
Dissertation
zur Erlangung des Grades

”
Doktor der Naturwissenschaften“ (Dr. rer. nat.)

Brokerage as a Service

Efficient Creation of Service Mashups

Simon Schwichtenberg

February 5, 2024

Für Bahar und Nick.

ii

Danksagung

Als ich mit meiner Promotion begann, war ich motiviert etwas Wertvolles zu

kreieren. Es hat mich gereizt neue Ansätze für reale Probleme zu entwickeln.

Der Weg vom Anfang bis zum Ende meiner Promotion war gespickt von Höhen

und Tiefen. Nun kann ich rückblickend konstatieren, dass sich der weite Weg

gelohnt hat und mich das Ergebnis mit Stolz erfüllt. Viele Menschen haben

mich auf meinem Weg begleitet und haben zum Erfolg meiner Promotion

beigetragen. Dafür möchte ich mich herzlich bedanken.

Zunächst möchte ich mich bei meinem Doktorvater Gregor Engels bedanken.

Gregor, meine Promotion hat mich sowohl fachlich als auch menschlich bedeu-

tend vorangebracht. Deine Sichtweise habe ich stets als Bereicherung angese-

hen. Vielen Dank für Dein Vertrauen und Deine Ausdauer.

Ganz herzlich bedanken möchte ich mich bei Christian Gerth. Christian,

Deinen Überzeugungskünsten ist es überhaupt zu verdanken, dass ich mit

der Promotion begonnen habe. In meiner Masterarbeit, die Du mit betreut

hast, wurden bereits die Grundsteine für meine Promotion gelegt. Unsere

gemeinsame Projektzeit hat mir sehr viel Freude bereitet. Deine positive Art

und Unterstützung hat mich stets motiviert und unser fachlicher Austausch

war stets fruchtbar.

Dank gebührt auch meinen Kollegen der Forschungsgruppe Datenbanken

und Informationssysteme, die mich mit konstruktiven, fachlichen Diskussionen

in meiner Dissertation weiter vorangebracht haben.

Lieber Dank geht auch an meine Familie mit Irene, Wilhelm und Eva,

Melanie und Tobias. Ihr hab den Mensch mit geprägt, der ich heute bin.

Ihr habt mich immer unterstützt und an mich geglaubt. Meiner Frau Bahar

und meinem Sohn Nick gebührt besonderer Dank. Danke Dir Bahar für Deine

Hingabe und Liebe. Ich kann mir diesen Moment des Erfolgs nur schwer ohne

Deine Unterstützung vorstellen. Nick, Du hast mich enorm motiviert meine

Promotion erfolgreich zum Ende zu bringen. Du erinnerst mich täglich an die

wirklich wichtigen Dinge des Lebens.

iii

Abstract

A predominant kind of software application is mashups of third-party web

services. The third-party services are usually black-boxes that have private

source code and public Application Programming Interfaces (APIs) with op-

erations and parameters. Requesters of such black-box services are developers

who compose services into mashups.

Today, the creation of mashups is manual and thereby inefficient because

the services requested and offered are insufficiently specified. Specifically, three

main problems make the mashup creation inefficient: (1) Finding suitable ser-

vices is cumbersome because request and API specification often mismatch due

to terminological heterogeneity. This makes search algorithms ineffective in

finding relevant APIs. (2) API specifications lack API protocols, which makes

it impossible for requesters to determine all operation call sequences that are

required for their mashup. Operations often are not used in isolation, as they

have control or data flow interdependencies. (3) Enabling data communication

inside the mashups is laborious for the requesters because different APIs use

different parameter names and have incompatible data types and formats.

This dissertation introduces Brokerage as a Service (BaaS) that pursues

these objectives: (1) Resolving the terminological heterogeneity between re-

quests and API specifications by linking them to a global ontology. Termino-

logical normalization improves the effectiveness of finding relevant APIs. A

systematic method to choose the most effective techniques to link APIs and

ontologies is presented. (2) Deriving operation dependencies by mining API

protocols from call-logs. The languages OWL-S, BPMN, and WS-BPEL are

examined to identify control constructs needed to describe API protocols and

which of these control constructs can be discovered through process mining. It

is analyzed which mining algorithms are suitable for deriving API protocols.

(3) Making APIs interoperable by generating glue code from parameter map-

pings. The code generator emits executable program code that makes API

calls, extracts relevant parameters from requests and responses, and trans-

lates the data. In summary, this dissertation shows how to facilitate mashup

creation by adding missing information to requests and API specifications and

how to make APIs interoperable.

iv

Zusammenfassung

Softwareapplikationen sind heutzutage oft ein Zusammenschluss von Webser-

vices verschiedener Drittanbieter. Deren Programmcode ist für Entwickler

von Mashups nicht zugänglich, während die Schnittstellen (APIs) öffentlich

sind. In API Spezifikationen sind Operationen und deren Eingabe- und Aus-

gabeparameter beschrieben, die Entwickler nutzen um die APIs in Mashups

zu integrieren.

Das Erstellen von Mashups ist heutzutage vorwiegend manuell und inef-

fizient. Dafür sind drei Hauptprobleme verantwortlich: (1) Das Auffinden

von relevanten APIs für ein Mashup per Suchalgorithmen ist ineffektiv, weil

Suchanfragen und API Spezifikationen aufgrund ihrer terminologischen Het-

erogenität nicht zusammenpassen. (2) API Spezifikationen enthalten keine

API Protokolle was es den Entwicklern von Mashups unmöglich macht alle

Operationen zu ermitteln, die für das Mashup benötigt werden. Denn einzelne

Operationen können oft nicht in Isolation benutzt werden, da sie Daten-

flussabhängigkeiten zu anderen Operationen besitzen. (3) Die Kommunika-

tion zwischen verschiedenen APIs innerhalb eines Mashup herzustellen ist

aufwändig, da ihre Datenmodelle zueinander inkompatibel sind.

In dieser Dissertation wird Brokerage as a Service eingeführt, welche die

zuvor genannten Hauptprobleme auf folgende Weise adressiert: (1) Die ter-

minologische Heterogenität von Suchanfragen und API Spezifikationen wird

aufgelöst indem beide mit einer globalen Ontologie verknüpft werden. Es wird

gezeigt, dass die dadurch stattfindende terminologische Normalisierung die Ef-

fektivität von Suchalgorithmen verbessert. (2) API Protokolle werden automa-

tisch mittels Process Mining aus Aufzeichnungen von API Aufrufen erzeugt.

Dazu werden die Kontrollflusskonstrukte aus den Sprachen OWL-S, BPMN,

WS-BPEL klassifiziert und den Kontrollflusskonstrukten gegenübergestellt,

die per Process Mining erkannt werden können. Es wird analysiert welche Min-

ing Algorithmen sich zum Ableiten von API Protokollen eignen. (3) Interoper-

abilität zwischen den APIs eines Mashups wird durch das automatische Erzeu-

gen von Glue Code aus korrespondierenden Parametern erzielt. Der Glue Code

kann einzelne, für das Mashup relevante Parameter aus komplexen Daten-

strukturen extrahieren, die Parameterwerte konvertieren, um damit nachfol-

genden API-Aufrufe durchzuführen. Mithilfe dieser drei Lösungen ermöglicht

es BaaS API Spezifikationen mit fehlenden Informationen anzureichern und

APIs miteinander interoperabel zu machen.

v

Contents

1 Introduction 1

1.1 Application Scenario . 1

1.2 Problem Analysis . 3

1.3 Requirements . 10

1.3.1 Upward Compatibility 11

1.3.2 Learnability . 11

1.3.3 Effectiveness . 11

1.3.4 Comprehensiveness . 12

1.3.5 Interoperability . 12

1.4 Solution Approach . 12

1.5 Publication Overview . 18

1.6 Thesis Structure . 22

2 Foundations 23

2.1 RESTful Web Services . 25

2.1.1 HATEOAS . 26

2.1.2 Maturity Model . 27

2.2 Syntactic Specification Languages 28

2.3 Semantic Web and Linked Open Data 31

2.3.1 Ontologies . 32

2.3.2 Semantic Web Services 34

2.3.3 Semantic Service Discovery 35

2.3.4 Service Grounding . 36

2.3.5 Service Composition and Interoperability 37

2.3.6 Ontology Matching . 37

2.3.7 Types of Heterogeneity 38

2.4 Matching Techniques . 40

2.5 Process Mining . 44

2.5.1 Mining Algorithms . 45

vii

Contents

2.5.2 Quality Attributes . 52

2.6 Summary . 53

3 Related Work 55

3.1 Request–API Terminological Heterogeneity 56

3.2 Unspecified API Protocols . 64

3.3 API Incompatibility . 68

3.4 On-The-Fly Computing . 71

3.5 Summary . 73

4 Solution Overview 75

4.1 Architecture . 75

4.1.1 Semantic Annotator . 76

4.1.2 API Protocol Miner . 79

4.1.3 Glue Code Generator 81

4.2 Usage . 82

4.3 Meeting the Requirements . 83

4.3.1 Upward Compatibility 84

4.3.2 Learnability . 84

4.3.3 Effectiveness . 84

4.3.4 Comprehensiveness . 84

4.3.5 Interoperability . 85

4.4 Summary . 85

5 Semantic Annotator 87

5.1 Functionality of the Semantic Annotator 89

5.1.1 Preprocessing . 93

5.1.2 Indexing Semantic Types 94

5.1.3 Building Search Queries 94

5.2 Evaluation . 98

5.2.1 Effectiveness of Semantic Annotator 99

5.2.2 Effectiveness of Service Discovery 107

5.3 Discussion . 115

5.4 Summary . 117

6 API Protocol Miner 119

6.1 Running Example . 121

viii

Contents

6.2 Static Versus Dynamic Analysis 122

6.2.1 Static Analysis . 122

6.2.2 Dynamic Analysis . 126

6.3 Discoverable Control Flow Constructs through Process Mining 129

6.3.1 Control Flow Constructs in Specification Languages . . 129

6.3.2 Relating Languages and Process Mining Algorithms . . 134

6.4 Functionality of the API Protocol Miner 136

6.4.1 Converting Call-logs to Event-logs 138

6.5 Evaluation . 142

6.5.1 Preparation . 144

6.5.2 Proceeding . 146

6.5.3 Results . 146

6.6 Summary . 151

7 Parameter Matcher and Glue Code Generator 153

7.1 Parameter Matching . 155

7.1.1 Combinations of Inputs and Outputs 156

7.1.2 Degrees of Compatibility 157

7.2 Functionality of the Parameter Matcher 160

7.2.1 Matching Techniques . 160

7.3 Composing APIs in Mashups 166

7.3.1 Approach 1: Local-Global-Local Translation 166

7.3.2 Approach 2: Local-Local Translation 169

7.4 Functionality of the Glue Code Generator 170

7.4.1 Code Generation Templates 171

7.4.2 Generating Translation Functions 173

7.5 Evaluation . 174

7.5.1 Effectiveness of Parameter Matcher 174

7.5.2 Glue Code Generation 175

7.6 Summary . 179

8 Conclusion and Future Work 181

8.1 Summary . 181

8.2 Future Work . 184

8.2.1 Linking Textual Requests with Ontologies 184

8.2.2 Systematically Developing Global Ontologies 185

ix

Contents

8.2.3 Lifting the Maturity Level of Existing REST APIs . . . 185

8.3 Final Remark . 186

Bibliography 187

x

List of Figures

1.1 Matching requests and third-party APIs for mashup creation . 2

1.2 Problems related to inefficient mashup creation 4

1.3 Solution overview . 13

1.4 Terminological heterogeneity causing ineffective search 15

1.5 Noisy call-logs causing mined protocols to be inaccurate 17

1.6 Glue code containing translation function to translate from pa-

rameter checkin date to pickupDay 18

1.7 Publication overview . 19

2.1 Overview foundations chapter 23

2.2 Exemplary Expedia REST API call 26

2.3 OpenAPI ontology (excerpt) . 29

2.4 A domain ontology based on Schema.org 33

2.5 OWL-S service description ontology (excerpt) 35

2.6 Service grounding . 37

2.7 Petri net discovered by Alpha Miner 46

2.8 Dependency graph produced by Heuristics Miner 49

2.9 Petri net discovered by Heuristics Miner 49

2.10 Inductive Miner cuts types . 50

2.11 Inductive Miner cuts . 51

2.12 Process tree discovered by Inductive Miner 52

2.13 Petri net discovered by Inductive Miner 52

4.1 BaaS components and artifacts 76

4.2 BaaS API gateway . 79

4.3 BaaS interaction processes of requesters and providers 82

5.1 Reducing Heterogeneity with Global Ontology 88

5.2 Dataset characteristics . 100

5.3 SME2 user interface . 111

xi

List of Figures

5.4 Comparison of OWLS-MX3’s mean average precision 115

5.5 Domain and range of schema:provider 117

6.1 Logical dependencies between the methods POST, GET, PUT,

PATCH, and DELETE . 122

6.2 SIMPHERA API protocol produced by static analysis 125

6.3 Interference of two process instances accessing the SIMPHERA

API . 127

6.4 Control flow constructs in OWL-S 130

6.5 Control flow constructs in WS-BPEL 132

6.6 Control flow constructs in BPMN 133

6.7 Mining API protocol specifications from call-logs 137

6.8 Using process mining to discover process models from a call-log 138

6.9 Reference API protocol of the SIMPHERA API 145

6.10 BPMN model produced by Alpha Miner from noise-free call-log 147

6.11 BPMN model produced by Inductive Miner and Heuristics

Miner from noise-free call-log 148

6.12 BPMN model produced by Inductive Miner from noisy call-log 149

6.13 BPMN model produced by Heuristic Miner from noisy call-log 150

7.1 Heterogeneous data exchanged between APIs used in a mashup 154

7.2 Mashup with local-global-local Translation 167

7.3 Local datamodel of Lufthansa API cannot be mapped com-

pletely onto global semantic types 168

7.4 Mashup with local-local translation 169

xii

List of Tables

2.1 Alpha Miner footprint matrix 46

2.2 Alpha Miner patterns . 47

2.3 Heuristics Miner: Directly-follows frequency matrix 48

2.4 Heuristics Miner: Dependency matrix 48

3.1 Comparison of related works addressing Request–API Termino-

logical Heterogeneity . 64

3.2 Comparison of related works addressing Unspecified API Protocols 67

3.3 Comparison of related works addressing API Incompatibility . . 70

5.1 Index fields and indexed tokens of the class schema:Flight . . 95

5.2 List of extracted inputs and outputs from the Lufthansa API

specification. 96

5.3 Query parts . 97

5.4 Query parts for the output parameter AirportCode of the

Lufthansa API . 98

5.5 Annotation of parameters . 103

5.6 Effectiveness of single query parts and index field Label 103

5.7 Top ten index field and query part configurations in terms of

mean average precision (MAP) 104

5.8 Performance of various preprocessing pipeline configurations in

terms of mean average precision 106

5.9 Five OWL-S requests used for the evaluation 112

5.10 OWLS-MX experiment configurations categorized according

the classification scheme . 114

6.1 Comparison between static and dynamic analysis of REST APIs 129

6.2 Classifying OWL-S, WS-BPEL, and BPMN control flow con-

structs . 134

6.3 Comparison of the mining algorithms [1] 135

xiii

List of Tables

7.1 OpenAPI data types and formats and corresponding Java types 157

7.2 Using regular expressions to determine the actual data type and

format . 163

7.3 Performance of similarity metrics: Ranks and average precision 175

7.4 Ranked parameter mappings 176

xiv

List of Listings

1 OpenAPI specification of the Expedia API (excerpt) 30

2 Lufthansa Open API . 90

3 Example JSON response of the Lufthansa OpenAPI 91

4 Lufthansa API in OWL-S and with syntactic types 114

5 Shared JSON schema between operations 123

6 Shared inputs and outputs between operations 124

7 Single entry from raw call-log including client IP address and

user agent . 141

8 Single entry from raw call-log including authorization token . . 142

9 Translating a call-log into an XES event-log 143

10 Example response from Lufthansa API 162

11 Example response of the “IATA and ICAO” API using inap-

propriate types. 162

12 Java operation generated by default OpenAPI code generator . 171

13 Code generation template for input-input mappings 171

14 Code generation template for output-input mappings 172

15 Code generation template for output-output parameter mappings172

16 Code generation template for input-output parameter mappings 173

17 Generated glue code from ⟨destination, pickupLocation⟩ and
⟨DateTime, pickupDay⟩ . 178

xv

1 Introduction

In modern software development, a predominant kind of software application

is service mashups that are an interplay of different web services provided by

various independent third-party service providers. The single services realize

just a small task, are self-contained and work in isolation. Combining web

services into mashups can solve more complex tasks than individual services

can do alone. To solve a complex task, services need to interact with each

other and exchange data.

While there are also other competing technologies such as GraphlQL1 or

gRPC2, the REST architectural style [2] has prevailed as the de-facto stan-

dard for realizing web services. Such RESTful web services can be consumed

through a programming-language neutral Application Programming Interface

(API). The API of a RESTful web service is a REST API. Developers of

mashups are often dependent on certain data that are processed in the mashup.

Often a practice-proven way to get such data is via an API from a third party.

Thus, these APIs have to be integrated into the mashup.

1.1 Application Scenario

This section introduces a real-world scenario for mashup creation which is

depicted in Figure 1.1. A service requester is a software developer that searches

APIs to combine them into a mashup. In the scenario, the requester wants to

create a mashup for travel arrangements. A travel arrangement consists of a

flight, rental car, and hotel room reservation that are connected: The day of

the flight arrival, the pickup of the car, and the hotel check-in are identical.

Also, the location of the arrival airport, the rental office, and the hotel are

1https://graphql.org/
2https://grpc.io/

1

https://graphql.org/
https://grpc.io/

1 Introduction

Mashup
(manual code)

CarRental
Request

CarRental
Request

Hotel
Request
Hotel

Request

Lufthansa
API

Lufthansa
API

Expedia
API

Expedia
API

Hertz
API

Hertz
API

Service
Requester

Matching

?

Matching

?

Matching

?

Flights
Request
Flights

Request

Third-party
Services

Figure 1.1: Matching requests and third-party APIs for mashup creation

in same the geographic region. To realize this mashup, the requester needs

to find three individual APIs for flight, car rental, and hotel room reservation

and to combine them. He needs to find all available third-party APIs that

match his requirements best possible. In this case, the Lufthansa API, Hertz

API, and Expedia API provide what the requester is looking for.

Every time service requesters compose third-party APIs into mashups, the

same questions keep coming up: (1) How to find suitable APIs among thou-

sands of third-party APIs? (2) Which operations of the third-party APIs are

needed for the mashup, what are the interdependencies of these operations,

and in which order they have to be called? (3) Which parameters have to be

exchanged between the APIs and how can they be exchanged although they

have incompatible data types and formats?

Finding the answers to these questions is mainly a manual process that

makes service composition nowadays inefficient as described in the following

problem analysis.

2

1.2 Problem Analysis

1.2 Problem Analysis

This section generalizes the problematic aspects of inefficient mashup creation

that are shown in terms of the application scenario in Section 1.1. In practice,

service requests and API specifications are incomplete and heterogeneous, i.e.,

ontological and behavioral semantics of an API is usually barely specified.

Based on insufficient information, requesters can not decide whether a certain

API is relevant for their mashup and how that API can be composed with

others. In particular, the creation of mashups is inefficient because of the

following three problems:

(1) Requests and APIs are terminologically heterogeneous which makes

searching relevant APIs ineffective.

(2) API protocols are unspecified but necessary to determine which operations

are needed in a mashup and in which order the operations have to be called.

(3) Incompatibility of APIs makes it difficult to share data between APIs and

to write the glue code such that the APIs are able to exchange the data.

All three problems are shown in Figure 1.2. In the following, the individual

three problems are described in detail and opposed to related works.

(1) Request–API Terminological Heterogeneity Today, service requesters

use general search engines like Google, Bing, etc. to search APIs. General

search engines search through trillions of any kind of web content. Thus, a

service requester that uses such a general search engine to search for API

specifications may find irrelevant web content, making this method inefficient.

Alternatively, service providers publish their API specifications on public

API registries, where requesters can search them. For example, there are

public API registries such as RapidAPI3, SmartAPI4, APIs.guru5, etc. The

content of public service registries is limited to API specifications per se, which

makes the discovery of APIs more effective than with general search engines.

On RapidAPI, service requesters can browse the APIs by categories or

use a keyword-based search function to find relevant APIs. Search functions

that solely base on simple string similarity tend to be ineffective, because

3https://rapidapi.com/
4http://smart-api.info/registry
5https://apis.guru

3

https://rapidapi.com/
http://smart-api.info/registry
https://apis.guru

1 Introduction

Mashup

RentalCar
Request

RentalCar
Request

Hotel
Request
Hotel

Request

 (3) API Incompatibility
2020-05-29T10:30 ≠ “29/05/2020 10:30”

Flights Request

GET flights(
departure_airport : string,
arrival_airport : string,
landing : Date)

Lufthansa API

GET flight_schedules(
origin : string,
destination : string,
arrivalDate : string)

Expedia API

GET airports(
property_ids:string)

GET availability(
checkin_date:Date,
property_id:string)

POST booking()
GET cancel()

Hertz API

GET vehicles(
pickupLocation:string,
pickupDay:string)

airports availability

booking

cancel

(2) Unspecified
API Protocols

availability→booking →…?

(1) Request-API
Terminological
Heterogeneity

“landing” ≠ “arrivalDate”

Figure 1.2: Problems related to inefficient mashup creation

4

1.2 Problem Analysis

requesters and providers may use different terms, e.g., synonyms to describe

the same concepts. Synonyms are not string-similar at all so that string-based

techniques fail to work. It is also state-of-the-art technology to look up

synonyms in a digital dictionary like WordNet [3]. The problem with this

approach is that words can have different meanings such that disambiguation

of words depending on the context can be difficult.

This problem of terminological heterogeneity is illustrated in Figure 1.2:

The Flights Request requires an operation GET flights that returns all flight

connections from departure airport to arrival airport on a given landing date.

The Lufthansa API has an operation GET flight schedules that provides

the required functionality, but it is described using different terminology.

In particular, the parameter landing from the Flights Request corresponds

with the parameter arrivalDate from the Lufthansa API. Because of this

terminological heterogeneity between the request and the APIs, the requester

is not able to find the Lufthansa API.

More advanced service discovery approaches like those presented in [4] mit-

igate the problem of terminological heterogeneity by combining string-based

and semantic techniques. Semantic techniques require that requests and API

specifications are linked with ontologies that model concepts and their rela-

tions in certain areas of concern. Semantic service discovery can exploit these

ontology links to determine the semantic relations between requests and APIs.

Semantic approaches have not been adopted in practice on a large scale

until today. Consequently, real-world requests and API specifications are

not linked to ontologies, so that semantic techniques cannot unfold their

full potential and ultimately fall back on string-based techniques. For

example, not a single of the 1,986 specifications on RapidAPI contains links

to ontologies.

What would requesters and providers have to do to add those links?

How are they able to find relevant ontological concepts in ontologies that

have thousands of concepts? It needs a great deal of manual effort to find

ontological concepts that are relevant. The efficiency requesters gain by a

more effective service discovery through semantic links should not come at

5

1 Introduction

the expense of service providers who have greater effort to link their API

specifications to ontologies. Several approaches have been proposed to link

requests/API specifications to ontologies. These approaches are discussed in

the remainder.

In her work, Huma [5] assumes that requests and API specifications already

use local ontologies and that local ontologies from requesters and providers

are terminologically heterogeneous. To normalize the local ontologies of the

requesters and providers they are aligned with a global ontology. In practice,

however, API specifications do not contain local ontologies but data models

containing only named types. Huma’s approach is useful to create new web

services from scratch but it is incompatible with existing REST APIs as they

usually do not base on ontologies. As a result, the vast amount of REST

APIs remains inaccessible for efficient mashup creation with this approach.

The METEOR-S Web Service Annotation Framework (MWSAF) [6] allows

to automatically categorize APIs by assigning them to ontological classes.

Categorizing APIs on the level of ontologies does not make the search for

relevant APIs much more efficient: There might be still many APIs assigned

to the same ontology which barely narrows down the number of relevant APIs

such that requesters still have to inspect many irrelevant APIs.

Other approaches are on a more fine-grained level. Instead of mapping

whole APIs to an ontology, they map single API parameters to ontological

concepts: Oliveira et al. [7] propose OntoGenesis which calculates a similarity

score between API parameters and ontological concepts. The similarity of a

parameter and a concept bases on the number of shared values. This technique

is suitable only for finite value ranges, but APIs have also parameters with

infinite value ranges. Even if the value ranges are finite, the complete value

ranges are publicly unspecified. In practice, only a few sample values of the

API parameters and ontological concepts are known while the complete value

range is much bigger. To reliably determine the similarity of a parameter

and an ontological concept, according to the law of large numbers, it is not

sufficient to infer the generality from a few cases. In addition, parameter

values, e.g. string literals can also be terminologically heterogeneous so that

the number of shared values may be inaccurate, falsifying the search results.

6

1.2 Problem Analysis

Maleshkova et al. [8] propose SWEET that extracts parameter names from

API specifications and uses the external semantic search engine Watson [9] to

find suitable ontological concepts. Cremaschi et al. [10] propose AutomAPIc

that uses the Stanford CoreNLP [11] natural language entity recognition to

extract concepts from textual API specifications. Hess et al. [12] propose

ASSAM which uses a combination of different string matching techniques to

determine the similarity of API parameters and ontological concepts. SWEET,

AutomAPIc, and ASSAM use different techniques to match API specifications

with ontologies. The problem with these approaches is that they do not scale

with a large number of APIs: The approaches are either too precise but fail

to find many relevant ontological concepts, or they are imprecise, but find too

many irrelevant ontological concepts.

(2) Unspecified API Protocols Once suitable APIs have been found, it

comes to their integration into an executable mashup. This includes the

identification of those operations that are needed for a mashup. APIs usually

have many operations, but mashups usually do not need the full range of

operations, but just a fraction. Requesters have to find out which of the

operations their mashup has to call to complete its purpose. On the other

hand, single operations may have control and data flow dependencies on other

operations such that they cannot be called in isolation. This means that

dependent operations have to be called in a certain order because otherwise,

the mashup is dysfunctional.

An example can be seen in Figure 1.2. The Expedia API has multiple

operations, but only a few are required for the mashup and the requester

has to decide which operations are needed. The operation GET availability

returns the free capacity of a given hotel identified by a Expedia-specific

property id on a given checkin date. To obtain a valid property id, the

operation GET airports must be called before. Requesters have to laboriously

find out these operation dependencies. It would have been better if the

Expedia API explicitly specified its API protocol that prescribes which

operation have to be called in which order.

To detect such operation dependencies computer-assisted, Bertolino et

7

1 Introduction

al. [13] propose to recognize data flow dependencies between operations: A

dependency between two operations is detected if the first returns an output

with data type T and the second consumes an input of type T . Bertolino

et al. address Remote Procedure Call (RPC) style web services and their

approach is not applicable to RESTful web services, where the data types

are JSON formats that are often unique per operation, which means there is

often no such type T that is shared between two operations.

Dustdar and Gombotz [14, 15] propose to discover interaction dependencies

of APIs composed in mashups using process mining techniques. The approach

is applied after the composition to analyze if the actual behavior of the mashup

conforms to the expected behavior. In their work, only the execution paths

that are taken in an existing mashup are in the focus. Opposed to the work of

Dustdar and Gombotz, the goal of this dissertation is rather to mine all op-

eration dependencies covering all possible execution paths that may be taken

in future mashups. The entirety of all possible execution paths is the API

protocol. The approach presented in this dissertation is applied before APIs

are composed into mashups. Without a comprehensive API specification in-

cluding its protocol, the requester cannot operate an API correctly since it is

not known in which order operations must be called.

(3) API Incompatibility APIs that are composed into a mashup need to

exchange data when they are interacting with one another. For example, an

output parameter of API X may serve as an input parameter of another API

Y. APIs may have dozens or hundreds of parameters, while not all parameters

are required in a mashup. The requester has to find out which input and

output parameters are critical and have to be exchanged in a mashup. Find-

ing corresponding parameters of different APIs is very time-consuming and

therefore inefficient since the requester has to compare dozen of parameters

pairwise to decide which are semantically similar and syntactically compatible.

The terminological mismatch between the APIs to be composed in the

exemplary travel arrangement mashup can be seen in Figure 1.2. When a

travel arrangement is planned with the help of the mashup, the arrival date

of the flight, the pick-up date of the rental car, and the check-in date are all

on the same day. Thus, this time-based data needs to be shared between

8

1.2 Problem Analysis

the APIs. For example, the parameters pickupDay and checkin date have to

be shared between the Hertz API and the Expedia API. By just considering

the parameter names it is not obvious that they are corresponding with each

other. This terminological heterogeneity between the APIs makes it difficult

for the requester to find parameters that need to be shared across APIs.

Izquierdo et al. [16] present a set of guiding rules to identify corresponding

parameters of two given APIs. The correspondences of parameters are

determined based on their names and types, which is not effective when APIs

are strongly heterogeneous.

AutomAPIc [10] assists with linking APIs to ontologies and also with

composing them. On the basis of ontological links and a set of predefined

rules, AutomAPIc automatically detects which pairs of APIs are generally

compatible, independent from a concrete service request. AutomAPIc already

considers two APIs as compatible when there exists at least one parameter

which is linked to the same semantic type. This definition of compatibility is

too weak for practice because mapping one parameter is usually not sufficient

as APIs often have multiple mandatory parameters.

In addition to the challenge that the parameter names of different APIs

are terminologically heterogeneous, there is also the challenge that parameter

values are not compatible because they have different types and formats. In

practice, the requester writes the glue code that translates one parameter

value into another. Programming the glue code to convert the data requires

a great deal of manual effort.

An example can be seen in Figure 1.2: The parameter pickupDay of the

Hertz API is a string-encoded date and the parameter checkin date of the

Expedia API is of type Date. The first uses the date format YYYY-MM-

DDTHH:mm while the latter uses the date format DD/MM/YYYY HH:mm.

Hence, the values of these parameters cannot be exchanged directly. In

general, data exchanged between APIs need to be preprocessed, filtered,

converted, supplemented, corrected, etc. before it can be exchanged across

APIs, which, in practice, is done manually. The process of combining different

APIs requires a great deal of manual effort and is one of the reasons why API

9

1 Introduction

composition is inefficient until today.

Hess et al. [12] propose to generate complex transformations to transform

local to global types and vice versa. So-called lifting transformations

transform a local type of API X to a global type. Lowering transformations

transform the global type to another local type of API Y. Hess et al. do not

consider that the values of both local types of API X and API Y may have

incompatible values even though they are mapped to the same global type.

Burstein et al. [17] present an approach that can handle complex trans-

formations for the glue code generation. The translation problem is cast as

solving higher-order functional equations. The problem with this approach

is that most developers are not familiar with lambda calculus and it is very

time-consuming to describe an entire API in lambda calculus. This makes

the approach impractical in real-world scenarios.

The approaches [16, 10, 12] only offer limited support for making APIs

interoperable and do not address complex parameter mappings with is

necessary to achieve executable mashups. Therefore, these approaches do not

scale in practice. The approach [17] addresses complex mappings but requires

describing APIs with functional equations. The assumption that requesters

and providers are proficient in writing functional equations is unrealistic

which restricts the learn-ability of the approach.

To summarize all three problems (1-3), it can be seen that today, the cre-

ation of mashups is inefficient, because requesters do not find relevant APIs

due to terminological heterogeneity, requesters do not know how to use an

API correctly, because of missing API protocol specifications, and requesters

have to write glue code manually to make APIs compatible. The following sec-

tion formulates the requirements of an approach that addresses the remaining

problems.

1.3 Requirements

In the previous section the shortcomings of state-of-the-art approaches for ef-

ficient mashup creation with respect to terminological heterogeneity between

10

1.3 Requirements

requests and API specifications, the lack of API protocols, and the incompat-

ibility of APIs are discussed. Derived from these shortcomings, this section

describes the cross-cutting requirements of a new approach that resolves ter-

minological heterogeneity to find relevant APIs, creates API protocol specifi-

cations, and generates the glue code that makes APIs compatible.

1.3.1 Upward Compatibility

The enormous plethora of existing RESTful web services brings a lot of ready-

to-use functionality that, in its current shape, cannot be efficiently reused in

mashups. Unfortunately, due to the lack of sufficient specifications, RESTful

web services are not very suitable to be composed efficiently. If complete new

kinds of services would be developed especially for efficient composition, the

existing infrastructure could not be used anymore and a new infrastructure

of services needed to be built up. For this reason, the approach presented in

this dissertation targets REST APIs and builds upon the current infrastruc-

ture. Therefore, it is one requirement that no changes to RESTful web service

implementations or their REST APIs shall be required.

1.3.2 Learnability

Any additional skills that requesters and providers must learn to use the ap-

proach should be minimized. Skills that need to be learned represent a possible

barrier to acceptance of the approach and its adoption. The approach should

be easy to learn and use for both requester and provider which is important to

become accepted and adopted in practice. It is beneficial for the acceptance of

an approach when it is easy to learn or builds on the existing knowledge and

skills of the requesters and providers. REST is an approved technology [18]

and there are already specification formats especially like OpenAPI that are

widely adopted in practice. Therefore, mashup creation should build upon

established technologies like REST and OpenAPI that many requesters and

providers are already proficient in.

1.3.3 Effectiveness

There is an enormous amount of third-party APIs that is publicly available.

It is important that the efficiency of the API search scales with the huge

number of APIs. The complete creation of mashups from request to executable

11

1 Introduction

software is very complex that can hardly be fully automated. A first step in

this direction reduces manual work. The greater the amount of third-party

APIs, the more important are effective techniques to find relevant APIs: The

large set of APIs needs to be narrowed down to those APIs that are truly

relevant for the requester which reduces the manual work to review, assess,

and select relevant APIs that can be reused in a mashup.

1.3.4 Comprehensiveness

API specifications need to be comprehensive such that requesters can de-

cide whether an API provides the desired functionality and can be used in

a mashup. For this purpose, the ontological and behavioral semantics of the

APIs must be specified. Ontological semantics describe the concepts and their

relations in the APIs area of concern. One important aspect of an API’s

behavioral semantics is the dependencies of its operations.

1.3.5 Interoperability

APIs of third-party services are usually syntactically incompatible and

cannot be directly used together in a mashup. First, they must be made

interoperable. APIs are interoperable if they can communicate, cooperate,

and exchange data via a shared set of exchange types and formats without

the need for separate arrangements.

In summary, an approach for semi-automatic mashup creation needs to be

upward-compatible with existing REST APIs so that these APIs can be used

for mashups, be easy to learn to get acceptance from requesters and providers,

scale for the large amount of APIs that exist today, output comprehensive

specifications to supply all information requesters need, and achieve interop-

erability of APIs so that they can be used together in a mashup.

The following sections present a solution that addresses the problems stated

above and meets the requirements.

1.4 Solution Approach

In this dissertation, I propose a novel IT service called Brokerage as a Service

(BaaS) that substantially supports providers and requesters to create mashups

12

1.4 Solution Approach

Mashup
(mostly

generated)

Request A

operationA(
parameterA : typeA,
...)

API 1

operation1(
parameter1 : type1,

...)

Protocol
Miner

API 2API 2

API 3API 3

Parameter
Matcher

BB

CC

Semantic
Annotator

Call-logCall-log

Operation
Signatures
Operation
Signatures

A Global Ontology

Chapter 5

Chapter 6

Glue Code
Generator

Chapter 7 Op.
Sig.
Op.
Sig.

Call
log

Call
log

Op.
Sig.
Op.
Sig.

Call
log

Call
log

Figure 1.3: Solution overview

efficiently. On one hand, this includes support for the requester to find relevant

REST APIs effectively, to find the necessary operations of that REST APIs,

to find which parameters need to be exchanged (produced and consumed)

between the REST APIs, and to generate the glue code that translates incom-

patible parameter values to make REST APIs interoperable. The approach

presented in this dissertation primarily addresses REST, but can essentially

also be adapted for other technologies such as GraphQL and gRPC. Besides

the substantial support for requesters, BaaS also includes includes techniques

for service providers to link their API specifications with an ontology and to

derive API protocol specifications.

Figure 1.3 shows the three main components of BaaS, the Semantic Anno-

13

1 Introduction

tator, the Protocol Miner, and the Glue Code Generator and the connections

between them. The components are explained in detail in the following para-

graphs.

(1) Semantic Annotator In this dissertation, I propose to normalize service

requests and API specifications by aligning them to a common global ontology.

Global ontologies such as schema.org are available today and are also widely

used in certain areas of application, for example in the semantic annotation

of web content [19]. When requesters and providers use a common set of on-

tological concepts, the terminological heterogeneity between them is resolved

so that relevant APIs can be found effectively. The Semantic Annotator sup-

ports substantial semi-automatic support for requesters and providers to link

their API specifications and service requests to concepts from a shared global

ontology.

The effectiveness of the search depends on two main factors: (1) Which

string matching techniques are used for the search and (2) what contextual

information is included in the search keywords. The search is effective when it

has high precision and high recall. Precision is the fraction of relevant concepts

among those that have been found. Recall is the fraction of relevant concepts

among all relevant concepts (even those that have not been found).

Similar to the approaches [8, 6], the Semantic Annotator internally uses

combinations of different matching techniques. Which techniques are com-

bined and how they are configured has a major effect on their effectiveness.

The challenge with linking API specifications to ontologies is to select the

matching techniques and add contextual information in such a way that pre-

cision and recall are maximized. In this dissertation, I propose a systematic

approach to decide which matching techniques and their configurations are

most effective.

Another factor that influences effectiveness is how search keywords are ex-

tracted from the API specifications. Maleshkova et al. [8] extract search

keywords from parameter names, Oldham et al. [6] from type names, and

Cremashi et al. [10] from textual parameter descriptions. For example, in

Figure 1.4 search keywords are extracted from the parameter name, i.e., des-

tination. Searching the global ontology schema.org for the word destination

yields the semantic type TouristDestination which are both irrelevant in this

context and therefore false positives. On the other hand, the concept Airport

14

http://schema.org/

1.4 Solution Approach

True
positives

False
positives

Schema.org

Lufthansa API

flight_schedules(

 destination : ?,

)

Retrieved
 Concepts

Lufthansa API

flight_schedules(

 destination : string,

)

Semantic
Annotator

Airport Tourist
Destination

?

...

...

...

...
...

Figure 1.4: Terminological heterogeneity causing ineffective search

is a false negative, which is relevant but not found as its name does not contain

the word “destination”.

Instead of using just the parameter names for the search, other contextual

information of the parameter can be included in the search keywords, e.g.,

the parameter description, the enclosing operation name, etc. For example,

the parameter destination belongs to the operation named flight schedules

and has the textual description “3-letter IATA airport code” where additional

search keywords can be extracted from. Including these search keywords now

yields the semantic type Airport because “airport” is contained in the textual

description of the parameter destination. On the other hand, considering

search keywords from the operation name also yields the irrelevant semantic

types Schedule, Flight, etc. Thus, adding contextual information to the search

keywords can improve recall at the expense of degrading precision.

In this dissertation, the effectiveness of the Semantic Annotator is evalu-

ated on a large set of real-world API specifications from RapidAPI that are

matched with concepts from the ontology schema.org. It is also shown that

the effectiveness of the service discovery system OWLS-MX3 [20] is improved

15

1 Introduction

by 61% in terms of mean average precision when API parameters are linked

to ontological concepts.

(2) Protocol Miner In my dissertation, I propose to discover API protocol

specifications from call-logs using process mining techniques. Service providers

use the semi-automatic Protocol Miner to derive API protocol specifications

from call-logs using process mining. Process mining is a method to extract

behavioral models by observing the interaction with a system.

Thousands of REST APIs that are available today are already in use by

existing applications. These applications know the API protocol, but this

knowledge is not available for other service requesters. Every time such an

application calls an operation of an API, it leaves traces in a call-log. Call-

logs can be obtained by recording network traffic between applications and

the API.

I propose to use process mining techniques to discover API protocol specifi-

cations from call-logs. In practice, call-logs are noisy, because, e.g., API calls

are made from multiple interfering process instances that happen virtually at

random. Noise causes mined protocols to be inaccurate. Inaccurate protocols

would falsely suggest future requesters to make operation calls in a wrong or-

der such that the mashup runs into an error state and becomes dysfunctional.

Figure 1.5 shows an erroneous protocol mined from a call-log with two inter-

leaving process instances. In this dissertation, I am proposing methods for

noise reduction in call-logs to retrieve accurate protocols.

