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Introduction

Zusammenfassung: In der vorliegenden Dissertation wurden sowohl
analytische als auch numerische Aspekte sogenannter invarianter Ruelle
Distributionen behandelt. In einem ersten Schritt wurde eine gewichtete
Zeta Funktion für offene hyperbolische Systeme meromorph fortge-
setzt, um anschließend eine Formel für deren Residuen abzuleiten. Diese
Residuenformel erlaubte es, invariante Ruelle Distributionen mittels
gewichteter Zeta Funktionen konkret auszurechnen.
Eine Anwendung dieser analytischen Ergebnisse erfolgte dann im Rah-
men der Streuung an konvexen Hindernissen und ermöglichte damit
eine rigorose Behandlung gewisser semiklassischer Formeln, welche in
der theoretischen Physik bereits früher mittels heuristischer Argumente
abgeleitet worden waren.
Als zweiter Schritt wurde die Residuenformel für Ruelle Distributio-
nen genutzt, um Letztere konkret numerisch für konvex-kokompakte
hyperbolische Flächen zu berechnen und zu visualisieren. Neben der
rigorosen Herleitung geeigneter numerischer Techniken, wurde weiter-
hin ein PyZeta getauftes Open Source Projekt implementiert, um eine
Reihe von Aspekten sowohl der Pollicott-Ruelle Resonanzen als auch
(dynamischer) Zeta Funktionen abzubilden.

Summary: The dissertation at hand encompasses a treatment of both
analytical as well as numerical aspects of so-called invariant Ruelle dis-
tributions. As a first step a weighted zeta function for open hyperbolic
systems was defined and meromorphically continued which allowed the
subsequent derivation of a residue formula for the weighted zeta. This in
turn enabled the concrete calculation of invariant Ruelle distributions
via weighted zeta functions.
These analytical results were applied in the context of convex obstacle
scattering which enabled a new rigorous approach to semiclassical for-
mulae that had previously been considered in theoretical physics in a
more heuristic manner.
As a second step the residue formula for Ruelle distributions was used
to concretely numerically calculate and visualize the latter for convex-
cocompact hyperbolic surfaces. Besides the rigorous justification of the
concrete numerical approach the development of an open source project
called PyZeta was an integral part of this thesis. The project incorpo-
rates a number of aspects concerning Pollicott-Ruelle resonances and
(dynamical) zeta functions.
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Introduction

This thesis is the culmination of the work that I did during my four years as a PhD
student at Paderborn University. The techniques used cover rather diverse areas such as
abstract analytical theorems, practical numerical investigations, and questions of concrete
implementation all under a single unifying theme: invariant Ruelle distributions.

An invariant Ruelle distribution Tλ0 is a generalized density

Tλ0 : C∞(M) 3 f −→ Tλ0(f) ∈ C

on the finite-dimensional phase space manifoldM of a smooth continuous chaotic dynam-
ical system

ϕt : M−→M , t ∈ R ,

which is invariant under this dynamics. It is associated to one specific Pollicott-Ruelle
resonance λ0 ∈ C from a discrete subset of the complex plane called the resonance spec-
trum. These invariants of the given chaotic dynamics have found many applications since
their inception due to Ruelle [Rue76] and Pollicott [Pol85], for example in convergence
to equilibrium, decay of correlations, mixing, asymptotic distribution of periodic orbits,
and linear response [Nau05, BL07, FS11, NZ15]. Furthermore they have been linked to
certain invariants of the underlying phase space [DZ17, KW20, CDDP22].

The distributions Tλ0 now encode information about certain eigendistributions of λ0

called resonant states and in some special cases they are even known to coincide with well-
known objects like Sinai-Ruelle-Bowen (SRB) measures in the Anosov or Bowen-Margulis
measures in the convex-cocompact setting [Rob03, BL07, BGW23].

If the chaotic dynamical system is more concretely given by a geodesic flow then it is
naturally considered the classical counterpart of a quantum mechanical system described
by the Laplace-Beltrami operator ∆. For the case of the underlying configuration space
being a compact hyperbolic surface an additional reason for the importance of Pollicott-
Ruelle resonances is provided by a quantum-classical correspondence [DFG15]: An explicit
bijection between the quantum mechanical spectrum

0 = λ0 ≤ λ1 ≤ . . . ≤ λi →∞

of the Laplace-Beltrami operator, i.e.

∆ψi = λiψi ,

and the classical resonance spectrum of the geodesic flow exists. It is based on a relation-
ship between the eigenfunctions ψi and Pollicott-Ruelle resonant states, more precisely
a linear isomorphism between certain finite-dimensional function spaces attached to re-
spective spectral values, and the invariant Ruelle distributions coincide with well-known
phase space quantities called Patterson-Sullivan distributions [AZ07].

This implies that quantum properties of the chaotic dynamics can be described using
purely classical quantities and the implication extends to the case of some non-compact
(namely convex-cocompact) hyperbolic surfaces as well, where the discrete quantum me-
chanical spectrum must be replaced by the quantum resonances of the Laplace-Beltrami
operator [GHW18]. This setting will become of particular importance in our numerical
applications later on.

It is therefore reasonable to expect that investigations of invariant Ruelle distributions
should be able to provide interesting new insights. The notion of weighted zeta function
introduced in this thesis was designed to explore precisely this idea: These complex-valued
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functions Zf encode closed orbit information of the classical dynamics on very general
open hyperbolic systems with an additional weight function f on phase space. As is often
the case for zeta functions Zf is a priori defined as an infinite sum that converges locally
uniformly only on a halfplane {Re(λ) � 0} but the potentially interesting information
should somehow be encoded in an extension beyond this domain. It was therefore the first
step of this thesis to prove the meromorphic continuation of the weighted zeta function

Zf : C −→ C ,

subsequently identify the resulting poles as a subset of the Pollicott-Ruelle resonances,
and finally establish a residue formula:

Res
λ=λ0

[Zf (λ)] = Tλ0(f) .

These results build on previous work by [DG16] on the mermorphic continuation of the
resolvent on open hyperbolic systems by expressing Zf as a trace over the resolvent.
With these steps completed weighted zeta functions do indeed allow one to investigate
the rather abstractly defined invariant Ruelle distributions via a very concretely (up to
meromorphic continuation) given complex function.

From there several applications were identified and carried out to demonstrate the
usefulness of weighted zeta functions: The residue formula above made the proof of a
classical trace formula for certain quantum phase space distributions called Patterson-
Sullivan distributions possible. This proof worked in the very general setting of compact,
locally symmetric spaces of rank one thereby extending and strengthening previous results
of [AZ07].

Furthermore the definition and meromorphic extension of weighted zeta functions was
successfully transferred to the setting of convex obstacle scattering which required signif-
icant additional technical effort in dealing with the discontinuous reflections at obstacle
boundaries. And finally a numerical algorithm was developed to calculate and visualize
invariant Ruelle distributions via weighted zeta functions. In practice this algorithm works
well both on convex-cocompact hyperbolic surfaces and a particular instance of convex
obstacle scattering namely scattering at round discs in the Euclidean plane. The former
are compelling model systems due to their rich symmetry group and had previously been
the main examples used in numerical investigations of (quantum) resonances [Bor14]. The
latter model has the advantage of being physically realizable in a laboratory which makes
them especially popular in the theoretical physics community [GR89a, GR89b, GR89c].

This further motivates the theoretical treatment of the obstacle scattering setting: Using
this work as a basis made it possible to develop a rigorous approach [BSW22] to some
semiclassical formulae which had previously been considered in the theoretical physics
community but in a mathematically more heuristic fashion. This article relies heavily on
the technical results obtained during other projects making up this thesis.

Naturally these practical investigations made it necessary to develop, extend, maintain,
test, and document a constantly growing body of source code. To achieve code quality be-
yond a loose collection of scripts I decided to include two numerical open source projects
of substantial extend into the scope of this thesis: PyZeta collects both functionality spe-
cific to the domain of (weighted) zeta functions and Pollicott-Ruelle resonances in general
as well as more generic functionality for e.g. performance optimization and orchestration
of numerical experiments. PyZEAL focuses on the root finding problem for holomorphic
and meromorphic functions as a numerical task that is important independently of our
particular application to zeta functions but surprisingly poorly covered by existing open
source solutions.
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The nature of the present thesis is cumulative – the bulk of the rigorous mathematical
work is distributed over a total of three research papers:

� Meromorphic Continuation of Weighted Zeta Functions on Open Hyperbolic Sys-
tems, Schütte, P. and Weich, T. (with an appendix by Barkhofen, S. and Schütte,
P. and Weich, T.), Commun. Math. Phys. (398), 2023 [SWB23],

� Resonances and Weighted Zeta Functions for Obstacle Scattering via Smooth Mod-
els, Delarue, B. and Schütte, P. and Weich, T., initially made available as the
preprint arXiv:2109.05907 (2021) [DSW21] and currently under revision at Annales
Henri Poincaré,

� Invariant Ruelle Distributions on Convex-Cocompact Hyperbolic Surfaces – A Nu-
merical Algorithm via Weighted Zeta Functions, Schütte, P. and Weich, T., currently
available as the preprint arXiv:2308.13463 (2023) [SW23] with additional numerical
experiments being prepared for a journal submission.

For ease of reference these articles are contained in their respective latest (at the time of
writing this thesis) versions as appendices. The body of the thesis text contains additional
background information that was judged to be unsuited for inclusion into a journal sub-
mission. This includes more extensive motivations for decisions like why certain objects
were considered or how given questions were approached but also summaries of failed
approaches that provided valuable insights and straightforward generalizations with the
downside of requiring additional technical overhead.

The applications of weighted zeta functions and smooth models for obstacle scattering
developed in the paper [BSW22] mentioned above were deliberately not included in the
appendices due to mostly targeting a physics instead of a mathematics audience. Instead
the main text of this dissertation contains a short summary emphasizing the usefulness
of weighted zeta functions as demonstrated by this article.

Furthermore detailed descriptions of PyZeta and PyZEAL are included with discussions
of the central technical decisions and design tradeoffs. Overview papers are being prepared
for both projects but at the moment of writing this thesis the code bases are still evolving
in a manner that they are changing too frequently to make even a preprint publication
possible in a meaningful way. The presentation deliberately focuses both on technical as
well as design aspects to put the reader into a position where they can not only use but
also contribute to either of these projects in a manner that is consistent with their overall
philosophies.

Outline

The thesis at hand is partitioned into three distinct parts which build on top of each other
to facilitate a coherent picture of the topics studied by the author during his PhD. Part I
starts by introducing in Chapter 1 the central object which enables the many connections
and numerical computations established later on: the weighted zeta functions Zf (λ). Their
analytical properties and in particular their meromorphic continuation together with a
residue formula were dealt with in detail in [SWB23] and Chapter 1 presents some ad-
ditional details which had to be omitted from the paper due to space constraints. Here
the notion of invariant Ruelle distribution gets introduced which will turn out to be a
unifying theme between the three parts.

The subsequent chapters of Part I deal with applications of this analytical theory:
Chapter 2 contains a brief overview of the paper [DSW21] which develops technical tools
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that let one apply the theory of (weighted) zeta functions to scattering by convex obsta-
cles. The final Chapter 3 summarizes the article [BSW22] which presents an application
of weighted zetas to certain trace formulae for quantum mechanical matrix coefficients
which had been published in the physics literature before but were lacking a rigorous
mathematical justification. This relies both on [SWB23] as well as [DSW21]. In a numer-
ical study the paper also presents some evidence how these results might be generalized
to dynamical systems with less inherent symmetry.

Part II transitions from the purely theoretical realm treated in the first part to the
practical numerical study of invariant Ruelle distributions via weighted zeta functions. The
tools for this study together with a rigorous justification of their convergence in the context
of convex cocompact hyperbolic surfaces is introduced in Chapter 4 by building on [SW23].
With this machinery at hand Chapter 5 can then present numerical experiments involving
Ruelle distributions on a small number of fixed surfaces and Chapter 6 complements these
with fundamentally different experiments where a large number of underlying geometries
gets sampled from the moduli space of funneled tori to investigate random variables
related to resonances and zeta functions.

The final Part III is of a more technical nature and describes high- and low-level pro-
gramming details: Here the concrete implementation of the various resonance and Ruelle
distribution related tools is discussed. Our use cases can roughly be subdivided into find-
ing resonances and calculating invariant Ruelle distributions. This part of the thesis is
correspondingly subdivided into a zeta function related project called PyZeta and de-
scribed in Chapter 7 as well as a package dealing with the numerical calculation of zeros
of holomorphic functions named PyZEAL, see Chapter 8.

Finally, as mentioned above, the three appendices contain the original publications
which make up the backbone of this thesis in terms of rigorous mathematical proofs and
theorems.
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Part I.

Analytical Study of Open Hyperbolic
Systems
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Outline of Part I

The first part of this thesis will present an analytical study of invariant Ruelle distribu-
tions for a number of different dynamical systems, the most general of which are open
hyperbolic systems. The results obtained here will find their practical numerical applica-
tion in the subsequent Part II.

The analytical investigation starts with the very general class of open hyperbolic sys-
tems whose main characteristic is a compact trapped set on which the dynamics exhibits
a hyperbolic splitting into neutral, expanding, and contracting directions. Resonances on
these systems were defined and studied by Dyatlov and Guillarmou in [DG16]. In [SWB23]
this work was used to obtain the meromorphic continuation of a certain weighted zeta func-
tion Zf . This new zeta function has an added benefit over the well-known Ruelle zeta
function that gets meromorphically continued in [DG16]: The residues of Zf coincide with
so-called invariant Ruelle distributions making the weighted zeta functions a prime tool
for the study of these generalized densities. The details of these connections can be found
in the paper [SWB23] which was included in Appendix A as it contains the central def-
initions, theorems, and proofs. A concise summary together with additional details form
the contents of Chapter 1.

The dynamical assumptions made in [SWB23] are quite abstract. The collaborative
work [DSW21] provides a detailed description of an application to a concrete dynamical
system, namely convex obstacle scattering . The main feature of this system is its lack
of smoothness at the obstacle boundaries. This required the development of the notion
of smooth model for a scattering system. Again a summary and additional details, in
particular motivations for certain rather technical constructions, are provided in Chapter 2
as part of the main text while the original publication is contained in Appendix B. It shall
be reiterated that this article should be considered as the main source for definitions and
results together with their proofs.

Part I is concluded by Chapter 3 which contains a short summary of the more phys-
ical review paper [BSW22]. While the contribution made by the author of this thesis to
this particular article is less significant compared to the two previously mentioned ones1

it is nevertheless interesting due to it offering an application of the theory developed
in both [SWB23] and [DSW21] to questions heavily studied in the mathematical and
theoretical physics communities.

1The contribution concretely encompasses proof reading, mathematical discussions, and the numerical
experiments involving 3-disc systems (based on previous code by Barkhofen/Weich).
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1. Meromorphic Continuation of Weighted
Zeta Functions

The bulk of the analytical foundation built during this thesis is presented in the published
article [SWB23]. The present chapter describes the results obtained there and supplements
the presented proofs with further details which have been omitted from the paper due
to space constraints. Appendix A contains the paper itself to make this thesis more self-
contained.

1.1. The Geometric Setup

Before presenting the results together with additional details regarding their proofs in
the following section an overview will be given of the geometric setup in which these
results were obtained. This section adds value over [SWB23, Section 2.1] by choosing a
more intuitive approach that emphasizes the meaning and the implications of the various
assumptions.

The meromorphic continuation of weighted zeta functions follows the microlocal ap-
proach to Pollicott-Ruelle resonances as developed by Faure and Sjöstrand [FS11]. It is
therefore natural to start with some smooth manifold U of finite dimension. Furthermore
the whole procedure relies heavily on the progress achieved in [DG16] regarding open
hyperbolic systems. U is therefore required to be compact but may possess non-empty
smooth boundary ∂U .

Now the dynamical system under study is a flow ϕt = exp(tX) with a non-vanishing
smooth generating vector fieldX. This setup encodes the notion of an open system because
ϕt will generally not be complete if ∂U 6= ∅ because trajectories ϕt(x0) for x0 ∈ U may
cease their existence at the boundary after some finite positive or negative (or both)
escape time(s). Such trajectories should be interpreted as escaping to infinity.

For technical reasons one now wants to embed U into an ambient closed manifold and
extend X suitably. The flow associated with this construction then becomes complete,
i.e. trajectories are defined for arbitrary times, which makes it much more amenable for
further analysis. For this strategy to make sense it is vital that the extended flow preserves
the interpretation of escaping to infinity introduced above. In other words the extension
must be build in such a way that any trajectory of the extended flow which leaves the
interior U of the original manifold with boundary does not re-enter U at some time larger1

than the original escape time.

To formalize this discussion the embedding U ⊂M into a compact manifoldM without
boundary should satisfy the following condition for every T > 0:

x, ϕT (x) ∈ U =⇒ ϕt(x) ∈ U , ∀ 0 ≤ t ≤ T .

Here and in the following the extended flow as well as its generator will be denoted by
the same symbols as the original flow and generator.

1Or smaller, in case of a negative escape time.
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1.1. The Geometric Setup

Now such an extension can indeed always be constructed under a condition that the au-
thors of [DG16] term strict convexity. Stating a formal definition requires the introduction
of an additional auxiliary object called a boundary defining function:

Definition 1.1.1: Boundary defining function

Let M be a smooth manifold with boundary ∂M and interior int(M). A boundary
defining function is a smooth map ρ : M→ [0,∞[ with ρ

∣∣
int(M)

> 0, ρ
∣∣
∂M

= 0 and

dρ
∣∣
∂M
6= 0.

Any smooth manifold with boundary possesses a boundary defining function ([Lee12,
p. 118f]). The standard proof constructs a boundary defining function by combining con-
stant, non-zero functions on interior charts and the n-th coordinate function x 7→ xn on
boundary charts via a partition of unity. For a straightforward yet illuminating conse-
quence of this definition consider a boundary chart ϕ = (x1, ..., xn) : M ⊇ U → V ⊆ Hn

around some p ∈ ∂M.2 Then one computes for the differential of ρ

dρp =
∂(ρ ◦ ϕ−1)

∂xi

∣∣∣∣
ϕ(p)

dxi
∣∣
p

=
∂(ρ ◦ ϕ−1)

∂xn

∣∣∣∣
ϕ(p)

dxn
∣∣
p
6= 0 ,

where the summation convention is in effect in the first row. One immediately concludes
that ∂(ρ ◦ ϕ−1)/∂xn > 0 must hold on the boundary.

One calls those vectors v = vi∂/∂xi ∈ TpM inward pointing, outward pointing, or
tangent to the boundary that satisfy vn > 0, vn < 0, or vn = 0 in some (and therefore
any) chart (xi). Using the previous property, inward/outward pointing and tangent can
be characterized equivalently by the conditions v(ρ) = dρ(v) > 0, v(ρ) < 0, or v(ρ) = 0.

The dynamical condition mentioned above can now be expressed as follows: One calls
the boundary ∂U strictly convex (w.r.t. X) if every boundary defining function ρ satisfies

(Xρ)(x0) = 0 =⇒ X(Xρ)(x0) < 0 (1.1.1)

for any x0 ∈ ∂U . Before developing an intuition for this definition it will be shown that
it suffices to verify Equation (1.1.1) on an arbitrary boundary defining function making
the notion of strict convexity a meaningful property of the geometry of ∂U .3

To prove this one calculates in coordinates (xi) in which X has components (Xi)

X(Xρ)(x0) = Xi ∂

∂xi

(
Xj ∂ρ

∂xj

) ∣∣∣∣
x=x0

= XiXj ∂2

∂xi∂xj
ρ

∣∣∣∣
x=x0

+Xi ∂ρ

∂xj
∂Xj

∂xi

∣∣∣∣
x=x0

= (Xn)2 ∂2

∂(xn)2
ρ

∣∣∣∣
x=x0

+
∂ρ

∂xn
Xi∂X

n

∂xi

∣∣∣∣
x=x0

=
∂ρ

∂xn
Xi∂X

n

∂xi

∣∣∣∣
x=x0

.

2Recall that n-dimensional (smooth) manifolds with boundary are locally modeled on the upper half-
spaces Hn := {(x1, . . . , xn) ∈ Rn |xn ≥ 0}.

3Note that already the set of points where the premise (Xρ)(p) = 0 holds true is independent of ρ by
the previously made statements.
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1.1. The Geometric Setup

The independence of the sign from any particular choice of ρ now follows from the fact
that ∂ρ/∂xn > 0 holds for every boundary defining function.

With this out of the way a remark regarding the interpretation of strict convexity is
in order. First of all (Xρ)(x0) = Xx0(ρ) = 0 means that Xx0 is tangent to the boundary.
Now at any such point x0 it is required that4

∑

i 6=n
Xi∂X

n

∂xi

∣∣∣∣
x=x0

=
d

dt
Xn (ϕt(x0))

∣∣∣∣
t=0

< 0 .

From the perspective of the flow this means that trajectories which intersect the boundary
in a tangent manner can neither propagate within the boundary for any small but finite
interval of time nor can they return to the interior U at a later time. It must cross
the boundary and exit immediately where exit has to be understood as either ceasing
existence or entering the ambientM depending on whether or not the latter was already
constructed.

The rigorous statement assuring that strict convexity indeed yields the correct class
of manifolds is [DG16, Lemma 1.1] where correctness is understood in the sense of the
previous discussion. For this class of manifolds [DG16, Lemma 1.2] assures that the so-
called trapped set K is contained in the interior U :

Γ± :=
⋂

±t≥0

ϕt(U) , K := Γ+ ∩ Γ− ⊂ U .

This is required as the interesting dynamics happens on K alone thus making it necessary
to be able to define K independently from an ambient M. In fact it can be argued that
K ⊆ U is the whole point of making the auxiliary technical assumption of strict convexity.
This viewpoint is supported by the construction in [SWB23, Section 2.2] where strict
convexity was removed in favor of assuming K ⊂ U from the outset.

The necessity of having this alternative formulation was made very clear during the
work that resulted in Chapter 2: The practical application of meromorphically continued
weighted zeta functions to obstacle scattering would have been quite a bit harder otherwise
as a suitable candidate boundary defining function for verifying strict convexity does not
seem obvious there.

The remaining dynamical assumptions as listed in [SWB23, Section 2.1] are basically
twofold: On the one hand one has hyperbolicity of ϕt on K. This is the standard assump-
tion under which ones proves existence of Pollicott-Ruelle resonances and its geometric
interpretation is that of chaotic behavior with a (local) splitting into neutral, expanding
and contracting directions:

TxU = R ·X(x)⊕ Es(x)⊕ Eu(x) , ∀x ∈ K , (1.1.2)

where the splitting is continuous in x ∈ K, invariant under ϕt and the differential dϕt(x)
is exponentially contracting in either positive or negative time on Es(x) or Eu(x), respec-
tively.

On the other hand the setup gains significantly in generality without imposing further
technical difficulties if the transition to the vector valued setting is made. Assuming a
smooth C-vector bundle E → U and a first-order differential operator X on E one requires
as the final condition a Leibniz rule to hold with respect to X:

X(fu) = (Xf)u + f(Xu) , f ∈ C∞(U) , u ∈ C∞(U , E) .

4The n-component does not appear as Xn(x0) = 0 and it was excluded to emphasize this point.
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1.2. Pollicott-Ruelle Resonances for Open Systems

Under these assumptions the triple (U , ϕt,X) is called an open hyperbolic system.

The bundle data can again be extended to the ambient manifoldM and a construction
of resonances is possible not only for ϕt but also the transfer operator

exp(−tX) : L2(M, E) −→ L2(M, E)

defined by the condition (d/dt) exp(−tX)u = −X(exp(−tX)u). In the following subsec-
tion a short overview over what this means and how it is achieved will be given.

1.2. Pollicott-Ruelle Resonances for Open Systems

Let an open hyperbolic system (U , ϕt,X) as defined in the previous section be given.
Spectral analysis as a general paradigm is concerned with the investigation of spectral
invariants of this system and in particular the possibility of defining a suitable analog of
the eigenvalue spectrum of linear operators on finite dimensional spaces. Even though the
generalization of eigenvalues to infinite dimensional settings is quite straightforward it is
not sufficient for many applications like eigenvalue counting, decay of correlations, or the
expansion into eigenfunctions.

To substantiate this claim assume for simplicity a bounded linear operator T : H → H
on a (complex) Hilbert space H. If one takes as definition of eigenvalues of T the obvious
candidate

σH(T ) := {λ ∈ C |T − λ not invertible} ,
then this spectrum will generally neither be a discrete subset of C nor will it consist
exclusively of eigenvalues. Similar statements hold for the case of unbounded operators
where special care must be taken when dealing with their domains. Both phenomena are
well-known from basic functional analysis. Without going into further detail recall the
example −i d

dx on the Sobolev space H1(R) ⊆ L2(R) which has spectrum equal to the real
line R but no eigenvalues as the generalized eigenfunctions x 7→ exp(iλx), λ ∈ R, are not
square integrable.

The theory of Pollicott-Ruelle resonances remedies this situation as follows: Starting
with the (restricted) resolvent

R(λ) := 1U (X + λ)−1 1U : C∞c (U , E) −→ L2(U , E)

one extends the codomain to distributions D′(U , E) and proves its meromorphic continua-
tion to all of C. This is highly non-trivial and constitutes a significant portion of [DG16].
Continuing to denote the meromorphic continuation by R(λ) one makes the following
definition:

Definition 1.2.1: Pollicott-Ruelle resonances

The poles of R(λ) are called Pollicott-Ruelle resonances and collectively they are
called the resonance spectrum of X. The residue of R(λ) at a resonance λ0 ∈ C is
an operator

Πλ0 : C∞c (U , E) −→ D′(U , E)

called the spectral projector.

The operator Πλ0 has finite rank by [DG16, Theorem 1]. Describing those of its ad-
ditional properties that will become important for the proof presented in Section 1.3
requires the introduction of some additional technical machinery namely wavefront sets
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1.2. Pollicott-Ruelle Resonances for Open Systems

and flat traces of (vector-valued) distributions. The precise definitions were not included
in [SWB23] so they will be recalled here together with the related theorems which are
used in the upcoming proof.

The foundational technical object gets introduced in the following definition:

Definition 1.2.2: Wavefront set [Hör13, Chapter 8.1]

Let U ⊆ Rn be an open set and u ∈ D′(U) a distribution on U . Then the wavefront
set WF(u) ⊆ U × Rn \ {0} of u is defined by

(x, ξ) /∈WF(u)⇐⇒∃χ ∈ C∞c (U), χ(x) = 1 ∃ conic neighborhood V 3 ξ :

|χ̂ · u(ζ)| ≤ CN
1

(1 + |ζ|)N ∀N ∈ N, ∀ζ ∈ V ,

where conic means invariant under multiplication with positive scalars and v̂ de-
notes the Fourier transform of a distribution v on Rn.

Due to the presence of the cutoff functions χ in the definition above the notion of
wavefront set is local in nature and can be extended to smooth manifolds.5 Considering
careful the role of the dual variable ξ one notices that an invariant definition is best given
in terms of the cotangent bundle: Given a manifold M and a distribution u ∈ D′(M) its
wavefront set is a subset WF(u) ⊆ T ∗M \ o, where o is the zero section. The concrete
definition requires pullback of the distribution to coordinate patches. This can be done
via the second theorem stated below but no details will be given here.6

The properties of the Fourier transform on distributions already suggest that WF(u)
describes directions in which the distribution u fails to be smooth. A first straightforward
corollary relates the wavefront set with the singular support, i.e. the set of all points where
u fails to be smooth: Letting πM be the projection onto the base manifold one has

πM(WF(u)) = singsupp(u) ,

and in particular u is smooth iff WF(u) = ∅. The wavefront set therefore incorporates the
spatial positions of singularities of u but combines these with additional information in
phase space. The usefulness of this additional data is proven by the following two theorems
which are essential building blocks for the upcoming proof of meromorphic continuation:

Theorem 1.2.3: [Hör13, Thm. 8.2.12]

Let X,Y be smooth manifolds, A : C∞c (X) → D′(Y ) and KA ∈ D′(Y × X) the
corresponding kernel. Then for f ∈ C∞c (X)

WF(Af) ⊂ {(y, η) | (y, x, η, 0) ∈WF(KA) for some x ∈ supp(f)} .

Proof. Only a short sketch of the idea of proof will be given here. For details refer
to [Hör13, Chapter 8.2]. One proceeds by considering K1 := (χ ⊗ f)KA with an addi-

tional cutoff χ ∈ C∞c (Y ). Locally the Fourier transform of χ(Af) coincides with K̂1(ξ, 0)
which suffices to estimate the cone where the Fourier transform of χ(Af) does not decay

5There are actually definitions of the wavefront set whose invariance is easier to see, e.g. via pseudodif-
ferential operators.

6Recall that the notion of distribution on a manifold is itself defined in terms of local coordinate expres-
sions satisfying an appropriate compatibility condition, c.f. [Hör13, Chapter 6.3].
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1.2. Pollicott-Ruelle Resonances for Open Systems

rapidly. The theorem then follows by shrinking the support of χ to a single (arbitrary)
point.

The statement of the second theorem involves certain subspaces of distributions defined
as follows for some closed cone Γ ⊆ T ∗M \ o:

D′Γ(M) :=
{
u ∈ D′(M)

∣∣WF(u) ⊆ Γ
}
.

These spaces can be given a notion of sequential convergence7 and the following theorem
gives a sufficient condition that describes when the pullback on functions extends to a
sequentially continuous operation on these subspaces of distributions:

Theorem 1.2.4: [Hör13, Thm 8.2.4]

Let X,Y be smooth manifolds, f ∈ C∞(X,Y ), and Γ ⊂ T ∗Y \o conic. There exists
a well-defined sequentially continuous extension of the pullback

C∞(Y ) 3 u 7→ f∗(u) = u ◦ f ∈ C∞(X)

to an operator D′Γ(Y )→ D′f∗Γ(X) if the wavefront condition

Γ ∩
{

(f(x), ξ) ∈ T ∗Y
∣∣df tx(ξ) = 0

}
= ∅

holds. Here
f∗Γ :=

{
(x, df tx(ξ))

∣∣ (f(x), ξ) ∈ Γ
}
.

Proof. Again only a sketch will be provided, [Hör13, Chapter 8.2] contains the details.
To define f∗u for u ∈ D′(Y ) one chooses a sequence C∞(Y ) 3 uj → u and considers the
sequence 〈f∗uj , χ〉 for some given testfunction χ ∈ C∞c (X). The question of convergence
of this sequence can now be reduced to a local argument involving the Fourier transforms
χ̂ and φ̂uj introduced via the inversion formula. Here φ ∈ C∞c (Y ) is another suitable ad-
ditional cutoff. The growth behavior of the former Fourier integral may now be controlled
in a neighborhood of {df tx(ξ) 6= 0} while the latter is controllable outside the wavefront
set. The wavefront condition in the theorem now guarantees existence of the limit and its
independence from the chosen sequence uj .

The argument for sequential continuity proceeds quite similarly but requires additional
care in the definition of χ due to the concrete choice of sequential convergence in D′Γ(Y )
and D′f∗Γ(X).

With these theorems at hand the precise definition of the central object under inves-
tigation and recurring theme of this thesis is now possible. Before stating this definition
recall that any continuous operator L : C∞c (Rn)→ D′(Rm) has a so-called Schwartz kernel
KL ∈ D′(Rm × Rn) that satisfies

〈L(f), g〉 = 〈KL, g ⊗ f〉 , ∀f ∈ C∞c (Rn), g ∈ C∞c (Rm) ,

where g ⊗ f(y, x) := g(y)f(x), and an analogous statement holds for smooth manifolds.
For details see e.g. [Tre07, Chapter 51] or [Tay11, Chapter 4.6] for the case of manifolds.

7It is actually a subtle problem to define a topology on these spaces such that one recovers the same
notion of sequential convergence and simultaneously turns the desired operations on distributions into
(fully) continuous functions [BDH14].
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1.2. Pollicott-Ruelle Resonances for Open Systems

The kernel KA of an operator K : C∞c → D′ also allow a straightforward extension of
the notion of wavefront set to operators:

WF′(A) := {(x, y, ξ, η) | (x, y, ξ,−η) ∈WF(KA)} .

One could also consider a non-primed version WF(A) of operator wavefront sets. In some
sense WF′ is more natural, though, especially coming from microlocal analysis as WF′(A)
for a pseudodifferential operator A has a direct connection to the symbol of A, see [GS94,
Chap. 7].

Definition 1.2.5: Flat trace

Let M be a smooth manifold and A : C∞c (M) → D′(M) a continuous linear
operator with compactly supported Schwartz kernel KA ∈ D′(M ×M). Suppose
further that the wavefront set of A does not intersect the diagonal ∆(T ∗M) of
T ∗M:

WF′(A) ∩∆(T ∗M) = ∅
Then the flat trace of A is defined as the evaluation on the constant function 1M

of the pullback of KA under the embedding ι : M→M×M, ι(x) := (x, x):

tr[ (A) :=

∫

M
KA(x, x) dx = 〈(ι∗KA) ,1M〉 .

Remark 1.2.6. To be applicable to the general setting of open hyperbolic systems the
notions introduced so far obviously have to be extended to the vector valued setting.
This is done by first defining spaces of vector valued distributions D′(M, E) as the dual
spaces of smooth compactly supported sections of a given vector bundle E → M with
smooth inner product defined on its fibres. Here and in the following it is assumed that
there exists an invariant density on the base manifold such that the distinction between
generalized functions and generalized densities becomes insignificant. In particular this
applies to the name invariant Ruelle distribution as the object defined below formally is
a generalized density. The upcoming discussions are independent of the concrete choice
of density as long as a consistent choice is used throughout.

The notion of wavefront set may then be defined component-wise because its initial
definition was local to begin with. Schwartz kernels now take values inD′(M1×M2, E1�E2)
where given bundles Ei → Mi the bundle E1 � E2 denotes the tensor product of the
pullbacks of the Ei onto M1 ×M2. Note that [DZ16] uses the notation End(E) for the
bundle E � E∗ overM×M. Finally the flat trace is easily generalized by taking the sum
over flat traces of the diagonal components of the operator’s kernel.

For additional details regarding vector valued distributions and generalized densities
on manifolds refer to the extensive monograph [GKOS01, Chapter 3].

Definition 1.2.7: Ruelle distribution

Let λ0 ∈ C be a resonance of the open hyperbolic system (U , ϕt,X). Then the
invariant Ruelle distribution Tλ0 ∈ D′(U) associated with λ0 is given by

Tλ0(f) := tr[ (Πλ0Mf ) , f ∈ C∞(U) .

Here Πλ0 denotes the residue of the resolvent at λ0 as defined above and Mf is the
operator of multiplication by f .
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A discussion of the aspects well-definedness and invariance of Tλ0 can be found
in [SWB23]. Note also that invariant Ruelle distributions are compactly supported within
the trapped set K.

1.3. Expanded Proof of Meromorphic Continuation

As announced above this section contains an extended proof of the meromorphic contin-
uation of the most general weighted zeta functions ZX

f (λ) for open hyperbolic systems.
These are formally defined in terms of closed trajectories γ of an open hyperbolic system
(U , ϕt,X) and a weight f ∈ C∞(U):

ZX
f (λ) :=

∑

γ

(
exp (−λTγ) tr(αγ)

|det(id− Pγ)|

∫

γ#

f

)
, λ ∈ C . (1.3.3)

Here Pγ denotes the linearized Poincaré map on γ which is the differential dϕ−Tγ (x)
evaluated on some x ∈ γ. The determinant itself is independent of this base point so it
can be omitted from the notation. Similarly αγ is parallel transport along γ, i.e. u 7→
exp(−TγX)u(ϕTγ (x)) for u ∈ Ex and any smooth section u with u(x) = u. This definition
is independent of the choice of u and the trace is also independent of the concrete base
point x. More details may be found in [SWB23, Section 2.1].

The general strategy to prove meromorphic continuation is to identify ZX
f (λ) with a

flat trace over the restricted resolvent R(λ). This connection is established via a weighted
trace formula derived in Section 1.3.1 which is used by the subsequent Section 1.3.2 to
represent ZX

f (λ) as a trace and derive meromorphic extension as well as a formula for the
residues from this representation.

1.3.1. A Weighted Trace Formula

The main tool for connecting the restricted resolvent with the weighted zeta function is
a weighted version of the Atiyah-Bott-Guillemin trace formula which will be presented in
this section. The proof is subdivided into three steps: First it is shown that the left-hand
side of the trace formula is well-defined by estimating its wavefront set (Section 1.3.1).
Next comes the proof a local version of the trace formula which amounts to choosing
suitable coordinates and manipulating the resulting distributions on Rn (Section 1.3.1).
Finally the local trace formula gets combined with a partition of unity argument to obtain
the global version (Section 1.3.1). An unweighted formulation for open systems can be
found in [DG16, Eq. (4.6)] and an analogous result for the compact case is presented
in [DZ16, Eq. (2.4)].

Statement and Wavefront Estimate

The overall goal in the following sections is to prove the weighted Atiyah-Bott-Guillemin
trace formula:

Lemma 1.3.1: Weighted Atiyah-Bott-Guillemin Trace Formula

For any cut-offs χ ∈ C∞c (R\{0}) and χ̃ ∈ C∞c (U), with χ̃ ≡ 1 near the trapped set
K, the following holds:

tr[
(∫

R
χ(t)χ̃e−tXfχ̃dt

)
=
∑

γ

χ(Tγ)tr(αγ)

|det(id− Pγ)|

∫

γ#

f , (1.3.4)
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where the sum is over all closed orbits γ of ϕt.

Proof. The proof is directly adapted from [DG16, Sec. 4.1] and [DZ16, App. B] but the
main points can already be found in [Gui77, §2 of Lecture 2]. The presentation proceeds
in three steps spread out over the present and the following two subsections:

(1.) Show that the flat trace on the left-hand side is well-defined.

(2.) Prove a local version of the theorem.

(3.) Combine the local version with a partition of unity argument to prove the global
theorem.

First of all, let χ ∈ C∞c (R\{0}) be given. Then Af,χ :=
∫
R χ(t)χ̃e−tXfχ̃dt is an operator

Af,χ : C∞(M, E) −→ C∞(M, E) ⊆ D′(M, E) ,

and via the Schwartz kernel theorem one can consider the integrand χ̃e−tXfχ̃ as an
operator

C∞c (R\{0})→ D′(M×M, E � E∗) .

Applying the Schwartz kernel theorem once more therefore yields as its kernel a distribu-
tion Kf (x, y, t) ∈ D′(M×M× R\{0}, E � E∗):

Af,χ

(
u
)
(x) =

∫

M×R
Kf (x, y, t)u(y)χ(t)dydt ,

where dy is the same (fixed but arbitrary) density onM used to define the kernel of Af,χ

and u ∈ C∞(M, E) is any smooth section of the bundle E .

At this point Theorem 1.2.3 immediately shows that

WF(Kf,χ) ⊆ {(x, y, ξ, η) | ∃t ∈ supp(χ) with (x, y, t, ξ, η, 0) ∈WF(Kf )} , (1.3.5)

where Kf,χ ∈ D′(M ×M, E � E∗) denotes the kernel of Af,χ. As Kf,χ is compactly
supported by virtue of χ̃ one is left with the task of estimating the wavefront set of the
kernel Kf .

To do so, first of all note that the Leibniz rule (1.1.2) implies that etX (fu) =
(f ◦ ϕt)

(
etXu

)
holds by differentiating both sides with respect to t and using unique-

ness. Now suppose that χ ⊗ u ⊗ v ∈ C∞c (I) ⊗ C∞(M, E) ⊗ C∞(M, E) is supported in a
small coordinate patch U ×U ′ ⊆M×M and an open I ⊆ R\{0}. Then one may assume
u = uiei, v = vie′i for local (orthonormal) frames {ei} on U and {e′j} on U ′, which allows
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the following calculation8

〈Kf , χ⊗ v ⊗ u〉

=

∫

M
〈(Af,χu) (x),v(x)〉E dx

=

∫

M

〈∫

R
χ(t)χ̃(x)e−tX (fχ̃u) (x)dt,v(x)

〉

E
dx

=

∫

M×R
χ(t)χ̃(x)

〈
e−tX (fχ̃u) (x),v(x)

〉
E dtdx

=
∑

ij

∫

M×R
χ(t)

(
fχ̃ui

)
(ϕ−t(x))

(
χ̃vj
)

(x)
〈
e−tX (ei) , e

′
j

〉
E (x) dtdx .

These calculations already deduce that the Schwartz kernel Kf is supported on the
graph Γϕ := {(x, ϕ−t(x), t) |x ∈ M, t ∈ R} of ϕ−t. To explicitly identify it as a smooth

function multiplied with the delta function on Γϕ one proceeds as follows:9 Let Ũ ⊆ U
be a smaller coordinate neighborhood and fix a cutoff function ρ ∈ C∞c (U) with ρ

∣∣
Ũ
≡ 1.

Then define the local component functions aij ∈ C∞(Ũ × I) of the transfer operator via

(
e−tXρej

)
(x) =

∑

i

aij(x, t)ei(x) , x ∈ U, t ∈ I . (1.3.6)

The above suppresses the dependency of the components aij on the charts for the sake

of simplicity. Now choosing two additional cutoff functions φ ∈ C∞c (Ũ) and ψ ∈ C∞c (U ′)
(note that φ = ρφ) allows one to calculate the local components of the Schwartz kernel
Kf w.r.t. the local frames {ei} and {e′j}:

(Kf )ij

:= 〈Kf , χ⊗
(
ψe′j

)
⊗ (φei)〉

=
∑

k

∫

U ′

∫

I
χ(t) (fχ̃φ) (ϕ−t(x)) (χ̃ψ) (x)aki(x, t)

〈
ek, e

′
j

〉
E (x) dtdx .

Now note that the wavefront set of Kf was defined above locally as the union of the
wavefront sets of its component functions (Kf )ij . But the calculation above shows that
these components are delta distributions on the graph of ϕ−t, i.e. the submanifold Γϕ,
multiplied by some smooth functions. The final wavefront set is therefore contained in
the conormal bundle N∗Γϕ given by [Hör13, Example 8.2.5]:

N∗Γϕ :=
{

(x, y, t, ξ, η, τ) ∈ T ∗(M×M× R)
∣∣∣ y = ϕ−t(x), (ξ, η, τ)

∣∣
T (Γϕ)

= 0
}
.

It is well-known that the tangent space to a graph is the image of the differential of the
function defining the graph. Thus,

T(x,ϕ−t(x),t)(Γϕ) =
{

(v, (dϕ−t(x))v − θXϕ−t(x), θ)
∣∣ v ∈ TxM, θ ∈ TtR = R

}
,

8These formulae employ the Bochner integral for families of linear operators Tt which is defined via(∫
Ttdt

)
v :=

∫
(Ttv)dt and such that pointwise evaluation is linear and continuous.

9This is very similar to directly computing that the Schwartz kernel of ϕ∗−t as a distribution in R\{0}×
M×M is a delta distribution on {y = ϕ−t(x)}: In the scalar case, ϕ∗−t : χ(t)⊗f ⊗ g 7→

∫
M×R χ(t)(f ◦

ϕ−t)(x)g(x)dxdt yields the kernel ψ(t, x, y) 7→
∫
M×R ψ(t, x, ϕ−t(x))dxdt for ϕ∗−t.
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and this immediately yields that WF(Kf ) is contained in

{
(x, y, t, ξ, η, τ) ∈ T ∗(M×M× R)

∣∣ y = ϕ−t(x), η 6= 0, ξ = −(dϕ−t(x))T η,

τ = 〈η,Xy〉, x, y ∈ supp(χ̃)
}
.

At this point it is possible to substitute into (1.3.5) to estimate the wavefront set of
the right-hand side of the trace formula as follows:

WF(Kf,χ) ⊆
{

(x, y, ξ, η) ∈ T ∗(M×M)
∣∣ ∃t ∈ supp(χ)x, y ∈ supp(χ̃) :

y = ϕ−t(x), η 6= 0, ξ = −(dϕ−t(x))T η, 〈η,Xy〉 = 0
}
.

(1.3.7)

This set does not intersect the set {(x, x, ξ,−ξ) | ξ ∈ T ∗xM}: Any (x, x, ξ,−ξ) contained
in the right-hand side of (1.3.7) would satisfy ϕT (x) = x, for some T 6= 0, and 〈ξ,Xx〉 = 0
together with (id − dϕ−T (x)T )ξ = 0. But id − dϕ−T (x) is invertible on Eu(x) ⊕ Es(x)
and TxM = Eu(x) ⊕ Es(x) ⊕Xx for any x on a closed geodesic. This therefore lets one
conclude ξ = 0 which does not belong to WF(Kf,χ). Thus the flat trace on the left-hand
side is well defined.

Local Trace Formula

Denoting by

i : M× (R\{0})→M×M× (R\{0})
the inclusion (x, t) 7→ (x, x, t) one readily observes that the by Section 1.3.1 well-defined
distribution i∗Kf is supported within

i−1(supp(Kf )) ⊆ {(x0, T ) |ϕT (x0) = x0, T 6= 0} .

As in [DZ16, Lemma B.1] it therefore makes sense to prove the following local lemma
which will be the key ingredient for the final trace formula:

Lemma 1.3.2: Local Weighted Trace Formula

Suppose x0 ∈ U and T 6= 0 is such that ϕT (x0) = x0. Then there exist ε > 0 and
an open neighbourhood x0 ∈ U ⊆ U with ϕs(x0) ∈ U for any |s| < ε and such that
for any ρ(x, t) = σ(x)χ(t) ∈ C∞c (U×]T − ε, T + ε[) the following holds:

tr[
(∫

R
ρ(x, t)Kf (x, y, t)dt

)
=

∫

R×M
ρ(x, t)Kf (x, x, t)dtdx

=
tr(αγ)

| det(id− Pγ)|

∫ ε

−ε
ρ(ϕs(x0), T )f(ϕs(x0))ds

(1.3.8)

Proof. First of all according to [Lee12, Thm. 9.22] there exists a chart κ : U1 ⊆ M →
Bn
ε1(0), κ(x) = w around x0 such that

κ(x0) = 0, κ∗(X) = ∂w1 .

By composing κ with a suitable linear map one may also assume that

dκ(x0) (Es(x0)⊕ Eu(x0)) = {dw1 = 0} .
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By the joint continuity of the flow ϕ in the variables (x, t) it is possible to find some ε > 0
such that U := κ−1(Bn

ε (0)) satisfies ϕ−t(U) ⊆ U1 for any |T − t| < ε.
Next define two functions A : Bn−1

ε (0)→ Bn−1
ε1 (0) and F : Bn−1

ε (0)→]− ε1, ε1[ by the
relation

κ ◦ ϕ−T
(
κ−1(0, w′)

)
=
(
F (w′), A(w′)

)
, for w′ ∈ Rn−1, |w′| < ε .

Obviously F (0) = 0 and A(0) = 0. By the assumption κ∗(X) = ∂w1 one gets that
ϕ−T

(
κ−1(w1, w

′)
)

= κ−1 (w1 + F (w′), A(w′)) for any (w1, w
′) ∈ Bn

ε (0). Similarly it holds
for |T − t| < ε that

ϕ−t
(
κ−1

(
w1, w

′)) = κ−1
(
T − t+ w1 + F (w′), A(w′)

)
.

Within this local setup the flat trace may be calculated explicitly. First assume that the
density dx used to define Kf is translated into the standard density on Rn under κ.10 The
tricky part of calculating the pullback of σKf,χ along the inclusion ι :M3 x 7→ (x, x) ∈
M×M is given by the singular portion of Kf,χ. One therefore starts by calculating the
pullback of δy=ϕ−t(x) along κ̃−1 : (w, t) 7→ (κ−1(w), κ−1(w), t).

To this end let ψ ∈ C∞c (Bn
ε (0) × Bn

ε (0)×] − ε, ε[) be an arbitrary test function and
observe:

〈(
κ̃−1

)∗
ρδy=ϕ−t(x), ψ

〉

=

∫

Bnε (0)

∫

R
ρ(κ−1(w), t)ψ(w, κ ◦ ϕ−t ◦ κ−1(w), t)dwdt

=

∫

Bnε (0)

∫

R
ρ(κ−1(w1, w

′), t)ψ((w1, w
′), (T − t+ w1 + F (w′), A(w′)), t)dw1dw′dt .

(1.3.9)

In summary Equation (1.3.9) implies that in coordinates ρδy=ϕ−t(x) equals
ρ(κ−1(w), t)δ(z1 − T + t − w1 − F (w′))δ(z′ − A(w′)), with z = (z1, z

′). Distributions
of this form are well known:

Let U, V ⊆ Rn be open and f : U → V a smooth function and define b : U × U → Rn
by b(x, y) := y − f(x). Now observe

δ(y − f(x)) := δ(y = f(x)) = b∗δ0 ,

where δ0 is the delta distribution at x0 = 0: 〈δ0, ϕ〉 = ϕ(0). The pullback is well-defined
because b is a submersion ([Hör13, Thm. 6.1.2]) and standard techniques can calculate
it concretely: Let ρ ∈ C∞c (Rn) be such that supp(ρ) ⊆ Bn

1 (0) and
∫
ρ(x)dx = 1. Setting

ρε(x) := ε−nρ(x/ε) one has ρε → δ0 for ε → 0 in D′. For any ϕ ∈ C∞c (U × U) it holds
that

〈δ(y − f(x)), ϕ〉 = lim
ε→0

∫ ∫
ρε(y − f(x))ϕ(x, y)dydx

= lim
ε→0

ε−n
∫ ∫

ρε(y − f(x))dy ϕ(x, yf(x),ε)dx

=

∫
ϕ(x, f(x))dx ,

(1.3.10)

where yf(x),ε is a sequence of points with |yf(x),ε − f(x)| < ε and therefore yf(x),ε → f(x)
for ε→ 0.
10One may do this as the flat trace is independent of the choice of density (c.f. [DZ16, Section 2.4]).
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1.3. Expanded Proof of Meromorphic Continuation

Next let g : U → V be a smooth submersion (i.e. a local diffeomorphism, as domain
and codomain have the same dimension). Let (ai)i∈I be the zeros of g: g(x) = 0⇔ x = ai
for some i ∈ I. Then one calculates the action of g∗δ0 on some ϕ ∈ C∞c (U) as follows by
regarding δ0 as an element of D′(V ):

〈g∗δ0, ϕ〉 = lim
ε→0

∫

V
ρε(g(x))ϕ(x)dx

= lim
ε→0

∫

D
ρε(g(x))ϕ(x)dx ,

(1.3.11)

where D := supp(ϕ) ∩ g−1(B
n
ε (0)). Now D is compact and contains, as g is a local dif-

feomorphism, only finitely many of the ai, say (ai)i∈I′ . Thus there exists δ > 0 such that
g
∣∣
Bnδ (ai)

is invertible for all i ∈ I ′. Furthermore, D\⋃i∈I′ B
n
δ (ai) is still compact and g

restricted to this set is strictly positive. It is therefore possible to assume, by choosing ε
small enough, that D ⊆ ⋃i∈I′ B

n
δ (ai) and this implies

〈g∗δ0, ϕ〉 = lim
ε→0

∑

i∈I′

∫

Bnδ (ai)
ρε(g(x))ϕ(x)dx

=
∑

i∈I′
lim
ε→0

∫

g(Bnδ (ai))
ρε(y)ϕ(g−1(y))|det

(
(g−1)′(y)

)
|dy

=
∑

i∈I′

ϕ(ai)

|det(g′(ai))|
=
∑

i∈I

ϕ(ai)

|det(g′(ai))|
,

(1.3.12)

where the second equality follows by the transformation formula for diffeomorphisms. Not-
ing again that any compact subset of U can only contain finitely many ai the distribution
finally reduces to the expression

g∗δ0 =
∑

a∈g−1(0)

δ(x− a)

|det(g′(a))| . (1.3.13)

An application of this knowledge to our original distribution leads to ι∗δ(y − f(x)) =
δ(x − f(x)) = |det(id − f ′(0))|−1δ0 if f(x) = x holds only for x = 0 and f ′(0) has no
eigenvalue equal to one.

To calculate further consider the solutions to the equation A(w′) = w′. The formula

ϕ−(T+F (w′))
(
κ−1(0, w′)

)
= κ−1

(
T − T − F (w′) + F (w′), A(w′)

)
= κ−1(0, A(w′)) ,

shows that A(w′) = w′ entails that κ−1(0, w′) lies on a closed trajectory with period
T + F (w′). But ε can be chosen small enough that U does not intersect any closed
trajectory with period in [T − ε, T + ε] apart from ϕt(x0). Then A(w′) = w′ implies
(0, w′) = κ(x0) = (0, 0) and indeed w′ = 0. Combining these results and writing δ(x, y) =∫
χ(t)δy=ϕ−t(x)dt results in

〈ι∗ (σ(x)δ(x, y)) ,1〉 =

∫

Bnε (0)
ρ(κ−1(w1, w

′), T + F (w′))δ(w′ −A(w′))dw1dw′

=
1

|det(id−A′(0))|

∫ ε

−ε
ρ(κ−1(w1, 0), T )dw1

=
1

|det(id− Pγ)|

∫ ε

−ε
ρ(ϕs(x0), T )ds ,

(1.3.14)
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1.3. Expanded Proof of Meromorphic Continuation

where the last equality comes from the fact that A′(0) is conjugated to Pγ , where γ is the
closed geodesic with period T containing x0, via the map dκ(x0) and ϕs−T (x0) = κ−1(s, 0).

Note that one can integrate over [0, T#
γ ] instead of [−ε, ε] as ρ = 0 outside the arc

{ϕs(x0) | s ∈ [−ε, ε]} =
{
ϕs(x0)

∣∣∣ s ∈ [0, ε] ∪ [T#
γ − ε, T#

γ ]
}

.

The final step needs to combine this result with the additional smooth factors appearing
in the actual kernel Kf,χ: First there are additional cut-off functions χ̃ and the weight
function f but these can be taken care of by substituting χ̃ρχ̃f instead of ρ everywhere.
The final integral will then contain ρf instead of ρ as χ̃ = 1 on the trapped set K.

Finally, the flat trace of the E � E∗-valued kernel Kf contains the trace over the local
matrix coefficients defined in (1.3.6), i.e. the smooth function

∑
i aii(ϕs(x0), T ) inside the

integral. But given a local frame {ei} one immediately calculates that

αx,t : ei(x) 7−→
(
e−tXei

)
(ϕt(x)) =

∑

j

aji(ϕt(x), t)ej(ϕt(x)) ,

i.e. the matrix representing αx0,T in the basis {ei(x0)} is (aij(ϕT (x0), T )). One therefore
has ∑

i

aii(x0, T ) = tr(αγ) =
∑

i

aii(ϕs(x0), T )

for all s, because the αγ(s),T are conjugated to each other. Plugging this last ingredient
into (1.3.14) yields the local trace formula.

Completing the Proof

Now a partition of unity argument finishes the proof of Lemma 1.3.1: Let χ ∈ C∞c (R\{0})
and denote by L(χ) the (finite) set of all closed trajectories γ of ϕt with periods Tγ
contained in supp(χ).

By compactness of γ any γ×{Tγ}, γ ∈ L(χ), can be covered by finitely many Ui,γ×]Tγ−
εi,γ , Tγ + εi,γ [ according to Lemma 1.3.2. Given a partition of unity χi,γ(x) subordinate
to {Ui,γ} one calculates

tr[ (Kf,χ) =
∑

γ∈L(χ)

∑

i

∫

R×M
χ(t)χi,γ(x)Kf (x, x, t)dtdx

=
∑

γ

tr(αγ)χ(Tγ)

|det(id− Pγ)|
∑

i

∫ εi,γ

−εi,γ
χi,γ(ϕs(xi,γ))f(ϕs(xi,γ))ds

Finally looking only at a fixed geodesic γ lets one drop the second subscript and write,
by using the semi-group property of the flow,

∑

i

∫ εi

−εi
χi(ϕs(xi))f(ϕs(xi))ds =

∑

i

∫ T#
γ

0
χi(ϕs(x0))f(ϕs(x0))ds

=

∫ T#
γ

0
f(ϕs(x0))ds =

∫

γ#

f ,

which follows from the fact that the Ui cover γ#, ϕ·(x0) is a diffeomorphism from the

torus of circumference T#
γ onto γ#, and the χi are compactly supported on an arc of

γ.
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1.3. Expanded Proof of Meromorphic Continuation

1.3.2. Proof of the Main Theorem

This section finally proves the main theorem namely meromorphic continuation of the
weighted zeta function ZX

f (λ) of an open hyperbolic system (U , ϕt,X) and weight f ∈
C∞(U) as defined in Equation (1.3.3). In particular meromorphic continuation together
with an explicit formula for the Laurent coefficients of ZX

f are shown by using the trace
formula of the previous Section 1.3.1:

Theorem 1.3.3: Meromorphic Continuation of Weighted Zetas

The weighted zeta function ZX
f for open hyperbolic systems converges absolutely

in {Re(λ)� 0} and continues meromorphically to {λ ∈ C}.
Any pole λ0 of Zf is a Pollicott-Ruelle resonance of X and if λ0 has order J(λ0)
then for k ≤ J(λ0) the following residue formula holds:

Resλ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= tr[

(
(X− λ0)kΠλ0f

)
.

Proof. Proving that the formal expression (1.3.3) defines a holomorphic function on
{Re(λ)� 0} is rather straightforward by showing uniform convergence on compact sets.
To this end consider every term separately and then combine the results for a final esti-
mate:

(1.) N(T ) := |{γ |Tγ ≤ T}| ≤ C0eC1T for constants C0, C1 > 0 according to [DZ16,
Lemma 1.17].

(2.) |det(id−Pγ)| is bounded below by a constant C2 > 0 as the converse would contra-
dict the existence of a uniform contraction/expansion constant γ > 0.

(3.) |tr(αγ)| ≤ C4eC3Tγ by the operator norm estimate on e−tX.

Combining (1.), (2.) and (3.) results in

∑

γ

∣∣∣∣
e−λTγ tr(αγ)

| det(id− Pγ)|

∫

γ#

f

∣∣∣∣ ≤
∑

n∈N

∑

Tγ∈]n−1,n]

∣∣∣∣
e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f

∣∣∣∣

≤
∑

n∈N
C0eC1n|e−(n−1)λ|C4eC3nC−1

2 n|f |K

≤ C
∑

n∈N
n ·
(

eC−Re(λ)
)n

Zf (λ) thus converges uniformly if λ varies in a compact subset of Re(λ) > C. In conclu-
sion, the function Zf (λ) is holomorphic on some right halfplane.

The proof proceeds by expressing the weighted zeta function as the flat trace of an
expression involving the restricted resolvent and using the trace formula presented in
Section 1.3.1 as the main tool. The presentation closely follows [DZ16, §4]. It begins
by choosing 0 < t0 < Tγ ∀γ, χT ∈ C∞c (]t0/2, T + 1[) and χT ≡ 1 on [t0, T ]. Furthermore
assume t0 small enough such that ϕ−t0(supp(χ̃)) ⊆ U . Then define the family of operators

BT :=

∫ ∞

0
χT (t)e−λt

(
χ̃e−tXχ̃f

)
dt ,
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1.3. Expanded Proof of Meromorphic Continuation

and Lemma 1.3.1 shows that for Re(λ)� 0

lim
T→∞

tr[ (BT ) = lim
T→∞

∑

γ

χT (Tγ)e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f

=
∑

γ

e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f ,

because the right-hand side series converges uniformly for Re(λ) � 0 by virtue of the
exponential growth of the number of closed trajectories N(T ).

Now by [DZ16, Lemma 2.8] there exists a family of smoothing operators11 Eε ∈
Ψ−∞(M,End(E)), ε > 0, such that

tr[ (BT ) = lim
ε→0

tr (EεBTEε) ,

and the kernels Eε(x, y) are supported in {(x, y) ∈ M×M|d(x, y) < ε} for some fixed
c1 > 0 and some smooth distance function d(·, ·). Here the right-hand side trace is taken
in L2(M, E). It exists as EεBTEε is smoothing and thus trace class by the compactness
of M. Now consider the following splitting of the integral over the t-variable (note that
the L2-trace is a bounded linear operator and therefore commutes with

∫
dt):

tr(EεBTEε) =

∫ t0

t0/2
χT (t)e−λttr

(
Eεχ̃e−tXχ̃fEε

)
dt

+

∫ ∞

t0

χT (t)e−λttr
(
Eεχ̃e−tXχ̃fEε

)
dt .

As in [DZ16, §4] the first summand vanishes for ε small enough because

tr
(
Eεχ̃e−tXχ̃fEε

)

=

∫

M×M
Eε(x, y)χ̃(y)

(∑

i

aii(y, t)

)
f(ϕ−t(y))χ̃(ϕ−t(y))Eε(ϕ−t(y), x)dydx ,

and Eε(x, y) = 0 if d(x, y) ≥ c1ε by the support property of the kernel Eε(x, y). By
t0 < Tγ for all closed γ the minimum c2 of d(ϕ−t(x), x) for t ∈ [t0/2, t0] and x ∈ M is
strictly positive; if one chooses ε < c2/(2c1) then

Eε(x, y)Eε(ϕ−t(y), x) 6= 0

would imply d(x, y) < c1ε and d(ϕ−t(y), x) < c1ε, i.e. d(y, ϕ−t(y)) < 2c1ε < c2, a
contradiction. The integrand and therefore the trace vanishes for t ∈ [t0/2, t0].

Next one can interchange the limits in T and ε, again for Re(λ) sufficiently large,

lim
T→∞

tr[ (BT ) = lim
T→∞

lim
ε→0

tr (EεBTEε) = lim
ε→0

lim
T→∞

tr (EεBTEε) ,

as the limit ε → 0 exists for any finite T and the limit T → ∞ is uniform in ε > 0. To
see the latter, simply observe that the same calculation as in [DZ16, Lemma 4.1] shows

∫ T+1

T

∣∣∣tr
(

e−λtEεχ̃e−tXχ̃fEε
)∣∣∣ dt ≤ Ce−Re(λ)T eCT , (1.3.15)

11One can directly apply the scalar-valued version of [DZ16] by choosing the mollifiers Eε to be diagonal
in the fiber variable.
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1.3. Expanded Proof of Meromorphic Continuation

where the constant C especially contains the supremum of f on the compact support of
χ̃ and the supremum of the local fiber traces

∑
i aii(x, t) which in the t-variable can be

estimates by CeC
′T due to [DZ16, Eq. (0.9)]. Now (1.3.15) implies

∣∣∣∣
∫ ∞

t0

e−λttr
(
Eεχ̃e−tXχ̃fEε

)
dt−

∫ ∞

t0

χT (t)e−λttr
(
Eεχ̃e−tXχ̃fEε

)
dt

∣∣∣∣

≤
∞∑

n=0

∫ T+n+1

T+n
e−λt

∣∣tr
(
Eεχ̃e−tXχ̃fEε

)∣∣dt

≤ Ce(−Re(λ)+C)T
∞∑

n=0

e(−Re(λ)+C)n ≤ C̃e(−Re(λ)+C)T ,

which indeed converges for T → ∞ and uniformly in ε > 0 (an immediate adaptation
of the first equation in [DZ16, Lemma 4.1] shows that the integral which is the limit as
T →∞ converges absolutely for every ε > 0).

Using the commutativity of the two limits and the absolute convergence of the integral
in the t-variable one finally arrives at the expression

lim
T→∞

tr[ (BT ) = lim
ε→0

∫ ∞

t0

e−λttr
(
Eεχ̃e−tXχ̃fEε

)
dt ,

where Re(λ)� 0. One therefore has

ZX
f (λ) :=

∑

γ

e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f = lim
T→∞

tr[(BT )

= lim
ε→0

∫ ∞

0
e−λ(t+t0)tr

(
Eεχ̃e−(t+t0)Xχ̃fEε

)
dt

= e−λt0 lim
ε→0

tr

(
Eεχ̃e−t0X

(∫ ∞

0
e−λte−tXdt

)
χ̃fEε

)

= e−λt0 lim
ε→0

tr
(
Eεχ̃e−t0X(X + λ)−1χ̃fEε

)
,

(1.3.16)

which at first only holds for Re(λ) � 0. At this point one would of course want to ap-
ply the meromorphic continuation of the restricted resolvent R(λ) = 1U (X + λ)−11U :
Γ∞c (U , E) → D′(U , E) as achieved in [DZ16]. To do so first observe that (X + λ)−1χ̃ =
(X + λ)−11U χ̃ by supp(χ̃) ⊆ U . Now even demanding t0 to be small enough that
ϕ−t0(supp(χ̃)) ⊆ U holds allows the rewrite χ̃e−t0X(X + λ)−11U χ̃ = χ̃e−t0X1U (X +
λ)−11U χ̃ by the support property of e−t0X.

Now if λ ∈ C is not a resonance then the general wavefront estimates [Hör13, Exam-
ple 8.2.5] and [Hör13, Thm. 8.2.14] together with the estimate of WF′(R(λ)) in [DZ16,
Equation (3.43)] and the fact that multiplication with smooth functions does not enlarge
the wavefront set yield

WF′
(
χ̃e−t0(λ+X)R(λ)χ̃f

)

⊆
{(

et0Hp(x, ξ), x, ξ
) ∣∣ (x, ξ) ∈ T ∗U\0

}
∪ (E∗+ × E∗−)

∪
{(

e(t0+t)Hp(x, ξ), x, ξ
) ∣∣ (x, ξ) ∈ T ∗U\0, t ≥ 0, p(x, ξ) = 0

}
,

(1.3.17)

where p(x, ξ) := ξ(Xx), et0Hp(x, ξ) = (ϕt(x), (dϕt(x))−T ξ) and the wavefront set of e−t0X

is contained in the graph of et0Hp . Now the wavefront set (1.3.17) does not intersect
the diagonal: For the first component this immediately follows from t0 < Tγ for all closed
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1.3. Expanded Proof of Meromorphic Continuation

orbits γ and for the second component it is implied by the directness of the dual hyperbolic
splitting, i.e. E∗+(x)∩E∗−(x) = {0} for every x ∈ K. Finally, any vector in the intersection
of the third component and the diagonal would satisfy (dϕt(x))−T ξ = ξ for some t ≥ t0
as well as ξ(Xx) = 0. This is impossible for any ξ 6= 0 as id − dϕt(x) is invertible on
Es(x)⊕ Eu(x) and TxU = Xx ⊕ Es(x)⊕ Eu(x) for x ∈ K.

Now if λ is a resonance, then the analogous argument using [DZ16, Lemma 3.5] and
linearity of tr[ shows that the right-hand side of (1.3.16) admits a Laurent expansion
around λ whose finitely many coefficients of negative order are the flat traces of the
coefficients of R(λ). This produces a meromorphic continuation for ZX

f (λ) onto {λ ∈ C}
with its poles contained in the set of Pollicott-Ruelle resonances of X and for λ not a
resonance the identity

ZX
f (λ) = e−λt0tr[

(
χ̃e−t0XR(λ)χ̃f

)
. (1.3.18)

holds.

To complete the proof an explicit formula for the Laurent coefficients at a resonance
λ0 will be shown. The starting point is (1.3.18) combined with Equation (0.13) in [DZ16,
Thm. 2]. Upon substituting the expansion in the second equation into the first one gets

ZX
f (λ) = ZX

f,H(λ) +

J(λ0)∑

j=1

tr[

(
χ̃

e−t0(λ+X)(−X− λ)j−1Πλ0

(λ− λ0)j
χ̃f

)
,

where ZX
f,H(λ) is holomorphic near λ0.

For 0 ≤ k < J(λ0) one can use the Taylor expansion of the exponential around λ0,
i.e. exp(−λt0) =

∑∞
n=0(−t0)n exp(−λ0t0)(λ− λ0)n/n!, to obtain the weighted zeta func-

tion’s Laurent coefficient of order k at λ0:

Res
λ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= Res

λ=λ0



J(λ0)∑

j=k+1

∞∑

n=0

tr[

(
χ̃

(−t0)ne−t0(λ0+X)(−X− λ0)j−1Πλ0

n!(λ− λ0)j−k−n
χ̃f

)


=

J(λ0)−k−1∑

n=0

(−1)ntn0
n!

tr[
(
χ̃e−t0(λ0+X)(−X− λ0)k+nΠλ0χ̃f

)

(1.3.19)

The operator X + λ is nilpotent on the image im(Πλ0) by Equations (0.12) and (0.15)
in [DZ16]. This simplifies the propagator e−t0(X+λ0) drastically:

e−t0(X+λ0)

∣∣∣∣
Im(Πλ0

)

=

J(λ0)−1∑

m=0

tm0 (−X− λ0)m

m!

