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Abstract

The density functional theory (DFT) is a well established tool in both chemistry and solid
state physics for the calculation of structural, electronic and optical properties for a wide
variety of materials. By expanding on the DFT, for example by adding constraints to
the density or occupation (cDFT), one is able to also describe excited system properties,
which also sees ever growing applications. However, an often less explored area are time
dependent system properties like decay or transition times, as the calculation of dynamic
properties is generally more complicated and/or more computationally expensive as for
static ones. The increase of computational power in the last decades, however, makes it
possible to have a look at these properties for an ever growing number of systems. A
possibility to simulate dynamic properties are DFT based molecular dynamics (MDs), and
by extension the non-adiabatic molecular dynamics (NAMDs).

In this thesis both MDs and NAMDs as well as further supplementary methods are used
to determine specific dynamic properties in three different optically excited systems at dif-
ferent temperatures. For the oxirane molecule the photochemical decomposition is studied
with the focus on the excited state life times, their influence on the reactions as well as
the reaction yields. Reaction yields and lifetime are in good agreement with both theory
and experiment. The excited states responsible for the reaction show slight differences to
previous works.

The lithium niobate crystal is examined in respect to the bound polaron formation time
and its formation mechanism. The formation time, calculated to be between 50 and 75 fs,
is on the lower end of experimental values. The formation time was found to be strongly
dependent on the phase of the oxygen breathing phonon modes.

In case of the Si(111)-tetracene interface the triplet exciton transfer from the tetracene
layer to the silicon is studied. The introduction of a point defect to the passivating H layer
proved to be vital for the transfer by enabling a level crossing of the Si dangling bond state
via a sp? — sp?+p rehybridization. The transfer time was calculated to take several 100 fs
up to the picosecond range.

III






Kurzfassung

Die Dichtefunktionaltheorie (DFT) ist eine fest etablierte Methode in Chemie und Festkor-
perphysik zur Berechnung von strukturellen, elektronischen und optischen Eigenschaften
einer Vielzahl von Materialien. Auf der DFT aufbauende Methoden, wie beispielsweise
die constraint DFT (¢cDFT), in welcher die Dichte oder die Besetzungszahlen zusétzli-
chen Einschrinkungen unterworfen werden, ermoglichen es zudem die Eigenschaften von
angeregten Systemen zu betrachten; diese Methoden erfreuen sich immer zunehmender Be-
liebtheit. Ein jedoch selteneres Anwendungsgebiet ist die Simulation von zeitabhéngigen
FEigenschaften wie Zerfalls- oder Transferzeiten, da die Berechnung von solchen dynami-
schen Eigenschaften kompliziert und/oder aufwendig ist. Der Zuwachs an Rechenleistung
in den letzten Jahrzehnten macht es jedoch mdoglich solche Eigenschaften in immer mehr
Systemen zu berechnen. Eine Mdglichkeit diese dynamischen Eigenschaften zu simulieren
sind DFT basierte Molekulardynamiken (MDs), und in Erweiterung die nicht-adiabatischen
Molekulardynamiken (NAMDs).

In dieser Arbeit werden sowohl MDs als auch NAMDs zusammen mit weiteren unter-
stiitzenden Methoden verwendet, um bestimmte Eigenschaften von drei unterschiedlichen
optisch angeregten Systemen bei verschiedenen Temperaturen zu bestimmen. Im ersten
System, dem Oxiran Molekiil, wird die photochemische Zersetzung in Bezug auf die Le-
bensdauer der angeregten Zusténde, ihr Einfluss auf die Reaktion, sowie auf die Reakti-
onsprodukte untersucht. Die Verhéltnisse der Reaktionsprodukte sowie die Lebensdauer
der Zusténde entsprechen sowohl experimentellen als auch theoretischen Befunden. Die
elektronischen Zustdnde welche fiir die Reaktion verantwortlich sind unterscheiden sich al-
lerding leicht zu denen aus vorherigen Arbeiten.

Als zweites System wurde der Lithiumniobat Kristall untersucht beziiglich des Polaronen-
bildungsmechanismus und der Polaronenbildungszeit. Die berechnete Bildungszeit liegt
zwischen 50 und 75fs, was am unteren Ende der experimentell gemessenen Zeiten liegt.
Die Bildungszeit ist zudem stark von der Phase der ,,Atmungsmoden“ des Sauerstoffs ab-
héngig.

Als letztes System wird das Si(111)-Tetrazen betrachtet. Hier wird der Transfer eines
Triplet-Exzitons von der Tetrazenschicht zum Silizium untersucht. Es stellt sich heraus,
dass das Einbringen eines Defekts in die passivierende H Schicht notwendig ist um den
Transfer zu ermdglichen, wobei dieser durch ein ,levelcrossing” des ,dangling bond* Si Zu-
stands zustande kommt, welcher wiederum durch eine Rehybridisierung von sp? nach sp?+p
verursacht wird. Die Transferzeit des Exzitons betrdgt mehrere hundert Femtosekunden
bis in den Pikosekundenbereich.
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1. Introduction

Systems with excited electronic states are one of the cornerstones of modern technology.
From the information technology based on semiconductors over lasers to such apparently
mundane things as UV curable adhesive, all employ thermally or optically excited electronic
states. For many basic properties like the frequency of a laser a view on the properties
of the system in its geometric ground (and sometimes excited) state is often sufficient
— therefore most theoretical investigations are static. If, however, a structural change
causes a substantial change in electronic structure, or one is interested in a time dependent
parameter like excitation decay or phase transition times, a look at the whole dynamic of
the system becomes necessary.

Such changes in electronic structure can be caused by different things. A structural change
like a phase transition, a chemical reaction or just lattice vibrations can cause the electrons
to change their energy, impulse and position. The thermal or optical excitation process
usually has an influence on the forces acting in the system, which in return can cause
structural change, which then may cause electronic structure changes. Through these
changes the electron may then relax to a lower energetic state, which again can cause
structural changes. Last but not least an external influence like a time dependent electric
field can cause a change in electronic structure.

Having such a vast amount of interacting parts in a dynamic system leads to an abundance
of different phenomena which can occur in such a system. Depending on the phenomenon
and the size of the considered system, different methods of description of the excitation
and/or the dynamic can or rather have to be utilized. To simulate such dynamics the
density functional based molecular dynamics are a typical choice. Those are commonly
used for small systems and/or electronic ground states. In this work several phenomena
occurring during electron dynamics will be explored in different systems by using density
functional based ab initio molecular dynamics as main method for the description of the
systems. However, in contrast to the commonly used approaches, calculations spanning
several excited states with non-adiabatic switching between those states will be covered,
allowing the study of not only the movement of ions in excited electron configurations,
but also the electronic relaxation. First, the optical dissociation of the oxirane molecule
will be examined as a reference system, in which the influence of different excited states
onto the geometric structure of the molecule, as well as the electronic relaxation process
can be observed. As the second system the lithium niobate crystal, an optical non-linear
material with numerous optical applications will be examined. In detail the mechanics of
the polaron — a quasiparticle which influences the non-linear properties — formation, its
formation time and dynamics are studied, shedding light onto the influence of the lattice
vibrations on electron localization. With the insights gained by these two systems, at last
the exciton transfer between the silicon-111 surface and a tetracene layer is examined using
and comparing different descriptions, which not only applies the methods to a medium sized
system, but also covers a subject of high technological relevance, the hybrid solar cell.

This work is structured as follows: First the basics of the methods used in most or all of
the systems are explained in chapter[2] Afterwards, the different systems are examined one
by one. For each system, the system itself, the phenomenon to be observed and important
quantities are introduced. Following this the system in its electronic and geometric ground
state is modelled, and the gained information discussed. Then we switch to the time
resolved description of the dynamic system, where first the computational parameters and
the methods to analyse the phenomenons in the time domain dynamic system are explained.
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With all methods and parameters discussed, the results are shown and analysed, ending
with a summary of each system. After all systems are handled this way, each system is
summarized and the used methods are evaluated.
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2. Theoretical foundations

2.1. Periodic boundary conditions, Born-Oppenheimer approximation

Before going into detail for the specific methods a few approximations and simplifications
have to be made in order to make the many-particle problem of a solid solvable. A typical
solid consists of approximately 1023 particles®. A full quantum mechanical description
would encompass solving the Schrédinger equation for a Hamiltonian of similar size, i.e.
diagonalizing a matrix of rank N 3-10% (with N being the discretization), which is obviously
not possible. To solve this problem a reduction of the size is in order. Solid states are
differentiated into two groups; on one hand, the amorphous solids, and on the other one, the
crystalline solids. Amorphous materials do not have an ordered atomic structure and are
therefore difficult to describe. Crystalline solids, however, consist (at least at a temperature
of 0K) of periodically repeating ground structures called unit cells. These unit cells usually
contain between 1 and 1000 atoms. A first step in describing such a crystalline solid is to
reduce the problem to this unit cell. In order to do so, the Bloch theorem is employed: ¥l

U(r) = e*mu;(r) (2.1)

Where k is a wave vector and u; is a lattice periodic function. Instead of calculating the
wave functions for the whole crystal (with » — o00), r is confined to the unit cell and the
variable k is introduced, where k is chosen from the set given by the condition k-r € [0, 27].
This set of allowed k vectors is referred to as first Brillouine zone. ™ Within computational
numeric an infinitely dense set of k vectors cannot be used for obvious reasons, it has to
be discretized. In this context the discretized k vectors are also referred to as k-points.
The lattice periodic function has also to be discretized, where a common representation is
to expand the function in the plane wave basis. For an exact description of the function
an infinite amount of plane waves would have to be considered, which is again impossible.
Instead a sub set of plane waves is used, where the plane waves are chosen by their wave
number (i.e. their contribution to the kinetic energy of the electron), beginning with the
lowest ones. Bl The set is limited by an energy corresponding to the highest included wave
number, the so-called (kinetic-) cutoff energy. All later introduced methods for solving the
many particle problem employ both k-points and cutoff energy as essential parameters for
the accuracy of the calculations.

Until now the many particle problem was only reformulated and therefore exact. Now the
Hamiltonian H ({r;},{R;}) is simplified by an approximation. After rescaling the operator
to get rid of the units, the Hamiltonian has the form 14l

H 1 62 1 Me 82 1 ZkZl Zk

e Y R — - 2.2

Eo QZOT? 2ZM;€6R%+Z!W—@\+Z]Rk—Rl\ Z’ri_Rk‘ ( )
A k 1<J k<l i,k

It is apparent that the second term, which describes the movement of the ions, is dependent
on the ratio between electron mass m, and nuclei mass Mj. This ratio is of the order of 107°
and can be therefore discarded in most cases. As a consequence the energy is not explicitly
dependent on the nuclei positions Ry, they can be seen as fixed external parameters.
Therefore, two separate differential equations are obtained, one of the electrons in the
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potential of the fixed nuclei and one for the ion movement. This approximation is known
as Born-Oppenheimer approximation™ and is used in all following methods. For the sake
of clarification it should be noted that very often the Born-Oppenheimer approximation
is associated with an adiabatic development of the system, i.e. the system stays in its
quantum state, therefore the ions are moving on one potential energy surface. This is,
however, not necessarily the case, as will be shown in chapter 2.7 A switching between
states can be achieved while still treating the ion movement and electron dynamics only
parametrical dependent on each other. Thus a non-adiabatic development of a system can
be simulated while still obeying the Born-Oppenheimer approximation.

2.2. Density functional theory

After applying the Born-Oppenheimer approximation, the electronic system for a fixed
ionic potential has to be solved. As mentioned in the last chapter, solving the Schrédinger
equation requires the construction and diagonolization of the Hamiltonian, which in turn
requires a discretization of the Hamiltonian and wave function. If for a system with N,
electrons a basis set consisting of N basis states is chosen, the Hamiltonian has the dimen-
sion of N3Ne. With an interacting system even a small number of electrons would lead
to calculation times spanning years. To bypass this problem the density functional theory
(DFT), a wide spread procedure to describe solids quantum mechanically, was developed.
The basis for the DFT are the Hohenberg-Kohn theorems. The first Hohenberg-Kohn
theorem states that the electric potential of the ground state is explicitly assigned to the
electronic density p of the ground state. Following this, the ground state Hamiltonian is
also assigned to the ground state electronic density. The second Hohenberg-Kohn theo-
rem states that deviating from the electronic ground state density can only lead to higher
energetic configurations.® Combining those theorems, the ground state density can be
obtained by minimizing the functional of the energy depending on the electronic density
E[p] under the condition that the density corresponds to the number of electrons in the
system (i.e. [ p(r)dr = Ne). This functional is, however, not known, the density has to be
calculated on a detour. First the electron-ion interaction is separated from the functional,
since its dependence is known explicitly: Il

Een = (U Ve 0) = [ 0(0)p(r)dr = Ealo) (23)
With v being the potential of the ions. The energy functional is now given with

Elp] = Flp] + / vpdr (2.4)

Where F is the functional for the kinetic energy of the electrons and the electron-electron
interaction, which is, however, also unknown. To minimize this functional, a functional
derivative with respect to p is conducted with the constraint of the integral of the density
being equal to the number of electrons. By setting the resulting equation to zero, one gains
the Euler-Lagrange equation for the electron density:



2.2 Density functional theory

In order to actually calculate p usually the Kohn-Sham ansatz is employed. In the Kohn-
Sham ansatz the interacting system is replaced by a non-interacting one, which has to have
the same electronic density as the interacting system.®l The corresponding functional Fyg
only consists of the kinetic energy of the electrons. To achieve the same density the
external potential (which is the electron-ion interaction in the interactive system) of the
non-interacting system has to be modified. This potential is also referred to as effective
potential veg. Setting the Lagrange multiplierstl of the systems equal, one gains for the
effective potential:

v —v+6—F—5FKS
eff — 5P 5,0

(2.6)

The functional F' is then also separated into an interacting and non-interacting part, F' =
Frs + Fywyw. The effective potential is therefore given by

dFwwlp]

> (2.7)

Veft[p] = v +

With the effective potential the energy and one-particle wave functions can be obtained.
Since the substitute system is a non-interacting one, it can be solved by the one-particle
Schroedinger equation ®:

<—;V2 + Ueff[P]) ¢i = €iP; (2.8)

Neglecting the possible interaction between electron states, the resulting electron density
can be written as{l

Ne
p= Z s (2.9)

It is to notice that vey; is dependent on p, which makes the wave functions and therefore
the equation for the density dependent on p. Thus, the density can only be calculated by
self-consistent iteration. A suitable test density leads to an effective potential, which leads
to the KS-wave functions, which then lead to a new density. This procedure is repeated
until the density and wave function do not change any more.

That method can, however, only be applied if an expression for Fyyy is known. Typically
the problem is simplified by separating the energy of a classical interacting electron density,
the so-called Hartree-term:

1 /
Fyyw = Bt + Bye = 5 / / ’mdrdr’ + Exe (2.10)

The term FE,. is known as exchange-correlation energy and includes all quantum mechanic

!This assumption holds true if the system is describable using a single Slater-Determinant
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exclusive interactions between the electrons. The effective potential ist then given by:

p(r') ;o 0Bk
eff = d 2.11
Veff v+/,r_r,|r+ 5 (2.11)

Inserting this expression into equation one arrives at the Kohn-Sham equation, which
is solved consecutively with the density until no more change occurs: ¥l

1 2 p(?“/) / 5EXC
< 2 v /’T’—T"dr (5[? ¢ 6¢ ( )

Having the Kohn-Sham wave functions and density identified, the total energy can be
calculated using equation

E = FKS + EH +Exc + Ee-n
Ne

S (V2] 6n) + // d dr’ +EXC+/ (Mp(r)dr  (2.13)

%

Until now the electronic system is described with few assumptions. The term FE,., called
exchange-correlation functional, includes the pure quantum mechanical effects of the sys-
tem. This term is, however, unknown and has to be approximated. There are several
approximations for this term, which can be categorized in several classes, from which the
most used ones are the local density approximation (LDA), the generalized gradient approx-
imation (GGA) and the hybrid functionals. Hybrid functionals will be discussed in a later
section, the LDA is dependent only on the electron density and the GGA is additionally
dependent on the spacial derivative of the density. In the LDA the exchange-correlation
term is calculated on the basis of the homogeneous electron gas. This ansatz therefore re-
quires a certain homogeneity of the system; the density can only vary slowly B0 Since the
GGA also includes the derivative of the density this restriction can be circumvented and
inhomogeneous systems like molecules can be described. ™ Both LDA and GGA func-
tionals (as well as the DFT generally) are nowadays standard tools in chemistry and solid
state physics — which can be seen easily from the at least 27,927 publications published
alone in 2022 which employ DFT.H2

2.3. Molecular dynamics using density functional theory

With the DFT the ground state energy of a solid with a fixed ionic potential can be calcu-
lated. To go from a static ion configuration to a dynamic one, one has to incorporate the
movement of the ions. As the ions are comparatively heavy, quantum effects like tunnel-
ing are rare (see also Born-Oppenheimer approximation). Therefore, the ionic movement
is usually included by integrating Newtons equations of motion. This approximation is
also known as classical path approximation. 3l Integrating Newtons equation of motion
requires the calculation of the forces acting on the ions. Classically the force is given by
F; = 8 R Calculating this for each ion is rather costly, which is why instead the Hellmann-
Feynman theorem is employed: For any parameter A\ holds (under the condition that %—I/_\I

exists): 1416l
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) 0
— U|H|¥ v 2.14
e LT (2.14)
As the Hamiltonian is derivable analytically (see equation [2.13)), setting A = R; gives an

expression for calculating the forces and therefore the possibility to compute a molecular
dynamic (MD).

2.4. Simulation of the temperature

To incorporate the temperature into a MD the electronic and ionic system have once again
to be considered individually. In the electronic system the temperature can lead to exci-
tations of electrons from the valence band into the conduction band. As the temperature
is a macroscopic property of a system, which translates in a statistical distribution of mi-
croscopic properties, not all valence electrons are excited but only a specific fraction. The
excitation statistic for electrons is given by the Fermi-Dirac distribution, which describes
the occupation probability of the electronic states: i

W(E) = (2.15)

With W (E) being the occupation probability, E the energy of an electronic state, T" the
temperature, kg the Boltzmann constant and p the Fermi energy. Simulating such a statis-
tic is not always possible and will be explained in a later section. The statistic can, however,
be discarded in many cases: If isolators or semiconductors are considered, the valence and
conduction band are separated by a band gap, which (for typical semiconductors) is be-
tween 0.4¢V and 3eV. T At room temperature (300 K) the probability for a state which
is 0.3eV above the Fermi energy to be occupied is about 9 - 107°, therefore basically no
redistribution due to the Fermi distribution occurs, which is why the redistribution can be
neglected.

The ionic system also has to follow statistics for the temperature; in this case the velocities
have to follow the equipartition theorem. The temperature is a measure for the mean
velocity of the ions. Setting the thermal energy equal to the kinetic energy leads to: 18l

Z —mw? = By = Bp = —kBT (2.16)

A simple method to simulate the temperature is to assign the ions a random initial impulse
to fulfil equation [2.16] For this a random number for each spatial coordinate in the range
of [-1,1] is assigned to each ion. As the solid body should not move as a whole, the total
impulse has to be zero: ), p; = 0. This is not ensured by random numbers, therefore

the impulses are transformed equally to ensure this condition' 12 = p; — % ZN ;.

last the impulses are scaled with the scaling factor A = | /E 7 to fulfil equation [2.16|
kin

After this initial assignment no further control on the temperature is imposed. As with
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this restriction no energy can enter or leave the system, ensembles of trajectories using this
method are referred to as NV E ensembles (particle count N, volume V' and energy E are
kept constant). This model is suitable if very short timescales are considered or if generally
little heat redistribution is expected in the system. Besides the simple modelling this model
has the advantage of comparability, since once the starting impulses are generated one can
change different parameters in the calculations and compare them with exact the same
starting conditions. If, however, systems with more interactions or longer time scales have
to be considered this model is not sufficient. Furthermore, the random impulses do not
guarantee the simulation of a thermal equilibrium.

To simulate a thermal equilibrium the temperature has to be controlled during the MD.
The most simple ansatz for this is to scale the ion velocities after each ionic relaxation.
According to equation [2.16] the target temperature T, is reached if the current velocities

are scaled by 4/ TT(";). That leads to a system with a constant temperature. However, this

method is not practicable. On one hand, the repeated scaling overpowers the dynamic of
the forces in the system, on the other hand, oscillations of the temperature are “normal
in canonic or microcanonic ensembles.md A more realistic approach is to dampen the
scaling. One possibility for this is the Berendsen thermostat, which resembles a coupling
to an external heat bath. The Berendsen thermostat controls the scaling using a time
constant: 2021

ar(t) 1

o = ;(Tz —1T(t)) (2.17)
AT = ?(TZ —T(1) (2.18)

With 7 being the time constant. The lower equation is a discretized variant of the top
equation, where 0t is the relaxation time step. The scaling factor for the ionic velocities

is then given by A = \/ 1+ % (TT(zt) . 1). If 7 is chosen to be §t, this procedure resembles

the direct scaling of the velocities as explained above. In the limit 7 — oo the velocities
are not scaled at all, one gains a microcanonical NV E ensemble. Finite values lead to
a dampened control of the velocities and thus the temperature. As the temperature is
controlled the energy of the system cannot be constant, therefore ensembles which such
a temperature control are referred to as NVT ensembles (particle count N, volume V
and temperature T controlled). The Berendsen thermostat is able to simulate a thermal
equilibrium, however no canonical ensemble is reached as the Boltzmann-distribution of
the velocities is not necessarily fulfilled.? Therefore, the Berendsen thermostat is useful
to generate equilibrial starting configurations, or to conduct simulations where no exact
canonical ensemble is needed.

If a canonical ensemble is needed, another thermostat has to be employed. One thermostat
capable of doing so is the Nosé-Hoover thermostat3. This thermostat does not control
the temperature with an external heat bath, but introduces an additional internal degree
of freedom, an additional “particle”. The system with this “particle” will be referred to as
“extended” system S, while the “real* system S has the original number of particles. Both
systems are coupled to each other with the variable s: 192223
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2.4 Simulation of the temperature

F=r, di=35dt, §=s7r=5" s=5" (2.19)

These equations shows that s acts as a time scaling factor between the systems. Now a
“mass” @ and a “velocity” 5 is assigned to the additional particle in S. The particle can
also be influenced by a potential. The corresponding Lagrange function of S is given by:

mi O ~ 1 < ~
L= Z 7827“1-2 —-U(T) + 5@52 — gkgTolns (2.20)

The last term of this equation corresponds to the potential of the fictitious particle, which
is chosen so that a canonical distribution is reached in the System S. Using the Lagrange
function one can derive the equations of motion in S: 1924

. E 257
A= — 2 (2.21)

m; 52 5

. 1 .
i = o (Z mi§%i? — NdkaT(]) (2.22)

While these equations results in a canonical ensemble in S, the time steps in S are not
equidistant due to the time scaling s. To remove the explicit dependence on s the variables

are transformed back into the system S and simplified using v = %: 1922
F.
Fo= L — (2.23)
m;

4= TT(t) (T—1> (2.24)

These equations are known as Nosé-Hoover equations, which are solved using equidistant
time steps. It can be seen that () remains as a parameter. With ever larger values for ) the
system approaches the microcanonical limit, with smaller values for ) the influence of the
thermostat is strengthened and the forces acting in .S become more and more neglectable.
In order to choose @ correctly the effective relaxation time 7 is introduced with 72 =

%. For an adequate description of a system the reciprocal value 1 is chosen to be of
df "B10 T
the order of the characteristic frequency of the system, which brings the oscillations due to

the thermostat to an order equal to the oscillations in the microcanonical ensemble 1922l

It is to notice that the Nosé-Hoover formalism requires apart from the energy conservation
in the extended system S that the center of mass does not move P4 and that S is an ergodic
system, i.e. that each accessible mircostate is assumed by a system given enough time (or
more concrete, the time average of one system is the same to its ensemble average). [2225]
Especially for small or stiff systems this is not always the case, which leads to unphys-

ical oscillations when the thermostat is applied. 23 To circumvent this problem one can

couple the extended system S with another system S and build a chain of Nosé-Hoover
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2 THEORETICAL FOUNDATIONS

thermostats. The accordingly called Nosé-Hoover-chain formalism enables the description
for non ergodic systems. 23

2.5. Phonons

Besides using molecular dynamics, the phonons of a crystal can also be used to gain insight
on the dynamic of the system. As established in chapter the full description of a system
can generally be divided into two differential equations, one for the electronic system in
a fixed potential and one for the ionic system with stepwise constant electronic forces,

—33 ]\"}Z% + E(R))®(R) = e®P(R). E(R) is the total energy gained from DFT plus
k

the ion-ion interaction energy, >, %. Would one solve this equation, one would
gain the complete energy surface for the ions and thus could predict the behaviour of the
systems dynamics. Such a complete solution is rarely possible, instead a Taylor expansion

of the energy around the equilibrium coordinates is done:

OE 1 OE
E=F . — e Ut o+ 2.25
T R T 229
bl ) 2
o

a,a’

Here, the uy  are the displacements of the kth atom in direction « from its equilibrium
position. The constant zeroth order term is of no concern and can be renormalized, the first
order term is 0, as the first derivative of the energy are the forces, which are by construction
0 at the equilibrium position. Omitting the third and higher orders, the second order term
describes collective oscillations in the crystal, the so-called phonons. ! By assuming a plane

wave solution for the oscillations and by Fourier transforming the force-constant matrix
kK
il - 126]

a,a!

(see equation [2.25)) one arrives at following eigenvalue equatio

ke !
Da:a’(q) Emk,aq — w?n,qemk,aq
. ko k! _ 1 kok! —igra
vith D@ = g 2 e (2.26)

Here, the dynamical matrix D, the phonon wave vector ¢, the polarization vector €, aq
and the phonon frequency w are introduced. From this equation one can see that each
phonon mode has a specific frequency, and that all atoms experience displacement in one
phonon mode. The phonon thus are indeed collective oscillations of the atoms. Solving
this equation one gains 3NV, phonon modes which are linear independent of each other.
Any displacement can therefore be decomposed into the phonon modes. It is to note
that like electrons the phonons also show particle character, their energies are quantized
via their frequency. Unlike electrons however, phonons are bosons, meaning they are
not subject to the Pauli principle and one mode can be occupied several times, with a
higher occupation relating to higher amplitudes of the oscillations. B728 This results in an

other occupation probability, the Bose-Einstein distribution n = —1— . H29  Since this
ekT —1
distribution is dependent on temperature and frequency, one gains insight in the dynamics,

as high frequency modes are more probable to occur at high temperatures.
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2.6 Excited states within density functional theory

While diagonalizing equation [2.26| is straightforward from a computational point of view,
the challenge in computing phonons is the construction of the force constant matrix /. One
possibility is to manually displace the atoms in a periodic manner to explicitly calculate the
needed derivatives. This method is referred to as frozen phonon approach. B%31 However,
it requires the use of supercells to access different phonon wave vectors. 2831521 A more
elaborate approach is to consider the variation of the potential as a perturbation of the
system. Following the Hellmann-Feynman theorem, the second derivative of the energy is
given by: 32

0’°E 02V (r)

B op(r) V() O*En(R)
OR:0R; | OR;0R,

Pt | R ok, OR0R,

(2.27)

With R being nuclear coordinates, V' the electron-ion potential and Fx the ion-ion inter-
action. This equation includes the linear response of the density, 86‘7 1(;). The linear response
can be evaluated by doing a Taylor expansion for the density, the Scﬁrb’dinger equation and
the effective potential (equations and for the disturbed system and dropping
each term after the first order. By calculating the disturbed wave functions and disturbed
energies using first order perturbation theory one arrives at a self-consistent set of coupled

equations for the disturbed values: B2

Ne
Ap(r) =2 ¢i(r)Adi (2.28)
<—;V2 + Veff — 6i> A¢z = — (Aveﬁr — Aﬁi) ¢z (2.29)
Ap(r' Eye
Aveg = Av + / P(r’) dr’ + i Ap(r) (2.30)
| =] op p=p(r)
Ag; = /d)fAveffgi)idr (2.31)

Where the A designates the disturbed quantities. While these equations are coupled and
have to be solved self-consistently, they bear the advantage to be projectable onto different
phonon wave vectors, which on one hand, again simplifies the solution of the equations
and on the other hand, allows access to individual phonon modes without the need of a
supercell. B2 Each phonon calculation in this work uses this perturbation theory approach
and was calculated using the PHonon code from QUANTUM ESPRESSO. 3343

2.6. Excited states within density functional theory

As already shown in its derivation, the density functional theory is a ground state the-
ory. However, if we want to describe a full electron dynamic also systems with excited
electronic states, for example due to optical excitation, have to be considered. To de-
scribe the properties of excited states in general perturbation approaches like the GW
approximation or the time dependent DFT can be used. P38 However, these methods are
numerically expensive and therefore only partly useful for dynamics which encompass large
time frames with many relaxation steps. Nevertheless one is able to gain insight on those
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states approximately with the DFT by introducing small modifications.