API protocols can have complex control flow with loops, branches, se-

quences, etc. On the other hand, existing process mining algorithms are

limited in which control flows they are capable to discover. In my disser-

tation, I oppose the control constructs that are generally needed to describe

API protocols and the control constructs that can be generally discovered with

different process mining algorithms.

(3) Parameter Matcher and Glue Code Generator In this dissertation, I

propose a semi-automatic approach for parameter mapping and to generate ex-

ecutable glue code from parameter mappings to establish data communication

between incompatible APIs. The Glue Code Generator is used by requesters

to find corresponding parameters across different APIs and to generate the

glue code that establishes API compatibility.

16

1.4 Solution Approach

Expedia API

 GET airports(...)
 GET availability(...)
 POST booking(...)
 GET cancel(...)

Expedia API

 GET airports(...)
 GET availability(...)
 POST booking(...)
 GET cancel(...)

Protocol
Miner

Call-log

airports()
availability()
airports()
booking()
cancel()
availability()
booking()
⁞

airports availability

booking

cancel

airports

booking

availability

Calls from
Interleaving
Processes

Figure 1.5: Noisy call-logs causing mined protocols to be inaccurate

This approach is shown in Figure 1.6 and works as follows: The parame-

ters are matched pairwise and a similarity score is calculated for every pair

of parameters. This similarity score is an aggregation of different metrics for

the name, data type, and ontological similarity. The ontological similarity

is determined with the help of the ontology links produced by the Semantic

Annotator : The similarity of two parameters is determined by the ontologi-

cal distance of the concepts with which the parameters are annotated. The

ontological distance between two concepts is the number of concepts that lie

between the two concepts in the ontological structure. The closer these con-

cepts are located in the ontology, the higher the ontological similarity. Guided

by these similarity scores, requesters can work faster to identify related pa-

rameters that have to be exchanged between APIs.

Until now, a decision was made which parameters have to be exchanged,

but not how they have to be exchanged. This is done in the code generation

step: The glue code is generated from the set of parameter mappings where

the first parameter is translated into the other. The code generator inserts

program instructions to invoke the API operations, to extract critical input

and output parameters from request and response messages, and to predict

and insert a pre-built translation function. A heuristic based on the data types

and formats of the involved parameters is used to select translation functions.

The challenge with the code generation is to insert appropriate translation

functions. The translation function must not only ensure syntactic type com-

17

1 Introduction

Mashup

Expedia API

GET availability(

 checkin_date:Date
)

Hertz API

GET vehicles(
 pickupDay:string
)

Glue Code
Generator

f(checkin_date) = pickupDay
f(2020-05-29T10:30) = “29/05/2020 10:30”

Figure 1.6: Glue code containing translation function to translate from param-
eter checkin date to pickupDay

patibility but also correctly recognize and convert data formats if necessary.

A predicted translation function may be inaccurate. In case a wrong transla-

tion function is automatically inserted, the requester has to replace it manually

with a correct translation function, which makes the approach semi-automatic.

Figure 1.6 shows how the Glue Code Generator generates the program logic

from the parameter mapping checkin date→ pickupDay and the translation

function f that translates values of checkin date into values of pickupDay.

The building blocks of the approach presented in this thesis are also part of

my scientific publications, as explained in more detail in the following section.

1.5 Publication Overview

This section explains the relationships between my scientific publications and

my dissertation. Figure 1.7 shows a list of my publications grouped by the

18

1.5 Publication Overview

Chapter 5 – Semantic Annotator

Chapter 6 – Protocol Miner

[21] ECFMA’14 – Schwichtenberg et al.
Normalizing Heterogeneous Service Description Models with Generated QVT Transformations

[23] Ontology Matching Workshop 2014 – Schwichtenberg et al.
Results of the RSDL Workbench for OAEI 2014

[24] Ontology Matching Workshop 2015 – Schwichtenberg et al.
Results of the RSDL Workbench for OAEI 2015

Chapter 7 – Parameter Matcher and Glue Code Generator

[26] ICWS’17 – Schwichtenberg et al.
From Open API to Semantic Specifications and Code Adapters

[27] ICSE’18 – Schwichtenberg et al.
CrossEcore: An Extensible Framework to Use Ecore and OCL Across Platforms

[25] ICSE’16 – Schwichtenberg
Automatized Derivation of Comprehensive Specifications for Black-box Services

Related Publications

[28] ICSA’17 – Jazayeri et. al
On-The-Fly Computing Meets IoT Markets - Towards a Reference Architecture

[29] Softwaretechnik-Trends 2017 – Jazayeri et al.
On the Necessity of an Architecture Framework for On-The-Fly Computing

[30] CAiSE’20 – Jazayeri et al.
Modeling and Analyzing Architectural Diversity of Open Platforms

[25] ICSE’16 – Schwichtenberg
Automatized Derivation of Comprehensive Specifications for Black-box Services

[25] ICSE’16 – Schwichtenberg
Automatized Derivation of Comprehensive Specifications for Black-box Services

Figure 1.7: Publication overview

problem they address.

In [21], an approach to normalize heterogeneous service requests and API

specifications written in the Rich Service Description Language (RSDL) [5]

19

1 Introduction

which bases on the Unified Modeling Language (UML) is presented. An RSDL

specification consists of (1) a UML class model, describing the local ontology of

the service’s business objects, (2) operation signatures, (3) a UML sequence

model describing the service protocol, (4) and the pre- and postconditions

of the operations in the shape of visual contracts [22], i.e., transformation

rules over UML object models. In [21], the local ontologies from requests and

API specifications are aligned using ontology matching techniques and visual

contracts are retyped over a common class model which is a preliminary step

for service discovery after Huma [5]. A disadvantage of this approach is that

it does not scale for a large number of services because the reconciliation

needs to be done with all pairs of requests and API specifications (cf. [5]).

In addition, the publication [21] bases on the assumption that the ontological

and behavioral semantics of the web services are fully specified (in RSDL).

This is in contrast to the more realistic assumption made in this dissertation

that API specifications and requests are not comprehensively specified.

The works [23, 24], present the results of the participation in the campaigns

of the Ontology Alignment Evaluation Initiative (OAEI) in the years 2014

and 2015. The goal of the OAEI is to assess the strengths and weaknesses of

ontology matchers. The OAEI campaign consists of several tracks with various

ontology matching tasks. This dissertation addresses a very specific ontology

matching task that is not covered by the OAEI, namely to align local data

models of APIs with an ontology. Data models are also a kind of ontology and

therefore ontology matching techniques are highly related.

In [25], an early version of the BaaS vision that includes an approach for a

semi-automatized derivation of fully-fledged comprehensive service specifica-

tions is presented. Comprehensive service specifications include descriptions

of the ontological and behavioral semantics. The approach includes automatic

learning of ad-hoc local ontologies from input/output parameter specifications.

The classes and class properties (attributes) contained in the ad-hoc ontolo-

gies are linked to a global ontology using ontology matching techniques. The

idea is to eliminate the terminological heterogeneity between service providers

and requesters by linking all local ad-hoc ontologies to the global ontology. In

this dissertation, I abandon the approach to learn ad-hoc ontologies from API

specifications for the following reason: Output parameters of REST APIs are

organized in a tree structure, e.g., in a JSON format. In practice, the way how

the information is structured in a tree structure does not reflect ontological

20

1.5 Publication Overview

knowledge which is usually organized as a graph. This makes it difficult to

obtain meaningful ad-hoc ontologies. In [25], it is also proposed to discover

API protocol specifications from call-logs to capture the behavioral semantics

of an API. In this dissertation, I further pursue this idea and evaluate if it

is feasible to mine protocol specifications from call-logs based on a real-world

example. My experiences from this investigation allow me to pinpoint the

limitations of this approach.

In [26], it is proposed to use a global ontology as a global data model to

establish interoperability of various incompatible third-party RESTful web

services so that they can be used in a mashup. Adapter code is generated

from the correspondences of local and global data types. This adapter code

translates the data between the global and local data model and vice versa:

API consumers can pass data conforming to the global data model to the

adapter, the adapter converts it to the corresponding local data types, passes

it to the original REST API, translates its response back so that it conforms to

the global data model, and returns the result to the consumer. However, this

approach is invasive, because it requires adapter APIs and has therefore limited

upward compatibility with the existing corpus of REST APIs. In contrast, the

approach proposed in this dissertation is not invasive: The generated glue code

directly translates between the APIs without the need for adapter APIs.

In [27], the modeling framework CrossEcore is presented. CrossEcore in-

cludes a code generator that allows generating advanced C#, TypeScript

(JavaScript), Swift, and Java source code from ontologies. With CrossEcore,

it is also possible to generate API specifications from ontologies. From these

generated API specifications, in turn, fully-functional RESTful web services

can be generated. Using CrossEcore, a forward-engineering variant of BaaS

can be implemented where new APIs are built around ontologies. The disad-

vantage of this forward-engineering approach is that it is invasive and upward-

incompatible as existing web services need to be rebuilt using CrossEcore. In

this dissertation, I follow a reverse-engineering approach that builds on the

corpus of APIs that exist today.

In our collaborative works [28, 29, 30], we propose a reference architecture

for designing open platforms. An open platform has public APIs which third-

party developers use to develop services on top of the open platform. In future

work, the BaaS architecture needs to be analyzed with the aid of the reference

architecture to detect architectural deficiencies. BaaS platforms are a kind

21

1 Introduction

of open platforms in that sense that service providers can publish their API

specifications and requesters can search them.

1.6 Thesis Structure

This thesis is structured as follows: Chapter 2 discusses the foundations of

this dissertation. Related works addressing the three problems (1) request–

API terminological heterogeneity, (2) unspecified API protocols, and (3) API

incompatibility are presented in Chapter 3. A solution overview is given in

Chapter 4. This includes a description of the Brokerage as a Service architec-

ture as well as a description of how service requesters and service providers

are working with BaaS to create mashups efficiently. Chapter 5 introduces a

method to link API specifications with concepts from a global ontology. Fur-

thermore, it is shown that these ontology links help to find relevant APIs more

effectively. Chapter 6 presents a semi-automatic approach to derive API pro-

tocol specifications from call-logs using process mining. Chapter 7 introduces

an approach for semi-automatic parameter matching. From critical parame-

ter mappings, glue code is generated which translates the data from one API

to another. Chapter 8 concludes this dissertation and presents prospects for

future work.

22

2 Foundations

This chapter presents the foundations for the BaaS approach. Figure 2.1

maps the individual sections of this chapter to the relevant BaaS components

and artifacts. The REST architecture is presented in Section 2.1 To ensure

the highest possible pward compatibility of the BaaS approach, REST is

chosen as the basic technology. This chapter introduces today’s dominating

architecture for web services: REST [2]. One basic prerequisite for mashup

creation of REST APIs is that API descriptions are available because the

services themselves are black-boxes.

Mashup
(mostly

generated)

Protocol
Miner

API 2API 2

API 3API 3

Parameter
Matcher

BB

CC

Semantic
Annotator

Call-logCall-log

Operation
Signatures
Operation
Signatures

A Global Ontology

Glue Code
Generator

Op.
Sig.
Op.
Sig.

Call
log

Call
log

Op.
Sig.
Op.
Sig.

Call
log

Call
log

AA

API 1API 1

2.2. Syntactic
Specification
Languages

2.3. Semantic Web and
Linked Open Data

2.5. Process Mining

2.4. Matching
Techniques

2.4. Matching
Techniques

2.1. RESTful
Web Services

2.3. Semantic Web and
Linked Open Data

Figure 2.1: Overview foundations chapter

23

2 Foundations

In this chapter, syntactic specification languages are discussed in Section 2.2

and their main elements necessary for mashup creation are identified. Creat-

ing mashups solely based on syntactic specifications tends to be inefficient,

because of the syntactical and terminological heterogeneity of APIs.

This is the reason why this chapter presents the foundations of the

Semantic Web and Open Linked Data in Section 2.3 which address these

issues and aim to automate service discovery, service composition, and

invocation. These tasks require semantic service specifications that describe

the ontological and behavioral semantics (API protocols) of a service.

Still, semantic and syntactic specifications are equally important for cre-

ating mashups: Semantic specifications for understanding the meaning of

an API and syntactic specifications for the technical implementation via APIs.

The service grounding, which is explained in more detail in this chapter,

connects the semantic and syntactic specifications and bridges the abstract

service description and the concrete technical service realization. APIs are

built upon local data models which is why they tend to be incompatible

with each other. The BaaS approach suggests unifying the data models

semi-automatically by mapping them to a global ontology.

State-of-the-art matching techniques to establish such a mapping are

presented in Section 2.4. Later in this work, these techniques are evaluated

for and used by the BaaS approach to establish connections between simple

terms from syntactic service specifications and ontological concepts. The

section is also relevant for the Parameter Matcher as it uses some of the

matching techniques.

Equally important as an ontological description of the data model are API

protocols for creating mashups. The BaaS approach employs process mining

to derive API protocol semi-automatically. Section 2.5 introduces three main

process mining algorithms that are later evaluated for and used by the BaaS

approach to derive API protocols from API call-logs.

24

2.1 RESTful Web Services

2.1 RESTful Web Services

REST [2] is an architectural style for IT services that is based on the clas-

sic client-server protocol. REST enjoys great popularity and has established

itself as the de-facto standard: The state of API report 2023 [31] certifies

REST an adoption rate of 91% among over 1100 manual testers, automa-

tion engineers, developers, consultants, QA managers, and analysts surveyed

worldwide. Thus, the predominant position of REST has to be taken into

account to meet the requirement of upward compatibility.

RESTful web services are realized based on the HTTP client-server architec-

ture [32]. The REST architectural style comprises the following fundamental

principles: Every resource can be uniquely addressed by a Uniform Resource

Identifier (URI) [33]. Services are stateless, i.e., the messages contain all the

data that is necessary to process the message. Neither the server nor the

client stores state information between two messages. Such stateless commu-

nication is useful for load balancing which distributes client queries over several

machines. Resources are self-explanatory, such that they contain enough in-

formation to describe how to process a message. In addition, resources have

a uniform interface and a set of standard methods to facilitate their usage. In

the context of web services, these standard HTTP methods are GET, POST,

PUT, DELETE, etc. A resource may have different representations. For ex-

ample, a resource can be represented in different formats like HTML [34],

JSON [35], XML, etc.

Figure 2.2 shows an application calling the Expedia service through its

REST API to get a list of accommodations. In the context of the Expedia API,

accommodations are named properties as an inn, vacation home, etc. that is

owned by a private person or a business. The API call consists of the HTTP

GET method and the URI https://api.ean.com/2.4/properties/content

where the Expedia service is hosted. The API responds with a JSON message

that contains the accommodation details, e.g. the name of accommodation,

the address, the amenities, etc.

In this dissertation, the term method is reserved for HTTP standard meth-

ods GET, POST, PUT, etc. as defined in the Hypertext Transfer Protocol

(HTTP) [32]. An operation is a custom API operation defined by an HTTP

method applied on a specific resource. Operations may have interdependen-

cies with each other so that they have to be called in a certain order. The set

25

2 Foundations

Application Expedia
RESTful Service

GET /properties/content

JSON{
 "12345": {
 "property_id": "12345",
 "name": "Hotel Arosa",
 "address": {
 "country_code": "DE",
 "localized": {
 "links": {
 "fr-FR": {
 "method": "GET",
 "href": "https://api.ean.com/..."

Figure 2.2: Exemplary Expedia REST API call

of all valid operation call sequences is the API protocol. REST APIs include

a mechanism that guides consumers of that API to obey its protocol. This

mechanism is explained in the following section.

2.1.1 HATEOAS

Hypermedia as the Engine of Application State (HATEOAS) is an architectural

component of REST: When a client application sends a request to a HATEOAS

compliant REST API, this API replies with a message that contains all valid

hyperlinks that lead to a subsequent valid call of the API. Client applications

dynamically evaluate these links and choose one of them. The advantage of

HATEOAS is that applications do not need to know how to interact with

the API, but only need to know the entry points of an API, i.e., the starting

URIs from which all possible call sequences can be reached. This ensures that

the API protocol is followed. Because the links are evaluated at runtime and

always on an ad-hoc basis, the client applications remain functional even if

changes are made to the API protocol. If a protocol was hard-coded into

a client application, the application can get into an invalid state if the API

protocol changes.

HATEOAS is a runtime concept that is relevant in the execution of the

service. For the creation of mashups, design-time concepts are needed to get

26

2.1 RESTful Web Services

the complete API protocol. If all REST APIs would implement HATEOAS,

it could be feasible to automatically traverse all links of an API to discover

its complete protocol. Unfortunately, the majority of REST APIs do not

implement HATEOAS as explained in the following section.

2.1.2 Maturity Model

Strictly speaking, many APIs that are called REST APIs are not REST APIs

at all, as they do not implement all of the properties of REST. Richardson

defines a maturity model for RESTful web services that expresses what aspects

of REST a web service implements [36]. The maturity model defines three

levels: Services that do not fulfill any characteristics of REST (level 0), those

that use different URIs for different resources (level 1), those that additionally

use standard operations (HTTP verbs) for a certain purpose (level 2), and

those that support HATEOAS (level 3).

To give an example, the maturity level of the Expedia API is ana-

lyzed in the following. The API defines multiple resources, each avail-

able under its own URI (level 1): The consumer must query the URI

https://api.ean.com/2.4/properties/content to get a list of accom-

modations, https://api.ean.com/2.4/itineraries to get a list of book-

ings, etc. Operations on the same resource are differentiated by using the

respective HTTP verbs (level 2). For better readability, the base path

https://api.ean.com/2.4 of the URIs is omitted in the following. To read

the itinerary 123, the request GET /itineraries/123 must be made and to

delete it, DELETE /itineraries/123 must be called accordingly. Figure 2.2

shows an excerpt of the JSON response message of GET /itineraries/123

which contains information about available subsequent operation calls (level

3). In the example, the subsequent operations are to cancel or change the

booking.

Unlike the Expedia API, many REST APIs do not implement HATEOAS

and are therefore on level 2 at most. This dissertation addresses REST APIs

that are on maturity level 2 and of which no information about the API

protocol is available at all.

27

2 Foundations

2.2 Syntactic Specification Languages

Typically, RESTful web services are black-boxes, which means that their

source code is not publicly available. Thus, service requesters rely on a spec-

ification of the services they want to use. A syntactic specification describes

the syntactic characteristics of a service. The essential elements that can be

found in any kind of syntactic specification are:

1. Operation names,

2. Inputs of operations, i.e., the data an operation consumes,

3. Outputs of operations, i.e., the data an operation produces,

4. Types of in- and outputs, i.e., the data schema that prescribes all valid

inputs and outputs.

The Web Service Description Language (WSDL) [37] is common to describe

web services following the Remote Procedure Call (RPC) architectural style.

Since version 2.0, WSDL was extended to support RESTful Web Services [2].

Another language to describe RESTful web services is the Web Application

Description Language (WADL) [38]. However, these specification languages

have rarely been adopted in industry for the specification of RESTful Ser-

vices [8]. Instead, RESTful web services are often described by custom-made

HTML pages that do not have a uniform structure. The hRESTS microfor-

mat [39] has been proposed to annotate parts of such custom-made HTML

pages to markup certain syntactic elements of a web service.

Nowadays, the rising popularity of RESTful web services comes hand

in hand with an increasing popularity of RESTful API specification lan-

guages and frameworks like RESTful API Modeling Language (RAML)1, API

Blueprint2, OData3, OpenAPI (Swagger)4, etc.

The remainder of this section focuses on OpenAPI for illustration purposes.

However, the ideas presented in this dissertation are not restricted to a specific

specification language. Since all of the aforementioned syntactic specification

1https://raml.org/
2https://apiblueprint.org/
3https://www.odata.org/
4https://www.openapis.org/

28

https://raml.org/
https://apiblueprint.org/
https://www.odata.org/
https://www.openapis.org/

2.2 Syntactic Specification Languages

Figure 2.3: OpenAPI ontology (excerpt)

languages share the same essential parts, the approach described in this dis-

sertation can be adopted for other syntactic specification languages.

OpenAPI is a framework for the development of RESTful web services and

consists of a language specification [40] and software tools like specification ed-

itors and generators for documentation and code. Figure 2.3 shows an excerpt

of the OpenAPI schema represented in VOWL.

The root of an OpenAPI specification is a oas:OpenAPI object. The

oas:OpenAPI object declares all available oas:Path URLs of the REST in-

terface. An oas:PathItem is a relative path to an individual endpoint.

HTTP methods like GET, POST, PUT, DELETE, etc. are defined on every

oas:PathItem. An oas:Operation has an oas:operationId. The inputs of

an oas:Operation are oas:Parameters. Primitive types and complex types

of a parameter are declared in oas:Schema. The outputs of an oas:Operation

are oas:Responses. A single oas:Response is associated with oas:Examples

and an oas:Schema.

Code generators for server-side and client-side code are available in many

programming languages like Java, JavaScript, PHP, etc. The generators help

service providers to keep their documentation consistent with their service im-

plementation. Service requesters use the client code generator that creates an

API in the programming language of their application which eases the inte-

gration of the web service into their application. For example, a generated

29

2 Foundations

swagger: "2.0"

host: api.ean.com

basePath: /2.4

paths:

5 /properties/content:

get:

summary: "Property Content"

description: |

Search property content for active properties in the

requested language.↪→

10 parameters:

- in: query

name: property_id

description: |

The ID of the property you want to search for.

15 required: false

type: array

collectionFormat: multi

items:

type: string

20 responses:

200:

schema:

type: object

description: An individual property object in the

map of property objects.↪→

25 properties:

property_id:

type: string

description: Unique Expedia property ID.

name:

30 type: string

description: Property name.

Listing 1: OpenAPI specification of the Expedia API (excerpt)

Java client code encapsulates the web API as a Java API which can be used

within a Java application. The generated Java API facilitates common tasks

like the construction of HTTP requests and the (de-serialization) of JSON re-

sponses to Java objects and vice versa. Since version 3.0.0, OpenAPI includes

a language construct, i.e., oas:Links, for the specification of HATEOAS.

30

2.3 Semantic Web and Linked Open Data

Listing 1 is an excerpt of the Expedia OpenAPI specification5. The speci-

fication defines the operation /properties/content (line 5) which supports

the HTTP method GET (line 6). The operation has an input parameter

property id (line 11-19). In the success case, the operation responds with

an HTTP status code 200 (line 21) and returns a JSON message defined by a

JSON schema [41] (line 22-31).

Searching for relevant APIs based on their purely syntactic specifications

tends to be ineffective such that relevant APIs are not found by the service

discovery. To overcome this problem, the Semantic Web has been introduced,

which is explained in the following section.

2.3 Semantic Web and Linked Open Data

The Semantic Web was introduced by Tim Berners Lee et al. [42] and its core

idea is to link data to a machine-readable description of their meaning. The

aim is to make the data exchangeable between different web services without

these systems having to make special agreements. The basic principles are to

describe the meaning of the data in an unambiguous way, to connect the data,

and to provide a set of rules to reason about the data. The formalism that

is used to describe the meaning of data in the Semantic Web is ontologies.

An ontology describes the entities and their relations of a certain domain of

interest. Entities and relations are designated by a Unique Resource Identifier

(URI) [33] that is globally unique. The entities and relations shape a graph

of interconnected data. This graph is called Giant Global Graph or Linked

Open Data. Any particular edge in the Linked Open Data graph is a subject-

predicate-object triple of concept: The subject is the source concept where the

edge starts. The predicate is a relation that describes the kind of the edge.

The object is either the target concept where the edge ends or a literal, e.g.

a string or a number. Ontologies play a major role in this dissertation as

they are the formalism that is later used to capture and resolve heterogeneity

between service offers and requests.

5https://cdn.expediapartnersolutions.com/ean-rapid-site/documentation/rapid_

2.4/swagger.yaml

31

https://cdn.expediapartnersolutions.com/ean-rapid-site/documentation/rapid_2.4/swagger.yaml
https://cdn.expediapartnersolutions.com/ean-rapid-site/documentation/rapid_2.4/swagger.yaml

2 Foundations

2.3.1 Ontologies

An ontology is a formal specification of a conceptualization and is used to

represent knowledge of a particular domain of interest and serve the purpose

to structure and exchange information. In computer science, ontologies occur

in the shape of folksonomies, taxonomies, data schemas, etc. All these kinds

of ontologies have different levels of expressiveness. A folksonomy is an un-

structured collection of keywords. A taxonomy is a classification of terms in

a hierarchy, which is a tree-like structure where the root is usually the most

general term and the most specialized terms are the leaves. An ontology is

defined as follows (cf. [43]):

An Ontology is a tuple o = ⟨C, I,R, T, V,≤ ,∈ ,=⟩ where
C is the set of classes;

I is the set of individuals;

R is the set of relations;

T is the set of datatypes;

V is the set of values;

(C, I,R, T, V) being pairwise disjoint;

≤ is a relation on (C × C) ∪ (R×R) ∪ (T × T) called specialization;

∈ is a relation over (I × C) ∪ (V × T) called instantiation;

= is a relation over I ×R× (I ∪ V) called assignment;

In a wider sense, a concept is an abstract idea in the human mind. In the

context of this dissertation, a concept is defined as an ontological description

of an entity (C), a relation (R), or an individual (I) designated by a globally

unique URI. Concepts of the same kind can be grouped into classes. Members

of a class are individuals (or instances). Classes have relations to each other.

An individual can either be related to another individual or a literal value.

Concrete literal values must comply with a data type, i.e. String or Integer.

Specialization defines a type hierarchy of classes and relations. Classes may

specialize multiple other superclasses, and relations multiple other relations.

Ontologies consist of the TBox (C ∪T) and the ABox (I ∪V). The TBox is

like a meta-model that defines the type level, i.e., classes and relations. The

ABox contains so-called individuals, i.e., concrete class instances. Common

languages that can be used to describe ontologies are RDF Schema[44] (RDFS)

and the Web Ontology Language (OWL) [45].

32

2.3 Semantic Web and Linked Open Data

Figure 2.4: A domain ontology based on Schema.org

OWL distinguishes relations (R) into DatatypeProperties and

ObjectProperties. While the latter describes relations between in-

stances of classes the former describes relations between instances and values.

Properties have a Domain that restricts the classes of subjects that may occur

in a triple. Likewise, Range restricts the classes of objects that may occur in

a triple. The range of ObjectProperties are classes (C) and the domain of

DatatypeProperties are values (V).

VOWL is a visual notation for OWL Ontologies (VOWL) [46]. Fig-

ure 2.4 shows an ontology based on schema.org In VOWL, classes

are denoted in light blue circles. An Airport can be related to a

33

2 Foundations

Flight through the ObjectProperty departureAirport. Thus, the

domain of departureAirport is Flight and its range is the class

Airport. ObjectProperties have light blue labels in VOWL. Flight

is a subclass of Trip and inherits its DatatypeProperty departureTime.

DatatypeProperties have green labels in VOWL. Classes and properties from

external ontologies are shown in dark blue.

2.3.2 Semantic Web Services

Semantic Web Services are web services that are enriched with machine-

readable semantics in addition to their pure syntactic specification. A ser-

vice description ontology is a meta-model for describing the concept of a web

service itself. A service model describes a concrete web service instance, e.g.,

the British Airways API, by using the entities and relations from the service

description ontology. Thus, a service model is the ABox that conforms to the

TBox of the service description ontology. The input and output types used

in a service model are usually defined in a separate domain ontology. In the

case of the British Airways API, such a domain ontology contains entities like

Airports, Aeroplanes, etc.

There are several approaches that all come with different service description

ontologies to describe Semantic Web Services, e.g., Web Ontology Language

for Web Services (OWL-S) [47], WSML [48], SA-REST [49], WSMO-Lite [50],

Hydra [51], etc. [52] provides an overview of semantic service specification

languages. Furthermore, there are extensions of OpenAPI that allow linking

OpenAPI specifications with ontologies [52, 53]. In OWL-S, not only can

the ontological semantics of a web service be described, but also behavioral

semantics, especially the API protocol. Since the description of API protocols

is an essential part of this dissertation, OWL-S is used consistently in the

following examples.

Figure 2.5 shows an excerpt of the OWL-S service description ontology. In

OWL-S, operations correspond to AtomicProcesses, which have Inputs and

Outputs. Types of Inputs and Outputs are defined by parameterType that

points to an URI of an ontological class or a data type. Ontological classes

that are used as parameter types are also referred to as semantic types.

34

2.3 Semantic Web and Linked Open Data

Figure 2.5: OWL-S service description ontology (excerpt)

API protocols are described through CompositeProcesses, which describe

the control flow between AtomicProcesses. OWL-S defines control constructs

like Splits for concurrent, Loops for repeated, Branches for the conditional

execution, etc.

2.3.3 Semantic Service Discovery

Semantic service discovery is the process of locating web services that

provide certain capabilities while adhering to some requester-specific con-

straints. Three roles participate in service discovery: service requesters, service

providers, and a service registry. Service providers specify a service model that

describes the capabilities of their services and publish it at the service registry.

The service requester creates a service request which specifies a service model

of the desired service and queries the service registry by that request.

A service matchmaker is a computer program that calculates the compli-

ance of the service request and the service offers and recommends the most

compliant service(s) to the requester. Existing service matchmakers usually

return a confidence score ranging between 0 and 1, where zero means that

request and offer are not similar at all, and 1 means that request and offer are

35

2 Foundations

equivalent. When the matchmaker returns its results, the service offers can be

ranked by this score so that the requesters see the most relevant offers first.

A survey of available semantic service matchmakers can be found in [4, 54]

2.3.4 Service Grounding

Regular web services that are not semantic web services in the first place can

be elevated to Semantic Web Services by adding a semantic description retro-

spectively. That is done by replacing the data types in operation signatures

with semantic types. Service matchmaking is done based on these semantically

typed operation signatures.

Once the requester has found an appropriate service, it comes to the tech-

nical execution of such a web service, its original interfaces, and the original

operation signatures must be used. The service grounding bridges the gap

between the semantic specification and the technical realization of a service.

The service grounding provides information on how to access a service and is

a mapping between the abstract service model and the concrete technical re-

alization. Such a service grounding is needed when it comes to the invocation

of a service. For every semantic type that occurs as an input or output type

in the service model, the grounding specifies how data actually is typed and

structured. Like shown in Figure 2.6, service grounding consists of two kinds

of transformations: the lifting and the lowering transformation. The lower-

ing transformation converts the semantic types of the inputs into data types.

Analogously, the lifting transformation converts output data types back into

semantic types.

To give an example, OWL-S has built-in support to ground service models to

elements of WSDL specifications. In particular, AtomicProcesses correspond

to operations defined in the syntactic WSDL specification. The set of Inputs

and Outputs correspond to parts of messages defined in WSDL. Semantic

types of the inputs and outputs correspond to abstract types that are defined

in an XSD schema [55]. The lifting and lowering transformations are realized

as two separate XSLT [56] transformations.

The grounding mechanism of OWL-S is not limited to WSDL. However, the

WSDL grounding is currently the only kind of grounding that is specified by

the OWL-S standard.

Besides the OWL-S service grounding there are also other grounding ap-

36

2.3 Semantic Web and Linked Open Data

Service Request Service Offer

OWL-S

Open API

(1) invocation

(2) lowering
transformation

(3) lifting
transformation

(4) response

RESTful Service

Figure 2.6: Service grounding

proaches: WSDL-S [57] and SAWSDL (Semantic Annotations for WSDL and

XML Schema) [58] allow to annotate data types in a WSDL specification with

semantic types from a domain ontology. Hydra-enabled web services [51] pro-

duce JSON responses that are annotated with links to domain ontologies [59].

2.3.5 Service Composition and Interoperability

It may happen that there is no single service offer that fully satisfies a re-

quest completely. In that case, multiple services may need to be combined

in a mashup to fully satisfy the request. For example, it may be required to

combine a flight booking, hotel reservation, and car rental service to satisfy

the request for a travel arrangement service. The process on how to arrange

different services so that they satisfy the request is called service composition.

In general, third-party services combined in a mashup are not interoperable

so they cannot immediately exchange their data, because the data may be

structured in a different way and may have different types and formats. Thus,

the data that is passed from one service to another has to be translated so

that it conforms to the respective APIs.

2.3.6 Ontology Matching

Ontology matching is the process of finding correspondences between different

ontologies and assessing their similarity. In this dissertation, ontology match-

ing is relevant from two perspectives: First, to determine the relevance of a

service offer for a given service request. The relevance of the offer is determined

37

2 Foundations

based on how similar the semantic types are that are used in the operation sig-

natures. Second, to identify those semantic types of different services that are

semantically similar, but cannot be exchanged with one another in a mashup

because they are syntactically different.

This dissertation adopts the ontology matching terminology from Euzenat

et al. [43]. A correspondence asserts that a certain relation holds between two

concepts. There are different possible kinds of relations between two concepts,

i.e. equivalence (=), disjointness (⊥), generalization (⊒) relations. The set

of all correspondences is an ontology alignment. An ontology mapping is the

directed ontology alignment between a source and a target ontology. Like

a mathematical mapping, such a mapping can be total, injective, surjective,

or bijective. Accordingly, there can be one-to-one (1:1), one-to-many (1:n),

many-to-one (n:1), or many-to-many (n:m) correspondences of concepts.

Ontology matchers are computer programs that perform ontology matching.

Several surveys [60, 61, 62, 63, 64, 65, 43, 66] provide an overview of a large

number of ontology matchers.

2.3.7 Types of Heterogeneity

In a real-world service discovery scenario, there can be thousands of service

requesters and service providers. All of them are independent parties that are

not aware of each other and are first acquainted with each other in the service

discovery. Service providers and requesters are software developers that have

individual interests, knowledge, beliefs, and habits. Based on their personal

background they come up with different solution approaches for the same or

a similar problem. This also applies to the design of IT services: Services re-

questers and service providers can describe the same service in completely dif-

ferent ways. This section discusses different types of heterogeneity and adopts

the heterogeneity classification of [43] which defines syntactic, terminological,

conceptual, and semiotic heterogeneity.

Syntactic Heterogeneity

Syntactic heterogeneity occurs when two parties use different syntaxes to spec-

ify a service. In the scope of mashup creation, syntactic heterogeneity occurs

on three levels:

1. Two service partners use different specification languages, e.g., when

38

2.3 Semantic Web and Linked Open Data

service requesters describe their requests in OWL-S and service providers

describe their API specifications in SAWSDL. How to solve syntactic

heterogeneity of specification languages is treated in [67].

2. Two APIs use different serialization formats such as JSON and XML.

An API that emits JSON data cannot be directly combined in a mashup

with another API that consumes XML data. The number of data ex-

change formats is limited so it is feasible to create converters that con-

vert between the formats, which needs to be done only once. Often,

such converters are already available for popular data exchange formats.

For example, the Newtonsoft library6 is capable to translate between

JSON and XML and back. Because standard formats of data can be

easily converted, this dissertation does not further discuss this kind of

syntactic heterogeneity.

3. Two APIs use different types and formats for single data attributes. For

example, a service might represent a concrete date as a string that is

formatted according to the RFC 3339 [68] while another service might

represent the same date as a Unix timestamp that counts the milliseconds

passed starting from January 1st, 1970. This is exactly the kind of

syntactic heterogeneity that is addressed in this dissertation.

Terminological Heterogeneity

Two services exhibit terminological heterogeneity when requesters/providers

use different terminologies to name their operations, parameters, or types.

In the simplest case, service partners might use different naming conven-

tions. Common naming conventions are for example camel case and snake

case: With the camel case convention, words are separated by capital let-

ters, e.g., BoardingPolicyType. With snake case, words are separated by an

underscore, e.g., boarding policy type.

In more complex cases of terminological heterogeneity, different parties can

use synonymous terms to name their entities. Synonyms are words that have

the same meaning. On the other hand, there are homonyms, that use the

same word, but have different meanings. For example, the word Plane may

describe a flying vehicle or a mathematical geometry.

6https://www.newtonsoft.com/json/help/html/ConvertingJSONandXML.htm

39

https://www.newtonsoft.com/json/help/html/ConvertingJSONandXML.htm

2 Foundations

Conceptual Heterogeneity

Two ontologies exhibit conceptual heterogeneity when their concepts have a

different logical structuring. Different ontologies might cover different domain

areas, e.g. tourism, on a different granularity level, and from a different per-

spective which might be reasons for conceptual heterogeneity [69].

Semiotic Heterogeneity

Semiotic heterogeneity addresses the different ways of interpreting the same

concept in different contexts [70]. Concepts that have the exact same meaning

can be interpreted differently, depending on the context they are ultimately

used in. For example, a flight can be seen as a transport connection between

two locations or as a commercial offering of a business organization, i.e., an

airline.

To make a service from one domain interoperable with another domain, it

must be placed in the context of that domain. Therefore, to solve semiotic

heterogeneity is especially crucial to combine services from different domains.

2.4 Matching Techniques

Multiple different matching techniques have been developed in order to resolve

different types of heterogeneity. Typical state-of-the-art ontology matchers

generate initial candidate correspondences of entities whose similarity is de-

termined in terms of one or more similarity measures. Similarity is defined as

follows [43, Chapter 4.1]:

A similarity σ : o × o → R is a function from a pair of entities to a real

number expressing the similarity between two objects such that:

∀x, y ∈ o, σ(x, y) ≥ 0 (positiveness)

∀x ∈ o,∀y, z ∈ o, σ(x, x) ≥ σ(y, z) (maximality)

∀x, y ∈ o, σ(x, y) = σ(y, x) (symmetry)

The remaining section describes different kinds of state-of-the-art matching

techniques, i.e., string-based, language-based and structured-based techniques.

40

2.4 Matching Techniques

String-based

Names of concepts are strings and the intuition behind string-based techniques

is that similar concepts have similar names. In the simplest case, it can be

assumed that two concepts with the same name have equivalent semantics

(which might be wrong when the names are homonyms). However, it is very

unlikely that two parties use exactly the same names for equivalent concepts.

Names appear in different variations, for example, according to different nam-

ing conventions.

A common technique to cope with different variations of strings is to nor-

malize them before they are compared. How aggressive the normalization is

depends on the fact whether different variations of a string are meaningful for

the search result. Case normalization converts all alphanumeric characters to

their lowercase counterpart. Diacritics suppressions removes signs that indi-

cate pronunciation or accentuation of letters and replaces the characters with

their standard form. Furthermore, digits and punctuations can be removed

from strings. These different methods can be used in conjunction.

More advanced string-based techniques take the sequence of characters into

account. Many similarity measures have been proposed that calculate a simi-

larity score of two strings. Among their well-known representatives of string-

based techniques belong n-gram, Levenshtein [71], Jaro-Winkler [72] similarity.

Besides string-based techniques, there are also token-based techniques that

view strings as sets of words rather than sequences of characters. Tokenization

is the process of segmenting a string into a set of tokens, disregarding the order

and multiplicity of the tokens. A special form is the bag-of-words model that

disregards the order but keeps the multiplicity of the tokens. Common token-

based techniques are cosine similarity and term frequency-inverse document

frequency (TF-IDF).

Term Frequency Inverse Document Frequency is defined as follows:

tfidf(t,D) = tf(t,D) · idf(t)

tf(t,D) =
#(t,D)

maxt′∈D#(t′,D)

idf(t,D) = log
N∑

D:t∈D 1

41

2 Foundations

where tf(t,D) is the term frequency of the term t in document D. The

inverse document frequency relates the number of all documents N to the

number of documents that contain t.

Because name-based techniques do not take the semantics of the entities into

account, their capabilities to resolve terminological heterogeneity is limited.

The context of the entities in their ontological structure is also not considered

which is why name-based techniques are not suited to resolve conceptual or

semiotic heterogeneity.

Language-based

Inflection is the grammatical modification of words regarding tense, case, voice,

aspect, person, number, gender, and mood. Language-based techniques like

stemming take such phenomena of natural languages into account to normalize

words to be matched. Other techniques look up words in dictionaries. Dic-

tionary entries provide additional (contextual) information of words, such as

their relations to other words or a glossary description. Such language-based

techniques are explained in the following sections.

Stemming Often words occur in morphological variants, like in their gram-

matically declined or conjugated form. In information retrieval, it is often

desired to consider different morphological variants of a string as a match.

The different variants complicate the task of finding string matches algorith-

mically.

Stemming or lemmatization is a technique to eliminate morphological phe-

nomena, i.e., to reduce tokens to their linguistic root form. This technique goes

beyond plain string normalization as it takes background knowledge about the

grammatical rules of a natural language into account.