∣∣∣∣
Im(Πλ0

)

. (1.3.20)

Substitution into Equation (1.3.19) and usage of the abbreviation N := J(λ0)− k − 1
yields:

Res
λ=λ0

[
ZX
f (λ)(λ− λ0)k

]
=

N∑

n=0

N−n∑

m=0

(−1)n
tn+m
0

n!m!
tr[
(
χ̃(−X− λ0)n+m+kΠλ0χ̃f

)

=
N∑

s=0

s∑

n=0

(−1)n
ts0

n!(s− n)!
tr[
(
χ̃(−X− λ0)s+kΠλ0χ̃f

)
,

(1.3.21)
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where the second line is obtained by using the variable s := n+m as a reparametrization
of the double sum. A close examination of Equation (1.3.21) reveals that the binomial
theorem can be applied to show for s > 0

s∑

n=0

(−1)n

n!(s− n)!

s!

s!
=

1

s!

s∑

n=0

(−1)n(1)s−n
(
s

n

)
= 0 .

From this the following formula for the k-th Laurent coefficient follows:

Res
λ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= tr[

(
χ̃(−X− λ0)kΠλ0χ̃f

)
,

which completes the proof because the restriction of the kernel of Πλ0 to the diagonal is
supported in Γ+ ∩Γ− = K and χ̃ ≡ 1 on K, i.e. the cutoff functions can be dropped.

1.4. Remarks on Patterson-Sullivan Distributions

As previously mentioned the meromorphic continuation together with the trace formula
just described provide the basis for all applications in the upcoming chapters. One major
applications was already presented in the article [SWB23] itself and a short summary of
this will conclude the chapter at hand. Precise definitions, theorems, and references can
be found in [SWB23, Section 4].

On the one hand invariant Ruelle distributions are interesting objects to consider due to
their connection to (generalized) resonant states, i.e. elements in the image of Πλ0 . On the
other hand they derive much of their significance from their connection to certain quantum
mechanical phase space distributions called Patterson-Sullivan distributions P̂Sψi . The
precise theorem can be stated as general as for Riemannian compact locally symmetry
spaces M of rank one. On such spaces the well-known Laplace-Beltrami operator ∆M has
purely discrete spectrum λi with smooth, real-valued eigenfunctions ψi:

∆Mψi = λiψi , ψi ∈ C∞(M,R) .

To any such eigenfunction ψi a distribution P̂Sψi on the unit sphere bundle SM may be
attached and the following trace formula holds [SWB23, Thm. 4.1]:

Res
λ=−ρ+ir

[Zg(λ)] =
m∑

i=1

P̂Sψi(g) ,

for any g ∈ C∞(SM) and r > 0 such that ρ2 + r2 is an eigenvalue of ∆M. Here ρ
denotes the halfsum of restricted roots which in constant curvature −1 equals 1/2 and
the righthand side sum extends over an orthonormal basis of the (ρ2 + r2)-eigenspace of
∆M.

The Patterson-Sullivan distributions can in turn be identified with so-called Wigner
distributions which are given by matrix coefficients of quantizations of test functions on
the eigenstates ψi. Even though this statement only holds in the high frequency limit
r → ∞ it is an important bridge between the theory of Pollicott-Ruelle resonances and
quantum ergodicity.

Unfortunately to the author’s knowledge there does not exist a similar correspondence
in the convex cocompact case yet: On the level of resonances [GHW18] did manage to
generalized the correspondence. Here the role of the discrete Laplace-Beltrami spectrum
is played by quantum resonances which are obtained by meromorphic continuation of the
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1.4. Remarks on Patterson-Sullivan Distributions

resolvent for the Laplace-Beltrami operator. The resulting discrete subset of C has an
exact and well-understood relationship with the spectrum of Pollicott-Ruelle resonances
of the geodesic flow, see [GHW18, Theorem 1.2].12 The missing ingredient is a theory of
Patterson-Sullivan distributions connecting invariant Ruelle and Wigner distributions on
phase space.

This in turn means that a rigorous mathematical basis for the interpretation of the
experiments performed in Part II as experiments on Wigner distributions is still an open
question which should be pursued in the future. Some experimental evidence for why this
connection might be expected to exist was provided in [BSW22] and will be summarized
in Chapter 3. The following Diagram 1.1 summarizes the connections established so far
as well as outstanding conjectures.13

Weighted Zeta Ruelle Distribution
open systems

N-Disc Scattering

Chapter 2

Patterson-Sullivan Distribution
cpt. loc. sym. rk. 1

Wigner Distribution

cpt. loc. sym. rk. 1

?

Dynamical Determinant

Schottky surfaces

?

?

Figure 1.1.: Established and conjectured connections between invariant Ruelle and Wigner distributions.

Note that some of the edges in the figure have not been presented yet but will be the
contents of upcoming chapters.

12The quantum resonances can also be calculated numerically using so-called Selberg zeta functions.
For details on these see Chapter 6 and for the concrete relationship between classical and quantum
resonances on convex-cocompact hyperbolic surfaces see Chapter 5.

13The diagram was created using the dot graph description language and the graphviz package.
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2. Weighted Zetas for Convex Obstacle
Scattering

The rather abstract theory of Chapter 1 finds its first application in the setting of con-
vex obstacle scattering. The upcoming chapter describes this application as developed
in [DSW21]. The original article itself is again included as Appendix B for reference.

2.1. Geodesic Billiard Dynamics

The initial motivation for the project described in this chapter was the extensive analyt-
ical, experimental, and numerical investigation of so-called 3-disc scattering in the theo-
retical and experimental physics communities. With the theory of weighted zeta functions
as described in Chapter 1 it seemed possible to develop a rigorous underpinning for the
numerical investigation of phase space distributions on these systems with the precise defi-
nition of resonances and weighted zeta functions as a first step. For additional background
information refer to the introduction in [DSW21, Section 1].

The actual setting as considered in [DSW21] is a rather straightforward abstraction of
the idea of scattering at compact, convex obstacles in the plane: The ambient phase space
of the billiard dynamics is given by the unit tangent bundle

M := S
(
Σ \ Ω̊

)

over a complete connected smooth Riemannian manifold Σ with the interior of a smooth
submanifold with boundary Ω and full dimension removed. The connected components of
Ω are then interpreted as obstacles. Intuitively the dynamics ϕt is just given by trajecto-
ries of the geodesic flow between obstacles and instantaneous reflections on the obstacle
boundaries for boundary intersections with either inward or outward pointing velocity
vectors.

A trajectory which is neither inward nor outward pinting, i.e. which intersects an ob-
stacle boundary in a tangent manner, is called grazing. To obtain a consistent definition
without having to require e.g. convexity of the obstacles the dynamics ϕt simply stops
when the geodesic flow hits an obstacle in a grazing manner. In the main example case of
convex obstacles one could continue along grazing trajectories to obtain a strictly larger
domain of definition. This is excluded from the outset, though, not only to preserve as
much generality as possible but even more so because the smooth model construction in
Chapter 2.2 below cannot incorporate grazing boundary directions anyways.

In summary the non-grazing billiard flow ϕt is thus given by an incomplete flow1 on

M \ ∂gM ,

where ∂gM := ∂M ∩ T (∂Ω) denotes the grazing boundary component just mentioned.

1Note that the billiard dynamics does in fact not define a flow in the classical sense of a one-parameter
group of diffeomorphisms because the group property fails on the boundary. But this is a minor
technical inconvenience easily solved by transitioning to the smooth model flow introduced below.
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2.1. Geodesic Billiard Dynamics

A precise version of this rather short and simplified discussion together with basic
properties of the resulting objects are the contents of [DSW21, Section 2] but see also
the motivating special case of Euclidean obstacle scattering considered in the introduc-
tory [DSW21, Section 1]. In particular the former section defines the notions of trapped
set K and hyperbolicity for ϕt. For the main application of scattering of a hard point
particle in Euclidean space K coincides with the intuitive notion of trapped trajectories if
the Euclidean flow is non-grazing, i.e. no grazing trajectories are trapped in both forward
and backward time. This is termed the non-grazing trapped set condition. Furthermore
hyperbolicity holds if the Euclidean obstacles are strictly convex.

Now the main difficulty with ϕt is the fact that it does not define even a continuous, let
alone smooth, mapping: Smoothness only holds on the preimage ϕ−1(M̊) of the interior
of phase space and breaks down when ϕt undergoes boundary reflections. To be able
to apply the theory developed in Chapter 1 it is thus necessary to construct a smooth
substitute which preserves the dynamical properties of the original flow. In particular this
should include a length preserving bijection between the closed trajectories of the original
dynamics and its smooth variant.

Before the approach presented in the next section was developed the author of this thesis
made a rather naive first attempt to derive a smooth model flow from ϕt. A summary
of this attempt will conclude this introductory section and motivate the necessity for a
refined approach. For simplicity and guided by the numerical work presented in [BSW22]
the setting of finitely many discs in Euclidean space was chosen for first explorations.
Furthermore the restriction to scattering of the geodesic flow on the Euclidean line R
with finitely many holes seemed a suitable reduction in complexity compared to the
more interesting but also geometrically more complicated case of scattering at finitely
many discs in the Euclidean plane R2. The former can easily be visualized due to its
low dimensionality – the three-dimensional phase space of the latter requires significantly
more effort in this respect.

The toy model setting is as follows: Let the configuration space be

C := {x ∈ R | |x| ≥ a} ,

the Euclidean real line with the one-dimensional “disc” {|x| < a} of radius a > 0 removed
as an obstacle. The associated phase space is then a manifold with boundary given by the
sphere bundle

SC = C × {1,−1} = C × S0

and the billiard dynamics ϕt on this phase space is defined piece-wise for (x, v) ∈ SC as
a straightforward formalization of the scattering of a particle traveling at unit speed and
experiencing hard-ball reflections at the obstacle boundary. Concretely for x ≥ a put

ϕt(x, 1) :=

{
(x+ t, 1) if x+ t ≥ a,
(a− (t+ x− a),−1) if x+ t < a,

,

together with ϕt(x,−1) := (x′,−v′) if ϕ−t(x, 1) = (x′, v′) and ϕt(x, v) := (−x′′,−v′′) for
x ≤ −a such that ϕt(−x,−v) = (x′′, v′′). For a graphical illustration of these definitions
see Figure 2.1. Note that this functional prescription violates the flow property on the
boundary {|x| = a} × {−1, 1} because ϕ−t(ϕt(a,−1)) = (a, 1) 6= (a,−1) for times t > 0.
Furthermore it is not even continuous due to the presence of the boundary reflection
v 7→ −v.
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2.1. Geodesic Billiard Dynamics

(a) Geometric setup of obstacle scattering at a sin-
gle disc in one dimension.

(b) Illustration of the gluing procedure employed to
obtain a smooth model flow.

Figure 2.1.: Illustration of one-dimensional scattering of a free particle at a single disc centered at the
origin together with the construction of a smooth model flow on a quotient of phase space.

Implementing the philosophy of constructing a smooth model of this dynamics which
preserves the important characteristics of ϕt is quite straightforward in this simple exam-
ple: Defining the quotient space by boundary reflection yields the set

M := {(x, v) ∈ SC | |x| > a} ∪ {[(a, 1)], [(−a, 1)]} , (2.1.1)

where [(±a, 1)] = {(±a, 1), (±a,−1)} and equivalence classes {(x, v)} with a single ele-
ment are identified with their member (x, v). A smooth structure on M which is obvi-
ously compatible with the standard smooth structure on the first term of the disjoint
union (2.1.1) is given by the chart x̃ : O → R defined as

O := ]a,∞[×{−1, 1} ∪ {[(a, 1)]} −→]−∞,∞[

[(a, 1)] 7−→ 0

(x, 1) 7−→ x− a
(x,−1) 7−→ a− x ,

combined with an analogous definition on the domain ] − ∞, a[×{−1, 1} ∪ {[(−a, 1)]}.
Geometrically these charts correspond to a straightforward gluing of the directions in
the sphere bundle over the boundary of configuration space. Note that M is no longer a
manifold with boundary but genuinely smooth.

There is now an obvious definition for a smooth model flow φt on M namely the
translation flow in the chart x̃ just given. In x̃-coordinates its generator coincides with ∂x̃
and it models the original ϕt in the sense that on the interior

SC̊ = {|x| > a} × {1,−1}

of phase space both are related by pushforward along the diffeomorphism π|SC̊ obtained
from the projection

π : SC −→M
via restriction to SC̊.

It is straightforward to generalize this construction to R with N + 1, N > 0, intervals
removed. This setup yields a non-trivial, albeit simple, associated weighted zeta function.
The interesting characteristic of this system is not the interval sizes but rather the mutual
distances a1, . . . , aN of neighboring intervals. The construction just discussed now yields
a smooth flow which exhibits a length spectrum of closed trajectories in bijection to
the length spectrum of the original billiard flow. One may therefore immediately apply
the theory of Chapter 1 to obtain the existence of Pollicott-Ruelle resonances and the
meromorphic continuation of weighted zeta functions.
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2.1. Geodesic Billiard Dynamics

Remark 2.1.1. In this particularly simple example it is of course rather trivial to obtain
e.g. meromorphic continuation of weighted zeta functions with constant weight by hand:

Z(λ) :=
∑

γ

e−λTγT#
γ

|det(1− Pγ)|

=
∑

n≥1

N∑

i=1

2aie
−2aiλn

=

N∑

i=1

2ai
e2aiλ − 1

,

and one may take the poles
⋃N
i=1

iπ
ai
Z of this zeta function as the definition of resonances

for the scattering system. Note that in the spirit of Chapter 4 one could also consider
resonances as defined by the zeros of the dynamical determinant

d(λ) :=

N∏

i=1

(
1− e−2aiλ

)

that satisfies d′(λ)/d(λ) = Z(λ).

At first glance the generalization of this construction to higher dimensions seems
straightforward. Before describing this generalization in a more abstract setting in Sec-
tion 2.2 a short description of some subtleties already appearing in the two-dimensional
case of discs will round out this motivational excursion. The following material should pro-
vide the reader with enough of a background to understand the necessity for the technical
depth required and care taken in [DSW21].

The two-dimensional setup itself is an immediate generalization of the one-dimensional
situation presented above: Configuration space is a manifold with boundary given by the
exterior of a disc of radius a > 0 centered at the origin

C := {x ∈ R2 | ‖x‖ ≥ a}

and representing particle positions such that phase space is simply the unit sphere bundle

SC = C × S1

where the fiber coordinate varies on the unit circle S1 representing particle velocity vectors
of unit length. The billiard dynamics on SC is again given by straight lines in the interior
of phase space. Upon intersection with the boundary a trajectory experiences a reflection
at the tangent line to the circle and through the point of intersection. Note that the
additional dimension produces a new phenomenon: A trajectory may hit the boundary
{‖x‖ = a} in a tangential manner corresponding to points within the grazing boundary
component ∂g(SC) = T (∂C)∩SC of phase space. These trajectories pass the disc obstacle
unaltered and are termed grazing . Removing these directions from the boundary of phase
space produces a splitting into disjoint open subsets ∂(SC) \ ∂g(SC) = ∂in(SC)∪ ∂out(SC)
called the inward and outward boundaries. They are defined as those directions whose
scalar product with the tangent line is either strictly positive or strictly negative and they
should be interpreted as the flow directions pointing into or away from the disc obstacle
boundary. A graphical illustration of this setup can be found in Figure 2.2.
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2.1. Geodesic Billiard Dynamics

Figure 2.2.: Illustration of two-dimensional scattering of a free particle at position x ∈ R2 with velocity
vector v ∈ SR2 about a single disc of radius a > 0 centered at the origin.

The one-dimensional example now suggests the following procedure: By introducing
polar coordinates outside the disc obstacle together with angle coordinates in the fiber
phase space can be parameterized via the map

R≥0 × S1 × S1 −→ SC \ ∂g(SC)
(r, θ, α) 7−→ ((r + a) cos(θ), (r + a) sin(θ), cos(α), sin(α))

and the billiard dynamics ϕt is defined completely analogously as before.
Recalling the gluing procedure from above it is unclear how to deal with the grazing

boundary ∂g(SC). It is therefore natural to exclude the grazing boundary points from SC
before proceeding with the gluing – due to ∂g(SC) being a smooth closed submanifold the
resulting space SC \ ∂g(SC) is still a well-defined smooth manifold with boundary. If the
billiard dynamics intersects ∂g(SC) then it shall be redefined to stop right at the point
of intersection thereby resulting in an incomplete flow.2 Now the idea of gluing along the
radial direction suggests itself quite naturally: Take as the underlying set for the smooth
model manifold

M := {‖x‖ > a} × S1 ∪ {[(x, v)] | (x, v) ∈ ∂(SC) \ ∂g(SC)}

where the equivalence classes are taken with respect to reflection at the tangent line
through x denoted by (x, v) 7→ (x, v′), i.e. [(x, v)] := {(x, v), (x, v′)}, and define a smooth
structure forM via the following coordinates on the open subset of phase space that con-
tains all points which at some point in the past or future intersect the obstacle boundary:

[(x, v)] 7−→ (0, θ(x), v) if (x, v) ∈ ∂in(SC)

(x, v) 7−→
{

(r(x), θ(x), v0) ∃(x0, v0) ∈ ∂in(SC), t < 0 : ϕt(x0, v0) = (x, v)

(−r(x), θ(x), v0) ∃(x0, v0) ∈ ∂in(SC), t > 0 : ϕt(x0, v0) = (x, v)

(2.1.2)

Intuitively this means that we consider trajectories which intersect the obstacle and glue
the halves before and after the boundary intersection together. By definition this gluing
happens in a manner that makes the radial coordinate on Euclidean space smooth.

2Note that the same remark regarding failure of the flow property on the boundary made in the one-
dimensional example continues to hold here.
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2.2. Smooth Models

Unfortunately this definition does not lead to a smooth model for the billiard dynamics.
Again ϕt is readily transferred to a flow φt on π(SC\∂(SC)) because outside the boundary
the quotient map π is in fact a diffeomorphism. But expressing φt in the coordinates (2.1.2)
reveals that a continuation to π(∂(SC)) can be achieved as a continuous but not a smooth
flow. More concretely the generating vector field exhibits a discontinuity at r = 0 in the
∂θ-coordinate. The concrete calculations are elementary but rather tedious so the details
are omitted here.

The conclusion from these observations goes as follows: While the procedure of gluing
over the boundary still seems rather promising additional care should be taken in how
to define a smooth structure on the resulting quotient space. One immediate observation
is the need to take account of the billiard dynamics within the smooth structure itself.
This is quite in line with the one-dimensional example where the flow direction simply
coincided with the standard coordinate chart. It turns out that the correct analogue of
the coordinate chosen there was not the radial one but instead the t-parameter of the
dynamics itself. Unfortunately both coincide in the one-dimensional case. This approach
does in fact lead to a complete solution of the goals outlined above and even in the far
more general setting of billiards on Riemannian manifolds which abstract the Euclidean
examples just discussed nicely. A recollection of the central points of this construction
forms the contents of the two upcoming sections.

2.2. Smooth Models

The overall goal as introduced in the previous chapter was the definition of resonances
and meromorphic continuation of weighted zeta functions for Riemannian obstacle scat-
tering via an application of the theory presented in Chapter 1. To account for the lack of
smoothness of the non-grazing billiard flow ϕt on the boundary of phase space an every-
where smooth substitute φt called a smooth model flow was constructed. Here the central
observation is the fact that the lack of smoothness of ϕt is an immediate consequence of
the boundary reflections which were successfully removed in the one-dimensional example
above: Identification of those velocity vectors over the boundary of configuration space
that are related through reflection gave a well-defined smooth manifold with not only a
canonical choice of smooth structure but also an immediate pendant for the billiard flow
satisfying the requirement of identical length spectrum. The two-dimensional example
then revealed the need for suitable coordinates on the quotient.

In the general setting of Riemannian obstacle scattering one has the advantage of a
very clear set of geometrical tools to try and approach the subject matter of such suitable
coordinates. From the failed attempt above it becomes rather clear that the smooth
structure on the quotient should somehow be derived from the flow itself. Now the central
lemma in this direction is [DSW21, Lemma 2.4]: It turns out by a rather straightforward
application of the inverse function theorem that the map ϕ(t, x, v) := ϕt(x, v) itself can
be used as a coordinate map when restricted to a suitable subset Nin ⊂ R× ∂inM . Here
∂inM ⊂ ∂M denotes the set of all inward pointing directions over the boundary.3

The construction of the smooth model M now follows the idea outlined above: First
one defines

M := (M \ ∂gM)/ ∼
3The choice of inward pointing directions is completely arbitrary and the whole upcoming argument

could also be made with the outward pointing directions requiring only trivial modifications of the
notation.
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as a topological quotient space where the equivalence relation ∼ is given by one-element
equivalence classes for points (x, v) ∈ M̊ and two-element classes [(x, v)] := {(x, v), (x, v′)}
for boundary points. Here v 7→ v′ denotes the boundary reflection map in the fiber coor-
dinate. The smooth structure forM is now defined by the requirement that both π|M̊ for
the projection π : M \ ∂gM →M as well as

Nin −→M
(t, x, v) 7−→ [ϕt(x, v)]

be diffeomorphisms. Note that this is a natural requirement if there is to be any hope
that the obvious candidate (disregarding again the technical issue of precise domains)

φt([x, v]) := [ϕt(x, v)]

is indeed a smooth flow with the same dynamical properties as the original ϕt. The
well-definedness and properties of these definitions forms the main content of [DSW21,
Section 4] and the heart of this paper. One of the most important dynamical properties
is the fact that the flow φt is a contact flow.

The preceding [DSW21, Chapter 3] formalizes this construction into the abstract def-
inition of a smooth model for the billiard flow ϕt but this is actually only a matter of
procedural preference: The abstraction admits basically only a single realization, namely
the one just outlined, up to a very rigid class of isomorphisms. This being said the author
is of the opinion that the choice of presenting the abstract formalism has the distinct ad-
vantage that statements like [DSW21, Proposition 3.6 and Proposition 3.7] on the trapped
set and hyperbolicity, respectively, can be formulated and proven without the burden of
relying on an explicit realization of the smooth model as a quotient of the original phase
space. This makes them even more useful as black box theorems in the context of reso-
nances and zeta functions.

2.3. Meromorphic Continuation

The construction of smooth models itself can already be regarded as a first main result
of [DSW21]. The second major result concerns the meromorphic continuation of the same
formal weighted zeta function as considered in Chapter 1:

Zf (λ) :=
∑

γ

exp(−λTγ)

| det(id− Pγ)|

∫

γ#

f ,

where the sum now extends over the closed trajectories of the non-grazing billiard flow
ϕt. With smooth models as a foundation this meromorphic continuation now follows in a
straightforward manner from the general theory of weighted zeta functions by observing
that Zf (λ) coincides with the weighted zeta function for the smooth model flow φt. But
the latter fits into the general framework due to its smoothness and under the assumption
that the original flow ϕt had compact trapped set K and exhibited a hyperbolic splitting
over K. This allows for the definition of Pollicott-Ruelle resonances of ϕt as the poles of
the weighted zeta function Z1(λ) with constant weight.

The actual results presented in [DSW21] are somewhat more detailed, though: The
initial goal was to also define and then meromorphically continue a resolvent for ϕt.
Let the reader be reminded that this was the central ingredient for the meromorphic
continuation of Zf (λ)! Because of the lack of smoothness this resolvent cannot simply
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be taken as the inverse of a generating vector field but a closely related substitute exists
called the billiard generator

P : C∞Bill(O) −→ C∞Bill(O)

Pf(x, v) :=
d

dt

∣∣∣∣
t=0

f ◦ ϕt(x, v) .

Here O ⊂ M \ ∂gM is any open set such that O ∩ (∂M \ ∂gM) is reflection symmetric
and the elements of C∞Bill(O) := {f ∈ C∞(O) | f ◦ ϕ ∈ C∞(ϕ−1(O))} are called billiard
functions. The operator P is thus a formal generator of ϕt on an adapted function space
with a non-local constraint on function values in a neighborhood of the boundary.

Now it is indeed possible to define for compact, reflection-symmetric U ⊃ K a resolvent
RU (λ) : C∞Bill,c(Ů) → CBill,c(Ů) by an explicit formal integral formula.4 This resolvent
satisfies the obviously desirable relation [DSW21, Corollary 5.5]

(P + λ)RU (λ) = id Re(λ)� 0 ,

and the matrix coefficients with respect to the Riemannian volume

〈RU (λ)f, g〉L2 , f, g ∈ C∞Bill,c(Ů) ,

continue meromorphically from Re(λ) � 0 to the whole complex plane C. Furthermore
their possible poles are independent of f, g in the sense that only the Pollicott-Ruelle
resonances of ϕt can appear. Again these statements are directly related to analogous
statements for the smooth model flow φt which in turn follow from the general smooth
theory of [DG16] as recalled in Chapter 1.

It was chosen to formulate the result in terms of meromorphic matrix coefficients instead
of a meromorphic operator family because the latter would have required the development
of a theory of billiard distributions without any obvious significant gain in generality or
usefulness.

Remark 2.3.1. The construction of smooth models can be generalized even further without
requiring too much additional effort: Let a smooth complex vector bundle Ẽ →M \ ∂gM

together with a first order differential operator X̃ on smooth sections of Ẽ satisfying the
Leibniz rule

X̃(f̃ σ̃) = (Pf̃)σ̃ + f̃(X̃σ̃)

for any billiard function f̃ and smooth section σ̃ be given. Then a very similar gluing
procedure yields a smooth model bundle E and a smooth model operator X on smooth
sections of E . This point shall not be elaborated on further in this thesis and the reader is
referred to [DSW21, Appendix B] for details. It should be strongly emphasized, though,
that the same idea of using the flow (together with a closely related parallel transfer map
in the fiber) as a coordinate chart still underpins the whole construction.

4The function spaces appearing in this formula are given by the obvious adaptations of the definition of
C∞Bill.
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3. Weighted Zetas for Wigner Distributions

The upcoming chapter contains a short overview over the article [BSW22]. While it does
not contain new results in the strict sense and addresses as its main audience theo-
retical physicists rather than mathematicians it does present interesting connections of
and new perspectives on the material developed in the mathematically more rigorous
works [SWB23] and [DSW21].

Besides his expertise regarding weighted zeta functions the author of this thesis con-
cretely contributed the presentation and numerical study of 3–disc systems in Section 5
by extending and applying prior numerical Python code by Tobias Weich and Sonja
Barkhofen.

3.1. Semiclassical and Faure-Tsujii Zeta Functions

The overall goal of [BSW22] was the mathematically rigorous reconstruction of certain
trace formulae relating zeta functions defined in terms of classical data with quantum
mechanical matrix coefficients. To this end Section 2 begins by describing the general
mathematical setting of uniformly hyperbolic flows exp(tX) on compact manifolds M.
This simplifies significantly the subsequent description of the meromorphic continuation
to λ ∈ C of the resolvent R(λ) as an operator

R(λ) := (−X − λ)−1 : C∞(M) −→ D′(M) ,

and the corresponding definition of Pollicott-Ruelle resonances as the poles of R(λ) com-
pared to the most general open systems setting as outlined in Chapter 1 of this thesis.
The section is concluded by an introduction of invariant Ruelle distributions Tλ0 and their
residue formula interpretation via weighted zeta functions. The former are motivated as
products of test functions f with resonant states u and co-resonant1 states v

T (f) = 〈v | f |u〉

while the latter simply serve as convenient means enabling the concrete calculation of Tλ0 .
This choice of presentation emphasizes the (at this point heuristic) analogy with matrix
coefficients of quantum mechanical observables which are exceedingly common objects in
physics.

The actual application of this material then follows in [BSW22, Section 3]: Inspired
by certain zeta functions considered in the physics literature the authors introduce the
following semiclassical zeta function for the geodesic flow on an oriented, closed, negatively
curved surface N and a test function f ∈ C∞(T ∗N) on phase space

Zsc
f (E) := −i

∑

γ⊆ΣE

exp(i
√
ELγ)

| det(1− Pγ)|1/2
∫

γ#

f .

1These are the elements in the image of the spectral projector as well as its conjugate, respectively. The
simple product representation holds in the case of a rank one projector, i.e. Πλ0 = |u〉〈v|.
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3.2. Numerical Study of 3-Disc Scattering Systems

Here the variable E is interpreted as energy, ΣE denotes the sphere bundle of radius E,
i.e. the energy shell of energy E, the sum extends over closed trajectories of the geodesic
flow contained in ΣE , Lγ is the length of γ, and Pγ again denotes the linearized Poincaré
map of γ.

To make the connection with the theory of weighted zeta functions a second variant
called the Faure-Tsujii zeta function is introduced next

ZFT
f (λ) :=

∑

γ

exp(−λLγ)|Λγ |1/2
|det(1− Pγ)|

∫

γ#

f ,

where Λγ denotes the expanding eigenvalue of the differential of the geodesic flow on the
closed geodesic γ. Here is where weighted zeta functions come into play: ZFT

f turns out
to be a weighted zeta obtained by lifting the geodesic flow to a certain density bundle.
Meromorphic continuation of ZFT

f therefore follows from the general theory regarding
weighted zetas.

By expanding the terms involving the determinant

det(1− Pγ) = (1− Λγ)(1− Λ−1
γ )

in the respective denominators of Zsc
f and ZFT

f one obtains respective terms of order zero
which may now be compared directly in a certain right halfplane

{Re(λ) ≥ htop −
3

2
βmin} . (3.1.1)

The fact that the less easily comparable higher order terms do not contribute poles within
this halfplane is a direct consequence of the uniform hyperbolicity of the geodesic flow on
T ∗N which in turn follows from the curvature assumption.

Now the comparison yields that any pole λn of Zsc
f (−λ2) in the halfplane (3.1.1) is a

resonance of the geodesic flow lifted to a certain vector bundle and the residue coincides
with the associated invariant Ruelle distribution. Semiclassical results in the physics liter-
ature now suggest a correspondence between the Ruelle distribution and quantum matrix
coefficients which should appear as the residues of the semiclassical zeta function in the
semiclassical limit. The mathematically rigorous version of this correspondence has so far
only been established in the setting of constant negative curvature a recollection of which
is contained in [BSW22, Section 4], see also the results presented as Chapter 1.4 of the
present thesis.

3.2. Numerical Study of 3-Disc Scattering Systems

The concluding Section 5 of [BSW22] presents some compelling evidence towards profound
extensions of the rigorous results discussed above. The setup of the numerical experiments
conducted there is that of so-called n–disc systems: An arrangement of n ≥ 3 discs in the
plane R2 which may be considered as scattering either free classical particles or quantum
mechanical wave functions by imposing Dirichlet boundary conditions in the latter case.
It therefore allows the direct comparison of classical and quantum dynamics similar to
the situation on Riemannian manifolds.

Both the classical (see Chapter 2) as well as the quantum mechanical setting admit no-
tions of resonances, compare the quantum resonances on Schottky surfaces obtained from
meromorphic continuation of the resolvent of the Laplace-Beltrami operator as outlined
e.g in Chapter 6. To a classical resonance one can again associate a Ruelle distribution
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3.2. Numerical Study of 3-Disc Scattering Systems

which is the residue of a weighted zeta function. A natural counterpart on the quantum
side is the Wigner distribution which may be obtained as matrix coefficients of quantiza-
tions of test functions f on phase space with respect to energy eigenstates ∆ψ = λψ:

Wψ(f) := 〈Op(f)ψ,ψ〉 .

Note that the ambiguity in the choice of quantization Op has not much of an impact
because the following discussion revolves around the high frequency limit anyways. The
phase space distributions calculated numerically actually were variants particularly well
suited for numerical purposes called Poicaré-Husimi distributions.

The first noteworthy result which had already been observed previously was a remark-
able coincidence between the classical and quantum mechanical spectra beyond the first
couple of resonances. As a new avenue the authors of [BSW22] considered the Ruelle and
Poincaré-Husimi distributions at corresponding spectral parameters. While the results
were not directly comparable on a quantitative level they showed a remarkable resemb-
lence on a qualitative level. This was even more apparent while moving the considered
resonance in the complex plane and observing the corresponding oscillations in both types
of distributions.

These observations suggest a quantum-classical correspondence for a dynamical system
far beyond the exceptionally symmetrical class of compact constant curvature surfaces to
which the rigorous results are restricted so far. The concluding remarks of [BSW22] state
some conjectures why there might indeed be or not be actual mathematical correspon-
dences to be proven as future rigorous theorems.

With regards to this thesis the discussion shall be concluded with the observation
that [BSW22] used weighted zeta functions, their residue formula, and a related circle of
numerical ideas and techniques to connect older approaches from the physics literature
with more recent mathematical developments and provided some intriguing evidence for
future mathematical research. Especially the second point should be motivation enough to
dive deeper into the numerical-practical aspect of weighted zeta functions in the upcoming
Part II of this thesis.
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Part II.

Numerical Study of
Convex-Cocompact Hyperbolic

Surfaces
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Outline of Part II

The second part builds on the theoretical framework developed in Part I by applying it
to the concrete dynamics of geodesic flows on convex-cocompact hyperbolic surfaces also
known as Schottky surfaces. Compared to the application to obstacle (and in particular 3-
disc) scattering presented in Part I these dynamical systems not only enable an immediate
numerical study of both their resonances as well as their invariant Ruelle distributions –
their particularly simple structure also allows for a technically straightforward proof of
the convergence properties of our numerical algorithms.

While the former has been consider in various papers starting with [Bor14] (but see
also [BW16, BPSW20]) the latter is a new contribution by the author of this thesis.

Before any experiments could be conducted the numerical machinery and its conver-
gence properties had to be developed in a mathematically sound manner. This was done
in the paper [SW23] which is included in Appendix C. A summary of the main results
and algorithms developed there as well as additional details regarding a generalization to
certain systems of holomorphic functions termed hyperbolic map systems was included as
Chapter 4.

With this machinery at hand it becomes possible to numerically investigate invariant
Ruelle distributions on Schottky surfaces. Chapter 5 presents such experiments comple-
menting the simpler proof-of-concept calculations contained in [SW23].

The final Chapter 6 of this part presents another numerical study, this time using the
Selberg zeta function to calculate quantum mechanical resonances. While the numerical
techniques are basically the same as in [Bor14] the application is new: Instead of consid-
ering shared properties of subsets of resonances for a fixed surface such as those belonging
to the same resonance chain now statistical properties of randomly sampled surfaces are
investigated. Chapter 6 gives a brief description of the Weil-Petersson measure on Te-
ichmüller space of funneled tori from which the surfaces were sampled to then proceed
with a more detailed description of how the sampling was realized practically and the
actual results obtained. From these a few hypotheses are extracted but their proofs are
beyond the scope of this thesis.

This concluding chapter should be viewed as additional support for the claim that
numerical experiments are a valuable asset in rigorous mathematics in general and the
field of Pollicott-Ruelle or quantum resonances in particular.
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4. Numerical Machinery

This chapter provides an overview over the numerical machinery developed in the pa-
per [SW23] for the calculation of invariant Ruelle distributions on convex cocompact
hyperbolic surfaces. Instead of simply summarizing the contents a generalization that
abstracts the concrete setting of Schottky surfaces will be developed and the adaptions
necessary to prove counterparts of the theorems in [SW23] are sketched. This generaliza-
tion was already announced in the paper itself and the reasoning behind this procedure
becomes clear in the following Chapter 5: The generalized setting carries over seamlessly
to the numerical implementation and provides firm grounds for a full symmetry reduction
of surfaces with nf funnels.

The original paper itself was included as Appendix C because it contains the bulk of
the algorithmic as well as numerical work and to make this thesis more self contained. In
particular the article contains the foundational definitions for the following sections like
that of Schottky groups and surfaces as well as the surrounding terminology.

4.1. Hyperbolic Map Systems and Dynamical Determinants

The fundamental definition of this chapter embodies the dynamics of a hyperbolic system
of analytic maps as follows, see also [Rug92]:

Definition 4.1.1: Hyperbolic map system

Let pairwise disjoint, bounded domains {Di}i=1,...,N ⊂ C and an adjacency matrix

A(i,j),(k,l) ∈ {0, 1}N
2×N2

be given. A family of maps

φ(i,j),(k,l) =
(
φ

(1)
i,k , φ

(2)
j,l

)

for every (i, j), (k, l) such that A(i,j),(k,l) = 1 is called a hyperbolic map system if

every φ(i,j),(k,l) is analytic on a neighborhood of Di ×Dj and

φ
(1)
i,k : Di −→ φ

(1)
i,k (Di) ⊃ Dk

φ
(2)
j,l : Dj −→ φ

(2)
j,l (Dj) ⊂ Dl .

This generalizes the setup in [SW23] via the following translation prescription: Suppose
g1, . . . , gr generate a Schottky group of rank r and denote by D1, . . . , D2r corresponding
fundamental discs, i.e. gi maps the interior of Di to the exterior of Di+r. Furthermore the
convention gi+r := g−1

i together with gi+2r = gi for i = 1, . . . , r will be used. For a more
detailed introduction see [SW23, Section 1.2]. Now N = 2r and the adjacency matrix is
given by

A(i,j),(k,l) = 1⇐⇒ i 6= j, k 6= l, and l = i+ r ,

and the family of hyperbolic maps is defined in terms of the generators as

φ(i,j),(k,i+r)(z1, z2) = (giz1, giz2) ∈ (C \Di+r)×Di+r , (z1, z2) ∈ Di×Dj , i 6= j, k 6= i+r .
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4.1. Hyperbolic Map Systems and Dynamical Determinants

Example 4.1.2. From the numerical standpoint the most important hyperbolic map system
which does not come from generators of a Schottky surface is the flow adapted nf -funnel
surface as first described in [BW16]. Instead of repeating the definitions made there
concrete formulae for the case of a flow adapted hyperbolic cylinder will be presented.
While requiring less notation to set up the cylinder already exhibits the central ideas of
flow adaptation very clearly. Furthermore the formulae become much more explicit and
therefore provide an ideal example for the verification of numerical procedures later on.
Lastly the paper [BW16] only considered the case of nf ≥ 3 funnels to begin with making
the statement of concrete formulae for the cylinder case a worthwhile addition to the
literature.1

The hyperbolic cylinder X` is the rank-1 Schottky surface associated to the Schottky
group generated by the single hyperbolic element

(
e`/2 0

0 e−`/2

)
. (4.1.1)

It depends on the positive real parameter ` > 0 whose geometric interpretation is that
of the hyperbolic length of the single simple closed geodesic on X`. Figure 4.1 shows an
illustration of the canonical fundamental domain.

(a) Fundamental circles of the hyperbolic cylinder
X` as a Schottky surface together with a (non-
isometric) embedding into R3.

(b) Fundamental circles of the flow adapted repre-
sentation of the hyperbolic cylinder X` together
with a (non-isometric) embedding into R3.

Figure 4.1.: Illustration of both the Schottky group (Bowen-Series) and flow-adapted representations of
the hyperbolic cylinder X`.

Geometrically this representation as a Schottky surface corresponds to a cutting of the
cylinder along a single line perpendicular to the closed geodesic around the waist. In the
light of symmetry reduction as described in [BW16] one would expect that this does not
lead to a maximally symmetric representation: Cutting along two lines perpendicular to
the waist geodesic and with a hyperbolic distance of `/2 should introduce as an addi-
tional symmetry reflection about the hyperplane containing both cuts. The lower part of
Figure 4.1(b) illustrates this geometric idea.

Mathematically this heuristic corresponds to replacing the Schottky group above with
an iterated function system defined by four reflections. The notion of iterated function

1The flow adapted cylinder is particularly interesting as a means of practically checking the correctness
of implementations of the numerical algorithms presented later on due to the explicit knowledge of its
resonance spectrum.
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4.1. Hyperbolic Map Systems and Dynamical Determinants

system is closely related to the definition of hyperbolic map systems above but only
incorporates the expanding direction.2 For details see e.g. [BW16]. The presentation here
starts with such a function system because the general flow adapted nf -funnel surfaces
are such systems. The translation from function to hyperbolic map systems is very similar
to the translation procedure for Schottky surfaces and will be described shortly.

The first two reflections along one should glue the two portions of the cylinder can
basically be read off directly from the upper part of Figure 4.1(b) as

R̃1 :=

(
0 e`/4

e−`/4 0

)
, R̃2 :=

(
0 e−`/4

e`/4 0

)
,

but this definition is slightly inconvenient because the reflection circles of R̃1 and R̃2

overlap. Fortunately a very explicit rotation by π/4 yields the more practical reflections

R1 :=

(
cosh(`/4) − sinh(`/4)
sinh(`/4) − cosh(`/4)

)
, R2 :=

(
cosh(`/4) sinh(`/4)
− sinh(`/4) − cosh(`/4)

)
, (4.1.2)

through circles centered at m± = ± cosh(`/4)/ sinh(`/4) and radius r = 1/ sinh(`/4).
Using these reflections the (iterated) function system can now be defined by the adjacency
matrix

A =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

together with the maps

φ1,4(u) := R1(u) + δoffset , φ2,3(u) := R2(u) + δoffset

φ3,2(u) := R1(u− δoffset) , φ4,1(u) := R2(u− δoffset) .

Here δoffset := 2(cosh(`/4) + 1)/ sinh(`/4) + 1 is the distance between the left-most and
right-most points of the reflection circles incremented by one to make sure that the inter-
vals of definition for these maps

I1 := [m− − r,m− + r] , I2 := [m+ − r,m+ + r] ,

I3 := I1 + δoffset , I4 := I2 + δoffset ,

do not intersect. Figure 4.1(b) shows clearly how these maps correspond to the symmetric
cutting procedure outlined above: The left and right pairs of circles correspond to the
upper and lower half of the cylinder and both halves are glued along the reflection maps.

From here it is straightforward to identify the flow-adapted hyperbolic cylinder as a
hyperbolic map system by setting

A(i,j),(k,l) = 1⇐⇒ Aj,l = 1, k 6= l, and ({i, j} = {1, 2} or {i, j} = {3, 4}) ,
combined with the analytic maps

φ(i,j),(k,l)(z1, z2) := (φj,l(z1), φj,l(z2)) ∈ (R \ Il)× Il (z1, z2) ∈ Ii × Ij , A(i,j),(k,l) = 1 .

After defining the dynamical determinant below it will be justified precisely how this flow
adapted map system is related to its plain, non-adapted Schottky counterpart.

The general case of flow-adapted nf -funneled surfaces works quite similarly but requires
a pair of circles for every funnel. This makes the notation more involved but does not
pose any substantial conceptual difficulties.

2Note that iterated function systems form one of the central abstractions for the implementations pre-
sented in Chapter 7.
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With this example at hand it is time to return to the general setting of hyperbolic
map systems. Using the prescription for translation from and to the Schottky setting as a
blueprint makes it rather straightforward to reformulate the theorems given in [SW23] in
terms of hyperbolic map systems. The first step is the definition of the transfer operator
associated with a hyperbolic map system. Then once again one wants to prove the trace
class property for this operator to be able to consider its Fredholm determinant as a
holomorphic function. This is achieved by a straightforward generalization of the transfer
operator as defined in [SW23, Thm. 2.2]. Recall that H2(D) denotes the Bergman space of
square integrable, holomorphic functions in a complex domain D and H−2(D) denotes its
dual space. The dual is again identified with H2(C\D) via integration over the boundary.

Theorem 4.1.3: Transfer operator for hyperbolic map systems

Let φ(i,j),(k,l) be a hyperbolic map system on domains D1, . . . , DN with adjacency
matrix A and V a potential which is analytic in a neighborhood of

⋃
i 6=j Di ×Dj .

The associated transfer operator defined by the formula

LV :
⊕

i,j

H−2(Di)⊗H2(Dj) −→
⊕

i,j

H−2(Di)⊗H2(Dj) ,

〈LV u(z1, z2), v(z1)〉
∣∣∣∣v∈H2(Di)
z2∈Dj

:=
∑

(k,l):
A(i,j),(k,l)=1

∫

∂Di

V (z1, z2)v(z1)u(φ(i,j),(k,l)(z1, z2))
dz1

2πi
,

is a well-defined trace-class operator and its Fredholm determinant is an analytic
function that satisfies the following identity for sufficiently small |z|:

det (id− zLV ) = exp

(
−
∞∑

n=1

zn

n

∑

w∈Wn

Vw
| det (id− φ′w) |

)
.

The notation was chosen in direct adaptation of [SW23]: Wn represents the set of
admissible words of length n over the alphabet A := {1, . . . , N}, i.e.

Wn :=
{

((i1, j1), . . . , (in, jn))
∣∣A(im,jm),(im+1,jm+1) = 1 ∀ 1 ≤ m < n and A(in,jn),(i1,j1) = 1

}

and the iterations along a closed orbit represented by w ∈ Wn are given by

Vw := V (zw)
n∏

m=2

V
(
φ(im−1,jm−1),(im,jm) ◦ . . . ◦ φ(i1,j1),(i2,j2)

)
(zw) ,

φw := φ(in,jn),(i1,j1)φ(in−1,jn−1),(in,jn) ◦ . . . ◦ φ(i1,j1),(i2,j2) ,

where finally zw ∈ Di1 × Dj1 , i1 6= j1, is the unique fixed point of φw. Note how these
definitions recover those in [SW23, Section 1.2 and Section 2.1] for the concrete case of a
hyperbolic map system derived from a Schottky surface. The proof is a straightforward
adaptation of the one given in [SW23].

Remark 4.1.4. From here it is rather obvious how to define Pollicott-Ruelle resonances for
hyperbolic map systems, namely as the zeros of the holomorphic Fredholm determinant

d(λ) := det (id− LVλ)
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associated to the transfer operator for the map system with potential Vλ(z1, z2) :=
[φ′(i,j),(k,l)(z2)]−λ for (z1, z2) ∈ Di ×Dj . This recovers the usual notion of Pollicott-Ruelle
resonances on Schottky surfaces if the hyperbolic map system was initially derived from
a Schottky group as explained above.

Now the main point of introducing hyperbolic map systems at all becomes clear: If one
chooses either one of the potentials [SW23, Eq. (20) or Eq. (22)] for the flow-adapted
hyperbolic cylinder then the resulting dynamical determinant possesses the exact same
zeros as the dynamical determinant for the (Schottky) hyperbolic cylinder, i.e. at the
Pollicott-Ruelle resonances. This is quite immediate to see from the fact that closed words
for the flow-adapted map system must be of even length and every possible neighboring
pair of generators coincides with a genuine Schottky generator:

(
0 e±`/4

e∓`/4 0

)(
0 e∓`/4

e±`/4 0

)
=

(
e±`/2 0

0 e∓`/2

)
.

A similar observations holds for the push-forward of Ruelle distributions, i.e. the loga-
rithmic derivative of the dynamical determinant, onto the fundamental domain: The test
functions calculated according to [SW23, Eq. (20)] for the Schottky representation coincide
with the flow-adapted variant if one uses the evaluation points xj + iyj := g0gi2j · · · gi1g · i
in the latter case.

Concerning the restriction of Ruelle distributions to a Poincaré section flow-adaptation
must obviously yield a different approximation if one uses the natural choice of symmetric
section instead of the one naturally employed in the Bowen-Series case: They are not easily
comparable now as they yield functions on

⋃
i,j Ii × Ij with Ii their respective (different)

fundamental intervals. But this difference between the two approaches can simply be
attributed to the usage of more symmetric test functions on a geometrically more natural
hypersurface. It seems very reasonable to expect the central qualitative features of Ruelle
distributions to be visible in both of these two-dimensional distributions.

Analogous statements hold true for the general flow-adapted nf -funneled surfaces by a
direct adaptation of [BW16, Proposition 5.4].

Remark 4.1.5. Note that the dimensional reduction procedures presented in [SW23] were
chosen by considering objects which are directly derived from Tλ0 in the sense that they
can be calculated via dynamical determinants by use of the theory of weighted zeta
functions and at the same time satisfy the following (competing) guidelines:

(i) one must be able to evaluate the period integrals necessary for the computation of
the object via dynamical determinants efficiently;

(ii) the object must retain a significant fraction of the information contained in the full
original distribution Tλ0 ;

(iii) the object should be motivated geometrically to allow an interpretation in the con-
text of both Bowen-Series and flow-adapted systems.

The discussion in [SW23, Section 4] could without complications and in a modular fashion
be replaced by any other object satisfying these constraints. In principle one could e.g.
numerically calculate full Ruelle distributions if one comes up with a parametrization
of SXΓ that makes period integrals efficient to calculate and allows the human eye to
distinguish the relevant features in the resulting three-dimensional plots. The usage of a
better symmetry adapted Poincaré section fits perfectly with this philosophy.
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4.2. Full Symmetry Reduction of Flow-Adapted Systems

At this point the introduction of hyperbolic map systems remains a generalization without
practical impact – the flow-adapted surfaces introduced as the main examples above
are basically reformulations of their Schottky counterparts. The true usefulness of flow-
adaptation only reveals itself through the following definition which is a straightforward
adaptation of [SW23, Definition 5.2]:

Theorem 4.2.1: Symmetry group of hyperbolic map systems

Let φ(i,j),(k,l) be a hyperbolic map system on domains D1, . . . , DN and adjacency
matrix A, and G a finite group acting on

⋃
iDi by holomorphic functions extending

continuously to the boundary and defining a G-action on {1, . . . , N} by the relation
g(Di) = Dg·i.
Then G is called a symmetry group of the hyperbolic map system if for any g ∈ G
and (i, j), (k, l) with A(i,j),(k,l) = 1 there exist (i′, j′), (k′, l′) with A(i′,j′),(k′,l′) = 1
and

g · (φ(i,j),(k,l)(z1, z2)) = φ(i′,j′),(k′,l′)(g · z1,g · z2) , ∀(z1, z2) ∈ Di ×Dj .

With this definition at hand the same symmetry reduction methodology of [SW23,
Section 5] can be generalized to the setting of hyperbolic map systems: The Hilbert spaces⊕H−2(Di)⊗H2(Dj) decompose as finite sums of Hilbert spaces indexed by (equivalence
classes of) irreducible unitary representations of G. This decomposition in turn induces a
finite product representation of det(id−zLV ) which finally results in a symmetry reduced
analogue of [SW23, Proposition 5.4].

This finally justifies the effort of discussing the abstract formulation of hyperbolic map
systems: Considering the flow-adapted hyperbolic cylinder provides an alternative route
of calculating invariant Ruelle distributions but with strictly larger symmetry group. The
Schottky representation has as its symmetries the two-element group generated by the
map z 7→ 1/z which is obvious by the calculation

(
0 1
1 0

)(
e`/2 0

0 e−`/2

)(
0 1
1 0

)
=

(
e−`/2 0

0 e`/2

)
.

Keeping in mind the additional rotation introduced above this translates to the follow-
ing symmetry of the flow-adapted representation:

g1 :=

{
z 7−→ −z , z ∈ D1 ∪D2

z 7−→ −z + 2δoffset , z ∈ D3 ∪D4

Verifying that this is indeed a symmetry is as straightforward as calculating e.g. g1 ◦φ2,3 ◦
g1 = φ1,4. But the flow-adaptation reveals an additional symmetry not present in the
original Schottky representation namely

g2 :=

{
z 7−→ z + δoffset , z ∈ D1 ∪D2

z 7−→ z − δoffset , z ∈ D3 ∪D4

Again the defining properties of symmetries are easily verified, e.g. g2 ◦ φ2,3 ◦ g2 = φ4,1.
Compare again Figure 4.1 both both these symmetries. The action of the resulting four-
element symmetry group on the letters {1, 2, 3, 4} immediately follows to be

g1 : 1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 3,

g2 : 1 7→ 3, 2 7→ 4, 3 7→ 1, 4 7→ 2.
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A similar observation holds for nf -funnel surfaces: Flow adaptation reveals symmetry
groups which are strictly larger than those of the more classical Schottky group repre-
sentations. For the details refer to the presentation in [BW16, Section 5.1]. The practical
observation that larger symmetry groups lead to significantly better numerical conver-
gence properties, see [SW23, Section 6], justifies the effort of introducing hyperbolic map
systems in the first place.

4.3. Dynamical Determinants beyond Hyperbolic Map Systems

While Bergman spaces of holomorphic functions offer a convenient and powerful tool
for the treatment of dynamical determinants their usage is restricted to holomorphic
dynamics which exhibit the simple and convenient splitting into stable/unstable directions
heavily exploited in [SW23]. It is for this reason that this work refrained from treating
Schottky surfaces and n–disc systems on the same footing. The latter seem to require
more sophisticated Banach spaces and a generalization of the Fredholm determinant like
the ones used in [Bal18]. Note, though, that the remainder of [SW23] remains valid for
n-disc systems (and potentiall even more generally smooth weight functions) once one
has proven the analogue of [SW23, Thm. 2.2] for them.

This concluding section sketches a promising approach for the extension of the results
for Schottky surfaces (or the slightly more general hyperbolic map systems) to a setting
which does not require analyticity and an explicit splitting into stable and unstable direc-
tions. The upcoming discussion is based on [Bal18, Chapter 6]. First, recall some required
definitions and central results:

Let M be a compact, connected Riemannian manifold without boundary, V ⊆ M an
open subset and T : V →M a Cr-diffeomorphism with r > 1. Let the following data be
given:

� A compact, T -invariant, locally maximal and hyperbolic ∅ 6= Λ ⊆ V ;

� Existence of a dense orbit of T as a function Λ→ Λ;

� A Cr−1 weight g : M→ C with supp(g) ⊆ V .

Then [Bal18, p. 184] defines the dynamical determinant for (T, g) as the formal power
series

dT,g(z) := exp

(
−
∞∑

m=1

zm

m

∑

x∈Λ
Tm(x)=x

g(m)(x)

|det(id−DTm(x))|

)
, (4.3.3)

where z ∈ C, g(m)(x) := g(x)g(T (x)) · · · g(T (m−1)(x)) is the iteration of g over the closed
orbit of T through x and DTm(x) denotes the differential at x of the map Tm (which
by Tm(x) = x is an endomorphism of TxM). With this data at hand the following two
statements hold:

Lemma 4.3.1: Absolute Convergence of dT,g ([Bal18, Lemma 6.1])

The infinite sum over m in (4.3.3) converges for |z| < 1/Q0,0(T, g) such that in this
disc dT,g is a nowhere vanishing holomorphic function. If additionally g ≥ 0 on Λ
then dT,g has a zero at z = Q0,0(T, g).
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Theorem 4.3.2: Holomorphic Extension of dT,g ([Bal18, Thm. 6.2])

dT,g has a holomorphic extension onto the disc with radius 1/Qr−1(T, g).

The constants Q0,0(T,G) and Qr−1(T, g) will be defined and discussed in Subsection 4.3.3.

One may apply these results to the cycle expansion of weighted zeta functions on
Schottky surfaces Γ\H as follows: First the appropriate dynamical system is identified
with ambient phase space M := ∂D × ∂D, domain V := Q :=

⋃
k 6=l Ik × Il and time

evolution

T : V −→M ,

Ik × Il 3 (x−, x+) 7−→ (gl(x−), gl(x+)) .

First note that M is indeed compact without boundary and Riemannian (viewing ∂D
as a submanifold of C), V ⊆ M is open and T ∈ C∞(V ) because the generators gl are
smooth on the components

⋃
k Ik × Il.

Second choose Λ := (Λ(Γ) × Λ(Γ)) ∩ V = (Λ(Γ) × Λ(Γ)) ∩ V .3 Then ∅ 6= Λ ⊆ V is
compact in M, as Λ(Γ) is a closed subset of the compact manifold ∂D, and T -invariant.
To see the latter take (x−, x+) ∈ Λ ∩ Ik × Il. Then T (x−, x+) = (gl(x−), gl(x+)) ∈
Λ(Γ)×Λ(Γ) because the limit set is Γ-invariant and (gl(x−), gl(x+)) ∈ Il+r × (∂D\Ik+r).
Thus, T (x−, x+) ∈ Λ(Γ)×Λ(Γ)∩Il+r×(∂D\Ik+r) ⊆ Λ(Γ)×Λ(Γ)∩Il+r×(

⋃
m6=l+r Im) ⊆ Λ.

Finally, Λ is a hyperbolic set for T because the second coordinate of T coincides with the
Bowen-Series map B making it expanding while its first coordinate coincides with the
inverse of B making it contracting, see [Bor16, Chap. 15.2].4

To verify local maximality and existence of a closed orbit some additional effort is
required in the following two subsections.

4.3.1. Local Maximality

This sections shows that any open Λ ⊆ U ( Λ is separating for Λ. A particular one is
constructed by observing that the limit set is properly separated from the boundary points
of fundamental intervals. After denoting the minimal distance between Λ(Γ) and

⋃
k Ik

as ε define U :=
⋃

(x−,x+)∈ΛB ε
2
(x−) × B ε

2
(x+) where Bδ(y) denotes the open δ-interval

around y.

Suppose now that Tm(x−, x+) ∈ U for all m ∈ Z. This supposition implies Bn(x+) ∈⋃
k Ik for all n ∈ N, i.e. there exists a sequence of generators (gin) ⊆ Γ such that

gin · · · gi1(x+) ∈ Iin+1 . Thus,

x+ ∈
⋂

n≥1

g−1
i1
· · · g−1

in
Iin+1 ⊆ Ii1 .

Intersections of this kind converge to elements of the limit set by [Dal11,
Prop. 1.10 and 1.11] so one concludes x+ ∈ Λ(Γ). The same reasoning applied to T−1 and
x− shows x− ∈ Λ(Γ). In summary it follows that

⋂
Tm(U) = Λ .

3Here Λ(Γ) denotes the limit set of the Schottky group Γ. It is properly separated from the boundaries
of the Ik so the intersection with V really equals the one with V . The latter is advantageous for seeing
that Λ is indeed compact, though. For details see [Dal11, II.1].

4Suppose (x−, x+) ∈ Ik×Il, k 6= l. Then one immediately calculates that (gk(x−), gk(x+)) ∈ (∂D\Ik+r)×
Ik+r is the inverse of T .
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4.3. Dynamical Determinants beyond Hyperbolic Map Systems

4.3.2. Existence of Dense Orbits

To prove existence of a dense orbit this section constructs a suitable symbolic dynamic
for the topological dynamical system T : Λ → Λ following [Dal11, p. 98ff]. The goal
is to find a shift system that is topologically conjugate to T and for which standard
theorems guarantee existence of dense orbits. As usual denote the alphabet of Γ by A :=
{g1, . . . , gr, gr+1 = g−1

1 , . . . , g2r = g−1
r } and define the corresponding one-sided shift space

as Σ+ := {(si)i≥1

∣∣ si ∈ A, si+1 6= s−1
i }.

Next denote by o ∈ D a point outside all fundamental circles. Then the map

f : Σ+ −→ Λ(Γ)

(si) 7−→ lim
n→∞

s1 · · · sn(o)

is a homeomorphism after endowing Σ+ with the metric δ((si), (ti)) := 1/min{i
∣∣ si 6= ti}

if (si) 6= (ti) and δ((si), (si)) := 0 ([Dal11, Lemma IV.1.2]). More important for the
present purposes is the two-sided shift space

Σ := {(Si)i∈Z
∣∣ S+ := (Si)i≥1 ∈ Σ+, S− := (S−1

−i+1)i≥1 ∈ Σ+, S−1
0 6= S1}

with the product metric ∆((Si), (Ti)) :=
(
δ(S+, T+)2+δ(S−, T−)2

) 1
2 . As a final ingredient

let the shift operator be denoted by T̃ :

T̃ : Σ −→ Σ

(Si)i∈Z 7−→ (Si+1)i∈Z

From the proof of [Dal11, Lemma 1.5] it follows that F = (f, f) : Σ → Λ is again a
homeomorphism. Injectivity and continuity follows from the corresponding properties of
f ; surjectivity holds because those elements of Λ(Γ) × Λ(Γ) not contained in the image
of F necessarily belong to some diagonal square Ik × Ik. But exactly those squares are
excluded in Λ. Finally, F−1 is necessarily continuous because F is continuous and Σ is
compact.

In order to carry out the strategy outlined above it remains to show that T and T̃ are
indeed conjugate to each other. But taking (Si) ∈ Σ one readily calculates

F−1 ◦ T ◦ F ((Si)) = F−1 ◦ T (f(S+), f(S−))

= F−1(gl+r(f(S+)), gl+r(f(S−)))

= F−1(limS0S1S2 · · ·Sn(o), limS0S
−1
0 S−1

−1 · · ·S−1
−n+1(o))

= F−1(f(S0, S1, ...), f(S−1
−1 , S

−2
−1 , ...))

= (Si+1) = T̃ ((Si)) ,

because if S1 = gk and S−1
0 = gl then f(S+) ∈ Ik+r and f(S−) ∈ Il+r. It therefore follows

that indeed F ◦ T̃ ◦ F−1 = T .
At this point a final pair of definitions enables the employment of standard machinery

for shift systems. Let M be a non-nilpotent matrix indexed by an alphabet A of N ≥ 2
letters and with entries in {0, 1}. Then the corresponding two-sided Markov shift is defined
as

ΣM := {(xi)i∈Z ∈ AZ ∣∣ Mxi,xi+1 = 1 ∀i ∈ Z} .
Now according to [ES14, Satz 1.32] if M is irreducible then the shift operator on ΣM is
topologically transitive, i.e. possesses a dense orbit. Irreducibility for a matrix M means
that for any pair of indices a, b there exists n ∈ N such that (Mn)a,b > 0.
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4.3. Dynamical Determinants beyond Hyperbolic Map Systems

The concrete shift space Σ on the Schottky group’s alphabet A is indeed a Markov shift.
The defining conditions for Σ, namely Si 6= S−1

i+1, can be rephrased as Si+1 ∈ A\{gk+r}
if Si = gk. Thus Σ = ΣM with a matrix whose second power already exclusively consists
of positive entries and is therefore irreducible. The dynamics T̃ : Σ → Σ therefore has a
dense orbit. But this property is obviously hereditary under conjugation resulting in the
desired existence of a dense orbit for T : Λ→ Λ.

4.3.3. Domain of Holomorphic Extension

This final subsection derives explicit expressions for the quantity Q0,0(T, g) which bounds
the disc of absolute convergence of dT,g as well as the quantity Qr−1(T, g) whose inverse
bounds the disc of holomorphic continuation.
Again start by recalling some required definitions from [Bal18, Chap. 5]:

Qt,s(T, g) := exp

(
sup

µ∈Erg(Λ,T )

{
hµ(T ) + χµ

(
g

det(DT
∣∣
Eu

)

)

+ max
{
tχµ(DT

∣∣
Es

), |s|χµ(DT−1
∣∣
Eu

)
}})

Qr−1(T, g) := inf
t−(r−1)<s<0<t

Qt,s(T, g) ,

(4.3.4)

where Erg(Λ, T ) denotes the set of T -invariant, ergodic Borel probability measures on Λ,
hµ(T ) is the metric entropy of (µ, T ) for µ ∈ Erg(Λ, T ), χµ(A) ∈ {−∞}∪R stands for the
largest Lyapunov exponent of a linear cocycle A over T

∣∣
Λ

, and Eu, Es denotes the stable
and unstable subspaces of DT on Λ. Details on these objects can be found in [Bal18,
App. B] and references therein.

Now [Bal18, p. 158] shows that

Qt,s(T, g) ≤ λmin(t,|s|) ·Q0,0(T, g) , (4.3.5)

where λ < 1 is the constant which appears in the hyperbolicity condition for T
∣∣
Λ

. This
statement suffices to prove holomorphic extension onto the entire complex plane C if one
chooses the same potential as in [SW23, Corollary 2.4] derived from a smooth weight
f ∈ C∞(S(Γ \ H)): The potential used as g yields arbitrarily high regularity r resulting
in arbitrarily small Qr−1(T, g). Furthermore this choice of potential yields5

dT,g(z) = exp

(
−
∞∑

m=1

zm

m

∑

x∈Λ
Tm(x)=x

g(m)

|det(id−DTm(x))|

)

= exp

(
−
∞∑

m=1

zm

m

∑

g∈Wm

e
−λ`(g)−β

∫
γ(g) f

|(1− e`(g))(1− e−`(g))|

)

= df (λ, z, β) ,

thus recovering the holomorphic extension of the dynamical determinant df [SW23,
Def. 2.1]. But recovering the whole strength of [SW23, Corollary 2.4] requires a deeper
investigation of the dependence on the parameters (λ, β). While this should be possible us-
ing wavefront estimates to control the flat traces appearing in the holomorphic extension
of dT,g it is beyond the scope of this thesis.

5To be precise an additional cutoff χ : M→ R is required with χ|Λ = 1 and supp(χ) ⊂ Q to make sure
that supp(g) ⊂ Q.
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4.3. Dynamical Determinants beyond Hyperbolic Map Systems

The exemplary presentation above used Schottky surfaces but the same reasoning
should apply to a much broader class of hyperbolic dynamics including n-disc systems.
This approach should therefore provide an angle to prove holomorphic continuation of dy-
namical determinants and thus convergence of cycle expansions for disc scattering thereby
justifying the numerical calculations presented in [BSW22, Section 5].
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5. Numerical Investigation of Invariant
Ruelle Distributions

The present chapter serves to purposes: On the one hand it contains in Section 5.1 a short
overview over the different kinds of visualizations of invariant Ruelle distributions devel-
oped in the article [SW23] together with some related conjectures for future numerical
investigations in the fashion of a review. In particular the focus here is more on the runtime
requirements of the different kinds of experiments as a basis for potential optimizations
of the code itself as well as estimations of the runtime of upcoming explorations.1

One the other hand this chapter presents in Section 5.2 visualizations of invariant Ruelle
distributions on the fundamental domain of convex-cocompact hyperbolic surfaces. The
mathematical foundations for this were already presented in [SW23] but this article does
not contain actual numerical results for these quantities. The presentation is restricted to
a proof-of-principle and indepth investigations will be left for future extensions of [SW23].

5.1. How to Visualize Invariant Ruelle Distributions

A necessary requirement for any experiments on invariant Ruelle distributions is knowl-
edge about an interesting set of Pollicott-Ruelle resonances for some convex-cocompact
surface under investigation. In [SW23] the funneled torus Y (10, 10, π/2) as well as the
three-funneled surface X(12, 12, 12) were chosen. This choice is motivated by two prop-
erties: First the two surfaces constitute maximally symmetry representatives for the two
possible topologies of rank two Schottky surfaces. Here restricting to rank two is not fun-
damentally necessary in terms of the developed algorithm but when it comes to practical
computations going beyond rank two is only feasible for highly symmetric nf -funneled
surfaces due to computation times.2 The choice of symmetric surfaces enables the demon-
stration of quite impressive perfomance gains due to symmetry reduction.

Second the quantum resonances of these concrete surfaces were previously investigated
in the literature, see [Bor14]. If one wants to solely investigate invariant Ruelle distribution
such previous calculations could be taken as a starting point due to the quantum-classical
correspondence on convex-cocompact hyperbolic surfaces [GHW18]: The quantum reso-
nances as calculated using Selberg’s zeta function coincide with the classical Pollicott-
Ruelle resonances up to a shift

s 7−→ λ = s− 1 ,

where s denotes the quantum and λ the classical spectral parameter. In the article [SW23]
another perspective was chosen namely to calculate directly the classical resonances and
use the comparison with their quantum counterparts both as a sanity check for the al-
gorithm implemented for dynamical determinants as well as a practical demonstration of
the quantum-classical correspondence.

1The calculations presented in the article [SW23] were run on a machine with Intel(R) Xeon(R) W-2125
processor (8 cores @ 4.00 GHz) and 128 GB of DDR4 RAM so the runtime estimates below are given
with respect to these hardware specifications.

2The number of closed geodesics always grows exponentially with their lengths but the exponential rate
increases with the number of generators of the surface!
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5.1. How to Visualize Invariant Ruelle Distributions

The results are presented in [SW23, Figures 7 and 14] and have been reproduced as
a reference side-by-side in Figure 5.1. Both plots show high qualitative agreement with
resonance plots from the literature and a re-implementation of Selberg’s zeta function did
indeed prove this to be a highly accurate quantitative agreement as well.
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Figure 5.1.: Pollicott-Ruelle resonances for the funneled torus Y (10, 10, π/2) (left) and the three-funneled
surface X(12, 12, 12) (right) calculated using weighted dynamical determinants of constant
weight in full symmetry reduction.

With a sample set of resonances at hand one may now start calculating approxima-
tions to invariant Ruelle distributions. For the proof-of-principle showcase in [SW23] the
restriction tΣλ0,σ

to the canonical Poincaré section was chosen as the preferred mode of
presentation due to its straightforward interpretation and favorable convergence proper-
ties.

