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Abstract

The detection of cyclostationary signals is of interest in various fields of science and engineering
such as meteorology and climatology, economics, mechanics, and communications. In this thesis
cyclostationarity is encountered as an inherent property of communication signals, specifically in
the context of passive radar and cognitive radio.

The key of passive radar is that the system uses a non-cooperative transmitter, also known as
illuminator of opportunity (IO). However, without control of the transmitted signal, the detection
task of a passive radar is more challenging than in active radar. For this reason, in this thesis it is
exploited that an IO typically emits signals that are cyclostationary.

The goal is to detect the presence of cyclostationarity at a surveillance array given observations
from two arrays, the surveillance array and a reference array. For this two-channel passive detection
problem the asymptotic generalized likelihood ratio test (GLRT) is derived. Furthermore, the
existence of optimal invariant tests is studied and it is shown that neither the uniformly most powerful
invariant test (UMPIT) nor the locally most powerful invariant test (LMPIT) exist for this problem.
Based on an insightful interpretation of the test statistics and Monte Carlo simulations, it is possible
to propose an LMPIT-inspired detector. Additionally, GLRTs are derived for different assumptions
on the noise’s spatio-temporal structure and its influence on the detection performance is investigated.
Furthermore, the two-channel problem is generalized to multiple surveillance and reference channels
for which an asymptotic GLRT is derived and the existence of UMPIT and LMPIT is also analyzed.
In order to select the thresholds of the GLRT statistics to guarantee a constant false alarm rate, it is
shown that under the null hypothesis the GLRT statistic is asymptotically distributed as the product
of independent Beta random variables.

In addition to the two and multi-channel detection problems, a generalized version of the single
array detection problem, encountered in applications such as cognitive radio, is also considered.
Specifically, a detector for the presence of an almost-cyclostationary signal in wide-sense stationary
noise is derived that simultaneously provides an estimate of its cycle period. This problem is treated
by combining a resampling approach that allows for the application of a previously proposed GLRT
with a multiple hypothesis test.

For all problems that are considered in this thesis extensive Monte Carlo simulations are performed.
It is demonstrated that the derived detectors outperform comparable state-of-the-art competing
techniques.





Zusammenfassung der Dissertation

Die Detektion zyklostationärer Signale ist in vielen Feldern der Wissenschaft und den Ingenieurswiss-
enschaften von Interesse, darunter Meteorologie und Klimatologie, Ökonomie, Maschinenbau und
Kommunikationstechnik. In dieser Arbeit begegnen wir Zyklostationarität als inärente Eigenschaft
von Kommunikationssignalen im Kontext von passivem Radar und Cognitive Radio.

Die Kernidee passiven Radars ist das Ausnutzen von nicht-kooperativen Sendern, die als “illuminator
of opportunity” (IO) bezeichnet werden. Die Detektion ohne Einflussnahme auf das Sendesignal ist
allerdings deutlich herausfordernder. Aufgrunddessen wird in dieser Arbeit ausgenutzt, dass das
Sendesignal des IO zyklostationär ist.

Ziel ist die Detektion eines zyklostationären Signals an einem Überwachungs-Array unter Berück-
sichtigung der Beobachtungen von dem Überwachungs-Array und einem Referenz-Array. Für dieses
zwei-kanalige passive Detektionsproblem wird ein asymptotischer “generalized likelihood ratio
test” (GLRT) hergeleitet. Darüber hinaus wird die Existenz optimaler invarianter Tests untersucht
wobei gezeigt wird, dass weder der “uniformly most powerful invariant test” (UMPIT) noch der
“locally most powerful invariant test” (LMPIT) für dieses Problem existieren. Basierend auf der
aufschlussreichen Interpretation der Test Statistik und Monte Carlo Simulationen, kann ein vom
LMPIT inspirierter Detektor vorgeschlagen werden.

Außerdem werden die GLRTs für verschiedene Annahmen der räumlichen und zeitlichen Struktur
des Rauschens und deren Einfluss auf die Detektionsleistung untersucht. Zusätzlich wird das
zwei-kanalige Detektionsproblem verallgemeinert für eine beliebige Anzahl der Überwachungs-
und Referenz-Arrays. Für dieses Problem wird der asymptotische GLRT hergeleitet und die
Existenz des UMPIT und LMPIT analysiert. Um die Schwellwerte der GLRT Statistiken für eine
konstante Fehlalarmrate zu wählen, wird gezeigt, dass die GLRT Statistik unter der Null Hypothese
asymptotisch äquivalent zur Verteilung eines Produkts unabhängiger Beta Zufallsvariablen ist.

Über das zwei-kanalige und mehr-kanalige Problem hinaus, wird das ein-kanalige Problem, welches
im Zusammenhang mit Cognitive Radio Anwendungen, relevant ist, betrachtet. Insbesondere wird
ein Detektor für die Detektion fast-zyklostationärer Signale in im weitesten Sinne stationärem
Rauschen hergeleitet, das gleichzeitig die Periode des fast-zyklostationären Signals schätzt. Das
Problem wird durch die Kombination eines Resampling Ansatzes, der dafür sorgt, dass man einen
zuvor hergeleiteten GLRT anwenden kann, und eines Mehrfachen Hypothesentests gelöst.

Für alle Problemstellungen, die in dieser Arbeit untersucht sind, ist mit Monte Carlo Simulationen
gezeigt, dass die hergeleiteten Detektoren vergleichbare Techniken übertreffen.
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1 Introduction

1.1 Motivation and related work

The detection of cyclostationary signals is of interest in several fields of science and engineering. Its
relevance is described in the following section. The applications of cyclostationary signal detection
in cognitive radio and passive radar are introduced in Sections 1.1.2 and 1.1.3.

1.1.1 Relevance of cyclostationarity detection

In various fields of science and engineering we encounter time-varying physical phenomena that are
subject to random variations. In order to statistically process those phenomena they are modeled as
random processes (RP). RP that reveal periodically or almost periodically varying statistics are
refered to as cyclostationary (CS) or almost-cyclostationary (ACS) processes, which are specific
classes of non-stationary RP. Yet another important class of RP of practical relevance are wide-sense
stationary (WSS) RP, which are commonly used to model phenomena with time-invariant first and
second-order moments. Early work on CS processes has been published in the Russian literature in
1959 [1, 2]. In 1961 Gladyshev showed that CS RP can be stationarized [3], which is an important
result that has been exploited by [4], which is the basis of this thesis. Further contributions are
most notably published by Hurd and Gardner, e.g. [5, 6] and later by Izzo and Napolitano, e.g. [7,8].
Generally, there is an abundance of publications in CS literature, e.g. refer to [9–11].

The theory of cyclostationarity has been successfully applied in the context of estimation and
detection in a variety of different problems. For instance, in oceanography such as passive sonar, CS
properties are used to model underwater acoustic signals that enable estimation of propeller shaft
rates [12]. In the context of meteorology, where periodicity may be induced by seasonal variations,
it is applied in time series prediction with applications in meteorology [13] and for modeling
time series in climatology, e.g. carbon dioxide concentrations [14]. In geography CS process
are used for modeling seismic records [15]. Another interesting application area is economics,
where, for instance, financial data (e.g. electric prices) may also be subject to seasonal changes
and reveal periodic statistics. In [16] the authors applied CS theory for forecasting business cycles
or to model seasonal decisions of consumers [16]. Additionally, in astronomy, CS detectors have
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1 Introduction

been investigated to detect celestial objects [17] and the CS signal properties have been exploited
for satellite communications [18, 19]. In mechanics CS signals occur due to gear or propeller
rotation or in [20] the authors exploit cyclostationarity for fault rolling-element bearing detection by
analyzing bearing vibration signals. Finally, in communications, where cyclostationarity is induced
by operations such as modulation, multiplexing, and sampling, see e.g. [10], the CS properties
are exploited, for instance, for signal modeling (see e.g. [21, 22]), interference cancellation (see
e.g. [23,24]), equalization (see e.g. [25,26]), channel estimation (see e.g. [27,28]), filtering (see
e.g. [24]), antenna array processing, i.e., beamforming (see e.g. [29, 30]), direction and time
difference of arrival estimation (see e.g. [31, 32]). More recently applications of the CS theory
include topics such as spectrum sensing for cognitive radio or compressive sensing [11].

Before providing some more insight into the applications considered in this thesis, let us first dive
into the basic detection problem that will also serve as the basis of the contributions provided
hereafter. The problem can be formulated as the following hypothesis test:

H0 : measurement is WSS,
H1 : measurement is CS with given cycle period,

(1.1)

where under the null hypothesisH0 the observations are WSS, e.g., noise, and under the alternative
H1 the observations are CS with given cycle period, e.g., CS signal plus noise. In order to distinguish
a WSS process from a CS process the following inherent properties of CS signals (but not WSS
signals) are taken advantage of in the reported detectors in the literature1: First property is that the
CS signal is correlated with its frequency-shifted version by the amount of the cycle frequency as
opposed to stationary signals, see e.g. [24,33]. Second, the covariance function of a CS signal is
not only a function of the time-shift but it is a periodic function in absolute time. Under certain
conditions the periodicity allows a Fourier-series expansion and the coefficients are referred to
as cyclic covariance functions. Those are non-zero for cycle frequencies unequal to zero for CS
signals but zero for stationary signals. Equivalently, this can be expressed in the frequency domain
as a non-zero cyclic power spectral density for non-zero cycle frequencies. These properties were
exploited in e.g. [34–36]. Finally, CS signals can be represented in the bifrequency spectrum. The
bifrequency spectrum is the frequency representation of a non-stationary signal obtained from both
the time-shift and the absolute time. In this representation a CS signal reveals non-zero contribution
on lines besides the stationary manifold depending on the cycle period as opposed to WSS signals
that solely have support on the stationary manifold [16, 37]. The aforementioned detectors are
designed to exploit the respective properties that allow for distinction between CS and WSS signals,
however, they have not been designed based on solid statistical principles. Yet in [4] the authors
derived an asymptotic generalized likelihood ratio test (GLRT) and later extended this work in [38]
and also derived an asymptotic locally most powerful invariant test (LMPIT). The test statistics of

1Please refer to Section 2.1.2 for the definitions of the CS signal properties listed in the following paragraph.
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1.1 Motivation and related work

both GLRT and LMPIT are functions of the spectral coherence matrix, which can be interpreted in
terms of all three of the aforementioned CS properties [38]. These two detectors are the basis for
the work presented in this thesis. Hence, the hypothesis test in (1.1) will be encountered throughout
this work in a modified version for the application in a cognitive radio scenario with unknown cycle
period and in an extended version for a passive radar application. In the two subsequent sections
more insights into the two applications, i.e., cognitive radio and passive radar, will be presented.

1.1.2 Application in cognitive radio

Let us consider the application of CS in the context of cognitive radio (CR). CR is a communication
paradigm, which aims to improve the utilization of the wireless spectrum by increasing the spectral
efficiency in wireless systems. The concept of CR was first proposed by Mitola in 1999 [39]. An
increasing number of wireless systems results in a limited wireless spectrum, which gave rise to the
idea of CR. The main idea is to use licensed frequency bands by unlicensed users. This, however,
presumes that unlicensed (cognitive or secondary) users do not degrade the performance of the
licensed (primary) users. To this end, novel spectrum allocation policies and the utilization of
advanced radio and signal processing technologies are required [40].

Goldsmith [40] defines cognitive radio as follows: A cognitive radio is a wireless communication
system that intelligently utilizes any available side information about the a) activity, b) channel
conditions, c) codebooks, or d) messages of other nodes with which it shares the spectrum.. Hence,
the cognitive user must be aware of its environment in order to exploit different available side
information. Depending on the assumptions made and side information available, it is possible to
cluster different CR technologies into three main paradigms: underlay, overlay, and interweave
cognitive radio [40]. Those terms reflect how the cognitive user interacts with the non-cognitive
users, i.e., either the signals are underlayed, overlayed, or interweaved with those of the licensed
users. In the underlay scenario it is assumed that the cognitive users have knowledge about their
interference with each primary user and there is a limit set to the amount of acceptable interference
caused, i.e., it must always be below a threshold. In the overlay paradigm, the cognitive user requires
knowledge about the licensed user’s codebooks and messages, which allows for a cancellation of
the interference caused at both cognitive and noncognitive users’ receiver. Finally, in the interweave
scenario the cognitive user opportunistically accesses the licensed frequency band by prior sensing
for space-time-frequency gaps (spectrum holes) in the spectrum. Once such gaps are found the
cognitive user may communicate over those frequencies. A constant monitoring of the radio
spectrum ensures that the interference to licensed users is minimal [40].

Here we will focus on the interweave CR approach. Specifically, we concentrate on spectrum
sensing, i.e., the determination of availability of the spectrum. In its simplest form it can be boiled
down to the detection of primary signals in noise, which can again be formulated by a hypothesis

3



1 Introduction

test with null hypothesis being noise only and alternative being signal embedded in noise [41,42]. A
straightforward approach to solve this problem is energy detection that estimates the received energy
over a certain period of time and compares it against a threshold value. This approach, however,
does not exploit any properties of the underlying communication signal that can highly improve the
detection performance. Especially, in environments with low signal-to-noise ratios it is essential
to make use of further information about or features of the primary user signals. Such distinctive
features of communication signals include, for instance, the cyclic prefix in OFDM modulation
or pilot sequences multiplexed into the signal [42]. As it was indicated before, these distinctive
signal features give rise to cyclostationary statistical properties, which have been exploited to derive
relevant detectors, e.g. in [4, 36].

Typically, the previously mentioned detectors assume prior knowledge of the cycle period, e.g.
[4,35,36,38]. However, in practice the period might be unknown or not known exactly due to clock
or oscillator errors, which decreases the performance of the detectors [43]. Moreover, the cycle
period itself is an interesting signal parameter. For instance, it relates to the symbol rate and carrier
frequency [9, 10].

For this reason, we consider the more general case of almost-cyclostationary detection since in
practice sampling of a CS time series will turn into a discrete-time ACS signal [8]. This will
generally be the case if the cycle period of the continuous-time signal is unknown [44]. This
problem results in the following modified detection problem:

H0 : measurement is WSS,
H1 : measurement is ACS with unknown cycle period.

(1.2)

In this thesis a joint detector and cycle period estimator is derived to approach (1.2). To this end, a
resampling approach is combined with a multiple hypothesis test. By minimizing the family-wise
error rate and simultaneously comparing the test statistic from [45] of the resampled signal to a
threshold determined based on order-statistics, it was possible to show that the proposed combined
detector outperforms the comparable state-of-the-art detectors.

1.1.3 Application in passive radar

A passive radar system consists of one or more receivers and exploits one or more non-cooperative
transmitters, which are also referred to as illuminators of opportunity (IO). Exploiting non-
cooperative transmitters is the key idea of a passive radar. Where an active radar has full control of
the signal used to sense targets, a passive radar utilizes other transmitters in its surrounding. Typically,
IOs are commercial radio or TV broadcast system, or space-based sources such as communication
or navigation satellites [46–48]. The lack of a dedicated transmitter as part of the system itself
makes the passive radar especially interesting as it is cheap, simple and undetectable [49]. However,
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1.1 Motivation and related work

it comes at a cost since utilizing an IO does not only provide advantages: it makes the detection
problem more challenging as well. Before pointing out the challenges let us briefly introduce
different topologies of passive radar systems.
The simplest setup is the passive bistatic radar (PBR) that consists of one receiver placed remotely
from one IO. The passive multistatic radar consists of multiple transmitters and multiple distributed
receivers in which multiple bistatic measurements are combined [50]. In [51] the system consisting
of multiple transmitters and multiple receivers is referred to as a passive MIMO radar (PMR),
which does not only consider the individual bistatic pairs but which exploits all transmitter-receiver
combinations.

Let us consider the PBR system for now. The measurements received are typically separated into
two channels. One is the direct-path signal from IO to receiver, which will serve as a reference
signal. For this reason it is commonly called reference channel (RC). This reference signal will
always be a noisy version of the signal transmitted by the IO. Moreover, it may be corrupted by
clutter and interference. The second channel is composed of the target-path signal, which is a
delayed version of the signal transmitted by the IO, reflected by the target, and noise. We refer to this
channel as surveillance channel (SC). This channel, however, may be corrupted by the direct-path
interference of the IO and again it may also be corrupted by clutter and interference in general. In
order to handle all these kinds of interferences at the receiver, various algorithms have been derived
to handle these problems: The cancellation of interference and clutter in the RC has been considered
in e.g. [52], [53]. If there is a target present, the echo of the transmitted signal is observed at the SC.
If there is no target present, only noise is observed at the surveillance array. Clutter, interference,
or direct-path signal in the target-path signal can be prevented by either physical shielding [50] or
cancelled by signal processing techniques presented in e.g. [54–57]. The complete cancellation of
direct-path interference in the SC is, admittedly, an idealized assumption as was pointed out in [54]
and the works in [58–60] have considered the direct-path interference in their signal models.

Assuming that all these kinds of interferences have been canceled, we can consider the system
illustrated in Figure 1.1, which is a simple MIMO PBR system. The goal is to detect the presence
of a target echo at the SC given measurements at SC and RC. Various techniques have been
derived to approach this problem. The most common and intuitive approach for single-input
single-out (SISO) signals is based on cross-correlating the signals at SC and reference channel (RC),
e.g., [53, 57, 58, 61–63]. Although this resembles the matched filter, it is suboptimal due to noise at
the RC [58]. In [64–67] GLRT were derived for the case of unknown stochastic waveforms and for
various assumptions on the signal and noise models for MIMO signals. The GLRTs for the case
of unknown deterministic waveforms for different assumptions on signal and noise models were
presented in [51, 68]. Bayesian tests were derived in [68, 69]. The work in [70] proposed an ad-hoc
detector based on the generalized coherence [71].
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Figure 1.1: MIMO passive bistatic radar system that consists of an IO, a reference, and a surveillance array.
The reference array receives the direct-path signal from the IO illustrated by the black dashed
line and in the presence of a moving target the surveillance array receives the target-path signal,
which is depicted by the gray dashed dotted line.

In this thesis, the CS property of the IO signal will be exploited to approach the detection problem.
Generally, this may be regarded as a generalization of the single array detection problem, which
was considered for the application in spectrum sensing for cognitive radio with additional reference
arrays, which is further generalized to the case of multiple surveillance and multiple reference
arrays. The GLRTs are derived for different variations of the setup and it is shown that neither the
uniformly most powerful invariant test (UMPIT) nor an LMPIT exist for the problem.

1.2 Contributions

The main goal of this thesis is to derive detectors for cyclostationarity in one or multiple surveillance
channels given one or multiple reference channels based on solid statistical principles.
First, a generalized version of the single array detection problem is considered with the goal to
derive an ACS detector for the case of unknown cycle period. This problem is formulated as a
multiple hypothesis test combined with a resampling stage that allows to jointly detect a signal and
to estimate its cycle period. By minimizing the family-wise error rate and simultaneously comparing
the test statistic from [45] of the resampled signal to a threshold determined based on order-statistics
and the fact that the statistic is asymptotically distributed as a product of independent Beta random
variables under the null hypothesis, it was possible to show that the proposed combined detector
outperforms comparable state-of-the-art detectors.
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1.2 Contributions

Furthermore, an asymptotic GLRT for the problem of MIMO two-channel detection is derived.
To this end, the maximum likelihood (ML) estimates of the covariance matrices, which have a
block-Toeplitz structure, must be determined. Since there exists no closed-form solution for the
MLE of (block) Toeplitz covariance matrices, an asymptotic result from [38] is used, which allows to
obtain approximate closed-form ML estimates of the covariance matrices under both hypotheses.

In addition, the existence of the uniformly most powerful invariant test (UMPIT) and the LMPIT
for the same detection problem is examined. To this end, Wijsman’s theorem [72] is exploited,
which avoids the necessity of deriving the maximal invariant statistic and its distribution under both
hypotheses. It only requires to identify all groups of invariant transformations. It has been shown
that neither the UMPIT nor the LMPIT exist for the problem since the ratio of the distributions of the
maximal invariant statistic still depends on unknown parameters. Nevertheless, the interpretation of
this ratio (depending on an unknown parameter) together with extensive results of Monte Carlo
simulations, provides a rationale for proposing an LMPIT-inspired detector with the potential to
outperform the GLRT. It is shown that the GLRT inherently merges the information provided by
1) the presence of cyclostationarity at the SC via a coherence matrix computed only based on
observations at the SC and 2) the correlation of SC and RC present in a cross-coherence matrix
that combines the cross-correlation with the cross-spectral correlation between SC and RC. In the
ratio of the distributions of the maximal invariant statistic, however, these terms are connected by
an unknown parameter. It is demonstrated that depending on the SNR at both channels it may
be sufficient to include only the information provided by the cross-coherence matrix into the test
statistic, which is the proposed LMPIT-inspired detector. It has shown to have the capability to
outperform the proposed GLRT and both proposed detectors outperform comparable state-of-the-art
detectors.

The two-channel detection problem is also generalized to the case of multiple surveillance and
multiple reference arrays. Similar to the two-channel case the GLRT combines the spectral
correlations of all SC as well as the cross correlation and cross-spectral correlations of all RC and
SC. It is shown that neither UMPIT nor LMPIT exist for this problem. It could be considered,
however, to propose another LMPIT-inspired test similar to the two-channel case.

The aforementioned derivations considered the scenario of noise that is spatially and temporally
correlated. Two-channel GLRTs for noise with spatio-temporal structure have been derived, which
yield three additional test statistics for the following kinds of noise models: 1) temporally white and
spatially uncorrelated, 2) temporally white and spatially correlated, and 3) temporally colored and
spatially uncorrelated. This has been published in [73], where it is concluded that, depending on
the model, it is essential to account for appropriate temporal structure of the noise when selecting a
test statistic.

7



1 Introduction

In order to apply all the aforementioned test statistics it is necessary to select an appropriate
threshold. For the GLRT statistics, a representation of the null distribution that can be used to
determine a threshold for a fixed probability of false alarm is derived based on the work in [74].
Specifically, by considering the invariant transformation that allows for whitening the observations,
the distribution of the proposed GLRT statistics is shown to be a product of independent Beta
distributed random variables, where the degrees of freedom of the Beta random variables depend on
the number of surveillance and reference arrays, the number of antennas per array, the assumptions
on noise, the cycle period, and the total number of samples.

1.3 Outline

This thesis is structured as follows: In the following chapter, basic concepts of random processes
including wide-sense stationary and CS processes are outlined. Additionally, a brief overview of
relevant concepts of detection theory is presented. The single array detection problem of almost-
cyclostationarity with unknown cycle period is presented in Chapter 4. Thereafter, in Chapter 5,
the GLRT for the two-channel cyclostationarity detection is derived. This is complemented by
examining the existence of UMPIT and LMPIT for the same problem and followed by proposing
an LMPIT-inspired test. In Chapter 6 the GLRT for the two-channel problem under different
assumptions on the spatio-temporal structure of the noise is derived. Finally, Chapter 7 generalizes
the two-channel detection problem to multiple surveillance and reference channels and also
investigates the existence of optimal invariant tests, where again it turns out that they do not exist.
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2 Preliminaries

In this chapter we briefly review basic statistical signal processing concepts used within this thesis.
In the first section, we introduce random processes with focus on wide-sense stationary (WSS)
random processes (RP) and cyclostationary RP. Afterwards, we will concisely introduce the most
relevant tools of hypothesis testing, which will be exploited in this work. In particular, we will
present optimal and optimal invariant tests, generalized likelihood ratio tests and multiple hypothesis
tests. The information provided in this chapter is mainly based on [75–79].

2.1 Random processes

Random processes are a statistical tool to model random and time-varying phenomena, which
arise naturally but also in man-made contexts. Naturally occuring RPs include quantities such as
temperature or air pressure whereas man-made RP can originate in technical contexts such as speech
or communication signal processing but also in economics. In communication systems, for instance,
randomness is induced by fluctuating currents and voltages due to noise (background noise, i.e.,
impinging noise and interfering signals). Also the information-carrying signals themselves are
modeled as random signals varying over time [77]. Within this thesis we deal with the second-order
theory of random processes, i.e., we deal with first and second-order moments. In theory those
are expected values. In practice, however, we have to estimate the quantities of interest, which is
oftentimes performed by time averaging instead of taking ensemble averages.

Before we get to the first and second-order moments of interest, we introduce complex-valued
random vectors. Then we extend this concept to the statistical characterization of continuous-time
RPs. Finally, we consider discrete-time processes. The information in the following sections is
based on [75, 77] and the notation is predominantly consistent with [75].

We denote a complex-valued random vector by x : Ω→ CL , which we define as x = u + jv with
u : Ω → RL and v : Ω → RL , where Ω denotes the sample space. Now, we can define the joint
cumulative probability of u and v as

P(x) , P(u0 + jv0) = Prob(u ≤ u0, v ≤ v0) (2.1)

9



2 Preliminaries

and the joint probability density function

p(x) , p(u + jv) =
∂2

∂u∂v
P(u, v). (2.2)

If u and v depend on time t, x(t) = u(t) + jv(t) is a continuous-time random process, which at
a given point in time t0 reduces to a random variable, i.e., x(t0). The RP x(t) is described by an
ensemble of sample functions {xn(t)}, which are realizations of the RP.

Typically, we focus on moment functions that summarize the most important statistical characteristics.
Let us introduce the first and second-order moments for complex-valued RP. The mean function of
the random process is given by

µx (t) = E [x(t)] ∈ CL, (2.3)

where E [·] denotes the expectation operator defined as

E
[

f (x(t))
]
=

"
f (u(t) + jv(t))p(u(t) + jv(t)) dudv (2.4)

The matrix-valued autocorrelation function is defined as

Mxx(t, τ) = E
[
x(t)xH (t − τ)

]
∈ CL×L (2.5)

and the complementary matrix-valued autocorrelation function

M̃xx(t, τ) = E
[
x(t)xT (t − τ)

]
∈ CL×L . (2.6)

Similarly, we can define the matrix-valued covariance function and complementary covariance
function as

Rxx(t, τ) = E
[(

x(t) − µ(t)
) (

x(t − τ) − µ(t − τ)
)H ]
∈ CL×L (2.7)

and
R̃xx(t, τ) = E

[(
x(t) − µ(t)

) (
x(t − τ) − µ(t − τ)

)T ]
∈ CL×L, (2.8)

respectively. An important property of complex-valued random vectors is the case in which a
random vector x is called proper. This is the case when the complementary covariance function
is identical zero R̃xx(t, τ) = 0. If the complementary covariance matrix is non-zero, x is called
improper [75]. Note that for zero-mean signals the (auto-) correlation function and covariance
function are identical. For the sake of simplicity, from here on we will consider zero-mean signals
throughout the thesis. In order to completely characterize a random process all n order statistics
have to be specified. Certain classes of RP, e.g. Gaussian RP, can be completely characterized by
their first and second-order statistics.
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2.1 Random processes

RPs that are characterized for at least one n order time-varying joint probability density functions
and corresponding time-varying moment functions are generally referred to as non-stationary RP.
However, there exist some classes of RP of great practical interest that reveal certain properties
regarding the first and second-order moments that we will introduce in the following two sections.

2.1.1 Wide-sense stationary random processes

Wide-sense stationary random processes are an important class of RPs. They find their application,
for instance, in communications for modeling signals and noise. Thermal noise, for instance,
depends on temperature, which is a time-invariant effect resulting in time-invariant statistical
parameters [77]. An RP is defined to be WSS if the mean function is time-invariant and the
covariance function is shift-invariant. Hence, the matrix-valued covariance function only depends
on the time-shift τ

Rxx (τ) = E[x (t) xH (t − τ)], (2.9)

whereas all higher-order moments may be time-variant. The complementary covariance function is
defined equivalently to (2.7).

So far we have only considered continuous-time RP. Similarly, we can introduce the discrete-time
RP x[n] with n ∈ Z. The matrix-valued covariance function is defined as

Rxx[n,m] = E[x[n]xH [n − m]] ∈ CL×L, (2.10)

with time instant n and time-shift m. In the case of a WSS RP, the covariance function only depends
on the time-shift m, i.e. Rxx[n,m] = Rxx[m]. Again the complementary covariance function is
defined accordingly. Furthermore, the covariance function allows a frequency domain interpretation
of the signal x[n]. First note that the Fourier transform of a WSS process does not exist since it
has infinite energy. However, a spectral representation of the process can be provided considering
that it has a finite power on average. Although, we cannot Fourier transform x[n] itself, we can,
however, Fourier transform the covariance function with respect to τ in the continuous-time case
and with respect to m in the discrete-time case. This transformation is referred to as the power
spectral density (PSD) with θ ∈ (−π, π)

Π (θ) =
∞∑

n=−∞

Rxx[m]e−jθn. (2.11)

Complementary, we can express the process as follows

x[n] =
∫ π

−π
e jθndξ (θ), (2.12)
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where ξ (θ) is a spectral process and dξ (θ) denotes its orthogonal increments. This expression
allows for expressing the PSD as the second-order moment of ξ (θ), i.e.

Π (θ) dθ = E
[
dξ (θ) dξH (θ)

]
. (2.13)

This representation of a spectral process ξ (θ) is again of interest when discussing another class of
random processes namely cyclostationary random processes and allows for nice interpretations as
we will see in later chapters.

Let us now consider the case in which we collect N observations of a zero-mean vector-valued WSS
process u[n] ∈ CL . It is convenient to stack these observations in one vector in order to investigate
its covariances, i.e.

x =
[
u[0] u[1] · · · u[N − 1]

] T
. (2.14)

The covariance matrix of x is given

R = E
[
xxH

]
=



E
[
u[0]uH [0]

]
E

[
u[0]uH [1]

]
· · · E

[
u[0]uH [N − 1]

]

...
...

. . .
...

E
[
u[N − 1]uH [0]

]
E

[
u[N − 1]uH [1]

]
· · · E

[
u[N − 1]uH [N − 1]

]



.

(2.15)
Considering that a WSS process u[n] depends on the time-shift only, we can rewrite the covariance
matrix as follows

R =



Ruu[0] Ruu[−1] Ruu[−2] · · · Ruu[−(N − 1)]
Ruu[1] Ruu[0] Ruu[−1] · · · Ruu[−(N − 2)]

...
...

...
. . .

...

Ruu[N − 1] Ruu[N − 2] Ruu[N − 3] · · · Ruu[0]



. (2.16)

We can observe that there are identical L × L sized blocks Ruu[m] on each diagonal of R, i.e., R
is a block-Toeplitz matrix with block size L. Note that R itself is a Hermitian positive definite
matrix, the L × L blocks on the off-diagonals do not reveal any further structure but being positive
semidefinite, and the main diagonal blocks are Hermitian and positive semidefinite.

2.1.2 Cyclostationary RP

In this section we introduce cyclostationary random processes, which are of key interest within
this work. CS processes are a special class of non-stationary RPs that reveal periodicity. As
already mentioned in the introduction, CS RP are used to model periodic phenomena that arise
in many different fields such as climatology, mechanics, astronomy and communications [10].
These processes consist of random data with periodically varying statistical properties, however, the
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2.1 Random processes

processes themselves are not necessarily periodic functions of time. In engineering fields, such as
communications, periodicity is induced by operations such as sampling, modulation, multiplexing
and coding operations. In mechanics it originates, for instance, due to gear rotation. The information
provided in this section mainly follows the works by Gardner and Schreier [10, 75, 77].

Within this thesis we only deal with second-order cyclostationarity, also referred to as wide-sense
cyclostationarity. In contrast to WSS RP, cyclostationary RP have periodic first and second-order
moments, i.e., mean function and correlation functions, vary periodically over time. Again without
loss of generality, we deal with zero-mean processes. Hence, a zero-mean wide-sense CS RP
x(t) ∈ Cwith cycle period T0 is characterized by a periodic second-order moment, i.e. its covariance
function is periodic:

rxx (t, τ) = E[x(t)x∗(t − τ)] = E[x(t + T0)x∗(t + T0 − τ)] = rxx (t + T0, τ). (2.17)

The periodic covariance function rxx (t, τ) can be expanded into a Fourier series assuming that the
expansion converges [77]:

rxx (t, τ) =
∞∑

n=−∞

Rxx (n/T0, τ)ej2π ( n
T0

)t
.

Here, Rxx (n/T0, τ) are the Fourier coefficients obtained as

Rxx (n/T0, τ) =
1
T0

∫ T0/2

−T0/2
rxx (t, τ)e−j2π ( n

T0
)tdt, (2.18)

which we refer to as cyclic autocorrelation functions with cycle frequencies { nT0
} for n ∈ Z.

We will also consider a more general class of CS RPs, which are referred to as almost cyclostationary
processes. The previous paragraph considered a single cycle period T0. If there are multiple
periodicities, the cycle period of that process is their least common multiple. However, if the
individual periodicities are incommensurate, the underlying process is almost CS (ACS). Since CS
processes are a special case of ACS processes, we deal with ACS processes for the remainder of
this section instead. To this end, let us assume that the covariance function rxx (t, τ) is an almost
periodic function in t. A function x(t) is said to be almost periodic in the sense of Bohr [10,80] if it
is the limit of trigonometric polynomials, i.e.,

x(t) =
∑
α∈A

xαe j2παt, (2.19)

where A is a countable set of possibly incommensurate frequencies and

xα = lim
T→∞

1
T

∫ T
2

−T
2

x(t)e−j2παtdt . (2.20)
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Figure 2.1: Magnitude of cyclic PSD of a rectangular shaped quadrature phase shift keying signal for
different frequencies f and cycle frequencies α.