There are specialized stemmers for the different natural languages according

to the language’s specific morphological rules. The English Minimal Stem-

mer [73] is a plural stemmer for English. The English Possessive Stemmer

stems English possessive S’s. The Porter Stemmer [74] has a list of shorten-

ing rules to reduce words to their stem. KStem [75] removes suffixes from

words until the reduced word is found in a dictionary. The different stemmers

differ in their stemming degree, i.e., how aggressively they generalize words

to a stem. Overstemming is an error where two words have been incorrectly

reduced to the same root (false positive). Analogously, understemming is an

42

2.4 Matching Techniques

error where two words have not been reduced to the same root, although they

should have been.

Stop word elimination Stop words are the most common words in a language

and play a minor role to grasp the meaning of a sentence. Typical stop words

of the English language are for example indefinite and definite articles (“a”,

“the”), conjunctions (“and”), pronouns (“our”), etc. Stop words occur in

almost any English sentence but they do not allow to make conclusions about

the contents of a sentence. Therefore, stop words are usually ignored as they

do not contribute to the relevance of the search results in general.

External resources Other language-based techniques use external resources

to measure the similarity of two entities. Such techniques take the semantics

of the words and their relations into account. There are different types of

external resources: lexicons, thesauri, etc. Lexicons define certain keywords

by a natural language description. Thesauri additionally contain the relations

between words like synonyms, hypernyms, hyponyms, etc. A hypernym is a

term that classifies a certain set of other words, i.e. it is more general than

the other words. Analogously, a hyponym is a term that is more specific than

another word.

WordNet [3] is a digital lexical database of the English language. For every

word, WordNet stores its part of speech (noun, verb, adjective, adverb), its

morphologic root, a brief definition in natural language, optionally one or more

short example sentences, and a set of its synonyms. The linguistic relations

among the synonym sets are also available in WordNet. WordNet contains re-

lations like: hyperonomy/hyponomy (is-a), meronymy (part-whole), antonymy

(opposite).

Structure-based

Contrary to string-based and language-based techniques that determine the

similarity of concepts alone by their name, structure-based techniques take

the concept’s context within the ontological structure into account. The in-

tuition is that similar concepts are located nearby within a given taxonomy.

Taxonomies define the class hierarchy in a tree structure. The most general

class is at the root of the taxonomy, while the most specific classes are the

leaves.

43

2 Foundations

The upward cotopic similarity [76] is a more advanced metric that deter-

mines the similarity of two entities on the basis of their shared superclasses

towards the root of the taxonomy. The Wu-Palmer similarity [77] also takes

into account that classes close to the taxonomy root are more general while

classes near the leaves are more specific. Thus, two adjacent concepts near the

taxonomy root are less similar than other two adjacent concepts near the leafs.

The upward cotopic similarity and the Wu-Palmer similarity can only be used

when the corresponding classes are in the same taxonomy/ontology. They are

therefore not suitable for Semantic Service Discovery, since it is unlikely that

the service requesters and service providers use different ontologies.

2.5 Process Mining

The aim of this dissertation is not only to describe the ontological semantics

of APIs but also their behavioral semantics in the form of API protocols.

This dissertation examines the extent to which process mining techniques are

suitable for semi-automatically deriving API protocols from call-logs in or-

der to reduce the manual effort involved for specifying accurate API protocols.

Process mining is originally a technique for reconstructing business pro-

cesses from digital traces of IT systems. Van der Aalst gives a comprehensive

overview of the research area of process mining in [78]. The reconstructed

models can then be analyzed to identify problems in the processes and to im-

prove them. Event logs serve as input for process mining and are recorded by

the IT system when users interact with the system. Each event in the event

log refers to a particular process instance or case, an activity, and a timestamp.

A trace is a sequence of events for a particular process instance. The output

of process mining is a behavioral model such as Finite State Machines [79] or

Petri Nets [80].

This dissertation interprets call-logs of web services as event logs. A call-log

records all HTTP requests sent by clients and processed by the web service.

A client session denotes all coherent API calls of a single client to complete a

certain task. Thus, a case of an event log corresponds to a client session and an

activity of an event log corresponds to a single API call. Like event log, call-

logs contain timestamps. Therefore, call-logs contain the basic information

that is required for process mining.

44

2.5 Process Mining

2.5.1 Mining Algorithms

This section introduces three important process mining algorithms: Alpha

Miner [81], Heuristics Miner [81], and the Inductive Miner [82]. In addition,

various quality properties of these algorithms are presented. The different

mining algorithms have different quality characteristics. In the later course of

this dissertation, these quality properties will be used to identify the algorithm

that is best suited to mine API protocols for web services.

Alpha Miner The Alpha Miner [81] reads the event log and creates a list

of events that follow one another directly. Two events x and y following one

another are in a so-called direct succession relation, denoted as x > y. The

Alpha Miner includes three rules that are used to derive more specific relations:

causality x→ y, parallelism x||y, and choice x#y.

x→ y ⇔ (x > y) ∧ ¬(y > x) (causality)

x || y ⇔ (x > y) ∧ (y > x) (parallelism)

x# y ⇔ ¬(x > y) ∧ ¬(y > x) (choice)

These relations are mapped onto Petri net fragments. All the single frag-

ments combined form the output Petri net. Traces are written in angle brack-

ets. In the remainder, the aforementioned mining algorithm is explained by

using the following event log as a running example, which is adapted from

[83]. The first trace ⟨a, b, c, d, e, g⟩6 means that events a, b, c, d, e, g occurred

in that temporal sequence. This trace occurs six times in the event log.

⟨a, b, c, d, e, g⟩6

⟨a, b, c, d, f, g⟩38

⟨a, c, d, b, f, g⟩2

⟨a, b, d, c, e, g⟩12

⟨a, d, c, b, f, g⟩4

45

2 Foundations

The footprint matrix shown in Table 2.1 captures all relations between

events. Table 2.2 shows the three patterns the Alpha Miner applies on the

footprint matrix. The resulting Petri net discovered from the example event

log is shown in Figure 2.7.

a b c d e f g

a # → → → # # #

b ← # || || # → #

c ← || # || → # #

d ← || || # → → #

e # # ← ← # # →

f # ← # ← # # →

g # # # # ← ← #

Table 2.1: Alpha Miner footprint matrix

Figure 2.7: Petri net discovered by Alpha Miner

Heuristics Miner Unlike the Alpha Miner, the Heuristics Miner [81] is a

process mining algorithm that also takes the frequency of events into account.

Real-world event logs often contain noise, e.g. deviations from the normal

order of events that only occur with certain exceptions. Process mining is

about identifying general processes, where noise is a disruptive factor. The

Heuristics Miner is less susceptible to noise. The idea of this algorithm is that

if a sequence of two events is noise, then this sequence rarely appears in the

traces which is reflected by a lower frequency of that sequences. Sequences

46

2.5 Process Mining

Pattern Input Relations Petri net Fragment

Sequence x→ y

XOR-split x→ y, x→ z, y#z

AND-split x→ y, x→ z, y||z

Table 2.2: Alpha Miner patterns

with low frequencies are then filtered out, eliminating noise. The challenge

here is that it is fundamentally impossible to distinguish between unwanted

noise and truly infrequent event patterns.

The Heuristics Miner works as described in the following: First, a so-called

n × n directly-follows frequency matrix M is created over all n events. Each

cell mxy ∈M holds a value that counts how often event x is directly followed

by event y. Table 2.3 shows the directly-follows frequency matrix created from

the example event log that has been introduced in the previous section.

Based on these frequencies, an n×n dependency matrix D is created which

represents the significance of each relation (Table 2.4). With the help of a

frequency-based metric, the value of each cell dxy ∈ D is determined, which

indicates how certain a dependency relationship between events x and y is.

x ⇒ W y denotes the dependency relation between events x and y which is

defined as:

x⇒ W y =
|x >W y| − |y >W x|
|x >W y|+ |y >W x|+ 1

where W is an event log over events T and x, y, z ∈ T and y and z are

preceded by x. |x > y| is the number of times the event x is directly followed

by y. A value close to one means that there is certainly a dependency relation.

47

2 Foundations

a b c d e f g

a 56 2 4

b 44 12 6

c 4 46 12

d 2 4 18 38

e 18

f 44

g

Table 2.3: Heuristics Miner: Directly-follows frequency matrix

a b c d e f g

a .98 .67 .8

b -.98 .82 .67 .86

c -.67 -.82 .9 .92

d -.8 -.67 -.9 .95 .97

e -.92 -.95 .95

f -.86 -.97 .98

g -.95 -.98

Table 2.4: Heuristics Miner: Dependency matrix

Figure 2.8 shows the dependency graph for the dependency matrix. The

Heuristics Miner uses the dependency threshold and the relative-to-best thresh-

old to eliminate insignificant edges from the dependency graph: An edge (x, y)

is discarded when dxy is below the dependency threshold ϕ ∈ [0, 1]. For ex-

48

2.5 Process Mining

ample, let ϕ := 0.68. Thus, the edge (b, d) is removed from the dependency

graph (Figure 2.8), because b⇒W d = 0.67.

Figure 2.8: Dependency graph produced by Heuristics Miner

More insignificant edges are removed using the relative-to-best threshold χ ∈
[0, 1]: The highest value

•
dx is identified in each row x of the dependency matrix,

and all edges where the inequality dxy(1 − χ) <
•
dx holds are removed from

that row. For example, let χ := 0.185. The highest value in the first row

is dab = 0.98. The edge (a, c) is removed, because dac = 0.67 is less then

dab(1− χ) = 0.7987.

While the dependency threshold and the relative-to-best threshold are there

to eliminate insignificant edges, there is also the positive observation threshold

ψ which is used to recognize if two events are in an AND or XOR relation.

The underlying idea is that if two events a and b are in an AND relation, then

there are traces in the event log where b directly follows a. On the contrary,

if a and b are in an XOR relation, there is no trace where b directly follows a.

The following formula expresses this idea:

x⇒W y ∧ z = |y >W z|+ |z >W y|
|x >W y|+ |x >W z|+ 1

If x⇒ y ∧ z > ψ then y and z are in an AND relation, otherwise they are in

an XOR relation. The final Petri net is depicted in Figure 2.97.

Figure 2.9: Petri net discovered by Heuristics Miner

7The black boxes are epsilon transitions that always fire when there is an input token.

49

2 Foundations

Inductive Miner The Inductive Miner [82] is a process mining approach that

obeys the divide-and-conquer principle. Divide-and-conquer algorithms strip

complex problems down to smaller problems and assemble partial solutions

of the easier problems to an overall solution of the original problem. The

Inductive Miner firstly creates a directly follows graph, i.e. a directed graph

that has a directed edge from event a to event b iff b occurs chronologically right

after a. This directly follows graph is searched for a characteristic division of

events and cut into disjoint sets.

An operator that combines both sets is selected. There are four operators:

exclusive or (×), sequential composition (→), interleaved parallel composition

(∧), and loops (⟳). Each of the four operators has a characteristic cut of the

dependency graph shown in Figure 2.10. The algorithm is recursively rerun on

the remaining subgraphs until no more characteristic cuts are possible. While

the directly graph is cut into subgraphs, the Inductive Miner incrementally

builds an internal process tree, where the nodes are operators and the leaves

are events.

In the remainder, the algorithm is exercised based on the event log from the

running example. The first cut C1 separates a from the rest of the graph and

is a sequence cut, as it cuts through edges that are pointing in one direction

(Figure 2.11a). The Inductive Miner adds the root node with the sequence

operator and a as the first leaf is event a, followed by a placeholder repre-

senting the remaining graph. Similarly, C2 is a sequence cut that separates g

(Figure 2.11b). Accordingly, the second leaf g is added below the root node

in the process tree. Cut C3 is a sequence cut that splits the graph into a

(a) × Cut (b) → Cut (c) ∧ Cut (d) ⟳ Cut

Figure 2.10: Inductive Miner cuts types

50

2.5 Process Mining

(a) → Cut (b) → Cut

(c) × Cut

Figure 2.11: Inductive Miner cuts

disjoint set {f, e} and the remaining graph (Figure 2.11c). The events f and

e are not connected anymore, which is the reason why the × cut is applied.

A new node is added below the root node labeled with the × operator. The

leaves f and e are added below the new node. The remaining events b, c, d

are all mutually connected in both directions, so that ∧ cuts must be applied

respectively. In the process tree, a new node with the ∧ operator is added

51

2 Foundations

Figure 2.12: Process tree discovered by Inductive Miner

Figure 2.13: Petri net discovered by Inductive Miner

below the root node with the leaves b, c, d. Figure 2.12 shows the resulting

process tree. Figure 2.13 shows the corresponding Petri net.

2.5.2 Quality Attributes

In process mining, a behavioral model is extracted from an event log. Ideally,

all traces of the event log can be recreated by this behavioral model. In

practice, this is not necessarily the case. The fitness of a behavioral model

states whether a model can generate all traces seen in the event log.

An event log only contains a limited number of sample traces and is a

snapshot of the IT system under consideration. It is possible that the event

log coincidentally does not contain a certain trace, such that the mined model

would not allow that trace. Generalization is the property of allowing certain

traces even if these were not previously seen in the event log.

On the other hand, a behavioral model that overly generalizes possible traces

is useless because no statements can be made about the actual behavior. Pre-

cision is the opposite of generalization and prohibits all traces that have not

been seen in the event log. The problem with a behavioral model with high

precision is that it is too specialized for the sample traces.

52

2.6 Summary

2.6 Summary

Upward compatibility is one important requirement for the BaaS approach.

Today, REST is a predominant architectural style for creating web services and

the main elements of REST are described in this chapter. REST APIs are

described in different syntactic specification languages. Operations, inputs,

outputs, and types are those elements that are critical for mashup creation

and are available in existing specification languages. Mashup creation tends

to be inefficient because the data models of the APIs and requests tend to be

heterogeneous and incompatible. The BaaS approach aims to establish links to

map heterogeneous data models to a unifying global ontology and this chapter

presents state-of-the-art matching techniques to enable such mappings. In

addition to the specification of the ontological semantics, the specification

of the API protocols is essential for the efficient creation of mashups. In

practice, they are unspecified which is why the BaaS approach aims to derive

API protocols from call-logs using process mining. This chapter introduces

three prominent process mining algorithms that are later evaluated for and

used by the BaaS approach to derive API protocols from call-logs.

53

3 Related Work

In Section 1.2 three problems are identified which make mashup creation

inefficient: (1) Request–API Terminological Heterogeneity, (2) Unspecified

API Protocols, (3) API Incompatibility. The BaaS approach addresses these

three problems with the components that are introduced in Section 1.4:

(1) Semantic Annotator, (2) Protocol Miner, (3) Parameter Matcher and

Glue Code Generator This chapter is structured around the thee identified

problems. Each section presents related work addressing the respective

problem.

The related works presented in this chapter are analyzed with respect

to the requirements upward compatibility, learnability, effectiveness, com-

prehensiveness, and interoperability (cf. Section 1.3). Related approaches

are assessed on a scale from fully satisfied (), half satisfied (), and not

satisfied (). Upward compatibility is fully satisfied when the approach

under consideration bases on REST APIs. Learnability is met when no new

knowledge and skills need to be learned by the requester and provider or when

the approach is fully automated. If an approach has already been evaluated

for effectiveness, this requirement is fully met. Insofar as an approach

takes into account both ontological semantics and behavioral semantics, the

requirement of comprehensiveness is met. Approaches that are able to convert

data between two APIs even with complex mapping fulfill the requirement of

interoperability.

This dissertation is also related to On-The-Fly Computing1, a novel pro-

gramming paradigm for the automatic on-the-fly configuration and provision

1https://sfb901.uni-paderborn.de

55

https://sfb901.uni-paderborn.de

3 Related Work

of individual IT solutions made from base services that are available on a

world-wide market. Related works in the research field of On-The-Fly Com-

puting are also discussed in this chapter.

3.1 Request–API Terminological Heterogeneity

SWEET [8] is a tool that supports users to annotate the parts of HTML

websites describing a REST API. Often REST APIs are described by regular

HTML documents rather than in a particular specification language. These

HTML documents do not have a uniform structure, but have custom formats.

The plurality of custom formats complicates the task to extract information

about a REST API automatically and to identify its operations, inputs, out-

puts, etc. within the custom HTML format. Therefore, such regular HTML

documents are not well-suited for automatic service discovery, composition,

and invocation.

SWEET parses HTML documents and SWEET users can link those HTML

elements to corresponding concepts of a service description ontology, e.g., op-

erations, inputs, outputs, etc. SWEET inserts annotations in hRESTS mi-

croformat [39] into the HTML document to markup these kinds of service

properties. Once the inputs and outputs have been identified and marked up,

they can be linked with semantic types from existing domain ontologies one

by one. Semantic types being used for annotation can come from different on-

tologies. SWEET integrates the ontology search engine Watson [9] to search

existing ontologies for adequate semantic types that can be linked with in-

puts and outputs. Watson constantly crawls the web and indexes the domain

ontologies it encounters. Service specifications that have been semantically

annotated with SWEET have not been evaluated to see if the effectiveness of

service discovery improves.

To define the grounding of the semantic types to the technical data types,

SWEET users need to define lifting and lowering transformations written in

XSLT [56]. The definition of these XSLT transformations is out of the scope

of SWEET and needs to be done manually. The readily annotated HTML

document can be exported as an RDF [84] document which serves the purpose

of a machine-readable service specification. Service specifications annotated

by SWEET are more suitable for tasks like service discovery, composition,

and invocation compared to the original HTML documents as they possess a

56

3.1 Request–API Terminological Heterogeneity

uniform structure.

The existing infrastructure of REST APIs is upward compatible with

SWEET. Adopters of SWEET need knowledge in XSLT with is why the learn-

ability is reduced. The effectiveness of SWEET has not been evaluated. Be-

cause behavioral semantics are out of SWEET’s scope, the comprehensiveness

is limited. Interoperability and the exchange of data between different APIs

is enabled through XSLT.

In contrast to SWEET, this dissertation assumes that the services are

already described in a service specification language. The proliferation of

frameworks like OpenAPI makes this a realistic assumption. While SWEET

swaps out the task to establish the links of inputs and outputs to semantic

types to Watson, how to establish these links is exactly in the focus of this

dissertation.

The METEOR-S Web Service Annotation Framework (MWSAF) [6] is a

framework for the semi-automatic annotation of WSDL specifications with

ontologies. The annotations are intended to improve service discovery and

service composition of heterogeneous third-party services. For this purpose,

METEOR-S aims to add data semantics, functional semantics, execution se-

mantics, and quality of service attributes to service specifications.

In WSDL, the types of operation inputs and outputs are defined in an XSD

schema. MWSAFmatches the XSD schema contained in aWSDL specification

against a set of predefined domain ontologies. In a first step, the XSD schema

and the domain ontologies are converted into a uniform, internal format to

resolve the syntactic heterogeneity (cf. Section 2.3.7). Data types extracted

from the XSD schema are compared pairwise with all concepts of all predefined

domain ontologies. METEOR-S uses a series of common matching techniques,

i.e., n-gram similarity, WordNet-based [3] synonym similarity, abbreviation

expansion, stemming, tokenization, stop words removal (cf. Section 2.4) to

calculate a matching score for each XSD/semantic type pair. The structural

similarity of two XSD types is determined on the basis of the similarity of their

subtypes. From these single similarity values, MWSAF calculates an overall

score that assesses the similarity of the WSDL service and the respective

domain ontology. Domain ontologies that reach a score above a threshold

are presented to the user starting with the domain ontology with the highest

score. MWSAF users have to decide if they approve the suggested domain

57

3 Related Work

ontologies. Approved domain ontologies are used to categorize the respective

WSDL service. Additionally, the user can approve single mappings of XSD and

semantic types of the accepted domain ontology. In doing so, the user is guided

by the score of the single XSD and semantic type pairs. Service grounding

including precise lifting and lowering transformations of fine-grained mappings

of XSD types and semantic types is out of MWSAF’s scope.

METEOR-S targets WSDL specifications and is therefore not suited for

REST APIs. In [6], METEOR-S is evaluated on the basis of 24 public WSDL

specifications: 15 ontologies from the geography domain and nine from the

weather domain. One finding is that the domain ontologies do not contain

enough classes to describe the ontological semantics of all XSD types found

in the WSDL specifications. Therefore, only the classification accuracy is

evaluated and METEOR-S has not been evaluated to see if the semantic

annotations improve the effectiveness of service discovery.

Karma [85] is a data integration tool that allows integrating data from a

variety of data sources including REST APIs. Data sources are integrated by

aligning them to a domain ontology that is provided by the user. Karma has

an interactive web-based user interface. To align a REST API to an ontology,

users need to provide example request URLs of the API. Karma automatically

invokes the service and extracts inputs and outputs. An initial service model

is created by the tool which is then interactively refined in a dialog with

the user. Karma comes with its own service description ontology to describe

various characteristics of the service.

In the first step, the user selects a domain ontology to which the API’s

inputs and outputs are aligned. For every input and output, Karma suggests

the top four most likely semantic types from the provided domain ontology.

Suggestions are based on a machine-learning model, i.e., a conditional random

field model [86] that learns from the mappings users have created before. With

every new assignment of inputs/outputs, the random field model is retrained

to improve its accuracy over time.

In a second step, the relevant relationships between the semantic types are

identified. Not all possible relationships of the semantic types are meaning-

ful for describing the REST API under consideration. To select meaningful

relationships, Karma uses a heuristic: First, the solution space of all possible

relations between the selected types is calculated. This solution space is a

58

3.1 Request–API Terminological Heterogeneity

graph, where the nodes are semantic types and edges are relations between

semantic types. The graph is then reduced to a minimal spanning tree which

serves as a starting point to manually refine the relationships between seman-

tic types. Once the user is satisfied with the resulting service model, it can

be saved to a repository that can be accessed via a SPARQL [87] endpoint

for service discovery. The lifting and lowering transformations that translate

the SPARQL queries to API calls and vice versa do not require any specific

technologies because the transformations realize one-to-one mappings of in-

puts and outputs to semantic types and vice versa. Such one-to-one mappings

are usually not sufficient in practice where the linking of services’ data types

and semantic types require more complex mappings, which are addressed in

this dissertation.

Karma is evaluated in paper [85]. The evaluation measures the time it

takes the Karma authors to link APIs to ontologies using Karma. This

is done using eleven operations of the same API. The effectiveness of

Karma can thus hardly be shown, since the time required depends on

the individual skills of the Karma users. Since the evaluation is carried

out by the authors themselves, the results can hardly be transferred to

inexperienced users. In addition, the terminological heterogeneity is hardly

taken into account, since the examined operations all come from the same API.

AutomAPIc [10, 52, 88] is a tool for annotating service specifications and

composing APIs. These annotations are intended to enhance the interoper-

ability of the APIs and to improve their automatic composition. AutomAPIc

generates sample input data that is in accordance with a given OpenAPI spec-

ification and invokes its operations with that input data. The response data

is represented as a table, where every column corresponds to a single prop-

erty of the response message and each cell in that column corresponds to a

sample value of that property. Semantic Table Interpretation [89] is used to

annotate the column headers with semantic types and values of the cells with

semantic type instances. Relations between two named entity columns are

represented as owl:ObjectProperties, while relations between named entity

columns and literal columns are represented as owl:DatatypeProperties.

AutomAPIc uses Semantic Table Interpretation for output parameters and

natural language entity recognition (Stanford CoreNLP [11]) for input param-

eters to align parameters with semantic types. The ontological concepts used

59

3 Related Work

for the annotation come from the Linked Open Data cloud2. In the last step,

the semantic type annotations are inserted into the original OpenAPI speci-

fication. While input parameters are annotated with class annotations only,

the properties of response messages are annotated with classes and properties.

REST APIs are upward compatible with AutomAPIc. Existing literature

does not evaluate how effectively AutomAPIc can add semantic annotations

to APIs. The internal behavioral semantics of the APIs is out of AutomAPIc’s

scope, which is why comprehensiveness is limited. The authors of AutomAPIc

also does not describe how concretely interoperability between different APIs

can be achieved using the semantic type annotations.

OntoGenesis [7] is a tool to enrich the response messages of REST APIs with

semantic annotations to enhance automatic service discovery, service composi-

tion, and interoperability. For this purpose, OntoGenesis associates the prop-

erties of the response messages with properties of existing, external ontolo-

gies. Since response messages and the ontologies are in different formats (e.g.

JSON and OWL), an ad-hoc ontology is derived from the response message as

a preliminary step to resolve syntactic heterogeneity (cf. Section 2.3.7). The

structure of the ad-hoc ontology reflects the structure of the response message.

OntoGenesis then determines semantic mappings between the properties of the

ad-hoc and the external ontology. The similarity is determined by the Jaccard

coefficient relating the number of shared values divided by the number of all

values. The intuition is that the more values a concept of the ad-hoc ontology

and the external ontology share, the more similar they are. The similarity of

the values is determined based on the Levenshtein distance [71]. OntoGene-

sis also includes a so called semantic adapter that resides between the API

caller and the original REST-API. The semantic adapter delegates the calls

to the original REST-API, determines/updates semantic mappings, and in-

serts semantic annotations into the response message using the JSON-LD [59]

format.

REST APIs are upward compatible with OntoGenesis. The requirement of

comprehensiveness is not fully fulfilled as OntoGenesis focuses on the APIs’

ontological semantics, while the behavioral semantics are out of its scope.

The effectivness of OntoGenesis are evaluated in [7]. The semantic adapter of

OntoGenesis adds semantic type annotations to the response messages, but

2https://lod2.eu/

60

https://lod2.eu/

3.1 Request–API Terminological Heterogeneity

this alone is not enough to establish interoperability between APIs.

ASSAM [12, 90] is a tool for annotating syntactic WSDL specifications

with ontological semantics. ASSAM includes three built-in ontologies for web

service categories, operations, and datatypes. Users of ASSAM browse the

parts of the WSDL specification and assign proper concepts from these three

ontologies. ASSAM helps the user to select the suitable concepts by making

automatic suggestions. The suggestions are based on the semantic annotations

of other WSDL specifications that had been annotated manually before. In

particular, ASSAM has trained several machine learning classifiers on already

annotated WSDL specifications. The classifiers are then used to predict the

category and mappings to ontological concepts for previously unseen WSDL

specifications. The readily annotated WSDL specification can be exported as

a OWL-S specification. This OWL-S specification contains a profile, a process

model, a grounding, and a domain ontology. The grounding includes XSLT

lifting and lowering transformations.

REST APIs are not upward compatible with ASSAM as it targets WSDL

services. The approach is highly automatized which contributes to learn-

ability. Adopters of ASSAM still need knowledge of XSLT to adjust the

transformations. The effectiveness of ASSAM to assign parameters to a data

type is extensively studied in [12, 90]. Behavioral service semantics are not ad-

dressed by ASSAM. Interoperability is accomplished through XSLT mappings.

SmartAPI [91, 92] is a specification language and framework based on Ope-

nAPI. It includes a specification editor that automatically suggests automatic

semantic annotations of response messages: The response messages are recur-

sively traversed to extract keypath/value pairs. A unique keypath addresses

a particular value in the whole response message. The segments of the key-

paths and the values of the key are matched with the names of concepts from

Identifiers.org3 to establish a link to semantic types. The matching concepts

are suggested to the smartAPI user who needs to approve the suggested links

to semantic types.

Existing REST APIs are upward compatible with the approach. The

approach hides the complexity for adding semantic annotations from its users.

The effectiveness of smartAPI has not been evaluated.

3http://identifiers.org

61

http://identifiers.org

3 Related Work

Wang et al. [93] present an API recommendation algorithm for creating

mashups. To do this, a knowledge graph is first created in which the nodes

represent categories, APIs, existing mashups, and the desired target mashup.

The nodes are represented with a SkipGram [94] vector. The similarity of the

nodes is based on the cosine similarity. The result is an API recommendation

list that contains APIs most similar to the target mashup and the APIs used

by most similar mashups.

Existing REST APIs are upward compatible with the approach. The API

recommendation is highly automatized with is why learnability is generally

given. Wang et al. focus on the service discovery task and the approach

does not require annotating APIs with semantic types. Individual mappings

between the mashup request and recommended APIs and how the individual

APIs interact with each other in the mashup cannot be understood from the

API recommendations produced by the approach of Wang et al. For these

reasons the approach is excluded from the comparison.

Yao et al. [95] propose an approach to enrich JSON documents, e.g., the re-

sponse messages of RESTful web services, with semantic types. The approach

consists of four steps: JSON parsing, semantic mapping, semantic enrichment,

and ontology merging. The semantic mapping parses the JSON document and

translates it into an ad-hoc ontology. Semantic enrichment supplements the

ad-hoc ontology with additional information. Ontology merging fuses the ad-

hoc ontology with other ontologies to enable interoperability between them.

In particular, this step is a key component of this dissertation, but the details

on this are not presented in the work of Yao et al.

Existing REST APIs are upward compatible with the approach. The

approach requires that its users are proficient in ontology languages which

limits learnability. The effectiveness of the approach has not been evaluated.

API protocols are not part of the approach such that the requirement of

comprehensiveness is not fulfilled. A mechanism for service grounding is not

included in the approach which is why the interoperability is limited.

Farrag et al. [96] propose a mapping algorithm that refines WSDL specifi-

cations with OWL-S annotations. WSDL types are annotated by correspond-

ing semantic types from predefined ontologies. To find candidate matches of

62

3.1 Request–API Terminological Heterogeneity

WSDL types and semantic types, Farrag et al. employ tokenization, lemma-

tization using WordNet, stop word elimination, and term frequency-based

matching (cf. Section 2.4). If no matches are found, the semantic search

engine Swoogle [97] is used as a fallback. Structure-based similarity tech-

niques are used to rank the concepts to support users to find proper semantic

types for annotations.

The approach targets WSDL services and is not suited for REST APIs.

Learnability is generally given as the approach mostly hides the technical

complexity from the adopters of the approach. If the approach is effective

in establishing links between WSDL services and ontologies has not been

evaluated. Comprehensiveness is not fully fulfilled because the behavioral

semantics of the APIs are not addressed. How interoperability can be

achieved is not discussed in [96].

Karavisileiou et al. [98] present a service description ontology for OpenAPI

and an automatic approach to automatically instantiate service models from

OpenAPI specifications. Inputs and outputs have to be annotated manually

with semantic types. With the help of this dissertation, the approach of

Karavisileiou et al. can be extended to create semi-automatic links to

semantic types. Because [98] just presents a service description ontology but

no approach to link APIs to semantic types, it is excluded from the comparison.

Wenwen Gong et al. [99] present the DAWAR approach for diversity-aware

API recommendation for mashup creation. Based on keywords from the ser-

vice requester, DAWAR generates matching mashup candidates from compat-

ible APIs. What is special about the approach is that certain APIs are not

overly preferred. The problem of diversity is out of the scope of this disserta-

tion. DAWAR considers API compatibility at the API level and defines APIs

as compatible if they have been used together in a mashup in the past. There-

fore, the disadvantage of this approach is that mashups cannot be created for

new types of requests that have not be seen in the past. In contrast to the

DAWAR approach that considers API compatibility on API level, this disser-

tation investigates API compatibility at the parameter level. For this reason,

the approach is excluded from comparison.

Table 3.1 shows the comparison of the related works regarding the research

problem of terminological heterogeneity of requests and APIs with respect to

63

3 Related Work

U
pw

ar
d
C
om

pa
ti
bi
lit
y

L
ea
rn
ab
ili
ty

E
ff
ec
ti
ve
ne
ss

C
om

pr
eh
en
si
ve
ne
ss

In
te
ro
p
er
ab
ili
ty

So
ur
ce

SWEET n/a [8]

METEOR-S n/a [6]

Karma n/a [85]

AutomAPIc n/a [10, 52, 88]

OntoGenesis [7]

ASSAM [12, 90]

SmartAPI n/a [91, 92]

Yao et al. n/a [95]

Farrag et al. n/a [96]

Table 3.1: Comparison of related works addressing Request–API Terminolog-
ical Heterogeneity

the requirements upward compatibility, learnability, effectiveness, comprehen-

siveness, and interoperability.

3.2 Unspecified API Protocols

Bertolino et al. [13] present an approach to automatically derive behavioral

models through static analysis of WSDL service specifications. For this pur-

pose, the data types of the inputs and outputs of the various operations are

analyzed and data flow dependencies between them are identified. These de-

pendencies are represented by an automaton. The conformance of that au-

tomaton with the actual service’s behavior is validated through test cases that

are automatically derived. Last, the automaton is transformed into a Business

Process Execution Language (BPEL) [100] specification.

The approach is not suitable for RESTful web services, because the input

parameters of RESTful web services tend to have primitive data types and

64

3.2 Unspecified API Protocols

the outputs are usually complex JSON documents with a schema that is often

unique for each operation. Since there are no type definitions that are shared

across operations, data flow dependencies cannot be determined this way.

Liskin et al. [101] propose an approach to make level 2 (cf. Section 2.1.2)

REST APIs compliant with HATEOAS (cf. Section 2.1.1). That means that

the API protocols are initially unspecified. The approach suggests manually

modeling the API protocols as UML state machines. A generic service wrapper

sits in front of the original REST API and exposes it as a HATEOAS compliant

REST API to the clients. For this purpose, the service wrapper interprets the

UML state machines, looks up the possible transitions, creates hyperlinks from

the transitions, and inserts them into the response messages.

REST APIs are upward compatible with the approach of Liskin et al. The

requirement of learnability is limited as the adopters of the approach need

to be proficient in UML and have to create the state machines completely

manually. On one hand, UML state machines describing the behavior of

REST APIs are in fact API protocol specifications. On the other hand,

the ontological semantics of the API are not in the focus of the approach.

Therefore, comprehensiveness is not fully covered. This dissertation aims

to derive API protocols semi-automatically and that derived API protocols

would complement the work of Liskin et al.

Schur et al. [102] present ProCrawl: an approach to create behavioral models

for the testing of enterprise web applications with HTML-based user interfaces.

ProCrawl opens the landing page of the web application and observes the

application state which is automatically determined by the HTML elements

shown in the user interface. An initial behavioral model given in the shape

of a finite state automaton is created. The nodes of the automaton represent

application states and the transitions represent user actions. The behavioral

model is refined in an iterative process by manually traversing the desired

interaction paths and application states that need to be captured.

ProCrawl requires web applications with HTML-based user interfaces so

that is not generally applicable to REST APIs. This approach does not

scale to capture API protocol specification of a REST API: First, REST

APIs do not have a user interface at all, which ProCrawl needs to determine

application states. Second, capturing a complete API protocol specification

65

3 Related Work

would include traversing all possible interaction paths manually.

Dustdar and Gombotz [14, 15] introduce the principle of Web Service Inter-

action Mining. Web Service Interaction Mining performs process mining on

the call-logs of web services. The call-logs are translated into event logs which

are processed by the process mining tool ProM [103]. For process mining, the

associated events must be assigned to a particular case. However, the case of

an event can not always be determined from a call-log. Successive events in a

call-log do not necessarily belong to the same case, as multiple user sessions

may interfere. Dustdar and Gombotz propose several methods to reconstruct

the session. A session identifier identifies the different cases.

The similarities of Dustdar’s and Gombotz’s work and this dissertation

are that both works use process mining to derive behavioral models from

call-logs. The work of Dustdar and Gombotz and this dissertation address

different problems. While the focus of the work of Dustdar and Gombotz is

on analyzing the interaction of multiple services in a mashup, the focus of

this dissertation is to derive the API protocols of single web services. Dustdar

and Gombotz do not explicitly investigate to what extent process mining

is suitable for gaining API protocol specifications. In addition, the work of

Dustdar and Gombotz aims at SOAP-based web services while RESTful web

services are prevalent nowadays.

Ghezzi et al. [104] propose the BEAR approach which infers a set of prob-

abilistic Markov models of the users’ behavior from a web service interaction

history given in the shape of a log file. The inferred models are used to verify

quantitative properties by means of probabilistic model checking. This allows,

for example, to determine the probability that a user, who enters the appli-

cation from a certain link and navigates through the application by a certain

path, will reach a given target page. The insights can be used to improve

the application’s navigational patterns according to the users’ requirements.

It has not been evaluated to what extent the BEAR approach is suitable to

derive API protocol specifications. Because the work of Ghezzi et al. aims to

mine user behavior and not API protocols, it is excluded from the comparison.

Van der Aalst and Pesic [105] propose the declarative language DecSerFlow

which can be used to specify service flows. Traditionally, Petri nets or BPEL

66

3.2 Unspecified API Protocols

U
pw

ar
d
C
om

pa
ti
bi
lit
y

L
ea
rn
ab
ili
ty

E
ff
ec
ti
ve
ne
ss

C
om

pr
eh
en
si
ve
ne
ss

In
te
ro
p
er
ab
ili
ty

So
ur
ce

Bertolino et al. [13]

Liskin et al. n/a [101]

Schur et al. n/a [102]

Dustdar and Gombotz n/a [14, 15]

Table 3.2: Comparison of related works addressing Unspecified API Protocols

specifications are used to specify such service flows. DecSerFlow is intended

to overcome the shortcomings of Petri nets and BPEL specifications that

tend to over-specify the service flows. The approach to derive API protocol

specification that is presented in this dissertation is not limited to a specific

language but is designed so that it can be adopted for DecSerFlow. Because

DecSerFlow is just a language but not an approach to derive API protocols,

it is excluded from the comparison.

Thummalapenta et al. [106] introduce the PARSEWeb tool that program-

mers can use to find out in what order they need to call third-party API

operations to get a destination type given a data source type. For this

purpose, the approach uses static code analysis of Java program code and is

therefore a white-box approach. This dissertation, on the other hand, is a

black-box approach and uses dynamic analysis of data traffic. Because the

approach of Thummalapenta et al. is a white-box approach, it is excluded

from the comparison.

Table 3.2 shows the comparison of the related works regarding the research

problem of unspecified API protocols.

67

3 Related Work

3.3 API Incompatibility

Salvadori et al. [107, 108] address data integration of heterogeneous microser-

vices and propose the Alignator framework that aims to achieve the semantic

data-driven composition of microservices across different domains. The frame-

work integrates external ontology matchmakers which match the entities of the

microservices with the entities of a predefined set of existing ontologies. The

approach expects that the microservices are already equipped with semantic

annotations, which is usually not given in practice. One main objective of this

dissertation is exactly to annotate API parameters with semantic types.

The corpus of existing REST APIs is upward compatible with the ap-

proach. It is not examined to what extent the approach effectively supports

actually enabling data exchange between APIs. Alignator considers only

ontological semantics, but no behavioral semantics of the APIs, which is why

comprehensiveness is limited. No detailed information is provided on how

exactly the semantic type annotations are used to enable the interoperability

of different APIs.

Izquierdo et al. [16] present a discovery approach to extract ontologies from

JSON-based web APIs. The domains are visualized as class diagrams to sup-

port web developers in understanding the APIs they want to integrate into

their applications. Izquierdo et al. propose guiding rules on how the services

can be composed. In addition, they propose simple heuristics to identify cor-

responding semantic types across the domain ontologies that rely on exact

name and type match. Such exact techniques are ineffective when different

terminologies are used. More elaborated techniques are presented in this dis-

sertation.

The approach targets REST APIs and existing REST APIs are upward

compatible with the approach. Indeed, the produced class diagrams help

to better understand APIs but still leave a lot of manual work which is

why adopters of the approach have to develop skills in how to work with

these diagrams, such that the requirement of learnability is not fulfilled.

Comprehensiveness is limited as behavioral semantics are not in the scope of

the approach. How interoperability can be achieved is not presented in detail.

Serrano et al. [109] propose the Linked REST APIs (LRA) framework which

68

3.3 API Incompatibility

maps the data exposed by REST services to ontologies. The LRA middleware

implements lifting and lowering translations: SPARQL [87] queries are au-

tomatically translated into API calls and the response of the API calls is

translated back to semantic types. How the mappings of the response mes-

sages and semantic types are established is out of the focus of the work of

Serrano et al., but in the focus of this dissertation.

Existing REST APIs are upward compatible with the approach. The

connection between semantic types and API parameters is established with

SPARQL expressions. Even complex mappings can be realized with SPARQL,

which is why interoperability can be realized. Reaching interoperability is

up to the adopters of the approach who have to be proficient in SPARQL,

which limits learnability. The effectiveness of the approach is exhaustively

evaluated. As behavioral semantics are out of the scope, comprehensiveness

is not fulfilled.

Kĺımek et al. [110] propose a method that can be used to map an external

domain ontology like schema.org to an existing conceptual model. XSLT-

based lifting and lowering transformations can be generated from this concep-

tual model. The method supports 1:1 element correspondences between the

conceptual model and the ontology only. These correspondences have to be

provided manually.