One possibility is to look at a charged system. If one want to occupy the lowest unoccupied
state (LUMO) in a system, one can use a system with an additional electron, thus the
formerly unoccupied state is now occupied. It has to be stressed that this is of course
no excitation of the system, as the number of particles is not conserved. This kind of
description is only possible if the “origin® of the electron would have little or no influence
on the system, especially on the excited electron. A possible origin for the electron would
be deep trap states which usually only interact locally if at all with the system. Due to this
restriction this ansatz is very limited in its use. It is to note, that by adding one electron to
a neutral system one usually arrives at an uneven electron number and an overall spin in
the system. This requires switching from the Kohn-Sham equations (equation to the
spin-unrestricted KS-equation, where the one-particle wave functions, and (potentially) the
exchange-correlation functional are spin dependent. Furthermore, another restriction has

to be fulfilled, the integral over the spin density m(r) = va; (bj - vail (bf has to equal the
overall spin. 3D While this method is quite restricted it is by no means without use; most
notably one is able to gain an estimate of the excitation energy by adding and removing
electrons. The first excitation energy is given by the energy needed to remove one electron
from the system (ionization energy) added to the energy the system gains by adding one
electron (electron affinity). This results in Eex = E(N + 1) + E(N — 1) — 2E(N), where
N is the number of electrons in the ground state and E are the respective total energies.
This method is also referred to as A-scf. 38l

A more flexible possibility is the usage of the “constrained” density functional theory (c-
DFT). While DFT aims to describe the ground state, c-DFT can access excited states.
¢-DFT is an umbrella term for DFT methods which have to fulfil one or several secondary
conditions during the minimization of the energy, therefore a “ground state with additional
restrictions is calculated. B%40 These restrictions can take various shapes, in this work the
constraint of certain KS states being occupied and total magnetizations is utilized. To
describe excited states by special KS states an additional condition for the occupation
numbers is introduced. The occupation numbers show which (single-particle) electronic
eigenstates are occupied, and are introduced to the DFT at the calculation of the electronic
density: B142l

Nks

Ne
P:Z|¢i’2 — PZZfi|¢i|2 (2.32)

Where f; are the occupation numbers for the eigenstates which can have values between
0 and 1. In the case of “normal“ DFT it holds f; = 1 if ¢ <= N, and f; = 0 otherwise.
The density is therefore constructed in a non-Aufbau scheme, this method is sometimes
also referred to as A-scfP2l. To avoid confusion with the A-scf excitation energy the
terminology ¢-DFT will continue to be used. By changing the values for f; one is able to
describe different excited states within c-DFT. An one-electron excitation from the highest
valence band to the lowest conduction band for example is given by:
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2.7 Interband transitions

1.0 i< N,
0.0 i=N,

=g (2.33)
1.0 i=N.+1
0.0 i>Ne+1

The constraint to a certain magnetization is a variant of this method, where consecutively
the highest occupied band of one spin channel is emptied and the highest unoccupied band
of the other spin channel is filled, until the desired magnetization is reached. It has to
be emphasized that this description is only an approximation. Strictly speaking, the KS
eigenstates of the DF'T have no physical meaning except for resulting in the correct electron
density by summation. However, by the means of empiric observation it could be shown
that the KS one-particle states can approximate the true states of the system. Especially
for low excited states the c-DFT produces reliable results. ¥ For example ¢-DFT shows
good results in describing Indium nanowires on silicon™3 organic dyes#¥ and Rydberg
states. 9 Furthermore, c-DFT enables the access to higher excitation and to specific states,
like a triplet excitation. Similar to A-scf, c-DFT also allows the calculation of excitation
energies, where the excitation energy is given straightforward as Eiextrmex = E*(N) —
E(N), where E*(N) is the total energy of the ¢-DFT excited state, and E(IN) the total
energy of the ground state. 8 However, since ¢-DFT is based on further approximations,
the A-scf excitation energy, if available, is usually more accurate. The ¢-DFT, DFT and
molecular dynamics simulations conducted in this work are calculated using the QUANTUM
ESPRESSO pw program package. B34

2.7. Interband transitions

With the possibility to describe excited states one can principally conduct molecular dy-
namics for optically excited system. However, one excited state does not describe the
whole excitation dynamic. For a typical optical excitation the electron is not excited to
the lowest conduction band, but can reach energetically higher states depending on the
excitation energy. The excited electron then begins to relax, where on one hand, its state
cross energetically lower states and on the other hand, the electron can “hop* to other
states. By the means of these processes the electron relaxes after a while to the lowest
state in the conduction band. Usually, the electron stays in this state for a considerably
longer time than in the higher states, as the band gap to the ground state is considerably
larger than to the other states. B7l This leads to the fact that most effect due to the optical
excitation happen in this first excited state. In photo chemistry this finding is referred to
as Kasha’s rule: The electrons in molecules relax fast and without emission to the lowest
excited state. 47

In order to go beyond Kasha’s rule and to describe the transitions directly one can use
the Schrodinger equation, in which the nuclei potential is set to be fixed according to the
Born-Oppenheimer approximation:

m;!‘m = Hq(r,R(t)) |V) with |¥(r,R,t)) ch l6(r, R(2)))

(2.34)

15



2 THEORETICAL FOUNDATIONS

Here |¥) is the many-particle wave function and H(r, R(t)) the electronic Hamiltonian
which depends parametrically on the positions of the ions R. The many-particle wave
function is expended in the bases of its orthonormal eigenstates ¢, and projected onto a
single state: 849

m%zq(ﬁ)l%(rﬂ(ﬂ» = Ha(r,R(t) Zc] )6 (r, R@®)) | (%] -

J
= ihc, = Y ¢ (ij —m<¢k|8tj>> (2.35)

J

The matrix element Vj; is given by (¢, |Hel| ¢;). With this equation the occupation num-
bers ¢ are developed, which are the probabilities to find a system in the given electronic
state out of a set of evenly prepared systems. The specification of an ensemble of systems
is important, as only a statistical statement for the whole quantum mechanical ensemble
is given, and no statement for the occupation in a single MD trajectory is made. This
means that on one hand, for the complete description of an excited dynamic a statistical
analysis of several pure state trajectories has to be conducted, and on the other hand, a
rule has to be found for the switching of single trajectories between pure states in a way
that equation [2.35]is fulfilled.

One such rule is Tully’s fewest switches surface hopping (FSSH) algorithm. The idea behind
this algorithm is to have the trajectories jump as little as possible between the states.
Assuming the opposite shows the reason for that: If many trajectories oscillate between
the states, the movement of the particles is governed by a mean force, as the forces of the
states alter as well. This behaviour is, however, unphysical, since as soon as a particle
enters a region of weak interaction, it should behave according to the state it had while
entering this region. ¥8 If one would use the Schrédinger occupation probabilities directly
as hopping probabilities, the trajectories could also switch states in this weak interaction
regions. To circumvent this problem the constraint of switching as little trajectories as
necessary is introduced — if the occupation probabilities do not change, the trajectories
will not change either. With this condition the probability for a single trajectory to hop
to another state is given by: H8l

bip/At
Ak

) e

Here the ay; are the elements of the density matrix which is constructed with ay; = cicj.
The hopping probability is therefore directly governed by the interaction of the wave func-
tions at the specific time point as seen in the quantity by;.

with

Pk—)j:

by = 2 ( (akzvkl) <akl <¢k

While the FSSH algorithm itself is now described completely, it can not be used directly
for DFT based MDs, as neither the multi-particle wave functions nor their eigenbasis are
known. A typical ansatz is, analogous to the Hartree-Fock theory (see chapter [2.8.3)), to
approximate the multi-particle wave function with the Slater determinant of the KS single
particle wave functions. Since the KS-eigenvalues are already used to approximate the
many particle eigenvalues (like in the case of band structures), this approximation seems

16
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reasonable. If only states from a single DFT calculation are used, it further simplifies the
numerical analysis. The KS-wave functions are orthogonal and diagonolize Hg), therefore
Vi simplifies to dger, and the product of Slater determinants simplifies to a scalar prod-
uct of one-particle orbitals.® This method is a wide spread tool for the calculation of
non-adiabatic MDs. Y However, it lacks a direct calculation of the excited states, and the
forces used to develop the trajectory stem from the ground state and are therefore inde-

pendent from the excited state, an approximation also known as “neglect of back reaction
(NBRA). B

In order to describe the excited states more accurately and go beyond the NBRA approx-
imation, in this work the excited states are calculated directly. As already shown, c-DFT
calculations are capable of doing so. As these calculations are independent from each
other, the wave functions do not stem from a single basis and are no longer orthogonal.
Expanding the Schrodinger equation with a non-orthogonal basis set results analogous to

m in: [B152]

ihZSkjacglft) - Z(ijm<¢k|a(;?>> (2.37)

Where Sj; = (¢r | ¢;) represents the overlap matrix. This equation is solvable, however it
is more complicated and hard to interpret. Therefore, one usually performs a transforma-
tion to orthogonalize the orbitals. Here the orthogonalization chosen is the orthogonaliza-
tion in adiabatic molecular orbitals (AMO). As a first step, the non-orthogonal (diabatic)
Hamilton matrix is constructed:

Edia 4 Edia
HPMO = %S@- (2.38)

With Egia are the total energies of the corresponding c¢-DFT calculations. Using this
matrix, the transformation matrix 7" is constructed as solution to the following eigenvalue
problem, and then used to transform the wave functions: B4

HPMOT — gEAMOT gAMO _ {iag(AMO) (2.39)
| gAMOY = o) T (2.40)
Here ¢AMO are the eigenvalues (eigenenergies) of H AMO “\which is the Hamilton matrix in

the orthogonal (adiabatic) basis. With this transformation Vj; again simplifies into a delta
function and the Schréodinger equation is again directly solvable.

In practical application for a trajectory one ionic relaxation step is conducted and the wave
functions for both start- and end position are calculated using c-DFT calculation and the
scheme explained above. The scalar product is calculated as a finite difference between the
Slater determinants of those positions. After the transformation the Schrodinger equation
is solved, the occupation numbers developed, and the hopping probabilities are computed
using the FSSH algorithm. Using random generated numbers it is decided whether the
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trajectory hops to a different state (and to which). The now occupied state is also referred
to as active state. The forces of the active state are then used for another ionic relaxation
step, and the procedure begins anew.® A graphical summary of the surface hopping
procedure is shown on the title page of the theory section (p. 4). The surface hopping
calculations conducted in this work were performed using the (slightly modified) LIBRA-X
program package. 5 The modifications are covered in section

2.8. Localized states in density functional theory
2.8.1. Problems of the density functional theory

As already seen in previous sections, the density functional theory can be principally exact,
but the exchange-correlation energies have to be approximated and there are restrictions
due to the numerics, like the choice of the basis set. This leads to errors and problems, of
which the most relevant for this work, the delocalization error, will be explained in further
detail. The delocalization error is an umbrella term for different effects which makes
strongly localized electron densities difficult to describe in DFT, leading to the tendency
for the density to over-delocalize in DFT. One such effect is due to the basis set. Usually
the KS equations are not solved in real space but in the reciprocal k& space. This is done
since crystals are periodic structures, what, according to Bloch’s theorem, leads to wave
functions consisting of a lattice-periodic function and a phase factor. Therefore, plane
waves are a natural choice for the basis set. As already stated, only a limited number
of plane waves can be considered, and low wave numbers are preferred over high wave
numbers. A strong localization in real space, however, corresponds to a delocalization in
reciprocal space, meaning that many plane waves are needed for the description !, making
the basis set a limiting factor for the localization. This problem is a minor one though, as
it can partially mitigated by the usage of fitting pseudo potentials and a sufficiently high
cutoff energy.

Another more fundamental problem poses the self interaction error (SIE). As the name
states, it is an error due to an unphysical interaction of the electron density with itself. The
cause for this error lies in the Hartree term. The Hartree term Ey = 1 [ %drdr’
represents the classical Coulomb interaction between the electrons. This term is only
dependent on the whole density p, there is no possibility to differentiate between the
single electrons. Therefore, one electron can interact with itself, the additional Coulomb
repulsion leads to the delocalization of the electrons. 2354 Principally this error should be
compensated by the exchange-correlation functional; however, since this functional is only
approximated this compensation does not occur fully. There are methods to counteract
this error explicitly like the Perdew-Zunger correction.P3 However, those methods are
often numerical unstable and/or have missing error compensation. 561 This is why usually
other methods are used to compensate the SIE. Two of them, the DFT+U method and
the hybrid functionals, are explained in the following sections.

2.8.2. DFT+U

The DFT+U method is based on the Hubbard model. The Hubbard model is a tight
binding model for solid states and describes electrons which are localized at atomic orbitals
placed in a fixed lattice. These electrons are tightly bound, which means that there is
no long range interaction between the electrons. The electrons experience only an “on-
site” electron-electron interaction (corresponding to a potential in the Hamiltonian), and
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2.8 Localized states in density functional theory

a nearest neighbour interaction which includes the possibility for one electron to “hop® to
an adjacent site (corresponding to the kinetic energy of the electron). Using the second
quantization procedure, the Hamiltonian can be written as: 2758l

Hygw = UanTnu—t Z CZUCJU—i-hC) (2.41)

<i,7>,0

The indices < 4, j > include all nearest neighbour pairs, n;t and n;| are the spin dependent
number operators at the i-th atom and c , and c¢; , are the spin dependent creation and
annihilation operators. t scales the amphtude for the electron hopping, while U controls
the strength of the on site interaction. The ratio between U and t dictates the eigenenergies
and electron distribution. 8l

The idea of the DFT+U method is to incorporate an explicit on site interaction correction
to the regular DFT calculation (the U term in the Hubbard model). The ¢ term is not
included explicitly, the kinetic energy of the electrons is described well by the DFT. This
correction is included by adding the site dependent U term and subtracting any on site
interaction (also called double counting term) due to DFT. A general form for the corrected
energy of the system is given by: B8l

Eprrulp] = Eprrlp] + b {15} = Bac[{n'"}] (2.42)

With Eppr[p] being the energy of the regular DFT calculation, Epyp[{n!? ,}] the energy
due to the Hubbard-U term (which is dependent on the occupation matrices of the localized
states {nl? }) and Ey. is the on-site energy included in the DFT calculation (which is
dependent on the number of localized electrons). The occupation matrices of the localized
states are constructed using the projection of KS wave function onto a localized basis set,
atomic orbitals for example: nifm, = Zk,u 1, < T }qulm gy> As the Hubbard model is
only applicable for strongly localized states, the correction is also only applied to electrons
which have the tendency to localize strongly, namely d and f electrons. The other electrons
are usually more delocalized and therefore not subject to Hubbard U corrections and are
described by the means of usual DFT.

The exact form of Ey, and Ey. is not set in stone, there is variety especially for the double
counting term. An often used option is to compare the U term with the Hartree-Fock theory
(see below), in which the on-site electron-electron interaction is written as: 58]

1
EHUb[{n{nm’}] = 5 Z {<m7 m” "/:Se‘ m m/”> nmm’nrln”(:n’”
{m},o.1

+ ((mym" [Veo| m/,m") — (m,m" |Veo| M ,m')) nl . iml2, ///} (2.43)

mm m''m

Here V. is the electron-electron Coublomb potential. The double counting term has the
form: B8l
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Eae [{nh}] = {[;Inf (nf—1) - ‘]21 [n” (n” - 1) +plt (n” - 1)} } (2.44)

I
With U being again the on site interaction and J the exchange interaction (which is
included in DFT by means of the exchange-correlation functional).

Using a multipol expansion of the electron interaction as well as a mean for the interaction
integrals the Hubbard term can be written as: B8

(m,m" [Vee| m',m"") = Zak (m,m/,m",m") Fk (2.45)
k
1
FO =U= m Z <m,m/ H/ee‘ m,m’> s (246)
m,m/’
F? 4 pt 1
T a2 (e Veelmom) (2.47)
m#m’,m’

Here F' are the radial Slater integrals of the Coulomb interaction and the a* products
of Clebsh-Gordan coefficients (which are only dependent on the angular part of the wave
function). Depending on the azimuthal quantum number of the state m, only a limited
number of Slater integrals is needed (F°, F2?, F* for d electrons and additionally F° for f
electrons).

This formulation of the Hubbard correction is invariant of the rotation and therefore inde-
pendent on the choice of basis set. P However, it is complicated as two parameters, U and
J, have to be optimized. In this work a simplified variant is utilized where J is neglected,
only the 0-th term of the multipol expansion is considered. This also means neglecting
the exchange correction, which therefore is only applied at the level of the DFT exchange-
correlation functional. The resulting inaccuracies can, however, often be compensated be
adjusting the U parameter accordingly. This result in following expression for the energy
correction: B8]

Ey [{nf?,}] = BEuw — Fac
UI Io Io
= Z7Tr[n (1 —nl9)] (2.48)
I

Choosing the localized orbitals in a way that the occupation matrices are diagonalized it
holds:

By = %Z Z ATT (1= 27T (2.49)

I,o

Here )\Z-I" are the eigenvalues of the occupation matrices. This equation shows that the
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Hubbard energy is minimized if the localized orbitals are either completely occupied (1)
or unoccupied (0). Usually this leads to a stronger localization of the electrons and thus
counteracting the self interaction error. In explicit, if an orbital is more than half occupied
beforel tJhe Hubbard correction is applied, it tends to be occupied fully after and vice
versa, 100

This model has U as its only parameter to be chosen. The value for U can be adjusted
manually to reproduce experimental results like the electron paramagnetic resonance spec-
trum. Alternatively U can be chosen in a way to counteract another inherent error of
DFT, the derivative discontinuity error. The derivative discontinuity error describes the
wrong behaviour of the DFT total energy in respect to a fractional electron number. In
reality the energy would have to change piecewise linearly with discontinuities at integer
electron numbers. DFT, however, predicts a quadratic behaviour. 6162l Since according to
Janak’s theorem the KS eigenvalues are equal to the derivative of the total energy in regard
to the occupation numbers, 83 the derivative discontinuity error causes the band gap to
be underestimated.82 As it can be seen in equation the Hubbard-U correction also
shows a quadratic behaviour with changing fractional occupation (of the localized states).
With a fitting choice of U one can reproduce the piecewise linear behaviour of the energy
and thus increase the band gap. 5859

In summary DFT+U is able to describe localized states better than plain DFT and pre-
dict the band gaps and energies more precise. In some cases (like NiO and LayCuQOy)
using DFT even results in qualitative wrong results while DFT+U describes the system
accurately. 6465

2.8.3. Hybrid functionals

Another method to better describe the localization are hybrid functionals. In contrast to
the DFT+U method the localization is not forced explicitly, but rather a certain quantum
mechanical aspect, the exchange interaction is described more accurately. The exchange
interaction is a pure quantum mechanical effect due to the indistinguishably of identical
particles. For fermions the many particle wave function is antisymmetric, it changes sign
upon the exchange of two particles. However, if two identical particles are swapped, the
wave function remains the same, which means that the wave function has to be equal to
zero. Therefore, there can be no two fermions which occupy the same quantum state, a
fact known as Pauli principle. 8967 Thig results in a repulsive “force’ between the fermions.
Since electrons are also fermions they experience a repulsion both to the Coulomb interac-
tion as due to the Pauli principle. Since the DFT does not use many-particle wave functions
let alone their symmetries, the exchange interaction is not described intrinsically in the
DFT and has to be approximated in the fittingly called exchange-correlation functional.
As basis for the approximation (in the LDA approximation) the exchange interaction of
a homogeneous electron gas in dependence of the electron density is used. However, this
approximation is not valid for all systems, it fails especially for highly localized electron
densities (which by definition break the assumption of a homogeneous density). That
problem can be bypassed by using hybrid functionals, which include the exchange interac-
tion explicitly. In order to explain this in more detail, the Hartree-Fock theory has to be
discussed.

The Hartree-Fock theory is a method to (approximately) solve the many body prob-
lem of several electrons in a fixed potential, namely HVY = FEV¥ with H =
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SN ( o Ag — ZK |Tk RK| + 3 Zl Ttk m o |) One starts with an ansatz for the many
particle wave function. This ansatz consist of a product of several-one particle wave func-
tions. To include the antisymmetry of the wave function a Slater determinant is em-
ployed: 68l

Yr(r)xi(ms)  Yo(ri)xe(ms) - Yn(ri)xn(ms)
- Y1 (7“2)?<1(ms) 1/J2(7’2)>:<2(m8) : ¢N(T2)?<N(m8) (2.50)
Y1(ry)xi(ms) a(rn)xz2(ms) -+ PYn(rnv)xwn(ms)

Here the 9 represent the spacial part of the one-particle wave functions and the y the
spin part of the wave functions. Both spacial and spin part are orthonormal, it holds
< ik >= dik, < Xilxk >= dik. Since the Hamiltonian can act only on two spacial parts
of the wave functions at once, the calculation of the expectation value separates into a sum
over integrals over one to two one-particle wave functions: Ml

2
E= PO KUAGY <—h2n%e’“ (Tk)) Ui () dPr,
+5 g ) ¢k(7"k)*¢l(7”l)*7|rk€_27nl| Vi (re) i (r) d*rpd®ry
— 5 Ykt Osis f1/’1@(7“1)*11)1(7“16)*ﬁ¢k(rk)¢l(rl)d3rkd37"l (2.51)
This energy eigenvalue is minimized using Ritz’s variation principle with the condition

of orthonormal one-particle wave functions. The minimization holds the Hartree-Fock
equation: 1691

h2A . 1 ) )
2me (T) 2 Zk:/l/}k(r )mwk(T )d37” 1/}1(7')

n(r’)
=/ =

Sksl/% \T—r’! et = eth(r) (2.52)

The upper row describes the kinetic energy of the electrons, the ionic potential as well
as the classical Coulomb interaction (Hartree-term). The lower row stems from the anti-
symmetry of the wave function and is called Fock exchange term. It is to notice that the
electron corresponding to the wave function 1; does not interact with the other electrons
individually, but rather as a mean potential. Since the equation for the one-particle wave
function v; include all other v as well it can be seen that these equations have to be
solved self-consistently.

By construction, the Hartree-Fock theory includes the exchange interaction. However,
there are also disadvantages to this method. In contrast to the DFT, which can principally
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2.8 Localized states in density functional theory

find the exact ground state energy, the Hartree-Fock theory can not, as the choice of a
specific ansatz in most cases can not represent the correct wave function. Therefore, the
ground state has always a higher energy than it would have in reality. ™ Furthermore,
the electrons-electron interaction occurs via the bare Coulomb potential rather than via
a screened one. This unscreened potential leads to an overestimation of the band gap. !
Last but not least, the probability to find an electron at a specific place is independent
on the probabilities of the other electrons, as they only interact due to a mean potential.
Therefore, two electrons can exist close to each other without experiencing a stronger
Coulomb repulsion. This can lead to a stronger localization of electrons within the Hartree-
Fock theory. 7273l

Hybrid functionals now combine the Hartree-Fock theory with the DFT. Formally the
exchange part of the exchange-correlation functional of DFT is removed and replaced by
the exact exchange of the Hartree-Fock method. In practice first the one-particle wave
functions are calculated and optimized as Kohn-Sham wave functions within DFT. Those
optimized functions are used for a single iteration for the self-consistent Fock-Term. The
therefore corrected wave functions are then again optimized with DFT, this procedure is
repeated self-consistently. Since the DFT tends to underestimate the electron localization
(and underestimate the band gap) and Hartree-Fock tends to overestimate the electron
localization (and overestimate the band gap) the combination of both can cancel out both
errors. TU74 Typically not the whole exchange part of the DFT functional is replaced, but
only partially. This mixing factor between DFT exchange-correlation functional and exact
exchange, often chosen at around 25 % exact exchange, holds another possibility to further
optimize the system.

Results and discussion

For the full description of an optically excited system, several steps have to be taken into
account. First, there is the excitation of the system itself, which is an interaction of an
electromagnetic field with the solid, which elevates one or several electrons to excited con-
figurations. Second, the electronic and structural relaxation occurs, leading to a lowering
of the now occupied electronic eigenenergies. Third, the electrons may further relax by
hopping to a lower electronic state, which in return triggers the second step again. At last
(at least if the temperature is not taken into account), the excited electrons hop back to
their ground state, and the system relaxes.

This relaxed configuration is, however, not necessarily identical with the initial ground
state of the system, as the relaxation in excited states may lead the system into a local
minimum, or might right out permanently change the system by breaking bonds. For each
state in which the system resides for a prolonged amount of time, the relaxation process
may lead to several phenomenon, like the formation of polarons, excitons or magnons.
This vast amount of interactions makes it difficult to describe the full excitation process;
for some systems the validity of the commonly used methods to describe the process is
questionable, for many more systems the computational costs are far to high.

Therefore, a compromise has to be made: The more effects one wants to include, the easier
to describe the system has to be — the main aspect of this being the amount of atoms in
the system. For the first discussed system only the interaction with the light itself is cut
from the description, the whole hopping and relaxation process is included. In order to do
so, a sufficient small system needs to be chosen: The oxirane molecule.
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3. First reference system: Oxirane?|

3.1. Introductions

As a first reference system on which electron dynamics and their influence on the systems
structure are investigated, the oxirane molecule is studied. Oxirane, also known as ethy-
lene oxide (C2OHy), is an epoxite with a ring consisting of two C and one O atom, and
two H atoms each as appendices to the C atoms as shown in figure [1| (leftmost picture).
Oxirane sees some industrial applications; it is a raw material for several other chemi-
calsf8 and its poisonous properties, for example, are used for sterilization purposes. 7
However, the property which is of interest for this work is its reaction to light exposure,
the photochemical decomposition. If oxirane is exposed to light with a wavelength lower
than 185 nm, it decomposes into its components. This decomposition has already been
studied experimentally as well as theoretically, making it a good candidate for the test of
the methods introduced in chapter 7881 From a computational point of view this system
also bears several advantages: Oxirane is a small molecule, which reduces the computation
time, which again enables the consideration of longer molecular dynamics or more excited
states. Furthermore, as a single molecule there are no periodic boundaries like in a solid
which have to be taken into consideration, which is why there is no dispersion of the bands
and only one k-point has to be calculated — a circumstance which proves important for the
surface hopping discussion later in this work.

From the experimental side, the photodecomposition has been studied by identifying the
end products of the photoreaction via chromatography. Kawasaki et al. analysed the ratios
of the end products, and concluded that the reaction path for the decomposition is
CoH4O + Av — CH3CHO — CHg + CHO, which confirmed an earlier postulation from
Gomer and Noyes. P80 This reaction is shown in figure

L
L 4
> L
L 4
v Q’
v

ring opening H transfer C-C bond breaking

Figure 1: The Gomer-Noyes mechanism mainly responsible for the photochemical decomposition of

oxirane: After an optical excitation the C-O-C ring opens, followed by a proton transfer and
ends by a C-C bond breaking.

For the theoretical evaluation of the photoreaction two works are of particular interest. Bin
et al. calculated the reaction paths with the lowest barriers for the ground state and first
excited state using the “state-interaction state-averaged spin-restricted ensemble-referenced
Kohn-Sham* method (SSR).IﬁI This method employs a weighted average over different
(fractional) occupations and is therefore a multiconfiguration method. That enables a more
accurate description of the system, as open shell systems can not be fully described by a

2The results of the following section were published in Ref.
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3 FIRST REFERENCE SYSTEM: OXIRANE

single Slater determinant, thus methods as Hartree-Fock and DFT can only approximate
them. &2

Tapavicza et al. studied the photodecomposition by the means of time dependent DFT
(TD-DFT) molecular dynamics and potential energy surface (PES) hopping using Tully’s
FSSH and the Landau-Zener method. 8 While the later one is roughly explained in chap-
ter time dependent DFT is a method which expands on the DFT by the usage of
perturbation theory. Using a small, time-dependent perturbation, TD-DFT calculates the
linear response function, from which the excitation energies are extracted. For a more
detailed explanation of TD-DFT the interested reader may refer to Ref. 83l

Both SSR and TD-DFT are computational expensive methods and can not be used for
large systems. c-DFT is not expensive, but does not have a rigorous theoretical founda-
tion. The application of ¢-DFT to oxirane therefore serves as a kind of “benchmark® for
the ¢-DFT method as realized in the QUANTUM ESPRESSO pw code 334 (at least for
molecules). The following part is structured as follows: First the energies of the ground
as well as the first three excited states (Sp to S3) are calculated and compared with other
methods. Afterwards ¢-DFT is used in conjunction with molecular dynamics and Tully’s
FSSH algorithm to study the photodecomposition on a non-adiabatic level, identifying
the prominent mechanisms, the states responsible for them, as well as the time scale on
which the reaction occurs. Hereby the temperature is also taken into account in the NV E
ensemble as well as in the NVT ensemble by using a Nosé-Hoover chain thermostat.

3.2. Modelling the static molecule

Since molecules most often exhibit inhomogeneous electron distributions, they are usu-
ally described within the generalized gradient approximation® which is why the PBE
functional is employed. Convergence tests regarding the total (GGA) energy and the KS
eigenvalues of the respective excited electronic states in respect to the wave function cutoff
and the cell size show, that the Oxirane molecule is described adequately with a cutoff
of 7T0Ry and a cellsize of 11x11x11 A3, This large cell is necessary, as the QUANTUM
ESPRESSO pw code is a plane-wave based DFT supercell code that generally applies
periodic boundary conditions. This allows the calculation of 3D or 2D periodic structure
like solid crystals and surfaces. Non-periodic structures as molecules therefore have to be
described in large cells, as a too small cellsize for a molecule results in unwanted effects
from the neighbouring images. The convergence of cellsize and cutoff energy is backed up
by comparing the electronic densities of the ground states with other DFT-PBE calcula-
tions for example in Ref. [7T8l The calculated ground and excited state electronic densities
are shown in figure

The accuracy of the description can also be confirmed by the comparison of the excitation
energies. The excitation energy, meaning the energy needed to elevate the system from
the ground state Sg to an excited state S;, is the quantity which is usually measured
experimentally by the means of optical absorption. Within ¢-DFT the excitation energy
is calculated by the difference between the total energies of the excited system and the
system in the ground state, Eex. = Fs, — Eg,. A comparison with experimental values as
well as higher quantum chemical methods is shown in table[l} It can be seen, that while
¢-DF'T slightly underestimates the experimental values, its excitation energies are in good
agreement to high effort methods such as hybrid TD-DFT.

Another interesting feature of the electronic densities is their behaviour upon excitation.
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3.2 Modelling the static molecule

HOMO LUMO LUMO+1 LUMO+2
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Figure 2: Calculated electron densities of the ground state and lowest excited states of oxirane. The top
row shows the densities for the highest occupied molecular orbital (HOMO), lowest unoccupied
molecular orbital (LUMO), LUMO+1, and LUMO+2 in the structural and electronic ground
state. The middle row shows the respective densities calculated using c-DFT to describe the
corresponding excited state, i.e. Sp, S1, S2, and S3. The bottom row shows the densities with
the same excitation configuration for a slightly disturbed geometry with maximum deviation
of 0.05 A for each atom and direction from the ground state geometry.

