[Var
′]) = •

var ′∈Var ′
Wtr ′

thr(tr ′)(var
′, tr ′).

Note that Var ′ = WS vo
ph (tr

′). For Wtr1
thr(tr1)

(var , val) to be a member of the above
sequence generated by r the following equations must hold:

val = tr ′, var ∈WS vo
ph (tr

′), and tr ′ = tr 1.

It follows that

Wtr1
thr(tr1)

(var , val) = Wtr1
thr(tr1)

(var , tr1), | (val = tr ′, tr ′ = tr 1)

and var ∈WS vo
ph (tr1). | (var ∈WS vo

ph (tr
′), tr ′ = tr 1)

This proves the claim.

Second equation Given an arbitrary read event Rtr1
thr(tr1)

(var , val) ∈ f(ph),

it must be the result of r applied to a read event of ph. There are no other read
events generated by other means by f . Let Rtr ′

thr(tr ′)[Var
′] be this event. The

following sequence is generated by r for this event:

rph(R
tr ′

thr(tr ′)[Var
′]) = •

var∈Var ′
Rtr ′

thr(tr ′)(var , rfph(tr
′, var)).

For Rtr1
thr(tr1)

(var , val) to be in that sequence it must hold that

val = rfph(tr
′, var), and tr ′ = tr 1.

170

Note that the first equation implies var ∈ Var ′, which is not mentioned separately
as it is not needed further on. We can now substitute val in the event:

Rtr1
thr(tr1)

(var , val) = Rtr1
thr(tr1)

(var , rfph(tr1 , var)) | (val = rfph(tr
′, var), tr ′ = tr 1).

The result of rfph(tr 1, var) is tr 2 ∈ Tr , where (tr 2, tr 1, var) ∈ ph.RF . Thus,

∃tr2 ∈ Tr : (tr 2, tr 1, var) ∈ ph.RF ∧ val = tr 2

is true, and the claim holds.

Third equation By construction of f, the commit of trw is before the begin
of every other transaction and the begin of tr r is after the commit of every other
transaction. The claim holds.

Lemma 4 (Preventing additional OP -constraints). For an arbitrary p-history ph,

it holds that

∀tr , tr ′ ∈ tr−(ph) : ¬(tr ′ ≺f(ph) tr ∨ tr ≺f(ph) tr
′)

Proof. As evident by the definition of f, each non-augmented transaction is con-
current to each other. Thus, no two non-augmented transactions can be real-time
ordered with each other.

Lemma 1. Given an arbitrary p-history ph, it holds that

1.
f(ph) is opaque under OP

↔

ph is serializable under SR

2. and f is computable in polynomial time.

Proof. We will prove both directions of the first statement separately.

171

← Given an arbitrary serializable p-history ph and an arbitrary SR-witness phs

of it, we construct a g-history hs, which we will prove to be an OP -witness for
f(ph). Let hs have two properties:

• it is equivalent to f(ph)

• and hs.RT = phs.RT .

The second assignment is meaningful as tr(hs) = tr(phs). This is true as:

tr(phs) = tr(ph) | (SR-witness)
tr(ph) = tr(f(ph)) | (Lemma 2

tr(f(ph)) = tr(hs). | (f(ph) equivalent to hs)

Both properties completely define a sequence of g-events/a g-history as events, an
internal thread order and a total real-time order have been assigned. The last
two properties imply the event order, so it is not necessary to specify explicitly.
Additionally, each transaction has the same read and write set in between all of
these histories. Similarly to before, this holds for f(ph) and ph because of the
construction of f . For hs and f(ph), it is the case because hs is an OP -witness of
f(ph). For ph and phs, it is the case because phs is an SR-witness of ph.

We show that hs is an OP -witness of f(ph).

1. hs is serial:
True, as its real-time order is total.

2. hs is equivalent to a g-history in compl(h):
By construction of f, all transactions are finished in f(ph). Thus, it is the
completion of itself, meaning that compl(f(ph)) = {f(ph)} holds. By its
definition, hs is equivalent to f(ph), the claim holds.

3. Each transaction in hs is legal:
Note that each transaction is committed in f(ph) and thus also in hs. For
the history to be legal then each read has to read the most recently written
value on its variable. Let Rtr1

thr(tr1)
(var , val) be a read in hs. By construction

172

of hs, a read exists in hs iff it exists in f(ph). As of Lemma 3 val is the
transaction that tr 1 read from in ph

Rtr1
thr(tr1)

(var , val) ∈ f(ph)→ ∃tr2 ∈ Tr : (tr 2, tr 1, var) ∈ ph.RF ∧ val = tr 2

As phs is an SR-witness of ph, their reads-from relation is identical. So we
can substitute ph with phs :

Rtr1
thr(tr1)

(var , val) ∈ f(ph)→ ∃tr2 ∈ Tr : (tr 2, tr 1, var) ∈ phs.RF∧val = tr 2

The following statements are implied by (tr 2, tr 1, var) ∈ phs.RF :

tr 2 ≺phs
tr 1,

¬(∃trx ∈ Tr : tr 2 ≺phs
trx ≺phs

tr 1 ∧ var ∈WS vo
phs

(tr x)).

The real-time orders of phs and hs are identical, their transaction sets are
identical and the read and write sets for each transaction are identical. Thus,
we can substitute phs with hs resulting in

tr 2 ≺hs tr 1,

¬(∃trx ∈ Tr : tr 2 ≺hs trx ≺hs tr 1 ∧ var ∈WS vo
hs (tr x)).

Thus, tr 2 is the most recent writer on var for tr 1. By Lemma 3, we know
that tr 2 wrote tr 2 to var and tr 1 read tr 2 from var . Thus, it has read the
most recently written value on its variable.

Overall each transaction then is legal in hs making it legal altogether.

4. hs preserves the real-time order of f(ph):
By definition,

∀tr ∈ tr−(phs) : trw ≺phs
tr ∧ tr ≺phs

tr r.

and since hs.RT = phs.RT

∀tr ∈ tr−(hs) : trw ≺hs tr ∧ tr ≺hs tr r.

By lemmas 3 (third equation) and 4, we know that the only real-time rela-

173

tions in f(ph) are

∀tr ∈ tr−(f(ph)) : trw ≺f(ph) tr ∧ tr ≺f(ph) tr r.

Thus
f(ph).RT ⊆ hs.RT .

→ Given an arbitrary p-history ph, we will show that if f(ph) has at least one
OP -witness, then ph has at least one SR-witness. The proof basically has the
reverse structure as the proof of the other direction above. Assume an arbitrary
OP -witness of f(ph), named hs. Let phs be a p-history having

• the same events as ph

• and its real-time order is hs.RT .

By an analogue argument as in the proof of the other direction, this is a well-
formed definition of a p-history. We show that phs is an SR-witness of ph.
Because we use the definition of SR+ with the assumption that each thread ex-
ecutes a single transaction, the internal thread order requirement holds trivially.
The augmented transactions are ordered correctly. This is because trw is real-
time ordered before any other transaction and tr r real-time ordered after any
other transaction in f(ph). By preservation of real-time order, the same holds in
hs and thus in phs.

We prove p-equivalence (ph ≡ phs). Trivially both histories contain the same
events. It is left to prove that ph.RF = phs.RF . Let (tr 1, tr 2, var) ∈ ph.RF be an
arbitrary member of the reads-from relation of ph. Then there exist the p-events
Wtr1

thr(tr1)
[Var ′] and Rtr2

thr(tr2)
[Var ′′] in ph s.t. var ∈ Var ′ and var ∈ Var ′′. Also,

it holds that the write is ordered before the read with no other write on var in
between:

tr 1 ≺ph tr 2, ¬(∃trx ∈ Tr : tr 1 ≺ph trx ≺ph tr 2 ∧ var ∈WS vo
ph (tr x)).

174

By construction of f and r, the two g-events evw = Wtr1
thr(tr1)

(var , tr1) and ev r =

Rtr2
thr(tr2)

(var , tr1) exist in f(ph). Also by construction of these functions, there
exists no additional writes to var writing tr 1 as their value in f(ph). As hs is an
OP -witness of f(ph) both contain the same events. Thus, the two events exist in
hs and the write is unique in the sense discussed above. By this uniqueness and
by the legality of hs, evw must be the last write on var before ev r in hs. As hs is
serial this implies for transactions tr 1 and tr 2 the following:

tr 1 ≺hs tr 2, ¬(∃trx ∈ Tr : tr 1 ≺hs trx ≺hs tr 2 ∧ var ∈WS vo
hs (tr x)).

By construction of phs, it is given that phs.RT = hs.RT . Also write and read
sets are identical for each transaction as noted in the proof of the other direction.
Thus, we can substitute hs by phs:

tr 1 ≺phs
tr 2, ¬(∃trx ∈ Tr : tr 1 ≺phs

trx ≺phs
tr 2 ∧ var ∈WS vo

phs
(tr x)).

Furthermore in phs tr 1 writes to var and tr 2 reads from var. Combining these two
facts shows that tr 2 reads var from tr 1 in phs or formally: (tr 1, tr 2, var) ∈ phs.RF .
This proves the claim.

f is computable in polynomial time Subfunction r computes replacements
based on a single input event without further context, this is trivially computable
in polynomial time w.r.t. to its input. The reduction function f then spawns one
begin and one commit for each transaction and applies r twice for each transaction,
this is trivially doable in polynomial w.r.t. to its input.

Lemma 5. Given two g-histories h and hs, it is determinable in polynomial time
whether hs is an OP-witness of h or not.

Proof. We discuss how each of the properties of OP -witnesses is determinable in
polynomial time.

1. hs is serial: For each transaction find all of its events, check whether its
events are interrupted by another transaction.

175

2. hs is equivalent to a g-history in compl(h): Check for each transaction
whether its events in h are a prefix of its events hs and whether it has been
complete according to the completion rules.

3. Each transaction in hs is legal: Iterate over each read in hs check whether
the last write on its variable wrote the value the read read.

4. hs preserves the real-time order of h: Build real-time orders of h and hs by
iterating over each commit and checking for begins afterwards. Then check
whether h.RT ⊆ hs.RT .

All of these points can obviously be computed in polynomial time.

Theorem 1 (Complexity of the membership problem for OP). The membership
problem for OP is NP-complete.

Proof. By Lemma 1, f is a reduction function from the NP-complete membership
problem for SR to the membership problem for OP . By Lemma 5, it is computable
in polynomial time whether a given g-historyhs is an OP -witness for another g-
history h. From combining both lemmas follows the NP-completeness of the
membership problem for OP .

176

B
Proofs for Section 4.2

Proposition 2 (Generation of candidates by insertion function). Given a p-
history ph and a p-event pev , it holds that∪

phc∈Cph

ins(phc, pev) = Cph·pev .

Proof. We first show that
∪

phc∈Cph
ins(phc, pev) ⊆ Cph·pev . We prove this via case

distinction over pev .

pev = Wtr
t [Var ′] :

Let phc be an arbitrary candidate of phc. Let the result of ins(phc,W
tr
t [Var

′])

be {ph ′
c}. The set only contains one event as for a write event ins generates

only one candidate. By definition of ins , pev is inserted directly after the last
event of tr in phc. For ph ′

c to be a candidate it must be serial and preserve the
real-time order of ph · pev .

1. ph ′
c is serial: It is trivially since the write is inserted directly after the read

of its transaction in the (serial) candidate phc.

177

2. ph · pev (ph · pev).RT ⊆ ph ′
c.RT : The real-time order of ph · pev is identical

to the real-time order of ph as the write is appended at the end. All p-events
of phc are present in ph ′

c with the same relative order. The only different
element in ph ′

c is pev . Thus, the real-time order of ph ′
c is the real-time order

of phc with more or equal to 0 additional rt-elements as a write is inserted
somewhere in phc possibly generating new rt-elements. By this reasoning,

(ph · pev).RT = ph.RT and phc.RT ⊆ ph ′
c.RT holds.

Additionally, phc is a candidate of ph, and thus ph.RT ⊆ phc.RT is true.
This overall implies

(ph · pev).RT ⊆ ph ′
c.RT .

pev = Rtr
t [Var ′] :

Let phc be an arbitrary candidate of phc. Let the ph ′
c be a p-history s.t. ph ′

c ∈
ins(phc,R

tr
t [Var

′]). By definition of insr, pev is inserted somewhere after the
last write of a non-augmented transaction.

1. ph ′
c is serial: The p-history ph ′

c is a supersequence of the serial p-history
phc containing a read as the only additional event. By definition of ins , the
read is not inserted between a read and a write of one transaction; thus, the
result is serial.

2. ph ′
c preserves the real-time order of ph · pev : For ph · pev its real-time order

consists of the real-time order of ph unified with the new rt-elements caused
by pev .

(ph · pev).RT = ph.RT ∪ {(tr ′, tr) | tr ′ is finished in ph}.

For ph ′
c its real-time order is the real-time order of phc unified with the new

rt-elements caused by pev . Note that the transactions finished in ph and
phc are identical.

ph ′
c.RT = phc.RT ∪ {(tr ′, tr) | tr ′ is finished in ph},

which in turn implies
phc.RT ⊆ ph ′

c.RT .

178

Additionally, phc is a candidate of ph, and thus

ph.RT ⊆ phc.RT .

This overall implies
(ph · pev).RT ⊆ ph ′

c.RT .

We prove the other direction Cph·pev ⊆
∪

phc∈Cph
ins(phc, pev). Take an arbitrary

candidate ph ′
c ∈ Cph·pev s.t. ph ′

c = pev ′
0 . . . pev . . . pev

′
n. By Proposition 1, it holds

there exists a candidate ph ′′
c ∈ Cph s.t. ph ′′

c ⊑ ph ′
c. Let ph ′′

c = pev ′
0 . . . pev

′
n. We

show that
ph ′

c ∈ ins(ph ′′
c , pev)

holds.

pev = Rtr
t [Var ′] :

Let pevx be the last write in ph ′
c, and thus also in ph ′′

c . Let trx be the transaction
of that write event. It is the case that pevx <ph·pev pev , and thus trx ≺ph·pev tr

holds. Then, as ph ′
c preserves the real-time order of ph · pev , it must hold that

pevx <ph ′
c
pev . Let en(ph ′

c) be the subsequence of ph ′
c after pevx and st(ph ′

c)

be the subsequence before and including pevx. As ph ′
c and ph ′′

c only differ with
regard to pev , it holds that

st(ph ′
c) = st(ph ′′

c),

and there exists a index n s.t. en(ph ′′
c) = add(en(ph ′

c), pev , n). It is trivial to
see that the following holds:

st(ph ′
c) · add(en(ph ′

c), pev , n) ∈ {st(ph ′
c) · add(en(ph ′

c), pev , n) | 0 ≤ n ≤ lsInd(en(phc))}.

179

pev = Wtr
t [Var ′] :

Let pevx be the read event of tr in ph ′
c, and thus also in ph ′′

c .

Thus then, ph ′′
c = pev ′

0 . . . pevx . . . pev
′
n holds. The candidate ph ′

c is serial.
Thus, ph ′

c = pev ′
0 . . . pevx pev . . . pev ′

n holds.
Also, it holds that ins(ph ′′

c , pev) = {pev ′
0 . . . pevx pev . . . pev ′

n} thus the claim
holds.

Lemma 11 (Conditions for fixed rf-elements in p-histories). Given a p-history
ph, two arbitrary transactions tr , tr ′ and an arbitrary variable x, it holds for all
(tr , tr ′, x) ∈ ph.RF that

(tr , tr ′, x) ∈ ph.RF fix ↔ tr ′ ̸= tr r.

Proof. We show that both directions of the equivalency hold true.
Direction →:

(tr , tr ′, x) ∈ ph.RF fix → tr ′ ̸= tr r

We show the contraposition:

tr ′ = tr r → (tr , tr ′, x) /∈ ph.RF fix.

It has to hold that

∃seq ∈ PEv ∗ : (tr , tr r, x) /∈ (ph · seq).RF .

Assume the sequence contains exactly one empty read and one write on x of a
transaction tr ′′ not contained in ph, then (tr ′′, tr r, x) ∈ (ph ·seq).RF holds which
means (tr , tr r, x) /∈ (ph · seq).RF . Such a sequence trivially always exists.

Direction ←:
tr ′ ̸= tr r → (tr , tr ′, x) ∈ ph.RF fix

180

For this to be true, the following must hold: ∀seq ∈ PEv ∗ : (tr , tr ′, x) ∈
(ph · seq).RF . We show this via induction over seq = pev 0 . . . pevn n ∈ N.

Induction start (seq = ϵ): Trivially true.

Induction step (seq = pev 0 . . . pev i, where claim holds for pev 0 . . . pev i−1):
We show this via case distinction.

Case distinction pev i = Wtr ′′
t [Var ′]:

Let pev r be the read of tr ′ and pevw be the write of tr . Trivially pev i is not in
between them as it is appended at the end and tr ′ ̸= tr r. Also, the order of all
other elements is identical to ph ·pev 0 . . . pev i−1 and (tr , tr ′, x) ∈ (ph ·seq).RF .

Case distinction pev i = Rtr ′′
t [Var ′]:

A read does not write, and thus it cannot be read by tr ′. Also, the order of all
other elements is identical to ph ·pev 0 . . . pev i−1 and (tr , tr ′, x) ∈ (ph ·seq).RF .

Lemma 13 (Conditions for interruptible rf-elements). Given a candidate phc, an
rf-element (tr , tr ′, x) ∈ phc.RF with tr ′ ̸= tr r is interruptible iff

∃tr ′′ ∈ Tr : unfinphc
(tr ′′) ∧ pev tr,wr

phc
<phc

pev tr ′′,rd
phc

<phc
pev tr′,rd

phc

∨ ¬(∃tr
′′ ∈ Tr : finphc

(tr ′′) ∧ pev tr ′,rd
phc

<phc
pev tr′′,wr

phc
)

∧
∃t ∈ T : pev t ,ls

phc
<phc

pev tr ′,rd
phc

 .

181

Proof. We need to show that for tr ̸= tr r it holds that

∃seq ∈ PEv ∗, ∃phc,ins ∈ ins(phc, seq)∃tr ′′ ∈ Tr : (tr ′′, tr ′, x) ∈ phc,ins.RF ∧ tr ′′ ̸= tr

↔ ¬(∃tr
′′ ∈ Tr : finphc

(tr ′′) ∧ pev tr ′,rd
phc

<phc
pev tr′′,wr

phc
)

∧
∃t ∈ T : pev t ,ls

phc
<phc

pev tr ′,rd
phc


∨

∃tr ′′ ∈ Tr : unfinphc
(tr ′′) ∧ pev tr,wr

phc
<phc

pev tr ′′,rd
phc

<phc
pev tr′,rd

phc

.

→:

We show the contraposition. Assume the right-hand side does not hold. We show
the left-hand side does not hold as well. Note this is the negation of the right-hand
side:  (∃tr ′′ ∈ Tr : finphc

(tr ′′) ∧ pev tr ′,rd
phc

<phc
pev tr′′,wr

phc
)

∨
¬(∃t ∈ T : pev t ,ls

phc
<phc

pev tr ′,rd
phc

)


∧

¬(∃tr ′′ ∈ Tr : unfinphc
(tr ′′) ∧ pev tr,wr

phc
<phc

pev tr ′′,rd
phc

<phc
pev tr′,rd

phc
).

We apply the distributive law which leads to (∃tr ′′ ∈ Tr : finphc
(tr ′′) ∧ pev tr ′,rd

phc
<phc

pev tr′′,wr
phc

)

∧
¬(∃tr ′′ ∈ Tr : unfinphc

(tr ′′) ∧ pev tr,wr
phc

<phc
pev tr ′′,rd

phc
<phc

pev tr′,rd
phc

)


∨ ¬(∃t ∈ T : pev t ,ls
phc

<phc
pev tr ′,rd

phc
)

∧
¬(∃tr ′′ ∈ Tr : unfinphc

(tr ′′) ∧ pev tr,wr
phc

<phc
pev tr ′′,rd

phc
<phc

pev tr′,rd
phc

)

 .

We do a case distinction over both parts of the above disjunction, and show each
implies that the left-hand side is false.

182

Part 1:
There is no unfinished transaction in between tr and tr ′, so a sequence must
contain a read that is inserted in between them. This is not possible as a new
read must be inserted after the last write, which is ordered behind the read of
tr ′, which stays unchanged over all extensions.

Part 2:
There is no unfinished transaction in between tr and tr ′, so a sequence must
contain a read that is inserted in between them. This is not possible as a new
read must be inserted after the last event of its thread, which for all threads is
ordered behind the read of tr ′, which stays unchanged over all extensions.

←:

We apply the distributive law, and show that both parts of the disjunction imply
the left-hand side.

∃tr ′′ ∈ Tr : unfinphc
(tr ′′)∧ pev tr,wr

phc
<phc

pev tr ′′,rd
phc

<phc
pev tr′,rd

phc
:

Let tr ri = tr ′′, let the sequence seq contain only a write of tr ′′ with a write set
containing only x, there exists one valid insertion of the write, directly after
the read of tr ri, and thus trivially (tr ′′, tr ′, x) ∈ phc,ins.RF holds and also by
assumption tr ′′ ̸= tr .

¬(∃tr ′′ ∈ Tr : finphc
(tr ′′)∧ pev tr ′,rd

phc
<phc

pev tr′′,wr
phc

)∧ ∃t ∈ T : pev t,ls
phc

<phc
pev tr ′,rd

phc
:

Let the sequence seq contain an arbitrary read and a write on x of a transaction
tr ′′ of a thread that has no event after the read of tr ′. This thread exists because
of the second part of the conjunction. Note that tr ′′ cannot be tr ′. The read
can be inserted in between tr and tr ′ as the last write in the candidate is not
ordered after the read of tr ′ by the second part of the disjunction. The write
then is in between tr and tr ′; thus, (tr ′′, tr ′, x) ∈ phc,ins.RF and tr ′′ ̸= tr .

183

Lemma 12 (Conditions for fixed rf-elements in candidates). Given a serial p-
history phc, two arbitrary transactions tr , tr ′ and an arbitrary variable x, it holds
for all rf = (tr , tr ′, x) s.t. rf ∈ phc.RF :

(tr , tr ′, x) ∈ phc.RF fix

↔
¬intphc

(rf) ∧ tr ′ ̸= tr r.

Proof. We show both directions separately.
Direction →:

(tr , tr ′, x) ∈ phc.RF fix

→
¬intphc

(rf) ∧ tr ′ ̸= tr r

We show that the contraposition holds, which is the following:

(intphc
(rf) ∨ tr ′ = tr r)→ (tr , tr ′, x) /∈ ph.RF fix.

We show that intphc
(rf) → (tr , tr ′, x) /∈ ph.RF fix, and then show that tr ′ =

tr r → (tr , tr ′, x) /∈ ph.RF fix, which together imply the contraposition.

intphc
(rf)→ (tr , tr ′,x) /∈ ph.RFfix :

It has to hold that

∃seq ∈ PEv ∗, ∃phc,ins ∈ ins(phc, seq) : (tr , tr
′, x) /∈ phc,ins.RF .

By Lemma 13, intphc
(rf) is equivalent to

¬(∃tr ′′ ∈ Tr : finphc
(tr ′′) ∧ pev tr ′,rd

phc
<phc

pev tr′′,wr
phc

)

∨
∃tr ′′ ∈ Tr : unfinphc

(tr ′′) ∧ pev tr,wr
phc

<phc
pev tr ′′,rd

phc
<phc

pev tr′,rd
phc

.

184

In the first case, of the disjunction, there exists no write (including a write
event of tr itself) after the read event of tr . Let seq be a sequence s.t. it
contains only a arbitrary read and write on x of a new transaction tr ′′. Then,
the read of tr ′′ can be inserted by ins in between pev tr,wr

phc
and pev tr′,rd

phc
as tr ′′ is

concurrent to tr ′ and the last write of phc is ordered before the read event of
tr ′. The write is then inserted directly after the read and thus also in between
pev tr,wr

phc
and pev tr′,rd

phc
. Then, (tr ′′, tr ′, x) ∈ phc,ins.RF holds, which is mutually

exclusive with (tr , tr ′, x) ∈ phc,ins.RF . Thus, (tr , tr ′, x) /∈ phc.RF fix holds.

In the second case, of the disjunction, there exists a read event of an un-
finished transaction tr ′′ between the write of tr and the read tr ′. Let seq be
a sequence s.t. it contains only a write event on x of tr ′′. Then (tr ′′, tr ′, x) ∈
phc,ins.RF holds which is mutually exclusive with (tr , tr ′, x) ∈ phc,ins.RF ; thus,
(tr , tr ′, x) /∈ phc.RF fix.

tr ′ = tr r → (tr , tr ′,x) /∈ ph.RFfix :

It has to hold that

∃seq ∈ PEv ∗, ∃phc,ins ∈ ins(phc, seq) : (tr , tr r, x) /∈ phc,ins.RF .

Consider a sequence seq s.t. that it contains exactly one empty read and one
write on x of a transaction tr′′ not contained in phc, then there exists an
insertion phc,ins ∈ ins(phc, seq) where the read is appended at the end of phc

and the write directly after, and thus (tr ′′, tr r, x) ∈ phc,ins.RF holds which
means (tr , tr r, x) /∈ phc,ins.RF .

Direction ←:

¬intphc
(rf) ∧ tr ′ ̸= tr r

→
(tr , tr ′, x) ∈ phc.RF fix

185

It has to hold that if ¬intphc
(rf) ∧ tr ′ ̸= tr r, then

∀seq ∈ PEv ∗, ∀phc,ins ∈ ins(phc, seq) : (tr , tr
′, x) ∈ phc,ins.RF .

We prove via induction that if ¬intphc
(rf)∧tr ′ ̸= tr r, then for any p-event sequence

seq it holds that

¬intphc,ins
(rf) ∧ tr ′ ̸= tr r∧, ∀phc,ins ∈ ins(phc, seq) : (tr , tr

′, x) ∈ phc,ins.RF .

We show this via induction over seq = pev 0 . . . pevn, n ∈ N.

Induction start (seq = ϵ): Trivially true.

Induction step (seq = pev 0 . . . pev i, where claim holds for pev 0 . . . pev i−1):
Let phc ∈ ins(phc, pev 0 . . . pev i−1) and phc,ins ∈ ins(phc, pev i).

Case distinction pev i = Wtr ′′
t [Var ′]:

As ¬(intphc
(rf)) and also tr ′ ̸= tr r holds, there is no unfinished transaction

in between tr and tr ′. Thus, the write is not inserted in between them and
cannot interrupt the rf . Also, tr ′ ̸= tr r holds, and ¬intphc,ins

(rf) holds as the
order of all events of phc is the same in phc,ins.

Case distinction pev i = Rtr ′′
t [Var ′] :

In this case, the read is inserted somewhere after the last write event of phc. As
discussed in the previous case, a read cannot be read. Thus, rf ∈ phc,ins.RF

holds. Also, tr ′ ̸= tr r holds, and ¬(intphc,ins
(rf)) holds as the order of all

events of phc is the same in phc,ins and the read cannot be inserted between
the read of tr ′ and the write of tr . This is because tr ′′ is real-time ordered
with the transaction writing after the read of tr ′, which exists by Lemma 13.

186

Lemma 14 (Removal function correctness). Given a p-history or candidate ph

and a set of transactions Tr−, it holds that

(ph\Tr−).RF = ph.RF\{rf ∈ ph | ∃tr ∈ Tr− : tr ∈ rf }.

Proof. Let ph = pev 0 . . . pevn and ph\Tr− = pev ′
0 . . . pev

′
n hold. We show both

subset or equal relations.

(ph\Tr−).RF ⊆ ph.RF\{rf ∈ ph | ∃tr ∈ Tr− : tr ∈ rf } :
Consider an arbitrary rf-element rf = (tr , tr ′, x) of (ph\Tr−).RF . We show
that rf ∈ ph.RF and rf /∈ {rf ∈ ph | ∃tr ∈ Tr− : tr ∈ rf }.
Let pev ′

i be the write event of tr and pev ′
k be the read event of tr ′, it holds that

i < k. Assume tr ∈ Tr− then pev ′
i = ϵ which is a contradiction to rf existing

in (ph\Tr−).RF . The same holds for the case tr ′ ∈ Tr−.