Upward compatibility with REST is not given as the approach requires

that APIs are described by a conceptual model with is generally not the

case for REST APIs. As adopters of the approach have to be able to work

with conceptual models and XSLT, the learnability is not fulfilled. The

effectiveness of the approach is not evaluated. Only ontological semantics

are in the scope of the approach, which is why comprehensiveness is limited.

Interoperability is realized through XSLT transformations but the approach

considers only 1:1 element correspondences between the conceptual model

and the ontology which is not sufficient for real-world applications.

Burstein et al. [17] propose the idea to automatically generate glue code

that translates the heterogeneous data of web services that are supposed to

communicate with each other. The authors cast this translation problem as

solving higher-order functional equations.

Upward compatibility of the approach is not fulfilled, because it is not

69

3 Related Work

U
pw

ar
d
C
om

pa
ti
bi
lit
y

L
ea
rn
ab
ili
ty

E
ff
ec
ti
ve
ne
ss

C
om

pr
eh
en
si
ve
ne
ss

In
te
ro
p
er
ab
ili
ty

So
ur
ce

Salvadori et al. n/a [107, 108]

Izquierdo et al. n/a [16]

Serrano et al. [109]

Kĺımek et al. n/a [110]

Burstein et al. n/a [17]

Table 3.3: Comparison of related works addressing API Incompatibility

described how REST APIs are represented in lambda calculus. Learnability

is also not given, as adopters of the approach have to be proficient in

lambda calculus. Effectiveness has not been evaluated. Comprehensiveness

is not fulfilled as behavioral semantics are out of the approach’s scope.

Interoperability is realized by the generated glue code.

Liu et al. [111] present an approach with which IFTTT mashup infras-

tructures can be generated automatically. An IFTTT service is a simple

programming model consisting of a trigger, a rule, and an action. Triggers

and actions are offered by different service providers and can be combined to

form mashups. The approach of Liu et al. automatically creates the cloud

infrastructure needed for mashups. Liu’s approach does not deal with how

triggers and content actions can be combined with one another and how, for

example, the output data of the trigger can be used in the input parameters

of the action. This compatibility on the parameter level is of particular

interest of this dissertation. This dissertation also targets REST APIs, which

represent a much more complex programming model, than simple IFTTT

services. Because the work of Liu et al. targets a different research problem

than this dissertation, it is excluded from the comparison.

70

3.4 On-The-Fly Computing

JXML2OWL [112] is a tool that can be used to manually create mappings

between an XML schema and an OWL ontology. These mappings can

be exported as XSLT transformation scripts. The tool can also auto-

matically generate XSLT transformations from these mappings. Because

does not address REST APIs in particular, it is excluded from the comparison.

Table 3.3 shows the comparison of the related works regarding the research

problem of API incompatibility.

3.4 On-The-Fly Computing

In the remainder of this section, this dissertation is related to works in the

research field of On-the-Fly Computing. The vision of On-the-Fly Comput-

ing (OTF) is that service requesters only need to describe their requirements

whereupon basic services are combined in such a way that they meet the de-

sired functional and non-functional characteristics. The works presented in

this section have links to this dissertation, but fundamentally addresses other

research questions. Therefore, the approaches in this section are not analyzed

in terms of requirements.

In an OTF market, basic services are provided by independent service

providers. There are several service specification languages, such as OpenAPI,

WSDL, OWL-S, that service providers can use to describe their services.

Different services offered in an OTF market may be described in various

specification languages. Which functional and non-functional service proper-

ties can be described in certain ways is different per specification language.

This syntactic heterogeneity of the specification languages complicates their

machine processing, e.g., during service discovery. Arifulina [67] introduces

a core language that unifies various service specification languages. Further-

more, she presents an approach that learns from examples how to transform

a service specification described in a proprietary language into this core

language. Syntactic heterogeneity is not in the scope of this dissertation

and to simplify the problem of syntactic heterogeneity, this dissertation uses

OpenAPI as a unified basis. However, it is possible to use Arifulina’s approach

as a precursor to the BaaS approach to eliminate syntactic heterogeneity. In

that case, the core language would take the place of OpenAPI.

71

3 Related Work

In service discovery, service requests are matched with service specifica-

tions. If there is vagueness in the service requests or if the functional and

non-functional properties of the provided services are not fully specified,

traditional service discovery approaches tend to be ineffective. Platenius [113]

proposes the concept of fuzzy matching to counteract the uncertainty due

to the vagueness in service requests and the incompleteness of service spec-

ifications. This is done by informing service requesters about the fuzziness

of service discovery. In contrast, my dissertation explores how the incom-

pleteness of service specifications can be reduced by deriving and formalizing

ontological and behavioral semantics of the services. It is also shown in my

dissertation how the uncertainty regarding the ontological semantics between

service requesters and service providers is resolved by linking service requests

and service offers to a global ontology. The reduced fuzziness manifests in a

more effective service discovery, which is shown in my dissertation.

Huma’s work [5] focuses on how effective service discovery and composition

can be enabled despite the multi-dimensional heterogeneity between service

requesters and providers. Huma’s approach is based on the fact that service

requests and service offers are specified in a comprehensive service specifica-

tion language — the rich service description language (RSDL). In RSDL, every

specification defines its own local ontology which is also used as the service’s

data model. Since the data models are independent of each other, they are het-

erogeneous. Before RSDL requests and RSDL offers can be matched in service

discovery, they need to be normalized. For this purpose, Huma suggests map-

ping the local ontologies to a unified, global ontology. The ontology matcher

presented in this dissertation is an advancement of the ontology matcher used

in Huma’s approach [21, 114]. In Huma’s work, the normalization of service

offers takes place at the time of the service discovery, where a service request is

matched pairwise will all available service offers. In practice, it is unrealistic

that the heterogeneity can be resolved fully automatically. A manual con-

solidation process between service requesters and service would be necessary

to completely resolve the heterogeneity. Such a consolidation process does

not scale for a large number of service requests and offers. In contrast, in my

approach, the normalization of service offers takes place before discovery time.

Besides the local ontologies, RSDL specifications also include API protocol

specifications in the shape of UML sequence models. Such API protocol spec-

72

3.5 Summary

ifications are not provided in practice and how API protocol specifications are

created is not addressed by Huma. In my dissertation, I present an approach

to derive API protocol specifications from call-logs semi-automatically in order

to facilitate the creation of API protocol specifications.

Huma proposes a service composition approach that bases on API protocol

matching. The service composition takes place at the level of the normalized

specifications that are typed over the global ontology. The specifications

deviate from the actual implementation of the service offers that still use

their local data models. To obtain executable mashups, the gap between the

normalized specifications and the actual implementations needs to be closed

by a service grounding, which is not addressed by Huma’s work. In contrast,

this dissertation also considers the execution level and how heterogeneous

data can be shared between different services in a mashup.

3.5 Summary

Existing related work addresses only a few of the four problems stated in

Section 1.2, i.e., insufficient specification of ontological semantics, insufficient

specification of behavioral semantics, and incompatibility of third-party ser-

vices in a mashup. There is no approach that addresses all four problems

holistically. Consequently, there is no approach that retrieves comprehensive

service specifications including ontological and behavioral semantics.

Although there are numerous approaches that enrich service specifications

with ontological semantics, for none of these approaches it has been verified for

a large number of real-world service requests and offers whether the semantic

annotations help to improve the effectiveness of service discovery. Therefore,

the question of the scalability of these approaches remains open.

In practice, interoperability between heterogeneous third-party services to

be composed in a mashup requires often complex translation functions that

translate the data from one data model into another. The proposed approaches

consider only simplistic one-to-one correspondences that are often not suffi-

cient in practice.

73

4 Solution Overview

Brokerage as a Service (BaaS) is a novel kind of IT service that substantially

supports third-party service providers and requesters with semi-automatic

tools which help them to better collaborate on creating mashups: (1) The ter-

minological heterogeneity of service requests and service offers is resolved by

annotating them with semantic types of a global ontology, enabling an effective

service discovery. (2) API protocol specifications, extracted from call-logs us-

ing process mining techniques, help service requesters to understand in which

order operations of third-party APIs have to be called. (3) The ontological

annotations help to identify semantically related input and output parameters

of different APIs that may be exchanged between APIs in a mashup. (4) Glue

code that converts the data between the heterogeneous APIs is generated from

fine-grained parameter mappings, making the APIs interoperable.

Service requesters, service providers, and BaaS vendors do benefit from

BaaS likewise: Service requesters can find and compose existing APIs more

effectively and are therefore able to reduce development time and costs for

creating their mashups. Because of this, the service providers can reach a

wider range of consumers that come with the new mashups. Vendors of cloud

computing platforms that exist today can expand their platforms to BaaS

platforms which is a unique selling point opposed to ordinary cloud computing

platforms.

4.1 Architecture

Figure 4.1 shows the main components of a BaaS platform, i.e., API Registry,

Semantic Annotator, API Gateway, API Protocol Miner, Service Discovery,

Parameter Matcher, Glue Code Generator. The purpose and functionality of

75

4 Solution Overview

Figure 4.1: BaaS components and artifacts

each component are explained in the remainder. A prototype implementation

of the BaaS components is publicly available on GitHub1.

API Registry

The API registry stores comprehensive specifications of all API offers that are

available on the BaaS platform. All these specifications are considered by the

service discovery and for creating new mashups.

Providers can import their legacy syntactic specifications, i.e., OpenAPI

specifications into the API Registry to upgrade them to comprehensive speci-

fications. As described in the following, the providers use the Semantic Anno-

tator and the API Protocol Miner to enrich these specifications with semantic

types and API protocols to obtain comprehensive specifications.

4.1.1 Semantic Annotator

The Semantic Annotator links service requests and service offers with seman-

tic types from the global ontology. This eliminates the terminological het-

erogeneity of service requests and service offers that makes Service Discovery

and Parameter Matching ineffective. It is important that service requesters

and service providers use semantic types that are somehow semantically con-

nected such that the service matchmaker can reason about the similarity of

1https://github.com/brokerage-as-a-service/baas

76

https://github.com/brokerage-as-a-service/baas

4.1 Architecture

a requested and provided data type and ultimately if a service offer satisfies

a given service request. If service requesters and service providers would use

isolated and unconnected semantic types (from different ontologies), i.e., se-

mantic types that are not in an is-a or is-equivalent relationship, this would

only shift the terminological heterogeneity from the level of service specifi-

cations to the level of ontologies instead of resolving the heterogeneity. The

responsibility of the BaaS vendor is to provide that global ontology. Service

requesters and service providers that are using a BaaS platform are restricted

to using a shared set of semantic types provided through the global ontology

whereby their terminological heterogeneity is resolved.

An API can be offered on multiple BaaS platforms, each using different

global ontologies. Ideally, the global ontologies of different BaaS platforms

are interconnected so that equivalent semantic types reference each other.

Otherwise, the service providers have to annotate their APIs several times

with the semantic types offered by each BaaS platform where they want to

offer their API.

Comprehensive specifications exist only for effective service discovery. They

only describe a fictitious variant of the actual API that has been expanded by

semantic types. How the actual underlying API is called is still described in

the syntactic specification. The advantage of this lightweight approach is that

it allows an effective service discovery, while the actual API implementations

and applications that use these APIs do not have to be changed.

The Semantic Annotator finds semantic types in the global ontology that are

suitable to annotate service requests or service offers. In particular, it returns

a list of semantic types from the global ontology ranked by their relevance.

The Semantic Annotator analyzes the syntactic specifications and automat-

ically derives search queries which are used to search the global ontology for

relevant semantic types to annotate the APIs’ input and output parameters.

In contrast to common state-of-the-art approaches, the Semantic Annotator

considers even more contextual information from the service specification than

just the parameter names, e.g., the name of the enclosing operation. In general,

adding more contextual information increases recall and decreases precision.

The difficulty lies in selecting the contextual information so that the search

for semantic types is generally effective for a large number of APIs.

77

4 Solution Overview

API Gateway

Where do the call-logs required to mine API protocols come from? Usually,

service providers offer their APIs via a web server that is publicly available

on the Internet. Web servers run a web server software like Apache HTTP2,

Apache Tomcat3, Nginx4, Express5, etc. Service providers are completely free

in which web server software they use because the REST API exposed to the

client application is the same in each case. All the web server software men-

tioned before is shipped with the capability to create call-logs6. All these web

server implementations implement the HTTP/S transport protocol. What the

call-logs produced by different web server implementations have in common is

that they track meta-information that is transmitted in HTTP/S request and

response messages between the clients and the server. In particular, any kind

of data that is transmitted within an HTTP/S message [32] can be recorded.

However, every web server implementation uses a different call-log format.

Process mining by the BaaS cloud vendor would be complicated by the syn-

tactic heterogeneity of the different log formats.

To counteract the problem of different call-log formats, BaaS uses an API

Gateway: The API gateway sits in front of all APIs that are available on the

BaaS platform. The clients send their request to the API Gateway that acts as

a central proxy and forwards the HTTP/S requests to the respective APIs and

returns their HTTP/S responses back to the client. Since all traffic between

any clients and APIs goes through the API Gateway, it is possible to create

call-logs in a uniform format for all APIs.

Figure 4.2 shows the relationship between clients, BaaS API Gateway, and

the actual third-party APIs: Client A sends a request to the API at the domain

lufthansa.baas.com. The API Gateway forwards the request to the original

domain at api.lufthansa.com and returns the response message back to the

client. Meta-information from the HTTP/S request and response messages are

recorded in a call-log without Lufthansa having to change anything in their

API.

Using API Gateways is already a common practice today. For example,

2https://httpd.apache.org/
3http://tomcat.apache.org/
4https://www.nginx.com/
5https://expressjs.com/
6In the context of web server software, call-logs are also known as web server logs or access
logs

78

https://httpd.apache.org/
http://tomcat.apache.org/
https://www.nginx.com/
https://expressjs.com/

4.1 Architecture

Client A Lufthansa

Client B

Client C Expedia

Hertz

BaaS
API Gateway

Call-logCall-log

Call-logCall-log

Call-logCall-log

https://lufthansa.baas.com/ https://api.lufthansa.com/

Figure 4.2: BaaS API gateway

the API management platform RapidAPI7 uses API gateways. Infrastructure

as a Platform cloud providers like Amazon Web Service (AWS) also offer

the use of API Gateways8. The difference between the BaaS API Gateway

and the RapidAPI or AWS API Gateway is that the latter is used for other

tasks like authentication, billing, performance monitoring while the BaaS API

Gateway is also used to record call-logs. The novelty is that BaaS uses API

Gateways to create call logs in a uniform format in order to use them for

process mining. Existing API gateways like the API gateway of RapidAPI

can easily be extended to create call-logs for process mining.

4.1.2 API Protocol Miner

The API Protocol Miner assists service providers to create the API protocol

specifications that service requesters require to understand the interdependen-

cies of operations of an API they want to integrate into a mashup. The input

of the API Protocol Miner is a call-log created by the API Gateway containing

calls from all applications that have ever called this API. The output of the

API Protocol Miner is an API protocol specification.

Mined API protocol specification can only describe operation sequences that

have ever occurred in a call-log. To mine API protocol specifications that

7https://rapidapi.com/
8https://aws.amazon.com/api-gateway/

79

https://rapidapi.com/
https://aws.amazon.com/api-gateway/

4 Solution Overview

cover the complete behavior of APIs, it is a necessary criterion that all valid

operation sequences have ever occurred and have been recorded in a call-log.

In general, the completeness of mined API protocols improves over time the

more traffic the API Gateway has seen.

When a BaaS platform is launched, call-logs are empty in the beginning.

In order to generate the necessary traffic to fill the logs, in an initial start-up

phase BaaS platforms can start as ordinary API management platforms. As

soon as an API has seen some reasonable amount of traffic and the call-log is

populated, the BaaS provider can publish the mined API protocol.

Even after the start-up phase, there might be still certain operation call

sequences that are edge cases and have never been traced in a call-log. Con-

sequently, the mined API protocols do not cover the complete behavior of

an API. Ignoring infrequently occurring operation sequences is a compromise

that the BaaS approach accepts as long as the essential behavior of an API is

described. The hypothesis is that sequences that were rarely used in the past

are likely to be rarely used in the future by new service requesters.

Service Discovery

The service discovery matches a service request with all service offers. The

service requests and the service offers are specified in a specification format

that supports semantic types, e.g., OWL-S. Other specification languages that

support semantic type annotations are also possible, e.g. the extensions of

OpenAPI presented in [52, 53].

There are dozens of existing service matchmakers supporting OWL-S that

can be used. Because of the plenitude of existing service matchmakers, ser-

vice discovery itself is not the focus of this dissertation. Service discovery is

rather considered as a placeholder in the BaaS platform that can be equipped

with any service matchmaker of the BaaS vendor’s choice. State-of-the-art

service matchmakers are able to take semantic type annotations into account

to increase the effectiveness of the search for APIs. The input of the service

discovery is an OWL-S request. For every operation in the request, a list of

operations of all APIs ranked by their relevance is returned. The service re-

quester inspects the retrieved operations and manually selects those operations

to use in their mashup.

80

4.1 Architecture

Parameter Matcher

The individual operations that are used together in a mashup consume/pro-

duce lots of inputs/outputs, but only certain inputs or outputs have to be

exchanged between them in the specific context of the mashup. The inputs

and outputs that need to be exchanged between APIs are usually highly in-

compatible: For example, the output o of an API needs to be passed as input

parameter i to another API while o and i may use different data types and

formats. Despite the heterogeneity of the parameters, the Parameter Matcher

helps to determine related parameters that are likely to be interchangeable: It

extracts all inputs and outputs of the operations to be composed in a mashup,

matches them pairwise, and calculates a relevance score for each pair. The rel-

evance score takes the semantic types of the inputs and outputs into account.

This allows to effectively identify related parameters across the operation even

though the APIs of the services are heterogeneous and incompatible. The out-

put of the Parameter Matcher is a ranked list of parameter mappings.

4.1.3 Glue Code Generator

The relevance score of the parameter mappings just gives the service requesters

a hint which inputs/outputs must be exchanged, but not how the data can be

exchanged. Inputs and outputs of services from different third-party providers

are using different data types and data formats that need to be made compat-

ible before they can be exchanged within a mashup.

The Glue Code Generator takes a list of parameter mappings and generates

the glue code, i.e., the program logic, that converts between the heterogeneous

data types and formats which allows them to be exchanged across the opera-

tions. The generated glue code invokes the involved operations of the mashup,

extracts the required inputs/outputs from request/response messages, and in-

serts translation functions to harmonize data types and formats. The glue

code has an individual converter function for each parameter mapping. The

converter functions are inserted using a heuristic. Since there is an individual

translation function per parameter mapping, specific functions can be manu-

ally adjusted.

So far, the components of the BaaS have been explained. The following

section explains how service requesters and service providers are using these

components.

81

4 Solution Overview

Figure 4.3: BaaS interaction processes of requesters and providers

4.2 Usage

Figure 4.3 shows how service requesters and service providers are interacting

with the BaaS platform. Service providers publish syntactic specifications at

the API Registry. (1) Using the Semantic Annotator, the service providers

link the input and output parameters of their operations with semantic types

from the Global Ontology. (2) They inspect the recommended semantic types

and manually approve the ones they consider as accurate. If the Semantic

Annotator is effective, service providers have to inspect only a small fraction

of the first-ranked semantic types.

(3) Next, the service providers are using the Protocol Miner to extract API

protocol specifications from call-logs, collected at the API Gateway. Due to

noise in call-logs, extracted API protocols may be inaccurate. (4) The ser-

vice providers inspect them and make manual corrections, if necessary. The

82

4.3 Meeting the Requirements

semantic type annotations and API protocol specifications are then part of a

comprehensive service specification that captures the ontological and behav-

ioral semantics of the APIs.

(5) Service requesters use the Service Discovery of the BaaS platform to

discover relevant operations providing the desired functionality. The Service

Discovery exploits the semantic type annotations of the service requests and

service offers to overcome their terminological heterogeneity which results in

finding relevant operations more effectively. The result of Service Discovery is

a list of operations ordered by their relevance to the request. (6) Service re-

questers inspect the suggested operations and select those operations manually

that they want to use in a mashup.

(7) The Parameter Matcher matches the input and output parameters of

the operations that have been selected for mashup creation to determine cor-

responding parameters that must be exchanged in a mashup. To determine

corresponding parameters, the Parameter Matcher uses semantic type anno-

tations. (8) The service requesters inspect the corresponding parameters and

approve the input/output mappings manually.

(9) From the list of approved parameter mappings, the Glue Code Generator

generates the program code of a mashup that is executable. The program

code contains the operations calls and the extraction of single input/output

parameters from whole request/response messages. The generated code also

contains converter functions that resolve syntactic heterogeneity. Thus, the

generated program code already contains a lot of program logic that otherwise

would have had to be programmed manually.

(10) In case the converter function predicted by the heuristic is inaccurate

or incomplete, it still has to be adjusted manually by the service requester.

These adjustments can be made specifically for each parameter mapping, as

there is a separate converter function for each parameter mapping.

The following section explains why the BaaS approach meets the require-

ments defined in Section 1.3.

4.3 Meeting the Requirements

This section explains why the BaaS approach satisfies the requirements that

have been raised in Section 1.3, i.e., upward compatibility, learnability, effec-

tiveness, comprehensiveness, and interoperability.

83

4 Solution Overview

4.3.1 Upward Compatibility

With BaaS, existing REST APIs can continue to be used. Adjustments to the

APIs or service implementations are not necessary. BaaS builds on existing

infrastructure with thousands of REST APIs that can be composed into new

mashups. Because of this, BaaS is upward compatible.

4.3.2 Learnability

The BaaS approach allows service providers to continue using the technologies

they are familiar with. Already created syntactic service specifications, e.g.,

legacy OpenAPI specifications can be reused. Changes to the implementa-

tions of existing APIs are not required. No new expertise has to be learned.

Techniques such as process mining are used in the background so that it is

largely transparent to providers and requesters: Call-logs, which are the input

for process mining, are created automatically at the API Gateway without the

intervention of the service providers. The selection of the process mining al-

gorithm and its configuration is also handled by the BaaS platform. For these

reasons, BaaS is accessible to a wide range of service providers and service

requesters.

4.3.3 Effectiveness

Linking specifications to semantic types gives them a machine-accessible mean-

ing. Service discovery can exploit the description of the ontological meaning

and thereby reduce terminological heterogeneity which allows to narrow down

the large set of all available operations to a small set of relevant API op-

erations. Since service requesters only have to look at a smaller fraction of

operations that are useful for their desired mashup, service discovery is more

effective. Because the approach is effective, it also scales for large numbers of

services.

4.3.4 Comprehensiveness

Understanding the ontological and behavioral semantics of APIs is crucial to

integrating them into a mashup. By enriching syntactic service specifications

with ontological semantics in the shape of semantic types and behavioral se-

mantics in the shape of API protocol specifications, service requesters are now

84

4.4 Summary

able to understand aspects of black-box services that are inaccessible solely

based on purely syntactic service specifications.

4.3.5 Interoperability

The BaaS approach achieves interoperability on two levels: First, by linking

the input and output parameters of the APIs to semantic types from a unified

global ontology, the heterogeneity of the APIs is reduced. This makes it easier

to identify the relations of input and output parameters of different APIs that

might be used in a future mashup. Second, the glue code generated from

parameter mappings allows wiring the inputs/outputs of the APIs together

and converting their heterogeneous data. Both aspects make incompatible

APIs of different service providers interoperable with each other such that

they can be combined in a mashup.

4.4 Summary

This chapter introduces Brokerage as a Service (BaaS): A novel IT service

that provides semi-automatic tools for service requesters and service providers

assisting them to better collaborate for the creation of mashups. It is a wide

span for the requester to come from a vague service request to an executable

mashup. The many decisions that need to be made along the way to obtain

an executable mashup are difficult to automate and therefore require human

interaction. This chapter introduces a process of individual small steps, always

alternating between automatic and manual steps and helping service requesters

and service providers in collaborating to create mashups: The Semantic An-

notator assists service requesters and service providers with annotating service

requests and service specifications with semantic types of a global ontology,

eliminating their terminological heterogeneity. With the aid of the semantic

types, the Service Discovery can find relevant operations for a service request

more effectively. The Protocol Miner learns an API protocol specification from

call-logs using process mining. Call-logs are automatically created by the API

Gateway. Service requesters use the API protocol specification to comprehend

the interdependencies of operations of an API to deciding which operations

are needed in a mashup. The Parameter Matcher produces input/output pa-

rameter mappings that assist the service requester in identifying those inputs

85

4 Solution Overview

and outputs that must be exchanged between the operations involved in a

mashup. From input/output parameter mappings, the Glue Code Generator

generates the code that converts between the heterogeneous data types and

formats of the heterogeneous APIs to make them interoperable. With this

variety of semi-automated tools, BaaS makes creating mashups much more

efficient.

86

5 Semantic Annotator

Today, service discovery tends to be ineffective because requesters and

providers are independent and the data model and operation signatures of

requests and offers are terminologically heterogeneous. Figure 5.1 shows three

stages of heterogeneity. In Figure 5.1a, purely syntactic specifications are

used, as is currently done on RapidAPI. RapidAPI uses string-based similar-

ity measures for the search, which is why, for example, “destination” is not

found when you search for “departure airport”.

State-of-the-art semantic service matchmakers [4, 54] use even more simi-

larity measures next to the string similarity of parameter names, for example

the ontological proximity of the semantic types in a hierarchy (is-a) relation-

ship. The latter requires that operation signatures use semantic types and that

these semantic types are somehow related to each other. There are existing

tools like SWEET [8] for annotating APIs with semantic types. The problem

with these approaches is that they search multiple, unrelated ontologies for

semantic types for annotation. The situation where requesters and providers

use semantic types from unrelated ontologies is shown in Figure 5.1b. In this

case, there is no relation between Airport and Aerodrome such that the cal-

culation of the relevance score ultimately falls back on the string similarity

of parameter names. Consequently, the terminological heterogeneity is only

shifted from requests/offers to the level of ontologies. If, however, requesters

and providers use semantic types from the same global ontology, the relations

can be taken into account by existing semantic service matchmakers, which is

shown in Figure 5.1c.

Brokerage as a Service annotates input and output parameters of offers

and requests with semantic types of a global ontology. By using this global

ontology, their heterogeneous data models are unified, making it more effective

87

5 Semantic Annotator

#i

„departure airport“
«request»

Ranked Operations

schedules(destination:string,...):ScheduleResource

. . .

. . .

. . .

. .
 .

Service Discovery
«component»

#1

#3

#2 False
Positives

heterogeneity prevents
effective service discovery

(a) Heterogeneity between requests and offers: False negative match between param-
eters departure airport and destination.

#i

„departure airport“
«request»

Ranked Operations

schedules(destination:string,...):ScheduleResource

. . .

. . .

. . .

. .
 .

Service Discovery
«component»

#1

#3

#2 False
Positives

schema.org

project-best.eu

heterogeneity shifted to the
level of ontologiesannotated with

annotated with

Airport

Aerodrome

(b) Heterogeneity between ontologies: False negative match between classes Airport
and Aerodrome.

„departure airport“
«request»

Ranked Operations

schedules(destination:string,...):ScheduleResource

. . .

. . .

. . .

Service Discovery
«component»

#1

#3

#4

#2

False
Positives

schema.org

annotated with
annotated with

global ontology resolves
heterogeneity

Airport

(c) Hypothesis: Annotating with semantic types from one global ontology resolves
heterogeneity resulting in an effective service discovery.

Figure 5.1: Reducing Heterogeneity with Global Ontology

to identify similarities between them. The ultimate goal is to improve the

effectiveness of service discovery by using semantic type annotations over the

same ontology.

BaaS uses the Semantic Annotator to link parameters with semantic types,

88

5.1 Functionality of the Semantic Annotator

which is the matter of subject in this chapter. The Semantic Annotator au-

tomatically creates search queries from the syntactic API specifications and

searches the global ontology for suitable semantic types. For this purpose,

string-based matching techniques are used.

Improving the effectiveness of service discovery should not be at the expense

of having a disproportionate overhead for adding semantic type annotations.

Comparable approaches to semantic annotation of APIs like SWEET [8] are

not effective, because they only consider a parameter and a semantic type

as similar when their names are string-similar. As a result, search results

produced by such kinds of approaches are precise but incomplete. Precision

in this context is a metric of how many semantic types the discovery retrieves

are relevant. For example when the semantic type Airport is correctly found

when searching for the parameter name “departureAirport”. The metric of

incompleteness is called recall and measures how many relevant semantic types

are not found, e.g., when searching for the keyword “accommodation” does

not retrieve the relevant semantic type Hotel.

To counteract a low recall, the Semantic Annotator adds contextual infor-

mation, so-called query parts, to the search query and so-called index fields to

the search index. On one hand, adding contextual information to the search

query and index improves the probability that there is a correct search hit,

which would improve recall. On the other hand, the probability that many

irrelevant semantic types are retrieved is increased, which would decrease pre-

cision.

In this chapter, the functionality of the Semantic Annotator is presented.

It is shown which query parts and index fields should be used to achieve a

high level of effectiveness. Furthermore, the effectiveness of different string-

based and language-based matching techniques is tested. In this chapter, the

Semantic Annotator is evaluated based on 100 REST API operations from

RapidAPI that are aligned with the ontology schema.org. Furthermore, it is

shown that the effectiveness of service discovery with the service matchmaker

OWLS-MX3 is improved by 61% using semantic types.

5.1 Functionality of the Semantic Annotator

For the design of the Semantic Annotator, some preliminary considerations

and design decisions must be made beforehand. An important design deci-

89

5 Semantic Annotator

1 openapi: 3.0.1

2 paths:

3 "/operations/schedules/{origin}/{destination}/{fromDateTime}":

4 get:

5 summary: Flight Schedules

6 description: Scheduled flights between given airports on a given date.

7 operationId: OperationsSchedulesFromDateTimeByOriginAndDestinationGet

8 parameters:

9 - name: origin

10 in: path

11 description: Departure airport. 3-letter IATA airport code (e.g.

'ZRH')↪→

12 required: true

13 schema:

14 type: string

15 - name: destination

16 in: path

17 description: Destination airport. 3-letter IATA airport code (e.g.

'FRA')↪→

18 required: true

19 schema:

20 type: string

21 - name: fromDateTime

22 in: path

23 description: Local departure date and optionally departure time

(YYYY-MM-DD↪→

24 or YYYY-MM-DDTHH:mm). When not provided, time is assumed to be

00:01↪→

25 required: true

26 schema:

27 type: string

28 example: 2019-06-11T19:23

Listing 2: Lufthansa Open API

sion concerns the level of granularity of the annotations. Requests/offers can

be annotated on different granularity levels: on the level of services, opera-

tions, or individual input/output parameters. Annotating at the level of APIs

is sufficient when the number of relevant APIs needs to be narrowed down

roughly and the deeper inspection for relevancy can be done manually by the

requester. To enable highly automatized composition of executable mashups,

fine-grained annotations on the level of parameters are necessary, because it

is the parameter values that are shared between APIs in a mashup. This is

the reason why requests/offers are annotated at the level of input and output

parameters.

Input parameters of REST APIs often have primitive types such as String

90

5.1 Functionality of the Semantic Annotator

1 {

2 "ScheduleResource": {

3 "Schedule": [{

4 "TotalJourney": {

5 "Duration": "PT1H5M"

6 },

7 "Flight": {

8 "Departure": {

9 "AirportCode": "PAD",

10 "ScheduledTimeLocal": {

11 "DateTime": "2019-08-12T09:25"

12 }

13 },

14 "Arrival": {

15 "AirportCode": "MUC",

16 "ScheduledTimeLocal": {

17 "DateTime": "2019-08-12T10:30"

18 },

19 "Terminal": {

20 "Name": 2

21 }

22 },

23 "OperatingCarrier": {

24 "AirlineID": "CL"

25 },

26 "Equipment": {

27 "AircraftCode": "CR9"

28 }

29 }

30 }]

31 }

32 }

Listing 3: Example JSON response of the Lufthansa OpenAPI

with a single value. In these cases, it is enough to annotate such parameters

with a single semantic type to capture its semantics. On the contrary, espe-

cially output parameters usually have complex values, e.g., complex JSON or

XML documents. The responses of REST APIs are typically complex JSON

documents, consisting of nested attributes. In such cases, one needs multiple

semantic types to express the semantics of the whole JSON document.

Mashups usually do not need the whole JSON document to process but

only some isolated attributes. Therefore, the mashups need to query and

extract the attributes from the JSON documents that they need. In a later

phase of the BaaS, the Parameter Matcher must be able to match individual

parameters from different APIs. Therefore, the annotations have to be added

91

5 Semantic Annotator

in this earlier phase by the Semantic Annotator.

Listing 2 shows the excerpt of the OpenAPI specification of the Lufthansa

API, where the input parameters of the operation OperationsSchedulesFrom-

DateTimeByOriginAndDestinationGet are defined. Listing 3 shows an excerpt

of an example response of the same operation. This example response is also

part of the OpenAPI specification.

Now, as the preliminary considerations have been made, the remainder of

this section addresses the actual functionality of the Semantic Annotator. The

Semantic Annotator casts the problem of finding relevant semantic types for

certain input and output parameters as an information retrieval problem. A

parameter has the following properties:

� name,

� direction (in or out),

� textual description,

� syntactic datatype (e.g. string),

� data format (e.g. an RFC 5322 [115] conforming email address),

� JSON path if it is part of a JSON response message,

� operation name

Once in the beginning, the Semantic Annotator indexes all semantic types

from the global ontology. Subsequently, the provider/requester selects an in-

put or output parameter they want to annotate, whereupon the Semantic

Annotator automatically builds a corresponding search query to obtain rele-

vant semantic types. Each input or output parameter is processed one at a

time. The input of the Semantic Annotator is a single input or output parame-

ter specification extracted from the offer/request. The output of the Semantic

Annotator is a ranked list of owl:Classes ordered by their relevance. The rel-

evance of the semantic types is determined based on TF-IDF (cf. Section 2.4).

These semantic types recommended by the Semantic Annotator must be man-

ually approved by the provider/requester.

The more search terms the search query and the index have in common,

the higher the TF-IDF score. In general, adding more contextual information

92

5.1 Functionality of the Semantic Annotator

to the query or index usually increases recall, but comes at the expense of

lower precision. Therefore, the terms that are used to build the search query

and the terms that are indexed must be selected in a way such that precision

and recall are maximized at the same time. In the following, the information

that the Semantic Annotator includes in the index is called index fields and

the information that is included in the query is called query parts. Candidate

index fields and query parts are described in Section 5.1.2 and Section 5.1.3.

The effectiveness of choosing different combinations of index fields and query

parts for aligning offers from RapidAPI to the global ontology schema.org is

evaluated in Section 5.2.1.

The TF-IDF score can be falsely low when the strings in the index fields and

query parts vary slightly. For example, if the search query is “airports” and

the index only contains the term “airport”, the TF-IDF score is zero. This

problem can be avoided by preprocessing the terms of the search query and

the terms being indexed to reduce them to a common stem (cf. Stemming in

Section 2.4). However, if the stemming is too strong, unrelated terms may be

wrongfully reduced to the same stem, which would again decrease precision.

Therefore, the preprocessing must be configured in a way, such that recall and

precision are balanced. Preprocessing of the Semantic Annotator is described

in Section 5.1.1. The effectiveness of different preprocessing configurations

is evaluated in Section 5.2.1 based on offers from RapidAPI and the global

ontology schema.org.

5.1.1 Preprocessing

There are two kinds of index fields and query parts: Identifiers and textual

descriptions. Identifiers and descriptive text have different requirements for a

preprocessing pipeline which is why the Semantic Annotator has specialized

pipelines for each.

These pipelines first split the input strings into tokens. Description texts

mainly consist of whole natural-language sentences and contain punctuation.

Since the individual words are separated by spaces, the space character and

punctuation are usually used as the word delimiter for tokenization (cf. Sec-

tion 2.4). In contrast to descriptive texts, identifiers contain fewer characters

and have a higher information density than descriptive texts. As identifiers

are used to instruct or communicate with computers, they conform to strict,

93

5 Semantic Annotator

standardized grammatical rules as defined in URI [33], JSON [35], Java, etc.

For example, the OpenAPI standard recommends following the naming con-

ventions of common programming languages for using identifiers [40, 4.7.10

Operation Object]. These naming specifications prohibit the use of spaces as

a word delimiter, which is why other delimiters have to be used. Therefore,

API providers often use the camel case or snake case naming convention for

operation and parameter names, because this allows the individual words to

be human-readable even without spaces or punctuation. With the camel case

convention, delimiters are capital letters (e.g. “CamelCase”) and with the

snake case convention, the delimiter is the underscore (e.g. “snake case”).

Camel case or snake case naming conventions can be used for the tokeniza-

tion of identifiers: In the case of camel case identifiers, strings can be split

into tokens where the case of letters changes. In the case of snake case, non-

alphanumeric delimiters can be used as token delimiters, e.g., the underscore

character.

Later steps in the preprocessing pipeline may add, remove, or manipulate

tokens. In particular, synonyms are added into the token stream, stop words

are removed, and tokens are manipulated by stemming (cf. Section 2.4). It

has to be analyzed which steps are effective.

5.1.2 Indexing Semantic Types

In a preparatory step, the Semantic Annotator first reads in all the

owl:Classes from the global ontology and creates an index over all semantic

types of the global ontology. A semantic type may have labels (rdfs:label)

and a descriptive comment (rdfs:comment). Table 5.1 shows the raw con-

tents of the index fields name, label, and comment for the semantic type

schema:Flight next to tokens extracted by the preprocessing pipeline. Thus,

using the label and the comment for indexing would mean that schema:Flight

is found under the terms “flight” and “airline”. The stop word “an” is an elim-

inated stop word and not added to the index.

5.1.3 Building Search Queries

As described earlier, the goal is to annotate single attributes in the JSON

documents which is a requirement for the Parameter Matcher. A JSON doc-

ument consists of a nested object structure, arrays, and the primitive data

94

5.1 Functionality of the Semantic Annotator

Index Field Sample Input Indexed Tokens

Identifier Flight flight

Comment An airline flight. flight, airline

Table 5.1: Index fields and indexed tokens of the class schema:Flight

types String, Number, Boolean [35]. The Semantic Annotator breaks whole

JSON documents down into a flat list of primitive typed attributes. All flat-

tened attributes in a JSON document can then be annotated with a semantic

type. The annotation on such a fine-grained level later allows the generation

of program code that extracts only the individual data values from the JSON

messages that need to be exchanged between the APIs.

To uniquely address single attributes of a complex JSON message and as-

sociate them to semantic types, the Semantic Annotator uses JSONPath1.

JSONPath is a query language that can be used to access individual ob-

jects or values in a JSON document. The dollar operator ($) is used to

access the root node of a JSON document. Dot notation (.) is used to ac-

cess child nodes. Square brackets with integer indexes are used to access

items in arrays. Using a wildcard (*) instead of an integer index returns all

items of an array. Operators can be used to shape expressions to navigate

over the JSON document. For example, evaluating the JSONPath $.Sched-

uleResource.Schedule.[*].Flight.Departure.AirportCode on the JSON response

shown in Listing 3 yields [”PAD”].

Table 5.2 shows the flat list of input and output parameters extracted from

the JSON response shown in Listing 3. The input parameters shown in Ta-

ble 5.2 have primitive types, which is why a JSONPath is not available.

Table 5.3 shows possible query parts that are investigated in this work. It

has to be shown, which query parts are effective. The table also shows a

JSONPath addressing the respective query part in an OpenAPI specification.

The different query parts are described in the remainder.

Parameter Ids are the identifiers of the parameters. Occasionally, pa-

rameter IDs are abbreviations from which the original meaning of the

parameter can be hardly understood. For example, the API endpoint

graph.facebook.com/v15.0/{aid}/photos has the parameter aid that is an ab-

breviation for album id. This is why parameter ids are generally not sufficient

1https://goessner.net/articles/JsonPath/

95

https://goessner.net/articles/JsonPath/

5 Semantic Annotator

Name Direction JSON Path

origin Input n/a

destination Input n/a

fromDateTime Input n/a

Duration Output $.ScheduleResource.Schedule.[*].TotalJourney.Duration

AirportCode Output $.ScheduleResource.Schedule.[*].Flight.Departure-
.AirportCode

DateTime Output $.ScheduleResource.Schedule.[*].Flight.Departure.-
ScheduledTimeLocal.DateTime

AirportCode Output $.ScheduleResource.Schedule.[*].Flight.Arrival.-
AirportCode

DateTime Output $.ScheduleResource.Schedule.[*].Flight.Arrival.-
ScheduledTimeLocal.DateTime

Name Output $.ScheduleResource.Schedule.[*].Flight.Arrival.Terminal-
.Name

AirlineID Output $.ScheduleResource.Schedule.[*].Flight.OperatingCarrier.-
AirlineID

AircraftCode Output $.ScheduleResource.Schedule.[*].Flight.Equipment.-
AircraftCode

Table 5.2: List of extracted inputs and outputs from the Lufthansa API spec-
ification.

to use for searching relevant semantic types. Such abbreviations are sometimes

written out in the query part Parameter Description.