This allows us to expand the covariance function of an ACS signal x(t) as follows

rxx (t, τ) =
∑
α∈A

Rxx (α, τ)e j2παt, (2.21)

where

Rxx (α, τ) = lim
T→∞

1
T

∫ T
2

−T
2

rxx (t, τ)e−j2παtdt, (2.22)

is the cyclic autocorrelation function at cycle frequency α ∈ A. It is easy to see that CS processes
are a special case of ACS processes if A ≡ { nT0

} for n ∈ Z.

We can rewrite (2.22) by plugging in the definition of rxx (t, τ) = E[x(t)x∗(t − τ)] and observe
that an ACS signal x(t) is correlated with its frequency-shifted version x(t)e j2παt when α ∈ A,
i.e., CS signals exhibit correlation between some frequency-shifted versions of the process. Since
the cyclic autocorrelation functions are Fourier coefficients, they allow for a frequency domain
interpretation and the set of cycle frequencies α for which Rxx (α, τ) . 0 is sometimes also referred
to as cycle spectrum. We can further characterize the ACS process in the frequency domain by
Fourier transforming Rxx (α, τ) with respect to τ

Πxx (α, f ) =
∫ ∞

−∞

Rxx (α, τ)e−j2π f τdτ, (2.23)

which we refer to as the cyclic power spectral density. Note that for α = 0 it reduces to the usual
PSD as introduced in (2.11). We illustrate an exemplary cyclic PSD quadrature phase shift keying
(QPSK) signal in Figure 2.1. It can be observed that for a countable set of cycle frequencies α, the
cyclic PSD is non-zero. The cyclic PSD for α = 0 is identical to the usual PSD. Additionally, in
Figure 2.2 we show a four-corners diagram that illustrates the relation between the functions of
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rxx (t, τ)

Rxx (α, τ) Vxx (t, f )

Πxx (α, f )

t ←→ α τ ←→ f

τ ←→ f t ←→ α

Figure 2.2: Four-corners diagram illustrating the relation between the autocorrelation function rxx (t, τ),
cyclic autocorrelation function Rxx (α, τ), cyclic power spectral densityΠxx (α, f ) and Rihaczek
time-frequency representation Vxx (t, f ).

interest, i.e.,the autocorrelation function rxx (t, τ), cyclic autocorrelation function Rxx (α, τ) and the
cyclic power spectral density Πxx (α, f ). For the sake of completeness, we also display the so-called
Rihaczek time-frequency representation Vxx (t, f ) [75], which we will not further consider here.

As we have seen in the previous section, we can complementarily express the cyclic PSD as the
second-order moment of the stochastic process

x(t) =
∫ ∞

−∞

e j f tdξ ( f ), (2.24)

as follows
Πxx (α, f )d f = E

[
ξ ( f )ξ∗( f − α)

]
. (2.25)

Hence, the cyclic spectrum is a measure of the amount of correlation between x(t) and its frequency
shifted version x(t)e j2παt . More generally, we can define the Loève spectrum or bifrequency
spectrum for non-stationary processes dξ ( f ) as

S( f1, f2)d f1d f2 = E
[
dξ ( f1)dξ∗( f2)

]
. (2.26)

For a CS process the bifrequency spectrum can be expressed as a function of the cyclic PSD as
follows

S( f1, f2) =
∑
α∈A

Πxx (α, f1)δ( f2 − f1 − α), (2.27)

i.e. the support of the spectral correlation in the bifrequency spectrum consists of δ-ridges with unit
slope and its density is given by the cyclic PSD. Moreover, for α = 0 the cyclic PSD reduces to the
usual PSD, which lies on the line with unit slope through the origin, which is also referred to as
stationary manifold.
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Anything what was presented in this section so far can be extended to the discrete-time case.
Specifically, for a zero-mean CS process x[n] with cycle period P ∈ N the covariance function is
given by the following periodic function

rxx[n,m] = E[x[n]x∗[n − m]] = rxx[n + P,m]. (2.28)

Here we want to point out an important property of CS processes, namely that they can be
stationarized. This was first shown by Gladyshev [3]. Specifically, we consider a polyphase
decomposition of x[n], or in other words, the set of sub-sampled time-series

xi[n] = x[nP + i], (2.29)

with i = 0, . . . , P − 1, are jointly WSS [3]. This property is easily derived by computing the
cross-covariance function of xi[n] and x j[n]

rXiXj [n,m] = E[xi[n + m]x∗j[n]] = E[x[(n + m)P + i]x∗[nP + j]], (2.30)

which can be further simplified as

rXiXj [n,m] = E[x[nP + mP + i]x∗[nP + j]] = E[x[m + i]x∗[ j]], (2.31)

by exploiting the fact that the covariance function of a CS signal is periodic in P. Apparently, (2.31)
is independent of the instant n and thus WSS.1 Let us now arrange every P sub-samples of x[n] into
a vector

x[n] =
[
x[nP] x[kP + 1] . . . x[(n + 1)P − 1]

]T
, (2.32)

which is a vector-valued WSS process, i.e. its covariance sequence is shift-invariant. Finally, we
can collect N samples of x[n] in the vector

y = [x[0], · · · , x[N − 1]]T . (2.33)

The covariance matrix of y reveals the same structure as we have observed in the previous section,
i.e., the covariance matrix of y is a block-Toeplitz structured matrix with block size LP.

1This can be similary shown for continous-time processes. A CS process with period T0 can be stationarized by
introducing a random time-shift. Let us consider the CS signal x(t) with cycle period T0. It has been shown in [5]
that the process y(t + θ), where θ is a random variable uniformly distributed on the interval [0,T0) and which is
statistically independent of x(t), is a WSS process.
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2.2 Detection

2.2 Detection

Detection theory, also referred to as hypothesis testing, is a fundamental technique to select one of a
finite number of models for given measurements. Typical fields in signal processing for detection
are, for instance, signal detection in radar and sonar, decoding symbols in communications, and
speech recognition. As already mentioned in the introduction, in this thesis we will apply detection
theory to differentiate between the presence of a signal and noise in the context of cognitive radio
and passive radar. Here, we give a brief overview about the concepts that will be applied in the
main part of this work. First, we present the Neyman-Pearson lemma that is an optimal test in some
sense and secondly, the generalized likelihood ratio test is explained. The generalized likelihood
ratio test is a practical approach to design a hypothesis test when the Neyman-Pearson test cannot be
applied. Moreover, we give a brief insight into optimal and optimal invariant tests. The information
provided in this section is primarily based on [76,78,79] and the notation is predominantly kept
consistent with the work in [76].

2.2.1 Optimal and optimal invariant hypothesis tests

Let us consider a binary hypothesis test of

H0 : θ ∈ Θ0,

H1 : θ ∈ Θ1.
(2.34)

Given a vector of measurements x with pdf p(x; θi) with θi ∈ Θi for i ∈ {0, 1} the goal is to derive
a test statistic, or detector, that takes the form

φ(x) =



0 ∼ H0, x ∈ R0,

1 ∼ H1, x ∈ R1,
(2.35)

where R0 and R1 denote the decision regions forH0 andH1, respectively. Before we present the
test statistic that fulfills certain optimality constraints, we consider two different types of errors that
occur in hypothesis testing. The first kind of error, the Type I error, or false alarm, is the probability
of rejectingH0 although the measurement x is drawn fromH0, i.e., the probability of false alarm,
also referred to as size, pfa is given by

pfa =

∫
x∈R1

p(x; θ0)dx. (2.36)
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The Type II error is the probability of miss detection, this is, we fail to reject H0 although the
measurement x is drawn fromH1. Typically, the goal is to minimize this type of error, or equivalently,
to maximize the detection probability, or power, which is given by

pd =

∫
x∈R1

p(x; θ1)dx. (2.37)

Neyman and Pearson [81] introduced the likelihood ratio test, which is the most powerful test of
size pfa, i.e., it maximizes the probability of detection given a probability of false alarm if a simple
hypothesisH0 is tested versus a simple hypothesisH1. A simple hypothesis test refers to the case
in which θ = θi as opposed to being greater than or less than θi as it is the case for composite
hypotheses. The likelihood ratio is given by

l (x) =
p(x; θ0)
p(x; θ1)

H0
≷
H1

η, (2.38)

where η is chosen to meet the constraint on the probability of false alarm

pfa =

∫
x: l(x)<η

p(x; θ0)dx. (2.39)

Often it is possible to factorize the pdf p(x; θ) according to the Neyman-Fisher factorization theorem
as follows [79]

p(x; θ) = f (t(x); θ)g(x). (2.40)

If this factorization exists, then t(x) is a sufficient statistic, i.e., the likelihood ratio simplifies to

l (x) =
f (t(x); θ0)
f (t(x); θ1)

H0
≷
H1

η. (2.41)

As we can see the statistic (2.41) only depends on data x through t(x). Consequently, such a
scalar-valued sufficient statistic contains all the relevant information of θ that allows us to distinguish
the hypotheses [79].

The Neyman-Pearson likelihood ratio test is the most powerful test if we deal with simple hypotheses.
However, in practice we often deal with composite hypothesis tests, i.e., the pdf underH0 is not
completely characterized by a single parameter but multiple parameters. Still it is desirable to derive
an optimal test that provides maximum power, or probability of detection, for a given size, i.e., a
given probability of false alarm. These tests are referred to as uniformly most powerful tests (UMP)
tests. Their general definition is as follows [76]: A test φ(x) is UMP with a given pfa if its power is
uniformly greater than the power of any other test φ′(x) whose size is less than or equal to pfa.
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Now the Karlin-Rubin Theorem [76] states that if the likelihood ratio l (x) =
p(x; θ1)
p(x; θ0)

with scalar
measurement x is a monotone-likelihood ratio, i.e., a non-decreasing function of x, then the
threshold test

φ(x) =




1, x > x0,

γ, x = x0,

0, x < x0,

(2.42)

is UMP for the test H0 : θ ≤ θ0 vs. H1 : θ > θ0. However, UMP tests exist for only very rare
cases and, generally, only for one-sided hypothesis tests. For this reason the concept of invariance
is used in order to derive optimal tests for a broader class of composite hypotheses.

A hypothesis test is invariant to a transformation group G if φ(g(x)) = φ(x) for g(·) ∈ G [78].
Moreover, a statistic M (x) is said to be maximally invariant [76] if it is 1) invariant, i.e.,
M (g(x)) = M (x) for all g ∈ G, and 2) maximal, i.e. M (x1) = M (x2) implies x2 = g(x1)

for some g ∈ G. Making use of the concepts of invariance and sufficiency, measurements may be
compressed into a low dimensional test statistic for which a UMP test exists. Although this may
seem rather theoretical, in Chapter 5 and Chapter 7 we show that the invariant transformations arise
naturally to the problem. Now a uniformly most powerful invariant test (UMPIT) can be defined as
follows [76]: An invariant test φ(x) = φ(M (x)) is UMP with given pfa if its power is uniformly
greater than the power of any other test φ′(x) that is also invariant to G and whose size is less than
or equal to pfa. In order to prove that an invariant test φ(M (x)) is UMPI, it has to be established
that the likelihood ratio is a monotonically increasing function.

In [76] the author also summarizes the procedure to establish UMPI tests in the following seven
steps

1. define the hypothesis testing problem: H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

2. replace the measurements x by the sufficient statistic t(x) if possible

3. reformulate the hypothesis test for the sufficient statistic t(x)

4. find a meaningful group of invariant transformations G

5. find a maximal invariant statistic M (t(x))

6. construct the likelihood ratio, i.e., derive the densities of the maximal invariant statistic under
both hypotheses and form their ratio

7. check if the likelihood ratio of the maximal invariant statistic is monotonically increasing. If
that is the case, the test is UMPIT for testingH0 : θ ≤ θ0 vs. H1 : θ > θ0.

19



2 Preliminaries

Although in some cases invariance and sufficiency allows to get rid of unknown nuisance parameters
that finally yield a UMPIT, in practice this only happens in rare cases. Still it might be possible to
find an optimal test that is UMP within a certain range of the parameter, i.e., for close hypotheses.
Based on a Taylor series approximation of the ratio of the maximal invariants, it may be possible
to get rid of the dependence on unknown parameters. These tests are referred to as locally most
powerful invariant tests (LMPIT) [78].

In order to derive an LMPIT it is still necessary to complete steps 1. to 6. of finding a UMPIT,
which may be a challenging task. Especially, deriving the maximal invariant statistic may be
difficult and establishing its distribution under both hypotheses is even more involved since it can be
a complicated function of the measurements. However, Wijsman [72] has proven that the ratio of
densities of the maximal invariant is given by

L =

∫
G

p(g(x);H1) | det(Jg) |dg∫
G

p(g(x);H0) | det(Jg) |dg
, (2.43)

where Jg denotes the Jacobian matrix of the transformation g(·), and finally dg denotes the invariant
group measure, which in usual signal processing applications is the Lebesgue measure, which
allows us to evaluate the resulting integrals [82]. The concept behind integrating over the invariance
group is averaging out the unknown parameters in the ratio. This concept was first used by Stein
in [83], who proposed to average over a group to obtain the density of a maximal invariant statistic.
Based on this ratio it can be established whether a UMPIT exists or if it is necessary to settle for an
LMPIT by expanding the ratio into a Taylor series focusing on close hypotheses, which exists only
if the final statistic does not depend on unknown parameters.

2.2.2 Generalized Likelihood Ratio Test

A different concept to deal with composite hypotheses are generalized likelihood ratio tests (GLRTs),
which replace the unknown parameters in the likelihood ratio by their MLEs [79] rather than
averaging them out as it is shown in Wijsman’s theorem (2.43). The GLRT is given by

G =
p(x; θ̂0)

p(x; θ̂1)

H0
≷
H1

η, (2.44)

where θ̂i for i = 0, 1 denote the ML estimates of θi. The test does not guarantee optimality for a
finite number of measurements, however, it is asymptotically UMPI [82]. In practice it has been
shown that it often performs well even if there are only finite data records available.
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2.2 Detection

2.2.3 Multiple hypotheses tests

So far we have only considered binary hypothesis tests. However, comparing multiple (null)
hypotheses2, such asH1 vs. H2 vs. · · · vs. HK , is of practical interest as well. In order to draw
inference in a multiple hypothesis test, we have to concern about error control. Different from
dealing with binary tests there are several types of error control that may be of interest. Traditionally,
the so-called familywise error rate (FWER), which is the error of having at least one false rejection,
i.e.,

FWER = P
(
reject anyHi

)
, (2.45)

is controlled at level α, i.e., FWER ≤ α. There have been various procedures proposed that control
the FWER such as Bonferroni’s correction [78] or Holm’s sequential test procedure [84], which we
will briefly describe at the end of this section.

Typically, procedures that control either the FWER or the FDR are based on p-values. Formally, a
p-value is defined as

p = p(x) = inf {α : x ∈ Sα} , (2.46)

where Sα denotes the rejection region. In other words the p-value is the smallest significance level
at which a hypothesis is rejected. For instance, for the case of a right-sided hypothesis test the
p-value can be expressed as

p = p(x) = 1 − FX (x), (2.47)

where FX (x) is the cumulative distribution function of X under hypothesisH . As can be seen, a
p-value indicates how strongly a measurement x contradicts the underlying hypothesis, i.e., the
smaller the p-value the less likely the hypothesis.

Suppose we want to test the hypothesesH1 vs. H2 vs. · · · vs. HK and the goal is to control the
FWER at level α. Exemplarily, we will present Holm’s sequential test [84]. Firstly, the p-values
p1, . . . , pK for all K hypotheses are computed and ordered as p(1) ≤ p(2) ≤ · · · p(K ) associated
to hypotheses H(1), H(2), . . . , H(K ). Then the test procedure sequentially tests for i = 1, . . . , K
whether p(i) ≥ α/(K − i + 1), if that holds, we fail to rejectH(1), . . . ,H(K−i+1). If the condition
does not hold, we reject H(1), . . . , H(i), increment i, and continue until we fail to reject the
hypotheses.

2These kinds of test may also be viewed as a set of binary tests with null hypothesesHi .
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3 Stochastic representation of the generalized
likelihood ratio test statistics under the null
hypothesis

In this chapter we derive stochastic representations of a specific class of GLRT statistics under the
null hypothesis. Specifically, we consider a general class of problems encountered in various fields
of application, which boil down to test different block-diagonal structures of the covariance matrix
under both hypotheses. In this chapter, we do not consider a particular application of the derived
test statistics, nevertheless, they provide a basis for stochastic representations we will encounter
throughout the thesis and we will make use of the results and derivations made in this chapter.

3.1 Introduction

In many fields of science such as engineering, medicine, and economics, it is a common challenge to
test either for independence between multiple random vectors, their equivalence, or a combination
thereof. The typical approach to solve these detection problems is the likelihood ratio test that,
assuming Gaussianity of the data, results in tests for the structure of the covariance matrices. Hence,
under the null hypothesis the covariance has a particular block-diagonal structure and under the
alternative, it has either no further structure or it is block-diagonal itself, where the blocks do
not reveal further structure except being positive semi-definite (p.s.d.). These tests are composite
hypothesis tests, which are typically approached by generalized likelihood ratio tests (GLRTs).

There is an abundance of literature in which the GLRTs for problems that reveal various kinds of
covariance matrix structures are derived. The test statistics of these tests are ratios of determinants
of functions of the sample covariance matrix, which are referred to as generalized Hadamard ratios.
In [85] the author derived the test for independence of univariate real-valued Gaussian observations
in the context of economics, psychology, and anthropology. This test examines whether the sample
covariance matrix is diagonal or whether it is a full p.s.d. matrix. In [86,87] the authors derived
the GLRT for a similar problem in the context of radio astronomy, where the independence of
complex-valued Gaussian signals with uncalibrated and nonidentical sensors is established.
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

This test was generalized to the vector-valued case in [74,88] with applications to multi-channel
signal detection in networks of sensor arrays, radar detection with multiple antennas, or cognitive
radio. The authors derived the GLRT to detect spatially correlated complex Gaussian vectors
from multiple antennas for arbitrary temporal structure. This aims at testing whether the sample
covariance matrix has block-diagonal structure or whether it is only p.s.d., i.e., whether it is a test
for independence of blocks.

Furthermore, in [89, 90] the authors adressed the problem of testing for equivalence of covariance
matrices.This is the test of having a diagonal covariance matrix with identical elements on its main
diagonal versus a full p.s.d. covariance matrix. This problem is referred to as sphericity test [89]
and was generalized to the block-sphericity test in [90,91], where the goal is to examine whether
the main diagonal blocks of the covariance matrix are identical.

In the context of the detection of cyclostationarity with applications in cognitive radio and passive
radar, the aforementioned tests of covariance matrix structures also arise. We will consider these
applications in the subsequent chapters, where we will encounter the following matrix structures
(asymptotically): The covariance matrix under the alternative is no longer a p.s.d. matrix without
further structure but it is also a block-diagonal matrix, where each block is p.s.d. without further
structure. Under the null hypothesis, the structure of the test depends on the spatio-temporal
structure of the noise and results in either tests for block-independence [4] or block-sphericity
tests [92]. These tests are generalized to two-channel problems in [73, 93], that makes the structure
of the covariance matrices more complex as we derive in Chapters 5 and 6. In Chapter 7, we further
generalize this problem to multiple channels, which also increases the variety of matrix structure
under the null and the alternative hypotheses.

All of the aforementioned GLRTs have in common that their test statistics are ratios of determinants
of main-diagonal blocks of the sample covariance matrix or functions thereof. These ratios are
referred to as Hadamard or generalized Hadamard ratios [88]. Since the application of these tests
requires to set a threshold that fixes the probability of false alarm at a desired level, we need to know
the distribution of the test statistic under the null hypothesis. Unfortunately, the exact distributions of
these generalized Hadamard ratios can only be established for some special cases as shown in [90,94],
which is a tedious process. For this reason, it is common to resort on asymptotic distributions that
are available in closed-form such as the well known Wilks’ Theorem [95]. However, we do not
always operate in asymptotic regimes if there are insufficiently many observations available.

To overcome this problem, a stochastic representation for various kinds of ratios can be derived.
For instance, in [74] the authors derived the stochastic representation of the GLR under the null
hypothesis for the detection of spatially correlated time series. In [90] the distribution was derived
for the (block-) sphericity tests. The authors in [96] generalized the model of the covariance under
null hypothesis for a combination of independence and sphericity tests. Additionally, they derive the
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3.2 Problem formulation

stochastic representation for this general GLRT under the null hypothesis. In [97, 98] the stochastic
representation for testing different block-diagonal structures in a single channel has been proposed
and it has been derived for the two-channel case in [99]. In [100] the authors also derive the null
distributions for various coherence statistics.

In this chapter we further generalize the problem based on the work in [96] by additionally
imposing block-diagonal structure to the covariance matrix under the alternative, which allows for
an application in [4, 73,92,93]. All of these stochastic representations of Hadamard ratios under
the null have in common that they are products of independent Beta random variables, which do
not depend on data but simply on the parameters of the setup. Hence, these distributions can be
obtained offline and allow for computing the thresholds to set the probability of false alarm.

3.1.1 Outline

First of all, we formulate the detection problem in a general fashion in Section 3.2. Second, we
derive the GLRT in Section 3.3. This is divided into two different cases. The first one considers the
case of independence and/or sphericity among block matrices without further structure, whereas the
second case further specializes the test of independence and/or sphericity among block matrices that
are themselves diagonal with distinct elements. In Section 3.4 we derive the stochastic representation
of the GLR under the null hypothesis for the two cases mentioned in the preceding lines. Finally, in
Section 3.5 we demonstrate that this representation shows agreement with the distribution of the
test statistic under the null with numerical simulations.

3.2 Problem formulation

The problem considered in this chapter is testing for different block-diagonal structures of covariance
matrices of zero-mean proper complex Gaussian random variables. Specifically, given a random
vector x ∈ CN the test for the structure of its covariance matrix is the following

H0 : x ∼ CN (0,R0),

H1 : x ∼ CN (0,R1),
(3.1)

where R0 ∈ C
N×N is a block-diagonal matrix with the following structure

R0 = E[xxH |H0] =



Iδ1 ⊗ R(1)
0 0 · · · 0

0 Iδ2 ⊗ R(2)
0 0

...
...

. . . 0
0 · · · 0 IδK ⊗ R(K )

0



, (3.2)
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

where R(k)
0 ∈ Cκk×κk for k = 1, . . . , K with

∑K
k=1 δk κk = N and δk, κk > 0. Moreover, we consider

two different structures for R(k)
0 . The first one is R(k)

0 being a p.s.d. matrix without further structure
and the second one being R(k)

0 to be a diagonal matrix with positive diagonal elements itself, i.e.,

Case 1) R(k)
0 is a positive semi-definite matrix without further structure,

Case 2) R(k)
0 is a diagonal matrix itself.

Note that it is possible to combine Cases 1) and 2) to more sophisticated structures under the null
hypothesis. However, since the combination does not provide additional value here and for the sake
of simplicity of the notation, we treat the cases separately.

The covariance matrix R1 ∈ C
N×N under the alternative is given by

R1 = E[xxH |H1] =



R(1)
1 0 · · · 0

0 R(2)
1 0

...
...

. . . 0
0 · · · 0 R(L)

1



, (3.3)

where R(l)
1 ∈ C

λl×λl for l = 1, . . . , L with
∑L

l=1 λl = N and L > 0 is a positive semi-definite matrix
without further structure. Moreover, we consider the block sizes of R0 and R1 to be related as
λl =

∑nl
k=nl−1+1 δk κk with n0 = 1, where nl is the number of blocks under the null that are tested

against a single block l without further structure under the alternative. In other words, the block
size of block l under the alternative is always a multiple of block sizes under the null. Since this
is the case throughout the thesis and in order to avoid even more complicated expressions in this
chapter, we do not consider these cases within this chapter.

In Figure 3.1 we illustrate the structure of the covariance matrix underH0 for Case 1) as described
in Section 3.5.

3.3 Derivation of the GLR

A common approach to deal with composite hypothesis tests is the GLRT, which we will employ
for this problem as well. To this end, unknown parameters in the likelihood ratio are replaced by
their MLEs, which, in our case, are the MLEs of the covariance matrices R0 and R1. Hence, the
GLR is given by

G =
p(x0, · · · , xM−1; R̂0)

p(x0, · · · , xM−1; R̂1)
, (3.4)
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3.3 Derivation of the GLR

Figure 3.1: This figure illustrates the structure of the covariance matrices for Case 1) for the following
parameters: L = 3 with λ1 = 7, λ2 = 14, and λ3 = 8, i.e., N = 29 under the alternative
displayed by the transparent colors. Under the null we have K = 6 diagonal blocks with
δk = {2, 1, 3, 2, 2, 1} and κk = {2, 3, 4, 1, 2, 4} for k = 1, . . . , 6 illustrated by the opaque colors.

where x0, . . . , xM−1 denote M independent and identically distributed (i.i.d.) realizations of x,
and R̂0 and R̂1 denote the ML estimates of R0 and R1, respectively. Since x is zero-mean proper
complex Gaussian, the likelihoods are given by

p(x0, · · · , xM−1; R̂j ) =
1

πNM det
(
R̂j

)M exp
{
−M tr

(
QR̂−1

j

)}
, (3.5)

with j ∈ {0, 1} indicating the MLE R̂0 underH0 or the MLE R̂1 underH1. The matrix Q denotes
the sample covariance matrix of x given by

Q =
1
M
XX

H, (3.6)

where X = [x1 · · · xM ] ∈ CN×M is the data matrix. Note that we assume that M ≥

max {κ1, . . . , κK, λ1, . . . , λL } such that each block on the main diagonal is full-rank1. Based
on the likelihood (3.5), we can derive the MLEs of the covariance matrices. To this end, we can
partition the data matrix X in two different ways as follows

X =



X1
...

XK



=



Y1
...

YL



, (3.7)

1If we dropped this assumption on M , the covariance matrices would reveal further structure that we do not consider in
this problem.
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

where Xk ∈ C
δk κk×M for k = 1, . . . , K and Yl ∈ C

λl×M for l = 1, . . . , L are related to the sizes
underH0 andH1, respectively. We can further decompose Xk as follows

Xk =



X(1)
k
...

X(δk )
k



, (3.8)

and

X( j)
k
=



x( j)
k ·1
...

x( j)
k ·κk



∈ Cκk×M, (3.9)

for j = 1, . . . , δk .

The MLEs of R0 and R1 are straightforward to derive considering their block-diagonal structure
and using results from complex-valued matrix differentiation [75, 101]. Hence, they are given by

R̂0 =



Iδ1 ⊗ Q̄0,1 0 · · · 0

0 Iδ2 ⊗ Q̄0,2 0
...

...
. . . 0

0 · · · 0 IδK ⊗ Q̄0,K



, (3.10)

where Q̄0,k is given by

Case 1) Q̄0,k =
1
δk

∑δk
j=1 Q( j)

0,k , for the case in which R(k)
0 for k = 1, . . . , K are p.s.d. matrices

without further structure,

Case 2) Q̄0,k =
1
δk

∑δk
j=1 diag

{
Q( j)

0,k

}
, for the case in which R(k)

0 for k = 1, . . . , K are diagonal
matrices,

with Q( j)
0,k = 1/MX( j)

k

(
X( j)
k

)H
and

R̂1 =



Q1,1 0 · · · 0

0 Q1,2 0
...

...
. . . 0

0 · · · 0 Q1,L



, (3.11)

with Q1,l = 1/MYl (Yl)H for l = 1, . . . , L.
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3.4 Stochastic representation of the GLR underH0

Now we can plug the MLEs (3.10) and (3.11) into the likelihood ratio (3.4) to obtain the simplified
expressions for both cases. The GLR for Case 1) is given by

G 1/M
1) =

det
(
R̂1

)
det

(
R̂0

) = ∏L
l=1 det

(
Q1,l

)
∏K

k=1 det
(
Q̄0,k

)δk . (3.12)

and we further simplify it for Case 2), i.e., we consider a diagonal covariance matrix under the
null

G 1/M
2) =

∏L
l=1 det

(
R̂(l)

1

)
∏K

k=1
∏κk

m=1 q̄δk
k,mm

, (3.13)

where q̄k,mm denotes the mth element on the diagonal of Q̄0,k .

Having derived the test statistics we still lack the distributions for (3.12) and (3.13) given that the
null hypothesis is true. The distribution allows for fixing the probabilty of false alarm at a desired
level. In the literature exact distributions are tediously derived for special combinations of the
parameters only in, e.g., [90, 94]. Instead we derive a stochastic representation for the general
case considered here in the subsequent sections. We will show that we can factorize the GLRs
into products of statistically independent scalars, where each of the scalar variables follows a Beta
distribution.

3.4 Stochastic representation of the GLR underH0

In order to derive the distribution of the GLR, we exploit that λl =
∑nl

k=nl−1+1 δk κk to factorize the
GLR in (3.12) into L terms as follows

G 1/M
i) =

det
(
Q1,1

)∏n1
k=1 det

(
Q̄0,k

)δk × · · · × det
(
Q1,L

)∏nL

k=nL−1+1 det
(
Q̄0,k

)δk = L∏
l=1
Λ
i)
l
, (3.14)

where i ∈ {1, 2} and

Λ
1)
l
=

det
(
Q1,l

)∏nl
k=nl−1+1 det

(
Q̄0,k

)δk (3.15)

Λ
2)
l
=

det
(
Q1,l

)∏K
k=1

∏κk
m=1 q̄δk

k,mm

. (3.16)

29



3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

In order to derive the stochastic representation for each factor Λi)
l

, we expand the ratios (3.15) and
(3.16) such that they can be split into two statistically independent terms (under the null hypothesis).
Let us first consider Λ1)

l
, which we expand by

∏nl
k=nl−1+1

∏δk
j=1 det

(
Q( j)

0,k

)
to factorize it into the

following terms

Λ
1)
l
=

det
(
Q1,l

)∏nl
k=nl−1+1

∏δk
j=1 det

(
Q( j)

0,k

)︸                             ︷︷                             ︸
Λ

1)
l,I

×

∏nl
k=nl−1+1

∏δk
j=1 det

(
Q( j)

0,k

)
∏nl

k=nl−1+1 det
(
Q̄0,k

)δk︸                             ︷︷                             ︸
Λ

1)
l,II

. (3.17)

Hence, Λ1)
l

is split into one term that is the block-independence test and second term that is the
block-sphericity test, which are independent given that the null hypothesis is true. The authors
in [100] show in Appendix H.3 that Λ1)

l,I and Λ1)
l,II are statistically independent by exploiting Basu’s

theorem [102] similarly as it has been done in Appendix A of [103].

Similar to the preceding paragraph we can split Λ2)
l

into two statistically independent terms under
the null hypothesis. To this end, we should first recall that for Case 2) R(k)

0 is a diagonal matrix with
positive elements. Hence, we rewrite the denominator in (3.16) as

∏nl
k=nl−1+1

∏δk
j=1

∏κk
m=1 q( j)

k,mm

and factorize it as follows

Λ
2)
l
=

det
(
Q1,l

)∏nl
k=nl−1+1

∏δk
j=1

∏κk
m=1 q( j)

k,mm︸                                ︷︷                                ︸
Λ

2)
l,I

×

∏nl
k=nl−1+1

∏δk
j=1

∏κk
m=1 q( j)

k,mm∏nl
k=nl−1+1

∏κk
m=1 q̄δk

k,mm︸                                ︷︷                                ︸
Λ

2)
l,II

. (3.18)

Again the results of Appendix H.3 in [100] can be applied to conclude that the terms Λ2)
l,I and Λ2)

l,II
are statistically independent.

Let us briefly outline the next steps. First, we will introduce the concept of Gram determinants
as they are exploited throughout this chapter. Afterwards, we propose the distributions of the two
independent terms Λ1)

l,I and Λ1)
l,II, which will be combined in the distribution of Λ1)

l
eventually.

Finally, we will also derive the distributions of Λ2)
l,I and Λ2)

l,II and combine them to obtain the
distribution of Λ2)

l
.

Distributions for Case 1)

Before we derive the distributions of Λ1)
l,I and Λ1)

l,II, we first introduce the concept of Gram
determinants [76]. Exemplarily, we consider the numerator det

(
Q1,l

)
of Λi)

l
. The matrix

Q1,l = 1/MYl (Yl)H for l = 1, . . . , L is a Gram matrix, which contains the inner products between
all combinations of rows of Yl . In [76] the author presents a procedure to sequentially test each row
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3.4 Stochastic representation of the GLR underH0

in Yl to check whether it is independent to its preceding vectors. Here we will use this concept to
rewrite the determinants of Gram matrices as a product of scalars similar to the authors in [74],
which is presented in the following paragraph, where we apply the notation from [76].

Firstly, we will rewrite the data matrix Yl in terms of Xk . By noting that λl =
∑nl

k=nl−1+1 δk κk it
follows

Yl =



Xnl−1+1
...