There are thus events pev i of tr /∈ Tr− and pevk of tr ′ /∈ Tr− in ph with x in
their respective write or read set as the removal function does not add elements
to write or read sets. As there is no write on x in between pev ′

i and pev ′
k in

ph\Tr−, there can be no write on x of a transaction tr ′′ /∈ Tr− in between pev i

and pevk in ph. Assume there is a write of x of a transaction in Tr− in between.
Let tr ′′ be the transaction of the write last before pevk. Thus, tr ′′ ∈ Tr− and
(tr ′′, tr ′, x) ∈ ph.RF holds. Then by definition of the removal function, pev ′

k

does not contain x which is a contradiction. So, rf ∈ ph.RF holds.

ph.RF\{rf ∈ ph | ∃tr ∈ Tr− : tr ∈ rf } ⊆ (ph\Tr−).RF :

Let pev i be the write event of tr and pevk be the read event of tr ′. It holds that
i < k and there is no write event on x in between. As tr /∈ Tr− pev ′

i = pev i

and as tr ′ /∈ Tr− as well, pev ′
k is a read of tr ′ with a read set containing x. As

the removal function does not add writes or add variables to write sets, there
is no write on x in between pev ′

i and pev ′
k in ph\Tr−, the claim thus holds.

Lemma 15 (Upper limit of hc-pairs). The amount of compressed hc-pairs for a
given Var and T is finite.

187

Proof. Assume a given Var and T . For these parameters we first prove an upper
bound to the length of a compressed p-history and a compressed candidate, which
are not dependent on the history compressed but only on Var and T . Then, we
determine how many pairwise different p-histories of a length up to and equal
to this upper bound exist, not taking into account any semantical constraints.
Finally, we determine how many pairwise different interrupting write sets exist,
and show how many pairwise different elements exists for the set containing
interrupting write sets of a compression. We then combine these facts for the
overall upper bound.

Upper bound for history length:
Assume an arbitrary hc-pair hc = (ph, phc). We give an upper bound to how
many transactions are not removed by the compression function. The compres-
sion function removes all transactions tr s.t. tr ∈ fix(hc), which is the case if
all of the following three conditions are given:

1. finph(tr) (this is equivalent to finphc
(tr)),

2. ∀rf ∈ ph.RF : tr ∈ rf → fixph(rf)

3. and ∀rf ∈ phc.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf).

We upper bound the amount of transactions not fulfilling these conditions mean-
ing they fulfil one of these conditions:

1. ¬(finph(tr)) (this is equivalent to ¬(finphc
(tr))),

2. ¬(∀rf ∈ ph.RF : tr ∈ rf → fixph(rf))

3. and ¬(∀rf ∈ phc.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf)).

We upper bound the set of transactions fulfilling each condition separately.

188

{tr | ¬(finph(tr))} :
This is equivalent to {tr | unfinph(tr)}. There are at most |T | transactions in
this set as one thread cannot have multiple unfinished transactions

|{tr | ¬(finph(tr))}| ≤ |T |.

{tr | ¬(∀rf ∈ ph.RF : tr ∈ rf → fixph(rf))} :
We simplify the predicate for the set and use Lemma 11 on it.

¬(∀rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf → fixph(rf))

↔∃rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf ∧ ¬(fixph(rf))

↔∃rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf ∧ tr r = tr ′ |(Lemma 11)

The transaction tr r can read from one transaction for each variable in Var .

Thus, |Var | is an upper bound to the transactions whose writes can be read
by tr r in a p-history (as else transactions with identical write sets overwrite
each other). Thus, it holds that

|{tr | ¬(∀rf ∈ ph.RF : tr ∈ rf → fixph(rf))}| ≤ |V ar|.

{tr | ¬(∀rf ∈ ph.RF : tr ∈ rf → fixphc
(rf)∨ intphc

(rf))} :
We simplify the predicate for the set and use Lemma 12 on it.

¬(∀rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf))

↔ ∃rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf ∧ ¬(fixphc
(rf) ∨ intphc

(rf))

↔ ∃rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf ∧ ¬fixphc
(rf) ∧ ¬intphc

(rf))

↔ ∃rf = (tr ′′, tr ′, x), rf ∈ ph.RF : tr ∈ rf ∧ tr r = tr ′ |(Lemma 11)

189

By the same argument as in the previous case, it holds that

|{tr | ¬(∀rf ∈ ph.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf)))}| ≤ |Var |.

Thus, overall the amount of events in the p-history or candidate of a compressed
hc-pair representation of an arbitrary hc-pair (with the given T and Var) is
upper bounded by

2 · (|T |+ |Var |).

Upper bound for p-histories of Length 2 · (|T |+ |Var |):
For each event there exist 2|V ar| · |T | many possibilities as it is defined by a
write set or read set and a thread. Thus, overall there are

2|V ar|·2·(|T |+|Var |) · |T |2·(|T |+|Var |)

many unique p-histories of of length 2 · (|T |+2|Var |) or lower. The lower length
p-histories are included in this calculation as any transaction with an empty
read and write set can be considered as non-existent.

Upper bound of pairwise different interrupting write sets for a com-
pression:
Similar to the possibilities for read and write sets there are 2|Var | pairwise
different interrupting write sets. In a compression there can be at most |T |
unfinished transactions thus the upper bound of all pairwise different sets con-
taining interrupting write sets of a compression is

2|Var |·|T |.

190

Combining the facts:
Overall the amount of compressed hc-pair representations is upper bounded by

22|V ar|·(|T |+|Var |) · |T |2·(|T |+|Var |) · 22|V ar|·(|T |+|Var |) · |T |2·(|T |+|Var |) · 2|Var |·|T |,

and thus the amount is finite.

Lemma 16 (Compression represents an equivalence class). Given two arbitrary
hc-pairs (ph, phc) and (ph ′, ph ′

c), it holds that

cmp(ph, phc) = cmp(ph ′, ph ′
c)→ (ph, phc) ≡ext (ph

′, ph ′
c).

Proof. It is to prove that if cmp(ph, phc) = cmp(ph ′, ph ′
c) holds, then it holds for

any arbitrary p-event sequence seq that

∃phc,ins ∈ ins(phc, seq) : ph · seq ≡ phc,ins ↔ ∃ph ′
c,ins ∈ ins(ph ′

c, seq) : ph
′ · seq ≡ ph ′

c,ins.

If cmp(ph, phc) = cmp(ph ′, ph ′
c) = DM, then in the extension of both hc-pairs by

any sequence the respective p-history is not equivalent to its respective candidate.
This is because they both contain mutually exclusive rf-elements between their p-
history and candidate, which are all fixed in the p-history and fixed or interruptible
in the candidate. As we argued in the respective section in the thesis, both
extended hc-pairs are then not consistent and the claim holds true.

We will now prove the lemma for when this is not the case. We will show this
by showing two statements and then proving why these imply the lemma.

1. Given an arbitrary hc-pair hc = (ph, phc), it holds that

hc is consistent ↔ cmp(hc) is consistent. (B.1)

2. For any two hc-pairs hc = (ph, phc), hc
′ = (ph ′, ph ′

c) where cmp(hc) =

191

cmp(hc′) and an arbitrary p-event pev , it holds that

∀phc,ins ∈ ins(phc, pev)∃ph ′
c,ins ∈ ins(ph ′

c, pev) :
cmp(ph · pev , phc,ins) = cmp(ph ′ · pev , ph ′

c,ins).
(B.2)

To declutter the overall proof, these statements are proven in separate propositions.
Equation (B.1) in Proposition 5 and Equation (B.2) in Proposition 6 for the case
where pev is a read and in Proposition 7 for the case pev is a write.

We show that Equation (B.2) implies the following For any two hc-pairs hc =

(ph, phc), hc
′ = (ph ′, ph ′

c) where cmp(hc) = cmp(hc′) and an arbitrary sequence
of p-events seq, it holds that

∀phc,ins ∈ ins(phc, seq)∃ph ′
c,ins ∈ ins(ph ′

c, seq) :

cmp(ph · seq, phc,ins) = cmp(ph ′ · seq, ph ′
c,ins).

We show this via induction over the sequence seq.

Induction start seq = pev :
This directly follows from Equation (B.2).

Induction step seq→ seq · pev :

There exists phc1,ins ∈ ins(phc, seq) for which by induction statement then
there also exists ph ′

c1,ins ∈ ins(ph ′
c, seq) s.t. cmp(ph · seq, phc1,ins) = cmp(ph ·

seq, ph ′
c1,ins). It follows by Equation (B.2) that

∀phc,ins ∈ ins(phc1,ins, pev)∃ph ′
c,ins ∈ ins(ph ′

c1,ins, pev) :

cmp(ph · seq · pev , phc,ins) = cmp(ph ′ · seq · pev , ph ′
c,ins).

This concludes the proof by induction.

From this result it trivially follows that for any two hc-pairs hc = (ph, phc), hc
′ =

192

(ph ′, ph ′
c) s.t. cmp(ph, phc) = cmp(ph ′, ph ′

c) it holds that

∃phc,ins ∈ ins(phc, seq) : ph · seq ≡ phc,ins

→ ∃ph ′
c,ins ∈ ins(ph ′

c, seq) : cmp(ph · seq, phc,ins) = cmp(ph ′ · seq, ph ′
c,ins).

We show that the left-hand side of this statement then also implies ph ′ · seq ≡
ph ′

c,ins. If (ph · seq, phc,ins) is consistent, then from Equation (B.1) it follows that
cmp(ph · seq, phc,ins) is consistent as well. Thus, cmp(ph ′ · seq, ph ′

c,ins) is also
consistent as the compressions are equal, which implies that (ph ′ · seq, ph ′

c,ins) is
consistent, and thus ph ′ · seq ≡ ph ′

c,ins. From this the left to right direction of the
overall claim follows:

∃phc,ins ∈ ins(phc, seq) : ph · seq ≡ phc,ins → ∃ph ′
c,ins ∈ ins(ph ′

c, seq) : ph
′ · seq ≡ ph ′

c,ins.

We can show the reverse direction of this equation analogue. Combining both
shows the lemma to be true which concludes the proof.

Proposition 5 (HC-Pair consistency equivalent to compression consistency). It
holds for any arbitrary hc-pair hc that

hc is consistent ↔ cmp(hc) is consistent.

Proof. We prove both directions separately.

Direction →:
If hc is consistent, then ph.RF = phc.RF holds, meaning (ph\fix(hc)).RF =

(phc\fix(hc)).RF (follows from Lemma 14) from which it follows that cmp(hc) is
consistent.

Direction ←:

193

We show the contraposition, which is

hc is not consistent → cmp(hc) is not consistent.

Let rf = (tr , tr ′, x) and rf ′ = (tr ′′, tr ′, x), tr ̸= tr ′′ be the mutually exclusive
rf-elements in hc. If rf is fixed in ph and rf ′ is fixed or interruptible in phc, then
cmp(hc) = DM. If both are not fixed or interruptible in either, then tr , tr ′, tr ′′ /∈
fix(hc) meaning that by Lemma 14 rf occurs in ph\fix(hc) and rf ′ occurs in
phc\fix(hc), meaning cmp(hc) is not consistent as these elements are mutually
exclusive.

Proposition 6. Given a p-event pev = Rtr
t [V], two arbitrary hc-pairs (ph, phc)

and (ph ′, ph ′
c) s.t. cmp(ph, phc) = cmp(ph ′, ph ′

c), it holds that

∀phc,ins ∈ ins(phc, pev)∃ph ′
c,ins ∈ ins(ph ′

c, pev) :

cmp(phc · pev , phc,ins) = cmp(ph ′
c · pev , ph ′

c,ins).

Proof. Given the construction of ins, let n be the index s.t.

phc,ins = st(phc) · add(en(phc), pev , n).

Let hc = (ph, phc) and hc′ = (ph ′, ph ′
c). Recall that

cmp(ph, phc) = (ph\fix(hc), phc\fix(hc), IWS phc
)

= cmp(ph ′, ph ′
c) = (ph ′\fix(hc′), ph ′

c\fix(hc′), IWS ph ′
c
).

Thus, note that en(phc) = en(ph ′
c) as after the last write there are only unfinished

transactions consisting of a read event which are neither in fix(hc) or fix(hc′)

and any transaction writing to them is also read by tr r and thus not in fix(hc).
Thus, the removal function does not modify the events in en(phc) and en(ph ′

c).

This makes the following a valid result of the insertion function for ph ′
c:

ph ′
c,ins = st(ph ′

c) · add(en(phc), pev , n).

194

We show that for this specific assignment

hc+ = cmp(phc · pev , phc,ins) = cmp(ph ′
c · pev , ph ′

c,ins) = hc′+

holds true.

Case distinction cmp(ph · pev ,phc,ins) = DM :

By definition of cmp, it holds that

∃rf ∈ (ph · pev).RF , ∃rf ′ ∈ phc,ins.RF : mutex(rf , rf ′) ∧ fixph·pev (rf)

∧(fixphc,ins
(rf ′) ∨ intphc,ins

(rf ′))

As cmp(ph, phc) ̸= DM,

¬(∃rf ∈ (ph\fix(hc)).RF , ∃rf ′ ∈ phc.RF : mutex(rf , rf ′) ∧ fixph(rf)

∧(fixphc
(rf ′) ∨ intphc

(rf ′))
.

Let rf and rf ′ be mutually exclusive rf-elements in ph ·pev and phc,ins, respectively.
Let x be the variable in rf and rf ′. Both must involve tr as the reader as the
appending/inserting of pev created the mutually exclusive rf-elements and there
were no such rf-elements in hc. So, there exist tr ′, tr ′′ ∈ Tr with tr ′ ̸= tr ′′ s.t.
rf = (tr ′, tr , x) and rf ′ = (tr ′′, tr , x). Note that pev is ordered after the last write
in both ph · pev and phc,ins. It reads x from tr ′ in ph · pev and x from tr ′′ in
phc,ins. This means the write on x of tr ′ and tr ′′ is the last write on x in ph · pev
and phc,ins, respectively. These writes were also present in ph and phc, which are
identical except for pev to ph · pev and phc,ins, respectively. Thus, it holds that

(tr ′, tr r, x) ∈ ph.RF ∧ (tr ′′, tr r, x) ∈ phc.RF .

This implies that tr ′, tr ′′ /∈ fix(hc) and as cmp(hc) = cmp(hc′) also that tr ′, tr ′′ /∈

195

fix(hc′). Thus, it holds that

(tr ′, tr r, x) ∈ ph ′.RF ∧ (tr ′′, tr r, x) ∈ ph ′
c.RF .

As pev is a read, it holds that

(tr ′, tr , x) ∈ (ph ′ · pev).RF ∧ (tr ′′, tr , x) ∈ ph ′
c,ins.RF .

So finally, it follows that
cmp(hc′+) = DM,

which proves the claim.

Case distinction cmp(ph · pev ,phc,ins) ̸= DM :

The proof is divided into two parts. First, we show that

((ph · pev)\fix(hc+), (phc,ins\fix(hc+))) = ((ph ′ · pev)\fix(hc′+), (ph ′
c,ins\fix(hc′+))).

(B.3)
Second, we show that

IWS phc,ins
= IWS ph ′

c,ins
. (B.4)

Equation (B.3):
Let hc+ = (ph · pev , phc,ins). Let hc′+ = (ph ′ · pev , ph ′

c,ins). We first show that

1. fix(hc) = fix(hc+)

2. and fix(hc′) = fix(hc′+).

Finally, we show that this implies

1. (ph · pev)\fix(hc+) = (ph ′ · pev)\fix(hc′+)

2. and phc,ins\fix(hc+) = ph ′
c,ins\fix(hc′+).

196

Both of these statements together imply Equation (B.3).

fix(hc) = fix(hc+) :

This is shown in Proposition 8.

fix(hc′) = fix(hc′+) :

This is shown in Proposition 8.

(ph · pev)\fix(hc) = (ph ′ · pev)\fix(hc′) :
Any transaction read by pev is also read by tr r in both ph and ph ′, and is
thus not in fix(hc) or fix(hc′). Thus, pev is not affected by a removal of
the transactions in fix(hc) or fix(hc′). It also holds that fix(hc) = fix(hc+)

and fix(hc′) = fix(hc′+) from which we can deduce the following:

(ph · pev)\fix(hc+) = (ph ′ · pev)\fix(hc′+)
↔ (ph · pev)\fix(hc) = (ph ′ · pev)\fix(hc′)
↔ ph\fix(hc) · pev = ph ′\fix(hc′) · pev .

By assumption, ph\fix(hc) = ph ′\fix(hc′) is true. This means the last line
holds true and thus also

(ph · pev)\fix(hc) = (ph ′ · pev)\fix(hc′).

phc,ins\fix(hc+) = ph ′
c,ins\fix(hc′+) :

Note that

phc,ins = st(phc) · add(en(phc), pev , n)

and ph ′
c,ins = st(ph ′

c) · add(en(phc), pev , n).

Given the following facts:

1. add(en(phc), pev , n)) contains no transaction in fix(hc+) and only unfin-

197

ished transactions which are exclusively part in interruptible rf-elements,

2. add(en(ph ′
c), pev , n)) contains no transaction in fix(hc′+) and only unfin-

ished transactions which are exclusively part in interruptible rf-elements,

3. fix(hc+) = fix(hc)

4. and fix(hc′+) = fix(hc′),

it follows that

phc,ins\fix(hc+)
= (st(phc) · add(en(phc), pev , n))\fix(hc+)
= (st(phc)\fix(hc)) · add(en(phc), pev , n)

= (st(ph ′
c)\fix(hc′)) · add(en(phc), pev , n)

= (st(ph ′
c) · add(en(phc), pev , n))\fix(hc′+)

= ph ′
c,ins\fix(hc′+).

This proves the claim.

Overall then Equation (B.3) holds true.

Equation (B.4):
Note that by assumption IWS phc

= IWS ph ′
c
. As pev starts a new transaction

tr , it is in the domain of IWS phc,ins
and IWS ph ′

c,ins
. As pev is a read, inserting it

into phc does not change the interrupting write sets of other transactions. Then,
IWS phc,ins

(tr) is the set containing all variables read by transactions except tr r
after the occurrence of pev in phc,ins. Thus, it holds that

IWS phc,ins
(tr ′) =

IWS phc,ins
(tr) tr ′ = tr

IWS phc
(tr ′) else

.

As pev is a read, it is inserted into en(phc) which is - as we discussed - above
equal to en(ph ′

c). Thus, all variables read by transactions except tr r after the

198

occurrence of pev in phc,ins are the same for ph ′
c,ins. Thus, IWS phc,ins

(tr) =

IWS ph ′
c,ins

(tr). As IWS phc
= IWS ph ′

c
holds, this implies

IWS phc,ins
= IWS ph ′

c,ins
.

Proposition 7 (HC-Pair consistency equivalent to compression consistency).
Given a p-event pev = Wtr

t [V], it holds that

∀phc,ins ∈ ins(phc, pev)∃ph ′
c,ins ∈ ins(ph ′

c, pev) :

cmp(phc · pev , phc,ins) = cmp(ph ′
c · pev , ph ′

c,ins).

Proof. Let it hold that hc = (ph, phc) and hc′ = (ph ′, ph ′
c) and hc+ = (ph ·

pev , phc,ins). Note that ins(ph ′
c, pev) contains exactly one element which we de-

note ph ′
c,ins. Then, let hc′+ = (ph ′ · pev , ph ′

c,ins) hold. We do a case distinction
over whether hc+ = DM or not.

Case distinction hc+ = DM :

By definition of cmp, it holds that

∃rf ∈ (ph · pev).RF , ∃rf ′ ∈ phc,ins.RF : mutex(rf , rf ′) ∧ fixph·pev (rf)

∧(fixphc,ins
(rf ′) ∨ intphc,ins

(rf ′)).

As cmp(hc) ≠ DM :

¬(∃rf ∈ (ph).RF , ∃rf ′ ∈ phc.RF : mutex(rf , rf ′) ∧ fixph(rf)

∧(fixphc
(rf ′) ∨ intphc

(rf ′))
.

Analogue claims hold true for hc′ and hc′+. Let rf = (tra, tr b, x) and rf ′ =

(tr c, tr b, x) be mutually exclusive rf-elements in ph · pev and phc,ins, respectively,
s.t. rf is fixed and rf ′ is either fixed or interruptible. This implies that tr b ̸= tr r

199

as else both elements would neither be fixed nor interruptible. Note that

(ph · pev).RF = ph.RF ∪ {(tr , tr r, z) | z ∈WS vo
ph·pev (tr)}.

Since tr b ̸= tr r holds, it follows that rf /∈ {(tr , tr r, z) | z ∈ WS vo
ph·pev (tr)}, which

implies
rf ∈ ph.RF .

Also, obviously tra ̸= tr as pev /∈ ph, which in turn means that tr c = tr holds.
As pev trb,rd ∈ phc but pev /∈ phc, there must exists trd ̸= tr s.t.

(trd, tr b, x) ∈ phc.

Additionally, as inserting pev interrupts this rf-element, it holds that

pev trd,wr <phc
pev tr ,rd <phc

pev trb,rd.

It follows that
x ∈ IWS phc

(tr).

As it holds that cmp(hc) = cmp(hc′), it follows that

x ∈ IWS ph ′
c
(tr).

This means there exist tr ′a, tr
′
b s.t.

(tr ′a, tr
′
b, x) ∈ ph ′

c.RF s.t. tr ′a ̸= tr , tr ′b ̸= tr r, and intphc
(tr , (tr ′a, tr

′
b, x)).

It holds that (tr ′a, tr ′b, x) ∈ ph ′.RF . This is because if a transaction tr ′d ̸= tr ′a exists
s.t. (tr ′d, tr ′b, x) ∈ ph ′.RF , then (tr ′d, tr

′
b, x) and (tr ′a, tr

′
b, x) are mutually exclusive

and the first is fixed in ph ′ and the second is interruptible in ph ′
c which would

make cmp(hc′) = DM which it is not. Thus, it holds that (tr ′a, tr
′
b, x) ∈ ph ′ · pev

and (tr , tr ′b, x) ∈ ph ′
c,ins.RF by construction of ins. It holds that (tr ′a, tr

′
b, x) is

fixed in ph ′ · pev and (tr , tr ′b, x) is fixed or interruptible in ph ′
c,ins.RF . It follows

200

that
cmp(hc′+) = DM.

Case distinction hc+ ̸= DM :

The proof is divided into two parts. First, we show that

((ph · pev)\fix(hc+), (phc,ins\fix(hc+))) = ((ph ′ · pev)\fix(hc′+), (ph ′
c,ins\fix(hc′+))).

(B.5)
Second, we show that

IWS phc,ins
= IWS ph ′

c,ins
. (B.6)

Equation (B.5)
We first define the set of transactions that after appending/inserting pev

to/into ph,phc,ph ′ and ph ′
c are not being read by tr r in the resulting p-

histories/candidates. We say that pev covers these transactions. We first
define this for ph.

covph = {tr ′ | pev tr′,wr
ph·pev <ph·pev pev tr,wr

ph·pev , ∃x ∈ Var : (tr ′, tr r, x) ∈ ph.RF ,

∀x ∈ Var : (tr ′, tr r, x) ∈ ph.RF → x ∈ V }

For phc covphc
is defined analogue with phc,ins as the extended p-history. Also,

the set is defined analogue for ph ′ and ph ′
c. We show the following:

1. covph = covph ′ ,

2. covphc
= covph ′

c
,

3. fix(hc+) = fix(hc) ∪ (covph ∩ covphc
)

4. and fix(hc′+) = fix(hc′) ∪ (covph ′ ∩ covph ′
c
).

We then show that this implies Equation (B.5).

201

covph = covph′:
We show that covph = covph\fix(hc). As we use no specific properties that dis-
tinguish ph from ph ′ in our proof it also then holds that covph ′ = covph ′\fix(hc′).
Then as cmp(hc) = cmp(hc′) holds it follows

covph = covph\fix(hc) = covph ′\fix(hc′) = covph ′ .

We show covph = covph\fix(hc) by showing all three parts of the builder predi-
cate for covph are equivalent to their counterparts in covph\fix(hc).

Predicate 2:

∃x ∈ Var : (tr ′, tr r,x) ∈ ph.RF

↔
∃x ∈ Var : (tr ′, tr r,x) ∈ (ph\fix(hc)).RF :

We show the direction from left to right: ∃x ∈ Var : (tr ′, tr r, x) ∈ ph.RF

implies tr ′ /∈ fix(hc). By Lemma 14, this means

(tr ′, tr r, x) ∈ (ph\fix(hc)).RF .

We show the direction from right to left: Note that fix(hc) by construction
does not contain last writers on variables as they are read by tr r which re-
sults in a non-fixed rf-element. So, if tr ′ is the last writer on x in ph\fix(hc),
it is also in ph. Thus, (tr ′, tr r, x) ∈ ph.RF holds.

Predicate 1:

pev tr ′,wr
ph·pev <ph·pev pev tr ,wr

ph·pev

↔
pev tr ′,wr

ph\fix(hc)·pev <ph\fix(hc)·pev pev tr ,wr
ph\fix(hc)·pev :

202

We only consider the case tr ′ /∈ fix(hc) as else predicate 2 would be false
and tr ′ would not be included in both sets on that count, and thus the
case is irrelevant here for showing equality of the sets. This means the
write event of tr ′ exists in both ph · pev and ph\fix(hc) · pev . Note that
pev = pev tr,wr

ph·pev = pev tr,wr
ph·pev\fix(hc). Trivially, then per definitionpev is ordered

after the write event of tr ′ in both.

Predicate 3:

∀x ∈ Var : (tr ′, tr r,x) ∈ ph.RF → x ∈ V

↔
∀x ∈ Var : (tr ′, tr r,x) ∈ (ph\fix(hc)).RF → x ∈ V :

As we have discussed with Predicate 2, the rf-elements involving tr ′ and tr r

are the same in ph and ph\fix(hc). The write set V is independent of ph
and ph\fix(hc), and thus both statements imply each other.

covphc
= covph′

c
:

In the previous case for predicate 2 and 3 no property of ph or ph ′ that
distinguishes them from candidates was used. We prove predicate 1. Let
phcf,ins be the only element in ins(phc\fix(hc), pev).

Predicate 1:

pev tr ′,wr
phc,ins

<phc,ins
pev tr ,wr

phc,ins
↔ pev tr ′,wr

phcf ,ins
<phcf ,ins

pev tr ,wr
phcf ,ins

:

We only consider the case tr ′ /∈ fix(hc) as else predicate 2 would be false and
tr ′ would not be included in both sets on that count. Thus, the latter case is
irrelevant here for showing equality of the sets. This means the write event
of tr ′ exists in phc, phc\fix(hc), phc,ins and phcf,ins. Note that the existence
of a write of tr ′ /∈ fix(hc) and a read of an unfinished transaction (tr) and

203

that the order of both p-events is identical in both phc and phc\fix(hc). We
do a case distinction over whether pev tr ′,wr

phc
<phc

pev tr ,rd
phc

holds or not. If it
holds, in both cases pev is inserted after the read of tr ′. Assume it does not
hold, in both cases pev is inserted before the read of tr ′.
The claim holds.

fix(hc+) = fix(hc)∪ (covph ∩ covphc
) :

We use the following reformulation of fix(hc):

fix(hc) = f(ph) ∩ f(phc), where

f(ph) = {tr ∈ Tr | finph(tr), ∀rf ∈ ph.RF : tr ∈ rf → fixph(rf)}
and

f(phc) = {tr ∈ Tr | finph(tr), ∀rf ∈ phc.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf)}.

We show two things:

1. f(ph · pev) = f(ph) ∪ covph

2. and f(phc,ins)\{tr} = f(phc) ∪ covphc
.