The query part JSONPath uniquely identifies a parameter in a JSON docu-

ment, e.g. a response message. The last segment of the JSONPath is identical

to the Parameter Id. The intuition behind the JSONPath is that it may

contain contextual information about the parameter under consideration to

further improve the search for semantic types. This can be useful if the Pa-

rameter Id itself cannot be mapped to a semantic type, but another segment

of the JSONPath can. The intuition behind using Operation Id, Operation

Description, and API Description is just to add additional context from the

API specification for the same reason as with the JSONPath.

Table 5.4 shows the query parts for the output parameter AirportCode of

the Lufthansa OpenAPI specification. The query string created from the

96

5.1 Functionality of the Semantic Annotator

Parameter Id

Description The identifier of an input or output parameter.

OpenAPI JSONPath $.paths.[*].[*].parameters.[*].name

Parameter Description

Description The textual description of the input or output parameter.

OpenAPI JSONPath $.paths.[*].[*].parameters.[*].description

JSONPath

Description The JSONPath of an input/output parameter if it is a
complex JSON document and an example is given. Note
that the last segment of the JSONPath is also the Pa-
rameter Id.

OpenAPI JSONPath $.paths.[*].[*].responses.[*].content.-
[’application/json’].example

Operation Id

Description The identifier that encloses the input or output parame-
ter.

OpenAPI JSONPath $.paths.[*].[*].operationId

Operation Description

Description The description of the enclosing operation.

OpenAPI JSONPath $.paths.[*].[*].description

API Description

Description The general textual description of the whole API that
contains the respective input/output.

OpenAPI JSONPath $.info.description

Table 5.3: Query parts

Parameter Id contains the tokens airport and code. The index created for the

semantic type schema:Airport also contains the token airport. Consequently,

the semantic type is correctly given a higher TF-IDF value. On the other

side, the same holds for the irrelevant semantic type schema:MedicalCode

because it shares the token code. This illustrates the difficulty of choosing

index fields and query parts and the pipeline configuration in such a way that

precision and recall are high at the same time. In the following evaluation,

the effectiveness of index fields, query parts, and pipeline configurations is

systematically tested.

97

5 Semantic Annotator

Raw Input Preprocessed Tokens

Parameter Id:

AirportCode airport, code

JSONPath:

$.ScheduleResource.Schedule.[*].-
Flight.Arrival.AirportCode

schedule, flight, code, resource, arrival,
airport

Parameter Description:

n/a n/a

Operation Id:

OperationsSchedulesFromDateTimeBy-
OriginAndDestinationGet

date, schedule, origin, get, destination,
time, operation

Operation Description:

n/a n/a

API Description:

As for now, we do openly share:
General aircraft, airport, airline,
language, country information
Operational information on schedules,
flight status Lounge and seat map
information Lufthansa Cargo order
status and schedules

country, flight, lounge, aircraft,
operational, language, airport, seat,
general, schedule, lufthansa, openly,
now, share, information, airline, cargo,
map, status, order

Table 5.4: Query parts for the output parameter AirportCode of the Lufthansa
API

5.2 Evaluation

In the following section, the effectiveness of the Semantic Annotator is first

evaluated. The source code of the Semantic Annotator and the evaluation

artifacts are publicly available on GitHub2. To this end, two experiments are

performed. In the first experiment, different combinations of index fields and

query parts are tested to determine which combination is most effective. In

the second experiment, different configurations of the preprocessing pipeline

are tested with different tokenizers, stemmers, and sources for synonyms. The

second part of the evaluation is dedicated to the effectiveness of service dis-

2https://github.com/brokerage-as-a-service/baas

98

https://github.com/brokerage-as-a-service/baas

5.2 Evaluation

covery. It is examined whether the effectiveness of the service matchmaker

OWLS-MX3 can be increased if semantic types are used instead of syntactic

types. In short, the following three research questions are examined:

R1 Which combination of index fields and query parts is most effective?

R2 Which configuration of the preprocessing pipeline is most effective?

R3 Do semantic types improve the effectiveness of service discovery performed

by OWLS-MX3?

5.2.1 Effectiveness of Semantic Annotator

The following section shows how the effectiveness can be optimized by sys-

tematically testing different configurations of the Semantic Annotator. The

section is divided into the preparation, the execution of the experiments, and

the results.

Preparation

The data set used for the evaluation is based on real-world API specifications

from RapidAPI and the ontology schema.org, whose semantic types are used

for annotating APIs. Before the actual evaluation, the RapidAPI data set and

the ontology schema.org are described in more detail below. Subsequently,

the Mean Average Precision (MAP) is introduced as a metric to assess the

effectiveness of the Semantic Annotator. To calculate MAP, a ground truth

is required that defines which semantic types are actually relevant for a given

parameter. In the remainder, the manual procedure for creating the ground

truth is described.

RapidAPI Dataset As of November 2024, there are 1,862 public APIs reg-

istered at RapidAPI for which an API specification is available. These 1,862

APIs have 8,516 operations in total. All the operations have 20,212 inputs

and 84,822 outputs in total.

An analysis of the parameters shows that some query parts are not available

for all input and output parameters: Certain query parts are mandatory, e.g.,

the name of a parameter, others are optional. Using certain features of the

specification as query parts is only useful if they are frequently used by the

99

5 Semantic Annotator

68%

22%

5%

3%

2%

Path

FormData

Header

Body

Query

(a) Input parameter locations

65%

27%

3%

4%

1%

DELETE

PATCH

PUT

POST

GET

(b) HTTP methods

Figure 5.2: Dataset characteristics

providers. In the following, it is analyzed which of the query parts are fre-

quently used by APIs found on RapidAPI: All of the 1,986 API specifications

except one have an API Description. All 8,516 operations except for 19 have

an Operation ID (99.8%).

Input parameters of APIs can be encoded in the URL path, as URL query

parameters, in the HTTP request body (e.g., as form data), or in the HTTP

request header [40, 4.8.12.1 Parameter Locations]. The kind of input param-

eter that is most frequently used on RapidAPI is the path parameter (cf.

Figure 5.2a). Only 3% of the input parameters are complex JSON documents

that are transmitted in the HTTP request body. Because a JSONPath is

only available for JSON documents, this means that for the majority of input

parameters, the query part JSONPath is not available.

APIs that implement REST correctly use the HTTP methods POST, GET,

PUT, DELETE as CRUD operations, i.e., create, read, update, delete (cf. Sec-

tion 2.1.2). According to REST, the GET operation is the only operation that

is expected to return payload data. POST, PUT, and DELETE operations

are not expected to return payload data. For this reason, GET operations

are of particular interest for the composition of mashups because GET opera-

tions are used to read values from one API to pass them to another API. The

majority of operations on RapidAPI are GET (cf. Figure 5.2b) operations.

For the API specification on RapidAPI, it is not possible to distinguish if

an operation has no return value or if none has been specified. In fact, for

56.4% of all 8,516 operations, an example response message is given. 95.6% of

all given example JSON response messages are well-formed according to RFC

4627 [35]. As a result, outputs can be extracted from JSON responses for more

than half of the operations on RapidAPI. For all these outputs JSONPaths

100

5.2 Evaluation

are available.

Usually, JSON attributes have a static key name and dynamic values, but

it is also possible to have dynamic key names. In JSON schema [41], these

kinds of object attributes are defined by so-called pattern properties. For

example, the Open Aviation Data Service3 encodes object identifiers into the

JSON object attributes “SYN32”, “SYN33”, etc. In that case, the Semantic

Annotator would match instance-level data with ontology-level data, which is

not desired but cannot be prevented. A sampling check shows that pattern

properties are rarely used.

Global Ontology Schema.org For the evaluation, the existing ontology

schema.org is used to annotate APIs. An existing ontology is intention-

ally used to simulate the terminological heterogeneity between ontology

and API specifications in a realistic BaaS scenario. A self-made ontology

created specifically for this evaluation would have the bias that it is too

tailored to the APIs on RapidAPI. This would then be expressed in exagger-

atedly good values for precision and recall and would therefore reduce validity.

Schema.org is an initiative to create a standard ontology that can be used to

structure data and was originally created by the biggest search engines Google,

Bing, and Yahoo. An open community continuously improves schema.org.

The original purpose of schema.org is to annotate contents on websites with

schema.org concepts to improve the effectiveness of search engines. For its orig-

inal purpose, schema.org is highly adopted in practice [116]. The schema.org

core ontology is the foundation of schema.org, which consists of 607 classes and

861 properties from several domains like Creative Works, Health and Medical,

Places, etc. In this chapter, it is evaluated if schema.org is also suitable to

improve the effectiveness of service discovery.

Metrics A widely accepted measure to assess the effectiveness is the Mean

Average Precision, which is defined as follows:

MAP :=

∑|Q|
r=1AP(r)

|Q|
(5.1)

3https://github.com/brokerage-as-a-service/baas/blob/master/de.upb.dbis.baas/

data/apis/openaviationdata_operational-aviation-data.json

101

https://github.com/brokerage-as-a-service/baas/blob/master/de.upb.dbis.baas/data/apis/openaviationdata_operational-aviation-data.json
https://github.com/brokerage-as-a-service/baas/blob/master/de.upb.dbis.baas/data/apis/openaviationdata_operational-aviation-data.json

5 Semantic Annotator

where Q is the set of requests and the average precision (AP) is defined as:

AP(r) :=

∑n
k=1 P (k)× rel(k)

number of relevant items
(5.2)

where k is the rank, n is the total number of retrieved items, P (k) is the

proportion of true positives from rank 1 to k, and rel(k) is a function equaling

1 if the result at rank k is relevant, zero otherwise.

In order to be able to calculate the Mean Average Precision, it must be

known which semantic types are relevant for a parameter. Therefore, in a

preparatory step, the input and output parameters extracted from the API

specifications are first annotated manually with semantic types to obtain a

ground truth. The proceeding of how the ground truth is created is described

in the following section.

Creating the Ground Truth At first, 100 out of 8,516 operations are selected

at random to reduce the huge data set. All inputs and outputs of these 100

operations are now manually annotated with semantic types from schema.org.

The only tool to find relevant semantic types is the search function that is

provided on the schema.org website. Every single schema.org concept has

its own web page. This website shows the superordinate classes in the class

hierarchy and a descriptive comment on the class. In addition, the web page

contains a table with all properties including the properties inherited from

superclasses. The rdfs:ranges of all properties are given. References to other

classes are hyperlinked, which allows one to navigate through the ontological

structure of schema.org.

The 100 randomly selected operations have 258 inputs and 472 outputs. 124

inputs (48%) and 250 outputs (53%) can be mapped to schema.org concepts.

Table 5.5 shows the manually added annotations for the operation Operations-

SchedulesFromDateTimeByOriginAndDestinationGet of the Lufthansa API

(cf. Listing 2, Listing 3).

Experiment 1: Effective Index Fields and Query Parts

There are two index fields and six query parts. In total, there are

(22 − 1) · (26 − 1) = 189 combinations of index fields and query parts. The

experiment is repeated 189 times with each combination. In each iteration,

semantic types are queried for 258 inputs and 472 outputs. The returned list

102

5.2 Evaluation

Direction Name/JSON Path Syntactic
Type

Semantic
Type

Input origin string Airport

Input destination string Airport

Input fromDateTime string DateTime

Output $.ScheduleResource.Schedule.[*].-
TotalJourney.Duration

string Duration

Output $.ScheduleResource.Schedule.[*].Flight.-
Arrival.AirportCode

string Airport

Output $.ScheduleResource.Schedule.[*].Flight.-
Arrival.ScheduledTimeLocal.DateTime

string DateTime

Output $.ScheduleResource.Schedule.[*].Flight.-
OperatingCarrier.AirlineID

string Airline

Table 5.5: Annotation of parameters

L
ab
el

C
om

m
en
t

P
ar
am

et
er

Id
JS
O
N
P
at
h

P
ar
am

et
er

D
es
cr
.

O
p
er
at
io
n
Id

O
p
er
at
io
n
D
es
cr
.

A
P
I
D
es
cr
.

M
A
P

✓ ✓ .279

✓ ✓ .23

✓ ✓ .092

✓ ✓ .15

✓ ✓ .139

✓ ✓ .092

Table 5.6: Effectiveness of single query parts and index field Label

of ranked semantic types is compared with the ground truth and the MAP is

calculated accordingly.

103

5 Semantic Annotator

L
ab
el

C
om

m
en
t

P
ar
am

et
er

Id
JS
O
N
P
at
h

P
ar
am

et
er

D
es
cr
.

O
p
er
at
io
n
Id

O
p
er
at
io
n
D
es
cr
.

A
P
I
D
es
cr
.

M
A
P

✓ ✓ ✓ ✓ ✓ .377

✓ ✓ ✓ ✓ .374

✓ ✓ ✓ ✓ ✓ ✓ .359

✓ ✓ ✓ ✓ .358

✓ ✓ ✓ ✓ ✓ .355

✓ ✓ ✓ ✓ ✓ .353

✓ ✓ ✓ ✓ .35

✓ ✓ ✓ ✓ .344

✓ ✓ ✓ ✓ ✓ .343

✓ ✓ ✓ ✓ .341

Table 5.7: Top ten index field and query part configurations in terms of mean
average precision (MAP)

Results of Experiment 1

Table 5.6 shows the effectiveness of querying the index field Label with the

individual query parts. Table 5.7 shows the ten best combinations in de-

scending order with respect to MAP. All top ten combinations contain the

index field Label. The index field Comment is rather unimportant. Parameter

Id (MAP=0.279) is the top performing query part. In second place is the

JSONPath with a MAP of 0.23, which is more of a degradation, because the

Parameter Id slightly performs better as the JSONPath, while the Parame-

ter Id is the last segment of the JSONPath. API Description is not part of

any of the top ten configurations. It becomes apparent that the MAP can

be increased by combining query parts instead of using a single query part:

The MAP of the best query part Parameter Id can be increased from 0.279

to 0.377 by adding the JSONPath, Parameter Description and Operation Id.

104

5.2 Evaluation

Experiment 2: Effective Preprocessing Pipeline

In the second experiment, different pipeline configurations are systematically

tested with respect to MAP. A pipeline consists of a Word Delimiter Tokenizer,

a Lowercase Transformation (X), a Stemmer (Y), and a Synonym Dictionary

(Z). For every individual pipeline step X-Z, different algorithms can be used

or can be omitted completely. The configuration space of all possible pipelines

is X × Y × Z. X,Y, Z are defined as follows:

X := {false, true}

Y := {⊥, EnglishMinimalStemmer,EnglishPossessiveStemmer,

PorterStemmer,KStem}

Z := {⊥, ConceptNetSynonyms,ConceptNetRelatedTo}

This implies |X × Y × Z| = 30 configurations of the preprocessing pipeline.

The pipeline is either tested with the Lowercase Transformation or without

(⊥). Furthermore, the pipeline is tested without a stemmer (⊥) or one of the

following stemming algorithms: The English Minimal Stemmer [73], English

Possessive Stemmer, Porter Stemmer [74], and KStem [75] (cf. Section 2.4)

The pipeline is tested without any synonyms (⊥) and with Con-

ceptNet [117] synonyms (conceptNet:/r/Synonyms) and related terms

conceptNet:/r/RelatedTo.

Results of Experiment 2

Table 5.8 shows the results of experiment 2. The best configuration uses

the lowercase transformation and the English Minimal stemmer (MAP=.377).

The lowercase transformation is the most effective part of the pipeline. Using

the lowercase transformation alone without any other technique yields a MAP

of 0.369. The additional gain from the English Minimal stemmer is there-

fore not significant. Adding synonyms or related words from ConceptNet only

degrades the effectiveness of the lowercase transformation. This can be ex-

plained by the fact that adding synonyms to the token stream produces more

false positives than true positives on average.

105

5 Semantic Annotator

L
ow

er
ca
se

E
ng
lis
h
M
in
im
al
St
em

m
er

E
ng
lis
h
P
os
se
ss
iv
e
St
em

m
er

P
or
te
r
St
em

m
er

K
St
em

m

C
on
ce
pt
N
et

Sy
no
ny
m
s

C
on
ce
pt
N
et

R
el
at
ed

T
o

M
A
P

.11

✓ .11

✓ .11

✓ .114

✓ ✓ .114

✓ ✓ .114

✓ .11

✓ ✓ .11

✓ ✓ .11

✓ .114

✓ ✓ .114

✓ ✓ .114

✓ .11

✓ ✓ .11

✓ ✓ .11

✓ .369

✓ ✓ .32

✓ ✓ .335

✓ ✓ .377

✓ ✓ ✓ .332

✓ ✓ ✓ .345

✓ ✓ .369

✓ ✓ ✓ .32

✓ ✓ ✓ .335

✓ ✓ .362

✓ ✓ ✓ .284

✓ ✓ ✓ .352

✓ ✓ .37

✓ ✓ ✓ .322

✓ ✓ ✓ .339

Table 5.8: Performance of various preprocessing pipeline configurations in
terms of mean average precision

106

5.2 Evaluation

5.2.2 Effectiveness of Service Discovery

This section analyzes how the use of syntactic and semantic types affects

the effectiveness of service discovery with OWLS-MX3. OWLS-MX3 is used

for evaluation for the following two reasons: 1. OWLS-MX3 was developed

independently from BaaS by third party authors and the source code of OWLS-

MX3 is not publicly available. By using an independent system, the evaluation

results with respect to effectiveness are more meaningful. 2. OWLS-MX3

comes in different variants, all using different matching techniques. It is thus

possible to understand to what extent the semantic type annotations affect

the various matching techniques. BaaS provides a component for Semantic

Service Discovery, which can be implemented using OWLS-MX3, for example.

The extent to which the effectiveness of the semantic type annotations affects

the effectiveness of the service discovery is only shown here using the example

of OWLS-MX3 to show the general validity of the approach. The section is

divided into the preparation, the execution of the experiments, and the results.

Preparation

The section presents the service matchmaker OWLS-MX3 and the evaluation

environment in detail. Furthermore, the procedure of creating the data set

that is used for evaluation is described. The API specifications from Rapi-

dAPI are in OpenAPI format, but OWLS-MX3 does not support this format.

Therefore, the OpenAPI specifications need to be translated into OWL-S, and

that procedure is presented in this section.

Service Matchmaker OWLS-MX3 To test the effectiveness of service dis-

covery with respect to syntactic and semantic types, the service matchmaker

OWLS-MX3 [20] is used. OWLS-MX3 is a hybrid matchmaker that combines

logic-based, text similarity-based, and ontological structure-based matching

techniques. OWLS-MX3 comes in several variants: OWLS-MX0, OWLS-

MX3 (Structure), OWLS-MX3 TextSim(Cos), OWLS-MX3 (M2), OWLS-

MX3 (M3). Using the different variants of OWLS-MX3, the effects of the

semantic types on individual matching techniques can also be measured. The

different variants are briefly explained below.

107

5 Semantic Annotator

OWLS-M0 is limited to logic-based techniques only. It defines the following

logical matching degrees:

Exact match API S exactly matches request R iff all input types of S are

exactly the same input types of request R and all output types of R are

exactly the same output types as in S: ∀ in : C ∈ InputS ∃ in : C ′ ∈
InputR : C ≡ C ′ ∧ ∀ out : D ∈ OutputS ∃ out : D′ ∈ OutputR : D ≡ D′.

Plug-in match API S plugs into request R iff for all input types of S there is

an input type of R that is equal or more general and for all output types

of R there is an output type of S that is a least specific class (direct

child): ∀ in : C ∈ InputS ∃in : C ′ ∈ InputR : C ′ ⊑ C ∧ ∀out : D ∈
OutputR ∃ out : D′ ∈ OutputS : D′ ∈ LSC(D), where LSC(D) is the set

of least specific classes of D.

Subsumed-by match Request R is subsumed by API S iff for all input types

of S there is an input type of R that is equal or more general and for all

output types of S there is an output type of R that is equivalent or least

generic concept (direct parent). ∀ in : C ∈ InputS ∃ in : C ′ ∈ InputR :

C ′ ⊑ C ∧ ∀ out : D ∈ OutputR ∃ out : D′ ∈ OutputS : D′ ≡ D ∨ D′ ∈
LGC(D), where LGC(D) is the set of least generic concepts of D.

Logical Fail OWLS-MX returns a logical fail iff none of the other rules applies.

OWLS-MX3 TextSim (Cos) uses string-based techniques only. To deter-

mine string similarity, text documents are first derived from the API and

request specifications. On one hand, these text documents contain the names

of the semantic types of the input parameters and the names of all super-

classes (transitive). The same is done for the output types. In addition to the

type names, the textual description owls:serviceDescription of the API is

included. Three separate TF-IDF scores are calculated for inputs, outputs,

and the API description. The three single TF-IDF scores are then aggregated

by computing their average.

OWLS-MX3 (Structure) This OWLS-MX3 variant uses only the ontology

structure-based matching technique proposed by [118] which is defined as fol-

lows:

108

5.2 Evaluation

simdist(CR, CS) :=


eαl · eβh−e−βh

eβh+e−βh CR ̸= CS

1 CR = CS

where l is the distance of the shortest path between class CR and class

CS within their ontological structure. The variable h is the distance to their

direct common subsumer class. The factors α and β are weights for l and h

respectively. In OWLS-MX3, these factors are set to α = 0.2 and β = 0.6,

which was determined in previous experiments performed by the authors of

OWLS-MX3.

To compute the similarity of whole sets of input types, the following formula

is used:

simC(A,B) :=
1

|A|
·
∑
a∈A

max{simdist(a, b) | b ∈ B}

where A is the set of input types of the API S and B is the set of input

types of request R. Accordingly, simC(A,B) is computed for the set of output

types. Thus, the overall structural similarity simC of two sets of classes A,B

is the average of the maximum distance from any class a in set A to any class

b in set B.

Furthermore, the structural similarity metric also takes the number of inputs

and outputs into account:

simM (A,B) := 1− ||A| − |B||
max{|A|, |B|}

These two similarity values simC(A,B) and simM (A,B) are aggregated

separately for inputs and output types by using the following formulas:

simS,in(R,S) := γ · simC(Sin, Rin) + (1− γ) · simM (Sin, Rin)

simS,out(R,S) := γ · simC(Sout, Rout) + (1− γ) · simM (Sout, Rout)

In OWLS-MX3, γ is set to 0.5, which was determined in previous experiments

performed by the authors of OWLS-MX3.

109

5 Semantic Annotator

This finally gives the overall structural similarity:

simstruct(R,S) :=
simS,in(R,S) + simS,out(R,S)

2

OWLS-MX2 (M3) OWLS-MX2 is the predecessor of OWLS-MX3. OWLS-

MX2 uses a fixed set of logic-based (OWLS-MX0) and text similarity-based

matching techniques (OWLS-MX3 TextSim (Cos)).

OWLS-MX3 (M3) OWLS-MX3 combines logic-based (OWLS-MX0), text

similarity-based (OWLS-MX3 TextSim (Cos)), and ontological-structure

matching techniques (OWLS-MX3 (Structure)). The output score values of

the single matching techniques are encoded as a feature vector. A State Vector

Machine (SVM) classifier is trained on a training set4. This classifier is used

to determine if an API matches a request.

Semantic Service Matchmaker Evaluation Environment SME2 To assess

the effectiveness of service discovery, the evaluation proceeding of the Semantic

Service Selection (S3) contest [119] is adopted in this dissertation. While the

goal of the S3 contest is to compare the retrieval performance of various service

matchmakers, the goal of this evaluation is to investigate whether a single

matchmaker, i.e., OWLS-MX3 is more efficient when semantic types are used.

The S3 contest uses the Semantic Service Matchmaker Evaluation Environ-

ment (SME2) to assess the performance of service matchmakers. The SME2

tool evaluates different measures, i.e., the retrieval performance, query re-

sponse time, memory consumption, etc. The retrieval performance is the

focus of this thesis, as it allows us to evaluate the impact of using semantic

types on the effectiveness of service discovery. To evaluate the retrieval perfor-

mance of the OWLS-MX3 service matchmaker, the mean average precision (cf.

Equation 5.1) is used. Mean average precision is a widely accepted measure

to assess the retrieval performance of service matchmakers.

SME2 requires a data set, a so-called test collection, which is used for the

experiments. A test collection comprises a set of requests, a set of offers, and

a binary relevance set that defines whether a specific offer is relevant to a

request. The test collection used in the S3 contest is the OWL-TC5.

4The training set is a 5% fraction of the OWLS-TC.
5https://github.com/kmi/sws-test-collections

110

https://github.com/kmi/sws-test-collections

5.2 Evaluation

Figure 5.3: SME2 user interface

Figure 5.3 shows the user interface of the SME2 tool. There are two tabs

at the top. The tab Configuration is to configure the evaluation experiment.

The test collection used for the evaluation experiment can be selected from a

drop-down menu. The table below shows some characteristics of the selected

test collection. The left part of the Matchmaker Selection shows the available

service matchmakers. With the aid of the arrow buttons, service matchmakers

can be selected or deselected for evaluation. Evaluation metrics can be selected

in the section Evaluation. The start button initializes the evaluation process.

A run of SME2 matches all requests with all offers pairwise.

RapidAPI Test Collection The OWL-TC test collection cannot be used in

the course of this evaluation because it does not contain any offers with purely

syntactic types. Therefore, the evaluation is conducted on the basis of real-

world API specifications from RapidAPI. For experiment 1 and 2, 100 op-

erations have been randomly sampled from all the 9,658 operations that are

available on RapidAPI. On the basis of these 100 operations, two individual

sets of offers are created: These sets contain 100 offers with 1 operation, cor-

111

5 Semantic Annotator

Request: distance

Signature: (schema : GeoCoordinates, schema : GeoCoordinates) → schema :
Distance

Description: Returns the distance between two geographic coordinates.

Request: flight

Signature: (schema : Airport, schema : Airport) → schema : Flight

Description: Returns flights connecting a departure airport and an arrival airport.

Request: movie

Signature: schema : Person → schema : Movie

Description: Returns the movies the given person (actor) plays a character in.

Request: music

Signature: schema : MusicGroup → schema : MusicAlbum

Description: Returns albums of a given music group.

Request: sports

Signature: schema : SportsTeam → schema : SportsEvent

Description: Returns matches of a given sports team.

Table 5.9: Five OWL-S requests used for the evaluation

responding to the 100 operations randomly selected from RapidAPI. In the

first set O, parameters have syntactic types like in the original specification

from RapidAPI. In the second set O′, parameters have semantic types from

schema.org according to the ground truth that was created before.

The set of requests R comprises five requests. Every request contains exactly

one operation whose parameters have semantic types from schema.org. These

requests are shown in Table 5.9. For every request-offer pair, the relevance

set contains a Boolean value that indicates whether the offer is relevant to the

request.

OpenAPI to OWL-S Transformation The offers from RapidAPI are spec-

ified in OpenAPI format, but OpenAPI is not supported by OWLS-MX3.

Thus, the offers have to be syntactically translated from OpenAPI to OWL-S

which is supported by OWLS-MX3. This section describes how the contents

of the OpenAPI specifications are translated into OWL-S. Figure 2.3 and

Figure 2.5 show the parts of OpenAPI and OWL-S that are affected by the

transformation.

112

5.2 Evaluation

In OWL-S, a service is represented by an owls:Service. An owls:Service

is presented by a owls:ServiceProfile which has an owls:Process. An

owls:AtomicProcess is an owls:Process that executes in a single step and

is directly invokable as it corresponds with the actual operation of the service

implementation. An owls:AtomicProcess has owls:Input and owls:Output

parameters. The parameter type of an owls:Parameter is the URL of a

semantic type.

The transformation maps oas:OpenAPI to owls:Service and

oas:Operations onto owls:AtomicProcesses. Operations in OpenAPI

specifications have primitive data types. These primitive data types are

translated into classes so they can be used in an OWL-S specification. The

classes created from primitive types do not have any relation to other classes.

oas:Parameters with simple types are mapped to an owls:Input and cor-

responding semantic type. Complex JSON message types are decomposed

into a flat list of primitive-typed parameters. For each of these primitive

typed attributes, an owls:Input or owls:Output is created. This approach

is related to those presented in [120] and [16]. Listing 4 shows an excerpt

from the OWL-S specification that is the result of transforming the OpenAPI

specification shown in Listing 2.

The second test collection is identical to the first one, except that the syn-

tactic types are replaced by semantic types according to the ground truth.

To translate the syntactic to semantic types, the ground truth from the first

two experiments is used. Those parameters that could not be mapped to a

corresponding semantic type keep their syntactic type.

Listing 4 shows an exemplary OWL-S specification for an offer from Rap-

idAPI. In the first set of offers, the parameter origin has the data type

oas:string. In the second set, the data type is replaced by the semantic

type schema:Airport6.

Experiment 3: Syntactic Types Versus Semantic Types

OWLS-MX3 comes in five variants, there are two sets of offers O and O′,

one set of requests R, and one relevance set. These can be combined in 10

different ways, resulting in 10 variations of the experiment. Table 5.10 shows

the configuration of all 10 variations.

6During evaluation runs of SME2, all ontologies are served at and read from the local host

113

5 Semantic Annotator

1 <process:AtomicProcess

rdf:ID="OperationsSchedulesFromDateTimeByOriginAndDestinationGet">↪→

2 <service:describes rdf:resource="#Service" />

3 <process:hasInput rdf:resource="#origin" />

4 <process:hasInput rdf:resource="#destination" />

5 <process:hasInput rdf:resource="#fromDateTime" />

6 <process:hasOutput rdf:resource="#Duration" />

7 <process:hasOutput rdf:resource="#AirportCode" />

8 <process:Input rdf:ID="origin">

9 <process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">↪→

10 http://127.0.0.1/ontology/openapi.owl#string

11 </process:parameterType>

12 <rdfs:label>origin</rdfs:label>

13 </process:Input>

14 <process:Output rdf:ID="AirportCode">

15 <process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">↪→

16 http://127.0.0.1/ontology/openapi.owl#string

17 </process:parameterType>

18 <rdfs:label>AirportCode</rdfs:label>

19 </process:Output>

20 </process:AtomicProcess>

Listing 4: Lufthansa API in OWL-S and with syntactic types

OWLS-MX3 Variant String Structure Logic Types

1 OWLS-MX0 ✓ Syntactic

2 OWLS-MX0 ✓ Semantic

3 OWLS-MX3 TextSim (Cos) ✓ Syntactic

4 OWLS-MX3 TextSim (Cos) ✓ Semantic

5 OWLS-MX3 (Structure) ✓ Syntactic

6 OWLS-MX3 (Structure) ✓ Semantic

7 OWLS-MX2 (M3) ✓ ✓ ✓ Syntactic

8 OWLS-MX2 (M3) ✓ ✓ ✓ Semantic

9 OWLS-MX3 (M3) ✓ ✓ ✓ Syntactic

10 OWLS-MX3 (M3) ✓ ✓ ✓ Semantic

Table 5.10: OWLS-MX experiment configurations categorized according the
classification scheme

114

5.3 Discussion

0.24

0.429

0.27

0.11

0.424

0.308

0.614 0.62
0.69

0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

OWLS-M0 OWLS-MX2 (M3) OWLS-MX3 (M3) OWLS-MX3
(Structure)

OWLS-MX TextSim
(Cos)

M
ea

n
 A

ve
ra

ge
 P

re
ci

si
o

n

seman�c typessyntac�c types

Figure 5.4: Comparison of OWLS-MX3’s mean average precision

Results of Experiment 3

Figure 5.4 shows the effectiveness achieved in the 10 experiment variations.

The y-axis shows the mean average precision (MAP) for each experiment.

In the first experiment with syntactic types, the variant OWLS-MX2 (M3)

exhibits the highest MAP (0.429). In contrast, variant OWLS-MX3 (Struc-

ture) exhibits the best performance with the operations associated with the

semantic types from the global ontology (MAP = 0.69). This shows that the

effectiveness of service discovery can be improved by 61% by using semantic

types from a global ontology.

5.3 Discussion

Existing approaches for API annotation use only ontological classes, but no

properties. In terms of this dissertation, it was also investigated if it is useful

to use properties for annotating in addition to classes. Using the example of

the operation OperationSchedulesFromDateTimeByOriginAndDestinationGet

of the Lufthansa API and the ontology schema.org, the semantics of param-

eters can be described much more precisely if properties are also used for

annotating. This operation returns flights between a departure airport and an

arrival airport. The parameter for the departure airport is named origin and

the parameter for the arrival airport is named destination. If parameters would

only be annotated with a single ontological class from the ontology schema.org,

both parameters would be annotated with the class schema:Airport. From

machine which is why the URLs of the ontologies start with the IP address 127.0.0.1.

115

5 Semantic Annotator

the class annotations alone one cannot differentiate between both parameters.

However, it may be crucial to differentiate between both parameters when

they need to be wired in a mashup: A requester who creates a mashup of

the Lufthansa and the Hertz rental car service must be able to recognize the

difference between origin and destination because it is destination that must

be wired with the input pickupLocation of the Hertz service.

Such differentiation is possible by annotating origin with the properties

schema:departureAirport and destination with schema:arrivalAirport

instead of annotating both with the class schema:Airport. The problem

with using properties for annotating is that properties are ambiguous when

their rdfs:domains or rdfs:ranges span multiple classes as is the case with

schema.org.

To illustrate the problem, suppose that a triple with the predicate

schema:provider is to be used to annotate a parameter airlineID in that sense

that an airline is a provider of flights. The domain of schema:provider is

CreativeWork, Invoice, ParcelDelivery, Reservation, Service, and Trip.

Requesters that search for providers of Flights should not retrieve providers

of CreativeWorks. To avoid such ambiguities and false positives matches, the

specific domain and range must be given explicitly in the annotating triple.

Flights are also contained in the domain, because Flight is a subclass

of Trip. The domain of schema:provider is Organization and Person.

Airlines are also included in the range, because Airline is a subclass of

Organization. The domains and ranges of schema:provider are shown in

Figure 5.5.

Although one can capture the semantics much more precisely with triples,

this approach is abandoned for the following reasons:

Incompatibility with Existing Service Matchmakers Existing service match-

makers like OWLS-MX3 do not support the annotation with triples and there-

fore cannot take advantage of the additional information. Although it would

be possible to develop new approaches that can use the information from

triples, this would require new similarity measures for triples, for example.

Such new approaches also contradict the originally formulated requirement in

Section 1.3.1 that BaaS should be upward compatible.

116

5.4 Summary

Figure 5.5: Domain and range of schema:provider

High Annotation Effort Annotating with triples is significantly more com-

plex for the requesters and providers than annotating with a single ontological

class since instead of one ontological class, three ontological concepts need to

be used. Creating valid triples adds further overhead, since it always has to be

checked whether the subject is in the domain of the predicate and the object

is in its range.

Little Gain of Effectiveness Likewise, a precise description is not always de-

sirable: The precise description can be helpful when it comes to being able to

distinguish between a departureAirport and an arrivalAirport. However,

since the various APIs and ontologies are so heterogeneous in terms of termi-

nology, in practice it is rather unlikely that precise search results will be found

in service discovery at such a fine-grained level.

5.4 Summary

In this chapter, the Semantic Annotator of the BaaS approach is presented.

The BaaS approach first indexes the semantic types of the global ontology.

Search queries are constructed from the API specifications with which the

index is searched. As shown in the evaluation, the Semantic Annotator is

most effective when indexing only the names of the semantic types and using

the parameter names, the parameter description, and the operation name for

117

5 Semantic Annotator

building the search queries. The lowercase transformation is proven to be the

most effective matching technique. Stemming and adding synonyms only is

decreasing effectiveness. Furthermore, it is shown that the effectiveness of

the service discovery can be increased by 61% using the service matchmaker

OWLS-MX3 when semantic instead of syntactic types are used.

118

6 API Protocol Miner

When requesters integrate third-party APIs into mashups, they need to

know their protocols such that they are able to call the operations in the

right order. API specification languages like OpenAPI are not capable to

specify API protocols. Instead, there are more sophisticated languages like

OWL-S [47], WS-BPEL [100], and BPMN [121] that can describe complex

control flows consisting of sequences, branches, loops, and other control

flow constructs. In practice, API protocol specifications for REST APIs

are virtually not existent at all. On the other hand, since REST APIs are

usually black boxes for requesters, the requesters rely on the API protocols to

integrate the APIs correctly into their mashups. Urging the API providers to

specify API protocols is problematic because creating API protocols manually

is time-consuming. Therefore, automatic assistance systems are desired to

support the providers.

In general, there are two approaches for deriving API protocols semi-

automatic: via static or dynamic analysis. Static analysis reads the API

specification and discovers dependencies between operations. Dynamic

analysis involves calling the REST API while it is running. This chapter

compares the advantages and disadvantages of both approaches with each

other.

The BaaS approach uses dynamic analysis to discover API protocols from

call-logs using process mining [122, 123]. Every time an application calls an

operation of an API, it leaves traces in a call-log. A call-log records the

entire HTTP/S traffic between any client applications and an API. Recurring

patterns of clients’ usage behavior make it possible to draw conclusions about

the underlying API protocol.

119

6 API Protocol Miner

On the one hand there are the control flow constructs that can be described

in languages like [47], WS-BPEL [100], and BPMN [121]. On the other side,

there are process mining algorithms that are only capable to discover certain

control flow constructs. In this chapter, the controls flow constructs needed to

describe API protocols in OWL-S [47], WS-BPEL [100], and BPMN [121] are

related to those control flow constructs that can be discovered by the process

mining algorithms Alpha Miner [81], Heuristics Miner [124], and Inductive

Miner [82]. All three algorithms are described in details in Section 2.5.

Under these restrictions of process mining, the functionality of the BaaS

API Protocol Miner is introduced. Its main feature is to reprocess the

call-logs so they can be used with process mining. This is required because

there is a mismatch between the information provided through the call-log

and the information that is required by process mining.

In the evaluation, it is shown which of the process mining algorithms Alpha

Miner, Inductive Miner, and Heuristics Miner is best suited to discover API

protocols from call-logs. Lastly, it is investigated how the quality of the

mined API protocols compares to manually created API protocols.

This chapter is structured as follows: First, a real example is introduced,

which is used in this chapter as a running example. Then the advantages and

disadvantages of static or dynamic analysis are discussed. The control flow

constructs of the specifications languages OWL-S, WS-BPEL, and BPMN are

classified and compared with the control flow constructs that can be discovered

using Process Mining. Afterward, the functionality of the API Protocol Miner

is presented and in particular how call-logs can be prepared in such a way that

they can be used for process mining. In the evaluation, it is shown that the

Heuristics Miner is best suited for deriving API protocols from call-logs, as

these API protocols are close to what a human would specify. This shows that

process mining can be used to generate high-quality API protocols that require

little post-processing from the API provider and thus save him a significant

amount of time.

120

6.1 Running Example

6.1 Running Example

The SIMPHERA API is used as a running example in this chapter and for

evaluation. SIMPHERA1 is a web-based, highly scalable solution for the

simulation and validation of autonomous driving functions from the company

dSPACE. Users of SIMPHERA can use an OpenAPI to integrate SIMPHERA

into their development processes of their autonomous driving functions.

SIMPHERA can be deployed on various cloud providers such as Azure

or AWS and runs in a Kubernetes2 cluster. Nginx3 is used as an ingress

controller which accepts incoming traffic and load balances it to the internal

components. By default, nginx creates call-logs for the incoming traffic.

This shows that call-logs can be generated with little effort without making

invasive changes to the application. Used in a BaaS scenario, SIMPHERA

would also be operated behind a BaaS API gateway. In that case, the nginx

ingress controller would be deployed on the API gateway.

The SIMPHERA API uses different URIs for different resources and uses

standard HTTP operations. HATEOAS (cf. Section 2.1.1) is not supported

which is the reason why the SIMPHERA API is on the REST maturity level

2 (cf. Section 2.1.2). The API is thus representative of the large class of

REST APIs in which API protocols are not specified in any way. Expanding

the API specification to include API protocols represents real added value here.

The order in which operations appear in the OpenAPI specification is up

to the API provider and is quasi-random and does not reflect any information

about the dependencies of the operations. Thus, a requester who wants to

use the SIMPHERA API cannot know from the OpenAPI specification alone

in which order to call its operations.