This being said one is still faced with a problem in terms of dimensionality: The domain
of the restriction tΣλ0,σ

to the Poincaré section as defined in [SW23, Section 4] is two-
dimensional but the codomain is still C thus requiring four dimensions for visualization
of all contained information. The following figures illustrate various possibilities to do
so:3 The simplest approach is certainly to plot real and imaginary parts of tΣλ0,σ

for given
values of resonance λ0 and Gaussian width σ side-by-side. This is shown in Figure 5.2
for the funneled torus and Figure 5.3 for the three-funneled surface chosen above. These
plots show nicely first features such as the fact that the distributions associated with the
respective first resonances λ0 ≈ −0.8847 and λ0 ≈ −0.8845 are real-valued and positive.

3For comprehensive descriptions of details regarding the upcoming figures refer to [SW23, Section 6] in
Appendix C.
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5.1. How to Visualize Invariant Ruelle Distributions

This is expected because the first invariant Ruelle distribution is known to always coincide
with a measure called the Bowen-Margulis measure.

Remark 5.1.1. While the coordinates for the canonical Poincaré section as described
in [SW23, Section 4] vary within the product

⋃

i 6=j
Ii × Ij

with Ii the fundamental intervals of the underlying surface the upcoming plots are actu-
ally not parameterized exactly like this. Instead the effective resolution of the plots was
increased by first restricting the number of intervals used and second zooming into the
left over intervals. The former makes sense because plots over the full coordinate domain
still contain quite some redundancies due to internal symmetries of the distributions. The
latter is motivated by the fact that with the concretely used Gaussian widths σ the dis-
tributions are supported quite far away from the interval boundaries so that plotting the
whole fundamental intervals produces a significant amount of whitespace. For details on
these matters refer to [SW23, Section 6].
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Figure 5.2.: Real (upper half) and imaginary (lower half) parts of the approximation tΣλ0,σ
to the invari-

ant Ruelle distribution on the canonical Poincaré section of the funneled torus Y (10, 10, π/2).
The columns depict different resonances but all plots use the same width σ = 10−3 for the
Gaussian test functions used in the approximations. Instead of on the whole coordinate
domain the distributions were plotted on representative sub-intervals Ĩi ⊂ Ii of the funda-
mental intervals Ii.

While certainly comprehensive these plots make it hard to comprehend all of the avail-
able information – the reader is required to go back and forth between real and imaginary
plots. Furthermore any correlation between real and imaginary parts is hard or even
impossible to see with the bare eye. Finally for larger suites of experiments this represen-
tation doubles the number of generated plots thereby running the risk of obscuring the
relevant information by sheer quantity of the output.

55



5.1. How to Visualize Invariant Ruelle Distributions

I2 I3

I1

I2

Re
(t

0,
)

(-0.8845+0j)

I2 I3

I1

I2

(-0.9998+845.436j)

I2 I3

I1

I2

(-0.8939+999.605j)

I2 I3

I1

I2

(-0.9998+6.286j)

0

10

20

30

40

50

60

I2 I3

I1

I2

Im
(t

0,
)

I2 I3

I1

I2

I2 I3

I1

I2

I2 I3

I1

I2

0

5

10

15

20

25

30

Figure 5.3.: An analogous illustration of tΣλ0,σ
as in Figure 5.2 but now for a collection of resonances of

the (flow-adapted) three-funneled surface X(12, 12, 12) and a Gaussian width of σ = 10−2.

The choice of refined sub-intervals Ĩi was also adapted to the symmetry group of this surface.

The visualizations in Figures 5.4 and 5.5 address these issues: The first rows illustrate
the absolute values of the distributions. This provides a very compact way of visualizing
the general qualitative behavior and the interpretation of the plots is still straightforward.
But it also loses information as most distinctly shown by the four plots in Figure 5.4: All
plots seem to indicate roughly the same qualitative behavior up to overall scale which
would make them less interesting than expected.

That this homogeneity is actually not present was already clear from the plots of real
and imaginary parts but can also be seen from the second rows in Figures 5.4 and 5.5:
These encode the complex argument, i.e. the angle between real and imaginary parts,
as colors on the color wheel while the absolute value gets shown as the lightness of the
particular color. Here an angle of 0 corresponds to light blue, an angle of π to red, and
particularly light/white colors indicate small absolute value. For a graphical illustration
of this encoding see [SW23, Figure 8].

These phase-color/absolute-value-lightness plots show nicely that there are significant
differences between the invariant Ruelle distributions associated with different resonances
especially for the funneled torus. One can also very clearly identify the similarities between
the first two columns in Figure 5.4. This observation is rather straightforward to link to the
recurrence to the global spectral gap [Nau05] and is one of the most interesting candidates
that will be investigated in future experiments.

A qualitative feature which is not as prominently expressed by these phase plots is the
overall support of the distributions. This aspect is quite important, though, especially
when considering the convergence of the support towards the limit set of the surface as
σ → 0. This is most clearly visible in the pure absolute value plots. To reflect both the
phase information as well as the support information yet another kind of visualization was
developed namely a three-dimensional one, see Figure 5.7: The horizontal plane contains
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Figure 5.4.: Visualization of the same data as in Figure 5.2. Here the first row shows the absolute value
of the invariant Ruelle distribution and the second row uses color and lightness to indicate
the complex argument and absolute value of this complex valued quantity.

(again a subset of) the two-dimensional coordinate domain of the Poincaré section whereas
the third (vertical) coordinate axis depicts the absolute value of the distribution. The
same phase information as in the previously discussed plots is encoded as the color of the
resulting surface.

For the summarizing purposes of this section two such three-dimensional plots are
shown in Figures 5.6 and 5.7. Both contain the first invariant Ruelle distribution of the
funneled torus Y (10, 10, π/2) and the three-funneled surface X(12, 12, 12), respectively.
Both plots illustrate nicely the support of these distributions, the relative intensity of
the peaks, and the globally constant complex phase which is here directly related to the
distribution being real-valued and positive.

Runtime Considerations

All of the plots presented here as well as the extended versions in [SW23] were plotted on
a grid of support points with sizes about 960 × 960 pixels. This achieves a compromise
between sufficient resolution of the final plots and manageable runtime requirements.
Given these grid sizes the calculations for funneled tori at nmax = 5 and in full symmetry
reduction required roughly 5 min to complete. While this is already quite long for first
interactive explorations the experiments in [SW23] showed that nmax = 3 is more than
sufficient in a wide range of parameters especially for real parts near the global spectral
gap. The corresponding calculation times with this cutoff ranged more around 30 sec which
allows almost real-time interactivity and unlocks the possibility of running large suites of
experiments as batches.

For the fully reduced three-funneled surface the situation is quite similar: While the
maximal considered cutoff nmax = 7 took about 10 min to compute on a given resonance
the more than sufficient value of nmax = 5 brought this down to the practically very
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Figure 5.5.: Illustration of the same kind as in the previous Figure 5.4 but for the same data as in
Figure 5.3, i.e. for a funneled torus X(12, 12, 12) and Gaussian width σ = 10−2.

acceptable duration of roughly 30 sec to 1 min.
Symmetry reduction shows its strengths prominently when comparing these values

with their non-reduced counterparts: The funneled torus required nmax = 7 to converge
decently well and for the three-funneled surface one even had to go as high as nmax =
12. The computational times associated with these cutoffs ranged at about 20 min and
30 min, respectively. Especially far from the global spectral gap where these high cutoffs
were genuinely necessary the symmetry reduction technique is a must to make numerical
experiments on invariant Ruelle distributions practically feasible.
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Figure 5.6.: Three-dimensional plot of the first invariant Ruelle distribution for the funneled torus
Y (10, 10, π/2) on (a subset of) the canonical Poincaré with Gaussian width σ = 10−3.
The height of the surface corresponds to the absolute value of the distribution while the
color encodes the complex argument similar to the second row in Figure 5.4.
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Figure 5.7.: Three-dimensional plot of the first invariant Ruelle distribution similar to Figure 5.6 but
for the three-funneled surface X(12, 12, 12) and with Gaussian width σ = 10−2.
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5.2. Invariant Ruelle Distributions on the Fundamental Domain

This section complements the summary presented above with a new kind of plot not
considered in the preprint [SW23]: The pushforward of an invariant Ruelle distribution
to the fundamental domain of the underlying surface, see Figure 5.8.
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Figure 5.8.: Plot of the pushforward to H of the invariant Ruelle distribution associated with the first
resonance λ0 ≈ −0.8847 of the funneled torus Y (10, 10, π/2). The Gaussian width σ =
5 · 10−2 was chosen and the fundamental (semi-)circles are indicated in black. For the
distributions themselves the same colormap as in the plots on the Poincaré section was used.
Here the rows show successive values for the maximal number of summands nmax ∈ {7, 8}
in the cycle expansion to illustrate convergence. The columns contain (from left to right)
the real part, imaginary part, and absolute value of the distribution clearly proving that it
is real-valued and positive.

While this remains a proof-of-principle calculation some basic features of invariant
Ruelle distributions on the fundamental domain of the underlying Schottky surface XΓ

are already clearly visible: The support concentrates around the images of closed geodesics
under the projection

SXΓ −→ XΓ

and the distribution exhibits the same symmetries as XΓ, i.e. invariance under the anti-
holomorphic functions4

z 7−→ −z , z 7−→ 1/z .

Finally the plots show distinctly that this first distribution is real-valued and positive as
expected due to it actually being a measure.

4Remember that the symmetries of the generating set were described as holomorphic maps but here the
anti-holomorphic versions are easier to visualize as they are functions H→ H.
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Remark 5.2.1. These calculations on the fundamental domain were conducted without
symmetry reduction to obtain a baseline in terms of computational effort required (they
took about 6 min at nmax = 8). Symmetry reduced as well as more extensive calculations
are planned for future versions of the preprint [SW23].
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6. Resonance Sampling on Moduli Space

So far the resonance experiments conducted as part of this thesis followed a common
theme: Before calculating resonances in some interesting region of the complex plane some
accessible geometry was chosen and held fixed during the calculations. In cases where the
underlying geometry was varied the variation was quite limited and deterministic like
small perturbations of boundary lengths to observe the presence or absence of chains
depending on parameter choices. The same comments apply to resonance experiments
performed in previous articles like [Bor14, BPSW20] and the new types of experiments
involving Ruelle distributions performed in [SW23].

The present chapter explores a new approach which views the variation of the underly-
ing geometric object as the phenomenon of interest. More concretely a topological class of
geometries will be fixed by considering Teichmüller or moduli space of funneled tori. On
these spaces there exists a probability measure called Weil-Peterson measure which is a
natural object to study in Teichmüller theory. This chapter contributes to this study by
presenting an algorithm which samples from moduli space and produces different kinds
of resonance data for these samples. One can then calculate various statistics which in
turn allow the formulation of conjectures regarding random variables that involve reso-
nances on hyperbolic surfaces. After presenting the general procedure in Section 6.1 these
techniques are applied to conduct a first numerical study in Section 6.2.

6.1. Introduction to Teichmüller and Moduli Space

To start this section the sample set from which funneled tori will be drawn must be
defined. As anything resembling a comprehensive introduction to Teichmüller theory is far
beyond the scope of this thesis the following description is restricted to the bare minimum
necessary for our concrete application. A classical reference for the following material
is [Bus10] and the presentation proceeds in similar fashion as [Bor16, Chapter 2.7.2].

In the following a funneled torus is any hyperbolic surface of genus g = 1 with one
attached funnel. The Teichmüller space T of funneled tori is the space of equivalence
classes of complete hyperbolic, i.e. curvature equal to negative one, metrics on these tori.
Two metrics belong to the same equivalence class if they are related via pullback by some
diffeomorphism which is homotopic to the identity. For an illustration see Figure 6.1.

An important construction in this context is the so-called pants decomposition. A hy-
perbolic pair of pants is a hyperbolic surface which is diffeomorphic to the Poincaré disc
with three points removed. Each of these points has a neighborhood which is either a cusp
or a geodesic boundary. Here we do not consider the case of cusps and it can be shown
that for any triple (`1, `2, `3) there exists a unique pair of pants whose three boundary
lengths coincide with this triple. Now any geometrically finite, non-elementary1 hyper-
bolic surface without cusps and nf funnels may be obtained by gluing a number of pairs of

1Here geometrically finite means that the surface decomposes as the union of a compact core and a
finite number of cusps and funnels. The surface being non-elementary makes sure that the group Γ of
isometries that realizes the surface as Γ\H is neither trivial nor a cylic group of hyperbolic or parabolic
elements [Bor16, Chapter 2].
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6.1. Introduction to Teichmüller and Moduli Space

Figure 6.1.: Non-isometric embedding of a funneled torus T (l,m, s) into three-dimensional Euclidean
space. The twist parameter s was omitted from the figure because it is hard to visualize
once the pair of pants has been glued.

pants at geodesic boundaries of equal lengths and attaching nf funnels at the remaining
geodesic boundaries. For any pair of glued pants boundaries there exists an additional
degree of freedom that can be interpreted as a twist angle and these twists together with
the boundary lengths provide smooth coordinates on Teichmüller space. Specifying this
discussion to the case of funneled tori this yields

T ∼= R>0 × R>0 × R ,

because the funneled torus is the result of taking a pair of pants with boundary lengths
(l, l,m), gluing the boundaries of equal lengths l together with twist s ∈ R and attaching
a funnel at the third boundary geodesic of length m. To be able to do numerics in the
next section a concrete expression for the generators g1 and g2 of a torus T (l,m, s) with
parameters (l,m, s) is required. Fortunately such an expression is readily found in the
literature [NN98, Section 4.2]:

g1 :=

(
exp(l/2) 0

0 exp(−l/2)

)
, g2 :=

(
es/2a es/2b

e−s/2b e−s/2a

)
,

where a =
√

1 + b2, b =
√

1 + k/ sinh(l/2), and k is determined by the boundary length
m via 1 + 2k = cosh(m/2). Unfortunately these generators contain in their fundamental
intervals the points {0,∞} ⊂ R so they are not suited for the algorithm that calculates
invariant Ruelle distributions. This situation is easily remedied, though: A simple con-
jugation by the rotation about π/4 produces an isometric surface with the alternative
generators

g̃1 :=

(
cosh(l/2) sinh(l/2)
sinh(l/2) cosh(l/2)

)
, g̃2 :=

(
(a− b) cosh(s/2) (a+ b) sinh(s/2)
(a− b) sinh(s/2) (a+ b) cosh(s/2)

)
.

For later reference let it be noted that T may also be expressed in the following alter-
native coordinates [NN98, Section 4.3]:

T ∼=
{
x, y, z

∣∣x2 + y2 + z2 − xyz = −4k, x, y, z > 2
}
,

where the transition map between the two coordinate systems is simply x := tr(g1),
y := tr(g2) and z := tr(g1g2).
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6.1. Introduction to Teichmüller and Moduli Space

For an application to spectral problems like the ones discussed in this thesis it is more
natural to identify those complete hyperbolic metrics on the funneled torus which are
isometric. The resulting moduli space M contains only points with distinct length spectra,
i.e. sets of lengths of closed geodesics, by a result of [BS88]. This makes M an ideal
candidate to sample resonance related quantities using zeta functions. The measure from
which funneled tori are sampled is a natural choice called the Weil-Petersson measure
and given on {m = const.} ⊂ T by

dl ⊗ ds . (6.1.1)

This descends to a measure µmWP on M because M is in fact the quotient of T by the
so-called mapping class group which in turn is the quotient of orientation preserving isome-
tries by isometries isotopic to the identity. But the measure in (6.1.1) is invariant under
the action of this group making it well-defined on the quotient M [NN98, Section. 4.4].

For practical purposes it would be optimal to have an explicit expression for a funda-
mental domain of {m = const.} ⊂ M in (l, s)-coordinates on T . While this seems to be
quite hard to obtain a good substitute is given by [NN98, Lemma 4.6]: Let C := Cu ∪ Cl
be the union of

Cu :=

{
2 < x < 2

√
1 +
√

1 + k, 2a < y < x · a
}
∪
{

2

√
1 +
√

1 + k < x < y < x · a
}

with its image Cl := ρ(Cu) under the reflection at x = y. Then the closure of C contains
a point of every mapping class orbit and the stabilizer of C is a cyclic subgroup of order
three. In particular this concrete expression lets one calculate the total area volm of
{m = const.} ⊂ M to be volm = m2

24 + π2

6 [NN98]. Even the result that the total area is
finite is quite astounding already.

Besides giving the volume the concrete expression for C also suggests the following
sampling method that produces coordinate pairs (l, s) according to the measure µmWP:

(i) Sample (l, s) uniformly from ]0, lmax]× ]0, smax] for some cutoffs lmax, smax > 0.

(ii) Transform the sample (l, s) into (x(l, s), y(l, s))-coordinates according to the tran-
sition map.

(iii) Accept the sample if (x(l, s), y(l, s)) ∈ C and discard it otherwise.

The cutoffs are necessary because uniform sampling from ]0,∞] is impossible numerically.
They should be chosen in such a fashion that the resulting compact subset C̃ ⊂ C has
sufficiently large ratio µmWP(C̃)/volm. Then the results approximate uniform sampling
from µmWP in a close manner.

In practice the value of this ratio can be computed on the fly in the spirit of a Monte-
Carlo simulation. As soon as its current value becomes stable one can decide to adjust the
cutoffs if required. It is then necessary to re-sample but this should be fine as sampling
is quite cheap numerically as long as the cutoffs remain reasonably sized.

This concludes the necessarily short and incomplete introduction to Teichmüller and
moduli space of funneled tori. The next section presents some numerical results obtained
by combining the sampling procedure just described with resonance and zeta function
related techniques.
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6.2. Numerical Sampling of Moduli Space

Resonance Sampling

Before discussing numerical sampling experiments involving resonance data the sampling
procedure itself is illustrated in Figure 6.2. In the spirit of a Monte-Carlo experiment
several thousand samples from the upper half of the pseudo-fundamental domain Cu were
drawn according to µmWP for fixed m = 5. In the x-y-coordinates one clearly recognizes
the shape of C as illustrated in [NN98, Fig. 4.3]. Furthermore it is very plausible on
a qualitative level that the density of points follows the law derived via transformation
formula in [NN98, Section 4.4]. The analogous sanity check in l-s-coordinates yields a
good qualitative agreement with the theoretically demanded uniform distribution.

Remark 6.2.1. This section actually considers the quantum resonances of funneled tori
but this is a minor issue as they differ from the classical Pollicott-Ruelle resonances of
the geodesic flow only by a shift λ 7→ λ + 1. The quantum variant was chosen here as it
is the somewhat more popular scaling one sees in numerical investigations of resonances
as initiated by Borthwick [Bor14]. Additional remarks on this matter can be found in the
next subsection and Chapter 5.
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(a) Samples of funneled tori parameters from the
upper half Cu of the pseudo-fundamental do-
main C expressed in x-y-coordinates for m = 5.
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(b) Samples of funneled tori parameters from the
upper half Cu of the pseudo-fundamental do-
main C expressed in l-s-coordinates for m = 5.

Figure 6.2.: Parameter samples from moduli space of funneled tori in different coordinates.

As a first numerical experiment the behavior of the first (quantum) resonance δ depend-
ing on the surface parameters was investigated. Recall that δ coincides with the Hausdorff
dimension of the limit set of the surface. The exact dependency δ(l,m, s) should be ex-
pected to be quite complex. One reasonable approach to reduce this complexity is to
average out the variables (l, s) and consider the quantity

δ̂(m) :=
1

volm

∫
δ(l,m, s) dµmWP(l, s) .

From a geometrical standpoint it now makes sense to ask for the limit behavior of δ̂(m)
as m → ∞ which corresponds to increasingly open dynamics of the geodesic flow. Thus
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6.2. Numerical Sampling of Moduli Space

one would expect δ̂(m) → 0 as m → ∞ but to the author’s knowledge the speed of
convergence has not been investigated rigorously before making numerical experiments a
worthwhile endeavor.

The concrete procedure is straightforward given the preliminaries above: For a given
value of the boundary length m a number of samples {(li, si)} must be generated. From
these an ensemble average is calculated as an approximation to δ̂(m). Figure 6.3 shows
the results for several values of m in the interval [15, 110]. These bounds were chosen as
mutually exclusive compromises: Ifm is too small then the dynamics of the surface samples
tend to be quite closed making the calculation of the first resonance rather expensive with
the cycle expansion technique. If on the contrary m becomes very large then the generators
of the surface samples tend to involve very large matrix entries approaching and eventually
exceeding double floating point precision.

The errors for a particular average of δ were simply taken to be the standard deviations
σ of the ensemble mean. The ensemble sizes were initially chosen somewhere around 100
samples but had to be adapted for some data points to correct for statistical outliers
causing particularly high values of σ.
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Figure 6.3.: Expectation values of first resonances for funneled tori. The tori were sampled from Weil-
Petersson measure µmWP for several fixed values of the funnel width m.

Several features of Figure 6.3 warrant attention: The plot in the upper half already
qualitatively suggests the behavior δ̂(m) ∼ C/m as m→∞. The lower plot supports this
hypothesis because the rescaled quantity δ̂(m)·m strongly resembles the constant function
starting already at rather small values of roughly m ≈ 30. Furthermore the constant can
be read off to be C ≈ 4.5 with an error of about ±0.5, i.e. ±11.1%.

The next series of experiments goes beyond the first resonance δ by considering all
resonances in the rectangular region [0, δ] + i[0, 100] of the complex plane. The first try
at this setup is contained in Figure 6.4: For a funnel width of m = 80 the resonances
for said rectangle were calculated with m = 100 samples and drawn into a shared scatter
plot. The general shape already suggests an increase in resonance density as the complex
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parameter s decreases from s = δ̂(80) towards s = 0 but the large number of points makes
it rather hard to distinguish finer features.
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m=80.0, number of samples=98

Figure 6.4.: Resonances in the rectangle [0, δ] + i[0, 100] for funneled tori sampled from moduli space for
fixed m = 80.

To increase visibility of any left-to-right patterns in the resonance density plot the
individual resonances were first projected to the real axis and subsequently collected into
bins of equal sizes. Finally the total numbers of resonances in every bin were divided
by the bin width and the overall number of resonances to obtain the probability p of
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6.2. Numerical Sampling of Moduli Space

a particular resonance to fall into a particular bin. The resulting histogram is shown in
Figure 6.4 where Re(s) on the horizontal axis was rescaled by m to increase comparability
with the upcoming histograms for other choices of m.
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m=80.0, numSamples=100, = 0.056047

Figure 6.5.: Histogram of projections s 7→ Re(s) of resonances of funneled tori to the real axis and plotted
against the real part of s rescaled via multiplication by m. The 120 tori were sampled from
moduli space for fixed m = 80. p denotes the probability of a resonances to belong to a
given bin of the histogram, i.e. the absolute number of occurrences of some real part divided
by the bin size and the total number of resonances. The red bin contains the first resonance
δ̂ ≈ 0.056047.

Figure 6.4 exhibits a number of noteworthy features: Going from right to left the his-
togram shows a residual tail that seems to pick up in intensity roughly at the first reso-
nance (here and in the following histograms the bin corresponding to m · δ̂(m) was marked
in red). Shortly after the first resonance comes a steep edge which transitions into a more
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6.2. Numerical Sampling of Moduli Space

or less constant section until around m · Re(s) ≈ 0.5 where a final steep increase ends in
the global maximum located at m · Re(s) = 0.

Both the edge and the increase towards m · Re(s) = 0 would be interesting features
to investigate rigorously if they were in fact present in the exact theoretical distribution
of resonances projected to the real line. To support the hypothesis that this is indeed
the case in the limit m → ∞ further resonance density histograms were computed for
additional values of m ∈ {30, 50, 60, 90}.
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(a) Resonance histogram for funneled tori samples
with m = 30 plotted against the rescaled real
part of s.
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(b) Resonance histogram for funneled tori samples
with m = 50 plotted against the rescaled real
part of s.

Figure 6.6.: Similar results to Figure 6.5 for the additional values m ∈ {30, 50}.

The left plot in Figure 6.6a contains the results for m = 30. This histogram exhibits a
very rough structure as compared to the very smooth enveloping curve visible for m = 80.
Even though the steep edge shortly before the expected first resonance still seems to be
there although less pronounced. Increasing the boundary width to m = 50 in the right-
hand side of Figure 6.6a smooths out the enveloping curve significantly and both the edge
before the first resonance as well as the rapid increase in probability around m ·Re(s) = 0
are clearly distinguishable. The same observations persist when increasing the boundary
length to m = 60 and m = 90 in Figures 6.7 and 6.8.

For the maximal value m = 90 considered in the present series of experiments it ap-
pears as if the edge around 90 · δ̂(90) is even sharper than for smaller widths. A possible
conjecture could be that in the limit m→∞ the histogram would show the behavior of a
step function with jump at limm→∞m · δ̂(m). A conjecture for the enveloping curve in a
neighborhood of Re(s) = 0 is less immediate to come up with but the plots suggest some
smooth limiting envelope to exist.

Average Zeta Function

The concluding numerical results in this chapter involve not some sort of average over
individual or ensembles of resonances but averages over the zeta function itself: Let the
average zeta function ζ̂ for funnel width m > 0 be defined as

ζ̂m(s0) :=
1

volm

∫
ζ(l,m,s)(s0) dµmWP(l, s) , s0 ∈ C ,
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Figure 6.7.: Resonance histogram for funneled tori samples with m = 60 and plotted against the rescaled
real part m ·Re(s). The number of samples was 60 and the first resonance δ̂ ≈ 0.075154 lies
in the red bin.

where ζ(l,m,s) denotes the Selberg zeta function for the funneled torus with parameters
(l, s,m). For Re(s0) ≥ 1 this holomorphic function is given by the infinite product

ζ(l,m,s)(s0) :=
∏

γ

∞∏

k=0

(
1− e(s0+k)Tγ

)
,

where the first product ranges over all primitive closed geodesics γ of T (l,m, s) and Tγ
again denotes the length of γ. This function continues to C as a holomorphic function
and its zeros coincide with the quantum resonances of the torus. An alternative approach
to defining these quantum resonances is as the poles of the meromorphic continuation of
the resolvent of the Laplace-Beltrami operator ∆(l,m,s) of the torus

R(l,m,s)(s0) :=
(
∆(l,m,s) − s0(1− s0)

)−1
: L2

c −→ L2
loc ,

acting on the space L2
c of compactly supported square-integrable functions and codomain

the space L2
loc of locally square-integrable functions, both with domain T (l,m, s). The

discrete set obtained by this procedure naturally generalizes the discrete spectrum of
the Laplace-Beltrami operator in the setting of compact manifolds and is very analogous
to the way in which Pollicott-Ruelle resonances of a flow are obtained by meromorphic
continuation of the resolvent of the generating vector field. They do in fact satisfy an
exact correspondence with the classical Pollicott-Ruelle resonances of the geodesic flow
as mentioned in Chapter 1.4 and techniques for their numerical calculation exist due to
Borthwick [Bor14] very similar to those presented in Chapter 4.2

Remark 6.2.2. Compare Selberg’s zeta function ζ(l,m,s)(s0) as defined above with Ruelle’s
zeta function given by

ζRuelle(λ) :=
∏

γ#

(
1− e

−λT
γ#

)
,

2The initial idea to study this average zeta function was proposed by William Hide.
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where the product ranges over primitive closed geodesics. This zeta function continues
meromorphically from {Re(λ)� 0} to C but its poles coincide with the Pollicott-Ruelle
resonances of the geodesic flow lifted to certain vector bundles containing differential
forms [DG16, Theorem 3] instead of the resonances of the geodesic flow itself. This makes
Selberg’s zeta function (or alternatively the dynamical determinant introduced in [SW23],
see also Chapter 4.1) the better suited candidate for numerical investigations.

Again the sampling procedure developed above lends itself very well to a numerical
study of ζ̂. One simply generates parameter samples {(li, si)}, calculates the corresponding
zeta functions, and finally averages over the results. An evaluation of these averages is
numerically quite expensive with the technique of cycle expansion if one chooses large
arrays of support points in C on which to evaluate.

A question that comes to mind immediately in this context concerns the relationship
between the zeros of ζ̂m of averages over zeros of individual zeta functions, i.e. resonances.
While a precise answer to this question exceeds the scope of the thesis at hand a final pair
of plots in Figure 6.9 provides some first insights: There both the absolute values as well as
the complex argument of an ensemble average of Selberg’s zeta function over 50 random
funneled tori for m = 80 is shown. The average was evaluated on a discretized rectangular
region of the complex plane and the region contains the numerically calculated value δ̂(80)
in its center. From both plots it is clear that this approximation to ζ̂ has a simple zero
that coincides with δ̂(80) very well within the numerically calculated standard deviation
for the latter (it is even the case that σ is significantly larger than the actual difference
between the two – this could be taken as evidence that the calculated δ̂(80) in reality is
much more accurate than suggested by σ). This suggests the conjecture that in the limit
m→∞ the (first) zero of ζ̂m is simple and equals the average first resonance δ̂(m).

Some concluding remarks are in order to end this chapter: First of all the presented
numerical experiments should be taken as a first step towards the development of con-
jectures regarding the random variables δ̂ and ζ̂. If one decides to undertake rigorous
mathematical proofs regarding their properties it naturally suggests itself to complement
these with additional and more focused numerics. This holds especially true because the
PyZeta project presented in Chapter 7 offers a broad range of capabilities to reproduce
and extend the plots of this chapter with minimal overhead in terms of effort. At the
same time there are probably several additional random variables amenable to the meth-
ods employed here that are of interest from an analytical perspective.

Finally the general philosophy of sampling from moduli space exploited here is certainly
not limited to funneled tori. As soon as Teichmüller space coordinates are given which
admit explicit generators combined with a sampling procedure that produces coordinates
from a fundamental domain of moduli space according to Weil-Petersson measure one
can start calculating averages of observables like Hausdorff dimension or average zeta
functions.
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Figure 6.8.: Resonance histogram for funneled tori samples with m = 90 and plotted against the rescaled
real part m · Re(s). The number of samples was 120 and the first resonance δ̂ ≈ 0.049569
lies in the red bin.
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Absolute Value Plot: Average zeta function [50 samples, width 80.0]

(a) Absolute value plot of Selberg zeta functions
averaged over 50 samples for boundary length
m = 80 in a small region around the expected
first resonance at δ̂ ≈ 0.056047.
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Argument Plot: Average zeta function [50 samples, width 80.0]

(b) Argument plot of Selberg zeta functions av-
eraged over 50 samples for boundary length
m = 80 in a small region around the expected
first resonance at δ̂ ≈ 0.056047.

Figure 6.9.: Absolute value and argument plots of averaged zeta functions on the complex plane.
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Outline of Part III

The third and final part of this thesis contains a description of the two major program-
ming projects conducted during the course of the author’s PhD. Chapter 7 deals with
the PyZeta package which encompasses all implementations related to zeta functions, dy-
namical determinants and hyperbolic map systems. At the time of writing this thesis the
setting for these capabilities is restricted to Schottky surfaces but all interfaces are de-
signed in a generic manner such that additional dynamical systems like 3-disc scattering
dynamics should be rather straightforward to incorporate in the future.

While this directly resonance related functionality forms the core of the package it
furthermore provides a wide range of additional capabilities aimed at reducing the effort
necessary when conducting numerical experiments. At the same time the project aspires
to build a foundation for becoming the seed of a larger and ongoing open source project
targeted towards supporting research in the area of classical Pollicott-Ruelle, semiclassical,
and quantum mechanical resonances and mathematical chaos with a number of available
model systems and numerical techniques.

The second project forming the contents of Chapter 8 is called PyZEAL and was initially
a part of PyZeta before growing into an independent endeavor: It provides facilities for
the calculation of roots of holomorphic functions. Despite the complexity and richness of
techniques present in the literature the author could not find readily available, actively
maintained, and validated software addressing this problem. It was therefore decided to
separate the very rudimentary root finding capabilities from the main PyZeta development
branch and both improve as well as extend them independently. Again great care was
taken to create an open source project that is as extensible and usable as possible with
the aim of supporting the use case of someone wanting a straightforward API for root
calculations but also with the orthogonal use case of someone wanting to investigate new
root finding algorithms in mind.

Both chapters in this part contain a mix of abstract mathematical and architectural
descriptions with concrete explanations of implementation details. Due to the size of the
code bases it is far beyond this thesis to comment on every line of code. Fortunately the
open source nature of the projects gives easy access to the code and additional, though
necessarily constantly changing and evolving, documentation is available online. As a
consequence of the very dynamic nature of programming projects in general the following
two chapters will almost certainly become outdated at some point in the future. Please
refer to the chapter introductions for the specific versions to which they apply and ways of
obtaining the most up to date versions of the software and its respective documentation.

The early development of the immediate predecessor of PyZeta was partly supported by
Sebastian Albrecht as a student assistant. Not only his work on documentation and tests
but specifically his involvement in prototypes regarding resonance selection and resonance
handling tools are greatly appreciated. Without his help significant additional amounts
of resources would have had to be deducted away from the core algorithms and data
structures related to resonances.

The development of PyZEAL was partly supported by Luca Wasmuth as a student
assistant. His work on documentation, tests, and examples is greatly appreciated.
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The PyZeta project embodies the cumulation of resonance related implementations cre-
ated during the PhD leading to this dissertation. The author’s work began by using and
extending a legacy implementation by Tobias Weich developed mostly in 2014 during his
own PhD. This legacy code contained the Selberg zeta function both with and without
symmetry reduction, implementations of various iterated function systems including in
particular Schottky surfaces, and a simple root finder for holomorphic functions.1 The
author added additional dynamics and implemented first versions of (weighted) dynam-
ical determinants during his Master’s thesis with the aim of further extending the code
base and conducting numerical experiments using the code during his PhD. Soon after
the start of the latter two major obstacles emerged:

(i) The current state of the source code made it very cumbersome to introduce some
basic software engineering tools and principles like continuous integration, a build
pipeline, automated unit testing, automated deployment of documentation, and con-
tinuous deployment of build artifacts.

(ii) The legacy code was written in Python2 and heavily dependent on Sage2 making
the source significantly less portable and harder to get up and running on a new
machine. In addition new features of Python3 like type hints could not be taken
advantage of easily.

(iii) The original code had not been designed to be an extensible project for several gen-
erations of programmers to work on and to accommodate a changing and evolving
set of requirements and use cases.

(iv) With the existing internal and external dependencies it was either very difficult or
even impossible to use tools like Numba or Cython to overcome some of the per-
formance limitations inherent with Python and detrimental to the performance re-
quirements of a numerical project.

The author of this thesis therefore undertook a complete re-write of the original code
base as an open source project3. During this endeavor the existing functionality was sig-
nificantly enhanced in terms of algorithms to enable new numerical experiments with the
hope of gaining insights into mechanisms related to resonances and resonance states. In
addition a whole new framework together with an extensible and flexible architecture
were created with the perspective of building the foundation for a project that continues
to evolve beyond this thesis. As useful references regarding the design and implementa-
tion of larger software products the monographs [FR03, McC04] were consulted during
several different phases of design and implementation of the presented projects. Another
important and extensively used resource was the original monograph [GHJV03] on de-
sign patterns. These semi-formalized templates provide a unifying language and toolkit

1The latter will be discussed in more detail in the following Chapter 8.
2https://www.sagemath.org/index.html.
3https://github.com/Spectral-Analysis-UPB/PyZeta.
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7.1. General Remarks on Technologies

for common programming and design tasks. In the following descriptions many of the
patterns distilled there will be explicitly mentioned to convey the design decisions within
PyZeta as succinctly as possible.

With the current state of the code base the PyZeta project should now provide anyone
interested in the numerical investigation of Pollicott-Ruelle resonances an easily accessible
means to achieve just that. Possible applications range from the simple generation of
illustrations for a conference talk or paper to complex numerical experiments that serve
as a basis for new conjectures or the guide to proving new theorems.

The theoretical foundations for PyZeta have been presented in great detail in the previ-
ous Parts I and II. After a concise and rather generic discussion of different foundational
technological aspects in Chapter 7.1 the then following Section 7.2 will therefore dive
right into the heart of the architecture that supports the various mathematical objects
discussed up to this point. After that details regarding specific choices of how mathe-
matical entities were mapped to the implementation will be summarized. The concluding
Section 7.3 provides an outlook on future directions.

The following sections refer to PyZeta version v0.1.1.

7.1. General Remarks on Technologies

In this section some technologies are discussed which were used in the practical imple-
mentation of PyZeta. A top-down approach is taken: Beginning with the programming
language used and some hints regarding the general development environment the presen-
tation proceeds with more detailed tools used for testing, speed measurements, optimizing
code, and more.

7.1.1. Programming Language and Development Environment

For the practical implementation of this project the general purpose, multi-paradigm
programming language Python4 was used. Python is a high-level interpreted language
that is very widely used especially in a scientific context due to its easy to learn syntax,
flexibility, and large, welcoming community. Furthermore it compiles to an intermediate
bytecode representation which is then executed on the Python virtual machine making
it mostly platform independent. Finally Python ships with an extensive standard library,
has developed a huge ecosystem of open source modules, and possesses a native interface
to the compiled languages C/C++ for e.g. performance critical subroutines. For all these
reasons Python was chosen as the primary implementation language of both the PyZeta

as well as PyZEAL projects.
Besides the possibility of writing and integrating native C-code there exists a project

called numba which provides just-in-time (JIT) compilation facilities backed by the LLVM

toolchain. JIT contrasts the maybe more traditional concept of ahead-of-time (AOT)
compilation customary for languages like C/C++ or Rust: Blocks of code like functions are
only compiled when first needed. This incurs an overhead at first encounter but provides
tremendous speedups at subsequent calls. This technique therefore lends itself especially
for functions that get called multiple times e.g. inside a loop. The concrete technical
realization via Python decorators often allows easy performance wins without significant
additional effort as long as some basic rules are followed.5 numba is used throughout both

4https://www.python.org/.
5The best gains are achieved in strict no-python mode which avoids the Python interpreter completely.

This means that some language features are not accessible in this mode and their usage must be
avoided for successful compilation.
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PyZeta as well as PyZEAL. A detailed description is well outside the scope of this thesis
but the numba documentation6 is a great starting point.

Due to being such a dynamical and flexible scripting language the author strongly
believes that Python requires additional tooling and setup when it comes to the structured
development of larger software projects. Fortunately the community agrees up to the
point where a continuously improving repertoire of utilities exists either as part of the
core language development effort or as external tooling. For the projects at hand a set of
such tools was chosen as mandatory requirements to safeguard long-term code quality:

� Type hints as introduced in PEP484 as part of Python3.5 are fully embraced in both
presented projects. Not only do they allow increased safety by leveraging static code
analysis but they also constitute a means for the code to self-document things like
function and method interfaces. This static typing is optional and ignored by the
interpreter making it necessary to use external tools like mypy for verification.

� Code style guidelines are enforced by the tools black and isort to guarantee a
homogeneous appearance through the code base.

� A whole collection of static code analysis tools helps to improve overall code quality.
The projects pylint and pylama serve as frontends to these utilities.

� A command line tool like Wily (written in Python) provides a more sophisticated
means of recording and tracking various code complexity measures. This can be
especially useful for identifying promising candidates at the beginning of the debug
cycles regularly interspersed in the overall development methodology.

Remark 7.1.1. Setting up a suitable development environment is crucial for efficient soft-
ware development in general and to get the most out of the tools just introduced in
particular. As a general recommendation this should include a text editor like vim or
VSCode with syntax highlighting and direct integration of the above tooling. Things like
tests could then be run either directly from the editor or from a terminal. Alternatively
one could use a Python-specific full fledged itegrated development environment (IDE) like
PyCharm or Spyder.

Besides manual runs during development on a local machine the main project reposi-
tory will also have an automated continuous integration/continuous deployment (CI/CD)
pipeline which ensures the build status upon every commit or pull request. More details
on this repository infrastructure can be found in the following Section 7.1.2.

7.1.2. Software Documentation and Version Control

An aspect that is central to the success and longevity of a software project such as PyZeta
is the ability of both developers as well as users to obtain explanations and descriptions of
the different components making up the code base. It is central to have this documentation
available for several levels of detail ranging from comments for particular lines or blocks
of code to an API documentation of the internal functionality to the external application
programming interface (API) meant for end user purposes.

To compile such a documentation for PyZeta a tool called sphinx was chosen:7 This
application takes a bundle of markup files in .rst format and converts them into a number
of output formats. For the purposes of this project the most important ones are interactive

6https://numba.pydata.org/.
7https://www.sphinx-doc.org/en/master/.
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html documents for display in a browers and static pdf files for easy distribution. A core
feature heavily used in PyZeta is the ability of sphinx to extract docstrings from Python

source files and turn them into an API documentation for the particular annotated class,
method, etc. Combining this facility with auxiliary markup files containing things like
background information, motivations for certain design decisions, and extended examples
yields a comprehensive overview of PyZeta. Many of the examples are provided as jupyter
notebooks in the repository and compiled to the output format upon documentation build.
This gives the user the option to choose a suitable notebook as a starting point for their
custom applications.

To make this documentation available to any (potential) users without requiring them
to build the documentation themselves the html version is hosted on https://pyzeta.

readthedocs.io/en/latest/. The mentioned pdf version can also be downloaded from
there. Please refer to these documents for extended information on many topics covered
in the upcoming sections.

Another critical component of software development is controlling the complexity that
comes from having many different documents including source code, documentation, tests,
requirements, configuration, specifications, and more. The matter becomes even more
complex when all these documents run through several iterations producing a graph of
more or less valid versions. An invaluable tool to manage all this is version control soft-
ware. The discussed projects will be using a particular such system called git which is
very widespread and builds on the concept of repository containing all documents asso-
ciated with a particular project together with the history of their revisions. The hand-
book [Sil13] provides a compact introduction to technical background information and
offers its reader a quick way to get started. A more comprehensive overview can be found
in the reference [CS14] which is also freely available online.

While git could very well just be run locally, it is even more useful to have one’s repos-
itories hosted remotely to enable e.g. collaborative work. The present projects will do
this via a provider called GitHub8 which besides hosting repositories can also be used to
manage various other aspects of the software development lifecycle. In particular GitHub
provides a framework for continuous integration/continuous deployment through their
concept of actions. On certain events like uploading new content to the repository (called
a push) or trying to combine divergent so-called branches of work (called a pull request)
corresponding scripts are envoked on computing infrastructure provided by GitHub them-
selves. For the purposes of this thesis these scripts contain in particular invocations of
static code analysis tools, docstring coverage checks with docstr-coverage, automatic
rebuilds of the documentation, and the publishing of a soure distribution to the Python

package index (PyPI) in case the specific event was related to an incremented project
version. Any potential user may therefore install the newest (stable) version of PyZeta
locally and automatically using the package manager pip over the internet:

$ pip install "pyzeta[all]"

to install PyZeta with all optional dependencies. For a detailed description of the possible
options refer to the full documentation.

Remark 7.1.2. Unfortunately the description of even the basic feature set of git is outside
the scope of this thesis even though it constitutes a core technology in terms of practical
contribution to the code base. The following short summary of the prototypical git

workflow for PyZeta or PyZEAL therefore contains some terms which will not be discussed

8https://github.com/.
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in detail. For a user that is new to git and wants to contribute to these projects the
consultation of further documentation can thus not be circumvented:

(i) Clone the mainline repository locally. This step can be skipped if the repo already
exists on the local file system.

(ii) Create a new branch with a name indicating the current work item (like
/dev/feature/my-new-feature).

(iii) Work on the new branch until the work item has reached a stable state. Create
several small commits with descriptive commit messages. These descriptions should
be formulated in imperative style.

(iv) Create a pull request on the main branch together with a comprehensive description
of the completed work item(s).

(v) If the pull request passes the automatic checks and at least one positive review by
a core developer it can be (squash-)merged into main. The new work item is now
part of the mainline project!

Remark 7.1.3. For some types of documents used during development git does not yield
the most useful outputs when using functionality like git diff or git merge. In par-
ticular this is true for jupyter notebooks which are a great tool for prototyping and
algorithmic experimentation. This can be alleviated by integrating additional functional-
ity as e.g. provided by the Python project nbdime directly into git. Similar tools exist
e.g. for LaTeX documents.

7.1.3. Testing Framework

The CI/CD pipeline as described in the previous Section 7.1.2 contains a step in which a
suite of automated tests gets executed upon pull request. The status of the most recent test
run is indicated on the repository front page and the pipeline is considered failed if any of
the tests did not pass. This security measure is meant to block the inclusion of faulty code
within the code base. Furthermore the test suite can and should also be executed locally
on a regular basis during development both as regression tests during e.g. refactoring and
to verify the functioning of newly implemented features. From this it follows immediately
that the writing of tests is an integral part of the software development process. For
PyZeta it is explicitly recommended to follow a test-driven development methodology:
Before a new feature gets implemented it should be specified to a point where some set of
tests for this feature can be written. Feature implementation then aims at making these
tests pass. In a final step the code is refactored while maintaining a successful test status.

As a framework for the automated testing of modules PyZeta uses a Python package
called pytest9. Using this framework one can write tests in several ordinary Python

modules. The runner pytest then collects all such tests, runs them, and reports back
their status.

Besides this very basic usage pytest includes its own functions and classes that sim-
plify testing considerably. Among those commonly used within PyZeta are the so-called
fixtures which allow the user to define objects required for several tests once in a single
place and have them injected into tests dynamically by the testing framework.
pytest also generates test coverage reports which illustrate the overall and line-by-line

test coverage of the code base. The CI/CD pipeline generates these reports automatically

9https://docs.pytest.org/en/7.1.x/.
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and shares them with a third-party service provider called codecov.io. Their web fron-
tend displays a host of useful information like coverage percentage over time data. Again
a badge on the project repository homepage redirects to this service.

7.1.4. Measuring and Documenting Performance

For this project measuring the performance of software applications in first approximation
reduces to two aspects: How much memory (RAM) and how many computing (CPU)
resources does the application consume? A wide range of tools exists to answer these
questions, from general command line utilities to very Python specific modules. One
should always be guided by the specific problem at hand when selecting one or several
of these; in most cases a tiered approach where one starts with a general purpose tool to
identify the largest possible gain and proceeds to something like a detailed line-by-line
analysis using a specialized tool is practical.10 A (necessarily incomplete) listing can be
found in Table 7.1.4:

Table 7.1.: Profiling tools and their application areas

tool purpose usage

time.time()

time.perf_counter()

part of the standard library;
coarse measurement of e.g.
time differences between two
points of a Python script

import time

t1 = time.time()

do_work()

t2 = time.time()

duration = t2 - t1

module timeit

part of the standard library;
coarse measurement of execu-
tion times of e.g. simple expres-
sions, short snippets, or single
functions

$ python -m timeit \

> <options> "<code>"

In [1]: %timeit do_work()

/usr/bin/time

standard utility on Unix-like
operating systems; measure-
ment of total program runtime
without taking internal struc-
ture into account

$ /usr/bin/time -p python

> <script.py>

cProfile, pstats

part of the standard library;
measurement of execution time
of every function encountered
during a run of the Python vir-
tual machine; useful for first
identification of problem areas
and verification/falsification of
hypothesis

$ python -m cProfile -s

> cumulative <script.py>

$ python -m cProfile -o

> prof.stats <script.py>

−→ analyze with pstats

snakeviz

third-party module; visualiza-
tion of .stats files generated
using cProfile

Continued on next page

10Note that accumulating more detailed profiling information often comes with a trade-off in terms of
increased computational overhead incurred by the profiling tool!
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Table 7.1 – continued from previous page

tool purpose usage

line_profiler

third-party module; records,
displays and saves (.lprof) a
line-by-line CPU usage statis-
tics of a function chosen via
decoration with @profile

$ kernprof -l -v

> <script.py>

memory_profiler

third-party module; records
and displays a line-by-line
memory (RAM) usage statis-
tics of a function chosen via
decoration with @profile;
statistics can also be collected
and plotted over time using
the mprof utility

$ python -m

> memory_profiler

> <script.py>

$ mprof run <script.py>

$ mprof plot

PySpy

third-party module; online dis-
play of resource usage of a run-
ning Python process

$ sudo env "PATH=$PATH

> py-spy --pid <pid>

perf (top, ps)

command line utility available
for Linux11 operating systems;
provide detailed measurements
of CPU utilization efficiency in
terms of parameters like e.g.
cache misses, page faults, and
context switches12

$ perf stat -e [OPTIONS]

> python <script.py>

A key component sometimes overlooked is the systematic documentation of past per-
formance and in particular runtime measurements as an integral part of configuration
management. PyZeta proposes to use an open-source tool written in Python called asv.13

It runs a suite of performance tests similar to pytest but additionally records the timing
results together with the hardware used and saves this data in a .json format enabling
later reference, comparison, and visualization of the state of the project at specific points
in time.

7.1.5. Optimizing Code

The literature on performance optimization and highly performant computing is vast. As
an introductory text which specifically emphasizes best practices and tools in Python the
author suggests [GO20]. First of all recall a fundamental principle of code optimization:

11 Tools with similar functionality are available for MacOS and Windows.
12 Available options include cycles, instructions, cache-references, cache-misses, branches, branch-misses,

task-clock, faults, minor-faults, cs, migrations. For details refer to the documentation of either perf
or perf-stat.

13https://github.com/airspeed-velocity/asv.
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“Premature optimization is the root of all evil!”

– Donald Knuth ([Knu74])

For the purposes of PyZeta this should be interpreted as saying to avoid optimizing
code which has not been measured for performance. Before starting optimization activities
beyond obvious inefficiencies with quick fixes one should have some hard facts at hand
to justify the particular portion of program one is attempting to improve. Note that
this implies that optimization activities only ever apply to code which actually runs and
satisfies all applicable functional requirements. It should be stressed again that modifying
such code is only admissible if an automated test suite exists and can be used to verify
that any modifications leave the functional behavior invariant.

After measuring code performance and identifying a specific area of code as the bottle-
neck of highest priority one has several options to improve performance significantly and
overcome the intrinsically slow nature of Python. The following non-exhaustive selection
of tools is heavily influenced by the technologies actually used within PyZeta:

� numpy provides very fast array computations and a variety of algorithms from linear
algebra by using a C and Fortran backend. It is safe to say that without this package
Python could not have reached its current popularity within numerical and scientific
computing.

� numba is a just-in-time (JIT ) compiler that produces optimized machine code from
Python functions through a simple decorator interface. While limited in the num-
ber of Python features it can compile it offers sufficient flexibility to achieve great
performance gains in many numerical applications.

� multiprocessing is a standard library module which enables the usage of multiple
cores in parallel to decrease runtime for CPU-bound problems. This is in contrast
to the multithreading module which does not allow for true concurrency due to
Pythons GIL.14

� Cython is an ahead-of-time (AOT ) compiler that generates C-code from either pure
or C-like annotated Python code and often achieves near to native C speed. Compared
to numba this tool necessitates some knowledge of its mix between C and Python

syntax to get the most out of it.

Besides these technical tools that help overcome the intrinsically slow nature of Python
one should always keep an eye out for algorithm or programmatic improvements. These
often offer easy and fast speed gains especially at the stage of a first working proof-of-
principle implementation.

14The global interpreter lock prevents the virtual machine from running more than one thread at a time.
While this avoids an abundance of issues related to data corruption, especially related to reference
counting, it also forces programmers to go beyond the core language if true concurrency is required in
their calculations.

86



7.2. Architecture and Internals of PyZeta

7.2. Architecture and Internals of PyZeta

This section gives an overview over general architectural aspects which were considered
upon first design of PyZeta or came up during implementation. For an initial overview
refer to Figure 7.1.

Figure 7.1.: UML diagram of project components and their interactions.

7.2.1. PyZeta Framework Elements

The framework elements included in PyZeta abstract as many architectural decisions as
possible from the concrete topic of zeta functions and Pollicott-Ruelle resonances.
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Dependency Injection and Initialization

One of the overarching themes of the PyZeta architecture is its usage of the concept
of inversion of control or more specifically dependency injection. This pattern aims to
separate the construction of objects from their usage as part of a general separation of
concerns design philosophy. According to this philosophy objects should be abstracted as
much as (reasonably) possible and object interactions should always be governed by their
respective interfaces not their concrete implementations. An exhaustive discussion of this
circle of ideas goes well beyond the scope of this thesis. Refer to the monograph [Sv19] for
an in-depth treatment. There are many mature projects that contain very similar facilities
compared to the implementation discussed next, e.g. the Java framework Spring. For
PyZeta a custom implementation is preferable, though: On the one hand there seem to
be no mature and actively maintained implementations targeting Python in particular,
probably due to its highly dynamic nature and predominant usage as a scripting language.
On the other hand mature implementations usually provide significantly more powerful
and general capabilities exceeding the requirements of PyZeta by far.

Now in the custom PyZeta realization of dependency injection the central author-
ity that controls which concrete instances get injected into dependent objects is the
pyzeta.framework.ioc.container.Container. This class serves as a container for con-
figurations which describe how to obtain instances of types. This works as follows:

(i) To make a service of type T accessible from the container it must be registered us-
ing either one of the methods registerAsSingleton(serviceType, instance)

to save a singleton [GHJV03, p. 127] configuration or its companion
registerAsTransient(serviceType, factory) to deposit a transient configura-
tion. The former must be supplied with the concrete service instance while the latter
requires a factory method returning instances of T.

(ii) Once some service A needs to make use of services provided by B it simply calls
tryResolve(B, **kwargs) on the container instance. The container then checks if
a valid configuration for B exists and returns either the singleton instance or invokes
the factory with keyword arguments **kwargs. Usually this dictionary of keyword
arguments is either empty or rather small because the container tries to provide as
many of the factory method arguments as possible by recursively examining and
resolving their types. This is an instance of a technique called (runtime) reflection.

The substantial benefit of the container concept comes from the fact that services are no
longer required to take care of the creation of their dependent services. This is taken care
of in an automatic and recursive manner as long as correct and complete configurations
were supplied initially. It should be remarked that the dependencies of a service remain
very explicit with this approach as they can be read off directly from the constructor
signature.

The missing ingredient in the explanations so far is the question of how a service obtains
a reference to the container. This could be resolved by e.g. constructor injection: The
constructor of any service that requires services from the container receives the container
as an additional parameter. But the service itself should be resolved from the container
in the first place making it possible for the container to inject itself when creating the
service instance. Alternative approaches include Python specific solutions via decorators
or the injection via special instance properties.

To keep the system as simple as possible PyZeta chose to supply a project-global
container instance via a static class called ContainerProvider. This class exposes
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static methods to set and retrieve a container instance. Now the actual runtime con-
tainer instance gets constructed and set during project initialization by the class
PyZetaInitializationHandler. This class exposes several different startup modes which
mostly differ in the kind of service configurations they register. For additional details re-
garding the container and initialization refer to either the full documentation of the source
code.

Logging

The logging of different events during program runtime is an important and powerful
mechanism to gain insights into the often complicated runtime dependencies and in-
teractions of object oriented software systems. In PyZeta this facility is provided by a
pyzeta_logging framework package. Its main API is a mixin called Loggable. Due to
the multiple inheritance possible in Python any class needing to log information can sim-
ply include Loggable into its list of superclasses. After doing so it automatically possesses
a property of interface type PyZetaLogger offering a method to log events at several dif-
ferent levels of severity. This facade [GHJV03, p. 185] effectively abstracts the concrete
logger implementation used at any given moment thus making it possible to use different
implementations e.g. during and after initialization. At the time of writing this thesis
a straightforward implementation based on the standard library logging module and
managed by a static LogManager is available.

Plugins

One typical use case of PyZeta is the need to calculate e.g. Pollicott-Ruelle resonances for
some function system or Schottky surface which had not previously been implemented as
part of the core project. The plugin mechanism is designed as a lightweight alternative
that injects custom code into a running instance of the main project without having to
implement a genuine module or package within the main repository infrastructure.

The general procedure to achieve this is quite simple and straightforward: Plugins
generally provide a means of extending PyZeta by instances of some type T. In most
circumstances T will be a subtype of some other type already built into PyZeta. The
custom plugin must now be realized as a class that derives from PyZetaPlugin[T]. This
generic abstract base class contains abstract properties returning the type T provided by
the plugin, a plugin version, and a plugin name for unique identification of plugins. The
main functionality must be implemented as a static method initialize() which has
to return a callable that in turn provides instances for the type T, acting as a factory
method [GHJV03, p. 107]. Lastly plugins are always implemented as singletons so they
require a static getInstance() method.

As an example consider the following code contained in a file called custom_group.py.
It implements a custom (albeit non-functional) version of the trivial symmetry group
TrivialGroup as an instance of the abstract service SymmetryGroup which corresponds
to the general type T in the discussion above.

class TestGroup(TrivialGroup):

"Custom (trivial) group implementation to supply as a plugin."

def __init__(self) -> None:

"Just inherit the super constructor."

super().__init__()
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def getElements(self) -> Tuple[tGroupElement, ...]:

"Override this ’new’ functionality in the custom group."

raise NotImplementedError("test group not implemented!")

class GroupPlugin(PyZetaPlugin[SymmetryGroup]):

"Test plugin providing a simple custom symmetry group to PyZeta."

_instance: Optional[PyZetaPlugin[SymmetryGroup]] = None

@staticmethod

def initialize() -> Callable[..., SymmetryGroup]:

"This is the hook of plugins into ‘PyZeta‘."

return lambda: TestGroup()

@staticmethod

def getInstance() -> PyZetaPlugin[SymmetryGroup]:

"Plugins should be realized as singletons."

if GroupPlugin._instance is None:

GroupPlugin._instance = GroupPlugin()

return GroupPlugin._instance

@property

def pluginType(self) -> Type[SymmetryGroup]:

"The type provided by the plugin."

return SymmetryGroup

@property

def pluginName(self) -> str:

"The name of the plugin."

return "TestGroupPlugin"

@property

def pluginVersion(self) -> Tuple[int, int, int]:

"""

The plugin version (combination of version and name should

be unique). The semantics are (‘major‘, ‘minor‘, ‘patch‘).

"""

return (22, 1, 0)

A plugin such as this custom symmetry group can then be installed from the command
line using

pyzeta plugin --install custom_group.py

Afterwards an automatic discovery of installed plugins happens during initialization so
that the plugin is available for use during runtime. Obtaining instances of the type T

provided by the custom plugin again happens through the inversion of control container
as described above. An extended example which also demonstrates how to inject custom
(constructor) data into the plugin is available as a jupyter notebook in the documenta-
tion.
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Feature Toggles

A feature toggle in the context of PyZeta is basically a boolean flag with additional
functionality. The motivation to introduce this capability comes from batch processing
of numerical experiments. In practice one often has a script or jupyter notebook with
several distinct experiments or parts of experiments that combine to an overall workflow
in several different ways. A straightforward way to distinguish between these experiments
or combinations is to wrap them into functions and control their execution with boolean
flags. Unfortunately this approach does not scale very well. Large collections of simple
boolean variables soon become confusing in terms of e.g. which variable is associated
with which function and which variables were active on a particular run of the script or
notebook.

Feature toggles alleviate this situation by wrapping the following data:

� The boolean flag itself as the toggle’s main functionality,

� A name for identification within a set of toggles,

� A description of the purpose that the toggle serves,

� An optional integer number of times the toggle may be accessed before becoming
invalid (i.e. False),

� A PyZetaLogger that logs usages of the toggle.

When it comes to usage in a script or notebook toggles should not be declared on their
own but rather through subclasses of ToggleCollection like so:

class MyToggles(ToggleCollection):

"Collection of feature toggles for my script."

toggle1: bool

toggle2: bool

Using the two toggles in the collection is now as easy as instantiat-
ing toggles = MyToggles(my_toggles.json) and calling something like
if toggles.toggle1: at the appropriate points within the program. The configu-
ration of the wrapped data happens within the configuration file my_toggles.json:

{

"toggle1": {

"name": "...",

"value": true,

"description": "...",

"timesAccessible": 1

},

"toggle2": {

"name": "...",

"value": false,

"description": "...",

"timesAccessible": -1

}

}
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Note that the key timesAccessible may be either omitted or set to a negative value
to indicate a toggle with unlimited lifetime. Note also that the wrapped logger does not
need to be supplied manually. It is again provided by the Loggable mixin and injected
automatically.

Remark 7.2.1. The pyzeta.framework.feature_toggle package contains a json schema
against which toggle configuration files can (and should) be verified to make sure that
their formatting does not cause runtime exceptions.

Settings

A larger application like PyZeta contains a lot of configurable variables and settings.
To make their handling as easy and straightforward as possible the framework contains
a SettingsService interface which exposes read-write properties for application wide
configuration of miscellaneous default values. Different possible implementations of this
interface could be imagined and the current implementation offers a json-backed and a
memory-backed (i.e. non-persistent) solution. The former is usually instantiated during
project initialization and may be accessed for programmatic manipulation of settings
through the container. Alternatively one may also change settings from the command
line interface which is also the preferred way to inspect the current state of the possible
default values. The latter is mostly used to substitute the former during unit testing.
It offers the advantage of consistent and isolated testing environments that are neither
influenced by nor change the user’s defaults.

Remark 7.2.2. The specific settings available are one of the areas of the code subject to
more frequent changes. It therefore makes little sense to go into too much detail here. To
get a first overview over available settings simply type

$ pyzeta settings -h

in the terminal with PyZeta installed and follow the instructions given there. Alternatively
a look into the source code or the online documentation provides more in-depth and up-
to-date details.

Analyzers

This section discusses the emergence of and solution to a concrete instance of a class
of problems often called cross-cutting concerns in the context of PyZeta. In general the
term cross-cutting concern applies to functionality or behavior that both violates the
component boundaries defined for a system during the functional decomposition step of
design and cannot be encapsulated in a straightforward and consistent manner into its
own abstraction on which other components might depend. As a consequence an imple-
mentation of this functionality would require the scattered duplication of code throughout
the system effectively leading to poor overall design quality.

One approach to solving this problem is provided by aspect-oriented programming
(AOP). Since the foundational publication [KLM+97] this programming paradigm has
received much attention and mature implementations exist like AspectJ for the Java pro-
gramming language. The fundamental idea of AOP is to deal with cross-cutting concerns
by encapsulating a given functionality (advice) together with points during program ex-
ecution where it should be executed (point-cuts) into a new object called an aspect. The
programmer defines these aspects in a single place and completely separate from their
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later point(s) of execution. An additional program called an aspect weaver controls the
insertion of the correct advice and corresponding point-cuts thus solving the problem of
manual maintenance of scattered code.

A common criticism with this approach is the increased complexity when reasoning
about the runtime behavior of an application: With complicated advice and point-cuts
one requires detailed knowledge of the whole system to be able to determine dynamic
properties. To keep this increased complexity at bay the implementation within PyZeta

described below takes special care to implement practically useful but at the same time
not overly powerful aspect-oriented facilities.

One of the framework elements of PyZeta discussed above already exhibited the cen-
tral traits of a cross-cutting concern, namely logging. Many different objects within the
system participate in logging with a large overlap in requirements in overall behavior. It
was decided to achieve logging through the mixin solution presented above for a simple
reason: While logging is not a primary concern of any single object it is simply most
straightforward to force every system component to participate in the logging effort at
statically determined points. While this does lead to code duplication the points at which
messages are created should not be subject to frequent change and the corresponding
code is almost always as short as a single method invocation. Instead of a complicated
runtime allocation of logging responsibility the user may assume that any object alive
during system runtime also emits log messages. An application of AOP would thus have
been an example of definitive over-engineering.

A different case shall be made for the concern of memory and runtime profiling. While
it also cross-cuts almost all core components of PyZeta one usually wants to very specif-
ically profile a small number of continuously changing objects. Aside from that during
production (which means concrete numerical experiments) profiling should be disabled
completely due to the significant performance penalty incurred.

As the result of these considerations a basic AOP framework together with concrete
profiling extensions were created as part of the framework portion within PyZeta. The
former is meant to support future requirements and application areas that could bene-
fit from an AOP approach while the latter addresses existing requirements in terms of
profiling resonance experiments. Again due to the dynamic nature of Python and its less
common appearance as the main language in large industrial software projects no suitable
prior implementations were found and the combination of Python with AOP was deemed
an interesting endeavor in its own right.

The generic AOP facilities of PyZeta are represented by the following classes:

� Advice: This class stores callbacks for an application before and/or after a wrapped
method. In addition it contains the logic for wrapping a given method in its
__call__ magic method.

� PointCut: This class stores a name pattern and provides logic for matching a method
name with this pattern via its match method.

� Rule: A simple container for pairs of corresponding Advice and PointCut instances.

� Aspect: The central class that contains a list of rules and the logic to apply Advice

from a rule to a given method iff its corresponding PointCut matches the method
name. It does so for all methods belonging to a given (concrete) class.

The practical usage of these classes is now straightforward: First create an Advice together
with a PointCut
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advice = Advice(preCallback, postCallback)

pointCut = PointCut("calculate.*")

from two callbacks preCallback, postCallback and a pattern matching any method
that starts with calculate. The first callback must accept any arguments valid for the
wrapped method while the second callback must additionally accept the return value of
the wrapped method as its first argument. For most applications the signatures

preCallback(*args, **kwargs)

postCallback(returnArg, *args, **kwargs)

are most suitable with as little assumptions on *args, **kwargs as feasible. For simple
use cases such as injecting additional custom logging statements it might suffice to provide
lambda expressions. For more involved logic it is recommended to create a custom subclass
of Advice with the callbacks given by (private) instance methods.

The two objects just created can now wrap the matching methods of a given class
MyClass by simply calling

aspect = Aspect(rules=[Rule(pointCut, advice)])

aspect(MyClass)

A working example is provided as the notebook aop_example.ipynb contained in the
documentation of PyZeta. This notebook also details the usage of ProfilingAdvice, a
subclass of Advice which contains predefined callbacks that wrap functionality from the
standard library cProfile module. To enable profiling for MyClass one thus follows the
same pattern as above but replacing the instantiation of generic Advice with the line

advice = ProfilingAdvice(fileName)

where fileName is a string indicating the file in which the resulting profile should be
stored.15 ProfilingAdvice and additional convenience classes for the reading of profile
files are part of the package pyzeta.framework.aop.analyzers.

Remark 7.2.3. A typical user of the scripting API of PyZeta should actually not need to
interact this concretely with the Advice API. During design it was expected that the stan-
dard use case looks more like the following: A user obtained an Advice instance advice

either by subclassing or by reusing builtin subclasses. The logic within this instance would
typically be supposed to be applied to all types implementing some interface, i.e sharing a
common set of methods. To achieve this the call to advice(classType) should be replace
with the simple function call

registerAspectGlobally(aspect, interfaceType)

which internally calls registerAspect(aspect, interfaceType) on the global
container instance. The container can now intercept object creation via
tryResolve(interfaceType) and adorn the class of the concrete resolved object
with the given aspect. An example of this pattern is again provided as part of
aop_example.ipynb!

15Filenames are expected without an extension – the default .cprofile gets appended automatically.
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7.2.2. PyZeta Core Components

The core package frames the fundamental abstractions making up all zeta function related
functionality together with their respective implementations. This section summarizes the
relevant classes in the order imposed by a further organizational subdivision into smaller
packages.

The central package pyzeta.core.zetas exposes both an abstract zeta and an abstract
weighted zeta function. These callable classes implement the step dn of the Bell iteration
described in [Bor14] for Selberg’s zeta function and in [SW23] for (weighted) dynamical
determinants, respectively, while leaving the initial term ak abstract. Different concrete
implementations like symmetry or non-symmetry reduced variants therefore only need to
implement this remaining initial term. This introduces additional flexibility that should
prove useful when implementing further zeta functions like the semiclassical variants dis-
cussed in Chapter 3. The list of concrete implementations covers the areas Selberg zeta
function and (weighted) dynamical determinant for the calculation of quantum mechan-
ical and classical resonances, respectively. Both are available in symmetry reduced and
non-reduced versions. Concretely there are

AbstractZeta

AbstractWeightedZeta

SelbergZeta

WeightedZeta

ReducedSelbergZeta

ReducedWeightedZeta

All concrete implementations available at the moment require two dependent ser-
vices namely a symbolic dynamics to provide the symbolic words satisfying certain con-
straints and up to some maximal word length together with either an iterated func-
tion system or a hyperbolic map system to convert symbolic words into periodic orbit
data like instabilities or period integrals. The abstractions and implementations of these
are contained within the sub-packages symbolic_dynamics and function_systems of
pyzeta.core.dynamics. Again a hierarchy abstracts the fundamental aspects of these
services:

AbstractSymbolicDynamics

SymbolicDynamics

ReducedSymbolicDynamics

provide a wordGenerator method for the generation of parallel arrays of symbolic words
and closing elements from some given finite symmetry group. Attributes like prime,
permFree, or cyclRed may be provided to specify subsets of words suited to the par-
ticular application. For example zeta functions without symmetry reduction require only
cyclRed because their function or map systems expect cyclically reduced words for sta-
bility generation.