Note that f(ph · pev) never contains tr as it is read by tr r in ph · pev . Then,
f(ph) ∩ f(phc) cannot contain tr . Thus, both statements above combined
show the claim.

f(ph · pev) = f(ph)∪ covph and f(ph ′ · pev) = f(ph ′)∪ covph′ :

This is shown in Proposition 9.

f(phc,ins)\{tr} = f(phc)∪ covphc
and f(ph ′

c,ins) = f(ph ′
c)∪ covph′

c
:

This is shown in Proposition 10.

Now given the previous results we first prove that

(ph ′ · pev)\fix(hc′+) = (ph · pev)\fix(hc+),

204

and then that

(ph ′
c,ins)\fix(hc′+) = (ph ′

c,ins)\fix(hc+).

The first statement is a straightforward transformation using the previous
results and that tr is not in fix(hc) and fix(hc′), and that pev is a write of
a transaction not in fix(hc) and fix(hc′), and thus not modified by cmp for
fix(hc) and fix(hc′).

(ph ′ · pev)\fix(hc′+)
= (ph ′ · pev)\(fix(hc′) ∪ (covph ′ ∩ covph ′

c
)

= (ph ′ · pev)\(fix(hc′) ∪ (covph ∩ covphc
)

= ((ph ′\fix(hc′)) · pev)\(covph ∩ covphc
)

= ((ph\fix(hc)) · pev)\(covph ∩ covphc
)

= (ph · pev)\fix(hc+).

For the second proof we need to show two things. We need to show that when
given phc = pev 0 . . . pevn and phc,ins = pev 0 . . . pev . . . pevn it holds (note hc

and hc+ are not doomed by assumption) that iff

phc\fix(hc) = pev ′
0 . . . pev

′
n

then
phc,ins\fix(hc) = pev ′

0 . . . pev . . . pev
′
n.

Also, we need to prove that ph\(Tr 1 ∪ Tr 2) = (ph\Tr 1)\Tr 2. The proofs for
that can be found in Proposition 11 and Proposition 12. We partition phc,ins

and ph ′
c,ins into two parts one up until but not including pev and one contain-

ing the remaining subsequence after pev . These are denoted p1(phc,ins) and
p2(phc,ins), analogue for ph ′

c. Note that it holds that p1(phc,ins) · p2(phc,ins) =

205

phc, analogue for ph ′
c.

(ph ′
c,ins)\fix(hc′+)

= (p1(ph ′
c,ins) · pev · p2(ph ′

c,ins))\fix(hc′+)
= (p1(ph ′

c,ins) · pev · p2(ph ′
c,ins))\(fix(hc′))\(covph ′ ∩ covph ′

c
)

= (p1(phc,ins) · pev · p2(phc,ins))\(fix(hc))\(covph ′ ∩ covph ′
c
)(Propositions 11 and 12)

= (phc,ins)\fix(hc+)

Both transformations prove Equation (B.5).

Equation (B.6)
Note that the domain of IWS phc,ins

is the domain of IWS phc
without tr as tr

is finished in phc,ins. Additionally, the finished status of all other transactions
stays identical between phc and phc,ins. The same holds for IWS ph ′

c,ins
. Note

that any rf-element not involving tr r is identical in phc,ins and phc as else tr is be-
ing read by a transaction that is not tr r, and thus hc would be DM. It is not by
assumption. Thus, for all transactions tr ′ ̸= tr , IWS phc,ins

(tr ′) = IWS phc
(tr′).

The same applies to ph ′
c,ins and ph ′

c. As IWS phc
= IWS ph ′

c
, Equation (B.6)

follows.

Proposition 8. Given an hc-pair hc = (ph, phc) and its extension by an arbitrary
read event pev = Rtr

t [V] to hc+ = (ph · pev , phc,ins) s.t. phc,ins ∈ ins(phc, pev), it
holds that fix(hc) = fix(hc+).

Proof. We partition fix(hc) and fix(hc+) into two subsets based on its builder
predicates.

fix(hc) =

{tr ∈ Tr | finph(tr), ∀rf ∈ ph.RF : tr ∈ rf → fixph(rf), }
∩

{tr ∈ Tr | finph(tr), ∀rf ∈ phc.RF : tr ∈ rf → fixphc
(rf) ∨ intphc

(rf)}.

For simplicity, we call the above sets fix(ph) and fix(phc). The partition of
fix(hc+) is done and named analogue. Note that the set of finished transactions

206

is identical between ph and phc. This also holds for hc and hc+ as pev is a read.

We first show fix(ph) = fix(ph · pev), and then fix(phc) = fix(phc,ins).

fix(ph) = fix(ph · pev) :
Appending a read event at the end of ph adds only fixed rf-elements to the
reads-from relation and does not remove existing rf-elements. Thus, all fin-
ished transactions who previously were only element of fixed rf-elements still
are. Because of that, all transactions in fix(ph) are in fix(ph · pev). Also, all
transactions which were element of an rf-element with tr r in it, still are. The new
transaction tr is not finished, and thus it cannot be element of fix(ph · pev). This
implies that a transaction not in fix(ph) is also not in fix(ph · pev), from which
fix(ph) = fix(ph · pev) follows.

fix(phc) = fix(phc,ins) :

Note that tr cannot be element of fix(phc) or fix(phc,ins). It cannot be in the
former since it does not exist in phc and in the latter because it is unfinished in
phc,ins. Also, note that a transaction that is not tr is either finished in both phc

and phc,ins or in none of them. This is because the p-events of such a transaction
are identical in in phc and phc,ins. Thus, we only need to show that

{tr ∈ Tr | finphc
(tr), ∀rf ∈ phc.RF : tr ∈ rf → fixphc

(rf) ∨ intphc
(rf)}

=

{tr ∈ Tr | finphc
(tr), ∀rf ∈ phc,ins.RF : tr ∈ rf → fixphc,ins

(rf) ∨ intphc,ins
(rf)}.

Take an arbitrary transaction tr y occurring in phc. Note that any transaction in
both sets that is read by tr r contains at least one rf-element that is not fixed and
not interruptible, which means it cannot be in either set. Thus, we assume that

207

tr y is not read by tr r in phc and phc,ins. It holds that

∀x ∈ Var ((tr y, tr r, x) /∈ phc.RF ↔ (tr y, tr r, x) /∈ phc,ins.RF)

and
∀x ∈ Var (tr y, tr r, x) /∈ phc → {rf ∈ phc.RF | tr y ∈ rf } = {rf ∈ phc,ins.RF | tr y ∈ rf }.

The former holds true as all p-events in phc are in phc,ins, and their order remains
identical. The latter holds true as all existing rf-elements are unchanged by the
same reason as above. Any new rf-element must involve tr , which is inserted after
the last write. Thus, it cannot read tr y any more if it is not read by tr r.
Let rf = (tr ′, tr ′′, x) be an arbitrary rf-element in {rf ∈ phc.RF | tr y ∈ rf }. Note
that it is also in {rf ∈ phc,ins.RF | tr y ∈ rf } by the above reasoning. We show
two things:

1. fixphc
(rf)↔ fixphc,ins

(rf)

2. and intphc
(rf)↔ intphc,ins

(rf).

fixphc
(rf)↔ fixphc,ins

(rf)

If fixphc
(rf) holds, then by Lemma 12 it holds that

¬(intphc
(rf)) ∧ tr ′′ ̸= tr r.

The same holds analogue for phc,ins. The second part of the equivalency is true
for both fixphc

(rf) and fixph ′
c
(rf). We thus need to show that ¬(intphc

(rf))↔
¬(intphc,ins

(rf)). By using Lemma 13, we expand the equivalency to

(∃tra ∈ Tr : finphc
(tra) ∧ pev tr ′′,rd

phc
<phc

pev tra,wr
phc

)

∧
¬(∃tr i ∈ Tr : unfinphc

(tr i) ∧ pev tr′,wr
phc

<phc
pev tr i,rd

phc
<phc

pev tr′′,rd
phc

)

↔
(∃tra ∈ Tr : finphc,ins

(tra) ∧ pev tr ′′,rd
phc,ins

<phc,ins
pev trw,wr

phc,ins
)

∧
¬(∃tr i ∈ Tr : unfinphc,ins

(tr i) ∧ pev tr′,wr
phc,ins

<phc,ins
pev tr i,rd

phc,ins
<phc,ins

pev tr′′,rd
phc,ins

).

208

We transform the right-hand part of the equivalency. If such a tr i exists, then
it cannot be tr as tr is not finished. Also note that if the first part of the
conjunction is true, then a write exists after the read of tr ′′. By definition of
the insertion function, pev is located after that write in phc,ins, and thus cannot
be in between pev tr′,wr

phc,ins
and pev tr′′,rd

phc,ins
. Thus, the right-hand part is equivalent

to

(∃tra ∈ Tr\{tr} : finphc,ins
(tra) ∧ pev tr ′′,rd

phc,ins
<phc,ins

pev trw,wr
phc,ins

)

∧
¬(∃tr i ∈ Tr\{tr} : unfinphc,ins

(tr i) ∧ pev tr′,wr
phc,ins

<phc,ins
pev tr i,rd

phc,ins
<phc,ins

pev tr′′,rd
phc,ins

).

This means that all p-events referenced are occurring in phc. It is trivially true
by Definition 20 that pev ′ ∈ phc → pev ′ ∈ phc,ins and

∀pev ′, pev ′′ ∈ phc : pev
′ <phc,ins

pev ′′ ↔ pev ′ <phc
pev ′′.

Inserting this into the left-hand side of the equivalency makes both sides of the
implication trivially equivalent.

intphc
(rf)↔ intphc,ins

(rf) :

We need to show that

∀tra ∈ Tr : unfinphc
(tra) ∨ ¬(pev tr ′′,rd

phc
<phc

pev trw,wr
phc

)

∨
∃tr i ∈ Tr : unfinphc

(tr i) ∧ pev tr′,wr
phc

<phc
pev tr i,rd

phc
<phc

pev tr′′,rd
phc

↔
∀tra ∈ Tr : unfinphc,ins

(tra) ∨ ¬(pev tr ′′,rd
phc,ins

<phc,ins
pev trw,wr

phc,ins
)

∨
∃tr i ∈ Tr : unfinphc,ins

(tr i) ∧ pev tr′,wr
phc,ins

<phc
pev tr i,rd

phc,ins
<phc,ins

pev tr′′,rd
phc,ins

.

The transaction tr is unfinished, and thus for the case tra = tr the statement
after the all quantifier is true on both sides of the equivalency. Thus, replacing
it with ∀tra ∈ Tr\{tr} is equivalent to the original quantifier for this statement.

209

Next, we take a look at

∃tr i ∈ Tr : unfinphc,ins
(tr i) ∧ pev tr′,wr

phc,ins
<phc

pev tr i,rd
phc,ins

<phc,ins
pev tr′′,rd

phc,ins
.

Assume tr i = tr , then there cannot be another write p-event after pev tr i,rd
phc,ins

(which equals pev) by definition of the insertion function. As pev tr i,rd
phc,ins

<phc,ins

pev tr′′,rd
phc,ins

holds, this implies that

∀tra ∈ Tr : unfinphc,ins
(tra) ∨ ¬(pev tr ′′,rd

phc,ins
<phc,ins

pev trw,wr
phc,ins

)

is true as there is no write event after pev trw,wr
phc,ins

. Thus, the overall equivalency
is equivalent to

∀tra ∈ Tr\{tr} : unfinphc
(tra) ∨ ¬(pev tr ′′,rd

phc
<phc

pev trw,wr
phc

)

∨
∃tr i ∈ Tr\{tr} : unfinphc

(tr i) ∧ pev tr′,wr
phc

<phc
pev tr i,rd

phc
<phc

pev tr′′,rd
phc

↔
∀tra ∈ Tr\{tr} : unfinphc,ins

(tra) ∨ ¬(pev tr ′′,rd
phc,ins

<phc,ins
pev trw,wr

phc,ins
)

∨
∃tr i ∈ Tr\{tr} : unfinphc,ins

(tr i) ∧ pev tr′,wr
phc,ins

<phc
pev tr i,rd

phc,ins
<phc,ins

pev tr′′,rd
phc,ins

.

This means that all p-events referenced are occurring in phc. It is trivially true
by Definition 20 that all pev ′ ∈ phc → pev ′ ∈ phc,ins and

∀pev ′, pev ′′ ∈ phc : pev
′ <phc,ins

pev ′′ ↔ pev ′ <phc
pev ′′.

Inserting this into the left-hand side of the equivalency makes both sides of the
implication trivially equivalent.

Proposition 9. Given an hc-pair hc = (ph, phc) and its extension by an arbitrary
write event pev = Wtr

t [V] to hc+ = (ph · pev , phc,ins) s.t. phc,ins ∈ ins(phc, pev),

it holds that
f(ph · pev) = f(ph) ∪ covph .

210

Proof. Note that

f(ph · pev)\f(ph) = {tr′ ∈ Tr | finph(tr
′),

∃rf ∈ ph.RF : tr ′ ∈ rf ∧ tr r ∈ rf ,

∀rf ∈ (ph · pev).RF : tr ′ ∈ rf → tr r /∈ rf }.

We show that f(ph · pev)\f(ph) = covph by showing that both are a subset or
equal of each other.

f(ph · pev)\f(ph) ⊆ covph : Let tr ′ be an arbitrary transaction in f(ph ·
pev)\f(ph). Let x ∈ Var be a variable s.t. (tr ′, tr r, x) ∈ ph.RF . It holds by
construction that (tr ′, tr r, x) /∈ (ph · pev).RF . This implies that pev tr′,wr

ph <ph

pev tr,wr
ph and ∃x ∈ Var : (tr ′, tr r, x) ∈ ph.RF . Also, if any arbitrary

(tr ′, tr r, x) ∈ ph.RF is not in (ph · pev).RF , then ∀x ∈ Var : (tr ′, tr r, x) ∈
ph.RF → x ∈ V must hold. As these three conditions are true, tr ′ ∈ covph ,

and thus the subset equal relation holds true.

covph ⊆ f(ph · pev)\f(ph) :
Let tr ′ be an arbitrary transaction in covph . It has a write in ph · pev by
definition of covph and ph contains this write so finph(tr

′) holds. Also, by
definition of covph , ∃rf ∈ ph.RF : tr ′ ∈ rf ∧ tr r ∈ rf holds. Finally, as pev is
ordered after pev tr′,wr

ph·pev and writes to each variable tr r reads from tr ′, it holds
that ∀rf ∈ (ph · pev).RF : tr ′ ∈ rf → tr r /∈ rf . This proves the claim.

Proposition 10. Given an hc-pair hc = (ph, phc) and its extension by an arbitrary
write event pev = Wtr

t [V] to hc+ = (ph · pev , phc,ins) s.t. phc,ins ∈ ins(phc, pev),

it holds that
f(phc,ins) = f(phc) ∪ covphc

.

211

Proof. Note that

f(phc,ins)\f(phc)\{tr} = {tr′ ∈ Tr , tr ′ ̸= tr | finphc
(tr ′),

∃rf ∈ phc.RF : tr ′ ∈ rf ∧ tr r ∈ rf ,

∀rf ∈ (phc,ins).RF : tr ′ ∈ rf → tr r /∈ rf }

and

covphc
= {tr ′ | pev tr′,wr

phc,ins
<phc,ins

pev tr,wr
phc,ins

, ∃x ∈ Var : (tr ′, tr r, x) ∈ phc.RF ,

∀x ∈ Var : (tr ′, tr r, x) ∈ phc.RF → x ∈ V }.

f(phc,ins)\f(phc)\{tr} ⊆ covphc
:

Consider an arbitrary transaction tr ′ ∈ f(phc,ins)\f(phc)\{tr}. We show it
fulfils all builder predicates of covphc

. Let X be the set of variables that tr r

reads from tr ′ in phc. As in phc,ins, tr r reads no variable from tr ′ and the
only change with regard to phc is the insertion of pev . That means that all
variables of X are written to by pev and now read by tr r. This implies
pev tr′,wr

phc,ins
<phc,ins

pev tr,wr
phc,ins

and ∀x ∈ Var : (tr ′, tr r, x) ∈ phc.RF → x ∈ V.

The statement ∃rf ∈ phc.RF : tr ′ ∈ rf ∧ tr r ∈ rf is trivially equivalent to
∃x ∈ Var : (tr ′, tr r, x) ∈ phc.RF .

covphc
⊆ f(phc,ins)\f(phc)\{tr} :

Consider an arbitrary transaction tr ′ ∈ covphc
. We show it fulfils all builder

predicates of f(phc,ins)\f(phc)\{tr}. As by definition of covphc
, there is a write

event of tr ′ existing in phc. Thus, tr ′ ̸= tr and finphc
(tr ′) holds. Again by

definition of covphc
, ∃x ∈ Var : (tr ′, tr r, x) ∈ phc.RF holds. This is equivalent

to ∃rf ∈ phc.RF : tr ′ ∈ rf ∧ tr r ∈ rf . Lastly, by definition of covphc
pev is

a write ordered after the write of tr ′ and writes to all variables that tr r reads
from tr ′ in phc. Thus, in phc,ins tr r reads no variable from tr ′ which means
∀rf ∈ (phc,ins).RF : tr ′ ∈ rf → tr r /∈ rf . The claim holds.

Proposition 11. Given an arbitrary p-history ph and a set of transactions X

212

with two subsets X1, X2 s.t. X1 ∪X2 = X, it holds that

ph\X = (ph\X1)\X2.

Proof. Let ph = pev 0 . . . pevn, let ph\X = pev ∗
0 . . . pev

∗
n and let (ph\X1) =

pev ′
0 . . . pev

′
n let (ph\X1)\X2 = pev ′′

0 . . . pev
′′
n. We show that for 0 ≤ x ≤ n

pev ′′
x = pev ∗

x holds. This is done via case distinction.

Case distinction pev∗
x = ϵ:

By Definition 27, it holds that trph(pev x) ∈ X, which means trph(pev x) ∈
X1 ∨ trph(pev x) ∈ X2. Thus, either pev ′

x = ϵ or pev ′′
x = ϵ. In the latter case,

pev ∗
x = pev ′′

x follows directly. In the first case, an ϵ “event” is still non-existent
after applying the removal function again with any set, and thus pev ∗

x = pev ′′
x

also holds.

Case distinction pev∗
x = Rtr

t [V
∗]:

Then, by Definition 27 it holds that phx = Rtr
t [V] and V ∗ = V \{y | ∃tr ′ ∈

X(tr ′, tr , y) ∈ ph.RF}, this is equivalent to

V ∗ = (V \{y | ∃tr ′ ∈ X1(tr
′, tr , y) ∈ ph.RF})\{y | ∃tr ′ ∈ X2(tr

′, tr , y) ∈ ph.RF}.

For pev ′
x = Rtr

t [V
′] by Definition 27 it holds that pevx = Rtr

t [V] and V ′ =

V \{y | ∃tr ′ ∈ X1(tr
′, tr , y) ∈ ph.RF}, then pev ′′

x = Rtr
t [V

′′], and by the same
definition is V ′′ = V ′\{y | ∃tr ′ ∈ X2(tr

′, tr , y) ∈ ph.RF}. Thus, overall it holds
that

pev ′′
x = Rtr

t [V
′\{y | ∃tr ′ ∈ X2 (tr

′, tr , y) ∈ ph.RF}]
= Rtr

t [(V \{y | ∃tr ′ ∈ X1 (tr
′, tr , y) ∈ ph.RF})\{y | ∃tr ′ ∈ X2 (tr

′, tr , y) ∈ ph.RF}]
= Rtr

t [(V \{y | ∃tr ′ ∈ X (tr ′, tr , y) ∈ ph.RF})]
= pev ∗

x.

Case distinction pev∗
x = pevx:

213

In this case, pevx was neither a read nor was its transaction in X, if this is the
case, then pev ′′

x = pev ′
x = pevx as the transaction of pevx is not in X1 or X2.

Thus,
pev ′′ = pevx = pev ∗

x.

The claim holds.

Proposition 12. Given an hc-pair hc = (ph, phc) and its extension by an arbitrary
write event pev = Wtr

t [V] to hc+ = (ph · pev , phc,ins) s.t. phc,ins ∈ ins(phc, pev)

and not doomed(hc+), it holds that

phc\fix(hc) = pev ′
0 . . . pev

′
n ↔ phc,ins\fix(hc) = pev ′

0 . . . pev . . . pev
′
n.

Proof. Let phc = pev 0 . . . pevn, phc,ins = pev 0 . . . pev . . . pevn and phc\fix(hc) =
pev ′

0 . . . pev
′
n hold. Note that pev is a write, and tr /∈ fix(hc) as tr is not finished

in phc; thus, it is not removed by the removal function. Thus, phc,ins\fix(hc) =
pev ′′

0 . . . pev . . . pev
′′
n holds. We show that pev ′

x = pev ′′
x for 0 ≤ x ≤ n. This is done

via case distinction.

Case distinction trphc
(pevx) ∈ fix(hc):

This is equivalent to trphc,ins
(pev x) ∈ fix(hc) by definition of the insertion

function (Definition 20). Thus, pev ′′
x = ϵ = pev ′

x holds.

Case distinction pevx = Wtr ′

t ′ [V], tr ′ /∈ fix(hc):
The p-event pevx does not belong to a transaction in fix(hc), and it is not a
read. Thus, by definition of the removal function, it holds that

pev ′′
x = pevx = pev ′

x.

214

Case distinction pevx = Rtr ′

t ′ [V], tr ′ /∈ fix(hc):
Then, by Definition 27 it holds that pev ′

x = Rtr ′

t ′ [V
′] and V ′ = V \{x | ∃tr ′′ ∈

fix(hc) : (tr ′′, tr ′, x) ∈ phc.RF}. Also, by Definition 27, it holds that pev ′′
x =

Rtr ′

t ′ [V
′′] and V ′′ = V \{x | ∃tr ′′ ∈ fix(hc) : (tr ′′, tr ′, x) ∈ phc,ins.RF}. Note

that doomed(hc+) is not true, and thus tr is not read by any other transaction
in phc,ins than tr r. Thus, given tr ′ ̸= tr r it holds for any rf-element (tr ′′, tr ′, x)

that (tr ′′, tr ′, x) ∈ phc.RF iff (tr ′′, tr ′, x) ∈ phc,ins.RF . Also, tr r /∈ fix(hc) by
definition, and thus

{x | ∃tr ′′ ∈ fix(hc) : (tr ′′, tr ′, x) ∈ phc.RF} = {x | ∃tr ′′ ∈ fix(hc) : (tr ′′, tr ′, x) ∈ phc,ins.RF}

holds from which pev ′
x = pev ′′

x follows.

The claim holds.

Lemma 17. Two p-histories ph, ph ′ are SSR−-extension equivalent iff the follow-
ing two conditions hold:

1. ∀(ph, phc) ∈ HCph , ∃(ph ′, ph ′
c) ∈ HCph ′ : (ph, phc) ≡ext (ph

′, ph ′
c),

2. and ∀(ph ′, ph ′
c) ∈ HCph ′ , ∃(ph, phc) ∈ HCph : (ph ′, ph ′

c) ≡ext (ph, phc).

Proof. We first show that the first condition implies that if ph has a extension
that is SSR− serializable, then ph ′ does as well. Assume for an arbitrary p-event
sequence seq and arbitrary p-histories ph and ph ′ that

∀(ph, phc) ∈ HCph , ∃(ph ′, ph ′
c) ∈ HCph ′ : (ph, phc) ≡ext (ph

′, ph ′
c)

holds. It is trivial to see by the definition of candidates that a p-history is serial-
izable under SSR− iff one of its candidates is equivalent to it. Thus, if ph · seq is

215

serializable under SSR−, there exists an consistent hc-pair (ph · seq, phc,ins). By
using Proposition 2 and induction, it is given that∪

phc∈Cph

ins(phc, seq) = Cph·seq.

Thus, there must exist an hc-pair (ph, phc) s.t. phc,ins ∈ ins(phc, seq). Then,
by assumption there exists (ph ′, ph ′

c) s.t. (ph, phc) ≡ext (ph ′, ph ′
c). As phc,ins ∈

ins(phc, pev) and phc,ins is equivalent to ph · seq by definition of extension equiva-
lence for hc-pairs, there must exist ph ′

c,ins ∈ ins(ph ′
c, pev) and ph ′

c,ins is equivalent
to ph ′ · seq. This means ph ′ · seq is serializable under SSR−.

The other direction is proven analogue as we did not use specific properties of ph
or ph ′.

Lemma 18. Two p-histories ph, ph ′ are SSR−-extension equivalent if ssr(ph) =
ssr(ph ′).

Proof. If ssr(ph) = ssr(ph ′), then it holds that for each hc-pair (ph, phc) s.t.
phc ∈ Cph there exists a hc-pair (ph ′, ph ′

c) s.t. cmp(ph, phc) = cmp(ph ′, ph ′
c) which

by Lemma 16 implies that (ph, phc) ≡ext (ph
′, ph ′

c). Thus,

∀(ph, phc) ∈ HCph , ∃(ph ′, ph ′
c) ∈ HCph ′ : (ph, phc) ≡ext (ph

′, ph ′
c)

holds true, which is the first condition of Lemma 17).

By an analogue proof the second condition of Lemma 17,

∀(ph ′, ph ′
c) ∈ HCph ′ , ∃(ph, phc) ∈ HCph : (ph ′, ph ′

c) ≡ext (ph, phc)

holds true as well.

As shown, both conditions of Lemma 17 hold true, and thus ph and ph ′ are SSR−-
extension equivalent.

216

Theorem 3. Let I be an implementation automaton. Then I only produces
strictly serializable p-histories iff L(E(I)) = ∅.

Proof. Let I = (Q, δ, q0, F) be an implementation automaton and its SSR−-
automaton E(I) be (QE, δE, q0,E, FE). We show that E(I) is a deterministic finite
automaton in Proposition 13.

I is strictly serializable→ L(E(I)) = ∅ :
We show the contraposition. Let the accepted word be ph = pev 0 . . . pevn.
Then, there exists a run of E(I)

(q0, ssr(ϵ)) . . . (qn+1, ssr(ph)), s.t.(qn+1, ssr(ph)) ∈ FE.

It must hold that ssr(ph) ∈ SSR−
∅ T ,Var

, and thus there exists no consistent
compressed hc-pair in ssr(ph). As shown in Proposition 5, if a compressed
hc-pair is not consistent, then all of its uncompressed versions are also not
consistent. This means that there exists no consistent hc-pair for ph, meaning
it is not strictly serializable.
It must also hold that qn+1 ∈ F and for all indices i < n+ 1 that

((qi, ssr(pev 0 . . . pev i−1)), pev i, (qi+1, ssr(pev 0 . . . pev i))) ∈ δE.

Thus, for the word ph in I the run q0 . . . qn+1 exist s.t. for all indices i < n+ 1

it holds that (qi, pev i, qi+1) ∈ δ. As qn+1 ∈ F this is an accepting run meaning
I is not strictly serializable.

L(E(I)) = ∅→ I is strictly serializable :

We show the contraposition. Let ph = pev 0 . . . pevn be a p-history that is not
serializable and accepted by I. Then in I a run q0 . . . qn+1 exist s.t. for all
indices i < n+ 1 it holds that (qi, pev i, qi+1) ∈ δ and qn+1 ∈ F holds. Consider

217

the following sequence of states of QE:

(q0, ssr(ϵ)) . . . (qn+1, ssr(ph))

s.t. for all indices i < n+ 1

((qi, ssr(pev 0 . . . pev i−1)), pev i, (qi+1, ssr(pev 0 . . . pev i))) ∈ δE

holds. This sequence exists by the definition of an SSR−-automaton. As ph is
not serializable, for all of its candidates phc, the hc-pair (ph, phc) is not consis-
tent, and as shown in Equation (B.1) its compression cmp(ph, phc) is then also
not consistent. Thus, there exists no consistent compressed hc-pair in ssr(ph),

and thus ssr(ph) ∈ SSR−
∅ T ,Var

. As qn+1 ∈ F, this means (qn+1, ssr(ph)) ∈ FE,

and thus E(I) accepts ph. It follows that its language is not empty.