1https://www.simphera.com/
2https://kubernetes.io/
3https://nginx.com/

121

https://www.simphera.com/
https://kubernetes.io/
https://nginx.com/

6 API Protocol Miner

Figure 6.1: Logical dependencies between the methods POST, GET, PUT,
PATCH, and DELETE

6.2 Static Versus Dynamic Analysis

In the context of this thesis, static analysis refers to the analysis of an (Open)

API specification without actually calling the API, while dynamic analysis in-

volves analyzing a REST API while it is running. Static and dynamic analysis

can be used to derive the control and data flow between operations. In the

remaining section, the advantages and disadvantages of static and dynamic

analysis for deriving API protocols are analyzed.

6.2.1 Static Analysis

REST APIs use the POST, GET, PUT/PATCH, and DELETE methods to

create, read, update, and delete resources. These CRUD (create, read, update,

delete) operations have a logical call sequence: A resource can only be read,

updated, or deleted after it has been created. Only once, a resource can be

created or deleted. After a resource has been deleted, no further operations

can be performed on it. A corresponding API protocol is shown in Figure 6.1.

Dependencies can also be derived from the URLs of REST APIs: URLs

are structured hierarchically and this results in a logical sequence of

dependencies. However, this method is not reliable because not all parame-

ters are necessarily reflected in the URL, but are sent e.g. in the message body.

Bertolino et al. [13] present a more advanced information flow analysis for

WSDL specifications. If Bertolino’s approach is transferred to REST APIs,

then there is a dependency between two operations a and b if a produces an

output that b consumes. According to Bertolino et al. the output type of

122

6.2 Static Versus Dynamic Analysis

1 paths:

2 "operation1":

3 get:

4 responses:

5 '200':

6 content:

7 application/json:

8 schema:

9 "$ref": "#/components/schemas/MySchema"

10 "operation2":

11 get:

12 requestBody:

13 content:

14 application/json:

15 schema:

16 "$ref": "#/components/schemas/MySchema"

Listing 5: Shared JSON schema between operations

operation a and the input type of operation b need to be identical to detect a

dependency between a and b. Transferred to REST APIs that means that the

requests and responses of the operations must share the same JSON schema.

Listing 5 illustrates the idea: The response of operation1 and the request of

operation2 share the same JSON schema (cf. lines 9 and 16), which is why

they are dependent. This pattern cannot be found either with SIMPHERA

or with any other APIs on RapidAPI, because complex types are generally

rarely defined for input parameters and the set of input types and output

types are always disjoint.

A refinement of the method does not consider entire JSON schemas, but

the individual attributes of the JSON messages. Thus, there would be a

dependency between operation a and b if the output message of a has an

attribute of the same name as an input of b. This pattern actually appears

in the SIMPHERA API, but there are some problems with this approach:

As soon as the names of the input and output parameters are not exactly

the same, a dependency can no longer be created using this method. For

example, some SIMPHERA operations use the parameter name dataSetId

while others use the name datasetId. The different spellings can be normalized

manually. In the above case, one could normalize the parameters dataSetId

and datasetId to simply datasetId using the lowercase transformation.

123

6 API Protocol Miner

1 paths:

2 "/api/simphera/projects":

3 get:

4 responses:

5 '200':

6 description: Success

7 content:

8 application/json:

9 schema:

10 type: array

11 items:

12 type: object

13 properties:

14 id:

15 type: string

16 description:

17 type: string

18 "/api/simphera/projects/{projectId}":

19 get:

20 parameters:

21 - name: projectId

22 in: path

23 schema:

24 type: string

Listing 6: Shared inputs and outputs between operations

Listing 6 illustrates the principle on the basis of two SIMPHERA opera-

tions: The attribute id (cf. line 14) of the response message of the operation

GET /api/simphera/projects needs to be normalized to projectId to make

the data flow explicit. Figure 6.2 shows the resulting information flow

dependencies of the SIMPHERA API operations. Every node represents

an operation. Every edge represents the data flow of a single parameter.

The resulting graph is very dense. The reason for this is that almost all

SIMPHERA operations require the projectId as an input parameter and there

are a lot of operations that return the projectId in their response messages.

In principle, it is possible to filter out certain parameters for the static anal-

ysis in order to simplify the analysis, such as the projectID in the SIMPHERA

example. However, this approach hardly scales because the filtering is specific

to each individual API and is therefore very time-consuming.

In addition, manual normalization of the parameter names is also very

124

6.2 Static Versus Dynamic Analysis

Figure 6.2: SIMPHERA API protocol produced by static analysis

time-consuming. REST APIs may have hundreds of parameters that need to

be checked individually. A detailed understanding of the respective API is

required to normalize the parameters. Otherwise, false dependencies between

the operations can be modeled or actual dependencies can be missed at all. At

most the API provider himself has a deep understanding of an API. However,

it is impractical for service providers to perform normalization of their API

and static information flow analysis to generate API protocol specifications

because the process is too laborious.

125

6 API Protocol Miner

6.2.2 Dynamic Analysis

Dynamic analysis considers the runtime behavior of an API. One way to per-

form dynamic analysis is through process mining. The input for the dynamic

analysis is call-logs. Dynamic analysis has the advantage over static analysis

in that parameter normalization is not required. However, the dynamic analy-

sis requires that there is a client application implemented that uses the REST

API whose API protocol is to be mined.

Process mining can only be used to discover process models if there are

recurring patterns of behavior appearing in the call-logs. In practice, call-logs

contain noise, i.e., random behavior. Noise is a disturbing source for process

mining and may cause erroneous process models to be extracted. There are

several sources of noise as explained in the following paragraphs.

Irregular Human Behavior REST APIs are used by computers or human

users likewise. When the REST API is invoked via a graphical user interface,

the call-log entries also reflect the behavior of the user. By using the user

interface, certain activities can be carried out. Users can arbitrarily interrupt

their current activity and continue with another activity. Consequently, the

corresponding call-logs are very irregular and are less suitable for process min-

ing. Conversely, when the API is called in a computer program, the calls are

much more regular and generally better suited to process mining.

Deep Links Deep links allow you jumping directly to certain states of the

client application while omitting the intermediate steps going to that state.

Suppose the client application is a web application that runs in a web browser.

Bookmarks can be created for individual dialogs in the web application. By

opening the bookmark later, they are able to return to the dialog and appli-

cation state. The moment when users open a bookmark marks a new process

instance to be started. As a result, process mining would wrongfully recognize

operation calls resulting from deep links as starting events.

Caching A cache is a fast buffer storage that prevents repeated read access

on a slower medium of an output result. In the context of client-server

architectures, the client caches HTTP responses in-memory on the client

device. If the client calls the same operation with the same parameter

126

6.2 Static Versus Dynamic Analysis

Figure 6.3: Interference of two process instances accessing the SIMPHERA
API

values twice and it already has the response in the cache, the client reads

the response from the cache instead of calling the operation again. Caching

increases the performance of the client application: Every HTTP connection

is afflicted with latency caused by different factors such as the bandwidth of

the transmission medium, routing, storage delays, etc. This overhead can be

eliminated when the response is read from local cache. In this case, only the

client is aware of the operation call and no HTTP request is sent to the web

server so that the call does not leave an event entry in a call-log on its way

from the client application to the REST API.

Now that the sources of noise have been identified, the task is to eliminate

the noise from call-logs. To reduce noise, it is essential that the calling

process can be clearly assigned to each call in the call-log. Web servers are

127

6 API Protocol Miner

capable to processes calls of multiple process instances concurrently. This

means that calls from different processes may interfere and this interference

generally occurs at random. Thus, two consecutive entries in the call-log are

not necessarily created by the same process. To give an example, Figure 6.3

shows two interfering sessions that access the SIMPHERA API at the same

time. The entries in the call-log are created at the time the requests arrive

at the API. If the individual calls are not assigned to their calling process

instance, it would look as if all calls are executed by the same process. In

that case, process mining would try to generalize random behavior which

would be useless.

To give an example, if process1 and process2 shown in Fig-

ure 6.3 cannot be distinguished in the call-log, process min-

ing would wrongfully discover a dependency between GET

/api/v{version}/projects/{projectId}/testenvironments and POST

/api/v{version}/projects/{projectId}/suites which in reality does not

exist.

Another disadvantage of dynamic analysis is that if applications use the

API inefficiently, this will be reflected in the mined API protocols and may

be adopted in the next mashups by future requesters. Furthermore, the dy-

namic analysis can only consider the behavior that can be seen in the call-logs.

Consequently, only partial API protocols can be discovered. In literature, this

issue is also referenced to as incomplete behavior [125]. Insofar as the appli-

cations do not use the full range of API operations, this unused part of the

API protocol cannot be mined using process mining. As a result, the API

logs mined using Process Mining are usually incomplete. Consequently, API

protocols discovered through process mining are only approximations of the

actual API protocols. The approximate API protocols could wrongfully for-

bid or allow certain operation call sequences. Wrongfully forbidden sequences

could unnecessarily limit requesters when they use an API. Wrongfully al-

lowed sequences lead to errors during the execution of the mashup. Table 6.1

compares the advantages and disadvantages of static and dynamic analysis.

128

6.3 Discoverable Control Flow Constructs through Process Mining

Static Analysis Dynamic Analysis

Complete API specifications are re-
quired and generally available

Existing applications are required and
generally available

High effort to normalize parameter
names

Low effort to gain call-logs

Covers all operations from specification Covers only operations occurring in
call-log

Table 6.1: Comparison between static and dynamic analysis of REST APIs

6.3 Discoverable Control Flow Constructs through

Process Mining

API protocols may have complex control flows with sequences, branches, loops,

etc. Specification languages that are capable to describe API protocols like

OWL-S contain control flow constructs to specify complex control flows. On

the other hand, the number of control flow constructs that process mining

algorithms are able to discover is limited. This section opposes which kind of

control flow constructs are present in specification languages and which can be

discovered through process mining to identify the limitations of mining API

protocols from call-logs.

6.3.1 Control Flow Constructs in Specification Languages

This section analyzes the specification languages OWL-S, WS-BPEL, BPMN

regarding their control flow constructs. Following that, the differences and

commonalities of the control flow constructs from different languages are an-

alyzed and then generalized.

Control Flow Constructs in OWL-S

This paragraph describes how to specify API protocols in OWL-S. Fig-

ure 6.4 shows the language constructs of OWL-S that are relevant for spec-

ifying API protocols: owls:AtomicProcesses execute in a single step and

are directly invocable as they correspond with the actual API operations.

owls:CompositeProcesses are abstractions of multi-step processes that have

129

6 API Protocol Miner

Figure 6.4: Control flow constructs in OWL-S

a complex control flow. Other processes can be referenced from the inner sub-

processes of a owls:CompositeProcess using the owls:Perform control flow

construct.

The abstract owls:ControlConstruct may have one or more nested com-

ponents, i.e., subordinate owls:ControlConstructs. An owls:Sequence

executes a list of components in a certain order. An owls:Split exe-

cutes its components in several branches of control flows concurrently. An

owls:Split-Join joins concurrent control flows via barrier synchronization

when all its components have been completed. An owls:Any-Order ex-

ecutes components in an unspecified order sequentially, but not concur-

130

6.3 Discoverable Control Flow Constructs through Process Mining

rently. The execution of all components is required. An owls:Choice

executes exactly one of its components. An owls:If-Then-Else evalu-

ates the condition ifCondition. If the condition evaluates to true, the

owls:ControlConstruct then is executed, otherwise the ControlConstruct

else. An owls:If-Then-Else has exactly one ifCondition, exactly one then

statement, and at most one else statement. An owls:Repeat-While executes

the owls:ControlConstruct whileProcess as long as a certain condition eval-

uates to true. An owls:Repeat-Until executes a owls:ControlConstruct

untilProcess until a condition evaluates to true.

Control Flow Constructs in WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) is an

executable language to specify actions with web services within business pro-

cesses. In WS-BPEL, operations of web services are specified in WSDL.

On one hand, WS-BPEL has basic activities like a variable assignment

(bpel:assign), function calls (bpel:invoke), etc. On the other hand, WS-

BPEL defines structured programming constructions as shown in Figure 6.5:

A bpel:sequence activity contains one or more activities that are performed

sequentially. A bpel:if activity consists of an ordered list of one or more con-

ditional branches. The first branch whose condition evaluates to true is taken.

A bpel:while activity executes a contained activity while a condition holds.

A bpel:repeatUntil activity executes a contained activity until a condition

holds. A bpel:foreach activity executes a contained activity for a certain

number of times concurrently or sequentially. A bpel:flow activity executes

activities concurrently. A bpel:pick activity waits for the occurrence of ex-

actly one event from a set of events, then executes the activity associated with

that event.

Control Flow Constructs in BPMN

BPMN is a language to describe business process models. Figure 6.6 shows

the BPMN ontology. A bpmn:Task is a named, single unit of work, e.g.,

the call of an operation. A bpmn:ServiceTask is a specialized bpmn:Task

that references a bpmn:Operation of a service/API. A bpmn:SequenceFlow

defines the order of bpmn:FlowElements. A bpmn:ExclusiveGateway is used

to create alternative flows where only one path can be taken. All conditions of

131

6 API Protocol Miner

Figure 6.5: Control flow constructs in WS-BPEL

the outgoing paths are evaluated in order. A bpmn:InclusiveGateway is used

to create alternative flows where all paths are evaluated and may be taken.

The order in which the conditions of the outgoing path are evaluated is not

specified. A bpmn:ParallelGateway is used to create flows that are taken in

parallel.

Classifying Control Flow Constructs

In this section, the different control flow constructs from OWL-S, WS-BPEL,

and BPMN are arranged in a classification scheme. The classification scheme

defines seven abstract control flow constructs: A Sequence executes all con-

tained activities sequentially in a certain order. A Any-Order executes all

contained activities sequentially in any order. A Branch executes exactly

one activity from a set of multiple possible activities. The further path of

the control flow depends on the choice of the user. A Conditional Branch

132

6.3 Discoverable Control Flow Constructs through Process Mining

Figure 6.6: Control flow constructs in BPMN

consists of an ordered set of one or more branches. The further path of the

control flow depends on an internal condition. The conditions of the branches

are evaluated in order until a condition evaluates to true. The first branch

whose condition evaluates to true is taken. An optional default branch may

be taken if none condition evaluates to true. A Conditional Multi-Choice

Branch is the same as the Conditional Branch, except that all conditions

of the branches are evaluated and every branch whose condition evaluates to

true is taken. A Loop is the repeated execution of an activity. A Fork is the

parallel execution of activities. Table 6.2 shows the assignment of OWL-S,

133

6 API Protocol Miner

Abstract Control Flow
Construct

OWL-S WS-BPEL BPMN

Sequence Sequence Sequence SequenceFlow

Any-Order Any-Order Flow n/a

Branch Choice Pick
Event-based
Gateways

Conditional Branch If-Then-Else If
ExclusiveGate-
way

Conditional Multi-Choice
Branch

n/a Sequence + If
InclusiveGate-
way

Loop
Repeat-While,
Repeat-Until

While,
RepeatUntil,
ForEach

(SequenceFlows
looping up/-
downstream)

Fork Split, Split-Join Flow, ForEach
ParallelGate-
way

Table 6.2: Classifying OWL-S, WS-BPEL, and BPMN control flow constructs

WS-BPEL, and BPMN control flow constructs into the classification scheme4.

It should be noted that some control flow constructs are not present in some

languages but can be simulated with other control flow constructs. A Con-

ditional Multi-Choice Branch can be simulated by a sequence of Conditional

Branches.

6.3.2 Relating Languages and Process Mining Algorithms

Process mining algorithms produce different kinds of output models. The

Alpha Miner produces Petri nets, the Heuristic Miner produces causal nets,

and the Inductive Miner produces process trees. Petri nets and causal nets are

low-level process models. Control flow constructs are only implicitly visible

and result from certain patterns of Places, Transitions, and Arcs. Different

output models complicate a comparison with the control flow constructs of the

4The control flow construct bpel:foreach is classified as Loop and Fork, depending on
whether the parallel flag is set to true or false.

134

6.3 Discoverable Control Flow Constructs through Process Mining

Mining Algorithm Output model S
eq
u
en

ce
F
lo
w

P
a
ra
ll
el
G
a
te
w
ay

s

E
x
cl
u
si
ve
G
at
ew

ay

In
cl
u
si
ve
G
a
te
w
ay

L
o
op

s

Alpha Miner Petri net ✓ ✓ ✓ ✗ ✗

Heuristic Miner Causal net ✓ ✓ ✓ ✓ ✓

Inductive Miner Process tree ✓ ✓ ✓ ✓ ✓

Table 6.3: Comparison of the mining algorithms [1]

specification languages. Kalenkova et al. [1] present algorithms to transform

Petri nets, causal nets, and process trees into BPMN models. In the context

of this section, the transformation is used to gain better comparability of the

control flow constructs.

Now the question is which control flow constructs can in principle be discov-

ered by process mining algorithms. Table 6.3 shows which BPMN control flow

constructs can be recovered from the respective process models according to

[1]. Furthermore, the control flow constructs Conditional Branch, Conditional

Multi-Choice Branch, and Loop evaluate Boolean conditions to take specific

control paths. The call-log does not show which conditions are responsible

for certain control flow paths. Therefore, conditions of control flow constructs

can not be reconstructed from the call-logs with the aid of the Alpha Miner,

Inductive Miner, and Heuristics Miner alone. Since it is not visible whether a

control flow construct has a condition, it is not possible to distinguish between

a Branch that has no condition and a Conditional Branch that has a condition.

From the call-log is also not visible whether operations were called from

concurrent processes or not. The sequence of calls generated by two operations

op1 and op2 that are executed concurrently in a Fork are indistinguishable

from the call sequences generated by op1 and op2 executed in Any-Order.

135

6 API Protocol Miner

The ability of the Alpha Miner to discover loops is limited as it has been

proven that the Alpha Miner is unable to discover short loops of size one and

two [126]. These considerations lead to the following recommendations:

� The REST APIs on a BaaS platform must not implement the control

flow construct Any-Order, so that the ambiguity between Any-Order

and Fork does not arise in the first place.

� OWL-S is not suitable for the specification of API protocols because,

in contrast to WS-BPEL and BPMN, it contains the Any-Order control

flow construct.

6.4 Functionality of the API Protocol Miner

This section describes the functionality of the Protocol Miner. The input to

the Protocol Miner is a call-log recorded at the API Gateway of the BaaS

platform. When a new BaaS platform is launched, it initially contains no

call-logs. Therefore, protocol mining cannot be offered from the start. To

mitigate this problem, a BaaS platform should also be an API management

platform like RapidAPI: API providers are attracted to use the platform,

because they benefit from the features of the API management platform, such

as API authorization, monitoring, billing, etc. Over time, the platform’s user

base grows and the APIs offered are increasingly used. The API Gateway of

the BaaS processes the original HTTP/S requests, forwards the requests to

the individual APIs and returns the API response to the client applications.

Gradually, the call-logs get filled with entries so that protocol mining can be

carried out. The call-logs are then used to mine API protocol specifications

to help requesters creating mashups.

The approach is shown in Figure 6.7 which is explained in the following:

1. API providers publish their APIs at the BaaS platform (cf. Chapter 4).

2. API consumers create client applications that are using these APIs.

3. All calls from client applications go through the BaaS API Gateway and

leave traces in the respective call-logs.

136

6.4 Functionality of the API Protocol Miner

Figure 6.7: Mining API protocol specifications from call-logs

4. The BaaS vendor executes process mining to discover an API protocol

specification from the call-log.

5. Requesters use this API protocol specification to learn in which order

API operations have to be called which is necessary to integrate the API

into their mashup.

The difference between API consumers and requesters is that API con-

sumers only use the BaaS as an API management system. In order for API

consumers to be able to create a client application that uses a REST API,

they must already be familiar with the API protocol. Initially, API consumers

cannot access API protocol specifications because they have to be mined

first, which requires call-logs to be created first. Since API consumers do not

have an API protocol specification, they must determine the protocol using

inefficient methods such as reverse engineering, try and error, or by consulting

the API provider. As soon as the client applications are used, call-logs are

created and protocol mining becomes available. Protocol mining externalizes

the implicit knowledge of API consumers about the API protocols. Future

requesters or API consumers can then benefit when creating new mashups or

client applications respectively.

Figure 6.8 is an activity diagram that shows how the approach is carried out

137

6 API Protocol Miner

Figure 6.8: Using process mining to discover process models from a call-log

by the participating roles. The call-logs created at the API Gateway cannot

be directly used by Process Mining algorithms. First, the BaaS Cloud vendor

needs to convert the call-logs into event-logs, e.g., using the standardized

XES format [103]. The Process Mining Algorithms produce different output

models, e.g. Petri nets or Heuristic nets. These output models can be

transformed to BPMN models [1]. BPMN is widespread and is often used to

represent processes. In the remainder, BPMN diagrams are used to present

and compare the results of the various mining algorithms in a uniform manner.

6.4.1 Converting Call-logs to Event-logs

Call-logs are not directly suited for process mining because process mining

requires event-logs, where every event has at least a name, a timestamp,

and a so-called case. Every event is assigned to a case, i.e., a session. The

case allows distinguishing several process instances from another. The first

and last events of a case define the start and the end of a single process

instance. The standard for the representation of event-logs is the Extensible

Event Stream (XES) format. Process Mining tools such as ProM [122] do not

support call-logs, but event-logs in XES format. Thus, call-logs need to be

translated to event-logs before they can be used for process mining.

138

6.4 Functionality of the API Protocol Miner

Mapping Timestamps

In the context of this chapter, a name of an event and its timestamp corre-

sponds to the name of the operation being invoked at a certain point in time.

Timestamps from the call-logs can be directly used in the event-log.

Mapping Operation Calls to Event Names

Call-logs contain the invoked request URLs of the operations. In general,

request URLs are not suited to be used as event names in event-logs because

they can contain specific parameter values in the URL path. For example, the

URL /api/simphera/projects/e18f107b contains a parameter projectId

which is a random string (UUID) denoting a certain resource. If these request

URLs would be used for process mining, the discovered API protocol would

distinguish between concrete calls of the same operation, which is undesirable

because the API protocol has to generalize from concrete calls. For this

reason, these URLs with concrete values have to be replaced by an event

name that uniquely identifies the called operation.

The API Protocol Miner matches the specific URLs from the call-log with

the paths defined in the OpenAPI to determine the respective operation. The

correspondence of a concrete URL in the call-log to an API operation is always

unambiguous. If the corresponding operation is found, the concrete parameter

values are replaced by the parameter names. The URLs path without concrete

parameter values but with parameter names can then be used as event names

in event-logs.

Mapping Sessions to Cases

Until now, the timestamps and request URLs from the call-log have been

converted to timestamps and event names in the event-log. What remains

is determining the cases. In the context of call-logs, cases are sessions, i.e.,

sequences of operation calls to complete a certain activity. Call-logs contain

no explicit information about cases. Determining the case of certain calls

is difficult because call-logs are noisy in practice and that noise disrupts

discovering general API protocols through process mining.

139

6 API Protocol Miner

Because there is noise in call-logs, it may happen that two consecutive calls

in the call-log may belong to different interfering sessions. It is important

to assign the calls to their sessions/cases because otherwise, process mining

would discover useless API protocols that model random behavior. If

requesters would use such a defective protocol specification they would call

the operations in an incorrect order, resulting in a faulty execution of the

API at run time.

The problem of assigning a single event in a call-log to a case is also

known from another research field, e.g., in the area of Web Usage Min-

ing [127, 128, 129, 130, 131, 132]. While the goal of Web Usage Mining is to

learn user behavior on websites, the goal of the BaaS approach is to learn the

API protocol. In Web Usage Mining, the process of assigning sessions to their

individual cases is known as session reconstruction or sessionizing. The call-

log entries for visiting a website and calling an API are identical in a call-log

because websites and APIs both use the HTTP/S protocol. Thus, in general,

session reconstruction techniques from the field of Web Usage Mining can also

be applied to identify sessions in call-logs. In the following, two methods for

session reconstructions are presented. Depending on the individual area of

application of the BaaS platform, both methods can be considered.

Grouping by Client Host and User Agent A simple way to assign the

call-log entries to a case is to group them by client IP address and user

agent [32, Section 14.43]. A user agent is a software, e.g., a client application

that acts on the behalf of the user, e.g., a web browser. If two different

user agents access the same REST API from the same IP address from one

computer, they can still be differentiated in the call-log and assigned to two

different cases.

However, this method has limitations: For example, if several instances of

the same user agent are running in parallel on one computer, the calls cannot

be assigned to an instance using the call-log. Even if multiple user agent

instances are running on different computers in the same private network and

the SIMPHERA API is in a public network, it cannot distinguish between

process instances.

140

6.4 Functionality of the API Protocol Miner

1 10.255.204.170 [2022-12-11T23:48:52+00:00] "GET /api/simphera/projects

HTTP/1.1" 200 "Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36"

↪→

↪→

Listing 7: Single entry from raw call-log including client IP address and user
agent

Another limitation is due to the fact that SIMPHERA runs in a Kubernetes

cluster. By default, Kubernetes obscures the original client IP and replaces it

with an internal IP address, which is then identical in all incoming requests.

This means that cases can no longer be distinguished based on the IP address.

However, this behavior of Kubernetes can be switched off so that the original

IP address is retained5.

Listing 7 shows a single entry of the call-log for the SIMPHERA API. The

entry comprises the timestamp of the HTTP request, the request URL, the

HTTP method, the IP address of the client host (i.e. the caller), the HTTP

response code, and the size of the response in bytes.

Grouping by Authorization Tokens Another possibility to assign calls to a

case is using session ids or authentication tokens: When a client application

authenticates at a REST API, it is typically assigned either a session id or

an authentication token. Session ids are unique random strings and are used

to store and load data across multiple subsequent requests on the server

side. Authentication tokens like the JSON Web Token6 contain data about

the user, their permissions, etc. Both, session ids and authorization tokens

are very suitable for identifying sessions: All process instances using an

API need to authenticate against it and retrieve a new, unique session id

or authentication token. Even multiple process instances running on the

same machine can be distinguished in the call-log using the session id or

authentication token. Once the session id or authentication token is issued, it

needs to be sent with every subsequent call and it does not change between

the calls. This allows tracking all the call-log entries back to its calling

process instance.

5https://kubernetes.io/docs/tasks/access-application-cluster/create-

external-load-balancer/#preserving-the-client-source-ip
6https://jwt.io/

141

https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://jwt.io/

6 API Protocol Miner

1 [2022-12-11T23:48:52+00:00] "GET /api/simphera/projects HTTP/1.1" 200

"Bearer eyJhb...UncA"↪→

2 [2022-12-11T23:48:53+00:00] "GET /api/simphera/projects HTTP/1.1" 200

"Bearer eyJhb...zqws"↪→

3 [2022-12-11T23:48:54+00:00] "GET /api/simphera/projects/e18f107b HTTP/1.1"

200 "Bearer eyJhb...UncA"↪→

Listing 8: Single entry from raw call-log including authorization token

Session identification via authentication tokens fits particularly well with

the BaaS architecture: As discussed earlier, BaaS platforms are also API

management platforms and a common use case of API management platforms

is authentication anyway.

Usually, session IDs and authorization tokens are not transmitted in the

URL, but in the HTTP headers Cookie [133] and Authorization [32, Section

14.8]. By default, web servers do not log these header fields. The SIMPHERA

API uses JSON Web Tokens for authentication which are transmitted in the

Authorization header. By default, the nginx ingress controller that is used

in SIMPHERA does not log the HTTP header field Authorization but can be

configured accordingly7. Listing 8 shows an nginx call-log of the SIMPHERA

API with authorization tokens. Listing 9 shows the event-log that is created

from the call-log by grouping traces by the authorization token.

So far general considerations about whether it is feasible to discover API

protocol specifications through process mining have been made. The following

section examines how well the approach works in practice.

6.5 Evaluation

In this section, the API Protocol Miner is evaluated with three different process

mining algorithms: Alpha Miner [81], Heuristics Miner [124], and Inductive

Miner [82]. For the evaluation, call-logs from the SIMPHERA API are used. In

order to evaluate the quality of the API protocols discovered by each algorithm,

these are compared with a manually created reference API protocol that acts

as the ground truth. The source code of the Protocol Miner and the material

7https://nginx.org/en/docs/http/ngx_http_log_module.html

142

https://nginx.org/en/docs/http/ngx_http_log_module.html

6.5 Evaluation

1 <trace>

2 <event>

3 <date key="time:timestamp" value="2022-12-11T23:48:52+00:00" />

4 <string key="concept:name" value="GET /api/simphera/projects" />

5 </event>

6 <event>

7 <date key="time:timestamp" value="2022-12-11T23:48:54+00:00" />

8 <string key="concept:name" value="GET /api/simphera/projects/{projectId}"

/>↪→

9 </event>

10 </trace>

11 <trace>

12 <event>

13 <date key="time:timestamp" value="2022-12-11T23:48:53+00:00" />

14 <string key="concept:name" value="GET /api/simphera/projects" />

15 </event>

16 </trace>

Listing 9: Translating a call-log into an XES event-log

used for evaluation is publicly available on GitHub8.

Process models obtained from process mining are usually assessed regarding

the quality dimensions simplicity, replay fitness, precision, and generaliza-

tion [134]. Simplicity assesses the complexity of a process model. Generally,

the more nodes and edges a process model has, the harder it is to understand.

Replay fitness measures to what degree the event-log traces can be reproduced

using a process model. Precision describes to what degree a process model

forbids behavior that is not included in the event-log. A process model has

perfect precision when it can reproduce exactly the traces contained in the

event-log. Process models with perfect precision are overfitted because they

allow no other traces as seen in the event-log. There may also be some valid

traces that are not present in the event-log, but which should be allowed by

the process model. Generalization measures the degree to which a process

model generalizes the behavior seen in the event-log, i.e., how many traces

are allowed in addition to those in the event-log. If a process model is too

general, it is underfitted, which means that it allows too much behavior. A

process model that is too general is not useful, because it allows disallowed

behavior.

8https://github.com/brokerage-as-a-service/baas

143

https://github.com/brokerage-as-a-service/baas

6 API Protocol Miner

In this evaluation, the assumption is made, that the manually created API

protocol is optimal with respect to these quality criteria. The quality of the

mined API protocols is judged relative to the manually created reference API

protocol. Ideally, the API protocols produced by the process mining algo-

rithms are identical to the manually created API protocol. Even if none of

the mining algorithms is capable to reproduce the manually created process

model, the question is whether the discovered process models are useful any-

way. For this reason, this section investigates to what degree the discovered

process models deviate from the manually created one and which algorithms

generate the process model that comes as close as possible to it. The Protocol

Miner automatically creates an initial API protocol, which can still contain

errors. However, if the API provider only needs to make minor changes, the

BaaS approach improves the efficiency of creating API protocols. These con-

siderations bring up the following research questions:

R4 Which of the process mining algorithms Alpha Miner, Inductive Miner,

and Heuristic Miner are most suitable for API protocol mining?

R5 How does the quality of a mined API protocol compares to an API protocol

that is manually created?

6.5.1 Preparation

First, a reference API protocol is modeled manually which is shown in

Figure 6.9 as a BPMN model. Since the entire SIMPHERA API protocol

is too extensive for evaluation, the number of operations is reduced. The

reference API protocol represents just a fraction of the entire SIMPHERA

API protocol and is chosen in such a way that it covers the previously

identified abstract control flow constructs Sequence, Conditional Branch,

Loop, and Fork. A client application is then created that implements this

reference API protocol. Using the client application, a real call-log is recorded

which is the input for the API Protocol Miner. Several process instances of

the client application are started to simulate process interference.

One disadvantage of evaluating with real call-logs is that a run of the

SIMPHERA API protocol takes several minutes to complete and the effects

of interference from multiple process instances and noise are not well repro-

ducible. Therefore, a simulator is created that does not make real HTTP calls

144

6.5 Evaluation

Figure 6.9: Reference API protocol of the SIMPHERA API

but writes the call-log directly according to the real call-log. The simulator is

run multiple times in parallel to simulate interference. To simulate noise, the

simulator calls any random operations from the entire SIMPHERA API in a

concurrent process.

To study the effects of noise on the mining algorithms under investigation,

two call logs are created: One noise-free call-log and one call-log with noise.

Each algorithm is run with the same two call-logs to maintain comparability.

145

6 API Protocol Miner

6.5.2 Proceeding

The API Protocol Miner is executed using the Alpha Miner [81], Heuristics

Miner [124], and Inductive Miner [82]. The Petri net discovered by the Alpha

Miner, the Causal net discovered by the Heuristics Miner, and the Process

Tree discovered by the Inductive Miner are transformed into BPMN models

according to the approach presented by Kalenkova [1]. All algorithms are

executed with a noise-free and with a noisy call-log.

6.5.3 Results

This section analyzes the BPMN models that are discovered through process

mining and compares these models to the reference model.

Alpha Miner

Figure 6.10 shows the BPMN process model discovered

by the Alpha Miner from the noise-free call-log. It has

been correctly identified that the loop of operation GET

/api/v{version}/projects/{projectId}/runs/{runId} exists. It is

not recognized that POST /api/v{version}/projects/{projectId}/runs
and GET /api/v{version}/projects/{projectId}/runs/{runId}
are executed in a sequence. The parallel execution of operations

is not correctly captured by a fork. The conditional branch of GET

/api/v{version}/projects/{projectId}/runs/{runId} is not reflected in

the BPMN model.

The BPMN model, which is generated from the noisy call-log using the

Alpha Mining algorithm, is not shown here. The Alpha algorithm cannot deal

with noise, which is why the random operation calls are also reflected in the

model. This makes the model very cluttered so that it is of no use to the

requester.

Inductive Miner

The process model created by the Inductive Miner is shown in Figure 6.11.

In particular, the variant Inductive Miner - infrequent IMf is used with the

noise threshold set to 0.2. The produced BPMN model is almost exactly

146

6.5 Evaluation

Figure 6.10: BPMN model produced by Alpha Miner from noise-free call-log

the reference model, except that one Parallel gateway is missing. All of the

control flow constructs are captured correctly.

Figure 6.12 shows the BPMN model created by the Inductive Miner from

the noisy call-log. The operation GET /api/v{version}/projects is entirely

filtered out. Not all sequences have been identified correctly. For example, it

is not recognized that POST /api/v{version}/projects/{projectId}/runs
and GET /api/v{version}/projects/{projectId}/runs/{runId} are exe-

cuted in a sequence.

147

6 API Protocol Miner

Figure 6.11: BPMN model produced by Inductive Miner and Heuristics Miner
from noise-free call-log

Heuristic Miner

The BPMN model created by the Heuristic Miner is shown in Figure 6.11.

The model is exactly the same as produced by the Inductive Miner from the

noise-free call-log. In case of the noisy call-log, the produced BPMN model

comes very close to the reference model. The BPMN model created by the

Heuristics Miner from the noisy call-log is shown in Figure 6.13. There is

only one misplaced Parallel gateway.

The Heuristics Miner shows the best results for the SIMPHERA example

used in the evaluation. In general, the Heuristics Miner is best suited for

148

6.5 Evaluation

Figure 6.12: BPMN model produced by Inductive Miner from noisy call-log

use with BaaS, since the algorithm is robust to noise. The degree of noise

depends on the call log or the individual API. By adjusting the threshold

values, the algorithm can be adapted to the individual circumstances of each

API relatively easily. This is important for use on a BaaS platform, where

the algorithm must provide adequate results for a large number of different

APIs. For this reason, Heuristics Miner is best suited to mine API Protocols

from call-logs in the sense of research question R4.

149

6 API Protocol Miner

Figure 6.13: BPMN model produced by Heuristic Miner from noisy call-log

Regarding research question R5 it can be stated that the BPMN model pro-

duced by the Heuristics Miner comes very close to the manually created BPMN

model that represents the API protocol. Just a little manual adjustment has

to be done to correct the produced BPMN model. Compared to modeling an

API protocol from scratch, the BaaS approach to mine API protocols from

call-logs saves time and is therefore more efficient.

150

6.6 Summary

6.6 Summary

In this chapter, static and dynamic methods for deriving API protocols are

discussed. Static methods often fail because the operations of an API often

do not use uniform parameter names which makes it difficult to recognize the

interconnections between operations. Dynamic methods have the advantage

that the call-logs required for this can be obtained easily and no changes to

the service implementation are necessary. A problem of dynamic analysis is

noise in call-logs that promotes the creation of faulty API protocols. The BaaS

approach uses process mining techniques for dynamic analysis. An analysis of

the languages OWL-S, WS-BPEL, and BPMN identifies which general control

flow constructs are necessary for the description of API protocols. This is

opposed to the control flow constructs that can be discovered by the process

mining algorithms Alpha Miner, Inductive Miner, and Heuristics Miner. The

result is that process mining algorithms cannot distinguish between parallel

and sequential control flows when the latter are executed in any order. Fur-

thermore, the concrete conditions for branches in the control flow cannot be

retrieved using any of the investigated algorithms. Another challenge is that

call-logs cannot be used directly for process mining because process mining

requires that each call can be assigned to a process instance which is gener-

ally not given in call-logs. This chapter presents two methods to identify a

process instance of a call-log by either the IP/user agent or an authorization

token/session ID. In the evaluation using a real example, it is shown that

the Heuristics Miner generates API protocols even from noisy call-logs, which

come very close to the API protocols that a human would specify. Since the

automatically generated API protocol is already very accurate and requires

little manual post-processing, the BaaS API Protocol Miner contributes to

the efficient creation of mashups.

151

7 Parameter Matcher and Glue

Code Generator

This chapter explores how multiple incompatible APIs can interact together

in a mashup. Before several APIs can be wired together in a mashup, the rel-

evant parameters that have to be exchanged have to be identified. Identifying

input and output parameters that need to be exchanged between the APIs is

difficult because the parameter names are terminologically heterogeneous and

their values are syntactically incompatible. The syntactical incompatibility

requires program logic that converts the data between the APIs. The program

logic is called glue code in the remainder.

To give an example, let us consider a mashup for travel trip planning that

combines Lufthansa API to book flights, the Expedia API to book a hotel

room, and the Hertz API to book a rental car. In this case, the Lufthansa

and Hertz API need to exchange data about location and time: The location

of the flight arrival and the car pickup location is the same. Furthermore, the

flight arrival date and the car pickup date are identical.

Figure 7.1 shows how the input and output parameters need to flow

through the Lufthansa, Hertz, and Expedia API mashup. In the figure,

every box contains an HTTP request and an HTTP response and consists

of three parts: the request URL, the input parameter values, and a JSON

response. The dashed lines show the relations between inputs/outputs across

the different APIs. For example, the input origin of the Lufthansa API and

pickupLocation of the Hertz API need to be exchanged in a mashup while

both are terminologically heterogeneous. That origin and pickupLocation

needs to be exchanged can be hardly understood by only looking at the

153

7 Parameter Matcher and Glue Code Generator

POST https://www.hertz.de/rentacar/rest/hertz/v2/i-
tinerary/vehicles

pickupLocation="Munich Airport Franz-Josef-Strauss"
pickupDay="30/06/2019"
pickupTime="10:00"
dropoffDay="01/07/2019"
dropoffTime="10:00"

GET https://api.lufthansa.com/v1/operations/schedu-
les/{origin}/{-
destination}/{fromDateTime}?directFlights=0

origin="PAD"
destination="MUC"
fromDateTime="2019-06-30"

GET https://api.ean.com/2.1/airports/{iata_airport_code}

iata_airport_code="MUC"

GET https://api.ean.com/2.1/properties/availability

checkin="2019-06-30"
checkout="2019-07-01"
property_id="9715"

{
"ScheduleResource": {
"Schedule": [{
"Flight": {
"Departure": {
"AirportCode": "PAD",
"ScheduledTimeLocal": {
"DateTime": "2019-06-30T09:25"

}
},
"Arrival": {
"AirportCode": "MUC",
"ScheduledTimeLocal": {
"DateTime": "2019-06-30T10:30"

},
"Terminal": {
"Name": 2
}

}
}

}]
}

} {
"iata_airport_code": "MUC",
"name_full": "Munich, Germany (MUC-Franz Josef Strauss Intl.)",
"country_code": "DE",
"coordinates": {
"center_longitude": 11.7861,
"center_latitude": 48.3539
},
"property_ids": [
"9715",
"4801162",
"1105630",
"29997430",
"6325380"
]

}

[{
"property_id": 9715,
"rooms": [{
"room_name": "Room, 1 King Bed",
"rates": [{
"available_rooms": 9

}]
}]

}]

{
"data": {
"model": {
"vehicles": [{
"name": "(A) Fiat 500",
"airConditioning": "Air Conditioning",
"passengers": "4 Passengers",
"transmission": "Manual Transmission",
}]

}
}

}

Figure 7.1: Heterogeneous data exchanged between APIs used in a mashup

parameter names. To recognize this correspondence, additional ontological

background knowledge is required.