Xnl



. (3.19)

Secondly, we partition the Gram matrix Q1,l into submatrices and we denote the i × i north-west
block of Q1,l by Q(i)

1,l . Moreover, we can partition the matrix Q(i)
1,l as follows

Q(i)
1,l =



Q(i−1)
1,l

(
q(i)

1,l

)H
q(i)

1,l q(l)
ii


, (3.20)

where q(i)
1,l ∈ C

1×(i−1) and q(l)
ii ∈ R is a scalar. Given this notation, the Gram determinant can be

written as a product of scalar values as follows

det
(
Q1,l

)
=

λl∏
i=1

{
q(l)
ii − q(i)

1,l

(
Q(i−1)

1,l

)−1 (
q(i)

1,l

)H}
, (3.21)

where the terms q(l)
ii − q(i)

1,l

(
Q(i−1)

1,l

)−1 (
q(i)

1,l

)H
are referred to as Schur complements [76]. Products

of this style will accompany us throughout the derivations. Given this as a basis, we propose the
distributions of Λl separately for Cases 1) and 2) in the upcoming paragraphs, which we will denote
by Λ1)

l
and Λ2)

l
, respectively.

In the following proposition we present the distribution of the first factor that is Λ1)
l,I.

Proposition 3.4.1. The distribution of Λ1)
l,I in (3.17) is given by a product of independent Beta

random variables that is

Λ
1)
l,I
D
=

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

Vk,m, j, (3.22)

where

Vk,m, j ∼ Beta



M − *.
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1+/
-
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk


. (3.23)

Proof. Let us begin the proof by replacing the determinants in the numerator and denominator of

Λ
1)
l,I =

det
(
Q1,l

)∏nl
k=nl−1+1

∏δk
j=1 det

(
Q( j)

0,k

) (3.24)
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

by their corresponding product of Schur complements from (3.21). To this end, we first rewrite the
numerator as

det
(
Q1,l

)
= det

(
1
M

YlYH
l

)
=

λl∏
i=1

{
q(l)
ii − q(i)

1,l

(
Q(i−1)

1,l

)−1 (
q(i)

1,l

)H}
. (3.25)

Recall that this product is a sequential test for linear independence of the vectors building the Gram
matrix to its preceding ones and that Yl can be expressed in terms of Xk with λl =

∑nl
k=nl−1+1 δk κk

by

Yl =



Xnl−1+1
...

Xnl



. (3.26)

Hence, to get a better insight into this expression and its distribution, we will replace the components
of the Gram matrices by the corresponding elements of the data matrix as follows

λl∏
i=1

{
q(l)
ii − q(i)

1,l

(
Q(i−1)

1,l

)−1 (
q(i)

1,l

)H}
=

1
Mλl

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

{
x( j)
k,m

(
x( j)
k,m

)H
− x( j)

k,m

(
W( j)

k,m

)H [
W( j)

k,m

(
W( j)

k,m

)H ]−1
W( j)

k,m

(
x( j)
k,m

)H}
,

(3.27)

where x( j)
k,m
∈ C1×M is the mth element in X( j)

k
from (3.9) and W( j)

k,m
∈ C

[∑k−1
p=nl−1+1 δpκp+( j−1)κk+m−1

]
×M

is the matrix that contains all vectors preceding x( j)
k,m

in (3.26)

W( j)
k,m
=

Xnl−1+1
...

Xk−1
X(1)
k
...

X( j−1)
k

x( j)
k,1
...

x( j)
k,m−1.





U( j−1)
k

V( j)
k,m

(3.28)

Note, that the matrices U( j−1)
k

and V( j)
k,m

will be used subsequently to handle the denominator of
(3.25).

32



3.4 Stochastic representation of the GLR underH0

Now we can factor out x( j)
k,m

to obtain

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

(
x( j)
k,m

)H
− x( j)

k,m

(
W( j)

k,m

)H [
W( j)

k,m

(
W( j)

k,m

)H ]−1
W( j)

k,m

(
x( j)
k,m

)H
=

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

[
IM −

(
W( j)

k,m

)H [
W( j)

k,m

(
W( j)

k,m

)H ]−1
W( j)

k,m

]

︸                                                      ︷︷                                                      ︸
P⊥

W( j )
k,m

(
x( j)
k,m

)H
, (3.29)

where P⊥
W( j )

k,m

denotes the projection onto the subspace orthogonal to W( j)
k,m

. This expression allows

us to easily determine its distribution.

In [104] it is shown that a quadratic form of two Gaussians is chi-squared distributed. This result
was generalized in [105,106] to proper complex Gaussians and will be exploited throughout the
remainder of this proof. Moreover, under the null hypothesis we can pre-whiten the covariance
matrices since the test statistic is invariant to multiplications with matrices of the structure of
R0. Hence, without loss of generality it holds that x ∼ CN (0, IN ). Furthermore, there are M

i.i.d. samples of x available, for this reason, we can equivalently state that
(
x( j)
k,m

)H
∼ CN (0, IM ).

According to [104–106], the quadratic term 2x( j)
k,m

P⊥
W( j )

k,m

(
x( j)
k,m

)H
is chi-squared distributed with

degrees of freedom equal to 2 rank
(
P⊥

W( j )
k,m

)
, i.e.,

2x( j)
k,m

P⊥
W( j )

k,m

(
x( j)
k,m

)H
∼ χ2 *.

,
2


M − *.

,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1+/
-



+/
-
. (3.30)

Similarly, we can decompose the denominator of Λ1)
l,I in (3.24) as follows

nl∏
k=nl−1+1

δk∏
j=1

1
Mκk

det
(
Q( j)

0,k

)
=

1
Mλl

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

[
IM −

(
V( j)
k,m

)H [
V( j)
k,m

(
V( j)
k,m

)H ]−1
V( j)
k,m

]

︸                                                  ︷︷                                                  ︸
P⊥

V( j )
k,m

(
x( j)
k,m

)H
, (3.31)

where we recall that Q( j)
0,k = 1/MX( j)

k

(
X( j)
k

)H
and V( j)

k,m
is given in (3.28) and contains all rows of

X( j)
k

preceding x( j)
k,m

.
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

Now we can rewrite Λ1)
l,I in (3.17) as a function of x( j)

k,m

Λ
1)
l,I =

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

P⊥
W( j )

k,m

(
x( j)
k,m

)H
x( j)
k,m

P⊥
V( j )
k,m

(
x( j)
k,m

)H . (3.32)

It should be noted that the ratios are independent for all k, j, and m due to the nature of Gram
determinants that sequentially test for orthogonality. Similar to the distribution of the numerator
in (3.30), the distribution of 2x( j)

k,m
P⊥

V( j )
k,m

(
x( j)
k,m

)H
is given by a chi-squared distribution as well.

However, to determine the distribution of the fraction in (3.32), we will split P⊥
V( j )
k,m

into two

orthogonal projections [74]
P⊥

V( j )
k,m

= P⊥
W( j )

k,m

+ PP⊥
V( j )
k,m

U( j−1)
k

, (3.33)

where U( j−1)
k

is given by (3.28) and PP⊥
V( j )
k,m

U( j−1)
k

is the projection onto the subspace P⊥
V( j )
k,m

U( j−1)
k

,

which itself is the projection of U( j−1)
k

onto the orthogonal subspace of V( j)
k,m

. Note that PP⊥
V( j )
k,m

U( j−1)
k

is orthogonal to the orthogonal subspace of W( j)
k,m

since W( j)
k,m

is the stack of U( j−1)
k

and V( j)
k,m

.
Furthermore, we should note that the sum in the denominator is equal to the numerator plus
x( j)
k,m

PP⊥
V( j )
k,m

U( j−1)
k

(
x( j)
k,m

)H
. The latter term is distributed as

2x( j)
k,m

PP⊥
V( j )
k,m

U( j−1)
k

(
x( j)
k,m

)H
∼ χ2 *.

,
2



k−1∑
p=nl−1+1

δpκp + ( j − 1) κk



+/
-
. (3.34)

Hence, the fraction is of the form a
a+b , where a ∼ χ2(da) and b ∼ χ2(db) are independent

chi-squared distributions with degrees of freedom da and db, respectively. In, e.g., [107] it is shown
that the ratio is distributed as

a
a + b

∼ Beta {1/2da, 1/2db} . (3.35)

This concludes the proof.

�

Having derived the distribution of Λ1)
l,I in (3.17), we will now provide the distribution of the second

term Λ1)
l,II. Note that Λ1)

l,II is the statistic to test for the equivalence of covariance matrices, i.e., the
block-sphericity test [90].
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3.4 Stochastic representation of the GLR underH0

Proposition 3.4.2. The distribution of Λ1)
l,II in (3.17) is given by a product of independent Beta

random variables, specifically,

Λ
1)
l,II
D
=

nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2




κk∏
m=1

(
1 −Wm, j−1

) (
Wm, j−1

) j−1





κk∏
m=2

(
Um, j

) j

, (3.36)

where

Wm, j−1 ∼ Beta {M ( j − 1) − (m − 1), M − (m − 1)} , (3.37)

Um, j ∼ Beta {M j − 2(m − 1),m − 1} , (3.38)

are independent for all k, m, and j.

Proof. In order to proof this proposition, we basically follow Chapter 10.4 in [90], where the author
derived the GLRT for the matrix sphericity test and showed that its stochastic representation under
the null is given by a product of independent beta random variables. Here we follow those lines in
order to provide the complete picture for our more general test. From (3.17) Λ1)

l,II is given by

Λ
1)
l,II =

nl∏
k=nl−1+1

∏δk
j=1 det

(
Q( j)

0,k

)
det

(
Q̄0,k

)δk =

nl∏
k=nl−1+1

δδk κk
k

∏δk
j=1 det

(
Q( j)

0,k

)
det

(
Q(1)

0,k + · · · +Q(δk )
0,k

)δk . (3.39)

Note that Λ1)
l,II = 1 if δk = 1, i.e., the case, where the blocks Q( j)

0,k are not repeated on the main
diagonal. We expand the fraction as follows

Λ
1)
l,II =

nl∏
k=nl−1+1

δδk κk
k

det
(
Q(1)

0,k

)
det

(
Q(1)

0,k

) × det
(
Q(1)

0,k

)
det

(
Q(2)

0,k

)
det

(
Q(1)

0,k +Q(2)
0,k

)2 × · · · (3.40)

×
det

(
Q(1)

0,k + · · · +Q(δk−1)
0,k

)δk−1
det

(
Q(δk )

0,k

)
det

(
Q(1)

0,k + · · · +Q(δk )
0,k

)δk (3.41)

=

nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2

det
(
Q(1)

0,k + · · · +Q( j−1)
0,k

) j−1
det

(
Q( j)

0,k

)
det

(
Q(1)

0,k + · · · +Q( j)
0,k

) j . (3.42)

Note that these ratios are independent for all j = 2, . . . , δk , which was shown in Theorem 10.4.1.
in [90]. Similar to the proof of Proposition 3.4.1, we make use of Gram determinants. Furthermore,
to keep readability, we denote the sum Q(1)

0,k + · · · +Q( j−1)
0,k as follows

A( j−1)
k

= Q(1)
0,k + · · · +Q( j−1)

0,k (3.43)
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

and rewrite (3.39) as

Λ
1)
l,II =

nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2

det
(
A( j−1)
k

) j−1
det

(
Q( j)

0,k

)
det

(
A( j−1)
k

+Q( j)
0,k

) j . (3.44)

Now we replace the determinants by products of Schur complements as we have seen in (3.21)

Λ
1)
l,II =

nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2

κk∏
m=2
∆

(k, j,m)
0 (3.45)

where

∆
(k, j,m)
0 =

(
α

( j−1)
k,mm

) j−1
β

( j)
k ·mm(

a( j−1)
k ·mm

+ q( j)
k,mm

−
(
a( j−1)
k,m

+ q( j)
k,m

) (
A( j−1)
k,m

+Q( j)
k,m

)−1 (
a( j−1)
k,m

+ q( j)
k,m

)H ) j (3.46)

with

α
( j−1)
k,mm

= a( j−1)
k ·mm

− a( j−1)
k,m

(
A( j−1)
k,m−1

)−1 (
a( j−1)
k,m

)H
, (3.47)

β
( j)
k ·mm

= q( j)
k,mm

− q( j)
k,m

(
Q( j)

k,m−1

)−1 (
q( j)
k,m

)H
, (3.48)

and a( j−1)
k,mm

, a( j−1)
k,m

,A( j−1)
k ·m−1, q

( j)
k,mm

, q( j)
k,m

, and Q( j)
k,m−1 coming from partitioning A( j−1)

k
and Q( j)

0,k
equivalently to Q(l)

i in (3.20). Note that for m = 1 it holds that ∆(k, j,m)
0 = 1, i.e., for the case that

κk = 1, we can neglect the term Λ1)
l,II in (3.17) as it is 1.

Now we expand ∆(k, j,m)
0 by

(
α

( j−1)
k,mm

+ β
( j)
k ·mm

) j
in order to divide it into two terms ∆(k, j,m)

1 and
∆

(k, j,m)
2 as follows

∆
(k, j,m)
0 = ∆

(k, j,m)
1 × ∆

(k, j,m)
2 , (3.49)

where

∆
(k, j,m)
1 =

(
α

( j−1)
k,mm

) j−1
β

( j)
k ·mm(

α
( j−1)
k,mm

+ β
( j)
k ·mm

) j , (3.50)

∆
(k, j,m)
2 =

*..
,

α
( j−1)
k,mm

+ β
( j)
k ·mm

a( j−1)
k ·mm

+ q( j)
k,mm

−
(
a( j−1)
k,m

+ q( j)
k,m

) (
A( j−1)
k,m

+Q( j)
k,m

)−1 (
a( j−1)
k,m

+ q( j)
k,m

)H +//
-

j

. (3.51)

For each of the terms ∆(k, j,m)
1 and ∆(k, j,m)

2 we will determine their distribution separately.

36



3.4 Stochastic representation of the GLR underH0

Let us first focus on ∆(k, j,m)
1 , which we factorize as

∆
(k, j,m)
1 =

*.
,

α
( j−1)
k,mm

α
( j−1)
k,mm

+ β
( j)
k ·mm

+/
-

j−1

×
β

( j)
k ·mm

α
( j−1)
k,mm

+ β
( j)
k ·mm

(3.52)

=
*.
,

α
( j−1)
k,mm

α
( j−1)
k,mm

+ β
( j)
k ·mm

+/
-

j−1
*.
,
1 −

α
( j−1)
k,mm

α
( j−1)
k,mm

+ β
( j)
k ·mm

+/
-
. (3.53)

In order to find the distribution of
α

( j−1)
k,mm

α
( j−1)
k,mm

+ β
( j)
k ·mm

, we identify the distributions of α( j−1)
k,mm

and

β
( j)
k ·mm

. First, α( j−1)
k,mm

is given by the Schur complement (3.47). Since A( j−1)
k

is the sum of j − 1
Gram matrices each having a complex Wishart distribution with M degrees of freedom, A( j−1)

k

itself is also complex Wishart distributed with M ( j − 1) degrees of freedom. Theorem 1 of Chapter
4 in [108], where the authors derived the distribution of α( j−1)

k,mm
when A( j−1)

k
is a Wishart matrix,

can be applied. The extension of that theorem to the proper complex case is straightforward. Hence,
the distribution is given by

2α( j−1)
k,mm

∼ χ2 (
2
[
M ( j − 1) − (m − 1)

] )
. (3.54)

Equivalently, we can derive the distribution of β( j)
k ·mm

, which is given by

2β( j)
k ·mm

∼ χ2 (2 [M − (m − 1)]) . (3.55)

Finally, it is easy to see that the terms α( j−1)
k,mm

and β
( j)
k ·mm

are independent. Hence, similar to the
proof of Proposition 3.4.1, we can find the following

∆
(k, j,m)
1

D
=

(
Wm, j−1

) j−1 (
1 −Wm, j−1

)
(3.56)

with
Wm, j−1 ∼ Beta {M ( j − 1) − (m − 1), M − (m − 1)} . (3.57)

Now we will derive the distribution of ∆(k, j,m)
2 in (3.49)

∆
(k, j,m)
2 =

*..
,

α
( j−1)
k,mm

+ β
( j)
k ·mm

a( j−1)
k ·mm

+ q( j)
k,mm

−
(
a( j−1)
k,m

+ q( j)
k,m

) (
A( j−1)
k,m

+Q( j)
k,m−1

)−1 (
a( j−1)
k,m

+ q( j)
k,m

)H +//
-

j

. (3.58)
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

To this end, we will continue following the lines from [90]. Firstly, we will expand the denominator
such that the term in the numerator α( j−1)

k,mm
+ β

( j)
k ·mm

also occurs in the denominator. This aims
in getting another fraction of the form (3.35). For now we rewrite the denominator of ∆(k, j,m)

2 as
follows

a( j−1)
k ·mm

+ q( j)
k,mm

−
(
a( j−1)
k,m

+ q( j)
k,m

) (
A( j−1)
k,m

+Q( j)
k,m

)−1 (
a( j−1)
k,m

+ q( j)
k,m

)H
= α

( j−1)
k,mm

+ β
( j)
k,m
+ δ(k, j,m),

(3.59)
where we expanded the term with a( j−1)

k

(
A( j−1)
k

)−1 (
a( j−1)
k

)H
and q( j)

0,k

(
Q( j)

0,k

)−1 (
q( j)

0,k

)H
such that

δ(k, j,m) = a( j−1)
k

(
A( j−1)
k

)−1 (
a( j−1)
k

)H
+ q( j)

0,k

(
Q( j)

0,k

)−1 (
q( j)

0,k

)H
−

(
a( j−1)
k,m

+ q( j)
k,m

) (
A( j−1)
k,m

+Q( j)
k,m

)−1 (
a( j−1)
k,m

+ q( j)
k,m

)H
. (3.60)

In (3.54) and (3.55) we figured that the distributions of α( j−1)
k,mm

and β
( j)
k,m

are both chi-squared and so
is the sum α

( j−1)
k,mm

+ β
( j)
k,m

with degrees of freedom equal to the sum of the single ones, i.e.,

2
(
α

( j−1)
k,mm

+ β
( j)
k,m

)
∼ χ2 (

2
[
M j − 2(m − 1)

] )
. (3.61)

However, the distribution of δ(k, j,m) is not easy to identify at the first glance. For this reason, we
use Lemma 10.4.1 in [90], which states

Lemma 3.4.1.

δ(k, j,m) =

[
a( j−1)
k

(
A( j−1)
k

)−1
− q( j)

0,k

(
Q( j)

0,k

)−1]

[(
A( j−1)
k,m

)−1
+

(
Q( j)

k,m

)−1]−1 [
a( j−1)
k

(
A( j−1)
k

)−1
− q( j)

0,k

(
Q( j)

0,k

)−1]H
. (3.62)

Proof. Refer to Lemma 10.4.1 in [90]. �

This Lemma allows for easily coming up with the distribution of δ(k, j,m). Specifically, we first
consider the terms a( j−1)

k

(
A( j−1)
k

)−1
and q( j)

0,k

(
Q( j)

0,k

)−1
. In Theorem 2 in [108] it is shown that these

vectors are Gaussian distributed with covariance matrices
(
A( j−1)
k

)−1
and

(
Q( j)

0,k

)−1
, respectively.

Although, in [108] the author focused on the case of real-valued variables, it can be directly extended
to the proper complex Gaussian case. Furthermore, the difference of both expressions is still
zero-mean proper complex Gaussian with covariance matrix

(
A( j−1)
k

)−1
+

(
Q( j)

0,k

)−1
considering

that a( j−1)
k

(
A( j−1)
k

)−1
and q( j)

0,k

(
Q( j)

0,k

)−1
are independent. Hence, it turns out that δ(k, j,m) is another

quadratic term of two complex Gaussians scaled by the inverse of its covariance matrix. Now
it is straightforward to obtain the distribution of δ(k, j,m), which is given by another chi-squared
distribution

2δ(k, j,m) ∼ χ2 (2 [m − 1]) . (3.63)
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3.4 Stochastic representation of the GLR underH0

Noting that δ(k, j,m) is independent of α( j−1)
k,mm

+ β
( j)
k,m

, we apply once again (3.35) to find the
distribution of ∆(k, j,m)

2 , which is given by

∆
(k, j,m)
2

D
=

(
Um, j

) j
(3.64)

with
Um, j ∼ Beta {M j − 2(m − 1),m − 1} , (3.65)

which concludes the proof.

�

Finally, everything is set up to obtain the stochastic representations of the GLR for Case 1) in the
following theorem.

Theorem 3.4.1. The GLR for Case 1) given in (3.12) has the following distribution under the null
hypothesis

G 1/M D
=

L∏
l=1




nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

Vk,m, j




×




nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2




κk∏
m=1

(
1 −Wm, j−1

) (
Wm, j−1

) j−1





κk∏
m=2

(
Um, j

) j




, (3.66)

where all V , W , and U are independent Beta distributed random variables. Specifically, they are
given by

Vk,m, j ∼ Beta



M − *.
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1+/
-
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk


, (3.67)

Wm, j−1 ∼ Beta {M ( j − 1) − (m − 1), M − (m − 1)} , (3.68)

Um, j ∼ Beta {M j − 2(m − 1),m − 1} . (3.69)

Proof. This theorem is a direct consequence of Propositions 3.4.1 and 3.4.2, the independence of
Λ

1)
l,I and Λ1)

l,II, and also the independence of Λl for l = 1, . . . , L in (3.14). �

Distributions for Case 2)

Here we present the distributions of Λ2)
l,I and Λ2)

l,II in the following two propositions.

39



3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

Proposition 3.4.3. The distribution of Λ2)
l,I in (3.18) is given by a product of independent Beta

random variables that is

Λ
2)
l,I
D
=

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

Yk,m, j, (3.70)

where

Yk,m, j ∼ Beta



M − *.
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1+/
-
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1


.

(3.71)

Proof. The proof is similar to that of Proposition 3.4.1. The numerator is identical to that in Λ1)
l,I

and can be factored into

det
(
Q1,l

)
=

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

P⊥
W( j )

k,m

(
x( j)
k,m

)H
(3.72)

and its distribution is given by (3.30). The denominator of Λ2)
l,I in (3.18) can easily be rewritten as a

function of quadratic terms of x( j)
k,m

since q( j)
k,mm

= x( j)
k,m

(
x( j)
k,m

)H
, as follows

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

q( j)
k,mm

=

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

(
x( j)
k,m

)H
(3.73)

which split into two orthogonal terms

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

(
x( j)
k,m

)H
=

nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

x( j)
k,m

(
P⊥

W( j )
k,m

+ PW( j )
k,m

) (
x( j)
k,m

)H
. (3.74)

The distribution of x( j)
k,m

PW( j )
k,m

(
x( j)
k,m

)H
can be easily identified as

2x( j)
k,m

PW( j )
k,m

(
x( j)
k,m

)H
∼ χ2 *.

,
2



k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1


+/
-
. (3.75)

Finally, we exploit again (3.35) and the proof follows.

�

To conclude the derivation of the stochastic representation of Λ2)
l

for Case 2), we propose the
distribution of Λ2)

l,II in the following proposition.
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3.4 Stochastic representation of the GLR underH0

Proposition 3.4.4. The distribution of Λ2)
l,II in (3.17) is given by a product of independent Beta

random variables that is

Λ
2)
l,II
D
=

nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2




κk∏
m=1

(
1 − Zm, j−1

) (
Zm, j−1

) j−1

, (3.76)

where
Zm, j−1 ∼ Beta {M ( j − 1), M } , (3.77)

are independent for all k, m, and j.

Proof. First, we rewrite Λ2)
l,II similarly to Λ1)

l,II in (3.44) as follows

Λ
2)
l,II =

nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2

(
a( j−1)
k

) j−1 (
q( j)
k

)
(
a( j−1)
k

+ q( j)
k

) j , (3.78)

with a( j−1)
k

and q( j)
k

as before in the proof of Proposition 3.4.2. Now this expression is equivalent to
∆

(k, j,m)
1 in (3.50) and the distribution of a( j−1)

k
and q( j)

k
is given by

2a( j−1)
k

∼ χ2 (2M ( j − 1)) , (3.79)

2q( j)
k
∼ χ2 (2M) . (3.80)

Once again we use (3.35) and the proof follows. �

Finally, we put the pieces together in the following theorem, where we obtain the distribution of
G 1/M

2) .

Theorem 3.4.2. The GLR for Case 2) given in (3.13) has the following distribution under the null
hypothesis

G 1/M D
=

L∏
l=1




nl∏
k=nl−1+1

δk∏
j=1

κk∏
m=1

Yk,m, j






nl∏
k=nl−1+1

δδk κk
k

δk∏
j=2

κk∏
m=1

(
1 − Zm, j−1

) (
Zm, j−1

) j−1


, (3.81)

where all Y and Z are independent beta distributed random variables. Specifically, they are given
by

Yk,m, j ∼ Beta



M − *.
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1+/
-
,

k−1∑
p=nl−1+1

δpκp + ( j − 1) κk + m − 1


,

(3.82)

Zm, j−1 ∼ Beta {M ( j − 1), M } . (3.83)
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3 Stochastic representation of the generalized likelihood ratio test statistics under the null hypothesis

Proof. This theorem is a direct consequence of Propositions 3.4.3 and 3.4.4, the independence of
Λ

2)
l,I and Λ2)

l,II, and also the independence of Λl for l = 1, . . . , L in (3.14). �

Now that we have proposed the stochastic representations of the GLR under the null hypothesis for
Cases 1) and 2), we will evaluate them numerically in the following section.

3.5 Numerical Evaluation

In order to verify the distributions of the GLR underH0 derived in the previous section, we run
Monte Carlo simulations. First, we generate complex Gaussian data according to our null hypothesis
and compute the GLRs given by (3.12) for Case 1) and (3.13) for Case 2). Second, we draw
independent Beta random variables and form the products according to Theorems 3.4.1 and 3.4.2.
Finally, we will compare the agreement of both distributions based on their empirical cumulative
distribution functions (ECDF). We consider two different sets of parameters (scenarios) and for
each we generate data for Cases 1) and 2).

First, we consider Scenario 1) with the following parameters. We choose R1 with L = 3 blocks
on its main diagonal with dimensions λ1 = 7, λ2 = 14, and λ3 = 8, i.e., N = 29. Furthermore,
R0 is composed of K = 6 diagonal blocks with δk = {2, 1, 3, 2, 2, 1} and κk = {2, 3, 4, 1, 2, 4} for
k = 1, . . . , 6. Given λl, δk , κk it follows that n1 = n2 = n3 = 2. Finally, we consider M = 15
realizations. Once again note that we consider the distribution underH0.

In Figures 3.2 and 3.3 we illustrate the ECDFs of 106 Monte Carlo simulations with the setup
described in the preceding paragraph for Cases 1) and 2), respectively. In blue we illustrate the
ECDF of product of beta distributed random variables and the red graph corresponds to the ECDF
of the GLRs. As can be seen the graphs for both distributions exactly overlap which shows that the
distribution of the GLR under the null hypothesis is identical to the distribution of the product of
independent Beta random variables.

For Scenario 2), we choose R1 with L = 2 blocks of dimensions λ1 = 15 and λ2 = 8 on its
main diagonal. Hence, we consider N = 23 samples and additionally M = 20 realizations. R0 is
composed of K = 5 diagonal blocks with δk = {3, 2, 1, 2, 2} and κk = {2, 3, 3, 1, 3} for k = 1, . . . , 5,
which results in n1 = 3 and n2 = 2. Again we compare the distributions of the product of
independent Beta random variables with the GLRs for Cases 1) and 2) via Monte Carlo simulations.
The results are shown in Figures 3.4 and 3.5. Similar to Scenario 1), we can again observe that
the distributions of the products of independent Beta random variables agree very well with the
distribution of the GLRs. Hence, we have demonstrated that the distribution of the product of
independent Beta random variables can be used to obtain the threshold that allows us to set the
probability of false alarm when using the GLRT.
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Figure 3.2: ECDF illustrating the agreement of distributions of the product of Beta random variables and
the GLR for Case 1) under Scenario 1).
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Figure 3.3: ECDF illustrating the agreement of distributions of the product of Beta random variables and
the GLR for Case 2) under Scenario 1).
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Figure 3.4: ECDF illustrating the agreement of distributions of the product of Beta random variables and
the GLR for Case 1) under Scenario 2).
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Figure 3.5: ECDF illustrating the agreement of distributions of the product of Beta random variables and
the GLR for Case 2) under Scenario 2).

3.6 Conclusion

In this chapter we have derived a mathematical expression for the distribution of a general class
of GLRTs under the null hypothesis. These GLRTs aim in testing their covariance structures,
specifically, we test for different block-diagonal structures of covariance matrices. It is shown
that the stochastic representations of such ratios under the null hypothesis are distributed as the
product of independent Beta random variables. Although this is not a closed-form expression it still
allows us to fix the probability of false alarm for these GLRTs without having to rely on asymptotic
distributions to find the threshold. This result will be applied in the subsequent chapters for the
derived GLRT statistics.
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4 Joint detection of almost-cyclostationary
signals and estimation of their cycle period

In this chapter we consider the problem of detecting almost-cyclostationary signals in a single
array. Specifically, we consider the case of a sampled continuous-time CS signal that becomes
discrete-time ACS after sampling. Moreover, we assume that the cycle period of the continuous-time
signal is unknown. In order to approach this problem, we formulate it as a multiple hypothesis test
combined with a resampling stage. Together it allows us to 1) to detect the presence of an ACS
signal and 2) infer the cycle period. Monte Carlo simulations have been performed in order to
demonstrate the detection performance and to compare with state-of-the-art detectors1.

4.1 Introduction

Continuous-time signals are typically sampled before further processing. A sampled discrete-time
signal is almost-cyclostationary (ACS) if the sampling interval is not a sub-multiple of the cycle
period. This is generally the case if the cycle period of the continuous-time signal is unknown [8,44].
In this chapter we propose a detector for discrete-time second-order ACS processes at a single L

dimensional array.

As we have previously outlined in the introduction of this thesis, the detection of ACS signals is of
interest in many fields. For instance, in communications it is of great importance in spectrum sensing
for cognitive radio, and in mechanics it can be used for fault gear or bearing diagnostics [9, 10].
Generally, there are different kinds of CS detectors. Some test for non-zero cyclic autocorrelation
function, such as the detector in [35], which extends [34] to multivariate signals. Others [36, 109]
test for correlation between the process and its frequency-shifted version. A third class of ACS
detectors determines whether the Loève spectrum has support on lines parallel to the stationary
manifold [37]. The GLRT and LMPIT for the detection of multivariate comprises an interpretation

1This chapter is based on the papers “Detection of Almost-Cyclostationarity : An Approach Based on a Multiple
Hypothesis Test, S. Horstmann, D. Ramírez, P.J. Schreier, Proc. Asilomar Conference on Signals, Systems and
Computers, 2017” and “Joint Detection of Almost-Cyclostationary Signals and Estimation of Their Cycle Period, S.
Horstmann, D. Ramírez, P.J. Schreier, IEEE Signal Processing Letters, 2018”
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4 Joint detection of almost-cyclostationary signals and estimation of their cycle period

of all these three features of CS processes. However, these state-of-the-art (A)CS detectors assume
prior knowledge of the cycle period, which, in practice might be unknown or not known exactly due
to clock or oscillator errors, which decreases the performance of the detectors [43]. Furthermore,
the cycle period itself is an interesting signal parameter. For instance, in communications it relates
to the symbol rate and carrier frequency [9, 10]. For this reason it is desirable to use a detector that
jointly detects ACS signals and estimates their cycle period.

To this end we propose a technique that detects the presence of ACS signals with unknown cycle
period in wide-sense stationary (WSS) noise and simultaneously estimate their cycle period. The
idea behind our approach is as follows. A multiple hypothesis test is employed to determine the
unknown integer part, and a resampling stage deals with the unknown fractional part. For each
potential integer part the signal is resampled at potential fractional parts such that the optimal
resampling rate yields a CS signal with cycle period equal to the candidate integer part. This allows
us to apply the GLRT derived in [38] for each candidate integer part. Subsequently, the multiple
hypothesis test is used to determine the unknown integer part. To reach a decision in the overall test
WSS vs. ACS signals we use Holm’s sequentially rejective test [84], which controls the probability
of false alarm of the overall test and simultaneously provides an estimate of the integer part of the
cycle period. This result combined with the corresponding resampling rate yields an estimate of the
cycle period.

In order to achieve good detection and estimation performance, the grid of candidate resampling
rates has to be fine enough, which increases the computational complexity of the technique. For this
reason we propose a filter bank structure to efficiently resample the signal at many different rates.