This becomes first apparent by comparing the densities calculated by DFT and c-DFT, i.e.
the densities associated with the KS wave functions of HOMO, LUMO etc. calculated with
ground state DFT and calculated directly by the non-Aufbau ¢-DFT. Besides the ground
state Sg, which is by definition the same in DFT and c-DFT, the second excited state Sq is
little affected by the excitation. S; though shows a deviation by mixing some aspects of So
into its DFT calculated density. Ss also partially changes its character, it now resembles
the Sy density of Ref. 8I. The densities can be seen in the second row of figure[2} The exact
form of the density is, however, also very dependent on the geometry of the system. In the
ground state geometry the molecule has a twofold symmetric axis as well as two mirror
planes (pointgroup Cs,). If this symmetry is broken by slightly displacing the atoms, the
character of the densities also changes. With broken symmetry the electrons accumulate
at one half of the molecule, as shown in the third row of figure [2| This will prove essential
for the photoreaction.

c-DFT exp. TDHFES  TDLDARB  TDB3LYPE
6.69 7.24 E6HEE] 9.14 6.01 6.69
6.76 7.4587 9.26 6.73 7.14
7.26 | 7.880861 789k 9.36 6.78 7.36

Table 1: Oxirane singlet excitation energies (in €V) for (PBE) ¢-DFT in comparison with other compu-
tational methods as well with experimental data.
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3 FIRST REFERENCE SYSTEM: OXIRANE

3.3. The dynamic system: Methods and parameters

With the stationary molecule covered, it is time to have a look at the dynamic system. For
a non-adiabatic dynamic the integral timestep for the nuclei equation of motions as well
as for the Schrodinger equation have to be chosen. Additionally, the parameters for the
thermostat (if used) have to be chosen as well as the rate of updating of the occupation.
The rate of occupation updates is a feature which is related to the smearing method. In
regular DFT smearing is a method to tackle the computational issues in metallic systems
or systems with a small bandgap. As introduced in chapter [2.2] the energetically lowest N
KS-states are occupied with N, the number of electrons, the states above do not contribute
to the density. Since the eigenenergies of each state change during the self-consistency
cycle, this poses a problem if the band gap is small enough (or non existent as in the
case for metals), as unoccupied states then start switching positions with occupied ones.
This causes different states to contribute to the density in each iteration, preventing a
self-consistent solution. Smearing solves this problem by introducing occupation numbers
like in ¢-DFT, which are, however, not fixed like in c¢-DFT, but follow a distribution
function. The distribution is dependent on the energies of the eigenstates in respect to
the Fermi energy of the system. With this the states above and close to the Fermi energy
are partially included in the density, with stronger contributions the closer they are to the
Fermi energy, which again enables a self-consistent solution. Typical distributions used for
this are the Fermi-Dirac distribution, 8 the Gauss distribution or the Marzari-Vanderbilt
distribution, P whereby the first one describes a thermal distribution of electrons, and the
latter one belongs to the class of “cold smearing®, i.e. distributions which aim at changing
the forces of the system as little as possible while improving numerical stability.

In ¢-DFT the problem mentioned above is even more prominent. Occupied states tend
to lower their eigenenergy while unoccupied ones tend to raise their energy. This gives
again rise to the state switching problematic, especially if a state inside the conduction
band is occupied. Therefore, a smearing is again desirable. However, the implementation of
smearing in ¢c-DFT is not straightforward, as there is no well-defined Fermi energy. In order
to employ a smearing nonetheless, we expand on an ansatz from Ref. [52. The occupations
are calculated by a sum of occupations of the same system (same eigenvalues) with different
numbers of electrons. For these, the Fermi energies are defined and a smearing is used for
each number of electrons. The total occupation n is given by:

Nks

or = Y fi (n(ef (i) = nles(i - 1)) (3.53)
=1

Here f; are the occupation numbers of the c-DFT, €(4) the Fermi energy of the system with
i electrons and n(ey) the occupation numbers for the system with a generic distribution
dependent on the Fermi energy ;. The resulting distribution circumvents the switching
problem. Furthermore, there could also be a physical effect due to the smearing, Ref. [52
suggests that the c-DFT smearing could mimic a system described by a multiconfigura-
tional method.

The non-adiabatic dynamics are calculated using a modified version of the c-DFT based
surface hopping code LIBRA-X. The modifications to this code are listed in chapter [A] For
the trajectories a nuclear integration step of 0.25 fs and a Schrédinger equation integration
step of 5as is chosen. The trajectories are propagated for 250 fs. A smearing implemented

28



3.3 The dynamic system: Methods and parameters

as explained above employing the Fermi-Dirac distribution with a broadening of 0.01 Ry
is used. The occupation is updated every 30 scf cycles, which leads only to a smearing
if the switching problem prevents convergence (usually convergence takes between 7 and
10 cycles). For the thermostat a Nosé-Hoover chain thermostat with a chain length of
5 and an characteristic relaxation time of 24.4fs is chosen. This corresponds with a fre-
quency of 1367 cm™! which is between most of the characteristic frequencies of oxirane
(1000-3000 cm 1), 1 fulfilling the guideline introduced in chapter Since Tullys sur-
face hopping is a statistical procedure, a sufficient large number of trajectories have to be
taken into account. Therefore, for each temperature considered 50 trajectories with and
without thermostat are calculated. Each trajectory starts from a disturbed groundstate
geometry, where each atom is displaced randomly for a maximum of 0.05 A in each Carte-
sian coordinate, and in the Sy excited state. Furthermore, each atom is assigned an initial
velocity corresponding to the temperature as explained in chapter 2.4l The temperatures
which were taken into account are 30K, 77 K, 100 K, 150 K, 300 K and 400 K.

As already stated the goal is to identify the excited states which causes or prohibits the
photodecomposition, as well as the time scale of it. In order to do so, the reaction products
have to be identified and compared to the average occupation numbers. Therefore, geo-
metric criteria have to be found to classify the structures. For the Gomer-Noyes process,
the first step lies in the opening of the CCO ring, which is characterizable by the O-C-C
angle. This is followed by a proton transfer from one C atom to the other, characterizable
by the number of protons on each side of the molecule. At last the CC bond breaks, char-
acterizable by the C-C distance. There are also other products that can occur, like the
abstraction of oxygen, the ring opening between the C atoms or an abstraction of a single
H atom. These products can also be identified by a combination of geometric criteria as
well as their time of occurrence. The parameters are listed in table To identify the
different products, following naming conventions are used: C2H4O is the molecule in its
geometric ground state, for distorted states the symbols are sorted by on which side of
the molecule they are. For example, the structure after the ring opening is refereed to as
CH,COHag, after the H transfer as CH3COH. If the molecule dissociates a “+* is used, after
the C-C bond breaking it is referred to as CHs + COH.

reaction prod. 0-C-C angle  H ions do COdist (HL 00
CoH,O < 100° 2 - <18A <20A
CH,COH, > 100° 2 <26A <18A <20A
CH, + COH, - 2 ~>26A < 18A <20A
CH3COH - 3 <26A <18A <20A
CH; + COH - 3 ~26A <18A <20A

O + CyHy - - - - =~ 20A
(2)H + HyCoO(H) - - <26A >18A <20A
CH; + CO + H - 3 ~26A >18A <20A
CH, + H + COH . 3 ~26A >18A <20A

Table 2: Geometrical parameters used to determine the reaction products.
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3 FIRST REFERENCE SYSTEM: OXIRANE

The average occupation numbers seem straightforward to compute. However, a word of
caution is in order. Since the smearing is first applied after 30 scf cycles, each excited state
is calculated with a (possibly) different smearing. This might lead to a change in their
energetic ordering, as one state might experience smearing while the other does not. Due
to the diagonalization in equation [2.40] this leads to a swap of the states. If one of these
states is the active state, a hop between those states is probable, as the character of the
states is retained during the swap. This means a hop between states is registered, while in
reality only one state is temporarily energetically lower than the other one. To account for
this, the occupation numbers are compared with the energetic ordering of the PES of the
c¢-DFT calculations and swapped back before averaging if necessary. To circumvent this
problem from the beginning one could opt for a shorter update interval for the smearing;
however, this could lead to deviation of the forces if the smearing affects states which
should not interact with each other. This could be mitigated by using a cold smearing
distribution like the Mazari-Vanderbilt distribution; however, at this point in time other
smearing methods besides Fermi-Dirac were not implemented (see also section .

3.4. Results: Statistics of the NV E and NVT ensemble

We begin the analysis by comparing the average occupation numbers for the trajectories
calculated within the NV E ensemble. For the temperatures of 100 K and 300 K these are
shown in figure 3] It can be seen that within 80 fs for the majority of the trajectories the
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Figure 3: State populations for NV E calculations modelling an initial temperature of 100 K (lhs) and
300K (rhs). Occupation numbers are averaged over 50 trajectories.
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Figure 4: Reaction products over time in the microcanonical NV E ensemble for temperatures of 100 K
(Ihs) and 300K (rhs). Dashed lines correspond to dissociated variants of CH,COH2 and
CH3COH respectively. The peaks show very similar shapes and positions, indicating little
influence of the temperature on the reaction times.
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3.4 Results: Statistics of the NV E and NVT ensemble

excitation is transferred from So over S; to Sy, though a considerable amount stays in Sy.
The corresponding percentage of reaction products is shown in figure @] Here the Gomer-
Noyes mechanism can be identified as the most prominent one, as indicated by the rise of
the percentage of the CHoCOHj product (the ring opening) within the first 40 fs, followed
by a rise of the CH3COH product (H transfer) within the first 80fs. The last step in the
mechanism, the C-C bond breaking, however, is not present in as large quantities as in the
experiment, though a similar low bond breaking rate is found in the theoretical work of
Tapavicza et al..8 The calculated times for the reaction steps also coincide. Next to the
Gomer-Noyes mechanism there are two other processes which give rise to other products,
the oxygen and hydrogen abstraction. Those usually occur from the CoH4O geometry.
While the O abstraction reaction is generally reversible, the H abstraction tends to be
permanent. For all these reactions, the temperature has little influence on the excitation
dynamics, the occupation numbers and the reaction times are mostly the same. However,
there is an influence of the temperature on the O and H abstraction reaction, or more
specifically their quantities. With higher temperatures there are less O abstractions and
more H abstractions (see also figure [4). For the O abstractions the symmetry breaking
is the reason for this. As will be shown below, for the O abstraction to occur, the C-O-
C ring has to be as close as possible to a mirror symmetry regarding the O ion. With
higher temperature this required symmetry is broken quickly, leaving the reaction no time
to happen. The H abstraction is only driven thermally and therefore straightforward,
with higher temperature there is more kinetic energy available for the reaction to occur.
Similarly more C-C bond breakings are observed at higher temperature.
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Figure 5: State populations for NVT calculations modelling an initial temperature of 100K (lhs) and
300K (rhs). Occupation numbers are averaged over 50 trajectories.
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Figure 6: Reaction products over time calculated in the canonical NVT ensemble at temperatures of
100K (1hs) and 300 K (rhs). Dashed lines correspond to dissociated variants of CHCOH2 and
CH3COH respectively.
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3 FIRST REFERENCE SYSTEM: OXIRANE

This changes as soon the trajectories in the NV'T ensemble are considered. Again, we begin
with the occupation numbers, which are shown for the temperatures of 100 and 300 K in
figure [f} A more rapid quenching of the Sy state to the Sy state can be observed, while
the S3 state is almost completely suppressed. Furthermore, nearly all trajectories end in
So state at the end of the simulation, in contrast to the NV E ensemble. This different
behaviour is also reflected in the reaction products shown in figure [} Most prominent
is the absence or quenching of reaction products which require a dissociation of the ions.
For those reactions to occur the respective ions have to have a comparatively high amount
of initial kinetic energy, or have to be propelled by the excited state and thus gain more
kinetic energy. In both cases this additional energy is dissipated due to the thermostat,
which hinders or reverses the bond breaking. The remaining reactions are now also heavily
dependent on the temperature. With higher temperatures the trajectories remain longer
within the CHoCOHs state, and more trajectories perform the H transfer. As will be
shown below, the H transfer is driven only thermally, therefore a decrease of this reaction
with lower temperature is obvious. This results in most trajectories ending in the CoH40
geometry at low temperature while for high temperatures the majority ends within the
CH3COH geometry as shown in figure [7] rhs.

These end products are also listed in terms of their yields and compared to experimental
values in table 8] Since no C-C bond breakings are observed in the NVT ensembles,
reactions with and without bond breaking will not be differentiated. For the O abstraction
the NV E ensemble shows a closer agreement to the experimental values than the NVT
ensemble, which generally shows less abstractions. In case of the H abstraction the NVT
ensemble also shows less abstractions than the NV E ensemble, though this time the NVT
ensemble is closer to the experiment. This difference might lie in the origin of the reactions.
In both cases the thermostat overestimates the energy dissipation. As already stated, the
H abstraction reaction needs a great amount of excess kinetic energy — a rarity within a
thermal equilibrium. However, the calculations do not start from a thermal equilibrium,
but rather from a random velocity distribution, in which this may occur more often. This
error is compensated by the thermostat, making the NVT ensemble more accurate. In
case of the O abstraction the reaction is driven by the S; state (as will be shown below),
provided a symmetry of the C-O-C ring is given. Therefore, it is not driven thermally.
The movement of the O ion, however, is slowed by the thermostat, which has now no error
to compensate, it rather overcompensates. Furthermore, the O abstraction almost always
occurs at the beginning of the trajectory and within a short time frame, where the energy

1 1 I
CoH40 —— CHe0 ——

CH, + COH, CH, + COHy
CH3 + COH —%— 1 0.8 CHi3 + COH —%— ]
O + CoHy O + CyHy

(2)H + HyC0(H) —i— | (2)H + HyC,0(H) —i— |

Percentage of reaction products
Percentage of reaction products
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Figure 7: Percentage of end products over temperature after 250fs integration time calculated in the

microcanonical NV E (lhs) and canonical NVT ensembles (rhs). For the sake of clarity of
presentation, products with and without C-C bond breaking are not discriminated.
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3.5 Results: States during the Reaction

NVE NVT Exp.
temperature/K | 100 150 300 400 | 77 100 150 300 400 7
CH3+COH 1 1 1 1 1 1 1 1 1 1

CH2+COH, 0.42 0.29 0.08 0.28| 050 0.18 0.17 0.08 0.11 | 0.00 - 0.17
O-+CoHy 0.50 033 0.20 0.22]0.25 0.00 0.00 0.04 0.00 | 0.10 - 0.58
(2)H+H2Co(H) | 0.78 0.38 0.60 1.06 | 0.00 0.27 0.12 0.08 0.18 0.08

Table 3: Calculated reaction yields after 250fs simulation time compared to experimental data after
optical excitation with 174 - 147nm light 8%, All yields are normalized to the CHz+COH
formation. Reactions with and without C-C bond breaking are not discriminated.

dissipation is likely to have little influence on the trajectory. The occurrence of CHy+COHs
product though is overestimated by both ensembles, at least for low temperatures. For
high temperatures the NVT ensemble has a good resemblance.

3.5. Results: States during the Reaction

At last the states responsible for the reactions are identified. In order to do so the oc-
cupation numbers are compared to the reaction products (cf figures , and @ It is
evident that the shape of the peaks of the S; state and the CHoCOHsy product as well as
the Sp state and the CH3COH product are similar; the ring opening therefore occurs in
the S; state and the H transfer in the Sg state. For the ring opening this can be underlined
by means of the electronic densities during the reaction. The densities shown in figure
indicate the repulsion of the O ion. This finding is in line with Kasha’s rule, though it
contradicts the findings in Ref. [78, where the So state was identified. That deviation is
most likely due to the sensitivity of the excited states to changes of the occupation numbers
as well to structural distortions (see figure . The transfer of the H ion in the Sy state,
however, is again in accordance to Ref. 81l This transfer is driven thermally, wherefore it
can not be observed by the means of electronic densities. However, it can be shown that
the reaction would not occur, if the molecule is still in the Sy state, as it is repelled by the
density located at the C ion (see figure @

Further evaluation of the structure shows that the majority of the H transfers occur if
the H ions opposite to the O ion are rotated 90° around the C-C bond axis (see middle
geometry of figure[J for example), which is in agreement with the findings in Ref. BI. This
is more prominent in trajectories without thermostat, in NV E trajectories the transfer
can also occur at a smaller angle. This is again due to the lack of energy dissipation in
the NV E ensemble, allowing a less optimal reaction path. The H abstraction reaction is
driven thermally, it can occur in every state. The O abstraction, however, can be driven
by the S; state as well as by the S state. In the geometric ground structure both states
are symmetric in shape with electron densities located at the C and O ions, see figure [2]
This leads to a overall repulsion directed away from both C atoms. Since these two states
contribute the majority of active states at the beginning of the trajectories, as well as the
distortion of the molecule being most likely the smallest at the beginning, the reaction
mainly also occurs at the beginning. An example of this reaction is shown in figure
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Figure 8: Electronic densities of the active S1 during the ring opening reaction for an example trajectory
after 5, 15 and 30fs. A slight asymmetry causes the O ion to be repelled from one C ion.

Ty

Figure 9: Electronic densities of the active state for an example trajectory of an inhibited H transfer.
The transfer begins at the left image (after 135fs) in the S state by moving one H atom from
one C atom towards the other, and rotating the opposite H-atoms. Midway in the reaction the
system switches to the Si state, which causes a repulsion of the H atom (mid figure at 145 fs).
This repulsion causes the molecule to revert to its previous structure, as shown in the right
figure (at 155fs again in the So state).

Figure 10: Electronic densities of the active state during an O abstraction reaction of an example trajec-
tory. The first two frames (0 and 10fs) are governed by the Sy state which symmetrizes the
slightly asymmetric starting structure. With the C and O atoms being virtually symmetric,
both the S; and Sy state repulse the O atom (see also figure , in this case the S; state is
responsible for separating the O atom from the molecule (third and fourth frame, at 20 and
351s).

v
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3.5 Results: States during the Reaction

In summary, using ¢-DFT molecular dynamics and FSSH electron hopping, the Gomer-
Noyes mechanism could confirmed to be the prominent photoreaction in oxirane. The whole
reaction usually occurs within the first 90 fs of the trajectories. The ring opening is driven
by the S; state, in accordance to Kasha’s rule, while the rest of the reaction occurs in the
So ground state. Beside the Gomer-Noyes mechanism the abstraction of H and O atoms
was observed, where the first one is driven thermally and can occur in every state, while
the later one is driven by the S; or S state. The computed reaction yields largely agree
with experimental data; however, the NV E ensembles overestimate the H abstractions
due to the start from a thermal non-equilibrium configuration as well as the neglect of
energy dissipation, while the NVT ensemble underestimates the amount of O abstractions
due to an unrealistic fast dissipation within the beginning of the trajectories. This shows
that the modelling of the energy dissipation via a thermostat is important and non trivial
even in the sub picosecond range. Furthermore, these calculations show, that ¢-DFT is a
viable approach for modelling excited states, even compared with high end, computational
expensive methods. With this knowledge we now turn towards a larger system with more
dimensions and interactions: The polaron formation in the lithium niobate crystal.
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4. Polaron formation in lithium niobate]

4.1. Introduction: Lithium niobate and polarons

Lithum niobate (LN) is a crystal with a magnitude of optical applications. It can be used
as a waveguide, for frequency doubling in lasers, optical switches and other non linear
optical applications. 39 [N has the structural formula LiNbOs3 with a standard unit
cell containing 10 atoms. It consists of two sublattices, the negatively charged O ions,
which form a closely packed octahedral lattice, and the positively charged Nb and Li
ions, which resides in the octahedra as shown in figure This structure, however, is
not completely rigid, the sublattices can shift relatively to each other for example, which
results in the material being easily polarizable. 7 The comparatively small size makes it
possible to study effects and properties which occur on a larger scale like crystal defects or
phonons by applying a super cell approach. Together with the rich amount of effects in this
crystal it makes for an ideal testing ground for the further application of electron dynamic
simulations. We in particular study the polaron formation in lithium niobate. But before
we can go into more detail on how electron dynamics can be used to study polarons, we
first have to clarify what polarons are.

Figure 11: Lithium niobate shown in its hexagonal unit cell. Nb atoms are indicated by a dark grey
color, Li by a light grey, O atoms are red. The O octahedra are shown as guide to the eye.

Polarons are quasi particles which consists of a charge carrier, meaning an electron or
hole, and a lattice distortion. In order to understand the concept of the polaron one can
first consider an electron which is travelling through a crystal, or alternatively an excess
electron which is localized at some place in the crystal. This electron introduces Coulomb
forces to the ions in its vicinity. These ions are repulsed (or attracted) to the electron
which causes the mentioned lattice distortion and therefore polarizes the crystal in the
vicinity of the electron. This causes the bare Coulomb potential of the electron to be
screened, which therefore does not interact with electrons or ions which are farther away.
As the electron moves through the crystal other ions are displaced, or, from another point

3The results of the following section were published in Ref. [©2 Several figures of
this article have been reused, in accordance with the Creative Commons licence 4.0
https://creativecommons.org/licenses /by /4.0/legalcode
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4 POLARON FORMATION IN LITHIUM NIOBATE

of view, the electron is followed by a “cloud” of distortions. Often this distortion field is
associated with phonons, and as the distortion field follows the electron, the polaron can be
described as a quasi particle made of a charge carrier and a phonon. #8991 Strictly following
this definition polarons can not occur, or only exist weakly bound, in materials where the
electron-phonon interaction is only weak.™ In the case of ferromagnetic materials, LN
in particular, polarons are often viewed in a broader way, the distortion is not restricted
to phonons and polarons can therefore also exist in a static system. 9

4.2. Polarons in lithium niobate: Types and classifications

In summary, the polaron consists of a charge carrier (an electron or a hole for example)
which is localized strong enough to cause a lattice distortion, and the localization itself.
Depending on how these effects occur and how strongly they are pronounced, the polarons
are categorized into several categories. Firstly they are distinguished by the “size” of
their localization. A weakly localized carrier occupies a large amount of space (several
lattice sites), which causes many ions to be displaced, though the displacement is rather
small. These polarons form if long distance interactions are prevalent in the solid. If
the carrier is strongly localized it occupies a small amount of space (i.e. a single lattice
site or its close vicinity), and causes less ions to be displaced, but the displacement is
more significant. These polarons form if the short distance interactions are prevalent.
Accordingly to the size of the localization these polarons are referred to as large and
small polarons. F00101] Secondly the polarons are divided on how the carrier localizes. One
possibility is that the carrier localizes spontaneously, for example due to a small already
existing lattice distortion. The following lattice distortion stabilizes the carrier, which then
cannot travel freely through the crystal anymore, it is trapped at its current position. Since
the localization of the carrier itself causes this trapping, this kind of polaron is referred to
as self trapped electron (or self trapped hole) or as free polaron (as no external force binds
the polaron to its place). 99 Tn contrast the polaron can also form at a lattice defect which
causes the carrier to localize. The carrier is then bound to the defect and additionally
trapped by the lattice distortion. Since the carrier is bound to the defect one can refer to
it as charged defect or as bound polaron. ™2 Lastly the polarons are characterized by the
type of charge carrier. If the charge carrier is not an electron, but rather the absence of
it (a hole), the polaron is called a hole polaron. If two excess electrons are present in the
system, they can both form polarons, which then again couple together. These polarons
are called bipolarons and consist usually of a bound and a free polaron. At last if the
charge carrier is a single electron no further specification is made.

In lithium niobate several types of polarons have been confirmed by means of magnetic
resonance studies, optical absorption experiments and DFT.B903004 There is the small
free polaron, which locates at a regular Nb site. The small bound polaron, which localizes
at a defect, forms at a Nbr; antisite. 193105 The hole polaron is reported to form at O
sites, and the bipolaron consists of a small bound polaron at a Nby; site and a small free
polaron at an adjacent Nbyy, site. F93105 For the small free polaron and the small bound
polaron the structure and DFT parameters were already modelled in Ref. [104. With these
models as a basis we try to answer the questions of the time frame which the polarons need
to form, the different formation steps of the polarons and their time scales as well of the
mechanisms which causes the electron to localize. As core of the simulations we again use
an ensemble of molecular dynamics. As a first step it is necessary to be able to identify if
a polaron occurs during a MD.
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4.3 Detection of polarons

4.3. Detection of polarons

For this we first have a look at how polarons are observed experimentally. Most commonly
polarons in LN are observed by the means of pump-probe absorption experiments. In these
experiments the crystal is exposed to laser radiation for short femtosecond time intervals
repeatedly for several nanoseconds. After a set delay a weaker probe pulse is sent through
the crystal. This light is then detected again (either in reflection or in transmission di-
rection) and analysed by the intensity. By comparing the input and output intensity the
changes in absorption due to the pump pulse can be observed. O8] This change in absorp-
tion is usually explained using the following scheme: Upon the pump pulse electrons are
excited into the conduction band of the crystal. They then relax to the lowest conduction
band. Following this the wave function of the electrons spontaneously collapses, the elec-
trons localize at a lattice site. The surrounding lattice screens the electron and thereby
lowers its energy into a mid gap state.197 From this mid gap state multiple excitations
are possible. On one hand, the electron can be exited to the conduction band, resulting
into a delocalization of the electron. On the other hand, if there is a suitable acceptor
site, the electron can be excited to another polaronic state, which could for example be
an already distorted Nb site or an antisite. This process is a sub process of the so-called
polaron hopping (the other sub process being polaron movement through thermally ac-
tivated phonons), which transports the polaron through the crystal and thus contributes
to the electric conductivity. P2108 Both the excitation to the conduction band and the
(non-adiabatic) polaron hopping show a spectral signature and are thus measurable in the
absorption experiments.

It is therefore clear that the position of the lowest conduction band, i.e. the would-be
polaronic state, is linked directly to the absorption and thus the experimental defining
criterion of a polaron. In contrast to the experiment though we are not confined to ob-
serving the polarons only after they have formed. Using the electronic density of the DFT
the localization of the electron can also be observed and differentiated from the screening
process due to lattice relaxation. However, it is both tedious and storage intensive to com-
pare the MDs by their electron densities for a large amount of trajectories, furthermore
the storage of these densities is not implemented in the used code. Luckily there are other
criteria which can also identify the localization of an electron. First one can utilize the
fact that the polaron which forms in LN is a small one and therefore strongly localized.
A strong localization in real space is accompanied by a state with little dispersion in re-
ciprocal space. This means that a straightening of the lowest conduction band indicates
the localization of the electron. Another method for identifying the localization is the
local magnetic moment. When the electron localizes it carries a magnetic spin moment. A
drastic increase of the magnetic moment therefore indicates the formation. Last but not
least the surrounding lattice can be observed. Once the electron localizes, the relaxation
process of the surrounding lattice begins. In case of LN this means that the surrounding
negatively charged O ions are repelled by the charge. The average distance of those ions
can be used as indicator for when the relaxation occurs. It is therefore suited to describe
the end of the whole polaron formation and can also roughly show the end of the electron
localization. With the parameters defining the polaron formation process discussed, we
now have a look on the conceptually most simple polaron, the free small polaron.

4.4. Modelling the free polaron

The free small polaron is one the most occurring polarons in LN, as it can localize at
any non defect Nb because it requires only the self trapping. It is relative loosely bound
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to its site with an excitation energy of around 1eV.H¥ In order for a polaron to form
an “additional” electron which is not necessary for the bonds of the crystal is needed.
Experimentally such a free electron is created by the excitation of the crystal due to a
laser. Instead of modelling this excitation with c-DFT like in the case of oxirane, this time
it is modelled by a charged system instead. As stated in chapter this is technically
no excitation, but a different system entirely, and therefore is usually more limited in
its significance. However, in this case the model is sufficient. First, the hole left in the
valence band can form a hole polaron. With a hole polaron formed its influence on the
crystal is only local, and since we are only interested in the free polaron we can discard
it. Furthermore, the free electron does not necessarily need to stem from the same spacial
region of the crystal, limiting the influence of a hole even more. Last but not least LN
can contain deep trap states (either through impurities or targeted doping) like in the
case of iron impurities. P00 Ay excitation from these deep trap states will also leave the
crystal largely unaltered. Therefore, the more simple modelling with a charged system and
groundstate DF'T is reasonable.

For the further construction of the model it has to be considered, that the polaron is on
one hand, a local occurance and on the other hand, is generated only in comparatively
low quantities; there are considerably more Nb ions which house no polaron than ones
which do. Therefore, it is not possible to construct the polaron in the standard LN unit
cell, a supercell approach has to be utilized. Explicitly a 2x2x2 supercell containing 80
atoms is used. A straightforward approach to construct the free polaron now would be to
recreate the conditions in the experiment: Add an electron to the system (the excitation),
distort the geometry of the ideal LN (the thermal displacement of the atoms) and relax the
system. Afterwards the polaron should have formed at a random Nb site. However, while
the arbitrariness of the site leads to many easily detectable free polarons in absorption
experiments, it poses a problem for the modelling in DFT. First, the detection of the
polaron can be problematic, as all the mentioned criteria have to be checked for each
possible atom site. While this can be overcome, one of the inert problems of DFT, the self
interaction error, interferes. As stated in chapter the self-interaction error hinders
the electron to localize in small areas. In this case that means that in the ground state
structure, in which the Nb atoms are all equivalent, the electrons are delocalized over the
Nb sites. The atomic displacements caused by the temperature designates some Nb atoms;
however, the perturbation is not strong enough to overcome the self interaction error and
will still result in an electron delocalized over all Nb sites. The electron therefore needs a
stronger “motivation” to collapse on a Nb site.

This extra motivation comes in form of the DFT+U method. As explained in more detail
in chapter[2.8:2] the DFT+U method introduces an energy term dependent on the occupa-
tion of certain localized states (usually d or f electrons). This term increases the energy of
partially occupied states and therefore encourages the states to be either completely occu-
pied or empty. For the construction of the polaron the U term is only applied to a single Nb
ion. The surrounding ions are displaced according to their charge, the negatively charged
O ions are moved away from the Nb ions, the Li ions are moved closer. This configuration
makes the localization of the electron energetically favourable. After that the system is
relaxed, resulting in the formation of the polaron. Afterwards the other Nb ions are also
treated with the +U method, the values are determined self-consistently to compensate for
the derivative discontinuity error. These steps lead to the model from Ref. [104], the free
polaron modelled within a 2x2x2 LN supercell charged with one electron, a kinetic energy
cutoff of 85 Ry, normconserving PBEsol pseudopotentials, a 2x2x2 Monkhorst-Pack grid
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4.4 Modelling the free polaron

Figure 12: Structure and electronic density of the free (lhs) and bound (rhs) polaron.

and U corrections of 4.9eV for the polaron site Nb and 4.7eV for each other Nb ion. The
resulting electronic density is shown in figure

This model is now employed to study the formation of the polaron. The idea is rather
straightforward: Starting from a thermal equilibrium an electron is added to the uncharged
system. Afterwards a molecular dynamic is performed and the criteria for the polaron
formation checked. Since MDs are comparatively computational expensive it is useful
to verify beforehand if polarons can form under such conditions. In order to do so a
molecular dynamic of the ideal system using a Berendsen thermostat at low temperature
(50 K) was conducted to generate distorted geometries. Afterwards the system is charged
and relaxed. With no ion velocity present, in order for the polaron to form, the system
has only to overcome the small deviations due to the temperature. However, for each of
the three tested starting geometries no polaron formation could be observed, the electron
delocalizes instead. This indicates that with this model also no polaron will form in a MD,
where the ion movement can additionally obstruct the formation. In order to increase
the possibility of polaron formation, the Hubbard U term was removed from all but one
designated Nb ion, in other words going one step back in the construction procedure of
the free polaron model. With this new parameter the tests were repeated. Unfortunately,
even with only one Nb designated no polaron formation could be observed.