In the example, destination must be wired with pickupLocation. The output

parameter DateTime or alternatively the input parameter fromDateTime

from the Lufthansa API must be wired with pickupDay of the Hertz API.

The data that needs to be exchanged is syntactically incompatible, i.e.,

destination is an airport code, while the Hertz API expects pickupLocation to

be a Hertz-specific identifier. This means that the APIs are not interoperable

immediately and cannot directly exchange data with each other. Therefore,

154

7.1 Parameter Matching

it is necessary that the data is syntactically converted before being passed

from one REST API to another. Writing the glue code to translate the data

from one API to another is laborious which makes creating mashups inefficient.

This chapter presents a semi-automatic approach for assisting requesters

to identify those parameters that need to be exchanged and to generate glue

code from parameter mappings. First, the problem of parameter matching

is analyzed in more detail, i.e., in which ways APIs exchange data with each

other and what types of incompatibilities there are.

Next, the functionality of the BaaS Parameter Matcher is introduced.

Between the concrete APIs that are to be combined in a mashup, the BaaS

Parameter Matcher finds combinations of parameters for which there is a

semantic relation. In this way, the requester is supported in identifying

between dozens and hundreds of parameters that need to be exchanged

between APIs. To find semantic relations between parameters across APIs,

several similarity measures are used, which also take into account the semantic

type annotations added by the Semantic Annotator.

Once the corresponding parameter mappings are defined, it comes to the

task to create glue code for resolving the incompatibilities. Two approaches to

how data types can be translated between APIs are discussed in this chapter:

Translating the local types of the APIs to global types or translating between

the local types directly. Local data types are data types used only within

the scope of an API, while data types used by multiple APIs are global data

types. In case of BaaS, global data types are defined in a global ontology.

Based on the analysis of the two approaches, the functionality of the BaaS

Code Generator is introduced. The goal is to pre-generate as much as possible

of the glue code in order to relieve the requester of writing glue code by hand.

Finally, the Parameter Matcher and Code Generator are evaluated on a real-

world example based on the Lufthansa and Hertz API.

7.1 Parameter Matching

Parameter matching is the task to find related parameters of different APIs

that are to be exchanged in a mashup. Parameters are either inputs or outputs

155

7 Parameter Matcher and Glue Code Generator

and this section discusses which combinations of inputs and outputs are useful

in mashups. In addition, parameters have different data types. This section

defines different levels of compatibility and explains which combinations are

useful in a mashup.

7.1.1 Combinations of Inputs and Outputs

Parameters have a direction: Operations consume input parameters and pro-

duce output parameters. Combining two parameters of different operations

results in four possible combinations: output-input, input-input, input-output,

and output-output. In the following, the use cases for the respective combi-

nations are discussed.

Output-Input

For an output-input combination, the output of one operation is used as input

of another operation. Cremashi et al. call this kind of combination sequence

composition [10]. The input of the second operation depends on the output

of the first operation. Since both parameters can have different data types

and formats, a conversion may be necessary before a valid call to the second

operation can be made.

Input-Input

For an input-input combination, two operations are called with the same input.

Since the execution of one operation does not depend on the output of the

other API, they can be executed in any order. It is possible that both input

parameters have different data types and formats so they need to be converted.

Cremashi et al. call this kind of combination parallel composition [10].

Output-Output

The output-output is useful to aggregate two parameters into a single value.

The extent to which syntactic compatibility of the parameters is necessary

depends on the individual case. An example of an aggregation is adding up

the costs for the Lufthansa flight and the Hertz rental car to get the total price

of the whole itinerary. In that case, it is required that the output values have

the same data type, format, and unit.

156

7.1 Parameter Matching

Input Output Java Type

OpenAPI Type OpenAPI Format JSON Type

integer int32 - java.math.BigDecimal

integer int64 - java.math.BigDecimal

number float - java.lang.Float

number double number java.lang.Double

string - string java.lang.String

string byte - byte[]

string binary - java.io.File

boolean - boolean java.lang.Boolean

string date - java.time.LocalDate

string date-time - java.time.OffsetDateTime

Table 7.1: OpenAPI data types and formats and corresponding Java types

Input-Output

In the case of the input-output combination, the input parameter of the first

operation is related to an output parameter of the second operation. The input

parameter does not have to fulfill the API contract of the second parameter.

This combination can be used to perform integrity checks when the parameters

are known or expected to have the same range of values.

7.1.2 Degrees of Compatibility

Parameters have a data type, a data format, and a unit. Data types like

Integer, String, Boolean, etc. with a value range and operations defined on

the range. A data format is a specific syntax to represent certain values from

the value range. Numeric values usually also have a unit. The degree of

compatibility between two parameters depends on the data type, the format,

and the unit. Table 7.1 shows the OpenAPI data types and formats for input

and output parameters and their corresponding Java types. Different cases

of compatibility degrees are explained in the remainder. The first case starts

with the highest and ends with the lowest compatibility degree.

157

7 Parameter Matcher and Glue Code Generator

Case 1: Identical Mapping

Parameters that have identical data types, data formats, and units can be

shared directly between two APIs, because their value ranges are identical.

To give an example, two parameters of type date-time can be shared between

two APIs if they are using the same calendar, the same date format (e.g.

RFC3339), and the same time zone.

Case 2: Injective Mapping

This case applies if two parameters differ in their type, format, or unit. Com-

patibility can be established if there is an injective function that maps the

value of the first parameter to the value of the second parameter. This case

splits into sub-cases, corresponding to whether the parameters differ in their

type, format, or unit:

Case 2.A: Different Types Parameters with different data types may be

compatible with each other. To give an example, let us consider two param-

eters of type date-time and int64. The int64 parameter is a Unix timestamp,

i.e., an int64 value that counts the milliseconds passed starting from Jan-

uary 1st, 1970. Therefore, both parameters take date values. Many standard

libraries, e.g. the Java Runtime Environment, contain functions to convert

between date objects and Unix timestamp.

Case 2.B: Different Formats Data formats are construction rules to

produce valid values. The same data may have many representations encoded

in different data formats. These data formats must first be aligned with each

other before data can be shared between the APIs.

The amount of different data formats that are used in practice is limited.

Date format standards like RFC3339 [68] are widespread. Different countries

use different conventions, e.g., “MM/DD/YYYY” in the United States of

America and “DD.MM.YYYY” in Europe. Most standard libraries like the

Java Runtime Environment often support commonly used standard formats

and the conversion between them.

158

7.1 Parameter Matching

Instead of specifying the value range by a construction rule, valid literals

can also be simply enumerated to define the value range. To identify airports,

for example, there are the standards of the International Air Transport

Association (IATA)1 and the International Civil Aviation Organization

(ICAO)2. The airport Paderborn/Lippstadt is identified by the IATA code

“PAD” and by the ICAO code “EDLP”. IATA and ICAO identifiers are

standardized worldwide and can be translated using a static translation table.

It is also possible that values only have a meaning in the context of a certain

API. For example, identifiers of custom data objects cannot be exchanged

between APIs, because they are only meaningful within the scope of one API.

To translate a custom identifier from one API to another, there must be a

mapping table that maps every value.

Case 2.C: Different Units Values of two parameters that measure the same

quantity but in different units can be converted by a function. For example,

if an operation returns a distance between two geographic coordinates in kilo-

meters but another operation expects the distance in miles as input, then the

value can be multiplied by a conversion factor before it is passed to the latter

operation.

Case 3: Overlapping Value Ranges

For certain combinations of data types, there is no injective mapping function.

Numeric data types have a fixed area allocated in memory. The size of this

memory area defines the value range of the data type. The signed 32 bit

Integer has a value range of [−231, 231 − 1] and the signed 64 bit Long has a

value range of [−263, 263− 1]. In fact, there is an injective function that maps

Integer values to Long (Case 2). Contrary, there is no injective function that

translates all Long values to Integer. However, some values can be converted,

as the value range of Long overlaps with the value range of Integer. The

translation of a Long value that is outside of the value range of Integer is

translated to Integer causing an overflow exception at run-time.

1https://www.iata.org/
2https://www.icao.int/

159

https://www.iata.org/
https://www.icao.int/

7 Parameter Matcher and Glue Code Generator

Case 4: Incompatibility

Combinations of parameters where none of the above cases apply are incom-

patible. For example, let a String parameter be mapped to an Integer pa-

rameter. Indeed, insofar as the string contains only numeric characters, the

integer value can be parsed from the string. If the string contains only letters,

the conversion is no longer possible. Whether a conversion is possible must be

checked manually in individual cases.

7.2 Functionality of the Parameter Matcher

This section describes the functionality of the Parameter Matcher. The input

of the Parameter Matcher is a list of operations signatures (from different

APIs) to be combined in a mashup. Those operations have been selected

through the service discovery earlier in the process. Parameters are matched

pairwise.

The number of possible parameter mappings for a mashup explodes very

quickly: For example, let us consider the operation OperationSchedulesFrom-

DateTimeByOriginAndDestinationGet of the Lufthansa API which has 7 in-

puts and 17 outputs. The operation vehicles of the Hertz API has 54 inputs

and 196 outputs. This results in (7 · 54+7 · 196+17 · 54+17 · 196) · 2 = 12000

possible combinations. If the direction is neglected, the number is halved to

6000 combinations. The number of possible combinations is still too large such

that it is very laborious for the requester to determine useful parameter map-

pings. To find the most relevant parameter mappings, the Parameter Matcher

calculates a similarity score and ranks all pairs according to that score such

that the request does not have to go through all of the mappings.

7.2.1 Matching Techniques

The Parameter Matcher uses several matching techniques to assess the seman-

tic relevance of pairs of parameters. These similarity scores are determined

on the basis of the parameter names, data types/formats, and semantic an-

notations using string-based, constraint-based, and structure-based similarity

metrics respectively. All of the similarity metrics are symmetric such that

holds σ(⟨P1, P2⟩) = σ(⟨P2, P1⟩). Symmetry is necessary as the direction of the

mapping is ignored.

160

7.2 Functionality of the Parameter Matcher

String-Based

The intuition behind string-based techniques is that two parameters are similar

when their names which are strings are similar. The string similarity σ1 is the

Levenshtein distance [71] of two parameter names:

σ1(P1, P2) := levenshtein(name1, name2)

Constraint-Based

The intuition behind constraint-based techniques is that semantically

similar parameters also have similar data types and formats. Syntactical

incompatibility of parameter types and formats is an indicator of semantic

incompatibility. The constraint-based similarity takes the type/format

compatibility of parameters into account for determining the similarity

of parameters. For example, a parameter with OpenAPI format int64 is

dissimilar from a boolean parameter. The value range of int64 is 263 times

larger than the value range of boolean.

In OpenAPI, the data types and formats of inputs and outputs are defined

in JSON schemas. Often, API providers do not specify data types and

formats sufficiently and accurately, as is the case at RapidAPI. In general,

this is acceptable for the original purpose of OpenAPI specifications which

is to generate client and server code for the same API as long as the

client and server use the same types/formats consistently. In the case of

parameter matching, inaccuracies in the data type specification may falsify

constraint-based similarity measures of parameters from different APIs. On

the other way round, accurate data type and format specifications of parame-

ters can be improved when constraint-based matching techniques are involved.

If no JSON schema is specified for a parameter, but there are examples, an

auxiliary JSON schema can be derived from the example. There are multiple

tools3 available to derive a schema from JSON documents. Inferring the data

types, e.g, number, boolean, and string of parameters in a JSON document is

trivial: Strings are enclosed in quotation marks, boolean has only two literals

true and false, and the rest are numbers.

3https://jsonschema.net/

161

https://jsonschema.net/

7 Parameter Matcher and Glue Code Generator

1 {

2 "Flight": {

3 "Departure": {

4 "AirportCode": "PAD",

5 "ScheduledTimeLocal": {

6 "DateTime": "2019-06-30T09:25"

7 }

8 }

9 }

10 }

Listing 10: Example response from Lufthansa API

1 [

2 {

3 "nameAirport": "Anaa",

4 "codeIataAirport": "AAA",

5 "codeIcaoAirport": "NTGA",

6 "latitudeAirport": "-17.05",

7 "longitudeAirport": "-145.41667",

8 }

9]

Listing 11: Example response of the “IATA and ICAO” API using inappropri-
ate types.

The data format is even more specific than the data type and can also

be used to determine similarity. To give an example, Listing 10 shows an

example JSON response that is returned by an operation of the Lufthansa

API4. Indeed, the data type of the output DateTime is string and the data

format is date-time. Here it can be seen that the data format is valuable for

parameter matching because it allows distinguishing date-time parameters

from ordinary string parameters so that pairs of date-time parameters can

get a higher similarity score.

An analysis of the API specifications from RapidAPI shows that data types

4https://rapidapi.com/lihcode/api/lufthansa-open?endpoint=

5afca4b7e4b0547c247d9214

162

https://rapidapi.com/lihcode/api/lufthansa-open?endpoint=5afca4b7e4b0547c247d9214
https://rapidapi.com/lihcode/api/lufthansa-open?endpoint=5afca4b7e4b0547c247d9214

7.2 Functionality of the Parameter Matcher

Regular Expression OpenAPI Type OpenAPI Format

^-?\\d\+\\.\\d+$ number double

^-?\\d+$ integer int64

^\\d{4}-\\d{2}-\\d{2}$ string date

^\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}$ string date-time

^(true|false)$ boolean -

^(yes|no)$ boolean -

Table 7.2: Using regular expressions to determine the actual data type and
format

and formats are sometimes correctly specified but wrongfully implemented.

Listing 11 shows the response of the service IATA and ICAO5. The output

latitudeAirport is of type string although it is declared as type/format num-

ber/int64 in its OpenAPI specification.

Since data types and data formats may not be specified or are used incor-

rectly, the Parameter Matcher ignores the types and formats declared in the

OpenAPI specification and uses regular expressions to infer accurate types

and formats for the parameters. For this purpose, it tests a series of regular

expressions against all available sample data for that parameter. These regu-

lar expressions are shown in Table 7.2. Finally, the constraint-based similarity

score σ2 of all OpenAPI data formats are determined according to the static

similarity matrix M :

σ2(P1, P2) := mformat1,format2 , mi,j ∈M

5https://rapidapi.com/leopieters/api/iata-and-icao?endpoint=

5a1c3020e4b0d45349f76c38

163

https://rapidapi.com/leopieters/api/iata-and-icao?endpoint=5a1c3020e4b0d45349f76c38
https://rapidapi.com/leopieters/api/iata-and-icao?endpoint=5a1c3020e4b0d45349f76c38

7 Parameter Matcher and Glue Code Generator

M :=



boolean byte int32 int64 float double string date date−time binary

boolean 1 0 0 0 0 0 0 0 0 0

byte 0 1 0 0 0 0 0 0 0 1/2

int32 0 0 1 1/2 1/4 1/4 0 1/8 1/8 0

int64 0 0 1/2 1 1/4 1/4 0 1/8 1/8 0

float 0 0 1/4 1/4 1 1/2 0 0 0 0

double 0 0 1/4 1/4 1/2 1 0 0 0 0

string 0 0 0 0 0 0 1 0 0 0

date 0 0 1/8 1/8 0 0 0 1 1/2 0

date−time 0 0 1/8 1/8 0 0 0 1/2 1 0

binary 0 1/2 0 0 0 0 0 0 0 1



Structure-Based

The structure-based similarity measure of the Parameter Matcher determines

the similarity of two parameters based on the proximity of the semantic

types within the ontological structure. The semantic type annotation have

been added by the Semantic Annotator earlier in the process. Parameters

are annotated with a semantic type that is in the same structure, i.e., the

global ontology. The Parameter Matcher uses these semantic types and their

type hierarchy relations (rdfs:subClassOf) to calculate the upward cotopic

similarity [76]. Using the upward cotopic similarity is only possible because all

API providers use the same global ontology provided by the BaaS platform.

This underscores the need for global ontology.

σ3(P1, P2) :=
|UC(t1, H) ∩ UC(t2, H)|
|UC(t1, H) ∪ UC(t2, H)|

164

7.2 Functionality of the Parameter Matcher

where UC(t,H) = {t′ | ∀t, t′ ∈ H∧t ⊑ t′} and t ⊑ t′ means that t′ is a subclass

of t.

Similarity Aggregation

The Parameter Matcher ranks the mappings so that the requester is able to

start inspecting the parameter pairs that are most similar. To determine the

ranking, the individual similarity values of a parameter mapping are aggre-

gated into a single value after which the parameter mappings are sorted in

descending order. As an aggregation function, the average of the individual

similarity measures is used:

σ =
1

n

n∑
i=1

σi

Example

The following example shows how the different similarity values are calculated

for the mapping ⟨destination, pickupLocation⟩. The parameter destination is

annotated with the semantic type schema:Airport. Likewise, the parameter

pickupLocation is annotated with schema:Place.

σ1 = levenshtein(“destination′′, “pickupLocation′′) = 0.357

σ2 = mstring,string = 1.0

σ3 =
|{Airport, CivicStructure, P lace, Thing} ∩ {Place, Thing}|
|{Airport, CivicStructure, P lace, Thing} ∪ {Place, Thing}|

=
|{Place, Thing}|

|{Airport, CivicStructure, P lace, Thing}| =
2

4
= 0.5

σ =
0.357 + 1.0 + 0.5

3
= 0.619

The Parameter Matcher uses these similarity metrics to calculate a similarity

score for all pairs of parameters. The output of the Parameter Matcher is a

ranked list of parameter mappings. The requester manually selects appropriate

parameter mappings before they are passed to the code generator.

165

7 Parameter Matcher and Glue Code Generator

7.3 Composing APIs in Mashups

After the parameter mappings have been created, it is now about how glue

code can be created from them. This section introduces two approaches to

when, where, and how to convert parameters between APIs in mashups to

make them compatible. The first approach introduces adapter APIs that

translate between the local syntactic data types of the APIs and the global

semantic types of a global ontology and vice versa. In the second approach, the

data conversion takes place in the mashup itself which comprises translation

functions to translate between local data types of the individual APIs directly.

Both approaches are described in more detail in the following.

7.3.1 Approach 1: Local-Global-Local Translation

The first approach uses adapters to resolve the incompatibility between APIs

to be combined in a mashup. This is done by mapping the local data types

of the APIs to the global semantic types which means that the semantic

types are actually used in the implementation and not just for annotation.

On the level of adapters, all APIs share the same types which are compatible

and can be directly exchanged. Figure 7.2 is a component diagram of the

Lufthansa-Hertz-Expedia mashup using adapter APIs.

In software engineering, the adapter pattern [135] is a structural design

pattern that is used to translate from one programming interface into another.

Adapters are often used to integrate different software components that have

incompatible interfaces. This is especially useful to integrate third-party

software components whose interface or implementation cannot be changed.

This is also the case with mashups, where requesters are not able to change

the REST APIs provided by the API providers. Adapter APIs are in front of

the original APIs and have the same operations except that the local data

types are replaced by the semantic types from the global ontology.

The adapter APIs are in front of the original APIs and implement the

lifting and lowering transformations as presented in Section 2.3.4: The lifting

translation converts the local types of the API into global types and the

lowering transformation converts the global types into local types. The

translations have to be implemented only once for each API.

166

7.3 Composing APIs in Mashups

Figure 7.2: Mashup with local-global-local Translation

One advantage of the approach is that the adapter APIs can be used by

requesters as if they were native semantic web services. The local data models

of the APIs are fully hidden from the requester that only sees the global

semantic types. Thus, on the semantic level, terminological and syntactical

heterogeneity is no longer a concern for the composition of the APIs. Once

the adapter APIs are created and the local data types are mapped to global

data types, the adapters can be reused in other mashups. Since global types

are used in the requests and in the adapters, it is then easier to find suitable

adapter APIs in the service discovery and also to integrate different adapter

APIs with each other when they share some global types in their operation

signatures.

While the approach sounds promising in theory, it is difficult to implement

in practice. Figure 7.3 shows a mapping of the JSON Response of operation

operationsFlightstatusRouteDateByOriginAndDestination with corresponding

semantic types from schema.org. It can be seen that the semantic types do not

167

7 Parameter Matcher and Glue Code Generator

X

X

Lifting

Lowering
{

 "ScheduleResource":{
 "Schedule":[
 {
 "TotalJourney":{
 "Duration":"PT1H5M"
 },
 "Flight":{
 "Departure":{
 "AirportCode":"PAD",
 "ScheduledTimeLocal":{
 "DateTime":"2018-02-24T06:05"
 }
 },
 "Arrival":{
 "AirportCode":"MUC",
 "ScheduledTimeLocal":{
 "DateTime":"2018-02-24T07:10"
 },
 "Terminal":{
 "Name":2
 }
 },
 "MarketingCarrier":{
 "AirlineID":"LH",
 "FlightNumber":2183
 },
 "OperatingCarrier":{
 "AirlineID":"CL"
 },
 "Equipment":{
 "AircraftCode":"CR9"
 },
 "Details":{
 "Stops":{
 "StopQuantity":0
 },
 "DaysOfOperation":123456,
 "DatePeriod":{
 "Effective":"2018-01-29T00:00:00.000Z",
 "Expiration":"2018-03-24T00:00:00.000Z"
 }
 }
 }
 }
]
 }
 }

Figure 7.3: Local datamodel of Lufthansa API cannot be mapped completely
onto global semantic types

accurately capture the ontological semantics of the API. For example, there is

no semantic type in schema.org that has the same meaning as the StopQuantity

of the Lufthansa API. The most accurate semantic type in schema.org to

represent the parameter AircraftCode is Vehicle, but this does not fully capture

the same information.

168

7.3 Composing APIs in Mashups

Figure 7.4: Mashup with local-local translation

7.3.2 Approach 2: Local-Local Translation

The second approach translates local types between the APIs directly to

resolve the incompatibilities. Semantic type annotations are sorely used here

to support service discovery. The program logic to translate the types is

directly implemented in the mashup. Figure 7.4 is a component diagram of

the Lufthansa-Hertz-Expedia mashup according to the second approach.

The type translations have to be implemented for all parameters that need

to be exchanged between APIs and are tailor-made for a specific mashup. This

is the reason why the type translation cannot be reused in other mashups. On

the other hand, the glue code allows accurate translation of the data in the

specific context of a concrete mashup. The effort involved in creating the

translation functions is limited because only the data that is actually required

has to be translated. The approach fulfills the requirements from Section 1.3:

Upward compatibility The approach is upward compatible because it incor-

porates the original APIs.

Learnability Requesters only need to be familiar with a programming language

of their choice to implement the type translations.

Scalability The approach scales because the original APIs do not have to be

changed at all and the amount of work to translate the local types is

limited to what is actually needed.

Comprehensiveness The APIs are comprehensively described through onto-

169

7 Parameter Matcher and Glue Code Generator

logical semantics by semantic type annotations and API protocol speci-

fications.

Interoperability The glue code achieves compatibility between APIs.

Since the second approach meets the requirements and is also practicable,

it is used in the BaaS approach. The next section explains how the code

generator works in more detail.

7.4 Functionality of the Glue Code Generator

This section introduces a code generator that is capable to generate essential

parts of the mashup program logic. What is novel about the code generator

is that it can automatically insert the program logic to extract relevant

parameters from complex JSON response messages, syntactically translate

the parameter values, and call subsequent operations with the translated

values.

The Parameter Matcher ignores the direction of the parameter mappings,

but for code generation the direction matters because the direction defines if

a parameter value is read or written. For this reason, the requesters have to

define the direction of a parameter mapping when they are approving it.

The Glue Code Generator builds upon the standard OpenAPI code gener-

ator that can generate fully functional API clients from OpenAPI specifica-

tions for individual APIs. For example, Listing 12 shows the Java method

that is generated from the operation operationsSchedulesFromDateTimeByO-

riginAndDestinationGet of the Lufthansa OpenAPI. This Java method has

arguments for all mandatory and optional parameters declared in the spec-

ification. The generated Java functions construct HTTP request messages

and send them to the server. The functionality that the BaaS Code Generator

adds to the OpenAPI Code Generator is that it considers parameter mappings

and wires the different API clients together in a mashup. Depending on the

direction of the mapping, there is a repeating pattern of how parameters are

extracted, converted, and read. For these patterns, the code generator uses

templates, which are explained in more detail in the following.

170

7.4 Functionality of the Glue Code Generator

1 public Object operationsSchedulesFromDateTimeByOriginAndDestinationGet(

2 String origin,

3 String destination,

4 String fromDateTime,

5 String accept,

6 Boolean directFlights,

7 String limit,

8 String offset) throws ApiException {

9 //...

10 }

Listing 12: Java operation generated by default OpenAPI code generator

7.4.1 Code Generation Templates

Depending on how the input and output parameters are combined, the corre-

sponding glue code results in recurring patterns. These patterns are reused in

the form of code generation templates, with the consequence that glue code

generation can be partially automated. This increases the efficiency of creating

mashups.

Input-Input Template

Listing 13 shows a code generation template for the input-input mapping

⟨P1, P2⟩. The individual three lines of code are explained below: At first,

the operation operation1 is called with all its inputs. Inputs are initialized

with default values. Second, the translation function P1 to P2(P1) is called,

where the value of P1 is mapped to a value from the value range of P2. For

each parameter mapping, an individual translation function is generated. The

result of the translation function is stored in a variable P2. Third, operation2

is called with the translated value as input. Any unbound input parameters

of operation2, i.e., input parameters of operation2 that are not part of any

other parameter mapping, are filled with default values.

response1 ← operation1(. . .)
P2 ← P1 to P2(P1)
response2 ← operation2(. . . , P2, . . .)

Listing 13: Code generation template for input-input mappings

171

7 Parameter Matcher and Glue Code Generator

Output-Input Template

Listing 14 shows the code generation template for output-input mappings.

First, operation1 is called with all its inputs. The JSON response of the

operation is stored in the variable response1. Not all parameters from the

JSON response are needed in the context of the mashup, but only those for

which a parameter mapping exists. In line 2, calling the function extract()

reads the value of parameter P1 from the entire JSON response defined by its

JSONPath. The return value of extract is passed to the translation function.

The result of the translation function is written to the variable name2. Finally,

in the third and last line, the operation2 is called with P2 and all other inputs.

Any unbound input parameters are filled with default values.

response1 ← operation1(. . .)
P2 ← P1 to P2(extract(jsonpath1, response1))
response2 ← operation2(. . . , P2, . . .)

Listing 14: Code generation template for output-input mappings

Output-Output Template

Listing 15 shows the code generation template for output-output mappings.

The code calls the operations, extracts the parameter values from the respec-

tive JSON response messages, calls the aggregation function, and assigns the

result to the variable result. The code generator just generates a stub for the

aggregation function with an empty body. It is up to the requester to imple-

ment the function and to further use the aggregated value in the mashup.

response1 ← operation1(. . .)
P1 ← extract(jsonpath1, response1)
response2 ← operation2(. . .)
P2 ← extract(jsonpath2, response2)
result ← aggregate P1 P2(P1, P2)

Listing 15: Code generation template for output-output parameter mappings

172

7.4 Functionality of the Glue Code Generator

Input-Output Template

Listing 16 shows the code generation template for input-output mappings. At

first, the operation1 is called with input P1 and the other inputs. Second,

operation2 is called with all its inputs. Third, the value of P2 is extracted

from the JSON response message and assigned to the variable name2. This

variable is passed to a translation function. Fourth, an assertion statement

checks if the value of P1 and P2 are equal.

response1 ← operation1(. . . , P1, . . .)
response2 ← operation2(. . .)
P2 ← extract(jsonpath2, response2)
assert P2 = P1 to P2(P1)

Listing 16: Code generation template for input-output parameter mappings

7.4.2 Generating Translation Functions

This section describes the structure of the translation functions that have

one argument, corresponding to P1, and one return value, corresponding

to P2. For each OpenAPI data type/format pair there is a predefined

translation function. The predefined method body is copied accordingly for

each individual parameter mapping. OpenAPI defines 10 data formats, such

that there are 100 possible combinations of formats. Thus, there are 100

pre-built transformation functions.

Some combinations of data type/format mapping are more common in

mashups than others. The constraint-based similarity metric automatically

prefers common combinations. Nevertheless, the Code Generator even al-

lows uncommon combinations, e.g., a Boolean-Binary mapping so that the

requester is not restricted.

The pre-built program logic that is inserted into a translation function may

not be accurate for every specific parameter mapping. Even the highest com-

patibility degree is no guarantee that the pre-built program logic is accurate.

For example, the Glue Code Generator does not consider the units of param-

eters. That the program logic is accurate must be checked by the requester

manually. Ultimately, it is up to the requester to implement the translation

function properly.

173

7 Parameter Matcher and Glue Code Generator

7.5 Evaluation

This section evaluates the Parameter Matcher and the Glue Code Generator.

The source code of the Parameter Matcher and the Glue Code Generator and

the evaluation artifacts are publicly available on GitHub6. The evaluation

focuses on the mappings between the operations operationsSchedulesFrom-

DateTimeByOriginAndDestinationGet of the Lufthansa API and the vehicles

operation of the Hertz API. It is examined how the different similarity met-

rics perform and in particular how much the structure-based similarity metric

based on semantic types contributes to finding relevant parameter mappings.

In addition, it is examined which parts of the glue code can be generated

and what still needs to be handwritten. This section evaluates the following

research questions:

R6 Do semantic annotations improve the effectiveness of parameter matching?

R7 To what extent glue code generation can be automatized?

7.5.1 Effectiveness of Parameter Matcher

The section evaluates the effectiveness of the Parameter Matcher and the per-

formance of string-, constraint-, and structure-based similarity measures with

respect to average precision Equation 5.2).

Preparation

First, the inputs and outputs of the two operations are annotated

with semantic types as much as possible. The Semantic Annotator

supports this manual task. The ground truth consists of the pa-

rameter mappings ⟨destination, pickupLocation⟩, ⟨DateT ime, pickupDay⟩,
⟨fromDateT ime, pickupDay⟩ (cf. Figure 7.1). The last two mappings are

alternatives: Either the value from input fromDateTime can be passed to

pickupDay (input-input) or from output DateTime to pickupDay (output-

input).

6https://github.com/brokerage-as-a-service/baas

174

https://github.com/brokerage-as-a-service/baas

7.5 Evaluation

σ1 σ2
σ1+σ2

2
σ

⟨destination, pickupLocation ⟩ 134 174 84 18

⟨fromDateTime, pickupDay ⟩ 5162 302 2423 69

⟨DateTime, pickupDay⟩ 5460 1224 2556 71

Average Precision .0026 .0033 0.0042 0.028

Table 7.3: Performance of similarity metrics: Ranks and average precision

Proceeding

The Parameter Matcher is executed with comprehensive API specifications

including the semantic type annotations as inputs. The similarity measures

and ranks for the mappings are calculated.

Results

Table 7.3 shows the ranks of the true positives and the average precision

for string-based (σ1); constraint-based (σ2); combined string- and constraint-

based (σ1+σ2
2); and combined string-, constraint-, structure-based (σ)7. Ta-

ble 7.4 shows the ranking of the 6000 parameter mappings according to σ. It

can be seen that string-based and constraint-based similarity measures per-

form better with respect to average precision when combined. Including the

structure-based similarity measure further improves average precision. This

shows how semantic type annotations can improve the accuracy of the ranking.

7.5.2 Glue Code Generation

This section analyzes how much of the glue code can be created automatically

by the Glue Code Generator. This is an important criterion to increase the

efficiency of creating mashups.

7Structure-based similarity (σ3) alone is not listed, because not all parameters can be
annotated with a semantic type so that parameters without a semantic type annotation
appear at a random rank.

175

7 Parameter Matcher and Glue Code Generator

P1 P2 σ1 σ2 σ3 σ

1 Effective dropoffDayStandard .167 1.0 1.0 .722

2 Expiration dropoffDayStandard .167 1.0 1.0 .722

3 AircraftCode selectedCarType .133 1.0 1.0 .711

4 Expiration pickupDayStandard .118 1.0 1.0 .706

5 Expiration pickupDay .1 1.0 1.0 .7

6 Effective pickupDayStandard .059 1.0 1.0 .686

7 fromDateTime dropoffTime .5 1.0 .5 .667

8 Effective dropoffDay .0 1.0 1.0 .667

9 Effective pickupDay .0 1.0 1.0 .667

10 Expiration dropoffDay .0 1.0 1.0 .667

...
...

...
...

...
...

...

18 destination pickupLocation .357 1.0 .5 .619

...
...

...
...

...
...

...

6000 StopQuantity fee .0 .0 .0 .0

Table 7.4: Ranked parameter mappings

Preparation

Normally, the Glue Code Generator runs with the parameter mappings gen-

erated by the Parameter Matcher and manually selected by the requester.

To simulate the selection of parameter mappings by a requester for this eval-

uation, the parameter mappings from the ground truth are taken for code

generation. Using the ground truth mappings means that it is pretended that

the requester has selected the correct mappings.

Proceeding

The Glue Code Generator is executed with the parameter mappings

⟨destination, pickupLocation⟩ and ⟨DateT ime, pickupDay⟩ as inputs.

176

7.5 Evaluation

Results

Listing 17 is an excerpt from the generated glue code. The target pro-

gramming language is Java. First, mandatory inputs of the Java method

operationsSchedulesFromDateTimeByOriginAndDestinationGet are initial-

ized with default values and optional inputs are initialized with the null value

(Listing 17 line 1-7). Default values are not very meaningful but are sufficient

to fulfill the API contract and to start testing the mashup. The requester

just has to replace the default values with variables of the mashup.

Parts of the Lufthansa APIs response will serve as inputs for the Hertz

API. To extract single inputs and outputs from JSON messages, the Java

library com.jayway.jsonpath8 is used.

The specification of the operation operationsSchedulesFromDateTime-

ByOriginAndDestinationGet declares seven URL path/query parameters.

Consequently, the generated Java method has seven arguments. The Hertz

API, in contrast, expects all inputs to be structured in a single JSON object

which is why the Java method vehicles has only one parameter (Listing 17 line

16, 26). The Code Generator initializes this JSON object with the example

value from the Hertz OpenAPI specification, which immediately allows the

requester to create syntactically valid API calls through the generated code.

What still needs to be done manually is wiring the input JSON object with

the rest of the program logic of the mashup.

Because ⟨DateT ime, pickupDay⟩ is an output-input mapping, the value of

DateTime is passed to pickupDay (cf. Listing 17 line 19). Both DateTime

and pickupDay are declared as data type string. Using the heuristic from

Table 7.2 detects the format date-time (java.time.OffsetDateTime) for

DateTime and date (java.time.LocalDate) for pickupDay. The generated

helper method dateTime as offsetDateTime() casts the string DateTime

into its actual Java type OffsetDateTime (cf. Listing 17 line 29). The

return value of dateTime as offsetDateTime() is the input for the translation

function dateTime to pickupDay() which translates the type OffsetDateTime

to LocalDate. In this case, the automatically generated translation function

8https://github.com/json-path/JsonPath

177

https://github.com/json-path/JsonPath

7 Parameter Matcher and Glue Code Generator

1 public void compose(){

2 String origin = "";

3 String destination = "";

4 String fromDateTime = "";

5 //...

6

7 Object response1 =

lufthansa.operationsSchedulesFromDateTimeByOriginAndDestinationGet(↪→

8 origin, destination, fromDateTime, Accept, directFlights, limit, offset

9);

10

11 String dateTime =

com.jayway.jsonpath.JsonPath.parse(response1).read("$.ScheduleResource ⌋
.Schedule.[*].Flight.Arrival.ScheduledTimeLocal.DateTime",

String.class);

↪→

↪→

↪→

12

13 com.jayway.jsonpath.DocumentContext requestBody1 =

com.jayway.jsonpath.JsonPath.using(com.jayway.jsonpath.Configuration.↪→

14 defaultConfiguration()).parse("{\"pickupDay\": \"30/06/2019\",

\"pickupLocation\": \"Flughafen München, Franz-Josef-Strauß\"}");↪→

15

16 requestBody1.set("$.pickupDay",

17 dateTime_to_pickupDay(

18 dateTime_as_offsetDateTime(dateTime)

19)

20);

21

22 requestBody1.set("$.pickupLocation",

destination_to_pickupLocation(destination));↪→

23 Object response2 = hertz.vehicles(requestBody1);

24 }

25

26 protected java.time.OffsetDateTime dateTime_as_offsetDateTime(String value)

{

27 return java.time.OffsetDateTime.parse(value,

java.time.format.DateTimeFormatter.ISO_OFFSET_DATE_TIME);↪→

28 }

29

30 protected java.time.LocalDate

dateTime_to_pickupDay(java.time.OffsetDateTime value) {↪→

31 java.time.LocalDate result;

32 result = value.toLocalDate();

33 return result;

34 }

35

36 protected String destination_to_pickupLocation(String value){

37 String result;

38 result = value.toString();

39 return result;

40 }

Listing 17: Generated glue code from ⟨destination, pickupLocation⟩ and
⟨DateTime, pickupDay⟩

178

7.6 Summary

is accurate. This shows that the Code Generator can even handle incorrectly

specified data types in the OpenAPI specification.

The method destination to pickupLocation() (Listing 17 line 39) translates

destination into pickupLocation. Both parameters are of type string. The

pre-built translation function is just copying the value. In this case, the

predicted translation function is inaccurate, because destination contains an

IATA code while pickupLocation expects a Hertz-specific identifier. An ap-

propriate translation function cannot be generated completely automatically

because it is specific to Lufthansa and Hertz API. Here, the requester has to

manually implement the program logic of destination to pickupLocation().

In total, the generated glue code for the mappings

⟨destination, pickupLocation⟩ and ⟨DateT ime, pickupDay⟩ has 43 lines

of code. Out of these 43 automatically generated lines only 5 need manual

adjustments for the parameter initialization with meaningful values and the

implementation of the translation function destination to pickupLocation().

This means that 88% of the generated glue code is accurate. Of course, the

implementation of a mashup goes beyond the range of functions that the

Glue Code Generator can generate. Nevertheless, it relieves the requester of

a large part of the work, which contributes to the more efficient creation of

mashups.

7.6 Summary

An important factor that makes creating mashups inefficient is identifying

those parameters that need to be exchanged between APIs. Parameters have

a direction and a syntactic data type. It is shown in this chapter that all

combinations of directions and types can in principle be relevant for the cre-

ation of mashups, so the search for relevant parameter pairs cannot be sim-

plified by excluding certain combinations in advance. This chapter introduces

the Parameter Matcher, which helps requesters finding those parameters that

need to be exchanged between APIs in a mashup. To do this, the Parameter

Matcher calculates string-, constraint-, and structure-based similarity values.

The structure-based similarity scores are computed using the semantic type an-

notations previously added by the Semantic Annotator. The evaluation shows

179

7 Parameter Matcher and Glue Code Generator

that the structure-based similarity measures based on the semantic type an-

notations increase the average precision, which means that related parameters

from different APIs can be found more efficiently. Another important fac-

tor that influences the efficiency of creating mashups is to program glue code

that translates between the syntactically incompatible parameters of different

APIs. This chapter also introduces the Glue Code Generator, which generates

glue code from the parameter mappings supplied by the Parameter Matcher.

What is novel about the Glue Code Generator is that it can generate a lot

of the mashup’s program logic, i.e., extracting the relevant parameters from

JSON messages, syntactically translating the parameter values, and calling

subsequent operations. In the evaluation, it is shown that 88% of the gen-

erated code does not need manual adjustments. The evaluation sample with

three parameter mappings shows the validity of the approach. In future work,

the sample must be enlarged in order to be able to make more general state-

ments. Of particular interest is how often the generated translation functions

can actually be used, as this has a significant impact on efficiency. Neverthe-

less, the Parameter Matcher and Glue Code Generator form a basis for an

efficient creation of mashups.