4.2 Problem Formulation

We consider a continuous-time zero-mean multivariate process u(t) ∈ CL that is second-order
cyclostationary with cycle period T0, or, equivalently, cyclostationary with fundamental cycle
frequency α0 = 1/T0. Hence, it has a periodic matrix-valued covariance function with period T0

R(t, τ) = E
[
u(t)uH(t − τ)

]
= R(t + T0, τ) ∈ CL×L . (4.1)

Once the signal u(t) is sampled with sampling interval Ts < T0, the discrete-time signal u[n] is
ACS with fundamental cycle frequency α̃0 = Ts/T0 [8]. Now we define a cycle period P as the
reciprocal of α̃0, i.e. P = T0/Ts, which is in general a real number rather than an integer. Assuming
that T0 ≥ 3/2Ts, we can divide the cycle period P into an integer and fractional part as follows

P = Pint + ε, (4.2)
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4.3 Resampling Stage

where Pint = 2, 3, . . . and ε ∈ [−0.5, 0.5). Note that if we dropped the assumption T0 ≥ 3/2Ts and
allowed for T0 < 3/2Ts, the range of integer part of the cycle period would also need to cover the
case Pint = 1, which however corresponds to a wide-sense stationary signals, which, by design, we
cannot differentiate from noise.

Now our aim is to solve the following hypothesis test

H : u[n] is WSS,

A : u[n] is ACS.
(4.3)

Additionally, if the presence of an ACS signal is detected, then we simultaneously estimate the cycle
period P. We assume that u[n] is proper complex Gaussian and that we observe M i.i.d. realizations
of u[n] of length N . We propose a detector to solve the hypothesis test (4.3) by combining a
resampling stage, which enables to apply the GLRT proposed in [38], with a multiple hypothesis
test. The resampling stage allows us to estimate the fractional part of the cycle period, and the
multiple hypothesis test provides an estimate for the integer part if the presence of ACS signals
was detected. In order to reliably estimate the fractional part of the cycle period, it is necessary to
resample the signal at many different rates. Since this is a computationally complex process, we
also propose a filter bank structure to decrease the computational costs.

4.3 Resampling Stage

In order to handle the unknown fractional part of the cycle period, let us assume first that the integer
part of the cycle period Pint is known. Now our goal is to find the resampling rate ∆ such that the
resampled signal becomes CS with cycle period Pint, which allows us to apply the test CS vs. WSS
proposed in [38]. Specifically, for a set of D candidate resampling rates

∆d =
Pint

Pint + εd
, d = 1, . . . , D, (4.4)

where εd = −0.5 + (d − 1)/D, we obtain the resampled signal ũd[m] for which we compute the
GLRT statistic proposed in [38]. Let us briefly outline the computation of the statistic:

G(∆d |Pint) =
N/Pint∏
k=1

det
(
Ĉk

)
, (4.5)

where Ĉk is the kth LPint × LPint diagonal block of the coherence matrix

Ĉ =
[
diagL (Ŝ)

]−1/2
diagLPint (Ŝ)

[
diagL (Ŝ)

]−1/2
. (4.6)
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4 Joint detection of almost-cyclostationary signals and estimation of their cycle period

Here, diagL (Ŝ) and diagLPint (Ŝ) denote block-diagonal matrices obtained from the L × L and
LPint × LPint blocks on the diagonal of

Ŝ =
1
M

M∑
i=1

zizHi , (4.7)

where
zi = (LN,N/Pint ⊗ IL)(FN ⊗ IL)Hyi, (4.8)

LN,N/Pint is the commutation matrix, FN is the DFT matrix, and yi = [ũT
i [0] · · · ũT

i [N − 1]]T .

Subsequently, we find the maximum likelihood (ML) estimate of the resampling rate ∆d or
equivalently, due to their relation in (4.4), the ML estimate of the fractional part of the cycle period,
by maximizing the likelihood under A. Equivalently, we can minimize the GLR (4.5) for a given
integer part Pint

∆min = arg min
∆d=1, . . .,D

G(∆d |Pint). (4.9)

In order to make the resampling grid fine enough, D must be a large number, and hence the
resampling of the signal at D different rates is computationally quite expensive. There are efficient
strategies to convert the sample rate, but only for a single given ∆d, see e.g. [110]. In the following,
we propose a filter bank that is designed to deal with a set of D different resampling rates for each
candidate integer Pint.

Sample Rate Conversion

u[n]
L
(1)
1 ↑ h

(1)
1 L

(2)
1 ↑ h

(2)
1 L

(3)
1 ↑ h

(3)
1 ↓ M1

ũ1[m]

↓ M2

ũ2[m]

L
(3)
i ↑ h

(3)
i ↓ Mi

ũi[m]

L
(2)
j ↑ h

(2)
j L

(3)
j ↑ h

(3)
j ↓ Mj

ũj [m]

Figure 4.1: Proposed filter bank structure to convert the sampling rate 1/Ts to D different rates.

The sample rate conversion with the proposed filter bank structure is illustrated in Figure 4.1. Each
resampling rate ∆d for d = 1, . . . , D specifies an interpolation factor Ld and decimation factor Md

such that Ld

Md
= ∆d. Since the number of resampling rates D can be quite large, it is desirable to
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4.4 Multiple Hypothesis Test

exploit common interpolation stages among all upsampling rates Ld for d = 1, . . . , D in order to
save as many computations as possible. To this end, each Ld is factorized into a product of prime
numbers Ld =

∏Λ
λ=1 L(λ)

d
, where L(1)

d
≥ L(2)

d
≥ · · · ≥ L(Λ)

d
. Within the set of D upsampling rates,

we identify common factors such as
∏K
κ=1 L(κ)

i =
∏K
κ=1 L(κ)

j for K < Λ, i , j and i, j ∈ {1, . . . , D}.
Hence, the signal is interpolated only once at those common stages. After the signal has been
interpolated at all required rates, it is downsampled by the respective rates Md. Each interpolation
stage is implemented as a polyphase filter.

4.4 Multiple Hypothesis Test

The integer part of the cycle period in the detection problem can be handled by a multiple hypothesis
test, which at the same time provides an estimate of the integer part of the cycle period Pint. To
this end, the multiple hypothesis test is implemented as a set of binary tests with a common null
hypothesis, i.e.

H : u[n] is WSS, (4.10)

versus the following set of alternatives

A1 : u[n] is ACS with Pint = 2,

A2 : u[n] is ACS with Pint = 3,
...

AK : u[n] is ACS with Pint = Pmax,

(4.11)

where Pmax = K + 1 is the largest integer cycle period under consideration. In the overall test WSS
vs. ACS we reject H if it is rejected in at least one of the binary tests. The decision is reached
by employing Holm’s sequentially rejective test [84]. This test controls the familywise error rate
(FWER), which is the probability of at least one false rejection and, therefore, in our case, it is
identical to the probability of false alarm pfa of the test in (4.3), i.e.

FWER = P
(
rejectH in any testH vs. Ai |H

)
≡ pfa. (4.12)

Following Holm’s test procedure we reach a decision in the overall test by obtaining the minimum
p-value pγ, where γ indicates the index of the corresponding binary test, i.e.

γ = arg min
i=1,...,K

pi, (4.13)
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which we compare to a threshold pfa/K . Hence, if pγ ≥ pfa/K , then we fail to reject H , and if
pγ < pfa/K , we reject H and the signal is said to be ACS. To estimate the p-values we exploit
that the distribution of the GLR under H for a given ∆d, G(∆d |Pint), can be approximated as
the distribution of a product of independent Beta random variables as shown in the following
proposition:

Proposition 4.4.1. The distribution of the GLRT statistic under the null hypothesis is asymptotically
given by a product of independent Beta random variables that is

G(∆d |Pint)
D
=

N/Pint∏
l=1




Pint∏
k=1

L∏
m=1

Uk,m




(4.14)

where all U are independent Beta distributed random variables. Specifically, they are given by

Uk,m ∼ Beta {M − ((k − 1)L + m − 1) , (k − 1)L} . (4.15)

Proof. The proof directly follows from Theorem 3.4.1 for the following parameters: The total
number of blocks under the alternative is given by L = N/Pint, where each block is of dimension
λl = LPint ∀l. Finally, each block under the alternative is tested against nl = Pint ∀l blocks under
the null with κk = L, k = 1, . . . , Pint, which concludes the proof. �

In order to obtain the distribution of the minimum value of the statistic G(∆min |Pint), we simplify the
problem by assuming independence among the GLRTs to apply results from order statistics [111].
Specifically, we approximate the cumulative distribution of G(∆min |Pint) by the first-order statistic

F1(G(∆min |Pint)) = 1 − [1 − F (G(∆min |Pint))]D . (4.16)

This result allows us to estimate the p-value pi for each binary hypothesis test H vs. Ai for
i = 1, . . . , K .

In Figure 4.2 we compare the ECDFs of the first-order statistic computed under the null hypothesis,
shown by the dashed plot, with the approximate distribution obtained from the product of independent
Beta distributed random variables, shown by the solid plot. It can be observed that the distributions
agree quite well, even though the dashed plot is a little left of the blue one. This will result in
slightly underestimated p-values, which will also be discussed in the following section. Further
simulations (not shown here) confirm these findings.

At the same time we can obtain an estimate of the cycle period of the ACS process as follows. If the
multiple hypothesis test rejectsH , the integer part Pint is estimated as

P̂int = γ + 1. (4.17)
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Figure 4.2: Comparison of ECDFs of the first-order statistic computed under the null hypothesis with the
approximated distribution shown in blue for the following parameters: Pint = 4, N = 768,
L = 2, M = 25 and D = 20

Furthermore, the fractional part of the cycle period is obtained from (4.4) as

ε̂ = P̂int(1/∆γmin − 1), (4.18)

where ∆γmin denotes the optimal resampling rate corresponding to hypothesis Aγ. Hence, the
estimate of the cycle period is given by

P̂ = P̂int + ε̂ . (4.19)

The complete test procedure is summarized in Algorithm 4.1.

4.5 Numerical Results

In this section we evaluate the performance of the proposed technique and compare it to the
techniques presented in [35] and [36]. For the evaluation we use Monte Carlo simulations in a
communications scenario:

H : u[n] = w[n],

A : u[n] = H[n] ∗ s[n] + w[n],
(4.20)

where w[n] ∈ CL is colored Gaussian noise generated with a moving average filter of order 20 and
H[n] ∈ CL×L is a Rayleigh fading channel with a delay spread of 10 times the symbol duration T0

and a sampling frequency of fs = 1.2 MHz. The ACS transmission signal s[n] ∈ CL is obtained by

51
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Algorithm 4.1 Multiple-Hypothesis-Test Procedure
Input: Discrete-time process u[n], maximum integer part Pmax, number D of grid points of

fractional parts, desired probability of false alarm α.

Resampling
1: k ← 1
2: for k ≤ Pmax − 1 do
3: Pint = k + 1
4: d ← 1
5: for d ≤ D do
6: ũ[n]← resample u[n] by ∆d
7: Compute G(∆d) with (4.5)
8: d ← d + 1
9: end for

10: Obtain ∆min = arg min
∆d=1, . . .,D

G(∆d)

11: Determine p-value pk of G(∆min)
12: k ← k + 1
13: end for

Multiple Hypothesis Test
14: γ = arg min

i=1,...,K
pi,

15: if pγ ≥ pfa/(Pmax − 1) then
16: Fail to rejectH : u[n] is WSS
17: else
18: RejectH : u[n] is ACS with P̂int = γ + 1 and ε̂ = P̂int(1/∆γmin − 1)
19: end if

subsampling a long QPSK-signal with raised-cosine pulse shaping and roll-off factor 1. In order to
obtain M realizations, which are required to obtain the test statistic, we generate one long sequence
u[n] and cut that into M pieces.

We obtain the joint probability of detection and correctly estimating the cycle period

pd = P(pγ < pfa/K ∩ |P̂ − P | < 1/D | A) (4.21)

for a given probability of false alarm pfa. The benchmark techniques [35] and [36] do not provide
estimates of the cycle period — they rather need this knowledge a priori. For a fair comparison
we obtain the test statistics of [35] and [36] for the same grid of cycle periods we use for our
technique. Moreover, instead of performing a multiple hypothesis test, we simply use the maximum
test statistic. If this is greater than the threshold used to solve the detection problem, the cycle period
corresponding to this maximum test statistic is its estimate. Other cycle period estimation techniques
such as [37, 112] cannot be used as comparisons since they are only cycle period estimators but not
ACS signal detectors.
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Figure 4.3: Probability of jointly detecting ACS signals and estimating P for pfa = 0.05 for the following
scenario: P = 3.19, L = 2 antennas, N = 300 samples, M = 25 realizations, Pmax = 10, and
D = 100

For the simulation we use the following parameters: A symbol duration of T0 = 2.6583µs, which
yields a cycle period of P = 3.19, L = 2 antennas, N = 300 samples per antenna, M = 25 snapshots,
and a probability of false alarm fixed at pfa = 5%. In Figure 4.3 we can see pd for a scenario with a
resampling grid of size D = 100, where the true cycle period lies on the grid of candidates. As
can be seen, the proposed technique substantially outperforms the two competitors. For instance,
for an SNR of −3dB we observe a relative performance gain of 35% and 58% of our technique
compared to [35] and [36], respectively. If we now choose a grid size D = 110, where the true cycle
period is off-grid by 0.9 · 10−3, we observe in Figure 4.4 that the performance of all three techniques
decreases although the proposed method still significantly outperforms the competitors.

Let us now consider an appropriate choice of D. Generally, D depends on the frequency resolution
of the estimates, which is in the order of 1/N . Since the resolution of the grid of fractional parts
is in the order of 1/D, a reasonable choice for D would be D ≥ N as illustrated in Figure 4.5. It
shows the joint probability of detection and correctly estimating the cycle period pd as a function of
grid size D of the grid of fractional parts for a cycle period of P = 3.19, L = 2, N = 300 samples,
M = 25 snapshots, and a probability of false alarm fixed at pfa = 5%. Furthermore, the true cycle
period lies off the grid of candidates. It can be observed that the performance increases until D ≥ N ,
where it saturates since then the limiting factor is the frequency resolution determined by N and not
the distance between grid points and fractional parts determined by D. However, the larger D the
higher the computational costs. Therefore, the price to pay for good performance is computational
complexity. Comparing the relative computation time of a MATLAB implementation with respect
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Figure 4.4: Probability of jointly detecting ACS signals and estimating P for pfa = 0.05 for the following
scenario: P = 3.19, L = 2 antennas, N = 300 samples, M = 25 realizations, Pmax = 10, and
D = 110
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Figure 4.5: Probability of jointly detecting ACS signals and estimating P for pfa = 0.05 as a function of D
for the following scenario: P = 3.19, L = 2, N = 300 samples, M = 25 realizations, Pmax = 10,
and SNR = −6 dB

to the technique proposed in [35] reveals that our detector requires double the computation time,
whereas [36] requires only one fifth of the time of [35]. The relative computational complexity of
the techniques is independent of the grid size D.
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4.6 Conclusion

4.6 Conclusion

In this chapter, we have presented a technique that jointly detects almost-cyclostationarity and
estimates the cycle period. While our technique is more computationally complex than competing
techniques, it also substantially outperforms them, which we have shown for the single array
application for spectrum sensing in cognitive radio. Hence, increased performance comes at the
price of computational complexity.
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5 Two-channel passive detection

This chapter considers the two-channel passive detection of cyclostationarity. Specifically, based
on two receiver arrays, one of which is a reference array, we consider the problem of detecting a
Gaussian cyclostationary signal corrupted with temporally colored and spatially correlated noise.
We derive an asymptotic GLRT and show that neither a UMPIT nor an LMPIT for close hypotheses
exist. Furthermore, an insightful interpretation of the test statistic is provided, which leads to the
proposition of an LMPIT-inspired test statistic. Monte Carlo simulations demonstrate that the
proposed detectors outperform comparable state-of-the-art detectors1.

5.1 Introduction

In this chapter we consider a MIMO passive bistatic radar system. Such systems are of special
interest as they are simple, cheap, and undetectable because the transmitter is not part of the
system [49]. A passive bistatic radar system consists of one receiver and one non-cooperative
transmitter, which is referred to as an illuminator of opportunity (IO). The passive radar receives a
direct-path signal, which is a noisy version of the transmitted signals from the IO, and a target-path
signal, which is the echo from the target if it is present, or only noise, otherwise. In order to separate
these two signals at the receiver, either directional antennas [113], digital beamforming [54, 114] or
both could be employed. The target-path signal may also be corrupted with direct-path and clutter
components. Given a strong direct-path signal in the reference channel, techniques to cancel these
kinds of interferences are presented in, e.g., [56, 57]. Typically, the IO is a commercial radio or
TV broadcast system, or it could be a space-based source such as communication or navigation
satellites [46–48].

Various techniques have been derived to detect the presence of the target echo at the surveillance
channel (SC) assuming that the transmission signal is temporally white. The most common approach
is based on cross-correlating the signals at SC and reference channel (RC), e.g., [53, 57, 58, 61–63].

1This chapter is based on the papers “Two-channel passive detection exploiting cyclostationarity, S. Horstmann,
D. Ramirez, P.J. Schreier, Proc. 27th European Signal Proc. Conf. (EUSIPCO), 2019 ” and “Two-Channel
Passive Detection of Cyclostationary Signals, S. Horstmann, D. Ramirez, P.J. Schreier, IEEE Transactions on Signal
Processing, 2020”
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Although this resembles the matched filter, it is suboptimal due to noise at the RC [58]. In [64–67]
generalized likelihood ratio tests (GLRT) were derived for the case of unknown stochastic waveforms
and for various assumptions on the signal and noise models. Reference [64] considered the detection
of a rank-one signal received by a multiantenna array, whereas [65] generalized these results to a
rank-p signal. These detectors assume that the noise has an arbitrary spatial correlation. The GLRT
for spatially white noise with the same variance at SC and RC was derived in [66]. Finally, [67]
extended the results to the detection of a rank-p signal in white noise with different variances at
SC and RC and spatially uncorrelated noise with arbitrary variances. The GLRTs for the case of
unknown deterministic waveforms in temporally and spatially white noise were presented in [68]
and [51], where [68] assumed unknown and [51] assumed known noise variance. For the same
problem, an approximate Bayesian test was derived in [68] and the exact Bayesian test was presented
in [69]. The work in [70] proposed an ad-hoc detector based on the generalized coherence [71].

However, all these aforementioned detectors do not exploit the fact that digital communication
signals transmitted by potential IOs are cyclostationary [22]. For single array detection this property
was exploited in [115,116], which derived locally optimum tests for a known signal waveform and
different assumptions on the noise. In [115] temporally and spatially white Gaussian noise was
considered, whereas [116] considered non-Gaussian noise. The GLRT and locally most powerful
invariant test (LMPIT) for detecting an unknown cyclostationary signal with a single array in
temporally and spatially correlated noise was derived in [38] and specialized to various noise
structures in [92, 117].

5.1.1 Outline of this chapter

The detection problem is formulated in Section 5.2 followed by the derivation of the GLRT in
Section 5.3. In Section 5.4 we examine the existence of the UMPIT and the LMPIT, and in Section
5.5 we provide an interpretation of the statistics. In Section 5.5 we propose the LMPIT-inspired
detector. Finally, the performance of the GLRT and the LMPIT-inspired tests is numerically
evaluated with Monte Carlo simulations in Section 5.7. This chapter is concluded in Section 5.8.

5.2 Problem formulation

We consider a passive bistatic radar setup, in which there are an RC and an SC. Without loss of
generality, we assume that each array is equipped with L antennas.2 Furthermore, we assume that
the IO is equipped with LI antennas, and a noisy version of its transmitted signal is received at the

2Note that the derivations can easily be generalized to different numbers of antennas at both arrays.
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Figure 5.1: MIMO passive bistatic radar system that consists of an IO, a reference, and a surveillance array.
The reference array receives the direct-path signal from the IO illustrated by the black dashed
line and in the presence of a moving target the surveillance array receives the target-path signal,
which is depicted by the gray dashed dotted line.

RC. The cancellation of interference and clutter in the RC has been considered in e.g. [52], [53].
If there is a target present, the echo of the transmitted signal is observed at the SC. If there is no
target present, only noise is received at the surveillance array. Hence, we assume that there is no
clutter, interference, or direct-path signal present in the SC, which is achieved by either physical
shielding [50] or cancellation by signal processing techniques presented in e.g. [54–57]. The
complete cancellation of direct-path interference in the SC is, admittedly, an idealized assumption as
was pointed out in [54] and the works in [58–60] have considered the direct-path interference in their
signal models. Furthermore, we restrict our attention to the true velocity of the target corresponding
to a Doppler shift, which allows us to assume that the target echo observed at the SC is synchronized
to the reference signal [51, 60, 67]. The time-delay of the target echo is inherently accounted for in
the frequency-selective channel, which we assume in our signal model in the following paragraph.
Moreover, considering that direct-path interference has zero Doppler-shift as opposed to the target
path signal, it can be filtered [118]. Thus, taking into account the aforementioned assumptions, the
passive radar system considered in this chapter is illustrated in Figure 5.1. The detection problem
can be formulated as

H0 :



us[n] = vs[n],

ur [n] = Hr [n] ∗ s[n] + vr [n],

H1 :



us[n] = Hs[n] ∗ s[n] + vs[n],

ur [n] = Hr [n] ∗ s[n] + vr [n],

(5.1)
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for n = 0, . . . , N P − 1 and where Hs[n] ∈ CL×LI and Hr [n] ∈ CL×LI represent the time-invariant
frequency-selective channels from the IO to the reference and surveillance arrays, respectively. The
additive noise terms vs[n] ∈ CL and vr [n] ∈ CL are assumed to be wide-sense stationary (WSS)
with arbitrary temporal and spatial correlation, but they are assumed to be uncorrelated between
reference and surveillance arrays. The signal s[n] ∈ CLI transmitted by the IO is assumed to be
a discrete-time zero-mean second-order cyclostationary (CS) signal with cycle period P, i.e., its
matrix-valued covariance sequence Rss[n,m] = E[s[n]sH [n − m]] = Rss[n + P,m] is periodic in
n with period P. Since the transmitted signal s[n] is CS, the signal ur [n] ∈ CL received at the
reference array is a multivariate CS process with cycle period P under both hypotheses, whereas the
signal us[n] ∈ CL received at the surveillance array is WSS underH0 and CS with cycle period P

underH1. As the cycle period is related to signal features such as carrier frequency, symbol rate, or,
for instance, cyclic prefix length, which are known by the standards used by the IO, we can assume
that the cycle period P is known a priori. If this is not the case, the cycle period may be estimated
with techniques presented in, e.g., [34, 112, 119]. Moreover, we assume that LI ≥ L, which implies
that the cyclic (cross) power spectral densities (PSD) of Hs[n] ∗ s[n] and Hr [n] ∗ s[n] have full rank
L. We make this assumption because the low-rank case would impose additional structure that is
not considered in this work.

In order to formulate the hypothesis test, let us consider the vector-valued process

x[n] =
[
uT [nP] · · · uT [(n + 1)P − 1]

]T
∈ CLP, (5.2)

which is WSS if the L-variate process u[n] ∈ CL is CS with cycle period P [3]. This implies that
its matrix-valued covariance function Rxx[n,m] = E

[
x[n]xH [n − m]

]
= Rxx[m] only depends on

the time-shift. Moreover, the stack of N observations w =
[
xT [0] · · · xT [N − 1]

]T
∈ CLNP has a

Hermitian block-Toeplitz structured covariance matrix with block size LP:

Rww = E[wwH ] =



Rxx[0] · · · Rxx[N − 1]
...

. . .
...

RH
xx[N − 1] · · · Rxx[0]



∈ TLNP
LP . (5.3)

Exploiting the latter considerations we observe that the stack of N P samples of ur [n]

wr =
[
uT
r [0] · · · uT

r [N P − 1]
]T
∈ CLNP, (5.4)
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has covariance matrix Rr = E[wrwH
r ], which is a block-Toeplitz matrix with block size LP under

both hypotheses since the signal ur [n] is CS with cycle period P regardless of the hypothesis. On
the other hand, the stack of observations of us[n]

ws =
[
uT
s [0] · · · uT

s [N P − 1]
]T
∈ CLNP, (5.5)

has a block-Toeplitz structured covariance matrix R(0)
s = E[wswH

s |H0] with block size L under the
null hypothesis, where us[n] ∈ CL is WSS, and covariance matrix R(1)

s = E[wswH
s |H1], which is

block-Toeplitz with block size LP under the alternative, where us[n] is CS with cycle period P.
Moreover, we stack the observations from SC and RC into one long vector

w =
[
wT

s wT
r

]T
∈ C2LNP . (5.6)

Now let us investigate the structure of the covariance matrix of w under both hypotheses. Since the
vectors ws and wr are uncorrelated under the null hypothesis, the covariance matrix will simply be
a 2× 2 block-diagonal matrix wherein the covariance matrices of ws and wr are the first and second
blocks on the main diagonal, respectively,

R0 = E[wwH |H0] =


R(0)
s 0
0 Rr


. (5.7)

The covariance matrix of w under the alternative becomes more involved as ws and wr are
correlated:

R1 = E[wwH |H1] =


R(1)
s Rsr

Rrs Rr


, (5.8)

where Rsr = RH
rs = E[wswH

r |H1] is the cross-covariance matrix of ws and wr , which is a
block-Toeplitz matrix with block size LP since the matrix-valued cross-covariance sequence of
us[n] and ur [n] is also periodic with period P. Thus, all of the matrices R(1)

s , Rr , and Rsr are
block-Toeplitz matrices with block size LP. Assuming that us[n] and ur [n] are zero-mean proper
complex Gaussian random processes, we can formulate the hypothesis test as

H0 : w ∼ CN 2LNP (0,R0),

H1 : w ∼ CN 2LNP (0,R1).
(5.9)

As R0 and R1 are unknown, (5.9) is a composite hypothesis test, which is typically approached by a
GLRT, a UMPIT, or an LMPIT. The block-Toeplitz structure of the covariance matrices precludes
the derivation of the aforementioned detectors. This is because there is no closed-form for the
ML estimate of block-Toeplitz covariance matrices and they do not have the necessary invariances
for the existence of the UMPIT or the LMPIT. To overcome this issue, we follow an approach
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similar to [38], where it is shown that we can asymptotically (N → ∞) approximate a block-Toeplitz
covariance matrix by a block-circulant matrix and the likelihood with the block-circulant matrix
converges to that with the block-Toeplitz matrix.

Before proceeding we should note that a (block) circulant matrix can be diagonalized by the DFT.
To this end let us consider the following linear transformation of w♣,

z♣ = (LNP,N ⊗ IL)(FNP ⊗ IL)Hw♣, (5.10)

where ♣ ∈ {s, r }, FNP is the DFT matrix of size N P, and LNP,N is the commutation matrix, which
fulfills vec (A) = LMN,N vec

(
AT

)
for an M×N matrix A. Hence, z♣ contains a specific reordering

of the frequencies in w♣. In order to give an insight into the reordering let us first partition zs into
N blocks x[n] ∈ CLP and zr into N blocks y[n] ∈ CLP for n = 0, . . . , N − 1. Furthermore, the DFT
of length N P of u♣[n] is defined as

u♣(θk ) =
NP−1∑
n=0

u♣[n]e−jθkn, (5.11)

with θk = 2π
NP k. Then the nth block of size LP of zs is given by

x[n] =
[
uT
s (θn) uT

s (θN+n) · · · uT
s (θ(P−1)N+n)

]T
(5.12)

and similarly for zr :

y[n] =
[
uT
r (θn) uT

r (θN+n) · · · uT
r (θ(P−1)N+n)

]T
. (5.13)

Hence, each of the blocks x[n] and y[n] contains P frequencies separated by multiples of the
fundamental cycle frequency 2π

P . Recall that frequency components of a CS process separated by
multiples of a cycle frequency may be correlated [10].

Let us now investigate the (cross) covariance matrices of zs and zr . Under the null hypothesis we
obtain

S0 = E[zzH |H0] =


S(0)
s 0
0 Sr


, (5.14)

where the off-diagonal blocks are zero since observations at SC and RC are uncorrelated, and the
covariance matrices S(0)

s = E[zszHs |H0] ∈ SLNP
L and Sr = E[zrzHr ] ∈ SLNP

LP are block-diagonal
Hermitian matrices with block size L and LP, respectively, since the covariance matrices of ws and
wr are asymptotically block-circulant and diagonalized by the linear transformation in (5.10). Note
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that Sr is block-diagonal with block size LP regardless of the hypothesis. UnderH1, the covariance
matrix is given by

S1 = E[zzH |H1] =


S(1)
s Ssr

Srs Sr


, (5.15)

where S(1)
s = E[zszHs |H1] and Ssr = SH

rs = E[zszHr |H1] are block-diagonal with block size LP.
Hence, each of the four blocks in S1 is now given by a block-diagonal matrix with block size LP.
Finally, the hypotheses can be formulated as

H0 : z ∼ CN 2LNP (0, S0),

H1 : z ∼ CN 2LNP (0, S1).
(5.16)

5.3 Derivation of the GLRT

The GLR is given by

G =
p(z0, · · · , zM−1; Ŝ0)

p(z0, · · · , zM−1; Ŝ1)
, (5.17)

where z0, . . . , zM−1 denote M independent and identically distributed (i.i.d.) realizations3 of z and
Ŝ0 and Ŝ1 denote the ML estimates of S0 and S1, respectively. Under the Gaussian assumption the
likelihoods are given by

p(z0, · · · , zM−1; Ŝj ) =
1

π2LNPM det
(
Ŝj

)M × exp
{
−M tr

(
QŜ−1

j

)}
, (5.18)

where Q = 1
M

∑M−1
m=0 zmzHm =



Qs Qsr

Qrs Qr


is the sample covariance matrix of z and j ∈ {0, 1}

indicates whether it is the ML estimate underH0 orH1.

In the following we will derive the GLRT, which requires the ML estimation of the covariance
matrices under both hypotheses. Although this is straightforward under the null hypothesis as it
requires the ML estimation of a block-diagonal matrix, it demands a suitable permutation underH1

to obtain another block-diagonal covariance matrix that is easy to estimate.

Theorem 5.3.1. The GLR (5.17) is given by

G
1
M =

N∏
k=1

det
(
Dk − CkCH

k

)
, (5.19)

3In practice i.i.d. observations are rarely available. This may be addressed by dividing a long observation into M
windows and treating them as if they were i.i.d.

63



5 Two-channel passive detection

where Dk is the kth LP × LP block of

D = diagL (Qs)−1/2 diagLP (Qs) diagL (Qs)−1/2 , (5.20)

and Ck the kth LP × LP block of

C = diagL (Qs)−1/2 diagLP (Qsr ) diagLP (Qr )−1/2 . (5.21)

Proof. The ML estimate Ŝ0 can be easily found considering the block-diagonal structure of the
covariance matrix underH0. With results from complex-valued matrix differentiation [120], the
ML estimate is given by

Ŝ0 =



diagL (Qs) 0
0 diagLP (Qr )


. (5.22)

In order to find the ML estimate underH1 we note that the permutation of the elements in w, given
by

w̃ = Tw, (5.23)

where T =
(
L2NP,NP ⊗ IL

)
, yields a block-Toeplitz structured covariance matrix of w̃ with block

size 2LP. This is easily shown by noticing that w̃ contains the samples us[n] and ur [n] in alternating
order and considering that

[
us[n]T ur [n]T

]T
∈ C2L is a 2L-variate CS process with cycle period

P. Again this block-Toeplitz covariance matrix can be approximated by a block-circulant matrix,
and the latter can be block-diagonalized by the transformation

z̃ = (LNP,N ⊗ I2L)(FNP ⊗ I2L)H w̃, (5.24)

i.e., the covariance matrix S̃1 = E
[
z̃z̃H |H1

]
∈ S2LNP

2LP is Hermitian and block-diagonal with block
size 2LP. Exploiting properties of the Kronecker product we can rewrite (5.24) as

z̃ =
[
(LNP,NFH

NP ⊗ I2) ⊗ IL
]

w̃. (5.25)

Considering (5.10), the linear transformation of w is given by

z =
[
(I2 ⊗ LNP,NFH

NP) ⊗ IL
]

w. (5.26)

It can be observed that (5.25) and (5.26) are equal up to the commutation of the Kronecker product
inside the parentheses. We should further notice that the matrix T commutes with that product.
After putting these pieces together, z̃ and z are also related by the linear transformation T as

z̃ = Tz. (5.27)
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5.3 Derivation of the GLRT

Hence, similar to w̃, z̃ contains us (θn) and ur (θn) in alternating order. As S̃1 is block-diagonal, we
can easily find its ML estimate as

^̃S1 = diag2LP
(
Q̃

)
, (5.28)

where Q̃ = TQTT . After exploiting the invariance of the ML estimate [76], we find

Ŝ1 = TT ^̃S1T = TT diag2LP
(
Q̃

)
T. (5.29)

In order to express this as a function of the sample covariance matrix Q, let us study the effect of
the permutation. The (k, l)th L × L block of ^̃S1 with k = mN P + i and l = nN P + j for m, n = 0, 1
and i, j = 0, . . . , N P − 1 is shifted to the (k ′, l ′)th entry in Ŝ1 with k ′ = 2i + m and l ′ = 2 j + n.
Applying the permutation to every element, (5.29) can be expressed as a function of Q as

Ŝ1 =



diagLP (Qs) diagLP (Qsr )

diagLP (Qrs) diagLP (Qr )


. (5.30)

Now we plug the ML estimates (5.22) and (5.30) into the likelihood ratio (5.17) to obtain the
following expression:

G
1
M =

det
(
Ŝ1

)
det

(
Ŝ0

) = det
(
diagLP (Qs) − diagLP (Qsr ) diagLP (Qr )−1 diagLP (Qrs)

)
det

(
diagL (Qs)

)
=

N∏
k=1

det
(
Dk − CkCH

k

)
, (5.31)

where D and C are given by (5.20) and (5.21), respectively. In this expression, we exploited the
fact that the determinant of a block-diagonal matrix is equal to the product of the determinants of
the single blocks, and the expression for the determinant of a 2 × 2 block matrix with invertible
blocks. �

As can be observed, the GLR consists of two parts. The first one is the coherence matrix D, which
accounts for the spectral correlation present at the SC. The second part is the cross-coherence
matrix C, which captures the cross-correlation between SC and RC, i.e., it accounts for the
inherent cross-correlation and also for cross-spectral correlation induced by the presence of
cyclostationarity.