It appears that the geometries leading to the formation of a free polaron only occupy a
small area in configuration space. With only a single ion designated it is very improbable
to achieve a fitting configuration. In the experiment this “problem* is overcome due to
the large amount of possibilities. As a reference, in the absorption experiments from MM
a magnitude of 10'? electrons are excited, leading to an excitation density of roughly
1.2-10"® cm™3. Considering the unit cell of LN a density of 1.8-10%?2cm™2 Nb ions is to
be expected. This gives the electron 1.5 - 10* possibilities to localize onto which ensures
the formation of polarons despite it occupying only a small area in configuration space.
In the simulation we can either specify a single Nb ion where the polaron should form,
this, however, reduces the number of configurations drastically, or treat all ions the same,
which increases the number of configurations but is not feasible, since the electron tends
to delocalize in this case. Due to this the formation dynamics of the free polaron could
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not be studied, we focus on the bound polaron instead.

4.5. Modelling the bound polaron

For a bound polaron to form an external potential well is required. In the case of LN this
potential comes in the form of a defect, i.e. a Nb ion occupying a Li site. This defect is
designated as Nby;, or more specifically according to its charge state Nbi;r in its regular
state or Nbﬁ' if a polaron occupies the defect site.29 Typically modelling a defect is
more challenging than an ideal crystal, especially because a larger unit cell is needed to
incorporate the defect. For the free polaron a 2x2x2 supercell was already established.
By replacing one Li ion by a Nb ion a Li/Nb ratio of 0.88 is simulated. For reference, the
Li/Nb ratio of ideal, stoichiometric LN would be 1, which can not be manufactured. The
near stoichiometric probe used in Ref. [I11] for example is around 0.984. The commonly
used Czochrallski method M2 to grow LN congruently yields a ratio around 0.94.H13] The
model therefore approximates the congruent quota acceptably, therefore the same cell as
for the free polaron can be used. The bound polaron can be expected to form more
reliably than the free polaron in a MD: On one hand, the defects produces a potential well
independent of the electron, which encourages the collapse of the electron onto the site
and further stabilizes it. On the other hand, the density of Nb defects is far lower than the
one of regular Nb sites. Using the LN unit cell as a basis, congruent LN has a NB antisite
density of 5.84 - 10%° cm~3 and stoichiometric LN has a density of 1.46 - 102° cm—3. This
reduces the possibilities for a single electron to 486 and 121 sites respectively. Depending
on the growth method and defect model the density can even be lower. 14 Despite this
considerably lower count, the bound polaron is observed experimentally both in optical
experiments1%3 and magnetic resonance. 1% This in turn indicates, that the area in
configuration space which leads to bound polaron formation has to be larger than for the
free polaron, which is again beneficial for the description in a MD. This area in configuration
space was in fact calculated in form of a “trapping radius®, i.e. the radius in which the
excited electron collapses directly onto the antisite, a quantity which will be referred to
later. 1151

The construction of the bound polaron is analogous to the free polaron, with the addition
of one Li ion being replaced by a Nb ion. Since Nb contains more valence electrons than
Li, the surplus of electrons needs to be removed, charging the cell positively. Afterwards
one excess electron is added again. An additional Hubbard U correction term is added
to the antisite Nb, the ions surrounding it distorted and the system relaxed. Adding the
self-consistently calculated U terms for the other Nb ions and keeping the computational
parameters of the free polaron leads to the bound polaron model of Ref. [104. The resulting
electronic density is shown in figure

With this system the same tests like in the case of the free polaron are conducted. Using
a MD with the uncharged system utilizing the Berendsen thermostat at 50K starting
configurations are produced, which are afterwards relaxed including the excess electron.
In contrast to the free polaron there are two outcomes: For some relaxations a polaron
forms. The majority, however, runs into numerical instabilities. These instabilities usually
occur when the localized Hubbard orbitals are partially filled. As explained in chapter
2.8.2 partially filled orbitals lead to higher energies. Depending on the algorithm of the
eigenvalue solver for the KS equations this can introduce non-positive definite matrices,
which prevents an iterative solution of the equations. Since for the polaron formation the
regime of partially filled orbitals needs to be crossed, the majority of trajectories shows
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this problem. To circumvent this numerical problem, the penalty of partially filled orbitals
has to be reduced, i.e. by reducing the U value. Therefore, first the Hubbard U term for
the regular Nb ions was removed and afterwards the U value for the antisite was reduced
incrementally. At a value of U= 2.2eV for the antisite Nb each starting configuration
leads to polaron formation after relaxation. Additional tests with starting configurations
at 300K lead to the same result. With the set of parameters determined, the molecular
dynamics can be conducted.

4.6. Molecular dynamics: Parameters and starting configurations

To conduct the MDs adequate starting configurations have to be generated first. Similar
to the tests, this is achieved by conducting a MD in the uncharged system while utilizing
a Berendsen thermostat for the chosen temperatures. The first 700 fs of the MDs are dis-
carded to ensure that a (quasi) thermal equilibrium is reached. Using the mean distance of
the O ions to the antisite Nb as a measure, it can be shown that the system is equilibrated
sufficiently, as both amplitude and frequency of the O ion oscillation are mostly stable.
Afterwards starting geometries and velocities are taken in 50fs intervals from the MDs,
resulting in 41 trajectories per temperature. This interval does not coincide with the O
oscillation frequency, which ensures that the starting configurations are not too similar.
The starting configurations are then used in new MDs in the charged system which no
longer employ a thermostat. The choice of leaving the thermostat out of the picture is due
to the improved comparability, as all MDs now only depend on the starting configuration.
Additionally to the MDs in the charged system, MDs with the same starting configurations
in the uncharged system are conducted in order to study the influence of the excess elec-
tron on the atomic movement. These calculations are performed for the temperatures of
20K, 100K, 200K, 300K, 600 K and 1200 K. To summarize the numerical parameters, all
MDs use a kinetic energy cutoff of 85 Ry, a 2x2x2 Monkhorst-Pack k-point grid, PBEsol
pseudopotentials, a Hubbard U correction of 2.2 eV applied only to the antisite Nb, as well
as an ionic integration time step of 1fs. The MDs in the charged system are conducted
spinpolarized with the excess electron being restricted to be in the spin up channel. For the
MDs which employ a thermostat a Berendsen thermostat with a time constant of 7=20 fs
is used.

4.6.1. The influence of the starting configuration

In order to generate a sufficient amount of starting configurations, the MDs with thermostat
need to simulate a long trajectory, over 2ps. Since this MD is not parallelizable, this is
a choke point for the calculations. It would be advantageous to find another method to
generate starting configurations. As explained in chapter the initial velocity can be set
using random velocities, which are scaled to fit the temperature. However, an approach
for the atomic displacement is also needed. For this approach the displacements of the
ions obtained by the MD with thermostat (at 200 K) are fitted using a Gauss function.
Using this function as distribution, several amplitudes for the displacements are generated.
The direction in which the displacement occurs is selected randomly. Together with the
randomly generated velocities 50 new starting configurations are generated for the charged
system. The MDs are conducted and the polaron formation and electron localization time
determined using the methods and thresholds explained in the next section. Compared to
the times for the thermostat generated starting configurations the mean localization time
differs by 5fs and the formation time by 8 fs, which is an acceptable accuracy. This shows
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that if the magnitude of the displacements can be estimated, the random approach is most
likely sufficient or at least gives a good idea for formation times. However, in the case of LN
we did not know the amplitudes without conducting the MDs, which is why this method
was not feasible. Additionally, this test gives an insight on the statistical relevance of the
calculations: If 41 trajectories were no sufficient sample size, there would be virtually no
chance that the randomly generated structures lead to similar formation and localization
times. This means that 41 trajectories are sufficient to describe the system with statistical
accuracy.

4.7. Analysing the trajectories: Thresholds and additional methods

In order to analyse the trajectories reliable thresholds for the polaron formation have to
be found. As already explained, the dispersion of the lowest KS conduction band, its
position in the band gap, the mean O ion distance to the nearest neighbours as well as
the local magnetic moment are suitable criteria. To investigate the individual formation
steps we differentiate between the time which is needed for the electron to localize, referred
to as electron localization time (or short localization time), and the time which is needed
for the full polaron to form (localization + relaxation), referred to as polaron formation
time. The time between the localization and formation time is the time which the lattice
needs to relax and is therefore referred to as relaxation time. First the formation time
is considered. As stated before, there is a direct connection between the position of the
lowest conduction band minimum in the band gap and the absorption properties of the
material. For a direct comparison the dielectric function € can be utilized. The dielectric
function contains multiple optical properties of the system, like the refraction index or
the absorption. The absorption in particular is contained within the imaginary part of
the function, in which a peak shows an increased absorption. ™ The dielectric function is
calculated within the regime of the independent particle approximation by constructing
the Green functions on the basis of the calculated KS eigenvalues and solving the Dyson
equation for the susceptibility. The interested reader may refer to Ref. [116 for an in detail
explanation of the calculation of absorption spectra. The calculation of the dielectric
function is done using the YAMBO program package. FL7118]

The dielectric function is calculated for different structures along a MD trajectory at 200 K.
Since the optical properties of the system are known to be described accurately with the
set of Hubbard U values of 5.2eV for the defect Nb and 4.7¢eV for the other Nb, those
parameters are also used for the calculation of the dielectric functions, while the MD
is performed at U=2.2€eV for only the defect Nb. The KS levels of the trajectory, its
average defect Nb-O bond length, and the local magnetization at the defect as well as
the dielectric functions at chosen points together with the dielectric function for the fully
relaxed polaron are shown in figure Noticeable many of the before mentioned criteria
coincide by their peak positions. This is to be expected, as the polaron formation is a self-
reinforcing process, the localized electron increases the bond length which in term increases
the localization. Furthermore, it is apparent that a defect KS level deeper in the band gap
results in absorption peaks at higher energy. The closest approximation of the dielectric
function of the fully relaxed polaron is reached at a KS level 0.78 eV below the conduction
band. This value is used as criterion for the completion of the polaron formation. However,
a word of caution has to be in order for this choice. The dielectric function of the fully
relaxed polaron has a peak close to the experimentally measured one (at 1.6eV), thus
it appears that the comparison is a quantitatively one. However, the situation in the
experiment is not the same as in the simulation. In the experiment a multitude of polarons
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are measured, which are all in different states due to their oscillations. This results in a
broadened absorption peak at a lower energy than a fully relaxed polaron would assume.
The absorption peak therefore would be expected at a higher temperature, but since DF'T
with PBEsol tends to underestimate the band gap (and subsequently absorption energies),
this is compensated. For this reason the comparison with the experiment is rather of a
qualitative nature. Nevertheless, this is sufficient for a definition for the polaron formation
in the simulation.
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Figure 13: Left: Evolution of the Kohn-Sham eigenvalues of the uppermost occupied electron state at

the four non-equivalent k-points and the sum of distances between the Nby,; defect and the
nearest O atoms surrounding the defect taken from a prototypical MD run at 200 K. Dashed
lines show the equilibrium distance and eigenvalues.
Right: Dielectric function calculated for snapshot structures at the times indicated in the
left graph. For better visibility the functions are shifted vertically. In addition the dielectric
function for the ground-state polaron is shown. The dashed line marks the peak maxima of
the ground state dielectric function for better comparability.

For the electron localization the parameters of choice are the local magnetic moment and
the dispersion of the Kohn-Sham states. To determine a threshold for these parameters
the electron density is employed. The electronic density is plotted for several trajectories
at all considered temperatures in 5fs intervals. For each trajectory the first structure in
which most of the density is located at the defect Nb and only residual parts are left
outside is identified by visual inspection. An example of such development of electronic
density is shown in figure For those structures the KS dispersion as well as the local
magnetic moment are extracted. These values are acceptably close to each other, regardless
of the temperature. On the basis of these values the thresholds are determined, with
the local magnetic moment exceeding 0.18 ug and the maximum of the difference of the
KS energies falling below 0.04 eV. These definitions, however, lack of a description of the
stability of the localization. Not every rise in magnetic moment will lead to a polaron
and especially for the KS dispersion there can be random convergences which do not
correspond to stable localizations. To account for this two additional criteria are added.
First, the localization needs to be stable for a prolonged time. The criteria are checked
for several consecutive time steps corresponding to a 15fs time frame. The electron is
only considered localized if the criteria are fulfilled for at least 85 % of these time points.
Second, only localizations which lead to actual polarons are considered. This is achieved
by first determining the first occurrence of a polaron by the criterion explained in the last
paragraph and then checking the criteria described in this paragraph from this point on
backwards. An example trajectory with the criteria, the electronic density and the band
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4 POLARON FORMATION IN LITHIUM NIOBATE

structures is shown in figures [I5] and [I4] For the stability of the polaron the same method
is used: If the above mentioned criteria are not fulfilled for 85 % of a 15 fs time interval the
polaron is considered quenched. Generally the local magnetic moment as well as the KS
dispersion predict the localization with only 1-3 fs difference. However, the local magnetic
moment has a slightly better accuracy and the advantage of being a single parameter,
while there are 3 KS differences to be accounted for. Therefore, this criterion is used for
the evaluation of the mean localization times.
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Figure 14: Evolution of the mean distance of the excess electron to the Nby; antisite atom during a MD
performed at 300 K. Insets show the excess electron localization. It is to note that the electron
localization coincides with the increase in magnetic moment in figure

For the last part of the analysis the influence of the lattice dynamics on the polaron forma-
tion is studied. In order to do so the phonons of the system are considered. Phonons, the
quantized lattice vibrations of a crystal, play an important role in the polaron formation,
as a localized “phonon cloud“ is an integral part of the quasi particle. The phonons are
calculated using the harmonic approximation, diagonalization of the dynamic matrix and
linear response to calculate the matrix as elaborated in chapter [2.5

To describe the full system the phonons of the 80 atom supercell would have to be analysed.
This poses two problems. On one hand, phonon calculations are more prone to errors the
bigger the cell. On the other hand, the supercell consists of 2x2x2 single unit cells plus
the defect. This results in a folding of the phonon bands, which makes the interpretation
more difficult. To avoid these problems, the phonons of a 1x1x1 unit cell (without defect)
at ¢ = 0 are calculated. A selection of those modes is shown in figure All modes
together form — by construction — a complete orthogonal basis set in the 1x1x1 unit cell.
The influence of these modes on the polaron formation is studied by only considering a
1x1x1 subcell centred around the defect Nb in the 2x2x2 supercell. The motion of the
atoms inside this sub cell is projected onto the phonon displacement vectors. Using the
amplitude of these projections one can calculate the contribution of the modes to different
structural parameters. As already stated the most prominent one for the polaron formation
is the mean distance of the closest O ions to the defect. By comparing the phase and the
absolute contribution of the modes to the mean distance one is able to identify the modes
important to the polaron formation.
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Figure 15: Evolution (same MD as in Fig. of the local magnetic moment at the defect Nbr; and the
average bond length between the Nby,; atom and the nearest O atoms surrounding the defect.
Dashed lines mark the magnetizations and O positions that correspond to the ground-state
polaron. For specific times, complete band structures are shown exemplarily, with colors indi-
cating the electron localization. The increase in magnetic moment is apparently accompanied
by a reduction of the dispersion of the lowest state.
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Figure 16: Subset of phonon modes for the LN unit cell. The first two modes, A2-TO; and A;1-TO, are
low frequency modes which are mainly shear motion between the O ions and the surrounding
lattice. The higher frequency A2-TO3 and A;-TO4 modes are breathing modes of the O ions.
All four modes were found important for the polaron formation.
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4.8. Results

With all tools for the analysis explained, we can now discuss the results, beginning with
the localization and formation times.

4.8.1. Localization and formation times

Those are shown (in dependence on the temperature) in figure Though not very
pronounced, a tendency can be observed. Higher temperatures lead to longer localization
and formation time, while the time between those two (relaxation time) is mostly constant.
It seems that the thermal motion obstructs the polaron formation. As already shown in
chapter [£.5] a relaxation from a disturbed system leads to polaron formation, the polaron
formation is therefore without a barrier. Without external forces the atoms are hence
accelerated towards a polaronic configuration. Additional velocity by the temperature is
most likely to move the atom from the “ideal path, leading to longer formation times.
This effect becomes even more pronounced if the ground structure (therefore at 0K) of
congruent LN is considered. If an electron is added to the ground state it is already partially
localized at the Nbr; site, leading to a fast formation. Disturbing this structure is more
likely to move it into a configuration in which the electron can not localize directly. Figure
also shows the minimum polaron life time. While in the last section a clear definition
for the stability was given, the adjective “minimum‘ had to be included, as many polarons
— especially for low temperatures — stayed stable for the whole duration of the molecular
dynamic, it could be stable for much longer. In fact, for the two lowest temperatures of
100K and 20K all formed polarons are stable for the simulation time. Due to this, the life
time is not shown for very low temperatures, and shown as a dashed line for the middle
temperatures. Nevertheless a clear dependency can be seen, with lower lifetimes for higher
temperatures.

200 T T T T T
Electron localization time —+—
Polaron formation time —%— ]
150 } Minimum polaron lifetime .
z
o 100 | =
£
[ L ]
50 %—/ 1
0 | | | | |

0 200 400 600 800 1000 1200

Temperature (K)

Figure 17: Dependence of the average times required for electronic localization, polaron formation, and
polaron quenching on the simulation temperature. At low temperatures many polarons live
longer than the simulation time, making the calculated average lifetime unreliable. This is
indicated by both the term “Minimum polaron lifetime* and the dashed line.

Experimentally, the polaron formation times have been reported in a wide range between
70 fs and 400 fs for congruent LN, HOTHIIIOHIZN with even higher times around 1500 fs for
stoichiometric LN. 11 Our results between 50 fs and 80 fs lie on the low end of this range.
Instead they fit much better to the experimental values for free polarons which are lower
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than 100 fs. FIII200 Thig effect is most likely due to the neglect of polaron hopping in our
simulations. As already stated, polaron hopping is the process of one electron hopping
from one lattice site to another one, creating a new polaron at this site while quenching
the other one. It is assumed that most electrons first form free polarons, as there are many
more Nbyy, sites than Nby; sites. After this the electrons can hop from site to site, until
eventually they will get close enough to an antisite, where they are trapped as a bound
polaron. This assumption is backed up by the observation, that the formation time in
stoichiometric LN is longer than in congruent LN. Due to the lower defect concentration
the average distance between the initially excited electron and the defect is larger. This
means more hops are needed for the electron to get close enough to the antisite to collapse
onto it. The distance at which this collapse is inevitable was already introduced as trapping
radius. The trapping radius is temperature dependent and was calculated on basis of Monte
Carlo simulations in Ref. At a temperature of 350 K the radius is around 8.6 A, it
decreases with higher temperatures and vice versa, which further solidifies our finding of
shorter formation times at low temperatures. Since our unit cell has a lattice parameter
of 11 A, the electron is bound to localize directly at the defect and to not take a detour as
a free polaron. With only the direct localization as an option, the bound polaron has the
same formation mechanism as the free polaron, which brings its formation time also in the
regime of the free polaron.

The effect of the trapping radius getting smaller with higher temperatures can already be
seen implicitly by the rise in polaron formation time with rising temperature. However, it is
more apparent if the distribution of the formation times is considered. At low temperatures,
the distribution is characterized by a peak within the first 20 fs, many electrons are even
localized straight from the beginning. After this peak the formations are distributed more
evenly. The distribution is shown in a simplified manner in figure[I8 At low temperatures
the trapping radius expands and more configurations lead to directly trapped electrons.
With higher temperatures this peak flattens more and more, as less configurations ensure
the direct formation. This corresponds to a smaller trapping radius.
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Figure 18: Number of trajectories with electron localization times above and below 20fs depending on
the temperature.

Another interesting feature becomes apparent, if the trajectories are considered which do
not lead to polaron formation within the simulated time frame. Considering the temper-
ature range between 100 K and 300 K basically all trajectories lead to polaron formation.
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4 POLARON FORMATION IN LITHIUM NIOBATE

For the temperatures of 20 K, 600 K and 1200 K this is not the case. For 600 and 1200 K
this is obvious from the previous findings, higher temperatures impede the formation and
stability of polarons. For 20 K the situation changes. With a large trapping radius, most
electrons localize fast at the defect. If the starting configuration does, however, not lead to
an immediate localization, there is little thermal motion to reach a configuration inside the
trapping radius. In the regime between 100 K and 300 K there is enough thermal motion
to escape those configurations, but not enough to overly hinder the formation.

4.8.2. The influence of the Hubbard U

As already seen in the construction of the bound polaron, the Hubbard U value is a crit-
ical parameter which influences the polaron formation. It is therefore important to get
an estimate on how large this influence is on the localization formation times. As already
stated, higher values can lead to numeric instabilities. If the convergence threshold for the
self-consistency cycle is raised — which lowers the accuracy — several trajectories, however,
do converge. In order to compare the parameters, MDs were conducted at 200 K with
U=4.7¢V at the antisite, where the starting configurations were the same as for the MDs
with U=2.2¢eV. Those MDs are divided into early electron localizations and late electron
localizations and compared. For the early localizations little changes occur, with local-
ization times being maximally 3-5fs earlier in the case of U=4.7¢eV. For late localizations
two cases can occur. In one case the localization stays qualitatively the same, with devia-
tions of 5-8fs. In the other case the electron localizes substantially earlier (10-40 fs). This
case occurs if the electron is close to localizing (or even already partially localized) in the
U=2.2€eV case. A higher U binds the electron more strongly and has a stronger influence
on the structure, therefore the electron localization can occur at higher ion velocities. This
in turn increases the trapping radius, which enlarges the early-localization peak in the
distribution. This is also the reason why the short localization times are barely effected, as
they start in a nearly trapped configuration also in the 2.2eV case. However, it is difficult
to quantify this effect, as the range in the shortening of the localization times is large.
Nevertheless for the low to middle temperature range it can be largely discarded, as it only
effects a fraction of the trajectories with long localization times, and many electrons local-
ize early. For higher temperatures this effect becomes more important, as more trajectories
have late localizing electrons. Overall a higher Hubbard U value leads to shorter localiza-
tion times, with the effect being small at low temperatures and becomes more important
at high temperatures.

Considering the opposite directions, MDs were calculated using no Hubbard U correction.
Like earlier, MDs with early and late electron localizations are compared. For the short
localization times the electron takes around 5 fs longer to localize, for the long localization
times around 10fs. The trapping radius seems to be not as much influenced as by the
increasing of the Hubbard U value. However, it is to mention, that the stability of the
polaron diminishes. While for U=2.2eV most polarons stay stable until the end of the
calculation, for U=0¢€V the electron de- and relocalizes while the O ions oscillate.

As a final test, the full “spectroscopical* set of U=5.2eV for the antisite Nb and U=4.7eV
for the other NbH is considered. This set shows a different behaviour than the previous
ones. Here no late electron localizations are observed, the electron is either localized
directly at the antisite, or no polaron forms. This is explainable due to the effect of the U
correction to promote either fully occupied local orbitals or empty ones, partially filled ones
are unfavoured. As seen in figure [I4] during a MD at U=2.2eV with late localization, the
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excess electron is localized evenly at the non defect Nb ions in the beginning. With such
a distribution, changes in electronic occupation between those atoms are disadvantageous,
as the energy which one electron loses by lowering its occupation, the other one gains by
raising its occupation. The self-interaction error then ensures that the evenly distributed
configuration is energetically favourable. The Nb antisite is empty in this configuration,
which is again favourable. In order to move the electron to the antisite, both U values lead
to unfavourable configurations, as all electrons are partially occupied in the intermediate
steps. This set of U values hence “freezes” the electrons in their starting occupation —
either at the antisite or the other Nb. This set is therefore not suitable for a MD.

4.8.3. Lattice relaxation

At last we study the influence of the lattice motion on the electron localization and relax-
ation times, beginning with the relaxation times. As already stated the localization of the
electron causes the surrounding oxygen cage to expand. The maximum of this expansion
roughly corresponds to the formation criterion as can be seen in figure [I3]and [I5} We study
the influence of the lattice motion by projecting the motion of the ions in a 1x1x1 subcell
around the defect onto the LN phonon modes as explained in chapter [2.5] By considering
their proportion on the mean O distance to the defect their impact on the relaxation is
assessed. We identify four modes, A2TO1, A;TO1, A9TO3 and A1TO,4 (nomenclature used
from Ref. [122)) which are especially important for the O-cage expansion. Those modes are
shown in figure [I6] To gain a clearer picture, the trajectories with excess electron are
compared to the one without excess electron but with otherwise same starting conditions,
which shows the influence of the electron. Four such comparisons are shown in figure [I9]
where on the left hand side the trajectories with excess electron and on the right hand
side without excess electron are shown. Those trajectories were conducted at 600 K and
were chosen as they display the further discussed features most clearly and have the elec-
tron localized within the first 5 fs, which makes the comparison easier. For all trajectories
prominent features of the modes, like the “double-peak” of the A3TO1 mode in [19[a) and
b), the steep decline of mode A3TOg3 in ¢) and d ) or the continuous decline of mode AsTO4
in e) and f) are existent in both trajectories with and without excess electron. This shows
that the electron modifies the modes rather than completely dominating the dynamics,
which underlines the importance of the modes for the polaron formation. Generally we
observe that modes with lower frequency are altered less than modes with high frequency.

Furthermore, we explicitly find an influence of the phonon phase relation on the relaxation
times. For all trajectories holds that once the electron localizes, the O ions begin to be
pushed outwards. This process can be either dominated by the high frequency A;TO4 and
especially the A;TO3 mode, or the low frequency ATO; or A;TO; mode. If the AsTOs3
mode is in a O-cage shrinking phase, like in figure f), its motion can not be directly
inverted by the electron, but only damped (see fig. [19/e) ). In this case the A TO; mode is
altered to expand the O cage for a longer time. Since this mode as a low frequency mode is
only modified slightly, this leads to an overall longer relaxation time between 40 and 50 fs
in this case. The opposite occurs if the AsTO3 (and to a lesser part the A;TO4 mode) is
in a O-cage expanding phase as in fig. h). In this case the expanding motion of the
mode is amplified and leads to a fast relaxation time (here around 20fs), while the low
frequency modes are unaffected. This behaviour might explain the overall slightly shorter
relaxation times at higher temperatures, as with higher temperatures the high frequency
modes are more often occupied. As a final finding, the increase of the O cage due to the
electron leads to a less rigid Nb-O bond. Comparing the frequencies of the O cage motion,

51



4 POLARON FORMATION IN LITHIUM NIOBATE

the structure without electron oscillates at around 20.5 THz, while in the case of the excess
electron it oscillates around 17.5 THz.

Now we have a look on the influence of the lattice on the electron localization. As stated
in chapter the common explanation for the electron localization is a spontaneous
localization due to a disturbance in the lattice. Such a disturbance should be observable
in the MDs, revealing a microscopical mechanism leading to the localization. We again
use a decomposition of the ion movements in phonon modes to find such a mechanism.
A possible mechanism would be again the O-cage, with the idea that the electron needs
enough space to move through the cage to the antisite, which would make it visible by
means of the phonons. However, no such dependency could be found. Additionally to the
phonons, the localization was studied using the deformation of the O-cage, the minimum
O-distance to the Nb antisite, the deformation of the surrounding Nb and Li ions and visual
inspection of the structures. Furthermore, a PES with the O-ion movement according to
the phonon modes as structural coordinate was calculated in order to find local minima
where the electron is delocalized. Despite this different methods no localization mechanism
was found, indicating that the localization mechanism does not take place in the direct
vicinity of the defect but rather encompasses the whole cell.

4.9. Non-adiabatic potential energy surface hopping in lithium niobate:
The problems of a crystal

Comparing the dynamics of the oxirane molecule and the lithium niobate crystal one might
wonder why in one case the electronic relaxation was considered, while the other one starts
directly in the lowest excited state. On one hand, this is a question of the computational
effort. While oxirane as a molecule has discrete energy levels which are clearly separated,
LN has a much denser density of states. If for example an excitation roughly 1eV above
the lowest conduction band spans four KS states for oxirane, it spans 20 states in LN.
Correspondingly more excited states have to be calculated for the hopping algorithm. On
the other hand, there are fundamental problems in constructing the needed wave function
of the system. As stated in chapter Slater determinants of the occupied single particle
KS orbitals are used to construct the wave function. If an active space which includes the
highest valence band state up to the band occupied at the highest excitation is considered,
for a single electron excitation there is only one KS state — the one in which the electron
is elevated — in the determinant for each excited configuration. However, for a crystal
there is no single KS function for one band, but one for each k-point per band. Due to
the lack of periodicity in a molecule this is no problem, since all states show no dispersion
and hence are independent of the k-point. In a crystal the orbitals are dependent on
the k-point, therefore there is no simple choice on how to construct the wave function.
One could decide to use a characteristic point to extract the eigenfunctions from, like the
Baldereschi point or the I' point. This leads to a massive underestimation of the hopping
rate, for LN the possibility of an electron hopping according to the Schrodinger equation is
below 0.1 % within the first 200 fs if the lowest four conduction band states are considered.
This is most likely due to the missing interaction between the different k-points. The
conduction bands have a non discardable dispersion, the density of states in fact forms
a continuum for the conduction band. This should allow an excited electron to relax to
the bottom of the conduction band. If only one k-point is considered, the majority of
those states is ignored. Furthermore, for each k-point the states may change individually
— as seen by the straightening of the band structure in figure (the middle changes
independently from the sides) — which makes the interaction between the k-points even
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Figure 19: Evolution of average O-Nby; distances for eight example trajectories at 600 K with (left) and
without (right) excess charge. The trajectories on the rhs have identical starting configurations
as their counterparts on the lhs. The atomic movement is projected onto relevant bulk phonon
modes (see figure and the O-Nbr,; distance that would result from an exclusive excitation
of the respective mode is shown. The 'ground state’ graph shows the average O-Nby; distance
for the corresponding relaxed structure at 0 K.
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more important. Unfortunately it is not trivial to include such an interaction. Due to their
phase relation, the states of the k-points are always orthogonal to each other, no overlap is
possible. A possibility to bypass this problem is to fold the band structure, which overlays
the k-points. This is achieved by increasing the size of the unit cell, a doubling in size in
real space corresponds to halving the unit cell in reciprocal space. Due to computational
restrictions this is not viable for this system.