This functionality gets complemented by the much larger hierarchy below the abstract
bases

FunctionSystem

HyperbolicMapSystem

The former exposes getStabilities which requires an array of cyclically reduced sym-
bolic words generated from an underlying property adjacencyMatrix and produces a
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parallel array of stabilities of the orbit represented by each of the words. The lat-
ter also provides getStabilities which differs in that it yields two parallel arrays of
stabilities and instabilities.16 Additionally HyperbolicMapSystem also has a property
fundamentalIntervals as well as a method getPeriodicPoints which from an array of
symbolic words calculates two parallel arrays of repelling and attracting fixed points of
the orbits associated with each individual word.

The respective functionality of both abstractions is made concrete in a variety of sub-
classes including

MoebiusFunctionSystem

MoebiusMapSystem

for systems whose functions or maps are given by Moebius transformations on the upper
halfplane,

SchottkyFunctionSystem

SchottkyMapSystem

for systems that represent geodesic flow dynamics on convex cocompact hyperbolic sur-
faces, and the non-exhaustive collection

HyperbolicCylinder

HyperbolicCylinderMap

FlowAdaptedCylinder

FlowAdaptedCylinderMap

FunnelTorus

FunnelTorusMap

GeometricFunnelTorus

GeometricFunnelTorusMap

...

The latter are now concrete classes that constitute the bottom of the hierarchy. Again
instances need not be created by the user. Instead the Container decides dynamically
the correct system to construct based on the user supplied data. If as an example the user
wants to construct a Selberg zeta function for a hyperbolic cylinder it suffices to call

initArgs: HyperbolicCylinderArgs = {"funnelWidth": 5.0, "rotate": True}

zeta = SelbergZeta(

functionSystem=FunctionSystemType.HYPERBOLIC_CYLINDER,

systemInitArgs=initArgs,

)

The responsibility of knowing that SelbergZeta requires a FunctionSystem not a
HyperbolicMapSystem instance as well as how to construct such an instance in the cylin-
der case is handled by appropriate components automatically.

The WeightedZetaFunction depends on a third service called IntegralProvider. As
suggested by its name this component supplies orbit integrals via a getOrbitIntegrals

method taking an array of symbolic words as input. The concrete implementations

FundamentalDomainIntegrals

PoincareSectionIntegrals

16For Hamiltonian dynamics like geodesic flows on Schottky surfaces a pair of stabilities and instabilities
must multiply together to one.
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represent the two approximations to invariant Ruelle distributions discussed in [SW23,
Section 4] namely pushforward to the Dirichlet fundamental domain and restriction to
the canonical Poincaré section.

This functionality gets complemented by sub-packages of pyzeta.core called
symmetries for symmetry groups used with symmetry reduction and distributions for
invariant Ruelle distributions. Again the general principle of supplying central abstrac-
tions like a SymmetryGroup together with concrete implementations like TrivialGroup

was followed. It should be emphasized again that any service should only ever address
its dependent services through their abstract interface and never through their concrete
implementation! Together with carefully chosen abstractions this guarantees the largest
possible degree of flexibility and extensibility.

Remark 7.2.4. PyZeta version v0.1.1 does not yet contain a complete implementation
of symmetry reduction. This functionality exists as part of the non-open source legacy
code created by the author of this thesis during preparation of the article [SW23] but still
requires (straightforward) porting to the open source domain.

7.2.3. Additional Layers and Components

The design of PyZeta incorporates a couple of additional layers which exist independently
from the core business logic described above to enforce decoupling and coherence of the
different components. These layers could roughly be categorized as providing more generic
auxiliary capabilities beyond the specific resonance and zeta function core. Their design
and functional requirements are naturally dictated by the necessities of the core logic,
though. The following list contains an overview of these layers and components with
general descriptions of their exposed API. Many of them are still evolving and the most
up-to-date presentation is available as part of the inline documentation in the GitHub
repository. For an overview over the interplay of some of the components mentioned in
this section refer to Figure 7.2.

Figure 7.2.: Illustration of a) component and b) partial class diagrams for the view, experiments, con-
figuration management and persistence packages.

� pyzeta.view: The view layer groups all components related to the graphical rep-
resentation or manipulation of data generated by or to be processed by the PyZeta

core components. In particular this includes a tool called ResonanceSelector which
is built on top of the package bokeh and allows its users to pick individual resonances
from larger collections. This is exceedingly useful to e.g. extract resonances along
a chain for further investigation. Furthermore this layer groups the command line
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interface which exposes functionality like manipulation of settings, test execution,
and plugin management.

� pyzeta.persistence: The persistence layer incorporates all classes that handle the
storage and retrieval of data like resonances or Ruelle distributions. Its primary goal
is to make the whole process of saving data for later reference as transparent to the
user as possible while preserving all necessary information required to reconstruct
the context in which the respective data was initially gathered, i.e. metadata.

� pyzeta.geometry: The geometry package contains everything related to the geom-
etry of hyperbolic space, Schottky surfaces, and more. It provides a backend to the
view layer whenever data is to be displayed in the context of hyperbolic geometry
like Ruelle distributions on their fundamental domain.

� pyzeta.experiments: The experiments package is envisioned to provide a generic,
extensible and flexible framework for the configuration and management of numer-
ical experiments in the context of Pollicott-Ruelle resonances and zeta functions.
Important aspects of this endeavour are the possibility of configuring experiment
scripts with as little code as possible, i.e. shifting work into configuration files, and
tracking such configurations over multiple runs or batches. Concrete examples of
configurations in this context are things like which Schottky surfaces together with
which parameters were used or which series cutoff was chosen for dynamical deter-
minants.

� pyzeta.utils: The utilities package collects functions and classes which do not fit
into any of the aforementioned packages. The package is not designed to host larger
collections of related functionality, though: Due to the generality of the term utility
anything that may sensibly be grouped into a coherent set of components should at
some point be refactored into a more specific package!

7.3. Conclusion and Outlook

Due to its large scope the PyZeta project is still under active development at the time of
writing this thesis. There are open tasks17 in several directions:

� Some parts of the core functionality still require porting from the legacy to the
new open source project. In particular this includes work on documentation and
testing making it a non-trivial task in terms of time and effort required but the
programming itself should be rather straightforward because the algorithms have
already been thoroughly investigated and extensively used during the preparation
of the article [SW23].

� Supplementary details regarding the infrastructure come up frequently during imple-
mentation of core capabilities like additional settings to include. Also the documen-
tation could be improved especially in terms of description of the theory. Apart from
such minor details the architecture elements are complete and should be straight-
forward to adapt to future requirements.

17Many of these are listed under the Issues tab on GitHub. It is common practice for open source projects
to use this mechanism both for enhancement proposals as well as bug fixes.
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� The implementations regarding the pyzeta.persistence package mostly have the
status of prototypes at the time of writing this thesis. In particular this applies to a
ResonanceHandler class which bundles capabilities for loading and saving resonance
data. This existing code needs to be ported to the open source project after proper
refactoring because the class accumulated too many different data and metadata
formats over its lifetime and offers quite a bit of potential in terms of coherency.
Additionally the loading and saving capabilities need to be extended to also cover
use cases involving invariant Ruelle distributions.

� At the time of writing this thesis the pyzeta.view package consists mainly of com-
mand line functionality regarding plugins, settings, and local installation tests, as
well as of a prototype of the ResonanceSelector tool. The latter requires heavy
refactoring and adaption to the planned new data format before it integrates seam-
lessly into the open source branch.

� The pyzeta.experiments package is the newest of the different PyZeta compo-
nents. This is primarily due to the circumstance that the concrete requirements
and use cases addressed by this package came up during the experiments conducted
as part of [SW23]. The basic structure as indicated in Figure 7.2 is in place but
concrete experiments and runners must still be implemented. This should happen
in conjunction with the implementation of the planned configuration management
whose design in turn heavily depends on the data and metadata formats.

In summary it can be stated that the core functionality is in place as demonstrated
in [SW23] apart from conceptually minor points like documentation. The user-facing
convenience infrastructure is more of a work in progress with a number of supporting
documents like use case diagrams, requirement descriptions, and class diagrams created
but also some concrete implementations left to be done. The guiding principle here is
to reduce the boilerplate code required to run concrete resonance or Ruelle distribution
experiments to a minimum. Instead potential future users should interact with the cur-
rently existing code only through a short driver script which gets configured without
actually writing any Python code. This should minimize the entry barrier to the project
because the typical user is probably more experienced with but also more interested in the
underlying mathematics as compared to the implementation and programming details.

Besides these points there exist a number of exciting new research directions which
would lend themselves perfectly for inclusion within PyZeta. On the one hand there are
additional techniques for convex-cocompact hyperbolic surfaces like the ones developed
in [BPSW20] which approximate the function spaces that the transfer operators act on re-
sulting in an approximation of the Fredholm determinants by ordinary (finite-dimensional)
determinants. This complements well the cycle expansion approach and could unlock a
larger region of resonances that invariant Ruelle distributions can be investigated for.

Another aspect would be facilities to calculate and visualize quantum resonant states
on Schottky surfaces, c.f. [Str17, LS21]. This would make it possible to consider directly
quantum matrix coefficients and investigate further the high frequency limit where invari-
ant Ruelle and Wigner distributions coincide. Also it could offer a way of independently
verifying numerical results such as those presented in [SW23] whose validity can at the
moment only be made plausible on a qualitative level.

On the other hand there exist practically well-established techniques for classical, semi-
classical, and quantum resonances as well as certain phase space distributions on n-disc
systems. An inclusion as part of PyZeta would be very worthwhile because these ob-
jects have so far been investigated only in highly symmetric 3-disc arrangements. The
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possibility of running direct comparisons of these model systems within the same numer-
ical project might also uncover new differences between resonances for locally symmetric
spaces and general hyperbolic systems for which there is no algebraic structure theory
that allows the derivation of a rigorous quantum-classical correspondence.
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This chapter illustrates the numerical PyZEAL package which constitutes the second major
programming project conducted during the course of this thesis. The style of the presen-
tation is very similar to the previous Chapter 7 but more room will be dedicated to the
comparison between the approaches to and implementations of PyZEAL and PyZeta as well
as the mathematical foundations which are mostly disjoint from the theoretical chapters
in Parts I and II.

8.1. Origins of the Project and Requirements

Based on the mathematical machinery developed in Chapter 4 it was possible to imple-
ment an efficient numerical procedure for calculating various kinds of zeta functions in
Chapter 7. Even with these pieces in place practical experiments show that it is still highly
desirable to minimize the number of zeta function evaluations required for the resonance
and Ruelle distribution experiments in question.

The first such experiments conducted for this thesis were simple calculations of reso-
nances in compact regions of C. To this end a legacy implementation of a root finding
algorithm by Tobias Weich was used. This algorithm implemented immediately the simple
divide-and-conquer scheme suggested by the well-known argument principle from complex
analysis1. A more detailed description of this theorem and its consequences will be given
below.

While quite straightforward and easy to use the practical usage of the aforementioned
implementation revealed several shortcomings such as

� high number of required function evaluations,

� large unused potential for parallel execution, i.e. an instance of what the literature
on parallel programming often calls an embarrassingly parallel problem,

� ad-hoc solution to problems some of which are inherent to the algorithm used and
some of which are not,

� unused implicit knowledge of root orders kept as data internal to the algorithm.

These problems and their (partial) solution will be described in greater detail in the
upcoming sections.

Even a short look into the applied mathematics literature reveals that an abundance
of algorithms have been developed for the root finding problem in the holomorphic cate-
gory. For some reason, though, these theoretical developments do not seem to have made
the transition from research papers and private proof-of-concept implementations to well
tested and well documented open source packages that are easily accessible and possess a
gentle learning curve for their users. A web search prior to starting the endeavor consti-
tuting the contents of this chapter uncovered the following projects with accessible code
related to zeros of holomorphic functions:

1See also the remarks in [Bor14, Section 4.1].
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� https://github.com/rparini/cxroots which is written in Python. Judging from
its commit history this project is semi-actively maintained but has not been under
active development since 2018.

� https://github.com/nennigb/polze is also written in Python and claims to cal-
culate zeros and poles. The implementation follows [Che22] but the repository seems
to be neither actively maintained nor currently under development and has an over-
all low number of commits.

A much older implementation is a package called ZEAL written in Fortran90 [KVR+00].
It implements the algorithm as described in [KV00] and serves as namesake for the subject
of this chapter. While apparently planned as an end user solution by its original authors it
appears to be practically unavailable and moreover technologically inaccessible nowadays.
Due to its excellent documentation in the form of the textbook just mentioned ZEAL serves
as a major source of inspiration for the new code base in terms of mathematical algorithms
and overall functionality.

With these points in mind the PyZEAL project was conceived. It aims to tackle these
problems and provide a solution to the following set of requirements:

(i) Build well tested, thoroughly documented software that is easy to use and extend
– in particular, this implies a widely popular language for implementation.

(ii) Make the end product cross-platform and easy to install even with little to no prior
technological experience.

(iii) Provide an abstraction of the root finding problem that applies to various kinds of
holomorphic data independent of the zeta function setting.

(iv) Create a sandbox for experimentation with new root finding methods and compari-
son of different approaches. This aspect should be considered on equal footing with
the point of view purely focused on the user wanting to solve a holomorphic root
finding problem with some black-box algorithm.

It is therefore not only the aim of this project to support one of the main use cases
of PyZeta, namely the calculation of resonances as zeros of zeta functions, but also to
establish a foundational implementation for anyone interested in holomorphic root finding
to use and extend as part of their own research interests. As such PyZEAL is necessarily
incomplete in terms of algorithms included but substantial progress was made compared
to the situation prior to the establishment of the project, both in terms of an improvement
of the existing methodology as well as the implementation of new methods.2

To mark the completion of the general framework and working implementations of first
algorithms a stable version v1.0.0 of PyZEAL was published as open source on May 1st,
2023.3 This is also the reference version for this thesis.

The remaining sections of this chapter will proceed as follows: Section 8.2 describes the
preliminaries necessary for the concrete algorithms. This description remains rather con-
cise as the material is standard complex analysis. In Section 8.3 an overview over the ap-
plied mathematics literature regarding the holomorphic root finding setting is given. While
also being far from comprehensive all methods currently implemented within PyZEAL are
covered as well as some promising future directions. With these prerequisites out of the

2Additionally it should be clear that even including implementations of a significant fraction of methods
to be found in the literature is far beyond the scope of any single thesis.

3https://github.com/Spectral-Analysis-UPB/PyZEAL.
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way both the general architecture can be described in Section 8.4 as well as some note-
worthy internal details regarding framework elements and algorithms in Section 8.5. The
concluding Section 8.6 presents an outlook and future directions for PyZEAL.

8.2. Mathematical Preliminaries

The mathematical domain that PyZEAL deals with is that of complex analysis and in
particular holomorphic and meromorphic functions. This section summarizes some basic
facts regarding these classes of functions for the reader’s convenience. The material is
completely standard and can be found in any textbook dealing with complex analysis
such as [RS02].

A function f : U → C on an open subset U ⊆ C is called holomorphic if it satisfies
both

(i) differentiability as a function U → R2, where any subset of C is viewed as a subset
of R2 via the standard identification z 7→ (Re(z), Im(z)), and

(ii) C-linearity of its differential at every point of U or, equivalently, its R-linear differ-
ential can be identified with a complex number.

It is standard that provided condition (i) holds the requirement in (ii) is equivalent
to the so-called Cauchy-Riemann equations on the partial derivatives of the real and
imaginary parts of f . Furthermore one commonly denotes the complex numbers whose
existence is demanded in (ii) by f ′(z), z ∈ U , and calls them the complex derivative of
f . In practice this derivative can be calculated as the limit in C of a difference quotient
analogous to the single-variable real case.

Now holomorphic functions possess a number of very rigid properties much stronger
than those of differentiable functions R2 → R2:

� holomorphic functions can be developed into locally compactly convergent power
series around any point of their domain,

� holomorphic functions are already infinitely often complex differentiable,

� the values of a holomorphic function on the boundary of a disc determine its values
(as well as values of its derivatives) completely as expressed by Cauchy’s integral
formula,

� path integrals of holomorphic functions on simply connected domains are path in-
dependent as expressed by Cauchy’s integral theorem.

The strong properties of holomorphic functions already suggest that more specific meth-
ods tailored to their holomorphic nature should yield better algorithms than the more
generic ones that exist for (k-times) differentiable functions on R2. A common starting
point for many of the algorithms present in the literature is the following theorem often
called the argument principle:

Let a holomorphic function f : U → C on a simply connected domain U ⊆ C and a
simple, closed, piece-wise differentiable curve γ ⊆ U be given. If no zeros of f lie on γ
then

Nf (γ) =
1

2πi

∫

γ

f ′(z)
f(z)

dz , (8.2.1)
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where Nf (γ) denotes the number of zeros of f inside the region bounded by γ and counted
according to their multiplicity. The proof for (8.2.1) is rather straight forward using the
power series expansion of f around its zeros together with the residue theorem. A proof
of a more general formulation will be given shortly.

For the cases of interest here the quotient f ′/f appearing in the argument princi-
ple (8.2.1) is in fact not holomorphic as expressed by the fact that the integral does not
vanish if Nf (γ) 6= 0. At every zero of f the denominator diverges but f ′/f still represents
what is called a meromorphic function!

A function g is called meromorphic on the domain U ⊆ C if there exists a set without
accumulation points S ⊆ U such that g : U \S → C is holomorphic and the elements of S
are poles of g. In generalization of power series expansions one can expand a meromorphic
function g into its Laurent series around a pole z0, i.e.

g(z) =

∞∑

k=−n
ak(z − z0)k , for z near z0 ,

and the coefficient a−1 is called the residue of g at z0, denoted by Res(g, z0) := a−1.

The residue of a meromorphic function is of particular importance because it figures
prominently in the residue theorem: Given a meromorphic function g : U → C on a simply
connected domain U ⊂ C together with a simple, closed, piece-wise differentiable curve
γ ⊆ U that does not contain any poles of g one has

1

2πi

∫

γ
g(z)dz =

m∑

i=1

Res(g, ai) ,

where {a1, ..., ak} is the list of poles of g contained in the interior of γ. The residue
theorem is useful in applications of both theoretical (calculating definite integrals) as well
as practical (signal processing, control theory, or electrodynamics) nature.

The upcoming sections will refer to the following generalized argument principle which
is straightforward to prove using the residue theorem:

Theorem 8.2.1: Generalized argument principle

Let a holomorphic function f : U → C on a simply connected domain U ⊆ C and
a simple, closed, piece-wise differentiable curve γ ⊆ U be given. If no zeros of f lie
on γ then

1

2πi

∫

γ

f ′(z)
f(z)

zNdz =

n∑

i=1

zNi , N ∈ N ,

where z1, ..., zn are the zeros of f contained in the interior of γ and repeated ac-
cording to their multiplicity.

Proof. By the residue theorem it suffices to calculate the residues of zNf ′(z)/f(z) at the
zeros of f . Letting zi by an arbitrary such zero one observes that there exists ε > 0 such
that in any ball Br(zi) of radius r < ε around zi one can write

f(z) = (z − zi)kg(z) , ∀ z ∈ Br(zi) ,

with some non-vanishing holomorphic g : Br(zi) → C. This is obvious from the power
series expansion of f around zi and g is obtained by factoring from it the highest possible
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power of (z − zi). Now a simple calculation yields the residue:

f ′(z)
f(z)

zN =
k

z − zi
zN +

g′(z)
g(z)

zN , z ∈ Br(zi) .

The second term has vanishing residue due to being holomorphic while the first term’s
residue is easily identified as being kzNi .

8.3. Root Finding Algorithms

This section reviews some algorithms regarding holomorphic root finding to be found
in the literature. Aiming at anything close to completeness would greatly exceeding the
constraints of this thesis. The following presentation is therefore restricted to those algo-
rithms which have either already been implemented as part of PyZEAL or have been chosen
as promising candidates for future inclusion. That being said it should be reiterated that
PyZEAL aims to provide a framework within which any sort of root finding algorithms for
holomorphic functions can be implemented efficiently.

The presentation begins with [KV00] as it seems to be the major reference textbook
on this subject matter. While being quite short and concise it contains a good overview
over algorithms using

� higher moments of f ′/f to construct polynomials whose zeros coincide with the
zeros of f (see Section 8.3.1);

� subdivision schemes and careful tracking of complex logarithms of f to avoid usage
of f ′ (see Section 8.3.2);

� formal orthogonal polynomials to construct generalized eigenvalue problems related
to the zeros of f and more generally the zeros and poles of meromorphic functions
(see Section 8.3.3);

It also contains a description of the Fortran90 package ZEAL which serves as the namesake
of the present project as described in the previous Section 8.1.

Much of the material can also be found in the paper [KV99] by the same authors. Not
only does it contain a wealth of references but it also summarizes several approaches in a
readable and concise manner. The authors have several other papers in this subject area
including [KVH99] which more generally deals with meromorphic functions.

8.3.1. Higher Moment Construction

The pioneering paper [DL67] seems to be the first rigorous investigation into how the
argument principle could be used for calculating roots of holomorphic functions. As such
it is often cited in later works on the subject and provides a great starting point before
diving into more recent works.

Mathematically it uses the generalized argument principle Theorem 8.2.1 to identify
the higher moments

sN :=

∫

γ

f ′(z)
f(z)

zNdz

with the sums over N -th powers of the roots of f within γ. Having obtained s1, . . . , sn for
n = s0 = Nf (γ) one can use Newton’s identities to iteratively construct the coefficients of
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the polynomial p of degree n whose zeros coincide with the zeros z1, . . . , zn of f within γ:

p(z) :=

n∏

i=1

(z − zi) .

This reduces the root finding problem for f to one for the polynomial p which in general
is far easier and for which sophisticated methods are readily available (e.g. as part of
numpy.polynomial4).

One disadvantage of this approach is the fact that the mapping from the sN to the
coefficients of p is generally ill-conditioned and the zeros of p dependent on its coefficients
in a very sensitive manner. Many papers in the literature try to remedy this shortcoming
by requiring some global information on f or its derivatives to be able to bound the error
incurred from errors in calculating sN via some quadrature scheme.

In the companion paper [LD67] to [DL67] further details on contour integration are
provided. This is especially helpful for practical implementation purposes.

8.3.2. Derivative-free Algorithms

The algorithms in this category generally make use of the fact that the argument principle
can be reformulated as

Nf (γ) =
1

2πi

∫

f◦γ

1

z
dz ,

where the expression on the right-hand side can be recognized as the winding number of
the curve f ◦ γ around 0 ∈ C. This winding number can in principle be calculated as the
change in argument of f along the curve γ divided by 2π. After subdividing γ into finitely
many arcs [γi, γi+1], i = 1, . . . ,M , one gets the numerically feasible expression

Nf (γ) =
1

2π

M∑

i=1

arg

(
f(γi+1)

f(γi)

)
. (8.3.2)

where γM+1 := γ1. As a reference refer to [Hen88, p. 233].
In practice one is faced with the problem that (8.3.2) only holds true if the absolute

value of the change in argument within any segment [γi, γi+1] does not exceed π. In general
this cannot be verified without further information on f [KV00, Theorem 1.1.2] and many
authors have contributed theorems and algorithms in this direction. An example of such
a contribution is [YNK88].

8.3.3. Formal Orthogonal Polynomials

To remedy some of the shortcomings of the procedure sketched in Section 8.3.1 one
can treat the zeros z1, . . . , zn of f counted without multiplicities and their multiplici-
ties ν1, . . . , νn on equal footing. Concretely this means considering the following pairing
which generalizes the construction of higher moments sN above:

〈·, ·〉f : C[z]× C[z] −→ C ,

〈ϕ,ψ〉f :=
1

2πi

∫

γ

f ′(z)
f(z)

ϕ(z)ψ(z)dz =
n∑

i=1

νiϕ(zi)ψ(zi) ,

where C[z] denotes the vector space of polynomials in the variable z.

4See https://numpy.org/doc/stable/index.html.
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From 〈·, ·〉f one constructs generalized eigenvalue problems whose solutions yield both
the zeros z1, . . . , zn as well as the multiplicities ν1, . . . , νn. This is done via Hankel ma-
trices constructed from the higher moments sN = 〈1, zN 〉 and using the theory of formal
orthogonal polynomials, i.e. monic p ∈ C[z] satisfying

〈
p(z), zk

〉
= 0 , ∀ k = 0, 1, . . . ,deg(p)− 1 .

While the first two approaches presented above have already been implemented as part
of the PyZEAL code base it is this approach via formal orthogonal polynomials which seems
to be a particularly promising next candidate for implementation.

8.4. Architecture of PyZEAL

The underlying philosophy and architecture of PyZEAL is very similar to the ideas discussed
in the previous Chapter 7. Most of the concepts mentioned there were actually first
implemented for and improved in the context of PyZEAL. Note in particular the many
similarities of Figure 8.1 with Figure 7.1 in terms of framework elements. The architectural
description can therefore be shortened to focus on the actual business logic in the following
Section 8.5.

Remark 8.4.1. One of the main architectural differences between PyZeta and PyZEAL is
the fact that the latter uses a static container to facilitate dependency injection called
ServiceLocator. While this locator still gets configured during initialization and follows
the same principles as the dynamic container of PyZeta it offers significantly less flexibility
due to its static project-wide visibility. This is particularly pronounced during testing
where special care must be taken to initialize the locator in a manner suitable for all test
cases and to guard unit tests for the business logic from changes made during tests of the
locator itself.
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Figure 8.1.: UML diagram of project components and their interactions.

8.5. PyZEAL Internals

The main user API for scripting purposes is provided by the abstract base

RootFinderInterface

The main API of this class consists of a single abstract method called

calculateRoots(reRan, imRan, precision)

that initiates a root search together with two abstract properties roots and orders

which contain the found roots and their multiplicities, respectively. The parameters reRan
and imRan are pairs of floats determining the boundaries in real and imaginary parts
of a rectangle within which zeros are searched. The final integer parameter precision

determines the accuracy of the root search in terms of considered decimal places.
This abstract base is implemented by a class RootFinder and a multiprocessing variant

ParallelFinder. Both set up a context for the search and delegate the actual work to
implementations of an abstract base
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FinderAlgorithm

where the parallel variant has the added responsibility of distributing work amongst
several such algorithm instances. The context includes geometric information on the search
domain as well as auxiliary information like accuracy and optional progress bar objects
all encoded in the data transfer object RootContext.

Progressing deeper into the chain of dependent services consider the FinderAlgorithm

next. This service exposes an exceedingly simple interface consisting of a single abstract
method calcRoots(context) taking a data transfer object context of type RootContext
as the setting in which to execute the algorithm. This embodies a rather typical implemen-
tation of the classical strategy pattern [GHJV03, p. 315]. The advantage of this modular
approach comes from its increase in flexibility as compared to approaches which e.g. hard-
code different algorithmic variants into subclasses of the RootFinderInterface. It keeps
the inheritance hierarchy flat while simultaneously reducing the task of creating new
algorithms to a new implementation of FinderAlgorithm. Combining this with the plu-
gin mechanism mentioned in Chapter 7 significantly reduces the required overhead when
prototyping a new root finding algorithm for holomorphic functions.

The following list contains a short summary of the currently implemented algorithms
from pyzeal.algorithms. Note how a variety of different algorithmic approaches fit
neatly into the structure just outlined:

� NewtonGridAlgorithm: Straightforward implementation creating a grid of support
points to use as starting points for a classical Newton algorithm. This algorithm
suffers from the drawback that the zeros of many practically important functions
like those of PyZeta vary heavily in the degree in which they attract the Newton
iteration. Such cases require very fine grid spacing and often the optimal spacing is
not known a priori.

� SimpleArgumentAlgorithm: Adaptation of the argument principle based on succes-
sive refinements of search rectangles. A specific rectangle can be dropped if the total
estimated argument falls below a certain threshold. This is quite stable due to the
fact that theoretical values are integer multiples of 2π.

� SimpleArgumentNewtonAlgorithm: Refined version of the previous simple variant
combining the argument estimation and refinement procedure with the classical
Newton algorithm which is started upon finding a single simple root within a search
rectangle. From the total argument the expected number of roots is known so the
algorithm can correct itself if the Newton iteration does not converge properly.

� AssociatedPolynomialAlgorithm: Second refinement of the simple argument pro-
cedure following the ideas in Section 8.3.1: After estimating the higher moments of
the logarithmic derivative the associated polynomial is constructed from these esti-
mates. Afterwards one of the implementations of the interface PolynomialWrapper

that wraps classical methods for roots of polynomials can be used to recover the
original zeros.

Apart from the first one all of these algorithms heavily depend on a reliable backend
for argument estimation. In PyZEAL this facility gets provided by implementations of the
abstract base class

ArgumentEstimator
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This abstract base itself exposes calcMoment(order, reRan, imRan, context) as the
API used by algorithm objects. The bulk of the work gets delegated to a tem-
plate method [GHJV03, p. 325] handling argument estimation along a line segment
in C called calcMomentAlongLine(order, zStart, zEnd, context). Concrete estima-
tor implementations like SummationEstimator and QuadratureEstimator must provide
their own realizations of this abstract member. The former solves this by summing changes
in complex arguments of function values compared to the numerical quadrature of the
logarithmic derivative as used in the latter.

Another important abstraction used in PyZEAL is that of

RootContainer

Instances of its implementations offer methods for the storage and retrieval of roots and
their orders while implementing different approaches to the problem of roots that should
be considered equal with respect to the given precision. This abstraction therefore cleanly
separates the concern of how to find roots from the concern of how to store roots. The main
implementation available at the moment is the RoundingContainer which rounds roots
upon insertion and stores them in a set to eliminate duplicates. A purely internally used
implementation called PlainContainer supports the multiprocessing implementation of
RootFinderInterface by wrapping a shared concurrent queue used for inter-process
communication.

8.6. Conclusion and Outlook

As of version v1.0.0 the PyZEAL project offers a stable API for the calculation of zeros
of holomorphic functions together with several different algorithms ready for use and a
platform for straightforward insertion of new algorithms into the existing infrastructure.
With this being said there are multiple angles for improvements and extensions which
could not be addressed during the present thesis due to time constraints.

On the one hand smaller open issues like an enhancement of the SummationEstimator

to cover higher moments, improved documentation and test coverage, or smaller algorith-
mic adjustments of the existing algorithms remain. Another open challenge is the detailed
profiling and targeted optimization of the code using the techniques and tooling presented
in Chapter 7. The most recent non-comprehensive list of work items may again be found
under the Issues tab of the PyZEAL GitHub repository.

As an example one very interesting of these items is the possibility of solving the root
finding problem for polynomials (e.g. resulting from a reduction via associated polynomi-
als) by training a neural network. If such an approach could estimate zeros of polynomials
with high accuracy even for high degrees then the existing algorithms would receive a sig-
nificant boost as they could stop subdividing the search array after fewer steps.

On the other hand many interesting algorithmic approaches to be found in the litera-
ture remain to be implemented. One such candidate should certainly be the method of
formal orthogonal polynomials as outlined in Section 8.3.3 above. Due to the infrastruc-
ture currently in place the implementation of a first prototype should become significantly
easier. The full implementation with a cleanly refactored solution, appropriate unit test
coverage, and documentation will naturally still take some effort, though.
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A. Meromorphic Continuation of Weighted
Zeta Functions on Open Hyperbolic
Systems

This appendix contains the research paper Meromorphic Continuation of Weighted Zeta
Functions on Open Hyperbolic Systems [SWB23] which was published with the co-authors
Tobias Weich and Sonja Barkhofen during the author’s PhD.

P.S. and T.W. contributed to the development of the research question and proof strat-
egy. P.S. worked out the proofs and wrote the manuscript. This was accompanied by
regular blackboard discussions with T.W. and all three co-authors contributed to the
proof reading of the manuscript.

The numerical experiments in the appendix were based on mutual planning by all three
co-authors. They were conducted by P.S. based on code previously written by S.B. and
T.W.
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MEROMORPHIC CONTINUATION OF WEIGHTED ZETA

FUNCTIONS ON OPEN HYPERBOLIC SYSTEMS

PHILIPP SCHÜTTE AND TOBIAS WEICH

WITH AN APPENDIX BY SONJA BARKHOFEN, PHILIPP SCHÜTTE AND TOBIAS WEICH

Abstract. In this article we prove meromorphic continuation of weighted zeta
functions Zf in the framework of open hyperbolic systems by using the meromorphically
continued restricted resolvent of Dyatlov and Guillarmou [DG16]. We obtain a residue
formula proving equality between residues of Zf and invariant Ruelle distributions.
We combine this equality with results of Guillarmou, Hilgert and Weich [GHW21]
in order to relate the residues to Patterson-Sullivan distributions. Finally we provide
proof-of-principle results concerning the numerical calculation of invariant Ruelle
distributions for 3-disc scattering systems.

Mathematical Subject Classi�cation. 37D05, 37C30 (Primary), 58J50 (Secondary).

1. Introduction

1.1. Motivation. A closed hyperbolic surface (M, g), i.e. a closed two-dimensional Rie-
mannian manifold of constant negative curvature, can be considered as a paradigmatic
mathematical model that allows the study of classically chaotic dynamics on the one hand
and the investigation of spectral properties of the associated quantized system on the
other hand: From the perspective of classical mechanics, the free motion of a particle on
the curved con�guration space M is described by the geodesic �ow on the unit cosphere
bundle SM := {ξ ∈ T ∗M; |ξ|g = 1}, which is the unit energy shell in the classical phase
space T ∗M. On the quantum mechanical side, the Hamiltonian operator is given by the
positive Laplace-Beltrami operator ∆ acting as an unbounded self adjoint operator on
L2(M). It has discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . ., where we repeat the eigenvalues
according to multiplicity, and we denote by ψi ∈ L2(M) the associated eigenfunctions. On
hyperbolic surfaces, it is convenient to parametrize the spectrum by λi = 1/4 + r2

i (where
ri is real valued for eigenvalues ≥ 1/4 and imaginary for those < 1/4). If we �x a semi-
classical Weyl quantization Oph, h > 0, sending test functions in C∞c (T ∗M) to bounded
operators on L2(M) (see e.g. [Zwo12]) then we can associate to any Laplace eigenfunction
ψi its Wigner distributionWψi : C∞c (T ∗M) 3 g 7→ 〈Op1/ri(g)ψi, ψi〉L2(M). This generalized
function should be interpreted as a representation of the quantum state ψi on the classical
phase space T ∗M.

In this setting, Anantharaman and Zelditch [AZ07] proved the remarkable result that
one can de�ne zeta functions that are given purely in terms of the classical geodesics but
nevertheless allow one to express the quantum phase space distributions by means of residue
formulae. More precisely, for any f ∈ C∞(SM) they consider the following weighted zeta
function

ZAZf (s) :=
∑

γ

e−sTγ

1− e−Tγ

∫

γ#

f , (1.1)

where the sum runs over all closed oriented geodesics γ ⊂ SM, Tγ is the period length

of the closed geodesic and γ# is the corresponding primitive geodesic. By an elementary

Key words and phrases. Ruelle resonances, invariant Ruelle distributions, zeta functions, hyperbolic
dynamics, numerical zeta functions.
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estimate on the number of periodic geodesics with period length ≤ T one directly obtains
that ZAZf (s) de�nes a holomorphic function for Re(s) > 1. Anantharaman and Zelditch
now show the following:

Theorem 1.1: [Anantharaman-Zelditch 2007]

If g ∈ C∞c (T ∗M) such that g|SM is real analytic then ZAZg|SM(s) admits a meromorphic

continuation to C.
Furthermore for any r > 0, if 1/2+ ir is a pole of ZAZg|SM(s) then 1/4+ r2 is a Laplace

eigenvalue and one has the following spectral interpretation of the residue:

Res
s= 1

2
+ir

[
ZAZg|SM(s)

]
=

∑

λi=
1
4

+r2

Wψi(g) +O(1/r),

For their proof, Anantharaman and Zelditch develop the notion of Patterson-Sullivan
distribution and their techniques for meromorphic continuation and the residue formula
heavily rely on the Lie-theoretic description of hyperbolic surfaces.

The aim of this article is to show that microlocal analysis allows the meromorphic
continuation of weighted zeta functions very similar to (1.1) but in the considerably more
general setting of open hyperbolic dynamical systems as studied in [DG16]. We also obtain
a spectral interpretation of poles and residues of these weighted zeta functions in terms of
Ruelle resonances and resonant states. Combining these results with previously obtained
results on the quantum classical correspondence we recover the above mentioned theorem
of Anantharaman and Zelditch in the special case of geodesic �ows on closed hyperbolic
surfaces.

1.2. Statement of Results. To formulate our main results letM be a smooth manifold
with smooth (possibly empty) boundary, X a smooth, nowhere vanishing vector �eld on
M, and ϕt its �ow. In addition, denote by E a smooth, complex vector bundle over M
and by X a �rst-order di�erential operator acting on sections of E which is related to X
via the Leibniz rule

X(fu) = (Xf)u + f(Xu), f ∈ C∞(M), u ∈ C∞(M, E) .

The dynamics of interest from the point of view of our application happen on the trapped

set K of ϕt, i.e. on the set

K := {x ∈M|ϕt(x) de�ned ∀t ∈ R and ∃ cpt. A ⊆M with ϕt(x) ∈ A ∀t ∈ R} . (1.2)

Finally, we make the following dynamical assumptions:

(1) K is compact,

(2) K ⊆ M̊, with M̊ the manifold interior ofM,
(3) ϕt is hyperbolic on K.

For the formal de�nition of hyperbolicity see Section 2. Note that there are rich classes
of dynamical systems that satisfy the above assumptions, e.g. Anosov �ows on closed man-
ifolds (in particular geodesic �ows on closed manifolds with negative sectional curvature),
Axiom A �ows near a basic set (e.g. geodesic �ows on asymptotically hyperbolic manifolds
in the sense of Mazzeo-Melrose and more concretely geodesic �ows on convex co-compact
hyperbolic manifolds, see [DG16, Section 5.3]), or billiard �ows obtained by non-grazing
convex obstacles scattering (see [KSW21]).

In the setting just described one can de�ne a discrete subset of the complex plane C called
Pollicott-Ruelle resonances of X, directly based on the work of Dyatlov and Guillarmou
[DG16]. They arise as the poles of the meromorphic continuation of the resolvent (X+λ)−1

and any such resonance λ0 is associated with a �nite rank residue operator Πλ0 . It is
possible to obtain a precise wavefront set estimate for Πλ0 which in particular guarantees

the existence of the �at trace tr[ and therefore the well-de�nedness of the invariant Ruelle
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distributions C∞c (M) 3 f 7→ tr[ (Πλ0f). Here the �at trace is de�ned by restriction of the
distributional kernel to the diagonal and subsequent integration.

With these ingredients we can formally de�ne our object of main interest, namely the
weighted zeta function with weight f ∈ C∞(M) at λ ∈ C:

ZX
f (λ) :=

∑

γ

(
exp (−λTγ) tr(αγ)

| det(id− Pγ)|

∫

γ#

f

)
, (1.3)

where the sum is over all closed trajectories γ of ϕt, Tγ is its period, γ# denotes the cor-
responding primitive closed trajectory, Pγ its linearized Poincaré map and αγ the parallel
transport map in E associated with X. For formal de�nitions of these objects we again
refer the reader to Section 2. Our main result now reads as follows:
Theorem 1.2: Meromorphic Continuation of Weighted Zetas I

ZX
f converges absolutely in {Re(λ)� 1} and continues meromorphically to C. Any

pole λ0 of Zf is a Pollicott-Ruelle resonance of X and if the resolvent has a pole of
order J(λ0) at λ0 then for k ≤ J(λ0) we have

Resλ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= tr[

(
(X− λ0)kΠλ0f

)
. (1.4)

Remark 1.3. Note that in the particularly simple situation of a trivial, one-dimensional
bundle E =M× C and X = X our weighted zeta simpli�es and is given by the following
expression:

Zf (λ) := ZX
f (λ) =

∑

γ

(
exp (−λTγ)

| det(id− Pγ)|

∫

γ#

f

)
.

If G is a semisimple Lie group with �nite center and real rank 1, K ⊂ G a maximally
compact subgroup and Γ ⊂ G a discrete, cocompact and torsion free subgroup, then the
rank one locally symmetric space M = Γ\G/K is a closed manifold of strictly negative
curvature1. Thus the results of Theorem 1.2 apply to this setting. Furthermore recent
results on quantum classical correspondences [GHW21] building on ideas developed in

[DFG15] show that the invariant Ruelle distribution C∞(SM) 3 f 7→ tr[(Πλ0f) is related
to quantum phase space distributions in the semiclassical limit. Using these results we
recover2 the result of Anantharaman and Zelditch for hyperbolic surfaces and generalize
it to arbitrary rank one locally symmetric spaces (see Theorem 4.1 for a slightly more
detailed version).

Theorem 1.4: Quantum Phase Space Distributions as Residues

Let M = Γ\G/K be a compact Riemannian locally symmetric space of rank one,
∆M its Laplacian and ϕt the geodesic �ow on SM. Let ρ > 0 denote the half-sum
of the restricted roots of G. Then the following holds:
Given r > 0 such that −ρ+ir is a Ruelle resonance of ϕt then ρ

2 +r2 is an eigenvalue
of ∆M and for any g ∈ C∞c (T ∗M)

Res
λ=−ρ+ir

[
Zg|SM(λ)

]
=

m∑

l=1

Wψl(g) +O(1/r),

where the sum on the right-hand side extends over an orthonormal L2-basis of the
∆M-eigenspace with eigenvalue ρ2 + r2.

1Important special cases of such rank one locally symmetric spaces are d-dimensional manifolds of
constant negative curvature (corresponding to G = PSO(1, d),K = PSO(d)) and even more particularly
hyperbolic surfaces (G = PSO(1, 2) ∼= PSL(2,R),K = PSO(2)). The latter coincides with the setting of
Theorem 1.1.

2Actually we even slightly improve it, by allowing the much more permissive class of smooth instead of
real analytic test functions.
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1.3. Applications. Let us mention two applications of our main Theorem 1.2: For certain
dynamical systems that allow for a simple combinatorial coding of the closed orbits it has
been observed that Ruelle resonances can be calculated numerically in a very e�cient
manner by �nding zeros of a dynamical determinant [Bor14, BW16, BPSW21]. These
dynamical determinants are closely related to our weighted zeta functions. In fact, the
logarithmic derivative of the dynamical determinant yields the weighted zeta function for
the constant weight f ≡ 1. For the same reasons that the dynamical determinant can be
e�ciently calculated from the periodic orbits, we can also calculate the poles and residues
of our weighted zeta functions with adapted numerical algorithms. This allows not only to
perform numerical experiments on how resonances are distributed in the complex plane,
but also to study the behavior of the invariant Ruelle distributions for the �rst time. In
the appendix we show some �rst numerical results for the obstacle scattering on three
hard discs and already observe an interesting common localization pattern of the invariant
Ruelle distributions of resonances that are very close to the spectral gap (see Figure 4).
Besides the 3-disc system there exists another practically feasible dynamical system where
the numerical algorithms work very well, namely geodesic �ows on convex co-compact
hyperbolic surfaces. We conjecture that an analogous statement to Theorem 1.4 also holds
for convex co-compact hyperbolic manifolds. This would then provide an e�cient algorithm
for the numerical calculation of localization properties of Laplace resonances on Schottky
surfaces.

A second application of our main theorem is presented in [BSW22]: Three decades ago
Eckhardt et al. [EFMW92] used semiclassical trace formulae to derive (in a mathematically
non-rigorous way) weighted zeta functions and to predict that their residues are given by
quantum phase space distributions in a semiclassical limit. In [BSW22] we explain how
Theorem 1.4 can be interpreted as a rigorous version of these theoretical predictions on
rank-one locally symmetric spaces. Furthermore we detail how for more general phys-
ical systems (such as convex obstacle scattering) Theorem 1.2 allows us to reinterpret
the residue formulae of [EFMW92] in terms of rigorously de�ned twisted invariant Ruelle
distributions which we investigate numerically. For symmetric 3-disc systems we �nd a sur-
prisingly good agreement between the twisted invariant Ruelle distributions and quantum
phase space distributions. This had been predicted by theoretical physics but does � to our
best knowledge � still lack any mathematically rigorous justi�cation until today.

1.4. Paper organization. We begin with a detailed introduction to our geometric setting
in Section 2. This entails �rst the notion of open hyperbolic systems as used in [DG16]
(Section 2.1) and second a setup quite similar to open hyperbolic systems but without
the requirement of strict convexity (Section 2.2). In particular we de�ne the restricted
resolvent, Pollicott-Ruelle resonances and invariant Ruelle distributions. For our numerics
it turns out to be useful to be able to restrict the invariant Ruelle distributions to certain
hypersurfaces transversal to the �ow (Section 2.3).

The following Section 3 introduces weighted zeta functions formally and proves their
meromorphic continuation using a weighted trace formula (Section 3.1) and wavefront
estimates for the restricted resolvent (Section 3.2 � 3.3). The proofs mostly follow the
approaches of [DZ16] and [DG16] and in many parts we only outline how the arguments
in these references must be adapted to �t our present situation. For full details we refer to
the �rst author's PhD thesis [Sch23].

In Sections 2 � 3 we worked with the setting of general hyperbolic �ows with compact
trapped set. In Section 4 we restrict to the special case of geodesic �ows on compact locally
symmetric spaces of rank one. For these systems our residue formula (1.4) can be inter-
preted as a classical description of quantum mechanical phase space distributions known
as Patterson-Sullivan distributions. This allows us to extend results of Anantharaman and
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Zelditch [AZ07] as well as Emonds [Emo14] to general rank one, compact, locally symmetric
spaces and arbitrary smooth weight functions f on their unit tangent bundle.

One of our main motivations for proving Theorem 1.2 is the fact that dynamical zeta
functions can often be calculated numerically and in a very e�cient manner. Our theorem
then immediately allows us to calculate the invariant Ruelle distributions numerically.
So far these distributions have not been studied in depth and we hope that they encode
certain aspects of the spectrum similar to the Laplace eigenfunctions in quantum chaos. As
a �rst proof-of-principle we show in Appendix A some exemplary numerical calculations
of invariant Ruelle distributions for the 3-disc scattering systems. Even in the few plots
provided here one can already observe some interesting behavior which could serve as a
starting point for more in depth numerical investigations.
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2. Geometric Setup

First, we introduce the notion of open hyperbolic system as it was used in [DG16] in
Section 2.1. This setting will allow us to employ the meromorphically continued restricted
resolvent which makes the upcoming proof of our main theorem in Section 3.2 rather
straightforward later on. Afterwards in Section 2.2 we extend these results slightly by
removing the requirement of strict convexity following ideas developed in [GMT21]. This
will allow us to give a more practically feasible formulation of our main result in Section
3.3. The underlying idea was already used by the authors in their paper [KSW21] together
with Benjamin Küster in the slightly more concrete setting of convex obstacle scattering.
We �nish this section with the proof of a dimensional reduction technique for invariant
Ruelle distributions which is essential for the numerical calculations in Appendix A.

2.1. Open Hyperbolic Systems. Let U be a compact, n-dimensional smooth manifold
with interior U and smooth boundary ∂U . We may have ∂U = ∅, i.e. the case of a closed
manifold. The dynamical object of main interest is a non-vanishing C∞-vector �eld X on
U . We denote by ϕt = ϕXt = etX the corresponding �ow on U , which for ∂U 6= ∅ will
generally not be complete.

Before stating the dynamical requirements for X we have to introduce some auxiliary
objects. Concretely, let ρ ∈ C∞(U , [0,∞[) be a boundary de�ning function, that is ρ−1(0) =
∂U and dρ(x) 6= 0 for any x ∈ ∂U . Boundary de�ning functions always exist ([Lee12,
p. 118]). Furthermore, let M ⊇ U be an embedding into a compact manifold without

boundary, such that X extends ontoM in a manner making U convex 3:

x, ϕT (x) ∈ U for some T > 0 =⇒ ϕt(x) ∈ U ∀t ∈ [0, T ] .

3We keep the notation X and ϕt for the continuations of our vector �eld and its �ow; note that the
continued �ow is now complete by compactness ofM so the upcoming de�nitions make sense.
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Such an ambient manifoldM and continuation of X always exist by [DG16, Lemma 1.1],
given that (A1) below holds. Then [DG16, Lemma 1.2] asserts that the trapped set K is
contained in the interior U , i.e.

Γ± :=
⋂

±t≥0

ϕt(U), K := Γ+ ∩ Γ− ⊆ U .

The set K, called the trapped set of X, is independent of M and the extension of X.
Finally, let E be a complex C∞-vector bundle over U and X : C∞(U , E)→ C∞(U , E) a �rst
order di�erential operator.

With these preliminaries given we call the triple (U , ϕt,X) an open hyperbolic system
if it satis�es the following dynamical requirements:

(A1) The boundary ∂U is strictly convex, i.e.:

x ∈ ∂U , (Xρ)(x) = 0 =⇒ X(Xρ)(x) < 0 .

This condition is independent of the choice of ρ.
(A2) The �ow ϕt is hyperbolic on K, i.e. for any x ∈ K the tangent space splits as

TxM = R ·X(x)⊕ Es(x)⊕ Eu(x) ,

where Es and Eu are continuous in x ∈ K, invariant under ϕt and there exist
constants C0, C1 > 0 with

‖dϕt(x)v‖Tϕt(x)M ≤ C0 exp(−C1t)‖v‖TxM, t ≥ 0, v ∈ Es(x)

‖dϕt(x)v‖Tϕt(x)M ≥ C−1
0 exp(C1t)‖v‖TxM, t ≥ 0, v ∈ Eu(x) .

(2.5)

‖ · ‖ denotes any continuous norm on the tangent bundle.4

(A3) X satis�es

X(fu) = (Xf)u + f(Xu), f ∈ C∞(U), u ∈ C∞(U , E) . (2.6)

We also denote by X an arbitrary extension ontoM that still satis�es (2.6).

Within the setting just described we will need some additional dynamical objects derived
from the �ow ϕt and the operator X. We start by �xing a smooth density on M and
a smooth scalar product on E . That lets us consider the transfer operator exp(−tX) :
L2(M, E)→ L2(M, E) associated with X, i.e. the solution semigroup of

∂

∂t
v(t, x) = (−Xv) (t, x), v(0, ·) = u .

This allows us to de�ne the linear parallel transport map at x ∈ U and t > 0 such that
ϕt(x) ∈ U :

αx,t : Ex −→ Eϕt(x)

u 7−→
(
e−tXu

)
(ϕt(x)) ,

where u is some smooth section of E with u(x) = u. The de�nition does not depend on
the choice of u because u(x) = 0 implies

(
e−tXu

)
(ϕt(x)) = 0 by [DG16, Eq. (0.8)] and an

expansion in terms of a local frame for E . In particular, if γ(t) = ϕt(x0) is a closed orbit
with period Tγ then αx0,Tγ = α−1

x0,t
◦ αγ(t),Tγ ◦ αx0,t and the trace

tr(αγ) := tr(αγ(t),Tγ )

is well-de�ned independent of t.
Next we de�ne the so-called linearized Poincaré map which at x ∈ U and t > 0 satisfying

ϕt(x) ∈ U is de�ned as the linear map

Px,t := dϕ−t(x)
∣∣
Es(x)⊕Eu(x)

.

4The de�nition does not depend on the speci�c norm as K is compact. The same holds for upcoming
arbitrary choices of densities, etc.
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Again we will use this map if x is located on a closed trajectory γ. In this case Px,Tγ is an
endomorphism and det(id − Pγ) := det(id − Px,Tγ ) is independent of x because similarly
as for the parallel transport one �nds that Px,Tγ is conjugate to any Py,Tγ provided y also
belongs to γ.

We �nish this section by recasting the de�nition of invariant Ruelle distributions from
[GHW21] into our setting: Let (U , ϕt,X) be an open hyperbolic system, then we denote
by R(λ) := 1U (X + λ)−11U : C∞c (U , E) → D′(U , E) λ0 its restricted resolvent. In [DG16]
it was proven that R(λ) continues meromorphically onto C and its poles are called Ruelle

resonances. Furthermore, the residue of R(λ) at a resonance λ0 is a �nite rank operator
Πλ0 : C∞c (U , E)→ D′(U , E) that satis�es [DG16, Thm. 2]

XΠλ0 = Πλ0X, supp
(
KΠλ0

)
⊆ Γ+ × Γ−, WF′ (Πλ0) ⊆ E∗+ × E∗−, (2.7)

where KΠλ0
is the Schwartz kernel of Πλ0 , WF′ denotes the wavefront set, and E∗± are

subbundles of T ∗U over Γ∓ constructed in [DG16, Lemma 1.10]. In particular, the support
property in (2.7) shows that the restriction KΠλ0

∣∣
∆
to the diagonal ∆ ⊆ U×U is supported

in Γ+ ∩ Γ− = K and therefore yields an element of E ′(U). Now combining this with the
wavefront estimate [DG16, Eq. (0.14)] of KΠλ0

guarantees that the following map is well-
de�ned:

Tλ0 :

{
C∞(U) −→ C
f 7−→ tr[ (Πλ0f)

. (2.8)

The generalized density Tλ0 is called the invariant Ruelle distribution associated with λ0.

Note that we can re-write Tλ0(f) = tr[(Πλ0f) = tr[(fΠλ0) as the trace is cyclic.
The adjective invariant is justi�ed because Tλ0 is indeed invariant under the �ow: The

Leibniz rule (2.6) implies Πλ0(Xf) = Πλ0Xf −Πλ0fX which together with the vanishing
of the commutator (2.7) and the cyclic property yields

Tλ0(Xf) = tr[ (Πλ0Xf −Πλ0fX)

= tr[ (XΠλ0f −XΠλ0f) = 0.

2.2. Removing Strict Convexity for Resolvents. In practical applications it often
turns out to be di�cult to verify the strict convexity condition. To circumvent this di�culty
we recast the meromorphic continuation achieved in [DG16] into a simpler setting by
constructing a perturbation of the generator X of ϕt and of the operator X. Our proof
mostly follows [GMT21] which uses techniques developed in [CE71] and [Rob80]. For a
very similar application but without the extension to the vector valued case see [DG18].

Let M be a smooth manifold with manifold interior M̊ and smooth, possibly empty
boundary, X a smooth, nowhere vanishing vector �eld on M, and ϕt the �ow associated
with X. Furthermore, let a smooth, complex vector bundle E over M together with a
�rst-order di�erential operator X : C∞(M, E)→ C∞(M, E) be given. We assume that X
satis�es the Leibniz rule (2.6), that the trapped set K of ϕt de�ned in (1.2) is compact

and satis�es K ⊆ M̊, and �nally that ϕt is hyperbolic on K as de�ned in (2.5).
First we observe that we may assumeM to be compact with smooth, non-empty bound-

ary: If it is not then there exists a compact submanifold with smooth boundary ofM which
still contains K in its manifold interior. This follows by standard tools in smooth mani-
fold theory, namely via a smooth exhaustion function ([Lee12, Prop. 2.28]) combined with
Sard's theorem. If necessary, we may replaceM with this submanifold.

Now [GMT21, Prop. 2.2 and Lemma 2.3] immediately yields the existence of a compact
U0 ⊆M with manifold interior U0 and smooth boundary ∂U0 such that K ⊆ U0, and the
existence of a smooth vector �eld X0 on M such that ∂U0 is strictly convex w.r.t. X0 in
the above sense and X −X0 is supported in an arbitrarily small neighbourhood of ∂U0. In
addition, the trapped set of X0 coincides with K. Finally, we may assume both the �ow
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ϕt as well as the �ow ϕ0
t of X0 to be complete by embedding M into an ambient closed

manifold and extending X,X0 arbitrarily. In this setting we de�ne the escape times from
some compact set A ⊆M to be

τ±A (x) := ± sup
{
t ≥ 0

∣∣ϕ±s(x) ∈ A∀s ∈ [0, t]
}
,

τ0,±
A (x) := ± sup

{
t ≥ 0

∣∣ϕ0
±s(x) ∈ A∀s ∈ [0, t]

}
, x ∈ A.

The respective forward and backward trapped sets are then given by

Γ±(A) :=
{
x ∈ A

∣∣ τ∓A (x) = ∓∞
}
, Γ0

±(A) :=
{
x ∈ A

∣∣ τ0,∓
A (x) = ∓∞

}
,

such that in particular we have K = Γ+(U0) ∩ Γ−(U0).
Next we require an appropriate perturbation of X which satis�es the Leibniz rule (2.6)

with respect to X0 instead of X. But this is straightforward: Given any section u ∈
C∞(U , E) and x ∈ U we consider a local frame ei in a neighbourhood of x. Then u
expands as u =

∑
i u

iei in this neighbourhood and we de�ne

X0u := Xu +
∑

i

(
(X0 −X)ui

)
· ei.

The second term on the right-hand side obviously yields a well-de�ned �rst-order di�er-
ential operator and X −X0 is supported near ∂U0. Given f ∈ C∞(U) we can verify the
Leibniz rule via the following calculation in a neighbourhood of x:

X0(f · u) = X(f · u) +
∑

i

(
(X0 −X) fui

)
· ei

= (Xf) · u + f · (Xu) + (X0f −Xf) · u + f ·
∑

i

(
(X0 −X)ui

)
· ei

= f · (X0u) + (X0f)u.

We are now in a position to state and prove the main result of this section. For some
open set O ⊆ M, a section u ∈ C∞c (O, E), and a spectral parameter λ ∈ C consider the
resolvent given by the following formal integral:

RO(λ)u(x) :=

∫ −τ−O (x)

0
e−(X+λ)tu(x)dt, (2.9)

where exp(−Xt) denotes the transfer operator associated with X as de�ned in the previous
section. At this point, the expression in (2.9) remains formal because on the one hand
τ− may be of low regularity and on the other hand the integral may not converge for
τ−(x) = −∞. By choosing an appropriate O we can get around these issues and obtain
the following theorem:

Theorem 2.1: Meromorphic Resolvent Without Strict Convexity

LetM be a smooth manifold with smooth boundary, X a smooth, nowhere vanishing
vector �eld onM, and K the trapped set of the �ow ϕt of X. Also, let E be a smooth,
complex vector bundle overM and X a �rst-order di�erential operator on E .
Assume that X satis�es the Leibniz rule (2.6), K is compact, K ⊆ M̊, and ϕt is
hyperbolic on K. Then there exists an arbitrarily small compact U ⊆ M which
contains K in its interior U such that

(1) RU (λ) is well-de�ned for Re(λ)� 0 as an operator on L2(M, E) and satis�es
(X + λ)RU (λ) = idC∞c (U ,E),

(2) RU (λ) continues meromorphically to C as a family of operators C∞c (U , E)→
D′(U , E) with poles of �nite rank,

(3) the residue Πλ0 of RU (λ) satis�es (2.7).
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Proof. For this proof we assume the setting and notation introduced in this section. Observe
that both X = X0 and X = X0 on any compact U with U ⊆ U0. If we additionally had
for all t ≥ 0 the property

x, ϕ0
t (x) ∈ U =⇒ ϕ0

s(x) ∈ U ∀s ∈ [0, t], (2.10)

then it would immediately follow for any x ∈ U , u ∈ C∞c (U , E) and Re(λ)� 0 that

RU (λ)u(x) =

∫ −τ−U (x)

0
e−(X+λ)tu(x)dt

=

∫ ∞

0
e−(X0+λ)tu(x)dt = 1U (X0 + λ)−1 1Uu(x),

and the claims (1) - (3) would be shown by a straightforward application of the material
from [DG16] recalled in Section 2.1.

It therefore remains to construct an arbitrarily small U satisfying (2.10). First note that
we may assume (2.10) to hold on U0 by choosing the extension of X0 appropriately, see
[DG16, Eq. (0.2)]. Given any open O with K ⊆ O ⊆ O ⊆ U0 we can then set

U := ϕ0
−T (U0) ∩ U0 ∩ ϕ0

T (U0),

where choosing T > 0 large enough guarantees U ⊆ O by [DG16, Lemma 1.4]. It is now
easily veri�ed that U satis�es (2.10). �

In Section 3 we will show that the poles of RU (λ) are independent of the choice of a
set U (and also independent of U0). They are called the Pollicott-Ruelle resonances of ϕt
and will �gure prominently below as the poles of our weighted zeta function. Furthermore
we can de�ne invariant Ruelle distributions Tλ0 in the setting of Theorem 2.1 by the same
formula (2.8) presented in the previous Section 2.1.

Remark 2.2. The residue Πλ0 at a resonance λ0 is also independent of the set U in the
sense that

Πλ0

∣∣
C∞c (U ′,E)

= Π′λ0
,

where U ′ ⊆ U denotes a second set on which the resolvent can be continued meromorphi-
cally and Π′λ0

denotes the residue of this continuation RU ′(λ). This follows immediately
by uniqueness of meromorphic continuation and the fact that the restriction of RU (λ) to
C∞c (U ′, E) coincides with RU ′(λ) for Re(λ) � 0. In particular, note that this implies the
independence of Tλ0 from U . An analogous independence statement holds for U0.

2.3. Restricting Ruelle Distributions. One of the main applications of our weighted
zeta functions Zf is the concrete numerical calculation of invariant Ruelle distributions
Tλ0 for certain 3-dimensional dynamical systems. For ease of calculation as well as plotting
we would like to reduce this to a reasonable distribution on a 2-dimensional space. In this
section we present a general theorem which allows just this.

For the general setup let Tλ0 ∈ D′(M) be an invariant Ruelle distribution in the setting
of Theorem 2.1. We will call a smooth submanifold Σ ⊆M a Poincaré section for ϕt if Σ
has codimension one and is transversal to ϕt on the trapped set K, i.e. for each x ∈ K we
have

TxM = R ·X(x)⊕ TxΣ,

where as above X denotes the generator of ϕt.

Lemma 2.3: Restriction of Ruelle Distributions
Let Tλ0 be an invariant Ruelle distribution for a dynamical system (M, ϕt,X) as in
Theorem 2.1 and Σ ⊆ M a Poincaré section for ϕt. Then the pullback of Tλ0 along
ιΣ : Σ ↪→ U is well-de�ned and will be called the restriction to Σ:

Tλ0

∣∣
Σ

:= (ιΣ)∗ Tλ0 ∈ D′(Σ). (2.11)



10 P. SCHÜTTE AND T. WEICH

Proof. For the existence of the pullback we use the classical Hörmander condition [Hör13,
Theorem 8.2.4] similar to the proof of Theorem 1.2, i.e. what we need to show is

WF (Tλ0) ∩N∗ΓιΣ = {0},
with N∗ΓιΣ the conormal bundle to the graph of ιΣ. Now the invariance property XTλ0 =
0 ∈ C∞(M) proven above immediately implies the following estimate on WF (Tλ0):

WF (Tλ0) ⊆ E∗s ⊕ E∗u ⊆ T ∗M.

Now the conormal bundle is explicitly given by

N∗ΓιΣ =

{
(x, ξ)

∣∣∣∣x ∈ Σ, ξ
∣∣
TxΣ

= 0

}
⊆ T ∗M,

and an element (x, ξ) ∈ WF(Tλ0) ∩ N∗ΓιΣ therefore satis�es x ∈ K ∩ Σ, ξ(TxΣ) = 0
and ξ(Xx) = 0 by the de�nition of E∗s and E∗u. Now the transversality condition TxM =
R ·X(x)⊕ TxΣ yields ξ = 0. �

3. Proof of the Main Theorem

In this section we prove our main theorem, namely the meromorphic continuation of
the following weighted zeta function de�ned in terms of closed trajectories γ of an open
hyperbolic system (U , ϕt,X) and a weight f ∈ C∞(U):

ZX
f (λ) :=

∑

γ

(
exp (−λTγ) tr(αγ)

| det(id− Pγ)|

∫

γ#

f

)
, λ ∈ C.

In Section 3.2 we state and prove this meromorphic continuation result using a trace
formula presented in Section 3.1. In practice the de�ning properties of open hyperbolic
systems are rather cumbersome to handle. We therefore remove these requirements in
Section 3.3 to obtain the result cited in the introduction.

Full details can be found either in an earlier arXiv version of this paper or in the �rst
author's PhD thesis [Sch23]. At several points where rather technical passages would only
require straightforward modi�cations of existing results we leave out the details and point
to the corresponding literature instead.

3.1. A Weighted Trace Formula. Our main tool for connecting the restricted resolvent
with our weighted zeta function is a weighted version of the Atiyah-Bott-Guillemin trace
formula. In this section we present the statement together with a short sketch of the
proof. A formulation for open systems but without weight function can be found in [DG16,
Eq. (4.6)] and an analogous result for the compact case is presented in [DZ16, Eq. (2.4)].

Lemma 3.1: Weighted Atiyah-Bott-Guillemin Trace Formula

For any cut-o�s χ ∈ C∞c (R\{0}) and χ̃ ∈ C∞c (U), with χ̃ ≡ 1 near the trapped set
K, the following holds:

tr[
(∫

R
χ(t)χ̃e−tXfχ̃dt

)
=
∑

γ

χ(Tγ)tr(αγ)

| det(id− Pγ)|

∫

γ#

f , (3.12)

where the sum is over all closed orbits γ of ϕt.

Proof. The proof is directly adapted from [DG16, Sec. 4.1] and [DZ16, App. B] but the
main points can already be found in [Gui77, �2 of Lecture 2].

For a given χ ∈ C∞c (R\{0}) one de�nes Af,χ :=
∫
R χ(t)χ̃e−tXfχ̃dt as an operator

Af,χ : C∞(M, E) −→ C∞(M, E) ⊆ D′(M, E) ,
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and via the Schwartz kernel theorem we can consider the integrand χ̃e−tXfχ̃ as an operator5

C∞c (R\{0})→ D′(M×M, E � E∗) .
Applying the Schwartz kernel theorem once more we therefore obtain as its kernel a dis-
tribution Kf (x, y, t) ∈ D′(M×M× R\{0}, E � E∗):

Af,χ

(
u
)
(x) =

∫

M×R
Kf (x, y, t)u(y)χ(t)dydt ,

where dy is the same (�xed but arbitrary) density onM used to de�ne the kernel of Af,χ

and u ∈ C∞(M, E) is any smooth section of the bundle E . At this point the classical
[Hör13, Thm. 8.2.12] immediately shows that

WF(Kf,χ) ⊆ {(x, y, ξ, η) | ∃t ∈ supp(χ)with (x, y, t, ξ, η, 0) ∈WF(Kf )} , (3.13)

where Kf,χ ∈ D′(M ×M, E � E∗) denotes the kernel of Af,χ. As Kf,χ is compactly
supported by virtue of χ̃, we are left with the task of estimating the wavefront set of the
kernel Kf .

As in the references cited above we can calculate a local coordinate expression for Kf

to verify that this kernel is a delta distribution on the graph Γϕ := {(x, ϕ−t(x), t) |x ∈
M, t ∈ R} of ϕ−t, multiplied by smooth functions. The latter include suitable cuto�s, the
coordinate expressions of the transfer operator exp(−tX) and the weight f .

The �nal wavefront set is therefore contained in the conormal bundle N∗Γϕ given by
([Hör13, Example 8.2.5]):

N∗Γϕ :=
{

(x, y, t, ξ, η, τ) ∈ T ∗(M×M× R)
∣∣∣ y = ϕ−t(x), (ξ, η, τ)

∣∣
T (Γϕ)

= 0
}
,

and substituting into (3.13) we may estimate the wavefront set of the right-hand side of
the trace formula as follows:

WF(Kf,χ) ⊆
{

(x, y, ξ, η) ∈ T ∗(M×M)
∣∣∃t ∈ supp(χ)x, y ∈ supp(χ̃) :

y = ϕ−t(x), η 6= 0, ξ = −(dϕ−t(x))T η, 〈η,Xy〉 = 0
}
.

(3.14)

This set does not intersect {(x, x, ξ,−ξ) | ξ ∈ T ∗xM} by the hyperbolicity of ϕt on closed
trajectories. Thus, the �at trace on the left-hand side is well de�ned.