Note that there are also the Rao and Wald tests, which could be applied to our problem. Asymptoti-
cally, these tests have the same performance as the GLRT [79] but in the finite sample case their
performance depends on the specific underlying model as was pointed out for a different problem
in, e.g., [121, 122].
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5 Two-channel passive detection

Threshold selection and null distribution

In order to apply the proposed detector, it is necessary to determine a threshold that assures a given
probability of false alarm. To this end we propose two alternatives. The first one considers the
invariances of the tests. We observe that zs can be multiplied by any non-singular block-diagonal
matrix with block size L and zr with any non-singular block-diagonal matrix with block size LP

without changing the structure of S0 and S1, i.e., the test is invariant to the noise PSD in the SC and
signal-plus-noise PSD in the RC. In the time-domain this corresponds to a circular convolution of
us[n] with an arbitrary L-variate sequence and a circular convolution of the stack of P observations
of ur [n] with an arbitrary LP-variate sequence, which is asymptotically equivalent to (MIMO)
linear filtering. These invariances allow us to assume, without loss of generality, that under H0

z N→∞
∼ CN (0, I2LPN ). Hence, numerical simulations with a temporally and spatially white process

can be used to obtain the threshold under the null hypothesis for any arbitrary process.

The second approach follows our work in Chapter 3 that allows us to decompose the distribution of
the GLR under the null into a product of independent beta random variables as follows

Proposition 5.3.1. The distribution of the GLRT statistic proposed in Theorem 5.3.1 under the null
hypothesis is given by a product of independent Beta random variables that is

G 1/M D
=

N∏
l=1




P∏
k=1

L∏
m=1

Uk,m







LP∏
n=1

Vn




(5.32)

where all U,V are independent Beta distributed random variables. Specifically, they are given by

Uk,m ∼ Beta {M − ((k − 1)L + m − 1) , (k − 1)L} , (5.33)

Vn ∼ Beta {M − (LP + n − 1) , LP} . (5.34)

Proof. The proof directly follows from Theorem 3.4.1 for the following parameters: The total
number of blocks under the alternative is given by L = N , where each block is of dimension
λl = 2LP ∀l. Now we can permute the blocks under the null such that each block under the

alternative is tested against nl = P + 1 ∀l blocks under the null with κk =



L, k = 1, . . . , P,

LP, k = P + 1.
�

Since both approaches only hold asymptotically, the finite-sample size effects will be studied in
Section 5.7.
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5.4 Derivation of optimal invariant tests

5.4 Derivation of optimal invariant tests

In this section we study the existence of invariant tests. In particular, we first consider the UMPIT,
which is the optimal detector among those that are invariant. Moreover, we also consider the
LMPIT, which is optimal only for close hypotheses. In order to derive the UMPIT or the LMPIT
there are several steps that need to be accomplished [76]: (i) determine the group of invariant
transformations, (ii) identify the maximal invariant statistic, (iii) determine the distribution of the
maximal invariant under both hypotheses, and (iv) obtain the likelihood ratio of the densities. If
this ratio (or a monotone transformation thereof) does not depend on the unknown parameters, it
would yield the UMPIT. Although there are some scenarios in which the maximal invariant statistic
and its distributions can be established, e.g. [121,123], in general this can be a tedious approach. In
order to avoid these involved tasks, we will make use of Wijsman’s theorem, which allows us to
directly compute the ratio of maximal invariants [72]. In the derivation, we will show that neither
the UMPIT nor the LMPIT exist for the given hypothesis test. The first step of this proof is to
identify the invariances of the hypothesis test as they are required in Wijsman’s theorem.

Considering only linear operations, which will maintain Gaussianity, we may first observe that
we can multiply zs by any non-singular block-diagonal matrix with block size L and zr with any
non-singular block-diagonal matrix with block size LP without changing the structure of S0 and
S1. Secondly, we can permute the blocks x[n] in zs arbitrarily, provided that we apply the same
permutation to the blocks y[n] in zr . This corresponds to a reordering of the blocks that contain P

frequencies separated by multiples of 2π
P . Moreover, we may arbitrarily permute these P frequencies

within each block x[n] and y[n] for every n = 0, . . . , N − 1. Hence, the invariance group can be
formulated as

G = {g : z → g(z) = Ψz} , (5.35)

where Ψ =


PsG 0
0 PrH


with

P♣ = *
,

N∑
k=1

εkε
T
k ⊗ V(k)

♣ ⊗ IL+
-

(U ⊗ ILP) , (5.36)

εk is the kth column of IN , V(k)
♣ ∈ V denotes a P×P permutation matrix, and U ∈ U is a permutation

matrix of size N × N . V and U denote the corresponding sets of P- and N-dimensional permutation
matrices, respectively. Furthermore, G ∈ G and H ∈ H, where G is the set of nonsingular
block-diagonal matrices with block size L and H denotes the set of nonsingular block-diagonal
matrices with block size LP. In (5.36), the left parenthesized expression performs the permutation
within the blocks x[n] or y[n], respectively, and the right parenthesized expression applies the same
permutation to the blocks x[n] and the blocks y[n].
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5 Two-channel passive detection

Now we will use Wijsman’s theorem [72] to obtain the ratio of the maximal invariant densities
under the two hypotheses, which is given by

L =

∫
G

p(g(z);H1) | det(Jg) |dg∫
G

p(g(z);H0) | det(Jg) |dg
, (5.37)

where G denotes the group of invariant transformations, which we identified for the given problem
in the previous paragraph. The transformation g(·) ∈ G, p(z;Hi) is the probability density function
of z under hypothesisHi . Moreover, Jg denotes the Jacobian matrix of the transformation g(·) and
finally dg denotes the invariant group measure, which in our case is the usual Lebesgue measure.

For the problem considered in this work, Wijsman’s theorem states that the ratio of the distributions
of the maximal invariant statistic is given by

L =

∑
VN

0 ,V
N
1 ,U

∫
G

∫
H

det(S1)−M | det(G) |2M | det(H) |2M exp
{
−Mtr

(
ΨQΨHS−1

1

)}
dGdH∑

VN
0 ,V

N
1 ,U

∫
G

∫
H

det(S0)−M | det(G) |2M | det(H) |2M exp
{
−Mtr

(
ΨQΨHS−1

0

)}
dGdH

,

(5.38)
where

∑
VN

0 ,V
N
1 ,U
=

∑
V(1)

0
· · ·

∑
V(N )

0

∑
V(1)

1
· · ·

∑
V(N )

1

∑
U, and dG and dH are the invariant measures

on the sets G and H, respectively. If the ratio did not depend on unknown parameters, the UMPIT
would exist. However, it will turn out by further simplifying (5.38) that the UMPIT does not exist
for this problem.

Lemma 5.4.1. The ratio (5.38) can be simplified as

L ∝
∑

VN
0 ,V

N
1 ,U

∫
G

∫
H
β(G) β(H)e−M[α1 (G)+α2 (G,H)]dGdH, (5.39)

with

β(A) = | det(A) |e−M tr(AAH ), (5.40)

α1(G) =
N∑
k=1

P∑
m,n=1
m,n

tr
(
Γ(m,n)
k

G(n,n)
k

D(n,m)
k

G(m,m)H
k

)
, (5.41)

Γ = PT
s diagL (Σ1)−

1
2 Σ1 diagL (Σ1)−

1
2 Ps, (5.42)

α2(G,H) =
N∑
k=1

tr
(
ΛkGkCkHH

k

)
, (5.43)

Λ = PT
r Σ
− 1

2
2 Σ21 diagL (Σ1)−

1
2 Pr, (5.44)

where S−1
1 = Σ =



Σ1 Σ12

Σ21 Σ2


.
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5.4 Derivation of optimal invariant tests

Proof. First we observe that the terms det(S0)−M and det(S1)−M in (5.38) neither depend on the
observations nor the invariances. Hence, they can be discarded in the ratio. Secondly, let us focus
on the denominator of the ratio, specifically, on the exponential term. Taking into account that Ψ
and S0 are block-diagonal with two blocks, the denominator can be simplified as

tr
(
ΨQΨHS−1

0

)
= tr

(
PsGQsGHPT

s S−1
s

)
+ tr

(
PrHQrHHPT

r S−1
r

)
. (5.45)

Applying the change of variables G → GB−
1
2

s and H → HB−
1
2

r , where Bs = diagL (Qs) and
Br = diagLP (Qr ), yields

tr
(
ΨQΨHS−1

0

)
= tr

(
PsGB−

1
2

s QsB
− 1

2
s GHPT

s S−1
s

)
+ tr

(
PrHB−

1
2

r QrB
− 1

2
r HHPT

r S−1
r

)
. (5.46)

We should note that the data-dependent terms B−
1
2

s QsB
− 1

2
s and B−

1
2

r QrB
− 1

2
r are whitened on their

main diagonal blocks, i.e., these are given by IL and ILP, respectively. These whitened main
diagonal blocks are the only blocks of those matrices involved in the trace operations since the other
matrices are block-diagonal, in the first trace operator with block size L × L and in the second trace
operator with block size LP × LP. For this reason the denominator can be discarded in the ratio
(5.38).

Hence, L simplifies as

L ∝
∑

VN
0 ,V

N
1 ,U

∫
G

∫
H
| det(G) |2M | det(H) |2M exp

{
−Mtr

(
ΨQΨHS−1

1

)}
dGdH. (5.47)

In order to further reduce this expression, we first consider the structure of the inverse covariance
matrix S−1

1 . Let us define the matrices Σ = S−1
1 and Ψ̄ = ΨQΨH , where these matrices can

be partitioned as Σ =


Σ1 Σ12

Σ21 Σ2


and Ψ̄ =



Ψ̄1 Ψ̄12

Ψ̄21 Ψ̄2


. Note that each of the four LN P-

sized blocks in Σ are block-diagonal with block size LP. Furthermore, after another change of
variables G→ GB−

1
2

s and H→ HB−
1
2

r , the blocks of Ψ̄ are given by Ψ̄1 = PsGB−
1
2

s QsB
− 1

2
s GHPH

s ,
Ψ̄2 = PrHB−

1
2

r QrB
− 1

2
r HHPH

r and Ψ̄12 = Ψ̄
H
21 = PsGB−

1
2

s QsrB
− 1

2
r HHPH

r . Finally, putting things
together, (5.47) becomes

L ∝
∑

VN
0 ,V

N
1 ,U

∫
G

∫
H
| det(G) |2M | det(H) |2Me−M tr(Ψ̄1Σ1)e−2M tr(Ψ̄12Σ21)e−M tr(Ψ̄2Σ2)dGdH.

(5.48)
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In order to further disentangle this expression, we consider the traces in the exponential terms
individually. Introducing the change of variables G→ PT

s diagL (Σ1)−
1
2 PsG and considering that

the trace is given by the sum of the diagonal elements, tr(Ψ̄1Σ1) simplifies to

tr(Ψ̄1Σ1) = tr
(
GGH

)
+

N∑
k=1

P∑
m,n=1
m,n

tr
(
Γ(m,n)
k

G(n,n)
k

D(n,m)
k

G(m,m)H
k

)
, (5.49)

where we also considered that both Γ and D, given by (5.42) and (5.20), respectively, are whitened
on their L × L main diagonal and G ∈ G. It should be noted that (5.49) depends on unknown
parameters through Γ.

The second exponential term in (5.48) can be reduced by introducing the change of variables
H→ PT

r Σ
− 1

2
2 PrH as

tr
(
Ψ̄12Σ21

)
=

N∑
k=1

tr
(
ΛkGkCkHH

k

)
, (5.50)

where Λ is given by (5.44).

Finally, by plugging in the previous change of variables, the last exponential term in (5.48) becomes

tr
(
Ψ̄2Σ2

)
= tr

(
Σ
− 1

2
2 PrHB−

1
2

r QrB
− 1

2
r HHPT

r Σ
− 1

2
2 Σ2

)
= tr

(
HHH

)
, (5.51)

where the last simplification follows from the fact that H is block-diagonal with block size LP and
B−

1
2

r QrB
− 1

2
r is white on its LP-sized main diagonal blocks. The proof follows by plugging (5.49),

(5.50), and (5.51) into (5.48). �

We should note that both Γ and Λ depend on unknown parameters in Σ. For this reason we can
conclude that the UMPIT does not exist. However, we may focus on the case of close hypotheses to
examine the existence of an LMPIT. In our scenario the hypotheses are close if the SNR at the SC is
very low. In this case the cross-correlation between SC and RC is close to zero, i.e., Ssr ≈ 0, and
at the SC the covariance matrix Ss is close to block-diagonal with block size L. For this reason
it follows that Σ12 ≈ 0, and Σ1 is also close to block-diagonal with block size L. Therefore, both
α1(G) ≈ 0 and α2(G,H) ≈ 0, and we may use a second-order Taylor series approximation to
approximate the exponential in (5.39) around α1(G) + α2(G,H) = 0 as

e−M (α1 (G)+α2 (G,H)) ≈ 1 − M (α1(G) + α2(G,H))

+
M2

2
[
α2

1(G) + 2α1(G)α2(G,H) + α2
2(G,H)

]
. (5.52)
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Thus, (5.39) can be approximated as

L ∝ L1 +L2 +L3 +L4 +L5, (5.53)

where

L1 = −M
∑

VN
0 ,V

N
1 ,U

∫
G
β(G)α1(G)dG

∫
H
β(H)dH, (5.54)

L2 = −M
∑

VN
0 ,V

N
1 ,U

∫
G

∫
H
β(G) β(H)α2(G,H)dGdH, (5.55)

L3 =
M2

2

∑
VN

0 ,V
N
1 ,U

∫
G
β(G)α2

1(G)dG
∫
H
β(H)dH, (5.56)

L4 =
M2

2

∑
VN

0 ,V
N
1 ,U

∫
G

∫
H
β(G) β(H)α1(G)α2(G,H)dGdH, (5.57)

L5 =
M2

2

∑
VN

0 ,V
N
1 ,U

∫
G

∫
H
β(G) β(H)α2

2(G,H)dGdH. (5.58)

Lemma 5.4.2. The following terms are zero:

L1 = 0, (5.59)

L2 = 0, (5.60)

L4 = 0. (5.61)

Proof. Let us first focus on L1, which is given by

L1 ∝
∑

VN
0 ,V

N
1 ,U

∫
G

∫
H
β(G) β(H)

N∑
k=1

P∑
m,n=1
m,n

tr
(
Γ(m,n)
k

G(n,n)
k

D(n,m)
k

G(m,m)H
k

)
dGdH. (5.62)

Applying the change of variables G(n,n)
k

→ −G(n,n)
k

and it can be seen that the integrals need to be
equal to their opposites, i.e., they are zero. In a similar fashion, it can be shown that the terms L2

and L4 are zero. �

Finally, the quadratic terms in α1(G) and α2(G,H) remain in (5.53). In the following theorem we
will show that these terms can be expressed as functions of the (cross) coherence matrices (5.20)
and (5.21).

Theorem 5.4.1. The ratio of the distribution of the maximal invariant statistic in (5.38) is

L ∝ LS + γLSR, (5.63)
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where

LS =

N∑
k=1
| |Dk | |

2 (5.64)

and

LSR =

N∑
k=1
| |Ck | |

2 (5.65)

with D and C given by (5.20) and (5.21), respectively. The parameter γ is a constant that depends
on unknown parameters but is independent of the observations.

Proof. Let us first focus on (5.56), which can be simplified as

L3 = M2

2
∑
VN

0 ,V
N
1 ,U

∫
G
β(G)

[∑N
k=1

∑P
m,n=1
m,n

tr
(
Γ(m,n)
k

G(n,n)
k

D(n,m)
k

G(m,m)H
k

)]2
dG

∫
H
β(H)dH

∝
∑
VN

0 ,V
N
1 ,U

∫
G
β(G)

∑N
k=1

∑P
m,n=1
m,n

tr2
(
Γ(m,n)
k

G(n,n)
k

D(n,m)
k

G(m,m)H
k

)
dG

(5.66)
where the integrals involving the cross-terms of the square, i.e., those elements of the sum that are
not multiplied by themselves, are zero since they are equal to their opposites as can be seen by
applying the change of variables G(n,n)

k
→ −G(n,n)

k
. Now (5.66) becomes the same expression as in

Appendix C in [38] and we can simplify it in the same way to obtain

L3 ∝ LS =

N∑
k=1
| |Dk | |

2, (5.67)

where D is given by (5.20). Secondly, we can reduce (5.58) as follows

L5 = M2

2
∑
VN

0 ,V
N
1 ,U

∫
G

∫
H
β(G) β(H)

[∑P
i, j,l=1 tr

(
Λ

(i, j)
k

G( j, j)
k

C( j,l)
k

H(l,i)H
k

)]2
dGdH

∝
∑
VN

0 ,V
N
1 ,U

∫
G

∫
H
β(G) β(H)

∑P
i, j,l=1 tr2

(
Λ

(i, j)
k

G( j, j)
k

C( j,l)
k

H(l,i)H
k

)
dGdH,

(5.68)

where the cross-terms of the square cancel out by another change of variables G( j, j)
k
→ −G( j, j)

k
or

H(l,i)
k
→ −H(l,i)

k
, respectively. Finally, following similar steps as in Appendix C of [38], we obtain

L5 ∝ LSR =

N∑
k=1
| |Ck | |

2. (5.69)

It should be noted that L3 and L5 are equal to LS and LSR up to constant terms that depend on
data-independent but unknown values in Γ and Λ. These constant terms are taken into account via
one constant γ, which allows us to express (5.53) as

L ∝ LS + γLSR . (5.70)
�
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Since L still depends on unknown parameters via the constant γ, we can conclude that the LMPIT
does not exist. We should note that the term LS is the LMPIT for the single array CS detection
problem [38]. After giving an interpretation of both LS and LSR in the following section, we will
study the influence of the two terms on the detection performance as a function of γ in Section 5.6,
which will finally show that an LMPIT-inspired detector can be suggested.

5.5 Interpretation of the test statistics

As can be seen in (5.19) and (5.63), both the GLRT and the ratio of the distribution of the maximal
invariant statistics are functions of the sample coherence matrix D and the sample cross-coherence
matrix C given in (5.20) and (5.21), respectively. Similarly to [38], we will provide an interpretation
of these statistics. Recall that the cyclic (cross) PSD at cycle frequency 2π

P l is given by [75]

Π(l)
♣♥ (θ) dθ = E

[
dξ♣ (θ) dξH

♥

(
θ −

2π
P

l
)]
, (5.71)

where ♣,♥ ∈ {s, r } and dξ♣(θ) ∈ CL denotes the increment of a spectral process ξ♣(θ) that generates
the time series

u♣[n] =
∫ π

−π
e jθndξ♣(θ). (5.72)

Furthermore, the cyclic (cross) PSD and the bi-frequency spectrum are related by [75]

S♣♥(θi, θ j ) =
∑
l

Π(l)
♣♥(θ j )δ

(
θi − θ j −

2π
P

l
)
∈ CL×L . (5.73)

Note that the line for l = 0 is the stationary manifold, which contains the usual PSD. Moreover,
the support of S♣♥(θi, θ j ) may only contain frequencies separated by multiples of the fundamental
cycle frequency 2π

P , i.e., θi − θ j = 2π
P l, for a CS process with cycle period P. As we have already

mentioned in Section 5.2, these possibly non-zero components are contained in the LP × LP blocks
on the main diagonal of S(1)

s , Sr , and Ssr in (5.15). For instance, the (i, j)th L × L sized block of
the kth diagonal block of Ssr is given by

[Ssr ](i, j)
k
= Ssr (θiN+k, θ jN+k ) = Π(i−j)

sr (θ jN+k ) ∈ CL×L, (5.74)

where θl = 2πl
NP , k = 0, . . . , N − 1, i, j = 0, . . . , P − 1, and similarly for S(1)

s and Sr . Accordingly,
the ML estimates of the covariance matrices contain samples of cyclic (cross) PSDs. Comparing
(5.73) and (5.74) shows that the L × L diagonal blocks for i = j correspond to the (cross) PSD on
the stationary manifold for frequency θ jN+k , and the off-diagonal blocks for i , j correspond to the
cyclic (cross) PSD at frequency θ jN+k and at cycle frequency 2π(i−j)

P .
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5 Two-channel passive detection

The latter considerations allow us to rewrite the (cross) coherence matrices D and C as functions of
the cyclic (cross) PSDs.

Proposition 5.5.1. The L × L blocks in the (cross) coherence matrices D and C can be expressed
by the samples of the cyclic (cross) PSDs as

D(q) (θ jN+k ) =
[
Π(0)

ss

(
θ jN+k +

2π
P

q
)]− 1

2

Π
(q)
ss (θ jN+k )

[
Π(0)

ss (θ jN+k )
]− 1

2 , (5.75)

and

C(q) (θ jN+k ) =
[
Π(0)

ss

(
θ jN+k +

2π
P

q
)]− 1

2 P−1−j∑
m=−j

Π
(q−m)
sr

(
θmN+k +

2π
P

j
) [
Π(m)

rr (θ jN+k )
]− 1

2 ,

(5.76)
for j = 0, . . . , P − 1, q = − j, . . . , P − 1 − j, and k = 0, . . . , N − 1.

Proof. Recall that the sample coherence matrix D is given by

D = diagL (Qs)−1/2 diagLP (Qs) diagL (Qs)−1/2 , (5.77)

and considering the block-diagonal structure of the matrices, its (i, j)th L × L element in the kth
LP × LP block is given by

D(i, j)
k
=

(
Q(i,i)

sk

)−1/2
Q(i, j)

sk

(
Q( j, j)

sk

)−1/2
, (5.78)

for k = 0, . . . , N − 1 and i, j = 0, . . . , P − 1. These elements of the sample covariance matrix can
again be expressed as samples of the cyclic PSDs similar to (5.74). Hence, D(i, j)

k
can be written as

a function of frequency θiN+k as

D(i, j)
k
= D(i−j) (θ jN+k ) =

[
Π(0)

ss

(
θ jN+k +

2π
P

q
)]− 1

2

Π
(i−j)
ss (θ jN+k )

[
Π(0)

ss (θ jN+k )
]− 1

2 , (5.79)

and the proof follows with q = i − j.

Similarly the (i, j)th L × L element in the kth LP × LP block of the sample cross-coherence matrix

C = diagL (Qs)−1/2 diagLP (Qsr ) diagLP (Qr )−1/2 . (5.80)

can be written as

C(i, j)
k
=

(
Q(i,i)

sk

)−1/2
P−1∑
l=0

Q(i,l)
srk

(
Q(l, j)

rk

)−1/2
, (5.81)
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since the kth diagonal blocks of Qsr and Qr are both full matrices whereas the kth block of Qs is
block-diagonal with block size L. Again C(i, j)

k
can be expressed as a function of θ jN+k as

C(i, j)
k
= C(i−j)

k
(θ jN+k ) =

[
Π(0)

ss (θ jN+k +
2π
P

q)
]− 1

2 P−1∑
l=0
Π(i−l)

sr (θlN+k )
[
Π

(l−j)
rr (θ jN+k )

]− 1
2 ,

(5.82)
and with q = i − j the proof follows. �

As can be seen, the coherence matrix D contains the cyclic PSD of the SC signal Π(q)
ss (θ jN+k ) for

q , 0 normalized by the PSD, which lives on the stationary manifold. The cross-coherence matrix
C, on the other hand, contains the cross-cylic PSD between SC and RC, Π(q−m)

sr (θmN+k +
2π
P j),

normalized by Π(m)
rr (θ jN+k ) and Π(0)

ss (θ jN+k + 2π
P q) and sums it over m = − j, ..., P − 1 − j. Note

that the main diagonal blocks of C given by

C(0) (θ jN+k ) =
[
Π(0)

ss (θ jN+k )
]− 1

2 Π(0)
sr (θ jN+k )

[
Π(0)

rr (θ jN+k )
]− 1

2

+
[
Π(0)

ss (θ jN+k )
]− 1

2
P−1−j∑
m=−j

Π(−m)
sr (θmN+k +

2π
P

j)
[
Π(m)

rr (θ jN+k )
]− 1

2 , (5.83)

do not only account for the cyclic components but also for the usual cross-coherence between the
WSS components at frequency θ jN+k given by the first term in the equation.

In a nutshell, the coherence matrix D accounts for the spectral correlation at the SC, whereas
the cross-coherence matrix C accounts for the cross-spectral correlation between SC and RC.
Furthermore, comparing the GLRT G in (5.19) and the ratio L in (5.63), it can be observed that the
GLRT inherently merges the information provided by the presence of cyclostationarity at the SC via
D and the correlation of SC and RC present in C, whereas in L these terms are connected by the
unknown parameter γ in (5.63). Moreover, another difference is the way the spectral correlation is
measured in the two tests. The GLRT employs the determinant, whereas the ratio of the distribution
of maximal invariants uses the Frobenius norm.

5.6 LMPIT-inspired detector

Since no LMPIT exists, we now analyze the influence of γ, i.e., the influence of the individual terms
LS and LSR in (5.63) on the detection performance. As mentioned before, on the one hand the term
LS is the LMPIT for CS detection at a single array (the SC). Specifically, it measures the strength
of the cyclic components relative to the stationary components. On the other hand, LSR measures
the strength of cross-spectral correlation between SC and RC, i.e., it accounts for the inherent
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Figure 5.2: Probability of detection as a function of γ based on different detection statistics for an experiment
with the following parameters: P = 4, N = 128, M = 20, L = LI = 2, a rectangular pulse,
SNRs = −18 dB, SNRr = {−14,−18,−24} dB, and pfa = 0.01.

correlation between SC and RC and also for the spectral correlation induced by cyclostationarity.
For this reason it is expected that LSR will have a bigger influence on the detection performance
than LS provided that the signals are not too weak.

Since the theoretical distribution of (5.63) is very difficult to obtain, we used Monte Carlo simulations
to study the influence of γ. In order to do so, we used the signal model to be described in Section 5.7
to generate realizations underH0 andH1. For a given set of values for γ we obtained the probability
of detection pd based on the statistic L for a fixed probability of false alarm. Although we use L

throughout this section as a benchmark for detectors based on the two individual terms LS and LSR,
note that in practice this is not possible as it depends on unknown parameters in γ. Additionally, we
obtained the probability of detection based on using either LS or LSR individually.

The impact of the parameter γ on detection probability is shown in Figure 5.2. For a fixed
SNRs = −18 dB we obtained the detection probabilities for the detectors based on LS and LSR

for three different values of the SNR at the RC, which are −14 dB, −18 dB, and −24 dB, and also
the detection probability of LS , which is independent of SNRr . It can be observed that for this
scenario a reasonable performance is only reached for SNRr = −14 dB. Moreover, the probability
of detection based on LSR almost overlaps with that based on the optimal statistic L . For lower
SNRr the correlation between signals at SC and RC is getting weaker and the right choice of γ
becomes more critical for the best performance. At SNRr = −24 dB, we observe that a detector
based on LS outperforms a detector based on LSR, i.e., better performance is obtained by simply
detecting the presence of cyclostationarity at the SC. If the optimal γ were known, the performance
of L could be reached. However, it should be noted that for such a low SNRr even the optimal
detector would not provide satisfactory performance.

76



5.6 LMPIT-inspired detector

−30 −25 −20 −15 −10
0

0.2

0.4

0.6

0.8

1

SNR (in dB)

p
d

maxγ L

LSR

LS

Figure 5.3: Probability of detection vs. SNR for various detectors, where SNRs = SNRr = SNR for an
experiment with the following parameters: P = 4, N = 128, M = 20, L = LI = 2, a rectangular
pulse, and pfa = 0.01.

As the SNR at the reference array is typically not less than the SNR at the surveillance array, we
compare the probabilities of detection for equal SNRs at SC and RC for detectors based on L

(where γ has been determined by a brute-force search to maximize the probability of detection),
LSR, and LS in Figure 5.3. It can be observed that although there is a gap between the optimal
pd and the pd of LSR, it is comparatively small and it decreases as the SNR increases. Moreover,
the gap between LSR and LS decreases with decreasing SNR, which we expect because the lower
the SNR, the more beneficial the CS detection at the SC only. For different scenarios where we
vary, for instance, M or N , we have also observed (the results are not reproduced here) that the
performance of LSR is close to L with the optimal γ obtained by brute-force search (which is not
possible in practice).

Based on these considerations we propose

LSR =

N∑
k=1
| |Ck | |

2, (5.84)

with C defined in (5.21), as an LMPIT-inspired detector. In the following section, we will
present further numerical results that show that such an LMPIT-inspired detector outperforms the
state-of-the-art.

In order to determine a threshold that assures a given probability of false alarm, we utilize again
the invariances of the test, specifically, its asymptotic invariance to linear filtering. Similar to the
GLRT statistic, we assume, without loss of generality, that under H0 z N→∞

∼ CN (0, I2LPN ). For
this reason we can use numerical simulations with a white process to obtain the threshold under

77
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the null hypothesis for any arbitrary noise. Note that the threshold selection is (asymptotically)
invariant to the signal-plus-noise PSD at the RC. In the next section we investigate the accuracy of
the distribution for different sample sizes.

5.7 Numerical results

In this section we evaluate the performance of the GLRT and the LMPIT-inspired test using Monte
Carlo simulations. According to our model in (5.1) we generate the CS signal s[n] as a QPSK-signal
with either a raised-cosine pulse with roll-off factor ρ or a rectangular pulse. The number of samples
per symbol is equal to the cycle period P. Furthermore, the frequency-selective channels Hs[n] and
Hr [n] are both Rayleigh-fading channels with a delay spread of 10 times the symbol duration and
an exponential power delay profile. In each Monte Carlo simulation we draw new realizations of the
channels. The independent noises between SC and RC are both colored Gaussian generated with a
moving average filter of order 20 and correlated among antennas. This correlation is generated by
multiplying the noise realizations with a random matrix with elements drawn from unit complex
normals. Moreover, we define the SNRs at SC and RC as

SNR♣ = 10 log10
*.
,

tr
(
R̂♣

)
tr

(
V̂♣

) +/
-
, (5.85)

where ♣ ∈ {s, r } and

R̂♣ =
1

M N P

MNP−1∑
n=0

(H♣[n] ∗ s[n]) (H♣[n] ∗ s[n])H ∈ CL×L (5.86)

V̂♣ =
1

M N P

MNP−1∑
n=0

v♣[n]vH
♣ [n] ∈ CL×L . (5.87)

Furthermore, we compare the proposed detectors with the following benchmark techniques: The
first one is the correlated subspace detector proposed in [67], which employs the following test
statistic

K =

min(LI ,L)∏
i=1

1
1 − k2

i

H1
≷
H0

η, (5.88)

where ki is the ith sample canonical correlation between the SC and the RC. The second competitor is
the multiantenna extension of the popular cross-correlation detector [58,67] that uses the statistic

C = | tr
(
RH

srRsr

)
|
H1
≷
H0

η, (5.89)
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where

Rsr =
1

M N P

MNP−1∑
n=0

us[n]uH
r [n], (5.90)

denotes the sample cross covariance matrix of SC and RC. It should be noted that the cross-
correlation detector does not require any prior knowledge, whereas the correlated subspace detector
needs to know the number of antennas LI at the IO, and our proposed techniques also need to know
the cycle period P. Generally, both P and LI could be estimated or they may be known from the
standards used by the IO.

To evaluate the performance of the proposed detectors, we first choose a scenario with P = 2,
N = 64, L = LI = 4, M = 20, and a rectangular pulse, Figure 5.4 shows the receiver operating
characteristic (ROC) for SNRs = −15 dB at the SC and SNRr = −5 dB at the RC. As can be seen,
the proposed detectors outperform the competing techniques. We observe that the LMPIT-inspired
detector performs better than the GLRT, while the cross-correlation detector performs little better
than chance.
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Figure 5.4: ROC curves in a scenario with P = 2, N = 64, L = LI = 4, M = 20, a rectangular pulse,
SNRs = −15 dB and SNRr = −5 dB.