Another possibility would be to change the hopping algorithm to get rid of the k-points al-
together. One option would be the Landau-Zener formalism, which estimates the hopping
probability by the PESs of the excited states and their derivatives. P2¥24 Thyis formalism,
however, has the disadvantage of not being an ab initio formalism, but a phenomenological
one. Another possibility could be to change the basis set. If one changes from the calcu-
lation in reciprocal space to real space, for example by projecting the wave functions onto
a tight binding basis set or a transformation to Wannier functions, one is able to remove
the k-point dependency and implicitly include the k-point interaction while calculating the
overlap between bands. A word of caution is in order, since often new orthogonalities are
introduced during such transformations, meaning that the problem might just be moved
to another point. However, as we will observe later, the surface hopping algorithm seems
to work best for localized states, which increases the probability for such a transformation
to improve the hopping rates as Wannier functions can be used to maximise the localiza-
tion. B25127 T a5t but not least one could consider explicitly calculating electron-phonon
interaction coefficients for impulse carrying phonons. While this methods does not give
hopping probabilities during a MD, it can be used to get an estimate on the ratio of the on
site interaction and the interaction between k-points, which in turn could be used to scale
the hopping probabilities. Nevertheless, with the methods implemented in the LIBRA-X
program package the hopping can not be calculated for this problem, which is why it is
not considered above.

In summary molecular dynamics were conducted to study the formation of polarons in
lithium niobate. The polarons were modelled by adding an extra electron to the system.
For free polarons the self interaction error proved too strong to describe polaron formation
in an environment with finite temperature, while the bound polaron could be described
using the DFT+U approach. The polaron formation was monitored using the lowest con-
duction band position, the local magnetic moment at the Nby,; site and a decomposition of
the atomic movement around the antisite into phonon modes. It shows that the barrier-
free polaron formation is hindered by the movement caused by the temperature, leading
to longer localization- and formation- (and shorter life-) times at higher temperatures.
This is in line with the larger trapping radii at lower temperatures calculated in previous
works. The formation time for each trajectory was found highly dependent on the phase
of the phonon modes at the electron localization, with short formation times in case of
an “outwards* phase of the high frequency A1 TO4 and A3TOj3 breathing modes and long
formation time for the opposite phase, where the expansion is mainly done via low fre-
quency shearing modes A3;TO; and A;TO;. The calculated formation times are between
50fs at low temperatures and 75 fs at high temperatures, setting them at the lower end of
experimental values. This is most likely due to the neglect of polaron hopping due to the
cell size, which is small enough to only allow for a direct capturing of the electron.

From a computational point of view lithium niobate highlights the need of changing pa-
rameters which can occur by switching from a static structure to a molecular dynamic.
In this case the Hubbard U values optimized for the optic properties of the polaron in
its relaxed ground state are not suitable for molecular dynamics. Furthermore, it shows
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the difficulty to describe the surface hopping of highly dispersive states with the k-point
dependent Slater-Determinant approximation of the wave function. With the knowledge
gained from the molecular oxirane and the solid lithium niobate, we now move on to the
biggest considered system — the exciton dynamic at the silicon-tetracene interface.

95



2 \_,\ X

\‘ N ﬂ/‘-

.f-‘"l_- \\’} /\ b

Exciton dynamics at the silicon-tetrace interface



5. Exciton dynamics at the silicon-tetracene interface

As the name already states, the Silicon-Tetracene (Si-TC) interface model consists of two
surfaces containing silicon and tetracene. Modelling such an interface poses a challenge,
since in order to model a surface one has to capture the transition from the periodic
bulk structure to the non-periodic surface. Therefore, more atoms perpendicular to the
surface have to be included than in the case of the ideal bulk material. Furthermore,
the lattice constants of the materials have to be matched in order to reduce the stress
between the surfaces so the interface can form. Finding a common denominator leads to
multiple duplications of the cell lateral to the surface. Due to these circumstances the two
dimensional interface needs considerably more atoms than the zero dimensional molecule
or the three dimensional solid, which of course increases the computational effort. But
before going into further details of the model, lets have a look at the components and why
this interface is of particular interest.

5.1. Silicon, tetracene and solar cells

Silicon (Si) is a semiconductor with an indirect band gap of around 1.1eV.H28l In its
monocrystaline form it crystalizes in a diamond structure with a lattice constant of
5.43 A.129 Dye to its mechanical and chemical sturdiness as well as its abundance it
has become the preferred semiconductor for all kind of electronic devices.

Tetracene (TC) though is far less wide spread. It is an aromatic hydrocarbon with four
carbon rings saturated with hydrogen atoms (C1sHy2), see figure[20] Due to van der Waals
interaction tetracene can form crystals with different structures, most notably the bulk
phase (also known as TC1) and the thin film phase (also known as TC2).130 Tetracene
has its lowest excitation energy of roughly 2.3eV and is therefore also a (organic) semi-
conductor. B3 Ag organic semiconductor it finds moderate usage in organic LEDs or field
effect transistors. 32 It has, however, another interesting property, as singlet fission oc-
curs in TC. For the excitation of one electron, there are two possibilities. In one case
the electron is excited with its spin staying the same, resulting in a net spin of 0. This
excitation is referred to as singlet excitation and yields the before mentioned excitation
energy of 2.3eV in tetracene. The other option is an excitation where the spin is flipped.
This results in a net spin of 1, referred to as triplet excitation. As the triplet excitation
contains two unpaired electrons with identical spin, these identical particles are subject
to the exchange interaction. The exchange interaction leads to a spatial separation of the
electrons, which decreases the energy of the excitation. 33 However, this kind of excitation
is very improbable, as the flipping of a spin during an excitation is unlikely (also called
spin-forbidden). H34 1) the case of TC the triplet excitation energy is around half the en-
ergy of the singlet excitation (it is half the energy of another singlet excitation state to
be exact). 31 This makes it possible to obtain triplet excitations without needing a spin
forbidden process: First a singlet is excited with a net spin of 0. This singlet splits up into
two coupled triplets, where one has a spin of 1, the other one of -1. Therefore, a net spin
of 0 is retained, the process is spin allowed. Through dissociation processes the triplets
decouple which leaves two independent triplets in the T'C. This process is referred to as
singlet fission. 135l

This singlet fission process makes tetracene in conjunction with silicon a candidate for hy-
brid solar cells. Solar cells consist of two differently doped semiconductors (usually silicon),
one with a surplus, one with a deficit of electrons. The difference in electron concentration
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5 EXCITON DYNAMICS AT THE SILICON-TETRACENE INTERFACE

Figure 20: Tetracene molecule with (rhs) and without (lhs) triplet excitation. White atoms are H atoms,
black ones are C atoms. Blue isosurfaces correspond to the excited electron, red to the hole
state.

leads to a diffusion process which creates an electric field between the semiconductors. If
an electron is excited in this configuration, the electron and the hole it leaves behind are
separated by this field and accelerated towards the contacts, a current is produced. 136l
Therefore, the creation of electron-hole pairs (also referred to as excitons) is crucial for
the functioning of a solar cell. Whether an excitation can occur or not is a question of
the energy for the excitation and the band gap of the semiconductor. The source for the
excitation is of course the solar radiation, the semiconductor usually silicon. The sun
produces a black body radiation at 5800 K, and is hence a wide spectrum. 137 However,
radiation with energy below the band gap of 1.1eV can not induce an excitation, radiation
with higher energies “waste part of their energy, as the energetic position of the electron
in the conduction band is irrelevant. Additional effects as a reduced absorption at shorter
wavelength decrease the efficiency further. These factors combine into an upper limit for
the efficiency of single junction solar cells, the Shockley-Queisser limit, which lies at about
33 % for silicon solar cells. 138139

This limit is tried to be overcome by the use of hybrid solar cells, where not one, but
different semiconductors are utilized. One such semiconductor could be tetracene: Due to
its larger band gap it can utilize shorter wavelengths more efficiently. As a result of the
singlet fission it can transform one exciton into two excitations with half the energy. With
the band gap of Si at 1.1 eV and the triplet energy roughly at 1.25¢eV there is the possibility
to transfer the exciton from the TC to the Si, where it can contribute to the electricity
production. There are two possibilities to transfer the excitation to the silicon: On one
hand, the exciton can recombine, which creates a photon which then excites an exciton
in the silicon. Due to the recombination of a triplet being spin-forbidden this process is
very unlikely to occur. On the other hand, the electron and hole are transported directly
into the silicon. For this to occur there has to be an overlap between the wave functions
describing the tetracene and the ones describing the silicon. However, no such overlap and
thus little to no exciton transfer has been reported.M4042  Increasing the overlap is a
task which has been tackled by several experiments and different approaches, F40143] with
the hafniumoxynitride interlayer of Einzinger et al.m4 being one of the more successful
ones. Though many experiments were conducted, often there is little known what causes
an increase or decrease in the exciton transfer rate. This makes it especially interesting to
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look at the problem from a simulation point of view. The following chapter is divided into
three sections: First, the ideal Si(111)-TC interface is modelled and its static properties
are discussed. Second, a point defect is introduced to the Si surface and the changes in the
Si-TC band alignment and exciton localization are observed. In the third part the defect
model is used to gain insight in the dynamical properties of the system.

5.2. The ideal Si(111)-TC interface
5.2.1. Modelling

For modelling an interface first the individual parts have to be considered. While the
Si(111) surface is well known and defined, the TC surface can occur in different configura-
tions, depending on the thickness of the TC film. In thick films (more than 20 monolayers)
the bulk phase (designated with TC1) is observed. In smaller films the thin film phase
(TC2) is observed. Both structures show a zig-zag like orientation of the TC molecules;
however, in the case of the bulk phase the molecules show a higher inclination towards the
surface (see figure . Aldahak et al. report an additional phase which forms in very thin
films (thinner than three monolayers) and therefore occurs directly at the transition from
the Si to the TC.H30 This phase is close to the TC1 phase, making the TC1 phase one
of the phases of especial interest for the interface. As already stated the main difference
between the TC1 and TC2 phase is the inclination of the molecules. In order to gain
a simpler model additionally to the TC1 phase a simplified phase is considered. In this
phase the volume of the unit cell is reduced in such a way that the molecules have a 90°
inclination to the surface, as there is not enough space for the molecules to tilt. Since the
upright standing molecules are laterally close, this phase will be referred to as high density
(HD) phase. For the sake of simplicity the bulk-like phase will be referred to as low density
(LD) phase.

For both models one single monolayer will be considered, thus by keeping the absolute
atomic positions fixed, straightening the cell in z direction and adding a vacuum layer
in z direction, one gains the unit cells for the respective surfaces. In order to model the
interface the lattice constants of both surfaces have to roughly match. In order for this
to happen, a common denominator for the lattice constant of Si(111) and the TC models
has to be found. For the bulk phase the lattices match for a 1x4 repetition of the TC unit
cell similar to the modelling of Ref. [130} for the high density phase the match occurs at a
2x2 repetition of the corresponding TC unit cell. With the planar dimensions of the cell
fixed, the height of the cell has to be determined. For this the Si surface has also to be
considered. The Si(111) surface is modelled using four Si bilayers, where the one side of
the Si is fixed at its bulk positions, this side terminated using H ions. The interface side is
also passivated with H ions. Considering an additional vacuum layer of roughly 10 A and
furthermore relaxing the structures, one results in the structures shown in figure
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Figure 21: Top and side view of the high and low density phase. The top view is oriented along the long
axis of the T'C molecules, resulting in a 0° and 25° angle to the Si surface normal for the HD
and LD model respectively.

With the structural model set all that remains are the computational parameters. For
both models a wave function cutoff of 30 Ry and a 2x2x1 Monkhorst-Pack k-point grid is
utilized. In order to incorporate the intermolecular van-der-Waals interaction, the DFT-D2
Grimme correction is applied. M43146] If not stated otherwise in the following paragraphs,
the system is relaxed using PBE pseudopotentials, with the lowest Si bilayer fixed at the
bulk positions as well as with fixed terminating H ions. Afterwards the relaxed structure is
recalculated using the HSE hybrid exchange-correlation functional with an exact-exchange
fraction of 25 %, a k-point grid of 4x4x1 and a ¢-point grid of 2x2x1.

5.2.2. Excursion: Which (hybrid) functional to choose?

For an interface the choice of a fitting functional is especially complicated, since two differ-
ent materials have to be covered. There are several possibilities to approach this problem.
First one could consider the PBEO functional. The PBEO functional is a parameter free
(except for the exact exchange parameter) functional, which is known to work well for a
wide set of materials. M7 Furthermore, the structure is relaxed with its non-hybrid form,
the PBE functional. Second, the HSE functional could be considered. The HSE functional
is more limited in its scope, but it is optimized for describing semiconductors, including
Si. 48] Ag the silicon side of the interface ends in the Si bulk structure, this functional could
be desirable. Apart from that, one could optimize the functional for the TC surface. The
probably best functional for this would be the B3LYP functional, which is usually used for
describing molecules. F49150] Fyrthermore, one can change the exact exchange parameter
for the functionals. While there are standard values for these parameters, they can be
adjusted to reproduce experimental results for example. Last but not least one could use

60



5.2 The ideal Si(111)-TC interface

HSE-25 PBE HSE-40 B3LYP | Experiment

B3 e 121 057 164  1.99 117
B2 oeene | 468 454 474 469 5.9
B9 250 290 404  3.60 | 2.32.2.38°
Joch i 126 124 127  1.30 1.25¢

Table 4: Si and Tc excitation energies (in eV) calculated using A-scf and ¢-DFT with different functionals
in comparison to experimental data from Refs. 1527, 153F, and [54F. Here E2, E*T) and
E*(%) denote band gap or HOMO-LUMO separation, triplet and corresponding excited singlet
exciton, respectively.

several hybrid functionals in the same cell, which are confined to a spacial region of the
crystal. For this work the PBEO and “several functionals* approach are discarded. With
HSE and B3LYP available there are more sophisticated functionals than PBEO for each
surface, and the option to use several functionals at the same time is not supported in the
used release of QUANTUM EsprRESSO (6.3).B334 The remaining HSE and B3LYP serve
as limits for both surfaces. As an intermediate functional the HSE functional with 40 %
exact exchange is considered. With this value the HSE functional reproduces the B3LYP
band gap of a single TC molecule. Therefore, the (static) calculations are done with the
PBE functional (relaxation), the HSE functional with 25 % exact exchange, the HSE func-
tional with 40 % exact exchange and the B3LYP functional with 20 % exact exchange. The
main focus in this thesis will be the PBE and HSE-25 functional. The PBE functional is
the only one computationally efficient enough to allow for molecular dynamic calculations.
From the other functionals HSE-25 is the most numerically stable one and it predicts both
the fundamental silicon band gap and the singlet fission process (the energy of the triplet
being half the energy of the singlet) accurately, as shown in table [4f From this argument
one might conclude that the other functionals could be omitted completely. The singlet
fission process is, however, strictly speaking not a necessary requirement for the modelling
of the interface, as it occurs within the TC bulk crystal (for which the values in table
are calculated, crystal structure parameters taken from Ref. [I51)). The properties of the
triplet within the TC crystal and at the TC surface do not necessarily have to be the same.

Additionally, it is possible that there is a singlet/triplet configuration for which the other
functionals fulfil the fission condition. For the system to be in a singlet or triplet state, only
the total spin has to be zero or one respectively. The exact configuration of the excitation
is not set in stone. In this work three singlet configurations were tested, the lowest possible
one with a HOMO — LUMO excitation in one spin channel (designated Slg), one with
this excitation in both spin channels (designated S1g), and one with empty HOMO and
half filled LUMO and LUMO-+1 bands in one channel, designated S1.5 (the more realis-
tic HOMO — LUMO-+2 excitation could not be calculated because of consecutive band
swapping due to the band lowering of the excited state). For the triplet two configurations
were considered, one with one triplet excited in the lowest possible state (designated T1),
and one were two triplets are excited (designated Tq4). The excitation energies for those
configurations are shown in table [f] From these configurations the S14 and T4 configu-
rations fit best both the fission condition as well as the experimental values, as already
shown in table {4 (the Tq energy is halved in this table, as there are two triplets in the
system). Besides the energies there are other reasons to choose these two configurations.
On one hand, the configurations preserve the amount of excited electrons, in both cases
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HSE-25 PBE HSE-40 B3LYP
T1 1.22 1.15 1.25 1.25
Tq 2.52 2.48 2.53 2.6
S1 1.74 1.39 1.97 1.74
Slq 2.50 2.9 4.04 3.60
S1.5 1.87 1.52 2.10 1.97

Table 5: Singlet and triplet excitation energies (in eV) in the bulk TC crystal for different functionals and
excitation configurations. The HSE-25 T4 and S1q configurations fit the singlet fission process
best.

two electrons are excited. On the other hand, the S14 exciton stretches from one molecule
to the other, which makes the splitting into two coupled triplets plausible. 233 By contrast
to this, the S1 excitation is localized mainly on one molecule, discouraging such splitting.
The S1.5 electron is completely delocalized, while the hole remains on one molecule, but
this is mostly due to the technical limitation of half filled orbitals. The corresponding
densities can be seen in figure 22]

Figure 22: Electron (blue) and hole (red) densities for the considered excitation in the TC bulk crystal.
Different shades in red and blue designate different bands. Arrows indicate the excitation
configuration and correspond to the densities.

While the choice therefore is plausible, it has to be noted that the T; configuration results
in a total spin of 2, contrary to the situation of the singlet fission, where two triplets with
a net spin of 0 occurs. Furthermore, only a non distorted unit cell with only two molecules
has been considered. The findings are therefore by no means conclusive. Together with the
already mentioned fact that the singlet fission is not necessarily a good criterion to choose a
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5.2 The ideal Si(111)-TC interface

functional, the band structure and density of state calculations in the following paragraphs
are also calculated using the other functionals. However, for the sake of brevity only the
HSE-25 results will be shown, and differences using other functionals only mentioned where
it applies.

5.2.3. Band alignment

To gain a first insight in the system, the partial density of states (PDOS) of the ground
state is considered. By projecting the Kohn-Sham wave functions onto the atomic orbitals
attributed to the atoms of the Si and TC surface respectively, one is able to identify the
states corresponding to each surface. The associated partial densities show the band gaps
of the materials and their relative positioning. To gain further insight in which material
adjusts to which, the average electrostatic potential is used as a reference. As the lowest
Si-bilayer is fixed at the bulk positions, it can be assumed that the lower layers also show
the same electrostatic potential as bulk Si. The electrostatic potential averaged in the x-y
plane for the interface as well of bulk Si is shown in figure 23] confirming this assumption.
In order to avoid effects from the H termination, the average electrostatic potential of the
second lowest Si bilayer is computed and set equal to the bulk Si average electrostatic
potential. In a last step, the zero point of the energy axis is chosen to be at the maximum
of the highest bulk Si valence band. The resulting graph for the high density phase is
shown in figure a), where orange lines correspond to Si states and black lines to TC
states. Considering only the Si states first, the band gap starts as in the case for bulk Si
around 0eV. The band gap is around 1.3€eV, which is around 0.1eV larger than for bulk
Si. Since the structure is only relaxed using the PBE functional such a discrepancy is
to be expected. For the TC states the band gap appears between 1.5eV and 2.3eV. For
crystalline TC there are no comparable experimental results, but as this band gap is similar
to the theoretical results of Ref. [156, the gap is assumed to be described adequately.
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Figure 23: Averaged electrostatic potential over the x-y plane for the Si-TC interface (lhs) and a Si unit
cell (rhs). The amplitude and frequency of the first four Si layers match their counterpart in
the Si unit cell, making the average electrostatic potential a fitting reference for the KS energy
levels.

The filled areas in figure 24|a) represents occupied states, i.e. states below the Fermi energy.
Therefore, the TC states fill the band gap of the Si states, and since the TC gap resides
higher than the Fermi energy almost no band gap can be observed, the system barely has a
type II (staggered) alignment. H57 Changing the functional changes some details; however,
not the implications of the situation. The PBE functional closes the band gap more and
even shows an energetic overlap between the TC and Si states at the Fermi energy, creating
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Figure 24: Partial densities of states for the ground state of the high density (lhs) and low density phase
(rhs) computed with the HSE-25 functional. Orange and black correspond to Si and Tc related
states, occupied states (below the Fermi energy) are shaded. The 0 of the energy axis is at
the position of the highest Si bulk state. The low density PDOS shows a clear band gap. The
high density phase has a diminishing but existing band gap, the small Si-TC overlap at the
Fermi energy is only a result of the Gaussian broadening used in the PDOS calculation.

a type III (broken band gap) alignment. The B3LYP functional shows a small band gap,
the form and alignment of the bands, however, remain the same. A similar situation occurs
in the LD phase as shown in ﬁgure b). In the LD phase the TC states are less broadened
and the TC band gap is wider. The TC states reside at the Fermi energy, afterwards a
small gap follows. This situation does not change regardless of the used functional, with
the same widening and narrowing tendencies of the functionals as for the high density
phase.

With this system having a smooth transition from the TC states to the Si states it seems
to be quasi metallic and one would expect a T'C electron to be lifted into a Si state upon an
excitation. This is contrary to the observations, as a mixed exciton would require a transfer
of the electron between both surfaces. And indeed by introducing a triplet excitation to
the system using ¢-DFT (with an overall positive spin), the exciton is localized fully at the
TC surface. So what happens during the excitation? In a simple picture with only one
material one would expect a lowering of the now filled state in the conduction band and a
rising of the now empty state in the valence band. However, as two materials are involved,
the band alignment has to be taken into account. This is shown in figure 25 where the
partial density for the excited high density phase is shown spin resolved (spin up positive
densities, spin down negative densities). The whole TC density shifts to lower energies
in respect to the Si states, where the local TC state density maximum at approximately
0.9eV in the ground state (figure lhs) now is at 0eV. The before mentioned effects
happen additionally, a state which was formerly in the conduction band is occupied and
lowered in energy in the spin up channel, resulting in the peak at 1.3eV. A state formerly
in the valence band is depleted and rises in energy in the spin down channel, resulting in
the peak at 0.7eV. Due to the alignment shift now both the electron and hole are located
firmly at the TC surface. Again a similar result is obtained for the LD phase and different
functionals do not change the situation fundamentally.

To further substantiate this finding, the opposite fringe case of the HD phase, namely a
single flat lying TC molecule at the Si surface was considered. Furthermore, the HD and
LD geometries were distorted by calculating one MD trajectory for each phase at 300 K
for 2ps. In none of these calculations a transfer of the triplet to the Si-surface could be
observed, in case of the MDs only a delocalization over several molecules could be seen.
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Figure 25: Partial density of states for a vertical triplet excitation at the ground state structure of the
HD model. Negative and positive PDOS correspond to the spin up and spin down channel,
the dashed lines correspond to the Fermi energies. In respect to figure [24] the TC states are
moved to lower energies. Directly below the spin up Fermi level and above the spin down
Fermi level are two TC peaks which do not occur in the ground state. Those respectively
occupied and unoccupied states correspond to a TC localized electron and hole, thus a TC
localized triplet exciton.

This clearly shows that a exciton transfer is not to be expected at the ideal interface.
However, this study also shows that the band alignment for this interface is quite sensible.
By manipulating how the bands align, an exciton transfer might be possible.

5.3. Introducing the defect

One possibility to do so might be to introduce a defect to the passivating hydrogen layer
(towards the interface). There are two reasons why introducing a defect could be useful.
On one hand, defects at interfaces are known to be able to pin the Fermi level close to
them, i.e. at the charge neutrality state, which is the energetic position of the half filled
defect. 18 Pinning the Fermi level should reduce the flexibility of the band alignment, as
the TC states above the TC band gap should be empty, and states below should be filled.
On the other hand, introducing a defect leads to open bonds at the surface. These open
bonds serve as a predestined place for the electron or hole of the exciton to localize onto.

In this case one H ion is removed from the passivation layer, leading to a negatively charged
Si surface and a doubly occupied dangling bond (db) at the defect. The removal of one
positive charge carrier makes the exciton hole a suitable object to compensate the dangling
bond. The electrostatic interaction between electron and hole of the exciton can afterwards
pull the electron to the Si-surface, completing the exciton transfer.

In a first step we again look at the partial density of the ground state, displayed in figure
for the high density phase. In comparison with the ground state density without defect
(figure [24]a) ), several things should be noted. First, the Si states do not move, the valence
band maximum is still located at the bulk Si maximum (0eV), the band gap is also still
the same. Additionally to the surface and bulk Si states, the defect state resides at 0.15¢eV,
therefore in the Si band gap. The Fermi energy is moved substantially towards the defect,
and the TC states move with the Fermi energy. This results in an overlap between the
band gaps, wherefore the interface appears to be insulating. With the shift of the Fermi
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Figure 26: PDOS of the ground state of the HD phase with dangling bond. The dangling bond state
occurs directly above the Si valence band. The Fermi energy is fixed close to the dangling
bond, resulting in a shift of the TC states and creating a band gap.

energy the Si valence band state and especially the defect state are far more probable
to be affected by the excitation, a necessary step for the hole transfer. Nevertheless, an
excitation from the valence band maximum to valence band minimum appears to lead to
an half TC, half Si bound exciton, like in the case without defect.

To verify this assumption, by keeping the structure the same and introducing the triplet
one is able to calculate the DOS of the excited system which is shown in figure However,
this figure paints a different picture: While the band alignment has indeed not changed,
the exciton is purely localized at the T'C. To understand why this occurs we have a more
differentiated look at the states of the ground state by means of the band structure. This
band structure is shown in figure28 One can see that the Si states dominate the conduction
band minimum at I'; however, there are also contributions to the lowest band from TC
states near X. By exciting the electron one empties the highest valence band which is
purely TC attributed. The lowest conduction band which is mostly Si but partly TC
attributed is filled. These bands interact via electron-hole Coulomb interaction which each
other. Since the Coulomb interaction is dependent on the distance between the charges,
the TC-TC interaction is stronger than the T'C-Si interaction. This causes the TC states
at the edge of the band structure to be lowered more than the Si states. While they do
so they “pull“ the mid band TC states with them and form a fully TC localized state, and
therefore an exciton localized completely at the TC surface.

A vertical excitation leads to a TC localized triplet exciton. However, the goal is to use the
dangling bond at the defect to capture the exciton hole and therefore initiate the transfer.
To gain insight on how the system behaves with a half-filled dangling bond (the situation
once the hole is captured) a half filled dangling bond is encouraged by considering not the
charged system, but the charge neutral one. Once again the PDOS is utilized for analysis,
which is now also spin dependent in the ground state due to the uneven number of electrons
in the system. The result is plotted in figure 29} As expected, the spin down part of the
dangling bond rises in energy. Interestingly two peaks can be observed, one directly at
the Fermi energy (the charge neutrality state), which is partially filled, and a completely
empty one, which rises towards the conduction band. This is observed for each functional
but PBE, where the dangling bond localizes completely at the Fermi energy.
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Figure 27: PDOS as in figure but with added triplet excitation. As before a TC localized triplet is
observed.
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Figure 28: Band structure corresponding to the PDOS of figure The highest valence band is com-
pletely of TC character, the lowest conduction band has Si localized states at I' and TC
localized states at X. As the Coulomb interaction between T'C and TC states is higher than
between TC and Si states an excitation results in the TC localized triplet in figure @

It is notable that the energetic change for the dangling bond is accompanied by a lowering
of the dangling bond Si atom, it assumes a position closer to its original one without
defect. This rises the question if the energetic position of the dangling bond in the charged
state can be manipulated by moving the dangling bond atom. And indeed by shifting the
defect to the Si surface and shaking up the rest of the structure, the structure relaxation
leads to a half occupied dangling bond state. Together with the fully relaxed TC bound
triplet structure two stable structures are obtained, which are shown in figure [30] It
can be seen that for the half-filled dangling bond the lowest conduction band now is a
Si band, in accordance with our earlier findings on the lowest conduction band being
determined by the unoccupied hole state. The triplet therefore is fully located at the Si
surface. In the following these structures will be referred to as Si-TCrpa+ for the TC bound
triplet structure and Si-TCg;x for the Si bound triplet structure. These two structures are
stable for every functional; however, there is a notable difference concerning the energetics.
For each functional except B3LYP the Si-TCg;+ is energetically favourable, with HSE for
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Figure 29: PDOS of the uncharged dangling bond HD structure. The dangling bond is therefore half-
filled. As to be expected the occupied part moves into the bulk Si states, while the unoccupied
part moves to the charge neutrality state. Interestingly another completely empty db state
also arises above the Fermi energy.

example there is a difference of 130 meV between those structures. For B3LYP the Si-
TCre* structure is favourable with a difference of 83 meV.

While for the functionals there is no qualitative change, changing to the LD model does
change the situation. The TC states experience roughly the same shift as in the high
density case, they are also on top of the bulk Si states. However, since the states are
less broadened, the dangling bond Si state is now above the TC states and is the highest
valence band as seen in figure 31| a). The alignment in the conduction bands does not
change substantially in comparison to the HD case. Therefore, the lowest conduction band
is a Si state with edge contributions from TC. Similar to the discussion above, by exciting
a triplet the Si conduction and valence band states are lowered and raised due to the
electrostatic interaction being mainly between Si states, whichfore the triplet is located at
the Si. This is shown in figure 31| b). With other words, an excitation from the ground
state and following relaxation leads directly to a triplet located at the Si surface. In fact,
finding a stable configuration in which the triplet is located at the TC monolayer proves
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Figure 30: PDOS of the HD phase with dangling bond at the TC localized triplet structure (Si-TCrcx,
lhs) and the Si localized triplet structure (Si-TCg;*, rhs). Geometrically those structures
differ mainly on the z-position of the dangling bond atom, with the atom being higher in the
Si-TCpc* structure and lower in the Si-T'Cg;+ structure.
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Figure 31: PDOS for the LD model with dangling bond in the ground state (lhs) and with excited triplet
(rhs). Due to the smaller TC dispersion the dangling bond state is the highest occupied
valence band state, while the lowest unoccupied conduction band is also dominated by Si
states. This results in a direct excitation of a Si localized triplet, TC localized triplets are
unstable in this model.

impossible without external force. Only by either constraining the dangling bond Si atom
position to be outside the Si surface or by applying a Hubbard U correction of 12€V to
a single TC molecule a localization at the TC surface can be forced. Due to the non-
existent stability of the TC located triplet in the LD model, it will be left out of the later
presented MDs and barriers. It has, however, to be kept in mind, since a LD like structure
is most likely to be present directly at the interface. B30 All calculated times and barriers
are therefore upper limits for the TC monolayer.