Proposition 13 (SSR− construction is DFA). Let I = (Q, δ, q0, F) be an im-
plementation automaton and its SSR−-automaton of E(I) be (QE, δE, q0,E, FE).
Then, E(I) is a deterministic finite automaton.

Proof. We assume I to be an DFA. We show that E(I) is a finite automaton and
then that it is a deterministic automaton.

QE is finite:
Note that QE equals Q × SSR−

T ,Var . As I is a DFA Q, is finite. As proven in
Lemma 15, there is only a finite amount of compressed hc-pairs for a given
T and Var . Thus, SSR−

T ,Var is finite as well as each element in it is a set of
hc-pairs. Combining both facts means QE is a finite set.

δE is deterministic:
Consider a given state/ssr data pair (q, ssr) ∈ QE, q ∈ Q and ssr ∈ SSR−

T ,Var

and an arbitrary p-event pev . We show there is only exactly one pair of q′ ∈ Q

218

and SSR−-data ssr′ that fulfils the condition for a transition, which is

(q, pev , q′) ∈ δ and ∃ph ∈ PH : ssr(ph) = ssr ∧ ssr(ph · pev) = ssr′.

We do this by a proof via contradiction. Assume a different second pair
(q′′, ssr′′) fulfils the condition for the transition. So, at least q′′ ̸= q′ or ssr′′ ̸=
ssr′ must hold. Trivially, as Q is a DFA q′′ equals q′. So, ssr′′ ̸= ssr′ must hold.
Thus, there must exist a p-history ph ′ ̸= ph s.t. ssr(ph ′) = ssr∧ssr(ph ′ ·pev) =
ssr′′. This implies ssr(ph) = ssr(ph ′) is true. As we show in the proof of
Lemma 19 in this appendix,

∀ph, ph ′ ∈ PH : ssr(ph) = ssr ∧ ssr(ph ′) = ssr → ssr(ph · pev) = ssr(ph ′ · pev)

holds. This implies that ssr(ph ′ · pev) = ssr(ph · pev) = ssr, which is a
contradiction to the assumption. Thus, there exists only one pair (q′, ssr′) that
fulfils the condition for a transition.

Lemma 19. Given two arbitrary p-histories ph and ph ′, it holds that

∀seq ∈ PEv ∗ : ssr(ph) = ssr(ph ′)→ ssr(ph · seq) = ssr(ph ′ · seq).

Proof. Let pev be an arbitrary p-event. By definition, it holds that

ssr(ph · pev) = {cmp(ph · pev , phc+) | phc+ ∈ Cph·pev}.

Using Proposition 2, it follows that

ssr(ph · pev) = {cmp(ph · pev , phc+) | phc+ ∈
∪

phc∈Cph

ins(phc, pev)}.

The same holds for ph ′ · pev .

ssr(ph ′ · pev) = {cmp(ph ′ · pev , ph ′
c+) | ph ′

c+ ∈
∪

ph ′
c∈Cph′

ins(ph ′
c, pev)}.

219

ssr(ph · pev) ⊆ ssr(ph ′ · pev) :
Let (ph, phc+) be an arbitrary element in ssr(ph · pev). Consider a candidate
phc ∈ Cph s.t. phc+ ∈ ins(phc, pev), which exists by Proposition 2. Given that
ssr(ph) = ssr(ph ′), there exists ph ′

c ∈ Cph ′ s.t. cmp(ph, phc) = cmp(ph ′, ph ′
c).

As we have shown in the proof of Lemma 16 in this appendix, it then holds
that

∃ph ′
c,ins ∈ ins(ph ′

c, pev) : cmp(ph · pev , phc,ins) = cmp(ph ′ · pev , ph ′
c,ins).

Let ph ′
c,ins be one of these candidate extensions. As

ph ′
c,ins ∈

∪
ph ′

c∈Cph′

ins(ph ′
c, pev)

holds, it holds that cmp(ph ′ · pev , ph ′
c,ins) ∈ ssr(ph ′ · pev).

ssr(ph ′ · pev) ⊆ ssr(ph · pev) :
This proof is analogue to the previous case.

Combining both cases shows that ssr(ph ·pev) = ssr(ph ′·pev) holds. By induction,
it follows that

∀seq ∈ PEv ∗ : ssr(ph) = ssr(ph ′)→ ssr(ph · seq) = ssr(ph ′ · seq).

220

C
Proofs for Section 4.3

Proposition 3 (Supersequence property). Given a g-history h and an arbitrary
extension h ′ of it, it holds that

∀h ′
c ∈ Ch ′ , ∃hc ∈ Ch : hc ⊑ h ′

c.

Proof. We prove the claim for the extension of an arbitrary g-history h by a
single g-event ev to h ′ = h · ev . This proves the claim for arbitrary extensions by
induction. Let h ′

c be an arbitrary candidate of h ′. Let hc be h ′
c with the g-event

ev removed. We prove it is a candidate of h by showing all candidate properties.

hc is serial:
Removing an event from the serial history h ′

c preserves the property.

hc is equivalent to h :
The history h ′ contains the same events in the same order as h except for the
addition of ev . Then, for h ′

c the same holds by property of it being a candidate
of h ′. It holds that hc is identical to h ′

c except for the removal of ev . Thus, hc

221

has the same events and internal thread order as h.

hc preserves the real-time order of h :
For this we first define the set of rt-elements generated in h ′ and h ′

c by adding
ev to h. The set of events rt-elements generated by ev in h ′ is

RT h ′(ev) = {(tr , tr ′) ∈ h ′.RT | ev ∈ {Btr ′

thr(tr ′),A
tr
thr(tr),Resptr

thr(tr)(C)}}.

The definition for h ′
c is analogue. Note that any rt-element (tr , tr ′) that is in

RT h ′
c
(ev) but not in RT h ′(ev) is not present in h ′.RT . This is the case because

if it was present in h ′.RT , it would also be in RT h ′(ev) as tr and tr ′ have the
same events in h ′ and h ′

c. This is expressed by the following formula:

∀(tr , tr ′) ∈ RT h ′
c
(ev) : (tr , tr ′) /∈ RT h ′(ev)→ (tr , tr ′) /∈ h ′.RT . (C.1)

Given the real-time order preservation property of candidates, it is given that

h ′.RT ⊆ h ′
c.RT .

If we subtract the rt-elements caused by ev on each side and use the previous
facts, we get the following equation:

h ′.RT\RT h ′(ev) ⊆ h ′
c.RT\RT h ′

c
(ev).

We argue why the subset or equal relation still holds. Equation C.1 implies that
every rt-element that is subtracted from the right side and not from the left
side, is not present in h ′.RT . Thus, the only rt-elements that are subtracted
from the real-time order of h ′

c.RT are either also subtracted from h ′.RT or are
not an element of it. It follows that the subset or equal relation is preserved by
the subtraction. The real-time order of h ′ without any rt-elements caused by
ev is identical the real-time order of h. Also, the real-time order of h ′

c minus

222

all rt-elements caused by ev is the real-time order of hc. Thus, it holds that

h.RT ⊆ hc.RT .

So, hc preserves the real-time order of h.

This proves the claim.

Proposition 4 (Generation of candidates by insertion function). Given a g-
history h and a g-event ev , it holds that∪

hc∈Ch

ins(hc, ev) = Ch·ev .

Proof. We show the subset equal relation in both directions.

∪∪∪
hc∈Ch

ins(hc, ev) ⊆ Ch·ev :

Let hc = ev 0 . . . evn be an arbitrary candidate of h, so both contain the same
g-events. Let h ′

c be an arbitrary element of ins(hc, ev). We show that h ′
c is a

candidate of h · ev by case distinction over ev .

ev is not a begin g-event:

Let ev be of transaction tr . Then, there is at least one event of tr in hc, so
hc = ev 0 . . . ev

tr,ls
hc

ev . . . evn holds. It holds that

h ′
c ∈ {ev 0 . . . ev

tr,ls
hc

ev . . . evn}.

h ′
c is serial:

The g-history h ′
c is trivially serial.

h ′
c is equivalent to h · ev :

The g-history h ′
c trivially contains the same elements as h · ev . We show

that all events are ordered identical for each thread in h ′
c and h · ev . For all

223

g-events that are not ev this is the case as their order is identical in h and
hc, and it neither changes between h and h · ev or between hc and h ′

c. The
g-event ev is ordered directly behind the last event of its transaction in h ′

c,
which is also the case in h · ev . Thus, the claim holds.

h ′
c preserves the real-time order of h :

We show h ′
c preserves the real-time order of h · ev . Appending a non-begin

g-event does not change the real-time order of a g-history. Thus, it holds
that

h.RT = (h · ev).RT .

Also, by hc being a candidate of h it holds that

h.RT ⊆ hc.RT .

Adding a non-begin g-event to hc does not subtract rt-elements from the
real-time order. Thus, it holds that

(h · ev).RT ⊆ h ′
c.RT .

ev is a begin g-event:
Let ev be of transaction tr . It holds that

h ′
c ∈ {st(hc) · add(en(hc), ev , n) | n ∈ TrI en(hc)}.

h ′
c is serial: The g-history h ′

c is serial as ev is inserted in between two
transactions. This is because TrI en(hc) by definition only contains indices
of the last g-event of each transaction.

224

h ′
c is equivalent to h · ev :

The g-history h ′
c contains the same elements as h · ev . We show that all

events are ordered identical for each thread. For all g-events that are not
ev this is the case as their order is identical in h and hc, and it does not
change between h and h · ev , and between hc and h ′

c. The g-event ev is the
first event of its transaction in h ′

c, which is also the case in h · ev .

h ′
c preserves the real-time order of h :

The real-time order of h · ev is the one of h plus a number of rt-elements
(tr ′, tr) between the transaction tr of the begin and each aborted and com-
mitted transaction tr ′ of h. The set of these rt-elements is denoted by
RT h·ev (ev). There are no other rt-elements added and none are subtracted.
Thus, it holds that

(h · ev).RT = h.RT ∪ RT h·ev (ev).

For the candidate adding a begin g-event for tr somewhere after the last
commit or abort adds an rt-element (tr ′, tr) for each committed or aborted
transaction tr ′ in hc to h ′

c. As these transactions are identical to h, we can
denote this set also by RT h·ev (ev) There are no other rt-elements added and
none are subtracted. Thus, it holds that

h ′
c = hc.RT ∪ RT h·ev (ev).

As hc preserves the real-time order of h,

h.RT ⊆ hc.RT ,

holds. It then holds that

h.RT ∪ RT h·ev (ev) ⊆ hc.RT ∪ RT h·ev (ev),

225

and thus also
(h · ev).RT ⊆ h ′

c.RT .

The claim holds.
Ch·ev ⊆

∪∪∪
hc∈Ch

ins(hc, ev) :

Let h ′
c be an arbitrary element in Ch·ev . By the supersequence property (Propo-

sition 3), a candidate hc of h exists s.t.

hc ⊑ h ′
c.

We show that h ′
c ∈ ins(hc, ev) via case distinction.

ev is not a begin g-event:
Let ev be of transaction tr . This transaction must at least have one g-event
in hc. Then, let hc = ev 0 . . . ev

tr,ls
hc

. . . evn hold. Note that inswarc(hc, ev) =

{ev 0 . . . ev
tr,ls
hc

ev . . . evn}. As h ′
c is serial and a super sequence of hc, it must

hold that h ′
c = ev 0 . . . ev

tr,ls
hc

ev . . . evn. From this the claim follows:

h ′
c ∈ ins(hc, ev).

ev is a begin g-event:
Let ev be of transaction tr . Let the last committed or aborted transaction in
hc be trx. Note that

insb(hc, ev) = {st(hc) · add(en(hc), ev , n) | n ∈ TrI en(hc)}.

It holds that trx ≺h·ev tr and that h ′
c preserves the real-time order of h · ev

so ev trx,ls
h ′
c

<h ′
c
ev holds. Also, hc and h ′

c have the same events and order of
events except for ev . This implies that ev is not part of st(h ′

c), but it is part
of en(h ′

c). The transaction trx contains the same g-events in both candidates,
and it is the last committed or aborted transaction in both. It follows that
st(hc) = st(h ′

c). In addition, h ′
c is serial. Thus, there exists some index n s.t.

226

n ∈ TrI en(hc) and it holds that

en(h ′
c) = add(en(hc), ev , n).

This implies that

h ′
c ∈ {st(hc) · add(en(hc), ev , n) | n ∈ TrI en(hc)},

which proves the claim.

Lemma 20. Given a g-history h, it holds that

∃hs ∈ H : hs ∈ OW (h)→ ∃hc,comp ∈ H : hc,comp ∈ SC (Ch) ∧ hc,comp is legal.

Proof. Let hc be a history s.t.

1. ∀ev ∈ Ev : ev ∈ hc ↔ ev ∈ h,

2. and ∀ev , ev ′ ∈ hc : ev <hc ev
′ ↔ ev <hs ev

′,

We show that hc is a candidate for h and one of its completions is legal. We start
by showing it is a candidate.

hc is serial: It is trivially serial.

hc is equivalent to h :

It contains the same elements as h by definition. As hs is an OP−-witness for
h, it is equivalent to h, which implies

∀ev , ev ′ ∈ h : trh(ev) = trh(ev
′)→ (ev <h ev ′ → ev <hs ev

′).

By construction, all events of hc are ordered as in hs, and all of these event are
existing in h; thus, we can insert hc for hs:

∀ev , ev ′ ∈ h : trh(ev) = trh(ev
′)→ (ev <h ev ′ → ev <hc ev

′).

227

Thus, all g-events of the same transaction are ordered the same in h and hc.

hc preserves the real-time order of h :
As hs is an OP−-witness of h and any completion of h also preserves the real-
time order of h, it holds that

∀(tr , tr ′) ∈ h.RT : (tr , tr ′) ∈ hs.RT .

Now hc contains the same events as h; thus, all completed transactions in h

are also completed in hc and all of their events also exists in hc by construction.
In addition, if two of these completed transactions are real-time ordered in hs,

they are also in hc by the second construction condition of hc. Thus, in the
previous equation, we can replace hs by hc

∀(tr , tr ′) ∈ h.RT : (tr , tr ′) ∈ hc.RT ,

which proves the claim.

Next we prove that there exists a legal serial completion for hc. It holds that hc

and hs share all events occurring in h and these events are ordered identically in
both. It is trivial to see that hs then is one of the serial completions of hc. It
follows that hc has a legal completion as hs is legal.

Lemma 21. Given a g-history h, it holds that

∃hc,comp ∈ H : hc,comp ∈ SC (Ch) ∧ hc,comp is legal → ∃hs ∈ H : hs ∈ OW (h).

Proof. Let hc be a witness s.t. hc,comp is a legal serial completion of it. We show
that hs = hc,comp is an OP−-witness of h by first showing there exists a completion
of h that is equivalent to it and then show it preserves the real-time order of h.
It is already legal by definition.

228

There exists a completion of h equivalent to hc,comp :

Let Ev c be all g-events that occur in hc,comp but not in hc. Let hcomp be h

with all events of Ev c added directly after the last event of their respective
transactions. This is trivially a well-formed definition of a completion of h. We
show that hcomp is equivalent to hs/hc,comp. The g-events of both are trivially
identical. Given two g-events ev , ev ′ ∈ hcomp from the same transaction i.e.
trhcomp(ev) = trhcomp(ev

′), we show that

ev <hcomp ev
′ ↔ ev <hs ev

′.

We show this via case distinction.

ev /∈ Ev c, ev
′ ∈ Ev c :

In this case, ev must be ordered before ev ′ in hs and hcomp as both are a
completion, so the added events must be added after the last event of their
transaction of the g-histories they were generated from. The claim holds for
this case.

ev /∈ Ev c, ev
′ /∈ Ev c :

Note that hc (and thus also hs) and hcomp have an identical internal thread
order to h for all events occurring h. So, the order of ev and ev ′ in hs and
hcomp is identical to their order in h, and thus the same.

ev ∈ Ev c :

This case cannot occur, any added g-event occurs after the last g-event of its
transaction in a completion.

hc,comp preserves the real-time order of h :

It holds that hc preserves the real-time order of h, by being a candidate of it:

h.RT ⊆ hc.RT .

229

In the serial completion abort and commit responses are added, no g-events are
reordered or removed. Thus, its real-time order is a superset of the candidate,
and it follows that

h.RT ⊆ hc.RT ⊆ hc,comp.RT ,

which proves the claim.

Lemma 23 (Legal). Given a g-history h and a serial completion hs of one of its
candidates, it holds that

hs is legal ↔ hs.RF c = h.RF val.

Proof. We show both directions separately for this proof.

→:

We first show that if hs is legal holds, then hs.RF c ⊆ h.RF val holds, and then
that hs.RF val ⊆ h.RF c is true.

hs.RF c ⊆ h.RF val :

Consider an arbitrary rf-element (tr ′, tr , var) ∈ hs.RF c. We show that
(tr ′, tr , var) ∈ h.RF val by showing that there exists a value val ∈ Val s.t.
all conditions of Definition 38 hold.

(var , val) ∈WSh(tr
′), (var , val) ∈ RSh(tr) :

As hs is legal, it holds that for a value val (var , val) ∈ WShs (tr
′) and

(var , val) ∈ RS hs(tr). This implies the same for h proving the claim.

Invtr ′

thr(tr ′)(C) <h Rtr
thr(tr)(var , val) :

Assume the opposite which is Rtr
thr(tr)(var , val) <h Invtr ′

thr(tr ′)(C). By the
RR-assumption, it holds that it only reads val if there exists a committed
transaction tr ′′ writing var to val s.t. Invtr ′′

thr(tr ′′)(C) <h Rtr
thr(tr)(var , val). So,

230

tr ′′ is either concurrent to tr or tr ′′ ≺h tr holds. As tr ′ ≺hs tr holds and
by the real-time order preservation property, tr ′ is either concurrent to tr

or tr ′ ≺h tr holds. As both transactions write the same value to var , they
belong to the same thread by the TIV-assumption. Let this thread be t .
Assume tr ′′ is concurrent to tr . The most recent transaction of t writing
to var real-time ordered before tr and all transactions of t concurrent to
tr ′′ write pairwise different values by the TIV-assumption. As tr ′ is one of
these transactions and writes val to var , tr ′′ cannot be one of these trans-
actions. So, it must be real-time ordered before the most recent committed
transaction of t writing to var and real-time ordered before tr . This is
a contradiction to the RR-assumption as there is one committed transac-
tion writing to var real-time ordered between tr ′′ and tr . So, the claim holds.

¬(∃tr ′′ ∈ Tr : var ∈WS vo
h (tr ′′)∧ coh(tr

′′)∧ tr ′ ≺h tr ′′ ≺h tr) :

Assume it the opposite holds then by real-time preservation it also holds
that

(∃tr ′′ ∈ Tr : var ∈WS vo
hs (tr

′′) ∧ cohs(tr
′′) ∧ tr ′ ≺hs tr

′′ ≺hs tr)

which is in contradiction to (tr ′, tr , var) ∈ hs.RF c. So the claim holds.

h.RF val ⊆ hs.RF c :

Consider an arbitrary rf-element (tr ′, tr , var) ∈ h.RF val. We show that
(tr ′, tr , var) ∈ hs.RF c by showing that all conditions of Definition 37 hold.

var ∈WS vo
h (tr ′), var ∈ RS vo

h (tr) :

By Definition 38, it holds that

(var , val) ∈WSh(tr
′) and (var , val) ∈ RS h(tr).

231

From this it follows that

(var , val) ∈WShs (tr
′) and (var , val) ∈ RS hs(tr).

tr ′ ≺hs tr :

It is given that hs is legal. As we argued in the previous case, in h there
is exactly one transaction writing val to var s.t. it is either the most re-
cent committed transaction real-time ordered before tr or it is a commit
pending or committed transaction concurrent to tr . Thus, if the negation
of the claim holds, which is tr ≺hs tr

′ (as hs is serial), then hs cannot be legal.

cohs(tr
′) :

Since (tr ′, tr , var) ∈ h.RF val holds, tr ′ is visible and either committed or
commit pending in h and thus committed in hs.

¬(∃tr ′′ ∈ Tr : var ∈WS vo
hs

(tr ′′)∧ cohs(tr
′′)∧ tr ≺hs tr

′′ ≺hs tr
′) :

Assume such a tr ′′ would exist. As we argued in the previous case, in h

there is exactly one transaction writing val to var s.t. it is either the most
recent committed transaction real-time ordered before tr or it is a commit
pending or committed transaction concurrent to tr . Thus, tr ′′ would write
a value that is not val to var , and thus hs would not be legal. It is legal by
assumption, and thus such a tr ′′ cannot exist.

←:

Consider an arbitrary rf-element (tr ′, tr , var) ∈ h.RF val. It follows that
(tr ′, tr , var) ∈ hs.RF c. It holds that there exists a value val s.t. (var , val) ∈
WShs (tr

′), (var , val) ∈ RS hs(tr) and tr ′ is the most recent committed trans-
action writing to var before transaction tr in hs. Thus, the read of var of tr

232

obeys the sequential specification of read write registers. As we have shown
this for an arbitrary rf-element, the history is legal.

Lemma 24 (Minimal completion legal iff legal completion exists). Given a g-
history h and a candidate hc, a serial completion for hc that is an OP− witness
for h exists iff mCl(hc) is legal.

Proof. We prove both directions.

←:

It is trivial to see that the minimal completion is a serial completion and if it
is legal by Lemma 21 it is also an OP−-witness for h.

→:

Let hco be an arbitrary legal serial completion of hc. We show that if hco is
legal, mCl(hc) is also legal. It is trivially true that hco.RT = mCl(hc).RT as
these g-histories only differ in which commit pending transactions of h were
aborted and which were committed. We show that hco.RF c = mCl(hc).RF c by
contradiction. Any read in a g-history reads from some transaction. Thus, it
is sufficient assume the following and show that this leads to a contradiction.

∃tr , tr ′, tr ′′ ∈ Tr : (tr ′, tr , x) ∈ hco.RF c, (tr
′′, tr , x) ∈ mCl(hc).RF c and tr ′′ ̸= tr ′.

Let tr , tr ′, tr ′′ be transactions s.t. the formula after the quantifiers is true. As-
suming this, tr ′ must be visible in h as h.RF val = hco.RF c. By definition of
a minimal completion, that means it is committed in mCl(hc). Also, tr ′ is
committed in hco by definition of hco.RF c. Thus, if tr does not read x from tr ′

in mCl(hc), the following must hold:

tr ′′ ≺mCl(hc) tr ,

and
¬(tr ′′ ≺mCl(hc) tr

′ ≺mCl(hc) tr).

233

Similarly, in hco the following must hold:

tr ′ ≺hco tr ,

and
¬(tr ′ ≺hco tr

′′ ≺hco tr).

These facts are in contradiction to the fact that both completions have the
same real-time order. This proves the claim.

Lemma 25. Given an input g-history h, an OP−-witness for it exists iff there
exists a candidate hc s.t. mCl(hc) is legal.

Proof. We show both directions separately.

→:

Given an OP−-witness hs, by Lemma 22 it is a serial completion of a candidate
h ′
c. Then, from Lemma 24 it follows that mCl(h ′

c) is legal.
←:

This follows directly from Lemma 24.

Lemma 26 (Conditions for fixed rf-elements in g-histories). Given a g-history h,

it holds that h.RF fix
val = h.RF val.

Proof. We show for an rf-element (tr , tr ′, var) ∈ h.RF val and for an arbitrary
g-event ev , that

(tr , tr ′, var) ∈ (h · ev).RF val,

holds. By induction, this implies the claim for arbitrary event sequences.
We show (tr , tr ′, var) ∈ (h · ev).RF val along the conditions of Definition 38.

• (var , val) ∈WSh·ev (tr): It is true that (var , val) ∈WSh(tr) and no event is
removed when appending ev , so it is true for h · ev

234

• (var , val) ∈ RS h·ev (tr
′): True, argumentation is analogue to the one above.

• ¬(∃tr ′′ ∈ Tr : var ∈ WS vo
h·ev (tr

′′) ∧ coh·ev (tr
′′) ∧ tr ≺h·ev tr ′′ ≺h·ev tr ′):

As before, the formula is true when only considering h instead of h · ev .
Appending ev means it is ordered after the last events of both tr and tr ′.
Thus, its transaction cannot be real-time ordered in between tr and tr ′.

Thus, (tr , tr ′, x) ∈ (h ·ev).RF val holds if (tr , tr ′, x) ∈ h.RF val. Applying induction,
it holds that

∀seq ∈ Ev ∗ : (tr , tr ′, x) ∈ (h · seq).RF val,

which then implies
h.RF fix

val = h.RF val.

Lemma 27 (Conditions for fixed rf-elements in candidates). Given a candidate
hc of g-history h and an arbitrary rf-element rf ∈ hc.RF with rf = (tr , tr ′, var),

rf is in hc.RF
fix
c iff

1. rf is not abortable,

2. ¬(∃tr ′′ ∈ Tr : unfinhc(tr
′′) ∧ ¬(comPhc(tr

′′)) ∧ tr ≺hc tr
′′ ∧ ¬(tr ′ ≺hc tr

′′)),

3. ¬(∃tr ′′ ∈ Tr : comPhc(tr
′′) ∧ x ∈WShc(tr) ∧ tr ≺hc tr

′′ ∧ ¬(tr ′ ≺hc tr
′′))

4. and (∃tr ′′ : finhc(tr
′′) ∧ ev rd,rf

hc
<hc ev

tr′′,ls
hc

) ∨ (∀t : ev rd,rf
hc

<hc ev
ls,t
hc

).

Proof. We show both directions separately.

→:

We show that any rf-element (tr , tr ′, var) ∈ hc.RF
fix
c fulfils the above condi-

tions. We do this by contradiction and show that if one of the conditions does
not hold there is a contradiction.

235

rf is not abortable:
Assume rf was abortable. Then, consider a sequence seq just consisting of
an abort event of tr ′. If hc is extended by seq, then rf is not present in the
extension, which contradicts the assumption.

¬(∃tr ′′ ∈ Tr : unfinhc(tr
′′)∧¬(comPhc(tr

′′))∧ tr ≺hc tr
′′∧¬(tr ′ ≺hc

tr ′′)) :

Assume such an unfinished and not commit pending transaction exists. If seq
consists only of a write on x (if it does not already exist), a commit invoke
and a commit of that transaction, then in an extension of hc by seq this
transaction is then read by tr ′′ meaning rf is removed.

¬(∃tr ′′ ∈ Tr : comPhc(tr
′′) ∧ x ∈WShc(tr) ∧ tr ≺hc tr ′′ ∧ ¬(tr ′ ≺hc

tr ′′)) :

Note that tr ′′ cannot be visible in h, else rf does not exist in hc. If seq

consists of only a commit event of tr ′′, then in an extension of hc by seq rf is
removed.

(∃tr ′′ : finhc(tr
′′)∧ evrd,rf

hc
<hc ev

tr′′,ls
hc

)∨ (∀t : evrd,rf
hc

<hc ev
ls,t
hc

) :

Assume both parts of the disjunction are not true. Then, there exists a trans-
action which has no event after tr ′. Consider the sequence seq consisting
of a begin, write on x, commit invoke and commit of that transaction. The
begin can be inserted in between tr and tr ′ as the last commit or abort of
a transaction is before tr ′ and the last event of its thread was before tr ′. In
an extension of hc by seq, this transaction is then read by tr ′′ meaning rf is
removed.

236

←:

We show for an rf-element (tr , tr ′, x) ∈ hc.RF c fulfilling the above conditions
that (tr , tr ′, x) ∈ hc.RF

fix
c . We first show after the insertion of an arbitrary

event ev into hc all conditions still hold in the resulting candidate.

rf is not abortable:
Inserting an event does not remove events from hc; thus, tr stays committed.