The pullback of Kf is supported on the closed trajectories of ϕt. As in [DZ16,
Lemma B.1], it therefore makes sense to prove a local version of the �nal trace formula:

Lemma 3.2: Local Weighted Trace Formula

Suppose x0 ∈ U and T 6= 0 is such that ϕT (x0) = x0. Then there are ε > 0 and an
open neighbourhood x0 ∈ U ⊆ U with ϕs(x0) ∈ U for any |s| < ε and such that for
any ρ(x, t) = σ(x)χ(t) ∈ C∞c (U×]T − ε, T + ε[) the following holds:

tr[
(∫

R
ρ(x, t)Kf (x, y, t)dt

)
=

∫

R×M
ρ(x, t)Kf (x, x, t)dtdx

=
tr(αγ)

|det(id− Pγ)|

∫ ε

−ε
ρ(ϕs(x0), T )f(ϕs(x0))ds

(3.15)

Proof. Using adapted coordinates similar to the proof of [DZ16, Lemma B.1] one may
reduce the �at trace to an integral of delta distributions of the general form δ(x − g(x)).
Formula (3.15) then follows from a straightforward calculation.

Note that additional care must be taken to account for the weight function f , but this
basically amounts to the fact that the cuto�s present in [DZ16, Lemma B.1] are no longer
constant on closed trajectories and therefore do not cancel. �

5Given bundles Ei →Mi then E1�E2 denotes the tensor product of the pullbacks of the Ei ontoM1×M2.
Note that [DG16] uses the notation End(E) for the bundle E � E∗ overM×M.
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Now a partition of unity argument combining the compactness of closed trajectories
with the semi-group property of the �ow �nishes the proof of Lemma 3.1. �

3.2. Continuation on Open Hyperbolic Systems. We prove meromorphic continua-
tion together with an explicit formula for the Laurent coe�cients of Zf :

Theorem 3.3: Meromorphic Continuation of Weighted Zetas I

The weighted zeta function ZX
f de�ned in (1.3) for open hyperbolic systems converges

absolutely in {Re(λ)� 1} and continues meromorphically to {λ ∈ C}. Any pole λ0

of Zf is a Pollicott-Ruelle resonance of X and if the pole λ0 has order J(λ0) then for
k ≤ J(λ0) we have

Resλ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= tr[

(
(X− λ0)kΠλ0f

)
.

Proof. First, we prove that the formal expression (1.3) de�nes a holomorphic function in
{Re(λ)� 0} by showing uniform convergence on compact sets. To this end, we treat every
term separately and then combine the results for a �nal estimate:

(1.) N(T ) := |{γ |Tγ ≤ T}| ≤ C0eC1T for constants C0, C1 > 0 by [DG16, Lemma 1.17].
(2.) |det(id− Pγ)| ≥ C2 > 0 by uniform contraction and expansion.
(3.) |tr(αγ)| ≤ C4eC3Tγ by the operator norm estimate on the transfer operator e−tX.

Combining (1.), (2.) and (3.) we get

∑

γ

∣∣∣∣
e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f

∣∣∣∣ ≤
∑

n∈N

nC0C4

C2
e(C1+C3)n|e−(n−1)λ||f |K ≤ C

∑

n∈N
n
(

eC−Re(λ)
)n

Zf (λ) thus converges uniformly if λ varies in a compact subset of Re(λ) > C. In conclusion,
the function Zf (λ) is holomorphic on some right halfplane.

The proof proceeds by expressing the weighted zeta function as the �at trace of an
expression involving the restricted resolvent and using the trace formula presented in Sec-
tion 3.1 as the main tool. The procedure closely follows [DZ16, �4]: We begin by choosing
0 < t0 < Tγ ∀γ, χT ∈ C∞c (]t0/2, T + 1[) and χT ≡ 1 on [t0, T ]. Furthermore, we assume t0
small enough such that ϕ−t0(supp(χ̃)) ⊆ U . Then we can de�ne the family of operators

BT :=

∫ ∞

0
χT (t)e−λt

(
χ̃e−tXχ̃f

)
dt ,

and Lemma 3.1 shows that, for Re(λ)� 1,

lim
T→∞

tr[ (BT ) = lim
T→∞

∑

γ

χT (Tγ)e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f =
∑

γ

e−λTγ tr(αγ)

|det(id− Pγ)|

∫

γ#

f .

By [DZ16, Lemma 2.8] we may re-express tr[ (BT ) using a family of smoothing operators
Eε and the limit ε → 0. The scalar-valued version of [DZ16] is directly applicable by
choosing our Eε to be diagonal in the �ber variable.

As in [DZ16, �4] we split the resulting integrals in a vanishing part and a part strictly
separated from t = 0. These calculations require no signi�cant modi�cations as the weight
f can simply be carried along together with the cuto�s necessary to account for the open
dynamics.

A simple calculation combined with an adaptation of [DZ16, Lemma 4.1] shows that the
limits in T →∞ and ε→ 0 may be exchanged, and doing so yields

ZX
f (λ) = lim

T→∞
tr[(BT ) = lim

ε→0

∫ ∞

0
e−λ(t+t0)tr

(
Eεχ̃e−(t+t0)Xχ̃fEε

)
dt

= e−λt0 lim
ε→0

tr
(
Eεχ̃e−t0X(X + λ)−1χ̃fEε

)
,

(3.16)
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which at �rst only holds for Re(λ) � 1. Next we apply the meromorphic continuation
of the restricted resolvent R(λ) := 1U (X + λ)−11U : Γ∞c (U , E) → D′(U , E) achieved in
[DG16]. To do so we �rst observe that (X + λ)−1χ̃ = (X + λ)−11U χ̃ by supp(χ̃) ⊆ U .
But we even demanded t0 to be small enough that ϕ−t0(supp(χ̃)) ⊆ U holds, which by the
support property of e−t0X lets us rewrite χ̃e−t0X(X+λ)−11U χ̃ = χ̃e−t0X1U (X+λ)−11U χ̃.

Now if λ ∈ C is not a resonance then the general wavefront estimates [Hör13, Exam-
ple 8.2.5] and [Hör13, Thm. 8.2.14] together with the estimate of WF′(R(λ)) in [DG16,
Equation (3.43)] yield

WF′
(
χ̃e−t0(λ+X)R(λ)χ̃f

)

⊆
{(

et0Hp(x, ξ), x, ξ
) ∣∣ (x, ξ) ∈ T ∗U\0

}
∪ (E∗+ × E∗−)

∪
{(

e(t0+t)Hp(x, ξ), x, ξ
) ∣∣ (x, ξ) ∈ T ∗U\0, t ≥ 0, p(x, ξ) = 0

}
,

(3.17)

where p(x, ξ) := ξ(Xx), et0Hp(x, ξ) = (ϕt(x), (dϕt(x))−T ξ) and the wavefront set of e−t0X

is contained in the graph of et0Hp . The wavefront set (3.17) does not intersect the diagonal
by t0 < Tγ , the directness of the hyperbolic splitting and bijectivity of id − dϕt(x) on
Es(x)⊕ Eu(x).

Now if λ0 is a resonance, then the same argument using [DG16, Lemma 3.5] (and

linearity of tr[) shows that the right-hand side of (3.16) admits a Laurent expansion around
λ0 whose �nitely many coe�cients of negative order are the �at traces of the Laurent
coe�cients of R(λ). We therefore have a meromorphic continuation for ZX

f (λ) onto {λ ∈
C}, its poles are contained in the set of Pollicott-Ruelle resonances of X and for λ not a
resonance we have

ZX
f (λ) = e−λt0tr[

(
χ̃e−t0XR(λ)χ̃f

)
. (3.18)

To complete our proof we show an explicit formula for the Laurent coe�cients at a
resonance λ0. The starting point is (3.18) combined with (0.13) in [DG16, Thm. 2]. If we
substitute the expansion in the second equation into the �rst we get

ZX
f (λ) = ZX

f,H(λ) +

J(λ0)∑

j=1

tr[

(
χ̃

e−t0(λ+X)(−X− λ)j−1Πλ0

(λ− λ0)j
χ̃f

)
,

where ZX
f,H(λ) is holomorphic near λ0.

For 0 ≤ k < J(λ0), one can use the Taylor expansion of the exponential around λ0, i.e.
exp(−λt0) =

∑∞
n=0(−t0)n exp(−λ0t0)(λ− λ0)n/n!, to obtain the weighted zeta function's

Laurent coe�cient of order k at λ0:

Res
λ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= Res

λ=λ0



J(λ0)∑

j=k+1

∞∑

n=0

tr[

(
χ̃

(−t0)ne−t0(λ0+X)(−X− λ0)j−1Πλ0

n!(λ− λ0)j−k−n
χ̃f

)


=

J(λ0)−k−1∑

n=0

(−1)ntn0
n!

tr[
(
χ̃e−t0(λ0+X)(−X− λ0)k+nΠλ0χ̃f

)

(3.19)

The operator X+λ is nilpotent on the image im(Πλ0) by Equations (0.12) and (0.15) in

[DG16]. This simpli�es the transfer operator e−t0(X+λ0) drastically, and substituting this
simpli�cation into Equation (3.19) together with the abbreviation N := J(λ0) − k − 1
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yields:

Res
λ=λ0

[
ZX
f (λ)(λ− λ0)k

]
=

N∑

n=0

N−n∑

m=0

(−1)n
tn+m
0

n!m!
tr[
(
χ̃(−X− λ0)n+m+kΠλ0χ̃f

)

=
N∑

s=0

s∑

n=0

(−1)n
ts0

n!(s− n)!
tr[
(
χ̃(−X− λ0)s+kΠλ0χ̃f

)
,

(3.20)

where the second line is obtained by using the variable s := n+m as a reparametrization of
the double sum. A close examination of Equation (3.20) reveals that the binomial theorem
can be applied to show the vanishing of all coe�cients with s > 0. We therefore have the
following formula for the k-th Laurent coe�cient:

Res
λ=λ0

[
ZX
f (λ)(λ− λ0)k

]
= tr[

(
χ̃(−X− λ0)kΠλ0χ̃f

)
,

which �nishes our proof because the restriction of the kernel of Πλ0 to the diagonal is
supported in Γ+ ∩ Γ− = K and χ̃ ≡ 1 on K, i.e. we can drop the cuto� functions. �

Remark 3.4. Note that by [DG16, Eq. (4.8)] we have Res
λ=λ0

[
ZX
f (λ)

]
= rank(Πλ0) if f ≡ 1,

the constant function on U . All Laurent coe�cients of higher (negative) order vanish for
this particular choice of test function.

Remark 3.5. For a slightly di�erent formulation of the �nal formula for the Laurent coef-
�cients, one could replace the �at trace by an ordinary trace in an appropriate anisotropic
Sobolev space ([DZ16, Lemma 4.2] and the proof of [DG16, Thm. 4]).

3.3. Removing Strict Convexity for Zetas. The geometric setup of open hyperbolic
systems and the requirement of strict convexity in particular are quite cumbersome to state
and di�cult to verify in practice. Given an arbitrary �ow ϕt with compact trapped set K
which is hyperbolic on K we therefore remove this requirement via the perturbations of X
and X constructed in Section 2.2. This will complete the proof of the claims made in the
introduction.
Theorem 3.6: Meromorphic Continuation of Weighted Zetas II

Let the setting of Theorem 2.1 and a weight f ∈ C∞(M) be given. Then the weighted
zeta function ZX

f de�ned in (1.3) continues meromorphically onto C and its Laurent

coe�cients are given by (1.4).

Proof. Recall the discussion in Section 2.2 where we constructed a vector �eld X0 and an
operator X0 which satisfy the requirements of open hyperbolic systems and coincide with
X and X on a neighborhood of the trapped set. It is now clear that the weighted zeta
function associated with X0 and X0 coincides with the weighted zeta function for X and
X as both functions depend only on the dynamics near the trapped set. This yields the
claim by an immediate application of Theorem 1.2. �
Remark 3.7. Theorem 3.6 implies the independence of the set of resonances from the open
sets U and U0 promised in Section 2.2: Choosing as our weight the constant function f ≡ 1
we obtain Resλ=λ0 [Z1(λ)] = tr[(Πλ0) = rank(Πλ0), where the second equality was proven
in [DG16, proof of Thm. 4]. Now this implies that the resonances coincide exactly with the
poles of the weighted zeta function with constant weight, but the de�nition of the latter
only involves the dynamics on the trapped set.

4. Residue Formula for Patterson-Sullivan Distributions

In this section we relate the residues of ZX
f , de�ned in purely classical terms such

as closed trajectories, with certain quantum mechanical phase space distributions called
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Patterson-Sullivan distributions. For the general setup suppose M is a Riemannian mani-
fold, ϕt its geodesic �ow on the unit tangent bundle SM, X the geodesic vector �eld, and
∆M its Laplacian.

IfM is a compact hyperbolic surface, i.e. a compact surface of constant negative curvature
equal to −1, the spectrum of ∆M is purely discrete and consists only of eigenvalues:
σ(∆M) = {λi}, 0 = λ0 < λ1 ≤ ... and ∆Mψi = λiψi for an orthonormal basis of real-
valued eigenfunctions {ψi} ⊆ C∞(M). It is convenient to parameterize the eigenvalues as
λi = 1/4 + r2

i . In this setting [AZ07] associated to any ψi a Patterson-Sullivan distribution
PSψi ∈ D′(SM) that are invariant under the geodesic �ow (ϕt)∗ (PSψi) = PSψi and which,
in the high frequency limit ri →∞, ful�ll [AZ07, Eq. (1.4) and Thm. 1.1]:

∀a ∈ C∞(T ∗M) : P̂Sψi(a|SM) = 〈Op1/ri(a)ψi, ψi〉L2(M) +O (1/ri) . (4.21)

Here Oph denotes some �xed semiclassical Weyl quantization procedure (see e.g.

[Zwo12])on the classical phasespace T ∗M and P̂Sψi denotes the Patterson-Sullivan dis-

tribution normalized to P̂Sψi(1SM) = 1. The expression Wψi(a) := 〈Op1/ri(a)ψi, ψi〉 is
known under the name Wigner distribution and the second equation in (4.21) should be
interpreted as the equivalence of Patterson-Sullivan and Wigner distributions in the high-
frequency limit. [HHS12, Def. 4.8, Prop. 4.10] generalizes the construction of Patterson-
Sullivan distributions to arbitrary compact locally symmetric spaces. These distributions
still retain (generalizations of) the properties (4.21) [HHS12, Remark 4.11, Thm. 7.4]. Our
results concerning the residues of weighted zeta functions provide a new view on these phas-
espace distributions. Concretely, we can use our main Theorem 1.2 and the results obtained
by [GHW21] to prove the following residue formula for Patterson-Sullivan distributions in
the closed case:

Theorem 4.1: Patterson-Sullivan Distributions as Residues
Let M = Γ\G/K be a compact Riemannian locally symmetric space of rank one,
∆M its Laplacian and ϕt the geodesic �ow on SM. Let ρ > 0 denote the half-sum
of the restricted roots of G. Then the following holds:
Given r > 0 such that −ρ+ir is a Ruelle resonance of ϕt then ρ

2 +r2 is an eigenvalue
of ∆M and for any g ∈ C∞(T ∗M)

Res
λ=−ρ+ir

[
Zg|SM(λ)

]
=

m∑

l=1

P̂Sψl(g|SM) =

m∑

l=1

Wψl(g) +O(1/r) ,

where the sum is over an orthonormal L2-basis of the ∆M-eigenspace with eigenvalue
ρ2 + r2.

Proof. By Theorem 1.2 we have Resλ=−ρ+ir [Zf (λ)] = T−ρ+ir(f) and by [GHW21, Corol-

lary 6.1] we have T−ρ+ir(f) =
∑m

l=1〈P̂Sψl , f〉. Note that the constants c(ir) appearing
in [GHW21, Corollary 6.1] and de�ned in [GHW21, Eq. (6.1)] are the normalization fac-
tors for PSψl ; the additional factor of m−1 appearing in [GHW21, Corollary 6.1] are due
to their slightly di�erent de�nition of Tλ0 in [GHW21, Eq. (2.1)]. Combining these two
results proves our claim. �

We would like to compare our result with previously known results obtained with dif-
ferent techniques. In their paper [AZ07], Anantharaman and Zelditch proved a similar
close connection between slightly di�erent weighted zeta functions and Patterson-Sullivan
distributions: For f ∈ C∞(SM) they de�ne a weighted zeta function via [AZ07, Eq. (1.9)]

ZAZf (λ) :=
∑

γ

(
exp (−λTγ)

1− exp (−Tγ)

∫

γ#

f

)
, (4.22)
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where one sums over all closed geodesics γ. In [AZ07, Thm. 1.3] they state that, provided
f is real analytic, ZAZf continues meromorphically onto C, its poles in {0 < Re(λ) < 1} are
of the form λ = 1/2 + ir where 1/4 + r2 is an eigenvalue of ∆M and the following residue
formula holds:

Res
λ=1/2+ir

[
ZAZf (λ)

]
=

∑

ψi:λi=1/4+r2

〈P̂Sψi , f〉.

They give two di�erent proofs with the �rst relying on the thermodynamic formalism and
the second on representation theory and a version of Selberg's trace formula. See also the
later work [AZ12] for a generalization of the intertwining between Wigner and Patterson-
Sullivan distributions to the non-diagonal case.

Note that for hyperbolic surfaces det(id − Pγ) = (1 − exp(−Tγ))(1 − exp(Tγ)), i.e. a
simple calculation yields the following relation between ZAZf and our weighted zeta:

Zf (λ) =
∞∑

n=1

ZAZf (λ+ n).

We can therefore conclude that given an eigenvalue 1/4 + r2 of ∆M the value −1/2 + ir is
a Ruelle resonance of the geodesic �ow on SM and

Resλ=−1/2+ir [Zf (λ)] =
∑

ψi:λi=1/4+r2

〈P̂Sψi , f〉.

In his thesis [Emo14], Emonds extended the residue formula of [AZ07] to the case of
hyperbolic manifolds of arbitrary dimension. But this result again imposes a signi�cant
restriction on the space of test functions, namely that f be K-�nite, and the proof heavily
relies on techniques from representation theory. It appears that the methods of microlocal
analysis are better suited for the meromorphic continuation of (weighted) zeta functions.

Let us �nally note that our main result also holds for open systems, so we immediately
obtain residue formulae for weighted zeta functions of geodesic �ows on convex cocompact
hyperbolic manifolds in terms of invariant Ruelle distributions. While there exists so far
no theory of Patterson-Sullivan distributions for these systems, a quantum classical corre-
spondence has been established on the level of resonances and resonant states [GHW18].
We thus conjecture that also in this setting the invariant Ruelle distributions are, in the
high frequency limit, asymptotically equivalent to phase space distributions of quantum
resonant states. Given the fact that the residues of Zf can be numerically calculated quite
e�ciently, this would provide a method to study phase space distributions of quantum
resonant states on Schottky surfaces numerically.

Appendix A. Numerical Calculation of Invariant Ruelle Distributions
(with Sonja Barkhofen)

In this appendix we provide a short outlook on a major application of the weighted
zeta function developed in the main text, namely the numerical calculation of invariant
Ruelle distributions Tλ0 . While these distributions are interesting in their own right, they
also provide a new perspective on quantum mechanical matrix coe�cients, c.f. (4.21).
This circumstance makes e�cient tools for their calculation even more desirable. For a
physics-oriented discussion of the connection between weighted zeta functions and quantum
mechanical phase space distributions we refer to the companion article [BSW22].

Now in principle one wants to exploit Theorem 3.6 and more concretely the relation

〈Tλ0 , f〉 = Resλ=λ0Zf (λ).

To use this numerically we require an e�cient method for calculating (the residues of)
the weighted zeta function Zf . While this endeavor is hopeless in the abstract setting of
Theorem 2.1 there are concrete dynamical systems where this calculation is possible due
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to the availability of a symbolic encoding of the dynamics. Two such system which are
well-known in the literature are convex obstacle scattering and geodesic �ows on convex

cocompact hyperbolic surfaces. For the sake of brevity we will focus on a particular instance
of the former class of systems, namely so-called symmetric 3-disc systems.

This appendix is organized as follows: We begin by giving a short introduction to 3-disc
systems in Section A.1. With this setup at hand we then provide some �rst numerical
results in Section A.2.

A.1. Introducing 3-Disc Systems. The 3-disc system is a paradigmatic example of a
convex obstacle scattering dynamics [Ika88, GR89]. It is given by three discs D(xi, ri) ⊆
R2, i ∈ {1, 2, 3}, with radii ri > 0, centers xi ∈ R2 and disjoint closures. The dy-

namics takes place on the unit sphere bundle S
(
R2 \⋃3

i=1 D̊(xi, ri)
)
: In the interior

S
(
R2 \⋃3

i=1 D̊(xi, ri)
)
its trajectories coincide with the Euclidean geodesic �ow, and upon

boundary intersection the trajectories experience specular re�ections. We will only consider
fully symmetric 3-disc systems here, and for our purposes these are uniquely described by
the quotient d/r of the common radius r = r1 = r2 = r3 and the side length d > 0 of
the equilateral triangle on which the centers of the discs are positioned. For a graphical
illustration of this setup see Figure 1.

Figure 1. A symmetric 3-disc system with its de�ning paramters r and d.
The fundamental domain is given by the green region.

Now the dynamics just described is obviously not smooth because of the instantaneous
boundary re�ections. If we assume that d/r is su�ciently large then this lack of smoothness
is properly separated from the trapped set, though. In this case it can be dealt with via
smooth models. To keep our presentation short we refer the reader to [KSW21] where the
construction of smooth models as well as the meromorphic continuation of weighted zeta
functions was carried out in detail and in a more general setting.

What we will actually investigate numerically is not quite the 3-disc dynamics just
described, but rather a symmetry reduced variant. A fundamental domain of this symmetry
reduction is shown in green in Figure 1. The reduced dynamics still admits a symbolic
coding and is well understood on the classical as well as on the quantum side. It is used
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here as it provides the model of choice for experimental realizations [PWB+12, BWP+13].
For more details and references see [WBK+14].

Our numerical algorithm itself resembles the algorithm developed by Cvitanovic and
Eckhardt [CE89, CE91] in physics and Jenkinson and Pollicott [JP02] or Borthwick [Bor14]
in mathematics: One can derive a cycle expansion for the weighted zeta function Zf asso-
ciated with a given 3-disc system. To calculate concrete summands in this expansion we
make use of the symbolic encoding of closed trajectories available for su�ciently large d/r.
A detailed description of the algorithm will be presented elsewhere [BSW22]. We just want
to mention the following two central simpli�cations:

(1) To be able to plot the distributions Tλ0 we calculate their convolution with Gaus-
sians with variance σ > 0. In the limit σ → 0 this convolution converges to Tλ0 in
D′ and it is reasonable to expect the numerical results for small but positive σ to
reveal interesting properties of Tλ0 itself.

(2) While the convolutions discussed in (1) are smooth they still live on the 3-
dimensional state space of the 3-disc system. To obtain 2-dimensional plots we
restrict Tλ0 to a Poincaré section Σ via Lemma 2.3.

For the numerics presented below we used a speci�c Poincaré section Σ ⊆ SR2 de�ned
by so-called Birkho� coordinates as follows: First, �x one of the discs and an origin on
the boundary of this disc. Then a point (q, p) ∈ [−π, π]× [−1, 1] corresponds to the point
(x, v) ∈ SR2 such that the boundary arc connecting the origin and x has length q · r and
such that the projection 〈v, t(x)〉 of v onto the tangent t(x) to the disc at x equals p.
For an illustration of these coordinates see Figure 2. Now the transversality condition of
Lemma 2.3 is obviously satis�ed, making the restriction Tλ0

∣∣
Σ
a well-de�ned distribution.

It is this object which will be plotted numerically in the following section.

Figure 2. The Birkho� coordinates for the Poincaré section Σ ⊆ SR2 of
a symmetric 3-disc system used in the numerics below.

A.2. Proof-of-Principle Results. In this section we present �rst numerical calculations
of invariant Ruelle distributions. As already mentioned we restrict the distributions to the
Poincaré section Σ and then approximate by convolution with Gaussians of width σ. As
the trapped set K itself is fractal and therefore hard to visualize, we chose the following
alternative: Denote by K1 ⊇ K those points of phase space which experience at least one
disc re�ection either in forward or backward time. We included the intersection Σ1 := K1∩Σ
in the �gures below to give an idea of where the invariant Ruelle distributions are supposed
to be supported in theory.

We begin the �rst series of illustrations by plotting four example resonances and asso-
ciated distributions along the �rst clearly distinguishable resonance chain. In particular,
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we begin with the point closest to the spectral gap and continue towards the intersection
with the second distinct chain. Our choices are marked in red in the �rst row of Figure 3.
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Figure 3. Comparison of invariant Ruelle distributions along a resonance
chain for d/r = 6. The �rst row highlights in red the resonance at which
the distributions in the second and third rows was evaluated. The second
row was computed with σ = 0.1 and the third row with σ = 0.001. One
clearly recognizes dynamical changes in Tλ0 as λ0 varies along the chain.
In addition, the reduction of σ seems to further localize the distribution on
the trapped set, which theoretically contains the support of any Tλ0 .

In the second and third rows of Figure 3 we plotted the distribution associated with the
marked resonance and the two choices σ = 0.1 and σ = 0.001, respectively. Going from left
to right in either the �rst or the second row shows that the invariant Ruelle distributions
clear encode some kind of information regarding the location of their associated resonances.
Especially the distribution at the point of intersection of the �rst two chains (fourth column
in Figure 3) di�ers signi�cantly from the �rst three, which only exhibit a gradual reduction
of intensity in the left and right component of Σ1.

Going from top to bottom in Figure 3 we see how the reduction of σ by two orders
of magnitude signi�cantly increases the localization of the distributions on the trapped
set. This behavior is expected by the theory developed above and could allow a detailed
numerical investigation of invariant Ruelle distributions on successively �ner scales of the
fractal trapped set.

Our second series of invariant Ruelle distributions is meant to give a �rst impression
of a curious phenomenon which has not been understood theoretically yet: Calculating
numerically resonances with imaginary part up to about 750 it would appear that the
maximal real part which occurs becomes progressively smaller the larger Im(λ) becomes.
If we proceed to even larger imaginary parts this progression reverses and at about Im(λ) =
1500 we observe several resonances with real parts close to the theoretical maximum of λ1,
where λ1 denotes the �rst resonance on the real line. These observations are shown in the
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Figure 4. Comparison of invariant Ruelle distributions for several di�erent
resonances near the line Re(λ) = λ1, where λ1 denotes the resonances with
maximal real part. The resonances marked in red (from bottom to top)
correspond to the plotted distributions (from top left to bottom right).
Throughout we have σ = 0.001. Note how the distributions all appear very
similar, even on this second level of the fractal trapped set.

�rst row of Figure 4. The same e�ect has been observed in even more pronounced fashion
for resonances on Schottky surfaces [BW16].

As the question of asymptotic spectral gaps for such open systems is an important
unsolved problem, it is interesting to understand such a recurrence of resonances to a
neighborhood of the critical line. We therefore calculated the invariant Ruelle distributions
for those resonances close to the critical line in the second and third rows of Figure 4:
The distribution plots from top left to bottom right belong to the resonances marked in
red and ordered from small to large imaginary part. We immediately notice that all eight
distributions while associated with di�erent resonances appear exceedingly similar, even
though we already calculated them with the rather small value of σ = 0.001. We have to
admit that we cannot explain this observation so far but �nd it quite remarkable.

Additional and more detailed illustrations can be found on
the supplementary website https://go.upb.de/ruelle. In
particular, it contains several additional distributions along the
�rst chain discussed above, illustrations of further resonances
near the spectral gap, and plots along a second resonance chain.

https://go.upb.de/ruelle
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B. Resonances and Weighted Zeta
Functions for Obstacle Scattering via
Smooth Models

This appendix contains the research paper Resonances and Weighted Zeta Functions for
Obstacle Scattering via Smooth Models which was written with the co-authors Benjamin
Delarue (formerly Küster) and Tobias Weich during the author’s PhD. The article is under
revision at Annales Henri Poincaré at the time of writing this thesis and was included
here in its revised version which differs in some details from the version [DSW21].

The three co-authors contributed equally to the development of the research question
and the proof strategy. B.D. and P.S. worked out the details of the proofs and wrote the
manuscript in equal parts. This process was accompanied by regular discussions between
all three co-authors.

The proof reading was done by all three co-authors. B.D. and P.S. conducted the
revision after submission to the journal.
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RESONANCES AND WEIGHTED ZETA FUNCTIONS

FOR OBSTACLE SCATTERING VIA SMOOTH MODELS

BENJAMIN DELARUE, PHILIPP SCHÜTTE, AND TOBIAS WEICH

Abstract. We consider a geodesic billiard system consisting of a complete Riemann-
ian manifold and an obstacle submanifold with boundary at which the trajectories of
the geodesic flow experience specular reflections. We show that if the geodesic billiard
system is hyperbolic on its trapped set and the latter is compact and non-grazing the
techniques for open hyperbolic systems developed by Dyatlov and Guillarmou [DG16]
can be applied to a smooth model for the discontinuous flow defined by the non-grazing
billiard trajectories. This allows us to obtain a meromorphic resolvent for the generator
of the billiard flow. As an application we prove a meromorphic continuation of weighted
zeta functions together with explicit residue formulae. In particular, our results apply
to scattering by convex obstacles in the Euclidean plane.

1. Introduction

Open hyperbolic flows combine two interesting dynamical phenomena: chaotic behavior
on the one hand and escape towards infinity on the other hand. In the mathematical
physics literature there are two paradigmatic example classes of such flows: geodesic flows
on Schottky surfaces and convex obstacle scattering.

The geodesic flows on (convex co-compact) Schottky surfaces are mathematically much
easier to handle (see e.g. [Dal10] for an introduction). They are complete smooth flows on
Riemannian locally symmetric spaces whose algebraic structure allows for an application
of powerful techniques from harmonic analysis and structure theory. One has e.g. mero-
morphic continuations of zeta functions [Fri86, Gui92], precise estimates on the counting
of periodic trajectories [Gui86, Lal89], or exact correspondences with the quantum coun-
terpart of the geodesic flow [GHW18] given by the Laplace-Beltrami operator.

The example of obstacle scattering, in contrast, has the advantage that it is much less
abstract and can be seen as a concrete model of a physical particle in a two-dimensional
plane performing specular reflections at a finite number of hard obstacles. It has there-
fore been intensively studied in the physics literature in the context of classical [GR89b],
semiclassical [GR89c], or quantum-mechanical [GR89a] dynamical systems and allows
for numerical [CE89, Wir99, LSZ03, BFW14, WBK+14] as well as physical experiments
[PLS00, BWP+13, PWB+12]. Obstacle scattering has however been also in the focus
of mathematical literature, see e.g. [Ika88, Gé88], where the focus lies on quantum reso-
nances. It features similarities with the scattering theory of Schrödinger-type operators
involving a potential rather than a family of obstacles, see e.g. [NZ09].

In this article we focus on the theory of Ruelle-Pollicott resonances. These resonances
were introduced by Ruelle [Rue76] and Pollicott [Pol85] to describe the convergence to
equilibrium of hyperbolic flows. Since then, several technical approaches to the definition
and the study of these resonances have been developed on various levels of generality.
While early results such as [Dol98] were achieved using Markov partitions and symbolic
dynamics, in most modern formulations the resonances occur as a discrete spectrum of
the generating vector field X of the flow – regarded as a differential operator of order
one – in an anisotropic function space and as poles of a meromorphic resolvent of X.
The existence of such a discrete resonance spectrum has been established since Liverani’s
result [Liv04] on contact Anosov flows in many different settings such as Anosov flows

1
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on compact manifolds [BL07, FS11, DZ16], Morse-Smale flows [DR19, DR20b], geodesic
flows on manifolds with cusps [GBW21], basic sets of Axiom-A flows [DG16], general
Axiom-A flows [Med21], higher rank Anosov actions [GBGHW20], or finite horizon Sinai
billiards [BDL18]. The respective meromorphic resolvents are not only useful to define
the Ruelle resonances but also have many additional applications such as meromorphic
continuation of zeta functions [GLP13, DZ16] or Poincaré series [DR20a] and to geometric
inverse problems [GL19, GBL23]. The geodesic flow on Schottky surfaces provides concrete
examples of basic sets of an Axiom-A flow and it neatly fits into the setting of open
hyperbolic systems treated in [DG16]. In contrast, for obstacle scattering this is not
directly the case: As is typical for billiard flows, there are technical difficulties such as
the only piecewise smoothness of the flow and singularities caused by grazing trajectories.
The aim of this paper is to provide a rigorous framework to define the Ruelle-Pollicott
resonances for obstacle scattering by establishing the meromorphic continuation of the
resolvents of the generators of appropriate flows and their matrix coefficients.

We first state a simplified version of our main results in the classical case of Euclidean
billiards before stating the results for more general obstacle setups.

1.1. Results for Euclidean billiards. Let Ωi ⊂ Rn , i = 1, . . . , N and n ≥ 2, be a
finite number of disjoint, compact, connected, strictly convex obstacle sets with smooth1

boundaries and non-empty interiors. Let the configuration space be C := Rn \ Ω̊, where

we write Ω :=
⋃N
i=1 Ωi and Ω̊ denotes the interior of Ω in Rn. The billiard trajectories

{xt}t∈R ⊂ C are defined as straight lines parametrized at unit speed unless they intersect
the boundary ∂Ω, where at each intersection point x ∈ ∂Ω they undergo an instantaneous
reflection at the tangent plane Tx∂Ω, i.e., they leave x at an outgoing angle with Tx∂Ω
identical to the incoming angle. The trajectories are oriented by the standard orientation
of R. If a trajectory intersects ∂Ω tangentially at some point we call it grazing and any
trajectory remaining inside a bounded subset of Rn is called trapped. Note that a trajec-
tory is trapped if and only if it undergoes infinitely many boundary reflections both in
forward and backward time. We demand that the billiard satisfy the

non-grazing trapped set condition : No trapped trajectory is grazing.

A classical geometric condition which is sufficient but in general not necessary for the
non-grazing trapped set condition to hold is the so-called no-eclipse condition [Ika88]: For
any two obstacles Ωi,Ωj the convex hull of their union does not intersect any distinct third
obstacle Ωk.

While the billiard trajectories in the configuration space can be grasped intuitively, the
boundary reflections make it ambiguous how to lift these trajectories to a flow on the
phase space

M := SC = S(Rn \ Ω̊),

the unit tangent bundle of the configuration space. To describe the situation in phase
space first note that M is a submanifold with boundary ∂M = (SRn)|∂Ω of SRn. For
(x, v) ∈ ∂M the Euclidean inner product of v and the inward unit normal of ∂Ω at x can
be strictly negative (v is outward pointing), vanish (v is tangent), or strictly positive (v
is inward pointing). Denote by ∂inM,∂outM ⊂ ∂M the subsets of all inward and outward
pointing vectors, respectively (for a graphical depiction see Figure 2 on page 6).

Given (x, v) ∈ M , the strict convexity of the obstacles ensures that there is a unique
billiard trajectory {xt}t∈R ⊂ C characterized as follows:

(1) If (x, v) ∈M \ (∂inM ∪ ∂outM), then xt = x+ tv for all t ∈ R close enough to 0.
(2) If (x, v) ∈ ∂outM , then xt = x+ tv for all t ≥ 0 close enough to 0.
(3) If (x, v) ∈ ∂inM , then xt = x+ tv for all t ≤ 0 close enough to 0.

1Throughout this paper, smooth means C∞, i.e., infinitely differentiable.
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Figure 1. Grazing trajectory in a Euclidean billiard in R2 with obstacles
given by three discs. Note that the above configuration of obstacles satisfies
the no-eclipse condition – in particular, it satisfies the less restrictive non-
grazing trapped set condition.

More generally, for any t ∈ R, both one-sided limits v±t := lims→t∓ ẋt ∈ SxtRn exist (the
dot indicating time derivatives) and if xt ∈ ∂Ω then v±t is the reflection of v∓t at the
hyperplane Tx∂Ω. This implies that neither of the two maps

ϕb± : R×M 7→M, (t, x, v) 7→ (xt, v
±
t ) =: ϕb±t

defines a flow because ϕb±0 is not the identity over ∂inM ∪ ∂outM . However, since the
violation of the flow property happens only at the boundary, it does not cause serious
difficulties. To formalize the billiard dynamics we introduce a map

ϕb : R×M →M

which we call the billiard flow in spite of it violating the flow property on the boundary.
It is built from ϕb+ and ϕb− by “symmetrization” so that neither outward nor inward
vectors are preferred: Given (t, x, v) ∈ R×M we define ϕbt(x, v) := (x, v) if t = 0. If t 6= 0

then ϕb+t (x, v) ∈M \ (∂inM ∪ ∂outM) iff ϕb−t (x, v) ∈M \ (∂inM ∪ ∂outM) and in this case

ϕb+t (x, v) = ϕb−t (x, v) =: ϕbt(x, v). In the remaining cases we put ϕbt(x, v) := ϕb±t (x, v) if
±t > 0. Note that ϕb remains discontinuous.

Under the assumption of the non-grazing trapped set condition one deduces that the
trapped set

Kb := {(x, v) ∈M |ϕbt(x, v) stays in a compact set for all t ∈ R} (1)

contains no grazing trajectories.
In Section 2.4 we introduce for a class of open sets U ⊂ M spaces of smooth billiard

functions C∞Bill(U) and billiard test functions C∞Bill,c(U) = C∞Bill(U) ∩ C∞c (U) whose main

property to be noted here is that C∞c (U \ ∂M) ⊂ C∞Bill,c(U) ⊂ C∞c (U). Since M is a
manifold with boundary such open U may intersect ∂M . We then prove the following
theorem:

Theorem 1.1. There is an open neighborhood U of Kb in M such that with the backward
escape time τ−U (x, v) := sup{t < 0 |ϕbt(x, v) 6∈ U}, (x, v) ∈ U , and for λ ∈ C,Re(λ)� 0,

RU (λ)f(x, v) :=

∫ −τ−U (x,v)

0
e−λtf

(
ϕb−t(x, v)

)
dt, f ∈ C∞Bill,c(U), (x, v) ∈ U,

yields a well-defined family of linear maps RU (λ) : C∞Bill,c(U) → C(U) and its matrix
coefficients

〈RU (λ)f, g〉L2(M), f, g ∈ C∞Bill,c(U)
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extend from holomorphic functions on a half-plane where Re(λ) is large enough to mero-
morphic functions on C with poles contained in a discrete set of complex numbers that is
independent of f and g. Moreover, the discrete set of complex numbers is also independent
of the choice of U .

We will also see that on C∞Bill(U) we can define an infinitesimal generator P of the
billiard flow and RU (λ) can be seen as its resolvent in the sense that (P + λ)RU (λ) = id
on C∞Bill(U) if Re(λ) is large enough. The locations of the possible poles for the matrix
coefficients are then defined to be the Ruelle-Pollicott resonances of the billiard flow.

1.2. General Results. The three essential features of the setup in Section 1.1 which
allow us to prove Theorem 1.1 are

I) the trapped set Kb defined in (1) is compact;
II) Kb contains no grazing trajectories;

III) the billiard flow is hyperbolic on Kb (c.f. Def. 2.12).

Here I) follows from the compactness of the union Ω of the obstacles, II) from the non-
grazing trapped set condition, and III) from the strict convexity of the obstacles, see
Remark 5.10. Having identified I)–III) as the core assumptions allows us to work without
additional further effort in the more general setting of billiards on Riemannian manifolds
of arbitrary dimension (as considered previously by e.g. [BFK02]) under the assumption
of a compact trapped set for the non-grazing dynamics and hyperbolicity on the trapped
set. Theorem 1.1 is then deduced as a special case of the more general Corollary 5.5, see
Remark 5.10. Let us briefly explain this general approach and compare it to Section 1.1:

We replace Rn by an arbitrary smooth complete connected Riemannian manifold (Σ, g)
of dimension n ≥ 1 without boundary and Ω by an arbitrary n-dimensional smooth sub-
manifold with boundary of Σ whose connected components are the obstacles. Accordingly
phase space is M := S(Σ \ Ω̊). We emphasize that neither convexity nor compactness
of Ω is assumed. Such “low-level” geometrical or topological assumptions are avoided in
favor of the “high-level” assumptions I)–III). Concerning II) there is a major conceptual
difference to the situation of Section 1.1: In the latter, the strict convexity of the obstacles
allowed us to define the billiard flow points ϕbt(x, v) for all times t ∈ R at each point (x, v)
in the phase space M , allowing for grazing collisions. We therefore needed the non-grazing
trapped set condition to ensure that II) holds. In contrast the general situation restricts
attention to the non-grazing billiard flow ϕ on the non-grazing phase space M \ S∂Ω to
begin with. More precisely, (t, x, v) 7→ ϕt(x, v) is a map D 7→M \S∂Ω defined on an open
set D ⊂ R× (M \S∂Ω) containing {0}× (M \S∂Ω) thus excluding grazing a priori. The
trapped set K of ϕ is then defined analogously as in (1) and II) is trivially fulfilled for K.
This leaves only the crucial conditions I) and III). In the situation of Section 1.1 we have
ϕ = ϕb|D and the non-grazing trapped set condition ensures K = Kb so we may work
with either the complete billiard flow ϕb or its non-grazing restriction ϕ. This observation
justifies the more abstract general approach lacking an analogue of ϕb.

We emphasize that neither construction nor study of smooth models for the non-grazing
billiard flow, which represent cornerstones in our approach to resonances and zeta func-
tions, require assumptions I)–III). They are used only from Section 5 onwards.

In Appendix B we explain how the results are transferred to a vector-valued situation
where the billiard generator P is lifted to an operator acting on smooth sections of a
possibly non-trivial vector bundle over M . Finally, Remark 5.13 mentions further pos-
sible (immediate) generalizations of our approach which e.g. allow treatment of billiards
involving Hamiltonian dynamics with electric potentials or magnetic fields.

1.3. Methods. We obtain the meromorphic resolvent by constructing a smooth model of
the billiard flow (Sections 3 and 4) and showing that this flow fits into the framework of
[DG16] (Section 5). For the latter step we crucially use results of Conley-Easton [CE71]
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and Robinson [Rob80] similarly as it was done in [GMT21, DG18]. The construction of
the smooth model allows to work with the well-known notion of resolvent of a smooth
vector field (Theorem 5.3) and by [DG16] we directly get the meromorphic continuation
and precise wavefront estimates for this resolvent. Now this allows for a large variety
of applications: A first such application is established in this article by the meromorphic
continuation to C of weighted zeta functions, which in the simplest case of constant weight
take the form

Z(λ) =
∑

γ

T#
γ exp (−λTγ)

|det (id− Pγ) | , Re(λ)� 0,

where the sum ranges over all closed trajectories γ of the billiard dynamics, T#
γ denotes

the primitive period of γ and Pγ its Poincaré map (for precise definitions and the general
theorem we refer to Section 5.3). In the case of 3-disk systems these weighted zeta func-
tions allow the efficient numerical calculation of invariant Ruelle densities (see [BSW22a,
Appendix]). In addition, the meromorphic resolvent from Theorem 5.3 allows the rigorous
study of semiclasscial zeta functions that are of great importance for understanding quan-
tum resonances. Based on the present framework of smooth models Chaubet and Petkov
proved that the semiclassical zeta functions associated with the Dirichlet and Neumann
problems for finitely many strictly convex compact obstacles in Euclidean space satisfy-
ing the no-eclipse condition continue meromorphically to the whole complex plane and
solved the modified Lax-Philipps conjecture in the case of analytic obstacle boundaries
[CP22]. Furthermore in [BSW22b] the results regarding meromorphically continued zeta
functions were used to provide, in the setting of compact hyperbolic surfaces, a rigor-
ous interpretation of semiclassical zeta functions for Wigner distributions as introduced
by Eckhardt et. al. [EFMW92] together with a numerical study of obstacle scattering
with obstacles given by three discs in the plane. Another application is given by Yann
Chaubet’s work [Cha22] on counting asymptotics of periodic trajectories with a fixed re-
flection number at some fixed obstacle based on previous results in a non-billiard setting
[Cha21].

Let us finally mention a recent related result on the definition of Ruelle-Pollicott reso-
nances for billiard flows. In [BDL18] Baladi, Demers and Liverani perform a meromorphic
continuation of the billiard resolvent for the Sinai billiard with finite horizon together with
a spectral gap in order to establish exponential mixing of the billiard flow. This setting
is technically much more challenging than ours because the grazing trajectories cannot
be separated from the dynamically relevant region, which is possible in our case by the
non-grazing trapped set condition.

1.4. Acknowledgments. This project was initiated during P.S.’s stay at MIT in spring
2020 and profited from numerous fruitful discussions with Semyon Dyatlov. We greatly ac-
knowledge his input. We furthermore thank Colin Guillarmou for very helpful discussions
concerning the ideas drawn from his work [GMT21] and Yann Chaubet for stimulating
discussions and helpful suggestions on an earlier version of the manuscript. This work
has received funding from the Deutsche Forschungsgemeinschaft (DFG) (Grant No. WE
6173/1-1 Emmy Noether group “Microlocal Methods for Hyperbolic Dynamics” as well
as through the Priority Programme (SPP) 2026 “Geometry at Infinity”). P.S. gratefully
acknowledges support from the Studienstiftung des deutschen Volkes. Finally we thank
two anonymous referees for many helpful comments.

2. Geometric setup

In this section we will introduce the notation and define the billiard flow.
Let (Σ, g) be a smooth (meaning C∞) complete connected Riemannian manifold of

dimension n ≥ 1 without boundary, SΣ := {(x, v) ∈ TΣ | gx(v, v) = 1} ⊂ TΣ its unit
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tangent bundle, and denote by pr : SΣ → Σ, (x, v) 7→ x, the bundle projection as well
as by ϕg : R × SΣ → SΣ, (t, x, v) 7→ ϕgt (x, v), the geodesic flow. Let Ω ⊂ Σ be an n-
dimensional smooth submanifold with boundary of Σ. We do not assume Ω to be connected
– in fact, we regard the connected components of Ω as obstacles. Denoting the manifold
boundary and the manifold interior of Ω by ∂Ω and Ω̊ := Ω \ ∂Ω, respectively, we note

that Ω̊ 6= ∅ and ∂Ω 6= ∅ if Ω 6= ∅ and define the phase space for our geodesic billiard to be

M := S(Σ \ Ω̊) = pr−1(Σ \ Ω̊),

the unit tangent bundle over Σ \ Ω̊. The space M is a (2n− 1)-dimensional submanifold
with boundary of SΣ. Its boundary and manifold interior are given by

∂M = (SΣ)|∂Ω, M̊ = S(Σ \ Ω). (2)

Each fiber SxΣ, x ∈ ∂Ω, of the (n − 1)-sphere bundle ∂M intersects the tangent space
Tx(∂Ω) in the (n− 2)-sphere Sx(∂Ω). The latter divides SxΣ into two disjoint open hemi-
spheres2: One of them is the inward hemisphere (SxΣ)in containing all vectors “pointing
towards Ω”, i.e., all v ∈ SxΣ satisfying gx(v, nx) > 0 with nx the inward unit normal vector
at x ∈ ∂Ω. The other one is the outward hemisphere (SxΣ)out defined by gx(v, nx) < 0.
This fiber-wise decomposition effects a decomposition of the (2n−2)-dimensional manifold
∂M into a disjoint union

∂M = ∂gM t ∂inM t ∂outM (3)

of the grazing boundary

∂gM := ∂M ∩ T (∂Ω),

a (2n− 3)-dimensional submanifold of ∂M , as well as the inward and outward boundaries

∂in/outM :=
⋃

x∈∂Ω

(SxΣ)in/out,

which are open in ∂M . See Figure 2 for an illustration of the three boundary components.

Figure 2. In this example with Σ = R2, the boundary ∂M = SΣ|∂Ω is a
circle bundle and therefore looks locally like a cylinder. The red grazing
boundary ∂gM separates the open “half-cylinders” ∂inM and ∂outM . The
intersection of the tangent line Tx∂Ω (which here is drawn through x) with
∂M is given by the two red points in the circle over the point x ∈ ∂Ω.

2If n = 1, then Sx(∂Ω) is empty; it remains true that the 0-sphere SxΣ is divided into two disjoint open
“hemispheres” in this case, namely the two points of which it consists. Eq. (3) then holds with ∂gM = ∅.
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Remark 2.1 (Topological conventions and notation). In this paper, “(smooth) manifold”
means “second-countable Hausdorff C∞-manifold without boundary”. “(Smooth) mani-
fold with boundary” means “second-countable Hausdorff C∞-manifold with boundary”.
I.e., manifolds only possess a non-empty boundary when explicitly specified. Subsets of
smooth manifolds (with or without boundary) are equipped with the induced subspace
topology. Whenever we write “an open set O ⊂ X”, we mean that O is open in X,
i.e., relative to the topology of X. Note that this means, for example, that an open set
O ⊂M \ ∂gM can intersect ∂M non-trivially.

Remark 2.2. The constructions carried out and the theorems proved in the subsequent sec-
tions could potentially be generalized to a setting where we replace the obstacle boundary
∂Ω by an arbitrary codimension-1 submanifold B ⊂ Σ at which the specular reflections of
ϕg occur and which is not necessarily the boundary of an n-dimensional submanifold Ω
with boundary. This setting would be more general because not every codimension-1 sub-
manifold occurs as the boundary of a codimension-0 submanifold. However, the example
of the circle Σ = S1 with B = {pt} a single point, for which our constructions do not work
due to the lack of a distinction between “interior” and “exterior”, shows that we would
then have to impose some additional assumptions on B or to generalize our methods in a
somewhat tedious way, so we stick to the case B = ∂Ω to simplify the presentation.

2.1. Non-grazing billiard dynamics. We focus on a non-grazing geodesic billiard dy-
namics. That is, we define trajectories in M \ ∂gM by the rule that they are given by
those of the geodesic flow ϕg until they hit ∂M . Then we distinguish two cases:

(1) If a trajectory hits ∂M in a non-grazing way, then the velocity vector is reflected
at the tangent hyperplane of the obstacle.

(2) If a trajectory hits ∂M in a grazing way, then it ceases to exist.

Remark 2.3. Before we make the above rules precise, we emphasize that the obtained
trajectories will not actually combine to a flow ϕ on M \∂gM in the technical sense because
the flow property ϕt(ϕt′(p)) = ϕt+t′(p) is violated for some points p when t + t′ = 0, as
explained around (8). For simplicity of the terminology, we shall adopt the convention
that we call the map ϕ formed by the billiard trajectories a flow regardless of the partial
violation of the flow property. We will see that this does not cause any problems. This
generalization of terminology applies exclusively to ϕ (and ϕb, which appears only in the
introductory Section 1.1); all other maps called flow are honest flows in the usual sense.

For convex obstacles one could of course continue the flow at grazing reflections as in
Section 1.1. However, in the following we would be forced to remove such grazing tra-
jectories anyway as with our approach via a quotient construction they cause technical
problems when identifying incoming and outgoing directions. It is therefore more conve-
nient to start right away with a non-complete flow that stops at grazing reflections. As a
side effect we do not need to make any further a priori assumptions on the nature of the
boundary such as absence of inflection points (cf. [CM06, Assumption A3]). Instead, the
necessary assumptions can be efficiently formulated as compactness of the trapped set of
the non-grazing billiard flow and hyperbolicity of the flow on that set, see Section 2.2.1.

2.1.1. Definition of the non-grazing billiard flow. Before we enter the rather technical
process of translating the above rules (1) and (2) into a formal definition, we point out
that the various formulas are accompanied by two illustrations in Figures 3 and 4.

To begin, we define a tangential reflection ∂M → ∂M , (x, v) 7→ (x, v′), by letting
v′ ∈ SxΣ be the reflection of v ∈ SxΣ at the hyperplane Tx(∂Ω) ⊂ TxΣ. In terms of the
inward unit normal nx this reflection is given by v′ = v − 2gx(v, nx)nx. The tangential
reflection fixes ∂gM and interchanges the two boundary components ∂inM and ∂outM .
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For each point (x, v) ∈ M \ ∂gM we now define the following extended real numbers
which correspond to the first boundary intersection in forward and backward time:

t−(x, v) :=

{
sup{t < 0 |ϕgt (x, v) ∈ SΩ}, (x, v) ∈ M̊ ∪ ∂inM,

sup{t < 0 |ϕgt (x, v′) ∈ SΩ}, (x, v) ∈ ∂outM
∈ [−∞, 0),

t+(x, v) :=

{
inf{t > 0 |ϕgt (x, v) ∈ SΩ}, (x, v) ∈ M̊ ∪ ∂outM,

inf{t > 0 |ϕgt (x, v′) ∈ SΩ}, (x, v) ∈ ∂inM
∈ (0,∞].

(4)

Here the inequalities t+(x, v) > 0 and t−(x, v) < 0 follow in the case (x, v) ∈ M̊ from the

continuity of ϕg and the fact that M̊ is open in SΣ, and in the case (x, v) ∈ ∂M \ ∂gM
from the fact that the flow ϕg is transversal to ∂M \ ∂gM .

We begin with the local definition of the billiard trajectories near the boundary: First,
let (x, v) ∈ M̊ . Then the billiard flow simply equals the geodesic flow as long as it does
not meet an obstacle boundary:

ϕt(x, v) := ϕgt (x, v), t−(x, v) < t < t+(x, v). (5)

If the geodesic flow meets an obstacle boundary in a non-grazing way, i.e., if t+(x, v) ∈ R
or t−(x, v) ∈ R, then we extend the trajectory via the following obvious definition:

ϕt±(x,v)(x, v) := ϕgt±(x,v)(x, v). (6)

Now let (x, v) ∈ ∂M \ ∂gM . Then we have to distinguish between inward and outward
components:

ϕt(x, v) :=





ϕgt (x, v),
(
(x, v) ∈ ∂outM, 0 ≤ t < t+(x, v)

)

or
(
(x, v) ∈ ∂inM, t−(x, v) < t ≤ 0

)
,

ϕgt (x, v
′),

(
(x, v) ∈ ∂inM, 0 < t < t+(x, v′)

)

or
(
(x, v) ∈ ∂outM, t−(x, v′) < t < 0

)
.

(7)

The fact that ϕg is a flow implies that the trajectories of ϕ also have the flow property
except for boundary points where the flow property only holds modulo reflection. More
precisely, whenever ϕt′(ϕt(x, v)) and ϕt+t′(x, v) are defined by (5), (6), or (7), one has

ϕt′(ϕt(x, v)) =





ϕt+t′(x, v), t+ t′ 6= 0 or ϕt+t′(x, v) ∈ M̊ or
(
t < 0, (x, v) ∈ ∂inM

)
or
(
t > 0, (x, v) ∈ ∂outM

)
,

(x, v′),
(
t+ t′ = 0, t > 0, (x, v) ∈ ∂inM

)
or

(
t+ t′ = 0, t < 0, (x, v) ∈ ∂outM

)
,

(8)

while ϕ0(x, v) = (x, v) for all (x, v) ∈ M \ ∂gM . The additional boundary reflection
causing the violation of the flow property does not pose any problems for the remaining
paper, though, as points on the boundary related by reflection will be indistinguishable in
our smooth models anyway.

Finally we extend the trajectories to their maximal lengths, which is formally somewhat
cumbersome: We define for (x, v) ∈M \ ∂gM recursively

t0±(x, v) := t±(x, v),

tn±(x, v) :=

{
tn−1
± (x, v) + t±

(
ϕg
tn−1
±

(x, v)
)
, tn−1

± (x, v) ∈ R and ϕg
tn−1
±

(x, v) 6∈ ∂gM,

tn−1
± (x, v), else,

where n ∈ N. Then the sequences {tn+(x, v)}n∈N0 ⊂ (0,∞] and {tn−(x, v)}n∈N0 ⊂ [−∞, 0)
are non-decreasing and non-increasing, respectively, and we put

Tmax(x, v) := lim sup
n→∞

tn+(x, v) ∈ (0,∞], Tmin(x, v) := lim inf
n→∞

tn−(x, v) ∈ [−∞, 0).
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These are the maximal times for which the non-grazing billiard flow can be defined: Given
t ∈ (Tmin(x, v), Tmax(x, v)) we can find some N ∈ N0 and real numbers t0, . . . , tN ∈
(Tmin(x, v), Tmax(x, v)) with

∑N
j=0 tj = t and such that every term in the composition

ϕt(x, v) := ϕt0(ϕt1(· · · (ϕtN (x, v)) · · · )) (9)

is well-defined by either (5), (6), or (7). This definition of ϕt(x, v) is then independent of
the choice of the numbers t0, . . . , tN by virtue of the flow property (8). The definition (9)
extends the trajectory through (x, v) such that in summary using the extended terminology
from Remark 2.3, we obtain a flow

ϕ : D →M \ ∂gM, (t, x, v) 7→ ϕt(x, v),

on the domain given by

D := {(t, x, v) ∈ R× (M \ ∂gM) | t ∈ (Tmin(x, v), Tmax(x, v))}. (10)

Some basic properties of this domain will be proved below in Lemma 2.7. In particular,
we shall see that D is open in R × (M \ ∂gM). In the following we will call the triple
(Σ, g,M) a geodesic billiard system and ϕ its associated non-grazing billiard flow, keeping
Remark 2.3 in mind.

2.2. Properties of the non-grazing billiard flow. By definition, the flow ϕ has dis-
continuities at ϕ−1(∂M \ ∂gM), which makes the following constructions necessary in the
first place. A further property of the flow ϕ that can be read off directly from its definition
and which will become important below is its invariance under tangential reflections at
the boundary:

∀ (t, x, v) ∈ D ∩ ((R \ {0})× ∂M) : (t, x, v′) ∈ D, ϕ(t, x, v) = ϕ(t, x, v′). (11)

While ϕ itself is not continuous except in the trivial case ∂M = ∅, its composition with
the projection pr : M → Σ \ Ω̊ is continuous and describes the spatial billiard dynamics.
For graphical illustrations of pr ◦ ϕ and ϕ see Figures 3 and 4.

Figure 3. A trajectory of the spatial billiard dynamics described by the
composition pr ◦ ϕ : R ×M → Σ \ Ω̊ in an example where Σ = R2 is the
Euclidean plane. The arrows indicate a point (x, v) ∈ ∂inM as well as its
tangential reflection (x, v′) ∈ ∂outM . The reflection happens at the first
“forward boundary intersection time” t0+ = t0+(x0, v0) of the (not explicitly

annotated) point (x0, v0) ∈ M̊ at t = 0. The non-convexity of Ω is not
problematic – the trajectory simply ceases to exist at Tmax.
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Figure 4. The partial flow trajectory ϕ((−t0, t0) × {(x, v)}) ⊂ M of a
point (x, v) ∈ ∂inM and its spatial projection in an example where Σ = R2

is the Euclidean plane. The right-hand side depicts the sphere bundle
over the spatial trajectory, which locally looks like a cylinder. Notice the
discontinuity in the flow trajectory due to the tangential reflection (x, v) 7→
(x, v′). Projecting the trajectory onto Σ removes this discontinuity.

In spite of its discontinuous nature, the non-grazing billiard flow ϕ possesses useful
transversality properties at the non-grazing boundary ∂M \ ∂gM which we collect in the
technical Lemma 2.4 below. This lemma will allow us to prove, among other statements,
that the domain D is open in R× (M \ ∂gM) and we will later use Lemma 2.4 to consider
the flow-time as a “coordinate” transverse to ∂M \ ∂gM .

Lemma 2.4. There exists an open subset N ⊂ R× (∂M \ ∂gM) such that

i) One has the inclusions {0} × (∂M \ ∂gM) ⊂ N ⊂ D.
ii) The set N is invariant under tangential reflection in the sense that for all (t, x, v) ∈

R× (∂M \ ∂gM) one has (t, x, v) ∈ N iff (t, x, v′) ∈ N .
iii) The restricted map ϕ|N : N →M is open and its image is contained in M \ ∂gM .
iv) Decomposing N into the two disjoint open subsets

Nin := N ∩ (R× ∂inM), Nout := N ∩ (R× ∂outM),

the two maps ϕ|Nin/out
: Nin/out →M \ ∂gM are injective.

v) The two inverse maps ϕ|−1
Nin/out

: ϕ(Nin/out)→ Nin/out are smooth.

vi) Decomposing Nin and Nout further into the subsets

N±in/out
:= Nin/out ∩ (R± × ∂in/outM), R± := {t ∈ R | ± t ≥ 0}, (12)

one has

ϕt(x, v) =

{
ϕgt (x, v), (t, x, v) ∈ N−in ∪N+

out,

ϕgt (x, v
′), (t, x, v) ∈ (Nin \N−in) ∪ (Nout \N+

out).
(13)

The proof of Lemma 2.4 is given in Appendix A.1. See Figure 5 for an illustration of
Nin/out and ϕ(Nin/out) in a 2-dimensional example.

Remark 2.5. Note that by i) and iii) the images ϕ(Nin/out) are open subsets of M \ ∂gM
which intersect the boundary ∂M \ ∂gM non-trivially. In particular, the sets ϕ(Nin/out)
are themselves manifolds with non-empty boundaries (except in the trivial case ∂M = ∅).
In contrast, the open sets Nin/out ⊂ R× ∂in/outM are manifolds without boundary.

The following definition is motivated by the subsequent important lemma.
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Figure 5. Schematic illustration of the sets Nin/out from Lemma 2.4 and
their images under ϕ in a Euclidean setting as in Figure 4. Note that
Nin/out and ϕ(Nin/out) are actually 3-dimensional. In the image on the left-
hand side the dimension has been reduced by drawing the 2-dimensional
manifold ∂M simply as a coordinate axis, whereas on the right-hand side
the dimension has been reduced by focusing on the circle SxΣ ⊂ ∂M over
some chosen point x ∈ ∂Ω. Also shown is the action of ϕ on two points
p1, p2 ∈ Nin with strictly negative and strictly positive time coordinates,
respectively.

Definition 2.6. We call a set A ⊂ ∂M \ ∂gM reflection-symmetric if for every point
(x, v) ∈ A its tangential reflection (x, v′) also belongs to A.

Using this terminology we can conveniently describe a crucial continuity property of
the non-grazing billiard flow ϕ which puts the discontinuity of the latter into perspective:

Lemma 2.7. Let O ⊂ M \ ∂gM be an open set such that O ∩ (∂M \ ∂gM) is reflection-
symmetric. Then ϕ−1(O) ⊂ D is open in R× (M \ ∂gM) and invariant under tangential
reflection in the sense that

∀ (t, x, v) ∈ R× (∂M \ ∂gM) : (t, x, v) ∈ ϕ−1(O) ⇐⇒ (t, x, v′) ∈ ϕ−1(O). (14)

In particular, the domain D = ϕ−1(M \∂gM) is open in R×(M \∂gM) and satisfies (14).

The proof of Lemma 2.7 is given in Appendix A.2.
Having shown in Lemma 2.7 that D is open in R× (∂M \ ∂gM) and recalling from (10)

that for any (x, v) ∈M \ ∂gM the set {t ∈ R | (t, x, v) ∈ D} is an open interval containing
0, these two properties together make D what is often called a flow domain for ϕ.

Finally, let us mention without detailing the proof that using similar arguments as in
the proof of Lemma 2.7 one can show that the flow ϕ is smooth on the set ϕ−1(M̊). The
latter is open in R× (M \ ∂gM) by Lemma 2.7.

2.2.1. Trapped set and hyperbolicity. We define the trapped set of ϕ as those points for
which the flow is globally defined and the trajectory remains within a compact region, i.e.:

K :=
{

(x, v) ∈M \ ∂gM |R× {(x, v)} ⊂ D,
∃ compact W ⊂M \ ∂gM with ϕ(R× {(x, v)}) ⊂W

}
.

(15)

An illustration of K in a 2-dimensional Euclidean setting can be found in Figure 6.

Lemma 2.8. K ∩ (∂M \ ∂gM) is reflection-symmetric in the sense of Definition 2.6.

Proof. This follows immediately from the fact that for every (x, v) ∈ K ∩ (∂M \ ∂gM)
the trajectory ϕ(R × {(x, v′)}) is well-defined and coincides with ϕ(R × {(x, v)}) except
at t = 0, as follows from (11). �
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Figure 6. Illustration of the trapped set K in an example where Σ = R2

is the Euclidean plane and pr(K) consists of a single closed “bouncing”
trajectory of the spatial billiard flow.

Remark 2.9. For the proof of our main results (Theorem 5.3, Corollary 5.5) we will assume
that the trapped set K is compact. Note that this assumption is a non-trivial condition
on the global geometry of the obstacles because we work with the non-grazing dynamics.
The compactness of the trapped set implies that all trapped trajectories are located at a
strictly positive distance from the grazing trajectories.

Lemma 2.10. If in the n-dimensional Euclidean convex obstacle scattering setup consid-
ered in the introduction the obstacles Ω = ∪Ni=1Ωi ⊂ Rn fulfill the non-grazing trapped set
condition (thus in particular if they fulfill the no-eclipse condition), then the trapped set
K of the non-grazing billiard flow, defined in (15), agrees with the trapped set Kb of the
billiard flow defined in (1). In particular, K is compact.

Proof. As our non-grazing billiard flow ϕ is a restriction of the complete billiard flow ϕb

up to the first grazing collision one clearly has K ⊂ Kb. Now the non-grazing trapped set
condition implies that none of the trajectories in Kb experiences a grazing collision which
lets us infer the reverse inclusion Kb ⊂ K. Finally, in view of the compactness of ∪Ni=1Ωi,
it is a well-known fact that Kb is compact, see [FL21, Section 1.3] and the references given
therein. �

Remark 2.11. If the obstacles ∪Ni=1Ωi are not assumed to satisfy the non-grazing trapped
set condition it is easy to construct examples that have a non-compact trapped set K (but
nevertheless a compact trapped set Kb for the billiard flow ϕb), see Figure 7.

Finally we introduce a notion of hyperbolicity for the billiard dynamics.

Definition 2.12. The non-grazing billiard flow ϕ is called hyperbolic on its trapped set
K if the following holds: For any (x, v) ∈ K ∩ M̊ the tangent bundle exhibits a continuous
splitting

T(x,v)M = R ·X(x, v)⊕ Es(x, v)⊕ Eu(x, v), (16)

where X(x, v) denotes the flow direction at (x, v), Es/u(x, v) is mapped onto Es/u(ϕt(x, v))

under the differential of ϕt whenever ϕt(x, v) ∈ K∩M̊ , and there exist constants C0, C1 > 0
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Figure 7. The red trajectory belongs to the spatial projection of the
trapped set Kb of the billiard flow, but not to the spatial projection of
K as it contains a grazing collision. The green and blue trajectories, how-
ever, belong to the spatial projections of Kb as well as K. Note that the
red trajectory clearly lies in the closure of the blue trajectory in Σ \ Ω̊ and
the latter touches the former tangentially, thus K is not closed in M \∂gM
and hence not compact.

such that

‖dϕt(x, v)W‖ϕt(x,v) ≤ C0 exp(−C1t)‖W‖(x,v), t ≥ 0, ϕt(x, v) ∈ K ∩ M̊, W ∈ Es(x, v)

‖dϕt(x, v)W‖ϕt(x,v) ≥ C−1
0 exp(C1t)‖W‖(x,v), t ≥ 0, ϕt(x, v) ∈ K ∩ M̊, W ∈ Eu(x, v),

(17)

where ‖ · ‖ denotes any continuous norm on the tangent bundle TM .

Remark 2.13. Let Ω ⊂ Rn be the disjoint union of finitely many compact, connected,
strictly convex sets with smooth boundaries and take on Rn the Euclidean metric. Then
[CM06, Chapter 4.4] and [CP22, Appendix] show that the associated non-grazing billiard is
hyperbolic on its trapped set. See also [Dya18, Section 5.2] for an introductory exposition
of hyperbolicity of dispersing billiards.

2.3. Reflection-invariance of the canonical contact structure. The sphere bundle
SΣ carries a canonical contact form α corresponding to the Liouville form (the tautological
1-form) on the co-sphere bundle S∗Σ under the diffeomorphism SΣ ∼= S∗Σ provided by
the Riemannian metric g, i.e., α(x,v)(w) := gx(v,dπ(x,v)w) for the projection π(x, v) = x
and a vector w ∈ T(x,v)(SΣ). The restriction of α to the submanifold ∂M = (SΣ)|∂Ω ⊂ SΣ
can be pulled back along the tangential reflection map R : ∂M → ∂M , (x, v) 7→ (x, v′). It
turns out that α|∂M is invariant under this pullback, a property we will need later on:

Lemma 2.14. One has the equality of 1-forms R∗(α|∂M ) = α|∂M .