To summarize at a spatial view, the Si-TCpax and Si-TCg;+ structures differ mainly by
the dangling bond position, a db out of the Si surface for the TC bound triplet state,
and one inside the Si surface for the Si-TCg;+ structure. From an energetic point of view
the dangling bond Si state is either below or above the TC valence bands. In order to
transform one structure into the other one has to raise/lower the dangling bond in energy
and vice versa in space. If, how and why this happens will be probed in the next chapter
by means of molecular dynamics.

5.4. Dynamics

Starting from the Si-TCrpe+ structure, a MD using the PBE functional and the Berendsen
thermostat is conducted at 300 K. For MD calculations the hybrid functionals will be
excluded, as they consume too much computation time. The integration time step for the
equation of motion is chosen as 1fs, the time constant for the thermostat as 15fs. The
resulting trajectory is first analysed by means of the electronic density of the electron and
hole state as shown in figure At the starting point both electron and hole are localized
at a single TC molecule. As the system becomes disturbed by the thermostat, electron
and hole delocalize over the whole TC monolayer. This situation does not change for a
while, until around 310fs the hole localizes at the dangling bond. The electron follows
around 330fs. That confirms the assumption made at the beginning of the last chapter:
The hole localizes first at the dangling bond and pulls the electron afterwards to the Si
surface via electrostatic interaction. To gain further insight we have a look at the spacial
and energetic behaviour of the dangling bond. In figure [33] the four highest valence band
KS states for the spin down channel in a single k-point, the lowest conduction band state
for the corresponding spin up k-point, and the dangling bond z position are shown. As the
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Time in fs

Figure 32: Charge densities of the triplet during an exemplary trajectory starting at the Si-TCrpcx* struc-
ture. The triplet delocalizes over the TC surface, until the hole hops to the dangling bond.
The electron follows in a matter of fs due to electrostatic interaction.

system has a triplet configuration the highest valence band is empty, it is the hole state.
The dangling bond state — at t=0 the third highest valence band state — is marked red.
The vertical dashed lines correspond to the times in figure [32]

Directly apparent is the relation between the dangling bond energy and the dangling bond
position. Raising the dangling bond in z direction causes the KS energy to drop and vice
versa. This can be understood by means of the hybridization of the dangling bond state.
Raising the dangling bond spatially causes the Si-Si bonds with the surface Si atoms to
be inclined. With the three bonds to the surface inclined (and the dangling bond facing
outside the surface) the corresponding hybridization is of the sp? type. If the dangling bond
is lowered, the db Si atom is planar with the Si surface, there is no inclination towards
it. With three planar bonds and the upright standing dangling bond the appropriate
hybridization is of the sp?>+p type. This can also be seen in the density of the db state,
shown in the insets in figure The sp? like hybridization (left density) has three “bulbs*
at the surface Si atoms (only two can be seen due to perspective), and an upward shifted
density connecting them. Additionally, there is the relatively large dangling bond as well
as a small bulb atop of it which stems from a rest hybridization with another band which
it recently crossed. The sp?+p density has a larger connecting bulb which is at the same
height as the surface Si densities. The importance of this re-hybridization is that the sp?
hybridization is energetically favourable over the sp?+p one. Therefore, the energy of the
state has to rise when the atom is pushed to the surface — which complies with the findings
of the MD.

During the course of the MD the db state rises upwards and downwards and crosses other
bands in the process as discussed above. In most of the cases this is not critical, as all
those states are occupied. A more problematic crossing is the crossing between the db
state and the highest valence band, which is empty due to the excitation. Numerically
the occupations stay fixed during the course of the MD, once the crossing occurs the db
state is immediately emptied and the other state filled, giving rise to the hole localization
at the dangling bond. Physically there is no direct reason for the electron to swap states
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Figure 33: Dangling bond z position and KS energies at one k-point for the trajectory as in ﬁgure The
KS state corresponding to the dangling bond is marked red. Insets show the charge density
of the dangling bond state. Dashed lines correspond to the snapshot times in figure [32] A
clear dependency of the db energy and position can be observed. Lowering the dangling bond
position further causes a rehybridization of the dangling bond state.

immediately, an according hopping probability has to be calculated. The hopping including
level crossings is a bit more complicated than the one used in chapter 2.7 and will be
explained in the next chapter.

5.4.1. Surface hopping at interfaces and with level crossings

A general problem of the presented LIBRA-X hopping program is that while one is able to
monitor the occupation of specific excited states, one is not able to track the character of
the state. In chapter there was the case of a first excited state S; being temporarily
energetically higher than the second excited state So due to different smearing. In this
case the states keep their character, and one is able to switch them back after the whole
trajectory is computed. Lets now consider the level crossing as in figure B3] At 300 fs
the highest occupied state in the spin down channel is the dangling bond state, the lowest
unoccupied state is a TC state. Therefore, the “ground state” Sg corresponds to an occupied
db, while the first excited state S; corresponds to an unoccupied db. After the level
crossing the “ground state corresponds to an unoccupied db, while the first excited state
corresponds to an occupied db. Hence the Sop and S; states change their character. In
reality, if no hopping between states occur the dangling bond will stay occupied, and
therefore the system changes into its excited state after the level crossing. Since the
hopping probability is not only dependent on the wave function overlap but also the current
(Schrédinger) occupation number, and since the change is not for one or a few steps but
for several 100 fs, it is important to swap the occupation numbers in situ. Hence the level
crossing has to be detected and the occupation numbers swapped accordingly. However,
the program only has memory of the current and next wave functions. Furthermore, the
states tend to hybridize at least partially during a crossing. This makes it difficult to
impossible to properly register the level crossing.

Due to this problem another approach is chosen: For five prototypical MDs (the one in
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figure [33| and four from the 300 K set in section the ground state trajectory is taken
as fixed, and for a time span of roughly 100 fs around the level crossing (250-360 fs in our
example) the total energies, k dependent wave functions and overlaps are calculated. With
these fixed values equation [2.35] is solved. While solving the equation, the occupation
numbers are swapped at the level crossing (around 340fs in the example). Using this
procedure the occupation numbers for the trajectories are calculated. Due to the necessity
to recalculate each trajectory and manually identifying the level crossing, this calculation
is only performed for a small number of prototypical MDs. While this is by no means a
statistical relevant sample it gives an estimate for the order of the probability. We observe
a strong variation of the hopping probability which reaches from as low as 0.1% to as
high as 80 %, which do not only differ for each trajectory, but also for each k-point within
the trajectory. This can again be traced back to (partial) hybridization; however, this
time not of atomic states but of Kohn-Sham states. If two states become energetically
degenerate they can hybridize, and form two new states which are linear combinations of
both original states. 9 Being constructed by a linear combination, the new states have an
overlap with both original states. If only one of the original states is occupied, the electron
can choose freely between both new states in case of perfect hybridization. In fact, a
perfectly hybridized state consisting of two states of which one is occupied should ideally
be described with a half occupation of both original states within DFT. With other words,
if a hybridization occurs during the level crossing for a prolonged time, a high probability
of the electron to hop is detected. This reflects in the energetic positions of the states. The
db state and the highest valence band state in figure [34| (top) only approach each other for
short intervals, and the final crossing happens quickly. Therefore, there is little time for
hybridization and a hopping probability of 0.1 % is detected. However, if a trajectory like
in figure (bottom) is considered, both states nearly degenerate for a prolonged time,
resulting in a hopping probability of 70 %.

With such a variation of hopping probability, can there be a general statement for the
transition? For the trajectories with high hopping probability there is little change, as
the electron will most likely hop to the lowest triplet state and thus follow the trajectory
already calculated. The trajectories with little hopping probability will behave different:
If no hopping occurs the dynamic should be governed by the excited state instead. Figure
shows what happens if this is considered: Starting from a configuration directly after
the level crossing from figure [33] the trajectory is calculated. The excited state nearly
immediately slows the lowering of the dangling bond atom, leading to a re-approaching of
the two states. At 55fs and 75 fs there are even two possible switches of the db and the TC
state. As already established, the trajectory would switch back to its ground state if no
hopping is considered, a circumstance which does not occur as the KS state occupations
are fixed during a trajectory. With the two KS states again approaching each other, the
hopping probability again increases, as the overlap increases due to increasing hybridization
as explained earlier. The calculated 5 % hopping probability for this trajectory are therefore
rather a too low estimate then a too high one. Considering the transition times presented
in a later chapter, the hopping of the electrons is most likely neglectable.

It is to note that in contrast to the case of lithium niobate we get finite hopping probabil-
ities. The conditions seem similar, both cases consider a defect and both cases consist of
crystal structures. So why do we get a hopping probability of 0 in one case, while the other
one is finite? This difference has two reasons: First, lithium niobate is a three dimensional
crystal. The TC film consists of single molecules which are loosely bound via van-der-
Waals interaction into a crystal lattice. Therefore, the TC states are more molecule like
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Figure 34: Graphs analogue to figure for two other trajectories. The upper one exhibits a sharp
crossing between the db and highest TC state at 675 fs, which results in a small overlap and
hopping probabilities of 0.1 %. The lower one exhibits a prolonged approach of the two states
between 800 fs and 900 fs, resulting in a high hopping probability of 70 %.

than crystal like. The defect state is additionally strongly localized and therefore also
has some characteristics of a molecule. Generally it appears that surface hopping is more
prevalent at highly localized states, which makes sense as the wave functions of those states
are usually highly dependent on the motion of the atoms/molecules at which the density is
localized and therefore are subject to quick changes. Besides the oxirane molecule, where
this effect can be seen easily by the change of the densities for small geometry variations,
the effect can be also seen in different systems, like the reconstructed InP surface for exam-
ple. The InP surface exhibits occupied and unoccupied surface states which are localized
at reconstructed P dimers. The movement of those dimers leads to a finite hopping proba-
bility between those states, which is reduced if the motion of those dimers is restricted.
The second reason for finite hopping probabilities is the fact, that the defect state is oc-
cupied in the beginning in the case of the interface, the resulting nearly dispersion-free
state (which also goes in hand with the strong localization) can be clearly seen in the
DOS. In case of lithium niobate the electron starts delocalized and the state has yet to
form. Therefore, the problems with the dispersion mentioned in chapter [£.9] occur fully
in lithium niobate, while they are not so prevalent in the interface, wherefore the surface
hopping algorithm can be used for the interface and not for lithium niobate.
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Figure 35: c-DFT Molecular dynamic starting at 330fs of the trajectory in figure i.e. directly after
the level crossing. In this MD the dangling bond state (red) is kept occupied and the crossed
TC state (green) is still empty. This inverted occupation causes an immediate deccelaration
of the dangling bond atom, which inverts the movement and pushes the atom upwards. The
two states reapproach each other instead of diverging like in figure This reapproaching
again increases the hopping probability.

5.4.2. Transfer times

With the transfer mechanism explained it remains to be seen on what time scales this
transfer occurs. In order to gain this information one would have to calculate a multitude
of trajectories like in the case for the other two systems. That can only be done for the PBE
functional, as molecular dynamics with hybrid functionals are computationally not feasible.
However, since one of the prominent changes in comparison to the hybrid fuctionals is the
energetic position of the db, it is to be expected that the transfer is impeded if hybrid
functionals are utilized. One possibility to compare the functionals is to calculate the
activation energy, in explicit the energy barrier for the exciton transfer. One standard
method to calculate such a barrier is the nudged elastic band (NEB) calculation.

In a NEB calculation two structural configurations, which should both be in a (local) ener-
getic minimum, are connected with intermediate structures, which are usually constructed
via linear interpolation between the two initial states. These intermediate structures are
allowed to relax, but under a constraint: The forces acting on the atoms which are tangen-
tial to the path defined by the images are replaced by harmonic spring forces, which keep
the spacing between the images constant. The forces perpendicular to the path are not
affected. With these constrains one can determine the lowest energy reaction path. For
more information on NEB calculations the interested reader may refer to Refs. [161], 162l

Applying this technique to the Si-TCpex Si-TCg+ transfer one gains barriers as shown in
figure|36|a). The procedure seems to work reasonable for the PBE functional; however, for
the HSE functional there is little resolution in the area of the barrier. This problem can be
reduced by either increasing the spring forces and thus driving the images up the barrier,
or by recalculating this subset of the barrier by setting the start and end structures close to
the barrier. Both methods however suffer similar problems: A strong undershooting of the
established points after the barrier and/or an unrealistic high barrier of several 100 meV —
since there is no stable Si-TCpcx configuration in the LD case, and thus no barrier, a high
barrier for the upright standing TC molecules seems unreasonable. The NEB algorithm
apparently is not able to predict the barrier for this transfer.
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Figure 36: Transition barriers calculated via NEB (lhs) and linear interpolating the dangling bond posi-
tion while relaxing the rest of the structure (rhs). Circles show the last stable point for the
PESs. The NEB calculation show a bad resolution around the barrier, making it not suitable
for estimating the barrier. The linear interpolation shows two distinct PESs for the HSE
functional corresponding to the triplet location. The crossing point of those PESs gives an
estimate for the Barrier. The PBE functional shows 3 PESs, which is due to the localization
being k-point dependent for PBE.

The reason for this can be found in the form of the transfer. As already established, the
transfer begins to occur as soon the occupied dangling bond Si state in the spin down
channel crosses the unoccupied TC state and thus captures the hole. This crossing leads
to a sudden change in forces as the new state is occupied. The spring forces on the image
closest to the barrier are therefore fundamentally different as they stem from a different
PES. This leads to a higher distortion of the structure and thus to higher barrier energies,
creating an artificial steep slope. If the spring forces are strong enough, this will also
have an effect on the neighbouring images, they are pushed downwards resulting in the
undershooting following the barrier. To circumvent this problem a different method has
to be chosen which only considers one PES at a time.

Fortunately, the main driving force for the transfer, the dangling bond movement, is al-
ready established. This enables the manual driving of the transfer by fixing the dangling
bond atom to certain displacements. In a first step 10 intermediate structures are gen-
erated by linearly interpolating between the Si-TCpcx and Si-TCg+ structures. Those
structured are then relaxed with the position of the dangling bond Si atom being kept
constant. By considering the shape of the graph and the electronic densities one identifies
the points at which the level crossing has occurred. In order to stay on one PES as long
as possible, further intermediate points are generated by starting from the Si-TCpax or
Si-TCg;+ structure respectively and only moving the dangling bond atom, and then relax-
ing those structures with fixed dangling bond. This procedure is repeated until a dangling
bond position is identified where the starting PES is no longer viable and the hole hops.
The resulting mapping of the PESs is shown in figure [36| b). Due to the construction of
these surfaces the correct barrier can not be read from this diagram, however, one gets
an estimate. Following the HSE PES from the Si-TCpcx structure, the localization stays
stable to a position of -0.45ap and a maximal barrier of 44 meV. The intersection of the
PESs gives an estimate for a lower boundary for the barrier at 27 meV. Analogous, the
maximum for the barrier for PBE is 16 meV and the minimum is 7meV. This difference in
barrier height will have a quantitative influence on the transfer times, but they are both
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low enough that thermal activation of the transfer process at room temperature is to be
expected. A noticeable difference of the two graphs is the occurrence of a third PES in the
PBE curve, indicating a second transfer. A closer look on the electronic densities confirms
that indeed two transfers occur, the exciton hops at different dangling bond locations for
the two non-equivalent k-points. For HSE there are only two PESs, the exciton hops at
both k-points at once. This is due to the strengthened localization in hybrid functionals.
Interestingly, if one only considers the PBE PESs where the exciton is localized fully at the
TC or Si surface at both k-points, one gets an intersection nearly exactly of the energy of
the HSE intersection. That implies that the barrier is mostly dependent on the localization
and should be thus reproducible by less computationally expensive methods as DFT+U.

With the functionals compared, the focus can be put on the actual transition times for
the PBE functional. The starting procedure is similar to the one used in chapter 1.6}
A single MD is conducted from the ground state without excitation using a Berendsen
thermostat at 300 K. The trajectory is developed for 1.9 ps. After 1ps of thermalization
starting configurations (positions and velocities) are extracted each 25fs. These starting
configurations are used for MDs with the excited triplet, which then can be analysed for
the transfer time. However, while this procedure worked well for lithium niobate, for the
Si(111)-TC interface it appears to be problematic: Inspecting trajectories from adjacent
time steps reveals clear similarities in the trajectories and transfer times, they are not
independent. This can be traced back to the vibration frequencies of the materials: For
LN the O cage around the defect Nb has an oscillation period of roughly 70fs, while
the dangling bond oscillates with an oscillation period between 150fs and 200fs. This
leads to less difference between the starting positions and thus a dependence between
them. Furthermore, there is an underlying oscillation of the distance between the surfaces,
which has an even lower frequency with a period of 1800fs. This makes it impossible to
access many qualitatively different configurations by extracting starting geometries from
the trajectory. Therefore, another approach has to be utilized.

Starting configurations In chapter the starting configurations were generated by dis-
placing each atom in a uniform random fashion. In chapter this method is refined by
replacing the uniform distribution by a Gauss distribution, which broadness is determined
by a fit of an existing trajectory. This worked well for the LN crystal, but applying this
method here results in trajectories whose starting temperatures are several 1000 K high.
This is due to the amount of components in the present system: The two surfaces on
one hand, and the single molecules of the TC layer on the other hand. The intra molec-
ular forces for example are way stronger than the inter molecular forces. Therefore, a
molecule can move comparatively easy during a MD, while deforming it is harder, which
can lead to an accumulation of “global* displacement for each atom, but none relative to
the molecule. With a distribution for each atom independently this information is lost,
only the global displacement is seen which leads to strong deformations of the molecules.
Since the molecules are rather rigid, this leads to large amounts of potential energy which
then quickly translates to high temperatures. In order to solve this problem one has to
create distributions for each component in relation to its overarching component. In ex-
plicit for the largest component, the TC layer, its mean z position and the mean tilt of the
molecules around the axes parallel to the surface are monitored. Relative to the resulting
displacements, the position and all rotations of each molecule is monitored. After including
those displacements, the deformation of the molecules is taken into account. This is done
by considering the largest deformation which is observed during the MD, namely a bend-
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ing of the molecule around its lateral axis. The remaining displacement of the atoms is
relative to this bended molecule and is also monitored. For the Si surface only the absolute
displacements are recorded. This is possible since the position of the Si surface is fixed by
its lowest layer in bulk positions and does not contain a subdivision like the TC surface.
The values for these parameters are recorded in 50 fs intervals. Using the variance of the
parameters, a Maxwell distribution for each parameter is constructed.

With this distribution as a basis, the rotations, curvatures and movements are generated
randomly. The direction of the rotations and displacements is decided randomly, with a
uniform distribution. The starting configurations created this way lead to starting tem-
peratures closer to the desired 300 K, but are still several 100 K too high. This could be
retraced to an remaining overestimation of the displacement between the H-C bonds, as
well of a “breathing motion of the Si surface, meaning an expansion and retraction motion
of the atoms perpendicular to the surface. These issues are addressed by removing any
further displacement after the bending of the molecules, and scaling the displacements of
the Si-atoms inverse proportional to the highest bond length increase. Additionally, for
some starting configurations an unrealistic large bending of the molecules is observed. To
prevent this, the bending is confined to the maximally reached value in the trajectory by
scaling the curvatures accordingly. With these modifications the temperatures using the
resulting starting structures are only few 10 K away from the required 300 K. They are
therefore a suitable, though simplified estimation for starting configurations. By scaling
the broadening of the Maxwell distributions by ?)()Tﬁ, where Ty is the target temperature,
one is also able to generate starting structures for other temperatures.

As in prior chapters, not only the structure, but also the initial velocities have to be
determined in order to generate a starting configuration. As already established, the dis-
placements of the TC atoms are mostly governed by the rotation, displacement and bending
of the molecules. The velocities have to behave in a similar way. To guarantee this, the
velocities are not determined randomly, but are gained by calculating a trajectory starting
from the generated starting configuration with 0 initial velocity and afterwards control-
ling the temperature using a Berendsen thermostat. After a thermalization time of 400 fs
both starting configuration and initial velocities are obtained. This procedure also bears
the advantage of going away from the simplified starting configurations and generating
well equilibrated ones. This of course requires additional trajectory calculations for the
starting configurations. Nevertheless, the random configurations still bear an advantage
over starting configurations derived purely from MDs: Due to the fitting starting point
of those trajectories the time for thermalization is with 400 fs much shorter than the 1 ps
of the trajectory which serves as basis for the distribution. Furthermore, each starting
configuration can be calculated in parallel instead of relying on a very long trajectory to
extract the configuration. The randomness furthermore guarantees the independence of
the trajectories, which is not a given if the same starting positions are used.

Trajectories and results With the determined procedure 50 starting configurations are
generated for the temperatures of 50K, 200 K, 300K, 400 K and 500 K each. Molecular
dynamics are conducted using the Berendsen thermostat and evolving the trajectories over
1ps with an integration time step of 1fs. It has to be noted that for several of those
trajectories, especially at high temperatures, several exciton transfers from TC to Si and
vice versa can be observed. From this transfers only the first will be considered for the
transition time, since in the application as solar cell the electron would be moved to a
contact upon transiting to the silicon. However, the observed back transfer, together with
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the fact that the relaxed uncharged cell assumes a “middle state” between the Si-TCg;+ and
Si-TCrpg# structures both in dangling bond position and PDOS (see also figure , shows
the reversibility of the process, allowing for consecutive triplet transfers. In order to find
out the transition time of this first transfer, the level crossing is utilized. The transfer is
considered to have occurred as soon as the level crossing for both k-points has happened.

Averaging the transition times leads to the results shown in figure 37 There are two
findings: First, the transition time gets shorter with increasing temperature. To see this
one has not only to consider the mean transition time, which appears for most of the
temperatures to be the same, but also the number of trajectories in which the transfer is
not observed during the simulation time (which therefore cannot be included in the mean
transition time). From 50 K to 200 K this number stays constant, and the mean transition
time declines. At the step from 200 K to 300 K the mean transition time is higher, but the
number of trajectories without transition declines. Afterwards an overall decline of both
mean transition time and number of trajectories without transfer occurs, except for 500 K
where a small increase is observed. This trend indicates an overall reduction of transition
time with increasing temperature. That result is to be expected, a process which requires
an activation energy is generally more likely to occur at higher temperature. It has to be
noted that the results for 500 K have to be considered carefully, as in few cases the TC
layer is heavily deformed (for example a single molecule being shifted out of the layer so
that one C ring is exposed), in one case one TC molecule even lost two H atoms. Those
cases usually lead to late or no transfers, shifting the mean transition time and the number
of trajectories without transition upwards, where further decline would be expected.

The second finding is the broad scatter of transition times as seen by their standard devi-
ation. There are several reasons for this. First, there is the oscillation period of roughly
200 fs of the dangling bond. Assuming the conditions are sufficient, i.e. the dangling bond
atom has enough kinetic energy to surpass the barrier, the transfer is only dependent on
the phase of the oscillation. If the atom is in a down swing, the transition can happen
immediately, if it is in an up swing there is no transition until the atom swings down
again, leading to a maximal discrepancy of 200fs. If the conditions are less optimal but
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Figure 37: Average triplet transition times over simulation temperature. The blue graph indicates the
number of trajectories which do not show a triplet transfer within the simulation time of 1 ps.
The grey bars indicate the standard deviation of the transition times (non-transfer trajectories
excluded). The reduction of trajectories without transitions indicates the lowering of the mean
transition time.

78



5.4 Dynamics

need only slight adjustments, the transition will not occur within the first oscillation, but
in the second, adding another time window of 200 fs and so on. Therefore, the transition
time is highly dependent on the starting conditions.

Another factor is the changing number of trajectories due to the different numbers of
trajectories which show a transition. There are two reasons why more trajectories show a
transfer at higher temperatures. On one hand, with a higher average velocity there is a
higher chance for the dangling bond atom to start with a higher velocity and thus increasing
the chance for a transfer. On the other hand, with a higher atom displacement there is a
higher likeliness for stronger atom interaction and therefore higher energy transfer. With
more energy transfer the time needed to change the conditions is also reduced, leading to a
down shift of the higher transition time. This in turn means that trajectories which would
not show a transfer within the simulation time at lower temperatures show a transition at
higher temperatures, but with high transition times.

Both the effect of the oscillation period as well as of the energy transfer can be seen in
figure where the number of transitions per time frame is shown as a histogram. Ideal
and nearly ideal starting configurations contribute to a large peak for all temperatures at
the range of 0-200fs, while for high transition times there are notably more trajectories
at high temperatures than at low temperatures. However, what is less prominent in this
graph, especially for 300 K and 400 K, is the expected rise of better starting conditions due
to the higher average velocity at high temperatures. The amount of transitions between
0K and 200fs is mostly the same for all temperatures except for 300 K where even a
reduction occurs. In order to understand this we consider two example trajectories for
50 K and 400 K and examine the KS levels of the k-point where the transition occurs first,
see figure For the 400K trajectory (bottom) the transition is, as expected, clearly
governed by the dangling bond position. Around 800fs the dangling bond position is
low enough to drive its KS level over the unoccupied TC state. For the 50 K trajectory
the dangling bond moves — again as expected — less than at 400 K, with small position
variations leading only to small energy variations. However, around 430 fs the unoccupied
TC state — independently of the dangling bond motion — lowers its energy and causes
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Figure 38: Histogram for the number of transitions within a specific time frame. Most notably is a mostly
uniform peak at 0-200 fs, followed by an overall decline in transitions, as well as the late time
frames being dominated by high temperature transitions. As in figure [37] the trajectories
without transitions are mostly low temperature ones.
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5 EXCITON DYNAMICS AT THE SILICON-TETRACENE INTERFACE

a hybridization of the states. The hybridization effectively causes the dangling bond to
be partially emptied, which subsequently accelerates the downward motion of the atom.
This causes its KS level to rise further, de-hybridizes the states and therefore completely
emptying the dangling bond. While this TC lowering effect also occurs at 400 K, the 400 K
trajectories are as in the example mostly governed by the dangling bond movement, while
for 50 K all trajectories with transitions behave like the example and need the lowering of
the TC states.

The corresponding TC state is delocalized over several TC molecules, making it difficult
to pinpoint the geometrical reason for the energy lowering. Despite checking the position,
rotation and deformation of the molecules, no criterion could be found. However, if the
TC level would be more likely to reduce its energy with less structural disorder, it could
explain the constancy of the number of transitions at low times, as the increase in db
kinetic energy would be counteracted by a higher TC energy. This assumption is backed
by the fact that the hole KS level at the beginning of the MDs at low temperatures are
generally lower than those for high temperatures, see for example the insets in figure [39
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Figure 39: Prototypical trajectories for the triplet transfer at the temperatures of 50 K (top) and 400 K
(bottom). For 400K the transition is governed by the dangling bond movement, with the db
state rising and crossing the TC state. For 50 K the db state moves little, instead the TC state
lowers its energy until it hybridizes with the db state, initiating the transfer. Insets show the
relaxation behaviour of the KS states at the beginning.
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Furthermore it is to note, that the TC hole state rises in energy shortly after the excitation.
This is the case for all trajectories at 50 K, indicating it to be a relaxation process induced
by the triplet excitation. However, the difference between the ground state structure and
the fully relaxed Si+TCpg+ structure is very minuscule (which is part of the reason why
no geometrical criterion could be found), this relaxation is easily outdone by the thermal
movement at higher temperature. This can also be seen in the insets of figure the rising
of the TC state at 400 K is considerably lower than the one at 50 K. While this result is not
conclusive, it has to be asked if this effect would occur with a more sophisticated functional.
As seen, if hybrid functionals are used the unoccupied state rises higher in energy. Since
a MD with hybrid functionals proved impossible to do with the available computational
resources, also no data on the fluctuation of the TC level could be obtained. Assuming a
similar or slightly higher variation of the KS level, there would be no possibility for the TC
state to lower low enough to hybridize with the db state, which would lead to no transfers
at 50 K. While it is not possible to proof this assumption directly, since it has been shown
that the transfer barrier is localization dependent, one can try to emulate the behaviour
of the hybrid functional via the computational less expensive DFT+U formalism, which is
covered in the next section.

5.4.3. Exciton transfer using DFT+U

Before going into further detail it has to be stressed that an exact replication of all features
of the hybrid functional is not possible. Both carbon and silicon have only their s and p
orbitals occupied which, as they tend to delocalize, are normally not described via DFT+U.
Testing shows that applying DFT+U on either carbon or silicon barely changes the band
gap. Additionally, both elements experience different shifts due to the Hubbard potential,
which easily leads to a change in band alignment. Furthermore, the dangling bond Si tries
to keep its energetic position relative to the bulk Si constant, leading to a lowering of the
atom for higher U-values, which inevitable leads to an emptying of the dangling bond at
higher U values. Due to this difficulties we focus on the probably most important aspect:
The dispersion of the hole TC state of the Si-TCpc# structure. While the dangling bond
state is dispersion free in both HSE and PBE, the hole TC state is dispersion free in HSE
and shows dispersion in PBE. This causes the state crossing of the TC and Si state to
be at different energies at different k-points, which in turn leads to the additional PES in
the PBE barrier. While this is the main focus for choosing the Hubbard U parameters,
secondary aspects one can also try to optimize are the energetic position of the excited
electron and hole states, which are respectively lower and higher in HSE than in PBE, and
the overall energy difference between both structures.