¬(∃tr ′′ ∈ Tr : unfinhc(tr
′′)∧¬(comPhc(tr

′′))∧ tr ≺hc tr
′′∧¬(tr ′ ≺hc

tr ′′)) :

Given that this condition holds in hc, no unfinished and not commit pending
transaction in between tr and tr ′ exists in hc. Thus, the only option for this
to hold after inserting an event is for that event to be a begin. As the fourth
condition also holds for hc, either all threads have an event after tr ′ or there
is a commit or abort event after tr ′. In the first case, any begin is inserted
after the last event of its thread and thus after tr ′. In the second case, any
begin is inserted after the last commit or abort of the candidate and thus
after tr ′. Thus, after inserting any event the second condition still holds.

¬(∃tr ′′ ∈ Tr : comPhc(tr
′′) ∧ x ∈WShc(tr) ∧ tr ≺hc tr ′′ ∧ ¬(tr ′ ≺hc

tr ′′)) :

As we have shown in the previous case, no unfinished transaction that is not
commit pending has its last event in between tr and tr ′′ in any insertion.
Thus, no commit invoke can be inserted in between tr and tr ′. So, any com-
mit pending transaction writing to x would have been present in hc, which it
is not as the conditions hold for hc.

(∃tr ′′ : finhc(tr
′′)∧ evrd,rf

hc
<hc ev

tr′′,ls
hc

)∨ (∀t : evrd,rf
hc

<hc ev
ls,t
hc

) :

The insertion of an event does not remove events or their relative order and

237

new events of a thread are are inserted after any last event of that thread.
Thus, the condition holds after inserting any event.

Next, we show that for any event ev , ∀hc,ins ∈ ins(hc, ev) : rf ∈ hc,ins.RF c

holds.

ev is a begin, write, abort or commit invoke:
In this case, hc,ins has the same committed transactions as hc. For the minimal
completions the committed transactions may differ if there are transactions
visible in h · ev that are not in h. Appending a begin, write, abort or commit
invoke at the end of h does not change the value reads-from relation of it.
So, the committed transactions in the minimal completions of hc and hc,ins

are identical too, and their order is identical as inserting an event does not
reorder other events. Thus, rf ∈ hc,ins.RF c holds.

ev is a read:
Appending a read at the end of h changes the value reads-from relation of it
thus transactions not visible in h can be visible in h · ev . No transaction that
is writing on x and is commit pending exists in hc by the conditions; thus,
such a transaction cannot become visible in h · ev . So tr and tr ′ still have the
same events relative order and no transaction writing to x that is committed
in the minimal completion exists. Thus, rf ∈ hc,ins.RF c holds.

ev is a commit:
The event ev cannot be a commit of a transaction that is writing to x and
is in between tr and tr ′ in hc as no such transaction exists by the conditions.
So, tr and tr ′ still have the same events and relative order. In addition, no
transaction writing to x that is committed in the minimal completion exists
in between them. So rf ∈ hc,ins.RF c holds.

Lemma 28 (Conditions for unreadable transactions in a g-history). For a g-

238

history h, a finished transaction tr ∈ h is unreadable iff

1. abh(tr)

2. or ∀var ∈WS vo
h (tr), ∃tr ′ ∈ Tr : coh(tr

′) ∧ var ∈WS vo
h (tr ′) ∧ tr ≺h tr ′.

Proof. We first show that tr ∈ ur(hc) implies both conditions. We do so by
contraposition. First, ¬(abh(tr)) is equivalent to coh(tr) as tr is finished. Second,
assume it holds that

∃var ∈WS vo
h (tr),¬(∃tr ′ ∈ Tr : coh(tr

′) ∧ var ∈WS vo
h (tr ′) ∧ tr ≺h tr ′).

Let var be any arbitrary variable in WS vo
h (tr), then it is easy to see appending

a read of a variable var leads to it reading from tr following Definition 38. This
implies tr /∈ ur(h).

We show that both conditions imply tr ∈ ur(h) by contraposition. Assume
there exists a sequence of g-events seq with a read of a transaction tr ′ s.t.

∃rf = (tr , tr ′, var ′) ∈ (h · seq).RF val : (tr , tr
′, var ′) /∈ h.RF val.

W.l.o.g. we assume ev rd,rf
h·seq is the first element of seq. By our assumption, tr must

be commit pending or committed to be read. As it is finished by the prerequisites
of this lemma, it must be committed. This means that the first condition does not
hold as coh(tr)→ ¬(abh(tr)) is true. By Definition 38 (value reads-from relation),
it must also hold that

• (var ′, val) ∈WSh(tr),

• (var ′, val) ∈ RS h(tr
′),

• ¬(∃tr ′′ ∈ Tr : var ′ ∈WS vo
h (tr ′′) ∧ coh(tr

′′) ∧ tr ≺h tr ′′ ≺h tr ′).

The last statement is contradictory to the second condition of this lemma:

∀var ∈WS vo
h (tr), ∃tr ′ ∈ Tr : coh(tr

′) ∧ var ∈WS vo
h (tr ′) ∧ tr ≺h tr ′.

239

Thus, the second condition is false as well, which proves the contraposition overall.

Lemma 29 (Conditions for unreadable transactions in a candidate). Given a fin-
ished transaction tr occurring in candidate hc of g-history h, then tr is unreadable
iff

1. abhc(tr) (Aborted)

2. or cohc(tr) and

• ∀var ∈WS vo
hc

(tr), ∃tr ′ ∈ Tr :
cohc(tr

′) ∧ var ∈WS vo
hc

(tr ′) ∧ tr ≺hc tr
′ (Overwritten before end)

• and for all unfinished and not commit pending or abort pending trans-
actions tr ′ in hc

(a) ¬(tr ≺hc tr
′) (Ordered after unfin. tr.)

(b) or ∀var ∈WS vo
hc

(tr), ∃tr ′′ ∈ Tr :
cohc(tr

′′) ∧ var ∈ WS vo
hc

(tr ′′) ∧ tr ≺hc tr ′′ ≺hc tr ′ (Overwr. bef.
unfin. tr.).

Proof. To make this proof easier to understand we abbreviate two of the subcon-
ditions of the lemma’s conditions:

obe(hc, tr) = ∀var ∈WS vo
hc

(tr), ∃tr ′ ∈ Tr : cohc(tr
′) ∧ var ∈WS vo

hc
(tr ′) ∧ tr ≺hc tr

′

and

obt(hc, tr , tr
′) = ∀var ∈WS vo

hc
(tr), ∃tr ′′ ∈ Tr : cohc(tr

′′) ∧ var ∈WS vo
hc

(tr ′′) ∧ tr ≺hc tr
′′ ≺hc tr

′.

Additionally, we denote the set of all unfinished and not commit or abort pending
transactions in hc as Trunc,hc . We show both directions separately.

240

→:

This direction is

tr ∈ ur(hc)

→
abhc(tr) ∨ (cohc(tr) ∧ obe(hc, tr) ∧ (∀tr ′ ∈ Trunc,hc : ¬(tr ≺hc tr

′) ∨ obt(hc, tr , tr
′))).

We show this by contraposition. Note that by the lemma’s assumption tr must
be finished so if it is not aborted it is committed and the other way around.
Also, hc is serial, so either a transaction is ordered before another or after
another. There are no concurrent transactions So, the contraposition is

cohc(tr) ∧ (abtr (hc) ∨ ¬(obe(hc, tr)) ∨ (∃tr ′ ∈ Trunc,hc : tr ≺hc tr
′ ∧ ¬obt(hc, tr , tr ′)))

→ hc /∈ ur(tr).

It holds that tr cannot be committed and aborted at the same time so we can
simplify to

(cohc(tr)) ∧ (¬(obe(hc, tr)) ∨ (∃tr ′ ∈ Trunc,hc : tr ≺hc tr
′ ∧ ¬obt(hc, tr , tr ′)))→ tr /∈ ur(hc).

To prove this we show 2 things:

1. (cohc(tr) ∧ ¬obe(hc, tr))→ tr /∈ ur(hc)

2. and (cohc(tr)∧(∃tr ′ ∈ Trunc,hc : tr ≺hc tr
′∧¬obt(hc, tr , tr ′)))→ tr /∈ ur(hc).

We show both separately.

(cohc(tr)∧¬obe(hc, tr))→ tr /∈ ur(hc) :

If the write set of tr is empty, it is trivially unreadable. Thus, in the further
we assume it to be non-empty. Let var be an arbitrary member of this write
set and let val be the value written to var by tr . We do a case distinction over
whether there exists at least one thread that has no unfinished transaction
in hc. If yes , let this thread be t ′ and tr ′ be a transaction identifier that is

241

unused in hc. Let Tr vis,var be the set of abortable transactions writing to var .
Assume a sequence seq = •trx∈Trvis,var (Atrx

thr(trx)
)Btr ′

t ′ R
tr ′

t ′ (var , val). Trivially it
holds that ins(hc, •trx∈Trvis,var (Atrx

thr(trx)
)) ·Btr ′

t ′ R
tr ′

t ′ (var , val) ∈ ins(hc, seq). We
denote this g-history as hc,ins. As tr is the last committed transaction writing
on var before the end of the minimal completion of hc and all commit pending
transactions (in hc) are aborted after inserting the sequence, it holds that

(tr , tr ′, var) ∈ hc,ins.RF c.

This means tr /∈ ur(hc). If there exists no thread that has no unfinished
transaction in hc, then let tr ′ be an arbitrary unfinished transaction and t ′ be
its thread. Let tr ′′ be an unused transaction identifier. Then, set

seq = •trx∈Trvis,var (Atrx
thr(trx)

)Atr ′

t ′ B
tr ′′

t ′ Rtr ′′

t ′ (var , val)

and the rest of the proof is analogue to the one above except the abort is
inserted at the end of the respective transaction and the begin and read
are appended at the end of the candidate. Aborting tr ′ ensures it does not
overwrite tr in the extension.

(cohc(tr) ∧ (∃tr ′ ∈ Trunc,hc : tr ≺hc tr ′ ∧ ¬obt(hc, tr , tr
′))) → tr /∈

ur(hc) :

Let tr ′ be transaction s.t. tr ≺hc tr
′ and ¬obt(hc, tr , tr ′) holds. The negation

of obt(hc, tr , tr ′) is

∃var ∈WS vo
hc

(tr), ∀tr ′′ ∈ Tr :

¬cohc(tr
′′) ∨ var /∈WS vo

hc
(tr ′′) ∨ ¬(tr ≺hc tr

′′ ≺hc tr
′).

Let var be a variable fulfilling the remaining formula after the exists quanti-
fier. Let seq = •trx∈Trvis,var (Atrx

thr(trx)
)Rtr ′

thr(tr ′)(var , val) be the event sequence,
where val is the value written by tr on var . Let hc,ins be the only member of
the set ins(hc, seq). Note that the read is inserted directly after the last event
of its transaction. Thus, all transactions have the same order and write sets

242

in both histories.
We show (tr , tr ′, var) ∈ hc,ins.RF c. Trivially the first four conditions of Def-
inition 37 hold, tr is committed in hmCl(hc,ins), tr

′ is ordered after tr and tr ′

and tr have var in their write set and read set, respectively. It is left to show
that

¬(∃tr ′′ ∈ Tr : var ∈WS vo
mCl(hc,ins)

(tr ′′) ∧ comCl(hc,ins)(tr
′′)∧

tr ≺mCl(hc,ins) tr
′′ ≺mCl(hc,ins) tr

′).

As all commit pending transactions in hc writing to var are aborted in
hc,ins and tr is the committed last writer on var before tr ′ in hc, it holds
that in mCl(hc,ins) it is the last committed writer on var before tr ′. Thus,
(tr , tr ′, var) ∈ hc,ins.RF c holds.

←:

We now show the other direction.

abhc(tr) ∨ (cohc(tr) ∧ obe(hc, tr) ∧ (∀tr ′ ∈ Trunc,hc : tr
′ ≺hc tr ∨ obt(hc, tr , tr

′)))→ tr ∈ ur(hc).

It is obvious that if tr is aborted, it is unreadable, so we show

cohc(tr)∧ obe(hc, tr)∧ (∀tr ′ ∈ Trunc,hc : tr
′ ≺hc tr ∨ obt(hc, tr , tr ′))→ tr ∈ ur(hc).

We assume tr is being read in an extension and show that this is in contradiction
to the left-hand side of the formula. Let seq be an extension s.t.

∃h ′
c ∈ ins(hc, seq), ∃Rtr ′

thr(tr ′)(var , val) ∈ seq : (tr , tr ′, var) ∈ h ′
c.RF c.

Let h ′
c,tr ′′ and var be instances of the quantified variables h ′

c, tr ′ and var ,

respectively, s.t. the interpretation of the formula is true. We first do a case
distinction over tr ′′.

tr ′′ is an unfinished transaction in hc:

243

This is in contradiction to

(∀tr ′ ∈ Trunc,hc : tr
′ ≺hc tr ∨ obt(hc, tr , tr

′)).

We show why by inserting tr ′′ as an instance of the quantified tr ′.

(tr ′′ ≺hc tr ∨ obt(hc, tr , tr
′′)).

If it holds that
tr ′′ ≺hc tr ,

then this also holds in h ′
c and Condition 1 (tr ≺mCl(hc) tr ′′) of the conflicts

reads-from relation definition (Definition 37) is false. If on the other hand
obt(hc, tr , tr

′′) holds, then

∃tr ′′′ ∈ Tr : cohc(tr
′′′) ∧ var ∈WS vo

hc (tr
′′′) ∧ tr ≺hc tr

′′′ ≺hc tr
′′,

must be true, which it would also then be in h ′
c. Then, this is in contradiction

to Condition 3 of the conflict reads-from relation definition (Definition 37).
Thus, in both cases tr ′ reading from tr leads to a contradiction.

tr ′′ does not exist in hc

This is in contradiction to obe(hc, tr), which expanded and with var inserted
for the all quantified variable is

∃tr ′ ∈ Tr : cohc(tr
′) ∧ var ∈WS vo

hc (tr
′) ∧ tr ≺hc tr

′.

All of this is also true in h ′
c as finished transactions are not modified by ins and

existing events are not reordered. Let tr ′ be an arbitrary transaction instance
which leads to a true interpretation of the formula. As this transaction is
committed in hc, it holds that

tr ≺h ′
c
tr ′ ≺h ′

c
tr ′′ ∧ var ∈WS vo

hc (tr
′).

244

This and
(tr , tr ′′, var) ∈ ins(hc, seq).RF c,

cannot both be true because the first formula is in contradiction to Condition
3 of the conflicts reads-from relation definition (Definition 37).

Lemma 30. Given an unreadable transaction tr in a candidate hc in an hc-pair
(h, hc) and an arbitrary extension of it by a sequence seq, (h · seq, h ′

c) the following
property holds:

{rf ∈ hc.RF c | tr ∈ rf } ̸= {rf ∈ h ′
c.RF c | tr ∈ rf }

→ ∀seq′ ∈ Ev ∗, ∀h ′′
c ∈ ins(h ′

c, seq
′) : (h · seq · seq′, h ′′

c .RF c) is not consistent.

Proof. If {rf ∈ hc.RF c | tr ∈ rf } ̸= {rf ∈ h ′
c.RF c | tr ∈ rf } holds, then either the

first set contains an rf-element the second set does not or the other way around.
Let rf be that rf-element, we do a case distinction of which of both cases holds.

rf ∈ {rf ∈ hc.RF c | tr ∈ rf }∧ rf /∈ {rf ∈ h ′
c.RF c | tr ∈ rf } :

We consider two subcases of this case, either rf = (tr , tr ′, x) or rf = (tr ′, tr , x)

where in both cases tr ′ ∈ Tr holds.

rf=(tr , tr ′,x) :

If rf /∈ {rf ∈ h ′
c.RF c | tr ∈ rf } is true, then there must exists tr ′′ ∈ Tr ,

tr ′′ ̸= tr ′ s.t. (tr ′′, tr ′, x) ∈ {rf ∈ h ′
c.RF c | tr ∈ rf }. As (h, hc) is con-

sistent, (tr , tr ′, x) ∈ h.RF val holds, and as it is fixed by Lemma 26 in h,
(tr , tr ′, x) ∈ (h · seq).RF val holds. Then, (h · seq, h ′

c) is not consistent. The
relative order of events of h ′

c stays identical in extensions of it and tr is
unreadable in h ′

c as it is unreadable in hc. So, there is no extension of it where
tr ′ reads x from tr . Thus, any extension of (h · seq, h ′

c) is also not consistent.

rf=(tr ′, tr ,x) :

245

If rf /∈ {rf ∈ h ′
c.RF c | tr ∈ rf } holds, then there must exists tr ′′ ∈ Tr ,

tr ′′ ̸= tr ′ s.t. (tr ′′, tr , x) ∈ {rf ∈ h ′
c.RF c | tr ∈ rf }. As (h, hc) is consistent,

(tr ′, tr , x) ∈ h.RF val holds, and as it is fixed by Lemma 26 in h, (tr ′, tr , x) is
also in (h · seq).RF val. Then, (h · seq, h ′

c) is not consistent. Any extension of
h · seq contains (tr ′, tr , x) in its value reads-from relation as the rf-element is
fixed in h. As the relative order of events in extensions of h ′

c stays identical
and visible transactions in a g-history are also visible in all of its extensions,
there is no extension of h ′

c where tr reads x from tr ′. Thus, any extension of
(h · seq, h ′

c) is not consistent.

rf ∈ {rf ∈ h ′
c.RF c | tr ∈ rf }∧ rf /∈ {rf ∈ hc.RF c | tr ∈ rf } :

Note that tr is unreadable in hc, so {rf ∈ h ′
c.RF c | tr ∈ rf } cannot contain an

rf-element (tr , tr ′, x) with tr ′ ∈ Tr and x ∈ Var which {rf ∈ hc.RF c | tr ∈ rf }
does not contain. So the only option is that it contains an rf-element (tr ′, tr , x)
with tr ′ ∈ Tr that {rf ∈ hc.RF c | tr ∈ rf } does not contain. As h ′

c is an
extension of hc, it holds that hc.RF c must contain (tr ′′, tr , x) with tr ′′ ∈ Tr

and tr ′′ ̸= tr . This is a subcase of the previous case, and the claim is proven
above for this case.

Thus, the overall claim holds.

Lemma 32 (Removal function correctness). Given a consistent hc-pair (h, hc)

and a set of transactions Tr−, it holds for (h\Tr−, hc\Tr−) that

1. (h\Tr−).RF val = h.RF val\{rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf }

2. and (hc\Tr−).RF c = hc.RF c\{rf ∈ hc.RF c | ∃tr ∈ Tr− : tr ∈ rf }.

Proof. We show the first condition. We show both subset or equal relations.

246

(h\Tr−).RF val ⊆ h.RF val\{rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf } :
Consider an arbitrary rf-element rf = (tr , tr ′, x) of (h\Tr−).RF val. We show
that rf ∈ h.RF val and rf /∈ {rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf }.

rf ∈ h.RF val :

First, tr and tr ′ cannot be in Tr− as else rf would not exist in (h\Tr−).RF val.

Also, the removal function does not add g-events to h and the relative
order between events that are not removed is identical to h. As rf ∈
(h\Tr−).RF val holds, there must exist val ∈ Val s.t. (var , val) ∈WSh\Tr−(tr)

and (var , val) ∈ RS h\Tr−(tr
′) hold. We fix this value as val . We prove the

claim along Definition 38, using val as the value for which the other condi-
tions hold.

(var , val) ∈WSh(tr), (var , val) ∈ RSh(tr
′) :

The write event on var of tr and the read event on var of tr ′ exist in (h\Tr−)
as rf ∈ (h\Tr−).RF val. Both also exist in h as the removal function does
not add or modify (except delete) existing events of h when applied to it.
So, the claim holds.

Invtr
thr(tr)(C) <h Rtr ′

thr(tr ′)(var , val) :

As rf ∈ (h\Tr−).RF val holds, Invtr
thr(tr)(C) <h\Tr− Rtr ′

thr(tr ′)(var , val) holds.
Both events are not removed by the removal function as tr , tr ′ /∈ Tr− and
the read event of tr ′ on var exists after applying the removal function as
else rf /∈ (h\Tr−).RF val would hold. Thus, the claim holds.

247

¬(∃tr ′′ ∈ Tr : var ∈WS vo
h (tr ′′)∧ coh(tr

′′)∧ tr ≺h tr ′′ ≺h tr ′) :

It is given that

¬(∃tr ′′ ∈ Tr : var ∈WS vo
his\Tr−(tr

′′) ∧ cohis\Tr−(tr
′′)

∧tr ≺his\Tr− tr ′′ ≺his\Tr− tr ′).

Assume such a transaction exists in h, then (tr , tr ′, var) /∈ h.RF val follows.
Let tr ′′ be the transaction s.t. (tr ′′, tr ′, var) ∈ h.RF val. If tr ′′ /∈ Tr−, then
(tr ′′, tr ′, var) would still fulfil all conditions of Definition 38 in h\Tr−. This
is because only read events of it can possibly be removed, the read event
of tr ′ still exists as tr ′ and tr ′′ are not in Tr− and the relative order of
events remains unchanged and no events are added. Then, (tr , tr ′, var) /∈
(h\Tr−).RF val follows which is a contradiction. If tr ′′ ∈ Tr− holds, then the
read of tr ′ would not exist in (h\Tr−). Then, (tr , tr ′, var) /∈ (h\Tr−).RF val

follows which is a contradiction.

rf /∈ {rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf } :
Assume the opposite, then either tr ∈ Tr− or tr ′ ∈ Tr−. In both cases the
removal function would remove the read event of the reading transaction from
h. So, if rf ∈ (h\Tr−).RF val, then it cannot be in {rf ∈ h.RF val | ∃tr ∈
Tr− : tr ∈ rf }.

We show the subset or equal relation in the other direction.

h.RF val\{rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf } ⊆ (h\Tr−).RF val :

Consider an arbitrary rf-element
rf = (tr , tr ′, var) of h.RF val\{rf ∈ h | ∃tr ∈ Tr− : tr ∈ rf }. Let val be the
value s.t. rf meets the conditions of Definition 38. We show rf ∈ (h\Tr−).RF val

by showing the conditions of Definition 38 are fulfilled for val . First note that
by definition it holds that tr /∈ Tr− and tr ′ /∈ Tr−. Thus, no begins, writes or

248

commit/abort invoke or responses are removed from both transactions by the
removal function. Also, the read on var of tr ′ is not removed by the removal
function as neither the first nor the second condition of the removal function
hold for it. Its own transaction is not in Tr− and its writer in the value
reads-from relation is tr which is also not in Tr−. The removal function does
not add g-events to h or changes the relative order of the g-events it does not
remove. Now, we show the conditions of Definition 38 are fulfilled for val .

(var , val) ∈WSh\Tr−(tr), (var , val) ∈ RSh\Tr−(tr ′) :

As discussed above, the write event of tr for var remains unchanged and
writes val . In addition the read event of tr for var remains unchanged and
reads val . Thus, this condition holds.

Invtr
thr(tr)(C) <h\Tr− Rtr ′

thr(tr ′)(var , val) :

As discussed above, both events exist in h\Tr− and have the same relative
order. Thus, the claim holds.

¬(∃tr ′′ ∈ Tr : var ∈WS vo
h\Tr−(tr

′′)∧ coh\Tr−(tr ′′)

∧tr ≺h\Tr− tr ′′ ≺h\Tr− tr ′) :

Assume a tr ′′ fulfilling the above conditions for h exists. Then there must
exist a transaction tr ′′′ ̸= tr s.t. (tr ′′′, tr ′, var) ∈ h.RF val.

That means (tr , tr ′, var) /∈ h.RF val, thus it also cannot be in

h.RF val\{rf ∈ h | ∃tr ∈ Tr− : tr ∈ rf },

which is a contradiction to the assumption. Thus, such a transaction tr ′′

as assumed above does not exist in h. This means it also cannot exist in
h\Tr− as the removal function does not reorder or add events. Thus, the
condition holds.

249

We show the second condition. We show both subset or equal relations.

(hc\Tr−).RF c ⊆ hc.RF c\{rf ∈ h.RF c | ∃tr ∈ Tr− : tr ∈ rf } :
Let hs be the minimal completion of hc\Tr− in the context of (h\Tr−, hc\Tr−).
Consider an arbitrary rf-element rf = (tr , tr ′, x) of hs.RF c. We show that
rf ∈ hc.RF c and rf /∈ {rf ∈ hc.RF c | ∃tr ∈ Tr− : tr ∈ rf }.

rf ∈ hc.RF c :

First, tr and tr ′ cannot be in Tr− as else they would not exist in hc\Tr−.
Also, the removal function does not add g-events to hc and the relative order
between events that are not removed is identical to hc. We show rf ∈ hc.RF c

along the conditions of Definition 37.

var ∈WS vo
mCl(hc)

(tr), var ∈ RS vo
mCl(hc)

(tr ′) :

As rf ∈ hs.RF c holds, it holds that var ∈ WShc\Tr−(tr) and var ∈
RS hc\Tr−(tr

′). As the removal function does not add or modify (except
delete) events, the same holds for hc and mCl(hc) and the claim follows.

comCl(hc)(tr) :

The transaction tr is visible in h\Tr− as else rf /∈ (hs).RF c. If a transaction
is visible in h\Tr−, it is also visible in h. This is because as we have shown
above h.RF val is a superset of (h\Tr−).RF val. Then as the removal function
does not reorder or modify (except delete) existing events or adds events, it
follows that comCl(hc)(tr).

tr ≺mCl(hc) tr
′ :

As rf ∈ hs.RF c, it follows that tr ≺hs tr ′ from which it follows that
¬(tr ′ ≺hc\Tr− tr). Then, as the removal function does not reorder or modify

250

(except delete) existing events or adds events, it follows that ¬(tr ′ ≺hc tr)

and further ¬(tr ′ ≺mCl(hc) tr). Given that this and comCl(hc)(tr) holds, and
mCl(hc) is serial, it follows that tr ≺mCl(hc) tr

′.

¬(∃tr ′′ ∈ Tr : var ∈WS vo
mCl(hc)

(tr ′′)∧ comCl(hc)(tr
′′)

∧tr ≺mCl(hc) tr
′′ ≺mCl(hc) tr

′) :

Assume a transaction fulfilling the above conditions exists for mCl(hc), then
there must exist tr ′′ s.t. (tr ′′, tr , var) ∈ hc and var ∈ WS vo

mCl(hc)
(tr ′′) ∧

comCl(hc)(tr
′′) ∧ tr ≺mCl(hc) tr

′′ ≺mCl(hc) tr
′. Assume tr ′′ is committed in hc,

then if tr ′′ ∈ Tr− holds, the read of tr ′ does not exist in hc\Tr−, and if
not, then it holds that (∃tr ′′ ∈ Tr : var ∈ WS vo

hs
(tr ′′) ∧ cohs(tr

′′) ∧ tr ≺hs

tr ′′ ≺hs tr ′) which is in contradiction to rf ∈ hs.RF c. Assume tr ′′ is com-
mit pending in hc. Then, it must be visible in h. In addition, since the
hc-pair is consistent, it must hold that (tr ′′, tr ′, var) ∈ h.RF val. Assume
tr ′′ ∈ Tr− then the read of tr ′ on var does not exists in hc\Tr− which is a
contradiction to rf ∈ hs.RF c. Thus, tr ′′ /∈ Tr− and as tr ′ /∈ Tr− and since
(h\Tr−).RF val = h.RF val\{rf ∈ h.RF val | ∃tr ∈ Tr− : tr ∈ rf } holds, it
must be that (tr ′′, tr ′, var) ∈ (h\Tr−). Thus, tr ′′ would be visible in hc, thus
committed in hs, writing to var and be real-time ordered in between tr and
tr ′. This is a contradiction to rf ∈ hs.RF c.

rf /∈ {rf ∈ h.RF c | ∃tr ∈ Tr− : tr ∈ rf } :
Assume the opposite then either tr ∈ Tr− or tr ′ ∈ Tr−. In both cases the
removal function would remove the read event of the reading transaction from
h. So if rf ∈ (hc\Tr−).RF c, then it cannot be in {rf ∈ h.RF c | ∃tr ∈ Tr− :

tr ∈ rf }.