Proof. Let π : ∂M = (SΣ)|∂Ω → ∂Ω be the bundle projection (x, v) 7→ x. Then we
compute for (x, v) ∈ ∂M , w ∈ T(x,v)(∂M) using the formula v′ = v−2gx(v, nx)nx featuring
the inward normal vector nx ⊥ Tx(∂Ω):

α(x,v)(w) = gx(v,dπ(x,v)(w)),

R∗(α|∂M )(x,v)(w) = gx(v′,d(π ◦R)(x,v)(w))

= gx(v − 2gx(v, nx)nx,dπ(x,v)(w))

= α(x,v)(w)− 2gx(v, nx) gx(nx,dπ(x,v)(w))
︸ ︷︷ ︸

=0

.

Here we used the facts that π ◦R = π and dπ(x,v)(w) ∈ Tx(∂Ω). �
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2.4. Billiard functions and the billiard generator. Although the non-grazing billiard
flow ϕ : D → M \ ∂gM is not continuous and partially violates the flow property, and
therefore does not possess a generating vector field, we can associate with ϕ natural
function spaces as well as an operator providing a replacement for the generator of ϕ.

Indeed, recall from Lemma 2.7 that D is open in R×(M \∂gM) and that more generally
for every open set O ⊂ M \ ∂gM such that O ∩ (∂M \ ∂gM) is reflection-symmetric the
inverse image ϕ−1(O) ⊂ D is open. Fix such a set O. Then we define the vector space of
(compactly supported) smooth billiard functions on O by

C∞Bill(O) := {f ∈ C∞(O) | f ◦ ϕ ∈ C∞(ϕ−1(O))}, C∞Bill,c(O) := C∞Bill(O) ∩ C∞c (O). (18)

Note how this definition requires smoothness up to the boundary O∩∂M but also imposes
additional constraints of a non-local nature between boundary points which are related
via the boundary reflection map.

These spaces are non-trivial: The smoothness of ϕ on ϕ−1(M̊) implies that there is an

injection C∞c (O ∩ M̊) ↪→ C∞Bill,c(O). We consider these spaces as interesting because they
provide natural domains for the following differential operator

P : C∞Bill(O) −→ C∞Bill(O),

(Pf)(x, v) :=
d

dt

∣∣∣∣
t=0

f ◦ ϕt(x, v), (x, v) ∈ O. (19)

The operator P is well-defined, preserves C∞Bill,c(O) and will henceforth be called the billiard

generator. This name is justified by (19) which makes P a formal generator of the flow ϕ,
where the discontinuity and the partial violation of the flow property of the latter are dealt
with by passing to the function space C∞Bill(O). On the subspace C∞c (O ∩ M̊) ⊂ C∞Bill,c(O)
the operator P simply acts as the geodesic vector field which is smooth up to points in the
manifold boundary ∂M . In fact, if Xg : C∞(O) → C∞(O) denotes the generator of the
geodesic flow ϕg on the set O, then for every function f ∈ C∞Bill(O) the smooth function

Pf agrees with Xgf on O ∩ M̊ which is dense in O, so it follows that Pf = Xgf on all
of O. This shows that the billiard generator P is nothing but the restriction of Xg to the
domain C∞Bill(O):

P = Xg|C∞Bill(O). (20)

In particular, we see that Xg preserves C∞Bill(O) and C∞Bill,c(O).

Note that we can easily extend the construction (18) to define analogous spaces of
continuous billiard functions CBill(O) and billiard functions of limited regularity CN

Bill(O).
We refrain from introducing topologies on the spaces C∞Bill(O), e.g. the subspace topolo-

gies induced by C∞(O), and C∞Bill,c(O) to avoid further technicalities. Instead we will
introduce smooth models for the billiard flow which will allow us to work with ordinary
smooth functions and distributions on a smooth manifold as well as a smooth vector field
X instead of the above defined operator P.

3. Smooth models for the non-grazing billiard flow

The fact that the non-grazing billiard flow is discontinuous is highly inconvenient. How-
ever, we shall see that a smooth model for the non-grazing billiard flow ϕ exists and is
unique in a strong sense, so that we can consider it as intrinsic to the geodesic billiard
system (Σ, g,Ω). The literature on billiards often presupposes a smooth model or works

on ϕ−1(M̊) to begin with, see e.g. [CM06]. Here we give a definition of smooth models
in a slightly more general geometric setting and perform an explicit construction to show
the existence of such a model. While smooth models no longer carry the bundle structure
of SΣ, the smooth model flows remain contact flows. This constitutes a very convenient
technical feature which is often implicit in concrete coordinate calculations in the billiard
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literature. We remind the reader that smooth refers to C∞-regularity throughout this
article and diffeomorphisms are always assumed to be C∞ as well.

Definition 3.1. A smooth model for the non-grazing billiard flow ϕ : D →M is a triple
(M, π, φ) consisting of a smooth manifold M, a smooth surjection π : M \ ∂gM → M
such that D := (idR × π)(D) ⊂ R×M is open, and a smooth flow φ : D →M such that

i) The restriction π|M̊ is a diffeomorphism onto its image.
ii) The flows ϕ and φ are intertwined by π:

φ ◦ (idR × π)|D = π ◦ ϕ. (21)

We emphasize that in the above definition φ must be a flow – the exceptional generalized
terminology introduced in Remark 2.3 only applies to ϕ.

Definition 3.1 is motivated by the following existence and uniqueness results.

Theorem 3.2. There exists a smooth model (M, π, φ) for ϕ such that φ is a contact flow.

Proof. In the subsequent Section 4 we give an explicit construction of a manifold M, a
map π, a flow φ, and a contact form αM with the required properties, culminating in the
final Corollary 4.3. �
Proposition 3.3. Suppose that (M, π, φ) and (M′, π′, φ′) are two smooth models for ϕ.
Then (M, φ) and (M′, φ′) are uniquely smoothly conjugate. More precisely, there is a
unique diffeomorphism F : M → M′ such that F ◦ π = π′, (idR × F )(D) = D′, and
F ◦ φ = φ′ ◦ (idR × F )|D.

The proof of Proposition 3.3 is given in Appendix A.3.

Corollary 3.4. Let (M, π, φ) be a smooth model for ϕ. Then φ is a contact flow, i.e.,
there exists a contact form αM on M whose Reeb vector field is the generator X of φ.

Proof. A contact form with the desired property is provided by the pullback of the contact
form whose existence is guaranteed by Theorem 3.2 along the unique diffeomorphism of
Proposition 3.3. �
3.1. Smooth models and the billiard generator. Here we show that smooth models
for the non-grazing billiard flow ϕ are naturally related to the spaces of billiard functions
and the billiard generator P defined in Section 2.4. In the following, let (M, π, φ) be
a smooth model for ϕ as in Definition 3.1, let O ⊂ M be an open set, and write O :=
π−1(O) ⊂M \∂gM . Then O∩(∂M \∂gM) is reflection-symmetric by Lemma A.1. Further,
we denote by X : C∞(O)→ C∞(O) the generator of the smooth flow φ on O.

Proposition 3.5. The pullback π∗ : C∞(O)→ C∞(O) is injective and one has

π∗(C∞(O)) = C∞Bill(O), π∗(C∞c (O)) = C∞Bill,c(O). (22)

Moreover, we have the equality

π∗ ◦X ◦ (π∗)−1 = P (23)

of linear operators C∞Bill(O)→ C∞Bill(O) or C∞Bill,c(O)→ C∞Bill,c(O).

Proof. The injectivity of π∗ is due to the surjectivity of π. The inclusions π∗(C∞(O)) ⊂
C∞Bill(O) and π∗(C∞c (O)) ⊂ C∞Bill,c(O) follow from the fact that π ◦ ϕ : D →M is smooth

by (21) and that π is proper by Lemma A.1.
To prove the reverse inclusions, let f be a function that belongs to one of the billiard

function spaces appearing on the right-hand side of (22). Using Lemma (A.1) and the
definition G := π(∂inM) we define g : O → C by

g(p) :=

{
f(π|−1

M̊
(p)), p ∈ O ∩ π(M̊),

f(π|−1
∂inM

(p)), p ∈ O ∩ π(∂inM) = O ∩ G.
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Then we have g ◦ π = f , in particular, g has compact support if f has compact support
because π is continuous. By the same argument as in the proof of Proposition 3.3 smooth-
ness of g is only non-trivial around G and this boils down to showing smoothness of f ◦ ϕ
in some neighborhood of {0} × ∂inM with respect to R × ∂inM . Proving that g is C∞

thus reduces to showing that for an open set V ⊂ (R × G) ∩ D containing {0} × G the
composition g ◦ φ|W : W → C is C∞, where W := φ−1(O) ∩ V .

To this end we use (21), by which g ◦ φ ◦ (idR × π)|D = g ◦ π ◦ ϕ = f ◦ ϕ. Since
π|∂inM : ∂inM → G is a diffeomorphism by Lemma A.1, we see that g ◦ φ|W is smooth iff

the restriction of f ◦ ϕ to the set (idR × π|−1
∂inM

)(W ) ⊂ R × ∂inM is smooth. The latter

holds true since f is a smooth billiard function. Indeed, (idR × π|−1
∂inM

)(W ) is open in

R × ∂inM which is a boundary submanifold of R × (M \ ∂gM) and the restriction of the
smooth function f ◦ ϕ to that boundary submanifold is again smooth. We conclude that
f = g ◦ π = π∗g as stated in the proposition above.

To finally prove (23), we first note that the generator X of φ acts on f ∈ C∞(O) via

Xf(p) =
d

dt

∣∣∣∣
t=0

f ◦ φt(p), p ∈ O.

Given p ∈ O and f ∈ C∞(O) we therefore calculate using (21)

P(f ◦ π)(p) =
d

dt

∣∣∣∣
t=0

f ◦ π ◦ ϕt(p) =
d

dt

∣∣∣∣
t=0

f ◦ φt(π(p)) = Xf(π(p)),

finishing the proof. �

3.2. Smooth trapped set, closed trajectories, and hyperbolicity. We already de-
fined the trapped set of the non-grazing billiard flow ϕ in Section 2.2.1. Given a smooth
model (M, π, φ) of ϕ as in Definition 3.1 we define the corresponding notion of trapped
set for φ as

K := {p ∈M|R× {p} ⊂ D, ∃ compact W ⊂M with φ(R× {p}) ⊂ W}. (24)

We then get the following dynamical correspondence between the non-grazing billiard flow
and its smooth model flow:

Proposition 3.6. The equalities K = π(K), π−1(K) = K hold, and there exists a natural
period-preserving bijection between the closed trajectories of φ and the closed trajectories
of ϕ. More precisely:

i) Given p ∈ M with φT (p) = p for some T > 0 and φt(p) 6= p for all t ∈ (0, T ),
there exists (x, v) ∈ M \ ∂gM such that ϕT (x, v) = (x, v), ϕt(x, v) 6= (x, v) for all
t ∈ (0, T ), and π(x, v) = p.

ii) Conversely, given (x, v) ∈ M \ ∂gM with ϕT (x, v) = (x, v) for some T > 0 and
ϕt(x, v) 6= (x, v) for all t ∈ (0, T ), then π(x, v) ∈ K, φT (π(x, v)) = π(x, v), and
φt(π(x, v)) 6= π(x, v) for all t ∈ (0, T ).

Proof. The equalities K = π(K), π−1(K) = K follow from (21) and the facts that π is
continuous and also proper by Lemma A.1.

Let p = π(x, v) ∈ M be as in i). If p ∈ π (∂M \ ∂gM) we can make the choice (x, v) ∈
∂inM because by Lemma A.1 andM = π(M̊)tG we must have π−1(p) = {(x, v), (x, v′)}.
Then, regardless of whether p ∈ π (∂M \ ∂gM) or not, φT (p) = p implies ϕT (x, v) = (x, v)
and ϕt(x, v) = (x, v) for t ∈ (0, T ) would imply the contradiction φt(p) = p. Claim ii) can
be checked directly by using the relation φt ◦ π = π ◦ ϕt. �

Finally we discuss hyperbolicity of our smooth models: The model flow φ is called
hyperbolic on its trapped set K if the following condition similar to Definition 2.12 holds:
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For any p ∈ K the tangent bundle TpM splits in a continuous and flow invariant fashion
as

TpM = R ·X(p)⊕ Es(p)⊕ Eu(p), (25)

and there exist constants C0, C1 > 0 such that

‖dφt(p)W‖φt(p) ≤ C0 exp(−C1t)‖W‖p, t ≥ 0, W ∈ Es(p)
‖dφt(p)W‖φt(p) ≥ C−1

0 exp(C1t)‖W‖p, t ≥ 0, W ∈ Eu(p),
(26)

where ‖ · ‖ denotes any continuous norm on TM. The next proposition connects hyper-
bolicity of ϕ with hyperbolicity of its smooth model flows:

Proposition 3.7. Let ϕ : D → M be a non-grazing billiard flow that is hyperbolic on its
trapped set K. Then any smooth model (M, π, φ) for ϕ is hyperbolic on its trapped set K.

Proof. We construct the hyperbolic splitting over K as follows: On M̊ the natural candi-
date is the one already given in (16) and transported via the differential of the diffeomor-
phism κ := π|M̊ , i.e., for p = π(x, v) ∈M \ G we have

TpM = R ·X(p)⊕ Es(p)⊕ Eu(p), (27)

where Es/u(π(x, v)) := dκ(x, v)Es/u(x, v) and X(π(x, v)) = dκ(x, v)X(x, v) is the gen-
erator of φ evaluated at π(x, v). This splitting is again invariant under φt whenever

φt(π(x, v)) ∈ K ∩ π(M̊) = K ∩ (M \ G) by the relation φt ◦ π = π ◦ ϕt and the flow
invariance of the original splitting.

We now extend this splitting to all of K as follows: For p = π(x, v) ∈ K ∩ G we define

Es/u(p) = dφ−t
(
Es/u(φt(p))

)

for any t ∈ R such that φt(p) /∈ G; in particular, any t 6= 0 close enough to 0 will do the
job. By the flow property of φ and the flow invariance of the original splitting (16) this
definition is independent of t, (27) holds for p as dφ−t is an isomorphism Tφt(p)M→ TpM,
and the obtained splitting is continuous by continuity of φ.

It remains to show that the hyperbolicity estimates (17) hold. Given W ∈ Es(p) and
arbitrary t′ ≥ 0 we calculate

‖dφt′(p)W‖φt′ (p) ≤ C0e−C1(t′−t)‖dφt(p)W‖φt(p),
where t > 0 is sufficiently small such that φ((0, t]× {p}) ⊂ M \ G. In the limit t→ 0 we
obtain the desired estimate. �

Remark 3.8. Let ϕ be the non-grazing billiard flow constructed from the Euclidean metric
on Rn and the disjoint union of finitely many compact, connected, strictly convex obstacles
with smooth boundaries. Then Proposition 3.7 combined with Remark 2.13 shows that
any smooth model for ϕ is hyperbolic on its trapped set.

4. Construction of a smooth model

This section is devoted to proving the existence Theorem 3.2 by explicitly constructing
the required objects. In view of the strong uniqueness result Proposition 3.3 our con-
struction method is essentially unique. We break up the proof into several lemmas and
corollaries until we arrive at the final Corollary 4.3.

4.1. The topological space M and continuous flow φ. We first defineM as a topo-
logical space and φ as a continuous flow. In the subsequent Section 4.2 we proceed to
proving that M can be equipped with a smooth structure such that φ is smooth.

We define our model space as

M := (M \ ∂gM)/ ∼,
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where the equivalence relation ∼ on M \ ∂gM is defined by the equivalence classes

[x, v] :=

{
{(x, v)}, (x, v) ∈ M̊,

{(x, v), (x, v′)}, (x, v) ∈ ∂M.

We denote by

π : M \ ∂gM →M, (x, v) 7→ [x, v], (28)

the canonical projection and equip M with the quotient topology making π continuous.
We call the set G := π(∂M \ ∂gM) ⊂ M formed by all 2-element equivalence classes

the gluing region. It is a closed subset of M since π−1 (M\ G) = M̊ is open in M . As
suggested by Definition 3.1, we define the domain

D := (idR × π)(D) ⊂ R×M,

where D is the non-grazing flow domain of ϕ defined in (10). The symmetry (14) of D
under tangential reflection implies that (idR × π)−1(D) = D, so Lemma 2.7 implies that
D is open in R ×M as required by Definition 3.1. The compatibility property (11) of ϕ
with the tangential reflection now allows us to define a flow

φ : D →M, φ(t, [x, v]) := [ϕ(t, x, v)], (t, x, v) ∈ D,
which by construction satisfies the relation φ ◦ (idR × π) = π ◦ ϕ on D.

The main motivation for the definition of M using the equivalence relation ∼ is the
continuity of the flow φ:

Lemma 4.1. The flow φ : D →M is continuous.

Proof. Given an open set O ⊂M we first note that O := π−1(O) ⊂ M \ ∂gM is open by
continuity of π. Since O ∩ (∂M \ ∂gM) is reflection-symmetric in view of the definition of
π, Lemma 2.7 tells us that ϕ−1(O) is open in D. Now we simply calculate

(idR × π)−1(φ−1(O)) = (π ◦ ϕ)−1(O) = ϕ−1(O), (29)

which by definition of the quotient topology shows that φ−1(O) is open in D. �

4.2. Smooth structure. The topological gluing process carried out in Section 4.1 to
defineM does not automatically equipM with any canonical smooth structure. However,
since our goal is to make ϕ smooth, it suggests itself to use flow charts around the gluing
region in M to define the smooth structure.

More precisely, to equip M with a smooth structure we choose an open set N =
Nin tNout ⊂ R× (∂M \ ∂gM) as in Lemma 2.4 and define the continuous map

Φ : Nin →M, Φ(t, x, v) = [ϕ(t, x, v)] = φ(t, [x, v]).

Note that choosing Nin over Nout is arbitrary; Nout defines an equivalent smooth structure
in the arguments below since the involution Nin → Nout, (t, x, v) 7→ (t, x, v′), is a canonical
diffeomorphism between the two. The key observation is that Φ is an embedding:

Corollary 4.2. The map Φ is a homeomorphism onto its image which is an open neigh-
borhood of the gluing region G.

Proof. The set Φ(Nin) contains G because Nin contains {0}×∂inM and π({0}×∂inM) = G.
Since we have Φ(Nin) = π(ϕ(Nin)) and π|ϕ(Nin) is an open map, we only need to prove
that ϕ : Nin →M is an injective open map. This is true by Lemma 2.4. �

Corollary 4.3. The model space M can be equipped with the structure of a smooth mani-
fold such that the projection π : M \ ∂gM →M is a smooth map and the flow φ : D →M
is smooth. Furthermore, there exists a contact form αM on M whose Reeb vector field is
the generator X of φ.
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Proof. At this point we have at our disposal the two homeomorphism Φ : Nin → Φ(Nin)

and π|M̊ : M̊ → M \ G whose codomains provide an open cover of M. Since M̊ as well
as Nin are smooth manifolds, we see thatM is second-countable and Hausdorff. To equip
M with an atlas we take on M\G the diffeomorphism π|−1

M̊
as a chart and on Φ(Nin) we

use Φ−1 as a chart. As ϕ is smooth on ϕ−1(M̊), the so-defined charts are compatible on
the overlap Φ(Nin) ∩ (M\ G) and thus define a smooth structure on M.

Now π|M̊ is a diffeomorphism and in particular smooth. On the other hand π|ϕ(Nin) is

smooth if Φ−1 ◦ π|ϕ(Nin) = (ϕ|Nin)−1 : ϕ(Nin) → Nin is smooth. The latter holds true by
Lemma 2.4 v).

Since φ is a continuous flow and {Φ(Nin),M \ G} constitutes an open cover of M,
proving that φ is smooth reduces to showing that both φ : D ∩ (R× (M\ G)) → M as
well as φ : D∩ (R× (Φ(Nin)))→M are smooth. Note that by the flow property one only
needs to check smoothness around points (0, [x, v]), i.e., the problem reduces to checking

smoothness in the cases [x, v] ∈ π(M̊) and [x, v] ∈ G ⊂ Φ(Nin).

The former easily follows from the smoothness of ϕ on ϕ−1(M̊). For the latter we take
(s, y, w) ∈ Nin and calculate for sufficiently small t ∈ R

Φ−1 ◦ φ ◦ (idR × Φ) (t, s, y, w) = Φ−1 ◦ φt(φs(y, w)) = (t+ s, y, w), (30)

by virtue of the flow property φ(t, φ(s, x, v)) = φ(s+ t, x, v). This is obviously smooth.
We begin the construction of αM by recalling that in the setting of Lemma 2.4 the

non-grazing billiard flow ϕ restricted to Nin is a diffeomorphism onto its image and the
map Φ provides a chart around G with respect to which the generator of φ is given by
(Φ−1)∗X = ∂t.

Now let α ∈ Ω1(SΣ) be the canonical contact form on (SΣ, g) whose Reeb vector field
is the geodesic vector field Xg (for details see [Pat99, Chap. 1]). Note that the equation

φ ◦ (idR × π) = π ◦ ϕ on D immediately entails X = π∗Xg on π(M̊) = M \ G and the
1-form defined via

αM :=
(
π
∣∣−1

M̊

)∗
α ∈ Ω1(π(M̊))

thus still satisfies ιXαM = 1 and ιXdαM = 0. We will now continue this definition
smoothly to G: First observe that α is ϕgt -invariant and (ϕg|N )∗∂t = Xg, ergo

(
ϕ
∣∣
Nin

)∗
α(t, x, v) = dt+ α|∂M\∂gM (x, v), (31)

where we recall from the discussion before Lemma 2.14 that α|∂M\∂gM is really a 1-form
on the submanifold ∂M \∂gM . Denote the restriction away from G of our above flow chart
as Φ′ := Φ

∣∣
{t6=0}, where {t 6= 0} = Φ−1(M\ G) = N \ ({0} × G). We first observe that

(Φ′)∗αM =
(
π
∣∣−1

M̊
◦ Φ′

)∗
α =

(
ϕ
∣∣
Nin∩{t6=0}

)∗
α. (32)

But ϕ|Nin∩{t<0} = ϕg|Nin∩{t<0} and ϕ|Nin∩{t>0} = ϕg ◦ R̃|Nin∩{t>0} where R̃(t, x, v) =
R(t, x, v′) denotes the obvious lift of the tangential reflection R(x, v) = (x, v′) to N .
Combining this with (31) and (32) yields

(
Φ′
)∗
αM(t, x, v) =

{
dt+ α|∂M\∂gM (x, v), t < 0

dt+R∗(α|∂M\∂gM )(x, v), t > 0.
(33)

We have already seen in Lemma 2.14 that R∗(α|∂M ) = α|∂M which implies that we can
interpret the right-hand side of (33) as defined on the whole coordinate domain Nin and
the definition αM :=

(
Φ−1

)∗
(dt+ α|∂M\∂gM ) extends αM to a well-defined 1-form on all

of M which is still a contact form with X its Reeb vector field because (33) shows that
ιXαM = 1 and ιXdαM = 0 both due to (Φ−1)∗X = ∂t. �
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Remark 4.4 (Flow time vs. Riemannian distance as transversal coordinate). We emphasize
the fact that the particularly simple coordinate expression of the flow in (30) is due to the
usage of flow coordinates in the direction transversal to G or, equivalently, to ∂M \ ∂gM .
Alternatively one could consider the Riemannian distance distg(x,Ω) as the transversal
coordinate of a point (x, v) ∈M \∂gM close to ∂outM and −distg(x,Ω) if (x, v) is close to
∂inM . With this choice of coordinates onM near G the model flow φ would in general be
non-smooth, though, as can be directly verified for e.g. Σ = R2, Ω = {x ∈ R2 | |x| ≤ 1},
equipped with the Euclidean metric.

4.3. Dependence of the model space on the Riemannian metric. Suppose that g
and g′ are two complete Riemannian metrics on Σ. Then the unit tangent bundles with
respect to g and g′ are canonically diffeomorphic via the obvious rescaling diffeomorphism,
so we can consider them as one and the same space SΣ carrying the two geodesic flows ϕg

and ϕg
′
. With this identification the inward, outward, and grazing boundaries of M are

the same for the two metrics g and g′. However, the tangential reflections on ∂M \ ∂gM
with respect to g and g′ will differ in general. Let us denote them by

(x, v) 7→ (x,Rg(x)v), (x, v) 7→ (x,Rg′(x)v),

respectively. Consider now the non-grazing billiard flows ϕg : Dg → M \ ∂gM and
ϕg′ : Dg′ → M \ ∂gM of g and g′ on their domains Dg, Dg′ ⊂ R × (M \ ∂gM). It is
a natural question how the smooth models (Mg, πg, φg) and (Mg′ , πg′ , φg′) for ϕg and ϕg′ ,
as constructed above, are related. In particular, we would like to know when there is a
diffeomorphism Mg

∼=Mg′ making the diagram

M \ ∂gM

Mg Mg′

πg

πg′

∼=

(34)

commute. In this case, one can consider φg and φg′ as flows on the same smooth manifold,
which allows to compare them.

An answer to this question is given by the following result that describes a regularity
condition on the geodesic flows ϕg, ϕg

′
and the tangential reflections with respect to g

and g′ which is both necessary and sufficient for (34) to hold. In order to formulate the
regularity condition we need to introduce some more terminology: Since the geodesic flows
ϕg and ϕg

′
are transversal to ∂M \ ∂gM the inverse function theorem tells us that we can

find an open neighborhood N of {0} × (∂M \ ∂gM) in R × (∂M \ ∂gM) such that ϕg|N
and ϕg

′ |N are diffeomorphisms onto their images in SΣ. For any such neighborhood we

can define “geometric reflection maps” R̃g : ϕg(N) → ϕg(N) and R̃g′ : ϕg
′
(N) → ϕg

′
(N)

by putting

R̃g(x, v) := ϕg(t, x0, Rg(x0)v0), ϕg|−1
N (x, v) = (t, x0, v0) ∈ N,

and analogously for g′. With these preparations we can state

Proposition 4.5. The following two statements are equivalent:

(1) There is a diffeomorphism Mg
∼=Mg′ making the diagram (34) commute.

(2) There is an open neighborhood N of {0} × (∂M \ ∂gM) in R× (∂M \ ∂gM) such
that the two maps N ∩ (R× ∂inM)→ SΣ given by

(t, x, v) 7→
{
ϕg(t, x, v), t ≤ 0,

(R̃g′ ◦ ϕg)(t, x,Rg(x)v), t > 0,

(t, x, v) 7→
{
ϕg
′
(t, x, v), t ≤ 0,

(R̃g ◦ ϕg′)(t, x,Rg′(x)v), t > 0,
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are well-defined and smooth.

If (1) or equivalently (2) holds, then the diffeomorphism in (34) is unique.

The proof of Proposition 4.5 is given in Appendix A.4.

Remark 4.6. An obvious case in which Proposition 4.5 can be applied is when g and g′

differ only by a constant conformal factor in a neighborhood of ∂Ω. In this case, the
identification of the two unit tangent bundles directly eliminates that factor near ∂M and
Proposition 4.5 becomes trivial since Mg and Mg′ coincide near their gluing regions.

5. Meromorphic continuation of the resolvent and weighted zeta function

In this section we derive two meromorphic continuation results: After recalling the mero-
morphically continued resolvent of [DG16, Thm. 1] in Section 5.1 we continue meromor-
phically a restricted resolvent of the generator of a smooth model flow for a non-grazing,
hyperbolic billiard in Section 5.2. This result immediately translates to the billiard oper-
ator P via the pullback π∗. Finally we derive the meromorphic continuation of weighted
zeta functions for non-grazing billiard flows in Section 5.3. As a corollary we obtain
meromorphic continuation of the weighted zeta function for Euclidean billiards in Rn.

5.1. Meromorphic continuation on open hyperbolic systems. In the following we
will invoke the meromorphic continuation result obtained in [DG16] in the setting of open
hyperbolic systems. To make the paper more self-contained we recall their setting and
results here: An open hyperbolic system is given by a flow ψ on a compact manifold U
with boundary satisfying the following requirements:

(1) The manifold boundary ∂U of U is smooth and strictly convex w.r.t. the generator
X of ψ, i.e., for any boundary defining function ρ ∈ C∞(U)

p ∈ ∂U , (Xρ)(p) = 0 =⇒ X(Xρ)(p) < 0. (35)

(2) Let K(ψ) denote the trapped set of ψ, i.e., the set of p ∈ U for which ψt(p) exists
∀t ∈ R. The flow ψ is hyperbolic on K(ψ), i.e., for any p ∈ K(ψ) the tangent bundle TpU
splits in a continuous and flow invariant fashion as

TpU = R ·X(p)⊕ Es(p)⊕ Eu(p), (36)

and there exist constants C0, C1 > 0 such that

‖dψt(p)W‖ψt(p) ≤ C0 exp(−C1t)‖W‖p, t ≥ 0, W ∈ Es(p)
‖dψt(p)W‖ψt(p) ≥ C−1

0 exp(C1t)‖W‖p, t ≥ 0, W ∈ Eu(p),
(37)

where ‖ · ‖ denotes any continuous norm on TU . Denote by Ů the manifold interior of U .
Now in this setting the following holds [DG16, Thm. 1]: The family of operators

R(λ) := 1Ů (X + λ)−11Ů : C∞c (Ů)→ D′(Ů)

is analytic for Re(λ)� 0 and continues meromorphically to C. Its poles are called Ruelle
resonances and the residue of R(λ) at a resonance λ0 is given by a finite-rank operator

Πλ0 : C∞c (Ů)→ D′(Ů). (38)

In particular Dyatlov and Guillarmou showed in [DG16, Thm. 2] a very precise wavefront
set estimate for the Schwartz kernel KΠλ0

of Πλ0 which allows one to calculate the flat

trace tr[ of Πλ0 defined as the integral over the restriction of the kernel to the diagonal
[DG16, Section 4.1]:

supp(KΠλ0
) ⊂ Γ+ × Γ−, WF′(Πλ0) ⊂ E∗+ × E∗−,

where Γ± are the incoming/outgoing tails of ψ, i.e., those p ∈ U for which ψ∓t(p) exists
for all t ≥ 0, and E∗± ⊂ T ∗U are extensions of the dual stable/unstable foliations E∗u/s
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onto Γ± constructed in [DG16, Lemma 1.10]. For the regular (holomorphic) part RH(λ)
in the neighborhood of some λ0 ∈ C a similar estimate is known [DG16, Lemma 3.5]:

WF′(RH(λ)) ⊂ ∆(T ∗Ů) ∪ (E∗+ × E∗−) ∪ Y+, (39)

where Y+ :=
{ (

etHp(y, η), y, η
) ∣∣ t ≥ 0, p(y, η) = 0, y ∈ Ů , ψt(Ů)

}
with p(y, η) := 〈X(y), η〉

and etHp the flow of the Hamiltonian vector field Hp associated with p, and ∆(T ∗Ů) ⊂
T ∗Ů × T ∗Ů denotes the diagonal of the cotangent bundle over Ů .

For the definition of the flat trace and the rather technical background on the related
techniques we refer the reader to [DZ16, Section 2.4].

Remark 5.1. The setting of [DG16] covers the more general vector-valued case of a first
order differential operator X : C∞(U ; E)→ C∞(U ; E) acting on smooth sections of a vector
bundle E over U which is a lift of X in the sense that

X(fs) = X(f)s+ fX(s) ∀ s ∈ C∞(U ; E), f ∈ C∞(U).

Our considerations of the following section therefore go through in this more general case,
but we postpone the explicit treatment to Appendix B to keep the notation as simple as
possible and the theorems self-contained for the reader who is primarily interested in the
scalar case.

5.2. A meromorphic resolvent for billiard systems. Let (Σ, g,Ω) be a geodesic bil-
liard system such that the associated non-grazing billiard flow ϕ has compact trapped set
K and is hyperbolic on K in the sense of Definition 2.12. Before we state and prove our
main theorem we first establish the following lemma concerning the generator X of the
smooth flow φ of a smooth model (M, π, φ) for ϕ as in Definition 3.1 and the compact set
K ⊂M defined in (24):

Lemma 5.2. There exists a compact submanifold with boundary U0 of M with manifold
interior Ů0 such that

K ⊂ Ů0 (40)

and such that there exists a smooth vector field X0 on U0 with the following properties:

i) the manifold boundary ∂U0 of U0 is strictly convex w.r.t. X0 in the sense of (35);
ii) X−X0 is supported in an arbitrarily small neighborhood of ∂U0;

iii) the trapped set of the flow of X0 coincides with K.

Proof. First we choose a compact submanifold with boundary N of M with manifold
interior N̊ such that K ⊂ N̊ . The existence of such an N is standard in smooth manifold
theory, but we provide a proof for convenience: There exists a smooth function F :M→ R
such that F−1((−∞, c]) is compact for each c ∈ R and the sets F−1((−∞, n]), n ∈ N
exhaust M (see e.g. [Lee12, Prop. 2.28]). By compactness of K there exists some c0 ∈ R
such that K ⊂ F−1((−∞, c0)). Using Sard’s theorem we find some ε > 0 such that c0 + ε
is a regular value of F and taking N := F−1((−∞, c0 + ε]) does the trick.

Now we can invoke [GMT21, Prop. 2.2], which in turn builds upon [CE71, Rob80], to

obtain a submanifold with boundary U0 ⊂ N̊ containing K in its manifold interior and
[GMT21, Lemma 2.3] to obtain the vector field X0 with the claimed properties. �

This lemma immediately yields the meromorphic extension of the restricted resolvent
1Ů0(X0 + λ)−11Ů0 to the complex plane C via an application of [DG16, Theorems 1, 2] to

the open hyperbolic system (U0,X0). Now our main theorem makes a statement about
the generator X itself instead of the perturbation X0. To state and prove it we have to
introduce some additional auxiliary objects and notations:

In the situation of (the proof of) Lemma 5.2 we may without loss of generality assume
an embedding N ⊂M′ into a closed manifold M′ of the same dimension as M. We thus
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arrive at the following overall situation:

K ⊂ Ů0 ⊂ U0 ⊂ N̊ ⊂ N ⊂M′.
Furthermore we may extend the vector fields X and X0 to M′ arbitrarily and continue
to denote such an extension by X and X0, respectively. Their respective flows φ and φ0

are therefore complete. While we choose the extension of X arbitrarily, we choose the
extension of X0 such that for all t ≥ 0: If p, φ0

t (p) ∈ U0 then φ0
s(p) ∈ U0 for all s ∈ [0, t].

This is possible by Lemma 5.2 and [DG16, Lemma 1.1]. Analogously to [GMT21] we can
define the escape times from a compact set U ⊂ N as

τ±U (p) := ± sup
{
t ≥ 0

∣∣φ±s(p) ∈ U ∀s ∈ [0, t]
}
,

τ0,±
U (p) := ± sup

{
t ≥ 0

∣∣φ0
±s(p) ∈ U ∀s ∈ [0, t]

}
, p ∈ N ,

together with the forward and backward trapped sets

Γ±(U) :=
{
p ∈ U

∣∣ τ∓U (p) = ∓∞
}
, Γ0

±(U) :=
{
p ∈ U

∣∣ τ0,∓
U (p) = ∓∞

}
.

Next, we define a natural candidate for the inverse of (X + λ) on any open set O ⊂ N :
For any f ∈ C∞c (O) and λ ∈ C consider the function on O formally given by the following
integral

RO(λ)f(p) :=

∫ −τ−O (p)

0
e−λtf (φ−t(p)) dt, p ∈ O .

This definition requires formal justification for two reasons: On the one hand the integral
may not converge if τ−O (p) = −∞, and on the other hand the regularity properties of

RO(λ)f are not obvious from the definition. We can overcome these problems if we
assume that O is chosen such that:

(1) X = X0 on O
(2) O is dynamically convex with respect to φ0, i.e., for any t ≥ 0 we have

p, φ0
t (p) ∈ O =⇒ φ0

s(p) ∈ O ∀s ∈ [0, t].

Then by the first assumption we get

RO(λ)f(p) =

∫ −τ−O (p)

0
e−λtf

(
φ0
−t(p)

)
dt, p ∈ O.

By the second assumption and the fact that f is supported in O we can replace the upper
integration bound by ∞ and obtain for Re(λ)� 0 that

RO(λ)f =

∫ ∞

0
e−λt

(
φ0
−t
)∗
f dt =

(
(X0 + λ)−1 1O

)
f ,

which holds as an equality of e.g. continuous functions on O by the integral formula and
in turn lets us conclude that

RO(λ) = R(λ)
∣∣
C∞c (O)

: C∞c (O)→ D′(Ů0) ↪→ D′(O) . (41)

In particular we have that RO(λ) : C∞c (O)→ C(O) is a holomorphic family of continuous
operators on {Re(λ) � 0} which satisfies (X + λ)RO(λ) = idC∞c (O). With these prelimi-
naries at hand we can now show meromorphic continuation of RO(λ) to C by providing as
a particular candidate for O a concrete dynamically convex neighborhood of the trapped
set and applying the results of [DG16] to X0. Concretely we prove the following:

Theorem 5.3. Let (Σ, g,Ω) be a geodesic billiard system with non-grazing billiard flow
ϕ, (M, π, φ) a smooth model for ϕ as in Definition 3.1, and X the generator of φ. If the
trapped set K of ϕ is compact and ϕ is hyperbolic on K in the sense of Definition 2.12,
then there exists an arbitrarily small compact U ⊂M with K ⊂ Ů such that RŮ (λ) extends
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from Re(λ)� 0 to C as a meromorphic family of operators C∞c (Ů)→ D′(Ů). Its residue

at a pole λ0 is a finite-rank operator Πλ0 : C∞c (Ů)→ D′(Ů) satisfying

supp(KΠλ0
) ⊂ Γ+(U)× Γ−(U), WF′ (Πλ0) ⊂ E∗+ × E∗−. (42)

Furthermore, the holomorphic part RH
Ů (λ) of RŮ (λ) with λ in a neighborhood of λ0 satisfies

the following wavefront estimate:

WF′
(
RH
Ů (λ)

)
⊂ ∆(T ∗Ů) ∪ (E∗+ × E∗−) ∪ Y+, (43)

with ∆(T ∗Ů) and Y+ defined after (39). Finally, U can be chosen to be an isolating
block as defined in [CE71, Section 1.C.] and such that it satisfies the dynamical convexity
condition (2) introduced above.

Remark 5.4. In Theorem 5.3 arbitrarily small means that given any open neighborhood
O of K in M we can choose U such that U ⊂ O.

Proof of Theorem 5.3. By (41) we only need to construct a dynamically convex neighbor-

hood U of the trapped set K satisfying U ⊂ Ů0. Then we can choose X0 in Lemma 5.2 in
such a way that X −X0 = 0 on U and the stated properties of the residue Πλ0 transfer
from the respective properties of the restricted resolvent 1Ů0(X0 +λ)−11Ů0 . The wavefront

estimate for RH(λ) follows from [DG16, Lemma 3.5].
To construct U let U0 ⊂M be the compact submanifold of Lemma 5.2 and O any open

neighborhood of K satisfying O ⊂ Ů0. By [DG16, Lemma 1.4] there exists T > 0 such
that

U := φ0
−T (U0) ∩ U0 ∩ φ0

T (U0) ⊂ O.
But U is also dynamically convex with respect to φ0, because if p, φ0

t (p) ∈ U , t > 0, then
φ0
−T (p), φ0

t+T (p) ∈ U by definition of U . But U0 is already strictly convex with respect

to φ0 which implies φ0
s(p) ∈ U0 for all s ∈ [−T, t + T ] and therefore φ0

s′(p) ∈ U for all
s′ ∈ [0, t]. �

Finally, we would like to transfer the results about X to the geodesic billiard system.
To this end we first introduce the escape time of ϕ from a compact set U ⊂M \ ∂gM and
the forward/backward trapped set of U as follows:

τ±U (x, v) := ± sup
{
t ≥ 0

∣∣ (±[0, t])× {(x, v)} ⊂ D : ϕ±s(x, v) ∈ U ∀s ∈ [0, t]
}
,

Γ±(U) :=
{

(x, v) ∈ U
∣∣ τ∓U (x, v) = ∓∞

}
.

Note that given (x, v) ∈ U the compactness of U implies either R×{(x, v)} ⊂ D and ϕ(R×
{(x, v)}) ⊂ U or the trajectory through (x, v) can be extended to a small neighborhood
of [τ−U (x, v), τ+

U (x, v)].
We can now obtain the following meromorphic continuation result as a rather immediate

corollary of Theorem 5.3 and the characterization of the billiard operator P in (23):

Corollary 5.5. Let (Σ, g,Ω) be a geodesic billiard system with non-grazing billiard flow ϕ
and P the differential operator of Section 2.4. If the trapped set K of ϕ is compact and ϕ
is hyperbolic on K, then there exists an arbitrarily small compact set U ⊂ M \ ∂gM with

K ⊂ Ů and U ∩ (∂M \ ∂gM) reflection-symmetric such that the definition

RU (λ)f(x, v) :=

∫ −τ−U (x,v)

0
e−λtf (ϕ−t(x, v)) dt, f ∈ C∞Bill,c(Ů) and (x, v) ∈ U,

yields a well-defined family of linear maps RU (λ) : C∞Bill,c(Ů) → CBill(Ů) which satisfy

(P + λ)RU (λ) = id for Re(λ)� 0 and whose matrix coefficients

〈RU (λ)f, g〉L2(dvolg), f, g ∈ C∞Bill,c(Ů),
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extend from holomorphic functions on Re(λ) � 0 to meromorphic functions on C with
poles contained in a discrete set of complex numbers that is independent of f and g. Here
dvolg is the Riemannian volume density associated with the Sasaki metric on SΣ.

Proof. Let U be chosen according to Theorem 5.3 and set U := π−1(U). First we note
that

RU (λ)f(x, v) =

∫ −τ−U (π(x,v))

0
e−λt

(
(π∗)−1f

)
(φ−t(π(x, v))) dt,

which yields RU (λ) = π∗ ◦RU (λ) ◦ (π∗)−1. The first claim then follows from Theorem 5.3
and Proposition 3.5 while the second claim follows from

〈RU (λ)f, g〉L2(dvolg) = 〈RU (λ)f̃ , g̃〉L2(µ),

where f̃ := (π∗)−1f , g̃ := (π∗)−1g, and µ := dvolg ◦ π−1 is the pushforward measure of
the measure dvolg along π, in combination with the meromorphic continuation result in
Theorem 5.3. �
Remark 5.6. Corollary 5.5 could be extended to a formulation analogous to Theorem 5.3
if one developed a theory of “billiard distributions” with the compactly supported smooth
billiard functions as test functions, see the discussion at the end of Section 2.4. We re-
strict our attention to the easier result above, though, as the functional analysis otherwise
required would distract too much from the main theme of smooth models and their appli-
cation.

Remark 5.7 (Continuation of Remark 5.1). Theorem 5.3 and Corollary 5.5 generalize
immediately to the vector valued setting described in Appendix B: First we construct the

smooth model bundle and the smooth substitute X for a given operator X̃. Then we can

immediately replace X̃ by X in the proof of Theorem 5.3 and [BSW22a] provides a simple
procedure to obtain a vector valued generalization of the auxiliary vector field X0. The
transition from Theorem 5.3 to Corollary 5.5 happens analogously as above but now relies
on Theorem B.4.

5.3. Application: meromorphic continuation of Zf . In this section we derive our
second main result, the meromorphic continuation of the following formal weighted zeta
function associated with a weight f : M \ ∂gM → C and a geodesic billiard system
(Σ, g,Ω) whose non-grazing billiard flow ϕ is hyperbolic on its trapped set K in the sense
of Definition 2.12:

Zf (λ) :=
∑

γ

(
exp(−λTγ)

|det(id− Pγ)|

∫

γ#
f

)
, (44)

where λ ∈ C, the sum runs over all closed trajectories of ϕ, Tγ is the period of the

closed trajectory γ, γ# is the corresponding primitive closed trajectory, and Pγ denotes
the linearized Poincaré map associated with γ, i.e., given any t ∈ [0, Tγ ] ⊂ R such that

γ(t) ∈ M̊ one defines

Pγ := dϕTγ (γ(t)) : Es(γ(t))⊕ Eu(γ(t)) −→ Es(γ(t))⊕ Eu(γ(t)),

where the determinant in (44) is independent of the chosen t and Eu/s denotes the hyper-
bolic splitting as in Definition 2.12.

Theorem 5.8 (Meromorphic continuation of weighted zeta functions). Let (Σ, g,Ω) be a
geodesic billiard system such that the trapped set K of the associated non-grazing billiard
flow ϕ is compact. Assume also that ϕ is hyperbolic on K in the sense of Definition 2.12
and fix a weight f ∈ C∞Bill(M \ ∂gM). Then the following holds:

i) The weighted zeta function Zf defined in (44) is a well-defined holomorphic func-
tion on {Re(λ)� 0} that extends meromorphically to C.
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ii) Considering a smooth model (M, π, φ) for ϕ as in Definition 3.1 and the setting
of Theorem 5.3, every pole of Zf is also a pole of the meromorphically extended
resolvent RŮ (λ). For each pole λ0 of RŮ (λ) and k ∈ N0 one has the following
residue formula:

Resλ=λ0

(
Zf (λ)(λ− λ0)k

)
= tr[

(
(X− λ0)kΠλ0 f̃

)
, (45)

where f̃ := (π∗)−1 f and Πλ0 : C∞c (Ů) → D′(Ů) is the finite rank operator of
Theorem 5.3.

iii) The poles of Zf with f ≡ 1 coincide with the poles of the resolvent RŮ (λ) of ii).

Proof. We begin by observing that the weighted zeta function Zf for ϕ coincides with the

weighted zeta function Zf̃ for the smooth model flow φ and f̃ := (π∗)−1f by Proposi-

tion 3.6, where the latter zeta function is again defined by Formula (44). We can therefore
employ [BSW22a] where meromorphic continuation of Zf̃ to C gets proven by writing the

weighted zeta function as the flat trace over the resolvent. The result applies if we can
verify that φ is hyperbolic on K because Z

f̃
coincides with the weighted zeta function for

X0 of Lemma 5.2. But now Proposition 3.7 implies hyperbolicity therefore proving i).
The claims of ii) also follow directly from an application of [BSW22a] to the zeta

function associated with the flow of X0 and weight f̃ combined with the observation that
X = X0 on ran(Πλ0) ⊂ D′(Ů).

The final statement iii) follows from the observation that Resλ=λ0

(
Z1(λ)

)
= tr[(Πλ0) =

rk(Πλ0), where the second relation is shown in [DG16, proof of Thm. 4]. �
Corollary 5.9. The set of poles of the meromorphically continued resolvent in Theo-
rem 5.3 is independent of the choice of the set U . Consequently, the set of poles of the
matrix coefficients in Corollary 5.5 is independent of the choice of the set U .

Proof. This follows immediately from iii) in Theorem 5.8 as Z1 is independent of U . �
Remark 5.10. For a billiard in Euclidean space Rn whose obstacles are strictly convex and
fulfill the non-grazing trapped set condition (or even the stronger no-eclipse condition, see
Section 1) Lemma 2.10 assures the compactness of K and Remark 2.13 the hyperbolicity
of ϕ on K. As a special case of Corollaries 5.5 and 5.9 we thus obtain Theorem 1.1
announced in the introduction.

Remark 5.11. The (ordinary) zeta function associated with the (non-grazing or Euclidean)
billiard flow ϕ is defined as

ζ(λ) :=
∏

γ#

(
1− e

−λT
γ#

)
,

with the product running over all closed primitive trajectories of ϕ. Note that, under
the assumption that the stable/unstable foliations Es/u constructed in the proof of Theo-
rem 5.8 are orientable, ζ(λ) also continues meromorphically to C (provided the non-grazing
trapped set condition holds): We can employ the same proof as for Theorem 5.8 but in-
stead of using the continuation result of [BSW22a] we directly invoke [DG16, Thm. 3]. The
orientability condition can actually be dropped, see [BWS21]. This generalizes a result of
Morita [Mor07] who proved meromorphic continuation to a right halfplane.

Remark 5.12 (Conclusion of Remarks 5.1 and 5.7). Using the vector-valued versions of
Theorem 5.3 and Corollary 5.5 we obtain the meromorphic continuation to C of weighted
zeta functions associated with vector-valued data as in [DG16, Thm. 4] and [BSW22a]:

ZX̃,κ
f (λ) :=

∑

γ

(
exp(−λTγ)tr(α̃γ)

|det(id− Pγ)|

∫

γ#
f

)
,
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where tr(α̃γ) = tr(α̃γ(t),Tγ ) denotes the trace of the billiard parallel transport along a closed
trajectory γ, which is independent of the chosen base point γ(t). Note that α̃ depends

crucially on both the operator X̃ as well as the boundary gluing map κ as indicated by
the superscripts.

This proves very useful in practice, as for example using a line bundle whose restriction
to M̊ is trivial and which possesses a twist at each obstacle boundary, one can treat
dynamical zeta functions involving a sign depending on the number of reflections occurring
in the closed trajectories. Similarly one can use the vector-valued setting to treat zeta
functions with the modified denominator

√
id− Pγ . Such zeta functions are of particular

interest as they exhibit connections with quantum resonances for obstacle scattering. They
have been treated in the literature before, see e.g. [Pet08, CP22].

Remark 5.13. Finally, we would like to point out that in principle the constructions and
results of this paper also apply (with the assumption of a compact trapped set on which
the non-grazing billiard flow is hyperbolic) in a more general abstract situation where
instead of the geodesic flow ϕg on the unit tangent bundle SΣ ⊃M and the Riemannian
tangential reflection R : ∂M → ∂M one considers some arbitrary smooth flow ϕ0 on an
arbitrary smooth manifold M with boundary ∂M together with an abstract reflection map
R : ∂M → ∂M that satisfies certain natural axioms such as compatibility with ϕ0 which
allow to define the non-grazing billiard flow ϕ associated with ϕ0 and R in the same way
as above. An example of such a setting is given by an electric potential or a magnetic
field on the space Σ. This would still result in specular reflections at the boundary ∂Ω
with unchanged reflection R but the Hamiltonian dynamics would no longer be those of a
geodesic flow.

Appendix A. Technical proofs

Here we provide some rather technical proofs to avoid interruptions of the text flow.

A.1. Proof of Lemma 2.4. First, we introduce a smooth involution R̃ : R×∂M \∂gM →
R × ∂M \ ∂gM by putting R̃(t, x, v) := (t, x, v′). Due to the transversality between the
vectors in ∂M \ ∂gM and T (∂Ω) the inverse function theorem implies that the geodesic
flow

ϕg : R× (∂M \ ∂gM)→ SΣ

restricts to a diffeomorphism from an open neighborhood N of {0} × (∂M \ ∂gM) in
R× (∂M \∂gM) onto an open neighborhood of ∂M \∂gM in SΣ. By replacing N with its
intersection with the open set (ϕg)−1(SΣ \ ∂gM) we achieve that ϕg(N) is disjoint from

∂gM . By shrinking N further we achieve that N is R̃-invariant and satisfies convexity
w.r.t. the flow, i.e. a point (t, x, v) ∈ R × (∂M \ ∂gM) with t ≥ 0 lies in N iff all points
(s, x, v) and (s, x, v′) with s ∈ [0, t] lie in N , and similarly for t < 0.

Now for every (x, v) ∈ ∂inM and small t > 0 we have that ϕgt (x, v) 6∈M , while for every
(x, v) ∈ ∂outM and small t < 0 we have that ϕgt (x, v) 6∈M . This shows that

{(t, x, v) ∈ N |ϕg(t, x, v) ∈M} = N+
out ∪N−in ,

{(t, x, v) ∈ N |ϕg(t, x, v′) ∈M} = N−out ∪N+
in .

(46)

Recalling (4) and taking into account that N ⊂ R×(∂M \∂gM) is open and the projection
R× (∂M \ ∂gM) → R is an open map, (46) shows that every point (t, x, v) ∈ N satisfies
t−(x, v) < t < t+(x, v). This proves the inclusion N ⊂ D and recalling (7) we get (13).

Let (t1, x1, v1), (t2, x2, v2) ∈ Nin satisfy ϕt1(x1, v1) = ϕt2(x2, v2). Then by (46) the signs
of t1 and t2 must coincide and by (13) we have

{
ϕgt1(x1, v1) = ϕgt2(x2, v2), t1 ≤ 0, t2 ≤ 0,

ϕgt1(x1, v
′
1) = ϕgt2(x2, v

′
2), t1 > 0, t2 > 0.
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We conclude that (x1, v1) = (x2, v2) because ϕg and ϕg ◦ R̃ are injective on Nin. This
proves that ϕ is injective on Nin. We argue analogously for Nout.

That ϕ : N → M is open follows once we know that ϕ(Nin/out) are open in M and

ϕ|−1
Nin/out

: ϕ(Nin/out) → Nin/out are smooth, because N = Nin tNout. By (13), combined

with the fact that R̃ interchanges Nin with Nout as well as N±in with N±out, one has

ϕ(N−in) = M ∩ ϕg(Nin), ϕ(N+
out) = M ∩ ϕg(Nout),

ϕ(Nin \N−in) = M ∩ ϕg(Nout \N−out), ϕ(Nout \N+
out) = M ∩ ϕg(Nin \N+

in).
(47)

This shows that the sets on the left-hand sides of the equalities are open in M because
they are intersections with M of open subsets of SΣ, ϕg : N → SΣ being an open map.
As we already know that ϕ is injective on Nin/out, we now see that each of the sets
ϕ(Nin/out) ⊂M decomposes into a disjoint union of two open subsets of M as follows:

ϕ(Nin) = ϕ(N−in) t ϕ(Nin \N−in), ϕ(Nout) = ϕ(N+
out) t ϕ(Nout \N+

out).

To prove that ϕ|−1
Nin

is smooth we use that (ϕg)−1 : ϕg(N)→ N and (ϕg ◦ R̃)−1 : ϕg(N)→
N are smooth: By (13) the map ϕ|−1

Nin
coincides with (ϕg)−1 on ϕ(N−in) and with (ϕg◦R̃)−1

on ϕ(Nin\N−in). The latter two disjoint open sets cover ϕ(Nin) proving that ϕ|−1
Nin

is smooth.

We argue analogously for ϕ|−1
Nout

.
Finally, we note that ϕ(N) is disjoint from ∂gM since ϕg(N) is disjoint from ∂gM . �

A.2. Proof of Lemma 2.7. Given (t, x, v) ∈ ϕ−1(O) with t ≥ 0, suppose first that the

compact trajectory segment ϕ([0, t]×{(x, v)}) lies in M̊ , so that it agrees with a trajectory

segment of the geodesic flow: ϕ([0, t]×{(x, v)}) = ϕg([0, t]×{(x, v)}) ⊂ M̊ . Then it follows

from the continuity of ϕg that there is an ε > 0 and an open set U ⊂ M̊ containing (x, v)

such that ϕg([t− 2ε, t+ 2ε]× U) ⊂ M̊ ∩ O. Now t−(x̃, ṽ) < t− ε, t+(x̃, ṽ) > t+ ε for all
(x̃, ṽ) ∈ U . It follows that (t− ε, t+ ε)×U ⊂ ϕ−1(O), so that (t, x, v) is an interior point
of ϕ−1(O).

As a second case, suppose that t > 0, ϕ([0, t)×{(x, v)}) ⊂ M̊ , and (x0, v0) := ϕt(x, v) ∈
(∂M \ ∂gM)∩O. Then ϕt(x, v) ∈ ∂inM ∩O because the trajectory is incoming. Recalling
the definition of ϕ departing from (5), the half-open trajectory segment ϕ([0, t)×{(x, v)})
agrees with a trajectory segment of the geodesic flow: ϕ([0, t) × {(x, v)}) = ϕg([0, t) ×
{(x, v)}) ⊂ M̊ . Let Nin ⊂ R× ∂inM be an open set as in Lemma 2.4. Then, since Nin is
a neighborhood of {0} × ∂inM in R× ∂inM and by the continuity of ϕg we can choose a
small open subset Sin ⊂ ∂inM and a small δ > 0 such that Sin contains (x0, v0) = ϕt(x, v),
Sin ⊂ ∂inM∩O is compact, (−δ, δ)×Sin ⊂ Nin, and ϕg((−δ, 0]×Sin) ⊂ O. Then (13) gives
us ϕ((−δ, 0]×Sin) = ϕg((−δ, 0]×Sin) ⊂ O. In addition we introduce the open set Sout :=
{(x, v′) | (x, v) ∈ Sin} ⊂ ∂outM which contains (x0, v

′
0). Then by the reflection-symmetry

of (∂M \ ∂gM)∩O we have Sout ⊂ ∂outM ∩O. Using again the continuity of ϕg and (13)
we can achieve, shrinking δ if necessary, that ϕg([0, δ)× Sout) = ϕ([0, δ)× Sout) ⊂ O.

Now, the continuity of ϕg and the fact that ϕ((−δ, δ)×Sin)∩M̊ is open in SΣ by Lemma

2.4 iii) imply that there is a small ε ∈ (0, t) and a small open set U ⊂ M̊ containing (x, v)

such that ϕg([0, t− ε]×U) ⊂ M̊ and ϕgt−ε(U) ⊂ ϕ((−δ, 0)×Sin)∩O. Then by (5) we have
[0, t−ε]×U ⊂ D and ϕ([0, t−ε]×U) = ϕg([0, t−ε]×U). See Figure 8 for an illustration.

Lemma 2.4 iv) and the flow property ϕs(ϕs′(x̃, ṽ)) = ϕs+s′(x̃, ṽ) now imply the inclusion
(t− ε, t+ ε)× U ⊂ ϕ−1(O), so that (t, x, v) is an interior point of ϕ−1(O).

If the trajectory segment ϕ([0, t] × {(x, v)}) does not lie entirely in M̊ , we can cut it

into finitely many segments each of which lies either entirely in M̊ or intersects ∂M \∂gM
precisely in one of its endpoints. It then suffices to repeat the arguments above inductively
finitely many times to show that (t, x, v) is an interior point of ϕ−1(O). The case t < 0 is
treated analogously, finishing the proof that ϕ−1(O) is open.
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Figure 8. Illustration of the argument in the proof of Lemma 2.7. The
transversality properties of ϕ established in Lemma 2.4 allow us to extend
the trajectories of all points in U to the time interval [0, t+ ε).

Finally, (14) follows immediately from a combination of (11) with the presupposed
reflection-symmetry of O ∩ (∂M \ ∂gM). This completes the proof. �

A.3. Proof of Proposition 3.3. The proof of Proposition 3.3 relies on the following
auxiliary result which describes some general technical properties of smooth models for
the non-grazing billiard flow:

Lemma A.1. Let (M, π, φ) be a smooth model for ϕ. Then π is a proper map, one has

π(∂inM) = π(∂outM) =: G, M = π(M̊) t G,
the set G is a codimension 1 submanifold of M, and the maps π|∂in/outM : ∂in/outM → G
are diffeomorphisms. In particular, for every set A ⊂M the set π−1(A)∩ (∂M \ ∂gM) is
reflection-symmetric. Furthermore, the flow φ is transversal to G.

Proof. From (21), (7), and the continuity of π and φ it follows that

π(x, v) = π(x, v′) ∀ (x, v) ∈ ∂M \ ∂gM. (48)

Since the tangential reflection (x, v) 7→ (x, v′) interchanges ∂inM and ∂outM , this shows

that π(∂inM) = π(∂outM). From the fact that M \ ∂gM = M̊ t ∂inM t ∂outM and the

surjectivity of π it follows thatM = π(M̊)∪G. Suppose that there is a point p ∈ G∩π(M̊).

Then there are points p̃ ∈ M̊ and p̃′ ∈ ∂M \ ∂gM such that π(p̃) = π(p̃′) = p. Since each
trajectory of the non-grazing billiard flow ϕ intersects ∂M \ ∂gM only at a discrete set of

time parameters, we can find an ε > 0 such that ϕε(p̃), ϕε(p̃
′) ∈ M̊ . Then (21) implies

π|M̊ (ϕε(p̃)) = φε(p) = π|M̊ (ϕε(p̃
′)),

and the injectivity of π|M̊ and ϕε yields p̃ = p̃′, contradicting the fact that M̊ and ∂M\∂gM

intersect trivially. This proves that G ∩ π(M̊) = ∅ hence M = π(M̊) t G.
To prove that G is a smooth submanifold of M, let Nin ⊂ R× ∂inM be an open set as

in Lemma 2.4 and put N := (idR × π)(Nin) ⊂ R× G. Then {0} × G ⊂ N ⊂ D by Lemma
2.4 i). Let (x, v) ∈ ∂inM and choose a small open set S ⊂ ∂inM containing (x, v) and a
small ε > 0 such that (−ε, ε)×S ⊂ Nin. This is possible because Nin is a neighborhood of
{0}× ∂inM in R× ∂inM by Lemma 2.4 i). Consider the set N−in from (12) and recall from
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(13) that ϕ|N−in = ϕg|N−in . Now, since π|M̊ is a diffeomorphism and ϕg is an open map, we

get that π|M̊ (ϕg((−3ε/4,−ε/4)× S)) is an open subset of M. Consequently, the set

U := φε/2(π|M̊ (ϕg((−3ε/4,−ε/4)× S))) ⊂M
is open in M because φε/2 is an open map. Moreover, using (13) and Lemma 2.4 v), we
see that φε/2 ◦π|M̊ ◦ϕg|(−3ε/4,−ε/4)×S is a diffeomorphism from (−3ε/4,−ε/4)×S onto U .

However, thanks to (21), (13), and the flow property of ϕ we have

U = (π ◦ ϕ)((−ε/4, ε/4)× S), φε/2 ◦ π|M̊ ◦ ϕg|(−3ε/4,−ε/4)×S = π ◦ ϕ|(−ε/4,ε/4)×S ,

which shows that G ⊂ U and that π ◦ ϕ|(−ε/4,ε/4)×S : (−ε/4, ε/4) × S → U is a dif-
feomorphism mapping {0} × S onto U ∩ G =: S. In particular, the identity π|S =
φε/2 ◦ π|M̊ ◦ ϕ

g
−ε/2|S shows that π|S : S → S is a diffeomorphism. Applying (21) again we

find that φ|(−ε/4,ε/4)×S : (−ε/4, ε/4) × S → U is a diffeomorphism. This shows that φ is
transversal to G at each point in S.

Since (x, v) ∈ ∂inM was arbitrary and we know that π(∂inM) = G, we have proved that
G is a smooth submanifold of M of the same dimension as ∂inM , i.e., of codimension 1,
that π|∂inM : ∂inM → G is a local diffeomorphism, and that φ is transversal to G.

To prove that π|∂inM is injective it suffices to observe that given (x1, v1), (x2, v2) ∈ ∂inM
we can repeat the above argument with an S ⊂ ∂inM containing both (x1, v1) and (x2, v2)
and some small enough ε > 0 depending on (x1, v1) and (x2, v2); then the same trick of
writing π|S = φε/2 ◦π|M̊ ◦ϕ

g
−ε/2|S shows that the assumption π(x1, v1) = π(x2, v2) implies

(x1, v1) = (x2, v2) by injectivity of φε/2, π|M̊ , and ϕg−ε/2.

The restriction π|∂outM is treated analogously, finishing the proof that the maps π|∂in/outM :
∂in/outM → G are diffeomorphisms.

Finally, that π is proper follows from the continuity of π and the observation that by
the above the inverse image π−1(p) of any point p ∈M contains at most 2 points. �

We are now in a position to prove Proposition 3.3:

Proof of Proposition 3.3. Using Lemma A.1, we define F :M→M′ by

F (p) :=

{
(π′ ◦ π|−1

M̊
)(p), p ∈ π(M̊),

(π′ ◦ π|−1
∂inM

)(p), p ∈ π(∂inM) = G.
Then F satisfies by construction the relation F ◦ π = π′ and F is bijective with inverse

F−1(p′) =

{
(π ◦ π′|−1

M̊
)(p′), p′ ∈ π′(M̊),

(π ◦ π′|−1
∂inM

)(p′), p′ ∈ π′(∂inM) = G′.
From (21) and the relations D = (idR×π)(D), D′ = (idR×π′)(D) we get (idR×F )(D) = D′
and F ◦ φ = φ′ ◦ (idR × F )|D.

It remains to prove that F and F−1 are smooth. By Definition 3.1 and Lemma A.1
the maps F : π(M̊) → π′(M̊) and F : G → G′ are diffeomorphisms, in particular F and

F−1 are smooth on the open sets π(M̊) ⊂ M and π′(M̊) ⊂ M′, respectively. To prove
smoothness of F and F−1 near G and G′, we note that since D and D′ are open and φ, φ′ are
flows transversal to G and G′, respectively by Lemma A.1, the inverse function theorem
implies that there is an open set U ⊂ M containing G, an open set V ⊂ (R × G) ∩ D
containing {0}×G, an open set U ′ ⊂M′ containing G′, and an open set V ′ ⊂ (R×G′)∩D′
containing {0} × G′ such that

φ : V → U, φ′ : V ′ → U ′

are smooth local coordinate charts on their respective domains. In fact, since F ◦ φ =
φ′ ◦ (idR × F )|D, we can achieve

V ′ = (idR × F |G)(V )
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by shrinking V or V ′. To show that F is smooth on U and F−1 is smooth on U ′ it now
suffices to prove that

(idR × F |−1
G ) ◦ φ′|−1

V ′ ◦ F ◦ φ : V → V, (idR × F |G) ◦ φ|−1
V ◦ F−1 ◦ φ′ : V ′ → V ′

are smooth maps. However, the latter are nothing but the identity maps as one sees by
employing again the relation F ◦ φ = φ′ ◦ (idR × F )|D.

Finally, the uniqueness of F follows from the fact that by Lemma A.1 the complement
M\ G is dense in M and F is uniquely determined by π and π′ on M\ G. �

A.4. Proof of Proposition 4.5. Consider the gluing regions Gg = πg(∂M \∂gM) ⊂Mg

and Gg′ = πg′(∂M \ ∂gM) ⊂Mg′ , respectively. Then by the fact that πg|M̊ and πg′ |M̊ are
diffeomorphisms ontoMg \Gg andMg′ \Gg′ , respectively, we immediately get the built-in
diffeomorphism

πg′ |M̊ ◦ πg|−1

M̊
:Mg \ Gg

∼=−→Mg′ \ Gg′ (49)

that makes the analogue of the diagram (34), with M \ ∂gM replaced by M̊ , commute.
Moreover, we see that any diffeomorphism Mg

∼= Mg′ making (34) commute coincides
with (49) on the dense set Mg \ Gg, so that it is uniquely determined by this property.

In order to extend (49) to a (necessarily unique) diffeomorphism Mg
∼= Mg′ , let

Ng, Ng′ ⊂ R × (∂M \ ∂gM) be two sets as in Lemma 2.4, applied separately for g and
g′, respectively, and consider the intersection Nin := (Ng)in ∩ (Ng′)in = N ∩ (R × ∂inM),
where N := Ng ∩Ng′ . Then the set O := ϕg(Nin) ∩ ϕg′(Nin) is an open neighborhood of
∂M \ ∂gM in M \ ∂gM by Lemma 2.4. In particular, O ∩ (∂M \ ∂gM) = ∂M \ ∂gM is
invariant under tangential reflection with respect to g and g′. Thus, by Lemma 2.7 (also
applied separately for g and g′), the sets

Ng,g′ := ϕ−1
g (O) ∩Nin, Ng′,g := ϕ−1

g′ (O) ∩Nin

are open in R × ∂inM , and by definition of the quotient topologies on Mg and Mg′ the
identity map O → O descends to a homeomorphism

Og ∼= Og′ (50)

between the open neighborhood Og := πg(O) of Gg in Mg and the open neighborhood
Og′ := πg′(O) of Gg′ in Mg′ . Moreover, by definition of the quotient maps πg and πg′ ,
the diffeomorphism (49) and the homeomorphism (50) agree on Og ∩ (Mg \ Gg), so that
they glue to a global homeomorphismMg

∼=Mg′ . It remains to prove that the latter is a
diffeomorphism, which reduces to proving that the map (50) and its inverse are smooth.
By definition of the smooth structures on M and Mg′ , this reduces to checking that

ϕg|−1
Ng,g′

◦ ϕg′ |Ng′,g : Ng′,g → Ng,g′ ,

ϕg′ |−1
Ng′,g

◦ ϕg|Ng,g′ : Ng,g′ → Ng′,g
(51)

are smooth maps. By (13) the maps (51) can be expressed in terms of the geodesic

flows ϕg, ϕg
′

and the reflection maps Rg, Rg′ : R × (∂M \ ∂gM) → R × (∂M \ ∂gM),
(t, x, v) 7→ (t, x,Rg(x)v), (t, x, v) 7→ (t, x,Rg′(x)v), by

(ϕg|−1
Ng,g′

◦ ϕg′ |Ng′,g)(t, x, v) =

{
(ϕg|−1

Ng,g′
◦ ϕg′ |Ng′,g)(t, x, v), t ≤ 0,

(Rg ◦ ϕg|−1
Rg(Ng,g′ )

◦ ϕg′ |Rg′ (Ng′,g) ◦Rg′)(t, x, v), t > 0,

(ϕg′ |−1
Ng′,g

◦ ϕg|Ng,g′ )(t, x, v) =

{
(ϕg

′ |−1
Ng′,g

◦ ϕg|Ng,g′ )(t, x, v), t ≤ 0,

(Rg′ ◦ ϕg
′ |−1
Rg′ (Ng′,g) ◦ ϕg|Rg(Ng,g′ ) ◦Rg)(t, x, v), t > 0.
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Since ϕg|Ng,g′ and ϕg
′ |Ng′,g are diffeomorphisms onto their images, the above maps are

smooth iff their post-compositions with ϕg|Ng,g′ and ϕg
′ |Ng′,g are smooth, respectively. In

view of the definitions of Rg and R̃g, the proof is finished. �

Appendix B. Construction of smooth model bundles

Here we provide a concrete construction of smooth models in the vector-valued setting,
i.e., of smooth model bundles. The reader who is not interested in the vector-valued
case may safely skip this appendix. The construction follows ideas very similar to those
employed in the above construction of smooth models for non-grazing billiard flows.