As already seen in figure lhs, the hole in the Si-TCrpex structure is mostly localized
on one molecule, an effect which is increased by the HSE functional. This suggests to
only apply the Hubbard correction to one TC molecule. However, it shows that this is
still not sufficient, as the hole state is still subject to dispersion, despite being localized at
one molecule. By analysing the contributions of the single atoms to the hole state, the 10
carbon atoms of the two middle carbon rings of the molecule were found to have the main
contribution to the state, especially around I', while the outer ones have less impact on the
state and only at the edges of the band. It shows that applying the Hubbard U only to the
10 C atoms of the two middle carbon rings leads to both a reduction in dispersion as well
as a raising of the hole and a lowering of the electron state. The U value was adjusted so
that these two states qualitatively fit the HSE band structure. Since this leads to a large
change in the overall energy difference, an additional Hubbard U term was applied to the
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5 EXCITON DYNAMICS AT THE SILICON-TETRACENE INTERFACE

dangling bond Si atom. After small alterations the values of 4.7¢eV at the 10 middle C
atoms of one molecule and 1.7¢eV at the dangling bond Si atom were chosen, the resulting
band structures and barrier can be seen in figure [I0] The resulting barrier is very close to
the HSE one, especially the crossing point of the PESs are nearly identical. However, as
already seen in the case of lithium niobate, the Hubbard U values leads to overly stable
states. While the last stable point of the PES corresponding to the TC localization of
the triplet is around 46 meV in the case of HSE, the 4.7+1.7e¢V PBE+U set is stable up
to 120meV. This most probably influences the trajectory during a MD. To compensate
for this potential problem, another set of reduced Hubbard values is needed. This set is
found with 1.5eV for the C atoms and 1.7¢eV for the dangling bond atom, which results
in the last stable TC localization point around 55meV, see figure @0} In turn, the PES
crossing point is way off, suggesting a barrier of 2meV. This can result in more starting
configurations where the triplet is already localized at the Si-surface than to be expected
for HSE.

Since both Hubbard U sets can only partly approximate the HSE barrier, molecular dy-
namics for both sets were conducted. This of course would lead to a doubling of the
number of trajectories, wherefore only the fringe cases of 50 K and 400 K are covered. The
trajectories are prepared as previous, a 2 ps long MD in the electric ground state at 300 K
is performed for both sets, and 50 starting geometries are randomly generated for both
sets and temperatures. A further 400fs MD in the ground state for each configurations
is conducted for further thermalization. Afterwards, the actual trajectories with excited
triplet are calculated. As in the case of lithium niobate, the higher set of Hubbard U values
can lead to numerical problems during the MD calculations. However, in this case they are
less severe, as they are more seldom, and continuing the MD for one to three fs without
completely converged densities is sufficient to reach structures which can be calculated in
a stable manner again.

The resulting number of transition per time frame are shown in figure It is directly
apparent that for both sets the low temperature regime shows an enormous increase of
trajectories without transition. Only a few trajectories show an early transition. A closer
inspection of the trajectories show, that most of these early transitions (in case of the
4.541.7eV set all early transitions) are in fact a direct capture of the triplet by the Si
surface. The effect of the lowering TC hole state, while still present, is not strong enough
to initiate the transition, it can only aid it. Comparing the high temperature regime
for both sets, due to the lower barrier and lower stability of the 1.5+1.7€eV set it shows
more direct (or close to direct) captures of the triplet at the Si surface, as expected. The
4.5+1.7eV set in contrast shows a shift to longer transition times. Both sets, however, are
qualitatively the same as without Hubbard correction (compare figure [38)). This further
solidifies the finding for the transfer occurring at higher temperature. While the transfer
process can be substantiated, the back-transfer of the triplet to the TC surface, which
occurs in the PBE MDs at high temperatures, could not be observed. This questions the
reversibility of the process. However one has also to keep in mind that in a solar cell the
electron will be moved to the contacts of the cell and thus removed from the system. As
already shown in chapter [5.3] removing one electron from the excited system moves the
system into a “middle” state, where the dangling bond is between the Si-TCg;x and the
Si-TCpg+ structure, both spatially and energetically (see also figure . Furthermore,
besides the removal of the excited electron, the solar cell also returns “used* electrons
from the load, which do not have to be the same spin as the removed electron. They can
therefore recombine with the hole, effectively creating the same electronic configuration
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Figure 40: Calculated transfer barriers for the HSE functional and PBE+U with 4.5 and 1.7eV as well
as 1.5 and 1.7eV Hubbard U correction applied to the mid section of one TC molecule and
the dangling bond Si atom respectively. The right and left side show the band structures
for the corresponding end structures (HSE top, 4.54+1.7 eV middle, 1.5+1.7 €V bottom). The
4.5+1.7€eV set reproduces the HSE barrier well, especially at the crossing point. The band
structures are also in qualitative agreement. Not well reproduced, however, is the last stable
point of the PES corresponding to the TC localized triplet, designated by the last data point
on the corresponding PES (marked with circles as guide for the eye). The 4.54+1.7¢V set
largely overestimates the stability. A good description of the stability is given by the lower
set of 1.5+1.7eV. However, this set does not well reproduce the crossing.

as in the beginning. Under this condition the dangling bond oscillations should allow for
achieving the same starting conditions once another triplet forms.

In summary the triplet exciton transfer at the silicon-tetracene interface was studied using
molecular dynamics, PES calculations and surface hopping procedures. Two surface models
were investigated, the bulk like low density model, and the TC2 like high density model.
At an idealized surface with H atoms terminating the silicon surface, no exciton transfer
could be observed for both models. That changes as soon one H atom is removed, creating
a Si dangling bond defect. This defect leads to a band realignment. For the low density
model the realignment causes an immediate exciton localization at the Si. For the high
density phase this is not the case, the transfer only occurs after thermal activation. The
transfer is characterized by a downward movement of the dangling bond atom, which
causes a rise of the dangling bond state due to the rehybridization from a sp? to the
energetically unfavourable sp?|p configuration. Once the state crosses the empty TC
valence state, the hole transfers to the dangling bond and the electron follows due to
electrostatic interaction. The barrier for this process in the HD model was calculated
using the HSE and PBE functional, with activation energies around 27 meV and 7 meV.
Using MDs with the PBE functional, the transfer times dependent on the temperature
were calculated. Those scatter over a large time frame from as low as 1fs to as high as
1 ps, with some trajectories even not showing a transfer at all. Generally, the higher the
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Figure 41: Number of transitions within certain time frames for trajectories calculated using PBE+U,
where (a) shows the 1.5+1.7¢eV set and (b) the 4.5+1.7€V set. Both sets show a rapid decline
of low temperature transitions in comparison with figure [38] The 4.5+1.7¢€V set furthermore
shows, as expected, a shift to higher transition times compared to the 1.5+1.7¢€V set.

temperature the more transfers and shorter transition times are observed as more energy
is available to overcome the barrier. However, it appears that there is a dampening effect,
as the unoccupied TC state which has to be crossed by the dangling bond tends to rise
with more disorder in the system. During the transfer, the dangling bond has to transfer
its electron to the empty TC state. The probability for this to occur was calculated using a
modified surface hopping approach at fixed trajectories. Those probabilities are dependent
on the duration of hybridization, which is shown to increase if no hopping occurs. While
incorporating the electron hopping into the transfer is most likely to increase the transfer
time, it is neglectable due to the increased hopping chance if no hopping event occurs, and
due to the several 100fs it can take for the level crossing to occur in the first place. Since
no hybrid functional MDs were viable, the effect of improved functionals was emulated
using DFT+U, whereby the U values are chosen to reconstruct the relevant states for
the transfer. While little change is observed at high temperatures, the exciton transfer
drastically decreases at low temperatures.

The silicon-tetracene interface clearly shows the restrictions which are imposed by large sys-
tems, and what measures can be taken to account for those. While hybrid functional MDs
are principally doable, for a system with several hundred atoms they are computationally
not feasible. However, opting for the less expensive GGA functional can potentially lead
to drastic changes in the computed quantities. In order to assure reliable results, further
methods have to be employed additionally. In the presented case the hybrid PES calcula-
tion and the DFT+U MDs with hybrid-functional derived U values show the reliability of
the PBE MDs.
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In this work three different systems, oxirane, lithium niobate and Si(111)-TC were studied.
While those systems are fundamentally different from each other — one is a molecule, the
other one a crystal and the last one an interface — they are united in that they all show
interesting dynamic features upon optical excitation. The “life“ of such an excitation
was introduced beginning with the interaction of an electromagnetic field with the system,
levelling an electron to a state in the conduction band, followed by electronic and structural
relaxation due to the excited state, hopping of the electron to lower states, until it finally
reaches the valence band. During the whole process and dependent on the system the
excited electron can interact with the system and create quasi-particles, induce phase
transitions or lead to chemical reactions. The aim of this work was to simulate the dynamics
of these excitation processes and monitor the system-dependent properties which arise due
to the excitations, mainly by the use of DFT based molecular dynamics.

For the oxirane molecule the photochemical decomposition, i.e. the reaction CoH4O + Av
— CHj + COH was studied. The ¢-DFT method was introduced to move from the ground
state only DFT to a computationally cheap approach which can calculate excited states.
With this method the ground state and first three excited states were calculated, and used
as basis for the hopping between those states during several MDs at finite temperatures by
the means of a DFT based FSSH algorithm. The excitation energy of those c-DFT excited
states were found to be in good agreement with the high level hybrid TD-DFT method. 78l
Since oxirane is a small system, electron hopping dynamics for the ground state and first
three excited states could be simulated without much computational expense, making the
molecule a good testing ground for the method. The temperature was simulated both
within the NV E ensemble as well as in the NVT ensemble by means of the Nosé-Hoover
thermostat. With these approaches the experimental established Gomer-Noyes mechanism
could be confirmed as main reaction for the photochemical decomposition. This reaction
begins when the system switches to the first excited state in a slightly disturbed geometry.
The ring opening occurs fully within the first excited state, following this the opposite
lying H atoms rotate around the C-C axis. The final H transfer and C-C bond breaking
can only occur in the ground state. Starting the simulation from the second excited state,
the mechanism occurs within 90 fs. These results are in line with previous findings, except
for the ring opening being driven by the first and not the second excited state, which can
be attributed to the sensitivity of the system to distortions. The ratio of other reaction
products is dependent on both temperature and thermostat. The initial-velocity-only
NV E approach leads to an abundance of bond breaking like H-abstractions, while the
temperature controlled NV'T' ensemble shows a lack of bond breaking and underestimates
especially the final C-C bond breaking. This highlights the need for a correct description
of energy dissipation even in the fs regime. While these results do not gain much new
insight to the system as they mostly confirm already existing findings, they show that the
computational inexpensive ¢c-DFT approach and the DFT based surface hopping algorithm
are reliable tools (at least for small systems), even compared to high end methods.

In the case of lithium niobate the formation time of polarons in dependence on the temper-
ature was studied. Lithium niobate is an optically non-linear material with several usages
like waveguides or frequency changing. Polarons are known to change the intensity of the
second and third harmonic generation, i.e. the doubling or tripling of the frequency, L6364
which makes the study of their formation an interesting topic. Starting from the already
established additional-electron-model, both the free and bound polaron were considered.
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It was shown that the free polaron could not be modelled at finite temperature as the
vibrations of the system and the self interaction error delocalize the electron. The bound
polaron, however, could be modelled using the DFT+U method. It shows that the U pa-
rameters for the static polaron are not suitable for a MD calculation, as those freeze the
electron in its starting configuration. A lowering of the U values was necessary to overcome
this problem, resulting in a barrier free polaron formation as indicated by relaxation cal-
culations. Considering the unit cell size, this is in line with earlier calculations of trapping
radii. With this parameters determined thermal equilibrated starting configurations were
generated and MDs conducted. Despite the findings during the oxirane study, it was opted
to use the NV E ensemble. On one hand, the NV E ensemble allows for exact comparisons
between trajectories with and without excitation at the same starting geometries, on the
other hand, the (most of the times) delocalized electron at the beginning of the trajectory
has less impact on the temperature than the directed motion caused by the excitation in
the oxirane which also has considerably less atoms. For further insight on the polaron for-
mation, the electronic localization and lattice deformation were examined separately and
analysed by the means of conduction band position, local magnetic moment and phonon
decomposition. By associating the lowest conduction band position with the dielectric
function, a direct comparison to experimental values is enabled. The local magnetic mo-
ment allows for a clear monitoring of the charge localization without having to rely on
the data heavy electronic density. By decomposing the ion movement into phonon modes
one gains a novel possibility to study the influence of the localized electron on the phonon
modes, and the influence of the phonon modes on the lattice distortion.

It shows that both localization and formation time are slightly dependent on the tempera-
ture, with increasing times at higher temperatures. Furthermore, there is a strong influence
of the temperature on the lifetime, with decreasing lifetime at higher temperatures. The
formation times are in the range of 50-75 fs, which is on the lower end of experimental val-
ues, which is most likely due to the neglect of polaron hopping, as the unit cell is too small
to observe this phenomenon. The phonon decomposition and comparison with trajectories
without excitation further show that the formation time is dependent on the phase of the
oxygen breathing phonon modes. In contrast to oxirane the electron hopping could not be
studied. The single k-point description necessary for the hopping algorithm leads to near
zero hopping probabilities, which is most likely due to the highly dispersive manner of the
involved states. To account for this dispersion either phenomenological methods or highly
expensive methods like cell duplication would have been needed, which were not feasible
at the time.

In the last system, the silicon-tetracene Si(111)-TC interface, the triplet exciton transfer
from TC to Si was studied. This transfer is of great technological interest, as it would
enable the construction of highly efficient Si-TC hybrid solar cells. Without modification
of the interface, however, only low to none transfer rates have been observed, a result
that could be confirmed in this work by band structure analysis and molecular dynamics.
A few experimental studies have reported an increased transfer rate by manipulating the
interface, for example by inserting a hafniumoxynitride intermediate layer. ™44 Often this
is tried to be explained by passivation effects. F43844 T this work it could be shown that
the opposite might be the case, the introduction of a defect at the Si surface is sufficient
to enable the triplet transfer. The removal of a H atom in the passivation layer causes a
dangling bond defect which in turn causes a band realignment due to Fermi level pinning.
Depending on the surface model — a bulk like TC structure and a high density TC structure
were considered — this respectively leads to either a barrier free transfer of the triplet to the
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silicon, or to the possibility of a transfer, which has to be thermally activated. This process
is governed by the movement of the dangling bond (db), where a downward movement of
the db atom leads to a less favourable rehybridization of the atomic orbitals, causing the
defect spin down state to cross the highest TC valence band and consequently becoming
the triplet hole state. The electron follows the hole to the Si surface via electrostatic
interaction. The activation barrier for this process was calculated using the HSE and PBE
functional by interpolating the dangling bond position and relaxing the system afterwards.
Both cases show barrier heights which should be overcome at room temperature.

To study the transfer time, molecular dynamics were conducted at different temperatures
and the time of the level crossing chosen as indicator for the transfer. Due to the expen-
siveness of hybrid functionals the MDs could only be conducted using the PBE functional.
Those transfer times, while generally showing a large scatter of up to the simulation time
of 1 ps, show a temperature dependency where more transfers occur within the simulation
time of the trajectories at high temperatures than at low temperatures. While this be-
haviour is to be expected, even at 50 K transfers occur. Those transfers are governed by
a lowering of the highest TC state instead of a rising of the dangling bond state. As this
effect might not occur using hybrid functionals because the corresponding TC state has
a higher energy, the behaviour of the hybrid functional was tried to be emulated using
the less expensive DFT+U approach. With two sets of Hubbard U values the HSE bar-
rier height and stability were reproduced individually. Molecular dynamics for both sets
reproduce the PBE results at high temperatures, while for low temperatures little to no
transfers could be registered. The calculated transfer times might be further prolonged
by the fact that the level crossing of the db and TC state leads to an excited system,
which first has to hop into its ground state in order for the hole to transfer to the Si.
This hopping process was modelled using a modified hopping approach for prototypical
trajectories. The hopping probability was found highly dependent on the hybridization of
the states, leading to variations of 0.1 % and 80 % hopping probability. However, if no hop-
ping occurs, the excited system will increase the hybridization and thus also increase the
probability. Due to this effect and the already high variation of transition times the added
time due to the hopping is considered negligible. Overall the dangling bond defect has
shown to be a reusable “elevator for excitons. Since this defect is very common and could
easily be produced accidentally, for example by the surface manipulation done by several
experiments, it could explain the increased transfer rate in those experiments. Whether
such defects can be used for the construction of a Si-T'C hybrid solar cell remains to be
seen. However, due to the general nature of the effect, namely the Fermi level pinning
of defects and energetic unfavourable states due to rehybridization, such a mechanism is
most probably also present in other interfaces.

Overall DFT based molecular dynamics proved as a reliable tool to investigate time and
temperature dependent values in solid states. However, such evaluations are quite costly,
as a multitude of trajectories have to be analysed to account for the statistical nature of
temperature dependent values. Special attention has to be given to the choice and the
parameters for the thermostat and the generation of suitable starting conditions. The
importance of the thermostat has been made visible in the study of the oxirane, and all
systems, but especially lithium niobate, show a great dependence on the exact geometry
at the beginning of the MD. The generation of those starting configurations proved to be a
bottleneck for the calculations, as the (usually) necessary MD for finding a thermal equilib-
rium can not be parallelized. The increasing system size and the need for more trajectories
made it necessary to resort to increasingly more elaborated generation of randomized start-

87



6 CONCLUSIONS

ing structures and velocities which are close to thermal equilibrium. For the Si-TC interface
for example the typical generation by a singular molecular dynamic or by random displace-
ments was not possible by any means due to the only weakly coupled degrees of freedom
of the sub systems. Instead a random distribution routine for each sub-system had to be
developed to generate different realistic starting positions. Due to the computational cost,
especially for large systems, one is often limited to a restricted choice of basis set and
xc-functional. For Si-TC for example the calculation of hybrid functional MDs proved to
be prohibitively expensive to compute. This underlines the necessity to substantiate the
“lower level“ MDs via other methods like the calculation of PES, force constants or band
structures. Sometimes a cheaper method like DFT+U can emulate certain behaviours of
more expensive methods, in this case one, however, has to keep in mind that most likely
only parts will be simulated correctly. It is therefore important to decide which quantity
is the most relevant for the analysis. DFT+U itself proved as a useful method to increase
localization within DFT. In conjunction with molecular dynamics though it proved difficult
to find fitting U parameters, as the values calculated for relaxed structures are generally
to high and cause a “freezing” of the electronic configuration as seen in lithium niobate. In
case of Si-T'C one could correctly calculate the barrier by PES intersection, but the stabil-
ity of each state, i.e. staying on the same PES despite an energetic favourable one existing,
is way higher than for hybrid functionals. Emulating both barrier and stability correctly
at the same time proved impossible. Using DFT-+U in dynamics therefore is possible, but
needs a lot of parameter tweaking to produce reliable results. Last but not least the DFT
based FSSH algorithm proved to be reliable for hopping between localized states as in
molecules or defects, not only for small systems as oxirane but also for large systems like
Si-TC or InP. However it fails at predicting the hopping probabilities for systems with a
high band dispersion like lithium niobate. This failing is due to being only able to account
for a single k-point and having to omit any inter k-point interaction. To circumvent this
problem one might consider folding the Brillouine zone by multiplying the unit cell, which,
however, quickly results in overly large systems. The electron hopping could alternatively
be approximated ex situ, for example by the Landau-Zener method, or could be guessed
by calculating the electron-phonon interaction coefficients for g-vectors which connects the
different k-points. As of this pointﬁ there is no DFT based in situo method to include
inter k-point hopping. However, as phonons are basically atom displacements, which also
occur during a MD (in fact phonons modes can be calculated from a MDEB2) it seems
reasonable that there is a possibility to include such a coupling during a MD.

4to the authors knowledge
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A. Program modifications

The dynamic calculation, in particular their flexible applicability to various 3D and 2D
periodic systems, becomes only possible by several necessary modifications of the used
codes.

The smearing scheme of the LIBRA-X program P2 was modified according to equation m
to allow for excitations higher than the second excited state. The code was furthermore
adapted to allow choosing an arbitrary k-point for the extraction of the KS wave functions
from a set of k-points defined by the DFT calculation, which allowed for (spin-polarized)
calculations with more than one k-point. To increase the efficiency of the LIBRA-X code
the calculation of the different excited states by c-DFT was parallelized. The read-in rou-
tines, the starting configuration generator and the thermostat were modified to allow for
specific atoms to stay fixed during a MD, as necessary for modelling a surface. In order to
gain more fail safety and flexibility the creation of a restart file and a restart routine were
implemented. Lastly minor changes in terms of output and compatibility with the PC?
NOCTUA-I and NOCTUA-II cluster were done, but are not listed in detail.

The smearing routine for the c-DFT calculations was later on implemented into the QUAN-
TUM ESPRESSO pw code3¥34 which a) enabled the usage of other smearing distribu-
tions besides the Fermi-Dirac distribution and b) largely reduced the in- and output oper-
ations between the Libra-X and Quantum espresso code, which tends to be a bottleneck
for the calculations, especially for small systems.

B. Publications

The author contributed to following articles in scientific journals:

e M. Krenz, U. Gerstmann and W.G. Schmidt, Photochemical Ring Opening of Oxirane
Modelled by Constrained Density Functional Theory, ACS Omega 5, 24057 (2020),
https://doi.org/10.1021 /acsomega.0c03483, PMID: 32984727.

e M. Krenz, U. Gerstmann and W. G. Schmidt, Bound polaron formation in lithium nio-
bate from ab initio molecular dynamics, Applied Physics A 128, 480 (2022).

e M. Krenz, U. Gerstmann and W.G. Schmidt, Defect assisted exciton transfer across
the tetracene-Si(111):H interface, submitted to Phys. Rev. Lett.

e B. Halbig, M. Liebhaber, U. Bass, J. Geurts, E. Speiser, J. Rathel, S. Chandola, N.
Esser, M. Krenz, S. Neufeld, W.G. Schmidt, S. Sanna, Vibrational properties of the
Au-(3x3)/Si(111) surface reconstruction, Physical Review B 97 (2018).

e C.W. Nicholson, M. Puppin, A. Liicke, U. Gerstmann, M. Krenz, W.G. Schmidt, L.
Rettig, R. Ernstorfer, M. Wolf, Excited-state band mapping and momentum-resolved
ultrafast population dynamics in In/Si(111) nanowires investigated with XUV-based time-
and angle-resolved photoemission spectroscopy, Physical Review B 99 (2019).

e Jonathan Diederich, Jennifer Velasquez-Rojas, Mohammad Amin Zare Pour, Isaac
Azahel Ruiz Alvarado, Marvin Krenz, Agnieszka Paszuk, Christian Hohn, Klaus
Schwarzburg, David Ostheimer, Rainer Eichberger, Wolf Gero Schmidt, Thomas
Hannapel, Roel van de Krol and Dennis Friedrich, Indium Phosphide excitations under
water exposure (title is subject to change), work in progress, to be published

89



Bibliography

Other scientific publications:

M. Krenz, A. Bocchini, T. Biktagirov, A. Kozub, S. Badalov, S. Neufeld, I. A. Ruiz
Alvarado, U. Gerstmann, and W. G. Schmidt, Polaron formation dynamics in lithium
niobate from massively parallel ab-initio simulations High Performance Computing in
Science and Engineering 2022, Springer Nature Switzerland AG

Bibliography

[1] G.Czycholl, Theoretische Festkorperphysik Band 1 (Springer, 2016).

[2] C.Kittel, Introduction to solid state physics, John Wiley & Sons, New York , 402
(1996).

[3] R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge
university press, 2020).

[4] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias and a. J. Joannopoulos, Iterative min-
imization techniques for ab initio total-energy calculations: molecular dynamics and con-
jugate gradients, Reviews of modern physics 64, 1045 (1992).

[5] N.C. Handy and A.M. Lee, The adiabatic approximation, Chemical physics letters
252, 425 (1996).

[6] P.Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical review 136, B864
(1964).

[7] E.Engel, Density functional theory (Springer, 2011).

[8] W.Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation
Effects, Phys. Rev. 140, A1133 (1965).

[9] J.Lagrange, Mécanique Analytique, volume 1. Courcier, Paris, revised edition, 1811.

[10] A.D. Becke, Density functional theories in quantum chemistry: Beyond the local
density approximation, ACS Publications, 1989.

[11] J.P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh
and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized
gradient approximation for exchange and correlation, Physical review B 46, 6671 (1992).

[12] Searchresults Web of science, criteria “DFT" and “Density functional theory” in Abstract
or keyword in the year 2022, 2023.

[13] G.D. Billing, Classical path method in inelastic and reactive scattering, International
reviews in physical chemistry 13, 309 (1994).

[14] D.Carfi, The Pointwise Hellmann-Feynman Theorem, AAPP LXXXVIII,
C1A0101004 (2010).

[15] H.Hellman, Einfiihrung in die Quantenchemie, Franz Deuticke, Leipzig 285 (1937).

[16] R.P. Feynman, Forces in molecules, Physical review 56, 340 (1939).

[17] J.L. Hudgins, Wide and narrow bandgap semiconductors for power electronics: A new

90

valuation, Journal of Electronic materials 32, 471 (2003).



Bibliography

[18]
[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

W. Demtroder, Experimentalphysik 1: Mechanik und Warme (Springer-Verlag, 2017).
V. Riihle, Berendsen and nose-hoover thermostats, Am. J. Phys (2007).

A.Lemak and N.Balabaev, On the Berendsen thermostat, Molecular Simulation 13,
177 (1994).

H.J. Berendsen, J.v. Postma, W.F. Van Gunsteren, A.DiNola and J.R. Haak,
Molecular dynamics with coupling to an external bath, The Journal of chemical physics
81, 3684 (1984).

P.H. Hiinenberger, Thermostat algorithms for molecular dynamics simulations, Ad-
vanced computer simulation: Approaches for soft matter sciences I, 105 (2005).

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods,
The Journal of chemical physics 81, 511 (1984).

D. Sidler and S. Riniker, Fast Nosé-Hoover thermostat: molecular dynamics in quasi-
thermodynamic equilibrium, Physical Chemistry Chemical Physics 21, 6059 (2019).

G.J. Martyna, M. L. Klein and M. Tuckerman, Nosé-Hoover chains: The canonical
ensemble via continuous dynamics, The Journal of chemical physics 97, 2635 (1992).

W. Qian and C.Zhang, Review of the phonon calculations for energetic crystals and
their applications, Energetic Materials Frontiers 2, 154 (2021).

A.V. Kuznetsov and C. J. Stanton, Theory of coherent phonon oscillations in semicon-
ductors, Physical review letters 73, 3243 (1994).

O. Misochko, M. Hase, K. Ishioka and M. Kitajima, Transient Bose—Einstein condensa-
tion of phonons, Physics Letters A 321, 381 (2004).

A. Einstein, Quantum theory of the monatomic ideal gas, Sitzungsberichte der Preussis-
chen Akademie der Wissenschaften, Physikalisch-mathematische Klasse , 261 (1924).

M. M. Dacorogna, M.L. Cohen and P.K. Lam, Self-consistent calculation of the q
dependence of the electron-phonon coupling in aluminum, Physical review letters 55,
837 (1985).

P. Garcia-Risuenio, P. Han and G. Bester, Frozen-phonon method for state anticrossing
situations and its application to zero-point motion effects in diamondoids, arXiv preprint
arXiv:1904.05385 (2019).

S.Baroni, S. De Gironcoli, A. Dal Corso and P. Giannozzi, Phonons and related crystal
properties from density-functional perturbation theory, Reviews of modern Physics 73,
515 (2001).

P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project
for quantum simulations of materials, Journal of physics: Condensed matter 21, 395502
(2009).

P. Giannozzi etal., Advanced capabilities for materials modelling with Quantum
ESPRESSO, Journal of physics: Condensed matter 29, 465901 (2017).

L. Hedin, New method for calculating the one-particle Green's function with application
to the electron-gas problem, Phys. Rev. 139, A769 (1965).

91



Bibliography

[36]

[37]

138

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]
[49]

[50]

[51]

[52]

[53]

92

M. E. Casida, Time-depentent density-functional response theory for molecules, in
Recent Advances In Density Functional Methods: (Part I), World Scientific, 1995.

C.R. Jacob and M. Reiher, Spin in density-functional theory, International Journal of
Quantum Chemistry 112, 3661 (2012).

A.Hellman, B. Razaznejad and B.I. Lundqvist, Potential-energy surfaces for excited
states in extended systems, The Journal of chemical physics 120, 4593 (2004).

Q. Wu and T. Van Voorhis, Direct optimization method to study constrained systems
within density-functional theory, Physical Review A 72, 024502 (2005).

B. Kaduk, T.Kowalczyk and T.Van Voorhis, Constrained density functional theory,
Chemical reviews 112, 321 (2012).

R. O. Jones and O.Gunnarsson, The density functional formalism, its applications and
prospects, Reviews of Modern Physics 61, 689 (1989).

J. Gavnholt, T.Olsen, M. Engelund and J. Schigtz, A self-consistent field method to
obtain potential energy surfaces of excited molecules on surfaces, Physical Review B
78, 075441 (2008).

T. Frigge et al., Optically excited structural transition in atomic wires on surfaces at the
quantum limit, Nature 544, 207 (2017).

T. Kowalczyk, S. R. Yost and T. V. Voorhis, Assessment of the ASCF density functional
theory approach for electronic excitations in organic dyes, The Journal of chemical
physics 134 (2011).

C.-L. Cheng, Q. Wu and T. Van Voorhis, Rydberg energies using excited state density
functional theory, The Journal of chemical physics 129 (2008).

W. Sotoyama, Simulation of low-lying singlet and triplet excited states of multiple-
resonance-type thermally activated delayed fluorescence emitters by delta self-consistent
field (ASCF) method, The Journal of Physical Chemistry A 125, 10373 (2021).

M. Kasha, Characterization of electronic transitions in complex molecules, Discuss.
Faraday Soc. 9, 14 (1950).

J. C. Tully, Molecular dynamics with electronic transitions, J. Cherm. Phys. (1990).

A.V. Akimov and O.V. Prezhdo, The PYXAID program for non-adiabatic molecular
dynamics in condensed matter systems, Journal of chemical theory and computation
9, 4959 (2013).

B. Smith and A.V. Akimov, Modeling nonadiabatic dynamics in condensed matter ma-
terials: some recent advances and applications, Journal of Physics: Condensed Matter
32, 073001 (2019).

A.V. Akimov, Nonadiabatic molecular dynamics with tight-binding fragment molecular
orbitals, Journal of chemical theory and computation 12, 5719 (2016).

E. Pradhan, K. Sato and A.V. Akimov, Non-adiabatic molecular dynamics with ASCF
excited states, Journal of Physics: Condensed Matter 30, 484002 (2018).

J. P. Perdew, Density functional theory and the band gap problem, International Journal
of Quantum Chemistry 28, 497 (1985).



Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

|66]

[67]
[68]
[69]

[70]

[71]

P. Mori-Sanchez, A.J. Cohen and W. Yang, Localization and delocalization errors in
density functional theory and implications for band-gap prediction, Physical review
letters 100, 146401 (2008).

J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approxima-
tions for many-electron systems, Physical Review B 23, 5048 (1981).