We show the subset or equal relation in the other direction.

h.RF c\{rf ∈ h.RF c | ∃tr ∈ Tr− : tr ∈ rf } ⊆ (hc\Tr−).RF c :

251

Consider an arbitrary rf-element rf = (tr , tr ′, var) of hc.RF c\{rf ∈ hc.RF c |
∃tr ∈ Tr− : tr ∈ rf }. We show rf ∈ (hc\Tr−).RF c by showing the conditions
of Definition 37 are fulfilled. First, note it holds that tr /∈ Tr− and tr ′ /∈ Tr− as
rf else would not exist in h.RF c\{rf ∈ h.RF c | ∃tr ∈ Tr− : tr ∈ rf }. Thus, no
begins, writes or commit/abort invoke or responses from both transactions are
removed by the removal function. Also, the read on var of tr ′ is not removed
by the removal function as neither the first nor the second condition of the
removal function hold for it. Its own transaction is not in Tr−, and its writer
in the conflict reads-from relation is tr which is also not in Tr−. The removal
function does not add g-events to hc or change the relative order of the g-events
it does not remove. Now, we show the conditions of Definition 37 hold for rf .

var ∈WS vo
mCl(hc\Tr−)

(tr), var ∈ RS vo
mCl(hc\Tr−)

(tr ′) :

As tr is not in Tr−, the write event of tr on var is not removed by the removal
function. As neither tr nor tr ′ are in Tr−, the read event of tr ′ on var is not
removed by the removal function. Both events are not modified. Thus, this
holds.

comCl(hc\Tr−)(tr) :

Assume tr is committed in hc then it is committed in hc\Tr− and its minimal
completion as well. If tr is commit pending, it is visible in h. This is because
rf ∈ h.RF val holds, since rf ∈ hc.RF c and (h, hc) is consistent. Then, as we
have shown above, it also exists in (h\Tr−).RF val, as tr and tr ′ are not in
Tr−. Thus, tr is visible in (h\Tr−) and thus committed in mCl(hc\Tr−).

tr ≺mCl(hc\Tr−) tr
′ :

As proven above, tr is committed in mCl(hc\Tr−). It also holds that
tr ≺mCl(hc) tr

′ and as tr , tr ′ /∈ Tr− it holds that tr ≺mCl(hc\Tr−) tr
′.

¬(∃tr ′′ ∈ Tr : var ∈ WS vo
mCl(hc\Tr−)

(tr ′′) ∧ comCl(hc\Tr−)(tr
′′) ∧

252

tr ≺mCl(hc\Tr−) tr
′′ ≺mCl(hc\Tr−) tr

′) :

Assume such a transaction tr ′′ exists in hc\Tr−. It is trivially true that
tr ̸= tr ′ ̸= tr ′′ and that tr ′′ exists in hc and is not in Tr−. Because
(tr , tr ′, var) ∈ hc holds for this transaction tr ′′, it holds that

var /∈WS vo
mCl(hc)(tr

′′) ∨ abmCl(hc)(tr
′′) ∨ ¬(tr ≺mCl(hc) tr

′′ ≺mCl(hc) tr
′).

If var /∈ WS vo
mCl(hc)

(tr ′′) holds, then trivially var /∈ WS vo
mCl(hc\Tr−)

(tr ′′) holds.
If abmCl(hc)(tr

′′) holds and tr ′′ is aborted, then it is also aborted in hc\Tr−.
Now, assume abmCl(hc)(tr

′′) holds and tr ′′ is commit pending and not visible
in h. Then, it is also commit pending in hc\Tr−. Now, we argue why it
is also not visible in h\Tr−, assume it would be then there would be an
rf-element (tr 1, tr 2, var) ∈ h.RF val s.t. (tr ′′, tr 2, var) ∈ (h\Tr−).RF val. If
tr 1 ∈ Tr−, then the read on var of tr 2 does not exist, so tr 1 /∈ Tr− must
hold. Also, tr 2 trivially is not in Tr−, else it would not exist in h\Tr−. The
removal function does not modify (except delete) events or reorder them. So,
if tr 1 met the conditions of Definition 38 in h, it still does in h\Tr−. So, tr ′′

cannot be visible in h\Tr−, and it is thus still aborted in mCl(hc\Tr−). If
¬(tr ≺mCl(hc) tr ′′ ≺mCl(hc) tr ′) holds, it also holds in mCl(hc\Tr−). This is
because the removal function does not change the order of events and all three
transactions are not in Tr−. This means the removal function if it removed
events from these transactions, only removed read events. Thus, it follows
that tr ′′ cannot exist in hc\Tr−.

Lemma 33 (Upper limit of hc-pairs). The amount of compressed hc-pairs is finite
for a given T Var and Val .

Proof. We will show for a given T and Var , that the set of all compressed hc-pairs

{(h\ur(hc), hc\ur(hc), IWS hc ,MC hc) | (h, hc) is a consistent hc-pair} ∪ {DM}

is finite. The second set of the union is obviously finite. The first set of the union
is equal to the following cartesian product of the following sets:

1. {h\ur(hc) | (h, hc) is a consistent hc-pair},

253

2. {hc\ur(hc) | (h, hc) is a consistent hc-pair},

3. {IWS hc | (h, hc) is a consistent hc-pair}

4. and {MC hc | (h, hc) is a consistent hc-pair}.

We show that the size of each of these sets has a finite upper bound only depend-
ing on Var , Val and T . As prerequisites for this result, we will show that for any
hc-pair hc there exists a finite upper bound to the number of transactions that
are not in ur(hc) and this bound only depends on Var and T . Then, we show
the number of pairwise different transactions is finite for a given Var , Val and T .

The number of transactions not in ur(hc) is upper bounded:
We first show that there exists an upper bound to the number of transactions
not in ur(h) which is independent of hc and then that there exists an upper
bound to the number of transactions not in ur(hc) which is independent of hc.

The number of transactions not in ur(his) has a finite upper bound
which is independent of hc:
According to Lemma 28 the set of these transactions contains all transactions
tr s.t.

¬(abh(tr)) ∧ ∃var ∈WS vo
h (tr), ∀tr ′ ∈ Tr : ¬(coh(tr

′)) ∨ var /∈WS vo
h (tr ′) ∨ ¬(tr ≺h tr ′).

Assume there are more than (|T | · (2|Var | + 1)) transactions in this set. Then,
there is at least one thread that has more than 2|Var |+1 transactions meaning
2|Var | committed transactions exist in it. Two of these committed transactions
must have an identical write set and thus cannot be in the set. This is a
contradiction, and thus there can be at most (|T | · (2|Var | + 1)) transactions
in this set.

The number of transactions not in ur(hisc) has a finite upper bound
which is independent ofhc:

254

We denote the set of all unfinished and not commit or abort pending transac-
tions in hc as Trunc,hc . According to Lemma 29 the set of these transactions
can be defined as the union of two sets of transactions s.t. the first set for
each transaction tr

¬(abh(tr))
∧

(∃var ∈WS vo
hc

(tr), ∀tr ′ ∈ Tr : ¬(cohc(tr
′)) ∨ var /∈WS vo

hc
(tr ′) ∧ ¬(tr ≺hc tr

′)),

holds and for the second set for each transaction tr

∃tr ′ ∈ Trunc,hc : ¬(abh(tr)) ∧ tr ≺hc tr
′ ∧ ∃var ∈WS vo

hc
(tr), ∀tr ′′ ∈ Tr :

¬(cohc(tr
′′)) ∨ var /∈WS vo

hc
(tr ′′) ∨ ¬(tr ≺hc tr

′′ ≺hc tr
′)

holds. We show that there exists a finite upper bound to the size of both sets
which is independent of hc.

We start with the second set. We further divide this set into |Trunc,hc | subsets
for each transaction tr ′ ∈ Trunc,hc . This set equals{

tr | ¬(abh(tr)) ∧ tr ≺hc tr
′ ∧ ∃var ∈WS vo

hc
(tr), ∀tr ′′ ∈ Tr :

¬(cohc(tr
′′)) ∨ var /∈WS vo

hc
(tr ′′) ∨ ¬(tr ≺hc tr

′′ ≺hc tr
′)

}
.

We denote this set Tr rd,tr ′ and call it the set of transactions readable by tr ′.

Assume this set contains more than 2|Var | transactions, then two transactions
must share a write set as there are only 2|Var | possible write sets. Let these
transactions be tr 1 and tr 2. Then for transaction tr 1 the formula

¬(abh(tr 1)) ∧ tr 1 ≺hc tr
′ ∧ ∃var ∈WS vo

hc
(tr1), ∀tr ′′ ∈ Tr : ∧

¬(cohc(tr
′′)) ∨ var /∈WS vo

hc
(tr ′′) ∨ ¬(tr 1 ≺hc tr

′′ ≺hc tr
′),

does not hold true as can be easily seen by considering tr 2 as an interpreta-
tion for tr ′′. Thus, the upper bound for the set is |Trunc,hc | · 2|Var | which is

255

upper bounded by |T | · 2|Var |.

For the second set{
tr | ¬(abh(tr)) ∧ ∃var ∈WS vo

hc
(tr), ∀tr ′ ∈ Tr :

¬(cohc(tr
′)) ∨ var /∈WS vo

hc
(tr ′) ∧ ¬(tr ≺hc tr

′),

}

we can reuse part of the above result. Assume an unfinished transaction tr ′

at the end of h, it is easy to see that Tr rd,tr ′ is equal to the above set. As
discussed above, this set is bounded by 2|Var |.

Thus, overall the amount of transactions that are not unreadable in hc is
bounded by (|T |+ 1) · 2|Var | which is independent of hc.

Using these results, we can deduct the intersection of both sets with the union of
a set containing at most 1 transaction has a finite upper bound independent of
hc as well.

The number of pairwise different transactions for a single transaction
in a consistenthc-pair hc has a finite upper bound independent of hc :
Here, as in the whole section, we consider each event but commit/abort invoke
and commit/abort, as atomic. We show the claim by showing a) that transac-
tions have a finite maximum length and b) that for each event there is a finite
amount of possibilities.

A transaction begins, writes to each variable and reads from each variable and
then invokes a commit or abort and then commits or aborts. As hc is not in the
DM equivalence class, we can assume that no transaction has multiple reads
reading different values for the same variable. We also assume each transaction
does not read the same value twice from the same variable. Thus, a transaction
at most reads once from each variable. Also, transaction are assumed to not

256

write twice from the same variable. Thus, each transaction contains at most
2 · Var read and write events. Thus, the length of a transaction (considering
each event but commit/abort invoke and commit/abort, as atomic) is upper
bounded by 3+ |2 ·Var | and finite. Each event of a transaction is either a read,
write, begin, commit invoke, abort invoke or commit response or abort response.
Each read or write g-event has Var · Val possible variable value combinations.
So, overall each g-event of a transaction can be one of (2Var ·Val)+ 5 possible
g-events.

So, there is a finite upper bound to the length of a transaction which is
independent of hc, and each g-event in a transaction is out of a finite set of
possible events whose contents depend on Var Val and T . So, there is an upper
bound to the number of pairwise different transactions which only depends on
T , Var and Val .

Finally, we show that the size of each of these sets has a finite upper bound
only depending on Var , Val and T .

{h\ur(hc) | (h, hc) is a consistent hc-pair} :
There is an upper bound to the number of transactions in any g-history in
this set which only depends on Var and T . There is an upper bound for the
length each of these g-histories only depending on T and Var . There is an
upper bound to number of pairwise different events occuring in the g-histories
which only depends on T , Val and Var . Thus, there is an upper bound to the
number of pairwise g-histories in this set for a given T , Val and Var .

{hc\ur(hc) | (h, hc) is a consistent hc-pair} :
This is analogue to the previous part of the proof.

{IWShc | (h, hc) is a consistent hc-pair} :
This IWS hc can at most have T elements which each can contain at most 2|Var |

257

elements.

{MC hc | (h, hc) is a consistent hc-pair} :
There at most T elements in this set, which each are taken out of T possible
transactions.

The overall claim follows.

Lemma 34 (Compression represents an equivalence class). Given two arbitrary
hc-pairs (h, hc) and (h ′, h ′

c), it holds that

cmp(h, hc) = cmp(h ′, h ′
c)→ (h, hc) ≡ext (h

′, h ′
c).

Proof. It is to prove that if cmp(h, hc) = cmp(h ′, h ′
c) holds, then it holds for any

arbitrary g-event sequence seq that

∃hc,ins ∈ ins(hc, seq) : h · seq ≡ hc,ins ↔ ∃h ′
c,ins ∈ ins(h ′

c, seq) : h
′ · seq ≡ h ′

c,ins.

If cmp(h, hc) = cmp(h ′, h ′
c) = DM, then in the extension of both hc-pairs by

any sequence the respective g-history is not equivalent to its respective candidate
as they both contain mutually exclusive rf-elements between their g-history and
candidate, which are all fixed in the g-history. As we argued in the proof of
Lemma 30, any extension of such hc-pairs is non-consistent.

We will now prove the lemma for cmp(h, hc) = cmp(h ′, h ′
c) ̸= DM. We will show

this by showing two statements and then proving why these imply the lemma.

1. Given an arbitrary hc-pair hc = (h, hc), it holds that

hc is consistent ↔ cmp(hc) ̸= DM. (C.2)

2. For any two hc-pairs hc = (h, hc), hc
′ = (h ′, h ′

c) where cmp(hc) = cmp(hc′)
and an arbitrary g-event ev it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :
cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′

c,ins).
(C.3)

258

Event Proof in
Begin Proposition 14
Read Proposition 16
Write Proposition 17
Commit Invoke Proposition 18
Commit Proposition 19
Abort Proposition 22

Table C.1: Proofs of Equation (C.3) for each g-event

To declutter the overall proof, these statements are proven in separate propositions.
Equation (C.2) is proven in Lemma 38. For Equation (C.3) we employ a case
distinction over the type of g-event. We have proven these in separate propositions,
an overview where the proof for each event is located can be found in Table C.1.
We show that Equation (C.3) implies the following: For any two hc-pairs hc =

(h, hc), hc
′ = (h ′, h ′

c), where cmp(hc) = cmp(hc′), and an arbitrary sequence of
g-events seq it holds that

∀hc,ins ∈ ins(hc, seq)∃h ′
c,ins ∈ ins(h ′

c, seq) :

cmp(h · seq, hc,ins) = cmp(h ′ · seq, h ′
c,ins).

We show this via induction over the sequence seq.

Induction start seq = ev :
This directly follows from Equation (C.3).

Induction step seq→ seq · ev :

There exists hc1,ins ∈ ins(hc, seq), for which by induction statement then there
also exists h ′

c1,ins ∈ ins(h ′
c, seq) s.t. cmp(h · seq, hc1,ins) = cmp(h · seq, h ′

c1,ins).
It follows by Equation (C.3) that

∀hc,ins ∈ ins(hc1,ins, ev)∃h ′
c,ins ∈ ins(h ′

c1,ins, ev) :

cmp(h · seq · ev , hc,ins) = cmp(h ′ · seq · ev , h ′
c,ins).

259

This concludes the proof by induction.

From this result it trivially follows that for any two hc-pairs hc = (h, hc), hc
′ =

(h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c) it holds that

∃hc,ins ∈ ins(hc, seq) : h · seq ≡ hc,ins

→ ∃h ′
c,ins ∈ ins(h ′

c, seq) : cmp(h · seq, hc,ins) = cmp(h ′ · seq, h ′
c,ins).

We show that the left-hand side of this statement then also implies h ′ · seq ≡
h ′
c,ins. If (h · seq, hc,ins) is consistent, then from Equation (C.2) it follows that

cmp(h · seq, hc,ins) is consistent as well. Thus, cmp(h ′ · seq, h ′
c,ins) is also consistent

as the compressions are equal. This implies that (h ′ · seq, h ′
c,ins) is consistent, and

thus h ′ · seq ≡ h ′
c,ins. From this the left to right direction of the overall claim

follows.

∃hc,ins ∈ ins(hc, seq) : h · seq ≡ hc,ins → ∃h ′
c,ins ∈ ins(h ′

c, seq) : h
′ · seq ≡ h ′

c,ins.

We can show the reverse direction of this equation analogue. Combining both
shows the lemma to be true which concludes the proof.

Lemma 38 (HC-Pair consistent iff compression not in DM). Given an arbitrary
hc-pair hc, it holds that

hc is consistent ↔ cmp(hc) ̸= DM.

Proof. We show both directions separately.

hc is consistent → cmp(hc) ̸= DM :

If hc is consistent, then by definition of consistency for hc-pairs the minimal
completion of its candidate is legal. By Lemma 24, it then holds that a legal

260

serial completion for the candidate exists. By Lemma 23, this implies that
the value reads-from relation of the g-history of hc and the conflict reads-from
relation of the candidate are identical. Then, by the definition of cmp (Defini-
tion 50), the compression is not equal to DM.

cmp(hc) ̸= DM→ hc is consistent :

We show this by contraposition. Thus, we show that

hc is not consistent→ cmp(hc) = DM.

If hc is not consistent, then by definition of consistency for hc-pairs the minimal
completion of its candidate is not legal. By Lemma 23, this implies that the
value reads-from relation of the g-history of hc and the conflict reads-from
relation of the candidate are not identical. Thus, by the definition of the
compression function (Definition 50), then it holds that cmp(hc) = DM.

Proposition 14. Given a g-event ev = Btr
t , two arbitrary hc-pairs hc = (h, hc)

and hc′ = (h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :

cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Proof. Choose an arbitrary hc,ins ∈ ins(hc, ev). Let n ∈ N be the natural num-
ber s.t. hc,ins = st(hc) · add(en(hc), ev , n) holds. We will first show that st(h ′

c) ·
add(en(hc), ev , n) ∈ ins(h ′

c, ev) holds because en(hc) = en(h ′
c). Note that all g-

events in en(hc) are of unfinished transactions. Consider each transaction tr ′ for
which in en(hc) there exists a read of a transaction tr ′′ and there exists a variable
var ′ s.t. (tr ′, tr ′′, var ′) ∈ hc.RF c. If tr ′ is unfinished, it is not in ur(hc). If it is
finished, then by Definition 37 it holds that

tr ′ ≺hc tr
′′∧

¬(∀var ∈WS vo
hc

(tr ′), ∃tr ′′′ ∈ Tr : cohc(tr
′′′) ∧ var ∈WS vo

hc
(tr ′′′) ∧ tr ′ ≺hc tr

′′′ ≺hc tr
′′).

261

Given Lemma 29, this implies that tr ′ is not in ur(hc). Thus, en(hc)\ur(hc) =

en(hc) and as hc\ur(hc) = h ′
c\ur(hc ′) holds, it follows that en(hc) = en(h ′

c). Thus,
we can set h ′

c,ins = st(h ′
c) · add(en(hc), ev , n) as it is in ins(h ′

c, ev). It also holds
that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′

c,ins). We show this in
Proposition 15. We show cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′

c,ins) by showing the
elements of both tuples match.

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins) :

This is equal to
(h · ev)\ur(hc) = (h ′ · ev)\ur(hc ′).

As tr is not in ur(hc) or ur(hc ′), it holds that

(h\ur(hc)) · ev = (h ′\ur(hc)) · ev .

As h\ur(hc) = h ′\ur(hc ′), the claim follows.

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins) :

This is equal to
(hc,ins)\ur(hc) = (h ′

c,ins)\ur(hc ′).

This in turn is equal to

(st(hc) · add(en(hc), ev , n))\ur(hc) = (st(h ′
c) · add(en(hc), ev , n))\ur(hc ′).

As we have discussed above, no events in add(en(hc), ev , n) can be of unreadable
transactions nor are reads from unreadable transactions in it. Thus, it follows
that

(st(hc)\ur(hc) · add(en(hc), ev , n)) = (st(h ′
c)\ur(hc ′) · add(en(hc), ev , n)).

262

From cmp(h, hc) = cmp(h ′, h ′
c) it then follows that this equivalent to

(st(hc)\ur(hc) · add(en(hc), ev , n)) = (st(hc)\ur(hc) · add(en(hc), ev , n)).

This is trivially true.

IWShc,ins
= IWSh′

c,ins
:

For any transaction tr ′ that is not tr , it holds that

IWS hc(tr
′) = IWS hc,ins

(tr′)

and
IWS h ′

c
(tr′) = IWS h ′

c,ins
(tr′).

This is because the order of all events excluding ev is identical in hc and
hc,ins. Thus, it holds that hc.RF c = hc.RF c,ins as the begin does not alter
the reads-from relation. The same holds for h ′

c and h ′
c,ins. Thus, it holds

that IWS h ′
c,ins

(tr′) = IWS hc,ins
(tr′). As we discussed above, each transaction

in en(hc) and en(h ′
c) is not in ur(hc) and ur(hc ′), respectively, and each trans-

action being read by an event in these sequences is also not in ur(hc) and
ur(hc ′) respectively. Also, note that we showed that add(en(hc), ev , n) =

add(en(h ′
c), ev , n) Thus, tr ′ is interrupting for the same rf-elements in both.

IWS hc,ins
(tr) = IWS h ′

c,ins
(tr).

MC hc,ins
= MC h′

c,ins
:

For any transaction tr ′ that is not tr , it holds that mchc(tr
′) = mchc,ins

(tr ′).

This is because except ev the events and their order of hc and hc,ins are identical.
The same holds for h ′

c and h ′
c,ins. As tr consists only of a begin, mchc,ins

(tr) is
false, analogue for h ′

c,ins. Thus, as MC hc = MC h ′
c
, it follows that MC hc,ins

=

263

MC h ′
c,ins

.

Proposition 15. Given a g-event ev = Btr
t and one arbitrary hc-pair hc = (h, hc),

it holds that

∀hc,ins ∈ ins(hc, ev) : ur(hc) = ur(h · ev , hc,ins).

Proof. It holds that ur(hc) = (ur(h)∩ur(hc))\tr lf (hc). Trivially the last finished
transaction is identical in hc and hc,ins. Also, ur(h) = ur(h · ev) as one can easily
verify by looking at Lemma 26 as the appended begin event does not abort a
transaction or add or remove a transaction with a non-empty write set. We show
that the conditions of Lemma 29 hold for hc iff they hold for hc,ins. It is trivial to
see that tr is not unreadable as it is unfinished. Any other transaction occurs in
hc iff it occurs in hc,ins. We exclude any transactions that have an empty write set
as they are unreadable by the conditions of this lemma and their write set is also
empty after inserting ev . Reusing the notation from the proof of this lemma, it is
left to show that for all transactions trx in hc

abhc(trx) ∨ (cohc(trx) ∧ obe(hc, trx)∧
(∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc tr

′) ∨ obt(hc, trx, tr
′))

↔
abhc,ins

(trx) ∨ (cohc,ins
(trx) ∧ obe(hc,ins, trx)

∧(∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc,ins
tr ′) ∨ (obt(hc,ins, trx, tr

′)∧
(¬(trx ≺hc,ins

tr) ∨ obt(hc,ins, trx, tr))).

We show this by first showing the following five separate statements:

1. abhc(trx)↔ abhc,ins
(trx),

2. cohc(trx)↔ cohc,ins
(trx),

3. obe(hc, trx)↔ obe(hc,ins, trx),

4. obe(hc, trx)↔ ¬(trx ≺hc,ins
tr) ∨ obt(hc,ins, trx, tr)

264

5. and
∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc tr ′) ∨ obt(hc, trx, tr

′) ↔ ∀tr ′ ∈ Trunc,hc :
¬(trx ≺hc,ins

tr ′) ∨ obt(hc,ins, trx, tr
′).

All of these statements combined show the overall claim.

abhc(trx) ↔ abhc,ins(trx) : This is true as inserting a begin of tr does not
alter trx.

cohc(trx) ↔ cohc,ins(trx) : This is true as inserting a begin of tr does not
alter trx.

obe(hc, trx)↔ obe(hc,ins, trx) :

Consider obe(hc,ins, trx) :

∀var ∈WS vo
hc,ins

(tr x), ∃tr ′ ∈ Tr : cohc,ins
(tr ′) ∧ var ∈WS vo

hc,ins
(tr ′) ∧ trx ≺hc,ins

tr ′.

It holds that tr has an empty write set; thus, if the quantified tr ′ is substituted
by tr in this formula, it is false. Trivially for any transaction that occurs both
in hc,ins and hc has the same write set in both. It is also either committed
in both or neither and is real-time ordered identically in both to any other
transaction occurring in hc. Thus, this is equivalent to

obe(hc, trx) = ∀var ∈WS vo
hc

(tr x), ∃tr ′ ∈ Tr : cohc(tr
′) ∧ var ∈WS vo

hc
(tr ′) ∧ trx ≺hc tr

′.

obe(hc, trx)↔¬(trx ≺hc,ins
tr)∨ obt(hc,ins, trx, tr) :

265

We show that

∀var ∈WS vo
hc

(tr x), ∃tr ′ ∈ Tr : cohc(tr
′) ∧ var ∈WS vo

hc
(tr ′) ∧ trx ≺hc tr

′

↔
∀var ∈WS vo

hc,ins
(tr x), ∃tr ′ ∈ Tr : cohc,ins

(tr ′) ∧ var ∈WS vo
hc,ins

(tr ′) ∧ trx ≺hc,ins
tr ′ ≺hc,ins

tr .

Note that transactions except tr are identical in hc and hc and their real-time
order when excluding tr is also equal in hc and hc,ins. It also holds that tr is
inserted after every finished transaction in hc. In the right-hand side of the
formula the exist quantifier cannot be true for the substitution tr ′ = tr as tr

is not real-time ordered after itself. Thus, the equivalence holds true.

∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc tr
′)∨ obt(hc, trx, tr

′)

↔ ∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc,ins
tr ′)∨ obt(hc,ins, trx, tr

′) :
Trivially,

∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc tr
′)↔ ∀tr ′ ∈ Trunc,hc : ¬(trx ≺hc,ins

tr ′)

holds. Now, we show

∀tr ′ ∈ Trunc,hc : ∀var ∈WS vo
hc

(tr x), ∃tr ′′ ∈ Tr : cohc(tr
′′)∧

var ∈WS vo
hc

(tr ′′) ∧ trx ≺hc tr
′′ ≺hc tr

′

↔
∀tr ′ ∈ Trunc,hc : ∀var ∈WS vo

hc,ins
(tr x), ∃tr ′′ ∈ Tr : cohc,ins

(tr ′′)∧
var ∈WS vo

hc,ins
(tr ′′) ∧ trx ≺hc,ins

tr ′′ ≺hc,ins
tr ′.

As tr is not committed, on neither side of the equivalence the formula after the
exist quantifier can be true when substituting tr for tr ′′. Any other transaction
is identical in hc and hc,ins and the event order when excluding tr is also equal
in hc and hc,ins. Thus, both sides are equivalent.

Thus, the overall equivalency holds.

266

Proposition 16. Given a g-event ev = Rtr
t (var , val) and two arbitrary hc-pairs

(h, hc) and (h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :

cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Proof. Note that tr is not visible in in h ·ev and h ′·ev . Let hc = ev 0 . . . ev
tr,ls
hc

. . . evn

and h ′
c = ev ′

0 . . . ev
tr,ls
h ′
c

. . . ev ′
l. It holds that ins(hc, ev) contains exactly the

element ev 0 . . . ev
tr,ls
hc

ev . . . evn and ins(h ′
c, ev) contains exactly the element

ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l. Thus, we set hc,ins to the former and h ′
c,ins to the latter

candidate. There must exist one rf-element (tr ′, tr , var) in (h · ev).RF val and one
new rf-element (tr ′′, tr , var) in hc,ins.RF c. If tr ′ ̸= tr ′′, then cmp(h · ev , hc,ins) =
cmp(h ′ · ev , h ′

c,ins) = DM holds. Thus, in the further we assume tr ′′ = tr ′ and
use the identifier tr ′. It holds that ur(hc) = ur(h · ev , hc,ins) as the pairs h and
h · ev , and hc and hc,ins, each contain the same events in the same order, except
that for tr (a non-committed) transaction a read event was added. It is easy
to see that this does not affect the conditions of Lemmas 26 and 29. Analogue,
ur(hc ′) = ur(h ′ · ev , h ′

c,ins) holds.