We begin by reminding the reader of some notation used in the main text: There we
introduced the non-grazing billiard flow ϕ acting on the phase-space M \ ∂gM , defined
on the domain D ⊂ R × (M \ ∂gM) from (10) which is open by Lemma 2.7. For the
analytic treatment of this dynamical system we constructed a model manifoldM together
with a smooth surjection π : M \ ∂gM →M and a smooth model flow φ on M, defined
on the domain D ⊂ R ×M, such that π ◦ ϕt = φt ◦ π. This was necessary because ϕ
is non-smooth (in fact non-continuous and not even a flow) due to the presence of the
instantaneous boundary reflections R : ∂M \ ∂gM → ∂M \ ∂gM, (x, v) 7→ (x, v′).

For the remainder of this appendix we now assume a smooth C-vector bundle

πẼ : Ẽ →M \ ∂gM

of rank r to be given, the fibers of which we denote by Ẽ(x,v) := π−1

Ẽ ({(x, v)}).
Furthermore we require a first-order differential operator X̃ acting on smooth sections

of Ẽ and satisfying the following Leibniz rule:

X̃
(
f̃ · σ̃

)
= (Pf̃) · σ̃ + f̃ · X̃σ̃, ∀f̃ ∈ C∞Bill(M \ ∂gM), σ̃ ∈ C∞(M \ ∂gM, Ẽ), (52)

where P denotes the billiard generator defined in Section 2.4. An additional piece of data

necessary for the construction of a smooth model for Ẽ is a bundle isomorphism

κ : Ẽ
∣∣
∂inM

−→ Ẽ
∣∣
∂outM

such that πẼ ◦κ = R◦πẼ
∣∣
π−1

Ẽ (∂inM)
holds. For example, such an isomorphism exists if both

Ẽ
∣∣
∂inM

and Ẽ
∣∣
∂outM

can be trivialized: Then we can simply define κ as the composition of

the first trivialization, the map R× idCr , and the inverse of the second trivialization.
Before proving our main theorem we first have to describe a dynamical quantity asso-

ciated with the above data, namely the billiard parallel transport. Morally it is derived

from the operator X̃ in the same intuitive manner as the billiard flow is derived from the
geodesic flow:

Lemma B.1. There exists a unique map α̃ : D̃ → Ẽ on the flow domain

D̃ :=
{

(t, e)
∣∣∃(x, v) ∈M \ ∂gM : (t, x, v) ∈ D and e ∈ Ẽ(x,v)

}
,

called the billiard parallel transport, with the following properties:

(1) For each (t, x, v) ∈ D the map

α̃(x,v),t : Ẽ(x,v) −→ Ẽϕt(x,v), e 7→ α̃(x,v),t(e) := α̃(t, e), (53)

is a well-defined linear isomorphism.
(2) α̃ is a flow up to composition with κ on boundary fibers. More precisely, one has

α̃(x,v),0 = idẼ(x,v) ∀ (x, v) ∈M \ ∂gM (54)
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and if (t, x, v) ∈ D and t′ ∈ R are such that (t′, ϕt(x, v)) ∈ D, then the following
generalization of (8) holds:

α̃ϕt(x,v),t′ ◦ α̃(x,v),t =





α̃(x,v),t+t′ , t+ t′ 6= 0 or ϕt+t′(x, v) ∈ M̊ or

t < 0, (x, v) ∈ ∂inM or t > 0, (x, v) ∈ ∂outM,

κ|Ẽ(x,v) , t+ t′ = 0 and t > 0, (x, v) ∈ ∂inM,

κ−1|Ẽ(x,v) , t+ t′ = 0 and t < 0, (x, v) ∈ ∂outM.

(55)

(3) For each σ̃ ∈ C∞(M \ ∂gM, Ẽ) the map

ϕ−1(M̊)→ Ẽ , (t, x, v) 7→ α̃(x,v),t

(
σ̃(x, v)

)
,

is smooth.
(4) For each (x, v) ∈ M̊ and σ̃ ∈ C∞(M \ ∂gM, Ẽ) one has

(X̃σ̃)(x, v) =
d

dt

∣∣∣
t=0

α̃ϕt(x,v),−tσ̃(ϕt(x, v)).

Proof. As a preliminary step we embed a neighborhood of M \ ∂gM in SΣ into a closed

manifold N and extend Ẽ and X̃ arbitrarily to N such that near M \∂gM they satisfy the
Leibniz rule (52) with P replaced by the geodesic vector field Xg (recall from (20) that

P agrees with Xg on billiard functions). We continue to denote these extensions by Ẽ , X̃
and obtain a well-defined transfer operator exp(−tX̃) acting on smooth sections of Ẽ .

Given (t, x, v) ∈ D we begin by assuming that t ≥ 0 is small enough such that ϕs(x, v),
s ∈ [0, t], intersects ∂M \∂gM only at its endpoint ϕt(x, v), if at all. Then two cases must
be distinguished:

(1) (x, v) ∈ M̊ : Given e ∈ Ẽ(x,v) choose σ̃ ∈ C∞(N, Ẽ) with σ̃(x, v) = e and supported

in M̊ . Then we define

α̃(x,v),t(e) :=
(
exp(−tX̃)σ̃

)
(ϕt(x, v)),

which is independent of the choice of σ̃ by the Leibniz rule (52), which in turn
applies by the support property of σ̃ and where we use that any smooth function
supported in M̊ is a billiard function.

(2) (x, v) ∈ ∂M \ ∂gM : If (x, v) ∈ ∂outM , given e ∈ Ẽ(x,v), choose σ̃ ∈ C∞(N, Ẽ) with
σ̃(x, v) = e by multiplying some local frame with cutoffs that restrict to billiard
functions on M \ ∂gM . Again we define

α̃(x,v),t(e) :=
(
exp(−tX̃)σ̃

)
(ϕt(x, v)),

independently of the choice of σ̃. If instead (x, v) ∈ ∂inM we proceed in the same
way but with κ(e) instead of e.

This construction can analogously be transferred to sufficiently small t < 0.
Now, without these smallness assumptions on t, we use that by definition of D and ϕ

there exists a unique finite sequence t0, t1, ..., tN with t = t0 + · · ·+ tN such that ϕt(x, v)
can be written in terms of the geodesic flow ϕg as ϕt(x, v) = ϕgtN ◦R ◦ · · · ◦R ◦ ϕ

g
t0

(x, v).

We then define the billiard parallel transport of e ∈ Ẽ(x,v) as

α̃(x,v),t(e) := α̃(x,v),tN ◦ · · · ◦ α̃(x,v),t0(e).

The claimed Properties (1), (2) of α̃ are now satisfied by construction and Properties

(3), (4) follow from the properties of exp(−tX̃) since ϕ is smooth on ϕ−1(M̊). Finally,

Property (1), Eq. (54), and Property (4) determine α̃ uniquely on ϕ−1(M̊) × Ẽ and (55)

then implies that the full map α̃ is unique because its values at points outside ϕ−1(M̊)×Ẽ
are determined by κ and values at points inside ϕ−1(M̊)× Ẽ . �
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Definition B.2. We call the operator

L : D × C∞(M \ ∂gM, Ẽ) −→ Γ(M \ ∂gM, Ẽ)

((t, x, v), σ̃) 7−→ α̃ϕ−t(x,v),t(σ̃(ϕ−t(x, v))) =: (Ltσ̃)(x, v)

the billiard transfer operator associated with X̃. Here Γ(M \ ∂gM, Ẽ) denotes the set of

arbitrary sections of Ẽ without any continuity or smoothness assumption.

This terminology is of course motivated by Lemma B.1, which implies that for each

σ̃ ∈ C∞(M \ ∂gM, Ẽ) the map

ϕ−1(M̊) ∩ (R× M̊)→ Ẽ|M̊ , (t, x, v) 7→ (Ltσ̃)(x, v),

is smooth and one has

(X̃σ̃)(x, v) = − d

dt

∣∣∣
t=0

(Ltσ̃)(x, v) ∀ (x, v) ∈ M̊. (56)

We can now introduce the vector-valued equivalent of the billiard functions:

Definition B.3. The set of smooth billiard sections of Ẽ is

C∞Bill(M \ ∂gM, Ẽ) :=
{
σ̃ ∈ C∞(M \ ∂gM)

∣∣ ((t, x, v) 7→ (Ltσ̃)(x, v)
)
∈ C∞(D, Ẽ)

}
.

An elementary property of the smooth billiard sections is that they are stable with

respect to multiplication by smooth billiard functions – in other words, C∞Bill(M \ ∂gM, Ẽ)
is a C∞Bill(M \ ∂gM)-module. The main siginificance of the smooth billiard sections is that

they are preserved by the operator X̃ and the latter acts on them by differentiation of the
billiard transfer operator:

X̃ : C∞Bill(M \ ∂gM, Ẽ) −→ C∞Bill(M \ ∂gM, Ẽ), (X̃σ̃)(x, v) = − d

dt

∣∣∣
t=0

(Ltσ̃)(x, v).

This follows from (56). It provides the vector-valued generalization of the formula (19).
With this data as our point of departure we can now prove our main theorem in the

vector-valued situation:

Theorem B.4 (Existence of smooth model bundles). There exists a smooth vector bundle

πE : E →M and a smooth surjection Π : Ẽ → E such that the diagram

Ẽ E

M \ ∂gM M

Π

πẼ πE

π

(57)

commutes, as well as a linear isomorphism

ΣE : C∞Bill(M \ ∂gM, Ẽ) −→ C∞(M, E) (58)

that is uniquely characterized by the relation

ΣE(σ̃) ◦ π = Π ◦ σ̃ ∀ σ̃ ∈ C∞Bill(M \ ∂gM, Ẽ).

Furthermore, introducing the first order differential operator

X := ΣE ◦ X̃ ◦ Σ−1
E : C∞(M, E)→ C∞(M, E)

and for (t, p) ∈ D the parallel transport

αp,t : Ep −→ Eφt(p),
e 7−→

(
exp(−tX)σe

)
(φt(p)),

(59)

where exp(−tX) is the transfer operator of X and σe denotes any smooth section with
σe(p) = e, then the trace of αp,t on a periodic trajectory (i.e., when φt(p) = p) coincides
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with the trace of the billiard parallel transport from Lemma B.1 on the corresponding
periodic trajectory of the non-grazing billiard flow ϕ.

Proof. Our proof is constructive and uses the abstract vector bundle construction lemma
well established in the differential geometry literature, see e.g. [Lee12, Lemma 10.6]. We
start by specifying the total space of our new bundle:

E :=
⊔

p∈M\G
Ẽπ−1(p) t

⊔

(x,v)∈∂inM
Ẽ(x,v) ⊕ Ẽ(x,v′)/ ∼κ, (60)

where ∼κ means that we quotient out the linear subspace of Ẽ(x,v) ⊕ Ẽ(x,v′) defined by the

elements of the form (e,−κ(e)), which is possible by the relation πẼ ◦κ = R◦πẼ
∣∣
π−1

Ẽ (∂inM)
.

Note that over each point p = [x, v] ∈ G the fiber Ep = Ẽ(x,v) ⊕ Ẽ(x,v′)/ ∼κ is canonically

isomorphic to Ẽ(x,v) as well as Ẽ(x,v′) via the maps e 7→ [e, 0] and e 7→ [0, e], respectively.
Next we need to specify the trivializations of E : In a neighborhood of any point ofM\G we

make the obvious choice and take trivializations of Ẽ composed with (a suitable restriction
of) π × idCr . Around a point p = [x, v] ∈ G, (x, v) ∈ ∂inM , we define flow-trivializations

using the billiard parallel transport map: Take any trivialization tin of Ẽ
∣∣
∂inM

on an open

set Uin ⊂ ∂inM around (x, v) and put

t : π−1
E (Φ(Nin ∩ R× Uin)) −→ Φ(Nin ∩ R× Uin)× Cr,

EΦ(t,[y,w]) 3 e 7−→ ((φt ◦ π)× idCr) ◦ tin
(
α̃ϕt(y,w),−t(e)

)
,

where Φ : Nin → M denotes the flow chart from Section 4.2, (y, w) is the unique lift of
[y, w] to ∂inM , and if t = 0 we identified [e, 0] and e. This defines a trivialization t around
p. Now, t transitions smoothly with any trivialization around points in M\ G thanks to
Lemma B.1 (1), and furthermore t transitions smoothly with any trivialization t′ built
analogously but from another trivialization t′in since t′in ◦ t−1

in is smooth and the smooth
structure of M near G has been defined using flow charts.

The desired surjection Π : Ẽ → E is given by

Π(e) :=





e, e ∈ ⊔p∈M\G Ẽπ−1(p),

[e, 0], e ∈ ⊔(x,v)∈∂inM Ẽ(x,v),

[0, e], e ∈ ⊔(x,v)∈∂outM Ẽ(x,v).

This map is continuous by definition of the topology on E and it is clearly smooth on⊔
p∈M\G Ẽπ−1(p). To check that Π is also smooth near

⊔
(x,v)∈∂inM Ẽ(x,v), we compose it

with a trivializaton t as above. For e ∈ ⊔(x,v)∈∂inM Ẽ(x,v) the point e has been identified

with [e, 0] in the definition of t, so that by definition of the smooth structure on E the

composition t◦Π is smooth near e. On the other hand, for e ∈ ⊔(x,v)∈∂outM Ẽ(x,v) the point

[0, e] = [κ−1(e), 0] appearing in t at t = 0 is identified with κ−1(e). Using the relation
πẼ ◦ κ = R ◦ πẼ

∣∣
π−1

Ẽ (∂inM)
and the definition of α̃ from the proof of Lemma B.1, we obtain

α̃ϕt(y,w),−t
(
κ−1(e)

)
= α̃ϕt(y,w),−t(e)

and hence t ◦Π is again smooth near e.

Next we define for a smooth billiard section σ̃ of Ẽ the section ΣE(σ̃) := σ as

σ([x, v]) :=

{
σ̃(x, v), [x, v] /∈ G,
[σ̃(x, v), 0]κ, [x, v] ∈ G, (x, v) ∈ ∂inM

where [·, ·]κ denotes the equivalence class with respect to ∼κ. The map σ is well-defined
(i.e., independently of the choice of the lift (x, v) ∈ ∂inM of [x, v]) because σ̃ being a bil-
liard section implies that σ̃(x, v′) = κ(σ̃(x, v)) for (x, v) ∈ ∂inM , and hence [σ̃(x, v), 0]κ =
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[0, σ̃(x, v′)]κ. Clearly, σ is a section and smooth at any point of M\ G. To test smooth-
ness at any point of the gluing region G we have to compose with flow charts and flow
trivializations to obtain a coordinate expression. Doing so yields

R× Uin ∩Nin −→ (R× Uin ∩Nin)× Cr

(t, x, v) 7−→ tin
(
α̃ϕt(x,v),−t (σ̃(ϕt(x, v)))

)
.

To prove the mapping properties claimed in (58) it therefore only remains to show that
ΣE is bijective on the given domains, but this follows easily from the observation that

Σ−1
E (σ)(x, v) =





σ([x, v]), (x, v) ∈ M̊,

e, (x, v) ∈ ∂inM, σ([x, v]) = [e, 0]κ,

e′, (x, v) ∈ ∂outM, σ([x, v]) = [0, e′]κ

is indeed the inverse of ΣE and has its image in C∞Bill(M\∂gM, Ẽ) due to a similar coordinate
calculation.

The definition of α is independent of the chosen section σe by virtue of the Leibniz rule

which trivially follows for X from the Leibniz rule for X̃. The claimed equality of traces
follows immediately because the model bundle E was constructed in such a way that the
boundary map κ present in the definition of α̃ acts trivially on it. �

Remark B.5. We refrain from stating and proving a vector-valued uniqueness result anal-
ogous to Proposition 3.3, as well as a vector-valued version of the resolvent study as in
Corollary 5.5 for the sake of brevity.
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C. Invariant Ruelle Distributions on
Convex-Cocompact Hyperbolic Surfaces

This appendix contains the research paper Invariant Ruelle Distributions on Convex-
Cocompact Hyperbolic Surfaces – A Numerical Algorithm via Weighted Zeta Func-
tions [SW23] which was written and made available as an arXiv preprint with the co-
author Tobias Weich during the author’s PhD.

Both co-authors developed the research question and proof strategy. P.S. worked out the
proofs and wrote the manuscript. This was accompanied by regular blackboard discussions
between the co-authors.

The implementations were done by P.S. who also conducted the numerical experiments
based on a mutually developed research plan. Both co-authors contributed equally to the
proof reading of the manuscript.
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INVARIANT RUELLE DISTRIBUTIONS ON CONVEX-COCOMPACT

HYPERBOLIC SURFACES

–

A NUMERICAL ALGORITHM VIA WEIGHTED ZETA FUNCTIONS

PHILIPP SCHÜTTE AND TOBIAS WEICH

Abstract. We present a numerical algorithm for the computation of invariant Ru-
elle distributions on convex co-compact hyperbolic surfaces. This is achieved by ex-
ploiting the connection between invariant Ruelle distributions and residues of mero-
morphically continued weighted zeta functions established by the authors together with
Barkhofen (2021). To make this applicable for numerics we express the weighted zeta as
the logarithmic derivative of a suitable parameter dependent Fredholm determinant sim-
ilar to Borthwick (2014). As an additional difficulty our transfer operator has to include
a contracting direction which we account for with techniques developed by Rugh (1992).
We achieve a further improvement in convergence speed for our algorithm in the case of
surfaces with additional symmetries by proving and applying a symmetry reduction of
weighted zeta functions.

Mathematical Subject Classification. 37D05, 37C30 (Primary), 58J50 (Secondary).

Introduction

An important notion that has significantly advanced the theory of chaotic, i.e. hyper-
bolic, dynamical systems over the last couple of decades is that of Pollicott-Ruelle reso-
nances [Rue76, Pol85, BKL02, DZ19]. They constitute a discrete subset of the complex
plane that provides a spectral invariant refining the ordinary L2-spectrum of the gener-
ator of the dynamics. From a dynamical systems point of view the central relevance of
Pollicott-Ruelle resonances is that they describe the mixing properties of the dynamical
system. Roughly speaking, if there is a simple leading resonance and a spectral gap then
the system is exponentially mixing and the gap quantifies the exponential decay rate of
the correlation function. Furthermore if there is an asymptotic spectral gap the other
resonances describe additional decay modes [Tsu10, NZ15].

Apart from their dynamical importance for mixing properties the distribution of Pollicott-
Ruelle resonances as well as the multiplicities of certain Pollicott-Ruelle resonances have
proven to be intimately linked to geometrical [CDDP22, FT23] and topological properties
[DZ17, KW20, DGRS20] of the underlying manifolds, respectively. For sufficiently con-
crete hyperbolic flows such as geodesic flows on Schottky surfaces [Bor14, BW16, BPSW20]
or 3-disc obstacle scattering [GR89, DSW21, SWB23, BSW22] there are even efficient nu-
merical algorithms that allow to calculate the spectrum of Pollicott-Ruelle resonances
numerically. These algorithms do not only enable testing of conjectures (see e.g. [Dya19])
but the numerical experiments regarding resonances also made possible the discovery of
new and unexpected phenomena such as the alignment of resonance into chains subse-
quently leading to new mathematical theorems [Wei15, PV19].

Beyond Pollicott-Ruelle resonances themselves the spectral approach also allows to as-
sociate with each Pollicott-Ruelle resonance a flow invariant distribution which has been

Key words and phrases. Ruelle resonances, invariant Ruelle distributions, zeta functions, hyperbolic
dynamics, Schottky surfaces, numerical zeta functions.
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termed invariant Ruelle distribution [GHW21] (see Section 1 for a definition in our set-
ting). The invariant Ruelle distribution associated with the leading resonance is always
an invariant measure which coincides with the Sinai-Ruelle-Bowen (SRB) measure for
Anosov flows on compact manifolds and with the Bowen-Margulis-Sullivan measure (fol-
lowing the terminology of Roblin [Rob03]) for geodesic flows on non-compact manifolds
in negative curvature. This includes for example Schottky surfaces which will be studied
in the present paper. In the case of compact surfaces of constant negative curvature or
more generally compact rank-1 locally symmetric spaces it has been proven that the in-
variant Ruelle distributions coincide with quantum phase space distributions [GHW21].
These are the so-called Patterson-Sullivan distributions introduced by Anantharaman and
Zelditch [AZ07]. Apart from these results the properties of invariant Ruelle distributions
are widely unexplored territory. Nevertheless motivated by the above results it is very
likely that these invariant distributions are closely connected to the finer spectral and
dynamical properties of the underlying flow.

The purpose of the present article is to develop a numerical algorithm that allows to
concretely calculate the invariant Ruelle distributions and to provide some first numerical
experiments that support the claim that invariant Ruelle distributions are an interesting
spectral invariant that deserves further investigation. As a concrete model we chose geo-
desic flows on Schottky surfaces which are a paradigmatic model for hyperbolic flows on
non-compact manifolds. In practice our numerical approach can and has been applied to
3-disc scattering as well but the rigorous justification of its numerical convergence would
require much more technical tools. We therefore restrict to the setting of Schottky surfaces
in this article.

Statement of results. The primary concern of the present article are certain generalized
densities Tλ0 called invariant Ruelle distributions. For a given convex-cocompact hyper-
bolic surface XΓ = Γ\H these can be attached to any member λ0 ∈ res(XΓ) of the discrete
set of Pollicott-Ruelle resonances res(XΓ) ⊂ C of the geodesic flow and they act on smooth
test functions on the unit sphere bundle of the surface in a flow-invariant manner:

Tλ0 : f 7−→ Tλ0(f) ∈ C , f ∈ C∞(SXΓ) .

These distributions encode non-trivial information about resonant states and in the par-
ticular case of λ0 = δ − 1 with δ the Hausdorff dimension of the limit set of Γ being the
first resonance they coincide with the Bowen-Margulis measures. For the precise definition
of Pollicott-Ruelle resonances and Tλ0 refer to Section 1.1.

Our means of investigating Tλ0 is the weighted zeta function for XΓ

Zf (λ) :=
∑

γ

e−λTγ

|det(id− Pγ)|

∫

γ#

f ,

where the sum extends over all closed geodesics γ of XΓ, Tγ denotes the length of γ, γ# the
primitive closed geodesic corresponding to γ, and Pγ is the associated linearized Poincaré
map. It is known that Zf (λ) continues meromorphically to C and that this continuation
is connected to the invariant Ruelle distributions via the residue formula

Res
λ=λ0

[Zf (λ)] = Tλ0(f) ,

which is valid for any test function f ∈ C∞(SXΓ). An algorithm for the calculation
of weighted zeta functions therefore translates directly to an algorithm for the invariant
Ruelle distributions.

Our main results are exactly such concrete formulae for Zf (λ) feasible for numerical
evaluation. To this end we introduce a dynamical determinant for the given surface XΓ
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as defined in Definition 2.1:

df (λ, z, β) := exp


−

∞∑

k=1

∑

γ#

zk·n(γ#)

k

e
−kλT#

γ −kβ
∫
γ# f

∣∣det
(
id− Pk

γ#

)∣∣


 ,

where now the sum extends over all primitive closed geodesics γ# of XΓ and the number
n(γ#) ∈ N is the so-called word length of γ#.

A priori df (λ, z, β) converges locally uniformly for any fixed (z, β) ∈ C2 and Re(λ)
sufficiently large by the exponential growth of the number of closed geodesics as a function
of their maximal length. This is considerably strengthened in Corollary 2.4: df (λ, z, β)
continuous holomorphically to C in all of its three variables. Furthermore df can be used
to calculate Zf due to Corollary 2.5

Zf (λ) =
∂βdf (λ, 1, 0)

df (λ, 1, 0)
,

which provides an independent proof of the meromorphic continuation of the weighted
zeta function.1 This together with an everywhere absolutely convergent cycle expansion
derived in Corollary 3.1

df (λ, z, β) := 1 +

∞∑

n=1

dn(λ, β)zn

almost puts us in a position to calculate concretely Zf (λ) for a given λ ∈ C. The missing
ingredient to obtain numerically feasible formulae for dn(λ, β) is a concrete expression for
the period integrals

∫
γ# f . We present two approaches which are both reasonably cheap

to evaluate and at the same time possess a straightforward geometrical interpretation.
In practice it turns out to be very favorable to exploit the symmetries of the underlying

geometry as much as possible: If XΓ has an additional finite symmetry group G in a
certain sense to be specified in Chapter 5 then we can prove that df factorizes which
immediately implies a corresponding decomposition of Zf :

df (λ, z, β) =
∏

χ∈Ĝ

df,χ(λ, z, β) . Zf (λ) =
∑

χ∈Ĝ

∂df,χ(λ, 1, 0)

df,χ(λ, 1, 0)
,

with both the product and the sum spanning the finitely many equivalence classes of
unitary, irreducible representations of G. The individual terms df,χ exhibit far superior
convergence properties compared to df which is demonstrated as part of the numerical
experiments which round off this article.

Paper organization. The present paper is organized as follows: In the introductory
Chapter 1 the central objects of interest are defined namely Pollicott-Ruelle resonances,
the invariant Ruelle distribution associated to such a resonances, and the weighted zeta
function Zf (λ) (Chapter 1.1). While these definitions can be stated quite generally for
the class of open hyperbolic systems our application is to the concrete subclass of geodesic
flows on convex-cocompact hyperbolic surfaces (Chapter 1.2).

As mentioned above the overall goal is the derivation of a numerical algorithm for
the calculation of Zf (λ) on convex-cocompact surfaces. The means to do just this is
the dynamical determinant df (λ, z, β) defined in Chapter 2. Just as Zf continues mero-
morphically to C so does df continue holomorphically to C in all three of its arguments
(Chapter 2.1). Furthermore a suitable logarithmic derivative of df coincides with Zf
(Chapter 2.2) meaning that a numerical algorithm for the calculation of df immediately
transfers to one for Zf .

1 Note that this does not recover the whole strength of the general continuation theorem for Zf because
it does not admit a straightforward interpretation of the poles as resonances and the residues as invariant
Ruelle distributions.
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Our numerical treatment of df follows a philosophy termed cycle expansion which cir-
cumvents the difficulty that the original definition of df in terms of an infinite sum does not
converge in the domain where its zeros are located. This culminates in the derivation of
concrete formulae in Chapter 3. The subsequent Chapter 4 lays out two approaches for the
last missing ingredient namely the (geometrically meaningful) numerical approximation
of the period integrals

∫
γ# f appearing both in df and Zf .

While this completes a practically useful algorithm for the calculation of df often one
can do better in terms of runtime resource requirements by exploiting the inherent symme-
tries of the underlying surface. Formalizing this symmetry reduction requires significant
additional notation as well as effort and occupies the whole of Chapter 5.

The second-to-last Chapter 6 compiles a collection of example plots calculated with the
machinery developed so far. In particular this includes a case study supporting the claim of
enhanced convergence properties of the symmetry reduced variants df,χ of the dynamical
determinant df . Finally Chapter 7 presents an outlook on open questions both in the
realms of alternative numerical algorithms as well as of interesting numerical experiments
to conduct in the future.

Acknowledgments. This work has received funding from the Deutsche Forschungsge-
meinschaft (DFG) (Grant No. WE 6173/1–1 Emmy Noether group “Microlocal Methods
for Hyperbolic Dynamics”) as well as SFB-TRR 358/1 2023 — 491392403 (CRC “Inte-
gral Structures in Geometry and Representation Theory”). P.S. was supported by an
individual grant from the Studienstiftung des Deutschen Volkes.

1. Analytical Preliminaries

We start this chapter off by giving a short introduction to the analytical theory of
weighted zeta functions on open hyperbolic systems as presented in the companion paper
[SWB23] (Section 1.1). Afterwards we describe the significantly more concrete dynamical
setting which we will work in for the remainder of this article: Geodesic flows on Schottky
surfaces (Section 1.2).

1.1. Weighted Zeta Functions and Invariant Ruelle Distributions. Our presenta-
tion here follows closely a simplified version of [SWB23], see also [DG16]. Let a smooth,
possibly non-compact, manifold M and a smooth, possibly non-complete, flow ϕt on M
be given. We make the following dynamical assumptions on ϕt:

(1) The generator X of ϕt vanishes nowhere,
(2) The trapped set of ϕt defined by

K :=
{
x ∈M

∣∣ϕt(x) exists ∀t ∈ R and ϕR(x) compact
}

is compact,
(3) ϕt is hyperbolic on K in the sense that for every x ∈ K there exists a ϕt-invariant

splitting of the tangent bundle

TxM = R ·X(x)⊕ Es(x)⊕ Eu(x)

such that Es, Eu depend continuously on x and the differential dϕt acts in a con-
tracting manner on Es and an expanding manner on Eu:

‖dϕt(x)v‖Tϕt(x)M ≤ C exp(−c|t|)‖v‖TxM, t ≥ 0, v ∈ Es(x)

‖dϕt(x)v‖Tϕt(x)M ≤ C exp(−c|t|)‖v‖TxM, t ≤ 0, v ∈ Eu(x) .

In this setting one can define a discrete subset res(X) ⊆ C called Pollicott-Ruelle reso-
nances of X as follows: Basic function analysis proves that the resolvent2 (X+λ)−1 yields

2 Or rather its restriction to a suitable subset in a compact ambient manifold; we disregard this technical
detail in the upcoming rather informal discussion.
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a holomorphic family of bounded operators L2 → L2 for sufficiently large Re(λ) � 0.
Through the usage of anisotropic Sobolev spaces one can show [DZ16, DG16] that re-
stricting the domain and enlarging the codomain enables meromorphic continuation to C
of (X + λ)−1 but now as a family of operators C∞c → D′. Our resonances are precisely
the poles of this continuation.

Given a resonance λ0 ∈ res(X) we can compute the residue Πλ0 of (X+λ)−1 at λ = λ0.
The meromorphic continuation outlined above uses the analytic Fredholm theorem as
a central tool so the operator Πλ0 turns out to be of finite rank. Furthermore, as a
consequence of wavefront estimates for Πλ0 , a certain generalization of the Hilbert space

trace called a flat trace exists for the family of operators Tr[
(
fΠλ0

)
where f ∈ C∞(M).

One calls the generalized density

Tλ0 : C∞(M) 3 f 7−→ Tr[
(
fΠλ0

)
∈ C

the invariant Ruelle distribution associated with λ0 [GHW21]. We remark here that Tλ0 is
supported on the trapped set K, so in particular it is compactly supported: Tλ0 ∈ E ′(M).

In [SWB23] the authors introduced a weighted zeta function which allows for a signifi-
cantly more concrete approach to invariant Ruelle distributions. They associated with the
flow ϕt and a weight f ∈ C∞(M) the complex function

Zf (λ) :=
∑

γ

e−λTγ∣∣det
(
id− Pγ

)∣∣
∫

γ
f , (1)

with the sum extending over all closed trajectories of ϕt, Tγ denoting the period length of
the trajectory γ, and Pγ being the linearized Poincaré map associated with γ. The latter
is simply the differential of ϕt restricted to stable and unstable directions:

Pγ(t) := dϕ−t(γ(t))
∣∣
Es(γ(t))⊕Eu(γ(t))

,

where the dependence on the base point can be omitted when taking the determinant.
While Zf converges absolutely only for Re(λ) � 0 it continues meromorphically to the
whole complex plane [SWB23, Theorem 1.1]. The circumstance that Zf is a useful function
to consider stems from the following residue formula relating Zf to Ruelle distributions:

Tλ0(f) = Res
λ=λ0

[Zf (λ)] , f ∈ C∞(M) . (2)

1.2. Introduction to Schottky Surfaces. In this section we provide a short introduc-
tion to Schottky, i.e. convex cocompact hyperbolic, surfaces. The material presented here
is quite classic and can be found in e.g. [Bor16, Dal11].

Schottky groups are discrete subgroups of the group G := PSL(2,R) of orientation
preserving isometries of the upper half plane

H := {z ∈ C | Im(z) > 0} ,
equipped with the Riemannian metric

gH(x+ iy) :=
dx2 + dy2

y2
.

The geodesics of (H, gH) are given by semicircles centered on the real line and by straight
lines parallel to the imaginary axis. We denote the associated geodesic flow on the unit
tangent bundle SH = H× {v ∈ C | |v| = 1} by ϕt.

We will introduce Schottky groups by their dynamics on H To this end let the reader
be reminded that G acts on the whole Riemann sphere C ∪ {∞} and therefore on H via
Moebius transformations (

a b
c d

)
· z :=

az + b

cz + d
.
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This action extends to SH by acting on fiber coordinates via the derivative of a Moebius
transformation. Now recall that non-trivial isometries can be classified according to the
absolute value of the trace of their matrix representation which determines a certain
dynamical and fixed point behavior on the compactification H := H ∪ R ∪ {∞}:

(1) |tr| > 2: hyperbolic isometry, two distinct fixed points in R ∪ {∞}
(2) |tr| = 2: parabolic isometry, one unique fixed point on R ∪ {∞},
(3) |tr| < 2: elliptic isometry, one unique fixed point in H.

We summarize shortly the dynamical properties of hyperbolic isometries because those
will be particularly important for us: Given a hyperbolic g there exists a unique hyper-
bolic geodesic γ(t) such that its endpoints at infinity limt→±∞ γ(t) are the attracting and
repelling fixed points of g. One calls γ(R) ⊆ H the axis of g and g acts on γ as a translation
by a fixed hyperbolic distance `(g) > 0. This distance is called the displacement length of
the isometry g.

With this in mind we can define Schottky groups as those discrete, free subgroups
Γ < PSL(2,R) which are finitely generated by hyperbolic isometries. If {g1, . . . , gr} is
a generating set for Γ of minimal size then r is called the rank of Γ and by a classical
result of Maskit [Mas67] there exists a collection of open Euclidean discs D1, . . . , D2r with
disjoint closures and centered on the real line such that

gi(∂Di) = ∂Di+r, gi(Di) = C \Di+r . (3)

We call these circles fundamental circles for the chosen generators and a fundamental
domain for the action of Γ on H is given by their complement H\⋃2r

i=1Di. We will refer to
this particular fundamental domain as the canonical one. For an illustration see Figure 1.

Figure 1. The fundamental circles and group element actions for a Schot-
tky group of rank r = 2 (three-funnel surface, see Figure 2 below).

Conversely one can define a Schottky group of rank r by fixing open discs D1, . . . , D2r

with pairwise disjoint closures and centered on the real line and then taking the group
generated by hyperbolic elements g1, . . . , gr satisfying (3).

For convenience of notation one usually defines gi+r := g−1
i for 1 ≤ i ≤ r and subse-

quently extends the indexing of generators to arbitrary i > 2r by defining gi := g(imod 2r).
Setting Di := D(imod 2r) property (3) continues to hold for these extended definitions. We
will also frequently use indices in the quotient ring Z/2rZ.

To every Schottky group Γ we associate a Schottky surface obtained as the quotient
space XΓ := Γ \ H. By discreteness of Γ the set XΓ can be equipped with a canonical
smooth structure. Furthermore the metric gH is Γ-invariant and thus descends to XΓ

again making the quotient space a Riemannian manifold of constant negative curvature.
It is non-compact, of infinite volume, and the geodesic flow on its unit tangent bundle fits
into the framework of open hyperbolic systems as presented in Section 1.1, see [DG16,
Section 6.3]. In particular we can speak about Ruelle resonances, weighted zeta functions,
and invariant Ruelle distributions on Schottky surfaces.
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At first glance the non-compactness of Schottky surfaces might make them seem quite
difficult in terms of numerical treatment. Their suitability for our purposes follows from
the particularly simply structure of free groups combined with the more general corre-
spondence between group elements and closed geodesics [Bor16, Proposition 2.25]: The
closed oriented geodesics of a Schottky surface XΓ are in bijection to the conjugacy classes
of the group Γ and the length of a geodesic Tγ coincides with the displacement length `(g)
for any element g in the associated conjugacy class. We denote by γ(g) the image of
the conjugacy class containing the group element g ∈ Γ under this bijection record the
important relation [Bor16, Eq. (15.3)]

g′(x−) = e−`(g) = e−Tγ(g) (4)

between displacement length and attracting fixed point x+ of g.
Because Γ is finitely generated we can represent its elements as sequences (i1, . . . , in) ∈

A∗ over the alphabet A := (Z/2rZ) by defining

g(i1,...,in) := gin · · · gi1 .
Any such sequence (i1, . . . , in) is called a word, the ij its letters, and n its (word) length.
From the fact that Γ is free it follows immediately that the map from words to group
elements becomes a bijection if we restrict to reduced words, i.e. elements of {(i1, . . . , in) ∈
A∗ | ij 6= ij+1 + r ∀ 1 ≤ j ≤ n− 1}.

Now the conjugacy classes of Γ can be represented by words of minimal length and
such a representation is unique modulo cyclic shifts of its letters. We denote the set of all
possible indices of such representatives of length n by Wn, i.e.:

Wn :=
{

(i1, . . . , in) ∈ An
∣∣ ij 6= ij+1 + r ∀ 1 ≤ j ≤ n− 1 and in 6= i1 + r

}
.

We will also call Wn the set of closed words of length n. If the geodesic γ ⊆ XΓ is
represented by g(i1,...,in) with (i1, . . . , in) ∈ Wn then we denote by n(γ) := n the length of
its minimal representation and call this the word length of γ.

Finally, given a function f :
⋃
i 6=j Di ×Dj → C we define its iteration along the group

element g = gin · · · gi1 to be the product

fg := f(i1,...,in) := f(x−, x+) · f(gi1x−, gi1x+) · . . . · f(gin−1 · · · gi1x−, gin−1 · · · gi1x+) ,

where(x−, x+) are the repelling and attracting fixed points of g.
In our numerics we will mostly be dealing with Schottky surfaces of rank r = 2. From

the topological standpoint there are only two possibilities for such surfaces corresponding
to distinct combinatorics of their actions on the canonical fundamental domain. These are
depicted in Figure 2.

Figure 2. The two topological possibilities for Schottky surfaces of rank
two: (a) Funneled torus. (b) Three-funnel surface.
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2. Introducing Dynamical Determinants

In this section we introduce the central object from which our numerically feasible
formula for weighted zeta functions Zf will be derived: The dynamical determinant.

Definition 2.1. Let XΓ be a Schottky surface and f ∈ C∞ (SXΓ). Then the associated
dynamical determinant at (λ, z, β) ∈ C3 is formally defined as

df (λ, z, β) := exp


−

∞∑

k=1

∑

γ#

zk·n(γ#)

k

e
−kλT#

γ −kβ
∫
γ# f

∣∣det
(
id− Pk

γ#

)∣∣


 , (5)

where the sum stretches over all primitive closed geodesics γ#.

A numerical implementation of the individual summands appearing in this dynamical
determinant is straightforward. One simply uses the symbolic coding of closed geodesics
and the fact that eigenvalues of the linearized Poincaré map are given by exponentials of
lengths. The concrete calculation of periods integrals fγ# is slightly less obvious but can
be done quite efficiently after certain simplifications. Two alternatives will be presented
in Section 4. Calculation of df itself demands additional attention as the defining formula
(2.1) does not converge on the whole complex plane but for sufficiently small |z| only. How
to overcome this difficulty is the main content of Section 3.

The question remains how we can exploit df for the calculation of Zf , the latter being
the actual object of interest for us. We will answer this question in two steps in the
upcoming sections: First we prove that df is analytic in its variables in Section 2.1. Its
logarithmic derivative ∂β log df (λ, 1, 0) is thus meromorphic and Section 2.2 demonstrates
that it coincides with Zf (λ).

2.1. Dynamical Determinants as Fredholm Determinants. In this section we prove
that the dynamical determinant of Definition 2.1 actually yields a well-defined holomorphic
function of (λ, z, β). One possible way to do this would be applying microlocal techniques
and anisotropic Sobolev spaces as for example presented in Baladi’s book [Bal18]. While
generally feasible for the problem at hand, the methods presented in [Bal18] are specifically
geared towards the setting of low regularity: Applying it to Schottky surfaces would discard
the additional information provided by the fact that Schottky groups are defined in terms
of holomorphic functions.

We therefore turn towards the ideas developed by Rugh [Rug92, Rug96] in the analytic
setting. Instead of inferring analyticity of df directly from [Rug96, Theorem 1] we provide
a self-contained proof by adapting his techniques and notation to our concrete setting of
Schottky surfaces. Besides being self-contained this will later on offer a convenient entry
point for symmetry reduction (Section 5) and should come in handy for the development
of alternative numerical algorithms (Section 7).

Before diving into the proof we give some definitions: Let D ⊆ C be an open disc in the
complex plane. Then we denote by

H2(D) := {f ∈ L2(D) | f is holomorphic}
the Bergman space of square-integrable, holomorphic functions on D. Furthermore we
denote its dual space by H−2(D) and identify it with the Bergman space H2(C \ D) via
the bilinear pairing

〈u, v〉 :=

∫

∂D
u(z)v(z)

dz

2πi
, u ∈ H2(D), v ∈ H−2(D) .

If D is the unit disc D = {z ∈ C | |z| < 1} then ψn(z) :=
√

(n+ 1)/πzn defines an

orthonormal basis for H2(D) with dual basis given by ψ∗n(z) :=
√
π/(n+ 1)z−n−1, i.e.
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〈ψn, ψ∗m〉 = δn,m. An arbitrary disc is easily reduced to this case by translation and
scaling.

A last ingredient which will appear in the following proof is the so-called Bergman kernel
KD(z, w) of D. This reproducing kernel satisfies the defining relation3

f(z) =

∫

∂D
KD(z, w)f(w)dw ,

and can be expressed as a sum over an orthonormal basis. Below we will employ an explicit
expression for the unit disc and again reduce the case of a general disc by translation and
scaling.

With these prerequisites at hand the main theorem now reads as follows:

Theorem 2.2 ([Rug96], Thm. 1). Let Γ be a rank-r Schottky surface with generators
g1, . . . , gr and fundamental circles D1, . . . , D2r. Given a potential V which is analytic in
a neighborhood of

⋃
i 6=j Di ×Dj, the associated transfer operator defined by the formula

LV :
⊕

i 6=j
H−2(Di)⊗H2(Dj) −→

⊕

i 6=j
H−2(Di)⊗H2(Dj) ,

〈LV u(z1, z2), v(z1)〉
∣∣∣∣v∈H2(Di)
z2∈Dj

:=

∫

∂Di

V (z1, z2)v(z1)u(giz1, giz2)
dz1

2πi
, i 6= j ,

(6)

is a well-defined trace-class operator and its Fredholm determinant is an analytic function
that satisfies the following identity for sufficiently small |z|:

det (id− zLV ) = exp

(
−
∞∑

n=1

zn

n

∑

w∈Wn

Vw

(1− e−Tγ(gw))(eTγ(gw) − 1)

)
. (7)

Proof. As in [Bor16, Lemma 15.7] we may deduce the trace-class property of (6) from
exponential bounds on the singular values µj(LV ) of the transfer operator. To obtain
such bounds it suffices to consider the norms of the images of an orthonormal basis of
H−2(Di)⊗H2(Dj) under the components of LV by combining the additive Fan inequality
[Bor16, A.25], c.f. Appendix A, with the basic estimate

µj(A) ≤
∞∑

i=j

‖Aφi‖ ,

obtained via the min-max estimate [Bor16, A.23], see also Appendix A, and valid for any
bounded operator A : H → H′ between Hilbert spaces H,H′ and an orthonormal basis
{φi} of H.

Now the potential V is bounded on the closure of the poly-discs Di ×Dj and therefore
acts as a bounded operator. As in [Bor16, Eq. (15.15)] are thus left with the task of
estimating the pullback action

‖(ψi,∗n ◦ gi)⊗ (ψjn ◦ gi)‖L2((C\Di)×Dj) , i 6= j ,

where the orthonormal basis elements ψin and ψi,∗n are obtained from ψn and ψ∗n by a
suitable scaling and translating to Di and C \Dj , respectively. Now we observe that gi,
i 6= j, acts in contracting fashion on Dj and in expanding fashion on Di. It thus follows
that for some constants C, c > 0 we have

‖(ψi,∗n ◦ gi)⊗ (ψjn ◦ gi)‖L2((C\Di)×Dj) ≤ Ce−cn , i 6= j ,

3 Classically one expresses this relation as an integral over D instead of ∂D. In our proof below we will
need to deal with integrals over ∂D, though, so we use this slightly less common definition.
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where the constants dependent on the rate of contraction/expansion and the derivative of
gi. Now this in turn implies the estimate

µj(LV ) ≤ C ′
∞∑

n=j

e−cn = C ′
e−cj

1− e−c
, (8)

for some constant C ′ > 0 which additionally depends on the potential V and finally proving
the trace-class claim.

To demonstrate the determinant formula (7) we proceed similarly to [Bor16, Theo-
rem 15.10] by first rewriting

det (id− zLV ) = exp (Tr (log(id− zLV ))) = exp

(
−
∞∑

n=1

zn

n
Tr (LnV )

)
. (9)

for values of |z| small enough that the logarithm converges. The traces of iterates LnV
decompose further in terms of components of LV , i.e. its restrictions in domain and
codomain to the individual spaces H−2(Di) ⊗ H2(Dj) for i 6= j. Multiplying out the
defining formula (6) and collecting all resulting components we see that only the diagonal
entries of the form

Li1,...,inV : H−2(Din+r)⊗H2(Di1) −→ H−2(Din+r)⊗H2(Di1)

can contribute to the trace. As a result we obtain

Tr (LnV ) =
∑

i1,...,in

Tr
(

Li1,...,inV

)
,

where ij + r 6= ij+1 for 1 ≤ j ≤ n − 1, in + r 6= i1, and the diagonal components are
explicitly given by

〈
Li1,...,inV u(z1, z2), v(z1)

〉 ∣∣∣∣v∈H2(Din+r)
z2∈Di1

=

∫

∂Din+r

Vg−1
(i1,...,in)

(z1, z2)v(z1)u
(
g−1

(i1,...,in)(z1), g−1
(i1,...,in)(z2)

)dz1

2πi
,

(10)

for any element u ∈ H−2(Din+r)⊗H2(Di1) and using the shorthand notations g−1
i1
· · · g−1

in
=

g−1
(i1,...,in) as well as Vg−1

(i1,...,in)
as defined in (1.2). To see this observe that by (6) the group

element to apply is determined by the tensor product’s first factor which in this particular
instance yields gin+r = g−1

in
as the first element. A similar remark holds for the subsequent

generators.
Now the trace of an operator of the form given in (10) can be calculated as follows (with

g := g−1
(i1,...,in) for convenience):

Tr
(

Li1,...,inV

)

=
∑

k,l≥0

〈
Li1,...,inV ψin+r,∗

k ⊗ ψi1l , ψin+r
k ⊗ ψi1,∗l

〉

=
∑

k,l≥0

∫

∂Din+r

∫

∂Di1

Vg(z1, z2)ψin+r,∗
k (g(z1))ψin+r

k (z1)ψi1l (z2)ψi1,∗l (g(z2))
dz2

2πi

dz1

2πi

=

∫

∂Din+r

∫

∂Di1

Vg(z1, z2)Kin+r(z1, g(z1))Ki1(g(z2), z2)
dz2

2πi

dz1

2πi
,

(11)

where Kin+r and Ki1 denote the Bergman kernels of the domains C \ Din+r and Di1 ,
respectively. After translation and scaling we may assume that both discs coincide with the
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unit disc D such that Kin+r(x, y) = Ki1(x, y) =
∑∞

k=0
xk

yk+1 = 1
y−x . A simple application

of the residue theorem then yields∫

∂Din+r

∫

∂Di1

Vg(z1, z2)Kin+r(z1, g(z1))Ki1(g(z2), z2)
dz2

2πi

dz1

2πi

=

∫

∂D

∫

∂D
Ṽg(z1, z2)

1

g̃(z1)− z1

1

z2 − ĝ(z2)

dz2

2πi

dz1

2πi

=
Vg(x−, x+)

(g′(x−)− 1)(1− g′(x+))
,

with a rescaled version Ṽg of Vg and two different rescalings g̃ and ĝ of g. In the last line
the repelling and attracting fixed points (x−, x+) of g appear because they are the unique
solutions of g(z) = z on Din+r and Di1 , respectively.

In summary we obtain for the trace of diagonal entries of n-fold iterates of the transfer
operator the concrete formula

Tr
(

Li1,...,inV

)
=

Vg(x−, x+)

(g′(x−)− 1)(1− g′(x+))
=

Vg(x−, x+)

(e`(g) − 1)(1− e−`(g))
, (12)

where second equality follows immediately from (4). If we plug (12) into (9) we obtain
(7) because the constraints on the finite sequence (i1, . . . , in) mentioned above guarantees
that the sum runs exactly over the set of closed words Wn. �

Theorem 2.2 immediately yields a representation of df as a Fredholm determinant by
choosing an appropriate potential. It must obviously include period integrals

∫
γ f over

geodesics γ ⊆ SXΓ which we encode in a fashion similar to [AZ07]: Given a weight
f ∈ Cω (SXΓ) we can consider its lift to SH which in turn can be expressed as a function
on R×(∂H2\∆), where ∆ denotes the diagonal of ∂H2. In these so-called Hopf coordinates
a point (t, x1, x2) maps to γ(x1,x2)(t) with γ(x1,x2) a geodesic with x1 and x2 as its endpoints

at infinity and a suitably chosen starting point γ(x1,x2)(0).4 Keeping in mind that closed

geodesics of XΓ possess endpoints at infinity in the intersections Ii := Di ∩ ∂H, we define
the following function which is real-analytic, c.f. [AZ07, Section 7.2]:

⋃

i 6=j
Ii × Ij 3 (x1, x2) 7−→ fγ(x1,x2)

:=

∫ t(x1,x2)+τ(x1,x2)

t(x1,x2)
f(t, x1, x2)dt , (13)

where τ(x1, x2) denotes the length of the segment of γ(x1,x2) that intersects the canonical
fundamental domain F of XΓ and γx1,x2(t(x1, x2)) is the starting point of this intersecting
arc. By analytic continuation it extends to a neighborhood of

⋃
i 6=j Ii × Ij in C × C and

we denote this extension by fγ(z1,z2)
.

Remark 2.3. Note that the analytic function fγ(z1,z2) will in general not extend to the
entire poly-discs Di × Dj . This does not pose a significant problem as one can simply
re-do the proof of Theorem 2.2 with suitable smaller poly-discs on which fγ(z1,z2)

actually

is analytic. The theorem then continues to hold for any potential V analytic on an open
neighborhood of

⋃
i 6=j Ii × Ij .

Corollary 2.4. Let an analytic weight f ∈ Cω (SXΓ) be given. The Fredholm determinant

(of the scaling by z) of Lfλ,β := LVλ,β for the parameter-dependent choice of potential

Vλ,β(z1, z2) := [g′i(z2)]−λ · exp
(
−β · fγ(z1,z2)

)
, (z1, z2) ∈ Di ×Dj , i 6= j ,

4 One advantage of these coordinates is the fact that the geodesic flow simply acts by translation in
the first component. We will come back to these coordinates in Section 4 where we use them to derive
approximations for period integrals practical for numerical implementation.
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coincides with the dynamical determinant of weight f evaluated at (λ, z, β), i.e. for suffi-
ciently small |z| < C(λ, β) we have:

df (λ, z, β) = det
(

id− zLfλ,β
)
.

In particular the dynamical determinant df (λ, z, β) continues to a holomorphic function
in all three variables.

Proof. We begin by observing that given an element gmw , w ∈ Wn, with fixed points
(x−, x+) we have

(Vλ,β)gmw
(x−, x+) = (Vλ,β)mgw (x−, x+)

immediately by definition of Vλ,β and the iterate along a group element. If we denote byWp
n

the primitive elements of Wn, i.e. words which cannot be written as non-trivial iterations
of shorter words, we observe that members ofWp

n correspond to primitive geodesics under
the correspondence between geodesics and members of Wn. Now we calculate using (7)
for sufficiently small |z| (with constant dependent on the particular λ and β) that

det
(

id− zLfλ,β
)

= exp


−

∞∑

n=1

∞∑

m=1

zmn

mn

∑

w∈Wp
n

exp
(
−mλTγ(gw) −mβ

∫
γ(gw) f

)

| det
(
id− Pmγ(gw)

)
|




= exp


−

∞∑

m=1

∞∑

n=1

zmn

mn

∑

γ#:n(γ#)=n

n ·
exp

(
−mλTγ# −mβ

∫
γ# f

)

| det
(
id− Pm

γ#

)
|




= exp


−

∞∑

m=1

∑

γ#

zm·n(γ#)

m

exp
(
−mλTγ# −mβ

∫
γ# f

)

|det
(
id− Pm

γ#

)
|




= df (λ, z, β) ,

where in the first equality we used the fact that the contracting and expanding eigenvalues
of the linearized Poincaré map Pγ of the geodesic flow on XΓ are exp(±Tγ). By analyticity
of Fredholm determinants we obtain an analytic continuation of df in the z-variable and
for fixed (λ, β) to the complex plane C.

Lastly, we discuss regularity of df in its three variables. Analyticity with respect to z is
standard in the theory of Fredholm determinants. For completeness we sketch the proof in
Appendix A. Analyticity in λ and β can also be readily deduced from standard arguments
in the theory of Fredholm determinants. For an explicit and self-contained proof we refer
the reader to Corollary 3.1 which is independent of the calculations in the remainder of
this section. �

2.2. Dynamical Determinants and Weighted Zeta Functions. We are finally in the
position to prove the connection between the weighted zeta function Zf and the dynamical
(Fredholm) determinant df :

Corollary 2.5. Given an analytic weight function f ∈ Cω (SXγ) the weighted zeta func-
tion at λ ∈ C coincides with the logarithmic derivative of the dynamical determinant w.r.t.
β and evaluated at (z, β) = (1, 0):

Zf (λ) =
∂βdf (λ, 1, 0)

df (λ, 1, 0)
. (14)

Proof. If we assume Re(λ) > 1 and |β| sufficiently small then plugging the potential defined
in Corollary 2.4 into (7) yields an absolutely convergent expression for df at z = 1 and by
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an application of Corollary 2.4 we may calculate:

∂βdf (λ, 1, 0)

df (λ, 1, 0)
= ∂β log (df (λ, 1, β))

∣∣
β=0

= ∂β


−

∞∑

m=1

∑

γ#

1

m

exp
(
−mλTγ# −mβ

∫
γ# f

)

| det
(
id− Pm

γ#

)
|



∣∣∣∣
β=0

=
∞∑

m=1

∑

γ#

exp
(
−mλTγ#

)

| det
(
id− Pm

γ#

)
|

∫

γ#

f

=
∑

γ

exp
(
− λTγ

)

|det
(
id− Pγ

)
|

∫

γ#

f .

But then Zf must coincide with the logarithmic derivative of df for all λ ∈ C by uniqueness
of meromorphic continuation. �

Note that (the proof of) Corollary 2.5 can also be interpreted as given an alternative
argument for meromorphic continuation of weighted zeta functions in the special case of
Schottky surfaces and analytic weights: The proof shows equality between the logarithmic
derivative and the defining formula for weighted zeta functions in the halfplane Re(λ) > 0
where the latter converges uniformly on compact subsets. But now the Fredholm determi-
nant defines an analytic function in λ ∈ C making its logarithmic derivative meromorphic.

3. Cycle Expansion of Dynamical Determinants

Up to this point we actually only ever dealt with the λ- and β-variables of our dynamical
determinant df . The former coincides with the parameter of the weighted zeta function
Zf while the latter was used in the central logarithmic derivative argument in Section 2.1.
This section will now exploit the remaining z-variable introduced in df to derive formulae
for df which provide convergent expressions everywhere and are much better suited for
actual computation than (5). This is done by considering the Taylor expansion around
z = 0 before plugging in z = 1. In the physics literature this procedure is known under
the name cycle expansion and has previously been used to great effect in both the physical
[CE89] as well as the mathematical [JP02, Bor14] communities.

Corollary 3.1. Given an analytic weight f the dynamical determinant can be written as
an absolutely convergent Taylor series

df (λ, z, β) = 1 +
∞∑

n=1

dn(λ, β)zn ,

where the coefficients are holomorphic in (λ, β) and explicitly given by the following recur-
sive formula:

dn(λ, β) =
n∑

k=1

k

n
dn−k(λ, β)ak(λ, β) ,

d0(λ, β) ≡ 1, ak(λ, β) = −
∑

w∈Wk

1

k

exp
(
− (λ− 1)`(gw)− β

∫
γ(gw) f

)

(e`(gw) − 1)2
.

Furthermore they satisfy the following super-exponential bounds for some positive constants
C, c1, c2, c3 > 0:

|dn(λ, β)| ≤ C · e−c1n2+c2n|λ|−c3n|β| .
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Proof. First we derive the given recursion by starting from the following expression ob-
tained by plugging the potential defined in Corollary 2.4 into (7) and valid for small |z|:

df (λ, z, β) = exp

( ∞∑

n=1

an(λ, β)zn

)
, an(λ, β) := − 1

n

∑

w∈Wn

exp
(
− λ`(gw)− β

∫
γ(gw) f

)

(e`(gw) − 1)(1− e−`(gw))
.

One now arrives at the claimed recursion by expanding the exponential function in terms
of Cauchy products and collecting common powers of z. As df (λ, z, β) is analytic in z
on the whole complex plane the resulting power series must converge absolutely for any
z ∈ C.

As doing this expansion explicitly is a common combinatorial problem there exists a
well-known solution given in terms of so-called (complete) Bell polynomials Bn (see e.g.
[Com74, Section 3.3] or [Bor16, Section 16.1]). These are defined by

exp

( ∞∑

n=1

an
n!
zn

)
=
∞∑

n=0

Bn(a1, . . . , an)

n!
zn

and can be shown to satisfy the recursion relation

Bn+1(a1, . . . , an+1) =
n∑

i=0

(
n

i

)
Bn−i(a1, . . . , an−i)ai+1, B0 = 1 .

For the straight-forward proof of this recursion we refer to the literature mentioned above.
Using this relation it is elementary to calculate

dn(λ, β)

=
1

n!
Bn(1!a1(λ, β), . . . , n!an(λ, β))

=
1

n!

n−1∑

i=0

(i+ 1)!

(
n− 1

i

)
Bn−1−i(1!a1(λ, β), . . . , (n− 1− i)!an−1−i(λ, β))ai+1(λ, β)

=
n−1∑

i=0

i+ 1

n
dn−1−i(λ, β)ai+1(λ, β) =

n∑

k=1

k

n
dn−k(λ, β)ak(λ, β) ,

and d0(λ, β) ≡ B0 = 1, proving the claimed formula.
To prove the estimates on the coefficients dn we proceed in a similar fashion as in

Corollary 2.4 but refine the arguments made there slightly, c.f. [Bor16, Lemma 16.1]: The
Fredholm determinant can alternative be expressed as (see Appendix A)

det
(

id− Lfλ,β

)
=

∞∑

n=0

(−1)nTr
( n∧

Lfλ,β
)
, (15)

where
∧n Lfλ,β denotes the n-fold exterior power of Lfλ,β acting on the n-fold exterior power

of its original domain. It immediately follows that we can re-write the coefficients dn(λ, β)
as traces

dn(λ, β) = (−1)nTr
( n∧

Lfλ,β
)
.

These traces can be estimates by the same technique employed in the proof of Theorem 2.2,
but this time we explicitly keep the exponential dependency on the parameters λ and β
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instead of bounding them on some compact subset:

∣∣(−1)nTr
( n∧

Lfλ,β
)∣∣ ≤

∑

j1<...<jn

µj1

(
Lfλ,β

)
· · ·µjn

(
Lfλ,β

)

≤ Cnenc2|λ|−nc3|β|
∑

j1<...<jn

e−C(j1+...+jn)

≤ Cnenc2|λ|−nc3|β|e−Cn
2
,

where the first inequality combines the standard estimate of the trace norm in terms of
singular values with an explicit expression for singular values of tensor powers. Absorbing
the polynomial factor into the exponential term proves the claim. �

Remark 3.2. The arguments made in the proof above could be refined further to obtain a
result resembling [Bor16, Lemma 16.1] even more closely. We refrain from going into that
much detail here as our concrete numerical calculations will rely on symmetry reduction
(see Section 5) – with this reduction the empirical convergence rate is far better than
the analytically obtained estimates. Thus we do not see a great benefit in optimizing the
theoretical bounds.

Remark 3.3. From the appearance of the coefficients ak(λ, β) alone one immediately notices
an invariance property under the action of Z generated by shifts of words

Wn 3 (i1, . . . , in) 7−→ (in, i1, . . . , in−1) .

Furthermore, it is straight forward to reduce the sum over Wk appearing in ak(λ, β) to
a sum over primitive words which reduces the number of words one has to calculate in
practice even further.

We refrain from formalizing these simplifications here because they will be discussed in
detail in Section 5 where they are combined with a reduction w.r.t. additional symmetries
of the underlying Schottky surface. For numerical experiments one would resort to the
symmetry reduced variant anyways.

4. The Numerical Algorithm

We are missing one further ingredient before we can really use a (cutoff version of) the
formulae derived in Section 3 for numerics. This ingredient is a computationally feasible
approach for the calculation of the period integrals fγ# which figure prominently in the
dynamical determinant df .

We begin with a short sketch of what is forthcoming in this section. To this end let
the reader be reminded that being able to calculate the weighted zeta function Zf via
the dynamical determinant df was actually just a means for calculating invariant Ruelle
distributions Tλ0 via the formula

Tλ0(f) = Res
λ=λ0

[Zf (λ)] . (16)

Now visualizing the distribution Tλ0 amounts to visualizing a suitable smooth approx-
imation. The latter should come with a parameter that controls the accuracy of the
approximation. We take the straightforward approach of choosing Gaussian test functions
fσ of width σ > 0 and considering (roughly) the distributional convolution5

C∞(SXΓ) 3 tσ := Tλ0 ∗ fσ −→
σ→0
Tλ0 ∈ E ′(SXΓ) ,

5 What we are actually using are smooth approximations inspired by but not identical to convolution
because only SH ∼= PSL(2,R) and SH ∼= PSL(2,R)/PSO(2) carry group structures but the quotients
XΓ
∼= Γ \ PSL(2,R)/PSO(2) and SXΓ

∼= Γ \ PSL(2,R) do not.
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that converges to the original distribution Tλ0 in the limit σ → 0. Details on these
approximating families will be provided in the upcoming sections.

Having restricted the class of weights to the family fσ we are still faced with the problem
that tσ is a function on the three-dimensional space SXΓ and therefore still difficult to vi-
sualize. We remedy this situation by considering not Tλ0 itself but two reductions obtained
by either pushforward (projection) to the base manifold XΓ or pullback (restriction) to
certain hypersurfaces Σ ⊆ SXΓ:

C∞(XΓ) 3 π∗
(
tσ
)
−→ π∗Tλ0 , π : SXΓ −→ XΓ ,

C∞(Σ) 3 ι∗Σ
(
tσ
)
−→ ι∗ΣTλ0 , ιΣ : Σ ↪→ SXΓ .

In the following two sections we will give precise operational prescriptions for both ap-
proaches. This encompasses suitable choices of parametrization for the respective domains,
concrete test functions fσ adapted to the specific application, and finally a numerically
tractable approach to calculate the associated period integrals

∫
γ fσ. The last ingredient

missing for an actual algorithm is a means of calculating the residue in (16). Different
approaches to this problem are discussed in Remark 5.

4.1. Ruelle Distributions on the Base Manifold. The pushforward of the distribution
Tλ0 ∈ E ′(SXΓ) under the projection π : SXΓ → XΓ is defined as a distribution on XΓ by
the following formula:

〈
π∗
(
Tλ0

)
, f
〉

:= 〈Tλ0 , f ◦ π〉 , f ∈ C∞(XΓ) .

Intuitively this distribution encodes the dependency of Tλ0 on the base point and averages
over the directions in SXΓ. It should therefore relate to those features of resonant states
that are independent of direction.

As mentioned above we will use a variation of convolution as a means to obtain quantities
that can actually be plotted. As test functions we take a family of (hyperbolic) Gaussians
constructed as follows: Considering the transitive group action ofG on H one calculates the
stabilizer of i ∈ H to be the subgroup of rotations PSO(2). This yields a diffeomorphism
G/K ∼= H, g 7→ g · i, and we may define a family of Gaussians fσ, σ > 0, on the quotient
G/K by the formula

f̃σ(gK) = exp

(
−

dG/K(gK, eK)

σ2

2)
, (17)

where the G-invariant metric dG/K is defined in terms of the hyperbolic distance dH,
derived from the metric gH, by dG/K(gK, g′K) := dH(g · i, g′ · i). We denoted the identity
element by e ∈ G.

If Tλ0 were a distribution on G/K we could define the operation of convolution in a
straight forward manner, well-known from harmonic analysis, by sampling our distribution

against the family of shifted Gaussians f̃σ,gK defined as f̃σ,gK(g′K) := f̃σ(g′−1gK). It
should be obvious that this is the correct notion of convolution by duality with respect to
ordinary convolution of functions.

Even though the bi-quotient Γ \ G/K no longer carries a group structure we can use
the following family of smooth functions approximating π∗Tλ0 as a natural analogue of
genuine convolution:6

6 For notational convenience and because context removes any ambiguity we do not differentiate between
the projections SH → H and G → G/K. A similar comment applies to the projections SXΓ → XΓ and
Γ \G→ Γ \G/K.
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t
G/K
λ0,σ

(gK) := 〈Tλ0 , fσ,gK ◦ π〉 , gK ∈ G/K

fσ,gK(g′K) :=
1

Nσ
∑

h∈Γ

exp

(
−

dG/K(hgK, g′K)2

σ2

)
, g′K ∈ G/K .

(18)

The normalization factor Nσ certifies the condition
∫
XΓ

fσ = 1, and the sum over Γ

converges absolutely for any gK ∈ G/K by [Bor16, Eq. (2.22)]. Note that fσ,gK(g′K) is
Γ-invariant both in gK and g′K.

We can make the previous paragraphs even more specific as follows: calculating our

approximation t
G/K
λ0

(gK) basically amounts to evaluating (the residues of) the dynamical
determinant dfσ,gK◦π. This in turn boils down to an implementation of the following
integrals over closed geodesics γ ⊆ SXΓ:

∫

π◦γ
fσ,gK =

∫ Tγ

0
fσ,gK(g−1

0 atK)dt , (19)

where {at}t∈R ⊆ G is the standard geodesic through i ∈ H, i.e. at · i = iet, and the
symmetry g0 ∈ G was chosen to satisfy g−1

0 (0) = x− as well as g−1
0 (∞) = x+ for the

endpoints at infinity (x−, x+) of γ.
At this point we make a couple of simplifying assumptions to reach a computationally

feasible expression. The error of our upcoming approximations will depend on σ in such
a way that the difference between our final expression and (19) converges to 0 in the limit
σ → 0. This justifies using the former over the latter for numerical purposes. A graphical
illustration of the upcoming discussion can be found in Figure 3.

Figure 3. Illustration of the fundamental circles (in rank r = 2) and
some of their translates as used in the approximation of Gaussian period
integrals on the fundamental domain of a Schottky surface. The dashed
points correspond to translates of g · i along elements of Γ0, with vanishing
contribution in the limit σ → 0, whereas the solid points correspond to

translates along Γ̃.