180

8 Conclusion and Future Work

8.1 Summary

This dissertation introduces the novel IT service Brokerage as a Service

(BaaS), which substantially assists requesters and API providers in collab-

orating to create new mashups from existing APIs. This support comprises

(1) annotating API specifications with semantic types from a global ontology

to resolve terminological heterogeneity between requests and API specifica-

tions so that relevant API operations can be found effectively (2) deriving

API protocols so that requesters can include all dependent operations calls re-

quired in their mashups, (3) identifying the input and output parameters that

need to be exchanged between different APIs, and (4) generating the glue code

from parameter mappings that makes operations from APIs interoperable. In

particular, the contributions of this dissertation are the following:

1. Effective API Annotation and Discovery:

BaaS includes the Semantic Annotator to help providers to find

relevant semantic types of a global ontology to enrich their syntactic

API specifications with ontological semantics. The terminological

heterogeneity between API offers and requests that prevents effective

service discovery is eliminated by annotating the requests and offers by

a common set of semantic types, provided by a global ontology. The

Semantic Annotator automatically derives search queries from the API

specifications to search relevant semantic types. It is shown that using

parameter names, the parameter description, and the operation name

for building the search queries is the most effective. The lowercase

transformation is proven to be the most effective matching technique.

Stemming and adding synonyms only is decreasing effectiveness.

181

8 Conclusion and Future Work

In this dissertation, it is shown that the effectiveness of the service dis-

covery is increased when requests and API offers are annotated with

the semantic types of a global ontology. It is shown in the evaluation

that relevant operations from RapidAPI.com are found more effectively

by the existing service matchmaker OWLS-MX3 [20] when operations

are annotated with semantic types from the global ontology schema.org.

Since RapidAPI.com, schema.org, and OWLS-MX3 are completely in-

dependent of each other, this evaluation simulates a realistic scenario.

2. Mining API Protocols:

BaaS includes the API Protocol Miner that derives API protocols from

call-logs using process mining. API protocols consist of control flow

constructs and operation calls. Different kinds of control flow constructs

from the specification languages OWL-S, WS-BPEL, and BPMN are

categorized and then compared to the kinds of control flow constructs

that can be discovered by the process mining algorithms Alpha Miner,

Inductive Miner, and Heuristics Miner. The result is that process min-

ing algorithms cannot distinguish between parallel and sequential control

flows when the latter are executed in any order. Furthermore, the con-

crete conditions for branches in the control flow cannot be retrieved using

any of the investigated algorithms. Call logs cannot be used directly for

process mining because a process instance must be assigned to each call.

In this dissertation, two methods are presented in which the process

instance is assigned via the client host/user agent or an authorization

token/sessionID. The evaluation shows that the API protocols discov-

ered by the Heuristics Miner are very close to a manually created API

protocol, even if the call-logs are noisy. Real-world call-logs are often

noisy which is a challenge for process mining as noise promotes the cre-

ation of faulty API protocols. Between the Alpha Miner, the Inductive

Miner, and the Heuristics Miner it is found that the Heuristics Miner is

best suited for API protocol mining from call-logs, because it is robust

against noise and can be adjusted easily to the different frequencies in

the call-logs of different APIs. This can be achieved by adjusting the

frequency thresholds. In the evaluation with the SIMPHERA API, the

Heuristics Miner also showed the best results.

182

8.1 Summary

3. Effective Parameter Matching: The Parameter Matcher of the BaaS

helps requesters to identify the necessary data flows between different

APIs that are to be combined in a mashup. All input and output pa-

rameters of API operations involved in a mashup are matched pairwise

and the similarity of each pair is assessed. The similarity of each param-

eter mapping is determined based on string-, constraint-, and structure-

based similarity metrics. The structure-based similarity metric is calcu-

lated based on the type hierarchy of the semantic types added by the

Semantic Annotator. Based on a real-world example it is shown that the

effectiveness of the Parameter Matcher is considerably improved through

structure-based similarity metrics.

4. Glue Code Generation: The Glue Code Generator helps the re-

questers to create the program code that makes the different APIs in

a mashup interoperable. The glue code is generated from the parameter

mappings produced by the Parameter Matcher. What is novel about

the generated code is that it extracts relevant values from complex data

structures and converts the data before it passes it to the subsequent

operation. The Glue Code Generator predicts and injects proper con-

version function into the program code using a heuristic. Based on a

small sample, it is shown that 88% of the generated code is accurate,

which shows the validity of the approach. Larger studies with larger

samples are needed to confirm general validity. In this way, the Code

Generator contributes in making mashup creation more efficient.

The BaaS approach (1) is upward compatible because it builds upon the ex-

isting corpus of REST APIs. (2) is learnable because providers and requesters

can continue using the technologies they are familiar with and do not need

special expertise, (3) is scalable because the approach implements effective

search methods which are crucial to find relevant operations and parameter

mappings in the large corpus of available APIs, (4) makes heterogeneous APIs

interoperable as it generates the glue code that wires their inputs and outputs

so they can be exchanged between each other, (5) makes API specifications

comprehensible because it enriches them with ontological and behavioral se-

mantics.

183

8 Conclusion and Future Work

8.2 Future Work

Some aspects of the BaaS approach presented in this dissertation have to be

addressed in future research. On one hand, the method for providers to link

their API specifications to a global ontology plays a key role in this disserta-

tion. On the other hand, semi-automatic support to link requests to the global

ontology is out of the scope of this dissertation. Also, systematic methods to

select an existing global ontology that is suitable to describe APIs or methods

to develop and maintain new global ontologies need to be investigated in the

future. Finally, the concepts that are proposed in this dissertation can also be

used for other fields of applications: The API protocol specifications extracted

from call-logs could be used to automatically make existing RESTful web ser-

vices compliant with HATEOAS [2]. Additionally, the ontological annotations

of the JSON response messages that are created using the Semantic Annota-

tor can be used to automatically convert ordinary JSON response messages

into the JSON-LD format to make ordinary RESTful web services usable for

applications of the Semantic Web. These further research ideas are explained

in detail below.

8.2.1 Linking Textual Requests with Ontologies

Terminological heterogeneity between requests and API offers prevents re-

questers from effectively finding relevant operations. In this dissertation, it

is shown that annotating requests and API offers with semantic types from

a global ontology eliminates heterogeneity and increases the effectiveness of

service discovery. While the process of how providers annotate their API

specification with semantic types is the focus of the thesis, the process of how

untrained requesters can link textual service requests with semantic types has

to be addressed in future works.

For this purpose, there are already approaches that are going in that direc-

tion: Bäumer [136] presents an approach for reducing ambiguity, incomplete-

ness, and vagueness in textual requirement specifications, written in natural

language. The approach includes the tool CORDULA which gives requesters

feedback about the deficits in their requests and assists them in eliminating

them. This particularly addresses resolving lexical ambiguity, which occurs

when the meaning of the words used in a textual request is ambiguous.

Future work has to explore how lexical ambiguity can be eliminated by

184

8.2 Future Work

linking it to semantic types of a global ontology. On one hand, API providers

would use the Semantic Annotator that is presented in this dissertation to

link their API specifications with the global ontology. On the other hand,

requesters would use an extended version of CORDULA that allows them to

link single words in their textual requests with the global ontology. This way,

even untrained requesters and providers would obtain sophisticated tools that

help them to converge towards a common ontology.

8.2.2 Systematically Developing Global Ontologies

In this dissertation, schema.org is used as a global ontology to annotate APIs

from RapidAPI.com just for evaluation. This evaluation shows that the se-

mantic types from schema.org are insufficient to describe all the input and

output parameters of APIs from RapidAPI. This is because global ontology

and APIs have been created independently.

Another possibility for using independent off-the-shelf ontologies like

schema.org is developing new global ontologies for a specific context. Huma [5]

describes guidelines on how global ontologies are developed and maintained.

However, no systematic, well-defined process to develop and maintain global

ontologies has been proposed yet. For this purpose, a top-down and a bottom-

up approach are conceivable: In the top-down approach, the global ontology is

created independently from the APIs that are to be annotated. Developing a

global ontology and APIs independently facilitates them being heterogeneous.

In the bottom-up approach, however, existing API specifications are analyzed

in order to learn a global ontology specifically for these existing APIs. Within

this tailor-made global ontology, the semantic types derived from the respec-

tive specifications can then be linked together to resolve the heterogeneity

between the various APIs. Because new APIs may be added all the time,

the global ontology needs to be extended continuously. Future work will in-

vestigate whether the top-down or bottom-up approach is more practical. In

addition, systematic processes for creating and maintaining global ontologies

need to be explored.

8.2.3 Lifting the Maturity Level of Existing REST APIs

The Richardson maturity model [137] categorizes RESTful web services ac-

cording to the degree to which they implement features of the REST archi-

tectural style. The maturity model defines four levels of maturity. RESTful

185

8 Conclusion and Future Work

web services that are on the fourth level implement HATEOAS. HATEOAS-

conform web services send links to all possible states that are adjacent to the

current state. HATEOAS decouples the client and the server applications so

that they can evolve independently. However, many RESTful web services of

today do not implement HATEOAS.

In this dissertation, a method is described on how API protocol specifica-

tions can be obtained from call-logs using process mining. Future work will

examine whether these APIs protocols can also be used to automatically ex-

tend the response messages of RESTful web services by HATEOAS links. The

idea here is to determine at the server side the current state in the API proto-

col on the basis of the recent API call. Based on the current state, all possible,

adjacent hypermedia links are determined based on the transitions defined in

the API protocol. The response messages are automatically expanded by the

respective hypermedia links. This procedure could help providers in lifting

their legacy RESTful web services to a higher maturity level.

Even though a RESTful web service is HATEOAS-conform, the data it

produces can barely be used for many applications of the Semantic Web. This

would require that the data it produces is in JSON-LD format [59]. The JSON-

LD format is to link single attributes in a JSON response message to semantic

types. However, many RESTful web services that exist today produce ordinary

JSON and do not support JSON-LD. The idea is to use automatically enrich

JSON response messages by semantic type annotations provided through the

Semantic Annotator to make them utilizable for Semantic Web applications.

8.3 Final Remark

With the methods of Brokerage as a Service, requesters can find relevant APIs

more effectively thanks to the semantic type annotations, use the APIs cor-

rectly through the API protocols derived from call-logs, identify the necessary

data flows between the composed APIs more quickly, and pre-generate large

parts of the program logic, to make the APIs interoperable with each other.

The results of this dissertation thus make a substantial contribution to the

efficient creation of mashups.

186

Bibliography

[1] A. A. Kalenkova, W. M. P. van der Aalst, I. A. Lomazova, and V. A.

Rubin, “Process mining using BPMN: relating event logs and process

models,” in Proceedings of the 19th International Conference on Model

Driven Engineering Languages and Systems, p. 123, 2016.

[2] R. T. Fielding, Architectural styles and the design of network-based soft-

ware architectures. PhD thesis, University of California, 2000.

[3] G. A. Miller, “WordNet: A Lexical Database for English,” Communica-

tions of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[4] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein, “Se-

mantic web service search: A brief survey,” KI - Künstliche Intelligenz,

vol. 30, no. 2, pp. 139–147, 2016.

[5] Z. Huma, Automatic Service Discovery and Composition for Heteroge-

neous Service Partners. PhD thesis, Paderborn University, 2015.

[6] N. Oldham, C. Thomas, A. P. Sheth, and K. Verma, “METEOR-S web

service annotation framework with machine learning classification,” in

Proceedings of the International Workshop on Semantic Web Services

and Web Process Composition (SWSWPC), pp. 137–146, 2004.

[7] B. C. N. Oliveira, A. Huf, I. L. Salvadori, and F. Siqueira, “Automatic

semantic enrichment of data services,” in Proceedings of the 19th Inter-

national Conference on Information Integration and Web-based Appli-

cations & Services (iiWAS), pp. 415–424, 2017.

[8] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Supporting the cre-

ation of semantic RESTful service descriptions,” in Proceedings of 8th

International Semantic Web Conference (ISWC), 2009.

187

BIBLIOGRAPHY

[9] M. d’Aquin, M. Sabou, M. Dzbor, C. Baldassarre, L. Gridinoc, S. An-

geletou, and E. Motta, “Watson: a gateway for the semantic web,”

Proceedings of the 4th European Semantic Web Conference (ESWC),

2007.

[10] M. Cremaschi and F. D. Paoli, “A practical approach to services com-

position through light semantic descriptions,” in Proceedings of the 7th

European Conference on Service-Oriented and Cloud Computing (ES-

OCC), pp. 130–145, 2018.

[11] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,

and D. McClosky, “The Stanford CoreNLP natural language processing

toolkit,” in Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics, System Demonstrations, pp. 55–60, 2014.

[12] A. Heß, E. Johnston, and N. Kushmerick, “ASSAM: A tool for semi-

automatically annotating semantic web services,” in Proceedings of the

3rd International Semantic Web Conference (ISWC), pp. 320–334, 2004.

[13] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic

synthesis of behavior protocols for composable web-services,” in Pro-

ceedings of the 7th joint meeting of the European Software Engineering

Conference and the International Symposium on Foundations of Soft-

ware Engineering, pp. 141–150, 2009.

[14] S. Dustdar and R. Gombotz, “Discovering web service workflows us-

ing web services interaction mining,” International Journal of Business

Process Integration and Management, vol. 1, no. 4, pp. 256–266, 2006.

[15] R. Gombotz and S. Dustdar, “On web services workflow mining,” in

Proceedings of the Business Process Management Workshops (BPM),

pp. 216–228, 2005.

[16] J. L. C. Izquierdo and J. Cabot, “Composing JSON-based web APIs,”

in Proceedings of the 14th International Conference on Web Engineering

(ICWE), pp. 390–399, 2014.

[17] M. H. Burstein, D. V. McDermott, D. R. Smith, and S. J. Westfold,

“Derivation of glue code for agent interoperation,” Autonomous Agents

and Multi-Agent Systems, vol. 6, no. 3, pp. 265–286, 2003.

188

BIBLIOGRAPHY

[18] F. Bülthoff and M. Maleshkova, “Restful or restless – current state of

today’s top web apis,” in Proceedings of the 11th Extended Semantic

Web Conference (ESWC) – Satellite Events, pp. 64–74, 2014.

[19] R. Meusel, C. Bizer, and H. Paulheim, “A web-scale study of the adop-

tion and evolution of the schema.org vocabulary over time,” in Proceed-

ings of the 5th International Conference on Web Intelligence, Mining

and Semantics WIMS, pp. 15:1–15:11, 2015.

[20] M. Klusch and P. Kapahnke, “OWLS-MX3: an adaptive hybrid seman-

tic service matchmaker for OWL-S,” in Proceedings of the 3rd Interna-

tional Workshop on Service Matchmaking and Resource Retrieval in the

Semantic Web (SMR2), 2009.

[21] S. Schwichtenberg, C. Gerth, Z. Huma, and G. Engels, “Normalizing

heterogeneous service description models with generated QVT transfor-

mations,” in Proceedings of the 10th European Conference on Modelling

Foundations and Applications (ECMFA), pp. 180–195, 2014.

[22] G. Engels, B. Güldali, C. Soltenborn, and H. Wehrheim, “Assuring con-

sistency of business process models and web services using visual con-

tracts,” in Applications of Graph Transformations with Industrial Rele-

vance, pp. 17–31, 2008.

[23] S. Schwichtenberg, C. Gerth, and G. Engels, “RSDL workbench results

for OAEI 2014,” in Proceedings of the 9th International Workshop on

Ontology Matching collocated with (ISWC), pp. 155–162, 2014.

[24] S. Schwichtenberg and G. Engels, “RSDL workbench results for OAEI

2015,” in Proceedings of the 10th International Workshop on Ontology

Matching collocated with (ISWC), pp. 192–199, 2015.

[25] S. Schwichtenberg and G. Engels, “Automatized derivation of compre-

hensive specifications for black-box services,” in Proceedings of the 38th

International Conference on Software Engineering (ICSE) – Companion

Volume, pp. 815–818, 2016.

[26] S. Schwichtenberg, C. Gerth, and G. Engels, “From Open API to se-

mantic specifications and code adapters,” in Proceedings of the 24th In-

ternational Conference on Web Services (ICWS), pp. 484–491, 2017.

189

BIBLIOGRAPHY

[27] S. Schwichtenberg, I. Jovanovikj, C. Gerth, and G. Engels, “CrossEcore:

an extendible framework to use Ecore and OCL across platforms,” in

Proceedings of the 40th International Conference on Software Engineer-

ing (ICSE) – Companion Volume, pp. 292–293, ACM, 2018.

[28] B. Jazayeri and S. Schwichtenberg, “On-the-fly computing meets IoT

markets - towards a reference architecture,” in Proceedings of the 14th

International Conference on Software Architecture (ICSA) – Companion

Volume, pp. 120–127, 2017.

[29] B. Jazayeri and S. Schwichtenberg, “On the necessity of an architecture

framework for on-the-fly computing,” Softwaretechnik-Trends, vol. 37,

no. 2, 2017.

[30] B. Jazayeri, S. Schwichtenberg, J. Küster, O. Zimmermann, and G. En-

gels, “Modeling and analyzing architectural diversity of open platforms,”

in Proceedings of the 32nd International Conference on Advanced Infor-

mation Systems Engineering (CAiSE), vol. 12127, pp. 36–53, 2020.

[31] SmartBear Software, “State of software quality API - latest trends

& insights for 2023.” https://smartbear.com/state-of-software-

quality/api/tools/, 2023.

[32] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC 2616: Hypertext transfer protocol – HTTP/1.1.”

https://www.ietf.org/rfc/rfc2616.txt, 1999.

[33] L. M. T. Berners-Lee, R. Fielding, “RFC 3986: Uniform resource identi-

fier (uri): Generic syntax.” https://www.ietf.org/rfc/rfc3986.txt,

2005.

[34] “Hypertext markup language HTML.” https://html.spec.whatwg.

org/multipage/, 2019.

[35] D. Crockford, “RFC 4627: The application/json media type

for javascript object notation (json).” https://www.ietf.org/rfc/

rfc4627.txt, 2006.

[36] J. Webber, S. Parastatidis, and I. Robinson, REST in practice: Hyper-

media and systems architecture. O’Reilly Media, Inc., 2010.

190

https://smartbear.com/state-of-software-quality/api/tools/
https://smartbear.com/state-of-software-quality/api/tools/
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc3986.txt
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc4627.txt

BIBLIOGRAPHY

[37] R. Chinnici, M. Gudgin, J.-J. Moreau, and S. Weerawarana, “Web ser-

vices description language (WSDL) version 2.0 part 1: Core language.”

http://www.w3.org/TR/wsdl20/, 2007.

[38] M. Hadley, “Web application description language.” https://www.w3.

org/Submission/wadl/, 2009.

[39] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: An HTML mi-

croformat for describing RESTful web services,” in Proceedings of the

International Conference on Web Intelligence (WIC), pp. 619–625, 2008.

[40] “OpenAPI specification v3.1.0.” https://spec.openapis.org/oas/

v3.1.0.html, 2021.

[41] “JSON schema.” https://json-schema.org/specification.html,

2019.

[42] T. Berners-Lee and M. Fischetti, Weaving the Web: The original design

and ultimate destiny of the World Wide Web by its inventor. Turtleback,

2000.

[43] J. Euzenat and P. Shvaiko, Ontology Matching, vol. 18. Springer, 2007.

[44] “RDF schema 1.1.” https://www.w3.org/TR/rdf-schema/, 2014.

[45] “OWL 2 web ontology language structural specification and functional-

style syntax.” https://www.w3.org/TR/owl-syntax/, 2012.

[46] S. Lohmann, S. Negru, F. Haag, and T. Ertl, “Visualizing ontologies

with VOWL,” Semantic Web, vol. 7, no. 4, pp. 399–419, 2016.

[47] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-

raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-

vasan, and K. Sycara, “OWL-S: Semantic markup for web services.”

http://www.w3.org/Submission/OWL-S/, 2004.

[48] H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel, “WSML – a lan-

guage framework for semantic web services,” in W3C Workshop on Rule

Languages for Interoperability, 2005.

191

http://www.w3.org/TR/wsdl20/
https://www.w3.org/Submission/wadl/
https://www.w3.org/Submission/wadl/
https://spec.openapis.org/oas/v3.1.0.html
https://spec.openapis.org/oas/v3.1.0.html
https://json-schema.org/specification.html
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-syntax/
http://www.w3.org/Submission/OWL-S/

BIBLIOGRAPHY

[49] A. P. Sheth, K. Gomadam, and J. Lathem, “SA-REST: semantically

interoperable and easier-to-use services and mashups,” IEEE Internet

Computing, vol. 11, no. 6, pp. 91–94, 2007.

[50] D. Roman, J. Kopecký, T. Vitvar, J. Domingue, and D. Fensel, “WSMO-

Lite and hRESTS: Lightweight semantic annotations for web services

and RESTful APIs,” Journal of Web Semantics, vol. 31, pp. 39–58,

2015.

[51] M. Lanthaler and C. Guetl, “Hydra: A vocabulary for hypermedia-

driven web APIs,” in Proceedings of the 22nd International Conference

on World Wide Web (WWW) – Companion Volume, 2013.

[52] M. Cremaschi and F. De Paoli, “Toward automatic semantic API de-

scriptions to support services composition,” in Proceedings of the 6th

European Conference on Service-Oriented and Cloud Computing (ES-

OCC), pp. 159–167, 2017.

[53] N. Mainas, E. G. M. Petrakis, and S. Sotiriadis, “Semantically enriched

open API service descriptions in the cloud,” in Proceedings of the 8th

International Conference on Software Engineering and Service Science

(ICSESS), pp. 66–69, 2017.

[54] H. Dong, F. K. Hussain, and E. Chang, “Semantic web service match-

makers: state of the art and challenges,” Concurrency and Computation:

Practice and Experience, vol. 25, no. 7, pp. 961–988, 2013.

[55] S. S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, N. Mendelsohn,

D. Beech, and M. Maloney, “W3C XML schema definition language

(XSD) 1.1 part 1: Structures.” http://www.w3.org/TR/xmlschema11-

1/, April 2012.

[56] “XSL transformations (XSLT) version 3.0.” https://www.w3.org/TR/

xslt-30/, June 2017.

[57] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt,

A. Sheth, and K. Verma., “Web service semantics – WSDL-S.” http:

//www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/, 2005.

192

http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/
http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/

BIBLIOGRAPHY

[58] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL: semantic

annotations for WSDL and XML schema,” IEEE Internet Computing,

vol. 11, no. 6, pp. 60–67, 2007.

[59] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström,

“JSON-LD 1.1 – a JSON-based serialization for Linked Data.” http:

//json-ld.org/spec/latest/json-ld/, 2017.

[60] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic

schema matching,” The International Journal on Very Large Data

Bases, vol. 10, no. 4, pp. 334–350, 2001.

[61] Y. Kalfoglou and M. Schorlemmer, “Ontology mapping: The state of

the art,” The Knowledge Engineering Review, vol. 18, no. 1, pp. 1–31,

2003.

[62] N. F. Noy, “Semantic integration: A survey of ontology-based ap-

proaches,” SIGMOD Record, vol. 33, no. 4, pp. 65–70, 2004.

[63] P. Shvaiko and J. Euzenat, “A survey of schema-based matching ap-

proaches,” in Journal on Data Semantics IV, pp. 146–171, 2005.

[64] A. Doan and A. Y. Halevy, “Semantic integration research in the

database community: A brief survey,” AI magazine, vol. 26, no. 1, p. 83,

2005.

[65] N. Choi, I.-Y. Song, and H. Han, “A survey on ontology mapping,”

SIGMOD Record, vol. 35, no. 3, pp. 34–41, 2006.

[66] P. Shvaiko and J. Euzenat, “Ontology matching: State of the art and

future challenges,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 25, no. 1, pp. 158–176, 2013.

[67] S. Arifulina, Solving Heterogeneity for a Successful Service Market. PhD

thesis, Paderborn University, 2016.

[68] G. Klyne and C. Newman, “RFC 3339: Date and time on the internet:

Timestamps.” https://www.ietf.org/rfc/rfc3339.txt, 2002.

193

http://json-ld.org/spec/latest/json-ld/
http://json-ld.org/spec/latest/json-ld/
https://www.ietf.org/rfc/rfc3339.txt

BIBLIOGRAPHY

[69] M. Benerecetti, P. Bouquet, and C. Ghidini, “On the dimensions of con-

text dependence: Partiality, approximation, and perspective,” in Pro-

ceedings of the 3rd International and Interdisciplinary Conference on

Modeling and Using Context (CONTEXT), vol. 2116, pp. 59–72, 2001.

[70] P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tes-

saris, “Specification of a common framework for characterizing align-

ment,” tech. rep., University of Trento, 2004.

[71] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions, and reversals,” in Soviet physics doklady, vol. 10, pp. 707–710,

1966.

[72] W. E. Winkler, “String comparator metrics and enhanced decision rules

in the fellegi-sunter model of record linkage,” in Proceedings of the Sec-

tion on Survey Research, pp. 354–359, 1990.

[73] D. Harman, “How effective is suffixing?,” Journal of the American So-

ciety for Information Science (JASIS), vol. 42, no. 1, pp. 7–15, 1991.

[74] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,

pp. 130–137, 1980.

[75] R. Krovetz, “Viewing morphology as an inference process,” in Proceed-

ings of the 16th International Conference on Research and Development

in Information Retrieval (SIGIR), pp. 191–202, 1993.

[76] A. Maedche and V. Zacharias, “Clustering ontology-based metadata in

the semantic web,” in Principles of Data Mining and Knowledge Dis-

covery, pp. 348–360, 2002.

[77] Z. Wu and M. S. Palmer, “Verb semantics and lexical selection,” in

Proceedings of the 32nd Annual Meeting of the Association for Compu-

tational Linguistics, pp. 133–138, 1994.

[78] W. M. P. van der Aalst, “Service mining: Using process mining to dis-

cover, check, and improve service behavior,” IEEE Transactions on Ser-

vices Computing, vol. 6, no. 4, pp. 525–535, 2013.

[79] E.F. Moore, “Gedanken-experiments on sequential machines,” in Au-

tomata Studies, pp. 129–153, 1956.

194

BIBLIOGRAPHY

[80] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Institut für

instrumentelle Mathematik, Bonn, 1962.

[81] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow min-

ing: Discovering process models from event logs,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[82] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discov-

ering block-structured process models from event logs containing in-

frequent behaviour,” in Proceedings of Business Process Management

(BPM) Workshops, pp. 66–78, 2013.

[83] E. Verbeek and J. Buijs, “Introduction to process mining with ProM.”

https://www.futurelearn.com/info/courses/process-mining/,

2016.

[84] “RDFa core 1.1 – third edition.” https://www.w3.org/TR/rdfa-core/,

Mar. 2015.

[85] M. Taheriyan, C. A. Knoblock, P. A. Szekely, and J. L. Ambite, “Rapidly

integrating services into the linked data cloud,” in Proceedings of the 11th

International Semantic Web Conference (ISWC), pp. 559–574, 2012.

[86] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random

fields: Probabilistic models for segmenting and labeling sequence data,”

in Proceedings of the 18th International Conference on Machine Learning

(ICML), pp. 282–289, 2001.

[87] “SPARQL 1.1 query language.” https://www.w3.org/TR/sparql11-

query/.

[88] M. N. Lucky, M. Cremaschi, B. Lodigiani, A. Menolascina, and F. D.

Paoli, “Enriching API descriptions by adding API profiles through se-

mantic annotation,” in Proceedings of the 14th International Conference

on Service-Oriented Computing (ICSOC), pp. 780–794, 2016.

[89] Z. Zhang, “Effective and efficient semantic table interpretation using

TableMiner(+),” Semantic Web, vol. 8, no. 6, pp. 921–957, 2017.

195

https://www.futurelearn.com/info/courses/process-mining/
https://www.w3.org/TR/rdfa-core/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

BIBLIOGRAPHY

[90] A. Heß and N. Kushmerick, “Learning to attach semantic metadata

to web services,” in Proceeding of the 2nd International Semantic Web

Conference (ISWC), pp. 258–273, 2003.

[91] A. Zaveri, S. Dastgheib, C. Wu, T. Whetzel, R. Verborgh, P. Avil-

lach, G. Korodi, R. Terryn, K. M. Jagodnik, P. Assis, and M. Dumon-

tier, “smartAPI: Towards a more intelligent network of web APIs,” in

Proceedings of the 14th Extended Semantic Web Conference (ESWC),

pp. 154–169, 2017.

[92] S. Dastgheib, T. Whetzel, A. Zaveri, C. Afrasiabi, P. Assis, P. Avillach,

K. M. Jagodnik, G. Korodi, M. Pilarczyk, J. de Pons, S. C. Schürer,

R. Terryn, R. Verborgh, C. Wu, and M. Dumontier, “The SmartAPI

ecosystem for making web APIs FAIR,” in Proceedings of the 16th In-

ternational Semantic Web Conference (ISWC) – Posters & Demonstra-

tions and Industry Tracks, 2017.

[93] X. Wang, X. Liu, J. Liu, X. Chen, and H. Wu, “A novel knowledge

graph embedding based API recommendation method for mashup de-

velopment,” World Wide Web, vol. 24, no. 3, pp. 869–894, 2021.

[94] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” in Proceedings of the 1st Interna-

tional Conference on Learning Representations (ICLR) (Y. Bengio and

Y. LeCun, eds.), 2013.

[95] Y. Yao, H. Liu, J. Yi, H. Chen, X. Zhao, and X. Ma, “An automatic

semantic extraction method for web data interchange,” in Proceedings of

the 6th International Conference on Computer Science and Information

Technology (CSIT), pp. 148–152, March 2014.

[96] T. A. Farrag, A. I. Saleh, and H. A. Ali, “Toward SWSs discovery: Map-

ping from WSDL to OWL-S based on ontology search and standardiza-

tion engine,” IEEE Transactions on Knowledge and Data Engineering,

vol. 25, no. 5, pp. 1135–1147, 2013.

[97] T. W. Finin, L. Ding, R. Pan, A. Joshi, P. Kolari, A. Java, and Y. Peng,

“Swoogle: Searching for knowledge on the semantic web,” in Proceedings

of the 20th National Conference on Artificial Intelligence and the 17th

196

BIBLIOGRAPHY

Innovative Applications of Artificial Intelligence Conference, pp. 1682–

1683, 2005.

[98] A. Karavisileiou, N. Mainas, F. Bouraimis, and E. G. M. Petrakis, “Au-

tomated ontology instantiation of OpenAPI REST service descriptions,”

in Advances in Information and Communication, pp. 945–962, 2021.

[99] W. Gong, X. Zhang, Y. Chen, Q. He, A. Beheshti, X. Xu, C. Yan,

and L. Qi, “DAWAR: diversity-aware web APIs recommendation for

mashup creation based on correlation graph,” in Proceedings of the 45th

International Conference on Research and Development in Information

Retrieval (SIGIR), pp. 395–404, 2022.

[100] “Web services business process execution language version 2.0.” http:

//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, Apr. 2007.

[101] O. Liskin, L. Singer, and K. Schneider, “Teaching old services new tricks:

adding HATEOAS support as an afterthought,” in Proceedings of the

2nd International Workshop on RESTful Design (WS-REST), pp. 3–10,

2011.

[102] M. Schur, A. Roth, and A. Zeller, “Mining behavior models from enter-

prise web applications,” in Proceedings of the European Software Engi-

neering Conference and the Symposium on the Foundations of Software

Engineering (ESEC/FSE), pp. 422–432, 2013.

[103] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P.

van der Aalst, “XES, XESame, and ProM 6,” in Proceedings of the

International Conference on Advanced Information Systems Engineering

(CAiSE Forum), pp. 60–75, 2010.

[104] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli, “Mining behavior

models from user-intensive web applications,” in Proceedings of the 36th

International Conference on Software Engineering (ICSE), pp. 277–287,

2014.

[105] W. M. P. van der Aalst and M. Pesic, “Specifying and monitoring service

flows: Making web services process-aware,” in Test and Analysis of Web

Services, pp. 11–55, 2007.

197

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

BIBLIOGRAPHY

[106] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant

for reusing open source code on the web,” in Proceedings of the 22nd

International Conference on Automated Software Engineering (ASE),

pp. 204–213, 2007.

[107] I. L. Salvadori, B. C. N. Oliveira, A. Huf, E. C. Inacio, and F. Siqueira,

“An ontology alignment framework for data-driven microservices,” in

Proceedings of the 19th International Conference on Information Inte-

gration and Web-based Applications & Services (iiWAS), pp. 425–433,

2017.

[108] I. L. Salvadori, A. Huf, B. C. N. Oliveira, R. dos Santos Mello, and

F. Siqueira, “Improving entity linking with ontology alignment for se-

mantic microservices composition,” International Journal of Web Infor-

mation Systems, vol. 13, no. 3, pp. 302–323, 2017.

[109] D. Serrano, E. Stroulia, D. H. Lau, and T. Ng, “Linked REST APIs: A

middleware for semantic REST API integration,” in Proceedings of the

24th International Conference on Web Services (ICWS), pp. 138–145,

2017.

[110] J. Kĺımek and M. Necaský, “Generating lowering and lifting schema

mappings for semantic web services,” in Proceedings of the 25th Inter-

national Conference on Advanced Information Networking and Applica-

tions Workshops (WAINA), pp. 29–34, 2011.

[111] L. Liu, M. Bahrami, and W. Chen, “Automatic generation of IFTTT

mashup infrastructures,” in Proceedings of the 35th International Con-

ference on Automated Software Engineering (ASE), pp. 1179–1183,

IEEE, 2020.

[112] T. Rodrigues, P. Rosa, and J. Cardoso, “Moving from syntactic to

semantic organizations using JXML2OWL,” Computers in Industry,

vol. 59, no. 8, pp. 808 – 819, 2008.

[113] M. C. Platenius, Fuzzy Matching of Comprehensive Service Specifica-

tions. PhD thesis, Paderborn University, 2016.

[114] S. Schwichtenberg, “Ontology-based normalization and matching of rich

service descriptions,” Master’s thesis, Paderborn University, 2013.

198

BIBLIOGRAPHY

[115] “RFC 5322: Internet message format.” https://datatracker.ietf.

org/doc/html/rfc5322, 2008.

[116] C. Bizer, R. Meusel, and A. Primpeli, “Web data commons – RDFa,

microdata, and microformat data sets.” http://webdatacommons.org/

structureddata/.

[117] H. Liu and P. Singh, “ConceptNet – a practical commonsense reasoning

tool-kit,” BT Technology Journal, vol. 22, no. 4, pp. 211–226, 2004.

[118] Y. Li, Z. Bandar, and D. McLean, “An approach for measuring se-

mantic similarity between words using multiple information sources,”

IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 4,

pp. 871–882, 2003.

[119] M. Klusch, “Overview of the s3 contest: Performance evaluation of se-

mantic service matchmakers,” in Semantic Web Services: Advancement

through Evaluation, pp. 17–34, 2012.

[120] J. Kopeckỳ, D. Roman, M. Moran, and D. Fensel, “Semantic web ser-

vices grounding,” in Proceedings of the Advanced International Confer-

ence on Telecommunications and International Conference on Internet

and Web Applications and Services (AICT/ICIW), pp. 127–127, IEEE,

2006.

[121] “Business process model and notation 2.0.2.” https://www.omg.org/

spec/BPMN/2.0.2/PDF, Jan. 2014.

[122] W. Van Der Aalst, “Data science in action,” in Process Mining, pp. 3–23,

Springer, 2016.

[123] W. Van Der Aalst, Process mining: discovery, conformance and en-

hancement of business processes, vol. 2. Springer, 2011.

[124] A. J. M. M. Weijters and J. T. S. Ribeiro, “Flexible heuristics miner

(FHM),” in Proceedings of the Symposium on Computational Intelligence

and Data Mining (CIDM), pp. 310–317, 2011.

[125] S. J. Leemans, Robust Process Mining with Guarantees. PhD thesis,

Technische Universiteit Eindhoven, 2017.

199

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
http://webdatacommons.org/structureddata/
http://webdatacommons.org/structureddata/
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF

BIBLIOGRAPHY

[126] A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters,

“Workflow mining: Current status and future directions,” in Proceed-

ings of the Confederated International Conferences, CoopIS, DOA, and

ODBASE, pp. 389–406, 2003.

[127] D. Bayomie, I. M. A. Helal, A. Awad, E. Ezat, and A. E. Bastawissi, “De-

ducing case ids for unlabeled event logs,” in Proceedings of the 13th Inter-

national Workshops on Business Process Management (BPM), pp. 242–

254, 2015.

[128] M. A. Bayir, I. H. Toroslu, A. Cosar, and G. Fidan, “Smart miner: a new

framework for mining large scale web usage data,” in Proceedings of the

18th International Conference on World Wide Web (WWW), pp. 161–

170, 2009.

[129] D. R. Ferreira and D. Gillblad, “Discovering process models from un-

labelled event logs,” in Proceedings of the 7th International Conference

on Business Process Management (BPM), pp. 143–158, 2009.

[130] R. F. Dell, P. E. Román, and J. D. Velásquez, “Web user session re-

construction using integer programming,” in Proceedings of the Interna-

tional Conference on Web Intelligence, pp. 385–388, 2008.

[131] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa, “A frame-

work for the evaluation of session reconstruction heuristics in web-usage

analysis,” INFORMS Journal on Computing, vol. 15, no. 2, pp. 171–190,

2003.

[132] B. Berendt, B. Mobasher, M. Nakagawa, and M. Spiliopoulou, “The

impact of site structure and user environment on session reconstruction

in web usage analysis,” in Proceedings of the 4th International Work-

shop on MiningWeb Data for Discovering Usage Patterns and Profiles

(WEBKDD), pp. 159–179, 2002.

[133] “RFC 2109: HTTP state management mechanism.” https://www.rfc-

editor.org/rfc/rfc2109, 1997.

[134] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst, “On

the role of fitness, precision, generalization and simplicity in process dis-

200

https://www.rfc-editor.org/rfc/rfc2109
https://www.rfc-editor.org/rfc/rfc2109

BIBLIOGRAPHY

covery,” in Proceedings of the Confederated International Conferences:

CoopIS, DOA-SVI, and ODBASE, pp. 305–322, 2012.

[135] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design patterns:

Elements of reusable object-oriented software, vol. 49. 1995.

[136] F. S. Bäumer, Indikatorbasierte Erkennung und Kompensation von un-

genauen und unvollständig beschriebenen Softwareanforderungen. PhD

thesis, Paderborn University, 2017.

[137] M. Fowler, “Richardson maturity model.” https://martinfowler.

com/articles/richardsonMaturityModel.html, 2010.

201

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html

	Introduction
	Application Scenario
	Problem Analysis
	Requirements
	Upward Compatibility
	Learnability
	Effectiveness
	Comprehensiveness
	Interoperability

	Solution Approach
	Publication Overview
	Thesis Structure

	Foundations
	RESTful Web Services
	HATEOAS
	Maturity Model

	Syntactic Specification Languages
	Semantic Web and Linked Open Data
	Ontologies
	Semantic Web Services
	Semantic Service Discovery
	Service Grounding
	Service Composition and Interoperability
	Ontology Matching
	Types of Heterogeneity

	Matching Techniques
	Process Mining
	Mining Algorithms
	Quality Attributes

	Summary

	Related Work
	Request–API Terminological Heterogeneity
	Unspecified API Protocols
	API Incompatibility
	On-The-Fly Computing
	Summary

	Solution Overview
	Architecture
	Semantic Annotator
	API Protocol Miner
	Glue Code Generator

	Usage
	Meeting the Requirements
	Upward Compatibility
	Learnability
	Effectiveness
	Comprehensiveness
	Interoperability

	Summary

	Semantic Annotator
	Functionality of the Semantic Annotator
	Preprocessing
	Indexing Semantic Types
	Building Search Queries

	Evaluation
	Effectiveness of Semantic Annotator
	Effectiveness of Service Discovery

	Discussion
	Summary

	API Protocol Miner
	Running Example
	Static Versus Dynamic Analysis
	Static Analysis
	Dynamic Analysis

	Discoverable Control Flow Constructs through Process Mining
	Control Flow Constructs in Specification Languages
	Relating Languages and Process Mining Algorithms

	Functionality of the API Protocol Miner
	Converting Call-logs to Event-logs

	Evaluation
	Preparation
	Proceeding
	Results

	Summary

	Parameter Matcher and Glue Code Generator
	Parameter Matching
	Combinations of Inputs and Outputs
	Degrees of Compatibility

	Functionality of the Parameter Matcher
	Matching Techniques

	Composing APIs in Mashups
	Approach 1: Local-Global-Local Translation
	Approach 2: Local-Local Translation

	Functionality of the Glue Code Generator
	Code Generation Templates
	Generating Translation Functions

	Evaluation
	Effectiveness of Parameter Matcher
	Glue Code Generation

	Summary

	Conclusion and Future Work
	Summary
	Future Work
	Linking Textual Requests with Ontologies
	Systematically Developing Global Ontologies
	Lifting the Maturity Level of Existing REST APIs

	Final Remark

	Bibliography