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins) :

Given that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′
c,ins) holds, this

is equivalent to
(h · ev)\ur(hc) = (h ′ · ev)\ur(hc ′).

It holds that the unfinished transaction tr is not part of ur(hc) and the trans-
action that ev is reading from in h · ev and hc,ins trivially is not unreadable in
h and thus not in ur(hc). The same holds for hc′ and h ′ · ev and h ′

c,ins. Thus,
the above statement is equivalent to

(h\ur(hc)) · ev = (h ′\ur(hc ′)) · ev .

267

Then, given that cmp(hc) = cmp(hc′) this is equivalent to

(h\ur(hc)) · ev = (h\ur(hc)) · ev ,

which is a trivially true statement.

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins) :

Given that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′
c,ins) holds, this

is equivalent to
hc,ins\ur(hc) = h ′

c,ins\ur(hc′).

This is equivalent to

(ev 0 . . . ev
tr,ls
hc

ev . . . evn)\ur(hc) = (ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l)\ur(hc ′).

Note that hc,ins.RF c = hc.RF c ∪ {(tr ′, tr , var)} and h ′
c,ins.RF c = h ′

c.RF c ∪
{(tr ′, tr , var)} holds. Since the removal function is applied to each element
and individually and checks whether it belongs to a transaction in the input
set or it is a read from a transaction in the input set, its results for each event
when applied above are the same as when applied to hc and h ′

c. Also, it does
not alter ev for both sides of the equation as it is a read of a transaction not in
ur(hc) or ur(hc′) and also as discussed above does not read from an unreadable
transaction. Let ev−

i be the event at index i of hc after applying \ur(hc) to
it. Let x be the index of ev tr,ls

hc
in hc. Let seq1,hc\ur(hc) denote ev−

0 . . . ev−
x and

seq2,hc\ur(hc) the remaining part of hc\ur(hc). Define the same analogue for h ′
c.

Then, the previous equation is equivalent to

seq1,hc\ur(hc) · ev · seq2,hc\ur(hc) = seq1,h ′
c\ur(hc) · ev · seq2,h ′

c\ur(hc).

This is true as cmp(hc) = cmp(hc′).

IWShc,ins
= IWSh′

c,ins
:

268

There is no new transaction in both insertions. In comparison to hc.RF c, in
hc,ins.RF c there is one new rf-element (tr ′, tr , var) = rf in the latter and no rf-
elements are removed. Then, for any transactions tr i that interrupt rf it holds
that IWS hc,ins

(tr i) = IWS hc,ins
(tr i) ∪ {var}, for any other the interrupting

write set is unchanged. The same holds for h ′
c,ins. We show that if a transaction

tr i is interrupting for rf in one candidate, it is also in the other. We only
show this from hc,ins to h ′

c,ins. The other direction is completely analogue.
Assume an arbitrary transaction tr i s.t. it is interrupting for rf . Thus, it
holds that tr ′ ≺mCl(hc,ins) tr i ≺mCl(hc,ins) tr and tr i is unfinished and either not
commit pending or commit pending and has var ∈ WS vo

hc,ins
(tr i). Given that

the insertion function only inserts one event, the above statements are also
true for hc. It holds then tr /∈ ur(hc) as it is unfinished in hc, tr i /∈ ur(hc)

since it is unfinished and tr ′ /∈ ur(hc) since its write on var is not overwrit-
ten before tr as else rf would not exist in hc,ins and thus also not before tr i.
Since cmp(hc) = cmp(hc′) holds, the same holds for h ′

c. Thus, inserting ev

at the end tr leads to rf existing in h ′
c,ins.RF c and tr i being interrupting

for it. Thus, for any transaction tr i that interrupts rf in hc,ins it holds that
IWS h ′

c,ins
(tr i) = IWS h ′

c,ins
(tr i)∪{var}. for any other the interrupting write set

is unchanged.

MC hc,ins
= MC h′

c,ins
:

It holds that hc,ins.RF c = hc.RF c ∪ {(tr ′, tr , var)}. All rf-elements except rf

are abortable in hc iff they are abortable in hc,ins. This holds because all the
rf-elements of hc also exists in hc,ins and all events except ev are identical in hc

and hc,ins. By an analogue argument, the same holds for the h ′
c and h ′

c,ins. Thus,
MC hc,ins

\{tr ′} = MC h ′
c,ins
\{tr ′} holds.

We show that tr ′ ∈ MC hc,ins
↔ tr ′ ∈ MC h ′

c,ins
via case distinction over

whether rf is abortable or not. If rf is abortable in hc,ins, tr
′ is commit pending

in hc and hc,ins. Then, it holds that tr ′ ∈ MC hc,ins
. Given that (tr ′, tr , var) ∈

hc,ins.RF c, tr
′ is trivially not unreadable in hc, meaning tr ′ /∈ ur(hc). Given

that cmp(hc) = cmp(hc′), it holds that tr ′ is also commit pending in h ′
c. As

269

(tr ′, tr , var) ∈ h ′
c,ins.RF c holds, then it holds that tr ′ ∈ MC h ′

c,ins
.

If rf is not abortable in hc,ins, then trivially tr ′ /∈ MC hc,ins
and tr ′ is commit-

ted in hc and hc,ins. Given that cmp(hc) = cmp(hc′) and tr ′ /∈ ur(hc), it holds
that tr ′ is also committed in h ′

c and h ′
c,ins. Then, by an analogue argument

tr ′ /∈ MC h ′
c,ins

holds.
The overall claim follows because MC hc,ins

\{tr ′} = MC h ′
c,ins
\{tr ′} and tr ′ ∈

MC hc,ins
iff tr ′ ∈ MC h ′

c,ins
.

Proposition 17. Given a g-event ev = Wtr
t (var , val), two arbitrary hc-pairs

(h, hc) and (h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :

cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Proof. Let hc = ev 0 . . . ev
tr,ls
hc

. . . evn and h ′
c = ev ′

0 . . . ev
tr,ls
h ′
c

. . . ev ′
l. It holds that

ins(hc, ev) contains exactly the element ev 0 . . . ev
tr,ls
hc

ev . . . evn and ins(h ′
c, ev)

contains exactly the element ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l. Thus, we set hc,ins to the
former and h ′

c,ins to the latter candidate. It holds that ur(hc) = ur(h · ev , hc,ins)
as both contain the same transactions in the same order, except that for tr (a
non-committed and non-commit pending) transaction a write event was added.
It is easy to see that this does not affect the conditions of Lemmas 26 and 29.
Analogue, ur(hc′) = ur(h ′ · ev , h ′

c,ins) holds.

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins) :

Given that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′
c,ins) holds, this

is equivalent to
(h · ev)\ur(hc) = (h ′ · ev)\ur(hc ′).

It holds that the unfinished transaction tr is not part of ur(hc) and ur(hc ′),

270

and ev is not a read event; thus, this is equivalent to

(h\ur(hc)) · ev = (h ′\ur(hc ′)) · ev .

Then, given that cmp(hc) = cmp(hc′) this is equivalent to

(h\ur(hc)) · ev = (h\ur(hc)) · ev ,

which is a trivially true statement.

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins) :

Given that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′
c,ins) holds, this

is equivalent to
hc,ins\ur(hc) = h ′

c,ins\ur(hc′).

This is equivalent to

(ev 0 . . . ev
tr,ls
hc

ev . . . evn)\ur(hc) = (ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l)\ur(hc ′).

Note that hc,ins.RF c = hc.RF c and h ′
c,ins.RF c = h ′

c.RF c. Since the removal
function is applied to each element and individually and checks whether it
belongs to a transaction in the input set or it is a read from a transaction in
the input set, its results for each event when applied above are the same as
when applied to hc and h ′

c. Also, it does not alter ev for both sides of the
equation as it is a write of a transaction not in ur(hc) or ur(hc′). Let ev−

i be
the event at index i of hc after applying \ur(hc) to it. Let x be the index of
ev tr,ls

hc
in hc. Let seq1,hc\ur(hc) denote ev−

0 . . . ev−
x and seq2,hc\ur(hc) the remaining

part of hc\ur(hc). Define the same analogue for h ′
c. Then, the previous equation

is equivalent to

seq1,hc\ur(hc) · ev · seq2,hc\ur(hc) = seq1,h ′
c\ur(hc) · ev · seq2,h ′

c\ur(hc).

This is true as cmp(hc) = cmp(hc′).

271

IWShc,ins
= IWSh′

c,ins
:

There is no new transaction in both insertions. The interrupting write set of
each transaction is unchanged as there no are new rf-elements in both hc,ins

and h ′
c,ins compared to hc and h ′

c, the order of events is identical, and no events
have been modified by the insertion function. As these sets are identical for hc
and h ′

c, the claim follows.

MC hc,ins
= MC h′

c,ins
:

There are no new (abortable) rf-elements thus both sets are identical compared
to the respective sets in hc and h ′

c. As these sets are identical for hc and h ′
c, the

claim follows.

Proposition 18. Given a g-event ev = Invtr
t (C), two arbitrary hc-pairs (h, hc)

and (h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :

cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Proof. Note that tr is not visible in h · ev and h ′ · ev . Let hc = ev 0 . . . ev
tr,ls
hc

. . . evn

and h ′
c = ev ′

0 . . . ev
tr,ls
h ′
c

. . . ev ′
l. It holds that ins(hc, ev) contains exactly the

element ev 0 . . . ev
tr,ls
hc

ev . . . evn and ins(h ′
c, ev) contains exactly the element

ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l. Thus, we set hc,ins to the former and h ′
c,ins to the lat-

ter candidate. It holds that ur(hc) = ur(h · ev , hc,ins) as both contain the same
transactions in the same order, except that for tr (a non-committed) transaction a
commit invoke was added. It is easy to see that this does not affect the conditions
of Lemmas 26 and 29. Analogue, ur(hc′) = ur(h ′ · ev , h ′

c,ins) holds.

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins) :

Given that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′
c,ins) holds, this

272

is equivalent to
(h · ev)\ur(hc) = (h ′ · ev)\ur(hc ′).

It holds that the unfinished transaction tr is not part of ur(hc) and ur(hc ′),

and it holds that ev is not a read event. Thus, this is equivalent to

(h\ur(hc)) · ev = (h ′\ur(hc ′)) · ev .

Then given that cmp(hc) = cmp(hc′) this is equivalent to

(h\ur(hc)) · ev = (h\ur(hc)) · ev ,

which is a trivially true statement.

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins) :

Given that ur(hc) = ur(h · ev , hc,ins) and ur(hc′) = ur(h ′ · ev , h ′
c,ins) holds, this

is equivalent to
hc,ins\ur(hc) = h ′

c,ins\ur(hc′).

This is equivalent to

(ev 0 . . . ev
tr,ls
hc

ev . . . evn)\ur(hc) = (ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l)\ur(hc ′).

Note that hc,ins.RF c = hc.RF c and h ′
c,ins.RF c = h ′

c.RF c. Since the removal
function is applied to each element and individually and checks whether it
belongs to a transaction in the input set or it is a read from a transaction in
the input set, its results for each event when applied above are the same as
when applied to hc and h ′

c. Also, it does not alter ev for both sides of the
equation as it is a commit invoke of a transaction not in ur(hc) or ur(hc′).
Let ev−

i be the event at index i of hc after applying \ur(hc) to it. Let x be
the index of ev tr,ls

hc
in hc. Let seq1,hc\ur(hc) denote ev−

0 . . . ev−
x and seq2,hc\ur(hc)

the remaining part of hc\ur(hc). Define the same analogue for h ′
c. Then, the

273

previous equation is equivalent to

seq1,hc\ur(hc) · ev · seq2,hc\ur(hc) = seq1,h ′
c\ur(hc) · ev · seq2,h ′

c\ur(hc).

This is true as cmp(hc) = cmp(hc′).

IWShc,ins
= IWSh′

c,ins
:

There is no new transaction in both insertions. The interrupting write set of
each transaction is unchanged as there are new rf-elements in both hc,ins and
h ′
c,ins compared to hc and h ′

c. This is because tr is not visible in h ·ev and h ′ ·ev ,
and thus aborted in the minimal completion of their candidates. As these sets
are identical for hc and h ′

c, the claim follows.

MC hc,ins
= MC h′

c,ins
:

As in the previous case, there are no new abortable rf-elements thus both sets
are identical compared to the respective sets in hc and h ′

c. This is because tr is
not visible in h · ev and h ′ · ev , and thus aborted in the minimal completion of
their candidates. As these sets are identical for hc and h ′

c, the claim follows.

Proposition 19. Given a g-event ev = Ctr
t , two arbitrary hc-pairs (h, hc) and

(h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :

cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Proof. Let hc = ev 0 . . . ev
tr,ls
hc

. . . evn and h ′
c = ev ′

0 . . . ev
tr,ls
h ′
c

. . . ev ′
n. It holds that

ins(hc, ev) contains exactly the element ev 0 . . . ev
tr,ls
hc

ev . . . evn and ins(h ′
c, ev) con-

tains exactly the element ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l. Thus, we set hc,ins to the former
and h ′

c,ins to the latter candidate.
Assume IWS hc(tr) ∩ WS vo

hc
(tr) ̸= ∅. Then, h.RF val ̸= hc.RF c holds by the

definition of an interrupting write set. Thus, cmp(h · ev , hc,ins) = DM holds. It

274

holds that tr /∈ ur(hc) because it is unfinished in h. Because of this and since
cmp(hc) = cmp(hc′), it holds that tr ∈ h ′ and its write set is identical in h

and h ′. Also, IWS hc(tr) = IWS h ′
c
(tr) holds as IWS hc = IWS h ′

c
holds because

of cmp(hc) = cmp(hc′). Thus, IWS h ′
c
(tr) ∩ WS vo

h ′
c
(tr) ̸= ∅ holds. From this

h ′ · ev .RF val ̸= h ′
c,ins.RF c follows given the definition of an interrupting write set.

Thus,
cmp(h ′ · ev , h ′

c,ins) = cmp(h · ev , hc,ins) = DM

holds.
We now show each element of both compression tuples is identical for the case

IWS hc(tr) ∩WS vo
hc

(tr) = ∅. For this we prove that

ur(h · ev , hc,ins)\ur(hc) = ur(h ′ · ev , h ′
c,ins)\ur(hc ′) = X,

in Proposition 20.

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins) :

As discussed in the proof of Proposition 20, it holds that

ur(h · ev , hc,ins)\ur(hc) = ur(h ′ · ev , h ′
c,ins)\ur(hc ′) = X.

Also, we show in Proposition 21 that the following holds:

(h · ev)\ur(h · ev , hc,ins) = (h · ev\ur(hc))\X.

Given that tr /∈ ur(hc) and that ev is not a read event, it follows that

(h · ev)\ur(h · ev , hc,ins) = ((h\ur(hc)) · ev)\X.

By cmp(hc) = cmp(hc′), it follows that

(h · ev)\ur(h · ev , hc,ins) = ((h ′\ur(hc ′)) · ev)\X.

275

Then, given that tr /∈ ur(hc ′),

ur(h · ev , hc,ins)\ur(hc) = ur(h ′ · ev , h ′
c,ins)\ur(hc ′) = X,

and by Proposition 21 it follows that

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins).

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins) :

As discussed in the proof of Proposition 20, it holds that

ur(h · ev , hc,ins)\ur(hc) = ur(h ′ · ev , h ′
c,ins)\ur(hc ′) = X.

Given cmp(hc) = cmp(hc′), we define

hc\ur(hc) = eva
0 . . . ev

a
n = h ′

c\ur(hc′).

For the sake of simplicity, we assume that we do consider two event sequences equal
whenever the subsequences of them with all ϵ events removed are equal. Given
Proposition 21, hc,ins\ur(h · ev , hc,ins) = h ′

c,ins\ur(h ′ · ev , h ′
c,ins) is equivalent to

((ev 0 . . . ev . . . evn)\ur(hc))\X = (ev ′
0 . . . ev . . . ev

′
l)\ur(hc ′))\X.

To show this, we show

(ev 0 . . . ev . . . evn)\ur(hc) = (ev ′
0 . . . ev . . . ev

′
l)\ur(hc′).

Firs,t as ev is a commit and tr /∈ ur(hc), it is trivially not changed by the removal
function. Then, let

(ev 0 . . . ev . . . evn)\ur(hc) = ev b
0 . . . ev . . . ev

b
n.

276

We prove that for an arbitrary index i with 0 ≤ i ≤ n, that eva
i = ev b

i . We do this
via case distinction for an arbitrary g-event evx :

trhc,ins(evx) ∈ ur(hc) :

In this case ev b
x = ϵ by Definition 49. Also, as hc,ins is hc with ev inserted it

holds that
trhc,ins (ev x) = trhc(ev x),

so eva
x = ϵ = ev b

x.

evx = Rtr ′

t ′ (y , val
′),∃tr ′′ ∈ ur(hc)∃y ∈ Var : (tr ′′, tr ′, y) ∈ hc,ins.RF c :

Let tr ′′ ∈ ur(hc) be the transaction s.t.

evx = Rtr ′

thr(tr ′)(y , val
′), (tr ′′, tr ′, y) ∈ hc,ins.RF c.

We do a case distinction over whether tr ∈ ur(h · ev , hc,ins) or not. It holds
that tr ∈ ur(h · ev , hc,ins) iff it is not the last transaction in hc and its write set
is empty. Else it is readable in h ·ev as its commit ev is the last g-event of h ·ev ,
or it is not in the unreadable set because it is the last transaction in hc,ins. If
the write set of tr is empty, then in this case it holds that hc.RF c = hc,ins.RF c.

Thus,
(tr ′′, tr ′, y) ∈ hc,ins.RF c ↔ (tr ′′, tr ′, y) ∈ hc.RF c,

and thus eva
x = ev b

x = ϵ.

Now if tr /∈ ur(h · ev , hc,ins) its write set is not empty, or it is the last
transaction in hc,ins and its write set is empty. In the first case, if there were
to exist an rf-element with tr as its writer in hc,ins that did not exist in hc,

then IWS hc(tr)∩WS vo
hc

(tr) ≠ ∅. In this part of the proof, we explicitly assume
this not to be the case as discussed before. So, inserting ev does not remove
from any rf-elements from hc or add rf-elements to hc. Thus, (tr ′′, tr ′, y) ∈
hc,ins.RF c ↔ (tr ′′, tr ′, y) ∈ hc.RF c, and thus eva

x = ev b
x = ϵ.

In the second case, where the write set of tr is empty, it trivially cannot be in-

277

volved in rf-elements, and thus (tr ′′, tr ′, y) ∈ hc,ins.RF c ↔ (tr ′′, tr ′, y) ∈ hc.RF c,

and thus eva
x = ev b

x = ϵ.

else:
We have shown for all other cases they hold for evx in hc iff they hold for it in
hc,ins. Thus, in the “else” case also holds for evx in hc iff it holds for it in hc,ins.

Given that, in this case eva
x = ev b

x = evx holds.

Thus, we have shown that

((ev 0 . . . ev . . . evn)\ur(hc))\X = (ev ′
0 . . . ev . . . ev

′
n)\ur(hc ′))\X.

From which it follows that

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins).

IWShc,ins
= IWSh′

c,ins
:

As ev is a commit, and hc.RF c = hc,ins.RF c (else as discussed above the resulting
hc-pair is in DM), the interrupting write set of any transaction but tr in hc

is identical to its counterpart in hc,ins. By cmp(hc) = cmp(hc′), it follows that
hc.RF c = h ′

c.RF c, and by an analogue argument to the one above it follows that
h ′
c.RF c = h ′

c,ins.RF c. As tr is committed in hc,ins, it holds that IWS hc,ins
(tr) = ∅.

By an analogue argument, it holds that IWS h ′
c,ins

(tr) = ∅. Thus, the claim follows.

MC hc,ins
= MC h′

c,ins
:

If tr ∈ MC hc it follows that tr /∈ MC hc,ins
. If tr /∈ MC hc it follows that tr /∈

MC hc,ins
. As tr /∈ ur(hc), and cmp(hc) = cmp(hc′), in both cases it follows that

tr /∈ MC hc,ins
. As MC hc = MC h ′

c
, the claim follows.

278

Proposition 20. Given a g-event ev = Ctr
t , two arbitrary hc-pairs (h, hc) and

(h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev), ∀h ′
c,ins ∈ ins(h ′

c, ev) :

ur(h · ev , hc,ins)\ur(hc) = ur(h ′ · ev , h ′
c,ins)\ur(hc′).

Proof. We will first handle to specific cases to then prove the remaining cases
together after.

WS vo
h (tr) = ∅ and tr ̸= tr lf(hc) :

From the assumption and Lemma 31, it follows that tr ∈ ur(h · ev) and tr ∈
ur(hc,ins). Trivially, all other readable transactions in h and hc are then also
readable in their extended counterparts. It follows that

ur(h · ev , hc,ins)\ur(hc) = {tr}.

Given that tr /∈ ur(hc) as it is unfinished in hc, it is also not in ur(hc′). Then
by this and the fact that cmp(hc) = cmp(hc′), it holds that WS vo

h ′ (tr) = ∅, and
that tr is not the last transaction in h ′

c. Thus, also ur(h ′ · ev , h ′
c,ins)\ur(hc′) =

{tr}.

WS vo
h (tr) = ∅ and tr ̸= tr lf(hc) :

From the assumption and Lemmas 28 and 29, it follows that tr /∈ ur(h · ev)
and tr /∈ ur(hc,ins). Trivially, all other readable transactions in h and
hc are then also readable in their extended counterparts. It follows that
ur(h · ev , hc,ins)\ur(hc) = ∅. Given that tr /∈ ur(hc) as it is unfinished in hc,
it is also not in ur(hc ′). Then by this and the fact that cmp(hc) = cmp(hc′),

it holds that WS vo
h ′ (tr) = ∅, and that tr is not the last transaction in h ′

c. Thus,
also ur(h ′ · ev , h ′

c,ins)\ur(hc) = ∅.

279

In the further we thus assume WS vo
h (tr) ̸= ∅. This trivially implies that

tr /∈ ur(h · ev , hc,ins) and tr /∈ ur(h ′ · ev , h ′
c,ins) as tr is readable in h · ev

and h ′ · ev with its commit being the last event of them. We first show
ur(h · ev)\ur(h) = ur(h ′ · ev)\ur(h ′) and then that (ur(hc,ins)\ur(hc))\{tr} =

(ur(h ′
c,ins)\ur(h ′

c))\{tr}. We exclude tr from the latter because as mentioned
above it holds that tr /∈ ur(h · ev , hc,ins) and tr /∈ ur(h ′ · ev , h ′

c,ins).

ur(h · ev)\ur(h) = ur(h ′ · ev)\ur(h ′) :

We first define the needed notation. For the sake of this, let trx be a committed
transaction in an arbitrary g-history h and var be a variable in the write set of
trx. We define obe(h, trx, var) = ∃tr ′ ∈ Tr : coh(tr

′)∧var ∈WS vo
h (tr ′)∧trx ≺h

tr ′. Then, we define RdV h(trx) = {var ∈WS vo
h (tr x) | ¬obe(h, trx, var)}, which

is the set of variables of trx which are not overwritten before the end of h. By
Lemma 28, it holds that RdV h(trx) = ∅, iff trx is in ur(h).

We now prove ur(h · ev)\ur(h) = ur(h ′ · ev)\ur(h ′). First, note again that
tr /∈ ur(h · ev) as we assume its write set to not be empty. We show the
following two formulae hold true, which then shows the overall claim to be
true:

∀trx ∈ Tr\{tr} : trx ∈ ur(h · ev)\ur(h)
↔

(RdV h(trx) ̸= ∅ ∧ RdV h(trx) ⊆WS vo
h (tr) ∧ trx ≺h tr),

(C.4)

and

∀trx ∈ h, cohc(trx), trx /∈ ur(hc), trx ̸= tr : RdV h(trx) = RdV h ′(trx). (C.5)

We show both directions of the first statement and then the second statement.

∀trx ∈ (Tr\{tr}) : trx ∈ ur(h · ev)\ur(h)→ (RdV h(trx) ̸=
∅ ∧RdV h(trx) ⊆WS vo

h (tr)∧ trx ≺h tr) :

Note that trx can only be in ur(h · ev) if it is finished in h as here the case
trx = tr is excluded. Then, from trx /∈ ur(h), RdV h(trx) ̸= ∅ follows.

280

Given that trx ∈ ur(h · ev) holds, it then also holds that RdV h·ev (trx) = ∅.
And thus, ∀var ∈ RdV h(trx) it holds that

obe(h · ev , trx, var), and ¬obe(h, trx, var).

As all g-events except ev are identical and have the same order in h and
h · ev , it must hold that

RdV h(trx) ⊆WS vo
h (tr) ∧ trx ≺h tr .

∀trx ∈ (Tr\{tr}) :
(RdV h(trx) ̸= ∅ ∧RdV h(trx) ⊆WS vo

h (tr)∧ trx ≺h tr)→
trx ∈ ur(h · ev)\ur(h) :

From RdV h(trx) ̸= ∅ it follows that trx /∈ ur(h) holds. For any variable
var in RdV h(trx), it holds that var ∈ WS vo

h (tr). Also, trx ≺h tr holds (which
thus also holds for h · ev), and tr is committed in h · ev . Thus, it is true that
var /∈ RdV h·ev (trx). As var is an arbitrary variable in RdV h(trx), it follows that
RdV h·ev (trx) = ∅. This implies trx ∈ ur(h · ev).

∀trx ∈ h, cohc(trx), trx /∈ ur(hc), trx ̸= tr : RdV h(trx) = RdV h′(trx) :

Let trx be an arbitrary transaction meeting the requirements of the all quantifier
of the claim. The claim then is equivalent to

∀var ∈WS vo
h (tr x) : obe(h, trx, var)↔ obe(h ′, trx, var),

as WS vo
h (tr x) = WS vo

h ′ (tr x) because of cmp(hc) = cmp(hc′). We will show the
direction from the left to right, the reverse direction can be proven analogue. Let
var be an arbitrary variable in WS vo

h (tr x) s.t. obe(h, trx, var) is true. By definition

281

of obe, it holds that

∃tr ′ ∈ Tr : coh(tr
′) ∧ var ∈WS vo

h (tr ′) ∧ trx ≺h tr ′.

Then, it also holds that

∃tr ′ ∈ Tr : coh(tr
′) ∧ var ∈WS vo

h (tr ′) ∧ trx ≺h tr ′∧
¬(∃tr ′′ : var ∈WS vo

h (tr ′′) ∧ tr ′ ≺h tr ′′)
.

Let tr ′ be an arbitrary transaction s.t. the above formula is true for it when
substituting tr ′ with it. Then, trivially ¬obe(h, tr ′, var) holds. Thus, tr ′ /∈ ur(h)

holds from which tr ′ /∈ ur(hc) follows. This is then equivalent to tr ′ /∈ ur(hc′) as
cmp(hc) = cmp(hc′). Then, from trx ≺h\ur(hc) tr

′ it follows that trx ≺h ′\ur(hc′) tr
′

as cmp(hc) = cmp(hc′). From this it follows that trx ≺h ′ tr ′. As the events
of both transactions excluding reads are identical in h and h ′ since again
cmp(hc) = cmp(hc′) holds, obe(h ′, trx, var) follows which proves this direction.