By the Γ-invariance of fσ,gK we may restrict attention to centers g inside the canon-
ical fundamental domain, i.e. g · i ∈ F . It is then practical to consider the following
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decomposition of the group Γ into two disjoint subsets:

Γ = Γ0 t Γ̃ , Γ0 :=
{
h ∈ Γ |hF ∩ (g−1

0 at · i) = ∅ ∀t ∈ R
}
,

Γ̃ :=
{
h ∈ Γ |hF ∩ (g−1

0 at · i) 6= ∅ ∀t ∈ R
}
.

The sum over Γ appearing in (18) splits accordingly. We begin our analysis with the sum
over Γ0 by noting that there exists a constant c > 0 such that every h ∈ Γ0 satisfies

dG/K(g0hgK, atK) ≥ c > 0 ∀t ∈ R .

Combining this estimate with the more general and well-known exponential growth bound
[Bor16, Eq. (2.22)] we obtain

#

{
h ∈ Γ

∣∣∣∣ inf
t∈[0,Tγ ]

dG/K(g0hgK, atK) ≤ s
}

= O(es) ,

which lets us conclude that

N−1
σ

∑

h∈Γ0

∫ Tγ

0
exp

(
−

dG/K(g0hgK, atK)2

σ2

)
dt

≤ CN−1
σ

∑

n∈N

∑

h∈Γ0: ∀t∈[0,Tγ ]
dG/K(g0hgK,atK)

≤c+1

e−
c2+n2

σ2 ,

i.e. the sum over Γ0 is of the order O(N−1
σ e−

C
σ2 ) as σ → 0. Our discussion of the

normalization factor below will reveal N−1
σ = O(σ−2) so this does indeed vanish in the

limit σ → 0.
The significant contribution to the total period integral is given by the second sum

over Γ̃. We treat this term by first fixing a group element gw, w = (i1, ..., in) ∈ Wn,
representing γ and observing that the action of gw restricted to γ is simply translation.
We may therefore absorb the cyclic subgroup generated by gw into the integral and re-write

∑

h∈Γ̃

∫ Tγ

0
exp

(
−

dG/K(g0hgK, atK)2

σ2

)
dt

=
n∑

j=1

∫ ∞

−∞
exp

(
−

dG/K(g0gij · · · gi1gK, atK)2

σ2

)
dt .

As we approach our final expression we change perspective from the quotient G/K back
to the upper half plane. To simplify the resulting Gaussian integral we make the following
approximation

dH(x+ iy, is)2 = dH(x+ iy, iy)2 + dH(iy, is)2 +O(x4) ,

and substituting this into (19) we arrive at the following approximate expression for the
period integrals:

∫

π◦γ
fσ,gK ≈ N−1

σ

n∑

j=1

e
−

x2
j

σ2y2
j

∫ ∞

−∞
e−

(yj−t)2

σ2 dt = N−1
σ

√
πσ

n∑

j=1

e
−

x2
j

σ2y2
j ,

where we used the definition xj + iyj := g0gij · · · gi1g · i for the complex coordinates of the
points g0gij · · · gi1gK ∈ G/K.

Finally, we use the approximation cosh−1(1 + z)2 = 2z +O(z3) to simplify hyperbolic
distance. This lets us calculate the normalization factor Nσ in a straight forward manner:

Nσ ≈
∫ ∞

0

∫ ∞

−∞
exp

(
− x2 + (y − 1)2

σ2y

)
dxdy

y2
=
√
πσ

∫ ∞

0
exp

(
− (y − 1)2

σ2y

)
dy

y3/2
= πσ2 ,
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thus concluding our discussion on how to approximate π∗Tλ0 for practical implementation
purposes with the final expression

∫

π◦γ
fσ,gK ≈

1√
πσ

n∑

j=1

e
−

x2
j

σ2y2
j . (20)

For convenience we summarize the steps necessary for the calculation of Zfσ,gK◦π in the
pseudo-code of the following Snippet 1. Taking the residue of this weighted zeta then

yields the approximation t
G/K
λ0,σ

. For remarks on how to calculate residues in practice we

refer to Section 5.2.

Algorithm 1: Pseudo-code for the calculation of the weighted zeta function
Zfσ,gK◦π used to approximate the distribution π∗Tλ0 .

Input: width σ > 0, center gK ∈ G/K, resonance λ0 ∈ C, cut-off N ∈ N
df ← 1 ;

∂βdf ← 0;

d[0]← 1;

∂βd[0]← 0;

/* calculate Bell recursion, for initial terms a[k] see below */

for n := 1 to N do
d[n]← 0;

for k := 1 to n do

d[n]← d[n] + k
nd[n− k]a[k];

∂βd[n]← ∂βd[n] + ∂βd[n− k]a[k] + d[n− k]∂βa[k];

end

df ← df + d[n];
∂βdf ← ∂βdf + ∂βd[n];

end

return
∂βdf
df

;

/* calculate initial terms a[k] in Bell recursion */

a[k]← 0;

∂a[k]← 0;

for w ∈ Wk do

a[k]← a[k]− 1
k

exp(−(λ0−1)`(gw))

(e`(gw)−1)2 ;

∂βa[k]← ∂βa[k] + calcInt(w)
k

exp(−(λ0−1)`(gw))

(e`(gw)−1)2 ; /* calcInt implements (20) */

end
Result: approximation of Zfσ,gK◦π(λ0)

4.2. Restricted Ruelle Distributions. As announced in the introduction we consider
the pullback ι∗ΣTλ0 along the inclusion ιΣ : Σ ↪→ SXΓ of a hypersurface Σ as a second
approach of reducing the complexity of Tλ0 from the full three-dimensional space SXΓ to
a two-dimensional subspace. This distributional operation is well-defined by a classical
theorem of Hörmander [Hö03, Thm. 8.2.4] as long as Σ is transversal to the geodesic flow
[SWB23, Lemma 2.3]. If this is satisfied we call Σ a Poincaré section and the first part
of the upcoming discussion applies to any such submanifold. Only once we require an
implementation-level prescription for the calculation of period integrals will we introduce
a specific choice of Σ. This Σ will be used throughout the numerical examples but could
very well be replaced by a number of alternative choices (see Remark 4.2).
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The operational meaning of the pullback is not provided by an explicit formula as
was the case for the pushforward – instead it can only be defined as a limit in D′(Σ).
Concretely if any family of smooth functions converges to Tλ0 in the space D′E∗u⊕E∗s (SXΓ)

then their restrictions to Σ converge to the restriction of Tλ0 . The latter space consists of
distributions with wavefront set contained in E∗u ⊕ E∗s :7

lim
σ→0

tΣ
λ0,σ = Tλ0 in D′(SXΓ) =⇒ ι∗ΣTλ0 = lim

σ→0
tΣ
λ0,σ

∣∣
Σ

in D′(Σ) .

We construct the approximations tΣ
λ0,σ

by a similar approach as the one that resulted in

the functions t
G/K
λ0,σ

in the previous paragraph. Here we work on the whole group G ∼= SH
instead of G/K, though:

tΣ
λ0,σ(g) := 〈Tλ0 , fσ,g〉 , g ∈ G

fσ,g(g
′) :=

1

Mσ

∑

h∈Γ

exp

(
− dG(g, hg′)2

σ2

)
, g′ ∈ G ,

(21)

whereMσ again denotes an appropriate normalization factor and dG is a smooth distance
function on G×G to be specified later. By definition fσ,g(g

′) is left Γ-invariant in g′ such
that tΣ

λ0,σ
is well-defined on SXΓ.

In terms of concrete calculation we need a way to evaluate integrals of fσ,g over closed
geodesics for elements g ∈ G such that Γg · (i, i) ∈ Σ. To render these quantities as com-
putationally inexpensive as possible we will proceed to specifying a suitable combination
of surface Σ and adapted distance dG.

As mentioned and exploited in Section 2.1 there exists a particular set of coordinates
well adapted to the action of the geodesic flow called Hopf coordinates [Thi07, DG21].
Both Σ and dG will be described in these coordinates but we start by giving a more
structure theoretic definition: The following map is a G-equivariant8 diffeomorphism

H : G −→ R× (G/P )∆

g 7→ (βg+(g−1 · o, o), g+, g−) ,

where g+ and g− are the fixed points on the boundary of hyperbolic space G/P :=
PSO(2) ∼= ∂H of the isometry g and βg+(g−1 ·o, o) denotes the hyperbolic distance between

the point of intersection of γ(g) with the horocycle9 through o := (i, i) centered at g+ and
the point g−1 · o. The subscript ∆ indicates removal of the diagonal.

Geometrically, H describes a correspondence between the group G ∼= SH and the space
of parameterized geodesics of hyperbolic space. We note again that in these coordinates
the geodesic flow acts as (t, g+, g−) 7→ (t+ s, g+, g−).

Our surface Σ ⊆ SXΓ is best described dynamically in terms of the geodesic flow:

On the cover πΓ : SH → SXΓ its intersection Σ̃ := π−1
Γ (Σ) ∩ SF with the canonical

fundamental domain consists of the points of intersection between the boundary ∂Di of
fundamental circles and geodesics γ with points at infinity γ± in distinct fundamental
intervals Ii, Ik (see Figure 4 for an illustration):

Σ̃ =

{
(z, v) ∈ SH

∣∣ ∃ geodesic γ ⊆ H : (γ+, γ−) ∈
⋃

i 6=j
Ii × Ij , (z, v) ∈ γ ∩ S

(⋃

i

∂Di

)}
.

7 The direct sum E∗u ⊕ E∗s ⊆ T ∗(SXΓ) is closely related to the hyperbolicity of the geodesic flow on
SXΓ. The technical details can be found in [SWB23].

8 We will not go into details about the G-action on the first component of the codomain of H, c.f.
[DG21, Proposition 2.9].

9 In the upper halfplane model the horocycles centered at a boundary point ξ ∈ ∂H are the circles
tangent to R at ξ if ξ ∈ R and the lines parallel to R if ξ =∞.
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With respect to Hopf coordinates we can describe Σ̃ by means of a smooth function
t = t(g+, g−), where (g+, g−) ∈ ⋃i 6=j Ii × Ij ⊆ (G/P )∆, via its graph

H(Σ̃) =

{
(t(g+, g−), g+, g−)

∣∣ (g+, g−) ∈
⋃

i 6=j
Ii × Ij

}
,

i.e. Σ̃ is essentially parameterized by pairs of boundary points in distinct fundamental
intervals. Note that this definition determines a well-defined, unique hypersurface Σ ⊆
SXΓ that satisfies the claimed relation Σ̃ = π−1

Γ (Σ) ∩ SF .

Figure 4. Sketch of a point (z, v) in the fundamental domain Σ̃ for the
preimage of the Poincaré section Σ together with its Hopf coordinates
(γ−, γ+) in the coordinate space

⋃
i 6=j Ii × Ij .

To leverage the simplicity of the geodesic flow in Hopf coordinates we choose an adapted
distance function dG in the following fashion: Denoting by dG/P some K-invariant metric
on the boundary of hyperbolic space let

dG(g, g′)2 := dG/P (g+, g
′
+)2 + dG/P (g−, g′−)2 + |t− t′|2

in the respective Hopf coordinates of g and g′. In terms of dynamics the resulting Gaussian
amounts to a product of Gaussians in the contracting, expanding, and neutral (flow-)
directions.

Remark 4.1. Note that the resulting distance function is not analytic on the whole do-
main R × (G/P )∆ if we make the obvious choice of angle coordinates on the unit circle
S1 ∼= G/P such that d2

G/P becomes absolute value square on [0, 2π] with the endpoints

identified. While this is certainly true we do not require this analyticity for an application
of Corollary 2.4 but only the analyticity of the resulting potential as a function on the
fundamental intervals Ii, c.f. the discussion surrounding (13). The final expression below
will satisfy this analyticity making the theory of dynamical determinants developed above
applicable here. From a theoretical standpoint the discussions involving the Poincaré sec-
tion Σ should be viewed more as an interpretation of what the potential given below means
geometrically.

Having made the choices above we can now calculate tΣ
λ0,σ
◦ H−1|H(Σ̃)

using dynamical

determinants if we have suitable expressions for the following period integrals over closed
geodesics γ ⊆ SXΓ:

⋃

i 6=j
Ii × Ij 3 (g+, g−) 7→

∫

γ
fσ,H−1(t(g+,g−),g+,g−) .

First we may exploit Γ-invariance to re-write the integral as a sum over intersections with
the fundamental domain. The argument here is quite similar to the previous Section 4.1.
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If the geodesic γ is again represented by an isometry gw, w = (i1, . . . , in) ∈ Wn then these
intersections are determined by fixed points (γi+, γ

i
−) of cyclic permutations

gingin−1 · · · gi1 , gi1gin · · · gi2 , gi2gi1gin · · · gi3 , etc. ,

and the period integrals become
∫

γ
fσ,H−1(t(g+,g−),g+,g−)

=M−1
σ

n∑

i=1

e−
dG/P (g+,γ

i
+)2+dG/P (g−,γi−)2

σ2

∫ ∞

−∞
e−
|t(g+,g−)−t|2

σ2 dt .

Here the second integral comes from taking the t-entry of Hopf coordinates for the lift γ̃i

of γ with endpoints at infinity (γi+, γ
i
−) and integrating its distance from t(g+, g−) over the

whole geodesic γ̃i of γ. If we combine this with an evaluation of the constant Mσ, which
reduces to iterated Gaussian integrals, our period integrals becomes the rather handy
expression

∫

γ
fσ,H−1(t(g+,g−),g+,g−) =

1

πσ2

n∑

i=1

e−
dG/P (g+,γ

i
+)2+dG/P (g+,γ

i
−)2

σ2 . (22)

Again the approximation tΣ
λ0,σ

restricted to Σ can be calculated via the residues of a
weighted zeta function, concretely Zfσ,H−1(t(g+,g−),g+,g−)

. The latter is straightforward to

implement using Snippet 1 but substituting the routine calcInt with an implementation
of (22). Furthermore if we take Equation (22) as a definition it does indeed yield an
analytic potential which makes Corollary 2.4 immediately applicable.

Remark 4.2. Note that it is conceptually straight forward to replace the specific hyper-
surface Σ with another choice Σ′. One has to make sure that Σ′ admits a family of test
functions for which period integrals can be calculated efficiently. In most applications
this should come down to finding an appropriate parametrization for Σ′, adapting the
test functions to this parametrization, and finally calculating the period integrals in this
parametrization (using suitable approximations).

5. Symmetry Reduction of Weighted Zeta Functions

If we use the theoretical and practical tools developed up to this point it turns out
that we require a large amount of closed geodesics and corresponding period integrals
to compute the dynamical determinant with sufficient accuracy. In this section we will
therefore develop a method that allows us to exploit inherent symmetries of different classes
of Schottky surfaces to significantly reduce the required computational resources. Our
approach to symmetry reduction essentially is an adaptation and generalization of similar
work done by Borthwick and Weich [BW16] in the context of iterated function schemes.
Even though these systems only incorporate an expanding direction it is quite straight
forward to include the contracting direction present in the determinants constructed in
Section 2.

Remark 5.1. It should be rather straight forward to formulate and prove a version of the
upcoming symmetry reduced dynamical determinant in the full setting of [Rug92]. We
refrain from explicitly treating this greater generality here to keep the discussion aligned
with the previous sections, in particular Section 2. A practically important generalization
will instead be included in the first author’s PhD thesis, see also Section 6.

This section is organized as follows: In Section 5.1 we give some basic definitions and
present the main theorem stating how our dynamical determinant df decomposes as a
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product of symmetry reduced dynamical determinants with the product indexed by irre-
ducible, unitary representations of some suitable symmetry group. While this theorem
describes the theoretical situation completely it is not directly accessible to practical im-
plementation. Section 5.2 remedies this by providing a detailed description how the sym-
metry reduction can be implemented. The final Section 5.3 contains a short comparison
of the computational effort needed to calculate dynamical determinants with and without
symmetry reduction.

5.1. Main Theorem. We begin by stating the fundamental definition of what the sym-
metry group of a particular representation of some Schottky surface should be [BW16,
Theorem 3.1]:

Definition 5.2. Let Γ ⊆ SL(2,R) be a rank-r Schottky group with generators g1, . . . , gr
and fundamental discs D1, . . . , D2r. Let G be a finite group acting on

⋃
iDi by holomorphic

functions extending continuously to the boundary and define a G-action on {1, . . . , 2r} by
the relation g(Di) = Dg·i.

Then G is called a symmetry group of the generating set 〈g1, ..., gr〉 = Γ if for any
g ∈ G and i 6= j ∈ {1, . . . , 2r} there exists an index k ∈ {1, . . . , 2r} such that k 6= g · i and

g · (gjz) = gk(g · z), ∀z ∈ Di ,

Because g ∈ G acts on each disc as a biholomorphic map the image g(Di) must again
be some disc making g · i well-defined. The index k in the relation g · (gjz) = gk(g · z) is
unique and we observe that k = g · j. Furthermore the group action of G on the elements
of Z/2rZ takes distinct pairs of indices i 6= j to distinct pairs: g · i 6= g · j. The action of
an element g ∈ G can then be written concisely as

g · (gjz) = gg·j(g · z), ∀z ∈ Di, j 6= i .

We extend this action to (Z/2rZ)n (or Wn) by acting on each element separately.
The desired composition of our dynamical (Fredholm) determinants now follows from

the rather simple representation theory of finite groups by observing that G acts on the
function spaces introduced in Section 2.1 via the left-regular representation:

〈g · u(z1, z2), v(z1)〉 :=
〈
u(g−1 · z1,g

−1 · z2), v(z1)
〉
, u ∈

⊕

i 6=j
H−2(Di)⊗H2(Dj) .

This representation will generally not be unitary because we defined the L2-scalar product
via Lebesgue measure. The standard trick of averaging the pushforward of Lebesgue mea-
sure over the finite group G guarantees unitary, though. This yields a modified Bergman
space which contains the same functions but whose scalar product differs from the standard
one used so far by some smooth density factor.

Well known representation theory of finite groups [FH04, Part I] now provides a direct
sum decomposition of this modified Bergman space indexed by characters χ of (equivalence

classes Ĝ of) irreducible, unitary representations of G with the projectors on the individual
summands given by

Pχ :=
dχ
|G|

∑

g∈G
χ(g)g .

In this equation dχ refers to the dimension of the representation with character χ and
|G| denotes the cardinality of G. As the projections do not involve the scalar product
we immediately derive a corresponding non-orthogonal direct sum decomposition of our
original Hilbert spaces:

⊕

i 6=j
H−2(Di)⊗H2(Dj) =

⊕

χ∈Ĝ

Hχ, Hχ := Pχ

(⊕

i 6=j
H−2(Di)⊗H2(Dj)

)
.
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The transfer operator LV defined in Section 2.1 now commutes with the action of G if
the potential V is G-invariant, i.e. V (g−1 · z1,g

−1 · z2) = V (z1, z2):

〈LV (g · u)(z1, z2), v(z1)〉
∣∣∣∣v∈H2(Di)
z2∈Dj

=

∫

∂Di

u(g−1 · gi(z1),g−1 · gi(z2))V (z1, z2)v(z1)
dz1

2πi

=

∫

∂Di

u(gg−1·i(g
−1 · z1), gg−1·i(g

−1 · z2))V (g−1 · z1,g
−1 · z2)v(z1)

dz1

2πi

=
〈
g ·
(
LV u

)
(z1, z2), v(z1)

〉 ∣∣∣∣v∈H2(Di)
z2∈Dj

.

From this it is obvious that LV commutes with the projections Pχ which makes the
subspaces Hχ invariant under LV . This simple observation is already the key to the
main factorization theorem of this section. Before we can state said theorem we need one
additional definition: Given an element g ∈ G we define a symmetry adapted version of
Wn as follows

Wg
n :=

{
(i1, . . . , in) ∈ (Z/2rZ)n

∣∣ ij 6= ij+1 + r ∀ j ∈ {1, . . . , n− 1}, g · in 6= i1 + r
}
.

In unison with [BW16] we refer to elements of Wg
n as g-closed words of length n.

For the main theorem first note that gw ◦g has a unique pair of repelling and attracting
fixed points xw,g− ∈ Din+r and xw,g+ ∈ Dg−1·i1 because g is biholomorphic and the same
argument as in [BW16, Lemma 2.6] can be applied with domains Din+r and Dg−1·i1 . It
can be stated as follows:

Theorem 5.3 ([BW16], Prop. 3.3 and Thm. 4.1). Let Γ be a Schottky group with sym-
metry group G and V a G-invariant potential which is analytic in a neighborhood of the
fundamental circles. Then the Fredholm determinant of the transfer operator LV factorizes
as

det (id− zLV ) =
∏

χ∈Ĝ

dV,χ(z) ,

where for sufficiently small |z| the symmetry reduced determinants dV,χ are explicitly given
by the following expressions:

dV,χ(z) = exp


−

∞∑

n=1

zn

n

dχ
|G|

∑

g∈G
χ(g)

∑

w∈Wg
n

Vw(g · xw,g− ,g · xw,g+ )

((gw ◦ g)′(xw,g− )− 1)(1− (gw ◦ g)′(xw,g+ ))


 .

Proof. By the previously discussed decomposition of the domain of LV into the direct sum⊕
χ∈ĜHχ it is clear that

det (id− zLV ) =
∏

χ∈Ĝ

det
(

id− zLV
∣∣
Hχ

)
.

We are therefore tasked with computing dV,χ(z) := det
(
id − zLV

∣∣
Hχ
)
. This Fredholm

determinant can be expressed in terms of traces of n-fold iterates just as in (9). The key
is therefore evaluating

Tr

(
LnV
∣∣
Hχ

)
= Tr

(
PχLnV

)
,

where the equality immediately follows from the fact that LV commutes with the projec-
tions Pχ and the trace-class property is inherited from LnV .
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Now the (diagonal) components of n-fold iterates of LV were already calculated in (10).
A very similar calculation yields, after replacing the sum over g by with a sum over g−1,
the following expression:

Tr

(
LnV
∣∣
Hχ

)
=

dχ
|G|

∑

g∈G
χ(g)

∑

w∈Wg
n

Tr
(
LwV,g

)
,

where the modified diagonal components LwV,g, w ∈ Wg
n , are operators of the form

〈
LwV,gu(z1, z2), v(z1)

〉 ∣∣∣∣v∈H2(Din+r)
z2∈Dg−1i1

=

∫

∂Din+r

Vg(g·z1,g·z2)u(gw(g·z1), gw(g·z2))v(z1)
dz1

2πi
.

Here the traces of these operators can be calculated in complete analogy to Theorem 2.2
but now the pair of fixed points xw,g− ∈ Din+r and xw,g+ ∈ Dg−1·i1 of the holomorphic map
gw ◦ g appears. We finally obtain

Tr
(
LwV,g

)
=

Vw(g · xw,g− ,g · xw,g+ )

((gw ◦ g)′(xw,g− )− 1)(1− (gw ◦ g)′(xw,g+ ))
,

which finishes the proof. �

5.2. Implementation Details. One of the key observations in [BW16] is a clever group-
ing of terms in dV,χ. On the one hand it provides convergence beyond small |z| and on the
other hand it speeds up the practical computation of symmetry reduced zeta functions
tremendously. An adaptation of this work allows us to achieve both these benefits for
our weighted zeta functions as well. The following presentation closely follows [BW16,
Sections 4–5].

To meet our objective we first introduce some additional notation: Observing that
elements w ∈ Wg

n always occur together with their closing group element g in Theorem 5.3
it makes sense to define

WG :=

{
(w,g) ∈

( ∞⋃

n=1

Wn

)
×G

∣∣∣∣g · wnw 6= w1 + r

}
,

where nw denotes the length of w, i.e. w ∈ Wnw , and we index words as w = (w1, . . . , wnw).
We will henceforth denote elements of WG by boldface letters and indicate their first and
second components by the corresponding non-boldface letter and a suitable subscript:
w = (w,gw) ∈ WG. This definition immediately allows us to shorten the notation for
fixed points introduced in the previous section by setting xw± := xw,gw

± .

The actual regrouping of terms now happens due to a derived action of G× Z on WG

which we will describe next. First of all an element h ∈ G acts on WG via

h ·w = h · (w,gw) := (h · w,hgwh−1) .

This action is complemented by the Z-action generated by the two (inverse) shifts acting
in the first component as

σRw :=
(
(gwwn, w1, . . . , wn−1),gw

)
,

σLw :=
(
(w2, . . . , wn,g

−1
w w1),gw

)
.

This Z-action commutes with the action of G. We can therefore consider the space[
WG

]
:= (G × Z) \ WG of orbits under the product of these actions and we denote

the equivalence class containing w ∈ WG by [w].
Before we can re-organize the sums appearing in Theorem 5.3 it remains to identify an

appropriate notion of composite elements. To this end we define the k-fold iteration of
w ∈ WG by the formula

wk :=
(
(gk−1

w w1, . . . ,g
k−1
w wn,g

k−2
w w1, . . . ,gww1, . . . ,gwwn, w1, . . . wn),gkw

)
,
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and we call an element of WG prime if it cannot be represented as such an iteration for
k > 1. Otherwise we call the element composite.

Next we recall some features of the various notions just introduced. Complete proofs
can be found in [BW16, Lemma 4.3, Prop. 4.4]. We continue to denote by V (z1, z2) some
G-invariant potential.

(1) An orbit of the G×Z-action consists either entirely of prime or entirely of composite
elements making

[
WG

p

]
:= {[w] |w prime} well-defined;

(2) Given v ∈ [wk] one has the equalities Vv(gvx
v
−,gvx

v
+) = Vw(gwx

w
− ,gwx

w
+)k and

(gv ◦ gv)′(xv±) = (gw ◦ gw)′(xw±)k;

(3) If G acts freely on WG then the number of elements in the equivalence class
[w] ∈

[
WG

p

]
can be calculated as #[w] = |G| · nw;

(4) If mw := ord(g) denotes the order10 of g ∈ G then the equalities (gw ◦gw)′(xw±) =

g′wmw (xw
mw

± )1/mw and Vw(gw · xw±) = Vwmw (xw
mw

± )1/mw hold for any [w] ∈
[
WG

p

]

and denoting by xv± the fixed points of gv.
11

With this we can now reformulate Theorem 5.3 in a form which is very reminiscent of
our definition of the dynamical determinant df in (5). From the preceding discussion
combined with Theorem 5.3 and under the assumptions of G-invariant potential and free
G-action on WG we immediately deduce the following for sufficiently small |z|

dV,χ(z) = exp


−dχ

∑

[w]∈
[
WG
]

#[w] · znw

nw · |G|
χ(gw)Vw(gw · xw− ,gw · xw+)

((gw ◦ gw)′(xw−)− 1)(1− (gw ◦ gw)′(xw+))




= exp


−dχ

∞∑

k=1

∑

[w]∈
[
WG

p

]
#[wk]zknw

knw|G|
χ(gkw) · Vw(gw · xw− ,gw · xw+)k

((gw ◦ gw)′(xw−)k − 1)(1− (gw ◦ gw)′(xw+)k)




= exp


−dχ

∞∑

k=1

∑

[w]∈
[
WG

p

]
zknw

k

χ(gkw) · Vwmw (xw
mw

− , xw
mw

+ )k/mw

(
ekTγ(gwmw )/mw − 1

)(
1− e−kTγ(gwmw )/mw

)


 .

(23)

From here we can proceed by applying the cycle expansion philosophy introduced in Sec-
tion 3. This results in the following Proposition which generalizes Corollaries 2.5 as well
as 3.1 and serves as our primary tool for practical implementation. We require a final
definition before presenting the actual statement: Given a weight function f ∈ Cω(SXΓ)
we say that it has G-invariant period integrals if its integrals over closed geodesics satisfy∫

γ(gw)
f =

∫

γ(gg·w)
f , ∀g ∈ G, ∀w ∈ Wn .

The main example for this is given by the case where G even acts on the whole unit
sphere bundle SH. It then acts on Γ-invariant elements of C∞(SH) by translation and if
f is invariant under this G-action then it also has G-invariant period integrals because
γ(gg·w) = g · γ(gw) in this setting.

The central proposition now reads as follows:

Proposition 5.4. Let Γ be a Schottky group with symmetry group G acting freely on
WG and f ∈ Cω(SXΓ) an analytic weight with G-invariant period integrals. Then the
following hold:

10 I.e. the smallest integer k > 0 such that gk = idG.
11 And if the respective right-hand sides are real-valued, which is always the case for our particular

potentials.
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(1) The dynamical determinant decomposes as a product

df (λ, z, β) =
∏

χ∈Ĝ

df,χ(λ, z, β)

of symmetry reduced dynamical determinants df,χ.
(2) The df,χ are given by an everywhere convergent power series expansion

df,χ(λ, z, β) = 1 +

∞∑

n=1

dχn(λ, β)zn ,

with coefficients in this expansion being holomorphic functions in (λ, β) and ex-
plicitly given by the recursion

dχn(λ, β) =

n∑

m=1

m

n
dχn−m(λ, β)aχm(λ, β) , dχ0 (λ, β) ≡ 1 ,

aχm(λ, β) = −dχ
∑

([w],k)∈
[
WG

p

]
×N>0

nw·k=m

χ(gkw)

k

exp
(
− k(λ−1)

mw
Tγ(gwmw ) − kβ

mw

∫
γ(gwmw ) f

)
(
ekTγ(gwmw )/mw − 1

)2 .

The coefficients dχn(λ, β) satisfies super-exponential bounds of the same kind as in
Corollary 3.1.

(3) The weighted zeta function Zf decomposes as a sum of meromorphic functions
given by logarithmic derivatives of the df,χ:

Zf (λ) =
∑

χ∈Ĝ

∂βdf,χ(λ, 1, 0)

df,χ(λ, 1, 0)
.

Proof. The idea of proof is very much aligned with the material presented in Sections 2
and 3: To derive (1) we would like to plug the concrete potential of Corollary 2.4 into the
product decomposition of Theorem 5.3.

A slight difficulty with this strategy is the fact that the potential Vλ,β of Corollary 2.4
is not G-invariant due to the presence of the derivative term. This can be remedied
by substituting it with a G-averaged version possessing built-in G-invariant, c.f. [BW16,
Lemma 5.6]:

V G
λ,β :=

∏

g∈G
Vλ,β(g · z1,g · z2)1/|G| .

By (7) we only need to verify (Vλ,β)w = (V G
λ,β)w for any closed word w ∈ Wn to prove

that the transfer operators associated with these potentials give rise to the same Fredholm
determinant. Using the G-invariance of the period integrals of f and the proof of [BW16,
Lemma 5.6] (which is essentially an application of the ordinary chain rule) we can now
calculate

(
V G
λ,β

)
w

= exp


− β

|G|
∑

g∈G

∫

γ(gg·w)
f


 · e−λTγ(gw)

= exp

(
−λTγ(gw) − β

∫

γ(gw)
f

)
=
(
Vλ,β

)
w
.

This proves (1) if we define df,χ(λ, z, β) := dVG
λ,β ,χ

(z).
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To obtain the expression for df,χ(λ, z, β) claimed in (2), we start with the following
formula derived for a general potential in (23) above and valid for sufficiently small |z|

df,χ(λ, z, β) = exp


−dχ

∞∑

k=1

∑

[w]∈
[
WG

p

]
zknw

k

χ(gkw) · exp
(
− kλ

mw
Tγ(gwmw ) − kβ

mw

∫
γ(gwmw ) f

)
(
ekTγ(gwmw )/mw − 1

)(
1− e−kTγ(gwmw )/mw

)




= exp

( ∞∑

n=1

aχn(λ, β)zn

)
,

with the definition

aχn(λ, β) := −dχ
∑

([w],k)∈
[
WG

p

]
×N>0

nw·k=n

χ(gkw)

k

exp
(
− kλ

mw
Tγ(gwmw ) − kβ

mw

∫
γ(gwmw ) f

)
(
ekTγ(gwmw )/mw − 1

)(
1− e−kTγ(gwmw )/mw

) .

The theory of Bell polynomials already used in the proof of Corollary 3.1 now yields the
claimed recursive relation.

The super-exponential bounds can be derived in the same manner as in Corollary 3.1 by
simply observing that the singular values of the restrictions satisfy µi(PχLV ) ≤ ‖Pχ‖µi(LV ).
We can therefore recycle our previous calculations and arrive at the same bounds with
possibly different constants.

Lastly we derive (3) in the following straightforward manner: Exchanging the logarithm

of the product over Ĝ with a sum over logarithms in Corollary 2.5 lets us calculate

Zf (λ) = ∂β log
(

det
(
id− zLfλ,β

)) ∣∣∣∣
z=1,β=0

= ∂β log
(

det
(
id− zLVG

λ,β

)) ∣∣∣∣
z=1,β=0

=
∑

χ∈Ĝ

∂β log (df,χ(λ, z, β))

∣∣∣∣
z=1,β=0

,

finishing our proof. �
For practical purposes the following form for the coefficients occurring in the base of

the recursion is more suitable:

aχm(λ, β) = −dχ
m

∑

[w]∈
[
WG

p

]
nw||m

nw · χ(g
m/nw
w )

exp
(
− m(λ−1)

nwmw
Tγ(gwmw ) − mβ

nwmw

∫
γ(gwmw ) f

)
(
emTγ(gwmw )/(nwmw) − 1

)2 ,

where n||m for n,m ∈ N indicates that n divides m. Rescaling both lengths and period
integrals by 1/(nwmw) like this yields a rather convenient way for vectorized evaluation
of the coefficients aχm.

Remark 5.5. The proposition does not reveal if and why any improvement in terms of con-
vergence should be expected from the coefficients dχn compared with their non-symmetry
reduced counterparts dn. The practical calculations below will reveal a significant im-
provement, though. For a theoretical discussion of this phenomenon we refer to [BW16,
Appendix B].

Remark 5.6. If we want to apply Proposition 5.4 we have to adjust the families of test
functions presented in Section 4 to satisfy G-invariance of their period integrals. But this
is fairly straightforward: We simply replace the expressions derived in (20) and (22) by
similar sums but over points xj + iyj or (γi−, γ

i
+), respectively, derived not only from the
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original word w but from all words g · w for g ∈ G. A subsequent normalization by |G|
then yields a suitable prescription.

Algorithm 2: Pseudo-code for the calculation of symmetry reduced determinants

dχ for a given character χ. Iterating this procedure over all characters χ ∈ Ĝ and
combining it with the first block of Snippet 1 yields a means for the symmetry
reduced calculation of approximations to invariant Ruelle distributions.

Input: width σ > 0, center gK ∈ G/K, resonance λ0 ∈ C, character χ ∈ Ĝ,
cut-off N ∈ N

/* calculate Bell recursion as in Snippet 1, but with a[] replaced by

modified initial terms aχ[] */

/* calculate modified initial terms aχ[k] in Bell recursion */

aχ[k]← 0;

∂aχ[k]← 0;

for [w] ∈
[
WG
p

]
where nw||k do

aχ[k]← aχ[k]− nwχ(g
k/nw
w ) exp(−(λ0−1)k`(gw)/(nwmw))

(ek`(gw)/(nwmw)−1)2 ;

∂βa[k]← ∂βa[k] + nwχ(g
k/nw
w )k exp(−(λ0−1)k`(gw))/(nwmw)

(ek`(gw)/(nwmw)−1)2 · calcInt(w) ;

; /* calcInt implements (20) */

aχ[k]← dχ
k a

χ[k];

∂βa[k]← dχ
k ∂βa[k];

end
Result: approximation of one summand in the symmetry decomposition of

Zfσ,gK◦π(λ0) according to Proposition 5.4

5.3. Example Surfaces. In order to make use of Proposition 5.4 in practice one requires
example surfaces with sufficiently rich symmetry groups. To meet this requirement we
provide two classes of such examples covering both topological possibilities for Schottky
surfaces of rank r = 2: The three-funneled surfaces and the funneled tori.

5.3.1. Three-funneled surface. The family of three-funneled surfaces constitutes the main
class of examples in the original paper of Borthwick [Bor14] and many subsequent papers
on the numerical calculation of resonances [BW16, BPSW20]. Due to this prevalence will
we refrain from giving too many details and simply state their generators:

g1 :=

(
cosh(`1/2) sinh(`1/2)
sinh(`1/2) cosh(`1/2)

)
, g2 :=

(
cosh(`2/2) a sinh(`2/2)

a−1 sinh(`2/2) cosh(`2/2)

)

The three numbers `1, `2, `3 > 0 parameterize the family and can be interpreted geomet-
rically as the lengths of the closed geodesics winding around the funnels. The parameter
a is not free but must be chosen such that the condition tr(g1g

−1
2 ) = −2 cosh(`3/2) is

fulfilled. We follow the notation introduced in [Bor14] and denote the generated surface
by X(`1, `2, `3).

The following realization G = {e, σ1, σ2, σ1σ2} of Klein’s four-group is a symmetry
group of the generators given above provided that `1 = `2:12

σ1 =

(
−1 0
0 1

)
, σ2 =

(
0

√
a

1/
√
a 0

)
,

12 For an elementary proof see [BW16, Example 3.2].
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Figure 5. The right-hand side illustrates the three-funneled surface
with boundary lengths `1, `2, `3 embedded (non-isometrically) into three-
dimensional Euclidean space. Highlighted in red and green is the Poincaré
section (projected onto the surface) corresponding to the fundamental do-
main on the left.

where both matrices act on H via Möbius transformations. The action on the letters is
then given by

σ1(1) = 3, σ1(2) = 4, σ1(3) = 1, σ1(4) = 2

σ2(1) = 2, σ2(2) = 1, σ2(3) = 4, σ2(4) = 3 .
(24)

The final ingredient for the calculation of symmetry reduced zeta functions is the char-
acter table of G. This well-known data is given in Table 1.

Table 1. Character table for the symmetry group of three-funneled surfaces.

e σ1 σ2 σ1σ2

A 1 1 1 1
B 1 −1 1 −1
C 1 1 −1 −1
D 1 −1 −1 1

In the less symmetric case `1 6= `2 the generators lose their symmetry with respect to σ2

but retain {e, σ1} as their symmetry group. This smaller group has only two irreducible
representations, namely the trivial one and one that equals −1 on σ1. Both are one-
dimensional.

5.3.2. Funneled torus. Our second family of surfaces is also well-known in the literature.
Generators are given by

g1 :=

(
exp(`1/2) 0

0 exp(−`1/2)

)
,

g2 :=

(
cosh(`2/2)− cos(ϕ) sinh(`2/2) sin2(ϕ) sinh(`2/2)

sinh(`2/2) cosh(`2/2) + cos(ϕ) sinh(`2/2)

)
,

where again three parameters `1, `2, and ϕ are needed to specify a concrete member.
Geometrically they describe the lengths of two closed geodesics on the surface and the
angle between them. Obviously the generator g1 contains the boundary point ∞ in its
fundamental interval which makes it inaccessible for our algorithm because we use the
fundamental intervals directly as coordinates of the Poincaré section. Conjugating the
generators by a simple rotation yields a new pair g̃1 and g̃2 of generators which do not suffer
from this problem. It turns out that π/8 is a particularly handy value in the maximally
symmetric case `1 = `2 and ϕ = π/2 as it leads to a very symmetric arrangement of
fundamental circles (see also [BPSW20, Section 5.3] where the boundary point∞ must be
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Figure 6. Here the right-hand side illustrates the funneled torus with
parameters `1, `2, φ embedded (non-isometrically) into three-dimensional
Euclidean space. Highlighted in red and green is the Poincaré section
(projected onto the surface) corresponding to the fundamental domain on
the left.

rotated outside of the fundamental intervals for somewhat similar reasons). In this case
the conjugated generators are of the explicit form

g̃1 :=

(
cosh(`/2) + sinh(`/2)/

√
2 sinh(`/2)/

√
2

sinh(`/2)/
√

2 cosh(`/2)− sinh(`/2)/
√

2

)

g̃2 :=

(
cosh(`/2)− sinh(`/2)/

√
2 sinh(`/2)/

√
2

sinh(`/2)/
√

2 cosh(`/2) + sinh(`/2)/
√

2

)
.

Again we adopt the same notation as in [Bor14] and denote the funneled tori generated
by g̃1 and g̃2 by Y (`1, `2, ϕ).

The generators g̃1 and g̃2 again admit a realization of Klein’s four-group as their sym-
metry group. Concrete symmetries are given by the Möbius transformations induced via

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 1
−1 0

)
,

with their action on the symbols being the same as in (24). One can easily verify these
relations by elementary matrix calculations of the type σ1g̃1σ

−1
1 = g̃2. The character table

thus coincides with the one given above in Table 1.

6. Numerical Results

This final section finishes the present paper by presenting some numerical calculations
which were obtained with the tools developed up to this point. We begin with a com-
parison of convergence rates of invariant Ruelle distributions depending on the particular
symmetry group used for a given surface.

Remark 6.1. To do this we still require a practically feasible approach for the calculation
of residues of Zf (λ). If one can calculate the function Zf (λ) efficiently13 for a large number
of support points λ ∈ C, i.e. on large arrays, then it would be possible to calculate its
residue at λ0 very generically via the classical integral formula

Res
λ=λ0

[Zf (λ)] =
1

2πi

∫

C
Zf (λ) dλ ,

where a convenient choice for the contour C could e.g. be a sufficiently small rectangle
with λ0 at its center. This integral can then be evaluated using numerical quadrature
methods.

13 E.g. by vectorization or via a distributed computational scheme.
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If a large number of function evaluations is too computationally expensive then the
following well-known formula offers an alternative:

Res
λ=λ0

[Zf (λ)] =
1

(N − 1)!
lim
λ→λ0

(
d

dλ

)N−1 [
(λ− λ0)NZf (λ)

]
,

where N denotes the order of the pole λ0. If N = 1, i.e. λ0 is a simple pole, then
this general formula takes a particularly simple shape and plugging in the logarithmic
derivative of the dynamical determinant df yields for the simple case

Res
λ=λ0

[Zf (λ)] =
∂βdf (λ0, 1, 0)

∂λdf (λ0, 1, 0)
. (25)

This expression can be evaluated directly because calculation of ∂λdf requires only a
straightforward modification of our algorithm for df and ∂βdf . The numerics presented

below feature only simple poles so we used (25) throughout our implementations.14

Funneled Torus Experiments. The first system we consider is the funneled torus for
the two cases of its full 4-element Kleinian symmetry group as described in Section 5.3.2
and without any symmetry reduction. The quantum resonance spectrum for the concrete
example Y

(
10, 10, π2

)
was already obtained numerically by Borthwick [Bor14, Figure 11]

by means of Selberg’s zeta function. In Figure 7 we recover this spectrum but now using
the dynamical determinant df with constant weight function f . This yields the Pollicott-
Ruelle resonances of Y

(
10, 10, π2

)
which by [GHW18] coincide with the quantum spectrum

after a shift by −1. Compared with previous calculations of quantum resonances in the
literature our numerics therefore illustrate this theorem about the relationship between
classical and quantum resonances.

We begin by investigating in more detail the first resonance of Y (10, 10, π/2) which is
located at δ − 1 ≈ −0.8847 with δ the Hausdorff dimension of the limit set. The result
of numerically calculating tΣλ0,σ

is shown in Figure 9 as plots of three different quantities:
The left-most plot shows the real part of the distribution which gets complemented by
the imaginary part in the middle. The invariant Ruelle distribution associated with the
first resonance coincides with the Bowen-Margulis measure so it should be expected that
the numerical approximation is real-valued and positive which is exactly the case in the
shown plot. The right-most coordinate square features a combination of real and imaginary
parts: There the complex argument is indicated through the color of the peaks and the
absolute value of tΣλ0,σ

was encoded as the lightness of the particular color. The mapping
of colors to complex arguments is simply given by the angle on the standard color wheel
in the HSB/HSL encoding of RGB shifted by π, i.e. light blue corresponds to an argument
of 0 while red corresponds to π (see Figure 8). From this illustration it is immediately
clear that the distribution is remarkably homogeneous within each square Ii × Ij of the
coordinate domain parameterizing the Poincaré section.

Next we consider additional resonances from Figure 7 under the aspect of how well the
associated distributions converge in practice. It is reasonable to expect that the outer edges
of the square [−1, δ−1]+ [0, 1000]i of the complex plane where resonances were calculated
should correspond to the best respectively worst rates of convergence. To increase the
resolution of the distribution the plots were additionally restricted to coordinates within
strictly smaller intervals

(Ĩ2 ∪ Ĩ3 ∪ Ĩ3)× (Ĩ1 ∪ Ĩ2) , Ĩi ⊂ Ii ,
where the location of the new intervals within the original fundamental domain is illus-
trated in Figure 10. This very basic domain refinement already reduces the amount of

14 Our resonance calculations were obtained with a root finding algorithm that combines the argument
principle from complex analysis with the classical Newton iteration. In particular our procedure always
yields pairs of resonances and corresponding orders.
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Figure 7. Resonances of the funneled torus Y
(
10, 10, π2

)
calculated in the

symmetry reduction by the Klein four-group. The right-hand side shows
a zoom into a small region of the left-hand side plot. Notice how the
representations labeled B and D split resonances of multiplicity two into
pairs of resonances of multiplicity one. In particular this simplifies the
formula for the calculation of invariant Ruelle distributions via residues as
described above. The four resonances marked by black stars in the left plot
were used for investigations of Ruelle distributions below.

Figure 8. Sketch of how complex arguments arg(z) map to different colors
in the phase plots above. The absolute value |z| maps to the lightness of
the color as a second dimension with darker colors corresponding to higher
values of |z|.

redundancy in the resulting plots significantly by excluding large areas where the distri-
butions vanish and exploiting the internal symmetries of the distributions as prominently
visible in Figure 9.

The resulting plots for a collection of four resonances are depicted in Figure 11: Here
the columns correspond to the same resonance whereas the rows share a common cutoff
order nmax, i.e. the number of summands used in the cycle expansion. From this figure
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Figure 9. Invariant Ruelle distribution tΣλ0,σ
on the canonical Poincaré

section Σ of the funneled torus Y (10, 10, π/2) associated with the first
resonance λ0 ≈ −0.8847. This figure uses the width σ = 10−3 and nmax = 5
summands in the cycle expansion of the dynamical determinant df . The
fundamental intervals Ii which parameterize the section are ordered as
qualitatively shown in Figure 6 The left and middle columns show the real
and imaginary parts of the distribution. The right column encodes both
real and imaginary parts by using the complex argument to determine the
color (as an angle on the color wheel) and the absolute value to provide
the lightness.

Figure 10. Location and relative size of the refined coordinate domains
Ĩi ⊂ Ii compared to the original fundamental intervals of the funneled torus
X(10, 10, π/2) (left) and the three-funneled surface X(12, 12, 12) (right).

we see that even the distribution associated with the resonance λ0 ≈ −0.9999 + 992.4i in
the upper left of the considered resonance domain converges nicely already at nmax = 3.

One particularly noteworthy feature of these plots is the large degree of similarity be-
tween the first and second columns both with respect to the absolute value as well as the
complex argument. An explanation for this qualitative agreement might be the fact that
both associated resonances are located near the global spectral gap at

Re(λ) = δ − 1

and a first conjecture could be that recurrence to this gap which was observed in previous
investigations of quantum resonances on convex-cocompact hyperbolic surfaces is related
to properties of resonant states.
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Figure 11. Fully symmetry reduced invariant Ruelle distributions tΣλ0,σ

on the canonical Poincaré section Σ of the funneled torus Y (10, 10, π/2)
evaluated at four different choices of resonance λ0 (marked in Figure 7)
with σ = 10−3. The three different rows show the numerical results of using
(from top to bottom) nmax ∈ {3, 4, 5} summands in the cycle expansion.
Following along any of the four columns shows that the presented plots
have converged rather well already at nmax = 3. Due to symmetries in the
distributions as visible in Figure 9 it suffices to consider as the coordinate

domain the refined subset (Ĩ2 ∪ Ĩ3 ∪ Ĩ4)× (Ĩ1 ∪ Ĩ2) of Figure 10.

By analogy with the application of cycle expansion to resonances it is straightforward
to conjecture that symmetry reduction should improve the rate of convergence of invariant
Ruelle distributions even for the (rather small) Klein four-group used with Y (10, 10, π/2).
To support this claim the experiment above was repeated with the trivial one-element
symmetry group {e}.15 Once converged our numerical results should be independent from
the symmetry group used: While the approximation tΣλ0,σ

does contain a symmetric version
of the Gaussian test functions this should not matter due to the global invariant Ruelle
distribution also being invariant with respect to the full symmetry group of the surface.

The resulting plots in Figure 12 do indeed coincide with those of Figure 11 while at the
same time exhibiting worse convergence properties: The distribution at λ0 ≈ −0.9999 +

15 The Z-symmetry was still factored out, though, which in itself reduces the computational cost of
dynamical determinant evaluation by quite a margin.
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992.4i has not converged until nmax = 7. While not visible in the figure itself this worsened
convergence rate also shows up for the other three resonances as can be seen by considering
the relative errors of order N ∣∣dχN (λ0, 0)

∣∣
∣∣1 +

∑N
n=1 d

χ
n(λ0, 0)

∣∣ .

Note that these quantities are still functions of the coordinates (x−, x+) due to their depen-
dence on the particular weight function used.16 Two straightforward ways to obtain scalar
measures of convergence quality are given by either averaging with respect to (x−, x+)
over the whole coordinate domain of the Poincaré section or to take the maximum norm.
We consistently tracked both variants for all our experiments and it turned out that in all
cases they differed at most by one order of magnitude.

As an example we observed for the resonance λ0 ≈ −0.9998 + 9.12i errors of 3.38 · 10−8

and 1.94 · 10−8 after n = 4 iterations with symmetry reduction but 3.2 · 10−4 as well as
9.82 · 10−5 after nmax = 6 iterations without reduction. This discrepancy becomes slightly
smaller near the first resonances as λ0 = δ − 1 universally shows the best convergence
behavior.

Three-funneled Surface Experiments. Next we conduct the analogous experiments
for the three-funneled surface X(12, 12, 12). The symmetry group of the standard set
of generators was identified as the Klein four-group in Section 5.3.1 but this is actually
not the full group of symmetries: In [BW16] it was demonstrated how a flow-adapted
representation of X(`, `, `) yields a strictly larger symmetry group thereby unlocking the
full power of symmetry reduction for this class of surfaces. Without going into the details
we state that this technique can be adapted to the dynamical determinants considered
here so we may calculate with straightforward adaptations of the techniques described
above invariant Ruelle distributions for the flow-adapted three-funnel surfaces. For a
comprehensive description of the theoretical background refer to the first author’s PhD
thesis [Sch23].

Remark 6.2. Geometrically the flow-adapted representation is defined by gluing two copies
of hyperbolic space with three disjoint halfplanes removed, see Figure 13. This corresponds
to a canonical Poincaré section which is far more symmetric compared to the Schottky
representation of three-funneled surfaces.

As a first step we again use the dynamical determinant to calculate the Pollicott-Ruelle
resonances of this Schottky surface, see Figure 14. As expected from the quantum-classical
correspondence this recovers the (shifted) quantum mechanical resonances already calcu-
lated in [Bor14, Figure 6] as well as the symmetry behavior of individual resonances as
determined in [BW16, Figure 8]. Note that the full symmetry group of the flow-adapted
three-funneled surfaces exhibits six irreducible unitary representations resulting in six dif-
ferent classes of resonances. One also prominently observes the same resonant chains
already studied in [BW16].

With these first resonances available to us we can proceed very similarly to the funneled
torus case. Again we compute the smoothed invariant Ruelle distribution tΣλ0,σ

on the
canonical Poincaré section of the flow-adapted system associated with the first resonance
λ0 = δ − 1 ≈ −0.8845. The resulting plot is shown in Figure 15. Again the plot possesses
the theoretically known properties of being real-valued and positive, as well as showing
a clear symmetry with respect to the finite symmetry group of the underlying function
system.

16 At this point it is slightly inconvenient that in our notation for the individual summands dχn of df,χ
the weight f is only implicit. Nevertheless we chose this notation to keep the formulae in Section 5 as
legible as possible and because the practically used dχn always depend on Gaussian test functions anyways.
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Figure 12. Analogous plots of tΣλ0,σ
for Σ the canonical Poincaré section

of the funneled torus Y (10, 10, π/2) and σ = 10−3 as in Figure 11 but now
symmetry reduced by the trivial (one-element) group {e}. The invariant
Ruelle distribution is itself invariant under the finite symmetry group of
the surface so these plots should (and do) coincide with those of Figure 11
apart from the significantly higher cutoff nmax = 7 required for convergence
of the cycle expansion (especially in the third column).

Figure 13. Illustration of the gluing of two copies of the Poincaré disc D
(left) along the colored circles resulting in a three-funnel surface (right).
The Poincaré section resulting from this gluing treats the three seams along
the funnels equally.

As a next step we support the observations made above for the funneled torus with
analogous experiments for X(12, 12, 12): Figure 16 contains plots of invariant Ruelle dis-
tributions for a set of four different resonances located roughly on the corners of the reso-
nance plot calculated in full symmetry reduction and the comparison with Figure 17 which
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Figure 14. Resonances of the three-funnel surface X(12, 12, 12) calcu-
lated in the full symmetry reduction of its flow-adapted representation.
Due to the high degree of symmetry of the surface four very distinct res-
onance chains are visible. The right-hand side displays a zoom into the
region where all four chains cross. It clearly shows how every chain belongs
to a pair of representations which appear along the chain in alternating
fashion. Again the four resonances considered below were marked with
black stars.

uses the trivial symmetry group {e} shows again the great benefit of symmetry reduction
when it comes to the practical rate of convergence, i.e. the required number of summands
in the cycle expansion. Comparing the funneled torus with the three-funneled surfaces
also reveals that the former requires the determination of more geodesic lengths and orbit
integrals to achieve the same relative errors as the latter even though this difference is not
quite as significant as the difference between reduced and non-reduced calculations.

We note that the first and third columns of Figure 16 which correspond to the first
resonance and the next resonance which is closest to the global spectral gap show far
less similarity than observed for the funneled torus in the first and second columns of
Figure 11. But this is simply due to the fact that we can follow the resonance chain
corresponding to the representations II1/II2 further to the right and the resonance on
this chain which is closest to the global gap actually turns out to be located quite a bit
higher at λ0 ≈ −0.8845 + 1269.2i.17 In Figure 18 both this resonance chain as well as
the invariant Ruelle distribution corresponding to the chain maximum were plotted. The
distribution clearly supports the hypothesis developed for the funneled torus namely that

17 Resonances were calculated with an accuracy of 10−4 in the real part which is apparently not sufficient
to resolve the fact that the real part of the chain maximum should be strictly smaller than the real part
of the first resonance.
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Figure 15. Invariant Ruelle distribution tΣλ0,σ
on the canonical Poincaré

section Σ of the three-funnel surface X(12, 12, 12) associated with the first
resonance λ0 ≈ 0.8845. This figure uses the width σ = 10−2 and nmax = 5
summands in the cycle expansion of the dynamical determinant df . Notice
how the finite symmetry group of the function system and the surface
itself still shows up in the distribution. The plots show (from left to right)
real part, imaginary part, and argument/absolute value encoding of the
distribution similar to Figure 9.

Ruelle distributions associated with resonances near the global spectral gap should show
high qualitative agreement with the one attached to the first resonance.

The experiment in Figure 18 also supports another trend with respect to convergence
rates: The practical rates are much more sensitive to the real than the imaginary parts
of the associated resonance. Even at the rather high imaginary part of ≈ 1269.2 the
distributions convergence rapidly in full symmetry reduction with relative errors of mag-
nitude ≈ 10−6 after only nmax = 4 iterations. This behavior is rather promising for future
experiments involving resonance chains near the global spectral gap!

The preceding examples should clearly justify the statements made in Section 5 – sym-
metry reduction does indeed improve the convergence properties of invariant Ruelle dis-
tributions drastically. Furthermore the example of three-funneled surfaces shows that one
should use the largest available symmetry group for a given Schottky surface whenever
possible to take maximal advantage of the symmetries of the surface. Finally refinement
of the coordinate domain parameterizing the Poincaré section is vital if we want to be
able to distinguish the relevant features of the calculated distributions with sufficient res-
olution. For systematic experiments in a regime where the fractal limit set is resolved
beyond the first level our ad-hoc procedure can easily be augmented: After an application
of group elements corresponding to a certain word length the initial fundamental intervals
have multiplied according to the given word length but the resulting intervals are also
contracted. One can now choose a subset of these contracted intervals which are repre-
sentative for the distribution with respect to the symmetry group of the surface. This
effectively increases the resolution of the numerical approximations without requiring a
larger grid of support points on the coordinate domains.

Additional Three-funneled Surface Plots. Even though already restricted to two-
dimensional quantities our approximations tΣλ0,σ

of invariant Ruelle distributions are still
complex-valued functions on a two-dimensional domain effectively making them four-
dimensional quantities. Any visualization will necessarily have to emphasize certain as-
pects of these distributions over others. The particular kind of phase-lightness plots used
for illustration above showed nicely the qualitative behavior in terms of phase but the
variations in absolute value are not as distinct. The following plots in Figure 19 therefore
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Figure 16. Fully symmetry reduced invariant Ruelle distributions tΣλ0,σ
on

the canonical Poincaré section Σ of the flow-adapted three-funnel surface
X(12, 12, 12) evaluated at four different choices of resonance λ0 with σ =
10−2 and plotted as phase-lightness. The three different rows show the
numerical results of using (from top to bottom) nmax ∈ {5, 6, 7} summands
in the cycle expansion. Following along any of the four columns shows that
the presented plots have converged rather well already at nmax = 5. Due
to symmetries in the distributions as shown in Figure 15 it again suffices

to consider as the coordinate domain refined subsets (Ĩ2 ∪ Ĩ3) × (Ĩ1 ∪ Ĩ2)
which are shown in Figure 10.

emphasize this latter aspect by showing the analogue of Figure 16 but as a plot of the
absolute value alone.

As second important facet not yet discussed is the dependence of the qualitative features
as well as the convergence behavior of tΣλ0,σ

on the Gaussian width σ. We therefore plotted

the distributions using σ = 10−2 in Figure 19 again for different values of nmax to compare
them with the results for σ = 7 · 10−3 in the subsequent Figure 20.

The comparison shows how decreasing the width σ brings out additional features in
the distributions in particular the convergence of their supports towards the fractal limit
set of the underlying surface. This comes at the expense of decreased convergence speed,
though, as illustrated by the fourth column in Figure 20. The benefits of symmetry
reduction should therefore be even more pronounced when combined with experiments of
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Figure 17. Analogous plots of tΣλ0,σ
for Σ the canonical Poincaré section

of the flow-adapted representation of X(12, 12, 12) and σ = 10−2 as in
Figure 16 but here the trivial symmetry group {e} was used. Again the
distributions are in close qualitative agreement with those in Figure 16
but convergence required significantly more terms in the cycle expansion
as illustrated by the obvious lack of convergence in the second column.

the regime σ → 0 for distributions associated with resonances far from the global spectral
gap.

We finish this first numerical tour of invariant Ruelle distributions by considering a third
technique to illustrate these that combines the phase-focused and absolute-valued focused
approaches taken so far: By increasing the dimension of the plots themselves we can map
the absolute value to the height of a surface in three-dimensional space and simultaneously
color this surface according to the phase (argument) of the complex values. The resulting
plot for the first resonance of X(12, 12, 12) is shown in Figure 21. While visually more
complex due to its three-dimensional nature it does illustrate the distribution in quite an
intuitive manner and the high homogeneity present in the first invariant Ruelle distribution
is immediately apparent.

The plots contained in Figures 22 and 23 show the three-dimensional representation of
a different resonance already considered in Figures 19 and 20 for the widths σ = 10−2 and
σ = 7 · 10−3. The splitting of larger peaks into sub-peaks supported on a neighborhood of
the limit set is brought out very clearly as well as the very distinct phases corresponding to
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Figure 18. Additional resonances along the chain of II1/II2 resonances
already starting in Figure 14 (top plot) together with the invariant Ruelle
distribution at the chain resonance λ0 ≈ −0.8845 + 1269.20i closest to the
global spectral gap Re(λ) = δ − 1 ≈ −0.8845 (bottom plot). The compari-
son with the first column in Figure 16 which uses the same width σ = 10−2

shows near perfect qualitative agreement supporting the analogous obser-
vation made for the funneled torus above.

different sub-peaks. Decreasing σ emphasizes these features further but is less necessary
than for the absolute value plots considered previously.

Finally the same experiment was repeated in Figures 24 and 25 with a second resonance
of X(12, 12, 12) where one of the major peaks even splits into four sub-peaks already at
σ = 10−2 and more clearly at σ = 7 · 10−3.
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Figure 19. Absolute values of fully symmetry reduced invariant Ruelle
distributions tΣλ0,σ

on the canonical Poincaré section Σ of the flow-adapted

three-funnel surface X(12, 12, 12) evaluated at four different choices of res-
onance λ0 with σ = 10−2. Again the different rows show the numerical
results of using (from top to bottom) nmax ∈ {5, 6, 7} summands in the
cycle expansion. Following along any of the four columns shows that the
presented plots have converged rather well already at nmax = 5. To increase
resolution the coordinates (x−, x+) were again restricted to the refined rect-

angles (Ĩ2 ∪ Ĩ3)× (Ĩ1 ∪ Ĩ2) of Figure 10.

In summary we observe that the expected limiting behavior where for σ → 0 the nu-
merically calculated distributions should converge to quantities supported on the (fractal)
limit set can indeed be found in our concrete experiments. We also observed that there
are practical limits to the lower bound on σ mostly dictated by an inverse relationship
between the value of σ and the required maximal number of summands nmax in the cycle
expansion of the dynamical determinant. Here symmetry reduction begins to show its
large potential despite the fact that only a few first experiments were conducted. But
even with decently sized values of σ the three-dimensional representations of tΣλ0,σ

exhibit
a number of interesting features that should provide further insights into the structure of
invariant Ruelle distributions, resonant states, and their associated resonances.
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Figure 20. Similar to Figure 19 but now with σ = 7 · 10−3. Due to the
smaller value of σ the resolution of the trapped set has become significantly
better especially in columns two and four but at the expense of the rate
of convergence: Now the right-most column changes noticeably between
nmax = 5 and nmax = 6.

Remark 6.3. Additional numerical experiments including in particular animations are
being prepared and will be included in future versions of this article as well as the first
author’s PhD thesis [Sch23].
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Figure 21. Three-dimensional representation of the invariant Ruelle dis-
tribution for the three-funneled surface X(12, 12, 12) on the canonical
Poincaré section of the flow-adapted system and with Gaussian width
σ = 10−2 associated to the first resonance λ0 ≈ −0.8845. The absolute
value of the distribution determines the height of the surface whereas the
colors indicate the position of the complex argument on the unit circle.
This effectively combines the presentation in Figures 16 and 19 emphasiz-
ing nicely the homogeneity of the first invariant Ruelle distribution.
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Figure 22. Analogous plot as in Figure 21 but for the resonance λ0 ≈
−0.9998+6.286i and again the same Gaussian width σ = 10−2. The three-
dimensional plot brings out the splitting of each peak into two sub-peaks
of distinctly different phases better than the corresponding absolute value
plot in the fourth column of Figure 19.
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Figure 23. Analogous plot as in Figure 22 for the same resonance λ0 ≈
−0.9998 + 6.286i but a refined Gaussian width of σ = 7 · 10−3. Even this
slight decrease in σ already increases the resolution of distinct sub-peaks
with rather prominent differences in phase by quite a margin.
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Figure 24. Analogous plot as in Figure 21 but for the resonance λ0 ≈
−0.9998 + 845.436i and again width σ = 10−2. The splitting into pairs and
quadruples of sub-peaks is significantly easier to distinguish than in the
corresponding absolute value plot shown in the second column of Figure 19.
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Figure 25. Analogous plot as in Figure 24 associated with the same
resonance λ0 ≈ −0.9998 + 845.436i but for a refined Gaussian width of
σ = 7 · 10−3. Note how both the pairs and the quadruple of peaks are
visually more distinct due to the (slight) decrease in σ.
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7. Outlook

In the present article we derived and implemented an algorithm for the practical numer-
ical computation of invariant Ruelle distributions. This opens the possibility to perform
a large number of different numerical experiments on which an outlook was already given
in the final Section 6. More systematic investigations will be conducted in the future to
fully leverage the tools developed here.

Besides such experiments another interesting perspective would be to transfer the meth-
ods of [BPSW20] for the numerical calculation of Fredholm determinants to our (weighted)
dynamical determinants df . These techniques showed very promising improvements over
the computational cost and convergence of cycle expansions in the resonance case and it
is expected that similar improvements are possible with minor adaptations in the case of
invariant Ruelle distributions.

Appendix A. Fredholm Determinants

In this appendix we summarize some facts regarding functional analysis in general and
Fredholm determinants in particular. We include this appendix to make the present paper
and specifically our proofs more self-contained. All of the following material is quite stan-
dard and the proofs can be found in e.g. [Bor16, Appendix A.4] or the monograph [Sim05,
Chap. 1 & 3].

Definition A.1. Let T : H1 → H2 be a compact operator between the Hilbert spaces H1

and H2. The square roots of the eigenvalues of the self-adjoint operator TT ∗ are called
singular values of T and denoted by18

µ1(T ) ≥ µ2(T ) ≥ . . . −→ 0 .

If H1 = H2 then T is called trace-class in case
∑∞

i=1 µi(T ) <∞ holds.

For the next definition we denote, analogously to the singular values, the sequence of
eigenvalues of T ordered w.r.t. decreasing absolute value and repeated according to their
multiplicity by λ1(T ), λ2(T ), . . ..

Definition A.2. Let T : H → H be a trace-class operator on the Hilbert space H. Then
the Fredholm determinant of T is defined as

det (id− zT ) :=

∞∏

i=1

(1 + zλi(T )) , (26)

and converges for any z ∈ C.

Theorem A.3. Let T : H → H be a compact operator on the Hilbert space H and denote
by
∧i T the i-th exterior power of T . Then the Fredholm determinant can be calculated

via

det (id− zT ) =
∞∑

i=0

zi · Tr

(
i∧
T

)
,

where the trace of T may be defined as Tr(T ) :=
∑∞

i=1 λj(T ).

Combining this theorem with the inequality

∞∑

j=1

|λj(T )| ≤
∞∑

j=1

µj(T )

18 Where in this decreasing enumeration multiple eigenvalues are repeated according to their
multiplicity.
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one can now prove the analyticity of the Fredholm determinant in the z-variable: The
trace which is its i-th coefficient in the Taylor expansion about z = 0 can be bounded by

∑

j1<...<ji

µj1(T ) · . . . · µji(T ) ≤ 1

k!



∞∑

j=1

µj(T )



i

,

because
(∧i T

)(∧i T
)∗

=
∧i (TT ∗). But this already finishes the proof due to T being

trace-class.
We end this appendix by stating two well-known estimates regarding singular values:

Theorem A.4 (Min-Max-Theorem). Let T : H → H be a compact operator on the Hilbert
space H. Then the n-th singular value of T satisfies

µn(T ) = min
V⊆H

dim(V )=n−1

max
ϕ∈V ⊥

‖Tϕ‖
‖ϕ‖ .

Theorem A.5 (Fan Inequality). Let compact operators S, T : H → H on the Hilbert space
H be given. Then the singular values of S + T satisfy

µi+j−1(S + T ) ≤ µi(S) + µj(T ) .
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[BW16] D. Borthwick and T. Weich, Symmetry reduction of holomorphic iterated func-
tion schemes and factorization of Selberg zeta functions, Journal of Spectral
Theory 6 (2016), no. 2, 267–329.

[CDDP22] Mihajlo Cekić, Benjamin Delarue, Semyon Dyatlov, and Gabriel P. Paternain,
The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, Invent.
Math. 229 (2022), no. 1, 303–394.

[Che22] Haotian Chen, On locating the zeros and poles of a meromorphic function,
Journal of Computational and Applied Mathematics 402 (2022), 113796.

231



Bibliography

[CS14] Scott Chacon and Ben Straub, Pro Git, 2nd ed., Apress, Berkeley, CA, 2014.

[Dal11] Francoise Dal’Bo, Geodesic and Horocyclic Trajectories, 1st ed., Universitext,
Springer London, London and Dordrecht and Heidelberg and NY, 2011.

[DFG15] Semyon Dyatlov, Frédéric Faure, and Colin Guillarmou, Power spectrum of the
geodesic flow on hyperbolic manifolds, Anal. PDE 8 (2015), no. 4, 923–1000.

[DG16] S. Dyatlov and C. Guillarmou, Pollicott–Ruelle Resonances for Open Systems,
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