T. Tsuneda and K. Hirao, Self-interaction corrections in density functional theory, The
Journal of chemical physics 140 (2014).

H. J. Kulik, Perspective: Treating electron over-delocalization with the DFT+ U method,
The Journal of chemical physics 142 (2015).

E. Pavarini, E. Koch, F. Anders and M. Jarrell, Correlated electrons: from models to
materials, Reihe Modeling and Simulation 2 (2012).

M. Cococcioni and S. De Gironcoli, Linear response approach to the calculation of the
effective interaction parameters in the LDA+ U method, Physical Review B 71, 035105
(2005).

M. Cété, Introduction to DFT+ U, International Summer School on Numerical Meth-
ods for Correlated Systems in Condensed Matter, Université de Montréal,(May 26
to Jun. 6, 2008) , 23 (2008).

D. Hait and M. Head-Gordon, Delocalization Errors in Density Functional Theory Are
Essentially Quadratic in Fractional Occupation Number, The Journal of Physical Chem-
istry Letters 9, 6280 (2018), https://doi.org/10.1021 /acs.jpclett.8b02417.

P. Mori-Sanchez and A.J. Cohen, The derivative discontinuity of the exchange-
correlation functional, Physical Chemistry Chemical Physics 16, 14378 (2014).

J.F. Janak, Proof thatd EOQ n i= ¢ in density-functional theory, Physical Review B 18,
7165 (1978).

G. Trimarchi, Z. Wang and A. Zunger, Polymorphous band structure model of gapping
in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO,
CoO, and NiO, Physical Review B 97, 035107 (2018).

A.Svane, Electronic structure of La 2 CuO 4 in the self-interaction-corrected density-
functional formalism, Physical review letters 68, 1900 (1992).

I. Duck, W. Pauli and E. Sudarshan, Pauli and the spin-statistics theorem (World Sci-
entific, 1997).

W. Pauli, Die allgemeinen prinzipien der wellenmechanik (Springer, 1933).
J. C. Slater, The theory of complex spectra, Physical Review 34, 1293 (1929).

V. Fock, Ndherungsmethode zur L3sung des quantenmechanischen Mehrk&rperproblems,
Zeitschrift fur Physik 61, 126 (1930).

P. Lykos and G. Pratt, Discussion on the Hartree-Fock approximation, Reviews of Mod-
ern Physics 35, 496 (1963).

P.J. Hasnip, K.Refson, M.I. Probert, J.R. Yates, S.J. Clark and C.J. Pickard,
Density functional theory in the solid state, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 372, 20130270 (2014).

93



Bibliography

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

94

P.-F. Loos and P. M. Gill, Ground state of two electrons on concentric spheres, Physical
Review A 81, 052510 (2010).

A. Kerridge, A.Harker and A.Stoneham, Quantum behaviour of hydrogen and muo-
nium in vacancy-containing complexes in diamond, Journal of Physics: Condensed
Matter 16, 8743 (2004).

Y .-i. Matsushita, K. Nakamura and A.Oshiyama, Comparative study of hybrid func-
tionals applied to structural and electronic properties of semiconductors and insulators,
Physical Review B 84, 075205 (2011).

M. Krenz, U. Gerstmann and W. G. Schmidt, Photochemical Ring Opening of Oxirane
Modeled by Constrained Density Functional Theory, ACS Omega 5, 24057 (2020),
https://doi.org/10.1021 /acsomega.0c03483, PMID: 32984727.

F.Lyon, VOLUME 97 1, 3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride,
Vinyl Chloride and Vinyl Bromide).

G.C. Mendes, T.R. Brandao and C.L. Silva, Ethylene oxide sterilization of medical
devices: a review, American journal of infection control 35, 574 (2007).

E. Tapavicza, I. Tavernelli, U. Rothlisberger, C. Filippi and M. E. Casida, Mixed time-
dependent density-functional theory/classical trajectory surface hopping study of oxirane
photochemistry, Journal of Chemical Physics 129, 124108 (2008).

E. Gomer and J. W. A. Noyes, Photochemical Studies. XLII. Ethylene Oxide, J. Am
Chem. Soc. 72, 101 (1950).

M. Kawasaki, . T. Ibuki, M. Iwasaki and Y. Takezaki, Vacuum-ultraviolet photolysis of
ethylene oxide, Journal of Chemical Physics 59, 2076 (1973).

X.Bin, A. Azizi, T. Xu, S.R. Kirk, M. Filatov and S. Jenkins, Next-generation quan-
tum theory of atoms in molecules for the photochemical ring-opening reactions of oxirane,
International Journal of Quantum Chemistry 119, 25957 (2019).

T. Helgaker, P.Jorgensen and J.Olsen, Molecular electronic-structure theory (John
Wiley & Sons, 2013).

M. A. Marques and E. K. Gross, Time-dependent density functional theory, Annu. Rev.
Phys. Chem. 55, 427 (2004).

J. Alonso and N. Cordero, Nonlocal weighted density approximation to exchange,
correlation and kinetic energy in density functional theory, in Theoretical and Com-
putational Chemistry Vol. 4, Seiten 239-294, Elsevier, 1996.

F. Cordova, L. J. Doriol, A.Ipatov, M. E. Casida, C. Filippi and A. Vela, Troubleshoot-
ing time-dependent density-functional theory for photochemical applications: Oxirane,
The Journal of chemical physics 127, 164111 (2007).

T.-K. Liu and A.Duncan, The absorption spectrum of ethylene oxide in the vacuum
ultraviolet, The Journal of Chemical Physics 17, 241 (1949).

A. Lowrey IIT and K. Watanabe, Absorption and ionization coefficients of ethylene oxide,
The Journal of Chemical Physics 28, 208 (1958).

G.Fleming, M. M. Anderson, A.J. Harrison and L. W. Pickett, Effect of ring size on



Bibliography

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]
98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

the far ultraviolet absorption and photolysis of cyclic ethers, The Journal of Chemical
Physics 30, 351 (1959).

T. Ozaki, Continued fraction representation of the Fermi-Dirac function for large-scale
electronic structure calculations, Physical Review B 75, 035123 (2007).

N. Marzari, D. Vanderbilt, A. De Vita and M. C. Payne, Thermal Contraction and Dis-
ordering of the Al(110) Surface, Phys. Rev. Lett. 82, 3296 (1999).

M. Spiekermann, D. Bougeard and B. Schrader, Coupled calculations of vibrational fre-
quencies and intensities. |1l. IR and Raman spectra of ethylene oxide and ethylene sulfide,
Journal of Computational Chemistry 3, 354 (1982).

M. Krenz, U. Gerstmann and W. G. Schmidt, Bound polaron formation in lithium nio-
bate from ab initio molecular dynamics, Applied Physics A 128, 480 (2022).

M. Bazzan and C. Sada, Optical waveguides in lithium niobate: Recent developments
and applications, Applied Physics Reviews 2 (2015).

L.N. Binh, Lithium niobate optical modulators: Devices and applications, Journal of
crystal growth 288, 180 (2006).

Y. Qi and Y. Li, Integrated lithium niobate photonics, Nanophotonics 9, 1287 (2020).

A.Zaltron etal., Integrated optics on lithium niobate for sensing applications, in
Optical Sensors 2015 Vol. 9506, Seiten 50-59, SPIE, 2015.

W. M. Haynes, CRC handbook of chemistry and physics (CRC press, 2014).

A. Alexandrov and P. Kornilovitch, Mobile small polaron, Physical Review Letters 82,
807 (1999).

O. Schirmer, M. Imlau, C. Merschjann and B. Schoke, Electron small polarons and bipo-
larons in LiNbOg3, Journal of Physics: Condensed Matter 21, 123201 (2009).

G. Wellein, H.Roder and H. Fehske, Polarons and bipolarons in strongly interacting
electron-phonon systems, Physical Review B 53, 9666 (1996).

D. Emin, Optical properties of large and small polarons and bipolarons, Physical Review
B 48, 13691 (1993).

T. Mitra, A.Chatterjee and S. Mukhopadhyay, Polarons, Physics Reports 153, 91
(1987).

M. Imlau, H. Badorreck and C. Merschjann, Optical nonlinearities of small polarons in
lithium niobate, Applied Physics Reviews 2 (2015).

F.Schmidt, A.L. Kozub, T.Biktagirov, C.Eigner, C.Silberhorn, A.Schindlmayr,
W.G. Schmidt and U.Gerstmann, Free and defect-bound (bi) polarons in LiNbOs3:
Atomic structure and spectroscopic signatures from ab initio calculations, Physical Re-
view Research 2, 043002 (2020).

F.Schmidt, A. L. Kozub, U. Gerstmann, W. G. Schmidt and A. Schindlmayr, Electron
Polarons in Lithium Niobate: Charge Localization, Lattice Deformation, and Optical
Response, Crystals 11 (2021).

95



Bibliography

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[11§]

[119]

[120]

[121]

96

W.T. Pollard, S.-Y. Lee and R. A. Mathies, Wave packet theory of dynamic absorption
spectra in femtosecond pump—probe experiments, The Journal of chemical physics 92,
4012 (1990).

Y. Qiu, K. Ucer and R. Williams, Formation time of a small electron polaron in LiNbO3:
measurements and interpretation, physica status solidi (c) 2, 232 (2005).

I.S. Akhmadullin, V.Golenishchev-Kutuzov, S.Migachev and S.Mironov, Low-
temperature electrical conductivity of congruent lithium niobate crystals, Physics of
the Solid state 40, 1190 (1998).

K.Buse, A.Adibi and D.Psaltis, Non-volatile holographic storage in doubly doped
lithium niobate crystals, nature 393, 665 (1998).

D.Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and T. Woike, Lifetime of small
polarons in iron-doped lithium—niobate crystals, Journal of applied physics 87, 1034
(2000).

S.Sasamoto, J. Hirohashi and S. Ashihara, Polaron dynamics in lithium niobate upon
femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,
Journal of Applied Physics 105, 083102 (2009).

J. Czochralski, Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der
metalle, Zeitschrift fiir physikalische Chemie 92, 219 (1918).

T. Volk and M. WohleckeLithium niobate: defects, photorefraction and ferroelectric
switching Vol. 115 (Springer Science & Business Media, 2008).

K. Lengyel et al., Growth, defect structure, and THz application of stoichiometric lithium
niobate, Applied Physics Reviews 2 (2015).

L. Guilbert, L. Vittadello, M. Bazzan, I. Mhaouech, S. Messerschmidt and M. Imlau,
The elusive role of Nby; bound polaron energy in hopping charge transport in Fe: LiNbOg,
Journal of Physics: Condensed Matter 30, 125701 (2018).

S. Albrecht, Optical absorption spectra of semiconductors and insulators: ab initio cal-
culation of many-body effects, (1999).

A. Marini, C. Hogan, M. Grining and D. Varsano, Yambo: an ab initio tool for excited
state calculations, Computer Physics Communications 180, 1392 (2009).

D.Sangalli etal., Many-body perturbation theory calculations using the yambo code,
Journal of Physics: Condensed Matter 31, 325902 (2019).

P. Reckenthaeler, D. Maxein, T. Woike, K. Buse and B. Sturman, Separation of optical
Kerr and free-carrier nonlinear responses with femtosecond light pulses in LiINbO3 crystals,
Physical Review B 76, 195117 (2007).

H. Badorreck, S. Nolte, F. Freytag, P. Baune, V. Dieckmann and M. Imlau, Scanning
nonlinear absorption in lithium niobate over the time regime of small polaron formation,
Optical Materials Express 5, 2729 (2015).

0O.Beyer, D. Maxein, T. Woike and K. Buse, Generation of small bound polarons in
lithium niobate crystals on the subpicosecond time scale, Applied Physics B 83, 527
(2006).



Bibliography

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]
[134]

[135]

(136

[137]
[138]

[139]

M. Riising, S.Sanna, S. Neufeld, G. Berth, W. Schmidt, A.Zrenner, H. Yu, Y. Wang
and H. Zhang, Vibrational properties of LiNby_, Ta, O3 mixed crystals, Physical Review
B 93, 184305 (2016).

C.Zener, Non-adiabatic crossing of energy levels, Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character
137, 696 (1932).

C. Wittig, The landau- zener formula, The Journal of Physical Chemistry B 109, 8428
(2005).

G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys-
ical Review 52, 191 (1937).

N.Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for
composite energy bands, Physical review B 56, 12847 (1997).

N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza and D. Vanderbilt, Maximally localized
Wannier functions: Theory and applications, Reviews of Modern Physics 84, 1419
(2012).

W.Bludau, A.Onton and W.Heinke, Temperature dependence of the band gap of
silicon, Journal of Applied Physics 45, 1846 (1974).

Y.Okada and Y. Tokumaru, Precise determination of lattice parameter and thermal
expansion coefficient of silicon between 300 and 1500 K, Journal of applied physics 56,
314 (1984).

J. Niederhausen, R.W. MacQueen, K.Lips, H.Aldahhak, W.G. Schmidt and
U. Gerstmann, Tetracene ultrathin film growth on hydrogen-passivated silicon, Lang-
muir 36, 9099 (2020).

P.M. Zimmerman, F.Bell, D. Casanova and M. Head-Gordon, Mechanism for singlet
fission in pentacene and tetracene: From single exciton to two triplets, Journal of the
American Chemical Society 133, 19944 (2011).

T. Takahashi, T. Takenobu, J. Takeya and Y.Iwasa, Ambipolar Light-Emitting Tran-
sistors of a Tetracene Single Crystal, Advanced Functional Materials 17, 1623 (2007),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.200700046.

N.J. Turro, The triplet state, Journal of Chemical Education 46, 2 (1969).

R.Poli and J.N. Harvey, Spin forbidden chemical reactions of transition metal com-
pounds. New ideas and new computational challenges, Chemical Society Reviews 32,
1 (2003).

M. B. Smith and J. Michl, Singlet fission, Chemical reviews 110, 6891 (2010).

T. Markvart and L. Castaner, Ila-1 - Principles of Solar Cell Operation (Elsevier Sci-
ence, Amsterdam, 2003).

M. Igbal, An introduction to solar radiation (Elsevier, 2012).

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar
cells, Journal of applied physics 32, 510 (1961).

S.Riihle, Tabulated values of the Shockley—Queisser limit for single junction solar cells,
Solar energy 130, 139 (2016).

97



Bibliography

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

98

A.F. vanden Boom, S.Ferro, M. Gelvez-Rueda, H.Zuilhof and B.Ehrler, Toward
Improving Triplet Energy Transfer from Tetracene to Silicon Using a Covalently Bound
Tetracene Seed Layer, The Journal of Physical Chemistry Letters (2023).

G. B. Piland, J. J. Burdett, T.-Y. Hung, P.-H. Chen, C.-F. Lin, T.-L. Chiu, J.-H. Lee
and C. J. Bardeen, Dynamics of molecular excitons near a semiconductor surface studied
by fluorescence quenching of polycrystalline tetracene on silicon, Chemical Physics
Letters 601, 33 (2014).

B. Daiber, S.P. Pujari, S.Verboom, S.L. Luxembourg, S.W. Tabernig, M.H.
Futscher, J.Lee, H. Zuilhof and B. Ehrler, A method to detect triplet exciton trans-
fer from singlet fission materials into silicon solar cells: Comparing different surface
treatments, The Journal of Chemical Physics 152 (2020).

B. Daiber etal., Change in tetracene polymorphism facilitates triplet transfer in singlet
fission-sensitized silicon solar cells, The journal of physical chemistry letters 11, 8703
(2020).

M. Einzinger et al., Sensitization of silicon by singlet exciton fission in tetracene, Nature
571, 90 (2019).

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range
dispersion correction,  Journal of Computational Chemistry 27, 1787 (2006),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20495.

V.Barone, M. Casarin, D.Forrer, M.Pavone, M.Sambi and A.Vittadini, Role
and effective treatment of dispersive forces in materials: Polyethylene and graphite
crystals as test cases, Journal of Computational Chemistry 30, 934 (2009),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21112.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable
parameters: The PBEO model, The Journal of chemical physics 110, 6158 (1999).

J.Heyd and G.E. Scuseria, Efficient hybrid density functional calculations in solids:
Assessment of the Heyd—Scuseria—Ernzerhof screened Coulomb hybrid functional, The
Journal of chemical physics 121, 1187 (2004).

J. Tirado-Rives and W. L. Jorgensen, Performance of B3LYP density functional methods
for a large set of organic molecules, Journal of chemical theory and computation 4,
297 (2008).

P. J. Stephens, F.J. Devlin, C. F. Chabalowski and M. J. Frisch, Ab initio calculation
of vibrational absorption and circular dichroism spectra using density functional force
fields, The Journal of physical chemistry 98, 11623 (1994).

D. Holmes, S. Kumaraswamy, A.J. Matzger and K. P. C. Vollhardt, On the Nature of
Nonplanarity in the [N] Phenylenes, Chemistry—A European Journal 5, 3399 (1999).

O. Madelung, Numerical data and functional relationships in science and technology,
Landolt Bornstein, New Series, Group 111 22, 117 (1982).

P. Linstrom and W. Mallard, editors, NIST Chemistry WebBook, NIST Standard Refer-
ence Database Number 69 (National Institute of Standards and Technology, Gaithers-
burg MD, 20899, 2023).



Bibliography

[154]

[155]

[156]

157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Y. Tomkiewicz, R. Groff and P. Avakian, Spectroscopic approach to energetics of exci-
ton fission and fusion in tetracene crystals, The Journal of Chemical Physics 54, 4504
(1971).

Y. Wan, G.P. Wiederrecht, R. D. Schaller, J. C. Johnson and L. Huang, Transport of
Spin-Entangled Triplet Excitons Generated by Singlet Fission, The Journal of Physical
Chemistry Letters 9, 6731 (2018), https://doi.org/10.1021 /acs.jpclett.8b02944.

S.M. Janke, M. Rossi, S.V. Levchenko, S.Kokott, M. Scheffler and V. Blum, Pen-
tacene and tetracene molecules and films on H/Si (111): Level alignment from hybrid
density functional theory, Electronic Structure 2, 035002 (2020).

T.Ihn, Semiconductor Nanostructures: Quantum states and electronic transport (OUP
Oxford, 2009).

X.Liu, M.S. Choi, E. Hwang, W.J. Yoo and J.Sun, Fermi level pinning dependent
2D semiconductor devices: challenges and prospects, Advanced Materials 34, 2108425
(2022).

W. Demtroder, Experimentalphysik 3: Atome, Molekiile und Festkdrper (Springer-
Verlag, 2016).

J. Diederich etal., Indium Phosphide excitations under water exposure (title is subject
to change), Work in progress, to be published .

G. Henkelman, B. P. Uberuaga and H. Jénsson, A climbing image nudged elastic band
method for finding saddle points and minimum energy paths, The Journal of chemical
physics 113, 9901 (2000).

H. Jonsson, G.Mills and K. W. Jacobsen, Nudged elastic band method for finding
minimum energy paths of transitions, in Classical and quantum dynamics in condensed
phase simulations, Seiten 385-404, World Scientific, 1998.

A. L. Kozub, U. Gerstmann and W. G. Schmidt, Third-Order Susceptibility of Lithium
Niobate: Influence of Polarons and Bipolarons, physica status solidi (b) 260, 2200453
(2023).

A.L. Kozub, A.Schindlmayr, U. Gerstmann and W.G. Schmidt, Polaronic enhance-
ment of second-harmonic generation in lithium niobate, Physical Review B 104, 174110
(2021).

99



List of Figures

List of Figures

[l.  The Gomer-Noyes mechanism™ mainly responsible for the photochemical |

| decomposition of oxirane.| . . . . . . ... ... . 25
2. Calculated electron densities of the ground state and lowest excited states |

| of oxirane. . . . . . . . e 27
[3.  State populations for NV E calculations modelling an initial temperature of |

| 100K (lhs) and 300K (rhs).| . . . . . ... .. oo 30
4. Reaction products over time in the microcanonical NV F ensemble for tem- |

| peratures of 100K (lhs) and 300K (rhs).| . . . . . ... ... ... ... ... 30
b.  State populations for NV'I" calculations modelling an initial temperature of |

| 100K (lhs) and 300K (rhs).| . . . .. ... ... ... 31
6. Reaction products over time calculated in the canonical NVI" ensemble at |

| temperatures of 100 K (lhs) and 300K (rhs). . . ... ... ... ... ... 31
7. Percentage of end products over temperature after 2501{s integration time |
calculated in the microcanonical NV E (lhs) and canonical NVT ensembles |

rths).|. . . . e 32

[8.  Electronic densities of the active 5; during the ring opening reaction for an |

| example trajectory after b, 15 and 30fs.| . . . . . . . .. ... ... ... .. 34
9. Electronic densities of the active state for an example trajectory of an in- |

[ hibited H transfer) . . . . . . . . . . . ... . 34
|10. Electronic densities of the active state during an O abstraction reaction ot |

| an example trajectory.| . . . . . . ..o o 34
[11.  Lithium niobate shown in its hexagonal unit cell.| . . . . . . . .. . ... .. 37
(2. Structure and electronic density of the free (lhs) and bound (rhs) polaron. | 41
[13.  Kohn-Sham energies and dielectric functions for a protoypical MD.| . . . . . 45
|114.  Evolution of the mean distance of the excess electron to the Nby: antisite |
Cafoml - . o o o 46
[15.  Evolution of the local magnetic moment at the detect Nby; and the average |

| bond length between the Nby; atom and the nearest O atoms surrounding |
| the defect. This figure 1s reused from Ref. [92/in accordance with the Creative |
[ Commons licence 4.0, . . . . . . . . e 47
[16.  Subset of phonon modes tor the LN unit cell.| . . . . ... ... ... ... . 47
[17.  Dependence of the average times required for electronic localization, polaron |

| formation, and polaron quenching on the simulation temperature.This figure |
[ 1s reused from Ref. 192/ 1n accordance with the Creative Commons licence 4.0 48
[18. Number of trajectories with electron localization times above and below 20 fs |

| depending on the temperature| . . . . . . .. ... oo 49
119.  Evolution of average O-Nby; distances for eight example trajectories at 600 K |

| with (left) and without (right) excess charge. This figure is reused from Ref. [
[ 92 1n accordance with the Creative Commons licence 4.0 . . . . . . .. . .. 53
[20.  Tetracene molecule with (rhs) and without (lhs) triplet excitation| . . . . . 58
[21. Top and side view of the high and low density phase.| . . . . . . . . ... .. 60
PARD) [Tole densities Tor 1 Tored Ao T The TC Tl |

| crystal.l. . . .o 62
[23.  Averaged electrostatic potential over the x-y plane tor the 5i-T'C intertace |

| (Ilhs) and a St unit cell (rhs)|. . . . . ... .. oo oo 63
[24.  Partial densities of states for the ground state of the high density (lhs) and |

| low density phase (rhs).| . . . . ... ... 64

100



[25.  Partial density of states for a vertical triplet excitation at the ground state

structure of the HD modell . . . . . . . . . ..o

[26.  PDOS of the ground state of the HD phase with dangling bond.|. . . . . . .
27.  PDOS with added triplet excitation.| . . . . . . ... .. ... ... .....
[28.  Band structure corresponding to the PDOS of figure[26}f . . . . . . ... ..
[29.  PDOS of the uncharged dangling bond HD structure.|. . . . . . . . ... ..

65
66
67

130.  PDOS of the HD phase with dangling bond at the TC localized triplet

structure (Si-TCpc#, lhs) and the Si localized triplet structure (Si-TCg;x, rhs).| 68

[B1. PDOS for the LD model with dangling bond in the ground state (Ihs) and

with excited triplet (rhs). . . . .. .. .. oo o 69

[32.  Charge densities of the triplet during an exemplary trajectory starting at |
the Si-TCpex structure)| . . . . . . .. . ... o 70

[33.  Dangling bond z position and KS energies at one k-point for the trajectory |
asin figure (32l . . . . .. 71

[34.  Graphs analogue to figure [33| for two other trajectories.|. . . . . . . . . . .. 73
135.  c-DF'T" Molecular dynamic starting at 3301ts of the trajectory in figure [33] |
i.e. directly atter the level crossing,| . . . . . . ... ... ... 74

[36. Transition barriers calculated via NEB (lhs) and linear interpolating the |
dangling bond position while relaxing the rest of the structure (rhs).| . . . . 75

[37.  Average triplet transition times over simulation temperature.| . . . . . . .. 78
138.  Histogram for the number of transitions within a specific time frame.| . . . . 79
[39.  Prototypical trajectories for the triplet transfer at the temperatures ot 50 K |
80

(top) and 400 K (bottom).| . . . . . . .. ...

40, Calculated transfer barriers for the HSE functional and PBE functional with |

Hubbard correction) . . . . . . . . . . .. 83
[41.  Number of transitions within certain time frames for trajectories calculated |
using PBE4-U.l . . . . ..o 84
List of Tables
[l.  Oxirane singlet excitation energies (in €V) for (PBE) ¢-DFT in comparison |
with other computational methods as well with experimental data.| . . . . . 27
2. Geometrical parameters used to determine the reaction products.| . . . . . . 29
|3.  Calculated reaction yields after 250 fs simulation time compared to experi- |
mental data after optical excitation with 174 - 147 nm light % [ . = . . 33
@.  Siand Tc excitation energies (in eV) calculated using A-scf and c-DFT| . . 61
[5. Singlet and triplet excitation energies (in eV) in the bulk TC crystal for |
different functionals and excitation configurations.| . . . .. .. ... .. .. 62







Danksagung

Diese Arbeit wire ohne die Unterstiitzung einiger Personen nicht mdéglich gewesen, und
ohne viele weitere wesentlich weniger ertraglich zu schreiben gewesen. Sich bei allen zu
bedanken, wiirde sicherlich den Umfang dieser Arbeit immens erhohen, daher entschuldige
ich mich im Voraus bei denen, die ich im Folgenden nicht explizit nenne.

Zuerst mochte ich mich bei Prof. Dr. Wolf Gero Schmidt bedanken, der meinen Werdegang
seit meiner Bachelorarbeit begleitet. Vielen Dank fiir die Diskussionen, Unterstiitzung und
Vielzahl an physikalischen Systemen, die ich bearbeiten durfte. Es ist erstaunlich zu se-
hen, wie die unterschiedlichsten Systeme und Probleme immer wieder Gemeinsamkeiten
aufweisen!

Prof. Dr. Simone Sanna sei gedankt fiir den Einstieg in das spannende Gebiet der Dichte-
funktionaltheorie, und dafiir dass er mich schon im vierten Semester direkt in die Forschung
mit einbezogen hat.

Die tibrige Promotionskommission méchte ich auch nicht auffen vor lassen; danke dass ihr
euch die Zeit nehmt euch mit meiner Arbeit zu befassen.

Ein grofes Danke geht auch an Prof. Dr. Uwe Gerstmann fiir die langen und hilfrei-
chen Diskussionen, Hilfestellungen in sowohl physikalischen als auch technischen Fragen
und dafiir, dass man auf eine Frage nicht nur eine Antwort, sondern auch viele niitzli-
che Zusatzinformationen bekommt. An meine Arbeitskollegen auf N3, durch die ein sehr
angenehmes Arbeitsklima auf dem Flur herrscht, geht natiirlich ebenfalls ein herzliches
Danke. Insbesondere mdochte ich meiner Biirokollegin Dr. Adriana Bocchini danken, die
geméfs unserem inoffiziellen Biiromotto ,,Meckern steigert die Moral“ stets ein offenes Ohr
fiir fachliche als auch fiir allgemeine Belange hat. Mit absoluter Selbstverstandlichkeit ist
auch Simone Lange zu danken. Die Bezeichnung ,Sekretérin® ist meiner Meinung nach
unpassend fiir eine Person, ohne die der ganze Flur in kurzer Zeit zum Erliegen kommen
wiirde.

Zudem mochte ich mich bei meinen Kommilitonen, Freunden und Familie bedanken. Man
hat es nicht immer einfach mit mir — danke dafiir das ihr mich ertragt und unterstiitzt. Ich
danke insbesondere dir, Melanie, fiir das Korrekturlesen und die fortlaufende Motivation.
Ich bin immer mal wieder iiberrascht, dass es Leute gibt die mit mir Sport machen, und
dann die Motivation haben immer wieder zum Training zu kommen. Meinen Eltern Petra
und Wolfgang danke ich fiir die fortlaufende Unterstiitzung, welche es mir erst ermoglicht
hat mich nédher mit der Physik zu beschéftigen. Ebenfalls fiir ihre Unterstiitzung und nicht
zuletzt fiir ihre hervorragenden Kochkiinste danke ich meiner Groffmutter Wilma.

Zu guter Letzt mochte ich mich bei meinem ehemaligen Schachtrainer Zoltan Nagy bedan-
ken. In dieser Arbeit habe ich Simulationen im Femto- bis Pikosekundenbereich durchge-
fiihrt. Er hat diesen Vorhersagebereich gesprengt, indem er schon vor mehr als 20 Jahren
vorhergesagt hat, dass ich einmal diesen Weg einschlagen wiirde.



	Contents
	Abbreviations
	Introduction
	Theoretical foundations
	Periodic boundary conditions, Born-Oppenheimer approximation
	Density functional theory
	Molecular dynamics using density functional theory
	Simulation of the temperature
	Phonons
	Excited states within density functional theory
	Interband transitions
	Localized states in density functional theory
	Problems of the density functional theory
	DFT+U
	Hybrid functionals


	First reference system: Oxirane
	Introductions
	Modelling the static molecule
	The dynamic system: Methods and parameters
	Results: Statistics of the NVE and NVT ensemble
	Results: States during the Reaction

	Polaron formation in lithium niobate
	Introduction: Lithium niobate and polarons
	Polarons in lithium niobate: Types and classifications
	Detection of polarons
	Modelling the free polaron
	Modelling the bound polaron
	Molecular dynamics: Parameters and starting configurations
	The influence of the starting configuration

	Analysing the trajectories: Thresholds and additional methods
	Results
	Localization and formation times
	The influence of the Hubbard U
	Lattice relaxation

	Non-adiabatic potential energy surface hopping in lithium niobate

	Exciton dynamics at the silicon-tetracene interface
	Silicon, tetracene and solar cells
	The ideal Si(111)-TC interface
	Modelling
	Excursion: Which (hybrid) functional to choose?
	Band alignment

	Introducing the defect
	Dynamics
	Surface hopping at interfaces and with level crossings
	Transfer times
	Starting configurations
	Trajectories and results

	Exciton transfer using DFT+U


	Conclusions
	Program modifications
	Publications
	Bibliography
	List of Figures
	List of Tables