We can now use these two statements. Given trx ∈ ur(h · ev)\ur(h), trx ̸= tr ,

by Formula C.4 this is equivalent to

(RdV h(trx) ̸= ∅ ∧ RdV h(trx) ⊆WS vo
h (tr) ∧ trx ≺h tr).

Note that for any transaction trx in h or h ′ s.t. that it is not in ur(hc) or
ur(hc ′) it holds trx ≺h tr ↔ trx ≺h ′ tr , coh(tr) ↔ coh ′(tr) and WS vo

h (tr) =

WS vo
h ′ (tr). This is because of cmp(hc) = cmp(hc′). Then, by Formula C.5 the

above statement is equivalent to

(RdV h ′(trx) ̸= ∅ ∧ RdV h ′(trx) ⊆WS vo
h ′ (tr) ∧ trx ≺h ′ tr).

Then by Formula C.4 this is equivalent to trx ∈ ur(h ′ · ev)\ur(h ′). Overall it
follows that ur(h · ev)\ur(h) = ur(h ′ · ev)\ur(h ′).

282

(ur(hc,ins)\ur(hc))\{tr} = (ur(h ′
c,ins)\ur(h ′

c))\{tr} :
We first define the needed notation. For the sake of the definition let hisc be
an arbitrary candidate, tr ′ be an arbitrary transaction in Trunc,hc , trx be an
arbitrary committed transaction in hc and var be a member of the write set of
trx. We first define

obt(hc, trx, tr
′, var) =

¬(tr ′ ≺hc trx) ∨ ∃tr ′′ ∈ Tr : Ctr ′′

hc
∧ var ∈WS vo

hc
(tr ′′) ∧ trx ≺hc tr

′′ ≺hc tr
′.

Next we define RdV hc(trx, tr
′) = {var ∈ WS vo

hc
(tr x) | ¬obt(hc, trx, tr ′, var)},

which is the set of variables written to by trx that can be read by tr ′ in hc.
W.l.o.g. for this proof we assume that at the end of a candidate there is a com-
mitted transaction which reads every variable once and is real-time ordered
after each other transaction. This allows us to model the obe and the corre-
sponding RdV sets by obt and its RdV sets, through choosing the all reading
transaction at the end as the third argument. By Lemma 29, it holds for all
unfinished and not commit pending transactions tr ′ that RdV hc(trx, tr

′) = ∅
iff trx ∈ ur(hc).

Now we prove (ur(hc,ins)\ur(hc))\{tr} = (ur(h ′
c,ins)\ur(h ′

c))\{tr}. We show
two formulae hold true, which then shows the overall claim to be true. Note
that we denote the set of all unfinished and not commit or abort pending
transactions in a candidate hc as Trunc,hc .

∀trx ∈ (Tr\{tr}) : trx ∈ ur(hc,ins)\ur(hc)
↔

∀tr ′ ∈ Trunc,hc : RdV hc(trx, tr
′) ̸= ∅∧,RdV hc(trx, tr

′) ⊆WS vo
hc

(tr) ∧ trx ≺hc,ins
tr ≺hc,ins

tr ′

 (C.6)

and

∀trx ∈ hc, trx ̸= tr , trx /∈ ur(hc), cohc(trx), ∀tr ′ ∈ hc : RdV hc(trx, tr
′) = RdV h ′

c
(trx, tr

′). (C.7)

We show both directions of Formula C.6 and then Formula C.7.

∀trx ∈ (Tr\{tr}) : trx ∈ ur(hc,ins)\ur(hc)→

283

∀tr ′ ∈ Trunc,hc :

(RdV h(trx, tr
′) ̸= ∅ ∧ RdV hc(trx, tr

′) ⊆ WS vo
hc

(tr) ∧ trx ≺hc,ins

tr ≺hc,ins tr
′) :

Fix trx to an arbitrary transaction in ur(hc,ins)\ur(hc). From trx /∈ ur(hc)

it follows that

∃tr ′ ∈ Trunc,hc : RdV hc(trx, tr
′) ̸= ∅,

and from trx /∈ ur(hc,ins) it follows that

∀tr ′ ∈ Trunc,hc : RdV hc,ins
(trx, tr

′) = ∅.

Note that Trunc,hc = Trunc,hc,ins
. Let tr ′ be an arbitrary transaction in the

set Trunc,hc,ins
. Assume it holds ¬(trx ≺hc,ins

tr ≺hc,ins
tr ′) then trivially it

also holds that RdV hc(trx, tr
′) = RdV hc,ins

(trx, tr
′) by the definition of the

insertion function which is a contradiction. Thus, trx ≺hc,ins
tr ≺hc,ins

tr ′

holds. Now if ¬(RdV h(trx, tr
′) ⊆ WS vo

h (tr)) holds, consider an arbitrary
variable var ′ in the former but not in the latter set. Then it holds that
¬obt(hc,ins, trx, tr ′, var ′) as it held in hc and the only change in hc,ins is that
tr is committed. In this case, by the conditions in Lemma 29 trx would not
be in ur(hc,ins) which is in contradiction to the assumption. Thus, it holds
that RdV h(trx, tr

′) ⊆WS vo
h (tr), and the implication overall holds.

∀trx ∈ (Tr\{tr}) : (∀tr ′ ∈ Trunc,hc : (RdV h(trx, tr
′) ̸= ∅ ∧

RdV hc(trx, tr
′) ⊆ WS vo

hc
(tr) ∧ trx ≺hc,ins

tr ≺hc,ins
tr ′) → trx ∈

ur(hc,ins)\ur(hc)) :

Consider an arbitrary trx ∈ Tr . From ∃tr ′ ∈ Trunc,hc : RdV hc(trx, tr
′) ̸= ∅

it follows that trx /∈ ur(hc). Consider an arbitrary transaction tr ′ s.t.
RdV hc(trx, tr

′) ̸= ∅. From RdV h(trx, tr
′) ⊆ WS vo

h (tr), trx ≺hc,ins
tr ≺hc,ins

tr ′, cohc,ins
(tr) and that, except the insertion of ev , hc,ins is identical to hc

it follows that RdV hc,ins
(trx, tr

′) = ∅. Since this holds for any transaction
tr ′ s.t. RdV hc(trx, tr

′) ̸= ∅, it follows that trx ∈ ur(hc,ins). Thus, we have

284

shown for an arbitrary trx ∈ (Tr\{tr}) it holds that trx /∈ ur(hc) and
trx ∈ ur(hc,ins), if the left-hand side of the implication is true, which proves
the implication is true.

∀trx ∈ hc, trx /∈ ur(hc),fin trx
(hc),∀tr ′ ∈ hc : RdV hc(trx, tr

′) =

RdV h′
c
(trx, tr

′) :

Fix trx and tr ′ to transactions meeting the conditions of the quantifiers.
Given that trx /∈ ur(hc) and cmp(hc) = cmp(hc′), it holds that trx ∈ h ′

c.
Given that tr ′ is unfinished, tr ′ /∈ ur(hc) holds. From this and additionally
cmp(hc) = cmp(hc′), tr ′ ∈ h ′

c follows. Now, we show that for any variable
var obt(hc, trx, tr

′, var) ↔ obt(h ′
c, trx, tr

′, var). We only show the left to
right direction. The other direction follows analogue. First, assume that
¬(tr ′ ≺hc trx) holds. This is equivalent to ¬(tr ′ ≺h ′

c
trx) because both

transactions are not in ur(hc) and ur(hc′) and cmp(hc) = cmp(hc′). Now,
assume ∃tr ′′ ∈ Tr : Ctr ′′

hc
∧ var ∈WS vo

hc
(tr ′′) ∧ trx ≺hc tr

′′ ≺hc tr
′. Fix tr ′′ to

a transaction s.t. the above formula is true, and it holds that

¬(∃tr ′′′ ∈ Tr : trx ≺hc tr
′′′ ≺hc tr

′ ∧ trx ≺hc tr
′′ ≺hc tr

′′′).

Such a transaction trivially exists in a candidate. Then, by Lemma 29
tr ′′ /∈ ur(hc) and thus tr ′′ /∈ ur(hc), tr ′′ /∈ ur(hc ′) as cmp(hc) = cmp(hc′).
Then, it holds that

∃tr ′′ ∈ Tr : Ctr ′′

h ′
c
∧ var ∈WS vo

h ′
c
(tr ′′) ∧ trx ≺h ′

c
tr ′′ ≺h ′

c
tr ′

as trx, tr
′′, tr ′ /∈ ur(hc) and cmp(hc) = cmp(hc′). Thus, it follows that

obt(hc, trx, tr
′, var)→ obt(h ′

c, trx, tr
′, var). Given the other direction is ana-

logue, it follows that

obt(hc, trx, tr
′, var)↔ obt(h ′

c, trx, tr
′, var).

285

From this and the definition of RdV

∀trx ∈ hc, trx /∈ ur(hc), fin trx(hc), ∀tr ′ ∈ hc : RdV hc(trx, tr
′) = RdV h ′

c
(trx, tr

′)

follows.

Now given Formula C.6 holds trx ∈ (ur(hc,ins)\ur(hc))\{tr} is equivalent
to

∀tr ′ ∈ Trunc,hc : RdV hc(trx, tr
′) ̸= ∅ ∧ RdV hc(trx, tr

′) ⊆WS vo
hc

(tr) ∧ trx ≺hc,ins
tr ≺hc,ins

tr ′,

which by the Formula C.7, tr , trx /∈ ur(hc), the fact that any transaction in
Trunc,hc also occurs in Trunc,h ′

c
and cmp(hc) = cmp(hc′), is equivalent to

∀tr ′ ∈ Trunc,h ′
c
: RdV h ′

c
(trx, tr

′) ̸= ∅ ∧ RdV h ′
c
(trx, tr

′) ⊆WS vo
h ′
c
(tr) ∧ trx ≺h ′

c,ins
tr ≺h ′

c,ins
tr ′)

which by Formula C.6 is equivalent to trx ∈ (ur(h ′
c,ins)\ur(h ′

c))\{tr}.

We have shown that

ur(h · ev)\ur(h) = ur(h ′ · ev)\ur(h ′),

and then that

(ur(hc,ins)\ur(hc))\{tr} = (ur(h ′
c,ins)\ur(h ′

c))\{tr}.

Also, it holds that

tr /∈ ur(h · ev , hc,ins) and tr /∈ ur(h ′ · ev , h ′
c,ins).

Thus,
ur(h · ev , hc,ins)\ur(hc) = ur(h ′ · ev , h ′

c,ins)\ur(hc′)

286

follows for this case. As we have proven this as well for the other case at the start
of this proof, the overall claim follows.

Proposition 21. Given an arbitrary history h, its candidate hc and two sets of
transactions Trx,Tr y, s.t. the transactions in both sets occur in h, it holds that

1. h\(Trx ∪ Tr y) = (h\{Trx})\{Tr y}

2. and hc\(Trx ∪ Tr y) = (hc\{Trx})\{Tr y}.

Proof. Let h = ev 0 . . . evn, h\(Trx ∪ Tr y) = ev ′
0 . . . ev

′
n, h\{Trx} = ev ′′

0 . . . ev
′′
n

and h\{Trx}\{Tr y} = ev ′′′
0 . . . ev ′′′

n . Here we assume the results each contain the
ϵ “events” used in Definition 49, so we can avoid convoluted index mappings. We
show

∀i, 0 ≤ i ≤ n : ev ′
i = ev ′′′

i .

Let i be an arbitrary natural number between 0 and n. We give the proof for h, the
proof for hc is analogue replacing RF val with RF c. We proceed via case distinction.

trh(ev i) ∈ Trx :

Then, by Definition 49 ev ′
i = ϵ and ev ′′

i = ϵ from which ev ′′′
i = ϵ trivially follows.

trh(evy) ∈ Try :

Then, by Definition 49 ev ′
i = ϵ and ev ′′′

i = ϵ holds.

ev i = Rtr
t (z , val),∃tr ′ ∈ Trx : (tr ′, tr , z) ∈ h.RF val :

Then, by Definition 49 ev ′
i = ϵ and ev ′′

i = ϵ hold, from which ev ′′′
i = ϵ trivially

follows.

ev i = Rtr
t (z , val),∃tr ′ ∈ Try : (tr ′, tr , z) ∈ h.RF val :

Let tr ′ ∈ Tr y be the transaction s.t. (tr ′, tr , z) ∈ h.RF val. If tr ′ is also in Trx,
the previous case shows the claim.

287

So we show the claim for tr ′ /∈ Trx in the following. By Definition 49,
ev ′

i = ϵ holds. By Lemma 32, we know that (h\Trx).RF val = h.RF val\{rf ∈
h.RF val | ∃tr ∈ Trx : tr ∈ rf }. Thus, as tr ′ /∈ Trx, it holdsthat (tr ′, tr , z) ∈
(h\Trx).RF val. By Definition 49, the removal function does not change the
order of events nor does it add events. So each event of tr ′ has the same
index in ev 0 . . . evn, ev

′′
0 . . . ev

′′
n, and ev ′′′

0 . . . ev ′′′
n . Combined with the fact that

(tr ′, tr , z) ∈ (h\Trx).RF val and by Definition 49, it follows that ev ′′′
i = ϵ.

else:
In this case by Lemma 32, ev ′

i = ev i = ev ′′
i = ev ′′′

i . holds.

Proposition 22. Given a g-event ev = Atr
t , two arbitrary hc-pairs (h, hc) and

(h ′, h ′
c) s.t. cmp(h, hc) = cmp(h ′, h ′

c), it holds that

∀hc,ins ∈ ins(hc, ev)∃h ′
c,ins ∈ ins(h ′

c, ev) :

cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Proof. We first prove the case tr ∈ MC hc . Then, cmp(h · ev , hc,ins) = DM holds.
Also, because of cmp(hc) = cmp(hc′), it then holds that tr ∈ MC h ′

c
, and thus

cmp(h ′ · ev , h ′
c,ins) = DM. So, the proposition is true for this case.

Thus, in the further we assume tr /∈ MC hc and tr /∈ MC h ′
c
. Let hc =

ev 0 . . . ev
tr,ls
hc

. . . evn and h ′
c = ev ′

0 . . . ev
tr,ls
h ′
c

. . . ev ′
l. It holds that ins(hc, ev) con-

tains exactly the element ev 0 . . . ev
tr,ls
hc

ev . . . evn and ins(h ′
c, ev) contains exactly

the element ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l. Thus, we set hc,ins to the former and h ′
c,ins to

the latter candidate. It holds that

ur(hc) ∪ {tr} = ur(h · ev , hc,ins),

as both contain the same transactions in the same order, except that tr is aborted
and thus unreadable in h · ev and hc,ins. It is easy to see that this does not affect
the conditions of Lemmas 26 and 29. Analogue ur(hc ′) ∪ {tr} = ur(h ′ · ev , h ′

c,ins)

288

holds.

(h · ev)\ur(h · ev , hc,ins) = (h ′ · ev)\ur(h ′ · ev , h ′
c,ins) :

Given ur(hc) ∪ {tr} = ur(h · ev , hc,ins) and ur(hc ′) ∪ {tr} = ur(h ′ · ev , h ′
c,ins)

holds, this is equivalent to

(h · ev)\(ur(hc) ∪ {tr}) = (h ′ · ev)\(ur(hc′) ∪ {tr}).

It holds that tr is not part of ur(hc) and ur(hc ′), thus by Proposition 21 this
is equivalent to

((h\ur(hc)) · ev)\{tr} = ((h ′\ur(hc ′)) · ev)\{tr}.

As cmp(hc) = cmp(hc′) holds, this is equivalent to

((h\ur(hc)) · ev)\{tr} = ((h\ur(hc)) · ev)\{tr}),

which is a trivially true statement.

hc,ins\ur(h · ev , hc,ins) = h ′
c,ins\ur(h ′ · ev , h ′

c,ins) :

Given ur(hc) ∪ {tr} = ur(h · ev , hc,ins) and ur(hc ′) ∪ {tr} = ur(h ′ · ev , h ′
c,ins)

holds, by Proposition 21 this is equivalent to

hc,ins\ur(hc)\{tr} = h ′
c,ins\ur(hc ′)\{tr}.

This is equivalent to

(ev 0 . . . ev
tr,ls
hc

ev . . . evn)\ur(hc)\{tr} = (ev ′
0 . . . ev

tr,ls
h ′
c
ev . . . ev ′

l)\ur(hc ′)\{tr}.

Note that hc,ins.RF c = hc.RF c, h
′
c,ins.RF c = h ′

c.RF c and tr /∈ ur(hc) Since
the removal function is applied to each element, and it individually and checks
whether it belongs to a transaction in the input set or it is a read from a
transaction in the input set, its results for each event when applied above are
the same as when applied to hc and h ′

c. Also, it does not alter ev for both

289

sides of the equation as it is a write of a transaction not in ur(hc) or ur(hc′).
Let ev−

i be the event at index i of hc after applying \ur(hc) to it. Let x be
the index of ev tr,ls

hc
in hc. Let seq1,hc\ur(hc) denote ev−

0 . . . ev−
x and seq2,hc\ur(hc)

the remaining part of hc\ur(hc). Define the same analogue for h ′
c. Then the

previous equation is equivalent to

(seq1,hc\ur(hc) · ev · seq2,hc\ur(hc))\{tr} = (seq1,h ′
c\ur(hc) · ev · seq2,h ′

c\ur(hc))\{tr}.

This is true as seq1,hc\ur(hc) = seq1,h ′
c\ur(hc) and seq1,hc\ur(hc) = seq2,h ′

c\ur(hc)

because of cmp(hc) = cmp(hc′).

IWShc,ins
= IWSh′

c,ins
:

There is no new transaction in both insertions. The interrupting write set of
each transaction is unchanged as there no are new rf-elements in both hc,ins

and h ′
c,ins compared to hc and h ′

c and the order of events is identical and no
events have been modified by the insertion function. As these sets are identical
for hc and h ′

c, the claim follows.

MC hc,ins
= MC h′

c,ins
:

It holds that tr /∈ MC hc,ins
and tr /∈ MC h ′

c,ins
. There are also no new (abortable)

rf-elements thus both sets are identical compared to the respective sets in hc

and h ′
c. As these sets are identical for hc and h ′

c, the claim follows.

Lemma 35. Two g-histories h, h ′ are OP−-extension equivalent iff the following
two conditions hold:

1. ∀(h, hc) ∈ HCh , ∃(h ′, h ′
c) ∈ HCh ′ : (h, hc) ≡ext (h

′, h ′
c),

2. ∀(h ′, h ′
c) ∈ HCh ′ , ∃(h, hc) ∈ HCh : (h ′, h ′

c) ≡ext (h, hc).

Proof. By the definition of OP−-extension equivalency (Definition 31), we need
to show that ∀seq ∈ Ev ∗ either

290

• h · seq and h ′ · seq are both value opaque under OP−

• or h · seq and h ′ · seq are both not value opaque under OP−.

Consider an arbitrary sequence seq ∈ Ev ∗. We show the case where h · seq is not
value opaque and h ′ · seq is value opaque and the case where h ′ · seq is not value
opaque and h · seq is value opaque cannot occur.

We only show one of them as the other is completely analogue.

h · seq is not value opaque and h ′ · seq is value opaque :

If h ′ · seq is value opaque then by Lemma 22 there exists a candidate h ′
c ∈ Ch

s.t. ∃h ′
c,ins ∈ ins(h ′

c, seq) : mCl(h ′
c,ins) is legal. Trivially, (h ′, h ′

c) ∈ HCh ′ holds.
Now given condition 2 of the assumptions of the lemma, it holds that ∃(h, hc) ∈
HCh : (h ′, h ′

c) ≡ext (h, hc). Then as ∃h ′
c,ins ∈ ins(h ′

c, seq) : mCl(h ′
c,ins) is legal,

by the definition of extension equivalence for hc-pairs (Definition 41) it holds
that ∃hc,ins ∈ ins(hc, seq) : mCl(hc,ins) is legal. By Lemma 22, it follows that
hc · seq is value opaque under OP− which is a contradiction. Thus, h ′ · seq not
is value opaque.

So we have shown that under the assumptions the requirements of Definition 31
hold for h and h ′, meaning they are OP−-extension equivalent.

Lemma 36. Two g-histories h, h ′ are OP−-extension equivalent if op(h) = op(h ′).

Proof. By Definition 51, it holds that {cmp(hc) | hc ∈ HCh} = {cmp(hc′) | hc′ ∈
HC ′

h}.

1. ∀(h, hc) ∈ HCh , ∃(h ′, h ′
c) ∈ HCh ′ : cmp(h, hc) = cmp(h ′, h ′

c),

2. ∀(h ′, h ′
c) ∈ HCh ′ , ∃(h, hc) ∈ HCh : cmp(h, hc) = cmp(h ′, h ′

c).

by Lemma 34 it follows that

1. ∀(h, hc) ∈ HCh , ∃(h ′, h ′
c) ∈ HCh ′ : (h, hc) ≡ext (h

′, h ′
c),

291

2. ∀(h ′, h ′
c) ∈ HCh ′ , ∃(h, hc) ∈ HCh : (h ′, h ′

c) ≡ext (h, hc).

By Lemma 35, this means that h and h ′ are OP−-extension equivalent

Theorem 5. Let I be an implementation automaton. Then I only produces g-
histories opaque under OP− iff L(E(I)) = ∅.

Proof. Let I = (Q, δ, q0, F) be an implementation automaton and its OP−-
automaton E(I) be (QE, δE, q0,E, FE). We show that E(I) is a deterministic finite
automaton in Proposition 23.

I only produces g-histories opaque under OP− → L(E(I)) = ∅ :
We show the contraposition. Let the accepted word be h = ev 0 . . . evn then
there exists a run of E(I)

(q0, op(ϵ)) . . . (qn+1, op(h)), s.t.(qn+1, op(h)) ∈ FE.

It must hold that op(h) ∈ OP−
∅ T ,Var

, and thus there exists no consistent com-
pressed hc-pair in op(h). As shown in Lemma 38, if a compressed hc-pair is not
consistent, then all of its uncompressed versions are also not consistent. This
means that there exists no consistent hc-pair for h, meaning its not opaque
under OP−.
It must also hold that qn+1 ∈ F and for all indices i < n+ 1 that

((qi, op(ev 0 . . . ev i−1)), ev i, (qi+1, op(ev 0 . . . ev i))) ∈ δE.

Thus, for the word h in I the run q0 . . . qn+1 exist s.t. for all indices i < n + 1

it holds that (qi, ev i, qi+1) ∈ δ. As qn+1 ∈ F, this is an accepting run meaning
I is not opaque under OP−.

L(E(I)) = ∅→ I only produces g-histories opaque under OP− :

We show the contraposition. Let h = ev 0 . . . evn be a g-history that is not

292

opaque under OP− and accepted by I. Then, in I a run q0 . . . qn+1 exist s.t.
for all indices i < n + 1 it holds that (qi, ev i, qi+1) ∈ δ and qn+1 ∈ F holds.
Consider the following sequence of states of QE:

(q0, op(ϵ)) . . . (qn+1, op(h))

s.t. for all indices i < n + 1 ((qi, op(ev 0 . . . ev i−1)), ev i, (qi+1, op(ev 0 . . . ev i))) ∈
δE holds. This sequence exists by the definition of an OP−-automaton. As h

is not opaque under OP−, for all of its candidates hc the hc-pair (h, hc) is not
consistent, and as shown in Lemma 38 its compression cmp(h, hc) is then also
not consistent. Thus, there exists no consistent compressed hc-pair in op(h)

thus op(h) ∈ OP−
∅ T ,Var

. As qn+1 ∈ F, this means (qn+1, op(h)) ∈ FE, and thus
E(I) accepts h. It follows that its language is not empty.

Proposition 23 (OP− construction is DFA). Let I = (Q, δ, q0, F) be an imple-
mentation automaton and its OP−-automaton of E(I) be (QE, δE, q0,E, FE). Then
E(I) is a deterministic finite automaton.

Proof. We assume I to be an DFA. We show that E(I) is a finite automaton and
then that it is a deterministic automaton.

QE is finite:
Note that QE equals Q × OP−

T ,var . As I is a DFA, Q is finite. As proven in
Lemma 33, there is only a finite amount of compressed hc-pairs for a given T

and Var thus OP−
T ,Var is finite as well as each element in it is a set of hc-pairs.

Combining both facts means QE is a finite set.

δE is deterministic:
Consider a given state/OP−-data pair (q, op) ∈ QE, q ∈ Q and op ∈ OP−

T ,var

and an arbitrary g-event ev . We show there is only exactly one pair of q′ ∈ Q

293

and OP−-data op′ that fulfils the condition for a transition, which is

(q, ev , q′) ∈ δ and ∃h ∈ H : op(h) = op ∧ op(h · ev) = op′.

We do this by a proof via contradiction. Assume a different second pair (q′′, op′′)
fulfils the condition for the transition. So, at least q′′ ̸= q′ or op′′ ̸= op′ must
hold. Trivially, as Q is a DFA q′′ equals q′. So op′′ ̸= op′ must hold. Thus,
there must exist a g-history h ′ ̸= h s.t. op(h ′) = op ∧ op(h ′ · ev) = op′′. This
implies op(h) = op(h ′) is true. As we show in the proof of Lemma 37 in this
appendix,

∀h, h ′ ∈ H : op(h) = op ∧ op(h ′) = op→ op(h · ev) = op(h ′ · ev)

holds. This implies that op(h ′ · ev) = op(h · ev) = op, which is a contradiction
to the assumption. Thus, there exists only one pair (q′, op′) that fulfils the
condition for a transition.

Lemma 37. Given two arbitrary g-histories h and h ′, it holds that

∀seq ∈ Ev ∗ : op(h) = op(h ′)→ op(h · seq) = op(h ′ · seq).

Proof. Let ev be an arbitrary g-event. By definition, it holds that

op(h · ev) = {cmp(h · ev , hc+) | hc+ ∈ Ch·ev}.

Using Proposition 4 it follows that

op(h · ev) = {cmp(h · ev , hc+) | hc+ ∈
∪

hc∈Ch

ins(hc, ev)}.

The same holds for h ′ · ev .

op(h ′ · ev) = {cmp(h ′ · ev , h ′
c+) | h ′

c+ ∈
∪

h ′
c∈Ch′

ins(h ′
c, ev)}.

294

op(h · ev) ⊆ op(h ′ · ev) :
Let (h, hc+) be an arbitrary element in op(h · ev). Consider a candidate hc ∈ Ch

s.t. hc+ ∈ ins(hc, ev), which exists by Proposition 4. Given that op(h) = op(h ′),

there exists h ′
c ∈ Ch ′ s.t. cmp(h, hc) = cmp(h ′, h ′

c). As we have shown in the
proof of Lemma 34 in this appendix, it then holds that

∃h ′
c,ins ∈ ins(h ′

c, ev) : cmp(h · ev , hc,ins) = cmp(h ′ · ev , h ′
c,ins).

Let h ′
c,ins be one of these candidate extensions. As h ′

c,ins ∈
∪

h ′
c∈Ch′

ins(h ′
c, ev),

it holds that cmp(h ′ · ev , h ′
c,ins) ∈ op(h ′ · ev).

op(h ′ · ev) ⊆ op(h · ev) :
This proof is analogue to the previous case.

Combining both cases shows that op(h · ev) = op(h ′ · ev) holds. By induction, it
follows that

∀seq ∈ Ev ∗ : op(h) = op(h ′)→ op(h · seq) = op(h ′ · seq).

295

296

	Abstract
	Zusammenfassung
	Introduction
	Basics of STMs and Correctness Conditions
	Transactional Memory
	Correctness Conditions
	Basic Notation and Terms

	Membership Problem
	Related Work
	The Membership Problem for Value Opacity is NP-Complete
	Comparison of Conflict Opacity and Value Opacity

	Correctness Problem
	Related Work
	The Correctness Problem for SSR- Is Decidable
	The Correctness Problem for OP- Is Decidable

	Discussion + Conclusion
	Summary
	Discussion and Future Work

	Proofs for membership:OP
	Proofs for correctness:ssr
	Proofs for correctness:OP