Figure 5.5 depicts the probability of detection versus the SNRs for SNRr = 0 in the top plot
and SNRr = −5 in the bottom plot. The remaining parameters are chosen as P = 4, N = 128,
L = LI = 2, M = 20, a rectangular pulse, and pfa = 0.01.4 Again we can observe that the
proposed detectors outperform the competing techniques. In the SNRs range of practical interest,
the performance of the LMPIT-inspired test is better than that of the GLRT. It is also shown that the
performance drop due to decreasing SNRr is smallest for the LMPIT-inspired test and the GLRT
whereas it is largest for the cross-correlation detector.

4Note that in a passive radar scenario pfa would be a few orders of magnitude smaller.
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Figure 5.5: Probability of detection vs. SNRs , where the top plot shows the results for SNRr = 0 dB and
the bottom plot for SNRr = −5 dB for the following remaining parameters P = 4, N = 128,
L = LI = 2, M = 20, a rectangular pulse, and pfa = 0.01.

For another scenario with P = 3, N = 128, L = LI = 2, M = 20 we study the influence of the pulse
shape, i.e. the amount of cyclostationarity present in the signal. A signal with raised-cosine pulse
with ρ > 0 has a non-zero cyclic PSD only for the cycle frequency ±2π/P and on the stationary
manifold (for ρ = 0 it is only non-zero on the stationary manifold), whereas the PSD of a rectangular
pulse shaped signal is non-zero for all harmonics of the cycle frequency [75]. Figure 5.6 shows
the ROC for an SNRs = −15 dB at the SC and SNRr = −15 dB at the RC for ρ = {0, 0.5, 1} and
a rectangular pulse shape. As can be seen, detection performance increases with the amount of
cyclostationarity present. Specifically, we can observe best performance for the rectangular pulse
and worst performance for ρ = 0. Note that the detection performance does not drop to zero for
ρ = 0 as both proposed detectors also account for the usual cross-coherence between RC and SC
components on the stationary manifold as can be seen in equations (5.76) and (5.83).

Now we will investigate the influence of the particular choice of N and M on the detection
performance. We should note that N influences the spectral resolution, i.e., the bias of the estimates,
and M determines the variance of the estimates. Hence, the choice of N and M is a bias-variance
trade-off, which was already studied in [88] for a related problem. Figure 5.7 shows the probability
of detection versus the total number of samples N M for the GLRT and the LMPIT-inspired detector
for two different choices of N , namely, N = 16 and N = 128. If the total number of samples N M is
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Figure 5.6: ROC curves for roll-off factors ρ = {0, 0.5, 1} and a rectangular pulse shaping in a scenario
with P = 3, N = 128, L = LI = 2, M = 20, ρ = 0.9, and SNRs = SNRr = −15 dB.
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Figure 5.7: Probability of detection for N = 16 and N = 128 for different number of samples for P = 2,
L = LI = 2, a rectangular pulse, SNRs = −18 dB and SNRr = −12 dB.

rather small, we should sacrifice spectral resolution by choosing a smaller N in order to decrease
the variance of the estimate with a larger M. On the other hand, if a larger number of samples is
available, we may choose a larger N to increase the spectral resolution.

Finally, we examine the accuracy of the distributions under the null hypothesis obtained for the
GLRT and the LMPIT-inspired detector. The top plots in Figures 5.8 and 5.9 show the distribution
of the logarithm of the product of beta random variables and compare it to (i) the distributions
obtained numerically with white noise realizations and (ii) the distribution obtained underH0, for
N = 32 (Figure 5.8) and N = 128 (Figure 5.9). As can be observed, the GLRs for white noise and
the product of beta random variables are an accurate match independently of N , which is not to our
surprise since the product of beta random variables is derived for white noise. Either distribution is
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Figure 5.8: ECDF of the test statistics underH0 and for white noise for the GLRT (top) and the LMPIT-
inspired test (bottom) for a scenario with P = 2, N = 32, M = 16, L = LI = 2. The top figure
also displays the approximation as a product of beta random variables.

a reasonably good, albeit not perfect, match for the actual distribution under H0 for N = 32, and a
very good match for N = 128. Similar observations can be made for distributions under the null
hypothesis of the LMPIT-inspired, which are shown in the bottom plots in Figures 5.8 and 5.9.

5.8 Conclusion

In this chapter we derived the GLRT for a two-channel passive detection problem by exploiting
cyclostationarity. We also examined the existence of optimal invariant tests for this problem. As it
turned out neither the UMPIT nor the LMPIT exists since the ratio of maximal invariant statistics
depends on unknown parameters. Nevertheless, it is possible to propose an LMPIT-inspired
detector based on this ratio. Both detectors, GLRT and LMPIT-inspired, are functions of a cyclic
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Figure 5.9: Same as Figure 5.8, except for P = 2, N = 128, M = 16, L = LI = 2.

cross-coherence function, but only the GLRT accounts for the cyclic coherence at the SC. Finally,
we derived the stochastic representations of the GLRT statistic under the null hypothesis that can be
used to find a threshold to fix a desired probability of false alarm.
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6 Two-channel passive detection of
cyclostationary signals in noise with
spatio-temporal structure

This chapter considers the two-channel passive detection of cyclostationarity in noise with spatio-
temporal structure. In the previous chapter we considered the problem of two-channel passive
detection of cyclostationary signals in temporally colored noise with spatial correlation. Here we
specialize the noise model to different combinations of spatially correlated or uncorrelated noise that
can be temporally white or colored. For the three combinations that have not been considered so far,
we derive the GLRT and provide an insightful interpretation of the statistics. Moreover, we apply
the results of Chapter 3 to propose stochastic representations for the three noise constellations under
the null hypothesis. Monte Carlo simulations demonstrate that the proposed detectors outperform
comparable state-of-the-art detectors and that it can be crucial to account for the appropriate noise
model1.

6.1 Introduction

The problem considered in this chapter is similar to the one presented in the previous one. We
consider a passive bistatic radar system that consists of an illuminator of opportunity, a reference
channel, and a surveillance channel. As previously mentioned, these systems are of special interest
as they are cheap, simple and undetectable since the transmitter, which is the IO, is not part of the
passive radar system itself [49]. Since, commonly, IOs are commercial video or audio broadcast
systems or they could be space-based sources such as communication or navigation satellites [49],
the transmitted signals are cyclostationary. Here we consider a MIMO system in which there are a
reference antenna array that receives a noisy version of the direct-path signal transmitted by the
IO, and a surveillance array. This array receives the target-path signal if a target is present, or
noise only, otherwise. We assume that clutter or direct-path interference, which may corrupt the

1This chapter is based on the paper “Two-channel passive detection of cyclostationary signals in noise with spatio-
temporal structure, S. Horstmann, D. Ramirez, P.J. Schreier, A. Pries Proc. Asilomar Conference on Signals, Systems
and Computers, 2019”
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signal received at the SC, is canceled by employing the techniques presented in, e.g., [54, 56,57].
Furthermore, the SC and RC signals are obtained by spatial filtering [54, 114] or by employing
directional antennas [113].

Commonly, this target detection problem is approached by cross-correlating SC and RC signals
[49, 53, 63], which is, however, suboptimal due to noise at the RC [58]. In the past, various
generalized likelihood ratio tests (GLRT) have been derived for the case of unknown deterministic
waveforms in temporally and spatially white noise [51,68]. Also, GLRTs considering the case of
stochastic waveforms in white noise with various assumptions on the spatial correlation among
each array and across reference and surveillance array have been derived in [64–67].

These aforementioned detectors assume that the signals are temporally white. However, digital
communication signals transmitted by IOs are not temporally white but cyclostationary (CS) [22,49].
We exploited this property in the previous chapter for which we derived the GLRT and proposed
an LMPIT-inspired test. The noise considered in Chapter 5 is spatially correlated and temporally
colored. Spatial correlation refers to the correlation at the individual arrays but not across reference
and surveillance arrays. Assuming this kind of noise does not impose an additional structure to
the detection problem that needs to be considered. For the single array case, detectors exploiting
cyclostationarity and additional noise structure have been derived in [92, 117]. In [92] they derived
the GLRTs and in [117] the same authors proposed an LMPIT-inspired test because no LMPITs
exist for the problems. Considering that the problem does not have enough invariances for the
single array case for the existence of an LMPIT, we do not show that no LMPIT (or UMPIT) exists
for the problem considered in this chapter as this conclusion can already be made based on the
observations in Chapter 5 and in [117].

In this chapter, we will see, however, that different noise models induce further structure that should
be accounted for, or in other words, it should be exploited in the detector design. Specifically, if the
antenna arrays are properly calibrated, the noise at each antenna can be considered temporally white
and spatially uncorrelated. However, if the calibration fails, these assumptions may be violated.
Hence, in this work, we consider noise with further structure: temporally white noise, which can be
either spatially correlated or not, and temporally colored noise that is spatially uncorrelated.

We derive the GLRTs for these noise models and show that for all cases the GLRT can be factorized
into the single channel GLRT [38, 117], which accounts for the presence of cyclostationarity at
the SC, and a second term that accounts for the cross-cyclic correlations between observations at
SC and RC. We show that exploiting cyclostationarity and, additionally, the structure of the noise
increases the performance of the previously proposed detector for the general case of temporally
colored and spatially correlated noise [73]. For the case that the noise structure is not known a
priori, we may apply the tests proposed in [117] to specify the noise structure.
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6.2 Problem formulation

6.2 Problem formulation

As before, we consider a passive bistatic radar system, which consists of a reference array and a
surveillance array. The received signal at the SC is denoted by us[n] ∈ CL and the received signal
at the RC is given by ur [n] ∈ CL , where we assume again without loss of generality that there are
L antennas at both arrays. As in Chapter 5, we consider the true pair of time-delay and Doppler
shift, which allows us to synchronize the target-path signal with the direct-path signal, in our signal
model, i.e., the test statistic derived in this chapter serves as an ambiguity score [67]. The problem
considered here is therefore given by the two hypotheses

H0 :



us[n] = vs[n],

ur [n] = Hr [n] ∗ s[n] + vr [n],

H1 :



us[n] = Hs[n] ∗ s[n] + vs[n],

ur [n] = Hr [n] ∗ s[n] + vr [n],

(6.1)

where Hs[n] ∈ CL×LI and Hr [n] ∈ CL×LI represent the frequency-selective channels between the
IO and reference and surveillance arrays. The signal transmitted by the IO, which is equipped with
LI antennas, where LI ≥ L, is denoted by s[n] ∈ CLI . As in Chapter 5, s[n] is considered to be a
discrete-time zero-mean second-order CS signal with known cycle period P. Finally, vs[n] ∈ CL

and vr [n] ∈ CL are additive noise terms that are wide-sense stationary (WSS) and uncorrelated
between RC and SC. However, within each array the noise may have further structure, which is
either 1) temporally white & spatially uncorrelated, 2) temporally white & spatially correlated, or
3) temporally colored & spatially uncorrelated. In order to derive the GLRT we basically follow
the derivations in the proof of Theorem 5.3.1 in Chapter 5 in which we have considered the case of
temporally colored and spatially correlated noise.

Let us collect N P samples of each array into the vectors

y♣ =
[
uT
♣[0], . . . , uT

♣[N P − 1]
]T
, (6.2)

for ♣ ∈ {s, r }. Before deriving the GLRT we will first investigate the structures of the (cross)
covariance matrices R♣♥ = E[y♣yH

♥ ] ∈ CLNP×LNP . Under both hypotheses the covariance matrix
Rrr has the same structure. Considering that the signal ur [n] is CS with cycle period P, we exploit
a result from [3] that shows that the stack of P observations of a CS process is WSS, i.e. the
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6 Two-channel passive detection of cyclostationary signals in noise with spatio-temporal structure

covariance matrix Rrr is a block-Toeplitz matrix with block size LP. Following the same argument
it is easy to see that under H1 the matrices R(1)

ss and Rsr = RH
rs are also block-Toeplitz matrices

with block size LP.2

Considering the null hypothesis, we should first notice that the observations from SC and RC are
uncorrelated since vs[n] and vr [n] are assumed to be uncorrelated. Secondly, the structure of R(0)

ss

depends on the specific noise model under consideration [92]. Specifically, it is given by

1) R(0)
ss = INP ⊗ DL , where DL ∈ DL and DL denotes the set of diagonal covariance matrices

of dimension L,

2) R(0)
ss = INP ⊗ AL , where AL ∈ AL and AL denotes the set of positive semidefinite matrices

of dimension L,

3) R(0)
ss is block-Toeplitz with block size L and each block is diagonal.

Now we stack ys and yr into one long vector

y =
[
yTs , yTr

]T
. (6.3)

Assuming y to be zero-mean proper complex Gaussian we can reformulate (6.1) as

H0 : y ∼ CN 2LNP (0,R0),

H1 : y ∼ CN 2LNP (0,R1),
(6.4)

with

R0 = E
[
yyH |H0

]
=



R(0)
ss 0
0 Rrr


, (6.5)

and

R1 = E
[
yyH |H1

]
=



R(1)
ss Rsr

Rrs Rrr


. (6.6)

In order to derive the GLRT it would be necessary to obtain the maximum likelihood estimates
(MLE) of R0 and R1. However, this would involve finding the MLE of a block-Toeplitz matrix for
which there exists no closed-form solutions [124]. For this reason we make use of the approximation
proposed in [38], where it is shown that the log-likelihood parameterized by a block-Toeplitz
covariance matrix converge asymptotically (N → ∞) to the log-likelihood parameterized by a
block-circulant covariance matrix. Moreover, we exploit that a block-circulant covariance matrix
can be block-diagonalized by the DFT matrix and a block-diagonal covariance matrix in turn has a
closed-form MLE.

2Note that the superscripts (0) and (1) emphasize that it is the covariance matrix obtained under the null hypothesis or
the alternative, respectively.
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6.3 Derivation of the GLRT

In order to derive a closed-form expression for the (asymptotic) GLRT, we follow the approach
in [38] and transform the samples from both arrays into the frequency domain as follows

z♣ = (LNP,N ⊗ IL)(FNP ⊗ IL)Hy♣ ∈ C
LNP, (6.7)

with commutation matrix LNP,N and DFT matrix FNP of size N P. Similar to the time domain we
stack zs and zr into a vector

z = [zTs , zTr ]T , (6.8)

to reformulate the hypotheses (6.4) as

H0 : z ∼ CN 2LNP (0, S0),

H1 : z ∼ CN 2LNP (0, S1).
(6.9)

Given M ≥ LP independent and identically distributed (i.i.d.) realizations of z, the GLR is given
by the ratio of the determinants of the MLEs of the covariance matrices [67]

Λ =
p(z0, · · · , zM−1; Ŝ0)

p(z0, · · · , zM−1; Ŝ1)
=

*.
,

det
(
Ŝ1

)
det

(
Ŝ0

) +/
-

M

, (6.10)

where Ŝ0 and Ŝ1 denote the MLEs of S0 and S1, respectively.

Similarly to the time-domain covariance matrices R0 and R1, we partition the frequency-domain
covariance matrices into blocks as follows

S0 =



S(0)
ss 0
0 Srr


, (6.11)

and

S1 =



S(1)
ss Ssr

Srs Srr


, (6.12)

where each block is given by the (cross) covariance matrix of zs and zr , respectively. The permutation
and transformation in (6.7) is designed such that the corresponding (cross) covariance matrices
all have a block-diagonal structure. Specifically, S(1)

ss , Ssr , and Srr are block-diagonal with block
size LP, and depending on the noise model S(0)

ss is given by the following expressions as previously
derived in [92]:

1) S(0)
ss = INP ⊗ D̃L , where D̃L ∈ DL ,
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6 Two-channel passive detection of cyclostationary signals in noise with spatio-temporal structure

2) S(0)
ss = INP ⊗ ÃL , where ÃL ∈ AL ,

3) S(0)
ss is diagonal.

6.3.1 MLEs of the covariance matrices S0 and S1

Given the sample covariance matrix of M i.i.d. samples of z,

Q =
1
M

M−1∑
m=0

zmzHm =


Qss Qsr

Qrs Qrr


, (6.13)

the MLE of S0 may be easily obtained by considering its block-diagonal structure, i.e.

Ŝ0 =



Ŝ(0)
ss 0
0 diagLP (Qrr )


, (6.14)

where the noise structure-dependent MLEs, Ŝ(0)
ss , were derived in [92] and are given by

1) Ŝ(0)
ss = INP ⊗

(
1

NP

∑NP
i=1 diag

(
[Qss]i

))
,

2) Ŝ(0)
ss = INP ⊗

(
1

NP

∑NP
i=1 [Qss]i

)
,

3) Ŝ(0)
ss = diag (Qss),

where [Qss]i denotes the ith block of dimension L on the main diagonal of Qss. The structure of S1

is given by a 2 × 2 block matrix, where each block itself is a block-diagonal matrix. Deriving the
MLE of this matrix may seem to be more involved. However, it can be observed that it is always
possible to permute the blocks in S1 such that another block-diagonal matrix with block size 2LP

can be obtained. The MLE of this permuted matrix is again given by the block-diagonal matrix
obtained from the corresponding blocks of the sample covariance matrix [73]. After applying the
inverse permutation to the MLE, we end up with

Ŝ1 =



diagLP (Qss) diagLP (Qsr )

diagLP (Qrs) diagLP (Qrr )


. (6.15)

6.3.2 GLRT

Finally, we can plug in (6.14) and (6.15) into (6.10) to obtain

Λ
1
M = det

(
D − CCH

)
(6.16)

= det (D) det
(
I − C̃C̃H

)
, (6.17)
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where

D =
(
Ŝ(0)
ss

)−1/2
diagLP (Qss)

(
Ŝ(0)
ss

)−1/2
, (6.18)

C = diagL (Qss)−1/2 diagLP (Qsr ) diagLP (Qrr )−1/2 , (6.19)

C̃ = diagLP (Qss)−1/2 diagLP (Qsr ) diagLP (Qrr )−1/2 , (6.20)

and where we exploited the properties of the determinant of block matrices. Note that only the first
term in (6.17) depends on the noise structure through Ŝ(0)

ss . Furthermore, we observe that D is a
coherence matrix that only depends on the correlations between observations at the SC, whereas
C̃ is a cross-coherence matrix that depends on the cross-correlations between SC and RC. After
noticing that both D and C̃ are block-diagonal matrices with block size LP, we may further simplify
(6.17) as follows

Λ
1
M =

N∏
k=1

LP∏
l=1

λ (l)
k

[
1 −

(
κ(l)
k

)2]
, (6.21)

where λ (l)
k

denotes the lth eigenvalue of the kth diagonal block of D, which depends on the noise
models 1)-3), and κ(l)

k
denotes the lth eigenvalue of the kth block of C̃. Finally, the GLRT is given

by

Λ
1
M

H0
≷
H1

η, (6.22)

where η is selected to guarantee a given probability of false alarm.

It should be noted that λ (l)
k

and κ(l)
k

can be given an interpretation. Recall the linear transformation
(6.7) that transforms the samples into the frequency domain and orders them such that every
LP consecutive samples are those frequency components that are separated by multiples of the
cycle frequency 2π/P [38]. These frequencies may be correlated if the signal is CS, and they are
uncorrelated for a WSS process. It can be observed that λ (l)

k
are the sample canonical correlations

between frequency components of the SC observations separated by multiples of 2π/P. Moreover,
considering the products over these λ (l)

k
individually, this product is the GLRT for detecting the

presence of CS at a single channel (here the SC) [38,92]. Similarly, κ(l)
k

are the sample canonical
correlations between frequency components of SC and RC observations.

6.3.3 Threshold selection and null distribution

In order to find the threshold for a given probability of false alarm pfa, we propose two different
approaches. The first exploits the invariances of the test statistic and the second uses the results
of Chapter 3. To identify the invariances note that we can multiply z with any matrix of the
structure of S0 without modifying the likelihood ratio, i.e., it is invariant to these transformations.
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6 Two-channel passive detection of cyclostationary signals in noise with spatio-temporal structure

Hence, without loss of generality, we can assume that the observations under the null hypothesis are
whitened. Thus, to find the threshold for any arbitrary process, we can run numerical simulations
with temporally and spatially white processes.

For the second approach we use our results from Chapter 3 and propose the stochastic representations
of the GLRTs for the three different cases in this paragraph. In order to apply the previous results,
we have to split the GLRs for the temporally white cases once more into one factor being an
independence test and a certain kind of sphericity test, which tests whether (block) diagonal elements
of (block) matrices are identical. The latter term only consists of samples from the surveillance
channel, which is not surprising considering that we can only test for temporally white observations
based on the surveillance channel observations. First, we propose the stochastic representation for
the temporally white and spatially uncorrelated case.

Proposition 6.3.1. The distribution of the GLRT statistic (6.17) for temporally white & spatially
uncorrelated noise (Case 1) under the null hypothesis is given by a product of independent Beta
random variables that is

G 1/M D
=

N∏
l=1




LP∏
k=1

Uk







LP∏
n=1

Vn




(N P)LNP
NP∏
j=2




L∏
m=1

(
1 − Zm, j−1

) (
Zm, j−1

) j−1

, (6.23)

where all U,V, Z are independent Beta distributed random variables. Specifically, they are given by

Uk ∼ Beta {M − ((k − 1)LP) , (k − 1)LP} , (6.24)

Vn ∼ Beta {M − (LP + n − 1) , LP} . (6.25)

Zm, j−1 ∼ Beta {M ( j − 1), M } . (6.26)

Proof. In order to exploit the results from Chapter 3 let us first rewrite the GLR (6.17). First
we should note that the determinant is invariant to permutations and that Ŝ1 can be permuted
such that it is a block diagonal matrix with blocks of dimension 2LP, which we will denote by
diag2LP

(
Q̃

)
. Furthermore, we expand the ratio by expanding with det

(
diag (Qss)

)
. Now the ratio

can be rewritten as follows

G 1/M =
det

(
Ŝ1

)
det

(
Ŝ(0)
ss

)
det

(
diagLP (Qrr )

) (6.27)

=
det

(
diag2LP

(
Q̃

))
det

(
diag (Qss)

)
det

(
diagLP (Qrr )

) × det
(
diag (Qss)

)
det

(
INP ⊗

(
1

NP

∑NP
i=1 diag

(
[Qss]i

))) . (6.28)

Similar to Appendix A in [103] it can be shown these two factors are statistically independent.
Hence, we can come up with the distributions for each factor and can simply multiply those results.
We can observe that the first term tests for block-diagonal matrices of different sizes and we can
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6.3 Derivation of the GLRT

directly apply Proposition 3.4.1 for the following parameters: The total number of blocks in the
numerator is given by L = N , where each block is of dimension λl = 2LP ∀l. Now we can permute
the blocks under the null such that each block under the alternative is tested against nl = LP + 1 ∀l

blocks under the null with κk =



1, k = 1, . . . , LP,

LP, k = LP + 1.

In order to find the stochastic representation of the second term, we can directly apply Proposition
3.4.4. The test can be phrased as a test for equivalence of every L elements on the main diagonal
elements of a matrix. The Proposition can be applied with the following parameters: The total
number of elements under the alternative is given by LN P, where each block is of dimension λl = 1
for l = 1, . . . , LN P . Under the null we have δk = N P and κk = L for k = 1, . . . , N P. �

In (6.28) we can observe that the GLR is divided into two independent tests. One of which is the
test for independence of a set of scalars and vectors of dimension LP, which is identical to the GLR
for the case of temporally colored and spatially correlated noise. The second term tests for the
equivalence of sets of L scalars.

In the following proposition, we introduce the stochastic representation for the temporally white
and spatially correlated noise case.

Proposition 6.3.2. The distribution of the GLRT statistic (6.17) for temporally white & spatially
correlated noise (Case 2) under the null hypothesis is given by a product of independent Beta
random variables that is

G 1/M D
=

N∏
l=1




P∏
k=1

L∏
m=1

Uk,m







LP∏
n=1

Vn




× (N P)LNP
NP∏
j=2




L∏
m=1

(
1 − Zm, j−1

) (
Zm, j−1

) j−1





L∏
m=1

(
Wm, j

) j

, (6.29)

where all U,V are independent Beta distributed random variables. Specifically, they are given by

Uk,m ∼ Beta {M − ((k − 1)L + m − 1) , (k − 1)L} , (6.30)

Vn ∼ Beta {M − (LP + n − 1) , LP} , (6.31)

Zm, j−1 ∼ Beta {M ( j − 1) − (m − 1), M − (m − 1)} , (6.32)

Wm, j−1 ∼ Beta {M j − 2(m − 1),m − 1} . (6.33)
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Proof. We first rewrite the GLR (6.17) by expanding it with det
(
diagL (Qss)

)
. We exploit,

equivalently to the previous proof, that Ŝ1 can be permuted such that it is a block diagonal matrix
with blocks of dimension 2LP and its ML estimate is given by diag2LP

(
Q̃

)
. We obtain the following

expression for the GLR:

G 1/M =
det

(
Ŝ1

)
det

(
Ŝ(0)
ss

)
det

(
diagLP (Qrr )

) (6.34)

=
det

(
diag2LP

(
Q̃

))
det

(
diagL (Qss)

)
det

(
diagLP (Qrr )

) × det
(
diagL (Qss)

)
det

(
INP ⊗

(
1

NP

∑NP
i=1 [Qss]i

)) . (6.35)

Again using the results of Appendix H.3 in [100], it can be shown that the two factors are independent.
We can observe that the first term tests for block-diagonal matrices of different sizes and we can
directly apply Proposition 3.4.1 for the following parameters: The total number of blocks under
the alternative is given by L = N , where each block has dimension λl = 2LP ∀l. Since we
can arbitrarily permute the elements in the denominator, the test can be formulated as follows.
Each of the 2LP-sized blocks is tested against LP one-dimensional elements, i.e., κk = 1 for
k = 1, . . . , LN P and one block of dimension LP, i.e., κk = LP for k = LN P + 1, . . . , LN P + N .

In order to find the stochastic representation of the second term, we can apply Proposition 3.4.4.
The test can be phrased as a test for equivalence of every L elements on the main diagonal elements
of a matrix. The Proposition can be applied with the following parameters: The total number of
elements under the alternative is given by L = LN P, where each block is of dimension λl = 1 for
l = 1, . . . , LN P . Under the null we have δk = N P and κk = L for k = 1, . . . , N P. �

In the proof of the proposition it can be observed that the GLR is once again splitted into two factors
in (6.35). The first term is again an independence test. In this case it is the independence of a set of
L and LP-sized vectors. The second term includes terms of the surveillance array only and tests the
equivalence of block diagonal elements, i.e., it is again a special kind of sphericity test.

Finally, we present the stochastic representation for the case of temporally colored and spatially
uncorrelated noise in the following proposition.

Proposition 6.3.3. The distribution of the GLRT statistic (6.17) for temporally colored & spatially
uncorrelated noise (Case 3) under the null hypothesis is given by a product of independent Beta
random variables that is

G 1/M D
=

N∏
l=1




LP∏
k=1

Uk







LP∏
n=1

Vn




(6.36)
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where all U,V are independent Beta distributed random variables. Specifically, they are given by

Uk ∼ Beta {M − ((k − 1)LP) , (k − 1)LP} , (6.37)

Vn ∼ Beta {M − (LP + n − 1) , LP} . (6.38)

Proof. The proof directly follows from Theorem 3.4.1 for the following parameters: The total
number of blocks under the alternative is given by L = N , where each block is of dimension
λl = 2LP ∀l. Now we can permute the blocks under the null such that each block under the

alternative is tested against nl = LP + 1 ∀l blocks under the null with κk =



1, k = 1, . . . , LP,

LP, k = LP + 1.
Note that this expression is also identical to the first factor encountered in (6.28). �

The stochastic representations for the three considered problems can be used to determine a threshold
to fix a desired probability of false alarm when applying the GLRT statistics.

6.4 Numerical results

We evaluate the performance of the GLRT for the different noise models using Monte Carlo
simulations. According to our model in (6.1), we generate the CS signal s[n] as a QPSK-signal
with rectangular pulse shaping. The number of samples per symbol is equal to the cycle period P.
Furthermore, the frequency-selective channels Hs[n] and Hr [n] are both Rayleigh-fading channels
with a delay spread of 10 times the symbol duration and an exponential power delay profile. The
SNR at the surveillance array is set to SNRs = −10 dB and at the reference array it is set to
SNRs = −5 dB. In each Monte Carlo simulation we draw new realizations of the channels. We
consider simulation setups with the noise structures in Model 1) and Model 3), i.e., temporally
white or colored, and spatially uncorrelated noise. Here, the noise terms are independent between
SC and RC, white Gaussian, or colored Gaussian generated with a moving average filter of order 10
and uncorrelated among antennas. Moreover, in the figures presented in this section, 1) refers to the
detector exploiting noise structure from Model 1, 2) and 3) refer to the detectors that exploits only
temporal or spatial structure of the noise, respectively.

In Figure 6.1 we compare the receiver operating characteristic (ROC) curves of the three proposed
detectors 1) - 3), which exploit various degrees of noise structure. Detector 2) only considers
temporal structure, Detector 3) only considers spatial structure, whereas Detector 1) takes into
account both. Since the noise in our example is temporally and spatially white, Detector 1)
outperforms Detectors 2) and 3), but taking into account temporal structure is more advantageous.
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Figure 6.1: ROC for a scenario with temporally white and spatially uncorrelated noise (Model 1) for P = 2,
N = 16, L = LI = 4, M = 32, SNRs = −10 dB, and SNRr = −5 dB.
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Figure 6.2: ROC for a scenario with temporally colored and spatially uncorrelated noise (Model 3) for
P = 2, N = 16, L = LI = 4, M = 32, SNRs = −10 dB, and SNRr = −5 dB.

Moreover, all detectors outperform competing approaches, namely, the GLRT from [73] that
does not exploit the noise structure, the correlated subspace detector proposed in [67], and the
cross-correlation detector [58].

Similar observations can be made in Figure 6.2, where we compare the ROCs of the various detectors
for simulations under noise Model 3. It can be observed that Detector 3), which matches the model,
performs best among the competing ones. Interestingly, applying the white noise detectors 1) and
2) decreases the performance substantially. The reason for this is that Detectors 1) and 2) underfit
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Figure 6.3: ECDF of the test statistics underH0 and the approximation as a product of beta random
variables for a scenario with temporally white and spatially uncorrelated noise (Model
1) for P = 2, N = 16, L = LI = 4, M = 32.

noise model 3), which has many more degrees of freedom as captured by 1) and 2). Hence, in
general accounting for the temporal structure is essential. Note that the influence of the spatial
structure is not as large as the related degrees of freedom depend on L, whereas the number of free
parameters of the model corresponding to the temporal structure depends on N , which is generally
much larger.

Finally, in Figure 6.3 we illustrate the ECDF of the GLRT under the null hypothesis for the case of
temporally white and spatially uncorrelated noise (Model 1)) compared to the approximation with
the product of independent Beta random variables as proposed in Section 6.3.3. As can be observed
the approximation fits well to the distribution of the GLRT under the null hypothesis. This can be
equivalently shown for Models 2) and 3).

6.5 Conclusion

In this chapter we have derived the GLRT statistics for the problem of two-channel passive detection
of cyclostationary signals in the presence of three different noise models. It has been demonstrated
that accounting for the proper noise model in the detector design is generally beneficial. Furthermore,
it has turned out to be essential to incorporate the temporal structure of the noise for best detector
performance. Similarly it should also be accounted for the spatial structure, however, its influence is
less significant than the temporal structure since generally less degrees of freedom are determined
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6 Two-channel passive detection of cyclostationary signals in noise with spatio-temporal structure

by the spatial structure compared to the number of degrees of freedom affected by the temporal
structure. Finally, we have also proposed stochastic representations of all three GLRs under the null
hypothesis that allow for fixing the probability of false alarm to a desired level.
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7 Generalization to multistatic passive detection

In this chapter the two-channel detection problem is generalized to multiple channels. Specifically,
we consider different numbers of surveillance and reference arrays for the detection of Gaussian
cyclostationary signal in temporally colored and spatially correlated noise. Again, we derive the
GLRT for this problem and investigate the existence of optimal invariant tests. The goal of this
chapter is to analyze the influence of the number of surveillance and reference arrays on the detection
performance. To this end, Monte Carlo simulations are performed to investigate the performance
for various scenarios.

7.1 Introduction

We consider a MIMO passive multistatic radar system, that consists of one transmitter and multiple
multichannel receivers. Other multistatic detectors may also consider multiple transmitters, here we
consider a single illuminator of opportunity for the sake of simplicity. In the literature different
multistatic detector systems have been reported: Hack et al. derive the GLRT for the problem
considering unknown deterministic waveforms, where the author discusses benefits of centralized
processing approaches and compares to similar detectors encountered in active MIMO radar and
passive source localization problems [51]. In [70] the authors propose an ad-hoc detector based on
the generalized coherence.

The previously proposed detectors do not exploit, however, that the signals transmitted by IOs are
cyclostationary. Hence, we will derive the GLRT for the case of multiple receiver arrays. Yet in this
work we limit the problem to a single IO.

7.1.1 Outline of this chapter

We will first formulate the detection problem in the following section. Afterwards we will derive the
asymptotic GLRT for the problem in Section 7.3. This will be followed by analyzing the existence
of optimal invariant detectors in Section 7.4. Note that the derivations made in Sections 7.3 and 7.4
mainly follow those from the previous chapter. In Section 7.5 we will present the numerical results
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7 Generalization to multistatic passive detection

where we investigate the performance of the derived detectors with those derived in the previous
chapter as well as comparable competing techniques. This chapter is concluded with a summary in
Section 7.6.

7.2 Problem formulation

We consider a scenario with J surveillance antenna arrays and K reference antenna arrays. For the
sake of simplicity, we assume again that all arrays are equipped with L antennas but the results
presented here can be generalized to different numbers of antennas at each array. The IO is assumed
to be equipped with LI antennas. A noisy version of its transmission signal is received at the
reference arrays. In the presence of a target, there will also be a noisy version of the IO signal
observed at the surveillance arrays whereas there is only noise if no target echo is received. As
already pointed out in detail in the previous chapter, we consider a simplified model in the sense
that we assume that direct-path interference is canceled. The hypothesis test can be formulated as

H0 :




us,1[n] = vs,1[n],

us,2[n] = vs,2[n],
...

us,J [n] = vs,J [n],

H1 :




us,1[n] = Hs,1[n] ∗ s[n] + vs,1[n],

us,2[n] = Hs,2[n] ∗ s[n] + vs,2[n],
...

us,J [n] = Hs,J [n] ∗ s[n] + vs,J [n],

(7.1)

and reference signals ur,k[n] = Hr,k[n] ∗ s[n] + vr,k[n] for k = 1, . . . , K given both hypotheses.
Furthermore, Hs, j[n] ∈ CL×LI and Hr,k[n] ∈ CL×LI represent the time-invariant frequency-
selective channels from the IO to the reference and surveillance arrays, respectively. The additive
noise terms vs, j[n] ∈ CL for j = 1, . . . , J and vr,k[n] ∈ CL for k = 1, . . . , K are assumed to be
wide-sense stationary (WSS) with arbitrary temporal and spatial correlation, but they are assumed
to be uncorrelated between reference and surveillance arrays. As in Chapters 5 and 6, the IO
transmission signal s[n] ∈ CLI is assumed to be discrete-time zero-mean second-order CS with
cycle period P. For this reason ur,k[n] = Hr,k[n] ∗ s[n] + vr,k[n] is also CS with cycle period P

and so are us, j[n] = Hs, j[n] ∗ s[n] + vs, j[n] under the alternative. Hence, our goal is to detect
cyclostationarity at the surveillance arrays. Moreover, we assume that LI ≥ L, which implies that
the cyclic (cross) power spectral densities (PSD) of Hs, j[n] ∗ s[n] and Hr,k[n] ∗ s[n] have full rank
L.
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7.2 Problem formulation

H0 H1

E
[
ws,iwH

s, j

] 


TLNP
L for i = j,

0 for i , j,
TLNP
LP ∀ i, j

E
[
ws,iwH

r, j

]
0 ∀ i, j TLNP

LP ∀ i, j

E
[
wr,kwH

r,l

]
TLNP
LP ∀ k, l

Table 7.1: Summary of (cross) covariance matrices of ws, j and wr,k under both hypotheses.

First, let us stack N P observations from each array into a vector

ws, j =
[
uT
s, j[0] · · · uT

s, j[N P − 1]
]T
∈ CLNP, (7.2)

wr,k =
[
uT
r,k[0] · · · uT

r,k[N P − 1]
]T
∈ CLNP . (7.3)

As exploited throughout this thesis, we will again make use of the fact that ws, j and wr,k are
LP-variate WSS signals given that us, j[n] and ur,k[n] are CS with cycle period P. In that case,
their (cross) covariance matrix have block-Toeplitz structure with block size LP. Under the null
hypothesis, i.e., when us, j[n] is an L-variate WSS signal rather than CS its (cross) covariance
matrices have block-Toeplitz structure with block size L. A summary of these matrix structures is
provided in Table 7.1. Similar to Section 5.2, we will next stack all observations from SC and RC
into a long vector w as follows

w =
[
wT

s wT
r

]T
∈ C(J+K )LNP, (7.4)

where ws =
[
wT

s,1 · · · wT
s,J

]T
∈ CJLNP and wr =

[
wT
r,1 · · · wT

r,K

]T
∈ CKLNP . Given the results

from Table 7.1 it is now easy to determine the structure of the covariance matrix of w under both
hypotheses. UnderH0 the covariance matrix is given by

R0 = E[wwH |H0] =


R(0)
s 0
0 Rr


, (7.5)

where R(0)
s E

[
wswH

s |H0
]
∈ TJLNP

L is a Hermitian block-Toeplitz matrix of dimension JLN P ×

JLN P with block size L and Rr = E
[
wrwH

r

]
∈ BKT

LNP
LP is a K × K Hermitian block matrix,

where each block is a block-Toeplitz matrix of dimension LN P×LN P with block size LP regardless
of the hypothesis. Under the alternative we obtain the following structure

R1 = E[wwH |H1] =


R(1)
s Rsr

Rrs Rr


, (7.6)
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7 Generalization to multistatic passive detection

H0 H1

E
[
zs,izHs, j

] 


SLNP
L for i = j,

0 for i , j,
SLNP
LP ∀ i, j

E
[
zs,izHr, j

]
0 ∀ i, j SLNP

LP ∀ i, j

E
[
zr,kzH

r,l

]
SLNP
LP ∀ k, l

Table 7.2: Summary of (cross) covariance matrices of zs, j and zr,k under both hypotheses.

where R(1)
s = E

[
wswH

s |H1
]
∈ BJT

LNP
LP and Rsr = RH

rs = E[wswH
r |H1] ∈ BJ,KTLNP

LP . Hence, R1

is a J + K block matrix, where each block is a block-Toeplitz matrix of dimension LN P × LN P

with block size LP.

Assuming that us, j[n] for j = 1, . . . , J and ur,k[n] for k = 1, . . . , K are zero-mean proper complex
Gaussian random processes, we can formulate the hypothesis test as

H0 : w ∼ CN (J+K )LNP (0,R0),

H1 : w ∼ CN (J+K )LNP (0,R1).
(7.7)

This is a composite hypothesis test since the two covariance matrices R0 and R1 are unknown. As
it is already pointed out in the previous chapters, the (block) Toeplitz structure of the covariance
matrices precludes the derivation of the aforementioned detectors since there is no closed-form ML
estimate of the covariance matrices available. Hence, once more we exploit the results from [4] and
approximate the block-Toeplitz matrices by block-circulant ones. In order to do so, we transform the
observations into the frequency domain since the DFT matrix can be used to (block) diagonalize a
(block) circulant matrix.

To this end, the observations are transformed in the following fashion:

zs, j = (LNP,N ⊗ IL)(FNP ⊗ IL)Hws, j, (7.8)

zr,k = (LNP,N ⊗ IL)(FNP ⊗ IL)Hwr,k . (7.9)

Recall from equations (5.12) and (5.13) in Section 5.2 that zs, j and zr,k contain N blocks of
P frequencies, which are separated by multiples of the cycle frequency 2π/P. Given that the
transformed signal is cyclostationary, these frequencies are correlated. Hence, under the null
hypothesis the covariance matrices of zs, j are block-diagonal with block size L, whereas the cross
covariance matrices of zs,i and zs, j are zero. Under the alternative the (cross) covariance matrices
of zs,i and zs, j are block-diagonal with block size LP and so are the (cross) covariance matrices of
zr,k and zr,l. The structures of the matrices are summarized in Table 7.2
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7.3 Derivation of the GLRT

Similar to the time-domain, we collect the frequency representations from all surveillance and all
reference arrays in one long vector

z =
[
zTs zTr

]T
∈ C(J+K )LNP, (7.10)

where zs =
[
zT
s,1 · · · zTs,J

]T
∈ CJLNP and zr =

[
zT
r,1 · · · zTr,K

]T
∈ CKLNP.

Given this as a basis, we can put all pieces together to establish the structure of the covariance
matrix of z under both hypotheses. Under the null hypothesis we obtain

S0 = E[zzH |H0] =


S(0)
s 0
0 Sr


, (7.11)

where the off-diagonal blocks are zero since observations at SC and RC are uncorrelated, i.e.,
S(0)
s = E

[
zszHs |H0

]
∈ SJLNP

L is a block-diagonal Hermitian matrix with block size L and
Sr = E

[
zrzHr

]
∈ BKS

LNP
LP is a K × K Hermitian block matrix, where each block of dimension

LN P×LN P is a block-diagonal matrix with block size LP, which is identical under both hypotheses.
Now, underH1, the covariance matrix is given by

S1 = E[zzH |H1] =


S(1)
s Ssr

Srs Sr


∈ B(J+K )S

LNP
LP , (7.12)

where S(1)
s = E

[
zszHs |H1

]
∈ BJS

LNP
LP , Ssr = E

[
zszHr |H1

]
∈ BJ,KS

LNP
LP , and Sr as before.

Finally, we can reformulate the hypothesis test (7.7) asymptotically in the frequency domain as

H0 : z ∼ CN (J+K )LNP (0, S0),

H1 : z ∼ CN (J+K )LNP (0, S1).
(7.13)

In the following Section we will derive the GLRT for this problem.

7.3 Derivation of the GLRT

The GLR is given by

G =
p(z0, · · · , zM−1; Ŝ0)

p(z0, · · · , zM−1; Ŝ1)
, (7.14)
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7 Generalization to multistatic passive detection

where z0, . . . , zM−1 denote M independent and identically distributed (i.i.d.) realizations of z and
Ŝ0 and Ŝ1 denote the ML estimates of S0 and S1, respectively. Under the Gaussian assumption the
likelihoods are given by

p(z0, · · · , zM−1; Ŝi) =
1

π2(J+K )LNPM det
(
Ŝi

)M
× exp

{
−M tr

(
QŜ−1

i

)}
, (7.15)

where i ∈ {0, 1} indicates whether it is the ML estimate underH0 orH1 and with sample covariance

matrix Q = 1
M

∑M−1
m=0 zmzHm =



Qs Qsr

Qrs Qr


.

Theorem 7.3.1. The GLR (7.14) is given by

G 1/M = det
(
D − CCH

)
, (7.16)

= det (D) det
(
IKLNP − C̃H C̃

)
, (7.17)

where

D =
(
Ŝ(0)
s

)−1/2
Ŝ(1)
s

(
Ŝ(0)
s

)−1/2
, (7.18)

C =
(
Ŝ(0)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
, (7.19)

C̃ =
(
Ŝ(1)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
, (7.20)

with MLEs given by the following expressions

Ŝ(0)
s = diagL (Qs) , (7.21)

Ŝ(1)
s = blockJ,J diagLP (Qs) , (7.22)

Ŝsr = blockJ,K diagLP (Qs) , (7.23)

Ŝr = blockK,K diagLP (Qs) , (7.24)

where the operation blockL,M diagN (A) obtains an L × M block matrix from the matrix A, where
each block is a square block-diagonal matrix with block size N obtained from the respective block
in A, where A is of suitable dimension.

Proof. Firstly, we derive the MLEs of the covariance matrices S0 and S1. In order to do so, we
basically follow the lines of Theorem 5.3.1 in the previous chapter, where it is shown that the MLEs
may be easily derived by noting that a permutation of the elements of z in a particular way leads to
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7.3 Derivation of the GLRT

block-diagonal matrices, which are easy to estimate. Specifically, we can reorder the elements of
wr such that the samples of each reference antenna array is stacked consecutively as follows

w̃r =
[
uT
r,1[0] · · · uT

r,K [0], uT
r,1[1], · · · , uT

r,K [1], · · · , uT
r,K [N P − 1]

]T
. (7.25)

Under the alternative hypothesis this permutation is required not only for the reference observations
but also for the surveillance channel observations. Hence,

w̃r = (LKNP,NP ⊗ IL)wr, (7.26)

and similarly we permute the whole vector w under the alternative

w̃ = (L(J+K )NP,NP ⊗ IL)w. (7.27)

The covariance matrix Q̃r = E[w̃r w̃H
r ] is a block-diagonal matrix with block size K LP and similarly

the covariance matrix Q̃ = E[w̃w̃H ] is a block diagonal matrix with block size (J + K )LP.

Similar to the two-channel case, we consider the following linear transformations

z̃r =
[
(LNP,NFH

NP ⊗ IK ) ⊗ IL
]

w̃r, (7.28)

z̃ =
[
(LNP,NFH

NP ⊗ I(J+K )) ⊗ IL
]

w̃, (7.29)

which lead to block-diagonal covariance matrices of z̃r and z̃ under both hypotheses. Next we
exploit properties of the Kronecker product and equation (7.9) to obtain the following relation

zr =
[
(IK ⊗ LNP,NFH

NP) ⊗ IL
]

wr . (7.30)

Similarly, we can express the linear transformation of the complete observation vector w as

z =
[
(I(J+K ) ⊗ LNP,NFH

NP) ⊗ IL
]

w. (7.31)

If we now plug back in equations (7.26) and (7.27), we can solve for zr and z. Putting all pieces
together, we end up with the following linear transformations

z̃r = (LKNP,NP ⊗ IL)︸                ︷︷                ︸
Tr

zr, (7.32)

z̃ = (L(J+K )NP,NP ⊗ IL)︸                     ︷︷                     ︸
T

z, (7.33)
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7 Generalization to multistatic passive detection

where we exploited that LKNP,NP and L(J+K )NP,NP commute the Kronecker products (IK ⊗
LNP,NFH

NP) and (I(J+K ) ⊗LNP,NFH
NP), respectively. Comparing equations (7.32) and (7.33) with

(7.26) and (7.27) shows that w̃r and w̃ are related by the same permutation matrices Tr and T as z̃r
and z̃.

Given the permutations (7.32) and (7.33) we can now easily obtain the MLEs Sr and S1 by

Ŝr =TT
r diagKLP

(
Q̃r

)
Tr, (7.34)

Ŝ1 =TT diag(J+K )LP

(
Q̃

)
T, (7.35)

which is equivalent to

Ŝr = blockK,K diagLP (Qr ) , (7.36)

Ŝ1 = block(J+K ), (J+K ) diagLP (Q) . (7.37)

Finally, the MLE of S0 is given by

Ŝ0 =



diagL (Qs) 0
0 Ŝr


. (7.38)

Now we plug the MLEs into the likelihood ratio (7.14) to obtain the following expressions

G 1/M =
det

(
Ŝ1

)
det

(
Ŝ0

) , (7.39)

in which we can replace det
(
Ŝ1

)
in two different ways noting that the determinant of a 2 × 2 block

matrix can be formulated in two different ways

det
(
Ŝ1

)
= det

(
Ŝr

)
det

(
Ŝ(1)
s − ŜrsŜ−1

r Ŝsr

)
= det

(
Ŝ(1)
s

)
det

(
Ŝr − Ŝsr

(
Ŝ(1)
s

)−1
Ŝrs

)
. (7.40)

Considering that the denominator in (7.39) is given by Ŝ0 = det
(
Ŝ(0)
s

)
det

(
Ŝr

)
, we can obtain the

following two expressions for (7.39)

G 1/M = det
(
D − CCH

)
, (7.41)

= det (D) det
(
IKLNP − C̃H C̃

)
, (7.42)
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where

D =
(
Ŝ(0)
s

)−1/2
Ŝ(1)
s

(
Ŝ(0)
s

)−1/2
, (7.43)

C =
(
Ŝ(0)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
, (7.44)

C̃ =
(
Ŝ(1)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
. (7.45)

�

7.3.1 Interpretation of the cross-coherence matrices

Similar to Section 5.5 we will provide a brief interpretation of the test statistics composed by the
(cross) coherence matrices (7.18), (7.19), and (7.20) in this paragraph. In order to get an insight
into the test statistics let us first consider the (cross) covariance matrices of each channel pair. To
this end, we split the sample covariance matrix Q into LN P × LN P sized blocks that represent
the sample covariance matrices of each array and channel combination. We will denote them as
follows

Q(i, j)
s =

1
M

M−1∑
m=0

z(m)
s,i z(m)

s, j , (7.46)

Q( j,k)
sr =

1
M

M−1∑
m=0

z(m)
s, j z(m)

r,k
, (7.47)

Q(k,l)
r =

1
M

M−1∑
m=0

z(m)
r,k

z(m)
r,l
, (7.48)

where i, j = 1, . . . , J, k, l = 1, . . . , K , and z(m)
♣, i

for ♣ ∈ {s, r } denotes the mth observation at array ♣

in channel i. Now we can rewrite each LN P× LN P sized block of the MLEs in (7.21) - (7.24) as

Ŝ(0)
si si = diagL

(
Q(i,i)

s

)
, (7.49)

Ŝ(1)
si sj = diagLP

(
Q(i, j)

s

)
, (7.50)

Ŝsjrk = diagLP

(
Q( j,k)

sr

)
, (7.51)

Ŝrlrl = diagLP

(
Q(l,k)

r

)
, (7.52)
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for i, j = 1, . . . , J, k, l = 1, . . . , K . Now we can exploit the results from Section 5.5 and explicitly
Equation (5.74) in order to rewrite the blocks of the MLEs as functions of the cyclic (cross) PSDs.
The (m, n)th L × L sized block of the qth diagonal block of Ŝ(1)

si sj , Ŝsjrk , and Ŝrlrl are given by

[
Ŝ(1)
si sj

] (m,n)

k
= Ŝ(1)

si sj (θmN+q, θnN+q) = Π(m−n)
si sj (θnN+q) ∈ CL×L, (7.53)

[
Ŝsjrk

] (m,n)

k
= Ŝsjrk (θmN+q, θnN+q) = Π(m−n)

sjrk (θnN+q) ∈ CL×L, (7.54)
[
Ŝrlrl

] (m,n)

k
= Ŝrlrl (θmN+q, θnN+q) = Π(m−n)

rlrl (θnN+q) ∈ CL×L, (7.55)

where θl = 2πl
NP , k = 0, . . . , N − 1, m, n = 0, . . . , P − 1. The superscript of Π(m−n) denotes the

m − n diagonal of the qth LP × LP block on the main diagonal of respective LN P × LN P sized
block. Note that the main diagonal, i.e., Π(0) denotes the usual (cross) PSD living on the stationary
manifold. Hence,

[
Ŝ(0)
si si

] (m,m)

k
= Ŝ(0)

si si (θmN+q, θmN+q) = Π(0)
si si (θmN+q) ∈ CL×L (7.56)

denotes the usual PSD at frequency θmN+q of channel i.

Accordingly, the coherence matrix D contains samples of the cyclic (cross) PSDs between
surveillance arrays i and j for i, j = 1, . . . , J scaled by the usual PSD of arrays i and j, respectively.
Each LN P × LN P sized block of the cross coherence matrix C can be interpreted similarly to the
cross coherence matrix introduced in Chapter 5 as it contains the cyclic cross PSDs between all
combinations of surveillance and reference arrays that are scaled by usual PSDs of the surveillance
arrays and complicated functions of the cyclic cross PSDs across the combinations of reference
arrays. Finally, the cross coherence matrix C̃ is composed of the cyclic cross PSDs between all
combinations of surveillance and reference arrays that are scaled by complicated functions of the
cyclic cross PSDs of the surveillance arrays and of the reference arrays.

Hence, D accounts for the cross-spectral correlations across all combinations of surveillance arrays,
whereas C and C̃ account for the cross-spectral correlations among all combinations of surveillance
and reference arrays. C and C̃ differ in the way the cyclic cross PSDs are scaled.

Finally, the GLRT statistic combines the information about the presence of cyclostationarity among
all surveillance arrays via the determinant of D with the determinant of IKLNP − C̃H C̃. Where the
latter accounts for the correlation between surveillance and reference arrays as well as the spectral
correlation of those.
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7.4 Derivation of optimal invariant tests

7.3.2 Threshold selection and null distribution

In order to apply the proposed GLR as a test statistic, we have to determine its distribution under the
null hypothesis in order to fix the probability of false alarm.The GLR in (7.14) can be expressed as
a ratio of determinants of the ML estimates of the covariance matrices Ŝ0 and Ŝ1 as shown in (7.39)
in Section 7.3.1. Since a properly selected permutation of Ŝ0 and Ŝ1 makes them block-diagonal,
we can apply our results from Chapter 3.

Proposition 7.3.1. The distribution of the GLRT statistic proposed in Theorem 7.3.1 under the null
hypothesis is given by a product of independent Beta random variables that is

G 1/M D
=

N∏
l=1




JP∏
k=1

L∏
m=1

Uk,m







KLP∏
n=1

Vn




(7.57)

where all U,V are independent Beta distributed random variables. Specifically, they are given by

Uk,m ∼ Beta {M − ((k − 1)L + m − 1) , (k − 1)L} , (7.58)

Vn ∼ Beta {M − (JLP + n − 1) , JLP} . (7.59)

Proof. The proof directly follows from Theorem 3.4.1 for the following parameters: The total
number of blocks under the alternative is given by L = N , where each block is of dimension
λl = (J + K )LP ∀l. Now we can permute the blocks under the null such that each block under the

alternative is tested against nl = JP+1 blocks under the null with κk =



L, k = 1, . . . , JP,

K LP, k = JP + 1.
�

7.4 Derivation of optimal invariant tests

In order to examine the existence of UMPI and LMPI tests, we exploit Wijsman’s theorem [72] once
more. To this end, we have to identify the invariances of the hypothesis test similarly to Section 5.4
for the two-channel problem.

7.4.1 Invariances of the hypothesis test

The invariance group of the multistatic problem is given by

G = {g : z → g(z) = Ψz} , (7.60)
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where Ψ =


PsG 0
0 PrH


with

P♣ = *
,

N∑
k=1

εkε
T
k ⊗ V(k)

♣ ⊗ IL+
-

(Iκ ⊗ U ⊗ ILP) (W♣ ⊗ ILNP) . (7.61)

The term in the first parentheses accounts for an arbitrary permutation within every LP block in z,
i.e., a permutation of those frequency components that are separated by multiples of 2π/P. Hence,
εk is the kth column of IN , V(k)

♣ ∈ V denotes a P × P permutation matrix. Moreover, the middle
term in parentheses permutes the LP-sized blocks within every zs, j and zr,k in the same way. To
this end, U ∈ U is a permutation matrix of size N × N and κ ∈ {J, K }. The multistatic problem
also allows for a permutation of the J and K channels without changing the structure of S0 and
S1, i.e. W♣ ∈ W denotes a J × J and K × K permutation matrix, respectively. V, U, and W
denote the corresponding sets of P-, N-, and J-,K-dimensional permutation matrices, respectively.
Finally, we should note that we can multiply zs with any G ∈ G, where G is the set of nonsingular
block-diagonal matrices with block size L and we can multiply zr with any H ∈ BKH, where BKH
denotes the set of nonsingular K ×K block matrices, where each block is of dimension LN P× LN P

and a block-diagonal matrix with block size LP itself. Note that we only consider linear operations
in order to preserve Gaussianity of z.

7.4.2 Ratio of maximal invariant densities

According to Wijsman’s theorem the ratio of maximal invariant densities is given by

L =

∫
G

p(g(z);H1) | det(Jg) |dg∫
G

p(g(z);H0) | det(Jg) |dg
, (7.62)

where G denotes the group of invariant transformations given by (7.60), the transformation g(·) ∈ G,
p(z;Hi) is the probability density function of z under hypothesis Hi, Jg denotes the Jacobian
matrix of the transformation g(·), and finally dg denotes the invariant group measure, which is the
Lebesgue measure. Plugging in the likelihoods and the group of invariant transformations yields
the following ratio

L =

∑
VN

0 ,V
N
1 ,U,W

∫
G

∫
H

det(S1)−M | det(G) |2M | det(H) |2M exp
{
−Mtr

(
ΨQΨHS−1

1

)}
dGdH∑

VN
0 ,V

N
1 ,U,W

∫
G

∫
H

det(S0)−M | det(G) |2M | det(H) |2M exp
{
−Mtr

(
ΨQΨHS−1

0

)}
dGdH

.

(7.63)
Although this ratio is a complicated function it can be simplified if we discard all those terms that
do neither depend on the observations nor on the invariances as shown in the following lemma
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Lemma 7.4.1. Equation 7.63 can be simplified as

L ∝
∑

VN
0 ,V

N
1 ,U,W

∫
G

∫
H
β(G)γ(H)e−M[α1 (G)+α2 (G,H)]dGdH, (7.64)

with

β(G) = | det(G) |2M, (7.65)

γ(H) = | det(H) |2Me−M tr(HHH ), (7.66)

α1(G) =
JN∑
j=1

J∑
k=1

P∑
m,n=1

tr
(
Γ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))D(n,m)

( f ( j,k), j)G(m,m)H
( j, j)

)
(7.67)

Γ = PT
s diagL (Σ1)−

1
2 Σ1 diagL (Σ1)−

1
2 Ps, (7.68)

D =
(
Ŝ(0)
s

)−1/2
Ŝ(1)
s

(
Ŝ(0)
s

)−1/2
=

(
diagL (Qs)

)−1/2 blockJ,J diagLP (Qs)
(
diagL (Qs)

)−1/2 ,

(7.69)

α2(G,H) =
KN∑
l=1

J∑
j=1

K∑
k=1

P∑
m,n,p=1

tr
(
Λ(m,n)

(l, f (l, j))G(n,n)
( f (l, j), f (l, j))C(n,p)

( f (l, j), f (l,k))H(p,m)H
( f (l,k),l)

)
, (7.70)

Λ = PT
r Σ
− 1

2
2 Σ21 diagL (Σ1)−

1
2 Ps, (7.71)

C =
(
Ŝ(0)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
(7.72)

=
(
diagL (Qs)

)−1/2 blockK,K diagLP (Qsr )
(
blockK,K diagLP (Qr )

)−1/2 , (7.73)

where f ( j, k) = (k − 1)N +mod( j, N ) and S−1
1 = Σ =



Σ1 Σ12

Σ21 Σ2


.

Proof. Starting from (7.63), we can observe that the terms det(S0)−M and det(S1)−M neither
depend on the observations nor on the invariances. Hence, they can be discarded in the ratio. Before
we further simplify the ratio, we will first present the following lemma:

Lemma 7.4.2. Assume we have a matrix H ∈ BKSLNP
LP , which is a K × K block matrix with

each block being block-diagonal with block size LP. Then the structure of its inverse H−1 has the
identical structure as H, i.e., H−1 ∈ BKS

LNP
LP .

Proof. We will proof this lemma by induction. Let us start with K = 1, i.e. H ∈ SLNP
LP and clearly,

its inverse is a block-diagonal matrix with block size LP as well, i.e., H−1 ∈ SLNP
LP .
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7 Generalization to multistatic passive detection

Now, let us assume that K = n + 1 and we partition the matrix H ∈ Bn+1S
LNP
LP as follows

H =


H11 H12

H21 H22


, (7.74)

where H11 ∈ BnS
LNP
LP , H22 ∈ S

LNP
LP , H12 is an n × 1 block matrix, where each block is in SLNP

LP ,
and similarly, H21 is an 1 × n block matrix, where each block is in SLNP

LP . Moreover, by induction
we presume that H−1

11 ∈ BnS
LNP
LP . Given the matrix inversion of a 2 × 2 block matrix the inverse of

H is given by

H−1 =



H−1
11 +H−1

11 H12
(
H22 −H21H−1

11 H12
)−1

H21H−1
11 −H−1

11 H12
(
H22 −H21H−1

11 H12
)−1

−
(
H22 −H21H−1

11 H12
)−1

H21H−1
11

(
H22 −H21H−1

11 H12
)−1


.

(7.75)
In order to show that H−1 ∈ Bn+1S

LNP
LP , we will establish that all four blocks in (7.75) have the iden-

tical structure as the blocks in (7.74). First, we consider the south-east block
(
H22 −H21H−1

11 H12
)−1

.
Let us have a look at the product H21H−1

11 : Since both H21 and H−1
11 matrices consist of n × 1 and

n × n blocks of LN P-sized block-diagonal matrices, building the product leads to multiplying
block-diagonal matrices with identical block sizes and summing those up. Hence, each block in
the product will be block-diagonal with block size LP again, i.e., H21H−1

11 has the same structure
as H21. Similarly, it is easy to see that multiplying H21H−1

11 with H12 ends up in a block-diagonal
matrix. The difference of two block-diagonal matrices is still block-diagonal and so is its inverse.
Hence, the south-east block of H−1 has the same structure as the south-east block of H.

Second, given the previous paragraph, it is obvious that the north-east and south-east blocks are
n × 1 and 1 × n block matrices consisting of block-diagonal matrices, respectively. Finally, for
the north-west block we first consider the product H−1

11 H12
(
H22 −H21H−1

11 H12
)−1

H21H−1
11 , which

is, given the previous results, a product of an n × 1 and an 1 × n block matrix, which is an n × n

block matrix of which every block is block-diagonal. Hence, the north-west block is the sum of
two matrices in BnSLNP

LP , which is also in BnSLNP
LP . In summary, every block in H−1 has the same

structure as the blocks in H, which concludes the proof. �

Handling the denominator of (7.63)

Now we simplify the denominator of (7.63). Let us first focus on the exponential term. Taking
into account that Ψ and S0 are block-diagonal matrices that consist of one block of dimension
JLN P × JLN P and a second block of dimension K LN P × K LN P, the trace operation in the
exponential term can be rewritten as

tr
(
ΨQΨHS−1

0

)
= tr

(
PsGQsGHPT

s

[
S(0)
s

]−1)
+ tr

(
PrHQrHHPT

r S−1
r

)
. (7.76)
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Applying the change of variables G → GB−
1
2

s ,where Bs = diagL (Qs) and another change of
variables H→ HB−

1
2

r with Br = blockK,K diagLP (Qr ) and where we exploit Lemma 7.4.2, which
assures that B−

1
2

r ∈ BKS
LNP
LP , yields

tr
(
ΨQΨHS−1

0

)
= tr

(
PsGB−

1
2

s QsB
− 1

2
s GHPT

s

[
S(0)
s

]−1)
+ tr

(
PrHB−

1
2

r QrB
− 1

2
r HHPT

r S−1
r

)
. (7.77)

We should note that the data-dependent terms B−
1
2

s QsB
− 1

2
s and B−

1
2

r QrB
− 1

2
r are whitened on their

main diagonal blocks, i.e., these are given by IL and ILP, respectively. Moreover, considering the
LN P-sized off-diagonal blocks of B−

1
2

r QrB
− 1

2
r , we should note that the LP-sized elements on the

main diagonals of those blocks are zero.

Let us consider the first trace operation in the sum (7.76). Since both G and S−1
s are block-diagonal

with block size L, only the whitened main diagonal blocks of B−
1
2

s QsB
− 1

2
s are involved in the

trace operation, i.e., there is no data-dependency in the first term. Note that Ps preserves the
block-diagonal structure. In order to handle the second trace operation, we should recall that
H ∈ BKSLNP

LP and by Lemma 7.4.2 S−1
r ∈ BKS

LNP
LP . Since the LP × LP main diagonal blocks of

B−
1
2

r QrB−
1
2

r are whitened and the LP-sized main diagonal blocks of the off-diagonals are zero, there
is no data-dependent terms in the trace operation. Here Pr preserves the BJ+KSLNP

LP structure.

Hence, we can discard the denominator in the ratio (7.63). and L simplifies as

L ∝
∑

VN
0 ,V

N
1 ,U,W

∫
G

∫
H
| det(G) |2M | det(H) |2M exp

{
−Mtr

(
ΨQΨHS−1

1

)}
dGdH. (7.78)

Further simplifying the ratio

Let us first consider the exponential term in (7.78). We define the matrices Σ = S−1
1 ∈ BJ+KS

LNP
LP ,

which keeps the structure of S1 by Lemma 7.4.2 and Ψ̄ = ΨQΨH ∈ BJ+KS
LNP
LP . These matrices can

be partitioned into Σ =


Σ1 Σ12

Σ21 Σ2


and Ψ̄ =



Ψ̄1 Ψ̄12

Ψ̄21 Ψ̄2


. Furthermore, after another change

of variables G→ GB−
1
2

s and H→ HB−
1
2

r , the blocks of Ψ̄ are given by Ψ̄1 = PsGB−
1
2

s QsB
− 1

2
s GHPH

s ,
Ψ̄2 = PrHB−

1
2

r QrB
− 1

2
r HHPH

r and Ψ̄12 = Ψ̄
H
21 = PsGB−

1
2

s QsrB
− 1

2
r HHPH

r . Finally, putting things
together, (7.78) becomes

L ∝
∑

VN
0 ,V

N
1 ,U

∫
G

∫
H
| det(G) |2M | det(H) |2Me−M tr(Ψ̄1Σ1)e−2M tr(Ψ̄12Σ21)e−M tr(Ψ̄2Σ2)dGdH.

(7.79)
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In order to further disentangle this expression, we consider the trace operations in the exponential
terms individually. Introducing the change of variables G→ PT

s diagL (Σ1)−
1
2 PsG and considering

that the trace is given by the sum of the diagonal elements, tr(Ψ̄1Σ1) simplifies to

tr(Ψ̄1Σ1) =
JN∑
j=1

J∑
k=1

tr
(
Γ( j, f ( j,k))G( f ( j,k), f ( j,k))D( f ( j,k), j)GH

( j, j)

)
,

=

JN∑
j=1

J∑
k=1

P∑
m,n=1

tr
(
Γ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))D(n,m)

( f ( j,k), j)G(m,m)H
( j, j)

)
(7.80)

with Γ and D, given by (7.68) and (7.69), respectively, and f ( j, k) = (k − 1)N +mod( j, N ). Both
matrices D and Γ are inBJSLNP

LP and the index f ( j, k) = (k−1)N +mod( j, N ) selects the LP-sized
blocks on the main diagonals of every LN P-sized block. It should be noted that (7.80) depends on
unknown parameters through Γ.

The second exponential term in (7.79) can be reduced by introducing another change of variables
H→ PT

r Σ
− 1

2
2 PrH as

tr
(
Ψ̄12Σ21

)
=

KN∑
l=1

J∑
j=1

K∑
k=1

tr
(
Λ(l, f (l, j))G( f (l, j), f (l, j))C( f (l, j), f (l,k))HH

( f (l,k),l)

)
,

=

KN∑
l=1

J∑
j=1

K∑
k=1

P∑
m,n,p=1

tr
(
Λ(m,n)

(l, f (l, j))G(n,n)
( f (l, j), f (l, j))C(n,p)

( f (l, j), f (l,k))H(p,m)H
( f (l,k),l)

)
, (7.81)

where Λ is given by (7.71).

Finally, by plugging in the previous change of variables, the last exponential term in (7.79) becomes

tr
(
Ψ̄2Σ2

)
= tr

(
Σ
− 1

2
2 PrHB−

1
2

r QrB
− 1

2
r HHPT

r Σ
− 1

2
2 Σ2

)
= tr

(
HHH

)
, (7.82)

where the last simplification follows from the fact that H is a K × K block matrix with blocks
that are block-diagonal with block size LP and B−

1
2

r QrB
− 1

2
r is white on its LP-sized main diagonal

blocks and zero on its LP-sized off-diagonal blocks of interest. The proof follows by plugging
(7.80), (7.81), and (7.82) into (7.79).

�

We should note that both Γ and Λ depend on unknown parameters in Σ. For this reason we can
conclude that the UMPIT does not exist. However, we may focus on the case of close hypotheses
to examine the existence of an LMPIT. In our scenario the hypotheses are close if the SNR at the
surveillance arrays are very low. In this case the cross-correlation between SC and RC is close to
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zero, i.e., Ssr ≈ 0, and at the SC the covariance matrix Ss is close to block-diagonal with block
size L. For this reason it follows that Σ12 ≈ 0, and Σ1 is also close to being block-diagonal with
block size L. Therefore, we can follow the same approach as in Section 5.4 since both α1(G) ≈ 0
and α2(G,H) ≈ 0, and we may use a second-order Taylor series approximation to approximate the
exponential in (7.64) around α1(G) + α2(G,H) = 0 as

e−M (α1 (G)+α2 (G,H)) ≈ 1 − M (α1(G) + α2(G,H))

+
M2

2
[
α2

1(G) + 2α1(G)α2(G,H) + α2
2(G,H)

]
. (7.83)

Thus, (7.64) can be approximated as

L ∝ L1 +L2 +L3 +L4 +L5, (7.84)

where

L1 = −M
∑

VN
0 ,V

N
1 ,U,W

∫
G
β(G)α1(G)dG

∫
H
γ(H)dH, (7.85)

L2 = −M
∑

VN
0 ,V

N
1 ,U,W

∫
G

∫
H
β(G)γ(H)α2(G,H)dGdH, (7.86)

L3 =
M2

2

∑
VN

0 ,V
N
1 ,U,W

∫
G
β(G)α2

1(G)dG
∫
H
γ(H)dH, (7.87)

L4 =
M2

2

∑
VN

0 ,V
N
1 ,U,W

∫
G

∫
H
β(G)γ(H)α1(G)α2(G,H)dGdH, (7.88)

L5 =
M2

2

∑
VN

0 ,V
N
1 ,U,W

∫
G

∫
H
β(G)γ(H)α2

2(G,H)dGdH. (7.89)

In the following lemma, we show that (7.84) further simplifies.

Lemma 7.4.3. The following terms are zero:

L1 = 0, (7.90)

L2 = 0, (7.91)

L4 = 0. (7.92)
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Proof. Let us first focus on L1, which is given by

L1 ∝
∑

VN
0 ,V

N
1 ,U,W

∫
G

∫
H
β(G)γ(H)

×

KN∑
j=1

K∑
k=1

P∑
m,n=1

tr
(
Γ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))D(n,m)

( f ( j,k), j)G(m,m)H
( j, j)

)
dGdH. (7.93)

Applying the change of variables G(n,n)
( f ( j,k), f ( j,k)) → −G(n,n)

( f ( j,k), f ( j,k)) shows that the integrals need
to be equal to their opposites, i.e., they are zero. In a similar fashion, it can be shown that the terms
L2 and L4 are zero. �

Hence, (7.84) simplifies to L ∝ L3 +L5. Moreover, we can further simplify the terms L3 and
L5, which lead to the following theorem

Theorem 7.4.1. The ratio of the distribution of the maximal invariant statistic in (7.63) is

L ∝ LS + γLSR, (7.94)

where
LS = | |D| |2 (7.95)

and
LSR = | |C| |2 (7.96)

with D and C given by (7.69) and (7.73), respectively. The parameter γ is a constant that depends
on unknown parameters through S1 but is independent of the observations.

Proof.

L3 = M2

2
∑
VN

0 ,V
N
1 ,U,W

∫
G
β(G)

[∑KN
j=1

∑K
k=1

∑P
m,n=1

× tr
(
Γ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))D(n,m)

( f ( j,k), j)G(m,m)H
( j, j)

)]2
dG

∫
H
γ(H)dH,

(7.97)

where the integrals involving the cross-terms of the square, i.e., those elements of the sum that are
not multiplied by themselves, are zero since they are equal to their opposites as can be seen by
applying the change of variables G(n,n)

( f ( j,k), f ( j,k)) → −G(n,n)
( f ( j,k), f ( j,k)) as before. Moreover, the last

integral is just a constant that does not involve observations or any of the unknowns and for this
reason it can be neglected. Now L3 simplifies as follows

L3 ∝
∑
VN

0 ,V
N
1 ,U,W

∫
G
β(G)

∑KN
j=1

∑K
k=1

∑P
m,n=1

× tr2
(
Γ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))D(n,m)

( f ( j,k), j)G(m,m)H
( j, j)

)
dG.

(7.98)
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Now (7.98) became a similar expression as in Appendix C in [38] and we can simplify it similarly
to obtain

L3 ∝ LS = | |D| |2, (7.99)

where D is given by (7.69).

Secondly, we can reduce (7.89) as follows

L5 = M2

2
∑
VN

0 ,V
N
1 ,U,W

∫
G

∫
H
β(G)γ(H)

[∑KN
j=1

∑K
k,l=1

∑P
m,n,p=1

× tr
(
Λ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))C(n,p)

( f ( j,k), f ( j,l))H(p,m)H
( f ( j,l), j)

)]2
dGdH,

(7.101)

where the cross-terms of the square cancel out by another change of variables of either
G(n,n)

( f ( j,k), f ( j,k)) → −G(n,n)
( f ( j,k), f ( j,k)) or H(p,m)

( f ( j,l), j) → −H(p,m)
( f ( j,l), j) . Then the L5 simplifies to

L5 ∝
∑
VN

0 ,V
N
1 ,U,W

∫
G

∫
H
β(G)γ(H)

∑KN
j=1

∑K
k,l=1

∑P
m,n,p=1

× tr2
(
Λ(m,n)

( j, f ( j,k))G(n,n)
( f ( j,k), f ( j,k))C(n,p)

( f ( j,k), f ( j,l))H(p,m)H
( f ( j,l), j)

)
dGdH.

(7.102)

Finally, following similar steps as in Appendix C of [38], we obtain

L5 ∝ LSR = | |C| |2, (7.103)

where C is given by (7.73). It should be noted that L3 and L5 are equal to LS and LSR up to
constant terms that depend on data-independent but unknown values in Γ and Λ. These constant
terms are taken into account via one constant γ, which allows us to express (7.84) as

L ∝ LS + γLSR . (7.104)

�

From this theorem, we can conclude that the LMPIT for the multistatic problem does not exist
since the parameter γ depends on unknown parameters. However, we can observe that similar
to the derivations in Section 5.4 we end up with an expression that is a weighted sum of the
Frobenius norms of the coherence matrix D and the Frobenius norm of the cross coherence matrix
C. Although the first term LS resembles the single array LMPIT derived in [38], it should be noted
that D consists of J × J blocks, where each block is block diagonal with block size LP. Hence, the
Frobenius norm of this matrix is actually a sum of all J single arrays LMPITs, which correspond to
the blocks on the main diagonal of D, but it also accounts for all spectral correlations across the J

arrays by the sum over the Frobenius norm of all non-zero off-diagonal blocks.
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Similarly, the second term LSR in (7.94) is the multi-array extension of (5.65) and accounts for all
cross-spectral correlations of all combinations of surveillance and reference arrays. Hence, LSR

is the sum of all two-channel LMPIT-inspired detectors proposed in (5.84). Please note that the
GLRT for the multistatic case cannot be divided into a function of all two-channel detectors since it
involves the determinant of block matrices and is a complicated function of Schur complements.

Since the LMPIT does not exist, we analyze the performance of the individual terms LS and LSR as
well as the influence of the unknown constant γ in order to investigate whether an LMPIT-inspired
test can be proposed. To this end we run Monte Carlo simulations for different scenarios in the
following section.

7.5 Numerical Results

In this section we evaluate the performance of the multistatic GLRT and of LS and LSR from
(7.94) and the influence of the unknown parameter γ using Monte Carlo simulations. To this end,
we simulate data according to the model (7.1). Specifically, for all J, K we generate Hs, j[n] and
Hr,k[n] and vs, j[n] and vr,k[n] for j = 1, . . . , J and k = 1, . . . , K independently. Also note that we
draw new realizations of all parameters in each Monte Carlo simulation.

Similar to Section 5.7 we define the SNR in our simulation as follows

SNR♣ = 10 log10
*.
,

tr
(
R̂♣

)
tr

(
V̂♣

) +/
-
, (7.105)

where ♣ ∈ {s, r } and

R̂♣ =
1

M N P

MNP−1∑
n=0

h♣[n]hH
♣ [n] ∈ CL×L, (7.106)

V̂♣ =
1

M N P

MNP−1∑
n=0

v♣[n]vH
♣ [n] ∈ CL×L, (7.107)

with

hs[n] =
[(

Hs,1[n] ∗ s[n]
)T , · · · , (Hs,J [n] ∗ s[n]

)T ]T
, (7.108)

hr [n] =
[(

Hr,1[n] ∗ s[n]
)T , · · · , (Hr,K [n] ∗ s[n]

)T ]T
, (7.109)

and similarly, vs[n] =
[
vs,1[n]T , · · · , vs,J [n]T

]
and vr [n] =

[
vr,1[n]T , · · · , vr,K [n]T

]
. Hence, the

SNR is defined as an average across all surveillance and reference arrays, respectively.
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In order to evaluate the performance of the test statistics, we further generalize the detector proposed
in [67] to the case of multiple surveillance and reference arrays as follows

K =
det (R)

det
(
diagL {Rss}

)
det (Rrr )

H1
≷
H0

η, (7.110)

where

R =


Rss Rsr

RH
sr Rrr


(7.111)

with

Rss =
1

M N P

MNP−1∑
n=0

us[n]uH
s [n], (7.112)

Rsr =
1

M N P

MNP−1∑
n=0

us[n]uH
r [n], (7.113)

Rrr =
1

M N P

MNP−1∑
n=0

ur [n]uH
r [n]. (7.114)

The second competitor is the multiarray extension of the popular cross-correlation detector [58, 67]
that uses the statistic

C = | tr
(
RH

srRsr

)
|
H1
≷
H0

η. (7.115)

It should be noted that the cross-correlation detector does not require any prior knowledge, whereas
the correlated subspace detector needs to know the number of antennas LI at the IO, and our
proposed techniques also need to know the cycle period P. Generally, both P and LI could be
estimated or they may be known from the standards used by the IO.

In addition to the two benchmark techniques presented in the previous paragraph, we also compare
to the two-channel detectors presented in Chapter 5. To this end, we treat the J surveillance arrays
with L antennas each as one large array with JL antennas and similarly, the reference arrays are
treated as another large array with K L antennas. This inherently imposes a different structure to
the covariance matrix under the null hypothesis. Specifically, under the null it is presumed that
there is correlation across the J surveillance and across the K reference arrays, although there is
no correlation noise across those arrays present. This effect is similar to that of assuming spatial
correlation although arrays are uncorrelated as described in Chapter 6.

Note that other test statistics either need additional information such as the noise variance [51],
which we assume to be unknown, or they only account for rank-one signals [70], which would be an
unfair comparison for the competing technique. For these reasons we use the generalized versions
of [67] and [58] for comparison.
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Figure 7.1: ROC curves in a scenario with P = 2, N = 16, M = 64, L = LI = 2, a rectangular pulse,
SNRs = SNRr = −20dB, and an equal number of surveillance and reference arrays J = K = 5.

In the first scenario that we investigate, we choose the following parameters: P = 2, N = 16,
M = 64, L = LI = 2, and a rectangular pulse. Moreover, we will vary the SNR and the number of
surveillance arrays and reference arrays but we will keep the total number of arrays constant at 10.

In Figure 7.1 we investigate the ROC for SNRs = SNRr = −20dB in the case of an equal number
of arrays at surveillance and reference arrays, i.e., J = K = 5. We can observe that the GLRT
G and LSR perform best, where LSR is slightly better than G . The two-channel detectors from
Chapter 5, i.e., the GLRT and the LMPIT-inspired test perform second best. They are followed by
LS and with a larger gap by K , and the cross-correlation detector is almost the chance line. The
reason for the poor performance of the cross-correlation detector is the low SNR regime as we have
similarly seen in the previous chapter. Since the performance of this detector is particularly bad, we
will neglect it in further figures as it does not provide further insight. This result resembles that of
Chapter 5.7, where we have seen that the LMPIT-inspired test outperforms the GLRT although it is
not an optimal test but the way the spectral correlation is measured seemed to be more beneficial
to the detection performance compared to merging the spectral correlation at the SC only in an
optimal way with the cross-spectral correlation between SC and RC. Here we can observe a similar
effect. The gap between the multichannel detectors and the two-channel detectors can be explained
by the fact that the two-channel detectors inherently presumes a different noise structure than the
one present in the simulations. Specifically, the two-channel detectors overfit the underlying noise
model as they presume more degrees of freedom than actually present.
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Figure 7.2: ROC curves in a scenario with P = 2, N = 16, M = 64, L = LI = 2, a rectangular pulse,
SNRs = SNRr = −20dB, J = 8 surveillance and K = 2 reference arrays.

Now we choose all parameters as before and keep the total number of arrays constant but increase
the number of surveillance arrays to J = 8 and decrease the number of reference arrays to K = 2.
Interestingly, the ROC in Figure 7.2 shows that the statistic LS performs best among all competing
detectors and is closely followed by the GLRT G . At third place one can observe LSR, which
is followed by the two-channel detectors. Note that the order of the two-channel GLRT and the
two-channel LMPIT-inspired test has changed. This can be explained by the fact that the GLRT
combines spectral correlations within the surveillance array with the cross-correlations between SC
and RC. Since for this scenario we have more surveillance arrays than reference arrays it is more
beneficial to include the inter-SC correlations rather than only accounting for the cross-spectral
correlations only as it is done by the two-channel LMPIT-inspired test. This is also the reason for
LS outperforming G and LSR, i.e., it is more beneficial to only account for the inter-SC correlations
if measured with the Frobenius norm rather than choosing the GLRT that combines the informations
of all arrays but measures the correlations with the determinant. However, it is still superior to LSR,
which only accounts for the cross-spectral correlations between SC and RC.

In a third scenario we still keep all parameters as before but now we choose less surveillance
arrays (J = 2) but increase the number of reference arrays to K = 8. As illustrated in Figure 7.3
the multistatic and the two-channel detectors all perform almost equally, whereas the statistic LS

performs much worse compared to all detectors but C , which is still the chance line. Since in this
scenario we only have two surveillance arrays with L = 2 antennas each available, it is essential to
incorporate the information provided by the cross-spectral correlations between SC and RC. The
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Figure 7.3: ROC curves in a scenario with P = 2, N = 16, M = 64, L = LI = 2, a rectangular pulse,
SNRs = SNRr = −20dB, J = 2 surveillance and K = 8 reference arrays.

reason for G and LSR performing almost equally compared to their two-channel variants is that
the influence of the noise model is for J = 2 with L = 2 almost negligible, i.e., the influence of a
mismatched model is rather small for the given number of surveillance arrays.

Overall we can observe that for a given number of antennas arrays, it is more beneficial to have
more surveillance than reference arrays, which is an intuitive result. Depending on the SNR and
for a certain number of surveillance channels it appears to be beneficial to neglect the influence of
the reference array and choosing LS , which only accounts for the inter-SC spectral correlations
as a detector rather than the GLRT that fuses the information of both channels. This seems
counterintuitive but considering that the GLRT and LS determine the test statistics based on
different functions and considering that the result is also dependent on the SNR at the reference
channel, it is reasonable that one can find such a scenario. Nevertheless, for an equal number of
surveillance and reference arrays it should be accounted for the cross-spectral correlations by LSR.
In the following paragraph we study the influence of the unknown parameter γ from (7.94).

In Figures 7.4 to 7.6 we investigate the performance of the terms LS and LSR from (7.94) compared
to its weighted sum L depending on the unknown γ, which would be the LMPIT if γ was known.
To this end, we fix a set of values for γ and for each value we obtain pd of L for a fixed SNR at
the surveillance arrays SNRs = −20 dB and for SNRr = {−10,−15,−20} dB. Those are displayed
in blue. In yellow we illustrate LSR and in red we illustrate LS . Both are independent of γ and,
additionally, LS , which only accounts for the spectral correlations within and across the surveillance
arrays, is independent of the SNR at the reference arrays.
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Figure 7.4: Probability of detection as a function of γ based on different detection statistics for an experiment
with the following parameters: P = 2, N = 16, M = 64, L = LI = 2, a rectangular pulse,
J = K = 5 surveillance and reference arrays, and SNRs = −20 dB, SNRr = {−10,−15,−20}
dB, and pfa = 0.01.

Generally, the results are similar to those we observed in Chapter 5.6. In all three figures we
can observe that LSR is close to the optimal detector L if the SNRr is reasonably large, i.e.,
the cross-spectral correlations provide sufficiently many information for detection. The lower the
SNRr the more beneficial it is to also incorporate the spectral correlation within and across the
surveillance arrays. This is especially well visible in Figures 7.4 and 7.5 comparing the yellow
detector LSR with the blue detector L for an SNRr = −20 dB. In Figure 7.5 we can also observe
that LS performs better than LSR for low SNRr = −20 dB since the number of surveillance arrays
is four times larger than the number of reference arrays. Hence, as long as the SNR at the reference
array is too low it is more beneficial to account for the spectral correlations at the surveillance arrays
only. In Figure 7.6, we investigate the case with four times as many reference as surveillance arrays.
The cross-spectral correlations measured by LSR perform almost as well as the optimal detector
L even for low SNRr . Obviously, they also significantly outperform LS . However, regarding the
overall detection performance it is not too beneficial to increase the number of reference rather than
the number of surveillance arrays.

In this paragraph we investigate the behavior of the GLRT statistic, the terms LSR and LS from
(7.94) and the two-channel detectors from the previous chapter denoted by “2-ch” for different
number of surveillance and reference arrays as a function of SNRr for the following parameters
P = 2, N = 16, M = 64, L = LI = 2. In Figure 7.7 we show three different plots where the total
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Figure 7.5: Probability of detection as a function of γ based on different detection statistics for an experiment
with the following parameters: P = 2, N = 16, M = 64, L = LI = 2, a rectangular pulse, J = 8
surveillance arrays and K = 2 reference arrays, and SNRs = −20 dB, SNRr = {−10,−15,−20}
dB, and pfa = 0.01.
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Figure 7.6: Probability of detection as a function of γ based on different detection statistics for an experiment
with the following parameters: P = 2, N = 16, M = 64, L = LI = 2, a rectangular pulse, J = 2
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number of arrays is kept constant but the number of surveillance arrays varies from J = 3 in the top
figure down to J = 1 in the bottom figure and the number of reference arrays from K = 1 in the top
figure up to K = 3 in the bottom figure. In the top figure it can be observed that the GLRT and
LS perform equally well for low SNR. However, LS is constant with respect to the SNR at the
reference arrays, which can be observed in all three figures. The worst performance is given by
the two-channel LMPIT-inspired test and LSR, whereas the two-channel GLRT performs medium
best. This can be explained by the fact that only one reference array compared to three surveillance
arrays is available. Hence, less information is contained in the cross-spectral coherences across
surveillance and reference arrays and it is more beneficial to also include cross-spectral coherences
within the three surveillance arrays.
The middle plot shows the case for an equal number of surveillance and reference arrays. Note that
for low SNR at the reference array the GLRT performs best since it merges the information from
both arrays including the inter-array cross-spectral correlations, whereas LSR and LS only exploit
the cross-spectral correlations across surveillance and reference arrays and the inter-array cross
spectral correlations of the surveillance array, respectively.
Finally, in the bottom plot only three statistics are shown for only one surveillance channel, the
two-channel detector statistics are identical to the multistatic test statistics. For this specific setup,
we can observe that GLRT and LSR perform equally, whereas LS has worse performance, which is
not surprising since it is the single-array detector for cyclostationarity at the surveillance arrays
only and no cross-spectral information across surveillance and reference arrays can be exploited.

In Figure 7.8 we consider the same setup as before but now we keep the SNR at the reference array
constant at −12 dB and we vary the SNR at the surveillance array. We can observe that for J = 3
and K = 1 in the top figure and J = 2 and K = 2 the overall performance of LSR, the GLRT and
the two-channel detectors is in a similar range. Where LSR is a little more beneficial in the top
figure, the gap to the other detectors shrinks for an equal number of reference and surveillance array.
In all three constellations, the statistic LS performs worse, which is not surprising considering that
it only detects cyclostationarity based on the surveillance array observations. In the bottom plot we
can observe that the GLRT and LSR perform almost equally for the given constellation of J = 1
and K = 3, which can be explained by observing that due to only a single surveillance channel,
the cross-spectral correlations across surveillance and reference channels is not too beneficial in
LSR and the additional information incorporated by the GLRT, i.e., the spectral correlation at the
surveillance array only helps the GLRT but does not provide enough benefit to outperform LSR.
Recall that LSR and LS use a different function (the Frobenius norm) to measure the coherence
than the GLRT that uses the determinant, which was already shown in the previous chapter and also
in [38] that measuring the coherence with the Frobenius norm seem to be more beneficial.

125



7 Generalization to multistatic passive detection

−20 −18 −16 −14 −12
0.2

0.4

0.6

0.8

1

SNRr (in dB)

p d

J = 3, K = 1

LSR

G

LS

LSR ; 2-ch
G ; 2-ch

−20 −18 −16 −14 −12
0.2

0.4

0.6

0.8

1

SNRr (in dB)

p d

J = 2, K = 2

LSR

G

LS

LSR ; 2-ch
G ; 2-ch

−20 −18 −16 −14 −12
0.2

0.4

0.6

0.8

1

SNRr (in dB)

p d

J = 1, K = 3

LSR

G

LS

Figure 7.7: Probability of detection as a function of the SNRr and different constellation of numbers
of surveillance and reference arrays for the following parameters P = 2, N = 16, M = 64,
L = LI = 2, and SNRs = −15 dB.

In this section we have seen that depending on the number of surveillance and reference arrays it
can be beneficial to employ LSR as an “LMPIT-inspired” test, especially if the number of arrays are
in a similar range. However, this observation cannot be generalized to arbitrary constellations and
arbitrary SNR at the arrays as we have seen in the previous paragraphs, where applying the GLRT
that inherently fuses the cross-spectral correlations inter-surveillance arrays with the cross-spectral
correlation across surveillance and reference arrays.
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Figure 7.8: Probability of detection as a function of the SNRs and different constellation of numbers
of surveillance and reference arrays for the following parameters P = 2, N = 16, M = 64,
L = LI = 2, and SNRr = −12 dB.

7.6 Conclusion

In this chapter we have derived the GLRT for the problem of detecting the presence of cyclostationarity
at multiple surveillance channels given observations from the surveillance channels and multiple
reference channels. This is a generalization of the two-channel passive detection problem that
was considered in the previous chapter. We showed that the GLRT can be divided into one factor
that measures the cross-spectral correlations within each and across all surveillance channels
and a second factor that accounts for all cross-spectral correlations between all combinations of
surveillance and reference arrays. Moreover, we have examined the existence of optimal invariant
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tests for the same problem and have shown that neither the UMPIT nor the LMPIT exist for the
problem. Nevertheless, the ratio of optimal invariant densities for close hypotheses is a weighted
sum of two functions of cross-spectral coherence, where the first depends on the cross-spectral
coherence across all surveillance arrays and the second depends on the cross-spectral coherence
between all combinations of reference and surveillance arrays both measured by the Frobenius
norm. However, the terms are connected by an unknown factor and therefore no LMPIT exists but
still, we could investigate the detection performance of the two individual factors in order to analyze
whether an LMPIT-inspired test can be proposed. Since the performance of the different statistics
depend on the various involved parameters, it was not possible to consistently show that one of
the factors would, in the majority of cases, be beneficial compared to, e.g., the GLRT for the same
problem. For this reason, we did not propose an LMPIT-inspired test.
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8.1 Conclusions

The results of this thesis are twofold. On the one hand, a detector has been derived for the problem
of the detection of almost-cyclostationary signals in a single channel, which jointly provides an
estimate of the cycle period. On the other hand, test statistics for passive detection of cyclostationary
signals in one or multiple surveillance arrays given one or multiple reference arrays have been
derived based on statistically established techniques. Specifically, an asymptotic GLRT for the
problem of MIMO two-channel detection is derived. To this end, it was assumed that the received
signals are zero-mean Gaussian and that the cycle period is known. The derivation of a GLRT
requires to obtain the MLEs of unknown parameters, in the case of zero-mean Gaussian signals,
covariance matrices. Due to the cyclostationarity the covariance matrices have a particular structure
that is block-Toeplitz. However, there are no closed-form solutions for MLEs of block-Toeplitz
matrices. For this reason, a previously proposed approach has been exploited that approximates
the block-Toeplitz covariance matrix as a block circulant matrix in order to find a closed-form but
asymptotic solution for the ML estimate. This concept has been applied throughout the thesis, not
only for the two-channel detection case but also for its generalizations.

Furthermore, the existence of the UMPIT and the LMPIT for the same detection problems have been
investigated. To this end, Wijsman’s theorem is exploited, which avoids the necessity of deriving
the maximal invariant statistic and its distribution under both hypotheses. Instead, all groups of
invariant transformations are identified in order to come up with an expression for the ratio of
the distributions of maximal invariant statistics. One can come rather quickly to the conclusion
that a UMPIT does not exist for the studied detection problems. By considering the case of close
hypotheses, i.e., a small cross-correlation between SC and RC, the existence of the LMPIT is
analyzed. Although a simplified expression of the ratio of maximal invariant statistics can be found,
it still depends on unknown parameters and it is concluded that an LMPIT does not exist either.

Nonetheless, an interpretation of both the GLRT and the ratio of the distribution of the maximal
invariant statistics allows to propose another detector. It is shown that the GLRT inherently merges
the information provided by 1) the presence of cyclostationarity at the SC via the coherence
matrix computed based on observations at the SC only and 2) the cross-coherence matrix that
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combines the usual cross-coherence with the cross-cyclic coherence between SC and RC. After
performing extensive Monte Carlo simulations an LMPIT-inspired detector can be proposed that
only incorporates the latter information. This detector has shown to have the capability to outperform
the GLRT and both proposed detectors outperform comparable state-of-the-art detectors.

The two-channel detection problem has also been generalized to the case of multiple surveillance
and multiple reference arrays. Similar to the two-channel case it is shown that the GLRT combines
the cyclic (cross) coherence of all SC arrays as well as the cyclic (cross) coherences of all RC and SC
in an optimal way. Moreover, it is shown that neither UMPIT nor LMPIT exist for this problem.

The previously mentioned derivations all consider the scenario of noise that reveals spatial and
temporal correlation. Taking into account noise with spatio-temporal structure, the degrees of
freedom of the detection problems are reduced. Therefore, three additional asymptotic GLRT
statistics for the two-channel passive detection problem are derived for the following kinds of noise
models: 1) temporally white and spatially uncorrelated, 2) temporally white and spatially correlated,
and 3) temporally colored and spatially uncorrelated. It has been shown that, depending on the
model, it can be crucial to account for the appropriate temporal structure of the noise when selecting
a test statistic.

In order to apply all the aforementioned test statistics it is necessary to select an appropriate
threshold. For the GLRT statistics, the stochastic representation of the null distribution that can be
used to determine a threshold for a fixed probability of false alarm is derived. Specifically, by taking
into account the invariant transformation that allows for whitening the observations, the distribution
of the proposed GLRT statistics is shown to be a product of independent Beta distributed random
variables, where the degrees of freedom of the Beta random variables depend on the number of
surveillance and reference arrays, the number of antennas per array, the assumptions on noise, the
cycle period, and the total number of samples.

Finally, a more generalized version of the single array detection problem has been considered.
Specifically, it has been generalized to the detection of almost-cyclostationarity with unknown cycle
period. This problem is formulated as a multiple hypothesis test combined with a resampling stage.
To this end, the test statistic for the resampled signal is compared to a threshold, which is determined
based on order-statistics and the fact that the statistic is distributed as a product of independent Beta
random variables under the null hypothesis. It was possible to show that the proposed detector
outperforms the comparable state-of-the-art detectors.
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8.2 Outlook

The detectors derived in this thesis show the capability to improve detection performance in
passive radar and cognitive radio scenarios by exploiting the (almost-) cyclostationary nature of
communication signals. Here an overview of potential future directions are outlined.

One extension of the proposed two-channel and multichannel detectors is the consideration of
unknown cycle periods and almost-cyclostationarity. As already pointed out in Chapter 4 sampling
a continuous-time cyclostationary signal results in a discrete-time almost-cyclostationary signal.
Similar to the technique derived in Chapter 4, it is possible to compute the derived GLRT statistics
for a set of resampled signals and apply a multiple hypothesis test for the detection of ACS signals.

So far in this thesis attention is restricted to synchronized surveillance and reference signals with
respect to the Doppler-shift, which itself is related to the target velocity. In practice this implies
that the derived test statistics serve as ambiguity scores, i.e., it is scanned through candidate
Doppler-shifts. Note that in our model the time-shift of the target echo may already be accounted
for in the signal model through the frequency-selective channel. Another extension of the passive
detection problem addresses assumptions made about the received signals. In practice it is required
to account for direct-path interference in the surveillance channel since a complete cancellation
cannot be guaranteed. However, dropping this assumption makes the signal at the surveillance
channel not only cyclostationary, since the direct-path signal is cyclostationary, but also correlated
with the reference channel under the null hypothesis. At the first glance this makes the problem
much more complicated to solve. Yet one approach to consider is exploiting the Doppler-shift
induced at the surveillance channel.

For a given cycle frequency and Doppler-shift, we can absorb all terms with different cycle
frequency and Doppler-shift into the noise term. This also allows for the detection of multiple
targets considering that they impose different Doppler-shifts. Similarly, direct-path-interference
(DPI) and clutter can be absorbed into the noise term as they are related to zero Doppler-shifts,
whereas all contributions made by targets have non-zero Doppler-shifts. Note that absorbing the DPI
into the noise term, which is typically a strong signal compared to the signal of interest, implicates
that the SNR in both channels has to be considered very small. Additionally, we have assumed so
far that the true Doppler-shifts are among the candidates, i.e., the resolution in Doppler plane must
be sufficiently large, and that the cycle period is an integer. Furthermore, this approach implies that
all cyclostationary contributions that are absorbed into the noise term are treated as if they were
wide-sense stationary for the given candidate cycle frequency.

Additionally, in this work we assumed so far that the number of transmit antennas is greater than or
equal to the number of receive antennas. It would be beneficial to allow a large number of receive
antennas as it would improve the signal separation performance. However, less transmit than receive
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antennas induce a low-rank structure to the covariance matrices, which makes the derivations of
the GLRT much more involved since in addition to the block-Toeplitz structure of the covariance
matrices they are additionally of low-rank. In order to approach that problem, it could be possible
to follow the lines in [125]. The derivation of the LMPIT for the same problem, however, is not
straightforward.

Finally, more than a single illuminator of opportunity can be considered. Each receiver array
observes a superposition of multiple direct-path signals and also multiple target-path signals at the
reference and surveillance arrays, respectively. Assuming that each transmission signal is itself
cyclostationary with a given cycle period, the superposition of the signals is also cyclostationary,
where the cycle period is the least common multiple of all individual cycle periods. In this case,
the problem can be approached by the statistics derived in this chapter, however, the cycle period
may become rather large, which comes along with the necessity to increase the number of samples
observed at each array.
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